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A bstract

This thesis presents different methods of estimating the co-integrating parameter 
in a bivariate fractionally co-integrated model. The proposed estimates enjoy op
timal convergence rates and standard asymptotic distributions, yielding Wald test 
statistics with \ 2 null limit distribution. In the last few years increasing interest has 
developed in the issue of fractional co-integration, where both the observable series 
and the co-integrating error can be fractional processes, nesting the familiar situation 
where their respective orders are 1 and 0. These values have typically been assumed 
known. Chapter 1 is mainly devoted to reviewing this traditional prescription and 
motivate the relevance of fractional co-integration. In Chapter 2, we analyse a fully 
parametric model where the co-integrating gap, that is the difference between the 
integration order of the observables and tha t of the co-integrating error, is larger 
than 0.5. There, we show that our estimates share with the Gaussian maximum like
lihood estimate the same limiting distribution, irrespective of whether the orders of 
integration are known or unknown, subject in the latter case to their estimation with 
adequate rates of convergence. Chapter 3, still in a parametric framework, proposes 
estimates of the parameter of co-integration in case the co-integrating gap is less 
than 0.5. Again, we cover both situations where the orders of integration are known 
and unknown. Our estimates are inefficient relative to the Gaussian maximum like
lihood, but share with this estimate optimal rate of convergence and asymptotic 
normality, being computationally much more convenient. Chapter 4 concentrates 
on both situations described in the previous two chapters from a semiparametric 
perspective, that is without assuming knowledge of the parametric structure of the 
input series generating the fractional processes in the model. Finally, Chapter 5 
describes a simple procedure of testing for the equality of orders of integration of 
different series. This is as essential step in any empirical work in order to asses for 
the presence of co-integration in a certain estimated model.
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Chapter 1 

Introduction

Traditionally, co-integration analysis has developed almost exclusively in the con
text of processes with non-fractional integration orders. Most popularly, observed 
series are assumed to have a single unit root, such that first differencing produces a 
weakly dependent, invertible stationary process, while co-integrating errors also sat
isfy the latter description. This basic setting has been greatly extended, to observed 
series in which twice differencing is required to produce stationary weak depen
dence, and to polynomial co-integration; polynomial time trends have also been 
introduced, and co-integration with respect to cyclic and seasonal frequencies has 
been examined. However, co-integration can exist among much more general non- 
stationary (and indeed stationary) observations, with stationary or non-stationary 
co-integrating errors, and it seems desirable to develop the topic in a broader con
text, nesting the integer-order cases in a more general class, allowing integration 
orders to be real-valued. Undoubtedly, dealing with fractional processes could entail 
some difficulties, but in recent times, knowledge of their statistical properties has 
advanced considerably, so that issues like their role in co-integration analysis can 
be explored. In fact, fractional co-integration has become a relatively popular issue 
in the last decade among both theoretical and empirical econometricians, and this 
thesis mainly concentrates on one of the most relevant issues in this field, tha t is 
the estimation of a relation of fractional co-integration.

Before describing our aim in detail, we need to place this work in the right 
perspective. This Introduction has been written with this idea in mind, stressing 
the connection between the wider framework that fractional co-integration allows 
and the traditional prescription of unit roots and standard co-integration.

Section 1.1 is devoted to describing in some detail the concept of integrated 
series, which is essential in order to define the concept of co-integration, analysed 
in Section 1.2. Section 1.3 relates directly to the bulk of the thesis, as it presents 
different methods of estimating, in a given co-integrated model, the co-integrating 
parameter. As will become clear, our estimates, presented in Chapters 2, 3 and 
4, were inspired by some of these methods, but apply more generally than many of 
them, mainly under situations of less knowledge about the structure of the estimated 
model. Section 1.4 presents some empirical evidence of fractional co-integration, and 
finally, Section 1.5 describes briefly our main proposals in the thesis.
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1.1 The concept of integration
Following Engle and Granger’s (1987) seminal work, a scalar series t G Z, 

Z  =  { t : t =  0, ±1,...}, is integrated of order d, denoted traditionally ~  I  (d) (see 
Definitions 1.2 and 1.3 below), if it has no deterministic component and could be 
represented as a stationary, invertible autoregressive-moving average (ARMA) after 
differencing it d times. Usually, the parameter d has been assumed to be 0, 1 or 
2, the original series being modelled as I  (0) processes without, or under first or 
twice differencing respectively. Undoubtedly, the key aspect of that definition is 
the concept of I  (0) process, which in popular terms has been referred to as “short 
memory” , “weakly dependent” , “short-range dependent” or, in our view the most 
appropriate description, “weakly autocorrelated” process. The I  (0) concept has 
taken different, although relatively closely related, shapes in the literature. W ith
out the aim of being very exhaustive in an otherwise quite extensive field, we will 
comment on different ideas related to this issue.

Engle and Granger (1987) completed their above definition with some character
istics tha t they attributed to I  (0) processes. In particular, among other features, 
they stated that the spectral density of a covariance stationary 1 (0) process 
/ c (A), given by

1 00
(i-i)

J  =  — OO

where 7  ̂(j) represents the lag j  autocovariance of the process Q, should have the 
property

0 < f c (0 ) < 00 , (1 .2 )

which clearly implies that its autocovariances decrease steadily in magnitude for 
large enough j ,  so that their sum is finite. This relates directly to the concept of 
I  (0) process implied by Robinson’s (1993) definition of a covariance stationary I  (d) 
scalar process, which he defined as one with spectral density

9 (A) =  | l - e ttr 2,i5 (A), (1.3)

where 0 <  g (0) < 00 . This implied definition of an I  (0) process also appears
in Robinson (1994a), Marinucci and Robinson (2001) and Robinson and Yajima
(2002). Robinson (1994a) stressed the appropriateness of the term “weakly auto
correlated” to design this class of processes, as only second moments are involved, 
but he admitted tha t other terminology in popular use was “short-range dependent” 
or “short memory” . In his view, these are more global concepts referring not only 
to second moments, although, of course in the Gaussian case all these concepts are 
synonymous.

Other authors considered as I  (0) a very wide class of processes which are weakly 
dependent (in certain sense to be described subsequently) and possibly heteroge
neously distributed. The main feature of these processes is that they satisfy the 
following invariance principle: let ( t be one of these processes, then with [•] denoting
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integer part and n  the sample size, for r G [0,1],
[nr]

n “ 2 =>■ W  (cr2;r) , as n  —► oo, (1.4)
t=i

where in case W  (A ; r) is a scalar, it denotes a Brownian motion with variance A , 
whereas if it is a k x 1 vector, it represents a fc-dimensional Brownian motion with 
variance-covariance matrix A , for which the following notation will be used

W  (A ; r) =  (W1 (A; r ) ,..., Wk (A; r ) ) ' , (1.5)

with the prime denoting transposition; a2 is a finite scalar given by

*  = J2SLB_ls ((K LiCl)2) > 0; (16)
“=£■” denotes weak convergence of the associated probability measures. This ap
proach was followed for example by Phillips (1986), Phillips and Durlauf (1986), 
Phillips (1987), Park and Phillips (1988, 1989), Lo (1991), Phillips (1991b). (1.4) 
has been established in the literature under various conditions on the process 
Billingsley (1968) proves it for a strictly stationary process under certain conditions 
on its dependence, but his results have been extended by several authors. Among 
them, Herrndorf (1984) presented a set of sufficient conditions, allowing for tempo
ral dependence and a degree of non-trending heteroskedasticity in the process £t, a 
strong mixing condition satisfied by characterizing the typical “weak dependence” 
of the process.

Also, note tha t if we further assume that ('t is covariance stationary with spectral 
density f ^ ( A), o 2 =  (0), so that (1.6 ) implies the familiar condition that has
finite and strictly positive spectral density at frequency 0. In any case, on theoretical 
grounds, the distinction between both versions is not that relevant, because while an 
I  (0) process is usually considered as stationary, proper extra conditions are usually 
set so tha t certain invariance principle holds. See for example our Assumptions 2.1 
and 2.2 in Chapter 2. Nevertheless, we could adopt Robinson’s (1993) implication 
as our benchmark for a definition of I  (0) process.
D efinition 1.1. Integrated o f order zero process
A zero-mean scalar covariance stationary process Q, t E Z, with spectral density 

(A) is integrated of order zero, denoted Q I  (0), if

0 <  / c (0) < oo. (1.7)

As mentioned before, in the last few years, increasing interest has developed in 
a wider framework which takes into account that I  (0), and also I  (1), I  (2),..., are 
very specific types of stationary and nonstationary processes respectively. In this 
vein, and in fact as a direct consequence of the definition of integrated process given 
in Engle and Granger (1987), one could think about a process which is 7(0) after 
d-differencing, where d needs not be an integer. Note first that by the binomial 
expansion, for any real a , a ^  — 1 , —2 ,...,

- *)"“ = (“)zi' a= (“) = r(ajr|/+i)’ (1'8)
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with T denoting the gamma function, so that defining A =  1 — L, where L  represents 
the lag operator and 1 (•) the indicator function, we could establish the following 
definition.
D efinition 1.2. Type I fractionally integrated process
For any real number d , given a scalar I  (0) process Q, t G Z, x t, t € Z, is a Type I  
fractionally integrated process of order d, denoted x t ~  I\ (d), if  defining

i>t =  (1.9)

for an integer k such that d — 1 /2  < k  <  d +  1/ 2 ,

x t =  ipu k <  0 , (1.10)
X, = A - k {4>t l ( t > 0 ) } ,  k >  0. (1.11)

In case 0 < d <  1/ 2 , A; =  0 and x t is a covariance stationary process given by

oo
Xt =  ^   ̂Qj (d) C't—j ,  (1.12)

j =o

with spectral density
k W  = \ l - e ik\~2d f ( (X). (1.13)

In this case, Granger and Joyeux (1980) showed that, under certain additional con
ditions on the 7(0) process £t, the lag j  autocovariance of the process x t, 75 (i), 
behaves like

75 (j) ~  K  3 -»■ 00 , (1-14)
where K  (d) is a constant depending only on d, ” representing that the ratio of 
both sides of the relation tends to 1 as a certain specified condition holds (in this 
particular case j  —► 00). Note that, if for example Q is a stationary and invertible 
finite ARM A process, its lag j  autocovariance exhibits an exponential decay that 
contrasts heavily with the much slower hyperbolic decay of (1.14). This illustrates 
the “long-memory” aspect of the fractionally integrated process when d > 0 . (1.14) 
also implies that the autocovariances are not summable, hence the spectral density 
of x t at the origin is unbounded. More precisely, from (1.13),

/ i ( A ) ~ / c ( 0 ) A - 2d, A - 0 .  (1.15)

As Robinson (1994a) indicates, the non-summability of the autocovariances and 
unbounded spectrum at the origin characterize a stationary but “strongly auto
correlated” sequence. On the contrary, when d < 0, the process x t is covariance 
stationary, but with zero spectrum at the origin.

For larger d’s, Definition 1.2 has to be taken with caution. For example, when 
1 /2  <  d <  3/2, the process A x t , that is first differences of x t , is an 7i (d — 1) 
covariance stationary process, but x t itself is nonstationary and x t = 0 for t <  0 .
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On this range of values of d, the most widely used in the literature is d =  1, for 
which Definition 1.2 states that

t

x t =  5 ^ 0 * t >  0 , (1.16)
3=1

x t = 0, t <  0, (1-17)

noting that dj (1) =  1, j  > 0, so that when dealing with d = 1, Definition 1.2
represents the standard Engle and Granger’s definition of an I  (1) process (given at
the beginning of this section), with specific initial conditions given by (1.17). This 
is also the case for larger integer orders. The reason why x t is defined as

x t =  A ~d(t , (1.18)

only for d < 1 /2  is that when d > 1/ 2 , x t in (1.18) is not well defined in mean square 
sense, as it does not have finite variance. On the contrary, when d > 1/ 2 , Definition
1.2 implies tha t the variance of x t is finite (albeit evolving at rate t2d~l ). Definition
1.2 is not the unique way of defining fractionally integrated processes, and next, we 
propose an alternative definition.
Definition 1.3. Type II fractionally integrated process
For any real number d, given a scalar I  (0) process £tt t  £ Z, x t} t  £ Z, is a Type II  
fractionally integrated process of order d, denoted x t ~  I 2 (d), i f

x t = Cu d = 0, (1.19)
Xt =  A - 4 {Cel (i > 0)}, d  f t  0. (1.20)

This definition has different implications from those of Definition 1.2. For example, 
in case d <  1/ 2 , d ^  0 , on the contrary of x t , x t is nonstationary, although as showed 
in Lemma 3.4 of Robinson and Maxinucci (2001), under relatively mild conditions, 
for all j  > 0 ,

lim {Cov ( x t , x t+j)  -  Cov (x t , x t+j)} = 0. (1-21)
t—>oo

Hence, x t could be considered in this case as “asymptotically stationary” , the non- 
stationarity being only due to the truncation on the right hand side of (1.20). For 
d > 1/ 2 , x t is purely nonstationarity, the truncation in (1.20) ensuring x t is well 
defined in mean square sense. Note that both definitions are equivalent for d = 0 
and positive integers.

Definitions 1.2 and 1.3 were proposed by Marinucci and Robinson (1999). Both 
concepts mirror different definitions of fractional Brownian motions (denoted also 
as Type I and II) to which the suitably normalised different fractionally integrated 
processes converge. Robinson (2002) provides bounds for differences between the 
two fractionally integrated processes. Throughout the thesis, due to notational con
venience, we will mostly consider Type II fractionally integrated processes, and we 
will employ the simplifying notation I  (d) instead of I2 (d) to denote this kind of 
processes. Undoubtedly, all the results in the thesis could be slightly modified to 
accommodate for Type I processes, the main implication of this change being the

12



presence of Type I Brownian motions instead of Type II in some limiting distri
butions derived below. Marinucci and Robinson (1999) presented a very detailed 
analysis of the different types of convergence and the probabilistic properties of the 
two different classes of Brownian motions.

1.2 The concept of co-integration
Engle and Granger (1987) suggested that in case two processes x t and yt are both 

I  (d), then it is generally true tha t for a certain scalar a ^  0, a linear combination 
wt = yt — axt will also be I  (d), although it is possible that wt ~  I  (d — b) with 
b > 0. This idea characterized the concept of co-integration, which they adapted 
from Granger (1981) and Granger and Weiss (1983). They provided the following 
definition for multivariate series.
D efinition 1.4. C I(d ,b)  co-integration
Given two real numbers d, b, the components of the vector z t are said to be co
integrated of order d, b, denoted zt ~  C l  (d, 6), if

(i) all the components of zt are I  (d ) ,

(ii) there exists a vector a  (^  0) so that wt =  ot!zt ~  I  (d — b), b > 0.

Here, a  and wt are called co-integrating vector and error respectively. This 
definition applies to both classes of fractionally integrated processes (see Definitions
1.1 and 1 .2 ), but, as mentioned before, in the thesis we will mainly consider co
integration among Type II processes. These authors offered some intuition behind 
this crucial concept in modern time series econometrics, suggesting the existence of 
forces in economics which tend to keep series not too far apart. Given a vector of 
economic variables zt , and a certain vector q ^ O ,  economic theory would say that 
the variables are in equilibrium if ot'zt =  0 , that is a specified linear constraint holds
among those variables. This is a very tight notion of equilibrium, and it is a very
narrow view that this equality could hold for every time period t. Alternatively, we 
might think of an equilibrium error, as wt = ot'zt , which accommodates deviations 
from equilibrium. If, for example, in Engle and Granger’s (1987) definition d =  b =  
1 , the variables in zt are not stationary, with variances that go to infinity as t goes 
to infinity and non mean-reverting behaviour, that is the expected time between 
crossings of their mean is infinite. W hat characterizes in this case co-integration as 
a “long-run equilibrium” relationship is that a linear combination of I  (1) processes 
is I  (0), so that the series in zt cannot drift too far apart.

To be fair, the idea of equilibrium between 7(1) processes was hinted long before 
in the statistics literature. In the autoregressive (AR) model

yt =  pyt- 1 +  s t, t >  0 , (1.22)
Vt = 0, * < 0 ,  (1.23)

et being a sequence of independent normally distributed random variables with mean 
0 and finite variance, Dickey and Fuller (1979) studied the properties of the regression
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estimate of p, p, under the assumption that p =  1. In fact, this represented a 
situation of co-integration between the I  (1) processes yt and yt- 1, as the linear 
combination yt — yt~ 1 is I  (0). This is a particular case of what Park (1992) denoted 
as “singular co-integration” , which was characterized by co-integrating errors being 
linear combinations of innovations driving also regressors. Dickey and Fuller’s work 
was a direct consequence of a fertile line of research starting on the fifties. It is 
worth mentioning two works here which represented very important advances in 
this literature. Rubin (1950) showed the consistency of p for any value of p. White 
(1958) obtained the limiting distribution of p — p for |p| ^  1, and for p =  1 was able 
to represent the limiting distribution of n (p — 1) as that of the ratio of two integrals 
defined on a Brownian motion.

Engle and Granger (1987) introduced another important concept. If the multi
variate I  (d) process zt has p > 2 components, there may be more than simply one 
co-integrating vector a , representing this the case where several equilibrium rela
tions drive the joint movement of the variables in zt. It is easy to realize that the 
maximum number of linearly independent co-integrating vectors is r  <  p — 1 , and 
the value r  was defined as the “co-integrating rank” of zt. Note that it does not 
make sense to possibly consider r  =  p, as in this case, any vector in p-dimensional 
Euclidean space would be a co-integrating vector, including for example vectors like 
(1 , 0 , ...jOy, (0 , 1, 0 , ..^O)7 and so on, which would indicate that the first, second,..., 
components of Zt are I  (d — 6), which is contradictory.

Also, even considering only integer orders of integration, a more general defini
tion of co-integration than the one given by Engle and Granger (1987) is possible, 
allowing for a multivariate process with components having different orders of in
tegration, noting that long-run economic relationships are possible among variables 
with different behaviours. Here, denoting d\ and dp the largest and smallest of 
these orders respectively, Johansen (1996) proposed tha t any vector a  ^  0 such 
that a'zt ~  I  (dw) with dw < d\ was a co-integrating vector. Flores and Szafarz
(1996) narrowed Johansen’s definition, proposing instead that the vector series is 
co-integrated if there is a non-trivial linear combination of its components (with 
at least a non-zero scalar multiplying on di) which is integrated of order dw < d\. 
Alternatively, Robinson and Marinucci (1998) defined zt to be co-integrated if there 
exists a vector a  ^  0 such that a'zt ~  I  (dw) with dw < dp, which is a much stronger 
requirement. Robinson and Yajima (2002) offered an alternative (rather more in
volved) definition and good comparisons among the different definitions appeared 
in the literature. Fortunately, we will avoid the problem of choosing among these 
definitions of co-integration in a multivariate framework, as throughout the thesis 
we only consider bivariate models, for which all the previous definitions are equiva
lent. This is an important limitation of our analysis, but we considered that at this 
point is more adequate to present results in a relatively simple framework, multivari
ate extension being mostly straightforward, but notationally much more involved, 
extensions of our work.

Thus, once fractionally integrated processes are defined, the concept of fractional 
co-integration appears as a natural extension of the traditional co-integration, where 
the observables were treated as I  (1) processes, and certain linear combinations of 
them as I  (0) processes. In fact, the standard definition of co-integration by Engle
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and Granger (1987) does not necessarily refer to integer orders of integration. Thus, 
by Definition 1.4, in the simple bivariate case, two series yt , x t sharing the same 
order of integration, say 6 , are co-integrated C7 (6, (3), if there exists a vector a  ^  0

Throughout the thesis we will consider an extension of Phillips’ (1991a) triangular 
system for this simple bivariate case, given by

for t =  0 , ± 1 ,..., where the #  superscript attached to a scalar or vector sequence vt 
has the meaning

noting that (1.30) implies 7  >  0. As mentioned before, the truncation in (1.26) 
ensures that x t has finite variance, and implies that x t =  0, t  <  0. The truncation 
in (1.25) is unnecessary if 7  <  1 /2  (yt — vx t is covariance stationary without it and 
“asymptotically covariance stationary” with it), but is imposed there also for the 
sake of a uniform treatment, implying that yt =  0, t <  0. In common parlance, ut 
is an 7(0) vector process, x t is an 1(6) process, as is (due to (1 .25), (1.26), (1 .29), 
(1.30)) yt, while the co-integrating error yt — vx t is an 7 (7 ) process, and we say 
that (xt,y t) is co-integrated of order (6,(3) ( C l (6, /?)), noting Definitions 1.3 and 
1.4. If (3 =  0, there is no co-integration and v is not identified. (1 .25), (1.26) 
reduces to the bivariate version of Phillips’ triangular form when 7  =  0, 6 =  1, 
which is one of the most popular models displaying C l  (1 ,1 ) co-integration con
sidered both in empirical and theoretical literature. (1.25), (1.26) allows greater 
flexibility in representing equilibrium relationship between economic variables than 
the traditional C l  (1,1) prescription. On the one hand, it is plausible the existence 
of long-run co-movements between nonstationary series which are not precisely 7 (1). 
On the other, usually there is not any a priori reason for which to restrict to simply 
7 (0) co-integrating errors, as perhaps the convergence to equilibrium that any co- 
integrating relation ensures could be much slower than the adjustment imposed by 
for example a finite ARMA co-integrating error. Furthermore, we could also con
sider co-integration among (asymptotically) stationary variables, with some linear

(1.24)

yt =  vx t + A 7uft ,
Xt — A

(1.25)
(1.26)

v f  =  vtl  (t > 0 ) . (1.27)

Also, ut =  (u\t,U2t)' is a bivariate covariance stationary unobservable process with 
zero mean and spectral density matrix, /  (A), satisfying

7T

— TV

that is at least nonsingular and continuous at all frequencies; and finally

"  ^  0 ,
6 >  / ? > 0,

(1.29)
(1.30)
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combinations producing co-integrating errors characterized by having weaker mem
ory than that of the observed series. Also, it could be that the co-integrating error 
is purely nonstationary but mean reverting, so tha t a certain long-run equilibrium 
among perhaps non-mean reverting observables holds. Note that a normalisation 
has been carried out in (1.25), the co-integration vector corresponding to Engle and 
Granger’s (1987) definition being now (1 , — v)'. Note that a co-integrating vector 
is only identifiable up to a scale parameter, so tha t if a  is a co-integrating vector, 
that is a'zt r s j  I  (7 ), ca'zt I  (7 ) for any scalar constant c, hence cot could also be 
considered a co-integrating vector.

As denoted by Phillips and Loretan (1991), (1.25), (1.26) with 7  =  0, 8 = 
1, represents “a typical co-integrated system” in structural form. (1.25) could be 
regarded as a stochastic version of the partial equilibrium relationship yt = vx t , 
with A r e p r e s e n t i n g  deviations from this equilibrium. (1.26) is a reduced form 
equation. (1.25), (1.26) is the key structural model in this thesis and Chapters 2, 
3, 4 are devoted exclusively to investigate methods of estimating in this framework
the parameter v. Some other work on fractional co-integration has employed the
alternative Type I definition of fractional integrated process, replacing (1.25), (1.26)
by

yt = vx t + v t  > 1, (1.31)

x t = V2?  +  ••• +  v2?> t ^  (!-32)

where and v^) are jointly stationary A (7 ) and 11(8 — 1) processes, respectively, 
with |7 | < 1 /2 ,1 /2  < 6 < 3/2. When 7  =  0, 8 = 1 , vt( j , 8) = ( v $ \ v $ ) '  = (ult,u 2ty  
implies (xt,y t) = (xt,Vt), but more generally, with vtH, <5) having spectral density 
matrix A(A;7 , <5)/(A)A(-A;7 , 8), for A(A; 7 , 8) = diag {(1  -  eiX)~^, (1 -  e ^ )1" 6}, 
this is not the case. In particular, note tha t (1.32) represents a Type I fraction
ally integrated process A (5). Model (1.31), (1.32) covers a different range of 7 ,<5 
values from (1.25), (1.26), but higher 8 can be involved by extending (1.32) to include 
two or more unit roots, while 7  E (—1/2,0) could be allowed in (1.25).

1.3 Estim ation of co-integrating relations
During the last two decades, plenty of effort has been devoted to developing dif

ferent estimates of the co-integrating parameter 1/ in (1.25), mainly assuming 7  =  0, 
8 = 1. Here, there is a clear distinction between what Jeganathan (1997) denotes 
as first and second stage procedures. Typically, limiting distributions of procedures 
in the first stage are nonstandard and unsuitable for use in statistical inference, 
whereas procedures in the second stage imply estimates of v belonging to the locally 
asymptotic mixed normal family. This class of estimates enjoy several attractive 
features. They are symmetrically distributed, median unbiased and optimal theory 
of inference applies under Gaussian assumptions (see Saikkonen, 1991). Also, they 
lead to Wald test statistics with standard \ 2 null limit distribution. Jeganathan
(1997) suggested that first stage procedures could be used to test for the presence of 
unit roots in a given model, and then, by second stage methods, one could estimate
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co-integrating relationships on the model where the unit roots tested in the first 
stage are imposed. Thus, as a practical consequence, the main difference between 
the two types of procedures is that first stage methods do not require knowledge of 
7  and/or 5, whereas second stage do. For example, in the standard C l  (1,1) case, 
first stage procedures implicitly estimate the unit roots present in (1.25), (1.26), 
hence nonstandard asymptotics appear. On the contrary, second stage methods 
incorporate the information about the values of 7  and 8 into the estimation pro
cedure, achieving desirable asymptotic properties (see Phillips, 1991a). However, 
there are exceptions to this setting. For example, Hendry’s methodology described 
below (see Hendry and Richard, 1982, 1983), makes use of the information 7  =  0, 
5 =  1 without achieving estimates of v with optimal asymptotic properties. More 
importantly, in fractional circumstances, there could be situations where assuming 
7  and/or 8 are known is highly unrealistic, even after pretesting. As it will become 
clear in Section 1.5, our purpose in this thesis is to provide estimation methods for 
v in (1.25), (1.26), under different situations, which share in many cases the optimal 
asymptotic properties of the second stage procedures without assuming knowledge 
of 7  and/or 8 .

We present below the main approaches proposed in the literature for both classes 
of procedures, focussing mainly on the C l  (1 , 1) framework, where most theoretical 
and empirical contributions concentrate. Among different first stage methods, we 
will focus on two procedures that we also use throughout the thesis as preliminary 
estimates necessary to obtain our proposed second stage estimates. For the second 
stage ones, we will focus on two classes of estimates which are closely related to the 
ones we propose in Chapter 2 , 3 and 4, and also one tha t has enjoyed great popularity 
in the C l  (1, 1) situation, and has also been extended to fractional frameworks.

1.3.1 First stage procedures
Ordinary least squares (OLS)

Phillips and Durlauf (1986) analysed the asymptotic properties of the OLS es
timate of 1/  in a multivariate version of (1.25) with 7  =  0, 8 =  1, which for our 
particular bivariate situation is given by

Vo =  (1.33)v n X Z^t=ix

In case, we assume that the process ut is independent and identically distributed 
with mean 0 and variance-covariance matrix f2 (iid (0 , f2)), their results imply

W » (n ;  r ) < w , ( 0 ; r ) +  Mu„  („ 0  -2-------  , (1.34)
Jo WZ(Q;r)dr

where W  (0 ;r )  =  (Wi (f2 ;r), W2 ( fyr)) '  and Uij is the (i, j ) th  element of f2. Note 
that the limit distribution on the right of (1.34) could be rewritten as

J01 W2 (n ;r )d W 1.2 ((i;r)  ̂ q.12 W2 (ft; r) dW2 (ft; r) q,12

tiWZ(n-,r)dr UJ22 Jq W% (Q;r)dr Wf (SI; r) dr ’
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where
Wi.2 (fl; r) = Wx (0; r) -  - ^ W 2 (fl; r ) , (1.36)

1022

which is uncorrelated with VF2 (^; r), and thus by Gaussianity independent, so that 
the first term in (1.35) represents a mixed normal distribution. The second and third 
terms are the “unit root distribution” arising from the implicit estimation of the unit 
roots present in the model and the “second-order bias” originated by the endogeneity 
of the regressor x t (due to the correlation between u\t and u 2t) respectively. Stock
(1987) had earlier suggested for a co-integrated model with iid errors tha t a result
like (1.34) could be obtainable. In fact, Phillips and Durlauf (1986) showed that a 
multivariate version of this result holds under more general conditions on the error 
input series ut. Denoting

S 0 =  lim n~l V ]  E  (utu 't) , (1.37)
71—* OO 1

%  =  l im  - S '  ] E (u i u 't)> C1 -3 8 )n—*00 »i= 2  »_7=1

S  =  So +  S i + S j ,  (1.39)

under some regularity conditions on the autocorrelated (and possibly heteroskedas- 
tic) process Ut

, . Jo1 (2; r) m  (2; r) + <?12n  ( „ < , - „ ) = » - 2 ----- -• >--------- , (1.40)
Jo W j(Z;r )dr

where is the ( i , j ) th  element of E.
In fractional circumstances, the properties of the OLS estimate (1.33) could be 

very distant from those in the traditional C l  (1,1) situation. Robinson (1994c) 
showed the inconsistency of the OLS in a similar model to (1.25), where the ob
servable yt , Xt were covariance stationary long-memory processes, sharing the same 
memory parameter, whereas the co-integrating error was also a covariance station
ary long-memory process with memory strictly smaller than the memory of the 
observables. In this framework, the inconsistency of the OLS estimate is due to 
correlation between stationary regressor and co-integrating error. It can be easily 
shown th a t Robinson’s conclusions would also hold for our model (1.25), (1.26), 
where 7  <  6 < 1 /2  implies that both observables and co-integrating error are 
asymptotically stationary.

Robinson and Marinucci (1998, 2001), for a model similar to (1.25), (1.26), but 
where the different processes considered belonged to a class closely related but wider 
than the Type II fractionally integrated, provided the asymptotic distribution of the 
OLS (with or without intercept) for the case 8 > 1/ 2 , 7  >  0. They showed that 
the rate of convergence of the OLS is 7lmin(2<5- 1./?)j except for the case where 8 > (3 
and 28 — (3 = 1, where the OLS is nP/  log n-consistent. In all cases, the OLS have a 
nonstandard limiting distribution which, as mentioned before, complicates statistical 
inference. Finally, Chan and Terrin (1995) developed asymptotic theory for the OLS 
estimate in a general AR process with fractional innovations.
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Narrow band least squares estim ate (N BLS)

For I = 0,1 and integer ra, with I < m  < n/2, we could estimate of v  in (1.25)
by

Vl (m ) =  (1.41) 
Fxx(l,m)

where given (perhaps identical) scalar or vector sequences at , bt , t =  1 ,

{
n m ) n
—  / ok(7r)l(m =  n/2) (1.42)

is the averaged (cross-) periodogram, where for integer j ,  Xj =  2 n j/ n  are the Fourier 
frequencies,

/«6(A) =  ti/a ( A K ( - A )  (1.43)

being the (cross-) periodogram and

(..44)

the discrete Fourier transform. Note that

Fab (1, m) =  Fab (0, m) -  ab, (1-45)

with a = n~l Ylt=i so omission of zero frequency implies sample-mean correction. 
Under the assumption

1 m „ 1 i 0 a s n - >  oo, (1*46)
m n

the averaged (cross-) periodograms are based on a degenerating band of frequencies 
around 0, so that (1.41) only considers low-frequency components of the series in 
the relation of co-integration. In this situation, Vi (m) is the narrow band estimate 
of v. This is certainly a sensible approach, as co-integration defines a long-run 
relationship, and in order to estimate the co-integrating parameter, we could hope 
that extracting from the observable series the relevant elements, we avoid high- 
frequency components that could be distortive and uninformative in order to asses 
for a low-frequency phenomenon. Note also that from the orthogonality properties of 
the complex exponential (see (2.95) below), Vq ([n/2]) =  z70  in (1.33), and similarly

E I*=i (yt -  v) f a  -  x)
E h  (x‘ -  ®):

([n/2]) =  (1-47)

which are the OLS estimates without and with intercept respectively. The NBLS 
estimate was proposed by Robinson (1994c). It is related to the band estimate 
proposed by Hannan (1963), developed later by Engle (1974), with the fundamental 
difference that the band estimate focuses on a nondegenerate band of frequencies, 
so (1.46) does not hold. Due to (1.46), NBLS resembles nonparametric spectral 
estimation, where now the focus is the parameter v  instead of a spectral density

19



at a given fixed frequency. Robinson (1994c) showed the consistency of the NBLS 
in case of stationary co-integration (with stationary or asymptotically stationary 
observables), where, as mentioned before, OLS is inconsistent. The reason for this is 
that focussing on a slowly degenerating band of low frequencies reduces the bias due 
to contemporaneous correlation between u\t and U2t- Robinson and Marinucci (1998) 
gave a rate of convergence (which they conjectured as sharp) for the NBLS estimate 
of v, when the memory parameters of the observables and co-integrating error are 6 < 
1/2 and 7  >  0 respectively. In a similar framework, Christensen and Nielsen (2001), 
provided a better rate than that of Robinson and Marinucci (1998), and showed that 
under their assumptions, the NBLS has a normal asymptotic distribution. This was 
at cost of introducing a very strong condition, which in our model (1.25), (1.26) 
would imply that the coherency between the weak dependent processes Uit , ix2t, at 
frequency 0 is 0 , condition that is not satisfied if for example ut is a bivariate finite 
ARM A. They only considered the case 0 < 7  <  <5 < 1/2, 6 +  7  < 1/2.

For the nonstationary case, Robinson and Marinucci (1998, 2001) also exploited 
the bias reduction achieved by focussing on a degenerating band of frequencies 
around 0, and showed that in case 28 — 1 < (3 or 28 — 1 =  /? with 8 >  /?, the 
rates of convergence previously given for the OLS can be improved upon. These 
are now if 28 — 1 < /?, n^ /lo g m  if 28 — 1 =  (3 with 8 >  /?, and n13
otherwise, noting (1.46). As OLS, NBLS has nonstandard limiting distributions in 
all situations. For C l  (1 , 1) co-integration, convergence rates of Vi (m) and V1 ([n /2]) 
are identical, but V\ (m) eliminates the “second-order bias” present in the asymp
totic distribution of V\ ([n/2]), which is similar to (1.34) with demeaned Brownian 
motions instead the undemeaned ones. The superiority of the NBLS over the OLS 
does not appear when comparing Vq (m ) and V0 ([n/2]) however, for this standard 
C l  (1 ,1) case.

Other first stage estim ation m ethods

The traditional C l  (1,1) literature has proposed other methods to estimate ei
ther 1/ in (1.25), or alternatively a basis for the co-integrating space. In general, 
these methods enjoy less popularity than the previous two (especially than OLS), 
and we also considered them as first stage procedures, as they do not require to in
corporating information about (7 , 6). Stock and Watson (1988) proposed two tests 
for the number of stochastic trends driving the behaviour of a multivariate unit 
root process. Equivalently, these tests could be viewed as tests for co-integrating 
rank. As an intermediate step for the feasibility of their test statistics, these authors 
suggested a consistent estimate of a basis of the co-integrating space consisting of 
orthonormal co-integrating vectors. As these co-integrating vectors axe linear com
binations of the vector of observable I  (1) variables, say ztj with bounded variance, 
they proposed the following approach. The first co-integrating vector forms the lin
ear combination of zt having the smallest variance, the second co-integrating vector 
having the next smallest variance and so on. Thus, in case the co-integrating rank is 
r, the co-integrating vectors are estimated as those linear combinations correspond
ing to the smallest r principal components, leading this method to estimates of the 
co-integrating vectors up to an arbitrary linear transformation.
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Bossaerts (1988) proposed a different estimate of a basis of the co-integrating 
space. Given certain vector of I  (1) variables zt with co-integrating rank r, his idea 
was to use canonical correlation analysis, which searches for linear combinations 
of elements of zt and linear combinations of zt~\ which are maximally correlated 
subject to certain normalization constraint. He concluded tha t the last r  canonical 
variables, which are the r canonical variables of zt and zt~ 1 with smallest squared 
correlation coefficient between them, are defined by vectors in the co-integrating 
space, hence they are co-integrating vectors.

Finally, Phillips (1995) motivated by the well reported non-Gaussianity of finan
cial data (mainly in terms of leptokurtosis and heavy tails), analysed asymptotic 
properties of the least absolute deviations (LAD) and M-estimates of v in model
(1.25), (1.26) with 7  =  0, 8 = 1. Defining

n

Vlad =  argmin V '  \yt -  a x t \ , (1.48)a f *t=l

Phillips showed that like OLS, the LAD estimate although n-consistent, suffers from 
nonstandard asymptotics. Also, the limiting distribution of Vlad depends on the 
value a t the origin of the probability density function of U\t , noting that due to the 
particular shape of this limiting distribution (similar to (1.40)), the scale effect due 
to this factor has a more distortive effect than just inflating the asymptotic variance 
of the estimate of v. Phillips also proposed a general M-estimate given by

n

VM =  arg min V '  T  (yt -  a x t) , (1.49)
a  *

*=1

where T is a chosen function. Potentially, this general framework could include the 
LAD estimate (and indeed also the OLS), but Phillips set some restrictive conditions 
on T, as twice differentiability, which ruled out this possibility. Nevertheless, he gave 
some hints on how to treat the case where T is non-differentiable. As expected, the 
general M-estimate of z/ has also a nonstandard limiting distribution, depending on 
a scale factor given by E  (T" (% )), where Y" represents the second derivative of T .

As mentioned before, the nonstandard limiting distributions of first stage meth
ods make statistical inference problematic, and our work in the thesis is devoted 
to providing estimates, that although computationally slightly more involved than 
simple first stage procedures, enjoy standard asymptotic theory without assuming 
knowledge of the I  (7 ) / /  (5) structure of the model. Also, although convergence 
rates of OLS and NBLS are optimal in some circumstances, in others, their rates 
seem capable of further improvements over some regions of the (7 , <5)-space. In 
Chapters 2 , 3, 4, we will provide estimates which apart from enjoying asymptotic 
distributions leading to standard statistical inference, are, in some cases, faster than 
OLS or NBLS.
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1.3.2 Second stage procedures
Full system  param etric estim ation

P hillips (1991a) proposed full system estimation of a multivariate triangular 
system error correction mechanism representation which, corresponding to (1.25),
(1.26), with 7  =  0 , 6 — 1, is given by

(£)~(S)(1 i/)(Z1i)+Vt' (1-50)
where

=  I J 1 K  (151)

noting tha t linearity in the co-integrating parameter v is kept, all the transient 
dynamics being absorbed by the error process vt or equivalently ut. The linearity 
imposed in the system produces equivalence between full system Gaussian maximum 
likelihood (ML) estimation and simple OLS in a suitably augmented model. In case
ut is assumed to be iid (0, f2), the full system Gaussian ML estimate of v is equivalent
to the OLS estimate of v in the augmented linear regression equation

yt = vx t + (pAxt + iti.2t, (1.52)

where
Ui.2t =  UU -  ipu2u <P = Ui2/uJ22• (1.53)

Prior information about the unit root present in the system is crucial, and in fact 
Phillips (1991a) admits that in our bivariate structural model rewriting (1.26) with 
<5 =  1 as

x t =  rjxt-i +  u2t, (1.54)

with tj =  1 , the key to obtain optimal asymptotic theory is to incorporate in the 
estimation the valid information that rj = 1, which is equivalent to knowledge that 
7  =  0, 8 = 1 in (1.25), (1.26). Full system estimation involving unrestricted param
eters i/, tj, would produce estimates of v with non-optimal properties due to the, in 
this particular case, explicit estimation of the unit root parameter rj. In fact, due to 
the triangularity of (1.25) with 7  =  0, (1.54), with the second equation already in 
reduced form, two stages least squares (2SLS) is equivalent to the full information 
ML estimate of v. Thus, taking x t- \ as instrument for x t in (1.25), maintaining 
ut ~  iid (0 , fi), the asymptotic distribution of the 2SLS estimate of v, V2s l s  is

X . fo1 W2 (Si; r) dW1.2 (Si; r) , u;12 £ W2 (Si; r) dW2 (Q; r)
n \ y 2 S L S  v) => r i u / 2 /o  w  r1 u /2 w  ’ I1-55)Jo w 2 r ) dr U22 Jo W l (fi; r) dr

where the “second-order bias” term present in the asymptotic distribution of the OLS 
estimate is eliminated (see (1.35)), but not the unit root distribution. The white 
noise case is heavily stressed in Phillips (1991a), although a similar “augmentation”
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of the OLS could be done in case Ut has an AR representation of finite order. For 
example, in case

Ut = (  0 0 )  Ut~l £u (1-56)

where et is iid (0 , f2), the optimal estimate of v  would come from unrestricted OLS 
in the augmented regression

yt =  vx t +  <pAxt +  % _ i -  vbxt- i  +  £i.2t, (1-57)

where
£i.2t =  e\t — P£2t, ip = Wi2/w 22- (1.58)

The treatm ent of an arbitrary I  (0) linear process ut is more delicate, however.
Next, we propose asymptotically equivalent methods to full system Gaussian ML
estimation. Given the AR representation for ut

B (L )u t  = £t , (1.59)

with et iid  (0 , f l ) ,
B  (s) =  / 2 -  t BjS>, (1.60)

where Ir is the r x r  identity matrix, the first method is a time-domain approximation 
to the infeasible generalised least squares estimate of given by

r  E L ,  (Bi W  x ? ) 'n - lB  (L) ( y f . A x f Y  
Z l i i B A V x f y n - ' B U V x *  ’

where B\  (L) denotes the first column of B  (L ). Of course this estimate is infeasible, 
but replacing f2, B  (L) by suitable consistent parametric estimates fi, B  (L ) respec
tively, the feasible version of v would have under relatively mild conditions the same 
asymptotic properties of V to first order.

More elegant seems the proposal of Phillips (1991a) of a fully parametric frequency- 
domain approximation to the Gaussian likelihood, known as the W hittle approxi
mation. Here, noting (1.28), we define

p (A) =  (1, 0) r 1 (A), q (A) =  (1 , 0 ) r1 (A) (1, 0)' ,  (1.62)

and the infeasible W hittle estimate of v is given by

~  ]C j=i P (^ i) w x ( ~ ^ j )  (w y j ) > w Ax ( X j ) y

v  =   ’ ( L 6 3 )

noting (1.43), (1.44). A feasible version could be obtained by replacing p(A), q (A) 
by consistent parametric estimates. All these approaches would produce optimal 
estimates under Gaussianity with mixed normal asymptotic distributions, but all 
of them require knowledge of the 7 ( 1 ) / / ( 0 ) structure of the model, which is the 
reason for the presence of first differences of x t throughout.

Jeganathan (1997) considered model (1.25) with 7  =  0, (1.54), where (77! <  1 
and u t with known density function. His approach was based on a one-step iterative
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procedure from a suitable preliminary estimate. He showed that in order to obtain 
analogous optimality properties to previous methods (with mixed-normal asymptotic 
distribution and corresponding Wald tests with x 2 null limit distribution) in case 
77 =  ± 1, these unit roots needed to be imposed in the estimation procedure.

In fractional circumstances, Jeganathan (1999, 2001) considered ML estimation 
in (1.31), (1.32), stressing pure fractional vt (7 , 6) (corresponding to white noise ut 
in (1.25), (1.26)), having innovations with completely known, but not necessarily 
Gaussian, distribution. He obtained mixed normal asymptotics for his estimate of 
z/, in case 7  and 8 are known, though including some discussion of their estimation. 
In fact, he did not consider (1.32) explicitly, but

x t = rjxt-i +  4 t \  (i-64)

with 1771 <  1 , but apart from also considering the case 77 =  —1, Jeganathan’s model 
allowing for a free extra parameter 77, is not more general that (1.31), (1.32). De
noting for example =  A (6 l^U2u if |??| <  1, (1-64) implies that

x t = (1.65)

with
e2t =  l ^ t - l  +  U2t, (1.66)

so that x t is a completely standard Type I fractionally integrated process of order 
6 — 1. If on the contrary 77 =  1, with the extra assumption xq =  0, (1.32) is the right 
representation of x t. Thus, it seems that (1.32) for certain general I  (0) process u2t, 
with 8 € (—1/2,1/2) U (1/2,3/2) captures both situations for a different definition of 
fractionally integrated process. It is true that in Jeganathan’s framework the input 
I  (0) series generating the fractionally integrated process is different depending on 
whether I77I < 1 (e2t is the input series generating x t) or 77 =  1 (u2t is the input series 
generating x t), but this does not seem a very relevant difference.

We devote Chapters 2 and 3 in this thesis to investigate model (1.25), (1.26), 
from a fully parametric perspective, including cases where 7  and 8 are unknown.

Full system  nonparametric frequency dom ain approach

Inspired by Hannan (1963), Phillips (1991b) proposed a narrow band frequency 
domain estimate with optimal asymptotic properties under Gaussianity which relies 
on a nonparametric estimate of the spectral density matrix of the error ut in (1.25),
(1.26) with 7  =  0, 8 =  1 (or equivalently the one of vt in (1.50)). The idea of his 
approach is that taking Fourier transforms in (1.25), (1.26), we obtain a triangular 
system in the frequency domain given by

( Z"JS) ) = (0)(1 " H w + «■(A) ■ (L6?)
Given the spectral density of ut, f  (A), we could estimate v efficiently applying full 
band weighted least squares to (1.67), obtaining v in (1.63). Of course, this esti
mate is not feasible, as in practice /  (A) is unknown. Focussing on a nonparametric
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approach, one could replace /  (A) by some nonparametric estimate and show that 
the feasible estimate share the asymptotic properties, to first order, of the infeasible 
one. Phillips introduced two modifications on this idea. First, as co-integration 
is basically a long-run phenomenon, we could concentrate on a degenerating band 
of frequencies concentrated around frequency 0. Also, he replaced the (cross-) peri- 
odograms w x ( —Aj )  (wy (Aj ) , w&x (Aj))' and I x (Aj )  by consistent estimates of the cor
responding (cross-) spectrums (more precisely these were averaged periodograms), 
although it is possible to show that this change does not m atter asymptotically, at 
least to first order asymptotic properties. Furthermore, he also presented an esti
mate that is the narrow band equivalent of (1.63), where p  (A), q (A), are replaced by 
nonparametric estimates of p  (0), q (0) respectively. As Phillips (1991b) showed, this 
estimate also enjoys optimal asymptotic distribution under Gaussianity, the reason 
being that although p ( 0), q (0) are “imperfect” weights compared to p(Xj ) ,  q (Aj), 
as the estimate only concentrates on a degenerating band of frequencies around 0 , 
the weights are approximately correct.

As an alternative to previous procedures, a different but asymptotically equiva
lent nonparametric approach would be to employ a similar AR orthogonalization to 
the one given in the parametric estimation, assuming ut is an AR process of order 
p  (AR(p)), with p  tending suitably slow to infinity.

For fractional models, in a multivariate semiparametric version of (1.31), (1.32), 
and allowing also for the possibility of nonstationary , Velasco (2000) considered a 
tapered version of local W hittle estimation of i/, 7  and 8 , for the case 1/2 < 8 < 3/2, 
0 <  7  < 8 with (3 > 1/2, more particularly taking one Newton step from preliminary 
estimates with suitable convergence rates. This produces an estimate of v  which 
does not have optimal convergence rate but, unlike ours described in Chapter 4 and 
those in the other references, is asymptotically normal. In a similar setting, Hassler, 
Marmol and Velasco (2002) focused on log periodogram estimation of 7  and 8 given 
preliminary estimation of 17 developing rules of asymptotic inference. As explained 
in Section 1.5, our approach in Chapter 4 deals also with a nonparametric situation, 
being close in spirit to Phillips (1991b), but including cases where knowledge of the 
orders 7 , 8 is not assumed.

Fully m odified OLS (FM-OLS)

Several authors have proposed modifications of the OLS in (1.25), with the aim 
of obtaining estimates of v sharing the asymptotic properties of the fully parametric 
Gaussian ML estimate of v. This was originated by the work of Phillips and Hansen 
(1990) for the case 7  =  0, 8 =  1. These authors proposed an optimal single equation 
procedure based on appropriate treatment of the autocorrelation structure of the 
process ut in a multivariate extension of our basic model (1.25), (1.26) with 7  =  0, 
<5 =  1. The aim of the method is to remove bias and endogeneity effects that this 
autocorrelation in general produces. Their FM-OLS estimate of v is given by

(1.68)
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where _
y t  = y t -  v 22 0 i2&xt, (1-69)

A and being nonparametric estimates of A =  YlT=o ^  (u2oUk) and of the (z ,j)th  
element of 2n f  (0 ) (the so-called long-run variance-covariance matrix of ut) respec
tively. Again, note that in this approach, knowledge of the / ( l ) / / ( 0 )  nature of 
the observables/co-integrating error is crucial, as it is precisely the use of this in
formation which motivates the use of first differences of x t in the modification of
yt and in the estimation of A and 2n f  (0). The relevance of this work is that they
achieved optimal estimation of v under Gaussianity assumptions without the need 
of assuming a fully parametric structure for Ut, and also avoiding system estimation.

Park (1992), extending Park and Phillips (1988,1989), proposed a similar modifi
cation to the OLS. Noting that a co-integrating relationship is not altered by certain 
modifications of the observables, in (1.25), (1.26) with 7  =  0, 8 = 1, he proposed to 
transform the observables as

x*t = x t -  (E_1r2)/ut, (1.70)

yt = yt -  (E-1I V  +  ( 0 V12&22 ) ) ' ut> (1-71)

with E =  E  (-utv!t), T2 =  (712, 722)', with
OO

l ij  =  ^   ̂ {ujtUjt—k}, i , j  = 1,2. (1.72)
Jt=0

Park showed that these transformations had nonnegligible effects on the limiting 
distribution of the least squares estimates based on the transformed variables and, in 
fact, this estimate enjoyed the mixed normal asymptotic distribution also achieved 
by Phillips and Hansen (1990). It is clear tha t modifications (1.70), (1.71) are 
close in spirit to those of these latter authors. Of course, these transformations are 
infeasible, but the unknown parameters related to the covariance structure of ut 
could be replaced by appropriate nonparametric estimates, v by its OLS estimate, 
and Ut by the residuals (yt — vo%t, Axt)x (see (1.33)). Park showed the validity of 
a feasible estimate constructed following these lines. The main advantage of his 
procedure over Phillips and Hansen’s one is tha t it requires only a once-and-for-all 
transformation of the data. Once the data are transformed, standard regression 
software will be enough to carry on any statistical analysis.

In a fractional framework, Dolado and Marmol (1996) considered a fractional 
extension of the FM-OLS estimate of z/, with nonparametric autocorrelation in u*, 
and assuming knowledge of 7  and 6 . In relation to (1.31), (1.32), with v a matrix 
and both equations vectors but depending still on only two integration orders 7  and 
8 , Kim and Phillips (2000) consider an alternative extension of FM-OLS to tha t 
of Dolado and Marmol (1996), and its relation to Gaussian ML estimation. They 
assume parametric autocorrelation in 1̂ (7 , 8), obtaining limit distribution theory 
that differs from that of Jeganathan (1999, 2001), and from ours in Chapters 2 
and 4 below (see (2.32)), even after replacing their version of fractional Brownian 
motion by ours. They also consider estimation of nuisance parameters, but only
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treated the cases 1 < 8 < 3/2, 7  +  £ >  1, - 1 /2  < 7  <  1/2, which imply (3 > 1/2 
and 1 <  8 < 3/2, 1/2 <  7  < 1 for the case (3 > 1.

Other second stage estim ation m ethods

A different research strategy was based on single equation error correction mech
anism. Noting that from (1.25), (1.26) with 7  =  0, 8 =  1,

S M S O U : ) ’
so that in general

/  An. \
C { L )e t, (1.74)(  AVt )  -  V A x , J

A ( L ) [  £  ) = d ( L ) e t, (1.75)

where et is a bivariate iid process, for a certain moving average (MA) polynomial 
C (L) = Yl'jLo CjLP ■ For our particular situation, the Granger Representation The
orem implies that C  (1) is of rank 1, so there exists a 2 x 1 vector a, such that 
C  (1) a = 0. This theorem also implies that there exists a vector ARM A represen
tation

'  yt 
Xt

for certain lag polynomials A  (L ), d (L), and also an error correction representation 

A" (L) (1 -  L) (  yJ t )  =  - a  (yt_, -  u x ^ )  + d (L) et, (1.76)

where
A (L) = A  (1) +  (1 — L) A ' ( L ) , (1.77)

and A* (0) =  I2. In general, A  (L ), A* (L ), d (L ) are infinite AR lag polynomials, but 
in practice finite-order approximations are used, the purely AR representation where 
d (L ) = 1 having been stressed in the literature. Note tha t 1/ appears nonlinearly in 
(1.76), as a is unknown and must be estimated.

Stock (1987) analysed through a Monte Carlo experiment the case where A* (L ) = 
(1 — pL) I 2 and d (L) = 1 in (1.76), and estimated 1/  by means of nonlinear least 
squares in (1.76). His main finding was large Monte Carlo bias for this estimate. 
From Phillips and Loretan’s (1991) arguments, it is clear that the asymptotic dis
tribution of Stock’s estimate is non-standard, with bias, asymmetry and non-scale 
nuisance parameters. Stock’s approach is very related to Hendry’s methodology, 
explained precisely in Hendry and Richard (1982, 1983). This approach suggests 
working back from a very general unrestricted dynamic specification towards cer
tain more parsimonious model satisfying certain prescriptions, including that the 
model should fit the data up to a white noise innovation which is a martingale 
difference sequence relative to the selected data base. The starting point of this 
methodology is a general unrestricted regression, which in case ut =  Aj£t- j  
with Et — (eit,S2tY being i id (0 , fi), is equivalent to running least squares on the 
equation

yt - 1'x t + a (L) (yt -  vx t) +  b (L ) A x t +  £\>2t, (1-78)
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noting (1.58), where a (L ) ,b  (L ) are lag polynomials of infinite order. Phillips (1988) 
and Phillips and Loretan (1991) showed that, in general, this single equation proce
dure does not lead to optimal inference, due to the improper account for autocorre
lation given in (1.58). In fact, mixed normal asymptotics would be attained in case 
E\'2t and U2t were incoherent at frequency 0 , but this is not usually the case, as in 
general, u2t is not necessarily orthogonal to the past history of £1.24. In any case, 
as Phillips (1988) admits, Hendry approach comes remarkably close to achieving 
optimal asymptotic properties.

Saikkonen (1991) presented asymptotically efficient estimates inspired by Hendry’s 
error correction model methodology. In a multivariate version of (1.25), (1.26),with 

= 0 , 6 =  1, based on the validity under certain regularity conditions of the pro
jection 00

u u = ^ 2  n jU2t-j + r)t, (1.79)
J = — OO

where 77* is an I  (0) process such that

E  (u2tr]t+j) = 0 , j  =  0 , ± 1 , ± 2 ,..., (1.80)

this author proposed to estimate by OLS the linear regression equation
p

yt = vx t + ' ^ 2  Uj A x t- j + i t , (1.81)
j=-p

where
i t — Vt +  n j’Aw2t-i, (1-82)

|j|>p
so that proper orthogonalization is “almost” achieved, as heuristically Hf is close to 
0 for \j\ > p  and p  large enough. As, in general, one cannot assume that Hf =  0 for 
\j\ > p,  for the asymptotic argument to go through, it is necessary to require that 
p  tends to infinity with n at a suitable rate. Clearly, the choice of p  is a delicate 
issue here, and the author suggests experimenting with a few values of p  in empirical 
analysis. In any case, this difficulty is at the same level of the choice of bandwidth 
for consistent estimates of the long-run variance-covariance matrix of ut in Phillips 
and Hansen’s (1990) method, or even the choice of a parametric model for fully 
parametric methods like Phillips (1991a). An unpleasant issue related to Saikkonen’s 
method is that his estimate is infeasible unless the future values xn+i , ...xn+p, are 
known. Thus, removal of the p  most recent observations of yt seems necessary in 
general. As p  grows with n  but at a slower rate, this removal could be negligible 
asymptotically, but the finite sample performance of the estimate will surely be 
affected.

Phillips and Loretan (1991) proposed a very similar method. The problem with 
estimation of the equation (1.78) is that U2t is not necessarily orthogonal to the past 
history of £1-2t, hence these two processes are not incoherent at frequency 0. By 
means of the linear least squares projection

E  (ei.2t| =  y^CfcU2t+fe, (1.83)
Jb=l

28



denoting c (L) =  YlkLi ckLk, the error

£i.2t =  £i.2t ~  c (L-1) u2t, (1.84)

is a martingale difference sequence with respect to the filtration

M t- i  = a- , {«2»}“ _00) • (1-85)

Thus, nonlinear least squares in

yt = vx t + a (L ) {yt -  vx t) +  b (L ) A x t +  c (L-1) A x t +  2t, (1.86)

would produce asymptotically efficient estimates under Gaussian assumptions. A 
similar problem as in Saikkonen (1991) also appears in order to deal with the possi
bly infinite lag polynomials in (1.86). In fact, Phillips and Loretan reported results 
for four different combinations of number of leads and lags in their Monte Carlo ex
periment. As Saikkonen suggested, Phillips and Loretan’s procedure has the compu
tational disadvantage of facing a nonlinear estimation problem, whereas Saikkonen’s 
method was linear. On the contrary, the residual from the nonlinear regression in 
Phillips and Loretan approximates a white noise process, this not being the case in 
Saikkonen’s approach. Thus, hypothesis testing on v  could be constructed in a very 
simple way, as normalisation only implies the estimation of a matrix that could be 
straightforwardly approximated by sample second moments of the residuals from the 
nonlinear regression. Stock and Watson (1993) extended this approach to situations 
of co-integration with general I  (d) variables and deterministic components, where 
d is integer but not necessarily 1 .

Apart from these methods, a couple of procedures have been proposed which 
are useful in case the Gaussian assumption is unrealistic. First, we present the so- 
called adaptive estimates. Jeganathan (1995), in a multivariate version of model
(1.25), (1.26), with 7  =  0, 6 = 1, a single co-integrating relation and ut ~  iid (0, Q), 
proposed an adaptive estimate of the equivalent to v in his multivariate model. 
The previously discussed second stage methods were Gaussian, in the sense that 
they were optimal in case the data were Gaussian. Sometimes, the Gaussian as
sumption is highly unrealistic, and proper ML estimation exploiting knowledge of 
the non-Gaussian joint density of the process ut would achieve higher efficiency than 
Gaussian methods. Adaptive estimation produces estimates which share the asymp
totic optimality properties of the ML estimate in case the density function of the 
error input series is unknown. Should the density be known, one could always obtain 
an asymptotically efficient estimate by a one-step procedure from certain adequate 
preliminary estimate of the parameter of interest. However, this requires knowledge 
of the score and information of the density of ut . In case the density is unknown, 
one could compute nonparametric estimates of these quantities and substitute them 
by the true quantities in the iterative procedure. Jeganathan (1995) showed that 
this is an asymptotically valid method in the sense that the same asymptotic dis
tribution as the ML estimate was achieved by his adaptive estimate. This limiting 
distribution is mixed normal with smaller conditional variance than the one offered 
by Gaussian methods in case data are not Gaussian. Jeganathan showed this under
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the relatively strong condition that the (in our case) bivariate joint density p (a, b) 
of ut should be elliptical symmetric, that is

p (a , 6) =  |detf2| 2 /* ^ Q 2 ( a b , (1-87)

for some function /*, where here ||-|| denotes euclidean norm.
Hodgson (1998a) extended Jeganathan’s work to allow for ARMA process of 

order r, q (ARMA(r, q)) with finite r, q, structure for the co-integrating error in
(1.25), tha t is

r q
u \ t =  bjEi' t- j  +  £it ,  (1.88)

j== 1 j=i

where (su, u2t)' is an iid vector sequence. There could be controversy on whether 
to describe Hodgson’s approach as adaptive, because the ARMA structure for uu 
was assumed to be known (of course without knowledge of the ARMA parameters), 
although the joint density of (eu, U2t)' was assumed unknown. “Adaptive” estima
tion of v  was proposed, assuming also joint density of (£it, U2t)' with the elliptic 
symmetry property.

As an alternative non-Gaussian robust method, corresponding to the first stage 
LAD and M-estimates, Phillips (1995) also proposed fully modified versions of these 
estimates. As opposite to most of the previously discussed second stage procedures, 
these fully modified estimates are non-Gaussian, as they do not share the asymptotic 
properties of the maximum likelihood estimates when the data are Gaussian. The 
fully modified LAD (FM-LAD) estimate requires a very similar correction to the one 
in Phillips and Hansen (1990), achieving also mixed normal asymptotics, with the
extra requirement that certain nonparametric consistent estimate of the density of
uu  at 0 is necessary. Phillips also showed tha t provided u\t is leptokurtic enough, the 
FM-LAD is more efficient than the FM-OLS, meaning this in the present framework 
smaller conditional variance in the limiting distribution. Using a very similar type 
of correction, Phillips also presented a fully modified M-estimate, which achieved 
mixed normal asymptotic distribution via a nonparametric correction similar to 
the one for the FM-LAD, the most distinctive feature being that the sample mean 
of T"(uit) is involved, where U\t are residuals originated by certain preliminary 
consistent estimate of v.

Johansen (1988) derived ML estimates of the co-integrating vectors for a co
integrated vector autoregressive (VAR) process with independent Gaussian errors. 
He assumed that a p-dimensional vector of random variables zt had a VAR repre
sentation

zt = Tl\Zt-i +  n 2Zt_2 +  ... +  n  kzt~k +  £t, (1.89)

where £t ~  iid (0, Q). Johansen considered the case where the determinant of the
polynomial

b  (s) = i p -  n is  -  n 2s2 - . . .  -  n feS\  (1.90)

has roots at s = 1. More specifically, he assumed that A zt was I  (0) and that

n  =  i p — n i  — n 2 —... — n^, (i-fii)
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had rank r < p, indicating this in terms of the Granger representation theorem 
that there are r co-integrating relations among the elements of zt. Expressing II as 
II =  acx! for suitable p x  r matrices a, a, the linear combinations ce'zt are I  (0), and 
the space spanned by a  is denoted as the co-integrating space. Johansen employed a 
method based on canonical correlations, and showed that a suitably normalised ML 
estimate of a  was mixed normal asymptotically distributed, although, as he admits, 
this result is not very useful in practice as his normalization depends on the unknown 
matrix a. Knowledge of the co-integrating rank (the number of linearly independent 
co-integrating vectors) was essential in order to derive his result. Apart from this 
important result, which could be taken as an intermediate step in the whole of his 
analysis, one of the strongest contributions of his work is to propose a test of linear 
restrictions about the co-integrating vectors with standard x 2 null limit distribution. 
He also proposed a likelihood ratio test for the dimension of the co-integration space.

In a similar setting, Ahn and Reinsel (1990) suggested a partial reduced rank es
timating procedure that explicitly incorporated the unit roots present in the model, 
obtaining estimates of the co-integrating vectors with mixed Gaussian limiting dis
tributions. Their key idea was to write (1.89) in error correction form as

k- 1
A zt =  — Hzt-i  +  ^   ̂U*Azt. j  +  St, (1*92)

j=i

where n* =  — Y^i=j+i IL, j  < k — 1 , and they estimated n  with the reduced rank 
structure imposed, which they found to be equivalent to imposing in the estimation 
of the VAR model (1.89), p —r unit roots. Through this procedure, optimal inference 
was achieved in contrast to the full rank least squares estimation of (1.89), which 
suffer from the typical problems originated by implicit estimation of the unit roots 
present in the model. The authors related their work with Johansen’s (1988), claim
ing more flexibility for their approach, in terms of allowance of very straightforward 
incorporation of zero constraints on the stationary parameters.

Johansen (1991) showed that his proposed ML estimate of the co-integrating 
relations had a mixed normal asymptotic distribution in more general framework 
than in Johansen (1988), allowing for a constant term and seasonal dummies in his 
specified VAR model. As in his previous work, the co-integrating rank was assumed 
to be known, but Johansen also proposed a likelihood ratio test for the null of r 
linearly independent co-integrating vectors against diverse alternatives, including 
co-integration spaces of dimensions r +  1 and p. The test statistics related to the 
previous tests have nonstandard null limit distributions, but depending only on 
the dimension of the problem (p — r) and certain behaviour of the constant term. 
Furthermore, he also presented a test for the validity of linear restrictions of the 
co-integrating space with x 2 nuU limit distribution in this wider framework.

Finally, Hodgson (1998b) in a multivariate co-integrated finite order VAR pro
posed an adaptive estimate of the vector of the different parameters including both 
long and short-run coefficients, obtaining corresponding results to Johansen (1988) 
and Ahn and Reinsel (1990) (derived under the Gaussianity assumption) in case the 
density of the input error series is unknown.
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1.4 Empirical evidence of fractional co-integration
There axe numerous empirical applications based on the notion of fractional 

co-integration. For example, Diebold, Husted and Rush (1991) examined the pur
chasing power parity (PPP), that is the tendency for nominal exchange rates and 
prices to adjust in such a way that the real exchange rate reverts (perhaps slowly) 
to its parity value. Thus, the (log) real exchange rate could be viewed as the co- 
integrating error in a linear combination of (log) nominal exchange rate and (log) 
prices with co-integrating vector (1, —1)/. Although, the authors approximated the 
log of the real exchange rate in a particular way, and not as the difference of the logs 
of nominal exchange rate and prices, what seems clear from their empirical analysis 
is that taking into account that is well assumed in the literature tha t the (log) nom
inal exchange rate is a unit root process (see e.g. Baillie and Bollerslev, 1994a,b), 
they reported situations where the estimated memory of the real exchange rates 
(e.g. France/Germany, Germany/UK) suggested non-stationary mean-reverting be
haviour, whereas for other real exchange rates the authors provided evidence of 
stationary long memory. This evidence, in view of the lack of power of the tradi
tional unit root tests against fractional alternatives was suggested by the authors 
as the main reason why lack of PPP, that is unit root behaviour in real exchange 
rates, was argued in many studies.

In a similar framework, Cheung and Lai (1993) proposed to check the PPP  hy
pothesis via a regression of a foreign price index converted to domestic (US) currency 
units on a domestic price index, the errors of this relation capturing deviations from 
the PPP. While they provided evidence of the unit root character of the observables, 
they stated that the PPP will be characterized by certain stationary, or at least mean 
reverting behaviour of the co-integrating error. They computed semiparametric esti
mates of the degree of memory of the co-integrating error for different countries and 
bandwidths, and provided evidence of co-integrating errors with positive memory.

Similarly, Baillie and Bollerslev (1994a) argued whether seven spot exchange 
rates appear to be tied together in the long run or not, taking into account that 
there seems not to be discussion in the literature about the unit root character of 
those series, being much more fragile the idea that those series are co-integrated, 
see e.g. Sephton and Larsen (1991), Diebold, Gardeazabal and Yilmaz (1994), who 
concluded that “there exists substantial uncertainty regarding the existence of co- 
integrating relationships among nominal dollar exchange rates” . Baillie and Boller- 
slev’s (1994a) explanation for this finding was that unit root tests, which served 
traditionally to detect the presence of unit roots, had very low power against frac
tional alternatives, hence a situation of fractional co-integration with long memory 
co-integrating error could be hidden. In fact, their estimate of the memory of the 
co-integrating error was d = 0.89, over five standard errors away from 1.

Baillie and Bollerslev (1994b), analysed the so-called forward premium, f t — st , 
where st and f t are logs of the spot exchange rate and of the one month m aturity 
forward rate respectively, having in mind the “overwhelming” evidence of presence 
of unit roots in spot exchange rates. Again, the difference f t — st could be con
sidered as a co-integrating error with co-integrating vector (1 , —l)7. They claimed 
that standard unit root tests, like augmented Dickey-Fuller (ADF), (see Engle and
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Granger, 1987) and KPSS (see Kwiatkowski, Phillips, Schmidt and Shin, 1992) gen
erally reject that the forward premium is I  (0), which is paradoxical as given that 
forward premium is associated with risk, it seems hard to see any theoretical reason 
for a 7 (1) risk premium. The purpose of their paper was to show that the forward 
premium is indeed mean-reverting, the estimates of the memory of the forward pre
mium for Canada, Germany and UK (with respect to US) being 0.45, 0.77 and 0.55 
respectively.

In a similar setting as Diebold, Husted and Rush (1991), Crato and Rothman 
(1994) provided estimates of the (log) real bilateral sterling exchange rates with 
different countries, and for several of them it was reported evidence of fractional 
co-integration.

Dueker and Startz (1998), analysing a fractional co-integration relation between 
US and Canadian bond rates, suggest tha t it is desirable not to rely on an assumed 
value for the order of integration of the observables as was done in previous empirical 
analyses related to fractional co-integration, which most commonly considered this 
integration order to be one. Their estimates of the memory of the observables and 
co-integrating error were 0.674 and 0.200 respectively.

Kim and Phillips (2000) provided a similar analysis to the one by Baillie and 
Bollerslev (1994a), assuming also the memory of certain series of exchange rates to 
be one. Evidence of fractional co-integration was reported.

Marinucci and Robinson (2001) analysed two macroeconomic data sets used 
in earlier papers by Engle and Granger (1987) and Campbell and Shiller (1987). 
For consumption and income, Engle and Granger found evidence of C l  (1,1) co
integration. Marinucci and Robinson estimated the memory parameter of both 
observables and showed that for different semiparametric methods and bandwidths 
they were very close to one for both variables. They also estimated the memory of 
the co-integrating error, and the estimates ranged from 0.19 to 0.87, suggesting this 
that the C l  (1,1) framework could produce a good approximation for the behaviour 
of the observable series but not for the co-integrating errors. For stock prices and 
dividends data in Campell and Shiller, Marinucci and Robinson concluded tha t the 
evidence of co-integration was weak, as it seemed clear some evidence of mean re
verting behaviour of the dividends, and the estimated memory of the co-integrating 
error ranged from 0.57 to 0.77 for different methods and bandwidths. This could 
provide an explanation to Campbell and Shiller’s findings that, in their own words, 
were inconclusive about the existence of co-integration.

Andersen, Bollerslev, Diebold and Ebens (2001) examined “realized” daily eq
uity return volatilities and correlations obtained from high-frequency transaction 
prices on individual stocks in the Dow Jones Industrial Average. They provided 
evidence of long memory for certain time series of logarithmic standard deviations 
and correlations, and stressed the evidence of comovements in volatility across as
sets. Christensen and Nielsen (2001) took a similar point, and claimed the existence 
of stationary co-integration between the volatility implied in option prices and the 
subsequent realized return volatility of the underlying asset, as in their view, the 
observables (log-volatilities) were fractionally integrated processes with estimated 
order ranging from 0.35 to 0.4, whereas the co-integrating error seemed weak de
pendent. By using a narrow band estimate, they obtained a much higher value for
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the estimate of the slope of their co-integration relation than the one provided in 
a similar work by Christensen an Prabhala (1998), who used an OLS estimator, as 
showed by Robinson (1994c) inconsistent in the case of stationary co-integration. 
Finally, stationary co-integration has been also considered by Robinson and Yajima 
(2002), who provided empirical work on testing for the rank of co-integration among 
spot closing prices of crude oil.

1.5 Description of the thesis
Throughout the thesis, we establish a very clear distinction between the cases 

where 0  > 1 /2  or /? < 1/2. We denote the former situation as “strong fractional 
co-integration” , as the order of integration of the observables is reduced by the linear 
combination in more than 1/ 2 , nesting this the traditional C l  (1 , 1) co-integration 
framework where 0  = 1. As mentioned before, this situation was also theoretically 
analysed by Kim and Phillips (2000) and Velasco (2000). The latter case is denoted 
as “weak fractional co-integration” , because the memory of the observables could 
be reduced by just a very small amount in the linear combination. This appears to 
be a framework that theoretical researchers have been not paying much attention 
to, but it seems to be supported by some data and also covers relevant situations. 
For example in financial data, it could be that the observables are “less” stationary 
than the co-integrating error, and in macroeconomic data, it could well be that the 
observables have a close to unit root behaviour, whereas the co-integrating error is 
nonstationary but mean-reverting. In fact, most of the empirical evidence provided 
in the previous section supports these two possibilities. Note that we have omitted 
from our analysis the 0 = 1 / 2  case, which, as it can be inferred from our results 
in Chapters 2 and 3, would require a separate treatment. Thus, although from 
a theoretical viewpoint it could be interesting to fill this gap, it is important to 
note tha t the treatment of this very particular case would undoubtedly entail some 
difficulties, while its interest from a practical perspective is limited, and also we felt 
that omission of this specific situation was of less relative importance in view of the 
great generality that our treatment of all except one 0  > 0 allows.

Regarding the strong fractional co-integration case, we propose estimates with 
analogous optimal properties to the Gaussian second stage procedures applied to 
the triangular system (1.25), (1.26) for C l  (1,1), which were discussed in Section 
1.3. Our main contribution here is tha t those optimal properties hold irrespectively 
of whether 6 and/or 7  are known or unknown, subject to adequate estimation of 
these orders in this latter case. Thus, we provide theoretical evidence that, on the 
contrary to what the literature suggests, the incorporation of information about the 
true orders in the estimation is not necessary in order to obtain optimal Gaussian 
estimates. The reason for this outcome can be easily understood by comparison of 
the equivalent models

when 6 = 77 =  1. In the traditional approach, the incorporation of the information

x t = A 6uft ,
Xt =  T}Xt- i  4- u 2t, t >  1, x t =  0, t  < 1, (1.93)

(1.94)
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that 77 =  1 , hence avoiding the estimation of this parameter, was crucial, because 
estimation of the unit root 77 along with v  in a full system estimation procedure, 
produced non-standard asymptotics for the estimate of v due to the discontinuity 
on the behaviour of x t at 77 =  1 in (1.93). In our approach, we estimate the equiv
alent to the unit root in (1.93), which is the parameter 8 =  1 in model (1.94), 
where the discontinuity does not appear, and therefore the estimation of v is not 
affected. We consider our approach to be a step ahead in the direction that, for 
example, Jeganathan (1997) indicates. This author states that there is a generalised 
opinion in the profession that “procedures whose limiting distribution involves unit 
root component and nuisance parameters are not to be highly recommended and 
that Wald-type procedures having the limit central chi-squared are the ones to have 
sound statistical basis” . In Jeganathan’s opinion these optimality results by them
selves have little meaning, as what he considers as the crucial issue is whether the 
underlying structure of the model is reasonably supported by the data. For example, 
the optimal Gaussian procedures are reasonable in case the I  (1) / I  (0) structure is 
assumed or imposed on the underlying structure of the model, and he states that 
how well this fits the data is the relevant issue here. Noting that the acceptance of 
a null hypothesis of unit root means basically that the unit root structure has sup
port in view of the available data, it could well be that the model could correspond 
to one in which the root is only close to unity, with the nature of this closeness 
being unknown. We consider that our approach fits naturally in the essence of Je
ganathan’s interesting thoughts, as we try to accommodate in a more realistic way 
the underlying structure of the model to the actual data, avoiding complications 
due to pre-testing. Related to this /3 > 1/2 case, Chapter 2 is devoted to analysing 
this strong fractional co-integration framework from a fully parametric perspective, 
where the short memory model driving the error input series in (1.25), (1.26) is 
known up to some finite vector of unknown parameters. We propose different time 
and frequency domain estimates, which are relatively straightforward generalisations 
of (1.61), (1.63) respectively. We show that those estimates (and also a competitive 
but computationally simpler one when /? >  1), have analogous optimal properties 
to the Gaussian second stage procedures, with mixed normal asymptotics leading 
to Wald tests with x 2 null limiting distributions, implying straightforward inference 
on v. Our results nest the traditional C l  (1,1) framework, where in order to obtain 
the same asymptotic properties as ours, the values 7  =  0 , 8 = 1 were assumed to be 
known. In Chapter 4, we show that parametric assumptions about the I  (0) struc
ture of the error input series ut are not necessary in order to obtain same results as 
given in Chapter 2 . In this chapter, we propose several different frequency domain 
estimates, including both full band and narrow band approaches, whose feasibility is 
achieved through nonparametric estimates of the spectral density matrix of ut and 
semiparametric estimates of the orders 7 , 8.

We also consider in the thesis the weak fractional co-integration situation. Here, 
our main contribution is to propose in the adverse situation where the co-integrating 
gap (3 is small, relatively simple estimates, which in all cases are asymptotically 
normal, and, at least in a fully parametric framework, enjoy optimal convergence 
rates, by which we mean that they match the rates achieved by the Gaussian ML 
estimate under suitable regularity conditions. The weak fractional co-integration
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case is more complex, and one could argue tha t has less interest than the (3 > 1 /2  
situation, which embodies the traditional C l  (1,1) framework. The (3 < 1 /2  case 
contrasts heavily with this econometric prescription, but as noted in Section 1.4 
empirical evidence has emerged of this possibility, and we will further motivate this 
issue in Chapter 3. We found that asymptotic inferential theory is very different 
in this case from members of the class (3 > 1/2. Chapter 3 is devoted to studying 
the (3 < 1/2 case assuming that the error input series ut in (1.25), (1.26) is a VAR 
process of known finite order. Here, we propose time domain estimates of v with 
y/n rate of convergence, asymptotically normal, less efficient tha t the Gaussian ML, 
but computationally more convenient, as only univariate optimization is involved. 
The estimate of v  depends on the estimates of 7 , <5, and these estimates need to be 
yn-consistent, being the asymptotic variance of the estimate of v sensitive to their 
precise form. In Chapter 4, we provide a nonparametric extension of Chapter 3, 
where ut is an arbitrary I  (0) process of unknown form. Considering only different 
narrow band estimates, we showed that our estimates are asymptotically normal, 
slower than in the fully parametric case, and affected by the estimation of the orders 
7 , 6 or /  (A) in a subtle manner.

Finally, the thesis is completed with Chapter 5, which considers a test procedure 
for the equality of the orders of integration of two fractionally integrated processes. 
This topic does not directly refer to estimation of the co-integrating parameter, but, 
nevertheless, we found that this is a very relevant issue in any empirical analysis re
lated to fractional co-integration, and of particular importance in order to justify the 
use of the techniques derived in the previous three chapters. Note that a necessary 
condition for two time series to be co-integrated is tha t their orders of integration 
be equal. Different test have been proposed in the literature from both parametric 
and semiparametric perspectives, but this latter approach has been showed to be 
invalid in case the series are actually co-integrated. In this chapter, we propose a 
simple testing procedure which does not suffer from this serious limitation.
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Chapter 2

Parametric estim ation of strong  
fractional co-integration

2.1 Introduction
As presented in Chapter 1, methods of estimating co-integrating vectors have 

been developed which have optimal asymptotic properties, with a limiting mixed 
normal distribution, thereby generating Wald test statistics with a standard, x 2> 
null limit distribution (see our description of methods by Phillips and Hansen, 1990, 
Phillips, 1991a,b, Johansen, 1988). These methods have been justified under the 
assumption that integration orders of observed series and co-integrating errors are 
correctly specified integers, though it is standard practice to test these integration 
orders, particularly by unit root tests against stationary AR alternatives. Under 
fractional co-integration, the different orders of integrations involved in the esti
mated model are taken to be real numbers, and certainly, this consideration poses 
additional difficulties. For example, the “optimal” methods referred to above lose 
their most desirable properties (such as the x 2 hypothesis tests, for example) when 
integration orders on which they are based are misspecified, a fair possibility under 
fractional circumstances. Also, the methodology developed by Engle and Granger 
(1987) and subsequent authors is not designed to detect such co-integrating rela
tionships. Thus, our aim is to propose a general estimation method, nesting the 
traditional co-integration cases as C l  (1,1) (see Definition 1.4), and allowing inte
gration orders to be unknown and real-valued.

In this chapter, we consider the bivariate model (1.25), (1.26), for the case of 
strong fractional co-integration, with

8 > (3 >  1/ 2, (2.1)

noting (1.24). In (1.25), (1.26) the possibility that 7  and/or 8 are known, but not 
necessarily integers, does not lack interest (in particular when 8 = 1 is fixed after 
pre-testing) but allowing both 7  and 8 to be unknown, thereby avoiding complica
tions and ambiguities due to pre-testing, may be attractive. Fractional values may 
be difficult to interpret economically, though aggregation explanations have been 
developed, mean-reversion is nicely described, in the present context 7  and 6 are
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just nuisance parameters, while fractional, like non-fractional, co-integration is a 
kind of dimensionality-reducing structure.

As shown in Chapter 1, simple estimates of v not requiring knowledge of 7  
and/or 8 are readily available. For example OLS, with or without intercept, is 
nmin(25-1’̂ -consistent (except in the case where 8 > (3 and 28 — (3 = 1 , in which 
case it is {n^/ logn)— consistent), as shown under mild conditions by Robinson and 
Marinucci (2001). Also, we saw in the previous chapter that in case 28 — 1 < (3, 
the rate of convergence can be improved upon by using a version of OLS in the 
frequency domain that focuses on a slowly degenerating band of low frequencies and 
thereby reduces the bias that is due to contemporaneous correlation between u^ , U2t 
(Robinson and Marinucci, 1998); these estimates were applied empirically by Marin
ucci and Robinson (2001). Both least squares and its narrow-band counterpart have 
nonstandard limit distributions, which are unsuitable for use in statistical inference, 
while their rate of convergence seems capable of still further improvement over some 
regions of (7 , 6)-space. In the present chapter, we develop and justify estimates of v 
which have analogously optimal properties, in the presence of possibly unknown 7 , 8, 
to those previously established by, for example, Phillips and Hansen (1990), Phillips 
(1991a,b), in case 8 = (3 = 1 is known. The estimates of 1/ are of generalised least 
squares (GLS) type, based on a constrained transformed bivariate regression model 
derived from (1.25), (1.26) and having the property that regressors are orthogonal 
to disturbances.

We allow for very general forms of parametric autocorrelation in u*, in which 
circumstances a frequency-domain form of estimate of v  is convenient and flexible, 
though we also consider a time-domain form based on AR transformation. The 
model (1.25), (1.26) is perhaps the simplest interesting one possible. Our treatment 
of (1.25), (1.26), with parametric autocorrelation, itself requires lengthy proofs, 
whose ideas are relevant to more general models but best conveyed in a relatively 
simple setting. Admittedly, assuming knowledge of the structure of ut could be 
a strong requirement, but the parametric approach has enjoyed great popularity 
among time series researchers, and, in any case, our work in this chapter could also 
be considered as a first step in order to investigate estimation issues in more general 
frameworks, where perhaps the spectral density of ut is a nonparametric function. 
In fact, Chapter 4 will be devoted to analysing this situation, so focusing initially 
on a parametric setting could both fit naturally in the literature and also provide 
many useful results which undoubtedly will simplify subsequent analyses.

Our model presumes the existence of co-integration. The question of establish
ing such existence, or non-existence, is itself especially difficult in our fractional 
context, with unknown integration orders. Recently, Robinson and Yajima (2002) 
have developed methods for determining fractional co-integrating rank in a multi
variate extension of (1.25), (1.26) based on sequential testing, principal components 
analysis, and a model choice procedure, while Marinucci and Robinson (2001) pro
posed and empirically applied a Hausman-type test for determining the existence of 
co-integration in (1.25), (1.26). In this chapter we do not consider this issue, but 
this is briefly explored in Chapter 5, where we present an alternative methodology 
for testing for the equality of orders of integration, which is a necessary condition 
for the existence of co-integration.
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Our estimates of v  are described in the following section. Section 2.3 presents 
regularity conditions and the main results, also introducing simpler estimates that 
are asymptotically competitive when (3 > 1. In Appendix 2 .A we outline the proofs, 
which rest heavily on a series of propositions which are proved in Appendix 2.B. 
Appendices 2 .C and 2.D collect respectively some results used in the proofs of several 
propositions, and technical lemmas pertaining to properties of the aj(a) in (1 .8). 
Section 2.4 consists of a Monte Carlo study of finite-sample behaviour, Section 2.5 
reports an empirical investigation of the purchasing power parity (PPP) hypothesis, 
and Section 2.6 discusses related topics.

2.2 Estim ates of co-integrating parameters
For any sequence {wt}, and any c > 0, introduce the notation

wt(c) = A cw f ,  (2.2)

noting (1.8), (1.27). Also define, for c > 0, d >  0,

zt (c,d) =  (yt(c),xt(d))'. (2.3)

Thus (1.25), (1.26) can be written

zt{l, 6) = ( x t (7 )1/ +  u f , (2.4)

where
C= (1,0)'. (2.5)

In case ut is white noise, with known, nonsingular covariance matrix fI, and 7  
and <5 are also known, GLS based on (2.4) and observations (xt ,y t), t = 1 ,...,n , 
is motivated by the orthogonality property E  (ujfl-1^ ^ ) )  =  E  (u2tu't) =  0. 
More generally, GLS estimates can also be constructed in the presence of serial 
correlation in ut , given known 2n x 2n covariance matrix 4/ of u = ..., u'n)'. If 4/
is a known function of an unknown finite-dimensional parameter vector 6, we might 
hope tha t insertion of sufficiently good estimates of 7 , 6 and 0 , producing a feasible 
GLS estimate of 1/, will not affect limiting distributional properties. However, 4/ and 
its estimate can be difficult to handle, both numerically and theoretically, so more 
convenient alternatives to such GLS or feasible GLS might be considered.

One such is based on AR transformation. Suppose Ut has an AR representation

B (L)ut = £t, (2.6)

where et is a bivariate sequence that is at least (see Section 2.3 below) uncorrelated 
across t  with nonsingular covariance matrix fi, and

OO

B W = / a - E ¥ .  (2 -7)
3=1
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where the Bj axe 2 x 2 matrices satisfying conditions prescribed below. Suppose 
further that we know functions f1(h), B j(h ), where h G IRP, p >  1, such that for
some 9 G Rp, we have D =  fi(0), Bj =  Bj(9). Define

OO

B(s;h) = I2 - Y t Bj (h)sj , (2.8)
3=1

and then
n

a(c,d,h) =  ^ { B ( L ; h ) ( ; x t{c)y n (h)~ l {B {L \h)z t(c,d)} , (2.9)
t= 1 

n

6(c,ft) = ^{B(L;/»)C®t(c)}'n(h)-1 {B(i;fc)C®.(c)}. (2.10)
t= 1

Note that each of the AR transformations automatically entails a truncation since 
x t (c) =  0, z*(c, d) =  0, t < 0. Now write

v(c,d,h) = ai C’d,h\  (2.11)
b{c,h)

and consider as estimates of v

1/(7 ,6,9), *7(7 ,5,5), v(fi,8,9), 1/(7 ,?, 5), £(7 , M ) ,  (2.12)

given estimates 7 , 0. The estimates (2.12) respectively consider the cases in which
7 , 8 and 9 are all known, the integration orders 7  and 8 are known but 9 is not, 
followed by the cases in which one or other and then both of 7 , 8 are unknown and 
9 is also unknown: 1/(7 , 8,9) covers situations familiar from the integer integration 
order co-integration literature, where for example 7  =  0 , 8 =  1 is known; £(7 , 8,9) 
extends this by assuming knowledge of the integration order of the observable x t 
(say 8 = 1), but the order of the co-integrating error is not known to be 0 ; v(7 , 8,9) 
expresses the situation of least knowledge.

The estimates (2.12) are computationally convenient when ut is a finite-degree 
AR process, but less so otherwise, for example when ut is a finite-degree moving 
average (MA) or ARMA sequence, when the Bj(h), though recursively calculable, 
do not have a very neat closed form. On the other hand, the spectral density matrix 
/(A), defined in (1.28) has a neat form in such cases, so a frequency-domain ap
proach might be preferred, as was considered by Phillips (1991a) in the case 7  =  0, 
8 =  1 is known, and one can construct parametric models for which the gap between 
tractability of the spectral density on the one hand, and AR coefficients (or indeed 
autocovariances) on the other, is even greater (see e.g. Bloomfield, 1973, Robin
son, 1978). A frequency-domain approach also has the advantage of approaching a 
well-established form of semiparametric estimate in which /(A) is a nonparametric 
function (see, e.g. Hannan, 1963, in case of regression models, and Phillips, 1991b, 
in case of C l  (1 ,1) co-integration).

To define the frequency-domain estimates, first introduce /(A; h), a known func
tion of A G (—7T,7r] and h G Mp, such that f ( \ ; 9 )  = /(A) (see (1.28)). In terms of 
the AR representation (2.6), we have

/(A; h) =  (2tt)"lB(ea ; h ) - lQ,{h)B{e~i>'-, h)~1' , (2.13)
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so f(X',h) is of simple form in the finite ARMA models, replacing B(elX\h)~1 by 
B(eiX; h)~lA(eiX; h), A  and this B  both being finite-degree matrix polynomials. (Our 
assumptions below guarantee the existence where necessary of matrix inverses). De
noting

p(A; h) = C7(A; h ) - \  q( A; h) =  C7(A; h ) ~ \ ,  (2.14)

put

j= 1

b(c,h) =  ^ 5 (Aj ;/l)7l(c)(Aj ), (2.16)
j= 1

noting (1.43), (1-44). Define

' " ■ * * >  - W P -  12,71

Corresponding to the five estimates (2.12) we may consider also

H i , 5, 6), H i , 9), H i ,8,6), H i ,  6,0), H i ,6,6). (2.18)

From the orthogonality properties of the complex exponential function (see (2.95) 
below), it readily follows that when ut is a priori white noise, so that Bj(h) =  0 , j  > 
1 , /(A; h) = (2tt)_1D(h), we have v(c, d , h) = v(c, d, /i), so corresponding members of
(2 .12) and (2.18) are identical. Otherwise, when ut is believed to be autocorrelated, 
they differ, but under regularity conditions all members of (2 .12) and (2.18) have 
the same first-order asymptotic properties, as shown in Theorem 2.1 of the following 
section.

The <7/(1,1) literature has stressed error-correction model (ECM) formulations, 
on which parameter estimation can be based. We can rewrite (2.4) as

A sz, = - C ( l  -  A*5) { A 5- '3( l ,  - v ) z t } + v*, (2.19)

with zt =  Z((0,0) =  (yt , x t)' and v f  =  (u ft + vu ft,u fA  . When S = /3 =  1, (2.19) re-
duces to the triangular ECM representation of Phillips (1991a) for the (7/(1,1) case, 
on which he based a frequency-domain approximate Gaussian pseudo-ML estimate 
of v. It is readily shown that this is equivalent to a corresponding Gaussian pseudo- 
ML estimate based on (2.4). In case ut is known to be white noise, this is equivalent 
to the OLS estimate of v in the extended regression yt (7 ) = vx t( i) + p x t(6) + w f , 
where <p =  E (uitU2t)/ E(u2t) and wt  = ut t ~  f u2t, namely V(i, 6), where

.V Efal xK d) E fal 3t(c)jft(c) -  Er=i xt(c)x,(d) £"=1 Xt(d)yt(c)

Er=i Er=i *?(«o -  ( e l  xt(c)xt{d)}2 ’
to extend Phillips’ (1991a) observation in the (7/(1,1) case (though he derived from 
his ECM representation the OLS estimate of v in yt(l) = v {xt( i)  — ^t(^)}+Xa;t(^) +
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w f , with x  = v +  V7) which is identical to 1/(7 , 6)). Further, ^ (7 ,0) can be shown to 
be equivalent to the GLS estimate 1/(7 , <5,0j) =  £(7 , 0 / ) ,  with 0/ consisting of the 
three distinct elements of fi(7 ,<5), where

ft(c, d) =  n -1  X) bt(c) -  ^(c, d)xt{c), x t (d)]' [yt(c) -  v{c, d)a;t (c), a:t(d)]. (2 .21)
t=i

Thus, our GLS approach can be seen to include Gaussian pseudo-ML estimation as 
a special case, where particular estimates of Q. are used, this interpretation contin
uing to apply when autocorrelation in ut is incorporated. Based on (2.19) in the 
(7/(1, 1) case, Phillips (1991b), employed a semiparametric version of GLS, involving 
smoothed nonparametric estimation of /(A) across a coarser grid than the Fourier 
frequencies, following Hannan (1963).

2.3 Conditions and main results
We present first a series of regularity conditions.

A ssu m p tio n  2 .1 . The process ut , t  =  0, ± 1 ,..., has representation

u t =  A (L )  et , (2.22)

where
O O

A (s)  = h  + '5 2 A j s>, (2.23)
3=1

and the Aj are 2 x 2 matrices such that :

(i)
det {A  (s)} 7̂  0, |s| =  1 ; (2.24)

(ii) A(elX) is differentiable in X with derivative in Lip(rj) , 7] > 1/2;

(Hi) the £t are independent and identically distributed vectors with mean zero, pos
itive definite covariance matrix and E  ||£t||9 < 0 0 , q > 4, q > 2/(2 j3 — 1).

Notice that (ii) implies Yl'jLiJ IIA? II <  00> because the derivative of A(elA) has 
Fourier coefficients j  Aj,  whence Zygmund (1977, p.240) can be applied. Further, this 
also implies Yl*jLi j  IIAll2 < 00> which, along with the condition in (iii), enables us 
to apply the functional limit theorem of Marinucci and Robinson (2000) (developing 
earlier work of Akonom and Gourieroux, 1987, Silveira, 1991) to the nonstationary 
process x t (7 ) , as is required to characterize the limit distribution of our estimates 
of v. Further, due to (i), B(e tX) (see (2.7)) satisfies the same smoothness condition 
as A(etX) in (ii), and thus

OO
X ^ 'I IS j II < ° ° ,  (2.25)
3=1
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which implies the required conditions on the Bj in our other proofs, in particular of 
Propositions 2.1 and 2.2. It is Proposition 2.1 tha t requires the strongest conditions 
on the B j , and this is possible by a lengthier proof under the milder requirement 
that A(elX), and thus B(etX), is boundedly differentiable, which itself implies (see 
Zygmund, 1977, p.251) j 1/2 ||A, || < °°> and> from E j l i j 1/2 \\Bj\\ < oo-
However our present conditions seem satisfactorily mild, easily covering stationary 
and invertible ARMA systems. The moment assumption on et is satisfied, for any 
(3 > 1/2, by Gaussianity.

The above assumption, with (1.25), (1.26), (1.29), (2.1), suffices in order to 
establish Theorem 2.1 below for the infeasible estimates T/(7 , 8 , 6 ) and v  (7 , 8 , 6 ) ,  
but in order to insert estimated parameters further conditions are required. It is 
convenient to denote by 0  the set of all admissible values of 0 ; often we may take 
0  to be a bounded set, in part to satisfy stationarity conditions, while compactness 
of 0  would help to ensure existence of 6.

A ssum ption  2 .2

(i) /  (A; 0) =  /  (A);

(ii) f  (X;h) has determinant bounded away from zero on ([—7r ,7r] x 0);

(Hi) f  (A;/i) is boundedly differentiable in h on ((—7r, 7r] x 0 ), with derivative that 
is continuous in h a th  — 6 for all X;

(iv) f  (A;0) is differentiable in X, with derivative satisfying a Lipschitz condition 
of order greater than 1/2 in A;

(v) (d /d h ) f(X ;h )  is differentiable in X at h — 6, with derivative satisfying a 
Lipschitz condition of order greater than 1/2 in A.

Given correct specification (i), these assumptions seem innocuous, again being 
easily satisfied by standard stationary and invertible ARMA parameterizations, for 
example, and could be slightly relaxed at cost of greater proof detail.

A ssu m p tio n  2.3

(i) There exists K  < 00 such that

+ < K ,

(ii)

and k > max (0 ,1  — /?) such that

7 =  7 +  Op (n_K) i ? =  <5 + Op (« -* );

6 = 9 + Op(n~ i), where $ € 0 .

(2.26)

(2.27)

(2.28)
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Condition (2.26) is innocuous if 7  and 6 optimize over compact sets, as is stan
dard for implicitly defined estimates. The convergence rates required in Assumption 
2.3 are all less than those achieved of estimates (2 .12) and (2.18) of v in Theorem
2.1 below. In fact (ii) could be relaxed to the rate on 7  and 6 of (i) if /  (A; h) is 
smoother in h than required in Assumption 2 .2 , in particular if it is analytic in h 
(as in the ARMA case). We prefer our milder Assumption 2.2, and the relatively 
brief proof that (ii) affords, because n 1/2—consistency of parameter estimates in 
short memory time series models is familiar, for example in case of W hittle esti
mates, see eg. Hannan (1973). On the other hand, we might be content to assume 
k, =  1/2 in (2.27). The n 1/2—consistency and asymptotic normality of estimates of 
nonstationary integration orders (and indeed of parameters corresponding to 6 in 
nonstationary fractional models), based on scalar series was established by Velasco 
and Robinson (2000), for Type I processes (see Definition 1.2). By bounding a mea
sure of distance between Type I and Type II processes, Robinson (2002) showed 
that the same results hold for Type II processes, thereby checking (2.27) and (2.28) 
for estimates of 6 and elements of 9 identified by the u2t process. Robinson (2002) 
likewise checked (2.27) and (2.28) for estimates (computed from residuals) of 7  and 
elements of 6 identified by {% } , employing a preliminary estimate of *7 which sat
isfies a rate of convergence condition. This is satisfied by OLS when 7  +  6 > 1, 
but not when 7  +  5 < 1, where it is, however, satisfied by the NBLS estimate of 
Robinson and Marinucci (1998, 2001), using a bandwidth tha t increases sufficiently 
slowly; the strength of this rate condition is due in part to allowing the compact 
set of admissible values of 7  to be arbitrarily large - if this is suitably reduced the 
condition can be relaxed so as to be satisfied by OLS even when 7  +  6 < 1, so long 
as 5 < 1/2. The only gap left in demonstrating that Assumption 2.3 can be fully 
checked is that in general methods based on the bivariate series zt are appropriate 
in order to estimate part of 6. However the extension of Velasco and Robinson’s 
(2000) theory to cover bivariate series, and the subsequent adaptation to our set
ting, seems straightforward, while if B(s; 6) is a priori diagonal the only parameter 
not estimated by two univariate procedures is the off-diagonal element of Q, which 
is estimated by an obvious side calculation, to satisfy (ii). Unless is close to 1/2, 
(2.27) is capable of being satisfied also by “semiparametric” estimates of 7  and 5, 
which might in any case be employed at an initial stage in determining the para
metric model for / .  On the other hand, from the viewpoint of a full co-integration 
analysis, efficient estimates of 7 , 6 and 6 are desirable, suggesting construction of a 
Gaussian pseudo-ML approach, estimating all parameters jointly, which is compu
tationally more onerous than the kind of step-by-step approach we have envisaged, 
but undoubtedly possible; asymptotic properties have yet to be explicitly derived, 
but the problem of differing convergence rates encountered by Saikkonen (1995) in 
a different setting can be avoided by concentrating out v  first.

We introduce notation to describe the limit distribution of our estimates. Denote 
by W  (r) the 2 x 1 vector Brownian motion with covariance matrix D (noting the 
simplifying notation W  (r) =  W  (D; r) with respect to that of Chapter 1), and define
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(Type II-see Marinucci and Robinson, 1999) fractional Brownian motion

r  ( r  -W {r;0) = J
T(/3)

■dW{s),

and then define 

where

(2.29)

(2.30)

(2.31)f  = ■  ( 0 , 1 ) ' •

By “=»” we will mean convergence in the Skorohod J\ topology of D  [0,1].

T heo rem  2 .1 . Let (1.25), (1.26), (1.29), (2.1) and Assumptions 2.1-2.3 hold. 
Then, denoting by v* any of the estimates in (2.12) or (2.18), we have as n  —> oo,

n13 (v* — v) => <

- l

(0) j w ( r \ P f d r  > 2nC'B ( l / S T 1 j  W  (r; /?) dW  ( r ) . (2.32)

The proof is outlined in Appendix 2. A, by a series of propositions whose proofs 
appear in Appendix 2.B. The rate of convergence in (2.32) is optimal for any reg
ular parametric estimate in this model. Theorem 2.1 desirably implies that we can 
estimate v as well, asymptotically, not knowing 7  and/or 8 and/or 6 as knowing 
them, subject to the rate conditions of Assumption 2.3, with the implication that 
efficiency of estimation of 7 , 8 and 6 does not matter.

The variates CfB ( l )7 Qrl W  (r) and W  (r; (3) are uncorrelated and thus, by Gaus- 
sianity, independent, so (2.32) indicates mixed normal asymptotics. As a conse
quence of this, and of the propositions in Appendix 2 . A, we have

C oro llary  2 .1 . Denoting by b* any of the quantities b(^,0), b(j,9), 6(7 ,0), 6(7 , 0), 
6(7 , 0), 6(7 , 0), 6(7 , 0), 6(7 , 0), as n  —► 0 0 , the Wald statistics

6* („* -  v f  x l  (2.33)

The form of the limit distribution in (2.32), where spectral properties of ut at 
only zero frequency are involved, and the nonstationarity of £4(7 ), suggests simpler 
forms of estimate than (2.12), (2.18). We replace p ( \ j \  h), q(\ j \  h) by p(0; h), g(0; h), 
and thence consider

17(7,5,0), ^(7 .M )>  H l X o ) ,  17(7,6,0), (2.34)

where _
I;(c,«i,k) =  | M ,  (2.35)

6(c, h)
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in which

a(e, d, h) =  p(0 ; h) £  z»(c, d)xt(c), b(c, h) =  g(0 ; h) £  *?(c), (2.36)
t= 1 i= l

after applying (2.95) below. If we act on the belief that ut is white noise, (2.34) is 
identical to (2 .12), (2.18), but to cover other circumstances we have:

T h eo rem  2 .2 . Let (1.25), (1.26), (1.29), (2.1) and Assumptions 2.1-2.3 hold. 
Then, denoting by v° any of the estimates in (2.34), we have as n  —► oo :
(i) for  1 /2  <  f3 < 1 ,

(ii) for (3 = 1,

i

(0) J  W  (r; P)' dr

- l

> p(0) /  /(A)€( 1 -  e - iA) - ^ ;  (2-37)

dr

- l

n (v° — v) =» { q { 0 ) J  W (r;P )[
o

oo r .—
p(0) £  +2iv('B (1)' f) _1 /  W (r- , l )d W (r )

S = 0 J
0

if>a = E{u0u'a)€;
where

(Hi) for (3 > 1,

, (2.38)

(2.39)

nP (v° -  v) =► ^

-1

(0) f  W  (r; /3)2 dr > 2w£B  ( l ) 'n -1  J  W  (r; /3) dW  ( r ) . (2.40)

If is white noise, so /(A) =  /(0 ), we have p(0)/(A)£ =  0 and (2.37) becomes 
v° = v  +  op(n1_2/?), but Theorem 2.1 applies here, with the sharp result (2.32); 
also, p { 0 ) ^ ( L 0'ip-s = ^(0)^0  =  27rp(0)/(0)^ =  0, so (2.38) reduces to (2.32). For 
autocorrelated ut, when (3 > 1, (2.40) indicates that (2.34) still does as well as
(2 .12), (2.18), but when (3 = 1 the convergence rate in (2.38) is as good but the 
desirable mixed-normal asymptotics are lacking, due to “second-order bias” (see 
Chapter 1) appearing as the first term in the second factor on the right of (2.38), 
and when (3 < 1, in (2.37), not only are mixed-normal asymptotics lacking but 
convergence is slower. Indeed, for 1/2 < (3 < 1 (2.34) never converges faster, and 
nearly always converges slower, than OLS of yt on x t. From Propositions 6.1, 6.2 and 
6.5 of Robinson and Marinucci (2001), OLS is n25-1-consistent when 7 + 8  = 26—(3 < 
1 , n 26-1 /  log ̂ -consistent when 7  +  <5 =  2<5 — (3 = 1  and 7  > 0, n-consistent when
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8 = i } ^  = 0 , and n^-consistent when 7  +  5 =  26 — (3 > 1, so over the intersection 
of these regions with 1/2 < /? =  6 — 7 < 1  the rate in (2.37) is equalled when 7  =  0 
and exceeded when 7  > 0 , indicating that proper fractional differencing without 
proper accounting for I  (0) autocorrelation can do worse than simple methods based 
on unfiltered data.

Focusing more closely on 7  =  0, where the central case (ii) is that of 7(1) x t , 
while the widespread evidence of unit root behaviour based on tests against AR 
alternatives cannot be taken very seriously from a fractional viewpoint (see Diebold 
and Rudebusch, 1991, Robinson, 1994b), it might be reasonable to interpret this as 
suggesting that integration orders may often be close to 1 , but either greater or less 
than 1 , when the discontinuity in Theorem 2.2 at (3 =  1 makes use of (2.34) ques
tionable. Even when /? >  1, the detailed corrections for autocorrelation in (2.12) 
and (2.18) might be expected to produce better finite-sample properties than (2.34), 
which is based on an appeal to asymptotic theory due to a high degree of nonsta- 
tionarity in 2^(7 ), while the extra computational burden of (2 .12) and (2.18) does 
not seem prohibitive. Because this discussion indicates that it is less important than 
Theorem 2.1, and because its proof is in part embodied in that of Theorem 2.1 and 
in part straightforwardly uses Theorems 4.1, 4.3 and 4.4 of Robinson and Marin
ucci (2001), we have omitted the proof of Theorem 2.2. Theorem 4.3 of Robinson 
and Marinucci (2001) can also be applied to justify narrow-band frequency-domain 
versions of (2.34) which, at cost of introducing a user-chosen bandwidth, eliminate 
the second-order bias term in (2.38) and thereby achieve the asymptotics in (2.32), 
corresponding to an idea due to Phillips (1991b) in a semiparametric setting for the 
(7/(1,1) case. We will also pursue this idea in Chapter 4 below.

2.4 M onte Carlo evidence
W ith the main aim of studying the effect of estimating integration orders 7 ,8 on 

our estimates of v and their limiting distributional properties, a Monte Carlo study 
was carried out on the case where in (2.23)

where 0 *, 0 *, z =  1 , 2 , are allowed to take values which represent different situations 
where ut is a bivariate:

1 . white noise process, with 0 * =  0 * =  0 , i =  1 , 2 ;

2 . purely AR(1) process, with 01 =  02 =  0.5,0.9, 0* =  0, i =  1 , 2 ;

3. purely MA(1) process, with 0 i =  0 2 =  0.5,0.9, 0* =  0, i =  1,2;

4. ARMA(1,1) process, with 0i =  02 =  0.4, 0 X =  0 2 =  0 .2 .

We generated Gaussian et with covariance matrix 1/ having ijth. element 
varying the correlation p =  cji2 /(wn w22 ) ^ 2 (taking values 0 , 0 .5 , -0 .5 , 0 .75) and
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variance ratio r  =  ^ 22/^11 (taking values 0.5, 1, 2 when u t is a white noise and just 1 
for the autocorrelated cases). The parameter p heavily influences the “simultaneous 
equation bias” in (1.25), regressors and disturbances being orthogonal only when 
p = 0, while r  affects the signal-to-noise ratio in (1.25), with increase in r  generally 
being associated with an increase in precision in estimation of v. Our estimates are 
invariant to v ^  0 and also to a scale factor of fi, and so we fixed v =  uiu =  1 with 
no loss of generality.

We generated 1000 series of lengths n = 64,128,256. For the white noise case, 
we computed the Infeasible estimate Vj and Feasible estimate Vp, given by

V1 =  £(7 , 8, 0j) =  £(7 , <5,0/) =  ^ (7 , 8, 0 j), (2.42)

v  f  =  £ ( 7 , M f )  = £ ( 7 , M f )  =  v { j , 8 , 6 f ), (2.43)

for 7 ,8 to be described subsequently. 9j ,9f represent in this case 3 x 1  vectors 
of estimates of 0 =  (wn ,cji2 ,^22 )', such that 17/ =  17(7 , 8), vF =  ^ (7 , 6), noting 
(2 .20), 0j ,9f consisting of the appropriate elements of flj =  Cl('y,8),Q>F = £2(7 ,8) 
(see (2 .21)). Thus, we compare an optimal estimate (17/) in case 7 ,8 are known (one 
that is familiar from the unit root co-integration literature in case (7 , 8) = (0 , 1)) 
with one (17F) where 7 ,8 are unknown, and replaced by estimates.

Unlike in the white noise case, for the different autocorrelated situations, esti
mates in (2 .12) and (2.18), although asymptotically equivalent, are not identical. 
Noting tha t time-domain estimates (2.12) are only computational convenient when 
ut is a finite-degree AR process, as we deal in our experiment with MA and ARMA 
situations, for the sake of a uniform treatment, we present only results for the fre
quency domain estimates (2.18), and compare them with those in (2.34). Thus, in
the different autocorrelated situations, we examined the performance of

£(7>M/)» ”f =  H i , M f ) ,  (2.44)
v°f = v (y ,8 ,6F), (2.45)

for certain estimates 0/, 0/?, 7 , 8 to be described subsequently.
To describe the procedure of estimation of the various short-memory parameters 

in the autocorrelated situations, let 0 =  (9'A,9'ny, where 9a, 0q collect the ARMA 
parameters and the distinct elements of fl respectively, i.e. 0q =  (a>ii,u;i2,^ 22)'- 
Now, given estimates 7 , 8 of the orders of integration, and estimates 9Ah 9a f  of 
0j4, where in the computation of 9a i  and 9 a f ,  we assumed that 7 , 8, were known 
and unknown respectively, the corresponding estimates 0^/, 9qF are the appropriate 
distinct elements of 0 (7 , <5, 9ai\ e), 0 (7 ,8 , &af\ e), where

  2^  n  ̂ f
Si(c, d, h;e) = —  ^  D  (c, d, h; A, ) -1  we (Aj) w'e (—Aj) D (c, d, h; — A j)-1 ’ , (2.46)

" j=i

with
e* =  {yt ~  VQx u x t -  x t- i  l { 8 >  1))', (2.47)
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where vo  is the OLS estimate (see (1.33)), and

D  (c, d, h- X) =  (  “  p  (i _  eiA)° - ,+1(s>i) J  A (h; eiA) , A  (0A; a) =  A (s ) .

(2.48)
Note th a t Q ( y ,  8 , 9a; e),  with e = (y t — v x t , x t — x t- i l  (8  > 1))' would be the standard 
parametric W hittle estimate of O based on the bivariate process ( y t — i /xt , x t )' or 
( y t — v x t , x t — x t- i ) '  depending on whether <5 <  1 or <5 >  1 respectively. Of course, 
this estimate is infeasible, as it requires knowledge of the unknown parameters 7 , 
8 , 6At v .  Also, V o  does not represent the current state of the art in estimating co- 
integrating vectors in the presence of unknown integration orders without employing 
estimates of these, Robinson and Marinucci (1998) having demonstrated how it can 
be improved upon by a narrow-band frequency domain least squares procedure. The 
use of such an estimate would presumably lead to an improvement in 9o.it 9 o f  (and 
also, as it will be seen later, in 6Ait ®AFt l ) t  and thence in the different estimates in 
(2.18), but it involves choice of a bandwidth number, and in the purely “parametric” 
context of the current chapter we prefer to keep to the more familiar and simpler 
Vo ,  whose performance as an estimate of v  we also compare with VF VF , V]  and V°F .

In the situation when we consider known orders of integration, the short memory 
parameters in 6a related to the process u2t are estimated by the method described 
in Hannan (1973) after taking 8 differences on the process x t. In the case of un
known orders, we computed 8 and the estimates of the short memory parameters 
in 9a related to u2t by variants of the univariate W hittle procedure of Velasco and 
Robinson (2000), using untapered x t for <5 <  1 , but for 8 >  1 using untapered A x t 
and adding back one to the estimate of 8. The estimation of memory parameters of 
nonstationary series by means of integer-differenced stationary and invertible obser
vations incurs no loss of efficiency (cf. Robinson, 1994b), but of course our use of 
knowledge of the actual 8 in doing this may favour Vpt^F  and the estimate of Q (see 
(2.48)). On the other hand, it appears that Velasco and Robinson’s (2000) estimates 
based on untapered data are only n 1/2-consistent (and asymptotically normal) when 
the memory parameter is less than 3/4, so that our application of their procedure 
to first-differenced untapered data when 8 = 2 (see (2.50) below) is not supported 
by their results, and may in itself lead to inferior VptV°F, compared to ones using 
memory parameter estimates which incorporate suitable tapering. The estimation 
of the parameters related to u u is more problematic, as even in the case of known 
orders of integration the process U\t is not observable. If the orders are considered to 
be known, we estimated the short memory parameters in 9a  related to the process 
uu  applying the Hannan’s (1973) procedure to 7  differences of the OLS residuals 
yt — Voxt. In case the orders are considered to be unknown, we computed 7  and 
the corresponding estimates in 9a  by the Velasco and Robinson’s (2000) procedure 
applied to the residuals yt — Voxt.

The previous estimation procedure was applied to all autocorrelated situations 
except the one where Uu and u2t are purely AR processes with known 7 , 8, where we 
preferred a more natural and computationally simpler way of estimating the short- 
memory parameters. In this situation, the estimates of (f) 1 and </>2 (see (2.41)) were 
obtained as the OLS coefficients in the regressions of yt (7 ) — Voxt (7 ) on yt_i (7 ) —
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v o x t - 1 (7 ), and x t (8) on xt_i (6) respectively. Here, we computed our estimate of 
Q as /  n n \

1 f  E r l  E r l t r 2 t \
Q(j, S, &ai) = n

t= 1 t= 1

, E n , r 21 E 4  y\  t= l t- 1 /

(2.49)

being r lt and r 2t the OLS residuals obtained from those regressions respectively.
There axe two parts to our Monte Carlo investigation, the first comparing per

formance in fractional circumstances of estimates assuming both 7  and 8 are known 
with ones where both are estimated, and the second focussing on the standard case 
(7 , 8) =  (0 , 1) just for the white noise case, and considering also estimates in which 
one of 7  or 8 is estimated.

2.4.1 Performance for different combinations of orders
In the first part of the study, we employed all five (7 , 8) combinations of 7  =  0,0.4 

with 8 =  0 .6 , 1 .2 ,2  where (3 > 1/ 2 :

(7 , 8) = (0,0.6), (0,1.2), (0 ,2), (0.4,1.2), (0.4,2). (2.50)

The first case, ( 7 ,8) — (0,0.6), is one in which the bias of OLS is so strong as to 
dominate rate of convergence when p ^  0 (see Robinson and Marinucci, 1998), while 
the remaining four cases are all ones in which OLS achieves the optimal rate. Table
2.1 records the convergence rates of OLS when p ^  0, OLS when p — 0 , and the 
optimal rates (achieved in Theorem 2.1).

TABLE 2.1 
CONVERGENCE RATES:

OLS WITH p ^  0, p = 0 AND OPTIMAL RATES
(7,<$) (0 , 0 .6 ) (0 , 1 .2 ) (0 , 2 ) (0.4,1.2) (0.4,2)

OLS, p ^  0 n 2 n 1-2 n 2 n 8 n 1,6
OLS, p = 0 n -6 n 12 n 2 n 8 n 16

Optimal n 6 n 12 n 2 n 8 n 16

B eh av io u r of th e  b ias

We show the Monte Carlo bias (defined as the estimate minus 1/) of the estimates 
corresponding to the white noise case in Tables 2.3-2.6 . Overall, Vj, VF and Vq are 
individually no worse than any of the other estimates in 172, 108, and 75 out of 
180 cases (considering all t ,  p, n  and order combinations) respectively, so that Vj is 
clearly best and our feasible estimate I7F , although more complicated to calculate, 
seems worth relative to the computationally simpler Vo- In fact, out of those 180 
different cases, VF behaves strictly better than Vq (with absolute value of the bias 
strictly smaller) 98 times, whereas that Vo is better than VF just four times (we will 
say tha t they perform in relation or proportion, 98/4). The overall predominance 
of VF over Vq in terms of bias, is clear for all values of p, although slightly less
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noticeable for p =  0. It is reassuring that while VF is damaged by nuisance parameter 
estimation, it nevertheless emerges as worthwhile relative to OLS, whose bias is 
indeed unacceptably large in the case (7 , 8) = (0,0.6), even for n = 256, except, of 
course, when p — 0. While the bias of 17/ is virtually unaffected by varying p, there 
is evidence that the bias of 77F somewhat increases in absolute value with |p |, with 
sign opposite to that of p. As expected, biases tend to decrease with n. For all p, 
r, bias tends to decrease in absolute value as /? increases, as rates of convergence 
predict. There is also a tendency for bias to vary inversely with r, but this is very 
noticeable only in the case (7 , 5) =  (0 , 0 .6 ).

In Tables 2.7-2.10, we show the Monte Carlo bias for the purely AR(1) case. 
Overall, V°j outperforms the other four estimates as, out of 120 possible cases (for all 
combinations of p, n and (7 , 5)), is no worse than any of the others 96 times. It is 
followed by 17/, 17F, V o  and 77̂ ,, which are no worse than any of the other estimates in 
84, 56, 54 and 41 cases respectively. Apart from the clear superiority of the infeasible 
estimates over the rest, the overall classification hides some very important features. 
For example, comparing 17p with 77o, when fa =  0.5, i =  1,2, VF is strictly better 
than Vq with relation 22/8. Similarly, when fa = 0.9, 770  shows certain improvement 
(most noticeable for (7 , 6) = (0 , 0 .6 ) with p 7  ̂0 ), but the relation is still favourable to 
VF (22/16). When u t is close to the nonstationarity situation, the joint estimation 
of orders of integration and AR parameters gives for some replications estimates 
of these latter parameters very close to one. In this case, 17p behaves very poorly, 
although this effect seems to be noticeable only when (3 is small. 77j improves over 77/ 
for all different combinations of orders of integration when p ^  0. This is completely 
surprising for the cases where (3 < 1, as here the rate of convergence of 77j is smaller. 
This better behaviour of 77J is maintained when fa = 0.9. The performance of V°F is 
somehow strange. It performs very badly in some cases, especially when fa = 0.9. 
This estimate seems more affected than 17p when the estimates of fa are very close to 
one, in which case, bias for some replications is extremely large, affecting the overall 
behaviour of the estimate across all Monte Carlo replications. Nevertheless, this 
effect tends to disappear as the sample size gets larger, so for n =  256 and fa = 0.5, 
V°F outperforms 17p in almost all cases, whereas for fa = 0.9 just does it for the case 
(7 , <$) =  (0,0.6). Vp emerges as worth against 17q when fa = 0.5 (in relation 20/13), 
but this changes completely when fa = 0.9, where the relation is now in favour of 77q 
(43/2). Thus, it does not seem advisable to use V°p in a situation where we suspect 
there exists short-memory AR structure, especially if there is certain evidence of 
closeness to the nonstationary situation. As in the white noise case, for all p, bias 
tends to decrease in absolute value as /? increases, as rates of convergence predict. 
In general bias of all the estimates increases in absolute value with |p |, with sign 
opposite to that of p and tend to decrease in absolute value as n  increases.

For the purely MA(1) case (Tables 2.11-2.14), as in the AR case, bias improves 
as Ip| decreases and (3 increases. Overall, V°F V°F, 77/, 17F and 770 are individually no 
worse than any of the other estimates in 101, 81, 78, 71 and 55 out of 120 cases. The 
most surprising result here is that 77°F performs better than the infeasible estimate 
77/ (with relation 18/7 out of 60 cases in both situations where fa  =  0.5 or fa  =  0.9), 
being this more noticeable for the cases where (3 < 1 , against what convergence 
rates predict. It is completely clear that both feasible estimates improve over 77q
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(27/2 out of 60 cases for both ipi =  0.5 and ipi =  0.9 for the relation between VF 
and V0 , and 27/2 and 27/3 out of 60 cases for ipi =  0.5 and ipi =  0.9 respectively 
for the relation between V°F and Vo). Estimates are in general not very affected by 
the increase in the parameter ipi. When this happens, V/  performs slightly worse in 
small sample sizes, but a bit better when n =  256, while VF does not have a very 
clear reaction, except that it becomes worse for the case (7 , <5) = (0,0.6). Also, VJ 
improves slightly in most of the cases, whereas V°F performs a bit worse. It has to 
be stressed that as opposite to the results for the AR situation, V°F does not seem 
to be very sensitive to values of short memory parameters close to noninvertibility, 
as it was the case for values of AR parameters close to nonstationarity. In general, 
our employed estimation method in AR circumstances, tends relatively often to 
give results where the orders are underestimated, whereas the AR parameters are 
overestimated, obtaining values very close to one. This seems not to occur when we 
approach the noninvertibility region.

Results for the ARMA(1,1) case are given in Tables 2.15, 2.16. Overall, out of 
60 cases, VJ, Vj, VF, Vo and V°F are individually no worse than any of the other 
estimates in 53, 43, 30, 29 and 21 cases respectively. Unlike the previous figures 
suggest, there is still clear evidence that VF improves over Vo (with a relation of 
23/11 out of those 60 cases). Now, V°F does not improve over Vo (22/15 in favour of 
Vo), being the feasible estimate V°F better than Vo just for the case (7 , S) = (0,0.6) 
when p /  0. As before, biases react as theory predicts when n increases and also 
decrease in absolute value with increases in (3 and decreases in \p\ .

Behaviour o f the standard deviation

For the white noise case, Monte Carlo standard deviations are reported in Tables 
2.17-2.20. Overall, out of 180 cases, Vj, VF and Vo axe not worse than any of the other 
estimates 166, 78 and 75 times respectively, showing this clearly tha t V j performs 
best. VF performs better than Vo (with relation 63/50), standard deviations of the 
former estimate improving relatively faster when n  and \p\ increase, and being also 
more favoured by negative p. As anticipated, standard deviations tend to decrease as 
r  and n  increase. The standard deviations of both Vj and VF show some tendency to 
decrease as \p\ increases, though it frequently increase for VF when (7 , 6) =  (0,0.6). 
Otherwise, the close similarity in variability of Vj and VF for n =  256 is encouraging. 
For n — 64, the change in sign of p is associated with some small improvement. 
Note tha t Vo is often more precise than VF, and even Vj , when either n  is small or 
(7 ,«) =  (0, 0.6).

Results for the purely AR(1) case are presented in Tables 2.21-2.24. Out of the 
120 cases reported, VJ, V/ ,  V o, VF and V°F perform individually not worse than any 
of the remaining four estimates in 87, 80, 60, 39 and 23 cases respectively. Now, 
V o  beats VF and V°F , with relations 43/31 and 85/10 respectively. Although this is 
not an desirable result, it is certainly supportive that for n =  256 and (pi — 0.5, VF 
and V°F perform slightly better than Vq- Vi performs better than VF with bigger 
differences for the cases (7 ,(5) =  (0,0.6), (0.4,1.2). For n = 64, Vo is best for 
the case (7 , 8) = (0 , 0 .6), but this better performance vanishes as n  increases. Vo 
is slightly better than VF for all sample sizes in the case (7 , <5) =  (0,1.2). VJ is
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generally worse than 77/, although differences tend to shrink, and for n  =  256, both 
estimates behave quite similarly, VJ improving a bit over 17/ when fa = 0.9 in case 
(7 ,5) =  (0,1.2). On the other hand, Vp behaves much worse than VF in almost all 
cases, with unacceptably large values of standard deviations when the sample size 
is small, results being even worse when fa =  0.9. The feasible estimate in Theorem
2.2 appears to be very sensitive to estimates of the AR parameters very close to one. 
Finally, standard deviations tend to decrease as /?, n  and \p\ increase.

Results for the purely MA(1) case are given in Tables 2.25-2.28. As opposite to 
the AR case, in the MA(1) situation, all different estimates behave quite similarly, 
feasible estimates being much less damaged by the estimation of the short-memory 
parameters than in the AR(1) situation. The overall classification is VJ, Vj, Vo, V°F 
and Vp, being no worse than any of the others 107, 77, 56, 50 and 39 times out of 120 
cases respectively. VJ? clearly beats 770 , with relation 49/26, this better behaviour 
being present in almost all cases when n  =  128,256 and p /  0. In fact, the only 
two cases where Vo performs consistently better than V°F are just (7 , S) = (0,0.6), 
(0,1.2) when p = 0. The other feasible estimate, Vp, behaves worse than Vo with 
relation 42/29 in favour of 17Q, but this is completely driven by the bad behaviour 
of Vp when n  =  64 (especially for fa = 0.9). Fortunately, when n =  256 (and even 
when n  =  128 for fa — 0.5), apart from the cases (7 ,6) =  (0,0.6), (0,1.2) with 
p =  0, VF beats Vo. Clearly, VJ and 77/ axe best, and as n  increases, 770 is normally 
worst, being this very noticeable for the case (7 , S) =  (0,0.6) when p /  0. When 
the short memory parameters change to fa =  0.9,77/ tends to behave slightly worse, 
while 77p gets damaged specially in case (7 , 6) =  (0.4,1.2) when n =  64, although it 
gets closer to the fa =  0.5 situation as n  increases. VJ and VJ? remain similar to the 
fa = 0.5 case, the main change being now tha t VJ? is now preferable to Vp for most 
of the cases.

Results for the ARMA(1,1) are given in Tables 2.29, 2.30. Overall, out of 60 cases 
Vj, VJ, Vo , Vp and VJ? perform individually no worse than any of the other estimates 
in 48, 48, 27, 13 and 12 cases respectively. Thus, apart from the (7 , 6) = (0,0.6) 
case with p =  0, where 770 is best, 77/ and VJ are the dominant estimates. 77F, and 
especially VJ?, behave clearly worse than 77Q, with relations 32/6 and 41/2 in favour 
of Vo, although the behaviour of these three estimates becomes closer as sample size 
increases.

Behaviour o f empirical sizes

We next examine the accuracy of the large sample x 2 approximation of Corollary 
2.1, looking at the size of Wald tests. For the white noise case, we define the Wald 
statistics Wj = bj (77/ — l )2 and Wp =  bF (Vp — l )2 , where

6 /  =  6 (7 , 0 / )  =  6  (7 , 0 / )  =  v{-y,  6 ) ,  

bF =  6 (7 , e F) =  b (7 , SF) =  v ( j ,  6 ),

(2.51)

(2.52)

w ith
n  {Y, ,x' f(c) j : tx j ( d )  -  { S tx t ( c ) x t ( d ) } 2}

S txl(d)Y,tn{c,d) (2.53)
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where e~t {c,d) are residuals from the OLS regression of yt(c) on x t(c) and x t(d). 
Note that v(c, d) is the usual OLS estimate of variance of the coefficient of x t(c) 
in the OLS regression of yt(c) on x t (c) and x t(d). Table 2.31 contain empirical 
sizes (meaning percentage of rejections) for the white noise case, corresponding to 
nominal sizes a  =  0.05, 0.10, for the four values of p but r  =  1 only, the results 
for r  =  0.5 and 2 being very similar. The results for W\ are on average too large, 
but only slightly, and performance here seems very satisfactory over all (7 ,5) and p. 
The empirical sizes of Wp are clearly too large, but though the asymptotic theory 
would here only provide a good approximation in a larger sample size than any we 
have employed, nevertheless the sizes also decrease significantly over the range of n 
considered. The sizes of Wf tend to decrease in (3 for \p\ >  0.5. The results for Wp 
are again worst when (7 , S) =  (0 ,0 .6), but are not so conspicuous as in the tables 
of biases.

For the different autocorrelated situations, we define

w ,  =  6 (7 , 0 / )  (17,- l ) 2 , ^  =  6 (7 , ^ ) ^ - l ) 2 , (2.54)

W f = b ( ^ e , ) ( V j - l ) \ W f  = b ^ , e F)(V°F - l ) 2 . (2.55)

For the purely AR case (Tables 2.32-2.35), in general, the approximation gets worse 
as p increases in absolute value. For fa = 0.5, results for Wj are on average too 
large, but performance is reasonably satisfactory, (7 , 6) =  (0 , 0 .6 ) being the worst 
case, especially when p =  0.75. Empirical sizes of Wf are clearly too large, but they 
seem to react well to the increase in the sample size. The convergence is again very 
slow for the case (7 , 6) =  (0,0.6) (and even for (7 , <S) =  (0.4,1.2) when p =  0.75). 
Empirical sizes corresponding to W f  and W f  follow a similar pattern to the one 
described above, but surprisingly they are much smaller than those for Wj and Wp. 
This could make sense for the cases where (3 > \,  but is most surprising otherwise, 
as Theorem 2.2 implies that the estimates VJ and V°F do not enjoy mixed-normal 
asymptotics. In fact, in those cases, the theory says that the corresponding Wald 
statistics should explode as n increases, but this is not reflected in our experiment. 
For fa = 0.9, as expected, the approximation gets worse. For (7 , 6) =  (0,0.6), sizes 
corresponding to Wf do not behave as theory predicts (getting the situation worse 
as |p| increases), but we believe, this is due to the somehow extreme situation of 
an error process very close to non-stationarity with a value of (3 very close to the 
lower allowed limit of 1/2. Sizes of W f  for this case, also increase as n increases, 
and taking into account our previous results, is somehow noticeable that sizes also 
increase with the sample size for the case (0.4,1.2), as the theory predicts, whereas 
for this case, sizes of Wp react more appropriately to increases in n.

For the purely MA case, results for the case fa =  0.5 are given in Tables 2.36, 
2.37. Basically, similar conclusion as for the AR case apply. Sizes for Wj are on 
average too large, but performance is satisfactory, again results being worst when 
(7 5 6) — (0? 0-6)- W f  improves on these sizes, result not supported by the theory for 
the cases (7 ,6) =  (0,0.6), (0.4,1.2). Sizes for Wp are too large, but they seem to 
react well to the increase in sample size. Now, sizes for W f  are similar to the ones for 
W f ,  which represents a different behaviour compared to the results for the AR case, 
where in fact the improvement of W f  over Wp was more important. In our present
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situation, this improvement is only very noticeable for the case (7 ,8) = (0 , 0 .6), 
which in fact is a case for which sizes for Wp should behave better according to 
the asymptotic theory. Results for ^  =  0.9 are given in Tables 2.38, 2.39, and are 
somehow surprising. Sizes corresponding to Wj and Wf get in general worse with 
the increase in the value of the short memory parameters, but they again react well 
to the increase in the sample size. In contrast with this, sizes for W f  and W f  improve 
slightly when ^  increases, mainly for n = 64, although for the case (7 , 8) =  (0,0.6) 
with p =  0.75 sizes corresponding to W f  increase when n  increases, which supports 
the theory.

Results for the ARM A (1,1) case are reported in Tables 2.40, 2.41. Basically, 
the arguments presented for the previous autocorrelated cases also apply here. Im
provements of W f  and W f  over Wj and Wf respectively, are most noticeable for the 
case (7 , 8) =  (0,0.6), being not very important for W f  when /? is large, W f  beating 
clearly Wf even in this situation.

2.4.2 Standard situation: 7  = 0, 8 = 1
For the second part of the Monte Carlo study, we focus on the familiar case 

(7 ,8) — (0,1), presenting only results for the white noise situation. As discussed 
in Section 2 .2 , we include now also the “intermediate” estimates, employing prior 
knowledge of either 7  or 8,

=  P(0, <5) =  P{O,<S,07) =  77(0,<5,07), (2.56)
77* =  77(7 ,1) =  1̂ (7 ,1,0*) =  £(7 ,1,0*), (2.57)

where 07, 0* consist of the appropriate elements of f2(0 , 8), ^ ( 7 , 1), respectively. 
Note tha t in this case 770  has the same rate of convergence as z7/, Vp, Vy, Vs, being 
n-consistent, but lacking the mixed normal asymptotics. We employed the same 
values of p and r  as before. Table 2.42 reports Monte Carlo biases. The best and 
worst estimates, when p ^  0, are again V/ and Vo respectively. However, though 77*
(which correctly assumes 8 =  1) is second-best, T77 (which correctly assumes 7  =  0)
is inferior to Vp", this is all the more surprising because 7  is more problematic to
estimate than 8 as it uses residuals. It might appear that in Vp the contributions
to bias from estimation of 7  and 8 to some degree cancel each other out. However, 
we must stress that this is in any case a small-sample phenomenon, being barely 
noticeable for n =  128 and absent when n = 256, while even for n =  64 the bias of 
V1 is never so large as to cause serious concern.

As before, the standard deviations, reported in Table 2.43, are much less variable. 
For |p| >  0.5, Vo clearly performs worst, but there is little to be said about the 
optimal estimates, though for small n, 77/ seems best, followed closely by 77*, with 
almost identical values for V1 and Vp.

Table 2.44 reports empirical sizes, including now results for W7 =  67 (V1 — l )2 , 
Ws = bs (77* -  l ) 2, where

by =  &(0,07) =  6 (0 ,07) =77(0,?), (2.58)

bs =  b (7 , 0*) =  b (7 , 0*) =  v (7 , 1) ,  (2 .59)
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W o =  y o  -  V  ^  t (2 60)
and

n (v0 -  1) T,tx j

S* (yt -  V0 XtY
though Wo does not have a limiting null x l  distribution. We find tha t the empirical 
size of Wi is the most accurate, followed by W7, the discrepancy increasing with 
\p\. Even for p ^  0 , Wo  often does better than W& and Wp, which perform quite 
similarly; clearly the effect of estimating 7  is playing a dominant role here, and use 
of an improved preliminary estimate of 1/, such as that proposed by Robinson and 
Marinucci (1998, 2001), or iteration, may be warranted.

2.5 Empirical investigation: the purchasing power 
parity hypotheses

Numerous empirical studies have cast significant doubt on the purchasing power 
parity (PPP) hypothesis with respect to the short run, but have yielded mixed 
evidence with respect to the long run (see e.g. Corbae and Ouliaris, 1988, Enders, 
1988, Kim, 1990, Taylor, 1988). Cheung and Lai (1993) proposed a fractional version 
of the PP P  specification, essentially (1.25), (1.26) with x t representing the domestic 
price index and yt the foreign price index, converted to domestic currency units. The 
coefficient v in (1.25) is unity according to the absolute or homogeneous version of 
PPP, so this is testable by our Wald statistic of Corollary 2.1. Using unit root 
tests, Cheung and Lai (1993) failed to reject the hypothesis 8 =  1 and then, using 
differenced OLS residuals, they computed semiparametric log periodogram estimates 
of 8 — (3 — 1 and then tested the non-co-integration null hypothesis of (3 =  0 against 
the alternative (3 > 0, using critical values computed by simulation in view of the 
inapplicability of standard asymptotic theory in this case. They found evidence of 
co-integration in a number of bivariate series, but did not test v =  1. We employ 
a step-by-step approach, first testing whether the integration orders 8X and 8y of x t 
and yt are the same, then for the presence of co-integration, then for (3 > 1 / 2  and 
finally, given all these hurdles have been crossed, v  =  1. In the first three steps 
we used semiparametric procedures (as did Cheung and Lai, 1993, Marinucci and 
Robinson, 2001), while in the final step, which is most relevant to the material of 
the current chapter, we identified parametric models for the autocorrelation in ut 
and thence computed estimates of v and Wald statistics.

The semiparametric estimates of integration orders were all Robinson’s (1995a) 
versions of log periodogram estimates, but without trimming, using first differences 
and then adding back 1. We estimated 8X and 8y separately, and then tested 
8X =  6y(— <5) by an adaptation of Robinson and Yajima’s (2002) statistic Tab to 
log periodogram estimation, with their trimming sequence h(n) chosen as b~b~2% for 
i = 1, 4 ,  with b the bandwidth used in the estimation. Given 8X = 8y is not 
rejected, we performed the Hausman test^for no-co-integration of Marinucci and 
Robinson (2001), comparing the estimate 8X of 8X with the more efficient bivariate 
one of Robinson (1995a), that uses the information 8X =  8y. Given co-integration 
is not rejected, the null [3 = 1 /2  was rejected in favour of (3 > 1/2 if and only if
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a studentized 8X — 7  — 1/ 2 , was significantly large relative to the standard normal 
distribution, where 7  is the estimate of 7  using OLS residuals.

Using annual data (as is relevant to the long-run version of PPP) of Obstfeld 
and Taylor (2002) for the period 1870-1992 (with n =  123), we applied the above 
methodology to four bivariate series, the US (“domestic”) versus the “foreign” coun
tries Australia, Canada, Italy, UK. Strong evidence against equality of integration 
orders was found in case of Australia and Italy, and against co-integration in case 
of Canada. However, the UK “passed” all three initial tests. Across the range 
b =  10, ...,29, (Sx,Sy) varied between the extremes (1.341, 1.095) and (1.572, 1.376), 
and across b = 16, ...,25 and the four h(n) choices, 6X =  6y was rejected in only 9 
out of 40 cases, and these all at the 10% level. For the same 6, no-co-integration was 
rejected at 10% in all cases, at 5% in 4 cases, and at 1% in 3 cases, while (3 = 1 /2  
was rejected against (3 > 1/2 at the 1% level in all cases.

For the US-UK data, we identified parametric models for /(A) as follows. Through
out, A(L)  in (2.22) was diagonal, and u Uju2t treated separately. They were proxied 
by Ai ( y t — voxt), A 6xx t , for each of the extreme 7 , 8X, namely 7  =  .374, .698 and 
8X =  1.572, 1.341, and then Box-Jenkins-type procedures identified models within 
the ARMA class. This resulted in AR(1) and ARMA(1,1) uu and white noise 
and ARMA(1,1) u2u and we fitted all four combinations. We also fitted bivariate 
versions of Bloomfield’s (1973) model, where

A(s) = diag jexp  ( j7 j=1 , exp (E £= i °2jsj)  } » (2-61)

for p =  1,2,3. For each model we applied the univariate W hittle procedure in 
Velasco and Robinson (2000), using untapered, differenced data and adding back 1 . 
We summarize the seven models and the resulting (5,7 ) as follows:

Model 1 
Model 2 
Model 3 
Model 4 
Model 5 
Model 6 
Model 7

uu  is AR(1) and u2t is white noise. (<$>7 ) =  (1.612, .669).
uu  is AR(1) and u2t is A R M A (  1,1). (6 , 7 ) =  (1.408, .669).
uu is A R M A (1 ,1) and u2t is white noise. (8 , 7 ) =  (1.612, .660).
uu  is A R M A (1 ,1) and u2t is A R M A (1 ,1). (8,7 ) =  (1.408, .660).
ut is bivariate Bloomfield with p = 1. (^?7 ) =  (1*214, .710).
ut is bivariate Bloomfield with p = 2. (^>7 ) =  (1.434, .701).
ut is bivariate Bloomfield with p =  3. (^>7 ) =  (1.323, .547).

The 7  seem very robust to the short memory specification, the 8 rather less so. We 
also took this opportunity to examine another question which in one form or another 
always arises with application of fractional models, and perhaps most acutely when 
nonstationary data are involved. This is the m atter of truncation. When estimated 
innovations from a stationary fractional model are computed, the (infinite) AR rep
resentation has to be truncated because the data begins at time “1”, not at time 
“—00” . Now in our model (1.25), (1.26) for nonstationary data, the truncation is 
actually inherent in the model, so strictly speaking there is no “error” associated 
with it. However, the model reflects the time when the data begins, and if we were 
to drop the first observation, say, and start the model off at the next one, the degree
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of filtering applied to all subsequent observations would change, and it is possible 
that this could have a marked effect, especially with nonstationary data. Thus, in 
Table 2.2 we report computations of our estimates 1/(7 , 8, 6) =  Pi and Wald statistics

for models i = 1,..., 7, based on the last n' =  n — j  observations, for j  = 0 ,1,.., 10, 
in order to explore sensitivity to starting value.

TABLE 2.2
PPP EMPIRICAL EXAMPLE: ESTIMATES OF v AND WALD TESTS OF v  =  1 

FOR MODELS 1-7 COMPUTED FROM THE LAST n’ = 113,..., 123 
________________ OBSERVATIONS OF US/UK DATA_____________________

n' 123 122 121 120 119 118 117 116 115 114 113
V\
Wx

1.139
26.23

1.050
.352

1.014
.017

.952

.163
.889
.759

.875

.940
.871
.986

.867
1.035

.864
1.082

.875

.903
.875
.890

 ̂
*1

 
(O

' 1.294
117.3

.959

.231
1.030
.078

.995

.002
.949
.159

.941

.208
.941
.206

.938

.226
.936
.243

.944

.181
.943
.182

^3
w 3

1.113
18.64

1.084
1.070

1.017
.027

.955

.161
.889
.823

.871
1.079

.866
1.138

.863
1.196

.859
1.251

.871
1.051

.868
1.059

V4
W4

1.290
122.6

.966

.178
1.028
.078

.997

.001
.950
.170

.939

.241
.939
.240

.936

.263
.934
.281

.942

.212
.939
.227

V5
w 5

1.274
112.2

1.042
.225

1.025
.055

.986

.014
.940
.230

.933

.283
.932
.283

.931

.296
.929
.306

.939

.223
.936
.239

W6
1.278
114.9

.960

.211
1.015
.019

.983

.020
.939
.241

.932

.292
.931
.292

.930

.306
.927
.325

.937

.246
.935
.255

V7
w 7

1.298
116.9

.999

.000
1.048
.279

1.024
.052

.975

.047
.961
.109

.962

.105
.956
.138

.956

.136
.963
.096

.958

.122

Substantial variation is evident across the larger n', with all Pi exceeding 1 and 
the homogeneity hypothesis being strongly rejected when n ' =  123, across all seven 
models, but as n' decreases, things stabilize. For n' <  119 some sensitivity to the U2t 
specification was found, the white noise cases (Models 1 and 3) providing estimates 
of v less than .9, whereas for the other models they all exceed .9, with the largest 
values for Model 7. For n' <  122 the homogeneity hypothesis v — 1 is never rejected 
even at the 10% level.

From certain perspectives, practitioners could considered our empirical analysis 
simplistic, as we do not take into account possible alternative features of our data. 
In particular, we did not check for the possibility of structural breaks or nonlinear
ities in our long time series. Admittedly, these are relevant issues, whose linkages 
with fractional processes are mainly undiscovered, but which already attracted the 
attention of some researchers. For example, Granger (1999) showed that structural 
break processes could produce “long-memory” properties of the data, while he sug
gested that, among nonlinear time series, there could be other plausible alternatives 
to I  (d) processes. Undoubtedly, a very rigorous and exhaustive analysis of the PPP 
hypothesis should contemplate these issues, but, at this stage, our intention was 
simply to propose a sensible methodology incorporating the techniques developed in 
this chapter, which, at the same time, motivated our testing problem appropriately.

(2.62)
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2.6 Final com ments
Our treatment of a bivariate system in a parametric setting is quite general, 

in that a very wide range of models for the 1(0) input series ut is covered, while 
our regularity conditions seem to afford little scope for relaxation. Nevertheless, 
there are significant aspects we do not consider here, some of which are studied in 
subsequent chapters.

1 . Our case (5 > 1/2 includes the familiar C 7 ( l ,l)  setting, but 0 < (3 < 1 /2  
is also of interest. As discussed in Chapters 1 and 3 of this thesis, x t (7) 
is then “asymptotically stationary” and our estimates are n 1/2-consistent and 
asymptotically normal, with limiting variance tha t is affected by the estimation 
(and the efficiency of estimation) of one or more of 7, 8 and 9, because the 
requirement k, > 1 —(3 on k, in (2.27) still appears to be relevant when ft < 1/2, 
but (2.27) is unachievable then because 7 , 6 are at most n 1/2-consistent, no 
m atter the values of 7 and 8, see eg. Velasco and Robinson (2000).

2. In view of the literature on non-fractional co-integration, there would be em
pirical interest in incorporating also in (1.25) and/or (1.26) deterministic com
ponents. Modification of the theory to cover polynomial time trends seems rel
atively straightforward, though our fractional focus suggests allowing for pos
sibly non-integral powers of t  in studying the relative importance of stochastic 
and deterministic trends, as Robinson and Marinucci (2000) did in connection 
with OLS and its narrow-band modification, while if such powers axe unknown 
the extension is decidedly non-trivial.

3. Extension of our methods and theory to vector yt and x t, and matrix 1/, seems 
straightforward when there is no variation in integration orders across ele
ments of x t and yt — vx t. However, multivariate data invite consideration not 
only of multiple co-integrating relationships but also of observables and/or 
co-integrating errors with differing integration orders, which would raise par
ticular questions of identifiability and complicate estimation.

4. Our parametric treatment of autocorrelation in ut follows a classical economic 
time series tradition and allows parsimony, but the unit root co-integration 
literature has stressed a nonparametric approach. Nonparametric estimation 
of /  (A) should lead to the same outcomes as in Theorems 2.1 and 2.2, and cor
responds in (2 .12) to taking Bj = 0 , j  > p, but letting p go slowly to infinity in 
the asymptotic theory, while in (2.18) or (2.34) weighted autocovariance or pe
riodogram estimation might be used. As shown in Chapter 4, the forms (2.34) 
are easiest to handle technically, while in (2.18), the variation in /  (A7) across 
the n Fourier frequencies might be dealt with by techniques like those used 
by Robinson (1991, pp. 1354, 1355). Alternatively, one can employ estimates 
which are constant over slowly degenerating bands, as proposed in Hannan 
(1963) and employed by Phillips (1991b) in the C 7(l, 1) case. Note that the 
slow convergence of nonparametric estimates of /  is of concern because even
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the refinement of Assumption 2.3 (ii) mentioned in the discussion of that as
sumption requires a convergence rate that approaches arbitrarily close to n -1 / 2 
as /? —► 1/2. In principle n6-1/2—consistent nonparametric spectral estimates 
can be found, for any e > 0 (where, for example, e depends on kernel order, 
see eg. Cogburn and Davis, 1974), though, as (3 is unknown, one can never be 
sure tha t the e achieved is sufficient. These issues are discussed in detail in 
Chapter 4, where we comment on the problem of relatively slow nonparametric 
estimates of the nuisance parameters.

2.7 A ppendix 2

2.7.1 A ppendix 2.A: O utline o f proof o f  T heorem  2.1
Though the proof of (2.32) for the time-domain estimates (2.12) is not contained 

in that for the frequency-domain estimates (2.18), nevertheless the proof for the 
latter does involve approximation in the time domain so that many of the steps 
are similar. Thus, because it entails the greater technical challenge, computational 
elegance and generality, we give the proof only for (2.18).

Consider first the infeasible estimate v  (7 , 6, 9) . We have

zt (c, d) = Cxt (c) v + vt (c, d) ,  (2.63)

where
vt (c, d) =  (ult (c -  7 ) ,  x t {d) ) ' . (2.64)

Thus

V { c A h ) - v= e - w $ '  {2M)
where

n

e (c, d, K) ^   ̂p  (A j, /i) wx^  ( A j) ,Wv{c,d) (A j) • (2 .66)
3=1

From (1.26), (2.64), vt (7 , 6) =  u f , so that

=  (2.67)

where
n

b(7 ) =  6 (7 , 0) =  ^ 2 q { Aj) |tu*<7) (Aj)|2 , (2.68)

n

e (7 ) =  e (7 ,6,9) = Xj) wx(l) (—Xj) wu (Aj ) , (2.69)
j=1

with
P (A) =  p  (A; 6>), q (A) =  q (A; 9 ) . (2.70)
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Also define
n (  m—1

e* (7 ) =  E 1 Cx"> (7 ) -  E (7 ) !> O r xem , (2.71)
771—1 V 5=1 J

71

e”  (7 ) =  C'B (1)' o r 1 Y ,  (7 ) £m, (2.72)
771=1

771—1 1 f (  771—1

b* W = I & m  W “ 51 B £ Xm - a  (7) ? ^ 1 S Cx m { l )  ~  ^  B s ( Xm - s  M f , 
771=1 i. 5=1 J I  5=1 J

(2.73)

6**(7) =  ^ E ^ ( 7 ) .  (2-74)
771=1

Now (2.32) for v (7 ,8,9) follows on establishing the following six propositions. 

Proposition 2.1. As n —► 00,

e (7) -  e* (7) =  op (pP) . (2.75)

Proposition 2.2. As n  —► 00,

e* (7) -  e** (7) =  op (n13) . (2.76)

Proposition 2.3. As n  —> 00,

n (7 ) =» C'B (1 ) ' n - '  J  W  (r; /3) dW ( r ) . (2.77)
0

Proposition 2.4. As n —+ oo,

& (7 ) _  6* (7 ) =  0p (n 2̂ ) . (2.78)

Proposition 2.5. As n —► oo,

6 * (7 )-6 '* (7 )  =  op (n20 -  (2-79)

Proposition 2.6. As n  —► oo,

1

n - ^ b "  (7 ) =* 7 ^ 1  /  W (r; /3) 2 dr, (2.80)
27t y 

0

where the right side is almost surely positive.

To prove (2.32) for the remaining four estimates in (2.18), it suffices to con
sider only 1/(7,8, 9) and £ (7 ,8, 9) as the proof for the other, intermediate cases, will 
essentially be implied. It thus remains to show that

P(7,8,9) -  P(7, <5, 9) = Op (rP) , (2.81)
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v t f ,6 ,6 ) - H 'y ,6 ,e )  = op (nl3) .  (2.82)
We have first ^

=  (2.83)
b( 7,0)

so that, from (2.65), the left side of (2.81) is

e(7 , 6,0) z e(rL6, ff)_ + ( _  1 _  |
6(7,0) \  My, 0) 6(7.®)/

In view of Propositions 2.1-2.6, the proof of (2.81) follows on establishing the fol
lowing two propositions.
P ro p o s itio n  2.7. As n  —► oo,

e(7 , 6, 0) -  e(7 ,6, 0) = op (pP) . (2.85)

P ro p o s itio n  2.8. As n —► oo,

6 ( 7 ,0) -  6 (7 ,0 )  =  op (n2/3) . (2 .86)

To prove (2.82), note that

£(7 , <5,0) -  v = (2.87)
6(7 , 0)

so from (2.83) the left side of (2.82) is

e ( 7 , 6 , 0) -  e ( 7 , 6 , 0) -  e (7 ,  <5, 0) +  e (7 ,  (5, 0 )

6 (7 , 0 )

e (7 ,  ?, 0 ) -  e (7 ,  <5,0 )  e ( 7 , 6 ,0 )

6 (7 ,0 )  6 ( 7 ,0 ) 6 ( 7 ,0 )

e(7 ,0,0)
{ 6(7 , 0 ) - 6(7 , 0)}

m { 6(7 , ^ ) - ^ 7 , ^ ) - K 7 , 5) +  K7 ^ ) } ,  (2.88)
6(7,0)6(7,0) t J

and (2.82) follows from Propositions 2.1-2.8 on establishing the following four propo
sitions.
Proposition  2.9. As n  —> 00,

e(7, ?, 0) -  e(7 ,6, 0) =  op {pP). (2.89)

Proposition  2.10. As n  —> 00,

e(7, ?, 0) -  e(7, ?, 0) -  e(7, <5,0) +  e(7, <5,0) =  op (n13) . (2.90)

Proposition  2.11. As n — > 00,

6(7,0) -  6(7,0) =  op (n2/3) . (2.91)

Proposition 2.12. As n  —> 00,

6(7,0) -  6(7,0) -  6(7,0) +  6(7,0) =  op (n2/3) . (2.92)
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2.7.2 Appendix 2.B: Proofs of propositions 
P roof o f Proposition 2 .1 . Write e (7) as

f  71 00 00 n ny  (2-93)
71 j= l l = - 00 m = —00 3=1 4=1

taking Bi =  0, I < 0, B q = / 2, Bi = —Bi, / > 0. We can rewrite this as

n n n 00 ^

„ EEE E (7)
S —1 4=1 j  =  l  /  =  — OO

00 00 f n

= E E E 5 «  —s+rnC't's (7 )  ̂ f2 l Y B m- tuu (2.94)
m—1 r= —00 s = l  J 4=1

because v
n

^  etfAj =  n, £ =  0, mod (n) ; =  0, otherwise.
3=1

The expectation of the absolute value of the difference between (2 .94) and

(2.95)

n 00 I n

E E E  B m —s+ rn C '^s (7) r  ̂  ̂̂  B m —t^H (2.96)
m =  1 r= —00 I 3=1 4=1

is bounded by

00 OO 71 5 2 n 2‘

* E £ y   ̂ y   ̂B m —s+rn  ^  ^ 0‘s—V'U>2v E  ̂̂  B m -tU t
m = n + l r= —00 s = l  v = l 4=1

(2.97)

with at =  at (P), K  denoting throughout the thesis a generic positive constant. The 
second expectation is bounded by

t r  <
n  IT 7T

E E  /  B m. tf  (X) B'm_ , e ^ xdX \ < K  f
4=1 s = l  _  J 4=1

dA

4=1 4=m —n

for m >  n. The first expectation in (2 .97) is bounded by

(2.98)

/
OO 71 5  /«  c,

E  E E 5 -  -s+rn^-^  WA/22 (A) E  E E ^ ™  _t+gnat. w^ xdX
_ r = —00 s = l  u = l o= —00 4=1 in = lV— 7T

00 n 4
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< K
7T

/ oo n s

E E E  Bm—s+Tn̂ 's—v^—ivX d \
r——oo s = l  v = l

oo n oo n

<  #  E E E  E l i  B m —s + r n || || ^ m —t+qn  || ^   ̂ d s—V(X%—w,
r = —oo s = l  g = —oo t = l t>=l

(2.99)

where /ii(A) is the (i, i)£/i element of /(A), and thus is bounded. Prom Lemma 2.D.2,
(2.99) is bounded by

K n W -'  ( £ 115,11)  =  O (n2/3_1) , (2 .100)
i= 0

using (2.25). It follows that (2.97) is bounded by

0 0 / 0 0  \  2

Kn̂  E ( E nB‘ii2  ̂ ^*E(Eiifti
/  m =  1 \ t= m

00 00

< KnP~1̂2 ^ 2  E  Ill'll

7 7 1 = 7 1 + 1  \ t = T 7 l —n

OO /  OO

7 7 1 = 1  i= 7 7 1  

OO
<  KnP~% J ||B j|| =  0{nP~%), (2.101)

j = l

again using (2.25).
Next, the expectation of the absolute value of the difference between (2.96) and

n oo /  n ^ /

E E E * -  —s+rnC^a ( t)  /  ^  &r
m =  1 r = —oo v. s = l  J

(2 .102)

is bounded by

71 00 n 3 2 0 2"

* E E ^   ̂ ^   ̂B m —s+rn  ^   ̂(La—vU2v E ^  ] B m -tU t
771=1 r = —oo s = l  u = l t= —00

(2.103)

Proceeding as in (2.98), the second expectation is bounded by K  Ylu=m\\Bt\\2 , so 
since the first expectation is bounded by (2.100), it follows that (2.103) is bounded
by

0 0 / 0 0

E E HB‘H2 “ °&*"*)■ (2-104)
m =  1 \ t = m + l  /

as in (2.101). The expectation of the absolute value of the difference between (2.102) 
and e* (7 ) is bounded by

* E
7 7 1 = 1

E EE B m —s+rn  ^  ]  ^s—vU>2v
r > 0 3=1 n = l
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<  i f n 'H  ] T
m—\

m = l

E E  llB-
,r> 0  3=1  

oo

E i i B ‘ ii

3+7*71

t=m
(2.105)

which is 0{nP 1/2), to complete the proof.

P ro o f  o f P ro p o sitio n  2.2. Consider first the difference

n m 

m = 1 s = l

(2.106)

where dm_i)S (7 ) =  £m- i  (7 ) — x s (7 ) • Because there is a contribution to the mean 
only when s =  m, (2.106) has expectation

(2.107)
771=1

(2.106) has variance Ci +  C2 +  C3, where

n n m q

* - E E E E  [£m< ] fr lB q-,CE [cL-u. (7 ) dq- 1,( (7 )], (2.108)
771=1 g = l  3=1 t = l  

n n m q

=  E  E  E  E  W - M  (7 )] E  (7 )] (2.109)
771=1 g = l  3=1 i = l

and C3 is a fourth cumulant term to be described subsequently. We have

dm-l>a (7 ) — ^ 2 ,771—1 ( P") ^2,3 ( P")
771—1

^  ^(^ m —1—t> d s—v)y>2v “t“ ^   ̂ d rn—i —vU2v 1 ( s  <  m  2) j
77=1 77=3+1

(2 .110)

with a_i =  0.
Considering first Ci, there is a contribution only when q = m, and then

\E [dm-l,s (7 ) dq- l tt (7)]| ~

1/2
<  |  J  f 22 (A) |r5m(A)|2dA J  f 22 (A) |r fm(A)|2dA

V - 7 T  - 7 T

< K (rsrnrtm)1/2, (2.111)
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writing

3 771— 1

rSm W  = -  as- v)e?vX +  ( s  <  m  -  2 ) ,
V — l  U = s + 1

(2.112)
3  771— 1

r Sm = ^ { a - m - i - v  -  c is -v )2 + a ^ ^ y l  (s < m  -  2). (2.113)
v= \ v = s + l

Then (2.111) is bounded by K  {|m  — s — 1| |m — t — l)} 1̂ 2 mmax(°>2̂ -2), on taking 
t = m  — 2 in Lemma 2.D.3 for s < m  — 2, then noting th a t rm_i(Tn =  0, and that

771— 1

r mm = £  (a m -v  -  CLm-1- v ) 2 +  1 =  O(ramax(0|2/3_2)) , on applying Lemma 2.D.3 with
v = \

s = m  — l , t  = m. It follows that

,„ rkil <  K  ^ ra“ W - 2) J \\Bj
771=1 ( j =0 )

=  O (n) 1(1/2 < (3 < 1) +  O (n2/3_1) l(/3 > 1). (2.114)

N ext, note th a t c2 is zero unless m  =  q — s =  t, so C2 =  O (n) =  o (n 2̂ ). F inally , 
the fou rth  cum ulant term , C3 , involves the fo u rth  cum ulant o f em, eq, x m_ i (7 ) — 
x 3 (7 ) ,  x g_ i (7 ) — x t (7 ) ,  which is easily seen to  be zero unless m  =  q =  s =  t, so 
th a t C3 =  O  (n ) also.

It remains to show that

n (  771 "j 7

C' 1 B  W  “  Brn~a \ Xm~l W  =  °p (n>B)• (2.115)
771=1 (  3=1 J

Clearly the left side has mean zero. Its variance is, from arguments similar to those 
above, bounded by

* E
771=1

771—1

3=0

^  71 /  OO \  ^

E x l . ,  (7 ) E ||£m||2 < K  Y ,  E  HB*U j mV_1>
7 7 1 = 1  \ S = 7 7 l  /

(2.116)
because Ex%n {7 ) =  0 (m 2/3_1) from Robinson and Marinucci (2001). Then, (2.116) 
is o (n2'3) from the Toeplitz lemma, to complete the proof.

P ro o f o f P ro p o sitio n  2.3. Note that £'B  ( l / Q -1^  has mean zero and variance 
q(0) /27r; in view of Theorem 1 of Marinucci and Robinson (2000) and Assumption 
2.1, the proof follows by Theorem 2.2 of Kurtz and Protter (1991).

P ro o f  o f P ro p o sitio n  2.4. Omitted, as it is similar to the proof of Proposition 
2.1 but significantly easier, especially in view of the norming n~2/3 rather than n~P.

P ro o f o f P ro p o sitio n  2.5. This is likewise omitted due to its similarity to, and 
simplicity relative to, the proof of Proposition 2.2.
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P ro o f  o f P ro p o sitio n  2.6. Follows straightforwardly from Marinucci and Robin
son (2000), the continuous mapping theorem and Assumption 2.1, and the fact that 
W (r;p)  is almost surely nonzero, from (2.29), (2.30).

P ro o f  o f P ro p o sitio n  2.7. By the mean-value theorem, p(A; 9) — p{A; 9) = (9 —
0)'P{A), where P (A) is the matrix P(A;/i) =  dp(X;h)/dh, with columns evaluated
respectively at 9 ^ \  0̂ 2\  where 9 ^  — 9 < 9 — 9 , z =  1,2. Writing P(A) =
P(A;0),

sup ||P(A) -  P(A)|| <  2 sup sup ||P(A; h) -  P(A)||
A h £N e X

+4 sup sup ||P(A; h)|| 1 (\o — 9 
hee x 'I

> e ) ,  (2.117)

where e > 0 and N e = {h : \\h — 91| < e} . Noting Assumption 2.2 parts (ii) and (iii), 
since continuity in h for all A implies uniform continuity on the compact set [—7r, 7r], 
the first term on the right of (2.117) tends to 0 as e —> 0. The second term is op( 1) 
as n —> oo for e > 0 from Assumption 2.2 (ii) and (iii) and Assumption 2.3 (ii). It 
follows that

£  {P(A3) -  P(A,)} m ^ - A . - K t A , )
3 = 1 J=1

j  (  n  n

= ° p N £ ^ 2(7 )X ;
V L«=i t=1

I N I 5

(2.118)

which is op(n/3+1/2), where we use the Cauchy inequality, (2.95), l l u t l |2 =  O p  ( n )  
and

= Op (n2/3) , (2.119)
t= 1

from Robinson and Marinucci (2001). Thus, noting Assumption 2.3 (ii), it remains 
to  show that

^   ̂^ (A > s(7 )( ^ j)wu{Xj) — Op ,
j=1

(2 .120)

Denote by Pl(A) the partial sum, to L  terms, of the Fourier series of P(A), so

l  11

PL(A) =  £  P  =  P(A),
Z=—L _

ei,xd \. (2 .121)

Prom Assumption 2.2 (ii) and (v), and Zygmund (1977, p.64),

sup ||P(A) -  Pi(A)|| =  O ( ^ )  , (2 .122)

67



as L —► oo. Thus

n

y   ̂{P(Aj) — Pl(Aj)}
j = i (=i

(2.123)
proceeding as in (2.118). W ith L = [n1/2], (2.123) is Op ((logn) n13) = op (n^+1/2) . 

On the other hand, for L < n,

n ^ L

y   ̂ ĵ)wu{ \)  — 2̂  y  v ^
j = l  l = —L

^ 2  x t(y)ut+i 
t v

where

Y "*̂ // »
+  2 ^  ®t(7)wt+/+n+ 2 ^  ZtfrW +l-n 

t(Z) i(Z)

E'= E - E"= E - E"= E .
t ( l)  1 < t , t + l < n  t(l)  1 < t , t + l + n < n  t(l)  1 < t , t + l - n < n

(2.124)

(2.125)

on applying (2.95). Looking first at the second and third terms in (2.124), we note 
that 1 < t , t  + I + n < n  and 1 < t , t  + I — n < n  are equivalent, respectively, to 
1 < t  <  —I, for —L < I <  —1, and 1 +  n  — I <  t <  n, for 1 <  I < L. Then

E
■ ■ /̂/ ■ /̂//
2 ^  z*(7H+i+n+ 2 ^  £ t(7 H +z-n 

i( i)  i(Z)

n —1

< i< T |; |^ K ( /3 ) |  <  K\l\nP, (2.126)
3=0

from Lenrnia 2.D.I. Thus, because Assmnption 2.2 (ii) and (v) implies

oo

E i'i np'ii < “■ (2-127)
l = —oo

(Zygmund, 1977, p.240), the contribution from the final two terms of (2.124) is 
Op (nf3) • Finally

E  X tfrK +i =  Or , (2.128)
m

uniformly in I, from Lemmas 2.C.1 and 2.C.2, which, with (2.127) and Assumption 
2.3 (ii), completes the proof of (2.120).

P ro o f  o f P ro p o sitio n  2.8. Follows similarly to, but more easily than, the proof 
of Proposition 2.7.

P ro o f of P ro p o sitio n  2.9. The left side of (2.89) is

n

y  {^*(7) (~^j)  ~  wx(j) (~^ j)}  { ^ ( 7,?) (A?) — (2.129)
j = 1
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n

+ Y 1 P (A?) (_A >) { “ -a ? )  “  Wu
j=i

n

-f ^  ^ P (Aj) {^1(7) ( Aj) u x̂(7) ( A j)} wu (A j). 
j = 1

(2.130)

(2.131)

Consider first (2.131)). Noting Assumption 2.2 (ii) and (iv) and proceeding as 
in the proof of Proposition 2.7, define

l 7r
Pl (X) =  We"*ZA> Pl = ^  J P (X) eilXdA> (2.132)

1——L

where

Thus

sup
A

l |p (A ) -P i (A ) | |  =  o ( ^ ) ,  £ ) m i f t | | < o o .  (2-133)
i= —00

^  v {p (Aj) P l (Aj)} {^*(7) ( Aj) ^ ( 7) ( A j)} wu (Aj)
j=i

is bounded in norm by

(2.134)

^ { E W 7 ) - - ( 7 ) } 2E i k i i 2} 2 , (2.135)

using the Cauchy inequality and (2.95) again. Now choosing L  =  [n1/2] and taking 
c = 8 — 7  =  /3, c = 6 — 7  in Lemma 2.C.5, (2.135) is Op ((logn )2 inP~K) =  op (n ^ ) . 

On the other hand, for L  <  n,

n  1 L
(Aj) { ^ ( 7 )  (~A j) — u;x(7) (—A j)} wu (Aj) =  —

j = l  /= - £ ,
Pi {^(7 ) “ ®t(7)}w*+i

m

E // ■ /̂//
{^i(7) -  ^ (7 )}  ^t+/+n+ 2 ^  {^t(7) “  ^ (7 )}  Wt+Z-n

*(0 *(0 
As in the proof of Lemma 2.C.5, we can write, for any R >  2,

a*(7 ) -  S i(7 ) =  « 2t(7 -  <5) -  « 2l ( - / 3)

(2.136)

i ? - l

-  E
(7 ~  7 ) ’

r = l
r! 9{r) (U2tm,0)  + (7  -  y ) R

R\ g(R) {u2t\ 8 -  7 ),

where, for a vector or scalar sequence cpt , and real b >  0 ,

t- 1

(2.137)

(2.138)
5=1
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with a ^ \b )  = (dT/dbr)ag(b) and |7  — 7 | <  |7  — 7 | . Applying (2.159) of Lemma 2.C.4 
with r = R, c = (3,c = 6 — 7 , and Assumption 2.3 (i), indicates that the final term 
in (2.137) is uniformly Op (n~/*K£/J+€) , for any e > 0. Thus, the contribution of this 
term to (2.136) is, by the Cauchy inequality and (2.133), Op (n^+€+1_'R/c) , which is 
op (n/3) on choosing R  large enough.

Next, as in (2.126), we have

E T J P(r) ( « 2t; P)  U t + l + n +  y  g {r) (l*2t; P) U t + l - n  

m  m
< A |Z | ( l o g n ) V ,  (2.139)

applying again Lemma 2 .D.1 , so on taking account of the (7  — j ) r factors and invok
ing Assumption 2.3 (i) and (2.133), the contribution of the sums Ylt(i) and 
(2.136) is Op ((log n)rnP~K) +op (n^) =  op (n^) . It remains to consider the quantities

(7 ~  l T  y  Pl ^  (U2t> A  Ut+h ^ < r < R - l -
1——L t(l)

(2.140)

Prom (2.147) of Lemma 2.C.1 and (2.153) of Lemma 2.C.2 the sum over £«(/) is 
Op ((log n)r nmax(/3,i)) ? and thus, using (2.133) and Assumption 2.3 (i), (2.140) is 
Op (nmax(/3,1)- 't logn) for k > max(0 , 1 — /?), that is, op (n^) . This completes the 
proof tha t (2.131) is op (pP} .

We next consider (2.130), and again wish to replace p(A) by p/,(A). First

j = 1

is bounded by

n

^  v { P  i ^ j )  ~  P l  ( ^ j ) }  w x( y)  i ~ ^ j )  ^ ^ ( 7 , ? )  ( A j )  —  w u  ( ^ j ) ^ (2.141)

K lo g L  f  ( \2 V^II c\ 2 

1 1= 1 t=1
(2.142)

Noting tha t vt(y, 6) =  (7  — 7 ) , u2t(S — 6)^ the second factor in braces is

S L i  | =  ° p (n l~2K) ’ (2.143)

from Lemma 2.C.5, so that, choosing L = [n1/2], and using (2.119), (2.141) is 
Op ((log n) =  op ( n ^ ) .

Next, proceeding as above, for R  > 2,
n

] T p t  (A j)  w x h )  ( - A j )  (A j)  -  w „  ( A j ) }

3 =1

=  h  "E  Pl £  (  ( 7  0 7 )  (6  - V  )  £ ’ Xti- ^ r) ( « 1+i; 0 ) +  0P {nP) ,
l = - L  r = l  '  \  ) /  ^

(2.144)
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and the leading term is op (n/3) from (2.148) of Lemma 2.C.1 and (2.154) of Lemma 
2.C.2, (2.133) and Assumption 2.3 (i).

We are left with (2.129). It is clear from its structure, which involves both the 
differences appearing in (2.130) and (2.131), that application of similar arguments 
to those above will show it is op (tj/3) , so we omit the details.

P ro o f o f P ro p o sitio n  2.10. The left side of (2.90) has norm bounded by

K  sup
A

- l

j=1 j= 1

+  s ^   ̂ 1 ^ (7 ) (^ 3 ) Wx(rr) ( \ ‘)| 5  > 11 “̂ (^ j
13=1  3= 1 I

(2.145)

and this is clearly Op (nP K+£) for any e >  0, from earlier arguments.

P ro o f  o f P ro p o sitio n  2.11. Omitted, being similar to but easier than the proof 
of Proposition 2.9.

P ro o f  o f P ro p o sitio n  2.12. Omitted, in view of the remarks about the proofs of 
Propositions 2.10 and 2.11.

2.7.3 Appendix 2.C: Technical lemmas 
Lem m a 2 .C .I. Uniformly in I G [—L,L], L  < n ,

E   ̂ E  x t(y)ut+i
. <(o

e  4 E  9ir)(u2t',P)uHi
„ *(Q

E 1^2 Xt(y'l9(r)(ut+,;Q)
m

> =  O ( n ™ * 11) ,

=  0 (( lo g n )rnm“ (A1)) ,

► =  O ((logn)rn "“ <A1))

(2.146)

(2.147)

(2.148)

P roof. The proofs are very similar, and in fact are possible under milder conditions 
following techniques of Robinson and Marinucci (2001), and we just discuss the proof 
of (2.148), which is slightly the most complicated. Writing =  E  {u2t,ut+s) , the 
left side is

t- 1 t+1-1

E ' E ^ ) E  aM (0)rs+,_„ (2.149)
t ( l)  s = 1 q = r

which has norm bounded by

E E  R r)(°)| E  llr -H =  C ((logn)’'n)
<=1 q—r

(2.150)
S=1
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for (3 <  1, uniformly in I, and by

n 0 1 £ £  K r > ( ° ) l  £ ]  n r * n =0 ( ( i o g ” ) r n ' 3 )
t = l  q = r  5=1

for (3 > 1, by Lemma 2.D.4 and Assumption 2.2, to complete the proof. 
L em m a 2.C .2. Uniformly in I G [—L,L], L < n,

(2.151)

Var  £  x t( i )ut+i
t ( i )

Var  < 9<r)(u2t;/3)«t+i
i(0

. =  O ((logn)2rnw ) ,

(2.152)

(2.153)

► =  O (nW+”) , (2.154)Var  £ '  xt (7)^(r)(ui+i;0)
I

for any 7] > 0.
P roof. The results follow from minor modifications of the proof of Theorem 5.1 of
Robinson and Marinucci (2001). There are only two differences. The first is that the
sums in the latter reference are over t G [1, n], whereas the lemma requires uniformity 
in I for sums over t(l). But because the t(l) are just a subset of [l,n], this follows 
easily. The second difference is that in (2.153) and (2.154) (though not in (2.152)), 
the weights and a ^  (0) that are involved are not covered by the weights of
Robinson and Marinucci (2001), due to the presence of log factors. But allowance 
for such log factors is readily made, and they contribute the (logn)2r and nv factors 
in (2.153) and (2.154). We observe that the regularity conditions of Robinson and 
Marinucci (2001) are noticeably weaker than those on ut in the present chapter.
L em m a 2.C .3. For i = 1,2, and uniformly in r > 1 and t >  2,

£{<7<r>(u«;0)2} =  O(l) ,  (2.155)

and for c > 1/2
E  {gir){uiuc)2} = 0((log£)2r£2c-1). (2.156)

P roof. For any c >  0,
t- i  t-i

E { g V ( u it;c)2} =  ^ y > M ( c ) a < r>(c) f  f ^ ^ d X
S=1 U=1 _

7T

= j t - 1

y > « ( c ) e " A d \  < K
5=1

7T

I t - 1
, i s \

a=l
t - 1

< K ^ a ^ i c ) 2.

d \

(2.157)
S = 1
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From Lemmas 2.D.1 and 2.D.4, this is bounded by the right sides of (2.155) and 
(2.156), for c =  0 and c > 1/2 respectively.

L em m a 2.C .4. For i = 1,2, k, > 0, uniformly i n t  E [l,n], r  >  1,

g(r){uit',c) =  Op(£5),

i f c  = Op(n~K), and
s M(«i1;S) =  Op(tc+e), 

for any e > 0, i f c  =  c +  Op(n~K), c >  1/2.

P ro o f. By the Cauchy inequality, for any c >  0,

| s ( r ) ( « i t ; c ) |  <  { ^ a i r ) ( c ) 2X ^ “ ^ }  •
I  3=1 3=1 J

From Lemma 2.D.5, for e > 0,

jr> M (c!)2 =
3=0

where c =  0 or c > 1/2. Thus, with \ uis =  Op ft) » ^he bounds (2.158) and 
(2.159) follow.

L em m a 2.C .5. For 2 =  1,2, if  c =  c +  Op (n ~K), k > 0, uniformly i n t  G [1, n], as 
n —> oo

^ it(-c ) -  uit = Op (n ~K) , c =  0, (2.162)

Uit(—c) -  uit ( -c )  =  Op (n~Ktc~% log t'j , c > i .  (2.163)

t- i
{l°g(5 +  l)} 2r (s +  l ) 2(c+e-1) (2.161)

3=0

(2.158)

(2.159)

(2.160)

P ro o f. We have, for c > 0,
t-1

Ujt( c) U^( c) =  ^   ̂{<2s(c) Us(c)} 72j t_3, (2.164)
8 = 1

with un(0) =  uit. By Taylor’s theorem, for any R  > 2,

a , ( c ) - a s(c) =  ^  a<r) (c) ^  ^  +  a<fi)(c) - ,  (2.165)
r = l

where |c — c| < |ĉ — c | , so we can write (2.164) as

c) +  ^  9m (uif,c). (2.166)
r = l

Taking c =  0, (2.155) and (2.158) indicate that (2.166) is Op (n ~K) +  Op (n~RKt lf2} , 
whence (2.162) is proved by choosing R  large enough and observing that t < n. In the
same way, (2.163) is proved because (2.166) is Op (n~Ktc~1/2 log t) +  Op (n~RKtc+v)
for 77 > 0, due to (2.156) and (2.159).
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2.7.4 Appendix 2.D: Lemmas concerning the as weights 
L em m a 2 .D .I . For c 6  [co,Co], Co >  0, Co < oo, 5 >  0,

K ( c ) |  <  K 0 {l + s)c- \  (2.167)
\a8 (c) -  as+1 (c)| <  ifo( l  +  s r 2 , (2.168)

K r) (c) | <  K or (log (1 +  s))r (1 +  s)c-1 , 1 <  r <  R, (2.169)

where K q < oo depends only on Co and Co and K or <  oo depends only on cq, Cq
and R.

P ro o f. First, (2.167) is familiar from Stirling’s approximation, or derivable by 
induction, while (2.168) follows easily from the identity

as+1 (c) =  {(s +  c) /  (s +  1)} as (c) . (2.170)

To prove (2.169), introduce the digamma function and its derivatives

« (* )  =  £ l o g r (* ) l ^ (r) (a?) =  > (2.171)

which exist for r > 1 and x  > 0. We deduce from the chain rule that

r—1
air) (c) =  ^ 2  n  (s +  c) -  ^ (i) (c)} (c), (2.172)

z=0

with the convention that (•) =  (•), (•) =  a (•), and for finite constants r»,
0 <  z <  r  — 1. Now from Gradshteyn and Ryzhik (1994, p.95), for x  >  0

OO _  .

(i +  iK x  +  i ) - ^ ’ {2-173)

where 77 is Euler’s constant. Thus for a; >  0

[ac] 00

IV’WI <  jZ (*  +  i ) _1 +  k - i |  ^ 2  i ~2 + ri
z=0 z=[x]+ l

<  log (a; +  1) +  1 +77 < K \o g {x  +  1),  (2.174)

where K  is independent of x. Also, for I > 1,

00

V>(,) (at) =  ( - 1),+1 1! £  (x + i f ' - 1 , (2.175)
1=0

so that ^

1^° {x)\ < n i x - ' - 1 + ^ ~ ) <  K or (1 + 1 ) - ' ,  (2.176)

1 <  I < r < R, for x  > Co- The proof is completed by applying (2.172) recursively,
(2.176), and noting that |log (s +  c +  1)| <  K 0log (s +  1).
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L em m a 2 .D .2 . Uniformly in s , t  G [ l ,n ] , for  c >  1/2

min(s,t)

a,_v (c) at_„ (c) =  O (n2c_1) . (2.177)
1 1 = 1

P ro o f. From (2.167), the left side of (2.177) is bounded in absolute value by
n

K  ^  uc_1 (u +  |s — t|)c_1. (2.178)
U = 1

Since

(v +  \s — t |)c-1 <  vc~l for c < 1, (2.179)
< K n c~x for c > 1, (2.180)

(2.177) readily follows.

L em m a 2.D .3. For 1 < s < t — 1, c >  1/2,

Y  {at-v{c) -  aa_v(c)}2 +  Y  at-v(c) < K ( t -  s)tm&x(-°>2c~2\  (2.181)
W = 1  v=3+l

P ro o f. Writing as =  a3 (c) , for 1 < v < s, at- v — as_v =  0, c =  1, while for c ^  1 
we have from (2.168)

t t

\at- v — a5_u| <  Y ,  \ar-v ~  Or-i-w| <  (r — u)c_2. (2.182)
r=a+l r=s+l

Now (2.182) is bounded on the one hand by K  (s +  1 — ,u)c_1 l(c  < 1) +  K tc~l l(c >
1), and on the other by K  (t — s) {(s +  1 — v)c~2 1 (c <  2) +  £C_21 (c > 2)} . It follows
that (2.182) is also bounded by

1 3  1
K { t - s ) *  (s +  l - u ) c_2 , -  <  C< 1 ,  (2.183)

K  (t -  s ) U ^  (s + I -  v)%~1, 1 < c <  2, (2.184)

K ( t - s ) * t c~%, c >  2. (2.185)

Thus {at_v(c) -  as_v(c)}2 is bounded by

s i
K ( t - s ) Y ( s + 1 - v)2c~3 < K ( t - s ) , - < c < l ,  (2.186)

u=i
3

K ( t - s ) t c- 1Y , ( s  + l ~ v ) c- 2 < K ( t - s ) 1 ^ c- l\  1 <  c < 2,
H=1

(2.187)
K  (t — s) t2c~3s < K ( t - s ) t 2(c_1), c >  2, (2.188)
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that is by K  (t — s) tmax(°-2c 2\  c >  1/2. On the other hand, for all c > 1/2

Y , c $ _ v < K ( t - s ) 2c- 1 , (2.189)
u—s+1

whence the result immediately follows.

L em m a 2.D .4. For r > 1,
a<r> (0) =  0, s < r  (2.190)

and

s ^ r’ (2-i9 i)
where K r < oo depends only on r.

P roof. On taking logs in (1.8) and differentiating with respect to a  we have
OO

-  log (1 -  z) (1 -  z)~a = (a) Zs. (2.192)
3=0

Evaluating this expression at a = 0 gives (0) =  0 and (0) =  s” 1, s > 1. 
This proves the lemma for r  =  1. For r  >  1 we differentiate (2.192) r  — 1 times and 
evaluate at a  = 0 to get

{ -  log (1 -  z ) Y  =  ] T  oM (0) 2s. (2.193)
3=0

Clearly a^  (0) =  0, s < r. Also, we have the recursion
oo oo

5 Z  a«r) (°) “  loS (! -  z ) a r̂_1) r - 2' (2.194)
3=0 3=0

It follows that

ap  (0 ) =  |° )  +  ^  _  (°) +  ... +  afr-i) (0) ,  s >  r  > 1. (2.195)

If (2.191) is true with r replaced by r — 1 we have

M - ' m i  < (i o g ( . + D r ’ + j j r - j + . . .  +

<  2K r^  {log (s +  l)} r- 2 l0g (s <  Kr (1° g (s +  1, (2.196)
s — r  +  1 s - r  +  1 v

for K r > 2Kr-\ .  The proof thus follows by induction.

Lem m a 2.D .5. Let c = c + Op (n~K) , k > 0 such that 0 <  c < K  and |c| <  K  for  
some K  < oo, and suppose c satisfies \c — c\ <  |cT— c | . Then uniformly in s G [0, n) 
as n —► oo, and for any e > 0,

a ?  (c) = Op ((log (s + 1))' (s +  l ) - * - 1) , (2.197)

76



as n —► oo.

P ro o f. From Lemma 2.D.1 and Lemma 2.D.4 we have, for any e > 0 

|air) (c)| < | (c)| 1 (|c - c| < e) + |a<r) (c)| 1 (|c - c| > e)
/  iM

<  (log ( ,  +  l))r ( (S +  l ) ^ - 1 +  (a +  l ) * - 1

< iC (log (s +  l))r ((s +  l ) ^ _1 +  (s + I)*- 1 (2.198)

for any M  >  1. We may choose M  >  ( if  — c — e) / k  which, with s < n, completes 
the proof.
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TABLE 2.3
MONTE CARLO BIAS OF Vi,VF,Vo  FOR p =  0, fa =  fa =  0, i =  1,2

r 7 5 vi
n =  64

U p vo vi
n =  128 

Up VO vi
n = 256

Up Vo
0 .6 -.006 -.003 -.007 -.002 -.002 -.003 1 O O -.001 .000
0 1.2 -.002 -.001 -.002 -.001 -.001 -.001 .000 .000 .000

.5 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.004 -.003 -.009 -.001 -.002 -.005 -.001 -.001 -.002
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.004 -.002 -.005 -.001 -.002 -.002 .000 -.001 .000
0 1.2 -.001 -.001 -.001 .000 .000 .000 .000 .000 .000

1 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.002 -.007 -.001 -.001 -.003 .000 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.003 -.001 -.004 -.001 -.001 -.001 .000 .000 .000
0 1.2 -.001 -.001 -.001 .000 .000 .000 .000 .000 .000

2 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.002 -.001 -.005 -.001 -.001 -.002 .000 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000

TABLE 2.4
MONTE CARLO BIAS OF v u v f ,Vq FOR p =  0.5, & =  ^  =  0, i = 1,2

T 7 6 vi
n = 64

Vp vo vi
7i =  128 

Up vo VI
n = 256

Up Vo
0 .6 .002 -.056 .269 .004 -.019 .223 .002 -.013 .185
0 1.2 .001 -.002 .010 .000 -.001 .003 .000 .000 .001

.5 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .002 -.013 .052 .002 -.003 .030 .001 -.002 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .001 -.040 .194 .003 -.014 .160 .001 -.010 .133
0 1.2 .001 -.002 .007 .000 -.001 .002 .000 .000 .001

1 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .001 -.009 .038 .001 -.002 .022 .001 -.001 .012
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 .001 -.029 .137 .002 -.009 .113 .001 -.007 .094
0 1.2 .000 -.001 .005 .000 .000 .002 .000 .000 .000

2 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .001 -.007 .027 .001 -.002 .015 .000 1 o

 
o

 
►—» .008

.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
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TABLE 2.5
MONTE CARLO BIAS OF VItVF,V0 FOR p =  -0 .5 , ^  =  0, i =  1,2

r 7 5 i'/
n = 64 

Vf vo VI
n = 128 

Up vo vi
n = 256

Up vo
0 .6 .000 .052 -.265 -.002 .020 -.218 -.002 .013 -.184
0 1.2 .000 .002 -.010 .000 .001 -.003 .000 .000 -.001

.5 0 2 .000 .000 .001 .000 .000 .000 .000 .000 .000
.4 1.2 .000 .010 -.053 1 O o H-

1 .004 -.029 -.001 .001 -.016
.4 2 .000 .001 -.001 .000 .000 .000 .000 .000 .000
0 .6 .000 .038 -.191 -.001 .014 -.157 -.001 .009 -.132
0 1.2 .000 .001 -.007 .000 .000 -.002 .000 .000 -.001

1 0 2 .000 .000 .001 .000 .000 .000 .000 .000 .000
.4 1.2 .000 .007 -.038 -.001 .003 -.021 .000 .001 -.011
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 .000 .026 -.135 -.001 .010 -.111 -.001 .007 -.094
0 1.2 .000 .001 -.005 .000 .000 -.002 .000 .000 .000

2 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .000 .005 -.027 -.001 .002 -.015 .000 .001 -.008
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000

TABLE 2.6
MONTE CARLO BIAS OF Vi ,V f ,V q FOR p  =  0.75, fa = ^  =  0, i = 1,2

r 7 6 vi
n  =  64

Up vo v i
n  =  128

Up vo v i
n  =  256 

Vf vo
0 .6 .002 -.166 .406 .003 -.062 .331 .001 -.044 .275
0 1.2 .001 -.003 .015 .000 -.001 .005 .000 .000 .001

.5 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .002 -.014 .078 .001 -.003 .044 .000 -.001 .024
.4 2 .000 -.001 .001 .000 .000 .000 .000 .000 .000
0 .6 .002 -.119 .293 .002 -.045 .238 .001 -.033 .198
0 1.2 .001 -.002 .011 .000 .000 .004 .000 .000 .001

1 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .001 -.010 .056 .001 -.002 .031 .000 -.001 .017
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .001 -.085 .207 .001 -.031 .169 .001 -.023 .140
0 1.2 .000 -.002 .008 .000 .000 .003 .000 .000 .001

2 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .001 -.007 .040 .001 -.001 .022 .000 -.001 .012
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
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TABLE 2.7
MONTE CARLO BIAS OF T'i ,T'f , vq FOR r  =  1, (j>i =  .5, ifij =  0, i =  1,2

p 7 5 VI
n  =  64

Up I'o v i
n = 128

Up vo vi
n = 256

Up vo
0 .6 -.005 -.006 -.006 -.001 -.003 -.002 .000 -.001 .000
0 1.2 -.001 -.001 -.001 .000 -.001 .000 .000 .000 .000

0 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.004 -.003 -.007 -.001 -.002 -.003 .000 -.001 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 .052 .064 .121 .036 .044 .097 .023 .029 .078
0 1.2 .000 -.002 .003 .000 -.001 .001 .000 .000 .000

.5 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .006 .004 .033 .003 .001 .020 .001 .000 .011
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 -.049 -.061 -.119 -.034 -.042 -.095 -.024 -.029 -.078
0 1.2 .000 .002 -.003 .000 .001 -.001 .000 .001 .000

-.5 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.006 -.004 -.034 -.003 -.001 -.019 -.001 .001 -.011
.4 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
0 .6 .078 .097 .183 .051 .063 .144 .034 .042 .116
0 1.2 .000 -.002 .005 .000 -.001 .001 .000 .000 .000

.75 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .010 .007 .049 .004 .002 .029 .001 .000 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000

TABLE 2.8
MONTE CARLO BIAS OF z7?, 17° FOR r  =  1, & =  .5, fa =  0 ,2  =  1,2

n 64 64 128 128 256 256
P 7 6 Up *°r V°p V°F

0 .6 -.005 -.018 -.002 -.003 .000 -.001
0 1.2 -.001 .000 .000 -.001 .000 .000

0 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.004 -.072 -.001 -.001 .000 -.001
.4 2 .000 -.004 .000 .000 .000 .000
0 .6 .031 .040 .021 .039 .014 .024
0 1.2 .000 .000 .000 -.001 .000 .000

.5 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .003 -.114 .002 .004 .001 .000
.4 2 .000 .007 .000 .000 .000 .000
0 .6 -.031 -.099 -.020 -.037 -.014 -.024
0 1.2 -.001 -.001 .000 .001 .000 .001

-.5 0 2 .000 .001 .000 .000 .000 .000
.4 1.2 -.004 -.013 -.002 -.002 -.001 .000
.4 2 .000 -.002 .000 .000 .000 .000
0 .6 .047 .082 .030 -.989 .020 .035
0 1.2 .001 -.003 .000 -.001 .000 .000

.75 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .006 -.046 .003 .019 .001 .001
.4 2 .000 .018 .000 .000 .000 .000
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TABLE 2.9
MONTE CARLO BIAS OF Vi,VF^ o  FOR r  =  1, =  .9, ipj =  0, i =  1,2

p 7 5 vi
n =  64

Up vo v i
n = 128 

V p vo vi
n = 256

Up vo
0 .6 -.006 -.008 -.009 -.001 -.003 -.004 .001 .000 -.001
0 1.2 -.001 .000 -.001 .000 .000 -.001 .000 .000 .000

0 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.004 -.006 -.008 -.001 -.002 -.004 .000 -.001 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 .029 .092 .073 .019 .079 .056 .012 .068 .042
0 1.2 .001 -.001 .003 .000 -.001 .001 .000 -.001 .000

.5 0 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .005 .014 .031 .001 .010 .018 .001 .007 .010
.4 2 .000 .000 .001 .000 .000 .000 .000 .000 .000
0 .6 -.027 -.097 -.075 -.018 -.078 -.054 -.011 -.066 -.041
0 1.2 -.001 .001 -.004 .000 .001 -.001 .000 .002 .000

-.5 0 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.005 -.019 -.033 -.002 -.008 -.019 .000 -.006 -.010
.4 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
0 .6 .042 .144 .111 .028 .117 .081 .018 .097 .061
0 1.2 .000 -.002 .006 .000 -.001 .002 .000 -.001 .000

.75 0 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .007 .020 .046 .003 .013 .026 .001 .010 .015
.4 2 .000 -.001 .001 .000 -.001 .000 .000 .000 .000

TABLE 2.10
MONTE CARLO BIAS OF z7°, 17° FOR t =  1, =  .9, ^  =  0, 2 =  1,2

n 64 64 128 128 256 256
p 7 6 V°F v°f V°F

0 .6 -.010 -3.97 -.003 -.001 1 o o t—I -.001
0 1.2 -.001 .051 -.001 .000 .000 .000

0 0 2 .000 -.006 .000 .000 .000 .000
.4 1.2 .011 .438 -.002 .360 i O o t—1 -.001
.4 2 .000 .210 .000 -.015 .000 .000
0 .6 .011 -.136 .008 .051 .005 .059
0 1.2 .001 -.510 .000 .001 .000 -.002

.5 0 2 .000 .008 .000 .001 .000 .000
.4 1.2 -.007 -.310 .000 .427 .000 .012
.4 2 .002 8.50 .000 -.002 .000 .000
0 .6 -.016 1.37 -.008 .007 -.005 -.056
0 1.2 -.001 -1.28 .000 -.011 .000 .002

-.5 0 2 .000 -.016 .000 .000 .000 .000
.4 1.2 -.004 -6.86 -.001 -.030 .000 -.012
.4 2 .000 -.240 .000 -.018 .000 .000
0 .6 .025 1.06 .017 .134 .010 .082
0 1.2 .002 .389 .000 .004 .000 -.001

.75 0 2 .000 .004 .000 .000 .000 .000
.4 1.2 .007 10.5 .002 -.286 .001 .018
.4 2 .000 1.25 .000 .027 .000 .000
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TABLE 2.11
MONTE CARLO BIAS OF Vu Vf ,Vq FOR r  =  1, =  0, ^  =  .5,2 =  1,2

p 7 6 vi
n =  64

Up vo vi
n = 128 

Vp vo v i
n  =  256 

Vp vo
0 .6 -.005 -.005 -.005 -.001 -.002 -.002 .000 .000 .000
0 1.2 -.001 -.001 -.001 .000 -.001 .000 .000 .000 .000

0 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.004 -.004 -.007 -.001 -.002 -.003 .000

ooi" -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 .065 .076 .147 .044 .052 .121 .030 .034 .099
0 1.2 .001 -.002 .004 .000 -.001 .001 .000 .000 .000

.5 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .009 .003 .035 .004 .001 .021 .001 .000 .011
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.062 -.073 -.145 -.042 -.049 -.118 -.030 -.034 -.099
0 1.2 -.001 .001 -.004 .000 .000 -.001 .000 .000 .000

-.5 0 2 .000 .000 .001 .000 .000 .000 .000 .000 .000
.4 1.2 -.008 -.005 -.036 -.003 -.001 -.020 -.001 .000 -.011
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 .097 .114 .223 .064 .075 .179 .043 .050 .147
0 1.2 .001 -.002 .007 .000 .000 .002 .000 .000 .000

.75 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .012 .006 .052 .005 .002 .030 .002 .001 .017
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000

TABLE 2.12
MONTE CARLO BIAS OF V°n V°F FOR r  =  1, & =  0, ipj =  .5, i  = 1,2

n 64 64 128 128 256 256
P 7 6 TPv F V°F V p

0 .6 -.004 -.006 -.001 -.002 .000 .000
0 1.2 -.001 -.001 .000 .000 .000 .000

0 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.004 -.001 -.002 .000 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 .049 .059 .034 .040 .022 .025
0 1.2 .001 -.002 .000 -.001 .000 .000

.5 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .006 .001 .003 .000 .001 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 -.047 -.057 -.032 -.038 -.022 -.025
0 1.2 -.001 .002 .000 .000 .000 .000

-.5 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.006 -.002 -.003 .000 -.001 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 .073 .087 .048 .056 .032 .035
0 1.2 .001 -.002 .000 .000 .000 .000

.75 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .009 .003 .004 .001 .001 .000
.4 2 .000 -.001 .000 .000 .000 .000
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TABLE 2.13
MONTE CARLO BIAS OF V^V f .Vq FOR r =  1, fa =  0, ipj =  .9, i =  1,2

p 7 6 VI
n =  64

u p vo vi
n =  128

Up vo vi
n = 256

Up vo
0 .6 -.004 -.004 -.005 -.001 -.002 -.002 .000 .000 .000
0 1.2 -.001 -.001 -.001 .000 .000 .000 .000 .000 .000

0 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.003 -.007 -.001 -.002 -.003 .000 1 o o -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 .068 .085 .140 .045 .058 .115 .029 .038 .094
0 1.2 .002 -.011 .004 .000 -.001 .001 .000 .000 .000

.5 0 2 .000 .001 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .012 .000 .035 .005 .004 .021 .002 .000 .011
.4 2 .000 .007 .000 .000 .000 .000 .000 .000 .000
0 .6 -.065 -.081 -.139 -.043 -.056 -.113 -.029 -.038 -.094
0 1.2 -.001 .001 -.004 .000 .000 -.001 .000 .000 .000

-.5 0 2 .000 .000 .001 .000 .000 .000 .000 .000 .000
.4 1.2 -.010 .001 -.036 -.004 -.006 -.020 -.001 -.001 -.011
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 .102 .129 .212 .066 .085 .170 .042 .056 .140
0 1.2 .002 -.001 .006 .000 -.001 .002 .000 .000 .000

.75 0 2 .000 .000 1 O o .000 .000 .000 .000 .000 .000
.4 1.2 .017 .012 .051 .006 .004 .030 .002 .001 .016
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000

TABLE 2.14
MONTE CARLO BIAS OF IT?, 17° FOR r  =  1, fa  =  0, ^  =  .9, i  =  1,2

n 64 64 128 128 256 256
P 7 6 7>i V p v °f V°F

0 .6 -.004 -.006 -.001 -.002 .000 -.001
0 1.2 -.001 -.001 .000 .000 .000 .000

0 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.004 -.001 -.001 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000
0 .6 .046 .059 .032 .041 .021 .026
0 1.2 .001 -.001 .000 -.001 .000 .000

.5 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .006 .003 .003 .001 .001 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 -.044 -.058 -.029 -.038 -.021 -.027
0 1.2 -.001 .001 .000 .000 .000 .000

-.5 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.006 -.004 -.003 -.001 -.001 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 .069 .089 .045 .058 .030 .037
0 1.2 .001 -.002 .000 .000 .000 .000

.75 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .009 .005 .004 .002 .001 .001
.4 2 .000 -.001 .000 .000 .000 .000
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TABLE 2.15
MONTE CARLO BIAS OF Vu Vf ,Vq FOR r  =  1, fa =  .4, ^  =  .2, i =  1,2

p 7 5 v i
n =  64 

V F vo vj
n  = 128

Up vo vi
n  = 256 

vp vo
0 .6 -.005 -.006 -.006 -.001 -.004 -.002 .000 -.001 .000
0 1.2 -.001 -.001 -.001 .000 -.001 .000 .000 .000 .000

0 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.004 -.003 -.007 -.001 -.002 -.003 .000 -.001 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 .056 .057 .123 .038 .039 .100 .025 .027 .081
0 1.2 .001 -.003 .003 .000 -.002 .001 .000 -.001 .000

.5 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .001 .002 .033 .003 -.001 .020 .001 -.003 .011
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.054 -.056 -.122 -.036 -.037 -.098 -.025 -.027 -.081
0 1.2 -.001 .003 -.003 .000 .002 -.001 .000 .001 .000

-.5 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.008 -.002 -.034 -.003 .002 -.020 -.001 .002 -.011
.4 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
0 .6 .083 .083 .187 .054 .055 .148 .036 .039 .119
0 1.2 .001 -.004 .005 .000 -.002 .001 .000 -.001 .000

.75 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .011 .004 .049 .005 .000 .029 .002 -.002 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000

TABLE 2.16
MONTE CARLO BIAS OF P?,I7° FOR r  =  1, =  .4, ^  =  .2, i =  1,2

n 64 64 128 128 256 256
p 7 6 V°F *°i Vp *°i V°F

0 .6 -.005 -.007 -.002 -.004 .000 -.001
0 1.2 -.001 -.001 .000 .000 .000 .000

0 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.004 -.061 -.001 -.011 .000 -.001
.4 2 .000 .005 .000 .014 .000 .000
0 .6 .034 .058 .023 .039 .015 .024
0 1.2 .000 -.003 .000 -.002 .000 -.001

.5 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .004 -.400 .002 -2.60 .001 -.001
.4 2 .000 .021 .000 -.001 .000 .000
0 .6 -.034 -.052 -.022 -.035 -.015 -.024
0 1.2 -.001 .003 .000 .002 .000 .001

-.5 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.005 -.250 -.002 -.052 -.001 .001
.4 2 .000 .000 .000 -.002 .000 .000
0 .6 .051 .077 .032 .055 .021 .035
0 1.2 .001 -.004 .000 -.003 .000 -.001

.75 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .007 1.64 .003 -.027 .001 -.002
.4 2 .000 .024 .000 .012 .000 .000
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TABLE 2.17
MONTE CARLO S.D. OF e/ j , vp,  v p  FOR p =  0, fa =  ^  =  0, i =  1,2

T 7 6
n  =  64

Up vo v i
n = 128 

VF vo vi
n  = 256

Up vo
0 .6 .164 .221 .120 .092 .098 .073 .057 .058 .046
0 1.2 .035 .037 .035 .015 .015 .014 .006 .006 .006

.5 0 2 .004 .004 .004 .001 .001 .001 .000 .000 .000
.4 1.2 .096 .103 .110 .050 .052 .064 .027 .028 .035
.4 2 .012 .013 .015 .004 .004 .005 .001 .001 .002
0 .6 .117 .158 .086 .066 .070 .052 .041 .041 .033
0 1.2 .025 .026 .025 .010 .0 1 1 .010 .004 .004 .004

1 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .069 .074 .078 .035 .037 .046 .020 .020 .025
.4 2 .009 .010 .010 .003 .003 .003 .001 .001 .001
0 .6 .083 .113 .061 .047 .050 .037 .029 .030 .023
0 1.2 .018 .019 .018 .007 .008 .007 .003 .003 .003

2 0 2 .002 .002 .002 .001 .001 .001 .000 .000 .000
.4 1.2 .049 .053 .060 .025 .027 .033 .014 .014 .018
.4 2 .006 .006 .007 .002 .002 .002 .001 .001 .001

TABLE 2.18
MONTE CARLO S.D. OF V u v F,vo  FOR p =  0.5, fa = A  =  0, i = 1,2

T 7 6 vi
n =  64

Up vo v i
n  =  128

Up vo vi
n =  256

Up vo
0 .6 .142 .345 .140 .081 .119 .105 .048 .064 .079
0 1.2 .030 .033 .031 .012 .013 .013 .005 .005 .005

.5 0 2 .004 .004 .004 .001 .001 .001 .000 .000 .000
.4 1.2 .083 .110 .094 .043 .050 .056 .023 .026 .031
.4 2 . 0 1 1 .0 1 1 .013 .003 .003 .004 .001 .001 .001
0 .6 .101 .247 .100 .058 .085 .075 .034 .046 .057
0 1.2 .021 .024 .022 .009 .009 .009 .004 .004 .004

1 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .059 .079 .067 .031 .036 .040 .016 .018 .022
.4 2 .008 .008 .009 .002 .002 .003 .001 .001 .001
0 .6 .072 .176 .071 .041 .061 .053 .025 .033 .040
0 1.2 .015 .017 .016 .006 .007 .006 .003 .003 .003

2 0 2 .002 .002 .002 .000 .000 .001 .000 .000 .000
.4 1.2 .042 .056 .048 .022 .026 .029 .012 .013 .016
.4 2 .005 .006 .007 .002 .002 .002 .001 .001 .001
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TABLE 2.19
MONTE CARLO S.D. OF Vi, vp ,  v p  FOR p  =  —0.5, <f>j =  tfjj =  0, i =  1,2

T 7 6

n = 64
l /p vo vi

n  = 128 
V p vo vi

n = 256 
V p vo

0 .6 .136 .276 .135 .080 .113 .103 .051 .069 .081
0 1.2 .028 .030 .031 .012 .013 .013 .005 .006 .005

.5 0 2 .003 .003 .004 .001 .001 .001 .000 .000 .000
.4 1.2 .078 .100 .092 .042 .050 .056 .024 .027 .032
.4 2 .010 .010 .013 .004 .004 .005 .001 .001 .001
0 .6 .096 .205 .097 .057 .081 .074 .036 .049 .058
0 1.2 .020 .021 .022 .009 .010 .010 .004 .004 .004

1 0 2 .002 .002 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .056 .071 .066 .030 .035 .040 .017 .020 .022
.4 2 .007 .007 .009 .003 .003 .003 .001 .001 .001
0 .6 .069 .141 .069 .041 .058 .053 .026 .035 .041
0 1.2 .014 .015 .016 .006 .007 .007 .003 .003 .003

2 0 2 .002 .002 .002 .000 .001 .001 .000 .000 .000
.4 1.2 .040 .051 .047 .022 .025 .029 .012 .014 .016
.4 2 .005 .005 .006 .002 .002 .002 .001 .001 .001

TABLE 2.20
MONTE CARLO S.D. OF Vi,VF,vo  FOR p =  0.75, ^  =  0, i =  1,2

r 7 6 vi
n =  64

Up vo v i
n =  128

Up vo VI
n  =  256

j/p vo
0 .6 .108 1.80 .163 .062 .152 .128 .039 .084 .103
0 1.2 .022 .030 .028 .010 .011 .011 .004 .004 .005

.5 0 2 .003 .003 .004 .001 .001 .001 .000 .000 .000
.4 1.2 .063 .106 .081 .033 .044 .046 .019 .023 .026
.4 2 .008 .009 .011 .003 .003 .004 .001 .001 .001
0 .6 .076 1.27 .117 .043 .110 .092 .028 .060 .074
0 1.2 .016 .021 .020 .007 .008 .008 .003 .003 .003

1 0 2 .002 .002 .003 .000 .001 .001 .000 .000 .000
.4 1.2 .044 .076 .057 .023 .031 .033 .013 .016 .019
.4 2 .006 .006 .008 .002 .002 .003 .001 .001 .001
0 .6 .055 .916 .083 .031 .078 .065 .020 .043 .053
0 1.2 .011 .015 .014 .005 .006 .006 .002 .002 .002

2 0 2 .001 .002 .002 .000 .000 .001 .000 .000 .000
.4 1.2 .032 .054 .041 .017 .023 .024 .010 .011 .013
.4 2 .004 .005 .005 .001 .001 .002 .000 .000 .001
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TABLE 2.21
MONTE CARLO S.D. OF V ^ V p.Vp  FOR r  =  1, fc =  .5, ^  =  0, i =  1,2

p 7 5 vi
n =  64

v p vo vi
n  = 128

V p vo vi
n =  256

V p vo
0 .6 .106 .109 .096 .061 .064 .056 .038 .040 .035
0 1.2 .025 .026 .026 .010 .0 1 1 .010 .004 .005 .004

0 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .070 .073 .083 .036 .040 .047 .020 .021 .025
.4 2 .009 .009 .0 1 1 .003 .003 .003 .001 .001 .001
0 .6 .096 .101 .092 .058 .062 .062 .036 .038 .042
0 1.2 .022 .026 .022 .009 .0 1 1 .009 .004 .004 .004

.5 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .062 .071 .069 .032 .037 .040 .017 .020 .022
.4 2 .008 .009 .010 .002 .003 .003 .001 .001 .001
0 .6 .090 .096 .088 .057 .061 .061 .037 .039 .043
0 1.2 .020 .024 .021 .009 .0 1 1 .009 .004 .005 .004

-.5 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .058 .068 .067 .032 .038 .041 .018 .021 .023
.4 2 .007 .008 .009 .003 .003 .003 .001 .001 .001
0 .6 .082 .091 .089 .050 .056 .063 .033 .038 .048
0 1.2 .017 .022 .018 .007 .010 .008 .003 .004 .003

.75 0 2 .002 .002 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .049 .061 .057 .025 .033 .032 .014 .019 .018
.4 2 .006 .007 .008 .002 .003 .003 .001 .001 .001

TABLE 2.22
MONTE CARLO S.D. OF 1^,17° FOR r  =  1, <& =  .5, fa = 0, i = 1,2

n 64 64 128 128 256 256
P 7 6 ?! V p n V°F V p

0 .6 .115 .630 .065 .070 .040 .042
0 1.2 .026 .037 .010 .011 .004 .005

0 0 2 .003 .004 .001 .001 .000 .000
.4 1.2 .072 1.42 .036 .040 .020 .021
.4 2 .009 .087 .003 .003 .001 .001
0 .6 .104 .414 .060 .068 .036 .041
0 1.2 .021 .048 .010 .011 .004 .004

.5 0 2 .003 .005 .001 .001 .000 .000
.4 1.2 .063 2.64 .032 .038 .017 .020
.4 2 .008 .714 .002 .021 .001 .001
0 .6 .097 1.54 .059 .068 .037 .042
0 1.2 .020 .086 .009 .011 .004 .005

-.5 0 2 .002 .010 .001 .001 .000 .000
.4 1.2 .059 2.84 .031 .038 .018 .021
.4 2 .007 .165 .003 .004 .001 .001
0 .6 .082 .118 .048 33.0 .031 .043
0 1.2 .016 .044 .007 .010 .003 .004

.75 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .050 4.19 .025 .444 .014 .020
.4 2 .006 .376 .002 .006 .001 .001
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TABLE 2.23
MONTE CARLO S.D. OF Fj,77f ,I70 FOR r =  1, fa =  .9, ^  =  0, i =  1,2

p 7 5 7̂
n =  64

Up vo vi
n = 128 

Vp vo v i
n =  256

Vp vo
0 .6 .134 .123 .125 .078 .071 .071 .046 .045 .041
0 1.2 .033 .028 .030 .014 .013 .011 .006 .006 .005

0 0 2 .004 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .086 .089 .110 .047 .050 .057 .024 .026 .028
.4 2 .012 .012 .014 .004 .004 .004 .001 .001 .001
0 .6 .119 .115 .109 .067 .077 .066 .040 .056 .039
0 1.2 .027 .028 .025 .011 .012 .010 .004 .007 .004

.5 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .077 .082 .090 .039 .043 .047 .021 .023 .023
.4 2 .010 .010 .012 .003 .003 .003 .001 .001 .001
0 .6 .108 .119 .104 .067 .079 .064 .042 .057 .040
0 1.2 .024 .026 .023 .011 .012 .011 .005 .007 .004

-.5 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .068 .072 .081 .041 .043 .049 .022 .024 .025
.4 2 .008 .010 .011 .003 .003 .004 .001 .001 .001
0 .6 .092 .117 .089 .053 .078 .053 .033 .066 .035
0 1.2 .020 .024 .020 .008 .011 .009 .004 .007 .003

.75 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .059 .068 .071 .031 .036 .037 .017 .021 .019
.4 2 .007 .009 .009 .002 .003 .003 .001 .001 .001

TABLE 2.24
MONTE CARLO S.D. OF 17°,17° FOR r  =  1, =  .9, ^  =  0, 2 =  1,2

n 64 64 128 128 256 256
P 7 6 V°F V°F v°i 77° V F

0 .6 .161 115 .081 .076 .046 .046
0 1.2 .030 2.19 .011 .012 .005 .006

0 0 2 .003 .287 .001 .004 .000 .000
.4 1.2 .423 33.5 .043 8.63 .021 .023
.4 2 .011 4.26 .003 .845 .001 .001
0 .6 .139 6.26 .075 .544 .041 .085
0 1.2 .024 13.4 .009 .513 .004 .008

.5 0 2 .003 .259 .001 .043 .000 .000
.4 1.2 .195 28.9 .039 6.04 .019 .024
.4 2 .053 260 .003 .746 .001 .002
0 .6 .134 22.0 .075 3.85 .044 .061
0 1.2 .023 34.5 .010 .338 .004 .008

-.5 0 2 .003 .311 .001 .001 .000 .000
.4 1.2 .101 156 .037 5.25 .020 .025
.4 2 .012 6.46 .003 .977 .001 .004
0 .6 .115 28.4 .059 .845 .035 .070
0 1.2 .018 4.76 .008 .136 .003 .008

.75 0 2 .002 .244 .001 .001 .000 .000
.4 1.2 .156 251 .030 13.8 .015 .027
.4 2 .110 37.0 .002 .868 .001 .001



TABLE 2.25
MONTE CARLO S.D. OF Vi,VF, v o  FOR r =  1, <& =  0, ifjj =  .5, i =  1,2

p 7 6 Vi
n =  64 

vF vo VI
n =  128 

V p vo vi
71 =  256

Up vo
0 .6 .1 0 2 .103 .091 .059 .059 .054 .038 .037 .034
0 1 .2 .025 .026 .025 .0 1 0 .0 1 1 .0 1 0 .004 .005 .004

0 0 2 .003 .003 .003 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .068 .070 .080 .035 .036 .046 .0 2 0 .0 2 0 .025
.4 2 .009 .009 .0 1 1 .003 .003 .003 .0 0 1 .0 0 1 .0 0 1

0 .6 .094 .097 .093 .059 .060 .065 .038 .038 .047
0 1 .2 .0 2 1 .024 .0 2 2 .009 .009 .009 .004 .004 .004

.5 0 2 .003 .003 .003 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .059 .067 .067 .031 .034 .040 .017 .018 .0 2 2
.4 2 .008 .008 .009 .0 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 1
0 .6 .090 .095 .089 .058 .059 .064 .039 .039 .048
0 1 .2 .0 2 0 .0 2 2 .0 2 1 .009 .0 1 0 .009 .004 .004 .004

-.5 0 2 .0 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .056 .063 .066 .031 .034 .040 .017 .019 .0 2 2
.4 2 .007 .007 .009 .003 .003 .003 .0 0 1 .0 0 1 .0 0 1
0 .6 .085 .097 .097 .055 .057 .073 .037 .038 .057
0 1 .2 .016 .0 2 1 .018 .007 .008 .008 .003 .003 .003

.75 0 2 .0 0 2 .003 .003 .0 0 0 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .046 .058 .056 .023 .029 .032 .013 .016 .018
.4 2 .006 .008 .008 .0 0 2 .0 0 2 .003 .0 0 1 .0 0 1 .001

TABLE 2.26
MONTE CARLO S.D. OF V°ItV°F FOR r  =  1, =  0, &  =  .5, 2 =  1,2

n 64 64 128 128 256 256
P 7 5 V°F v°f V°F

0 .6 .108 .1 1 0 .062 .062 .039 .039
0 1 .2 .025 .027 .0 1 0 .0 1 1 .004 .005

0 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .069 .071 .035 .036 .019 .0 2 0
.4 2 .009 .009 .003 .003 .0 0 1 .0 0 1
0 .6 .096 .1 0 1 .059 .060 .036 .037
0 1 .2 .0 2 1 .025 .009 .009 .004 .004

.5 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .060 .069 .031 .035 .017 .018
.4 2 .008 .008 .0 0 2 .0 0 2 .0 0 1 .0 0 1
0 .6 .091 .097 .057 .059 .037 .038
0 1 .2 .0 2 0 .0 2 2 .009 .0 1 0 .004 .004

-.5 0 2 .0 0 2 .0 0 2 .0 0 1 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .057 .064 .030 .034 .017 .0 2 0
.4 2 .007 .007 .003 .003 .0 0 1 .0 0 1
0 .6 .080 .089 .050 .053 .033 .034
0 1 .2 .016 .0 2 2 .007 .008 .003 .003

.75 0 2 .0 0 2 .003 .0 0 0 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .045 .060 .023 .030 .013 .016
.4 2 .006 .008 .0 0 2 .0 0 2 .0 0 1 .0 0 1
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TABLE 2.27
MONTE CARLO S.D. OF Vi,VF,Vo  FOR r  =  1, =  0, ipj =  .9, i =  1,2

p 7 6
n =  64 

Vp vo i' /
n =  128 

Up vo vi
n =  256 

vf vo
0 .6 .103 .114 .092 .061 .060 .054 .038 .038 .034
0 1 .2 .025 .027 .025 .0 1 1 .0 1 1 .0 1 0 .005 .005 .004

0 0 2 .003 .003 .003 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .069 .088 .080 .037 .046 .046 .0 2 0 .0 2 1 .025
.4 2 .009 .0 1 0 .0 1 1 .003 .003 .003 .0 0 1 .0 0 1 .0 0 1

0 .6 .098 .1 0 2 .093 .060 .065 .064 .038 .039 .046
0 1 .2 .023 .388 .0 2 2 .009 .0 1 0 .009 .004 .004 .004

.5 0 2 .003 .026 .003 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .062 .400 .068 .032 .052 .040 .017 .0 2 1 .0 2 2
.4 2 .008 .2 2 2 .009 .003 .003 .003 .0 0 1 .0 0 1 .0 0 1
0 .6 .092 .099 .088 .060 .061 .063 .039 .039 .046
0 1 .2 .0 2 1 .052 .0 2 1 .009 .0 1 1 .009 .004 .004 .004

-.5 0 2 .003 .003 .003 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .057 .272 .066 .032 .051 .040 .018 .0 2 0 .023
.4 2 .008 .0 1 2 .009 .003 .003 .003 .0 0 1 .0 0 1 .0 0 1
0 .6 .092 .1 1 1 .094 .058 .063 .070 .038 .041 .055
0 1 .2 .018 .026 .018 .007 .019 .008 .003 .005 .003

.75 0 2 .0 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .051 .084 .056 .024 .059 .032 .014 .021 .018
.4 2 .006 .009 .008 .0 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 1

TABLE 2.28
MONTE CARLO S.D. OF FOR r  = 1, fa = 0, ipj = .9, i =  1,2

n 64 64 128 128 256 256
P 7 6 V°F V°F V f

0 .6 .109 .1 1 1 .063 .064 .039 .039
0 1 .2 .025 .026 .0 1 0 .0 1 1 .004 .005

0 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .069 .071 .036 .037 .0 2 0 .0 2 0
.4 2 .009 .009 .003 .003 .0 0 1 .0 0 1
0 .6 .097 .1 0 2 .059 .061 .036 .037
0 1 .2 .0 2 1 .024 .009 .009 .004 .004

.5 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .059 .069 .031 .035 .017 .018
.4 2 .008 .008 .0 0 2 .0 0 2 .0 0 1 .0 0 1
0 .6 .092 .1 0 0 .058 .060 .037 .038
0 1 .2 .0 2 0 .0 2 2 .009 .0 1 0 .004 .004

-.5 0 2 .0 0 2 .003 .0 0 1 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .057 .064 .031 .034 .017 .019
.4 2 .007 .007 .003 .003 .0 0 1 .0 0 1
0 .6 .080 .088 .050 .054 .032 .034
0 1 .2 .016 .0 2 1 .007 .008 .003 .003

.75 0 2 .0 0 2 .003 .0 0 0 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .045 .058 .023 .029 .013 .015
.4 2 .006 .007 .0 0 2 .0 0 2 .0 0 1 .0 0 1
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TABLE 2.29
MONTE CARLO S.D. OF V ^V p.Vp  FOR r  =  1, =  .4, ^  =  .2, i  =  1,2

p 7 5 i'/
n =  64 

Vp vo vi
n  =  128 

V p vo vi
n =  256

Up vo
0 .6 .105 .116 .095 .061 .069 .056 .038 .041 .035
0 1 .2 .025 .029 .025 .0 1 0 .0 1 2 .0 1 0 .004 .005 .004

0 0 2 .003 .004 .003 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .070 .085 .082 .036 .045 .046 .0 2 0 .0 2 2 .025
.4 2 .009 .0 1 0 .0 1 1 .003 .004 .003 .0 0 1 .0 0 1 .0 0 1

0 .6 .095 .107 .092 .058 .067 .062 .036 .040 .043
0 1 .2 .0 2 2 .028 .0 2 2 .009 .0 1 2 .009 .004 .005 .004

.5 0 2 .003 .003 .003 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .061 .084 .069 .032 .043 .040 .017 .023 .0 2 2
.4 2 .008 .0 1 0 .0 1 0 .0 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 1
0 .6 .090 .1 0 1 .087 .058 .067 .061 .038 .042 .043
0 1 .2 .0 2 0 .025 .0 2 1 .009 .0 1 2 .009 .004 .005 .004

-.5 0 2 .0 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .058 .074 .067 .032 .045 .041 .018 .025 .023
.4 2 .007 .009 .009 .003 .003 .003 .0 0 1 .0 0 1 .0 0 1
0 .6 .082 .1 0 0 .089 .051 .064 .064 .034 .041 .049
0 1 .2 .017 .025 .018 .007 .0 1 1 .008 .003 .004 .003

.75 0 2 .0 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .048 .071 .056 .025 .041 .032 .014 .024 .018
.4 2 .006 .008 .008 .0 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 1

TABLE 2.30
MONTE CARLO S.D. OF FOR T = 1, & =  .4, ^  =  .2, i =  1,2

n 64 64 128 128 256 256
P 7 6 n V°F u°i V°p V p

0 .6 .114 .126 .065 .072 .040 .043
0 1 .2 .026 .030 .0 1 0 .0 1 2 .004 .005

0 0 2 .003 .004 .0 0 1 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .071 1 .0 2 .036 .244 .0 2 0 .023
.4 2 .009 .139 .003 .425 .0 0 1 .006
0 .6 .1 0 2 .262 .060 .073 .036 .043
0 1 .2 .0 2 1 .028 .009 .0 1 2 .004 .005

.5 0 2 .003 .003 .0 0 1 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .062 2 0 .6 .032 67.0 .017 .0 2 2
.4 2 .008 .648 .0 0 2 1 .6 6 .0 0 1 .0 0 1
0 .6 .096 .1 1 2 .059 .073 .037 .045
0 1 .2 .0 2 0 .025 .009 .0 1 2 .004 .005

-.5 0 2 .0 0 2 .003 .0 0 1 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .059 7.77 .032 .798 .018 .023
.4 2 .007 .999 .003 .066 .0 0 1 .0 0 1
0 .6 .081 .1 1 2 .048 .073 .031 .048
0 1 .2 .016 2 .6 8 .007 .0 1 2 .003 .005

.75 0 2 .0 0 2 .003 .0 0 1 .0 0 1 .0 0 0 .0 0 0
.4 1 .2 .048 60.1 .025 3.31 .014 .061
.4 2 .006 .737 .0 0 2 .246 .0 0 1 .0 0 1
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TABLE 2.31
EMPIRICAL SIZES OF W j  AND W F FOR r  =  1, ^  =  0, i =  1,2

p 7

a
n
6

64
W j

64
WF

.05
128
Wi

OO 
t

256
Wi

256
WF

64
Wi

64
WF

.1 0
128
Wi

128
WF

256
Wi

256
WF

0 .6 .072 .194 .049 .125 .052 .090 .131 .261 .099 .166 .116 .137
0 1 .2 .059 .198 .062 .136 .048 .097 .113 .260 .1 1 0 .208 .1 2 2 .161

0 0 2 .054 .184 .057 .1 2 2 .058 .1 0 2 .109 .255 .108 .199 .1 2 0 .167
.4 1 .2 .060 .193 .050 .115 .051 .076 .125 .254 .109 .176 .099 .131
.4 2 .051 .177 .071 .133 .059 .104 .108 .238 .123 .2 0 1 .1 2 1 .157
0 .6 .064 .238 .054 .152 .052 .116 .128 .322 .113 .224 .105 .178
0 1 .2 .067 .203 .057 .132 .053 .097 .1 2 2 .289 .108 .2 0 2 .104 .157

.5 0 2 .065 .2 0 1 .055 .133 .059 .108 .116 .272 .1 1 2 .193 .1 1 1 .160
.4 1 .2 .067 .231 .051 .153 .049 .1 1 0 .127 .312 .1 0 2 .207 .092 .168
.4 2 .065 .184 .055 .114 .058 .095 .1 2 2 .254 .114 .187 .1 1 1 .149
0 .6 .062 .227 .059 .166 .059 .129 .128 .311 .1 2 0 .231 .109 .203
0 1 .2 .047 .209 .074 .161 .052 .095 .105 .292 .129 .225 .1 0 0 .149

-.5 0 2 .049 .199 .073 .163 .063 .1 1 2 .1 1 0 .264 .129 .2 2 2 .109 .157
.4 1 .2 .056 .238 .061 .167 .050 .109 .1 2 0 .318 .117 .2 2 2 .103 .174
.4 2 .049 .186 .074 .146 .066 .094 .097 .248 .134 .214 .105 .152
0 .6 .069 .332 .050 .259 .052 .247 .1 2 0 .416 .107 .337 .104 .327
0 1 .2 .066 .231 .054 .144 .053 .1 0 0 .127 .311 .099 .217 .1 1 2 .158

.75 0 2 .054 .2 2 1 .042 .144 .064 .104 .1 2 2 .293 .104 .208 .1 1 2 .150
.4 1 .2 .065 .292 .048 .195 .057 .141 .130 .383 .1 1 0 .278 .111 .199
.4 2 .064 .2 1 0 .054 .130 .060 .097 .123 .267 .1 1 0 .193 .1 1 2 .148

TABLE 2.32
EMPIRICAL SIZES OF Wj AND WF FOR r  =  1, fa = .5, ^  =  0, i =  1,2

P 7

OL

n
6

64
W /

64
WF

.05
128
W / **1

 
O

O 256
Wi

256
WF

64
Wi

64
WF v 

OO
 

o

128
WF

256
Wi

256
WF

0 .6 .147 .225 .1 0 1 .186 .090 .163 .219 .286 .166 .259 .158 .229
0 1 .2 .103 .194 .075 .190 .062 .160 .166 .268 .137 .246 .121 .206

0 0 2 .092 .187 .073 .191 .068 .179 .162 .249 .133 .240 .130 .247
.4 1 .2 .119 .2 2 1 .080 .188 .062 .145 .2 1 1 .285 .150 .244 .1 2 0 .217
.4 2 .095 .205 .072 .194 .075 .167 .156 .260 .137 .260 .117 .228
0 .6 .2 1 1 .330 .173 .309 .160 .286 .301 .407 .264 .394 .258 .373
0 1 .2 .1 1 0 .215 .071 .214 .057 .176 .164 .293 .123 .276 . 1 1 1 .240

.5 0 2 . 1 1 1 .2 0 2 .082 .179 .067 .166 .176 .255 .141 .241 .114 .225
.4 1 .2 .140 .274 .079 .234 .075 .209 .208 .333 .149 .304 .129 .276
.4 2 .105 .209 .075 .181 .062 .153 .165 .261 .124 .244 .105 .2 0 2
0 .6 .2 1 0 .312 .188 .302 .180 .298 .288 .389 .268 .383 .251 .393
0 1 .2 .1 0 1 .233 .089 .2 1 1 .056 .176 .169 .309 .150 .281 .105 .255

-.5 0 2 .099 .198 .093 .192 .071 .168 .154 .258 .156 .252 .121 .236
.4 1 .2 .125 .263 .1 0 2 .242 .074 .190 .2 1 2 .339 .162 .309 .138 .263
.4 2 .090 .214 .087 .2 0 0 .061 .157 .146 .262 .159 .246 .1 1 2 .218
0 .6 .346 .520 .346 .519 .342 .509 .445 .591 .432 .605 .441 .597
0 1 .2 .116 .267 .072 .279 .062 .227 .192 .335 .127 .343 .109 .293

.75 0 2 .118 .185 .080 .197 .060 .160 .184 .250 .131 .252 .116 .226
.4 1 .2 .158 .312 .095 .306 .085 .281 .242 .390 .163 .380 .142 .346
.4 2 .106 .180 .085 .186 .062 .139 .167 .243 .123 .246 .118 .191
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TABLE 2.33
EMPIRICAL SIZES OF W f  AND W°F FOR r =  1, =  .5, ^  =  0, i  =  1,2

p 7

a
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.1 0
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .119 .164 .085 .163 .076 .148 .190 .230 .145 .217 .136 .209
0 1 .2 .093 .153 .070 .160 .055 .138 .153 .2 0 0 .1 2 1 .214 .1 2 2 .195

0 0 2 .077 .137 .063 .156 .064 .153 .138 .184 .124 .214 .125 .217
.4 1 .2 .098 .151 .073 .148 .053 .130 .173 .209 .132 .2 0 2 .1 0 2 .197
.4 2 .090 .149 .073 .155 .071 .145 .139 .207 .123 .219 .123 .2 0 1
0 .6 .150 .249 .1 1 2 .260 .097 .224 .2 2 1 .307 .187 .335 .169 .315
0 1 .2 .099 .178 .063 .181 .054 .170 .148 .232 .116 .251 .106 .233

.5 0 2 .099 .154 .063 .145 .064 .142 .156 .199 .1 2 1 .2 1 0 .1 1 0 .199
.4 1 .2 .1 1 1 .196 .073 .195 .069 .199 .184 .254 .131 .257 .1 1 2 .266
.4 2 .093 .142 .062 .147 .059 .141 .143 .195 .117 .2 1 1 .105 .183
0 .6 .144 .239 .127 .261 .1 1 0 .250 .229 .314 .203 .340 .186 .331
0 1 .2 .084 .180 .079 .191 .055 .167 .155 .244 .141 .248 .099 .245

-.5 0 2 .085 .144 .085 .158 .071 .155 .140 .195 .146 .214 .117 .2 1 2
.4 1 .2 .106 .181 .085 .199 .058 .180 .179 .247 .137 .272 .123 .252
.4 2 .079 .148 .082 .159 .062 .143 .136 .196 .143 .214 .1 1 2 .2 1 0
0 .6 .209 .378 .156 .399 .164 .389 .282 .451 .252 .484 .250 .474
0 1 .2 .092 .214 .063 .257 .060 .234 .156 .277 .117 .329 .109 .305

.75 0 2 .095 .157 .068 .162 .060 .143 .164 .2 1 1 .1 2 2 .219 .1 1 1 .2 0 2
.4 1 .2 .134 .248 .078 .252 .073 .270 .189 .329 .142 .321 .123 .342
.4 2 .087 .140 .071 .146 .060 .117 .136 .184 .1 1 1 .206 .113 .178

TABLE 2.34
EMPIRICAL SIZES OF Wr AND FOR r  =  1, =  .9, ^  =  0, i =  1,2

P 7

a
n
6

64
Wi

64
WF

.05
128
Wj

128
WF

256
W>

256
WF

64
Wi

64
WF

.1 0
128
Wi

128
WF

256
Wr

256
WF

0 .6 .382 .265 .308 .181 .224 .137 .470 .341 .388 .261 .311 .213
0 1 .2 .407 .234 .357 .187 .284 .1 2 0 .479 .287 .433 .247 .353 .178

0 0 2 .430 .237 .376 .215 .326 .158 .517 .307 .458 .261 .419 .2 0 1
.4 1 .2 .398 .320 .307 .270 .235 .216 .467 .390 .384 .355 .325 .279
.4 2 .406 .393 .360 .359 .309 .296 .509 .472 .442 .424 .405 .361
0 .6 .425 .448 .337 .504 .264 .565 .504 .532 .430 .598 .345 .638
0 1 .2 .423 .253 .341 .2 1 0 .252 .160 .504 .315 .430 .285 .349 .233

.5 0 2 .445 .252 .385 .217 .325 .139 .523 .326 .475 .271 .390 .199
.4 1 .2 .405 .376 .309 .322 .234 .275 .494 .440 .400 .392 .315 .348
.4 2 .425 .410 .367 .351 .286 .272 .506 .482 .450 .409 .365 .334
0 .6 .418 .472 .343 .502 .288 .561 .506 .565 .419 .584 .359 .635
0 1 .2 .423 .256 .357 .215 .272 .154 .495 .318 .442 .290 .364 .239

-.5 0 2 .443 .252 .394 .219 .340 .134 .510 .307 .469 .270 .407 .190
.4 1 .2 .400 .380 .344 .325 .268 .271 .488 .450 .408 .392 .352 .367
.4 2 .420 .417 .387 .346 .307 .273 .486 .471 .458 .420 .387 .334
0 .6 .486 .679 .398 .751 .354 .790 .562 .733 .492 .810 .446 .841
0 1 .2 .428 .283 .342 .244 .272 .237 .499 .342 .423 .313 .350 .309

.75 0 2 .455 .247 .389 .217 .311 .142 .533 .312 .459 .283 .402 .196
.4 1 .2 .433 .393 .350 .360 .265 .360 .503 .484 .418 .431 .336 .444
.4 2 .436 .427 .364 .347 .298 .275 .509 .488 .430 .411 .375 .335
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TABLE 2.35
EMPIRICAL SIZES OF W f  AND W f  FOR t  =  1, =  .9, ^  =  0, z =  1,2

p 7

a
n
6

64
W?

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.1 0
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .189 .153 .124 .117 .080 .078 .244 .213 .180 .185 .133 .148
0 1 .2 .177 .118 .124 .075 -.077 .053 .231 .165 .180 .125 .144 .092

0 0 2 .169 .118 .117 .085 .095 .060 .230 .178 .167 .129 .165 .092
.4 1 .2 .157 .149 .105 .107 .073 .076 .218 .192 .164 .147 .124 .126
.4 2 .155 .190 .1 2 1 .158 .090 .099 .216 .242 .177 .216 .153 .151
0 .6 .2 1 1 .270 .159 .306 .114 .368 .263 .346 .2 2 1 .397 .169 .456
0 1 .2 .178 .139 .1 2 1 .1 2 0 .090 .119 .231 .191 .168 .178 .144 .2 0 2

.5 0 2 .193 .116 .130 .086 .092 .054 .256 .180 .180 .129 .153 .096
.4 1 .2 .171 .178 .129 .170 .096 .191 .231 .241 .183 .233 .149 .275
.4 2 .163 .184 .1 2 0 .140 .090 .091 .218 .247 .167 .2 0 1 .144 .149
0 .6 .2 2 0 .279 .167 .310 .137 .380 .278 .361 .233 .387 .189 .467
0 1 .2 .173 .145 .139 .115 .090 .1 1 2 .231 .196 .190 .191 .151 .192

-.5 0 2 .177 .126 .140 .090 .089 .056 .229 .184 .190 .133 .152 .088
.4 1 .2 .185 .172 .140 .171 .103 .177 .227 .217 .204 .232 .150 .271
.4 2 .161 .184 .123 .148 .094 .098 .2 1 0 .230 .176 .209 .133 .148
0 .6 .276 .423 .227 .507 .181 .611 .340 .505 .307 .587 .243 .682
0 1 .2 .186 .171 .123 .175 .095 .2 2 0 .237 .230 .185 .255 .154 .293

.75 0 2 .194 .126 .136 .096 .1 0 0 .052 .257 .177 .193 .152 .159 .089
.4 1 .2 .206 .227 .158 .270 .118 .369 .265 .290 .213 .357 .182 .460
.4 2 .148 .164 .1 1 2 .142 .090 .090 .2 0 0 .228 .180 .193 .141 .140

TABLE 2.36
EMPIRICAL SIZES OF Wf AND WF FOR r  =  1, fa = 0, ^  =  .5, i = 1,2

P 7

a
n
6

64
W>

64
WF

.05
128
Wj

OO 
t

256
Wr

256
WF

64
W j

64
WF

.1 0
128
Wl

128
WF

256
Wj

256
WF

0 .6 .125 .195 .082 .1 2 2 .089 .105 .187 .249 .146 .189 .148 .159
0 1 .2 .076 .159 .065 .114 .050 .084 .127 .225 .124 .170 .1 2 2 .138

0 0 2 .061 .148 .068 .1 1 2 .065 .096 .126 .2 2 2 .114 .176 .1 2 0 .153
.4 1 .2 .096 .170 .069 .1 1 1 .065 .067 .167 .240 .140 .166 .115 .130
.4 2 .060 .147 .070 .105 .064 .094 .117 .2 0 1 .128 .176 .1 2 0 .147
0 .6 .206 .321 .194 .284 .199 .265 .302 .380 .281 .376 .299 .365
0 1 .2 .074 .191 .061 .116 .057 .092 .135 .255 .116 .185 .109 .144

.5 0 2 .076 .161 .066 .108 .067 .088 .135 .225 .115 .164 .1 1 0 .139
.4 1 .2 .107 .2 0 2 .075 .137 .061 .113 .179 .280 .123 .199 .107 .163
.4 2 .068 .148 .062 .092 .061 .075 .129 .196 .114 .147 .1 1 0 .1 2 0
0 .6 .217 .326 .203 .273 .2 1 2 .260 .288 .408 .285 .379 .291 .358
0 1 .2 .059 .182 .082 .149 .049 .081 .126 .252 .137 .192 .105 .140

-.5 0 2 .059 .158 .082 .123 .061 .090 .126 .209 .141 .189 .1 1 0 .144
.4 1 .2 .097 .208 .079 .159 .063 .113 .169 .292 .142 .218 .129 .178
.4 2 .061 .142 .076 .105 .063 .074 .1 1 2 .185 .139 .158 .1 1 2 .129
0 .6 .391 .525 .406 .531 .408 .513 .491 .627 .492 .616 .521 .612
0 1 .2 .074 .217 .055 .136 .055 .099 .135 .273 .104 .2 0 0 .1 1 0 .149

.75 0 2 .071 .156 .051 .114 .059 .078 .140 .2 1 1 .104 .162 .103 .123
.4 1 .2 .114 .262 .071 .180 .071 .137 .192 .325 .131 .258 .1 2 2 .198
.4 2 .068 .119 .058 .092 .061 .066 .133 .177 .108 .133 .1 1 0 .1 0 2
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TABLE 2.37
EMPIRICAL SIZES OF W f  AND W f  FOR r =  1, fa =  0, fa =  .5, i =  1,2

p 7

a
n
6

64
Wf

64
W f

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.1 0
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .115 .186 .083 .118 .074 .098 .177 .246 .140 .187 .144 .158
0 1 .2 .073 .161 .061 .105 .048 .084 .116 .2 1 0 .115 .161 .123 .138

0 0 2 .056 .139 .060 .114 .065 .1 0 1 .113 .213 .114 .159 .118 .153
.4 1 .2 .086 .162 .060 .105 .058 .062 .150 .231 .128 .154 .108 .123
.4 2 .055 .137 .066 .109 .062 .087 .113 .196 .118 .160 .1 1 2 .150
0 .6 .142 .252 .133 .209 .132 .192 .230 .317 .214 .296 .224 .266
0 1 .2 .067 .183 .060 .1 1 2 .056 .092 .138 .243 .1 1 2 .177 .106 .141

.5 0 2 .067 .166 .060 .104 .067 .085 .119 .216 .117 .155 .1 1 2 .137
.4 1 .2 .1 0 0 .198 .073 .130 .059 .1 1 0 .160 .268 .118 .206 .108 .161
.4 2 .066 .144 .059 .086 .061 .075 .1 2 1 .187 .114 .136 .114 .1 2 2

0 .6 .157 .262 .140 .209 .146 .198 .223 .350 .224 .312 .2 2 0 .282
0 1 .2 .060 .183 .074 .140 .050 .082 .115 .244 .134 .189 .1 0 2 .147

-.5 0 2 .054 .151 .074 .1 2 2 .064 .094 .1 2 2 .206 .135 .176 .1 1 0 .142
.4 1 .2 .085 .198 .072 .156 .061 .107 .163 .275 .132 .2 1 2 .116 .173
.4 2 .060 .135 .073 .097 .066 .070 .113 .180 .124 .158 .106 .131
0 .6 .240 .369 .248 .374 .263 .339 .344 .461 .352 .479 .358 .436
0 1 .2 .065 .213 .059 .132 .050 .098 .130 .261 .105 .2 0 1 .113 .157

.75 0 2 .061 .153 .044 .114 .063 .077 .123 .206 .1 0 2 .155 .1 1 0 .1 2 2
.4 1 .2 .091 .259 .065 .183 .058 .135 .156 .316 .124 .257 .1 2 2 .195
.4 2 .061 .1 2 0 .058 .087 .059 .065 .119 .165 .107 .128 .114 .105

TABLE 2.38
EMPIRICAL SIZES OF AND FOR r  =  1, =  0, ^  =  .9, i = 1,2

P 7

a
n
6

64
Wj

64
WF

.05
128
Wi

128
WF

256
WT

256
WF

64
Wj

64
WF

.10
128 128

WF
256
Wi

256
WF

0 .6 .151 .224 .105 .142 .088 .102 .221 .289 .176 .208 .152 .165
0 1.2 .138 .222 .114 .147 .073 .093 .199 .276 .179 .227 .134 .147

0 0 2 .156 .229 .129 .173 .086 .110 .227 .293 .206 .242 .152 .172
.4 1.2 .133 .209 .102 .136 .075 .088 .213 .280 .177 .201 .147 .149
.4 2 .130 .210 .123 .158 .076 .097 .203 .268 .199 .234 .145 .168
0 .6 .258 .378 .221 .339 .204 .309 .357 .459 .310 .439 .301 .413
0 1.2 .140 .252 .105 .155 .080 .094 .201 .318 .167 .228 .134 .166

.5 0 2 .168 .245 .121 .171 .087 .106 .241 .314 .203 .253 .152 .159
.4 1.2 .156 .232 .108 .155 .073 .119 .231 .307 .179 .220 .127 .170
.4 2 .148 .210 .114 .141 .077 .083 .213 .263 .186 .208 .142 .136
0 .6 .274 .393 .239 .336 .215 .307 .337 .477 .310 .425 .291 .420
0 1.2 .144 .233 .126 .184 .067 .094 .209 .319 .192 .249 .124 .145

-.5 0 2 .174 .236 .142 .173 .082 .105 .255 .311 .230 .242 .137 .161
.4 1.2 .139 .251 .115 .165 .072 .107 .210 .318 .191 .230 .133 .181
.4 2 .148 .201 .138 .153 .079 .087 .212 .257 .216 .214 .133 .139
0 .6 .434 .593 .430 .610 .405 .575 .532 .676 .516 .692 .501 .671
0 1.2 .161 .277 .105 .168 .080 .102 .223 .340 .158 .241 .138 .163

.75 0 2 .191 .238 .131 .178 .098 .094 .251 .313 .199 .234 .143 .143
.4 1.2 .174 .302 .115 .199 .081 .136 .256 .373 .177 .273 .141 .190
.4 2 .166 .188 .127 .138 .094 .081 .229 .239 .178 .201 .142 .118
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TABLE 2.39
EMPIRICAL SIZES OF W f  AND W f  FOR r  =  1, =  0, ^  =  .9, i =  1,2

p 7

a
n
6

64
W f

64
W f

.05
128
W f

128
W f

256
W f

256
W f

64
W f

64
W f

.1 0
128
W f

128
W f

256
W f

256
W f

0 .6 .1 1 1 .170 .079 .125 .075 .092 .179 .239 .146 .183 .145 .163
0 1 .2 .063 .150 .061 .106 .048 .076 .116 .204 .113 .150 .1 2 1 .136

0 0 2 .049 .131 .062 .1 0 0 .063 .091 .1 1 2 .188 .117 .150 .1 2 0 .149
.4 1 .2 .083 .148 .059 .1 0 2 .056 .064 .139 .2 2 1 .126 .146 .108 .117
.4 2 .053 .129 .068 .1 0 0 .062 .087 .1 1 1 .175 .127 .150 .117 .143
0 .6 .136 .248 .128 .2 1 1 .126 .192 .206 .313 .2 0 1 .302 .206 .282
0 1 .2 .069 .162 .057 .099 .053 .079 .127 .2 2 0 .108 .167 .107 .135

.5 0 2 .065 .139 .057 .097 .065 .078 .114 .187 .116 .146 .116 .133
.4 1 .2 .089 .175 .070 .1 2 2 .054 .104 .151 .247 .124 .186 .107 .152
.4 2 .070 .129 .055 .081 .061 .073 .115 .168 .113 .130 .1 1 2 .119
0 .6 .148 .254 .126 .218 .140 .203 .215 .340 .207 .311 .206 .294
0 1 .2 .052 .143 .075 .134 .052 .079 .113 .226 .127 .182 .1 0 0 .132

-.5 0 2 .056 .130 .072 .106 .062 .082 .108 .183 .126 .164 .1 1 1 .131
.4 1 .2 .081 .183 .074 .137 .059 .097 .151 .246 .124 .195 .115 .158
.4 2 .050 .126 .072 .096 .067 .069 .106 .167 .125 .140 .106 .125
0 .6 .136 .359 .2 2 1 .382 .242 .355 .206 .457 .326 .474 .327 .463
0 1 .2 .069 .172 .053 .109 .050 .083 .127 .225 .095 .179 .1 1 2 .141

.75 0 2 .065 .131 .041 .096 .064 .072 .114 .178 .099 .139 .1 1 1 .109
.4 1 .2 .089 .2 2 1 .063 .161 .057 .1 2 1 .151 .293 .125 .232 .119 .170
.4 2 .070 .103 .058 .078 .058 .062 .115 .144 .1 1 0 .117 .108 .095

TABLE 2.40
EMPIRICAL SIZES OF Wj AND WF FOR r  =  1, fa =  .4, ^  =  .2, i = 1,2

a .05
— 7 T * ' -7 T' * 

.1 0
* 7 “

n 64 64 128 128 256 256 64 64 128 128 256 256
P 7 6 Wi WF Wj WF Wj WF Wj WF Wi WF Wi WF

0 .6 .148 .305 .098 .250 .090 .2 2 2 .219 .373 .169 .326 .158 .287
0 1 .2 .109 .308 .076 .261 .063 .208 .168 .371 .137 .316 .1 2 0 .271

0 0 2 .090 .294 .079 .255 .072 .226 .167 .360 .141 .319 .130 .286
.4 1 .2 .114 .373 .083 .307 .063 .239 .204 .435 .147 .371 .116 .310
.4 2 .094 .371 .074 .315 .077 .239 .164 .420 .140 .372 .1 2 0 .290
0 .6 .223 .390 .190 .361 .171 .306 .307 .473 .268 .445 .273 .404
0 1 .2 .1 0 1 .333 .072 .310 .062 .258 .169 .405 .129 .385 .1 1 1 .329

.5 0 2 .113 .310 .082 .263 .066 .2 1 1 .183 .377 .135 .327 .115 .278
.4 1 .2 .137 .413 .083 .374 .074 .298 .2 1 0 .466 .147 .433 .129 .355
.4 2 .104 .364 .072 .315 .060 .2 1 2 .170 .432 .129 .364 .107 .277
0 .6 .2 2 1 .373 .2 1 0 .352 .187 .327 .302 .456 .280 .437 .264 .410
0 1 .2 .098 .332 .093 .312 .059 .272 .177 .407 .153 .397 .098 .328

-.5 0 2 .099 .292 .092 .257 .074 .2 2 2 .167 .347 .154 .335 .124 .277
.4 1 .2 .134 .402 .107 .370 .081 .307 .2 0 2 .471 .168 .433 .138 .373
.4 2 .088 .361 .089 .303 .063 .240 .152 .418 .156 .362 .1 1 1 .299
0 .6 .365 .516 .368 .530 .358 .513 .465 .597 .445 .611 .450 .594
0 1 .2 .109 .368 .071 .392 .061 .292 .179 .438 .124 .454 .115 .353

.75 0 2 .119 .299 .075 .275 .062 .2 0 0 .186 .361 .134 .339 .118 .274
.4 1 .2 .164 .447 .096 .446 .084 .358 .238 .518 .165 .516 .140 .426
.4 2 .104 .350 .081 .307 .061 .219 .163 .403 .1 2 2 .360 .115 .263
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TABLE 2.41
EMPIRICAL SIZES OF W f  AND W f  FOR r  =  1, fa =  .4, fa =  .2, i =  1,2

7

a
n
6

64
W?

64
w f

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.1 0
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .125 .601 .085 .564 .075 .556 .198 .659 .152 .627 .141 .618
0 1 .2 .095 .580 .071 .583 .058 .543 .153 .640 .124 .645 .124 .597

0 0 2 .080 .572 .072 .584 .065 .535 .139 .630 .125 .647 .126 .607
.4 1 .2 .105 .589 .072 .576 .057 .578 .175 .642 .130 .638 .106 .622
.4 2 .084 .573 .073 .596 .072 .540 .134 .622 .130 .639 .124 .607
0 .6 .146 .680 .1 2 2 .685 .106 .654 .218 .735 .189 .733 .174 .707
0 1 .2 .097 .635 .062 .659 .056 .624 .145 .687 .117 .715 .1 1 0 .658

.5 0 2 .094 .584 .068 .585 .066 .559 .152 .639 .1 2 1 .648 .113 .628
.4 1 .2 .115 .651 .072 .630 .067 .604 .174 .694 .127 .689 .1 1 0 .661
.4 2 .094 .587 .061 .578 .061 .556 .149 .637 .119 .635 .105 .617
0 .6 .158 .670 .130 .680 .128 .659 .231 .716 .215 .743 .187 .714
0 1 .2 .083 .628 .081 .634 .057 .585 .152 .697 .143 .677 .097 .646

-.5 0 2 .085 .570 .088 .584 .070 .557 .134 .628 .145 .649 .115 .631
.4 1 .2 .1 1 1 .647 .089 .625 .064 .605 .181 .698 .143 .681 .124 .667
.4 2 .082 .547 .083 .591 .062 .555 .129 .608 .152 .660 .107 .621
0 .6 .216 .747 .191 .763 .165 .764 .296 .792 .277 .801 .253 .813
0 1 .2 .088 .671 .066 .697 .063 .626 .145 .714 .1 1 2 .752 .1 1 1 .672

.75 0 2 .096 .585 .063 .600 .063 .580 .153 .639 .117 .659 .116 .637
.4 1 .2 .128 .691 .081 .695 .076 .669 .189 .739 .139 .744 .132 .724
.4 2 .090 .585 .073 .583 .064 .563 .141 .636 .1 1 2 .629 .116 .625

TABLE 2.42
MONTE CARLO BIAS OF P j,P 7 ,Fg, FOR 6 =  1, 7  =  0, ^  =  0, i =  1,2

r 1 2 .5
P n 64 128 256 64 128 256 64 128 256

vi - .0 0 2 - .0 0 1 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 -.003 - .0 0 1 .0 0 0

V y - .0 0 2 - .0 0 1 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 - .0 0 2 - .0 0 1 - .0 0 1
0 vs - .0 0 2 -.0 0 1 .0 0 0 - .0 0 1 - .0 0 1 .0 0 0 - .0 0 2 - .0 0 1 .0 0 0

V p - .0 0 1 -.0 0 1 .0 0 0 - .0 0 1 - .0 0 1 .0 0 0 - .0 0 2 - .0 0 1 .0 0 0

V O - .0 0 2 -.0 0 1 .0 0 0 - .0 0 2 - .0 0 1 .0 0 0 -.003 - .0 0 1 .0 0 0

V I .0 0 1 .0 0 0 .0 0 0 .0 0 1 .0 0 0 .0 0 0 .0 0 1 .0 0 1 .0 0 0

V y - .0 1 0 - .0 0 2 -.0 0 1 -.007 - .0 0 2 .0 0 0 -.014 -.003 - .0 0 1
.5 VS .004 .0 0 1 .0 0 0 .003 .0 0 1 .0 0 0 .005 .0 0 1 .0 0 0

V F -.005 - .0 0 1 .0 0 0 -.003 - .0 0 1 .0 0 0 -.006 - .0 0 2 - .0 0 1

V o .030 .015 .007 .0 2 1 .0 1 1 .005 .041 .0 2 1 .0 1 0

V I .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

V y .009 .003 .0 0 1 .007 .0 0 2 .0 0 1 .013 .004 .0 0 1
-.5 vs -.003 - .0 0 1 .0 0 0 - .0 0 2 - .0 0 1 .0 0 0 -.004 - .0 0 2 .0 0 0

v f .004 .0 0 1 .0 0 1 .003 .0 0 1 .0 0 0 .005 .0 0 2 .0 0 1

Vo -.028 -.014 -.007 - .0 2 0 - .0 1 0 -.005 -.039 - .0 2 0 - .0 1 0
V I .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .001 .0 0 1 .0 0 0
v y -.016 -.004 - .0 0 1 - .0 1 2 -.003 - .0 0 1 -.023 -.005 - .0 0 1

.75 VS .004 .0 0 1 .0 0 0 .003 .0 0 1 .0 0 0 .005 .0 0 1 .0 0 0

v f -.008 - .0 0 2 - .0 0 1 -.005 - .0 0 1 - .0 0 1 - .0 1 0 -.003 - .0 0 1

vo .044 .0 2 2 .0 1 1 .031 .016 .008 .061 .030 .015
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TABLE 2.43
MONTE CARLO S.D. OF Vi,V'y,T'6,T'FiVo, FOR 8 =  1, 7  =  0, =  ipj =  0, i

T 1 2 .5
p n 64 128 256 64 128 256 64 128 256

VI .041 .019 .009 .029 .014 .007 .058 .027 .013
I77 .043 .020 .009 .031 .014 .007 .060 .028 .013

0 i'a .043 .020 .009 .030 .014 .007 .060 .028 .013
vf .044 .020 .009 .031 .014 .007 .061 .028 .013
vo .040 .019 .009 .029 .014 .007 .056 .027 .013
vi .035 .016 .008 .025 .012 .006 .049 .023 .011
vi .043 .017 .008 .030 .012 .006 .060 .024 .011

.5 vs .037 .017 .008 .026 .012 .006 .052 .024 .012
vf .043 .018 .008 .031 .013 .006 .060 .025 .012
vo .040 .020 .010 .028 .014 .007 .056 .028 .014
vi .033 .016 .008 .024 .012 .006 .046 .023 .011
T77 .040 .018 .009 .029 .013 .006 .056 .025 .012

-.5 VS .035 017. .008 .025 .012 .006 .049 .024 .012
V F .039 .018 .009 .028 .013 .006 .055 .025 .012
Vo .039 .020 .010 .028 .014 .007 .054 .028 .014
VI .026 .012 .006 .019 .009 .004 .037 .018 .009
T77 .042 .015 .007 .030 .011 .005 .059 .022 .010

.75 VS .031 .015 .007 .022 .010 .005 .043 .021 .010
VF .042 .016 .007 .030 .011 .005 .059 .022 .010
Vo .043 .021 .011 .030 .015 .007 .060 .029 .015

TABLE 2.44
EMPIRICAL SIZES OF Wu  W6, WF, WQ FOR 6 =  1, 7  =  0, fa = fa =  0,

P
a
n Wi W7

.05
W6 WF W0 Wi W7

.10
W6 WF Wo

64 .061 .055 .199 .200 .058 .122 .125 .267 .264 .122
0 128 .053 .053 .126 .126 .052 .107 .107 .191 .191 .113

256 .048 .048 .090 .090 .046 .118 .115 .154 .153 .109
64 .066 .106 .199 .218 .126 .127 .175 .266 .297 .213

.5 128 .056 .067 .137 .140 .126 .113 .129 .209 .202 .201
256 .053 .064 .085 .095 .107 .095 .117 .146 .159 .180
64 .047 .104 .196 .223 .131 .110 .174 .274 .309 .210

-.5 128 .068 .086 .145 .159 .121 .114 .148 .221 .218 .205
256 .045 .061 .093 .100 .119 .101 .123 .148 .156 .199
64 .066 .185 .211 .254 .212 .122 .262 .280 .333 .331

.75 128 .052 .116 .153 .156 .204 .099 .190 .217 .224 .330
256 .056 .094 .102 .115 .197 .109 .159 .170 .170 .306
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Chapter 3

Parametric estim ation of weak 
fractional co-integration

3.1 Introduction
In this chapter, as opposite to the situation considered in Chapter 2 , we will 

focus on the case where in model (1.25), (1.26), the co-integrating gap (3 is small, 
more precisely

0  < 1/2, (3.1)
and where the real numbers 7  and 8 satisfy

0 < 7  <8. (3.2)

As anticipated, we describe this situation as weak fractional co-integration, since the 
memory reduction achievable is small relative to the C l  (1, 1) case, or other cases in 
which /3 >  1/2. We anticipate that in (1.25), (1.26),

Cov(ult,u 2t) ^  0 , (3.3)

so that, viewing (1.25) as a regression model, the regressor x t is contemporaneously 
correlated with the co-integrating error A T h e  most dramatic contrast with 
this familiar C l  (1,1) situation arises when

6 < 1/2, (3.4)

because the “simultaneous equation bias” inherent in (3.3) leads to inconsistency 
of the OLS due to the fact that x t is asymptotically stationary and so its sum of 
squares does not asymptotically dominate that of A T o  overcome this problem, 
Robinson (1994c) showed that the NBLS is consistent, due to the dominance near 
zero frequency of an I ( 7 ) spectral density by an 1(8) one. (He considered the purely 
stationary situation, where there is no truncation in (1.25), but our modification does
not affect such basic asymptotic properties). The same method was subsequently
studied by Robinson and Marinucci (1998, 2001) in case

8 > 1/2, (3.5)

99



where there is trending nonstationarity. Here, the OLS is consistent, with con
vergence rate depending on the location of 7  and 8 in the non-negative quadrant, 
but the NBLS still sometimes converges faster, and never converges slower, despite 
dropping high frequency information, as we showed in Chapter 1. In any case, as 
discussed in Chapter 2, the question which then arises is whether the rates of con
vergence of OLS and NBLS are optimal, by which we mean whether they match the 
rates achieved by the Gaussian ML estimate under suitable regularity conditions. 
They are optimal for the combination 7  +  <5 > 1, <5 — 7 > l / 2 , but otherwise not. In 
particular, the n 5-7 rate is optimal for 8 — 7  > 1 /2  without the restriction 7  +  6 > 1, 
and we have established it in Chapter 2 for estimates asymptotically equivalent to 
the ML, allowing for consistent estimation of unknown 7  and 8 and a vector 0 of 
unknown parameters describing the autocovariance structure of ut; these estimates 
of v  have mixed normal asymptotics, and a Wald test statistic with an asymptotic 
null x 2 distribution, as established earlier in the (7/(1, 1) case by Phillips (1991a). 
Indeed, we found the limit distribution unaffected by the question of whether 9, 7  
and 8 are known or unknown.

In case of weak fractional co-integration with (3 <  1/2, a substantially differ
ent asymptotic inferential theory prevails, impacting also on the question of how 8 
and 7  should be estimated. Under (3.1), since yt (7 ) and x t (7 ) are /(/?), they are 
asymptotically stationary, and so, intuitively, one anticipates the existence of n 1/2- 
consistent and asymptotically normal estimates of v; the OLS and NBLS converge 
slower than this owing to the dominance of bias due to (3.3). Note that (3.1) ex
cludes the traditional C 7(l, 1) case and so might be thought of as less plausible than 
(3 > 1/2. However, the vast bulk of the co-integration literature has focused only on 
the (7 /(1 ,1) possibility and there has been little study of fractional possibilities, or 
even the testing of the unit root hypothesis on yu x t against fractional alternatives, 
as distinct from stationary AR ones. In fact, the fractional co-integration analysis 
by Robinson and Marinucci (1998) of two of the bivariate series originally analysed 
by Engle and Granger (1987) (namely M l/nominal GNP and M3/nominal GNP) 
and one analysed by Campbell and Shiller (1987) (stock prices/dividends) in the 
(7/(1,1) context was suggestive of (3.1). Moreover, we cover not only 8 > 1/ 2 , but 
also the asymptotically stationary case 8 < 1/ 2 , which may be relevant for many 
financial time series. In fact, some of the empirical evidence presented in Chap
ter 1 is also suggestive of this type of co-integration. Note that here, the NBLS 
of Robinson (1994c) is only m1//2-consistent for m  increasing slower than n (indeed 
the optimal minimum-mean-squared error rate is n2/5), so that we again achieve an 
improvement.

We are principally concerned with estimation of v. If 7  and 8 are known, while 
ut is known to be white noise with unknown variance-covariance matrix Q, then the 
ML estimate of v  is given in closed form, and may be computed by means of an 
added-variable least squares regression, as pursued in the following section, which 
also extends to VAR ut , of known degree, but with unknown AR coefficients, when 
our estimate of 1/ is no longer as efficient as the ML but has the same, ^/n, rate of 
convergence, under (3.1). When 7  and/or 8 are unknown, and ut has parametric 
autocorrelation (such as following a VAR), then it seems that the Gaussian ML of 
all the unknowns is again yjn-consistent and asymptotically normal, but with limit

1 0 0



covariance matrix tha t is not block-diagonal, so that in particular the asymptotic 
variance of the estimate of v differs from that when 7  and 8 axe known. If 8 <  1/ 2, 
a priori, conveying the implication that 8 and 7  are both estimated by optimizing 
over subsets of the intersection of (3.2) and (3.4), then the consistency and asymp
totic distribution theory would largely follow the lines of authors such as Fox and 
Taqqu (1986) and Hosoya (1997), who were the first to develop such theory for 
standard scalar and vector long memory time series models respectively, the most 
notable difference perhaps being the fact tha t in our setting x t and yt would be only 
asymptotically stationary. If the possibility that 8 >  1/2 is admitted, and possibly 
7  >  1/2 also, then the situation is more delicate, as discussed in Section 3.4.

The preceding discussion makes it apparent tha t when 7  and 8 are unknown 
the issue of how they axe estimated is of greater significance when ft < 1 /2  than 
when p  > 1/2. It is indeed essential here (due to the correlation between x t and 
uit) tha t they be estimated Vn-consistently in order for v  to then be estimated 
y/n -consistently, so tha t simple closed-form semiparametric methods such as log 
periodogram regression will not suffice. Closed-form y^n-consistent estimates of 
integration orders are available (see Kashyap and Eom, 1988, Moulines and Soulier, 
1999), but these do not cover our bivariate situation and VAR uu and also entail 
logging the periodogram, which raises technical difficulties not present in estimates 
based on quadratic forms, such as the ML. In our setting some degree of numerical 
optimization seems inevitable. Since this is likely to entail an initial search of the 
parameter space to locate the vicinity of a global optimum, it is desirable if the 
computations can be arranged so that only univariate optimizations axe involved. 
Even after concentrating out parameters, when both 7  and 8 axe unknown the 
Gaussian ML estimation requires a bivariate optimization under white noise u t, and 
at least a trivariate optimization when ut is VAR. We propose y^n-consistent and 
asymptotically normal estimates that require only univariate optimizations.

The basic structure of the estimates of v  is described in the following section. 
Section 3.3 provides asymptotic theory in case 7  and 8 are known. Section 3.4 
considers estimation of 7  and 8 and the effect on estimating v. Section 3.5 contains 
Monte Carlo evidence of finite sample behaviour, and Section 3.6 several empirical 
applications.

3.2 E stim ation of v
Noting (2.4) in Chapter 2, we take ut to be generated by the VAR

p

Ut =  ^   ̂BjUt—j ~1“ , (3*6)
j=1

where all zeros of de t{ /2 — Y7j=1 BjZj } outside the unit circle, the Bj being 2 x 2 
matrices, while et is a bivariate sequence, uncorrelated and homoskedastic over t, 
with mean zero and covariance matrix fi. We take (3.6) to mean white noise ut 
when p = 0 .
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Prom (2.4) and (3.6) we have

~  E  = v  |c (̂7) ~ E  j + 4 > * > !» (3-7)
where

4  = wi,

£ t  = u t ~  E  B j U t - j ,  t = 2, ...,p, (3.8)
j=i

4  =  e*, t > P -

Denote by Bij the zth row of Bj. Writing £u for the zth element of et, for t  > p, the 
second equation of (3.7) can be written as

x t(8) ~  E  B 2jZt- j{7 , 8) = - v  E  B 2j Cxt-j(nf) +  £2t, (3.9)
j - i j=i

whence the first equation can be written as

p  p

2/i(7 ) =  ^ t ( 7 ) + W  W + E  (B lj -  <PB 23) Zt-j{7, 5 )-!/ E  (£ lj -  <PB 2j) C®«-i(7)+ei.2,4,
j=l j=l

(3.10)
where £1.2,t =  £it — <f£2t, <-P =  ^ (eu ^J/.E 'fc lt) ; (3.10) is a form of error-correction 
representation.

We wish to cater for the possibility of prior zero restrictions on the Bj which serve 
to eliminate some y t - j { i ) ,  £ t-j(7 ), X t ~ j ( 8 ) ,  as this will improve efficiency. Thus we 
introduce a q x  (3p +  2 ) matrix, which is h p+2 when there are no such restrictions, 
but for q < 3p +  2 , Q is formed by dropping rows corresponding to the restrictions. 
Thus we can write (3.10) as

2/4(7 ) =  &QZt( 7 ,8) +  £1.2,u (3.11)

where
Zt(c,d) = ( x t ( c ) , x t (d) ,  w ' ^ c ,  rf) w't_p(c, d) ) ' , (3.12)

wt(c,d) = (xt(c),xt (d),yt (c))'. (3.13)

Since E(£i,2,t^t(7 , 8)) = 0, we consider the (possibly constrained) least squares 
estimate

?(c, d) =  G(c, d)~1g(c, d), (3.14)

taking (c, d) = (7 ,^), (7,8), (7 , 8) or (7 , 6), depending on whether 7  and/or 8 are 
known or estimated by 7 ,5, and

G(c,d) = Q -  £  Zt (c,d)z;(c,d)Q’, g(c,d) = Q — £  Zt (c,d)yt(c). (3.15)
n  t = p + 1 71 t = p + 1
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For example, in case p =  1, if Uu is white noise while u2t is AR(1), then q = 3 and
(3.10) becomes

yt(7 ) =  i/xt(y) +  (pxt{6) -  (pB22iXt- i ( 6) +  £1.2,t, (3.16)

where B 22j is the second element of B 2j. Notice that v, ip and B 22\ are all identified 
in (3.16), but it is apparent from comparison of (3.10) with (3.11) that in general, 
while v  and <p are expected to be identified, only some elements of the Bj are. 
However, we are treating the Bj  as nuisance parameters, indeed it is principally v 
tha t is of interest, so we stress

z/(c, d) =  l'G^c, d)~lg(c, d), (3-17)

where 1 =  (1 , 0 , ...,0)'.
The representation (3.10) is of error-correction type and in case p = 0, £"(7 , 6) 

actually provides the Gaussian ML estimate of z/, given knowledge of 7 ,6  but lack 
of knowledge of Cl. For p > 1 , it is less efficient than the ML for this case, but 
still n 1/2-consistent and computationally considerably simpler. Notice that over
specification of p results in a further efficiency loss, but under-specification of p 
produces inconsistency. In moderate sample sizes, a modest choice of p, even p =  
1 , might thus be a wise precaution. On the other hand, one could also regard
(3.6) as approximating a more general infinite AR process with nonparametric I (0) 
autocorrelation.

3.3 A sym ptotic theory w ith known 7 , 6
The present section establishes the n 1/2-consistency and asymptotic normality of 

$ (7 , S), and hence of 6). We assume in addition to the description of (3.6) that 
the et are stationary and ergodic with finite fourth moment, satisfying also

E  (£t| T t- \)  =  0 , E  (et£'t \ J-’t-i) = ^  (3.18)

almost surely, where T t is the cr-field of events generated by £s, s < t, and also 
assume that conditional (on third and fourth moments and cross-moments
of elements of £t equal the corresponding unconditional moments. Thus, the £t
essentially behave like an iid sequence up to 4th moments. Now, noting from (1.26)
that

x t{l) =  Z  aj(P)u2,t-j, t >  0; = 0 , t < 0, (3.19)
o

define
OO

^ ( 7 ) =  E  aj{P)u2,t-j, Xt ( 7 ) =  x t{l) +  £*(7)1 (3.20)
j= m a x (t,0 )

so that because of (3.1), Xt(j), t  = 0, ±1 ,..., is a covariance stationary sequence. 
Likewise, so is

yt( 7 ) =  vx t{i) + uiU (3.21)
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as is U2t . Now define

fit = (xt( l ) ,u 2t, yt ( l ) ) ' , Zt = (xt (j),U 2t,w't_1,.. . ,w ,t- py , (3.22)

$  =  E{ZtZ[), S '=  £  . (3.23)

The proof of the following theorem is left to Appendix 3. A.

T h eo rem  3.1. As n  —► oo

n 1' 2 { % ,  5 ) - r f }  ~>d N  (0, (Q<bQ')-1Q 'b Q 'm Q ,r l) , (3.24)

and the covariance matrix on the right hand side is consistently estimated by

G(7 ,S ) -1K (’1,S)G('y,S)-1, (3.25)

where

in which

K{c,d) = Q -  £ ) g?2 (M ) Z (M ) z ;M ) < 2 ',  (3.26)
n  t = P+ i

ei.2,t(c>d) =  Vt(c) ~  (c> d)’QZt{c, d). (3.27)

R em ark  3.1.1. For p > 1, 1̂ (7 , S) is inefficient relative to the Gaussian ML. Over- 
parameterization in the B j  results in further loss of efficiency in estimation of v. 
Consider the case where, in the estimation, the B j  are taken to be diagonal, with 
also white noise and u2t AR(p), to extend (3.16). Then, if in fact u2t is also 
white noise the limiting variance of n 1t2{v{7 , 8) — v}  is

“L / ( “2 E  »i(/8)J. (3-28)
j = p + 1 J

where 2 =  ^7(sf 2,t)» ^2  =  E (£2t)i (3.28) is increasing in p. As a simpler alternative 
to (3.26), (3.27), we can consistently estimate (3.28) by

S & f r . i K l ' G f r , * ) ! ) " 1 . (3 -29)
where

£? .2 (7,<5) =  1  E  8 U , ( 7 , « ) -  (3 .3 0 )
t = p + 1

Note tha t (3.28) and (3.29) also apply in case p — 0 is correctly taken in the
estimation, when ^(7 ,8) is equivalent to the Gaussian ML, and (3.28) becomes

< 2/  (“2 (V2 -  0’ !/2 -  /3) -  l |  V  (3.31)

Note also that (3.28) and (3.31) do not depend on fourth cumulants of et. However, 
if in fact ut is not white noise, the limiting variance of n l^2{V(7 , 6) — 1/}, namely

l ' iQ Q Q T 'Q V Q 'iQ Q Q T 1!, (3.32)

104



(see (3.24)), in general depends on the fourth cumulant of £1.2,t, £1.2,t, £21 and £2t, 
though of course this is zero under Gaussianity.

R em ark  3.1.2. On the other hand, under-parameterization of the Bj produces 
inconsistency of £(7 ,5), as when ut is actually AR(p  + 1 ) .  In this connection, 
note tha t in Chapter 2 we considered the Gaussian ML for (3 > 1/2 in case of a 
far more general parametric class than (3.6). We can view (3.6) more informally, 
as approximating an actual, unknown, time series model in the hope that bias is 
decreasing in p, a statement which can likely be justified in a rigorous way by allowing 
p  to increase slowly with n. Our AR approach is computationally convenient, and is 
in a long tradition of macroeconometric estimation of linear simultaneous equations 
systems, as well as relating to Johansen’s (1991) approach to (77(1,1) co-integration. 
In case of ARM A models, over-parameterization of both AR and MA orders can have 
more serious consequences than those discussed in Remark 3.1.1.

R e m ark  3.1.3. So long as p > 1 and some Bj are non-diagonal, the endogeneity 
property (3.3) holds even when Q, is diagonal, i.e. ip = 0.

3.4 The case of unknown 7 , 6
The main practical interest in fractional co-integration centres on the realistic 

situation in which 7  and/or 8 are unknown. We shall focus on the case where 
both 7  and 6 are unknown, as being the most difficult both computationally and 
theoretically.

First, suppose that ut is correctly taken to be white noise, with unknown co- 
variance matrix Q, satisfying (3.3). Considering the Gaussian log-likelihood, both 
Q and v can be concentrated out to leave an objective function of 7  and 8. The 
resulting estimates of 7  and 8 can then be plugged into (3.17). As mentioned in 
Section 3.1, asymptotic theory under 8 <  1 /2  is a relatively standard extension of 
tha t for Gaussian estimates in such models as stationary fractional ARIMAs. For 
fractional ARIMAs whose integration order is allowed to take nonstationary val
ues, there has been difficulty with the consistency proof (an essential preliminary 
to limit distribution theory, because estimates are only implicitly defined). This is 
especially due to lack of uniformity of convergence of the objective function around 
admissible values 0.5 less than the true value of the integration order, as discussed by 
Velasco and Robinson (2000), who by means of tapering, and a different definition of 
fractional nonstationarity from ours, established y/n-consistent and asymptotically 
normal frequency-domain estimation of integration orders and other parameters in 
quite general univariate models, while allowing the admissible set to be arbitrarily 
large. Tapering, however, inflates the variance, while time domain estimates conve
niently exploit the simple white noise or VAR structure of ut , and seem natural for 
our definition of nonstationarity, and are certainly justifiable if <5 and 7  are known 
to lie in intervals of length no greater than 1/ 2 , for example (0 , 1/ 2 ) or (1/ 2 , 1].

We propose estimates of 7 , 8  and v that are -y/n-consistent and asymptotically 
normal and require two univariate nonlinear optimizations, in place of one bivariate 
one. Our procedure extends nicely to the VAR ut case, where after cancelling out
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Q and the B j , the Gaussian ML is a trivariate function; note that v and the Bj are 
involved bilinearly as well as linearly in (3.7).

Pursuing the case of white noise ut , i.e. p = 0 in (3.6), we can write (1.26) as

x t(8) = £21, t > l .  (3.33)

It is proposed to estimate 8 by

So =argm in So(d), (3.34)
dev

for a compact set V  and
So(d) = £  x 2t (d). (3.35)

t=  1

Then, we estimate 7  by
70 =arg min T0(c), (3.36)

cec

for a compact set C (presumably a subset of [0,8]) and

To(c) =  £  {yt(c) -  v{c,8o)xt(c) -  £(c,60)zt(5o)} , (3.37)

where v(c,d) is given by (3.17), taking p =  0, and <p(c,d) is the second element of 
d(c, d) in this case. Notice that the presence of c as argument in yt(c), and indeed of 
d in x t(d) of (3.35), presents no barrier to consistent estimation because, for example, 
yt(c) involves c only in the coefficients of lagged values yt-i, y t-2> •••> not yt.

In case of VAR ut , we develop further the triangular structure of (1.25), (1.26)
by assuming

Bj is upper-triangular, j  = 1, (3.38)

This corresponds to a kind of causal structure, with yt formed from yt- i , y t - 2, ••• and 
x t , x t- i , ..., but x t being determined by

x t(8) -  </>'RXt(8) = eat, (3.39)

with
X t(d) = (xt^ ( d )  x t. p(d)Y, (3.40)

and R  an r  x p  matrix with R = Ip in case r = p but for r  <  p, R  is formed by 
dropping specified rows from Ip, in case B 22j =  0 for some j .  The prescription (3.39) 
includes the case of diagonal Bj,  does not seem an excessive requirement given the 
allowance for non-diagonal Q, and introduces an element of parsimony.

Define
?(d) =  H(d)~1h(d), (3.41)

where

H(d) =  R -  £  X t(d)X't {d)K, h(d) = R -  f )  Xt(d)xt{d). (3.42)
71 t=p+l 71 t=p+ 1
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First, estimate 8 by
8P =argm in Sp(d), 

d e v
(3.43)

where
SP(d)=  t ,  { x t ( d ) - $ { d ) 'R X t(d ) \2 .

t=p+ 1 J
(3.44)

Then, estimate 7  by
7p =arg min Tp(c),

c€C
(3.45)

where
t p ( c )  = E  -  tf(c,6p)'Q Zt(c,6p) )t=p+i L J

(3.46)

As abbreviating notation, we denote throughout, for any p > 0 , <5 =  <5p, 7  =  7p. 
In the following theorem, we assume 7  £ C, 8 and take the supports of C and 
V  to be of width less than 0.5 to avoid a difficulty described earlier in this section. 
The proof is omitted as it is extremely complicated and lengthy, while not entailing 
any novel difficulty.

T heorem  3.2. A s  n  —> 00

consistent estimates A  and B are presented in Appendix 3.B.

R em ark  3.2.1. Analytic formulae, in either the time or frequency domain, for A  
and B  are excessively complicated, and thus omitted. Note that the estimate A B A ' 
provided by Appendix 3.B is guaranteed non-negative definite.

R em ark  3.2.2. As well as being useful in inference on i>, the theorem could also be

R em ark  3.2.3. On the other hand, our estimation procedure, though not our 
asymptotic theory, can also be used when (3 > 1/ 2 , though alternative, possibly 
computationally more convenient, methods, are available here.

R em ark  3.2.4. One approach, suggested in Chapter 2 when {3 > 1/2, is the use of 
residuals from OLS or NBLS estimates of v  in the estimation of 7 . However, these 
are always less-than-n1 ̂ -consistent under (3.1), and so it appears that the resulting 
estimates of 7  will not achieve the essential n 1/2-consistency needed to provide an 
n 1/2-consistent estimate of v.

R em ark  3.2.5. Even when u t is white noise, £(7 , 8) ,  8  and 7  are inefficient relative 
to the Gaussian ML; intuitively, this is due to the estimation of 8 from only the

[ £(7 > 8 ) - 1/ '  
n 1/2 7  - 7  —>d N  (0 ,A B A ') ,

8 - 8
(3.47)

where A  is a 3 x (q +  2) matrix and B  is a (q -I- 2) x (q +  2) matrix, for which

applied in inference on 7  and 8, for example to set a confidence interval for (3 which 
could be useful in judging the suitability of the weak co-integration specification
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second equation of system (1.25), (1.26) (i.e. (3.34)), whereas the first equation also 
contains relative information. However, the estimates can be updated to efficiency 
by a single Newton step.

3.5 M onte Carlo evidence
W ith the main aim of investigating the performance in finite samples of the 

estimates of v  proposed in this chapter and associated rules of inference, and making 
comparisons with the simplest estimate, the OLS, a Monte Carlo experiment was 
carried out. In data  generation from (1.25), (1.26), (3.6), we took p = 1 throughout, 
with

Bi = diag {bi,b2} , (3.48)

where each of the bi was allowed to take each of the values 0, 0.5, 0.9. The case 
bx =  b2 = 0 actually corresponds to p =  0 in (3.6), where ut is a white noise 
vector. Likewise, bi =  0, b2 ^  0 corresponds to (3.16). We have employed in 
(3.48) abbreviating notation compared to (3.16), so b2 = B 22\. The et in (3.6) were 
generated as Gaussian with E(eft) = =  1 E(eit£2t) =  p, taking values
-0.5, 0, 0.5, 0.75, via the g05ezf routine of the Fortran NAG library. We varied p in 
order to assess possible “simultaneous equation bias” , x t and uu  being orthogonal 
only when p = 0. We employed four (7 , 6) combinations:

(7 , 6) =  (0,0.4), (0.2,0.4), (0.4,0.8), (0.7,1), (3.49)

for all of which /? <  1/2. Notice that variances of all estimates, both in finite samples 
and asymptotically, will inevitably vary across parameter values. For example, be
cause the E(e?t) are fixed throughout, E(e\ 2̂ ) will decrease in |p|, while E(uft) will 
increase in bi. Finite sample biases of our estimates will doubtless also be affected 
by such variation, though in a more subtle manner. We took v  =  1.

For each combination of parameter values, 1000 series of {yt , x t} of lengths n = 
64,128,256 were generated. Fractional series were generated as in (3.19), using 
cio (a) =  1, aj+i (a) =  ((j  -|- a ) / ( j  +  1 ))aj (a), j  > 1, for a > 0. For each series, we 
computed estimates of the following three types:
(i) The OLS, given in (1.33).
(ii) The Infeasible estimate Vj = v(7 , 6) based on correct specification and misspec- 
ification and/or over-specification.
(iii) The Feasible estimate Vp =  ^(7 ,6) based on correct specification and misspec- 
ification and/or over-specification.

By “correct specification” we mean that all prior zero restrictions on B\ in (3.48), 
including the non-diagonal ones and any diagonal ones, are incorporated in the 
estimation, but not equality restrictions. By “mis-specification” we mean that for 
61 7̂  0 and 62 /  0 we took Zt (c,d) =  (xt (c) , x t (d))'. By “over-specification” we 
mean tha t for bx = b2 = 0 we took Zt (c, d) =  (xt (c ), x t (d) , (c, d))'. Of course,
knowledge of p =  0 was never used. Table 3.1 records the convergence rates of the 
OLS and, under the heading “optimal” , of Vj, VF.

108



TABLE 3.1 
CONVERGENCE RATES:

OLS WITH p ±  0, p =  0 AND OPTIMAL RATES
(7 , 6) (0,0.4) (0.2,0.4) (0.4,0.8) (0.7,1)

Optimal n 5 n 5 n 5 n 5
OLS, p ^  0 inconsistent inconsistent n A n 3
OLS, p =  0 n 5 n 5 n A n -3

We describe how 5 and 7  in Vp were computed. In estimating 5, we fixed 
t> =[5 — 0.15,8 +  0.15] in (3.43), where 8 is the version of the log periodogram esti
mate of Geweke and Porter-Hudak (1983) proposed by Robinson (1995a), applied to 
the series x t without pooling or trimming, based on bandwidths m  = 20,30,60, cor
responding to n =  64,128,256, respectively in case u^t is assumed in the estimation 
to be white noise, and on m  = 10,15,30, corresponding to n = 64,128,256, in case 
v,2t is assumed in the estimation to be AR(1). In all cases, V  contains the asymptotic 
95% confidence interval [5 — 1.96s.e.(5),5 +  1.96s.e.(5)], where s.e.(8) =  7r/-\/24m  
is the asymptotic standard error of 8 (Robinson, 1995a). In estimating 7 , we fixed 
C =[5 — 0.50,5 — 0.05] in (3.45). The lower bound corresponds to the assumption 
f3 < 1/2. The upper bound seems reasonable since a very small (less than 0.05) /3 is 
unlikely to be detectable, indeed there is then near loss of identificability and very 
poor behaviour of estimates of v.

Tables 3.6-3.15 report Monte Carlo bias (defined as the estimate minus the true 
value) of Vo, Vi and Vp, each table referring to a particular (61, 62) combination 
with either correct specification, mis-specification or over-specification. Generally, 
V1 performs best, followed by Vp, with Vo worst, being these estimates no worse 
than any of the others in 387, 65 and 51 out of 480 cases (considering all p, n, (7 , 6), 
61, 62 combinations) respectively.

We discuss first the cases of correct specification (Tables 3.6-3.12). The overall 
ordering is found in the full white noise case 61 =  62 =  0 (Table 3.6), and in the AR 
case (Tables 3.7-3.12) when p ^  0, but not when p = 0 with 6X =  62 0 , where Vo is
best. For 61 =  62 =  0.9, (7 , 8) =  (0.7,1) and small n, Vo usually beats Vp even when 
p 7^0  (Table 3.8), but this effect does not occur for the same case when 6X =  62 =  0.5 
(Table 3.7). For 61 =  0, 62 ^  0 (Tables 3.9, 3.10), we are close to the white noise 
outcome when 62 — 0.5, but for 62 =  0.9 (Table 3.10), Vo improves relatively to the 
other estimates, and although it is still generally worst, its performance is relatively 
close to the one of Vp. When 6X ^  0, 62 =  0 the bias of Vo decays very slowly, and 
is unacceptably large when 6X =  0.9 (Table 3.12). In any case, out of the 336 cases 
reported with correct specification, Vp beats Vo with relation 275/54 (see Chapter 
2 for description of this concept). Focusing now more on variation across (7 , 6), the 
bias of Vi decreases in /3, as is the case for Vp when 6X =  62 =  0. W ith AR structure, 
the worst performance of Vp is generally found for (7 , 5) =  (0.2,0.4) or (0.7,1). As 
for V0 , bias varies with collective memory 7  +  5 when p = 0, but when p ^  0, (0,0.4) 
and (0.2,0.4) are the worst cases, unsurprisingly in view of the OLS’s inconsistency 
here. Generally, Vp works best under (0.4,0.8). W ith respect to variation in p, 
overall, the bias shares the sign of p in case of Vq , V/, but is opposite in case of
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Vp.  Vi is relatively insensitive to p, though for 61 =  0.9, b2 = 0 (Table 3.12), bias 
increases in |p|, as is the case for Vq , but no clear pattern can be found in the results 
for Vp, though there is evidence of increase in bias with \p\. Looking at variation 
across (£>1, £>2)5 AR structure tends to reduce bias in Vo but increase it, and possibly 
change its sign, in Vj. For Vp, the worst performances occur when 61 ^  0, but even 
here bias decays rapidly as n increases, as it does also for Vj .

Mis-specification (Tables 3.13, 3.14) has surprisingly little effect on Vj, but seri
ously damages Vp, especially when (3 is small, (0.7,1) being clearly the worst case, 
though when (3 = 0A  and 61 =  62 =  0-5, bias decreases substantially with n. As 
expected, now Vo  clearly dominates Vp  with relations 27/18, 37/9 for 61 =  b2 = 
0.5,0.9 respectively, out of 48 cases for each of the relations. As anticipated, over
specification (Table 3.15) makes little difference to V/ ,  Vp,  which do much better 
than V0  (out of 48 cases, Vp  beats Vo  with relation 40/4).

Tables 3.16-3.25 contain Monte Carlo standard deviations. As noted before, 
variability is considerably affected by parameter values. In fact, Vo was superior to 
V1  for most of the combinations, with Vp a poor third, being these estimates no worse 
than any of the others 377, 115 and 0 times, out of 480 cases, respectively. W ith 
correct specification, this was most notably the case for small n and £)j =  62 /  0 
(Tables 3.17, 3.18), in part due to the proliferation in regressors, five in Vj and 
Vp versus one in Vo, with variability in 8 and 7  considerably inflating standard 
deviations of Vp relatively to those of Vp Precision also increases with increasing n , 
and when one or both of the bi is zero (see Tables 3.16, 3.19-3.22), the performance 
of V1  and Vp improves relative to that of V q -  In fact, for the b\ —  0.9, b2 = 0 
situation, Vj clearly beats Vo (with relation 37/11 out of 48 cases), while under the 
same AR structure, Vp also dominates Vq for cases (7 , 8) =  (0.4,0.8), (0.7,1) when 
n =  256, and (7 , 8) =  (0.7,1) when n =  128.

Mis-specification (Tables 3.23, 3.24) improves matters with respect to correct 
specification, especially when n is small, but the decrease in value of the standard 
deviation is quite slow, mainly for the case (7 , <5) =  (0.7,1). On the other hand, with 
over-specification (Table 3.25), Vj and Vp unsurprisingly deteriorate further, and 
generally larger sample sizes will be required in order for their faster convergence 
rate to consistently deliver smaller standard deviations than Vo . Nevertheless, it 
must be borne in mind that this chapter’s motivation is not to minimise variance 
but rather to achieve n 1/2-consistency and asymptotic normality in a fairly general 
context, which the OLS Vo does not provide.

We now go in to examine the usefulness of these limit distributional properties 
of Vi and Vp in finite-sample statistical inference, by examining the size of Wald 
tests. We computed

w ,  = . WF =  f e i f e  (3.50)
( i )

where [-]^ denotes zth diagonal element. Empirical sizes, with respect to nominal 
sizes a  =  0.05 and 0.1, again across 1000 replications, are reported in Tables 3.26- 
3.35, for each of the (61, 62) for which biases and standard deviations were given.
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W ith correct specification, even for bi =  b2 =  0 (Table 3.26), sizes of the infeasible 
statistic Wi are somewhat too large, and autocorrelation in ut exarcebates this, with 
the case b\ ^  0 , b2 =  0 again worse than 61 =  0 , b2 ^  0 , but not necessarily worse 
than 61 =  62 7̂  0 (Tables 3.27-3.32). Results for a  =  0.1 are clearly better than for 
a  =  0.05. Overall, there is improvement as n increases, and even for small n, the 
performance of Wj seems quite satisfactory. Predictably, mis-specification (Tables 
3.33, 3.34) plays havoc, producing sizes tha t are unacceptably high, especially for 
a  =  0.05 and 61 =  62 =  0.9. W ith over-specification, performance is again good, 
though we would not expect high power.

For the feasible statistic Wp, with correct specification and no autocorrelation 
in ut (Table 3.26), sizes are worse than for Wj, with less evidence of settling down 
as n increases and varying more across parameter values, sometimes actually being 
less than the nominal values. Indeed, with autocorrelation (Tables 3.27-3.32), sizes 
are emphatically too small and mostly further from the nominal values than the 
corresponding Wj are in the opposite direction, though this is by no means always 
the case, and for n  =  64 and a = 0.05 the results are extraordinarily good. However, 
we would not wish to draw over-optimistic general conclusions here, and certainly 
not from Tables 3.33, 3.34, where the mis-specification so evident in the results for 
Wi can barely be seen in those for Wp, superiority of Wp being even more dramatic 
when bi =  b2 =  0-9- W ith over-specification (Table 3.35), Wf mostly beats W/, 
especially when a  =  0.05. It is possible that the performance of Wf relative to 
Wi is not accidental because Wi has an asymptotic formula in the denominator. 
Certainly, our overall experience with WV is quite encouraging.

While we have stressed estimation of 17 estimates of 6 and 7  would also be of 
interest in any empirical analysis of fractional co-integration, and so we also give 
some space to the performance of 6 and 7 , and of Wald tests for 8 and 7  based on 
Theorem 3.2. _

Tables 3.36 and 3.37 report Monte Carlo bias and standard deviation for 6 for 
the same values of 6 (0.4, 0.8, 1), 62 (0, 0.5, 0.9) and n  (64, 128, 256) as before, again 
based on 1000 replications. However, we fix p =  0.5 here, using the same estimates 
of 8 computed in this case for the feasible estimates Vp and Wald statistics Wp  
discussed previously. We report results for minimization of both So (d) and Si (d) 
(see (3.35), (3.44)), so that So (d) with b2 =  0 and Si (d) with b2 7̂  0 both correspond 
to correct specification, Si (d) with b2 = 0 to over-specification, and So (d) with 
62 7̂  0 to mis-specification.

Biases based on So {d) and Si (d) with b2 = 0 increase somewhat with 8, but 
look satisfactory even for n = 64, and are decreasing in n. For Si (d) with b2 =  0.5, 
there is some deterioration, but nevertheless performance is still acceptable, but for 
b2 = 0.9, the results are very poor, even for n = 256, though this is not too surprising 
in view of the difficulties often caused by a near-unit root. Unsurprisingly, there is 
severe bias, increasing with b2, when So (d) is used with b2 ^  0 . Standard deviations 
in the correctly specified and over-specified cases are pretty stable over 5 , but, as 
expected, worse in the latter case.
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Tables 3.38 and 3.39 report Monte Carlo sizes of Wald statistics for 8

(3.51)
AB A '

J(3)

based on Theorem 3.2, with respect to the nominal sizes a  =  0.05, 0.1 respectively. 
As expected, under mis-specification they are far too large, and this is also the case 
using Si (d) with b2 =  0.9. Otherwise, while still too large, they are not bad, and 
decrease in n, the ones for a = 0.1 being best.

Tables 3.40-3.43 give corresponding results for 7 , with b\ = b 2 = b taking values 
0, 0.5, 0.9, and for the four (7 , 8) combinations considered previously, the results 
(not reported) for the cases corresponding to p =  0, -0.5, 0.75 being very similar 
to the ones for p = 0.5. Our estimation procedure being sequential, we consider 
two categories, So (d) followed by To (c) (see (3.37)), and Si (d) followed by Ti (c) 
(see (3.46)), so that in the former case there is correct specification for b = 0 and 
mis-specification for 6 ^ 0 , and in the latter, over-specification for b = 0 and correct 
specification for 6 ^ 0 .  The bias and standard deviation results of Tables 3.40 and 
3.41 exhibit somewhat some variation across (7 , 8), but otherwise the qualitative 
conclusions for 8 still apply. W ith the Wald statistic

more variation in sizes is also found, in Tables 3.42 and 3.43, than for W$, some of 
the sizes being smaller than the nominal ones.

3.6 Empirical exam ples
Using a methodology involving the OLS and NBLS of z/, and semiparametric 

estimates of z/, Robinson and Marinucci (1998) found evidence that (3 < 1/2 in some 
of the bivariate macroeconomic series originally examined by Engle and Granger 
(1987), Campbell and Shiller (1987), who were investigating only the possibility 
of C l  (1 ,1) co-integration. This experience motivates application of our present 
approach to the same data. The main departure from the methodology of the 
previous section was an attem pt at greater realism by determining p in (3 .6) from 
the data, rather than assuming its value a priori. For this purpose, we need proxies 
for the 1%, which can only be obtained by operating on the observed y t ,x t , series with 
preliminary estimates of z/, 7  and 8. To estimate v  here we used the OLS z70 , given 
by (1.33) (and computed by Robinson and Marinucci, 1998). To estimate 7  and 8, 
we used semiparametric estimates (already computed by Robinson and Marinucci, 
1998, Marinucci and Robinson, 2001) in order to provide robustness against a range 
of short-memory specifications for ut . Specifically, the estimates of 7  and 8 computed 
by these authors were of log periodogram (LP) and semiparametric Gaussian (SG) 
type (of the precise form considered by Robinson 1995a,b), using various bandwidths 
and based either on raw data/residuals or on first differenced ones followed by adding

( 7 ~ 7 ) 2n

\a § A '
L J(2)

(3.52)
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back 1. For asymptotic theory under stationarity we appeal to Robinson (1995a,b), 
and under nonstationarity, to Velasco (1999a,b). For preliminary estimates of 7 , 
<5, v, sample correlograms and partial correlograms were computed (to lag length 
36) in order to identify, in the spirit of Box and Jenkins (1971), the AR orders of 
the uit. For each data set, this was done for both the smallest and largest of the 
various univariate estimates based on the series r*/residuals provided by Robinson 
and Marinucci (1998), Marinucci and Robinson (2001), and implications of both 
provided when the results could not be reconciled, recognizing the imprecision in 
semiparametric estimation. As in Chapter 2 , to check for stability with respect to 
the truncation phenomenon, we report computations based on the last n' = n — j  
observations, for j  =  0 , 1 ,..., 10.

We look first at Engle and Granger’s (1987) quarterly consumption and income 
data, 1947Q1-1981Q2 (n =  138). They found evidence of C l  (1,1) co-integration, 
but did not investigate fractional possibilities. Marinucci and Robinson’s (2001) 
analysis tends to support the notion of 8 =  1, but not of 7  =  0 , with positive 
estimates of 7  that sometimes fall in the nonstationary region, thereby hinting tha t 
{3 < 1 /2  is possible.

Taking ^consum ption , x=income, the OLS of 17 from Robinson and Marinucci 
(1998), is 0.229. The two preliminary estimates of 8 taken from Marinucci and 
Robinson (2001) were 0.89 (LP applied to first differences of x  and adding back 1, 
with bandwidth 22) and 1.08 (SG applied to first differences of x  and adding back 
1, with bandwidth 40). In each case, the corresponding correlograms and partial 
correlograms suggested modelling U2t as white noise. The preliminary estimates of 
7  were 0.19 (LP applied to raw residuals with bandwidth 22) and 0.87 (SG applied 
to first differenced residuals and adding back 1 , with bandwidth 40). This large gap 
results in identification of an AR(1) uu  in the first case, and white noise U\t in the 
second. In view of these investigations, we carried out two distinct co-integration 
analyses, one with p =  0 in (3.6), the other w ithp =  1 in (3.6) with Bi  =  diag (61,0).

In case u \t and U2t are both white noise, Table 3.2 reports values of the following 
statistics with n  replaced by n' =  n — j ,  j  =  0 ,..., 10: v =  1/(7 , 6), 8, 7 , and their 
estimated standard errors SE(v), SE(8), S E f i )  from Theorem 3.2, (p =  ^ (7 , 8), 
which is the estimated coefficient of x t (8) in (3.10) for p = 0 with 7 , <5, replacing 7 , 
8, and the correlation Corr (eit,S2t) is estimated by

r = £ (7 ,?) (u}22/£>ii) K (3.53)

where

£11 =  n _1 ^ 2 t (v t(l)  ~  ^ (7 ,6)xt(7 )) , £22 =  n~l x t (£)> (3-54)

with Ylt meaning summation over the last n' observations.
As nf falls, v and 8 tend to increase, and 7  to decrease, but there is high stability 

for n' < 133, and generally the changes are insignificant relative to standard errors, 
v  for n' =  128 being one standard error larger than v for n' = 138 (and also 
somewhat larger than the OLS). The estimates of 8 and 7  are certainly consistent 
with (3 < 1/2. More especially, exploiting the standard errors provided by our
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approach, the hypothesis that <5=1 seems rejectable against 6 > 1 , but (though we 
do not report standard errors of /? =  8 — 7 , which could be computed using Theorem 
3.2) there is no evidence against (3 < 1/2. Substantial negative contemporaneous 
correlation between uu  and u2t is suggested. Note that dropping the first observation 
does not affect <5, as X\ (d) =  X\ for any d.

TABLE 3.2 
Consumption and Income: tit white noise

n' 138 137 136 135 134 133 132 131 130 129 128
V .223 .2 2 2 .251 .252 .251 .248 .247 .242 .243 .245 .246

SE(V) .027 .031 .024 .0 2 2 .023 .0 2 2 .023 .0 2 1 .0 2 2 .023 .023
8 1.07 1.07 1.09 1.15 1.15 1.17 1.18 1.18 1.18 1.18 1.18

SE(6) .028 .028 .059 .068 .073 .080 .083 .082 .083 .082 .084
7 .714 .745 .715 .692 .694 .696 .696 .685 .692 .694 .693

SE(  7 ) .084 .092 .087 .087 .089 .090 .090 .089 .093 .093 .093
$ -.024 -.055 -.085 -.090 -.090 -.086 -.085 -.072 -.073 -.073 -.074
r -.195 -.189 -.297 -.311 -.310 -.294 -.285 -.247 -.251 -.250 -.253

The analysis with uit AR(1) in Table 3.3 presents a very different picture. 
Here, we also report b\ and vb\ , which are the estimated coefficients of yt- \ (7 ) and 
—x t~i{j)  in the regression (cf. (3.10)) used to compute v and (p, and tDn in r is now 
the sample average of the squared residuals from the regression of yt { 7 ) —^(7 , 6)xt ( j)  
on yt- 1(7 ) -  v(y ,6 )x t- i ( j ) .

TABLE 3.3
Consumption and Income: U\t AR(1), u2t white noise

nr 137 136 135 134 133 132 131 130 129 128 127
V .163 .257 .264 .267 .263 .265 .258 .261 .262 .263 .262

SE(V) .179 .055 .054 .057 .053 .056 .051 .056 .055 .055 .054
8 1.07 1.09 1.15 1.15 1.17 1.18 1.18 1.18 1.18 1.18 1.18

SE(6) .028 .059 .068 .073 .080 .083 .082 .083 .082 .084 .084
7 - .1 0 1 -.167 -.183 -.184 -.184 -.179 -.193 -.180 -.184 -.189 -.186

SE(  7 ) .234 .187 .181 .183 .185 .193 .180 .193 .192 .191 .192
61 .798 .843 .842 .839 .837 .832 .845 .842 .842 .842 .843
ub\ .116 .2 2 1 .228 .230 .226 .226 .223 .225 .226 .227 .226
<P .009 -.088 - .1 0 2 -.104 - .1 0 2 -.105 -.093 -.096 -.094 -.095 -.094
r .009 -.128 - .1 2 2 -.119 -.126 -.127 -.128 -.128 -.119 -.117 - .1 2 1

In view of the AR(1) component, we effectively lose one observation, so n' goes 
from 127 to 137, the effect of then dropping the first observation being very striking, 
but the estimates subsequently exhibiting little variation across n'. As u2t is still 
considered a white noise, the estimates of 6 are identical to those of Table 3.2, 
but estimates of 7  are all now less than zero, although not significantly, Engle and 
Granger’s (1987) C l  (1,1) conclusion now being supported. The AR component 
in uu  clearly accounts for the bulk of the autocorrelation in co-integrating errors, 
resulting in the small estimates of 7 , which are based on AR-transformed data. The 
ML, which estimates 7  simultaneously with 61 and the other parameters, would
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allow AR and fractional features to compete more favourably, though, as discussed 
in the Introduction, it would require much heavier computation. Notice that vb\ 
looks quite consistent with the values of V and 61, possibly providing some support 
for the present specification. Note also that the various v are larger than before, but 
that, if indeed (3 > 1/2, their standard errors have to be interpreted with caution, 
as v  is then no longer asymptotically normal.

Engle and Granger (1987) found no evidence of C l  (1,1) co-integration between 
log Mi (y ) and log G A P  (x), on the basis of 90 quarterly observations, 1959Q1- 
1981Q2. Robinson and Marinucci’s (1998) fractional analysis admitted the possibil
ity of co-integration, with j3 < 1/2. In our preliminary analysis of autocorrelation in 
ut) we took from their estimates of 6 the values 1.22 (SG applied to first differences of 
x  and adding back 1, using bandwidth 30) and 1.36 (LP applied to first differences 
of x  and adding back 1 , using bandwidth 22), and from their estimates of 7  the 
values 0.76, 1.2 , both LP estimates but applied respectively to raw residuals using 
bandwidth 22 , and first differences of residuals and adding back 1, using bandwidth 
16. Employing also the OLS of 1/, 0.643, we found no evidence of autocorrelation 
in ut , so proceeded to a co-integration analysis on the basis of p = 0 in (3.6). The 
results axe reported in Table 3.4. We found large variation across the largest n ', but 
a good degree of stability is then achieved^ with substantially larger values of 6 and 
7  (and of their standard errors). Clearly, 8 significantly exceeds 1, while 7  does not, 
and the resulting (3 =  8 — 7  are extremely close to the threshold value of 1/2. There 
is considerable negative correlation between U\t and u2t, and for the smaller n', v  is 
close to  the OLS.

TABLE 3.4 
LogMl and LogGNP: Ut white noise

n' 90 89 88 87 86 85 84 83 82 81 80
u .704 .740 .578 .564 .608 .640 .638 .644 .643 .649 .658

SE(V) .077 .145 .040 .058 .058 .054 .054 .061 .061 .061 .061
6 1.06 1.06 1.91 1.88 1.74 1.63 1.64 1.63 1.63 1.61 1.59

SE(6) .057 .057 .025 .121 .117 .068 .083 .082 .086 .084 .076
7 .884 .928 1.12 1.16 1.11 1.09 1.09 1.11 1.10 1.10 1.09

SE( 7 ) .108 .122 .121 .121 .131 .136 .138 .140 .140 .139 .139
£ -.134 -.222 -.261 -.268 -.315 -.352 -.350 -.379 -.376 -.391 -.408
r -.839 -.543 -.402 -.413 -.455 -.475 -.473 -.507 -.504 -.515 -.522

Finally, we looked at the n = 116 annual observations, 1871-1986, on stock prices 
(y) and dividends (x), analysed by Campbell and Shiller (1987). Their findings with 
respect to C l  (1,1) co-integration were inconclusive, but Robinson and Marinucci’s 
(1998) and Marinucci and Robinson’s (2001) analyses again offered the possibility of 
co-integration with p  < 1/2. The preliminary estimates of 8 taken from Marinucci 
and Robinson (2001) were 0.86 and 0.95, being SG based on first differences of x  and 
adding back 1, with bandwidths respectively 30 and 40. The preliminary estimates 
of 7  were 0.57, 0.77, being LP on first differences of residuals and adding back one, 
with bandwidth 30, and SG on raw residuals with bandwidth 22 , respectively. We 
also used the OLS of 1/, 31. In this case, both 7  estimates suggested white noise 
uit, while the 8 estimates variously suggested white noise and AR(1) u2t, but our
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subsequent fractional co-integration analysis produced 7  and 8 that were too close 
to admit the likelihood of any co-integration. Thus, we report, in Table 3.5, only 
the results with both uu  and u2t white noise. There is little variation with n', and 
strong support for the unit root hypothesis on 8, and, since 7  is significantly larger 
than 1/2 at the 5% level, co-integration with (3 < 1/2 is certainly a possibility. We 
find that v is somewhat larger than the OLS value, though not significantly so.

TABLE 3.5 
Stock Prices and Dividends: Ut white noise

n' 116 115 114 113 1 1 2 111 1 1 0 109 108 107 106
V 32.7 32.7 32.2 31.9 31.7 31.8 31.7 32.0 32.1 32.1 32.1

SE(V) 7.56 7.64 7.80 7.83 7.81 7.93 7.91 7.99 8 .0 2 7.99 8 .0 1

6 1.04 1.04 1.08 1.09 1.09 1.09 1.09 1.09 1 .1 0 1 .1 0 1 .1 0

SE{6) .077 .077 .090 .092 .092 .092 .093 .093 .095 .095 .095
7 .749 .751 .751 .752 .751 .752 .752 .751 .749 .749 .749

SE( t ) .114 .116 .116 .117 .116 .117 .117 .116 .116 .116 .116
$ -8.97 -9.52 -9.13 -8.82 -8.56 -8.67 -8.54 -8.52 -.8.64 -8.59 -8.69
r -.299 -.283 -.272 -.263 -.256 -.259 -.255 -.252 -.255 -.253 -.256

3.7 A ppendix 3

3.7.1 Appendix 3.A: Proof of Theorem 3.1
We prove first that $  is nonsingular, which ensures existence of the inverses in 

(3.24). Define

$ + = E  [ z t Z f )  , Z t  =  (w’t , w U , w l p) ' . (3.55)

It clearly suffices to show that 4>+ is positive definite. Defining

$ + =  E  , Z t =  (w't , « ? ; _ ! , w j-p ) ', (3.56)

for wt = (xt(7 ),U2t ,u it);, from (3.21) it suffices to show that is positive definite, 
and similarly, defining

$ ++ =  E  ( R Z t% R '\  , (3.57)

where R  is a full rank 3 ( p + l )  x 3 (p +  1) matrix whose columns are orthonormal 
vectors such that

R Z t = [x{1 )',v!2, v ! j , (3.58)

where ^ (7 ) =  ( ^ ( 7 ), . . . , ^ ( 7 ))', u2 = {u2t, ..., u2,t- p) \  u x = (ult, ...,u1<t- p) \  it 
suffices to show that is positive definite. Define the vectors

e(A) =  ( l,e iA, . . ,e i>’A)', d(A) =  (1 -  e‘V e (A ) ,  (3.59)

and the 3 (p 4-1) x 2 matrix

E( A) = O' 0' e(A)'
d(X)' e(A)' O' (3.60)
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where O' is here a 1 x ( p + 1) vector of zeros. As in our previous chapter, /(A) is the 
spectral density matrix of uu and note from positive finiteness of £1 and finiteness of 
the Bj tha t the smallest eigenvalue of the Hermitian matrix /(A) is bounded from 
below by a positive constant c, uniformly in A. Then we can write

$ ++ =  r
J — 7T

which for some c >  0  exceeds

: f  E(X)E(-X)'dX  =  c
J — IT

A B O  
B' Ip+1 0
0 0 Ip+i

(3.61)

(3.62)

by a non-negative definite matrix, where 0, A  and B  are (p +  1) x (p -f 1) matrices, 
having ( i , j ) th  elements 0 , aeae+\i~j\ and o,j-A{j >  i) respectively, with aj = 
aj(0). It thus suffices to show that A  — B B '  is positive definite. But for a ( p + 1) x 1 
vector C =  (Ci), oo

~  BB')£  =  ^2 {aeCP+1 +  ••• +  Q>i+P(,i )2 , (3.63)
t=\

which is positive unless £ =  0 because ag/ag-i =  (-£ +  /? — l) /£  is strictly increasing 
in i  >  1 for (3 < 1.

We now have to show that
1
- £ ' Z t( 7 ,6)ZI(7 ,6)n

— y $

n - 1' 2' E ’Zt (y,6)E1.2,t „Ar(0 ,$ ) ,

writing ^2 '  =  Y2t=p+i- To prove (3.65), note first that it suffices to show

n-1/2'E % e1.2,t ->d N(0,V),

because

(3.64)

(3.65)

(3.66)

E n

n i=i

k  p r
< — E ' E  /

”■ j=i J- *
I f  n  oo

< ~ E E ^ - *
Tl f = l  s = t

E  a3e
S = t — j  

0 ,

—isX ||/(A) || dA 

(3.67)

as n  —► oo, by the Toephtz lemma, the last inequality following because /(A) is 
bounded due to the assumption on the Bg. Write Zt =  Zat +  Zbt, where the first 
two elements of Zat, and the last 3p elements of Zbt, equal corresponding ones of Zt. 
Thus Zbt is T t -1  -measurable and

E  (̂ £1.2,tZt) \ J ' t—1  ̂ — B  (si.2,tZat) +  ZbtE (£ 1 .2 ,t l - ^ i - i )  =  0, a.s. (3.68)
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Further,

E  ( ^ 1.2,t%tZt \F t-i^  =  E  (El2)tZatZ'at) 4- E  (s\'2,tZat) Z'bt

+ ZbtE  (els,tZ'at) +  E(e\ 2̂ t)ZbtZ'bt) a.s., (3.69)

and so
^ E ' [ S  {e\.%tZ tZ't 1 ^ - ! }  -  E { e i v ZtZ't }] 0, (3.70)

because Zbt and ZbtZbt — E (Z btZbt) are stationary and ergodic with zero means. 
Since (3.69) has expectation \P, (3.66) then follows from the Cramer-Wold device 
and Theorem 1 of Brown (1971), noting tha t the Lindeberg condition in the latter 
reference is trivially satisfied because Ei.2,tZt is stationary with finite variance. Thus 
(3.65) is proved. The proof of (3.64) follows from (3.67) and elementary inequalities. 
This concludes the proof of (3.24). The proof of the final statement of the theorem 
is omitted as it is standard given (3.24) and its proof.

3.7.2 A ppendix  3.B: D efin itions o f A  and B

For brevity we write G =  G{7 , 6), i9 = i9(7 , 6), H  = H{6), (j> = </>(<5). We have

A =
ax a2 a3
O' 64 65
O' 0 a6

where

a\ =  T G - \  a2 =  - l'tfcS "1,
a3 =  l /'dcscc1scds j  -  l ' t id s j ,  a4 = - s cc\~-i

^5 — Sqc ScdSdd > ^6 — Sdd j

in which

£  = G~l (gc -  Gctf) , = G~l (gd -  G j )  ,

9c = Q l E ' { z te(7)yt(7) +  ^ t(7 ,% (e (7 )} .

=  o 1 e '{ ^ ( 7 ) ^ ' ( 7 , « )  +  ^ (7 ,« )^ (7 )} < 9 ',  

9d = Q ^ ’E 'Z td f y y td ) ,

Gd =  Q ^ E '  { z td(S)Z't(yJ) + Zt(y,6)Zld(6)}Q’,

(3.71)

(3.72)
(3.73)
(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

with

ytcil) = log(l -  L)yt(i), (3.80)
Ztc(7 ) =  lo g (l ~  L) { ^ ( 7), 0, 1 (7 ), 0, ^ - 1 (7 ), x t- P( l ) ,  0, V t - p i l ) } ' ,

Ztd(6) = log(l -  L) |0 ,a ;t (?),0,a;t-i(^),0,...,0 ,a;t_p(?),0 j ,

(3.81)

(3.82)
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and where

with

1 r-'W~2 —  ̂ V'W- ~ ~  ̂ V'' / ~2
&cc 2-*/ ^cd Vf,cVtdi  ^dd  ^ t d i71* 71/ 71*

vtc =  y t d i )  -  t i ' c Q Z t d , 6)  -  t i ' Q Z t c t f ) ,  

itd =  -V'dQZtilJ) -  $'QZui(8),
*>td =  x u f y - f o R X t f y - f t R X t d i S ) ,  

x td(6) =  log( 1 -  L)xt(S),
X ^ S )  =  lo g ( l -L )X t(^, 

fa  = H - ' i f a - H i f a ,  

fa  =  {Xtd(6)xt(S) + X tfyx td iS )}  ,

H i =  +

We also have

B = -  £ '
n £1.2,t{yJ)v tc £i.2,t(y>f>)vtc

£2 t fyw td i2t(f>)u>td

where

(3.83)

(3.84)
(3.85)
(3.86)
(3.87)
(3.88)
(3.89)

(3.90)

(3.91)

2 * ( d )  =  x t (d) -  4>'RXt (d).

(3.92)

(3.93)
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TABLE 3.6
MONTE CARLO BIAS, foi — £>2 — 0, correct specification

p 7
n

vi
64
Up vo vi

128
V p vo vi

256
Up vo

0 .4 -.006 -.005 -.007 - .0 0 1 - .0 0 1 -.003 - .0 0 1 - .0 0 2 .0 0 0

.2 .4 -.014 -.036 - .0 1 1 .0 0 0 -.004 -.005 -.003 -.009 .0 0 0

0 .4 .8 -.006 - .0 0 2 -.015 - .0 0 1 - .0 0 2 -.009 - .0 0 1 - .0 0 1 - .0 0 2

.7 1 -.009 -.024 -.031 .0 0 0 - .0 0 2 -.023 - .0 0 2 -.003 -.005
0 .4 .0 0 1 -.117 .337 .005 -.032 .320 .003 -.009 .308
.2 .4 - .0 0 1 -.268 .394 .009 -.143 .384 .006 -.071 .376

.5 .4 .8 .0 0 1 -.124 .192 .005 -.029 .155 .003 -.009 .1 2 0
.7 1 .0 0 0 -.246 .214 .006 -.074 .182 .004 -.024 .143
0 .4 .0 0 0 .104 -.338 - .0 0 2 .031 -.320 -.003 .007 -.307
.2 .4 .0 0 0 .2 1 2 -.401 -.005 .137 -.387 - .0 1 0 .061 -.377

-.5 .4 .8 .0 0 0 .091 -.193 - .0 0 2 .027 -.151 -.003 .007 - .1 2 0
.7 1 .0 0 0 .181 - .2 2 0 -.003 .065 -.176 -.006 .019 -.142
0 .4 .0 0 2 -.178 .511 .003 -.042 .481 .0 0 2 - . 0 1 1 .460
.2 .4 .003 -.353 .599 .007 -.209 .578 .006 -.097 .562

.75 .4 .8 .0 0 2 -.177 .287 .003 -.043 .226 .0 0 2 - .0 1 0 .176
.7 1 .003 -.308 .315 .005 - .1 2 0 .258 .004 -.031 .206

TABLE 3.7
MONTE CARLO BIAS, 61 =  62 — 0-5, correct specification

P 7
n
8 VI

64
Up vo VI

128
Up vo VI

256
VF vo

0 A -.042 -.053 -.008 -.032 .0 0 2 -.003 -.006 .0 1 2 .0 0 0
.2 A -.069 -.131 -.015 -.044 -.060 -.006 -.003 -.013 - .0 0 1

0 .4 .8 -.042 -.139 -.017 -.032 .051 - .0 1 0 -.006 .009 - .0 0 2
.7 1 -.052 - . 1 1 1 -.033 -.036 .023 -.024 -.005 .006 -.005
0 .4 .004 -.072 .240 -.004 -.041 .2 2 2 -.006 -.004 .208
.2 .4 .016 - .0 1 2 .337 .007 .035 .326 -.009 .008 .314

.5 .4 .8 .004 -.065 .164 -.004 -.044 .135 -.006 -.005 .105
.7 1 .009 -.073 .204 .0 0 0 -.070 .177 -.007 -.032 .140
0 .4 -.017 .095 -.242 -.014 -.003 - .2 2 1 .005 .034 -.208
.2 .4 - .0 1 2 -.026 -.346 -.019 .0 1 1 -.328 .009 .034 -.316

-.5 .4 .8 -.017 .081 -.167 -.014 .0 1 1 -.131 .005 .033 -.105
.7 1 -.015 .058 - .2 1 2 -.016 -.015 -.170 .007 .062 -.138
0 .4 - .0 0 1 -.160 .365 -.006 -.079 .332 -.009 -.015 .310
.2 .4 - .0 1 0 - .1 2 2 .513 -.007 -.036 .487 -.018 -.033 .469

.75 .4 .8 - .0 0 1 -.128 .244 -.006 -.092 .196 -.009 -.017 .154
.7 1 -.004 -.258 .300 -.006 -.168 .250 - .0 1 2 -.043 .2 0 1
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TABLE 3.8
MONTE CARLO BIAS, bi =  b2 =  0.9, correct specification

p 7
n
6 vi

64
Vp vo vi

128
Vp vo vi

256
Up vo

0 A -.026 -.150 -.014 -.016 .1 1 0 -.005 -.008 .025 .0 0 0
.2 A -.057 .028 -.027 -.033 -.038 - .0 1 2 -.009 .013 - .0 0 1

0 .4 .8 -.026 .019 -.025 -.016 .052 -.014 -.008 - .0 1 1 -.003
.7 1 -.036 - .0 1 2 -.043 - .0 2 2 -.153 -.030 -.008 .0 0 1 -.006
0 .4 .016 .050 .158 .004 -.023 .137 .005 -.003 .1 2 0
.2 .4 .028 -.094 .281 .0 1 0 .135 .267 .008 .086 .247

.5 .4 .8 .016 -.109 .140 .004 -.052 .116 .005 - .0 2 0 .090
.7 1 .019 -.287 .195 .006 -.191 .170 .006 -.034 .134
0 .4 -.015 - .0 0 1 -.161 -.003 -.025 -.136 -.005 .0 1 0 - .1 2 0
.2 .4 -.041 .130 -.293 -.008 -.023 -.266 -.006 -.140 -.248

-.5 .4 .8 -.015 .065 -.147 -.003 .024 -.113 -.005 .040 -.088
.7 1 -.024 .299 -.207 -.005 .1 2 1 -.166 -.006 .136 -.131
0 .4 .027 .037 .237 .0 1 0 -.025 .2 0 2 .007 .018 .176
.2 .4 .047 -.025 .421 .0 2 0 .093 .390 .0 1 0 .134 .364

.75 .4 .8 .027 -.194 .206 .0 1 0 -.038 .165 .007 .005 .129
.7 1 .034 -.483 .283 .013 -.270 .236 .008 -.116 .192

TABLE 3.9
MONTE CARLO BIAS, =  0, fo2 =  0-5, correct specification

P 7
n
6 vi

64
Up vo vi

128
Vp vo vi

256
Up vo

0 A - .0 0 1 -.003 -.004 .0 0 1 .004 - .0 0 1 .0 0 1 .0 0 1 .0 0 0
.2 A .0 0 1 -.016 -.008 .004 - .0 0 1 -.003 .003 .009 .0 0 0

0 .4 .8 - .0 0 1 - .0 2 2 -.008 .0 0 1 .005 -.005 .0 0 1 .0 0 1 - .0 0 1
.7 1 .0 0 0 -.044 -.017 .0 0 2 .0 1 2 - .0 1 2 .0 0 2 - .0 0 1 - .0 0 2
0 .4 .006 .009 .142 .004 -.003 .129 .0 0 1 .0 0 1 .119
.2 .4 .016 .028 .2 0 1 .0 1 0 -.013 .189 .004 .0 0 0 .180

.5 .4 .8 .006 .0 1 0 .082 .004 .0 0 1 .067 .0 0 1 .0 0 1 .052
.7 1 .009 .0 0 2 .1 0 2 .006 -.006 .088 .0 0 2 -.004 .069
0 .4 - .0 0 1 .0 0 1 -.142 .0 0 0 .005 -.128 .0 0 0 .004 -.119
.2 .4 - .0 0 2 -.031 -.203 .0 0 1 .0 1 1 -.189 - .0 0 1 .0 2 1 -.181

-.5 .4 .8 - .0 0 1 -.003 -.083 .0 0 0 .008 -.065 .0 0 0 .004 -.052
.7 1 - .0 0 1 -.009 -.106 .0 0 0 .015 -.085 .0 0 0 .017 -.069
0 .4 .004 .005 .216 .0 0 2 .0 0 2 .192 .0 0 0 .0 0 0 .178
.2 .4 .0 1 1 .042 .305 .006 -.004 .283 .0 0 1 -.017 .269

.75 .4 .8 .004 .0 0 2 .123 .0 0 2 .0 0 0 .097 .0 0 0 .0 0 1 .076
.7 1 .006 - .0 1 2 .151 .003 -.018 .124 .0 0 1 1 O o .1 0 0
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TABLE 3.10
MONTE CARLO BIAS, bi =  0, 62 =  0-9» correct specification

p 7
n
8 Vi

64
Vp vo vi

128
Vp vo vi

256 
V p vo

0 A - .0 0 1 .003 - .0 0 1 - .0 0 1 .0 0 2 .0 0 0 .0 0 0 .0 0 1 .0 0 0

.2 A - .0 0 2 .0 0 2 -.003 - .0 0 2 .0 0 2 - .0 0 1 .0 0 1 .0 0 1 .0 0 0

0 .4 .8 - .0 0 1 .0 0 2 -.003 - .0 0 1 .0 0 1 - .0 0 1 .0 0 0 .0 0 1 .0 0 0
.7 1 - .0 0 1 .003 -.049 - .0 0 1 - .0 0 1 -.003 .0 0 0 .0 0 1 - .0 0 1

0 .4 .0 0 2 -.007 .015 .0 0 1 -.008 .011 .0 0 0 -.009 .009
.2 .4 .006 -.019 .034 .0 0 2 -.017 .028 .0 0 0 -.016 .025

.5 .4 .8 .0 0 2 -.005 .0 1 2 .0 0 1 -.005 .0 1 0 .0 0 0 -.005 .008
.7 1 .003 .0 0 2 .0 2 0 .0 0 1 .0 0 0 .016 .0 0 0 - .0 0 2 .013
0 .4 - .0 0 1 .0 1 2 -.014 .0 0 0 .0 1 0 -.011 .0 0 1 .0 1 0 -.009
.2 .4 -.004 .026 -.033 .0 0 0 .0 2 0 -.028 .0 0 2 .017 -.025

-.5 .4 .8 - .0 0 1 .005 -.013 .0 0 0 .006 -.009 .0 0 1 .006 -.007
.7 1 - .0 0 2 .001 - .0 2 1 .0 0 0 .0 0 2 -.016 .0 0 1 .003 - .0 1 2

0 .4 .0 0 2 -.016 .0 2 2 .0 0 0 -.014 .016 .0 0 0 -.013 .014
.2 .4 .005 -.035 .050 .0 0 1 -.028 .041 - .0 0 1 -.025 .037

.75 .4 .8 .0 0 2 -.009 .018 .0 0 0 -.008 .014 .0 0 0 -.007 .011
.7 1 .003 .003 .029 .0 0 1 -.004 .023 .0 0 0 -.004 .018

TABLE 3.11
MONTE CARLO BIAS, 61 =  0.5, 62 =  0> correct specification

P 7
71

6 vi
64
Vp vo vi

128
Vp vo vi

256
Up vo

0 A .008 .029 - .0 1 2 .004 -.019 -.005 .004 .003 .0 0 0
.2 A .0 1 2 .067 - .0 2 1 .0 1 0 -.016 -.009 .005 - .0 2 2 - .0 0 2

0 .4 .8 .008 .033 -.029 .004 -.023 -.018 .004 .003 -.003
.7 1 .0 1 0 .060 -.061 .006 - .0 2 2 -.046 .005 - .0 0 2 -.009
0 .4 .019 -.162 .429 .007 - .1 0 1 .416 .0 0 0 -.037 .403
.2 .4 .076 -.144 .525 .036 -.128 .526 .013 -.097 .522

.5 .4 .8 .019 -.162 .332 .007 -.103 .280 .0 0 0 -.037 .2 2 1
.7 1 .040 -.194 .403 .018 -.140 .354 .005 -.065 .282
0 .4 .014 .229 -.437 .0 1 1 .109 -.418 .007 .049 -.404
.2 .4 -.037 .191 -.544 -.009 .140 -.534 -.008 .098 -.525

-.5 .4 .8 .014 .216 -.339 .0 1 1 .1 1 0 -.274 .007 .049 - .2 2 2
.7 1 -.006 .256 -.419 .003 .138 -.342 .0 0 1 .082 -.280
0 .4 .0 0 2 -.301 .654 -.003 -.129 .625 -.004 -.049 .603
.2 .4 .071 -.260 .800 .028 - .2 0 1 .792 .0 1 1 -.147 .781

.75 .4 .8 .0 0 2 -.300 .496 -.003 -.124 .408 -.004 -.048 .325
.7 1 .029 -.325 .594 .009 -.172 .501 .0 0 2 -.098 .407
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TABLE 3.12
MONTE CARLO BIAS, b\ =  0.9, 62 =  0> correct specification

p 7
71
6 v i

64
Vp v o v i

128
Up v o v i

256
Vp v o

0 .4 .006 -.056 -.039 .005 .045 -.015 .005 .013 -.002
.2 .4 -.002 -.056 -.065 .009 .020 -.030 .005 -.001 -.005

0 .4 .8 .006 -.053 -.119 .005 .053 -.082 .005 .014 -.013
.7 1 .003 -.063 -.251 .006 .039 -.210 .005 .009 -.038
0 .4 .129 .325 .714 .052 .165 .740 .018 .050 .741
.2 .4 .258 .223 .970 .126 .141 1.07 .056 .061 1.12

.5 .4 .8 .129 .333 .994 .052 .167 .981 .018 .055 .854
.7 1 .177 .240 1.42 .079 .148 1.46 .032 .053 1.27
0 .4 -.118 -.457 -.758 -.040 -.144 -.755 -.014 -.043 -.746
.2 .4 -.264 -.403 -1.05 -.110 -.153 -1.11 -.054 -.094 -1.14

-.5 .4 .8 -.118 -.475 -1.05 -.040 -.143 -.965 -.014 -.045 -.852
.7 1 -.172 -.397 -1.51 -.066 -.159 -1.41 -.029 -.068 -1.26
0 .4 .167 .419 1.09 .065 .192 1.11 .022 .036 1.11
.2 .4 .363 .379 1.48 .172 .213 1.61 .079 .064 1.68

.75 .4 .8 .167 .423 1.48 .065 .191 1.42 .022 .036 1.25
.7 1 .242 .376 2.08 .106 .166 2.05 .043 .049 1.83

TABLE 3.13
MONTE CARLO BIAS, 61 =  62 =  0-5, mis-specification

P 7
n
6 v i

64
Vp v o v i

128
Vp v o v i

256
Vp v o

0 .4 -.005 .003 -.008 .000 .000 -.003 .000 -.004 .000
.2 .4 -.010 -.027 -.016 .002 -.002 -.006 -.001 -.015 -.001

0 .4 .8 -.005 .009 -.017 .000 .001 -.010 .000 -.002 -.002
.7 1 -.007 -.004 -.033 .000 .005 -.024 .000 -.015 -.005
0 .4 .004 -.240 .240 .006 -.188 .222 .003 -.096 .208
.2 .4 .008 -.361 .337 .013 -.365 .326 .007 -.343 .314

.5 .4 .8 .004 -.352 .164 .006 -.230 135 .003 -.140 .105
.7 1 .005 -.808 .204 .008 -.842 177 .004 -.866 .140
0 .4 .000 .176 -.242 -.001 .174 -.221 -.003 .101 -.208
.2 .4 .000 .287 -.346 -.003 .356 -.328 -.009 .304 -.316

-.5 .4 .8 .000 .299 -.167 -.001 .244 -.132 -.003 .146 -.105
.7 1 .000 .790 -.212 -.002 .818 -.170 -.005 .883 -.138
0 .4 .004 -.318 .365 .003 -.217 .332 .002 -.117 .310
.2 .4 .009 -.500 .513 .008 -.564 .487 .006 -.493 .469

.75 .4 .8 .004 -.457 .244 .003 -.280 .196 .002 -.154 .154
.7 1 .006 -1.20 .300 .005 -1.18 .250 .003 -1.18 .201
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TABLE 3.14
MONTE CARLO BIAS, b\ =  b2 =  0.9, mis-specification

p 7
n
<5 VI

64
Vp vo VI

128
Up vo vi

256
Vp vo

0 .4 -.013 -.003 -.014 -.007 .007 -.005 - .0 0 1 -.006 .0 0 0
.2 .4 -.030 -.033 -.027 -.015 - .0 0 2 - .0 1 2 - .0 0 2 -.014 - .0 0 1

0 .4 .8 -.013 .025 -.025 -.007 .0 1 0 -.014 - .0 0 1 -.009 -.003
.7 1 - .0 2 0 .0 1 0 -.043 - .0 1 0 .006 -.030 - .0 0 1 -.005 -.006
0 .4 .004 -.284 .158 .005 -.144 .137 .0 0 2 -.073 .1 2 0
.2 .4 .013 -.463 .281 .016 -.347 .267 .006 -.278 .247

.5 .4 .8 .004 -1.30 .140 .005 -1.27 .116 .0 0 2 -1.26 .090
.7 1 .009 -1.39 .195 .009 -1.34 .170 .004 -1.38 .134
0 .4 -.005 .236 -.161 -.003 .142 -.136 - .0 0 1 .068 - .1 2 0
.2 .4 -.013 .393 -.293 -.007 .316 -.266 -.004 .250 -.248

-.5 .4 .8 -.005 1.26 -.147 -.003 1.25 -.113 - .0 0 1 1.24 -.088
.7 1 -.008 1.38 -.207 -.004 1.35 -.166 - .0 0 2 1.36 -.131
0 .4 .0 0 2 -.385 .237 .003 -.167 .2 0 2 .0 0 0 -.095 .176
.2 .4 .006 -.654 .421 .008 -.534 .390 .0 0 0 -.402 .364

.75 .4 .8 .0 0 2 -1.90 .206 .003 -1.76 .165 .0 0 0 -1.73 .129
.7 1 .003 -2.06 .282 .005 -2 .0 1 .236 .0 0 0 -2 .0 2 .192

TABLE 3.15
MONTE CARLO BIAS, b\ =  62 =  0> over-specification

P 7
n
6 vi

64
Vp vo vi

128
Vp vo vi

256 
V p vo

0 .4 -.032 -.138 -.007 -.006 .013 -.003 .007 .006 .0 0 0
.2 .4 -.036 .007 - .0 1 1 .023 .0 2 1 -.005 .027 .024 .0 0 0

0 .4 .8 -.032 -.091 -.015 -.006 .0 0 0 -.009 .007 - .0 0 1 - .0 0 2
.7 1 -.034 -.036 -.031 .003 .0 0 0 -.023 .014 -.009 -.005
0 .4 .006 .040 .337 .017 .044 .320 -.005 .014 .308
.2 .4 .0 2 1 - .1 2 2 .394 .061 .0 2 0 .384 .004 -.036 .376

.5 .4 .8 .006 .019 .192 .017 .0 2 1 .155 -.005 .007 .1 2 0
.7 1 .0 1 2 -.133 .214 .032 .043 .182 - .0 0 1 .008 .143
0 .4 .0 2 0 -.047 -.338 .013 .032 -.320 .0 2 1 .018 -.307
.2 .4 .065 -.129 -.401 .042 .137 -.387 .035 .086 -.377

-.5 .4 .8 .0 2 0 -.053 -.193 .013 .045 -.151 .0 2 1 .033 - .1 2 0
.7 1 .035 -.044 - .2 2 0 .0 2 2 .028 -.176 .026 .062 -.142
0 .4 -.018 .0 0 2 .511 .0 0 2 .086 .481 -.016 .0 0 1 .460
.2 .4 -.034 -.083 .599 .016 -.127 .578 - .0 2 1 -.124 .562

.75 .4 .8 -.018 -.016 .287 .0 0 2 .058 .226 -.016 -.013 .176
.7 1 -.023 -.118 .315 .007 -.051 .258 -.017 -.037 .206
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TABLE 3.16
MONTE CARLO S.D., fox =  62 =  0> correct specification

p 7
n
<5 1' /

64
VF v o v i

128
v F v o v i

256
VF v o

0 .4 .212 .383 .107 .128 .160 .073 .086 .092 .049
.2 .4 .489 1.03 .141 .310 .559 .105 .217 .318 .076

0 .4 .8 .212 .387 .171 .128 .159 .128 .086 .092 .093
.7 1 .305 .679 .322 .189 .323 .278 .130 .153 .214
0 .4 .184 .566 .112 .113 .218 .084 .073 .098 .063
.2 .4 .426 1.12 .136 .276 .650 .104 .187 .366 .078

.5 .4 .8 .184 .569 .160 .113 .194 .127 .073 .098 .092
.7 1 .266 .913 .283 .168 .376 .247 .112 .176 .192
0 .4 .178 .528 .109 .112 .227 .084 .076 .101 .065
.2 .4 .419 1.01 .131 .274 .614 .102 .193 .359 .077

-.5 .4 .8 .178 .485 .154 .112 .221 .122 .076 .103 .092
.7 1 .259 .758 .270 .167 .361 .237 .116 .185 .188
0 .4 .140 .711 .114 .087 .237 .091 .058 .102 .075
.2 .4 .328 1.08 .116 .213 .706 .092 .146 .426 .073

.75 .4 .8 .140 .734 .140 .087 .260 .111 .058 .101 .086
.7 1 .203 .973 .226 .129 .537 .188 .088 .197 .152

TABLE 3.17
MONTE CARLO S.D., 61 =  62 =  0-5, correct specification

P 7
71

6 v i
64
v F v o v i

128
Up v o v i

256
Vp v o

0 .4 1.50 3.09 .127 .873 1.36 .084 .526 .768 .057
.2 .4 2.96 4.35 .197 1.71 2.80 .145 1.06 1.69 .106

0 .4 .8 1.50 3.10 .195 .873 1.48 .141 .526 .746 .099
.7 1 1.96 3.87 .348 1.13 2.17 .292 .693 1.14 .219
0 .4 1.34 2.66 .123 .779 1.51 .089 .472 .673 .064
.2 .4 2.61 4.02 .183 1.55 2.59 .140 .950 1.42 .102

.5 .4 .8 1.34 2.71 .176 .779 1.55 .133 .472 .666 .094
.7 1 1.74 3.53 .304 1.02 1.98 .257 .623 1.04 .196
0 .4 1.35 2.84 .118 .766 1.32 .086 .468 .713 .064
.2 .4 2.65 4.27 .176 1.52 2.20 .135 .952 1.56 .100

-.5 .4 .8 1.35 2.98 .168 .766 1.33 .128 .468 .752 .093
.7 1 1.76 3.66 .287 1.00 1.75 .245 .620 1.10 .192
0 .4 1.06 2.17 .114 .595 1.04 .086 .365 .469 .068
.2 .4 2.08 3.06 .150 1.19 2.07 .115 .738 1.23 .088

.75 .4 .8 1.06 2.20 .143 .595 1.10 .108 .365 .479 .082
.7 1 1.38 2.74 .242 .783 1.63 .194 .483 .784 .154
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TABLE 3.18
MONTE CARLO S.P., b\ =  62 =  0-9, correct specification

p 7
n
6 *>/

64
V p vo vi

128
Up vo vi

256
Up vo

0 .4 1.06 4.16 .192 .553 2 .1 0 .1 2 2 .306 1.43 .079
.2 .4 2.04 5.28 .354 1 .1 0 3.06 .253 .634 1.93 .177

0 .4 .8 1.06 4.14 .282 .553 2.31 .191 .306 1.24 .1 2 0
.7 1 1.37 4.22 .483 .729 2 .1 0 .370 .411 1 .0 1 .249
0 .4 .901 3.38 .172 .472 2.18 .115 .266 1.23 .075
.2 .4 1.76 4.46 .319 .953 3.01 .233 .553 1.65 .161

.5 .4 .8 .901 3.51 .241 .472 2.15 .170 .266 1.19 .109
.7 1 1.17 4.10 .405 .625 2.39 .313 .358 1 .0 2 .219
0 .4 .918 3.47 .164 .480 1.93 .1 1 2 .271 1.16 .075
.2 .4 1.78 5.12 .300 .961 2.85 .225 .557 1.67 .159

-.5 .4 .8 .918 3.73 .225 .480 1.90 .161 .271 1.09 .108
.7 1 1.19 3.82 .374 .633 2.15 .296 .363 1.26 .216
0 .4 .717 2.75 .138 .372 1.67 .093 .2 1 2 .946 .066
.2 .4 1.39 3.93 .248 .747 2.26 .179 .441 1.37 .131

.75 .4 .8 .717 3.22 .195 .372 1.52 .128 .2 1 2 .823 .088
.7 1 .930 3.38 .331 .491 1.83 .232 .286 .938 .169

TABLE 3.19
MONTE CARLO S.P., b\ =  0, &2 — 0-5, correct specification

P 7
n
6 vi

64
Up vo vi

128
Up vo vi

256
Vf vo

0 .4 .156 .529 .074 .088 .219 .047 .054 .075 .031
.2 .4 .428 1 .0 1 .107 .262 .611 .076 .168 .284 .055

0 .4 .8 .156 .508 .1 0 0 .088 .185 .071 .054 .071 .050
.7 1 .244 .743 .177 .144 .359 .147 .090 .146 .1 1 0
0 .4 .128 .307 .074 .077 .156 .052 .046 .062 .037
.2 .4 .359 .759 .1 0 1 .225 .491 .076 .143 .271 .055

.5 .4 .8 .128 .322 .090 .077 .146 .067 .046 .066 .047
.7 1 .2 0 2 .560 .154 .124 .297 .129 .077 .152 .098
0 .4 .124 .296 .071 .077 .152 .051 .048 .071 .038
.2 .4 .348 .691 .098 .225 .463 .073 .145 .277 .055

-.5 .4 .8 .124 .290 .086 .077 .179 .065 .048 .071 .047
.7 1 .196 .470 .146 .124 .296 .123 .079 .162 .096
0 .4 .1 0 1 .245 .074 .058 .116 .052 .036 .056 .041
.2 .4 .279 .596 .089 .171 .382 .066 .111 .256 .051

.75 .4 .8 .1 0 1 .243 .074 .058 .137 .054 .036 .057 .041
.7 1 .158 .442 .123 .094 .267 .097 .060 .126 .077
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TABLE 3.20
MONTE CARLO S.P., 61 =  0, 62 =  0-9? correct specification

p 7
n
6 v i

64
Vf v o VI

128 
V F v o v i

256 
V F v o

0 A .058 .088 .030 .029 .046 .016 .015 .026 .009
.2 A .174 .112 .049 .092 .057 .029 .053 .032 .019

0 .4 .8 .058 .072 .035 .029 .036 .021 .015 .019 .012
.7 1 .094 .142 .058 .048 .056 .040 .027 .027 .025
0 .4 .049 .077 .025 .026 .040 .014 .014 .022 .008
.2 .4 .149 .099 .042 .084 .052 .027 .048 .029 .017

.5 .4 .8 .049 .058 .029 .026 .031 .018 .014 .017 .011
.7 1 .080 .104 .048 .044 .050 .034 .024 .024 .022
0 .4 .047 .083 .025 .024 .039 .014 .013 .022 .009
.2 .4 .143 .098 .040 .080 .049 .026 .046 .029 .017

-.5 .4 .8 .047 .068 .028 .024 .031 .018 .013 .017 .011
.7 1 .077 .112 .045 .042 .049 .032 .023 .024 .022
0 .4 .040 .064 .021 .019 .031 .011 .011 .019 .007
.2 .4 .122 .087 .034 .063 .043 .021 .036 .026 .014

.75 .4 .8 .040 .049 .024 .019 .028 .014 .011 .014 .009
.7 1 .066 .126 .039 .033 .045 .025 .019 .020 .017

TABLE 3.21
MONTE CARLO S.D., 61 =  0.5, 62 =  0> correct specification

P 7
n
6 v i

64
V F v o v i

128 
V p v o v i

256
l/p v o

0 A .593 1.25 .164 .367 .571 .115 .229 .279 .079
.2 A 1.03 1.71 .246 .660 1.06 .191 .425 .721 .143

0 .4 .8 .593 1.25 .331 .367 .580 .255 .229 .279 .186
.7 1 .726 1.48 .633 .457 .831 .553 .289 .428 .427
0 .4 .507 1.12 .157 .316 .614 .117 .196 .281 .086
.2 .4 .908 1.66 .229 .559 1.01 .179 .357 .628 .134

.5 .4 .8 .507 1.11 .305 .316 .612 .244 .196 .279 .179
.7 1 .628 1.39 .557 .387 .797 .490 .242 .439 .383
0 .4 .500 1.07 .152 .315 .613 .115 .200 .312 .087
.2 .4 .886 1.58 .221 .565 1.06 .173 .364 .652 .129

-.5 .4 .8 .500 1.03 .292 .315 .615 .235 .200 .311 .178
.7 1 .614 1.38 .528 .390 .800 .469 .248 .479 .375
0 .4 .398 1.12 .137 .243 .617 .110 .156 .262 .089
.2 .4 .708 1.43 .182 .424 .862 .143 .277 .612 .107

.75 .4 .8 .398 1.13 .249 .243 .583 .202 .156 .256 .160
.7 1 .485 1.27 .441 .290 .716 .372 .187 .450 .302
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TABLE 3.22
MONTE CARLO S.D., 61 =  0.9, 62 =  Qi correct specification

p 7
n
6 Vj

64
Up v o v i

128
vf v o v i

256
Up v o

0 .4 .666 2.08 .466 .399 1.22 .373 .239 .560 .280
.2 .4 1.14 2.65 .864 .711 1.66 .764 .443 .882 .615

0 .4 .8 .666 2.05 1.36 .399 1.20 1.18 .239 .567 .907
.7 1 .813 2.24 2.70 .496 1.33 2.60 .301 .655 2.09
0 .4 .615 2.06 .450 .358 1.09 .353 .205 .468 .262
.2 .4 1.09 2.55 .849 .657 1.62 .729 .408 .816 .585

.5 .4 .8 .615 2.15 1.24 .358 1.10 1.08 .205 .486 .816
.7 1 .768 2.25 2.38 .451 1.28 2.27 .268 .586 1.85
0 .4 .608 2.16 .434 .346 1.13 .338 .210 .510 .249
.2 .4 1.09 2.72 .831 .642 1.51 .714 .403 .903 .555

-.5 .4 .8 .608 2.21 1.18 .346 1.14 1.04 .210 .515 .818
.7 1 .761 2.34 2.23 .438 1.34 2.16 .270 .678 1.81
0 .4 .529 2.01 .383 .295 1.02 .297 .166 .349 .217
.2 .4 .986 2.67 .769 .590 1.55 .652 .362 .787 .508

.75 .4 .8 .529 2.05 .974 .295 .941 .835 .166 .359 .678
.7 1 .681 2.24 1.89 .391 1.13 1.72 .228 .521 1.44

TABLE 3.23
MONTE CARLO S.P., 61 =  62 =  0-5, mis-specification

P 7
n
6 v i

64
V p v o v i

128
Up v o v i

256
Up v o

0 A .228 .542 .127 .137 .338 .084 .090 .150 .057
.2 A .541 1.25 .197 .346 .834 .145 .238 .544 .106

0 .4 .8 .228 .620 .195 .137 .358 .141 .090 .171 .099
.7 1 .333 1.13 .348 .207 .778 .292 .139 .525 .219
0 .4 .195 .840 .123 .121 .556 .089 .077 .245 .064
.2 .4 .468 1.28 .183 .302 .881 .140 .204 .685 .102

.5 .4 .8 .195 .919 .176 .121 .578 .133 .077 .316 .094
.7 1 .287 1.30 .304 .181 1.03 .257 .119 .885 .196
0 .4 .188 .643 .118 .120 .498 .086 .080 .313 .064
.2 .4 .457 1.14 .176 .304 .868 .135 .209 .668 .100

-.5 .4 .8 .188 .799 .168 .120 .614 .128 .080 .375 .093
.7 1 .278 1.27 .287 .181 1.01 .245 .123 .907 .192
0 .4 .148 .956 .114 .091 .632 .086 .061 .259 .068
.2 .4 .356 1.24 .150 .230 1.00 .115 .159 .803 .088

.75 .4 .8 .148 1.10 .143 .091 .691 .108 .061 .290 .082
.7 1 .217 1.45 .242 .137 1.28 .194 .094 1.17 .154
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TABLE 3.24
MONTE CARLO S.D., fei =  62 =  0-9, mis-specification

p 7
n

8 i' j

64
V F vo vi

128
Vp vo V I

256
Vp vo

0 A .318 .571 .192 .189 .290 .122 .116 .150 .079
.2 A .844 1.31 .354 .540 .827 .253 .357 .489 .177

0 .4 .8 .318 1.11 .282 .189 .734 .191 .116 .520 .120
.7 1 .490 1.71 .483 .303 1.09 .370 .194 .743 .249
0 .4 .271 .807 .172 .171 .438 .115 .103 .214 .075
.2 .4 .732 1.33 .319 .489 .876 .233 .313 .628 .161

.5 .4 .8 .271 1.37 .241 .171 1.11 .170 .103 1.03 .109
.7 1 .422 1.57 .405 .275 1.03 .313 .170 .766 .219
0 .4 .259 .729 .164 .166 .451 .112 .105 .221 .075
.2 .4 .701 1.22 .300 .479 .841 .225 .321 .640 .159

-.5 .4 .8 .259 1.30 .225 .166 1.10 .161 .105 1.01 .108
.7 1 .403 1.53 .374 .267 1.05 .296 .175 .792 .216
0 .4 .213 1.00 .138 .125 .454 .093 .082 .263 .066
.2 .4 .572 1.28 .248 .360 .983 .179 .248 .773 .131

.75 .4 .8 .213 1.58 .195 .125 1.44 .128 .082 1.42 .088
.7 1 .330 1.36 .331 .201 1.02 .232 .135 .831 .169

TABLE 3.25
MONTE CARLO S.D., b\ =  62 — 0> over-specification

P 7
n
8 vi

64
Vp vo vi

128
Vp vo vi

256 
V p vo

0 A 2.04 4.46 .107 1.19 2.23 .073 .748 .929 .049
.2 A 4.03 6.98 .141 2.37 4.40 .105 1.52 2.70 .076

0 .4 .8 2.04 4.40 .171 1.19 2.24 .128 .748 .914 .093
.7 1 2.66 5.39 .322 1.56 3.38 .278 .988 1.59 .214
0 .4 1.74 3.22 .112 1.06 1.79 .084 .668 .907 .063
.2 .4 3.39 6.04 .136 2.12 3.90 .104 1.35 2.39 .078

.5 .4 .8 1.74 3.47 .160 1.06 1.72 .127 .668 .899 .092
.7 1 2.26 4.53 .283 1.40 2.85 .247 .881 1.44 .192
0 .4 1.78 3.55 .109 1.07 1.91 .084 .670 .925 .065
.2 .4 3.46 5.48 .131 2.14 3.92 .102 1.36 2.33 .077

-.5 .4 .8 1.78 3.42 .154 1.07 1.92 .122 .670 .971 .092
.7 1 2.30 4.52 .270 1.41 2.85 .237 .887 1.53 .188
0 .4 1.42 2.73 .114 .831 1.63 .091 .519 .651 .075
.2 .4 2.74 4.51 .116 1.67 3.24 .092 1.05 1.85 .073

.75 .4 .8 1.42 2.76 .140 .831 1.57 .111 .519 .636 .086
.7 1 1.83 3.48 .226 1.09 2.31 .188 .686 1.06 .152
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TABLE 3.26
EMPIRICAL SIZES OF W j  AND WF, bj =  &2 =  0> correct specification

p 7

a
n
8

64
W j

64
W F

.05
128
W j

00 
^

256
W j

256
W F

64
W j

64
W F

.10
128
W j

00 
t 

2
^ 256

W j
256
W F

0 .4 .078 .061 .053 .056 .057 .059 .136 .122 .112 .094 .125 .114
.2 .4 .077 .045 .054 .032 .062 .034 .133 .083 .104 .072 .114 .069

0 .4 .8 .078 .059 .053 .055 .057 .059 .136 .125 .112 .087 .125 .114
.7 1 .076 .058 .058 .057 .053 .053 .134 .107 .105 .103 .120 .098
0 .4 .074 .057 .055 .061 .055 .065 .136 .089 .119 .092 .117 .111
.2 .4 .073 .105 .055 .082 .054 .079 .141 .153 .120 .128 .111 .112

.5 .4 .8 .074 .059 .055 .057 .055 .066 .136 .089 .119 .094 .117 .111
.7 1 .068 .088 .055 .076 .050 .069 .140 .125 .121 .117 .116 .109
0 .4 .076 .063 .072 .061 .068 .068 .124 .103 .124 .107 .122 .118
.2 .4 .076 .123 .059 .106 .058 .084 .134 .168 .117 .145 .130 .119

-.5 .4 .8 .076 .071 .072 .059 .068 .069 .124 .101 .124 .105 .122 .118
.7 1 .073 .102 .066 .086 .060 .078 .129 .144 .118 .142 .128 .117
0 .4 .075 .052 .059 .054 .063 .070 .136 .083 .112 .097 .116 .111
.2 .4 .073 .168 .058 .136 .069 .094 .143 .207 .113 .166 .116 .132

.75 .4 .8 .075 .049 .059 .054 .063 .073 .136 .083 .112 .097 .116 .110
.7 1 .076 .120 .060 .105 .064 .078 .143 .155 .113 .138 .110 .117

TABLE 3.27
EMPIRICAL SIZES OF Wj AND Wp, b\ =  62 — 0-5, correct specification

P 7

a
n
8

64
W j

64
W F

.05
128
W j  ̂

0
0 256

W j
256
W F

64
W j

64
W F s 

00
 

0

**3 
00 256

W j
256
W F

0 .4 .100 .036 .078 .046 .060 .034 .151 .070 .127 .079 .103 .066
.2 .4 .097 .035 .065 .034 .064 .024 .144 .070 .126 .062 .098 .051

0 .4 .8 .100 .040 .078 .041 .060 .032 .151 .073 .127 .080 .103 .067
.7 1 .103 .039 .071 .041 .057 .028 .154 .077 .130 .073 .101 .055
0 .4 .092 .030 .077 .033 .068 .037 .156 .062 .129 .066 .121 .081
.2 .4 .085 .043 .076 .048 .060 .042 .157 .084 .129 .080 .105 .077

.5 .4 .8 .092 .027 .077 .030 .068 .041 .156 .058 .129 .071 .121 .074
.7 1 .094 .042 .082 .042 .060 .038 .159 .073 .128 .062 .122 .073
0 .4 .093 .046 .075 .045 .058 .041 .151 .072 .133 .080 .109 .073
.2 .4 .089 .046 .076 .051 .053 .039 .140 .079 .138 .095 .107 .079

-.5 .4 .8 .093 .049 .075 .052 .058 .038 .151 .077 .133 .089 .109 .067
.7 1 .091 .054 .077 .048 .052 .041 .147 .082 .131 .087 .105 .069
0 .4 .099 .038 .068 .036 .068 .038 .165 .067 .124 .065 .114 .073
.2 .4 .101 .056 .069 .067 .062 .075 .164 .093 .124 .103 .112 .114

.75 .4 .8 .099 .038 .068 .032 .068 .039 .165 .074 .124 .063 .114 .074
.7 1 .094 .050 .073 .044 .060 .049 .165 .093 .126 .077 .114 .089
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TABLE 3.28
EMPIRICAL SIZES OF W j  AND W F, fei =  62 =  0-9? correct specification

p 7

a
n 64

W i
64

W F

.05
128
W i

128
W F

256
W i

256
W F

64
W j

64
W F

.10
128
W i

128
W F

256
W i

256
W F

0 .4 .122 .038 .080 .035 .077 .025 .187 .066 .150 .064 .129 .053
.2 .4 .125 .033 .092 .023 .063 .024 .191 .069 .146 .051 .130 .050

0 .4 .8 .122 .032 .080 .033 .077 .033 .187 .068 .150 .068 .129 .064
.7 1 .125 .043 .079 .035 .075 .018 .192 .073 .146 .055 .122 .055
0 .4 .112 .027 .097 .031 .067 .030 .177 .054 .160 .064 .145 .063
.2 .4 .118 .035 .094 .042 .071 .055 .182 .069 .161 .084 .139 .096

.5 .4 .8 .112 .038 .097 .035 .067 .036 .177 .080 .160 .069 .145 .064
.7 1 .121 .048 .090 .039 .073 .055 .179 .075 .165 .070 .133 .081
0 .4 .114 .037 .092 .034 .084 .028 .184 .080 .161 .071 .132 .063
.2 .4 .109 .048 .098 .046 .074 .054 .180 .088 .158 .088 .138 .101

-.5 .4 .8 .114 .054 .092 .039 .084 .036 .184 .079 .161 .070 .132 .068
.7 1 .112 .060 .097 .044 .082 .053 .182 .089 .161 .072 .136 .093
0 .4 .115 .035 .100 .026 .079 .035 .185 .069 .161 .069 .151 .059
.2 .4 .107 .057 .096 .063 .081 .105 .188 .108 .162 .104 .146 .156

.75 .4 .8 .115 .047 .100 .033 .079 .033 .185 .073 .161 .062 .151 .061
.7 1 .112 .046 .101 .059 .079 .061 .181 .090 .159 .087 .141 .106

TABLE 3.29
EMPIRICAL SIZES OF Wj AND Wp, foi =  0, 62 =  0-5, correct specification

P 7

a
n
6

64
W i

64
W F

.05
128
W i

128
W F

256
W i

256
W F

64
W i

64
W F

.10
128
W i

128
W F

256
W i

256
W F

0 .4 .069 .010 .067 .022 .059 .028 .113 .018 .122 .048 .106 .072
.2 .4 .066 .020 .064 .023 .065 .018 .114 .035 .120 .041 .112 .038

0 .4 .8 .069 .010 .067 .017 .059 .029 .113 .018 .122 .050 .106 .068
.7 1 .070 .015 .067 .027 .065 .023 .114 .034 .125 .054 .107 .062
0 .4 .062 .020 .054 .024 .049 .034 .124 .042 .115 .053 .105 .054
.2 .4 .061 .044 .053 .064 .049 .059 .127 .078 .110 .091 .103 .096

.5 .4 .8 .062 .019 .054 .022 .049 .037 .124 .039 .115 .051 .105 .057
.7 1 .066 .040 .051 .045 .047 .054 .127 .076 .118 .069 .102 .076
0 .4 .067 .017 .067 .018 .055 .033 .125 .033 .117 .045 .100 .059
.2 .4 .067 .053 .063 .063 .055 .059 .119 .082 .119 .095 .094 .088

-.5 .4 .8 .067 .013 .067 .019 .055 .031 .125 .035 .117 .046 .100 .054
.7 1 .067 .045 .066 .038 .058 .047 .122 .071 .120 .074 .103 .073
0 .4 .073 .024 .055 .025 .054 .022 .145 .037 .107 .053 .096 .043
.2 .4 .069 .108 .054 .126 .057 .113 .131 .158 .104 .164 .099 .151

.75 .4 .8 .073 .031 .055 .024 .054 .023 .145 .051 .107 .056 .096 .051
.7 1 .067 .082 .058 .055 .051 .065 .137 .117 .106 .096 .103 .106
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TABLE 3.30
EMPIRICAL SIZES OF W j  AND W p, 6 i =  0, 62 =  0.9, correct specification

p 7

a
72 64

W T
64

W F

.05
128
W i

128
W F

256
W j

256
W F

64
W j

64
W F

.10
128
W j

128
W F

256
W j

256
W F

0 .4 .074 .002 .064 .001 .046 .000 .122 .002 .114 .001 .099 .001
.2 .4 .074 .000 .064 .005 .053 .002 .125 .004 .113 .008 .097 .010

0 .4 .8 .074 .004 .064 .005 .046 .014 .122 .012 .114 .010 .099 .028
.7 1 .074 .017 .063 .032 .052 .028 .123 .036 .113 .052 .096 .064
0 .4 .067 .000 .074 .000 .053 .000 .122 .000 .127 .004 .122 .003
.2 .4 .066 .000 .079 .001 .054 .004 .118 .002 .124 .009 .110 .010

.5 .4 .8 .067 .005 .074 .005 .053 .008 .122 .008 .127 .019 .122 .022
.7 1 .069 .016 .079 .023 .054 .028 .118 .037 .125 .057 .115 .051
0 .4 .073 .001 .066 .000 .045 .000 .130 .004 .128 .003 .097 .000
.2 .4 .070 .004 .058 .004 .038 .005 .129 .008 .122 .0 1 1 .102 .012

-.5 .4 .8 .073 .002 .066 .008 .045 .009 .130 .006 .128 .016 .097 .021
.7 1 .070 .019 .065 .027 .045 .027 .128 .045 .124 .050 .099 .071
0 .4 .080 .001 .076 .002 .059 .003 .153 .003 .123 .006 .112 .007
.2 .4 .086 .004 .073 .001 .053 .007 .151 .007 .124 .013 .100 .025

.75 .4 .8 .080 .005 .076 .009 .059 .010 .153 .013 .123 .021 .112 .025
.7 1 .081 .016 .077 .020 .055 .030 .155 .032 .117 .050 .105 .065

TABLE 3.31
EMPIRICAL SIZES OF Wj AND W f , &i =  0-5, 62 =  0> correct specification

P 7

a
n
6

64
W i

64
W F

.05
128
W i

128
W F

256
W i

256
W F

64
W i

64
W F

.10
128
W i

128
W F

256
W i

256
W F

0 .4 .071 .043 .068 .048 .069 .054 .137 .075 .136 .093 .121 .087
.2 .4 .070 .051 .078 .048 .065 .043 .135 .083 .129 .091 .124 .080

0 .4 .8 .071 .045 .068 .051 .069 .053 .137 .076 .136 .089 .121 .086
.7 1 .075 .049 .072 .055 .065 .050 .133 .081 .133 .091 .118 .084
0 .4 .067 .046 .068 .045 .059 .041 .125 .079 .130 .095 .095 .074
.2 .4 .078 .045 .055 .052 .053 .042 .139 .077 .108 .081 .112 .076

.5 .4 .8 .067 .044 .068 .044 .059 .039 .125 .087 .130 .089 .095 .071
.7 1 .072 .051 .058 .046 .053 .044 .135 .083 .124 .087 .100 .066
0 .4 .077 .032 .071 .049 .062 .047 .145 .083 .122 .082 .112 .091
.2 .4 .078 .049 .076 .049 .057 .045 .136 .078 .134 .082 .098 .086

-.5 .4 .8 .077 .033 .071 .050 .062 .047 .145 .085 .122 .082 .112 .089
.7 1 .081 .040 .077 .046 .057 .058 .134 .082 .126 .089 .106 .111
0 .4 .066 .048 .058 .042 .053 .036 .129 .075 .111 .078 .089 .070
.2 .4 .080 .050 .053 .054 .048 .057 .151 .086 .113 .092 .111 .084

.75 .4 .8 .066 .049 .058 .042 .053 .037 .129 .071 .111 .080 .089 .069
.7 1 .072 .053 .056 .050 .052 .050 .140 .083 .115 .090 .091 .076
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TABLE 3.32
EMPIRICAL SIZES OF W j  AND W F, fri =  0-9, 62 =  0> correct specification

p 7

a
71

8
64
W j

64
W F

.05
128
W j “q 

00 256
W i

256
W F

64
W i

64
W F

.10
128
W i

128
W F

256
W i

256
W F

0 A .097 .053 .086 .042 .071 .042 .162 .087 .157 .077 .125 .072
.2 .4 .090 .038 .091 .026 .077 .021 .166 .065 .150 .045 .127 .042

0 .4 .8 .097 .044 .086 .042 .071 .045 .162 .080 .157 .075 .125 .073
.7 1 .092 .039 .089 .035 .070 .030 .155 .068 .150 .068 .124 .056
0 .4 .112 .041 .073 .031 .053 .031 .165 .063 .141 .059 .101 .066
.2 .4 .097 .023 .078 .027 .064 .019 .161 .045 .139 .049 .120 .045

.5 .4 .8 .112 .043 .073 .030 .053 .031 .165 .063 .141 .058 .101 .062
.7 1 .109 .027 .082 .031 .060 .032 .164 .054 .147 .064 .110 .064
0 .4 .101 .051 .081 .033 .068 .030 .171 .082 .140 .062 .115 .062
.2 .4 .105 .031 .087 .023 .060 .021 .178 .059 .139 .046 .123 .031

-.5 .4 .8 .101 .051 .081 .034 .068 .030 .171 .081 .140 .060 .115 .061
.7 1 .101 .036 .086 .031 .061 .031 .175 .068 .140 .052 .119 .055
0 .4 .117 .032 .082 .024 .051 .021 .185 .053 .133 .052 .104 .051
.2 .4 .107 .028 .078 .026 .065 .024 .173 .044 .133 .042 .114 .043

.75 .4 .8 .117 .033 .082 .022 .051 .021 .185 .053 .133 .053 .104 .051
.7 1 .1 1 1 .030 .081 .028 .058 .029 .184 .059 .143 .053 .106 .054

TABLE 3.33
EMPIRICAL SIZES OF Wj AND WF, bj =  b2 = 0.5, mis-specification

P 7

a
n
8

64
W i

64
W F

.05
128
W i

128
W F

256
W i

256
W F

64
W i

64
W F

.10
128
W i **] 

0
0 256

W i
256
W F

0 .4 .258 .026 .245 .027 .248 .037 .344 .063 .319 .060 .325 .079
.2 .4 .242 .013 .214 .012 .229 .013 .327 .043 .296 .024 .310 .035

0 .4 .8 .258 .022 .245 .024 .248 .035 .344 .061 .319 .052 .325 .073
.7 1 .255 .019 .229 .006 .241 .017 .339 .042 .308 .029 .322 .031
0 .4 .264 .040 .246 .030 .248 .032 .356 .070 .324 .052 .324 .069
.2 .4 .245 .072 .230 .051 .224 .052 .341 .105 .303 .079 .317 .064

.5 .4 .8 .264 .033 .246 .028 .248 .029 .356 .054 .324 .046 .324 .070
.7 1 .253 .031 .239 .028 .239 .014 .347 .047 .306 .043 .325 .025
0 .4 .274 .033 .250 .026 .255 .030 .349 .067 .333 .053 .341 .068
.2 .4 .258 .077 .228 .053 .228 .047 .331 .117 .317 .080 .317 .073

-.5 .4 .8 .274 .031 .250 .024 .255 .024 .349 .058 .333 .046 .341 .070
.7 1 .270 .036 .243 .019 .233 .011 .343 .050 .331 .033 .334 .022
0 .4 .274 .035 .244 .024 .251 .025 .360 .057 .329 .043 .333 .064
.2 .4 .249 .119 .221 .079 .218 .054 .336 .155 .310 .099 .313 .071

.75 .4 .8 .274 .028 .244 .022 .251 .025 .360 .044 .329 .034 .333 .063
.7 1 .262 .041 .240 .032 .238 .010 .350 .051 .318 .040 .318 .013
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TABLE 3.34
EMPIRICAL SIZES OF W j  AND W f , b\ =  62 =  0-9> mis-specification

p 7

a
n
<5

64
W /

64
W F

.05
128
W i **1

 
0
0 256

W i
256
W F

64
W j

64
W F

.10
128
W j

00 
t 

2
^ 256

W t
256
W F

0 .4 .622 .040 .647 .037 .651 .058 .681 .078 .694 .076 .709 .114
.2 .4 .581 .020 .605 .019 .620 .018 .651 .053 .662 .043 .677 .056

0 .4 .8 .622 .027 .647 .015 .651 .019 .681 .043 .694 .031 .709 .042
.7 1 .603 .006 .627 .003 .644 .002 .667 .011 .682 .006 .692 .008
0 .4 .617 .040 .644 .039 .637 .041 .670 .064 .700 .067 .695 .086
.2 .4 .614 .068 .612 .065 .594 .056 .658 .098 .668 .087 .661 .081

.5 .4 .8 .617 .020 .644 .009 .637 .013 .670 .027 .700 .020 .695 .033
.7 1 .615 .010 .631 .003 .619 .006 .663 .011 .688 .006 .679 .008
0 .4 .643 .038 .643 .041 .648 .047 .700 .075 .705 .064 .705 .083
.2 .4 .616 .081 .623 .066 .620 .067 .677 .109 .673 .106 .670 .090

-.5 .4 .8 .643 .019 .643 .012 .648 .006 .700 .031 .705 .024 .705 .029
.7 1 .635 .011 .639 .007 .632 .002 .687 .015 .696 .010 .692 .003
0 .4 .637 .034 .645 .022 .623 .033 .684 .045 .701 .042 .690 .057
.2 .4 .618 .110 .606 .091 .594 .072 .676 .137 .687 .116 .681 .092

.75 .4 .8 .637 .012 .645 .012 .623 .005 .684 .016 .701 .016 .690 .016
.7 1 .628 .013 .631 .009 .615 .004 .682 .018 .696 .011 .683 .004

TABLE 3.35
EMPIRICAL SIZES OF W i AND WF, b\ =  62 =  0» over-specification

P 7

a
n
6

64
Wf

64
W F

.05
128
Wf

128
W F

256
Wf

256
W F

64
W f

64
W F

.10
128
Wf  ̂

00 256
Wf

256
W F

0 A .078 .047 .061 .047 .050 .042 .127 .085 .115 .088 .100 .082
.2 A .072 .040 .054 .042 .047 .027 .135 .075 .107 .070 .086 .048

0 .4 .8 .078 .049 .061 .041 .050 .042 .127 .091 .115 .083 .100 .080
.7 1 .075 .049 .052 .037 .049 .033 .132 .083 .104 .074 .094 .074
0 .4 .068 .037 .063 .052 .056 .048 .124 .071 .118 .093 .105 .082
.2 .4 .071 .052 .064 .045 .061 .026 .113 .079 .116 .071 .110 .046

.5 .4 .8 .068 .039 .063 .050 .056 .047 .124 .071 .118 .088 .105 .083
.7 1 .065 .043 .056 .047 .060 .046 .120 .076 .110 .087 .110 .074
0 .4 .091 .057 .072 .048 .066 .048 .143 .087 .109 .093 .112 .095
.2 .4 .084 .051 .065 .049 .053 .021 .139 .088 .115 .080 .099 .056

-.5 .4 .8 .091 .054 .072 .051 .066 .051 .143 .092 .109 .090 .112 .100
.7 1 .088 .062 .067 .051 .058 .040 .137 .103 .112 .094 .105 .084
0 .4 .085 .052 .072 .047 .060 .047 .144 .087 .129 .081 .113 .085
.2 .4 .074 .051 .073 .057 .057 .026 .138 .099 .126 .084 .114 .045

.75 .4 .8 .085 .049 .072 .042 .060 .047 .144 .084 .129 .076 .113 .088
.7 1 .080 .056 .080 .051 .058 .044 .143 .093 .125 .093 .112 .090
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TABLE 3.36
MONTE CARLO BIAS OF ?, p =  0.5

estimation
n

s \ b2 0
64
.5 .9 0

128
.5 .9 0

256
.5 .9

A -.023 .377 .795 -.011 .358 .818 -.005 .363 .833
So id) .8 -.025 .328 .493 -.008 .332 .524 -.004 .343 .545

1 -.036 .227 .267 -.014 .232 .292 -.006 .236 .290
.4 -.045 .127 .662 -.029 .047 .595 -.015 .025 .570

Si(d) .8 -.040 .105 .405 -.017 .048 .379 -.011 .029 .356
1 -.051 .047 .196 -.033 .015 .166 -.016 .007 .150

TABLE 3.37 
MONTE CARLO S.D. OF 6, p =  0.5

estimation
n

s \ b2 0
64
.5 .9 0

128
.5 .9 0

256
.5 .9

A .125 .135 .139 .082 .105 .104 .052 .073 .071
S0 (d) .8 .125 .145 .206 .082 .110 .203 .051 .079 .193

1 .122 .164 .217 .079 .139 .222 .050 .113 .211
.4 .253 .240 .259 .161 .171 .222 .093 .116 .172

Slid) .8 .257 .245 .275 .170 .174 .254 .095 .119 .232
1 .240 .224 .278 .163 .168 .249 .092 .116 .221

TABLE 3.38 
EMPIRICAL SIZES (a = 0.05) OF WSl p = 0.5

estimation
n 

s \ b2 0
64
.5 .9 0

128
.5 .9 0

256
.5 .9

A .134 .902 1.00 .099 .968 1.00 .073 1.00 1.00
So id) .8 .126 .839 .984 .095 .952 .993 .068 .997 1.00

1 .121 .611 .786 .082 .800 .923 .064 .918 .981
.4 .129 .140 .685 .103 .084 .741 .074 .063 .877

Slid) .8 .123 .125 .337 .115 .090 .424 .080 .058 .473
1 .088 .083 .141 .090 .048 .146 .069 .035 .177

TABLE 3.39 
EMPIRICAL SIZES {a =  0.10) OF WSt p = 0.5

estimation
n

s \ b2 0
64
.5 .9 0

128
.5 .9 0

256
.5 .9

A .188 .935 1.00 .147 .975 1.00 .122 1.00 1.00
So {d) .8 .191 .889 .989 .151 .970 .996 .123 .997 1.00

1 .177 .705 .851 .136 .856 .939 .111 .941 .983
.4 .190 .190 .752 .175 .127 .792 .129 .091 .930

S lid ) .8 .186 .168 .397 .187 .129 .479 .137 .099 .529
1 .150 .116 .158 .150 .088 .182 .130 .066 .210
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TABLE 3.40
MONTE CARLO BIAS OF 7, p — 0.5, b1 = b 2 =  b

estimation 7
n

s \b 0
64
.5 .9 0

128
.5 .9 0

256
.5 .9

0 A -.008 .420 .857 -.006 .413 .866 -.004 .414 .871
.2 A -.046 .372 .809 -.020 .388 .844 -.006 .407 .865

S0 (d),T0 (c) .4 .8 -.008 .405 .743 -.005 .409 .775 -.004 .413 .794
.7 1 -.034 .347 .494 -.015 .371 .520 -.006 .389 .523
0 .4 -.047 .094 .642 -.027 .024 .582 -.015 .001 .561
.2 .4 -.176 -.051 .481 -.103 -.098 .412 -.040 -.089 .376

Si (d), Ti (c) .4 .8 -.043 .079 .414 -.020 .026 .387 -.013 .003 .343
.7 1 -.116 -.042 .173 -.070 -.058 .149 -.032 -.056 .115

TABLE 3.41 
MONTE CARLO S.D. OF 7 , P =  0-5, bl =  b2 =  b

estimation 7
n

s \ b 0
64
.5 .9 0

128
.5 .9 0

256
.5 .9

0 A .096 .106 .107 .067 .078 .079 .048 .057 .056
.2 A .106 .111 .111 .075 .085 .085 .051 .058 .058

S0 (d),T0 (c) .4 .8 .095 .110 .124 .066 .081 .107 .048 .058 .090
.7 1 .103 .113 .173 .074 .087 .177 .051 .061 .172
0 .4 .233 .220 .254 .133 .159 .224 .077 .115 .192
.2 .4 .266 .224 .270 .180 .179 .253 .094 .151 .233

Si (d), Ti (c) .4 .8 .232 .220 .288 .142 .155 .265 .077 .114 .267
.7 1 .237 .216 .277 .159 .162 .241 .089 .134 .216

TABLE 3.42
EMPIRICAL SIZES (a  = 0.05) OF W7, p =  0.5, bl =  b2 =  b

estimation 7
n

s \b 0
64
.5 .9 0

128
.5 .9 0

256
.5 .9

0 A .038 .979 1.00 .041 1.00 1.00 .051 1.00 1.00
.2 A .087 .939 1.00 .085 .995 1.00 .059 1.00 1.00

S0 (d),T0 (c) .4 .8 .039 .969 1.00 .040 1.00 1.00 .045 1.00 1.00
.7 1 .064 .917 .993 .076 .992 .998 .059 1.00 1.00
0 .4 .072 .098 .683 .039 .058 .722 .034 .033 .826
.2 .4 .096 .053 .455 .106 .077 .464 .090 .092 .505

Si (d), Ti (c) .4 .8 .070 .084 .383 .047 .055 .412 .034 .032 .465
.7 1 .070 .061 .163 .060 .045 .152 .074 .058 .161

TABLE 3.43
EMPIRICAL SIZES (a  = 0.10) OF p  =  0.5, b1 = b 2 =  b

estimation 7
n

s\b 0
64
.5 .9 0

128
.5 .9 0

256
.5 .9

0 A .075 .993 1.00 .081 1.00 1.00 .107 1.00 1.00
.2 A .151 .964 1.00 .128 .997 1.00 .111 1.00 1.00

5o(d),T0 (c) .4 .8 .082 .984 1.00 .080 1.00 1.00 .108 1.00 1.00
.7 1 .122 .946 .997 .123 .995 .998 .123 1.00 1.00
0 .4 .116 .135 .733 .080 .088 .778 .064 .068 .890
.2 .4 .157 .094 .515 .179 .113 .520 .151 .143 .569

Si (d), Ti (c) .4 .8 .120 .127 .427 .094 .087 .461 .062 .068 .512
.7 1 .112 .083 .191 .121 .075 .189 .129 .092 .195
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Chapter 4

Semiparametric estim ation o f  
strong and weak co-integration

4.1 Introduction
As presented in Chapters 2 and 3, fully parametric estimation of parameter v  in 

(1.25) enjoys several attractive properties but, undoubtedly, is not free from the usual 
concern associated to any parametric prescription: the possible misspecification of 
the model driving the process ut. Thus, although any criticism to our approach 
in those chapters would be shared by any parametric methodology, we felt that 
extending our analysis to a situation where knowledge of a parametric model for ut 
is difficult to justify, would nicely complete our discussion about the estimation of is 
in (1.25). We denote our approach as semiparametric, because while we consider the 
spectral density of ut to be an unknown nonparametric function, we still deal with 
Type II fractional integrated processes (see Definition 1.3), which are less general 
than those of Robinson and Marinucci (1998, 2001) or other stationary and non- 
stationary long memory processes which commonly appear in the literature.

We analyse the cases of strong and weak co-integration in model (1.25), (1.26) 
simultaneously. As mentioned before, we do not treat the borderline case j3 =  1/2, 
which is indeed very specific. Although this could be a limitation of our analysis, 
we believe that, especially from an empirical perspective, is a minor one, as in 
practice it is not possible to asses whether the co-integrating gap (3 is exactly 1/2 
or arbitrarily close to it, situation covered by our allowed range of values for (3. We 
propose two different classes of frequency domain estimates of is, which are directly 
related to those in (2.18), (2.34) of Chapter 2. As anticipated, it could have been 
equally possible to consider time domain estimates in the spirit of those in Chapter 
3, based on an A R  (p) representation of ut, with p tending suitably to infinity with n. 
We preferred instead the more aesthetic and computationally appealing frequency 
domain ones, for which we allow for simultaneous consideration of both full and 
narrow band approaches.

In case of strong co-integration, properties of our estimates mimic those achieved 
in the parametric setting: n^-consistency, mixed-normal asymptotics, and first order 
asymptotics unaffected by insertion of estimates of the nuisance parameters which
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in our present framework are 7 , 8 and the nonparametric function /  (A). In fact, 
this result extends to the situation of strong fractional co-integration with possibly 
unknown orders, the well established fact, developed in the C l (1 , 1) co-integration 
literature, tha t parametric assumptions about the model generating the observables 
are not necessary in order to obtain optimal asymptotic theory under Gaussianity. 
For example, as described in detail in Chapter 1, Phillips and Hansen (1990) and 
Phillips (1991b) showed that the same result as in Phillips (1991a) is obtainable 
without assuming knowledge of the parametric structure generating the observables.

We also consider the case of weak fractional co-integration, and proposed narrow 
band estimates of the co-integrating parameter 17 which although do not share the 
parametric optimal rate, y/n  (achieved by our estimates in Chapter 3), axe also 
asymptotically normal. Our estimates are comparable to those of Christensen and 
Nielsen (2001), who achieved similar results to ours (only for the case of stationary 
co-integration) under much stronger conditions on the structure of the underlying 
error input process ut.

In the present semiparametric situation, the issue of estimating nuisance parame
ters with certain required properties is more delicate than in our previous parametric 
setting, and in this chapter we also comment on sensible estimation procedures for 
those parameters. We do not provide a proper theoretical justification of these meth
ods, but this would mainly require extending previously derived results, as those de
veloped by Robinson (1995a,b), Velasco (1999,a,b) and more recently by Robinson 
and Henry (2003). Thus, we are content with just proposing some methods which 
surely would offer, under certain regularity conditions, the desired properties. As 
presented in Assumptions 4.2, 4.3, 4.2°, below, conditions on the estimates of the 
nuisance parameters involve both the rate of convergence of these estimates and also 
the rate at which the bandwidth, m, which defines the “band” structure of the pro
posed estimate of 1/  (see (4.2), (4.3), (4.35), (4.36) below), evolves. As it will become 
apparent later, even if the estimates of the nuisance parameters are relatively slow, 
those conditions could be still satisfied by simply constraining the rate of growth of 
m. In case of strong co-integration, we could nicely take advantage of this result, 
as in this case, the rate of convergence of our estimates of 1/  is not affected by m. 
However, under weak co-integration the picture changes, as the convergence rate of 
our estimates of v is positively related to the rate at which m  increases, and in par
ticular, slower estimates of the nuisance parameters imply slower feasible estimates 
of v (although still asymptotically normal).

Next section is devoted to describing the first class of estimates, denoted as 
“optimally” weighted estimates. Section 4.3 presents and analyses the properties 
of the second class, the “zero-frequency” weighted estimates. Proofs for the main 
results in these two sections are collected in the Appendix 4. Finally, Section 4.4 
contains Monte Carlo evidence of finite sample performance.

4.2 The “optim ally” weighted class of estim ates
As in the previous two chapters, we also consider now model (1.25), (1.26) with 

(1.30), /? 7̂  1/2. Noting (2.2), (2.3), (2.4), (2.5), considering a certain nonparametric
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estimate of /  (A) (see (1.28)), /  (A), we could define

?(A) =  C7 (A)-1, q (A) =  C f  (A) - 1 C. (4.1)

Denoting by Aj  the Fourier frequencies (see Chapter 1), we could set in a similar 
way as in Robinson and Marinucci (1998, 2001),

m
^   ̂Re {cj-p (Aj) I z(c,d)x(c)(^ j)} ? (4 -2)
j =o
m

^ R e { c ^ ( A , ) / l(c)(AJ)} , (4.3)
3=0

noting (1.43), (1.44), for an integer m  such that

m  —► oo as n  —> oo, 1 <  m < n/2 , (4.4)

where Cj = I, j  — 0 , n / 2 , Cj =  2 , otherwise. Similarly, we could also define am (c, d), 
bm (c) as (4.2), (4.3), but replacing p(A), q(A) (see (1.62)) by p(A), q(A) respectively. 
Thus, defining

(c,d) =  ■ i/m (c,d) =  ~ ■■■, (4.5)
Om (c) 6m (c)

we could consider, as in Chapter 2 , the following set of estimates

^m fr.tf). " m i l , 8), Vm(7,<$), ^m(7i^)» ^ m p M ). (4 -6 )

for certain estimates 7 , 5 of 7 , <5, to be described subsequently. Note tha t for the 
particular choice m  =  [n/2], our set of estimates (4.6) is closely related to (2.18) in 
Chapter 2. This similarity comes from the fact that due to the symmetry of the real 
part of a periodogram about A =  0 and A =  7r,

n n

a[n/2] (c> d) =  ^   ̂P (Aj) Iz(c,d)x(c) (Aj), 5[n/2] (c) =  ^   ̂q (Xj )  /x(c)(Aj), (4 '7)
j=i i=i

which are the same expressions as (2.15), (2.16) in Chapter 2 when evaluated at 
h = 9, implying that v\n/2\ (7 , <S) =  P/7 , <5, 0) given in (2.18) in Chapter 2, whereas 
the rest of the estimates in (4.6) represent a natural extension of estimates (2.18) in 
Chapter 2, allowing for non-parametric estimates of the spectral density at different 
frequencies instead of parametric ones. For this reason, we refer to these estimates 
as full band estimates. Note also tha t for m  = [n/2], expressions inside braces in 
(4.2), (4.3) axe real, so our notation is certainly redundant in this case.

When m  <  [n/2], the most interesting case is when m /n  —► 0 as n —► 00 , in 
which case estimates (4.6) are the narrow band versions of estimates with m =  [n/2], 
being this the only situation we consider in case of weak fractional co-integration 
with (3 < 1/2. The motivation for considering also a narrow band approach is 
basically that estimation of the parameter of the relation of co-integration, relates 
to estimation of a long run equilibrium relationship, so we could just focus on a

(c, d) — 

bm (c) =
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band of frequencies near frequency 0, with the hope that the suppression of “high” 
frequencies does not affect the asymptotic properties (to first order) of our estimates, 
while perhaps dropping frequencies helps bias reduction in finite samples, as for the 
narrow band estimate of Robinson and Marinucci (1998, 2001).

As we might hint later, the rates of convergence of the estimates of the spectral 
density /  (A) and orders of integration are very much dependent on the smoothness 
of /(A ). These estimates, as it could be inferred from Chapter 2, need to reach 
rates very close to the parametric ones in certain circumstances, but this is only 
achievable in case /  (A) is smooth enough, with a possibly very large number of 
existing derivatives. Thus, in case we suspect this kind of smoothness condition 
does not hold in our case, in principle, feasible full band estimates would not share 
the same asymptotic properties as the infeasible one when (3 is only slightly bigger 
than 1/2. Then, as we will show later, the main point in favour of narrow band 
estimates is that even in the hypothetical case tha t relatively slow estimates of the 
nuisance parameters axe available, feasible narrow band estimates could enjoy the 
same asymptotics as infeasible full band estimates given in Chapter 2, being this 
achievable by constraining the rate of growth of m  accordingly. Thus, apart from its 
plausible “improved” finite sample behaviour over estimates with m  =  [n/2], narrow 
band estimates are interesting from a theoretical point of view, as in certain cases, 
they will reflect the “sacrifice” made on the rate of growth of m  under minimal 
conditions of smoothness of /(A). This narrow band approach was followed by 
Phillips (1991b) for the standard case in the unit root literature 7  =  0, 6 = 1.

Our aim will be to find conditions which guaranteed a uniform behaviour for 
all the estimates in (4.6) under both situations of strong and weak fractional co
integration. First, related to the bivariate process Ut, we will work under Assump
tion 2.1 (see Chapter 2). As in Chapter 2, this assumption enables us to apply the 
functional limit theorem of Marinucci and Robinson (2000) to the purely nonstation- 
ary process x t (7 ) when (3 > 1/2, as is required to characterize the limit distribution 
of our estimates of v. The application of this functional central limit theorem is 
the reason for the need of a global smoothness assumption, even for the narrow 
band estimates. Assumption 2.1 is the only condition needed in order to calculate 
the asymptotic distribution of the infeasible estimate Vm ( 7 ,6) (the one given in 
Theorem 2.1, for (3 > 1/2) as long as m  —> 00 .

Noting (2.29), (2.30), (2.31), define the random variable

1 ^ -1 1

2 dr I  2 w C A ( l ) ~ v a - 1 f w ( r ; p ) d W ( r ) ,  (4 .8 )

J 0

and denote by (A), (A) the ( i , j ) th  components of /  (A), f ~ l (A) respectively.
Theorem  4.1. Let (1.25), (1.26), (1.29), (1.30), (4-4) and Assumption 2.1 hold. 
Then, as n —> oo,

(i) if/3 > 1/2
n^(Fm(7 ,6) is) =$■ V ; (4.9)

(°)/ W (r-J3)
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(ii) i f  P <  1 / 2  and
m/3-i/ 2 log1/ 2 n  +  m 3+2’nn~2~2r} —> 0 , (4.10)

m i t f ( v m (7,S )  -  v)  ^ dN  ( o ,  i f f  ( 0 ) ^ ( 6 ) )  ' (4 ' U )

As mentioned in Chapter 2, the variates (,'A ( \)~ y Q rl W  (r ) and W  (r\P) are 
uncorrelated, and thus by Gaussianity independent, so (4.8) indicates mixed-normal 
asymptotics. As a consequence of this property and of some steps in the proof of 
Theorem 4.1, given in the Appendix 4,

fcm(7)(^m(7,8) -  v)2 -*d X i> (4.12)

under the various conditions specified in Theorem 4.1. Also, note tha t the condition 
on the second term of the left side of (4.10) is similar to A4’ and A4 in Robinson 
(1995b) and Lobato (1999) respectively, imposing an upper bound to the rate of 
increase of m  with n. Under our Assumption 2.1, in their notation P =  1 + 77. (4.11) 
indicates that, in presence of weak fractional co-integration, our proposed estimate 
is in general faster than the narrow band estimate of Robinson and Marinucci (1998, 
2001) (see Chapter 1). As shown in Christensen and Nielsen (2001), this latter es
timate enjoys the same rate of convergence as our estimate under their very strong 
A’, which in our framework would imply tha t the coherency at frequency 0 between 
the processes uu and u2t is zero. This condition does not hold in general for ut be
ing an ARM A process, where the rate of convergence of the narrow band estimates 
would be given by Theorem 3.1 in Robinson and Marinucci (1998), where they con
jectured that their derived rate, was sharp. Note also that Christensen and
Nielsen gave results for a similar model to (1.25), (1.26), with covariance station
ary observables and co-integrating error, with memories <5, 7  respectively, satisfying 
0 < 7  < 6 < 1/2, <5 +  7  < 1/2.

As in the fully parametric cases described in Chapters 2 and 3, in order to insert 
estimated parameters further regularity conditions are needed.
A ssum ption  4.1. There exists K  < 00 such that

|7 | +  | « |< * ,  (4.13)

and k > 0 such that

7 =  7 + Op (n~K) , 6 = 6 +  Op (n~K) , (4.14)

where, as n —► 00
n - 'cm 1- max(mln{ftl>'1/2>logm -> 0. (4.15)

Assumption 4.1 is unprimitive and very similar to Assumption 2.3. Undoubtedly, 
the search for particular estimates of 7 , 6 to satisfy (4.14) and (4.15) in the present 
framework could entail some difficulties. In view of (4.15), semiparametric methods,
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like the log-periodogram due to Geweke and Porter-Hudak (1983), whose asymp
totic properties were developed by Robinson (1995a), the Gaussian semiparametric 
W hittle estimator hinted by Kiinsch (1987) and studied by Robinson (1995b), or 
the ones proposed by Hurvich, Deo and Brodsky (1998), Velasco (1999a,b), might 
not be valid in certain cases (when (3 is close to 1 /2  and m  = [n/2] for example) 
due to their relatively slow rate of convergence. As shown by Giraitis, Robinson 
and Samarov (1997) and Hurvich, Deo and Brodsky (1998), the typical rate of 
convergence of these local semiparametric methods is limited to n2/5. Alternative 
methods based on nonparametric assumptions about the short memory component 
of a fractionally integrated process have been proposed in order to improve this rate 
of convergence. Here, Moulines and Soulier (1999), Bhansali and Kokoszka (1999) 
and Hurvich and Brodsky (2001) have proposed broad-band approaches originally 
motivated by Janacek (1982), where a nonparametric estimate of the spectrum at 
all frequencies is used. Typically, the rate of convergence of the estimate of the order 
of integration depends on the smoothness of the short memory component of the 
process, and the rate (4.14) with

« =  «„ =  i  (1 -  log-1  n log (log n)) , (4.16)

that is the rate n 1/ 2 log-1 / 2 n, is achievable in case the short memory component 
/  (A) is analytic. This is a relevant result here, as when m /n  does not tend to 0 as 
n tends to infinity, for the case of strong fractional co-integration, this rate would 
suffice for any value of /3 > 1/2. A different approach with the aim of obtaining 
bias-reduction and hence improvements in rates of convergence was considered by 
Robinson and Henry (2003). They proposed a very general narrow-band estimate 
which, depending on certain user-chosen parameter and function, could be viewed 
as Gaussian semiparametric, log-periodogram or a mixture of both, achieving bias- 
reduction by the use of higher order kernels. They obtained for the estimates of the 
orders rates as n 1//2-6, for possibly arbitrarily small e > 0 , where e basically depends 
on the number of existing derivatives of the spectrum of a long memory process near 
frequency 0. Undoubtedly, their approach could be accommodated to our framework 
of (possibly non-observable) processes with arbitrarily large memory, but, as in prac
tice (3 is unknown, even in the situation where /  (A) is analytic near frequency 0, this 
method does not allow us treat all (3 > 1/2. Andrews and Sun (2001) achieved sim
ilar improvements in convergence rates by extending the Gaussian semiparametric 
estimate in Robinson (1995b) through the use of local polynomials instead. In any 
case, all these estimation methods are given for covariance stationary long memory 
processes, including the so-called Type I fractionally integrated (see Definition 1.2). 
This differs substantially from our situation, where, as it is clear from (1.25), (1.26), 
we have to deal with Type II fractionally integrated processes of arbitrarily large 
memory. Undoubtedly, the use of tapering seems unavoidable in our case, but our 
guess is tha t similar results, just taking into account the inflation in the variance due 
to tapering, to the ones in Robinson and Henry (2003) or Andrews and Sun (2001) 
are going to apply to our type of processes following the results in Robinson (2002), 
at least when (3 > 1/2. Related to this, it is important to note that estimation of 7 
requires a preliminary estimate of v, as the process yt — vx t is unobservable. In view
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of results in Robinson (2002), it could be shown that this would not affect first order 
asymptotic properties of the chosen estimation procedure of 7 when (3 > 1/2, but if 
(3 < 1/2, any estimation method produces relatively slow estimates of v. Here, our 
guess is that k  in (4.14), could only be arbitrarily close to (3, not to 1/2, regardless of 
the smoothness conditions enjoyed by /  (A), in case we have a preliminary estimate 
of v whose rate of convergence is n^~e for a certain arbitrarily small e > 0. This is a 
strong assumption, and certainly the OLS does not satisfy this condition for every 
(7,6) combination if f3 < 1, but in this case the narrow band estimate proposed by 
Robinson and Marinucci (1998, 2001) suffices.

Similarly, we establish unprimitive conditions related to the nonparametric esti
mate of the spectral density /  (A).
A ssum ption  4.2. Uniformly in j , there exist x  >  0, (f> > 0, such that

/ ( * , ) - / (  Aj) =  Op (n~x) ,  (4.17)

f  ( \ j+i) -  f  (Xj+1) -  ( f  ( \ i )  -  f  (Xj)) = Op ( n * ) ,  (4.18)

where, as n  —► 00

n - x m  l-max{min{/M},l/2} Q) (4 19)

n~^m2_max{min{/J’1}’1/2} -► 0. (4.20)

As for the estimates of the orders, when m /n  does not tend to zero, estimates 
with x , <j> arbitrarily close to 1/2 and 3/2 respectively could be needed in case of 
strong fractional co-integration with (3 just above 1/2. As noted before, the full band 
case is not allowed for the weak fractional co-integration situation, so depending on 
x , <j), we could adjust m  accordingly so that (4.19), (4.20) are satisfied, procedure 
also valid when (3 > 1/2. While we could guess that a value for x  similar to the one 
for k, in (4.16) is achievable under analycity of /(A ), as it could be inferred from 
Moulines and Soulier (1999), it could be proven tha t for standard spectral density 
estimates similar results as for the estimates of the orders hold. These estimates 
could be based on residuals

ut = ytif)) - £ r t(7 ),:rt (?)] , (4.21)

for certain preliminary estimate of v , v, and /  (A) could be for example the weighted 
periodogram

r\ t OO 7t

=  -7T  E W  -  = -f-  A -  Xj)Ii(Xj),  (4.22)/« Tvj =—00 j=i

where

OO

K b (A) =  b Y ,  K{b{\ + 2trj)), (4.23)
J = — OO
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and K  is a real and even function, b —► oo as n  —► oo but more slowly than rc, or 
the weighted autocovariances estimate

7r n —1

/ 2 (A) = [  K b( \ - » )  h  (M) d/x = “J: E  ( | )  *  W e' ”A’ (4'24)
5 = 1 — 71

— 7T

where

1 n_ S
^ ( s) = s > o,n —'i= l

=  % '( -« )  > 5 <  0,

and
OO 7T

fc (x) =  J  K  (A) e“ AdA, x e ft, k  ( £ )  =  j K b (A) e'Tkd \. (4.27)
— OO — I T

For both estimates, it could be proven that similar results as the ones for the esti
mates of the orders of integration could be achieved for appropriate choices of the 
kernel functions K  and k. In fact, apart from other regularity conditions, assuming 
for example

\l — k(x)\  < K  |x |/l for some h > 0, (4.28)

where h > s, s indicating that A(e%x) is s times differentiable in A € [—7r,7r] with 
sth derivative in Lip(rj) , V > 1/2, means that the function k(x)  is locally (in a 
neighbourhood of 0) Lip(h). If h > 1, this implies that dck(x)  /d x c = 0 for any 
c < h, so bias reduction is possible provided the spectral density /  (A) is smooth 
enough. Condition (4.28) relates to what Parzen (1957) describes as characteristic 
exponent of a kernel k (a;), that is the largest number h such tha t k ^  exists and is 
finite (nonzero), where

In fact, this condition relates closely to the idea of higher order kernels, as (4.29) 
implies that dck (x) /d x c = 0 for any c < h. This, in view of (4.27), readily implies 
that 7T

j  lf K b(n)dn = 0, (4.30)
—7T

for any c < h, which is the basis for bias reduction in nonparametric estimation of the 
spectral density. Of course, the higher h is chosen, the higher the rate of convergence
of our estimates will be. As Robinson (1991) mentions, condition (4.29) holds for
h = 1,2 for many of the usual kernels, but it seems that in case the h required is 
very large, a careful choice of the covariance averaging kernel is required. One could 
use, for example, a continuous impulse spline,

1 °° rv̂
k{x)  = 7T E  —  e - ir l, (4.31)27r rq +  ofl

(4.25)

(4.26)
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as proposed by Cogburn and Davis (1974) with differential operator L = dql2/d x ql2 
(which in their view is the natural choice), with q being an even number. For an 
appropriate choice of a , (4.31) could lead to estimates of the spectral density with 
rates of convergence arbitrarily close to n1/2, for certain smoothness conditions on 
f  (A). Finally, note that under certain regularity conditions, estimating the spectral 
density from the true error process ut would produce consistent estimates for any 
choice of b. As we estimate /  (A) from residuals, the rate of growth of b in general 
cannot be chosen freely, and has to account for this “residuals” effect.

Now, we present a theorem collecting the results related to the infeasible estimate 
stressed in the traditional co-integration literature with 7  =  0 , 6 =  1 , vm (7 , 6), the 
“more” feasible estimates um (7 ,5), ^ ( 7 , 8) and the fully feasible estimate I7m(7 , <$)• 
We denote by any of this four estimates.
T h eo rem  4.2. Let (1.25), (1.26), (1.29), (1.30), (4-4) and Assumptions 2.1, 4■1,-4-% 
hold. Then, as n —* 00,

(i) i f  0 > 1/2
n ^ m (4.32)

(ii) i f  j3 < 1/2 and (4-10) hold

( 0 , ^ (o) ^  (0))  ■ (4-33)

The proof of Theorem 4.2 is given in the Appendix 4. As in the fully infeasible 
case, following the steps given in thejproof of Theorem 4.2, it can be easily shown 
that denoting by 6^  either 6m (7 ) or bm (7 ) ,

(4.34)

under the various conditions of Theorem 4.2.

4.3 The “zero-frequency” weighted class of esti
m ates

As in (4.2), (4.3), we could define

“m M )  =  Re j p ( 0 ) ^ C j / * M)l(<.)(A.,)j , (4.35)

b°m (c) = Re j ^ O ) ^ / ^ ^ ) ! ,  (4.36)

and a°m (c,d), b^ (c), where p ( 0 ) and q (0) replace p (0 ) and g (0) respectively in
(4.35), (4.36). Thus, defining

■770 / j\   (̂ J ~o / ?\ (̂ > / A nrr\
=  (437)
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we could consider, as before, the following set of estimates

>4(7.£). '7m(7,6), ^ ( 7 .? ) -  (4-38)

Note that for the particular choice m  =  [n/2],

“fn/2] (c> d) =  X  (c’d) ^ (c ) , 6°„/2| (c) =  X  X‘ (C)’ (4-39)
t = l  t = l

so in this case, our estimates could be naturally expressed in the time domain. 
These estimates are related to the ones of Theorem 2.2. As stated there, the lack 
of “optimal” weighting does not only produce dramatic change in the limiting dis
tributional properties of the estimates, but also slower rate of convergence in some 
cases. Thus, we could exploit the bias reduction obtained by averaging over a degen
erate band of frequencies (as opposite to full-band averaging), as shown in Robinson 
and Marinucci (1998, 2001), and thus compensate for the lack of optimal weight
ing. However, it is true that for frequencies arbitrarily close to 0, the weighting of 
these estimates is close to the optimal one, and this is precisely the reason why our 
approach works in this case. In fact, it was already mentioned in Chapter 2 that a 
narrow band approach could make the estimates in Theorem 2.2 have mixed normal 
asymptotics for the case /3 =  1, being this a straightforward implication of Theorem 
4.3 of Robinson and Marinucci (2001). It could have been conjectured that this was 
also going to be the case for 1 /2  < ft < 1, but this is not a completely straightfor
ward implication of the results in Robinson and Marinucci (2001). Our purpose is 
to prove that under certain conditions the bias reduction due to narrow-band av
eraging is strong enough so to make the “zero-frequency” weighted estimates have 
mixed-normal asymptotics and optimal convergence rates even when (3 < 1 , in case 
of strong fractional co-integration.

The main advantage of these estimates is their simplicity, as no estimation of the 
spectral density at different Fourier frequencies is needed, so they could be preferable 
to the “optimally” weighted ones in terms of computational convenience.

We simplify slightly Assumptions 2.1 and 4.2 to accommodate for this kind of 
estimates.
A ssum ption  2.1°. Assumption 2.1 holds with the condition

det {A  (1)} 7̂  0 (4.40)

replacing (2 .24).
A ssu m p tio n  4.2°. There exist x  >  0 such that

/  (0) — /  (0) =  Op (n~x ) , (4.41)

where, as n  —> oo
n _xm 1~max{/3,1/2} -+ 0. (4.42)

Denoting by v™ any of the estimates in (4.38), we collect in one theorem the 
equivalent to Theorems 4.1 and 4.2 in the previous section.
T heo rem  4.3. Let (1.25), (1.26), (1.29), (1.30), (4-4) and Assumptions 2.1°, 4-1,
4-22 hold. Then, as n —► 00 ,
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(i) i f  j3 >  1/2 and
m n - P 0, (4.43)

~ v ) ^ V \  (4.44)

(ii) if  13 < 1/2 and (4-10) hold

-*<N  (°> w w r n ) ' (445)

We give the proof of this theorem in the Appendix 4, but just for the infeasible 
estimate , <5), as the proof for the rest of the estimates in (4.38) follows imme
diately from the proof of Theorem 4.2. Note here tha t (4.43) is a new condition, 
which is not restrictive when (3 > 1, but for (3 <  1 has a very important implication,
as in this case a choice of m  such that m /n & does not tend to 0 is not allowed for
this type of estimates. As hinted before, the reason for this is that when (3 < 1 
the nonstationarity of the process x t (7 ) is not strong enough to compensate for the 
lack of optimal weighting, compensations which could be achieved by using a narrow 
instead of a full band approach. Again, under the various conditions of Theorem 
4.3, denoting by b% any of b°m (7 ), b°m (7 ) or b°m (7 )

K  ( C  -  -M X l  (4-46)

4.4 M onte Carlo evidence
A Monte Carlo study was carried out with the aim of comparing the performance 

in terms of bias and standard deviation of our proposed estimates (in both situations 
where the orders of integration are assumed known and unknown), with an estimate 
which does not require any knowledge of either the orders of integration or the 
short memory structure of ut in (1.25), (1.26), which is a band estimate given by 
Vq (m ) (see (1.41)), for m  <  [n/2], which, provided the chosen bandwidth m  tends to 
infinity at a relatively slower rate than the sample size n, is the so-called narrow band 
estimate discussed in Chapter 1 . Note that when m =  [n/2], this band estimate is 
identical to the OLS estimate given in (1.33). Apart from comparing these estimates, 
we also analyse the adjustment of the Wald statistics, corresponding to our different 
estimates of v, to its limiting x l  distribution.

As in Chapter 2, we generated Gaussian et with covariance matrix having 
i j th element varying the correlation p = U\2 /(w n ^22 )1//2, taking values 0, 0.5, 
-0.5, 0.75, fixing v  — u n  = U22 =  1. We consider the combinations of integration 
orders corresponding to strong and weak fractional co-integration cases given in 
Chapters 2 and 3 respectively. Table 4.1 presents the different convergence rates of 
our proposed estimates and also the ones of the band estimate for both cases where 
p /  0 and p =  0. These rates are derived from our results in Theorem 4.1 and 4.2, 
and Robinson and Marinucci (1998, 2001). For the strong fractional co-integration 
case, the described rates for the band estimates apply for any m  < [n /2], m —► 00 , 
noting that the rates of our proposed estimates are optimal in this case. For the weak
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co-integration situation, we only consider narrow band estimates with m /n  —> 0 as 
n —► oo, noting that (4.10) needs to be satisfied.

TABLE 4.1 
CONVERGENCE RATES:

BAND WITH p ^  0, p =  0 AND OUR PROPOSED ESTIMATES
(7.<5) BAND, p j i  0 BAND, p =  0 PROPOSED

(0,0.6) n 6m ~A n 6 n 6
(0,1.2) n 1-2 n 12 n 12
(0,2) TI2 n2 n2

(0.4,1.2) n * n 8 n 8
(0.4,2) n 1-6 n 16 n 1-6
(0,0.4) 4 — 4 n m n ^ m 1 n Am A

(0.2,0.4) n 2m ~ 2 n 2m 3 n m
(0.4,0.8) n A n A n Am l
(0.7,1) n 3 n 3 ,̂.3^,.2 n m

We generated 1000 series of lengths n =  64,128,256, and choosing different band- 
widths b (taking values 15,25,45, depending on whether n is 64,128,256 respectively), 
computed the nonparametric estimate of the spectral density as

~ i J+b
/ (A j)  =  2 6 T T  ?  /s (A *) - (4 4 7 )k=j—b

with
Ut (c, d , a) =  (?/t (c) -  axt (c ), x t (d )) ', (4.48)

where in all cases a =  Vo (b) and (c, d) =  (7 , <5) or (7 , S) depending on whether 
the orders of integration are considered to be known or unknown respectively. The
estimates 7 , S, are Robinson’s (1995a) version of the log-periodogram estimates
of Geweke and Porter-Hudak (1983) without trimming or pooling applied to the 
untapered series yt — ~Pq (b) x t and x t, where x t = x t for 8 < 1 , x t = A x t for 6 >  1 , 
adding back one to the estimate of the order of x t in this case to compute the final 
estimate of 6. b is also the chosen bandwidth for the semiparametric estimates of 
the orders of integration.

4.4.1 Strong fractional co-integration
In this case, we computed “optimally” weighted Infeasible estimates 17/ and 

Feasible estimates 77F) defined as

v i = vm (7 , 6) , VF = *7m(7 ,6), (4.49)

and also “zero-frequency” weighted ones, given by

i7/ =  ££. (7, £), v°f  = K ,{7.?)- (4-50)
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We reported results for these four estimates and also for the Band estimate in 
(1.41), denoting VB =  (m), for three different sets of bandwidths ra, given by
(1,11,111)=(10,20,32), (20,40,64), (40,80,128), depending on whether n  =  64,128,256 
respectively. Note that the highest bandwidth (III) for each sample size corresponds 
to the full band case. In our experiment, related to the structure of ut , we only 
considered cases l.,2. and 3. described in the Monte Carlo section of Chapter 2.

Behaviour o f th e bias

Results concerning Monte Carlo bias (defined as the estimate minus u) for the 
situation where ut in (1.25), (1.26) is a purely white noise process are presented 
in Tables 4.2-4.9. Overall, 77̂ , 77/, 77F , u°F, 77 B are no worse than any of the other 
estimates in 167, 144, 104, 99 and 81 out of 180 cases respectively. These figures 
show the expected dominance of the infeasible estimates and also, the relatively 
better performance of the feasible estimates over the computationally simpler band 
estimate. In fact, when comparing vis a vis the behaviour of 77F and V°F relative 
to 77£, the results are totally clear in favour of our two feasible estimates with 
relations (note the definition of this concept given in Chapter 2) 89/7 and 91/13 
respectively, out of 180 cases. As expected, biases increase in absolute value with 
\p\, being this most noticeable for the cases where /? <  1, for which there is also the 
biggest differences between our proposed feasible estimates and the band one. The 
“zero-frequency” weighted (ZW) infeasible estimate is slightly superior, especially for 
p /  0, to the “optimally” weighted (OW) infeasible one (with proportion 33/10), 
with the exception of the full band situation with (3 =  0.6, where as the theory 
predicts, 17/  beats V°r  On the contrary, the OW feasible estimate outperforms the 
ZW feasible with relation 53/12, differences being most noticeable for the full band 
situation. In general, biases decrease as n, (3 increase and m  (with the exception of 
the case p = 0) decreases. The sign of the bias for the infeasible, band and feasible 
estimates (just when (3 < 1 for this latter class of estimates) is the one of p, being 
the opposite of p for the feasible estimates when f3 >  1.

Results for the AR situation are presented in Tables 4.10-4.25. Comparing these 
results with the ones for the white noise case, the only estimates which enjoy big 
improvements in the AR framework are 77 B and the infeasible estimates, especially 
for the case (3 =  0.6, being this effect stronger the bigger are the AR parameters fa, 
i =  1,2. VF tends also to perform slightly better when the strongest autocorrelation 
structure is imposed for the case (3 =  0.6. When fa  =  0.5, overall, VJ, 77/ ,  Vp ,  77B , ~P°F 
are no worse than any of the other estimates in 167, 126, 90, 89 and 87 out of 180 
cases respectively. This general ordering shows the predominance of the infeasible 
estimates, but suggests an undervalued image of our proposed feasible estimates. In 
fact, both, V p  and v°F clearly beat VB , with relations 83/15 and 79/18 out of 180 
cases respectively, being this predominance more noticeable as (3 decreases, with 
VB showing a competitive behaviour only when n is small and (3 large. The ZW 
infeasible estimates clearly outperform the OW infeasible ones, with relation 42/1, 
being this superiority more evident when (3 < 1 and p /  0, even for the full band 
estimates, although in general the differences between these two classes of estimates 
are very small. Both feasible estimates behave in a rather similar way, as V p  beats
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V°F just with relation 30/28. Here, V°F tends to behave slightly better than Vp when 
(3 =  0.6, especially for the two narrow band cases, whereas Vp improves over V°F 
when (7 , £) =  (0.4,1.2), or for the full band situation when (7 , 6 ) =  (0,0.6), being 
this performance relatively better for smaller n. When ( p i  moves to 0.9, the picture 
slightly changes. The overall ordering is pretty similar to the ( p i  =  0.5 situation, 
being VJ, Vj, Vp, V°F, Vp ,  no worse than any of the other estimates in 146, 136, 90, 
81 and 76 out of 180 cases respectively. Again, Vp and Vp beat Vp (with relations 
88/30 and 73/44 respectively), showing these figures the previously referred relative 
improvement of Vp when the AR structure is stronger. As before, Vp is competitive 
for the cases where (3 is large, while Vp does not show clear superiority over Vp when 
\p\ ^  0. While V°j still seems preferable to V/, this is less clear than in the (pi = 0.5 
case, as now the relation is 13/4 in favour of the ZW estimate. On the contrary, the 
OW feasible superiority over the ZW one is now much clearer, with relation 58/4 
in its favour. As in the white noise case, biases decrease as n  and (3 increase and 
\p\ decreases, the sign of the bias following the same pattern as in the white noise 
situation.

Results for the MA case are given in Tables 4.26-4.41. Overall, the most re
markable feature here is that results are mainly unaffected by the value the MA 
parameter takes. The only relevant difference appears to be an small improvement 
when we move from ipi =  0.5 to ipi = 0.9 for the case (3 = 0.6, especially for the full 
band estimates. Also, results for both infeasible and feasible estimates are extremely 
similar to those in the white noise situation, with some small improvements over the 
white noise case for the band estimate when (3 = 0.6. The overall ordering of the 
different estimates is VJ, V/ ,  Vp,  Vp,  Vp,  which are no worse than any of the others 
in 176, 130, 101, 94, 84 (or 176, 128, 103, 89, 83) respectively when i p i  — 0.5 (or 
i p i  = 0.9), out of 180 cases. Both feasible estimates present strong predominance 
over Vp  in a more evident way than in the AR case, being this mainly based on a 
better behaviour when (3 =  0.6,0.8. Vp  dominates Vp  with relation 87/10 (88/10) 
when 'ipi =  0.5 (0.9). Similarly, Vp  beats Vp  with proportion 84/14 (84/15) when 
'ipi = 0.5 (0.9). In general, these values are very close to those obtained in the white 
noise case, and more favourable to our feasible estimates than in the AR situation 
(especially when (pi = 0.9). The main difference with respect to the white noise 
framework appears from the comparison of ZW and OW estimates. In general, the 
MA situation gives more support to the use of ZW estimates, as V*} is superior to Vj  
with relation 47/1 (48/0) for the case ipi = 0.5 (0.9), being these differences mainly 
based on the cases where f3 < 1. For the feasible estimates, the superiority of the 
ZW is less clear, but still evident, with relations 31/22 and 32/18 for ipi = 0.5 and 
0,9 respectively, although differences are only noticeable for (3 =  0.6, with mixed 
evidence for (3 =  0.8. The general behaviour of biases (including their signs) when 
n, (3, p and m  change, described for the white noise and AR situations is maintained.

Behaviour o f the standard deviation

Results corresponding to the white noise case are presented in Tables 4.42-4.49. 
Overall, the superiority of the infeasible estimates is clear, with a general ranking of 
V1, V°j, Vp, Vp, Vp, which are no worse than any of the other estimates in 145, 144,
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82, 58 and 56 out of 180 cases respectively. Vp is only better than the infeasible 
estimates when /? =  0.6 and p =  0, showing also certain less clear superiority when 
p ^  0 for the same /?, when n  and m  are small. The main difference with the results 
for the bias is that now, the band estimate emerges as competitive relative to the 
feasible estimates. For example, Vp and VB show an extremely close behaviour, with 
relation 57/56 in favour of our proposed feasible estimate. Here, two features seem 
relevant. Vp is clearly superior to Vp for the two cases where j3 < 1, the relative 
dominance of the band estimate being most noticeable for the case (7 , 6) =  (0,1.2). 
Also, as sample size increases Vp performs relatively better than Vp, being this a 
certainly supportive result. v°F clearly shows a worse behaviour than Vp, which is 
superior to its zero-frequency counterpart with relation 68/15. Also, Vp is beaten by 
the band estimate with relation 75/32. Most of this effect is caused by the relative 
deterioration of Vp for the cases (3 < 1, especially for the full band situation. Both 
infeasible estimates behave in a similar way, with relation 29/27 in favour of Vj, 
ZW being better than OW when (3 =  0.6 for the smallest bandwidth, the opposite 
happening for the full band estimates when /? < 1. As expected, standard deviations 
decrease when n, [3 increase, but in general they are not very affected by variations 
in bandwidth. When p =  0, some decrease in standard deviations when m  increases 
is apparent when (3 — 0.6, but for this (3 case this effect is reversed when p = 0.75.

Results for the AR cases are presented in Tables 4.50-4.65. The overall ranking 
of the estimates is relatively similar to the one in the white noise situation. When 
fa = 0.5, VJ, Vi, Vp, Vp, Vp, are no worse than any of the other estimates in 165, 
148, 83, 46 and 45 out of 180 cases respectively. When fa =  0.9, the main difference 
is that Vj performs better than VJ, the rest of the estimates being ranked in the 
same way, with 147, 139, 92, 46 and 36 out of 180 cases being no worse than any of 
the other estimates respectively. In general, standard deviations tend to decrease as 
fa decreases (especially for both cases where (3 < 1). As the overall ranking shows, 
the infeasible estimates are superior to Vp except for the case (3 = 0.6 when p =  0 
and fa — 0.5, and also for some cases with \p\ =  0.5 and n small. When fa = 0.9, 
with p <  0.5 and (3 =  0.6, VB is also better than the infeasible estimates, this fact 
being also apparent for the same (3 case when p =  0.75 and n  =  64. One of the main 
differences with the white noise situation is that in general Vp beats the feasible 
estimates when fa =  0.5 (with relations 77/29 and 97/14 respect to Vp and Vp). 
When fa = 0.9, this relative superiority of the band estimate is even more evident, as 
it dominates Vp and V°F with relations 92/30 and 120/9 respectively. This improved 
behaviour is mainly based on the results for n — 64 and (7 , 6) = (0,1.2), the most 
favourable case for the feasible estimates being (7 , 6) = (0.4,1.2). The reported 
similarity between the two infeasible estimates in the white noise case is less clear 
now. Although there are not big differences in values, when fa =  0.5, VJ beats Vj 
with relation 26/6, whereas the opposite happens when fa = 0.9, where the relation 
is 16/2 in favour of V/, the superiority in this case being almost exclusively based 
on the full band situation. On the contrary, the gap between the feasible estimates 
reported in the white noise situation is now augmented. 77̂  is now clearly better 
than Vp with relations 85/2 and 100/1 when fa =  0.5 and 0.9 respectively.

Results for the MA case are given in Tables 4.66-4.81. For both feasible and 
infeasible estimates the values of standard deviations are very close to the ones in
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the white noise situation, without showing important differences with respect to the 
value of 'ipi. Certain general improvement in the behaviour of v B over the white noise 
situation is noticeable. The infeasible estimates are superior to the rest, with overall 
ranking, out of 180 cases, of FJ, Fj, VB , v f , v°f , being no worse than any of the 
other estimates in 164, 127, 76, 57, 51 and 165, 124, 86 , 55, 49 cases when ipi =  0.5 
and 0.9 respectively. The situation (3 =  0.6 with n  — 64 is the only one where VB 
performs better than the infeasible estimates. The MA framework is much more 
supportive than the AR one for our feasible estimate V F in relation to V B . Thus, 
VB is superior to VF, but only with relation 61/53 for both 'ipi =  0.5 and 0.9 cases. 
v B clearly dominates v F when n  = 64, especially for the cases (7 , 8) = (0,0.6) and 
(0,1.2), whereas v F performs better than v B for the case (0.4,1.2). As in the AR 
framework, VB is superior to v°F with relations 76/36 and 79/35 for ipi =  0.5 and 
0.9 cases respectively, being (0.4,1.2) the only case where in general V°F beats VB . 
In any case, the differences, especially when n  is large, are not of serious concern. 
The ZW infeasible estimates clearly outperform Fj, with relations 43/6 and 44/6 
for ipi = 0.5 and 0.9 cases respectively, being p  = 0 the case where both estimates 
differ the least. On the contrary, v F beats ~P°F , with relations 78/7 and 80/10 for 
ipi =  0.5 and 0.9 cases respectively, being the situation with (3 < 1 where the biggest 
differences appear. In any case, the values for both ZW and OW estimates, although 
showing the previous general patterns, are very similar.

Behaviour o f em pirical sizes

We next analyse the adjustment to their limiting x l  distribution of the Wald 
statistics Wi, WF, W f,  W F, defined as

Wr =  6 / (F /— l ) 2 , WF — bF (VF — l ) 2 , (4.51)
Wf = V̂ VJ-I)2, W£ = t£ (F ? .- l)2 , (4.52)

where

h  =  bm  ( 7 ) ,  f>F =  f>m ( 7 ) ,  (4.53)

%  =  C (  7 ), %  =  b°m ( 7 ) .  (4.54)

Tables 4.82-4.89 contain empirical sizes corresponding to nominal a  = 0.05,0.10, 
for the four values of p, when ut is generated by a white noise process. Results 
corresponding to the infeasible Wald statistic Wi are on average too large, but 
certainly close to the nominal sizes, even for n = 64, for all values of p and m  when 
(3 > 1, empirical sizes reacting as theory predicts when n  increases. For the case 
(3 = 0.8, empirical sizes of Wi behave worse than in the previous situation when 
n =  64, but they react quickly in the appropriate direction, so that when n  =  256, 
sizes for (3 = 0.8 are comparable to those corresponding to larger (3. For this case, 
sizes are not very affected by changes in p, but the combination of simultaneous 
increases in |p| and m seems to have certain deterioration effect. This is much 
more evident when (3 =  0.6, where in general empirical sizes are substantially higher 
than for all the previous (3 cases. For this situation, there is a clear worsening of 
the empirical sizes when |p| and m  increase, and also there is not evidence of the
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expected response to the increase in sample size, except for the case where p =  0, 
where values for Wj are not very far from those corresponding to cases with higher 
p. Empirical sizes for Wp are substantially larger than the ones for Wj, although 
in almost all cases react appropriately when n  increases, being the worst case the 
one for P — 0.6 with p =  0.75. Clearly, results axe closer to the nominal sizes for 
a = 0.10 than for a  =  0.05. In general, Wp behaves better as \p\ decreases and 
P increases, the deterioration of the empirical sizes when \p\ increases being more 
evident when P < 1. The increase in m  does not almost have any effect in Wp 
when p = 0, or p ^  0 with P > 1. When p ^  0, Wp suffers certain deterioration 
when P < 1, which is very important for the case P =  0.6, with empirical sizes 
corresponding to p =  0.75 and the largest bandwidth being unacceptably large in 
this latter case. When P > 1, empirical sizes of W f  and W f  are extremely similar 
to the ones of Wj, Wf , for all p, m, n  and p. For P =  0.8, both W f  and especially 
W f,  behave worse than Wi and W f respectively, this effect being more noticeable 
as m increases, which is a predicted result by the theory. Similar effect is evident 
when P = 0.6, the relative deterioration of W f  and W f  being more important now.

Results on empirical sizes for the AR situation are given in Tables 4.90-4.105. 
Clearly, Wi is heavily damaged with respect to the white noise framework, with 
values corresponding to fa =  0.9 being unacceptably large. When P > 1, these values 
are relatively unaffected by p, m  and P, decreasing in all cases when n  increases, 
quite slowly for fa =  0.9, however. For fa =  0.5, p  = 0.8, Wi is also not very 
affected by the value of p, but certain increase in sizes along with increases in m  
is noticeable, especially for large \p\. When fa = 0.9, this effect is less important. 
For the case P =  0.6 and fa = 0.5, sizes of Wj clearly increase with \p\ and m, 
being this latter effect stronger as |p| increases. Again, this is less evident when 
fa =  0.9, but sizes are very large here, although not far from ones corresponding 
to bigger /?. The behaviour of Wp  is one of the most striking results in our Monte 
Carlo experiment. For fa =  0.5 and p < 0.5, empirical sizes are substantially smaller 
than those corresponding to the infeasible statistic Wi, especially when p  is large. 
Again, when P > 1, sizes are relatively unaffected by m, with small increments 
as |p| increases (especially for P = 1.2), and always decrease as n  increases, with 
empirical sizes very often being smaller than the nominal ones when n =  256. In 
fact, when fa = 0.9, empirical sizes when P > 1 behave qualitatively in a similar 
way to the fa =  0.5 case, but they are importantly pushed down, so that when 
n  =  256 empirical sizes are much smaller than the nominal ones. The behaviour 
of the empirical sizes when P < 1 is interesting. When fa = 0.5 and p — 0, they 
are substantially smaller than those corresponding to Wi, being very close to the 
nominal ones when n  =  256. As \p\ increases, this pattern is less clear, and while 
when \p\ =  0.5 sizes are still better for W f  (only slightly when P = 0.6 though), 
they are clearly worse for p =  0.75, a very important deterioration as \p\ increases 
taking place, whose effect is more evident as m  increases, especially for P = 0.6. 
This very strong worsening of the behaviour of Wp as \p\ increases is also observed 
when fa = 0.9, but here, even for the most adverse situation where p  =  0.6 and 
p =  0.75, empirical sizes of Wp are better than the ones of Wj for any m, as now 
sizes corresponding to Wp decrease when fa increases. Generally, W f, W f  perform 
very similarly but slightly better than Wi, W f ,  except for the cases where P = 0.8
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or (3 = 0.6 and 0* =  0.9, for which Wp tends to behave better than Wp.
Results for the MA framework are presented in Tables 4.106-4.121. Wj behaves 

in a very similar way (with sizes slightly larger) to the white noise situation. For 
n  =  256, empirical sizes are quite close to the nominal ones, except for the (3 = 0.6 
case. This holds for both values of ipi, the “close to noninvertibility” situation 
not showing any important difference with the one where ipi = 0.5. Sizes for W p, 
although still worse than those of Wi, are closer to them now than in the situation 
with <pi = ipi = 0 , i = 1 , 2 . Again, the effect of increasing the MA parameter does 
not have any important effect. Also, W f  and Wp perform relatively better than Wj 
and Wp respectively, the clearest improvement appearing when (3 =  0.6.

4.4.2 Weak fractional co-integration
For this case, we simplified and modified substantially the content of the Monte 

Carlo experiment. We just present results corresponding to the simplest case where 
(p{ = fa = 0, i =  1,2, in (2.41) for estimates in (4.49) and also for the band estimate 
I7B, for the different sets of bandwidths (I,II,III)=(2,8,15), (2,12,20), (3,15,25), for 
n  =  64,128,256 respectively. These different choices for (I,II,III) represent in all 
cases narrow band situations. Instead of “zero-frequency” weighted estimates, we 
report results corresponding to infeasible and feasible two-steps estimates, given 
by V2 and 17̂  respectively. Now, 17̂  is calculated from an estimate of the spectral 
density based on (two-steps) residuals ut (7 ,6,17/), noting (4.48). Similarly, in order 
to compute 17̂ , the estimate of 7  is calculated from residuals yt — Vpxt, and given 
this estimate, say 72, the estimate of the spectral density is based on residuals 
ut( i 2, 6 ,VF). Results for these two-steps estimates are reported for the same set of 
bandwidths specified before.

Behaviour of the bias

Results for the bias are presented in Tables 4.122-4.129. The overall ranking 
presents an overwhelming dominance of the two-steps infeasible estimate. This 
ranking is I7j, 77#, 77f, Vp, which are no worse than any of the other estimates in 
134, 10, 9, 8 and 3 out of 144 cases respectively. As we will show later, this ranking 
damages strongly the image of the performance of the feasible estimates, which, 
specially for the two-steps estimate is excellent. The behaviour of the bias differs 
substantially depending on whether p =  0 or p ^  0. In the former case, although 
V2 is clearly best, dominating for example 17/ with relation 2 2 /4  out of 36 cases, 
the same does not happen for the feasible two-steps estimate which is inferior to Vj 
and Vp with relations 21/10 and 13/11 respectively, out of those 36 cases, smaller 
bandwidths benefitting clearly one-step estimates. VF and I7f perform better than 
Vb, with relations 18/12 and 16/13 respectively, the band estimate being superior 
only when m  and n  are small. As theory predicts, biases decrease in absolute value 
when f3 and n  increase, and, unexpectedly, tend to decrease as m  increases.

This picture changes dramatically when p /  0. Here, in all cases, the biases 
share the sign of p, increase in absolute value when m  increases and show the same 
pattern as when p =  0 with respect to (3 and n. There are two important features to
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note when p ^  0, however. First, both feasible estimates are better than the band 
estimate in all cases. Second, F f, whose corresponding biases are in almost all cases 
slightly bigger than those of F2, performs much better not only than VF, but also, 
and more importantly, than Fj. The relation with respect to the one-step infeasible 
estimate is 91/16 out of 108 cases in favour of F f, being this a certainly encour
aging result, providing evidence of an important bias reduction achieved through 
our proposed iterative procedure. In fact, we suspect tha t more iterations could 
lead to further improvements. The only cases where F / is competitive correspond 
to (7 ,<$) =  (0.4,0.8), (0.7,1), for high bandwidths when n  is small. Finally, as 
expected, biases increase with \p\.

Behaviour o f th e  standard deviation

Results for standard deviations are presented in Tables 4.130-4.137. Over the 
four values of p, Fg is clearly superior to the other estimates, with a complete 
predominance for the two cases where 7  +  6 < 1, i.e. (7 ,5) =  (0,0.4), (0.2,0.4) for 
all p, m  and n. This fact is reflected in the overall ranking, which is Vb , F/, F2, Vp, 
F f , no worse than any of the rest in 98, 23, 22, 4 and 0 out of 144 cases respectively. 
For all estimates, standard deviations decrease as /?, n, p and m increase. Vb is 
the least affected (although still very noticeably) by increments in m, hence the gap 
between this estimate and the rest tends to shrink as m  increases. Vb beats VF with 
relation 108/34, showing VF s predominance over VB only when (7 , <5)=(0.4,0.8) for 
the highest m, and (7 , 8) =  (0.7,1) for the two highest bandwidths. Similarly, Vb 
beats V% with relation 124/20. Also, F f  is superior to VB when (7 , 8) = (0.7,1) for 
the two highest bandwidths.

As opposite to the evidence related to the bias, the two-steps estimates perform 
in terms of standard deviations clearly worse than the one-step ones. Fj dominates 
F2 with relation 122/22, F2 being only superior to F/ (with small differences though) 
when (7 ,8) = (0.7,1) for the two highest bandwidths. Even more striking is the 
difference between the feasible estimates, as VF outperforms F f  with relation 137/6, 
F f  being only superior for some cases with (7 ,5) =  (0.7,1) for the highest bandwidth.

Behaviour o f empirical sizes

We next analyse the adjustment to their limiting x \  distribution of the Wald 
statistics Wj, WF, W2, W2F, where the two-steps Wald statistics are defined as

W{ = b2I (V'2 -  l ) 2 , W f  = b2F ( v f  -  l ) 2 , (4.55)

where b2i and b2F differ from their respective one-step counterparts, bj and ^ r e 
spectively, in the same way as F2 and F f  differed from F/ and VF.

Results for the empirical sizes corresponding to the different Wald statistics axe 
given in Tables 4.138-4.145. Sizes for all cases are too large, in most of the situations 
being very far from the nominal ones, showing in some cases certain convergence 
as n increases, although this is usually very slow. Also, as expected, their values 
increase as (3 decreases. Overall, results are not at all encouraging here.
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When p = 0, empirical sizes corresponding to Wj are too large, but somewhat 
acceptable. For the smallest bandwidth, they react in the appropriate direction as 
n increases, being this less clear for the other two bandwidths, except for the case 
(j,S )  =  (0.4,0.8). For (7 ,6) =  (0.2,0.4) sizes tend to be smaller as m  increases, 
the opposite clearly happening with (7 ,6) =  (0.7,1), and in a less evident way 
with (7,5) =  (0.4,0.8). Sizes corresponding to the two-steps infeasible estimate 
for this p — 0 situation are clearly larger than those of Wj, with the exception 
of some cases for (7 , 6) =  (0.7,1) for the two highest bandwidths. These sizes 
behave in a qualitatively similar way to those of Wj, including the very important 
deterioration of the sizes as n increases for (7 , 6 ) =  (0.2,0.4) associated with the 
highest bandwidth. As \p\ increases, sizes suffer from further increments, which 
are especially evident for cases (7 , 6) — (0.2,0.4), (0.7,1). Also, there is now a 
substantial deterioration of the empirical sizes as m  increases for all /?, without 
evidence of the appropriate reaction as n  increases for the case (7 , S) = (0.2,0.4) 
for the two highest bandwidths. For the smallest bandwidth and \p\ =  0.5, sizes of 
W j  are still larger than those of Wj, but although they also suffer increments as m  
increases, Wf is less damaged than Wj under those increases. Also, the deterioration 
of Wf as p increases is less important that the one of W/, so tha t when p =  0.75, in 
almost all cases, W j  presents smaller sizes than W/ (especially for (7 , 6) = (0,0.4)). 
This relative better performance of W j  is also evident for \p\ = 0 .5 , but only for the 
two highest bandwidths. When p ^  0, W j  also shows a better behaviour than W/ 
when n  increases.

Sizes corresponding to Wp and W-f follow in general the same pattern as their 
corresponding infeasible counterparts, but they are in almost all cases larger, the 
gap between sizes of infeasible and corresponding feasible statistics increasing as \p\ 
increases.

4.5 Appendix 4
P ro o f  o f T heo rem  4.1. We show first (4.9). Clearly

(4.56)

where

First, we show that
E (em{l)) =  o(nfi).

We can write the left side of (4.58) as the real part of

(4.57)

(4.58)

in * 71

^ 2  cip /  Dn(Xi ~  an-te~i(n~t ) X j -  X j) f  (p) (dp, (4.59) 
3=0 J  t= 1
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where at = at (P), Dt(X) =  ]Cs=i e%sXj t îe Dirichlet kernel, where for 0 < A < 7r,

\Dt( X ) \ < K i m n { \ X \ ~ \ t } .  (4.60)

Noting tha t for any A,
p W f (  A)£ =  0, (4.61)

by periodicity, we can write (4.59) as

n —1

N  ̂Ca7)( A-A I D„( — ll)
2tt n

m  n —1

—  ^ 2 cjP (xj) /  ^ n { - p ) ' ^ 2 a te - ltxiD n-t{p )[ f{p  + Xj ) - f { X j ) } ^ .  (4.62)
a—n J *n3=0 <=0

Next, by summation by parts, (4.62) is

-| Ub il  X

2 ^  X I J Dn(-p)an-\Di(ii) [f ( p  + Aj) -  /  (Aj)] £ XI e~itXjdP
j  0 — 7T ^ ^

1 771 }
-^ Z Z ^ Z ciP(Xi) /  A>(-M) [ / (M +  ^ )  -  / (A,-)]£

3=o
n—2 t

x ^  (at+iZ)n_t_i(/i) -  atDn- t (fi)) ^  e~thXjdfi. (4.63)
t=o /i= 0

Clearly, the first term in (4.63) is

7T

P (0) J  D n i-r fa n - iD ifa )  [f (fj) -  f  (0)] fd/z, (4.64)
— 7T

noting (2.95). Now, (4.64) is bounded in modulus by

7T

#  K-i| J  \ D n { p ) \  dn = 0  (n^-1 lo g n ) , (4.65)
—7T

as /  is a differentiable function, for any finite c > 0, by the Stirling’s approximation

|a, (c)| <  K  (1 +  s)c_1, s >  0, (4.66)

and
7T

J  \Dn(fj,) \ d/j, = O (logn), (4.67)
— 7T

(see e.g. Zygmund, 1977). Regarding the second term in (4.63), note that

at+iD n- t-i{p) ~  atDn- t {p) =  K + i -  at) Dn- t- i(p )  ~  e^n~t)liat . (4.68)
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First, the contribution of the first term on the right of (4.68) to the second term 
of (4.63) is 0 for (3 = 1, as in this case at+i = at , t  = 0, ...,n  — 2. For (3 ^  1, this 
contribution is bounded in modulus by

K n ~ l t
771 ~

£  /  I A ,  (/i) |2 11/ (/* +  Aj) -  /  (A j) || d / i

m »

»<£/
3=0 J

n—2

y i  (at+i ~  °t) -DTa-t-iM (Dt{—̂ j) + 1)
t=0

||/( /z  +  AJ) - / ( A i )||d ^

(4.69)

Now, the term inside the first braces is bounded by

7T

K m  J  | / i |  \Dn (jj,)\2 dfi = O (m lo g n ), (4.70)

by (4.60) and (4.67), noting that by Assumption 2.1 /  is boundedly differentiable. 
Next, the inside of the second braces is bounded by

?7i p n—2 n—2

K  £  /  m  £  £  -  “*) ( a c - a , ) + 1)
7=0 •£  t= 0  3=0J —7T

x  (fls_|_i o5) Z)n_ s_ i (  ^t) ( Ds(Xj) -f- 1)

O ( n 2 l o g n ^ j  2 ( ] T V
j=i

- 2 (4.71)
. t = l

by Lemma 2.C.1 of Chapter 2 and (4.60), which is

O (n2logn) , (3 < 1, 
O (n2(3 log n) , (3 > 1, (4.72)

implying that (4.69) is

O 7̂712 log 71̂  , (3 < 1, 

O log 7i  ̂ , (3 >  1. (4.73)

Finally, the contribution of the second term on the right of (4.68) to the second term 
of (4.63) is bounded in modulus by



Now, the first integral inside braces is 0 (1 ) by (4.60), whereas the second one is 
bounded by K  Y*=i at |A (A j)|2, so that (4.74) is bounded by

771

K n~l ^  {n 2P+1j~ 2} 2 ~  O ^mP~2 logm^ , 
j = 1

(4.75)

to conclude the proof of (4.58). 
Next, we prove that as n —► 0 0 ,

-fit'(em(7) -  S (em(7))) =► c ' A  ( l ) - 1' f i - 1 J  W  (r; 0 )  d W  ( r ) . (4.76)
0

This proof will just consist on showing that as n —► oo,

em(7 ) - £ { e m(7 )} =  ^ ^ i ( 7 )A (l)£ t +  oI>(n'3), (4.77)
2,r

because

^ ' £ , x ^ 1(i)A (l)et ^ C M i r Va r 1f  W ( v , 0 ) d W { r ) ,  (4.78)
t =  1 Q

by Proposition 2.3 of Chapter 2. Now, in view of Propositions 2.1, 2.2, (4.77) holds 
on showing

'  [n/2]

Var  < Re < ^   ̂ C jP  ( \ j  ) I Ux(-y) (^ j  )
j = 7 7 1 + 1

> } =  o (n2ff) , (4.79)

but, as mentioned in Robinson and Marinucci (2001), (4.79) follows by a simple 
modification of their Theorem 5.1, as p(A) is a well-behaved function without poles. 

Finally, to complete the proof of (4.9), we show that as n  —► oo,

i

=> J  W  { r \ 0 f  dr, (4.80)

where the right side is almost surely positive. This result follows in view of Propo
sitions 2.4, 2.5, 2.6, as by Theorem 4.4 and simple modification of Theorem 5.1 of 
Robinson and Marinucci (2001) and Assumption 2.1,

Re <
[n/2]

^   ̂ Cj  Q (A ? ) ^*(7 ) (^3 )
j  = 7 7 1 + 1

► =  op(n2(3). (4.81)

Now, we prove (4.11). First, defining

x t { r]f) — ^  Ja j u 2,t—j',
j = 0

(4.82)
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(4.11) follows on showing
m m

^   ̂R e  {cjP  (Aj) I Ux(-y) (A?)} 2 R e  | p  (A j)/ux(7 )(^ j)}
i=o j - 1

+Op ( nPm  ̂ ^  ,

m  m

^ 2  Re {cj-g (A,-) /x(7 )(Aj)} =  2 ^  Re {q (Xj) h( j ) (Xj)}  
j = o  j = i

+Op (n2̂ m1-2/3) ,

m  m n  /  v Re \P (A?) Iux(j)\Xj) } —► d.N ^0, 2(1 —2/5) / ’
j = 1 

m

j = 1

/ U (0 ) /2 2 (0 )  
P 1 — 2,3 ’

(4.83)

(4.84)

(4.85)

(4.86)

by simple application of Cramer’s Theorem. First, we show (4.83). Now, the left 
side of (4.83) is

m

2 ^   ̂Re {p (Aj) At5(7)(Aj)} +  p (0) / Ux(7)(0) +  p  (0) (/ua;(7)(0) — / Ux(7)(0))
3 =1

m
+2 ^   ̂Rg {p (Aj) ( /Ux(7) (Aj) — /ux(7) (A j) )} . (4.87)

j=i

Now, the second term in (4.87) is

P ^  M  = ° p (n/3) =  °p ( n/3m^~/3)  i27rn
(4.88)

t=  1 s= 1

as under Assumption 2.1, Ylt=i ut = Op (n ^ 2)j E ”=i (7 ) =  (n1/2+^) (see eg.
Robinson, 1994a). Next, the third term in (4.87) is

p (0)
27T71

n n

(4.89)
4=1 S= 1

where the expectation of the second smnmation in (4.89) is 0, whereas its variance 
is bounded by

2

K
1

ilfj.

8 = 1  1 = 0—7r
71 71 OO

d p

£  i r E E E ( ‘ + , ^ 1(3 + | )'’' 1
f=l s=1 *=0 
n oo n 4—1 00

< KYJY.(t+l^ 2+K'ET,Tl(t+l ~̂1(s+l'>/3-1

4=1 z=o 4=2 s = l  /=0
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n t—1 ooS *EE iw - 2 + *EEE (s + l)2l3~2 < K n 2l3+\  (4.90)

implying that

t=i i=t t=2 s=1 /=o

(x* W ” M) =  °p  ( n^ )  ’
5=1

(4.91)

hence we conclude as in (4.88). Finally, regarding the fourth term in (4.87), we first 
calculate the order of magnitude of its expectation, which is the real part of

- Z m oo n

—  /  T  p  (A,) Dn (A, -  it) Y ,  E /  M  ( e - is"dM, (4.92)

which by (4.61) and periodicity is equal to

oo n+s1 /* »»•> #*-roj- / 5> (A,) A. (-/*)]£ E ê-<̂(/(/i + Ai) - / ( A i) ) ^ - “^ ) < i M
71-71 .7=1 5=0 fc=S+l

^ m
/  £ | A » ( - p ) | | / ( p  +  AJ ) - / ( A j ) | | | 2 <ip< Tfn-1 /

x <  , V
oo n+s

E E
5=0 fc=S+l

cij.e- i k X j  - i s ( n - X j ) dfl (4.93)

Now, by Assumption 2.1 and (4.60) the first element inside braces in (4.93) is O (m). 
The second element is

0i ( l  k )Xj
m oo n + s  n+s

2iE E E  E a k a ‘e '
j —1 5=0 k—s+l  l=s+ l  
m oo , , 1 \  2/3-2

(4.94)
j = l  s= 0

by Lemma 3.2 in Robinson and Marinucci (2001), to conclude that the expectation 
is 0 { m ll2). Next, we calculate the order of the variance of the fourth term in (4.87), 
which is bounded by the real part of

77i 771 n n n n oo oo

TT n̂ E E E E E E E E  O 's+ l^'q+p^  ̂  ̂ ^
j = 1 /c= l t = l  r = l  s = l  g = l  Z=0 p=0

x p  (A j) {E  ( « , < )  £  ( u 2 _ i« 2 _p) +  £  (utU2-p) E  (u'ru2 -i) + k}p '  ( - A * ) ,
(4.95)

where fc is a fourth cumulant term of the processes ur , ^ 2,—z, w2,-p- We just give 
detail of the contribution to the variance of the first term in braces in (4.95). It can
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be shown by simple application of the Cauchy inequality that the contribution of 
the second and third terms is of the same order as the one of the first term. Now, 
this contribution is bounded by

m  m  oo n

/£'n~2 E E E E a»+'e-iVE a i+ ‘e iX “q E e it{X l X t)
j = 1 k = l  1=0  s = l  q= 1 7=1

m  oo n

< Kn.-1E E E ^ ^ ' E 0**6̂ * -  t4-96)
j = 1 1=0  s = l  g = l

by (2.95). Now, (4.96) is bounded by
oo n m  oo n

K n ~ lm  E E a2+< + K n - 1 E E E E  a,+laq+leiX̂ - ’\  (4.97)
1=0 a = l  j = 1 1=0 Sjtq

Clearly, the first term in (4.97) is O (rnn2(3 *), and by (4.60) the second is bounded 
by

oo n  1 oo n  q- 1 , ; \ / 3 - l  /  . i \ 3 - l

*n~lE E E  Q's+lQ'q+l |  ̂ K  E E E (s+<)7-(r iri
1=0 s ^ q  1=0 9=2 3=1 Q S

n q—1 1 oo n g—1 2 3 —1

<  k Y Y — Y i w- 2 < k Y Y - —

g=2 a = l  l = s  9=2 3=1

=  K  E s2<31 -  logn- (4-98)
9=1 3=1

Thus, the fourth term in (4.87) is

Op (jn* +  r / l o g 2 n j  = op , (4.99)

by (4.10), to conclude the proof of (4.83). Next, we show (4.84). First, noting tha t 
from previous arguments

9 (0) 2 ~  (E x‘ (7 ))  =  Op (n2(3) =  op (n20m l- 2ri) , (4.100)

(4.84) follows on showing
m

^ 2  Re U  (Xj) wx(rr)(*j) -  w»(7)(-A j)) } =  (n2/3ra1_2/3) . (4.101)
j = 1

First the expectation of the left side of (4.101) is the real part of

1 m  n n —t n  oo \

t a £ ?(A ))E E E E v i,Ai^ ^ ( M  /  A : W « - ^
j = l  7=1 9=0 s = l  7=0 —7T
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71 _ ^- * m  n

= i  J E « M E A (Ai - /*)
— 7T ^

n  cx>

xE E a s+/e tXj3e %l(1 ( f22 (/z) — /22 (Aj)) dfi,
s = 1 Z=0

as

J  ê '+' d̂/j = 0.
—7T

for all t >  1, 1 > 0. Then, (4.102) is bounded by

(4.102)

(4.103)

K r T 1 < / £j=i
Y*n-,ei(n-t)x>Dt (A,- -  /i) ( /a  (/*) -  / 22 (A,-))
t =  1

d/i

x<  i Y
71 OO 2

d/i
s=l z=o j

2

> . (4.104)

Now, the first element in braces in (4.104) is bounded by

m  n  n

K E E E “"-‘“"-I l°‘ (Ai - ̂  \D* ̂  - Ai)l V™ M - ̂ 22
i=i z=i 9=1

<  K m n 213, (4.105)

by (4.60). The second element in braces is

m  n  n  oo

* E E E E  tts+Ẑp+Ẑ ̂   ̂5
j = l  s = l  p =  1 Z=0

n  oo n  oo

< ^ E E ^ ^ E E E t t t ^
s = l  Z=s s ^ p  Z=0

=  O (mn2(3 -f n 2̂ +1 logn) , (4.106)

where the order corresponding to the second term in the right of the inequality in 
(4.106) is calculated as in (4.98). Thus, the expectation of the left side of (4.101) is
O [n2P~l/2rn}t2 log1//2 r i j . Next, we consider the variance of the left side of (4.101)
which is bounded by the real part of

1 m  m  n  n  n —t  n —r  n  n  oo oo

4^EEEEEEEEEE«(ai)9(-a*)
j = 1 k —1 t —1 r = l  9=0 p = 0  s = l  u = l  Z=0 u= 0

x {E  {u2tu2r) E  (u2_tu2- v) +  E  (u2tu2- v) E  (u2ru2 _/) +  A;} , (4.107)
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where k is the fourth cumulant term of U2t, U2r, U2,-h u2, -v  As before, we just 
consider the contribution of the first term in braces, the treatment of the remaining 
terms being very similar. Now, this contribution is bounded by

2n  I n

t = l  ^ l=Q l = n + 1 )

t t i  n — t n + l

£ £  aqeiqXj Y l  ase -<ŝ e i(,+,)ii
j = 1 q = 0  s = i+ l

(4.108)

Now, noting tha t by Lenuna 3.2 in Robinson and Marinucci (2001)
n + l

£ a> 
«=/+!

—iaXi < K
(I + 1 )^ 2" 1/2

|/3 /2 + l/2 (4.109)

the contribution of the summation in I from 0 to n to (4.108) is bounded by
2

* n - 1 £
i—i

12- 1 / 2  ^ 1

i=l W
.3 /3/2+1/2 < K n 4̂ , p  > 1/3,

< K n 413 log2 m, /3 =  1/3,
< K n 4f3m l- W, p  < 1/3. (4.110)

Next, by Lemma 3.2 in Robinson and Marinucci (2001), the contribution of the 
second summation in I in (4.108) is bounded by

iC n-1 £
l = n + 1 J=1

<  K n 7l3+1 ;2,3-2 < K n if>. (4.111)
l = n + l

(4.112)

Thus, we conclude that the left of (4.101) is

Op (n 2!3~l/2m}/2 log1/2 n +  n 2̂  , (3 > 1/3,

Op ( n ^ ^ ^ m 1/2 log1/2 n +  n2t3 log rnj , /? =  1/3,

Op ( n 233- 1/2m V2 l0 g l/2  „  +  n 20m l / 2 - 3 m \  ,13 C l / 3 ,

in all cases op (n 2̂ m 1-2^). Finally, (4.85), (4.86) follow as in the proof of Theorem 
2 of Christensen and Nielsen (2001) who adapted the steps in Lobato (1999) to a 
somewhat different situation. Following these references, it can be easily shown that

n t —1

= '5 2 C t'^2 ct-s(s + °p (npm 1/2 P) , (4.113)
j=1 t=2 s=l

where =  fi-1/2̂ ,
1 m

Ct =  9 ^ ;m i/2  £ g ^ > cos (*aj ) ’ (4 -114)
3 = 1

and

e (A) =  x i  [B1 (A) p' (A) r  (1 -  e-w ) B (-A) +  (1 -  eiA) ̂  B ’ (A) (p ( - X ) B ( - X )
(4.115'
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with B ( \ )  = A  (eiA) fI1/2. Now, probably the only point tha t is worth mentioning 
is that

1 m n t—1

4^ 2̂  E <r cos2 (({ - s) Ai)
ji = l t=l 3=1

/ _  i\2 m

-  f e s & W H X W )
3=1

=  (" a ^ £ ?  E tr  { B> p' m «' (J -  B (-*>)
j=l

x (1 -  B ' (Aj) &  (-A j) B (-A j) j  (4.116)

some cancellations taking place due to (4.61), so that (4.116) is equal to

( n - l ) 2 A ^ Y ^ , iJU-2 0 ,  z . w i i /  \  \ / 22(0) / u (°) M 1171
2„ 2m E l 1 - *  ’ I / 22 ( ^ ) /  ("•**)-> 2 ( 1 _ 2/3) - (4-117)

as n —► oo, by (4.4).

P ro o f  o f T h eo rem  4.2. The result follows on showing that as n —> oo

>'m(7><5) -i'm (7i'5) =  Op (n/5m 1/2~mlnf,3’1/2)) , (4.118)

£ m (7 ,? ) - iU 7 ,S )  =  op (n^m1,'2_mln{A1/2)) , (4.119)

noting that the proof for ^m(7 )^) and £^(7 , <5) is implied by the proof of (4.119). 
First, (4.118) follows on showing

em(7 ) -  em(7 ) =  Op(ra<3TO1/2_mm{1/2'/3}), (4.120)

U  7 ) - U 7 )  =  Op(n2'5m 1- 2mi"‘W l ) .  (4.121)

We just prove (4.120) as the proof for (4.121) is similar, but significantly simpler. 
Now the left side of (4.120) is

R e j £ Cj(p(A,) - p ( A J)) /ul(7)(AJ) | , (4.122)

and noting that

p(X)  -p (A )  =  c m - 1 [/(A) -  /(A)] 7(A)-1, (4.123)

the two possible terms for which Cj = 1 are Op(n^~x) = Op(7i/3ra1/2-min{1/2’̂ )  by 
(4.19), as by Assumption 2 .1, X)r=iut =  Op(n1/2), and by results in Robinson and
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Marinucci (2001) and previous arguments, Y l t = i x t ( 7) =  Op(n^+l 2̂). Next, by
summation by parts, the remaining terms in (4.122) are equal to

2 Re j(p(Am.) - p ( K n . ) ) f ]  Iux(pf)  ( A j )  |

( m * —\  j  'j

—2 Re  ̂ ^   ̂(p (AJ+i) — p (Aj+i) — (p (Aj) — p (Aj))) ^   ̂IUx(-y)(^h) /  5
I  3=1 h= 1

(4.124)

where m* = m  — 1 if m =  n /2  or m* = m, otherwise. Now, we consider the order of 
magnitude of the expectation of E L i ^ ( 7)(^)> * =  uniformly in j  G [1 ,m]. 
First, for 1/2 <  (3 < 1, as in the proof of Proposition 4.1 of Robinson and Marinucci 
(1998)

(4.125)
/  7 \ 3

f
n n —t 2'

e 1 J < K n ~ l ^ 2  <
h = 1

E
t = i 3=0 /

where by Lemma 3.2 in Robinson and Marinucci (2001), for 0 <  |A| < 7r,

3=0

= o 1
(4.126)

implying that, uniformly in j  G [1, m ] ,

^  ^ -̂1/1(7) (A/i)
\/i=i

=  O (n^ra1 . (4.127)

Next, for (3 = 1, noting that Assumption 2.1 ensures that the conditions for Lemma 
5.4 of Robinson and Marinucci (1998) hold, uniformly in j  G [1 ,m ] ,

E  f y  '  Iujxjpi) (A/t) j — O (m ), (4.128)
k/i=i

noting that uniformity in j  follows easily from the arguments in the proof in tha t 
lemma. Now, for /? > 1, the left side of (4.128) is

1 j f  71-15— E / D " (-#*) E a * ~ H X k D « - t 00 f i  2 (m+ dt i2irn f —' //i=i—7T

(4.129)
i=0

which by summation by parts is equal to

1 f  n_1
2 I E)n ( /i.) ^   ̂ (/i) ^ 2  (m "F A j) Dj ( Â ) dp
n  _ t=1
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— r —  [  Dn (—M) y^Ql-Pn-t (/*) y~l ( / .2  (p +  ^<1+1) -  / .2  (M +  ^h))
2,r"  J IS i t i

— 7T

7T

x D h (—At) ^  +  2^  /  I A ,  (m)|2 f i2 (/i +  A*) d/x. (4.130)
— 7T

Now, the third term in (4.130) is O (j), noting that for any r > 1
7T

j  |Dr (/x)|2d/t =  27rr. (4.131)
— IV

Next, uniformly in j ,  the first term is bounded by

TO — 1
K nT 1 E  \atDj (—A

t  =  l

7T 7T

J  \D„ (/x)\2 dfi J \Dn. t (,x)\2 d»
V.-7T

<  K n  2 — O (n/3) , (4.132)
t=i

by (4.60). Also, noting that by Assumption 2.1, uniformly in ji and h,

f i 2 + ^h+l) — f i 2 (m + ^h) = O (n *) , (4.133)

using a similar analysis to the one of the first term, it is easy to show that the second 
term of (4.130) is O (n^-1j ) .  Next, by the proof of Proposition 4.2 of Robinson and 
Marinucci (1998), for any 2 =  1,2

Y ]  aseli s \ hVar  ( E A . m A / O  ) <  - K n - ' E E
\ h = l  J  h = l  t=  1 s=0

which implies by (4.126) that, uniformly in j  E [1 ,m ] ,

Finally, for (3 < 1/2,
i

( E ^ ( ^ ) E 4 W (A*)} =  O (n'3/ - ' 3) ,

(4.134)

(4.135)

(4.136)
h=1 h=1 h = l

by the properties of the periodogram described in Robinson (1995a), to conclude 
finally that

h =\
y  Iux^iXk) =  Op (pPm1 p) , P <  1, 

= Op (nP) , /5 > 1,
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uniformly in j  € [1, m\. Thus, by Assumption 4.2, the first term of (4.124) is

Op (nP~xm l~^) , (3 < 1,
Op (np- * ) , P  >  1 , (4.138)

so the first term of (4.124) is Op(7̂ ^m1/2_mln̂ 1/2,̂ )  noting (4.19). Now, pJ+1 — pj+i  — 
(Pj ~  Pi) is

c p 1 [h -  7i+x -  Hi -  /j+o] P A  

+ C  ( f p  -  f p )  (f i  -  / ; « )  I p

+ C f p  (fi -  f i+i) ( P A  -  f p l )  ■ (4.139)

First, by (4.137) and Assumptions 2.1, 4.2, the contribution of the second and third
terms in (4.139) to the second term of (4.124) is

Op (n/3- 1_*rm2_/3) , (3 < 1 ,

Op , P >  1, (4.140)

which is Op(n^m1/2-mm{1/2’̂ )  by (4.19). Finally, by Assumption 4.2 and (4.137), 
the contribution of the first term in (4.139) to the second term of (4.124) is

Op (n^-^m 2-^ ) , /3 < 1,
Op(np-+ m ) , (3 >  1 , (4.141)

again Op(n^m1/2_min̂ 1/2’̂ )  by (4.20), to conclude the proof of (4.118).
Next, noting that

(4.142)
M 7 )

where

e J a P )  =  Re | S cjP (Ai) j  - (4-143)

and
v(7 ,?) =  (izit ( 7  -  7 ) , x t (6)y,  (4.144)

(4.119) follows on establishing

em{7 , ? ) -Cm(7 ) =  Op(n/Jm1/2_min{W}), (4.145)
em(j ,S)  -  em(7 ,?) -  em(7 ) +  a™ (7 ) =  Op(n^m1/2_min{1/2’|0}), (4.146)

M 7 ) “  bm(7 ) =  Op(n2/3m1_2m,n{1/2'^), (4.147)

M 7 ) “  M t )  ~  M 7 ) +  M 7 ) =  Op(n2/3m1_2min{1/2,/3}), (4.148)

where em(7 , <5) is like em(7 , <5) but with p(X) replacing p( \ )  in (4.143). We just prove 
(4.145), (4.146), the proofs for (4.147), (4.148) being similar but simpler.
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Now, the left side of (4.145) is the real part of

m
^   ̂cjP {Xj) [^1(7)( Xj) ~  ^^(7)( A?)] ^v(7,?)(^j) — wu{Xj) (4.149)
j=0

m

+  Y 2  cip (Aj) w*W (” ■AJ‘) ^*(7.2) ̂
j =0

+  ^   ̂CjP (Aj) ( Aj) ^ 1(7) ( Aj)] '^u(Aj). 
i=o

Considering first (4.151), by Taylor’s theorem, this is the real part of

(4.150)

(4.151)

(7 ~  7)1 
!r\

R- 1

E
r = l

■ (7 ~  7 )* 
Rl

CjP (A,) w<g(—Xj; /3)u)u (Aj)
j=o

m
^ 2  CjP (Xj) w {u f ( - X j; 6 -  i ) w u( \ j ) ,  
3 = 0

(4.152)

where for a vector or scalar sequence ipt, and real b > 0,

n t— 1

f ' M )  “  - ^ - x E E a*r)(6) ^ ei,A’
(27T7T.)2 ^=2 s = i

with
a W (6) =

db'

(4.153)

(4.154)

and I7  — 7 I <  I7  — 7 |. Now, by a straightforward extension of results in Robinson 
and Marinucci (1998, 2001)

771

^ 2  cip (Aj) w£ )(“ Ai; /?) ^ ( Ai) =  °P (logm )r) , fi < 1,
3 = 0

= Op (pP (logm)r) , (3 > 1 , (4.155)

the only differences being that the weights cfe\(3) that are involved (see Lemma 
2.C.1), are not covered by the weights of Robinson and Marinucci (2001) (but it 
can be easily shown that they just contribute the (logm)r factors), and the smooth 
weighting factor cjp (Aj), which, as mentioned before, can be handled by simple mod
ification of the proofs of Robinson and Marinucci (1998, 2001). Next, the summation 
in the second term of (4.152) is bounded by

^ E  W?(_Aj;i5_7)l IK(Ai)H  ̂ K n ^ a f i S - ^
3 = 0  j=1

=  Op (n^+e+2) , (4.156)
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for any e >  0 in view of Lemma 2.C.5. Thus, by Assumption 4.1, choosing R  > 
(/c +  2)//c, (4.151) is

0 P (n^-/tra1-/3 log m ) , (3 < 1 ,
0 P (nP~K log m) , /? >  1 , (4.157)

orders which are op(n'3m I 2̂~mint1'/2’/3*) in view of (4.15). Now, again by Taylor’s
theorem, (4.150) is the real part of

(  ^ 7 )r °  W > (A ,;0 )
r = l  ' j = 0 '  \  )  J

+ ( 7 - 7 )
^j)  ^  q (fi _  fi^R ) wu 7» 6),

where

wiR)(X-,y,6 )=  ) ,w (R)(Xj ;S)>j  ,

(4.158)

(4.159)

and I7 I <  I7  — 7 I, 6 < 6 — 8 . Again, by straightforward modification of results in 
Robinson and Marinucci (1998, 2001), the orders in (4.155) apply to the summation 
over j  in the first term of (4.158) as the weights a^  (0) involved (see Lemma 2.C.4), 
just contribute the (logm)r factors. Next, the summation in the second term of
(4.158) is bounded by

q= 0

m
< K n ft+%'*T/ 1 \a[R)(7 ) |+  a ^ ^ l } ,  

g=0
(4.160)

which is Op(n/3+3/2+€) for any e > 0, in view of Lemma 2.C.5. Thus, by Assumption 
4.1, choosing R  > (3/2 +  « )/« , the orders (4.157) apply to (4.150). Finally, by same 
arguments as the ones above, we can easily show that (4.149) is op(n/3m 1/2_nlin 1̂//2,/3̂ ), 
to complete the proof of (4.145).

Next, the left side of (4.146) is the real part of
m

X } C1 -  Pi )  { w * ( 7 ) ( - - \ ; )  w v{y,6)(Xi )  -  w u ( * j )
j=0
+  [?/;x(^)(—Xj) — u>x(7)(—Aj)] ^(A ^)}  • (4.161)

First, by arguments discussed in the proof of (4.145), (4.161) is dominated by the
real part of

(7 - 7 ) 0
KPj Vj) \  I

j —0  ̂ '

(4.162)+ ( 7  -  i W u 2 ( ~ xr P ) wu M }  •
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As before, the terms where Cj = 1 are of smaller order. For the rest, by summation 
by parts, the second term of (4.162) is

{ m*
\Pm ~  Pm] 5 2  wSH-Aj; P)wu(Xj)

3 =1
771*— 1 j  \

-  5 2  K + 1 “  p3+i -  (Pi -  Pi)1 5 2  P)w*(x h) ? • (4.163)
j=l /l=l J

Now, by a straightforward extension of (4.137), uniformly in j  G [1, m ],

j
52 w ^ ( - \ h\P)wu(Xh) =  Op ( n 'W ^ l o g r a ) , (3 < 1,
h = i

=  Op (n ^ lo g m ), (3 > 1, (4.164)

to conclude by Assumptions 4.1, 4.2, that (4.163) is

Op (pP~Km l~^\ogm{n~x +  n -(^ra)) , (3 < 1,
Op (n/3-K log m (n_x +  n -(^m)) ,/?  >  1, (4.165)

orders which are O p ^ m 1/2-111111*1/2’̂ )  by (4.15), (4.19), (4.20).
Now, by same arguments as above and the ones described in the proof of (4.145), 

it can be easily shown that the orders in (4.165) also apply to the first term of (4.162), 
to complete the proof.

P ro o f  o f T h eo rem  4.3. Now, for (3 > 1, (4.44) follows in view of Theorem 2.2 
when m =  [n/2]. For m  < [n/2],

{ 771 1  71

5 2 cj' ^ ( 7)(^) r =  5 2 W ) ( ^ )  +  Op(n^), (4.166)

j=o J j —im

R e ^ 5 2 c i / X(7)(AJ) [  =  524(7)(A ;) +  Op(n2'3), (4.167)
I j=o J  j = 1

by Propositions 4.1, 4.2 of Robinson and Marinucci (1998), and then we conclude 
as in the case m =  [n/2]. For (3 = 1, as mentioned in Chapter 2, (4.44) follows by 
Theorem 4.3 of Robinson and Marinucci (2001) and (4.43). For 1/2 < / ? < ! ,  noting 
that

( 4 - i 6 8 )

where

em(7) =  Re j p  (0) ^  Cj J„l(7) ( \ j )  j , (4.169)

we first prove that
£(C(7 )) = ° (A  (4.170)
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By the orthogonality condition (4.61), we can write the left side of (4.170) as the 
real part of

7T
^ TJX a  71

—  J ]  I + (4.171)
3 7r  ̂ ^

where
S (o, b ) = p  (0) { /  (a) -  /  (6)} £. (4.172)

The contribution of the second term in braces in (4.171) is

m  n —1

n~l ^ 2  s (*i »°) at (n ~  ^  e~ltXj ’ (4-173)
3 = 1  t= 0

By summation by parts, (4.173) is bounded in modulus by

n —1

n  ‘ $ 3 M O 1 - *)
t= 0

m— 1

5 3  [H(Aj, 0) -  S(Ai+1, 0)] Dj (~Xt) + S(Aro, 0)Dm (-A«)
3 = 1

< K m  2 < K m ,  (4.174)
t=1

as we only consider (3 < 1, to conclude by (4.43). Finally, the proof of (4.58) readily 
implies that the contribution of the first term in braces in (4.171) is o(n^).

Next, we show that, as n —► oo,
l

" ^ ( C ( 7 )  - E ( e ° M ) )  => A { l)~ v CTl J  W (r; 0) dW  ( r ) . (4.175)
0

First, note that by Theorem 5.1 of Robinson and Marinucci (2001), as n  —> oo,

Var(e?m(7 )) =  Var  ( p (0) £ j  +  o(n * ) ,  (4.176)

implying that

<4 (7 ) -  £ (C (7 )) =  5Z {*i(7)«t -  E  [ii(7)«t]} +  oP("'3)- (4.177)
2,r t ?

Thus, in view of the proof of Theorem 4.1, it just remain to prove that

W t H  ~ E  \x t i l ) u t]} ~  i t ,  x*-i( i)A  W  £t = °p(n>3)' (4-178)
<=1 t-2

First, note that
n n

53 {*t(l)ut - E [x,(7)u(]} -  53 {^*(7)^(1) U-E [xt(i)A (1) £,]}
t= 1 t=  1
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=  ^ 2  W 7) - yt ) - E  M l )  K -1  -  Vt)]} , (4.179)
t=1

where
oo

vt = Y ,  Ajet-j, Aj = Y Z j + i A ' (4'180)
j =o 3

and
n n

(vt - 1 ~  v*) =  X I  ~  x t - l ( l ) } vt-l  +  ®l(7)«0 -  x n{l)vn- (4.181)
t=1 t=2

Now, as in the proof of Theorem 5.1 of Robinson and Marinucci (2001), as Assump
tion 2.1 ensures boundedness of the spectrum of the process vt and the crosspectrum 
of vt with U2t, it can be easily shown that

Var j X ] W 7 )  - ^ _ i (7 )}ut_i |  = 0 ( n ) . (4.182)

Next,

-E7|a?i(7)v0| < {E x i { l ) 2 Evo Y  ^  °°» (4.183)
due to the truncation in (1.26) and Assumption 2.1. Similarly, by Robinson and 
Marinucci (1998, 2001),

E \ x n(j)vn\ < { E x n( i ) 2E v l Y  < KnP~*, (4.184)

to conclude that (4.179) is Opfn^). Finally, we have to prove that
n n

x t - 1(7 ) 4  (!) £t ~ Y l  W  £t -  E  M l ) A  (!) £t]} =  Op{nP\ (4.185)
t=2 t—2

but this immediately follows, as

Var  j  = 0 ( n ) ,  (4.186)

by similar arguments to the ones in the proof of Theorem 5.1 of Robinson and 
Marinucci (2001), to complete the proof of (4.44).

Finally, (4.45) follows on showing that

em (7 ) — em (7 ) =  op(n^m1/2_/3), (4.187)
bm h ) - bm( l )  =  op{n2/3ml- 2p). (4.188)

Now, by the bounds for the periodograms given in Robinson (1995a), Robinson 
(2002) and Assumption 2.1, the left side of (4.187) is bounded in modulus by

{m m  I

E M U - p m  iir.(Ai)n 53 iip (A*) -p(°)ii/I(7)(At) I
3 = 1  k = 1 J

(  m m  ^ 2

< K  |  n2'9- 2- 2” ^  ^  k l+ri~213 I <  Kn<3- 1- T>rn2+’'-13, (4.189)
I  j= 1 k = l  )
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so that (4.187) holds as
m 3/2+T?
— — -----> 0 as n —> oo, (4.190)

by (4.10). Finally, by the same arguments, the left side of (4.188) is bounded by

m

K  Y j  ^  K n 2‘, - 1- ’>m2+r‘- 2f>, (4.191)
j=1

so that (4.188) holds as

- t O a s m o o ,  (4.192)

again by (4.10), to conclude the proof.
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TABLE 4.2
MONTE CARLO BIAS OF Vi ,Vf , vb FOR p =  0, fc =  i\)j =  0, i =  1,2

m 7 5 vj
n =  64

Up vb Vl
n =  128

l/p VB i'/
n =  256

Up VB
0 .6 -.003 -.005 -.005 - .0 0 1 - .0 0 2 - .0 0 2 .0 0 0 .0 0 0 .0 0 0

0 1 .2 - .0 0 1 - .0 0 1 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 - .0 0 2 -.004 -.007 - .0 0 1 - .0 0 1 -.003 .0 0 0 .0 0 0 - .0 0 1
.4 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

0 .6 -.003 -.005 -.005 -0 0 1 - .0 0 2 - .0 0 2 .0 0 0 .0 0 0 .0 0 0
0 1 .2 -0 0 1 - .0 0 1 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

I I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 -.003 -.004 -.007 - .0 0 1 - .0 0 1 -.003 .0 0 0 - .0 0 1 - .0 0 1
.4 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
0 .6 -.003 -.005 -.005 - .0 0 1 - .0 0 2 - .0 0 2 .0 0 0 .0 0 0 .0 0 0
0 1 .2 - .0 0 1 - .0 0 1 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

I I I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 -.003 -.005 -.007 - .0 0 1 - .0 0 2 -.003 .0 0 0 .0 0 0 - .0 0 1
.4 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

TABLE 4.3
MONTE CARLO BIAS OF IT?, 17° FOR p  =  0, ^  =  0, 2 =  1,2

n 64 64 128 128 256 256
m 7 6 U°j 7/°Vp n V°F 7} Vp

0 .6 -.003 -.006 - .0 0 1 - .0 0 1 .0 0 0 .0 0 0
0 1 .2 - .0 0 1 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0

I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 -.003 -.004 - .0 0 1 - .0 0 1 .0 0 0 .0 0 0
.4 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
0 .6 -.003 -.007 .0 0 0 - .0 0 1 .0 0 0 .0 0 0
0 1 .2 - .0 0 1 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0

I I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 -.003 -.005 - .0 0 1 - .0 0 1 .0 0 0 - .0 0 1
.4 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
0 .6 -.003 -.006 .0 0 0 - .0 0 1 .0 0 0 .0 0 1
0 1 .2 - .0 0 1 - .0 0 1 .0 0 0 - .0 0 1 .0 0 0 .0 0 0

I I I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 -.003 -.006 - .0 0 1 - .0 0 2 .0 0 0 .0 0 0
.4 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
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TABLE 4.4
MONTE CARLO BIAS OF V u V f ^ b  FOR p  =  .5, ^  = 0, i  =  1,2

m 7 6 i'/
n  =  64

Up v b vi
n  =  128 

i ' f v b vi
n  =  256

Up v b

0 .6 .050 .063 .116 .034 .043 .095 .023 .026 .077
0 1 .2 .0 0 1 - .0 0 1 .003 .0 0 0 - .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0

I 0 2 .0 0 0 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .008 .014 .033 .004 .007 .0 2 0 .0 0 2 .003 .0 1 1
.4 2 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

0 .6 .063 .078 .155 .043 .053 .128 .029 .033 .105
0 1 .2 .0 0 1 - .0 0 1 .005 .0 0 0 - .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0

I I 0 2 .0 0 0 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .009 .016 .036 .004 .008 .0 2 1 .0 0 2 .003 .0 1 1
.4 2 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
0 .6 .071 .087 .194 .048 .058 .160 .032 .037 .133
0 1 .2 .0 0 1 - .0 0 1 .007 .0 0 0 - .0 0 1 .0 0 2 .0 0 0 .0 0 0 .0 0 1

I I I 0 2 .0 0 0 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .0 1 0 .019 .038 .005 .009 .0 2 2 .0 0 2 .003 .0 1 2
.4 2 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

TABLE 4.5
MONTE CARLO BIAS OF 17?, 17° FOR p =  .5, ^  =  0, 2 =  1,2

n 64 64 128 128 256 256
m 7 6 v°i v °f U°i V°F v°i v °f

0 .6 .045 .063 .031 .042 .021 .025
0 1 .2 .0 0 1  - .0 0 1 .0 0 0  - .0 0 1 .0 0 0  .0 0 0

I 0 2 .0 0 0  .0 0 0 .0 0 0  .0 0 0 .0 0 0  .0 0 0
.4 1 .2 .006 .014 .003 .007 .0 0 1  .0 0 2
.4 2 .0 0 0  - .0 0 1 .0 0 0  .0 0 0 .0 0 0  .0 0 0
0 .6 .059 .086 .041 .058 .028 .037
0 1 .2 .0 0 1  - .0 0 1 .0 0 0  - .0 0 1 .0 0 0  .0 0 0

I I 0 2 .0 0 0  .0 0 0 .0 0 0  .0 0 0 .0 0 0  .0 0 0
.4 1 .2 .008 .0 2 0 .004 .010 .002 .004
.4 2 .0 0 0  - .0 0 1 .0 0 0  .0 0 0 .0 0 0  .0 0 0
0 .6 .076 .109 .052 .073 .035 .049
0 1 .2 .0 0 1  .0 0 1 .0 0 0  .0 0 0 .0 0 0  .0 0 0

I I I 0 2 .0 0 0  .0 0 0 .0 0 0  .0 0 0 .0 0 0  .0 0 0
.4 1 .2 .010 .029 .005 .013 .002 .005
.4 2 .0 0 0  - .0 0 1 .0 0 0  .0 0 0 .0 0 0  .0 0 0
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TABLE 4.6
MONTE CARLO BIAS OF Vi ,Vf , vb FOR p =  — .5, fa =  'ipj =  0, i =  1,2

m 7 6 vi
n =  64

Up vb vi
n =  128

Up vb vi
n =  256

Up vb
0 .6 -.046 -.063 -.115 -.031 -.041 -.093 - .0 2 2 -.026 -.077
0 1 .2 - .0 0 1 .0 0 0 -.003 .0 0 0 .0 0 1 - .0 0 1 .0 0 0 .0 0 0 .0 0 0

I 0 2 .0 0 0 .0 0 0 .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 -.006 -.016 -.035 -.003 -.006 - .0 2 0 - .0 0 1 - .0 0 2 - .0 1 1

.4 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

0 .6 -.059 -.078 -.153 -.040 -.051 -.125 -.028 -.034 -.105
0 1 .2 - .0 0 1 .0 0 0 -.004 .0 0 0 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0

I I 0 2 .0 0 0 .0 0 0 .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 -.008 -.019 -.036 -.003 -.008 - .0 2 0 - .0 0 1 -.003 - .0 1 1

.4 2 .0 0 0 .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
0 .6 -.066 -.085 -.191 -.045 -.056 -.157 -.031 -.037 -.133
0 1 .2 - .0 0 1 .0 0 0 -.007 .0 0 0 .0 0 0 - .0 0 2 .0 0 0 .0 0 0 - .0 0 1

I I I 0 2 .0 0 0 .0 0 0 .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 -.009 - .0 2 1 -.038 -.004 -.009 - .0 2 1 - .0 0 1 -.003 - .0 1 1
.4 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

TABLE 4.7
MONTE CARLO BIAS OF V°T,V°F FOR p = - .5 , <f)i = 'ipi = 0, i =  1,2

n 64 64 128 128 256 256
m 7 6 V°F 77°Up 17°V p

0 .6 -.043 -.064 -.028 -.040 - .0 2 0 -.025
0 1 .2 - .0 0 1 .0 0 1 .0 0 0 .0 0 1 .0 0 0 .0 0 1

I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 -.005 -.017 - .0 0 2 -.007 - .0 0 1 - .0 0 2
.4 2 .0 0 0 .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0
0 .6 -.056 -.086 -.038 -.056 -.027 -.037
0 1 .2 .0 0 0 .0 0 0 .0 0 0 .0 0 1 .0 0 0 .0 0 0

I I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 -.007 -.023 -.003 - .0 1 0 - .0 0 1 -.003
.4 2 .0 0 0 .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0
0 .6 -.071 -.106 -.048 -.072 -.034 -.049
0 1 .2 - .0 0 1 - .0 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0

I I I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 -.009 -.030 -.004 -.013 - .0 0 1 -.005
.4 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
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TABLE 4.8
MONTE CARLO BIAS OF V ^V f ^ b FOR p =  .75, fa =  ^  =  0, i =  1,2

m 7 6
n  =  64

Up VB vi
n  =  128

Up v b vi
n  =  256

Up v b

0 .6 .074 .091 .176 .049 .060 .140 .033 .038 .114
0 1 .2 .0 0 1 - .0 0 1 .004 .0 0 0 .0 0 0 .0 0 1 .0 0 0 .0 0 0 .0 0 0

I 0 2 .0 0 0 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .0 1 0 .023 .050 .005 .0 1 2 .029 .0 0 2 .004 .016
.4 2 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

0 .6 .095 .117 .235 .063 .077 .189 .043 .049 .156
0 1 .2 .0 0 1 - .0 0 1 .007 .0 0 0 .0 0 0 .0 0 2 .0 0 0 .0 0 0 .0 0 0

I I 0 2 .0 0 0 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .013 .026 .053 .006 .013 .030 .0 0 2 .005 .017
.4 2 .0 0 0 1 O o H-4 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
0 .6 .108 .132 .293 .071 .085 .238 .048 .055 .198
0 1 .2 .0 0 1 .0 0 0 .0 1 1 .0 0 0 .0 0 0 .004 .0 0 0 .0 0 0 .0 0 1

I I I 0 2 .0 0 0 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .014 .029 .056 .006 .014 .031 .0 0 2 .006 .017
.4 2 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

TABLE 4.9
MONTE CARLO BIAS OF V°T,V°F FOR p =  .75, =  ^  =  Q, % = 1,2

n 64 64 128 128 256 256
m 7 6 V p V p V p

0 .6 .068 .091 .044 .058 .030 .035
0 1 .2 .0 0 1

oor .0 0 0 .0 0 0 .0 0 0 .0 0 0
I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0

.4 1 .2 .009 .024 .004 .0 1 2 .0 0 1 .005

.4 2 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0
0 .6 .089 .127 .059 .082 .040 .053
0 1 .2 .0 0 1 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0

I I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .011 .031 .005 .015 .0 0 2 .006
.4 2 .0 0 0 - .0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0
0 .6 .1 1 2 .164 .075 .106 .051 .072
0 1 .2 .0 0 1 .0 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0

I I I 0 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
.4 1 .2 .014 .041 .006 .018 .0 0 2 .007
.4 2 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0
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TABLE 4.10
MONTE CARLO BIAS OF Vu  v F,VB FOR p =  0, =  .5, ipj =  0, i =  1,2

m 7 6 v i
n  =  64

Vp vb v i
n  =  128 

VF V B V I

n  =  256
U p vb

0 .6 -.003 -.003 -.005 -.001 -.001 -.002 .000 .000 .000
0 1.2 -.001 .000 -.001 .000 .000 .000 .000 .000 .000

I 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.003 -.007 -.001 -.001 -.003 .000 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.004 -.003 -.006 -.001 -.001 -.002 .000 .000 .000
0 1.2 -.001 .000 -.001 .000 .000 .000 .000 .000 .000

II 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.003 -.007 -.001 -.001 -.003 .000 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.004 -.004 -.006 -.001 -.001 -.002 .000 .000 .000
0 1.2 -001 .000 -.001 .000 .000 .000 .000 .000 .000

III 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.003 -.007 -.001 -.001 -.003 .000 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000

TABLE 4.11
MONTE CARLO BIAS OF 17°, 17° FOR p =  0, =  .5, ^  =  0, i =  1,2

n 64 64 128 128 256 256
771 7 6 V p *°i 77°  V F V p

0 .6 -.004 -.005 -.001 .000 .000 .000
0 1.2 -.001 .000 .000 .000 .000 .000

I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.003 -.001 .000 .000 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 -.004 -.005 -.001 .000 .000 .000
0 1.2 -.001 -.001 .000 .000 .000 .000

II 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.004 -.001 .000 .000 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 -.004 -.005 -.001 .000 .000 .001
0 1.2 -.001 .000 .000 .000 .000 .000

III 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.004 -.001 -.001 .000 .000
.4 2 .000 .000 .000 .000 .000 .000
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TABLE 4.12
MONTE CARLO BIAS OF V u V F,VB FOR p  =  .5, fa =  .5, ^  =  0, i =  1,2

m 7 £ J'/
n  =  64

Vp v b v i
n =  128

Up v b v i
n  =  256

Up vb
0 .6 .041 .063 .101 .029 .045 .082 .019 .029 .066
0 1.2 .001 -.002 .002 .000 -.001 .001 .000 .000 .000

I 0 2 .000 -.001 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .007 .019 .032 .004 .010 .019 .001 .004 .011
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .048 .076 .114 .034 .053 .092 .023 .035 .074
0 1.2 .001 -.002 .003 .000 -.001 .001 .000 .000 .000

II 0 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .008 .021 .033 .004 .012 .020 .002 .005 .011
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .052 .082 .121 .037 .057 .097 .025 .038 .078
0 1.2 .001 -.001 .003 .000 -.001 .001 .000 .000 .000

III 0 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .009 .024 .033 .004 .012 .020 .002 .005 .011
.4 2 .000

oor .000 .000 .000 .000 .000 .000 .000

TABLE 4.13
MONTE CARLO BIAS OF \7\,V°F FOR p =  .5, fa  =  .5, &  =  0, i =  1,2

n 64 64 128 128 256 256
m 7 6 v°i v°F v°i v °f v°i v °f

0 .6 .039 .061 .027 .042 .018 .026
0 1.2 .001 -.002 .000 -.001 .000 .000

I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .007 .019 .003 .010 .001 .004
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .043 .076 .030 .051 .019 .032
0 1.2 .001 -.002 .000 -.001 .000 .000

II 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .007 .023 .004 .012 .001 .005
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .046 .089 .032 .058 .021 .037
0 1.2 .001 .000 .000 -.001 .000 .000

III 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .007 .029 .004 .013 .001 .005
.4 2 .000 -.001 .000 .000 .000 .000
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TABLE 4.14
MONTE CARLO BIAS OF Vu uF,VB FOR p =  - .5 ,  fa =  .5, ^  =  0, i =  1,2

m 7 6 VI
n  =  64 

Up vb v i
n  =  128 

vf vb v i
n  =  256 

V p vb
0 .6 -.038 -.062 -.101 -.026 -.042 -.080 -.019 -.028 -.066
0 1.2 -.001 .002 -.003 .000 .001 -.001 .000 .001 .000

I 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.006 -.020 -.034 -.003 -.009 -.019 -.001 -.003 - .0 1 1

.4 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
0 .6 -.045 -.074 -.112 -.031 -.051 -.090 -.022 -.035 -.074
0 1.2 -.001 .001 -.003 .000 .001 -.001 .000 .001 .000

II 0 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.007 -.023 -.034 -.003 - .0 1 1 -.019 -.001 -.004 - .0 1 1

.4 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
0 .6 -.049 -.079 -.119 -.034 -.054 -.095 -.024 -.038 -.078
0 1.2 -.001 .001 -.003 .000 .001 -.001 .000 .001 .000

III 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.008 -.025 -.034 -.003 -.012 -.019 -.001 -.004 - .0 1 1

.4 2 .000 .001 .000 .000 .000 .000 .000 .000 .000

TABLE 4.15
MONTE CARLO BIAS OF V°T,V°F FOR p =  - .5 , & =  .5, ^  =  0, i =  1,2

n 64 64 128 128 256 256
m 7 6 ? } vf Vp 17°v F

0 .6 -.036 -.061 -.024 -.039 -.017 -.025
0 1.2 -.001 .002 .000 .001 .000 .001

I 0 2 .000 .001 .000 .000 .000 .000
.4 1.2 -.006 -.021 -.002 -.009 -.001 -.003
.4 2 .000 .001 .000 .000 .000 .000
0 .6 -.040 -.075 -.027 -.049 -.019 -.032
0 1.2 -.001 .001 .000 .001 .000 .001

II 0 2 .000 .001 .000 .000 .000 .000
.4 1.2 -.006 -.026 -.003 -.011 -.001 -.004
.4 2 .000 .001 .000 .000 .000 .000
0 .6 -.043 -.086 -.029 -.056 -.020 -.036
0 1.2 -.001 .000 .000 .001 .000 .001

III 0 2 .000 .001 .000 .000 .000 .000
.4 1.2 -.007 -.030 -.003 -.013 -.001 -.004
.4 2 .000 .001 .000 .000 .000 .000
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TABLE 4.16
MONTE CARLO BIAS OF V u V F,VB FOR p =  .75, fa =  .5, ^  =  0, i =  1,2

771 7 <5 J'/
n  =  64 

V p v b v i
n  =  128

V p v b v i
n  =  256 

v f v b

0 .6 .061 .091 .154 .041 .063 .121 .028 .041 .097
0 1.2 .001 -.001 .004 .000 .000 .001 .000 .000 .000

I 0 2 .000 -.001 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .010 .031 .048 .005 .016 .028 .002 .007 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .072 .111 .172 .049 .076 .135 .033 .051 .109
0 1.2 .001 -.001 .005 .000 .000 .001 .000 .000 .000

II 0 2 .000 -.001 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .011 .035 .049 .005 .018 .028 .002 .008 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .079 .121 .183 .053 .082 .144 .036 .056 .109
0 1.2 .001 -.001 .005 .000 .000 .001 .000 .000 .000

III 0 2 .000 -.001 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .012 .037 .049 .006 .019 .029 .002 .008 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000

TABLE 4.17
MONTE CARLO BIAS OF 17?, 17° FOR p =  .75, =  .5, ipj =  0, i =  1,2

n 64 64 128 128 256 256
m 7 6 V°F V°F *°i 77°v F

0 .6 .057 .089 .038 .058 .025 .036
0 1.2 .001 -.002 .000 -.001 .000 .000

I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .009 .032 .004 .017 .001 .007
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .064 .110 .042 .071 .028 .045
0 1.2 .001 -.001 .000 .000 .000 .000

II 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .010 .038 .004 .019 .002 .008
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .068 .128 .045 .080 .030 .052
0 1.2 .001 .000 .000 .000 .000 .000

III 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .010 .043 .005 .020 .002 .008
.4 2 .000 -.001 .000 .000 .000 .000
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TABLE 4.18
MONTE CARLO BIAS OF V^ V f ^ b FOR p =  0, =  .9, ^  =  0, i =  1,2

m 7 <5 v i

n  =  64
U p v b v i

n  =  128 
U p V b v i

71 =  256
v F v b

0 .6 -.008 -.005 -.009 -.004 .000 -.004 -.001 -.001 -.001
0 1.2 -.001 .000 -.001 -.001 .000 -.001 .000 .000 .000

I 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.005 -.002 -.008 -.002 .000 -.004 -.001 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.009 -.005 -.009 -.004 -.001 -.004 -.001 -.001 -.001
0 1.2 -.001 .000 -.001 -.001 .000 -.001 .000 .000 .000

II 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.005 -.002 -.008 -.002 .000 -.004 -.001 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.008 -.006 -.009 -.004 -.001 -.004 -.001 .000 -.001
0 1.2 -.001 .000 -.001 -.001 .000 -.001 .000 .000 .000

III 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.006 -.003 -.008 -.002 -.001 -.004 -.001 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000

TABLE 4.19
MONTE CARLO BIAS OF IT?, 17° FOR p = Q, fa  =  .9, ipj =  0, 2 =  1,2

71 64 64 128 128 256 256
771 7 6 V*i V°F V°F n V°F

0 .6 -.008 -.007 -.004 .000 -.001 -.001
0 1.2 -.001 .000 -.001 .000 .000 .000

I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.005 -.003 -.002 .000 -.001 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 -.009 -.007 -.004 .001 -.001 .000
0 1.2 -.001 .000 -.001 .000 .000 .000

II 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.005 -.003 -.002 .000 -.001 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 -.009 -.007 -.004 .000 -.001 .000
0 1.2 -.001 .000 -.001 .000 .000 .000

III 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.005 -.004 -.002 -.001 -.001 .000
.4 2 .000 .000 .000 .000 .000 .000
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TABLE 4.20
MONTE CARLO BIAS OF Vi ,VFiVb FOR p =  .5, fa =  .9, ^  =  0, i =  1,2

771 7 <5
77 =  64 

V f I' B vi
n  =  128 

V F vb vi
n =  256

l7p vb
0 .6 .034 .053 .072 .022 .039 .055 .013 .024 .041
0 1.2 .001 .000 .003 .000 .000 .001 .000 .000 .000

I 0 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .010 .026 .031 .005 .016 .018 .002 .008 .010
.4 2 .000 -.002 .001 .000 -.001 .000 .000 .000 .000
0 .6 .035 .060 .073 .022 .044 .055 .013 .028 .041
0 1.2 .001 .000 .003 .000 .000 .001 .000 .000 .000

II 0 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .010 .028 .031 .005 .017 .018 .002 .008 .010
.4 2 .000 -.002 .001 .000 -.001 .000 .000 .000 .000
0 .6 .036 .065 .073 .023 .046 .056 .014 .030 .042
0 1.2 .001 .000 .003 .000 .000 .001 .000 .000 .000

III 0 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .011 .030 .031 .005 .017 .018 .002 .009 .010
.4 2 .000 -.002 .001 .000 -.001 .000 .000 .000 .000

TABLE 4.21
MONTE CARLO BIAS OF 17°,17° FOR p =  .5, fa  =  .9, ^  =  0, i =  1,2

n 64 64 128 128 256 256
777 7 6 -*°i 77°F 77°v F 77°Vp

0 .6 .034 .055 .022 .040 .013 .024
0 1.2 .001 .000 .000 .000 .000 .000

I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .010 .028 .005 .017 .002 .008
.4 2 .000 -.002 .000 -.001 .000 .000
0 .6 .034 .067 .022 .047 .013 .029
0 1.2 .001 .000 .000 .000 .000 .000

II 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .010 .033 .005 .019 .002 .009
.4 2 .000 -.002 .000 -.001 .000 .000
0 .6 .034 .080 .022 .053 .013 .032
0 1.2 .001 .002 .000 .000 .000 .000

III 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .010 .040 .005 .021 .002 .010
.4 2 .000 -.002 .000 -.001 .000 .000
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TABLE 4.22
MONTE CARLO BIAS OF Vu V F,Vb FOR p =  - .5 ,  fa =  .9, ^  =  0, i =  1,2

m 7 6 v i

n  =  64
V f v b v i

n  =  128
V p v b v i

n  =  256 
v f v b

0 .6 -.035 -.055 -.074 -.021 -.035 -.053 -.012 -.024 -.040
0 1.2 -.002 .001 -.004 .000 .001 -.001 .000 .001 .000

I 0 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.012 -.026 -.033 -.005 -.014 -.019 -.002 -.007 -.010
.4 2 .000 .002 -.001 .000 .001 .000 .000 .000 .000
0 .6 -.036 -.061 -.074 -.021 -.041 -.054 -.013 -.028 -.041
0 1.2 -.002 .000 -.004 .000 .001 -.001 .000 .001 .000

II 0 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.012 -.028 -.033 -.005 -.016 -.019 -.001 -.008 -.010
.4 2 .000 .002 -.001 .000 .001 .000 .000 .000 .000
0 .6 -.037 -.065 -.075 -.021 -.043 -.054 -.013 -.029 -.041
0 1.2 -.002 .000 -.004 .000 .001 -.001 .000 .001 .000

III 0 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.012 -.030 -.033 -.005 -.016 -.019 -.001 -.008 -.010
.4 2 .000 .002 -.001 .000 .001 .000 .000 .000 .000

TABLE 4.23
MONTE CARLO BIAS OF V°r ,7 0F FOR p =  - .5 , fa  =  .9, ^  =  0, i =  1,2

n 64 64 128 128 256 256
m 7 6 V°F 7 7 °V p V p

0 .6 -.035 -.058 -.021 -.036 -.012 -.023
0 1.2 -.002 .000 .000 .001 .000 .001

I 0 2 .000 .001 .000 .000 .000 .000
.4 1.2 -.012 -.030 -.005 -.016 -.002 -.007
.4 2 .000 .002 .000 .001 .000 .000
0 .6 -.036 -.069 -.021 -.044 -.012 -.028
0 1.2 -.002 -.001 .000 .001 .000 .001

II 0 2 .000 .001 .000 .000 .000 .000
.4 1.2 -.012 -.036 -.005 -.019 -.002 -.008
.4 2 .000 .002 .000 .001 .000 .000
0 .6 -.036 -.079 -.021 -.050 -.013 -.032
0 1.2 -.002 -.002 .000 .000 .000 .001

III 0 2 .000 .001 .000 .000 .000 .000
.4 1.2 -.012 -.041 -.005 -.021 -.002 -.009
.4 2 .000 .002 .000 .001 .000 .000
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TABLE 4.24
MONTE CARLO BIAS OF V ^ V f ^ b FOR p =  .75, =  .9, ^  =  0, i =  1,2

m 7 5 vi
77, =  64 

up vb vi
n =  128

Up vb vi
n =  256

Up vb
0 .6 .051 .081 .108 .031 .058 .080 .018 .036 .060
0 1.2 .002 .001 .006 .001 .001 .002 .000 .000 .000

I 0 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .016 .042 .046 .007 .025 .026 .002 .013 .015
.4 2 .000 -.002 .001 .000 -.001 .000 .000 .000 .000
0 .6 .052 .090 .110 .032 .064 .081 .019 .041 .060
0 1.2 .002 .001 .006 .001 .001 .002 .000 .000 .000

I I 0 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .016 .044 .046 .007 .026 .026 .002 .013 .015
.4 2 .000 -.002 .001 .000 -.001 .000 .000 .000 .000
0 .6 .053 .096 .111 .032 .067 .081 .019 .043 .061
0 1.2 .002 .002 .006 .001 .001 .002 .000 .000 .000

I I I 0 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
.4 1.2 .016 .046 .046 .006 .026 .026 .002 .014 .015
.4 2 .000 -.002 .001 .000 -.001 .000 .000 .000 .000

TABLE 4.25
MONTE CARLO BIAS OF V°T,V°F FOR p =  .75, =  .9, ^  = 0, i =  1,2

n 64 64 128 128 256 256
m 7 6 *°i 77° V F u°i Vf *°i Vp

0 .6 .050 .084 .031 .059 .018 .036
0 1.2 .002 .002 .001 .001 .000 .000

I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .016 .046 .007 .028 .002 .014
.4 2 .000 -.002 .000 -.001 .000 .000
0 .6 .051 .099 .032 .067 .018 .041
0 1.2 .002 .003 .001 .001 .000 .000

I I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .016 .052 .007 .030 .002 .015
.4 2 .000 -.002 .000 -.001 .000 .000
0 .6 .051 .113 .032 .073 .018 .044
0 1.2 .002 .005 .001 .001 .000 .000

I I I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .016 .058 .007 .030 .002 .015
.4 2 .000 -.002 .000 -.001 .000 .000
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TABLE 4.26
MONTE CARLO BIAS OF Vu VF,VB FOR P =  0, <t>i =  0, A  =  5, i =  1,2

771 7 6 VI

7i =  64
V p v b v i

n  =  128 
v f v b v i

n  =  256
V p V b

0 .6 -.003 -.004 -.005 -.001 -.002 -.002 .000 .000 .000
0 1.2 -.001 -.001 -.001 .000 .000 .000 .000 .000 .000

I 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.003 -.007 -.001 -.001 -.003 .000 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.003 -.004 -.005 -.001 -.002 -.002 .000 .000 .000
0 1.2 -.001 -.001 -.001 .000 .000 .000 .000 .000 .000

I I 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.004 -.007 -.001 -.001 -.003 .000 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.003 -.004 -.005 -.001 -.002 -.002 .000 .000 .000
0 1.2 -.001 -.001 -.001 .000 .000 .000 .000 .000 .000

I I I 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.004 -.007 -.001 -.002 -.003 .000 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000

TABLE 4.27
MONTE CARLO BIAS OF IT?, 17° FOR /? =  Q, =  Q, ^  =  .5, i =  1,2

n 64 64 128 128 256 256
771 7 6 V p *°i 77°V p V p

0 .6 -.003 -.006 -.001 -.001 .000 .000
0 1.2 -.001 -.001 .000 .000 .000 .000

I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.004 -.001 -.001 .000 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 -.004 -.006 -.001 -.001 .000 .000
0 1.2 -.001 -.001 .000 .000 .000 .000

I I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.005 -.001 -.001 .000 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 -.003 -.006 -.001 -.001 .000 .000
0 1.2 -.001 -.001 .000 .000 .000 .000

I I I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.005 -.001 -.001 .000 .000
.4 2 .000 .000 .000 .000 .000 .000
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TABLE 4.28
MONTE CARLO BIAS OF F7 ,I7f ,]7b FOR p =  .5, fa =  0, ^  =  .5, 2 =  1,2

777 7 6 VI
77 =  64 

U p vb vi
n =  128 

Up vb vi
77 =  256

U p vb
0 .6 .048 .066 .113 .034 .045 .092 .023 .028 .074
0 1.2 .001 -.001 .003 .000 -.001 .001 .000 .000 .000

I 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .008 .016 .033 .004 .008 .020 .002 .003 .011
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .062 .085 .138 .043 .057 .113 .029 .036 .092
0 1.2 .001 -.001 .004 .000 -.001 .001 .000 .000 .000

I I 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .009 .020 .034 .005 .010 .021 .002 .004 .011
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .067 .090 .147 .046 .060 .121 .031 .039 .099
0 1.2 .001 -.001 .004 .000 -.001 .001 .000 .000 .000

I I I 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .010 .022 .035 .005 .010 .021 .002 .004 .011
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000

TABLE 4.29
MONTE CARLO BIAS OF V°T,V°F FOR p =  .5, fa  =  0, ipj = .5, i =  1,2

77 64 64 128 128 256 256
777 7 6 77°  V F Tj°V p V p

0 .6 .043 .063 .030 .042 .020 .025
0 1.2 .001 -.002 .000 -.001 .000 .000

I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .006 .015 .003 .008 .001 .003
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .052 .081 .037 .054 .024 .034
0 1.2 .001 -.002 .000 -.001 .000 .000

I I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .007 .020 .004 .010 .001 .004
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .056 .089 .039 .059 .026 .037
0 1.2 .001 -.001 .000 -.001 .000 .000

I I I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .008 .023 .004 .011 .002 .004
.4 2 .000 -.001 .000 .000 .000 .000
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TABLE 4.30
MONTE CARLO BIAS OF Vi ,Vf ^ b FOR p =  - .5 ,  =  0, ^  =  .5, i =  1,2

m 7 5 v i

n =  64
U p v b v i

7i =  128 
U p v b v i

7i =  256
U p v b

0 .6 -.045 -.065 -.112 -.031 -.043 -.090 -.022 -.028 -.074
0 1.2 -.001 .001 -.003 .000 .001 -.001 .000 .001 .000

I 0 2 .000 .000 .001 .000 .000 .000 .000 .000 .000
.4 1.2 -.006 -.017 -.034 -.003 -.007 -.020. -.001 -.002 -.011
.4 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
0 .6 -.058 -.082 -.136 -.040 -.054 -.111 -.028 -.036 -.092
0 1.2 -.001 .000 -.004 .000 .001 -.001 .000 .000 .000

I I 0 2 .000 .000 .001 .000 .000 .000 .000 .000 .000
.4 1.2 -.008 -.021 -.036 -.004 -.009 -.020 -.001 -.003 -.011
.4 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
0 .6 -.062 -.087 -.145 -.043 -.058 -.118 -.030 -.038 -.099
0 1.2 -.001 .000 -.004 .000 .001 -.001 .000 .000 .000

I I I 0 2 .000 .000 .001 .000 .000 .000 .000 .000 .000
.4 1.2 -.009 -.023 -.036 -.004 -.010 -.020 -.001 -.003 -.011
.4 2 .000 .001 .000 .000 .000 .000 .000 .000 .000

TABLE 4.31
M O N T E  CARLO BIAS OF 17°,V°F FOR /o = -.5 , fc  =  0, ^  =  .5, 2 = 1,2

n 64 64 128 128 256 256
771 7 6 17°V p V p V°I 77°vF

0 .6 -.041 -.063 -.027 -.040 -.020 -.025
0 1.2 -.001 .001 .000 .001 .000 .001

I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.006 -.018 -.002 -.007 -.001 -.002
.4 2 .000 .001 .000 .000 .000 .000
0 .6 -.049 -.080 -.030 -.052 -.024 -.034
0 1.2 -.001 .001 .000 .001 .000 .001

I I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.006 -.023 -.003 -.009 -.001 -.003
.4 2 .000 .001 .000 .000 .000 .000
0 .6 -.053 -.088 -.036 -.057 -.026 -.037
0 1.2 -.001 .000 .000 .001 .000 .000

I I I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.007 -.025 -.003 -.011 1 O O h-1 -.003
.4 2 .000 .001 .000 .000 .000 .000
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TABLE 4.32
MONTE CARLO BIAS OF v u V F, v B FOR p =  .75, fa =  0, ^  =  .5, i =  1,2

m 7 5 i'/
n =  64

V p vb VI
n =  128 

v f vb vi
n =  256

U p vb
0 .6 .072 .096 .171 .048 .063 .136 .033 .040 .110
0 1.2 .001 -.001 .004 .000 .000 .001 .000 .000 .000

I 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .010 .026 .049 .005 .013 .029 .002 .005 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .094 .126 .209 .063 .082 .167 .042 .054 .137
0 1.2 .001 -.001 .006 .000 .000 .002 .000 .000 .000

I I 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .013 .031 .051 .006 .015 .030 .002 .006 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .101 .135 .223 .068 .088 .179 .046 .058 .147
0 1.2 .001 .000 .007 .000 .000 .002 .000 .000 .000

I I I 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .014 .033 .052 .006 .016 .030 .002 .006 .017
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000

TABLE 4.33
MONTE CARLO BIAS OF V°T,1PF FOR p =  .75, fa  =  0 , ^  =  .5, i =  1,2

n 64 64 128 128 256 256
771 7 6 v°i 77°V p T7°V p T7°V p

0 .6 .065 .091 .043 .058 .029 .035
0 1.2 .001 -.002 .000 .000 .000 .000

I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .009 .026 .004 .013 .001 .005
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .078 .118 .052 .075 .035 .048
0 1.2 .001 -.001 .000 .000 .000 .000

I I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .010 .032 .005 .015 .002 .006
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .083 .131 .056 .083 .038 .053
0 1.2 .001 -.001 .000 .000 .000 .000

I I I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .011 .035 .005 .016 .002 .006
.4 2 .000 -.001 .000 .000 .000 .000
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TABLE 4.34
MONTE CARLO BIAS OF v i , v f , vb  FOR p =  0, 4>i =  0, ipj =  .9, i =  1,2

m 7 6 vi
72 =  64

U p v b vi
72 =  128 

V p v b vi
72 =  256 

V p V B

0 .6 -.003 -.004 -.005 -.001 -.002 -.002 .000 .000 .000
0 1.2 -.001 .000 -.001 .000 .000 .000 .000 .000 .000

I 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.003 -.007 -.001 -.001 -.003 .000 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.004 -.004 -.005 -.001 -.002 -.002 .000 .000 .000
0 1.2 -.001 -.001 -.001 .000 .000 .000 .000 .000 .000

I I 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.004 -.007 -.001 -.001 -.003 .000 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 -.004 -.004 -.005 -.001 -.002 -.002 .000 .000 .000
0 1.2 -.001 -.001 -.001 .000 .000 .000 .000 .000 .000

I I I 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.004 -.007 -.001 -.002 -.003 .000 .000 -.001
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000

TABLE 4.35
MONTE CARLO BIAS OF Vj.Vp FOR p  =  0, =  0, ipj =  .9, 2 =  1,2

72 64 64 128 128 256 256
772 7 6 17°V p V p V p

0 .6 -.003 -.006 -.001 -.001 .000 .000
0 1.2 -.001 -.001 .000 .000 .000 .000

I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.004 -.001 -.001 .000 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 -.004 -.006 -.001 -.001 .000 .000
0 1.2 -.001 -.001 .000 .000 .000 .000

I I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.005 -.001 -.001 .000 .000
.4 2 .000 .000 .000 .000 .000 .000
0 .6 -.004 -.006 -.001 -.001 .000 .000
0 1.2 -.001 -.001 .000 .000 .000 .000

I I I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.003 -.005 -.001 -.001 .000 .000
.4 2 .000 .000 .000 .000 .000 .000
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TABLE 4.36
MONTE CARLO BIAS OF Vu v f ,Vb FOR p =  .5, fa =  0, fa =  .9, i =  1,2

m 7 6 i' j

n  =  64 
Vp v b v i

n =  128 
Vp v b v i

n =  256
U p v b

0 .6 .048 .067 .113 .034 .046 .092 .023 .028 .074
0 1.2 .001 -.001 .003 .000 -.001 .001 .000 .000 .000

I 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .007 .016 .033 .004 .008 .020 .002 .003 .011
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .062 .087 .136 .043 .058 .111 .029 .037 .090
0 1.2 .001 -.001 .004 .000 -.001 .001 .000 .000 .000

II 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .009 .021 .034 .005 .010 .020 .002 .004 .011
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .065 .091 .140 .045 .060 .115 .030 .039 .094
0 1.2 .001 -.001 .004 .000 -.001 .001 .000 .000 .000

III 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .010 .022 .035 .005 .010 .021 .002 .004 .011
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000

TABLE 4.37
MONTE CARLO BIAS OF V°r,V°F FOR p =  .5, fa  =  0, fa  =  .9, i =  1,2

n 64 64 128 128 256 256
m 7 6 v°f V p *°i 77°v F

0 .6 .043 .063 .030 .042 .020 .025
0 1.2 .001 -.002 .000 -.001 .000 .000

I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .006 .016 .003 .008 .001 .003
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .051 .080 .036 .053 .024 .033
0 1.2 .001 -.002 .000 -.001 .000 .000

II 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .007 .020 .004 .010 .001 .004
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .053 .084 .037 .056 .025 .035
0 1.2 .001 -.001 .000 -.001 .000 .000

III 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 .007 .022 .004 .010 .001 .004
.4 2 .000 -.001 .000 .000 .000 .000
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TABLE 4.38
MONTE CARLO BIAS OF v i , v f , vb FOR P =  - .5 ,  fa =  0, ^  =  .9, i =  1,2

m 7 6 vi
77. =  64 

up vb i'i
n =  128 

VF vb vi
n =  256

Up vb
0 .6 -.045 -.066 - .1 1 1 -.031 -.043 -.090 -.022 -.028 -.074
0 1.2 -.001 .001 -.003 .000 .001 -.001 .000 .001 .000

I 0 2 .000 .000 .001 .000 .000 .000 .000 .000 .000
.4 1.2 -.006 -.018 -.034 -.003 -.007 -.020 -.001 -.002 - .0 1 1
.4 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
0 .6 -.059 -.085 -.134 -.040 -.055 -.109 -.028 -.037 -.091
0 1.2 -.001 .000 -.004 .000 .001 -.001 .000 .000 .000

I I 0 2 .000 .000 .001 .000 .000 .000 .000 .000 .000
.4 1.2 -.008 -.022 -.035 -.004 -.009 -.020 -.001 -.003 - .0 1 1
.4 2 .000 .001 .000 .000 .000 .000 .000 .000 .000
0 .6 -.061 -.088 -.139 -.042 -.058 -.113 -.030 -.038 -.094
0 1.2 -.001 .000 -.004 .000 .001 -.001 .000 .000 .000

I I I 0 2 .000 .000 .001 .000 .000 .000 .000 .000 .000
.4 1.2 -.009 -.023 -.036 -.004 -.010 -.020 -.001 -.003 - .0 1 1
.4 2 .000 .001 .000 .000 .000 .000 .000 .000 .000

TABLE 4.39
MONTE CARLO BIAS OF V°r,V°F FOR p  =  - .5 , =  0, ipj =  .9, 2 =  1,2

n 64 64 128 128 256 256
m 7 6 V p V p V°F

0 .6 -.041 -.063 -.027 -.040 -.019 -.025
0 1.2 -.001 .001 .000 .001 .000 .001

I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.006 -.018 -.002 -.007 -.001 -.002
.4 2 .000 .001 .000 .000 .000 .000
0 .6 -.048 -.079 -.033 -.051 -.024 -.033
0 1.2 -.001 .001 .000 .001 .000 .001

I I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.006 -.023 -.003 -.009 -.001 -.003
.4 2 .000 .001 .000 .000 .000 .000
0 .6 -.050 -.084 -.034 -.054 -.024 -.035
0 1.2 -.001 .000 .000 .001 .000 .001

I I I 0 2 .000 .000 .000 .000 .000 .000
.4 1.2 -.007 -.024 -.003 -.010 -.001 -.003
.4 2 .000 .001 .000 .000 .000 .000
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TABLE 4.40
MONTE CARLO BIAS OF Vi ,Vf , v B FOR p =  .75, =  0, ^  =  .9, i =  1,2

m 7 5 V I

n  =  64
U p v b vi

n =  128
U p v b vi

n  =  256
U p v b

0 .6 .072 .097 .171 .048 .064 .135 .033 .040 .110
0 1.2 .001 -.001 .004 .000 .000 .001 .000 .000 .000

I 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .010 .026 .049 .005 .013 .029 .002 .005 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .094 .130 .205 .063 .084 .164 .043 .054 .134
0 1.2 .001 -.001 .006 .000 .000 .002 .000 .000 .000

I I 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .013 .032 .051 .006 .015 .030 .002 .006 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .099 .136 .212 .066 .088 .170 .045 .058 .140
0 1.2 .001 .000 .006 .000 .000 .002 .000 .000 .000

I I I 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 1.2 .014 .034 .051 .006 .016 .030 .002 .006 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000

TABLE 4.41
MONTE CARLO BIAS OF V°T,V°F FOR p =  .75, fa  =  0, ipj =  .9, i =  1 ,2

n 64 64 128 128 256 256
m 7 6 17°V p 77°V p 77°v F

0 .6 .065 .091 .043 .058 .029 .035
0 1.2 .001 -.002 .000 .000 .000 .000

I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .009 .026 .004 .013 .001 .005
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .077 .117 .051 .074 .035 .047
0 1.2 .001 -.002 .000 .000 .000 .000

I I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .010 .032 .005 .015 .002 .006
.4 2 .000 -.001 .000 .000 .000 .000
0 .6 .079 .124 .053 .079 .036 .050
0 1.2 .001 -.001 .000 .000 .000 .000

I I I 0 2 .000 -.001 .000 .000 .000 .000
.4 1.2 .010 .034 .005 .016 .002 .006
.4 2 .000

oor .000 .000 .000 .000
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TABLE 4.42
MONTE CARLO S.D. OF Vi ,Vf , vb FOR p =  0, fa =  fa =  0, i =  1,2

m 7 6 *>/
n =  64 

Vp v B v i
n  =  128 

Vp vb v i
n  =  256

Vp vb
0 .6 .111 .115 .098 .065 .068 .058 .040 .042 .036
0 1.2 .026 .030 .025 .011 .012 .010 .004 .005 .004

I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .072 .077 .080 .037 .041 .046 .020 .021 .025
.4 2 .009 .010 .011 .003 .003 .003 .001 .001 .001
0 .6 .106 .109 .092 .062 .063 .054 .038 .040 .034
0 1.2 .026 .029 .025 .010 .011 .010 .004 .005 .004

II 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .071 .075 .079 .037 .041 .046 .020 .021 .025
.4 2 .009 .010 .010 .003 .003 .003 .001 .001 .001
0 .6 .103 .105 .086 .061 .062 .052 .038 .039 .033
0 1.2 .026 .029 .025 .010 .011 .010 .004 .005 .004

III 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .071 .075 .078 .037 .041 .046 .020 .021 .025
.4 2 .009 .009 .010 .003 .003 .003 .001 .001 .001

TABLE 4.43
MONTE CARLO S.D. OF 17?,77%, FOR p =  0, ^  =  0, % =  1,2

n 64 64 128 128 256 256
m 7 6 17°F i pV p 77°v F

0 .6 .110 .114 .065 .068 .039 .041
0 1.2 .025 .030 .010 .011 .004 .005

I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .070 .077 .037 .041 .020 .021
.4 2 .009 .010 .003 .003 .001 .001
0 .6 .106 .111 .064 .065 .040 .041
0 1.2 .025 .029 .010 .011 .004 .005

II 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .070 .079 .037 .043 .020 .022
.4 2 .009 .010 .003 .003 .001 .001
0 .6 .108 .114 .068 .069 .042 .044
0 1.2 .025 .030 .010 .012 .004 .005

III 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .073 .087 .039 .048 .021 .024
.4 2 .009 .009 .003 .003 .001 .001
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TABLE 4.44
MONTE CARLO S.D. OF Vi ,Vf , vb FOR p =  .5, =  fa =  0, i =  1,2

m 7 6 vi
n =  64 

up vb vi
n =  128

Up vb vi
n =  256

Up vb
0 .6 .100 .106 .093 .060 .064 .061 .037 .040 .042
0 1.2 .021 .027 .022 .009 .011 .009 .004 .004 .004

I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .061 .072 .068 .032 .039 .040 .017 .021 .022
.4 2 .008 .009 .009 .002 .003 .003 .001 .001 .001
0 .6 .098 .103 .096 .060 .063 .067 .038 .040 .048
0 1.2 .021 .027 .022 .009 .011 .009 .004 .004 .004

I I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .061 .069 .067 .032 .037 .040 .017 .020 .022
.4 2 .008 .009 .009 .002 .003 .003 .001 .001 .001
0 .6 .097 .100 .100 .060 .063 .075 .039 .040 .057
0 1.2 .021 .026 .022 .009 .011 .009 .004 .004 .004

I I I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .060 .067 .067 .032 .037 .040 .017 .020 .022
.4 2 .008 .009 .009 .002 .003 .003 .001 .001 .001

TABLE 4.45
MONTE CARLO S.D. OF V°n V°F FOR p =  .5, =  tpj =  0, * =  1,2

n 64 64 128 128 256 256
771 7 6 v°i 17°V p V p V°F

0 .6 .098 .105 .059 .064 .036 .039
0 1.2 .021 .028 .009 .011 .004 .004

I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .060 .073 .032 .040 .017 .021
.4 2 .008 .010 .002 .003 .001 .001
0 .6 .096 .106 .060 .068 .038 .043
0 1.2 .021 .028 .009 .011 .004 .004

I I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .060 .071 .032 .039 .017 .021
.4 2 .008 .010 .002 .003 .001 .001
0 .6 .101 .123 .064 .079 .042 .055
0 1.2 .021 .027 .009 .011 .004 .004

I I I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .062 .077 .033 .040 .018 .022
.4 2 .008 .009 .002 .003 .001 .001

196



TABLE 4.46
MONTE CARLO S.D. OF v u V F, v B FOR p =  - .5 ,  fa =  &  =  0, i =  1,2

m 7 5
n =  64

Up vb vi
n =  128

Up vb vi
n =  256

Up vb
0 .6 .094 .102 .088 .059 .065 .060 .037 .040 .041
0 1.2 .020 .024 .021 .008 .011 .009 .004 .005 .004

I 0 2 .002 .002 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .058 .068 .066 .031 .038 .040 .017 .021 .022
.4 2 .007 .008 .009 .003 .003 .003 .001 .001 .001
0 .6 .091 .098 .090 .059 .064 .066 .038 .040 .050
0 1.2 .020 .024 .022 .009 .011 .009 .004 .005 .004

I I 0 2 .002 .002 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .057 .065 .066 .032 .037 .040 .017 .020 .022
.4 2 .007 .008 .009 .003 .003 .003 .001 .001 .001
0 .6 .090 .096 .097 .060 .064 .074 .039 .041 .058
0 1.2 .020 .023 .022 .009 .011 .010 .004 .005 .004

I I I 0 2 .002 .002 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .057 .064 .066 .032 .037 .040 .018 .020 .022
.4 2 .007 .008 .009 .003 .003 .003 .001 .001 .001

TABLE 4.47
MONTE CARLO S.D. OF FOR p =  - .5 , =  ipj =  0, i =  1,2

n 64 64 128 128 256 256
771 7 6 Vp *°i Vp Vp

0 .6 .092 .102 .058 .064 .037 .039
0 1.2 .020 .024 .009 .011 .004 .005

I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .057 .068 .031 .039 .017 .021
.4 2 .007 .009 .003 .003 .001 .001
0 .6 .091 .106 .060 .071 .040 .046
0 1.2 .020 .024 .009 .011 .004 .005

I I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .057 .069 .032 .039 .018 .021
.4 2 .007 .009 .003 .003 .001 .001
0 .6 .097 .122 .065 .086 .043 .058
0 1.2 .020 .024 .009 .010 .004 .004

I I I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .059 .076 .034 .044 .019 .023
.4 2 .007 .008 .003 .003 .001 .001
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TABLE 4.48
MONTE CARLO S.D. OF Fj,I7f ,F b FOR p =  .75, fc =  =  0, i =  1,2

m 7 6 *>/
n =  64 

V p v b vi
n  =  128 

77 p v b vi
n =  256 

V  p v b

0 .6 .083 .095 .087 .051 .057 .061 .034 .036 .046
0 1.2 .016 .024 .018 .007 .010 .008 .003 .004 .003

I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .048 .063 .056 .025 .034 .032 .014 .020 .018
.4 2 .006 .007 .008 .002 .002 .003 .001 .001 .001
0 .6 .087 .097 .100 .055 .061 .076 .037 .039 .060
0 1.2 .016 .025 .018 .007 .010 .008 .003 .004 .003

I I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .047 .059 .056 .024 .032 .032 .014 .019 .019
.4 2 .006 .008 .008 .002 .002 .003 .001 .001 .001
0 .6 .089 .098 .117 .057 .063 .092 .039 .040 .074
0 1.2 .016 .023 .020 .007 .010 .008 .003 .004 .003

I I I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .048 .056 .057 .024 .031 .033 .014 .018 .019
.4 2 .006 .008 .008 .002 .002 .003 .001 .001 .001

TABLE 4.49
MONTE CARLO S.D. OF V°n V°F FOR p =  .75, =  ^  =  0, i =  1,2

n 64 64 128 128 256 256
m 7 6 17°v F V f *°i V p

0 .6 .080 .095 .048 .056 .032 .035
0 1.2 .016 .026 .007 .011 .003 .004

I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .046 .063 .024 .036 .013 .021
.4 2 .006 .008 .002 .002 .001 .001
0 .6 .083 .105 .052 .068 .035 .043
0 1.2 .016 .026 .007 .010 .003 .004

I I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .046 .058 .024 .033 .014 .018
.4 2 .006 .009 .002 .002 .001 .001
0 .6 .092 .137 .060 .090 .041 .061
0 1.2 .016 .023 .007 .009 .003 .004

I I I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .049 .068 .026 .034 .014 .017
.4 2 .006 .008 .002 .002 .001 .001
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TABLE 4.50
MONTE CARLO S.D. OF V^V f ^ b FOR p =  0, fa =  .5, ipj =  0, i =  1,2

m 7 6
n =  64

V p V B V I

n  =  128 
U p v b vi

n  =  256
V p v b

0 .6 .113 .117 .102 .065 .069 .059 .040 .043 .036
0 1.2 .026 .033 .026 .010 .013 .010 .004 .005 .004

I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .072 .081 .083 .037 .043 .047 .020 .022 .025
.4 2 .009 .011 .011 .003 .003 .003 .001 .001 .001
0 .6 .111 .107 .098 .064 .063 .057 .039 .040 .035
0 1.2 .026 .031 .026 .010 .012 .010 .004 .005 .004

I I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .073 .077 .083 .037 .041 .047 .020 .021 .025
.4 2 .009 .011 .011 .003 .003 .003 .001 .001 .001
0 .6 .110 .105 .096 .064 .063 .056 .039 .039 .035
0 1.2 .026 .031 .026 .010 .012 .010 .004 .005 .004

I I I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .073 .076 .083 .037 .041 .047 .020 .021 .025
.4 2 .009 .011 .011 .003 .003 .003 .001 .001 .001

TABLE 4.51
MONTE CARLO S.D. OF V°T,V°F FOR p =  0, fo  =  .5, ^  =  0, % =  1,2

n 64 64 128 128 256 256
m 7 6 V p V°F

7/0 
V  F

0 .6 .114 .117 .065 .069 .040 .042
0 1.2 .026 .033 .010 .013 .004 .005

I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .071 .080 .037 .043 .020 .022
.4 2 .009 .0 1 1 .003 .003 .001 .001
0 .6 .112 .110 .064 .065 .039 .041
0 1.2 .026 .032 .010 .013 .004 .005

I I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .071 .079 .037 .043 .020 .023
.4 2 .009 .0 1 1 .003 .003 .001 .001
0 .6 .1 1 1 .112 .065 .067 .040 .043
0 1.2 .026 .032 .010 .013 .004 .005

I I I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .071 .084 .037 .045 .020 .023
.4 2 .009 .0 1 1 .003 .003 .001 .001
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TABLE 4.52
MONTE CARLO S.D. OF v i ,Vf , vb FOR p =  .5, =  .5, ^  =  0, i  =  1,2

771 7 <5 i ' /

n  =  64
V p v b V I

n  =  128 
V  p V  B v i

n  =  256
l / p v b

0 .6 .099 .108 .093 .060 .065 .060 .036 .041 .039
0 1.2 .021 .030 .022 .009 .013 .009 .004 .005 .004

I 0 2 .003 .004 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .060 .076 .070 .032 .042 .041 .017 .023 .022
.4 2 .008 .010 .010 .002 .003 .003 .001 .001 .001
0 .6 .098 .100 .092 .060 .062 .061 .037 .039 .041
0 1.2 .021 .030 .022 .009 .012 .009 .004 .005 .004

I I 0 2 .003 .004 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .060 .070 .069 .032 .038 .041 .017 .021 .022
.4 2 .008 .010 .010 .002 .003 .003 .001 .001 .001
0 .6 .097 .097 .092 .060 .061 .062 .037 .039 .042
0 1.2 .021 .029 .022 .009 .012 .009 .004 .005 .004

I I I 0 2 .003 .004 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .061 .068 .069 .033 .037 .040 .017 .021 .022
.4 2 .008 .010 .010 .002 .003 .003 .001 .001 .001

TABLE 4.53
MONTE CARLO S.D. OF V°T,V°F FOR p  =  .5, =  .5, fa  =  0, i =  1,2

n 64 64 128 128 256 256
m 7 6 77° V  F 77°V p 77°V p

0 .6 .098 .110 .059 .065 .036 .041
0 1.2 .021 .031 .009 .013 .004 .005

I 0 2 .003 .004 .001 .001 .000 .000
.4 1.2 .060 .078 .032 .043 .017 .023
.4 2 .008 .011 .002 .003 .001 .001
0 .6 .097 .104 .059 .064 .036 .041
0 1.2 .021 .031 .009 .013 .004 .005

I I 0 2 .003 .004 .001 .001 .000 .000
.4 1.2 .059 .074 .032 .041 .017 .022
.4 2 .008 .011 .002 .003 .001 .001
0 .6 .097 .110 .059 .066 .036 .043
0 1.2 .021 .030 .009 .013 .004 .005

I I I 0 2 .003 .004 .001 .001 .000 .000
.4 1.2 .059 .075 .032 .040 .017 .022
.4 2 .008 .010 .002 .003 .001 .001

2 0 0



TABLE 4.54
MONTE CARLO S.D. OF v i , v f , vb  FOR p — - .5 ,  fa =  .5, ^  =  0, i =  1,2

m 7 6
n  =  64

V p v b v i

n =  128
V p v b v i

n =  256
V p v b

0 .6 .094 .104 .089 .058 .065 .058 .036 .040 .040
0 1.2 .020 .028 .022 .009 .013 .009 .004 .005 .004

I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .058 .072 .068 .031 .041 .041 .017 .023 .023
.4 2 .007 .009 .009 .003 .003 .003 .001 .001 .001
0 .6 .093 .097 .088 .059 .062 .059 .037 .040 .042
0 1.2 .020 .027 .022 .009 .012 .009 .004 .005 .004

I I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .058 .067 .067 .032 .038 .041 .018 .021 .023
.4 2 .007 .009 .009 .003 .003 .003 .001 .001 .001
0 .6 .092 .095 .088 .059 .062 .061 .038 .040 .043
0 1.2 .020 .026 .021 .009 .012 .009 .004 .005 .004

I I I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .058 .065 .067 .032 .038 .041 .018 .021 .023
.4 2 .007 .009 .009 .003 .003 .003 .001 .001 .001

TABLE 4.55
M O N T E  C A R L O  S.D. O F  17°, 17° F O R  p =  -.5 , tfc = .5, ^  =  0, i =  1,2

n 64 64 128 128 256 256
771 7 6 77° V F V°F V p

0 .6 .094 .105 .058 .065 .036 .041
0 1.2 .020 .029 .009 .013 .004 .006

I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .058 .073 .031 .042 .017 .024
.4 2 .007 .010 .003 .003 .001 .001
0 .6 .093 .102 .058 .066 .037 .042
0 1.2 .020 .028 .009 .013 .004 .005

I I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .058 .070 .031 .041 .018 .023
.4 2 .007 .010 .003 .003 .001 .001
0 .6 .093 .109 .059 .071 .037 .045
0 1.2 .020 .026 .009 .012 .004 .005

I I I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .058 .071 .032 .042 .018 .022
.4 2 .007 .009 .003 .003 .001 .001

2 0 1



TABLE 4.56
MONTE CARLO S.D. OF Vu \;F,VB FOR p =  .75, (pi =  .5, ^  =  0, i =  1,2

m 7 5 v i
n  =  64

Up v b v i
n  =  128 

Up v b v i
n  =  256 

Vp v b

0 .6 .079 .095 .082 .048 .056 .056 .032 .036 .042
0 1.2 .016 .029 .018 .007 .012 .008 .003 .005 .003

I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .047 .067 .057 .024 .038 .032 .014 .022 .018
.4 2 .006 .009 .008 .002 .003 .003 .001 .001 .001
0 .6 .080 .090 .085 .050 .056 .060 .033 .036 .045
0 1.2 .016 .028 .018 .007 .011 .008 .003 .005 .003

II 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .047 .060 .057 .024 .033 .032 .014 .020 .018
.4 2 .006 .009 .008 .002 .003 .003 .001 .001 .001
0 .6 .082 .089 .089 .051 .056 .063 .034 .037 .048
0 1.2 .016 .026 .018 .007 .011 .008 .003 .005 .003

III 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .048 .057 .057 .024 .032 .032 .014 .019 .018
.4 2 .006 .009 .008 .002 .003 .003 .001 .001 .001

TABLE 4.57
MONTE CARLO S.D. OF V°n V°F FOR p =  .75, fa  =  .5, ^  =  0, i =  1,2

n 64 64 128 128 256 256
771 7 6 77°V p v °f *°i V p

0 .6 .078 .096 .047 .057 .030 .037
0 1.2 .016 .030 .007 .013 .003 .005

I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .047 .070 .024 .041 .014 .024
.4 2 .006 .010 .002 .003 .001 .001
0 .6 .078 .094 .047 .057 .031 .036
0 1.2 .016 .030 .007 .013 .003 .005

II 0 2 .002 .004 .001 .001 .000 .000
.4 1.2 .046 .064 .024 .038 .014 .022
.4 2 .006 .010 .002 .003 .001 .001
0 .6 .079 .107 .048 .062 .032 .039
0 1.2 .016 .027 .007 .012 .003 .005

III 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .047 .064 .024 .035 .014 .020
.4 2 .006 .009 .002 .003 .001 .001

2 0 2



TABLE 4.58
MONTE CARLO S.D. OF V i , V f , v b  FOR p  =  0, fa =  .9, ^  =  0, i  =  1,2

771 7 6 i ' i
7 i  =  64 

U p v b v i

n  =  128
U p v b v i

n  —  256
U p v b

0 .6 .142 .128 .126 .079 .076 .071 .045 .047 .041
0 1.2 .030 .036 .030 .011 .017 .011 .005 .008 .005

I 0 2 .004 .004 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .089 .093 .110 .043 .052 .057 .022 .029 .028
.4 2 .011 .014 .014 .003 .005 .004 .001 .002 .001
0 .6 .142 .121 .125 .079 .071 .071 .045 .043 .041
0 1.2 .030 .034 .030 .011 .016 .011 .005 .007 .005

I I 0 2 .004 .004 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .090 .091 .110 .043 .050 .057 .022 .027 .028
.4 2 .011 .013 .014 .003 .004 .004 .001 .002 .001
0 .6 .140 .119 .125 .078 .070 .071 .045 .043 .041
0 1.2 .030 .033 .030 .011 .016 .011 .005 .007 .005

I I I 0 2 .003 .004 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .089 .090 .110 .043 .049 .057 .021 .026 .028
.4 2 .011 .013 .014 .003 .004 .004 .001 .002 .001

TABLE 4.59
MONTE CARLO S.D. OF V°n V°F FOR p =  0, =  .9, ^  =  0, i =  1,2

n 64 64 128 128 256 256
m 7 6 uj 77°V p *°i V  F V°i V°F

0 .6 .142 .128 .079 .076 .045 .047
0 1.2 .030 .036 .011 .017 .005 .008

I 0 2 .004 .004 .001 .001 .000 .000
.4 1.2 .089 .092 .043 .052 .022 .029
.4 2 .011 .014 .003 .005 .001 .002
0 .6 .142 .125 .079 .074 .045 .047
0 1.2 .030 .034 .011 .016 .005 .008

I I 0 2 .004 .004 .001 .001 .000 .000
.4 1.2 .089 .094 .043 .053 .022 .029
.4 2 .011 .013 .003 .005 .001 .002
0 .6 .142 .137 .079 .079 .045 .049
0 1.2 .030 .035 .011 .017 .005 .008

I I I 0 2 .004 .004 .001 .001 .000 .000
.4 1.2 .089 .105 .043 .057 .022 .031
.4 2 .011 .013 .003 .005 .001 .002
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TABLE 4.60
MONTE CARLO S.D. OF Vi ,Vf ,Vb FOR p =  .5, fa =  .9, ^  =  0, i =  1,2

m 7 6 v i

n =  64
U p vb v i

n =  128 
V F vb v i

n =  256
U p vb

0 .6 .119 .119 .110 .071 .072 .066 .041 .047 .039
0 1.2 .024 .033 .025 .010 .016 .010 .004 .007 .004

I 0 2 .003 .004 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .073 .088 .090 .038 .048 .047 .019 .029 .023
.4 2 .009 .011 .012 .003 .004 .003 .001 .001 .001
0 .6 .119 .110 .109 .071 .066 .066 .041 .042 .039
0 1.2 .024 .032 .025 .009 .016 .010 .004 .007 .004

I I 0 2 .003 .004 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .073 .084 .090 .038 .044 .047 .019 .027 .023
.4 2 .009 .012 .012 .003 .004 .003 .001 .001 .001
0 .6 .118 .105 .109 .070 .064 .066 .040 .041 .039
0 1.2 .024 .031 .025 .009 .015 .010 .004 .007 .004

I I I 0 2 .003 .004 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .073 .080 .090 .037 .043 .047 .019 .026 .023
.4 2 .009 .011 .012 .003 .004 .003 .001 .001 .001

TABLE 4.61
MONTE CARLO S.D. OF 17°, 77° FOR p  =  .5, fa  =  .9, ^  =  0, i =  1,2

71 64 64 128 128 256 256
m 7 6 V°F n 17°V p 77/ V p

0 .6 .119 .120 .071 .073 .041 .048
0 1.2 .024 .034 .010 .017 .004 .008

I 0 2 .003 .004 .001 .001 .000 .000
.4 1.2 .073 .090 .038 .050 .019 .031
.4 2 .009 .012 .003 .004 .001 .001
0 .6 .119 .114 .071 .069 .041 .045
0 1.2 .024 .034 .010 .017 .004 .008

I I 0 2 .003 .004 .001 .001 .000 .000
.4 1.2 .073 .088 .038 .048 .019 .029
.4 2 .009 .012 .003 .004 .001 .001
0 .6 .119 .121 .071 .073 .041 .047
0 1.2 .024 .033 .010 .016 .004 .008

I I I 0 2 .003 .004 .001 .001 .000 .000
.4 1.2 .073 .092 .038 .048 .019 .029
.4 2 .009 .012 .003 .004 .001 .001
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TABLE 4.62
MONTE CARLO S.D. OF V ^ V p ^ B  FOR p =  - . 5 =  .9, ^  =  0, i =  1,2

m 7 6 i'/
n =  64 

Vp vi
n =  128 

Vp vb vi
n =  256 

Vp vb
0 .6 .116 .115 .105 .069 .071 .064 .041 .045 .040
0 1.2 .022 .031 .023 .010 .016 .011 .004 .008 .004

I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .070 .082 .081 .037 .051 .049 .019 .030 .025
.4 2 .008 .011 .011 .003 .004 .004 .001 .001 .001
0 .6 .115 .106 .105 .069 .065 .064 .041 .042 .040
0 1.2 .022 .030 .023 .010 .015 .011 .004 .008 .004

I I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .069 .076 .081 .037 .048 .049 .019 .027 .025
.4 2 .008 .011 .011 .003 .004 .004 .001 .001 .001
0 .6 .113 .103 .104 .069 .064 .064 .041 .041 .040
0 1.2 .022 .029 .023 .010 .015 .011 .004 .008 .004

I I I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .068 .073 .081 .037 .047 .049 .019 .026 .025
.4 2 .008 .010 .011 .003 .004 .004 .001 .001 .001

TABLE 4.63
MONTE CARLO S.D. OF V\,V°F FOR p =  -.5 , fc  =  .9, ^  =  0, i =  1,2

n 64 64 128 128 256 256
771 7 6 V°F Vp 77°V p

0 .6 .116 .116 .069 .072 .041 .047
0 1.2 .022 .032 .010 .017 .004 .008

I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .070 .082 .037 .052 .019 .031
.4 2 .008 .011 .003 .004 .001 .001
0 .6 .115 .112 .069 .071 .041 .046
0 1.2 .022 .031 .010 .016 .004 .008

I I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .069 .081 .037 .053 .019 .030
.4 2 .008 .012 .003 .004 .001 .001
0 .6 .115 .122 .069 .078 .041 .048
0 1.2 .022 .030 .010 .015 .004 .008

I I I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .069 .085 .037 .056 .019 .029
.4 2 .008 .010 .003 .004 .001 .001
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TABLE 4.64
MONTE CARLO S.D. OF V^V f .Vb FOR p  =  .75, fa =  .9, ^  =  0, i =  1,2

m 7 5
n =  64

Up vb vi
n =  128 

V p vb vi
n =  256

Up vb
0 .6 .096 .103 .089 .054 .063 .053 .033 .043 .035
0 1.2 .018 .031 .020 .008 .015 .009 .003 .007 .003

I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .058 .077 .072 .029 .046 .037 .015 .029 .019
.4 2 .007 .010 .010 .002 .003 .003 .001 .001 .001
0 .6 .095 .094 .089 .053 .057 .053 .033 .038 .035
0 1.2 .018 .030 .020 .008 .014 .009 .003 .007 .003

I I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .058 .071 .072 .029 .041 .037 .015 .026 .019
.4 2 .007 .011 .010 .002 .003 .003 .001 .001 .001
0 .6 .095 .090 .089 .053 .054 .053 .033 .036 .035
0 1.2 .018 .029 .020 .007 .014 .009 .003 .007 .003

I I I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .057 .066 .071 .028 .038 .037 .015 .025 .019
.4 2 .007 .010 .009 .002 .003 .003 .001 .001 .001

TABLE 4.65
MONTE CARLO S.D. OF V°n V°F FOR p =  .75, =  .9, j)j =  0, i =  1,2

n 64 64 128 128 256 256
m 7 6 7} V°F V°F 17° V F

0 .6 .096 .105 .053 .066 .033 .046
0 1.2 .018 .033 .008 .016 .003 .008

I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .058 .080 .029 .050 .015 .032
.4 2 .007 .012 .002 .004 .001 .001
0 .6 .095 .100 .053 .061 .033 .040
0 1.2 .018 .033 .008 .016 .003 .008

I I 0 2 .002 .004 .001 .001 .000 .000
.4 1.2 .058 .075 .029 .050 .015 .029
.4 2 .007 .012 .002 .004 .001 .001
0 .6 .095 .111 .054 .062 .033 .039
0 1.2 .018 .029 .008 .014 .003 .007

I I I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .058 .076 .029 .042 .015 .026
.4 2 .007 .011 .002 .003 .001 .001
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TABLE 4.66
MONTE CARLO S.D. OF VItVFlVB FOR p =  0, fa =  0, ipj =  .5, i =  1,2

m 7 6 i' i

71 =  64 
Vp v i

n  =  128 
Vp vb v i

n  =  256 
Vp vb

0 .6 .110 .114 .099 .065 .068 .058 .040 .042 .036
0 1.2 .026 .031 .025 .0 1 1 .012 .010 .004 .005 .004

I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .071 .077 .081 .037 .041 .046 .020 .021 .025
.4 2 .009 .010 .0 1 1 .003 .003 .003 .001 .001 .001
0 .6 .105 .105 .093 .062 .062 .054 .038 .039 .034
0 1.2 .026 .030 .025 .010 .0 1 1 .010 .004 .005 .004

II 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .071 .075 .080 .037 .041 .046 .020 .021 .025
.4 2 .009 .010 .0 1 1 .003 .003 .003 .001 .001 .001
0 .6 .104 .103 .091 .062 .062 .054 .039 .039 .034
0 1.2 .026 .029 .025 .010 .0 1 1 .010 .004 .005 .004

III 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .071 .075 .080 .037 .041 .046 .020 .021 .025
.4 2 .009 .010 .0 1 1 .003 .003 .003 .001 .001 .001

TABLE 4.67
MONTE CARLO S.D. OF FOR p  =  0, fa  =  0, ^  =  .5, i =  1,2

72 64 64 128 128 256 256
772 7 6 Vp V°i V°F *°i 17°V p

0 .6 .110 .114 .065 .068 .039 .041
0 1.2 .026 .030 .010 .012 .004 .005

I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .070 .077 .036 .041 .020 .021
.4 2 .009 .010 .003 .003 .001 .001
0 .6 .106 .108 .063 .064 .039 .040
0 1.2 .025 .030 .010 .012 .004 .005

II 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .069 .077 .036 .042 .020 .022
.4 2 .009 .010 .003 .003 .001 .001
0 .6 .106 .108 .063 .064 .039 .041
0 1.2 .025 .030 .010 .012 .004 .005

III 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .070 .078 .037 .043 .020 .022
.4 2 .009 .010 .003 .003 .001 .001
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TABLE 4.68
MONTE CARLO S.D. OF I~'i ,Vf ,Vb FOR p =  .5, fa =  0, ipj =  .5, i — 1,2

m 7 6 *>/
n =  64 

V p vb vi
n  =  128 

vf vb vi
n  =  256 

vf vb
0 .6 .098 .106 .093 .060 .064 .061 .037 .040 .041
0 1.2 .021 .028 .022 .009 .011 .009 .004 .004 .004

I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .060 .073 .068 .032 .040 .040 .017 .021 .022
.4 2 .008 .010 .009 .002 .003 .003 .001 .001 .001
0 .6 .096 .100 .093 .060 .063 .064 .038 .040 .045
0 1.2 .021 .027 .022 .009 .011 .009 .004 .004 .004

I I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .060 .067 .068 .032 .037 .040 .017 .020 .022
.4 2 .008 .010 .009 .002 .003 .003 .001 .001 .001
0 .6 .096 .099 .093 .060 .063 .065 .038 .040 .047
0 1.2 .021 .026 .022 .009 .011 .009 .004 .004 .004

I I I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .060 .066 .067 .032 .036 .040 .017 .020 .022
.4 2 .008 .009 .009 .002 .003 .003 .001 .001 .001

TABLE 4.69
MONTE CARLO S.D. OF F°,I7° FOR p  =  .5, fa  =  0, ^  =  .5, i =  1,2

n 64 64 128 128 256 256
m 7 6 77°vF v°i vp v°F

0 .6 .097 .106 .059 .064 .036 .039
0 1.2 .021 .028 .009 .012 .004 .004

I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .059 .074 .032 .040 .017 .021
.4 2 .008 .010 .002 .003 .001 .001
0 .6 .095 .103 .058 .065 .037 .041
0 1.2 .021 .028 .009 .011 .004 .004

I I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .059 .071 .032 .039 .017 .021
.4 2 .008 .010 .002 .003 .001 .001
0 .6 .095 .106 .059 .067 .037 .043
0 1.2 .021 .028 .009 .011 .004 .004

I I I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .059 .070 .032 .038 .017 .020
.4 2 .008 .010 .002 .003 .001 .001
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TABLE 4.70
MONTE CARLO S.D. OF Vu V F,VB FOR p =  - .5 ,  fc =  0, ^  =  .5, i =  1,2

m 7 5 VI
n =  64

l/p vb v i
n  =  128 

V p vb v i
n =  256

Vp v B
0 .6 .093 .102 .088 .058 .064 .059 .037 .039 .041
0 1.2 .020 .025 .021 .009 .011 .009 .004 .005 .004

I 0 2 .002 .002 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .058 .068 .066 .031 .038 .040 .017 .021 .023
.4 2 .007 .008 .009 .003 .003 .003 .001 .001 .001
0 .6 .091 .097 .088 .059 .064 .063 .038 .041 .046
0 1.2 .020 .024 .021 .009 .011 .009 .004 .005 .004

II 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .058 .064 .066 .032 .037 .040 .018 .020 .023
.4 2 .007 .008 .009 .003 .003 .003 .001 .001 .001
0 .6 .090 .096 .089 .060 .064 .064 .039 .041 .048
0 1.2 .020 .023 .021 .009 .011 .009 .004 .005 .004

III 0 2 .002 .002 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .057 .063 .066 .032 .037 .040 .018 .020 .022
.4 2 .007 .008 .009 .003 .003 .003 .001 .001 .001

TABLE 4.71
MONTE CARLO S.D. OF 77?,17° FOR p  =  - .5 , =  0, ^  =  .5, 2 =  1,2

n 64 64 128 128 256 256
771 7 6 V p V°i V p *°i V°F

0 .6 .092 .102 .058 .064 .036 .040
0 1.2 .020 .026 .009 .012 .004 .005

I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .057 .069 .031 .039 .017 .022
.4 2 .007 .009 .003 .003 .001 .001
0 .6 .091 .101 .058 .067 .038 .043
0 1.2 .020 .025 .009 .011 .004 .005

II 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .057 .067 .031 .039 .018 .021
.4 2 .007 .009 .003 .003 .001 .001
0 .6 .091 .105 .059 .071 .039 .045
0 1.2 .020 .024 .009 .011 .004 .005

III 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .057 .068 .032 .039 .018 .021
.4 2 .007 .008 .003 .003 .001 .001
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TABLE 4.72
MONTE CARLO S.D. OF v i ,Vf ,Vb FOR p =  .75, =  0, ^  =  .5, i =  1,2

m 7 5
n  =  64

U p v b v i
n  =  128

U p v b v i
n  =  256

U p v b

0 .6 .082 .095 .085 .050 .057 .060 .033 .036 .045
0 1.2 .016 .026 .018 .007 .011 .008 .003 .004 .003

I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .047 .063 .056 .024 .035 .032 .014 .020 .018
.4 2 .006 .008 .008 .002 .002 .003 .001 .001 .001
0 .6 .085 .097 .093 .054 .062 .069 .037 .040 .054
0 1.2 .016 .025 .018 .007 .010 .008 .003 .004 .003

II 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .047 .056 .056 .024 .031 .032 .014 .018 .018
.4 2 .006 .008 .008 .002 .002 .003 .001 .001 .001
0 .6 .087 .099 .097 .056 .064 .073 .038 .041 .057
0 1.2 .016 .023 .018 .007 .010 .008 .003 .004 .003

III 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .048 .055 .056 .025 .030 .032 .014 .017 .018
.4 2 .006 .008 .008 .002 .002 .003 .001 .001 .001

TABLE 4.73
MONTE CARLO S.D. OF V°T,17>F FOR p = .75, =  0, ^  =  .5, i =  1,2

n 64 64 128 128 256 256
m 7 8 v °f

7 7°V p V°F
0 .6 .079 .094 .047 .056 .031 .035
0 1.2 .016 .027 .007 .011 .003 .004

I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .046 .064 .024 .037 .013 .021
.4 2 .006 .009 .002 .003 .001 .001
0 .6 .079 .097 .050 .061 .033 .039
0 1.2 .016 .027 .007 .011 .003 .004

II 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .046 .059 .024 .034 .013 .019
.4 2 .006 .009 .002 .003 .001 .001
0 .6 .081 .106 .051 .066 .034 .042
0 1.2 .016 .025 .007 .011 .003 .004

III 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .046 .059 .024 .032 .014 .018
.4 2 .006 .009 .002 .003 .001 .001
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TABLE 4.74
MONTE CARLO S.D. OF V ^V f ^ b FOR P =  0, <j>i =  0, =  -9, 2 =  1,2

m 7 6
n =  64 

up vb i'i
n =  128

Up vb vi
n =  256

Up vb
0 .6 .110 .114 .099 .065 .068 .058 .040 .042 .036
0 1.2 .026 .031 .026 .011 .012 .010 .004 .005 .004

I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .071 .078 .081 .037 .041 .046 .020 .021 .025
.4 2 .009 .010 .011 .003 .003 .003 .001 .001 .001
0 .6 .105 .104 .093 .062 .062 .055 .038 .039 .034
0 1.2 .026 .030 .025 .010 .012 .010 .004 .005 .004

I I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .072 .075 .080 .037 .041 .046 .020 .021 .025
.4 2 .009 .010 .011 .003 .003 .003 .001 .001 .001
0 .6 .104 .103 .092 .062 .062 .054 .039 .039 .034
0 1.2 .026 .029 .025 .010 .012 .010 .004 .005 .004

I I I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .072 .075 .080 .037 .041 .046 .020 .021 .025
.4 2 .009 .010 .011 .003 .003 .003 .001 .001 .001

TABLE 4.75
MONTE CARLO S.D. OF V\,\PF FOR p = 0, <}){ = 0, & = .9, i = 1,2

n 64 64 128 128 256 256
771 7 6 V°F ^7 77° V p U°j 77°V p

0 .6 .110 .115 .065 .068 .039 .041
0 1.2 .026 .031 .010 .012 .004 .005

I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .070 .078 .036 .041 .020 .021
.4 2 .009 .010 .003 .003 .001 .001
0 .6 .106 .107 .063 .064 .039 .040
0 1.2 .025 .030 .010 .012 .004 .005

I I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .069 .076 .036 .041 .020 .022
.4 2 .009 .010 .003 .003 .001 .001
0 .6 .106 .107 .063 .064 .039 .041
0 1.2 .025 .030 .010 .012 .004 .005

I I I 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .069 .077 .037 .042 .020 .022
.4 2 .009 .010 .003 .003 .001 .001
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TABLE 4.76
MONTE CARLO S.D. OF Vi , v f ,Vb FOR P =  5, <j>i =  0, 4>i =  .9, i =  1,2

m 7 5 VI

n  =  64 
V  F v b v i

n  =  128 
V p v b v i

7i =  256 
v f v b

0 .6 .098 .106 .093 .060 .064 .061 .037 .040 .041
0 1.2 .021 .028 .022 .009 .011 .009 .004 .004 .004

I 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .060 .073 .068 .032 .040 .040 .017 .021 .022
.4 2 .008 .010 .010 .002 .003 .003 .001 .001 .001
0 .6 .096 .101 .092 .060 .063 .064 .038 .040 .045
0 1.2 .021 .027 .022 .009 .011 .009 .004 .004 .004

II 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .060 .067 .068 .032 .037 .040 .017 .020 .022
.4 2 .008 .010 .009 .002 .003 .003 .001 .001 .001
0 .6 .095 .100 .093 .060 .063 .064 .038 .041 .046
0 1.2 .021 .026 .022 .009 .011 .009 .004 .004 .004

III 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .060 .066 .068 .032 .036 .040 .017 .020 .022
.4 2 .008 .009 .009 .002 .003 .003 .001 .001 .001

TABLE 4.77
MONTE CARLO S.D. OF 77°,77° FOR p  =  .5, fa =  0, ^  =  .9, i =  1,2

n 64 64 128 128 256 256
771 7 6 * °i v°F 17°v F "°i 77°V p

0 .6 .097 .106 .059 .064 .036 .039
0 1.2 .021 .029 .009 .012 .004 .004

I 0 2 .003 .004 .001 .001 .000 .000
.4 1.2 .059 .074 .032 .041 .017 .021
.4 2 .008 .010 .002 .003 .001 .001
0 .6 .095 .102 .058 .064 .036 .041
0 1.2 .021 .029 .009 .011 .004 .004

II 0 2 .003 .004 .001 .001 .000 .000
.4 1.2 .059 .071 .032 .039 .017 .021
.4 2 .008 .010 .002 .003 .001 .001
0 .6 .095 .104 .059 .065 .037 .042
0 1.2 .021 .028 .009 .011 .004 .004

III 0 2 .003 .003 .001 .001 .000 .000
.4 1.2 .059 .070 .032 .038 .017 .021
.4 2 .008 .010 .002 .003 .001 .001
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TABLE 4.78
MONTE CARLO S.D. OF Fj,Ff ,I7b FOR p =  - .5 ,  fa =  0, ^  =  .9, i =  1,2

m 7 6 *>7
n  =  64 

Vp 1'B v i
n  =  128

Vp V B v i
n  — 256 

Vp vb
0 .6 .093 .102 .088 .058 .064 .059 .037 .039 .041
0 1.2 .020 .025 .021 .009 .011 .009 .004 .005 .004

I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .058 .069 .066 .031 .038 .040 .017 .021 .023
.4 2 .007 .008 .009 .003 .003 .003 .001 .001 .001
0 .6 .091 .097 .088 .059 .064 .062 .038 .041 .046
0 1.2 .020 .024 .022 .009 .011 .009 .004 .005 .004

II 0 2 .002 .002 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .058 .064 .066 .032 .037 .040 .018 .020 .023
.4 2 .007 .008 .009 .003 .003 .003 .001 .001 .001
0 .6 .090 .097 .088 .059 .065 .063 .039 .041 .046
0 1.2 .020 .023 .021 .009 .011 .009 .004 .005 .004

III 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .057 .063 .066 .032 .037 .040 .018 .020 .023
.4 2 .007 .008 .009 .003 .003 .003 .001 .001 .001

TABLE 4.79
MONTE CARLO S.D. OF 17°, 17° FOR p = - .5 , & =  0, ^  =  .9, 2 =  1,2

71 64 64 128 128 256 256
771 7 6 Vp Vp v°i V p

0 .6 .093 .103 .058 .064 .036 .040
0 1.2 .020 .026 .009 .012 .004 .005

I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .057 .069 .031 .039 .017 .022
.4 2 .007 .009 .003 .003 .001 .001
0 .6 .091 .101 .058 .066 .038 .043
0 1.2 .020 .025 .009 .011 .004 .005

II 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .057 .067 .031 .039 .018 .021
.4 2 .007 .009 .003 .003 .001 .001
0 .6 .091 .103 .058 .068 .038 .044
0 1.2 .020 .025 .009 .011 .004 .005

III 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .057 .067 .031 .039 .018 .021
.4 2 .007 .009 .003 .003 .001 .001
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TABLE 4.80
MONTE CARLO S.D. OF VI,VF,VB FOR p  =  .75, fa =  0, ^  =  .9, i =  1,2

m 7 5
77, =  64 

V p v b v i

n  =  128 
v f v b v i

n  =  256
l /p v b

0 .6 .082 .095 .085 .050 .057 .060 .033 .036 .045
0 1.2 .016 .026 .018 .007 .011 .008 .003 .004 .003

I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .047 .063 .056 .024 .035 .032 .014 .020 .018
.4 2 .006 .008 .008 .002 .002 .003 .001 .001 .001
0 .6 .085 .098 .092 .055 .063 .068 .037 .040 .053
0 1.2 .016 .024 .018 .007 .010 .008 .003 .004 .003

I I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .047 .055 .056 .025 .031 .032 .014 .018 .018
.4 2 .006 .008 .008 .002 .002 .003 .001 .001 .001
0 .6 .086 .100 .094 .056 .064 .070 .038 .042 .055
0 1.2 .016 .023 .018 .007 .010 .008 .003 .004 .003

I I I 0 2 .002 .003 .003 .001 .001 .001 .000 .000 .000
.4 1.2 .048 .055 .056 .025 .030 .032 .014 .017 .018
.4 2 .006 .008 .008 .002 .002 .003 .001 .001 .001

TABLE 4.81
MONTE CARLO S.D. OF V°n V°F FOR p = .75, fa = 0, ifjj =  .9, 2 =  1,2

n 64 64 128 128 256 256
m 7 6 V°F "°i V°F * °i V°F

0 .6 .079 .094 .047 .056 .031 .035
0 1.2 .016 .027 .007 .012 .003 .004

I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .046 .065 .024 .037 .014 .021
.4 2 .006 .009 .002 .003 .001 .001
0 .6 .079 .096 .049 .061 .033 .038
0 1.2 .016 .027 .007 .011 .003 .004

I I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .046 .060 .024 .034 .013 .020
.4 2 .006 .009 .002 .003 .001 .001
0 .6 .080 .101 .050 .063 .034 .040
0 1.2 .016 .026 .007 .011 .003 .004

I I I 0 2 .002 .003 .001 .001 .000 .000
.4 1.2 .046 .059 .024 .033 .013 .019
.4 2 .006 .009 .002 .003 .001 .001
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TABLE 4.82
EMPIRICAL SIZES OF W T AND W F FOR p =  0, fa =  fa =  0, i =  1,2

m 7

a
n
6

64 64
WF

.05
128
W j

002 
s;

256
Wj

256
WF

64
W j

64
WF

.10
128
Wi

128
WF

256
Wi

256
WF

0 .6 .106 .171 .096 .146 .083 .121 .175 .222 .146 .206 .140 .191
0 1.2 .075 .190 .062 .147 .052 .125 .144 .247 .123 .195 .120 .169

I 0 2 .065 .165 .070 .145 .066 .120 .119 .214 .117 .203 .120 .175
.4 1.2 .094 .179 .078 .139 .061 .122 .157 .244 .132 .198 .116 .165
.4 2 .062 .172 .072 .154 .066 .118 .125 .222 .131 .198 .122 .176
0 .6 .119 .182 .089 .142 .081 .116 .181 .231 .159 .196 .146 .184
0 1.2 .071 .191 .063 .144 .048 .124 .136 .246 .120 .193 .124 .171

I I 0 2 .068 .154 .066 .144 .065 .119 .125 .215 .119 .201 .122 .177
.4 1.2 .104 .183 .082 .138 .059 .121 .170 .249 .130 .194 .116 .162
.4 2 .070 .172 .076 .155 .064 .121 .118 .226 .130 .194 .122 .173
0 .6 .127 .185 .100 .146 .090 .123 .198 .233 .159 .204 .155 .192
0 1.2 .074 .192 .065 .142 .052 .126 .141 .246 .122 .199 .123 .170

I I I 0 2 .071 .163 .065 .147 .066 .118 .126 .219 .119 .198 .123 .176
.4 1.2 .104 .187 .086 .142 .064 .121 .171 .251 .139 .200 .121 .168
.4 2 .067 .174 .071 .152 .062 .117 .121 .219 .126 .202 .122 .172

TABLE 4.83
EMPIRICAL SIZES OF W f  AND FOR p =  0, ^  =  0, i =  1,2

m 7

OL
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf.

0 .6 .103 .177 .090 .143 .078 .117 .175 .224 .151 .203 .133 .180
0 1.2 .073 .192 .065 .149 .050 .126 .137 .247 .122 .194 .122 .172

I 0 2 .066 .165 .071 .150 .065 .118 .118 .215 .117 .201 .121 .176
.4 1.2 .091 .177 .077 .134 .053 .120 .163 .239 .126 .192 .111 .165
.4 2 .064 .169 .075 .156 .065 .119 .123 .224 .128 .199 .117 .174
0 .6 .120 .194 .096 .151 .081 .126 .204 .245 .161 .216 .148 .197
0 1.2 .070 .188 .063 .145 .049 .127 .130 .249 .123 .193 .126 .173

I I 0 2 .070 .159 .071 .149 .064 .118 .116 .218 .116 .202 .121 .180
.4 1.2 .097 .192 .085 .147 .066 .132 .169 .251 .134 .208 .117 .178
.4 2 .068 .171 .076 .157 .062 .121 .121 .223 .125 .194 .118 .171
0 .6 .149 .219 .131 .186 .118 .163 .217 .275 .205 .252 .188 .243
0 1.2 .066 .192 .066 .142 .051 .127 .143 .250 .128 .196 .123 .174

I I I 0 2 .071 .162 .070 .145 .064 .117 .119 .221 .122 .202 .122 .176
.4 1.2 .117 .228 .103 .164 .079 .143 .192 .286 .153 .225 .139 .201
.4 2 .066 .172 .074 .155 .063 .118 .125 .223 .124 .196 .118 .176
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TABLE 4.84
EMPIRICAL SIZES OF W j  AND W F FOR p =  .5, fa =  ^  =  0, i =  1,2

m 7

a
n
6

64
W /

64
WF

.05
128
Wj  ̂

00 256
Wj

256
WF

64
Wi

64
WF

.10
128
Wj

128
WF

256
Wj

256
WF

0 .6 .143 .233 .128 .232 .132 .203 .229 .304 .221 .308 .221 .290
0 1.2 .078 .171 .064 .149 .061 .128 .140 .225 .111 .195 .108 .184

I 0 2 .075 .196 .068 .151 .069 .128 .131 .248 .126 .195 .119 .176
.4 1.2 .105 .204 .073 .190 .057 .161 .165 .273 .133 .250 .111 .229
.4 2 .072 .189 .062 .140 .061 .123 .130 .233 .116 .182 .110 .175
0 .6 .191 .279 .180 .275 .181 .248 .281 .352 .267 .362 .279 .341
0 1.2 .083 .173 .063 .146 .060 .128 .144 .223 .114 .194 .112 .186

I I 0 2 .071 .187 .064 .154 .068 .129 .133 .247 .126 .194 .117 .175
.4 1.2 .112 .216 .076 .185 .061 .163 .167 .287 .138 .246 .113 .226
.4 2 .072 .182 .066 .141 .061 .121 .131 .234 .115 .180 .110 .170
0 .6 .228 .311 .229 .315 .217 .291 .343 .399 .311 .396 .321 .391
0 1.2 .083 .170 .065 .149 .059 .125 .142 .224 .111 .191 .108 .181

I I I 0 2 .077 .192 .066 .152 .068 .128 .129 .250 .123 .195 .117 .172
.4 1.2 .123 .226 .079 .185 .063 .163 .177 .289 .139 .255 .114 .228
.4 2 .075 .181 .063 .146 .062 .118 .132 .235 .112 .182 .109 .177

TABLE 4.85
EMPIRICAL SIZES OF W? AND FOR p =  .5, fc = ^  =  0, i =  1,2

m 7

a
n
6

64
Wf

64
Wf,

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .137 .231 .118 .224 .117 .193 .227 .299 .198 .305 .197 .270
0 1.2 .077 .179 .063 .149 .059 .129 .145 .228 .104 .198 .106 .190

I 0 2 .079 .191 .067 .152 .068 .128 .133 .248 .124 .191 .117 .174
.4 1.2 .102 .212 .073 .194 .055 .170 .162 .276 .122 .254 .105 .228
.4 2 .071 .187 .060 .140 .059 .124 .133 .235 .117 .182 .110 .176
0 .6 .187 .306 .172 .307 .185 .281 .279 .389 .256 .388 .258 .380
0 1.2 .083 .182 .060 .147 .061 .130 .143 .228 .111 .196 .109 .189

I I 0 2 .076 .186 .065 .152 .069 .129 .134 .251 .127 .192 .117 .175
.4 1.2 .116 .227 .072 .200 .061 .167 .172 .294 .130 .261 .108 .220
.4 2 .073 .186 .063 .143 .061 .119 .138 .240 .119 .181 .107 .171
0 .6 .281 .414 .269 .407 .253 .372 .356 .496 .353 .476 .341 .458
0 1.2 .080 .177 .059 .149 .059 .126 .134 .229 .109 .196 .109 .187

I I I 0 2 .078 .190 .065 .153 .067 .127 .128 .248 .123 .195 .119 .172
.4 1.2 .126 .253 .080 .199 .076 .172 .201 .323 .150 .278 .129 .224
.4 2 .074 .178 .062 .143 .061 .118 .136 .237 .113 .182 .107 .173
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TABLE 4.86
EMPIRICAL SIZES OF Wj  AND W F FOR p =  - .5 ,  fc =  ^  =  0, i =  1,2

m 7

q:
n
6

64
Wj

64
WF

.05
128
Wj

128
WF

256
W j

256
WF

64
W j

64
WF

.10
128
W j

128
WF

256
W j

256
WF

0 .6 .143 .241 .134 .246 .145 .212 .215 .312 .221 .327 .211 .277
0 1.2 .062 .180 .080 .177 .054 .120 .128 .246 .133 .229 .107 .176

I 0 2 .063 .161 .077 .166 .065 .129 .127 .215 .137 .227 .111 .177
.4 1.2 .085 .226 .075 .196 .065 .167 .164 .298 .145 .272 .129 .222
.4 2 .063 .156 .078 .164 .061 .118 .125 .208 .132 .211 .111 .170
0 .6 .189 .291 .191 .287 .200 .256 .271 .379 .273 .360 .282 .330
0 1.2 .065 .182 .078 .177 .052 .122 .130 .248 .133 .227 .104 .181

I I 0 2 .061 .167 .076 .167 .064 .129 .122 .216 .134 .223 .113 .180
.4 1.2 .095 .237 .088 .199 .070 .165 .171 .299 .147 .272 .131 .216
.4 2 .061 .161 .076 .162 .063 .117 .123 .207 .134 .211 .112 .167
0 .6 .220 .336 .224 .323 .231 .291 .309 .414 .311 .394 .309 .369
0 1.2 .064 .186 .079 .177 .052 .119 .129 .246 .135 .228 .102 .179

I I I 0 2 .064 .166 .079 .168 .064 .128 .125 .219 .132 .221 .115 .178
.4 1.2 .102 .237 .090 .198 .074 .170 .169 .306 .155 .270 .137 .223
.4 2 .064 .160 .077 .165 .063 .115 .122 .211 .138 .211 .111 .168

TABLE 4.87
EMPIRICAL SIZES OF W f  AND W f  FOR p  = - .5 ,  fa =  ^  =  0, i =  1,2

m 7

a
n
6

64
W f

64
Wf

.05
128
W f

128
Wf

256
W f

256
Wf

64
W f

64
Wf

.10
128
W f

128
Wf

256
W f

256
Wf

0 .6 .145 .240 .125 .237 .136 .207 .204 .316 .205 .311 .198 .268
0 1.2 .060 .182 .078 .178 .052 .123 .130 .249 .135 .224 .106 .179

I 0 2 .059 .164 .078 .166 .065 .127 .128 .213 .135 .226 .113 .176
.4 1.2 .085 .233 .084 .202 .061 .171 .160 .296 .138 .286 .128 .227
.4 2 .068 .156 .073 .168 .063 .118 .120 .212 .133 .210 .113 .172
0 .6 .190 .324 .181 .320 .200 .301 .257 .404 .260 .407 .271 .367
0 1.2 .070 .189 .081 .180 .051 .125 .132 .241 .134 .227 .107 .184

I I 0 2 .062 .167 .076 .169 .063 .128 .124 .215 .133 .224 .112 .178
.4 1.2 .088 .247 .086 .211 .073 .173 .183 .330 .148 .290 .135 .241
.4 2 .064 .158 .072 .166 .061 .116 .117 .205 .132 .215 .110 .167
0 .6 .258 .411 .261 .413 .260 .395 .339 .491 .343 .499 .348 .477
0 1.2 .070 .184 .080 .178 .050 .122 .130 .249 .137 .215 .107 .184

I I I 0 2 .060 .172 .078 .171 .064 .128 .128 .213 .132 .224 .114 .181
.4 1.2 .124 .277 .108 .228 .089 .183 .190 .352 .174 .291 .145 .254
.4 2 .062 .159 .073 .167 .059 .116 .112 .208 .134 .211 .112 .170

217



TABLE 4.88
EMPIRICAL SIZES OF Wj AND W F FOR p =  .75, & =  ^  =  0, i =  1,2

m 7

a
n
6

64
W j

64
WF

.05
128
Wi

128
WF

256
W j

256
WF

64
W j

64
WF

.10
128
W j

00 256
W j

256
WF

0 .6 .227 .336 .237 .364 .254 .335 .313 .420 .331 .455 .347 .427
0 1.2 .078 .205 .057 .184 .052 .156 .138 .262 .115 .247 .113 .216

I 0 2 .064 .183 .052 .154 .064 .148 .119 .242 .116 .198 .105 .208
.4 1.2 .099 .285 .065 .278 .061 .246 .157 .352 .137 .356 .123 .314
.4 2 .065 .170 .063 .144 .061 .142 .118 .231 .118 .202 .115 .186
0 .6 .346 .474 .364 .478 .385 .474 .459 .552 .470 .560 .478 .568
0 1.2 .074 .201 .057 .179 .055 .156 .141 .258 .114 .245 .115 .215

I I 0 2 .067 .180 .053 .154 .065 .148 .119 .240 .110 .204 .109 .205
.4 1.2 .113 .294 .071 .275 .061 .238 .176 .355 .146 .349 .128 .313
.4 2 .066 .175 .065 .146 .059 .139 .119 .228 .116 .201 .115 .185
0 .6 .462 .557 .445 .557 .455 .542 .552 .634 .546 .633 .544 .638
0 1.2 .074 .199 .057 .178 .053 .157 .144 .262 .113 .245 .108 .211

I I I 0 2 .068 .184 .056 .155 .066 .146 .127 .241 .113 .203 .109 .205
.4 1.2 .122 .304 .082 .280 .066 .233 .187 .360 .154 .348 .126 .306
.4 2 .068 .174 .063 .150 .059 .143 .125 .225 .113 .199 .113 .185

TABLE 4.89
EMPIRICAL SIZES OF W f  AND W f  FOR p =  .75, fc = &  =  0, i = 1,2

m 7

a
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .192 .338 .202 .355 .214 .309 .294 .415 .302 .438 .313 .402
0 1.2 .071 .210 .058 .195 .051 .164 .135 .270 .112 .256 .116 .219

I 0 2 .066 .182 .051 .152 .063 .148 .123 .244 .117 .201 .105 .206
.4 1.2 .098 .292 .060 .292 .057 .262 .150 .365 .122 .385 .113 .338
.4 2 .066 .173 .064 .147 .062 .143 .117 .226 .116 .203 .114 .186
0 .6 .312 .500 .332 .501 .356 .497 .422 .567 .424 .589 .450 .593
0 1.2 .074 .209 .061 .187 .054 .163 .138 .279 .111 .254 .118 .219

I I 0 2 .066 .180 .052 .154 .064 .147 .121 .242 .114 .202 .108 .206
.4 1.2 .112 .309 .071 .291 .065 .248 .173 .378 .125 .373 .125 .321
.4 2 .067 .178 .067 .147 .060 .141 .122 .228 .115 .201 .113 .190
0 .6 .460 .637 .465 .625 .479 .634 .549 .703 .560 .707 .596 .723
0 1.2 .078 .200 .057 .183 .052 .157 .142 .268 .113 .244 .114 .213

I I I 0 2 .067 .180 .054 .154 .066 .146 .130 .245 .114 .198 .108 .208
.4 1.2 .135 .341 .089 .285 .078 .228 .212 .415 .152 .370 .125 .295
.4 2 .067 .177 .065 .147 .058 .144 .125 .224 .113 .200 .111 .185

218



TABLE 4.90
EMPIRICAL SIZES OF W j  AND W F FOR p =  0, =  .5, ^  =  0, i =  1,2

m 7

a
n
6

64
W j

64
Wf

.05
128
Wj

128
WF

256
W j

256
WF

64
W j

64
WF

.10
128
W j  ̂

00 256
W j

256
WF

0 .6 .227 .133 .166 .101 .140 .068 .303 .196 .237 .147 .231 .118
0 1.2 .190 .095 .151 .067 .142 .045 .265 .147 .240 .102 .206 .070

I 0 2 .187 .078 .145 .073 .140 .050 .275 .114 .242 .103 .224 .070
.4 1.2 .221 .118 .160 .078 .128 .046 .277 .167 .229 .115 .212 .088
.4 2 .185 .079 .150 .070 .145 .039 .261 .126 .244 .100 .215 .062
0 .6 .233 .136 .177 .091 .151 .072 .301 .190 .251 .157 .233 .119
0 1.2 .191 .091 .151 .062 .141 .042 .262 .141 .239 .096 .204 .069

II 0 2 .181 .077 .144 .075 .142 .050 .273 .116 .236 .103 .219 .071
.4 1.2 .228 .121 .164 .076 .131 .046 .289 .170 .236 .115 .216 .085
.4 2 .179 .079 .148 .063 .146 .039 .262 .126 .242 .100 .214 .060
0 .6 .229 .139 .183 .099 .159 .079 .317 .201 .260 .163 .249 .125
0 1.2 .196 .095 .163 .063 .139 .044 .269 .142 .246 .101 .202 .071

III 0 2 .190 .080 .152 .075 .138 .049 .270 .120 .241 .102 .214 .073
.4 1.2 .229 .121 .175 .084 .134 .050 .302 .173 .241 .116 .224 .089
.4 2 .187 .080 .157 .067 .138 .040 .265 .122 .244 .103 .220 .061

TABLE 4.91
EMPIRICAL SIZES OF W7° AND FOR p =  0, =  .5, ^  =  0, i = 1,2

m 7

a
n
6

64
Wf

64
w f

.05
128
Wf

128
w f

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .224 .127 .169 .095 .138 .068 .298 .198 .239 .141 .229 .111
0 1.2 .193 .095 .151 .064 .141 .044 .265 .141 .241 .098 .209 .070

I 0 2 .186 .075 .147 .074 .138 .050 .274 .118 .243 .098 .225 .070
.4 1.2 .223 .112 .159 .075 .125 .043 .277 .162 .221 .110 .209 .089
.4 2 .185 .077 .151 .072 .146 .039 .266 .124 .242 .097 .215 .062
0 .6 .225 .138 .168 .097 .142 .070 .296 .195 .244 .153 .231 .124
0 1.2 .191 .096 .149 .061 .143 .042 .263 .143 .236 .099 .205 .073

II 0 2 .187 .075 .145 .074 .140 .049 .275 .121 .238 .102 .221 .072
.4 1.2 .219 .123 .158 .076 .126 .047 .289 .175 .234 .120 .211 .093
.4 2 .178 .077 .151 .068 .148 .040 .264 .125 .245 .097 .213 .060
0 .6 .220 .157 .173 .107 .145 .087 .292 .215 .250 .162 .233 .135
0 1.2 .191 .091 .147 .064 .144 .043 .267 .143 .237 .099 .204 .073

III 0 2 .182 .076 .149 .075 .138 .048 .274 .118 .241 .103 .222 .072
.4 1.2 .222 .129 .157 .084 .128 .049 .292 .192 .232 .132 .216 .102
.4 2 .178 .078 .151 .069 .148 .040 .261 .124 .244 .097 .213 .060

219



TABLE 4.92
EMPIRICAL SIZES OF W f AND W F FOR p =  .5, fa =  .5, ^  =  0, i =  1,2

771 7

a
n
6

64
W j

64
W F

.05
128
W j

128
W F

256
W j

256
W F

64
W j

64
W F

.10
128
W j

128
W F

256
W j

256
WF

0 .6 .256 .202 .222 .206 .203 .173 .360 .274 .319 .286 .290 .259
0 1.2 .190 .103 .142 .078 .128 .053 .267 .149 .225 .101 .204 .084

I 0 2 .198 .093 .150 .082 .132 .050 .269 .132 .216 .106 .193 .070
.4 1.2 .200 .155 .154 .117 .121 .100 .285 .217 .241 .187 .203 .162
.4 2 .189 .079 .142 .065 .126 .037 .273 .113 .217 .090 .193 .069
0 .6 .280 .236 .247 .237 .233 .206 .369 .313 .338 .317 .323 .298
0 1.2 .192 .101 .144 .077 .129 .055 .273 .145 .215 .103 .204 .082

II 0 2 .196 .092 .144 .079 .129 .048 .273 .136 .218 .108 .196 .071
.4 1.2 .204 .154 .159 .112 .128 .096 .294 .229 .249 .182 .211 .155
.4 2 .194 .078 .141 .065 .127 .039 .272 .111 .209 .093 .192 .072
0 .6 .316 .259 .274 .266 .255 .240 .391 .353 .353 .350 .346 .332
0 1.2 .191 .102 .147 .076 .127 .052 .278 .142 .216 .103 .204 .084

III 0 2 .197 .097 .147 .083 .131 .052 .278 .135 .218 .106 .193 .071
.4 1.2 .216 .159 .166 .113 .132 .097 .297 .227 .252 .183 .207 .154
.4 2 .195 .077 .139 .066 .126 .039 .268 .116 .223 .096 .197 .071

TABLE 4.93
EMPIRICAL SIZES OF W f  AND W f  FOR p = .5, =  .5, ipj = 0, i = 1,2

m 7

a
n
6

64
W f

64
W f

.05
128
W f

128
W f

256
W f

256
W f

64
W f

64
W f

.10
128
W f

128
W f

256
W f

256
W f

0 .6 .248 .203 .212 .202 .177 .161 .345 .280 .303 .274 .269 .239
0 1.2 .187 .106 .144 .078 .127 .055 .268 .149 .221 .108 .203 .088

I 0 2 .195 .094 .147 .082 .130 .049 .269 .138 .218 .105 .194 .070
.4 1.2 .194 .159 .153 .132 .117 .111 .281 .224 .235 .199 .202 .172
.4 2 .185 .078 .145 .067 .125 .037 .277 .117 .217 .094 .195 .071
0 .6 .259 .250 .227 .229 .198 .190 .360 .326 .322 .308 .282 .281
0 1.2 .188 .103 .145 .079 .128 .056 .275 .148 .221 .112 .204 .090

II 0 2 .192 .094 .145 .082 .128 .048 .269 .138 .216 .106 .194 .071
.4 1.2 .202 .165 .150 .139 .115 .108 .284 .235 .235 .196 .203 .168
.4 2 .189 .080 .142 .066 .124 .037 .273 .116 .219 .094 .196 .073
0 .6 .279 .306 .231 .264 .208 .227 .367 .368 .328 .351 .294 .320
0 1.2 .189 .101 .145 .077 .127 .055 .274 .147 .218 .108 .204 .089

III 0 2 .193 .092 .148 .082 .128 .049 .275 .135 .216 .104 .195 .070
.4 1.2 .203 .173 .157 .131 .115 .111 .282 .255 .243 .198 .201 .165
.4 2 .189 .079 .142 .065 .125 .038 .269 .115 .221 .093 .194 .073

2 2 0



TABLE 4.94
EMPIRICAL SIZES OF W> AND W F FOR p =  - .5 ,  =  .5, ^  =  0, i =  1,2

771 7

a
n
6

64
W j

64
W F

.05
128
W j

128
W F

256
W j

256
W F

64
W j

64
W F

.10
128
W j  ̂

00 256
W j

256
W F

0 .6 .244 .203 .225 .192 .203 .187 .326 .262 .313 .276 .288 .248
0 1.2 .201 .110 .159 .087 .117 .058 .284 .160 .228 .131 .193 .090

I 0 2 .183 .083 .165 .067 .132 .048 .268 .121 .242 .106 .206 .073
.4 1.2 .221 .152 .171 .137 .146 .100 .300 .226 .247 .187 .211 .151
.4 2 .172 .079 .168 .066 .128 .042 .262 .114 .246 .105 .198 .064
0 .6 .272 .238 .259 .235 .239 .225 .356 .322 .333 .313 .316 .300
0 1.2 .200 .116 .164 .081 .117 .057 .282 .159 .229 .132 .198 .088

II 0 2 .181 .083 .163 .072 .130 .048 .267 .126 .239 .104 .206 .072
.4 1.2 .227 .154 .178 .126 .150 .094 .311 .224 .252 .184 .208 .147
.4 2 .174 .084 .168 .066 .128 .043 .269 .111 .243 .107 .197 .064
0 .6 .281 .267 .276 .260 .252 .250 .376 .339 .355 .342 .342 .327
0 1.2 .203 .108 .170 .084 .120 .056 .289 .152 .236 .129 .199 .091

III 0 2 .185 .087 .170 .071 .135 .045 .274 .124 .244 .111 .211 .075
.4 1.2 .235 .156 .179 .132 .154 .096 .322 .222 .254 .186 .214 .156
.4 2 .177 .082 .174 .070 .127 .044 .272 .112 .246 .108 .193 .060

TABLE 4.95
EMPIRICAL SIZES OF W f  AND W f  FOR p  =  - .5 , fa = .5, ^  =  0, i  =  1 ,2

m 7

a
n
6

64
W f

64
W f

.05
128
W f

128
W f

256
W f

256
W f

64
W f

64
W f

.10
128
W f

128
W f

256
W f

256
W f

0 .6 .244 .201 .219 .182 .189 .171 .316 .266 .303 .270 .272 .245
0 1.2 .202 .116 .160 .085 .119 .060 .283 .165 .232 .137 .195 .097

I 0 2 .182 .085 .163 .066 .131 .049 .263 .121 .241 .105 .203 .072
.4 1.2 .216 .160 .165 .136 .143 .111 .298 .237 .244 .192 .209 .174
.4 2 .172 .079 .165 .070 .127 .042 .263 .115 .242 .107 .196 .065
0 .6 .250 .235 .236 .221 .210 .213 .335 .327 .307 .313 .284 .303
0 1.2 .202 .120 .163 .091 .117 .058 .281 .166 .228 .131 .195 .095

II 0 2 .184 .086 .164 .071 .132 .049 .267 .123 .237 .104 .202 .070
.4 1.2 .224 .179 .174 .138 .142 .119 .305 .245 .245 .194 .212 .182
.4 2 .171 .081 .163 .065 .126 .043 .268 .114 .241 .106 .201 .063
0 .6 .266 .292 .249 .269 .216 .242 .342 .378 .313 .365 .291 .329
0 1.2 .203 .118 .165 .089 .119 .057 .276 .159 .231 .131 .196 .094

III 0 2 .183 .085 .167 .070 .130 .047 .268 .126 .240 .105 .200 .071
.4 1.2 .223 .186 .178 .140 .144 .113 .308 .252 .244 .192 .214 .178
.4 2 .172 .080 .164 .069 .129 .043 .267 .113 .246 .106 .196 .065

2 2 1



TABLE 4.96
EMPIRICAL SIZES OF W j  AND W F FOR p =  .75, fa =  .5, ^  =  0, i =  1,2

m 7

a
n
6

64
W7

64
WF

.05
128
Wi

128
WF

256
W /

256
WF

64
Wi

64
WF

.10
128
Wj

128
WF

256
Wj

256
WF

0 .6 .319 .364 .303 .375 .307 .353 .412 .434 .395 .466 .393 .438
0 1.2 .191 .121 .145 .086 .135 .079 .271 .180 .212 .143 .201 .121

I 0 2 .176 .098 .145 .084 .115 .066 .258 .136 .221 .110 .195 .094
.4 1.2 .205 .246 .150 .227 .131 .196 .296 .319 .228 .305 .211 .275
.4 2 .158 .082 .144 .066 .132 .051 .248 .109 .217 .099 .198 .074
0 .6 .394 .431 .385 .467 .383 .474 .484 .524 .471 .561 .467 .558
0 1.2 .184 .123 .142 .083 .132 .081 .276 .173 .213 .139 .201 .117

I I 0 2 .183 .101 .144 .084 .116 .063 .259 .138 .221 .111 .201 .094
.4 1.2 .218 .247 .157 .213 .138 .174 .309 .325 .238 .295 .216 .242
.4 2 .164 .084 .141 .071 .133 .048 .243 .112 .215 .100 .194 .076
0 .6 .432 .494 .423 .523 .419 .516 .518 .588 .502 .606 .512 .610
0 1.2 .194 .125 .145 .083 .130 .083 .265 .172 .224 .135 .203 .116

I I I 0 2 .182 .107 .145 .085 .120 .060 .261 .140 .227 .109 .192 .094
.4 1.2 .230 .245 .165 .213 .138 .174 .319 .321 .242 .294 .216 .244
.4 2 .171 .085 .145 .071 .129 .052 .250 .114 .217 .097 .199 .075

TABLE 4.97
EMPIRICAL SIZES OF W f  AND W f  FOR p = .75, tfc =  .5, ipj = 0, i = 1,2

m 7

a
n
6

64
Wf

64
W°F

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .302 .342 .280 .356 .273 .312 .399 .437 .371 .441 .361 .399
0 1.2 .191 .133 .140 .098 .132 .086 .274 .189 .214 .157 .199 .124

I 0 2 .174 .101 .148 .085 .115 .066 .260 .137 .219 .107 .195 .094
.4 1.2 .196 .266 .143 .248 .129 .227 .290 .335 .226 .342 .210 .307
.4 2 .156 .083 .144 .069 .133 .054 .245 .115 .216 .102 .196 .077
0 .6 .337 .429 .322 .420 .306 .386 .433 .506 .408 .512 .406 .485
0 1.2 .188 .136 .142 .091 .132 .085 .276 .194 .215 .157 .199 .127

I I 0 2 .179 .102 .140 .085 .114 .067 .260 .139 .219 .107 .196 .093
.4 1.2 .206 .284 .144 .246 .128 .214 .298 .354 .227 .349 .213 .295
.4 2 .161 .087 .141 .069 .131 .054 .243 .116 .213 .100 .195 .078
0 .6 .371 .488 .348 .477 .334 .462 .453 .568 .430 .577 .426 .543
0 1.2 .189 .129 .145 .089 .134 .083 .271 .181 .216 .147 .198 .123

I I I 0 2 .179 .103 .144 .083 .116 .066 .260 .137 .218 .106 .193 .093
.4 1.2 .214 .286 .144 .230 .132 .191 .311 .366 .233 .322 .210 .269
.4 2 .164 .086 .143 .068 .131 .054 .243 .117 .214 .099 .195 .080

2 2 2



TABLE 4.98
EMPIRICAL SIZES OF W f AND W F FOR p =  0, & =  .9, ^  =  0, i =  1,2

m 7

a
n
6

64
W j

64
WF

.05
128
W j

128
WF

256
W j

256
Wf

64
W j

64
Wf

.10
128
W j

00 256
W j

256
W f

0 .6 .553 .130 .529 .091 .515 .056 .611 .195 .599 .146 .587 .103
0 1.2 .578 .073 .546 .040 .484 .014 .646 .113 .615 .061 .554 .034

I 0 2 .602 .052 .540 .029 .486 .006 .650 .077 .603 .051 .557 .009
.4 1.2 .570 .093 .549 .059 .496 .034 .630 .148 .613 .103 .574 .084
.4 2 .559 .048 .544 .023 .482 .005 .617 .067 .611 .044 .558 .013
0 .6 .563 .143 .535 .083 .518 .051 .618 .198 .603 .143 .590 .110
0 1.2 .585 .065 .547 .041 .485 .014 .640 .111 .610 .061 .555 .032

I I 0 2 .604 .052 .548 .029 .484 .007 .649 .078 .599 .052 .556 .010
.4 1.2 .571 .097 .554 .058 .503 .028 .630 .148 .617 .097 .569 .070
.4 2 .551 .046 .544 .022 .482 .006 .624 .069 .616 .042 .555 .015
0 .6 .567 .145 .545 .090 .529 .055 .633 .216 .607 .156 .593 .115
0 1.2 .584 .068 .547 .040 .494 .015 .636 .112 .611 .064 .565 .031

I I I 0 2 .588 .054 .545 .029 .491 .007 .671 .078 .604 .053 .560 .010
.4 1.2 .588 .099 .560 .058 .504 .029 .641 .160 .613 .103 .577 .076
.4 2 .566 .050 .549 .022 .491 .007 .640 .070 .616 .045 .561 .015

TABLE 4.99
EMPIRICAL SIZES OF W7° AND FOR p =  0, & =  .9, tpj =  0, t =  1,2

m 7

a
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .555 .126 .531 .084 .515 .056 .612 .190 .599 .137 .588 .104
0 1.2 .580 .070 .545 .041 .484 .015 .645 .107 .613 .064 .554 .033

I 0 2 .601 .052 .541 .029 .486 .006 .649 .078 .604 .053 .557 .009
.4 1.2 .569 .091 .550 .058 .496 .036 .630 .152 .614 .102 .574 .086
.4 2 .559 .049 .544 .022 .483 .005 .616 .069 .611 .044 .558 .014
0 .6 .553 .151 .529 .086 .518 .063 .616 .211 .599 .146 .588 .119
0 1.2 .582 .070 .545 .039 .485 .016 .641 .116 .611 .063 .551 .031

I I 0 2 .599 .049 .541 .028 .486 .006 .647 .079 .603 .053 .556 .010
.4 1.2 .570 .103 .545 .058 .497 .041 .628 .168 .615 .107 .574 .093
.4 2 .555 .048 .543 .020 .482 .006 .621 .070 .610 .043 .557 .014
0 .6 .555 .191 .531 .116 .517 .086 .616 .256 .601 .180 .589 .159
0 1.2 .584 .072 .543 .040 .484 .017 .644 .119 .610 .066 .551 .032

I I I 0 2 .599 .051 .541 .028 .488 .006 .649 .078 .601 .052 .556 .009
.4 1.2 .572 .135 .546 .075 .501 .057 .629 .208 .613 .126 .575 .096
.4 2 .553 .049 .544 .020 .482 .006 .622 .072 .611 .043 .556 .015

223



TABLE 4.100
EMPIRICAL SIZES OF W j  AND W F FOR p =  .5, =  .9, ^  =  0, i =  1,2

m 7

a
n
6

64
Wi

64
WF

.05
128
Wj

128
WF

256
Wi

256
WF

64
Wi

64
WF

.10
128
Wi

128
WF

256
Wi

256
WF

0 .6 .563 .193 .544 .197 .517 .168 .628 .268 .612 .279 .589 .232
0 1.2 .570 .075 .531 .039 .476 .024 .615 .117 .614 .077 .551 .044

I 0 2 .589 .060 .527 .039 .457 .005 .645 .102 .600 .063 .551 .009
.4 1.2 .560 .135 .532 .124 .496 .099 .629 .205 .600 .196 .566 .177
.4 2 .571 .046 .541 .024 .451 .004 .614 .073 .604 .045 .542 .007
0 .6 .572 .214 .551 .203 .523 .165 .634 .283 .618 .288 .591 .243
0 1.2 .571 .073 .542 .035 .475 .022 .618 .113 .604 .074 .554 .043

I I 0 2 .595 .067 .530 .040 .458 .005 .642 .098 .605 .061 .547 .009
.4 1.2 .561 .142 .529 .111 .503 .084 .631 .202 .598 .185 .565 .157
.4 2 .567 .047 .544 .022 .456 .003 .618 .072 .606 .042 .542 .007
0 .6 .588 .231 .556 .225 .535 .179 .643 .304 .622 .305 .600 .255
0 1.2 .572 .071 .545 .036 .481 .020 .628 .108 .612 .075 .561 .042

I I I 0 2 .598 .066 .531 .040 .470 .005 .650 .097 .608 .065 .559 .008
.4 1.2 .573 .138 .528 .113 .499 .088 .628 .209 .603 .187 .570 .157
.4 2 .568 .048 .546 .022 .477 .004 .634 .070 .621 .045 .554 .007

TABLE 4.101
EMPIRICAL SIZES OF W f  AND W f  FOR p = .5, & =  .9, ^  =  0, i = 1,2

m 7

a
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .562 .216 .545 .205 .517 .176 .628 .280 .612 .286 .589 .234
0 1.2 .569 .078 .530 .044 .476 .028 .616 .121 .612 .083 .548 .054

I 0 2 .586 .062 .526 .041 .459 .006 .645 .098 .599 .063 .553 .008
.4 1.2 .558 .147 .533 .143 .496 .128 .628 .210 .599 .217 .565 .203
.4 2 .572 .046 .542 .024 .450 .004 .616 .073 .603 .046 .544 .009
0 .6 .564 .243 .546 .218 .519 .174 .633 .314 .613 .299 .589 .258
0 1.2 .572 .081 .531 .049 .474 .027 .620 .118 .612 .090 .550 .054

I I 0 2 .588 .066 .528 .040 .458 .006 .643 .100 .601 .062 .554 .008
.4 1.2 .556 .155 .533 .149 .497 .129 .629 .237 .602 .230 .566 .195
.4 2 .573 .047 .540 .024 .453 .004 .614 .074 .605 .043 .545 .009
0 .6 .565 .288 .547 .254 .518 .201 .629 .389 .615 .348 .589 .282
0 1.2 .570 .081 .532 .047 .476 .030 .618 .117 .610 .088 .550 .049

I I I 0 2 .589 .068 .524 .041 .458 .006 .644 .099 .602 .064 .555 .008
.4 1.2 .556 .188 .533 .142 .496 .112 .629 .261 .602 .221 .564 .195
.4 2 .573 .048 .540 .024 .454 .004 .613 .071 .607 .042 .545 .009
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TABLE 4.102
EMPIRICAL SIZES OF Wj AND W F FOR p  =  - .5 ,  tfc =  .9, ^  =  0, i =  1,2

771 7

a
n
6

64
W j

64
WF

.05
128
W j

oo 
t

 
2 

Si

256
W j

256
WF

64
Wj

64
WF

.10
128
W j

OO 
t

 
2 

£ 256
W j

256
WF

0 .6 .586 .199 .554 .182 .531 .154 .664 .266 .622 .244 .599 .226
0 1.2 .575 .078 .533 .048 .507 .019 .633 .129 .600 .077 .582 .044

I 0 2 .581 .054 .530 .034 .493 .006 .629 .083 .594 .052 .564 .014
.4 1.2 .583 .148 .564 .125 .515 .095 .640 .221 .626 .174 .581 .164
.4 2 .555 .042 .533 .026 .491 .005 .617 .070 .600 .042 .574 .014
0 .6 .591 .224 .562 .199 .529 .167 .660 .286 .623 .278 .599 .240
0 1.2 .574 .076 .538 .050 .512 .017 .631 .125 .604 .071 .576 .039

I I 0 2 .579 .055 .529 .033 .490 .006 .636 .089 .593 .054 .565 .016
.4 1.2 .589 .151 .570 .120 .518 .091 .642 .222 .623 .162 .582 .145
.4 2 .559 .046 .540 .024 .485 .004 .618 .064 .610 .044 .571 .013
0 .6 .598 .230 .570 .214 .529 .179 .657 .303 .631 .289 .597 .250
0 1.2 .582 .073 .554 .048 .524 .018 .641 .121 .597 .075 .587 .037

I I I 0 2 .586 .056 .532 .033 .505 .006 .654 .087 .588 .057 .556 .015
.4 1.2 .589 .151 .578 .122 .522 .085 .647 .219 .632 .163 .582 .144
.4 2 .575 .045 .552 .023 .499 .004 .629 .064 .613 .045 .569 .015

TABLE 4.103
EMPIRICAL SIZES OF W f  AND W f  FOR p =  - .5 , =  .9, ^  =  0, i =  1,2

m 7

a
n
6

64
Wf

64
w°F

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .585 .208 .554 .180 .531 .164 .665 .270 .623 .260 .600 .250
0 1.2 .576 .081 .533 .049 .507 .023 .632 .132 .600 .077 .581 .052

I 0 2 .582 .054 .529 .033 .494 .006 .629 .082 .596 .053 .563 .014
.4 1.2 .582 .157 .564 .134 .514 .116 .639 .238 .625 .201 .581 .197
.4 2 .556 .043 .531 .026 .491 .005 .617 .070 .602 .043 .575 .014
0 .6 .587 .231 .557 .208 .531 .190 .665 .321 .622 .298 .600 .280
0 1.2 .576 .084 .532 .054 .507 .023 .631 .139 .600 .078 .583 .049

I I 0 2 .579 .057 .526 .030 .493 .006 .633 .085 .595 .054 .565 .015
.4 1.2 .581 .183 .564 .141 .517 .127 .641 .249 .624 .205 .581 .198
.4 2 .551 .047 .531 .025 .491 .005 .617 .073 .606 .045 .574 .012
0 .6 .588 .287 .558 .262 .530 .212 .663 .369 .623 .347 .600 .286
0 1.2 .574 .079 .534 .048 .508 .021 .632 .133 .600 .074 .582 .044

I I I 0 2 .579 .056 .530 .032 .493 .007 .633 .086 .596 .052 .567 .015
.4 1.2 .579 .194 .565 .142 .517 .119 .639 .268 .624 .205 .581 .187
.4 2 .555 .046 .530 .024 .493 .004 .616 .069 .606 .046 .574 .013
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TABLE 4.104
EMPIRICAL SIZES OF W> AND W F FOR p =  .75, fa =  .9, A  =  0, i =  1,2

m 7

a
n
6

64
W /

64
W F

.05
128
Wi

128
WF

256
Wi

256
W F

64
W j

64
W F

.10
128
Wi

128
W F

256
Wi

256
W F

0 .6 .610 .352 .577 .357 .545 .317 .668 .412 .639 .439 .611 .394
0 1.2 .576 .084 .531 .070 .480 .045 .623 .139 .601 .111 .556 .077

I 0 2 .565 .063 .530 .043 .463 .009 .621 .095 .598 .077 .541 .025
.4 1.2 .576 .244 .543 .249 .489 .239 .618 .332 .597 .356 .556 .339
.4 2 .540 .049 .523 .025 .451 .008 .596 .074 .599 .043 .533 .013
0 .6 .621 .379 .585 .386 .558 .360 .676 .455 .644 .474 .611 .437
0 1.2 .569 .086 .531 .064 .478 .045 .621 .141 .608 .105 .551 .073

II 0 2 .562 .061 .534 .042 .465 .007 .621 .099 .599 .076 .549 .026
.4 1.2 .575 .245 .544 .238 .484 .222 .619 .335 .597 .335 .557 .305
.4 2 .543 .048 .522 .022 .454 .009 .595 .078 .595 .040 .533 .013
0 .6 .629 .404 .590 .416 .565 .391 .687 .486 .641 .507 .626 .477
0 1.2 .586 .086 .543 .058 .482 .043 .636 .134 .619 .108 .556 .073

III 0 2 .577 .066 .533 .042 .469 .007 .634 .107 .606 .078 .557 .023
.4 1.2 .579 .246 .546 .236 .478 .218 .635 .338 .601 .325 .553 .296
.4 2 .558 .048 .520 .022 .470 .009 .612 .075 .594 .038 .544 .014

TABLE 4.105
EMPIRICAL SIZES OF W? AND ^  FOR p =  .75, =  .9, ^  =  0, i = 1,2

m 7

a
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .613 .359 .573 .367 .544 .338 .667 .417 .639 .449 .611 .403
0 1.2 .571 .094 .531 .083 .479 .060 .622 .150 .601 .132 .556 .094

I 0 2 .564 .063 .530 .043 .463 .009 .620 .097 .600 .076 .540 .023
.4 1.2 .573 .274 .542 .296 .488 .293 .617 .365 .595 .399 .557 .379
.4 2 .539 .050 .524 .024 .452 .009 .595 .086 .599 .044 .532 .015
0 .6 .613 .416 .578 .403 .546 .356 .670 .487 .640 .486 .612 .437
0 1.2 .574 .104 .528 .082 .478 .062 .623 .162 .602 .134 .553 .090

II 0 2 .561 .061 .530 .041 .463 .009 .625 .105 .600 .073 .543 .024
.4 1.2 .574 .301 .542 .305 .490 .276 .619 .400 .595 .412 .557 .368
.4 2 .542 .055 .524 .024 .454 .009 .596 .087 .602 .042 .531 .015
0 .6 .618 .470 .577 .434 .549 .366 .672 .538 .641 .525 .613 .474
0 1.2 .575 .090 .531 .076 .477 .056 .625 .150 .603 .120 .553 .084

III 0 2 .564 .065 .526 .043 .463 .009 .623 .103 .601 .075 .542 .024
.4 1.2 .573 .305 .540 .259 .489 .235 .620 .398 .595 .360 .558 .319
.4 2 .546 .051 .527 .022 .453 .010 .596 .082 .599 .039 .531 .014
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TABLE 4.106
EMPIRICAL SIZES OF W T AND W F FOR p =  0, fa =  0, ^  =  .5, i =  1,2

m 7

a
n
6

64
W j

64
WF

.05
128
Wi

128
WF

256
Wi

256
WF

64
Wj

64
WF

.10
128
WT

OO 
t

256
Wi

256
WF

0 .6 .139 .164 .118 .134 .096 .105 .217 .214 .169 .182 .154 .167
0 1.2 .106 .154 .079 .113 .066 .104 .178 .204 .142 .174 .138 .148

I 0 2 .091 .135 .082 .118 .078 .097 .165 .178 .136 .169 .140 .149
.4 1.2 .132 .163 .097 .119 .070 .102 .198 .218 .155 .166 .132 .146
.4 2 .094 .146 .092 .120 .075 .094 .164 .183 .144 .176 .142 .145
0 .6 .146 .162 .113 .128 .088 .100 .220 .212 .176 .184 .158 .166
0 1.2 .103 .159 .080 .113 .065 .106 .173 .204 .143 .169 .142 .149

I I 0 2 .094 .131 .086 .119 .081 .097 .162 .176 .137 .165 .144 .152
.4 1.2 .137 .164 .099 .123 .072 .102 .207 .219 .163 .168 .140 .147
.4 2 .090 .147 .091 .123 .075 .095 .160 .189 .142 .175 .139 .144
0 .6 .154 .170 .120 .133 .106 .110 .227 .219 .184 .188 .172 .177
0 1.2 .110 .158 .083 .114 .069 .105 .174 .209 .151 .170 .139 .152

I I I 0 2 .094 .137 .085 .126 .080 .097 .163 .181 .142 .174 .139 .140
.4 1.2 .139 .170 .107 .129 .075 .105 .213 .221 .167 .173 .143 .146
.4 2 .094 .152 .092 .129 .073 .098 .163 .185 .148 .176 .140 .146

TABLE 4.107
EMPIRICAL SIZES OF W f  AND W f  FOR p  =  0, =  0, ^  =  .5, i = 1,2

m 7

a
n
5

64
Wf

64
wp

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .138 .154 .109 .126 .089 .098 .215 .212 .176 .181 .149 .160
0 1.2 .105 .158 .075 .113 .068 .103 .171 .200 .138 .171 .137 .150

I 0 2 .091 .133 .084 .117 .079 .098 .161 .179 .138 .167 .142 .149
A 1.2 .121 .162 .094 .114 .061 .100 .198 .212 .148 .160 .127 .140
A 2 .092 .147 .091 .120 .078 .093 .161 .185 .142 .176 .141 .142
0 .6 .146 .164 .108 .128 .090 .106 .219 .214 .172 .182 .158 .164
0 1.2 .101 .160 .077 .112 .069 .103 .169 .199 .143 .167 .141 .149

I I 0 2 .092 .128 .084 .117 .079 .094 .164 .171 .137 .167 .141 .152
A 1.2 .128 .168 .098 .116 .066 .105 .202 .218 .154 .170 .132 .149
A 2 .092 .146 .092 .122 .076 .094 .158 .186 .144 .174 .140 .144
0 .6 .148 .163 .115 .136 .102 .113 .225 .224 .179 .192 .160 .178
0 1.2 .101 .159 .081 .113 .069 .102 .171 .196 .142 .169 .142 .150

I I I 0 2 .092 .131 .083 .120 .082 .095 .160 .174 .136 .171 .141 .149
.4 1.2 .131 .174 .104 .125 .071 .111 .208 .228 .160 .176 .133 .155
.4 2 .092 .146 .091 .123 .074 .095 .162 .183 .141 .176 .139 .145
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TABLE 4.108
EMPIRICAL SIZES OF W f AND W F FOR p =  .5, fc =  0, fa =  .5, i =  1,2

771 7

Q!

n
6

64
W>

64
W F

.05
128
Wj

OO 
. 0,

3
^ 256

Wi
256
W F

64
W T

64
W F

.10
128
W j

OO 
t

256
Wj

256
W F

0 .6 .174 .221 .158 .226 .154 .203 .273 .293 .243 .305 .240 .284
0 1.2 .108 .150 .078 .123 .069 .102 .167 .194 .140 .162 .122 .155

I 0 2 .099 .159 .084 .131 .077 .109 .170 .203 .146 .164 .129 .155
.4 1.2 .131 .187 .088 .172 .068 .143 .189 .246 .158 .227 .128 .211
.4 2 .096 .138 .081 .118 .073 .098 .165 .190 .136 .156 .129 .148
0 .6 .211 .278 .202 .283 .205 .253 .324 .369 .298 .370 .306 .355
0 1.2 .106 .150 .077 .124 .074 .099 .173 .191 .140 .162 .124 .155

II 0 2 .098 .157 .085 .130 .080 .107 .177 .201 .143 .167 .127 .153
.4 1.2 .139 .202 .094 .167 .074 .147 .201 .262 .159 .222 .127 .204
.4 2 .098 .138 .083 .117 .073 .099 .173 .187 .136 .158 .125 .146
0 .6 .250 .308 .245 .313 .228 .287 .355 .398 .327 .402 .339 .386
0 1.2 .109 .153 .077 .129 .074 .100 .172 .192 .141 .166 .125 .154

III 0 2 .105 .155 .088 .135 .080 .106 .174 .203 .143 .167 .132 .156
.4 1.2 .141 .202 .103 .166 .073 .140 .216 .263 .157 .228 .133 .205
.4 2 .104 .136 .082 .124 .075 .097 .172 .194 .134 .160 .127 .141

TABLE 4.109
EMPIRICAL SIZES OF W f  AND W f  FOR p = .5, fa =  0, ipj = .5, i = 1,2

m 7

a
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .167 .218 .133 .213 .128 .191 .256 .289 .215 .298 .209 .255
0 1.2 .102 .152 .076 .123 .072 .102 .164 .197 .138 .168 .122 .156

I 0 2 .100 .158 .087 .129 .076 .109 .169 .204 .144 .162 .126 .155
.4 1.2 .129 .194 .089 .175 .066 .150 .187 .245 .147 .238 .120 .206
.4 2 .096 .141 .078 .115 .073 .098 .164 .193 .139 .156 .125 .150
0 .6 .199 .276 .163 .263 .160 .240 .284 .357 .251 .354 .247 .324
0 1.2 .101 .155 .074 .126 .070 .099 .169 .198 .135 .172 .123 .159

II 0 2 .097 .156 .081 .129 .081 .108 .173 .198 .144 .163 .127 .152
.4 1.2 .127 .203 .074 .178 .071 .151 .191 .262 .135 .238 .123 .210
.4 2 .096 .140 .080 .115 .074 .098 .170 .193 .137 .157 .125 .148
0 .6 .213 .307 .183 .289 .186 .261 .310 .386 .273 .382 .266 .361
0 1.2 .099 .154 .077 .126 .069 .100 .170 .199 .135 .171 .123 .157

III 0 2 .101 .155 .084 .131 .081 .108 .168 .199 .143 .162 .127 .153
.4 1.2 .139 .211 .090 .178 .070 .150 .196 .272 .152 .230 .124 .208
.4 2 .096 .137 .078 .117 .073 .098 .167 .192 .139 .156 .124 .145
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TABLE 4.110
EMPIRICAL SIZES OF Wj AND W F FOR p =  - .5 ,  fa =  0, ^  =  .5, i =  1,2

m 7

a
n
6

64
Wj

64
WF

.05
128
W j

128
WF

256
W j

256
WF

64
W j

64
WF

.10
128
W j

128
Wf

256
W j

256
Wf

0 .6 .179 .220 .155 .238 .158 .213 .246 .306 .247 .317 .231 .271
0 1.2 .093 .156 .098 .155 .069 .112 .167 .211 .155 .198 .124 .150

I 0 2 .089 .138 .098 .140 .076 .104 .163 .187 .156 .187 .134 .152
.4 1.2 .126 .189 .095 .176 .078 .147 .195 .276 .166 .241 .148 .205
.4 2 .096 .131 .091 .130 .080 .091 .151 .172 .160 .181 .128 .137
0 .6 .220 .284 .211 .289 .215 .259 .298 .379 .298 .369 .292 .340
0 1.2 .098 .155 .096 .149 .068 .105 .173 .205 .153 .201 .118 .149

I I 0 2 .090 .138 .095 .136 .076 .106 .160 .181 .156 .189 .132 .154
.4 1.2 .138 .200 .100 .172 .083 .153 .208 .277 .177 .237 .155 .200
.4 2 .092 .137 .087 .132 .080 .089 .148 .172 .157 .179 .123 .136
0 .6 .237 .308 .242 .318 .238 .281 .326 .410 .328 .395 .323 .373
0 1.2 .099 .160 .099 .152 .066 .104 .172 .204 .160 .199 .121 .147

I I I 0 2 .091 .144 .096 .142 .076 .106 .167 .184 .165 .193 .135 .147
.4 1.2 .134 .201 .108 .177 .087 .149 .216 .276 .184 .241 .156 .203
.4 2 .090 .139 .089 .136 .078 .090 .151 .179 .165 .183 .129 .139

TABLE 4.111
EMPIRICAL SIZES OF Wf AND FOR p =  - .5 , =  0, ipj = .5, i =  1,2

m 7

a
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .168 .215 .145 .225 .143 .197 .236 .301 .234 .302 .209 .266
0 1.2 .091 .154 .097 .158 .068 .108 .170 .208 .157 .204 .121 .156

I 0 2 .089 .137 .097 .138 .076 .105 .161 .186 .156 .187 .135 .152
.4 1.2 .122 .196 .093 .177 .076 .157 .193 .275 .167 .261 .144 .215
.4 2 .091 .132 .092 .128 .082 .091 .150 .171 .157 .180 .129 .137
0 .6 .203 .270 .194 .285 .184 .261 .269 .368 .257 .361 .255 .330
0 1.2 .096 .159 .092 .152 .065 .106 .175 .210 .154 .207 .118 .157

I I 0 2 .091 .132 .096 .134 .073 .107 .158 .181 .152 .191 .130 .152
.4 1.2 .124 .209 .100 .186 .080 .160 .208 .295 .170 .252 .152 .225
.4 2 .091 .135 .089 .131 .080 .090 .149 .169 .153 .181 .125 .136
0 .6 .211 .307 .202 .316 .201 .283 .283 .401 .271 .393 .268 .355
0 1.2 .097 .157 .095 .149 .065 .105 .174 .210 .155 .206 .120 .156

I I I 0 2 .088 .136 .096 .135 .073 .106 .158 .182 .155 .193 .131 .149
.4 1.2 .128 .216 .103 .189 .083 .157 .210 .300 .173 .251 .151 .222
.4 2 .089 .134 .090 .131 .078 .090 .150 .170 .156 .179 .126 .135
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TABLE 4.112
EMPIRICAL SIZES OF Wj  AND W F FOR p =  .75, fa =  0, ipj =  .5, i =  1,2

771 7

a
n
5

64
Wi

64
WF

.05
128
W)

128
WF

256
Wi

256
WF

64
Wi

64
WF

.10
128
Wi

OO 
t

256
Wi

256
WF

0 .6 .259 .358 .269 .387 .274 .346 .360 .433 .357 .467 .367 .436
0 1.2 .104 .175 .075 .154 .070 .132 .166 .227 .134 .220 .135 .188

I 0 2 .086 .154 .072 .125 .076 .125 .160 .198 .139 .168 .119 .179
.4 1.2 .130 .258 .090 .266 .076 .230 .191 .341 .154 .340 .131 .298
.4 2 .083 .137 .080 .120 .071 .123 .149 .183 .141 .168 .133 .161
0 .6 .393 .512 .394 .514 .404 .501 .503 .594 .489 .610 .502 .599
0 1.2 .106 .182 .074 .150 .068 .133 .171 .231 .137 .217 .133 .186

I I 0 2 .087 .153 .073 .126 .075 .128 .156 .202 .135 .170 .122 .178
.4 1.2 .137 .258 .093 .264 .078 .206 .213 .338 .167 .332 .140 .286
.4 2 .086 .143 .080 .121 .069 .121 .157 .178 .139 .169 .133 .163
0 .6 .442 .568 .445 .577 .450 .558 .554 .651 .543 .652 .545 .653
0 1.2 .110 .176 .074 .144 .069 .136 .176 .227 .137 .217 .131 .181

I I I 0 2 .094 .147 .070 .128 .076 .128 .160 .202 .137 .173 .123 .174
.4 1.2 .156 .270 .103 .264 .084 .207 .225 .341 .175 .324 .144 .280
.4 2 .092 .142 .078 .122 .073 .121 .165 .179 .138 .172 .129 .157

TABLE 4.113
EMPIRICAL SIZES OF W f  AND W f  FOR p =  .75, fa =  0, ^  =  .5, i = 1,2

771 7

a
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .221 .341 .219 .351 .225 .305 .324 .421 .320 .439 .326 .396
0 1.2 .102 .181 .073 .162 .070 .138 .168 .234 .133 .232 .134 .196

I 0 2 .085 .157 .071 .127 .075 .126 .160 .202 .140 .169 .118 .180
.4 1.2 .123 .264 .082 .290 .067 .246 .184 .352 .137 .368 .128 .328
.4 2 .085 .139 .082 .120 .070 .123 .147 .186 .138 .170 .133 .162
0 .6 .293 .450 .309 .463 .312 .437 .395 .536 .404 .545 .416 .552
0 1.2 .105 .191 .072 .155 .068 .135 .163 .242 .136 .227 .133 .197

I I 0 2 .086 .156 .075 .128 .075 .129 .158 .200 .135 .171 .119 .179
.4 1.2 .132 .284 .079 .282 .075 .237 .194 .360 .145 .358 .139 .320
.4 2 .083 .142 .079 .121 .069 .123 .154 .184 .142 .166 .131 .164
0 .6 .327 .505 .333 .503 .349 .490 .437 .580 .433 .589 .439 .586
0 1.2 .107 .187 .071 .155 .066 .137 .167 .236 .138 .223 .131 .194

I I I 0 2 .087 .152 .071 .127 .075 .128 .155 .200 .134 .170 .121 .176
.4 1.2 .136 .287 .082 .277 .076 .227 .202 .368 .149 .348 .138 .304
.4 2 .088 .143 .082 .123 .072 .124 .153 .182 .141 .166 .134 .162
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TABLE 4.114
EMPIRICAL SIZES OF W f AND W F FOR p  =  0, & =  0, fa =  .9, i =  1,2

771 7

a
n
6

64
W /

64
W F

.05
128
Wj

128
W F

256
W T

256
W F

64
Wi

64
W F

.10
128
Wj

003 
^ 256

W!
256
W F

0 .6 .141 .161 .121 .132 .097 .103 .221 .211 .174 .183 .155 .165
0 1.2 .113 .155 .080 .110 .068 .102 .180 .199 .147 .170 .141 .146

I 0 2 .095 .129 .085 .117 .080 .095 .171 .175 .137 .164 .144 .142
.4 1.2 .135 .157 .102 .116 .071 .098 .203 .218 .160 .164 .135 .144
.4 2 .103 .142 .093 .116 .076 .090 .167 .182 .146 .169 .144 .139
0 .6 .151 .160 .118 .125 .091 .099 .227 .213 .182 .183 .161 .164
0 1.2 .105 .154 .082 .113 .071 .103 .179 .200 .144 .166 .144 .145

II 0 2 .095 .130 .088 .116 .081 .094 .169 .168 .138 .162 .148 .147
.4 1.2 .139 .162 .107 .116 .072 .100 .214 .221 .166 .168 .144 .145
.4 2 .101 .142 .095 .117 .076 .090 .172 .187 .145 .167 .141 .140
0 .6 .157 .162 .125 .134 .100 .105 .232 .218 .191 .188 .171 .176
0 1.2 .115 .155 .087 .113 .072 .101 .180 .203 .155 .165 .139 .148

III 0 2 .099 .133 .087 .120 .084 .095 .172 .178 .143 .173 .149 .139
.4 1.2 .142 .171 .105 .120 .077 .103 .218 .222 .177 .174 .142 .146
.4 2 .101 .144 .093 .127 .077 .093 .166 .181 .153 .170 .143 .144

TABLE 4.115
EMPIRICAL SIZES OF W f  AND W f  FOR p =  0, fc = 0, ^  =  .9, i =  1,2

a .05 .10
n 64 64 128 128 256 256 64 64 128 128 256 256

m 7 8 Wf Wf Wf Wf Wf Wf Wf Wf Wf Wf Wf Wf
0 .6 .142 .150 .110 .126 .095 .094 .219 .208 .176 .178 .150 .159
0 1.2 .111 .157 .082 .111 .069 .100 .175 .194 .146 .168 .141 .146

I 0 2 .092 .129 .086 .117 .083 .094 .170 .170 .139 .163 .146 .146
.4 1.2 .127 .157 .097 .110 .062 .096 .203 .207 .151 .157 .130 .138
.4 2 .099 .141 .091 .115 .078 .091 .165 .179 .146 .171 .146 .138
0 .6 .150 .159 .111 .127 .092 .101 .223 .211 .177 .178 .158 .160
0 1.2 .106 .156 .081 .108 .072 .099 .173 .193 .146 .166 .141 .148

II 0 2 .095 .127 .089 .116 .082 .095 .172 .166 .139 .160 .144 .145
.4 1.2 .131 .161 .096 .113 .067 .102 .205 .215 .157 .165 .141 .146
.4 2 .100 .143 .092 .117 .077 .093 .170 .183 .147 .171 .145 .140
0 .6 .145 .158 .113 .131 .096 .107 .224 .216 .178 .184 .161 .168
0 1.2 .107 .157 .082 .108 .070 .101 .173 .193 .144 .166 .143 .148

III 0 2 .095 .127 .086 .115 .083 .094 .172 .168 .140 .159 .142 .143
.4 1.2 .132 .164 .102 .117 .069 .105 .212 .220 .158 .170 .137 .149
.4 2 .095 .143 .092 .117 .078 .091 .161 .181 .147 .173 .143 .140
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TABLE 4.116
EMPIRICAL SIZES OF W f AND W F FOR p =  .5, & =  0, ^  =  .9, i =  1,2

771 7

Ct
n
8

64
Wi

64
WF

.05
128
Wi

OO 
t

 
2 

^ 256
Wi

256
WF

64
Wi

64
WF

.10
128
Wi

128
WF

256
Wi

256
WF

0 .6 .178 .223 .160 .229 .155 .205 .278 .294 .244 .312 .246 .283
0 1.2 .110 .147 .080 .120 .070 .100 .174 .191 .141 .157 .127 .151

I 0 2 .108 .154 .086 .125 .079 .107 .175 .196 .148 .158 .132 .151
.4 1.2 .137 .185 .091 .170 .071 .141 .193 .241 .162 .222 .131 .209
.4 2 .101 .134 .081 .116 .075 .096 .170 .174 .142 .155 .130 .144
0 .6 .226 .283 .211 .284 .206 .258 .333 .370 .307 .370 .308 .357
0 1.2 .111 .145 .079 .123 .073 .096 .176 .190 .143 .159 .127 .150

I I 0 2 .104 .151 .088 .125 .083 .105 .181 .197 .150 .157 .129 .147
.4 1.2 .142 .198 .098 .165 .075 .144 .210 .259 .165 .219 .137 .201
.4 2 .102 .134 .084 .115 .078 .096 .181 .176 .138 .155 .128 .142
0 .6 .244 .305 .236 .311 .228 .283 .357 .392 .328 .399 .333 .379
0 1.2 .113 .149 .077 .126 .076 .099 .181 .190 .146 .167 .129 .150

I I I 0 2 .112 .154 .094 .132 .081 .102 .183 .194 .146 .163 .133 .147
.4 1.2 .151 .203 .102 .160 .075 .138 .216 .262 .163 .225 .134 .203
.4 2 .111 .136 .086 .120 .077 .096 .181 .184 .138 .158 .128 .138

TABLE 4.117
EMPIRICAL SIZES OF W f  AND W f  FOR p = .5, =  0, =  .9, i =  1,2

m 7

a
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .172 .219 .139 .216 .127 .189 .262 .283 .218 .297 .211 .255
0 1.2 .104 .149 .079 .123 .074 .099 .169 .195 .139 .165 .127 .154

I 0 2 .110 .152 .086 .124 .079 .107 .175 .195 .146 .158 .129 .153
.4 1.2 .134 .192 .091 .173 .068 .149 .189 .241 .150 .229 .122 .205
.4 2 .101 .137 .080 .114 .075 .097 .172 .179 .143 .154 .128 .146
0 .6 .202 .270 .166 .264 .160 .234 .287 .350 .248 .348 .247 .313
0 1.2 .102 .149 .077 .124 .073 .097 .174 .198 .140 .169 .124 .155

I I 0 2 .108 .155 .085 .124 .082 .107 .177 .194 .147 .159 .128 .149
.4 1.2 .129 .200 .090 .176 .072 .148 .194 .258 .148 .231 .123 .206
.4 2 .099 .136 .081 .113 .076 .097 .176 .181 .139 .155 .126 .144
0 .6 .207 .289 .174 .275 .176 .247 .298 .359 .258 .366 .256 .346
0 1.2 .104 .150 .076 .123 .072 .097 .174 .198 .138 .168 .124 .154

I I I 0 2 .106 .154 .087 .126 .083 .106 .180 .191 .147 .160 .127 .148
.4 1.2 .137 .206 .091 .179 .071 .148 .198 .265 .153 .229 .126 .208
.4 2 .101 .132 .080 .112 .077 .096 .174 .183 .142 .155 .127 .143
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TABLE 4.118
EMPIRICAL SIZES OF W j  AND W F FOR p =  - .5 ,  =  0, ^  =  .9, i =  1,2

m 7

a
n
6

64
Wj

64
W F

.05
128
Wi

128
W F

256
Wj

256
W F

64
W j

64
W F

.10
128
Wi *9 

00 256
W i

256
WF

0 .6 .182 .220 .160 .233 .162 .214 .253 .309 .252 .318 .232 .274
0 1.2 .102 .156 .101 .150 .070 .109 .176 .207 .158 .197 .124 .149

I 0 2 .095 .135 .099 .137 .076 .104 .170 .182 .157 .182 .136 .150
.4 1.2 .130 .180 .099 .173 .080 .144 .202 .275 .168 .238 .150 .204
.4 2 .102 .127 .090 .125 .082 .088 .158 .170 .164 .177 .130 .130
0 .6 .227 .286 .213 .293 .219 .262 .303 .380 .303 .372 .293 .348
0 1.2 .105 .150 .097 .144 .069 .104 .177 .201 .156 .200 .121 .149

II 0 2 .098 .132 .101 .130 .077 .102 .169 .178 .156 .183 .135 .148
.4 1.2 .139 .193 .103 .171 .085 .149 .218 .276 .183 .234 .158 .195
.4 2 .097 .134 .089 .128 .082 .088 .156 .166 .159 .176 .129 .130
0 .6 .235 .304 .239 .317 .234 .281 .318 .404 .323 .395 .318 .368
0 1.2 .103 .155 .101 .148 .066 .103 .181 .200 .165 .198 .125 .144

III 0 2 .097 .140 .098 .139 .077 .102 .168 .186 .166 .185 .140 .150
.4 1.2 .141 .189 .117 .177 .091 .149 .225 .273 .189 .238 .158 .198
.4 2 .094 .132 .090 .135 .080 .088 .157 .169 .168 .177 .132 .130

TABLE 4.119
E M P IR IC A L  SIZES O F  W f  A N D  W f  F O R  p  =  - . 5 ,  =  0, fa =  .9, i  =  1 ,2

m 7

a
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .176 .217 .145 .225 .145 .197 .242 .295 .234 .303 .212 .263
0 1.2 .097 .154 .100 .154 .070 .108 .179 .203 .159 .201 .123 .152

I 0 2 .092 .131 .099 .138 .076 .105 .167 .179 .156 .182 .136 .150
.4 1.2 .129 .191 .093 .176 .079 .155 .202 .277 .170 .258 .145 .212
.4 2 .095 .127 .093 .125 .083 .088 .158 .168 .162 .177 .129 .131
0 .6 .204 .265 .192 .279 .182 .257 .267 .362 .257 .352 .255 .324
0 1.2 .095 .156 .099 .151 .067 .107 .182 .208 .157 .203 .121 .154

II 0 2 .095 .131 .101 .132 .074 .101 .167 .177 .154 .185 .133 .148
.4 1.2 .130 .210 .100 .182 .084 .156 .215 .289 .173 .253 .151 .220
.4 2 .097 .132 .089 .128 .083 .090 .154 .168 .158 .179 .129 .131
0 .6 .206 .286 .197 .289 .192 .268 .277 .379 .269 .375 .256 .338
0 1.2 .099 .158 .097 .148 .068 .106 .180 .207 .159 .207 .120 .155

III 0 2 .093 .131 .099 .131 .075 .103 .163 .179 .154 .186 .133 .149
.4 1.2 .133 .209 .103 .182 .083 .157 .214 .289 .173 .249 .150 .219
.4 2 .096 .132 .092 .129 .083 .090 .153 .164 .157 .177 .129 .131
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TABLE 4.120
EMPIRICAL SIZES OF W T AND W F FOR p =  .75, fa =  0, ^  =  .9, i  =  1,2

m 7

Ct
n
6

64
W j

64
W F

.05
128
W i

128
W F

256
W j

256
WF

64
W j

64
W F

.10
128
W j *>3 

OO 256
W j

256
WF

0 .6 .261 .364 .276 .390 .275 .348 .365 .439 .361 .469 .372 .447
0 1.2 .109 .174 .076 .153 .072 .129 .170 .220 .134 .215 .138 .184

I 0 2 .086 .150 .073 .120 .077 .121 .167 .198 .146 .167 .121 .174
.4 1.2 .130 .253 .094 .267 .079 .223 .196 .337 .155 .337 .137 .297
.4 2 .089 .134 .083 .118 .075 .121 .155 .178 .141 .165 .136 .160
0 .6 .405 .528 .400 .528 .409 .510 .516 .603 .494 .614 .504 .607
0 1.2 .110 .180 .077 .144 .069 .127 .176 .226 .140 .211 .136 .184

I I 0 2 .093 .149 .075 .122 .078 .124 .165 .200 .141 .165 .122 .172
.4 1.2 .142 .257 .096 .258 .079 .203 .224 .332 .167 .323 .142 .282
.4 2 .090 .138 .083 .119 .072 .120 .162 .171 .142 .162 .134 .160
0 .6 .436 .565 .440 .567 .438 .546 .543 .646 .521 .648 .531 .642
0 1.2 .112 .175 .077 .143 .069 .133 .176 .221 .140 .210 .132 .178

I I I 0 2 .096 .146 .073 .125 .078 .129 .161 .201 .144 .169 .126 .177
.4 1.2 .154 .262 .103 .260 .083 .204 .229 .336 .172 .321 .143 .274
.4 2 .097 .143 .082 .119 .074 .120 .162 .173 .141 .166 .134 .156

TABLE 4.121
EMPIRICAL SIZES OF W f  AND W f  FOR p =  .75, & =  0, ^  =  .9, i = 1,2

771 7

a
n
6

64
Wf

64
Wf

.05
128
Wf

128
Wf

256
Wf

256
Wf

64
Wf

64
Wf

.10
128
Wf

128
Wf

256
Wf

256
Wf

0 .6 .225 .340 .219 .355 .227 .306 .329 .422 .325 .437 .325 .394
0 1.2 .105 .182 .074 .158 .072 .134 .169 .231 .135 .227 .137 .192

I 0 2 .088 .149 .073 .120 .076 .122 .167 .198 .143 .166 .121 .173
.4 1.2 .125 .265 .082 .289 .070 .246 .186 .353 .143 .363 .133 .328
.4 2 .090 .138 .083 .117 .072 .123 .150 .180 .140 .165 .134 .161
0 .6 .288 .448 .299 .451 .307 .429 .395 .528 .398 .539 .406 .538
0 1.2 .108 .188 .075 .155 .068 .133 .167 .240 .142 .224 .135 .192

I I 0 2 .092 .150 .077 .122 .077 .124 .164 .198 .140 .166 .120 .175
.4 1.2 .134 .279 .082 .281 .075 .236 .199 .362 .148 .353 .142 .321
.4 2 .088 .139 .086 .119 .072 .122 .158 .182 .139 .163 .134 .161
0 .6 .311 .469 .321 .480 .325 .459 .408 .555 .415 .560 .426 .569
0 1.2 .107 .187 .075 .153 .068 .133 .169 .239 .140 .221 .133 .192

I I I 0 2 .089 .149 .076 .121 .077 .124 .163 .197 .140 .166 .119 .176
.4 1.2 .134 .281 .082 .277 .078 .228 .201 .365 .150 .347 .142 .312
.4 2 .092 .139 .082 .121 .074 .120 .157 .179 .141 .164 .134 .161
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TABLE 4.122
MONTE CARLO BIAS OF Vi ,Vf , vb FOR p =  0, fa =  fa =  0, i =  1,2

m 7 6 VI
n =  64 

Vp vb vi
n =  128

Up vb vi
n =  256

Up vb
0 A -.016 -.023 -.014 -.001 -.004 -.003 -.001 -.003 -.001

I .2 A -.034 -.033 -.025 -.004 -.008 -.010 -.001 -.006 -.001
.4 .8 -.019 -.025 -.020 -.005 -.004 -.013 -.002 -.003 -.003
.7 1 -.033 -.041 -.036 -.013 -.015 -.030 -.003 -.005 -.007
0 A -.008 -.012 -.009 -.001 -.002 -.002 .000 -.001 .000

I I .2 A -.020 -.024 -.017 -.005 -.006 -.007 .000 -.001 .000
.4 .8 -.012 -.015 -.016 -.005 -.005 -.010 .000 -.002 -.002
.7 1 -.027 -.030 -.032 -.016 -.017 -.024 -.003 -.004 -.005
0 .4 -.006 -.007 -.008 -.002 -.003 -.003 .000 .000 .000

I I I .2 .4 -.013 -.013 -.014 -.007 -.006 -.007 -.001 -.001 -.001
.4 .8 -.011 -.012 -.016 -.006 -.006 -.009 .000 -.001 -.002
.7 1 -.026 -.027 -.032 -.018 -.019 -.023 -.003 -.004 -.005

TABLE 4.123
MONTE CARLO BIAS OF V{,V% FOR p = 0, ^  =  0, i = 1,2

m 7
n
8

64 64
—FV2

128
vi

128
—F

256
V\

256
v l

0 A -.017 -.028 -.001 -.004 -.001 -.005
I .2 A -.041 -.034 -.001 -.008 -.001 -.014

.4 .8 -.018 -.029 -.002 -.001 -.001 -.005

.7 1 -.032 -.046 -.006 -.009 -.002 -.007
0 .4 -.007 -.012 .000 -.002 .000 -.001

I I .2 .4 -.023 -.027 -.004 -.007 000 -.003
.4 .8 -.010 -.015 -.002 -.004 .000 -.002
.7 1 -.023 -.030 -.010 -.015 -.001 -.004
0 .4 -.005 -.005 -.002 -.004 .001 .000

I I I .2 .4 -.012 -.010 -.007 -.007 -.001 -.001
.4 .8 -.009 -.010 -.004 -.005 .000 -.001
.7 1 -.022 -.023 -.014 -.016 -.002 -.003
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TABLE 4.124
MONTE CARLO BIAS OF V ^ V p .V b FOR p =  .5, ^  =  0, i =  1,2

771 7 5 i ' /

n =  64
Up vB vi

n =  128
Up vb vi

n =  256
Up vb

0 .4 .060 .072 .149 .043 .054 .119 .028 .031 .096
I .2 .4 .182 .204 .276 .164 .194 .254 .131 .140 .226

.4 .8 .055 .069 .140 .040 .052 .109 .025 .031 .085

.7 1 .100 .122 .194 .080 .107 .163 .055 .066 .132
0 .4 .119 .141 .211 .093 .108 .181 .063 .070 .146

I I .2 .4 .263 .282 .321 .240 .256 .301 .203 .212 .273
.4 .8 .092 .116 .161 .068 .088 .131 .044 .054 .099
.7 1 .142 .173 .204 .116 .144 .176 .082 .098 .138
0 .4 .177 .197 .259 .127 .143 .212 .085 .093 .170

I I I .2 .4 .318 .329 .351 .279 .289 .323 .235 .242 .292
.4 .8 .120 .143 .174 .084 .103 .137 .052 .064 .103
.7 1 .169 .195 .208 .133 .157 .178 .092 .109 .140

TABLE 4.125
MONTE CARLO BIAS OF FOR p =  .5, fa = fa = 0, i =  1,2

m 7
n
6

64 64
—F

128
u\

128 256 256
—F

0 .4 .025 .031 .019 .026 .010 .005
I .2 .4 .120 .164 .110 .162 .079 .089

.4 .8 .024 .031 .018 .026 .009 .009

.7 1 .053 .077 .044 .075 .025 .033
0 .4 .069 .105 .050 .075 .029 .038

I I .2 .4 .216 .259 .191 .225 .153 .172
.4 .8 .054 .091 .037 .065 .021 .032
.7 1 .101 .150 .078 .121 .050 .072
0 .4 .123 .164 .078 .106 .044 .057

I I I .2 .4 .288 .315 .242 .266 .189 .207
.4 .8 .085 .123 .053 .081 .028 .042
.7 1 .138 .182 .101 .140 .062 .086
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TABLE 4.126
MONTE CARLO BIAS OF V i , v f , v b  FOR p  =  - .5 ,  fa =  fa =  0, i =  1,2

m 7 6 VI
n =  64 

V p vb vi
n =  128 

vf vb vi
n =  256 

Vp vb
0 .4 -.064 -.088 -.154 -.039 -.045 -.116 -.026 -.029 -.095

I .2 .4 -.197 -.229 -.288 -.156 -.175 -.249 -.129 -.139 -.225
.4 .8 -.062 -.086 -.149 -.035 -.045 -.106 -.023 -.028 -.083
.7 1 -.113 -.144 -.210 -.074 -.095 -.160 -.051 -.061 -.128
0 .4 -.122 -.148 -.216 -.090 -.108 -.180 -.064 -.072 -.147

I I .2 .4 -.277 -.295 -.333 -.242 -.258 -.304 -.207 -.218 -.276
.4 .8 -.094 -.123 -.165 -.064 -.084 -.127 -.044 -.055 -.098
.7 1 -.150 -.182 -.213 -.110 -.137 -.170 -.081 -.098 -.137
0 .4 -.176 -.196 -.261 -.125 -.142 -.212 -.085 -.094 -.171

I I I .2 .4 -.324 -.331 -.360 -.282 -.292 -.326 -.237 -.245 -.294
.4 .8 -.119 -.141 -.176 -.080 -.098 -.134 -.052 -.064 -.103
.7 1 -.173 -.195 -.216 -.127 -.150 -.172 -.091 -.108 -.138

TABLE 4.127
MONTE CARLO BIAS OF FOR p =  - .5 , =  fa =  0, i = 1,2

771 7
n
8

64
v{

64 128 128
—Fvi

256
vi

256
v !

0 .4 -.030 -.056 -.015 -.008 -.008 -.002
I .2 .4 -.138 -.192 -.100 -.127 -.075 -.088

.4 .8 -.029 -.058 -.014 -.012 -.007 -.004

.7 1 -.064 -.108 -.037 -.052 -.021 -.024
0 .4 -.071 -.117 -.046 -.074 -.030 -.040

I I .2 .4 -.232 -.273 -.193 -.228 -.158 -.180
.4 .8 -.055 -.099 -.033 -.061 -.021 -.033
.7 1 -.107 -.162 -.072 -.114 -.051 -.074
0 .4 -.119 -.163 -.075 -.107 -.043 -.058

I I I .2 .4 -.292 -.313 -.245 -.268 -.192 -.211
.4 .8 -.081 -.120 -.048 -.077 -.027 -.042
.7 1 -.139 -.178 -.095 -.132 -.061 -.086
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TABLE 4.128
MONTE CARLO BIAS OF Vi,VF, v B FOR p =  .75, fa =  ^  =  0, i  =  1,2

m 7 6

n =  64
U p vb v i

n =  128 
VF vb v i

n =  256
U p vb

0 .4 .092 .112 .227 .057 .073 .173 .036 .047 .140
I .2 .4 .282 .318 .419 .220 .250 .366 .182 .200 .328

.4 .8 .084 .114 .208 .052 .076 .159 .031 .046 .121

.7 1 .149 .195 .285 .104 .142 .234 .072 .097 .188
0 .4 .183 .212 .323 .136 .156 .270 .091 .102 .217

I I .2 .4 .405 .432 .492 .357 .376 .450 .298 .313 .406
.4 .8 .138 .174 .241 .097 .127 .190 .061 .081 .143
.7 1 .211 .258 .301 .162 .204 .249 .115 .144 .199
0 .4 .269 .298 .394 .189 .209 .317 .125 .136 .254

I I I .2 .4 .484 .496 .535 .418 .430 .483 .349 .359 .435
.4 .8 .178 .208 .260 .120 .147 .199 .075 .095 .151
.7 1 .248 .283 .307 .187 .223 .252 .131 .159 .201

TABLE 4.129
MONTE CARLO BIAS OF FOR p =  .75, =  fa  =  0, z =  1,2

n 64 64 128 128 256 256
771 7 6 v{ —Fv$ v{ —FV2 vi —F

v i
0 A .040 .054 .020 .029 .009 .011

I .2 .4 .192 .260 .133 .178 .100 .127
.4 .8 .037 .069 .019 .037 .007 .016
.7 1 .081 .145 .048 .088 .027 .050
0 .4 .107 .160 .071 .106 .040 .058

I I .2 .4 .336 .396 .283 .329 .221 .254
.4 .8 .082 .140 .051 .095 .027 .052
.7 1 .150 .226 .107 .172 .067 .111
0 .4 .186 .246 .114 .153 .063 .085

I I I .2 .4 .438 .471 .363 .394 .280 .306
.4 .8 .124 .176 .074 .118 .038 .066
.7 1 .201 .261 .140 .200 .087 .131
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TABLE 4.130
MONTE CARLO S.D. OF VU VF,VB FOR p  =  0, 4>j =  ^  =  0, i =  1,2

m 7 6 VI
n =  64 

U p vb v i

n  =  128 
vf vb v i

n  =  256 
vf vb

0 .4 .294 .341 .221 .216 .255 .169 .131 .146 .105
I .2 .4 .569 .601 .371 .515 .555 .335 .341 .371 .234

.4 .8 .295 .341 .250 .219 .257 .200 .133 .145 .126

.7 1 .429 .495 .406 .353 .433 .369 .227 .264 .251
0 .4 .192 .197 .147 .131 .135 .101 .092 .096 .072

II .2 .4 .296 .293 .217 .232 .227 .170 .189 .191 .137
.4 .8 .207 .209 .191 .143 .147 .142 .097 .100 .102
.7 1 .316 .323 .339 .250 .265 .290 .176 .190 .220
0 .4 .152 .161 .127 .112 .114 .091 .083 .086 .066

III .2 .4 .213 .219 .178 .180 .180 .146 .154 .156 .120
.4 .8 .185 .185 .181 .133 .137 .137 .093 .096 .099
.7 1 .307 .306 .329 .249 .257 .285 .179 .190 .218

TABLE 4.131
MONTE CARLO S.D. OF FOR p =  0, ^  =  0, i =  1,2

m 7
71
6

64
v i

64
—F
V2

128
v i

128 256

*2
256
v2F

0 .4 .324 .448 .232 .320 .139 .175
I .2 .4 .711 .825 .631 .752 .406 .503

.4 .8 .324 .449 .232 .323 .139 .171

.7 1 .478 .637 .380 .538 .237 .317
0 .4 .222 .240 .149 .163 .102 .114

II .2 .4 .371 .366 .289 .284 .235 .243
.4 .8 .228 .240 .153 .165 .103 .113
.7 1 .326 .346 .244 .274 .170 .194
0 .4 .177 .190 .129 .135 .094 .101

III .2 .4 .253 .261 .217 .216 .188 .192
.4 .8 .197 .202 .139 .147 .097 .105
.7 1 .300 .312 .234 .256 .165 .189
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TABLE 4.132
MONTE CARLO S.D. OF Vi ,Vf , vb FOR p =  .5, fa =  &  =  0, i =  1,2

m 7 8 ^7
n  =  64

Up v B v i
n  =  128 

vf v b v i
n  =  256

Up v b
0 A .262 .291 .201 .185 .207 .146 .115 .129 .094

I .2 A .521 .530 .342 .429 .455 .289 .300 .325 .207
.4 .8 .261 .286 .221 .188 .207 .174 .116 .128 .113
.7 1 .382 .413 .354 .297 .336 .308 .197 .221 .219
0 .4 .172 .179 .137 .117 .121 .097 .084 .088 .070

II .2 .4 .268 .267 .201 .206 .205 .158 .171 .170 .127
.4 .8 .185 .191 .174 .129 .136 .133 .089 .094 .095
.7 1 .283 .285 .298 .222 .233 .256 .159 .171 .197
0 .4 .144 .153 .123 .105 .110 .091 .076 .078 .066

III .2 .4 .198 .204 .167 .167 .170 .140 .140 .139 .112
.4 .8 .169 .171 .166 .123 .128 .130 .084 .087 .093
.7 1 .273 .269 .289 .223 .228 .252 .159 .167 .195

TABLE 4.133
MONTE CARLO S.D. OF V*2,p f  FOR p =  .5, =  ^  =  0, i =  1,2

m 7
n
6

64
V2

64
—F
”2

128
^2

128
—F
v 2

256
v i

256
—F
"2

0 A .288 .380 .199 .268 .121 .162
I .2 A .648 .708 .520 .637 .357 .440

.4 .8 .286 .363 .199 .248 .121 .157

.7 1 .427 .514 .319 .408 .206 .266
0 .4 .196 .214 .130 .142 .091 .103

II .2 .4 .332 .328 .252 .246 .209 .212
.4 .8 .202 .221 .135 .153 .092 .107
.7 1 .292 .311 .214 .242 .153 .177
0 .4 .164 .179 .116 .125 .082 .088

III .2 .4 .233 .241 .196 .198 .167 .164
.4 .8 .178 .187 .125 .137 .085 .095
.7 1 .269 .275 .209 .228 .146 .163
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TABLE 4.134
MONTE CARLO S.D. OF Vu V F,VB FOR p  =  - .5 ,  fa =  fa =  0, i  =  1,2

m 7 5 v i
n  =  64

U p vb v i
n  =  128

U p vb v i
n  =  256

U p vb
0 .4 .247 .277 .187 .182 .219 .144 .116 .135 .095

I .2 .4 .483 .499 .313 .425 .480 .283 .293 .316 .201
.4 .8 .249 .273 .213 .183 .206 .164 .116 .128 .112
.7 1 .356 .386 .333 .289 .326 .287 .195 .218 .221
0 .4 .161 .169 .128 .114 .123 .094 .085 .091 .070

II .2 .4 .255 .254 .191 .201 .204 .152 .170 .173 .125
.4 .8 .173 .177 .165 .124 .131 .128 .090 .095 .095
.7 1 .263 .262 .280 .210 .217 .243 .159 .169 .194
0 .4 .136 .147 .117 .102 .109 .088 .077 .081 .066

III .2 .4 .188 .193 .159 .161 .164 .134 .138 .139 .110
.4 .8 .160 .165 .159 .118 .122 .125 .085 .087 .093
.7 1 .259 .254 .275 .211 .212 .240 .157 .161 .191

TABLE 4.135
MONTE CARLO S.D. OF FOR p =  - .5 , fa = j)j =  0, i =  1,2

m 7
n
8

64
v{

64
V2

128
v i

128
v2F

256
v i

256
u£

0 A .272 .381 .194 .315 .122 .167
I .2 A .604 .693 .515 .708 .349 .421

.4 .8 .272 .360 .194 .277 .122 .160

.7 1 .400 .501 .313 .425 .205 .262
0 .4 .184 .207 .128 .148 .092 .110

II .2 .4 .318 .312 .248 .254 .209 .221
.4 .8 .189 .206 .131 .148 .093 .111
.7 1 .271 .283 .205 .227 .154 .180
0 .4 .154 .173 .113 .127 .084 .093

III .2 .4 .221 .227 .189 .195 .166 .169
.4 .8 .168 .181 .121 .131 .086 .095
.7 1 .254 .261 .198 .209 .145 .158
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TABLE 4.136
MONTE CARLO S.D. OF v u VF,VB FOR p =  -75, ^  =  0, i =  1,2

771 7 6 v i
n =  64 

u p v b v i
n =  128 

V  F v b v i
n =  256 

v f VB
0 .4 .199 .246 .156 .136 .160 .113 .094 .109 .079

I .2 .4 .398 .432 .265 .328 .348 .221 .242 .255 .169
.4 .8 .200 .236 .176 .137 .154 .129 .095 .110 .093
.7 1 .294 .325 .279 .219 .233 .227 .157 .174 .171
0 .4 .140 .153 .117 .094 .099 .084 .069 .072 .062

II .2 .4 .216 .219 .162 .162 .162 .127 .136 .136 .104
.4 .8 .146 .153 .140 .098 .103 .106 .072 .079 .081
.7 1 .223 .224 .236 .164 .164 .192 .126 .132 .155
0 .4 .128 .145 .113 .091 .100 .084 .067 .068 .063

III .2 .4 .162 .172 .138 .135 .141 .114 .116 .115 .094
.4 .8 .139 .143 .138 .098 .101 .106 .071 .075 .081
.7 1 .218 .215 .230 .168 .167 .190 .126 .131 .154

TABLE 4.137
MONTE CARLO S.D. OF v\, FOR p = .75, fc = fa = 0, i =  1,2

771 7
71

6
64 64

v l
128 128

—F
»2

256 256
—F
"2

0 A .218 .332 .144 .212 .099 .144
I .2 .4 .492 .575 .394 .476 .286 .345

.4 .8 .217 .317 .144 .221 .099 .145

.7 1 .326 .421 .234 .309 .166 .220
0 .4 .155 .179 .099 .117 .072 .088

II .2 .4 .267 .272 .196 .194 .164 .165
.4 .8 .157 .180 .100 .120 .073 .096
.7 1 .229 .247 .158 .170 .120 .142
0 .4 .139 .170 .095 .1 1 1 .068 .075

III .2 .4 .190 .204 .157 .167 .136 .135
.4 .8 .144 .160 .097 .110 .069 .086
.7 1 .215 .223 .158 .166 .116 .132
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TABLE 4.138
EMPIRICAL SIZES OF Wj AND W F FOR p =  0, ^  =  0, i =  1,2

m 7

a
n
6

64
W j

64
W F

.05
128
W z

128
W F

256
W z

256
W F

64
W i

64
W F

.10
128
W j

128
W F

256
W j

256
W F

0 .4 .153 .211 .123 .188 .107 .171 .226 .289 .185 .257 .183 .229
I .2 .4 .225 .258 .218 .251 .208 .236 .316 .333 .305 .326 .292 .301

.4 .8 .152 .218 .134 .186 .116 .151 .228 .271 .199 .242 .188 .205

.7 1 .209 .229 .192 .209 .173 .183 .282 .283 .264 .270 .261 .251
0 .4 .157 .211 .135 .173 .126 .162 .231 .283 .207 .255 .198 .232

II .2 .4 .206 .217 .194 .220 .212 .223 .298 .297 .275 .292 .295 .320
.4 .8 .197 .232 .170 .211 .151 .168 .290 .301 .258 .279 .221 .239
.7 1 .293 .297 .303 .288 .283 .267 .378 .366 .385 .383 .355 .340
0 .4 .112 .167 .118 .156 .125 .139 .182 .231 .189 .222 .197 .237

III .2 .4 .152 .179 .175 .192 .194 .211 .227 .268 .254 .276 .268 .290
.4 .8 .197 .233 .194 .226 .158 .181 .284 .305 .278 .308 .247 .269
.7 1 .344 .348 .351 .346 .331 .321 .422 .417 .445 .434 .409 .401

TABLE 4.139
EMPIRICAL SIZES OF W2J AND W f FOR p =  0, ^  =  0, z =  1,2

m 7

a
n
6

64
w i

64
w i

.05
128
w i *•1 

OO 256
w i

256
w i

64
w i

64
w i

.10
128
W j

128
w i

256
w i

256
w i

0 A .191 .271 .147 .227 .130 .194 .283 .350 .228 .290 .210 .270
I .2 A .342 .360 .301 .349 .289 .304 .419 .441 .394 .422 .370 .372

.4 .8 .194 .265 .145 .219 .131 .176 .281 .332 .232 .279 .207 .246

.7 1 .264 .281 .220 .250 .193 .213 .349 .348 .304 .309 .284 .288
0 .4 .230 .274 .197 .237 .161 .211 .311 .345 .257 .306 .247 .285

II .2 .4 .313 .319 .292 .325 .317 .332 .410 .384 .380 .398 .390 .397
.4 .8 .246 .284 .201 .232 .169 .194 .330 .343 .272 .305 .253 .285
.7 1 .331 .329 .302 .304 .270 .270 .411 .399 .394 .378 .357 .352
0 .4 .176 .237 .177 .224 .177 .211 .260 .300 .251 .295 .253 .299

III .2 .4 .228 .253 .253 .278 .279 .284 .319 .337 .346 .375 .371 .378
.4 .8 .239 .258 .209 .243 .183 .209 .322 .332 .289 .319 .270 .316
.7 1 .348 .354 .346 .340 .314 .310 .432 .436 .423 .432 .397 .397
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TABLE 4.140
EMPIRICAL SIZES OF W> AND W F FOR p =  .5, fa =  A  =  0, 2 =  1,2

m 7

a.
n
8

64
Wj

64
WF

.05
128
Wj

OO 
t

3 
^ 256

Wj
256
WF

64
Wj

64
WF

.10
128
Wj

128
WF

256
Wi

256
WF

0 A .172 .263 .151 .240 .111 .209 .247 .335 .228 .298 .192 .284
I .2 A .275 .336 .283 .327 .263 .311 .362 .416 .354 .398 .357 .381

.4 .8 .170 .242 .161 .240 .108 .194 .244 .314 .232 .297 .199 .264

.7 1 .222 .275 .221 .263 .193 .228 .308 .345 .292 .341 .277 .299
0 .4 .273 .343 .263 .361 .232 .320 .361 .425 .346 .443 .326 .400

I I .2 .4 .434 .473 .490 .549 .518 .536 .511 .550 .578 .622 .588 .605
.4 .8 .252 .325 .236 .343 .206 .300 .329 .399 .317 .422 .294 .383
.7 1 .339 .398 .380 .448 .344 .406 .430 .476 .470 .527 .423 .485
0 A .418 .488 .407 .481 .365 .419 .521 .571 .502 .569 .462 .515

I I I .2 A .618 .646 .665 .701 .682 .706 .694 .708 .741 .768 .747 .764
.4 .8 .322 .392 .301 .401 .261 .349 .412 .473 .388 .476 .348 .432
.7 1 .444 .488 .451 .513 .417 .480 .514 .561 .529 .607 .506 .548

TABLE 4.141
EMPIRICAL SIZES OF W j AND W f FOR p =  .5, fc = ipj = 0, i =  1,2

m 7

a
n
6

64
w i

64
w f

.05
128
w i J

S
5 00 256

w i
256
W f

64
w i

64
w f

.10
128
w i

K OO 256
w i

256
W f

0 A .206 .312 .158 .274 .121 .242 .287 .391 .246 .336 .210 .309
I .2 A .352 .430 .322 .394 .300 .353 .455 .507 .412 .475 .384 .431

.4 .8 .197 .312 .162 .267 .121 .228 .286 .380 .247 .333 .211 .295

.7 1 .275 .333 .231 .285 .207 .259 .362 .414 .298 .364 .275 .336
0 .4 .262 .347 .221 .356 .196 .321 .338 .433 .308 .438 .281 .402

I I .2 .4 .439 .495 .447 .529 .446 .504 .513 .573 .522 .606 .522 .574
.4 .8 .262 .354 .227 .371 .192 .310 .346 .446 .304 .444 .281 .398
.7 1 .344 .415 .332 .441 .306 .394 .433 .499 .421 .523 .381 .460
0 .4 .329 .448 .276 .412 .220 .339 .412 .526 .358 .488 .310 .424

I I I .2 .4 .563 .623 .582 .647 .562 .613 .636 .691 .649 .703 .631 .672
.4 .8 .292 .400 .246 .395 .204 .336 .379 .484 .339 .472 .286 .411
.7 1 .415 .492 .404 .497 .341 .440 .502 .566 .488 .571 .441 .528

244



TABLE 4.142
EMPIRICAL SIZES OF W T AND W F FOR p =  - .5 ,  fc =  A  =  0, i =  1,2

m 7

a
n
6

64
Wi

64
WF

.05
128
Wi

OO 
t

256
W j

256
WF

64
W j

64
Wf

.10
128
W j

OO 256
W j

256
WF

0 A .177 .295 .134 .248 .134 .219 .263 .353 .228 .318 .209 .293
I .2 A .294 .351 .265 .331 .264 .313 .372 .434 .361 .405 .342 .386

.4 .8 .162 .285 .141 .241 .136 .203 .262 .350 .236 .310 .208 .278

.7 1 .241 .294 .207 .264 .201 .231 .330 .364 .301 .336 .281 .304
0 .4 .268 .372 .269 .366 .252 .313 .351 .441 .363 .440 .336 .402

I I .2 .4 .469 .512 .517 .550 .515 .557 .549 .584 .588 .630 .595 .631
.4 .8 .242 .352 .255 .362 .224 .291 .328 .430 .339 .438 .301 .360
.7 1 .368 .416 .389 .450 .347 .400 .449 .496 .464 .528 .432 .485
0 .4 .410 .475 .400 .485 .357 .405 .502 .574 .494 .563 .446 .495

I I I .2 .4 .637 .659 .695 .705 .677 .707 .710 .733 .750 .765 .736 .767
.4 .8 .310 .415 .310 .408 .254 .331 .408 .494 .396 .489 .345 .416
.7 1 .463 .501 .460 .524 .424 .477 .545 .578 .532 .585 .493 .540

TABLE 4.143
EMPIRICAL SIZES OF W j  AND W f  FOR p = - .5 , ^  =  0, i =  1,2

m 7

a
n
6

64
w i

64
W f

.05
128
w i

128
w f

256
w i

256
w f

64
w i

64
w f

.10
128
w i

128
w f

256
w i

256
w f

0 A .191 .340 .161 .290 .144 .254 .285 .401 .242 .362 .220 .332
I .2 A .349 .422 .311 .405 .299 .376 .431 .498 .397 .472 .375 .445

.4 .8 .190 .328 .160 .286 .140 .238 .287 .392 .244 .356 .217 .318

.7 1 .270 .344 .236 .301 .214 .267 .359 .403 .317 .367 .295 .352
0 .4 .249 .391 .226 .360 .188 .300 .331 .463 .304 .434 .282 .378

I I .2 .4 .437 .504 .460 .520 .449 .499 .516 .576 .544 .602 .524 .574
.4 .8 .246 .373 .222 .369 .187 .292 .334 .463 .311 .436 .277 .367
.7 1 .358 .431 .347 .441 .305 .377 .435 .518 .450 .525 .399 .455
0 .4 .304 .456 .276 .417 .220 .342 .400 .524 .359 .503 .316 .409

I I I .2 .4 .569 .623 .601 .650 .547 .601 .640 .689 .672 .707 .611 .669
.4 .8 .267 .407 .260 .390 .215 .308 .358 .488 .348 .464 .306 .384
.7 1 .420 .492 .415 .485 .361 .426 .500 .563 .480 .554 .439 .507
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TABLE 4.144
EMPIRICAL SIZES OF W r AND WF FOR p =  .75, & =  ^  =  0, i =  1,2

771 7

a
n
6

64
W i

64
W F

.05
128
W i

OO 
t

3

256
W i

256
W F

64
W i

64
W F

.10
128
W i

128
W F

256
W r

256
W F

0 .4 .214 .365 .167 .341 .154 .329 .303 .423 .249 .418 .223 .392
I .2 .4 .390 .464 .372 .466 .385 .484 .455 .536 .450 .528 .488 .551

.4 .8 .209 .356 .159 .336 .152 .337 .294 .427 .250 .409 .220 .390

.7 1 .294 .405 .262 .384 .255 .378 .378 .490 .344 .464 .338 .453
0 .4 .459 .560 .504 .595 .455 .541 .562 .637 .594 .681 .554 .625

II .2 .4 .748 .786 .840 .866 .841 .866 .818 .849 .879 .897 .891 .914
.4 .8 .373 .516 .366 .545 .316 .508 .457 .591 .460 .616 .399 .591
.7 1 .511 .622 .531 .666 .502 .627 .594 .679 .617 .726 .578 .700
0 .4 .768 .806 .750 .803 .691 .735 .835 .861 .819 .854 .770 .805

III .2 .4 .946 .944 .964 .963 .960 .968 .963 .967 .972 .975 .976 .981
.4 .8 .544 .647 .507 .653 .433 .597 .622 .708 .590 .717 .518 .668
.7 1 .645 .723 .664 .749 .617 .726 .699 .767 .730 .805 .686 .784

TABLE 4.145
EMPIRICAL SIZES OF W2J AND W f FOR p = .75, = & = 0, i =  1,2

m 7

a
n
6

64
w i

64
w f

.05
128
w i

OO 256
w i

256
w f

64
w2f

64
w f

.10
128
w i

128
W f

256
w i

256
w f

0 .4 .209 .407 .148 .362 .124 .348 .303 .486 .234 .440 .202 .416
I .2 .4 .393 .521 .345 .484 .317 .482 .466 .574 .432 .555 .406 .538

.4 .8 .212 .402 .148 .370 .124 .357 .299 .475 .237 .443 .202 .411

.7 1 .299 .435 .233 .392 .197 .371 .381 .505 .309 .470 .281 .432
0 .4 .333 .520 .283 .497 .228 .446 .416 .589 .378 .560 .324 .525

II .2 .4 .646 .734 .689 .783 .654 .758 .698 .788 .751 .829 .720 .802
.4 .8 .301 .514 .237 .506 .216 .473 .389 .574 .332 .566 .292 .544
.7 1 .427 .604 .392 .613 .360 .560 .515 .657 .478 .672 .440 .631
0 .4 .546 .695 .483 .649 .357 .548 .631 .757 .551 .714 .455 .623

III .2 .4 .891 .901 .894 .926 .845 .902 .916 .919 .924 .945 .885 .927
.4 .8 .410 .587 .339 .580 .255 .516 .500 .657 .437 .644 .349 .576
.7 1 .568 .697 .538 .711 .471 .646 .631 .752 .615 .761 .550 .719
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Chapter 5

Testing for the equality of orders 
of integration

5.1 Introduction
From our results in Chapters 2, 3 and 4, it can be inferred that the wider mod

elling framework that fractional co-integration (with possibly unknown integration 
orders) allows, enjoys several important advantages over the traditional C l  (1,1) 
setting, where the risk of misspecification in optimal Gaussian estimation is not 
negligible. However, it is clear that this new methodology introduces additional chal
lenges, as in practice those, generally noninteger, orders of integration are unknown. 
Among other issues, it seems that the traditional way of testing for co-integration, 
based on ideas like the ones of Dickey and Fuller (1979) or Phillips and Perron (1988) 
needs to be revised. For example, given two observable series, yt and x t, a necessary 
condition for these processes to be co-integrated is tha t their orders of integration, 
say 6y and <5X, be equal, so that a necessary preliminary step in order to test for 
co-integration between two series is to check for the equality of their orders. Thus, 
we devote this final chapter of the thesis to address this problem, choosing a point 
of view which differs substantially from usual testing procedures proposed in the 
literature. As will be seen, our procedure offers several important advantages over 
those well known procedures.

Several tests involving linear restrictions among memory parameters of multivari
ate time series have been developed, mainly assuming the processes (more general 
than fractionally integrated processes) to be covariance stationary, and being based 
on different estimates of the memory parameters of given series. In the parametric 
setting, rigorous asymptotic theory has been developed, assuming the vector pro
cess considered to be covariance stationary, by Heyde and Gay (1993) and Hosoya 
(1997). In the semiparametric setting, under only local assumptions, Wald tests 
of linear restrictions on memory parameters have been proposed for the stationary 
case by Robinson (1995a) and Lobato (1999), but results in Robinson (1995b) and 
Lobato (1996) suggest also the use of Lagrange Multiplier and Likelihood Ratio 
tests, see Marinucci and Robinson (2001). These semiparametric tests enjoy stan
dard asymptotics (feature also shared by the parametric ones), but suffer from a
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serious drawback, as they are invalid in case there exists co-integration among the 
series. The reason is that the test statistics involve inversion of a matrix tending 
in probability to a singular matrix. This problem was acknowledged by Marinucci 
and Robinson (2001), and Robinson and Yajima (2002) offered a sensible solution 
at cost of introducing an additional user-chosen number.

We propose a test procedure for the equality of orders of integration of two possi
bly fractionally integrated (see Definitions 1.2 and 1.3) with arbitrary non-negative 
orders of integration time series (as this is the most relevant case in practice), which 
is valid irrespectively of whether the time series are co-integrated or not. Its com
putation only requires estimates of the different orders of integration involved in 
the null hypothesis and of the spectral density of the short memory input series 
which originate the fractionally integrated processes. The different test statistics we 
propose are based on partial sums of certain fractionally differenced processes and 
can be computed under semiparametric or parametric assumptions. The kind of 
assumptions made will determine the type of the estimates of the orders of integra
tion and spectral density used in obtaining the test statistics. These statistics enjoy 
standard asymptotic theory under the null hypothesis of equality of orders assuming 
very mild conditions on our estimates of the nuisance parameters, which, in fact, are 
very similar to those presented in Chapters 2 and 4. Partial sums are not expected to 
be very informative about memory parameters (see Robinson, 1993, for a unit root 
test based also on partial sums), but although low power could have been predicted, 
our test seems to perform relatively well in finite samples. Our test procedure can 
be easily extended to the multivariate framework, and also can be interpreted as a 
test for the size of the gap of co-integration (difference between the order of inte
gration of the observables and the one of the co-integrating error) once the pretest 
of equality of orders has been performed. Inference about the co-integrating gap 
seems very relevant, because it heavily affects the asymptotic properties of different 
estimates of the co-integrating parameter, as it is clear from our results in Chapters 
2, 3 and 4 (see also Kim and Phillips, 2000, Velasco, 2000).

In the next section we present our testing procedure, which is rigorously justi
fied in the Appendix 5. Section 5.3 includes a  Monte Carlo study of finite-sample 
behavior.

5.2 Testing the equality o f fractional difference 
parameters

Consider the bivaxiate process zt =  (yt, x t) \  t G Z, where

yt = A Sy {vitl (t >  0)}, yt = 0 , t <  0, 
x t = A~Sx {v2tl (t  >  0)}, x t = 0 , t <  0,

(5.1)
(5.2)

with
6X,6V > 0.' X > V y (5.3)

We introduce
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A ssu m p tion  5.1. The process vt =  {vit ,V2t ) \  t  €  Z, has representation

vt = II^H2 < ° ° ’ 5̂'4)
j = 0  j = 0

where

(i) £t are independent and identically distributed vectors with mean zero, positive 
definite covariance matrix Q, E  ||£t||9 <  oo, q > 2;

(ii) ga (0) > 0, i =  1,2, where gij (0) is the ( i ,j)  element of the spectral density of
vty denoted by g (A).

In view of Definition 1.1, noting that (5.4) implies that g (A) is Lzp(x), k  > 0, 
by Assumption 5.1, vu , v2t, are 7(0) processes. Consider also certain estimates 8X, 
8y, g (0) of <5X, 6y, g (0) respectively, such tha t 
A ssu m p tio n  5.2. As n —> oo,

f l ( 0 ) - „ s ( 0 ) ,  (5.5)

and for any k > 0 and K  < oo,

8X =  6X +  Op (n ~K) , 6y = 8y + Op (n ~K) , (5.6)

where
8X + <  K. (5.7)

This assumption, although not primitive, is very mild and, with respect to the 
estimates of the orders of integration, very similar to Assumptions 2.3 and 4.1 of 
Chapters 2 and 4 respectively. It is repeated here for readability, but note that it 
now refers to estimates of integration orders of observable series. As in previous 
chapters, under some parametric structure for vu ^/n-consistent estimates of the 
orders of integration and g (0) could be achievable by a multivariate extension of the 
results in Robinson (2002), which extended results in Velasco and Robinson (2000) 
in the univariate case to cover our type of nonstationarity. Of course, this rate is 
far better than needed, so we might be content by assuming some weak conditions 
of smoothness of the spectral density of vt around frequency zero, and estimate 
the orders and g (0) semiparametrically. For example, the estimates in Robinson 
(1994c, 1995a,b), Velasco (1999a,b), justified by Robinson (2002) for our type of 
nonstationarity, satisfy Assumption 5.2. Also, given estimates 6X, 8y, a nonpara- 
metric estimate of g (0) could be based on weighted averages of the periodogram of 
the proxy vt = (yt(8y), x t{8x))' of vt . The validity of such estimate can be justified 
by similar techniques as the ones in the proof of Theorem 5.1 below, or the ones 
already employed in Chapters 2 and 4.

249



Now, for any non-stochastic 2 x 1  vector a = (ai,*^)7, such that a'<7(0)a > 0, 
noting (1.44), (2.2), (2.3), we could define the class of test statistics

,  a'w*(t&) (°)
«(“ ) =  , , '1/2 > (5'8) (a'g (0) a)

for testing H0 : 8X = 6y against the alternative Hi : 6X ^  6y.
T h eo rem  5.1. Let (5.1), (5.2), (5.3) and Assumptions 5.1, 5.2 hold. Then, for 
any 2 x 1  deterministic vector a such that a'g (0) a > 0, as n —> oo,

t {a) —► diV (0,1) under Ho, (5.9)
t(a) ~  r)6x~6y\under H\, (5.10)

where “ ~  ” means now exact rate of convergence.
The proof of the theorem is left to the Appendix 5.

R em ark  5.1. The test statistic has standard asymptotic distribution under the null 
and a rate of divergence increasing exponentially with the difference \8X — 8y\ under 
fixed alternatives. Although we presented results and proofs just for the Type II 
fractionally integrated process, this was simply motivated by the uniform treatment 
of any value of 8X and 8y this definition allows, the same result holding also for Type 
I processes. Noting from (1.8) that for any j  > 1,

aj ( d — 1) =  aj (d) — aj_i (d ) , (5.11)

with oq (d) = 1, in case for example that 8X — 8y > 0,

n  n n —t  n

Sn =  ^   ̂Xi (8y) =  ^   ̂V2t ^   ̂aj (<$x 8y) =  ^  ] ®n—t (8X ^  I- 1) V2tj (5*12)
t = l  t = 1 j —0 t =  1

so Sn is a Type II fractionally integrated process I  (8X — 8y +  1). Hence, Theorem 
1 and Corollary 1 of Marinucci and Robinson (2000) would straightforwardly imply 
that

)?(a ) _> dN L  a f T l H 9 ^ -----
v a'g (0) aV (8X -  8y +  1) (2 (8X - 8 y) + l ) J

(5.13)

noting tha t max {2, 2 / (2 (6X — 8y) + 1)} =  2, so that our Assumption 5.1(i) implies 
Assumption B in Marinucci and Robinson (2000). Similarly, it is straightforward to 
show

n -(6y-6*)t _> dN  (o, . . . — , if 8y -  8X > 0,
V V0(O )ar(<5y -<5x +  l ) ( 2 ( < ^ - < y +  1 ) /  y

(5.14)

hence (5.10) is justified.
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Note also tha t we could have proposed instead

a!I 3? \ (0 ) a
? ( » ) =  '5'15)a'g (0 ) a

where by straightforward application of the continuous mapping theorem and The
orem 5.1,

t2 (a) dX i under H0, (5.16)
t2 (a) ~  n 2\6*~6v\ under H\. (5-17)

R em ark  5.2. This test procedure is also valid in case the processes yt and x t are 
co-integrated. The main consequence of co-integration can be analysed in the simple 
model (1.25), (1.26), which has been discussed in all previous chapters. This model 
implies that

? ) { « .M * > 0 ) } ,  (5.18)

where the spectral density (not constant over t) of the bivariate asymptotically 
stationary process on the right hand side of (5.18) is singular at frequency zero. 
Thus, the main implication of co-integration between two I  (5) processes is that the 
bivariate process resulting from 8—differencing both time series has singular spectral 
density matrix at frequency zero, and this is precisely the reason why the different 
semiparametric tests considered in the literature are not valid with co-integration, 
as they require inversion of a matrix which tends in probability to  a singular matrix, 
which is the equivalent to g (0) in a more general framework. Fortunately, in our case, 
although g (0 ) could be singular, this does not prevent the condition a'g (0) a > 0 
from holding for a certain deterministic vector a.
R em ark  5.3. There is an element of arbitrariness in the test procedure due to 
the choice of a, as different a ’s could lead to different decisions in a given situation. 
We consider this arbitrariness to be similar to certain extent to the one present in 
Robinson and Yajima (2002) related to their choice of the additional bandwidth h (n) 
to account for possible co-integration between the series (see Section 2.5 of Chapter 
2). As it will become clear in the Monte Carlo section, a sensible approach in order 
to improve the power of the test is to give less relative weight to the overdifferenced 
process. This basic idea is captured in a certainly radical way by the choice for a

a = ( l ( 4  - S y <  n - ’’), 1 (4  - S y > n - ’j Y , (5.19)

for a certain 0 < 77 < /c, although, due to the stochastic nature of a, the asymptotics 
in Theorem 5.1 are not directly applicable to this choice of a.
T h eo rem  5.2. Let (5.1), (5.2), (5.3) and Assumptions 5.1, 5.2 hold. Then, as 
n —► 00

^  W  ,-r (0)
*(“) =  + ° p ( n6"~S*) (5.20)

011 (0 )
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%<?,) (0) /1\ re  c
—  ^ . 1/2  / r .x ^  ° p  (  )  x  —  y ’

9n  (0)

=  +  ° p  {n t‘ ~s' )  i f S x > 6 y .
922 (0)

(5.21)

(5.22)

The proof of this theorem is left to the Appendix 5. In view of Theorem 5.1, the 
main consequence of this result is that t (a) —>d N  (0,1) under Hq and t (a) ~  
under Hi, but t  (a) has also other desirable properties. Roughly speaking, under Hi, 
the test statistic is going to be based simply on the underdifferenced processes yt(6 x) 
or x t (6 y) depending on whether 8 X < 6 y or 8 X >  6 y respectively. Under Hq, the test 
statistic is asymptotically equivalent to wy(sx) (0) l9\\  (0), but it could have been 
equally based on wx(sy) (0) (0), just considering

a =  (l(?„ - S x < » - ’’), 1(6„ - S x > , (5.23)

instead of a.
R em ark  5.4. In case the series yt and x t are not co-integrated, an alternative test 
statistic to consider is

? =  < ( « „ )  ( ° )  ■

T h eo rem  5.3. Let (5.1), (5.2), (5.3) and Assumptions 5.1, 5.2 hold. Then, i fg ( 0) 
is nonsingular, as n  —► oo,

t —> dX2under H0, (5.24)
t rsj n2\6x~6y\under H\. (5.25)

The proof is omitted as it is a straightforward application of the continuous
mapping theorem and the proof of Theorem 5.1. Using t instead of t2 (a) we avoid 
the arbitrariness due to the choice of a, but the test is invalid in case the series are 
co-integrated. In fact, the introduction of the user-chosen number h (n) in Robinson 
and Yajima (2002) was also due to the possible co-integration between the series, as 
this was making invalid the standard test procedures based on normalized estimates 
of 8X -  6y.

Furthermore, t has an interesting interpretation in terms of our original class of 
test statistics as t  = t2 (a) with

2  =  g (0)"1 wz(sXist ) (0), (5.26)

being the asymptotic distributions of t2 (a) and t2 (a) for any deterministic a under 
H0 different due to the randomness of a. Also, for any a ^ 0 ,

t - t 2 (a) = b'b>0,  (5.27)

252



with  ̂ i
In -  g(0) ’ a (a'g (0) a)-1 a'g (0)'5 g (0)"5 (0), (5.28)b =

so a is the particular value of a that maximizes t2 (a), but we could not refer to a 
as the “optimal” choice of a (in terms of maximizing the power of the test), as t 
and t1 (a) are not directly comparable due to their different asymptotic distributions 
under the null.
R em ark  5.5. In case we want to perform a test of equality of the orders against 
one-sided alternatives

Hi  : 6X > 6y, or H \  : 6X < 6y, (5.29)

we could use instead the test statistics

_  w ,?  , (0) ^  \ (0)
4.____ x i°y)  4.   '  ( n
^  -  -—-1 /2  , n v" ’ ~  - 1 / 2 ^ ’ V - 60)

922 (0) 9 ll (0)

respectively, where no choice of the weighting vector a is required. It is straightfor
ward to show that, as n  —► oo,

ti, *2 —► dN (0,1) under H0, (5.31)
t\ ~  n6x~6y under H i,  (5.32)
t2 ~  n6v~6x under H f . (5.33)

Remark 5.6. Our test procedure could be also applied to test for the dimension of 
the co-integrating gap (defined as 6—7  in (1.25), (1.26)). Here, most of the literature 
has been based on the case where 6 = 1, 7  =  0 in similar models to (1.25), (1.26). 
In the more general framework of fractional co-integration, in view of Chapters 2, 3, 
4 of this thesis, and also Kim and Phillips (2000),Velasco (2000), it seems to be very 
relevant for estimation and testing whether the co-integrating gap is “big” (more 
precisely 6 — 7  > 1/2) or “small” (with 6 — 7  < 1/2). We have denoted these two 
situations as strong and weak fractional co-integration respectively. For example, a 
test for “strong” co-integration could be set in our framework as

H0 : 6 -  7  =  i ,  against # i  : 6 -  7  > i ,  (5.34)

noting that we face an additional problem here, as U\t in (1.25) is not observable, 
although we could use instead a proxy like yt — vx t for certain estimate V of v, which 
could be for example the OLS or the NBLS estimate, whose asymptotic properties 
were discussed in Chapter 1.
Remark 5.7. The idea of testing for the equality of the orders of integration of a 
bivariate fractionally integrated process can be easily extended to test for the validity 
of any linear restriction among the orders of integration of the elements of any p x l  
vector qt = (qu , ...,qpt)7 where qit ( )  =  viu 6{ >  0, i =  1, ...,p, and vt = (vu , 
is an I  (0) vector process for which the equivalent of Assumption 5.1 holds. Denoting 
by 6 = ( tf i ,^ ) )7, where <5(i) =  (62, ..., 6P)', without loss of generality, we could test
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for any linear restriction among two or more elements of 6 by means of Ho \b'8 = r
against Hi : b'8 ^  r, where b =  (1 , 6^ ) ' ,  fyi) being certain (p — 1) x 1 deterministic
vector and r a real number. Thus, denoting

q(d ,.. . ,cp) = (qi{ci),...,qp(cp))', (5.35)

given certain estimate 8 of 8 satisfying the equivalent of Assumption 5.2, for any 
p x 1 deterministic vector a, defining now

r , \ a'wa(r-v ..JP+vS) (°) ,E
* (a) =     ’ (5'36)(aTg(0 ) o )  '

it is straightforward to show, as in Theorem 5.1, that

t (a) —► dN  (0,1) under Ho, (5.37)
t(a)  ~  n\b'6~r\under Hi. (5.38)

5.3 M onte Carlo evidence
W ith the aim of assessing for the finite sample behavior of the test procedure 

presented in the previous section, we performed a small Monte Carlo experiment. 
We generated yt and x t as in (5.1), (5.2), vt being a bivariate Gaussian white noise 
with covariance matrix

n = ( J  £ ) ,  (5.39)

where results are displayed for p =  0, .5, — .5,1, reflecting this last case the situation 
where yt and x t are co-integrated. We computed the test statistic t 2, (•) evaluated 
at five different weighting vectors: ai = (1 ,1 /, a2 = (1 ,4 /, a3 =  (1, .25/, a as in 
(5.26) and a given by (5.19) with rj =  0.3. Note that the test statistic with a for 
the case p =  1 is invalid, so we do not report results for this situation. All those 
test statistics are obtained under parametric or nonparametric assumptions. In the 
former case, we assumed knowledge of the white noise condition of vt (but of course 
not of f2), and the orders 8X, 8y and g (0) were estimated parametrically by means
of the procedure described in Beran (1995) and

=  (5.40)
t=1

respectively. In the nonparametric case (without considering vt to be white noise), 
we computed the estimates of the orders as the Robinson’s (1995a) version of the 
Geweke and Porter-Hudak (1983) log-periodogram estimate without pooling or trim
ming, with bandwidth parameter m  taking values to be described subsequently. The 
nonparametric estimate of g (0 ) was

1 6
?(0) =  26T T  (5-41)j=-b
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for a certain bandwidth 6. We gave results for 1000 replications and three different 
sample sizes n =  64,128,256, for which we chose bandwidths m  =  20,30,60 and 
6 =  3,6,10 respectively.

We computed the empirical sizes of the different test statistics described above 
corresponding to the nominal ones a = .01, .05, .10, for different combinations of 
6X, 8y. Denoting (j) = 8y — 6X, we considered only the case 8y = 0.4, without loss 
of generality, as our test procedure is invariant to the particular values of 8X, 8y, 
depending only on 0, this difference taking values 0 =  0,0.1,0.2,0.3.

Results are reported in Tables 5.1-5.8. In terms of comparison of the empirical 
sizes with the nominal ones, looking at 0 =  0, the first thing to be noted is that 
there exists certain differences on the performance of the statistics depending on 
whether the weighting vector is deterministic (ai? i =  1,2,3) or stochastic. In 
the former case, the behavior is reasonably good and quite similar for the three 
vectors considered, with empirical sizes being on average too large (except for the 
parametric statistic with p =  1), but in general moving in the appropriate direction 
as the sample size increases. The behavior for the statistics with the two stochastic 
weighting vectors is also relatively similar to each other for p = 0, 0.5, being for these 
cases in general sizes bigger than for the statistics with deterministic weighting, 
but clearly the one based on a behaving better than the one based on a, tests 
based on a being comparable to the ones based on deterministic a for the cases 
p =  —0.5, 1. As expected, sizes are closer to the nominal ones for statistics derived 
from parametric estimates, than for the nonparametric ones, being generally this 
difference accentuated the large p is. Also, sizes are larger for smaller p for the 
deterministically weighted statistics. Finally, it is remarkably clear that the smallest 
sizes correspond to the case of co-integration between x t and yt.

We also looked at the power related to the different test statistics by means of 
letting 0 7̂  0. The power increases as 0 and n  grow, being t 2 (a) the most powerful 
one followed by ? (a )  and t2^ )  which behave quite similarly. A very striking feature 
of the experiment is the importance of the choice of a in order to obtain a test with 
good power. As mentioned before, a sensible approach is to give more weight to 
the process we believe is underdifferenced. If the contrary happens, the effect is 
dramatic, as can be observed in the results for ^ ( a 2). Here, in most of the cases, the 
test have negligible power, with the exception of the case 0 =  0.3. Very noticeable 
are the similarities in power of the parametric and nonparametric test statistics and 
also the increase in power as p decreases.

Overall, it seems that the best test statistic is the one based on a, as it behaves 
reasonably well in terms of empirical sizes, being in general the best in terms of 
power. This statistic is also the most realistic one, as our decision about to which 
process give more weight will be based on the comparison of the estimates of the 
orders of integration, and this additional randomness source is not taken into account 
by the statistics based on deterministic weighting vectors.
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5.4 A ppendix 5
P ro o f of T h eo rem  5.1. Defining

t(a )  =  ° 'U'*(^ ) (? ) . (5.42)
(a'g (0) a) 2

it is clear that under Assumption 5.1, by Central Limit Theorem (see Hannan, 1970)

t  (a ) ~*d N  (0,1) under Hq, (5.43)

(5.10) following by Marinucci and Robinson (2000) as in Remark 5.1, noting that 
the overdifferenced process under Hi has smaller order.

Thus, the main task is to prove that

t ( a )  — t  (a) =  op ( 1) under Hq,  (5.44)
=  op (n)6x~SvI) under Hi, (5.45)

which, as by Assumption 5.2, g  (0) is a consistent estimate of g  (0), follows immedi
ately from proving

wz(l,e,) (°) -  “ *(«.,«„> (°) =  °r (!) under Ho, (5-46)

=  op under H,. (5-47)

Now, by Taylor’s expansion, for certain constant R  to be defined subsequently, the
left hand side of (5.46) is

+ - — k— -  ( { S x  ~ S * ) H . .
(27m)* R! {  0 (6y -  Sy)H /  ^

(5.48)

where |<5X — <5y| < Sx — 6y , |<5y — < 6y — 6X , for any scalar or vector sequence
'ipt and any real b,

t - 1

9{r) Wt; b) = ^ 2  air) ib) Tpt-s, (5.49)
S = 1

with
aM {b) = (5.50)

and for any p-dimensional vector and real bi, ..., bp,

a(r)(6;6i....,ftp) =  (fl<r)(? » ; t i ) . - .s <r)(^;6p))'- (5.51)
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First, we prove (5.46). Now

Var  (  ^ 0 (r) (vt, 0) j =
n t—1 n s—1

t=2
a<r) (0) a<r) (0) (M) dp,

^ t= 2  j = l  3= 2  fc= l—7T 17

which by Assumption 5.1 is bounded in norm by

p 71 l~ l  2

a : "  ”/ t= 2  j = l

n  t —1 n + j —t

d p < t f £ £  £  |a f ) (0 )a 'r ) (0)
1=2 j = l  k= 1

(5.52)

(5.53)

Now, by the bounds in Lemma 2.D.4, (5.53) is bounded by

n  t — 1 n + j —t

* £ £ £
t = 2 j = l  fc= l

(log (j +  fc)) 
j k

7--1
< K n  (log n) 2r

implying that
n

] T ^ (r) {vt; 0) =  Op (n* (logn)r)  ,
t = 2

(5.54)

(5.55)

and therefore the first term in (5.48) is Op (n K log n ) . 
Next, by Lemma 2.C.4

g{R) (v t \6y -  SX,SX -  Sy) =  Op ( t i j  , (5.56)

so that the second term in (5.48) is Op (j i 3/ 2~ R k )  , and choosing R  > (1 +  « ) /« , 
(5.48) is Op (n~K log n), and we conclude (5.46) by Assumption 5.2.

Regarding (5.47), by previous arguments Var (Ylt=2 9 ^  (vti$y ~  Sx — &y)) is 
bounded in norm by

K  £  £  £  {Kr> & -  *) I+Hr) I}
t = 2 j = 1 fc= l

x { | 4 r)f t - « |  +  |4 r ) ( « x - M |} .

which by Lemma 2.C.1 is bounded by
n  t —1 n + j —t

K  £  £  £  (lo§ o + fc))r ^  *  (los n )2r n2|{,-{,|+i,
t = 2 j = 1 fc= l

and therefore
n

^ p (r) (vt; <5y -  <5X, <$* -  6y) = Op ((logn)r n)6x~6v]+̂  ,
t = 2

(5.57)

(5.58)

(5.59)

noting tha t by a straightforward modification of this lemma and the Stirling’s ap
proximation, for any c <  0, s >  1,

I<4r) (c)| < K  (log s)r s° \  
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Next, as in Lemma 2.C.4 of Chapter 2, for any e >  0,

E  ||<?(H) (vs, Sy -  6X, Sx -  Sy) II2 <  K  £  ( lo g s )2fi
s=1

implying that

g W  (v s ,6 y - 6 x ,6 x - 6 y )  = Op ( t ”“ { ,

and choosing R  > (max {1^ — 8y\ , 1} +  1/2 +  k) /« , (5.48) is Op (n)6x~6̂  
under Hi to conclude the proof of (5.47).

P ro o f  o f T h eo rem  5.2. The result follows immediately from showing

a —► p (1 , 0)' for 8X < 8.

which as

follows from proving

a —> p (0,1)' for 8X > 8y, 

l(8x - 8 y < n~n) +  l(?a - 8 y > nT’1) = 1,

1 (8X -  8y > n~v) -*p 0 for 8X < 8y,

1(6X — 8y < n~**) —>p 0 for 8X > 8y.

First, for 8X < 8y,

1 (8x - 8 y > n - r') = l{8x - 8 y - ( 8 x - 8 y) > n - 1> -  (8X -  8y))

8 X  —  8 y  —  (8X — 8 y )

<
n-v  -  (<5* -  8y) ’

so that 1(8X — 8y > n v) = Op (n77 K) to conclude for (5.66) as 77 <  k. 
Next, for 8X > 8y, noting that

8X — 8y < n *) +  1 (8y - 8 X > n *),1 {8X -  8y < n  v) = 1( 

the left side of (5.69) is bounded by

+  1 (sy -  8X -  (8y -  8X) > n~v -  (8y -  8X))
8X — 8y

< n -n 18y — 8X — (8y — 8X) 
+

8x — 8y n-v + 8x — 8y

so that 1 (8X — 8y < n  77) =  Op (n v + n K) to conclude the proof.

(5.61)

(5.62) 

l-/s log n)

(5.63)
(5.64)

(5.65)

(5.66)
(5.67)

(5.68)

(5.69)

(5.70)
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TABLE 5.1
EMPIRICAL SIZES OF t 2 (•) FOR p =  0, PARAMETRIC ESTIMATION

a
n
(f> 0

64
.1 .2 .3 0

128
.1 .2 .3 0

256
.1 .2 .3

ai .036 .054 .143 .279 .034 .078 .189 .354 .015 .064 .223 .434
.045 .010 .010 .023 .033 .004 .008 .036 .021 .003 .003 .058

.01 03 .047 .127 .259 .420 .047 .145 .305 .501 .021 .150 .366 .585
a .062 .095 .203 .364 .052 .122 .257 .447 .024 .121 .305 .526
a .067 .140 .268 .432 .055 .148 .317 .516 .027 .163 .381 .592
Ol .106 .147 .250 .405 .096 .170 .300 .477 .070 .154 .346 .569
02 .093 .037 .023 .050 .093 .024 .028 .089 .068 .008 .019 .125

.05 03 .094 .220 .381 .523 .110 .236 .428 .615 .076 .259 .475 .679
a .133 .177 .312 .449 .115 .186 .356 .550 .076 .203 .406 .613
a .117 .233 .390 .531 .122 .255 .452 .620 .083 .266 .485 .694
Ol .175 .228 .337 .476 .175 .235 .371 .557 .123 .231 .418 .632
02 .155 .071 .051 .076 .147 .065 .054 .151 .121 .032 .052 .189

.10 03 .159 .292 .439 .585 .158 .312 .503 .682 .133 .333 .561 .731
a .188 .249 .371 .507 .189 .255 .416 .593 .141 .259 .457 .661
a .184 .311 .460 .596 .165 .326 .518 .686 .145 .355 .566 .735

TABLE 5.2
EMPIRICAL SIZES OF ?  (•) FOR p =  0, NONPARAMETRIC ESTIMATION

a
n
(f> 0

64
.1 .2 .3 0

128
.1 .2 .3 0

256
.1 .2 .3

a i .066 .081 .159 .268 .066 .106 .216 .353 .045 .075 .221 .432
0.2 .075 .036 .024 .033 .077 .036 .021 .051 .055 .012 .015 .060

.01 03 .083 .157 .271 .395 .084 .182 .318 .477 .047 .153 .340 .578
a .140 .175 .257 .374 .134 .180 .309 .446 .084 .133 .300 .533
a .131 .182 .290 .409 .134 .216 .334 .497 .074 .165 .359 .586
o\ .131 .157 .249 .387 .145 .189 .304 .460 .104 .168 .329 .565
02 .133 .075 .053 .064 .133 .068 .055 .113 .107 .037 .044 .119

.05 0 3 .136 .239 .368 .500 .141 .280 .424 .579 .097 .253 .482 .662
a .220 .243 .340 .465 .216 .273 .374 .530 .146 .209 .399 .619
a .201 .269 .382 .523 .204 .310 .443 .588 .132 .265 .497 .668
Ol .195 .243 .332 .468 .199 .266 .373 .532 .162 .225 .420 .624
a2 .164 .106 .084 .112 .179 .101 .103 .161 .159 .075 .073 .186

.10 03 .188 .303 .435 .559 .204 .333 .487 .644 .146 .323 .559 .715
a .274 .308 .396 .518 .266 .324 .437 .582 .197 .283 .469 .651
a .248 .347 .456 .573 .268 .366 .512 .652 .175 .340 .560 .725
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TABLE 5.3
EMPIRICAL SIZES OF t 2 (•) FOR p =  .5, PARAMETRIC ESTIMATION

O'
n
<t> 0

64
.1 .2 .3 0

128
.1 .2 .3 0

256
.1 .2 .3

o\ .011 .024 .094 .216 .008 .035 .123 .289 .009 .027 .164 .358
a 2 .028 .005 .004 .009 .025 .002 .002 .017 .016 .000 .000 .026

.01 O3 .028 .099 .228 .382 .023 .108 .275 .469 .011 .122 .314 .545
a .068 .129 .248 .417 .049 .114 .301 .513 .030 .137 .349 .587
a .048 .136 .265 .435 .036 .131 .329 .526 .017 .158 .366 .602
ai .054 .096 .207 .337 .068 .117 .241 .420 .047 .112 .271 .485
0-2 .067 .025 .009 .034 .071 .013 .013 .060 .050 .013 .015 .107

.05 0 3 .083 .199 .346 .495 .080 .210 .409 .591 .059 .225 .442 .660
a .139 .202 .338 .504 .116 .203 .409 .593 .078 .224 .452 .670
a .113 .233 .393 .544 .094 .259 .458 .633 .078 .264 .496 .688
Oi .133 .176 .283 .430 .139 .187 .320 .499 .111 .186 .352 .573
02 .131 .052 .027 .071 .131 .050 .044 .118 .105 .033 .047 .164

.10 03 .137 .276 .425 .568 .134 .293 .489 .661 .124 .299 .516 .703
a .203 .264 .413 .560 .178 .279 .471 .652 .148 .285 .505 .701
a .169 .306 .459 .615 .140 .339 .534 .694 .138 .344 .567 .740

TABLE 5.4
EMPIRICAL SIZES OF ?  (•) FOR p = .5, NONPARAMETRIC ESTIMATION

a
n
<t> 0

64
.1 .2 .3 0

128
.1 .2 .3 0

256
.1 .2 .3

o\ .029 .058 .121 .201 .053 .073 .152 .294 .035 .067 .157 .361
02 .060 .029 .014 .024 .058 .025 .014 .039 .046 .010 .010 .048

.01 03 .050 .135 .229 .344 .064 .148 .290 .456 .046 .132 .312 .540
a .141 .181 .279 .400 .139 .184 .329 .480 .088 .164 .346 .572
a .122 .183 .279 .399 .122 .187 .355 .496 .073 .164 .365 .573
ai .111 .152 .207 .324 .112 .148 .258 .425 .084 .137 .276 .486
a 2 .120 .062 .047 .059 .111 .054 .057 .095 .100 .038 .043 .111

.05 03 .124 .212 .329 .462 .122 .235 .407 .554 .100 .226 .440 .620
a .209 .259 .359 .485 .201 .266 .420 .570 .148 .245 .442 .648
a .194 .263 .379 .507 .174 .288 .450 .610 .133 .269 .490 .675
ai .186 .204 .288 .394 .179 .208 .326 .481 .146 .187 .354 .555
0-2 .164 .096 .080 .111 .163 .092 .094 .146 .148 .079 .082 .160

.10 03 .188 .284 .394 .538 .174 .322 .471 .633 .137 .306 .516 .688
a .278 .319 .413 .545 .261 .330 .463 .623 .212 .299 .501 .693
a .256 .321 .444 .583 .230 .363 .507 .671 .183 .344 .550 .722

260



TABLE 5.5
EMPIRICAL SIZES OF t 1 (•) FOR p =  - . 5 ,  PARAMETRIC ESTIMATION

a
n
0 0

64
.1 .2 .3 0

128
.1 .2 .3 0

256
.1 .2 .3

Ol .061 .099 .224 .388 .058 .119 .285 .479 .026 .121 .329 .576
a2 .048 .008 .007 .017 .036 .005 .006 .035 .029 .003 .003 .066

.01 ^3 .045 .139 .302 .455 .044 .157 .339 .547 .025 .173 .407 .628
a .062 .103 .236 .406 .051 .129 .291 .492 .030 .132 .336 .580
a .040 .117 .264 .427 .040 .140 .306 .512 .016 .155 .362 .595
ai .142 .184 .343 .512 .118 .213 .396 .613 .087 .216 .468 .677
&2 .094 .036 .020 .044 .099 .024 .020 .096 .062 .007 .019 .139

.05 03 .100 .241 .411 .569 .111 .266 .470 .666 .078 .283 .530 .716
a .127 .191 .337 .495 .119 .207 .376 .590 .078 .219 .446 .652
a .092 .222 .378 .532 .104 .247 .435 .645 .071 .272 .499 .686
Ol .204 .265 .409 .572 .181 .286 .463 .673 .152 .289 .535 .725
02 .151 .067 .032 .075 .149 .041 .039 .133 .115 .025 .039 .200

.10 03 .147 .323 .486 .615 .157 .339 .551 .711 .137 .353 .598 .753
a .185 .257 .408 .551 .187 .272 .445 .652 .138 .277 .504 .704
a .150 .301 .456 .589 .149 .312 .507 .691 .129 .337 .572 .736

TABLE 5.6
EMPIRICAL SIZES OF t 1 (•) FOR p =  - .5 ,  NONPARAMETRIC ESTIMATION

a
n
<t> 0

64
.1 .2 .3 0

128
.1 .2 .3 0

256
.1 .2 .3

ai .078 .106 .216 .360 .078 .153 .280 .452 .058 .127 .329 .572
.092 .044 .021 .033 .085 .027 .023 .058 .061 .012 .011 .077

.01 .089 .173 .292 .422 .100 .212 .355 .505 .059 .193 .412 .619
a .148 .187 .275 .404 .149 .205 .327 .467 .091 .163 .356 .576
a .140 .178 .277 .392 .138 .213 .333 .474 .068 .177 .375 .580
ai .143 .188 .327 .472 .168 .236 .381 .574 .119 .206 .453 .666
a2 .137 .071 .047 .060 .137 .058 .045 .111 .099 .031 .033 .135

.05 03 .154 .259 .378 .529 .165 .299 .456 .614 .111 .278 .527 .703
a .236 .262 .375 .489 .230 .287 .405 .565 .150 .241 .454 .650
a .198 .264 .367 .507 .215 .293 .432 .587 .131 .265 .499 .674
ai .209 .254 .393 .536 .228 .303 .448 .631 .170 .274 .535 .714
a 2 .177 .102 .072 .094 .186 .090 .076 .155 .152 .047 .065 .194

.10 03 .192 .316 .450 .585 .208 .361 .513 .670 .162 .358 .594 .741
a .287 .322 .417 .545 .299 .335 .457 .615 .202 .292 .514 .693
a .252 .325 .447 .569 .267 .357 .495 .643 .180 .339 .558 .725
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TABLE 5.7
EMPIRICAL SIZES OF ?  (•) FOR p =  1, PARAMETRIC ESTIMATION

a
n
(f> 0

64
.1 .2 .3 0

128
.1 .2 .3 0

256
.1 .2 .3

a i .000 .000 .015 .118 .000 .000 .048 .240 .001 .006 .084 .294
0-2 .000 .000 .000 .000 .001 .000 .000 .000 .002 .000 .000 .002

.01 a-s .000 .021 .147 .347 .000 .045 .243 .449 .001 .062 .277 .509
a .000 .060 .235 .435 .001 .089 .319 .542 .001 .111 .369 .607
o-i .013 .039 .118 .264 .022 .051 .197 .367 .030 .065 .220 .433
a 2 .017 .000 .000 .000 .023 .002 .000 .014 .035 .003 .003 .051

.05 .023 .128 .297 .475 .027 .176 .376 .576 .036 .180 .403 .633
a .028 .189 .394 .583 .029 .244 .472 .649 .037 .257 .490 .697
0-1 .077 .109 .218 .369 .094 .140 .278 .464 .083 .139 .309 .511
0-2 .081 .015 .006 .029 .092 .016 .017 .068 .077 .024 .033 .121

.10 0-3 .084 .222 .397 .563 .091 .267 .469 .636 .087 .273 .488 .686
a .089 .279 .481 .646 .089 .332 .552 .708 .085 .345 .575 .739

TABLE 5.8
EMPIRICAL SIZES OF t 2 (•) FOR p  =  1, NONPARAMETRIC ESTIMATION

a
n
4> 0

64
.1 .2 .3 0

128
.1 .2 .3 0

256
.1 .2 .3

a i .005 .030 .088 .174 .029 .049 .124 .254 .016 .041 .130 .300
0-2 .025 .005 .001 .000 .028 .008 .006 .020 .016 .004 .004 .032

.01 0-3 .026 .092 .194 .337 .030 .121 .265 .431 .021 .116 .286 .488
a .042 .123 .263 .391 .041 .156 .337 .503 .025 .160 .368 .568
Ol .101 .129 .184 .292 .100 .130 .226 .373 .077 .114 .244 .418
02 .090 .031 .015 .032 .092 .036 .038 .078 .081 .026 .036 .106

.05 03 .089 .190 .317 .438 .109 .220 .379 .533 .080 .214 .402 .599
a .098 .231 .376 .522 .115 .275 .449 .619 .080 .270 .483 .667
Ol .172 .192 .271 .363 .156 .200 .298 .445 .129 .185 .314 .491
0-2 .165 .091 .066 .100 .145 .084 .081 .136 .133 .068 .078 .162

.10 03 .162 .267 .380 .513 .156 .297 .453 .607 .135 .288 .483 .652
a .152 .309 .443 .592 .155 .337 .517 .684 .137 .340 .547 .723
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