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Abstract

This thesis concerns semiparametric modelling and estimation of diffusion models, and 
the application of these in mathematical finance. Two general classes of semiparametric 
scalar diffusion models are proposed, and an estimator of the drift and the diffusion func
tion based on discrete observations with a fixed time distance in between is defined. The 
asymptotic properties of the estimator is derived; in particular it is shown to be consistent 
and asymptotically normally. These semiparametric models can be applied to the pricing 
of financial derivatives. We assume tha t preliminary estimates of the drift and diffusion 
term are available, and give general conditions under which implied derivative prices cal
culated on the basis of the estimates will be consistent, and follow a normal distribution 
asymptotically. In particular, we verify these conditions for the proposed semiparametric 
estimator. The theoretical results are applied in an empirical study of a proxy of the Eu
rodollar short-term interest rate. We fit a semiparametric single-factor diffusion model to a 
data set of daily observations of the Eurodollar rate in the period 1973-1995. The resulting 
estimates of the drift and diffusion exhibit nonlinearities tha t standard parametric mod
els cannot capture. We test the most flexible parametric single-factor model against the 
semiparametric alternative, and reject the model. Furthermore, it is demonstrated that 
the two competing models lead to significantly different bond prices.
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Introduction

Continuous time stochastic processes are widely used in dynamic models in economics and 
finance to describe phenomena evolving randomly over time, see e.g. Bergstrom (1990) 
and Duffie (1996). In finance, these have been used in mathematical models in areas as 
diverse as portfolio management, term structure modelling and asset pricing theory. In 
asset pricing theory these have been extensively used in the derivation of pricing formulae. 
Since the now famous option pricing models by Black and Scholes (1973) and Merton (1973, 
1976), diffusion processes have played a vital role in this part of the finance literature. 
The main reason for the popularity of diffusion processes is tha t they enjoy a number of 
attractive properties which facilitates the theoretical analysis of the models. In particular, 
one has at one’s disposal the powerful tools found in stochastic calculus. W ith these tools, 
assuming tha t the fundamental asset prices follows a diffusion process, one can derive 
closed form expressions of a contingent claim using hedging and no-arbitrage arguments.

These continuous-time models are often calibrated and tested using historical data. For 
a review of the empirical work using continuous-time models in finance, we refer to Sun- 
daresan (2000). The implementation of the models very often involves an estimation step 
where the model is calibrated to the data set at hand. Most frequently, the economic 
variables of interest are observed a t discrete points in time, e.g. daily, weekly or monthly 
observations, so-called discrete observations. As a first step, one needs to choose a statis
tical model for the diffusion process in question. The second step will then involve finding 
an appropriate estimator of the (possible infinite-dimensional) unknown parameters ap
pearing in the model. The second step can become very involved due to the fact tha t 
analytical expressions of the conditional density, moments etc. of the discretely sampled 
process are not available.

In this thesis, we shall be concerned with semiparametric modelling and estimation of 
diffusion processes given discrete observations, and the application of such estimators in 
finance - in particular in the modelling of the term structure. My main contributions are 
found in Chapter 4-6, while Chapter 2-3 are introductory. Proofs of theorems and lemmas 
are found in the appendices situated at the end of each chapter. The outline of the thesis
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is as follows:

C h a p te r  2: E s tim a tio n  in  D iffusion M odels . We first introduce the class of diffusion 
processes and present some of basic properties of these, and then gives an overview of the 
literature on the estimation of diffusion models. We distinguish between three different 
sampling schemes (continuous record, discrete sample with shrinking time distance, and 
discrete sample with fixed time distance), and three types of models (parametric, semi
parametric and nonparametric). We pay particular attention to non- and semiparametric 
estimation methods which have proliferated in recent years. As part of the chapter, we 
therefore give a brief introduction to kernel- and series methods which are the two main 
approaches used in non- and semiparametric econometrics. The main conclusion of the 
chapter is tha t while for the two first sampling schemes estimators are derived in a fairly 
straightforward manner, the third one is more problematic.

C h a p te r  3: T erm  S tru c tu re  M odelling  w ith  D iffusions. One particular area where 
diffusion processes are widely used is in the modelling of the term structure of interest 
rates. In this chapter, we give an overview of the most im portant models proposed in the 
literature, and the implications for bond and interest rate derivative pricing are discussed. 
The main emphasis is on the class of single-factor models, a simple yet flexible class of 
interest rate models. Most of the proposed specifications in the single-factor case are fully 
parametric models. None of these have proved to be very good at describing the observed 
interest rates. In Chapter 4 we therefore propose two classes of semiparametric models 
which can be used to model the term structure, and in Chapter 5 demonstrate what con
sequences the use of fitted versions of these will have for implied bond and interest rate 
derivative prices.

C h a p te r  4: E s tim a tio n  in Tw o C lasses o f S e m ip a ra m e tric  D iffusion  M odels. We
here set up two general classes of semiparametric scalar diffusion models, and propose an 
estimator of both its nonparametric and parametric part given discrete observations with 
fixed sampling distance. The estimator of the parametric part is a maximum-likelihood- 
type, while the nonparametric part is estimated using kernel methods We derive the 
asymptotic distribution of the estimator under regularity conditions. This is followed by a 
discussion of the issue of semiparametric efficiency. We propose a 1-step Newton-Raphson 
estimator which should reach the effiency bound. A small simulation study examines the 
quality of the estimator in finite sample.

C h a p te r  5: E s tim a tio n  o f P a r t ia l  D ifferen tia l E q u a tio n s . Linear parabolic partial 
differential equations (PDE’s) and diffusion models are closely linked through the cele
brated Feynman-Kac representation of solutions to PD E’s. In asset pricing theory, this 
leads to the representation of derivative prices as solutions to PD E’s. We give a num
ber of examples of this, including the pricing of bonds and interest rate derivatives. Very 
often derivative prices are calculated given preliminary estimates of the diffusion model 
for the underlying variable. We demonstrate tha t the derivative prices are consistent and 
asymptotically normally distributed under general conditions. We apply this result to 
three leading cases of preliminary estimators: Nonparametric, semiparametric and fully
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parametric ones. In all three cases, the asymptotic distribution of the solution is derived. 
In particular, we consider the estimator proposed in Chapter 4. We demonstrate how these 
results can be applied in the presented examples from the asset pricing theory.

C h a p te r  6 : A  S e m ip a ram e tric  S ing le -F acto r M o d el o f th e  T erm  S tru c tu re .  This 
chapter is an empirical study where the results of Chapter 4 and 5 are employed in the 
modelling and estimation of a semiparametric single-factor interest rate model. We com
pare the fitted semiparametric model with standard fully parametric ones: First directly, 
by testing the fully parametric model against the semiparametric one. Secondly, we look 
at how much the bond prices predicted by the competing models differ; this yields an 
alternative measure of the performance of the models. The fitted semiparametric model 
picks up nonlinearities which the fully parametric model cannot capture. This leads to 
a rejection of the parametric model in favour of the semiparametric model in the direct 
comparison of the two fitted models. Moreover, the calculated bond prices implied by the 
two competing models are shown to be significantly different.

The chapters can be read independently of each other. This means however tha t some 
definitions, results etc. are repeated in the different chapters. I have tried to maintain the 
same notation throughout the thesis, but there may be some slight differences; this should 
hopefully not cause any confusion. Throughout the thesis, the following notation will be 
used:
R9 - the space of ^-dimensional real vectors
R9Xp - the space of q x p  dimensional real matrices
A t  - the transpose of any m atrix A
int (A)- the interior of any set A
C  - a generic constant
E  [•] - the expectations operator
var (•) - the variance operator
cov (•, •) - the covariance operator
1a  (•) - the indicator function for any set A
~  - ’is distributed as’
—>p  and —>d- convergence in probability and distribution respectively
{X*} - short for {Xf|0 <  t < T ]  for some 0 < T  < +oo. The value of T  will in most cases
be evident from the context; we shall specify T  when deemed necessary.
{xn} - short for {xn |l  < n <  N }  for some 1 < N  <  +oo. The value of N  will in most cases 
be evident from the context; we shall specify N  when deemed necessary.
For /  : R x 0  h  R, 0  C Rd, we shall use dlJ ef  (x ; 9) to denote d*d*f (x; 9) / d %xd^9. In 
some cases, we shall write /W  (x;9) for d * /(x ;0 ), /  (x; 9) for d$f  (x\ 9), and / ‘ (x; 9) for
a$f(x-,e).
For /  : R d x  0  i—> R, we shall use d £ f  (x; 9) to denote dn • • ■ dtdf  (x; 9) / d n x i  • • • didXd for 
any d-tuple of non-negative integers, a  = (z i,..., id).
For /  : R x 7i t—»■ R, 7i some function space equipped with a metric, we shall use 
V /  (x; ho) [dh] to denote the pathwise derivative w.r.t. h at the point ho E 7i and in



the direction dh e H .

1. Introduction



Estimation in Diffusion Models

2.1 Introduction

We here give a brief introduction to diffusion processes, present some of their basic prop
erties, and then give a review of the literature on estimation of diffusion models. This 
literature spans a period of over thirty  years and covers a wide range of different topics. 
We shall in the following try  to give an overview of the main results with emphasis on 
non- and semiparametric estimation of discretely observed diffusions. We have chosen to 
classify the results presented here along two dimensions: Along the first, we have the type 
of model and along the second, the type of sampling scheme. We shall focus solely on 
time-homogenous, stationary scalar diffusions. No formal proofs are given, but references 
to the relevant studies are given.

Along the model dimension we shall differentiate between the fully parametric, semi
parametric, and nonparametric case. Along the sampling scheme dimension, we assume 
tha t either of the three following samples is available: A continuous record of the process, 
a discrete sample with decreasing time distance between observations, and a discrete sam
ple with fixed time distance between observations. A loss of information occurs as one 
moves out along either of these two dimensions: Inference becomes more difficult as one 
moves from the first towards the third sampling scheme since less of the process has been 
observed. Similarly, as one moves from a fully parametric specification towards a nonpara
metric specification, less initial information about the observed process is available. As we 
shall see, the convergence rate will potentially slow down as we move out along either of the 
two dimensions. As an additional problem, both from a technical and practical viewpoint, 
it is not possible to derive explicit identifying relations for a discretely observed diffusion 
process except for a few specific (parametric) models. In particular, explicit expressions of 
(conditional) moments, and the transition density are not available in general with these 
being required as input in e.g. GMM and MLE. This makes it difficult to set up an es
tim ator and show it has the desired properties, and even if so the actual implementation 
will require either approximate or simulation-based methods.
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The above problems associated with the estimation given discrete observations can 
be circumvented by assuming that the time distance between observations go to zero 
asymptotically. In this setting, the standard strategy is first to define an estimator of 
the continuously sampled process, and check th a t this has the desired properties. Then 
one can normally construct a suitably discretised version of this which can be used for 
a discrete sample. The discretisation error due to the discrete approximation will vanish 
asymptotically if the time distance between observations goes to zero sufficiently fast. This 
approach will unfortunately lead to an asymptotic bias when one assumes a fixed positive 
time distance between observations.

The chapter is organised as follows: First, in Section 2, we introduce the class of diffusion 
processes and some of its im portant properties. In Section 3, we then tu rn  to the question 
of estimation where we first define the data generating process, and the three sampling 
schemes in question: Section 3.1 deals with the fully parametric case, Section 3.2 with the 
nonparametric model, while the semiparametric case is treated in Section 3.3. For each 
type of model, we differentiate between the three sampling schemes. Finally, we conclude 
in Section 4.

2.2 Diffusion Processes

We consider a process {X t}  taking values in R9. The process is assumed to  solve a stochastic 
differential equation (SDE) of the form

dX t =  fi (t, X t) dt + a  (t, X t) dWt (2.1)

defined on a filtered probability space P)  with associated filtration {Ft}- The above 
formulae should be read as

X t = X o +  f  f i ( s ,X s) d s +  [  a  (s, X 8) dWs,
Jo Jo

where {W t} is a ^-dimensional standard Brownian motion. The function /x : [0, oo) x R ? h  
R9 is normally called the drift term while a2 : [0, oo) x R9 i—► R9*9 is called the diffusion 
term. The drift and diffusion term  can be interpreted as the instantaneous conditional 
mean and variance respectively,

=  Um ■ZJpft+A - X t \Xt = x ] ,

<t2 («,x) =  ^ im £ [ (X ,+ A - X ()(X t+ A - X () '1X t =  x ].

Further introduction to and treatm ent of stochastic differential equations and diffusions 
can be found in, amongst others, Karlin and Taylor (1981), Karatzas and Shreve (1991), 
Rogers and Williams (1994, 1996). We shall assume tha t a unique weak solution to (2.1) 
exists; see Karatzas and Shreve (1991, Section 5.2) for a formal definition of this concept. 
Sufficient conditions for this to hold can be found in the references given above. In most
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of the following, we shall only be concerned with time-homogenous SDE’s,

dX t =  p (X t ) dt + tJ (X t) dWu  (2.2)

where the drift and diffusion term do not depend directly on the time param eter t.
The conditional distribution of X t+& conditional on X t  is given by the transition density 

p (t +  A, -\t, x). For the time-homogeneous SDE, p  satisfies p (t +  A, -|£, x) = p& (*|x). Only 
in a few special cases is it possible to obtain an analytical expression of p. Under suitable 
conditions, cf. Karatzas and Shreve (1991, Section 5.5) and Meyn and Tweedie (1993),
there exists an invariant density 7r for the time homogenous model.

In the univariate case (q = 1), one can furthermore derive an expression for 7r,

7r (x) =  [Ma2 (x) s (x)] 1 (2.3)

where s(x ) =  exp[—2 f*mp(y) /c r2 (y)dy\ is the scale function for some x* E I , where 
I  = (Z,r), —oo <  I < r <  +oo, denotes the domain of the process, and M  > 0 is a 
normalising factor. If the process is initialised with X q ~  7r, we obtain a stationary and 
ergodic solution to (2.2). The distribution of the stationary solution {Xt} is denoted Pn. 
Observe th a t the relation (2.3) can be inverted to express p  (cr2) in terms of 7r and a2 (p):

(2-4)

a2 W  =  VP a  I  P ^  dy' (2-5)n (x ) Jl
The class of diffusion processes proves to be closed to smooth transformations. For any 

twice differentiable function /  : R9 R, the process Yt = f  (Xt) solves

dYt = L t f  (X t) dt +  Qxf (X t ) a  (£, X t) dWt (2.6)

where Lt is the so-called infinitesimal generator defined by

T \ \ d f  (x) 1 o \ d2f  (x)Ltf  =  £  M t , *) - ^ -  +  2 E  (*. *) >
i=l i,j=1 J

see Karatzas and Shreve (1991, p. 281). This is the celebrated l t d ’s Lemma. Taking con
ditional expectations in (2.6), one obtain for t  < T,

E  [ /  (X T ) ]Xt =  x\ =  [  L ,E  [ /  (X .)  \X,=*x]ds.

Differentiating w.r.t. t  on both sides of the above equality, we obtain tha t the function 
u (t, x) = E [ f  (X t ) |Xt = x] solves the partial differential equation
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A formal proof of the above can be found in Karatzas and Shreve (1991, Theorem 5.7.6). 
This is the simplest version of the Feynman-Kac formula.

2.3 Estimation in Scalar Diffusion Models

We shall in the following discuss the estimation of the drift and diffusion function in a 
parametric, nonparametric and semiparametric framework. Throughout this section, the 
data generating process {X t } is assumed to be stationary and solve the univariate SDE

dX t = fi0 (X t ) dt +  <J0 (X t) dWt , (2.8)

where {Wt}  is univariate. We shall not discuss the estimation of multivariate or nonsta- 
tionary models. Estimation methods for multivariate parametric diffusion models can be 
found in e.g. Al't-Sahalia (2003), Bibby and S0rensen (1995), Duffie and Singleton (1993), 
and Broze, Scaillet and Zakaian (1998). Bandi and Moloche (2001) and Chen, Hansen and 
Scheinkman (2000b) consider nonparametric kernel and sieve estimators respectively for 
multivariate processes, the former allowing for nonstationarity. Al’t-Sahalia (2002) gives 
a general result for the parametric MLE of nonstationary scalar diffusions. Bandi and 
Phillips (2003) and Nicolau (2004) develop kernel estimators for nonstationary scalar dif
fusions.

The three sampling schemes we consider are the following:

CS [Continuous sample]: We have observed {At|0 <  t  < T }  for some 0 < T  < +oo.

DS In-fill [Discrete sample, A —> 0]: We have observed {XiA|0 <  i < n]  with T  = nA, 
and A —► 0.

DS Fixed [Discrete sample, A > 0 fixed]: We have observed {XjA|0 <  i < n]  with 
T  =  nA, and A > 0 fixed.

In the two discrete sample schemes, we assume for notational simplicity th a t the ob
servations are equidistant; all of the following results also hold with A varying across 
observations. The asymptotics of the estimators considered in the following will in all 
three schemes be based on T  —> oo.1 Kutoyants (2004) gives an in-depth treatm ent of the 
first case. A comprehensive overview of the literature on the estimation of diffusion models 
covering all three sampling schemes can be found in Prakasa Rao (1999).

2.3.1 The Parametric Model 

We consider the following model,

d X t =  /i (X t ; 9)dt + a (X t \ 9) dWt (2.9)

1 In the two first sampling schemes, consistent estimators of the diffusion function can be constructed for T  < oo 
fixed. One cannot estimate the drift function consistently however in this case why we throughout consider the case 
T  —► oo.
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where fi (•; 9) and cr2 (•; 9) are known functions up to the parameter 9 G 0  C R d such tha t 
/i( .;0 o) =  /xq (•) and a 2 (-;9o) — Og (•) for some 9 q G 0 . In the following, we present the 
MLE for each of the three sampling schemes in question.

CS. In this setting, the log-likelihood conditional on the initial value is given by

see e.g. Kutoyants (2004, Theorem 1.12). Observe tha t we in fact are able to extract Og (•) 
in a deterministic manner since the quadratic variation of the process, {(X )t}, defined by

W r  =  „ Mm nE ( ^ , +1- ^ ) 2 ,
1=1

r p

where 0 =  to < h  • • • < tn = T,  satisfies (X ) T — JQ (Xt) dt. So by differentiating 
(X ) t w.r.t. t we are able to estimate w ithout error <7g (x) for any x G {A*|0 < t <  T}.  
We substitute the parametric version of the diffusion term for (•) in the log-likelihood 
function in (2.15), and obtain the MLE as

X f i  f T n ( X f , 0 ) JV 1
0 = argm ax .

Under regularity conditions (see, for example, Kutoyants (2004, Theorem 2.8), the MLE 
satisfies y/T(9 — 9q) —>d N  (0, /J"1) with

I q =  E„
( d0n ( x o-,eo) ' 2 
\  <^(X 0)

(2 .11)

DS In-fill. First observe tha t in finite sample, we can no longer determine <Tq (•) so we 
now have to estimate this. We discretise Lj. (9) and obtain

^(XjA',9) ( v  v jj?jXi&]9)^
^  a* (X iA; 0) ^ < i+1>A X iA > 2 (T2 (X iA; 0)

t  ̂ £ 3 ) (X<«>a - X *A - f M (** fl)) ■
In the special case with 9 = (a ,a -2), /x(x;0) =  n(Xi& ;a),  and a2 (x;9) = cr2, Yoshida
(1992) first defines a preliminary estimator of a 2, u2 =  T -1 (-^(i+i)A — ^ » a ) 2 and
then use this to estimate a , a  =  arg max**^ L cn (a , a2) . Under regularity conditions, 
Yoshida (1992) shows that

(a 2 -  <T§) - > d N ( 0 , 2 o $ ) ,  V t  (a  — a 0) — IV (0, I q 1) ,

where /g defined as in (2.11), and the two estimators are asymptotically independent. 
Thus, a  inherits the properties of the MLE given a continuous sample. Also observe that

L Cn{0) =
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while we now cannot estimate the diffusion term  without error, its estimator converges 
with a faster rate than the one associated with the drift term. See also Dacunha-Castelle 
and Florens-Zmirou (1986) and Florens-Zmirou (1989).

D S F ix ed . The above discrete time estimator 9 will be biased if A > 0 remains fixed since 
the discretisation error does not vanish, cf. Florens-Zmirou (1989). To avoid this type of 
bias, we need to use the actual transition density of the discretely sampled process. As 
noted earlier, the transition density cannot be written on analytical form however, except 
in a few simple cases. But it proves possible still to derive the properties of the (infeasible) 
MLE. A'lt-Sahalia (2002) shows th a t under regularity conditions the estimator

6 — arg max L n (9) ,
0€0

where

L» W  =  (Ai+i|Xi; e ) , (2.12)
i=l

is asymptotically normally distributed,

V £(0 - 0O) ->d N { 0 . 0

where Iq = E  [dee logpA (Aj+i|Xi; #o)] is the information matrix. The MLE can be calcu
lated using numerical methods. There is a number of different methods in the literature 
based on either approximations of p  or simulations. Approximate methods have been de
veloped in for example Al't-Sahalia (1999, 2002) and Lo (1988), while simulation-based 
methods can be found in for example Nicolau (2002) and Pedersen (1995).

2.3.2 The Nonparametric Model

In this section, we present a number of nonparametric estimators proposed in the litera
ture. Nonparametric estimators is an alternative to standard parametric ones, imposing 
no parametric restrictions on the statistical model. This means tha t the risk of misspeci- 
fication is smaller; on the other hand nonparametric estimators often suffer from a slower 
convergence rate compared to parametric ones. Kernel and sieve estimators are predom
inantly used in nonparametric statistics. In the following we give a quick introduction 
to these two types of estimation methods. For a general introduction to nonparametric 
methods in econometrics, we refer to Pagan and Ullah (1999). A good introduction to 
kernel and sieve-methods can be found in Silverman (1986) and Chen (2004) respectively. 
Applications of kernel estimators to stochastic processes can be found in Bosq (1998). 
Here, we shall mainly focus on kernel estimators.

Assume tha t we wish to estimate a density function without imposing any parametric 
assumptions on its form. One can in this case apply a standard histogram estimator for 
some given binwidth. The kernel density estimator can then be seen as a generalised version 
of this simple estimator. These are local estimators tha t estimate the density at a point of 
interest by smoothing the observations around this point. The basic ingredients in these 
type of estimators are a kernel K  : R R and a bandwidth h > 0. The kernel is normally
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assumed to satisfy f  K  (x )d x  =  1, \\K \\2 =  f  K 2 (x )d x  < oo and f  x 2K  (x )d x  <  oo as 
a minimum. Standard densities are normally used as kernels, e.g. the Gaussian one. We 
write Kh  (#) =  K  (x/h) jh  in the following.

Sieve or series estimators are of a more global nature. The idea is to assume tha t the 
function of interest belongs to a known (infinite-dimensional) function space. This is then 
approximated by a finite dimensional function space (the sieve space) which grows dense 
in the function space. A density can for example be expressed in terms of its Fourier 
coefficients. One may then estimate a finite number of the Fourier coefficients and then 
use these to estimate the density itself.

Density Estimation
We first set up a nonparametric estimator of the marginal density tt.

CS. Here, we estimate the marginal density n  by

*  ^  =  ^  Jo Kh ^  ~  d t'

This estimator was first proposed by Banon (1978) and Nguyen (1979). Assuming tha t 
they exist, the derivatives of the density can be estimated by

^ (r) ^  =  Th? J0 ^  (X t  ~  ^  dt' r ~ 1'

Under regularity conditions,

v'Tfc2’-+1(tf<r> (x) -  4 r) (x)) - * d  N  (o,7T0 (x) || i f (r)||l)  , (2.13)

provided T h 2r+l —> oo and T h 2r+3 —> 0. In certain cases, the super-optim al/parametric 
convergence rate, v/T, can be obtained, see Bosq (1998). This is special to the case of 
continuous sampling.

DS In-fill/Fixed. We discretise the continuous sample estimator and obtain

£  k V  (XiA  -  x) A  =  ^  X X ’ (* .A  -  X ).
1=1 2=1

We use this estimator for both of the discrete sample schemes. In the infill-case, (a;) 
satisfies (2.13), while in the fixed time distance case,

V n h 2r+1(7r ^  (x) -  7Tq"̂  (x)) —>d N  ^0,7To (x ) ,

provided nh2r+1 —> oo and nh2r+3 —> 0, cf. Robinson (1983). Observe th a t here the same 
estimator works both for the in-fill and fixed A case since we only wish to obtain infor
mation about the marginal distribution, but the asymptotic properties differ in the two 
sampling schemes.

Drift and Diffusion Estimation
We now turn  to the question of estimating the drift and diffusion function nonparametri-

7rM (x) =
T h T
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cally.

CS. As in the parametric case, the diffusion term can here be determined without any 
uncertainty. So again we shall only be concerned with the estimation of the drift term. We 
here present two kernel estimators. Banon (1978) proposed to plug the known diffusion 
function into (2.4) together with kernel estimators of 7r and One could alternatively 
use the following kernel regression estimator,

Jo h ®) dt

as suggested by Geman (1979). The discretised version of this is examined by Bandi and 
Phillips (2003), see below. O ther studies of nonparametric drift estimation are found in 
Geman (1980) and Pham (1981).

DS In-fill. In this setting, we also need to estimate the diffusion term. Florens-Zmirou
(1993), Jiang and Knight (1997) and Bandi and Phillips (2003) considered the following 
kernel estimator,

.t2 , r> Efal Kk ( X *  -  x) (X(<+1)A -  X iAf  
{ ) EIU K h ( Xa -  x) A ' ( 5)

Under regularity conditions,

V n h i a 2 (x) -  <7? (*)) - * d  N  ( 0, 4||jg^ W
V 7To

if nh  —► oo and nh3 —> 0. Having obtained this, we may now estimate fi (x) as before 
by plugging the kernel estimator of a2 (x ) into (2.4) together with the kernel estimator 
of 7r(x) and tt^1) (x ), cf. Jiang and Knight (1997). By the functional delta-method, this 
estimator, ji(x),  satisfies

i i* (i)ib*8 ( * av fh?{ jx  (x) -  ijlq (s)) — N  [ 0,
47T0 (x)

given T h 3 —► oo and T h 5 —► 0. This estimator has convergence rate y/Thz which is slower 
than the one of a2 (x). In fact, one can consistently estimate a2 (x) given observations in 
the interval [0, T] with 0 < T  < oo fixed, while fi (x) can only be estimated consistently 
as T  —> oo. In this sense, ^i(-) is harder to estimate than a2 (•).

Bandi and Phillips (2003) constructed a discretised version of the alternative drift esti
m ator proposed in (2.14),

- ,   ̂ E ”=i Kh (XiA -  x) (x (i+1)A -  X ,A)
HX> Z t i K h ( X i A - x ) A

It can be shown that

Vfh(A(x) -  (x)) - . d N  (o, l|g|l^°'(x)
\  7T0 (x)
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as T h  —► oo and T h 3 —► 0. Again, fi(x)  has a slower convergence rate than  d 2 (x), but 
faster than ji (x).

The discretisation bias in finite sample has been analysed in Nicolau (2003). Stanton 
(1997) proposed alternative kernel estimators based on higher order approximations yield
ing a smaller discretisation bias. On the other hand, as demonstrated in Fan and Zhang 
(2003), the resulting asymptotic variance of Stanton’s estimator increases.

DS Fixed. In this case, a completely different approach compared to the CD and DS 
In-fill case has been developed. The approach is based on the infinitesimal operator of the 
diffusion model, and the conditional expectations operator of the sampled process. First, 
as shown in Hansen et al (1998), on a suitable domain V  the infinitesimal operator L  
has a discrete spectrum {^}  with associated eigenfunctions {ipj}; we have ordered the 
eigenvalues such th a t 0 =  So <  <  .... Defining the conditional expectations operator A

by
( f ) ( x )  = E [ f ( X A ) \ X 0 = x],  

one is able to realise tha t A  also has a discrete spectrum such tha t

oo

A  a  i f )  (x) =  exp [ - A Sj] E v [ /  (X0) ipj (X0)] (®),
i=o

cf. Chen et al (2000a,b). Next, the eigenvalues and functions can be identified in the 
following manner: F irst observe tha t <5o =  0 and ifjQ (x) =  1. The following eigenvalues 
then satisfies

exp [-<y  =  sup E v [V> ( X A ) (-Xb)], 

with the eigenfunction • being the solution to the above optimisation problem. Here,

v j = {xi>ev\Ev[i> ( * o )  t i  (* o )]  =  0, i = o , j  - 1, e * [V-2 (* ( ,)]  =  i } •

So one can calculate the eigenvalues and -functions recursively. It can also be shown tha t 
for any eigenpair (Sj, ipj), j  > 1, the diffusion coefficient satisfies

t 2 / r \ - S j f , x i>j(y)iTo (v )dvo \ ) i t / \ t \ • (2.16)Wj {X) 7T0 (X)

Chen et al (2000a,b) suggest the following estimation procedure: First, by replacing the 
expectations in the above optimisation problem by the empirical counterpart and approx
imating the eigenfunction space using the method of sieves, estimators of the eigenvalues 
and -functions can be obtained. These are plugged into (2.16), yielding a nonparametric 
diffusion estimator. Finally, using the relationship (2.4), an estimator of the drift can be 
obtained. Darolles and Gourieroux (2001), Gobet et al (2002) give further results for this 
nonparametric estimator.
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2.3.3 Two Classes o f  Semiparametric Models

As an intermediate step between the fully parametric and nonparametric setting, the class 
of semiparametric models are situated. This is a very large class of models. Here, we 
shall only consider the case where one either parameterises the drift or the diffusion term 
leaving the other term unspecified. This gives us the following two classes of semiparametric 
models:

d X t = p ( Xt ) dt + o (.X t ; 9) dWu  (2.17)

or
d X t =  p (X t ; 9)dt + a ( X t) dWt . (2.18)

Since the two classes of models above are nested within the fully nonparametric model, one 
natural way to estimate any of the two models is as follows: First, obtain nonparametric 
estimators of both p  and cr2. The unspecified part is then consistently estimated by the
nonparametric estimator, while the parametric part can be estimated by choosing 6 as the
value of 9 G 0  tha t minimises some functional metric between the fully parametric form 
and the preliminary nonparametric estimator. For the model in (2.17), we may then define 
the estimator of 9 as

0 =  argm m  i  ̂  [a2 (X iA) -  a 2 (X iA\ 0)]2 ,
1 = 1

where a2 (•) is a preliminary nonparametric estimator of a 2 (•), while for the model in 
(2.18), we define

9 =  arg min -  V '  [p (X iA) -  p  (X iA ; 9)]2 ,
0G9 Tl .t=l

where p  (•) is a preliminary nonparametric estimator of p  (•). The squared distance metric 
could of course be substituted for alternative metrics.

CS. To the author’s knowledge semiparametric estimators have not been considered for 
this sampling scheme.

D S In-fill. The strategy proposed above has been investigated in Bandi and Phillips 
(2000) using the kernel estimators proposed in Bandi and Phillips (2003) as preliminary

a
estimators. They derive the asymptotic distribution of 9 and show tha t it is yfn- and 
x/T-asymptotically normally distributed for models in Class 1 and 2 respectively.

D S F ix ed . Following the strategy of Bandi and Phillips (2000), one should be able to 
obtain similar results when substituting the kernel estimator of Bandi and Phillips (2003) 
with the sieve-estimator of Chen et al (2000a). The asymptotic distribution is not easy to 
obtain however in this case.

Ai't-Sahalia (1996a) considered a special case of the class of models in (2.18). He assumed 
the following specification,

dX t =  0  (a -  X t) dt +  (j ( Xt ) dWu (2.19)
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for which it holds that

£[X(i+i)A |X jA] =  a  +  e -^ A (X iA -  a ) , (2.20)

He then proposed to estimate 9 =  (a, (3) by generalised least squares yielding an estimator 
of the drift, /x (x) =  ft (x — a).  Next, substituting the parametric estimator of /x (x) and 
the kernel estimator of 7r(x) into the relation (2.5), an estimator of a 2 (x) is obtained. It 
is showed in Ai’t-Sahalia (1996a) tha t

V^h(o*  (x) -  al  (x)) - <  N  (o , l|g j y )  .

The conditional mean expression (2.20) allows Al’t-Sahalia (1996a) to estimate 9 sepa
rately from the nonparametric part. But this expression is special to the model (2.19); in 
the general case where fi(x-, 9) is non-linear in x, one cannot derive a regression equation 
as the one above. In particular, the conditional mean (or any other conditional moment 
for tha t sake) will be a function not only of 9 but also a2 (•). Thus, in the general case 
other methods have to be employed. In Chapter 4, one such method is proposed which 
covers virtually any model in either of the two classes of semiparametric models.

2.4 Conclusion

We have in this chapter presented the main results in the estimation of diffusion models 
in a parametric, semiparametric and nonparametric setting respectively. It was observed 
tha t the case where a continuous record or a discrete sample with vanishing time distance 
between observations were available was relatively easy to deal with. However, estimation 
given a discrete sample with fixed time distance between observations created additional 
problems in all three types of models. In particular, it proved difficult to derive analytical 
expressions which allows one to identify the drift and diffusion term. And even if one has 
managed to derive such, one will have to rely on numerical approximations in order to 
implement the resulting estimator.



Term Structure Modelling with Diffusions

3.1 Introduction

The term structure enters as an input in many macroeconomic models. It is also required 
as an input in asset pricing models in general and interest rate derivative pricing models 
in particular. In the mathematical finance literature, the term structure is often modelled 
using diffusion processes. The use of these facilitates the theoretical analysis since one 
has at his disposal the whole machinery of stochastic calculus. In-depth treatm ent of the 
properties of this type of term structure models and can be found in for example BjOrk 
(1998, Chapter 15-17), Duffie (1996, Chapter 7). For a discussion of the modelling of the 
diffusion processes used to describe the term structure dynamics, we refer to Rogers (1995).

In this chapter, we give a brief introduction to the components entering term structure 
diffusion models, present some im portant results concerning bond and interest rate deriva
tive pricing, and give a review of the various term structure diffusion models proposed in 
the literature. We put special emphasis on the class of so-called single-factor models. We 
shall not give any formal proofs of the results presented in this chapter, but merely refer 
to the relevant studies where these can be found.

We first set up the basic framework of a general term structure model in which one can 
price derivatives in Section 2. Assuming that the model is driven by a diffusion process, 
we present closed form expressions of bond and interest rate derivative prices. We then 
introduce the class of factor models in Section 3, while Section 4 deals with the class of 
so-called Heath-Jarrow-Morton models.

3.2 The Arbitrage-Free Term Structure

In this section, we introduce the framework we shall work within, and give some gen
eral results which are useful in the construction of term  structure models and pricing of 
contingent claims.
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We start out with some basic definitions. By a zero-coupon bond with maturity a t time 
T  > 0, we mean a financial security which pays the owner 1 unit of cash a t time T; we 
shall also refer to such a security as a T-bond. We denote the price of a T-bond at time 
t <  T  by Bt (T ). We assume th a t for any given T  >  0, {Bt (T)} follows a strictly positive, 
adapted process on the probability space (P, f2,.P) with an associated filtration {Pi}. We 
then define (assuming the derivative dBt (T) / d T  exists)

•  The yield to maturity: Yt (T ) =  log (Bt (T)) /  (T  — t).

•  The instantaneous forward rate: f t  (T) = d  log (Bt (T)) /d T .

•  The short-term interest rate: rt = f t  (t).

It is very much standard in the term  structure literature to construct models in terms 
of either of the three variables introduced above. One can readily invert the first two of 
the above definitions and express any zero-coupon bond in terms of either the yield or the 
forward rate curve:

B t(T )  = exp [(T — t)Y t  (T )], 

B t (T ) =  exp f -  f  f t  (s) ds (3.1)

In relation to the short-term interest rate one defines the so-called money account, /3t , 
given by

A =  exp /  rsds
Jo

or equivalently d(3t =  rt/3tdt with (30 = 1. Intuitively, A  represents the amount of cash 
accumulated at time t if one starts with one unit cash a t time zero and continually rolls 
over a bond with infinitesimal time to maturity. The asset A  can be interpreted as a 
"locally risk free" asset since its infinitesimal rate of return, r t , is known at time t.

Finally, we introduce a so-called derivative or contingent claim. This is a contract tha t 
pays the owner an adapted dividend stream {dt} until m aturity T  > 0 at which time he 
receives a pay-off X t • The family of bond prices is the simplest example of a derivative 
where dt = 0 and X t  = 1.

We say th a t the family of bond prices {B t (T) \T > 0} is arbitrage-free if

1. B t  (T) = 1 for any T  > 0.

2. There exists a probability measure Q  equivalent to P  such th a t the process Zt (T) =  
Bt (T) /A  is a martingale under Q,

E f l [ Z t (T ) \ r .]  = Z , ( T ) .

The probability measure Q is normally called the risk-neutral measure, while P  (which is 
the measure under which we observe the prices) is denoted the physical measure. Assuming
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the existence of a risk neutral measure Q, the price at time t < T  of a claim satisfies

n, (T) =  Efi /  ds exp I — J  rudu ds +  X t  exp f TJ  rudu f t

In particular, the price of a bond is given by

B t (T) =  E 9 exp [ - / TadS Tt

Thus, under the additional assumption of the existence of a risk-neutral measure, we 
can also invert w.r.t. {rt}. An im portant class of interest rate derivatives is where the 
dividend stream and the terminal pay-off both are functions of the short term interest 
rate, dt = d (£, rt) and X t  =  c (r r ) .

So in the term structure modelling, one is interested in constructing a measure Q such 
th a t 2. above is satisfied since this gives access to a closed form expression of any claim. 
For the specific model, one needs to establish the existence of Q and derive the dynamics 
of the variables of interest under this measure.

A leading case where one can establish the existence of Q is the one where {r*} is a 
diffusion process. Assume tha t {rt} solves a stochastic differential equation (SDE) of the 
form

drt =  fadt -I- a jd w t,  (3.2)

where {fit } and {cr*} are R- and R9-dimensional adapted processes respectively, while {wt} 
is a g-dimensional standard Brownian motion. Then for any adapted R9-valued process 
{A*} such tha t the so-called Doleans exponential, {St (A* W)} defined by

'a j2 ds£ t ( \ *  W ) — E p  exp /  Asd W „ - i  /  ||A,
L Uo 1 Jo

is a P-martingale, there exists a unique risk-neutral measure Q under which

drt = {m  ~  a t}dt  +  a jd W t ,

where {Wt}  is a g-dimensional standard Brownian motion under Q. Furthermore, the 
T-bond under P  solves

TdBt (T) =  B t (T) {rt +  A*' a t}dt +  B t (T) (T) dWt

while under Q,
dBt (T) =  B t (T) n d t  + B t (T ) s j  (T ) dWt

for an adapted process {st (T)} satisfying St (T) = atdB t  (T) /drt.  This means tha t under 
the physical measure the instantaneous returns from holding the bond differ from the short 
term interest rate rt by A J  St (T ). Thus A J  St (T) measures the risk premium  for the T- 
bond, i.e. the rate of return over the risk free rate commanded by a T-bond. In particular, 
for q =  1, the quotient Xt =  At st (T) / s t (T) can be interpreted as the risk premium per
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unit of volatility. This quotient, A*, is often termed the market price of risk. Observe tha t 
{At} does not depend on T  such tha t all bonds will have the same market price of risk.

While we have been able to derive a closed form expression of any claim, it cannot be 
implemented before we have chosen the market price of risk process, {At}. Often this is 
chosen such tha t the implied bond prices match the observed ones.

3.3 The Multi-Factor Model

Above we derived closed form expressions of any claim in a fairly general term  structure 
model. This model is however so general tha t it cannot be calibrated nor implemented 
as it is. In the following, we shall further restrict the diffusion model in (3.2) to  allow 
for actual calibration and implementation. We assume th a t a number of factors drive the 
short rate, and tha t these factors define a Markov process. This class of models are termed 
multi-factor models.

We assume tha t
n  = R {F t) (3.3)

for some twice differentiable function R  : R9 i—► R, and some g-dimensional process {i7*} 
which solves a SDE of the form,

dFt = n  (t , Ft ) dt + a  (t , Ft ) dwt , (3.4)

under P  where p : [0,oo) x R9t-»R9, a  : [0, oo) x R9i—dR9*9, and {wt} is a g-dimensional
Brownian motion. The variables in {Ft} are normally referred to  as the factors. These can
either be chosen to be economically meaningful variables or some latent ones of unknown 
identity. By I t6’s Lemma, we obtain tha t {rt } also solves a SDE. Thus, the multifactor 
model (3.3)-(3.4) is a special case of (3.2), and the pricing formulae in the previous section 
are valid for the multi-factor model.

A very popular class of factor models are the affine ones as proposed in Duffie and Kan
(1996) and Duffee (2002). We assume that

n  = £o +  ST Ft ,

and
dFt =  ( a -  B F t) dt + E S \ ,2dwt

where B  and E are q x ^-matrices, a is an <7-vector, and St is an ^-dimensional diagonal 
matrix with diagonal elements

[St]a = ai  +  Pi Ft-

Finally, the market price for risk is an g-dimensional vector which is assumed to satisfy

A t = Std + S t D F t
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where d is an g-dimensional vector, D  an q x g-matrix, and St is a diagonal matrix with

[5 - 1  _ /  (ai + PjFt)-1'2, (ai + 0jFt) - 1/2>O
t n |  0, otherwise

This special structure ensures tha t the factor dynamics are affine both under the physical 
and risk-neutral measure. This in turns allows one to derive analytical expressions of the 
bond prices and various interest rate derivatives as demonstrated in Chacko & Das (2002).

Another special case within the class of factor-models is when q =  1. Assuming Ft = rt 
(such tha t R  (a;) =  x), we obtain the class of so-called single-factor models where the short 
term interest rate is a Markov process,

drt =  fi (t, rt) dt + a  (t , rt ) dwt ,

with {wt} being one-dimensional. Assume additionally tha t the risk premium process 
satisfies

At =  A (£, rt ) 

for some function A. We then obtain tha t

drt =  / /  (£, rt) dt + a  (t , rt) dWt , fix (£, r) = fi (£, r) -  A (£, r) a  (t , r)

under Q. Thus, {rf} is also a Markov process under Q, and we have tha t n t (T ) =  u (£, rt ) 
for some function u. Using the Feynman-Kac formula, the valuation function u  solves the 
following fundamental PDE,

&u \ / x du  X o * \ d2u , .  .T t + t i  { t , x ) ^  + - a  ( ( , ! ) _ +  r ) = 0,

with terminal condition u  (T , r) =  c (r).
In the following we present some of the specifications of fi and a2 in the single-factor 

model suggested in the literature. For a more detailed discussion of these and other models, 
we refer to Rogers (1995). The first model for the short term interest rate was proposed by 
Merton (1973). He suggested to model the short-term interest rate as a Brownian motion 
with drift,

drt = ^d t + adwt.

This model has the unfortunate property tha t with positive probability rt < 0. It is 
furthermore non-stationary and exploding. Vasicek (1977) defined {r*} as an Ornstein- 
Uhlenbeck process,

drt = /3 ( a -  rt ) dt +  adwu

where 01,$  >  0. There exists a stationary solution to this SDE, but again rt < 0 with pos
itive probability. Cox, Ingersoll and Ross (1985) (CIR) dealt with this problem, modelling 
{rt } as the solution to

drt = 0  ( a -  rt) dt + a^/r[dwu
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where a, (3 > 0. Under suitable param eter restrictions, {rt} is a stationary process on the 
domain I  =  R+. Observe tha t all these three models belong to the affine class of factor 
models. More advanced parametric specifications have been proposed in the literature. For 
example,

Ait-Sahalia(1996b): drt = {PQ +  P in  +  P2rt +  Pzrt l } d t  + \jcr<s + crin +  a 2r] dwt ,

Conley et al.(1997): drt = {/?0 +  P in  +  P2rt +  Pzrt 1} ^  +  arfdwt,

Ahn and Gao(1999): drt =  {P0 +  P in  +  P2r t}  dt +  yjao +  a i n  +  a2r\dwt.

In the financial industry, the above models are often generalised to allow for time- 
dependent parameters. This leads to the class of time-inhomogenous models. Ho and Lee
(1986) proposed the first specific time-inhomogenous model, letting the parameter a  =  at 
in the Merton-model to be time-dependent,

drt = cxt dt + adwt.

Similarly, many of the other time-homogenous models presented have been extended to 
allow for time-dependent parameters, see e.g. Hull and W hite (1990) for extended ver
sions of the Vasicek- and CIR-model. The advantage of these models is tha t they can be 
calibrated on a daily basis to deliver a perfect fit of the current yield curve, something 
the corresponding time-homogenous models very often fail to do. This is very appealing 
from a practical point of view. On the other hand, these models say nothing about the 
dynamics of the time-varying parameters, and the they are therefore not very useful in 
predicting future yield curves which is needed in a bond and option pricing scenario.'

The specification of {A*} is still an open question. A relative simple specification has 
been favoured in the literature facilitating the calibration of the model and the calculation 
of the implied bond prices. In particular, a number of studies has chosen At to be constant, 
as for example in Vasicek (1977) and Ai't-Sahalia (1996a).

3.4 The Heath-Jarrow-Morton Model

Instead of modelling the short-term interest rate, Heath, Jarrow and Morton (1991), HJM 
henceforth, assumed that the forward rate with m aturity at time T  solved a SDE,

dft (T) = f t  (T) dt + o-J (T) dwt

under P , where {/j,t (T)} and {at (T)} are adapted processes taking values in R and M.q 
respectively while {wt} is a g-dimensional Brownian motion. A major advantage of this 
class of models over the factor models introduced in the previous section is th a t the HJM- 
model allows for a perfect fit of the current yield curve - this is simply chosen as the initial 
condition of the forward curve, /o (T). The bond prices can be recovered from the formula 
(3.1).
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As before we examine under which conditions no arbitrage occur. Assume tha t there 
exists an adapted R9-valued process {A*} such th a t the associated Doleans exponential is 
a P-martingale, and

where

o't (T ) = j t a t (a) ds.

Then there exists a unique risk-neutral measure Q. Under Q, the forward rate satisfies

dft (T) =  a l  (T) a \  (T) dt +  a j  (T ) dWt ,

and the bond prices

dBt (T) =  rtB t (T) dt +  a*t (T) B t (T) dWu

where {W t} is a g-dimensional standard Brownian motion. An im portant point here is 
tha t under Q the forward rate and bond dynamics are characterised by the diffusion term 
at (T ) alone - the drift term is of no importance. Thus, in order to price claims one only 
needs to specify and calibrate the volatility term.

A number of specific single-factor models can be shown to be a special case of the general 
HJM-model. For example, the Ho and Lee (1986) model can be w ritten as a HJM-model 
This indicates th a t the HJM-setting is a more general way of describing the term structure.

The original HJM model suffers from stochastic singularity in the sense th a t the model 
implies deterministic relations between bonds of different maturities. This problem can 
be dealt with by extending the model to allow for a richer class of noise terms. Kennedy 
(1994, 1997) and Santa-Clara and Sornette (2000) are examples of this approach.

3.5 Conclusion

We have in this chapter presented a number of different term structure models which are 
based on diffusion processes. These have the advantage tha t the implied bond and interest 
rate derivative prices can be written on a closed form. While the finance theory is fully 
developed, it is still an open question which statistical model one should use when one 
takes the finance model to the data.

In the next chapter, we present two classes of semiparametric models which are very rich 
and highly flexible. These can be used in the modelling the term  structure by a single
factor model. We also develop an estimator for any model in these two classes which 
allows one to calibrate the single-factor model using historical data  of the short-term 
interest rate. Then in Chapter 5, we derive the asymptotic properties of the implied bond 
and derivative prices of the single-factor model based on the estimators in Chapter 4. In 
Chapter 6, we illustrate the use of the results obtained in Chapter 4 and 5 by fitting a 
specific semiparametric diffusion model to historical data.



4
Estimation in Two Classes of Semiparametric 
Diffusion Models

4.1 Introduction

Continuous time stochastic processes are widely used in dynamic models in economics and 
finance. In the past three decades since the groundbreaking work by Black and Scholes 
(1973), Merton (1973) stochastic processes have gained a major role in finance theory 
where they are used in the modelling of the dynamics of economic variables over time, for 
example interest rates, stock prices, and exchange rates; an overview of such models can be 
found in Duffie (1996). To a lesser extent these have also been used to model the dynamics 
of macroeconomic variables, see e.g. Bergstrom (1990). Unfortunately, economic theory 
has very little to say about the precise specification of the processes. As a consequence, 
a wide range of parametric models have been suggested in the literature, for example 
Black and Scholes (1973), Chan et al. (1992), Cox et al. (1985), Vasicek (1977), but it is 
not obvious th a t these models are able to deliver an adequate description of the observed 
process. This may lead to the use of a misspecified model tha t is not able to capture the 
true dynamics of the process in consideration. This again can have serious implications 
on the conclusions drawn from the model. Non- and semiparametric methods may help to 
detect and to some extent solve such problems, since these methods allow for a high degree 
of flexibility and should thereby better safeguard one against possible misspecification.

In this chapter, we consider a semiparametric approach to the modelling and estima
tion of scalar stochastic differential equations (SDE’s) driven by a Brownian motion. Such 
processes are fully characterised by their drift and diffusion function, which we wish to 
model in a flexible manner. Two very general classes of models will be considered: In the 
first class, the drift is specified (up to an unknown parameter) while the diffusion term is 
left unspecified; in the second class it is the diffusion term  tha t is parameterised while the 
drift term  is not specified. We define an estimator for the drift and diffusion function for 
models in each of the two classes, and derive its asymptotic properties under regularity 
conditions. We also construct a simple test for parametric submodels against the semipara
metric alternative. The main restriction we need to impose is tha t the diffusion processes
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in the two classes are strongly stationary since this property is used for identification of the 
unspecified term. This excludes for example time-inhomogenous processes, where the drift 
and diffusion functions are allowed to depend on time, since these are non-stationary by 
construction. The two classes are still very rich, and include a majority of the parametric 
homogeneous models proposed in the literature since these in most cases allow for sta
tionary solutions. In particular, for any parameterisation of a stationary diffusion process, 
each of the two classes contains a semiparametric model which has this fully parametric 
model as a submodel.

Only a few studies in the existing literature have considered semiparametric diffusion 
models. Ai’t-Sahalia (1996a) proposes a semiparametric model with a linear parameterisa
tion of the drift, while leaving the diffusion term  unspecified. Conley et al. (1997) on the 
other hand suggest to use a simple parametric form for the diffusion term, while either 
applying a global series expansion or a locally linear approximation of the drift term. The 
model of Al't-Sahalia (1996a) belongs to the first class of models considered here, while 
the Conley et al. (1997) model is situated in the second one. These two models are quite 
general, but one may still want to allow for other, more flexible, specifications of either the 
drift or the diffusion term than the two proposed by the aforementioned authors. This is 
made possible with the two classes of semiparametric models proposed here, which allows 
for virtually any reasonable parameterisation of either the drift or diffusion term. In Bandi 
and Phillips (2000), least squares estimators for any parameterisation of either the drift or 
the diffusion term  is proposed; see also Florens-Zmirou (1989) and Genon-Catalot (1990). 
Their results however depend on the time distance between observations shrinking to zero, 
the so-called infill assumption, while ours hold for a fixed time distance. We restrict our 
attention to diffusions driven by a Brownian motion.

The semiparametric models under consideration here can be very useful as an inter
mediate step in model building, moving from an initial nonparametric model towards a 
parsimonious fully parametric one. There is a large literature on fully nonparametric es
timation of the drift and diffusion function. Most of the proposed estimators are based 
on kernel methods, making use of the characterisation of the drift and diffusion function 
as the instantaneous conditional mean and variance respectively. Assuming th a t the time 
distance between observations shrinks to zero as the number of observations goes to in
finity, standard kernel regression methods can be used to  consistently estimate the drift 
and diffusion term. This approach is pursued by, for example, Bandi and Phillips (2003), 
Jiang and Knight (1997), and Stanton (1997). These estimators are however prone to 
a discretization bias if the process is in fact observed at fixed time instants, cf. Nicolau 
(2003). Chen et al. (2000a), Darolles and Gourieroux (2001) and Gobet et al. (2003) derive 
nonparametric estimators for univariate diffusion models by the method of sieves, allowing 
for a fixed time distance between observations. Their approach is based on the so-called 
infinitesimal operator of the diffusion model, which uniquely identifies the model. They 
decompose the operator into its eigenfunctions and demonstrate th a t from these one may 
recover the drift and diffusion term. Estimators of the eigenfunctions are then constructed, 
and thereby also estimators of the drift and diffusion function.
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Our estimation method is based on the assumption tha t the sampled diffusion process is 
stationary and ergodic, thereby ensuring that an invariant density of the process exists. By 
using the Kolmogorov forward equation, the density can be expressed in terms of the drift 
and diffusion term. Inverting this expression, one can write the drift (diffusion) term as a 
functional of the density and the diffusion (drift) term. This allows us to uniquely identify 
the drift (diffusion) term given a parameterisation of the diffusion (drift) together with a 
nonparametric estimator of the invariant density. This idea originates from Wong (1964), 
and was further developed in Hansen and Scheinkman (1995), and Hansen et al. (1998). 
Al't-Sahalia (1996a) made use of the same link to estimate his semiparametric diffusion 
model. Due to the higher level of generality, our estimator becomes more involved than the 
one in Al't-Sahalia (1996a) though. There, a closed form estimator for the parametric part 
is derived, not depending on the nonparametric part. Unfortunately, in the general case 
it does not appear as if one can separate the estimation of the parametric part from the 
nonparametric one when given discrete observations. Instead, our estimator is obtained 
in the following three steps: First, we obtain a nonparametric estimator of the marginal 
density. Then the parametric part is estimated using the log-transition density of the 
diffusion process with the marginal density estimator plugged in as a nuisance parameter. 
Finally, the nonparametric part is estimated as a functional of the nonparametric density 
estimator and the parametric estimator.

The benefits from using the log-transition density to estimate the parameter are twofold: 
First, it is more likely tha t the parameter is identified since the transition density gives a 
full description of the probability structure of the sampled process.1 Second, assuming tha t 
the nonparametric part is known, estimation of the parametric part by the log-transition 
density yields the efficient MLE. One would expect the semiparametric estimator to be 
close to the (infeasible) fully parametric MLE, and thereby enjoy a high level of efficiency.

Since it is not possible to directly evaluate the transition density, we propose either to 
use approximate (e.g. A’ft-Sahalia, 2002) or simulation-based methods (see e.g. Durham 
and Gallant, 2002) in order to implement the estimator. The estimator obtained from these 
methods will enjoy the same properties as the actual, but infeasible one, under suitable 
conditions. The finite sample properties of the estimator using approximate likelihood is 
investigated in a small simulation study. Here, we will see th a t even for moderate sample 
sizes, our estimator performs well, and tha t the approximate method does a good job.

Under regularity conditions, we derive the asymptotic properties of the estimator, show
ing tha t the parametric part is >/n-consistent, while the nonparametric part has a slower 
convergence rate. Also, the estimator is shown to follow a normal distribution asymptot
ically. The asymptotics of the estimator are based on discrete observations with a fixed 
time distance in between. This is in contrast to the papers on nonparametric kernel estima
tion of the drift and diffusion cited above, and is a desirable property since a continuous 
time record of observations may not be available in practice. High frequency (so-called 
tick-by-tick) data  of, e.g., stock prices and exchange rates are now widely available. One

1A related problem is the so-called aliasing-problem where discretely sampled stochastic processes are indistin
guishable, c.f. Phillips (1973). Hansen and Scheinkman (1995, p. 786) show however that the aliasing problem does 
not exist for reversible Markov processes.
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could argue tha t these present a (nearly) continuous record, but the data  often suffers 
from various market microstructure effects, see for example Dunis and Zhou (1998). One 
may therefore be willing to sacrifice some of the available observations to avoid having 
to deal with such effects, and only use observations of lower frequency (e.g. daily) when 
estimating the diffusion model.

The rest of the chapter is organised as follows: In Section 2, we set up the framework 
and give an informal introduction to the proposed estimation procedure. In Section 3, 
theoretical results concerning the nonparametric part of the estimator are given. The 
asymptotics of the parametric part of the estimator is derived in Section 4. We discuss 
the efficiency of the parametric, part in Section 5, and propose a 1-step adjustment which 
should make it reach the semiparametric efficiency bound. The implementation of the 
estimator is discussed in Section 6, and the results of the simulation study is presented 
in Section 7. We conclude in Section 8. All proofs and lemmas are collected into the 
appendices.

Throughout the text, gM (x; 9) denotes the Ath derivative w.r.t. a; of a function g : R x 
0 h R with gW = g, while g (x ; 9) and g (x; 9) denote the first and second derivative w.r.t. 
6. At times we shall however also denote derivatives by dlJ eg (re; 6) =  dld^g {x\ 9) j d %xd^9. 
We shall write WgŴ  =  supxG/ |<7(z)| and ||p ||2 =  (f r \g {x)\2 dx)1/2 for any function with 
domain I  C R.

4.2 Framework

Let {X t}  =  {X t  : t >  0} be the stochastic process solving the following homogenous SDE,

d X t =  g {Xt) dt + a {Xt ) dWt , (4.1)

where {Wt}  is a standard Brownian motion. The domain of {X*} is denoted I  — {l,r) 
where —oo <  I < r <  oo. We define the scale density s {x) =  exp [—2 /* , g {y) / a 2 {y) dy] , 
for some x* in the interior of I .  Sufficient conditions for strong stationarity are (SI) 
f *  s { x )d x  =  —oo, f£ * s{x )d x  =  +oo, and (S2) 1 /M  = f f  [s (#) a 2 (a:)] 1da: <  oo, cf. 
Karlin and Taylor (1981, Section 15.6) and Karatzas and Shreve (1991, Section 5.5). Under 
these conditions, {X t}  is stationary and ergodic with an invariant measure 7r, 7r(A) =  
f j  P  {Xt € A \X q = x) dir {x) for any Borel-set A, which has a density given by2

M  M
7T {x) o / \ 1 ( \s{x) a 1 {x) a1 (a;)

2 [ X — . Jx* <r
v{y)_ 

(y) dy (4.2)

In a parametric framework, models for the above diffusion process is normally con
structed by specifying the drift term, /i, and the diffusion term, a 2, up to an unknown 
param eter vector 9 6 0  where 0  C is a finite-dimensional parameter space. We see 
from (4.2) th a t one then implicitly also specifies the stationary density. It is possible to

2 We here use 7r to denote both the measure and the density.
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revert (4.2) in either of the two following ways,

=  (43)

<r2 (x ) =  7 ^ ) /  v (y )n { y )d y .  (4.4)

So an alternative specification scheme would be to specify the marginal density together 
with either the drift or the diffusion term, an idea originating from Wong (1964); see also 
Cobb et al. (1983), Hansen and Scheinkman (1995), Hansen et al. (1998). This could be 
done in a fully parametric framework, but here we only specify either the drift or the 
diffusion term and then rely on a nonparametric estimator of 7r. For example, we may pa- 
rameterise the diffusion term, and then plug this into (4.3) together with a nonparametric 
estimator of 7r. We thereby obtain a semiparametric estimator of p , by which we mean
tha t it depends both on a parameter, 0, and a function, 7r. These considerations lead us
to suggest the following two semiparametric classes of diffusion models:

C lass 1:
d X t =  p (X t ) dt + a (.X t ; 0) dW t , (4.5)

with p  (•) unknown and a 2 (•; 0) known up to the param eter 0.

C lass 2 :
dX t = p (.X t ; 0)dt + a (X t) dWu  (4.6)

with p  (•; 0) known up to the parameter 0 and a2 (•) unknown.

Here and in the following, Pq, Oq and iro will denote the true drift, diffusion and invariant 
density respectively associated with the data-generating process. To discuss the estimation 
of the two classes of models, let us as an example consider a model from Class 1. In this 
case, we are given a parameterisation of the diffusion term, a 2 (•;#), which we plug into 
the RHS of (4.3) together with a density 7r,

p(l;M ) = 2 ^ l ; [ £r2(x;(,),r(x)]' (47)

To obtain an estimator of 0 we then make use of the transition density p  of {Xt},  
which is characterised by P  (X t+ a £ A\X t = x) = JA p(y\x) dy for any Borel-set A. Since 
{-X̂ } is completely characterised by p  and a, p  is a functional of these two, p(y\x)  =
p (y\x] p  (■), a  (’)). In the following section, a precise expression of p  as a functional of
p  and a  is derived by utilising results of Dacunha-Castelle and Florens-Zmirou (1986). 
By plugging in a (x;0 )  and p ( x \0 ,7r), a semiparametric version of the transition density, 
p (y\x-, 0,nr) =  p (y\x\ p  (•; 0 ,7r), a  (•; 0)), now appears. This version of the transition density 
will be employed to perform MLE-like estimation of 0 given a nonparametric estimator 
of 7r. Let be n  +  1 observations obtained from (4.5), where A > 0 is
the fixed time distance between observations; without loss of generality, we set A =  1 in
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the following.3 The following nonparametric kernel estimator of the r th  derivative, 7Tq̂  
(assuming tha t it exists), is then available,

for a kernel K  and a bandwidth hr \ see Silverman (1986) for an introduction to these 
concepts.4 Note that we use potentially different bandwidths to estimate each derivative. 
Under regularity conditions, including hr = hr,n —> 0 and nh2r+1 —> oo, (x) —>p 
7Tq̂  ( x )  as n —> oo. We plug 7r and into (4.7), yielding ft{x\9)  =  n (x ]0 , #), which in
turn  is plugged into the transition density. We then propose to estimate 6 by

9 =  argm axL n (0,/i(-;0)) (4.9)

where
1 n

Ln (9, n) = -  ^ 2  loS V (X<|X<_i; /x, a  (•; 9 ) ) . (4.10)
n  i=l

Once 8 has been found, the obvious pointwise estimator of a 2 (x) is cr2(x; 0) while // (a;) is 
estimated by plugging 0 and 7r into (4.7) yielding f t  (x) =  / j , ( x ;  0 ,7r). The above procedure is 
also applicable for models from Class 2, only this time we are given a full parameterisation 
of /x(-) =  /x (•;#), which can be substituted into (4.4) together with a nonparametric 
estimator of 7r, thereby obtaining a semiparametric estimator of a2 (•) =  a2 {-\9,7r).

The dependence of the nonparametric estimators, f t(x)  in Class 1 and &2(x) in Class 2, 
on the smoothing parameter h (and a trimming param eter introduced later) chosen by the 
user is an undesirable feature, which they share with many other non- and semiparametric 
estimators. The sensitivity of the estimators towards h can be high, and one therefore 
has to be careful when choosing the bandwidth. Too small values of h can give imprecise 
estimates, while a too large choice can induce bias. Rules of thumb are often applied for 
the bandwidth choice, but data driven methods such as cross-validation may lead to better 
performance. In our framework, such methods are not readily available however. A further 
discussion of these and related issues can be found in Section 6.

The estimation procedure described above belongs to  a general class of semiparametric 
estimation problems, where an estimator of a finite-dimensional parameter 0 is obtained 
with the help of a preliminary estimator of an infinite-dimensional nuisance parameter 
(here, 7r). General treatments of the asymptotic properties of such profiled/concentrated 
semiparametric estimators can be found in e.g. Andrews (1994), Chen et al. (2003), Newey 
and McFadden (1994, Section 8). The estimation of the finite-dimensional parameter is 
performed by what we may call semiparametric MLE. There is a large literature on non-
and semiparametric MLE,5 but there the infinite-dimensional param eter is estimated to

3 To simplify the exposition, equidistant observations over time are assumed; our results can be extended to allow 
for varying time distances between observations.

4 For notational convenience, we here leave out the first observation in the definition of 7r. This will have no 
consequences for the asymptotic properties.

5 See for example Murhpy and Van der Vaart (2000) and the references therein.
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gether with the finite-dimensional one, while here we make use of a preliminary estimator 
of the former. This makes our asymptotic theory somewhat different from tha t strand 
of the literature. Instead our estimator fits nicely into a general class of semiparametric 
two-step estimators: In the first step a function is (nonparametrically) estimated, while in 
the second step this is used to obtain an estimator of a finite-dimensional parameter. So in 
this setting the function estimated in the first step can be seen as a nuisance parameter. 
In our case, the function in question is the invariant density. Chen et al. (2003) and Newey 
and McFadden (1994, Section 8) give general conditions for consistency and asymptotic 
normality for such profiled semiparametric estimators. Unfortunately, the problem at hand 
here cannot directly be dealt with in the framework of those two studies since we have to 
introduce trimming of our nonparametric estimators. We therefore have to modify their 
conditions in order to establish our theoretical results; Ai (1997) and Robinson (1988) con
tain related applications of trimming in a semiparametric framework. Furthermore, the 
transition density takes a very complicated form, and a careful analysis of it as a function 
of the drift and diffusion function is required in order to derive the asymptotic properties. 
In particular, the derivation of the asymptotic distribution of the parametric part is very 
cumbersome, and we are unable to give an explicit expression for the resulting asymptotic 
variance. We are however able to set up a consistent estimator of it. Finally, Chen et al. 
(2003) and Newey and McFadden (1994) only give conditions for i.i.d. data, while our 
observations are dependent. In order to handle this additional complication, we have to 
assume tha t our process is not only stationary, but weakly dependent (in fact, we assume 
it is /3-mixing), and restrict the decay rate of the mixing-coefficients in a suitable man
ner. This should be seen as a technical assumption however used to facilitate our analysis 
rather than a necessary property needed for the results to carry through.

There are certain obstacles with the implementation of the proposed estimator since 
the transition density p  for general specifications of p  and a2 cannot be written in an ex
plicit form, thereby not allowing for direct evaluation. We resolve this problem by relying 
on either approximate methods (see e.g. Lo 1988, Al't-Sahalia 2002) or simulation-based 
methods (see e.g. Durham and Gallant 2002, Elerian et al 2001, Hurn et al 2003, Peder
sen 1995). Applying such methods in the implementation of our estimator will have an 
asymptotically negligible effect on 6 if the order of approximation is allowed to increase 
with the sample size at a fast enough rate.

We remark th a t other criterion functions than logp could be used to estimate 6. In 
Al't-Sahalia (1996a) for example OLS is used; it is not clear however if this idea can be 
adapted to more general cases or only works for his specific choice of parameterisation. 
There is a variety of other estimating procedures in the literature for diffusion models, 
see e.g. Duffie and Singleton (1993), Hansen and Scheinkman (1995), Gallant and Long
(1997), Gallant and Tauchen (1996), Gourieroux et al. (1993), Sprensen (1997), but the 
log-likelihood approach is the most natural choice, and one would expect tha t this would 
yield a near-optimal estimator.

There is also room for different estimators of 7To. Our theoretical results are based on the 
use of the above kernel estimator of 7To, but can be substituted with alternative estimators
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such as series or spline estimators, cf. Stone (1990), as long as one is able to show uniform 
consistency with a sufficiently high convergence rate for this.

Observe that if 7To was known, we would be in a fully parametric framework and 6 
would be the maximum-likelihood estimator (MLE), which under regularity conditions 
would enjoy full efficiency. But since we have not fully specified our model, the asymptotic 
variance of 6 may not reach the Cramer-Rao bound. One would however expect tha t the 
asymptotic properties of 6 are closely related to the fully parametric MLE. As we shall 
see, the asymptotic distribution of 6 in fact equals tha t of the fully parametric MLE plus 
an additional term entering the variance; this is due to the fact tha t we use an estimator 
of 7ro instead of the unknown density itself. This is related to the issue of semiparametric 
efficiency, see Newey (1990) and Severini and Tripathi (2001) for overviews. I t could be 
of interest to derive the efficiency bound for the semiparametric models of this paper, 
and see whether our estimator reaches it. This is non-trivial though. Most of the existing 
literature on semiparametric efficiency is concerned with i.i.d. data, while we work with 
a Markov process. Moreover, the analysis of the transition density as a functional of 7r is 
not easy, and will require a lot of additional work. In Section 5, we give a brief discussion 
of these issues, and propose a 1-step adjustment to our semiparametric estimator which 
we conjecture will reach the semiparametric efficiency bound. A rigorous treatm ent of the 
efficiency bound and the 1-step adjustment is left for future research.

As stressed earlier, we here restrict our attention to stationary diffusion processes. The 
above identification scheme can however be extended to a wider class of processes satisfying 
(SI), but not necessarily (S2). In this case, the invariant density 7r exists, but is not 
necessarily integrable, allowing for JI 7r(x)dx =  + 00. The density will still satisfy (4.2) 
(leaving out M ), such tha t the relation given in (4.3) remains valid, while for (4.4) to hold 
one has to require limx_>i n (x) o2 (a;) =  0.6 In the groundbreaking work by Bandi and 
Phillips (2003), it is demonstrated tha t for this extended class of "weakly" non-stationary 
(so-called recurrent) processes, /z and a2 can be consistently estimated by kernel methods 
as A —► 0; for related results, we refer to Karlsen and T j0stheim (2001) and Park and 
Phillips (1998). However, it is not clear what the asymptotic behaviour of the estimators 
proposed above will be when (S2) does not hold; this will be investigated in future research.

Our estimation procedure cannot readily be extended to general multivariate diffusion 
models, since the link between the invariant density, the drift and the diffusion term 
utilised here does not necessarily hold in higher dimensions. If one is ready to restrict 
the attention to the class of multivariate models satisfying this relation,7 the proposed 
estimation procedure should still work. But it would suffer from the well-known curse 
of dimensionality of nonparametric estimators. Moreover, the transition density in the 
general multivariate case is even more difficult to analyse than in the univariate one, so 
the task of establishing theoretical results for the parametric part of the estimator in a 
multivariate setting will be a rather difficult one.

6 This will automatically be satisfied under (S2).
7This restriction is for example imposed by Chen et al (2000b) in their nonparametric study of multivariate 

diffusion models.
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4.3 The Nonparametric Estimator

In this section, we show tha t the nonparametric estimators of fi and cr2 proposed in 
the previous section will be pointwise consistent and asymptotically normally distributed 
for any given ^/n-consistent estimator of 9. So we here assume the existence of such an 
estimator. In the next section we show tha t the estimator of 9 proposed in the previous 
section is indeed -yn-consistent. We also give uniform convergence rates and define a simple 
test statistic allowing one to test any parametric submodel against the semiparametric 
alternative.

In Class 1, we simply plug in the initial estimators of the marginal density 7r and the 
parameter 0, yielding

A(x) =  2* W ^ [ <t2(x:^ (x)] ’ (411)

where it is the kernel estimator in (4.8) and 9 is the estimator of 9. For Class 2, we observe 
tha t by the Law of Large Numbers (LLN) for stationary and ergodic sequences,

*| ^  px

-  ^ 2  ^  ~^p  /  71-0 fo) v  ( y * dy>
i=i j 1

for any (x,9) E I  x O given the moment exists. We then define8

(x) =  1( - ^ > (Xi )' * i=1

As noted earlier, we have to assume tha t {X*} is stationary and ergodic in order to be 
able to identify the unspecified term. In fact, we require it to be geometrically /3-mixing. 
The results stated in this section will actually hold under weaker mixing conditions. But 
since in the next section we need /3-mixing in order to employ U-statistics results for depen
dent sequences (see Serfling, 1980; Arcones, 1995), we impose this restriction throughout 
for clarity. Similar conditions have been imposed elsewhere in the nonparametric litera
ture to control the dependence structure, for example in Al't-Sahalia (1996a) and Robinson 
(1989). The following assumption (AO) is sufficient for {X t}  to be well-defined, stationary 
and geometrically /3-mixing. In particular, (AO) implies (S1)-(S2) given in the previous 
section.

AO (i) The drift fi0 (•) and diffusion cr§ (•) > 0 are continuously differentiable, and (ii) 
there exists a function V : R h> R+ satisfying V  (x) > \x\q as x  —► l+ and r~  with 
q > 1, and constants b ,c>  0 such tha t

fi0 (x) V f {x) +  (x) V "  (a;) <  - c V  (x) +  b. (4.12)

Under (AO), (i), there exists a unique solution to (4.1), cf. Karatzas and Shreve (1991, 
Theorem 5.5.15 and Corollary 5.3.23). The condition given in (4.12) is a so-called drift

8 An alternative estimator would be ct2 (x) =  2 f *  ft (y) fi(y; Q)dy/ft (x). The advantage of this is that it is contin
uous and differentiable. On the other hand, ft (y ) fi{y\9)dy is a biased estimator of f *  -kq (y) /x(y;0)dy.
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criterion, known from the ergodic theory for Markov chains. The function V  is a norm
like function, and under (4.12), there exists p £ (0,1) such tha t E  [V (X&) |Xo =  x] < 
pV  (x) +  b, ensuring tha t the process is mean-reverting. This condition not only implies 
th a t the process is /5-mixing with exponentially decaying mixing-coefficients, but also tha t 
E v [|X0|91 < oo, where E* [•] denotes the expectations operator w.r.t. the stationary mea
sure of X .  (AO) is based on results by Meyn and Tweedie (1992); alternative conditions for 
mixing of diffusion processes can be found in Chen et al. (1999), Hansen and Scheinkman 
(1995) and Veretennikov (1997); see also Karatzas and Shreve (1991, Section 5.5). Most 
parametric model found in the literature can be shown to satisfy (AO): Continuity and 
differentiability of p  and a2 are normally satisfied, and with V  (x) = xg, q > 1, the second 
condition becomes

qp (a;) x  +  ^ ^  ^  a2 (x) < —cx2, (4-13)

as |a;| —> oo (assuming I  =  R). If for example p (x )  = /3 (a — x), the condition becomes

o 2  M  <  C \ X 2  - f  C2 , | x |  — ► o o ,

_  2 (q/3 — c3) _  - 2 qfiot
Cl ~  « ( 9 - l )  ’ C2- ? ( 9 - l )

with 0 < C3 < q/3 where we require /? > 0. This condition is satisfied for all the models 
with linear drift quoted in Table 6.1 when restricting the parameters in a suitable manner. 
Similarly, one may show that remaining models quoted in the table satisfy (4.13) under 
suitable parameter restrictions.

In some cases, one might want to have precise expressions of the convergence rate. This 
is for example the case in the next section where the convergence must take place at 
a sufficiently high rate. To speed up the convergence, we employ so-called higher order 
kernels in the estimation of 7rW, allowing us to control the bias. We define the following 
class JC (w, A) of kernels first proposed by Parzen (1962) where w, A > 1 are integers:

/C(cj, A) The kernel K  satisfies f R K  (x )d x  =  1; f R x zK  (x )d x  =  0, for 0 <  i < u  — 1; 
f R |a:|w |K  (x)| dx < oo; K ®  (x) —► 0, |m| —> oo, 0 <  i < A — 1;

supx | ( x ) |  m ax(|a :|, 1) < oo, 0 <  i < A +  1; K ®  is absolutely integrable with a 
Fourier transform satisfying f R (1 +  |a?|) supb>1 (bx) | dx < oo, 0 <  i <  A.

A discussion of the construction of specific kernels satisfying these conditions can be 
found in Bierens (1987). Using a kernel from this class makes it possible to reduce the 
bias of 7r and its derivatives, and thereby obtain a faster rate of convergence of 7r^\ 
0 <  i <  A. The smoothness of 7To as measured by co determines how much the bias can be 
reduced with. For the results stated in this section concerning the pointwise distribution 
and uniform consistency of the nonparametric estimators, bias reduction is not needed, and 
standard kernels can be used. But higher order kernels of the nonparametric estimators 
are useful when we need to get exact rates of convergence. This becomes relevant when 
proving i/n-consistency of 6, see e.g. Robinson (1988) for an early application of higher 
order kernels to semiparametric estimation. Andrews (1995) gives uniform convergence 
rates of the density estimator and its derivatives using this type of kernels under fairly
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general conditions. We apply his results here even though the convergence rates stated 
there are not optimal. Masry (1996) obtains optimal convergence rates but only considers 
convergence on compact sets, while we wish to  allow for a non-compact domain I.  Similarly, 
Bosq (1998) establishes uniform consistency with a  near optimal convergence rate on the 
whole of R for Markov processes, but estimators of the derivatives of the density are not 
considered. One could extend their results to hold on the whole of R and for density 
derivatives, but this is not the focus of this paper and we shall simply apply the results of 
Andrews (1995) here. The pointwise asymptotic distribution of 7r ^  has been established 
in a number of papers, see e.g. Robinson (1983). Given the consistency and the asymptotic 
distribution of 7t̂ r\  the asymptotic properties of the two nonparametric estimators can 
now be derived using standard delta-methods.

One might also wish to have uniform convergence of the nonparametric estimators. 
This is for example needed in the next section when dealing with the asymptotics of 9. 
We wish to show uniform consistency of the nonparametric estimators in the supremum- 
norm. However, since the estimators and the limits themselves potentially are unbounded 
functions, this is not readily possible. To circumvent this problem, we control the tail 
behaviour of the estimator by trimming, ensuring th a t the nonparametric estimator equals 
zero outside a compact, but growing set. We define a sequence of sets A  = A n by

A  =  {x|n (x )  > a} (4.14)

for some sequence a = an —> 0. We then show uniform convergence on the increasing set
A.

In addition to (AO), we impose the following assumptions:

A l The true density, 7To, is u  times continuously differentiable on I  with bounded deriva
tives.

A2 y/n(9 — Oo) =  0 P (1).

The condition tha t 7To is uj times continuously differentiable is satisfied if /i0 and <Tq 
are oj times continuously differentiable, cf. (4.2). Observe tha t all the models in Table 
6.1 have infinitely differentiable drift and diffusion term so this is not a strong restriction 
for standard models. Since the rate of convergence of 7r and its derivatives is slower than 
y/n, the asymptotic distribution of 9 will not have any effect on the ones of ft and a . 
In particular, the efficiency of 9 is not im portant in this context. Condition (A2) can 
be weakened to allow for slower convergence rate of 9, as long as it is faster than V n h 3 
(y/nh) when estimating /i0 (o'o)- ^  this *s not the case> the asymptotic distribution of 9 
will influence the one of the nonparametric estimator.

In the following let be a set of distinct points in the domain J, X{ ^  Xj for i ^  j .

Theorem 1 (Class 1) Assume that K  G K(uj, 1), and (A0)-(A2) hold with u > 3; 9 i—> 
a2 (x ; 9) is continuously differentiable satisfying \\dlJ ea2 (x; 9) \| <  C  ( l -I- |a:|9), i , j  =  0 ,1; 
and hi —> 0, and nh2l+1 —► oo, i =  0,1. Then the nonparametric estimator of the drift is
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pointwise consistent and asymptotically normally distributed,

V S H A M - M O  (*i)}£=i ^  (0, Vp) ,

where =  diag({V^ (a?*)}^) is a diagonal matrix and (x ) =  jH-K’̂ H loo  (x ) /^o  M*
Moreover,

l
sup |p {x) -  po (z)| =  ^ 2  [ O p { n - l/2a%-^ h ~ l~l) +  O p(a1-3/ # -1)} .
X^A i=0

T h e o re m  2 (C lass 2) Assume that K  G /C(cj,0), and (A0)-(A2) hold with u  >  2; 6 
p{x \0 )  is continuously differentiable, satisfying \\dgp (x\ 9) || <  C ^ l  +  |x |^ 2^, i =  0,1; 
ho —► 0 and nho —> oo. Then the nonparametric estimator of the diffusion term is pointwise 
consistent and asymptotically normally distributed,

y/nho {a 2 {xi) -  a \  (a * )} ^  - i  JV (0, Va ) ,

where Va = diag({V^ (xi)}iLi) is a diagonal matrix with Va {x) =  \\K\^(7q (x ) /^ ^ {x ) .  
Moreover,

sup |a2 (x) — (x)| =  Op(ri~l /2a~2hQ1) 4- Op (a- 2h o ) .
xeA

Pointwise estimators of the asymptotic variance for p (x) and a2 (x) respectively can be 
constructed as

% ( x ) =  \  {! K ‘ ( v f  dv\a*(x ^e)I*  (x ) > Va(x) = [J K  (y)2 dy\&A (x) / t t ( x ) .  (4.15)

We only state results for the estimation of p  and a 2 but one is able to derive similar 
results for the estimators of the derivatives of p  and cr2. Observe th a t both nonparametric 
estimators are asymptotically independent across the points { a ^ } ^ . This is a well-known 
property of kernel-estimators, cf. Robinson (1983), which facilitates global inference, for 
example when constructing pointwise confidence bands, and testing hypotheses (see be
low).

The pointwise rate of convergence of p  might a t first appear surprisingly slow given the 
interpretation of p  as the (instantaneous) conditional mean. In a standard nonparametric 
regression model, one is able to estimate the conditional mean with rate yfnh , but observe 
tha t in our case p  is not only a functional of 7r alone but also of its derivative 7̂ )  with 
the nonparametric estimator having slower convergence rate than #, y/nhA relative to 
y/nh. In contrast, we obtain the standard rate of convergence as found in kernel regressions 
for a2. This owes to  the fact tha t a2 is only a function of 7r and not any of its derivatives. 
Thus, the drift is more difficult to estimate than the diffusion term  in a nonparametric 
setting. This observation has been made elsewhere in the literature. Gobet et al. (2003) 
report similar results for their sieve-estimator, and coin the nonparametric estimation 
of p  given discrete observations as an ”ill-posed problem” . Similarly, Bandi and Phillips 
(2003) demonstrate tha t for a stationary diffusion, it is only possible to estimate p (x )
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nonparametrically with y/nA/i-rate, while cr2 (x) can be estimated at the faster ra tey/nh 
as A —> 0 and nA —> oo.

The first part of the result stated in Theorem 2 has already been obtained by A’ft-Sahalia 
(1996a) for the special case /x (x\ 6) =  /3 (a — x). So we here extend his result to hold for 
a more general class of semiparametric diffusion models.

Next, we set up a simple test for a parametric diffusion submodel against our semi
parametric alternative. We start out with Class 1, for which we consider a parametric 
specification of the drift, /x (•; /3) for (3 G B Q R d. We then wish to test the following nested 
hypothesis

#10 : /*0 (') =  M (•; M  for some /30 G B

against the nonparametric alternative. Under the null the model is fully specified and 
the parameters (0, (3) can be estimated using standard methods, with the obvious one 
being MLE. Under regularity conditions, this will yield -y/n-consistent estimators of (6, (3). 
We base the our test statistic on the pointwise difference between the nonparametric 
and parametric estimate. For similar test procedures for conditional means, see Gozalo 
(1995, 1997) and HSrdle and Mammen (1993). Under H \q, /x(rr; ft) — /x0 (x) =  Op (n-1 /2), 
when a -y/n-consistent estimator j3 is available9, and smoothness conditions are imposed 
on j3 •—► (I (x\ (3), such that

V n h  vvi/2 / ,—  =  T x j r r : ^ nh 77W7~\ +  °p (1) ^  N  (0>1}*VtJ  (x) V /  (x) V  (®)

where /x is the nonparametric estimator, while (x) and VM (x) are given in Theorem 1 
and Remark 1 respectively. Due to the asymptotic independence between /x (x) an /x (y) 
for any x  ^  y, we are able to derive the distribution of the sum of squared differences 
across any given set of distinct points.

T h e o re m  3 (C lass 1) Assume that the conditions of Theorem 1 holds, and j3 — (30 = 
O p(n-1/2) under H\o with (3 i—► ti(x',/3) being continuously differentiable. Then under 

# 10,
N

T n  =  n h 3 £
i=1

H(xi\j3) -  ft (xj)
2

d . 2

where V  ̂(x ) is given in (4-15).

The above strategy can be applied to construct a test statistic in Class 2 for any hy
pothesis of the form

#20 : (*) =  o2 (s M  for some f3Q G B.

T h e o re m  4 (C lass 2) Assume that the conditions o f Theorem 2 holds, and j3 — (30 =  
O p(n-1/2) under H 20  with f3 1—► cr2 (z;/3) being continuously differentiable. Then under

9One obvious estimator would be /3 =  argm in^n 1 53?=i [Af®) ~  where /2 is the nonparametric esti
mator, c.f. Bandi & Phillips (1998).
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#20,
2

■4 x 2 m ,

where Va (x) is given in (1^.15).

The actual choice of N  and { ^ i } ^  is not obvious. For given N ,  Gozalo (1997) proposes 
to perform a random selection of points over I.  Also, he shows tha t the number of points 
N  used in the test statistic for /i (cr2) can grow with n  as long as it does so at a rate slower 
than y/nh3 (y/nh).

Instead of relying on the asymptotic distribution as an approximation of the finite- 
sample properties of Tn, it may be worthwhile to use bootstrapping since nonparametric 
goodness-of-fit tests appear to exhibit significant differences between nominal and true 
size in finite samples, see e.g. Fan (1994, 1995). It should be possible to show consistency 
of the bootstrap in our case by following her arguments.10

N

Tn = n h ^ 2
i=l

a 2{xj;j3) - a 2 (x{) 

\ /V a(X i)

4.4 The Semiparametric Estimator

In this section we construct an estimator for 9 and derive its asymptotic properties in 
each of the two classes of models. This is done along the lines proposed in Section 2, 
using the log-transition density to define our criterion function. For each class, we show 
tha t 9 is consistent, and converges weakly towards a normal distribution with y/n-rate. 
The ^/n-consistency of 6 will then in turn  imply tha t the results for the nonparametric 
estimators of n  and cr2  stated in Theorem 1-4 are valid. The results stated in this section 
are established under the assumption tha t the domain I  =  R. We conjecture th a t our 
results also hold for other domains by using arguments similar to those in Ait-Sahalia 
(2002). Allowing for such will however further complicate the proofs, since we need to give 
specific treatm ent to the boundary behaviour of {A*}; in particular, the transition density 
will depend on the specified domain.

Drawing upon results of Dacunha-Castelle and Florens-Zmirou (1986), we are able to 
obtain an expression for logp (cf. Lemma 30) as a functional of (i and a 2 . This characteri
sation was also utilised by Al't-Sahalia (2002) in his derivation of an approximation of the 
likelihood-function. The log-density takes the following form,

logp (x |x0; fi, a 2 ) oc -1 log [ a 2 (x) a 2 (z0)] - (J cr-1 (w ) dw ) /2  +  log (EB [V1 (z |*o)]),

(4.16)
where

il)(x\xo) = exp | a  J  \ Y {Zt {x\xq)) dt 

Z t (x\x0) = 7 -1 (fry (x) +  (1 -  t) 7 (x0) +  B t ) , (4.18)

(4.17)

10Fan (1994, 1995) only consider the i.i.d. bootstrap; in our setting a different bootstrap method have to be used, 
for example Horowitz (2003).
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(4.19)

(4.20)

j  (z) = J  a (z) 1 dz. (4.21)

and {Bt | 0 < t < l } i s a  standard Brownian Bridge with associated expectations operator 
E b  [-].11 As can be seen, the function ip depends on (/i, a 2) in a fairly complicated way, so 
the analysis of logp as a functional of these is not straight forward. The analysis is further
complicated by the presence of the Brownian Bridge in the expression of ip.

To derive the asymptotic distribution, we need to modify the nonparametric estimators 
introduced in Section 2. As part of our proofs, we need to ensure tha t the nonparametric 
estimator converges uniformly towards a specified limit. In the previous section, we in-

theoretical results for semiparametric estimators, see for example Ai (1997) and Robin-

for some sequence a =  an —► 0.

T  (u;) The function T  (x ;7r, a) (i) satisfies (4.22), (ii) is u  times continuously differentiable 
in x with d*T (x ;7r, a) bounded, i =  0, ...,cj, and (iii) continuously differentiable in 
a with adaT  (x ; 7r, a) bounded.

The differentiability of T  is assumed out of technical convenience; this property simplifies 
parts of our proofs. The speed with which a goes to zero will be restricted, so tha t the 
trimming has no effect on the asymptotics. Observe th a t the simplest choice of trimming 
function, T  =  1 {7r ( x )  > a}, is not a member of T  (lj) for cj >  1. One way of constructing
a member of T  (a;) is to choose a cumulative density function, F , with support [1/ 2, 1]. 
Thus, F  (x) =  1, x > 1, and F (x )  = 0, x  < 1/2, such tha t T (ar,7r, a) =  F ( ir (x ) /a )

troduced a trimming set to ensure this. This technical device is widely used to establish

son (1988). However, the associated trimming function, 1 {# (x) > a} is discontinuous and 
nondifferentiable. So for technical reasons, we here follow the idea of Andrews (1995) and 
instead introduce a general trimming function, T, which is assumed to be continuous and 
differentiable. We assume tha t the function satisfies

7T (x) > a 
7r (x) < a/2

(4.22)

satisfies (4.22). Under suitable conditions on F  (and the density 7r), T  belongs to  T  (cj). 
In the following we shall write T  (x\ a) = T  (x ; 7r, a) and Tq (x; a) = T  (x; 7Tq, a).

4-4-1 Class 1

In this subsection, we derive the asymptotic properties of 0 in Class 1. First, we redefine 
the nonparametric estimator of fi as follows:

11 See Karatzas and Shreve (1991, p. 358-360) for a definition of the Brownian Bridge.
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The use of the trimming function enables us to show tha t (•; 9) — (•; 9) ||oo —>p  0,
i > 0, where

1 d
pQ (x; 9) = T  (;X; a) pQ (ar; 9 ) , pQ (a;; 9) = ^  ^  ^  [o-2(x; 0)tto (a?)] .

We then propose the following estimator

9 =  argm axL n (9, /i (•; 9)) , (4.23)

where

in  (0. M) =  i  £  loSP 9. P ) . (4-24)
1 = 1

and p (x|xo; 9,p) = p  (x|xo; p, cr2 (•; 0)) with p  (x|xo; p, cr2) given in (4.16). We observe that 
if; only depends on p  and p(l \  so when showing consistency of 9, we only need to show 
||p ^  — Ao l̂loo — 0, i  =  0 ,1. However, due to 9 appearing in Zt (x|xo; 9), do logp  depends 
on pO), i =  0 ,1, 2, and dg log p  on p(l\  i = 0 ,1 ,2 ,3 . So in order to derive the asymptotic 
distribution of 9, we have to ensure tha t ||pfi — Ao l̂loo —>P 0, i =  0, 1, 2,3, and that 
convergence takes place with rate n 1/4.

We are now ready to set up the conditions, which we will work under.

C l . l  (A0)-(A1) holds with u  >  6, the kernel K  £ fC(uj, 4), and the trimming function 
T e T (  4).

C l . 2 The diffusion function x i—► <7 (x; 0) is six times continuously differentiable for any 
9 £ ©; 9 i—> cr2 (x\ 9) is three times continuously differentiable for any x  £ R; cr2 < 
(j2 (x; 9), and ||dlJ e(r2 (x; 9) || <  d-2, 0 <  i <  4 and 0 <  j  < 2.

C l . 3 (i) The drift function satisfies \\d%xd^pQ (x; 9) || <  C ( l  +  |x |9), 0 <  i <  6 and 0 < 
j  <  2, with 4q + 2 + S < q for some 6 > 0 where q given in (A0); (ii) — C  ( l  +  \ z f )  < 
Ay (z ; 9, p0 (•; 9)) <  Ay uniformly in (x, 9).

C l .4 The parameter space 0  C R d is compact.

C l . 5 The moment L  (0, p0 (•; 9)) = E n [logp (Xl|Xo; 9, pQ (•; 0))] has a unique maximum 
at #o £ such tha t

H  (9q, Pq) — Ex ^ 2  1°SP (•X'i l*o; Oo, fio (•; #o)) (4.25)

is positive definite.

C l . 6a  (i) na20- 4)/i2̂ 1+^ —► oo, (ii) dl~Ah%~t —> 0 ,A =  0,1,2, as o, hi —► 0, for i = 0,1,2.

C l . 6b  (i) na40- 4)/i^1+^ —> oo (ii) na4(|_ 4)/i^w"^  —► 0, (iii) naÂ ~ ^ h \ Jrl —> 0, and (iv) 
a~2h ^ u~1̂ —> 0, for 0 <  i <  3; (v) na~4h\° —> oo, and (vi) a~2h^~A —► 0; (vii) 
nPnxB (a/2  <  7ro (Zt) < a) —► 0; (viii) nP'K (a/2  <  iro (Xo) <  a) —*• 0.

C l.T  The density p(z )  given in (4.50) satisfies pO) =  0 (7ig^), 0 <  i <  4.
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The smoothness criteria on 7To in (C l.l)  are used to ensure tha t the transition density 
is well-defined, and to decrease the bias from the kernel estimation. As discussed earlier, 
a high degree of smoothness together with the use of higher-order kernels will reduce the 
bias of the kernel estimator, cf. Lemma 31.

The smoothness assumptions on a 2 (x; 9) in (C l.2) is needed for the first and second 
derivative of logp w.r.t. 9 to be well-defined. The boundedness conditions on a2 (x; 9) and 
its derivatives are very restrictive. These bounds are primarily used to establish suitable 
bounds for the various terms entering logp, in particular E b  [V> (x i ^o; p)]- We conjecture
tha t it should be possible to obtain these under weaker assumptions on cr2, but this will 
complicate the proofs further. In practice the boundedness assumption should not be a 
problem, since one can always choose a parameterisation such tha t cr2 (x; 9) is constant 
outside a compact set, which can be chosen arbitrarily large.

The conditions (C1.1)-(C1.3) guarantee tha t the transition density exists (cf. Al't-Sahalia 
(2002), Proposition 2). There is some tension between (AO) and (C l.3), which both impose 
growth conditions on the drift function. In a fully parametric framework, (Cl.4)-(C1.5) 
are standard assumptions when deriving the asymptotic properties of the MLE. In fact, if 
ttq was known, the MLE of 9 is consistent and asymptotically normally distributed under 
(C1.1)-(C1.5), cf. Al't-Sahalia (2002, Proposition 3 and Theorem 2).

Condition (Cl.6a) and (Cl.6b) restrict the choice of bandwidths and the trimming 
sequences to ensure tha t (a) | |p ^  (-;0) — (•;9) ||oo —>p  0 and (b) E ^ p . ^  (X q\9) —
$  (Xo; 9) |] —► 0, together with derivatives w.r.t. 9, a t a sufficiently fast rate. To prove 
consistency, we merely have to show th a t the convergence takes place, while y'n-asymptotic 
normality requires tha t the convergence takes place with rate n 1/4. The first convergence 
creates a tension between a and h as they go to zero. Two bias and variance terms have 
to be controlled for: The one incurred from using #  instead of 7To in the estimation, which 
goes to zero as h —> 0, the other is caused by the trimming since the trimmed version of 
the score function may not equal zero for a > 0. One then has to balance the two effects 
to obtain consistency and asymptotic normality. For (b) to hold one needs th a t a —► 0, 
while for it to happen with rate n 1/4 we need to impose (Cl.6b), (vii). The condition 
(Cl.6b) is more restrictive than (Cl.6a). When showing >/n-asymptotic normality, further 
restrictions on the set of permissible bandwidth and trimming sequences are required since 
we now have to ensure tha t the two biases in (a) and (b) go to zero with a faster rate. 
The trimming bias can normally be avoided by introducing the trimming in such a way 
tha t the conditional expectations of de logp equals zero for any a as done in Ai (1997) 
and Robinson (1988). This does not appear to feasible here though since p enters p in a 
complicated manner.

The measure PnXB appearing in (Cl.6b) is the product of the probability measures 
associated with the Brownian Bridge and {Xi}  respectively. The condition (C l.6b), (viii)
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will rely on the tail-thickness of the density ttq. To see this, we write

Pit (a /2  < 7To (X o) < fl) =  J  1 { a /2 < 7To (z ) < a} 7To (z) dz

< /  1 {7T0 (z) < a} 7r0 (z) dz

=  / K . o  (z ) <  a } 7T§ (z)7rJ_e (z)dz

<  a£ J  7 T q ~ £  (z ) dz

for some e G (0,1) such tha t J  7rJ_e (z)dz < oo. The closer e is to one, the thinner tails 
the density 7To will have. So the tail-thickness of 7To determines the rate with which a is 
allowed to go to zero.

The density p  in (4.50) introduced in (C l.7) is implicitly given by f  f ( z ) p ( z ) d z  =  
fo E jtxb [ / {Zt (Xi|Xo))] dt. The restriction imposed on p  is used to ensure tha t the asymp
totic variance of 0 is finite. It appears difficult to come up with primitive conditions for 
this to hold since p  takes a very complex form.

In order to show consistency of the parametric part of our estimator, we basically have to 
demonstrate tha t the log-likelihood function is continuous w.r.t. fi in probability and that 
A — Hq in a normed function space. Once this is established, standard consistency results 
for parametric estimators can be applied to Ln (0, (•; 0)), see e.g. Newey and McFadden
(1994, Theorem 2.1) and Chen et al. (2003, Theorem 1). The following theorem establishes 
this result:

Theorem 5 Assume that (C l.l)-(C l.6a) hold. Then 9 —*p 9q.

Next, we show tha t 0 converges weakly towards a normal distribution with y/n-rate. 
General conditions for this to hold are given in Andrews (1994), Chen et al. (2003, Theorem 
2) and Newey and McFadden (1994). The results in Andrews (1994) only apply to the 
case where the initial nonparametric estimator does not influence the asymptotic variance 
however, which is not the case here. The other two studies deal with this situation, and 
we here follow their strategy.

The first and second derivative of Ln {0, /i (•; $)) w.r.t. 9 is denoted by

c fa ..\ _  ^ . ^ V I V  o ..\ .a _  dlogp  {x\x0\9, fl {■', 9))Sn (9, fT) /  s {Xi\Xj—i, 9, fi) , s{x\XQ)9Jf i j — ,
n r—? uoi=i

=  l ± h ( X i I W . M ) ,  | x o ; g , M )  =  - a 2 l o g p ( S ’ f ’ M ( ’ g ) ) .
i=l

Expressions for s and h can be found in (4.31) and (4.37) respectively. We also intro
duce the pathwise derivative of s w.r.t. fi a t {9, fi) in the direction d[i which we denote 
V s (x\xo] 0, /i) [dfi] (see e.g. Bickel et al. (1993), Appendix 5 for an introduction to this 
concept), the corresponding sample version,

1 n
VSn (0o, Ao) [dt4 =  “  Vs {X i\X i-i;  0O, Ao) ldfA •

71 i= l
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and its moment, V S  (9q, A o )  Î m] =  E* [Vs (X i\X i- i ;  9q, A o )  [̂ m]]- By Lemma 14, the path- 
wise derivative is well-defined, and satisfies

S n  (00, A ) -  S n  (00,  A o )  -  V S 'n  ( # 0 ,  A o )  [A ~  Aol =  0 P (n~1/2).

Using standard [/-statistics results for weakly dependent sequences, V S n (6q, Ao) [A — Ao] =  
V S  (6o, Mo) [A — Ao] +  op(n~1/2) (cf. Lemma 16 and 17). Finally, V S  ( 0 o ,  Mo) [A — A ol can 
be w ritten as a normed sum plus a remainder term  with the latter being asymptotically 
negligible,

V S  ( 0 O, P o )  [A -  Ao] =  ~  £ 5  (Xi) + oP( n - V %  (4.26)
^  ■ 11=1

where E v [5 (Xo)] =  0 and En ||<5 (Xo)||2 < oo (cf. Lemma 18). These results combined 

with the fact tha t Hn(9,fi) converges towards H  (#o> Mo) (°L Lemma 19) proves the fol
lowing result:

T h e o re m  6 Assume that (C1.1)-(C1.7) hold, and that 9q E in t(0 ) . Then

- e a ) ± N  (0, H ^ 1 ( H 0 +  Vo) H q 1)  ,

00 t !
where H q =  H  (0q, fj,Q), and Vo =  fio +  2 w^  &i = E . 8 (Xo) 6 (X{)

i=i L -1

The extra term, Vo, in the variance expression is an adjustment term due to  the use of 
it instead of 7To in the estimation. If 7To was known, Vo =  0, and the asymptotic variance 
expression would collapse to the standard inverse information matrix, H q 1. Instead, we 
here experience an increase in the asymptotic variance. The derivation of (4.26) is based on 
the Riesz Representation Theorem, and we therefore are not able to supply a closed form 
expression for S. We are however able to show th a t it has mean zero and finite variance. 
Furthermore, it is possible to derive a consistent estimator of it, following the same strategy 
as in Newey (1994a). This estimator can in turn  be used to obtain an estimator of the 
asymptotic variance by using the so-called HAC variance estimators, see e.g. Robinson 
and Velasco (1997). Here, we present an estimator based on the idea of Newey and West
(1987).

T h e o re m  7 Assume that (C1.1)-(C1.7) hold and ^ [ | |5  (Ao)||4+5] < oo. Then consistent 
estimators of H q and Vo respectively are given by Hn = Hn(0,ji) and

Vn = fio +  Y2 wM,i(&i +  ),
i—1

where wM,i =  1 -  [*/ (Af +  1)], Cli = n -1 Uj = 6j -  n~ l YJk=i h ,

g l ^ d s (X k \Xk^ 9 , ^ ]9 ^  + a K h ( - - X j )))
* n  “  d ak=1 a=0

and M  —► oo, M /n 1/8 —► 0.
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Observe tha t in the parametric framework of Newey and West (1987), it is required 
tha t M n /n 1/4 —> 0. We have to require tha t M n —► oo at a slower rate due to the presence 
of the nonparametric part here, only exhibiting n 1//4-convergence rate. One advantage of 
the above variance estimator is its simple implementation; one can evaluate the variance 
estimator by numerical differentiation of logp (x|a;o; 9, p  (•; 0 ,7r +  aKh  (• — y))) w.r.t. 0 and 
a , instead of deriving the analytical derivatives (on the other hand, these may lead to 
superior numerical estimates). Since E n [J (Ao)] =  0, one could leave out the average 
appearing in the expression for &?, but in finite sample this adjustment may improve 
on the performance of the estimator. An alternative to  the variance estimator suggested 
here would be to construct one by either bootstrapping or subsampling, which should 
improve on the finite sample approximation; Hall (1992) and Politis, Romano and Wolf 
(1999) respectively provide in-depth treatm ent of these two methods. The recent work 
by Horowitz (2003), where a bootstrap method for Markov chains is suggested based on 
a kernel estimator of the transition density, is very well-suited for our framework. Since 
the sampled observations of the process {A*} indeed is a Markov chain, and we have 
here obtained a semiparametric estimator of the transition density, one should be able to 
adapt the results of Horowitz (2003) to our setting. Chen et al. (2003, Theorem B) give 
conditions for consistency of the bootstrap for a general class of semiparametric estimators. 
This is done under the assumption of i.i.d. observations, but combining their approach with 
Horowitz’s results should yield the desired result for our estimator. The verification of this 
claim is out of the scope of this paper however.

Having obtained the estimator 9 in either of the two classes, one could now be interested 
in testing hypotheses concerning the parametric part, e.g. Ho : 9 =  0o for some given 
00 G in t0 . An obvious choice of test statistic for this hypothesis would appear to be the 
likelihood ratio,

T„ =  n Ln(9, A(s 9)) ~  L n (0o, A (s 0o))] ,

A general treatm ent of the semiparametric likelihood ratio test can be found in Murphy 
and Van der Vaart (1997) who show tha t under regularity conditions the likelihood-ratio 
converges towards a x2 (p)-distribution, where p  is the dimension of 0. This is however not 
valid in our case. This owes to the fact here a preliminary estimator of the nonparametric 
part is used, while in Murphy and Van der Vaart (1997) the nonparametric part is esti
mated together with 9. This has strong implications for the asymptotic distribution of Tn. 

Instead one may use tha t n(& — 0o^ H q 1 (Ho 4- Vo) H q 1 — 9q̂  —>d X2 (p)i or aPPly a
GMM-type test statistic based on the score function, Sn (9,p).

Given the Vn-consistency of 9 as established above, Theorem 1 now establishes con
sistency and asymptotic normality of the nonparametric estimator of the drift, A (x ) = 
£l(x ]9). Note tha t the bandwidths used to estimate A should not be chosen to satisfy 
(C l.6). The bandwidth restrictions there were tailored to ensure a sufficiently fast conver
gence rate of both A and its first two derivatives while taking into account the trimming;
this is not needed to prove pointwise asymptotic normality of p.
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4-4-2 Class 2

Here, we derive theoretical results for the estimator of 0 for models in Class 2. Since our 
conditions, strategy of proof and results are very much the same as for Class 1, we will 
not give any thorough discussions of these, and instead refer to the previous section.

As in the previous section, we need to trim  our estimator of o\ (x ; 9) to control for the 
tailbehaviour. Define

a2 ( x ) = f  (x; ^  {Xi) M (Xi; 0) + (1 -  f  (*; a ) ) £ ,
71 I Jb ) f b

V 7 1 = 1

with T  defined earlier. Observe tha t we here make sure tha t a2 (x) > a1 for some lower 
bound <72 > 0; this is needed since a 2 (x) enters as a denominator in p. We furthermore 
define

<7§ (®; 9) =T (y; a) <j§ (x; 9) + (l-T (x; a))a2, (x; 9) = — f tt0 (y) p{y\9)dy.
We are now able to establish ||<r2 (•; 9) — <Tq (•; 0)11^ —*p  0. In the estimation of the deriva
tives of a 2 w.r.t. x, we cannot simply differentiate a2 (x) because of the indicator function. 
Instead, we define

{ (̂1) / \ 1 n ^

2[L ^  ~  ~7t2 (x) n  ^  1(-°°>;c) (X i) M (Xi] ^  J ’

and similarly for higher order derivatives w.r.t. x.
We write p (x|xo; 9, a2) =  p  (x|xo; p  (•; 9), a2) with p  (x|xo; p, a2) as given in (4.16), and 

define our estimator as 9 =  arg max L n (9, a2 (•; 9) ) ,

Ln (0 ,0 2) = -  ^ 2  logP (X i\X i-H  9, O’2) ,
1=1

For the kernel estimator, we again use a higher order kernel of order u  > 5. The following 
assumptions are imposed:

C2.1 (AO)-(Al) holds with u  > 6, the kernel K  E /C(u;,4), and the trimming function 
T e T ( 4 ) .

C 2.2 (i) a 2 <  ctq (x; 9), and (ii) ll^ ^ c ro  (x:> II — o'2’ 0 <  i <  6 and 0 < j  <  2.

C 2.3  (i) The drift function satisfies \\6%xcPePo (x; 0) || <  C (1 +  |z |9), 0 <  i <  6 and 0 <  
j  <  2, with Aq +  2 +  6 < q for some 6 > 0 where q given in (AO); (ii) — C  ( l  +  \z\9) <  
Ay  (z] 0, Pq (•; 0)) <  Ay uniformly in (x, 0).

C 2.4 The parameter space 0  C Rd is compact.

C2.5 L  (9 , oo (•; 0)) =  E v [logp (X i, X q; 0, ctq (•; 0))] has a unique maximum at 9o, and

d 2
H  (0O, (To) =  E w

69097 lo g p (X i lA ^ o ,  o-g (-;0o)) (4.27)
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is non-singular.

C 2 .6a  (i) —► oo, (ii) —► 0 as a and h*—* 0, i = 0,1,2.

C 2 .6b  (i) na4(l_5)/i^1+^ —► oo (ii) na4(l-5)/i^w-^ —► 0, (iii) na4(5-t)/ij+t —► oo, (iv) 
a""1/!"” * —► 0, 0 < i < 3; (v) na~6h\° —> oo, (vi) a~3h^~A —* 0;

(vii) nPvrx^ (a/2  <  iro (Zt) < a) -* 0; (viii) nPw (a/2  <  7r0 (Xo) < a) -* 0.

C 2 .7  The density p(z)  given in (4.50) satisfies pW =  0(7Tq^), 0 < i < 4.

The conditions are essentially the same as the ones imposed on the models in Class 
1. Note tha t we here assume tha t the Oq (x ]0) is bounded from below by a 2 which is 
known. The assumption tha t a2 is known is used to  simplify our proofs. One could allow 
for an unknown bound by introducing another trimming param eter a2 —> 0. The proofs 
of consistency and asymptotic normality now proceed as for Class 1. First, the estimator 
is shown to be consistent:

T h e o re m  8 Under (C2.1)-(C2.6a), 0 -+p 6q.

We introduce the score s (x|zo; 0, a2) = dglogp (x\xo',0,a2 (•;#)), and the pathwise 
derivative of the score s (x\xo;0,a2) w.r.t. cr2 in the direction da2, Vs (x\xo',0,a2) [da2] 
which will be used in the derivation of the asymptotic distribution. Using the same notation 
as in the previous section, we have tha t V S n (0o, d2) [a2 — d§] = V S  (0o, Oq) [d2 — d§] +  
op (n-1/2), cf. Lemmas 25 and 26. Furthermore, V S  (0o>0o) [d2 — d§] can be written as 
a sum and a remainder term with the latter being asymptotically negligible (Lemma 27),

V S (00, <T§).[*2 -  4] = z £ S (* 0  + op (1/y/Z) .
■ 1 1 = 1

It should be noted, tha t the function 5 here is not identical to the ^-function appear
ing in Class 1. Finally, the Hessian h (x\xo\0, a 2) =  d ^ lo g p  (x\xo\0, a 2 (-;0)) satisfies 
Hn(0 ,d2) —+p H  (0o,0o)> c '̂ Lemma 28. We are able to conclude:

T h e o re m  9 Assume that (C2.1)-(C2.7) hold and that 0o E i n t (0) .  Then the conclusions 
of Theorem 6 hold for Class 2 with Ho = H  (0q, a § ) .

We also obtain a consistent estimator of the asymptotic variance:

T h e o re m  10 Assume that (C2.1)-(C2.7) hold and (Xo)||4+<5] < oo. Then consistent 
estimators of Ho and Vo respectively are given by Hn = Hn(0,a2) and Vn given as in 
Theorem 7 with

t  = 1 A  d s (X k |X*_i; 0, cr2 (-; 0 ,7T +  a K h (• -  X ,)))
3 n Z-^n ' dak=1 a = 0

and M  —► oo, M /n 1/8 —► 0.
- - -  A

Having obtained yri-consistency of 0, Theorem 2 estabfishes pointwise consistency and 
asymptotic normality of the nonparametric estimator of Oq (a:).
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4.5 Semiparametric Efficiency

As observed in the previous section, our semiparametric estimator is not adaptive in the 
general case since Vo > 0. A natural question to ask is whether it at least reaches the 
semiparametric efficiency bound. We are unfortunately not able to give a rigorous answer 
to this, but due to the nature of our estimator we conjecture this is not the case. We 
furthermore propose a one-step adjustment to our estimator 9 which we conjecture will 
reach the bound in any circumstance.

For a semiparametric model, Stein (1956) defined the semiparametric efficiency bound 
as the "least favourable" parametric subproblem of the original semiparametric problem. 
The Fisher information of the semiparametric problem is obviously no greater than the 
information of any parametric subproblem. The semiparametric efficiency bound is then 
defined as the lower bound of the information of all parametric subproblems.

In our setting, the nonparametric part is 7r, s o  we therefore consider any smooth pa- 
rameterisation of 7r for which the associated Fisher information may be derived. In the 
following assume for simplicity tha t 9 is one-dimensional, and consider a smooth parame- 
terisation of 7r, 9 7r#, with 7Tq0 = 7Tq. The Fisher information of this subproblem is then
given by

/ ( * )  =  £ *  [s0 ( X , |X 0)[7r]2'

where s0 [*] =  s (00,7r0) [#], s (0 ,7r) [*] =  dg logp (p|x; 0, ir0) +  V* logp (y\x; 0, ir0) [*], with 
V7r logp denoting the pathwise derivative of the log-density w.r.t. 7r at (9,7r), and 7r =  
do7re\e=0o is the tangent vector of the curve 9 1—► tt$ at 9q. The space of tangent vec
tors/nuisance scores is given by S  = {7r G L 2 (I) \ Jj 'h (z ) dz =  0}, and we denote the 
closure of S  by S.  A tangent vector 7r* 6 S  is then called the least favourable direction if

I  (7r*) =  inf I  (7r),
7rG«S

and I ~ l (7r*) is the semiparametric efficiency bound. The associated score function Sq =  
so [7r*] is called the efficient score function, and any parameterisation 9 1—► ttq which sat
isfies de^e\0=0O =  tt* is called a least favourable model. Observe tha t V n logpo [tt*] is the 
projection of —dologpo onto the space {VTrlogpo [tt] |tt G *S}. This characterisation was 
utilised in Severini and Tripathi (1999) to calculate the efficiency bound in a number of 
semiparametric problems.

But it appears problematic to find 7r* in our case, since s [71"] takes a form which is very 
difficult to analyse, cf. (4.31). And even if we were able to find 7r*, / -1 (7r*) would be difficult 
to compare to the variance of 9 derived in the previous section since we have no closed form 
expression for Vo- Instead, we construct a one-step estimator which is designed to reach 
the efficiency bound. Given the estimator proposed in the previous section, we perform a 
one-step Newton-Raphson iteration using an estimate of the efficient score. The resulting 
estimator will be semiparametric efficient. This procedure is very much a generalisation of 
the one-step Newton-Raphson estimator found in the fully parametric literature: An initial 
-y/n-consistent estimator is adjusted by the estimated score function making the resulting



4.5 Semiparametric Efficiency 52

estimator efficient. This procedure has also been used in the semiparametric literature, see 
for example Drost and Klaassen and Werker (1997).

The main problem is to obtain an estimator of the efficient score. Here, we rely on the 
literature on semiparametric profile estimation. As mentioned earlier, a number of studies 
have developed a general theory for semiparametric profile likelihood estimators; see for 
example Wong and Severini (1991), Severini and Wong (1992) and Murphy and Van der 
Vaart (1997, 2000). A very nice property of these estimators is that, under regularity con
ditions, they reach the semiparametric efficiency bound. In the following, we first introduce 
the semiparametric profile estimator for our specific problem, and then define a one-step 
estimator of 9 based on the profile likelihood which is computationally less demanding 
than the actual profile estimator. : There exists 9 ng satisfying 'kg = 7r*;

The profile likelihood estimator is defined as

9 — arg max L n (9, kg) ,
0€0

where kg = arg m a x ^ n  £n (^, tt), and n  C {n  > Q\ f T 7r (x) dx = 1} is a subspace of all 
densities. Intuitively, this estimator should perform better than our estimator, 9. The latter 
is based on a fixed initial estimator k,  while the profile estimator relies on an estimator kg 
which adjusts to 9. The profile estimator should then reach the semiparametric efficiency 
bound. General conditions for this can be found in Murphy and Van der Vaart (2000). 
These are: (i) there exists a least favourable model, (ii) kgn —>p  7Tq, and (iii)

Ejt s(Oo,7ten) ?*n]] = oP (\\9n -  90\\) + oP (n  1/2)  ,

for any any random sequence 9n —>p  #o- If we start with (ii), since n  is an infinite
dimensional space, this condition is not easily verified.12 One solution to this problem is 
to apply the method of sieves :13 For each n >  1, let n n be a finite-dimensional space of 
densities with support I  such tha t the sequence {n n} grows dense in n  as n  —»■ oo. We 
then redefine kg as kg =  arg maxffen„ L n (9, 7r). Under regularity conditions, kg —*p ng for 
any given 9 £ 0 ,  where

7Tg =  arg max E n [logp  (9, 7r)]; (4.28)
7r€II

see for example Chen and Shen (1998). Sufficient conditions for (ii) to hold is then (a) 
9 7T0 is a continuous mapping and (b) sup0G0 ^kg — Kg^^ —>p  0. These will hold if
{Kg\9 6 0 }  is stochastically equicontinuous, cf. Newey (1991). The curve defined in (4.28) 
is moreover a natural candidate for the least favourable model in (i). Condition (iii) is a 
smoothness condition on the score function.

While we expect 9 to reach the efficiency bound, it is much more computationally bur
densome than 9 since at each given value of 9 we have to perform a high-dimensional 
optimisation routine over n n in order to obtain fig. A computationally attractive alterna

12 The estimator 7r$ might not even be well-defined and, even if it is, very difficult to compute.
13 See Chen (2004) for an overview of this method.
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tive to 9 is the following one-step adjustment estimator,

9 = 6 +  H ~ l {9, 7t~e)Sn{9, 7Tq) ,

where 7tg is defined as before and 9 is the estimator considered in the previous section. The 
adjustment term is basically a Newton-Raphson iteration. Under the regularity conditions 

in Murphy and Van der Vaart (2000), Sn(9,KQ) — n -1 X)?=i so +  °P (w-1 2̂)-
Given this, it should be possible to show th a t 9 has the desired asymptotic properties, see 
Bickel et al (1993, Section 7.8). We shall not pursue this any further here, and leave the 
proof of this conjecture to future research.

4.6 Implementation

In this section we discuss the implementation of the estimator. As mentioned earlier, 
the transition density p  does not in general have a closed form expression, and so one 
can not directly evaluate it. Instead, a number of different suggestions for how to either 
approximate or simulate it have been proposed in the literature. Lo (1988) observes tha t 
p  solves a linear 2nd order partial differential equation, and suggests the application of 
numerical methods to solve it and thereby obtain p. A closed-form approximation of p  can 
be found in Al’t-Sahalia (2002), derived by using Edgeworth-expansion-type arguments. 
Durham and Gallant (2002), Elerian et al. (2001), Hurn et al (2003), Nicolau (2002) and 
Pedersen (1995) all consider simulation-based maximum-likelihood. Either of the above 
methods can be applied to our estimator. As mentioned in the previous section, in the 
implementation of the above mentioned methods evaluation of 7 is not required, except 
for the method of Nicolau (2002).

An im portant part of the estimator is the choice of bandwidths and trimming param
eter. An obvious way of choosing the bandwidths would be cross-validation methods, see 
Hardle et al. (1990); other options are rule-of-thumb and plug-in methods, see Silverman 
(1986) for a discussion of these and related methods. Most existing methods however are 
designed to minimise the mean square error, while the conditions imposed on the set of 
bandwidths when deriving asymptotic normality of 9 require them to be of a different 
order. So the above methods do not appear to be directly applicable in our case. This 
is demonstrated in Hardle et al. (1992) where results for the optimal bandwidth choice 
for the average derivative estimator is derived; it is shown tha t the optimal bandwidths 
used in the semiparametric estimation are not equivalent to the ones minimising the mean 
squared error. Powell and Stoker (1996) extend their results to other semiparametric prob
lems. Data-driven methods to obtain bandwidths in semiparametric estimation are yet to 
be derived however. It is outside the scope of this study to construct a bandwidth choice 
method tailored to our application of the kernel estimator. Newey (1994a) suggests tha t 
in practice a good method would be to start with the standard cross-validated choice 
of bandwidth, and then decrease it until 9 does not change too much. Another rule-of- 
thumb method is the following: For ||7r ^  — 7ro |̂|oo =  op (n -1/4) to  hold, we require that 

n 4(1+i) hi —*■ 00 and hi —* 0. Restricting hi to hi = cn~qi, these restrictions can be
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written as n 4(1+i) qi —► oo, and n 4(“-*) 9‘ —► 0. Thus, we require th a t < Qi < 4(1+̂ ) >

which holds if u> > 2z +  1. If this is satisfied, the optimal choice is hi = cn 4<1+i> log (n). 
Using some data-driven method minimising the MSE, we obtain h* =  O (n-1/(2t+5)). One 
way of choosing hi in an application is then as

hi =  /iQn1-4^ )  log (n) =  hJnW +i) log ( n ) ,

i i
or alternatively hi = h*n2i+B 4<1+i> log (n).

Various studies suggest tha t the dependence structure of the available data will affect 
the performance of the kernel estimators in finite samples. In particular, strong dependence 
will deteriorate the finite sample performance. Hall et al. (1995) give theoretical results 
concerning robustness of the cross-validation procedure towards dependence, while Pritsker 
(1998), who reconsidered the work of Ai't-Sahalia (1996b), demonstrates tha t for the data 
set used there, the asymptotic distribution of the marginal density estimator provided 
an unsatisfactory approximation of the finite-sample distribution. It appeared tha t the 
major problem was the strong dependence between the observations, which may slow down 
the convergence of the kernel density estimator; in such cases the use of the asymptotic 
distribution is not appropriate for tests and confidence bands.14 The same problem is 
reported by Chapman and Pearson (2000) who also give evidence of potential boundary 
problems of the kernel estimates.

Another potential problem with the performance of our estimator is tha t kernel esti
mators of density derivatives appear to be systematically biased in finite sample. Stoker 
(1993) give theoretical evidence of a systematic bias towards zero of these, and suggests a 
method for correcting for this bias in weighted average derivative estimators; his results 
are generalised by Newey et al. (1992), see also Newey et al (2004). These results indicate 
tha t great care should be taken when choosing the bandwidths, and tha t the use of the 
asymptotic distribution to approximate the finite sample distribution of non- and semi
parametric estimators may not be a terribly good idea. In the worst case, the estimator of 
the drift and diffusion term may be heavily biased. This lends support to the application 
of bootstrap methods when conducting inference.

4.7 A Simulation Study

In this section we present results from a small simulation study. The simulation study 
demonstrates tha t the estimator performs well for moderate sample sizes, suggesting that 
the concerns put forward in the previous section may not be so relevant.

The estimator is implemented using the approximation of p  suggested in Ai't-Sahalia 
(2002). Let p(J) denote the approximation where J  > 1 is an integer; as J  —► oo, 
p(J) (x \xq) —► p ( x  |zo) uniformly over (x, zq) on any compact set under regularity condi

14 In a different context, Fan (1994) argues that rather the problems are caused by big differences between true 
and nominal sizes of the test in finite sample.
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tions on /i and a 2, cf. Ai't-Sahalia (2002, Theorem 1). The J th  approximation requires the 
evaluation of the J  first derivatives of fi and cr2.

We choose a model in Class 1, so in order to implement the procedure for a given data 
set, we perform the following three-step procedure:

1. Obtain 7T^ for some kernel K  and bandwidth hi, 0 < i < J  + 1.

2. Obtain 9 using the approximate MLE method of order J  with 7r ^ ,  0 <  % <  J  +  1, 
plugged in.

3. Calculate f t (x)  =  fi(x',9,7r).

We have 4 parameters ,which have to be chosen to run the above procedure: The kernel 
K , the bandwidth h , the trimming parameter a , and the approximation order J .  One 
would expect tha t there would be a trade off between the size of J  and the estimation 
of 7r: As J  goes to infinity, the approximate likelihood approaches the true one; on the 
other hand, in the actual implementation a large value of J  requires a large number of 
derivatives of 7r to be estimated. However, in the simulation study it was found tha t the 
estimator was very stable towards the choice of J . It appears tha t the higher order terms of 
the approximation (and thereby the estimation of higher order derivatives) are not terribly 
im portant.15 On the other hand, one has to be careful with the choice of the bandwidths 
for 7r(*), 0 <  i < 3; we found tha t the estimator of 6 was relatively sensitive towards choice 
of hi, 0 <  i < 3. The trimming parameter was chosen such th a t only observations between 
the 2.5th and 97.5th the empirical percentile were included in the estimation of 0; the 
full data set was used in the preliminary estimation of 7r and its derivatives however. We 
tried out other percentiles in the range 0-5 and 95-100 respectively without any significant 
changes in the results. We also tried out various kernels, finding th a t the performance of 
the estimator appears to be very robust towards the choice of kernel. In particular, in 
practice higher order kernels did provide any significant improvement on the performance 
of the estimator.

The model we simulate from is the so-called CIR- model suggested by Cox et al. (1985),

d X t =  n ( X t ) d t  +  0 y / x td[Vt ,
f i (x)  =  0.5 (0.08 — x ) ,

with 6 =  \Ah02 =  0.1414. The specification of fi and a 2 ensures tha t the data generating 
process is stationary. In the estimation, \i (•) and 9 are the unknown parameters of interest. 
We set the time distance between observations to A =  1/12. The advantage of this model
is tha t the transition density is known so we can perform actual MLE when we allow
ourselves to use the information th a t f i (x)  = 0.5 (0.08 — x). This allows us to compare 
the semiparametric and actual MLE. We simulate n  observations of the process using the 
standard Euler scheme. For each data set we then go through the steps 1.-3. given above. 
We employ the second rule-of-thumb method suggested in the previous section to choose

15 But this may be specific to the model considered here.
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FIGURE 4.1. Normal probability plot of the estimators with n =  500.

the bandwidths for each data set. The results reported below could probably be improved 

upon by using data-driven bandwidth selection procedures, but our rule-of-thumb method  

seems to do a good job.

We simulate 1000 data sets, where each data set consists of n =  500 observations, and 

we choose J  =  3 ,4 ,5 .  We consider the semiparametric estimator for each of the 3 

choices of J  and also the actual fully parametric MLE, 0o,5OO- I n  Figure 4.1, we have for 

each of the estimators made a QQ-plot of its empirical distribution against a N  (0, s2) 

distribution where s2 is the estim ator’s empirical variance. As can be seen, there are 

some slight problems with 0o,5OO in the left tail, which owes to numerical problems in the 

optimisation procedure. But the semiparametric estimator performs remarkably well with  

the choice of J  having a negligible effect on the performance. The estimators are close to 

being unbiased: 0o,5OO has empirical mean 0.1416 and std. 0.050 while 9 0̂0 has empirical 

mean 0.1410 (0.0047), 0.1412 (0.0049) and 0.1413 (0.0049) for J  =  3 ,4 ,5 .  This indicates 

that for this specific model, the adjustment term 6 is sm all.16 Next, we report on the 

nonparametric part, //. In Figure 4.2, the estimated drift for J  =  5 is plotted together 

with the actual drift. As can bee seen, the estimator is biased but the true drift lies within  

its 95% confidence bands in the major part of the domain. However, in the left tail there 

appears to be problems. As expected, the estimator of the nonparametric part does not 

perform as well as the parametric part due to the slower convergence rate of the former.

16 This may be due to the aforementioned numerical problems experienced with the MLE though, since these 
increase its empirical variance.
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Estimated drift function, J = 5
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FIGURE 4.2. Estimated drift function with 95% confidence bands, n =  500.

4.8 Conclusion

We have considered two broad classes of diffusion models where either the drift or the 

diffusion term of the model is left unspecified while the other is specified up to a finite
dimensional parameter. Under the assumption of stationarity, estimators of both the para

metric and nonparametric part were proposed, and their asym ptotic properties were de

rived. We suggested that in the practical implementation of the estimator, approximate 

or simulation-based methods should be applied. Under suitable conditions these will have 

asymptotically negligible effects on the performance of the estimator. A small simulation 

study was carried out which supported the theoretical results. An approximation of the 

transition density was implemented, and we found that the choice of the approximation 

order had a small impact on the performance of the estimator, while the choice of band

widths appeared to be important.

Various issues and extensions related to this study could be of interest to investigate 

in future research. As observed earlier, one may wish to allow for weak non-stationarity 

of the processes. Another important extension would be to consider multivariate diffusion 

models. It could also be of interest to consider other types of semiparametric continuous

tim e models. Here, we have restricted the noise process driving the SDE to be a Brownian 

motion, while allowing for an unspecified drift or diffusion term. One could take the al

ternative approach of specifying the two while leaving the noise process unspecified. This 

approach is pursued by Werker et al. (2000) where an extended version of the Vasicek 

(1977) model is considered. Finally, the issue of semiparametric efficiency was only dis

cussed heuristically here; rigorous results in this area for the two classes of diffusion models 

are yet to be derived.
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4.A Proofs

P ro o f  o f T h e o re m  1. We have

A (®) -  Mo (®) =  i f 1 (* ;  0o)
7r^  (x) 7^  (x )

1
+  2

7T ( x )  7T0 ( x )

dxa2(x ; 0 ) -  dx(T2 {x; 0 o )j + 7K1) (a;) 
27T ( x )

<t2(x ;6) -  a2 (x;0o)] ,

where
dxxcr2 (x ;  9) -  dlxa2 (x ; 0Q) = dxx&2 (x ;  6i) (9 -  90) = 0 P ( n  1/2)  , 

for some 9{ € [0q, 0], * =  0,1, while

M  (x) "  ^  (*)]7T(x) 7Tq  (XJ 7T0 (x)

[#  (x ) -  (x )l0 ( )
+ V nh30  ^|7T^ (x ) — 7T^ (X)  \ 2  +  \ i f  (x ) — 7To (x ) |2  ̂ •

Using standard methods for kernel estimators, see Robinson (1983), we obtain

V/n /?{7r(1) (x .) -  t ( x * ) } ^  - i  N  (0, V n) ,

where =  diag({14- (xi)}£Lj) with V n ( x )  =  7To (x)  11 112, while the two remainder
terms are oP (1), c.f. Lemma 31. The first part of the theorem now follows from Slutsky’s 
Theorem. The uniform convergence result is obtained by combining the proof of Lemma 
33 with 31. ■
P ro o f  o f  T h e o re m  2. By Lemma 37 and arguments similar to the ones of the previous 
proof,

<j2 ( x )  - al (x) = 2 f n (y; 0O) 1r0 (y) dy[ -̂r - —7-d + 0P(rT1/2),
J l  7T (x)  7T0 (x)

p(l)

where

7T (x) 7To (x) 7Tq ( x )
[7T ( x )  -  7T0 (x ) ]  +

[7r ( x )  -  7T0 ( x ) ] 5

4 (A7T ( x )  +  (1 -  A) 7To ( x ) ) 3 ’

for some A G [0,1]. Using standard results for kernel estimators, see e.g. Robinson (1983), 
we obtain

y/nh {it (X*) -  7T0 (xi)}?=1 -i iV (0 ,V*), 

where =  diag({%- (xi))A i) with VK (x) =  7r0 (x) ||Rr||2, while

7r ( x )  — 7Tq ( x )  =  Op(n l!2h 1) + 0 P(hu ).
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Slutsky’s Theorem now gives the claimed asymptotic distribution. The uniform conver
gence result is established by combining Lemma 38 and 31. ■
P ro o f  o f T h e o re m  5. We are allowed to disregard the te rm yV  (x ) / i r (zo) appearing in 
(4.56), since this does not depend on 0. Thus,

0 = arg min Qn (0, y  (•; 0)) 

where Qn (0, y) = ± £ ? =19 (Xi \Xi- i ;  0, y)  and

q{x\x0]9,y)  = - ] - \ o g ( a 2 (x;9)a2 (x0;9))—^ -  I f  a (w;9)~1d w )  + lo g £ s  [ip (x\x0; 9, y)\
. XQ

We wish to show tha t 1) sup0G0 |Qn{9,y) -  Q n (0,A o )l ~^P 2 ) s u Pfle© IQ n (0,A o ) “
Q n { 9 ,  Mo)l -*P 3) s u P0G© 11 Q n  (0, y 0) -  Q (0, y Q) |, where Q (0 , y)  =  E v [q ( X i \X 0; 0, //)];
and 4) 0 i—► Q (0, y Q) is continuous with a unique maximum at 9q.

To prove 1), write

q (m|m0; 9 , y ) - q  (x\x0‘ 0, Ao) = log E B [ip (aj|m0; 0, y)] -  log E B [ip (x\x0', 0, Ao)]
1 (  E B [ip(x\xo]9,y)\ \

\ E B [ip(x\x0',9,y0)]J '

Using tha t (x — 1) / x  < log (x) <  x  — 1, we see tha t

E b  [ip(x\x0-,9,y)\ -  E b  [ip(x\x0]9 ,y0)\ < (  E B [ip {x\x0]9, y)\
E B [ip(x\x0]9,y)\ ~  \ E B [ip(x\x0]9 ,y0)}

<  E b  [ip (x |x0; 0, y)\ -  E B [ip (s^o ; 0, y 0)]
E b [ip (m |a;o; 0 ,  A o )]

By Jensen’s inequality and a 2nd order Taylor expansion of the exponential-function, we 
obtain

|E b [ip ( z |x o ;  0 ,  A )] -  E b [ip (x\x0; 0 ,  A o )] I

< E b  

i

exp
l

2A f  a \ y  (Zt (m |m o; 0); 0, A ) +  (1 -  a) Ay  (Zt ( z | z o ;  0); 0, A o ) dt 
o

x  / 1Ay (Zt (x\xQ] 9) ;9,y)  — Ay (Zt ( z | z 0 ; 0 ) ;  0 ,  A o ) ldt 
o

where, by Lemma 34,

/  |Ay (Zt ; 0; 0, y) -  Ay (Zt ; 0; 0, A o ) I dt (4.29)
o

<  ||Ay (-,6, p.) -  Ay (■;&, £ o ) I L  <  c  £  | |A (i) -  A o ^ l U
i=0
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Using Jensen’s inequality and (4.29) once more,

£fl[exp[A Jp1 a \ Y (Zt \ 9, //) +  ( ! -  a) Ay (Zt \9 , A o ) <**]] 
[ip (x\x0]9,p)\

< £ 5 [exp[A (1 -  a) f  | Ay (Zt ; 9, p) -  Ay (Zt \ 9, /x0)| dt]] 
o

l
<  exp C E  IIA(<) -  A o ’ lloo

. i=0

In total,

|E b  [ip (^foo; 9, p,)] -  E B [t/> (x|x0; 9, ftp)] | 
E b  [ip (x\x0]9,Ji)\

< (7 exp O  E
. i=0

*) _  ft(*) 11 Mo I loo E
i=0

r#(*) _  r#!*)Mo ll°o> 
(4.30)

uniformly in 9. The above bound also holds with ft and fi0 interchanged. Claim 1) now 
follows from Lemma 33 and 31 together with the assumptions on the bandwidth and 
trimming parameter in (C l.6a).

To prove Claim 2), write q(x\xo;9,a) = q(x\xo; 9 ,T  (a) fi0). We then make a Tay
lor expansion, q(x\xo',9, a) =  q(x\xo;9,0) + daq{x\xQ\9,a)a, a G [0,a], and claim tha t 
|daq (x|xo; 9, a)| < b  (x|xo) E b [Jq \daT  (Zf, a) ^dt]1/2 uniformly in 9 G 0 , where b does not 
depend on (a, 9) and E* [6 (Xi|Xo)] < oo. This will yield 2) since

aEnxB [  \daT  (Zt] a) \2dt 
.Jo

1/2

< CPx x B ( a / 2 < 7 t ( Z t) < a ) 1/2

< CP„xB (a /4  <  tto (Zt) < 2a)1/2 

-  0,

where the 2nd inequality holds for n  sufficiently large. We have

n(rr\r .a n\\<r Eb [ l ^  (x\x0\ 9, a)\]
C'a? P'O? 5̂ _  rp r I ( I O M — &BE B [ip{x\xo]9,a)\

A j  |<9aAy (Zt ‘,9 ,a)\d t

where daXy (Z t ; 9, a) is given in (4.33) with V/i (•) =  daT  (•; a) /x0 (•; 9) and Vcr2 =  0. Using 
Lemma 34 together with (C1.2)-(C1.3),

<  C ( l  +  | z n | a Br ( z ; a ) | ,

such tha t by Lemma 36 6 (x|xo) =  (7(1 +  |x |9 +  |zo|9) will satisfy the desired bound. By 
(A0), b has a first moment.

Finally, 3) and 4) follow from standard fully parametric uniform LLN, see for example 
Tauchen (1985, Lemma 1): Observe that (i) 0  is compact; (ii) 9 q (x|xo; 9 , /.t0) is contin
uous; and (iii) \q (x|xq; 9, n0)\ <  £7 (1 +  \x \q +  lxo|9) with q given in (C l.3). The last claim
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follows from the fact that, by (C l.3) and Lemma 34,

- C \ o g ( E B [exp[-C f  \Bt \q dt]]) (1 +  \x\q +  |z0H  <  log (E B [j> (x\x0; 9, fiQ)]) <  Ay 
o

where E B [exp[—C fg  \Bt\q dt]] < oo. We have now shown tha t the conditions of Newey 
and McFadden (1994, Theorem 2.1) are satisfied, and thereby tha t 6 is consistent. ■ 
P ro o f  o f T h e o re m  6 . Define so (x|:ro) =  s (x \xq’, 9q, (ig). Lemma 11-19 then establishes 
tha t

M 9  -  «o) = + op (1)) -Tjj E  <s° + S W -i)} + °P (!) •
^  i=l

Using a CLT for mixing sequences, see e.g. Doukhan et al. (1994), we are able to conclude 
tha t y/H(e - e 0) ^ N  (0, H o ' X ' v H o 1), where £ „  =  E0 +  2 S i and

Si =  E „ [{s0 (Xi|Xo) +  S (X0)} {s0 (Xi+1|Xi) +  S (Xi)}'] .

The moments Sqq and Hq are well-defined by Lemma 11, 18, and 19. Using tha t the 
process {Xt}  is a time reversible stationary Markov process, c.f. Hansen and Scheinkman 
(1995), together with the fact th a t is a martingale difference, it holds for any i > 1 th a t

s0 (Xi|X0) so (Xi+1|Xi)T |X i,X i,X 0] =  s0 (Xi|X0) E„ [s0 (Xj+1|Xi)T |Xf] 

=  s0 (Xi|X0) x 0,

E„ [s0(Xi|X0)(5(Xi)T] =  Et, [s0 (Xj_1|Xi)<5(X0)Tj

=  E„ [e ,  [so (Xi—! |Xi) |Xi] 6 (X0)T]

= Et, [e * [so (XilXi-r) |Xi_i] <5 (X0)‘

= £t [0x <5(Xo)t ],

and similar for the second cross-term. ■
P ro o f  o f T h e o re m  7. Define <5j =  n~ 1J 2 k = i ^ ^ s (Xk\Xk-i ' ,9o,f iQ)[Kh('  — Xi)] and 
Si =  En [VttS (Xi|Xo; 9o, jig) [Kh (• — ■A'i)]], and observe tha t by definition of the pathwise 
derivative of s w.r.t. 7r, 8i = n -1 X)fc=i (Xk\Xk-i ' ,9 ,  jij [Kh (• — ^Q)]- The first part 
of the proof then follows the one of Newey (1994, Lemma 5.5): By Lemma 13,

I f t - f c l l  <  c ^ | | v a ^ [ x h ( - - X i ) ] | |
i,j=0

C  _  ^M^olloo +  a-
i,j=0

where \\V%J 0fJt[Kh(m — Xi)] ||oo <  a~1~k l̂k 1_fc- ^  Is easlly checked tha t under 
(C l.6b) n~ l X)?=i ll^i — $i\\2 = ° p  (tc-1/2). From the proof of Lemma 16 it follows tha t

" /** 1/2
/ |a„f ( Z t ; a ) | 2d t 0 

Qi1+

.Jo
J



4.A Proofs 62

n~1 ||^i — ̂ i||2 =  o (n -1/2), while by Lemma 18, n -1 X)^=i ll̂ * —̂ l l2 =  °  (n -1/2) with
Si = 5 (Xja)- In total, n -1 ]T]?=i i f t  “  < l̂l2 =  °P (n-1/2). Assume tha t d =  dim(0) =  1 
(otherwise consider a'SiSja for any d-dim. vector a), and obtain

|k-n«| < -f'lWi-Wjl
^  • ii=l

< { * & - *s\ +  fo(*«- *)l + 1i h - S i ) f o ~ *i)l}

\  i=l /  \  i=l /  i=l
=  op(n~1/4).

Next, very much copying the arguments of Newey and West (1987, Proof of Theorem 
2), it then follows tha t V  —>p Vq under our conditions. Finally, H  —*p Ho by Lemma 19. 
■
P ro o f  o f T h e o re m  8 . As we did in Class 1, we modify our criterion function, and define

0 =  arg min Qn (0, a 2 (•; 0 )),
u€0

where Qn (0, a2) = £ £ ”=i q (A'»|Xi_i; 0, a2) and

q (x\x0] 0, a2) =  - i  log [a2 (®)] -  -j log [<72 (aj0)]

( y  (^~1 ( w )d w Sj  +  log [Eb [ip (m |m 0 ; 0, cr2 ) ] ) .

We now follow the same three steps as in proof of Theorem 5, and therefore do not give 
all details. First,

q (x |z0; 0, <72) -  q (x\x0] 0, a  g) =  ~  log (  ~  \  log
4 Votq 4

a2 (®0; 0)

<75 (m0; 0)

2^  ( /< 7 (w ;0 )_1 d w j ( J & o i w i O ^ d w

+  logE b  [if (x\x0;9 ,a2)] - l o g E B [if (z|xo;0,<7(j)] •

We have
&l (z; 0) -  a 2 (z; 0) <  ^  /  a2 (z ;0) \  <  a2 (z; 0) -  <r§ (z; 0)

d2 (z ;0) \6o{z' ,Q)J  d g (z ;0)

where <r2 (z; 0), <7q (2; 0) >  £ 2- Thus,
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W ith z — x  and xo, this establishes the desired bound for the first two terms. The th ird  
term satisfies

( f  d(x;  9)-1 duA — f  f  do (x; 0)-1 d w \
\* 0  /  \a:o /

=  ( f  d (x; 9 ) ^  — do (x-, 9)_1 d w \  ( f  <r(x;0)-1 +<7o (x\9)~l dw J ,
\* o  /  \®o /

where

f  d  (w; 9)_1 — &o (w; 9)-1 dw < a~3 J  \d2 (w\ 9) — <Tq (iu; 0)| dw
X q X q

< sT1 ( |* | +  M )  \\&2 (•;6) -  o-o (•;e ) | L

/  a  (to; 0)_1 +  CTO (to; 0)_1 dw <  2ct_1 (|x| +  |x o |),
xo

Define Zt — Zt (d2) and Zot = Zt (do). We then have

<  E B [exp[A f  \ \ Y (Zt;9 ,d2) -  \ Y (Zot;9,dl)\dt]]
E b  [ip (x\x0;9 ,d2)] 
E b  [ip (x\x0;9 ,d l )] o 

x E B [$ |AY (Zf, 9, d2) -  AY (Zot\9, d20)\dt], 
o

where, using a Taylor expansion together with Lemma 39 and 42,

|A y ( z . ;0,C T § )-A y (z O( ;0,CT§)| <  |A^(toZ( +  (1 -  w ) Z 0f,6 ,d l ) \ \Z  -  Z 0i\

< C (l +  a-3) ||ct2 — o'o||oc> •

This together with Lemma 40, implies that

2
|Q n  (9, d2) -  Q n  (9, dl)  | <  C  (1 +  (|x| +  |x0|)) a 3 £  ||dlxd 2 -  dxx~2

i=0

where, by Lemma 38 and 31 together with (C2.6a), a -3 ||d£<r2 — ^ i^ o l lo o  =  0p ® — * — 
2, and E n [ |A o |]  < oo. Next, define q(x\xo]9, a) =  q(x\xo; 9 ,T  (•; a) cr§ +  (1 — T  (•; u))<I2). 
We obtain

dad l (x \9 )  dad l ( x 0',9) t E B [daip(x\xo]9,a)\ 
0aq{x\xo,V,a) -  Ad l{x ' Q) 4&2 {xQ. e) +  E B t y {x\X0.A a)\

I f  1 / - / m j  /  r ^0^0 (w; 0)- ± f V t o{w ; e ) d w ( j ' * g ^ d w
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where da<r§ =  daT  (•; a) (erg -  a;2), dad*<3o =  daT  (•; a) d*o-§. Thus,

\daq{x\xQ',9,a)\ < (|da<r§ (®; 0)| + \dac% (*0; 0)|)

+  |g |-h |g 0| ^  J  ^  .2 ^

+ E b  |a  J  |5aAy(Zot; ,̂a)| + |A^(Zot;0,a)||5aZot|^

where \daZot \ < C  (1 +  |x| +  |zq| +  \Bt \) \daT  (Zt \a) | and

|d0Ay (z ;0,a ) | <
p2 (z ;0) p (z; 0) d2q-gj (z; 0) [dxo%(z;9)\

+

2a2 2 ' 32a:2

p  (z ; 0) dxal  (z; 0) _  [dx<rl (z ;0)]2 dxa l  (z; 0) 
2a-2 16a-2 8

|daT  (z; a) |

|daT  (z; a) |

<  C (1 + p 2 (z',Q) + \p(z-,9)\) daT  (z; a)

|Ay^ (z; 0, a) | <  ^ (1  +  |p  ( z ; 0) | ( |p (1) (z; 0) | +  1) +  p 2 (z; 0) +  |p (1) (z; 0) | +  |p (2) (z; 0) |).

We obtain by Lemma 42 and (C.1.3) tha t

\daq(x \x0',e,a)\ < b(x\x0) {\daT  (x; a) | +  \daT  (x\ a) |

+  f  \daT  (w; a) \dw +  S B[)  |aoT  (Zt ; o) d i|2]^ 2},
xo 0

with b(x|o;o) =  C{ 1 +  |z |29 +  |^o|29), and conclude |Qn(0,do) — Qn{9,cro)l ~^P 0 by 
the properties of T.  Finally, sup0ee \Qn (0, Oq) — Q (0, erg) | —>p 0 where Q (9, Oq) =  

[g (Xi|Xo; 0, o-q)] since: (i) 0  is compact; (ii) 0 i—► g (a;|xo; 0, Og (•; 0)) is continuous; 
(iii) by (C2.3) and Lemma 39, |q (z|:co; 0, Oq) | <  C(  1 +  |x |2? +  |mo|29)- ■
P ro o f  o f T h e o re m  9. This follows the same steps as the proof of Theorem 6, now only 
using Lemma 20-28. ■
P ro o f  o f T h e o re m  10. The claim is proved in the same fashion as Theorem 7, this time 
using Lemma 22, 25, 27 and 28. ■

4.B Lemmas

In this section we first derive expressions of the score and various derivatives of it, and 
then present and show a number of lemmas used in the proofs of the previous section. The 
following two subsections contain lemmas used in the proofs of the theorems of Class 1 
and 2 respectively, while the third one contains auxiliary lemmas.

Most of the lemmas concerns the score, its pathwise derivative w.r.t. p  (in Class 1) or 
a 2 (in Class 2), and the Hessian. We derive expressions of these below which can be used 
in both Class 1 and 2. In the following, let p  (m|mo; 0) =  p (z|zo; p (•; 0), a 2 (•; 0)). First we 
differentiate the logp w.r.t. 0 to obtain the score s. This yields
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, - . l a 2 (x) 1 a2 (xo) 1 I  xr . , , \  ( xr a2 ( w )  \  E b [i P { x \ x o ) \
s (x |x 0) =  7T T  “  o / 1 /<r(™)dw f  - H - d w  1 +  " lyv 1 U' J

4 <72 (x) 4 <r2 (xo) 2 , * 0 <7 (ty) E b  [ip (x|®o)] ’ 
(4.31)

where

ip (x|xq) =  ip (z|xo; 0 ) A J X Y {Zt) +  A ^  (Z t )

\  r .A M2 W  , f t ( z ) d x a 2 ( z )  f i W ( z )  [ d x a 2 { z ) ] 2 d x cr2 ( z )

Ay W  =  ~ 2 ^ )  +  “ 2^ W ------------- 2----------- 3 2 ^ W -  _ 8~ ’ ( 3 }

Ay (z) =
dxa2 {z) fi (z)
2a2 (z) a2 {z)

i i ( z ) - A(1) M

+

+

A*2 (z) /x (z) dx<72 (z) +  [<9xcr2 (z)] 21

20-2 (0)

flc^ 2 (z) 1
2<j2 (2;) 16<J2 (z) 8

2<74 (z)

MW

32a4 (z) 

dxd2 {z) ,

a2 {z)

(4.33)

(i) f i { z ) f i ^ { z )  fi2 {z)dxa 2 {z) fiW (z) dxa2 (z)
Y K } a2 {z) 2cr4 (z) ^  2a2 (z)

/x (z) d2xa2 (z) /x(z) [dxa 2 (z)]2 /z(2) (z )
+  2o-2 (z ) 2a4 (z) 2

dxa2 (z) d2xa2 {z) [dxa2 (z)]3 d2xu2 (z)
16a2 (z) 32a4 {z) 8

and

Zt = 7 1 (7 {Zt )) + a  (7 {Zt )) 1 { t j ( x )  +  (1 -  t ) j  (x0)} , (4.35)

7 W  =  -  /  2aZ( l )dZ) 7_1 W  = ~ G (7_1 7 (7_1 '

We have here assumed tha t
A

— E b  [ip{x\x0-,9,fi)\ =  E b  ip {x\xO’,0, p) . (4.36)

We demonstrate in the two subsections tha t this calculation is valid for models in Class 1 
and 2 respectively.
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Next, we derive the expression of the pathwise derivative of s w.r.t. n  and a2 in the 
direction (V/z, Vo-2). We denote this Vs.  We get

V s ( x M  =  I * '  W  -  +  («■>) J *2 ( * ° )  (4 .3 7 )4 (7 (a:) 4 cr2 (a;) 4 cr4 (a?o)
4 o'2 (a:0) 4̂0 <73 (w) <t(u/)

- i  j  a - 1 (») r
2 i„ w  L  <r(v) 2cr3(to)
£ b [V ^  (x|x0)] £ b [V> (x |x0)]B b  [Vt/j (x |x0)]

where

E b bl> (x |x0)] E g  [V> (x |x0)]2

W  (x|x0) =  (x|xo) A /  VAy (Zt) + a£> (Zt) V Z tdt,

Vi/> (x|x0) =  VV> (x|x0) A  { /  Ay (Zt) +  Ay* (Zt) Zt +  VAy (Zt)
lo

H-Ay' (Zt) V Z t +  VAy> (Zt) Zt  +  Ay1 (Zt) V Z t Z t d t J  ,

and

VAy (z) =  Dp (z) Vm (z) -  g ^  (z) V<r2 (z) (4.38)

+-Dar<,2 (z) V3xct2 (z) +  j

with

w  - <«»>
n  r-i /**(*) m W ^ 2 W  [3r<x2 (z)] , . .
D°2[z) -  2a*(z)  ~~ 2a*~(z) +  3 2 ^ ( x ) " ’ (4-40)

n  M  -  MW 9»o-2 (x)
(* ) 2(r2 ( z ) 1 6(72 (z )-  ( J

Then,

VAy (z) = D„ (z) V p (z) +  By. (z) VA (z) -  (4.42)

+ D a2 (z) Vcr2 (z) +  D(j2 ( z ) V d2 (z)

+A?*a2 (2) V axo-2 (z) +  £>axff2 (z) V d x&2 (z) +  V<9gg ^
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V A « (* ) =  DW (z) V /t (z) +  D„ (z) (z) -  V ^  W  (4.43)

+ £> $ (2) V a2 (z) +  £>a2 (z) +  I ^ a2 (z) V d xa 2 (z)( i ) r2

+D8i<,t ( z )  V d i o *  (z )  +

Finally,

,2_2 /_% , Vd*cr2 (z)

V Z t =  V 7 - 1 (7 (Zt)) + a  (7 (Zt))- i  {*V7 (*) +  (1 -  t) V7 (xo)}, (4.44)

V Z t = V7 -1 (7 (Zt)) + <7-1 (7 (Zt)) {tV7 (x) +  (1 — t) V 7 (xD)} (4.45)
V<r2 (7 (Zt))
2o’3 ( l ( Z t ) )  
dx<r2 (7 (-Zt))
2a3 (7 (Zt))

{t7 (x) +  ( l - t ) 7 ( x 0)}

{ t j  (x ) +  (1 - 1) 7  (x0)} {iV7 (x) +  (1 -  t) V 7 (x0) } ,

and

Vcr2 ( z ) ^  /* 3d2 (z) Vcr2 (z) V<72 (z)
2cr3 (z)

dz ,

V7 1 (z) =  -<7(7  1 (z)) V7 (7 1 ( z ) ) ,

Vi,_1(z) = V7 (7"1 W) -  (7" 1 W) V7  (7" 1 W) •

The Hessian, h, is now obtained with V/i =  fi, V/x =  /i, Vcr2 =  o'2, and V d2 =  <r2. In 
Class 1, the pathwise derivative of s w.r.t. dlJ e î, i , j  =  0 ,1, in the direction d/x can now be 
obtained by choosing V/u =  dfi, V/t =  d/i, V / /1) =  dyfl \  V A ^  =  d A ^  and V d zJ ea2 = 0, 

=  0,1. In Class 2, the pathwise derivative of s w.r.t. dlJ 9a2 in the direction dcr2, 
&, j  =  0 ,1, is given above with V a 2 = der2, V&2 = da2, V d xa2 =  ddxa2, V d x&2 =  ddx&2 
and =  0, i, j  =  0, 1.

^ .5 .7  C/ass i  

T he  Score

An expression for the score, s (x|xo; 9, /i), was derived in (4.31). A sufficient condition for
(4.36) to hold is tha t ijj (x|xo; 9, ii) is bounded by an integrable function uniformly in 0; 
this is the case for fi = fiQ, and Ao by assumption (C1.3).

L em m a 11 Under (C1.1)-(C1.7), Sn (0o> A o ) =  &n (9o,fJ>o) +  op (n~ 1̂ 2), where for some 
S > 0 ,  £ V [ j |*  ( J f !  |J fo ;  » o ;  <^g) | | 2 + < ] <  o o .

P ro o f. In the following we suppress the dependence on 9 = 9q and write f a to indicate 
the dependence of any function f  on the trimming param eter a. We have

Sn ( 0 0 ,  A o ) =  Sn ( 0 0 ,  Mo) +  | » _ 1  ^  ^  1  a>
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where a G [0,a] and sa (£|£o) == s(x\xo’}6o, f( ' ' ,a )  /x0 (s^))- We claim th a t the last term 
is op (n-1 /2). The derivative dasa (X i \X i - \ )  =  V s a {Xi \X i - \ )  where V s  is given in (4.37) 
with V d lJ en  =  daT  (a) dlJ>dfiQ, and V d lJ eo 2 = 0. We have

H^oSo (z|z)|| < EB[\\dai>a (* l* 0) ||] EB[\\^a (x\x0) ||]EB [\\da1>a (®|*o)||]
Eb [ifa (^ k o )l Eb [i)a (x |xo)]'

where

EB[\\dai)a (a?|a?0) ||] 
Eb [if a (ar|a?o)] < A 2 Ĵ b  

+AEb

II J  daXvA (Zt) dt f  X y ,a (Zt) + (Zt) Ztdt\\

II f  da\ Y,a (Zt) + da\ %  (Zt) Z tdt\\

EB[\\i>a (®l®0)||]

and

Eb [ifa (*l*o)]

Eb [|daifa M * o )|]

f  l|Ay,o (Zt) || +  |AjJ), (Zt) |||Z (||d t  
.0

< A E b
Eb [ifa ( z M ]

Using the bounds in Lemma 34, together with

S\daXY^ ( Z t ) \d t
L0

\d a X Y ,a (z)l < | d a T  ( z ;  a )  ( | ( z ) |  |p0 (z)| + ^ ( z )  |),

a„A « (z) <  |daT  ( ,; a)| ( |D «  (*) | |p0 (*)| +  |D„ (*)| (*) I +  ^  (*) I),

and (C l.3), we see tha t

l
||daSa (^ko)|| <  clEb[J |daf { Z t \ a )  \dt\ x b(x\xo) , 

o

where the function 6 (x|xo) =  C(1 +  |a;|2g+1 +  |xo|2g+1) has (2 +  <5)th moment by (C2.3) 
and (AO). Thus,

Et, [||8„*0 (X i|*o)||] <  E„ [62 (X !|X 0)]1/2 x E*xB \ !  \daT (Z t \a )  \2dt]V2.
0

The first part of the lemma now follows from (C l.6b). By the same arguments as above,

i
/

L0
M 4 c o )H < m m m i o < A £ b

Eb [if0 (®|®o)]
<  b(x\xo).

f \ \ \ Y,0 (Zt)\\ + \ \W (Zt) \ \ \Z t \ \d t

Thus, E„ | |sq (x |a :0) | |2 + i] < OO.

The Pathwise Derivative of the Score

The pathwise derivative of s w.r.t. i , j  =  0,1 in the direction V d lJ efjL is given in
(4.37) with V d lJ ecr2 =  0, i , j  =  0, 1.
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L em m a 12 Assume that (C1.1)-(C1.5) hold. Then for any direction V/i,

1/2

||Vo(0o,/*o)[V/i]|| <  6 (z |*0) E  E b  f \ \% ie V n (Z t ) \ \ 2dt
ij=o Lo

(4.46)

where E w[b2+S (Xi|Xq)] < oo, for some S > 0.

P ro o f. In the following we suppress the dependence on Qq, and V/i. Using the bounds 
in Lemma 35, we obtain

E b I ||V^M xq)1|]
Eb [iff (x|x0)]

E B [j, (s |sp) A 2 f i  |VAy (Zt)\ d t j j  ||Ay (Zt) ]| +  |Ag> (Zt) || |Z ,||* ]
E b  [iff (m|m0)]

E B [j, (x|x0) A f n' 1|VAy (Zt) || +  IV A ^ (Zt) \\\Zt \\dt]
Eb [iff (x|rr0)]

<

< A 2E b  

+ A  E b

f  |VAy (Zt) \dt  / | |A y  (Zt) II +  |A<!> (Zt)\\\Zt\\dt
1 
/

LO 0

} ||V A y (Z t) |M V A « ( ^ ) l l |Z t | |*
LO

< Cbi (x|a;o) X) E b
i,j=0

/ l | V 0 j > ( Z () | | 2df
.0

1/2

where

6! ( x | i 0) =  E b  [ /  ( |D„ (Zt)I2 +  l )  *  /  ||Ay (Zt) ||2 +  |A® (Zt) |2||Z ,||2*
1/2

i=0 LO

1/2

+ X) Eb
i=0

+  E b  

1/2

m u 2*
LO

1/2

S \ d i D , ( Z t ) \ 2 \\Zt\\2dt
LO

Similarly,

E B [\\if> (s|sq) ||] E b  [\Viff (ag|ag0)|] 
E b  [ip (x|m0)] E b  [ip (x\xQ)]

< E b A } \ \ X y ( Z t ) \ \  + \ ^ ) (Zt)\\\Zt\\dt

< b2 {x |ar0) J2 E b
i,j=0

/  l|Vd*->(<) (Zt)  ||2*

E b

1/2

A /V A y  {Zt)d t  
0

where

62 (* |z0) =  E b  [ /  (\D„ (Zt)|2 +  l )  *  /  ||Ay (Zt) ||2 +  |A<J> (Zt ) |2||Z(||2*
1/2
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We then have to show that En [b2+5 (Xi|Xo)] < oo, i =  1,2. Using the bounds established 
in Lemma 34, 35 and 36 together with (C l.3), we see th a t this will hold if E ^ X ^ q+2+5\ < 
oo; this is satisfied by (C l.3) and (AO). ■

L em m a 13 Under (C1.1)-(C1.5), there exist a function b with E n [b2+6 (A"i,Xo)] <  oo 
such that for all 9 G 0  and with | |/x| |2,oo =  o II^m IIoo,

|| Vs (x \x q -, 9, fl) [dii] -  Vs (x\x0] 90, /i0) [d/i] || (4.47)

<  b ( x |x 0) | |d / i | |2 ,oo ^ HA A o lk o o  +  aEB f  \daT ( Z f ,a )  12dt 
Jo

1/2

}
P ro o f. Let 9 E © be given, and write Vso (x|xo) =  V s (x|xo; 9, Ao) V s(x |xo) =
V s (a;|xq\ 9, A) [d/i] and similarly for any other function depending on Ao and A respectively.
We write,

Vs(z|a;o) -  Vso (z|a;o)

_  f E B [Vip (s|sp)] E B [Vipo (s|sp)] 1
|  E B [ip(x\xQ)] E B [ip0 (x\x0)] J

| [  E B [ip0 (g|a;o)] E b  [Vipp (g|gp)] _  E B [ip (as|a?p)] E b  [W  Qc|ao)] 1
[ E B [ip0 (*|® o)] E b [1>o ( x \x o )] E B [ip(x\x0)] E B [ip {x\x0)] J 

= : A i  +  A 2 .

The first term  is can be written as

E B [Vip0 (x\x0)]EB [ip (z |£0) -  ip0 (®|x0)] E B [Vip0 (z |z0)] -  E B [Vip (x|zo)] 
— --------- — — — \ i----- r ,——— r;---------- rE b [ip (x |x0)] E b [ip0 (x |x0)] 
=  : A 1 1 + A 1 2 ,

E b  [ip (m|m0)]

Then, using the bound for E B [\ip (m|mo) — ipQ (x|rro)|] / E B [ip (m|mo)] obtained in the proof 
of Lemma 20,

||An || <  C E b f  (|VAy,o (Zt) I +  1) dt f  ||Ay,o (Zt) II +  |A<J> (Zt) IHZtll*
.0 0

E B [\ip{x\x0) - i p 0 (ag|ag0)|]
E b  [ip (x|®o)]

<  Cbn (x\xo) £  e x p [ | |a ^ A - ^ A o l l c  
i,j=0 L

2 r . . -| 1/2
x||fi£jA-Ooll“ s  Eb lvax ^ )i j =0 L
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where

hi  ( z |z o )  =  \̂ o {Zt) | 2 +  1 dt̂ j f  (\n0 (Zt ) \2 +  |^ o  {Zt) | 2 ||A o ( ^ t )  II2 +  HAo {Zt) | | 2)

+  lAo {Zt) | 2 +  iMo ( ^ t ) | 2 l^o  ( ^ ) l 2 +  iMo ( ^ t ) | 2 l l ^ t l l 2^

+  /  IIAo ( ^ )  II2 +  k  (^*)l2 +  (^t) I2 +  (z *) I2 +  0  ll^ll2* ] 172
0 v 7

<  C ( E  Eb U ||a jjA o  (Z t) ll6df]1/2 + 1 )  (1 +  M  +  M )
i,j=0 0

<  C( E  £ * [ /  (Zt) \ f d t f ! 2 +  1) (1 +  M +  |«d|) .
i j =0 0

And the other term satisfies

A n  =  { E B [A2 f V \ Y ( Z t ) d t f \ Y (Z t ) +  \ P ( Z t ) Z tdt
I 0 0

-  A 2 /  VAyto (Zt) dt  /  Ay,o (Zt) +  Aj)q (Z t) Ztdt] \
0 0 J

+ E B [ A f  [VAy (Zt)  -  VAy,o (Zt)] +  [VA<J> (Zt) -  V A $  (Zt )] Z tdt]

+  —  { £ b [A 2 }  VAyt0 (Zt) dt  j  Ay,o (Zt)  +  A£> (Zt) Ztdt

A  /  VAyt0 (Zt) +  VAyJ, (Zt ) Ztdt] 1  
0 ’ J

=  : ^ 1 2 ,1  +  A i2 ,2  +  A i2 ,3 ,

where, by Lemma 34 and 35,

1 l

H i 2 . i l  <  E b f  | VAy (Zt)  I dt  J  ||Ay (Zt)  -  Ay,o (Zt) || +  |A «  (Zt ) -  A «  (Zt)\ \\Zt\ \dt
LO 0

-\-Eb /  ||Ay,o (Zt) +  Ay(, (Zt) Zt\\dt  / 1VAy (Zt)  -  VAy,0 (Zt ) \dt 
.0 ’ 0

1 1 ■ ,2 —  1
<  C E E b U  I va* m (2 t)| dt]1/2E B [J \ D ^  (Zt ) |2 +  ldt]1/2

1=0 0 0

x E E  a_3_2ll^eA-a*2tfAolloo
i=0 j =0

+  /  l|Ay,o (Zt)  || +  |Ayj, (Zt)  |||Z(||<it 
0

x e  Bs [ } | | v a > ( z t ) | |2d t ] ^ £B [} | a M ^ ( Zt) _ a ^ o(Z()|2 * ]i/2
i,j=0 0 0

<  612,1 ( * | * o )  (  E  I I ^ A  -  ^ A o l l X  E  E b  h v d i y  (Zt)  | | 2 1 1/2),
i,7=0 i,j=0 L J
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M i2,2|| <  C E e l f  11VAy (Zt) -  VAy,o (Zt) || +  |Va£> (Zt) -  V A $, (Zt)\\\Zt\\dt) 
0

<  C E e l f  II A* (Zt) -  Dt.fi (Zt) || |V /4 (Zt)\ dt] 
o

+ C E B [J ||D,. (Zt) -  Dpfi (Zt)|| ||Vj i (Z t )  ||dt] 
o

+ C E B [f  |DW (Zt) -  D£> (Zt) | |V p (Zt)\]dt 
0

+ C £ S [J Df. (Zt) -  Df.fi (Zt) |V#»(1) (Zt) ||z<|| dt]

<  C6i2,2 (* |xo) E  Ild’fflA-^Aolloo E  •EB[l|Va’̂ (^ i)H 2]1/2
i,j=0 i,j=0

,(1)

and

P i 2 ,3|| <  C6i2,3 (x |x o ) E  exP [ci|d*f9£  -  ^flAolloo] l|S$A  -  ^ A o l
i,j= 0  L J

x E  ^ [ l l v a i^ M ^ )  ll2]1/2,
i,j= 0

Define 6i2 =  &i2,i> where 612,2 fako) =  C(  1 +  |z| +  |x0|),

&i2,i M ^ o )  =  # b [ /  I-D/x (Zt)\2 +  l r f t ] 1/ 2 +  £ # [ /  | |^ y ,o  (Zt) ||' 
0 0

+ |A « ( z , ) | 2 l | i ( |l2* ] 1/2.

6 1 2 ,3  (x|x0) =  EB[ ( } ] D l,f i(Zt)]2 +  ld t ) ( } \ ]X Yfi(Zt)]\2 +  \ X ^ ( Z t ) ] 2 
0 0

dt)]1!2

+ E B[ f  | |^ ,o  (*) | | 2  +  ( |D $  (*) | 2 +  \Dftfi ( z ) | 2  +  l) ||Z ( ||2 dt]V2.

We then turn to A 2, which satisfies

P 2 I I  < E b [ll^o (a?Mll] 
E b  [V’o (®I*o)] 
E B [\Vjf(x\x0)\] 

E b  [if (a:|a50)]

E b  [VV>q (®|®o)] E B [V^ (ar|®o)]
E b  [ip0 fa M ]  E B [if fa M ]  

E B [if0 (x\x0)\ E B [if(x\xo)]
E b  bPo (*|*o)] E b  [if (®|®o)]

<  C E e l f  \\ \Yf i(Zt) \\  + \ \W(Zt)\\ \Zt \ \dt] E b  [V^q (®I*o)] E b [V^ (®|®o)]

+ C E b [ J \ V \ y  (Zt)| dt] 
0

E b  [ifo (*|®o)] E b [if (a|&o)] 

EB [if0 (x\xQ)\ E B[if(x\xQ)\
E b  [ifo (*|*o)] E b  [if (a?|a?o)]
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where

E b  [V^q (ag|a?o)] _  E B [Vp  (rc|a?0)]
E b  [Po (aj|a?0)] E B [p (a:|x0)]

_  E b  [Vp0 (s|sq)] E b  [p (s|so) -  p 0 (s|a?o)] E B [Vpp (ar|a?o)] -  E B [Vp  (slap)]
E b  [P (a|ao)] E b  [Pp (®|®o)] E B [P (®|so)]

=  : A 2 1 +  A 22

and

An =  A2 /  VAy (Zt) -  VAy,0 (Zt) dt + AJ [vA ^1 (Zt ) -  V A $  (Zt) 1 Ztdt 
0 0 L J

+ ^ ( x | x » ) - V ,0 ( x | x q ) a 2  j .  V A y  o { Z t )  d t

p  (a;|a;o) q
=  : ^ 2 2 ,1  +  ^ 2 2 ,2  +  -4.22,3'

The three terms are treated just as we did for A \ 2 ,i, i = 1,2,3, with resulting bounds
of the same order. Finally, E B ^p (m|mo) / E b  [p (m|m0)] and E B [ V p  (m|m0)] / E B [p (z|zo)] 
take the same form such tha t they satisfy the same bounds. Using the bounds in Lemma 

34, 35 and 36, we get tha t b(x\xo) = Y i j h j  ^  @0- +  |a |29+1 +  |ao|29+1) with q given in 
(C1.3).

Next,

where

Vs(0,  T  (•; a) fiQ) [dfi] -  Vs (9, fiQ) [dfi] = Vdos(0, f  (•; a) /z0) [dfi] a

das (0 , f ( - , a )  fiQ) [dfi]

_  E B [Vdgp (a|gp)] _  E B [Vp { x \ x 0) ] E b  [dap  (s|a?o)]
E b  [P (®|*o)] E b  [P (m|m0)]2
E B [daP { x \ x q ) ] E B  [Vp  (jc[go)] _  E B [p ( x \ x q ) \ E b  [Vdgp (g|zp)]

E b  [P (m|m0)]2 E B [P (x\x0)]2
| 2E B [p ( x \ x q ) ] E b  [V^ (ag|a?o)] E B [dap  (g|gp)] 

E b  [p (m|m0)]3

and, using arguments similar to the ones employed in the proof of Lemma 11, one will 
realise th a t the desired bound will hold with b given above. Finally, the inequality

|| Vs (0, no) [dfi] -  Vs (0O> fiQ) [dfi]|| <  b(x\x0) ||d /i||2|oo ||0 -  0o|| 

is shown to hold in the same manner. ■
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L em m a 14 Under (Cl. l)-(C1.6),  there exists a function b with E n [6 (Xi|Xo)] < oo such 
that

2||s(0o,£) -s(0o,£o) - Vs(0o,£o) [£ - £0]II < H*l*o) ||d̂£ - d̂£0||oo.
i,j=0

P ro o f. In the following we suppress the dependence on 9 = Oq and Wfi =  £  — £0, and write 

s (x|xo) =  s {x\x0\Qo, £), so (z|zo) =  s (x|xo; #0, £o)> Vs (x|xo) =  Vs (x |x0; 0o, £o) [£ -  £ol- 
Similarly, for any other function. We have

s (x|xo) — so (x|xo) -  V s (x|xo)
_  E B {i) {x\xp)\ E B [i>o{x\xo)] E B [Vijo(x\xo)}

E b  bP (x\x0)] E b  bP0 (* I* o ) ]  E b  bPo (* l* o ) ]

E B [i>o(x\xo)]
2EB [Vip0 (ar|a?0)]

p (x |x0jj -  E b  Wo (x |x0jj /  e b \^0(x\xq)} \
Eb bP (m|mo)] Eb bPo (a?|sco)] ' J

E b  bPo (®|x0)]
E b  bP (®|*o)] -  E b  bPo (*I*o)]

x| EB[ip(x\xo)\-EB[ipo(x\xo)\ \
y E b  bP (also)] -  E B bPo (*l*o)] /

_ EB[i >o(x \xof\_ ^  ^  (a-ia-o)] _  e b bPo (ar|ar0)] ~  EB [V^o (*|*o)]}
E b  bPo (®|x0)]

1 {EsbP (ar|®o)] -  E B [ip0 (*ko)] -  £fl[V ^ 0 (*l*o)]}
Eb bPo (x\xo)} 

=  A \  -f- A 2 +  A3,

and wish to show tha t

l|Afc|| <  bk (x |x0) x (E i j= o  ll^ sA  -  ^ A o I lL )  . 

where E T [bk (Xi|Xo)] <  00, k =  1,2,3. First

E b  bPo (®|®o)] +  \\Eb U>o (*1*0)111
1*1 <

E b  bP (®|®o)] E b  bPo (*l*o)]2 

x ( £ B[ ||^ (x |x 0) -^ o (x |x o )  ||2] + E b  \\tp(x\xo) -  V̂o (*l*o)||2] )  ,

where, by (4.30), bP (*l*o) -  V’o (*l*o)| =  0 P ( j2 i=0 ||£ W — £o^| 100) ;  we then show tha t 

E g [||V> (x |x0) -  i>0 ( i | i 0) II] =  Op  (E ? j= o  I I ^ A  -  S’̂ A o lU ) ■ (4 -48)
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E B [\\ip (x \x0) - i p Q (* 1*0) ||]

<  E B [ip (x \x o)  J  11 Ay (Zt) -  Ayj0 (Zt) II dt]
0

+ E b  \ip ( x \ x 0) -  ip0 (®|*o)| /  ||Ay,o (Zt)  ||dt
0

<  C i E b  [ip (x |x0)] {E ? ,j=0 H^flA -  d^Aolloo}

+C 2 EB exp A j  aXy (Zt) + (1 -  a) Ayto (Zt)cft f  HAŷ  (Zt) ||dt

X IIA(1) — Ao1)lloo-

From these inequalities, we see tha t ||Ai|| <  C \\Au\\) Td,j=0 11^0  A “  ^ A o l l
where

A n  =  

A12 = 

A13 =

E b [ip (®|a;o)]
E b  [ip0 (a;|a?0)] ’
E b [ip (x\xp)\ EslWip (x \xq) \ \ \

E B [ip0 (x\x0)] E B [ipo(x\x0)] ’

gg[exp[A / nX a \ Y (Zt ) +  (1 -  a) Ay.p (Zt) d t]]2 
E b  [ip (z|xo)] E b  [ip0 (®|®o)]

E B [\\ipo (®|x0) ||]£ B[exp[A aAy (Zt ) +  (1 -  a) Xy,o (Zt) dt]}2
A.\4 =   o----------------------- ,

E b  [ip (x |x0)] E b  [ip0 (®|®o)]
^ [e x p [A  /q1 aAy (Zt ) +  (1 -  a) Ay,0 (Zt) dt] ||Ay)0 (Zt)\\dt]2 

E b  [ip (*|*o)] E b  [ip0 (®|*o)] 
fk[exp[A  /q1 aAy (Zt ) +  (1 -  a) Ay,0 (Zt) dt] f j  ||Ay,0 (Zt ) | |dt}2 

E b  [ip (ar|a?0)] E b  [ipo (*|*o)]
E B [\\i)(x\x0)\\]

A15 =

A i6 =

E b [ipo (ar|aj0)]

We show tha t ||Aii|| =  Op (1), 1 < i < 6:

_  E b  [ip (x |x0)]
11 E b  [ip0 (x |x0)] ”  B

exp j  I Ay (Z t \ A) -  Ay,o (Zt ) | dt
L0

=  Op  (1);

A <  E b  [ip (g|gp)] E B [\\ip0 (g |a0) ||] ft E B [\\ipo(x\xo)\\] 
12 ”  E b  [ip0 (x\x0)]2 1,1 E B [ip0 (x\x0)]

< O p ( l ) x E B [f\ \ \Y,o(Zt)\ \dt],
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where E ^ B [5\ ||Ay|0 (Zt) ||dt] < oo;

_  .Eg[exp[A /p1 aAy (Zt) +  (1 -  a) Ay)0 (Zt) dt]]2 
13 Eb bP (z |® o)] Eb bPo (* I* o )]

_  £g[exp[A /q aAy (Zt) +  (1 -  a) Ay>0 (Zt ) dt]]2 E B bP (sfoo)]
Eb bP (x\xQ)]2 Eb bPo ( z | z 0)]

= Op ( l ) 2 x Op (1);

A _  E b [W'ipp (g|gp) l|]^ [ex p [A  f t  aAy (Zt) +  (1 -  a) \ Y,o (Zt) dt]]2 

14 Eb bP (®|®o)] E b bPo (*I*o)]2
E b  [exp[A f j  aAy (Zt) +  (1 -  a) Ay,0 (Zt) dt}]2 ̂

Eb bP ( * |* o ) ] 2 12
=  Op  ( l )2 x A 1 2 ',

Eg[exp[A /p1 aAy (Zt) +  (1 -  a) Ay,0 (Zt ) dt] ||Ay,0 (Zt)\\dt]2 
15 Eb bP (ar|a?o)] Eb bPo (*1*0)]

=  -Es [exp[A (1 -  a) f  |Ay (Zt) -  Ayo (Zt \)|  dt f  ||Ayo (Zt)\\dt]‘ 
Jo Jo

x A li

=  Op  ( l )2 x E b [J ||Ay (Zt )\\2dt];

E B [exp[A /q1 aAy (Zt) +  (1 -  a) Ay,0 (Zt) dt] f j  ||Ay,0 (Zt) ||dt}2 
1,6 E b bP (* l* o )]  E b bPo (* l* o ) ]

Ai.fi =

„ E B [\\ipo (* |* o )  II]

E b  bPo (* l* o )]

=  Op ( 1 ) x E b [J\\Xy  {Zt)\?dt\ 
o

Next, we consider A 2 . First, by a 2nd order Taylor expansion of the exponential-function, 

1> ( * |* o )  -  V'o (* l* o )  -  1>0 ( * |* o )  Ay (Zt) -  Ay)0 (Zt) dt

A exp
1

A f  a \ y  (Zt) +  (1 — a) Ayo (Zt) dt 
0

1 V
j  Ay (Zt) -  Ayo (Zt ) dt J .
0 J



4.B Lemmas 77

Thus,

\ip (x\x0) -  ipo (z|zo) -  V^o (®|®o)|
1

<  ipQ (x |x0) /  |Ay  (Zt) -  Xy,o (Zt) -  VAyjo (Zt)\ dt  +  
0

A exp A f  aXy (Zt)  +  (1 — a) Ay(o (Zt) dt Jf I Ay (Zt) -  Ay?o (Z t) |2 dt  
0

<  ClpQ (s|xo) IIA “  Aolll.c

A f  aXy (Zt) +  (1 — a) Ayto (Zt) dt  
o

+ C  exp

Plugging this inequality into A 2 ,

11*11 <

aAy (Zt)  +  (1 
E b  [ip0 (ar|ar0)]

E I I A W - ^ l l ii=0

X

E b  [ip0 (aj|a?0)] 
x , E B [exp[A f i  /„* aAy (Z t ) +  (1 -  a) Ay,„ (Zt) dt]] ]

where the second term is O p (  1), and E ^ [ E b [iP q  ( x \ x o ) \ / E b  [*P q  (s |so )]]  < oo> as shown 
earlier.

Finally, for A3 we have

ip (z |x0) -  ipo (s|®oo) -  VV>0 (x|xo)

=  [ip (x\x0) -  ip0 (aj|a;o)] A  j  Ay (Zt) — Ay(o (Zt ) dt

+Aip0 (x|a;o) j  Ay (Zt) -  XytQ (Zt ) — VAy^ (Z t ) dt

+  f  Ay)0 (Zt ) dt [ip (z |z 0) -  ip0 (®|a;o) -  Vip0 (rr|^0)]
0

We treat each of the terms separately: Using (4.30) together with Lemma 35, 

E B [(ip Qc|so) -  ipp (g|a?0))A Jp^Ay (Zt) -  Xy|0 (Z t)]dt]

< C

E b  [ip0 (ar|a?0)]
F;5 [exp[A Jq aAy (Zt) +  (1 -  a) Ay,0 (Zt ) dt]] 2

E b  [ip0 (also)] 

=  ° p  ( i)  x E < j= o \\dx ,o fr -  ^ A o I lL ;

we apply (C l.3) and Lemma 35 on the second term; and

E B [\ip ( s |a ;o )  ~ ipp (x\x0) -  Vip0 (ag|ar0 ) |  f *  ||Ay>0 (Z t)\\dt\ 
E b [ip0 (a |a0)]

I2loo

<  Op  (1) x  E B [ f  ||Ay,o [Zt ) ||<ft] x  E !=o IIA(i) -  A o ’ ll
J O
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We define
V^s (/li) [dir] = Vs (/x) [V^/x (a:) [# -  tt0]] , (4.49)

where Vtt/x is given in Lemma 33. This function is the pathwise derivative w.r.t. 7r.

L em m a 15 Under (C1.1)-(C1.5),

3

| |V s ( a ; |x o ;0,A o ) [A -  Ao] ~  V » s ( x |a : o ;0, Ao) [tt — 7r0]|| <  6 (x|x0) ^ a t_5||# w -
i=0

u n i f o r m l y  i n  9  € 0 , to/iere V^s is gwen i n  ( 4 - 4 9 )  a n d  E n  [&(^i|^o)] < o o .

P ro o f. To see this, we make use of the linearity of Vs and the function b given in Lemma
12 to write

II V s (x\x0] Ao) [A -  Ao] -  V 7rS ( z |z o ;  Ao) [ft -  flo]II

=  || Vs (x|x0; Ao) [A -  Ao -  V A o [ft -  tto]] II
2 r 1 i 1/2

<  6 (x |x o )  5 3  EB I\\dx,e [A -  Ao -  V ^ A o  -  ^o]] ( ^ t )  ll2^  
i,j=0 Lo J

2 r 1 i 1/2
+ & (x |a :0) 5 3  e b / I I dx,e [A -  Ao -  V ttA o [ft ~ ^o]] {Zt) II2dt

i,j=0 LO

where E r [b (Xi|Xo)] < oo. The result now follows from Lemma 33. ■

T he A djustm ent Term

In this section we show tha t the pathwise derivative of the score can be written as a 
normalised sum and a remainder term  which can be ignored.

L e m m a  16 Under (C1.1)-(C1.6), V S n (Ao) [A ~  Aol =  V S  (Ao) [Ao — Aol +  °p (w - 1 / 2) .  

P ro o f. We split up in 4 terms, 

V S n (Ao) [A ~  Aol “  V S  (Ao) [Ao “  Aol 

=  { V S „  (Ao) [A -  Ao] -  V ,rS n  (Ao) [ft ~ ^ o ]}  

+  { V * S n (Ao) [ft -  E* [*■]] -  V „ S  (Ao) [En [ft] -  TTo]} 

+  { V S  (Ao) [A -  Ao] -  v „ s  (Ao) [ft -  tto ]}  

+  { V71-Sn, (Ao) [En [ft] -  7T0 ] -  VttS (Ao) [E* [ft] — 7T0 ] } ,

where we have made use of tha t dw t—> V^s (x|xo; Ao) [^n] is linear. The two first terms are 
of order op (1 /y/n)  by Lemma 15 and 31 together with (C1.6b). To show tha t the third 
term  is op (1/y/n) , we apply Lemma 32: Defining Yi = { X ^ X i - 1), it is easily seen that 
{Yi} is a stationary and /3-mixing sequence since {Xj} is, and tha t the mixing coefficients, 
{/3yj}, of {Yi} satisfies p Yti =  Pi-i  where { ^ }  are the mixing coefficients of {Xi}. Using
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the linearity of V Ts in dir once more, we may write

V * S „  ( £ „ ) [ * - £ * [ * ] ]  =  V * S „ ( £ o ) [ * ] - V » S „ ( / i o ) [ £ U * ] ] ,  

V * S  ( £ „ ) [ # - £ * [ * ] ]  =  V ^ S  ( £ 0) [*] -  V „ S  (ft0) [ £ „  [* ]] .

So by defining

m n (Yh Yj) =  V „s (Xi \Xi-x-, ) [£*  (• -  X j) l ,

where K_h (x ) =  [Hq1K  (x /h o ) , h ^ 2 K ^  { x / h i ) , ( x /h 2) , h J 4 K ^  (x/h^)] , we ob
tain that

V tA  (Ao) [* -  ^  [*]] -  V *5  (A o) [* -  E„ [tt]] = Vn -  V1>n -  V2,n +  Vn,

where Vn, Vi)n, V2>n, and are defined as in Lemma 32. We then check tha t the two 
conditions of this lemma are satisfied. The first condition follows by Lemma 12 and Holder’s 
inequality,

M I K O ' i - W l 17' ’ 

=  E ,  [ | |V x s ( X j |X » _ i ; £ o )  [ i 1 ( • ;« )& .(•  -* ,■ )] I P ] ' 7”

<  E ,  [V (Xi,  X i-!)]1/" E?=o

<  C E ,  [6” (X U X i . i ) } ^  E t c

for any p > 2, where we have made use of the boundedness of K  and its first three 
derivatives. By the restrictions put on the bandwidths, a~ 1-l/i~ln -1/2 —> 0, 0 <  i <  3, 
while En[bP (X{, Xj_i)] < 00 with p = 2 + 6 . The second condition follows easily from the 
fact tha t PY,i = Pi— 1 together with the geometric decay of {/^}, c.f. Lemma 29.

Next, we show tha t V nSn (Ao) [Eir M — ^o] =  V nS  (Ao) [En [ft] -  tto] +  op (n-1/2). By 
Lemma 12,

II V ttS  (x |x 0 Ao) [E* [ft] -  *0] II =  II V s  (m |a?0 Ao) [VAo [E* [ft] ~ tto]] ||
3

< b(x\xo) ^ a -1 “ ‘||£7T[#W] — ttq^IIoo, 
i=0

where — 7ro |̂|oo =  O (y/na~1~th“~t) —> 0, 0 <  i < 3, by (C1.6b). ■

L em m a 17 Under (Cl. 1 ) - (C l . 6 ), V S  (Ao) [A — Ao] =  V S  (pQ) [A — Ao] +  °p  (^ _1^2)-

P ro o f. By Lemma 13 and Holder’s inequality,

V ^ I I V S  (Ao) [A -  Aol -  V S  (pQ) [A -  Ao] II

< E ,  [62 (XjIXo)] 1/2 x ay/HExx B U  IdaT  (Z?, a) \2 dt\1!2,
0

where the last term  goes to zero by (Cl.6b). ■
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L em m a 18 Under (C1.1)-(C1.7), there exists a function 6  with E n [5 (Ao)] =  0 and 
Ew ||6  (X0)||2+e <  oo for some e >  0 such that

V S (p0) [A -  Aol = -  E  S(Xi) + o p (n -1/2).
n i—1

Proof. We suppress any dependence on and 6 q. We introduce the Hilbert space Hk 
given by

Hk = { f :  R i-  R|£Vxb[/ / (i) (Zt)*dt] < oo, 0 < * < * + 1},
0

where Zt = Z t ( X i|-Xo), which we equip with the inner product

( f ,g)  = E irxBl f f ( Z t ) g ( Z t)dt]. 
o

We first show tha t there exists a density p  such tha t for any function /  € Hk,

K x b [ [  f  {Zt) dt] =  [  f  ( z )p (z )  dz.
Jo J R

Observe tha t

l l
EnxB[f  f  (Zt) dt] = f  J  f ( Z  (t , x, x0, b)) p  (x |x0) 7T0 (x0) Pb (t, b) dxdx 0 dbdt.

0 0 R3

where

and

Z  (t, x, x 0> b) =  70 1 (*7o (*) +  ( ! “ *) 7o (®o) +  ,

—b2
pB (t,b) = <f>

yj t  (1 ~ t )  I y / 2 lXt (1 — t) ^  |_2t (1 — t) J

is the marginal density associated with the Brownian Bridge at time t. We now make the 
transformation

with inverse

where

(£, x ,  x o , b) ( t , x , x o , z) = F  ( t , x , x 0, b) =  ( t , x , xo, Z  ( t ,  x , xo, 6))

(£, x , x 0, 6) =  F -1  (£, x , x 0j 2:) =  (t, x , x 0 , Z -1  (£, x , xo, 2 ))

7 o  M  ~  * 7 o  (® ) -  C1 -  0  7 o  ( * o )Z 1 (£, x, xo, 2) =
Va

We derive the derivative of F  1,

D F ~ l =

dZ p,z) dZ 1(t,x,xp,z) QZ x q , z )  dZ 1(t,x}xp,z)
dx 8 x q  dt dz
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where d Z  1 ( t , x ,xo ,z )  / dz = 1/ ^v^A^o (z ) ) . So the determinant of D F  1 is |DF  x| =  

1/ ( y /A a  (2))* and the claim holds with p  given by

P M  = n r 1  '/ \  f  P (XM  ^0 M  (  f  P b  (t, Z ' 1 (t , x , x 0, z)) d t \ d x d x 0. (4.50) 
V Ao-0 (z) r2 L 0 J

We shall also make use of the following result: By repeated use of integration by parts, 

f  f  (z) 7 (z) dz — f  (z) 7 (2:)] — J  (z) 7r^-1  ̂ (z) dz (4.51)
R Jz = -o o  R

=  -  f  / (1) (Z) (z )dz  = - -  = (-1)* /  / (l) (2) 7T (z) dz,
R R

for any function /  satisfying (z ) 7r^-J  ̂ =  0, 0 <  j  < i.
We now write

2 1
v s  (mo) w  =  E  (rt>) + E v *is  «  $ a] ,

1 = 0 i=0

where V i jS  (p0) {dx e p] is the pathwise derivative w.r.t. d%3efji. By Lemma 12, it follows that 
(Po) \^x eP\ a bounded linear functional on H.  By Riesz’s Representation 

Theorem, it therefore holds tha t there exists a function d = (d{j) with dij  G Hi such that

v s  (fi 0) [Vp] = e **b
i=0

/  (Zt; 9o) difj (Zt) dt
L0

(4.52)

+  Z) E*y.B
i=0 L0

for any dlJ0V fi G Hi. For 0 <  i <  2, 0 <  j  <  1, since dlJefi and dlJ d£iQ and the first i +  1 
first derivatives are bounded, they belong to Hi  for any n  >  1; moreover, for 0 < k < 2 + 1 ,

0 L
< c  1 + J E ^ b  [|Z«|4, j )

<  C  ( l  +  E„ [|X0|4’ ] +  / E b  [|B( |49] d t) < OO,

by (C l.3), (4.66) and (A0); so dl03xpo G Hi. Each term  in (4.52) is now shown to be on the 
desired form. Starting out with the first term,

V £0 (z) [d7r] =  T  (x; a) D 0)0  {%) dn (x) +  D0)i (z) d i r ^  (x)J
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where Do,o and £>0,1 are given in (4.64).By Lemma 33 and (Cl.6b),

EnxB [A (Zt) -  Ao (Zt)\ d o ,o  (Zt) dt

= [  T (z;  a) [tt (z) -  tt0 (z)] ~ ~ ~ ^ ~~ do,Q (z) p (z) dz
2 JR TTo (*)

+ i  f  t  (z; a) IV 1) (z) -  (z)l - 7-7 do 0 dz +  op(n_1/2)
I  J R L J 7To ( z )

=  f  T  (z; a) vo (z) ft (z) dz + j  T  (z] a) v\  (z) f t ^  (z) dz +  op(n-1 /2),
J r  7 r

where

yo(z) = - \ a° ^ 2̂ °) ^ <*0.0 (*)P (*) ’ 1/1 (z) =  (4‘53^

Observe tha t for any n  >  1, there exists i? > 0 such tha t dxT  (z; a) =  0, |z| > ii. Thus, 
by (4.51),

f  T  (z; a) v\  (z) (z) dz = — f  (z; a) 1/1 (z) ft (z) dz — f  T  (z; a) 1/J1̂  (z) #  (z) dz,
7 r  7 r  7 r

where we claim tha t f R (z; a) i/i (z) 7r (z) dz =  op(n-1/ 2); this will be shown later. But 
first we define do,o (z) =  ^0 (z) — *4^ (z) =  1/ (27To (z)) [oq (z) di,o (z )p (z )], and claim 
tha t

1 n
f  f  (z;a) (z)ft  (z) dz = — Y ' f  f  (z; a) 6 1  (z) Kh (z -  Xi)  dz
R n i=iR

= iy'T(Xi;a)<51(Xi) + oH»-1/2), (4.54)
71 in • i i=l

where 2?* [do,o C^o)] =  0 and I?7r[||do,o (^o )||2+€] < oo. I t is easily seen tha t E n [do,o C^o)] =  
0, while

■E,[Po,o(*o)H2+£] =  /  i+! / , lla* K  (*) <fe,o (*)?(*)] f +e dzZ JR 7Tq (z;

<  c  f R Wi + ' ( z )  { (z )ll2+e +  I M m ,  M II2+£} P2+£ (*)

+ C  /  -TqT7Tlldo,oWH2+£|3sp W |2+e^
•/R TTq (*)
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where we have made use of (C l.2). By (C l.7), / R{doJe (z) +  dz (z)}p(z )dz  bounds 
the first integral, while the second is bounded by

/  |[rf ( * ) | | 2+ e \dzp(z )\dz
J R  * 0  ( Z )

< C [  \p0 (z)\1+€\\d0fi(z)\\2+€\dzp(z)\dz  
J R

=  c  [  [|M o M l £ \d!fi0 M l  ||d o ,o  M I I 2 + £  +  Ipo ( * ) l l+ £  I K o  M l l £ l l ^ d o , o  M i l l  P M  dz
J R

where the last equality follows by (4.51). Since do.Oj Mo ̂  this proves the claim. Defining

wn (x )=  T  (.z; a) <50)o (*) K h (z - x ) d z - T  (x; a) <S0(o (*),
J R

the last equality (4.54) will hold if Ev [wn (Xo)] =  o (n -1/ 2) and var[n-1/2 X l i i  wn PW ] =  
o ( l) . First observe tha t

w n ( x )  =  h %  [  4 w) (z * )T  ( z ; a ) £ 0,o ( z ) d z  =  h %  f  ( z * )  ^  ^  ^ 7T0 (z ) £0,o ( z )  d z  
J  r  J r  t t o  ( z )

=  O (ho a -1 )

uniformly over x  € JR. This implies tha t y/nE^[wn (X\)] = O (y/fihQa-1) =  o (l)  by 
(Cl.6b), while the variance term  is bounded by

var (w„ (Xi))  +  2 "E cov (w„ (X1) ,w n (X j+1)) <  E* [ | K  (JCi)||2l ( l  +  2 p \ '2\
i = l  L J I  i= 1 J

where, by dominated convergence and (Cl.6b), £7^[||n;n (X i)||2] =  O (hg^a-2 ) =  o ( l) .
Treating the remaining four terms of (4.52) in a similar fashion, we obtain the claimed 

result with <5 =  E i= o E j= o ^ d  if n_1/2E "= i{ 1 -  f  (Xf, a)}S (X{) = oP (1). But 1 -  
T  (x; a) =  adaT  (x; d) for some a G [0, a] where

E*[\\daf(Xi-,a)6(Xi)  II] <  E*[\daT(X?,a)  |2 ] 1 /2  x  £ * [ | |< 5 ( X ; )  | | 2 ] 1 /2 ,

and the result now follows from (Cl.6b).
Finally, we have to show tha t f R T ^  (z; a) v\  (z) ir (z) dz  =  op(n-1/2). Going through 

the same steps as before, we obtain

[  f M  (z; a) vi  (z) f  (z) dz =  ^  f (1) (X < ; a) v x (Xi) +  o p ( n “ 1 /2 ) ,
i=i

where

E * [ \ f ' «  (Xi-, a) I K  (Xi)ll <  E * [ \ f W  (Xi-, a) ? } E *  [iM  (X i)||2l ^  = oP(n- 1' 2)

by (C1.6b) since E*[\\vi (Xi)||2] < oo, and £^[|T,<1) (Xi; a) |2] < CP* (a /2  <  ttq (Xt) <  a).
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The Hessian

L em m a 19 Under (Cl. l)-(C1.7),  sup0G0 \\Hn (9, p) -  H ( 9 , n Q)|| —>p 0.

P ro o f. The Hessian, h =  Oqs, is given in (4.12) with =  dlxp, V d lxp  =  dxp , V d xa 2 =  
5* d2, and V d lxcr2 =  d*<72. We claim that

\ \h (x \xo ' ,9 ,p ) -h (x \xo]9 ,p0)\\ < b(x\xQ) Y  I I ^ A  -  ^ A o llo o ,
i,j=0

\\h(x\x0 ;9,ji0) -  h(x \xo‘,9,t iQ)\\ < b(x \xQ) a E B 

\\h{x\x0 ]9,nQ)\\ <  b(x\x0),

C  \daT { Z t ;a)\dt  
.Jo

where E n [b (Xl|Xo)] < oo. This will give the desired result, c.f. the proof of Theorem 5. 
The inequalities are established in the same fashion as in the proof of Lemma 13. ■

4-B.2 Class 2 

T he Score

The expression for the score given in (4.31) is also valid for Class 2, since ifj (x|xo; 0, o'2) 
is bounded for a 2 = &q and cr§ by (C2.3).

L em m a 20 Under (C2.1)-(C2.7),

Sn (Oo; <3o) =  Sn (9q; <tq) +  op(n-1/2), 

where E v [\\s ( X i \ X 0; 0O; o-§)\\2+S] < oo.

P ro o f. Using the same notation and strategy as in the proof of Lemma 11, we obtain

||5as(s|ar0;a)||

<  C  ( l  +  |x |3?+1 +  |*o|3,+1)

x ( \daT  (z; a) | +  |daf  (x0; a) I +  /  19aT  (w ; a) \dw +  E B f  \daT  (Z t ; a) |dt ^ ,
V Jxo .Jo . J

by Lemma 40 and 42. The proof now proceeds as the one of Lemma 11, and we conclude 
tha t (C2.6b) ensures tha t the result holds. ■

T he Pathw ise Derivative of th e  Score

The pathwise derivative of s w.r.t. dlJ 6 a2, i , j  = 0,1, w.r.t. Vcr2is given in (4.37) with

v<9x V  =  o, i J  = Q>1-
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L em m a 21 Assume that (C2.1)-(C2.6) hold. Then

|| Vs (x |x0; 0, erg) [Vo-2] || <  C  £  (||d^Vo-2 (x) || +  ||a^Vo-2 (x0) ||)

1 /*max{x,xo}
+b(x\xo) Y  /  l^9^7°'2 (w ) \dw

j=0 «/min{x,xo}

2 1
+h{x\x0) Y J 2 e b  

i=0 j = 0
[ l \ f o 4 V o -2  (Zt) \\2dt 

Jo

1/2

where E* [b2+s (Xi|Xo)] < oo.

P ro o f. Using the bounds in (C2.2),

||V s(x|xo)|| <  C  (Vo-2 (x) +  Vd-2 (x) +  Vo-2 (xo) +  V d2 (xo)) (4.55)

+ C  (|x| 4- |o?o|) ( /  Vo-2 (w) dw + f  Vd-2 (w ) dw J 
\ x 0 xo J

, £ f l [ | |W (x |x 0)||] E b I \\^(x \xo)\\}Eb [\\V'iP(x \xo)\\]
Eb (a?|x0)] Eb [ip (z|x0)]

We obtain

\Vip (x|x0)|
V>(x|x0)

2 A ( £ £ \D i (^)llva> 2(i)(Zt)I + |a£>(Zt)I\ v z t \ dt \

< A \d * (Zt)\ |Vd^2(i) (Zt) I d t + C  £  |A  ̂(Zt) I J * ’ | V<r2 M l  dw dt

+ C  |Vo-2 (to)| dw +  J  |Vo-2 (to)| dw^j J  |Ay^ (Zt) \dt

(  2 r1 \ l 2̂ (  2 r1 \ 1//2
= [ 5 2  \Di(Zt)\2 d t )  V  /  \Va 2 (Z t ) \ 2 d t )

\ i = 0  /  \ i = 0  /

+ |A ^  (Zt) |dt | Vo"2 (to) | dto^ .

Similarly,

+ A  f 1 IIVAy (Zt) II +  |V A « (Z t ) \ \ \Z t \ \  +  |Ay> (Z t )  |||V 2 ( ||dt
J O

with bounds for VAy, V A y\ and | VZt given in Lemma 41 and 42. Collecting the various 

terms, we establish the desired bound with £ ,7r[62+(J (X l|X o)] < oo because of (C2.3) and 
(AO). ■
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L em m a 22 Under (C2.1)-(C2.5), there exist a function b with E n [b2 + 6  (X i, Xo)] <  oo 

such that for all 9 e  0  and with ||cr2|b.i.oc =  Y^l=o ZIj=o l l^ s ^ llo o ,

|| V s (x |xo;0,<72) [do2] -  Vs (x |x0;0O, Oq) [do2] ||

<  6 (x |x0) | |dcr21(3,1,00 { |\o-2 -O olki.oo +  | |0 -0 o || + a i }  ,

where

/*max{a:1xo} r y*x
A = |daT  (x ; a) | +  \daT  (x; a) | +  /  \daT  (w; a) \dw +  E b  \ \daf  (Z t ; a) |

./min{x,xo} L«/0
‘dt

1/2

P ro o f. Let 6  6 0  be given, and write Vso(a:|xo) =  Vs (x|xo;0,<7o) [dfi], V s(x|xo) =  
V s (x|xo; 9, d2) [do2] and similarly for any other function depending on d§ and a 2 respec
tively. It holds tha t

V s (x |xq;0, <r2) [do2] — Vs (x |xq; 0o, 0q) [do2]

=  - d o 2 (x) 
4

ded2 (x) ded'o (x)*.2

+ ^ d o 2 (x0)

d 4 (x) Oq (x) 
dgd2 (xq) (x0)

-  -d<72 (x)

. <r4 (x0) ^ o W  .
-  i d d 2 (x0)

_<j2 (x )  <t§ ( x )

1

( f  <7 1 (w)dw  ) I V d 2 (w)
^  \ X Q  J J x0 .<r2 ( w )  o ' q{ w )

d 2 (x Q) <7§ ( x0) .  

dw

4  ( f  a - '  (w) d  J  f  f ^ M  + 9 °&2o (“ )
 ̂ \xq J Jx0

du;

1 x 
"*"2̂ xq

2 [ 2d3 (w) 2<Tq (w) .

1 1 I , f x Vd2 (w) ds<To M  V0"2 M
W L

dw

+

xo ^0 (w) 2 d l  (w)

E b \ V ^  Q e |s q )  [do2]] _  E B [Vjf0 ( s ^ o )  [d c r 2 ] ]

E b [i> (®|®o)] Eb [if0  (®|®o)]

E B [if (x|x0)]Eb [ v ^  (x|x0) [do2]] E B [i>0 (x\x0 )]EB [V ^0 M ^o) [do2]]

E b  [if ( z M ] ‘ E b  [if0  (*l*o)]'

Thus,

|| V s (x |x0; 9 ,d2) [do2] -  Vs (x |x0; 0O, Oq) [do2] ||

b (x |xQ) | | ^ 2||3)1>00||^ 2 -^olls.i.oo

E B [Vif { x \x q )  [do2]] E b [ V ( a |g p )  [do2]]
+

+

E b [if (z|zo)] E b [if0 (&|*o)]

E B [jf (x|x0) \Eb [Vjf (a |x0) [do2]] _  E B [if0  (x\x0 )]Eb [VjjQ (x |x0) [do2]] 

E b [if (z|zo ) ] 2 E b [ifQ (z|zo ) ] 2

where b (x|xo) =  C(  1 +  |x |29+1 +  |xo|29+1). The last two terms are treated in the same way 
as in the proof of Lemma 13. Using the same notation and strategy as in tha t proof, we
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obtain

P u l l  <  C E b f  (|VAyi0 (Z t) I +  1) dt f  ||Ay,0 (Zt) II +  |A «  (Zt) \\\Zt\\dt 
.0  0

Eb [\1> (x\x0) -  ip0 (slsp )!]
Eb [ip (a?|a:o)]

3 1 2 r . . ■] 1/2
<  C b  ( z | * 0 )  C E E  t i b d *  -  f i f t d g  E  E b  | V S > 2 ( Z t )  f

k=01=0 00 i,j=0 L

by Lemma 40, 41 and 42, and similarly for the other terms. Next,

V s (0,<7q) [da2] -  Vs (0,0q) [da2] = V d as (0,<3o) [d(j2] lo=aa 

where we claim tha t

V d as(0 , do) [d(j2\ =  V 5 as(0 , T (•; a) Oq +  (1 -  T (•; a))o;2) [da2] 

satisfies a || V d as(0, &l) [da2] || <  b(x\xo)An. We see tha t 

V d as(0, T  (•; a) o-q +  (1 -  T  (■; d))c[2) [da2]
da2 (x) 

4

d o-2 (® o )

(®) (*) (®)
-2 -2

d-̂  (x) 2<r§ (x)

de,a°l (® o ) d 2 (a?) da<5"o (® o )
( x o ) 2d-jj (x0)

+ 3 J  da2  (w)d 2 d l ( w ) dw j  ded l ( w ) dw 
S L  <7§(iy) i 0 do(w)X Q

+ 1 J  do-2 J  deal (w) d2&l (w) _  de,ad l  (w) dw
X q «o(») XO 2d-g (w) dQ (w )

+  1 J  da2 (w)dw J  dea \  (to) dadl (w) _  V o W  dw
X Q ^ o W X Q 2 d$ (w) do (w)

1 xr dad l  (w) f x da2 (w) a 2 (w) da2 (w)* f "a- V..^ J .dw f  d<7\ ' ~ '  -  ~ '~ ' r r .  ' T ' dw
2 xq d -g(to) 7xo a (w ) 2(7 W

x  da2 (w) dadl (w) deal (w) da2 ( w ) dadl {w)

+

1  X 1  r

-  f  — r ^ d w  /  ---------„
2 xo a (W) Jx0 d% (w)
1 J. _ J _ dw f x de,ado (w) da2 (w)
2 L (7(W) W Jx,

2 d% (w)

dw
X Q  v  J x 0  2 ^ 0  ( ^ )

E B [Vdaip (s|ffo) [da2]] E B [Vip (^foo) [da2 ]]EB [daip (a?|agp)]
E b  [ip (a;|x0)] E b  [ip (m|m0)]2

E B [daip (x\x0 )\Eb  [V ^ (g|gp) [dv2]] _  E B [ip ( x \xq) ] E b  [Vdaip (x |x0) [da2]]
E b  [ip (x\x0)]2 E b  [ip (m|m0)]2

 ̂ 2EB [ip ( x \ x q ) ] E b  [Vip(x\x0) [da2]] E B [daip{x |a?0)]

E b  [ip (z |x0)]3

Using arguments similar to the ones employed in the proof of Lemma 20, one will realise 
th a t the desired bound will hold with b(x\xo) =  C(  1 +  |x |29+1 +  |rco|29+1). Finally, the
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inequality

| | V s ( 0, / i o) [dii\ -  V s  (00, Mo) M il  <  b(x \x0) IM h.oo  ||0 -  0o||

is shown to hold in the same manner. ■

L em m a 23 Under (C2.1)-(C2.6),

||Sn (0o,d2) - S n (0O, dg) -  V S n (00, do) [d2 — dg] || <  Op  (1) x ||d2 - d g | | ^ .

P ro o f. This follows along the same lines as the proof of Lemma 14, only here two extra 
terms have to be dealt with, Zt (d2) — Zt (dg) — VZ* [d2 — dg] and Zt (d2) — Zt (dg) — 
VZ* [d2 — <5q] . This is done by applying the results of Lemma 42. ■

We define V ns (x|xo; 0, cr2) [dir] =  Vs (x|a:o; 0, cr2) [Vcr2 [dn]], and obtain

L em m a 24 Under (C2.1)-(C2.6), there exists b with [b (Xl|Xo)] < oo such that

3
|| V s (a |z 0; 0O, do) [d2 -  dg] -  V^s (x\x0] 0O, dg) [d -  7T0]|| < b (x |x0) £  at_5|l^(l)- ' 7ro)ll~ '

i=0

P ro o f. This follows from Lemma 21 together with 38 and 31. ■

T he A djustm ent Term

In this section we show tha t the pathwise derivative can be written as a normalised sum.

L em m a 25 Under (C2.1)-(C2.7),

V Sn (0O, dg) [d2 -  al\ = V S  (0O, dg) [a2 -  erg] +  oP(n~1/2). 

P ro o f. The result is obtained by copying the arguments of the proof of Lemma 16, only 
now using Lemma 21 and 24. ■

L em m a 26 Under (C2.1)-(C2.7),

V S  (0O, dg) [d2 -  d§] =  V S  (0O, ctq) [d2 -  dg] +  oP (n_1/2). 

P ro o f. This can be shown by the same line of arguments employed in the proof of Lemma 
20. ■

L em m a 27 Under (C2.1)-(C2.7), there exists a function S with ^ [^ (X o ) ]  =  0 and
E w 2+e < oo such that

V S  (00, 0-g) [a2 -  dg] =  -  ^ 2  6  (Xi) +  oP (n 1/2).
z=i

P ro o f. We proceed as in the proof of Lemma 18, only now defining the Hilbert space Hk 
as

Tffc =  { /  : R ► R |/  is fc times continuously differentiable and bounded} ,
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since we have that, in contrast to p, a 2 is bounded. We equip Hk with the inner product

i f ,  9) = J  f ( x )g (x )T T o(x )dx - \ -E irxB f { Z t) g { Z t )d t

r r  f  rm&x{x,x0} \
- + - / / ( /  f ( w ) g ( w ) d w \ p o ( x \ x 0 ) 7ro(x)dxdxo.

J J V «/min{x,xo} /

T he Hessian

L em m a 28 Under (C2.1)-(C2.7), sup0Ge ||Hn {9, a2) — H  (6 , 0g)|| —>p  0.

P ro o f. The Hessian, h =  O q s , is given in (4.37) with Vd* p = d*/i, Vd* p  =  d* p, Vd* o'2 =  
d*<r2, and Vd*d2 =  d*<72. Copy the arguments of Lemma 19, this time employing the 
inequalities in Lemma 40, 41, and 42 to obtain tha t

3 *
\ \h{x\x0 ' ,9,a2) -  h (z|rr0; 9 ,<7§)|| < b ( x \ x 0) ||d^<72 -  d*^do||oo,

i,j= 0

for some function b with En [b (Xi|Xo)]By the same line of arguments employed in the 
proof of Theorem 8, we obtain

h (m|xo; 0, do) -  h (x|xo; 9, <Tq) = dah (x|xo; 9, <Tq) a

where, following the same procedure as in the proof of Lemma 22,

\\dah ( x \ x 0 ',9,al)\\ < b{x\x0) {\daf (x - ,a )  | +  |d0f  (x;a) |
max{x,xo} 1

+  /  \daf ( w , a ) \ d w  + EB[J\daf ( Z f , a ) \ 2 dt]^2}.
min{x,xo} 0

■

4-B.3 Auxil iary Lemmas

L em m a 29 Under (AO), {-Xi} is famixing with fa < cexp {—pi), p > 0, and E^  [V (X t )] < 
00.

P ro o f. This follows from Meyn &; Tweedie (1993, Theorem 6.1). ■

L em m a 30 Under (C1.1)-(C1.3) or (C2.1)-(C2.3), the transition density p for {X t}  with 
invariant density 7r, takes the form

(4.56)
(/;a (w) 1 dw ) /2A E b  [ip (m|m0)]
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P ro o f. We have by Dacunha-Castelle and Florens-Zmirou (1986, Lemma 1),

p { x M = 7 i ^ m

Using (4.21) and

exp
p(x)

(7 (z) -  7 ( x 0 ) )  /2A  +  / \ l y  ( w )  d w
J7(x0)

E b  [if (x, z0) ] ,

(c.f. (4.3)), we obtain tha t 7  (z) — 7 (zo) =  f * n a  ( w )  1 d w ,  and 

*70*0

f7(*o)
rx r .. f...\ 1 a— 1

a  ( w ) - 1  d w

p(x)  rx
/  f i Y  ( w ) d w  = I fiy (7 (w)) a ( w )  d w  

J 7(®o) Jxq
f x T/x ( w )  1 d a  ( w )

Jx0 U m  2 an;
f x T /x(u;) 1 a  log o’(w)

Jx0 U 2 M  2 d w
d w

=  I  [>°g (ff2 W  IT M ) ] l  -  I  p°g M )]*„10 2

log ( a  (z) /o ’ (z0)) +  i  log ( tt ( z )  / tt ( z 0 ) )  -  i  log (a (z) / a  (z0)) 

i  log (cr  (z) j  a  (z0)) +  i  log ( tt ( z )  / tt ( z 0 ) )

Plugging in these expressions, 

1
p ( z |z 0) =

(j (z) V 2ttA 

1

exp ( / *  o - H - 'd w ) 2 /2A

_ ^ = = ^ _ _  h  M .
(z) cr (z o ) \/27rA y tt(^o)

exp

o’ (z) / 7r (z)
O' (^0) Y TT (zo) 

2

E b [if (a;|®o)]

( ® | z 0 )]

To prove tha t 7r and its derivatives converge uniformly, we make use of a general result 
by Andrews (1994, Theorem 1):

L em m a 31 Assume that (AO)-(Al) holds and the kernel K  E JC(u>, A). Then

sup
xGl

( x )  -  7r<A) ( x )  =  OpCn-1'2/,? -* )  +  0P(h“~X) (4.57)

When working with the pathwise derivatives, we need a {/-statistics result for dependent 
sequences. Let {!*} be a stationary and /3-mixing sequence with mixing coefficients {Pyti} 
taking values in Rp. Consider the sequence
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where (mn)n>1 is a sequence of Borel measurable functions, m n : W  x Rp i—»• W .  We 
introduce the following projections,

1 xn   ̂ f
Vi,n = -ym^niYi), mi,n(vi) = / Tn„(yi,y2)dP(y2),

n U  3
1 - n  '  f

v 2,n =  -  m 2,n (Y j ) , m 2)n (yi) = m n (2/1, 2/2) dP (y2),
71 1 7

Vn = J mn (VuV2 ) d P { y i , y 2),

where P  is the distribution of { Y i }  on Rp. The following projection theorem is a standard 
results from the theory of V-statistics, see for example Arcones (1995), Robinson (1989) 
and Yoshihara (1976).

L em m a 32 Assume that for some p >  2,

1. Mn = sup^j E [IK (Yit Yj) in1/” = o (Vn) .

Then,
V n - V t  , n - V 2,„ + V n = oP( n - ^ 2). (4.58)

We deliver a proof for completeness based on Arcones (1995).
P ro o f. We first define the {/-statistics, Un = l / n 2 Yli<i^j<n hn (Yi,Yj ), where

hn (2/1, 2/2) =  m n (y i, 2/2) +  ™>n (y2 , y i )  ~  2Yn , 

and its projection, ?7i)n =  l/fi]CSLi hi ,n (^»)» where

hi,n (2/1) =  J  hn (yi, 2/2) d7Ty (2/2) =  m ^ n (yi) +  m 2)„ (yi) -  2 V n.

Note tha t hn (y \ , y 2 ) is symmetric and that

1 n — 1
V n - V n = - ^ Y i m n (Yu Yi) +

i = 1

and Vi)n +  Y2>n -  2Yn =  {/i,n . Since

L £  E [IK (Yi, yoill < /?£>  [K  (K, «)f ]1/p < \ Mn = 0 (l/VS),
Tv Tv fvZ=1 Z=1

we have tha t n -2 m n (Yi, Yi) = op (n-1 /2) . So we show tha t Un — {7i>n =  op (n -1/ 2) . 
The proof of this follows along the same lines as the proof of Arcones (1995, Theorem 1). 
He works with a function h which is independent of n  but we observe tha t his Lemma 2 
and 3 hold for n-dependent h functions as well.
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Let (&)£>! be a sequence of i.i.d. variables with the same distribution as Yq. Arcones 
(1995, Lemma 2) implies tha t for any n >  1, 1 < i  < n ,  1 < r < n — i and a > 0,

IE  [||/l„ (YUYi+r)\\P 1{K ,|<„,] -  E  [llhn (yi,S2) r  l{|m„|<a}] | <  Py^ , 

which again implies that
E [ \ K { Y i , i 2 ) ^ \ < 2 M l  (4.59)

for any n > 1 and 1 < i < n. Define the function

hn (yi, 2/2 ) =  hn (y i ,y2) -  hi.n (yi) -  hhn (;y2 ) +  hn (yu  y2) .

Observe tha t hn (y i , y2) is also symmetric and, by (4.59), sup1<i<n E[\hn {Yi, Yj) |p] < 8 M P. 
We may then apply Arcones (1995, Lemma 3) to hn to obtain

£[n-3/2|| Y. K{Yi,Yi)\\\<C{Sn-1Ml + %n-lMlYi^YY'2))- (4'6°)
l<ij£j<n j=l

From our assumptions, Y^jLk32 ^ ~ 2^ Y , j  ~ * 0 such th a t PY,2khp^ p~2̂  —> 0 since 

2k 2 k
Y f /<3,- 2)p Y J  >  Y f /(P~ 2)0 Y ,2 k  =  P Y ,2k O  .
j=k j=k

We conclude tha t (4.60) converges towards zero. Hence,

(tfn-Ui,n) = E K(Yi,Yi) = oP{\).
1 <i^j<n

Class 1

L em m a 33 Under (C l . l ) - (C 1 .6 a),

fc+i
II fl$Aw  (•;«) -  ^  (■;«) ll» <  c ^ ^ - 2ll*(i) -  * « m ,

i= 0

fc+1
I I ^ A ( - i f l )  - ^ A o ( - ; 9 )  - ^ V , A o (•;<>)[* - 7 T 0] Hoc <  C ' ^ o <- * - 3 | | * W  - ^ I l L

i = 0

uniformly over 0 € ©, where [c?7r] is given in (4-63)-(4-65).

P ro o f. We fix 9 G 0 , and suppress it throughout the proof. We introduce some trimming 
sets. Define

A {e) =  A \  (e) D A 2 (e) (4-61)

where
Ai  (e) =  {z|tt (z) >  ea} , A 2 (e) =  {x|7ro (x ) > ea} , (4.62)
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for any e > 0. As shown in Andrews (1994, p. 588), A  (s) D A \  (2e) with probability 1 
as n  —► oo under (C l.l)  and (C1.6a). Assume tha t supxei4(e) |/z(x;7r) — /x (rr; 7To)| —*p  0. 
Then, by (TO),

^  < sup I\i (x; f t ) - p  (x; 7T0) I <  sup In  (x; ft) -  y, (x; 7r0) | ->p 0.
xeAi(l) x€j4(1/2)

The same argument works for derivatives w.r.t. x and 9. So in the following we establish
convergence uniformly over A  (e).

We observe th a t y  (x; n) — \ d x<y2 (x) +  \ a 2 (x) (x) /7r (x). Thus, by (C1.2),

- 2|m(x;tt) — /x(x; tt0)| <  - a
ft^  (x) 7 ^  (x)

ft (x) 7T0 (x)

where

sup
x £ A ( e)

Tj-UX*) tt̂ 1)
ft (x) 7T0 (x)

<  sup i f t  (x) 1 |7T^ (x) — 7Tô  (x) | |  +  SUp 1^^  (x) | 
x € i4 (e )   ̂ * xGA(e)

< C a_1||7r(1) -  ^ H o o  +  Ca ~ 2  \\ft -  Trolls .

ft (*) 7T0(x)

Next,

y M  (x; tt) =  (x) +  i d x <72 (x) ^  +  i< r 2 (x) ^
ir(2) (x) (x)-1

(z) 7r (x)'

such that, by (C l.2), 

_  . , ( 1 ) pf2 7T̂  ̂ (x) *o1} (x ) 1 2 
+ r

7T̂2  ̂ (x) 7T(02) (x)
a l ft (x) 7r0 (x) ft (x) 7TQ (x)

1 - 2
2

7T̂  ̂ (x)2 7Tô  (x)2
ft (x) 7T0 (x)'

where

sup
x € A ( e)

ft(2) (x) 7Tq2̂  (x)

sup
;r€.A(e)

7T (x) 7T0 (x)

7T̂  ̂ (x)2 7Tô  (x)2

<  a 11|7T(2) -7T^2)I|oo + Ca 2 ||7r -  Trolls ,

ft (x) 7T0 (x)i
<  sup

xEA(e)

7T ^  (x) TTq1̂  (x)
7T (x) 7T0 (x)

. ( 2 )

+  sup 
xGA(e)

7T̂  ̂ (x) 7Tô  (x)
ft (x) 7T0 (x)

<  a  2 | | tt(2 ) - T r ^ l l o o  +  C a  3 | | 7 r - 7 r 0 | |o o .

The results for y ^ \  i =  2,3,4, follow in the same manner. The derivatives w.r.t. 6  satisfy 
same bounds due to the bounds imposed on d ^ c r2, 0 <  i < 4 and 0 <  j  <  2.
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Next, we turn to the pathwise derivatives. We define

V £0 M  M  =  T  (x\ a) |l>o,o (z) dir (x ) +  Do,i (z) d n ^  ( x ) |  (4.63)

where

° ° ( 4-m >TXTT’ ^ o -1 W  =  o^ 2'o
and inductively for i >  1,

where

t+i
v d ££0 (x ) IdA  =  t  (* ;a ) 1 3  ^  d?r(j) W  •

j = 0

Di,o(x) = 2?Eii0(*)» (4-65)
A ,j (®) =  (*) +  D^}lfj (x) ,  1  < j <  *,

1 2Di,i+i(x) = - a  (x)
2 7T0 ( z )  ’

We show tha t the assertion holds for V/Xq\ i =  0,1. The remaining ones follow along 
the same lines. Observe tha t by a standard 2nd order Taylor expansion of the function

f  /o / - / o  j fo(g-go)
g go go g$
( f -  fo) (g -  go) _  2 Ag +  ( l — X)g0  ̂ ^

(Ag +  (1 — A) go) (Ag +  (1 -  A) go)

Thus,

IA — Ao — V£o [tt -  tt0]| <  ~  ~ ~  +  — ^o) — ~ ( #(1) “
i -(i) ^(i) ,_(i) i
i ^2i7r ^0 , ^0 _ \ 1 /-

< c { a - 3||7r-7r0||^ +  a-2||7rW

In a similar fashion, Taylor expanding the function ( f ,g)  •—► f 2 / g 2,
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The results for the derivatives w.r.t. 9 are shown in the same fashion. ■

L em m a 34 Under (C 1.1)-(C 1.6a),

k+i
y  (•; 9, A) -  f l f t A y  (•; 9, Ao) <  C  E  -  % r f P \ U

OO i,j=0

/o r  0 <  k, I <  2. Moreover,

I A y  (^ ; 0 , /x)| <  C  ( l  +  |/ i  (z ; 0 ) |2 +  | / i (1) (z ; 0 ) | )  ,

l ^ y } ( * ;0 , /* )  I ^  c  I1 + \v (*;e)\2 + It1 M l  m(1) ( 2 ;0) I +  Im(2) (* ; 0) l )  1

||A Y M  0, /*) II <  c  ( 1  +  I/i (z ; 0) | 2 +  I\i (z )I  | / i  (z ; 0) |  +  ||A (1) (z ; 0) | | )  .

P ro o f. We suppress the dependence on 6  £  © which we fix. From (4.32),

||Ay (-; A) “  Ay(-;Ao)lloo ^  l|A2 -  A olL+i^llA ^-A o^lloo <  £  a_1+i 11 A(0 — Ao} I loo,

since \\fi2 — Ao|| <  ||A +Aollool |A — Aol loo <  Ca~l \\pL — Aolloo- By similar calculations, the 
remaining inequalities follow.

Next,

I Ay Ml < ^  ^  + _ _ |L  + - d  < C(1 + W|> + |MW w  I),

and similarly for the two other bounds. ■

L em m a 35 Under (C1.1)-(C1.4),

1. The function D^ in (4-39) satisfies

k I
IIe t s i D ' W , ? )  II < c E E t 1 +113$/* M )  II)

i=0 j = 0

and

k I
11 m ,m i) -  %afeD„ (z-,e,th) II < c E E  H£3»/*i -  ax ^ l l » .

t=0 j= 0

2. There exists a constant C > 0, such that

IIAy {z-,9,(i) -  A y  ( z ; 0, £ o )  -  V A y  ( z ; 0, A o ) [ A -  Aol II <  C IIA  -  A o IlL  >

||A<J> (z;0, A) -  A<J> (z-,e,M -  V A «  (z-,e,M [A -  Ao] II <  c E  IIA(<) -  Af’llL
z=0

1
||Ay (z; 0, A) -  Ay (z; 0, Ao) -  VAy (z; 0, Ao) [A -  Aol II < C E  l|3jA -  S|Ao||L •

i=0



4.B Lemmas 96

P ro o f. Given the bounds on a 2 in (C l.2), the first part of the theorem easily follows. The 
first claim in the second part follows from

Ay (ft) -  Ay (Ao) -  VAy (fl0) [ft -  ftQ\ =  [fJ2 -  Ao “  2 Ao (A  “  A o )]

=  (** -  A o )2 •

For the second claim, we write

A y } (A )  -  A y } (A o )  -  VA<J> (A o )  [A -  A ol 

=  - ^ 2  ( ^ (1) “  ^oMo^ -  Mo(m(1) -  Mo1}) -  ^  (m -  /*o))

( /* 2 -  Ao -  2 Ao ( ^  -  A o ) )

=  - ^ ( m - A oM / ^ - A ô  +  ^ t ^ - A o)2 *

where | \fi -  ftQ\ |oo||m(1) -  Ao^lloo < \ \ ^ ~  Aol \t> +  ~  Ao^llw- We obtain the third
inequality by similar arguments. ■

L em m a 36 Under (C1.1)-(C1.4), \dleZt (x|xo; 0)| <  C  (1 +  |x| +  |mo| +  \Bt\), i =  0, 1,2. 

P ro o f. First, |7 (:r;0)| < C (  1 +  |x|). For example, for x  > 0,

7 (:r;0) =  7 (O;0) +  f  —j ^ - r r d w  <  7  (0; 0) +  [  a ^ d w  <  7  (0; 0) +  a _ 1 x,
J o  cr (w ; 0) J Q

7 (x;0 ) >  7 (0; 0) +  d-- 1x,

where sup0ee I7 (0; 0)| < 00. This implies tha t for any t G [0,1],

1̂ *1 =  l7 ~ 1 ( t j ( x )  + ( l - t ) j ( x 0) + V A B t)\ (4.66)

<  C (l  + t I7 (x)| +  (1 -  t) I7 (z0)| +  VA \Bt \)

< C  (1 4- |x| +  |rco| +  \Bt\) •

The claimed bounds for Zt and Zt are established in a similar fashion. ■

Class 2

L em m a 37 Assume that: (i) (A0) holds: (ii) 0 t-+ fJt(x;0) is k +  1 times continuously 
differentiable, satisfying \\dlfi (x\ 0) || <  C  | jc |^ 2+^  for  0 <  i < k +  1 and some 6  >  0. 
Then

sup
(x,0)eMx©

1 ^
-  J 2 h ,* )  (X i > 0) ~  /  n ° (y ) 9) dy

i= l
=  O p( 7X-1/ 2).

P ro o f. We have th a t (i) {Xi} is stationary and absolutely regular/^-m ixing with geometri
cally decreasing mixing coefficients, and (ii) |l(z)X) (z ) del* (z ] 0)| < b ( z )  = c ( ^  1 +  \z\^^2+s^j
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with E-n [b2+s (Xo)] < oo. Finally, we claim tha t (iii) the e-entropy with bracketing of Q for 
the L q (7r0)-metric, H B,q (e, G, 7To), where G =  {g\g (z) =  l(/jX) (z) d^g  (z; 0 ), (x, 0 ) £ I  x  ©}, 
satisfies H s,q (£,G, tt) <  Ce-p for some p < 1/2 and q > 2. Applying Doukhan, Mas- 
sart and Rio (1995), (i)-(iii) yield the result. To prove the last claim, (iii), define H  =

By the same arguments as in the proof of Chen et al (2003, Theorem 3), it now follows 
tha t

for any s E (0,1], where H  (e, 0 ,  ||-||) and Hq (e, 7To) are the e-entropies of 0  (for the 
Euclidean norm) and H  (for the Lq (7To)-metric) respectively. By van de Geer (2000, Lemma 
2.5), H  (e, ©, ||*||) <  dlog (4Ce-1 -I-1) while, by van de Geer (2000, Theorem 3.11 and 
Example 3.7.4a), Hq (e,H , 7Tq) <  log(Ce-9 ). This proves (iii). ■

L em m a 38 Under (C2.1)-(C2.4), the following holds uniformly over (x,0)  E R x 0 , 
0 <  i <  4, and 0 <  j  < 2:

P ro o f. In the following we fix 9 E 0  and suppress any dependence on it. Recall the

{h\h  (z ) =  1(/)X) (z ) , x  E /} , such tha t G =  {g\g (z\ 0, h) -  h (z ) dfig (z; 9 ) , {9, h) E © x H}.  
It holds tha t for any (9, h ) , (9', hf) E 0  x 7i,

|g (z ;  0 , h )  -  g (z ;  0 ',  h ')  | <  |d £ p  (z ; 0 ) | | / i  -  h ' | | 9 +  | | h ' | | ? \d%g (z ;  0 ) -  d$g (z ;  0 ')

=  I/* (*; 0)1 ||& -  ^ | | g +  | | ^ | |g |^9+V  (*; 0) 11|0 “  ^ | |

<  6 (*) (||fc -  fc'||a +  ||« -  tf'jl) .

definition of A  (e) in (4.61), and the results associated with this trimming set. Then

sup | a 2 (x) — &q (a;) |

<  sup < 7r (x) 1 x>x)(Xi)g(Xi;0) -  f  tt0  (y) g (y; 9) dy

< Op (a 1n 1/2) + Ca 2 ||# -  ttqIIqo .
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N e x t ,

|d x a 2  ( x )  -  d x & Q  ( x ) |  

( x )
< 2T  (x; a)

7r (x)
| <r2 ( x ) - a l  (x ) | + (Jq (x )

7 T ^  (x) 7Tg^ (x)
7T (x) 7T§ ( x )

<  c { 0 P(a 2 n  1/2) +  a 3 ||tt -  7^11,*, +  a 2 ||7r(1) — ?r̂ 1)| | o o | ,

The remaining bounds follow along the same lines.
We now turn to the pathwise derivatives of a 2 (x) w.r.t. 7r. Define

V tt& I  ( x )  [V 7 r ]

f  {x' a) { { x ) + ( X i )  M {Xi ' e) ~  (x)
2 1

such tha t

<

<T2 ( x )  -  <t5 ( x )  -  d lx V n f r o  ( x )  [7T -  7T0 ] |

i = l

1  7T ( x )  -  7TQ ( x )

| t t ( x )  - 7 T 0 ( x )  I

A (*)

7T ( x )  7T0 ( x )  ' 7Tq ( x )

“  E  (x <) ^ W ; e) ~  [  ^ 0  (y) /x (y; 0) dy
71 i=i d-00

<  Op (1) x 

Similarly, with

(7T (x) -  tto (x)):
7Tq ( x )  +  7T ( x ) TTq (*)

V .a xa 2 (x;0) =  f ( x ; a ) i ^ l (_ „ ,l ) (Xi) M(Xi; S ) { i 2 S ^ d 7 r ( x ) - ^ ^
n i = \  (  * 0 K X )  7T0 ( x )

(r'l 1 , n

- T  (x; a) - V r y -  E  ^-oo^) (*<) ^ ®) +  (*; *)
7Ta I X ) 71 . „
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we obtain

|dxa 2 (x ) -  dx&l (x ) -  V7TdxOQ (x) [ir -  7ro]| 

27T^ (x) 27T^ (X)
< Op  (1) x T  (x; a) 

+ 0 p (1) x T { x \ a )

+ 0 p  (1) x T (x ;a )

7T (X)2 7r0 (a;)2

(7r (a;) -  7T0 (x))
7To (x)3 

2 (x) — 7Tq̂  (x)^

ttq (®)‘

4 1} w
+O p (n  1/2)  x T  (x; a) < ------ — 3— |# (x) -  7r0 (x)| +

V /  1 7T0 ( x )

2 (x) — 7TQ1) (x

7To (x)‘

<  Op (1) x ^ a - 4+fc||7r(fc) -  TT ^Ili +  Op ( n - 1/ 2)  x -  7rflWi
k—0 k= 0

By similar arguments the pathwise derivatives of d 2 a 2 (x) and d \a 2 (x) are shown to satisfy 
the claimed inequalities. Once these have been established, the inequalities involving the 
pathwise derivatives of d^dga2 (x) are easily proven. ■

L em m a 39 Under (C2.1)-(C2.4), it holds that (i) — (\ + C \z \q) < \ y  (z ; 6 ,<Tq) < Ay 
and (ii) |Ay^ (z;0, <7§) | < C + |yf® (z;9) |.

P ro o f. This follows from (C2.2)-(C2.3). ■

L em m a 40 Under (C2.1)-(C2.4) and (C2 .6 a),

d 'lex Y ( z ; M 2) -d'x,9XY (*;0,*o) ^ c E E a 3  <llaM a’2 _ a £,<^oll<

for  0 <  i , j  < 2 .

i+ 2  j

E X
fc=0 l —Q

P ro o f. In the following we suppress the dependence on 9. We have

\  / -1  ^ 2 ( z ) , v(z)dx<r2 (z) M( 1 ) W  [dz°-2 {z)]2 dxa2 {z)
Xy{z)  = ~ 2 ^ ( z) + ^ H ^ ------------- 2------------327 H zT  + — &— ' (467)

such that

|Ay ( * ; » * ) - Ay f r a ? )  | <  ^  +  M f l M M  +  l ^ f ) ] 2 '

+  ( ^  +  s ) l a**2 w - a *a ° w l

^  M  O-Q (Z)

32a2 (z)
[dxa 2 {z) ] 2 -  [<%al {z) ] 2
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where, by Lemma 38,

1 1
ct2 (z )  a l  (z)

^2 /„V|2 5.2/„ \12

<  _ J f S ± z 3 i ^ l   <  ff-4  |*2 {x) _  & 2  (x )|
[ \ a  (z ) +  (1 — A)CTq(z)] 1 0 V ; | ’

[<%o2 (2:)] -  [dx<r§ (0)] <  |dxa-2 (z) +  dx&l (z) | |dx<r2 (2) -  ax<7§ (z)|

<  Ca - 1  \dx & 2 (z) -  dxa% ( z ) \ ,

and for z E A  (1),

*8 0 - '12 
32

M2 (*) +  H{z)dxa l  (z) +  [dxa% (z)]2 <  ^  +  ^

+  I  <  c  (1 4- a " 1) , -----  ̂ <  C.
2o-2 (z) 8 “  V ’ 32<r (z) ~

This shows the first inequality. By the same arguments the claims follow for dg \y  (z; 0, tt) 
and d%x\ y  (x;9,ir), i =  1, 2. ■

L em m a 41 Under (C2.1)-(C2.4) and (C2 .6 a),

\\didiDa* (z ;0,<72) II <  C (1 +  \ \d idin(z;e)  ||), \ \ d ^ D â  (z) (z ;0 ,< t2) || <  C ,

and

I Ay (z; (72) -  Ay (z; <r§) -  VAy (z; <7§) [o'2 -  &l] \ < C  £  ||d^ 2 ~  < ^ o ||L  >

Ay} (z; ̂2) - Ay} (z; &l) - VAy} (z; <7§) [<r2 - <r§] < C £ Ĥ*2 - ̂VCo ,
i=0

||Ay (Z t ;a2) - X Y (Zt ;&l) -  VAy [ct2 — <To] II ^  C E  £  l l ^ 2 -  9 ’̂ o l l »
i=0 j=0

P ro o f. Define

VAy (<r§) [V a2] =  D„2 (z) V<t2 (z) +  (z) V ax<72 (z) +

By similar calculations as the ones in the proof of Lemma 35, we obtain the first inequality.
The remaining ones follow along the same lines. ■

Define

Zt (o'2) =  7 -1 ((1 “  *) 7  (zo; o-2) +  £7 (x; o'2) +  V A B t; cr2)  

where 7 (x;cr2) =  f  a  (x ) - 1  dx; we write Z* =  Zt (6 , a2), Zot =  Z* (0, 0q), and Zot (a) =

Z*(<72(S0,a))-

L em m a 42 Under (C2.1)-(C2.4) and (C2 .6 a), for all ( x , x q , 0 )  G I 2 x 0 ,

i = 0

3
\i 5.2  5.2  II2

1. \Zt (0) I, I Zot (0) I, \Zot (0)1 <  C(\x] + |xo| +  |B ,|).
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2 .

\Zt { e ) - Z 0t(8)\ < C \ \a 2 - » 20 1̂ ,
k

\\d$zt w - d i z o t  m \ \  <  6 ( i | i 0) X ) I I ^ - ^ L -
1=0

where E n [6 (Xi|Xo)] <  oo.

3. The pathwise derivatives of Zot, and do Zot w.r.t. a 2 exist and satisfy,

VZot [da2] < C j  \da2 (w ;0)| dw\w=x +  J  \da2 (w',$)\dw\w=XQ,

/•max{|®|,|*0|,|Zot|} 1 .
VdeZot [da2] ^  ||ddlea 2 (w\9) \\dw,

i=0

I Zt  (flo) -  Zot (So) -  V Z o t  (flo) [*2 -  «■?] I <  6 (* N )  II* 2 -  *o IlL .

2

IIdgZt (Oo) -  deZot (Oo) -  V d eZot (Oo) [d2  -  d%] || <  b (z |x0) ^  Ĥ 2 -  ^ o | | L  »
i=0

where E n [6 (Xi|Xo)] < oo.

P ro o f. W ith Bt  =  (1 — t) 7 (xq) +  £7 (x) +  y/ABt,

I Z t - Z o t l  <  | r 1( B « ) - r 1(Sot)| +  | r 1(B (w )-7o 1(Sot )|

<  a \ B t - B o t \  + ^ p 2 - 4 \ L ,

where
\Bt - B 0t\ < \ l ( x ) - %  (x)| +  | t  (a?o) - 7 (*o)| < C \\a2 -  .

Similarly for deZt given in (4.35): W ith b =  7 -1 (y) and bo =  7q 1 (y),

p e  ( r 1) (y) ~ do ( l o 1 )  ( y ) l l  <  & (b) P e l  (b) -  &e7o ( 6 ) l l

+ 6- (b) ||d07o (b) - 007o (60)||

+ ll^7o (&o)ll l*(ty-*o  (&)| 
+ ll^7o (Mil \°o (b) -(T0 (Ml

< c ^ o iy ^ | |0 j d 2 -  0jdo||oo +  |&-&o| j

Thus,

l M r 1) ( £ 0 - % ( 7 o 1)(£o i)ll <  C l l B o t l E I I ^ - ^ o L  +  l ^ - ^ l
\  t= 0  >

<  c d x i  +  i x o D ^ n a j ^ - a j ^ i ^
i=0



4.B Lemmas 102

while

\\a [(1 -  t) de l  (®o) +  td07 (a:)] -  a 0 {Zot)[( 1 -  t) de%  (x0) +  td9%  (x)]||

<  o- (\\dei (x0) -  deio (®o) II +  \\del M  -  de%  (x) ||)

+  (l|0*7o (xo) II +  ll^7o (*) II) ( l° 2(Zt) ~  a 2(Z0t)\ +  a 2(Z0t) -  <J§(Zot) )

< c ( \ x \  + \x0 \ ) ^ 2 \\di& 2

i=0

The last inequality in 1. is proved along the same lines.
For VZot  given in (4.44), we have

Q- (  rx rx° riot \
V  Zot [da2] — 2̂ [ J  d**2 ( t y )  dw +  j  da2 ( w )  dw + J  da2 (w) dw J .

dw

Observe

7 (*) -  7o (*) -  V70 (*) [o' ~ o-o] = f  * (w)-1 -  dQ M _1 + ^
Jo <Tq (w )

where the RHS is bounded by

f  £ W - * >W L2 -  i d w < a - * \ \ a - > a l f  .
Jo | A d W - ( l - A ) d o W |3 11 0|lo°

By a Taylor expansion of 7 -1 with x  =  7q 1 (y ) and z  =  7 -1 (A70 (x) +  (1 — A) 7 (x)),

I t"1 (y) -  7o1 (y) -  v  (70x) (y) I = l*(1) M I* M Ito (®) - 1 (*) I2
+ ^ o  ( 7 0 1 t o )  l7 o (*) -  7  (*) -  V 70  M l (4.68)

In total,

\Zt  -  Zot -  VZod < | r 1(B t) -r 1(B«)-^(2ot)(Bt-.Bot)l
+ l 7 _ 1(S o t )  -  To'(Sot) -  V (70 ') (Sot)I 

+<To(2 o t ) |B t -  Bot -  (1 - 1) V 70  (x o )  -  t V 7 0 (x ) l>

where

T’- l ( B t ) - 1 - l ( B o t ) - r ( Z o t ) ( B t - B o t ) l  <  \ a m ( Z m)&(Zot) \ |B t -  B o t |

and

r^B ot) - 70 l (Sot) - VTo'(BoOl < c  (|Zot| + 1) P 2 - 5?||^, 
|S t-B o t-( l- t )V 7 o (* o )-tV 7 o (x ) | < C” (|x|-H Ircol) ||S-2 -  a-g||^.
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We may obtain the last set of inequalities by similar but more lengthy arguments. ■



Estimation of Partial Differential Equations

5.1 Introduction

Partial differential equations (PDE’s) are used in fields as diverse as physics, biology, 
economics, and finance to model and analyse dynamic systems. One class of PD E’s which 
has received particular attention are the linear parabolic ones (LPDE’s). These make up a 
large class of PD E’s which is of a sufficiently simple structure such tha t a thorough analysis 
of them is possible, see e.g. Friedman (1964) and Evans (1998) for an introduction and 
detailed analysis of their properties.

One area where LPDE’s play an essential role is in asset pricing theory in general and in 
the pricing of financial derivatives in particular. The latter are securities whose pay-off is 
contingent of the value of an underlying variable, this for example being a stock price or an 
interest rate. The option pricing literature was revolutionised by the groundbreaking work 
of Black and Scholes (1973) and Merton (1973, 1976). Assuming tha t the underlying asset 
follows a geometric Brownian motion and th a t trading takes place in continuous time, they 
derived the price of an option as the solution to a LPDE using hedging and no-arbitrage 
arguments. This result has since then been generalised in various directions. In particular, 
the restriction tha t the fundamental asset price follows a geometric Brownian motion can 
be weakened to allow for basically any diffusion type process.

In the above framework, the option price is a functional of the so-called drift and diffusion 
term, these being functions characterising the diffusion process th a t the underlying asset is 
assumed to follow. Empirical applications of these option pricing formulae therefore almost 
always involve some sort of calibration of the drift and diffusion term. These calibrated 
terms can then substituted into the LPDE in place of the true but unknown ones, and 
the option price solved for. The calibration is often done by statistical estimation based 
on historical data. The implied option prices therefore inherit the statistical uncertainty 
associated with the estimated drift and diffusion term. It will be valuable to be able to 
measure how the estimation error (e.g. in terms of standard errors) in the drift and diffusion 
term affects the resulting option prices. This will allow one to evaluate the accuracy of the
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estimated prices. Moreover, such results can be used to construct a direct statistical test 
of the option price model by comparing the estimated prices with the observed ones.

In this chapter, we give general results for the asymptotic properties of the implied option 
prices given preliminary estimators of the drift and diffusion term. The implied/estimated 
price is obtained as the solution to a LPDE where the preliminary estimators have been 
plugged in. We shall here show tha t the estimated solution will be consistent when the 
preliminary estimators are. We also give general conditions under which the solution will 
be asymptotically normal distributed. In the option pricing framework, this means tha t the 
estimated prices are consistent if the drift and diffusion estimators for the underlying asset 
price diffusion are. Furthermore, we are able to calculate standard errors for the prices. 
We first state this result under fairly general conditions. We then verify these conditions 
for three specific types of preliminary estimators, a parametric, a semiparametric and a 
nonparametric one, and derive the asymptotic distribution in each case.

Similar results to the ones derived here can be found elsewhere in the literature. In the 
Black-Scholes model, the statistical properties of option prices given preliminary estimates 
of the diffusion term has been considered in a number of studies, see e.g. Boyle and 
Ananthanarayanan (1977) and Ncube and Satchell (1997). In a very general setting, Lo 
(1986) derived the asymptotic properties of the implied option prices given preliminary 
parametric estimates of the drift and diffusion function. However, this was done under 
high-level conditions, and it was not verified tha t these actually hold. Furthermore, he 
was not able to  give closed form expressions for the asymptotic distribution. Interest 
rate derivative pricing given kernel estimators of the short rate model was considered in 
Ait-Sahalia (1996a) and Jiang (1998). Our results extend these results to basically any 
asset pricing model which is driven by a finite number of state variables, and virtually 
any estimator of the drift and diffusion term in the model in question. In particular, our 
results include multi-factor interest rate models and stochastic volatility models. In the 
parametric case, we are able to derive an explicit expression of the asymptotic distribution 
which allows one to estimate this. In the general case, we are not able to do this; we are 
however still able to define a simple estimator of the asymptotic distribution which should 
be consistent.

Other applications of our general results are also available in the econometric analysis 
of diffusion models, e.g. GMM-type estimators [Bibby and Sprensen 1995, Duffie and 
Singleton 1993] and the estimation using observed option prices. We give a brief discussion 
of these applications.

Studies of solutions to (partial) differential equations given preliminary estimates of the 
driving coefficients are found elsewhere in the literature. Hausman and Newey (1995) con
sider a non-linear ODE and derive the asymptotic properties of an estimator of the solution 
when a preliminary estimator of the driving function is available. Vanhems (2003) deals 
with a similar problem where a nonlinear ODE depends on a conditional mean function. 
The conditional mean is then estimated by kernel methods, and the associated estimated 
solution is analysed. PD E ’s have also received some attention, in particular in the financial 
econometrics literature. In Ai't-Sahalia (1996a), the estimation of interest rate derivative 
prices is treated given preliminary semiparametric estimators of the drift and diffusion
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function of the short-term interest rate. His analysis is based on a deterministic char
acterisation of the solution to the PDE as given in Friedman (1964), which he analyses 
using the functional delta method of Ai't-Sahalia (1993). Jiang (1998) follows the same 
approach when analysing the properties of estimated option prices given fully nonpara- 
metric estimators of the drift and diffusion term. Finally, Chow et al (1999) also consider 
nonparametric estimation in the context of PD E’s. But while we are concerned with the 
estimation of the solution given preliminary estimators of coefficients entering the PDE, 
they assume tha t the solution of the PDE has been observed with error, and then use this 
to estimate parameters entering the PDE.

A very nice feature of the class of LPDE’s is the probabilistic interpretation which a so
lution to any PDE of this type can be given: Under weak regularity conditions the solution 
can be characterised as the conditional moment of a solution to an associated diffusion 
process. This is the celebrated Feynman-Kac Representation of solutions to LPD E’s. This 
is exactly the link tha t allows one to translate the option price as the discounted expected 
value of the future price into the solution to a LPDE. Our analysis of the estimated so
lution is based on this stochastic representation as a conditional expectation involving a 
diffusion process. This approach has proved very fruitful in the analysis of various other 
problems related to this type of PD E’s, see e.g. Freidlin (1985) for an exposition. So in
stead of directly working with the PDE of interest, we shall focus on a certain class of 
conditional moments of the associated stochastic differential equation (SDE) in terms of 
which the solution to the PDE can be expressed. One advantage of this approach is tha t 
while in the general case it is difficult to set up conditions for the existence of a global 
solution to the PDE, the conditional moments of the SDE of interest will be well-defined 
under weak conditions. Another is tha t a closed form expression of the conditional moment 
is available which facilitates the statistical analysis of the estimator.

Once the general asymptotic result has been established, we apply it to three leading 
preliminary estimators: Fully parametric estimators of the drift and diffusion term (in
cluding MLE and GMM), semiparametric ones (see Ai’t-Sahalia 1996a and Chapter 4 ), 
and fully nonparametric ones (see Jiang and Knight 1997 and Bandi and Phillips 2003). 
In all three cases, we are able to derive the convergence rate and the asymptotic distribu
tion of the solution. In particular, we demonstrate th a t even if non- and semiparametric 
preliminary estimators are used, the associated solution will converge with parametric 
rate. This appealing result follows from the higher level of regularity/smoothness of the 
solution to the PDE compared to the preliminary estimators. This is a well-known phe
nomenon found elsewhere in the literature on nonparametric estimation. One im portant 
consequence is tha t if the end goal of the econometric analysis of the asset price model is 
the pricing of derivatives, one will asymptotically in many cases be better off using non- 
and semiparametric estimators: These allow for a higher level of flexibility without slowing 
down the rate of convergence of the solution. Of course, if one has correctly specified a 
parametric model of the underlying SDE, a parametric estimator of the solution will in 
most cases enjoy higher efficiency and better finite sample properties than the nonpara
metric one. Moreover, inherent in nonparametric estimation is a problem of choosing some 
smoothing parameter; this problem, one does not face in a parametric setting.
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The chapter is organised as follows. In the next section we first present the class of PD E’s 
of interest and derive some useful properties of these; we then discuss various applications 
to finance and estimation of diffusions. In Section 3, a general result concerning consistency 
and asymptotic normality is first presented which is then applied to the aforementioned 
three types of estimators. These econometric results are then put into the framework of 
derivative pricing in Section 4, which also contains a discussion on the application of 
our results to GMM-type estimation of diffusion models and estimation based on observed 
option prices. Section 5 concludes. All proofs and lemmas have been relegated to appendix 
A and B respectively.

5.2 Linear Parabolic Partial Differential Equations

We shall in the following introduce the class of linear parabolic PD E’s together with the 
concept of generalised solutions to these. We give conditions for these to be well-defined. 
The section ends with a presentation of the various applications of LPDE’s to finance and 
estimation of diffusion models.

For any two functions f i : [0, oo) x R? h  and a 2 : [0, oo) x R q t—► R qxq, we define the 
linear second order differential operator

Lt («) = Mi (i, x ) J r  + \  Y h  °i' (*'
d2u

. dxi 2 .4 ^  13 dxidxji=i t j= i  J

This is normally referred to as the infinitesimal generator, cf. Karatzas and Shreve (1991, 
p. 281). For T  >  0, we shall then consider solutions u  : [0,T] xR 9 i—► R to the following 
Cauchy problem,

du
+ au =  L t (u ) +  c, (5.1)

u (T , x) — b ( x ) , (5.2)

for given functions a : [0, T] x R q —► [0, oo), b : R q i-> R and c : [0, T] x R q R.
Only in a few special cases is it possible to derive an explicit expression of the solution. 

This of course complicates the analysis of solutions to  general PD E’s, but one can get quite
far by using implicit representations found in the literature. Friedman (1964) derives a
deterministic expression of the solution; this is however very involved and appears difficult 
to work with. Instead, we shall here rely on the so-called Feynman-Kac Representation: 
This establishes a direct link between the solution to (5.1)-(5.2) and a conditional moment 
of the process { X t} solving a SDE,

SDE (/i, a) : d X t = fi (£, X t) dt + cr (£, Xt) dWt, 0 <  t < T, (5.3)
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with {Wt} being a (/-dimensional standard Brownian motion.1 If a solution exists to (5.1)-
(5.2), and certain growth conditions on c, b, and u  are satisfied, we obtain that

u (t, x) =  Et,x 

“b Etfx

b (X t ) exp |~  a (s> ds

J^ c (s, X s) exp J  a (v , X v) dv

(5.4)

ds

where Et,x [•] =  E  [*|Xt = a;], see for example Karatzas and Shreve (1991, Theorem 5.7.6). 
We follow Freidlin (1985, p. 122) and call the Feyman-Kac representation of u  the gener
alised solution to (5.1)-(5.2), since this may be well-defined even if no solution to the PDE 
exists. In our analysis of u  we shall choose to work with this stochastic representation. 
The reason for this is tha t the solution can be written up in an explicit form in contrast 
to the deterministic approach.

The econometric problem which shall be considered here is the estimation of u  given 
preliminary estimators of and a2 . Initially, we do not make any assumptions about the 
nature of these estimators, but in most cases they arrive from historical observations of 
a process solving the SDE (5.3). Let and <Tq denote the true but unknown values of 
the drift and diffusion term, and {X®} the solution to SDE(//0,oro)- Let uq denote the 
associated solution obtained from (5.4) with {-Xt0} plugged in. Now, assume tha t (jl, a2) is 
a pair of estimators of (/i0,0o) • An obvious estimator of u  is then obtained in the following 
manner: First, plug (fa,(?2) into SDE(fi,cr) as given in (5.3). This yields an estimator of 
{Xf0} which we denote {At}; this is then in turn plugged into (5.4), thereby obtaining an 
estimator of uo which we denote by u. We are then interested in the asymptotic properties 
of u, in particular we wish to give conditions for u  (£, x) to be consistent and for

V ~ 1/2 (t , x) (u  (t, x) -  uq (t, x)) - i  N  (0,1)

to hold, for any (t, x) G [0,T] xR 9, where {V^ (t, x)} is some, possibly random, sequence. 
In the next section, we give precise conditions under which this result will hold.

To avoid confusion in the following, we wish to emphasize tha t we are here working 
with two probability measures: The first is the probability measure under which we take 
expectations in (5.4) when calculating u\ the second is the one w.r.t. which the estimators 
are measurable. The former measure can be chosen by the researcher, and we shall here 
choose it to be independent of the latter. In effect, we are working with a product measure. 
So eventhough u is calculated as a conditional expectations under this first measure, it is 
still random since the functions /i, a2 which are plugged into these are independent of the 
first measure.

Since the solutions in most cases cannot be written on an explicit form, numerical meth
ods are normally used to solve the solution to the PDE (5.1)-(5.2). Hull (1997, Chapter 
15) provides an overview of a number of numerical methods used in finance. The two most 
popular methods is the so-called finite-difference method and Monte Carlo methods. A

1Here, we have implicitly assumed that a2 (t,x)  is nonnegative definite such that the matrix square root, <r(t,x),
is well-defined.
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thorough treatm ent of numerical solutions of PD E’s using finite difference methods can be 
found in Ames (1992). Alternatively, the solution u  can be obtained by the use of Monte 
Carlo methods; these are normally based on the Feynman-Kac representation. The Monte 
Carlo simulations can be done in the following manner: Let <  s <  T}, i — 1,..., N,
be N  independent simulated paths of the SDE (5.3) with initial condition X t  =  x. We 
then approximate u (t , x) by

i N
,(N)û  (£, x) =  i  [6 ( X t )  exP [“ Jt a (v> Xv }) dv\ ] (5-5)

i ^  r /*T r "I
+]v £  I  c (s’ x *%)) exp [_ Jt a x v%)) dv\ ds •

Let P* denote the probability measure tha t we simulate under. Then E p * [ u ^  (£, x)] =  
u  (t , x), and, by the strong Law of Large Numbers, u(N) (t , x) u ( t , x ) as N  —> oo.
It is however not possible to obtain an exact continuous sample path of this type of 
stochastic processes; instead one often derives an approximate discrete time version of
(5.3) from which one simulates. This approximate model can be chosen arbitrarily close to 
the actual one. For an overview of simulations of SDE’s, we refer to Kloeden and Platen 
(1999).

We now wish to discuss the question of existence and uniqueness of the generalised 
solution and derive some of its properties. These will prove useful in the subsequent section 
when we deal with the econometric problem in question. Sufficient conditions for a solution 
to (5.1)-(5.2) can be found in Friedman (1964, Section 1.4) and Evans (1998, Chapter 5). 
In the following, we construct a set of function pairs, P , such tha t for any (/Li, a2) €  V , 

the associated generalised solution u exists and is sufficiently well-behaved. This is done 
by restricting V  in the following manner:

D efin itio n  The space V  consists of all function pairs (/Li, a 2) where

1. /i and a2 are twice continuously differentiable in x  such that:

(a) There exists K  > 0 such that

(4,1)11 <*-(1 + 11111), ||̂ 0-2(«,a;)|| <tf(l + |M|),
for all (t , x ) G [0, T] x  M.q and |a | <  2.

(b) For all N  > 1, there exists Kjq > 0 such that

||/i (£, x ) - n  (£, y )|| <  K n  \\x  -  y \ \ , ||<j2 (t, x) -  o2 (t, y)|| < K N \ \ x -  y \\,

for all t G [0,T] and ||x | | , ||y|| <  N .

2. There exists a constant cr2 > 0 such tha t Y2i,j=i a ij x ) ViVj >  £ 2 \\y\\2 for all
2/G R ? and (t, x) G [0,T] x R q.

Observe tha t V  is a well-defined function space. For any (/Li, <r2) G T> and any initial
condition, X q =  X*, which is independent of {Wt}  and satisfies E  HA-*!!2 < oo, there
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exists an associated unique strong solution to (5.3), cf. Friedman (1975, Theorem 5.2.2). 
Furthermore, if E ||X*||2pj < oo, for some p >  1,

E  [||Xt ||2!>] <  ( l  +  E  [lIX*!!2? ])  ec ' f (5.6)

for 0 <  t < T, where C* =  C* (K ,p ,T ) ,  cf. Friedman (1975, Theorem 5.2.3). For q =  1, a 
weaker sufficient condition for existence and uniqueness is tha t p  and cr2 are continuously 
differentiable and a2 (•) > 0, cf. Karatzas and Shreve (1991, Theorem 5.5.15 and Corollary 
5.3.23). The bound in (5.6) does not necessarily hold in this case however. For q > 1, 
weaker conditions for existence and uniqueness can be found in Meyn and Tweedie (1993). 
Most likely the results presented in the following hold for (p,&2) situated in a larger 
function space, but for simplicity we shall restrict them to belong to V .  The existence and 
uniqueness results for {Xt} hold without the differentiability conditions on p  and cr; these 
are used when we derive the asymptotic properties of u.

In the following we consider a fixed pair (/z0, o§) G V,  and denote the associated diffusion 
process by {X °}. We also fix the initial condition of {Xt0} at some given random variable, 
X*. First we define LP(X*, [0,T] x l ?) as the space of functions /  : [0,T] x R9 h  R 
for which E  J J0T | /  (t, Xt°) |p dt < oo. Next, we introduce a Sobolev-like space W m,p =  
W m'p (X*, [0,T] x R q )  for any p > 1 and m  > 0. This is defined as the space of functions 
f  : [0,T ]x R ? m R  which are m  times continuously differentiable in their second argument 
and with d % f £  Lp (X*,[0,T] x R ?) for any a  £ {0 ,...,fc}9 with |a | =  Y l i= ia i = 5̂ 
0 <  k <  m. We equip the space with the norm

m,p

i / p

|a|<m

Observe tha t W m'2 is a Hilbert space with inner product

( /. s)m = £  E  £  (t , X?) i%g (t , X?)
|a |< m

dt (5.7)

and tha t W 0,p = Lp (X*, [0, T] x R q). Combining the above results, we observe tha t if (i) 
/  has m  derivatives in its second argument and these satisfies ||d%f (t, x) || <  C  (1 -I- ||^ ||r ), 
M  <  (h) (^oj^o) ^ V  and (iii) E  ||X*||P <  oo, then /  £ W m,p with p =  p*/r  . In
particular, for any (/i, <r2) £ D, (/z, cr2) £ W 2,p x W 2,p with p <p*.

We impose the following conditions on the functions a, 6, and c:

Condition 1 For some r > 1, \d£a(t}x)\ < C  (1 +  ||cc||7'), \d%b(t, x)\ < C (1 +  ||a:||r ) and 
\d%c(t,x)\ < C ( l  +  ||a;||r ), |a | <  2.

It is not always the case in our applications tha t the functions are differentiable as 
assumed here. We conjecture tha t the results also hold in this case. All the following 
results are derived under the implicitly maintained assumption tha t Condition 1 holds. 
The first result ensures tha t u  exists and is well-defined for suitable choices of p  and cr2 :
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T h e o re m  43 For any (ji, a2) E V, the associated generalised solution u exists. Further
more, \d%u(t, x)\ < C (T ) (1 +  \\x\\r) for  |o:| <  2. In particular, u  E W 2,p for any initial 
condition X* with E  [||X*||pr] <  oo.

5.2.1 Applications in Finance

One particular area where PD E’s of the linear parabolic type is widely used is in asset 
pricing theory in general and derivative pricing in particular. Derivatives are securities 
whose pay-off depends on some underlying variable, e.g. the price of a stock or an inter
est rate, with the most well-known example being options. Financial derivatives play an 
im portant role in the financial markets, and have consequently received great attention in 
the finance literature. Since the seminal work by Black-Scholes (1973) and Merton (1973), 
diffusion processes have played a prominent part in the asset pricing literature. Assuming 
tha t the fundamental asset prices solve an SDE, one is able to derive closed form solutions 
of derivative prices. In fact, one of the main results is tha t the price of the derivative is 
the solution to a PDE in the class considered here. Below, we give a brief overview of the 
various fields where our results can be applied. These examples illustrate the wide range 
of applications tha t parabolic PD E’s have.

We first introduce the necessary notation. We fix the probability space (P , Q, IF) with an 
associated filtration {Ft}- Here P  denotes the physical measure under which we observe 
the processes introduced in the following.

Example 1: A General Asset Pricing Model. Consider a riskless asset {fit } given by

dpt = n P tdt,

for some adapted short-term interest rate process, {rt}, see Chapter 2 for a discussion of 
these. We are also given N  risky traded assets, each having an associated price process 
{ S ^} , i =  1,..., N .  We assume tha t the process {St}, St =  (S tl \  . . . , S ^ ) T , solves a SDE,

dSt =  p s  St) dt +  a s  (t, S t ) dwf , (5.8)

where {W*5 } is a N -dimensional standard Brownian motion. Each asset i has also an asso
ciated dividend stream {d^} , i = 1,..., N ,  which we collect in {dt}, dt = (d[X\  ...,d\N^)T . 
Given the existence of an equivalent martingale measure, Q,2 the price process then sat- 
isfies

St = E f  exp rsds S t  +  exp rvdv dsds , (5.9)

where {5*} has dynamics
dSt = rtStdt +  (t, St) dWts  (5.10)

under Q, see for example Duffie (1996, Chapter 6 and 8). Observe tha t fis  does not enter
the dynamics of {St} under Q, and therefore has no influence on the option prices. Assume

2 We shall not discuss conditions for the existence (and uniqueness) of Q, and merely assume its existence.
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tha t {rt} and {dt} also solve SDE’s under Q ,

drt =  fir (t, rt ) dt +  ar (t , rt) dW[ , 

ddt = fiD (t ,S t)d t  + a D ( t ,S t ) d W f .

Then by defining

X t  =  ( s tT , 4 ,  rt) T . Wt = ( W f ,  WtD, W l ) T ,

n (t, x) -  ( rS T, fij) (t , S ) , HT (t, r)) , a  (t , x) =  diag (<rs  (t, S ) , aD (t, S ) , aT (t, r ) ) ,

we observe tha t the pricing formula (5.9) takes the form of (5.4). More advanced models 
for the short term interest rate as presented below can without any problems be allowed 
for.

Example 1.1: The Black-Scholes Model. A special case of the above model is the (extended) 
Black-Scholes model where we have one risky asset (N  = 1), say a stock, and a derivative 
on this stock. At time of maturity T, the derivative pays off b {St ) - From (5.9), the following 
expression of the price of the derivative at time t, lit (T), presents itself,

n t ( r )  =  £ ? exp
- j f

rads Pt {T) = E ? exp r„ds b(ST)

where {Sf} solves (5.10) under Q. In the classic Black-Scholes model, it is assumed that 
the short-term interest rate is constant, rt =  r > 0, and tha t {St}  is a geometric Brownian 
motion under P ; tha t is,

dSt = fiStdt +  cS tdw f.

We then consider a call-option where the pay-off function is b {x) =  max {x — K , 0} with 
K  being the strike price.3 In this case, the above conditional expectation can be shown to 
satisfy

n ,  (T) =  5 $  (di) -  K e - r(-T- V $  (d2) , 

where $  (•) is the cumulative density function of the standard normal distribution and

log (5 /g ) +  (r +  . V 2 ) (r - t ) ^  =
GyfT — t

In the general case with more complex dynamics of {St} and/or stochastic interest rates, 
an explicit expression for 11* (T) is not available. Instead, one has to rely on numerical 
methods to calculate the actual prices as discussed earlier.

Example 1.2: Stochastic Volatility Models. The classic Black-Scholes model is not able to 
match observed option prices very well. To deal with this empirical shortcoming stochastic 
volatility models were introduced, see e.g. Ghysels et al (1996) for a review. We still

3 Observe that b is not differentiable here. We conjecture that the results still hold for this case however.
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consider some stock price process {S'*} but we now assume that

dSt = Ps (&) dt +  a s  (St , vt ) dw f,  (5.11)

where {vt } is non-traded/unobserved process solving

dvt = pv (vt) dt +  av (vt) dwJ' (5.12)

and, for simplicity, { w f } and {w”} are mutually independent standard Brownian motion.4 
This is an extension of the classic Black-Scholes model where {vt} can be interpreted as a 
stochastic volatility term. In this setting, (5.9) is still valid but now

dSt =  rStdt +  a s  (S t , vt ) d W f ,

dvt = {nv M  ~  A (St , vt )} dt +  av (vt) dW?,

under Q. Observe tha t the drift term of {vt} under Q includes the term A (£, St, Vt) which 
can be interpreted as the market price for volatility risk. A simple specification of (5.11)- 
(5.12) is found in Heston (1993) where

dSt =  pS tdt +  y/FtStdwf, (5.13)

dvt = f3 (a  — vt ) dt + ay/vtdwH, (5.14)

and A (S ,v ) =  Av. In this case, the PDE can be solved explicitly; this is not possible in 
the general case though. To see tha t this model also can be accommodated for in our 
framework, define X t = (S t,v t)T• This process then solves the SDE (5.3) with fi(x) = 
(rS, \lv (v) -  A (S , v))T , a  (x ) =  diag (a s  (S, v ) , av (v)), and Wt = (Wts , W ?)T .

Example 2: Factor Models for the Term Structure, We assume tha t the short-term interest 
rate process, {rt}, is a Markov process solving

drt = pi (t, rt ) dt + a (£, rt ) dwt (5.15)

under P. We are then able to derive the term structure of bonds. Following for example 
Bjork (1998, Chapter 16), one may show tha t

drt =  {p  (t , rt ) -  A (t, rt ) a  (t, rt )} dt + a  (t, rt) dWt (5.16)

under Q for some process {At} which is often termed "the market price for risk". Now 
consider an interest rate derivative with associated dividend stream dt = d ( t ,r t)  and 
terminal pay-off g (r^). The price at any time t is then given as

exp -  /  rsds g (rT) +  /  exp -  /  r8du
Jt J Jt L Jt

d ( s , r a)ds (5.17)

4We can also allow for St entering the SDE for vt, and also that vt enters the drift function fis .
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A leading example of an interest rate derivative is a zero-coupon bond, characterised by 
b (vt) — 1 and d (t , r) =  0.

The above model is a special case of the general multifactor models where the yield 
curve is driven by multiple factors. T hat is, the interest rate is given by rt = R  (Ft) for 
some twice differentiable function R  : R q h-* R, and some g-dimensional diffusion process 
{Ft}. By It6 ’s Lemma, we then obtain tha t {rt} is also a diffusion process and the formula 
in (5.17) remains valid. Observe tha t the short term  model above is a single-factor model 
(q =  1, R (x )  =  x  and Ft =  rt).

A class of factor models which has received particular attention is the affine one. In this 
setting the functions F (x ) ,  fi (x ), and a  (#) a  (x)T all are assumed to be affine in x. These 
restrictions highly facilitates the analysis since it is possible to derive explicit expressions 
of bond prices. See for example Duffie and Kan (1996) and Duffee (2002).

Once the zero-coupon bond prices have been recovered, one can start to price coupon- 
bearing bonds, bond options and other derivatives with a bond as the underlying variable, 
e.g. yield options, swaps, caps, floors and futures. See Hull (1997, Chapter 16) for an intro
duction to these. Bond and interest rate derivative prices for any factor model can be put on 
the form of (5.4): Define X t = Ft , a (t, x) = R  (x), b(x) =  g (R (x)), c (t, x) = d (t, F  (x))\ 
we then easily see tha t (5.17) takes the desired form.

Example 3: The Heath-Jarrow-Morton Model. In the Heath-Jarrow-Morton (1992) frame
work, the forward rate structure is modelled instead of the short rate. Let ft  (T ) denote 
the instantaneous forward rate with m aturity T  contracted a t time t. This is defined as

m . w a

where Bt (T) is the price of a zero-coupon bond with m aturity date T. One can reversely
write Bt (T ) =  exp — f t f t  (s)ds . In particular, the short rate satisfies rt =  f t  (t ). We
assume the following dynamics of ft  (T ) under Q,

dft (T) = iit (T )d t  + a t (T )dW u

where {Wt}  is a g-dimensional Brownian motion, while {pt (T )} and {at (T)} are adapted 
stochastic processes. The assumption of no-arbitrage implies tha t

fit (T) = at (T) J  at (s)T ds, 

cf. Bjork (1998, p. 269). Furthermore, the bond prices have the following dynamics,

dBt (T) = rtBt CT ) dt +  erf (T) B t (T) dWu

where a* (T ) =  a s (T ) ds. Assuming tha t iit (T) =  /i (t , Xt\ T)  and at (T) = a (t , X t ’, T)  
for some finite-dimensional vector of state-variables Xt,  the above pricing formula takes 
the form of (5.4).
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5.2.2 Estim ation  o f  Diffusion Models

The type of partial differential equations in consideration here also appear in other areas. In 
the following, we give a brief discussion of their applications in the estimation of diffusions. 
The literature on the estimation of diffusion models is very large and still growing. One 
particular branch of this literature is concerned with estimation given discrete observations 
of the process, e.g. daily, weekly or monthly observations. This is the most realistic setting 
but also the least tractable; in particular the natural estimator, the MLE, proves to be 
difficult to implement. A large number of alternative estimators have been proposed as 
a result. But the asymptotic properties of these have either only been conjectured at 
or derived under high-level conditions. The results derived in the next section enable us 
to validate these high-level conditions. In the following, we shall present a number of 
estimation methods and discuss what is needed for the estimator to have the desired 
asymptotic properties. We shall only discuss these issues in a parametric framework, but 
it should be clear tha t our main results also are applicable in a non- and semiparametric 
setting.

We assume th a t we have discrete observations from the following SDE,

dX t = p  (X t ; 9)dt + cr (.X t ; 9) dWt , (5.18)

for some unknown parameter 9 6 © C Rd. In the following we discuss the estimation of 9.

Example 4■ Estimation via Conditional Means. Since in many cases the transition density 
is of unknown form, the model is often estimated using estimating equations. In particular, 
one often use regression models of the form

b (X ja) =  B  0) -f £i

where B (x ;9 )  — E e[b (X ^) \X o  = x] is the conditional mean where we write E q [•] to 
indicate the dependence of the conditional mean on 9. Using this type of equations leads 
to GMM-type estimators as considered in, amongst others, Bibby and Sprensen (1995), 
Chacko h  Viceira (2003), Duffie and Singleton (1993), Carrasco, Chernov, Florens & 
Ghysels (2002), Singleton (2001), Sprensen (1997). In order to derive the asymptotics of 
this type of estimators, we need to show tha t B  (x; 9) is smooth and differentiable in 9. 
However, as noted earlier, an analytical expression of B (x ;9 )  often cannot be derived 
and is calculated using either simulations or approximate methods. One easily realise tha t 
B  (x; 9) = u  (0, x; 9) where u  solves the LPDE

du
— Lt (u; 9) ,  u (A ,x ;9 )  = b(x) .

One example is the estimator proposed in Bibby and Sprensen (1995). We define the 
so-called estimating function,

Gn W  =  Z  ^ 2  9 ( ^ a I A ' ^ a ;  9 ) , g  (y\x; 9) = a  (x; 9)T {b (y) -  B  (x; 0)}
™ • iZ=1
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where b : R9 i—> Rm and B  are given above and o :M ? x 0 h  Rmxd is a weighting function. 
The estimator is then chosen as the root, Gn(6) =  0. An obvious choice is b\ (x ) — x  and 
&2 (z) =  x 2.

Example 5: Estimation via Observed Option Prices. Another application is in the estima
tion of the parameter 6 using observed derivative prices. We here present the estimation 
method using the extended Black-Scholes model in Example 1.1 with constant interest 
rates, rt =  r  > 0, but the idea can easily be adapted to other, more general models. For 
simplicity, we assume tha t we have observed over time a series of prices for a specific option 
with pay-off function g and fixed time to m aturity T  > 0. So no cross-sectional dimen
sion is included. Let {Pi} denote the observed option prices and {A*} the observed stock 
price. Assuming tha t the option prices have been observed with errors (due to market 
imperfections, observation errors etc.), we have the following regression model,

Pi = n  (Xi; 9) +  £i, n  (i; 6) = e~rTE$  [6 (XT) |X0 =  x].

The parameter 6 may then be estimated by e.g. nonlinear least squares (assuming it is 
identified). Again, for the estimator to be consistent and asymptotically normal distributed 
one normally has to check tha t ^ i—»• II (x; 6) is continuous and differentiable. In the next 
section, we give regularity conditions which ensures this.

5.3 Estimation of Partial Differential Equations

In this section, we shall assume tha t preliminary estimators [p, a 2) are available, and then 
give conditions for the associated solution u to be consistent and asymptotically normal 
distributed.

We introduce the operator r  : V  i—► U  defined by

u ( t , x )  = r (p ,o -2) ( t ,x ) ,

where u is the solution to (5.1)-(5.2) with (/a, o'2) plugged in. We assume tha t we have 
obtained estimators, (/i, <r2), of the true drift and diffusion term, (^0, 00). Given the 
definition of T, the true but unknown solution to the PDE is given by

uQ = T (/z0, al)

which we then estimate by
u =  r(£,o-2) .

By an extension of Slutsky’s theorem from the Euclidean case to function spaces, the 
asymptotic properties of u  will then follow from the ones of (/z, a 2) given tha t T is suf
ficiently smooth. Roughly speaking, u  will be consistent if [ft, <j2) is so and T is con
tinuous, while the asymptotic distribution will be induced by the one of (/i, <r2) given 
tha t r  is (pathwise) differentiable w.r.t. (/z,cr2). To extend Slutsky’s Theorem to hold on 
function spaces we need to ensure tha t V  and U  can be equipped with suitable norms.
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For now assume this is the case and let ||'||p  and ||-||w denote the norms on V  and U 
respectively. We then assume tha t our preliminary estimators satisfy (p ,d 2) G V  with 

||(A, a 2) — (^o> °o) lip ~^P Consistency of u  =  T (p ,d 2) will now follow by continuity 
of T since this implies ||fi — u q \ \ u  =  | | r  (/i, a2) — T (/x0, cr§) ||w —>p  0. Assume tha t the 
pathwise derivative of T w.r.t. p  and a2 a t (p0, erg) exists. We denote these V iT  [dp] and 
V2r  [da2] respectively and define V r  [d/i, da2] =  V iT  [dp] +  V 2r  [da2] . Assuming that

||r (a, d2) -  r (/i0, al)  -  v r  [a -  /i0, d2 -  o-g] ||w < c  (||A -  PoWv + P 2 -  °o\\V) ,

V r  will drive the asymptotic distribution under suitable conditions.
The approach outlined above has been widely used in the literature when working with 

functionals of nonparametric estimators. General result concerning the asymptotics of T 
when the preliminary estimator is a kernel estimator can be found in Al't-Sahalia (1993). 
Examples of applications of this approach to  specific estimation problems can be found in 
Al't-Sahalia (1996a), Hausman and Newey (1995), Jiang (1998) and Vanhems (2003).

All subsequent results will be derived under the following additional condition which 
implicitly will be assumed throughout the remains of the chapter together with Condition 
1:

C o n d itio n  2 (pQ,a l)  G V

We first show th a t the functional T : V  i—► U is continuous. This is stated in the following 
theorem:

T h e o re m  44 For any (/i, o'2) G T>,

| r  (/x, a2) (t, x ) - T  (/i0, al)  (£,x ) \ < C T { l  +  ||x||9) { ||/x -  /x0||04 +  ||cr2 -  crollo^} 

for X*  =  x. In particular,

llfi -  «ollo,i < C T ( 1  + E  [ ||X * ||r]) {||A -  P o lio , +  II*2 -  o J l l o , } , .

for r <p*.

This basically shows tha t consistency of the preliminary estimators A and a 2 implies 
consistency of u as a continuous functional of these.

We now derive an expression for the pathwise derivative of u  w.r.t. (p., a 2) a t (/x0, o'g) 
in the direction (dp, da2) =  (p — Po,a2 — a l) .  Let {ViX*} and {V2Xt} be given as in 
in (5.53) and (5.54) respectively with ViX o  = 0, i =  1,2. From Lemma 54, {ViX*} and 
{ V 2X t} are the pathwise derivatives w.r.t. p  and a 2 respectively in the L2-sense. The 
pathwise derivative of X t  at (Po,al) in the direction (dp, da2) in the L2-sense is then 
given by *

VXf =  V i X t  +  V2X t .

Given the pathwise derivative of {Xt},  we are able to introduce the pathwise derivative 
of T. Making use of the chain rule, it should be clear th a t the pathwise derivative of T at
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(/x0, cr§) in the direction (d/i, do2) is given by

V r  [d/i, da2] (t, x) (5.19)

bx (X ?) VXT exp f -  a (s ,X ° )  dsl 1

6 (X ?) j f  ax (s ,X j)  V X sdsexp [ - /  a  (s, X °) d s jl

jf cx ( s ,X 8°) V X ,exp  J- J ’ a (v ,X “) <foj ds

j f  c ( s ,X j)  exp [— j f  a (u, X j)  dv ( j f  ax (u, X j) V X vd v \  ds .

This is formally shown in the Appendix. By construction, {VX*} and thereby VT is linear 
in (d/j,,da2). An alternative representation of VT is as the solution, v, to  the following 
LPDE,

=  E t,x 

~ E ttx 

+EtfX 

~ E tyx

dv
~ —  + av — L t (v) + c [d/z, dcr2] 

v (T, a;) =  0

(5.20)

(5.21)

where

ds (5.22)

c[dn,d**] =  +  ! E d4 a § £ - -
i=l i=l J

and ito =  T (/x0, <j§). The generalised solution of (5.20)-(5.21) is given as

VT [d/i, do2] (t , x) =  Et,x J  c [d/i, do2] (s, X j)  exp jf* a (u, X j)  du

The following theorem shows tha t VT also has the desired properties discussed earlier: 

T h e o re m  45 For any (/t, o'2) G V,  VT [/i — /i0, cr2 — cr§] is well-defined and satisfies

|u  (£, x) -  ii0 (£, x) -  VT [/i -  /i0, <r2 -  a§] (t, x)| <  b (x, T) ||/i -  /i01|2 4 +  ||<r2 -  <rg||J>4

and

| V r  [/x,cr2] ( t,x ) | <  6 (x ,T ) (||/x||o>2 +  II^Ho,2)  ’

with X*  =  x, where 6 (x ,T ) =  C TeCT 1 +  ||z ||29J

Having obtained these two basic results, we are now ready to  discuss the asymptotics of 
u. As  a first step, we obtain from Theorem 44 th a t u is consistent in the ||-||g)2-norm if p  and 
o2 are in the ||-||0)4-norm. This also gives a first lower bound on the convergence rate of u. 
From the second of the two above theorems, we have th a t the pointwise convergence rate of 
u is determined by those of p  and <72 in the squared || ■ || x 4-norm together with the behaviour 
of the pathwise derivative V I\ If p  and o 2 are sufficiently well-behaved, the asymptotic 
distribution of u  will be determined by VT [p — /z0, o2 — Og] . The following theorem states 
high-level conditions under which u (t, x) is asymptotically normally distributed.
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T h eo re m  46 (M a s te r  T h eo rem ) Assume that {p ,^ 2) £ T), and || p — //.0llo 4 =  ° p (^) 
and ||<r2 — 0o||o 4 =  °P (!)• Then ||n (t , x) — uq (t , z ) ||0)i ~^P 0 f or anV X* with E[\\X*\\r] <
oo.

I f  furthermore there exists a (possible random) sequence {A n} such that 

1■ IIA -  MoII 1,4 =  °P ( ^ n 1/2)  and ||<r2 -  <rg||M =  op [a - 1' 2) ;

2. A V r  [A -  Mo, <72 -  <r§] - i  N  (0, V  (t , x));

Then,
A n (u (t, x) -  u0 (t , x)) - i  N  (0, V  (t , x ) ) .

This theorem is very general, and not very useful per se. In order to apply it on specific 
estimators, one has to verify tha t 1. and 2. are satisfied. The first condition is normally 
fairly easy to  check since this is merely a question of p  and a2 converging sufficiently fast 
in the norm ||-||o4. The verification of the second condition on the other hand requires 
more work since the precise form of VT is complicated. In the parametric case, it proves 
to be easy to check the second condition given sufficient smoothness conditions on fi and 
cr2, and we are able to give an explicit expression of the variance term, cf. Theorem 47. In 
the non- and semiparametric case, the following trick will be used: We observe tha t V  is a 
linear subspace of TL =  W 0,2 x W 0,2 and tha t Ji is a Hilbert space equipped with the inner 
product (•, •) =  (•, *)q as defined in (5.7). So the completion of D, V,  can be considered 
as a Hilbert space in its own right. Furthermore, VT is a continuous, linear operator on 
f>, cf. Theorem 45. We then apply Riesz Representation Theorem on VT: There exists 
d* = ( d i ,^ )  € V  such that

V r  [m,<t2] (t , x ) =  (p .d j) +  (o2 , ^ )  , (5.23)

where (•, •) is given by

{/) 9) — Et,x £  f ( s , X l )  9 (s ,X ? )d s \  =  £  I  V (s, y \ t , x) f  (s, y) g (s , y) dsdy

and p(s ,  y\t, x) denotes the conditional density of X® conditional on X® = x. This rep
resentation of VT is much easier to work with, and one can normally verify tha t each 
of the integrals converges in distribution when one plugs in ft and a2. In the case where 
p (t, x) = p, (x) and a 2 (t , x) = a2 (x), we can use the following, more simple inner product,

( /,  9 ) =  f  qr-t  (y \x ) /  {y) 9  {y) dy, 
J Rd

where qt (y\x) = Jjj pu (y\x) du and pt (y\x) =  p (u , y\u — t, x) is the homogeneous transition 
density.

Unfortunately, this approach does not supply us with the precise form of the asymptotic 
variance since the Riesz Representation Theorem does not tell us the precise form of d* G V  
- only th a t such exists. A special case where the explicit form of d* can be derived is when
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a (t, x) = a is constant. Under this assumption, we obtain from (5.22) tha t 

v r  [dll, da2} (t, X )  = eat T  E tiX \ f  d^  (s, X8°) dTu  (s , X») ds
i- 1 L A  j

q r T
+ le“‘ J  E t,x U  dc% (,, j£) dfo  («, x ! )  ds

l,J=l

(5.24)

where

But even if the precise form of the variance is unknown, we shall demonstrate tha t it is 
possible to construct an estimator of it. Otherwise, one can apply bootstrap methods to 
estimate the distribution. The latter has the advantage of giving a better approximation 
of the finite-sample distribution, cf. Hall (1992).

We shall now apply the above Master Theorem on three specific estimators of /x and <r2, 
and derive the asymptotic properties of the associated estimated solution for each of these. 
In all three cases, the estimated solution will be y'ri-consistent, despite the fact tha t the 
preliminary estimators may have slower than -y/n-convergence rate. This is a well-known 
result from nonparametric estimation theory. While differentiation makes a problem more 
ill-posed/less regular, integration works as a regularization of the problem. The increased 
regularity of the problem in turn increases the convergence rate. A simple example of 
this is nonparametric density estimation: The optimal rate of convergence in the minimax 
sense of the nonparametric density estimator is n 2̂ q+A\  while the optimal rate of the 
cumulative density estimator is y/n.

The -y/n-convergence rate of estimators of solutions to a class of ordinary differential 
equations was established by Hausman and Newey (1995) and Vanhems (2003), and similar 
results were obtained for solutions to LPDE’s for specific kernel estimators, cf. Al't-Sahalia 
(1996a) and Jiang (1998). The result stated in Theorem 46 confirms this: For u (£, x) to be 
asymptotically normally distributed, we require tha t the preliminary estimators converge 
with n 1/4-rate, while VT [/x — /x0, a2 — 0q] converges with yfn-rate. The latter will hold in 
great generality.

The three estimators we shall consider are all based on discrete observations of the 
underlying diffusion process with drift term  /x0 and diffusion term (Tq. In the following, we 
shall denote the sampled process by {a;*}, and the driving Brownian motion by {u;*} such 
tha t

dxt = /x0 (£, x t) dt +  cr0 (£, x t) dwt . (5.25)

This is done in order not to confuse the sampled process with {A*} entering the expression 
of the generalised solution. We may and will choose the probability measures Q and P  
which { X t } and {xt } respectively operates under to be mutually independent.

5.3.1 A  Parametric Estim ator

We assume tha t /x0 (t, x) =  /x (£, x\ 6o) and <7q (£, x) =  a2 (t, x\ 6q) for some known param- 
eterisation where 9q € © C R d is the true, unknown parameter, and tha t a preliminary
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estimator 9 is available. The estimator 6 could arrive from various estimation methods, 
the leading example being tha t it is based on discrete observations, {x^a}? °f the process 
{a;*}. In this setting 9 can be estimated by for example MLE (Pedersen 1995, Elerian et al 
2001, Al’t-Sahalia 2002) or GMM (Bibby and Sprensen 1995, Duffie and Singleton 1993). 
We do not have to restrict the observed process to  be stationary; it may potentially be 
non-stationary and the estimator converging with a random convergence rate.

We then wish to derive the asymptotic properties of u associated with ft (£, x) =  pt(t, x; 9) 
and b 2 (£, x ) =  cr2(£, x ;9). This will be done under the following set of regularity conditions:

P . l  For any 9 E 0 : (ft (•, •; 9) ,  a2 (•, •; 9)) E V.

P.2 d%x\i (t, x; 9) and dxa2 (£, x; 9) are continuously differentiable w.r.t. 9 such that 

||dlxfi (i, x; 9) || <  C  (1 +  ||x ||) , dlx&2 (t, x; 9) < C  (1 +  ||x ||) ,

for i = 0,1.

P .3  dxft (t , x; 9) and dxcr2 (£, x; 9) are bounded.

a ____ 1 /q a ^
P .4  The preliminary estimator 9 satisfies Vn {9 — 9q) -h► N  (0 ,1) where 9q E in t0  and 

{V^} is a (possibly random) matrix-sequence which is positive definite and ||Vn|| —> 0 
P-a.s.

The conditions are fairly weak, and are satisfied by a range of parametric diffusion 
models. The boundedness assumption in (P.3) is assumed for convenience and can be 
weakened to some polynomial bound. The conditions in (P.4) are satisfied for most well- 
behaved estimators. In particular, the MLE in both the stationary and nonstationary case 
satisfies (P.4) under weak conditions as can be found in Al’t-Sahalia (2003).

We apply standard Taylor-expansions to obtain the desired result. First, it holds that 
ft (t , x) =  //(£, x; 9) satisfies

J  [ ||a * £ ( u , X l ) - d i , x a { u ,X l

= [|a*A(n,x2;5)(0-0o)

<  c ( i  +  H 4) | | 0 - < y 4,

du

for i =  0,1, and similarly tha t u z (t , x) =  cr2(t, x; 9) satisfies 

-T
Et,x ds < c ( i  + M 4) \\e - e 0||4,Jt ll9ia2 (s, xj) -  aj<To (s . X

for i = 0,1. Thus, by Theorem 46, for any 0 <  t < T  and x E M9,

|it (£, x) -  u0 (t, x) -  V r  (t, x)| <  C  ( l  +  ||x ||4)  ||9 -  90\\2 = oP (|| Vn ||)
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The asymptotic distribution is then determined by VT (£, x) which in the parametric set
ting takes a fairly simple form. We define

bx (X$) t y  exp [ -  j f  a (s, X ° )  

b

ds (5.26)r*o (t, x) — EtyX
L J J

- E tyX b (X$)  exp [- jT a (s, X°s ) dsj Qf T ax (v, X ° )  X °dv  

+ EtyX j f  cx (s, Xg) X% exp |^- a (v , X°) dv ds 

- E tyX c (s, Xg)  exp | -  a (v, X j)  dv ax (y, X ° )  X^dv^j ds

where {Xt0} is the solution to the SDE

X,0 =  {a  (t, Xh e) +  M(1) (t, X°; B) X t } dt +  {& (t, X?; 0) +  (t, X(°; 6) X f } dWi,

with X q =  0. It is then easily shown, using the same arguments as in the proof of Lemma 
54, th a t

E x,. [ | |V X ,  [A -  Mo. * 2 -  * o ]  -  -  0 o ) ll]  <  c  (x ) | |0  -  0 O||2

implying
V r  [p -  fi0, <t2 -  a I] (t, x) =  t0 (t, x)T (<9 -  0O) +  oP (|| KH)

We have now proved the following theorem:

Theorem 47 (Parametric Estimator) Under (P.1)-(P.4), the parametric estimator u 
is consistent and satisfies

y j t 0 (t , z )T V^,r0 (t , x) (u (t, x) -  u0 (£, x)) N  (0 ,1), 

where to  {t,x) is given in (5.26).

So in this setting a closed form expression of the asymptotic variance is available.

R e m a rk . An alternative characterization of To is as solution, v, to the LPDE given in
(5.20)-(5.21) with c given by

E. duo 1 . 2
f t ^ T  +  2 2 > «  

1 = 1  1 = 1

d2Ur
2 ~%J dxidxj ’i=i J

(5.27)

It readily follows from Lemma 51, th a t a consistent estimator of fo  (£, x) is obtained 
by substituting (Jf° ,X °) by ( X , X )  in (5.26), where the la tter solves the SDE-system 
associated with the estimated drift and diffusion term,

d X t =  p,(t,Xt ]d)dt +<j(t,Xt ;Q)dWt,

d h  =  {A { t,x t-,e) + iJ,m (t,Xt-,0)h }d t+ {& (x t-,0) + <7<-1\x t- ,0)h}dW t,
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where X t = x, and X q = 0. Alternatively, one can obtain an estimator of fo  by solving
(5.20)-(5.21) with c given in (5.27)and with no, ft and a2 substituted for n, deft and Oqo2 
respectively.

5.3.2 A  Semiparametric Estim ator

In this section we consider the case where semiparametric estimators of the drift and 
diffusion term are available. We introduce the following two classes of scalar (q = 1)
diffusion models:

C lass 1 dxt =  p. (x t) dt +  a {xt\ 9) dwt where 6 E © C and p  (•) is unspecified.

C lass 2 dxt =  p {xt \Q)dt + cr (x t) dwt where 9 6 © C Rd and a 2 (•) is unspecified.

Observe tha t the SDE’s in both classes are assumed to  be time-homogenous in which 
case the transition density satisfies p (t,y\s, x) =  pt~s (y |z)- 

We assume th a t an estimator 9 is available satisfying

(5.28)

for some influence function ^  with E  [ip (x*; £i_i)] = 0 and E [ \ \ iJj (xf ,  X i - i ) \ \ 2+6] < oo for 
some 8 > 0. One such estimator was derived in Chapter 4. Assuming stationarity of {a?*}, 
there exists a stationary density 7Tq satisfying

(5.29)

for some x* G I  and a normalising factor M  > 0, see for example Karlin and Taylor (1981 
Section 15.6). It is possible to revert (5.29) in either of the two following ways,

(5.30)

(5.31)

We estimate by the kernel estimator 7 r ^  given by

nhm+1
(5.32)

where for a kernel K  and a bandwidth h\ see Silverman (1986) for an introduction to these 
concepts. Given 9 and Tt̂ m\  m  = 0,1, we may then estimate the drift and diffusion term 
in the following manner. For a model in Class 1, we estimate pQ (x) by ft(x; 9) where

1 1 .£-(1) (r)
A (z; 8) = 2°xa (x'e) + 2 (x;^  t(x) ’ (5.33)



5.3 Estimation of Partial Differential Equations 124

and ctq (x) by <j 2 ( x ; 9). For any model in Class 2, we estimate /x0 (x ) by /z(x; 0) and Oq ( x )  

by <J2(x; 9) where

(X;6>) = n ̂  (X<) (5’34)
'  1 = 1

See Chapter 4 for more details on these estimators.
In Class 1, given consistency of 9, a2(x;9) is a pointwise consistent estimator of a2 (x) 

given smoothness conditions of a2 (x; 9) w.r.t. 9. This in turn  yields consistency of fi(x] 9) 
in (5.33) by the delta method. Similarly for Class 2. We note tha t in both cases the 
convergence rate of the nonparametric part is slower than y/n.

In the following, we will derive the asymptotics of u in each of the two classes. In order 
to do this we need to establish consistency of the two nonparametric estimators in the 
function norms || -1|0,4 and IHIi,4- For this to hold, we need to introduce trimming in order 
to control the tailbehaviour of it since this appears in the denominator of both estimators. 
To this end, we introduce a trimming function, T, which we require satisfies

T(x-,w,a) = {  7r(x ) - a  (5.35)V ' \ 0, *(x) < a /2  K ’

for a positive sequence a = a such tha t a —> 0. We impose further regularity conditions on 
the trimming function:

T  (a;) The function T(x;7r, a) (i) satisfies (5.35), (ii) is uj > 0 times continuously differ
entiable in x  with d%xT  {x\ir, a) bounded, i =  0, ...,w, and (iii) continuously differen
tiable in a with adaT  (x; 7r, a) bounded.

In the following we shall write T  (x; a) = T  (x; it, a) and To (x; a) =  T  (x; 7To, a). Given 
T, we redefine fi in Class 1 as

(*) =  | \ d* °2 +  \ ° 2 (®;9) ^ft |  ^  (x 5a) • (5-36)

Similarly, we redefine a 2 in Class 2 as

£ 2 2 (s . „ )

In order to establish sufficiently fast convergence of the nonparametric part in the appropri
ate functional norm, we introduce the following class 1C (uj, X) of higher-order, bias-reducing
kernels, first proposed by Parzen (1962) where u j , A >  1 are integers:

K ( u j , A) The kernel K  satisfies f R K  (x) dx = 1; f R x lK  (x) dx  =  0, for 0 <  i <  u j  —  1; 
f R \x\u |K  (x)| dx < oo; K W (x) 0 as |x| —> oo, 0 <  i < X — 1;

supxGR\ K ^  ( x ) | m a x ( |x |, 1) < o o ,  0 < i <  A +  1; is absolutely integrable with
Fourier transform \I>j satisfying f R (1 -I- |x|) s u p ^ !  (6x)| dx < oo, 0 <  i < A.

We first derive the asymptotics for models in Classl. We assume the following:
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SP.O The sequence {a;*} is stationary and /5-mixing with geometrically decreasing mixing 
coefficients.

S P .l  The marginal density 7To is u  times continuously differentiable with bounded deriva
tives.

SP .2  (/x0, erg) e V .

SP .3  The estimator 0 satisfies (5.28) with 9q G in t0 .

SP .4  The transition density pt exists for any t  > 0 such tha t the mapping y t—► pt (y\x) is 
bounded, and continuously differentiable with bounded first derivative.

S P 1 .A  The kernel K  G /C(u/, 2) and the trimming function T  G T  (2). The bandwidth 
h and the trimming parameter a satisfies n~ l/2ak~2h~2~k —► 0 and afc-2hw-fc —► 0, 
k =  0,1, as a, h —> 0.

S P 1 .B  The bandwidth h and the trimming parameter a satisfies

1. n ~ l^ a k~2h~l~k -+ 0 and -+ 0, k =  0 ,1,2.

2. / tT Pt,* ( a /2  <  7T0 (X ? ) < a ) d s  =  o(n~4).

T h e o re m  48 (C lass 1) Assume that (SP.O)-(SP.S) and (SP1.A) hold a n d u  > 3. Then
||u — uollo i = op (1). I f  additionally (SP.4) cmd (SP1.B) hold and uj > 4, then

y/n (*u (t , x) — uo (t, a;)) - i  N  (0, V  (t, a:)),

where

oo

V  {t,x)  =  var(i/(xi|a;o;t, ^)) +  2 ^cov (z /(a ;i|a :o ;£ , x) ,v  (xi+i\xi',t, x))
i=i

and {v (x i \x i- i ; t ,x )}  is given in (5.45).

Next, we derive the asymptotics in Class 2. This is done under very much the same
assumptions as the ones assumed for Class 1. Only do we need to slightly change the
conditions on the bandwidth and trimming parameter:

S P 2 .A  The kernel K  G K  (a;, 1) and the trimming function T  G T  (1). The bandwidth 
h and the trimming parameter a satisfies n -1/2a -1 h-1 —► 0 and a_1/iw —> 0 as 
a, h —> 0.

S P 2 .B  The bandwidth h and the trimming parameter a satisfies

1. n  1/4afc 2h 1 k —> 0 and n l^ a k 2hP k —> 0, k =  0,1.

2. a8 / tT PtfX (a /2  <  7Tq (A j) <  a) ds =  o(n~4).
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T h eo re m  49 (C lass 2) Assume that (SP.0)-(SP.3) and (SP2.A) hold and uj> 2. Then 

11“  — “ o||o,i =  ° p  (!)• I f  additionally (SP.4) and (SP2.B) hold and u  >  3, then

y/n (u (£, z) — uq (t, z)) -i N  (0, V  (t, x ) ) ,

where

oo
V  (£,z) =  va,T(v(xi\xi-i',t,x))  +  2 cov (v (z i |zp; t, z ) , i/ (z j+ i|z ,;t, x))

i=i

and {v (xi\x{-i',t, z)} is given in (5.48).

Sufficient conditions for (SP.O) to hold can be found in Chapter 4. (SP.l) holds if pQ 
and <7q both are uj times continuously differentiable. Ai't-Sahalia (2002) gives sufficient 
conditions for (SP.4) to hold

For both classes of estimators, the asymptotic variance V  (£, z) is of unknown form. One 
can use bootstrap methods to obtain an approximation of the distribution of the estimator. 
Alternatively, one can use an idea originating from Newey (1994a) to estimate the variance 
using the pathwise derivative; see also Section 4.4. We only present the variance estimator 
for Class 1; the Class 2 case is dealt with similarly. We define

V  (t , z) =  fto (t, x) +  £  wM,i(tti (t , z) +  n j  (t , z)),
i=1

where wM,i =  l - [ * /  (Af +  1)], Cli (t, z) =  n _1 J 2 " = i (t , z) (t , z), (t, x) = i f ^  (t , z )+
(t, z), and

-d )/*  +  2(- ,6 ) ,) ( t ,x )
vi V ’x ) ~  da

f . (2) / f a r ( / i ( - ; 0 , 7 r ) , a 2 ( . ; 0 ) , ) ( t , a ; )
^  -  de

a= 0

■0 (Zj|Zj_i)
0=0

The two functions can be calculated using numerical derivatives. This estimator should 
be consistent as M  —> oo and M /n 1/ 8 —> 0. We will not give a formal proof of this, and 
instead refer to Section 4.4.

5.3.3 A  Nonparametric Estim ator

In this section we shall consider fully nonparametric kernel estimators of p  and <72 in the 
univariate case, q = 1. Such estimators have been considered in a series of papers, see 
e.g. Florens-Zmirou (1993), Jiang and Knight (1997), Stanton (1997), Bandi and Moloche 
(2001), Bandi and Phillips (2003). All these papers consider a sampling scheme where the 
time distance between observations A =  An —> 0, as the number of observations n —► oo; 
this is the so-called in-fill assumption. This enables one to reconstruct the full sample 
path in any compact interval in the limit, and thereby extract enough information about 
the infinitesimal conditional variance, cr2, for it to be estimable. However, to construct an 
estimator of the infinitesimal mean, p, it is necessary also to require tha t the length of
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the time interval in which the process is observed, T  —► oo; this is the so-called long-span 
assumption. Bandi and Phillips (2003) obtain pointwise consistency and mixed asymptotic 
normality of the drift and diffusion estimators only assuming recurrence of the process 
thereby allowing for certain forms of non-stationarity. We apply the estimators proposed 
by Bandi and Phillips (2003). But it appears to be difficult to work under their general 
assumption of recurrence since the convergence rates of the estimators in the general case 
is path-dependent. This in particular makes it difficult to show consistency in a functional 
norm. So for simplicity, we restrict our attention to diffusion processes having a stationary 
marginal density 7r.

We assume tha t we have observed {mi}, Xi — x ; a , in the interval [0, T] where T  =  
nA —> oo. We shall assume th a t {a:*} takes values on the interval I  C R, and th a t the 
process is stationary and mixing. As we shall see, the nonparametric estimator of /x used 
here only has y/Th = y/nAh-convergence rate, while the nonparametric estimator of a2 
exhibits faster y/nh-convergence rate. This in tu rn  will mean tha t the drift estimator will 
be the dominating term when deriving the asymptotics of u. In particular, the convergence 
rate of u  is V T  and not y/n.

Before we define our estimators, we first introduce m (x )  =  /x(x) tt(x ) and s (x) =  
a2 (x ) 7T (x) such tha t

, N m ix )  o / \ s (x )
^ x) = t U ’ ^ {x) = ^ y

We then construct kernel estimators of 7r, m, and s,

n

n~l K h (:Xi -  x ) , 
i=1

-1 ' P  ts I \ — X*n 2_^K h ( x i - x ) ---------  ,
i=i

i=1

As in the previous section, we need to control the tailbehaviour of tt. So we introduce 
trimmed versions of our estimators,

f  (  \  __  r p  (  \  i.X )  cl.2  (  \  __  r p  (  \  ^A (*E) T  (x, a) . . , cj \x) — T  (x, a) . . .
7T [ X )  'K \x)

The basic conditions are almost the same as the ones assumed for the semiparametric 
estimators:

NP.O {xt} is stationary and /3-mixing with geometrically decreasing mixing coefficients.

N P .l  The kernel K  e  JC(u, 1) and the trimming function T  e T  (1).

N P .2  The marginal density 7To is u  times continuously differentiable with bounded deriva
tives.

7r(x) =  

rh (x) =  

s(x)  =

NP.3 (/x0, <7§) e V.
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N P .4  The transition density pt exists for any t  > 0 such th a t the mapping y  i—► pt (y\x) 
is bounded, and continuously differentiable with bounded derivative.

N P .5 A  The bandwidth h and the trim ming param eter a satisfies T -1/2a -2 h-1 —► 0, 
a~2hu —> 0, and T 1/2+<ŝ lo g 2 (T) A3/4 log (A -1 ) 1̂ 4 a~2h~2 —► 0, as a, h —> 0.

N P .5B  The bandwidth h and the trimming parameter a satisfies

1. T - ^/log2 (? )  A 3/4 log (A "1) 1/4 ak- 2h - 2- k -» 0, r V 4a ‘- V w  -+ 0 and 
T l/4a 's- 2f t" -fc -* 0, k  =  0,1.

2- Si pt,* (a/2 <  no (X°) <a)ds = o(n"4).

Applying results from Bosq (1998), we are able to show tha t ir, m, and s are uni
formly consistent on I , and also supply convergence rates. Given these, it is then an easy 
task to show tha t the nonparametric estimators of p  and a2 converge in the ||*||0)4-norm. 
This shows consistency. We are able to strengthen this || A - Mo II 1,4 =  °P (T -1 /4) and 
||<j2 — Og||i 4 =  op (T-1 /4). The pathwise derivative consists of two parts, the first part 
being a functional of p, ViT, and the second a functional of <r2, V2r. It can now be 
shown tha t ViT [A — Mol converges towards a normal distribution with speed V T , while 
V2r  [<r2 — ctq] does so with speed y/n. Thus, the first term  dominates the second one, 
implying tha t V iT [ p  — pQ] drives the asymptotic distribution.

T h e o re m  50 (N o n p a ra m e tr ic )  Assume that (NP.O)-(NP.S) together with (NP.5A) hold 
with u j  > 2. Then the nonparametric estimator u is consistent. I f  additionally (NP4) and 
(NP5.B) hold then

y / f  (u  (t , x) -  uq (t , x)) N  (0, V  (t , ®)),

where
T W*2 (t r \ /  rT \  21

V { t ,x )  = E

with d\ given in (5.23).

We propose to estimate the variance by V  (t, x) as given in the previous section, only 
we redefine (t , x) and (t , x) as

2 , ,d*2 (xs) (  I?
a 0 i X s )  ~ 2 T  T  /  V u { x a \ x ) d u

K  M  \J t

■(!)/* ^  _  ^r(/i(-;7r +  ^ ( - - ^ ) , w ) , o - 2(-;# ,5 ),)(t,a :)
'7 V ’x ) ~  da

a=0

ui  V<x > ~  da
a = 0

The two functions can be calculated using numerical methods. This estimator should be 
consistent as M  —> 00 and M /T 1/8 —> 0. We will not give a formal proof of this.

Bandi and Moloche (2001) generalise the above nonparametric estimators of p  and a2 
to the multivariate case. In Jeffrey et al (2004), a kernel estimator of the volatility function 
in a class of Heath-Jarrow-Morton models is proposed. Series estimator of p  and a 2 for a 
one-dimensional diffusion has been proposed by Chen et al (2000a, b). We conjecture that 
similar results to the one given above can be derived for these estimators. In particular,



5.4 Applications 129

the curse of dimensionality will not be a problem in the estimation of u ; the dimension of 
the underlying diffusion process {X t}  will have no effect on the rate of convergence.

Jiang and Knight (1997) propose an alternative drift estimator tha t makes explicit use 
of the assumption of stationarity of the process. Jiang (1998) examines the estimation of 
solutions to PD E ’s when their nonparametric estimators are plugged in. He claims tha t 
the estimated solution, fx, converges w ithi/n-rate. We believe there is a mistake in his 
proof since his drift estimator only converges with speed V T h 3. Thus, the convergence of 
u  should not be able to exceed V T .

5.4 Applications

In this section, we return to the examples given in Section 2.1 and 2.2 and discuss how 
the results derived in the previous section can be applied to  these.

We discussed in Section 2.1 how LPDE’s can be used to characterise derivative prices. 
The results given in the previous section can now ensures that option prices calculated 
using preliminary estimated models of the underlying variables are consistent and asymp
totically normally distributed in great generality. In particular, this enables us to calculate 
standard errors of the estimated prices which gives us a measure of the statistical accuracy 
of the prices and allows us to test the individual asset pricing model.

Example 1 (continued). Under the physical measure P , assume tha t we have a parametric 
diffusion model of (5.8),

dSt -  Vs (*> 9) dt +  a s  (t , St ; 9) dw f,  (5.38)

the dividend stream is zero, dt — 0, and the short-rate is assumed to be constant, r* =  
r  > 0. We assume tha t an estimator 9 of 9 is available; this may have been obtained using 
historical observations of the stock prices, S ia , i =  1, ...,n , and applying MLE, GMM or 
some other method. Defining X{ =  Si a,  / x = / x5 , and a = as,  Theorem 47 gives conditions 
under which any implied derivative price based on this estimator will be asymptotically 
normally distributed.

In the stochastic volatility model, we also have to obtain an estimator of the market 
price for volatility, A. Assuming tha t this is a known function up to 9, A (S, v) =  A (S,v;9), 
the results carry through given smoothness conditions on A of the same type as imposed 
on p s (t,S;9)  and <r|(£, S;9). The estimator of A may have been obtained using other 
data than historical observations of the stock price(s). This can also be accommodated 
for.

Example 2 (continued). We assume tha t we have observed the short rate at discrete points 
in time, * =  1, ...,ra, and tha t it under P  solves

drt = /x (rt ) dt +  a  (rt ; 9) dwt .



5.4 Applications 130

The semiparametric estimator considered in Section 3.2 is then used to estimate /i and 
a2. Taking the market price of risk, A (r), for given/known, Theorem 48 gives us the 
asymptotic distribution of any implied bond and interest rate derivative price.

We can also allow for an unknown market price for risk for which we have an estimator, 
A. Since A (r) enters the drift function linearly, one can easily accommodate for this in our 
proofs. Defining fix =  fi — A<r, we first obtain

u (t, x) -  u0 (t, x) -  V r[£ A -  /4 , a 2 -  al] (£, x) < b (x, T)  ( ||£ A -  ^ \ \ ( A + \\a2 -  Oolli,4)» 

where ||a2 — c r § 4 =  op(n-1/4) and

||£ A -  Molli.4 <  HA “  MoIIm +  A ||i)4o- -  <70||i,4 +  lko |li)4 A -  Ao||ii4 =  oP (n~1/4), 

if 11A — Ao||i,4 =  op(n-1/4). Next, due to the linearity of V iT,

V r[/iA - / iq, a2 - a l \ ( t , x )  =  ViT[Ao- -  A0o-0] ( t ,x)  +  ViT[A -  /̂ ol (t>x )

+V2r[<r2 -  al] (t, x ) .

The second and third term is treated in the proof of Theorem 48, while the first one 
requires a bit of work: Observe that

A<7 -  Ao^o =  cr0(A -  A0) +  —  (<72 -  a l)  +  0 ( | |d 2 -  cr§||2 +  ||A -  A0||2),
<7o

such that

ViTjAd -  A0o-o] (t, x) = Vir[o-0(A -  A0)] (t , x) +  ViT [A0/<ro (<72 -  al)] (t , x)

+ 0  |̂|<72 -  CTollo,2 +  11̂  ~  ^o|lo,2^ '

The term Vir[Ao/<7o(<72 — cr§)] can be treated as V 2r[<j2 — ctq], while ViT[cro(A — Ao)], will 
converge in distribution in great generality.

r.A , .Aii2 i 11 ±.2 _2112

Next we turn to the two examples given in Section 2.2 concerning the estimation of 
diffusion models. We check for each of the two examples tha t under regularity conditions 
the proposed estimator will be consistent and asymptotically normally distributed.

Example 4 (continued). We here give primitive conditions under which the estimator pro
posed by Bibby and Sprensen (1995) is consistent and asymptotically normally distributed. 
For simplicity, we only consider the univariate case (q = 1) and assume th a t b(x) = x, 
while a  (x ; 9) =  a  (x) is parameter independent. We first set up a set of conditions:

C .4 .1  There exists p > 2 and constants co, c\ > 0  such tha t

2/z (x ; 9) | | z | |2p_1 +  (p -  1) a l  (x )  | |z | |2(p-1) < cq -  c i  | |x | |2p
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C .4.2  The drift and diffusion function, (/x(*;0) , a 2 (•;$))» in (5.18) belongs to V  for any 
0 G 0 .

C .4 .3  The function a  : R i—»R satisfies |a  (z)| <  C  ^1 +  | |^ ||^ 2  ̂•

C .4 .4  The m atrix H  (0) =  Eg [g (Xa|Xq; #)] is positive definite.

It now follows from Theorem 44 and 45 tha t B  (x',0) is continuously differentiable in 
0, and by (5.6) \B (as; 0)\ <  C (K ,  A) (1 +  |x|), B(x-,0) < C ( K , A )  (1 +  |z |2). The first 
condition implies, cf. Meyn and Tweedie (1993), th a t {Xt} is stationary and ergodic (as
suming it has been started a t its invariant distribution) with f ^ X o ! 2̂ ] <  oo. We have 
tha t

19 (y\x‘} 0)\2 < C  (1 +  ||z ||p) ( |y |2 +  |x |2)  , ||g (y\x\ 0)|| <  C  ( l  +  ||x||p/2)  ( |y |2 +  |x |2) 

where

E  [(1 +  ||X0f )  ( | * a |2 +  l*o |2)]  <  C E  [ l +  ||Xo||2p' ] 1/2^  [( |X A|4 +  |X0|4) ] 1/2 <  oo.

By Law of Large Numbers and a central limit theorem for martingales, we now obtain 
tha t

^ ( 0  -  Oo) -*d N  (0, / r 1 (0O) v  (Oo) H - 1 (Oo)) (5.39)

where V  (0) = E e [<? (XA|X0; 0) g (XA|X 0; 0)T

Example 5 (continued). We here give conditions under which the least squares estimator 
of 6 based on observe option prices is consistent and asymptotically normally distributed,

n
0 = arg min V  (Pi -  II (X it T\ 0))2 ,

i=l

where Xi  =  X jA- We assume tha t (C.4.1)-(C.4.2) hold and tha t

C .5 .1  The pay-off function g : R ►-►R is continuously differentiable and satisfies | dlxg (a;) | <  
C ( l  +  | | x f /2) ,  i =  0 ,1.

C .5 .2  The m atrix H  (6) = Eg tl  (Xi, T; 9) n  (Xi, T; 0)T is positive definite.

C .5 .3  The error sequence {ej} is independent of {Xi}, i.i.d. and with E  [ei] =  0, a 2 =  
E  [ef] < oo.

Under (C.4.1)-(C.4.2) and (C.5.1)-(C.5.2), we obtain by standard arguments tha t

y/n(9 -  90) -+d N  (0, (90) ) . (5.40)

The assumptions in (C.5.3) on the errors can be weakened substantially.
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5.5 Conclusion

We have investigated the properties of estimated solutions of a PDE given preliminary es
timates of the driving coefficients of the PDE. We gave general conditions under which the 
estimated solution was consistent and asymptotically normally distributed, and checked 
th a t these were satisfied in three leading examples.

We demonstrated tha t these results have widespread use both in finance and economet
rics. In particular, the results can be used when drawing inference on implied derivative 
prices given estimates of the dynamics of the underlying asset. Also in the literature on 
estimation of discretely observed diffusions our results prove useful.
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5. A Proofs

P ro o f  o f T h e o re m  43. We have tha t

|u (t, x ) | <  E t,x [|6 (XT) |] +  E t,a f \ c ( s , X a)\ ds

<  c ( i + £ t,I [ |x r n ) + f i , x

<  c a + w ) ,

J  C(l + B«,x[|Xsn)<is

where we have used (5.6). We obtain tha t

^  (f * z) w r r rT
—  & t , x

rT
dXi = E t,x |exp l - l  CL du ] (&x ( X t )  Y ®  -  b (XT ) j f  ax (s, X , )  Y j M

+ j ) c x (s, X ») y ®  -  c (s, Xs) j ’ ax (u, X u) yu(i)d u ) l  .

where is given in Lemma 53, such tha t \du(t, x) /dx{\ is bounded by

'T
Et,x 

~b EtfX 

^  Et,x

"b Et,x

||6X (Xr)|| ||ŷ || + \b(XT)\Jt IK (S,X5)|| ||y«||ds
/  |CX (s , x . ) |  ||yW|| + f  ||0x ( « , x „ ) | |  ||y«||*«fa 

. J t  J t

C(1 + ||Xrf) ||ŷ || + C(1 + IIXtID J*C (1 + ||Xuf) ||y«||du 
[ T C (  1 + ||xjr)||yW|| + c (1 + Iix.in f ’ c (  1 + ||X„|D||yW||d«<iS

. J t  J t

< C  ( l  +  ( J *  Et,x [ll^l|2r] d s )  7 +  ( [  E t,x [||y»W||2] ds )  '

< c a  + iw n ,

for any (t } x) G [0, T } x R9, where we have used (5.6). The expression of d2u  (£, x) jdx idx j  
is not presented for brevity; one may show tha t \d2u ( t , x )  / d x i d x j | < C (  1 +  ||rr||r ),for 
any (£, x) G [0, T] x Rd. This shows the first part of the theorem. We then easily realise 
tha t

IM kp < c ( i  + £ e  [||X?n) < c  (1 +  E  [ ||X * ir i)  <  OO,

for pr < p*. ■
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P ro o f  o f T h e o re m  44. We see tha t

<

Et,x

Ef,X

b (X t ) exp Xu) du

b (X t ) |e x p  | — /  a (u, X u) du

■ b (X ^ )  exp h r  a ( u , d u \

~  exp J t a (u, X ° )  du j
+ E t ,  a exp H  o ( ti ,x S )d « l {&(Xr ) - 6 ( X :

,* [ll^Tl|2r] l/2)  ( j \ *
01 \ 1 / 2  

a ( u , X u) - a ( u , X ° ) \ \ d u \< C l l  +  £*

+  | ^ [ | 6 ( X t ) - 6 ( A ? ) | ] |

aT  r oi \  ^ 2
Et*  [|o («, X„) -  a («, Xjj) |2J du)  + Et*  [|6 (XT) -  b (X£) |]

where, by Lemma 52,

Et*  [||a (tt, X u) -  a (», X u)||2] <  C (u, x)  ( J *  E t*  [||/x (v, X v°) -  («, X °)  ||4] dv

+  j f  E t*  ||<72 (d ,x J )  -< t§ (u ,X (?)||4]& A  ,

with C (t, x ) =  Ct  (1 +  ||a;||r ), and

Et*  [|&(XT) - 6 ( X £ ) |]  <  C ( T ,x )  ( [  E t*  [ ||m (« ,*S ) -**o ( « .* S ) f ]  du

+ J *  Et*  [||cr2 («, X j)  -  4  (tt, X °) ||2] du)
1/2

Similarly,

Et,x

—Et,x

j f  c (s, X s) exp a (u , X u) du

j f  c (s, X°)  exp |^- £  a (u ,X % )du  

< C (T, x) Q f T  £ t,x [||/i (u, X °) -  /io (u, X,

+ £  E t>x \\a2 (u ,X ° )  -< j§ ( u ,x £ ) | |4 d u j

du 

x 1/2

We conclude that

M t , z ) - u 0 (t,:c)| <  C (T ,x ) E ttX \\(i(u,X*l) - /x0 (u ,X °

r-T

O M I4 du

/•T \ 1/4
+  jf  £*,* [ K  (« ,X °) -  ( tt ,X j)  II4] du)
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Taking expectations,

II" -  “ olio,! <CT(l + E  [ | |X T ] )  { IlM -  Mollo,4 +  V  -  00110,4} •

■
P ro o f  o f T h e o re m  45. For any function f  , we have

/ M - / (x0) - /(1) ( s o )  (x - x0) < /(2) (Ax + (1 - A) x0) ||x-a;o||2, 
for some A E [0,1]. Thus,

Et,x

~ E t )X

+Et,x

< Et,x

b ( X t )  exp | — j f  a (u , X u) duJ j -  EtfX b (X ^ )  exp j -  j f  a (u, X®) du 

bx (X^)  [ X t  -  X j ]  exp J  a (u, X®) du 

b (X ?) exp [ -  £  a (s, X °) ds] ( £  ax (u , X s°) [X,  -  X s°] ds

\b(XT)\ exp | j f  a ( u , X u) ditj — exp J  a (u , X%) du j

-  exp f -  £  a (u, X °) du Q f  ax (u, X s°) [X, -  X j] da 

+Et,x [|6(X r ) -  6 { x i )  -  bx (X?) [Xr -  x£] |]

<  [|6 (X r)| j f  |a  (u, X„) -  a (u, X°) -  ax (u, X s°) (X. -  X ") | ds

+ C B t,x [(1 +  ||XT||r +  | | x j | n  ||X r  -  X j.||2

<  CEt,x [ j T  (l +  ||Xs||2r +  | | X ° f )  ||X, -  X “ ||2 da 

+CEt,x [(1 +  ||XT |r  +  IIX JID  ||X r  -  X ? ||2]

<  CEt,x \ £  (l +  ||Xs ||4r +  ||X t° ||4r)  ds] '  Et,x \ £  ||X. -  X s° ||4 ds 

+CEtiX [(l + ||Xr |r  + ||x£||2r)] Et,x [||Xr -  X

< CTeCT [l + ||®||4r]1/2 / Et,x [jf

1/2

'Oil4
lT

1/2

1/2 ' E t,x | / '  ||X x -  X °|[4 ds+
1/2

+ Et,x ||X r  -  X°0  II4
1/2

Also,

Et,x 6x ( x £ ) e x p f - j f  a (u, X®) du [Xr - X £ - V X r ]

<  C ( T , x ) E t,x [||X r - X £ - V X T |f
1/2
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and

Et,X

< C ( T ,x )  Et,x 

Similarly,

E t,x 

- E t , x 

—Et,x 

+Et)X

b (x £ )  exp [ -  £  a (s, X 3°) ds ( £  ax (u, X °) [X.  -  X°s -  V X S] ds 

( £  \\Xs - X ° , - V X a\\2ds )

J  c (s , X 3) exp [— j f  a  (u, X„) du 

J  c (s , X j ) e x p [ — J  a (u , X j) d u jd s  

£  cx (s, X j)  [X. -  X.°] exp [ -  £  a  (u, X») du 

£ c (s, X") exp [ -  J ’ a (u ,X °) dul (  j f a *  (u ,x £ )  [Xu -  X j] d u \ d s

<  C (T ,x)  Et,x ds
1/2

and

E t ,  a £  cx (s, x “) exp [ -  £  o (u, x 2 )  du [X, -  X® -  V X .] ds

<  C (T ,x)  Et,x f  ||X r . - X , ° - V X , | | a ds
1/2

Combining these results we obtain

|u (t, x) — uo (t , x) — v r  (£, x)|
<>T

<  C ( T . X s - X s° ||4ds+! ■*') j ^

( £ \ \ X , - X ° s - V X , \ \ 2ds )+C (T, x) EtiX

+ E t,x [||X T - X "  

1/2

0 1.41 V 2

An application of Lemma 51 and 54 then proves the claim.
The following inequalities yield the second part of the theorem: For any (d/i, da) <E V,

Et,x 

^  Et,x

bx (X$) V X t  [d/i, da2] exp | ~  a ^ 2 )  du 

||6x (X%) ||2] V2 E t,x [||V X T [dp, d<721 "211/2

Et,x

< -Ef.X

b (x£) exp [ -  £  a (s, X?) ds ( ^ £  ax (u, X,°) V X 3ds

p 1 "I r pT
||^x (X r) || /  a * (u ,X 3°)2ds Et,x I  ||VX„ [p,<r2] ||2ds

1/2
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Et,x

<  Et,x

j f  cx ( s , X J) e x p  |^- j f  a  ( u ,  x £ )  d

/•T -] V 2 r  /»T
j f  I l c x ^ X ^ l f d s  £ , J j f  ||VX„ [dp.dtr2] ||2ds

1/2

and

Et,X 

^  Et,x 

where 

E t,x

j f  c  ( s , Xg)  e x p  j f  a  ( u ,  X “ )  du Q f  a x  ( u , X ° )  X X ud v \  ds 

j f \\c(s,X°s)\\2 J \ 2x (u ,X °)duds Et,x j T \\V X,[d^dcr2]\\2 ds
1/2

IIVX, [dp, do-2] | |2 ] <  j f  ^ [ l l d / x ^ f j d u  +  j f  £ t ,x  [||d<T2 ( X j ;  

=  || (d/., At2) | | * 2 .

d u

for all s € [i,T], by Lemma 54. We conclude tha t (d/i,da2) i—> V r  [d/i, d<r2] is a linear, 
continuous functional. ■
P ro o f  o f T h e o re m  48. Under the (SP.0)-(SP.3) and (SP1.A), it follows from Lemma 55 

tha t ||/i — Mollo,4 =  ° p  (1)> an(  ̂ Ik  — |lo,4 =  °p  (!)• The consistency part now follows from
the first part of Theorem 46. To prove asymptotic normality, we first observe from Lemma 
55, tha t ||/x — 1|14 =  op(n-1 /2), and ||d2 — ctq11i 4 — op(n-1/2). Thus, the asymptotic
distribution of u  is determined by VT as given in (5.19). We linearise n  and a 2 w.r.t. 7r, 7̂ )  
and 9: Define V/t0 =  TV^/io +  Vgn0 where V ^ o  [dn, d n ^ ]  =  V0M0 k^r] +  V i/t0 [d ^ 1)], 
and

Vo/i0 [dir] =  -1<t§ (x) * ° i ^ dir (x ) ,  Vi/iq [* r(1)] =  (x)

1 1 7T^ frr̂
V 0 /xo [d9] = fi0 ( z )  d6, Ao ( x )  =  - d x&l ( z )  +  - a l  ( z )  - - - - - -

7r0 (z)

and V<7g [d9] = Veal [d9] =  <To(z)d0, where &l (z) =  00<72 (z;0o)- We observe from 
Lemma 56 tha t

;#) ~  Mo “  Vmo[tt -  *0,0 -  0o]I|o,2 =  oP(n 1 /2 ) ,

and

Ik 2 (■;£) -  ^0 -  V<rg[0 -  0o]||o,2 =  op(n 1/2), 

under (SP1.B). Since VT is linear,

v r  ( t ,  z )  [A  -  m 0 ><72 -  o ’o] =  v r  ( t ,  z )  [A  -  mo -  V / / 0 , d 2 -  <r§ -

+vr(t,z) [V/iQ, Vo-g] ,
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where, by the continuity of V r , c.f. Theorem 45,

V r  (£, x )  [A -  Mo -  Vm0, a 2 - a \ -  V<7§]

<  CH A O ; 0) -  Mo -  V m o[tt -  7r0 ,§  -  0o]110,2 

+c||<72 (X°) -  a l  ( X i )  -  a 2 (X°3 ) (9 -  0 o )| |o,2  

=  op(n-1/2).

By Riesz’s Representation Theorem,

v r  (t, x) [Vpo,Vct„]

=  [  Et,x [d l ( xZ) V0lio (xZ)}ds+ [  Et,x [d j  ( X * )  V i ^ o  W ) ]  ds 
Jt Jt

+ f  Et,x [d\ (X“) Vefi0 (*£)] ds+ f  EtiX [dj (X°) V<7§ (JC®)] ds 
Jt Jt

for some d* =  (d*, dj) € f>. Each of the four terms in the above expression will make up 
a part of the influence function for VT: First,

/  Et*  K  W )  VoMo W )  [*•]] ds 

= ~\Jt J  T (y, a) dl(y) <r§ (y) (») P»-‘ (»!*) dVdu
= ~\Jt J  T  “ ) d\ (y) <j\ (y) (y)p«-t  (v\x ) dydu

= ~ k i b j t j T { y ^ d i { y ) c l ( y ) ? ^ Pu- t {y \ x ) \ K ( ^ y y d u  

1 U
= -  T  ix i’a) (x*5 x ) +  Op  (a_1/iw_1) .

ds

i = i

where

v i ( y \ t , x )  = - \ d\ ( y ) ° l ( v ) ^ i ^ J t p , - t ( y \ x ) ds. (5.41)

The last equality follows from the fact tha t for any m  times continuously differentiable 
function with bounded, 0 <  i <  m,

I  g (z) K h ( z - y ) d z  = J  g (y  + hz) K  (z) dz

= f  {?  (V) +  S(1) (V) hz + ... + 5<m> (z) hmz m } K  (z) dz 

= 9 (y) + hm f  gm (z ) z mK ( z ) d z ,
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for some z  6 [y, y +  hz]. The result is then obtained by applying this with g = T v \  and m  =  
u)—1 such tha t =  5Z!io The boundedness condition holds since TW (x\ a) =
Oj 1 <  i <  w — 1, for x outside a compact interval, while 7To (y ) (y;£, x) = 0 (1 )

such tha t T  (y; a) (y; £, x) = 0  (a-1 ) . By the same arguments,

£  E t,x [ f  (X s°; a) dt ( X i )  V ip  (Xs°) [tt'1)] ] ds 

1 n
=  - ^ 2 ?  ( x i j  a )  V 2 { x u  t , x )  +  O p  ( a - 1 / ^ - 1 ) ,

i=1

where
(J/) °0 fc)
7T0 (y) ps (y |z )d s j (5.42)

The last two terms are easily dealt with since

r-T/i 1
[di W )  A (* ? )  (§ -  * o ] x) +  °p (n ~1/2)>

i=i
1 n

Et,x [d2 (X j) d (X j) (0 -  0O)] ds =  -  ^ 2 1/4 *) +  °p (n_1/2)>

where

i/3 (x i|x i_ i;t,x ) =  ( j f  £ 1,1 [di (X j) /i0 (X j)] ds j (x ; |x i - i ) , (5.43)

M z i l H - i j t ,* )  =  ( j f £ ^ [ < f c ( X .V o W ) ] * } l K * « l * < - i ) -  (5.44)

All together, VT (t , x) =  J  £^=1 ^ (®»l®*-i; ^  x) +  op(n-1 /2) with

1/ (x < |x i_ i;  t,* )  =  £  Pfe (z;; t, x)  +  ®)
fc=i

£

k=3
(5.45)

P ro o f  o f  T h e o re m  49. Under (SP2.A), ||A — Mollo,4 =  °P M» anc  ̂ ll^ 2 — °o |lo4 =  0p W  
by Lemma 55 which gives us consistency. From Lemma 55, we obtain ||/i — Â olli 4 =  
op(n-1/2), and ||<7 — cro||? 4 =  op(n-1/2) under (SP2.1)-(SP2.4) and (SP2.B). We linearise 
ti and a  w.r.t. tt and 0: Define Voq [d7r, d0] =  T V „<?% [dir] +  V^ctq W i  where

[dir] =  -
dir (x) 

2 tt§ ( x )
J  Mo (y) ̂ 0 (y) dy,

Vo-0 [d0] =  dg (x) d0, <j§ (x) =  2™ ^ )  J  Ao (y )rf7r fe) dy ,

and V/x0 [d0] =  V^/xq [d0] =  /xo (^)d0, where Ao (x) =  ^0/x(x;0o). By standard Taylor 
expansions,

IIm M ) -  Mo “  V/xo[0 -  0o]111,4 =  oP(n~1/2),
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while by Lemma 56,

\\d2 - o o  ~  V<7§[#-7ro,0 -0 o ] |i ,4  =  op(n-1/2), 

under (SP2.B). Thus, by linearity and continuity of VT,

v r ( t ,x ) [ A - P o .^ 2 - ^ ]  = f 5 , , [ < i ; W ) A W ) ] * ( 8 - 9 o )  

+  /  Et* [<% (x,°) & (x j ) ]  ds($ -  e0)

+  f  E t,x [d$ (Xa°) V.CT2 (X,°) [# -  JT0]] ds

+oH»-1/2),

where d* is given by the Riesz Representation Theorem. Proceeding as in the proof of 
Theorem 48, we obtain

f  E t,x [d*2 (X “) V^tr2 (X “) [#]] ds = ~ y ^  f i  (x;; t, x) +  oP (n-1 ''2)
J i n  i= l

where
1 [ y f T

V2 (y; t , x )  = (% (;y) J i Mo (y) (y) dy ^  p* (y|®) d«. (5.46)

The derivatives w.r.t. 0 have the following influence function,

^2 (y|z; t, x) = | ^ T Et,x [dj (Xj) A (x.0)] ds +  j f  [d£ (X.°) <x (x»0)] dsjv- (*;»)

(5.47)

In total, V u (£, x) =  J  X ^ = iv (x i\x i-i'i ^  x ) +  °P (n_1^2)> where

v  (xj|xi_i; t, x) =  i/i (xj; t, x) +  1/2 (^ il^ i-i; t , x) (5.48)

■
P ro o f  o f  T h e o re m  50. Under (NP.1)-(NP.4) and (NP.6a), p, and <r2 are consistent on 
I  in the ||-Ho^norm, c.f. Lemma 57. This proves consistency of u.

To derive the asymptotic distribution of u, we proceed as in the previous two proofs. 
Applying Lemma 58, ||A —Molli,4 =  o p ( T ~1/2) , and ||d 2 — cr§1114 =  op(n-1/2). So as 
before, the asymptotic distribution of u  is determined by VT [d/i, da2] as given in (5.19). 
We define V/i0 (x) [dm, dir] = T  {Vm/i0 (x) [dm] +  V^/iQ (x) [d7r]} and Voq (x) [ds, d7r] =  
T  {V50o (x ) [dx] +  V ^ o  ( x ) [d7r]} where

Vm/i0 (x) [dm] =  — ^ - d m  (x ) , V^/iQ (x) [d7r] =  - m^ ^ d7r (x) (5.49)
7To (X) 7Tq (x )

V aa§ (x) [dr] =  — T ^ d s  (x ) , (x) [dn\ = -  [X\ dnr (x ) . (5.50)
7To(x) 7Tg(x)
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Applying Lemma 58 once more, it easily follows tha t

IIA — Mo — V /io [" i-rao ,7 r-7 ro ] ||o )2 =  oP(T~1/2),

||o-2 — erg — Vcrg [s — so, Ti- — TTo] ||0j2 =  oP(n~1/2).

Thus, by linearity and continuity of VT together with Riesz’s Representation Theorem,

V r  ( t ,x)  [ f i -  fi0, a 2 -  al]

=  j  £ t,x $(X£)VAo(*S)[A-™ o,*- iro]]<fo

+  /  Et,x [d$ (X°)  v 4  (X “) [s -  S O ,  TT -  7T0]] du + o p ( f - l l2).

We now show tha t this expression converges towards the claimed distribution:

/  £«,* [ f  (x£; a )  d [  (X°)  VroAo W )  H ]  d u  

=  j j  E t , x  [ f  (Xu°; a )  dj (X„°) ^ o )  rh (Xu0)] d u

=  « _ 1 5 3 x'+\  X‘ J t f  ( y ) ^ J u j \ K h (x ‘ ~ y ) p» (y lx ) dydu
i=l

=  r C ^ ' Y j . f  {xi\a) — ef[ ( s; ) — [  pu (xi\x) du + o P( f ~ 1/2)]
^  A 7T0 (£») J t

j j  E tyX [ f  (.XJ; a) dj (x£ ) V.Ao W )  [*]] dt*

-  [  E t,x [ f  (X°; a) dj (X«) W )

_n_1  J t J t  (y >a) ^r f (y j K m  ^  ~  y ^Pu ^ X^ dydu

—n -1 T  (Xi; a) d\ f a )  f  pu (xi\x) d u o P( f ~ 1̂ 2)
^  ^0 W  Jt

—n~l ' S ^ T ( x i \ a) d* (x^  f  pu {xi \x)du +  oP (T~1/2);

J  Et,x [f  (X°; a) dj (X°) V<7§ (*0 ) [5]̂

=  jTT ^ x [ f ( ^ a ) ^ ( X u0) ^ ^ s ( X u0)] d u

=  n " 1 y ^ T  (xi; a) ^ t+1 g>) f  pu (Xi\x) d u o P(n~1/2)\
f r f  A 7r0 (xi) A
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/  Et* [ f  (X°; a) (X°) (X£) [*]] du

^  f  Vu ( l iM  du + oP (™_1/2)  ;=  — n

In both cases, the trimming is asymptotically negligible so in total,

V r  (t, x) [p — /z0, d2 — 0q] =  n  1^ | a?*+1A X% ~  V o { x i ) \d i
i=i  ̂ '

f a )

+ n  1 ^  |  x *) _  a 2 |  d* +  Qp^n  1/2)

where
I fd* (y; t, x ) = d* (y ) — J ' pu (y\x) du.

Using same arguments as employed in the proof of Lemma 57,

| X*+1A  =  ~ j f f 0 S[{x , ) tT (x , )dW ,  +  o p {  1 ) ,

-?i+iA x-)2 -  (x j)}  = o i> (i)-

Thus,

V f  v r  (t, x) [p -  p0, d2 -  cr§] =  - 7= f  (To (x5) d\ (xs; t, x) dWs +  op (1)
v T  Jo

where the leading term  weakly converges towards a normal distribution with mean zero 
and variance V  (x, t) = E  [oq ( xq) ($[ (xq ; t, x )]. ■

5.B Auxiliary Lemmas

L em m a 51 For any (p,(r2) € V,

J|Xt - X ° | | 2] < \ \ X . -X ?\ \ 2 + 6 j * E . [ \ \ n ( X ° ) - n 0 ( x Z ) f ] d uE.

+ 6 j f  E ,  [\\<72 (u , X j)  -  a \  (« ,X °) ||2' du

for s < t  < T .
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P ro o f. Since

X t — X s + j  n ( s , X 3) d s +  (  (7 { s ,X 9) dW3,
J s  J  a

X? = X°, + f  N  (s, X “) ds + f  rjQ (s, X») dW,
J  a J a

We obtain

X t - X ?  = ih + X . - X *  + J [ n ( u , X u) - n ( u , X § ] d u  (5.51)

f  [<7(u,Xu) - < x ( u , X ° ) ] d W u.+

where

Vt = [  [/* (w>-*2) “  Âo (s>x a ) }  d s +  f  [a (it,X °) -  (T0 (it,X°)] dW u.
J 8 Js

We introduce a truncation to obtain Lipschitz inequalities for /z and cr. Define

t =  /  l * < l . | * ° l < « f ° r t e k r ]
1 0, otherwise

which is ^-m easurable and satisfies Inj  =  In,sln,t for 0 <  s < t. W ith Ynt̂ =  IUjt [Xt — X®], 
we then get

Y n , t  =  f  I n , u  [/^ — A4 ( ^ b -^ u ) ]  d u - \~ I n , t  f  I n , u  (^> X u )  (7 (iZ, d W u ^
J a J a

where

Vn,t =  !n,t [  In,u [/* (*b X%) -  fl0 (u, X®)] du  +  In t̂ f  In,u [(J (iZ, X%) -  CT0 ( i t ,  X®)] dW u.
J 8 Js

Since /z and a  are continuously differentiable, for every n > 1, there exists a K n >  0 such 
that

\ \ f i ( u , x ) - f i ( u , y ) \ \ 2 <  K n \ \ x - y \ \ 2 ,

\ \a(u,x)  - a ( u , y ) \ \ 2 < K n \ \ x - y f ,
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for ||a:||, ||y|| <  n, and s < u  < T .  Thus,

E , \Y n,t \2 < 3Es \rin/  + 3 E  

3 E .

+3 E a

f  In,u\\l*{u,Xu) -  iJ,(n,X%)\\2 du 

J  In,U | k  (u, X u) -  cr (u, X°) ||2 du

<  3 E s \V n /  +  3 \ \ X . - X ° , \ \ 2 +  3 K n E a | |X „ -X ®  

+ 3 K n E s j f  ||X„ -  X2(|2 du]

< 3E .  | 1 2 + 3 \ \ X ,  -  X,°||2 +  3t K n  j  E ,  [||y„,u||2] du 

+ 3 K n j * E .  [||y„,u||2] du

< 3E s |»?n/  +  3 ||X . -  x s°||2 + 6(1 +  T ) K n  [  E ,  [||y„,„||2] du.

We also have tha t

E,  \r,n.t\2 < 3 ^ T £» [||m (X®) -  Mo W )  f  +  |k  (“ . X °u) ~  *0 («*. X u) f ]  du

So with

& =  3 ||X„ — X j | |2 + 3 E a [||f* (X j) — Mo (-^u)||2 du

+3 f  E s [||<7 («,X 2) -  c 0 (« ,* £ )  ||2 du

we obtain

,s|2 dsO < E \ Y n,t \2 < 2 S  + 0 n f  E \ Y n,t 

with /3n = 6 (1 +  T) K n > 0. By Karatzas and Shreve (1991, Problem 5.2.7),

sup E \ Y nj \ 2 <  25 + 5(3n sup [  e~^n^ ~ 3̂ ds
s< t< T  ’ s< t < T  Js

f T  1
1 +  /3n /  e~^n^ ~ â ds 

Jo
< 25

< 25

< 25.

1 — e- 0 „ T

We conclude tha t supa<t<T E 3 ||X* — ATt° ||2 <  5, since this bound holds uniformly 
n  >  1. ■

L em m a 52 For any (/z, cr2) G V ,
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1. For any integer p > 1, there exists constant C (p) such that

145

<

£ . [ | |A i - X ? | |*

||X . -  A ?||2p +  C  (m) j f  E.  [||p  ( u , X l )  -  m0 (u, XS| 

+ C (m) J  E .  ||<r («, X°)  -  <j0 («, X°)

12 p du

2. I f  f  : [0,71 x 
then

satisfies \\f ( t,x)  -  f  (t,y)\\ < C  (1 +  ||z ||p +  ||y||p) (\\x -  y||)

du

E x,„ [ | | / ( t ,X t) - / ( t , X ° ) | | ]

<  C ( t ,x) ( J  E XiS [||m (« ,X l )  -  mo (u, X S ) f

£ e x,3 [\\<t2 (u, AS) -  a  I  (u, AS) ||2] d u )  ' ,

where C  ( t,x) = Ct  (1 +  ||zp||)-

1/2

P ro o f. Apply ltd ’s Lemma with /  (x) =  x2m on the process X t  — X® as written in (5.51), 
and then proceed as in the proof of Lemma 51. This yields 1. The second result follows by 
combining the inequality tha t /  satisfies with Lemma 51. ■

L em m a 53 For any (/x, cr2) G V,  the Rq-valued diffusion process

dYp* = m(1) (t, x''x) Y^dt + y / V 1) (t, x i x) dwt, yw = eh (5.52)

where e-i = {e^} with ey =  0 for i ^  j  and eu = 1, exists and Y-/  =  d X f ' x/dx i  in the 
I/2 -sense.

I f  furthermore p and a2 are twice continuously differentiable and satisfy

113?/* f t  * )ll +  113?* f t  * )ll <  c  (1 +  11* 11)»

for  |a | =  2 then = d2X ^ ,x/dx idx j  also exists in the L 2 -sense.

P ro o f. By assumption, X f  = X* ,x and X f +h = X* ,x+h are well-defined unique solutions 
for any x  and h. Define

Yth = h - 1 ( X f +h -  A *) =  1 +  ft-1 J  m (» , X J+*) -  m («, A f ) du 

+ / T 1 f  a  (u, A ;4-'*) -  a  («, X x) dWu.
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We can write

ft" 1 /  y  (« , X J+ '1)  -  y  (», X ?) du 

h.-1 £  [ j f '  ^ y ( u , x *  + a  [ x j +'‘ -  XZ ] )  dal du 

J *  J j f ‘ y x (« , XZ + oc [ x j+ fc -  X Z ] )  d a l h~x [ x j+ '1 -  XZ  

J *  [ j f  y x (u, XZ + a  [ x j+ fc -  X j ] )  da l Y?du.

du

Similarly,

f t-1 J \  (« , X Z +k) - a  (u, XZ) dWu =  j f ‘ j f  <rx (« , XZ + a  [ x j+ k -  X * ])  da l Y kdWu.

By Lemma 51,

Es,x Yt - Y th Hx ( u , X Z ) ~ [  px (u, X I  +  othYu) da  
J o

+6 J  e \ Yu crx ( u , X * ) -  J  ux (it, X £  +  ahYu) da

du

2

du

where the two terms on the RHS go to  zero as h —► 0.
The proof concerning the second derivative follows along the same lines.

L em m a 54 For any (/z, a2) G V:

1. the process {ViX*} given by

dV iX , =  [ d y  (t , X,°) +  y ^  (t, X?) ViX,} dt +  c r^  (t, X,°) V ,X tdWt , (5.53)

and

dV2X t =  y (Q1] ( t,X (°) V2X ( d t+ | i f fo 1 (t,X °) do2 (f,X °) +  a (01} (t,X °) V 2X ( |  dWu

(5.54)
with dp, = p — , satisfies

E,  [||Xt — Xt° — VX(||2]

< ||x. -  x°||2 + Y , f E° [||9?M (“> *2) -  (“> xl)
|a|<l

du (5.55)

where {X t } solves SDE^n,  <7q) and

E .  [||VX( ||2] <  I  E„ [||/i (« ,X “) -  y„ (u ,X j ) f ]  du. (5.56)
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2. The process {V2X t )  given in (5.54) da2 = a 2 — ctq, satisfies

£ s [||X t - X ° - V 2X ( ||2] (5.57)

<  | |X . - X 8°||2 + 2 - 2 Y ,  f a E > [W9? * 2 (“ .* £ )  -  d^a-l (u ,X 2 )||4] du

where {Xt} solves SDE{fi0, a 2} and

E,  [|| V 2*  ||2] <  £ “ 2 J* E,  [||<72 (u, X2) -  a20 (tt, X°] du. (5.58)

P ro o f. We only show the part of the theorem concerning {V iX f}. The proof of the second 
part follows along the same lines. We have

Xt  -  X t° -  V i X t  = X , ~  X °  + J  n  (u, X u) -  M (u, * 2 )  -  dxf!0 (tt, X i )  V i * du

where

Es

<  E g

+ E t

<

r  | | m (« ,Xu) - 1 1  (« ,X j )  -  dxtt0 (tt,X°) V i * , | | 2  du 

J  ||M (tt, x “) -  it (tt, x “) -  dxft  (tt, X i )  ( x u -  x i )  II2 du 

■ ■

J  \\dx»  («, x i )  -  axMo («, * 2 )  ||2 1|*» -  *2112 du

+ e .  \ j  | | a x / i o  ( « , * 2 ) H 2  I I *  -  * 2  -  V i X „ | | 2 d t t

C E ,  [jf ||Xu -X 2 ||4dtt

+C  ( j f TEs [||0x/j(tt,X2) -  dxtiQ (tt,X i ) ||4] d«) ( e , j f  ||X„ -  X2||4du\

/  | |X „ - X 2 - V 1X„||2du

1/2

+ < ? £ .

By applying Lemma 51 and collecting the resulting terms, we obtain the result by Karatzas 
and Shreve (1991, Problem 5.2.7).

The last inequality follows by an application of Lemma 51 on V i Xt[[i — pL0] =  V i Xt  [p] — 
VlXt[fiQ,<To]. ■

5.B.1 The Semiparametric Est imator

L em m a 55 Under (SP.O)-(SP.S) and (SP1.A) [(SP2.A)], the estimators for  (/x, <r) in 
Class 1 [2] satisfy

IIA -  /̂ o 110,4 =  ° P  (!) > ll^2 -  °o||o f4 =  ° P  (!) •
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I f  additionally (SP1.B) [(SP2.B)] then

IIA -  MoII 1,4 =  ° P  ( n_1/4)  » \ \ & 2  -  ° o |l i ,4 =  ° P  ( n_1/4)  •

P ro o f. In Class 1, the convergence of the diffusion estimator follows by the arguments 
used in the parametric case. For the drift estimator, by Lemma 33,

i+1

£
k=0

( • ;« )  - T f i f  ( • ;« )  !loo <  C ^ a ^ - ' l l T r W  - T r ^ l U ,

and

l l * W  -  ^ l l o o  =  O p  ( n - V S f t - i - * )  +  O p  . 

Furthermore, /jSq** (x) — (x ) =  adaT  (x; a) fig (x), a €  [0, a], such tha t

f  E t]X [||Ao) (* ? )  -  #4° W )  II4] ds

/  rT  \  1/2 /  rT  \  1/2
< a4 ( j f  E t ^ [ \d at ^ a ) \ 8]daJ  ( j f  E t,x [ \ \ $  (X°8) \\s] d s )  ,

where Jtr  E tfX [||Mo  ̂ (̂ !) II8] < 00• Under (SP1.A), we obtain tha t

a
T r i \ 1/8

E t,x \daT  (x; a) |8J ds )  = oP (1).

Under (SP1.B), it is oP (n-1 /4).
The result for <r2 follows along the same lines by using Lemma 38. ■

(5.59)

L em m a 56 Under (SP.O)-(SP.S) and (SP1.A-B), the estimators for  (/i, a) in Class 1 
satisfy uniformly in 0 G 0 ,

11A Mo 7̂rM[̂" 7T0] $0]||o,2 =  Op(n-1/2),

||<t2 -<7§ -  V0O-2[0 - 0o]||o,2 =  oP(n~1/2).

Under (SP.0)-(SP.3) and (SP2.A-B), the estimators for  (/z, a) in Class 2 satisfy uni
formly in 0 G 0 ,

||A-Mo- V̂[0-0o]||i,4 = op(n-1/2),

||<T2 -< 7 j) -  V ttO-2!#-7T 0] -  Vfl<72[0 - 0 O]||l,4 =  0 P (n~lf2).

P ro o f. The result for the diffusion estimator in Class 1 is proved by the same arguments 
as the ones applied in the parametric case. For the drift estimator we have

9 )  =  /*W (z; g Q) -|- d g j j i * )  (x; 0) (0 _  0O)5
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and, by Lemma 33),

fc+i
||A(l) M o )  -  Ao} (-;0o) -  v^A(l) (■;^o) [*■ -  *o] I k  <  C^2a'~k~3||tt(i) -

i = 0

where is given in (4.63)-(4.65). The convergence of the RHS is given in (5.59).
Using the same arguments as in the previous proof,

[ E t,x [ |£ «  (X 0S;$0) -  (X,°;0o) I4] ds = oP (n~2) ,

and T
J  E t,x [| VAo} (z; ^o) [it -  7T0] -  V/zw (x; 0O) [it -  7T0] I4 ds =  op (n~2) , 

under (SP1.B) for i = 0,1. Also,

||dep^ (x; 0) -  den(l) (*5 #o) || <  | |^ A W (*; #) “  de^%) (z; 0) || +  \\defi^ (x; 0) ||||0  -  0O||

\\di&2 -  dial -  di&l(0 -  0O)\\ < ||did2 (x;0)|| | |0 - 0 O||2 < \\d%J?  (x) ||||0 -  0O||2,

Given the assumptions, we see tha t the terms on the the right hand side of the above 
inequalities are op(n-1/2).

The results for Class 2 follow along the same lines, this time applying Lemma 38. ■

5.B.2 The Nonparametric Est imator  

L em m a 57 Under (NP.O )-(NP.4 ),

sup
x € /

sup
x £ /

# (

sup |W
x € l

- n t f *  (x) = 0 P (An,Th - 2i) + O p i T - ^ h - 1- 211) + O p  (ft""*) ,

for k =  0,1, where for some 6 > 0,

A„,T =  f ^ + y i o g j j  (T )/T 2A3/ 4 log (A -1 ) 1/4.

P ro o f. Define 7f(x) =  T ~ l Jq K h ( x s — x) ds. We first show supx€R |7r ( x ) — it (x)| =  
Op (AUit ) -  It holds tha t

E[\i t(x)  -7 f(x ) |]  <  - Y ]  /  E[\Kh (xi - x )  -  K h (x3 - x)\]ds

< C-

71 h i - i)a
'f'1n,T

h 2

where Kn f  = max* supsG[iA)(i+1)A] \xs -  x*| =  0 P(A 1/2-/log (A -1 )) by Levy’s modulus 
of continuity, c.f. Karatzas and Shreve (1991, Theorem 9.25), and where the RHS does
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not depend on x. We then use the same idea as in Bosq (1998, p. 50): Define B n = 
{x  : |x| <  T 7}, for some 7 >  0, and a covering of J3n ,

Bi,n ^X . \x Xj)n| ^  J ^   ̂ 1) •••} l j<.

We have for x  G B^ni

\lr (x) -  7f (x)l <  |7T (x) -  7T (x <>n)| +  |7T (®) -  7T (® t,n )| +  (Z i ,n )  “  ^  ( ^ i ,n ) |  ,

where
\ir (x) -  7T (X i,„ )| < C -h *M  |7f (x ) -  7f (x<in)| < C - 2^  —

r 7 , ^  r 7

Thus,

A r i f 7/I Jll '
^n,T SUP I* (a) -  j  (g) I < 2C +  >l~r max |tt (xj,„) -  # (xj,„) |

|x |< T7

with

P ( A n T  ■ ,ma& l#  f o " )  -  VT (Xi.n) | >  e )  <  Y ]  P  T f t  (*i,n) “  #  (Xi,n) | >  e)
*=1 v y

1 A/Cn T

We choose M n f  =  An ^ T 7/i 2 log2 ( T ) J  +  1, and using arguments similar to the ones in 
Bosq (1998, p. 52), we then obtain supx€R |7r ( x )  -  7r (x)| =  Op(Anp )  if

A ^ T 1̂ " 4 log2 ( f )  =  0 (1 )

for some 5 > 0. Finally, applying the same arguments as Bosq (1998, Corollary 4.6), it 
holds

sup \tt ( x ) — 7ro (x)| =  Op ( r - ^ h - 1)  +  Op (hu) . 
xeR V '

The proof of tha t sup^R  (x) -  ftW (x)| =  op  ( f -1/4) is shown in a similar manner 

under the condition tha t T 3+6 log2 (T )2 h~12A3 log (A -1 ) —> 0 for some 5 > 0, while

sup l ^ 1) (x) -  7Tô  (x) | =  O p (T ~ ll2h~3) +  Op  (/i^-1 ) .
x€R

The remaining two claims are shown along th e  same lines, see e.g. Bandi and Phillips
(2003). We briefly sketch the proofs. First we show tha t m(x) — rh (x) =  op(T _:L/4), where 
rh (x) =  T~l Jq Kh (x3 — x) fi (xs) ds. We have

X j + i  X j
/* (*+ 1)A  /* ( i+ l )A

- f i ( x i )  = A” 1 / {fj,(xa) -  n(®i)} ds + A”1 /  <7 (x3) dWs, (5.60)
J i  A  */ i  A
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such tha t

1 /*(*+l)A k - n
" , K h { x i - x )  /  \t i(xs) -  f i ( x i ) \ d s  <  V K 'f t ( x j - x )  ^ (1 ( i j +  o p ( l) )

i = i  n  i = i  1

-

and

n

= n - 1

n

1 V  if/i (a:i - x ) f x  (xi) -  T ~ l /  K h (x3 - x ) f j i  (x a) ds
i=i ^0
” /*(*+l)A

> , / if/* (z* ~ x ) i i  (Xi) -  ATfc (xs -  x) /z (xs) ds 
i = i  ^
«  r ( i + l ) A

<  n _ 1 5 Z  /. l/x (2C*)| |/i0» (a;* — a:) — (a?a — a:)| rfs
i = l  • '•A

”  /* ( i+ l )A  .
+ n _1 ^  J  Kh  (xs -  x) (x8 +  Op (1))| I X i  -  Xg\ ds

= F  \n (i»)| ds + K ^ T - '  F  |p (1 (xe»)| ds

=  * ( ¥ ) • ’

where the bound does not depend on x. Next,

»  M i + i ) A
E A -1 n -1 ^  / (7 ( X g )  [Kh (Xi - x )  -  Kh  (x a -  x)] dwa = 0 ,

i_ i JiA

and

n / * ( i+ l )A  JC“ -
i?[|A-1 n -1 cr (xs) [1^ (xi -  x) -  K h (x s -  x)] dwa |2] <  C - ^ - T ^ E  [a2 (xs)]

The process S f  (x) = T -1 Jq Kh & (a?s) dws has mean zero and variance

AC2 ,*

v a r ^  (x)] =  (Tti)~l E h- i K 2 ( X s - x \ „ 2
h o  { x s )

=  (T h ) 1 <̂72 (x) 7r (x) J  K 2 (z ) dz + o (1)^ .

Hence, S f ( x )  = O p ( l /V T h ) .  We may now extend this to uniform convergence. Finally, 
using same arguments as in Bosq (1998, Section 4.3.1), we obtain tha t

sup |m (x) — mo (x) | =  Op ( f - ^ 2h - l/2)  +  Op (hu ) .
xGR  ̂ /
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To prove s u p ^ u  |J (x ) — so (x)\ =  0p(T-1/4), we aPPly ft6 ’s Lemma on (5.60) to 
obtain

(Zi+l -  Xi)2 2 i \ 2 /*^+1 Â , w  N , 1 f ( l+1)A 2 2 /  \ J
 - ------------- <r (Xi) =  —  /  n  (x s) ( x a — Xi) d s  +  —  /  a 2 ( x a) -  a 1 ( x ^  ds

A  A  JiA A  JiA
2 r( i+1)A 

+ — /  a  ( x s) ( x s -  Xi) d w s ,
&  JiA

and by using similar arguments as before,

2 r(i+i)A f K« r \
—  ^ 2  K h (x i -  x ) J ^  M (®«) (Xs -  Xi) d s  =  O p  ( “^2" J  ’

9 n /*(i+l)A .//•
—  ^  K h (Xi -  x )  J '^  a 2 (x a) -  a 2 (a;*) ds  =  0 P  )  >

71 /»  ̂ _

1 2̂ K h  (Xi ~ x ) 0-2 (Xi) _  T _1  /  ^  (x * ~ x ) 0-2 (x * ) ds =  ( t ? )  ’
»=i ■'°

n

71

and

T -1 [  Kh (x3 -  x) a2 (xs) ds -  a2 (x) =  O p(T -1 /2/i-1 /2) +  Op (hu ) 
Jo

The remaining variance term, Sn (x) = n~ l A -1 Si,n (x) with

A i + \ ) A
Si ,n  (x) =  2 ^  ( X i  ~ X )  (7 (xa) (Xg ~  X i )  dws

J i A

defines a martingale, and we obtain

var [Sn (x)] =  E + o  (  A l/2 ^/log (aZ T )
h2

aA (x) n (x) + o (1) (  A 1/2v^log(A x)
nh  y h2 J

Hence, 5n (x) = 0 P ( l /y /nh ' j .  ■

L em m a 58 1. Under (NP.0)-(NP.5A),

IIA -  Mollo,4 =  ( ! ) »  l l^2 -  ^ o l lo ^  =  ° P  ( ! )  *

2. Under (NP.O)-(NP.SB),

IIA -  /^oIIi,4 =  o p ( T " 1 /4 ), ||<r2 -  o-g||M =  op(n_1/4),

IIA -  Mo -  Vm||0>2 =  O p f ? " 1/ 4) , ||(J2 -  org -  Vo-2||02 =  O p ^ " 1/ 4 ),

where

a - *  / \ f  ™(1) ™ ^(1) )=  r  (x; a) < - r -  -  — —  \
I 7T 7T 7T I

« - 2  J i(l>dxa z = T{ x \ a )  I —------ - 1-I 7T 7T 7T
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P ro o f. We have

Et,x £  \iF> (X?) -  $  (X?)

< sup T  (x ; a) (x) — /Zq (x)
x € R

ds 

-I- clE

1 /4

j T  \daT  ( X ° ) ; a |4 |/x0 (Xs°) |4 ds
1 /4

where

Et,a 

<  Et,s

j T W  (X,0) ^ 4^  W )  |4ds

■ /-t  n1/8 r r 7, /.x
/  |d „ f  (X»°);a|8dS /  I ^ W ) !

Vt J L/t
ds

1/8

It holds tha t

s u p T ( x ; a )  | / / ( x )  — / / 0 ( z ) |  <  s u p T ( x ; a )
x € R  x €R

771 ( x )  777-0 (x)
7T ( x )  7T0 ( x )

< a 1 Hm-raolloo +  a 2 ||tt -  T ro^  ,- 2

and

s u p T  ( x ;  a )  p ^  ( x )  — / i ^  ( x ) |
-rClIl IxeR

<  su p T (-;a ) 
x € R

i h ^

S
o6

I +
771 7T^ TTIq TTq1̂

7T 7T0 7T 7T oo1

< a 2 ||m -  moll,,,, +  a 1| |m ^  -  m ^ ||o o +  a 3 ||tt -  ttqIIoo +  a 2||fi(1) -  7r((1)0 ll°°>

Using the rates of convergence established in Lemma 57, we obtain \\p — /x0||o,4 = o P ( 1)

and ||p — ^oll 1,4 =  op(T~l/A) under (NP5.A) and (NP5.B) respectively.
W ith V/i given in (5.49) it holds tha t

[L ( x )  -  flQ ( x )  -  V//Q ( x )  [m -  77l0 , 7T -  TTo] 

771 ( x )  777-0 0 *0  1

7r ( x )  7To ( x )  7To ( x )

7r ( x )  -  7r0 ( x )

m  (a :)  -  m o  ( x ) ]  +  K  ( x )  -  n 0  ( x ) ]
*o(I )

7T ( x )  7T0 ( x )
[ m  ( x )  -  m o  ( x ) ]  -  f a  ( x )  -  tt0 (x)]

such tha t

IA ( X )  -  Ao (* )  -  V Ao (* ) [ ™  “  77l0 , 7T -  7T0] | 
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6
A Semiparametric Single-Factor Model of the 
Term Structure

6.1 Introduction

The short-term interest rate is a state variable which enters in many different strands of 
economic and financial theory. It has strong implications for the pricing of fixed income 
securities and interest rate derivatives, e.g. bonds, options, futures, swaps. But it is also 
used in general asset pricing, and as an input in macroeconomic models, e.g. in the analysis 
of the business cycle. It is therefore of great interest to obtain a suitable model describing 
its dynamics. Diffusion processes are widely used for this purpose, which owes to the fact 
tha t continuous-time models greatly facilitate the theoretical analysis of financial markets. 
They prove particularly useful in derivative pricing since continuous-time arbitrage argu
ments then cap be applied, allowing for a relative simple, and yet elegant, solution to the 
problem, see e.g. Duffie (1996). The theoretical option prices turn  out to functionals of 
the underlying short-term interest rate, so in order to apply these, one has to  (i) set up 
an appropriate model for the interest rate and (ii) calibrate this to the market of interest. 
There is a huge literature dealing with (i), ranging from relatively simple Markov models 
of the short-term rate (so-called single-factor models), over multi-factor models where the 
short-term rate is assumed to depend on several (potentially unobserved) factors, to the 
class of Heath-Jarrow-Morton (1992) [HJM] type models where a continuum of factors 
drives the yield curve.

It is however still an open question which of the many proposed models is the most 
adequate when calibrating it to interest rate data, see Rogers (1995) for a discussion of 
these issues. There is a large number of studies where different diffusion models of the term 
structure are implemented using historical interest rate data. These studies have mainly 
focused on parametric specifications of the diffusion model. But there appears to be no 
universal model which fits all interest rate data equally well. It is therefore still an open 
question which model one should choose given a specific interest rate data set. Given this 
problem, one may benefit from using non- or semiparametric methods since these allow 
for a degree of flexibility compared to the parametric case.
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In this chapter, we focus on the class of single-factor models of the short-term interest 
rate. This class of term  structure models assumes tha t the short-term interest rate is a 
Markov process solving a SDE, in which case this state variable drives the whole yield 
curve. Economic theory puts no restrictions on the drift and diffusion term, except that 
the resulting short-term interest rate should be positive. Thus, a model for the short-term 
interest rate can only be judged by how well it fits the available data. In such situations, 
instead of restricting oneself to a parametric model, it would be more appropriate to 
"let data speak for itself", which is exactly what non- and semiparametric models do. 
A number of different parametric models for the SDE has been proposed and tried out 
on historical data with varying degrees of success. Al't-Sahalia (1996b) fitted some of 
these parametric models to an interest rate data set, and then tested each model against 
a nonparametric alternative. The striking conclusion was tha t none of these could be 
accepted as the true model; more flexible models were needed. A number of other empirical 
studies have found similar evidence of nonlinearities both in the drift and diffusion term for 
this type of data, which the models of Al't-Sahalia (1996a) and Conley et al. (1997) cannot 
capture, see Ahn and Gao (1999), Bandi (2002), Jiang and Knight (1997, Stanton (1997), 
Tauchen (1995). The class of single-factor diffusion models are characterised by its drift 
and diffusion function which can be interpreted as the instantaneous mean and variance 
respectively. We propose a semiparametric diffusion model where we choose a very flexible 
parametric form for the diffusion term while leaving the drift term  unspecified. The chosen 
parameterisation of the diffusion term is highly flexible, and the model encompasses most 
of the parametric models found in the literature. This model is very general; in particular, 
it includes most of the parametric models suggested in the literature as special cases. The 
model can be estimated using the general estimation procedure proposed in Chapter 4. 
The parametric part is estimated by a profiled version of the log-likelihood, while the drift 
term is estimated using kernel methods. Since the semiparametric model nests most of 
the parametric specifications as special cases, we are able to perform a specification test 
of each of these models against the semiparametric alternative.

We fit our model to a proxy of the short-term Eurodollar interest rate. Various para
metric single-factor models have been fitted to this interest rate in a number of empirical 
studies, see for example Al't-Sahalia (1996b), Elerian et al (2001), Durham (2002). The 
conclusions drawn in the different studies are not conclusive, and it is not clear which 
model should be preferred. We reexamine the data set, fitting the proposed semiparamet
ric diffusion model to it. We find nonlinearities in the drift function tha t even the most 
flexible parametric model cannot capture. The performance of the semiparametric model 
is then compared with the parametric model proposed in Al't-Sahalia (1996b); this is the 
most flexible parametric single-factor model found in the literature. The comparison is 
made along two lines: First we test the parametric diffusion models against the semipara
metric alternative, using the test statistic proposed in Chapter 4. Second, we calculate a 
range of bond prices predicted by the competing models and see whether they are sta
tistically significant; this is done using the results of Chapter 5. The second comparison 
is the most useful for practitioners if the end goal with the model is to price bonds and 
derivatives.
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In Section 2, we give an overview over the various parametric single factor models 
proposed in the literature. In order to apply a single-factor model to price bonds and 
options the market price for risk has to be determined; in Section 3, we present a general 
estimation procedure to do this. The Eurodollar interest rate data set is presented in 
Section 4 along with a discussion of the various studies who have previously examined 
this. In Section 5, the estimation results for the semiparametric model and the implied 
bond and derivative prices are presented. We conclude in Section 6.

6.2 Single-Factor Term Structure Models

Single-factor models constitute a relatively simple class of models where the whole term 
structure is driven by one single state variable, the short-term interest rate. More ad
vanced models such as multi-factor models, and HJM-models might be a more plausible 
way of describing the dynamics of the term  structure, but this comes at the cost of a 
more difficult and computationally intensive implementation. Most of the applied studies 
of multi-factor and models only consider linear specifications in order to overcome the dif
ficulties of estimating the model. Prominent examples are Brennan and Schwartz (1979), 
Chen and Scott (1992, 1993), Dai and Singleton (2000), Longstaff and Schwartz (1992). 
As an alternative, Ahn, D ittm ar & A.R. Gallant (2002) consider a quadratic specification. 
In these type of models, while a large number of empirical studies have argued tha t at 
least two- or three-factor models are needed to fit the term  structure properly, it is also 
found in th a t the short rate accounts for up to 90 percent of the variation in the data, see 
e.g. Litterm an and Scheinkman (1991). Thus, it is of interest even within a multi-factor 
framework to find a suitable model for the short rate.

In the class of single-factor models we consider here, the short-term rate solves a time- 
homogenous stochastic differential equation (SDE) of the form

drt =  (rt ) dt + cr (rt ) dWt, (6.1)

where {Wt}  is a standard Brownian motion. We then wish to model the drift term, ji : 
R+ R, and the diffusion term, a2 : R+ i—► R+ . A more flexible class of single-factor 
models can be constructed by using time-inhomogenous SDE’s where [i and a2 are allowed 
to depend on time t. These are widely used in the financial industry, since these can be 
calibrated on a daily basis to deliver a perfect fit of the current yield curve, see e.g. Ho 
and Lee (1986), Hull and W hite (1990). But it is not evident th a t this leads to better 
out of sample performance and more correct pricing. In particular, these models do not 
specify the dynamics of the time varying coefficients. This and other arguments against 
time-inhomogenous models can be found in Dybvig (1997) and Backus et al. (1998).

W ithin the framework of single-factor models, the price of any bond or interest rate 
derivative can be shown to be a functional of /i and cr2, see for example Chapter 3. So in 
order to be able to price such claims correctly, one needs to specify fi and a2 correctly. 
The traditional models normally assume a linear drift and diffusion term, but in the past 
decade a large body of empirical work has indicated th a t such specifications do not fit
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observed interest rates very well. Using a misspecified term  structure model can have 
serious implications. For example, as observed in Chapman and Pearson (2001), "the 
existence and strength of nonlinear mean reversion have im portant implications for the 
likelihood of extreme interest rate changes and for the distribution of interest rate changes 
over long time horizon. As a result, they have significant implications for value-at risk 
calculations over long horizon and asset-liability management. Moreover, nonlinear mean 
reversion may also have implications for pricing long-term bonds and interest rate options". 
We may add, tha t the presence of nonlinearities in the diffusion term  of course also will 
have im portant implications in the aforementioned applications.

A large part of the finance literature has focused on a2 as the crucial parameter of 
interest in derivative pricing, while to  a certain extent neglecting the role of /a. In a Black- 
Scholes setting where the underlying variable is a traded asset this focus is correct since 
only a 2 enters the derivative pricing formula. But in interest rate derivative pricing, the 
drift will also enter the formula and can have im portant effects on the prices. Moreover, 
in the calibration of the model, both the drift and diffusion term has to be specified 
correctly in order to avoid biased estimates. Given discrete observations, one can in most 
cases not separate the estimation of a2 from /a, these are invariably linked together in the 
estimation. So even if one has correctly specified cr2, misspecification of /a will lead to a 
biased estimator of cr2, which in turn will have implications for the pricing of derivatives.

In the past decade, a number of empirical studies have been directed towards finding an 
appropriate specification of /a and a2. Economic theory puts no restrictions on the drift 
and diffusion term, except tha t the resulting short-term interest rate should stay positive. 
Thus, a model for the short-term interest rate can only be judged by how well it fits the 
available data. In such situations, instead of restricting oneself to a parametric model, 
it would be more appropriate to "let data speak for itself", which is exactly what non- 
and semiparametric models do. A number of different parametric models for the SDE has 
been proposed and tried out on historical data  with varying degrees of success. Al’t-Sahalia 
(1996b) fitted some of these parametric models to an interest rate data  set, and then tested 
each model against a nonparametric alternative. The striking conclusion was th a t none of 
these could be accepted as the true model; more flexible models were needed. A number of 
other empirical studies have found similar evidence of nonlinearities both in the drift and 
diffusion term  for this type of data, which the models of Al’t-Sahalia (1996a) and Conley 
et al. (1997) cafinot capture, see Ahn and Gao (1999), Bandi (2002), Jiang and Knight 
(1997, Stanton (1997), Tauchen (1995). The importance of nonlinearities in the two terms 
should not be downplayed.

We here propose the following semiparametric model where the drift term is unspeci
fied, while the diffusion term follows the flexible parameterisation proposed in Al’t-Sahalia 
(1996b),

drt =  /a (rt ) dt +  yjcr0 +  G \r t  +  a2r'JdWt . ( 6 .2 )

Some of the most popular (stationary) models are quoted in Table 6.1. As can be seen, 
the semiparametric model encompasses most of these models. It is therefore possible to
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test each of the parametric alternative against the semiparametric alternative using the 
test statistic developed in Chapter 4.

TABLE 6.1. Parametric specifications of the spot rate.
fi(r) ** (r) Reference
fj(a — r) a* Vasicek (1977)
fir (a  -  log(r)) a2r2 Brennan and Schwartz (1979)
P(a  — r) a2r2 Courtadon (1982)
Pxr  +  0 2r - (1+7) a2r7 Marsh and Rosenfeld (1983)
P{a — r ) a2r Cox et al. (1985)
P ( a - r ) <j2r 7 Chan et al. (1992)
00 + 0 i r  +  027’2 (cro +  a i r )2 Constantinides (1992)
P ( a - r ) a l  + Duffie and Kan (1996)
00 + / V  + / V 2 + / V -1 cro +  a \ r  +  <72r7 Alt-Sahalia (1996b)
00 + 0lr + 02r2 + 0 3r_1 tr2r7 Tauchen (1995), Conley et al. (1997)
00 + 0 l r  +  02r2 &o +  o'lJ' +  a%rs Ahn and Gao (1999)
0o + 0 i r  +  0 2r 2 + 0 3r _1 o'o +  +  o<ir2 +  a%r2 Elerian et al (2001)

6.3 Estimation of the Risk Premium

In Chapter 3, we derived formulae for bond and option prices in a single-factor framework. 
An im portant ingredient in these was the risk premium process, {At}. In order to  apply 
our calibrated models to the pricing of such securities we therefore have to obtain an 
estimate of this process. In the following, we go through some of the methods suggested 
in the literature. For a more detailed treatm ent, we refer to Garcia, Ghysels and Renault
(2004).

We s tart out with a general model for an option price II. Assume th a t the price satisfies

n  =  r  (X,Z) +  e,

where AT is a collection of random variables (including, for example, the current value of 
the underlying asset), Z  a collection of deterministic characteristics associated with the 
option (time to maturity, type of pay-off function etc.), and e is an error term  (present 
due to e.g. pricing errors, failure of the theoretical model to perfectly match the observed 
data).

A branch of the empirical option pricing literature proposes to estimate the function T 
non- or semiparametrically, thereby not having to specify the dynamics of the underlying 
variable. Prominent examples of this approach is Al't-Sahalia and Lo (1998), Al't-Sahalia 
and Duarte (2003), Bondarenko (2003). This approach has the advantage of not imposing 
any restrictions on the dynamics of the underlying variable, and not making the estimation 
of any risk premium necessary. On the other hand, the precision of predicted option prices 
will suffer from the slower convergence of nonparametric estimators.

Restricting the dynamics of the term structure to be of diffusion type gives us additional 
information about the function. In the arbitrage-free framework of the single-factor model, 
it holds tha t

r  (x, z) =  T (r, g, t , T) = E q g (rT) exp |^- £  rudu \rt = r  ,
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cf. Chapter 3. Assuming tha t {rt} is time-homogenous under Q, the formula simplifies 
further to

r  (r ,g ,r )  = g (rr) exp [ -  J  rudu |r0 =  r (6.3)

where t  =  T  — t  is time to maturity. The dynamics of {rt} under Q depends on the risk 
premium A,

drt =  {/x (rt) +  A (rt ) a  (rt )} dt +  a  (rt ) dWt . (6.4)

Let {(IIi j ,r i ,g j,T j)  |1 <  t <  n, 1 <  j  <  J}  be a collection of observed option prices to
gether with the associated observed short rate and the characteristics. Taking /x and a2 
for given (in our case, we will have preliminary estimates of these), the only unknown is 
A. This yields the following regression model,

II{j r  (ri, Qj, Tj , A) -|- £{j,

where the function T takes the form (6.3), and we assume th a t E  [eij|rj] =  0. We may then 
estimate the unknown function A by for example least squares. In practice this means 
tha t we choose A such tha t the option prices implied by the single-factor model mimic 
the observed ones as closely as possible. It is still an open question whether A can be 
identified in the above regression model. Observe tha t in fact the estimation problem 
here in some sense is the inverse of the one considered in Chapter 5. While there we 
had derived the asymptotic properties of the solution to  the PDE given estimators of /x 
and cr2, we here have observed solutions to the PDE (bond and derivative prices) from 
which we wish to extract an estimator of the one of the coefficients driving the PDE. 
The main problem here is then the inversion of the functional u =  T  (/x — An, <j2), with V 
given in Chapter 5, w.r.t. its first argument such that /x — An =  T-1 (u, n2) . If the inverse 
of r  is well-defined, identification of A is ensured. Assuming an affine specification of /x, 
n2 and A2, a closed form expression of T is available, and one can in this setting show 
tha t the parameters entering A are identifiable, cf. Duffie and Kan (1996). In the general 
case however, the function T is a complicated functional of A which cannot be written 
on analytical form, and the identification problem is not easily resolved. To the author’s 
knowledge, no general results concerning identification of A exist. Here, we shall therefore 
simply assume tha t A is identified. A nonparametric estimator of A can be obtained by the 
method of sieves. Normally however, one assumes a parametric version, A(r) =  A (r;0), 
where 6 is an unknown finite-dimensional parameter. For example, A (r) =  A in Vasicek 
(1977) and Al't-Sahalia (1996a), and A(r) =  X/ay/r  in Cox-Ingersoll-Ross (1985). The 
general estimation procedure presented above is also applicable to multifactor models.

Some alternative estimation procedure can be found in the literature. Consider the yield 
of a zero-coupon bond with m aturity at time T, 1* (T) =  log (B t (T )) /  (T  — t) with Bt (T ) 
being the price of zero-coupon bond with maturity at time T  > t.  Vasicek (1977) observed 
that

dŶ P^' I f=t = \  [/i (rt) -  a (rt) X (r,)],
and proposed to use observed yields to approximate the right hand side of the equation. 
Jiang (1998) derived an expression of the risk premium in terms of two different yields
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and the dynamics of those. By ltd ’s Lemma, Yt (T)  solves an SDE,

dYt (T ) = a  (rt ,T )d t  + K (rf, T) dWt} (6.5)

where the no-arbitrage assumption imposes restrictions on the drift and diffusion term. In 
fact, the following relation have to hold for any T i,T 2 > 0,

AYt (T i,T2) + \  [ t \ k 2 (rt , Ti) -  t \ k 2 (rt , T2) +  T2ot (rt , T2) -  n o t  (rt , Ti)]
r2/c(rt, r 2) - r i « ( r t,Ti)

where A Yt (Ti, T2) =  Yt (Ti) — AY* (T2) is the yield spread and r< = Ti — £, i =  1,2, is the 
time to maturity. Jiang (1998) then proposes to estimate A by choosing two representative 
bonds, fit a diffusion model of the type (6.5) to their yields using nonparametric methods, 
and then plug these estimators into (6.6).

6.4 The Data

The data  set consists of 5505 daily observations from June 1, 1973 to  February 25, 1995 of 
the 7-day Eurodollar rate. Eurodollars are any dollar denominated deposit in commercial 
banks outside of the U.S. Eurodollar accounts are not transferable but banks can lend on 
the basis of the Eurodollar accounts they hold. The interest rate charged for Eurodollar 
loans is often based upon the London Interbank Offer Rate (LIBOR). The Eurodollar rate 
is considered the benchmark interest rate for corporate funding, and Eurodollar futures 
are by far the most actively traded interest-rate product. A more detailed account of the 
Eurodollar market is found in Burghardt (2003).

The 7-day rate should be a reasonable good proxy for the short-term interest ra te .1 
We do not use a lower m aturity since this might lead to various market micro structure 
problems. We shall not attem pt to remove any seasonal effects, such as weekend effects, 
from the data, and simply treat Monday as the first day after Friday such tha t we have 252 
observations per year. We measure time in days such tha t the time between observations, 
A =  1/252.

A number of single-factor models have been fitted to this particular data set. Ai't- 
Sahalia (1996a) fitted a semiparametric model with linear drift and unspecified diffusion 
term to the 7-days Eurodollar rate and found strong nonlinearities in the diffusion term. 
He compared his semiparametric model to the CIR and Vasicek-model (which both are 
nested within his semiparametric model), both in terms of the actual model fit but also the 
resulting bond and option prices. He concluded tha t the two parametric model were signif
icantly different from his semiparametric specifications, both in terms of model estimates 
and implied prices.

Al’t-Sahalia (1996b) reinvestigated the data set, setting up a nonparametric specification 
test which allowed him to test any parametric (stationary) diffusion model against a 
nonparametric alternative. He tested a number of parametric single-factor models; all

C hapm an et al (1999) find that using the 7-day rate as a proxy when fitting standard parametric short-term 
interest rate model does apparently not lead to significantly different implied bond prices.
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of these were rejected by his test. As an answer to the failure of the standard models, 
Al't-Sahalia (1996b) then proposed the following highly flexible, parametric single-factor 
model,

drt = {Po +  P in  +  P2rt +  P z n 1 } d t  + y j  170 +  a  m  +  a2r] dWt . (6.7)

The drift term  is parameterised such tha t the drift can be nearly zero in a large part of 
the domain, but still ensure mean reversion in the tails. The specification test accepted 
this new model as giving an adequate description of the data. The conclusions in Al't- 
Sahalia (1996b) have been questioned in a number of later studies however due to poor 
finite sample performance of his proposed test. Chapman and Pearson (2000) and Pritsker 
(1998) presented evidence of tha t the asymptotic distribution of the test statistic delivers 
a very poor approximation of the finite sample distribution in the presence of strong serial 
correlation. And this is exactly the case with the interest rate data set used in Al't-Sahalia 
(1996b). In particular, Pritsker (1998) demonstrated in a simulation study tha t the test 
statistic is prone to reject correctly specified model when using the asymptotic critical 
values.

Hong and Li (2002) and Thompson (2000) have suggested alternative specification tests 
which should exhibit improved finite sample properties compared to the one proposed by 
Al't-Sahalia (1996b). The main idea in both studies is to apply a transformation of the data 
which should decrease the serial correlation. Hong and Li (2002) applied their test to the 
same data  set as used in Al't-Sahalia (1996b), and still rejected all the standard parametric 
models examined in Al't-Sahalia (1996b), but also the model in (6.7). They argued tha t 
the data  exhibits strong non-Markovian behaviour, and th a t the class of single-factor 
(Markov) models is too restrictive in this sense. The application of the specification test 
in Thompson (2000) to the Eurodollar 7-days rate data  set also lead to the rejection of 
all the parametric models, including the one in (6.7). His explanation for the failure of 
the parametric models differs from the one of Hong and Li (2002) however. He argued 
tha t the problem is tha t the driving noise process is misspecified. By using either jump- 
or gamma-processes instead of the Brownian motion, he was able to accept a relatively 
simple parametric model.

In Bandi (2002), the kernel estimators of Bandi and Phillips (2003) were employed to fit 
the model (6.1) nonparametrically to the Eurodollar data  set. Nonlinearities were present 
in both the estimated drift and diffusion term. In particular, the drift estimate was nearly 
zero in a major part of the data domain, but exhibited mean-reversion in its right tail 
while the behaviour in the left tail was inconclusive. The kernel estimator is robust to 
departures from the stationarity assumption normally imposed in single-factor models. 
There is no clear-cut evidence of non-stationarity in the data however.

In a fully parametric framework, a number of studies have reexamined the model (6.7). 
Elerian et al (2001) fitted the model to the same Eurodollar data  set in a Bayesian frame
work using simulated maximum-likelihood techniques. They found tha t the parameters a 2 

and 7 in (6.7) were difficult to identify in the data, and instead proposed the following 
slightly different parameterisation,

drt =  {Po +  P in  +  P ir\ +  P a n 1 } d t+  yJ<Jo + a m  +  cr2r t2 +  a3r$dWt . (6.8)
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While the parameter estimates were easier to pin down, this new model did not appear to 
fit the data very well, and they found tha t any significant mean reversion only appeared in 
the estimated drift when this was assumed in the prior.2 Elerian et al (2001) concluded that 
a single-factor model was not a very appropriate description of the data, and conjectured 
tha t a stochastic volatility model of the type in Andersen and Lund (1997) would be 
needed. This conjecture was confirmed in Durham (2002) where the model (6.7) was 
compared with a stochastic volatility model using simulated maximum-likelihood methods. 
He found tha t the single-factor model fit the data poorly, while the stochastic volatility (2- 
factor) model on the other hand did a good job. Similarly, Hurn and Lindsay (2002) found 
tha t the parameters in both the drift and diffusion term  of (6.7) were difficult to identify 
and suggested the use orthogonal polynomials to amend this problem. They estimated the 
model using discrete time approximations however which means tha t their estimates are 
very likely to suffer from discretisation bias.

The general conclusion to be drawn form the empirical studies seems to be tha t the 
Eurodollar short-term rate is difficult to model properly within a single-factor framework 
and tha t the use of multi-factor models improve on the fit. If one restricts attention to 
single-factor models, inconclusive results have been obtained about the degree of (non
linear) mean reversion. Some studies have found evidence of nonlinear mean-reversion 
while others have rejected this hypothesis. Moreover, the more advanced parametric models 
seems to suffer from poor identification of the parameters. In the following, we shall re
examine the single-factor models using the above semiparametric diffusion model as a 
starting point.

The raw data is plotted in levels and differences in Figure 6.1 and 6.2 respectively. Figure
6.1 shows that the data  exhibits a very strong correlation over time as is usually found in 
interest rate data. Taking differences, we see in Figure 6.2 th a t the short-term interest rate 
behaves as heteroskedastic white noise, which indicates th a t it is close to being a random 
walk. One should also notice the significant different behaviour of the rate in the period 
1979-1981. The significant break in the data  set in this period is due to the so-called Fed- 
Experiment where the U.S. Federal Reserve targeted monetary aggregates instead of, as 
done before and after, interest rate levels. One may argue th a t the data from this period 
should be left out or a Markov-switching model should be used; the la tter alternative is 
pursued in Ang and Bekaert (2002). We shall in the following try  to fit a model both 
to the full sample and the subsample 1982-1995, the latter excluding the period of the 
Fed-Experiment.

In Table 6.2, descriptive statistics of the data set is presented for the full period and 
the subperiod 1982-1995. Notably is the very strong autocorrelation in levels, while the 
correlation in the differenced data is decreasing fairly quickly. This is the case for both the 
full sample and the subsample, but it is less pronounced in the full sample due to the Fed- 
Experiment. In a linear modelling framework, the persistent autocorrelation in the levels 
would lead one to conclude tha t the process is non-stationary; the resulting estimate of 
the drift term is insignificantly different from zero such th a t the interest rate would be

2 Similar findings are reported in Jones (2003)
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FIGURE 6.1. The Eurodollar spot rate in levels, 1973-1995.
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FIGURE 6.2. The Eurodollar spot rate in differences, 1973-1995.
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deemed to be driven by a random walk and thereby being non-stationary. Moreover, all 
the descriptive statistics of the full sample are significantly different from the ones of 
the subsample. This confirms tha t the period of the Fed-Experiment lead to  significantly 
different behaviour of the interest rate.

TABLE 6.2. Data descriptives.
Mean SD Skewness Kurtosis Pi Pi P3 Pa

1973-1995 r 0.0836 0.0359 0.9863 4.2022 0.9549 0.9093 0.8674 0.8329
A r -3.453 10"6 0.0041 -0.1238 30.8529 -0.2671 -0.0393 -0.0369 0.0319

1982-1995 r 0.0714 0.0240 -0.2448 2.1148 0.9802 0.9648 0.9458 0.9167
A r -2.244 10“ 5 0.0015 0.4253 54.8300 -0.0483 -0.0440 -0.0561 -0.0916

Notes: pi denotes the correlation coefficient of order i. The reported autocorrelations for r are monthly
while the autocorrelations for Ar are daily.

We now investigate further the seemingly nonstationary behaviour of the data in a 
linear framework. This is done by unit root tests: We set up a standard AR model, Ar; =  
olq + ((j) — 1) ri_ i +  Zlfeii a k&ri-k  +  £*5 estimate the parameters by least squares, and 
then perform the Augmented Dickey-Fuller (ADF) test as outlined in Said and Dickey 
(1984). We also implement the Z  (t)-test as proposed in Phillips (1987) using the model 
n  = ao +  (j>ri-i +  £i\ this should have less distortions in the presence of MA(l)-errors 
(see Phillips and Perron, 1988). The results are reported in Table 6.3 where we reject the 
hypothesis of a unit root for large negative values of the test statistic. The ADF test leads 
to non-conclusive results in the full sample with rejecting a unit root at a 10% level while 
accepting the hypothesis at a 5% level. The Z  (t) for the full sample on the other hand 
clearly rejects the hypothesis on a 5% level. In the subsample, both tests clearly accept the 
unit root hypothesis. So in a linear framework there is mixed evidence of non-stationarity 
in the full sample, while the subsample appear to be driven by a random walk. But if 
the drift is non-linear the above regression model is misspecified, and the estimation and 
test results invalid. A non-linear drift and diffusion term may lead to  different results. As 
we shall see in the next section, the estimated drift and diffusion term  generate processes 
with seemingly non-stationary behaviour in a major part of its domain with the process 
as a whole being stationary.

TABLE 6.3. Unit root test results,
<t> Test Statistic 5% critical value 10% critical value

1973-1995 ADF test 0.9970 -2.60 -2.87 -2.59
Z (i) test 0.9935 -3.27 -2.87 -2.59

1982-1995 ADF test 0.9991 -1.47 -2.87 -2.59
Z (t) test 0.9963 -2.98 -2.87 -2.59

6.5 Empirical Results

6.5.1 E stim ation  o f the Single-Factor Model

In Figure 6.3, we report the nonparametric kernel estimate of the marginal density as 
given in (4.8) for the data, using both the full sample and the subsample. A Gaussian 
kernel was used while the bandwidth was chosen by cross validation. The density estimate
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FIGURE 6.3. Kernel estimates of the stationary density, 7r, for the full sample and the subsample.

has a highly non-Gaussian shape for both samples. In the full sample, the density has a 

very long right tail due to the Fed-Experiment during which very high levels of interest 

rates were observed. Excluding these, one is left with the density in the second plot which 

is bimodal; a slightly smaller choice of bandwidth will give a trimodal shape of the density 

with the last mode being around 0.12. If {77} is stationary, this indicates that contrary to 

what most of the models in Table 6.1 would suggest, the interest rate here evolves around 

not just one but two-three steady states. This is a strong indication of nonlinearities in 

the drift and the diffusion term.

We now report the estim ates for our semiparametric model. As a benchmark, we also 

fit the model in (6.7) to the data set. Both models are estimated using the approximate 

log-likelihood suggested by Al't-Sahalia (2002) with order of approximation M  =  6. For 

the semiparametric model, the bandwidths are chosen as described below, and we trim  

the data at the 1st and 99th empirical percentile. In the fully parametric model we had 

problems obtaining a precise estim ate since the likelihood curve is relatively flat in the 

vicinity of the optimum. This was particularly a problem along the dimensions of a 2 
and 7, and was very pronounced when fitting the model to the subsample 1982-1995. By 

closer examination, we found that a wide range of parameter values generated very much 

the same shape of cr2 (x;6)  in the domain x €  [0.02,0.14] while for x  >  0.14 different 

parameter choices lead to significantly different behaviour of the diffusion term. Since we 

do not have observations greater than 0.14 in the subsample, this is evidently a problem. 

However, this identification problem did not occur when estimating the semiparametric 

model; this is probably due to the fact that the diffusion parameters in the semiparametric 

estim ation procedure now also enters the drift function, and this allows us to pin them
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down more precisely. This identification problem has also been reported in Elerian et al 
(2001) and Hurn and Lindsay (2002). The latter suggested to reparameterise both the 
drift and diffusion term  using orthogonal polynomials to circumvent this problem; we plan 
to do this in a later version of this paper.

The resulting estimates of 9 = (oojGTIj^jT) and (for the parametric model) f3 =  
{/3q, P i , /?2> ^ 3) for both the full sample and the subsample are reported in Table 6.4 with 
associated standard errors. First, in both samples, we see th a t the parametric and semi
parametric estimates are fairly close, but still significantly different at a 5%-level from each 
other. We also observe tha t the estimates of the fully parametric model satisfy the sta- 
tionarity conditions imposed in Ai't-Sahalia (1996b). The standard errors associated with 
02 and 7 are relatively large; most likely this owes to the aforementioned problem with 
the flat likelihood-curve. The estimates for the two different samples are not significantly 
different from each other; so for the fully parametric model, the Fed-Experiment does not 
influence the estimates.

TABLE 6.4. Estimates of 9 and (3.
1973-1995 1982-1995

Parametric Semiparametric Parametric Semiparametric
Po -0.3054 - -0.3106 -

(0.1590) - (0.1484) -
Pi 5.5729 - 5.6579 -

(1.2301) - (1.1872) -
Pi -30.9985 - -30.4436 -

(2.0307) - (3.6436) -
Pz 0.0047 - 0.0053 -

(0.0011) - (0.0019) -
°0 -0.0006 0.0120 -0.0006 0.0110

(0.0005) (0.0009) (0.0004) (0.0011)
Oi 0.0210 0.0213 0.0221 0.0123

(0.0090) (0.0108) (0.0122) (0.0134)
02 30.8413 28.0874 32.5880 23.0874

(7.8007) (7.7745) (8.7490) (8.6923)
7 4.2573 4.3019 4.2166 4.0019

(1.5422) (1.5361) (2.7491) (2.1923)
Notes: Standard errors are reported in parentheses. In the parametric 
model these were estimated by standard covariance estimation methods. 

In the semiparametric model the estimator proposed in Theorem 7 
was used

The semiparametric estimates proved to be fairly robust over a range of bandwidth 
choices. An initial set of bandwidths was chosen by using standard cross-validation meth
ods. We then generated a grid of bandwidth centered around this initial one. For each set 
of bandwidths, we obtained an estimate of 9. In Table 6.5, the results of this sensitivity 
check for the subsample are reported for seven different bandwidth sets. The bandwidths 
decrease as one moves from left to right in the table with the 7th bandwidth being the 
cross-validated one. Relatively large bandwidths choices, slightly bigger than the initial 
cross-validated ones, gave the most reliable estimates for our sample. This probably stems 
from the fact tha t the cross-validation procedure does not take into account the depen
dence in the data  which is very strong in our case.

A plot of the semiparametric estimates of a2 for the first four set of bandwidths can be 
found in Figure 6.4. The estimates do not vary a great deal across the different bandwidths
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TABLE 6.5. Sensitivity check of semiparametric estimates.
Bandwidth 1 2 3 4 5 6 7

CO 0.0112 0.0110 0.0113 0.0110 0.0104 0.0103 0.0109
c i 0.0129 0.0124 0.0127 0.0131 0.0120 0.0121 0.0116
C  2 21.5643 24.1624 23.1004 22.3427 24.0175 23.3548 21.9449
7 4.2699 4.2598 4.2978 4.2296 3.8650 3.7434 3.9873

Notes: Bandwidth 1 (10“ 3x): hi= 10.09, h2= 12.23, h3= 13.89, h4=  15.10, hB= 17.22, 
h6= 18.74, h7= 19.97, hs= 21.11.
Bandwidth 7 (10- 3 x): h\= 5.17, h2= 6.33, h3= 6.97, /i4=  7.49, hB= 7.85, hB= 8.84, 
h7= 9.60, h$= 10.36.

which indicates tha t our estimation procedure is fairly robust. Similar results were obtained 
for the full sample.

Next, we report our nonparametric estimates of the drift function. Here, we use slightly 
higher bandwidths compared to the ones we used in the estimation of 9. In Figure 6.5, 
the nonparametric estimator of /z is plotted with pointwise 95%-confidence bands for both 
the full sample and the subsample. The confidence bands are calculated using Theorem 1. 
The range over which we plot the estimates was chosen as the one of the data from the 
subsample. We see tha t for both periods, the nonparametric estimate of /z is insignificantly 
different from zero in the range between 0.03 and 0.12; this is consistent with our earlier 
observation th a t locally the short-term interest rate behaves as a random walk. But for 
values of r  less than 0.035 and greater than 0.12, /z (r) is significantly different from zero 
implying a mean reverting effect; in the interval [0.03,0.12], {r*} is allowed to evolve 
basically as a random walk but if it leaves this part of its domain and takes on too small 
or great values it is pulled back again. So in a global sense {rt}  can be seen as being 
stationary. While the drift estimates for the two periods have the same shape, they are 
still markedly different in the domain we have chosen here. In particular, in the full sample, 
there is strong mean reversion in the left tail while no significant such appears in the right 
tail. In contrast, the drift estimate in the smaller sample has relatively weak mean reversion 
in the left tail, but a strong one in the right tail. The "missing" mean reversion of the 
drift estimate in the full sample is however simply due to the fact tha t the domains within 
which we have observed the interest rate in the full sample and the subsample are not the 
same, and we are only able to compare the estimates within the domain of the subsample. 
Mean reversion for the full sample first appears further out in its right tail, cf. figure 6.6. 
In total however the two drift estimates are not significantly different from each other in 
the domain of the data in the subsample.

The results found here are compatible with other empirical studies of the short-term 
interest rate. Jiang and Knight (1997) and Bandi (2002) obtain nonparametric kernel 
estimates of /z tha t exhibit a similar behaviour. In a discrete time framework, parametric 
Markov switching AR-models have proved to be able to generate the same type of dynamics 
as the ones we have found here. For a recent application of this type of models to the short 
term interest rate see Ang and Bekaert (2002).

One should however be careful with the tailbehaviour of the nonparametric estimates, 
which may be an artifact of the use of kernel estimators. These are known for not being 
precise in the tails and outside of the support of the data  as a combination of their local 
nature and the sparsity of data  there. For the subsample, the data support is within
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FIGURE 6.4. Sensitivity check: Semiparametric estimates of a 2 (r; 9) for different bandwidths.

[0.03,0.12] so one may question the quality of the local estim ates of fi (x)  outside of 

this interval, where it may be prone to a certain degree of erratic behaviour. Chapman 

and Pearson (2000) report in a simulation study that this is the case when using the 

nonparametric kernel estimator of Jiang and Knight (1997). Another issue related to the 

behaviour at the left tail is that the domain in our case is I  =  (0 ,oo). It is by now 

recognised that kernel densities estimates based on symmetric kernels may perform poorly 

near the boundary of the support, which may be another source of bias in our case near 0+ . 
Recall from the simulation study that ft (x ) did not perform well near the lower boundary 

for the CIR-model; one could suspect the same to be the case here. Observe however that 

in order for the short-term interest rate to remain positive, the drift has to be positive 

near zero. So at least our estimates have the right sign. Bandi (2002), when applying the 

nonparametric kernel estimator of Bandi and Phillips (2003), reports similar estimates of 

the drift function in the right tail of the data support. He however only reports estimates 

within the data support and is not able to conclude what the drift looks like close to 0+ . 

The tailbehaviour may also be a result of us imposing the assumption of stationarity on 

the process as argued by Jones (2003). In conclusion, the estim ates for x £  [0.03,0.12] 

should be interpreted with care. We plan to carry out further monte Carlo studies of these 

issues, and also apply bootstrapping when calculating the confidence bands.

In Figure 6.6, we compare the nonparametric estimator of the drift to the parametric 

estimator in the full sample. The nonparametric drift estimator is very wiggly in the right 

tail, and one might want to use a varying bandwidth to remove this effect. Comparing the 

parametric and nonparametric estimates, the most striking feature is the very strong mean 

reversion found in the nonparametric ones. We see that the parametric model mimics the 

nonparametric estim ate pretty well in the major part of the domain, but has problems 

capturing the curvature of the drift term out in the tails. Similarly, when comparing the
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FIGURE 6.5. Nonparametric estimate of /z with 95% confidence bands.

two drift estimators for the subsample which can be found in Figure 6.7. Observe tha t 
in the subsample, the nonparametric drift estimate only crosses zero once (at x  =  0.08, 
i.e. there is one steady-state for this model) while in the full sample, it reaches zero 
twice (at x  =  0.09 and 0.19, i.e. there are two steady-states). This is caused by the Fed- 
Experiment. The parametric drift estimates are very close to zero, in particular in the 
subsample. This gives support to the earlier finding tha t the short rate may be modelled 
as a heteroschedastic random walk since the process drt = cr (rt) dWt is the continuous-time 
equivalent of a such.

We test the parametric specification against the semiparametric alternative to see whether 
the latter supplies us with an adequate description of data. We do this using the test statis
tic proposed in Theorem 3 in Chapter 4. In both samples, we choose the number of points 
d =  40, and Xi as the i / 41 x 100th empirical percentile of the sample in question. The 
realised value of the test statistic is Tn = 280.65 and 552.96 for the full sample and the 
subsample respectively, while the critical value at a 1%-level is 63.6907. So we clearly re
ject the hypothesis tha t the parameterisation of the drift considered here is appropriate.3 
It could now be of interest to set up a parsimonious parametric model which was able to 
generate the same behaviour of the drift as our semiparametric estimate does. This is left 
for future work.

For both samples, the estimates for the parametric model are both qualitatively and 
quantitatively very different from the ones reported in Al't-Sahalia (1996b). In particu-

3 The distribution of test statistics for parametric vs. nonparameteric alternatives are known to be poorly ap
proximated by their asymptotic distribution. So it would probably be more appropriate to perform bootstrap here, 
see e.g. Fan (1994, 1995). This is left for future research.
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FIGURE 6.6. Comparison of nonparametric and parametric estimate of /z for the full sample, 
1973-1995.
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lar, while the estimated drift in Al't-Sahalia (1996b) predicts two turning points (steady- 
states), we here only have one. The second steady-state is partially reinforced in the semi
parametric model fitted to the full sample. The estimated diffusion term in Al't-Sahalia 
(1996b) has a smile while ours is monotonously increasing. Hurn and Lindsay (2002) re
port qualitatively similar estimates to ours with their drift and diffusion term having the 
same shape as ours, but on a much smaller scale. Our estimates are fairly close to the ones 
obtained in Durham (2002) though.

6.5.2 Im plied B ond  and D erivative Prices

Given the calibrated models obtained in the previous section, we now wish to see what 
implications the competing models will have on bond and interest rate derivative prices. We 
compute bond prices implied by the competing models to see if they generate significantly 
different prices. This is only done for the models fitted using data in the period 1982-1995.

In order to do this, we first need to estimate the risk premium as discussed in Section 
3. We use the general estimation procedure where the risk premium is chosen to minimise 
the squared difference between implied and observed bond prices. Here, we follow Al't- 
Sahalia (1996) and Vasicek (1977) amongst others and assume tha t the risk premium is 
constant over time. This facilitates the estimation since we then only have one parameter 
to optimise with respect to. We estimate this parameter, A, using the least squares method 
presented in Section 3: Given the estimates of 6 and the drift function and any value of 
A, we calculate a set of implied bond prices and compare them to the observed prices. 
The data set used in the calibration consists of daily observations of 1-, 3- and 6-month 
Eurodollar bond prices, (B{a  (rj)), and the daily observations of the short-term interest 
rate, i = 1,..., n, j  =  1,2,3, where n  =  1/12, Ti =  1/4 and 7-3 =  1/2 are the times to 
maturities. We assume the following model for the observed bond prices,

BiA (r j ) =  HB in , Tj\ A) +  eij, E p [eij] =  0, E p  [e?.] =  0

where
nB(r,r;A) = £«

fJo
exp — /  r3ds |r0 =  r

and {rt} has dynamics (6.4) with A (r) =  A. The estimate of A is the obtained by running 
non-linear least squares on the above regression model. The (approximated) implied bond 
prices, n #  (r, r ) , are obtained by Monte Carlo simulation of the short term interest rate 
process under the risk-neutral measure.

Here, we use zero-coupon prices from the period December 1, 1994 to February 25, 1995 
in our calibration of A. This gives us n  =  154 observations; we have actually a much larger 
data set of bond prices available which could be used, but the Monte Carlo simulations 
are fairly time-consuming so we here choose to only use a small proportion of this. In 
Table 6.6, the estimated market price of risk premiums are reported when one uses the 
semiparametric and parametric fit respectively. In Chapter 5, Section 4 we demonstrated 
tha t under weak regularity conditions,

v/S(A -  Ao) N  (0, a jH - 1 (A0) ) ,
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where

H  (A) =  E q rig  (r;a; A)t  I l s  (r^A; A) , II# (r; A) =  {II# (r, Tj)}J=1.

The standard errors were calculated using (5.26). They were not adjusted for the fact tha t 
the drift and diffusion term came from a preliminary estimation step. T hat is, reported 
standard errors of A are calculated conditional on the estimated drift and diffusion term.

TABLE 6.6. Estimate of the market price of risk, A.
Semiparametric Parametric

Estimate of A 
Standard Error

-8.5494 10“ 2 -1.0596 10"1 
(2.0603 10-2 ) (3.0651 10~2)

Notes: Standard errors are reported in parentheses. 
For both the parametric and semiparametric model 
(5.26) was used to calculate these.

We are now able to calculate bond prices under the risk neutral measure. In Table 6.7, 
we report the implied bond prices given either the semiparametric or the parametric fit 
of the short-term interest rate. We report prices for four different times to maturities, 
0.5, 1, 5 and 10 years, and 4 different levels of the current short rate. In general as the 
m aturity increases, the prices difference between the two competing models increase. For 
most maturities, the prices implied by the parametric model fall outside one or more 
standard deviations of the semiparametric prices. So we get significantly different prices 
when applying the semiparametric model compared to the parametric one.

TABLE 6.7. Implied bond prices of the semiparametric and parametric model.

Maturity (years) 0.04
Short rate level 
0.06 0.08 0.10

0.5 97.2866
(0.1054)
97.1404

99.1478
(0.0868)
98.3368

96.1416
(0.0883)
96.5284

94.2130
(0.0697)
92.7327

1 94.9322
(0.1147)
92.2625

93.0204
(0.0906)
92.6393

91.0659
(0.0835)
91.2850

88.3761
(0.0657)
91.0595

5 65.6758
(0.1131)
65.3361

65.2582
(0.1078)
63.6363

62.6428
(0.0995)
62.7447

60.8854
(0.0656)
60.7810

10 41.7999
(0.0916)
42.9604

40.0005
(0.0803)
40.5908

39.1834
(0.0721)
40.0661

38.7795
(0.0681)
39.0452

Notes: (i) All prices correspond to a face value of the bond equal 
to $100. Each cell has three elements: The first and third are the
implied prices of the semiparametric and parametric model respec
tively; the second the associated standard error of the semipara
metric model.
(ii) The s.e.’s were calculated by using the estimator outlined in 
Section 5.3.2.
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6.6 Conclusion

We have proposed a new semiparametric diffusion model for the short-term interest rate 
which contains most parametric models found in the term  structure literature. We es
timated the semiparametric model using a data set of daily observations of the 7-day 
Eurodollar rate in the period 1973-1995. For comparison, we also fitted the parametric 
model proposed by Al't-Sahalia (1996b) to the data, this being the most flexible para
metric single-factor model found in the literature. Due to  so-called Fed-Experiment in 
1979-1981, there is a break in the data in this period compared to before and after. So we 
estimated the models using both the full sample and the subsample 1982-1995. Estimating 
the models using either of the two samples lead to markedly different results. The two sets 
of estimates were however not statistically different from each other. If one wishes to model 
the full period, one may gain from either including dummies or using a Markov-switching 
model.

Both the drift and diffusion term in the fitted semiparametric model exhibited a nonlin
ear behaviour which most of the parametric models in the literature cannot generate. The 
nonparametric estimate of the drift were significantly different from the one of the most 
flexible parametric model in both the full sample and the subsample. In both samples, this 
was due to a much stronger degree of mean reversion in the nonparametric estimates. The 
parametric form was not able to allow for a mean reversion in the tails of this type, and 
could therefore not mimic the shape of the nonparametric drift properly there. We tested 
the parametric model against the semiparametric alternative and rejected it in favour of 
the semiparametric one. The implications on the pricing of bonds were also examined. We 
found tha t the implied bond prices predicted by the two models were significantly different 
from each other. So not only do the models differ on a basic level, but they will also lead 
to different prices. This is particularly im portant for market practitioners.

As a next step, it would be interesting to develop further statistical tests to evaluate 
the performance of the model when using it for pricing derivatives. Such would be a useful 
tool in model selection and evaluation, helping the practitioner to choose a parsimonious 
model without misspecifications, and which at the same time performs well in a pricing 
scenario. Also, we plan to set up a fully parametric model which is consistent with the 
semiparametric estimates.

How to extend our approach to cover semiparametric multifactor models is not obvious 
since our estimator is not easily extended to multivariate diffusion models. If one is ready 
to restrict one’s attention to a smaller class of multifactor models however, it should be 
possible to adapt the approach used here to this more general case, cf. Chen et al (2000b).
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