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Abstract

This thesis is mainly divided into three chapters. Even though the three chapters 

have different aims, they all concern investment environment and process. W ith re­

spect to  the former aspect, we consider how stocks and bonds are traded in securities 

markets. The second and third chapter deal with markets where a single risky asset is 

sequentially traded in batch auctions. In the fourth chapter we consider bond markets 

where transaction costs create frictions. As for the investment process, we study how 

market participants should choose their investment, and when should it be made. We 

analyze trading strategies for market participants in the second and third chapter, while 

active bond portfolio management is dynamically characterized in the fourth chapter. 

Chapter 2 develops a dynamic trading game in which fundamental insiders coexist with 

non-fundamental speculators. We study inclusions in the S&;P 500 as an example in 

which non-fundamental speculation arises due to preannouncing index replacements. 

Evidence on volume and liquidity is consistent with our theoretical analysis. Chapter 3 

deals with asymmetrically informed traders engaging in information sharing about the 

asset’s fundamental value. In the presence of information sharing, trading activity and 

price volatility both cluster at the end of the trading period, and price informative­

ness is reduced. Our model predicts a rich variety of patterns for liquidity, volume and 

return volatility. Chapter 4 focuses on affine term  structure models as portfolio man­

agement tools. We use returns implied by different models as inputs for an investor’s 

portfolio optimization problem. Each period we determine the optimal investment, and 

then characterize the financial properties of trading strategies. We show tha t evaluating 

term structure models from a financial perspective may yield conflicting results with 

those arising from a statistical metric.
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Introduction

To theorize is to  abstract. One builds a model - a  description of a toy world; 
one simple enough to be thoroughly understood. In such a world all rela­
tionships are clear, and the implications of any possible change can be de­
termined precisely. Such an approach may be used in two ways. A normative 
model is a guide to action; it indicates the manner in which decisions should 
be made. A positive model is predictive in nature; it describes the manner 
in which decisions are made and the relationships among things such as 
prices, quantities sold, etc. (William F. Sharpe, 1970, Portfolio Theory and 
Capital Markets, New York: McGraw-Hill)

This thesis investigates distinct features of asset markets and their impact on in­

vestors’ trading behaviour. Starting from the 1980s, information asymmetries in asset 

markets have emerged as a primary line of research. Market participants are heteroge­

nous in tha t they hold different opinions about asset markets. The vast majority of 

contributions to this literature have focused on diverse knowledge about securities’ fun­

dam ental value, and characterized trading strategies as well as aggregate variables such 

as prices, volume and volatility. In Chapter 2 we study non-fundamental information 

as an alternative source of information asymmetries. We consider agents endowed with 

superior information about future trades, rather than future payoffs. Brokers incarnate 

the idea of non-fundamental traders: they place orders on their account in addition to  

the orders submitted on behalf of their customers. Chapter 3 focuses on information 

sharing in securities markets. Once again, heterogenously informed agents consititute 

the starting point. In line with most of the literature -and  unlike chapter 2 - market par­

ticipants hold different views about future payoffs in chapter 3, and we study whether
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traders have incentives to communicate their information to one another. While the 

existing literature focuses on trading as the main vehicle to convey private information 

to the market at large, we create a role for direct communication as a channel to infor­

mation revelation in securities markets. The empirical appeal of our analysis hinges on 

the observation tha t every day traders exchange opinions and share their views about 

financial assets, either because they discuss upon meeting at the marketplace or via 

message posting in financial forums. We move away from the information asymmetries 

paradigm in chapter 4. Here we consider alternative term structure models developed 

in the financial literature. The merits of such models are usually assessed via a sta­

tistical metric. The main criterion to validate one model is its ability to  predict bond 

prices in line with the ones actually observed. Rather than focusing on such properties, 

we analyze term structure models as forecasting tools within a multi-period optimal 

portfolio problem. In fact we believe it is useful to understand what portfolio policy is 

prescribed by a term  structure model in order to evaluate its practical applicability.

The three chapters contribute to  the analysis of investment environment and process. 

W ith respect to the former aspect, we consider how stocks and bonds are traded in 

securities markets. The second and third chapter deal with markets where a single risky 

asset is sequentially traded in batch auctions. In chapter 4 we consider bond markets 

where transaction costs create frictions. As for the investment process, procedures for 

selecting investments under uncertainty are the basic ingredients to modern portfolio 

theory. We study how market participants should choose their investment, and when 

should it be made. In the second and third chapter we define trading strategies for 

informed traders and the market maker, while active bond portfolio management is 

dynamically characterized in the fourth chapter.

The appendices at the end of each chapter contain proofs of propositions, corollaries 

and lemmas. The outline of the thesis is as follows:

C h a p te r  2 : A  M a rk e t M ic ro s tru c tu re  R a tio n a le  for th e  S & P  G am e. We

develop a dynamic trading game in which fundamental insiders coexist with non­

fundamental speculators. The latter traders possess superior information about the 

future noise trades and are able to make sharper inference about the fundamental 

value with respect to the market maker. We show tha t non-fundamental speculators 

decrease market depth as well as the insider’s ex-ante gains. We study inclusions in 

the S&P 500 as an example in which non-fundamental speculation may arise due to
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the preannouncement practice in index replacements. The evidence on trading activity 

and the bid-ask spread is consistent with our theoretical analysis.

C h a p te r  3: In fo rm a tio n  S h arin g  a n d  D y n am ic  T rad in g , [joint with Antonio 

Mele] We develop a dynamic model with asymmetrically informed traders. Agents can 

engage in information sharing about the long-term value of an asset before trading, 

and the equilibrium outcome is affected by the amount of signals th a t are privately 

exchanged in the market. We show tha t in the presence of information sharing, the 

equilibrium price process is affected by the amount of information shared; trading 

activity and price volatility both cluster at the end of the trading period, and price 

informativeness is reduced. The previous effects are particularly severe, and generate 

high private incentives to  share long-lived information. Our model predicts a rich variety 

of new patterns of liquidity, volume and return volatility.

C h a p te r  4: A  P o rtfo lio -B ased  E v a lu a tio n  o f A ffine T erm  S tru c tu re  M odels.

[joint with Andrea Beltratti] We use several multi-factor term structure models to pro­

duce forecasts for the future values of the state variables. Starting from the conditional 

moments of the state vector implied by the multi-factor term  structure models we 

employ, we introduce binomial approximations to come up with discrete scenarios for 

the future state variables. We use returns predicted by these models as inputs for the 

portfolio optimization problem faced by an investor with a six month horizon, taking 

into account the possibility to rebalance after one quarter. The sequence of optimal 

portfolios is then evaluated in terms of financial properties. The results show that a 

financial based evaluation of term  structure models may yield results conflicting with 

those obtained from a statistical evaluation.



A Market Microstructure Rationale for the S&P 
Game

2.1 Introduction

The effect on stock prices induced by changes in the composition of broad market 

indexes has been addressed by many researchers. Most of the empirical work conducted 

so far focus on the Standard and Poor’s 500.1 There axe several reasons behind the 

attention devoted to the S&P 500. First of all, both investors and institutions can 

easily trade stocks included in the S&P 500. At the end of 2003 more than $1 trillion 

were indexed directly or indirectly to  the S&P 500, representing roughly 12% of the 

total index capitalization. As a result, index changes are followed by the financial 

community at large. Secondly, even though Standard and Poor’s sets out several criteria 

for companies to be included in the index, changes to the S&P 500 roster entail some 

degree of subjectivity. Thus inclusions in the index are unpredictable and cannot be 

anticipated by the market as a whole. Finally, changes to  the S&P 500 are publicly 

announced usually five business days before they become effective. Different intervals 

are occasionally used by S&P.

Each year Standard and Poor’s publishes a list of the leading S&P 500 passive fund 

managers together with their assets under management. From the S&P annual survey 

of indexed assets (2003) it emerges th a t more tha t $1.1 trillion dollars were pegged to 

the S&P 500 at the end of 2003. This figure is possibly a conservative estimate, since 

Standard and Poor’s claims tha t it captures approximately 90-95% of the total indexed 

assets in its survey. According to Blume and Edelen (2004) full replication and stratified 

sampling are the replicating strategies commonly implemented by S&P 500 indexers.
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FIGURE 2.1. Assets indexed to the S&P 500.

§
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End of the year net asset value for passive assets is obtained from the S&P annual survey (2003), while yearly 
S&P 500 capitalization is obtained from the S&P website http://www.standardandpoors.com . Top panel: S&P 
500 indexed assets (billion USD); bottom panel: indexed assets NAV relative to  S&P 500 capitalization (per­
centage).

Full replication requires holdings in all the 500 stocks in the exact proportion to their 

weights in the index at all times, while sampling strategies hold less that 500 stocks. 

Index replacements therefore represent a clear rebalancing opportunity for indexers: 

when a stock is added to the S&P 500, passive funds should buy it. In order to achieve 

full replication, indexers should replicate the weight it has in the S&P 500. Strategies 

based on sampling are likely to result in purchasing the included stock as well, even 

if the portfolio weight might differ from the one in the index. P ruitt and Wei (1989) 

find changes in institutional investors’ holdings to be positively correlated with the 

abnormal returns experienced by additions to the S&P 500 over the period 1973-1986.

The appeal of passive techniques to investors has increased during the last two 

decades. In 1976, $19 billion out of a total market value of $662 billion were pegged 

to the S&P 500, which corresponds to 3% of the index capitalization [see Wurgler and 

Zhuravskaya (2002)]. Figure 2.1 presents the indexed assets over the period 1990-2003 

as well as the passive industry weight relative to the whole S&P 500 market capital­

ization. There is no doubt that passive assets have grown over the last 15 years, and 

their weight relative to the index capitalization has risen to 12% at the end of 2003. 

Within the financial literature, there is general agreement that index changes result in 

a temporary demand shift represented by index funds’ trading activity, which causes

S& P500 indexed a s s e ts

n
92 93 94 95 96 97 98 99 00 01 02 03

http://www.standardandpoors.com
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prices to  increase for included stocks (and to  a decrease for deleted companies). Shleifer 

(1986) does not find any significant price impact over a sample consisting of 144 addi­

tions during 1966-76, and relates this evidence to the small value of the S&P 500 owned 

by index funds -less than 0.5% in 1975. A similar explanation is given in Harris and 

Gurel (1986) for the evidence tha t prices for stocks added to the S&P 500 are not sig­

nificantly affected over the period 1973-77. Along the same lines, Beneish and Gardner

(1995) do not find any effect on the price and trading volume of newly included firms 

in the Dow Jones Industrial Average, and they point at the scarcity of funds pegged 

to the DJIA as the main reason for this. According to figure 2.1, inclusion in the S&P 

500 during 2003 implies an additional demand due to indexers for about 12% of the 

outstanding shares. While the role of this demand shift is generally acknowledged in all 

the studies on list changes, researchers disagree on the tem porary/perm anent nature of 

the price impact as well as on the explanation for it [Chen, Noronha and Singal (2004) 

and Singal (2003) contain a detailed literature survey].

Until October 1989, Standard and Poor’s announced the inclusion of a new stock in 

the S&P 500 after the close, the change becoming effective by the following open. After 

October 1989, Standard and Poor’s switched to preannouncing changes in the S&P 500 

usually five days before the inclusion. The aim of this new practice was to ease post­

announcement order imbalances for companies added to the index. As documented in 

Beneish and Whaley (1996), Lynch and Mendenhall (1997), and more recently Blume 

and Edelen (2004), prices increase after the announcement but they do not immediately 

adjust to  the level prevailing upon inclusion. This pattern clearly opens the way to 

profitable opportunities. In fact, Beneish and Whaley (1996) argue tha t indexers might 

enhance their returns buying earlier during the announcement period, thus making the 

entire price adjustment occur after annoucement. However, Blume and Edelen (2004) 

show th a t this early-trading strategy dampens passive managers’ performance resulting 

in higher tracking errors. Looking at the volume pattern around index replacements, 

they conclude tha t half of the funds pegged to  the S&P 500 submit their orders during 

the effective day of inclusion. Similarly, Beneish and Whaley (1996) find tha t prices 

tend to  increase from the open to the close on the effective day over their 1989-1994 

sample, supporting last day buying pressure by index funds. Moreover they document 

a tem porary upward shift in the average trade size, which the authors relate to pegged
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funds waiting until the effective day to  rebalance. These findings are consistent with 

daily tracking error being the driving criterion for indexers’ performance evaluation.

While the announcement timing of index replacements does not affect passive man­

agers’ behaviour, it has relevant effects on other market participants. Under the old 

announcement practice, indexers would step into the market at the open immediately 

after the Standard and Poor’s public announcement. It follows tha t there would not be 

profitable speculation unless the announcement is anticipated by some traders. However 

inclusions in the S&P 500 do not seem to be predictable due to the above mentioned 

Standard and Poor’s discretionality in selecting stocks for the index, casting doubts on 

investors anticipating replacements. Singal (2003) provides anecdotal evidence on fail­

ures in predicting index changes. On the other hand the new preannouncement practice 

makes attractive front-running passive assets through the so-called ‘S&P game’: buy 

the included stock immediately after the announcement, and sell it at possibly higher 

prices after the indexers’ demand is satisfied. Trading activity dynamics exhibit abnor­

mal average volume following the announcement, which one can attribute to investors 

-ra th e r than indexers- playing the S&P game. Beneish and Whaley (1996) show how 

such a strategy yields significant abnormal returns, even accounting for transaction 

costs. Blume and Edelen (2004) report a 19.2 basis point yearly return associated with 

the S&P game over their 1995-2000 sample. Early-trading profitability is also docu­

mented in Singal (2003) for inclusions between January and July 2002. These findings 

support the argument tha t ‘an investor who requires tha t an indexer maintain tracking 

errors of just a few basis points a year is giving up additional returns. [...] Forgoing these 

additional returns can be viewed as an agency cost in delegating investment decisions’ 

[Blume and Edelen (2004), p. 3].

Taking the empirical evidence mentioned above as a starting point, this paper con­

tributes to the literature in several ways. In the first place we provide a modelling 

framework for index replacements: while several studies document returns and trading 

activity patterns around inclusions, on the theoretical side little work has been done. In 

Wurgler and Zhuravskaya (2002) demand shifts generate large stock price movements 

whenever stocks are not perfectly substitutes. Their model is static and, admittedly, 

cannot be applied to preannounced index changes. W ithin the market microstructure 

literature, several authors considered the value of anticipating uninformed trades such 

as passive funds’ demand. Building up on Kyle (1985) some extensions have been pro­
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posed addressing this issue. Rochet and Vila (1994) develop a static game in which the 

insider is aware of both the final liquidation value and the noise traders’ demand while 

submitting his (limit) order. W ith respect to the static Kyle (1985) equilibrium, they 

show tha t an informed investor trades less aggressively on his price signal and in the 

opposite direction of his volume signal, offsetting half of the uninformed trades. The 

aggregate order flow and market liquidity decrease, while prices as well as the insider’s 

unconditional profits are unaltered.

The latter result seems to preclude any role for profitable speculation based on 

knowledge of uninformed trades. However in a dynamic setting this is no longer the 

case, as shown in Yu (1999). At every batch auction the insider’s information set -  

in addition to the final liquidation value- comprises a noisy signal of the uninformed 

trades. Comparing the insider’s expected profits arising from this model to  the sequen­

tial auction equilibrium in Kyle (1985), it is shown th a t both the value of knowing 

(current) noise trades and market liquidity depend on the signal’s precision. Our anal­

ysis is closely related to the two-period trading model in Madrigal (1996), where a 

(non-fundamental) speculator profits from privileged information on past uninformed 

trades he is endowed with. The author shows tha t this superior knowledge enables the 

speculator to make sharper forecasts of the final liquidation value with respect to the 

market maker. The profitability of strategies based on non-fundamental information is 

analyzed in Foucault and Lescourret (2003) as well.

In this chapter we explicitly model the preannouncement practice in S&P 500 re­

placements after October 1989 considering a market in which an insider coexists with 

a speculator who possesses superior information with respect to future uninformed 

trades, i.e. passive funds’ entry at the effective inclusion date. The second contibution 

of our paper lies in the empirical evidence we provide. We analyze trading volume and 

bid-ask spreads around index additions between 1989 and 1999. While volume patterns 

have been extensively documented (and our findings are in line with the existing lit­

erature), spread dynamics have received little attention. Edmister, Graham and Pirie

(1996) and Erwin and Miller (1998) document improved liquidity, i.e. tighter bid-ask 

spreads, after inclusion. However both works consider additions before October 1989, 

thus offering no grounds for studying the S&P game. To our knowledge spreads under 

the S&P preannouncing policy are analyzed in Beneish and Whaley (1996) only. The 

authors report a significant spread decrease on the day following the inclusion. On the
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other hand we find tha t index additions worsen liquidity. One possible reason for this 

contrasting evidence is the different sample, since we consider 108 inclusions whereas 

Beneish and Whaley (1996) deal with 30 companies added to the S&P 500.

The outline of this chapter is as follows. The benchmark model is presented in section

2.2 where the equilibrium in the absence of the speculator is analyzed. Section 2.3 

explicitly introduces a role for non-fundamental speculation based on strategies like the 

S&P game. We show tha t front-running index funds is indeed profitable, and results 

in higher volume and lower liquidity. Section 2.4 discusses testable implications arising 

from the theoretical model, while section 2.5 presents the empirical evidence on S&P 

500 inclusions. Finally section 2.6 concludes.

2.2 Passive funds and index replacements

2.2.1 Model setup

2.2.1.1 Asset markets and changes announcements

We develop a two period sequential trading game along the lines of Kyle (1985). Trading 

takes place at two dates t = 1,2 and the market operates as a batch auction. There 

are two traded assets: a riskfree asset whose net payoff is normalized to zero, and a 

risky asset with final liquidation value /  ~  N  whose realization occurs after

the second trading round. The trading dates capture the timing in index replacements 

as follows. Before trading takes place at t =  1 the authorities announce the change in 

the index composition. Further to the stock(s) added to/removed from the index, it is 

announced tha t the change is effective after the second trading round.

2.2.1.2 Agents

There are three types of agents in the market: an insider, a market-maker and noise (or 

uninformed) traders. Both the insider and the market maker are risk neutral. At each 

date the trading process is modeled as a two-stage game: in the first stage the insider 

and the uninformed traders submit their orders to the market maker; in the second 

stage the market maker determines the price at which the market is cleared. The insider 

submits his orders {x t} t=i 2 at both dates. The noise in the market comes from two 

different sources: liquidity traders and passive funds. The main difference between these 

two groups is tha t passive funds enter the market at date 2 only, while liquidity traders
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submit their orders {ut}t=i 2 at both dates. More specifically we assume tha t u\ ~  

N  (0,(7̂ )  and u2 N  (0,cr^2) , with ( /, u \ ,u 2) mutually independent. Further to the 

liquidity traders there are indexers active at the second trading round. Passive trades 

are denoted by z2 ~  N  (zo, 0^ 0) are orthogonal to the other random variables / ,  u\ 

and u2?  The joint distribution of { f ,u i ,u 2,z 2) is common knowledge among market 

participants before the game starts. The date t aggregate order flow {wi}t=1 2 is given 

by lji = x \  +  u\ and uj2 =  x 2 -f- u2 +  z2 respectively.

The noise trading specification slightly departs from the standard assumptions, and 

the way we model z2 aims at capturing several aspects in passive managers’ behaviour. 

F irst of all we allow liquidity trades’ variance {&ut }t=i 2 vary over time- Later on 

we compare equilibrium parameters under different market conditions, and use this 

flexibility in order to keep the overall uninformed variance constant through time. 

Secondly, replicating strategies are not based on any information related to the asset 

fundamental value. As mentioned in the Introduction, every time the index composition 

changes, passive managers should rebalance their portfolios. As such indexers can be 

regarded as uninformed traders submitting orders due to  changes in the benchmark 

they replicate. In the third place, pegged funds’ performance is assessed via tracking 

error procedures, and in our model the index replacement is effective after date 2. 

Optimizing the fund’s performance (relative to the index) on a daily basis thus leads 

passive managers to rebalance on the inclusion day rather than  immediately after the 

announcement, i.e. at date 2 rather than at date 1 in our model, consistently with the 

evidence in Beneish and Whaley (1996) and Blume and Edelen (2004). Eventually, we 

consider a shift in expected uninformed trades between the two dates via the term  zo, 

which reflects passive funds stepping into the market at the second round. In general 

we relate the magnitude of this shift to the weight pegged funds have relative to  other 

liquidity traders.

2.2.1.3 Information structure

W ithin our strategic trading setup -as  well as in the various extensions to Kyle (1985)- 

uncertainty among market participants is captured by two random variables: the final 

liquidation value and uninformed trades. We therefore distinguish the information re­

lated to these variables as fundamental and non-fundamental respectively, along the 

same lines of Madrigal (1996). Let and denote the insider’s and market maker’s 

information set at time t. At each trading round the market maker observes the ag-
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TABLE 2.1. Information structure.

info set

date 1

strategy

date 2

info set <f>2 strategy

insider ( /) f , u  1 XI  ( f , u l) U U 2 , uji x 2 ( / ,  U2 )

market maker (M ) w 1 Pi (^ l) U u>2 P2 (wi,u;2)

insider ( / ) f , u  1 x i  (s\<f>[)) UU2,S,V,W i X2  ( / ,  U 2 , S , V )
speculator (5 ) V 2/1 O') U s ,w i V2 (s , v )
market maker (M ) u>l Pi (w i) $1^ U U>2 P2 (wi,W2)

Information sets and strategies for market participants. Top panel: game without non-fundamental speculation  

(see section 2.2); bottom  panel: game with non-fundamental speculation (see section 2.3).

gregate order flow, such tha t =  {u/s,s  <  t}. The price in period t is assumed to 

satisfy the semi-strong efficiency condition:3

Vt =  E { f \ < b ? )  , * =  1,2 (2.1)

After each trading round, the price becomes common knowledge among market par­

ticipants. The insider possesses superior information regarding both the asset’s funda­

mental value and other non-fundamental aspects of the market. The insider is aware 

of the final liquidation value before the trading game starts .4 Further to this fun­

damental information, the insider knows the quantity submitted by liquidity traders 

-b u t not passive funds- at date t before filling his order x t , i.e. =  { /, iti} and 

$2 =  U {pi,U 2 }- Thus the insider possesses long-lived fundamental information as 

well as short-lived non-fundamental information. The information structure is summa­

rized in table 2.1.

Our information structure departs from the existing literature in the following as­

pects. As in Foster and Viswanathan (1994) and Kyle (1985) the insider is endowed 

with long-lived information on the final payoff / .  Further, in our game the insider is also 

aware of the contemporaneous liquidity trades, thus making our setup closer to Rochet 

and Vila (1994) and Yu (1999). In the absence of date 2 pegged trades our trading 

game reduces to a two-period version of Rochet and Vila (1994) or, equivalently, to the 

game in Yu (1999) with non-distorted information on uninformed trades. However the 

entry of passive funds moves the insider away from complete knowledge about noise 

trades at the second trading round. Therefore our specification resembles a two-period 

version of Yu (1999) with time-varying quality of the insider’s signal about uninformed 

trades.
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2.2.2 Equilibrium construction and description

We focus on linear equilibria for our trading game. For the insider we denote the period t 

profit by { v \  =  it\ (cjs , s  < £)}, i.e. 7r{ =  x \ ( f - p i  (wi)) and 7r  ̂ =  x 2 ( f ~ P 2  (wi,W2))- 

A Bayes-Nash equilibrium (BNE) is defined by a set of linear functions {xt  (•) ,pt (')}*=i 2 

such tha t the following conditions hold:

1. insider’s profit maximization: the insider chooses x \  to  maximize total profits

E [ ' k [ { u i ) +  'k { (wi,w2) | $ i ]  , (2.2)

given tha t x 2 maximizes second period profits

E [ * ^(w i,W 2)|$3  • (2.3)

2. market efficiency: the market maker sets prices according to equation (2.1), i.e.

Pl =  £ ( / | $ f )  (2.4)

P2 =  £ ( / | $ f )  (2.5)

P ro p o s itio n  1 Let the following conditions hold:

2 \ 2 — A i  a i ° / , o
ai =  A1 (4A2 - A 1) ; (>1 =  aiAl ; Xl = a \„ la + { I - bl? o lU \

1 x a f, 1a2 =  77T-  ; a 2 = --------------
2A2 '  (  2 2 V/2+  40-2 0 j

where Ofti is the fundamental value residual variance after the first trading round. Then 

there exists a linear BN E in which strategies and prices are o f the form

x i = a\ ( /  - p o )  -  b\u\ (2.6)

x 2 =  a2 ( f  -  pi) - u 2/2  (2.7)

Pi = Po +  Aiuq (2.8)

P2 = Pi + A2 (U)2 -  z q ) (2.9)
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Furthermore, i f  the following condition holds

Ai (4A2 -  Ai) >  0 (2.10)

the equilibrium is unique.

The equilibrium strategies in Proposition 1 have the following interpretation. Before 

trading takes place at date 1, the market maker’s forecast of the random variables 

( / ,  tii) coincides with the unconditional means (po> 0). Thus at time 1 the insider trades 

on the market maker’s misperception of the final liquidation value ( /  — po), and current 

liquidity trades u \. The insider places a positive weight (ai >  0) and a negative one 

(—61 <  0) respectively on the former and the latter forecast error. After the first trading 

round, the market maker updates his beliefs about the liquidation value to  p \ . Since the 

first period aggregate order flow does not contain any information about 2:2 , the market 

maker doesn’t learn anything about passive trades. As a consequence, date 2 passive 

funds’ conditional mean coincides with its unconditional counterpart z q .  In section 2.3 

we discuss how non-fundamental speculation arising from the S&P game modifies the 

la tter feature. Thus at date 2 the insider trades on the market maker’s misperception 

of the final liquidation value { f  — P i ) , and current liquidity trades m2. The weights 

on the market maker’s errors are consistent with the ones prevailing during the first 

trading round: positive on ( /  — pi)  -since a2 > 0-, and negative on u2. The insider’s 

trading intensities in eqs. (2.6) and (2.7) are consistent with the previous literature: 

date t  trading aggressiveness on the fundamental information -as captured by a i and 

a 2-  is positive like in Kyle (1985). Moreover at every batch auction the insider trades 

against current uninformed orders like in Yu (1999), given tha t the intensities on ut are 

negative. Finally at date 2 the insider offsets half of the (contemporaneous) liquidity 

trades as in Rochet and Vila (1994). Equilibrium prices have the usual linear form 

with At capturing the price response induced by unit-size changes in the aggregate 

order flow. Equivalently, 1/A* is the date t  market depth (or liquidity5): large values 

for Xt imply tha t prices are extremely sensitive to  changes in the order flow, which 

occurs in illiquid markets. Finally, we define the fundamental value residual variance as 

a 2 t — var  ( / 1$ ^ ) ,  i.e. the final payoff variance after t rounds of trading. | l / c r ^ f |  

therefore gives the speed at which private information about /  is revealed to the market, 

and it can be thought of as measuring market efficiency.
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The equilibrium for our trading game is investigated in figures 2.2-2.6. We normalize 

the initial fundamental volatility setting cr̂ 0 =  1, and consider uninformed trades’ 

uncertainty at both dates to be equal to the fundamental variance, i.e. o \  =  1 and 

av,2 +  az,o =  1- Farther we define kj  = and refer to  k i as the quality of

the insider’s non-fundamental information (or equivalently the insider’s informational 

advantage6). In fact cr̂ 2 =  cr̂ 2 (cr^2 +  0) 1 can be interpreted as the share of date 2

uninformed orders channeled by the insider to the market maker. Therefore kj  denotes 

the insider’s informational advantage (relative to  the market maker) with respect to 

date 2 noise trades: high values for ki correspond to small passive funds’ volatility, 

which in turn implies tha t g\ 2 captures most of the noise trading volatility at date 2. 

For example if ki =  1, the variance of the uninformed trades observed by the insider 

is half of the entire noise trading variance faced by the market maker at date 2. We 

consider several values7 for kj  and plot the parameters in Proposition 1 in figures 2.2-

2.6 (solid line). The dashed line corresponds to a two-period Rochet and Vila (1994) 

trading game (henceforth RV) in which passive funds are absent at date 2, such tha t 

the insider is aware of current liquidity trades at both dates. Clearly, our trading game 

resembles RV when fcj is large, or equivalently when o \  0 is negligible relative to  .8

We plot insider’s intensities bi and a,2 in figure 2.2, while values for Ai and A2 are 

reported in figure 2.3. Since At measures the adverse selection costs faced by the market 

maker at round t , it is not surprising tha t A2 increases in the insider’s advantage kj  

(figure 2.3-panel B). Recall from the equilibrium strategy (2.7) tha t the second period 

trading intensity on current liquidity orders does not depend on k j , and is equal to 

— 1/2 as in RV and Yu(1999). Therefore at date 2 the insider’s advantage 

affects the trading aggressiveness 02 only, which is shown to be decreasing in k i (figure 

2.2-panel C). This is due to  the mentioned finding th a t date 2 liquidity -as  measured 

by I/A 2-  decreases with kj.

Turning to date 1 parameters, we note tha t both the trading intensities a\ and 

b\ increase in ki (figure 2.2-panel A and B respectively). The bottom line of figure

2.2 is tha t the insider increases his trading intensity with respect to  both sources of 

information together with his informational advantage. This means tha t the insider 

incorporates more information on both /  and u\ in his trade x \  as k j increases: since 

the insider anticipates the negative relationship between kj and date 2 liquidity, he 

increases his aggressiveness with the information quality during the first trading round.
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FIGURE 2.2. Insider intensities.
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FIGURE 2.3. Market liquidity.
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The market maker’s reaction is to make date 1 liquidity decreasing with kj as well 

(figure 2.3-panel A).

Following Admati and Pfleiderer (1988), we decompose date t trading volume into its 

components. The contribution of the insider to the expected total volume is therefore
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given by (see section 2.4 and appendix A for further details9)

s, ,.u
We plot V{ and V27 m figure 2.4 (panel A and B respectively). Consistently with the 

previous analysis for the trading intensities, V{ increases (resp. V/ decreases) with the 

informational advantage. The residual variances a2 1 and a2 2 are depicted in figure 2.5 

(panel A and B respectively), as well as the ratio o2 xja 2 2 =  which captures

the market efficiency dynamics through time (panel C). As shown in appendix A, a2 t is 

negatively related to the insider intensity at and the price sensitivity A*. Therefore, date 

1 efficiency 1/cr^ 1 increases in fc/, since both ai and Ai increase with the informational 

advantage. Furthermore a2 i/cr2f 2 does not depend on fc/, which means that the positive 

relation between kj and date 2 efficiency in panel B is entirely due to the increase in 

date 1 market efficiency.

FIGURE 2.4. Insider volume.
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The insider’s unconditional expected profits are depicted in figure 2.6 (panel A). Un­

like other variables, ex-ante gains are non-monotonic in &/. At a first sight this might 

seem surprising, as one would expect insider’s profits to increase together with the 

information quality cr22/cr2 0. On the other hand figure 2.6 suggests that the insider is 

(ex-ante) worse off with more precise information whenever ki is below some threshold 

value (in figure 2.6 the minimum value is 0.8527 corresponding to ki = 1.4). Yu (1999)
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FIGURE 2.5. Price informativeness.
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FIGURE 2.6. Profits.
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(figure 2, p. 92) documents a similar behaviour and notes that the insider is not neces­

sarily better off with more precise non-fundamental information. Furthermore he shows 

that a U-shaped curve for ex-ante gains is more likely to emerge when the number of 

batch auctions is small, as in our model. Therefore the pattern in figure 2.6 is in line 

with results in Yu (1999). Comparison between figures 2.3 and 2.6 suggests that the 

insider expects to lose out to a lower date 1 market depth as his information becomes
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more precise until a threshold level: within this region, liquidity decreases very rapidly 

with kj such tha t profits decrease with the informational advantage.

2.3 Non-fundamental speculation and the S&P game

2.3.1 Model setup

In what follows we explicitly introduce a role for purely non-fundamental speculation 

(the S&P game) within the setup outlined in section 2.2. As explained in the Intro­

duction, what lies behind this speculative opportunity is privileged information about 

passive assets, together with index changes preannouncement. For what is not men­

tioned in this subsection, we maintain the assumptions in subsection 2.2.1.

2.3.1.1 Agents

We introduce another risk-neutral informed trader, the (non-fundamental) speculator. 

While the insider receives both fundamental and non-fundamental information, the 

speculator is endowed with non-fundamental information only, as specified later in 

this subsection. At both trading dates the speculator submits orders {yt}t=i 2 t°  the 

market maker. The aggregate order flow therefore becomes u>i = x i  +  y\ +  u\ and 

U 2  =  X2  +  2/2 +  U2  +  Z2.

2.3.1.2 Information structure

Let <E>f denote the speculator’s information set at time t. The speculator knows the 

demand submitted by a subset of passive funds before the game starts. As a consequence 

we decompose the passive industry demand Z2 into two components v and w: the former 

aggregates the trades known by the speculator, while the latter groups the demand 

subm itted by other passive funds:

z2 = v +  w ~  N  (vo +  w, +  gIj)

where vq = E  ( v ) , w = zq — vq, crj 0 =  var (v ) and <7^  =  cr̂ 0 — &v,o- speculator’s 

information sets are given by $>f =  {u} and U {p i} , implying tha t the

speculator is endowed with (long-lived) non-fundamental information.

The focus on the role of purely non-fundamental speculation [not considered in Kyle 

(1985), Foster and Viswanathan (1994), RV and Yu (1999)] closely resembles the anal­
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ysis in Madrigal (1996). However we depart from Madrigal (1996) in several aspects. 

First of all the speculator is endowed with superior knowledge about a fraction of fu ­

ture -rather than past- uninformed trades. It follows tha t in our model the speculator 

exploits his advantage trading at both dates, while in Madrigal (1996) he enters the 

picture at date 2 only. In the second place the speculator acts as a monopolist on his 

privileged information in the first trading round, and competes with the insider at the 

date 2, whereas Madrigal (1996) focuses on the la tter feature only.

Most of the literature on asymmetries in financial markets is concerned with funda­

mental information, and knowledge about the final payoff is widely accepted as arising 

from analysts’ research activity as well as confidential discussions. On the other hand 

informational advantages on uninformed orders can be traced to brokers engaging in 

proprietary -o r dual- trading. Brokers both execute trades on behalf of their (liquid­

ity) customers and fill in orders on their own account. As a consequence, brokers can 

engage in dual-trading based on the ability to  observe their clients’ orders. In Madrigal 

(1996) the speculator channels liquidity orders in the first round and then uses this 

information (together with the price set by the market maker) to  forecast the final 

liquidation value.10 Similarly in Foucault and Lescourret (2003) the speculator is not 

endowed with fundamental information, but he observes contemporaneous liquidity 

trades before submitting his order. This leaves open the question as how our spec­

ulator gathers more precise information about indexed assets ahead of other market 

participants. As a m atter of fact one might object tha t preannouncing index changes 

conveys information to the whole market about passive funds’ entry at the inclusion. 

For example one might use publicly available data  on pegged funds capitalization [like 

the S&P survey (2003)] and infer the realization of Z2 - However this estimate would be 

accurate only in case passive funds track the index via full replication, i.e. buy all the 

stocks in the index and in the same proportion, and if funds do not experience inflows 

and outflows during the year -which is rather unlikely.11 Even though in principle full 

replication allows to track the index very closely, it entails substantial administrative 

costs due to the number of stocks to be bought/sold and, consequently, the number of 

dividends to be handled. Given tha t these costs might dampen passive funds’ perfor­

mance and result in larger tracking errors, indexers can resort to other strategies such 

as stratified sampling or optimization techniques. Based on the Morningstar database, 

Blume and Edelen (2004) report tha t the vast majority of funds indexed to the S&P
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500 hold roughly all the stocks included in the index. However, as the authors suggest, 

this does not necessarily imply tha t all the funds implement full replication techniques. 

For instance Blume and Edelen (2004) argue tha t the increase in the tracking error for 

the Vanguard 500 Index Fund -one of the largest passive funds- after 1998 is incon­

sistent with full replication. This example suggests tha t knowledge about the tracking 

procedures actually implemented by individual passive managers is inherently difficult 

to  gather, and as a consequence the realization of z2 cannot be regarded as public infor­

mation. Thus we consider public data on passive industry capitalization as providing 

the expected passive funds’ orders zq =  vq -1- w  to  the whole market, and reasonably 

conceive tha t some traders are endowed with superior information about 22- F°r ex­

ample, a broker might learn something about the replication technique implemented 

by a given fund manager because he previously executed his trades. Alternatively, an 

indexer can direct his order to  a broker under the agreement th a t execution occurs at a 

specified future date. Both these cases would generate non-fundamental informational 

advantages consistent with our speculator’s information sets. Confidential discussions 

with passive fund managers would fit into the same specification and result in long-lived 

information on future uninformed trades as well.

As a consequence of these assumptions, our trading game inherits several interesting 

features. When trading at date 1 both the insider and the speculator impound their 

information into orders x \  and y\. Time 1 noise trades u\ keep the aggregate order 

flow away from fully revealing both the insider’s information ( /, u i)  as well as the 

speculator’s information v. After observing the aggregate order flow uq, the market 

maker forms an estimate v\ of future passive trades:

(2.11)

Note that our trading game allows the market maker to update his beliefs on (a fraction 

of) the second period uninformed trades as well as on the final liquidation value -  

through the price p \ -  and to  use these updates when setting the market clearing price 

at date 2. The existing literature concentrates on the market maker’s inference on 

the final payoff only: posteriors on noise trades are not considered, since informed 

agents are endowed with signals on either current or past uninformed orders. In Yu 

(1999) the insider receives at each date t (a signal of) contemporaneous noise trades. 

Nonetheless the independence through time of liquidity-motivated orders prevents the

ui = E ( v \ $ ¥  )
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market maker from extracting any signal on time t 4-1 noise trading based on the order 

flow received at time t. A similar argument holds for both Foucault and Lescourret 

(2003) and Madrigal (1996).

The information on v, together with the price realization pi, allows the speculator to 

form a superior estimate of /  relative to  the market maker. After the first trading round, 

the speculator nets out the insider’s and liquidity traders’ demand out of the aggregate 

order flow -due to price linearity in u q - and extracts a signal s of the fundamental 

value tha t is more precise than the market maker’s expectation:

s  =  £ ( / | $ f )  =  £ ( / | x r  +  u 1 )  ( 2 . 1 2 )

Therefore the speculator can profit on the difference (s — p{) because noise trades in 

period 2 will prevent the order flow from revealing the speculator’s information. The 

insider reacts to the speculator’s presence incorporating an estimate of s when trading 

in the first round. A similar signal extraction problem and the incentives for the insider 

to  manipulate the first period price are analyzed in Madrigal (1996).

On the other hand the insider infers the speculator’s information about v after ob­

serving the first period price. Note, however, tha t the information structure enables 

the insider to know the realization (of a fraction) of passive funds’ trades u, while the 

speculator extracts only a signal s of the fundamental value / .  As such our model 

displays a hierarchical information structure12 during the second trading round. Bor­

rowing the terminology in Foster and Viswanathan (1994) the insider is the ‘better 

informed trader’ and the speculator is the ‘lesser informed trader’ at date 2.13 The 

information structure is summarized in table 2.1.

2.3 .2  Equilibrium construction and description

Let date t  speculator’s profits be defined along the same lines as in section 2.2, i.e. 

7rf =  yi ( f  —  pi (uq)) and 7rf =  V2 ( /  —  P2 (^ i» ^ 2 ) ) -  A  BNE for our trading game is 

given by a set of linear functions {xt (•), yt (•) ,Pt (')}*=i 2 satisfying the insider’s profit 

maximization [see conditions (2.2,2.3)], market efficiency [see conditions (2.4,2.5)] and 

the following:

speculator’s profit maximization: the speculator chooses y± to maximize total profits

£ [ ^ 1  (k>i) +  7rf ( w i ,o > 2 ) |$ f ]  , (2.13)
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given tha t 7/2 maximizes second period profits

£ [ 7 r f ( W1,w2) |$ f ]  . (2.14)

Requirements (2.13,2.14) amount to look for a pair of linear functions y\ (•) and 

2/2 (•) such that 2/1 =  2/1 (v ) and V2 =  2/2 (s ,v ) , where s is defined in eq. (2.12). Recall 

tha t within our informational structure the insider knows -prior to  trading at time 

2- the signal s tha t the speculator extracts from p \ . As a consequence, when trading 

at date 1, the insider keeps into account the effect of his order on the speculator’s 

estimate of the final liquidation value jE7 ( s| ^ 1) =  E  (E  ( / |  | ${)• The insider’s

trading strategies are therefore given by a pair of linear functions x \  (•) and X2 (•) such 

tha t x \  = x \ (f,u i> E  (s | $>{)) and X2 = X2 ( f,U 2 , s ,v ). At t =  1 the insider trades on 

the speculator’s (expected) mispricing, i.e. the difference between E1 (s | <f>{) and the 

true liquidation value, as well as on the market maker’s mispricing, i.e. the difference 

between the realization /  and pq. This amounts to  conjecture the following form for

xi:

x i = a  ( f  -  p0) +  /3ui +  7  (E  (s | ${) -  / )  (2.15)

Note th a t the insider’s date 1 trade depends on the (estimate) of the speculator’s 

conjecture of the final liquidation value, which depends itself on the insider’s first 

period trade. Thus one needs to  solve for E  (s | ${) and then verify the consistency 

between the resulting expression for x \  and the speculator’s belief s .14

P rop osition  2 Let the following conditions hold:

(2Ai +  <t> -  2A2 li?
ai =  d~x ( l - 2A l+ 6A2 2A2M)  / i>i =  1—d-1Ai ; d =  2A i~ 18A2

9 /  ’ * 9A2

1 ~  2 a2
02 =  2X2 ; C2 =  x

a i a j g
Ai =  --------------

ai a f,0 +  C1 “  W 2 +  C fr lo  

A2 =  E _1 (~ 2 a fv>1 +  [4<r}Wjl +  (9a}tl -  a ^ )  E ]1/2)  ; E =  9crj2 +  36<7* +  4 a ^
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where cPf^ an^ a f v , i  are residual variances after the first trading round (defined 

in appendix B). Then there exists a linear BNE in which trading strategies and prices 

are o f the form

x i = ai ( f  -  p0) -  biui ( 2 . 1 6 )

X2 =  a*2 ( /  — P i)  — U2 / 2  — C 2  ( s  — p i )  / 2  — ( v  — v i )  / 3  ( 2 . 1 7 )

J/i =  C \ ( v - v  0 )  ( 2 . 1 8 )

2/2 =  C2 ( s  -  p i) -  (v -  vi) / 3  ( 2 . 1 9 )

Pi  =  Po +  A i c u i  ( 2 . 2 0 )

P2 =  Pi  +  M  ( w 2  -  z i )  ( 2 . 2 1 )

where s  is the speculator’s belief on f  conditional on 4>f > and z \  =  v\ +  w is the market 

m aker’s belief on v conditional on

s = Po +  0 (zi +  ui) (2.22)

vi = vo + p  (x\ +  yi +  u i) ( 2 . 2 3 )

The updating coefficients in ( 2 . 2 2 ) , ( 2 . 2 3 )  are given by

6 =  _________

_  C l CT/,0

M +  (1 ~  61) +  C i<^j0

Furthermore, i f  the following condition holds

( 2 A i  +  <t> -  2 A 2 M) 2  _  „

2A l---------------------I8A2-> 0

the equilibrium is unique.

The equilibrium strategies in Proposition 2  have the following interpretation. Before 

trading takes place at date 1, the market maker’s forecast of the random variables 

( / ,  u i, Z2 ) coincides with their unconditional mean (po, 0, 20). Thus at time 1 the insider 

trades on (1) the market maker’s misperception of the fundamental value ( / —po)

as well as current liquidity trades u\, and (2) the speculator’s (expected) forecast

(2.24)

(2.25)

(2.26)
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error J5 (s |$ { ) — / .  Therefore the presence of the speculator results in the insider 

manipulating his trades (relative to the equilibrium in Proposition 1) as a reaction to 

the speculator’s extraction of the signal s. On the other hand the speculator trades on 

his informational advantage -w ith respect to  both the market maker and the insider- 

(v — uo). After observing uq, the market maker forms the posterior v\ according to 

(2.11), such tha t the passive industry conditional mean is given by z\ =  v\ +  w. 

Therefore, after the first trading round, the market maker’s update on ( /,  z<i) is given by 

{pi, 21).15 A similar argument to  the one used for first period orders ensures that at date 

2 the insider trades on (1) the market maker’s misperception of the final liquidation 

value ( /  — pi) as well as current liquidity trades U2 and (2) the speculator’s forecast 

error (s — / ) .  The linearity assumption further implies th a t the insider trades on the 

market maker’s misperception of the passive orders {v — v \ ) . Similarly, the speculator 

trades on his informational advantage (with respect to  the market maker only) captured 

by the terms (v — vi) and ( s  — p\).

As mentioned in the Introduction, the S&P game consists in front-running index 

funds. In our trading framework, the S&P game would translate into the speculator 

buying at date 1 whenever the market underestimates the realization of v, and sub­

sequently selling at date 2. Conversely, the speculator should sell at date 1 whenever 

the market overestimates pegged trades, i.e. v < T>o, and buy back at date 2. Since 

the speculator trades against (v — v\)  [see equation (2.19)] during the second trading 

round, the occurrence of the S&P game depends on the sign of the coefficient C\ in 

(2.18). In fact, we show the following:

C o ro lla ry  1 In equilibrium the speculator plays the S&P game, i.e. C\ >  0.

The effect of the speculator on equilibrium parameters is analyzed in figures 2.2-2.9. 

Along the same lines we used in section 2.2 for the insider’s non-fundamental advantage 

hi, we let ks  = be the precision of the speculator’s information. Higher values

for ks  imply that the speculator is able to make sharper inference relative to the rest 

of the market. We set ks  equal to 0.33, 1 and 3, and refer to  these three cases as 

low, medium and high (speculator’s) informational advantage respectively. In figures 

2.2-2.9 we plot equilibrium values corresponding to ks  =  0.33, 1 and 3 with circles, 

squares and triangles respectively. The other underlying parameters are set accordingly 

to section 2.2.



2.3. Non-fundamental speculation and the S&P game 35

FIGURE 2.7. Speculator intensities.
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FIGURE 2.8. Speculator volume.
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T rade  aggressiveness an d  m ark e t liqu id ity

When trading at date 1, the speculator places a positive weight (C\ >  0 from Corol­

lary 1) on the market maker’s initial forecast error (v — vo) and then reverses his 

strategy at date 2 (with intensity equal to —1/3). From the expression for yi the 

speculator offsets one third of the (current) passive trades at date 2. This finding is 

consistent with RV and the trading game in Proposition 1, keeping into account that 

in Proposition 2 both the speculator and the insider trade on the same information
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v at the second round, thus offsetting 2/3 of the date 2 indexed trades. As is known, 

Cournot competition on the indexers’ order v between the two informed agents results 

in higher aggregate intensity on v. Furthermore from eq. (2.17) -as  well as from RV and 

eq. (2.7)-, the insider acts as a monopolist on date 2 liquidity trades, thus offsetting 

50% of U2 . Consider the case in which the demand from passive funds known by the 

speculator is large relative to its unconditional value, i.e. (v — v q )  »  0. Other things 

equal, this would determine an increase in p 2 thanks to  the linear pricing rule (2.21) 

and A2 > 0. Since the speculator observes the realization v one period ahead of the 

market maker, he forecasts the increase in P2 induced by unexpectedly large passive 

trades v. As a reaction the speculator trades positively on (v — vo) at the first date and 

profits from the price difference between the two trading rounds. Note the difference 

in the trading intensity on v between the two dates (figure 2.7): the trading aggres­

siveness on v increases through time, since C\ is always smaller than 1/3. This arises 

from the fact tha t the information about v impounded by the speculator’s trades at 

date 1 allows the market maker16 to make a sharper inference about the second period 

indexed assets via the posterior v\. Furthermore C\ decreases with ks  and increases 

with kj. The first finding is consistent with the speculator trying to  keep his advan­

tage in forecasting the final liquidation value with respect to  the market maker, thus 

incorporating less information whenever ks  is large. The second finding is related to 

the insider’s behaviour at the first trading round. From Proposition 1 we have tha t the 

insider trades more aggressively on both ( /  — po) and u\ the larger is his advantage 

kj. Thus the speculator can hide more of his information to  the market maker as kj 

increases, and as a consequence C\ increases in the insider’s advantage.

The insider reacts to the presence of the speculator increasing his trading intensities 

at date 1 (figure 2.2-panel A and B) relative to Proposition 1. It is worth noting 

tha t while ai monotonically increases in kj -as it happens without the speculator- b\ 

decreases with ki when the speculator’s advantage is relatively high (ks = 3), while it 

increases in kj in the absence of the speculator as well as for low values of ks. In order 

to understand this finding note from figure 2.3 tha t the speculator’s entry decreases 

liquidity at both dates. The market maker faces more severe information asymmetries 

than in the absence of the speculator, and market depth is reduced: A* increases with 

both ki and ks  in all cases but when the speculator’s advantage is high (panel A). 

When this occurs, both Ai and bi decrease in kj. Other things equal, the speculator



2.3. Non-fundamental speculation and the S&P game 37

decreases date 1 liquidity. The insider reacts trading less aggressively on u\ in order 

to counterbalance the negative effect on liquidity due to the speculator’s trades. The 

net result is that date 1 liquidity improves with ki due to the insider’s reaction when 

the speculator’s advantage is high. Finally, note from equation (2.17) tha t the insider 

trades at date 2 in the opposite direction of the signal extracted by the speculator as 

it occurs in Madrigal (1996).

Trading volum e

The insider’s contribution to  the total trading volume is defined along the same 

lines as in section 2.2, and is shown in figure 2.4. V* increases due to the speculator’s 

entry. This is due to the externality imposed by the speculator, which results in the 

insider trading more aggressively in order to exploit his fundamental advantage before 

the speculator makes his superior inference. As a consequence V-[ increases with the 

speculator’s advantage ks- At the second round, the insider’s intensity on his funda­

mental information decreases with ks  as in figure 2.2. Furthermore the insider trades in 

the opposite direction of the speculator’s aggressiveness on his misperception (s — p \ ) , 

which is again decreasing in k s  (see figure 2.7). The overall effect on trading volume is 

th a t V2 decreases with ks  as in figure 2.4 (panel B).

Similarly to V /, the speculator’s volume Vts  is defined as

v? . V h ? .  < - ' . 2

and it is shown to be increasing in the informational advantage ks  in figure 2.8. At 

a first glance this finding might seem inconsistent with the pattern  for the trading 

intensities C\ and C2 in figure 2.7. However in appendix B we show tha t V f  depends 

positively on both the trading intensity Ct and the passive funds’ variance <j^0, the 

latter dependence implying th a t the quantity traded by the speculator increases in 

av,o/aw- This means tha t larger uncertainty on the passive trades’ volatility offers 

more opportunities to hide the speculator’s informational advantage, thus justifying 

the pattern in figure 2.8.

M arket efficiency

Market efficiency improves due to the speculator’s entry: both 1 /cr'ji and l/c ^ 2 

go up with respect to Proposition 1 due to the increased trading aggressiveness of the 

insider in the presence of the speculator. The insider impounds more information about 

the final liquidation value in order to anticipate the speculator’s signal extraction, and
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as a result residual variances are lower in the presence of the speculator. From panel 

C in figure 2.5 it emerges th a t improvements in market efficiency come mainly from 

the first trading round. Recall that in the absence of the speculator, efficiency gains 

&2f  i/& 2f  2 are n° t affected by &/, while they depend on both informational advantages 

in Proposition 2: the higher is the quality of the speculator’s information, the lower is 

the efficiency ratio. In other words the speculator’s precision reduces efficiency gains 

over time.

E x-ante incentives

As for the insider’s expected profits (figure 2.6-panel A) the speculator reduces the 

insider’s motives to trade, like in Madrigal (1996). We note however tha t in Madrigal 

(1996) the speculator acts as a free-rider on the insider’s information extracting the 

signal s, which is a better forecast of the final liquidation value than the price set by 

the market maker. In our game the speculator is able to extract the signal s at the 

additional cost of revealing his privileged information both to the insider (which knows 

the realization v after the first trading round) and to  the market maker (which forms 

the posterior z\ on passive trades after observing the order flow oji). Therefore one 

might expect tha t the insider makes higher profits in the presence of the speculator 

due to  the additional information about v. However figure 2.6 shows tha t this is not 

the case: the negative externality imposed by the speculator on the insider, i.e. the loss 

due to the speculator’s signal gathering activity, dominates the benefit of knowing v in 

addition to  liquidity trades U2 -

As for the speculator’s ex-ante incentives, they increase with his own advantage ks  

and decrease with k j (figure 2.6-panel B). This behaviour hinges on the very same 

trading motives for the insider. Whenever the quality of the insider’s information is 

relatively high, the insider impounds more information on the fundamental value into 

his orders. As a result p\ improves its precision as a forecasting tool for the final 

payoff. The speculator’s inferential ability in extracting the signal s reduces relative to 

the improved market maker’s forecast, and speculator’s ex-ante gains drop.

In summary the effects of the S&P game are as follows. The presence of the speculator 

makes the insider trade more aggressively on both the fundamental value and the 

current liquidity trades at date 1. This arises from the externality imposed by the 

speculator on the insider via the signal s extracted from x \ + u \. The insider has an 

incentive to tilt his trades at date 1 and manipulate pi in order to  avoid the speculator’s
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inference. Market efficiency improves thanks to the increase in the insider’s trading 

intensity following the speculator’s entry. However relative market efficiency is worsened 

by the speculator. Market depth is lowered by the speculator’s entry at both dates. 

This is due to the higher adverse selection costs faced by the market maker in the 

presence of the speculator. Finally, speculator’s profits increase with the quality of 

his non-fundamental information, while the insider’s ex-ante gains are reduced. The 

consequences on market volume and liquidity are further investigated in the following 

section.

2.4 Testable implications

When bringing our model in section 2.3 to the data, we interpret days as rounds. This 

way the first date coincides with the day following the announcement, while the second 

date is the inclusion day.

2.4-1 Trading volume

We follow Admati and Pfleiderer (1988) and decompose the expected to tal volume into 

the contribution of each group of traders. For the model in section 2.2 one has:

Vi = Vi + V2 +  VXM = 1 (Eo |zi I +  -Eo |«i I +  -Eo |w, |) (2.27a)

V2 = V2T + V2L + V2P + V2M = ± ( E 1 \x2\ + E 1 \u2\ + E l \z2\ + E 1 \u2\)(2.27b)

where Et (•) denotes the expectation conditional on time t — 1 public information, and 

superscripts L  and P  refer respectively to liquidity and passive traders. Since all orders 

but Z2 and u>2 are conditionally normal with mean zero, the contributions to date 1 

total trading volume follow from Admati and Pfleiderer (1988). On the other hand, 

in the absence of the speculator one has E \ (22) =  E \ (0J2 ) =  zq ^  0, which implies 

tha t volume at the inclusion depends on the (unconditional) expectation of the passive 

trades (we derive expressions for V f  and in appendix A). We plot V\ and V2 in 

figure 2.9 setting 20 =  2 as a representative case. Note th a t we do not consider volume 

in RV in figure 2.9, since passive trades are absent in this model. During the first trading 

round Vi increases in ki due the insider’s contribution V-/ . 17 The fact th a t V2 increases 

with the insider’s informational advantage as well (panel B) might seem in contrast 

with the analysis for V f , which was shown to be decreasing in kj. In fact, one can
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show tha t V2 decreases with k i as well, since passive volume is proportional to a ^ 0. 

However, liquidity trades increase in their own variance o \^ , or equivalently in the 

informational advantage k\. The latter dependence dominates the other two effects, 

and as a result V2 increases in kj. Moreover we note tha t an increase in the mean 

passive trades zo (not reported for reasons of space) would move V2 further up. Finally, 

the ratio V2 /V 1 (panel C) is always above unity, as to say th a t volume is expected to 

be higher upon inclusion.

For the model developed in section 2.3, the time t market volume is decomposed 

similarly to  (2.27a — 2.27b) as:

V! =  Vf + Vf  +  V1i  +  V'1M =  i ( £ o N  +  ^ | y i |  +  £ o M + £ o M )

V2 = V2‘ + V5S + V2L + V2P + V2M = ^ ( E 1 \x2\ + E 1 \y2\ + E 1 \u2\ + E 1 \z2\ + E l \u2\)

The presence of the speculator increases volume after the announcement (figure 2.9- 

panel A). This stems from the volume generated by the speculator (figure 2.8-panel 

A) as well as from the insider’s manipulative incentives (figure 2.4-panel A). Given 

tha t both V-[ and V f  increase in the speculator’s advantage, it is not surprising that 

V\ increases with ks- Again, while date 1 trades are centered around zero, volume at 

the inclusion depends on the posterior z\ — zo +  v\ in the presence of the speculator. 

Hence the (conditional) expectation of passive trades after the first round plays a role 

in determining both V-f and . Moreover from eq. (2.23) the posterior z\ depends on 

the realization of the first period aggregate order flow (as well as on zo). This implies 

tha t every realization of the first period trades u>i =  x \  ( /,  u\)  +  y\ (v} +  u\ generates 

a different date 2 expected volume. In order to assess the effect of non-fundamental 

speculation on market volume, we therefore replace vi by its estimate v\ using Monte 

Carlo simulation with 1000 draws for / ,  v and u\, and then use zo + v\ instead of z\ in 

the expression for V2 . Volume at the inclusion increases in k j  along the same lines as V2 

in (2.27b) (see figure 2.9-panel B). Note th a t V2 (as well as the volume ratio V2 /V 1 in 

panel C) is inversely related to ks- In fact, while the speculator generates more volume 

when his advantage is sharp (figure 2.8-panel B), for the insider the opposite holds true 

(figure 2.4-panel B). The net result is tha t the latter effect offsets the former. Finally, 

an increase in expected passive trades zq (not reported for reasons of space) increases 

volume at the inclusion, like in the absence of the speculator.
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FIGURE 2.9. Market volume.
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2-4-2 M arket liquidity

The impact of the S&P game on market liquidity pattern is analyzed in figure 2.3- 

panel C, which plots the ratio Since date t market liquidity is given by 1/A*,

the ratio A1/A2 gives the evolution of market liquidity though time: for example 

A1/A2 =  ( 1̂ 7) >  1 means that the market is deeper at date 2 than at date 1. 

In the absence of the speculator, liquidity decreases over time with the insider’s non­

fundamental information quality: in fact, large values for hi imply that the information 

asymmetry faced by the market maker is relatively severe. Thus the market maker’s 

reaction to large values of ki is to decrease market liquidity at both dates. Note that it 

takes a rather precise non-fundamental information (fcj > 8) in order to observe more 

illiquid markets at date 2. This means that depth decreases upon inclusion whenever 

the (volatility of the) noise coming from the passive industry is extremely small rela­

tive to other liquidity traders, i.e. o \ 0 < 8. Hence the reduction in spreads before

October 1989 [see Beneish and Whaley (1996), Edmister, Graham and Pirie (1996) 

and Erwin and Miller (1998)] suggests that kj < 8 is in fact a reasonable bound for 

the insider’s advantage.

The speculator’s entry causes liquidity to decrease at both date (figure 2.3-panel A 

and B), since informational asymmetries are now more severe. The stock becomes more 

illiquid the higher is the speculator’s advantage ks- Moreover market depth reduces at
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the inclusion relative to the previous day (figure 2.3-panel C), and again this reduction 

is positively related to the speculator’s informational advantage. In particular note tha t 

A1/A2 < 1 when ks = 3 regardless of the insider’s informational advantage. This means 

tha t -irrespective of the passive trades volatility relative to other liquidity-motivated 

orders- liquidity decreases at date 2 whenever the speculator is aware of at least 3/4 

of the indexers’ trades.

Recall from the Introduction tha t the main reason for moving to preannouncing index 

changes hinges on the attem pt to reduce trading imbalances after the announcement. 

The volume ratio seems to confirm this, since non-fundamental speculation reduces 

V2 /V 1 ’. On the other hand, the S&P game reduces market liquidity at the inclusion. 

These two opposite effects might allow to cast some doubts on the effectiveness of the 

S&P change in the announcement practice.

2.5 Empirical study

2.5.1 D ata set description

Between October 1989 and December 1999 there have been 248 replacements in the 

S&P 500.18 As in the previous literature, we concentrate on market additions due to 

the fact tha t stocks deleted from the S&P 500 often do not trade after the list change 

[see Chen, Noronha and Singal (2004) and the references therein for empirical studies 

on index deletions]. For notational convenience let AD denote the announcement day 

(i.e. the day in which after the close the announcement is made) and CD the effective 

day (i.e. the day in which after the close the change is effective). As previously noted, 

after October 1989 the replacement is effective at least one day after AD. From the 

to tal sample we removed some stocks. First of all we drop companies added and deleted 

from the index due to name changes (33 stocks) as well as stocks included due to merger 

(20) or spin-off (17) with another S&P 500 company. In all of these cases we would 

not observe the demand shock arising from passive traders which is the driving force 

for non-fundamental speculation in the model developed in section 2.3. In the second 

place we exclude companies for which we are not certain about the announcement date 

and/or the effective date (19) as well as stocks for which the inclusion occurs the day 

after the announcement (30). This latter requirement arises naturally from the time 

line underlying our theoretical model, since whenever AD+1 coincides with CD one
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FIGURE 2.10. Announcement frequencies.
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Frequency distribution of the number of trading days between the announcement and the effective day over the 
period October 1989-December 1999 for S&P 500 (108 inclusions)

cannot disentangle the effect of non-fundamental speculation from indexers’ demand. 

For each company we collect daily data from CRSP on (1) bid price, (2) ask price, (3) 

volume (number of shares traded) and (4) outstanding shares. Eventually we require 

stock data availability for a period ranging from 250 days before to 40 days after the 

announcement, which resulted in dropping 21 companies. The final data set comprises 

108 stocks. Figure 2.10 shows the frequency distribution of the number of trading days 

between AD and CD for the inclusions occurred under the preannouncement practice. 

The support ranges from one to sixteen trading days and the mode (resp. mean) is 

five (resp. 4.43), documenting the S&P common practice to preannounce changes five 

business days beforehand. This evidence is consistent with Beneish and Whaley (1996) 

for announcements between October 1989 and June 1994.

2.5.2 Trading volume

As explained in the Introduction, the appeal to investors of passive techniques is widely 

documented by the growth in the net asset value experienced by the major funds 

pegged to the S&P 500 in the last two decades [see Beneish and Whaley (1996) and 

Wurgler and Zhuravskaya (2002) among others]. The widespread use of indexed funds 

can be assessed by looking at the trading volume pattern around AD and CD, since 

in section 2.4 we have shown that an increase in average passive trades -captured 

by zq— results in higher volume at the inclusion. Given that indexers’ performance 

is assessed by daily tracking error minimization, pegged funds’ rebalancing should
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FIGURE 2.11. Volume around announcement.
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Mean abnormal volume is defined in (2.29). The M A V R ' s  are displayed (bold solid line) for each trading day 
over the window (AD-10,AD+10) together with the 95% confidence interval for the null hypothesis M A V R  =  1 
(dotted line).

occur at CD. Moreover the presence of risk arbitrageurs (i.e. the speculator in our 

model in section 2.3) increases volume after the announcement, i.e. over the window 

AD+1,...,CD-I. Finally, abnormal trading volume on AD may provide evidence that 

leakage of information regarding index inclusion has occurred.

Let Vitt denote the daily turnover for stock i on day t as measured by the ratio 

between the number of shares traded and the number of outstanding shares for company 

i during day t. We use daily turnover as a measure of the daily trading volume since 

it accounts for splits experienced by the stock, thus making turnover19 preferred to 

raw volume. Therefore the abnormal trading volume on day t is the ratio between 

Vij and the average trading volume in the 40 days20 preceding the announcement day 

Vi = ( ]C t^ A D —40 / 40- Eventually we let M A V R t  denote the cross-section average

for the abnormal trading volume over a sample of size Nf.

AVHi t = Vij/Vi; AM Vrt, =  2 - ( 2 . 2 9 )

Results from inclusions in the S&P 500 are summarized in table 2.2 and figures 

2.11-2.12, taking into account the number of trading days between AD and CD. Under 

the assumption that individual abnormal volume ratios are (cross-sectionally) indepen­

dently and identically normally distributed, the resulting statistic for M A V R t  follows
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a Student-t distribution with Nt — 1 degrees of freedom. Moreover, in order to assess the 

impact of outliers in our analysis, we perform a binomial test for the null hypothesis 

that the percentage of companies with A V R itt > 1 is different from 50%.21 Table 2.2 

reports sample size22, mean abnormal volume ratio (M AVRt),  cross-sectional t-ratio 

( t ( MAV R) )  and the percentage of companies for which A V R i |4 is greater than one 

over the window AD  — 10,..., CD  +  10. Figure 2.11 (resp. figure 2.12) plots M A V R t  

and its 95% confidence interval around AD (resp. CD).

On the day after the announcement trading volume is more than 4 times larger than 

the average daily volume over the 8 weeks base period, and is statistically significant 

at 5% level. Abnormal volume appears to be persistent in that M A V R t  is greater 

than one for the whole week after AD+1, even though its magnitude is far from the 

increase experienced during AD+1, and M A V R t  is not significantly different from one 

after AD+5. This evidence is consistent with the presence of non-fundamental specu­

lators stepping into the market after the announcement, and diluting their orders over 

the days preceding the effective change. On AD the estimated mean abnormal volume 

is roughly 25% above the level in the 40 days preceding the announcement. Further, 

the t-statistic rejects M A V R a d  =  1 at 5% significance level. The latter finding is 

in line with all the above mentioned empirical studies on S&P inclusions after Octo­

ber 1989, and might suggest leakage of information about index replacements before

FIGURE 2.12. Volume around inclusion.
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Mean abnormal volume is defined in (2.29). The M A V R ' s  are displayed (bold solid line) for each trading day 
over the window (CD-10,CD+10) together with the 95% confidence interval for the null hypothesis M A V R  — 1 
(dotted line).
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TABLE 2.2. Daily abnormal volume.

day
N

panel A -  
M A V R

event day: AD  
t  ( M A V R ) A V R  >  1 N

panel B -  
M A V R

event day: CD  
t  ( M A V R ) A V R  >  1

-10 108 0.912 -1.349 2 8 .7 0 2 0.833 -1.684 0.00
-9 108 1.051 0.576 3 4 .2 6 2 0.966 -0.479 50.00
-8 108 0.984 -0.258 3 7 .0 4 2 0.834 -0.911 50.00
-7 108 0.934 -1.464 3 9 .8 1 2 0.906 -0.785 50.00
-6 108 1.021 0.229 3 3 .3 3 11 1.951 2.536 72.73
-5 108 0.988 -0.191 3 7 .0 4 18 2 .3 1 3 2.139 61.11
-4 108 1.077 1.132 46.30 49 3 .0 5 5 5.196 7 7 .5 5
-3 108 1.071 0.999 41.67 75 2 .8 9 7 6.762 7 8 .6 7
-2 108 1 .229 2.078 41.67 94 2 .5 6 9 7.639 8 6 .1 7
-1 108 1.018 0.276 4 0 .7 4 108 3 .3 9 4 8.215 9 1 .6 7
0 108 1 .2 3 4 2.990 51.85 108 1 5 .0 8 6 13.259 9 9 .0 7

.1 . 108 4 .4 7 1 10.652 9 6 .3 0 108 3 .2 6 6 10.945 9 4 .4 4
2 64 2 .4 6 8 7.504 8 5 .1 1 108 2 .1 1 2 8.360 8 4 .2 6
3 75 2 .3 1 3 6.548 7 8 .6 7 108 2 .0 3 9 6.878 7 5 .9 3
4 49 2 .1 6 0 5.172 7 1 .4 3 108 1 .7 6 3 6.953 7 2 .2 2
5 18 1 .8 4 6 2.602 7 7 .7 8 108 1 .4 4 5 4.870 6 3 .8 9
6 11 1.457 1.510 63.64 108 1 .5 9 0 5.696 7 0 .3 7
7 2 0.840 -2.966 0.00 108 1 .4 0 8 4.857 6 2 .9 6
8 2 0.758 -0.937 50.00 108 1 .4 6 5 4.494 6 0 .1 9
9 2 0.918 -0.762 50.00 108 1 .4 2 1 4.546 6 3 .8 9
10 2 0.738 -8.752 0.00 108 1 .4 7 1 3.153 55.56

Abnormal trading volume is defined for each stock in (2.29). In the sample AD precedes CD by at least one 
day. Since the number of trading days between AD and CD varies across firms, the colum ns labeled N  report 
the number of companies included in the cross-section for each day. Boldface numbers in columns labeled 
M A V R  denote mean trading volume significantly different from one (5% significance level). Boldface numbers 
in columns labeled A V R  >  1 denote percentage of companies with M A V R i tt >  1 significantly different from 
50% (5% significance level).

announcement. Results from the ten days preceding AD do not detect abnormal trad­

ing activity, with the only exception of mean abnormal volume significantly greater 

than  unity documented for AD-2. Comparing the percentage of individual firms whose 

A V R i,t is greater than one is useful to determine whether the M A V R ’s are driven by 

outliers. More than 95% of the cross-section have individual A V R i â d +i greater than 

one, this percentage being statistically different from 50% at 5% significance level. 

Over the window (AD+2,AD+5) more than 70% of the stocks in our sample display 

abnormal trading volume, which we regard as strengthening the evidence in favour 

of front-running strategies implemented after the announcement. On the other hand, 

the percentage of stocks with A V R ij  >  1 on both AD-2 and AD is not statistically 

different from 50%, and we conclude tha t the abnormal trading volume documented 

for these two dates is due to a small number of companies.

Trading volume on CD is roughly 15 times higher than the base period and is statis­

tically significant at 5% level. This suggests tha t passive managers actually wait until
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the effective day to rebalance their portfolios. It is noteworthy tha t virtually all of the 

companies experience an increase in trading volume upon inclusion. Trading activity 

for the five days before CD is at least twice the average volume during the 8 weeks 

preceding the announcement, and can be attributed to risk-arbitrageurs’ activity. The 

increase in volume tends to be permanent, in tha t M A V R t is significantly different 

from one in all the days from CD+1 to CD+10, even though it steadily decreases after 

CD. The percentage of companies with A V R ij  different from one around CD shows 

that these findings do not appear to be driven by outliers over the fourteen days ranging 

from CD-4 to CD+9.

2.5.3 L iquidity

While several authors focused on trading volume around inclusions in the S&P 500, 

market depth has received little attention. Beneish and Whaley (1996) analyze the 

bid-ask spread for inclusions: as mentioned in the Introduction they find reductions in 

the spread after the effective date. Furthermore, the authors report a significant 13% 

liquidity improvement for stocks included between 1986 and 1989 as well. Erwin and 

Miller (1998) focus on additions between 1984 and 1988, and document a significant 

spread decrease over the 30 days following the index change. Similarly, included compa­

nies experience liquidity improvements between 1983 and 1989 according to Edmister, 

Graham and Pirie (1996). In what follows we employ the relative bid-ask spread as a 

proxy for market liquidity. A measure for abnormal depth can be constructed along the 

same lines used for the trading volume analysis. Let A^t — B^t be stock z’s absolute bid- 

ask spread during day t , and Q^t the quote midpoint, i.e. Q^t = (A^t +  B^t) /2. The 

relative bid-ask spread is S^t =  (A»,t -  B iyt) /Qi,t and Si = (j2t=AD-A0 <%,*) / 40 de_ 

notes the average relative bid-ask spread over the base period.23 The abnormal spread 

ratio A S R ij  and its cross-section counterpart M A S R t are defined as follows:

ASR i,t = Si,t /S i  , M A S R t = ± r Y t i ASR i,t (2.30)
■Wt

For the announcement and the inclusion not to  affect market depth one should observe 

M A S R t close to one both around AD and CD. On the other hand, a situation in which 

M A S R t is less (resp. greater) than one detects a reduction (raise) in the average spread 

during day t relative to the base period, i.e. an increase (decrease) in market depth on 

day t relative to the 8 weeks preceding the announcement.
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FIGURE 2.13. Bid-ask spread around announcement.
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Mean bid-ask spread is defined in (2.30). The M A S R ' s  are displayed (bold solid line) for each trading day over 
the window (A D -10,A D +10) together with the 95% confidence interval for the null hypothesis M A S R  — 1 
(dotted line).

Table 2.3 and figures 2.13-2.14 report the mean abnormal spread over the window 

AD — 10,...,CD  4- 10. Stocks experience a statistically significant 35% increase in 

the bid-ask spread the day after the announcement. No clear pattern emerges from our 

sample for the other days in the event window, with the exception of M A S  R ad -2 being

FIGURE 2.14. Bid-ask spread around inclusion.
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Mean bid-ask spread is defined in (2.30). The M A S R ' s  are displayed (bold solid line) for each trading day 
over the window (CD-10,CD+10) together with the 95% confidence interval for the null hypothesis M A S R  =  1 
(dotted line).
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TABLE 2.3. Daily abnormal bid-ask spread.

day
N

panel A -  
M A S R

event day: AD  
t  ( M A S R ) A S R  >  1 N

panel B -  
M A S R

event day: CD  
t  ( M A S R ) A S R  >  1

-10 108 0.929 -1.962 3 7 .9 6 2 0.504 -2.170 0.00
-9 108 0.961 -0.877 3 8 .8 9 2 1.320 0.654 50.00
-8 108 0.934 -1.811 3 7 .9 6 2 1.557 1.354 100.00
-7 108 0.965 -0.933 3 9 .8 1 2 2.796 1.713 100.00
-6 108 0.983 -0.323 3 7 .9 6 11 1.188 1.279 72.73
-5 108 1.010 0.214 43.52 18 1.233 1.444 55.56
-4 108 0.997 -0.058 43.52 49 1 .2 8 9 2.611 57.14
-3 108 1.059 1.038 4 0 .7 4 75 1.115 1.596 46.67
-2 108 1 .1 5 2 2.437 53.70 94 1.114 1.885 47.87
-1 108 1.041 0.647 3 6 .1 1 108 1 .1 9 0 3.467 53.70
0 108 1.115 1.943 42.59 108 1 .6 8 5 7.679 8 1 .4 8
1 . 108 1 .3 5 5 5.409 6 5 .7 4 108 0.961 -0.816 3 5 .1 9
2 64 1.063 1.065 44.68 108 0.983 -0.339 41.67
3 75 1.134 1.919 46.67 108 1.065 0.881 3 7 .0 4
4 49 1.106 1.128 42.86 108 0.955 -0.885 3 3 .3 3
5 18 1.035 0.280 44.44 108 0.933 -1.551 3 6 .1 1
6 11 0.994 -0.051 45.45 108 1.034 0.645 46.30
7 2 2.827 1.795 100.00 108 0.956 -0.893 3 5 .1 9
8 2 1.178 5.427 100.00 108 0.963 -0.851 42.59
9 2 1.617 4.727 100.00 108 0.994 -0.129 44.44
10 2 0.960 -0.508 50.00 108 0.981 -0.382 42.59

Abnormal bid-ask spread is defined for each stock in (2.30). In the sample AD precedes CD by at least one 
day. Since the number of trading days between AD and CD varies across firms, the columns labeled N  report 
the number of companies included in the cross-section for each day. Boldface numbers in columns labeled 
M A S R  denote mean bid-ask spread significantly different from one (5% significance level). Boldface numbers 
in columns labeled A S R  >  1 denote percentage of companies with M A S R i tt  >  1 significantly different from 
50% (5% significance level).

statistically different from unity. Before AD the market is more liquid over the week 

AD-10 to AD-6, while liquidity decreases over the week following the announcement. 

However one cannot reject the null hypothesis tha t liquidity is statistically different 

from the base period over both weeks. The percentage of firms experiencing wider 

spreads on AD+1 is significantly greater than 50%, while this does not occur on AD-2. 

We conclude that the la tter reduction in liquidity is affected by few observations, while 

the former is not.

Market liquidity significantly decreases around inclusion. There is an average 20% 

increase in the spread during the day preceding the index change, which rises to almost 

70% upon inclusion. The abnormal spread ratio is statistically different from one (5% 

significance level) on the effective day, as well as on CD-I and CD-4. Notice, however, 

tha t the reduction in market liquidity during CD is not driven by outliers (approxi­

mately 80% stocks of the cross-section experience abnormal spreads), while this is not 

the case for both M A S R c d - i  and M A S R c d - 4- Our findings are in contrast with
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Beneish and Whaley (1996), even though their results might be affected by their small 

sample size. In fact, their da ta  set comprises 30 index inclusions from October 1989 

through June 1994: the authors report a spread decrease during CD and the following 

days, even though the spread is significantly below normal only for CD+1. Recall from 

subsection 2.5.2 tha t stocks experience a significant increase in trading volume upon in­

clusion, which is driven by passive traders’ demand. Beneish and Whaley (1996) argue 

th a t the specialist might temporarily charge a lower spread, given th a t the increase 

in trading volume would cover the operation costs. On the other hand the trading 

game in section 2.3 is consistent with an increase in the spread during the day of 

inclusion: liquidity should decrease over time as a consequence of the higher adverse 

selection costs faced by the market maker in the presence of (sufficiently accurate) 

non-fundamental information. Our sample seems to confirm this implication, and we 

argue tha t any reduction in operational costs arising from greater volume is more than 

offset by the asymmetric information costs faced by the market maker in the presence 

of non-fundamental speculators.

2.5.4 Assessing the importance of the S&P game

The findings in the previous two subsections point at (1) a significant increase in trading 

volume following the announcement and upon inclusion (2) a significant decrease in 

liquidity both after the announcement and upon inclusion. The empirical implications 

arising from our theoretical model(s) stand on the comparison of both volume and 

liquidity between the day after the announcement and the effective day (respectively the 

first and second trading round in the models developed in sections 2.2 and 2.3). However 

for most of the companies in our sample there is more than one day between A D  and 

CD. Therefore, for each of these stocks we define A V R i as the average abnormal volume 

over the window (AD+1,CD-1), i.e. A V R i = Y^ft=AD+1 A V R iyt> and then average the 

A V R s  across stocks to get M A V R  — N ~ x A V R 4 , where N  denotes the sample 

size (A S R i and M A S R  are defined along the same lines). In order to  measure the 

change in volume we perform a two-sided test for the null M A V R  = M A V R c d  (the 

change in liquidity is assessed in the same way).

Results on the entire dataset are summarized in the first row of table 2.4. Both 

volume and bid-ask spread significantly increase upon inclusion relative to the win­

dow (AD+1,CD-1). Our findings appear robust, since the binomial test rejects the
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TABLE 2.4. Assessing the S&P game: change in volume and liquidity.

sample N panel A  -  volume panel B -  bid-ask spread
D M A V R t  ( D M A V R ) D A V R  >  0 D M A S R t  ( D M A S R ) D A S R  >  0

all obs 108 1 1 .5 1 5 10.435 9 9 .0 7 0 .5 0 3 4.95 7 2 .2 3
1989-94 29 1 0 .1 0 2 4.526 1 0 0 .0 0 0.268 1.553 58.62
1995-97 40 1 0 .6 7 5 6.269 9 7 .5 0 0 .5 9 1 3.507 7 5 .0 0
1998-99 39 1 3 .4 2 9 7.266 1 0 0 .0 0 0 .5 8 7 3.228 7 9 .4 8

Abnormal volume and bid-ask spread are defined for each stock in (2.29) and (2.30) respectively. In the sample 
AD precedes CD by at least one day. The test for the equality of mean trading volume (panel A) and bid-ask 
spread (panel B) around inclusion is presented. Boldface numbers in columns labeled D M A V R  denote mean 
volume on CD significantly different from mean volume over A D +1 to  CD-I (5% significance level). Boldface 
numbers in columns labeled D A V R  >  0 denote percentage significantly different from 0.5 (5% significance 
level). Headers for the bid-ask spread have a similar interpretation.

hypothesis that the percentage of firms experiencing this increase is equal to 50% at 

5% significance level. The increase in volume is consistent with both models in sections

2.2 and 2.3, since it may simply reflect the presence of passive funds stepping into the 

market on the effective day. Similarly -as  explained in subsection 2.4.2- the decrease in 

liquidity might be due to an insider with highly accurate non-fundamental information 

in the absence of the speculator (k j > 8). Alternatively, a speculator endowed with 

relatively precise information (k s  >  3) might be responsible of the spread increase. 

We tend however to disregard the first explanation given tha t all the authors focusing 

on inclusions before October 1989 document decline in spreads for stocks included in 

the S&P 500. During this period, the simultaneous occurrence of announcement and 

inclusion de facto rules out the S&P game. As previously noted, taking the model in 

section 2.2 as a reference, the findings in Edmister, Graham and Pirie (1996) and Erwin 

and Miller (1998) are consistent with a relatively poor quality of the insider’s signal 

(ki <  8). We therefore attribute the worsening in liquidity documented in table 2.3 to 

non-fundamental speculators front-running index funds after October 1989. In order 

to assess the robustness of the S&P game we test for significant changes in volume and 

liquidity splitting our dataset in three subsamples: 1989-1994, 1995-1997 and 1998-99. 

Reasonable sample size is one of the criteria we used in choosing these subsamples. 

Moreover the average net asset value for passive funds over these periods is equal to 

287, 606 and 1117.5 billion USD respectively. Expected passive trades thus increase 

across the subsamples, but are relatively stable within each subsample (see figure 2.1). 

It is further reasonable to conjecture tha t the shift towards passive strategies resulted 

in an increase in the number of indexers, which in turn implies th a t passive trades’ 

variance increases over time. This is particularly true for the last subsample, given tha t
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funds moved away from full replication in recent years [see Blume and Edelen (2004)]. 

Recall from section 2.4 that, absent the speculator, the combined effect of an increase 

in both zo and a ^ 0 is higher volume and tighter spreads upon inclusion. The former 

is due to larger orders coming from indexers, while the latter stems from a reduction 

in the insider’s advantage kj = On the other hand, an increase in both zq

and cr̂ Q is compatible with higher volume and lower liquidity in the presence of a 

speculator with highly accurate information.

From table 2.4 it emerges th a t volume significantly increases upon inclusion in all 

subsamples, while liquidity significantly decreases from 1995 onwards. Our findings 

support the following argument: it took some time for investors to  start front-running 

indexers after the change in the S&P announcement practice. Before 1995, the volume- 

liquidity pattern points at a statistically significant increase in trading activity, while 

spreads are unaltered. Starting from 1995 the S&P game has gained appeal, yielding 

positive profits and significantly worsening liquidity.

2.6 Conclusion

In the last two decades passive funds have gained an increasing consideration among 

investors as a relatively cheap tool to  achieve portfolio diversification. Passive funds 

aim at mimicking a benchmark index. Portfolio rebalancing, as well as performance 

evaluation, is carried out by means of tracking error procedures. Index replacements 

stand as a clear rebalancing opportunity for passive managers. Starting from October 

1989, changes in the S&P 500 composition axe preannounced by Standard and Poor’s 

usually five days beforehand. Passive funds are not affected by the announcement 

timing and their portfolio rebalancing occurs during the effective day. On the other 

hand this preannouncement policy induces non-fundamental speculators to enter the 

market. Non-fundamental speculators do not possess any information on the asset’s 

fundamental value, rather they buy the included stock ahead of passive funds and sell 

it a few days later at possibly higher prices. We develop a dynamic model tha t explicitly 

keeps into account this preannouncement practice. We show tha t strategies based on 

non-fundamental information are profitable and determine a drop in market liquidity, 

as a direct consequence of the increased adverse selection costs faced by the specialist. 

Examining S&P 500 inclusions from October 1989 to December 1999 we find evidence 

consistent with our theoretical analysis.
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2.A Appendix A: Equilibrium without speculator

P ro o f  (P ro p o sitio n  1). Given the pricing function (2.9), the insider chooses his 

second period trade X2 in order to maximize the objective function (2.3)

E  [x2 ( /  -  P2 (W2)) | $ 2] =  X 2 ( /  -  Pi -  * 2 X2 ~  *2^ 2 ) •

/  — Pi 'U'2The first order condition gives X2 =  ——---------—, such tha t eq. (2.7) obtains with
2 X2 2

a.2 = (2A2)-1 . Further the second order condition is A2 > 0. Plugging eq. (2.7) in the 

objective function (2.3) gives

E  M l* * )  =  +  h f  _  i t l f h l  . (2.31)

In the first trading round the insider chooses x \  to maximize (2.2), i.e.

E [ x i ( f - p i ( w i ) )  + *2( x i)\®{] •

By the Law of Iterated Expectations E  (^i) |${] = E  [E (^2^ 2) l^ iL  where (2.31) 

gives E  (^ 2 ^ 2 )■ Therefore when submitting his order x \  the insider has to keep into 

account the impact of his trade on the price p\ (x\). Assuming tha t the first period 

price is set according to eq. (2.8) ,  the first order condition is

(1 -  4 )  E  ( /  — Pl M l  ${) -  A,*, =  0 ,

or equivalently:
_  2 X2 — Ai x 2A2 — Ai

Xl “  Ai (4A2 -  A i) ^  Po) 4A2 -  A, Ul ’

such that eq. (2.6) obtains with a\ =  Ai(4a7-aI)' anc* =  ^ i a i * Finally the second 

order condition for (2.2) is Ai ^2 — and the inequality (2.10) follows since

A2 > 0. We now determine equilibrium prices. Let cr̂ )0 and 0701,0 denote respectively 

the unconditional variance of the first period aggregate order flow and the unconditional 

covariance between u \  and / .  The unconditional distribution for the random variables 

( / ,  u\) together with the first period trade (2.6) yields <r̂ 0 =  aicr^0 +  (1 — b\)2 

and 0701,0 =  0 /o.Therefore the efficiency condition (2.4) together with the Projection 

Theorem gives the price in eq. (2.8), where the regression coefficient Ai =  07oi,o/cr2,o
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is defined as

Al =  2 2 K  \2 2 - . (2.32)

and the fundamental value posterior variance is c r^  =  var =  (1 — aiAi) a y 0.

During the second trading round the market maker observes the order flow

U)2  = X2 + U2 + Z2 = 0,2 ( /  — Pi) +  U2 / 2 +  Z2 .

It follows tha t ui2 \w\ rsj N  (z0 , wi t h *1,1 = var (<*>2 |wi) =  a la 2f  l +  crJ2/4  +  0,

and the second period price is given by eq. (2.9) with

\ =  Q2(7/,i_______
2 < i + < 4  +  < 0  '

Substituting for a,2 =  (2A2)-1 in the latter results in a second order equation in A2 

which admits the unique root (uniqueness follows from the insider’s date 2 second 

order condition)

=  7  ^ T T V 2 • <2-33)
(°U2 +  4<Tz,o)

The fundamental value residual variance after the second trading round is cr^2 =  

var( f \uj 2 ) =  (1 — CI2A2) cr2j  1 .In order to compute the insider’s unconditional profits 

note tha t the Law of Iterated Expectations applied to (2.31) gives

E ( 4 )  =  E [ E ( 4 \ * I2) ] = ^  + ^  ■

First period unconditional profits are obtained substituting the equilibrium trade (2.6) 

into (2.2), yielding

E  ( tt{ )  = E [ E  ( 4 |$ { ) ]  =  ai (1  -  aiAx) 4 0 -  61 A, (1 -  6 1 ) < 4  .

Adding up the last two equations gives total unconditional profits as

2 \  2

E ( 4  + 4 )  =  ai (1 -  aiAi) -  M i  (1 -  h)  <  +  ^  . (2.34)

<22 > 0 follows from 0,2 =  (2A2)-1 and A2 >  0. From the inequality (2.10) one has 

4A1A2 — A 1 >  0 or equivalently 4A1A2 > Af > 0. Therefore Ai >  0 since A2 > 0.
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a\ > 0 follows from Ai >  0 and the expression for Ai in eq. (2.32). Finally b\ > 0 

since b\ = Aiai. Before deriving the expression for the expected volume, we prove the 

following:

L em m a 1 Let X  N  (//, cr2) . Then

E \ X \  = + n  [1 -  20  (~f i /a)\  (2.35)

where $  (•) is the cumulative distribution for the standard normal distribution.

P ro o f. Let /  (x ) be the normal probability distribution. Then:

E \X \ =  l Z C° xf(x)d x - J - o0X f(X)dx
=  ^  ( / ^  *e~zV2dz -  F - t  ~ - ‘,/2* )

/  r+ o o  - z 2 / 2  r - n / c r  - z 2 / 2  \

+/i / ? - = ^ d z -  ^ - r ^ d z ]
\ J  —/i/<r VSF J  —oo y

=  - | =  [2e-<^>2/2] +  „  [1 -  2 $  ( - M/<r)l

where the change in variable via 2 =  (x — / j )  / c r  gives the second line, and the last 

line follows from straightforward computations. The trading volume in Admati and 

Pfleiderer (1988) clearly follows from eq. (2.35) setting /i =  0. ■

The contributions of each group of traders to the total expected volume as in 

(2.27a, 2.27b) are therefore given by
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R e m a rk  (p a ra m e te rs  in  R V ). The case of complete knowledge about date 2 noise 

trades can be obtained from Proposition 1 substituting (2.7) with the following

X2 =  o2 ( /  — Po) -  f a  + z ) / 2  .

The second period expected profits in (2.31) become

( / “ P i ) 2 , M { u 2 + z f  { f - p \ ) { u 2 + z)
E  + ------- 4---------------------- 2-----------  ’

while date 2 price sensitivity in (2.33) is A2 =  07,1 (cr22 +  a\  0) • Finally uncondi­

tional profits in (2.34) become

E (tt{ +  7T0 =  ai (1 -  a i A i )  a2f0 -  biXi (1 -  bi) a2Ux -I- +  2 ( z,0)

Other parameters and variables are defined like in Proposition 1. From the above 

formulas it emerges tha t parameter values for RV can be obtained setting z  =  0 and 

cr2 0 =  0 in Proposition 1.

2.B Appendix B: Equilibrium with speculator

P roof (P roposition  2). The proof is organized in three steps.

Step 1: date 2 trades

Given the speculator’s trade (2.19) and the pricing function (2.21), the insider 

chooses his second period trade X2 in order to maximize the objective function (2.3), 

i.e.

E  [ x 2 ( /  -  P2 (w2))| $ 2] =  x 2 [ /  -  Pi  ~  A2Z2 -  C2A2 (s  “  P i )  “  2A2 (v -  v i )  /3  -  A2it2] •

(2.37)

The optimality conditions for (2.37) are:

/  Pi / \ / _ \ IQ= 2A2 -  y  -  y  (5 -  Pi) -  -  Vi) /3

A2 >  0
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such that eq. (2.17) obtains with <22 =  (2A2)-1 . Similarly, given the insider’s order 

(2.17) and the pricing function (2.21), the speculator chooses y2 in order to maximize 

the objective function (2.14):

E  [1/2 ( /  — P2 (^ 2)) | *2 ] =  m  [—A2J/2 -  2A2 ( v  -  Vi)  /3  +  (1 -  (a2 -  C2/ 2) A2)(s  -  Pi)] ,

(2.38)

yielding the optimality conditions:

v - v i  , 1 -  (a2 -  C2/ 2) A2 N
m  =  - —  + ----------- 2A2 ( s _ P l )

A2 > 0

Equation (2.19) then obtains with C2 = - — ^Q2-—— Solving for the coefficient
2A2

C2 yields C2 =  2^2/3 and the time 2 trades (2.17) and (2.19) become:

f  — Pi  U2 s  — p i  v  — v i  s  — p i  v  — Vi
X2 =  ——--------- --------—-----------  —  and y2 =  —7-;----------- -—

2A2 2 6A2 3 3A2 3

Note that date 2 trading intensities depend on A2 only. Plugging the above expressions 

for X2 and 7/2 in the objective functions (2.37) and (2.38) gives the conditional profits 

as

p U H J l - f Z - P l ) 1 , A2“ ! ( s - p i ) 2 A2 ( v  — Vl )2
E ^ ) - ^ r  + —  + — S x T  + -------9-------

_  ( f ~ P l ) u 2 _  ( f ~ P l ) ( s - p i )  _  ( f  ~  p i )  ( V -  Vj)
2 6A2 3

X2u 2 ( v - V l )  U2 ( s - p i )  ( s  -  Pi )  (V -  Vl)
3 6 9

A2 (v -  v i )2 
9A2 9 9

Recall tha t the insider knows the final liquidation value, i.e. /  £ <J?2 - Using the de­

composition ( s - p i )  = ( f ~ P i )  + { s ~ f )  and (s -  p i ) 2 =  ( /  -  p i ) 2 +  (s -  f ) 2 +

2 ( /  — pi) (s — / )  the insider’s expected profits can be equivalently written as

E  + X2{V-  Cl)2 -  2 (S ~  P l) (" ~  Cl) (2.39)

i f - P i ) 2 . (s - f )2 A2 (v — Vl ) 2

( f - p i ) U 2 , ( s - f ) u 2 2 ( f  -  Pi )  (v -  Vl)
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S tep  2 : d a te  1 tr a d e s

During the first trading round the insider chooses x \  to maximize (2.2), or equiva­

lently:

E  [ n  { / - P i  M ) l  *{] +  E  [E ( t t ^ )  |${] , (2.41)

where E  ( ^ 2 ^ 2 ) 13 3:3 ecl' (2-40). Therefore when submitting his order x \  the insider 

has to  keep into account the impact of his trade on the price p\  (2:1) and the speculator’s 

forecast of the final liquidation value s (27). Assume tha t under the insider’s conjecture 

the first period price follows (2.20) and the speculator updates his beliefs on /  according 

to eq. (2.12). The expression for x\  depends on the insider’s estimate -conditional on 

of the speculator’s forecast, E  [E ( / |  4>f) |^ i ]  5 an(  ̂ the signal s depends on the 

speculator’s conjecture of the form of x\ .  The following Lemma gives the insider’s 

estimate of the speculator’s forecast s :

L em m a 2 In equilibrium E  (s  — f  | ${) = X i f  ~  Po) +  ipu\

P ro o f. Assuming tha t Lemma 2 holds, the insider’s trading strategy (2.15) can be 

rewritten as £1 =  ai (v — po) — b\ui, and (2.16) obtains setting a\ = a  4- 7X and 

bi = — {/3 + 70 ). Given eq. (2.16) , the speculator updates his belief on /  after the first 

round according to s =  po + (f> (x± +  u\) -which is eq. (2.22)- with regression coefficient

^ _ c o v ( f , x 1 + u 1\ ) _  a i°/,o
v a r ( x 1 + m \ ^ f )  a20.2 Q +  (1 _ &l)2 cr2i ‘

Plugging eq. (2.16) into the speculator’s forecast (2.22) and taking expectations con­

ditional on gives E  (s — f  | 4>{) =  x ( /  — Po) +  0 ^ i, where x  =  °10 — 1 and 

0  =  (1 — 61) 0. Recall tha t under equation (2.16) the parameters a i and b\ depend 

on the insider’s forecast via x  and 0 , such tha t

"  “ 7 l £  +  7 <t>ai =   ------   and 61 = -- - ------   .
1 — 70 1 — 70

For these expressions for ai and 61, and the speculator’s update (2.22) the conjecture 

in Lemma 2 is verified. ■
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Letting k j  = 2Ai -f (f> — 2A2/i, under conjectures (2.20) and (2.22) the optimality 

conditions24 for the objective function (2.41) are:

E  ( /  -  PI M l  ${) ( l  -  ^ 0  -A  lXl+ E  ( v - n  M l  $ ' )  ^ + E  ( s - f \  $ 0*  KI = 0
18A2

The insider’s first period trade is linear, i.e.

x \ = dTl e ( /  -  po) -  ( l -  d~l \  1) ui ,

yielding eq. (2.16) with a \y 61, and d as given in the main text, and e =  1 — kj (6A2)-1 . 

The speculator chooses his first period trade y\ maximizing (2.13), or equivalently

E  [yi ( /  -  Pi M ) |  $ 1] +  E  [E (7r f |^ f ) l  ,

where E  (7rf |4>f) is as in eq. (2.39). Plugging the expression for p\ [see eq. (2.20)], the 

speculator’s update [see eq. (2.22)], and the conjecture for x i  [see eq. (2.16)} into the 

latter results in the following optimality conditions25:

• E ( s - P i M | $ f )  + ^ = 0

2kI  „
2A l- 9 A 7 > 0

where k s  = Ai — A2P. The speculator’s first period trade is linear in (v — vo), i.e. 
2 KS

2/1 =  D ~ l — -  (v — vo) , and eq. (2.18) obtains with C\  and D  as in the main text, 
y

Step  3: P rices

We now turn  to determine the equilibrium prices. Let r denote the 3x1 random vector 

containing the final liquidation value, the passive trades known by the speculator, and 

the speculator’s signal about the final payoff, i.e. r =  ( / ,  v, s )T. For the i —th component 

of the vector r we denote the unconditional variance by cr2. 0 =  var  (r^); similarly for 

i j  the unconditional covariance is ariTjjo = cov (r*, rj). Further the unconditional 

variance of the first period aggregate order flow is denoted by cr2 0 =  var  (u>i) and the 

covariance between uji and r* € r is (TriUJ,o =  cov (r^, u j\) . The unconditional distribution 

for the random variables ( /,  u \,v )  together with the first period trades (2.16) and (2.18)
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and the speculator’s signal s [see eq. (2.22)] yields

(2.42)

^,0 = 4>2 (aWffl +  (1 ~  &i)2 <^)

*l,o = aWf,o +  (! “  6i)2

& f  8,0 =  0&1 & ffl

0 — a l ° / , 0

& v u j , 0  =  C i < J y Q

CTsc j,0 =  0  (fll^ /,0  +  C1 ~  &l ) 2 ^ S i)

Note tha t plugging the expression for 0  [see eq. (2.24)] in the above variances and 

covariances gives oyS)o = a \  o and 0su>,o =  &fu>,o- Therefore the market maker’s prior 

joint distribution for (rT,u;i) becomes

r ~ N [

1
fcq 1 0

■

^ r , 0  ^-'rw.O
y

W l V 0 r T n 2u>,0

where E T}0 = (p0 , v0 ,Po)T , and

Er,o =  E

■'rcjjO —

^ ( r - S r, o ) ( r - B r,o)T] =  

2 ?[(r -  E Tio)uJi] =

°/,o 0 0
IN 

95"b

0 °l,0 0

.  0 0 ° io .
it

&vcj,0 Vfufl •

After observing the first period aggregate order flow the market maker updates his 

distribution for the random vector r. The Projection Theorem together with eqs. (2.4) 

and (2.11) give26 pi = po +  Aicui and v\ =  uo +  P ^i, with regression coefficients 

Ai =  o'fu,o/°u,o and p =  o respectively. Using the variance-covariance matrix

in (2.42) one has:

Ai =

p  =

a ia 2f 0

ai a },0 +  (! “  6i ) 2 ah  +  Ci al,o

___________ c i° l,o ___________

aia},o +  U  -  6i ) 2 ah  +  Ci al,o

We now determine E r>i (the posterior variance for the vector r). From crfs,o =  ^ 0  

and crSUJt0 =  a fu),o it follows that <Jfs,i =  ffg i and a vs> 1 =  Ofv,\. Furthermore using the
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unconditional variance-covariance m atrix in (2.42) together with the expression for 0, 

/x and Ai in the main text yields:

4 i  =  u  - O1A1) crj o

<1 =  (1 - C'lP)

<4,1 = “ i (4>

bH

•<1

a fv,l =  ”

(2.43)

Note tha t the conditional variance between the fundamental value and the passive 

trades v can alternatively be written as <Jfv,i =  —̂ l^ i^ /o -  

Therefore r|u;i N ( E r>i ,E r>i ) ,  where

E r>i =  E ( r |o ; i )  =  (p i,v i ,p i)T ,

and

E m  =  E  [ ( r  -  E t ,!) (r -  £ r, i )T | u<i] =
a h a fv,l < 1

& fv,l ° l ,l &fv,\
9 2

< 1 a fv, 1

In the second trading round the market maker sets prices according to  (2.5). Using the 

expression for date 2 trades (2.17) and (2.19) one has:

^2 =  fl2 ( /  — Pi) +  U2 / 2  +  02 (s -  Pi) /3  +  v/3 + w + 2vi/3  .

It follows th a t o 2̂ |^ i  ~  N  (zi, 0 ^,1) z\ = vi +  w, and

a l  1 =  var  (w2|wi) =  a%a2f  l +  4 +  7 < z ^ >1/9  +  a J tl/9  +  ct2w +  Sa2 crfv>1/9  .

Furthermore the conditional covariance between the fundamental value and the date 2 

order flow is

o/w.i =  cov ( /,w 2|wi) =  02cr/}1 +  02^ 1/3 +  <t/w>i/3  .

Letting A2 =  cr/a,) 1/ 0^  1} date 2 prices follow from the Projection Theorem:

P2 =  Pi +  A2 (w2 -  zi)
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which is eq. (2.21). Note tha t both and c r^  depend on the insider’s trading

aggressiveness a2, which in turn depends on A2 only. Since 0,2 = (2A2)-1 , the regression 

coefficient A2 solves the quadratic equation

SA| +  4A2<t/ v,i +  -  9(7^) =  0 (2.44)

where E is defined in the main text. Lemma 3 addresses the existence of real roots for 

eq. (2.44) as well as the uniqueness for A2.

L em m a 3 In equilibrium A2 is given by:

A2 =  S - 1 (-2ct/„,! +  [4(<7/v ,a)2 +  S  (9 4 x -  < i ) ] 1/2)

P ro o f. To prove Lemma 3 we proceed in two steps. First we show th a t both the 

solutions for A2 in eq. (2.44) are real; then we use the second order conditions to pin 

down the positive root and get A2 as in the main text. From eq. (2.44) a sufficient 

condition for A2 to  belong to the real line is cr‘j 1 > Making use of the conditional 

variances in (2.43) one has <ĵ  1 — c r^  =  (1 — a\<f>) <7^ Q. Substituting for the expression 

for 0  in the latter gives:

2 2 _  ( 1 - &i)2 a i i  2 ^  n
V f ,  1 -  a s , l  -  ~ 2“ 2 ' 7 ( 1  - h  ~ 2 ~  / i °  >  0

a l a f , 0  +  (•*■ a u i

such tha t the roots for (2.44) are real. Recall tha t in equilibrium A2 >  0. Thus, re­

gardless of the sign of 07^ 1, the negative root in (2.44) can be discarded and A2 in the 

main text obtains. ■

Eventually the liquidation value residual variance after the second trading round 

becomes:

° ) , 2  =  0 /,i “  * 2 < T f u , i  =  (3<4,i -  ~  2 X 2 ( ? f v , i )  /6  .

Therefore an equilibrium for the trading game is described by solutions for (ai, 61, C\, 

/i, 0, Ai, A2) in Proposition 2 subject to  the nonlinear constraint (2.26).

As for the expected trading volume, note tha t date 1 orders have mean zero. It 

follows tha t the expressions for V /, and V-^1 are given by the first line in (2.36) 

[keeping into account that parameters a\ and b\ are as in Proposition 2 and cr̂ 0 is 

given in eq. (2.42)]. Similarly E \ (^2) =  0, such tha t is like in the second line of
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(2.36). The other contributions to  the trading volume are:

t/S  _
1

v l  ° X , 1  i r S  _  t ! C W s , l  +  ^ , i / 9  -  2 C 2 ^ / V)i / 3

V* = ' V* =  V ------------------ 2tt------------------

V f  =  + | ( i _ 2 $ ( - 2l/ CT2jl))

^  =  ^ e" 5 ^  + | - ( l - 2 * ( - 2 l / ^ . i ) )

where a x>1 = (a%a2f  l +  u \ J 4 -  5a|a-2 x/9  +  o ^ .i/9 -  4a2<j/V)i /9 )  /  and <jZ)i =  (cr^ 0 +  a 

P ro o f  (C o ro lla ry  1). From the date 2 second order condition A2 >  0. Therefore from 

the date 1 second order condition Ai > 0, since Ai >  k^/18A2 >  0. Now suppose that 

Ci < 0 .  From the expression for Ci this implies that k s <  0 and from the expression 

for \i this implies that \ i<  0. Since k s  is defined by k s  = Ai — A2/z one has k s  < 0 if 

and only if Ai <  A2//. However A2 > 0 and fi < 0, implying Ai <  0 which cannot occur 

in equilibrium. Finally note tha t the insider’s second order condition can be written as 

2Ai -  g  >  0. Since ns  > 0, then V *  -  g  -  <  2Ai -  and
Ok 2

(2.26) is sufficient for 2Ai — > 0. ■
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Notes

1 Investigations on indices other than the S&P 500 can be found in Bos (2000) and Jain (1987) 

who report evidence for supplementary S&P Indices. Madhavan (2003) focuses on changes to 

the Russell 2000 and 3000 indices. The Dow Jones Industrial Average is considered in Beneish 

and Gardner (1995) and Polonchek and Krehbiel (1994), while Deininger, Kaserer and Roos 

(2000) study the German DAX and MDAX.

2 We stress the fact that indexers enter the market at the second date only with the subscript

2 in the passive industry demand.

3 As in Kyle (1985) the efficiency condition arises from price competion a-la-Bertrand in the 

market making sector. In equilibrium one can consider a single market maker that operates 

according to a zero expected profits condition.

4 One can accomodate the insider receiving a noisy signal of the fundamental value rather than 

the realization / .  In this case the insider’s informational advantage would be captured by the 

signal to noise variance, rather than the fundamental value variance only. Qualitatively this 

does not affect our main conclusions.

5 We use depth and liquidity as synonyms, even though they capture different aspects of market 

behaviour.

6 The insider’s informational advantage with respect to the fundamental value is captured by 

the ratio between fundamental and non-fundamental uncertainty, like in Kyle (1985) and its 

various extensions. Since we are focusing on the role of non-fundamental information, we refer 

to ki as the insider’s advantage only.

7 Parameters at equilibrium are computed using the following values for hi =  0.01, 0.5, 1, 2, 

3.5, 5, 7.5, 10, 15 and 20.

8 This is not surprising since parameters for RV can be obtained from Proposition 1 setting 

az 0 ~  0 (appendix A contains further details). For k/ =  500 the difference between the 

parameters in Proposition 1 and their RV counterparts is of the order of 10“4. For reasons of 

space we consider ki < 20 in figures 2.2-2.6.

9 The following expression follows from the fact that insider’s orders are conditionally normal 

with mean zero, implying that the volume is (a multiple of) the conditional standard deviation. 

The total volume pattern is discussed in section 2.4.

10 We note that it might be difficult to justify that both the speculator and the insider observe 

the same fraction of date 1 liquidity orders like in Madrigal (1996).

11 A related problem is that other fund managers might implement mimicking techniques only 

for a fraction of their portfolios, and thus would not show up in surveys on completely passive 

funds like the Standard and Poor’s (2003).

12 Madrigal (1996) imposes a hierarchical information structure as well. As previously noted in 

his model the insider and the speculator share the knowledge of past noise trades when trading
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at date 2. This way the insider knows -on top of the final liquidation value- the speculator’s 

informational advantage relative to the market maker, i.e. the difference s — p \ , like in our 

specification

13 On the other hand the first period information sets are non-nested. This assumption can be 

easily modified including v into <£>{. In this case, the speculator would lose his informational 

advantage (with respect to the insider) and competition between the two informed agents 

would arise at date 1. However, given the previous considerations on the difficulty in gathering 

information about passive funds’ techniques, we do not regard this situation as particularly 

interesting.

14 In equilibrium E  (s| $ f) =  f  + x ( f  ~ Po) + 7Pui and s = po + <f> (x\ 4- U\) are mutually 

consistent, and as a consequence the insider’s first period trade can be expressed as X\ — 

ai ( f  ~Po) ~ b\U\. We derive the expression for coefficients Xii* and in appendix B (see 

Lemma 2).

15 The first period aggregate order flow does not contain information about U2 . Therefore 

conditional on wi the second period liquidity trades have mean zero. Recall that liquidity 

trades are independent through time and orthogonal to passive funds’ orders.

16 Recall that the speculator has long-lived non-fundamental information, as in Kyle (1985) the 

insider has long-lived information about the final liquidation value f .  Thus it is not surprising 

that the speculator’s behaviour with respect to v closely resembles the insider’s aggressiveness 

on /  in Kyle (1985).

17 decreases with fc/, but a slower rate than the increase for V/; moreover does not 

depend on ki.

18 We are grateful to Nicholas Baxberis and Jeffrey Wurgler for sharing their dataset.

19 Other authors use market adjusted trading turnover, i.e. Vi^fVM.t-, where VM,t is the NYSE 

volume during day t. Market adjustment results in stronger tests by taking into account market 

variation. Harris and Gurel (1986) report that the qualitative results are not affected by the way 

one measures trading volume. Accordingly, our results are qualitatively the same when using 

raw trading volume Vitt. Cusick (2002) and Lynch and Mendenhall (1997) use a logarithmic 

transformation of the market adjusted trading volume.

20 The evidence reported in this and the following subsections is quite robust to the pre-event 

window choice. Inclusion of the announcement day in computing average volume and bid-ask 

spread does not qualitatively change our results.

21 When computing the t—statistic we opt for the cross-sectional dispersion of M AVRt to 

estimate its variance. See Lynch and Mendenhall (1997) for an alternative method of computing 

standard errors. Details on the binomial test are in Hollander and Wolfe (1999).

22 Since the number of trading days between AD and CD varies across companies (see figure 

2.10), the column labeled Nt in each panel in table 2.2 reports the number of stocks included 

in the sample. For each of the ten days after AD in panel A, only those firms for which CD has
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not yet occurred are included. This is why the sample size in the second column decreases over 

the days after AD in panel A. Similarly, for the ten days preceding CD, only firms for which 

AD has not yet occurred are included, such that the sample size increases over the ten days 

before CD in panel B.

23 Using the effective relative spread 2 |ln does not change the results presented

here. For reasons of space we report findings for the relative spread only.

24 Using eqs. (2.20) and (2.22) the terms in the insider’s profits (2.40) can be written as functions 

of xi according to ( /  -  pi) =  ( /  -  po) -  Ai [xi + C \ { y -  v0) +  u i] , (s -  / )  =  -  ( /  -  po) +

<j> (xi + ui) and (v -  vi) =  (v -  v0) (1 -  C\p) — p (xi 4- ui).

25 Note that (2.20), (2.22) and (2.16) allow to write / —pi =  (1 — ai Ai) ( /  — po)—Ai [y\ + (1 — &i) « i] , 

s - p i  -  (<f>- Ai) [ai(v - p 0) + (1 -  & i)ui]-Aipi and v -  vi -  - p  [ai ( / - p 0) + (1 - '6 i )« i ] -

ppi +  (u2 — U0) . Further, since the date 1 speculator’s information set does not include /  one 

has E  ( /  - p i |  S?) =  E ( s - p i| S?) =  -A m .

26 From the definition of s one has E  (s|o;i) =  E [E (f\x\  +  u\) |cc»i]. Since is coarser than 

xi + m ,  then using the Law of Iterated Expectations E [E {f\xi + u{) |wi] =  E  (/|wi) = pi.
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Information Sharing and Dynamic Trading

3.1 Introduction

The vast majority of the literature on asymmetric information in asset markets have 

pointed at the role market prices have in aggregating the information dispersed among 

agents. Starting with the seminal work by Grossman and Stiglitz (1980), countless 

models have been proposed to  investigate how investors incorporate their information 

into trades, and how market participants extract information from prices and other 

aggregate variables over time. The way an insider dilutes his information over time 

to hinder the market maker’s inference is best described by Kyle (1985). By trading 

more aggressively, the insider impounds more information into his order. This in turn 

reduces the informational asymmetry with respect to the market maker. As a result 

liquidity improves, and the insider benefits from better terms of trade. As the insider 

trades more aggressively however, he loses some of his informational advantage, hence 

foregoing part of his gains. In equilibrium orders are submitted in such a way tha t 

the former effect counterbalances the latter. Foster and Viswanathan (1996) generalize 

Kyle (1985) allowing for multiple insiders. In their model each trader has not only to 

factor in the market maker’s inference [as in Kyle (1985)], but also the information 

other insiders’ extract from the aggregate order flow. These models illustrate in an 

exemplary way how the literature has emphasized the role of trading as a vehicle to 

convey private information to  the market at large.

There is another channel through which information can be revealed to  agents: direct 

information sharing. Every day traders exchange opinions and share their views about
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financial assets, either because they discuss upon meetings at the marketplace or via 

message posting in financial forums. At a first glance these activities might be difficult 

to conceive. In fact, standard market microstructure theory predicts tha t asymmetric 

information is crucial to generate profits from trading. Direct communication of pri­

vate signals about asset payoffs would therefore seem to reduce traders’ informational 

rent. Yet the empirical literature has documented several instances of peer-to-peer 

communication and related social interactions phenomena in financial markets. As an 

example, several studies have analyzed the impact of internet discussion sites and mes­

sage postings on aggregate market variables such as prices, volume and return volatility 

[e.g., Tumarkin and Whitelaw (2001) and Antweiler and Prank (2004)]. Furthermore, 

there is strong evidence tha t proximity influences investors’ portfolio choices. Coval 

and Moskowitz (1999) show tha t US fund managers are more prone to invest in locally 

headquartered firms. They suggest tha t the preference for geographically proximate 

investments is driven by asymmetric information between local and nonlocal investors. 

Hong, Kubik and Stein (2003) document tha t fund managers quartered in the same 

city exhibit similar portfolio choices, and show tha t this finding holds even when con­

trolling for the distance between managers and traded stocks. Thus the authors argue 

tha t such correlated portfolio choices arise (1) through peer-to-peer communication, 

and/or (2) simply because fund managers in a given area commit themselves to invest­

ment decisions based upon common sources of information - such as a local newspaper 

or TV station.

In this chapter, we develop a dynamic model of trading in which asymmetrically 

informed traders share (portions of) their information endowments. A key feature of 

our model is tha t traders engage in, or experience, information sharing through local 

connections. These local connections give rise to “reference groups” which may include 

only one’s closest neighbours or even the entire market. Indeed, there are no obvious ar­

guments suggesting whether information sharing phenomena should be best thought of 

as being local or global. In some im portant cases, however, the size of reference groups 

endogenously emerges in our model. Our framework encompasses two natural modes 

of information sharing. In the first one, information sharing arises endogeneously -a s  a 

result of traders’ optimal choices. In the second one, information sharing occurs because 

traders have access to  common sources of information. We characterize market condi­

tions favouring information sharing among traders. We find tha t information sharing
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entails significant gains under a wide range of conditions on initial beliefs heterogeneity 

and the market structure -as  summarized by the number of traders and batch auc­

tions. The explanation for our findings is indeed simple. In our model, traders face a 

crucial trade-off. On the one hand, information sharing entails a loss in the traders’ 

monopolistic power. On the other hand, information sharing improves the quality of 

traders’ inference about the fundamental asset value. When the initial correlation be­

tween individual signals is high enough, the losses generated by the former effect are 

smaller than the gains associated with the latter effect. One im portant prediction of 

the model is that, in the presence of information sharing, traders postpone as long 

as possible their trades to compensate for their loss in monopolistic power. This in 

tu rn  generates an intense waiting game, and deeper information asymmetries with re­

spect to  the market maker. If again the initial correlation between individual signals is 

sufficiently high, these information asymmetries also contribute to  making information 

sharing beneficial. Finally, our model predicts tha t in many circumstances, traders may 

find it profitable to engage in information sharing with an optimal number of peers not 

necessarily equal to  the remaining traders. In other terms, (local) information sharing 

groups might emerge as a result of optimal choices of traders.

Our analytical framework extends the one in Foster and Viswanathan (1996). In 

Foster and Viswanathan, every trader is endowed with one signal about the future value 

of an asset, and the correlation between any two signals is the same for all agents. In 

our model, information sharing destroys such an homogeneity assumption, and induces 

patterns of signals correlation varying with traders’ geographical proximity. As a result 

of local information sharing, some traders may thus agree more with some and less 

with other peers. Furthermore, our model predicts tha t in some cases, any two traders 

may not be directly exchanging their initial signals, but still exhibit highly correlated 

information endowments. This phenomenon occurs when two traders share information 

with a third trader who is exchanging his signal with each of the initial two traders.

On a strictly theoretical standpoint, our information sharing model is closely related 

to the literature on markets for information. For instance, Admati and Pfleiderer (1986, 

1988a, 1990), Biais and Germain (2002), and Brennan and Chordia (1993) focus on 

the sale of information by financial intermediaries. Financial intermediaries sell infor­

mation to their clients either directly, via newsletters and buy/sell recommendations, 

or indirectly, through a mutual fund. Similarly, we consider traders exchanging infor­
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mation among themselves (rather than selling information against a monetary price). 

However our model differs from the mentioned literature on the sale of information 

in many respects. First, our market for information is not monopolistic because all 

agents are endowed with some information they may subsequently exchange. Second, 

previous work has focused on markets in which one monopolistic financial intermediary 

sells information to a pool of uninformed investors. Third, no explicit compensation 

scheme for the information seller is needed in our model. Naturally, this does not mean 

that information cannot be priced. In our model, the value of information is measured 

by the difference in each agent’s ex-ante expected profit with and without informa­

tion exchange. This in turn simplifies our problem, since we do not have to arbitrarily 

specify how the information provider is compensated.1 Finally, agents both exchange 

information and subsequently trade in securities markets. In Admati and Pfieiderer 

(1986) and Brennan and Chordia (1993), for example, the financial intermediary does 

not trade on his account. Finally, information is exchanged only once, while trading 

takes place in a sequence of batch auctions. Thus, we axe ruling out any role for reputa­

tion. However, we still consider traders extracting other traders’ information from past 

prices. Such a dynamic inference problem is not considered in Admati and Pfieiderer 

(1986, 1988a, 1990), Brennan and Chordia (1993) and Biais and Germain (2002), who 

instead develop static models.

An im portant assumption of our framework (as well as of all the previously men­

tioned models) is tha t traders engage in truthful information exchange. Our model 

thus rules out strategic information transmission [e.g., Benabou and Laroque (1992)} 

or information-based price manipulation [as in Allen and Gale’s (1992) terminology]. 

In contrast, the model we consider can be thought of one analyzing a market for infor­

mation in which no trader is a “guru” with respect to others. Information-based price 

manipulation is illegal in many countries, and cases of information-based manipulation 

appear to be relatively limited. As an example, there is weak evidence tha t internet 

stock messages are posted to manipulate markets. Tumarkin and Whitelaw (2001) do 

not find any causal link between message board activity and returns (or volume) based 

on observations from the RacingBull.com discussion forum. Similarly, Antweiler and 

Frank (2004) find th a t the impact of Yahoo! internet posting on returns predictability 

is economically very small. However, understanding the role of strategic communication 

within our model can be an interesting topic for future research.
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The incentives to  information exchange activities have been addressed in related 

fields. W ithin the industrial organization literature, Novshek and Sonnenschein (1982), 

Clarke (1983) and Vives (1984) pioneered the role of information sharing in oligopoly, 

which has been subsequently analyzed thoroughly under different market structures 

[see Raith (1996) for a survey].2 This chapter introduces information sharing activities 

in models with asymmetric information in financial markets, but it has two im portant 

distinctive features. First, the demand elasticity faced by oligopolists is exogeneous 

in the industrial organization literature; here instead we consider a model a la Kyle 

(1985), and the price reaction to  the order flow is therefore endogeneous. Second, all 

models in the industrial organization literature consider global, “marketwide” infor­

mation sharing. Our model also allows traders to share their information with selected 

neighbours.

Information sharing motives have been studied in credit markets as well. Pagano 

and Jappelli (1993) and Padilla and Pagano (1997, 2000) identify conditions under 

which banks find it profitable to exchange information about their customers’ quality 

[see Jappelli and Pagano (2000) for a recent survey on these theoretical models]. Un­

der uncertainty about the borrower’s quality, credit bureaus allow lenders to improve 

their knowledge about new customers, at the cost of giving up to competitors one’s 

informational rent about existing customers. As we argued, asymmetrically informed 

traders in financial markets face a similar trade-off in our model. However, our analysis 

is further complicated because the price reaction to traders’ strategies is endogeneously 

determined. The adverse selection costs faced by the market maker constitute another 

factor traders must consider when choosing whether to engage in information sharing 

activities.

The article is organized in the following manner. In the next two sections, we develop 

the basic information structure of our trading game. In section 3.4, we derive a dynamic 

equilibrium and in section 3.5, we analyze its properties. Section 3.6 concludes. The 

appendix contains all technical details omitted in the main text.
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3.2 Information structure

3.2.1 A sset m arket and signals distribution

As in Kyle (1985) and in his subsequent extensions, we consider a market for one 

risky asset organized in N  > 1 batch auctions. This asset pays a random payoff 

/  ~  iV(0, (Jy0) at the end of the trading period, and M  traders receive private sig­

nals about / .  Let trader i be endowed with signal s^o and let (zi,n)^Li be his orders 

submitted over the trading period. Individual signals are jointly normal with mean zero 

and = E  (si,o, ■ * *, s m ,o ) T  ( s i,o> • * •> s m ,o )  variance-covariance matrix. The signal 

unconditional distribution is symmetric in that: (1) each signal has variance Ao, (2) the 

covariance between any two signals is fio, and (3) the covariance between each signal 

and the fundamental value is c q . Let so be the M x l  vector of individual signals and 

1 be the M x l  vector of ones. The joint distribution of the vector ( /,  s^o, • • •, sa/}o)T 

is given by:

’  / ' ~  N  [
0 Oy C0lT

.  s° . V 0 CqI  *0

Ao

Ao

fto

fio

Ao

(3.1)

Finally, a sector of noise traders submit (perhaps liquidity motivated) orders (un) ^ :1, 

where un ~  N ID  (0, <r )̂ for all n. The aggregate order flow is therefore given by:

M

U n  =  - ^ i ,n  “1" U n , n  =  1 , • • •, N .
i —1

(3.2)

The (M  +  l)-th  market participant is a market maker who commits himself to offset 

the order flow according to the Semi-Strong efficiency rule:

pn = E  ( / |  yi, •••,3/n), n  = 1,- - ‘,N.

The previous asset market and signals distribution structure is essentially the one in 

Foster and Viswanathan (1996). One of its attractive features lies in the tractability of 

the resulting model. As an example, the homogeneous correlation structure simplifies 

each trader’s dynamic inference about other traders’ signals, and allows to avoid infinite 

regress problems. While such an homogeneity property is analytically appealing, it is
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also interesting to analyze situations in which agents may experience some degree of 

heterogeneity in their signals correlation structure. In the next subsection, we use the 

previous (homogeneous correlation) information framework as a starting point, and 

develop novel information structures with heterogenous correlation distributions which 

are still exempt from infinite regress issues.

3.2.2 Traders’ location and information sharing protocols

We view the previous market structure as one in which traders are physically located 

around a circle. All traders are risk neutral and solve the following optimization problem

[ ^ n = l  —

where F^n = {s^o, (yi,t)™Zj1 , denotes trader i information sets at the n-th

batch auction. By convention, we assume tha t traders are ordered clockwise, as to say 

that trader i has trader i + 1  to his left and trader i — 1 to his right (see figure 3.1). For 

reasons developed below, we assume tha t M  is an odd number. We now describe two 

possible patterns of signal sharing amongst any two “sufficiently” adjacent traders.

3.2.2.1 Information sharing I: Endogeneous

The game begins when traders choose whether to  share their information or not. We 

consider the simple situation in which any information sharing agreement may only 

take place before (and therefore is not affected by) the very observation of the signals. 

While such an agreement may be undertaken for a variety of reasons, we shall focus on 

situations in which information sharing arises because it is simply in the best interest 

of agents. Furthermore, we assume that agents do not make any strategic use of their 

private information. Thus, if any two traders choose to  share their signals, both of 

them would communicate the precise content of their signals. This corresponds to the 

“external agency” assumption in the industrial organization literature, by which firms 

delegate an external agency to (1) receive their signals, and (2) redistribute the signals 

to all firms participating to the information sharing agreement [see, for example, Gal-Or 

(1985)].

As for the remaining institutional details, we assume th a t trader i can share his infor­

mation with traders to his right and to his left. We consider “double-sided” information 

sharing. T hat is, if trader i decides to share his signal with G traders to his right, then
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he shares his signal with G traders to his left as well. For example trader i may want 

to  share his signal with traders i — 1 and i -F1 (see figure 3.1). In this case he gives s^o 

to both traders and receives Sj-^o and Sj+^o in exchange. Since we focus on symmetric 

equilibria, all traders choose the same G. After exchanging information with other 2G 

traders, the i-th  trader information set becomes s^o =  (Si-G,o> * * '> si,o> *' Si+G,o)T , 

G E [0, (M  — 1) /2].3 To easy notation, we let G = 2G +  1 be the reference group size, 

that is the number of signals in each trader’s information set after information shar­

ing has occurred between traders. Thus, if no information sharing occurs, G =  1, and 

si,o =  Sj,o f°r all i. Complete information sharing occurs whenever G = M , in which 

case s^o =  so for all i. Values of G between these two polar cases identify intermediate 

cases. As is clear, our model generates equilibria which are isomorphic to others in 

which any two traders are credibly selling their own signals to each other. This is so 

because the price of every signal is exactly the same in such symmetric equilibria.

3.2.2.2 Information sharing II: Exogeneous

An alternative information sharing protocol may arise at the outset, as a result of the 

physical location of traders. According to  this mechanism, every signal s^o is made 

available at trader z’s location, and observed by trader i as well as his adjacent peers 

(i.e. traders i =F fc, k =  1, • ■ -,G). As an example, every signal s^o can be thought of 

as being broadcasted to  trader’s i location through a local newspaper or TV station. 

Reference groups among traders then arise because different traders have access to the 

same source of information. If G = 1, every trader gathers information from a unique 

local source of financial news, and there is no information sharing amongst agents. 

At the other extreme, all pieces of information are provided at a marketwide level 

whenever G = M.  In general, the group size G E [1, M], and thus represents the media 

coverage of information providers.

3.3 Heterogeneous signals distribution structures

3.3.1 Average signals

Let si t0  denote trader i ’s average signal:

G

Si,o =  G 1 ^2 (3.3)
k = —G
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FIGURE 3.1. Geographical location of traders.

j + ( A /- l ) /2 i - { M - \ y i

i +

The z-th trader has (M  — 1)/ 2 traders to  his left and (M  — 1 )/ 2 traders to his right. In this particular example, 
every trader shares his own signal with 2G  =  2 traders: one trader on his left and one trawler on his right.

We refer to the full information liquidation value as the expectation of the final value 

conditional on the information disseminated among traders, i.e. E  ( f  |so). Let k = 

CO (Ao +  ( M  -  1) fio)-1 , o = K.Mand s = M£ , = i  By eq. (3.1),

£  ( / |  s0) =  05. (3.4)

Therefore s, the average of the individual average signals, is a sufficient statistic for 

the full information liquidation value. Note that 6  is well defined whenever the matrix 

is invertible. Such an invertibility condition requires the following restriction on the 

model parameters:

A0 > -  (M  -  1) f l0. (3.5)

The unconditional variance-covariance matrix of the average signals (s i.o )^  is de­

noted as ^o = E ( s i , o > ' ’ '> SM,o ) T ( s i ,o ,  • * •, s m ,o ) ]  • In general we expect the elements
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of this m atrix to depend on the group size G. Accordingly, we set V&o =  (G), where

*o(G)  =

Ao(G) n 0(l,G) ••• f i o ( ^ ,  

Ao (G)

G) ■■■ jJo(-l ,G)  

flo(-2,G)

Ao(G)

and the elements

A0 (G) = var  (s<>0)

 ̂ (fc) G') — cov (sj+^o, Si,o) > k — "pi? ‘T‘2, • • •, -F 2

denote, respectively, the unconditional variance of average signals and the uncondi-

Furthermore, due to the symmetric nature of our information sharing protocol, one 

has Qo(k,G)  = £lo(—k,G).  Finally, we define the unconditional covariance between 

the sum of other traders’ average signals with Si,o as:

Finally, the covariance between the average signal Si,o and the fundamental value is 

simply

co =  cov ( / ,  Si,0) =  co,

and does not depend on G.

3.3.2 Correlations

By the distributional assumption in (3.1), and the definition of the average signal s*,0 

in (3.3),

tional covariance between the average signals of any two traders who are /c-positions 

apart (k 7̂  0). Ao (G) is constant across traders due to the symmetric unconditional 

distribution in eq. (3.1) and the fact tha t G is the same for all traders in equilibrium.

Due to the geographical location of agents in this model, To (G) is independent of i.

(3.6)
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FIGURE 3.2. Overlapping information sets (G =  2, M  = 11).

trader i

s , +  2 Si  + l Si  S t - i  S i - 2

Sien a ls  to trader i

For any agent, empty circles denote bits of information this particular agent is endowed with. Filled circles are  
bits of information received by neighbors. Left (to  em pty) signals are received by left neghbors, and right ( to  
empty) signals are received by right neighbors. Alternatively, any em pty circle is transm itted up and down (e.g. 
i  — 1 gives his signal up and down).

Take any two traders i and j  = i +  k with k ^  0, and consider the unconditional 

covariance between average signals Oo (&, G). Whenever G <  M , one might expect tha t 

the covariance between average signals depends not only on G but on k as well, i.e. the 

distance between trader i and i +  k .4 This is due to the fact tha t information sharing 

results in trader i gathering 2G  additional signals from his neighbours. However the 

number of individual signals each trader shares with other market participants depends 

on their relative position along the circle. As an example, assume tha t 2G < (M  —  1)/ 2. 

In this case trader i shares 2G signals with trader i +  1, 2G — 1 signals with trader 

i +  2 and in general 2G +  1 — k signals with trader i +  k. Eventually, trader i shares no 

signals with trader i +  2G  +  1 and beyond (see figure 3.2). As the simple example in 

figure 3.2 demonstrates, the covariance between average signals does in general depend 

on k in our model.

To compute the various covariances, we have to distinguish between two cases ac­

cording to whether 2G is less or greater than (M  — 1)/ 2. If 2G < (M  — 1)/ 2, one has 

si+k,o H si,o =  { 0 } whenever \k\ > 2G (as in figure 3.2), which implies Clo (k ,G ) =  ^q. 

On the other hand, Sj+^o £ s^o for all \k\ < 2G. As we show in the appendix,

For 2G < Mf l ,  ft0 (fc, G ) = 1

A0 (G) -  G~2k (A0 -  fl0) i forfc€[l,2G  +  lJ

no, for k c  [ 2 G + l , ^ f i ]
(3.7a)

If (and only if) 2G >  (M  — 1 )/ 2, agents may share additional signals due to  a 

double overlap occurring when traders on the right semicircle within trader i ’s reach
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FIGURE 3.3. Double overlap.

i + ( M - \ y i  i - { M - 1)/2

i - Gi + G

i

i

Traders on the left semicircle receive bits of information sent by traders on the right semicircle sharing infor­
mation with trader #  i.

send signals to traders on the left semicircle (see figure 3.3). In figure 3.3 trader i shares 

his signal with trader i — but no information sharing occurs with trader i +  • On the

other hand, traders i + &2 and i — £ directly exchange their signals. This implies that 

trader i knows s^-^o € Si+fc2)o, and Si+fc^ofls^o i=- {0}. In the appendix, we demonstrate 

that the occurrence of double overlap modifies the correlation structure in (3.7a) as 

follows:

I
Ao (G) -  G~2k(A0 -  f to ) , for fc 6 [l, 2 -  G)]

2Ao (G) -  G~2M(Ao -  ft0) -  «o, for e  [2 -  G ) ,
(3.7b)

By eqs. (3.6), (3.7a) and (3.7b), the variance-covariance matrix between average 

signals depends on the information sharing parameter G, as previously mentioned in 

this section. While the elements on the main diagonal in ’Fo (G) are identical [see eq. 

(3.6)], the off-diagonal elements decrease with the distance from the main diagonal 

according to the pattern dictated by eqs. (3.7a)-(3.7b). It is worth noting that the 

sum of the off-diagonal elements is constant across different rows in #o {G). This sum 

is precisely what we previously defined as fo (G ), and is therefore identical across
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traders. This fact will allow us to avoid the infinite regress problem. In particular, in 

the appendix we show tha t eqs. (3.7a)-(3.7b) imply that

2 C
r 0 (G) =  ( A f - l ) n 0 +  - ^ ( A o - f i o ) ,  for all G e  [ 0 , ^ ] .  (3.8)

G

3.3.3 Forecasts

We now turn to consider how trader i forecasts the final liquidation value as well as

the sum of other traders’ average signals conditionally on his information set s^o- By

eq. (3.1),

E ( f \ s ito) = Gri l8 i,0i (3.9)

where r]1 =  Co (Ao +  2Gflo)_1- By eqs. (3.7a)-(3.7b), the correlation between average 

signals changes with any two agents’ relative location. Hence, by the Projection Theo­

rem, each trader’s expectation of other traders’ average signals depends on the relative 

distance k . However, the expectation of the sum of all other traders’ average signals is 

independent on k and linear in Sifii

E  ( S j #  S j.oko ) =  E  Sjf l lho)  =  (M  “  1) 0 i*,o, (3-10)

where the regression coefficient is

r 0(G)
( M - l ) A o ( G ) ’

and Ao(G) and ro(G ) are given by eqs. (3.6) and (3.8). Clearly, this result follows 

because Tq (G ) does not depend on A; as in (3.8).

3.4 Equilibrium characterization

3.4-1 Market maker’s inference

Let Zift = y t—%i,t be the residual order flow as of trader i. We let Fi>n = {s^o? ( ^ . t ) ^ 1 , (^i,f)”= i}  

and Fm+i,ti — {(2/t)tt=i} denote trader i and market maker information sets at the n-th 

batch auction. The market maker sets prices according to  the Semi-Strong efficiency 

condition

P n  = E ( f \  F M + l , n )  ,



3.4. Equilibrium characterization 83

and updates his estimate of individual signals as follows

ti,n =  F  (Si,o| ^M+l,n) •

Given our symmetric information structure for individual signals, the previous expec­

tation does not depend on agent i, and we set ti>n = tn . A simple but im portant point 

is th a t tn is also the updated estimate of each individual average signal

F  (s^ol-EM+l,n) = G 1E
G
Xy î+fc,0 Fm +l,n

k=—G
= G~L Z  ti+k,n = tn . (3.11)

k=—G

The relationship between pn (market maker’s updated estimate of the asset value) and 

tn (market maker’s updated estimate of the individual average signal) is given by:

P n  —  @tn' (3.12)

Let Sj)Tl denote the i-th  trader residual informational advantage on his own signal 

(relative to the market maker) after n  rounds of trading,

&i,n = 0 F  (Si,o|-fM+l,n) =  $i,0

Trader i informational advantage on his average signal, Si>n, has a similar interpretation, 

and due to eq. (3.11) is given by:

Si,n — 1̂,0 El (Si,o|-^M+l,n) — 5^0 tn .

The market maker’s update results in the following residual variances:

° \ n

An 

Cln 

An (G) 

Cln (k , G)

var [E ( / |s 0) I^M+i.n] =  var (9s -  pn \FM+i,n) 

var (sifl\FM+i,n) = var (s^l^M +i.n)

COV  ( s j ?0) S j , o \ F M + l , n ) =  V.OV (s^ n ?  & j , n \ F M + l , n )

var (si,n \FM+i,n)

COV  ( s ^ n j  Sj-f-j^n|-^M + \ , n )

(3.13)

(3.14)

o2j n is the residual variance of the full information fundamental value after n  rounds 

of trading; An and Qn are the individual signal residual variance and covariance re-
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spectively; finally, An (G) and Q.n (k , G) are the average signal counterparts. Then we 

have:

4 „ = ^ r [ A „  +  ( M - l ) f i „ ] .  (3.15)

Furthermore the following recursions hold:

—1 — A-n—i A-n (3.16a)

r f .n - l  -  a /,n = ° 2 (An-1 -  A») (3.16b)

A„_! (G) -  A„ (G) = A„_! -  A„, all G (3.16c)

Ctn- i  ( k , G ) - f l n (k,G) — An_ i -  An, all A:, G (3.16d)

f n_ L ( G ) - f n (G) =  (M  -  1) (An_;L — An) , all G (3.16e)

Therefore, the off-diagonal elements in (G) = E  ^(si,o, • • *, sm,o)T (si,o, • • •, % ,o) -Fjif+i.n] 

depend on G, while the difference ^ n_i (G) — (G) does not:

(G) -  * n (G) =  (A„_1 -  An) 11T.

To easy notation, we now supress the dependence of the various coefficients on G.

3.4’2 Dimensionality issues

We focus on equilibria in which each trader’s forecasts of the asset value and the 

forecasts of others are linear in the trader’s average signal. In these equilibria, all 

higher order forecasts of other traders’ forecasts are also linear in the same average 

signals. Consequently, average signals constitute sufficient statistics for both the asset 

value and the forecasts of others. Furthermore, we focus on equilibria independent 

from forecasts’ history. As it turns out, our information structure makes the strategic 

gaming in our model comparable to the one introduced by Foster and Viswanathan

(1996). Specifically, we assume tha t in equilibrium traders’ demand and the market

maker’s learning about the asset value take the following form:

=  GpnSijTl- i  (3.17)

Pn = Pn—1 4“ An?/n (3.18)
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Moreover, the market maker learning about individual (and average) signals evolves 

according to

tn = tn—1 d" CnVn- (3.19)

The relationship between the updating parameters ( n and An is given by:

An =  0Cn- (3.20)

At the n-th trading round, trader i forecasts the fundamental value tha t is not predicted 

by the market maker after n  — 1 rounds, using his information F^n . By the assumption 

tha t trading strategies are linear [see eq. (3.17)], and the market maker’s recursive 

update in eqs. (3.13) and (3.19),

%i,n =  G(3nSitn—1 =  G(3n (^i,0 tn—i) =  Gf3n 53r=l CrVr'j •

Therefore, the residual order flow is redundant, and we set F^n =  {s^o, (yt)£=i"}-

As in Foster and Viswanathan (1996), trader i can manipulate other traders’ beliefs 

about the asset value only through the aggregate order flow. As a result, every trader 

forecasts the asset value as follows:

E  ( /  -  P n-i\F itn) =  Gr)nSitn - i .  (3.21)

That is, sitn - i  is sufficient for trader i to forecast the fundamental value before submit­

ting his order at time n. Note th a t eq. (3.21) is the dynamic analog to the projection 

in eq. (3.9). Similarly, trader i forecasts (the sum of) other traders’ forecasts of the 

fundamental value according to  [and analogously to the static case in eq. (3.10)]

E  =  (Af — 1) (f)n S i>n- 1- (3.22)

As is clear, linear strategies as in eq. (3.17) play a key role in resolving the dimension­

ality issue, since they allow to conclude tha t the forecasts of the forecasts of others are 

linear in each trader’s average signal.
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3.4-3 Equilibrium  and deviation

Our linearity assumptions rule out the problem of increasing state history over time. 

The argument hinges on the fact tha t linear strategies in eq. (3.17) are played in 

equilibrium. When moving to  consider deviations from the optimal play by trader i , 

one has to keep into account th a t Si>n- i  is no longer a sufficient statistic for predicting 

the fundamental value as well as other traders’ forecast as in eqs. (3.21)-(3.22). In fact 

Si,n-1 is sufficient only if trader i played the strategy (3.17) in the first n  — 1 trading 

rounds. Let us denote deviation from the equilibrium path with a prime ('). Trader i 

deviation from the equilibrium play (3.17) to (x\ during the first n  — 1 auctions

would generate the aggregate order flow {y'k — y\t — (x^k — x\ . Since the market

maker’s update on the fundamental value and the average signals are linear in the order 

flow due to eqs. (3.18)-(3.19), trader i deviation modifies the market maker’s learning 

process as well, resulting in { p '^ Z i  and (t^.)^~j. Given past suboptimal play, it turns 

out tha t the residual average signal along the equilibrium path Si>n_i and the price 

deviation (pn- i  — Prn- \ )  are jointly  sufficient to forecast the fundamental value as well 

as the forecasts of other traders. This result allows to conjecture tha t trader z’s value 

function after n  auctions takes the form:

Wi,n =  +  'lPnSi,n (Pn ~  Pn) 4" Pn (Pn ~  Pn) Sn- (3.23)

Past suboptimal play is captured by the second and third term  in the value function 

in eq. (3.23). Moreover, trader i deviation coincides with the equilibrium strategy in 

eq. (3.17) plus an additional term  reflecting the price deviation induced by suboptimal 

play in the previous n  — 1 rounds:

x i,n = G(3nSi,n-l +  In  fan- 1 ~  P n-1) • (3-24)

The necessary and sufficient conditions for an equilibrium in our trading game hinge 

upon the mutual consistency between the conjectured value function in eq. (3.23) and 

the deviation in eq. (3.24). We have:

P roposition  1 There exists a symmetric linear recursive Bayesian equilibrium in 

which trading strategies and prices are as in eqs. (3.17)-(3.18); Xn is the unique real,
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positive solution to:

s ( m  g ) (A n  O n  ) o j ^  | a l i p n A„A3

61

a;  +
2An +  (Af -  1) fi„ -  ^  (A„ -  n„)

f,n f ,n

and the trading strategy coefficients (3n and 7n are given by:

9Xncrl
P n  =

G M a \n

Tn
(1 -  2Anftl) [l -  e ^ G  (M  -  1) PnK )  

2An (1 An/2n)

T /ie  value function coefficients satisfy the recursions:

X

(3.25)

(3.26)

(3.27)

<*„_i = a n 1̂ — 6 1G (1 + (M  — !)</>„) f}nXnj + G2/?n [?)„ — /3„A„ (1 +  (M — !)$„)]

V>„-i =  V'n [l -  A„7„ -  »_1G (M -  1) /J„An] [l -  6 ~ l G  (1 +  (M -  1)0„) /3„A„]

+G { 7 „  K  ~ PnK  (1 +  (M  -  1)0„)] -  /3„7„An +  /?„ [ l  -  e~lG (M -  1) /3„A„]}

(3.28) 

=  P„ [i -  a„7„ -  e - 'G  (m  - 1) ^„a„] 2 +  7„ [i -  a „7„ -  e~ lG  (M  -  1) p nK ]t*n- 1 =

^ n -l — “1“ $ An(7u +  0 G <ynXnj3nV0.T 1 ^ i,n )

where otjv = ipN =  /i^- =  5/^ =  0, and

Tn-l
(M  — 1) An- i

0 ( r n- i  +  An_i)
T)n =     -

G M A n _ i

v a r (E jy i %,n-i| ^ .n) =  M [A„_! +  (M - 1 )  -  [l +  02 (M -  l ) 2'

(3.29)

(3.30)

An—1 2rn_i.

Furthermore the following inequality must hold:

An (1 AnMn)
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and the following recursion on the full information residual variance must hold:

4 „  =  ( i

In our model, not only are traders concerned with learning from the information tha t 

other traders possess. This learning process is also complicated by every trader’s geo­

graphical location and the amount of information every trader shares with neighbours. 

As Proposition 1 reveals, trading strategies and value functions are heavily affected by 

the heterogeneous correlation structure arising as a result of information sharing -a  

fact tha t we will examine in great detail in section 3.5. We now turn to illustrate the 

computational aspects of the equilibrium.

3.4-4 Computation of the equilibrium

The model parameters are: (1) the number of traders and batch auctions (M, AT), 

(2) the fundamental and non-fundamental uncertainty (cr2 0, cr2), (3) the initial signal 

distribution (A o, f io )  > and the covariance between signals and the fundamental value 

co, and (4) the group size G , or equivalently the amount of information sharing G. 

Once these parameters are fixed at some value, the regression coefficient 0 in eq. (3.4) 

and the m atrix ^o are uniquely determined. We then solve for the equilibrium using 

backward induction. By eq. (3.16a), A n — =  Ao — fio- We fix a terminal value for

Ajv and compute Qjy =  Ajv +  ̂ o - Ao using eq. (3.16a). o 2 N then follows by eq. (3.15). 

Since apj =  ipN = p N = 6 pj =  0, we solve for Xn in eq. (3.25), which yields f3N and j N 

via eqs. (3.26)-(3.27). To compute the value function coefficients as of at time N  — 1, 

one needs to  express A jv - i  and f|/v-1 in terms of variables known at time N . In the 

appendix, we show that:

^  ~  G (M  — 1) AnPn (An ~  f^n)
n-1~ e - G M \ npn

Then, Ajv-i is obtained by evaluating eq. (3.31) at n = N , and fi/v-1 is obtained by 

the equality fl/v-1 =  A^v-i +  ^o — Ao- Finally, we retrieve regression coefficients (j)N 

and rjN through eqs. (3.29)-(3.30) and the equality Tjsr-i =  f  7v +  (M  — 1) (A;v_i — Ajv) 

[see eq. (3.16e)]. The value function coefficients at time N  — 1 are therefore uniquely 

determined by eq. (3.28).
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The above procedure is then applied at each trading round n  6 [1, AT] yielding the 

inital value of Ao implied by the choice of the terminal value of A//. The resulting 

initial value of Ao is then compared to the one we posited as initial parameter, and the 

procedure is repeated for different choices of An  until convergence is achieved.

3.5 Market dynamics implications

This section analyzes properties of the equilibrium price formation predicted by our 

model in a variety of specific cases. We consider an experimental design with three 

distinct trading periods lengths (N  =  5, 10 and 40) and three sizes of informed traders 

(M  =  5, 7 and 21). In practice, we axe spanning a wide range of cases, from one 

extreme in which M  =  5 and N  = 5 to  the other extreme in which M  — 21 and 

N  = 40. To explore the asymptotic properties of the model (as N  becomes large), we 

will occasionally study selected properties of the model in the case arising when M  — 7 

and N  =  100.5

We specialize the information structure to one in which the sum of all traders’ 

signals equals the tru th , viz /  =  anc  ̂ se  ̂ ^ /o  =   ̂ au = Af-1 . Therefore,

we analyze a situation in which the fundamental uncertainty equals the total non­

fundamental uncertainty across all batch auctions. As a result of the choice about 

the distribution of / ,  co =  M _1, Ao =  M ~ l f  \{M  — l ) p +  1] and flo =  pAo- In the 

remainder, we thus parametrize equilibrium properties by: (1) the initial correlation 

among the informed traders signals, p, (2) the number of trading periods, AT, (3) the 

number of informed traders, M ,  and (4) the amount of information sharing, G. For a 

given tuple (p ,N ,M ), we define S  =  £ {p, AT, M ) as the initial market structure, and 

describe equilibrium properties of the model over (£, G).

3.5.1 Strategic information sharing

We analyze the pattern of traders’ expected profits over (£ ,G ). Given a fixed tuple 

(p, N , M ), we say tha t information sharing is not optimal [for the corresponding initial 

market structure S  (p ,N ,M )\, or does not arise, if expected profits are the highest at 

G = 0. Similarly, we say tha t given a fixed tuple (p ,N ,M ), partial (resp. complete) 

information sharing is the optimal traders’ strategy [for the corresponding initial mar­

ket structure S (p, N , M )\ if expected profits are the highest at some G g  [l, — l]

(resp. at G = ^ p ^ ) .



3.5. M arket dynamics implications 90

FIGURE 3.4. Optimal information sharing.
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Figure 3.4 shows the ranges of initial correlation between individual signals p within 

which information sharing is optimal for given combinations of (iV, M ). We summarize 

our main findings as follows.

R esu lt 1. In all cases, information sharing (both partial and complete) always arises 

in correspondence of some positive range of initial correlations.

R esu lt 2. The range of initial correlations within which information sharing is not 

optimal widens with N .

R esu lt 3. For each M , the range of initial correlations within which complete informa­

tion sharing arises shrinks as N  increases. For each M , the range of initial correlations 

within which partial information sharing occurs does not shrink as N  increases.

R esu lt 4. The range of initial correlations within which information sharing is not 

optimal shrinks as M  increases.

As Result 1 reveals, information sharing is optimal in correspondence of positive 

values of p, and is indeed a robust phenomenon.6 As N  increases, information sharing 

is optimal for even progressively higher positive values of p - consistently with Result 

2. A further prediction of our model is that informed agents may only want to share
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FIGURE 3.5. Expected profits: discrete-time versus continuous-time (M = 7).

information with selected peers. According to Result 3, this feature of the model be­

comes more and more pronounced as N  increases. We regard this result as particularly 

important because it reveals that our traders’ geographical location structure does not 

lead to trivial results. In other terms, a simple model in which informed agents only 

consider complete information sharing agreements is not flexible enough to capture the 

gains from information sharing. Finally, figure 3.4 reveals that the incentives to share 

long-lived information widen hugely as the number of informed traders increases -as 

we state in Result 4. As an example, if M  = 21 and N  = 5, information sharing is 

optimal with a correlation as low as p =  0.1.

The results in figure 3.4 may seem to imply that the incentives to information sharing 

die off as N  —> oo. We are not able to provide a formal proof (or refutation) of such 

a statement. However, we document that the gains from information sharing persist 

even with a number of batch auctions as high as one hundred. In figure 3.5, we depict 

the pattern of expected profits when M  — 7 in two cases: N  — 5 and N  =  100. 

Consistently with Result 2, the range of p within which information sharing is optimal 

with N  =  100 is smaller than in the previous cases for N  =  5, 10 and 40. Yet if
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FIGURE 3.6. Benefits of information sharing (M — 7, N  = 5).
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N  =  100, no information sharing is never optimal for values of p larger than some 

threshold level between 0.6 and 0.7.

FIGURE 3.7. Benefits of information sharing (M = 7, N  = 10).
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W hat are the origins of these results? As is clear, heterogeneity in private information 

is a source of monopolistic power for traders. Yet such a monopolistic power deteriorates 

as p and/or N  increases. This is so because as p increases, every trader loses more and 

more bits of information endowments available only to him. And as N  increases, every 

trader reveals more of his information through his trading activity. As it turns out, 

information sharing may restore the loss in monopolistic power induced by the market
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FIGURE 3.8. Benefits of information sharing (M — 7, N  = 40).
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maker’s observation of the order flow, and his inference about (1) the full-information 

asset value, (2) each trader’s average signal, and (3) the correlation between each 

trader’s average signal with the average signals of neighbours. We now explain how each 

of these three factors contributes to make information sharing beneficial to traders.

(1) Price discovery. Figures 3.6-3.8 depict the pattern of a ^ n over time when p =  0.1 

and p =  0.7. Clearly, the speed of price discovery increases with p. Hence, traders 

are worse off with high values of p because increasingly bigger portions of their 

information endowments are lost as p increases. Figures 3.6-3.8 also reveal the 

important point that for all n < iV and G, da 2jn/dG  > 0. Therefore, as p increases 

informed traders may find it more and more beneficial to share information to 

hinder the price discovery process enhanced by initially more correlated private 

signals.

(2) Signals uncertainty. Figures 3.6-3.8 also depict the market maker’s uncertainty 

related to traders’ average signals (An). In principle, low values of Ao help imper­

fectly informed traders to improve their estimates about the asset value. But as 

more and more batch auctions are added, the quality of each trader’s inference is 

revealed to the market maker. The results in figures 3.6-3.8 show that the level 

of An decreases as p increases. Furthermore, the decay rate of An increases as p 

increases (similarly as for cr2jn). Finally, An decreases significantly with G when 

p is low. That is, if p is low, information sharing improves the market maker’s



3.5. Market dynamics implications 94

FIGURE 3.9. Speed of information revelation.
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Time variation in the information asymmetry, given by the ratio v n  [see eq. (3.32)] for M  =  7.

inference about private signals. However, such an improvement deteriorates as p 

increases. For high values of N  and p, information sharing even entails signifi­

cant losses in the quality of the market maker’s inference about private signals. 

Therefore, given a fixed N , traders may profit from information sharing when p is 

sufficiently high. The impact of the market maker’s inference activity on traders’ 

profits may be viewed from an alternative angle. Intuitively, traders’ profits are 

higher (a) the lower is the initial signal uncertainty (i.e. Ao), and (b) the longer 

the market maker is kept away from traders’ information endowments. A mea­

sure of information asymmetry is the ratio between the variance of the market 

maker’s forecast tn = E  (si,o|-FM+i,n) and the average signal uncertainty An, viz

vn =_  va r [E (s ito\FM+i,n)\FM+i,n-i\
VaT" (s^ol l)

By construction, v n < 1, all n. Furthermore, v n approaches unity as the market 

maker learns more and more about traders’ information sets. As it turns out, the 

ratio v n is precisely the decay rate in the average signal uncertainty:

V n  =
An—1 An 

An-1
(3.32)

Figure 3.9 reveals that as p and N  become higher and higher, vn is initially lower 

in the presence of information sharing, and (initially) decreases with G. By eq.
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(3.32), this means that information sharing makes the market maker’s dynamic 

inference slow down significantly when p and N  are sufficiently high. And by 

the definition of vn, this also means that information sharing makes information 

asymmetries persist longer and longer as p and N  become sufficiently high.

(3) Signals correlation with neighbours. Figures 3.10-3.12 show the time variation in 

the average signal correlation every trader has with his neighbours, or pn (k ) =  

Cln (k ) /  An for k = 1,2,3. Clearly, this correlation is inversely related to monopo­

listic power deriving from the information shared by every trader with neighbours. 

Interestingly,

C O rr  n| F M +l,n-l) =  Pn—1 (^) •

Therefore, p. (•) also measures how information sharing makes neighbours’s trades 

“resemble” one another. In general, traders are worse off as p. (•) increases. As one 

might have expected, pn (k ) is increasing in p for all n and k. Furthermore, for all 

&, pn (k ) increases with G for almost all of the time. In other terms, information 

sharing generally entails a loss in traders’ monopolistic power. Intuitively, this is 

so because information sharing induces an increase in the initial correlation pQ (•) 

between all traders’ average signals. And as it turns out, our model also predicts 

that the conditional correlation pn (k) increases for almost all k and subsequent 

n > 1.

FIGURE 3.10. Correlation heterogeneity (M = 7, N  =  5).
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FIGURE 3.11. Correlation heterogeneity (M = 7, N  = 10).
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Traders play their entire game so as to keep as much as possible of their monop­

olistic information power. This power is less and less important as p increases. The 

previous price discovery and signals uncertainty factors (1) and (2) suggest that infor­

mation sharing may restore part of the traders’ power destroyed by high values of p. 

Naturally, information sharing does not come at no cost. Due to the previous signals- 

correlation-with-neighbours factor (3), information sharing also entails a loss in each 

trader’s monopolistic power. But when p is sufficiently high, the first two factors make 

information sharing beneficial overall, as indicated by Result 1. Figures 3.6-3.8 also 

suggest that in the absence of any information sharing, both o2 n and An decrease as 

N  increases.7 Furthermore, when N  is high, such a reduction is more and more im­

portant as p increases. This explains Results 2 and 3: as iV becomes larger and larger, 

information sharing is beneficial to traders in correspondence of increasing values of p. 

Furthermore, it seems that the benefits of information sharing derive more from the 

signals uncertainty factor than the price discovery factor. Finally, Result 4 follows be­

cause an increase in M  corresponds to a reduction in traders’ market power. Therefore, 

as M  increases, traders benefit from information sharing with lower levels of the initial 

correlation p.

The previous discussion has been based on the pattern of price discovery and signals 

uncertainty tha t are predicted by our model. We now turn to analyze in deeper detail 

both these patterns and their determinants.
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FIGURE 3.12. Correlation heterogeneity (M =  7, N  =  40).
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FIGURE 3.13. Trade intensity and market liquidity (M = 7, N  =  10).
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3.5.2 Liquidity and price discovery

We analyze the link between liquidity, price discovery, trading behavior and information 

sharing. To simplify the exposition, we report results for the case M  = 7 only. In figure 

3.13 we only illustrate the representative cases corresponding to p = 0.1 and p = 0.7 

(as for figures 3.6-3.12), and for N  =  10. The results reported in this section have 

been obtained through a series of solutions of the model covering a much wider range 

of cases (see footnote 5).

price responsiveness (rh o = 0 .l)

trading time

price responsiveness (rho=>0.7)

troding time



3.5. Market dynamics implications 98

We begin with the analysis of traders’ behavior. Precisely, we measure and track 

trade aggressiveness by =  Gf3n, n  = 1, • • -,N . We say tha t a waiting game arises 

whenever f3̂  is increasing and convex in n. Furthermore, we say tha t the waiting game 

is more and more intense, or pronounced, as both the initial value /3 f decreases and the 

final value (3^ increases due to some parameters’ change. We have:

R e su lt 5. The waiting game becomes more and more pronounced as G increases. Its 

pattern is independent of p and N . However, the overall trade aggressiveness increases 

with p and decreases with N .

At the last batch auction, (3% is the highest in correspondence of complete infor­

mation sharing. This result is consistent with a wide number of previous models. As 

an example, it is well-known tha t in static Kyle’s (1985) type models, insiders en­

dowed with the same signals trade very aggressively. The novel result here is tha t the 

waiting game is very intense when traders experience information sharing. In fact, the 

slow price and signal discovery properties noted in the previous subsection (see figures 

3.6-3.8) are the expression of the amplification of the waiting game induced by infor­

mation sharing. We summarize our findings related to the price discovery process in 

the following:

R e su lt 6. Assume that traders experience information sharing {i.e. G >  1, for strategic 

or non-strategic reasons). Then the speed of price discovery lowers as both G and N  

increase. However, the overall (or final) price discovery improves as G increases.

According to Result 5, trading activity is more and more clustered towards the end of 

the trading period as traders exchange more and more signals. At the end of the trading 

period, trading activity is so intense that overall, price discovery is higher with than 

without information sharing (i.e., a* N is decreasing in G). Therefore, price discovery 

follows the pattern described in Result 6. Such a phenomenon is particularly severe. In 

all the information sharing cases, the bulk of price discovery takes place only towards 

the end of the trading process when p is low and N  > 10. Even when p is high, price 

discovery arising in the presence of information sharing is much more gradual than in 

the no-information sharing case. Furthermore, Result 6 predicts tha t in all information
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sharing cases, price discovery worsens as N  increases. We emphasize tha t such a result is 

robust; and tha t it is in sharp contrast with the predictions in Foster and Viswanathan 

(1996) based on homogeneous correlation structures. As is well-known, the Foster and 

Viswanathan (1996) model predicts tha t the speed of information revelation is higher 

with more trading rounds. [Our model confirms these findings in the no information 

share case (i.e. G = 0) also in cases not reported by the authors.] Here we find that 

quite the opposite happens when agents experience information sharing.

We now document our last finding related to the market maker’s inference activity. 

It regards the conditional correlation between private signals, defined as pn = On/A n. 

As in Foster and Viswanathan (1996), we find tha t in all information sharing cases, 

conditional correlation decreases and eventually becomes negative. Furthermore, we 

have:

R e su lt 7. For all G > 1, the conditional correlation pn converges to negative val­

ues more and more slowly as G and N  increase. However, the terminal conditional 

correlation pN decreases with G.

As in Foster and Viswanathan (1996), our model predicts tha t the market maker 

learns more about the order flow than about private signals. As a consequence, the 

conditional correlation pn eventually becomes negative. However, an intense waiting 

game implies tha t during the early stages of the trading process, the market maker 

does not learn from the order flow either. In contrast, his learning about the order 

flow clusters towards the end of the trading period. This implies Result 7. In fact, a 

similar explanation holds for the results on the average signals’ correlation pn depicted 

in figures 3.10-3.12.

How do these phenomena affect market liquidity? As one may expect, the answer 

depends on the specific values taken by the initial correlation p. Figure 9 also de­

picts the time variation in An in correspondence of two values of p. These values are 

representative of a variety of situations that we may summarize as follows:

R e su lt 8. I f  G > 0 and p is sufficiently low, liquidity is high at the beginning of 

the trading period and decreases towards the end of the trading period. Furthermore, 

towards the end o f the trading period liquidity decreases as G increases, and is always
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sharing cases, price discovery worsens as N  increases. We emphasize tha t such a result is 

robust; and tha t it is in sharp contrast with the predictions in Foster and Viswanathan 

(1996) based on homogeneous correlation structures. As is well-known, the Foster and 

Viswanathan (1996) model predicts tha t the speed of information revelation is higher 

with more trading rounds. [Our model confirms these findings in the no information 

share case (i.e. G = 0) also in cases not reported by the authors.] Here we find tha t 

quite the opposite happens when agents experience information sharing.

We now document our last finding related to the market maker’s inference activity. 

It regards the conditional correlation between private signals, defined as pn = Qn/A n. 

As in Foster and Viswanathan (1996), we find th a t in all information sharing cases, 

conditional correlation decreases and eventually becomes negative. Furthermore, we 

have:

R e su lt 7. For all G > 1, the conditional correlation pn converges to negative val­

ues more and more slowly as G and N  increase. However, the terminal conditional 

correlation pN decreases with G.

As in Foster and Viswanathan (1996), our model predicts tha t the market maker 

learns more about the order flow than about private signals. As a consequence, the 

conditional correlation pn eventually becomes negative. However, an intense waiting 

game implies tha t during the early stages of the trading process, the market maker 

does not learn from the order flow either. In contrast, his learning about the order 

flow clusters towards the end of the trading period. This implies Result 7. In fact, a 

similar explanation holds for the results on the average signals’ correlation pn depicted 

in figures 3.10-3.12.

How do these phenomena affect market liquidity? As one may expect, the answer 

depends on the specific values taken by the initial correlation p. Figure 9 also de­

picts the time variation in Xn in correspondence of two values of p . These values are 

representative of a variety of situations tha t we may summarize as follows:

R e su lt 8. I f  G > 0 and p is sufficiently low, liquidity is high at the beginning o f 

the trading period and decreases towards the end o f the trading period. Furthermore, 

towards the end o f the trading period liquidity decreases as G increases, and is always
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lower than in the case o f no information sharing; this phenomenon is more pronounced 

as p decreases and N  increases. Finally, liquidity is increasing over the batch auctions 

when p is sufficiently high\ in this case, the increasing pattern in liquidity becomes more 

and more pronounced as N  increases, and the level of liquidity decreases with G for  

almost all of the trading period.

Again, the deep waiting game is driving many of the previous results. The market 

maker knows tha t for G > 1, traders concentrate their trading activity at the end of 

the trading period. Furthermore, trade aggressiveness is overall very low when p is low. 

As a consequence, liquidity costs -as measured by the price sensitivity An-  are very low 

for almost all of the trading period, and increase substantially towards the end -w ith  

a decrease at the very end. On the contrary, when p is sufficiently high the speed of 

information revelation is higher, and therefore liquidity costs smoothly decrease over 

time. However, due to  progressively deeper information asymmetries deriving from 

information sharing, liquidity costs typically become higher and higher as G increases.

As for any other asset pricing model with asymmetric information, the testable 

implications of our model must be understood in relation to a “reference trading period” 

in which information (1) arrives at the beginning, and (2) is (at least partially) publicly 

revealed at the end of the same period. As an example, one may be interested in 

implications for trading periods preceding earning announcements. Our model predicts 

tha t in the anticipation of such information releases, diversely informed traders may 

find it useful to exchange information if the initial correlation p is not too low. The 

model also predicts th a t in this case, liquidity costs should increase around public 

information releases whenever the initial correlation p is not too high. Interestingly, 

adverse selection components of trading costs are well-known to increase significantly 

around earning announcement days [see, for example, Lee, Mucklow and Ready (1993) 

and Krinsky and Lee (1996).] Previous dynamic models generate this liquidity pattern 

only under a set of very restrictive values of the initial correlation p and the number 

of batch auctions N . As an example, the Foster and Viswanathan (1996) model is 

consistent with liquidity costs increasing over time only when p <  0 and N  is low. 

Alternatively, the same model predicts th a t when p is low and N  is extremely high, 

liquidity costs are U-shaped.8 While this prediction is consistent with overwhelming 

evidence on intraday stock market behavior [see Chan, Chung and Johnson (1995)], a
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typical trading day for a NYSE stock does not necessarily correspond to  the reference 

trading period hypothesized above. In any event, the Foster and Viswanathan (1996) 

model is based on the assumption tha t the correlation of traders’ signals is the same 

for all traders. Our results suggest tha t as soon as such an homogeneity assumption is 

relaxed, empirical predictions become dramatically different.

3.5.3 Volume and volatility

Finally, we study how information sharing affects additional variables such as trading 

volume and asset return volatility. As in Admati and Pfleiderer (1988b), we decompose 

the (expected) volume at the n-th  auction in terms of the contribution of the market 

maker, the M  traders, and the liquidity traders. Precisely, we identify each component 

with its conditional standard deviation, and set Voln = Vol*f +  Vol^ +  Vol„, where

V o ljf =  J & P l M  [A„_! +  (M  -  1) a , . , ]  +  <t2;

Vol!n =  G 0n%/ M  [A„_! +  (M  -  1) n„_J;

and Vol„ = au, for all n. Furthermore, we compute the asset return volatility by also 

conditioning on the market maker’s information set:

var (pn -  pn- 1| Fm +i.ti-i) =  |  (GPn_ i )  M  [An_i +  (M  -  1) +  <j£ j , n  =  1

Figure 3.14 depicts some of our results obtained with N  =  10, in the cases p — 0.1 

and p =  0.7. We have:9

R e su lt 9. As G increases, volume decreases at the beginning o f the trading period and 

increases towards the end o f the trading period. When traders experience information 

sharing and p is sufficiently low, volume at the end o f the trading period is always 

higher than at the beginning o f the trading period.

Empirical research on the behavior of trading volume around earnings announce­

ment days has shown th a t trading volume is essentially constant, and significantly 

clusters around announcement days [see, e.g., Lee, Mucklow and Ready (1993)]. Our 

information sharing model predicts a similar behavior of trading volume when p is suf-
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FIGURE 3.14. Volume and volatility (M = 7, N = 10).
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ficiently low. The model also predicts that at least partially, returns volatility exhibits 

a somehow similar behavior:

R esu lt 10. As G increases, volatility decreases at the beginning of the trading period. 

When traders experience information sharing, volatility at the end of the trading period 

is always higher than at the beginning of the trading period.

As figure 3.14 reveals, asset returns volatility can be decreasing and/or substantially 

constant over time in the benchmark case of no-information sharing (i.e., when G =  0). 

Therefore, our model makes a sharp prediction about the behaviour of returns volatility 

around dates of information releases. Understanding returns volatility around these 

dates seems to us to be an interesting topic of future empirical research.

3 .6  C o n c l u s i o n

We have developed a dynamic trading model of information sharing, and demonstrated 

that in many important instances information sharing has a positive value. In general, 

information sharing generates a deep waiting game, and thus reduces price informa­

tiveness for almost all of the trading period. We have produced novel predictions on the 

behaviour of market variables such as trades’ correlatedness, volume, return volatility, 

and liquidity. Incentive problems arising from strategic use of private information cer-
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tainly constitute an im portant topic of future research, although the task doesn’t seem 

to be any easy in a dynamic context such as the one we studied here.
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3.A Appendix A: Preliminary results

D e riv a tio n  o f eqs. (3 .6)—(3.8). To derive eq. (3.6), we use the definition of the 

average signal in eq. (3.3). A simple computation leaves:

or equivalently (3.6). Next, we derive eqs. (3.7a) and (3.7b). These equations correspond 

to two cases: a) 2G < (M  — 1)/ 2 and b) 2G > (M  —l) /2 ,  which we now study 

separately.

Case a) (2G <  (M  — 1)/ 2). Consider traders i and j  = i + k, k ^  0. We have: 

Si+k,o $ s^o for all |fc| >  G. Therefore

for all |fc| >  2G, which is the second line in (3.7a). If instead \k\ <  2G, Si+fc,o € s^o for 

all |fc| <  G and Sj+^ofls^o 7̂  {0}- In particular, trader i shares (2G +1 — k) signals with

GA0 +  2 GGQo 
G2

~ - 2  G  Gfio(fc, G') = COV (Si(0j î+fc,o) =  G  (Si+/,0> ^ i+ k + m ,o )  =  ^0
l = —G  m = —G

trader i +  k. Each of these signals contributes for (Ao +  2GQ$)/ (2G + 1)2 to  Qo(k, G). 

Shared signals thus contribute for

Ao “1“ 2G-flo 
(2 G + 1)2

• (2 G  +  1 -  lb)

to Qo(k, G). The remaining (not shared) k signals contribute for

(2 G +  1) fio |_
_  n  " f t

(2G + 1 )

to  tto(k, G). Therefore,

Grouping terms in the previous expression yields the first line in (3.7a).
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Case b) (2G > (M  — 1)/ 2). Due to the double overlap phenomenon discussed in the 

main text, the number of signals shared by traders z and i + k is:

L{k, G) =  2G +  1 -  k +  n(k, G), k — 1 , M - 1 
’ ’ 2 (3.33)

The term n (k , G) arises because traders on trader z’s r.h.s. semicircle might be sending 

signals to traders lying between z +  1 and z +  (M  — 1)/ 2 on the l.h.s. semicircle (see 

figure 3); and obviously the z-th trader receives signals from traders lying between z — 1 

and i — G as well. Double overlap occurs if and only if trader i+ k  on the l.h.s. semicircle 

and trader z — £ with £ G [1, on the r.h.s. semicircle are such tha t £ and k satisfy:

) + ^ j 1 - k < G

G > e >  i  

^ l > k >  i

The first inequality of the previous restrictions requires trader i — £ to send his signal 

to trader z +  k. The second and third constraints restrict trader z — t  to be on the r.h.s. 

semicircle and trader z +  k to be on the l.h.s. semicircle relative to trader z. Thus, for 

fixed k (1 <  k <  (M  — l) /2 ) ,  double overlap occurs if and only if

G > £ > M  — G — k, k = 1, M—1 
2 ’

and £ > 1. Clearly, min*, (M  — G — k) = — G +  1 > 1. Hence, the constraint that

£ > 1 is redundant. By the previous inequalities, it immediately follows that:

n(k, G) = max [G — (M  — G — k) +  1,0] .

By replacing this result into eq. (3.33) leaves:

L(k, G) =  <

4G +  1 — ( M  — 1), ^ > k > 2 ( ^ f ± - G )

2 G -f* 1 — k , 1 < k < 2 ( ^ 1  -  G)

For all k 6 [l, 2 ( ^ - ^  — G)], Clo(k,G) is thus exactly as in case a) for k G [1,2G], 

and the first line of eqs. (3.7b) follows. For all k G [2 ( M2~1- — G) , , tedious but

straightforward computations lead to the second line of eqs. (3.7b).
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Finally, we demonstrate tha t eq. (3.8) holds true. As usual, we consider the two cases 

in which 2G ^  (M  — 1)/ 2. If 0 < 2G <  (M  — 1)/ 2, there are [M — (4G +  1)] traders 

i + k such tha t Sj+jt^ns^o =  {0}. In correspondence of these indexes, cov (si+fc,o, Si,o) — 

flo- Therefore,
2 G

f  0 (G ) =  2 E  ^ 0 (k, G) +  [M -  (4G +  1)] Q0 •
fc=i

The 2G covariances in the summation can be computed through the first line in (3.7a). 

Eq. (3.8) then follows by using the expression for Ao(G) in eq. (3.6). Next, consider 

the case (M  — l ) /  2 <  2G < M  — 1. We have:

r 0 (G) =  2 { M ( k , G ) +  (2G -  ^ i )  2A0(G) -  _ n 0 j  .

By plugging eqs. (3.7b) and (3.6) into the previous equation, we find tha t the expression 

of fo  (G) coincides with the one obtained in the case 0 <  2G < (M  — l ) / 2 ,  and eq. 

(3.8) follows. ■

D eriv a tio n  o f  eq. (3 .10). First, consider the problem of projecting Sj+fc(o onto s^o 

for |A;| < G. We have Si+jt,o € s^o for k =  0, q=l, • • •, G. Hence,

(®*+fc,o| Si,o) =  ®»-(-fc,0 •

Next, consider a signal outside the z-th individual reach, i.e. take Si+k,o for k  =  

T  (G +  1), • • •, Let * 0,0 =  E  (sj,0s T„) be the G x G variance-covariance matrix

of the vector s^o- ’Fo.g is a G x G submatrix extracted from 'Fo? and its inverse can 

be obtained with the same strategy of proof as in Foster and Viswanathan (1996) (p. 

1479). Let K  = [(Ao -  fi0) (A0 +  2GO0)]_1. We have:

Ao d- (2G — 1) n 0 —17o ■ ■ ■ —̂ 0

Aq +  (2 G  — 1) fio —f^o

Aq +  (2G  — 1) Qq
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Since cov s^o) =  OqI for \k\ >  G, the Projection Theorem then leaves:

E  (s»+jfe,o|si>o) =  Oq1t  (^o,g) ^ ok- i

_  ~ Ao +  (2G — 1) Oo — 2GOo t „
0 (A0 -  fio) (Ao +  2GOo) Si,°

Gf20
A q “I- 2GOq 5i,0

Thus individual signals are projected according to:

si+fc,o for k = 0 , ^1 , • • *, =fG

E  |Si,o) — ^
GO o

w A q ■+■ 2GOq
S i f t  for fc =  = F (G + l),--- ,= F M - 1

We now tu rn  to  consider how trader i projects the sum of other traders’ average signals 

onto Sj(o. Since SjtQ E s^O)

E  S j , 0 s i ,o )  =  E  ( ^ 2 j = i  S j , 0  Si)0 )  — Si,0 •

Furthermore,

Using the last two equations,

E m - ______ ___ „

7 = 1  S 3 ,0  ~  2 ^ 7  =  1 S j ,0

— E  (Sj,o| si,o) si,0

=  1 si ,0 +  X̂ |A:|>G El ( si+fc,o| si,o) — 5^0

(nr  i i p  i ~  (2<̂  +  *)) ,o r , i =
— ( 2 G  4 -  1 ) s ^ o  H A ^ + 2 G f 2 o   ~~

Ao +  (M  — 1) O0
=  Ao r  26-SJo' Gsi' ° - Si'°

(M -  1) (2G +  1) n0 + 2G (A0 -  fio) =
A0 +  2Gfi0 Si’° '

Grouping terms in the last equality yields eq. (3.10), where <fii is as in the main text.
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3.B Appendix B: One-shot game

In this appendix, we provide an analytical solution (and characterization) of the model 

in the single auction case, i.e. N  =  1. We have:

P ro p o s itio n  B l .  There exists a unique symmetric linear Bayesian equilibrium in 

which traders’ strategies and prices are given by:

Xi, l =  G fiih  o (3.34)

Pi = Aiyi (3.35)

where Pi and Ai are functions o f G given in the appendix, and Ai >  0. Further­

more, for each M  > 3, there exist constants p* and p** depending on M , satisfying 

—I f  (M  — 1) <  p* < p** <  0, and such that no-information sharing is the optimal 

strategy for all p = Qof Ao € (p**, 1); partial information sharing is the optimal strat­

egy for all p 6 (p*,p**); and complete information sharing is the optimal strategy for  

all p € ( — 1/ (M  — 1), p*). Finally, let M  =  3. Then information sharing is the optimal 

strategy i f  and only i f  p 6 ( —1/2 , —1/3 ).

P ro o f. We organize the proof in two parts. In the first part, we take G as exogenous, 

and derive the equilibrium price and strategies. In the second part, we derive the 

strategic information sharing implications of the equilibrium.

P a r t  a ) E q u ilib riu m

Suppose tha t the equilibrium pricing strategy is as in eq. (3.35). By the projection 

of the fundamental value in eq. (3.9), the problem solved by trader i is:

max Xit i
•̂ i, 1 Vi (2G +  1) 5<>0 -  Ai ( 2^1 +  E  x 3,1 * , ) ) ]

Now suppose tha t the trading strategy of all remaining traders is as in eq. (3.34). By 

eq. (3.10),

E  s i ,o )  -  G P \E  s j , 0  s i ,0 ^ j  — G {M  1) Pi4>iSifo .
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Therefore, the optimality conditions for trader i problem are:

%i, 1 2^ ’

and Ai > 0. Solving for the trading intensity )31 yields:

Vi
Axp +  C M - l ) ^ ]  ’

We now solve for the equilibrium price. By the equilibrium strategies conjectured in 

eq. (3.34),

cov ( / ,  Y a L i  a + i)  =  GPiCov ( j ,  Y i i i  h o )  =  G fiiM co  , 

where we have made use of the equality Y iL i  ®t,o =  Y^iL\ si,o- Similarly,

var  * i,i)  =  G 2 f}\var ( E ,= i  * ,o ) =  G2/3?M [A0 +  (M  -  1) fi„] •

Hence, the regression coefficient Ai in the price function is:

A = __________ G ^ M cq__________

1 CPftiM  [A0 +  (M  -  1) fiol +

By substituting for (31 leaves:

_  Cpy/ M Ap  
au [2Aq +  f  o]

P art b) Inform ation sharing

The unconditional expected profit is given by

e [ x i , i - ( / - A m )] =  - ^ = v 7 T ( G ) ,  i =

where
6 ( 1  +  2 Gp)

h(G)  =
[2 (G +  1) +  (GM — l)p]

2 '
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First, consider the case M  =  3. By a direct computation, h(0) — h( 1) < 0 15p2 +

14p +  3 <  0 ^  p 6 ( —3 / 5, —1/3). The claim in the proposition now follows by the 

restriction tha t p > — 1/ (M  — 1).

We now consider the case M  > 3. We have:

t i (G) = 2 (1 -  p ) ----------------- -------------------------------
'  {2 (G +  1) +  [(2G +  1) M  -  1] p f

where

u  (G, p) =  - 2 G  -  [2G ( M  -  2) +  M  -  1] p .

Clearly, the denominator of h' is strictly positive for all p E ( —1/ (M  — 1), 1]. There­

fore, the sign of is equal to  the sign of u>. We now use this fact and prove our claims 

in four steps. The first three steps deal with optimality of partial information shar­

ing, complete information sharing, and no-information sharing. The last step contains 

refinements on optimality of partial information sharing.

Step 1: Partial information. For all p G [0,1], to (G, p) <  0; and for all p G 

( —1 / (M  — 1),0 ), u i ( (M — 1 ) /2,p) <  0. Furthermore, lj (*, p) has a zero at

(M  — l) p  
2 [(M — 2) p +  1] '

For all p E ( —1/ (M  — 1), 0), Gp > 0. Complete information sharing is never 

optimal for all p E C N , where

CN = {a;E ( —m=i,0) : Gx < Mf 1 -  l }  = {x E : x > Pl}  ,

where p1 = — ( M  — 3 )/ (M 2 — AM  +  5). By simple computations, p1 E ( —1/ (M  — 1), 0). 

Hence, C N = (p i,0 ). On the other hand, information sharing is optimal for all 

p E S', where

S  =  { x  E : Gx > l j  =  ( - ^ 3 1 ^ 2 )  >

and p2 =  “ 2 / (3M  —5). One may easily verify tha t p2 > p\.  Our claim in 

the proposition follows because partial information sharing is optimal for all

p e C N n s  = (Pl,P2).



3.B. Appendix B: One-shot game 111

- Step 2: Complete information sharing. Let A (Af, p) = h ( ( M  — 1 ) /2)—h (—1 +  (Af — 1)/2). 

We claim tha t for each Af, complete information sharing is optimal for all p G G,

where we define

C =  C * n { z e  ( - J j M )  : A ( M , x) > o}  ,

and C N =  { i 6  ( — 1/ (Af — 1), 0) : Gx > — 1 +  (Af — 1)/ 2} is the complement of 

C N with respect to  the set ( —1/ (Af — 1) ,0). Indeed, fix a ^  G C. Then, h is 

decreasing for G G (Gp^  (Af — 1)/ 2) but h ( ( M  — l ) /2 )  > h (—1 +  (Af — 1)/ 2) 

by construction. Furthermore, h is increasing for all G G (0, Gp^). Therefore, 

h ( -1  +  (Af -  1)/ 2) >  h (G) for all G G (0, - 1  +  (Af -  1)/ 2). We now demon­

strate that G is not empty. We have

A ( M  x = ________________~2 (1 — p) e(Af,p)________________
'  [M +  1 4- (Af2 — 1) p]2 (Af — 1 +  [(Af — 2) M  — 1] p}2 ’

where e (M, p) =  m (M ) p2+ a 2 (M) p + a3 (M ), a i (M ) =  M 4- 4 M 3+ 4 M 2+ 2 M -

3, a2 (M) =  2M 3- 6 M 2+ M + 4 , and a3 (M ) =  M 2- 2 M - 1 .  e (Af, •) is a parabola,

with e (Af, •) >  0; and roots - 1 /  (M  -  1) and p* = -  ( M 2 - 2 M - l ) /  ( M 3 -  3M 2 +  Af +  3).

It is possible to show tha t p* G ( — 1/ (Af — 1), p-f). Furthermore, C N =  ( —1/ (Af — 1), pf\.

Hence, C  =  ( —1/ (Af — 1) ,p*), and the claim in the proposition follows.

- Step 3: No-information sharing. For all p G [0,1], Gp < 0 [see eq. (3.36)]. There­

fore, no-information sharing is the optimal strategy for all p G [0,1]. We are left 

to show tha t there exists a p** < 0 such tha t no-information sharing is the opti­

mal strategy for all p G (p**,0] as well. We claim that no-information sharing is 

the optimal strategy for all p G S N, where

S N = {x e  (p2, 0] : d (x) > 0} n N 1, d(p)  = h  (0) -  h (1) ,

and
(M —1)/2

N 1 = n i x  G (p2 j 0] : l j  (G, x) < 0} .
G = 1

Indeed, we have shown tha t information sharing is optimal for all p G (0, p-f). 

Furthermore, for all p G S N , h (0) >  h (1) and h (1) >  h (G), G G [1, (Af — 1)/ 2], 

both by construction. We now verify tha t S N is not empty. First, by a direct 

computation, dp0 (G) / d G  < 0, where p° (G) =  —2G / (2G (Af — 2) -I- Af — 1),
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and lj (G, p° (G)) =  0. Hence, N 1 = {x  € {p2, 0] : lj (1, x)  <  0} =  S,  where S  is 

the complement of S  with respect to the set ( — 1/ (M  — 1), 0], or S  =  (p2>0]. It 

follows that

where r(x)  =  3 (M  — l ) 2 x 2 +  2 (3M  — 4) x  +  2, and the last equality follows 

by simple computations. One may readily show tha t r  >  0 on (p**,0), where 

p** =  4- 3M+V3M^-iw+Io ^  q ^  is tedious but straight forward to

check tha t p** > p2.

P € (P2 iP**)- But by step 1, complete information sharing is not optimal on 

the same set. Therefore, partial information sharing is the optimal strategy on

(P*iPi), an(I by st eP information sharing is optimal on the same set. Hence, 

partial information sharing is the optimal strategy on (p*,/^). ■

3.C Appendix C: Dynamic game 

3. C. 1 Preliminary results

D e riv a tio n  o f eq. (3 .12). By Semi-Strong market efficiency, pn =  E ( f \  Fm+i,ti)- By 

eq. (3.4), s is a sufficient statistic for E ( f \  sq ) .  Therefore,

S N = {x e  (p2 , 0] : d{x) > 0} = {x E (p2 , 0] : r  (x) > 0} ,

- Step 4 • Partial information sharing refinements. By step 3, h (1) >  h (0) for all

{p2 ,p**). Similarly, by step 2, complete information sharing is not optimal on

Pn — P  ( f \  Pm+1 ,u)

= E  { E [ E  ( f \ so) \ s ,  FM+l,n]\FM+l,n} 

=  E [ E  (0s\s,FM+l,n)\FM+l,n]

where the last line follows by eq. (3.11). ■
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D eriv a tio n  o f  eq. (3.15). By the Law of Iterated Expectations:

E ( 6 s \F m + 1,ti) =  E[E(f\so)\FM+l,n] =  E (f\FM+l,n) = P n

Hence,

2
a f,n E

J fL
M 2

M 2

$

( e e m y
\ m & i s ,'° M h ' ’nJ

Fm +1,1

E

E

( M \ 2
( E  s i ,n ) Fm + l,n
\ i= l  )

( M \ 2
“

( E  si,n )
\t=l /

D eriv a tio n  o f  eqs. (3 .16a)-(3 .16e). Let Cn = cov{s^n- \ , y n \FM+\,n-\)-, which is in­

dependent of z, and =  E  ^(si)0 -  tn , • • •, sM,o -  tn)T (s i>0 •, sm,o -  tn) ^M+l,n]

By the Projection Theorem,

i -
var (yn\ Fm +i ,u- i )

H T ,

which gives the recursions:

A n =  A n _ i  

£ln =  1

var (y n \ Fm +i ,ti- i )

var (yn \ FM+ i,n - i )  

or equivalently (3.16a). Taking one lag in equation (3.15) yields:

e2

giving the recursion:

2 2 
°7,n-1 a f,n — [An- i  — An +  (M  — 1) (Dn_i — fln)] 

= e2 (An_i -  An) ,
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where the last equality follows by eq. (3.16a). Now consider the variance of average 

signals An (G). By eq. (3.6), An (G) can be expressed in terms of the elements in the 

individual signals variance-covariance matrix 4/n as:

A„ (G) =  {K +lGQn) ,
C r

and eq. (3.16c) follows by eq. (3.16a) and by simple computations. We now provide 

the update for f2n (k ,G ), thus completing the specification of the variance-covariance 

m atrix (G) = E  [ (s i)0 •, sM,o ~  tn)T (s1>0 ~ t n , "  % ,o ~  tn) FM+i,n • By

eq. (3.16a) and the expression of the off-diagonal elements in (G) [see eqs. (3.7a) 

and (3.7b) evaluated at n],

fin_ i (k , G) -  (k, G) =  An_i -  An, all k, G .

Note that while the time n  covariance term Ctn (k , G) depends on G as in (3.7a) and 

(3.7b), the update given in (3.16d) does not.

Finally, from eq. (3.8) one has the recursion:

f  „_i (G) -  f n (G) = (M  -  1) (An_i -  An) • ■

Derivation of eq. (3.19). By the definition of tn and sn,

tn tn— i =  E  (s^o tn_ i| FM+l,n) ~  E  (Si,n—1| E M+l,n) ~  CnVn >

where is the regression coefficient of (or equivalently of s^n-i) on yn, viz

COV ( yn\ FM+\,n—\) &n _
Cn var {yn\ FM+i,n- i )  v a r (y n \F M+i,n-i)

Derivation of eq. (3.20). We have:
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By eq. (3.12), pn_i =  0tn- \ .  Hence,

1 I  M  i  M

Therefore,

E  (0s -  pn_ 1 1 Fm+1,ti) — QE
1  M  _  \

s i,n- 1 Fm + l,n ) =  0Cn2/n •

But by eq. (3.4), E [ E ( f \  so) | F m + i , t i ]  = E ( 0 s \ Fm+i.ti)' Hence, by the Law of Iterated 

Expectations,

E  ( f  p n—l\F M+l,n) =  E  [E ( / |  So) pn—l \ F -|-l,n] =  E  ( 0 S  Pn—1| F M+l,n) =  @CnVn ? 

and eq. (3.20) follows by eq. (3.18) and E  (0s\Fm+ i,n) — Pn- ®

The following lemma is needed to derive eqs. (3.21)-(3.22).

Lem m a 1. For all i, j  =  1, • • •, M  and n =  2, • • •, N,

E  ( S j , n —1 1 F i>n) =  E  ( \ S i >n—l) •

P ro o f. By eqs. (3.17), (3.19) and (3.20), the aggregate order flow can be recursively 

written as

where an_i = 1 — 0 and en = un — /3n(3n\ u n- i .  Solving backward the

above recursion gives

2/n ~  bn-lVl “b i bj£n- j  “b Sn j

where bj =  (3n(3n^ j  n^=i an-h- Hence, {yn}n>\ is a Gaussian process. Therefore, it is 

sufficient to show tha t cov[sjtU- 1 , (2/1 , • • *,2/n-i)T] =  0(n-i)xi- For all k <  n  — 1,

COV (j/fc, Sj,n—l) — E  ( y k  ’ Sj,n—l)

E  [E (yk  ■ pi, * • 2/n—i)] 

E  [yk " E  (sjjn_i| pi, • • *, 2/n—l)] 

0 ,
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where the first line follows because E  (3/1, • • -,yn- i )T =  0(n_ i)xi, the second line holds 

by the Law of Iterated Expectations, and the last line follows by the definition of Sj>n-  1.

D eriv a tio n  o f eqs. (3 .21)-(3 .22). We have:

E ( /  Pn—l | - ^ i ,n )  =  B [ E ( f  P n —11 So) | Sj (0 ) l ]

=  E [ 9 s -  p n- 1 1 Ŝ o, FM +l,n-l]

-1
/  1 M

=
/  1  M

=  6E \ M ] k Si'n~'1

=  + 2^,jit sj ,n - l  $ i ,n - l )

Si,n—1? -^M+l,n—1 

®i,n—lj FM+l,n—l

e A  f n_ A _
-  M  (  A„_i /  Si,n-1 ’

Q
by the Law of Iterated Expectations, the fact tha t 9s — pn- i  = YliL i s*,n-1 [see 

the derivation of eq. (3.20)], and lemma 1. This is eq. (3.21) with rjn = 9 {G M )~ l { 1 +  

A '^ f n - i ) .  By the same arguments,

E  Fi,nj =  ^  “Si,n-1 j

which is eq. (3.22) with <f>n = (M  — I )-1 A 'i j f n - i .  ■

3. C. 2 Equilibrium

We proceed in three steps. In the first step, we derive a recursive expression for the 

price deviation induced by traders’ suboptimal play. In the second step, we derive the 

traders’ optimality conditions. In the third step, we compute market maker updates.

S tep  1: P r ic e  d ev ia tio n

We show tha t the price deviation induced by suboptimal play of a given trader i has 

the following recursive structure:

Pn Pn =  {Pn- 1  ~  P n -1) 1 “  # 1G ( M -  1) /?nAn] +  G \nPnsi,n-l ~  \ & i tn • (3-37)
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Indeed, let y'n = xj,n +  n +  un and t'n be the aggregate order flow and the 

market maker’s update when trader i deviates to x \ n . By eq. (3.19),

t n  — E  CkVk ■
k=l

Similarly t!n =  £ £ =1CfcPn- Therefore, by eq. (3.13),

sj ,n -1 sj ,n -1 — (sj,0 t n - 1) (5j',0 ^n-l)
n—1 n—1

CkVk CkVk
k=1 k=1
1 / n—1 n—1

= a ( E  Afc2/fc -  E  x kVk
V \k =  1 fc=l

=  ^ (Pn—1 Pn—l) (3.38)

where the third line follows by eq. (3.20), and the fourth line follows because eq. (3.18) 

implies tha t pn =  XX=i AjtPfc- Thus, by eq. (3.13) and eq. (3.19),

Si,n =  tn — Si>n—i (tn tn—l) =  &i,n— 1 CnVn •

Substituting for the equilibrium order flow and taking expectations yields:

E  (^i,n| Fi,n) — Si,n—1 q ^i,n—1 “t" E  ^Ej'^i &i,n—l

1 -

e
G pnXn

e (1 4- (M — 1) 0n) Si,n—1 j (3.39)

where the last line follows by eq. (3.29). Using the equilibrium strategy in eq. (3.17) 

and the price recursion in eq. (3.18), we find tha t the price deviation has the following 

expression:

Pn Pn ~  Pn—1 Pn—1 An (jjn Un)

=  Pn—1 — Pn—1 "h An E jy*  -f GPnSiiU- 1 — x i 7

Substituting for (sj,n-i — sj n- 1) fr°m eQ- (3.38) in the previous equation gives eq. 

(3.37).

S tep  2: T ra d e rs ’ b eh av io r
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First, we show tha t the value function in eq. (3.23) and the strategy in eq. (3.24) are 

mutually consistent. Trader i faces the following recursive problem:

W i ,n-1  =  m a x ^ ^  E [ ( f  -  p n ) x'in  +  W ^n \ F^n]

=  max*'in E [ ( f ~  P™-1 ~  XnXi,n -  Xn E  j f r  Xj,n) x i,n + Fi,n

Given the trading strategy conjectured in eq. (3.23), the optimality conditions of the 

previous problem lead to:

0 --- E(^ f  P n -l\E i,n )  G ^nXnE  ( Y l j ^ i sj ,n - l

-2 X nx'i n -  \ ni)nE  (s itn \Fi,n) -  2An(inE  (pn -  p'n | Fijn) (first order conditions);

and

—An +  Anpn <  0 (second order conditions).

Because (sJ>n- i ,  (pn- i  ~ P fn- 1)) £ the first order conditions can be reorganized as 

follows:

® — E  { f  Pn—1| Fifn) -f (pn-1 Pn—l) Gf3nXn E j^i (sj,n—1 sj,n-l)

GPnXnE  ^ ^j,n—1 Ei^nj 2 \ nXj n Xn'lJjnE ( s ^ n j  F i>n) 2AnpnE {jpn Pn\ ^ i,n) •

By replacing eqs. (3.37), (3.38) and (3.39) in the previous equation, and by rearranging 

terms, we obtain eq. (3.24), where 7n is as in eq. (3.27) and

r]n - G  1Xnipn
Pn = An [1+  (1 -  e~ l Xn*l>n) (1 +  (M -  1) Cf>n)\ '

Next, we use eq. (3.24), and find tha t the expected profit of a single auction is:

(3.40)

E  [ ( /  ~ P n )  4 n | Fi,n] =  G 2Pn [Vn ~  Pn^n (1 +  (M -  1) 0n)] 5?>n_ 1

+ 7 n  f1 “  ( 7 n  +  { M  -  1) (p n - 1 ~  P n - l f

+ ^7n ( i n  ~  2P n ^ n )  + P n  1 ~  ( M  — 1)  X n  ( j n f i n  + }

xG S i^ - 1  {Pn- 1  ~  P n - l )  •
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By taking the conditional expectation of the value function in eq. (3.23) leaves:

E  ( W*,n | Fi,n) =  OtnE  ( Si n | i^,n) +  V’n (Pn ~~ Pn) Fj ( ̂ i,n \ Fi,n) +  Pn (jPn ~  Pn) d" •

By eqs. (3.37) and (3.39), both £7(ai>n|Fi>n) and [pn -  p'n) are linear in (pn- i  ~  p'n- i )  

and si>n_ i. To identify all coefficients of the value function, we are therefore left with 

finding the conditional expectation E (s jn \FijTl). By eqs. (3.13) and (3.19),

F* ( Si,n| ^i,n) — si,n-1 +  Cn ^  ( Vn \ Fi,n) ^Cnsi,n -lF  ( 2/n I Fi,n)

=  )  - 8 - l GPn\ n (1 +  (M  -  1) 0 „ )]2 

+  + 8 ~ 1G2 P l \ lv a r  ( £ 3#i sj,n -i Fi,n) , (3.41)

where

var {^ 2 j ^ i sj,n- 1 Fi,nj — var (^2^1 sj,n- 1 Si,n-l)

=  Fj Sj,n- 1  — (Af — 1) 0nSi>n_ij

=  v a r ( j 2 j j i iSjfi l ^ M + i . n - i )  ~ { M  - l ) 24^var(sif i\FM+\,n-\)

=  M  [A„_1 +  (M  -  1) J V d  -  [ l +  (M  -  l ) 2 <£2] A„_! -  2 f ,

(3.42)

where the first equality follows by the arguments utilized to show lemma 1 in appendix 

B. Finally, by plugging eq. (3.42) into eq. (3.41), and using the expression for the ex­

pected profits and the expectation of the value function, gives the coefficients a n,p n i V’n 

and 6 n in eq. (3.28).

S tep  3: M a rk e t m ak er u p d a te s

Finally, we turn  to  consider the market maker’s problem. By plugging the equilibrium 

trades in eq. (3.17) into the order flow in eq. (3.2) gives

V n  =  Y ljL l G P n S i , n - 1 +  u n  =  G M fin Y ljL l (®*,0 ~  tn- 1)^ +  Un •
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where the second line follows from the market maker’s update in eq. (3.13). By the 

definition of s, and the equality tn- \  — 0~lpn- 1 in eq. (3.12),

yn =  G M 0n ( s  -  +  Un =  (6 s -  pn_i) +  Un . (3.43)

By eqs. (3.43) and (3.4), and the Law of Iterated Expectations,

c o v ( f ,y n | FM+i,n—i) = co v (0 s ,y n |F M+i,n-i) •

Therefore,

c o v ( f ,y n \FM+i,n-i) = cov (Os - pn- i , y n \ FM+l,n-l)

GM(3n
var (Os - p n- i \  FM+i,n- i )  

GM/3n 2
0

^ l n - 1  . (3-44)

where the first line follows because pn~\ 6 the second line is obtained by

using the expression of the aggregate order flow in eq. (3.43), and the third line is due 

to  the expression of the residual variance in eq. (3.14). We now express the recursion

of An in terms of equilibrium parameters. By using the order flow in eq. (3.43),

Cn =  COV ( S^n—I? 2/n| -^ M + l,n —l )

=  G0ncov ^ Sj.n—11 TV-, 5j.n—1 -^A/+l,n—1^

=  Gfin (An_i +  (M  — 1) f ln - l)
MG/3n 2

0 2  a f,n- 1 J

where the third line follows by the expression of the residual variances in eq. (3.14), 

and the last line holds by the expression of a 2 n in eq. (3.15). Therefore, by the above 

expression for Cn, and eq. (3.20),

A n  =  A n - 1  -  C „ C n  =  A „ - i  -  ^ " ^ n - l  .  ( 3 . 4 5 )

Again by the above expression for Cn, and eq. (3.20),

Pen______________ M&Pna 2f,n -1An =  0  Cn =
var (yn \ FM+i,n-i) 0 -v a r (y n \ FM+i,n- i )
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But

v a r (y n \F M+i,n~i) = (0_1GM/3„) var (Os -  p„_i| JV + i.n -i)  +

=  ( e - 'G M /S n fo ln  + a l .

Therefore, the price sensitivity in eq. (3.18) can be represented as:

9MG/3n<72f .
=  7 --------- '2  !    • (3-46)

( g m a .)  4 „ _ 1 +  eV2

After n  trading rounds, the full information fundamental value has residual variance 

given by:

° \ n  =  a } , n - l  -  X n C O V  ( / ,  y n \ F M + l , n - l )  =  ( l  “  r ^ n An G A f )  > ( 3 -4 7 )

where we have used eq. (3.44). We plug eq. (3.46) into eq. (3.47) and obtain:

$2 2 _2
_2   u f,n-1 f n  a o \

f , n  ~  —  T2-------------:—  * (3.48)

By rearranging the previous expression and using eq. (3.46) gives an alternative ex­

pression for An:
x G M /}„ a \ n 
A" -  6  v l  '

or equivalently eq. (3.26). By solving eq. (3.48) for cr^n_1 gives

/ )2 _ 9  2  
2  “  f  n

af’n~1 = ~T~------ \ 2  o ------ 9 ’(GM /3„) o l n - e 2o l

which together with eq. (3.45) imply

4
A A ^A n _ i  -  A n =  -

(GM/3n) ”
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where the last equality follows because a2 n =  6 2 X^a2 a ^  [thanks to eq.

(3.26)]. Also, eqs. (3.16c) and (3.16e) imply that

r w- i  _  r n +  (m  — i)  (An_i — An)
(3.50)

An- i  An +  (An_i An)

Furthermore, by eqs. (3.29)-(3.30):

Substituting for (3n as in eq. (3.40) gives:

[1 +  (1 -  (1 + (M -  1) K ) ]  =  ( & -  A„V>„) M a3̂

Substituting eqs. (3.29)-(3.30) in the previous equation leaves

-  \ ni>n M a 2f  n .

Substituting eq. (3.49) together with eq. (3.50) in the last equality, and rearranging 

terms, gives the quartic equation F (X n) =  0 in eq. (3.25). To show th a t eq. (3.25)

,ipn is positive or negative, there are only two sign changes. By Descartes’ rule, eq. 

(3.25) has at most two real positive roots. Note from eq. (3.47) tha t a 2 n < cr2 n_i is 

equivalent to  6~l (3nXnG M  < 1. Using eq. (3.26) this restriction becomes A  ̂ <  cr2 ncr~ 2 

or equivalently An < By eq. (3.25), F  (X — 0) =  -jfe [An +  (M  — l)f2n] >  0,

F  (An =  crf,n<Jul ) =  (An +  (M  -  1) Qn) < 0 and F ( A =  +oo) =  +oo; hence, 

there is one and only one positive root between 0 and oy^cr"1. ■

3.C .3  Further results

D eriv a tio n  o f  eq. (3 .31). Taking the first lag in eq. (3.47) and substituting the result 

into eq. (3.45) yields:

admits a unique positive solution, note tha t the constant and the coefficient of A  ̂ are 

both positive, and th a t the coefficient of A  ̂ is negative.10 On the other hand, the sign 

of 'ijjn determines the sign of the terms in A  ̂ and An. However, regardless of whether

An- i  — An +  [An_i +  (M  — 1) i
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Since On- i  — On =  An_i — An as in eq. (3.16a), and An — On is constant,

0 n- i  — 0 n +  U' (An- i  — On- l  +  M Q n- i )  =
0 Cln +  G(3nXn (An _ i  0 n —i)  

e  -  M G / 3n x n

and

An—1 — An On—1 On

= An + Gf3n\nMnn + ~ n’" l)e-MG0nXn
_  ^An ~  (M  — 1) ^ nAn (An-1 — On—l) 

6  — M G pnXn

D erivation  o f  eq. (3.32). We have:

Cl,var (yn\FM+i,n- i )

(fGM(3n)  cr2f in- i + 0 2(7lCr
e

Cn GMf3n 2
-

_  GMf3n\ n 2
— 03 °7,n-l

=  A n—1 A n  •

where the second line follows by eq. (3.43) and the equality cr  ̂n _ 1 = var ( 6  s — pn- i  \Fm+i,ti 

the third and fourth lines follow by eq. (3.46) and eq. (3.20); finally, the last line holds 

by eq. (3.45). Eq. (3.32) then follows by eq. (3.16c). ■
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Notes

1 As an example, Admati and Pfleiderer (1986) introduce a compensation scheme based on 

signal precision, whereas Brennan and Chordia (1993) consider a scheme based on the (infor­

mation) buyer’s trading activity.

2 For example, it is well-known that uncertainty about future demand does not lead to 

profitable information sharing under Cournot competition [see Gal-Or (1985)]. In a related 

paper [see Colla and Mele (2004)], we have shown that (1) if firms face convex production costs, 

the previous conclusion does not hold even with positive correlations between private signals, 

and (2) even in the presence of linear costs, information sharing constitutes an equilibrium 

when signals are negatively correlated.

3 We shall make an abuse in notation and write G G A  for G G where A is some 

set and N denotes the set of integers. A similar abuse in notation will occur for other objects 

related to G -such as some traders located on some specific place in the circle.

4 Naturally, p (k , M~1) =  f2o {k, *) /  Ao (^ f  ~) =  1 for all k. This fact does not imply 

that our information structure is isomorphic to another one in which p = Qo/Ao =  1 because 

complete information sharing [occurring at G =  (M  — l)/2] also obviously tilts the average 

signals variance.

5 We have actually covered many more cases than those we selectively present here. For 

space reasons, these additional results are only available at the authors’ websites.

6 Information sharing is a less robust phenomenon in the static case. In the appendix, we 

show that in the static case, information sharing only arises in correspondence of a severely 

restricted range of negative values of p (see proposition B1 in appendix B).

7 The effects on pn (k) depicted in figures 3.10-3.12 do not seem to be widely depending on

N.

8 In fact, Back, Cao and Willard (2000) show theoretically that in its diffusion limit (obtained 

with N  =  oo), the basic Foster and Viswanathan (1996) model generates an infinite adverse 

selection problem at the very end of the trading period. Numerical results (obtained with high 

values of N) suggest that such a phenomenon disappears in our information-sharing model. 

It would be interesting to confirm our numerical findings with the help of a fully articulated 

continuous-time model.

9 The combination (N  = 10, p =  0.1) does not correspond to cases in which information 

sharing is optimal. We report this case because it simplifies our description of the results in 

this section. Our conclusions in this section are of course independent of the specific pictures 

we are reporting.

10 Let pn = Qn/A n be the correlation coefficient between individual signals. Since \pn\ < 1, 

then An — > 0 and the coefficient for A4 is non-negative. Moreover An + (M — 1) fin is 

positive due to (3.5), and a fortiori 2An + (M — 1) fln > 0 since An > 0.
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4
A Portfolio-Based Evaluation of Affine Term 
Structure Models

4.1 Introduction

The term structure of interest rates has always been a fashionable topic among financial 

economists, and the related literature is extremely wide even by historical standards. 

Duffie and Kan (1996) have generalized previous works and shown tha t the completely 

affine class (CA hereafter) nests celebrated models such as Vasicek (1977) and Cox, 

Ingersoll and Ross (1985) as specific cases. W ithin the CA class the product between the 

volatility matrix and the price of risk vector is linear in the state variables. Furthermore 

the variance of the log state price deflator is linear in the state variables as well. Duffee 

(2002) has recently proposed an extension to the essentially affine (EA hereafter) class. 

The key feature of EA models is tha t the variance of the log state price deflator is not 

affine in the state variables. This opens the way to model time variation in the price of 

risk not associated with time variation in the volatility matrix. Comparing the three 

specifications Duffee (2002) describes as the best ones in his work, it emerges tha t the 

EA class performs better than the CA class in forecasting bond yields. One im portant 

advantage of the EA structure is tha t it can produce expected excess returns on 2-year 

and 10-year bonds which widely fluctuate between positive and negative values. On the 

other hand, the proposed CA specification produces strictly positive expected excess 

return to 2-year and 10-year bonds all over the sample period. Therefore EA models are 

able to reconcile the small unconditional sample mean of bond excess returns with their 

high standard deviation. For instance, one EA parametrization predicts expected excess 

returns to the 10-year bond lower than -20% for some months during the 1970s and
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1980s. We notice th a t while predictions arising from EA models seem to be compatible 

with the mentioned empirical evidence, they might be difficult to justify from a general 

equilibrium perspective. It is a m atter of great concern th a t at some stage investors 

might choose to  hold long term bonds with such negative expected excess returns.

Dai and Singleton (2003) evaluate various multi-factor models with respect to their 

ability in fitting the main stylized facts in bond prices’ dynamics. Among their main 

findings are: (1) three-factor models do a better job than two-factor models in matching 

the persistence in yields’ volatility and (2) a three-factor CA Gaussian model can 

replicate the negative correlation between the yields changes and the slope of the term  

structure, while multi-factor CIR (1985) models1 are unable to do so. Taken together, 

these two findings imply th a t coming up with a model able to  simultaneously fit the 

dynamics of both the mean and the volatility of yields can be a hard job.

We propose an evaluation of CA and EA term structure models as forecasting tools 

within a multi-period optimal portfolio problem. Our paper is motivated by three 

concerns: (1) a statistical evaluation of forecasting models can produce different results 

from those arising from a financial metric; (2) for a risk averse investor is im portant 

the ability to  predict not only the mean of excess returns but also their risk, and (3) it 

is useful to understand what portfolio policy is prescribed by a term  structure model 

in order to evaluate its practical applicability.

The first point is simple. Many estimation techniques pin down parameters minimiz­

ing the sum of squared errors, which results in high weights on extreme observations. 

This is optimal only for specific loss functions used by the researcher, and produces 

well-known results such th a t the model’s conditional mean coincides with the optimal 

forecast. However it is easy to think of loss functions which would not select parame­

ters by minimizing the sum of squared errors. A'ft-Sahalia and Brandt (2001) suggest to 

select the model specification based on the first order conditions for utility maximiza­

tion, thus by-passing the estimation phase of the statistical forecasting model. In such 

a way variables and parameters are explicitly relevant for portfolio choices. Another 

example is Christoffersen and Diebold (1997) tha t solves the conditional forecasting 

problem for some specific loss functions of the decision-maker. In several interesting 

cases the authors show how the conditional mean is not the optimal forecast, which 

should instead stem from (a mixture of) the first two conditional moments. A corollary 

to  this general argument is tha t a decision-maker may favor a forecasting model which
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does not provide good performance from a particular statistical standpoint like sum 

of squared errors minimization. There are several examples -for both the stock and 

bond m arket- confirming tha t even partial ability to explain the total variability of 

a given variable may not prevent using a model for active asset allocation.2 Breen, 

Glosten and Jagannathan (1989) consider a fairly simple forecasting model for stock 

returns based solely on the interest rate level. The model is characterized by a coef­

ficient of determination between 2% and 8 % -depending on the sample period- and 

may be employed in a stock/bond static active asset allocation problem to produce 

a 2% return. Barberis (2000) documents tha t a simple predictive equation for stock 

returns based on the dividend yield -with a R 2 as low as 1%-, may deeply affect static 

and dynamic portfolio choices for long term investors. Kandel and Stambaugh (1996) 

study a similar problem focusing on short term investors within a Bayesian setup. 

Campbell and Viceira (2002) also concentrate on a dynamic asset allocation problem 

based on a conditional forecasting model and resort to an approximate solution, while 

Brennan, Schwartz and Lagnado (1997) finds the optimal dynamic portfolio solving 

the representative investor’s first-order conditions. Handa and Tiwari (2000) use the 

evidence on US stock return predictability as an input for one-period Bayesian port­

folio optimization and find the gains from active asset allocation being unstable over 

time once transaction costs are taken into account. The predictability problem is stud­

ied with Bayesian methodologies by Avramov (2002) as well. A recent example in the 

bond literature is Frauendorfer and Schiirle (2001) which finds conflicting results in an 

application to the Swiss bond market. The authors show th a t the one-factor Vasicek 

(1977) model is preferred to both the one-factor CIR (1985) model and two-factor 

models from a statistical standpoint (log likelihood maximization) as well as based 

on its financial performance, even though two-factor models seem to better charac­

terize yields’ empirical distribution. Applications of dynamic programming models to 

bonds have been provided by Brennan, Schwartz and Lagnado (1997), Brennan and 

Xia (2000), Campbell and Viceira (2001) and Walder (2002). In setting and solving 

the optimization problem we rely on a scenario generation approach along the path 

set forth by Zenios and various coauthors, among which Zenios (1993, 1995), Zenios 

and Kang (1993), Beltratti, Laurent and Zenios (2004), and more recently Jobst and 

Zenios (2001a). However our model is explicitly forward-looking because the investor 

solves a two-period problem -as described next in this introduction-, whereas the cited
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papers consider static portfolio choices. We choose to  work with the scenario generation 

approach for several reasons, among which are: (1) it accounts for the introduction of 

transaction costs and (2) it is flexible in allowing for a practically intuitive minimiza­

tion of the expected shortfall, and does not require a tractable utility function of the 

isoelastic form -which is much harder to use in applications.

As to the second point above -th e  importance of predicting both mean excess returns 

and risk-, the conflicting results reported above on the opportunity to simultaneously 

match means and variances reinforce the idea tha t it may be interesting to evaluate 

term  structure models from a portfolio choice perspective. The portfolio optimization 

setting provides a natural way to take into account the ability of a forecasting model to 

predict both expected returns and a risk indicator. Furthermore it naturally embeds a 

metric to evaluate the efficiency of the model, which can be tested for its contribution 

to the improvement in the objective function to be optimized.

Finally, for practical applications it is im portant to characterize the dynamic port­

folio choices suggested by a given model. Investors prefer models which are relatively 

stable and well balanced in terms of different asset classes’ holdings. Models requiring 

strong fluctuations in asset shares are undesirable for various reasons. From a psy­

chological standpoint, investors may be unwilling to act very aggressively in the short 

run. Moreover in practice investors incur transactions costs for portfolio turnover, and 

there is evidence tha t in most cases high turnover generates costs which severely dam­

age portfolio performance. An im portant part of our results will therefore be devoted 

to dynamically characterize portfolio choices arising from the theoretical models in the 

presence of transaction costs.

Our empirical application hinges on the following steps. First we select the empirical 

version of dynamic term  structure models, comparing three alternative specifications 

involving both EA and CA multi-factor models. We then use the selected models to 

generate scenarios for the state vector. The scenarios are selected in such a way as 

to be compatible with various moments of the distribution function associated with a 

given model. We determine scenarios such tha t the means, variances and covariances 

at each node match the corresponding moments of the joint density function for the 

state variables. At each node we then use the model to evaluate the prices of discount 

bonds for any maturity. Given current discount bonds prices, we are therefore able to 

compute the rate of return on each available bond for any possible future scenario under
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consideration. After scenarios have been generated, we write and solve a two-period 

optimization problem. The basic time unit is the quarter, so tha t a two-period problem 

corresponds to a six-month horizon. The investor knows th a t after three months there 

will be a chance to  modify the chosen asset allocation. We compute the wealth implied 

by repeated application3 of our dynamic portfolio optimization problem to scenarios 

generated by the different term structure models, taking into account transaction costs. 

We finally test the resulting trading strategies to evaluate whether the results are 

statistically significant.

While we confirm Duffee’s (2002) result about the superiority of EA over CA models, 

we show tha t the financial metric reverses the ranking of the models within the EA 

class. Duffee (2002) has shown tha t a homoskedastic model has a better forecasting 

performance than a model which allows for heteroskedasticity of bond returns. On the 

other hand we find tha t the latter model allows for a better use of a dynamic portfolio 

strategy. The interpretation is tha t allowing for time-varying higher moments may more 

than compensate for lower forecasting power of the distribution’s mean. Performance 

tests do not show tha t the excess return produced by the model is significantly positive, 

even though the superiority of the heteroskedastic EA model is confirmed in terms of 

average performance. Moreover the shortfalls produced by the two EA models are in 

general statistically significant. As for the motivation to our exercise, on the basis of 

our results we claim that: (1) the statistical evaluation of CA and EA models produces 

different results from those arising from our financial metric, i.e. the performance of 

a dynamic bond allocation model which uses as inputs scenarios generated from the 

statistical models; (2) the ability to predict not only excess returns’ means but also 

their risk is crucial for a risk averse investor and explains the difference between the 

statistical and the financial evaluations.

After this Introduction the plan of the chapter is as follows. Section 4.2 provides a 

general introduction to the affine term structure class of models. Section 4.3 discusses 

scenario generation via lattice methods. Section 4.4 introduces the portfolio model and 

the dynamic optimization, while section 4.5 presents the results. Section 4.6 concludes.
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4 . 2  T e r m  s t r u c t u r e  m o d e l l i n g  w i t h i n  t h e  a f f i n e  c l a s s  

4-2.1 The affine fram ework

In what follows we briefly review the building blocks in the dynamic term  structure 

models (DTSMs hereafter) literature. The interested reader may refer to  Dai and Sin­

gleton (2000, 2003), Duffee (2002), Duffie and Kan (1996), and Fisher and Gilles (1996) 

for a thorough discussion on both modelling and estimation techniques.

Consider an economy whose state is described by n  variables (also called risk factors) 

X t =  (X \ j ,  . .. ,X Uit)T following the diffusion:

d X t = ii (X t) dt +  a  (Xt) d W t , (4.1)

where /x(X*) is n  x 1 vector, is n  x n  matrix and the complete probability

space (fi, T , P ) with the augmented filtration {Tt '■ t > 0 } is generated by n  standard 

Brownian motions W t =  (Wi,*,..., WUyt)T . Using no-arbitrage arguments one can write 

the risk factor dynamics in (4.1) under the equivalent martingale measure Q as:

dXt =  (Xt) dt + <x (Xt) dwf  ,

where W®t \ is a vector of standard Brownian motions under the

risk-neutral measure Q. The n  x 1 vector of market prices of risk A (Xt) allows to move 

from the physical probability measure to the risk-neutral one, given tha t the drift term  

under Q is /jP  (X t) =  /z (X t) —cr (X t) A (X*). Therefore building a DTSM boils down to 

specify (rt, /xt , A*, at) as functions of the state vector X*, where rt denotes the riskless 

rate.

A DTSM is (exponential-) affine3 if and only if:

r (X ,) , n (X t) , <7 (X t) a (Xe)T and a (X,) A (X ,) are affine in X , . (4.2)

Note tha t affinity in rt is equivalent to write the riskless rate as

r (X<) =  (50 +  <STX ( , (4.3)



4.2. Term structure modelling within the affine class 134

where <5o is scalar and 5 is n  x 1. The key feature of the (exponential-) affine class is 

tha t bond prices take the form5:

P  (Xt , r)  =  exp (A  ( t)  -  B ( r )T (4.4)

where A  (r) is scalar, B  (r) =  (B \ ( r ) ,..., B n ( t ) ) t  , and r  is the bond’s residual time to

maturity. No-arbitrage condition on the price dynamics results in the coefficient A  (r) 

and the factor loadings B (r) obeying a PDE with boundary condition P  (Xt, 0) =  1:

- A ( r )  +  B  ( r )T X , -  r (X ,) -  (X ,)T B  (r) +  ^B  ( r )T a  (X t) cr (X ,)T B  (r) =  0

(4.5a)

A  (0) =  0 and B (0) =  0 (4.5b)

Duffie and Kan (1996) show tha t within the affine class the diffusion a  (X t) has the

following structure:

a ( X t) =  E S (X t) , (4.6)

where E is n  x n  constant matrix and St is n  x n  diagonal with typical element5:

[S (Xt)]« =  ) / “< + 0.T x «. (4-7)

where cti is scalar and is n  x 1 vector, i.e. (3̂  = {Pn, ...,/3in)T . For notational

purposes, it is convenient to stack the a^s  into the n  x 1 vector a. and the /3 ’̂s vectors

in the n  x n  matrix /? =  (/31? ...,(3N)T such that

S  (Xt) S  (X ,)T =  diag (a )  +  diag (/?Xf) ,

where diag(a) (resp. diag(/3X*)) is a diagonal matrix obtained by inserting the vector 

a  (the vector fiX-t) into the diagonal.

We now turn to specify the function A (X*), since the representation for the market 

price of risk turns out to be the key difference between CA and EA models. In the CA 

class, the market price of risk takes the form:

A(Xt) =  S (X t)Ai , (4.8)
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where Ai is n  x 1 and S  (Xf) is given in eq. (4.7). Therefore the instantaneous vari­

ance of the market price of risk is affine in X t, since A (X ()T A (X () =  £ ? = i 4 « i  +  

E?=iA j'diag(tS]i)A iX j,t .

On the other hand in the EA class the market price of risk is:

A (Xt) =  S  (Xj) Aj +  S~  (X() A2X i , (4.9)

where A2 is n x n  and S~  (Xt) i s n x n  diagonal with typical element7:

 r s -n n l  = / ( " i + ^TXt)”1/2 if infx.(“i+ATx< ) > ° ..............
0 otherwise

Provided tha t EA models satisfy the affinity condition (4.2) bond prices are affine 

[see eq. (4.4)] and the PDE (4.5a) still holds together with boundary condition (4.5b). 

However the instantaneous variance of the market price of risk A (Xf)T A (Xf) is not 

affine in Xf for A2 ^  0. This feature -arising from the richer specification for the 

market price of risk in eq. (4.9)- gives EA models higher flexibility in capturing the 

time variation in the price of risk.

4.2.2 Bond pricing within the CA and EA class

Starting from an affine form for the riskless rate as in eq. (4.3), we specialize the affine 

condition on the physical drift in (4.1) as

l i ( X t) = ( K e - K X t) , (4.10)

where K  i s n x n  and 0 is n  x 1. W ithout loss of generality we normalize throughout the 

matrix E to be the identity matrix, such tha t equation (4.6) yields a  (X*) =  S  (Xf). It 

follows tha t the instantaneous variance is <j  (Xf) a  (Xf)T =  S  (Xf) S  (Xf)T = d iag (a) +  

Z ]?= i^as([^]i) Xi,t and the PDE (4.5a) becomes:

-  A  (r)  +  B  ( r )T X t -  r  (Xf) -  {K S - K X t - S  (X t) A (X ,))T B (r) +

+  J  £ ? =1 B? t o  « . +  5 ( E w  B i M  & )  x ‘ =  0 (4-n )

Recall that eq. (4.11) holds for both CA and EA models. W ithin the CA class the 

market price of risk is given in (4.8), such tha t S  (Xf) A (Xf) =  ^  +  4>Xf, where ^  is
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n  x 1 with =  otiXi, and $  is n x n  with typical row =  \ i f i j .  The CA specification 

(4.8) thus results in breaking down the PDE (4.11) into n  + 1 ODEs:

A (r) =  -<S0 -  B  (r)T (KO -  * )  +  i  £ " =i Bf (r) (4.12a)

B  (r) =  5 -  ( if  +  $ )T B (r) -  i  (£ " =1 Bf  (r) f t )  (4.12b)

On the other hand in the EA class the market price of risk is defined in eq. (4.9). In 

this case:

S  ( X t) A (Xt) =  S 2 (X,) Ax +  / - A2x ,  , (4.13)

where I~  = S  (Xt) S~  (Xt) i s n x n  diagonal with typical element:

f 1 if infXt ( a i+ p J X t )  > 0
L J ii | ,

0 otherwise

Plugging eq. (4.13) back into the PDE (4.11) gives the following ODEs:

A (r) = - S o - B  (r)T (K0 -  * )  +  \  E?=i Bf (r) ch (4.14a)

B (t) =  S -  ( K  +  $  +  J-A 2) T B (r) -  i  (E?=i Bf  ( r ) f t )  (4.14b)

Note tha t the EA class nests the CA class since for A2 =  0 the specification for the 

market price of risk (4.9) reduces to  eq. (4.8). It follows tha t the ODEs (4.14a-4.14b) 

for EA models coincide with their CA counterpart (4.12a-4.12b).

4-2.3 Forecasting fu ture yields: the firs t two conditional m om ents

In the previous section it has been clarified tha t bond prices at each time t are a 

function of the current state vector. On the other hand the portfolio model requires 

forecasts of (scenarios of) future prices. In order to predict future bond prices (or 

equivalently yields), one needs to forecast the future state vector conditional

on the information available at time t. Closed form formulas for the first two conditional 

moments are given in Duffee (2002). The idea is to find the first two moments of a linear 

transformation of the state vector Xf. More specifically, assume tha t the matrix K  in 

eq. (4.10) can be diagonalized:

K  =  N D N - 1 ,
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where D  is n  x n  diagonal with the i —th eigenvalue as the typical element and N  is 

the n x n  m atrix with the eigenvector associated with the i —th eigenvalue in its i —th 

column. Further consider the transformation:

X ; =  N - 'X t  . (4.15)

Then it can be shown [see Duffee (2002), p. 439-442] that for T  > t:

E fX JlX J) =  0 * + e x p ( - D ( T - t ) ) ( X t* - 0 * )  (4.16a)

var.(X5HX?) =  &o +  £ ? =1M ^  (4.16b)

where 0* =  iV-1 0, and the (j,k )-th  element in the matrices bo and fy, i =  1 , . . . ,n  is 

defined as follows:

=  [D\a  I  W k I 1 ~  «~( r ~,)(ll^ +w > t))  ( [ < H ,  +  E " =1 <n [G iU )

fft.l , =  ( e - ( T - t ) l D ] u  _  - - ( T - Q Q D I h + I D I u , ) )

lD]jj  +  lD]kh- [ D } u \ e )

and Go =  E*diag(a) S*T, G, =  E*diag([^*],) S*T, E* =  and /3*

first two conditional moments for the state vectors are obtained from eqs 

(4.16b) reversing the transformation (4.15):

E  (Xr |Xt) =  N E  (XJ,|XJ) (4.17a)

var (XT|X*) =  N var  (XJ|XJ) N T (4.17b)

Once equipped with a DTSM parametrization for: (1) the riskfree rate [eq. (4.3)]; (2) 

the physical drift [eq. (4.10)]; (3) the volatility matrix [eqs. (4.6) and (4.7)] and (4) the 

market price of risk -either as in (4.8) or (4.9)-, one can use eqs. (4.17a) and (4.17b) 

together with the appropriate ODEs -either eqs. (4.12a) and (4.12b) or eqs. (4.14a) 

and (4.14b)- to compute the first two conditional moments of future bond prices.

=  f3N. The 

. (4.16a) and
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4.3 Scenario generation via lattice method

For pricing purposes one needs to approximate the diffusion processes for the risk 

factors. Lattice methods have been extensively used in the financial literature within 

derivative asset pricing. In the aftermath of the binomial tree in Cox, Ross and Ru­

binstein (1979), several authors devised lattices as useful tools in pricing claims. The 

basic strategy consists of building a grid with sizes of the jumps and associated proba­

bilities obtained equating the first two moments of the underlying diffusion to  those of 

the approximating distribution. Nelson and Ramaswamy (1990) use binomial processes 

in approximating several univariate distributions. In a multivariate setting one has to 

ensure the convergence of the approximating distribution to the true distribution by 

matching the variables’ covariances as well. Boyle, Evnine and Gibbs (1989) generalize 

the binomial lattice in Cox, Ross and Rubinstein (1979) allowing each state variable to 

be proxied by a binomial process. Their method can be easily extended to  n  variables, 

yielding processes with 2n jumps. Kamrad and Ritchken (1991) build on the work in 

Boyle, Evnine and Gibbs (1989) allowing for a horizontal jump, i.e. the possibility that 

the state vector does not move from its current value. In a n-dimensional setting their 

model would result in 2n +  1 jumps.

Litterm an and Scheinkman (1991) and more recently Chapman and Pearson (2001) 

have shown tha t three factors are able to explain the majority of Treasury bond move­

ments. Like Ahn, D ittm ar and Gallant (2002), Dai and Singleton (2000) and Duffee 

(2002) we therefore set n  =  3 in specifying the DTSMs for our dynamic portfolio prob­

lem. Given tha t the portfolio model we implement (see section 4.4 for further details) 

takes expected bond prices for two future dates as inputs, we need a lattice for the 

state vector at time t + 1 and t  +  2. Similarly to  Boyle, Evnine and Gibbs (1989) we 

choose a binomial tree in the three dimensions for the state variables, thus resulting in 

8 nodes for the state vector at time t  +  1 and 64 nodes at time t +  2.

Before discussing the three dimensional case, we describe our approximation method 

with two state variables. The binomial lattice approximating each state variable {Ai}i=1 2 

is represented in figure 4.1. The starting point is the observation at time t of values 

for X \ yt and X ^t-  At time t 4-1 each state variable X^t+i can either move up to 

X f t+l with probability pi or down to X f t + 1  with probability 1 — Pi (see panel A in 

figure 4.1). In general both the values for the vector X *+1 and the transition probabil­

ities depend on the current time t, possibly via the current state X*. The quantities
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FIGURE 4.1. One-dimensional lattice.

*M+i E  (*M+l lX‘) + V v a r (X i,t+ i \ X t )
Pi  y  1/2 y

X i , t X i t t

1 - P i  \  1/2 \
* £ t + i  B ( X i|t+ 1 |X t) -  v W ( X iit+ 1 |X t )

Panel A Panel B

Each state variable X i  moves along a binomial tree over time. The general form of such a binomial tree is
depicted in Panel A. Panel B reports our specification w ith equal jum p probabilities as described in section 4.3.

are chosen in order to  match the first two conditional moments
t  ’ ’ J i= l,2

for X \  and X^. This amounts to solve the following system:

P i* i ,m  +  (1 -  P i) =  E  (X t+1 |X t)i (4.18a)

P2X 2“t+1 +  (1 -  n )  X l t+l = E  (X t+1 |X t)2 (4.18b)

Pi (* i ,1+i -  E (X i+ ilX ,),)2 +  (1 -  P l) ( x £ (+1 -  E (X(+1|X ()x) 2 =  tiar (X t+1|X ,)n  

(4.18c) 

P2 ( * 2,m  - B ( X t+1|X ()2) 2 +  (1 - p j )  (X i t+ i ~ E ( X t + 1  |X ()2) 2 =  var (X j+1 |X()22

(4.18d)

where E  (Xt+iIXt)^ and var (X*+i|Xf)^ are respectively the i —th  element of the condi­

tional expectation vector and the (i , i ) element of the conditional variance-covariance 

matrix. In order to pin down the values for ^ X ™t+ l, X f t+1, Pi |  in the system 

(4.18a-4.18d) we impose equal transition probabilities, i.e. pi = P 2 =  1/2, thus making 

the number of unknowns equal to the number of equations.8 Let AX™ be the deviation 

of the value X ™t + 1  from the conditional mean, i.e. AX™ = X ™t + 1  — E  (X*+i |X t)̂  (A X f  

is defined similarly). Plugging pi =  1/2 in the system (4.18a-4.18d) gives, for i = 1,2:

AX& =  - A  X { t (4.19a)

(A X “,) 2 +  (A X ? t ) 2 =  2var(X t+i |X t)« (4.19b)

Equation (4.19a) imposes symmetry around the conditional mean. Substituting for 

A X i = AX™ into eq. (4.19b) gives the value for the deviation at time t +  1 as A X i  =  

y/var  ( X t + i | X f ) ^  such that the future values for the state variables become (see panel
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TABLE 4.1. State vector values and probabilities (two-dimensional case).

value for X t+ i probability
J Y u y u  1 7T1

J v u  yd  I 7T2

J yd  y u  1 
1 ^ 1 ,t+ 1 .^ 2 ,t+ l / 7T3
J yd  yd  I  
l l,t+l> 2,t+ l f 7T4

Nodes for the state vector are reported in the first column. Each state variable {X t} i = 1  2  evolves along a 
binomial tree. W ith two state variables the state vector takes four values at tim e t  +  1. The second column 
reports the associated probabilities.

B in figure 4.1):

XV t + 1  = B ( X t+1 |X t)j +  v /» o r(X t+1|X t)jj (4.20a)

x £ +1 =  ^ ( X m l X ^ - ^ r t X m l X , ) *  (4.20b)

We now turn to  describe the tree for the state vector Xf. When both state variables 

are approximated through a binomial lattice as in (4.20a) and (4.20b), the state vector 

(and thus the price of zero-coupon bonds) can be proxied by a 4-jump process. Let the 

tuple { X i tt ,X 2 tt} denote the values for the state variables at time t. Table 4.1 reports 

the values -and  associated probabilities 7T i,...,7T4-  tha t the joint distribution for the 

state vector can take at time t +  1, while we give a graphical representation of our 

procedure in figure 4.2.

Given the state vector values at time t +  1 as in eqs. (4.20a,4.20b), the probability

vector (tti ,..., ^ 4) has to be chosen in order to replicate the marginal distributions for

the state variables { X l,X 2} and the conditional covariance between the two processes. 

Matching the marginal distributions and imposing th a t the probabilities sum up to 

unity amounts to set the system: 7Ti +  7T2 =  1/ 2, +  7T4 =  1/ 2, 7Ti +  7r3 =  1/ 2,

7T2 +  7T4 =  1/2 and TTi =  1? which simplifies to

7T1 =  7T1 (4.21a)

7T2 =  1/2 -  7T1 (4.21b)

7r3 =  1/2 -  7T1 (4.21c)

7T4 =  7T1 (4.21d)
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FIGURE 4.2. Two-dimensional lattice.

£(X

r var(X,|X0)M

Each state variable 2  moves along a binomial tree over tim e like in figure 4.1. The whole state vector’s
dynam ics is given by a two-dimensional lattice (values and probabilities are in table 4.1). Figure 4.2 displays 
the main features of our lattice generation m ethod in section 4.3.

Matching the conditional covariance requires further tha t

7Ti — 7T2 — 7T3 -1- 7T4 =  p 12  ( X * + i |X * )  , (4.21e)

where p12 (X*+i|Xt) denotes the conditional correlation between the two variables, i.e. 

for i ^  j

P i j  ( X t + i l X t )  =  [ v a r  ( X j + i  |X ( ) ] i3- /  ( A X ^ t A X j ^ )  , i ^ j . (4.22)

Thus the comovement between the two state variables allows to  pin down one solution 

for the probability vector (71-1, ... ,^ 4) in the system (4.21a-4.21e):

TTi =  t t 4  =  - ( l  +  p 1 2 ( X m |X * ) )  

7T2 =  7T3 =  j ( 1 -  p l 2  ( X t + 1  | X f ) )

Notice tha t the probabilities are well defined, in tha t they all lie between zero

and one.

W ith the two-dimensional case in mind, we now discuss our procedure for the three- 

factor setup (the multi-factor DTSMs are described in subsection 4.5.2). Each diffusion 

is proxied by a binomial lattice as in figure 4.1-panel B with equal transition probabil­

ities and up/down jumps given by eqs. (4.20a,4.20b). Since we are dealing with three 

state variables, the whole state vector X*+i follows an 8-jump process as summarized 

in table 4.2.
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Proceeding as before, the probabilities {7ri}®=1 are to be chosen in order to match the 

marginal distributions for the state variables and the conditional covariances

between the processes X ^t and X j}t , i 7̂  j • Equivalently to the system (4.21a-4.21d) 

one gets:

Y a =1 TTi — 1 (4.24a)

7Tl +  7T2 +  7T3 +  7T4 =  1/2 (4.24b)

7Ti +  7T2 +  7T5 +  7TQ =  1/2 (4.24c)

7Tl +  7T3 +  7T5 +  7T7 =  1/2 (4.24d)

Let p13 (•) and p23 (•) be defined as in eq. (4.22). Matching the conditional covariances 

results in the three additional constraints:

(7T1 +  7T2 -  7T3 -  7T4 -  7T5 -  7T6 +  7T7 +  7T8 )  =  p i 2  (X*+l\X t) (4.24e)

(7Tl ~  7T2 +  7T3 -  7T4 -  7T5 +  7T6 -  7T7 +  7T8 )  =  p13 (X t+1 |X t) (4.24f)

(7Tl -  7T2 -  7T3 +  7T4 +  7T5 -  7T6 ~  7T7 +  7T8 )  =  p 23 (X t+1 \X t) (4.24g)

The set of equations (4.24a-4.24g) describes a linear system in the probability vector 

7r =  (7r i , ..., 7r8) tha t admits infinitely many solutions. This indeterminacy arises in 

the literature when dealing with approximations for n  > 2 variables [see Boyle, Ev­

nine and Gibbs (1989) and He (1990)]. Following Boyle, Evnine and Gibbs (1989) we 

impose one additional constraint -suggested by the analysis for the two dimensional 

case- in order to get a unique solution. Recall that with two state variables the prob-

TABLE 4.2. State vector values and probabilities (three-dimensional case).

value for X t+ i probability
VU

A l , t + 1
VU

> ^ 2 , i + l
vu 1 

3 , t + l  j 70
VU

A l , t + 1
Y"u > 2 , t + l

y d  1  
3 , t + l  f 7T2

Yu vu 1 
A 3 , t + l f 7T3

v u
A l f t + 1 > ̂ 2 , t + l x d 13 , t + l  J 7T4

Y u  > ̂ 2 , t + l
VU I

3 , t + l  J 7T5
X3,t+1 f 7T6

x t , t+  1 > - ^ 2 , t + l
vu 1

3 , t + l  J 7T7
Xf.t+1 > * l t +1 y d  1  

3 , t + l  f 7T8

Nodes for the state vector are reported in the first column. Each state variable {-Xi} i = 1  2  3  evolves along a 
binomial tree. W ith three state variables the state vector takes eight values at tim e t +  1. The second column  
reports the associated probabilities.
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abilities of the extreme values for both the state variables were the same, i.e. 7ri =  W4 . 

Thus we constrain the “all-up-node” { ^ i t+ 1 ^ 2  t+i-> -^3,t+i} and the “all-down-node” 

{x i,t+ nx 2 ,t+ vx i t+ i} t0 be equally likely ;

TTl =  7T8 ■ (4.24h)

Then the system (4.24a-4.24h) admits the following solution:

7Ti =  7T8 =  -  (1 +  P12 +  P13 +  P23)

7T2 =  7T7 =  -  (1 +  p12 — P13 — P23)

7T3 — ^ 6  =  g  (1 — P l 2  +  P l 3  ~  P 2 3 )

7T4 =  7T5 =  -  (1  — P12 ~  P13 +  P23)

Since in our empirical study we model the state vector’s dynamics from time t up to 

1 4-2, we repeat the procedure outlined above in each of the 8 nodes resulting at time 

t  +  1. Notice tha t even though the solution for the probability vector is now unique, 

nothing guarantees tha t the probabilities {71̂ } ^  lie between zero and one. A sufficient 

-albeit not necessary- condition for this to  happen is tha t the correlations among 

all state variables are all below 1/3 in absolute value. However the approximating 

procedure we implement via the system (4.24a)-(4.24h) yields defined probabilities for 

all the DTSMs we consider in our empirical application.

4.4 Portfolio model

We describe a multi-period portfolio model which takes as inputs the state vector 

forecasts produced by the DTSMs introduced in section 4.2 (see subsection 4.5.2 for 

further details) via the lattice procedure outlined in section 4.3. Following the structure 

proposed by Beltratti, Consiglio and Zenios (1998), investment decisions are measured 

in terms of dollars of face value -ra ther than percentages invested in the various assets. 

The model describes the choices of an investor with a T-period horizon and facing N  

risky assets and cash at the initial time t — 0.

We use the following notation:

St set of scenarios (nodes) anticipated at time £; s* is a generic element of the set St



4.4. Portfolio model 144

Lt set of paths obtained combining scenarios from the sets So, Si, •••, <St-i (Lt Q 

So x Si x ... x S t-1); It is the information structure at time t (It € Lt) which 

describes the path of nodes from time 0 until time t (t x 1 vector). At t =  0 no 

path is defined because all the information is available for tha t period

7Tit probability of path It

P t(h) prices of assets at t , a function of the path between 0 and t (N  x 1 vector)

pt (lt) one-period risk-free rate at t

7 transaction costs on sales

6  transaction costs on purchases

Co initial liquidity

Bo initial holdings (N  x 1 vector)

1 =  (1,..., 1) the unit vector of dimension (1 x N )

At each time period the choice variable is denoted by the N  x 1 vector Zt(/t), giving 

the quantity to be kept in the portfolio for each asset. Knowledge of Z*(/*) together 

with the initial holdings Bo gives the quantities tha t should be bought [Qt(Zt), N  x 1 

vector] or sold [Yt(lt), N x l  vector], and in turn determines the amount of cash [vt(k)]- 

No short sales are allowed. Notice tha t at t  =  0 all the prices are known, and there is 

only one node so tha t the control variable does not depend on the path.

At time t =  0 the value resulting from the original cash and from the sale of the assets 

in the portfolio must be equal to the amount invested in liquidity and tha t invested 

for increasing other assets (cashflow accounting), so that:

co +  ( P j  -  7 1)Y o =  (Po +  <51)Qo +  vo ■ (4.25)

Moreover each asset must satisfy an inventory balance constraint

B i + Q i = YS + Z i , V i e  N  . (4.26)

Decisions made at t  =  1,..., T  depend on the information structure It and on previous 

investment decisions. Similarly to what happens at the initial period t =  0 [see eq.
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(4.25)], the increase in asset holdings must be equal to the income generated by the 

assets and the value generated by sales. Therefore for each path It one has:

P t - i ( k - i ) v t - i ( h - i ) +  [PtT(h) -  7l] Y,(Z,) = [P^ (h) + <5l] Qt(k)+vt(h)  , W, 6 L t .

(4.27)

Moreover for each path It the amount of each asset sold or kept in the portfolio must 

be equal to the amount bought or held from the previous period [see eq. (4.26)]:

% _ & - ! )  + Qi(k)  = Yti (lt) + Zi(!t) , V ie  N  and Vlt 6 L t . (4.28)

We now describe the objective function. Let Vpt (lt) be the value of the portfo­

lio at time t =  1 ,...,T  computed for each path It. Vpt {lt) depends on the portfolio 

composition, the risky assets’ value, and the amount of liquidity at time t as follows:

Vp,(h) = vt (h) + P j ( l t )Z t (h )  , V k e L t .

Denoting with R p { l r ) the portfolio’s rate of return in the final period T  computed 

for each path It, one has:

Rp(iT ) = v*(b)-v*
VPo

where Vp0 =  Co +  Pq Bo denotes the initial portfolio value. Let us define for each 

t =  1, ...,T  and for each path It the one period shortfall associated with the portfolio 

held at time t :

S F t (lt) =

eTtVPt_x{lt-1) -  VPt(k) if e ^ V p ^ i h - i )  > VPt(lt )

0 otherwise

Vlt e  Lt

(4.29)

where r* is the minimum required return for the period (t — 1, t ] . Consistently with eq.

(4.29), we represent the opportunity cost to an investor as the case in which the value 

of the portfolio in t is lower than the value of the portfolio in the preceding period 

multiplied by the factor eTt. The required return r t could be thought of as the increase 

in liabilities’ value or the competitors’ expected rate of return. Alternative formulations
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can be easily implemented. For example Chevalier and Ellison (1997) have shown that 

the penalty (in terms of assets under management) fund managers bear when under­

performing their competitors is not particularly sensitive to  the underperformance’s 

magnitude, while the reward increases strongly with the overperformance. We could 

easily model this stylized fact by defining a fixed shortfall in case of underperformance 

and a negative and increasing shortfall in case of overperformance. At time T  we define 

for each path Ip the cumulative shortfall:

SFcamilx) =  <

eTcumVp0 — Vpt (It ) if eTcumVp0 >  VpT(lp)

yip  £ Lp

0 otherwise
(4.30)

where Team is the minimum return over the whole time horizon. Given cost measures for 

shortfalls each period, p, and for the cumulative shortfall, A:cum, the investor

wants to  minimize a cost function based on the expected shortfall:

T S F r  = k i 5 3  *i1S F 1(h) + ... + kT 5 3  TS P r ( h )  + kcum ^   ̂ '^ij'SFcurn{lp)
liG L i It GLt  It Q.L’t

(4.31)

under the constraints given by obtaining a return equal to the target R  in each final 

node

R P {lp) = R  , V/t e L t , (4.32)

and by the cashflow accounting and inventory balance constraints (4.25-4.28). From 

the definition of the cost function it emerges that the higher the parameters t* and 

Tcum, the higher the shortfall associated with a given portfolio return. Minimizing 

the objective function (4.31) given the constraint (4.32) amounts to risk minimization 

given a specific target return. This constrained minimization may be interpreted as an 

alternative to the standard efficient frontier methodology in the presence of asymmetric 

risk. It has been used in a one-period optimization problem by Zenios and Kang (1993), 

which shows tha t this approach is a linear programming problem reformulation of the 

mean-absolute deviation (MAD) model originally due to Konno and Yamazaki (1991).
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This objective function has recently been used within a static optimization setup by 

Beltratti, Laurent and Zenios (2004) and by Jobst and Zenios (2001b).

There is a growing interest in the use of the shortfall in portfolio optimization, given 

recent attention to value-at-risk measures as well as portfolio optimization with non­

normal assets. Of course non-normal returns do not require the use of the shortfall, 

and other risk measures like the standard deviation could be considered instead. How­

ever there are reasons to prefer the expected shortfall. Indeed, the expected shortfall 

corresponds to the conditional loss and to the conditional value-at-risk, see Embrechts, 

Klupperlberg and Mikosch (2003). Jobst and Zenios (2001b) use the expected short­

fall framework in an effort to embed credit risk into asset management, and compare 

mean-absolute deviation portfolio optimization with expected shortfall portfolio op­

timization. Bogentoft, Romeijn and Uryasev (2001) utilize the expected shortfall for 

pension funds’ asset/liability management, while Topaloglou, Vladimirou and Zenios 

(2002) employ it for an international portfolio choice problem claiming tha t “it can be 

used to exercise some control on the lower tail of the return distribution and thus, it is 

a suitable risk measure for skewed distributions” [Topaloglou, Vladimirou and Zenios 

(2002), p. 6]. Moreover, in practical applications, portfolio managers may be more sen­

sitive to  risk measures approximating the expected amount of the loss, rather than to 

a measure like the standard deviation which is independent of the portfolio value and 

the potential loss.

Our analysis is therefore closer to  the computation of (a sequence of) specific points 

on a shortfall-expected return efficient frontier, rather than to  the computation of 

(a sequence of) optimal portfolios for a specific utility function. Of course we could 

introduce a parameter representing the relative weights of the target return and the 

expected shortfall in the investor’s utility, and choose one optimal portfolio for each 

time period. Instead, we compute a portfolio for each of the four target returns we 

consider in the empirical application (see subsection 4.5.3). Therefore our findings are 

not directly comparable to recent contributions like Wachter (2003) -showing tha t 

increasing risk aversion forces the investor to buy the bond with the same maturity 

as the consumption horizon-, because we are not solving an optimal consumption- 

investment problem. Also, our results may be more relevant to short-run investors 

rather than long-run investors, as the latter are concerned with building portfolios



4.5. Data, implementation and results 148

hedging the state variables and may deviate from the simple static efficient portfolios 

[see Sangvinatsos and Wachter (2003) for a recent application to bond portfolios].

It is also im portant to compare EA and CA models in terms of their ability to  form 

efficient portfolios because in such a way a weak link with explicit utility maximiza­

tion is established. It is well known tha t different affine DTSMs are compatible with 

different assumptions on the price of risk,9 and therefore with different representa­

tive investor’s utility functions supporting the prices in general equilibrium. We are 

therefore minimizing the risk of preferring one model to the other as the result of an 

unintended similarity between the implicit utility function embedded in each DTSM 

and the explicit utility function evaluated in our portfolio optimization model.

4 . 5  D a t a ,  i m p l e m e n t a t i o n  a n d  r e s u l t s  

4-5.1 Dataset description

Our analysis is based on data  from McCulloch and Kwon (1993) and Bliss (1997) avail­

able from Duffee’s homepage at http://faculty.haas.berkeley.edu/duffee/affine.htm. The 

dataset consists of month-end yields on zero-coupon US Treasury bonds with m atu­

rities of 3 and 6 months and 1, 2, 5, and 10 years for the sample period January 

1952-December 1998. This dataset is the standard for many studies of the bond mar­

ket, see for example Duffee (2002). We have obtained prices10 for other maturities by 

interpolation with the method proposed by Nelson and Siegel (1987). Table 4.3 con­

tains summary statistics about excess return data, i.e. continuosly compounded with 

respect to the overnight rate, used in this study. Between 1952 and 1998 the aver­

age monthly excess return increases with the bond maturity, except for the 10 years 

bond. A similar result also holds for the subperiod 1952-1992 used in several stud­

ies by other researchers, who also report a similar finding [see for example Campbell 

(2000)]. Returns’ standard deviation is also increasing, bu t much more sharply. As a 

consequence the Sharpe ratio is decreasing across maturities. Ilmanen (1996) reports 

similar results over the period 1970-1994. Table 4.3 moreover shows tha t all excess re­

turns are characterized by non-normal distributions, especially at the short end of the 

term  structure. Non-normality justifies the use of the expected shortfall in our dynamic 

portfolio optimization as discussed in section 4.4. Finally, table 4.3 reports the average 

yield curve in the two samples, displaying the standard concavity and upward slope.

http://faculty.haas.berkeley.edu/duffee/affine.htm


4.5. Data, implementation and results 149

TABLE 4.3. Data set summary statistics.

m aturity 3M 6 M 1Y 2Y 5Y 10Y

mean excess return, 1952-1998 0.56 0.83 0.91 0 . 8 6 2.87 -0.57

mean excess re tu rn ,1952-1991 0.61 0 . 8 8 0.97 0.69 1 . 6 6 -1.60

standard deviation, 1952-1998 1.54 2.90 5.62 10.18 21.46 33.44

standard deviation, 1952-1991 1.65 3.11 6 . 0 0 10.72 2 1 . 8 6 34.06

Sharpe ratio, 1952-1998 0.36 0.29 0.16 0.08 0.13 -0 . 0 2

skewness, 1952-1998 1 .6 8 1.89 0.74 -0.05 -0.49 0.30

kurtosis, 1952-1998 11.49 16.02 12.04 9.15 5.76 2.82

average yield, 1952-1998 5.46 5.69 5.90 6.14 6.46 6.67

average yield, 1952-1991 5.64 5.88 6.08 6.28 6.55 6.72

The data set consists o f month-end yields on zero-coupon U.S. Treasury bonds (available from Duffee’s homepage 

at http://faculty.haas.berkeley.edu/duffee/affine.htm ) over the sample period January 1952-December 1998 for 

selected maturities (first row). For each maturity we use continuously compounded excess returns over the 

overnight rate and report their mean (second and third row), standard deviation (fourth and fifth row), Sharpe 

ratio (sixth row), skewness (seventh row) and kurtosis (eight row). Average yields are reported in the last two 

rows. All numbers are in percentage per year. Some of the statistics are computed over the subsample January 

1952-December 1991 for comparison w ith previous studies.

It is of course possible tha t expected bond returns axe larger than historical returns 

due to  unexpected inflation episodes during the 1970s and the 1980s - a  point made 

by Campbell (2000). However measurement error issues about bond returns go beyond 

the scope of the paper, which is concerned with comparing alternative DTSMs from a 

dynamic portfolio choice standpoint. It is instead crucial th a t the data set we use here 

corresponds to the one employed for econometric estimation of these models.

4-5.2 Three-factor D T SM s specification

We follow Dai and Singleton (2000) and Duffee (2002), and define a C A m(n) model as 

a completely affine model with n  state variables of which m  affect the instantaneous 

variance of the state vector (similarly, E A m{n) defines an essentially affine model with 

n  state variables of which m  affect the instantaneous variance of the state vector). 

Setting n — 3 the general specification of a three-factor model is given by:

rt = 6o + 6\Xit + 62X2,t + 5zXz,t

f {Ke\ ^ /
d X2,t — (K0)2 —

K X3-‘ ) y. (K0)s ) V

k n  ki2 kis  \  (  X i >t ^

&21 &22 &23 X 2,t

x3,t )
dt + S(Xt)dWt

http://faculty.haas.berkeley.edu/duffee/affine.htm
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f  X U  ^
[S(X t)]« = Oti + ( f t i P i 2  P i 3  ) x2,t

K x ^  )

^ ^2(11) A

A (Xt) =  S (X t) Al(2) +  5 -  (Xf) ^2(21) A

\  Al(3) / \  A2(31) A

'2(12) ^2(13)

'2(22) ^2(23)

X i*  

x2)t
X 3,t j

(4.33)

When bringing the DTSM in (4.33) to the data, restrictions on the parameters are 

needed in order to get an admissible specification, i.e. to  yield positive conditional 

variances [S (Xf)]^ [see Dai and Singleton (2000)]. Further to  these restrictions, Duffee 

(2002) reports preferred specifications resulting from a new estimation of the model 

(4.33) after setting to zero all the parameters whose absolute t-statistic do not exceed 

one. We consider the three preferred models estimated in Duffee (2002) and use his 

estimated parameters. We refer the reader to Duffee (2002) for a description of the 

estimation methodology and to  his homepage for the param eters’ estimates.

The first model considered by Duffee (2002) is EAq (3), which rules out heteroskedas- 

ticity in the state variables.11 The second model is E A \ (3) and leaves some margin to 

capture heteroskedasticity by means of one state variable. The third model, C A 2 (3), is 

the richest among those we consider in modelling the dynamics of volatility of interest 

rates. Table 4.4 reports the canonical representation as well as the restrictions imposed 

by Duffee (2002) for each DTSM.

4 .5.3 D ynam ic portfolio model

In our application we consider an investor with a tw operiod horizon. Technically, 

our model belongs to  the class of two-stage stochastic programming problems, see 

Golub, Holmer and McKendall (1995). Let St =  { t,j)  denote the scenario at time t 

and node j .  Given tha t scenarios are generated by binomial trees for the three state 

variables as described in section 2, we have S q = sq =  (0,0), S \ =  { ( l , j )} j=i g, 

S 2 =  { ( 2 64. We think of each period as one quarter. One quarter and two 

quarter rates are used to determine the riskless rate respectively for the first and the 

second period. The risky portfolio is composed of N  =  39 assets (indexed by subscript i) 

corresponding to zero-coupon bonds with maturity larger than three months, i.e. i =  1
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TABLE 4.4. Three-factor DTSMs parameterization.

E A q (3) E A X (3) C A 2 (3)

K
ku
0

&31

0
k22
0

0
0
3̂3

0T 0 0 0

QT 1 1 1

‘ 0 0 0

0 0 0 0
0 0 0

A] [ Ai(i) -^1(2) 1(3)
0 ^2(12) 0

\ 2 0 A2(22) 0
A2(31) A2(32) A2(33)

[5 (X t)]u 1
[S (X t)]22 1
[S (X t )]33 1

kii 0 0
k2\ k22 &23
0 0 &33

I 0 ° J
1 i j

1 0 0

021 0 0

Pzi 0 0

Ai(i) Aj(2) 0  1

0 0 0

^2(21) 0 ^2(23)
0 0 A2(33)

y/X^t 
\ / l  +  0 2XX \  ,t 
\ / t  + ̂ 31-̂ 1,*

ku k2\ 0
k2\ k22 0
&31 &32 &33

[ 9i 02 0

1 ° 0 '11 0 0
0 1 0
0 1 0

A l(l) 0  -*1(3)
0 0 0
0 0 0
0 0 0

y/X^t
y / l  +  X i , t

Relevant parameters for admissible DTSM s are reported. The general specification for three-factor DTSM s is 
given in (4.33). Restrictions on parameters are needed in order to  guarantee admissibility as in Dai and Singleton 
(2000); boldface numbers denote parameters constrained in Duffee’s (2002) preferred specifications.

denotes the six-month bond, i =  2 denotes the nine-month bond and so on until the 

ten-year bond (i =  39). The asset prices axe obtained via the DTSMs in subsection 4.5.2 

solving the relevant ODEs [either (4.12a-4.12b) or (4.14a-4.14b)], which are themselves 

a function of the state variables obtained through the discrete approximation in section

4-3.12 Therefore we get P0T =  {P (0 ,0, z)}i=1) 39, P ? (s0, (1,1)) =  {-P(l, 1, ®)}*=i 39>

P ? (s0, (1,2)) =  { P (l, 2, i )}i=1 39 and so on.

The other parameters characterizing our asset markets are chosen in the following 

way: 7 =  ^ =  5 basis points13 for transaction costs and initial cash equal to  100. 

W ithin repeated application of the dynamic portfolio problem to each quarter during 

our sample period, we choose time-dependent parameters for the cost function (4.31) 

and the expected return constraint (4.32). We set the target return in eq. (4.32) equal 

to  (various multiples of) the average yield on the current term structure (denoted by 

Rt). This choice describes an investor with the following characteristics: (1) he expects 

yields to be constant, so that expected returns corresponds to the yields currently 

obtained on the bonds and (2) he wants to achieve at least -by  using the quantitative 

model- a return related to  the average yield conditions in the bond market for each 

quarter. Given tha t the term  structure is on average concave and upward sloping [see 

Ilmanen (1996)] this is equivalent to setting a target return which is in line with the 

short end of the term structure.
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In the empirical analysis we repeat the computations for four different target return 

levels: 0.5/2*, 0.6/2*, 0.7/2* and 0.8/2*. This way we are able to compare portfolios for 

individuals with different risk-aversion parameters. The choice of these parameters 

is motivated by the fact tha t values lower than 0.5/2* resulted in portfolio almost 

entirely invested in cash with very low asset turnover, thus making the asset allocation 

exercise uninteresting. When actually solving the portfolio problem, we do not have 

any guarantee tha t the optimizer is able to find a solution under all circumstances. 

In order to clarify this issue, assume th a t at a given time t  the average yield, i.e. 

across the term  structure at the same time, gives /2* =  5% and we choose the multiple 

0.5. Thus the target return is equal to 2.5%. If the optimizer is not able to  find any 

portfolio achieving the 2.5% target, we decrease the target step by step until a solution 

is achieved. The occurrence of such target correction is quite rare14 for multiples up to  

R t/R t  =  0.8, which motivates our target returns’ choice.

Finally, for each model we set r \  =  =  In ( j^ tj  , Tcum =  2 In (jlt'j and k\ =

&2 =  kcum =  1. The first choice reflects the hypothesis tha t the minimum required 

return corresponds to  the average yield of the term  structure, while the second is a 

normalization aimed at describing a case where all the shortfalls are equally im portant 

for the decision-maker.

4-5.4 Results

Duffee (2002) contains figures for the instantaneous expected excess returns on the 10- 

year bond predicted by the three models described in subsection 4.5.2. These pictures 

are useful to motivate our study from an empirical point of view [see Duffee (2002), 

figures 1-3]. They show very clearly how large is the difference in the expected returns on 

holding long-term bonds between the two DTSMs classes. The C A 2 (3) model generates 

positive excess returns over the full sample, while the models belonging to  the EA class 

-particularly EAo (3)- produce returns which fluctuate between positive and negative. 

Positive risk premia seem to be more compatible with potential general equilibrium 

explanations of asset returns -arising in equilibrium assuming risk aversion on the part 

of investor. However a model predicting both positive and negative expected excess 

returns could be very useful as an input to  active asset management if the signals 

about future returns are the right ones.15
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TABLE 4.5. State vector summary statistics

Panel A: E A q (3)
state variable mean std.dev min max
X x 0.180 0.755 -1.945 3.106
x 2 0.004 0.351 -1.388 1.402
X Z 0.486 2.579 -3.592 7.687

Panel B: E A X (3)
state variable mean std.dev min max
X x 22.694 12.550 2.881 56.364
x 2 16.609 17.093 -14.296 88.144
X z -0.663 1.074 -5.025 3.168

Panel C: C A 2 (3)
state variable mean std.dev min max

X x 19.308 9.757 3.768 43.380
x 2 9.616 5.202 0.358 26.911
X z 1.318 2.987 -4.056 14.825

The table reports mean (first column), standard deviation (second column), minimum and maximum (third and 
fourth columns) for several three-factor DTSMs. The models are described in section 4.5.2.

The three models also differ with respect to their implications for volatility: simply 

recall from subsection 4.5.2 tha t EAq (3) is homoskedastic and predicts constant con­

ditional volatility, while both E A \  (3) and C A 2 (3) allow for time varying conditional 

volatility. This evidence is therefore supportive towards our effort in this study: compar­

ing models as inputs for asset allocation is particularly interesting when the candidates 

are characterized by similar statistical performance, but produce very different outputs 

in terms of financial choices. In this case the relevant outputs are the conditional pre­

dictive density functions, characterized for example in terms of the conditional mean 

and variance -which we have shown differ across models. Under such conditions a fi­

nancial decision-maker would be unsure about which of the three DTSMs is best from 

a statistical point of view, and at the same time realize tha t following one or another 

would produce different portfolio structures over time.

Table 4.5 reports descriptive statistics for the state variables16 for the three DTSMs 

in subsection 4.5.2. Note tha t EAq (3) does not impose any restriction on the state 

vector’s sign since the /?’s are all set equal to  zero. Thus it is not surprising tha t the 

state variables take negative values (see panel A). For the m atrix S  (Xf) of conditional 

second moments to be well defined in model E A \  (3) [respectively E A 2 (3)] one needs 

X \  (respectively X \  and X 2 ) to be positive everywhere: table 4.5 shows that this is 

actually the case (panels B and C respectively). The interpretation of the three factors 

follows standard analyses, see for example Biihler and Zimmermann (1996). For each 

DTSM we have run a linear regression of the yields (on relevant maturities) on the 

state vector; the resulting coefficients are displayed in figure 4.3 for C A 2 (3). The same
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FIGURE 4.3. Interpretation of the state variables.

0.5
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 slope concavty

For the model C A z  (3) the yields of the bonds with the 12 maturities included in the dataset have been regressed 
on the estimated state variables and the resulting coefficients have been plotted. Each line in the figure reports 
the 1 2  estimated coefficients of the yields of the 1 2  maturities (from one month to ten year) on each of the three 
state variables. The lines have been defined as “slope”, “concavity” and “level” to interpret the results. “Slope” 
is a negatively inclined function interpreted as a shock affecting yields of the bonds with different maturities 
in a way negatively related to maturity. “Concavity” reports a function with a weak effect on both short and 
long yields and a strong effects on yields of intermediate maturities. “Level” represents a shock that affects in 
a similar way all yields.

qualitative behaviour arises from the other two E A  models and we do not include the 

relevant figures for reasons of space. Figure 4.3 confirms the typical result that the 

three state variables may be interpreted as a level, slope and concavity shock to the 

term structure of interest rates.

Table 4.6 reports summary statistics for the total portfolio shortfall for the three 

models17. The numbers in the table refer to the minimized value of the ex-ante total 

shortfall. This means that the shortfall is computed based on the asset prices considered 

in the generated scenarios, rather than on the realized prices. Suppose for example that 

at time t the optimizer selects -based on scenarios stemming from a given DTSM- 

portfolio Zt(lt) for the path It and portfolios Zt(lt+i) for each lt+i. We can compute 

at each time t + 1 and t + 2 the portfolio’s expected shortfall considering whether 

the expected portfolio value -given respectively by Vpt+1 (lt+1) and Vpt+2 (lt+2 )~ lies 

below the minimum required return [see eqs. (4.29-4.30)]. The total shortfall, i.e. the 

minimized value for T SF t+2 in eq. (4.31), may differ from the one we would get for the 

actual ex-post shortfall because: (1) actual bond prices at time t , t - 1-1 and t - 1-2 may 

be different from the ones implied by the DTSM, and (2) one can only compute one 

quarterly ex-post shortfall since the asset allocation at time t + 1 is not implemented 

-more precisely the ex-post shortfall associated with the asset allocation Z*(/*), but 

not the one arising from the portfolio choice Z t+i(lt+i)■ Differences across DTSMs are
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TABLE 4.6. Ex-ante shortfall analysis (total shortfall).

Panel A: E A 0 (3)
Rt/Rt 0.5 0 . 6 0.7 0 . 8

mean 4.131 4.116 4.337 4.075
std dev 2.085 2.298 2.862 3.054
min 0.861 0.750 0.624 0.415
max 9.477 9.341 9.658 8.982

Panel B: E A i (3)
Rt/Rt 0.5 0 . 6 0.7 0 . 8

mean 3 .1 0 7 3 .3 6 3 3 .6 6 5 3 .7 6 2
std dev 1 .2 5 7 1 .6 6 0 2.213 3 .0 2 1
min 0.859 0.818 0.621 0.413
max 6.462 7.167 7.750 15.672

Panel C: C A 2 (3)
Rt/Rt 0.5 0 . 6 0.7 0 . 8

mean 3.308 3.526 3.721 4.285
std dev 1.403 1.743 2 .1 7 2 3.818
min 0.860 0.830 0.621 0.413
max 7.206 7.597 7.816 20.329

For each DTSM  and risk-aversion parameter (given by the ratio Rt/Rt in the first row) the mean (second row), 
standard deviation (third row), minimum (fourth row) and maximum (fifth row) of the total ex-ante shortfall is 
reported. The shortfall is computed on the basis of the theoretical bond prices produced by the various models.

entirely due to differences in predictive density functions because all the three models 

are used by the same decision maker characterized by model-invariant parameters &i, 

&2, fccimu T\i T 2 and Team. Of course this comparison is preliminary to an analysis 

of the actual (ex-post) shortfall, which we report in table 4.8. The model with the 

most cautious approach would otherwise be selected by the ex-ante shortfall approach, 

regardless of its true relevance for dynamic portfolio choices. However we emphasize 

th a t the ex-ante analysis is useful to characterize the DTSMs in terms of their relative 

attitude towards risk. Moreover, a comparison of the relative merits of the three DTSMs 

in both the ex-ante and ex-post shortfalls may be informative to the extent tha t such 

rankings do not change when moving from ex-ante to  ex-post considerations. Analysing 

how the results change with modifications in the inputs, i.e. the prices, represents an 

im portant form of robustness check.

Table 4.6 shows some interesting results. First, models E A \(3)  and CA^ (3) present a 

positive relation between the average shortfall and the target return. This is consistent 

with the efficient markets hypothesis view tha t greater expected return can be obtained 

only by bearing more risk. The same does not strictly happen to E A q(3). The most 

relevant result in table 4.6 from the point of view of our study is tha t -contrary to 

the forecasting results in Duffee (2002)- E A q(3) is not the best model in terms of 

shortfall minimization for each target return. The best model is E A \(3), since it always 

produces the lowest average total shortfall. The same ranking among the three models
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TABLE 4.7. Ex-ante shortfall analysis (first quarter shortfall).

Panel A: E A o  (3)
Rt/Rt 0.5 0 . 6 0.7 0 . 8

mean 1.929 1.885 1.919 1.710
std dev 1.016 1.092 1.306 1.294
min 0.299 0.269 0.251 0.168
max 4.733 4.687 4.879 4.414

Panel B: E A i  (3)
Rt/Rt 0.5 0 . 6 0.7 0 . 8

mean 1 .4 5 3 1 .5 4 0 1 .6 2 2 1 .5 3 0
std dev 0 .6 3 6 0 .8 0 7 1.016 1 .1 1 6
min 0.273 0.248 0 . 2 2 2 0.158
max 3.240 3.611 3.937 3.757

Panel C: C A 2 (3)
Rt/ Rt 0.5 0 . 6 0.7 0 . 8

mean 1.539 1.602 1.627 1.747
std dev 0.707 0.848 0 .9 8 0 1.419
min 0.258 0.300 0.261 0.156
max 3.516 3.819 3.901 7.015

For each DTSM  and risk-aversion parameter (given by the ratio Rt/Rt in the first row) the mean (second row), 
standard deviation (third row), minimum (fourth row) and maximum (fifth row) of the first quarter ex-ante 
shortfall is reported. The shortfall is computed on the basis of the theoretical bond prices produced by the 
various models.

obtains if one looks at the shortfall for the first period only (see table 4.7). Results 

for the second period shortfall and the cumulative shortfall -no t shown for reasons of 

space- are similar. This is im portant to evaluate the robustness of our results, since the 

ordering does not depend only on one of the three shortfall measures included in our 

objective function. Tables 4.6 and 4.7 show the relevance in predicting accurately both 

the first and the higher order moments of the state vector distribution for portfolio 

allocation purposes. Not only E A \{3) produces the lowest average shortfall, but it is 

also characterized by the least volatile shortfall in three out of four cases. EAo(3) is 

generally the worse model.18 The objective function (4.31) aims at minimizing the 

level of the total shortfall at time t. However when considering a sequence of asset 

allocations, investors may regard a DTSM as valuable if it produces shortfalls tha t are 

relatively stable through time. E A q(3) may be the best in terms of point forecast of 

returns, but a dynamic asset allocation policy requires forecasting time-varying higher 

moments and this is impossible for a homoskedastic model. This illustrates in very 

simple terms the main point of our paper.

Descriptive statistics for the ex-post, i.e. computed on the basis of actual market 

prices, quarterly shortfall are reported in table 4.8. These results are more relevant 

for practical applications given tha t the investor relying to a DTSM has to evaluate 

its performance on the basis of actual measures, i.e. on market prices and not on
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TABLE 4.8. Ex-post shortfall analysis.

Panel A: E A q (3)
Rt/Rt 0.5 0 . 6 0.7 0 . 8

mean 1.715 1.739 1.727 1 .5 5 4
std dev 1.265 1.349 1.511 1 .5 8 9
min 0 . 0 0 . 0 0 . 0 0 . 0

max 9.838 9.518 9.536 9.207
Panel B: E A \  (3)

Rt/Rt 0.5 0 . 6 0.7 0 . 8

mean 1 .5 2 9 1 .6 2 7 1.653 1 .5 5 4
std dev 1 .0 4 6 1 .2 0 4 1 .4 1 2 2.328
min 0 . 0 0 . 0 0 . 0 0 . 0

max 7.60 8.342 8.952 8.363
Panel C: C A 2 (3)

Rt/Rt 0.5 0 . 6 0.7 0 . 8

mean 1.576 1.649 1 .6 4 7 1.704
std dev 1.164 1.298 1.428 2.478
min 0 . 0 0 . 0 0 . 0 0 . 0

max 9.235 9.681 9.355 28.260

For each DTSM  and risk-aversion parameter (given by the ratio Rt/Rt in the first row) the mean (second 
row), standard deviation (third row), minimum (fourth row) and maximum (fifth row) of the quarterly ex-post 
shortfall is reported. The shortfall is computed on the basis of the actual bond prices.

theoretical prices. Moreover for dynamic optimization models this exercise is even more 

im portant than in other cases, since the actual implementation of the portfolio strategy 

only regards the first of the two periods included in the planning horizon. As usual, 

when coming to the second period, the model is re-set and the new policy for the first 

of the two planning periods is implemented in place of the second period policy. In 

other words the optimal policy is actually implemented only for one quarter. Table 4.8 

confirms the ex-ante analysis. EAo(3) - th e  best model in terms of point forecast of 

returns- is not the best one in terms of driving a dynamic asset allocation policy which 

requires forecasting time-varying higher moments. In fact, this latter task cannot be 

achieved by a homoskedastic model like E A q(3). Another relevant result here is that 

the ex-post shortfall is very close to its ex-ante counterpart for all the models and this 

confirms the statistical validity of the three DTSMs at the quarterly horizon. This is 

not surprising as the three specifications have been selected as the best ones by Duffee 

(2002) from a wide set of potential candidates and are therefore guaranteed to track 

the data well. An investor using the DTSMs we consider here can be confident that 

ex-ante and ex-post measures generally coincide.19 Recall tha t the higher the target 

return, the more unlikely is the optimizer to achieve the threshold Rt (see footnote 14). 

As such we regard cases with a relatively low target return as the most interesting ones, 

in that they guarantee a fair comparison across different models. In general E A \(3)
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is still the best model given that it produces the lowest and least volatile shortfall in 

three cases, thus confirming our ex-ante analysis.20

Table 4.9 reports summary statistics for average percentage portfolio weights, split­

ting the risky assets in short-term maturities (between 6 months and 2 years), medium- 

term  maturities (between 27 months and 7 years) and long-term maturities (between 

87 months and 10 years). The goal here is to see whether it is possible to  understand 

the dynamic portfolio policy in a simple way. The results show tha t model C A 2 {3 ) has 

a tendency to decrease the share of cash for higher target returns in order to increase 

investment in short-term bonds and long-term bonds, with a relative underweight of 

the medium term part of the term  structure. EAo(3) and E A i(3 )  decrease the share 

invested in cash as well as the target return increases, even though in a less marked 

fashion. Moreover, they have a tendency to  substitute cash with short-term bonds but 

do not show any clear policy of increasing the share invested in medium and long-term 

bonds. This policy is coherent with the ratio between expected return and risk his­

torically produced by bonds belonging to  the various maturities, as described in table 

4.3.

Finally, table 4.10 reports values for the performance test. The trading strategies 

associated with the DTSMs can be evaluated relying to the literature on performance 

measurement based on information about portfolio holdings. This literature tries to 

devise powerful performance measures by exploiting the information contained in mu­

tual funds’ portfolios. These measures are usually hard to compute in practice due to 

scarcity of information about funds’ actual holdings. However we are comparing trad­

ing strategies which are known to us, and we are able to describe the portfolio chosen 

by each strategy every period. We refer to two of the simplest (and earliest) measures 

proposed in the literature by Grinblatt and Titm an (1993):

E S M » = J 2  f r ".‘ -  (434)

N

P C M t = rnjt(wnj  -  wntt - i) (4.35)
7 1 = 1

The former, the event study measure, computes the product between the portfolio 

weights at the beginning of time t  and the difference between time t returns and the 

average return -which is taken as an estimate of the unconditional mean return. The
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TABLE 4.9. Portfolio allocation.

Panel A: E A o  (3)

R t / R t 0.5 0 .6 0.7 0 . 8

cash 87.02 87.35 88.51 86.99
29.41 28.81 25.36 23.98

short
6.89 8.17 8.64 10.42
20.70 23.23 22.95 23.69

med
3.22 2.57 1.31 1.14
13.59 1 1 .1 1 6.41 5.31

long
2.87 1.91 1.54 1.45
9.13 6.78 4.96 3.80

Panel B: E A \  (3)

R t / R t 0.5 0 . 6 0.7 0 . 8

cash 82.27 82.41 81.99 77.73
34.53 33.90 33.33 34.15

short
8.19 11.16 13.60 17.48
23.28 27.26 30.49 33.04

med
7.06 4.48 2.61 3.28
19.94 12.92 8.08 9.86

long
2.47 1.94 1.79 1.51
7.16 5.69 4.55 3.52

Panel C: C A 2 (3)

R t / R t 0.5 0 . 6 0.7 0 . 8

cash
81.13 80.58 76.78 69.27
34.46 33.57 36.17 38.04

short
4.44 7.88 13.18 2 0 . 1 0

13.58 2 0 .2 1 28.45 35.13

med
1 2 . 1 0 8.78 4.90 2.06
27.57 20.95 13.03 6.83

long
2.34 2.77 5.13 8.56
6.24 8.19 16.39 21.35

Descriptive statistics for the asset allocation implemented by the DTSM s. For each DTSM  and risk aversion 
parameter (given by the ratio R t / R t  in the first row) portfolio weights are reported: average weight (first row), 
and standard deviation (second row).The asset classes other than cash are defined as short-term maturities 
(between 6  months and 2 years), medium-term maturities (between 27 m onths and 7 years) and long-term  
m aturities (between 87 months and 10 years). All numbers are in percentage.

second measure, the portfolio change measure, is the product between the change in 

portfolio holdings and the returns on the various assets. The idea is th a t a good strategy 

on average increases weights on those assets producing the highest future return. Notice 

tha t P C M t can also be interpreted as the return on a zero-cost portfolio. The two 

measures can be computed each period over a given sample, and inference can be 

performed via a standard ^-statistic. 21 From table 4.10 it emerges th a t no model 

produces a performance test th a t is significantly different from zero. An indication 

about the superiority of model E A \  (3) can however be retrieved from table 4.10, since 

E A \ (3) produces a positive performance value in seven out of eight cases, while the 

other two DTSMs either alternate between positive and negative signs or generally 

produce negative performance measures.
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TABLE 4.10. Performance measurement test.

Panel A: E A q (3)
Rt/Rt 0.5 0.6 0.7 0.8
ESM -1.213 -0.905 -0.603 -0.062

(0.415) (0.433) (0.393) (0.882)
PCM -0.629 -0.537 -0.434 0.020

(0.305) (0.175) (0.150) (0.875)
Panel B: E A \  (3)

Rt/Rt 0.5 0.6 0.7 0.8
ESM 0.446 0.209 0.281 0.210

(0.736) (0.838) (0.684) (0.583)
PCM 0.156 -0.003 0.021 0.116

(0.541) (0.988) (0.889) (0.273)
Panel C: C A 2 (3)

Rt/Rt 0.5 0.6 0.7 0.8
ESM 0.047 -0.008 0.075 0.252

(0.966) (0.992) (0.894) (0.624)
PCM -0.028 -0.107 -0.096 0.282

(0.911) (0.629) (0.625) (0.116)

Descriptive statistics for measuring the performance of the asset allocation strategies implemented by the 
DTSMs. For each DTSM and risk aversion parameter (given by the ratio Rt/Rt in the first row) two tests 
are reported: ESM is event study measure, looking at the ability of the model to  produce tim e period returns 
larger than the unconditional returns, PCM  is portfolio change measure looking at the ability of the model to  
increase portfolio weights in those assets with the highest return. All numbers are in percentage. The numbers 
in parentheses are the p-values o f each statistic.

4.6 Conclusion

We have used theoretical affine DTSMs in the context of active bond portfolio man­

agement. We have selected three interesting DTSMs and employed them to produce 

forecasts for the future values of the relevant state variables. Starting from the the­

oretical moments of the state variables of the models, we have introduced binomial 

approximations to come up with discrete scenarios for the future state variables. From 

the theoretical asset pricing relations we have computed the bond prices for various 

maturities at the relevant future dates and the consequent returns. We have used these 

returns as inputs in a portfolio optimization problem where an investor with a six 

month horizon takes into account the possibility to  rebalance after one quarter. The 

optimizer selects the optimal portfolio each quarter of our sample period. As usual in 

the context of these problems, only the first stage of the optimal solution is actually 

implemented. The sequence of optimal portfolios is then evaluated in terms of financial 

properties.

The goals of the exercise were the following: (1) provide new evidence on the useful­

ness of DTSMs for active asset allocation, and (2) accumulate evidence on the relative 

merits of various affine models from a financial metric standpoint, rather than from 

tha t of the standard statistical metric. Both goals are in our opinion important. There
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is a growing debate on the validity of several DTSMs, especially in light of their low 

performance at replicating basic stylized facts in the bond market, like the low average 

return and the high unconditional volatility. Moreover the debate has so far been con­

centrated on a statistical evaluation of the models, while we push towards a financial 

evaluation. Also, there is an ongoing discussion on the possibility of implementing ac­

tive asset allocation in efficient markets, and most analyses have focused on the stock 

market. We try  to shift the attention towards the bond market. While still preliminary 

due to the specific sample we have used, we feel tha t our results are useful to the 

overall debates about the validity of theoretical DTSMs and the possibility of using 

quantitative methods for active asset allocation.

We believe our results are interesting. In particular, the superiority of EA over CA 

models claimed by Duffee (2002) also holds from the point of view of dynamic portfolio 

optimization, even though our application does not simply concentrate on expected 

returns but also take risk into consideration. However evaluating the models by means 

of a financial metric rather a purely statistical metric reverses the order of the mod­

els within the EA class. The interpretation is th a t allowing for time-varying higher 

moments may more than compensate for lower forecasting power of the distribution’s 

mean. Performance tests do not allow to show tha t the excess return produced by the 

model is significantly positive, even though the superiority of the heteroskedastic EA 

model is confirmed in terms of average performance. Moreover, the shortfalls produced 

by the two EA models are in general statistically significant.

At least three directions of future research seem promising to  us. The first lies in a 

comparison of the two-period dynamic optimization model with the standard one- 

period optimization model. The former is clearly superior to  the latter in theory, 

even though in practice errors in the production of scenarios may negatively affect 

the model’s operational performance. This issue is interesting to  analyze in the con­

text of our current data set and theoretical models for the term  structure of interest 

rates. The second direction of future research hinges on testing the relevance of affine 

term structure models for balanced portfolios involving both stocks and bonds. Re­

cent theoretical advances in theoretical pricing of bonds and stocks are very promising 

steps in this direction. Finally, our methodology can be used in order to  evaluate the  

quadratic DTSMs in Ahn, D ittm ar and Gallant (2002), thus establishing a comparison
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between different DTSMs classes and an alternative perspective -based on financial 

performance- to Brandt and Chapman’s (2002) recent work.
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Notes

1 Duffee (2002) provides similar evidence within the EA class: the three-factor EA version of 

the Gaussian model outperforms the multi-factor CIR.

2 Moreover, the forecasting specifications in the models mentioned in the text are not the 

best ones in their respective categories. For example, an extended model which includes the 

term spread and the default spread as supplement to the dividend yield achieves higher values 

of coefficient of determination.

3 The second point of the planning horizon serves as a theoretical reference only, since the 

investor will never actually implement the second stage decision.

4 Duffie and Kan (1996) do not carry out their analysis neither in terms of £t(Xt) nor 

A (Xt); on the other hand they postulate an affine form for the short rate r(X*), the risk 

adjusted drift pfi (Xt) and the diffusion a (Xt) a (Xt)T. Thus with respect to Duffie and Kan’s 

(1996) requirement, condition (4.2) is more restrictive in that imposes affinity in a (Xt) A (Xt) 

as well. It follows however that under (4.2) the risk-adjusted drift pfi (X*) is affine as well.

5 Equivalently, bond yields yt,T =  Y  (Xt , r) are affine in the state vector:

Y  ( X j ,  t ) =  _ l n (P P C» 'T))  =  1  ( _ A  (T ) +  B  (t ) t  X ( ^

6 The requirement of a diagonal diffusion matrix is needed for identification of parameters in 

estimation. Some affine models cannot be represented via a diagonal diffusion matrix, implying 

that the canonical representation in Dai and Singleton (2000) cannot be imposed. In particular, 

only affine models with more than three factors might not be characterized by a diagonal 

diffusion matrix [see Cheridito, Filipovic and Kimmel (2003) and the references therein]. In 

such cases, one should consider the diagonalization requirement (4.7) as a primitive condition 

on the DTSM, rather than one of its properties.

7 The specification (4.9) is provided by Duffee (2002), and the expression for the S~ matrix 

formalizes the idea that the market price of risk goes to zero together with the volatility of 

the corresponding state variable. However this restriction can be relaxed without impairing 

no-arbitrage conditions as in Cheridito, Filipovic and Kimmel (2003).

8 Our procedure differs from Boyle, Evnine and Gibbs (1989), since they assume values 

for Xf+i that are symmetric around the current value Xt , i.e. X™t+1 = X itt +  AX^t and 

X f  t+i =  X ij — AXjit) and then solve (4.18a-4.18d) for {pi, AXi>t}i=1 2- On the other hand our 

method is closer to He (1990), where a trinomial tree with equal probabilities for every state 

is employed in approximating each diffusion for the two-dimensional case.

9 See Duffee (2002) for a comparison of the hypotheses maintained in CA and EA models.

10 More specifically, we use the original data from McCulloch and Kwon (1993) over the 

sample period January 1952-February 1992, which includes 29 maturities ranging from 1 month



Notes 164

to 10 years. We interpolate yields from Duffee’s homepage for the remaining period (March 

1992-December 1998).

11 For E A q (3) the model restrictions (see table 4.4) allow to write the first two conditional 

moments as E  (X^|X£) = exp ( -D  (T — t)) X* and var (X^|X*) =  bo respectively, where

^ ° h k  = (* -  exP ( -  (T  -  *) + [̂ Ifefc))) l ° 0 } j k  and ° 0  =  Therefore
the conditional variance-covariance matrix does not depend on the current state vector Xt 

under this specification.

12 It may be useful to notice that the probabilities determined in section 4.3 are to be 

interpreted as true probabilities, not as risk neutral probabilities. We do not need risk neutral 

probabilities because pricing is carried out by the theoretical DTSM. We can therefore use the 

model to properly study a portfolio problem that has to be applied to the real world.

13 Over the period 1972-1997, Driessen, Melenberg and Nijman (1999) report a 1.6 basis 

point average transaction cost (measured by the bid-ask spread midpoint) for Treasury bills 

with maturities from 1 month to 9 months. Transaction costs increase with the maturity from 

0.6 b.p. for the 1 month T-bill up to approximately 3 b.p. for the 9-month maturity. Given 

that: (1) bonds are more volatile than short-maturity T-bills and (2) the T-bill bid-ask spread 

increases with the time to maturity, it is reasonable to assume that transactions costs on long- 

maturity bonds are higher than the average 1.6 b.p. T-bill bid-ask spread. Further, since our 

sample dates back to 1952 and comprises U.S. Treasury bonds with maturity up to 10 years, 

we assume 5 b.p transaction costs.

14 For example CAi (3) does not reach the target return in six cases with the 0.8 multiple. 

We therefore decrease the target to 0.75-R* (3 asset allocations), 0.7Rt (2 asset allocations) and 

0.6-R* (1 asset allocation). The other DTSMs are characterized by similar corrections.

15 It is useful to point out for completeness that similar figures for other maturities do not 

show such a clear cut outcome, in that also CA2 (3) generates negative expected returns from 

time to time as well. This implies that CA2 (3) may as well suggest time-varying dynamic asset 

allocation decisions depending on the state variables’ values.

16 For a given DTSM parametrization, we invert the relationship between yields and the 

state vector [derived from eq. (4.4)]. As in Duffee (2002) we consider bonds with maturities 

6M, 2Y and 10Y as measured without error.

17 In order to evaluate the robustness of our results to the structure of the lattice for the 

state variables we have compared the one-period shortfall obtained from our 8 scenario lattice 

to the shortfall obtained from a finer grid involving 512 scenarios, i.e. 8 values for the state 

vector every month, over 30 randomly chosen dates. The results show that the mean shortfall 

obtained by the fine lattice is not statistically different from the mean shortfall obtained from 

the coarse lattice.

18 We have performed a two-sided test on the difference in mean shortfalls (both total and 

first quarter) across DTSMs. From the results -not reported for reasons of space- it emerges
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that the difference in the ex-ante shortfall across models is significant in most cases, both for the 

total and the first quarter shortfall. In particular the shortfall for E A q (3) is always statistically 

different at usual significance levels from the other two DTSMs in all cases but for the multiple 

0.8. On the other hand, when comparing EA\ (3) with CA2 (3), the test for the equality of 

average ex-ante shortfalls does not reject the null hypothesis. Taken together with tables 4.7 

and 4.8 this means that the merits of EA\ (3) relative to E A q (3) are significant for values of 

R t/R t up to (and including) 0.7, and the performance of CA2 (3) is very close to EA\ (3) over 

the same range. On the other hand for R t/R t =  0.8 the ex-ante shortfall of the three DTSMs 

is almost indistinguishable.

19 The test statistic for the equality of means between the ex-ante (first quarter) and ex-post 

shortfall does not reject the null hypothesis at usual significance levels in all but one case (the 

average ex-post shortfall is statistically different from the ex-ante shortfall at 10% statistical 

level for E A q (3) and R t/R t =0.5).

20 It is worth stressing that we are simulating the choice of an investor who is comparing the 

three DTSMs from the point of view of their in-sample performance. In our view the investor 

would be happy to choose the model producing the most efficient portfolio performance. We 

are not making the alternative exercise [see Pastor (2000)] of assuming that one model is true 

and compute the utility cost for an investor using another model. On the other hand we are 

simply claiming that an investor would choose the model, among the three considered here, 

that achieves the target return with the lowest average shortfall.

21 Solnik (1993) generalizes the event study measure and allows for time-varying portfolio 

volatility (associated with changing portfolio composition) by normalizing each measure with 

its standard devation, i.e. w'tVwt where V  is the unconditional variance covariance matrix. We 

have also computed the performance measure with this heteroskedasticity correction, as well 

as a third version with an historical estimate of the conditional variance-covariance matrix, 

w'tVtWt. However the results are not qualitatively different from the simple version that we 

described in the text, so we have chosen not to report all the results for reasons of space.
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