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A b strac t

We investigate two problems in modelling time series da ta  tha t exhibit conditional 

heteroscedasticity. The first part deals with the local maximum likelihood estimation 

of volatility functions which are in the form of conditional variance functions. The 

existing estimation procedures yield plausible results. Yet, they often fail to take 

into account special features of the data at the cost of reduced accuracy of predic­

tion. More precisely, many of the parametric and nonparam etric conditional variance 

models ignore the fact tha t the error distribution departs significantly from gaussian 

distribution. We propose a novel nonparametric estimation procedure tha t replaces 

popular local least squares method with local maximum likelihood estimation. In­

tuitively, using information from the error distribution improves the estimators and 

therefore increases the accuracy in prediction. This conclusion is proved theoreti­

cally and illustrated by numerical examples. In addition, we show th a t the proposed 

estimator adapts asymptotically to the error distribution as well as to the mean re­

gression function. Applications with real data  examples dem onstrate the potential 

use of the adaptive maximum likelihood estimator in financial risk management.

The second part deals with the variable selection for a particular class of semipara- 

metric models known as the partial linear models. The existing selection methods are 

computationally demanding. The proposed selection procedure is computationally 

more efficient. In particular, if P  and Q are the number of linear and nonparametric 

candidate regressors, respectively, then the proposed procedure reduces the order of 

the number of variable subsets to be investigated from 2Q+P to 2Q +  2P. At the same 

time, it maintains all the good properties of existing methods, such as consistency. 

The la tter is proven theoretically and confirmed numerically by simulated examples. 

The results are presented for the mean regression function while the generalization 

to the conditional variance function is discussed separately.
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Addition
I  do not question whether I  am happy or unhappy.

Yet there is one thing that I  keep gladly in mind - 

that in the great addition (their addition that I  abhor) 

that has so many numbers, I  am not one 

of the many units there. In the final sum  

I  have not been calculated. A nd this joy  suffices me. 

Constantine P. Cavafy (1897)
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Chapter 1 

Introduction in volatility m odelling

There is a wide range of tim e series da ta  sets where the sample variation changes 

over time, a phenomenon known as heteroscedasticity. For example, in financial mar­

kets, large movements tend to be followed by large movements and the same pattern  

applies for the small movements. The fluctuating behavior of the finance market is 

referred to as the “volatility” . Volatility is typically characterized by the conditional 

variance or standard  deviation. Given the extended number of applications, mod­

elling, estim ating and predicting the volatility, in the form of conditional variance, 

have a ttracted  much of the attention in the recent research work. As a result, a large 

number of volatility models and estim ation methods have been developed.

Undoubtedly, using conditional arguments, the most im portant param etric models 

are the Auto-Regressive Conditional Heteroscedastic (ARCH) model (Engle 1982) 

and the Generalized Auto-Regressive Conditional Heteroscedastic (GARCH) model 

(Bollerslev 1986). Due to the practicality and relatively good performance, GARCH 

remains one of the most frequently employed conditional variance models in finance. 

In consequence of its success, variations of GARCH appeared in literature including 

the popular exponential-GARCH (Nelson 1991) and the GARCH-in-Mean (Engle, 

Lilien, and Robins 1987). See also Gourieroux (1997), Hamilton (1994) and Bollerslev, 

Chu, and Kroner (1994) for an extensive review of the GARCH-type models.
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Various non-param etric procedures for estim ating conditional variance functions, 

have been proposed. Hardle and Tsybakov (1997) introduce a kernel estim ator based 

on the decomposition a 2(x) = E (Y 2\X  = x) — (E (Y \X  = x ) )2. However, the proposed 

estim ator may not be positive and it also creates large bias. R uppert, Wand, Holst, 

and Hossjer (1997) for i.i.d. and Fan and Yao (1998) for tim e series, study a residual- 

based estim ator in conjunction with local kernel smoothing. The resulting estimator 

is mean regression adaptive1. Likewise, Muller and Stadtm iiller (1987) obtain the 

uniform convergence rates for an alternative mean regression adaptive estimator, the 

kernel-smoothed local variance estimator.

In addition, many of the models introduced in the more general setting of mean 

regression function can be implemented for conditional variance function after some 

modification. Recall the well-known Nadaraya-W atson estim ator (Nadaraya 1964 and 

W atson 1964) and the boundary Gasser-Miiller kernel regression estim ator (Gasser 

and Muller 1984). However, both estim ators suffer from drawbacks. Particularly, 

the Nadaraya-W atson estim ator results in an increase in the bias while Gasser-Miiller 

estim ator yields large asym ptotic variance. On the other hand, the combination of 

local polynomial approxim ation and least squares estim ation leads to the local poly­

nomial kernel estim ator (Stone 1977 and more recently, Fan 1992, R uppert and Wand 

1994). The local polynomial kernel estim ator adapts autom atically to estimation at 

the boundaries. Equivalently, it does not suffer from the lack of sufficient observa­

tions a t the boundaries, a  phenomenon known as “boundary effects”. Moreover, Fan 

(1993) showed th a t it achieves the highest “linear minimax efficiency” , in the sense of 

minimum possible supremum of Asymptotic Mean Square Error, among the class of 

linear smoothers. A detailed picture about the properties and advantages of the local 

polynomial sm oother can be found in Wand and Jones (1995) and Fan and Gijbels 

(1996). See also Fan and Yao (2003) for an overview of the nonparam etric estimation 

methods including the local polynomial estimator.

1see below for definition of adaptiveness
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An alternative approach to least squares m ethod is the maximum likelihood estima­

tion. Our m otivation stems from the param etric theory and particularly from the fact 

th a t maximum likelihood estim ator achieves asym ptotically the Cramer Rao bound 

of the variance of the unbiased estimators. It is understood th a t using information 

on the error distribution improves the performance of the estim ator and increases the 

accuracy of the prediction. Although not very frequently employed, likelihood func­

tion in nonparam etric framework is not totally unknown. Simonoff (1996) and Hjort 

and Jones (1996) use local likelihood in the context of density function estimation 

while Staniswalis (1989) derives the asymptotic properties of a kernel likelihood-based 

estim ator of a  regression function for the case of i.i.d. data. Further, Linton and Xiao 

(2 0 0 1 ) propose a local polynomial, likelihood-based, estim ator of the mean function 

th a t adapts to the error distribution. Bandwidth selection and confidence intervals 

are discussed by Fan, Farmen, and Gijbels (1998). On the other hand, little appears 

in the literature on the use of likelihood estim ation for the volatility function. Yu and 

Jones (2004) introduce a maximum likelihood estim ator for the variance component. 

However, their approach is a pseudo-likelihood estim ation since they use gaussian 

distribution instead of the unknown error distribution.

We propose a novel, general approach to the use of the likelihood function in the 

estim ation of the conditional variance function. In C hapter 2 we assume th a t the 

error distribution is known and we introduce the local linear Maximum Likelihood 

estim ator of the conditional variance function. Specifically, the estim ator is a lo­

cal linear approxim ation of the log-standard deviation function combined with the 

likelihood function as the minimizing estim ation function. The introduction of the 

log-transform ation in the local polynomial fitting is also pivotal. The estim ator of 

the variance function should be positive, a property implied by the log-transformation 

with no need for further restrictions. However, the asym ptotic results of the estima­

tor suggest th a t the effect of the log-transformation on the squared bias depends on 

the properties of the derivatives of the variance function. Therefore, it is likely th a t

14



any gain in asym ptotic variance may be overshadowed by an increase of the squared 

bias, see Yu and Jones (2004) for a similar conclusion. In an a ttem p t to  quantify the 

gain due to the use of likelihood function, we perform a direct theoretical comparison 

based on the Asym ptotic Mean Square Error, between the likelihood estim ator and 

existing estimators. The comparison applies for large n  as it involves the asymptotic 

properties of the estimators. The results reflect the initial impression th a t use of the 

information from the error distribution improves the performance of the estimator 

especially when there is significant departure from the assum ption of gaussian errors.

Although the nonparam etric conditional heteroscedastic model includes directly 

the conditional mean function, the above results were derived assuming it is known. 

In order to extend these results for the more realistic case of unknown mean func­

tion, we continue in C hapter 2 with the investigation of a joint maximum likelihood 

estim ator for both the mean and variance function. By establishing the asymptotic 

properties of the joint estim ator, we identify sufficient conditions for the adaptive­

ness of the variance function estim ator with respect to  the mean function estimator. 

The term  “adaptiveness” refers to the characteristic th a t w ithout knowing the mean 

function m (.), we can estim ate the variance function asym ptotically as well as if m(.) 

was known. Equivalently, adaptiveness implies th a t the use of the estim ated mean 

function instead of the true mean function has no effect on the first order asymptotic 

properties of the variance estimator. The identified condition for adaptiveness is the 

symmetry of the error distribution. It is a well known requirement for similar conclu­

sion about location and scale param eters within the context of param etric regression, 

see Severini (2000). Furtherm ore, at the end of C hapter 2, we present two numerical 

examples th a t reinforce the conclusions drawn from the direct theoretical comparison.

There is no doubt th a t the condition of known error distribution is fairly restric­

tive. For this reason the estim ator from Chapter 2 is referred to as the infeasible- 

Maximum Likelihood estim ator. It is therefore understood th a t this condition needs 

to be relaxed in order to ensure th a t M L-estimator can be implemented in practice.
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In C hapter 3, we propose a new, likelihood-based estim ator th a t requires no prior 

knowledge of the error distribution. More precisely, we replace the error density and 

its derivatives by the nonparam etric kernel estim ators to obtain an estim ate for the 

score function (the first derivative of the likelihood function) and the Hessian m atrix 

(the second derivative of the likelihood function). Then, the new estim ator is the one 

step Newton Raphson likelihood estimator calculated using the estim ated score func­

tion and Hessian matrix. It is proven th a t it shares the same asym ptotic properties 

with the infeasible Maximum Likelihood estim ator. The la tter implies adaptiveness 

with respect to the error distribution. Hence, we call this estim ator the adaptive 

Maximum Likelihood estim ator. Note th a t by requiring no particular form for the 

error density, the results apply for any density function / ( . )  th a t satisfies the im­

posed regularity conditions. This makes the estim ator more flexible especially when 

the error distribution departs significantly from gaussian distribution. Chapter 3 con­

cludes with sim ulated examples in order to evaluate numerically the performance of 

the adaptive estim ator in comparison with the infeasible estim ator as well as other 

estim ators e.g. the Least Squares estimator.

Another im portant issue in modelling conditional variance function is the choice of 

the variables used as regressors in the model. The nonparam etric model introduced 

in C hapter 2 assumed a fixed, d-dimensional, set of variables. However, there is 

little probability th a t this set of variables is known a priori. More often, we have 

a restricted number of candidate variables with some of them  having no significant 

effect on the dependent variable. In th a t case, we need to include only the significant 

predictors. The reason is th a t the convergence rate  and consequently the performance 

of the nonparam etric estim ator decreases as the number of regressors increases, a 

phenomenon known as “the curse of dimensionality” . I t is therefore critical th a t the 

included regressors have significant effect on the dependent variable. The selection 

of the regressors is usually based on the minimization of a loss function, the choice 

of which defines the selection criterion. Some of the more frequently used criteria in
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nonparam etric context include, among others, the Cross-Validation criterion (Cheng 

and Tong 1992, 1993) and the equivalent of the Final Prediction Error criterion 

(Tjpstheim and A uestad 1994). Yao and Tong (1994) establish asym ptotic results for 

the Cross-Validation criterion based on kernel estimation. Their approach includes 

time series. Correspondingly, the developments in variable selection in linear models 

have been substantial. The Akaike information criterion (Akaike 1974, Shibata 1981), 

the Cross-Validation (Stone 1974, Shao 1993) and the Generalized-Cross Validation 

criterion (Craven and W ahba 1979) are the most frequently used model selection 

procedures. See also Wei (1992) for an overview on the problem of variables selection 

for linear models. Here, in parallel to the issue of variables selection, we focus on 

the form of the conditional variance function. It is well known th a t nonparam etric 

estim ators converge more slowly than  param etric estim ators, see Robinson (1988) 

and Fan (1993). This means th a t if the true model contains a linear component then 

nonparam etric estim ators will not be as efficient as param etric estim ators. In tha t 

case a more flexible model form needs to be introduced. This new class of models is 

semiparametric and is known as partially linear models.

Consequently, in C hapter 4, we deal with the problem of the variable selection 

for the sem iparam etric class of partially linear regression models. Following an idea 

introduced by Gao and Tong (2002), we propose a novel, com putationally efficient, 

variable selection procedure for the class of partially linear models. Particularly, a two 

step selection procedure is proposed. At the first step, we select the nonparam etric 

regressors based on a Cross-Validation criterion applied to the residuals from linear 

regression with all the candidate regressors. Then, given the selected nonparam etric 

variables, we use a param etric Cross-Validation criterion to remove any unnecessary 

linear regressors. It is proven th a t the proposed selection procedure is consistent. The 

innovation here is th a t when calculating the residuals a t the first step we include all the 

linear regressors (even those th a t are proven insignificant at the second step) and then 

apply the nonparam etric criterion. In this way, we reduce the num ber of combinations
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th a t should be considered which effectively leads to a significant reduction in the 

computations. We should mention here tha t, though presented for a  mean regression 

model, the generalization of the proposed selection m ethod to the variance function 

is straightforward and is discussed in a separate section. Simulation examples are 

presented a t the end of C hapter 4 to illustrate numerically the consistency as well as 

the reduction in the computations.

In finance, volatility is often linked to the concept of risk. W ithin the risk theory, 

one of the most frequently employed measures is the “ Value at R isk” (VaR). Hence, 

in Chapter 5, we implement the proposed nonparam etric m ethod for estimating con­

ditional heteroscedastic models in connection with the prediction of the VaR. Using 

real data, we calculate the VaR along with other performance tests and deviation 

measures in order to  compare the adaptive M L-estimator w ith existing param etric 

and nonparam etric estimators. We use three different types of financial da ta  sets 

i.e. stock-indices, stocks and exchange rates. They were chosen on the grounds th a t 

financial da ta  sets often exhibit heteroscedasticity while at the same time are heavy 

tailed. The la tte r is im portant because as we shall see in the following chapters the 

improvement a ttribu ted  to  the proposed estim ator becomes more apparent when ana­

lyzing heavy tailed d a ta  sets. Chapter 5 ends with a sum m ary of the main conclusions 

concerning the adaptive estim ator, drawn from the analysis of the real data.
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Chapter 2 

Local Linear M aximum Likelihood  

Estim ator

2.1 M odel and conditional likelihood function

The model th a t we are going to study is a non-param etric regression conditional 

heteroscedastic model. Let {Y^X*} be a strictly stationary  process with scalar Yt 

and d-dimensional X.J = (X ^ i,. . . ,  X tyd)- Denote by m  : Md —> R the conditional 

mean function, m (x) =  E(Yrf|X f =  x), and a 2 : R d —► M+ the conditional variance 

function cr2(x) =  V a r ^ X *  =  x) > 0. Define

-  -  <2 I»
It is easy to  see th a t E(ef|X f) =  0 and Var(e*|X*) =  1. Assume th a t et are i.i.d. and 

call / ( . )  the error density function. At this stage, we assume th a t the error density 

is known. We are interested in estimating the variance function and we are going to 

do this for both  cases of known and unknown mean function. From (2.1) we get

Yt = m(Xf) +  £7(Xf)e*. (2-2)

Note here th a t tim e series is included as a special case: if we define X* =  ( X^ i , . . . ,  X t^)
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with X t,i = Yt-i for i =  1 , . . .  ,d, then model (2 .2 ) is an autoregressive conditional 

heteroskedastic non-linear time series model. Hence, we will not assume indepen­

dence between Yt and X t , though we will impose some mixing conditions necessary 

for the derivation of the asymptotic properties. Using equation (2.1) we have tha t 

the conditional density function of Yt |X f and the error density are related through

/r |x ( ! / | x ( =  x) =  / ( ^ f M )  *
\ a (x ) /  <t(x )

Consequently, the conditional log-likelihood function is defined

U Y |X )  =  f > g  f ( Yt ~  -  X > g < r ( X ,)  (2.3)
t- i  l A

where Y  =  (Y ,,. . . ,Y„)T, X  =  ( X j \ . .. ,X £).

2.2 Local polynom ial fitting

The local polynomial fitting is a useful tool for the estim ation of unknown functions. 

W and and Jones (1995), Fan and Gijbels (1996), among others, establish the asymp­

totic properties of local polynomial estimators for the mean regression function. The 

main idea is th a t we trea t the unknown function as a polynomial in a  small neighbor­

hood and by estim ating the coefficients of this polynomial we obtain an approximation 

of the function. The choice of the order of the approxim ation has an effect on the esti­

mator. As Fan and Gijbels (1996) point out, “odd order polynomials are preferable to 

even order polynomials fits” a conclusion drawn also by H jort and Jones (1996). The 

reason is th a t the constant term  of the asym ptotic variance increases when moving 

from an odd order polynomial to the next even order polynomial. Furtherm ore, higher 

order polynomial reduces the bias though this reduction is not th a t crucial given tha t 

the bias is controlled by the bandwidth. In the light of these remarks and for the 

sake of parsimony, we choose the first order polynomial approxim ation also known as 

linear approxim ation. We look at the logarithm of the standard  deviation function,
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s(x) =  logcr(x) a t point x. It is necessary th a t a minimum degree of smoothness is 

required in order to apply Taylor expansion, thus for the chosen polynomial order we 

assume th a t cr2(.) and hence s(.), has continuous th ird  partial derivatives. The first 

order Taylor expansion of s(X t) =  logcr(X*) in a small neighborhood around x  is

d r\
s ( X t) = s(x) +  -  Xi) +  R ( X t -  x)

i = 1 OXi

where the remainder R ( X t — x) includes the higher order terms. In the above ex­

pansion, if we ignore the higher order terms the log-standard deviation function is 

approxim ated by a first order polynomial i.e.

s(X() =  z f e  (2.4)

where Z j  = (1 , X t,i — x \ , . . . ,  X t,d — Xd), & =  (#o, • • •, 0d)T• Denote w ith 6° the vector 

of the true values, th a t is

055 =  s(x) and 0 t° =  =  ^ (x ) .
C/Xi

The use of the log transform ation ensures th a t the variance function is always positive, 

a necessary condition, w ithout having to pose any further restrictions. Moreover, it 

is proven th a t under certain conditions, see discussion in section 2 .6 , the use of log- 

transform ation reduces the bias of the estimator.

2.3 The local linear maximum likelihood estim ator

We substitu te equation (2.4) into (2.3) to calculate the conditional log-likelihood 

function for the local linear approximation

Zn(0; Y |X ) =  ^ { l o g  f ( Yt ~ ẑ X l) ) -  Zj 0 } K h( X t -  x) (2.5)
t =  1 e  1

where Kh(.) is d-dimensional kernel function th a t assigns weights to the da ta  points 

Yt according to the distance of X t from the fixed point x  and h  is the bandwidth
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which defines the size of the neighborhood. Although some minimum conditions are 

required, the results apply for a wide range of kernel functions. We usually write 

Kh{.) = 1 / h dK ( . /h )  and let K (x )  = H r= i k (x T) where k(.) a univariate density 

function. At this point, we claim th a t the mean function m (.) in (2 .2 ) is known while 

the study of the case of unknown mean function is postponed to a later section. Hence, 

w ithout loss of generality assume th a t E ^ X * )  =  0 => m(X*) =  0. The local linear 

Maximum Likelihood estim ator (MLE) is obtained by maximizing /n(0; Y |X ) for 0 6  

0 c R d where © is a compact set. For notational convenience, call et (6) = Yte~z 

and particularly e° =  et(0°) while note th a t et =  Yte~s(Xt\  Then, M L-estimator is 

defined as the solution to the nonlinear system of equations:

Sn(0) =  - J ( 0 ; Y | X )  =  O =*

n

S„(0) =  £ { * (et (0))e,(0)  +  1}ZtK h( X t -  x) =  0, (2.6)
t = l

where ^ ( y ) =  f ' ( y ) / f { y ) -  Further, we calculate the Hessian m atrix  a t 6 E 0 :

n
H n{6) = - j f ig r P i  Y |X ) = J 2 e t m W W t Z j K h( X t -  x)

where

n(») = - ( » ( » ) »  + 1) = vrWfto + m m -vf 'W l'
dv f ( v )

The general theory of likelihood-based statistical inference requires some regularity 

conditions on the model under consideration. Severini (2000) states the properties 

of a regular likelihood function (see R1-R3, page 80-81). In particular, property R3 

involves the interchanging of integral and differentiation. Consequently, the identities 

th a t a regular likelihood function 1(9) should follow are:

E[/'(00)] =  0

E[/"(00)] =  -E[(Z,(0°))(J,(0°))t ]. (2.7)
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These equations are also known as B artlett identities. W ithout loss of generality 

we calculate identities (2.7) standardized by (see below for definition of the

m atrix H).  Then, the first B artle tt identity yields

=  E((tf(e°)e° -  ^ ( e ^ H ^ Z t K ^ X t  -  x))

+ E (( tf  (<=«)<* +  V H - ' Z t K ^ X t  -  x ))) =  0 

but Taylor expansion of ^ (e j)e?  around et yields

et ) et =  et)et +  ^ fe )(e ?  — tt) +  o(e° — et) (2 .8 )

where

e° — et = Yt (e~z T^  — e~s X̂t )̂ =  et (eâ Xt^~z ^ ^  — 1 ). (2.9)

Second order Taylor expansion of the log-standard deviation function around x  implies

d 1 d
s ( X t) - Z j d °  = S(X t) - s ( x ) - ^ s 4(x)(X (,i - i j ) =  -  Y i  S i j & X X t s - x M X t j - X j )

i = 1 i,j=1
(2 .10)

with x ' lying between X *,x. Substitution of (2.10) to (2.9) yields

1  ̂^
e ° t - £ t =  2 e t  ~  X i ) ( x t , j  ~  x j )  (2 -n )

i , j = 1

which combined with (2 .8 ) leads to

E((tt(e°)e° -  * (e ,)£<) H - 1ZtA:k(X t -  x )) =

E (fl(£e)ft) E ( i  h A x ' ) ( X ‘,i ~  -  x ^ H - ' Z t K ^ X i  -  x)) +  o{h2).
i,3

It is easy to see under conditions C1-C4 below

E ( |  £  M x ') ( * w  -  Xi)(X,,j -  x J H - ' Z t K ^ X t  -  x )) =  0 ( h 2)
i j
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which implies th a t E ((^ (e°)ef -  et)et)H  1Z tK h {X t — x )) =  0 ( h 2) =  o(l) since 

h —> 0. Call p(.) the density function of X* then,

E(($(ei)^ + l)ff“1Z1̂ ( X t—x)) =  p(x) J  (tf(e)e+l )/(e)de J  ( l , u T )T K ( u ) d u + 0 ( h )

and from assumptions C1-C4, we conclude th a t B artle tt’s first identity yields

J { t y ( e ) e  +  l} /(e )d e  =  0  =4> J e f ' ( e ) d e  = - 1 . (2 .1 2 )

Similarly, the second identity yields

J {^(e)e +  l} 2 /(e)de = -  J  e£l ( e ) f ( e )de  => J  e2f ” {e)de  =  2 . (2.13)

2.4 A sym ptotic properties of the M L-estim ator

The following regularity conditions are sufficient for the derivation of the asymptotic 

properties. In many cases, these conditions can be altered a t the cost of lengthier 

proofs. We define H  =  d iag{l, h , . . . ,  h} the (d +  1 ) x (d +  1 ) bandw idth m atrix and 

let 0  <  C < oo a generic constant th a t may take different values a t different places.

C l (i) For fixed x, p(x) >  0 with continuous first derivative and / ( . )  has up to 

four continuous derivatives. Further, it holds th a t the function y ^ {y ) ,  j / G R ,  

is twice continuously differentiable with Q(y) = (d/dy)(y^/(y)  +  1) and R(y)  =  

{d/dy)Q(y).

(ii) For the i.i.d. error term  et , there is 8 > 2 such th a t

E |'F (e )e+  l \25~2 < oo, E|ef2(e) | 2 <  oo and E|e2 i?(e)| <  oo.

(iii) The log-standard deviation function s(x) has up to three continuous deriva­

tives and it holds th a t for fixed x, l-s^x')! < oo for ||x ' — x || <  C  and 

i j  =  1 , . . . , d .
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C2 The kernel function defined earlier is a continuous and symmetric density func­

tion with a bounded support. Further, we assume th a t for u  =  ( i q , . . . ,  Ud)T we 

have th a t

Ho = J  K (u )d u  = l, J u K ( u ) d u  = 0 and J  u Tu K (u )d u  = //2I

with H2 = J  u fK (u )d u  independent of i. Note also th a t

/
J

UiUjUkK(u)du =  0  V i , j , k

v (  w  I  f u i ukK (u )du  = MI i = j , k  = lUiUjUkUiK (u ja u  =  <
I 0 , otherwise.

C3 The strictly  stationary process (Yt, X t) is strongly mixing, i.e.

a(t)  =  sup \P (A )P (B ) — P (A B )\  —► 0 as t —* oo

where with S'fj we denote the cr-field generated by {(F^X* ) : t =  £2}-

Further we assume th a t for the same 6 > 2 given in C l

oo

t*Ot(t)^ 1 < OO.
t = l

C4 As n  —► oo, h —> 0 and n h d —> oo.

The conditions in C l are a minimum requirement to ensure the convergence in 

probability of the first, second and third order derivatives of the likelihood function. 

They are also im portant in the use of the Central Limit Theorem in the derivation of 

the asym ptotic distribution. The conditions for the kernel are self-explanatory and 

rather common within this context. Note th a t the bounded support can be relaxed 

but it requires further conditions. Condition C3 determines the mixing properties of 

the process under investigation. Condition C4 involving the rate  of the bandw idth is 

standard  in nonparam etric theory.
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2.4.1 C onsistency

We proceed to  the asym ptotic properties of the M L-estimator. Particularly, in the 

following proposition we show th a t it is a consistent estim ator.

P ro p o s i t io n  2 . 1  Suppose that conditions C1-C4 hold. Then there exists at least
a p  «

one solution 6n of the likelihood equations (2.6) that is consistent, i.e. 6 n —» 0  as 

n —> oo.

P ro o f  o f  P ro p o s i t io n  2 . 1  Call Dn{d) =  - 1  / n H ~ l S n{6). Then 0 n : ln'(Qn) =  0 &

Dn{9n) =  0. Further, let D {0\h)  =  E (Dn(0)). We claim th a t in a compact set

© ' C 0  th a t contains 0°

sup || D n{6) — D(0\ h) || —> 0 as n  —♦ oo (2-14)
0 6 ©'

proof of which is given in Lemma 2.1 below. Moreover, B artle tt identity in (2.7) 

yields

D(0°;h) = 0. (2.15)

Now, suppose th a t none of the solutions of the likelihood function converges in prob­

ability to 0°. Consequently, if 0 n is a solution then there exists subsequence 0fcn, such

th a t P  ^|| Okn — 0° ||>  >  c which implies th a t P ^ i n f ^ ^ o ^  || D n(6) || >  77)  >  e

for a sufficiently large n. Equivalently

inf || Dn(0) || -£> 0. (2.16)

Since,

inf || D(0; h) || >  inf || D n(d) || -  sup || £>n(0) -  L>(0; h) ||
l|0—0°ll<<5 ll^-0°ll<5 ||0-0°||<<5

p
from (2.14) and (2.16) we have tha t inf||0 _0 °n<(j II D(0]h)  || -»*» 0  which contradicts 

with (2.15). Therefore we have proven consistency.
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Lemma 2.1 Under conditions C1-C4 it holds that for  any compact set 0 ' that in­

cludes 6°

sup || D n(6) — D{9\ h) || —► 0 as n —> oo.
0 e©'

Proof of Lemma 2.1 Note tha t

-j 71 1 71

D« w  =  -  f e W M # )  +  l y H - ' Z t K ^ X t  -  x ) =  -  v t{0).
t=i t=i

For fixed 6, the process Vt (6) is strictly stationary as a function of the strictly sta­

tionary process (Yt ,X.t). Moreover we have tha t

E ||V ,(0)|| =  E (|tf(e ((e))e t(0) +  1| \ \H~lZ t \\ K k( X t -  x))

but 'J/(e,(0))e,(0) +  1 =  (^ (e t)e( +  1 ) +  fi(ei)et(e”(x‘)_z*^ +ZT(0 -0 )  — i)  and using 

expansion (2 .1 0 )

E ||V ;(0)|| <  E ( |* (£t)£( +  1| II#  “ ‘Z.ll K h{ X t -  x ))

1 ^
+ E (|fi(e t)e,| | j  E  M x ')(* m  -  -  Xj)\ WH^ZtW K h{ X t -  x))

i,j=1

+ E (|fi(c t)ct | \\ZT(d -  0 ° )tf  _1Z<|| K h( x t -  x)).

Conditions C1-C4 and the fact tha t \\0 — 0°|| <  M , since © ' is a compact neighbor­

hood of 0°, yield th a t E ||14(0)|| <  oo. Consequently Proposition 2.8 (Fan and Yao 

2003), which from now on we refer to as the ergodic theorem, yields

-  Y W W  -  E (vt(0 ))} 0  =*• D n(0 ) - D ( 0 -,h)°-i  0
n t i

as 72 —> oo while the uniform convergence is implied from the almost sure convergence 

over the compact set © '.
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2.4.2 A sym p totic  norm ality

Statistical inferences drawn from confidence intervals or hypothesis tests as well as 

the bandw idth selection require the distribution of the estim ator as Fan, Farmen, and 

Gijbels (1998) pointed out. Henceforth, we derive the asym ptotic distribution of the 

ML-estimator. We establish asymptotic normality using a Central Limit Theorem 

and we calculate the asym ptotic variance. However, like all the nonparam etric esti­

mators, the asym ptotic mean square error of MLE includes a bias term  along with

the asym ptotic variance. The first order Taylor expansion of the derivative of the 

likelihood around the true value 0° yields:

£ (» « ) =  U o ° )  +  W ) ( » .  -  e°)  (2.i7)

where 0* lies w ithin 0  and 0°. By definition, l'n(0n) = 0 thus from (2.17) we write

0n- 0o = n - \ 0*)Sn(0o). (2.18)

Next, we present a number of lemmas th a t involve the calculation of the asymptotic 

Hessian m atrix, the bias term  and the asymptotic variance before we proceed to the 

main theorem.

Lemma 2.2 Suppose conditions C1-C4 hold. For the Hessian matrix it holds that

0  as n  —> oo.

Proof of Lemma 2.2 Note th a t =

1  J 2  (e t (< n « (e t(< n  -  e((0o)n (e (( 0 ° ) ) ) ) / f - 1Z(Z [ / f - 1f£'h(X f -  x).

Since, 0* lies w ithin 0  and 0 °, we have th a t ||0* — 0°|| <  ||0  — 0°||. But in Proposition

2.1 we proved th a t \\0 — 0°|| —► 0 => ||0* — 0°|| 0 as n  —> oo. Note th a t f2(.) is a

continuous function, equivalently 7in(.) is continuous, in respect to 0  thus Slutsky’s 

Theorem entails the required result.
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Denote with / ( / )  =  J (\&(e)e +  1 )2 f(e)de  the Fisher inform ation for the error density 

f .  Let S/c be a (d +  1) x (d +  1) diagonal matrix, Sk  =  diag(/xo,M2 , • • • 1^ 2)1 with 

po = f  K ( u ) d u  =  1 and p 2 =  f  u fK (u )du .  In the following lemma we study the 

convergence in probability of the Hessian m atrix TiniO0).

L em m a  2.3  Suppose conditions C1-C4 hold. The negative Hessian matrix calculated 

at the true value 6° converges in probability to a positive definite (d +  1) x (d +  1 ) 

m a tr ixT  =  p ( x ) / ( / )  S ^ , i.e.

4 1 .
n

P ro o f  o f  L e m m a  2.3 By definition, —n~1H ~ 1TCn(6° )H ~ 1 =  T\ +  T2 where

Ti = - - y>®n(e?) -  etn(e«))/r1ZtZ’’/ r 1tfk(Xt -  x) 
n  w

T2 =  j H - ' M X t - x ) .
n  z 't=1

Taylor expansion of e jfi(e j) around ct yields

et ^ i et ) ~~ e^ ( 6*) =  (etR(ct) +  ^ ( et))(et — et) +  ^ ( ( ei — et))- 

We substitu te  expansion (2.11) to obtain

ejft(ej) -  e4fi(et) =  (e?-R(et) +  etn(et)) ^  -  Zt)(X tii -  xf) +  0 ((ej -  et))
hj

hence, the first term  T\ is equal to

- - f 2 ( e 2t R(et) + e M e t) ) y i h j (^ ) (Xt , i - - x i) (X tj - x j ) H - 1Z tZ ' [ H- 1K h( X t- x ) + o p(l).  
n *-7^t= 1 ,̂3

Under C l(ii) E |elR(et) +  etr2(et)| < 00, C2 and bounded s*j(x') it is easy to see th a t 

E(\\(e2t R(et)+e tn ( e t ) ) J 2 k ^ ' ) ( X t , i - x i) (XtJ- x j ) H - 1ZtZ j H - 1K h( X t -x) \ \ )  =  0 ( h 2)
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and therefore ergodic theorem yields T\ =  op(l) since h —► 0.

For T2, define the strictly  stationary process R t = et^ ( e t) H ~ l 7it7ff H ~ lK h { y i t - x ) .  

It holds th a t

E ||f lt |[ =  E|e(n(€i) |£ : ( | |H - 1ZtZ f f f - 1 | | ^ ( X ( -  x ) )

=  J |etfi(et) |/ ( e t)de( f  | |( 1 , u T)r ( l, u T)||/!T(u)p(x +  hu)du

and from C l and first order Taylor expansion of p (x  +  hu)  around x , we have

E ||f l , || <  Cp(x) J  | | ( l , u T)T( l , u r ) ||« -(u )d u  +  0 (fe)

which along with C2 and C4 imply th a t E ||i? t|| <  oo. Hence, application of the 

ergodic theorem for the process R t yields

1  -  E(fl,)} “-J’ 0. (2.19)
t =  1

But,

E (R t) - > p ( x )  J ( l , u T)T( l , u T) K (u )d u  J  eQ,(e)f(e)de as n  —► oo 

which combined with (2.19) yields

T2 =  - ~ Y ) R t  -  f efl{e)f(e)de p(x) S K
n t i  ■>

from

J  (1, u T)T(l, u T)K ( u ) d u  =  S * .

p
Substituting (2.13) we conclude tha t T2 —► p ( x ) I ( f )  Sk  th a t completes the proof.

Note th a t for a symmetrical kernel density function the information matrix X  is 

a diagonal, positive definite m atrix since 1( f )  =  /( 'F (e)e  +  1 )2f(e)de  > 0 , p(x)  >  0 

and fio,p>2 > 0 be. the Hessian m atrix is negative definite which is a requirement for
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the existence of local maximum of the likelihood function. T he next lemma is used 

to assess the bias. Define the {d +  1) x (d +  1) and (d +  1) x  1-matrices,

^ /i2 0 . . 0 ^

II*3 0 M2 • . 0
, H s =

i  £ ? = i  W

l  0 0 . • f4  j V g £ ? = i  ^  (x ) >

where ^2  = J  u fK (u )d u .

Lemma 2.4 Under conditions C1-C2, it holds that

E ( - H ^ S n i e 0)) =  - h 2p ( x ) I ( f )  H  M k .1 H s +  (o(h%  o(h3) , o ( h 3))T. 
n

Proof of Lemma 2.4. Note th a t from stationarity

E ( i s „ ,o(0 °)) =  J  j m e 0t)e°t + l ) ^ K ( ^ ^ ) f Y lx (yt \ ^ M ^ t )d y td y i t  (2 .2 1 )

and for r =  1, . . . ,  d

E^ 5"'r^ °^  = /  J  ^ e°)e° + 1) I l r h ^ ^ K ^X‘ h  X^ ylx fa‘lx-t)p(-xt)dytd x t .
(2 .2 2 )

Concentrate on (2.21). Recall Taylor expansion in (2.8) and (2.11) where

($(e°)e? +  1) =  (* (£ t)et +  1)+

1 ->
e«n(et) -  ^ 2  S i j (x ) (X tti -  Xi)(XtJ -  Xj) +  o((X t,i -  X i ) (X tJ -  Xj)). (2.23)

i,3 =  1

Substitution of (2.23) to (2.21) yields

E ( i s n,o(00)) =  J('Sf(et)et + l) f(e t)det J  J ^ K (- )p(xt)rfxt +  J  etQ(et) f(et)det

/  + o{(xtti -  Xi)(xtJ -  Xj ) ) )  ~ ^ K ( Xt h X-)p(xt)dxt
J i,j= 1
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It is easy to see th a t from (2.12), the first term  is

J ( y ( e t)et + l ) f { e t)det J  * ) p ( x f ) c f a c t  =  0 .

For the second integral, using the transform ation x* — x  =  h u  we have tha t

J  €tto(et) f ( e t)det J  ^ s ^ x ^ U i U j  +  °{h2)
L i,j= 1

=  h2p{x) J  etCl{et)f(€t)det ^ ^ 2 s i j ( x )  J  UiUjK(u)du  +  o(h2)
i,j=i

1 d 
=  ~ 2  h2P(x W )  +  o{h2)

K ( u ) p { x  +  hu)du

i,j=1
using (2.13). Thus, condition C2 yields

E ( ^ S n,o(00)) =  - i / i 2/i2P ( x ) / ( / ) ^ S j j ( x )  +  o(/i2). (2.24)
j=i

W and and Jones (1995) and Fan and Gijbels (1996) showed th a t the calculation of 

the bias of the derivative estim ator requires a third order Taylor expansion of the 

log-standard deviation function assuming th a t the kernel is a symmetric function. 

Therefore we extend (2.10) to

1 As ( x < )  - z j e °  =  - ^ 2  S i j W f e . i  -  X i ) ( x tj  -  Xj )
i,j=1

1 . ̂  A
+  -  ^ 2  Si jk (x )(zM - Xi)(xtj  -  X j ) ( x t,k -  Xk ) +  o ( ( x t ,i -  X i ) ( x t j  -  X j ) ( x t)k -  Xk))

i,j,k=1
and hence we obtain

E ( rt/jS"'r ( e °)) =  / W * )£‘ +  /  ^ i i ^ h K{]^ )p(-Xt)d* t+

f  etSl(et) f(e ,)det J  Xt 'T ^  % ( x ) ( x M  -  Xi){xtJ -  X j ) ^ K ( Xt X ) p ( x , ) r f x t
i,j=l
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+  J  etto(et) f ( e t)det J  Xt,r ^ s ijk (x )(zM -  Xi)(xtJ -  Xj)(xttk -  x k)
ijjk— 1

+o((.tm -  X i) ( x ttj -  X j ) ( x t,k -  x k)) ^ K ( ^ - J ^ ) p ( x t ) d x t .

It has already been shown th a t the first integral is zero while the second is also equal 

to zero from condition C2, f  UiUjUrK (u)du =  0 for all i, j,  r  =  1 , . . . ,  d. Using similar 

arguments as above, we write the th ird  integral as

=  jU 3p(x) j  etn{€t)f(et)det ^  s ijk (x) j  uiu kuj uTK (u )d \ i  + o(hz)

and from C2, f  UiUkUjUrK ( u ) d u  = f  u2u2K ( u ) d u  =  p 2 if i = r,  j  = k and zero 

otherwise, it follows th a t for i = 1, . . . ,  d

E ( ± S n,r(0°)) =  - ^ V ! p ( x ) / ( / )  £  s Tjj (x) +  o(h3) (2.25)
3 =  1

and the proof is complete.

The following lemma will be used to assess the asym ptotic variance of the es­

tim ator, see Cai, Fan, and Yao (2000) for a similar idea. Define the processes 

Ut =  (Vt -  E(Vt)) and Qn = n~ l Y%= i Ut where V* =  (\P(eJ)eJ +  -  x).

Call =  [vij]o<i,j<d where =  f  UiUjK2(u)du  for i , j  =  1, . . . , d ,  i/0j  =  

f  UjK 2(u)du  = 0 for j  =  1 , . . . ,  d due to symmetry and z/o,o =  f  K 2(u)du.

L e m m a  2.5  Under conditions C1-C4 the following propositions hold

(a) hdVai(Ut) —> p (x ) /( /)  S*K .

(b) hd Y £ ; l \ C a v ( U l t Ut+1)\ = o(l).

(c) n h dVai(Qn) - > p ( x ) / ( / )  S ^ .
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P ro o f  o f  L e m m a  2.5 (a) We have th a t Vai(Ut) = E {UtU l )  where

E {UtUj) = E(VtVtT) -  E(Vt)E(Vt)T

with E{VtV ^ )  =  E  ((^(e^)ej1 +  l ) 2 H ~ l K 2(X.t — x )) . The first order Taylor 

expansion of (4/(e°)e° +  l ) 2 around et along with (2 .1 1 ) yields

W et ) e t +  I )2 =  +  I )2 +  +  l)e tD(et) ^ 2  Si, j(x ' ) ( X t,i — X i ) ( X tj  — Xj) .

Cauchy-Schwartz inequality and C l ensure th a t E |(^ (e t)et +  l)etf2(et)| <  oo, which 

combined w ith C l(iii), C2  and h —* 0 implies th a t

E (K V f) =  J (tf(et)et +  l ) 2/ ( e e) * t  J H - 1z tz f H - 1 K 2h(y.t -  x )p (x t)dx« +  o(l)

and using again the transform ation x t — x  =  hu,

=  h~d J ( ^ ( e t)et +  1 )2f {e t)det J (1 , u T)T(l, u T) K 2(u)p(x  +  hu)du  +  o(l)

consequently, hdE(VtV? )  —> p ( x ) / ( / )  as n —*■ oo. Moreover, we proved in Lemma

2.4 th a t E(Vt) = 0 ( h 2) = o (l). Therefore, we conclude

hdVar(C/f) —> p (x ) /( /)  S*K . (2.26)

Further, it holds th a t

Var(Q„) =  i v a r (Ut) + -  V  (1 -  - ) C o v (U u  Ut+1) 
n n  z '  nt=1

hence, by stationarity, statem ent (c) follows easily from (a) and (b) as a result of 

the dom inated convergence theorem and C4, n h d —> oo. Thus, it remains to prove 

part (b). Let dn —> oo be a  sequence of positive integers such th a t hddn —> 0. Define 

J\ = J2t=i |CJ°v ( t / i , Ut+1)| and J 2 =  Y^Zdn |Cov(C7i, Ut+1)|. We have th a t for alU  >  1

||C ov(t/1, C/t+1)|| =  ||E(C/if/tr+1)|| <  HEfViVJ^)!! +  ||E (V i)E (Vt+1)T \\. (2.27)
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But, note th a t

l | E W ^ 1) ||< E ||(W (e ? +1)e?+1+ l ) ( $ ( e M + l ) / / - 1Z 1Z ?;i i / - 1^ ( X 1- x ) ^ ( X , +1- x ) | |

=  E |($ (e m )et+1+ l ) ( ^ ( € 1)£1+ l ) |E ; ( | | i / - 1Z 1Zf+1i ? - 1 | | ^ ( X 1- x ) i :crft(X t+1- x ) ) + o ( l )

using similar expansion arguments as in part (a). Condition C l(ii) implies that: 

E |(^ (e t+i)et+i +  l) (^ (e i)e i +  l) | <  oo hence ||E(Vi 1^)11  < oo. Further, E(Vt) = o (l), 

thus from inequality (2.27):

||Cov(C/i, Ut+1)|| =  0 (1 ) for all t >  1 (2.28)

and therefore J\ < Cdn =>• J\  = 0 ( d n). From the choice of dn we conclude tha t

hdJ\ = o (l). Next we consider the upper bound of J 2 . By using Davydov’s inequality

(Bosq 1998 Corollary 1.1), for <5 >  2 given in C l and C3, we obtain

H C o v f l^ + O H  <  C i a W J ' - ^ E I I ^ I I ^ ( e | |[ /1+1||5)*  (2.29)

where a ( t ) is the mixing coefficient of the process (Yt , Xf) defined in C3. Note tha t 

E||V^ | |5 =  E ^ |^ (e°)e?  +  l \5\\H~l 7*t \\5 — x )^ . Taylor expansion yields

W e?)e?+1)5 =  (^ (^ )e t+ l)5+<5(^r(ei)e f+ l)<5 1Q(et)et - ' ^ ^ S i ij('x')(Xt,i—Xi)(Xtj —Xj)
hj

and from Cauchy-Schwartz inequality

(E|(\I/(e*)e* +  l ) 5 1fl(ef)e<|) 2 <  E|\I/(et)et +  1|25 2 E\Q,(et)€t\ 2 <  oo

bounded, from C l(ii). Hence under C l(iii) and C 2 it holds th a t

E||V(||S <  E |* (e ()et +  l |* E ( | | ^ - 1Zt l | ^ ( X t -  x ) )  +  0 (f t2).

Equivalently, E||Vt||* <  C7i(1-<5)d/  ||(1 , u T) | |5iC<5(u )du  from E |^ (e t)ef +  1 |5 <  oo, see 

C l(ii). Moreover, J  | | ( l , u r ) | |5i f 5 (u)du  < oo implying th a t E | | V i | <  C h ^ ~ 6̂ d and 

therefore

E\\Ut\\6 = 0 ( h {1- 6)d). (2.30)
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The combination of (2.29) and (2.30) leads to

oo oo
h  <  C h ^ - w  £ { a ( t ) } H  <  C h W - W d ?  Y ,  *2{«(<)}H

t—d-n t~dn

hence from C3, J 2 =  o{h^2̂ ~ 2̂ dd~2). Therefore, if we define dn =  C h ^ 6-1^ 2 then 

dn —> 00 since 5 > 2 , hddn —> 0  as required for J i, and J 2 =  o(h~d), so conclude.

We can now proceed to the main theorem th a t entails the asym ptotic distribution 

of the ML-estimator.

T h e o re m  2 . 1  Suppose that conditions C1-C4 hold. Then for  the Maximum Likeli­

hood estimator we have that

V n h * H {e n -  6° -  b) - i  JV(0, J - 'S Z - 1)

where

I -Is  X-1 =p-1(x)r1(/) s*1 sjc s*1

and bias

b =  h2 S*1 M ,,,  Hs + (o(/i2) , o(h2))T .

Proof of Theorem 2.1 From (2.18) we have that Bn — $° =  I i  +  I 2 where 

h  = H - 1 (Sn(0°) -  E(Sn(0°)))

and

I2 = H~lE ( -S n(e0)).

It is easy to  see th a t the theorem follows from statem ents:

(a) V n h ? H h  Ar(0,I_1S I _1).

(b) I2 = h2S-Kx M k .i H s +  (o(h2) , o ( h 2))T .
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We begin with the proof for (a). Recall the process Ut defined in Lemma 2.5 and note

th a t H ~ 1{S n(0°) — E(Sn(60))} =  Y a =i Ut- Thus, we write

1 2 1 ^
V n h ^ H I i  = ( - H - ' H J d * ) ! ! - 1)  - =  V  hdUt . (2.31)

J y/nhd

The process hdUt is a zero mean, strictly stationary process and using (2.30), there is 

5 > 2 such th a t E ||/idC/* | |5 =  0 ( h d~d5+d5) =  0 ( h d). Further, if we call a( j )  the mixing 

coefficient of Ut then, since Ut is a function of (Y*,Xt), it holds from the properties 

of strong mixing conditions (Bradley 1985) th a t a( j )  < a( j) .  Therefore using C3

^ d ( j ) H  < ^PaC ?')1"^ < oo. (2.32)
j >  i j > i

Application of the Central Limit Theorem 2.21 (Fan and Yao 2003) yields

- n - n

- =  y  hdUt - i  N { 0, S n) with 2 n =  V a r ( - =  Y "  hdUt) = n h dVa,i(Q„). 
V n h d “  V n h d ~

Using Lemma 2.5 (c), it follows th a t

E n - > E = p ( x ) / ( / ) S J : (2.33)

and therefore we have shown th a t

Prom Lemma 2.2 and 2.3, n~1 —> —X  w ith X

la tte r along with (2.31), (2.34) yields

y / n h H h  - i  ^ ( O . I - 'S I - 1)

where

X - 'S X - 1 =  p - '( x )  I - \ f )  S k 1 SJf S *1. (2.36)

(2.34)

=  p ( x ) / ( / )  Sk  and the

(2.35)
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We now prove statem ent (b). Recall th a t

From Lemma 2.4, E ( - n _ 1f f _15„(00)) =  h2p ( x ) / ( / )  H  M k ,i H s + (o(h2) , . . .  ,o (h3)). 

Hence I 2 = H ”1 ( l ~ x+op( l) ) (h2p ( x ) I ( f )  H  M k ,i H s+ (o (/i2) , . . . ,  o(h3))). Substitute 

J -1  and after some algebraic calculations conclude th a t

I2 =  h2S * 1 M k .i H s +  (o(/i2) , . . . ,  o(h2))T

which completes the proof of the theorem.

Theorem 2.1 contains the asymptotic distribution of the vector of estim ators of 

the log-standard deviation and its derivatives. The calculation of the univariate 

asymptotic distribution of the log-standard deviation and equivalently the asymptotic 

distribution of the variance function itself is straightforward. The next corollary 

summarizes these results.

C o ro lla ry  2 . 1  Under conditions C1-C4, the ML-estimator of the log-standard devi­

ation function §o is asymptotically normally distributed i.e.

V n h d(6Q — Oq -  b0) —► iV(0, v2)

where

bo = ^ r ( i 2 ^ 2 s j j ( x )  and v2 = p~1(x ) I~ 1( f )  f  K 2{u)du.
Z j=i J

Therefore, the local linear Maximum Likelihood estimator of the variance function  

G2(x) =  exp(2 $o) is asymptotically normally distributed with

V n h d(d2(x) — cr2(x) — b) - i  N(0,  4<t4 (x)v2)

where
h2

3=1  3=1
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P ro o f  o f  C o ro lla ry  2.1 First we derive the asym ptotic distribution for the estimator 

of the log-standard deviation function. Note th a t (§o — Oq — bo) = e\T (6 — 6° — b). 

Thus,

v 2 =  Va,r ( V n h d (6 q — Oq — bo)) =  e iTVar (y/nhd(d — 6° — b ))e i =$>

V a r(v Q ? (0 o -6°0 -  60)) =  ^  $ k  S k  S ^ 1 d

and substitu te /iq =  1 and z/o,o =  / ^ 2(u )^u  t°  find v2- For the asymptotic distri­

bution of the variance estim ator we use, for convenience, the  notation of a 2 =  d 2 (x) 

and a 2 =  cr2 (x). From a 2 =  e2d° => g 2/ g 2 =  e2^ 0-0^  we can equivalently write 

(<r2 — g 2) / g 2 =  e2(0o-0o) — 1. But from Taylor expansion, we have th a t e2(0o_0°) — 1 =  

2(0o ~  0§) +  op(6o — Oq ) hence we conclude that,

V n h d ( - ^ a- ' )  =  2 V n h d(0Q -  0{J) +  op ( V n h * ( 0 o -  0 °)).

Since V n h d(0o — 0q )  converges in distribution then it is bounded in probability, 

V n h d(Oo — Oq) =  Op(l). Therefore, we have th a t

^  2 2

~ a  )  =  2 \ ^ ( e 0 -  eg) +  op ( 1). (2.37)

From (2 .3 7 ) it holds th a t V n h d(a2 — a 2) / a 2 and 2y/nh2(0o — 0°) follow asymptotically 

the same distribution, i.e.

V n h d(a2 — a 2 — 2boa2) - i  N ( 0 , 4cr4u2).

For the bias term , note th a t b = 2boa2 = h2fi2 &2 ]C j= i(92/ d x 2) logcr where

-  ( £ - 2)2}

and the proof concludes here.
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2.5 Im plem entation and bandwidth selection

It is understood th a t the performance of the estim ator depends critically on the band­

width h. A lthough small value for h reduces the bias, the variance of the estimator 

will be large since there will be fewer da ta  points w ithin the local neighborhood. 

On the other hand, large value will decrease the variance bu t it will increase the 

bias. In other words, there is a trade off between the variance and the bias regard­

ing the bandw idth selection. Consequently, we require a good compromise between 

these two terms. Due to the im portance of the bandw idth param eter, an extensive 

number of procedures appear in the literature with most of them  based on the idea 

of minimization of a loss function. More specifically, R uppert, Sheather, and Wand 

(1995) propose a direct plug-in global bandwidth. They calculate the minimizer of 

the conditional asym ptotic Mean Integrated Squared Error (MISE) and substitute 

the unknown quantities by their estimates. Hardle, Hall, and M arron (1988), on the 

other hand, study the asym ptotic behavior of a bandw idth selected using a weighted 

cross validation function as the loss function.

Following these ideas, we propose a direct plug in algorithm. Although we choose 

the Asym ptotic Mean Square Error (AMSE) as the selection criterion, it is understood 

th a t other criteria, like cross validation, can be implemented after some modifications. 

Note here th a t the proposed algorithm generates a local bandw idth. However, a global 

bandw idth criterion, equivalent to the asymptotic MISE, could also be considered. 

Based on the decomposition

AMSE(x; h) = B2 (x; h) +  AV(x; h)

AMSE(x; h) =  [ ^ ^ ( x )  -  ^ 2  (< ^ (x )) /<r2 (x) j
\ j = 1 j=1 J

(2.38)
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we calculate hopt by minimizing (2.38). Following simple derivative calculations we 

obtain

/  d d \  ~ 2/ ( d+ 4)

hopt = Cd( K ) C ( f )  I ^ d J2(x)/cr2 (x) -  ^ ( d 2 (x ))2 /<r4 (x) I n -V(d+4) (2.39)
\ j= i  j=i /

where Cd(K)  = (kdvo<alh2)1/(d+4) and (7 (/) =  (p (x ) /( / ) ) _1^ d+4 .̂ Clearly the op­

timal bandw idth consists of unknown quantities such as the variance function and 

its derivatives. Further, the error density /  in C ( f )  is assumed to be known but as 

we have already argued this is not the case in reality so it needs to be estim ated as 

well. The only quantity th a t can be directly calculated is the kernel-related constant 

Cd{K). Substitution of the unknown quantities by some pilot estim ators leads to the 

following practical da ta  driven algorithm:

1 . S tart with the bandw idth ho =  Con_1^ d+4  ̂ with e.g. cq =  0.5.

2. In the j - th  iteration calculate using the bandw idth h j - i  the estim ators <r2, 

and <7 ^  for j  = 1, . . . ,  d.

3. Improve hj_ i by

h, = Cd( K ) C ( f )
V j =i j~ i

and repeat from step 2  until convergence is reached or until a specified number 

of steps has been carried out.

Note here th a t the proposed algorithm assumes the error density known / ( .)  which is 

a condition in this section. However, the generalization to  the unknown error density 

case is straightforward and requires the estim ation of /( . ) .  The above algorithm is 

used in the numerical examples. Hence numerical evaluation of the performance of 

the bandw idth algorithm is postponed to following section.

—2/(d+ 4)

n - m M )

41



2.6 Comparison of MLE w ith existing estim ators

For notational convenience, we study the univariate case d =  1 while the generaliza­

tion for d > 2 is straightforward. The direct theoretical comparison of the variance 

function estim ators is based on their asymptotic properties. Numerical investigation 

based on small samples follows in later section. From Corollary 2.1, the bias and the 

asym ptotic variance of the estim ator g 2 { x ) are: b = {h2 /  2 )  i i 2 {d 2(x) — (a 2(x))2/ a 2(x ) }  

and An~l h~la A{x)vQfip~l (x ) I~ l ( f) .  Hence, from (2.38), the Asym ptotic Mean Square 

Error is:

AMSEMle (z ; h) = I ~ \ f )  +  {&2(x ) ~  (&2(x )2/ a2(x ) } 2 • (2-40)
nh  V\x ) 4

For the univariate case d = 1, Fan and Yao (1998) showed th a t for the local linear 

Least Squares estim ator it holds tha t

AMSELSEl(z; h) = ^ , o ^ ( E ( < )  -  1) +  { * 2 ( * ) } 2 (2-41)

while Ziegelmann (2002) has shown th a t use of the log-transform ation along with 

least squares leads to

A M S E lse^z; h) = { ° 2(x) ~  (<j2 (z ))2Ar2 (z ) } 2 • (2-42)

A direct comparison yields th a t a reduction in bias can be achieved using the log- 

transform ation under the assumption th a t (&2(x))2 < 2a2(x)d2(x ), see Yu and Jones 

(2004) and Hall and Tao (2002) for a similar conclusion. Consequently, the effect 

of the log-transform ation on the AMSE depends on the properties of the variance 

function. Furtherm ore, it is evident th a t the bias depends solely on deterministic 

quantities as it is not related to  the stochastic error term . We should point out th a t 

the comparison involves the constant term s of the AMSE and is made under the 

assum ption of common kernel function.
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On the other hand, asymptotic variance is closely related to the stochastic term. 

Note th a t the ratio of the asymptotic variances of M L-estimator and LS-estimator is

= 4 /-1( / ) / (E (4 ) - l )■

Consequently the likelihood estim ator has smaller asym ptotic variance than the Least 

Squares estim ator if

4 / -» ( / )  <  (E(tf) -  1). (2.43)

Inequality (2.43) is similar to  a Cramer-Rao type lower bound of the variance of the 

estimator. In fact, Cramer-Rao inequality says th a t

2
(£E,(W(Y))Y

Var0 (W (Y )) >  V '
E*(& log/(Y ;fl))

where W ( Y ) is an estim ator of 9. The equality holds for the case where the error 

density function is of the form: (d/dQ) log / ( Y ; 6) =  g{0){W (Y ) —9) for some function 

g{0). For instance, gaussian errors satisfy the above condition and hence, it is expected 

tha t M L-estimator and LS-estimator have equal asym ptotic variance. The la tter is 

shown explicitly below. However, the inequality does not say anything about the 

actual gain in efficiency. In an attem pt to quantify any possible gain in efficiency 

from the use of likelihood function and have an idea of how “much better” ML- 

estim ator performs asymptotically, we explore analytically two different cases. First, 

we derive the Asym ptotic Mean Square Error for normally distributed errors. Suppose 

e ~  N ( 0,1) i.e. /(e )  =  (27r)-1/2e-e2/2. Note th a t

J  ef2(e)/(e)de =  J  e2f"(e)de  +  J  t } ' ( t ) d e  -  J
/(c)

and th a t B artle tt identities (2.12),(2.13) yield I\  =  2 and I 2 =  —1. Using the trans­

formation e2/ 2  =  x  =4> ede = dx  we have tha t

2  /*°° r> A r °°
h  =

f°° 4 /■ 3
/  e4e“" 2 de = —=  /  x^e~xdx =  3.

Jo V n  Joy/27T
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Hence, 1( f )  =  — (7i +  h  — h )  — 2. Since et are gaussian, then E(eJ) =  3 and 

therefore (2.43) holds as an equality. In other words, for the case of gaussian error 

term, likelihood and least squares yield estim ators with the same asym ptotic variance, 

equivalently equal AMSE, in terms of constants, given th a t the log-transformation 

is employed for both  estimators. This result is in line with the well known property 

th a t likelihood and least squares are equivalent m ethods when errors are gaussian. 

Consider now the case where the error term  follows a t-distribution with degrees of

freedom k >  2 , i.e. /(e )  =  C(  1 +  e2/ ( k  -  2 ) ) " ( fc+1) /2 w ith C  =  (k -  2 )~h(B ( \ ,  f ) ) " 1

where B ( .,.) the beta  function. Note th a t we have standardized the distribution 

to ensure th a t the variance of the et is one, otherwise we may have identifiability 

problems. Similar to the gaussian case, we write f  eCl(e)f(e)de = I\  +  I 2 — I 3 with 

Ii = 2 and I 2 =  — 1 independent of the distribution. Hence, concentrate on I 3 :

Therefore, / ( / )  =  h ~ h ~ h  = 2fc/(fc+3). Further, E(e?) =  ( fc -2 )2£ (§ , ^ ) / B ( l , | )

with k > 4, so th a t fourth moments exist. The ratio of the asym ptotic variances is

The property r(rr) =  ( x -  l )T ( x  — 1) of gamma function, yields T ( ( k —4)/2)/T(A:/2) =  

4/( (k  — A)(k — 2)). Consequently, the ratio is simplified to

AV mle 4 (k +  3)

AV lse  2k

and using the properties of the beta  B ( x , y ) and gam ma T(x)  functions, we have th a t

AVmle _  8 (A: +  3) /T ((^  — 4)/2) 4 \ _1

AVLse ”  3k(k -  2 ) 2 V T(A:/2 ) 3(k -  2 ) 2 /  ’ 

A V  m le  _  (k  +  3)(fc — 4 )  

A V Ls e  “  k(k -  1 )
(2.44)

44



Table 2.1: Efficiency for ^-distribution with k degrees of freedom

I - \ f ) E(eJ) AV mle/AV lse

k = 5 0 .8 9.0 0.4

k=6 0.750 6 .0 0 .6

ooII-se 0.690 4.5 0.780

oCMII-se 0.575 3.375 0.968

k = 1 0 0 0.515 3.062 0.999

From (2.44), it is easy to see th a t AVmle/AVlse <  1 for k > 4 and AVmle/AVLse —1> 1 

as k —> oo. Consequently, when the error term  follows a ^ -d istribu tion  with k > 4 

degrees of freedom, M L-estimator is more efficient com pared to  the LS-estimator. In 

Table 2.1, we summarize the results for different degrees of freedom k  in order to 

quantify the reduction in asymptotic variance. The ratio  of the asym ptotic variances 

is 0.4 for 5 degrees of freedom, 0.78 for 8  degrees of freedom going up to 0.999 for 

k = 100. This means th a t if the error distribution is a ^-distribution with 5 degrees of 

freedom, the asym ptotic variance of the estim ator based on the likelihood function, is 

reduced up to 60% compared to  the asymptotic variance of the Least Squares estima­

tor. The reduction decreases as the degrees of freedom of ^ -d is tribu tion  increase and 

it is only 0.032% for A: =  20 while it reaches 0.001% for the case of k  =  100. W hen k 

becomes large enough, ^ -d istribu tion  approximates the norm al distribution therefore 

it is reasonable th a t for large k  the asymptotic properties of the two estimators do 

not differ significantly.

Summing up, we conclude th a t using additional inform ation provided from the 

error distribution, yields a more accurate estim ator, in the sense of smaller AMSE, 

compared to the LS-estimator th a t uses no information from the error distribution. 

Particularly, when the distribution is heavy tailed (like the tfc-distribution with small 

degrees of freedom) the gain in AMSE is even more significant. However, we should 

point out th a t all these conclusions are based on direct comparison of asymptotic
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properties and therefore hold, in principle, for n  large. The choice of AMSE as 

the measure of comparison is common in nonparam etric theory. However, in the 

numerical examples presented in later sections we employ alternative measures in 

order to  ensure th a t any gain in efficiency is independent of the performance measure 

th a t has been used.

2.7 Sim ultaneous estim ation of the m ean and vari­

ance function

Throughout the previous sections we assumed th a t the mean function m(.) is known. 

However, in practice, the mean function is unknown and has to be estim ated as well. 

Therefore, we extend the use of likelihood estim ation to  include the  mean function. 

Since both  variance and mean function are approxim ated with first order polynomials, 

it is understood th a t some minimum degree of smoothness is required. Thus, we 

assume th a t both  have at least continuous th ird  derivative around x. Hence, in a 

small neighborhood of x  we can write

m (X i) =  Zj-y  (2.45)

along with the linear approximation of the log-standard deviation given in (2.4): 

s ( X t) — Z 1 6 where Z j  = (1 , X t,i -  x i , . . . ,  X t,d ~  Xd), 0 = (60, . . .  ,0d)T and 7  =  

(70, • • • , 7d)T- Further let 70 =  (7J , . . .  , 7d)T with yg = m (x )  and 7? =  m j(x )  the 

true values similar to 6°. The conditional local linear log-likelihood function is now 

given by

in(e,r , Y|x) = y > g f ( Yt ~ rz/ 7 ) -  z f e } K h( x t -  x).
t =  1 e  *

Note here th a t we choose to work with the one step estim ation. However, one could 

adopt a two step estim ation procedure where the mean function is estim ated first
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and then the calculated estim ator of the mean is plugged in the likelihood function 

to estim ate the variance function. It is understood th a t, in the two step estimation 

approach, a different kernel could be introduce to  account for the mean function 

along with the existing kernel of the variance function. This would also imply tha t a 

different bandw idth is used.

Similar to et (6) = Yte z^ ,  we define e*(7 , 6) = (Yt — Z ^ 7 )e z^ .  The joint,

local linear Maximum Likelihood estim ator is the solution of the following system of 

equations

where Q i(y)1= (d/dy)(ty(y)y  +  1) and ^ 2 (2/) =  {d/dy)ty(y).  The 2{d +  1) x 2 (d +  1)

Due to the continuity of the 2nd partial derivatives of the likelihood function th a t 

allow the interchange of the partial derivatives the Hessian m atrix  is symmetric. 

1Note here that for notational convenience we rename Q  from earlier sections as Q i.

S<1>(<?,7 ) =  Y |X ) =  ^ { $ ( ei(7 ,0 ))e ((7 ,0 )  +  1}ZtK „ ( X t -  x) =  0,

For the second derivative of the likelihood function Z"(0,7 ), call

n

t = 1

Hessian m atrix  is given by
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Under the conditions listed below, it can be proven th a t the B artle tt identities yield 

the following:

J  \P(e)/(e)de =  0  => J  f '{e)de = 0  (2.46)

J  V 2(e)f(e)de = - J  t l2(e)f(e)de =» J  f"{e)de =  0  (2.47)

J W e)e +  l)^ (e ) /(e )d e  =  -  J  Q1(e)f(e)de => J  ef"(e)de =  0  (2.48)

along with (2 .1 2 ) and (2.13) derived earlier. Call G\{y)  =  y'&(y) + 1 and G2(y) =  ^ ( y ) 

and let 0 < C  <  oo be a generic constant th a t can take different values a t different 

places. Moreover recall H  =  diag{l, h , . . . ,  h}  the ( d + 1 ) x ( d + 1 ) diagonal bandwidth 

m atrix and define

the augmented 2 (d + l)  x 2 (d + l)  diagonal bandwidth m atrix. The following conditions 

are sufficient for the derivation of the asym ptotic properties.

C l' (i) For fixed x, p(x) > 0 with continuous first derivative and / ( . )  has up to 

4th continuous derivatives. Further, it holds th a t Gi(y) , i  =  1 ,2  are twice 

continuously differentiable with Ri(y) = (d/dy)Q{(y)  for i =  1 , 2 .

(ii) For the i.i.d. error term  et , there are <5*, >  2, i =  1,2 such th a t

E |G j(e) | 2<5i-2 <  oo, E |^ ( e ) | 2 <  oo, E |^ ( e ) e |2 <  oo 

E|i?i(e)| <  oo E|/?i(e)e| <  oo for i =  1,2 and E |i?i(e)e2| < oo.

(iii) The mean function m (x) and the log-standard deviation function s(x) have 

up to 3rd continuous derivatives and it holds th a t for fixed x: | (x;) | <  oo and 

\rhij(x!)\ < oo for ||x ' — x || <  C  and i , j  = 1 , . . . ,  d.

C2' The kernel function is a continuous and symmetric density function with bounded 

support. Further, we assume th a t for u  =  ( i t i , . . .  ,Ud)T we have tha t

fj,o = J  K { \ i ) d u = l ,  J  u K ( u ) d u  = 0 and J  u Tu K ( u ) d u  = /X2I
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with H2 = f  u f K ( u ) d u  independent of i. Note further th a t

J  UiUjUkK(u )du  =  0  V i, j ,  k 

[  K( \a J  f  ui ukK (u )du = V I  i = j , k  = l/ UiUjUku iK{u)du  = <
J  [ 0 , otherwise.

C3' The strictly stationary  process (Y^X*) is strongly mixing, i.e.

a(t)  =  sup \P (A)P(B)  — P{AB)\  —► 0 as t  —► oo
Aes0_oo,B£S°°

where with Qfjj we denote the cr-field generated by {(yt ,X t) : t = t i , . . .  , t 2}. 

Further we assume th a t for 8 =  min{<5i, ^2} > 2, with 8i i =  1,2 given in C l'

00

J < 0 0 .
t= 1

C4' As n  —► 0 0 , h —> 0 and —*■ 0 0 .

Again, we should point out th a t the conditions are not the weakest possible. Note 

th a t these conditions are a generalization of conditions C1-C4 to  include the analysis 

of the mean function. Hence, all the remarks for C1-C4 still hold. Further, the rate of 

the bandw idth h remains the same and this is promising for our aim of adaptiveness.

2.7.1 C onsistency of th e  joint estim ator

The following proposition proves the consistency of the joint likelihood estimator.

P ro p o s i t io n  2 . 2  Under conditions C l'-C 4 '; there exists at least one consistent so­

lution of the likelihood equation. Equivalently, there is (0rn7n)> a solution of the 

likelihood equation, such that {0n, l n) —1> (0 °57 O)> as n  —► 0 0 .

49



P ro o f  o f  P ro p o s i t io n  2.2 Define D n \ d ,  7 ) =  n - 1i f ~ 15'n!)(0 ,7 ) , fc =  1,2 then, we

where O^+i is the d +  1-dimensional zero vector. Call £ ^ ( 0 , 7 ; /i) =  E (D n^(0 ,7 )), 

k = 1 ,2  and

Now, suppose th a t none of the solutions of the likelihood equation converges in prob-

p (  II 0 k n , % n )  -  (0 °,7 °) II >  <5') >  6  p (  II ( e kn,%„) -  (0°, 7°) ||<  « ') <  1 -  e 

which implies th a t

p (  inf || D n(0 , 7 ) || >  77)  >  e
V ||6 - 9  | |< ( 5 i , | |7 -7 0||<52 j

for a sufficiently large n  and for some 5i > 0, 77 >  0. Equivalently

inf || £>„(»,7 ) ||-& 0 . (2.50
II0 - 0 °  || < i i , II7 - 701| <<52

write

Dn(e,  7 ) =  - G - ^ u e ^ )  =  ( ^ > ( 9 ,7 ) ,  0d+1)T + (Od+1, D ^ ( 0 t l ))T
f h

D ( e , r ,h)  =  E ( iG - lv i„ (0 ,7 )) =  ( D ^ \ e , r , h ) , o d+1)T + (0d+uD ^ \ e , r , h ) ) T .

By definition, (0, ' j )T : VZn(0 , 7 ) =  0 ^ D n(0 ,7 ) =  0. Moreover it is easy to see 

th a t equations (2 .1 2 ) and (2.46) yield

D (fc)(0°,7°; h) =  0, k = 1,2 => D (0 ° ,7 ° ; h) =  0. (2.49)

ability to (0°, 7 0). Then if (0n,7 n) is a solution then there exists a subsequence 

(0 fcn,7 fcJ> such th a t for 8',e > 0 ,

Since

inf
| |0 —̂ ° ||< < 5 i,||7—7 ° ||< 5 2

D n(0 ,7 ) II -

D ( o , r ,h)  || >

inf
11^-0° I|< < 5 i,|I7 -70||<52

sup II D n{Q , l )  -  D(d,  7 ;h )
I|0-0o||<5i ,II7-7oII<<52
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from (2.50) and Lemma 2.6 below, we have that

inf || D {6 , 7 ; h) || -£► 0
l|0-0°ll<*i,117-7° ll<fc

which contradicts with (2.49) hence conclude.

L em m a 2.6 Under conditions C1/-C4' we have that

sup || D „(0 , 7 ) - D ( 0 , 7 ;/i) ||-> 0  
(0 ,7 )6 ©' x r

as n  —> 00 where © ' x T ', a compact set that contains (0 °, 7 0).

P ro o f  o f  L e m m a  2.6 It holds th a t

sup || D „(0 , 7 ) - D ( 0 , 7 ;/i) ||<
(0 ,7 )e©'xr'

SUP II D n \ e , 7 ) -  L>(1)(0 , 7 ;/i) || +  sup || D^2)(0 , 7 ) -  JD(2)(0 , 7 ;h) ||. 
(0 ,7 )€©'xr' (0 ,7 )€©'xr'

The proof is similar to Lemma 2.1 and we only present the result for D n \o ,~ f ) .  Let

D<2)(0 ,7 )  =  J  E  - x )  =  ; E  K (2, (« ,7 )n  ezr«  n

then note th a t V ^ ( 0 , 7 ) is a strictly stationary process w ith

E ||v ;(2)(0 , 7 )|l =  E  (E ( |e - z^ ^ ( e , ( 0 , 7 ))l |X () -  x ) )  .

Taylor expansion of 4/(e*(0 , 7 )) around et yields

^ M 0 >7 )) =  tf(et) +  fi2(et)(et (0 ,7 )  ~  £t) +  O ((et (0 , 7 ) -  e*)2). (2.51)

Note tha t

(et(0 ,7 ) -  «t) =  (m (X t) -  Z h ) e - Z j e  +  e<(s(X4) -  ZJe) =
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from (2.50) and Lemma 2.6 below, we have that

pinf || D ( 0 , 7 ; h) || -**> 0
I|0-0°ll<«i,ll7-7oll<fc

which contradicts with (2.49) hence conclude.

L em m a 2.6  Under conditions C l'-C 4/ we have that

sup || D n(0 ,7 ) -  D { 0 , 7 ; h) ||-> 0 
(0 ,7 )e©' xr'

as n 0 0  where © ' x T ', a compact set that contains (0°, 7 0).

P ro o f  o f  L e m m a  2.6 It holds th a t

sup || D n( 0 ,y )  -  D ( 0 , j ; h )  ||<
(0 ,7 )€©'xr/

SUP II D n \ e , 1 ) -  D {l){ 0 , l \ h )  II +  sup II £>i2)(0 ,7 ) -  D {2)(0 ,T ,h )  ||. 
(0 ,7 )e0 /x r' (0 ,7 )e©/xr'

The proof is similar to Lemma 2.1 and we only present the result for D n\0 ,~ i ) -  Let

D<2>(0,7 ) =  Z ,Jfc(X , - x )  =  ; E , (!](0 ,7 )n  ez i e  n  ^

then note th a t V ^ ( 0 , 7 ) is a strictly stationary process with

E||Vt(2)«? ,7 )ll =  E  (E ( |e -Z? % ( e ((<?,7 ))| |X () \ \ H - ' Z t \ \Kh{yLt -  x)) .

Taylor expansion of ^ (e f(0 , 7 )) around et yields

^ (e t (0 ,7 )) =  ^(e«) +  fi2 (et)(et (0 , 7 ) “  et) +  ^ ( ( e t (0 , 7 ) -  e*)2). (2.51)

Note th a t

(e«(0,7) -  €t) =  M X * )  -  Z l j ) e ~ z Te  +  et (s(X t) - Z j 0 )  =
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2.7.2 A sym ptotic  norm ality of the joint estim ator

We proceed to  the asym ptotic distribution of the joint estim ator of the mean and 

variance function. The first order Taylor expansion of the derivative of the likelihood 

function around the true value (0 ° ,7 °) yields,

(0„ -  0 ° ,7 „  -  7°) =  7 1 ^ ( 0 ° , y° )  (2.52)

where S n(0° ,7 0) =  ( S n \ 0 ° , 7 ° ) , S n \ 0 0, 7 0)) and (0*,7*) lies between (6n, 7 „) and 

(0 ° ,7 °). We continue as we did in section 2.4.2 and prove some preliminary results. 

To avoid unnecessary repetition, we refer to some of the earlier results. For instance, 

recall th a t

-  W „ (0 ° ,7 ° ))g - 1 ^  0 (2.53)

as a result of the Slutsky’s Theorem and the continuity of the m atrix  as a function 

of (0 , 7 ) while details of the proof can be found in Lemma 2.2. Further, denote with 

<g> the kronecker product of two matrices. In the following lemma, we prove tha t 

-W „ (0 ° ,7 0) converges in probability to the information matrix.

L e m m a  2 .7  Under conditions C l '-  C4' we have that

- i G - 1Wn(0 ° ,7 °)G - 1 I 2 =  p(x) ( V - ‘ (x) I ( / )  V - ‘ (x)) ® S *
n

where

K l )  -  m  k m )  - V W .  1 »
\ « / )  '■(/> /  V « /

with

W )  =  j ( * ( e ) e + l h { S )  =  J (*(«)£+l)»(e)/(e)d£, I 3( f )  = J  y 2(e)f (e)d<

and S/r defined in Lemma 2.3.

P r o o f  o f  L e m m a  2 .7  It is sufficient to prove that: — n - 1i f - 1? ^ ( 0 o,7 0) / / -1  —* 

p(x)(7l_1/ i ( / )  S x  for i = 1 ,2 ,3 . We present the result for i =  2 and the remaining
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cases are proven in the same way. Note tha t

Call R t = e f2i(ef(0°, 7 0) ) #  1Z tZ J H  ^ ^ ( X f  — x) which is a strictly stationary 

process. Using Taylor expansion of f2i(e*(0 ° ,7 °)) around et we have tha t

n1(et(e°,70)) = ni(«t) + 7°) -  et) +  o(e((0°,7°) -  e()

but

et (0 ° ,7 °) -  e, =  (m (X f) -  Z f f ° ) e - zT0 ° + et ( s ( X t) -  ZJ0°)  (2.54)

consequently

et(0 °, 7°) ~  et =  ^
*,j=l

1 ■>
^   ̂ )(Xt,i — x i){Xt,j ~~ %j)- (2.55)
*1j=l

Therefore, for R t it holds th a t

Rt =  U1{et) e - ^ e '‘H - l Z t Z j H - l K h( X t -  x) 

o 1 d
+ R 1(et) ( e - 2Z‘ e  -  ^  miA x ') (X t , i  -  ii)(X w -  Xj) H - l Z tZ j H ~ l K h{X t -  x))

*.i=i

o 1 d
+etR 1(et) ( e - z ‘ 9  -  £  s<J-(x')(Xtt< -  Xi) (X tJ -  Xj )H~'ZtZ j H - l K h{Xt  -  x)).

*J = 1
Based on this decomposition, from C l': E |fti(e)| <  oo, E |i?i(e)| <  oo, E|i?i(e)e| <  oo, 

C2' and bounded 2nd derivatives of the mean and variance function it follows tha t 

EP«|| < oo. Moreover,

E (R t) = J  fii(et) f ( e t)det J  e~ z ^d  H ~ l z t7 %H ~ l K h( * t ~  x)p(xt)dxt + 0 { h 2)
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and substitute x* — x  =  h u

= J  ^ 1  (et)f(et)det J  e~{1'huT)d0 ^  1 U t  j  K (u )p (x  +  hu )d u  +  0 ( h 2)

=  p ( x ) e _ s ( x )  J  H i ( e t ) / ( e t ) d e t  J  ̂  1  U t  ^  Z f ( u ) d u  +  o ( l )

but note th a t

[  (  1  ^  )  t f ( u ) d u  =  (  ^  °
J  \  u  u u T  J  \  0  f i2ld

so using (2.48) we conclude th a t E {—Rt) = p(x)<7 - 1(x ) /2 ( / )  S k  +  o (l). Direct appli­

cation of the ergodic theorem for the process —R t entails the required result.

The following lemma involves the bias of the joint likelihood estimator. Recall 

M . k ,\ and H s defined in (2.20) and let H m similar to H a bu t substitu te  s(.) for m(.).

Further, define the m atrix operator vec : Rn x R m —► Rnm which takes a n x m  m atrix

and by stacking the columns underneath each other from left to  right, it returns a 

n m -dimensional vector. Then

L e m m a  2 . 8  Under conditions C1/-C4' we have that

E i - G ^ S ^ e 0,- /0)) =  - f t 2p (x )G M jrvec[HJ,m( V - 1( x ) I ( / ) V - 1(x))] +  o(h2)
7%

where

M k = ( M k '1 0 ) and H s,m =  (H s, H m) .
V 0  M k ,i  J

P r o o f  o f  L e m m a  2 . 8  Note th a t E (n“ 1G?-15,n(0°, 7 0)) =  (E (n _ 1i / - 15 i ^ ( 0 o, 7 0), 

E (n _1i7 _ 15'n2^(0o,7 ° )) )T and from stationarity,

E (is$ (0 ° ,7 ° ))  =  J  J  e - « - 1̂ G k(et( e \ y ° ) ) K h(xt - x ) f ( y t \yLt)p(xt)dytdxt 

(2.56)
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E ( ( n h ) - 1S l $ ( e 0, T 0) =

=  J  J  -  x ) m x M x t ) d y td x t (2.57)

for k = 1,2. Focus on the case of A; =  1. F irst order Taylor expansion of Gi(e t(6°, 70)) 

around et yields Gi(e*(0o, 70)) =  Gi{et) +  fii(et)(et (0 ° ,7°) -  e*) +  o(et (0° ,7°) -  ct). 

Using expansion (2.55), rearranged to include the rem ainder of the expansion, it 

follows th a t

1 d
Gi(et(0°: 70)) =  G\(et) +  fti(ef)(e~ s(Xt)-  ^  -  Xi)(XtJ -  xj)

i,j=1

1 d
+€t2 M x ) ( A i  -  Xi)(x t,j -  ®i)) +  -  Z i) (X tj  - X j ) ) .  (2.58)

*>j=i
Substitute (2.58) in (2.56) to obtain

n ° ) )  = J  Gi{et) f {et)det J  K h{xt ~  x)p(x*)dx*+

+  J  fti {et) f ( e t)det J  e~s^ i)^ ^ 2 m ij( x ) (X tyi -  Xi)(XtJ -  X j )K h(x t -  x )p{x t)dx t

+  j  V i ( e t )et f ( e t ) dz t j  S i j ( x ) ( X tti -  X i ) ( X td -  X j ) K h( x t -  x )p ( x t)dx t +  o(h2).
i,j=1

B artlett identity in (2.12) yields th a t the first integral is zero. For the second integral, 

applying the transform ation x t — x  =  hu  yields

J  Qi(et) f ( e t)det J  e~s(x+/lu)^ ^  m ij{x )h2u iuj K{}i)p{x  +  hu)du
i,3=1

but fiij = 0 for i ^  j  and using B artle tt’s identity in (2.48) we conclude

=  -  T W W e '* W ^ ( / ) X ] % W  +  o(h2).
3= 1
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Similarly, the th ird  integral is equal to

2

E(^5n!o(0°>7°)) = -yM2P(x)(<7 1(x)/2( / ) ^ m J-,-(x) +  / 1( / ) ^ S j j ( x )) + o(/i2)

= - y ^ 2P(x)(o- 2(x)/3( / ) ^ r o 3J(x)+cr 1( x ) I 2( f ) ' ^ 2 s j i (x )^  + o { h 2).

Summing up, it follows th a t

h2 
' { x j h U )

j=1 J=1

and note th a t using the same arguments, we obtain E(7i_1S^o(00, 7°)) =

/i2 {12PW[0-
j=1 j=l

Further, for E ((n /i)_1iS'n:|r(0 o, 7 0)), r  =  1, • • • , d we argued th a t a third order Taylor 

expansion of m (.) and s(.) is required, see discussion in Lemma 2.4. Hence, we extend 

the expansion in (2.58) to include the third order terms:

1 d
<Ji(et ( 0 ° ,7 0)) =  G j(e t ) +  fi,(£t)(e -< x *>- ] T  n?n3-(x)(X t,4 -  x O (* t,i -  x,)

i,j=1

(i j cf

*,J=1 i,j,fe=l
d

4"“  ^   ̂ 4 ~ Xi)(Xt j  Xj){Xi^  3?/c))
i,.7,A:=l

(2.59)

then for r  =  1 , . . . ,  d

E ( ^ S $ ( 0 ° , 7 ° ) )  =  J  Gi(et) f (€ t)d€t J  Xt'r h Xr K h{xt ~  x )p{*t)dxt+

+  J  toi(e t) f(e t)dct J  e s^ Xt'r ^  Xr K h{xt -  x ) ^  ^  m ij(x )(a;M -  Xi)(xt,j  ~  X j )
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S  ™ijk -  Xi ) ( x t j  -  X j ) ( x ttk -  x k) ^ p ( x t ) d x t +  o ( h 3)
i,j,k=1

+ f Sl i ( e t ) e t f ( e t ) de t J -'r h Xr K h( x t -  x) + ( i  ^  sij(x)(a:M -  ^)(a:t)j -  x j )
m =i

1 d
+  g ^  ”  ^ ) K , j  -  x j ) i x t,k -  X k ) ^ p ( ^ t ) d K t +  o(/i3).

i,j,k=1

F ro m  B a r t le t t  id e n tity , th e  fir st in te g r a l is  zero  w h ile  for th e  s e c o n d  in te g ra l, th e  

tr a n s fo r m a tio n  x t — x  =  h u  y ie ld s

u r K ( u ) ( ^ - h 2 r h i j ( x ) u i U j + - h 3 ^  rhijk ( x ) u iwj wfc) d u + o ( / i 3)
i,j=1 i j j k=1

-| d p
=  ~ h ( f ) p { x ) e ~ s^  (^-h2 m i:?(x) /  u r iiiU jX (u)du

*J=i

1 d f
+ - h 3 E  * *  w  /  UrUjUiUiK ( u ) d u  ̂  +  o(/i3)

*J,fc=l

b u t  n o te  t h a t  s y m m e tr y  o f  k ern el im p lie s  th a t  f  u rU j U i K ( u ) d u  =  0  w h ile

J  urUiUjUkK  (u)du
A  i = r , j  = k 

0  otherwise

hence the second integral is equal to

- ^ - A H D v  1(*)p {*) Y 2  ™>rjj (x) +  o(h3)
3 = 1

and following the same procedure, we prove th a t the th ird  integral is

— y / ' 2 ^ ( / ) p ( x )  E  'S’-ii ( x )  +
3 =  1
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Summing up, for r =  1 , . . . ,  d

E (~ h 5 £ r(0 ° .7°)) =  ( x ) + / i ( / )  s rjj (x ))+ o (h 3)
j= l  j = 1

and in the same way it can be shown th a t E((nh)~l S n}(0° , 7°)) =

~ i4 p (x ) (c t-2( x ) /3( / )  Y ^, ™ rjj (x ) +  0 -'‘(x ) ^ ( / )  X !  (x ) )  +  ° ( /»3)-
J=1 j = l

W riting up the results using m atrix notation, we conclude.

Define the processes t/,(1) =  (V'((1) -E(V 'l(1)),Od+1), C/,(2) =  (0d+i, Vr((2) -E (V rf(2)))T Q„ = 

n - 1 E i i  +  ^<(2)} where =  e-<*-1>zr flOG*(et (0 o, 7 ° ) ) f f - 1Ztlir*(Xt -  x).

L e m m a  2.9  Under conditions C1/-C4' it follows that

(a) ft‘lVar(Ut(1) +  t/<2)) -  p W f V - H x l H / l V 't x ) )  ® S ^ .

(b) h d Er=1 l|Cov((71(1) + lf> , Gt(1) + C/t(2))|| =  o(l).

(c) n h dVax(Qn) —> p (x )(V - l ( x ) I ( / )V _1(x)) ® SJ^.

P r o o f  o f L e m m a  2 .9  (a). Note th a t V a x(U ^  + Uf®) =  V ar( U ^ )  +  V ar(f//2’) +  

E (l/(1)C/(*2)T) +  E([/,(2)f/t(1)T). I t holds th a t

V .r ( t /“ ) -  B < v!»V l»r ) -  (  m ' " V !" T) » \

with E (Pe(1)V;(1)T) =  E (G f(et (e ° ,7 0) ) i f - 1Z,Z 2' / / - 1^ ( X ( -  x )) . In the expansion: 

G2 (et (0°, 7 °)) =  G2 (e() +  2 G i(e()f2i(et)(et (0 o, 7 °) — e()

substitute (2.55), then from E |G i(e ) | 2 <  oo, E |G i(e)fti(e)e| <  oo, (Cauchy-Schwartz 

inequality and C l')  and C2 ', C4', we have tha t

hdE(Vtw Vtm T ) =  p(x) J  G2(et) f ( e t)det J  f  J  K 2(u)du  +  o (l)
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equivalently hdE(Vt^ V t^  ) —► —p(x)Ii(f)S*K . Further, from Lemma 2.8 E(VJ^) =  

0 ( h 2) =  o (l), so we conclude th a t

Similarly, it can be shown th a t

hdVar(Utm ) = - p ( x ) l ! ( f )  I *  J + o ( l ) .  (2.60)

h ^ V arff/f1) =  -p (x )cr  2 (x ) /3( /)  (  °  j  +  o(l) (2.61)

hdE (U ? )U ? )T) = hdE ( u P u l 1)T)T = - p ( x ) a - \ x ) I 2( f )  (  °  S *  \  +  o(l). (2.62)

Combining (2.60), (2.61) and (2.62), we write

hdVai(Ui1) + U?>) -> p (x ) (V -1( x ) I ( / ) V - 1(x)) ® S ^ .

It follows from stationarity  th a t (a) and (b) along with n h d —> oo from C4' and the 

dominance convergence theorem on

Var(<3„) =  -Var(C/((1) +  C /f )  +  -  £  (1  -  - )C o v ([ /1(1) +  t/<2), U &  +  U%\).
71 71 t=l U

are sufficient for (c) to hold. To prove (b) let dn —► oo be a sequence of positive 

integers such th a t dnhd —► 0. Define,

J, =  £  | |C o v (^ (1) +  U ?\ U&\ +  0 | | ,  j 2 = g  HCovfC/W +  C/<2), £/<i> +  O i l -
t= 1 t=dn

It is sufficient to  show th a t Jk = o(h~d), k =  1,2. Note th a t

||Cov(Cli1) +  u f \  +  C/(2\) || < 

l|E(C/1(1)̂ )1r )ll +  l|E(C/1<2)̂ )1r )ll + l|E(C/1(1)£/((2)1T)|| +  ||E (l/1(2)t/t(2)1T)||.
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By definition, ||E (G 1(1)[ / « r )ll =  l|E(V,(1)v£}T) -  E ^ ^ E ^ * ) !  and 

||E (i/1(1)V “ r )|| < E |G 1(e1)G i(£!+1) |E ( | | / / - 1Z 1Z ?;i ||ii:h(X 1+1- x ) ^ ( X 1- x ) ) + 0 ( / i 2)

the la tter using expansion (2.58). Then, from C1/-C2' we have th a t )|| <

oo and since E (V ^ )  =  o (l) for all t , we conclude th a t )|| =  0 (1 ).

Similar arguments for the remaining terms of the inequality ensure th a t for all t >  1

I IC o v ^ 1* + u f i . u g l  + v£\)W =  0(1).

Therefore, hdJ\ = 0 ( h ddn) =  o (l), by definition of dn. Next we consider the upper 

bound of 1/ 2 . By using Davydov’s inequality, see Bosq (1998) Corollary 1.1, for 6 = 

min{5 i ,^ 2 } >  2 where and 6 2  are given in C l/(ii) we have th a t for a l l t  >  1

IICovCC/W +  O '2’, ^ + j O | |  <  C { aW } 1-* (E ||l l{ 1) +  £/1<2) | |* ) i ( E | |0 ’W + 0 g ,1||, ) i

(2.63)

where a(t)  is the mixing coefficient of the process (Y i,X f) given in C3'. Under con­

ditions C l'-C 2 /, for a l l t  >  1 and k = 1 ,2  it holds tha t

EIIVjSlI* <  C E ( |G fc(et(e 0 , 7 0))|'!e-('!- 1>s(Xl> ||/ l - 1Z(+1 ||'!^ ( X , +1 -  x ) )  <

<  C E |G fc(e() |s£ ; ( | | / l - 1Z(+1 ||i ^ ( X (+1 -  x ) )  +  0 ( h 2)

the la tte r from Taylor expansion of G 5k(et (6 °, 7 0)) around et and condition C l': 

E\Gk(et) \ 2 6 ~ 2 <  0 0 , E|Dfc(et )ef| <  0 0  and cr2 (x) > 0 . Hence, for k = 1 ,2

E\\U[%\\S <  C h ^ d J \ G k(et)\sf (e t)det j  | | ( l , u T)||* jr*(u)< iu.

Since E|(7 /-(£t ) | 5 <  0 0  and from C2', it follows th a t E ||C /^ i|| =  0 ( h ^ ~ 6̂ d). Application

of the Minkowski inequality ( e H U ^  +  U ^ W 6 ^ 5 <  (eH E /^ H 5)  * +  ( e U C /^ I I ^  

yields

( e ( | |u£ \  +  t / S l | s) ) ! <  C h W - » d. (2.64)
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Substituting (2.64) into (2.63), we conclude

oo oo
J 2 < C h W - W  ^ { a ( t ) } H  <  C h W - ^ d - 2 ^  t 2{ ^ ( t)} 1_*

i—dji t~dn

and by choosing dn — CTi/2/5-1^ /2, then dn —» oo, hddn —> 0  and Ji  =  o(h~d) and the 

proof is complete.

We now proceed to the main theorem for the asym ptotic distribution of the joint 

mean and variance ML-estimator.

T h e o re m  2.2 Suppose conditions C l'-C 4/ hold. Then, it follows that

V n h * G ((e n -  0 ° ,7 „ -  7 °)r  -  (b 1>b 2)r )  - i  JV(0 ,X2- 1S 2I 2- 1)

where

= p~1(x)(V(x)Tr1(f)y(x))  9  ( S ^ S * 1)

and

(b ! ,b 2)T =  (ft2S ^ M K,1H a,/!2S ^ 1>fA-,iHm)r  +  o{h2).

P r o o f  o f  T h e o re m  2 . 2  Recall expansion (2.52): (0n — 6°, ■yn — 7 °) =

=  W ;1(e* ,7*){5n(0o, 7 ° ) - E ( 5 „ ( e o,7 O) ) } + K 1(e* ,7*)E (5n(6lo, 7 0) ) ^

(0n — 0°, 7„ — 7°) = L, +  L 2

with

L ^ G - 1 (G -1Wn(e , ,7 * )G -1) " 1 G - 1{5„(eo, 7 ° ) - E ( S B(0o,7 0))}

L 2 = G-1 (-G-'Hnie'n^G-'Y1 E(-G-15n(0°,70)).

Then the results of the theorem come directly from statem ents:

(a) V ^ p G L , - i  N ( 0 , l 2 1'£2l 2 1),

(b) L 2 =  (b ,, b 2)r  =  (A2S j ‘M w H „  h2S ^ M KllH m)T +  o(h2).
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Focus on (a) and note th a t G  1(5 'n(0 o, 7 ° ) -E (S 'n(0 o, 7 0))) =  hence

V ^ G h  = ( -G ~ 1'Hn(0','y*)G-1') -7L = Y i hd(U(1)+ U?}). (2.65)
\ n  J  v n h d “

The process is a zero mean, strictly stationary process. Further,, in (2.64),

Lemma 2.9, we showed th a t E \\hd( u £ \  +  U%\)\\5 < C h ^ dhdS = C W  for 8 =  

min{<$i , £2} >  2 . If we denote with a ( j)  the mixing coefficients of the process +  

U ^  then from the properties of strong mixing conditions it holds that a{(j) < a ( j)  

where a ( j )  is the mixing coefficient of (Yt,X.t)T . Thus for the fixed 8 > 2 , condition 

C3' yields <  S J l i a C7)1_y < 00• Consequently, using th e  Central

Limit Theorem 2.21 (Fan and Yao 2003), we have th a t 1 / y /n h d x hd( U ^  +  U ^ )  

follows asymptotically normal distribution with mean zero and variance S ’t2)Tl where

1 ^
S 2,„ =  V a r ( - ^ =  J 2 h d(U^ + U™)) =  nhdVa.i(Q„).

Lemma 2.9 (c) yields £ 2,n —> S 2 =  p (x ) (V -1 ( x ) I ( / ) V _1(x)) ® SJ^. Hencee, it holds 

tha t

- ± =  £  hd{ull) + Ut(2)) - i  N(0, S 2) (2.66)
\  71/lb   ̂ 2

and using Lemma 2.7, we conclude

VnhtGLi - i  N(O . ^ E ^ 1)

where

I 2‘1S 22 J '1 = p _1(x ) ( (V (x )  I - ' ( / )  V ( x )) ® S ^ 1)

( ( V _1(x) I ( / )  V _1(x)) ® S i )  ( (V (x )  I - ‘ ( / )  V (x ))  <g> S ^ 1) .

From Kronecker product properties2, it follows th a t

= p - 1( x ) ( v ( x )  I - ‘ ( / )  V ( x ) )  9  (S ^ 1 S i  S i 1).

2{ A ® B ) ( C ® D )  =  A C ®  B D
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To prove (b) note th a t L 2 — G 1( I 2 1 + op( l) )E (—n 1G 1Sn(0°, 7 0)) and Lemma 2.7 

and 2 .8  imply

U  =  h * M K ((V (x ) I - \ f )  V (x )) ® S ^ 1)  vec[HSim(V _1 ( x ) I ( / ) V _1 (x))] +  o(fc2). 

For the vec-operator and the kronecker product it holds th a t

vec[H,,m( V - 1( x ) I ( / ) V - 1(x))] =  ( ( V - 1( x ) I ( / ) V - 1( x ) ) ® I 2)vec[H s,m] 

where I 2 is the 2 x 2  unit matrix, thus

h i  =  ft!M * ( ( V ( x )  I ~ \ f )  V (x ))® S * 1)  ( ( V - 1( x ) I ( / ) V - 1(x ))® I2 )vec[H s,m]+o(/J2)

and properties of kronecker product yield L 2 = h2M K ^ - 2  ® S ^ v e c p a J  +  o{h2) 

which after some algebraic calculations we write as

L 2 =  (b !, b 2)r  =  (fc2S ^ A f x . i H „  + 0{h2)

and the proof is complete.

Based on the results regarding the asymptotic distribution of the ML-estimator 

in Theorems 2.1 and 2.2, we identify sufficient conditions for adaptiveness in respect 

to the mean function. In a regression adaptive model, w ithout knowing the mean 

function m (.) we can estim ate the conditional variance cr2(.) asym ptotically as well as 

if m(.) was known. This implies th a t the AMSE of the variance estim ator when the 

mean function is unknown is equal to the AMSE of the variance estim ator derived 

under the assumption of known mean function. Note here th a t the bias term  in 

Theorem 2.2 for the variance estim ator is equal to the bias term  found in Theorem

2.1. However, the block of the asymptotic variance th a t corresponds to the variance 

estim ator is not exactly the same as the asym ptotic variance from Theorem 2.1. 

In the following proposition, we identify a sufficient condition for mean regression 

adaptiveness of the variance function estimator. Particularly, it holds th a t
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P ro p o s i t io n  2.3  The local linear Maximum Likelihood estimator of the variance 

function is asymptotically adaptive regarding the mean function, i f  the information 

matrix 1 ( f)  is diagonal. Equivalently, for the information o f the jo int variance and 

mean function estimator, it holds that 1 2 ( f )  = 0. A sufficient condition would be that 

the error density function is symmetric.

P ro o f  o f  P ro p o s i t io n  2.3  We concentrate on the variance term  of the asymptotic 

distribution given th a t the bias term  remained unchanged. Assume th a t the infor­

mation m atrix  of the error density I ( / )  is diagonal i.e. I2( f )  =  0. Then for the 

asymptotic variance =  p _1(x) ^ V (x )I_1( /)V (x )^  (g> ( S ^ S ^ S ^ 1), found in

Theorem 2.2, follows th a t

Zo^EaXo = P  (x) K K
V 0 ^ ( x ^ C O S ^ S * 1

and the block of the asym ptotic variance of the log-standard deviation estimator 

corresponds to  p~1( x ) I f 1( f ) S ^ S ^ S ^-1 which is the same as the asym ptotic variance 

of the log-standard deviation derived in Theorem 2.1 where the mean function m(.) 

was assumed to be known. Therefore under the condition of I 2( / )  =  0, we have proved 

th a t the estim ator is mean regression adaptive. In addition, note th a t the assumption 

of symmetric density function means th a t the function \I/(y ) is antisymmetric while 

ty(y)y  +  1 is symmetric and therefore their product is antisym m etric implying th a t 

h ( f )  — 0. Therefore, the condition of symmetric error density, is sufficient for the 

M L-estimator to  be mean regression adaptive.

Intuitively, the identified condition for adaptiveness is not surprising at all. Re­

gression adaptiveness implies th a t the mean function m (.) has no contribution to the 

estim ation of the variance function cr2(.). The la tter is also implied by the identified 

condition th a t the joint information for the mean and variance functions is zero i.e. 

I2( f )  = 0. Consequently, using the M L-estimator of the mean function has no cost 

at the performance of the variance function estim ator in term s of Asymptotic Mean 

Square Error, assuming th a t the error distribution is symmetric.
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2.8 Num erical applications

Theoretical findings, based on large sample properties, are in favor of ML-estimator. 

However, it remains to be seen if this holds when dealing with small sample data 

sets. In order to evaluate the performance of the M L-estimator, it would be better 

if we knew the true values of the variance function. For this reason, we present 

two examples based on simulated data. Real data  analysis is postponed to Chapter 

5. Note th a t our prim ary interest is the variance function and therefore the data  

is generated from conditional heteroscedastic models in the form of (2 .2 ) with the 

mean function set equal to zero. The bandwidth is selected from the data  driven 

algorithm described in earlier section with a slight modification. Specifically, instead 

of using the AMSE which would yield a local bandwidth, we calculate the bandwidth 

estim ator by minimizing AMISE(h) =  AMSE(xj, h) a t given grid points x*,

for the range of band widths h — a Ck  for k  =  0 , . . . ,  15. This function is 

an approxim ation to the Asymptotic Mean Integrated Square Error (AMISE) and 

it is based on the global performance of the estimator. As a result, the estim ated 

bandw idth is a global bandwidth, independent of x*. The range of bandwidths has 

been suggested by Fan, Yao, and Cai (2003). The constant Ck  depends on the kernel 

function and it is Ck  =  0.2 for Epanichnikov kernel and Ck  =  1.2 for Gaussian 

kernel, while a  is the sample standard deviation. Note th a t at each of the steps, we 

choose to  fit a second order polynomial approximation in order to  get estim ates for 

the second derivative of the variance function. Furthermore, theoretical comparison 

was based on the AMSE. Instead, for the numerical evaluation of the performance 

of the estim ator we employ an alternative measure, the Mean Absolute Deviation 

Error i.e. MADE =  n~^id Y a =T  |<72 (*i) -  ^ 2 (xi)|, where {x*, i =  1 , . . . ,  ngrid} are grid 

points in a given interval of the domain of the variance function. We choose a different 

measure from AMSE in order to  ensure tha t the gain in efficiency is independent of 

the measure used in the derivation of the theoretical results.
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2.8.1 N um erical exam ple 2.1

We simulate 100 random samples, each with size n =  200, from the model Yt = 

a(Yt- i , Y t- 2 )£t w ith a ( x 1 , 2:2) =  0 .3 ^ /l +  x \  -flo g (l -Fa;2) where the error distribution 

is assumed to be (i) standard  normal, (ii) ^-distribution w ith 6  degrees of freedom 

and (iii) ^-distribution with 14 degrees of freedom (both standardized to ensure tha t 

E(e2) =  1 ). The grid points x* are equally spaced points on [—2,2] x [-2 ,2 ] with 

Tigrid = 92 =  81. Moreover, we use the bivariate Epanechnikov kernel, K ( u) =  

k(ui)k(ii2 ) w ith k(u) = 0.75(1 — u2)+. The selected kernel is symmetric and has a 

bounded support as required in C2. Fan and Gijbels (1996) also proved th a t Epanech­

nikov kernel is the optim al kernel, in the sense of minimum MSE, over all nonnegative, 

symmetric and Lipschitz continuous functions.

In Figure 2.1 we present the plot: (a) the true variance function and (b) the 

Maximum Likelihood estim ator of the variance function. Note th a t the MLE is, 

overall, a good approxim ation of the true function especially in the middle grid points 

but there seem to be a discrepancy a t the boundary grid points, due to the lack of 

sufficient observations in neighborhoods closed to  the boundaries. In Figure 2.2(i), 

we plot AMISE against the bandwidth. In plot (a) we have the AMISE based on 

the true values of the variance and its derivatives. The minimum is attained around 

hopt =  0.31 which is the optimal bandwidth. In (b) we plot the estim ated AMISE 

calculated using the M L-estimator of the variance and its derivatives used at the 

final step of the data-driven bandwidth selection algorithm  described in section 2.5. 

Note th a t the curve is slightly shifted to the left and the estim ated optimal global 

bandwidth is hopt =  0.297. This value lies relatively close to the true value. After 100 

repetitions for all different samples we noticed th a t for the d a ta  driven bandwidth 

estim ator it holds th a t |/iopt -  hopt| <  5 x 10- 2  except from 8  samples. In other words, 

the algorithm identified the optimal bandw idth with error margin less than 5 x 10“ 2 

with probability 92%. The result implies th a t the estim ated bandw idth from the 

proposed da ta  driven converges in probability to the optim al global bandwidth.
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Figure 2.1: Plot of standard deviation function a(x  1, 2:2): (a) The true function (b) 

the ML-estimator for gaussian errors.
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Figure 2.2: (i) Plot of AMISE vs bandwidth h using (a) the true value of <r(.) and its 

derivatives (b) the ML-estimates. (ii) Box-Plot of MADE for the LSE and MLE for 

gaussian and ^-d istribu ted  errors with k =  6 and k = 14 d.f.
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In Figure 2.2(ii), we present the box-plot of the Mean Absolute Deviation Error 

(MADE) defined above. Particularly, in the first plot where the error distribution is 

gaussian, the box plot shows th a t the two nonparam etric estim ators perform simi­

larly, with a slight preference for the MLE but note also th a t M LE’s mean absolute 

deviation takes same extreme values while LSE looks more robust. This is in line 

with our findings of equivalent AMSE of the two estim ators for gaussian errors. On 

the other hand, when looking at the box plot for errors following a ^-d istribu tion  

with k  =  6  (left) and k =  14 (right), it is revealed th a t MLE outperforms LSE. 

Their difference in performance is more evident for small degrees of freedom and it 

is reduced when the degrees of freedom increase. Note also th a t, independent of the 

estim ation procedure, the estim ators deviate further from the true values when the 

error distribution departs from gaussian distribution. The la tter is due to the exis­

tence of many extreme values in the case of t-distribution th a t affect the quality of 

the estimation. However, as noted above, the M L-estimator deals with the existence 

of extreme values in a better way compared to the LS-estimator.

2.8.2 N um erical exam ple 2.2

We simulate 100 random samples of size n =  200 and n  =  500 from the conditional 

heteroscedastic model Yt = a(Yt_ i ,Y t- 2 ,Y t - 3 ) £ti which is in the form of (2.2) with 

zero mean and a(x \ ,  x 2, £ 3) =  0.35(£i +  i)g°-25(*2+*3)t The error distribution is as­

sumed to be (i) normal, (ii) ^ -d istribution  and (iii) ^ -d is tr ib u tio n  (standardized 

to ensure identifiability). The grid points are selected on [0,1] x [0,1] x [0,1] with 

ngrid =  33 =  27. We use K ( u) =  k(u i)k (u 2 )k(u3) where k(u)  is the Epanechnikov 

kernel defined above.

The results for the MADE are presented in Figure 2.3. The top three box-plots 

correspond to the sample size n  =  200 while the sample size is increased to n = 500 

for the box-plots at the bottom . It is clear tha t, independent of the sample size, the 

MLE outperform s the LSE. Their difference is more em phatic when the errors follow
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Figure 2.3: Box-Plot of the MADE for the LSE and MLE for gaussian and 

d istributed error w ith k = 2 and k  =  15 d.f. and n  = 200, 500.
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a ^-distribution with small degrees of freedom while the difference in the performance 

becomes less apparent when the degrees of freedom increase and it is almost indistin­

guishable for the gaussian errors. Note here th a t using a ^-d istribu tion  violates our 

assumptions bu t it is revealing tha t, in practice, MLE performs better even when the 

error distribution has infinite variance. Further, comparing the box-plots for the dif­

ferent sample sizes, we can see tha t, though the increase in the sample size smooths 

out to  some extent the differences of the two estim ators, the  improvement is still 

significant as implied from the theoretical results derived for large n.
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Chapter 3 

A daptive M aximum Likelihood  

Estim ator

3.1 M otivation and preliminary results

The reduction in the Asymptotic Mean Square Error and the performance of the 

Maximum Likelihood estim ator in the numerical examples suggest th a t there is an 

alternative to  the Least Squares estim ator of the variance function within the non- 

param etric context. Note th a t in the im plem entation of the estim ation procedure, we 

used the error distribution, assuming it is known. However, such an assumption raises 

serious concerns as there are few cases where we can claim th a t the error density is 

known a prior. Hence, though the likelihood estim ation procedure yields plausible 

results, it cannot be implemented in practice when dealing with real data  coming 

from unknown distribution.

The aim of this chapter is to  propose a feasible, likelihood-based estim ator for the 

variance function th a t will not require the error distribution to be known and will 

share the same asym ptotic properties with the estim ator introduced in Chapter 2. In 

other words, we introduce a likelihood-based estim ator th a t is adaptive to the error
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distribution. But first, we present some preliminary results th a t will play a key role 

in establishing the asym ptotic properties of the proposed estim ator. These results are 

known theorems in the context of nonparam etric theory and involve rates of uniform 

convergence for kernel-based estimators of the error density as well as of a general 

regression function.

Recall th a t (Y^X*) is a strictly stationary process w ith Yt a scalar and X.J = 

{Xtyi , . . .  , X ttd) a d-dimensional random variable. For notational convenience denote 

with /(°) the density /  and /W  the z-th derivative of /  and let C  > 0  be a generic 

constant th a t takes different values at different places. We begin with the theorem 

th a t involves the optim al rate of uniform convergence of the kernel density estimator.

Theorem 3.1 Let et be an independent identically distributed process. Denote with 

f ( y )  the density function of et that has a compact support S  c R .  Assume that the 

kernel function W ^ i- )  has up to 2nd continuous derivatives that satisfy the Lipschitz 

condition. Then, for  i= 0 ,l and hi ~  n -1^ 2l+5l

sup | f {l)(y) -  f {l\ y )  | =  Op((log n )1/2n _2/(2t+5))
y&S

where f W  = f  is the regular kernel density estimator and f M  the estimator of the 

1st-derivative.

Proof of Theorem 3.1 We prove the result for the derivative of the density function 

i.e. for i = 1. Proof for the density function itself can be found in Fan and Yao (2003). 

Note th a t f ^ ( y )  = n~ l h i 2W '((et -  y ) /h i ) .  Take a partition of the compact 

set S  =  ( J j l i  Sjj where N  =  [{n/hi)1/2]. Then, if yj is the center of Sj,

sup I f { y )  -  E ( / '( 3/))| <  m ax | f ( Vi) -  E ( / '( % ))| +  C { n h \ Y ^  (3.1)
y e s  1 < J < N

the la tte r from the fact th a t |f ' ( x )  -  f '(y ) \  < C h f 2\x -  y\ and a similar result for the 

expectation. Define Ut =  h i 2{W'{{et — y ) /h i )  — E (W '((et — y ) /h i ) ) }  then || Ut ||oo< 

C h i 2. Moreover, E (Ut) =  0  and Var(Ut) = 0 ( h i 3). Call a  =  Var(C/t) =
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O ^ 3), hence B ernstein’s inequality for independent, zero-mean, real valued pro­

cesses, yields

I ^  2 2

p ( \ — T  Ut | >  e) <  exp( —— s-) <  exp( y-■ —-----=-)
PV2 cr +  C /ir2e; “  PV2 hj- 3 +  C T ijV

and if we take e2 =  cm- 1/ i f 3 logn  for sufficient large a  >  0  then

p ( \ - y  Ut\ > e) <  exp(—— 3— ^ 2 ,  5̂ S ^ ------ ) <  exp(—̂  logn) =  0(n~%).' 2/if3 + aC h ^n -1 logn' v C ' v '

Consequently

P (  1 “ <w >  f )  -  0  (3-2)

for large a' > 0. Prom (3.1) and (3.2), it follows th a t

sup | f { y )  -  E ( f ( y ) ) \  = Op((lo g n )1/2 (n/i?)_1/2)

while standard  kernel density theory implies th a t supy6 5  |f ' ( y )  — E ( f ( y ) ) \  =  0 ( /i2). 

The last two uniform convergence rates with h\ = C n ~ 1/7 along w ith the inequality

sup \ f ( y )  -  f '{y)\ < sup \f '{y) -  E (f '(y ))\  +  sup \ f '(y )  -  E ( f ( y ) ) \
y € S  y € S  y e S

entail the result for i =  1 .

The assum ption of i.i.d. can be relaxed to include time series. Indeed, the same rate 

of uniform convergence is found for a strictly stationary geometrically mixing process, 

see Bosq (1998) and Fan and Yao (2003). However, here the errors are assumed i.i.d. 

and hence the above result is sufficient for the error density estim ator.

The second theorem involves the uniform rate of convergence of a kernel based 

estim ator for the general regression function. Let r(x ) =  E(q(Yt) \X t =  x) where 

Yt £  E  and x  6  R d w ith density p(x). Define g(x) = f  q (y ) f(y ,x .)d y , x  6  Kd. The 

kernel estim ators of g,p and r are then given by:

ffW  =
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and f(x ) =  g (x ) /p (x )  w ith Kh{-) = l / h dK ( . /h )  a d-dimensional kernel. Uniform 

convergence requires the density p(x) to  be bounded away from zero, equivalently th a t 

there is 77 >  0 such th a t infxe#{p(x)} >  77. In case of tim e series we have th a t p(x)  

and the error density / ( x )  are related, so this assumption precludes some interesting 

error distributions e.g. the beta  distribution. Hence, we relax this assumption and 

we allow the density to converge to zero at the tails though we impose restrictions on 

the rate of convergence. Particularly,

Definition 3.1 A sequence B n of compact sets in Md is called regular in respect to 

the density p(x) i f  there exists a sequence of real numbers j3n and a constant 7 >  0 

such that fo r  each n

inf p(x) > Pn > 0 and 6(Bn) < n y 
x € B n

where 6(Bn) is the diameter of B n.

Then, it can be shown tha t,

Theorem 3.2  For Yt G R and X t 6  B  C R d let (>t ,Xt)  be a strictly station­

ary geometrically mixing process and let a  >  0 such that E ( e a My°N) <  0 0 . Sup­

pose that g(x) and p(x) are bounded and also have bounded second derivatives. Let 

Kh{.) =  1 / h dK ( . /h )  with K (.)  a continuous density function that satisfies the Lips- 

chitz condition. I f  6n is a sequence of real numbers such that there exists a regular, 

in respect to the density p, sequence of compact sets B n satisfying

8n(log n ) 3 / 2 - l / ( d + 4 )

Pnn 2/(d+4)

then for  h ~  (logn)1̂ d+4 7̂2_1^ d+4  ̂ it holds that

5n sup |r(x ) — r(x ) | —> 0 .
xeBn

The proof of Theorem 3.2 can be found in Bosq (1998), so is om itted. Note tha t 

for q(u) = u 2 the estim ator r(x)  =  g (x) /p (x )  is the N adaraya-W atson estim ator for 

the variance function.
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3.2 The adaptive M L-estim ator

For the M L-estimator introduced in Chapter 2, which from now on we refer to as 

the infeasible M L-estimator, the conditional local log-likelihood function /n(# ;Y |X ) 

in (2.5) and consequently the score function Sn(6) introduced in (2.6), were defined 

under the assum ption of known error density. The following likelihood-based estima­

tor does not require such an assumption. Instead, we estim ate / ( . )  and its derivative 

/ '( . )  to  find an estim ator for \I/(.) which we plug in to the score function. Then, 

using the estim ated score function and information m atrix, we calculate the new 

likelihood-based estim ator. A detailed description of the proposed algorithm is:

Step 1. Let of =  gt (X.t) /  p t ( X t) the Nadaraya-W atson initial estim ators where

S=l,3^t S = l,S^t

Use the initial estim ators s t =  logcq to  find the error estim ates et = Yte~St. 

Step 2 . Define

^ ( y )  = - £  w ll>« e . - v ) / h )

the standard  kernel and the leave-one-out density and derivative estimators 

based on the estim ated errors from step 1 .

Step 3. Use i t {y) = f t i v ) / f t { y )  to obtain an estim ator for the score function:

n
Sn(e)  =  J 2 { V ‘(.et(e))et(0) +  1}ZtK k(X i  -  x).

t= 1

Further, the estim ator for the (d +  1) x (d +  1) inform ation m atrix  is

n
i n { e )  =  +  i y z tz f K h( x t -  x).

t= 1
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Step 4. Define 9 = (6q, . . .  ,9d)T to be an initial LS-estimator, then the proposed 

likelihood-based estim ator is the one step Newton-Raphson estim ator call 6 n r  

calculated from:

e NR = e - i - \ 0 ) s n(0). (3.3)

Note th a t the denom inators of the estimated score function and information matrix, 

Sn(9) and 2 n(9) respectively, can be small enough to cause problems. At this point 

we follow Linton and Xiao (2001) and introduce a trim m ing function. A smooth 

trimming function th a t they propose is

Gb(x) =  <

0 , x  < b

f-oo 9 b(z)dz , b < x  < 2b  w ith gb(x) =  -  1 )

1 , x  > 26

where g(.) is a density function with support [0 , 1], g(0 ) =  g( 1 ) =  0  and b > 0  the 

trimming param eter. Hence, we use the trimmed score function estim ator
n

S n(0) =  +  l } 2 tK h( X t -  x )G b(ft (et (0)))
t =  1

and the trim m ed information m atrix estimator
n

in {0 )  =  £ { ' l t (ei(6l))et(0) +  1}2Z(Z* K h{ X t -  x )G t ( / ,(e t(0)))
t =  1

in (3.3) to  calculate 9 n r •

It is understood th a t the proposed estim ator 9 n r  requires the calculation of a 

number of initial estim ators. We start by calculating the LS-estimator 9 = (0q, . . . ,  §4 ) 

using a first order polynomial approximation. A necessary requirem ent is th a t 9 is 

a consistent estim ator. The la tter is a well-known result, proof of which can be 

found in many nonparam etric textbooks, e.g. Hardle (1990) among others. Further, 

the Nadaraya-W atson estim ators of are easily calculated based on standard kernel 

theory. The following corollary is a direct application of Theorem  3.2 and it entails 

the uniform convergence ra te  of the initial estim ators of.
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C o ro lla ry  3.1 For Yt G R and X t G B  C  Md bounded, let (Yt , X t) be a strictly 

stationary geometrically mixing process and assume that there exists a  >  0  such 

that E(eaVo2) <  oo. Suppose <J2 (x) =  E (yt2 |X* =  x) and p(x) the density of X* 

are bounded and also have bounded second derivatives. For the kernel it holds that 

Kh{.) — 1 / h dK ( . /h )  where K (.)  is a continuous density function that satisfies the 

Lipschitz condition. I f  there exists a regular in respect to the density p(.) sequence 

of compact sets B n, where (5n =  n “^ lo g n  with 0 <  (I <  2 /(d  4) then for h ~

(lo g n )1/(d+4)n-1/(d+4) it holds that

sup \a2 -  a 21 =  op{n -s{logn)1/2) f o r  5 = — -  f3 > 0.
0 <t<n a + 4

P r o o f  o f  C o ro lla ry  3.1 For bounded X f, Definition 3.1 implies th a t for each n, we 

can find B n , independent of t, such th a t X t G B n for all 0 <  t < n  and hence we have

sup \<j2 — <j2\=  sup |d 2 (X*) -  cr2 (X f)|. (3.4)
Q<t<n Xt £Bn

We need to write our model in the same form as the model in Theorem 3.2 and 

prove th a t all assumptions hold. Indeed Yt =  a ( X t)et can be w ritten as follows: 

Y 2 = a 2( X t) +  <r2 (X f)& with E « t |X t) =  0, as & =  e2 -  1. Hence E(Y;2 |X f) =  a 2 (X,) 

which is in the form of E(q(Yt)\Xt) =  r (X t) for q(u) = u2 and r(u) = a 2(u). Note 

th a t pn = n~P\ogn  w ith 0 <  (5 < 2 /(d  +  4) therefore, for 5n = n~6(\ogn)1/2 with 

8 =  2 /(d  +  4) — (3 > 0, it holds th a t 5n(logn)3/2- 1^ <i+4 /̂?“ 1n -2^ d+4  ̂ —> 0 thus, the 

rate  of uniform convergence of the estim ator is

sup \a2( X t) -  cr2( X t)\ = op(n~5(logn ):1/2) (3.5)
XtGl?n

the la tte r as a direct application of Theorem 3.2. Hence from equation (3.4) and (3.5) 

we conclude.

I t is understood th a t the calculated rate of uniform convergence for the initial 

estim ates is attained  for the specific choice of bandw idth h ~  (logn)1/ ^ +4)n_1^ d+4). 

This rate is close to the rate of the optimal theoretical bandw idth ho calculated by
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minimizing the AMSE, (Wand and Jones 1995 and Simonoff 1996). In practice, we use 

the “plug in” bandw idth ho, found by minimizing the estim ated AMSE. The numerical 

examples below reveal tha t the calculated bandw idth lies close to the required rate i.e. 

ho ~  n -1/(d+4) and hence uniform rates from Corollary 3.1 can be achieved by using 

the “plug in” bandwidth. Nevertheless, the conclusion is not general since it only 

applies for the particular examples. At this point we argue th a t the required uniform 

rates, though im portant for the derivation of the asym ptotic properties, are in practice 

as crucial as the constant term s especially for large n. If there is any significant 

departure from the assumptions, it will be revealed in the overall performance of the 

final estim ator.

A part from the initial variance estimators, we calculate an estim ate for the error 

density and its derivative. Theorem 3.1 yields the uniform convergence rate of the 

regular density and derivative estimators:

M v )  =  E » r(1)( ( £.  -  v ) / M ,  fT(y)  =  — p  E  ~ * ) / * • )
 ̂ s -— 1 s—1 t

th a t are based on the true error values. However, the estim ators defined in step 2 are 

based on error estimates rather than the true values hence Theorem 3.1 is not directly 

applicable. Instead, we prove the following proposition as a  result of Corollary 3.1 

and Theorem 3.1. There, we derive the uniform rate of convergence for the density 

and derivative estim ators calculated using the error estim ates e*.

P ro p o s i t io n  3.1 Let assumptions A1-A4 (below) hold. Then for  all t  and for i=0,l

L  supyes  If t l\ y )  -  f t l){ y )I =  op(n_2̂ d+4̂ +/3(i°gn) ^ 2)

2- supyes -  / (% ) |  =  Op(n_2^ 2i+5^(logn)1/2).

P r o o f  o f  P ro p o s i t io n  3.1 We claim th a t if inft cr2 >  0, then lim ^ooinf* d 2 > 0 . 

Indeed, from Corollary 3.1 we have th a t sup* |d 2 — cr2| —► 0 so for each e > 0 there is 

n 0 e  N such th a t |cj2| >  |cr2| — e for n  > no and all t. Therefore inf* |<j2| >  inft |of| — e.
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Choose e such th a t 0 <  e <  inf* |a 2| to conclude th a t limn_ 0 0 inff \d2\ > 0. Further, 

first order Taylor expansion of W^l\ e s — y /h i )  around (ea — y ) /h \  yields

1 s = l , s j £ t  * *

1  ̂ 3f; a|
V '  ................... ~ Ie (

1 S=l,S^t
with e* lying between ea and ea. Assumptions A1-A4 ensure th a t Corollary 3.1 holds, 

implying th a t for the initial estimates calculated with the s tandard  kernel method, 

the rate of uniform convergence is sup0<a<n |cr2 -c r2| =  op(n _2^ d+4)+/3(logn )1/2) equiv­

alently, sup0<a<n |ea — ea| =  op(n_2^ d+4 +̂^ (logn)1/2) from A3 and lim ^oo  inf* <r2 >  0 

proved above. Since f^ l+1\ y )  for i =  0,1 is bounded, from Theorem 3.1 we conclude 

that

SUP 1-^+5 E  H/(i+1>(^l—^)| =  Op(l). 
»£S n h ' J z U t h l

Hence, the right hand side of the inequality above is of order op(n 2/(d+4)+^(log n )1/2). 

Thus we conclude th a t for all t :

Further,

sup | f t l)(y) ~  f t \ y )  I =  op(n 2/(d+4)+/3(logn)1/2) for i =  0 , 1 .
y e s

I/«%) -  / % ) I < l/(% ) -  / (i)(y)I + ~ v)/M-

From Assumptions A1-A4, application of Theorem 3.1 yields th a t 

sup \ f t l\ y )  -  / (<)(y)I =  op(n~2/(2l+5)(logn )1/2)
y e s

for hi =  C n~ l^ 2i+^  and the proof is complete.

Based on the dimension d of the unknown variance function <j2(.) and the constant 

j3 th a t depends on the tails of the error density, Proposition 3.1 yields the following 

possible cases:
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a. If 2/(d  +  4) <  2 /7  +  (3 then for i = 0,1,

sup | f t \ y )  -  f {l\ y )  | =  op(n~2/id+4)+/3(\ogn)1/2) for all t. (3.6)
yES

b. If 2 /7  +  p  <  2/{d  + i ) < 2 / 5  + (3 then

sup \ f t (y)  ~  f ( y )I =  of,(n^2/M+4,+'3(logn)1/2)
yES

and

sup -  / ( 2/)| =  op(n " 2/7 (logn)1/2) for all t. (3.7)
yES

It is understood th a t the lowest uniform convergence rate for the density and the 

first derivative occurs for d,/3 such th a t 2/{d  +  4) < 2 /7  +  j3. Hence, the following 

results are derived for the particular case th a t yields the lowest rate and we claim 

th a t the same holds for the omitted cases of d, (3 th a t yield faster rates. Next we 

state  the regularity conditions th a t are sufficient to  derive the asym ptotic properties 

of the proposed estimator. These are not the weakest possible and can be altered at 

the cost of lengthier proof.

A1 Let et be i.i.d. with f ( y )  the error density function with compact support S. 

Assume th a t /  has up to  4th continuous and bounded derivatives with /  and 

/ '  satisfying Lipschitz condition. Further, recall fi,(y) = (d /d y ) (y ^ (y )  +  1) and 

R(y)  =  (d/dy)Q(y), then it holds th a t E|\I/(e)e +  1|6 <  oo, E|Q(e) | 3 <  oo, 

E |i?(e) | 2 <  oo and E |fl(e)1F(e)e2 |3 <  oo.

A2 For the d-dimensional symmetric kernel Kh(.) =  1 / h dK ( . / h )  assume th a t it has 

compact support and satisfies the Lipschitz condition. Similarly, for the uni­

variate kernel =  h ^ W ^ / h i )  defined on a compact support, we assume

th a t it has up to 2nd continuous derivatives th a t satisfy Lipschitz condition.

A3 Let (Y^Xf) be a bounded, strictly stationary, absolutely regular process with 

the fi-mixing coefficient satisfying B(A:) <  Copk for Cq > 0 and 0 <  p < 1. Call
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p(x) >  0 the marginal density of X* with bounded 2nd derivatives. Further, we 

assume th a t there exists a regular, in respect to p(x), sequence called B n with 

/3n =  n _/3logn  with 0 <  (3 < 2/(d  +  4), see Definition 3.1.

A4 Assume th a t cr2 (x) =  E (y t2|X  =  x) has up to th ird  continuous and bounded 

derivatives. Moreover, it holds th a t inf* of > 0.

A5 For the trim m ing param eter b assume th a t b ~  n~a w ith 0 <  a < l / ( d + 4 ) —(3/2. 

Further, n h 2d —> oo and h —► 0 as n —> oo.

Note th a t assumptions A1-A5 ensure th a t conditions C1-C4 in Chapter 2 hold. Par­

ticularly, C l holds for 8 = 4. It also follows th a t (Yt , X*) is a Geometrically-Strongly- 

Mixing process. Indeed, from A3 and properties of mixing coefficients we have tha t 

a(k) <&(k) < c0pk. The property of GSM is necessary for the application of Theorem

3.2. It is easy to see th a t conditions of Proposition 3.1 above, are implied from A1-A4.

3.2.1 A sym ptotic  properties o f the adaptive M L-estim ator

We can now proceed to the asymptotic properties of the proposed estim ator O^r - 

Denote with 6n the infeasible estim ator of C hapter 2, then from Theorem 2.1:

\/nMtf(<?n - 0 o - b ) - i i V ( O , I - 1E X -1) (3.8)

while from Lemma 2.3

4 1  =  p ( x ) / ( / ) S * .  (3.9)

T h e o re m  3.3  Under A1-A5, we have that

Vnh*H(eNR -  0° -  b) - i  JV ^ X -'S I-1)

with J ,  S  and b  defined in Theorem 2.1. Equivalently, the infeasible ML-estimator 

and the proposed estimator follow asymptotically the same distribution.
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P r o o f  o f  T h e o re m  3 .3  From (3.3) it holds th a t

{ e NR -  0°) =  (0 -  e ° )  -  l - \ e ) s n{0 ). (3.io)

Taylor expansion of S„(0) around 0° yields S„(0) =  Sn(0°) — H „(0°)(0  — 0°) +  op(l) 

since 0 — 0° —> 0 from consistency. Substitution in (3.10) yields

(0n r  -  0 °) =  ( 0  -  0 °) + i „ - I (0 )W„(0 ° ) ( 0  -  0 °) - i ; \ 0 ) S n(0°) +  o„(l).

Note th a t the  result of the theorem follows from

(i) l / n H - ' & t f )  — X„(0°))i? - 1 £  0.

(ii) V n F ( l / n H - 15 n(0°) +  H I b )  - i  N ( 0 , S).

Indeed if (i) holds then from n ^ 1 —> T  = p ( x ) / ( / ) S x  we conclude th a t

- H -ll n{0)H- 1 X =  p(pc) I( f)SK . (3.11)n

The la tte r along w ith (3.9) yields th a t — Xn(6)~1'Hn(9°) Id+i, the unit matrix, 

consequently

(0 _  0°) + J n( 0 ) - 17in(0°)(0 -  0°) i  0 

while (ii) along with (3.11) and Lemma 2.4 ensure th a t

'•/nt?Hin{O)-l [ s n{0°) -  E (S„(00)) )  iV(0 ,X - 1E X -1).

Focus on I  =  l / n / / _ 1(2n(0) — l n{0Q) )H ~ l . For notational convenience, we denote 

e* =  Yte~z f ^  and et =  Yte~z ^ ^  while recall th a t =  Yte~Si and et = Yte~Si with 

s t =  1/2 log a l  and st =  1/2 log of. Then, we write

/  =  - H - \ i n(0) -  Tn(0))H-x + - H ~ \ l n{0) -  X„(0°))f/-1 =  h + h-n n

Furtherm ore, I\  is decomposed to: 

h  = ~ Y  + l } 2 -  m h ) e t + l ^ H ^ Z t Z j H ^ K ^ X ,  -  x )G „(/t (e())
71 f = l
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+ l y H - i Z t Z f H - ' M X t  -  x ) ( G b(ft(et)) -  l )  = h i + In-
t =  1

From **(«,) -  t f2(et) =  f t~2(et) ( f? ( e t) -  A * ) )  +  / r 2(et) ^ 2(et) ( / 2(et) -  £ (« ,) )  

and * , ( * )  -  ®(e.) =  / ^ f o X / ^ )  -  / '( e t)) +  / f ‘ ( ^ M ^ X / t e )  -  /<(«.)) with

~  n  ° and |Gb(/t)| <  C  we conclude th a t

/ n  <  C n 2“{ 1  f '  | /f(e« ) -  / ' 2(et)|e2i / - 1Z(Z f i / - 1̂ ( X t -  x)
^  f = l

E  -  / ? t e ) l * 2te ) e ? #  ■‘Z f Z f / r ^ X ,  -  x )}
TL j

t = i

+ C " “{ -  E  -  / ' ( e () |g < i/-1ZtZ j’/ / - 1A'A(X ( -  x)
71 t =  1

1 _n
E  -  /«(et)l®(e1) e , i / - 1ZtZ2’/ f - 1ii:/,(X ( -  x )} .
t = l

From A3 and the fact th a t \\0 — 6°\\ < C  since 0° £ © a compact set, it follows th a t 

\et \ <  C. Assumptions A2-A3 yield

- f ^ H ^ Z t Z j H - ' K ^ X t - x )  =  0 ,(1 )  (3.12)
U t =  1

and next we prove th a t 

1 n
-  y k(h )e kt H - l Z tZ Tt H ~ 1K h{y.t -  x) =  Op(l)  for k =  1,2 (3.13)
n t=i

then combining (3.6),(3.12) and (3.13) it follows th a t I n  = op(n2a~2̂ d+̂ +l3) which 

is of order op(l)  for the trim m ing param eter satisfying 0 <  a < l / ( d  +  4) — (5/2, see 

A5. It remains to  prove (3.13). We present the case of k = 2. Note th a t from A1 it 

holds E|\I/(e)e +  1|2 <  oo, then from A2-A3, the ergodic theorem yields:

- Y J <i2{et)e2t H - 1Z tZ j H - lK h( X t - x )  =  0 ,(1 ) . (3.14)
U t =  1
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Henceforth, it is sufficient to  show th a t

J = - J 2 { ^ \ e t)e2t - ^ ( e t) e ^ H - 1ZtZ [ H - 1K h( X t - y : )  = op(l).  (3.15)
71 t =  1

Substitute the Taylor expansion ^ 2(et)e2 — ̂ 2(et)e2 =  2Q(et)^(et)et (et —et) +op(et —et) 

to obtain J  = 2 / n J 2 t = i ^ ( et)^{^t)^t(et ~  et)H~l ZtZ j H ~ l K h( X t -  x) -f- op(et -  et). 

Note th a t

et -  et =  Yt(e~z ‘ 6 -  e -< x ‘>) =  -  1) (3.16)

where

s ( x t ) -  z j e  =  s(X() -  z  f e °  +  z j e °  -  z  J e .  (3.17)

Substitution of the second order Taylor expansion of s (X () around x  in (3.17) yields

•4 d d
s ( X t) - Z j d  =  -  2 2  sij(x ')(x t , i - X i ) ( X t , j - x j )  +  s ( x ) - s ( x )  +  ̂ 2 ( ^ - 0 j ) ( X t j - x j ).

i,j=1 j= 1

Therefore,

j = - y i i ( £t) « ( £l)t ’ |  y  % ( x ') ( x M -  Xi) ( x tJ -  x^ h - ^ z j h ^ k ^  -  X)
Tb *L

t —1 »J=1

+ -  y  nfe)® fe)e? £ ( 0 °  -  $j)(XtJ -  x J H ^ Z tZ jH - 'K h(Xt -  x)
n  <=i j= i

2 n 3
- ( s ( x )  -  S( x ) ) - Y ' S l ( e t) n e ty t H - 1ZtZ l H - 1K h(-Xt - * . )  =  V  J t .

n U  t i
It is easy to see th a t under A l: E |ri(e)^(e)e2| <  oo. Then, ergodic theorem implies 

tha t J \  is of order Op(h2) while similar arguments along with the fact th a t 16® — 9j\ < 

C, j  =  1 , . . . ,  d ensure th a t the second term  J 2 is of order Op{h) while Fan and Yao 

(1998) have shown th a t the local linear LS-estimator converges in distribution and 

therefore it holds th a t d(x) — <r(x) =  Op(n~ll2h~dl2) i.e. J z  =  Op(n~ll2h~dl2). Under
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A5, summing up the above results we conclude (3.15). Note here th a t for the case of 

k = 1 in (3.13) we prove

i n
-  -  x ) =  o,( 1) (3.18)
71 t = 1

in the same way as (3.14) but substituting $ 2(y)y2 w ith \P(y ) y . Details are omitted. 

Then, combining (3.14) and (3.18) we conclude

■j 2  2

- £ { ( t f ( e , ) g t +  1)  -  (tf«(et)«t +  l )  } H - 1Z tZ j H - 1K h( X t - x . )  = oT(l)  (3.19)
11 t =  1

which completes the proof for I n  = op( 1). We focus on / i 2:

1 ^  2 2

-  X  { ( * ( g')£< +  0  -  H - ' K n i X t  -  x )(G t ( / t (et)) -  1)
t = l

+ -  X ){ » (e t)€t +  -  x )(G t ( / t (et)) -  1) =  Jm  +  / 122.
71 t = 1

Based on (3.19) it is easy to see th a t I m  =  op(l). Further, /122  is decomposed to 

/1221 =  -  X W e < )< *  +  -  x )(G 6( / t (e()) -  G6( / ( e t)))
71 t =  1

/1222 =  1 +  l} 2f f ' IZ<Zj’H - 1X )l(X t -  x )(G 6( / ( e t)) -  G j( /(e ()))
t = l

/m s  =  1 +  l} 2̂ ' 1Z ,Z f / / -1li:ft(X t -  x )(G „(/(e t)) -  !)■
71 t = l

Similar to the proof of Lemma 2.3 th a t involves the inform ation m atrix, it holds tha t 

-  Y ^ m ^ e t  + l y H - ' Z t Z f H - ' K b i X t  -  x) =  0 ,(1 ) . (3.20)
71 t =  1

Taylor expansion of the smooth trimming function Gb{.) yields

sup |G 6( / t (et)) -  Gb( f ( e t))\ <  sup |# ,(/* )| sup | f t (et) -  f ( e t)\ 
t /* : | /* - /H 0  t
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where /*  lies between f t and /  hence |/*  -  f \  —> 0 . Since sup/ ,.|y* _ / |_ ,0 |^6(/* )| =  

0 ( n ~ a) then from (3.6) it follows th a t

sup |G „(/t (eO) -  Gb(f(et))\ = op{ r f - 2̂ d+i^ )  (3.21)
t

which along with (3.20) and A5 yields I 1221 =  op( 1). Similarly, Taylor expansion of 

Gb(f(-)) yields Gb( f{e t)) -  Gb( f (e t)) =  gb(f(et)) f' (et)(et -  et) +  op( 1 ). Therefore,

I 1222 = — £ { # ( e t)e, + 1 }236(/(Q))/'(£<)(e* -  e ^ H ^ Z t Z f  H~lKh(Xt -  x) + 0,(1)
71 t= 1

while substitu tion of (3.16) and (3.17) yields

1 n d
I 1222 =  -  £ { * (e«)e« + 1 } W /fe ) ) /'(e « )  T ,  h i W H ^ Z j H ^ K ^ X t  -  x)

71 t=  1 j =1

1 n d
+ -  + 1>2e*at(/(et))/'(et) X K  -  -  x i ) H ~ l z ‘z j H - ' M X t  -  x)

*=1 j = l

- (s (x )  -  s (x ) ) i  X){®(et)e« +  1 } W / ( « 0 ) / ' ( < * ) f f  _1Z tZ p J - ^ ( ( X ,  -  x)) +  0 , ( 1 ).
t= 1

From Cauchy-Schwartz inequality: (E |{^(e)e +  l} 2e ^ ( / ( e ) ) / /(e) | ) 2 <

< C  j  {V{e)e +  1 }4e2f(e)de J  g2{ M  -  1 <  oo (3.22)

bounded from A1 and the definition of g(.) as a pdf defined in [0,1]. Consequently, 

the first and the second term  of the decomposition of 11222 are of order Op{h) and 

Op(h2) respectively as a result of the ergodic theorem while for th e  last term, note 

th a t s(x) — s(x) =  Op(n“ 1/2 /i_d/2) and again application of the ergodic theorem yields 

th a t the last term  is op(l)  from A5. For I \ 223 note th a t

£ ( { * (e*)e, + 1}2(1 -  Gb( f (e t)))] =  [  {*(e)e + 1 }2f(e)de
V '  do<f(e)<b

+  [  { ^ ( e ) e + l} 2( f  gb(z )dz) f (e )de  -> 0 , as n —► 0 0
Jb<f{e)<2b ‘'/(e)
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from A1,A5 (b —> 0) and the dominated convergence theorem. Therefore A 223 =  op{ 1). 

Consequently, we proved th a t A 2 =  op(l) which along w ith A i =  op(l)  entail the 

result for A. We continue with A:

72 = “ E  + I}2 -  + l }2) H ^ Z t Z f  H~l Kh(Xt -  x)
U t= 1

+ "  E  ( W £‘)£‘ +  -  W g‘)g‘ +  -  x ) =  / 21 +  / 22
U t= 1

where A 1 =  op(l)  directly from (3.19). For the term  A 2> using the Taylor expansion 

('F(A)A +  l ) 2 — (v[/(ef)e* +  l ) 2 =  2 (\I/(e*)e* +  l ) f 2(e*)(e* — e*) +  0 ((ef — e*)2) yields

/ 22 =  _ I y ' 2 ( * ( e t)e< +  l M e t)(e< -  e ^ H ^ Z t Z f  -  x )  +  0 , ( 1 ).

Substitu te the expansion:

d
(et -  et) = et{es{Xt)~zTe° -  1) =  et -  ^  Sij(x' ){Xtj  -  X j ) (X t,i -  x {) (3.23)

*1.7 = 1

in A 2 to get th a t — A 2 =

- n d
-  £ ( # ( £t)£t+ l) f i( e t )«, 5 3  Sy(x ')(X tJ- x i )(X w - x j) H - IZ(Z f i / - 1/f ,l(X t - x ) + 0 l)(l).
"  (=1 i,j= l

From A2-A5 and E |(^ (e)e  +  l)f2(e)e| <  0 0 , ergodic theorem yields A 2 =  Op(h2) =  

op(l)  and th a t completes the proof of A =  op(l)  which combined with A =  op(l)  

entail the result in (i). It remains to show (ii). I t holds th a t

= -  Y i{%(e t)et -  <Z{et)et} H - lZ tK h{y.t -  x )G 6( / t (et))
n  n t=1

+1 ^ { ^ ( e O S t  +  l y H - ' Z t K ^ X ,  -  x )G t ( / t (e,)) = Ji + Ji-
t=1

Note th a t n

<  C n a sup | / '( e () -  f ( e t)\ -  V  y . T T 'Z ^ X ,  -  x)
1 n t t
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+ C n a sup | f t (et) -  } ( e t) | -  V '  ^ { e t)etH  1Z tK h( X t -  x) =  J n  + J 12.
n t t

The process (Yt , ’X.t) is a strictly stationary, strongly mixing process with E|Y^|6 < oo 

and Y^kLi &2̂ { k )  < <  0 0  r̂om A3. Theorems 1.5 and 1.7 (Bosq 1998) yield

l / n ^ Y t H - ' Z t K n i X *  — x) =  Op{n~l/2h~d/2). Consequently from (3.6), J n  =  

op(n~1/2h ~d/2) for the trimming param eter satisfying 0 <  a <  1 / ( d  +  4) — (3/2 from 

A5. For J 12, we argue th a t it is sufficient to prove th a t

T  = -  -  <S(et) t t } H - l Z tK h{X t -  x) =  o ^ n - ^ h ^ 2). (3.24)

Indeed if (3.24) holds, then from A1-A3 and the CLT we have th a t

-  +  1 } H ~ 1Z tK h( X t -  x ) =  O p i r T ' I W 2) (3.25)
71 t = l

which along with (3.6) and (3.24) ensure th a t J 12 =  op{ r r l/2h~d̂ 2) for the same choice 

of the trimming param eter a as above. So focus on (3.24). Substitu te

y ( e t)et -  ^ ( et)et =  Q(et)(et -  et) +  0 ( ( e t -  et)2) (3.26)

in T  to obtain T  =  n~ l Ylt=i — x) +  op(l)  and using (3.23),

it follows th a t

n  1 d

r  =  -  T  f2(e()e(-  Y ,  Sy(x*)(*M  ~  ~  x ^ ' Z ^ X ,  -  x) +  op(l).
" t-i 1 i j-i

Call Qt = li“2fl(e()et2_1 % (x )(^M  ~  -  X j ) H ~ l Z l K h ( X t -  x) and

note th a t h~2T  = n ~ l J2t=i(Qt ~  E (Qt)) +  0 (1), from E(Q t) =  0 (1 ). The process 

Qt — E (Q f) is a zero-mean, strictly stationary, strongly mixing process with mixing 

coefficients satisfying Ylk=1 < 00 and E||Q* — E (Q * ) | |3 <  00. The la tter holds

from E|f2(et)et |3 < 00 (implied from A l) along with A2-A4. Then, direct application 

of the Central Limit Theorem 2.21 (Fan and Yao 2003), yields th a t y/nhdh~2T  - i  N
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consequently T  =  Op(n 1h d/2+2) =  op(n 1h d/2) which along with the result for J n  

yields J\  =  op{n~lh~dl2). For the second term  J2- 

1 n
J 2 = -  £  W e j e .  + -  x) [Gb( f t(et)) -  Gb( f ( e t) j)

t =  1

+ - ^ { W ( e ()e( +  -  x )G „(/(e ()) =  J21 + J22.
n t- i

Note th a t (3.21) holds for et substituted by et and combined with (3.25) and (3.8) 

implies th a t J2\ =  op(na_2/(d+4)+^)Op(n _1/2 / r d/2) =  op(n_1/ 2/i“d/2) under A5. Fur­

ther, recall the process Vt defined in Lemma 2.5 of Chapter 2 . Then we can write 

J 22 =  n~ l ( v tGb( f ( e t)) -  E (VtGb( f ( e t))j^ +  E (VtGb( f ( e t))) and note th a t from 

expansions (3.23) and (3.26) E (VtGb( f ( e t))) =

= p(x ) J J  f t(et)etGb( f { e t) ) f { e t)det Y  s i j (x)v4Uj ( l , u T ) K ( u ) d u  + o ( h 2)
i,j= 1

with J  Q{et)etGb(f{et))f{et)det =

J  l(b < f ( e t) <  26)ft(et)et/ ( e t) (  J  gb(z)dz^det +  J I ( f ( e t) > 26)ft(et)et/ ( e t)det

where I(x)  the indicator function. Note th a t b —> 0 as n  —> 0 0  and by dominated con­

vergence theorem lim ^ o  /!(&  <  f(?t)  <  2 b)Q,(et)€tf{et) ^  gb{ z )d z sj d e t =  0  and

l im ^ 0 / I ( / ( e t )  >  2b)Q(et)etf ( e t)det =  f  n (e t)etf ( e t)det . Hence, E (VtGb( f ( e t))) = 

(2~l h2gL2p{x) f  f i(€t)etf(et)detJ2j=i^j j(x ):0(h2) , . . . , o ( h 2))T and similar to Lemma 

2.4, third order Taylor expansion of s(x)  will yield the bias term  for the derivatives 

estim ator so we conclude th a t E (VtGb( f ( e t))) =  — h2p ( x ) I ( f ) H M K , i H a = H Tb.  

Denote with Ut =  VtGb( f ( e t)) — E (VtGb( f ( e t))) then it is easy to see th a t

1 n
vnh?(J22 + HTb) =  - =  > hdUt (3.27)

y n h d

with Var(Ut) =  E (( /jf^ ‘) gb(z)dz)2l(b < f ( e t) < 2b)VtVtT) +  E (I ( /(e 1) >  2b)VtVtT). 

The dom inated convergence theorem yields
/(et)



and lim ^ o  E ( I ( /(e t) >  2b)VtVtT) =  E(VtV^).  Hence, based on the results for the 

process Vt, derived in Lemma 2.5, we conclude th a t
n

7i/idV ar(n -1  ^  Ut) =  p{x)I(f)S*K . (3.28)
t=i

Further, it holds th a t E||/7f | | 3 <  C7E||Grf,(/)14 | | 3 where

E||G»(/)V«||S =  E(( /  3 i,(Z)rfz)3I (6  <  / ( e f) <  26)||14||3) +  E ( I ( / ( 8 e) >  2 6 )||K ||3)
J  —oo

and again, dom inated convergence theorem yields th a t the first term  of the right 

hand side is zero and the second is E||V*||3. Therefore E | | [ / f | | 3 <  C E ||V t | | 3 <  Ch~2d 

the la tter as a direct application of the result in (2.30) in Lemma 2.5 for <5 =  3. 

Consequently, E ||/id[/t || =  0 ( h d) while the a-mixing coefficients for (Y t,X t) satisfy 

Efc>i < oo from A3. Application of the Central Limit Theorem 2.21 (Fan

and Yao 2003), yields

with •j TT>  ̂ 71

S „  =  V a r ( - = =  V  hdUt) = nhdVa r ( -  V  Gt) =  p (x ) /( /)S J -

from (3.28). Based on (3.27) we conclude V n h d( J ^  + H T b )  —> N ( 0, E ) which com- 

bined with the results for the remaining terms completes the proof of (ii).

Theorem 3.3 reveals th a t the proposed M L-estimator shares the same asymptotic 

properties w ith the infeasible M L-estimator in C hapter 2. Equivalently, it is adaptive 

in respect to the error density function and therefore, knowing /  or using an estim ator 

of /  does not affect asymptotically the MSE of the estim ator. Due to this property, 

from now on we refer to the proposed estimator as the adaptive ML-estimator. It 

is understood th a t the adaptive ML-estimator requires a number of initial estima­

tors and hence the number of computations involved has increased. However, the 

numerical examples below show th a t the improvement of the  estim ator is sufficient 

and compensates for the increase in computations.
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3.3 Num erical applications

Does likelihood estim ator remain more efficient in practice than  LS-estimator when 

the error density is estim ated? Do adaptive and infeasible estim ators perform simi­

larly? Although we have answered these questions theoretically for large n , it remains 

to see if the same conclusions are reached numerically for small sample size n. Next, 

we consider two simulation examples with real da ta  analysis postponed to Chapter 5. 

For the simulated data, the true values are known and hence, we can evaluate directly 

the performance of the estimators. It is understood th a t some of the assumptions of 

the model may not be met by the simulated data. For instance, error distribution 

is assumed to have compact support in A l. This precludes most of the interesting 

distributions. Nevertheless, we choose to investigate numerically the behavior of the 

adaptive M L-estimator even for non regular cases. The results of the simulation will 

show whether the departure from a particular assum ption is influential or not. Par­

ticularly, in the first example, we give a thorough report about the initial estimators, 

the density and derivative bandwidths and the performance of the adaptive estim ator 

while in the second case, we visit the example 2.1 from C hapter 2 and present the 

deviation errors in order to evaluate the performance of the estimators.

3.3.1 N um erical exam ple 3.1

We generate 100 random  samples of size (a) n  =  100 and (b) n  =  500 from the 

model Yt = a(Yt- i ) e t , with cr(x) = e~x212 where the error distribution is assumed to 

be (i) standard  normal, (ii) ^-distribution with 3 d.f. and (iii) cauchy distribution. 

We continue using the Mean Absolute Deviation Error as the measure to evaluate 

the performance of the estimators. We estimate the function on 20 equally distanced 

grid points in [—2,2]. The Epanechnikov kernel is preferred due to  its bounded 

support. First, we calculate the Nadaraya-W atson initial estim ates of, equivalently 

st =  2- 1  log of and hence the error estimates et = Yte~St.
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Figure 3.1: Plot of true residuals (solid line) and estim ated residuals based on the ini­

tial NW-variance estim ates (dotted line) for (a) normal-(c) ^ -d ist. Plot of estimated 

AMSE vs bandw idth for (b) normal (d) ^-d ist.

(a )R o s ld u a ls , N orm al. n = 100 (b) AM SE, N orm al. n=1 OO

G»

&

8
0.6 2. 2.6

(d) AMISE, t-3

S

8

Tima ti

In Figure 3.1 we plot the true residuals (solid line) and the estim ated residuals 

(dotted line) for (a) normal and (c) 13 distributed errors. It appears th a t the initial 

estimators perform rather well capturing most of the dynamics. Further, in (b) and 

(d) the estim ated AMSE for the initial estimates, calculated in the grid points, is 

plotted against the bandwidth. We identify the global optimal bandwidth being 

around hopt =  0.5 independent of the error distribution while from Corollary 3.1, the
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Figure 3.2: Density estimators based on the estimated errors e* for (a) gaussian and 

(b) ts error distribution.
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theoretical bandw idth that yields the optimal uniform rates for the initial estimators 

is h ~  (log (n )/n ) 1//5 ~  0.457 for n  =  100. Therefore, the required bandwidth for the 

optimal rates is achieved by minimizing the estim ated AMSE. Using the estimated 

errors et , we calculate the density and the derivative estim ator, Figure 3.2 (a) and 

(b). Apparently, the density estim ator of the ^-distribution in (b) is leptokurtic, 

equivalently, the mass of the observation is narrowly concentrated in the center with 

fatter and longer tails than the estim ator of gaussian density in (a). The la tter is a 

well known result of the kurtosis. Moreover, the bandwidths for the density and the 

derivative estim ators are selected as the minimizers of the estim ated AMSE. Table 

3.1 contains the result for the average of the bandwidths on the grid points. The 

first column includes the selected density’s bandwidth and it is compared to the third 

column th a t is the required bandwidth rate to achieve the uniform optimal rates of
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Table 3.1: Bandwidth for error density and derivative estim ator.

D istribution size K f ) h(df) n-V s n -1//7

Normal

oot“Hs 0.3826 0.8683 0.3981 0.5179

Normal n = 500 0.3482 0.8152 0.2885 0.4116

h n = 1 0 0 0.5561 0.9872 0.3981 0.5179

h n  =  500 0.5127 0.9354 0.2885 0.4116

Theorem 3.1. For gaussian distribution these are relatively close. For instance, the 

selected density bandw idth from minimizing AMSE is hopt = 0.3826 compared to 

the rate n -1//5  =  0.3981 for n  = 100. For the t-distribution we found hopt = 0.5561 

which is not close to 0.3981 but we expected this discrepancy due to the existence 

of extrem e values. Further, the same pattern  appears if we increase the sample size 

to n  =  500. As far as density’s derivative bandw idth is concerned, there is more 

significant departure from the theoretical value. Note th a t the calculated bandwidth 

is hopt =  0.8683 while Theorem 3.1 requires rate  around n -1//7 =  0.5179. At this 

point, we argue th a t apart from the rate, the constant term s abbreviated as C , affect 

significantly the bandw idth and should also be taken into account when we compare 

the optim al values. In any case, the final result will reveal whether there is departure 

from the bandw idth assumption with significant effect on the performance of the 

adaptive M L-estimator. Further in Figure 3.3 we plot the variance function (solid line) 

along with the LS-estimator (dotted line) and the adaptive M L-estimator (dashed- 

dotted  line) for error distribution. It appears th a t the M L-estimator is a smoother 

and improved estim ator of the variance function.

Figure 3.4 contains the box-plots of the Mean Absolute Deviation Error for LS- 

estim ator (LSE), the infeasible M L-estimator (IMLE) from C hapter 2 and the adap­

tive M L-estim ator (MLE). For gaussian errors, there is no significant difference be­

tween the three estim ators, especially for large n. Indeed, for n  =  100, IMLE and 

MLE seem to  perform slightly better than LSE, though the differences are smoothed
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Figure 3.3: Plot of the true variance function (solid line), the LSE (dotted line) and 

adaptive MLE (dashed-dotted line).

V a r ia n c e  fu n c tio n , t -3  d .f. n = 1 0 0

oo

<=>

-2 0 1 21

x

out when we increase the sample size to n = 500. However, if the errors follow 

a £3 distribution, LSE is outperformed by IMLE and MLE. Further, note tha t the 

infeasible ML-estimator of Chapter 2 and the adaptive estimator perform equally well 

especially for sample size n  = 500. The la tter agrees with our findings in Theorem 3.3 

about adaptiveness in respect to the error density function. Equivalently, for large n, 

using the density and derivative estimators /  and f  instead of the true functions does 

not have any significant effect on the performance of the adaptive ML-estimator. The 

same conclusions, but now more emphatic, are drawn when looking at the results for 

the Cauchy error distribution. Likelihood-based estimators totally outperformed the 

LS-estimator which fails to capture the dynamics of a fat tailed distribution like the 

Cauchy distribution. Further, even in the extreme case of an error distribution with 

infinite first moment, the adaptive MLE performs rather similar to the infeasible-MLE 

confirming once more tha t the proposed estim ator is adaptive to the error distribution.
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Figure 3.4: Box-Plot of the MADE of the LSE, the Infeasible-MLE and the adaptive

MLE for gaussian, 13 and Cauchy errors for n — 100, 500.
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3.3.2 N um erical exam ple 3.2

Recall the conditional heteroscedastic model considered in example 2.1, Chapter 2 . 

Particularly, we generate 100 random samples of size n  =  100 and 500 from the 

model Yt =  a(Yt- i ,  Yt- 2 )st with a(x  1, ^ 2) =  0 .3 \ / l  +  x \  +  log(l +  xf )  where the error 

distribution is assumed to  be (i) standard normal and standardized ^-distribution 

with (ii) 6  and (iii) 14 degrees of freedom. The function is estim ated in 9 x 9 =  81 

grid points equally distanced in the interval [—2,2] x [—2,2]. In C hapter 2, the direct 

comparison between the LSE and the infeasible M L-estimator revealed th a t there was 

significant improvement in the performance, due to the use of information from the 

error distribution. It is interesting to see if this improvement is maintained when the 

error distribution is replaced by the nonparam etric density estim ator.

The results for the Mean Absolute Deviation Error are presented in box plots 

in Figure 3.5. Clearly, the LS-estimator appears to have the poorest performance 

for small sample size especially for ^-distributed errors. W hen the sample size is 

increased the difference in the performance is m aintained though it is not as evident 

as in the case of small sample size. Note here th a t the la tte r observation is not true 

for the case of gaussian errors, where the difference is more em phatic for n  = 500. 

On the other hand, the infeasible and the adaptive M L-estimators perform similarly. 

Their only difference is th a t for normally and ^ -d is tr ib u te d  errors with n = 100, the 

interquartile range for the adaptive estim ator is wider than  of the infeasible implying 

th a t it is less robust and has larger variation. However, th is difference is smoothed 

out when the sample size is increased to n =  500. B ut the main point here is 

th a t on average their deviation from the true values does not vary significantly and 

hence there is little evidence for significant difference on the performance between 

the infeasible and the adaptive likelihood-based estim ators. Consequently, overall, 

the numerical results support the theoretical findings, summarized in Theorem 3.3, 

on the adaptiveness for the proposed estimator.
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Figure 3.5: Box-Plot of the MADE of the LSE, the Infeasible-MLE and the adaptive

MLE for gaussian, £6 and t \ 4 distributed errors with n =  100, 500.
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Chapter 4

A Tw o-Step Cross-Validation  

Selection M ethod For Partially  

Linear M odels

4.1 E xistence o f a partially linear regression m odel

The estim ation of the variance function has been so far the focus of discussion. Note 

tha t the nonparam etric model investigated in earlier sections required a fixed d- 

dimensional set of regressors. However, it is not clear in advance which variables 

should be used as regressors. As the rate of convergence slows down when the num­

ber of regressors is increased, it is im portant th a t only variables w ith significant effect 

on the dependent variable are included in the model. Furtherm ore, if the true model 

includes a linear term  then the nonparam etric approach is less efficient compared to a 

partially linear model. Hence, in this chapter, we address the issue of model selection 

for the special class of partially linear models th a t contain a linear as well as a non­

param etric component. The advantage of these models is th a t the param etric part is 

estim ated efficiently while the flexibility of the nonparam etric model is retained.
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We begin with the introduction of the partially linear m ean regression model before 

we extend the results to the variance function in later section. Let (y*,X f,Z t) be 

a strictly stationary process with a scalar Yt , vectors X t =  (Xt)i , . . . ,  X tip)T and 

Z t = (Ztji , . . . ,  Z t,Q)T. In the context of time series analysis, X f and Z t may contain 

lagged variables of Yt. Consider the regression model

Yt = E(Y,|X,, Z t) + €t = X j 0  + g{ Z() +  et (4.1)

where g : —> R is an unknown function, 9 =  (0 i , . . .  ,9p)T is the vector of the

param eters and et = Yt — E(Y*|Xt, Z*) is the error term . It is easy to see tha t 

E(ef|X*,Zt) =  0. Hardle, Liang, and Gao (2000) propose an estim ation procedure 

for both the param etric and nonparam etric component and establish the asymptotic 

properties. More recently Gao and Tong (2002) proposed a combination of the leave- 

one-out cross validation criterion for selecting the regressors of the nonparam etric 

component and the leave-nv-out cross validation criterion for selecting the regressors 

of the linear component. However, the com putations involved are quite intensive. 

For example, if we have P  linear and Q nonparam etric candidate regressors then the 

number of variable subsets to be investigated, is (2P — 1) x (2Q — 1). We propose an 

alternative procedure which is computationally more efficient reducing this number 

to 2® -I- 2P — 2 possibilities. However, before we go into details about the proposed 

two-step cross-validation selection procedure, let us introduce some conditions to 

ensure the existence of a true model as a reduced form of model (4.1). Denote with 

Ut = Yt — X p 0 the residuals after removing the linear effect, then from (4.1) it holds 

tha t E(Ut \Zt) =  g(Z t). Define the variance function a 2 : —> R

<j\A) = E [Ut -  E({7t |Z f ) ] 2 (4.2)

with Z f  =  (Ztji : i E A )T , A =  { h , - .. , ik}  G {1 , . . . ,  Q j  and \ A\ = k  w ith 1 <  k < Q. 

Then, the optim al nonparam etric regressors subset is the subset with the minimum 

dimension k  and equal variability with the full set of nonparam etric regressors denoted 

as Z t . Equivalently,
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D e fin itio n  4 .1  Assume that there is a subset A q =  { 1 , . . . ,  q} of  {1 , . . .  ,Q] with 

Q < Q for  which

(a) <t2(A o) =  a 2{ 1 , . . . ,  Q) and

(b) for  any A  = { i i , . . .  , ik}  G {1 , . . . ,  Q} with k < q and A  ^  A 0 it holds that 

cr2(A) > o 2(A 0)

then the set Z f °  = { Z t}i , . . . ,  Z tiq} is called the optimal regression subset of the non­

parametric component.

Given the optim al nonparam etric regression subset Z f° ,  let Vt =  Yt — g(Zf°)  and 

define the function a 2 : R fc —► R,

a \ M )  = E[Vt -  E(Vt |X f ) ]2 (4.3)

for any M  =  { j i , . . .  , jk}  C {1 , . . . ,  P}  and 1 <  k < P.  Similar to  Definition 4.1,

D e fin itio n  4 .2  Assume that there is a subset M 0 =  {1, . . .  ,p} of  {1 , . . . ,  P} with 

P < P  for  which

(a) <r2 (Mo) =  <r2 ( l, • • •, P) and

(b) for any M  = { j i , . . .  , j k }  Q {1 , . . . ,  P}  with k < p and M  ^  M q it holds that 

a 2(M) > a 2 {M0)

then the set X f *0 =  { X t ti , . . . ,  X tiP} is called the optimal regression subset of the 

parametric component.

At this point, we are ready to  impose the necessary condition th a t will ensure iden- 

tifiability of the true  model. In particular,

A 1 The true model is the model with the optimal nonparam etric Z f°  = {Z t}i , . . . ,  Z tiq} 

and param etric X ^ 0 =  {Xt)i , . . .  ,X t)P} components. Further, we assume th a t 

m inje{i,...)Q}-A0 infa ,/3 E{E{g{Z?0)\Ztd) - a -  f3ZtJ)2 > C , w ith C > 0.
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It is easy to see th a t if A 1 holds, Definition 4.1 yields th a t E(Ut \Zt) = E(Ut \Z?°) al­

most surely. In other words, the optimal subset contains almost all the information on 

Ut available from . . . ,  Z t&}. Further, from Definition 4.2 E(V*|Xt) =  E (\4 |X ff°) 

almost surely, so we conclude th a t some of the linear predictors are insignificant and 

should be om itted. Note also th a t in A l, the contribution of the nonparam etric 

component cannot be explained by any linear term  combination. In a similar situ­

ation, Chen and Chen (1991) impose a condition to  ensure th a t the nonparam etric 

component is not a linear function of the regressors.

Given the existence of the true model as a reduced form of model (4.1), we try 

to identify the optim al predictors for both linear and nonlinear components of the 

regression function. We propose a two-step selection procedure. The first step is the 

selection of the nonparam etric component. We include all the candidate regressors 

in the param etric component and use the leave-one-out cross validation procedure 

to select the optim al subset Z^°. We do not repeat this procedure for any other 

subset of linear regressors, reducing our com putations to  2^ — 1. Having selected the 

optimal nonparam etric subset, a t the second step we employ the leave-n^-out cross 

validation criterion to reduce, if necessary, the number of param etric regressors. This 

will require the investigation of 2P — 1 cases which implies th a t the overall calculations 

are reduced from (2 P — 1 ) x (2 ^ — 1) to 2 ^ -f 2P — 2  cases.

4.2 Selection of the nonparam etric com ponent

We begin with the selection of the nonparam etric component. In practice 0  is an 

unknown param eter and therefore is replaced by 6  the LS-estimator calculated by
A _  A

regressing Yt over X tti , . . . ,  X t,P and Ut = Yt — 'X.fd the estim ated residuals. For any 

A C  {1 , . . . ,  Q}, define the Nadaraya-W atson estim ation for #(.),

n

9n(z) =  £  WtA(z) (Y t -  X f  0)  (4.4)
*=1

103



with wt,A : R fe —» R, z) =  A5i(Z^ — z)/Y2r=i Kh{Zr ~  z ) a weighting function

and AT : R fc —> R, A /^.) =  1 / h kK ( . /h ) ,  a A>dimensional kernel function. Similarly, 

we define n

ft,(«) =  5 3 « M (z)(y t - X f f l )  (4.5)
t = l

which is the estim ator defined in (4.4) with 6 replaced by 6. The leave-one-out estima- 

tors are gi~s)(z) = E J L i ,# .  «'[7 >(z)(yt “  x f e ) and S»~S>(Z) =  E m , ¥ . w ^ ( z ) ( y t -  

X j 0 )  respectively, where w ^ \ z )  -  K h( Z f  -  z ) /  K h(Z^  -  z). Then, the

cross validation function is defined:

CV(A) =  i ^ { C / s - 3 i - 3)(Z ^ } 2 for all 4̂ C {1, . . .  ,<3}. (4.6)
3  =  1

D e fin itio n  4 .3  The estimator for the optimal regression subset o f  the nonparametric 

component is defined as

A  =  arg min CV(A). (4.7)
A C {1 ,.. . ,Q }

Next we sta te  the assumptions and introduce the notation. Let C  > 0 be a constant 

th a t can take different values in different places.

A2 For the least squares estim ator 6: E || 0 — 6 ||2=  0 ( n -1 ).

A3 The density functions / ( . )  and p(.) of the random processes Zf and X t , satisfy 

the Lipschitz condition and the sets Bi  = {z : / ( z) >  0}, B 2 = {z : p(z) > 0} 

are compact subsets of R^ and R p respectively.

A4 For the strictly  stationary process {(Yt, X t , Z t) : t =  1 , 2 , . . . }  define (3(n) =  

supfc>! E{supBecj« |P (B |^ { )  -  P (B )|}  where the sigma-field generated by 

{(yt ,X t ,Z t) : k < t < n) .  Then (3{n) =  0 { n ^ 2+6^ 6) where 0 <  8 <  2/5. 

In addition, there are positive integers m n and ln = [n/(2mn)] such tha t 

lim supn_ oc(l -I- 6y/e/3(mn)1/{l+ln)) ln <  oo.
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A5 The kernel function is Kh(.) = l / h kK ( . /h )  where K  : K* —► R is a symmetric 

density function with bounded support satisfying the Lipschitz condition. Fur­

ther, for the bandw idth h = n~x^  it holds th a t 0 <  kX(k) < 1/2 for 1 < k < Q.

A6  For m n defined in A4, lim supn- ¥00lnn~x^  <  oo for all 1 <  k < Q.

A7 E\Yt \6 <  oo, E ||X £| | 6 <  oo and E(Yt |X t , . . .  , X lf Zt , . . . ,  Z x) =  E(Yt |X t ,Z t) for 

Xf =  (XM, . . . ,  X tjp)T and Zt =  (Zt>1, . . . ,  Z t,Q)T .

A8  It holds th a t \g(z\) — g{Z2)| <  C  || zi — z2 | |7 for 7  >  0.

A9 (k +  7 )A(k) > 1 / 2  for 7  in A8 , and 1 <  k < Q.

A 10  kX(k)  is a strictly increasing function of k.

The above assumptions are not the weakest possible and may be altered a t the 

cost of a lengthier proof. Assumption A l, section 4.1, of existence of the true model 

is a common assum ption in the context of regressor’s selection while A2 is a standard 

result of the linear regression theory and requires no further explanation. Further, 

in A3 we follow Yao and Tong (1994) who point out th a t in practice any reasonably 

stationary real d a ta  could be considered as bounded set and thus we assume density 

with bounded support. This is a technical assumption which facilitates the proof

and can be relaxed by introducing a weight function in the definition of the cross-

validation function. Assumption A4 implies th a t we are dealing with absolutely 

regular processes while the assumption on the rate  of (3{n) and A6  allow us to use 

the results of Yoshihara (1976) and Roussas (1988). Assumptions A5, A7-A8 are 

self-explanatory, A9 is standard  in nonparam etric order determ ination while A 10  is 

essential in the proof of convergence in probability of the CV-estimator. Next, we 

present some preliminary results th a t are used in the proof of the main theorem of 

consistency of the regressors subset estimator.
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Lemma 4.1 Under assumptions A2-A9 it holds that

(a) For any A  =  { i i , . . . ,  ik),  1 < k < q: CV(A) &2{A).

(b) I f  for some A  it holds that E(Ut \Z f )  =  E{Ut \ Z f Q) a. s. then

C Y W  = I  E £» +  J je E ( « ? / / ( z ?)) /  K 2 (u )du + ov{ n l h - k).
5=1

Proof of Lemma 4.1 Note that: CV(A) =  n _1 Y ^= i{U s — Us}2 + n~l 5Dg=1{t/a ~  

gii~s\ Z^ ) } 2 + 2n ~ l Y ^ = i { U a - U s}{Us - g i ~ s\ z f ) }  = Ii + I 2 + h -  Assumptions A2-A4 

along with Slutsky’s theorem yield

I' = l, i i w  (® - e ) } 2 =  (® -  E  x ^ x <(® - » ) 4  ° -n  *—/ n  '
5  =  1 5  =  1

Call e f  = U , ~  5 (ZA), then / 2 =  J2J with J2ll =  1 / n S . i ^ ) 1, ' 2,2 =

V n E "= i{ s(Z * ) -  5 i ' s)(Z sA ) } 2 and / 2>3 =  2 / n S "=1 e^{s(Z A) -  ffi_ ,)(Z^)}. Using

the ergodic theorem (Fan and Yao 2003), we have tha t

h i  $  E[Ut -  E (t/,|Z A)]2 =  <t2 (v4). (4.8)

For the remaining term s, Lemma 4.2 below shows tha t they converge in probability to 

zero and therefore I 2 cr2 (A). Cauchy-Schwartz inequality and the results for A, I 2 

ensure 13 0. Hence, conclude (a). Further, note tha t if E(Ut \Z f )  =  E(£/*|Zf°) then

e f  =  es, so / 2,i =  1/w J^"_i eJ. This along with the results in Lemma 4.3 yield (b).

Lemma 4.2 Suppose A2-A8  hold. Then it follows that,

(a) 1 / n E L i  ^ { S (Z A) -  f f t a)(Z f)}  £  0 .

(b) l / n Z : =1{ 9 ( Z ? ) - g i - s>(Z ?)}2 5  0 .
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P roof of Lem m a 4.2 (a): It holds that

X > ? { s ( Z?) -  S<-s)(Z?)} =  -  s i - > ( Z ^ }
s a

+  E ^ { 9i ' s)(Zf )  -  s i ' s)(Z^)}) =  Ji + h -
s

Note th a t n - 1! E " = i ,r#s K h{Z* -  Z?) -  K h(Z* -  Z|*)| =  =  °>(1)

and supB;j fc(a)>0 |n _1 X)r=i -^/i(z — %r) ~  A (z )l ~ * 0 - The la tter is implied from as­

sumption A3-A6 and Theorem 3.1 of Roussas (1988). See also Yao and Tong (1994) 

or Cheng and Tong (1992). Consequently,

f f ( Z ? ) - g t s)(Z?) =  ( f l( z : ) - s < -> (Z ? ) )  ( I  E  K k{z t - z t ) ) ( f k { Z * ) ) - \ l + ° p ( l ) ) .
r= l,r j ts

Further, it holds th a t (g (Z f )  -  g{~s) {Z*))n~l E r= i,r^ s K h {Z f  ~  %?) =

1  E  K h{ Z ^ - Z t ) { g { Z ^ ) - U t) =  l Y j K h{ Z t - Z t ) { a ( Z ^ ) - g { Z t ) ) + l K h{Q)9{ Z ^
f t ,  Tt Tt

t= l , t ^ s  t= l

~ l  E  ^ ( z ^ - z ; ' ) ( c / 1 - s ( z f ) )  =  ^ ( E c s ,( -  E  & «  + m g V i j )
t= l , t^ 3  t = 1 t — l,tj^3

where dsj  =  K ( ( Z f  — Z f ) / h )  and C3>t =  dSjt{ g (Z f )  — g ( Z f ) } .  Hence, we write 

9 { Z * W n a)M )  = Cs, - Y T t=1MU e?ds,t + K (0 )g (Z? ) ) ( l+ op(l))

and therefore

S=1 t=l,tj^s

n

+■^(0) ^ e /̂fc_1(Z^)^(Z^)^(l +  Op(l)) =  +  Ji)2 +  Op(Jiti +  Jit2).
a—1

From the ergodic theorem nh kJ i t2 E(e f  f}^1 ( Z f ) g ( Z f ) )  and using conditional ar­

gument and the fact th a t n h k —> oo, it follows th a t J it2 0. For J^ i  we follow Yao 

and Tong (1994) and apply the decomposition of [/-sta tistic  as proposed by Yoshihara
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(1976). The la tter has already been employed in Chapter 3. Under certain conditions, 

Yoshihara showed th a t a [/-statistics Un =  2!(n — 2)!/n! which is an es­

tim ator of a functional form d(F) = f R2p g(xi,  x2)d F (x i )d F (x 2), can be decomposed 

as

4(F)  +  £  {ff tei>&)  -  / -  / s (6 , .
l< i i< i ' 2 < n

Call r,t =  (Z * e * ) r  and define # (% ,% ) =  e ? ( c . , ( -  e^d.,t ) f ^ ( Z f )  +  -

eM ,.)/r1(Z<‘) “ d tffo) = J  H{rH,V. ) d P ( v . )  = ( f K ' W )  J  C ^ d P f f i )  then,

^  * )  -  »(*».) - »  fa )}  +  £  *  fa )-
t^S f = l

H(r)a,rjt) is symmetric and r)t is a strictly stationary absolutely regular process. Hence, 

applying the above results for , &2) =  H(rjs,rjt) and noticing th a t f  H{rjt)dP{r]t) =

0 =>■ $ (F ) =  0 we have th a t the first term of Ji,i is equal to the  remainder in Hoeffd- 

ing’s projection decomposition of the [/-statistics. Further, A3 yields \H(r}t ,r]s)\ < 

C^\e£\  -|- |e^ |) +  C |e^ ||e^ | and from A7 f  \H(r}t ,r}s)l3dP(r}t)dP(r}s) <  oo. Therefore, 

Lemma 1 of Yoshihara (1976) yields supa<f E\H(r)t ,r]s)\3 <  oo. The la tter ensures 

th a t Lemma 2  (Yoshihara 1976) holds, implying th a t E (n ‘

H M } ) 2 = o(n~2) thus n~2h~k ~  H{0a) ~  H im )}  = op{n~l h~k).

For the second term  note th a t A3, A8 yield \H(rjt)\ < C h k+1\ef\ almost surely, 

so (n — l ) / ( n 2hk)\ Z)fl= i ^ ( ^ ) l  ^  O P r T 1 2 "=i le^l which converges to  zero by the 

ergodic theorem. Summing up, we conclude J^ i =  op(l)  which completes the proof
p

of J\ =  op(l). It remains to prove J2 —► 0. From assumption A3 it follows th a t X* is 

bounded process i.e. || Xt ||<  M  < oo. Consequently, from

^ £ ^ (  £  w t i \ z ? ) x l ( e - e ) ) \ < M \ \ e - 8 \ \ ± j 2 t i \
S=1 t = l , t ^ S  5=1

P
ergodic theorem and A2 yield J2 —► 0. The proof of (b) contains similar technical 

details with the proof of (a) so is omitted.
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Lem m a 4.3 Suppose A 2-A 9 hold and let for some z t

(4.9)

P ro o f  o f  L e m m a  4.3  (a): For J^ i we have th a t n~2h~k Y ^ ^ a{H{r}t l r}a) — H(rjs) — 

H{r]t)} =  op{n~l h~k). Under condition (4.9) we have th a t E(H(r]t)H(r]a)) = 0 for s < 

t, the la tter from E(H(T]t)\Xt , . . . ,  Xi ,  Zt , . . . ,  Z i) =  (7(Zt)E(e*|Xt, Z t) =  0. Hence, 

E (n _1 S ”=i H i 7!t))2 = n ~l E{H 2{r]t)) <  C7i2fc+27n -1  which along with A9 yields

and combined with J \^  = op(n l h k) from Lemma 4.2, implies th a t Ji = op(n 1h k). 

Similarly, from assum ption A7, E(efea) =  0 so E| J 2 I2 <  n~ l M 2E || 6 — 0 \\2 E(e2) =>• 

E |J 2 |2 =  0 ( n ~ 2) from A2. Therefore, J 2 =  Op(E |J2 |2) 1/2 =  Op{n~l ) =  op{h~kn~ l ) so 

conclude. For (b):

Concentrate on R\.  Recall the notation from Lemma 4.2, then it holds th a t

+ 1  X > ( Z?) -  9irs\ Z t ) } { g ^ ( Z f )  -  3<-s>(Z t ) }  =  £ > ■
f L

n  n

S =  1 t — l , t ^ s

1
n n

n 3h2k y :  {c a,ti ~  ~  et2^s,t2) f  2 (z^ )

n 3h2k
^ 2 ( 0 ) E  E  9 ( Z t ) ( C s , t - e tda,t ) f - 2( Z t )
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L j  *•(0) X > 2(Z ? )r 2(Z?) + «*(*) = £  flu (l +  0,(1)).
n z h 2k 8 =1 j = l

Under (4.9), the process rjt defined in Lemma 4.2 is w ritten as r]t = ( Z f , e t)T and let

Hi(>?«,%) = K t -  2 +  e2< () / - 2(Zf) + (C2S -  2Ct,sesd(,« + 4,4,s) r 2(Z?), 

H if a )  =  /  C l tr 2( Z f ) d P ( Z f )  -  2et J  Cs,tdS:tf - 2( Z f ) d P ( Z f )

+ 4  J  < t/ - 2(z(‘)dP (zaA) +  / - 2 (Z(A) I  c l d P ( Z * )  +  f - 2( z f )  J  £X sd P ( Va).

Thus, it holds tha t,

r ia = 2nl h 2k i L t n ^ V s )  ~  ~  Hi (r}s) -  f  H i f r J d P f o ) }
t^a J

Like in Lemma 4.2 the first term  can be interpreted as the rem ainder in Hoeffding’s 

projection decomposition of the {/-statistics generated by Hi(rjt ,r]s) and using similar 

argum ents we show th a t

s - s r s  -  H i f e )  -  /  H ^ d P i n t ) }  =  op(n~1h~k). (4.10)
t^s J

For the second term  note th a t 2~1n~ 1h~2k f  Hi(r]t)dP(T]t) =

- L  j  C l J - 2(Z ? )d P (Z t )d P (Z ? )  + - L  j  e X j - 2(Z?)dP(Z?)dP(r, t)

b u t from A3 and A8-A9 the first part is 0 (/i27+2fen _ 1/i_2fc) =  o(n- 1/i-A:) while the 

second p art is

j j j j s  1 4 < t r 2(Z l )dP (Z *)dP (n t) ~  n - lh - kV(e2U ( Z ? ) )  J  K \ u ) d u

where w ith ~  we denote the fact tha t they are asymptotically equivalent. Thus 

^  J  Hi(r)t)dP(r]t) = n " 1/i-*E (e?//(Z (‘)) J K 2(u)du +  op( n - l hTk). (4.11)
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For the th ird  term  of R i ti note th a t

t= 1 t= 1 t= 1

n—1
= J E(H?(̂ )) + E(J £(1 -  V ^ ^ m ) )  = 0 { n lhik+̂ )

f t  ft  ft
t =  1

the la tter from A8. Hence

^  =  0 P(n -3/2h ^ )  =  o ^ / r * ) .  (4-12)

Combine (4.10),(4.11) and (4.12) to get R lti = n~1h~kE(e2/ /(Z ^ ) )  /  K 2(u)du +  

op(n-1 /i-A:). Using similar arguments of the decomposition of /7-statistics we can 

show th a t R i j  = op(n~1h~k) for j  =  2,3 while the ergodic theorem yields # 1)4 =  

op{n~l h~k). Summing up,

Ri = n - 1h~kE(e2t / f ( Z f ) )  J K 2{u)du +  op(nTl h - k). (4.13)

Note th a t R2 =  n ’ 1 E « i ( S L i ^  t i& j f t z ? ) * ?  (* -  * ) )2 thus |f l2| <  C  || 0 -  6  ||2

" -1 E “=i I £ t e i , f # . “ 't,A,)(z ? )l2 and since E r= i,t^ s« 'M )(z f )  =  Opi1) assumption A2 
yields E |i?2| =  0 ( n _1) =*►

7?2 =  Op(n~l ) =  op{rTl h~k). (4-14)

Cauchy-Schwartz inequality yields E\R3\ < (E (i?i))1/2(E(i?2))1//2 and therefore E \R 3\ = 

0 (h ~ k/2n ~ 1/2)o(h~k/2n~1/2) =  o(n_1h _fc), so

R 3 = Op{E\R3\) = op{n~l h~k) (4.15)

and the proof of (b) concludes from (4.13),(4.14) and (4.15).

We now sta te  the main theorem th a t proves the consistency of the proposed leave- 

one-out cross validation criterion.
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Theorem  4.1 Under assumptions A1-A10, it holds that

lim P (A  = A q) = 1.
n —* oo

Proof of Theorem 4.1 For any A c  { 1 ,. . . ,  Q}, if v 2(A) >  cr2( l , . . . ,  Q) =  a 2(A0) 

then from Lemma 4.1 it follows th a t P^CV(Ao) < CV(A)^ —► 1. Alternatively, if 

o 2{A) =  cr2( l , . . . ,  Q) =  (72{Aq) then condition (4.9) in Lemma 4.3 holds. Note also 

th a t k > q by Definition 4.1. Hence, from A10,

hq/ h k = n kX{k)- qX{q) -> oo as n  —> oo (4.16)

thus Lem ma 4.1 (b) along with (4.16) yield:

p t n h ^ C V i A )  -  CV(y4o)) > o )  

= p [ j  K 2( u ) d u { ^ E t f / f C Z ? ) )  -  E(e2/ f (Z?°) )}  + op( ^ )  > o) -  1

=» P (A  =  A0) —> 1 as n  —> oo th a t completes the proof.

The calculation of the residuals requires regressing over the full linear regressors set, 

even if some of the linear regressors are insignificant, in order to make sure th a t there 

is no linear contribution left on the residuals. As it appears from the result of Theorem

4.1, the inclusion of insignificant linear regressors in the calculation of the residuals 

Ut does not affect the asymptotic property of consistency for the cross validation 

criterion. In fact, the main term s of the decomposition of the  CV-function are the 

same as those derived in Yao and Tong (1994) for a fully nonparam etric model. It is 

therefore understood tha t, having removed the param etric com ponent’s contribution, 

the selection of the nonparam etric component is performed on the residuals as a 

standard  nonparam etric variable selection, assuming th a t A1-A10 hold.
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4.3 Selection of parametric com ponent

The second step of the proposed procedure is the selection of the param etric regres­

sors. For any M  C { 1 , . . . ,  P}, we write

Yt =  (X (m)T0m +  g{ Z?°) + et,M (4.17)

where X tM =  (X M : i €  M ) T and e,,M = Yt -  E (Y t |X (M, Z f0). We denote this model 

as M m - To this end, we classify the models M m  into two groups

Category I: a t least one nonzero component of 6 is not in Qm ,

Category II: &m  contains all the nonzero components of 6.

In the first category, we have models M m th a t are incorrect in the sense tha t 

they do not include all the significant regressors. Models in the second category 

include all the significant regressors but they may include regressors unrelated to 

the response variable. Substituting g(.) with the nonparam etric estim ator gn(Z f°)  =  

^s,A0(Z f°)(y ra — X ^0) yields tha t the least squares estim ator of 6 m  is

0 M = (X j[,X M )-1X ^ Y  (4.18)

where Y  =  (Y), . . . ,  Yn)T , Yt = Yt - £ " =1 ws,Ao(Z?°)Y, and X M =  (X llM, . . . , X„,M)T 

with X f  =  X f  — uiSi/i0(Z^0)X “ . Note th a t for model M u  the mean square

prediction error is given by

M S E JM ) =  - f e  -  - f P Me + - 0 TX TH MX d  +  - e TH MX 0 (4.19)
n  n n n

where I  =  (e i , . . . ,  e„), l t =  Yt - X j O ,  X  =  ( X i , . . .  , X n)T, P M =  X m (X JX m )_1X ^  

and H m = In -  P M- By definition, et = Yt -  X j d  = et -  Y ^ = i ws,Ao('z‘Ao)e3 and 

using Lemma 4.4 below, with p =  1 — kX(k) and r = 6 (see A5, A7) we conclude tha t 

maxi<*<n | £ ”=iWa,Ao(zAoK I  =  o(nfcA(fc)-1/2) =  o(l). Consequently, the nonpara­

metric term  does not affect the rate of convergence of the mean square prediction

113



error under the assumptions imposed. Surprising as it may look, similar conclusion 

has been observed by Speckman (1988) who noticed th a t for a certain choice of band­

width, the param etric estim ator 0 remains a ^/n-consistent estim ator, see also Hardle, 

Liang, and Gao (2000). It follows from (4.19) and assum ption A4 th a t the conditional 

expected mean square error is given by

—E(er e|X ) -  iE ( e r PM«|X) +  ! E ( 0 r X TH w X 0 |X ) +  - E ( e r H MX e |X )  =>
n n  n n

TYh
E M S E JM ) =  a ]  erf +  M a.s. (4.20)

n

where erf =  n~ l E (er e) and fin,M =  n _10TX r H M X 0. Note th a t for every M  C 

{1 , . . . ,  P ]  w ith M m  from category II, it follows th a t

M SE„(M ) =  - e Te -  - e r P Me +  - e TH MX 0  and
n n n

EMSEJ M )  =  — (n — m)cr| 
n

the la tter from the fact th a t in category II X 0  =  X a/ 0 m - In addition to assumptions 

A1-A10, we require th a t

B1 For every M  C { 1 , . . . ,  P}

(i) E(XJ^Xm) is a positive definite m atrix with order m x m .

(ii) If M m  in category I it holds: lim in f^o o  f2n,M >  0 in probability.

Assumption (i) is necessary for the consistency of 0m, (see Hardle, Liang, and Gao 

2000). Assumption (ii) is an identifiability condition which is a very minimal argument 

for asym ptotic analysis. Further let dj{z )  =  E (X tjj \Z f°  = z )  and define utj  = 

X tj  — d j(Z f°) for j  = 1 , . . . ,  P  and u t = (ut|1, . . . ,  ut>p )T . Gao and Tong (2002) show 

th a t B l(ii) can be replaced by \im in in^ oon~1(u0)T(In — um (um Um )-1Um)(u0) > 0 

where u  =  ( u i , . . . ,  u n)T, u M =  (u i)M, • • •, u„,a/)t , u t =  X t -  E ( X t \Z?°) and \it,M = 

X tiM — E (X tiM |Zf°) an extension of the identifiability condition 2.5 in Shao (1993) 

to the partial linear context.
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We split the d a ta  into two parts: {(J^X *) : t G N }  and {(y*,X t) : t G N c} where 

N  C  {1 , . . . ,  77,} and N c is its compliment. Hence, if we call nv and nc the size of N  

and N c respectively then nv +  nc = n. Model M m  is fitted using the sub-sample N°  

which is called the construction data  while the prediction error is calculated using N  

called the validation data. Then, the leave-rvout cross validation function is defined 

by CV(M, nv) = n~l || YJv — 'X.n,m^nc,m ||2- The simplest case would have been the 

leave-one-out cross validation. However, it has been shown th a t the leave-one-out 

cross validation criterion yields an asymptotically inconsistent estim ator, see Shao 

(1993). On the other hand, for n large there are too many possible sub-samples 

which is com putationally inconvenient. A good compromise is to  use the Monte 

Carlo-CV(nt;). We randomly draw a collection B  of b subsets of {1, . . .  ,n} each one 

with size nv and we choose the model tha t minimizes

M CCV(M , n v) =  1  J 2  CV(M -n”) =  T ~  J 2  H ^  -  ||2 . (4.21)
NeB Uv N€B

D e fin itio n  4 .4  The estimator for the optimal regression subset of the linear compo­

nent is defined as

M m  = arg min MCCVYM, n v). (4.22)

The consistency of the estim ator of the optimal param etric regressors subset is en­

tailed in the next theorem. But first we need to impose an additional assumption:

B2 W hen n  —► oo it holds th a t nv/n  —> 1, n c = n  — n v —* oo and n 2/{ n 2cb) —► 0. 

T h e o re m  4.2 Assume that A1-A10 and B1-B2 hold, then

(1) I f  M m  is in category I, then there exists R n >  0 such that

M CCV(M , Uv) = -  cJfCN +  +  Bn +  oP(l)
NeB

where = Yn  — X ^ 0 .
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(2) I f  M m  in category II, then

M CCV(M , n») =  t £  +  ^ ( " r 1)-
N£B Uc

(3) Combining (1) and (2) we conclude

lim P ( M m = M Mq) =  1-
n —► oo

P ro o f  o f  T h e o re m  4.2  The proof is based on Theorem 2 in Shao (1993). Similar 

results for the partial linear model can be found in Theorem 2.2 (Gao and Tong 

2002). Hence we only present an outline of the proof and particularly we show tha t 

conditions in Theorem 2 (Shao 1993) hold. Indeed condition 2.5, 3.12 and 3.22 have 

been introduced in B1 and B2. Therefore, it remains to show

^ n i E x < x r - i E x 1x n i = 0p(i)  (4 .2 3 )
v t e N  c t e N c

X TX  =  Op(n), (X r X )-1 =  Op(n-1 ) and (4.24)

lim m axpt M =  0 for all M  (4.25)
71—► OO ’

where p tlM is the £-th diagonal element of Pa*. Lemma 4.4 and 4.5 below establish 

the above conditions th a t entail the proof of the theorem.

The following lemma is an extension of Lemma A.3 in Hardle, Liang, and Gao 

(2000) for a-m ixing processes. It is a novel result on the uniform rates of the weighted 

sum of a-m ixing random variables and can be used independently of the context of 

variable selection.

L em m a  4 .4  Let X i} i =  1 , . . . , n  be zero mean, strictly stationary, a-mixing, real 

valued random variables. Let the mixing coefficients follow t6a(t)  —> 0. Suppose that

supi<i<nE |A j|r <  C < oo for  r > 2 and denote with a i j  with i , j  = 1 , . . . , n  a

sequence of positive numbers such that s u p ^ j ^  Ic^ l <  n~p fo r  some 0 <  p  < 1. 

Then it holds that

max | a u X i \  = Op(n p+1/3+1/r logn).
1 <  J  <71

7=1
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P ro o f  o f L e m m a  4 .4  Define X[ =  XJ(\X i \  < n lfr) and X '■ = Xi — X[. Note tha t 

supi<i<n \a i jX h  < Cn~pn l/r =  M.  The exponential-type inequality in Theorem 1.3 

(Bosq 1998) w ith e  =  Cn~p~2/3+1/r log n  and q =  tt,2/ 3 yields:

n  n  n

P f c „  I E  a‘AXi - EX'i)\ > ne) ^ E P (l Y â X'> -  E ( - X j ) ) l  >  ne)
i = l  j = 1 i = l

<  4nexp  ( - g ^ y )  +  22n1+2/3( l  +  ^ ) 1/2a ([n 1/3/ 2]) 

where with a(k)  we denote the mixing coefficient and

O [n2/ 3] + l

v2(i) < w  -  e x <»2+ m 2  E  «(*)>+
/c=i

It holds th a t v2(q) < C M 2n  2/3 +  2 l M e  <  C n 2P+ 2 / r 2/3 thus,

C'n_2p_2+4/3+2/r log2 7i'
max | ^  otijiX'i — EX'j) | >  <  47iexp ^ —
— — i=l

1 < 3< «  1 JV /  “  V 7 l—2P—2 /3 + 2 /r

47°'n_P+1/r
+ 22n5/3( l  +  n _p. 2/3+1/rlogra)1/2a([n 1/3/2]) <  4nexp  ( - C lo g 2n) 

+22n2(rT 2/3 +  4C log~1 n )1/2a([n 1/3/2]) <  re1- cloen +  C2n2a (n 1/3) -» 0 

given th a t t6a(t)  —► 0 when t —> oo. Hence, it follows tha t

n

max \ Y ' a iJ (X'i -  EX[)  | =  Op(n - ')+1/’-+1/3 logn). (4.26)
l < 7 < n

4=1

For the second process X ”, ergodic theorem yields



the la tte r from Markov inequality. Consequently, E |X /|* <  E |X i |rn // r_1. Therefore, 

E |X ” — E X '/ \ l < C E\X '/\l < CY^XiY n l^r~l < C n l^r~l which along with (4.27) yields 

E iL i P C  — EX'i'\l < C n l/T. But Holder’s inequality (with m ,l  such th a t 1 /m  < 1 / 3  

and 1 /m  +  l / l  =  1) implies tha t

m ax | £  aiJ( X;  -  E X :) I  <  m ax (  £  M " )  "  (  £  K  -  E X t f )  T
i=1 i=1 i= 1

<  Cn~p+1/m (  £  |X " -  E X ’! I') T =►
i=l

n

max  | £ a 4j- «  -  E X " )  \ = Op{ n p+1l3+ll r logn) (4.28)
1 < ? < 7 2  1 *

2 =  1

and the final result is entailed in (4.26) and (4.28).

L e m m a  4 .5  Under assumptions A4-A5 and A 7  it holds that

(a) X TX  = Op(n), (X TX )-1 =  Op(n " 1).

(b) lim^—oo m a xp t>M =  0 for all M  C {1 , . . . ,  P}.

(c) m axNeB || n - 1 £ teN X *X f -  n~l ^ X f  ||=  op(l) .

P r o o f  o f  L e m m a  4.5  (a) Note tha t u t,j =  X tj  — d j(Z f° )  for j  =  1 , . . . ,  P , where 

dj(z) =  E (X fj|Z ^ °  =  z), is a strictly stationary a-m ixing process. Call A n = 

n _1 X f X j  then we prove tha t A n^  =  l / n ^ =1 X tj X t,j —► A itj for i , j  = 

1 , . . . ,  P , where A =  [Aij] a positive definite matrix, see B l(i). Indeed, from X t,j = 

ut,j -  £ a = i  ws { ^ t° )u s ,3 +  D tj  with Dtj  = d j(Z t°)  -  Y ^ = 1  WsCZf0)d j(Z£0) we obtain,

1 n i n 1 n /  n n \

A.W = -  £ +  -  £  DtjDt,i + -  £  £
71 t=l 71 t=l 71 t=l \a= l fc=l /

^ 71 72 «* 72 72 72 72

- -  £  D * j  £  M 2 : ° ) u k ,i -  -  £  £  W k ( z f«)uw
71 t= 1 fc = l 71 £=1 3 = 1 71 *=1 jfc=l
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-j n  n  n  1 71 ®

~ ~  )  > U*,i ^  v w k{^t  )Us,j +  ~  y ]  Dt,jUt>i +  — ^   ̂D tjUt}j  =  }   ̂ Jm.
71 t = l  5 = 1  U  t = 1 U  t = 1 m = 0

Prom A4, A7 and ergodic theorem J 0 =  n~1'52t=iut j ut,i ^  ^ ( u i,ju i,i)- Kernel’s 

Lipschitz property and maxi<t<„ £ " =1 ius(Z^°)J(|| Z^° -  Z^° ||>  n _1/2) =  Op(n_1/2) 

yield
n

max ^ ( Z f o )  -  5 > . ( Z * ) < i , ( Z * ) |  =  O ^ r T 1' 2). (4.29)
l < t < n

s=l

Thus, using A bel’s inequality along with (4.29), we get J\ = Op{n~l ) =  o(l). Further, 

Lemma 4.4 for p  =  1 — k \ (k ) ,  r =  6 and B3 yields
n

| inax ws{rZ*t°)us,j\ — Op(nkXW~1/2 log n ) (4.30)
5  — 1

which combined with Abel’s inequality yields J 2 =  Op(n2kX̂ ~ l logn) =  op(l)  from 

kX(k) <  1/2. Similarly for m  =  3 ,4  equations (4.29) and (4.30) imply
n

Jm < C  max \Dt j\ max I wa( Z f 0)us A =  O J n fcA(fc)-1 logn) =  op(l)
— l < t < n  l < t < n  y  y

5 = 1

while Cauchy-Schwartz inequality for m  =  5,6 along with the ergodic theorem and 

equation (4.30) yield

Jm < C n~ 1/2(  y ^ u 2̂ )  / max \ y T wk{'Z‘t 0)us,j\ =  Op(nkX̂ ~ 1/2 logn) =  op(l).
t =  1  71 5 =  1

Finally from Cauchy-Schwartz inequality, ergodic theorem and (4.29) it follows tha t 

Jm < C n - 1/2(Y%=iu l i ) 1/2m&*i<t<n\Dt,j\ =  Op(n~1/2) = op(l)  for m  — 7 ,8 and 

conclude (a). The t-th  diagonal element of Pm  is Pt,M — where

C tj =  Op(n -1 ) from (a). Under assumption A4, A5 and A7 conclude (b). For (c), 

we have th a t

max„€0 || £  X ,X f -  i  £ !gWC X(x r  || <

II ^  E ^ , x r  -  E(X,Xf)} II + m |x  II -  E(X(XH} || .
u t e N  c t e N c

Call Tt = X fX ^ —E(X *X f) then using similar arguments as in (a) it can be shown tha t 

maxNeB || J2 tzN rt ll=  °p(nu), maxjveS || Ylt€NcTt 11= °p(nc)- Details are omitted.
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4.4 Bandw idth selection

The cross validation function defined in (4.6) depends directly on the bandwidth. 

Using standard asym ptotic results from the partial linear theory, it is easy to see tha t 

for the minimizer ho, of the Asymptotic Mean Square Error of the model with the 

true nonparam etric component:

AMSE(fc) =  -  y > ( x f 0  -  X j e  + g(Z*°)  -  <?(Z*>))2
t= 1

holds th a t h0 — C n ~ l^ A+q\  Further, define (A, h) the simultaneous estim ator of the 

regressors optim al subset and the bandwidth th a t minimizes the CV-function, i.e.

(A, h) = arg min min CV (A :h )
A C { l t. . . ,Q} , l <k<Q heHn(k)

then it follows th a t h/ho  1 as n  —> oo with Hn(k) =  [Afcn“ 1/(4+fc)_Cfe, £?fcn -1//(4+A:)+Cfc] 

and Ak,B k  > 0, 0 <  Ck <  1/2(4 +  k) constants, see Gao and Tong (2002) for 

details of the proof. The result implies tha t the CV-criterion not only identifies the 

correct dimensionality of the nonparametric function bu t it autom atically adjusts the 

bandw idth to have the same rate with the optimal bandw idth ho th a t minimizes the 

AMSE, equivalently h ~  n _1^ 4+^.

Consistency of the estim ator for the optimal linear regressors subset was proven 

under the assumption th a t the bandwidth is of rate n~x^  w ith k \ ( k )  < 1/2. In 

other words, for a bandw idth of this order, the nonparam etric component does not 

affect the rate  of convergence of the parametric estimator. The above condition may 

look strong bu t in practice the rate of the bandwidth is as im portant as its constant, 

especially for large n. For a similar case, Yao and Tong (1994) suggested th a t the 

data-driven band widths do not depart in principle from the bandw idth’s assumptions. 

They also allowed some minor modification to ensure for instance the monotonicity of 

kX(k) when necessary. The numerical examples, presented below, w ith the bandwidth 

chosen as the minimizer of the CV-function support this remark.
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4.5 Extension to the variance function

The model considered in (4.1) is a mean regression model. However, with some 

modifications in the assumptions, the results can be extended to  include modelling 

of variance functions. In particular, a second order partial linear model is defined as

Yt = at€t , cr2 — +  g(7it) (4-31)

where Yt scalar, X f =  (XM, .. . , X t}P)T, X tJ > 0, Z t =  (ZM, . . . ,  Z t,Q)T. Further,

g(.) > 0 is a Q-dimensional function and et a zero mean, error process independent

of {Xs, Z s, s  <  t}  satisfying E(e^) =  1. Note th a t if X t,i = Y 2_{ then model (4.31)

is a partial linear in respect to squared-Yt, ARCH model. Re-arranging (4.31) yields 

Yt =  =  at +  at i et ~  1) =  at +  (?Ut with £t = e2t -  1. Obviously, E (^ ) =  0 so

E(<7t£t|Xt, Z t) = a 2E(£t) = 0- Thus, (4.31) is written as

E(Vt2|X ,, Z t) =  a\  =  y?t e  +  g( Zt) (4.32)

which is in the form of model (4.1). The main concern here is th a t the error term 

is heteroscedastic. However, Hardle, Liang, and Gao (2000) have already shown tha t 

under some assumptions on initial estimates of of, the weighted-LS estim ator of 0 

is >/n-consistent and asymptotically normally distributed. The generalization of the 

previous results to the weighted cross-validation function is straightforward. Conse­

quently, by introducing weights to the proposed selection procedure we ensure th a t 

the asymptotic results for the estimator of the optimal subset are still applicable. In 

practice, we first regress Y 2 on all the candidate param etric regressors X tj  and use the 

weighted leave-one-out CV criterion to find the optimal nonparam etric regressors set. 

Then, we apply the weighted leave-n^-out cross validation to  exclude the insignificant 

param etric regressors. The weights are based on initial estim ates of the variance a 2 

using a fully nonparam etric method, e.g. the Nadaraya W atson estimates, including 

all the candidate variables. Numerical evaluation of the m ethod is presented in the 

following section.
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4.6 Num erical examples

Two simulated examples for mean regression models and one for variance modelling 

are considered. We calculate the probabilities of selection for the predictor subsets as 

the minimizers of the CV-criteria for the nonparametric and param etric components. 

Knowledge of the true model helps us to evaluate the procedure. In addition, we 

calculate the probabilities of selection using a fully nonparam etric method in order 

to emphasize the advantage of the proposed selection procedure against a less flexible 

selection m ethod th a t does not take into consideration the partially linear form of 

the model. We use the multivariate kernel K (x )  = where K (.)  is the

Epanechnikov kernel. Note th a t the selected kernel satisfies assum ption A5 on the 

kernel function. Bandw idth is selected by minimizing the cross validation criterion in 

grid points h =  0.2 1.2a a  for a =  1 , . . . ,  15, where a  is the sample standard  deviation, 

(see discussion in section 2.8 about the choice of the grid points). Further, B2 is met 

by choosing b =  n  and, n v = n — n c with n c =  [n3/4] the largest integer part of n 3/4.

4.6.1 M ean regressors selection

We generate a time series data  set from the model

Yt =  0 . 5 -  0.35Y(- 2 -  0.75exp(—V ,l3) +  ° ' ^ 2-  +  e,
1 +  Y t - 4

with et following a uniform distribution in [—1,1]. Note th a t the error distribution has 

bounded support, hence there is no need for introducing a weighting function in the 

CV-function. Having identified the nonparametric components, the candidate linear 

components are M i =  {1 } , M 2 =  {2 }  and Mo =  { 1 ,2 }  the true one. Let 9  =  (0i, 92)T, 

ut,i = Yt- 1 -  E (Y t- i \Y t- Z, Yt- 4) and ut>2 = Yt- 2 -  E (Y t- 2\Yt- 3, yt_4), ut =  (uM, ut)2)T , 

^fjMi — ^t,ij ut,M2 — ^t,2 , a  (^1, • • •, ^n) and u ( i t i tMii • • • 5 for i

1,2 . Further, B l(ii) holds from lim in f^oo  L(u0)T( /n -  UMi (u Jf.UMi)_1u5}.)(u0) =  

(el - iE " = 3 u l i Y Z = 3 u l 2 ~  > 0 w ith probability one, since

P{u t,i =  utfl) = 0.
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Table 4.1: Probabilities of nonparametric regressors selection: the leave-one-out CV.

Two-Step CV Fully Nonparametric

subset n =  50 n =  100 n =  300 n =  50 n  =  100 n  =  300

{ Y t - i } 0.1875 0.125 0.100 0.075 0.0375 0.0125

{ Y t - 2} 0.025 0.0125 0.0125 0.0625 0.025 0.00

0.225 0.175 0.1125 0.2125 0.2625 0.2375

{yt_i,yt_2,yt_3} 0.075 0.075 0.0375 0.2375 0.25 0.2625

{yt_i,yt_2,yt_3>yt_4} 0.0875 0.05 0.05 0 3 0.375 0.475

{y*_2,y*_3} 0.0125 0.0 0.0 0.0125 0.0 0.0

{yt-i,yt_3} 0.025 0.025 0.0125 0.025 0.0125 0.0125

0.3875 0.55 0.6875 0.075 0.0375 0.0

Table 4.2: Probabilities of selection based on the MCCV w ith Yt- 3 , Yt - 4 the nonpara­

metric regressors.

subset 72 =  50 71= 100 72 =  300

0.2875 0.2375 0.025

{Y t-2 } 0.1375 0.05 0 .0

{ Y t - u Y t - 2 } 0.575 0.7125 0.975

It is easy to see th a t A3 is met while the generated process satisfies A7. Note tha t 

A8  holds for g(y ,x )  = —0.75e-y2  +0 .85 /(1  + x 2). We first regress Yt against all Yt_j, 

for j  =  1,2,3,4.  Then using the residuals Ut we calculate the leave-one-out cross 

validation. The first three columns of Table 4.1 contain the probabilities, calculated 

from 80 iterations, of selection for each candidate subset. Combinations with calcu­

lated zero probability have been omitted from the table. Apparently, {Yt- 3 , l f - 4 } has 

the highest probability of selection even in a small sample size of n  = 50 observations 

th a t is 0.3875. Moreover, when the sample size increases, the probability of selection 

increases, reaching up to 0.6875 for a sample of size n  =  300 which implies consis­

tency of the estim ator. Then, using {V^_3 , Yt~4 } as the nonparam etric component, we
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calculate the leave-nv-out CV. The results are presented in Table 4.2. The param etric 

component is identified successfully from the MCCV, even for small samples, while 

the probability of selecting the true regressors increases up to 0.975 for n  =  300. Fur­

thermore, in the last three columns of Table 4.1 we present the results using a fully 

nonparam etric cross validation selection procedure. It is understood th a t the fully 

param etric selection m ethod fails to distinguish the linear term  from the nonpara­

metric component while the convergence rate appears significantly slower. It seems 

tha t the linear term  dominates the nonparametric component and this is the reason 

why, even when the sample size is large, {Y t- \ ,Y t - 2 } and {Yt- i, Yt- 2 , Vt_3} have high 

selection probabilities, 0.2375 and 0.2625 respectively. This is an example of the im­

portance of employing a combined selection method instead of a fully nonparam etric 

one when working with a semiparametric model. Note here th a t the proposed proce­

dure reduces the to ta l number of investigated models from (24 — l)x (2 2 — 1) =  45 into 

24 -1- 22 — 2 =  18. The reduction is significant and it consists the main contribution 

of the proposed selection procedure.

4.6.2 M ean regressors selection w ith  tw o processes

We generate da ta  from the model

0 5X
Yt =  0.35V,-i -  0.15V, - 2  +  — - ^  + eu X t = 0.3X,_i +  0.2X,_2 +  e,

1 + A t

with et ~  U[—0.25,0.25] and et ~  U[—0.5,0.5]. The example is also examined by Gao 

and Tong (2002). They showed th a t assumptions A4, A7-A8 and B1 hold. We proceed 

by regressing Yt against the candidate linear regressors Yt- i , Y t- 2 ,Y t-z  to calculate 

the residuals Ut . This set should always be the largest possible even if it includes 

insignificant linear regressors. Note here tha t Yt - 3 is not a linear regressor. This is 

to show th a t the procedure works even when insignificant regressors are used in the 

calculation of the residuals Ut. The results of the leave-one-out CV are summarized
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Table 4.3: Probabilities of nonparametric regressors selection: the leave-one-out CV.

Regressors subset n = 50 n = 150 n  =  300

w 0.4625 0.575 0.7875

{ X t - 1} 0.2875 0.225 0.125

{X t tX t - i } 0.25 0.2 0.0875

Table 4.4: Probabilities of selection based on the MCCV with X t the nonparam etric 

regressor.

Param etric Regressors subset n =  50 n  =  150 n  =  300

{ y ~a 0.25 0.225 0.125

{ Y - i } 0.0625 0.025 0.0

CO1
£

0.025 0.0 0.0

{ Y - u Y ^ } 0.4375 0.575 0.8375

{ Y - u Y - S} 0.15 0.1125 0.025

{Yt-2,Yt-3} 0.0 0.0 0.0

{Yt- U Yt- 2,Yt- 3} 0.075 0.0625 0.0125

in Table 4.3 while Table 4.4 contains the results for the MCCV, using X t as the 

nonparam etric regressor. Apparently, the true nonparam etric component is identified 

with a probability 0.4625 and 0.575 for sample sizes n  = 50 and 150 while for n  =  300 

the probability is 0.7875. Therefore, there is strong evidence th a t the single predictor 

X t should be selected. The increase in the probability due to the increase of the sample 

size is in line with the property of convergence shown earlier. On the other hand, 

the MCCV distinguishes the insignificant linear regressors and successfully identifies 

the linear regressors of the underlying model with probability as large as 0.8375 for 

n = 300. The required com putations have been reduced from (23 — 1) x (22 — 1) =  21 

tha t would include all the possible combinations, to 23 +  22 — 2 =  10 cases under 

investigation.
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4.6 .3  Variance regressors selection

The third example is an application in variance modelling. The d a ta  is a time series 

generated from the conditional heteroscedastic model

Yt =  a teu of =  (C)A5Yt2_1 +  1.1 sin(Yti 2) exp(-0.85Y t_2))+

where et is the sum of 35 independent random variables each uniformly distributed 

on [—0.05,0.05]. According to the Central Limit Theorem, the resulting process is a 

good approxim ation of the standard normal random variable bu t in fact the support 

of the error density is bounded, given by [—1.75,1.75]. Note also th a t variance of the 

error term  is equal to one a necessary assumption for the identifiability of the variance 

component. Since we deal with heteroscedastic data, it is suggested th a t we use the 

weighted least squares to  calculate the residuals Ut . The la tte r requires some initial 

estim ates of the variance function to be used as weights when fitting the regression 

line. Consequently, we calculate the fully nonparam etric Nadaraya-W atson estimates, 

denoted by of. Then, we regress Yf on Yt2_j for j  =  1,2,3 using the weighted least 

squares with a t-2 as the weights. Then Ut are the standardized residuals. This is 

equivalent to introducing weights in the leave-one-out cross validation function as 

required from earlier discussion in order to account for the heteroscedasticity of the 

model. The probabilities of selection for the nonparam etric regressors calculated after 

80 iterations are presented in Table 4.5. The nonparam etric optim al subset Yt_2 is 

identified with probability equal to 0.3375 while the probability of {Y _i,Y t_2} is 

0.225 for sample size n  =  50. Hence, though successful, the CV-criterion is not very 

decisive. The evidence is more significant when the sample size is increased. Note 

th a t the probability is 0.6375 for size n = 300, indicating th a t the single variable 

Yt- 2 is the nonparam etric regressor. The MCCV criterion for the selection of the 

linear regressors is calculated using the residuals Vt =  Yf — ^ s = i  ws(Yt_2)Ya. Table 

4.6 contains the probabilities for the linear regressors. The true linear regressor is 

identified with probabilities 0.5375 and 0.7875 for sample size n  =  50 and n  =  300.
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Table 4.5: Probabilities of the nonparametric regressors: the leave-one-out CV

Two-step CV Fully Nonparametric

subset n =  50 n =  100 n =  300 n =  50 n =  100 71 =  300

m - i } 0.125 0.1375 0.075 0.1375 0.125 0.1375

W - 2 } 0.3375 0.4375 0.6375 0.1875 0.2 0.1375

0.05 0.0375 0.0375 0.0625 0.0375 0.0

0.225 0.15 0.1125 0.2625 0.325 0.4125

{Y t-u Y t-s ) 0.0875 0.0875 0.0625 0.1375 0.0875 0.0875

{Yt-2,Yt- 3} 0.0625 0.0625 0.0125 0.0375 0.0375 0.0125

{Yt- i , Y t-2 ,Y t- 3} 0.1125 0.0875 0.0625 0.175 0.1875 0.2125

Table 4.6: Probabilities of selection based on the MCCV w ith Y t - 2 for nonparam etric 

regressor

Param etric Regressors subset 71 =  50 n = 100 71 =  300

W - i l 0.5375 0.7125 0.7875

W - 3} 0.3 0.1875 0.1375

0 £ i .  i ? - 3} 0.1625 0.1 0.075

Overall, the selection procedure is successful but the probabilities are relatively 

smaller, equivalently, the rate of convergence is slower especially for small sample 

size. This feature is related to the convergence rate of the initial estim ators tha t 

were used as weights in the cross validation function. At the same time, the fully 

nonparam etric selection procedure identifies Yt- 1 , Yt - 2 but w ith a slower rate since the 

corresponding selection probability was found to be 0.4125 for n  =  300. The latter 

observation emphasizes the need of a more flexible and efficient selection m ethod than 

a fully nonparam etric method when the underlying model includes a linear term.
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Chapter 5

A pplications of the adaptive  

M L-estim ator to Value at Risk

5.1 Introduction to VaR theory

Due to the increase of traded assets and the complexity of the market, risk measure­

ment has been the favorite topic of recent discussion and research. Newly imposed 

regulations have now made necessary tha t financial institutions and banks should hold 

a certain am ount of capital as a cushion against adverse market movements. Many 

of the proposed theories are highly dependent on the accurate modelling, estimation 

and prediction of the market volatility.

A commonly used quantile-based risk measure is the Value a t Risk (VaR). In Value 

a t Risk theory, we are interested in the quantile of the Profit-Loss d istribution1 over a 

defined period of time. Hence, from a statistical point of view, VaR is a simple quantile 

calculation of the returns distribution. Equivalently, VaR is defined as F _1(o;) =  VaR 

where F is the probability distribution of the returns over a defined period of time 

and a  is the given probability losses. The existing estim ation m ethods of the returns

!Most often the Profit-Loss distribution corresponds to the distribution of the log-returns of a 
single asset (univariate) or a portfolio (multivariate).
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distribution are mainly divided in three groups (McNeil and Frey 2000): (1) the 

nonparam etric historical simulation (2) the param etric methods based on modelling 

the conditional variance (Riskmetrics and ARCH/GARCH) and (3) Extreme Value 

Theory (EVT). See also Duffie and Pan (1997) for an overview of VaR theory.

Historical simulation is easy to implement but it has been proven to perform poorly 

while param etric conditional variance models have a m ajor drawback tha t assume 

conditional norm ality which contradicts with the observed heavy tailed sample distri­

bution of the most financial data  sets. On the other hand, in Extrem e Value Theory 

the unconditional distribution has a parametric form at the tails known as tail in­

dex, (Embrechts, Resnick, and Samorodnitsky 1998, 1999 and Danielsson and Vries 

1997) or comes from a particular family of distributions like hyperbolic distribution 

(Eberlein, Kallsen, and Kristen 2001). McNeil and Frey (2000) quote th a t “none of 

the previous EVT-based methods for quantile estimation yields VaR estimates which 

reflects the current volatility background. Given the conditional heteroscedasticity of 

most financial data, which is well documented by the considerable success of the mod­

els from the A R C H /G A R C H  family, we believe this is to be a major drawback of any 

kind of  VaR-estimator.” In response, they propose a combination of historical simu­

lation (for the central part) along with threshold methods from EV T (for the tails) of 

the error distribution. Then, the conditional return distribution is constructed from 

the estim ated error distribution and the conditional variance estim ators calculated 

by fitting a GARCH model. Similarly, Danielsson and Vries (2000) propose a semi- 

param etric m ethod as a mixture of the two approaches. A common point shared 

by both  approaches, is th a t estimating the returns conditional distribution requires 

the calculation of the conditional variance. Consequently, accurate estim ators for 

the conditional variance will eventually result in an improvement in the conditional 

distribution of the returns. But as noted above, the param etric conditional variance 

models employed to produce these estimates assume Gaussian error distribution and 

often fail to capture the dynamics of the heavy tailed data.
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The proposed likelihood-based estimator of the conditional variance function does 

not require such an assumption. Consequently, we apply the proposed nonparam etric 

likelihood estim ator in the estimation of the VaR. Details about the implementation 

of the adaptive M L-estimator in the calculation of VaR are described in the following 

sections. There, we introduce a number of combinations between quantile estimators 

of error distribution and conditional variance estimators. In fact, as we shall see 

later on, the adaptive M L-estimator performs relatively be tte r compared to existing 

nonparam etric estim ators especially when the error distribution is heavy tailed. Of 

course, this does not guarantee th a t it outperforms the param etric estim ators like 

GARCH-estimators. However, it provides a nonparam etric alternative to  the para­

metric models th a t have dominated the VaR-theory.

5.2 Real data applications

W ithin the nonparam etric context, simulated examples showed th a t for heavy tailed 

data, the adaptive M L-estimator is an improvement to the LS-estimator. It remains 

to see if this improvement is maintained when dealing with real data. In this chap­

ter, we analyze a number of time series data  sets and study the performance of the 

two nonparam etric estimators. Furthermore, we a ttem pt a comparison between the 

proposed nonparam etric fittings and parametric fittings. Param etric models are less 

complex yielding param eter estimates that have faster convergence rates. However, it 

is often observed th a t they lack flexibility and fail to capture the underlying dynamics 

especially if a non-linear structure is present. On the other hand, nonparam etric es­

tim ators converge more slowly and are computationally demanding. But they reduce 

the model bias when the true model contains non-linear terms.

The examples considered in this chapter involve exclusively financial data. In 

particular, we study three different types: stock indices, stocks and exchange rates. 

The first two da ta  sets were found in the web site: http://finance.yahoo.com/. The ex­
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change rates da ta  set was retrieved from the web site: http://fx.sauder.ubc.ca/data.html 

The reason for choosing to work with financial data  is due to the degree of het- 

eroscedasticity and the existence of many extreme observations, and therefore, heavy 

tailed underlying distributions. Furthermore, risk is a concept closely related to finan­

cial data. Like all the risk measures, Value at Risk (VaR) has been developed within 

the context of finance. However, we would like to point out th a t our methodology is 

independent of the nature of the data set used, and can be employed to  analyze any 

time series da ta  which exhibit conditional heteroscedasticity.

5.2.1 Stock indices

We begin with the analysis of four stock indices and particularly we look a t the daily 

log-returns of Standard and Poor 500 (SP), Dow-Jones (D J), FTSE 100 (FTSE) and 

DAX 100 (DAX) indices for the period of September 1997 to December 2003. The 

sample size is 1500 observations. We split the sample into two parts, the “pre-sample” 

period of size n /  =  1000 which we use to fit the models and the “post-sample” period 

with n e =  500 used for the evaluation of the models. We proceed by plotting the 

data. Figure 5.1 indicates th a t volatility of the returns changes over time. Note tha t 

clusters of high volatile peaks are followed by clusters of low volatile peaks indicating 

non constant variation. In Figure 5.2 we calculate the autocorrelation function (ACF) 

for the original returns (first column) along with the ACF for the squared returns 

(second column). Looking a t the ACF functions for the returns, we see th a t there is 

little evidence for correlation within the original series which was expected given tha t 

the trend has been removed by taking the difference. However, ACF for the squared 

returns reveals th a t there is strong evidence for second order correlation implying 

th a t the volatility of the series a t time t depends significantly on the past variables.

We consider three different conditional heteroscedastic models, two param etric and 

one nonparam etric. The first parametric model is GARCH(1,1) a popular model in 

analyzing financial da ta  mainly due to its practicality as well as good performance.
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Figure 5.1: Time series plot for the returns of the stock indices. 
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Figure 5.2: Returns and squared returns autocorrelation function.
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Nevertheless, the basic GARCH model fails to take into account the asymmetry of 

the news im pact where negative news has larger impact on volatility than  good news, 

also known as “leverage effect”. W ith the introduction of the absolute value of the 

error term, exponential-GARCH is able to model this asymmetry. Hence, the second 

param etric model under investigation, is the exponential-GARCH, or EGARCH, see 

Nelson (1991). On the other hand, the nonparametric model is in the form of model 

(2.2) with the mean function m(.) set equal to zero, equivalently, assuming no trend 

(see discussion on ACF of the returns). The selection of the predictors is made using 

the nonparam etric CV-criterion. Among all the combinations of Yt-i, i = 1,2,3,  

the regressor set {Yt- i , Y t- 2} yields the lowest CV value of 1.186 x 10-7 with {Ft_i} 

coming second with a value of 1.264 x 10-7 for the SP500 d a ta  set. Similar conclusions 

are drawn for the remaining data  sets all in favor of {Yt_ i, Yt- 2 }. Note here th a t the 

combination of {V*_i, Yt_2, F*_3}, yields a slightly lower CV value for FTSE and DJ 

da ta  set. Nevertheless, we argue th a t the difference is probably not significant enough 

to compensate for the increase in the computations. Hence, we end up with two 

predictors for the variance function, namely { Y t- i ,Y t- 2 }i in nonparam etric fitting. 

Equivalently, we write model (2.2) as Yt = a(Yt_ i ,Y t- 2 )ct- For the nonparam etric 

model we calculate (i) the LS-estimator, (ii) the adaptive M L-estimator introduced 

in Chapter 3. Overall, we end up with four fitted models for the conditional variance: 

two param etric, GARCH and EGARCH and two nonparam etric, LSE and MLE.

Figures 5.3-5.6 contain the calculated conditional standard  deviations for the pre­

sample period, along with the original series. Note th a t the conditional standard 

deviation calculated from the param etric models is smoother than  th a t from the 

nonparam etric models. In other words the fluctuation is higher for the nonparam etric 

standard deviation. The la tter could be attributed to the fact th a t the nonparam etric 

weights are calculated using a proportion of the to tal observations and give more 

im portance to  the values th a t lie close enough contrary to  the param etric models 

where the equivalent weights take into account the full set of observations.
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Figure 5.3: SP Returns: Series and conditional standard deviation, LSE and MLE.

SP Series

<If#!

0 200 400 600 800 1000

Time

LSE Conditional St. Dev.

0 200 400 800600 1000

Time

MLE Conditional St. Dev.

0 200 400 600 800 1000

Time

135



0.
01

0 
0.

02
0 

0.
01

0 
0.

02
0 

0.0
30

 
-0

.06
 

0.0
 

0.
04

Figure 5.4: DJ Returns: Series and conditional standard deviation, GARCH and 

EGARCH.
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Figure 5.5: FTSE Returns: Series and conditional standard deviation, EGARCH and 

MLE.
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Figure 5.6: DAX Returns: Series and conditional standard deviation, GARCH and 

LSE.
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Figure 5.7: Normal probability plot for the SP500 and DAX returns.
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Figure 5.7 is the normal probability plot for the SP500 and DAX returns. There is 

strong evidence th a t empirical distribution of the returns of the stock indices exhibit 

fatter tails than Gaussian distribution while the same applies for the the normal 

probability plot of the GARCH-residuals for SP500 and DJ as revealed by Figure 

5.8. This characteristic is called “leptokurtosis” and it is a well known property 

exhibited by many financial data  sets, see Engle and Gonzales-Rivera (1991) and 

Danielsson and Vries (2000) for more details. It is understood th a t leptokurtosis of 

the error distribution raises serious concerns about the use of Gaussian distribution 

when fitting the GARCH model. In response, Bollerslev (1987) concluded tha t SP500
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Figure 5.8: Normal probability plot for SP500 and DJ residuals from GARCH model.
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monthly returns fit better to a GARCH model under the assumption of a ^-distribution. 

Similar conclusions were observed for the FTSE returns while the probability plot of 

residuals for the DAX showed a rather satisfactory fit with the straight line suggesting 

normality for the error term.

In order to investigate if there is any evidence for remaining second order correla­

tion we calculate the autocorrelation function for the squared residuals. It appears 

tha t the underlying correlation was explained well by the fitted models with the ex­

ception again of the DAX series, where there is unexplained autocorrelation present 

at the residuals of GARCH model. The latter is suggested by the Ljung-Box auto­

correlation test for the squared residuals of DAX with p-value 0.0327 with the null 

hypothesis of no autocorrelation.
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Our prim ary aim is to compare the volatility models. This requires the introduction

of some functions th a t will be used as the means of comparison. The first measure is 

the Mean Absolute Deviations Error, MADE =  n~l Y^t= 1 \& t~ ° t \  already introduced 

in earlier chapter. A lternatively Fan and Gu (2003) propose the square-Root Absolute 

Deviation Error, defined as RADE =  n~l I — Of course, the true

approximated. It is understood tha t the la tter raises some issues regarding to the 

validity of the selected approximation. Nevertheless, the choice of the proxies for the 

volatilities is beyond of the scope of this work. Therefore, here we use the conventional 

square of the observed return. Apart from these deviation measures, Fan and Gu 

(2003) suggest two tests th a t can be used for evaluation of volatility models. The 

independence test is based on the idea that the sequence of events exceeding a given 

quantile should behave like an i.i.d. Bernoulli distribution. Let $ (.)  be the normal 

distribution function and call I t =  I(Yt < $~l (a)crt) the indicator of an exceeding 

event a t time t, then I t takes values zero and one. Define n^- the observed numbers of 

events from sta te  i G {0,1} to j  G {0,1} and let 7Uj =  +  nil), n j = noj +  fty

and 7r =  no/(no +  n i)  then, under the null hypothesis of i.i.d. Bernoulli, the likelihood 

ratio

follows a Xi under Ho. For bo th  tests see Christoffersen (1998) for more details.

Table 5.1 contains the results for the four stock indices. W ith  the exception of 

Dow-Jones index, the nonparam etric ML-estimator has the smallest mean absolute 

deviation bu t EGARCH model yields the smallest square root absolute deviation with 

M L-estimator coming second. Further, all p-values for the independence test LR1 are

values of the volatility denoted by erf, are not directly observed and can only be

- n o o ^ n o i - n i o - n n

follows a Xi-distribution. The second test is a test against a given confidence level 

with H q : P (I t =  1) =  a  vs H i : P (It = 1) ^  a  and the likelihood ratio
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Table 5.1: Stock indices: deviation measures and hypothesis tests.
Index Method MADE

(xlO-4 )
RADE

(xlO-3)
LR1

P-

LR2
value

LR1* LR2* 
p-value

GARCH 1.836 6.380 0.951 0.714 0.827 0.898

EGARCH 1.701 6.110 0.218 0.140 0.872 0.999

SP LSE 1.577 6.268 0.842 0.001* 0.790 0.690

MLE 1.525 6.201 0.830 0.003* 0.593 0.892

GARCH 1.679 6.046 0.234 0.736 0.827 0.898

EGARCH 1.595 5.853 0.882 0.957 0.918 0.511

DJ LSE 1.430 6.062 0.673 0.000* 0.188 0.893

MLE 1.419 6.020 0.612 0.000* 0.472 0.690

GARCH 0.228 2.623 0.309 0.445 0.665 0.998

EGARCH 0.281 2.578 0.487 0.165 0.736 0.690

FTSE LSE 0.251 2.689 0.539 0.001* 0.716 0.893

MLE 0.228 2.668 0.337 0.001* 0.873 0.999

GARCH 2.522 7.533 0.698 0.691 0.816 0.690

EGARCH 2.493 7.429 0.658 0.610 0.827 0.898

DAX LSE 2.170 7.759 0.591 0.000* 0.388 0.893

MLE 2.202 7.764 0.686 0.000* 0.430 0.789

not significant and hence the null hypothesis th a t the sequence of extreme events 

follows an i.i.d. Bernoulli cannot be rejected. Finally the p-values for the confidence 

level test LR2, are significant for the two nonparam etric estim ators for all indices 

hence we reject the hypothesis of P (I t = 1) =  a. Note here th a t the indicator I t was 

defined under the assumption of normally distributed errors. Hence, one probability 

would be th a t the rejection of the null hypothesis is a result of the departure from
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norm ality for the nonparam etric model. In response, we recalculate the tests, namely 

LR1* and LR2*, bu t now using the nonparametric a-quantile estim ator found directly 

from the sample distribution of the estimated errors. Clearly, all p-values are now 

greater than 5%. Hence we conclude tha t (1) the hypothesis of independent identically 

Bernoulli d istributed extreme events and (2) the hypothesis th a t the probability of an 

extreme event being greater than  the 95%-quantile is 0.05, cannot be rejected. These 

conclusions hold for all four volatility models.

We continue with the calculation of the VaR using conditional arguments. The 

VaR involves the extreme values of the series over a predeterm ined period, called r ,  

given a  confidence level 1 — a . Recall tha t the log-return a t tim e t  +  1 is denoted by 

Yt + 1 while the conditional variance is of+1. Let Yt+i,T be the aggregate return a t time 

t 4- 1 over a period of r  and =  Var(Yt+i )T|3 t) , the corresponding conditional

variance where is the information up to time t. Let Vt+i,T be the a-quantile of the 

conditional distribution of Yt+itT. We write P ( |y i+ i)T| >  =  1 — a . Then

VaRt+i )T is the quantile Vt+\tT of the conditional distribution th a t yields probability 

equal to 1 — a  for the given level of losses a . Consequently, if q(a, r) is the a- 

quantile of the error distribution then it holds th a t VaRf+ i)T =  q(a,r)crt+i )T. In other 

words, calculation of the VaR is reduced to the calculation of the conditional standard 

deviation a t+i,T and the a-quantile q(a , r )  of the error distribution.

Note th a t, if a t+i is the predicted conditional standard deviation for one holding 

period, i.e. r  =  1, then we use the square-root rule for the r-period  volatility predic­

tion, th a t is crt+i,T — y/rvt+i, see Fan and Gu (2003) among others, for further details 

about the On the other hand, we have already argued th a t the distribution

of the errors et,T = YttT/crt,T is likely to depart from the normal distribution. There­

fore, the a-quantile of the error distribution q (a ,r ), should not be calculated by the 

normal tables. Instead, we introduce a nonparam etric estim ator. The natural non­

param etric a-quantile estim ate q{a ,r)  for the error distribution is found as the sample 

a-quantile of the estim ated errors et}T =  YttT/a ttT. At this point we follow Fan and Gu
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(2003) who showed th a t the choice of this natural quantile estim ator is not as efficient 

as the param etric quantile estimator. In response, they propose the nonparam etric 

quantile, defined as <71 ( a , r) =  2~1(q(a, r )  — q( 1 — a , r )) , th a t improves the symmetry 

of the sample error distribution. Hence we denote with VaRj+l r  =  <71 (a , T ) a t+ i ,T the 

VaR estim ator based on the improved nonparametric a-quantile estim ator of the er­

ror distribution <71 (a , t ) .  Alternatively, we define a param etric estim ator <72 ( a , r ) ,  for

the a-quantile of the error distribution. It is calculated assuming th a t the estim ated 

errors etjT follow a scaled ^-distribution. The degrees of freedom 1/  and the scaling 

factor A are found using the nonparametric estim ator <71 (a , r )  and particularly by 

solving the equations:

t ( a i,*>) gi(<*i,r) r _  9 i(o u ,t)  , .
i ( a 2 ,z>) g i(a2 , r ) ’ t{a u 0) '

In the theoretical comparisons of the quantile estim ators Fan and Gu (2003) found 

th a t the choice of =  0.15 and a 2 =  0.3 is near optimal in term s of efficiency for 

all degrees of freedom v. Note here that the assumption of error variance equal to 

one is violated. For instance, looking at SP returns, the estim ated error variance 

A2f>/(f> -  2) is 0.679 and 0.723 for GARCH and EGARCH, 1.273 for LSE and 1.332 

for MLE while similar results are found for the remaining series. The la tter suggests 

th a t the departure from the assumption is not significant, though we need to be 

cautious when drawing any inference based on this quantile estim ator. We denote the 

VaR estim ator based on the parametric quantile with VaR|+lT (a) =  <72 (a, r )a t+iyT, 

Hence, define $ ^ ( a , r )  =  {t : |yf)T| >  V aR ^ lT ( a ) , t  G [ l ,n e]} for i = 1,2 then the 

Exceedence Ratio (ER) in the post sample period for given level a  is the percentage 

of exceeding observations calculated from E R ^ ( a , r )  =  #(<I>W(a, r ) ) / n e.

Overall, for the calculation of the VaR, we consider the combinations of the four 

conditional variance models with the two quantile estim ators introduced above. We 

perform our calculations for three different holding periods r  =  1 (daily), 1 0  (fort­

night) and 25 (monthly).
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Table 5.2: Stock indices: ratio of exceeding observations (x lO  2) for a=5% .
Index

SP

DJ

FTSE

DAX

Holding GARCH EGARCH LSE MLE
Period (r) ER(1) ER(2) ER(1) ER(2) ER(1) ER(2) ER(1) ER(2)

1 5.8 5A 6.6 5.6 6.4 5.6 6.6 5.6

10 3.8 5.2 3.0 4.2 4.8 4.8 5.4 M
25 0.4 1.2 0.0 0.8 1.0 1.4 1.2 M

1 5.4 5.4 L8 M 6.8 5.8 6.2 5.4

10 2.8 4.0 2.4 2.8 5.6 4.8 6.0 5JQ

25 0.2 1.2 0.0 0.6 1.0 0.8 1.8 2A

1 3.8 3.8 2.8 3.0 7.4 6.2 6.6 M
10 1.0 1.8 0.6 1.4 4,2 4J2 £ 2 4 2

25 0.6 0.8 0.0 0.4 1.2 1.6 1.0 2J)

1 5.8 5.8 6.0 5J2 8.2 7.0 8.2 6.0

10 2.2 2.2 1.2 1.0 6.2 4.2 7.4 5A

25 0.2 0.4 0.0 0.0 2.2 3.0 3.2 M

The results for a  =5% level, summarized in Table 5.2, reveal th a t for the holding 

period r  = 1, the param etric models outperform the nonparam etric models with the 

exception of FTSE and this holds for both quantile estimators. The optim al combi­

nation is the EGARCH with the parametric quantile q2 (a ,r )  w ith the combination 

of GARCH and q2 (a ,T )  coming second. Note here tha t, though the nonparam etric 

models performed poorly, the proposed MLE performs relatively better than  the LSE 

and this holds independent of the quantile estimator. W hen the holding period is 

increased the variability increases since the prediction involves longer time horizon. 

In th a t case, the nonparam etric fittings deal in a better way with this increase in vari­

ability than  the param etric models. Moreover, the proposed MLE along with q2 (a ,r )  

is ranked first for r  =  10 and r  =  25 with the combination of LSE and q2 (&, t ) coming 

second. Note here th a t in all cases the parametric quantile ^ ( c ^ r )  is preferred.
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Table 5.3: Stock indices: ratio of exceeding observations (x lO  2) for a=  1 %.
Index Holding GARCH EGARCH LSE MLE

Period (r) ER(1) ER(2) ER(1) ER(2) ER(1) ER(2) ER(1) ER(2)

1 0.6 0.0 L0 0.4 1.8 0.8 1.6 0.8
SP 10 0.0 0.4 0.0 0.2 0.2 0.6 0.4 0 8

25 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0 4

1 L0 0.8 0.0 0.0 2.2 1.8 1.8 1.4
DJ 10 0.0 0.2 0.0 0.0 0.4 0.0 0 6 0.4

25 0.0 0.0 0.0 0.0 0.0 0.0 0 2 0 4

1 0.6 0.2 0.4 0.4 2.8 1.2 2.6 L0
FTSE 10 0.0 0.4 0.0 0.0 1.4 LQ 1.2 LQ

25 0.0 0.0 0.0 0.0 0.0 0.0 0.2 Qi4

1 L0 0.2 1.2 0.6 2.4 1.2 2.2 1.4
DAX 10 0.0 0.0 0.0 0.0 L2 0.2 1.6 L2

25 0.0 0.0 0.0 0.0 0.0 0.2 L2 L2

Similar conclusions hold for the results of the a  =  1%-quantile in Table 5.3. The 

fitted EGARCH model combined with the param etric quantile yields the closest to 

1% ratio for holding period r  =  1. However, VaR estimates using the MLE are more 

consistent as the holding period increases for all four indices.

Summing up, the analysis of the four stock indices is ra ther promising for the 

adaptive M L-estimator. The measures of comparison reveal th a t between the two 

nonparam etric estim ators, the MLE manages to capture the dynamics of the data  

better than  the LSE. Concurrently, the MLE has the smallest Mean Absolute De­

viation Error. I t also provides more accurate calculation of VaR between the two 

nonparam etric estimators. But even when compared to  the param etric models, with 

the exemption of the holding period of r  =  1 where GARCH provides better VaR 

estimates, the proposed ML-estimator should be preferred.
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5.2.2 Stocks

The second d a ta  set consists of the daily log-returns of the following stocks: CitiBank 

(CB), Coca-Cola (CC), Hewlett-Packard (HP), IBM, JP-M organ (JPM ), Microsoft 

(MCS), Xerox (XRX), M cDonald’s (MCD) and Intel (INL) for the period of January 

1994 to December 2003. We use the first rif =  1500 observations to fit the models 

and the last n e =  1000 observations for evaluation of the models. We investigate the 

behavior of each stock individually. In addition, we study the average performance of 

the ten different stocks in an attem pt to approximate the performance of a portfolio 

of the stocks by using a univariate approach. It is understood th a t a multivariate ap­

proach th a t would take into account the interactions is likely to yield safer conclusions 

and should be preferred when the primary aim is the portfolio analysis. We fit two 

param etric models: the GARCH(1,1) model with (i) Gaussian and (ii) t-distributed 

errors. The la tter was selected as a result of the earlier discussion concerning the 

departure of the sample from the Gaussian distribution and the existence of heavy 

tailed error distribution. Further, we fit the nonparam etric model in (2.2) using 

least-squares (LSE) and the adaptive likelihood estim ation (MLE). The selection of 

the nonparam etric regressors is based on the minimization of the Cross-Validation 

function. In particular, we find th a t for seven out of ten stocks, the first two lagged 

variables {Yt- \ , Y t- 2 }> are significant. However, for the stocks HP, IBM and XRX we 

conclude th a t only the first lagged variable {L*-i}, is significant. A summary of the 

results for the CV-function is given in Table 5.4.

We continue using the deviation errors MADE and RADE along with the non­

param etric Exceedence Ratio E R ^  as the performance measures. However, the Ex- 

ceedence Ratio as Dave and Stahl (1997) quoted “is only sensitive to the frequency 

and not the degree with which the loss exceeds the predicted- VaR” . In response, they 

propose a measure th a t takes into account the degree of exceedence. This measure 

depends on the logarithm of the probability of the realized event y t , in term s of the 

predicted conditional distribution pt , denoted as £ t = logpt(yt)-
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Table 5.4: Stocks: nonparametric Cross-Validation function (xlO -6)

Stock 2 =  1 2 =  2 2 =  3 2 =  1,2 2 =  1 ,2 ,3

CB 6.239 6.156 6.938 6.125 6.131

CC 1.681 1.681 1.697 1.675 1.689

GE 0.237 0.236 0.301 0.231 0.233

HP 5.400 5.481 5.488 5.433 5.467

IBM 0.639 0.643 0.677 0.642 0.641

INL 2.037 2.025 2.121 2.020 2.034

JPM 0.775 0.764 0.808 0.753 0.771

MCD 0.261 0.266 0.289 0.259 0.267

MCS 0.716 0.713 0.759 0.700 0.720

XRX 8.510 8.683 8.831 8.879 8.667

h* • II
r-*

™% c-
f.

M  > y t 6 [1, ne]} then the Mean

defined as

1(a) =_ Sf6T(ya)
#(r(y«))

with the exceedence level ya calculated from (# (T (y a)) — 0.5) /n e =  0.5(1 +  a) for 

different values of a. It is understood tha t the higher the likelihood value the better 

the performance of the predicted volatility. Indeed, high Mean log-Likelihood values, 

at large percentile levels a , indicate that the fitted volatility model has captured with 

success the dynamics of large financial movements.

The results for the RADE and MADE measures are presented in Table 5.5. It 

appears th a t for seven out of ten stocks MLE produces the smallest Mean Absolute 

Deviation Error. At the same time, for 8 out of 10 the square-Root Absolute Deviation 

Error is in favor of the MLE. Naturally, both deviations measures are in favor of MLE 

when looking a t the average of the ten stocks.
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Table 5.5: Stocks: Mean Absolute Deviation Error (x lO  4) and square-Root-

Absolute Deviation Error (x lO -3).

Stock Measure GARCH GARCH-i LSE MLE

MADE 1.141 1.130 1.154 1.221
CB RADE 4.916 4.878 5.096 5.028

MADE 0.794 0.700 0.630 0.629
CC RADE 3.948 3.931 3.695 3.078

MADE 0.984 0.989 0.856 0.848
GE RADE 4.801 4.807 4.526 4 .477

MADE 2.919 3.000 2.425 2.242
HP RADE 7.913 8.031 7.340 7.295

MADE 1.164 1.147 1.087 1.064
IBM RADE 5.034 5.029 4.908 4.813

MADE 2.46 2.641 2.313 2.311
INL RADE 7.322 7.463 7.091 7.007

MADE 1.591 1.597 1.350 1.312
JPM RADE 5.911 5.915 5.500 5.453

MADE 0.951 0.954 0.806 0.778
MCD RADE 4.688 4.696 4.323 4.226

MADE 1.432 1.448 4.689 2.325
MCS RADE 5.586 5.585 5.732 5.502

MADE 4.675 4.268 3.370 3.418
XRX RADE 9.748 9.116 8.055 8.141

MADE 1.802 1.789 1.867 1.635
AVER RADE 5.987 5.945 5.627 5.576
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Table 5.6: Stocks: exceedence ratio (xlO  2) for a  =  5%.

Stock GARCH GARCH-* LSE MLE

CB 4.93 4.93 6.71 5.49

CC 5.98 5.44 5.68 5.66

GE 8.09 7.54 8.08 7.87

HP 4.51 3.88 9.32 9.36

IBM 6.71 7.44 4.19 4.83

INL 9.01 5.87 9.64 9.32

JPM 6.19 6.08 8.60 7.45

MCD 6.65 6.04 9.82 4.85

MCS 7.56 7.23 6.93 6.09

XRX 5.56 7.44 9.52 8.50

AVER 6.52 6.19 7.85 6.94

Table 5.6 entails the results for the exceedence ratio E R ^  based on the nonpara- 

metric quantile estim ator q ^ ( a , r )  with holding period r  =  1. For five stocks, the 

GARCH model fitted using ^-distribution yields the closest to 5% values with the 

nonparam etric MLE and the GARCH model based on Gaussian conditional error 

distribution coming second. In addition, a direct comparison between the nonpara­

metric estim ators indicates th a t the adaptive M L-estimator yields better results than 

the LS-estimator. For instance, by looking at the exceedence ratio  for the average 

of the ten stocks, it is revealed tha t MLE managed to  reduce the deviation from the 

true percentile to 1.94% from 2.85% for LSE. This corresponds to  a relative reduction 

of almost 32% in the deviation from the true value.
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Figure 5.9: Mean log-Likelihood vs percentile for GARCH (solid), GARCH-t (small

dashed), MLE (large dashed), LSE (dotted).
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Figure 5.9 summarizes the results for the Mean log-Likelihood measure. It has al­

ready been pointed out th a t higher likelihood values for increasing percentile indicate 

better model fit th a t captures the dynamics of the series especially for the extreme 

events. The first four graphs display the performance of the models for the four stocks 

CB, CC, HP and IBM. It seems th a t the two param etric fittings outperform  the non- 

param etric fittings, producing higher values for the Mean log-Likelihood measure. 

Furthermore, GARCH model has consistently the higher overall log-likelihood values 

while the MLE outperform s again the LSE. At this point we should mention th a t 

the failure of the MLE or even the failure of the tailed emphasized GARCH model 

(GARCH model fitted using t-distribution) could be a ttribu ted  to  the fact tha t the 

likelihood values Ct =  logpt{yt) are calculated using norm al distribution as the con­

ditional distribution pt . Since GARCH-t and MLE emphasize the departure from 

normality, using normal distribution could generate the poor performance in respect 

to the Mean log-Likelihood measure. In Figure 5.10, we plot the realized volatility, 

against the predicted volatility for INL and JPM  stocks. Obviously, the jum ps of the 

realized volatility are higher than any of the jum ps constructed by the estimators, 

indicating the need for stochastic volatility. Nevertheless, MLE and LSE seem to 

capture the dynamics of the da ta  better than  the two param etric fittings.

This conclusion, though not m athem atically rigorous, contradicts with the results 

of the Mean log-Likelihood measure, enforcing the concern regarding the validity of 

the use of normal distribution in the calculation of the Mean log-Likelihood. Hence, 

in order to acquire a better idea about the performance of the volatility models, we 

calculate again the Mean log-Likelihood but now using a A-scaled ^-d istribu tion . The 

two param eters A, i/, are estim ated as described in (5.1) from the previous section. 

Hence, the predicted distribution used for the calculation of the likelihood measure 

is obtained from the error distribution approxim ated by the A-scaled, t-distribution 

with i> degrees of freedom. In Figure 5.11 we present the results for the Mean log- 

Likelihood measure of the average of the stocks based on the ^-distribution.
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Figure 5.11: Mean log-Likelihood using t-dist. vs percentile for the stock average:

LSE (dotted), GARCH (solid), MLE (large dashed), GARCH-£ (small dashed).

8
rr

s
co

8
CO

IT)
00
CO

8
CO

0 .75 0.80 0.85 0.90 0 .95 1.00

x

The result changes dramatically since the highest values are now coming from 

the adaptive ML-estimator with the alternative nonparametric LS-estimator coming 

second. It becomes clear tha t there is no single fitting th a t outperforms the rest 

independent of the predicted distribution used in the calculation of the likelihood- 

based measure. Given this contradiction, we are unable to draw a clear conclusion 

based on the Mean log-Likelihood measure.

In summary, the analysis of the ten stocks suggests th a t the proposed adaptive 

MLE outperforms the LSE, a conclusion backed by all the performance measures. 

However, the results are not tha t straightforward when comparing the parametric 

and the nonparametric fittings together, since the two measures of deviation (MADE 

and RADE) along with the Mean log-Likelihood using ^-distribution suggest a bet­
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te r fit for the MLE but the Exceedence Ratio and the Mean log-Likelihood using 

Gaussian distribution indicate th a t the param etric models follow more successfully 

the dynamics of the data.

5.2 .3  Exchange rates

The final data  set involves the daily log-returns of exchange rates. We define American 

dollar AD($) as the reference currency and we examine the behavior of the exchange 

rates w ith British pound GBP(«£), Japanese yen JP Y (¥ )  and Swiss franc SFr. The 

models are fitted using the da ta  points from the period between Jan  2000 to Dec 2001 

i.e. rij =  500 while the observations from period Jan  2002 to Dec 2003, n e = 500, are 

used for the evaluation of the fitted models. Note here th a t in our analysis the Euro 

currency has been om itted due to lack of sufficient observations.

Diebold and Nason (1989) showed that, for the exchange rates, the use of a non­

param etric model does not improve the param etric prediction. They studied the ex­

change rates of American dollar against British pound, Japanese yen, Canadian dollar, 

along with most of the main European currencies th a t have now been replaced by 

euro, for the period of Jan  1973 to Sep 1986. Nevertheless, in their comparison, they 

only considered the Least Squares estim ator of a local polynomial approximation for 

different polynomial orders, the performance of which has been disappointing so far. 

Here, similar to the previous sections, we employ two param etric models namely the 

GARCH using normal and ^-distributed errors and the nonparam etric model in (2.2) 

estim ated using least squares (LSE) and the proposed likelihood procedure (MLE). 

The nonparam etric regressors are selected by the nonparam etric CV-criterion. For 

the G BP and SFr the model with the first three lagged variables, {Yt_i,Ft_2, Y t- 3 }, 

yields the smallest CV-value of 3.01 and 3.31 (x lO -7) respectively while the smallest 

CV-value for JPY , 2.14 (x lO -7) corresponds to the model w ith the two regressors 

{Yt- i , Y t- 2 }- In Figure 5.12 we plot the realized volatility, the predicted volatility 

from the  param etric models as well as the nonparam etric MLE and LSE.
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Figure 5.12: Realized and predicted volatility for exchange rates, GARCH (dashed-

dotted), GARCH-t (dotted), LSE (dashed) and MLE (solid).
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Table 5.7: Exchange rates: deviation measures and hypothesis tests.
Currency Method MADE

(xlO-4 )
RADE

(xlO-3 )
LR1* LR2* 

p-value

GARCH 0.249 2.492 0.348 0.999

GARCH-* 0.251 2.411 0.387 0.893

GBP LSE 0.252 2.420 0.188 0.893

MLE 0.253 2.431 0.243 0.679

GARCH 0.389 3.068 0.872 0.999

GARCH-* 0.387 3.055 0.920 0.891

JPY LSE 0.408 3.157 0.932 0.578

MLE 0.403 3.120 0.348 0.999

GARCH 0.487 3.553 0.867 0.597

GARCH-* 0.487 3.550 0.816 0.690

SFr LSE 0.533 3.558 0.920 0.891

MLE 0.529 3.556 0.928 0.898

We continue with the calculation of the volatility measures of deviation MADE 

and RADE and the two tests LR1* and LR2* introduced in section 5.2.1. Recall tha t 

the hypothesis of the first test was th a t the a%-exceeding events occur independently 

according to a bernoulli distribution. The second hypothesis entailed the probability 

of occurrence of such an event, namely P (I t =  1). In our case, since a  = 5%, the 

hypothesis is H 0 : P (I t == 1) =  0.05. Note here th a t in the calculation of the two 

tests we use the nonparam etric quantile th a t assumes no particular distribution and 

is calculated from the ordered estim ated residuals. Table 5.7 contains the results for 

MADE and RADE along with the p-values for the two tests. Both the deviation 

measures are in favor of the param etric estimates and particularly of the GARCH 

with i-distributed errors. In addition, there is no p-value small enough to reject the
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Table 5.8: Exchange rates: exceedence ratio (x !0 ~ 2) for a =  5%.
Currency Method Normal t-dist. Nonpar.

GARCH 4.4 4.6 5.2

GARCH-t 4.2 5.2 5J)

GBP LSE 4.4 6.0 5.8

MLE 4.2 5£ 4.2

GARCH 4.8 4.6 5.2

GARCH-t M 5.8 4.8

JPY LSE M 6.0 4.2

MLE 4.0 5.8 4.8

GARCH M 5.6 5.8

GARCH-t 5.2 5.2 5.6

SFr LSE 4.8 5.4 4.8

MLE 4.8 5 J 4.8

null hypothesis and therefore all models have captured rather satisfactorily the dy­

namics of the exceeding events for the three exchange rates. The evaluation continues 

with the calculation of the ratio of exceedence. A part from the nonparam etric E R ^  

and the param etric E R ^  ratios of exceedence, introduced earlier, we calculate a third 

ratio th a t uses a param etric quantile estim ator based on the normal distribution. The 

results are summarized in Table 5.8. For the exchange ra te  of B ritish pound, the com­

bination of the nonparam etric quantile with the GARCH-t conditional volatility and 

the combination of the param etric quantile based on t-distribution with the MLE 

yield the optimal ratio. On the other hand, for the Japanese yen the optimal ex­

ceedence ratio is generated by the combination of the param etric quantile based on 

normal distribution with GARCH-t volatilities and LSE. For the Swiss franc, the re-
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suits are in favor of the param etric quantile based on normal distribution combined, 

w ith the MLE and the param etric quantile based on ^-distribution along with th e  

conditional volatilities predicted by GARCH model. Apparently, there is no distinct 

conclusion drawn from these results though it should be noted th a t the GARCH-t 

model and the nonparam etric MLE appear more frequently than  the other two m od­

els as the optim al in respect to the exceedence ratio. At the  same time, deviation 

errors suggest GARCH-t yields the better fit, while between the two nonparam etric 

estim ators, M L-estimator once more outperforms the LS-estimator.

5.3 Conclusion

Summing up the results from the analysis of the stock indices, stocks and exchange 

rates, we conclude the following. Direct comparison of the two nonparam etric volatil­

ity estim ators indicates th a t the proposed likelihood-based estim ator performs b e tte r 

than  the estim ator calculated using least squares. This conclusion seems to hold for 

all the financial da ta  sets considered above and is confirmed by the deviation m ea­

sures, the performance of the VaR-estimators in respect to the hypothesis tests and 

the exceedence ratio. As far as the param etric and the nonparam etric fittings con­

cerns, mixed messages are coming from the different measures. It is understood th a t 

all these inferences are drawn from the results derived for the particular d a ta  sets 

considered above. Another im portant observation is th a t the restrictive conditions 

imposed a t the introduction of the likelihood estim ator do not seem to be an obsta­

cle in the use of the estimator. On the contrary, the performance of the adaptive 

M L-estimator sm ooths out any suspicion about its practical implementation.

Undoubtedly, likelihood estimation is com putationally demanding. On the o ther 

hand, it is an alternative m ethod to the dominant in nonparam etric theory least 

squares estim ation tha t, a t least in the above studied cases, improves the accuracy of 

the prediction. This characteristic encapsulates the main contribution of this work.
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