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Abstract

First chapter of my thesis reviews recent developments in the theory and practice of

volatility measurement. We review the basic theoretical framework and describe the

main approaches to volatility measurement in continuous time. In this literature the

central parameter of interest is the integrated variance and its multivariate counter-

part. We describe the measurement of these parameters under ideal circumstances

and when the data are subject to measurement error, microstructure issues. We also

describe some common applications of this literature.

In the second chapter, we propose a new estimator of multivariate ex-post volatil-

ity that is robust to microstructure noise and asynchronous data timing. The method

is based on Fourier domain techniques. The advantage of this method is that it does

not require an explicit time alignment, unlike existing methods in the literature. We

derive the large sample properties of our estimator under general assumptions allow-

ing for the number of sample points for different assets to be of different order of

magnitude. We show in extensive simulations that our method outperforms the time

domain estimator especially when two assets are traded very asynchronously and with

different liquidity.

In the third chapter, we propose to model high frequency price series by a time-

deformed Lévy process. The deformation function is modeled by a piecewise linear

function of a physical time with a slope depending on the marks associated with

intra-day transaction data. The performance of a quasi-MLE and an estimator based

on a permutation-like statistic is examined in extensive simulations. We also consider

estimating the deformation function nonparametrically by pulling together many time

series. We show that financial returns spaced by equal elapse of estimated deformed
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time are homogenous. We propose an order execution strategy using the fitted defor-

mation time.
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Chapter 1

Realized Volatility: theory and

application

1.1 Introduction

This chapter reviews some recent developments in the theory and practice of volatil-

ity measurement. Volatility is a fundamental quantity for investment decisions. Its

measurement is necessary for the implementation of most economic or financial theo-

ries that guide such investment. Volatility is also important for assessing the quality

of performance of financial markets, with very volatile markets being perceived as

not functioning effectively as a way of channeling saving into investment. Despite

its importance, volatility is not an easy quantity to measure, and there are many

approaches to do that. From the point of view of the investor facing investment op-

portunities with returns rt at time t and information Fs at time s < t, one might

be interested in the matrix var(rt|Fs). This represents a challenge because the time

horizon t − s might be unknown or be stochastic, the information set Fs might be

extremely large containing current and past values of many variables, and the prob-

ability distribution f(rt|Fs) may be unknown. The recent emphasis on continuous

time methods of volatility measurement in some way addresses all of these concerns.

We review the basic theoretical framework and describe the main approaches to

volatility measurement in continuous time. In this literature the central parameter

1



of interest is the integrated variance and its multivariate counterpart. We describe

the measurement of these parameters under ideal circumstances and when the data

are subject to measurement error. We discuss the main types of measurement error

models that apply and how they may arise from the way the market operates at the

fine grain, i.e., microstructure issues. We also describe some common applications

of this literature. Our review is necessarily selective and there are many topics and

papers that we do not cover.

1.2 Modeling Framework

1.2.1 Efficient price

We start by setting the modeling framework. Under the standard assumptions that

the return process does not allow for arbitrage and has a finite instantaneous mean,

the asset price process, as well as smooth transformations thereof, belong to the class

of special semi-martingale processes, as detailed by Back (1991). If, in addition, it is

assumed that the sample paths are continuous, we have the Martingale Representation

Theorem (e.g. Protter (1990) ). Specifically, there exists a representation for the log

price Yt, such that for all t ∈ [0, T ],

Yt =

∫ t

0

µudu+

∫ t

0

σudWu, (1.1)

where µu is a predictable locally bounded drift, σu is a cádlág volatility process and

Wu is an independent Brownian motion, and the integral is of the Itô form. Let Ytj

denote an observed log prices on the time grid, 0 = t0 < · · · < tn = T, where we

take T = 1 for simplicity. Note that {ti} is usually assumed to be a non-decreasing

deterministic sequence. Crucial to semimartingales, and to the economics of financial

risk, is the Quadratic Variation (QV) process. Let Γt be a set of points that partition

the interval [0, t] with Γ = Γ1. The quadratic variation of Y over the time interval

2



[0, t] is given by

[Y, Y ]t = plim
suptj∈Γt

|tj−tj−1|→0

∑

0≤tj≤t
(Ytj − Ytj−1

)2, (1.2)

with [Y, Y ] = [Y, Y ]1. This quantity is a measure of ex-post volatility. Under (1.1),

the following holds almost surely

[Y, Y ] =

∫ 1

0

σ2
udu. (1.3)

The quadratic variation is also called the integrated variance, for obvious reasons. It

is the key parameter of interest that this survey will focus on. It is an integral over

the sample path of the stochastic process σ2
u, and hence itself is a random variable.

The specification of the process σ2
u is very general and nonparametric, i.e., it may

depend on the entire past of Yt and additional sources of randomness. The averaging

inherent in (1.3) suggests gains in terms of estimability.

We now relate the parameter of interest to other concepts of volatility. A natural

theoretical notion of ex-post return variability in this setting is notional volatility,

Anderson, Bollerslev, Diebold, and Labys (2000). Under the maintained assumption

of continuous sample path, the notional volatility equals the integrated volatility. The

notional volatility over an interval [t− h, t], is

υ2(t, h) ≡ [Y, Y ]t − [Y, Y ]t−h =

∫ t

t−h
σ2
udu.

Let Ft denote information on Y up to and including time t. Now, in the above setting,

the conditional volatility, or expected volatility, over [t− h, t], is defined by

3



var (Yt|Ft−h) ≡ E
[
{Yt − E (Yt|Ft−h)}2 |Ft−h

]

= E

[{∫ t

t−h
µudu−E

(∫ t

t−h
µudu|Ft−h

)
+

∫ t

t−h
σudWu

}2

|Ft−h

]

= E

[{∫ t

t−h
{µu −E (µu|Ft−h)}du

}2

|Ft−h

]
(1.4)

+E

[{∫ t

t−h
σudWu

}2

|Ft−h

]
(1.5)

+2E

[∫ t

t−h
{µu − E (µu|Ft−h)}du

∫ t

t−h
σudWu|Ft−h

]
. (1.6)

Denote Ah = Oa.s.(Bh) when Ah/Bh converges almost surely to a finite constant

as h → 0. We have that (1.4)= Oa.s.(h
2), (1.5)=

∫ t
t−h σ

2
udu = Oa.s.(h), and (1.6)=

Oa.s.(h
3/2), so that (1.5) is the dominant term. Therefore, we have

var (Yt|Ft−h) ≃ E[υ2(t, h)|Ft−h].

In other words, the conditional variance of returns volatility is well approximated by

the expected notional volatility, i.e., it is an approximately unbiased proxy. The above

approximation is exact if the mean process, µu = 0, or if µu is measurable with respect

to Ft−h. However, the result remains approximately valid for a stochastically evolving

mean return process over relevant horizons, as long as the returns are sampled at

sufficiently high frequencies. This gives further justification for [Y, Y ] as a parameter

of interest.

Notional volatility or integrated volatility is latent. However, it can be estimated

consistently using the so-called Realized Volatility. The Realized Variance (RV) for

the time interval [0, 1] is the discrete sum in (1.2);

[Y, Y ]n =
n∑

j=1

(Ytj − Ytj−1
)2, (1.7)

4



where t = 1.

Barndorff-Nielsen and Shephard (2002) showed that the RV is a
√
n consistent

estimator of the QV and is asymptotically mixed Gaussian under infill asymptotics.

We can also generalize the above specification for the process driven by Lévy process.

In this case the Realized Variance converges in probability to the quadratic variation

of the process, which includes contributions from the jumps. We discuss estimation

further below.

1.2.2 Measurement error

Empirical evidence suggests that the price process deviates from the semimartingale

assumption in (1.1). The “volatility signature plot” (which shows (1.7) against sam-

pling frequency) in Figure 1.5 suggests a component in observed price that has an

infinite quadratic variation. Previous authors have identified this component as mi-

crostructure noise, meaning that it is due to the fine grain structure of how observed

prices are determined in financial markets. A common way of modeling this is as

follows. Let Xtj be an observed log price and Ytj be discretely sampled from the

process in (1.1). Then suppose that

Xtj = Ytj + εtj , (1.8)

where εtj is a random error term. The simplest case is where the microstructure

noise εtj is i.i.d. with zero mean, independent of the process Y. This model was first

considered in Zhou (1996). In this case, Zhang, Mykland, and Äıt-Sahalia (2005)

showed that RV = 2nE(ε2) + Op(n
1/2), which implies that RV is inconsistent and

that divided by 2n it is an asymptotically unbiased estimator of the variance of the

microstructure noise. The noise can also be assumed to be serially correlated, and

there are some theoretical results for this case, which we discuss below. One may want

to allow for heteroscedasticity in the noise (1.8), which has been taken up by Kalnina

and Linton (2008). This is motivated by the stylized fact in market microstructure

literature that intra-daily spreads and intra-daily stock price volatility are described

typically by a U-shape (or reverse J-shape).

5



Also to closely mimic the high frequency transaction data authors considered

rounding error noise or non-additive noise that is generated from specific model of

order book dynamics. Li and Mykland (2007) discuss the rounding model,

Xtj = log(δ[exp(Ytj + εtj)/δ]) ∨ log δ, (1.9)

where δ[s/δ] denotes the value of s rounded to the nearest multiples of δ which is a

small positive number. This is consistent with the market that has a minimum price

change, tick sizes for stocks and futures and pips for foreign exchange. The rounding

model (1.9) is much more complex to work with than (1.8), due to the nonlinear way

in which the efficient price enters. For example, even assuming no microstructure

noise the quadratic variation of Xt is given by [f(Y ), f(Y )]t where f(Y ) = E(X|Y ) is
a complicated nonlinear function, although we are interested in estimating [Y, Y ]t. Li

et al. (2007) showed that when var(ε) is large, we have f(Yt) ≃ Yt, whereas for a small

noise variance, the divergence of two quadratic variations can be large. In any case,

under the presence of such microstructure noise the Realized Variance is no longer

a consistent estimator of the integrated variance. We explore the impact of different

microstructure noise assumptions on RV and the class of consistent estimators under

(1.1) and (1.8) in Section 1.4.

1.3 Issues in Handling Intra-day Transaction Data-

base

Before examining volatility estimators based on high frequency data, it is important

to understand the basic statistical features of such dataset. In this section we provide

a brief summary of the stylized features of intra-day transaction data. Goodhart and

O’Hara (1997) and Guillaume et al. (1997) provide early reviews. The distributional

properties of high frequency returns varies with sampling frequency. At higher fre-

quency, there is a stronger evidence of return distribution being non-Gaussian. The

empirical evidence suggests that high frequency returns are approximately symmetric

6



Figure 1.1: Time series of intra-day price, trade duration and volume over a day
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with finite second moment but with large fourth moment and the tail of the distribu-

tion declines according to a power law. In fact, prices are discrete, taking values that

are integer multiples of tick sizes, which vary according to assets and time period (in

the US stock market tick size changed from being 1/8 of a dollar to 1/100 of a dollar

during a few years at the beginning of the last decade), see Figure 1.1 which plots

intra-day price of the Dell stock over a single day. The data we use in this paper is

a National Best Bid and Offer (NBBO) trade and quote consolidated dataset from

TAQ. This puts together the best available quotes from multiple venues and matches

the trades to NBBO quotes. Therefore, trade and quote price dynamics should be

indicative of that from the single order book. However, returns, whether defined log-

arithmically or exactly, are less discrete, since the normalization changes over time,

so this comment mostly just affects the study of prices within a single day.

The returns of executed trade prices (trade returns) are negatively serially corre-

lated. This is due to bid-ask bounce: at the tick level, buy orders are likely to be

followed by sell orders and vice versa. Absolute returns and trade activity variables

such as volume, spread and trade duration exhibit strong serial correlation. Andersen
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Figure 1.2: ACF of trade and quote returns at different sampling frequency
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and Bollerslev (1997) showed that the absolute trade returns, after eliminating the

short term periodic component, have an hyperbolic decaying autocorrelation function.

This can affect the construction of the standard errors and forecasting. Variables as-

sociated with transaction activity show periodic patterns due to trading convention.

Activities are high at the start and at the end of the trading session and this induces a

particular pattern in activity variables. See bottom left of Figure 1.1. Periodicity can

be modeled by introducing periodic dummies, frequency domain filtering and analysis

at the activity time scale. The intra-day periodicity and long memory structure can

be explained by the presence of the information arrival process that drives the price

formation process.

1.3.1 Which price to use?

In intra-day we typically have different types of prices. We briefly describe workings

of stock market order book. Order book is a collection of sell and buy orders at any

point of time, recording a price, time stamp and volume associated with each order.

The bid is the maximum buy price and the ask is the minimum selling price. The

8



Figure 1.3: ACF of absolute trade and quote returns at different sampling frequency
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spread is defined by ask minus bid. Depending on the type of the order sent, it either

adds to the order book, gets canceled or generates a trade. For example a buy limit

order with price above current bid but below current ask tighten the spread. Same

order with price below current bid joins the que. Buy order with price specified at the

current ask, assuming that the order is filled, takes off the liquidity. This is always

the case for a market order. Orders that are stored in the order book are referred

as quotes. The quote return is defined by the change in the mid quote, which is an

average of bid and ask. The trade returns is the return associated with the price of

the executed trade. In terms of time series behavior, trade returns show significant

negative first order autocorrelation due to bid-ask bounce. In comparison, quote

returns show positive first order autocorrelation in a short interval. See Figure 1.2. If

the data is based on the higher frequency sampling, for example at a tick time or one

second, the quote and trade price have distinctively different features in returns and

in absolute values. The difference disappears in lower frequency sampling. See Figure

1.3, which also shows that absolute returns are quite persistent. In certain cases, we

may want to construct a price series that reflects the information at the deeper level
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of order book and also the volumes of these orders. We may construct such price as

a weighted sum of quote prices at different levels of order book where weight is given

by the associated volume. Such price construction has the advantage that it uses

more information available regarding investor’s anticipation of price movement and

discreteness is less severe by construction. Related but not the same VWAP (volume

weighted average price) can be also used. Over specified period, it is constructed by

taking sum of executed trade price weighted by its volume. This quantity is used in a

common strategy for execution of large transactions, see Almgren and Chriss (2001)

for example.

One of the important conclusions we can draw from the analysis is that in ultra-

high frequency, the choice of quote or trade price will sometimes affect the results of

empirical modeling. For example, in calculating the naive Realized Variance measure

of integrated variance based on low frequency returns, at 10-20 minutes which is a

popular choice, the choice of quote or trade returns will not have a discernible impact

on the final quantity. However for more recently proposed methods that use un-

sampled tick data, we should compare the results using quote and trade returns. See

Barndorff-Nielsen, Hansen, Lunde and Shephard (2008b) for such studies.

1.3.2 High frequency data pre-processing

Prior to analysis, the tick data has to be pre-processed to remove non sensible prices

and duplicated transaction data points. Barndorff-Nielsen et al. (2008b) provide a

guideline to do this for equity intra-day data. Brownlees and Gallo (2006) summa-

rize the structure of the TAQ high frequency dataset and address various issues in

high frequency data management including: outlier detection and how to treat non-

simultaneous observations, irregular spacing, issues of bid-ask bounce, and methods

for identifying exact opening and closing prices. The authors also present the effect

of data handling on the result of empirical analysis.

For the market where there is a centralized exchange and trading is electronic the

intra-day transaction data should be available easily. The example of such market is

equities and commodity futures market. Most empirical work has so far concentrated

10



on NYSE traded stocks and major currencies. Empirical application in other markets

- geographically and also other fixed income markets will be of interest.

1.3.3 How to and how often to sample?

Intra-day prices are observed on the discrete and irregular intervals. For volatility

estimation one can ask what is the effect of using all the data versus using sparsely

sampled data, for example at 10-20 minutes. For covariance estimation, the problem

is more substantial. Naturally the estimation of covariance involves the cross product

of returns. How should we align the data points observed at a different times and

what is the statistical impact of the synchronization method on the estimators? This

section discusses two data sampling/alignment method: fixed clock time and refresh

time method. We will present the synchronization method for d number of assets.

The sampling method for univariate series is a special case for d = 1. In a given

interval (for simplicity one day) [0, 1], we observe intra-day transaction prices of the

i-th asset, Xi at discrete time points {ti,j ; j = 0, . . . , ni} where ni is a total number

of observations on that interval. The set of

{Xi,ti,j , ti,j; i = 1, · · · , d, j = 1, . . . , ni},

gives us the tick database of prices for d numbers of assets. We can associate the

counting process to {ti,j}

Ni(t) :=

ni∑

j=1

1(ti,j ≤ t),

recording the number of transactions that occurred for the i-th asset up to and in-

cluding the time t. Let 0 = τ0 < · · · < τn = 1 be an artificially created time grid

and let {si,j} be the actual time points of the data for i-th asset to be aligned on the

{τj}’s grid. Regardless of how τ is defined we take the data that is closest to this

artificial grid,

si,j = max
0≤l≤ni

{ti,l ≤ τj}.

11



Figure 1.4: ACF of absolute trade and quote returns sampled by fixed clock time and
transaction time
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Fixed Clock Time Alignment

Transaction Time Alignment

We will denote an aligned dataset as

{Xi,τj , τj; i = 1, · · · , d, j = 1, · · · , n},

with Xi,τj := Xi,si,j . If no observation is available during the given interval we repeat

the previous data point.

First, consider the problem of sampling scheme for univariate time series of intra-

day prices. One can use the raw tick data of prices observed at {ti,j} or work with

instead sparser sampling. One method of sparse sampling is called fixed clock time.

For example, we might want to create one minute returns from the irregularly spaced

tick data

τj = jh , h = 1/60, (1.10)

so that τj−τj−1 = h, for all i. Empirical work shows that the effect of microstructure

noise become attenuated when return are sparsely sampled. Äıt-Sahalia, Mykland

and Zhang (2005) derived the optimal sampling rate h minimizing the mean square of

the Realized Variance under the presence of i.i.d microstructure noise. When market

12



microstructure noise is present but unaccounted for, they showed that the optimal

sampling frequency is finite and derived its closed-form expression. The optimal

sampling frequency is often found to be between one and five minutes. See Bandi and

Russell (2008) and reference therein for further discussion of the optimal sampling

rate in estimating integrated variance. However, modeling the noise and using all the

data should yield a better solution, see Section 1.4.1. on the noise robust estimators.

The second method for sparse sampling is to sample the price per given number of

transactions. For example, data sampled per h number of transactions is

τj+1 = ti,Ni(τj)+h. (1.11)

Griffin and Oomen (2008) argued that under the transaction time sampling, returns

are less serially correlated and microstructure noise is closer to i.i.d. They note

the bias correction procedures that rely on the noise being independent are better

implemented in transaction time. Figure 1.4 shows that the ACF of absolute returns

at a different sampling scheme - verifying that the transaction time sampling scheme

reduces the serial correlation and the process is closer to i.i.d.

For the multivariate case, the additional issue of synchronicity arises, whereby

trading for different assets occurs at different times. It is necessary to align the

returns of asynchronously traded assets to calculate the covariance estimator that

involves the cross product of returns. One method is to use the fixed clock time as

given in (1.10). Another method, called the Refresh time, proposed by Barndorff-

Nielsen, Hansen, Lunde and Shephard (2011) can be thought as the multivariate

version of the transaction time alignment given in (1.11). It is constructed by

τj+1 = max
1≤i≤d

{ti,Ni(τj)+1}. (1.12)

As we sample the returns at higher frequency, zero returns (stale price) induce the

downward bias in covariance estimators. This is known as the Epps effect. Hayashi

and Yoshida (2005) showed analytically the bias induced by the fixed clock time

assuming independent homogenous Poisson process for Ni(t). The refresh time also

induces synchronization bias and the problem is more severe for a high dimension
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Figure 1.5: Realized variance calculated at different calendar time frequencies
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covariance estimation since the method effectively collects the transaction time of the

most illiquid asset. See Zhang (2010) for further studies on the refresh time bias and

its effect on the time domain based estimator of integrated covariance matrix. See

Section 1.4.2 for a discussion of covariance estimator robust to the synchronization

bias.

1.4 Realized variance and covariance

1.4.1 Univariate volatility estimators

We first present the results for realized volatility in the perfect world where there is

no measurement error. The case of no noise is dealt with by Andersen, Bollerslev,

Diebold and Labys (2001), Barndorff-Nielsen and Shephard (2002), and Mykland and

Zhang (2006). Barndorff-Nielsen et al. (2002) showed that the error using the RV to

estimate the QV is asymptotically normal with rate
√
n, i.e.,

√
n

∑
j y

2
tj
−
∫ 1

0
σ2
udu√

2
∫ 1

0
σ4
udu

=⇒ N(0, 1),
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where ytj = Ytj−Ytj−1
is the observed return and =⇒ denotes convergence in distribu-

tion. We remark that their proof does not require that Ey4tj <∞ or even Ey2tj < ∞
as would generally be the case for a central limit theorem to hold. The reason is that

the data generating process assumes a different type of structure, namely that locally

the process is even Gaussian, and it is this feature that permits the arrival of the

normal distribution in the limit. Note that this CLT is statistically infeasible since

it involves a random unknown quantity called integrated quarticity (IQ),
∫ 1

0
σ4
udu.

However we can consistently estimate this by the following sample quantity

ÎQ =
n

3

∑

j

y4tj →p IQ.

Therefore, the feasible CLT is given by

√
n

∑
j y

2
tj
−
∫ 1

0
σ2
udu√

2ÎQ

=⇒ N(0, 1).

This implies that
∑

j y
2
tj
± zα/2

√
2
3

∑
j y

4
tj gives a valid α-level confidence interval for

∫ 1

0
σ2
udu.

Measurement Error

Motivated by some of the issues observed in the intra-day financial time series largely

to do with the presence of microstructure noise, authors have proposed competing

estimators of the QV. The assumption on a microstructure noise has been generalized

from a white noise to a noise process with some of following characteristics: autocor-

relation, heteroscedasticity, rounding models. McAleer and Medeiros (2008) provide

a summary of the theoretical properties of different estimators of QV under different

assumptions of microstructure noise.

Suppose that the efficient prices process is given by (1.1) and we observe (1.8). In

this case, the Realized Variance is inconsistent. The first consistent estimator under

this scheme was the two time scale estimator (TSRV) of Zhang, Mykland and Äıt-

Sahalia (2005). Split the sample of size n into K subsamples, with the ith subsample
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containing ni observations. Let [X,X ]ni denote the ith subsample estimator based on

a K-spaced subsample of size ni, and let [X,X ]avg denote the averaged estimator:

[X,X ]ni =

ni−1∑

j=1

(
XtjK+i

−Xt(j−1)K+i

)2
, i = 1, . . . , K,

[X,X ]avg =
1

K

K∑

i=1

[X,X ]ni.

To simplify the notation, we assume that n is divisible by K and hence the number of

data points is the same across subsamples, n1 = n2 = ... = nK = n/K. Let n = n/K.

Define the adjusted TSRV estimator as

[̂X,X ] = [X,X ]avg −
(
n

n

)
[X,X ]n . (1.13)

Zhang et al. (2005) show that this estimator is consistent and show that

n1/6
(
[̂X,X ]− [X,X ]

)

√
8c−2E2ε2 + 4

3
cIQ

=⇒ N(0, 1),

provided that K = cn2/3 for any c ∈ (0,∞). Zhang (2006) extended this work to the

multiscale estimator (MSRV). She shows that this estimator is more efficient than the

two time scale estimator and achieves the best convergence rate of Op(n
1/4), (i.e., the

same as the MLE with complete specification of the observed process).

Kalnina and Linton (2008) proposed a modification of the TSRV estimator that is

consistent under heteroscedasticity and endogenous noise. Äıt-Sahalia, Mykland and

Zhang (2010b) modified TSRV and MSRV estimators and achieve consistency in the

presence of serially correlated microstructure noise.

An alternative class of estimators is given by the so-called, the Realized Kernel

estimators. The motivation for this class of estimators is to recognize the connection

between the problem of estimating the long run variance of a discrete time process,
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Bartlett (1946). Define the symmetric realized autocovariance sequence

γh(X) :=
n∑

j=h+1

xtjxtj−h
, (1.14)

for h ∈ Z+ and γ−h(X) = γh(X). At a zero lag, γ0(X) gives us the usual sum of

squared high frequency returns, i.e., RV. The kernel estimators smooth the realized

autocovariances with the weight function given by k(·), where k(0) = 1, k(s) → 0

as s → ∞ and the bandwidth H controls the bias-variance trade-off. Specifically,

consider

[̂X,X ] =
∑

|h|<n
k

(
h

H + 1

)
γh(X). (1.15)

Zhou (1996) was the first to consider the use of the kernel method to deal with the

problem of microstructure noise. Hansen and Lunde (2006) examined the properties

of Zhou’s estimator and showed that, although unbiased under the presence of i.i.d

microstructure noise, the estimator is not consistent. However, they advocated that,

while inconsistent, Zhou’s kernel method is able to uncover several properties of the

microstructure noise.

Barndorff-Nielsen et al. (2011) proposed an estimator of the form in (1.15) with

a second order kernel k(·). Their important contribution is to show that it is consis-

tent under the presence of second order stationary noise, and that furthermore, it is

asymptotically normal with rate Op(n
1/5) and

n1/5
(
[̂X,X ]− [X,X ]− c−2|k′′(0)|w2

)

√
4c||k||2IQ

=⇒ N(0, 1), (1.16)

provided that H = cn3/5 for c ∈ (0,∞), where ||k||2 :=
∫∞
−∞ k(s)2ds and w2 =

∑
hE(εtεt−h), a long run variance of the noise process. The estimator is guaran-

teed to be positive definite and note that the limiting distribution has an asymptotic

bias component. For inference, Zhang et al. (2005) showed that [X,X]n

2n
is consistent

estimator of Eε2. The integrated quarticity can be estimated by the bipower type
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estimator of Barndorff-Nielsen and Shephard (2004b) which is guaranteed to be posi-

tive definite but rate inefficient at Op(n
1/5). In Barndorff-Nielsen et al. (2008a), they

had a realized kernel estimator with a flat-top kernel i.e. k(0) = k(|1|/H) = 1 and the

realized autocovariance γh was defined such that the sum runs from 1 not h+1. Their

flat top realized kernel is unbiased under the presence of i.i.d microstructure noise

and achieves the optimal convergence rate, Op(n
1/4). The drawback of the earlier

version, however is that the resulting estimator is not guaranteed to be p.s.d.

We should briefly mention the promising pre-averaging method analyzed for ex-

ample in Jacod, Li, Mykland, Podolskij and Vetter (2009), which involves averaging

observed prices over a moderate number of time points to reduce the measurement

error. Consider

X t =
1

nt

∑

|t−tj |<ǫT

Xtj ; xt =
1

nt

∑

|t−tj |<ǫT

xtj ,

where nt is the number of time points with |t− tj | < ǫT for some small ǫT → 0. Then

X t = n−1
t

∑
|t−tj |<ǫT Ytj +Op(n

−1
t ) and xt = n−1

t

∑
|t−tj |<ǫT ytj +Op(n

−1
t ), so that now

the noise is small provided nt is large. The preaveraged data can then be used in a

variety of the above procedures.

The final method involves a little departure. Parkinson (1980) and Alizadeh,

Brandt and Diebold (2002) proposed a range-based volatility proxy defined by the

extreme prices over the pre-determined interval. Specifically, let

R = sup
0≤t≤1

Xt − inf
0≤t≤1

Xt.

This is an alternative measure of volatility to QV. In some special cases it has

a known positive relationship with QV. Specifically, if Xt = σWt, then R is a

stochastic variable, while the quadratic variation is the constant σ2. In fact, R =

σ
[
sup0≤u≤1W (u)− inf0≤u≤1W (u)

]
, from which one can compute ERκ = λκσ

κ/2 for

κ ≥ 1, where λκ are known constants. More generally the relationship between R
and QV is likely to be rather complex. In practice, one may compute

Rn = max
1≤j≤n

Xtj − min
1≤j≤n

Xtj ,
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from a given sample of data observed at times t1, . . . , tn. One can expect thatRn → R
with probability one under quite general conditions. The most rigorous analysis of the

realized range has been in Christensen and Podolskij (2007), except that they only

compute R over small subintervals, which is like assuming that locally Xt = σWt for

some σ, and then average the resulting values of Rn over these subintervals. Alizadeh

et al. (2002) recommend using the log of the sample range, as it is closer to a normally

distributed random variable.

The realized range has the significant advantage that one can find the daily value in

the newspapers for a variety of financial instruments, and so one has a readily available

volatility measure without recourse to analysis of the intra-day price path. Alizadeh

et al. (2002) also argue that the method is relatively robust to a measurement error

of a bid-ask bounce variety, since the intra-day maximum is likely to be at the ask

price and the daily minimum at the bid price of a single quote and so one expects a

bias corresponding only to an average spread. By contrast, in computing the realized

variance one can be cumulating these biases over many small periods, thereby greatly

expanding the total effect.

A number of authors have carried out empirical studies to rank the performance

of competing estimators of QV. One way to do this is by simulating the process given

in (1.1). To test for the robustness of the estimator, we may introduce jumps in

the price or in the volatility, assume different settings for microstructure noise or

sampling scheme. Gatheral and Oomen (2010) took a different approach to this and

simulated the order book directly. They compared QV estimators under the realistic

microstructure setting and compared if the theoretical prediction matches well with

actual small sample properties. They found that subsampling estimator, realized

kernel, and maximum likelihood estimator deliver superior performance in terms of

efficiency and robustness to different parameterizations of microstructure noise.

The actual data may deviate from the assumed model. Then to directly test

the competency of the estimators when population quantity is unknown, a popular

method is to look at the volatility signature plot which plots the [̂X,X ] against the

sampling frequencies. The estimator prone to a microstructure bias will show upward

sloping pattern as data is sampled increasingly frequently. See Barndorff-Neilsen et
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al. (2008b) for example. Authors also compared forecasts of QV estimators under

different scenarios of underlying stochastic volatility process and the distribution of

microstructure noise. Äıt-Sahalia and Mancini (2008) found that TSRV in (1.13)

outperforms the RV under varying degree of assumptions. Bandi, Russel and Yang

(2008) considered comparison in the context of option pricing and Voev (2009) in the

context of an unconditional measure of portfolio performance.

1.4.2 Multivariate volatility estimators

In this section we discuss estimators of integrated covariance matrix. We present a

framework for the bivariate case, as this allows treatment of the main issues. We

suppose that the efficient price process follows a Brownian semimartingale. For the

i-th asset, i = 1, 2, we have

Yi,t =

∫ t

0

µi,udu+

∫ t

0

σi,udWi,u, (1.17)

where µi,u is a predictable locally bounded drift, σi,u is a cádlág volatility process,

andWi,u is a Brownian motions with E[dW1tdW2t] = ρtdt. The time span we consider

is fixed and scaled to vary between [0, 1]. We observe a (log) price at discrete time

points, 0 = ti,0 < · · · < ti,ni
= 1. Let Υ be a set of points that partition the

interval [0, 1]. Define mi(n) := supj:ti,j∈Υ |ti,j − ti,j−1| and assume that as n → ∞,

m(n) := m1(n) ∨ m2(n) → 0, so that the observation grid is becoming finer and

finer. Denote by Yi,ti,j the discretely sampled log prices. Suppose that the two prices

series are observed on the synchronous time points {τj , j = 1, . . . , n}. The quadratic

co-variation of Y1 and Y2 over a time interval [0, 1] is defined by

[Y1, Y2] = lim
m(n)→0

n∑

j=1

(Y1,τj − Y1,τj−1
)(Y2,τj − Y2,τj−1

) =

∫ 1

0

σ1,uσ2,uρudu, (1.18)

where the last equality holds with probability one. We may denote the quadratic

variation of general d×1 vector of Y as [Y, Y ]t =
∫ t
0
Σ(u)du where Σi,j(t) denotes the

instantaneous covariation between i-th and j-th element of Y . The natural estimator
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of quadratic co-variation is the discrete sum in (1.18), called the Realized Covariance

[Y1, Y2]
n =

n∑

j=1

(Y1,τj − Y1,τj−1
)(Y2,τj − Y2,τj−1

). (1.19)

Under perfect synchronization, Barndorff-Nielsen and Shephard (2004a) showed that

the Realized Covariance is a
√
n consistent estimator of the integrated covariance and

is asymptotically mixed normal under (1.17). Let us denote the returns for the i-th

asset by yi,τj := Yi,τj − Yi,τj−1
. Then, we have

√
n

∑n
j=1 y1,τjy2,τj −

∫ 1

0
Σ1,2(u)du√∫ 1

0
Σ1,1(u)Σ2,2(u) + (Σ1,2(u))

2 du
=⇒ N(0, 1).

The corresponding feasible CLT is given by

∑n
j=1 y1,τjy2,τj −

∫ 1

0
Σ1,2(u)du√∑

j y
2
1,τj
y22,τj −

∑
j y1,τjy1,τj+1

y2,τjy2,τj+1

=⇒ N(0, 1).

Compare this with the univariate case in the previous section. A similar asymp-

totic argument can be carried out for the realized regression coefficient or the realized

betas in the capital asset pricing model (CAPM).

The time stamp for transactions of two different securities rarely matches, and so

some data synchronization method is typically employed. This will have an impact

on the finite sample as well as on the asymptotic behavior of the resulting covariance

estimate. The well known Epps effect refers to the phenomenon that the sample cor-

relation tends to have a strong bias towards zero as the sampling interval progressively

shrinks. Hayashi and Yoshida (2005) showed that the realized covariance calculated

from the aligned data using the fixed clock time alignment method described in the

Section 1.3.3 is biased. They proposed a modified covariance estimator

̂[Y1, Y2] =
n∑

i=1

n∑

j=1

y1,t1,iy2,t2,j1{∆t1,i∩∆t2,j 6=∅},
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which they show is unbiased and
√
n consistent. Under presence of asynchronicity but

with no microstructure noise this estimator is theoretically the best one. Essentially

their estimator takes the cross product of returns only if the portion of transaction

time intervals of two assets overlaps.

Malliavin and Mancino (2009) proposed an estimator of the integrated covariance

that does not require synchronization. They establish the relationship between the

Fourier transform of returns and the Fourier transform of spot volatility. Under

(1.17), their estimator is consistent and asymptotically normal. Their estimator is

defined by

̂[Y1, Y2] =
1

2m+ 1

∑

|k|≤m
Fn(Y1)(k)Fn(Y2)(−k),

where Fn(Yi)(·) denotes the discretized Fourier transform of i-th asset returns. For

k ∈ Z and assuming that the time interval is re-scaled to vary [0, 2π],

Fn(Yi)(k) :=

n∑

j=1

eikti,j (Yi,ti,j − Yi,ti,j−1
) →p

∫ 2π

0

eiktdYt.

In fact, they have a stronger result where the Fejer Fourier inversion of the above

estimator gives a consistent estimator of the instantaneous (co)volatility.

Finally, we should mention some work on the multivariate range based estimation.

Brandt and Diebold (2006) extended the work on the realized range to the multivari-

ate case. It is not immediately obvious how to extend such notion to the multivariate

case, and indeed their cunning idea relies on the specific structures that arise in a

number of settings, notably exchange rates. Suppose we observe the exchange rates

between three currencies: A, B, and C, denoted XA:B, XB:C , and XA:C , then we know

that in the absence of arbitrage XA:C = XA:BXB:C . Taking logs and differencing, we

obtain

cov(∆ lnXA:B,∆ lnXA:C) =
1

2
[var(∆ lnXA:C) + var(∆ lnXA:B)− var(∆ lnXB:C)] .

Therefore, using the relationship between the variance and the range, they obtain an

estimate of the covariance between the two exchange rates. The advantage of this
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method as before is that it does not require high frequency data so that the effect of

measurement error is minimized.

Measurement Error

So far we have considered the case where the only source of error is observation error,

i.e., discretization error of the continuous semimartingale and the non-synchronicity

of the observed price. We next consider the presence of an infinite quadratic variation

component in the observed prices due to a further measurement issue, microstructure

noise. There has not been a uniform approach to modeling multivariate microstruc-

ture noise, perhaps due to the confounding effects of asynchronicity. Furthermore, it

is not clear if the microstructure noise between two assets should be correlated and if

so how to parameterize this quantity. Let us assume an additive noise for each asset

Xi,ti,j = Yi,ti,j + ǫi,ti,j for i = 1, . . . , d, 0 = ti,0 < ti,1 < · · · < ti,ni
= 1.

Zhang (2010) assumed that {ǫ1,t1,j , ǫ2,t2,j} are stationary and exponentially alpha mix-

ing. She proposed a Two Scales Realized Covariance estimator (TSCV), which is

defined as a bivariate version of (1.13) applied to an aligned data,

̂[Y1, Y2] = [Y1, Y2]
K −

(
nK
nJ

)
[Y1, Y2]

J ,

where the average lag K realized covariance is defined by

[Y1, Y2]
K =

1

K

n∑

j=K

(Y1,τj − Y1,τj−K
)(Y2,τj − Y2,τj−K

),

for 1 ≤ J ≪ K. Let summation of sample sizes of two assets as N = n1 + n2

and recall that the number of points for the aligned time stamp τ is n. Define

nK = n − K + 1)/K and similarly for nJ . Then the above estimator is Op(n
1/6)

consistent and asymptotically normal under the presence of noise and asynchronous

trading, provided that K = O(N2/3).

Barndorff-Nielsen et al. (2011) proposed to synchronize the high frequency prices
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using refresh Time explained in Section 1.3.3. They assumed that the microstructure

noise {ǫi,τj , i = 1, . . . , d} is a second order stationary process with respect to refresh

time {τj}. Their Multivariate Realized Kernels (MRK) is given in (1.15) with realized

autocovariance defined by

γh(X) =
∑

j

xτjx
T
τj−h

, h = 0,±1,±2, · · ·

where
∑

j =
∑

h<j≤n for h ≥ 0, and
∑

j =
∑

1≤j≤n+h for h < 0 and x = [x1 : · · · : xd]
is a matrix of refresh time aligned returns for d number of assets. The MRK is

Op(n
1/5)−consistent and asymptotically normal and its asymptotic distribution is

given in (1.16) modified with relevant multivariate quantities, under the second order

kernel. It is also guaranteed to be positive semi-definite at the cost of asymptotic

bias. Note that the asymptotic rate is based on the sample size of the aligned time

stamp. Äıt-Sahalia, Fan and Xiu (2010a) proposed an Op(n
1/4) consistent estimator

based on the quasi-MLE and a generalized time synchronization method. An advan-

tage of their estimator over TSCV and MRK is that it does not involve choosing or

estimating tuning parameters such as bandwidth. However they adopt a somewhat

restrictive assumption on the microstructure noise - it is a white noise that is mutually

independent across assets.

Christensen, Kinnebrock and Podolskij (2010) proposed a multivariate pre-averaging

estimator. Voev and Lunde (2007) proposed a modified Hayashi and Yoshida estima-

tor to bias-correct for the microstructure noise. Park and Linton (2011a) proposed a

covariation estimator that is robust to both microstructure noise and asynchronicity

based on the Fourier analysis of returns, extending Mallianvin and Mancino (2009).

Griffin and Oomen (2011) ranked the performance in terms of efficiency of the three

estimators: realized covariance, realized covariance plus lead- and lag-adjustments,

and the Hayashi and Yoshida estimator. They found that the performance of compet-

ing estimators depends on the level of microstructure noise as well as on the magnitude

of correlation.
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1.5 Modeling and Forecasting

We will designate the class of estimators of quadratic (co) variation based on the

high frequency data as “realized measures”. In this section, we review how realized

measures can be used to model and forecast the (co)variances. We will summarize

the studies that compare these competing models in terms of forecasting power where

the forecasting variable is a general function of volatility such as Value at Risk and

portfolio performance. We also consider extensions to a dynamic model of the realized

covariance matrix.

1.5.1 Time series models of (co) volatility

There is a large literature on time series models of volatilities. In the well-known

GARCH and Stochastic volatility family of models, volatility is treated as a latent

variable. The method we discuss here takes a different stance. We treat the Realized

Variance as ex-post observed variance. Given the sequence of RVs (or the robust

estimator discussed in Section 1.4.1), we use traditional time series techniques such

as ARMA to fit a model and carry out forecasts. The key feature of the time series

of the Realized Variance is that it is highly persistent. To account for this, Andersen,

Bollerslev, Diebold, and Labys (2003) proposed an autoregressive fractionally inte-

grated moving average (ARFIMA) to model the time series of the Realized Variance.

Let ht denote an estimator of integrated variance for t-th day, t = 1, . . . , T . The

ARFIMA model for ht is given by

Φ(L)(1 − L)ν(ht − µ) = Θ(L)ǫt, ǫt ∼ WN(0, 1), (1.20)

where Θ(L) is a polynomial of lag operators and ν is a real-valued parameter that

measures the degree of fractional integration. The model can be estimated by maxi-

mum likelihood method. Lanne (2006) modified (1.20) by making parameters in Θ(·)
time varying and letting ǫt be a non-Gaussian. In practice these methods can be

problematic as estimation of ν is non-trivial and influential on other features of the
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model. A simpler model that seems to capture lag dependencies well is the Heteroge-

nous Autoregressive model of Corsi (2009);

ht+1 = θ0 + θDht + θWh
(W )
t + θMh

(M)
t + ǫt+1, (1.21)

where h
(W )
t := 1

5
(ht+· · ·+ht−4) is a Realized Variance over a week and similarly defined

h
(M)
t denotes a Realized Variance over a month. Shephard and Sheppard (2010) who

proposed a model that is a hybrid of a GARCH augmented with a realized measure

and a reduced form time series model for the Realized Variance. See similar approach

in Hansen, Huang and Shek (2011) who jointly modeled returns and realized measures

of volatility. Liu and Maheu (2009) carried out Bayesian averaging over both different

measures of integrated variance and different time series models.

In the multivariate setting, a key issue is that the fitted model should produce

a positive definite covariance matrix. Also, if we were to model a high dimensional

covariance matrix, we need to address the dimension issue, which grows rapidly with

the number of assets considered. Voev (2007) proposed a method to combine volatil-

ity and bivariate co-volatility forecasts to produce a positive definite matrix. The

problem with this method is that interaction between elements of covariance matrix

is not taken into account. The full joint modeling of covariance matrix is an im-

portant issue. For example, the variance of one asset and covariance with another

asset have significant dependencies, especially during episodes of market crashes and

large economic events. Compared with the univariate volatility modeling literature,

such multivariate models have been sparsely researched mainly due to the fact that

consistently estimating a general d× d covariance matrix for d > 2 has been difficult,

plagued by bias induced by synchronization as well as microstructure noise. However

with recent work in Section 1.4.2 this area of research can progress further.

Let Ht, t = 1, . . . , T , be a time series of such estimates of the integrated covariance

matrix. A natural way to model the persistency and lead-lag dependencies in the

elements of matrix Ht is to fit a multivariate version of model given in (1.20), called

Vector ARFIMA model. We fit a model for ht = vech(g(Ht)) where vech(·) operation
stacks the lower triangular matrix of an argument. The dimension of ht is given by
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m = d(d+1)/2. A range of transformation function g(·) is considered for the purpose

of dimension reduction and to guarantee a p.s.d. matrix forecast. We will discuss

this in a moment. First consider the vector ARFIMA model

Φ(L)D(L)(ht − BZt) = Θ(L)ǫt, ǫt ∼ WN(0, Im), (1.22)

where Θ(L) = Im − Θ1L · · · − ΘqL
q is a matrix lag polynomial of degree q ∈ Z for

the MA component, Φ(L) is defined similarly for AR component. D(L) = diag{(1−
L)ν1, . . . , (1 − L)νm} is a matrix fractional difference operator with ν1, . . . , νm the

degrees of fractional integration for each element of ht. Zt are exogenous variables

that affect the dynamics of volatility; candidate variable are trading activity variables

and macroeconomic state variables. B is a restriction matrix. We can estimate such

a model by maximum likelihood. The one step ahead prediction is then ĥt+s =

E(ht|hs, s ≤ t). We obtain a covariance matrix forecast by Ĥt+s = vech−1 (ĥt+s))

where the vech−1 (·) re-stacks the vector into a symmetric matrix.

Bauer and Vorkink (2011) fitted the vech of log(Ht) (rather like a matrix E-

GARCH model) to an AR model where the right hand side lagged variables are

dimension reduced by principal component analysis. Chiriac and Voev (2011) carried

out a Cholesky decomposition of the covariance matrix and model the lower dimen-

sional factors by a vector ARFIMA model. They showed this method outperforms

in terms of root mean square error, a number of models including: the Heteroge-

neous Autoregressive model, a multivariate version of (1.21), Wishart Autoregressive

(WAR) model of Gourieroux, Jasiak, and Sufana (2009) and the Dynamic Condi-

tional Correlation model. We may use the Realized Variance to proxy true Ht+s

and compare the Frobenius norm of the bias ‖Ĥt+s −Ht+s‖, across different models

and different horizons s. Authors also compare minimum variance portfolio efficient

frontiers using different covariance matrix forecast.

1.5.2 Forecast comparison

Since volatility itself is unobservable, the comparison of volatility forecasts relies on an

observable proxy for the latent volatility process. See Patton (2011) on the method
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robust to the measurement error in the volatility proxy. In the previous section,

we presented how we can compare root-MSE of covariance forecasts. We might be

interested in economically meaningful loss functions. Brownlees and Gallo (2010)

compared the Value at Risk forecasts from different time series models of RV. Bandi

et al. (2008) considered the forecast comparison in the context of option pricing.

An important research question is whether there is a gain in using the high fre-

quency data over traditional daily volatility models. We can compare the dynamic

model of estimators of ex-post variation calculated from the high frequency data

against the latent volatility models such as GARCH and Stochastic Volatility. Koop-

man, Jungbacker and Hol (2005) found that the ARFIMA model of RV delivers the

best out-of-sample forecast compared with the GARCH or the SV model fitted to

a daily S&P500 index. Shephard and Sheppard (2010) showed their hybrid model

using the realized measures outperforms the daily GARCH model in terms of various

criteria. Siu and Okunev (2009) compared historical, realized and implied volatility

measures for predicting over multiple horizons.

We are also interested in ranking the competing realized measures in Section 1.4.

Ghysels, Santa-Clara and Valkanov (2006) proposed a framework to do this, called the

mixed data sampling (MIDAS) regression, comparing measures of ex-post variation in

terms of their forecasting ability at various horizons. Ghysels and Sinko (2011) found

that the microstructure robust realized measures deliver better forecasts. Likewise,

Äıt-Sahalia and Mancini (2008) reach similar conclusion where the TSRV estimator in

(1.13) outperforms the RV under diverse setting of volatility process and assumptions

on the noise.

1.6 Asset Pricing

1.6.1 Distribution of returns conditional on the volatility

measure

Authors found the evidence that the de-volatized returns by the class of RV esti-

mators are Gaussian or approximately so. Andersen, Bollerslev, Diebold and Labys
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(2001) found that daily returns standardized by the realized volatility approximate

the Gaussian distribution. Thomakos and Wang (2003) also found such evidence for

a futures market.

Peters and de Vilder (2006) studied the volatility and return dependence by sam-

pling the returns in financial time. They tested if the return series are a realization

of a local martingale using the theorem by Dubins and Schwarz (1965) who stated

that any continuous local martingale Yt ∈ Ft is a time-changed Brownian motion.

Formally stated,

Bs = YTs , Ts = inf{t|[Y ]t ≥ s}, (1.23)

where Bs ∈ FTs is an independent Brownian motion and Ts is a stopping times. It

is the first time the quadratic variation reaches a specified level. Equivalently, the

theorem implies that

Yt = B[Y ]t , (1.24)

which states that every continuous martingale is a time-changed Brownian motion

where the time change is given by the quadratic variation. In empirical analysis,

(1.23) is more useful, since it states that between the unit interval of the transformed

time, [T(j−1)a, Tja], Y has a constant QV at a. Given an interval of physical time,

Y is sampled more frequently when QV is large. More precisely, the (discretized)

transformed time is constructed by: T0 = 0, T(j+1)a = Tja +∆T(j+1)a,

∆T(j+1)a = inf{t|[Y ][Tja,Tja+t) ≥ a}, (1.25)

where [Y ][Tja,Tja+t) denotes the quadratic variation in the interval [Tja, Tja + t). The

standardized increment in financial time

ξ =
YTja − YT(j−1)a√

a
, (1.26)

is i.i.d standard normal. Observe the trade-off between having large and small a.

We need to have a large a to have many data points to consistently estimate QV

by a realized measure but large a means sparse sampling of Y . Note also that we

can explicitly derive the distributional features of the stopping time T when the Y
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process is completely specified. Testing for the hypothesis that Yt is a local martingale

is then equivalent to testing for i.i.d standard normality of the return series that is

spaced by Ts. Peters and de Vilders (2006) tested if the S&P500 intra-day return is a

local martingale where they constructed the stopping time Ts based on the Realized

Variance. They concluded that we cannot reject the null hypothesis that returns are

the realization of a martingale process at various time scales (> 1 day) based on the

tests for Gaussianity, independence and serial correlation.

1.6.2 Application to factor pricing model

We next discuss applications to asset pricing models for cross-sections of returns.

Denote a stock return for i-th firm at time t by yi,t, with i = 1, . . . , d and t = 1, . . . , T.

The K factor pricing model for stock returns is given by

yi,t = β⊤
i ft + εi,t, (1.27)

where the factor loadings βi = (βi,1, . . . , βi,K)
⊤ are unrestricted. The sampling unit t is

typically a low frequency such as monthly. In some cases ft are unobserved statistical

factors, while in others they are the returns on carefully constructed portfolios. In

the latter case, βi,k can be given the interpretation of the covariance between return

on portfolio k and asset i divided by the variance of the return on portfolio k. The

continuous time framework allows us to measure the time varying beta between two

assets using the high frequency data. The realized beta between asset i and k in

period [t− 1, t] calculated from high frequency returns {y·,t} is given by,

β̂i,k(t) =

∑
j yi,jyk,j∑
j y

2
k,j

→p

∫ t
t−1

Σi,k(s)ds∫ t
t−1

Σk,k(s)ds
:= βi,k(t),

where the convergence in probability holds under (1.17) and as mesh goes to zero.For

studies on the relationship between returns and volatility, see Ghosh and Linton

(2007), Bollerslev, Litvinova, and Tauchen (2006) and Bali and Peng (2006). Ghosh

and Linton (2007) showed that the estimating the risk-return trade-off parameters
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can be posed as a GMM estimation problem. They used the Realized Variance as a

conditional volatility proxy and showed that there is a significant time-variation in

the risk-return slope coefficient. Bali et al. (2006) found a positive and statistically

significant relation between the conditional mean and conditional volatility of market

returns at a daily level where volatility is proxied by RV. Bollerslev et al. (2006) made

use of the time aggregation formula between lower and high frequency covariance.

They found that the correlations between absolute high-frequency returns and current

and past high-frequency returns are significantly negative for several days.

Andersen, Bollerslev, Diebold and Wu (2005) and Bandi and Russell (2005) esti-

mated the beta in CAPM by a realized covariation. Bandi et al. (2005) provided the

MSE-based optimal sampling frequency for calculating the realized beta designed to

reduce the effect of market microstructure noise. Bollerslev and Zhang (2003) esti-

mated the factor loadings in the three-factor Fama-French model using the high fre-

quency data adopting a simple adjustment procedure to account for non-synchronous

trading effects. Bannouh, Martens, Oomen and van Dijk (2009) and Kyj, Ostdiek

and Ensor (2009) used a mixed frequency framework, using the high-frequency data

to obtain an estimate of the factor covariance matrix and using the daily data to

estimate the factor loadings. This method avoids the non-synchronicity between a

individual stock and usually more liquid factor prices.

The economic value of using the realized covariance in portfolio management is

discussed by Fleming, Kirby Ostdiek (2003) and Liu (2009). Fleming et al. (2003)

found that a risk-averse investor is willing to pay between 50 and 200 basis points

per annum to switch from a covariance measurement based on the daily data to the

one based on intra-day data whereas Liu (2009) found that the benefits depend upon

the re-balancing frequency and estimation horizon of portfolio optimization decision.

See Fan, Li and Yu (2010) for estimating high dimensional covariance matrix using

high-frequency data and its benefit in portfolio selection.
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1.6.3 Effects of algorithmic trading

Recently, the effects of high frequency or algorithmic trading have been the focus of

policy discussions, arising part from the flash crash of May 2010, where the US market

suffered rapid price decreases followed ultimately by a recovery. Chaboud, Chiquoine,

Hjalmarsson and Vega (2009) investigated the effects of algorithmic trading on volatil-

ity in the foreign exchange market. They considered the following regression equation

RVit = αi + βiATit + γ⊤i τit +
22∑

k=1

δikRVi,t−k + εit,

where RVit is the log of realized volatility of currency i during day t computed us-

ing one minute returns, ATit is the fraction of algorithm trading in that day and

currency, which was recorded by the trade matching engine, and τit are dummy and

time trend variables. The latter are included because the AT series has a pronounced

upward trend, while volatility appears to be stationary. They recognized AT is en-

dogenous variables since high frequency automated trading algorithms may trade

more in volatile times. They therefore instrument it with a variable that measures

the capacity for computer trading in a given currency/period combination. The es-

timation strategy matters here, so that using OLS yields a positive effect, βi > 0,

but the instrumental variable estimator finds βi < 0 but not statistically significant.

They conclude that intra-day algorithmic trading does not by itself lead to higher

daily volatility. For other studies that use realized measure of volatility to determine

the effects of high frequency trading, see Hendershott, Jones and Menkveld (2009)

and Hendershott and Riordan (2009).

1.6.4 Application to option pricing

In recent years, volatility has been thought of as an asset class in its own right. One

can trade volatility through a position in puts and calls but this has an additional

exposure to a price movement. Swaps and options on quadratic variation have been

developed for a pure exposure on the volatility. For a discussion on the volatility

as an asset class, see Demeterfi, Derman, Kamal, and Zou (1999). An investor of
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volatility swap is swapping a fixed volatility SWt,T for a floating (actual) volatility

[Y ]t,T , denoting quadratic variation accumulated over [t, T ]. The floating leg is usually

given by a sum of squared daily log returns over the relevant time interval. Given N

notional amount in dollar terms per annualized volatility point, its payoff at expiration

is equal to

([Y ]t,T − SWt,T )N.

Denote r a risk-free discount rate corresponding to an expiration date T. The value

of such forward contract is given by the expected present value of the future payoff

under a risk neutral measure Q, a probability measure such that the discounted price

of traded asset is a martingale,

EQ[erT ([Y ]t,T − SWt,T )].

Then the strike for which the contract has zero present value is

SW ∗
t,T = EQ([Y ]

t,T
).

Carr, Geman, Madan and Yor (2005) proposed a method of pricing options on

quadratic variation via Laplace transform when returns follow pure jump Lévy pro-

cess. Itkin and Carr (2010) considered a pricing problem when returns are time

changed Lévy processes. Britten-Jones and Neuberger (2000) proposed a method

to estimate EQ([Y ]T ), an option-implied (i.e. risk-neutral) integrated variance over

the life of the option contract, assuming price follows stochastic volatility diffusion

process. SW ∗
t,T can be labeled as a model-free implied variance as well as being a

no-arbitrage variance swap rate. Carr and Wu (2009) showed that the variance swap

rate is well approximated by the value of a particular portfolio of options. They estab-

lished that the difference between the Realized Variance and this synthetic variance

swap rate, given by

[Y ]
t,T

− SW ∗
t,T ,

quantifies the variance risk premium. They have analyzed the variance swaps for

stocks and found it to be significantly negative. This means that investors are willing
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to pay a premium to hedge away upward movement in the return variance.

Bollerslev, Gibson and Zhou (2010) proposed a method for constructing a volatility

risk premium relying on sample moments of the Realized Variance and a option-

implied volatility estimator. Wu (2010) studied the variance risk premium using both

variance swap rates constructed from the option prices and the quadratic variance

estimates using the high frequency data and found a strong evidence for negative

variance risk premium in the equity market.

1.7 Estimating continuous time models

In this section we review how realized measures can be used to estimate the parameters

of a continuous time model. Consider a diffusion model for financial prices Xt,

dXt = µ(Xt, θ)dt+ σ(Xt, θ)dBt, (1.28)

where Bt is an independent Brownian motion, µ(Xt, θ) is a drift function and σ(Xt, θ)

is a given diffusion coefficient function. We are interested in estimating vector of pa-

rameters θ. Xt is non-homogenous in a sense that the diffusion coefficient is not con-

stant. This specification includes geometric Brownian motion, Ornstein–Uhlenbeck

process, and Cox–Ingersoll–Ross process as special cases. Since Xt in (1.28) is markov

we can write down a log likelihood in terms of transition density if a closed form

for this exists. For discretely observed data {Xti}0≤i≤n on the equally spaced grid,

∆ti = 1/n , the transition density is given by P[X i
n
| X i−1

n
; θ]. Such exact maximum

likelihood method yields a consistent and efficient estimator under usual regularity

conditions.

When transition density does not have a closed form expression, we may use Euler

scheme and its higher order refinement to approximate the process or use a closed-

form approximation to the transition density itself. See Phillips and Yu (2009b) for a

survey on maximum likelihood estimation of a model in (1.28). If Xt can be observed

continuously, the likelihood function for the continuous record can be obtained via

the Girsanov theorem.
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However in practice we observe the data at discrete time points and even for

densely sampled high frequency data, it deviates from the model in (1.28) due to

a presence of microstructure noise. Phillips and Yu (2009a) proposed a two stage

estimation method based on the realized variance to estimate parameters in diffusion

coefficient σ(Xt, θ) and using the infill likelihood to estimate the drift parameters,

µ(Xt, θ). Yu and Phillips (2001) also showed that the time changed Brownian motion

given in (1.23) can be used to construct an exact Gaussian maximum likelihood for

a non-homogeneous Itô-processes.

Once the model departs from the Markovian property, we cannot decompose the

likelihood into a transition density involving just observable quantities. There are

large literature on computationally intensive estimation method, however the avail-

ability of high frequency data gives us alternative route to estimate such model. Con-

sider the stochastic volatility specified by the OU process and assume that there is an

additive measurement error in the Realized Variance. Then the Realized Volatility has

an ARMA representation and the parameter can be estimated by the quasi-maximum

likelihood constructed using the output of the Kalman filter. Barndorff-Nielsen and

Shephard (2002) showed that the method yields quite precise estimates even for non-

Gaussian driven volatility processes. See also Barndorff-Nielsen and Shephard (2006)

for related approach for estimating a time deformed Lévy processes. In this case the

source of stochastic volatility is through a deformation of time and we are interested in

estimating the parameter for the autocovariance function of a deformed time process.

Bollerslev and Zhou (2002) proposed a Generalized Method of Moment type es-

timator for parameters of a Brownian motion driven stochastic volatility model un-

der no microstructure noise. Their method is by matching the sample moments of

the realized volatility to the population moments of the integrated volatility implied

by a assumed continuous-time model. Todorov, Tauchen and Grynkiv (2010) pro-

posed a method, first integrating intra-day data into the Realized Laplace Transform

(Todorov and Tauchen (2010) ) of volatility and matching moments of the integrated

joint Laplace transform with those implied by the assume stochastic volatility model.

This method is robust to the presence of jumps in the price.
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Chapter 2

Estimating the Quadratic

Covariation Matrix for an

Asynchronously Observed

Continuous Time Signal Masked

by Additive Noise

2.1 Introduction

There have been many advances in the theory and application of volatility mea-

surement from high frequency data. The ex-post measure of volatility called the

quadratic variation has been the focus of much attention. The theory has been devel-

oped in a series of papers including: Andersen, Bollerslev, Diebold and Labys (2001),

Barndorff-Nielsen and Shephard (2002,2004a) and Mykland and Zhang (2006). This

work has been extended to take account of what is called microstructure noise when

an underlying efficient price diffusion is distorted by measurement error in papers

by Zhang, Mykland, and Äıt-Sahalia (2005). Their two time scale estimator is the

first consistent estimator of the quadratic variation under the presence of the ad-

ditive noise. Zhang (2006) extended this work to the multiscale estimator which

36



converges to the target faster. Kalnina and Linton (2008) proposed a modification

of the two time scale estimator that is consistent under heteroscedastic and endoge-

nous noise. Äıt-Sahalia, Mykland and Zhang (2010b) modified their earlier estimator

so that it achieves consistency in the presence of serially correlated microstructure

noise. Barndorff-Nielsen, Hansen, Lunde and Shephard (2008a) generalized this idea

on a kernel smoothing technique for the problem of estimating the integrated variance

: their estimator using the flat-top kernel achieves the fastest possible convergence

rate (the same as an infeasible MLE in a special case) although it is not guaranteed

to be positive definite. Jacod, Li, Mykland, Podolskij and Vetter (2009) introduced

the pre-averaging method, which involves first averaging the observed prices over a

moderate number of time points to reduce the measurement error.

In the multivariate case an additional issue arises, namely that the observations

are asynchronous, i.e., transactions occur at different time points for different as-

sets. Hayashi and Yoshida (2005) proposed estimators of the integrated covariance

that does not require synchronization. However their estimator is inconsistent un-

der the presence of microstructure noise. Malliavin and Mancino (2009) proposed

a fourier domain approach that does not require data alignment but they have not

work out the theoretical results when noise is present. Estimators addressing both

the non-synchronicity and the microstructure noise were proposed by Zhang (2010),

Barndorff-Nielsen, Hansen, Lunde and Shephard (2011) and Äıt-Sahalia, Fan and

Xiu (2010a). The estimators are consistent and convergence rates are respectively

Op(n
1/6),Op(n

1/5) and Op(n
1/4). First two papers assume microstructure noise is sta-

tionary and exponentially alpha mixing with respect to transaction time and estima-

tors still require aligning the data although the consistency is robust to the alignment.

However the hidden cost of data alignment and non-synchronicity for these estimators

are that the sample size n that appears in the convergence rate is the sample size of

aligned data. Also the drawback of Zhang (2010) and Äıt-Sahalia et al. (2010a) is

that the estimator cannot be generalized to dimensions higher than two unless the

covariance matrix is estimated element-wise which does not guarantee the positive

definite estimator. See Park and Linton (2011) for a more detailed survey.

The goal of this paper is to propose a new estimator of the general multivariate
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volatility measure that is robust to microstructure noise and to asynchronous data

timing. The method is based on Fourier domain techniques, which have been widely

used in discrete time series. The advantage of this method is that it does not require

an explicit time alignment. This class of techniques was first proposed in Malliavin

and Mancino (2009), who analyze the case with no microstructure noise. The by-

product of our Fourier domain based estimator is that we have a consistent estimator

of the instantaneous co-volatility even under the presence of microstructure noise.

We apply these results for multivariate regression estimation in continuous time and

show that we can consistently estimate the regression coefficients for variables that

are non-synchronously observed.

In Section 2.2 we give a set up of the model and assumptions regarding the sam-

pling scheme. In Section 2.3, we propose a Fourier domain based estimator of inte-

grated covariance. The Fourier domain estimator is closely related to a time domain

estimator and we show their relationship and what it implies for conditions on the

smoothing windows. Section 2.4 presents the asymptotic properties of the proposed

estimator without and with the presence of microstructure noise. We devote a sub-

section giving an intuitive explanation for the source of the bias in the time domain

estimator using a simple example. In Section 2.5 the Fourier method is further ex-

tended to estimate the instantaneous covariance matrix of diffusion process and to

estimate the autocovariance function of the microstructure noise. Section 2.6 discuss

the estimation of some economically interesting scalar functions of the integrated

covariance matrix. We carried out extensive simulations in Section 2.7.

Some notation. For scalars a and b, a ∧ b and a ∨ b denote the minimum and

maximum value. For a series ti,j , denote ∆ti,j = ti,j − ti−1,j, and for any function g,

let ∆g(ti,j) = g(ti,j) − g(ti−1,j). We use −→p to denote convergence in probability,

and =⇒ to mean stable convergence described in the Appendix. For real sequences

an and bn, an ≃ bn means an = bn + op(bn). For a matrix A, ‖A‖2 = tr(A
⊺

A)1/2. Let

L denote the discrete time lag operator, so that LXt = Xt−1.
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2.2 The Model and assumptions

2.2.1 Efficient Price and Parameter of Interest

The following assumption describes the general setting used throughout the paper.

Assumption 1. The efficient price process follows a Brownian semimartingale.

For a d × 1 vector of logarithmic prices P (t) = [P1(t), . . . , Pd(t)]
⊺ defined on the

filtered probability space (Σ,F ,Ft≥0,P), we have

P (t) =

∫ t

0

µ(u)du+

∫ t

0

σ(u)dW (u),

where µ(u) = [µ1(u), . . . , µd(u)]
⊺ is a vector of predictable locally bounded drifts

and σ(u) is a symmetric d × d matrix of locally bounded cádlág processes with∫ t
0
σ(u)σ(u)⊺ ⊗ σ(u)σ(u)⊺du < ∞ a.s. W (u) is a d × 1 vector of independent

Brownian motion and is independent from the volatility process.

The matrix
∫ t
0
σ(u)σ(u)⊺ ⊗ σ(u)σ(u)⊺du, which we call integrated quarticity, ap-

pears in the asymptotic variance of the estimator below. The assumption of locally

bounded drift and diffusion coefficient are required to apply Girsanov’s theorem to

remove the drift term in the theoretical derivation. Consider the discrete time grid

0 = t0 < · · · < tn = T , where T is fixed, and let P (ti) denote the (log) price at

those points. The quadratic covariation matrix of P over a time interval [0, t], t ≤ T

is defined by

[P, P ]t = plim
n→∞

∑

i;ti≤t
{P (ti)− P (ti−1)}{P (ti)− P (ti−1)}⊺, (2.1)

where the limit is finite and well defined with probability one. Under Assumption 1,

this is almost surely equal to the integrated covariance matrix

[P, P ]t =

∫ t

0

σ(u)σ(u)⊺du. (2.2)

A natural estimator of (2.2) is the finite sum given in the definition of quadratic varia-

tion, which is called the Realized Covariance. Barndorff-Nielsen and Shephard (2002)
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showed that the Realized Covariance is unbiased and is a
√
n consistent estimator

of the integrated covariance under Assumption 1 and assuming synchronous trading.

Throughout this paper we will reserve the square bracket to denote the quadratic

variation, following the convention in the stochastic processes literature. The objec-

tive of this paper is to consistently estimate the integrated covariation matrix. The

integrated covariance is related to the covariance matrix of prices by

cov{P (t)} = E{
∫ t

0

σ(u)dW (u)(

∫ t

0

σ(u)dW (u))⊺} =

∫ t

0

E{σ(u)σ(u)⊺}du = E[P, P ]t,

where the second equality follows from Itô’s formula. Let [P, P ] := [P, P ]T . We

will denote the (i, j)- th element of an instantaneous covariance matrix by Σi,j(u) =

{σ(u)σ(u)⊺}i,j. The j-th diagonal element gives an integrated variance [Pj, Pj] =∫ T
0
Σj,j(u)du.

Two problems are present in estimating (2.2). First, prices of different assets are

observed at different times. Second, observed prices are distorted by noise and do

not satisfy Assumption 1. We propose below an estimator that is robust to these two

problems. We will examine in detail the two problems in the following sections.

2.2.2 Sampling scheme

In this section we describe the main assumptions we make on the observation times.

We allow for unequally spaced and asynchronous observation times.

Assumption 2. The time span is fixed and scaled to vary between [0, 2π]. We

observe log prices at discrete time points: 0 = t0,ℓ < · · · < tnℓ,ℓ = 2π for ℓ = 1, . . . , d,

where nℓ is the total number of observations for the ℓ-th asset. The discrete time

points are allowed to be stochastic and assumed to be independent of price and volatility

process. The total number of observation points nℓ is large and n := minℓ(nℓ) → ∞.

Unless otherwise stated, all convergence below holds with probability one. For all

a, b, ℓ ∈ {1, . . . , d} :

1. The discrete time points satisfy sup0≤i<nℓ
(ti,ℓ − ti−1,ℓ) = O( 1

nℓ
).
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2. Denote the interval Ii,a = [ti−1,a, ti,a) and Ij,b := [tj−1,b, tj,b). Define the empiri-

cal quadratic covariation of time by

Q(n)
aabb(t) = (na ∧ nb)

∑

i,j:ti,a,tj,b<t

∆ti,a∆tj,b1{Ii,a∩Ij,b 6=∅}

Q(n)
abab(t) = (na ∧ nb)

∑

i,j,k,l:ti,a,tj,b,tk,a,tl,b<t

(ti,a ∧ tj,b − ti−1,a ∨ tj−1,b)

× (tk,a ∧ tl,b − tk−1,a ∨ tl−1,b)1{Ii,a∩Ij,b 6=∅}1{Ik,a∩Il,b 6=∅}1{i=k}, for na < nb,

where the last indicator function is replaced by 1{j=l}, for nb ≤ na. The empirical

quadratic covariation satisfies Q(n)
· (t) −→ Q·(t) as na ∧ nb → ∞, where Q·(t)

is continuously differentiable.

3. The degree of non-synchronicity satisfies supi,j |ti,a−tj,b|1{Ii,a∩Ij,b 6=∅} = O( 1
na∧nb

).

Given any set of {ti,a, tj,b} such that na < nb, we assume that

sup
0≤j≤nb

#{tj,b ∈ [ti−1,a, ti,a)|1{Ii,a∩Ij,b 6=∅}} = O(
na ∨ nb
na ∧ nb

).

In Assumption 2.2, the expression specializes to Q(n)
aa (t) = na

∑
i,:ti,a<t

(∆ti,a)
2 in

univariate case which will appear in the asymptotic variance of the integrated variance

estimator. Assumption 2 does not restrict the ratio of sample sizes of different assets

to be bounded away from zero or infinity. One asset can be allowed to be much more

liquid than the other. This allows for quite a lot of generality. Define

{Tl(ab)}1≤l≤N(ab)
T

:= {ti,a ∪ tl,b, i = 1, . . . , na, l = 1, . . . , nb},

where N
(ab)
T is a total number of data points for union of time stamps. If Assumption

2.1 is further restricted to inf i∆ti,ℓ = O( 1
nℓ
) and supi∆ti,ℓ = O( 1

nℓ
), then Assumption

2.3 is implied. One way of showing this is as follows. Let a be the less liquid asset

such that na < nb, then it holds that
∆tj,b
∆ti,a

≤ supi,j
∆tj,b
∆ti,a

≤ supj ∆tj,b
infi ∆ti,a

= O(na∨nb

na∧nb
). The

sample size of the union of time stamps, N
(ab)
T is of order O(na ∨ nb). We will use the

fact that {1{Ii,a∩Ij,b 6=∅} = 1} if and only if {uij := ti,a ∧ tj,b > ti−1,a ∨ tj−1,b := li,j}.
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We introduce here some notation we will use in the sequel. Denote the average

interval size for asset ℓ by ∆tℓ := 2π/nℓ. When comparing asset a and asset b, denote

for convenience the average interval size of the more liquid asset by ∆̃tab = 2π/(na ∨
nb). We may drop the asset index whenever it is obvious.

The set of {(Pℓ(ti,ℓ), ti,ℓ) ; i = 1, . . . , nℓ, ℓ = 1, . . . , d}, gives us a tick database of

prices for d number of assets. Let 0 = τ0 < · · · < τN = 2π be a (subjectively)

specified time grid with a total of N + 1 points. We can align the observed times

to such a common grid by the previous tick-time method among many methods

available. Define for asset ℓ = 1, . . . , d and time index k = 1, . . . , N , the closest

previous observation time and the corresponding price

τk,ℓ = max
i

{ti,ℓ : ti,ℓ ≤ τk}, Pℓ(τk) = Pℓ(τk,ℓ).

The {τk,ℓ} associated with each ℓ-th asset is a time stamp sampled to be aligned

on the {τk}’s grid. We assume that N → ∞ and maxk(τk − τk−1) → 0. To create

the {τk}, two schemes are often employed: fixed clock times and refresh times. Let

τ0 = 0, τ0,ℓ = 0 and τn,ℓ = 2π for ℓ = 1, . . . , d.

Fixed Clock Times: For k ≥ 1, let

τk = kh, h := 2π/N. (2.3)

Refresh Times: The refresh time was proposed by Barndorff-Nielsen et al. (2011) .

First define a counting process associated with occurrences of transactions Nℓ(t) :=∑nℓ

i=1 1{ti,ℓ ≤ t}. The refresh time grid is defined for k ≥ 1 by

τk+1 = max
ℓ

{tNℓ(τk)+1,ℓ, ℓ = 1, . . . , d}. (2.4)

In words, the refresh time is the time at which all the assets are traded at least once

since the last refresh time. In practice, if d is large this may lead to quite a small

number of sample size. In this case, we may define refresh times pairwise.

The data alignment technique is not without problems. For example, if we use
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pairwise refresh times we obtain estimated covariance matrices that are not guaran-

teed to be positive definite. More seriously the single summation estimators such

as Realized Covariance computed using aligned data are biased, i.e. in general

E
∑N

i=1∆P1(τi)∆P2(τi) 6= E[P1, P2]. Hayashi and Yoshida (2005) show the bias of

the Realized Covariance calculated from fixed clock time aligned data, while Zhang

(2010) shows the bias when the data is aligned by the refresh times. In practical

example give in Section 2.3.2 and Section 2.4.1, we in detail analyze the bias induced

by the data synchronization on time domain estimators of integrated covariance.

2.3 Estimation

2.3.1 Our Estimator

We propose to use the Fourier domain approach, which does not require data align-

ment at all. The nonparametric method based on Fourier analysis of returns was

first introduced by Malliavin and Mancino (2009). Frequency domain techniques are

widely used in estimating the long run variance of time series in traditional discrete

time framework. Considerable attention has been paid to estimating the covariance

matrix in the presence of autocorrelation of unknown form [see, inter alia: Bartlett

(1946), Newey and West (1987), Andrews (1991), Hansen (1992). ] An important

application is the estimation of the long-run variance of nonstationary time series

analysis. This is the special case of spectral density estimation at frequency zero.

We draw a natural link of such traditional method to the estimating the quadratic

covariation of continuous time processes.

The Fourier basis given by {gt(q) := eiqt, q ∈ Z} where i =
√
−1 and gt(q) denoting

its complex conjugate, constitutes an orthonormal basis on the interval t ∈ [0, 2π],

1

2π

∫ 2π

0

gt(k)gt(j)dt =

{
1 if k = j

0 otherwise.

We can express the continuous time signal {Σ(t)}t∈[0,2π] as a linear combination of
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Fourier basis with coefficient denoted by F(Σ)(q) for q ∈ Z

Σ(t) =
1

2π

∞∑

q=−∞
F(Σ)(q)eiqt, (2.5)

and its Fourier pair by

F(Σ)(q) :=

∫ 2π

0

e−iqtΣ(t)dt, q = 0,±1,±2, . . . . (2.6)

This is the continuous time Fourier transform of an instantaneous covariation matrix

and at q = 0 we have the integrated covariance. We will propose an estimator for the

above general form in (2.6). The above Fourier pair suggests that once we estimate

the Fourier coefficient by F̂(Σ)(q), we may reconstruct the signal by replacing the

infinite sum by the finite sum

Σ̂(t) =
1

2π

n∑

q=−n
F̂(Σ)(q)eiqt.

By Assumption 1, we have {Σ(t)} ∈ L2([0, 2π]) which guarantees that (2.5) is finite

and ‖Σ̂(t) − Σ(t)‖2 → 0. We next show how we can estimate (2.6) from the Fourier

transform of the return process. We define the continuous time Fourier transform of

return dPℓ(t) , ℓ = 1, . . . , d satisfying Assumption 1

F(Pℓ)(α) =

∫ 2π

0

e−iαtdPℓ(t), α = 0,±1,±2, . . . (2.7)

where the integral is a stochastic integral. The discrete Fourier transform of the ℓ-th

asset is

Fn(Pℓ)(α) =

nℓ∑

j=1

e−iαtj,ℓ∆Pℓ(tj,ℓ). (2.8)

Let Fn(P )(α) = {Fn(P1)(α), . . . ,Fn(Pd)(α)}⊺ for α ∈ Z denote the vector of such

Fourier transforms. Denote a weight function, called the amplitude window, by

KH(·) : [−π, π] → R. It suffices to note for now that the function is symmetric,

centered at zero and integrates to a finite number over its support. The construction
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and the properties of the weight function are given in the next section. Our proposed

estimator of (2.6) is given by

F̂(Σ)(q) =
∑

|α|≤m/2
KH(λα)Fn(P )(α)Fn(P )(q − α)⊺, (2.9)

where for ρ(n) := maxℓ=1,··· ,d nℓ, we define λα = 2πα/ρ(n), for α ∈ Z. We let

m = ρ(n)/H where the bandwidth H → ∞ and ρ(n), m → ∞ as n → ∞. We

are smoothing λα over the interval [−π/H, π/H ] where H controls the width of the

smoothing window. The main focus is on the case q = 0. We name our estimator,

Fourier Realized Kernel. For q = 0, we may define the realized cross periodogram

between assets 1 and 2 by I12(α) := Fn(P1)(α)Fn(P2)(−α). Then (1, 2)-th element

of F̂(Σ)(0) is given by kernel smoothing the realized cross periodogram around the

zero frequency

F̂(Σ12)(0) =
∑

|α|≤m/2
KH(λα)I12(α). (2.10)

What is hidden in the frequency domain formulated estimator is that we can con-

veniently express our estimator as weighted double summation estimator given in

(2.20).

2.3.2 Comparison with some Time domain estimators

For data that is synchronized at {τi}, we may define a realized autocovariance function

γ12(h) =
∑

i

∆P1(τi)∆P2(τi−h), h = 0,±1,±2, · · · , (2.11)

where
∑

i =
∑

h<i≤n for h ≥ 0, and
∑

i =
∑

1≤i≤n+h for h < 0. The realized

periodogram is closely related to the realized autocovariance in the aligned case. In

the case that τi are equally spaced and synchronous, i.e. τi = τj + (i − j)2π/n, we

can conveniently write down the realized cross periodogram as a Fourier transform

of the realized autocovariance, i.e., I12(α) =
∑

|h|<n e
−iαh2π/nγ12(h). We next make

a comparison with the covariation estimator of Hayashi and Yoshida (2005). Their

estimator is a realized cross periodogram at zero frequency over the interval that
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overlaps, i.e.,

HY =

n1∑

i=1

n2∑

j=1

∆P1(ti,1)∆P2(tj,2)1{Ii,1∩Jj,2 6=∅}.

The realized cross periodogram at zero frequency is given by

I12(0) =

n1∑

i=1

n2∑

j=1

∆P1(ti,1)∆P2(tj,2). (2.12)

Then the centered realized cross periodogram (2.12) can be decomposed into I12(0)−∫ 2π

0
Σ12(t)dt =M1 +M2, where

M1 = HY −
∫ 2π

0

Σ12(t)dt, M2 =
∑

i,j

∆P1(ti)∆P2(sj)1{Ii,1∩Jj,2=∅}
.

Hayashi and Yoshida (2008) showed that
√
nM1 is asymptotically zero mean Gaus-

sian. M2 has a zero mean and is a leading order term of Op(1) since I12(0) =

{P1(2π)−P1(0)}{P2(2π)−P2(0)}. In summary, if no microstructure noise is present,

the Hayashi and Yoshida estimator has a zero bias and achieves
√
n consistency. The

realized periodogram is unbiased but inconsistent due to the extra term in M2.

We next compare our estimator (2.10) to an estimator given by smoothing the

realized autocovariances of the aligned data. Given a smoothing window in time

domain k(·), define
Σ̃12 =

∑

|h|<n
k

(
h

H

)
γ12(h). (2.13)

This was first proposed by Barndorff-Nielsen et al. (2008a). To establish the relation

between the time domain (2.13) and the frequency domain estimator (2.10) we now

discuss the construction and properties of smoothing windows. We assume that the

lag window satisfies the following conditions given by Barndorff-Nielsen et al. (2010).

We will first work with a lag window for continuous time denoted by k(x), x ∈ R

and a spectral kernel for continuous and bandlimited frequency denoted by K(λ), λ ∈
[−π, π].

Assumption 3. The lag window k(·) satisfies the following conditions: (i) k(0) =
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Figure 2.1: Lag and spectral window satisfying Assumption 3
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1, k′(0) = 0; (ii) k is twice continuously differentiable; (iii) ‖k‖2 :=
∫∞
−∞ |k(x)|2dx <

,∞, ‖k2‖2 :=
∫∞
−∞ |k(x)|4dx < ∞, ‖k′‖2 :=

∫∞
−∞ |k′(x)|2dx < ∞, ‖k′′‖2 :=∫∞

−∞ |k′′(x)|2dx < ∞, where prime denotes the derivatives of kernel function. And

k(x) → 0 as x→ ∞; (iv)
∫∞
−∞ k(x) exp(−iλx)dx ≥ 0, ∀λ ∈ [−π, π].

The spectral window is defined by the Fourier transform of the lag window and

vice versa

K(λ) =
∫∞
−∞ k(t)e−iλtdt k(t) = 1

2π

∫ π
−πK(λ)eiλtdλ, (2.14)

where λ denotes the angular frequency. Given this relation, Assumption 3 on the lag

window k is equivalent to the following conditions on the spectral window K.

Assumption 3’ The spectral window K satisfies the following conditions: (i)∫ π
−πK(λ)dλ = 1,

∫ π
−π λK(λ)dλ = 0; (ii) ‖K‖2 :=

∫ π
−π |K(λ)|2dλ < ∞, µ2

1(K) :=
∫ π
−π |λK(λ)|2dλ < ∞ and µ2

2(K) :=
∫ π
−π |λ2K(λ)|2dλ < ∞; (iii) K(λ) ≥ 0, ∀λ ∈

[−π, π].
The condition (iv) in Assumption 3 and equivalently (iii) in Assumption 3’ are

needed to guarantee that the estimators defined in (2.13) and (2.10) are p.s.d. The

realized periodogram is Hermitian and positive semi definite as long as the spectral
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window is non negative, i.e., K(λ) ≥ 0, ∀λ. To avoid the aliasing problem we assume

that the signal is zero for frequencies that falls outside of the Nyquist critical fre-

quency, fc = n/2. The results can be summarized as follows. The discrete time and

discrete frequency Fourier pair are given by

KH(λα) =
1
n

∑
|h|≤H k

(
h
H

)
e−iλαh k

(
h
H

)
=
∑m/2−1

α=−m/2KH(λα)e
iλαh. (2.15)

Figure 2.1 shows weighting functions that satisfy the Assumptions 3.

Proposition 1.When trading times are synchronized and equally spaced the two

estimators in (2.10) and (2.13) are identical when (2.15) holds.

It is of interest how our estimator is related to other time domain estimators such

as the multivariate two time scale estimator of Zhang (2010), and the Modulated Re-

alized Covariance (multivariate pre-averaging estimator) of Christensen, Kinnebrock

and Podolskij (2010). In the univariate setting, Jacod et al. (2009) showed that their

pre-averaging estimator, the univariate two time scale estimator of Zhang et al. (2005)

and the flat-top Realized Kernel of Barndorff-Nielsen et al. (2008a) can be written

as a smoothed realized autocovariances where the difference between the estimators

comes from the contribution of the end points. This result holds also for the mul-

tivariate versions of the three estimators when observation points are synchronized.

Our estimator can be expressed as a Realized Kernel only when sampling points are

equally spaced and aligned. The relation between the smoothed periodogram to esti-

mate the spectrum and data tapering (i.e. Fourier transforming the weighted return)

is analogous to the relation between our estimator and the pre-averaging estimator.

Toy Example We now consider an example to clarify the source of the bias

in estimating integrated covariance due to aligning the non-synchronous observation

points. Suppose that P1(t) = P2(t) = B(t), an independent Brownian motion. Then

[P1, P2](1) =
∫ 1

0
dt = 1. Assume that the observed price is given by P1(ti,1) with

{t0,1 = 0, t1,1 = 1/2, t2,1 = 1} and P2(ti,2) with {t0,2 = 0, t1,2 = 1/4, t2,2 = 3/4, t3,2 =

1}. Denote the union of time grid by Tl := {ti,1 ∪ tj,2, i = 0, 1, 2, j = 0, . . . , 3}. The

union of time grid is then simply {Tl = l/4, l = 0, . . . , 4}. The refresh time grid is

the same as the time stamp of the first asset {τi = ti,1, i = 0, 1, 2}. The previous
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Figure 2.2: Toy Example

tick time for the first asset is obviously {τi,1 = ti,1, i = 0, 1, 2} and the second asset

is {τ0,2 = 0, τ1,2 = t1,2 = 1/4, τ2,2 = t2,3 = 1}. The expectation of the Realized

Covariance is then given by

E{P1(τ1)− P1(τ0)}{P2(τ1)− P2(τ0)}+ E{P1(τ2)− P1(τ1)}{P2(τ2)− P2(τ1)}
= E{B(1/2)−B(0)}{B(1/4)− B(0)}+ E{B(1)− B(1/2)}{B(1)−B(1/4)}
= 1/4 + 1/2 = 3/4.

So the bias of Realized Covariance due to non-synchronicity is given by 1−3/4. If two

assets are positively correlated then the Realized Covariance will have a downward

bias according to this derivation. However if we consider a double sum estimation of

the form

E
∑

i,j

{P1(ti,1)− P1(ti−1,1)}{P2(tj,2)− P2(tj−1,2)}

=E
∑

0≤l≤4

{P1(Tl)− P1(Tl−1)}{P2(Tl)− P2(Tl−1)}

=E
(
{B(1/4)− B(0)}2 + {B(1/2)− B(1/4)}2 + {B(3/4)− B(1/2)}2 + {B(1)− B(3/4)}2

)

=4× 1/4 = 1.
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Therefore there is no bias induced by aligning the non-synchronously observed data.

This is described graphically in Figure 2.2.

2.4 Asymptotic Properties

We first consider the asymptotic bias of the time domain estimator for subsequent

comparison with our own. We then derive the asymptotic properties of our estimator

in two cases: with and without microstructure noise.

2.4.1 Asymptotic Bias of the time domain estimator

This section focuses on showing the effect of the data synchronization on the covari-

ance estimators. First, consider the Realized Covariance applied to the refresh time

{τi}Ni=1 aligned data
N∑

i=1

∆P1(τi)∆P2(τi)− F(Σ12)(0). (2.16)

Let ui = τi,1 ∧ τi,2 and li = τi−1,1 ∨ τi−1,2, then (2.16) can be expressed by

∑

i

∫ ui

li

{P1(t)− P1(li)}dP2(t) +

∫ ui

li

{P2(t)− P2(li)}dP1(t) (2.17)

+
∑

i

∫ ui

li

Σ12(t)dt−
∫ 2π

0

Σ12(t)dt. (2.18)

The order of (2.17) is Op(N
−1/2) with zero expectation, while (2.18) contributes to

a stochastic bias term, which is an analytical form for the so-called Epps effect.

Theorem 1 of Zhang (2010) shows the order of magnitude for (2.18) is

(
n∑

i=1

∫ ui

li

−
∫ 2π

0

)
Σ12(t)dt = −

∫ 2π

0

Σ12(u)dF (u) +Op(1/n),

where F (t) =
∑

{i:τi,1∧τi,2≤t}|τi,1 − τi,2|. She shows that F (t) = Op(
N

n1+n2
). See Zhang

(2010) Corollary 4 for the analytical form of the bias when arrival times are random

with stochastic intensity. Consider now a Realized Kernel applied to the data aligned
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on {τ}Ni=1,
∑

|h|<n
k

(
h

H

)
r12(h) =

N∑

i,j=1

∆P1(τi)∆P2(τj)k

(
i− j

H

)
. (2.19)

We also recognize that the estimator in (2.10) can be expressed as similar form,

∑

|α|≤m/2
KH(λα)I12(α) =

n1∑

i=1

n2∑

j=1

∆P1(ti)∆P2(sj)kH(ti − sj). (2.20)

where we defined kH(ti−sj) := k(
(ti−sj)/∆̃t

H
) =

∑
|α|≤m/2KH(λα)e

−i(ti−sj)α, i.e. we are

scaling the difference of time stamps by the average interval size for more liquid asset.

We first show for asymptotic bias of (2.20). Define uij = ti ∧ sj and lij = ti−1 ∨ sj−1.

What matters for the bias term, as shown in the proof for Theorem 1 is, conditionally

on 1{i,j|uij>lij},

∑

i,j

∆P1(ti)∆P2(sj)kH(ti − sj)−
∫ 2π

0

Σ12(t)e
−iqtdt

=
∑

i,j

∫ ui,j

li,j

{P1(t)− P1(li,j)}dP2(t) +

∫ ui,j

li,j

{P2(t)− P2(li,j)}dP1(t) (2.21)

+
∑

i,j

∫ ui,j

li,j

dP1(t)

∫ ui,j

li,j

dP2(s){1− kH(ti − sj)} (2.22)

+
∑

i,j

∫ ui,j

li,j

Σ12(t)dt−
∫ 2π

0

Σ12(t)dt (2.23)

= Op({n1 ∨ n2}−1/2) +Op({
n1 ∨ n2

H(n1 ∧ n2)
}2) +Op({n1 ∨ n2}−1).

The asymptotic bias term (2.21) and (2.23) are due to the discretization error

of the continuous time signal, which depends inversely on the number of union of

time stamps for two assets. (2.22) is due to smoothing, which can be controlled as it

depends on the bandwidth. See Appendix. We have an asymptotic bias that vanishes

in large sample and we do not have a synchronization error of form (2.18). The

asymptotic bias term of (2.19) can be derived similarly, by replacing the transaction

time stamp ti by refresh time τi,1 and sj by τj,2. The order of union of refresh time
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aligned grid, {τi,1∪τj,2} is Op(N) which usually in practice is op(n1+n2).Whereas the

union of all time stamps {ti ∪ sj} is larger order at Op(n1 ∨ n2). For the estimator of

form (2.19) and (2.20), we effectively discretize the signal by the union of two times.

Using all the data realized at transaction times is a much finer approximation for

the real line [0, 2π] than the coarser refresh time. The asymptotic bias term of the

Realized Kernel is given by Op(N
−1/2) + Op(H

−2) + Op(N
−1), where bandwidth H

is chosen for the Realized Kernel. If we let N = (n1 ∧ n2)
R , then under the optimal

bandwidth, our estimator converges faster at (n1 ∧ n2)
4−2β

5 than the Realized Kernel

at (n1∧n2)
2R
5 , when R < 2− β i.e. N

n1∧n2
= o(1). In 2 dimensional case, the condition

will hold when two assets are traded very asynchronously and it will likely hold when

we are estimating the large dimensional covariance matrix.

Another conceptual problem of the refresh time alignment method is that it ne-

cessitates the return of the illiquid asset leads the return of the liquid asset, which is

undesirable. It is also more natural to formulate the assumption on the microstructure

noise in terms of the actual transaction time rather than the refresh time.

2.4.2 Asymptotic Distribution of our Estimator without Mi-

crostructure Noise

We consider the case where the sample sizes of different assets may not be of the

same order of magnitude. This situation arises often in practice, since some assets

are traded much more frequently than others. To apply the We need the following

rate condition.

Assumption 4. H is a bandwidth satisfying H ∝ nα with α ∈ (0, 1) so that we

have as n→ ∞, H → ∞ and m := n/H → ∞. Also assume that na∨nb

na∧nb
= o(H) for

all a, b ∈ {1, . . . , d}.
Remark Let β be a degree of liquidity parameter so that na∨nb = O((na∧nb)β),

1 ≤ β . Then Assumption 4 implies that 1 ≤ β < 2.

By balancing the squared bias and the variance given in Proposition 1, the op-

timal bandwidth is given by H = C0n
α∗
, α∗ = 4β−3

5
, where C0 ∈ (0,∞). Then the

convergence rate of the estimator under the optimal bandwidth is given by (n1∧n2)
ϑ,
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0 < ϑ := −2
5
β + 4

5
≤ 2

5
. The result makes intuitive sense that for unbalanced sample

sizes, the estimator converges at slower rate than the balanced case, n2/5. As the dis-

crepancy between the liquidity of asset increases (higher β), the estimator becomes

less efficient. Define for each a = 1, . . . , d, Baa = 0 and

Bab = C−2
0 |k′′(0)|A

2

2

∫ 2π

0

e−itq|Σab(t)|dt, A := lim
n1∧n2→∞

sup
i,j

n1 ∧ n2

2π
|ti−sj |1{Ii,1∩Ij,2 6=∅},

where 0 ≤ A < ∞ under Assumption 2. A could be thought as a measure of the

degree of non-synchronicity. When the two series are perfectly synchronized and

balanced then A = 0; otherwise it is O(1) under the Assumption 2.3. Define the

asymptotic variance for the typical diagonal and off diagonal element:

Vaa = 2C0||k||2
∫ 2π

0

e−i2qtΣ2
aa(t)dQaa(t)

Vab = C0||k||2
∫ 2π

0

e−i2qt
{
Σaa(t)Σbb(t)dQaabb(t) + Σ2

ab(t)dQabab(t)
}
.

The covariation between the integrated covariance estimator of asset a and b with the

estimator of c and d is given by

Vab,cd = C0‖k‖2
∫ 2π

0

e−i2tq {Σac(t)Σbd(t)dQacbd(t) + ΣadΣbc(t)dQadbc(t)} ,

and let B and V be a vech of bias and covariance matrix of our estimator. Define D∗
n

be the matrix of convergence rates,

Dn = diag {vech(D∗
n)} ; {D∗

n}a,a =
√
na

{D∗
n}a,b = (na ∧ nb)ϑ, ϑ =

4− 2β

5
, 1 ≤ β < 2,

where the upper bound ϑ = 2/5 is obtained when the sample sizes are of the same

order.
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Theorem 1 Suppose that Assumptions 1 - 4 hold. Then for each q ∈ Z,

Dnvech
{
F̂(Σ)(q)− F(Σ)(q)

}
=⇒ N (B,V) .

remark When data is synchronized and balanced we have Bab = 0 and the

covariation estimator achieves the same rate of convergence as the variance estimator.

Our result is comparable with Malliavin and Mancino (2009) whose results were under

sub-optimal bandwidth.

remark on efficiency If our goal is to achieve the most efficient estimator, we

can estimate the asymptotic bias term and subtract it from our estimator. In that

case we can get
√
n convergence rate at the cost of sacrificing the positive definiteness

of the estimator. We also may estimate each element of the covariance matrix in

most efficient way and use the clipping method to achieve p.s.d i.e. we can project a

d× d symmetric covariance matrix estimate which has singular value decomposition,

UTdiag[λ1, · · · , λp]U as UTdiag[λ+1 , · · · , λ+p ]U where λ+j = max{λj, 0}. Whether we

should emphasize on the efficiency of an estimator or on the covariance estimator that

is guaranteed to be positive definite depends on problem at hand and we leave this

choice to the practitioner.

2.4.3 Asymptotic Distribution of our Estimator with Mi-

crostructure Noise

Assumption on the microstructure noise

The empirical evidence from the volatility signature plot suggests that the observed

price deviates from the semimartingale assumption. More precisely various studies

document that the observed high frequency returns have infinite quadratic variation.

To model this phenomena, we make the following assumption.

Assumption 5. Let Xj(ti,j) is an observed log price of j-th asset which has

two additive components. One is a discretely observed continuous signal Pj(ti,j) that

satisfies the semimartingale Assumption 1 and another component is a noise process

with respect to the realization of transaction time Uj(ti,j) that has an infinite quadratic
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variation

Xj(ti,j) = Pj(ti,j) + Uj(ti,j). (2.24)

In univariate studies, it is usually assumed that Uj(ti,j) is a stationary time series,

which has been supported by empirical studies. There has not been a lot of empirical

work studying the cross autocorrelation of the microstructure noise for the multiple

asset case. In the limited theoretical work in this area, Äıt-Sahalia et al. (2010a)

assumed i.i.d noise that is uncorrelated across different assets. Barndorff-Nielsen et al.

(2011) assumed that the noise is covariance stationary with respect to a refresh time.

Their assumption on the diagonal makes sense - there is an evidence that under

financial clock i.e., transaction time, the process is homogeneous and less serially

correlated. The off-diagonal assumption needs verification. Zhang (2010) assumed

the alpha mixing condition with respect to an observation time. We think it is realistic

to assume the following for the microstructure noise.

Assumption 6. Let Uj(.), j = 1, . . . , d be a n dimensional stationary process,

independent of the efficient price process with E(Uj(.)) = 0 and covariance function

defined by EUa(ti,a)Ub(tj,b) = γ(|ti,a − tj,b|/∆̃tab) that satisfies

1

na ∧ nb

na−1∑

i=1

nb−1∑

j=1

γ(|ti,a − tj,b|/∆̃tab) → Γab,

where Γ is a d × d p.s.d. covariance matrix with (a, b)-th element denoted by Γab.

We also assume that |E(Ua(ti,a)Ub(tj,b), Uc(tr,c)Ud(tl,d))| ≤ ρ(M), where

M := sup {u,v}
{p,s}∈{{a,c},{b,d}}

{(tu,p − tv,s)/∆̃tps} and
∑∞

ν ρ(ν)(1 + ǫ)ν < ∞ for some

ǫ > 0.

This assumption is consistent with the usual univariate microstructure noise model.

For the equally spaced balanced case the assumption simplifies to

1

n

n∑

i=1

n∑

j=1

γ(|i− j|) → Γab = O(1) ; M := max{|i− j|, |h− l|}.

This allows cross-sectional correlation in the measurement error process.
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Distribution Theory

In this section we will show that our estimator in (2.9) is a consistent estimator of the

Fourier transform of the covariance matrix even under the presence of microstructure

noise. We have the following decomposition for (2.9) at zero frequency q = 0:

F̂(Σ)(0)− F(Σ)(0) =
∑

α

KH(λα)I(α)−F(Σ)(0)

=
∑

α

KH(λα)[Fn(P )(α)Fn(P )(−α)⊺ −F(P )(α)F(P )(−α)⊺]

+
∑

α

KH(λα)F(P )(α)F(P )(−α)⊺ −F(Σ)(0)

+
∑

α

KH(λα)Fn(dU)(α)Fn(dU)(−α)⊺

+
∑

α

KH(λα)[Fn(dU)(α)Fn(P )(−α)⊺ + Fn(P )(α)Fn(dU)(−α)⊺]

= (i) + (ii) + (iii) + (iv).

The term (i) is the error due to sampling the continuous time signal at discrete

points. (ii) is the error due to smoothing. (iii) is a contribution from the smoothed

realized periodogram applied to a microstructure noise and (iv) is due to the cross

term between the efficient price and the noise. We will show that (ii) is a leading

order term with Op(
√

H
n
) and is asymptotically normal. The bias term is given

by (i)+(iii)+(iv), where the leading term is (iii) with Op(n/H
2). The estimator

is asymptotically unbiased when n/H2 → 0 as n,H → ∞. We add one further

assumption on the end points.

Assumption 7. The two end points, Xj(t0,j) and Xj(tn,j) are respectively an av-

erage of m0 number of distinct observations on the interval [t−1,j , t0,j) and [tn,j, tn+1,j).

This assumption turns about to be crucial for our estimator to achieve consistency.

The time domain estimator by Barndorff-Nielsen et al. (2011) also assumes this condi-

tion. We derive the rate of convergence of our estimator by balancing the asymptotic
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variance of order Op(
H

n1∧n2
) and the asymptotic bias of order Op(

n1∨n2

H2 ). See Ap-

pendix. Let the reference sample size, n = min(n1, n2) = n1 and let n2 = O(nβ) and

H = O(nα). For the asymptotic variance to vanish we require nα−1 → 0 and for the

asymptotic bias to vanish we require nβ−2α → 0. Assumption 4 guarantees this. At

the optimum, we balance the order of the squared bias and variance; n2β−4α = nα−1.

Solving this for the bandwidth rate, the optimal bandwidth is given by

H = C0n
α∗

, α∗ =
2β + 1

5
,

where C0 ∈ (0,∞). When the two sample sizes are the same order i.e.(β = 1), then

α∗ = 3/5. In general, liquidity parameter 1 ≤ β < 2 implies that 3
5
≤ α∗ < 1. The

rate of convergence is then (n1 ∧ n2)
ϑ, 0 < ϑ := 2−β

5
≤ 1

5
, where the upper bound is

achieved when the sample sizes are of the same order. We define a finite tuning param-

eter η in a following way. There exists C∗ ∈ (0,∞) such that nℓ sup0≤i≤nℓ
∆ti,ℓ ≤ C∗

for ∀ℓ = 1, · · · , d under Assumption 2.1. We define η = (C
∗

2π
)2. Let denote

B = vech(C−2
0 η|k′′(0)|Γ),

and let V be as defined in Theorem 1. Let D∗
n be the matrix of convergence rates

Dn = diag {vech(D∗
n)} {D∗

n}a,b = (na ∧ nb)ϑ ϑ =
2− β

5
, 1 ≤ β < 2,

where the degree of liquidity parameter β is defined in Theorem 1. The the upper

bound for ϑ is 1/5 which is obtained when na/nb = O(1).

Theorem 2. Suppose that Assumptions 1-7 hold. Then for each q ∈ Z

Dnvech
{
F̂(Σ)(q)− F(Σ)(q)

}
=⇒ N (B,V) .

2.5 Extension

In this section, we further extend the Fourier method discussed above to estimate

the instantaneous covariance matrix of diffusion process. We also appeal to Fourier

57



analysis to estimate the autocovariance function of the microstructure noise.

2.5.1 Estimation of the Instantaneous covariance matrix

The instantaneous covariance matrix is also a parameter of interest, see Kristensen

(2010). We can construct an estimator of instantaneous covariation matrix by Fourier

inverting the estimator given in (2.9)

Σ̂(t) =
1

2π

∑

|q|≤m/2
KH(λq) exp(iqt)F̂(Σ)(q). (2.25)

Suppose that the modulus of continuity of Σ(t) denoted by C(h) is given by

C(h) := sup
|t−s|≤h

‖Σ(t)− Σ(s)‖2. (2.26)

The continuity assumption is met when each element of Σ(t) in Assumption 1 does

not contain jumps, for example Σ(t) is a Brownian semimartingale.

Theorem 3. (Consistency of the instantaneous covariance matrix estimator un-

der the presence of noise). Suppose that the assumptions of Theorem 2 hold and that

(2.26) holds. Then, there exists a sequence δ(n) → 0, such that

lim
n→∞

sup
δ(n)≤t≤2π−δ(n)

‖Σ̂(t)− Σ(t)‖2 = 0.

2.5.2 Estimation of ACFs of Microstructure noise

Under Assumption 6, we may appeal to the benefit of frequency domain analysis

to estimate the cross autocorrelation structure of the microstructure noise of high

frequency prices for multiple assets. The idea is that the conventional spectral den-

sity estimation applied to the high frequency returns and Fourier inversion of it will

reveal the ACF structure of the microstructure noise. This is recognizing that the ob-

served return has an Op(1) component that comes from the microstructure noise and a

smaller vanishing term Op(n
−1/2) that is coming from the semimartingale component.
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See Matsuda and Yajima (2009) for studies of periodogram applied to multidimen-

sional processes observed on asynchronous points in the space. For asynchronously

observed data we can take following steps. In terms of notation, the double subscript

fxx and Ixx is to emphasize that we are referring to a second order spectral density

and periodogram that we know conventionally in discrete time setting, for example

as in Brockwell and Davis (1991):

1. Estimate the spectral density of the observed returns {∆Xj(ti,j)}i,j using the

conventional method by smoothing the periodogram

f̂xx(q) =
∑

|q−α|≤m/2
KH(λq − λα)Ixx(α), (2.27)

where λq = q∆̃t and the second order periodogram is given by

Ixx(α) :=
1

n

n1∑

i=1

n2∑

j=1

∆X1(ti)∆X2(sj)e
−i(ti−sj)α.

2. Fourier invert the estimated spectral density to obtain the estimate of autoco-

variance.

γ̂uu(τ) =
1

2π

∑

|q|≤m/2
KH(λq) exp(iλqτ)f̂xx(q).

3. Reconstruct the ACF of the un-differenced noise

γ̂UU(τ) =
γ̂uu(τ)

(1− L)2
.

Theorem 4. Suppose that Assumptions 2-4 and 6 hold. Then there exists a

sequence τ(n) → ∞ such that

lim
n→∞

sup
|h|≤τ(n)

‖γ̂uu(h)− γuu(h)‖2 = 0.
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2.6 Application - Multivariate Regression

In this section we provide a framework for continuous time multivariate regression

with non-synchronously observed data and show how to consistently estimate the re-

gression coefficient. Often, practitioners encounter a problem of running a regression

between variables that are asynchronously observed - for example we might be inter-

ested in the effect of returns and order book information of one asset on another asset.

Hannan (1975) and Robinson (1975) are the earlier literature on using frequency do-

main to solve such problems. Mykland and Zhang (2006) discussed a general the set

up of analysis of variance for continuous time regression.

Let S(t) be a dependent variable and Pj(t), j = 1, . . . , d be d regressors. We

assume that {S(t), Pj(t), j = 1, . . . , d} satisfies Assumption 1. We define a residual

process Z(t) by

dZ(t) = dS(t)−
d∑

j=1

βjdPj(t).

The regression coefficients are estimated by minimizing the quadratic variation of the

residual process

min
βj ,j=1,...,d

[Z,Z]t.

The regressors are correlated in a sense of Assumption 1. When we have two regres-

sors, the solution to the optimization problem is

β1(t) =
d[P1, S](t)

d[P1, P1](t)
− d[P2, P1](t)

d[P1, P1](t)
β2(t).

Plugging in the solution for β2(t), we have

β1(t) =
d[P̃1, S](t)

d[P̃1, P̃1](t)
,

where dP̃1 is an orthogonal projection of dP1 on dP2

dP̃1(t) = dP1(t)− dP2(t)
d[P2, P1](t)

d[P2, P2](t)
.
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In particular, for non-time varying coefficient β1 = [P̃1, S](t)/[P1, P1](t). It is easy to

see the analogy with a discrete time linear regression problem. However we do not

observe the continuous time process. Using the method described in the previous

sections we can consistently estimate quadratic (co) variations based on discretely

observed data and can estimate the regression coefficient even when the variables are

observed with error (under the presence of microstructure noise).

In general we are often interested in a scalar function of θ = vech(Σ). We will

denote such function by υ(θ). The simplest example is the selection operation that

picks out one element of θ. The theory for this is given in Theorem 1 and 2. The linear

regression problem discussed above also can be thought in this framework, where υ(·)
is a non-linear function in the elements of θ. Other examples of υ(·) are eigenvalues,

trace and determinant of the covariance matrix. For portfolio management, we are

interested in υ(θ) = w⊺θ for a vector of weights w. We may study the asymptotic dis-

tribution for a scalar function of the integrated covariance matrix. Under smoothness

conditions, we have δn{υ(θ̂) − υ(θ)} = Op(1) where δn is such that δn
dυ(θ)
dθ⊺

D−1
n → 1

and Dn is a convergence rate matrix given in Theorem 1 and 2.

2.7 Numerical Study

2.7.1 Estimator of co-volatility comparison

We have the following versions of our estimator:

∑

α

KH(λα)I(λα) :=

n∑

i,j=1

∆P1(ti)∆P2(sj)
∑

α

KH(λα)e
−i(ti−sj)α

=(1)

n∑

i,j=1

∆P1(ti)∆P2(sj)kH(ti − sj)

=(2)

∑

|h|<n
k

(
h

H

)
γh,

where (2) holds only when the discretization points are synchronous and equally

spaced. The form of estimator we will implement is (1). In the theoretical work, we
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Figure 2.3: Simulated intraday instantaneous co-volatility and variance
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assumed no leverage between the volatility and the return process. In the simulation

studies, we relax this assumption and see if our estimator is robust to a presence

of the leverage. We consider two data generating processes for asset returns. For

first simulation, we consider the stochastic volatility model with a perfect leverage

given in Barndorff-Nielsen et al. (2011). The volatility process is continuous and the

instantaneous co-volatility is constant. For j = 1, 2-th asset;

dPj(t) = 0.03dt− 0.3σj(t)dBj(t) +
√

1− (0.3)2σj(t)dW (t) (2.28)

σj(t) = exp{−5/16 + 1/8̺j(t)} ; d̺j(t) = −1/40̺j(t)dt + dBj(t).

̺j(t) is initialized by ̺j(0) ∼ N(0, 20). The model implies that the covariance be-

tween the returns are EdP1(t)dP2(t) = 0.91σ1(t)σ2(t)dt. There is a perfect statistical

leverage since a single Brownian motion Bj(t) which is present in the return equation,

drives the volatility process.

For a second simulation, the stochastic volatility is specified as a jump diffusion

process and the instantaneous co-volatility coefficient follows CIR process. This is
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Figure 2.4: Simulated price and variance - per second observation
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modification of DGP considered in Äıt-Sahalia et al. (2010a) and Barndorff-Nielsen

et al. (2004a). For j = 1, 2-th asset

dPj(t) = σj(t)dWj(t) (2.29)

dσ2
j (t) = κj{σ̄2

j − σ2
j (t)}+ ajσj(t)dBj(t) + σj(t−)Jj(t)dNj(t),

The jump size follows Jj(t) = exp{zj(t)} with zj(t) ∼ N(µj, sj) and Nj(t) is a poisson

process with intensity λj . Let the leverage effect be given by EdWj(t)dBj(t) =

δjdt. We use parameter values given in Äıt-Sahalia et al. (2010a). The covariance

between the Brownian motions that are present in the price equation is given by

EdB1(t)dB2(t) = ρtdt. We let ρ(t) = e2x(t)−1
e2x(t)+1

and x(t) follows CIR process

dx(t) = 0.03(0.64− x(t))dt+ 0.118x(t)dBxt.

The Figure 2.3(a) shows the time series plot of ρt and (b) shows σ2
1(t) decomposed

into continuous and discontinuous component. The Figure 2.4(a) shows the time

series plot of Pj(t), j = 1, 2 and (b) shows σ2
j (t), j = 1, 2. The DGP of Microstructure
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noise is formed with respect to transaction time. We consider correlated AR(1) noise

processes with smooth decaying cross autocovariances. This can be implemented by

Uj(ti,j) = Ūj(ti,j) + ε(ti,j) : Ūj(ti,j) = αŪj(ti−1,j) + ǫj(ti,j), (2.30)

where idiosyncratic errors are independent Gaussian; ǫj(ti,j) ∼ NID(0, 1). The com-

mon disturbance that will drive the correlation between the two microstructure noise

is simulated by

εl = 0.5εl−1+ξl, for {Tl}1≤l≤NT
= {ti,1∪tj,2, i = 1, . . . , n1, j = 1, . . . , n2}, ξ ∼ NID(0, 1).

Then we define {ε(ti,1)}1≤i≤n1 as {εl}1≤l≤NT
sampled at {Tl∩ti,1} points. {ε(tj,2)}1≤j≤n2

is similarly defined. The variance of the noise is set to be proportionate to the sample

integrated quarticity; ζ2
√
nj−1

∑nj

i=1 σ
4
j (ti,j), where ζ = {0, 0.0.001, 0.01} is a noise

to signal ratio. We simulated the one second data assuming 6.5 hour daily trading,

which give us 23,400 daily data points over 100 monte carlo sample. We designed the

simulation to assess the impact of the asynchronicity on the estimator.

Finally, we examine properties of estimators in higher dimension. We consider

a simple setting where log prices are given by P (t) = AB(t) where P (t) is 10 × 1

vector of prices, B(t) is 3×1 independent Brownian motion and A is a factor loading

matrix. This is poisson sampled at rate {2, 2, 4, 4, 8, 8, 10, 10, 30, 30} and masked

by i.i.d gaussian noise. Table 2.2 and 2.3 reports the results for estimating the 2

dimensional covariation matrix, where first asset is more often traded then the second

asset. Table 2.4 reports the results for higher dimension.

Realized Covariation: bias induced by data synchronization

Table 2.1 reports the finite sample properties of the Realized Covariance. The efficient

price follows Brownian semimartingale, given in (2.28). The transaction time follows

a homogenous poisson process and the microstructure noise are correlated AR(1)

processes given in (2.30). Asynchronous data is aligned using the 5 minute fixed clock

time and the refresh time. The negative bias when no noise is present is consistent
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Figure 2.5: Covariation signature plot
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with the result in Section 2.4.1.

When microstructure noise is present, the variance estimate has a large posi-

tive bias. The sparse sampling (5 minute aligned data) is able to reduce such bias.

However the covariance estimate has a negative bias induced by the Epps effect which

dominates the positive bias induced by the microstructure noise. The degree at which

Epps effect dominates the noise effect depends on the degree of non-synchronicity.

The Figure 2.5 shows the covariation signature plot for the simulated series when

the price is observed without the noise. It shows that given varying degrees of non-

synchronicity (rate at which assets is traded), the higher frequency we align the data

(moving leftwards in x axis) the more bias it induces in estimating the integrated

covariance.

Balanced Sample example

We designed the simulation to assess the impact of the asynchronicity on the estima-

tor. We created the non-synchronously observed prices by poisson sampling at the

rate (3/2, 30) in a following way. We first simulate the equally spaced data per one
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Figure 2.6: Time stamps of two assets traded at opposite liquidity
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second for two assets. For the first asset, we sample on average at 1.5 second for

the first half of the sample and at 30 second for the last half of the sample. For the

second asset, we do this in reverse order - sample at 30 second for the first half and

1.5 second for later part. See Figure 2.6. Then we have two assets that have the same

number of transactions each day but traded very asynchronously. This is like a case

where two assets have opposite liquidity profile over a day.

The sample size is 607, 774 over one hundred days and the refresh time aligned

data reduces to a size around 750 per day. The large reduction in the sample size

of the aligned data is due to severe non-synchronicity by simulation design. We

compare the Realized Kernel and the proposed method over the range of bandwidths,

H = {1, 5, 10, 20, 50, 100, . . . , 750, 800}. The Figure 2.7 shows that the proposed

estimator is less sensitive to the choice of bandwidth - especially for large H . With

large H, we can reduce the bias for the off-diagonal element more than we can for the

Realized Kernel. Our estimator is less sensitive to the choice of bandwidth for large

values of H.

Un-Balanced Sample example

We carried out the same exercise as above but with the unbalanced sample sizes. We

poisson sampled the data at rate {(3/2, 30), (3/2, 2), (20, 30)}. For example, sampling
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rate (3/2, 2) means that we sample the first asset on average per 1.5 second and the

second asset per 2 second. First rate is to examine the effect of different liquidity and

different sample sizes. Second and third rates are to examine the effect of sparse and

intense sampling of asset prices of similar liquidity.

Figure 2.8 shows the results for sampling rate (3/2, 30). The proposed estimator

has a less bias and is less sensitive to a choice of the bandwidth for large values of H .

When the noise is not present, the proposed method estimates the variance of more

liquid asset more precisely. When the noise is present, the bandwidth should be large

for the proposed estimator to perform better. The conclusion is similar for sampling

rate (20, 30) as shown in Figure 2.9. The improvement of using the Fourier domain

estimator is most evident when estimating the variance of more liquid asset when two

sample sizes are very different. The proposed covariation estimator performs better

under large bandwidth. For sampling rate (3/2, 2) in Figure 2.10, the difference of

two estimator is less pronounced.

Each of these figures also show the accuracy of estimating the scalar function of

the covariation matrix. We examined the maximum eigenvalues and the variance of

portfolio with weight [0.5,
√
0.75]. Under the realistic noise to signal ratio and when

two assets are of different liquidity, the proposed method delivers superior estimates.

Regardless of sampling scheme, the proposed method does better in estimating these

quantities when effect of microstructure noise is not too dominant.

Overall Comparison and Higher Dimension Case

Table 2.2 and 2.3 shows that the proposed estimator has the best bias profile. With

carefully chosen bandwidth we can achieve the best root MSE under the presence of

noise. When no noise is present, the Hayashi and Yoshida estimator performs well.

The refresh time aligned method often performs better in estimating the integrated

variance of the less traded asset; (2,2) element. This is since it effectively aligns on the

time stamp of less traded asset. As shown in the analysis of asymptotic bias, when

no noise is present and number of refresh time sample is size smaller then realized

kernel under performs in terms of bias. The proposed estimator overall estimates
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the off-diagonal elements better. We observe also that the realized covariance esti-

mator aligned on sparesly sampled data often performs well - this is because there

is two opposing effect in terms of bias, negative bias from epps effect and positive

bias from microstructure noise. The advantage of our estimator is most clear in es-

timating higher dimension covariance matrix as shown in Table 2.4. We estimate 10

dimensional integrated covariance matrix and compare maximum of eigenvalues and

variance of the equally weighted portfolio. Under no presence of noise the refresh

time based method has large bias. We calculate the optimal bandwidth as given

in Theorem 1 and 2 for each element of covariance matrix and take the minimum,

maximum of these and average of the two. We note that our estimator seems to have

large variance, however it performs best under the optimal bandwidth.

2.7.2 Empirical Application

In this section we apply the Fourier Realized Kernel to a high frequency data. We

analyzed five stocks of different liquidity - Microsoft (MSFT), Dell (Dell), J P Morgan

(JPM) and less frequently traded Caterpillar Inc (CAT) and Banco de Chile (BCH)

from WRDS TAQ database. The period of analysis is for 20 days during 05-30

March 2007. The liquidity of stocks is in order of least liquid BCH, CAT, DELL,

JPM, MSFT with average daily sample sizes, {48, 7526, 8337, 10337, 11451}. We may

calculate the optimal bandwidth for individual asset by equalizing the squared bias

and the variance term given in Theorem 2. Let nℓ = nβℓ where n is a minimum of all

sample sizes, then it is given by Hℓ = {η|k′′(0)|‖k‖ }2/5ζ4/5ℓ n
1+2βℓ

5 . The ζ2ℓ is a squared noise

to signal ratio for each asset given by Γℓ,ℓ/
√
IQℓ,ℓ. We may estimate the variance of

the microstructure noise by the Realized Variance applied on the tick data divided by

2n, i.e. E(U2) ≃ RV/2n. See Zhang et al. (2005) The square root of the integrated

quarticity is estimated by the Realized Variance applied on the sparsely sampled data

e.g. 10 minutes. We applied maximum, minimum and average of the above individual

bandwidths. The Figure 2.11 and Figure 2.12 compare the Realized Covariance and

the proposed method in estimating the daily covariation matrix. Since the first asset

is least traded, the all refresh time is effectively aligned on the trading time of the
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first asset. In estimating the integrated variance, the proposed method lies between

the RV using pairwise refresh time (which will be dominated by the microstructure

noise) and the RV using all refresh time (which is more sparsely sampled, therefore

less affected by the noise). Most interesting case is the performance in estimating

covariation for assets of different liquidity - i.e. (1, 4) and (1, 5)-th element of the

estimator in our case. The daily Realized Covariance take values closer to zero due

to Epps effect whereas proposed estimator clearly gives us non trivial estimates.

2.8 Appendix

2.8.1 Remark on Assumption 3

The condition (ii) needs a verification and the rest is straightforward to derive given

(2.14). The Parseval’s identity between the Fourier transform pair given by

1

2π

∫ π

−π
|K(λ)|2dλ =

∫ ∞

−∞
|k(x)|2dx,

which can be easily derived by

∫ ∞

−∞
|k(x)|2dx =

1

2π

∫ ∞

−∞
k(x)∗

∫ π

−π
K(λ)eixλdλdx =

1

2π

∫ π

−π
K(λ)

∫ ∞

−∞
k(x)∗eixλdxdλ

=
1

2π

∫ π

−π
K(λ)K(λ)∗dλ =

1

2π

∫ π

−π
|K(λ)|2dλ.

This gives us condition ‖k‖2 = 1
2π
‖K‖2 <∞ and

∫ ∞

−∞
|k′(x)|2dx =

1

2π

∫ ∞

−∞
k′(x)

∗
∫ π

−π
iλK(λ)eixλdλdx =

1

2π

∫ π

−π
iλK(λ)

∫ ∞

−∞
k′(x)

∗
eixλdxdλ

=
1

2π

∫ π

−π
iλK(λ)

(
k(x)e−ixλ|∞−∞ −

∫ ∞

−∞
−iλk(x)e−ixλdx

)∗
dλ

=
1

2π

∫ π

−π
|iλ|2K(λ)

(∫ ∞

−∞
k(x)e−ixλdx

)∗
=

1

2π

∫ π

−π
|λK(λ)|2dλ.

69



This gives us the condition ‖k′‖2 = 1
2π
‖λK(λ)‖2 <∞. With similar argument rest of

condition can be verified.

2.8.2 Lemmas

We will prove the theorems for the general version of our estimator given in (2.9). We

derive the results conditionally on the volatility matrix and the discretization time

points therefore we regard these variables deterministic in the proofs. Throughout

the proof we denote C,C1, C2, · · · finite constants.

Lemma 1. Let P (t) defined on the filtered probability space (Σ,F ,Ft≥0,P)

satisfies Assumption 1 and f(t, s; q) be a bounded and measurable function. Define

square bracket operation to denote a quadratic covariation process defined in (2.1).

Then,

E

[ ∫ 2π

0

∫ 2π

0

f(t, s; q)dPa(s)dPb(t),

∫ 2π

0

∫ 2π

0

f(t, s; q′)dPc(s)dPd(t)

]
(2.31)

=

∫ 2π

0

∫ 2π

0

f(t, s; q)f(t, s; q′)d[Pa, Pc](s)d[Pb, Pd](t)

+

∫ 2π

0

∫ 2π

0

f(t, s; q)f(s, t; q′)d[Pa, Pd](s)d[Pb, Pc](t).

where double stochastic integral is Wiener-Itô sense.

Proof. The double Wiener-Itô integral can be written as

∫ 2π

0

∫ 2π

0

f(t, s; q)dPa(s)dPb(t)

=

∫ 2π

0

∫ t

0

f(t, s; q)dPa(s)dPb(t) +

∫ 2π

0

∫ t

0

f(s, t; q)dPb(s)dPa(t),

so that the integrand is measurable with respect to Ft and the stochastic integration

is well defined. Two terms above are martingale. Therefore (2.31) can be expressed

as [ ∫ 2π

0

∫ t
0
f(t, s; q)dPa(s)dPb(t) +

∫ 2π

0

∫ t
0
f(s, t; q)dPb(s)dPa(t),∫ 2π

0

∫ t
0
f(t, s; q′)dPc(s)dPd(t) +

∫ 2π

0

∫ t
0
f(s, t; q′)dPd(s)dPc(t)

]
.
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Lets consider one of the cross product terms among four possible terms from above.

By Itô’s isometry,

E

[ ∫ 2π

0

∫ t

0

f(t, s; q)dPa(s)dPb(t),

∫ 2π

0

∫ t

0

f(s, t; q′)dPd(s)dPc(t)

]
(2.32)

= E

∫ 2π

0

(∫ t

0

f(t, s; q)dPa(s)

)(∫ t

0

f(s, t; q′)dPd(s)

)
d[Pb, Pc](t),

where d[Pb, Pc](t) means [Pb, Pc]
′(t)dt , where the prime denotes the time derivative.

By Fubini’s theorem,

∫ 2π

0

E

(∫ t

0

f(t, s; q)dPa(s)

)(∫ t

0

f(s, t; q′)dPd(s)

)
d[Pb, Pc](t).

=

∫ 2π

0

∫ t

0

f(t, s; q)f(s, t; q′)d[Pa, Pd](s)d[Pb, Pc](t).

Together with the expected quadratic covariation of following terms,

E

[ ∫ 2π

0

∫ t

0

f(s, t; q)dPb(s)dPa(t),

∫ 2π

0

∫ t

0

f(t, s; q′)dPc(s)dPd(t)

]

=

∫ 2π

0

∫ t

0

f(s, t; q)f(t, s; q′)d[Pb, Pc](s)d[Pa, Pd](t),

we have ∫ 2π

0

∫ 2π

0

f(t, s; q)f(s, t; q′)d[Pa, Pd](s)d[Pb, Pc](t).

For example, when a = b = c = d and simplifying the integrandHt =
∫ t
0
f(t, s; q)dPs ∈

Ft, (2.32) is given by E
∫ 2π

0
H2
t d[P, P ]t. By interchange the expectation and the inte-

gration,

∫ 2π

0

E

{∫ t

0

HsdHs + d[H,H ]s

}
d[P, P ]t

=

∫ 2π

0

∫ t

0

f 2
n(t, s; q)d[P, P ]sd[P, P ]t.
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Lemma 2. Define a off-diagonal step function

fn(t, s; q) =
∑

i,j

e−isjqe−i(ti−sj)α1[ti−1,ti[(t)1[sj−1,sj[(s)1{Ii,1∩Ij,2=∅}(t, s)

gn(t, s; q) =
∑

i,j

e−isjqe−i(ti−sj)α1[ti−1,ti[(t)1[sj−1,sj[(s).

where discretization points {ti, sj} satisfy Assumption 2.1. Then

∫ 2π

0

∫ 2π

0

fn(t, s; q)dsdt =

∫ 2π

0

∫ 2π

0

gn(t, s; q)dsdt+O(
1

n
).

Proof. When we use a single discretizing point {ti},
∫ 2π

0

∫ 2π

0

{
∑

i,j

−
∑

i 6=j
}e−itjqe−i(ti−tj)α1[ti−1,ti[(t)1[tj−1,tj [(s)dsdt

=

∫ 2π

0

∫ 2π

0

∑

i

e−itiq1[ti−1,ti[(t)1[ti−1,ti[(s)dsdt =
∑

i

e−itiq∆t2i

≤ C sup
i

∆ti = O(
1

n
),

under Assumption 2.1. Likewise, using two discretizing point {ti, sj},
∫ 2π

0

∫ 2π

0

∑

i,j

{1− 1{Ii,1∩Ij,2=∅}(t, s)}e−itjqe−i(ti−sj)α1[ti−1,ti[(t)1[sj−1,sj [(s)dsdt

=

∫ 2π

0

∫ 2π

0

∑

i,j

e−isjqe−i(ti−sj)α1[ti−1,ti[(t)1[sj−1,sj[(s)1{Ii,1∩Ij,2 6=∅}(t, s)dsdt

≤
∑

i,j

∆ti∆sj1{Ii,1∩Ij,2 6=∅} ≤ sup
i
(∆ti) sup

j
(∆sj)

∑

i,j

1{Ii,1∩Ij,2 6=∅}

=
C

n1n2

♯{ti ∪ sj , 0 ≤ ti, sj ≤ 2π} = O(
1

n1 ∧ n2

),

where the penultimate equality is using Assumption 2.1 ♯{ti ∪ sj , 0 ≤ ti, sj ≤ 2π}
means the number of union of points for two discretization grid {ti, sj} on the interval

[0, 2π]. Its order is bounded by O(n1 ∨ n2).
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Lemma 3. Define a off-diagonal step function weighted by kernel by

fn(t, s; q) =
∑

i 6=j
e−itjqkH(ti − tj)1[ti−1,ti[(t)1[tj−1,tj [(s) (2.33)

gn(t, s; q) =
∑

i,j

e−itjqkH(ti − tj)1[ti−1,ti[(t)1[tj−1,tj [(s) ,

where discretization points {ti} satisfy Assumption 2. Let kH(ti − tj) = k
(

(ti−tj)/∆t
H

)

where k (·) is a lag window Assumption 3. Then

n

H

∫ 2π

0

∫ 2π

0

{
f 2
n(t, s; q) + fn(t, s; q)fn(s, t; q)

}
d[P, P ](t)d[P, P ](s) (2.34)

→ 2‖k2‖
∫ 2π

0

e−i2tq([P, P ]′(t))2dQ11(t),

where Q11(t) is defined in Assumption 2.

Proof. First note that for any function d(·, ·), it holds that
∑n

i,j=1 d(i, j) =
∑n−1

h=0

∑n−h
j=1 d(j, j+h)+

∑n−1
h=1

∑n
j=1+h d(j, j−h), which we will denote by

∑n
i,j=1 d(i, j) =∑n−1

h=0

∑n−h
j=1 d(j, j + h)[2]. By Lemma 1, we can replace fn by gn with error O(n−1)̇.

Then (2.34) is approximated by

n

H

∫ 2π

0

∫ 2π

0

{
g2n(t, s; q) + gn(t, s; q)gn(s, t; q)

}
d[P, P ](t)d[P, P ](s)

=
n

H

n−1∑

h=0

n−h∑

j=1

(e−itj2q + e−itjqe−itj+hq)k2H(tj+h − tj)

× [P, P ]′(tj+h)[P, P ]
′(tj)∆tj+h∆tj [2] +O(

1

nH
) (2.35)

≃ n

H

n−1∑

h=0

k2
(
th/∆t

H

) n−h∑

j=1

(e−itj2q + e−itjqe−itj+hq)

× [P, P ]′(tj+h)[P, P ]
′(tj)∆tj+h∆tj [2] (2.36)

→ 2‖k‖2
∫ 2π

0

e−it2q([P, P ]′)2(t)dQ11(t).

In (2.35) the error is from approximating the integral by the discrete sum. (2.36)
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holds since ti − ti−h ≃ th under Assumption 2. The last convergence holds from

the fact that n
H

∑n−1
h=0 k

2
(
h
H

) ∑n−h
j=1 ∆tj+h∆tj [2] and

n
H

∑
|h|<n k

2
(
h
H

) ∑n
j=1∆tj∆tj

approaches the same limit due to presence of the kernel weights and the convergence

of the Riemann approximation of an integral
∫∞
−∞ k2(x)dx.

Lemma 4. Define a off-diagonal step function weighted by kernel by

fn(t, s; q) =
∑

i,j

e−isjqkH(ti − sj)1[ti−1,ti[(t)1[sj−1,sj [(s)1{Ii,1∩Ij,2=∅}(t, s) (2.37)

gn(t, s; q) =
∑

i,j

e−isjqkH(ti − sj)1[ti−1,ti[(t)1[sj−1,sj [(s),

where discretization points {ti, sj} satisfy Assumption 2. Let kH(ti − sj) = k
(

(ti−sj)/∆̃t
H

)

where k (·) is a lag window Assumption 3. Then

n1 ∧ n2

H

∫ 2π

0

∫ 2π

0

f 2
n(t, s; q)d[P1, P1](t)d[P2, P2](s)

→ ‖k2‖
∫ 2π

0

e−i2tq[P1, P1]
′(t)[P2, P2]

′(t)dQ1122(t) (2.38)

n1 ∧ n2

H

∫ 2π

0

∫ 2π

0

fn(t, s; q)fn(s, t; q)d[P1, P2](t)d[P2, P1](s)

→ ‖k‖2
∫ 2π

0

e−i2tq([P1, P2]
′)2(t)dQ1212(t). (2.39)

In general define a step function by

fn(t, s; q, a, b) =
∑

i,j

e−itj,bqkH(ti,a − tj,b)1[ti−1,a,ti,a[(t)1[tj−1,b,tj,b[(s)1{Ii,a∩Ij,b=∅}(t, s),

(2.40)

then it holds that

na ∧ nb ∧ nc ∧ nd
H

∫ 2π

0

∫ 2π

0

fn(t, s; q, a, b)fn(t, s; q, c, d)d[Pa, Pc](s)d[Pb, Pd](t) (2.41)

→ ‖k‖2
∫ 2π

0

e−i2tq[Pa, Pc]
′(t)[Pb, Pd]

′(t)dQacbd(t),
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where Q·(t) is defined in Assumption 2.

Proof. We first note that

f 2
n(t, s; q) =

∑

i,j

e−i2sjqk2H(ti − sj)1[ti−1,ti[(t)1[sj−1,sj[(s)1{Ii,1∩Ij,2=∅}(t, s).

Then using Lemma 2, it holds that

∫ 2π

0

∫ 2π

0

f 2
n(t, s; q)[P1, P1]

′(t)[P2, P2]
′(s)dtds

=
∑

i,j

e−i2sjqk2H(ti − sj)

∫ ti

ti−1

[P1, P1]
′(t)dt

∫ sj

sj−1

[P2, P2]
′(s)ds+O(

1

n1 ∧ n2
).

Note the following inequality

∑

i,j

∆ti∆sj ≥
∑

i,j

∆ti∆sjk
2
H(ti − sj) (2.42)

≥
∑

i,j

∆ti∆sj1{Ii,1∩Ij,2 6=∅} ≥
∑

i,j

(ti ∧ sj − ti ∨ sj)2,

since the first three quantities are of order O(1), O( H
n1∧n2

) and O( 1
n1∧n2

) respectively

by Assumption 2.1. Recalling that {Tl}1≤l≤NT
are union of time stamps,

∑

i,j

(ti ∧ sj − ti ∨ sj)2 ≤ sup
l
|Tl − Tl−1|

∑

1≤l≤NT

|Tl − Tl−1| = O(
1

n1 ∨ n2

).

Then it holds that

n1 ∧ n2

H

∑

i,j

e−i2sjqk2H(ti − sj)

∫ ti

ti−1

d[P1, P1](t)

∫ sj

sj−1

d[P2, P2](s)

≃n1 ∧ n2

H

∑

i,j

e−i2sjqk2H(ti − sj)[P1, P1]
′(ti)[P2, P2]

′(sj)∆ti∆sj,

where error is in approximating a continuous integral by discrete sum. Given (2.42),
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the above has the same order of magnitude as

‖k‖2(n1 ∧ n2)
∑

i,j

e−i2sjq[P1, P1]
′(ti)[P2, P2]

′(sj)∆ti∆sj1{Ii,1∩Ij,2 6=∅}

→‖k‖2
∫ 2π

0

e−i2tq[P1, P1]
′(t)[P2, P2]

′(t)dQ1122(t),

by the Riemann approximation of a continuous integral under Assumption 2.2. We

now turn to expression (2.39). By Lemma 2, we may replace the function fn(t, s; q)

by gn(t, s; q). Then the cross product term simplifies to

gn(t, s; q)gn(s, t; q) =
∑

i,j,k,l

e−isjqe−islqkH(ti − sj)kH(tk − sl)

1[ti−1∨sl−1,ti∧sl[(t)1[tk−1∨sj−1,tk∧sj [(s).

Then (2.39) is given by

n1 ∧ n2

H

∫ 2π

0

∫ 2π

0

fn(t, s; q)fn(s, t; q)d[P1, P2](t)d[P2, P1](s)

≃n1 ∧ n2

H

∑

i,j,k,l

e−isjqe−islqkH(ti − sj)kH(tk − sl)[P1, P2]
′(ti ∧ sl)[P2, P1]

′(tk ∧ sj)

× (ti ∧ sl − ti−1 ∨ sl−1)(tk ∧ sj − tk−1 ∨ sj−1)1{Ii,1∩Il,2 6=∅}1{Ik,1∩Ij,2 6=∅}

≃‖k‖2(n1 ∧ n2)
∑

i,j,l

e−isjqe−islq[P1, P2]
′(ti ∧ sl)[P2, P1]

′(ti ∧ sj)

× (ti ∧ sl − ti−1 ∨ sl−1)(ti ∧ sj − ti−1 ∨ sj−1)1{Ii,1∩Il,2 6=∅}1{Ii,1∩Ij,2 6=∅}

→‖k‖2
∫ 2π

0

e−i2tq([P1, P2]
′)2(t)dQ1212(t).
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The cross product term involving the diagonal step function in (2.41) is given by

gn(t, s; q, a, b)gn(t, s; q, c, d)

=
∑

i,j,k,l

e−itj,bqe−itl,dqkH(ti,a − tj,b)kH(tk,c − tl,d)1[ti−1,a,ti,a[(t)1[tj−1,b,tj,b[(s)1[tk−1,c,tk,c[(t)1[tl−1,d,tl,d[(s)

=
∑

i,j,k,l

e−itj,bqe−itl,dqkH(ti,a − tj,b)kH(tk,c − tl,d)1[ti−1,a∨tk−1,c,ti,a∧tk,c[(t)1[tj−1,b∨tl−1,d,tj,b∧tl,d[(s).

We note following inequality. (2) ≥ (1) ≥ (3) ≥ (4)

(1)
∑

i,j,k,l

kH(ti,a−tj,b)kH(tk,c−tl,d)(ti,a∧tk,c−ti−1,a∨tk−1,c)(tj,b∧tl,d−tj−1,b∨tl−1,d) ≤ (2),

where upper bound (2) is given by

(2)
∑

i,j,k,l

(ti,a∧tk,c−ti−1,a∨tk−1,c)(tj,b∧tl,d−tj−1,b∨tl−1,d)1{Ii,a∩Ik,c 6=∅}1{Ij,b∩Il,d 6=∅} = O(1).

Under Assumption 2.1, the lower bound is given by

(3)
∑

i,j,k,l

(ti,a ∧ tk,c − ti−1,a ∨ tk−1,c)(tj,b ∧ tl,d − tj−1,b ∨ tl−1,d)1{Ii,a∩Ij,b∩Ik,c∩Il,d 6=∅}

≤ C
1

na ∨ nc
1

nb ∨ nd
∑

i,j,k,l

♯1{Ii,a∩Ij,b∩Ik,c∩Il,d 6=∅}

= C
1

na ∨ nc
1

nb ∨ nd
♯{ti,a ∪ tj,b ∪ tk,c ∪ tl,d, 0 ≤ ti,a, tj,b, tk,c, tl,d ≤ 2π}

= O(
na ∨ nb ∨ nc ∨ nd
(na ∨ nc)(nb ∨ nd)

),

which will be order of inverse of second or third largest sample size. (3) is bigger or

equal to (4),

(4)
∑

i,j,k,l

(ti,a ∧ tj,b ∧ tk,c ∧ tl,d − ti−1,a ∨ tj−1,b ∨ tk−1,c ∨ tl−1,d)
21{Ii,a∩Ij,b∩Ik,c∩Il,d 6=∅}

=

NT∑

ℓ=1

(Tℓ − Tℓ−1)
2 ≤ 2π sup

ℓ
|Tℓ − Tℓ−1| = O(

1

na ∨ nb ∨ nc ∨ nd
),
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where union of four time stamps is constructed by

{Tℓ}1≤ℓ≤NT
:= {ti,a ∪ tj,b ∪ tk,c ∪ tl,d, 0 ≤ ti,a, tj,b, tk,c, tl,d ≤ 2π}.

NT is a total number of member points in the union of time stamps. The equality

(3) = (4) holds when time stamps are synchronous. Let Imin{(i,a),(j,b)} denote Ii,a

if na < nb and Ij,b otherwise. Imin{(k,c),(l,d)} is equivalently defined. For simplicity

assume that na < nb < nc < nd, then

∑

i,j,k,l:ti,a,tj,b,tk,c,tl,d<t

(ti,a ∧ tj,b − ti−1,a ∨ tj−1,b)(tk,c ∧ tl,d − tk−1,c ∨ tl−1,d)

× 1{Ii,a∩Ij,b 6=∅}1{Ik,c∩Il,d 6=∅}1{Imin{(i,a),(j,b)}∩Imin{(k,c),(l,d)} 6=∅}

≤ C
1

nb

1

nd

na∑

i=1

nc∑

k=1

♯{tk,c ∈ [ti−1,a, ti,a[}
nb∑

j=1

♯{tj,b ∈ [ti−1,a, ti,a[}
nd∑

l=1

♯{tl,d ∈ [tk−1,c, tk,c[},

which is order of C 1
nb

1
nd
na

nc

na

nb

na

nd

nc
= O( 1

na
) under Assumption 2.3. Then (2.41) is

given by

na ∧ nb ∧ nc ∧ nd
H

∫ 2π

0

∫ 2π

0

fn(t, s; q, a, b)fn(t, s; q, c, d)d[Pa, Pc](s)d[Pb, Pd](t)

≃na ∧ nb ∧ nc ∧ nd
H

∑

i,j,k,l

e−i2tj,bqe−i2tl,dqkH(ti,a − tj,b)kH(tk,c − tl,d)

× [Pa, Pc]
′(ti,a ∧ tk,c)[Pb, Pd]′(tj,b ∧ tl,d)

× (ti,a ∧ tk,c − ti−1,a ∨ tk−1,c)(tj,b ∧ tl,d − tj−1,b ∨ tl−1,d)

× 1{Ii,a∩Ik,c 6=∅}1{Ij,b∩Il,d 6=∅}1{Imin{(i,a),(k,c)}∩Imin{(j,b),(l,d)} 6=∅}

≃‖k‖2(na ∧ nb ∧ nc ∧ nd)
∑

i,j,k,l

e−i2tj,bqe−i2tl,dq[Pa, Pc]
′(ti,a ∧ tk,c)[Pb, Pd]′(tj,b ∧ tl,d)

× (ti,a ∧ tk,c − ti−1,a ∨ tk−1,c)(tj,b ∧ tl,d − tj−1,b ∨ tl−1,d)

× 1{Ii,a∩Ik,c 6=∅}1{Ij,b∩Il,d 6=∅}1{Imin{(i,a),(k,c)}∩Imin{(j,b),(l,d)} 6=∅}

→‖k‖2
∫ 2π

0

e−i2tq[Pa, Pc]
′(t)[Pb, Pd]

′(t)dQacbd(t),

78



where Qacbd(t) is limit of

Q(n)
abcd(t) = (na ∧ nb ∧ nc ∧ nd)×∑

i,j,k,l:ti,a,tj,b,tk,c,tl,d<t

(ti,a ∧ tj,b − ti−1,a ∨ tj−1,b)(tk,c ∧ tl,d − tk−1,c ∨ tl−1,d) (2.43)

× 1{Ii,a∩Ij,b 6=∅}1{Ik,c∩Il,d 6=∅}1{Imin{(i,a),(j,b)}∩Imin{(k,c),(l,d)} 6=∅}.

We make a concrete example here to show an asymptotic variance. Consider when

time stamps are synchronous but sample sizes are unbalanced. For simplicity we let

volatility to be constant. The time stamps are nested and equally spaced over the

fixed interval [0, T ] with T = 2π and let nd > nc > nb > na. This is example of time

stamps satisfying Assumption 2. The discretization points can be expressed as

ti,a =
T

na
i, i = 0, . . . , na; tj,b =

T

nb
j, j = 0, . . . , nb,

and so on. We can express the time stamp of more liquid asset{tj,b} in terms of less

liquid asset by

t[ nb
na

](j−1)+u =
T (j − 1)

na
+
Tu

nb
; j = 1, . . . , na, u = 0, . . . ,

nb
na

− 1.

Likewise, we may express the time stamp of most liquid asset by

tℓ,d = T (
(ℓ− 1)

na
+
β

nb
+
λ

nc
+

γ

nd
);ℓ = 1, . . . , na, β = 0, . . . ,

nb
na

− 1,

λ = 0, . . . ,
nc
nb

− 1, γ = 0, . . . ,
nd
nc

− 1.

The quantities associated with the quadratic covariation of time is given by

Q(n)
abcd(T ) =na

na∑

i,j,k,l=1

nb
na

−1∑

u,β,τ=0

nc
nb

−1∑

α,λ=0

nd
nc

−1∑

γ=0

T 4 1

nbnd
1{i=j=k=l}1{β=τ}1{α=λ}

= T 4 1

nbnd
n2
a

(
nb
na

)2
nc
nb

nd
nc

= O(1).
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Also note that by Taylor expansion,

k2
( n2

n1
h− u

H

)
= k2

( n2

n1
h

H

)
+
u

H
2k

( n2

n1
h

H

)
k′
( n2

n1
h

H

)
+O(H−2).

Then (2.41) is given by

∑

i,j,k,l

kH(ti,a − tj,b)kH(tk,c − tl,d)(ti,a ∧ tk,c − ti−1,a ∨ tk−1,c)(tj,b ∧ tl,d − tj−1,b ∨ tl−1,d)

=

na∑

i,j,k,l=1

nb
na

−1∑

u,β=0

nc
na

−1∑

α=0

nd
nb

−1∑

γ=0

k

( nb

na
(i− j + 1)− u

H

)
k

(
nd

na
(k − l)− nd

nb
β + nd

nc
α− γ

H

)

× T

na ∨ nc
1{i=k}

T

nb ∨ nd
1{j=l,u=β}

=
T 2

(na ∨ nc)(nb ∨ nd)

na∑

i,j=1

nb
na

−1∑

u=0

nc
na

−1∑

α=0

nd
nb

−1∑

γ=0

k

( nb

na
(i− j + 1)− u

H

)
k

(
nd

na
(i− j)− nd

nb
u+ nd

nc
α− γ

H

)

≃ T 2

(na ∨ nc)(nb ∨ nd)
∑

|h|<na

(na − |h|)

nb
na

−1∑

u=0

nc
na

−1∑

α=0

nd
nb

−1∑

γ=0

k

( nb

na
|h| − u

H

)
k

(
nd

na
|h| − nd

nb
u+ nd

nc
α− γ

H

)

≃T 2 na ∧ nb ∧ nc ∧ nd
(na ∨ nc)(nb ∨ nd)

∑

|h|<na

nb
na

−1∑

u=0

nc
na

−1∑

α=0

nd
nb

−1∑

γ=0

{
k

( nb

na
|h|
H

)
− u

H
k′
( nb

na
|h|
H

)}
(2.44)

×
{
k(

nd

na
|h|
H

) +
1

H
(−nd

nb
u+

nd
nc
α− γ)k′

( nd

na
|h|
H

)}
+O(H−2).

Lets look at the cross product terms in (2.44). The first of cross product terms is

given by,

T 2 na
ncnd

∑

|h|<na

nb
na

−1∑

u=0

nc
na

−1∑

α=0

nd
nb

−1∑

γ=0

k

( nb

na
|h|
H

)
k

( nd

na
|h|
H

)

= T 2 na
ncnd

nb
na

nc
na

nd
nb

∑

|h|<na

k

( nb

na
|h|
H

)
k

( nd

na
|h|
H

)
= O(

H

na
),

where the last approximation holds when nb

Hna
= o(1) and nd

Hna
= o(1), which is
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satisfied under Assumption 4. The remainder term is given by

T 2 na
ncnd

∑

|h|<na−1

nb
na

−1∑

u=0

nc
na

−1∑

α=0

nd
nb

−1∑

γ=0

{
− u

H
k′
( nb

na
|h|
H

)}{
1

H
(−nd

nb
u+

nd
nc
α− γ)k′

( nd

na
|h|
H

)}

= T 2 na
ncnd

1

H

nb
na

−1∑

u=0

nc
na

−1∑

α=0

nd
nb

−1∑

γ=0

u(
nd
nb
u− nd

nc
α + γ)





1

H

∑

|h|<na−1

k′
( nb

na
|h|
H

)
k′
( nd

na
|h|
H

)


≃ T 2 na
ncnd

1

H

nb
na

−1∑

u=0

u(
nd
nb
u− nd

nc

nc
na

−1∑

α=0

α+

nd
nb

−1∑

γ=0

γ)||k′||2

= O(
nb
Hn2

a

+
nd

Hncnb
).

Since the kernel function is symmetric, other cross terms in (2.44) are zero. Then

(2.41) is given by

∑

i,,‘j,k,l

kH(ti,a − tj,b)kH(tk,c − tl,d)(ti,a ∧ tk,c − ti−1,a ∨ tk−1,c)(tj,b ∧ tl,d − tj−1,b ∨ tl−1,d)

= O(
H

na
) +O(

nb
Hn2

a

+
nd

Hncnb
).

When sample size is balanced, then above simplifies to O(H
n
)+O( 1

Hn
). The first term

is of leading order under Assumption 4.

Lemma 5. Let P (t) defined on probability space (Σ,F ,Ft≥0,P) satisfying the As-

sumption 1 and let sub-σ-field of F by G = σ(P ). The Z is a standard normal vari-

able on the suitable extension of probability space and V is a G-measurable stochastic

variance. Then it holds that for fn(·) given in Lemma 2,

√
n

H

∫ 2π

0

∫ 2π

0

fn(t, s; q)dP1(s)dP2(t) =⇒
√
VZ.

where convergence is G-stably in law.

Proof. Stable convergence is notion of joint convergence and stronger than the
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convergence in law. See Aldous and Eagleson (1978) Proposition 1 for the definition

of a stable convergence. Let the discretized filtration by Fi, i = maxj{tj ≤ t}. For

the discretized sequence

χni =

√
n

H
∆P1(ti)

∑

j:sj<ti

∆P2(sj)kH(ti − sj)e
−isjq,

which is adopted to Fi ,we show the stable convergence of Zn
t :=

∑
maxi{ti≤t} χ

n
i to

Zt =
∫ t
0
vsdWs, a Ft-conditional Gaussian martingale. Under the following conditions:

(1)
∑

i

E(|χni |2|Fi−1) →p [Z,Z]t; (2)
∑

i

E(|χi|21{|χn
i |>ǫ}|Fi−1) →p 0 ∀ǫ,

we have Zn =⇒ Z stably. See the proof for Theorem 3.2 in Jacod (1997). The

sufficient condition for the conditional Lindberg condition in (2) is the Liapanov

condition
∑

iE(|χni |
2+ε|Fi−1) →p 0,for ε > 0. We will show for ε = 2 in the proofs

for Theorem 1 and Theorem 2.

2.8.3 Proof of Theorem 1

We first prove for the diagonal element. Consider the first element of the centered

estimator

E =
∑

|α|≤m/2
KH(λα)Fn(P1)(α)Fn(P1)(q − α)−F(Σ11)(q).

We drop the subscript denoting asset for now. We can decompose the centered

estimator into two terms

E =M1 +M2,

M1 =
n∑

i=1

∆P 2(ti)e
−itiq−

∫ 2π

0

e−iqtd[P, P ](t) ; M2 =
∑

i 6=j
∆P (ti)∆P (tj)kH(ti−tj)e−itjq.
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We will show that
√

n
H
M1 = op(1) and

√
n
H
M2 stably converges to a zero mean

Gaussian variable. By Itô’s formula

∆P 2(ti) = P 2(ti)− P 2(ti−1)− 2P (ti−1){P (ti)− P (ti−1)}

= 2

∫ ti

ti−1

{P (t)− P (ti−1)}dP (t) +
∫ ti

ti−1

d[P, P ](t).

Then M1 can be further decomposed into a martingale M11 and a predictable finite

variation component A :

M11 = 2

n∑

i=0

∫ ti

ti−1

{P (t)− P (ti−1)}e−iktidP (t) = Op(n
−1/2)

A =
n∑

i=1

∫ ti

ti−1

(e−itk − e−itik)d[P, P ](t) = O(n−1).

This is the Euler approximation error and its distribution is given by the Theorem

5.5 of Jacod and Protter (1998). Therefore,
√

n
H
M1 = op(1). The expectation of

M2 is zero. Given the step function gn(t, s; q) on [0, 2π]2 defined in (2.33), it can be

expressed as

M2 =

∫ 2π

0

∫ 2π

0

fn(t, s; q)dP (s)dP (t),

where double integration is Wiener-Itô sense. Then by Lemma 1,

E[M2,M2] = 2E

∫ 2π

0

∫ 2π

0

f 2
n(t, s; q)d[P, P ](s)d[P, P ](t).

This is equal to (2.34) in Lemma 3. To verify the condition (2) in Lemma 5, let

χni = {
∑

j<i

√
n

H
∆P (ti)∆P (tj)kH(ti − tj)

(
e−itjq + e−itiq

)
}.
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Then, E|χni |4 for i = n is bounded by 24×

(
n

H
)2E{

n∑

h=1

∆P (ti)∆P (ti−h)k

(
th

∆tH

)
}4 (2.45)

= (
n

H
)2

n∑

h=1

E{∆P 4(ti)}E{∆P 4(ti−h)}k4
(

th

∆tH

)

+ 6(
n

H
)2

n∑

h,l=1

E{∆P 4(ti)}E{∆P 2(ti−h)}E{∆P 2(ti−l)}k2
(

th

∆tH

)
k2
(

tl

∆tH

)
.

The fourth moment of the return is given by

E∆P 4(ti) = E

(
2

∫ ti

ti−1

{P (t)− P (ti−1)}dP (t) + d[P, P ](t)

)2

= 4E

(∫ ti

ti−1

{P (t)− P (ti−1)}dP (t)
)2

+ E

(∫ ti

ti−1

d[P, P ](t)

)2

= 2E

∫ ti

ti−1

∫ t

ti−1

d[P, P ](s)d[P, P ](t) + E

(∫ ti

ti−1

d[P, P ](t)

)2

= 3E

(∫ ti

ti−1

d[P, P ]t

)2

.

Denote [P, P ]′(t)dt = d[P, P ](t). In univariate case this simplifies to [P, P ]′(t) = σ2(t).

Then (2.45) equals to

9(
n

H
)2

n∑

h=1

E

(∫ ti

ti−1

[P, P ]′(t)dt

)2
(∫ ti−h

ti−h−1

[P, P ]′(t)dt

)2

k4
(

th

∆tH

)

+ 18(
n

H
)2

n∑

h,l=1

E

(∫ ti

ti−1

[P, P ]′(t)dt

)2

×
∫ ti−h

ti−h−1

[P, P ]′(t)dt

∫ ti−l

ti−l−1

[P, P ]′(t)dtk2
(

th

∆tH

)
k2
(

tl

∆tH

)
,
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which is bounded by

sup
t

([P, P ]′(t))4{9( n
H
)2

n∑

h=1

∆ti
2∆ti−h

2k4
(

th

∆tH

)

+ 18(
n

H
)2

n∑

h,l=1

∆ti
2∆ti−h∆ti−lk

2

(
th

∆tH

)
k2
(

tl

∆tH

)
}

≤ 9n2H−1 sup
t

([P, P ]′(t))4 supi(∆ti
4)

× { 1

H

n∑

h=1

k4
(

th

∆tH

)
+

2

H

n∑

h,l=1

k2
(

th

∆tH

)
k2
(

tl

∆tH

)
}

= n−2H−1C1

∫ ∞

0

k4(x)dx+ n−2C2(

∫ ∞

0

k2(x)dx)2 = O(n−2).

The pen-ultimate equality is using Assumption 2.1. Therefore the condition (2) in

Lemma 5 is satisfied.

We now give a result for the off-diagonal element of the estimator. When time

stamps are synchronous and sample sizes are balanced, the proof is same as the

univariate case. We will give a proof for the most general case, when time stamps are

asynchronous and sample sizes are unbalanced. We first show for the bivariate case

and will extend the result to general d×d dimension. Denote the transaction time of

the first asset ti,1 = ti and the second asset tj,2 = sj. The centered estimator in (2.9)

is given by

E =
∑

α

KH(λα)Fn(P1)(α)Fn(P2)(q − α)− F(Σ12)(q).

It can be decomposed into E =M1 +M2,

M1 =
∑

i,j

e−isjqkH(ti − sj)∆P1(ti)∆P2(sj)1{Ii,1∩Ij,2 6=∅} −
∫ 2π

0

e−iqtd[P1, P2](t),

M2 =
∑

i,j

e−isjqkH(ti − sj)∆P1(ti)∆P2(sj)1{Ii,1∩Ij,2=∅}.

We prove the following proposition.
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Proposition 1 Suppose Assumptions 1-4 hold. Define B12 a bias and V12 vari-

ance of F̂(Σ12)(q). Then,

B12 =

(
n1 ∨ n2

(n1 ∧ n2)H

)2
1

2
A2 |k′′(0)|

∫ 2π

0

e−itqd |[P1, P2]| (t)

V12 =
H

n1 ∧ n2

‖k‖2
∫ 2π

0

e−i2tq{[P1, P1]
′(t)[P2, P2]

′(t)dQ1122(t) + ([P1, P2]
′)2(t)dQ1212(t)},

where A is defined in Theorem 1.

Let uij = ti ∧ sj and lij = ti−1 ∨ sj−1. Then,

E(M1) = E(
∑

i,j

e−isjq
∫ ui,j

li,j

dP1(t)

∫ ui,j

li,j

dP2(s)1{Ii,1∩Ij,2 6=∅} −
∫ 2π

0

e−iqtd[P1, P2](t))

− E(
∑

i,j

e−isjq
∫ ui,j

li,j

dP1(t)

∫ ui,j

li,j

dP2(s){1− kH(ti − sj)}1{Ii,1∩Ij,2 6=∅}).

By multivariate Itô’s calculus,

{P1(uij)− P1(lij)}{P2(uij)− P2(lij)}

=

∫ uij

lij

{P1(t)− P1(lij)}dP2(t) + {P2(t)− P2(lij)}dP1(t) + d[P1, P2](t).

Conditionally on 1{Ii,1∩Ij,2 6=∅}, E(M1) is given by the expectation of following terms

∑

i,j

e−isjq
∫ ui,j

li,j

{P1(t)− P1(li,j)}dP2(t) + e−isjq
∫ ui,j

li,j

{P2(t)− P2(li,j)}dP1(t) (2.46)

+
∑

i,j

∫ ui,j

li,j

(e−isjq − e−itq)d[P1, P2](t) (2.47)

−
∑

i,j

e−isjq
∫ ui,j

li,j

dP1(t)

∫ ui,j

li,j

dP2(s){1− kH(ti − sj)}. (2.48)

Recalling the definition of the union of time stamps in Assumption 2, the order of
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magnitude of the first term in (2.46) is given by

∑

1≤i≤n1,1≤j≤n2

e−isjq
∫ ui,j

li,j

{P1(t)− P1(li,j)}dP2(t)

=

NT∑

l=1

∫ Tl

Tl−1

{P1(t)− P1(Tl−1)}dP2(t)−
∑

i,j

(1− e−isjq)

∫ ui,j

li,j

{P1(t)− P1(li,j)}dP2(t)

= Op(N
−1/2
T ) +Op(n

−1
2 N

−1/2
T ).

The order of the magnitude for the second term in (2.46) is derived in a similar way.

The change of discretization points to the union of the time points are without error

and holds analytically. In (2.47), we are discretizing the deterministic function e−itq

over the time stamp of sj. Therefore we can express (2.47)

∑

i,j

∫ ui,j

li,j

(e−isjq − e−itq)d[P1, P2](t) =
∑

1≤j≤n2

∫ sj

sj−1

(e−isjq − e−itq)d[P1, P2](t) = O(n−1
2 ).

This term is zero for an integrated (co)variance estimator, q = 0. For (2.48), observe

that

∣∣1− kH(ti − sj)1{Ii,1∩Ij,2 6=∅}
∣∣ =

∣∣∣∣∣k(0)− k

(
(ti − sj)/∆̃t

H

)
1{Ii,1∩Ij,2 6=∅}

∣∣∣∣∣

≃1

2
|k′′(0)|

(
(ti − sj)/∆̃t

H

)2

1{Ii,1∩Ij,2 6=∅}

≤1

2
|k′′(0)|

{
n1 ∧ n2

2π
sup
i,j

|ti − sj |1{Ii,1∩Ij,2 6=∅}

}2(
n1 ∨ n2

(n1 ∧ n2)H

)2

=
1

2
|k′′(0)| A2

(
n1 ∨ n2

(n1 ∧ n2)H

)2

.

by Assumption 2.3. By Assumption 3, k′(0) = 0. The explicit asymptotic bias term
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conditional on the volatility path is given by

E
∑

i,j

e−isjq
∫ ui,j

li,j

dP1(t)

∫ ui,j

li,j

dP2(s){1− kH(ti − sj)}1{Ii,1∩Ij,2 6=∅}

≃
∑

i,j

e−isjq
∫ ui,j

li,j

d[P1, P2](t){−
k′′(0)

2

(
(ti − sj)

∆̃tH

)2

}1{Ii,1∩Ij,2 6=∅}

≤
(

n1 ∨ n2

(n1 ∧ n2)H

)2{
n1 ∧ n2

2π
sup
i,j

|ti − sj |1{Ii,1∩Ij,2 6=∅}

}2 |k′′(0)|
2

∑

i,j

e−isjq
∫ ui,j

li,j

d |[P1, P2]| (t)

=

(
n1 ∨ n2

(n1 ∧ n2)H

)2

A2 |k′′(0)|
2

∫ 2π

0

e−itqd |[P1, P2]| (t),

since

lim
n→∞

∑

{i,j;ui,j>li,j}
e−isjq

∫ ui,j

li,j

d[P1, P2](t) =

∫ 2π

0

e−itqd[P1, P2](t).

Then the order of the stochastic biasM1 is given by Op(N
−1/2
T )+Op(n

−1
2 )+Op({ n1∨n2

(n1∧n2)H
}2)

for estimator at non-zero frequency and Op(N
−1/2
T ) + Op({ n1∨n2

(n1∧n2)H
}2) for integrated

(co)variance estimator. In both cases, the leading order term for the bias is the last

term under the optimal bandwidth. We next analyze M2 which can be expressed as

M2 =

∫ 2π

0

∫

s<t

fn(t, s; q)dP2(s)dP1(t) +

∫ 2π

0

∫

s<t

fn(s, t; q)dP1(s)dP2(t),

where fn(t, s; q) is given in (2.37) in Lemma 4. It has a zero expectation and by

Lemma 1, the expectation of quadratic variation is given by

E [M2,M2]

= E{
∫ 2π

0

∫

s<t

f 2
n(t, s; q)d[P2, P2](s)d[P1, P1](t) +

∫ 2π

0

∫

s<t

f 2
n(t, s; q)d[P1, P1](s)d[P2, P2](t)

(2.49)

+2

∫ 2π

0

∫

s<t

fn(t, s; q)fn(s, t; q)d[P2, P1](s)d[P1, P2](t)}. (2.50)

By Lemma 4, above expression multiplied by the rate of convergence is equal to
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(2.38)+(2.39). To complete the proof for the stable convergence, define

χni = {
∑

j:sj<ti

√
n

H
∆P1(ti)∆P2(sj)kH(ti − sj)e

−isjq1{Ii,1∩Ij,2=∅}}.

Then supiE|χni |4 = O((n1 ∧ n2)
−2) which can be proved similarly as the univariate

case. Therefore the condition (2) in Lemma 5 is met. Denote the reference sample

size, n = min(n1, n2) = n1 and let n2 = O(nβ) and H = O(nα). Under Assumption 4,

the estimator is asymptotically unbiased, n1∨n2

n1∧n2

1
H

= o(1) and consistent, H
n1∧n2

= o(1).

By balancing the squared bias and the variance, the optimal bandwidth is given by

H ∝ (n1 ∧ n2)
α∗
, α∗ = 4β−3

5
. Then the convergence rate of the estimator under the

optimal bandwidth is given by (n1 ∧ n2)
ϑ, 0 < ϑ := −2

5
β∗ + 4

5
≤ 2

5
.

To show a convergence of covariation matrix estimator to a multivariate Gaussian

distribution by a Cramer-Wold device, it is sufficient and necessary to show that the

linear combination of the elements of the matrix estimator converges to a univariate

Gaussian random variable. Let denote R(q) := F̂(Σ)(q)− F(Σ)(q) and consider the

linear combination of the element a⊤R(q)b and c⊤R(q)d. Note that

a⊤R(q)cb⊤R(q)d = tr(R(q)ab⊤R(q)dc⊤) = vech(ab⊤)⊤(R(q)⊗R(q))vech(dc⊤).

The expectation of the above expression depends on E{R(q)⊗R(q)}. Each element

of this is given in Lemma 3 and Lemma 4. For example, the covariation between the

integrated covariance estimator for asset a and b with the estimator for asset c and

d,

[
F̂(Σab)(q)− F(Σab)(q), F̂(Σcd)(q)− F(Σcd)(q)

]

=

[ ∑
i,j e

−itj,bqkH(ti,a − tj,b)∆Pa(ti,a)∆Pb(tj,b)1{Ii,a∩Ij,b=∅},∑
k,l e

−itl,dqkH(tk,c − tl,d)∆Pc(tk,c)∆Pd(tl,d)1{Ik,c∩Il,d=∅}

]
.

is given by Lemma 4 (2.41).
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2.8.4 Proof of Theorem 2

We analyze following quantity,

∑

|α|≤m/2
KH(λα)F(dU1)(α)F(dU2)(q − α)

=

n1∑

i=1

n2∑

j=1

∆U1(ti)∆U2(sj)e
−isjq

∑

|α|≤m/2
KH(λα)e

−i(ti−sj)α. (2.51)

Proposition 2. Suppose Assumptions 2-7 holds. Then

E




∑

|α|≤m/2
KH(λα)F(dU1)(α)F(dU2)(q − α)



 ≃ η

n1 ∨ n2

H2
|k′′(0)|Γ12

E





∣∣∣∣∣∣
∑

|α|≤m/2
KH(λα)F(dU1)(α)F(dU2)(q − α)

∣∣∣∣∣∣

2
 = O(

(n1 ∨ n2)
2

n1 ∧ n2
H2µ−3),

for 0 < µ < 1 and η is defined in Theorem 2.

Proof. We first derive the expression for (2.51) in terms of Us not ∆Us, sepa-

rating the end terms and the rest. The end term is defined by either U0 and Un. The

terms not affected by the end points are given by

n1−1∑

i=1

n2−1∑

j=1

U1(ti)U2(sj){−kH(ti+1 − sj)e
−isjα + kH(ti − sj)e

−isjα (2.52)

+ kH(ti+1 − sj+1)e
−isj+1α − kH(ti − sj+1)e

−isj+1α}.

Let denote H := H∆̃t Observe that

− e−isjα {kH(ti+1 − sj)− kH(ti − sj)}+ e−isj+1α{kH(ti+1 − sj+1)− kH(ti − sj+1)}
=− e−isjα{kH(ti − sj +∆ti+1)− kH(ti − sj)}
+e−isj+1α{kH(ti − sj −∆sj+1 +∆ti+1)− kH(ti − sj −∆sj+1)}

≃ − e−isjα∆ti+1∆sj+1
1

H
2k

′′

(
ti − sj

H

)
+ e−isjα(e−i∆sj+1α − 1)∆ti+1

1

H
k

′

(
ti − sj

H

)
.

90



Under the Assumption 2 and 4, we have ∆ti+1∆sj+1
1

H
2 = o(1) and ∆ti+1

1
H

=

O( 1
H
). For equally spaced and balanced sample, the above expression collapses to

−e−isjα 1

H2
k

′′

(
i− j

H
) + e−isjα(e−i∆sj+1α − 1)

1

H
k

′

(
i− j

H
).

Then (2.52) can be simplified into two terms,

1

H
2

n1−1∑

i=1

n2−1∑

j=1

U1(ti)U2(sj)e
−isjαk

′′

(
ti − sj

H
)∆ti+1∆sj+1 (2.53)

+
1

H

n1−1∑

i=1

n2−1∑

j=1

U1(ti)U2(sj)e
−isjα(e−i∆sj+1α − 1)k

′

(
ti − sj

H

)
∆ti+1. (2.54)

We show that (2.53) is a leading order term. The upper bound for expectations of

(2.54) is given by.

1

H
sup
j

∣∣1− e−i∆sj+1α
∣∣ sup

i
(∆ti+1)

∣∣∣∣∣
n1−1∑

i=1

n2−1∑

j=1

E{U1(ti)U2(sj)}k
′

(
ti − sj

H

)∣∣∣∣∣

= C1
n1 ∨ n2

H

1

n1n2

∣∣∣∣∣∣
{

∑

|ti−sj |/∆̃t≤
√
H

+
∑

|ti−sj |/∆̃t>
√
H

}E{U1(ti)U2(sj)}k
′

(
ti − sj

H

)∣∣∣∣∣∣

≤ C1(n1 ∧ n2)
−1H−1{ sup

|ti−sj |/∆̃t≤
√
H

|k′

(
ti − sj

H
)|

∣∣∣∣∣∣
∑

|ti−sj |/∆̃t≤
√
H

γ({ti − sj}/∆̃t)

∣∣∣∣∣∣

+ sup
|ti−sj |/∆̃t>

√
H

|γ({ti − sj}/∆̃t)|

∣∣∣∣∣∣
∑

|ti−sj |/∆̃t>
√
H

k
′

(
ti − sj

H

)∣∣∣∣∣∣
} = o(H−1),

since sup|ti−sj |/∆̃t≤
√
H |k

′
(
ti−sj
H

)| → k′(0) = 0 under the Assumption 2. By Assumption

6,
∑

|ti−sj |/∆̃t≤
√
H γ({ti − sj}/∆̃t) = O(n1 ∧ n2). The last supremum term vanishes

at the exponential rate by Assumption 6. The expectation of squares of (2.54) is
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bounded by

C2(n1 ∧ n2)
−2H−2

{∑

i,j,r,l

EU1(ti)U2(sj)U1(tr)U2(sl)k
′

(
ti − sj

H
)k

′

(
tr − sl

H
)

}
(2.55)

= O((n1 ∧ n2)
−1H2µ−1).

Denote a set S := {i, j, r, l; (ti − tr)/∆t < Hµ, (sj − sl)/∆s < Hµ} where 0 < µ < 1.

Then the terms in the curly bracket in (2.55) is given by

{ ∑

i,j,r,l∈S
+

∑

i,j,r,l∈Sc

}
EU1(ti)U2(sj)U1(tr)U2(sl)k

′(
ti − sj

H
)k′(

tr − sl
H̄

)

≤ sup
i,j,r,l∈S

|EU1(ti)U2(sj)U1(tr)U2(sl)|

∣∣∣∣∣∣
∑

i,j

∑

|h|,|v|<Hµ

k′(
ti − sj

H
)k′(

ti−h − sj−v

H
)

∣∣∣∣∣∣
+C3n

2
1n

2
2 sup
i,j,r,l∈Sc

|EU1(ti)U2(sj)U1(tr)U2(sl)|

= (i) + (ii).

For balanced and equally spaced case, (i) simplifies to

sup
|i−r|<Hµ,|h−v|<Hµ

|EU1(ti)U2(si−h)U1(tr)U2(sr−v)|

×

∣∣∣∣∣∣
∑

|i−r|<Hµ,|h−v|<Hµ

k
′

(
ti − si−h

H

)
k

′

(
tr − sr−v

H

)∣∣∣∣∣∣
. (2.56)

When the sample size is balanced, it holds that ti−si−h

H
≃ h

H
under Assumption 2.
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Then (2.56) is given by

∑

|i−r|<Hµ

∑

|h−v|<Hµ

k
′

(
h

H
)k

′

(
v

H
) = 2Hµn

∑

|h−v|<Hµ

k
′

(
h

H
)k

′

(
v

H
)

= 2Hµn

{ ∑

0≤l<Hµ

n∑

h=1+l

k
′

(
h

H
)k

′

(
h− l

H
) +

∑

0<l<Hµ

n−l∑

h=1

k
′

(
h

H
)k

′

(
h+ l

H
)

}

≤ 4H2µn

n∑

h=1

{k′

(
h

H
)}2.

For unbalanced case, we use the fact that
∑

i,j{k
′
(
ti−sj
H

)
}2 ≃ (n1∧n2)H

∫∞
−∞{k′(x)}2dx

and that the order of #{0 ≤ i, r ≤ n1;
ti−tr
∆t

< Hµ} is same as when the data is equally

spaced under Assumption 2. Then

(i) = ρ(0)4(n1 ∧ n2)H
2µ+1

∫ ∞

−∞
{k′(x)}2dx.

We have (ii) = C3n
2
1n

2
2 sup|τ |>Hµ ρ(τ) which is exponentially vanishing by Assumption

6. The expectation of (2.53) is given by

1

H
2





∑

|ti−sj |/∆̃t≤
√
H

+
∑

|ti−sj |/∆̃t>
√
H



E{U1(ti)U2(sj)}e−isjαk

′′

(
ti − sj

H
)∆ti+1∆sj+1

= (i) + (ii).

(ii) is bounded by

1

H
2 sup

i
(∆ti+1) sup

j
(∆sj+1) sup

|ti−sj |/∆̃t>
√
H

|EU1(ti)U2(sj)|
∑

|ti−sj |/∆̃t>
√
H

|k′′

(
ti − sj

H
)|

≤ C4
n1 ∨ n2

H
sup

|ti−sj |/∆̃t>
√
H

∣∣∣γ(|ti − sj|/∆̃t)
∣∣∣
∫ ∞

−∞
|k′′(x)|dx,

which vanishes at the exponential rate by the Assumption 6.
∫∞
−∞ |k′′(x)|dx is well
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defined by the Assumption 3. Given definition of η in Theorem 2, (i) is bounded by

η
n1 ∨ n2

H2(n1 ∧ n2)

∑

|ti−sj |/∆̃t≤
√
H

E{U1(ti)U2(sj)}k
′′

(
ti − sj

H
)e−isjα

≃ η
n1 ∨ n2

H2(n1 ∧ n2)
|k′′(0)|

∑

|ti−sj |/∆̃t≤
√
H

EU1(ti)U2(sj)e
−isjα ≃ η

n1 ∨ n2

H2
|k′′(0)|Γ12,

by Assumption 6. The order of (2.53) is derived similarly as (2.55). The expectation

of squares of (2.53) is bounded by

C5

(
n1 ∨ n2

H2(n1 ∧ n2)

)2

E

{
n1−1∑

i=1

n2−1∑

j=1

U1(ti)U2(sj)k
′′

(
ti − sj

H
)

}2

≃ C5

(
n1 ∨ n2

H2(n1 ∧ n2)

)2

ρ(0)4(n1 ∧ n2)H
2µ+1

∫ ∞

−∞
{k′′(x)}2dx

= O(
(n1 ∨ n2)

2

n1 ∧ n2

H2µ−3). (2.57)

Then by Markov inequality (2.53)=Op(
n1∨n2

(n1∧n2)1/2
H(2µ−3)/2). With some algebra it can

be shown that under the optimal bandwidth given in Theorem 2, H ∝ n
2β+1

5 , the

square root of (2.57) multiplied by the rate of convergence of the distribution nϑ, ϑ =
2−β
5

is o(1). All other terms that involve the end terms are of smaller order by similar

argument given in Lemma A.4 and Lemma A.5, Barndorff-Nielsen et al. (2011)

Therefore the microstructure noise only contributes to the asymptotic bias. This

results coincides with Lemma A.5 of Barndorff-Nielsen et al. (2011) when data is

synchronous and sample size is balanced.
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2.8.5 Proof of Theorem 3

By the triangular inequality

‖Σ(t)− 1

2π

∑

|q|≤m/2
KH(λq) exp(iqt)F̂(Σ)(q)‖2

≤ ‖Σ(t)− 1

2π

∑

|q|≤m/2
KH(λq) exp(iqt)F(Σ)(q)‖2

+ ‖ 1

2π

∑

|q|≤m/2
KH(λq) exp(iqt){F(Σ)(q)− F̂(Σ)(q)}‖2.

Theorem 2 implies that sup|q|≤m/2‖F̂(Σ)(q)−F(Σ)(q)‖2 →p 0. If we assume the mod-

ulus of continuity of Σ(t) is available and given by (2.26) then there exists sequence

δ(n) → 0 such that

sup
δ(n)≤t≤2π−δ(n)

‖Σ(t)− 1

2π

∑

|q|≤m/2
KH(λq) exp(iqt)F(Σ)(q)‖2 ≤ C( 4

m
).

Remark To shed some light on the result, consider an instantaneous volatility

estimator for asset a. We may use the same amplitude window for smoothing and

Fourier inversion.

Σ̂aa(t) =
1

2π

∑

|q|≤m/2
KH(λq) exp(iqt)

∑

|α|≤m/2
KH(λα)Fn(Pa)(α)Fn(Pa)(q − α)

=
1

2π

∑

i,j

∆Pa(ti)∆Pa(tj)kH(ti − tj)kH(t− tj),
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where kH(t−tj) =
∑

|q|≤m/2KH(λq) exp(−iq(t−tj)). Then conditionally on the volatil-

ity path,

E[Σ̂aa(t)− Σaa(t)] = E
1

2π

n∑

i=1

[2

∫ ti

ti−1

{Pa(t)− Pa(ti−1)}dPa(t)

+

∫ ti

ti−1

Σaa(t)dt]kH(t− ti)− Σaa(t)

≃ 1

2π

∑

i

∆tiΣaa(ti−1)kH(t− ti)− Σaa(t) → 0.

2.8.6 Proof of Theorem 4

The spectral density estimator (2.27) can be expressed as

f̂xx(q) =
1

n

n1∑

i=1

n2∑

j=1

∆X1(ti)∆X2(sj)kH(ti − sj)e
−i(ti−sj)q. (2.58)

The estimator can be decomposed into

f̂xx(q) = f̂uu(q) + f̂pp(q) + f̂up(q) + f̂pu(q) = f̂uu(q) + op(1),

where f̂up(q) denotes the estimator (2.58) applied to ∆U∆P . The leading term of

(2.58) comes from the spectral density estimate of the first differenced noise. This

makes intuitive sense since ∆P = Op(n
−1/2) and ∆U = Op(1) and when the con-

ventional spectral density estimator is applied to these two terms, ∆U will drive the

order of magnitude. We will show that for each q ,

f̂xx(q) →p fuu(q) := lim
n→∞

∑

|h|<n1∨n2

γuu(h)e
−i∆̃thq. (2.59)

We still assume that the spectral density is symmetric We show the results for sim-

plified case when two time stamps are nested. The time stamps of more liquid asset

denoted by sj can be expressed in terms of the time stamps of less liquid asset, ti by

sml−1(l−1)+u = tl−1 + s∗u,l−1; l = 1, . . . , n1, u = 0, . . . , ml−1,
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where ml = #{sj ∈ [tl−1, tl)} and s∗u,l−1 := sml−1(l−1)+u − tl−1 with s∗0,0 = 0. For

example with l = 1, we have {su = s∗u,0; u = 0, . . . , m0}. We mean t−h by −th and

s−j by −sj . Then it holds that under Assumption 2.1 and 2.3,

1

n1 ∧ n2

n1∑

i,l=1

ml−1∑

u=0

γuu({ti − tl−1 − s∗u,l}/∆̃t)k
(
ti − tl−1 − s∗u,l

H

)
cos({ti − tl−1 − s∗u,l}q)

≃ 1

n1 ∧ n2

∑

|h|<n1

m|h|−1∑

u=0

(n1 − |h|)γuu({th+s∗u,|h|}/∆̃t)k
(
th+s

∗
u,|h|

H

)
cos({th+s∗u,|h|}q)

≃
∑

|j|<n2

γuu(sj/∆̃t)k

(
sj

∆̃tH

)
cos(sjq) → fuu(q).

Using similar argument given by Brockwell and Davis (1991), it can be shown that

Ef̂uu(q) − fuu(q) = O(H−2) and var{f̂uu(q) − fuu(q)} = O(H
n
). If we assume that

γuu(h) is continuous in h and the modulus of continuity is given by

C(τ) := sup
|h−s|≤τ

|γuu(h)− γuu(s)|,

then there exists a sequence τ(n) → ∞ such that

sup
|h|≤τ(n)

|γuu(h)−
∑

|q|≤m/2
KH(λq) exp(i∆̃thq)f̂xx(q)| ≤ C( 4

m
).
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Table 2.1: Realized Covariance

Realized Covariance 5 min aligned
BIAS rMSE

Sampling NoiseSignal (1,1) (2,2) (1,2) (1,1) (2,2) (1,2)
Equal 0 (0.01) 0.00 (0.00) 0.17 0.17 0.16

0.001 0.02 0.03 0.01 0.17 0.18 0.16
0.01 0.24 0.26 0.13 0.31 0.34 0.23

(3/2,30) 0 (0.00) 0.01 (0.08) 0.17 0.17 0.17
0.001 0.02 0.03 (0.08) 0.17 0.18 0.17
0.01 0.25 0.26 (0.07) 0.32 0.33 0.18

(3/2,2) 0 (0.00) 0.01 (0.00) 0.17 0.17 0.16
0.001 0.03 0.03 0.01 0.18 0.18 0.16
0.01 0.27 0.26 0.09 0.34 0.35 0.21

(20,30) 0 (0.00) 0.01 (0.07) 0.17 0.17 0.17
0.001 0.02 0.02 (0.07) 0.17 0.17 0.18
0.01 0.24 0.22 (0.04) 0.31 0.30 0.19

Realized Covariance Refresh Time aligned
BIAS rMSE

Sampling NoiseSignal (1,1) (2,2) (1,2) (1,1) (2,2) (1,2)
Equal 0 (0.00) 0.00 (0.00) 0.01 0.01 0.01

0.001 4.52 4.54 2.10 4.52 4.54 2.10
0.01 45.24 45.41 21.07 45.24 45.41 21.07

(3/2,30) 0 0.01 0.01 (0.02) 0.08 0.08 0.08
0.001 0.23 0.23 0.07 0.25 0.24 0.10
0.01 2.24 2.25 0.92 2.25 2.26 0.93

(3/2,2) 0 (0.00) 0.00 (0.17) 0.02 0.02 0.17
0.001 1.78 1.80 0.53 1.78 1.80 0.53
0.01 17.83 17.98 6.77 17.84 17.99 6.78

(20,30) 0 0.01 0.00 (0.27) 0.09 0.07 0.28
0.001 0.16 0.15 (0.24) 0.18 0.17 0.25
0.01 1.55 1.55 0.08 1.56 1.56 0.15
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Table 2.2: 2 dimensional covariation matrix - continuous SV (·/100)
Realized Cov Realized Cov HY Realized Kernel FRK FRK
Refresh Time 5 min Refresh Time average H opt H

NRS (1,1) (1,2) (2,2) (1,1) (1,2) (2,2) (1,2) (1,1) (1,2) (2,2) (1,1) (1,2) (2,2) (1,1) (1,2) (2,2)
Sampling: (3/2,30) Balanced

0 bias 1.0 (1.9) 0.8 (0.1) (7.6) 0.9 1.0 1.0 (1.3) 0.8 0.9 (0.6) 1.4 0.9 (0.6) 1.4
rmse 8.0 7.6 8.1 17.1 17.1 16.8 7.6 8.2 7.5 8.0 20.9 19.6 20.8 20.9 19.6 20.8

0.001 bias 23.2 7.3 22.9 2.2 (7.7) 3.3 10.3 1.6 0.9 1.6 1.0 0.8 1.7 0.9 (0.1) 0.1
rmse 24.7 10.6 24.6 17.2 17.2 17.6 12.9 16.7 15.2 15.4 30.2 28.9 32.3 38.2 35.5 41.2

0.01 bias 225 92.3 225 24.5 (6.6) 25.5 96.4 3.5 2.3 4.0 0.6 (1.2) (1.5) 0.6 (1.2) (1.5)
rmse 226 93.6 226 31.6 17.9 33.0 97.6 25.3 23.7 25.5 43.8 40.1 46.7 43.8 40.1 46.7
Sampling: (3/2,30) Unbalanced

0 bias 0.1 (2.6) 0.5 (0.9) (8.2) 0.9 0.4 0.0 (1.9) 0.6 1.0 (3.1) 1.4 1.1 (0.1) 1.3
rmse 6.7 6.9 7.0 17.4 18.0 17.8 6.6 7.0 7.0 7.3 15.9 14.8 15.9 22.2 21.0 23.1

0.001 bias 23.5 6.6 21.3 1.4 (8.0) 3.8 9.5 2.0 1.8 3.1 1.5 (12.5) 5.0 1.0 (4.2) 2.9
rmse 24.7 9.6 22.6 17.9 18.5 18.7 11.7 15.7 14.6 15.6 10.5 15.5 12.2 15.2 14.4 15.3

0.01 bias 239 92.5 210 23.5 (6.9) 27.3 95.7 2.6 2.3 4.6 1.9 (1.9) 11.6 1.6 0.3 4.9
rmse 240 93.9 211 31.7 20.3 35.2 96.8 24.0 23.3 25.9 18.1 16.7 21.7 23.9 22.9 25.8
Sampling: (20,30) Unbalanced

0 bias 0.1 (27.1) 0.7 0.6 (6.7) 1.3 0.8 0.2 (23.7) 0.7 0.9 (0.4) 1.8 0.9 (0.4) 1.8
rmse 8.3 28.0 8.2 17.2 17.5 17.8 9.3 8.4 24.8 8.2 20.2 19.1 20.9 20.2 19.1 20.9

0.001 bias 16.8 (23.1) 16.2 3.1 (6.1) 3.7 4.9 2.0 0.1 2.8 1.1 0.1 1.9 0.8 0.4 1.5
rmse 19.0 24.4 18.6 18.2 18.0 18.8 11.0 16.3 15.0 16.2 23.3 22.1 24.2 26.9 25.9 28.7

0.01 bias 162 10.4 155 26.1 (1.7) 26.0 41.1 3.8 2.2 4.7 1.7 0.6 1.9 1.0 (0.5) 0.2
rmse 164 16.5 156 34.0 20.4 34.3 43.6 24.3 23.4 26.7 32.2 30.8 34.5 35.8 34.1 39.4
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Table 2.3: 2 dimensional covariation matrix - jump diffusion SV (·/100)
Realized Cov Realized Cov HY Realized Kernel FRK FRK
Refresh Time 5 min Refresh Time average H opt H

NRS (1,1) (1,2) (2,2) (1,1) (1,2) (2,2) (1,2) (1,1) (1,2) (2,2) (1,1) (1,2) (2,2) (1,1) (1,2) (2,2)
Sampling: (3/2,30) Balanced

0 bias (0.3) (2.0) (18.7) (2.2) (6.0) (20.4) (0.3) (0.2) (1.5) (18.6) (0.1) (0.7) (18.8) (0.1) (0.7) (18.8)
rmse 6.7 18.1 20.3 17.2 21.9 25.4 18.6 7.1 18.3 20.3 18.0 23.4 24.6 18.0 23.4 24.6

0.001 bias 23.3 8.2 4.9 0.5 (5.6) (17.2) 9.8 1.5 1.3 (16.9) 0.0 0.1 (19.3) 0.0 0.1 (19.3)
rmse 24.7 19.8 9.9 16.8 22.0 23.0 21.1 13.4 22.0 21.8 29.1 29.2 31.9 29.1 29.2 31.9

0.01 bias 233 96.7 211 24.2 (3.6) 7.0 98.8 2.6 2.1 (15.8) 1.4 1.3 (18.0) 10.2 (0.7) (10.0)
rmse 234 99.6 212 30.8 22.6 19.9 101.8 19.8 24.5 25.3 42.6 38.9 42.8 17.2 21.2 17.1
Sampling: (3/2,30) Unbalanced

0 bias (0.3) (1.9) (18.8) (1.6) (6.6) (21.2) (0.1) (0.2) (1.6) (18.8) 0.2 (2.5) (19.1) 0.0 (0.5) (18.9)
rmse 7.1 17.7 20.4 16.9 22.0 26.1 18.2 7.1 17.9 20.5 13.7 21.1 23.0 20.1 24.4 25.3

0.001 bias 24.0 8.0 2.6 0.8 (6.6) (19.0) 10.0 0.7 0.5 (17.5) 1.5 (8.3) (14.6) 0.7 (3.2) (17.5)
rmse 25.5 19.7 9.3 17.6 22.4 24.7 21.1 14.0 20.7 21.5 9.2 19.1 18.0 12.8 20.5 21.6

0.01 bias 243 94.1 192 23.1 (6.1) 3.4 97.8 1.4 1.0 (15.7) 1.8 (1.6) (8.6) 3.8 (3.3) 2.6
rmse 244 97.1 193 32.1 24.2 20.8 100.7 22.1 24.7 23.8 15.2 21.6 17.3 12.6 19.6 14.8
Sampling: (20,30) Unbalanced

0 bias (0.1) (16.7) (18.0) (1.4) (5.4) (20.1) (0.0) 0.1 (14.7) (18.0) (0.0) (0.9) (18.9) (0.2) (0.1) (18.9)
rmse 6.8 21.5 19.5 16.8 21.7 26.3 19.2 6.8 20.4 19.6 17.6 23.3 24.2 24.2 27.0 28.3

0.001 bias 15.3 (13.2) (2.7) 1.4 (4.7) (17.6) 3.7 1.6 (0.4) (17.9) 0.1 (0.4) (18.5) 0.1 (0.0) (18.8)
rmse 17.1 19.1 8.9 17.1 21.6 24.7 19.6 14.5 21.2 21.7 19.7 24.5 25.1 23.9 26.7 28.0

0.01 bias 159 20.6 136 24.9 0.1 4.9 40.1 3.0 1.2 (15.9) 0.8 0.9 (17.8) 6.2 0.7 (10.5)
rmse 160 26.8 137 32.2 22.3 20.9 45.5 22.7 25.8 24.1 30.2 30.6 32.6 17.9 22.6 17.7
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Table 2.4: Scalar function of 10 dimensional covariation matrix
max (eigenvalue) portfolio

Noise to Signal Ratio=0 Bias rMSE Bias rMSE
RV refresh (2.34) 2.75 1.76 2.74
RV fixed (0.85) 3.18 0.14 4.09

Realized Kernel (2.21) 2.65 1.66 2.67
Fourier RK (1.18) 2.17 0.26 2.51

Noise to Signal Ratio=0.001
RV refresh 7.22 7.50 27.20 27.47
RV fixed 0.40 3.28 4.14 6.31

Realized Kernel 0.38 3.00 1.67 4.16
Fourier RK minH (0.28) 1.95 3.88 4.87

avgH (0.47) 2.64 0.73 3.67
maxH (0.52) 3.13 (0.20) 3.99

Noise to Signal Ratio=0.01
RV refresh 127.24 127.81 256.02 257.05
RV fixed 15.42 16.54 40.37 41.99

Realized Kernel 1.29 4.82 3.23 6.86
Fourier RK minH 1.22 3.27 6.88 8.55

avgH 0.13 4.02 1.76 5.58
maxH (0.03) 4.92 0.67 5.96
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Figure 2.7: Simulation Result : Balanced, Sampled at {3/2, 30}
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Figure 2.8: Simulation Result : Unbalanced, Sampled at {3/2, 30}
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Figure 2.9: Simulation Result : Unbalanced, Sampled at {20, 30}
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Figure 2.10: Simulation Result : Unbalanced, Sampled at {3/2, 2}
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Figure 2.11: Covariation matrix estimates : element (1, 1) to (2, 5)
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Figure 2.12: Covariation matrix estimates : element (3, 3) to (5, 5)
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Chapter 3

Deformation Estimation for High

Frequency Data

3.1 Introduction

We propose to model high frequency price series by a time-deformed Lévy process.

The deformation function is modeled by a piecewise linear function of a physical time

with a slope depending on the marks associated with intra-day transaction data. The

performance of a quasi-MLE and an estimator based on a permutation-like statistic

is examined in extensive simulations. We also consider estimating the deformation

function nonparametrically by pulling together many time series. We show that

financial returns spaced by equal elapse of estimated deformed time is homogeneous.

The proposed model better recovers the homogeneity than the Realized Variance. We

propose an order execution strategy using the fitted deformation time.

3.2 Stylized features of high frequency prices

We first carry out a descriptive analysis of high frequency returns. See Section 2 of

Park and Linton (2011) for more detailed description of high frequency data. We ana-

lyze the transaction price of NYSE traded J P Morgan stock from the TAQ database.

Table 3.1 reports the result. The distribution of returns over a shorter horizon, for
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Table 3.1: Sample moments of high frequency returns
Freq µ̂ σ̂ Skew Kurtosis min max size
tick -1.0E-07 2.4E-08 -0.14 21 -0.005 0.003 151844
1 sec -3.3E-08 8.0E-09 -0.25 66 -0.005 0.003 467276
30 sec -1.1E-06 1.9E-07 0.06 10 -0.005 0.005 15565
10 min -1.2E-07 3.8E-06 0.23 4 -0.006 0.008 760
30 min 2.8E-05 1.3E-05 0.44 6 -0.012 0.015 240

example every transaction returns deviates more from the Gaussian distribution. The

fat tailed distribution can be contributed to time varying conditional variance and

presence of jumps. The Figure 3.1 shows the daily volatility curve proxied by the

squared high frequency returns. It shows a daily repetition of U-shaped pattern. The

intra-day activity variables such as number of transactions, trade volume and trade

duration also show a similar (inverted) U-shaped pattern. We will term “transac-

tion marks” for such intra-day activity variables. These are candidate variables for

modeling a financial clock and their daily cumulative sum is plotted in Figure 3.2.

Both Figure 3.1 and Figure 3.2 show that the time series pattern of transaction marks

repeats itself on a daily interval. They are highly persistent (Figure 3.3) and cross-

correlated (Figure 3.4). Such empirical observation suggests that we may model the

financial clock by pulling transaction marks over many days rather than solely using

noisy squared returns and model the daily curve separately.

3.3 Methodology

3.3.1 Models

Let X(t) be a log price process defined as

X(t) = Y {h(t)}, t ∈ [0, T ], (3.1)

where h(·) is an unknown monotonically increasing function, T > 0 is a constant,

and the latent process Y (·) is defined by a stochastic differential equation driven by
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a Lévy process

dY (t) = µ(t)dt+ dZ(t), (3.2)

where Z(t) is a Lévy process, i.e. a process with independent and stationary incre-

ments. Note that the characteristic function of Z(t) is of the form

E [exp{iλZ(t)}] = exp{tiϕ(λ)}, (3.3)

where ϕ(λ) is a characteristic exponent of Lévy process. Hence both the mean and

the variance of Z(t), if exist, are linear in t. See, for example, the appendix of

Norberg (2004) . We assume E{Z(t)2} < ∞, and Z(t) is already centered (i.e.

Z(t) is a compensated Lévy process), and its mean is absorbed in the drift µ(t)dt.

Examples of the Lévy processes include, for example, Brownian motion, compound

Poisson process, and, more generally, the sum of independent Brownian motion and

compound Poisson process. In fact the latter is one of most frequently used form

for modeling high frequency prices with jumps. We assume µ(·) in (3.2) is either a

smooth deterministic function, or µ(t) = aY (t) + b, where a, b are unknown constant

and b stands for the mean constant of the Lévy process. In latter case Y (t) is an

Orstein-Uhlenbeck process (driven by a Lévy process), which is a continuous-time

version of AR(1) models. A word on notation. For any given function f : R+ → R if

we mean mapping from the generic time index t ∈ [0, T ], we will denote the function

by f(t) and if we mean mapping from the deformed time h(t) ∈ [0, T ] then we denote

by f{h(t)}.
We observe the process X at the discrete times 0 ≤ t0 < t1 < · · · < tn ≤ T with

the observations X(t0), X(t1), · · · , X(tn). Put Y0 = X(t0). For j = 1, · · · , n, let

Yj = Y {h(tj)} = X(tj), ∆hj = h(tj)− h(tj−1), Vj = Yj − Yj−1.

Suppose that all ∆hj are sufficiently small. It follows from (3.2) and (3.3) that

Vj ≈ µj∆hj + Z{∆hj} = µj∆hj + σ
√

∆hjεj, (3.4)

where µj = µ{h(tj−1)}, σ > 0 is a constant and εj is a mean 0 and variance 1 random
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variable. For the Orstein-Uhlenbeck process, µj = aYj−1 + b. If Z(t) is a Brownian

motion, εj is NID(0, 1). In other cases εj is not independent of j through dependence

on ∆hj . We first outline some parametric specifications for h(·) in the next section

and will propose number of methods to estimate the deformation function h(·).

Remark To exploit the scaling relationship, we could restrict attention to a self-

similar Lévy process which has following characteristics; Z{∆hj} ∼ (∆hj)
1
α ε where

ε is an i.i.d random variable governed by law of Z(1). A self similar Lévy process

is either a Brownian motion with α = 2 or a Lévy process with a symmetric α-

stable density, α ∈ (0, 2). It has a characteristic function, E(eizX(t)) = exp−cα|z|α ,

0 ≤ c <∞. This is derived from

E
[
eizX(t)

]
= etψ(z) = eψ(t

1/αz),

where the first equality is from the definition of Lévy processes and the second equality

is using the property of self-similarity. Solving for ψ(z) and exponentiating we have

the result. A stable law has infinite j-th moments for j ≥ α. The sample path

of a stable process resembles a compound Poisson for α close to 0 and resembles a

Brownian motion for α close to 2.

Before we proceed to the estimation method of our model, we discuss how our

model is related to the literature using time changing technique. Geman (2006)

provides an extensive survey on the time deformation method in finance. The idea

of economic clock was first initiated by a search for an explanation why the financial

returns exhibit an excess kurtosis. See Mandelbrot and Taylor (1967) and Clark

(1973). By modeling the asset price process as a time-changed Brownian motion, it

leads to a representation of asset returns as a mixture of normal distribution where

mixing factor is given by the time change. The model accommodates the stochastic

volatility where changes in volatility is driven by h(t) in our model, a economic time

scale that follows the latent flow of information arriving the market. One noteworthy

feature of the time deformation model is that it provides an explanation how time

dependencies of volatility can occur.
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Theoretical justification of (3.1) is given by Dubins and Schwarz (1965) who

showed that any continuous martingale can be expressed as a time-changed Brow-

nian motion, where the time change is given by the quadratic variation. Monroe

(1978) extended the class of Brownian motion embeddable process to a semimartin-

gale. There are two distinct approaches in the literature that attempts to recover the

financial clock from the financial return series. The first approach, closest to ours, is

to estimate the deformed time from the activity data to best recover the normality of

returns. Clark (1973) used a cumulative volume and Ane and Geman (2000) used a

cumulative number of transactions. The second approach is to theoretically identify

h(t). Geman, Madan and Yor (2001) first specified a model for X(t) and showed that

we can recover h(t) by matching the characteristic function of X(t) and B{h(t)}.

We now discuss the time changing technique applied to Lévy processes. The mo-

tivation of such approach is two fold: Firstly, it is to construct another Lévy process.

A large class of infinite activity jump processes is constructed by time changing a

Brownian motion by a subordinator. A subordinator is defined by an almost surely

increasing Lévy process that can have positive jumps of finite variation but not a

diffusion component. A Lévy process time changed by a subordinator is also a Lévy

process. The second motivation, relevant to our approach is to build a more em-

pirically plausible model for the financial returns. Observe that the independent

increment property of X(t) = Z{h(t)} inherits from that of h(t). This implies that

the time change technique can be used to construct a model with stochastic and mean

reverting volatility which cannot be achieved by a Lévy process alone. Carr, Gemann,

Madan, Yor (2003) considered h(t) =
∫ t
0
τ(u)du where τ(u) can be a mean reverting

square root process or a positive OU process.

3.3.2 Deformation functions

In this section, we outline the parametric specifications for deformation function h(·).
A simple option in choosing the deformation function is to let h(·) be piecewisely linear

in the sense that it is a linear function on each intervals [tj−1, tj) depending on Uj ,
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where Uj represents the information accumulating on the interval [tj−1, tj). For high

frequency asset prices, Uj may contain, among others, the number of transactions,

trade volume and spread over the interval [tj−1, tj). It may also contain a time stamp

reflecting the time when a trade takes place during day. Since we deal with the

changes in each of intervals, we only need to specify the increments ∆hj ; see (3.4).

We let ∆hj = ∆tjf(Uj; θ) and list below some possible choices for f(·):

∆hj(θ) = (tj − tj−1) exp(θ
′Uj), (3.5)

∆hj(θ) = (tj − tj−1) exp(θ
′Uj)

/ n∑

k=1

exp(θ′Uk), (3.6)

∆hj(θ) = (tj − tj−1)
/
{1 + exp(θ′Uj)}. (3.7)

Obviously it always holds that ∆hj > 0 provided tj > tj−1. When θ = 0, ∆hj =

(tj − tj−1), i.e. no time deformation is involved. (3.6) may be viewed as a normalized

version of (3.5), and is the version used in Stock (1988), and Ghysels and Jasiak

(1995). Furthermore it satisfies the condition that
∑

j ∆hj =
∑

j(tj − tj−1) when

tj are equally spaced. We prefer (3.5) simply for its simpler form, which may be

advantageous when we search for the value of θ via solving a nonlinear optimization

problem.

3.3.3 Probabilistic properties

In this section we look at the moment properties of the proposed model and check

them against empirical stylized features of high frequency returns discussed in Section

3.2. Also we search for the properties of the model that could be used to identify

the parameters in the time deformation function. Let Z(t) be a Lévy process on R

with characteristic triplet (A, ν, γ); γ ∈ R is a drift, A > 0 is diffusion coefficient and

ν is a Lévy measure. The characteristic triplet of Brownian motion is (1, 0, 0) and

a compensated compound Poisson process with intensity λ has a triplet (0, λf(x), 0)

where f(x) is a probability density function of jump size. Assuming a finite moment

condition E|Zt|m < ∞ (⇔
∫
|z|mν(dz) < ∞), denote κt,m, a m−th cumulant of a
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Lévy process Z(t). This is given by the Lévy - Khinchine representation theorem,

κt,1 = t

(
γ +

∫

|z|≥1

zν(dz)

)
,

κt,2 = t

(
A+

∫ ∞

−∞
z2ν(dz)

)
, (3.8)

κt,j = t

(∫ ∞

−∞
zjν(dz)

)
, j ≥ 3.

Note that cumulants of a Lévy process is proportionate to t. Let θ∗ be a true param-

eter and define

ξj(θ) = Z{∆hj(θ∗)}/
√
∆hj(θ). (3.9)

Define m-th cumulant of Z(1) by κm.

Lemma 1. Assume (3.1) and (3.2) and let the deformed time modeled by (3.5).

Assume a simplified case when µ(t) = 0, κ1 = 0 and observations are equally spaced,

∆tj = 1/n, ∀j. Then the conditional variance, coefficient of skew (C3) and kurtosis

(C4) of log return series are given by

Var [∆X(tj)|∆hj ] = ∆hjκ2

C3 [∆X(tj)|∆hj] = {∆hj}−1/2κ3/κ
3/2
2 , C4 [∆X(tj)|∆hj ] = {∆hj}−1κ4/κ

2
2.

It holds that

E
[
ξj(θ)

2|∆hj
]
= κ2 exp{Uj−1(θ

∗ − θ)}. (3.10)

Proof Under the true parameter,

Var [ξj(θ
∗)|∆hj ] = Var[Z(1)],

where Var[Z(1)] = A+
∫∞
−∞ z2ν(dz) using the Lévy-Khinchine characterization theo-

rem in (3.8). The cumulant generating function for ξj(θ) is given by

K(s) := lnE [exp{isξj(θ)}|∆hj ] = ∆hj(θ
∗)ϕ(

s√
∆hj(θ)

),

where ϕ is a characteristic exponent of Lévy process Z(t). Then the m−th cumulant
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for ξj(θ) is given by

1

im
dmK(s)

dsm
|s=0 =

∆hj(θ
∗)

∆hj(θ)m/2
ϕ(m)(0)

im
. (3.11)

By definition ϕ(m)(0)
im

= κm, the m−th cumulant of Z(1). Letting m = 2 we have the

result.

What Lemma 1 says is that the conditional coefficient of skew and kurtosis of log

returns are proportionate to the coefficient of skew and kurtosis of the background

Lévy process at time 1, Z(1). As ∆h→ 0, the coefficient of skew and kurtosis become

large, which is consistent with the observed features of high frequency data shown

in Table 3.1. When Z(t) is a Brownian motion, time changing introduces an excess

kurtosis. When Z(t) has a skewed and thick tailed distribution, the time deformation

introduces a time dependency in skewness and kurtosis. Under the true parameter,

the variance of the scaled returns, ξj(θ
∗) is constant and equals the variance of Z(1).

In the later section, we devise a method to estimate θ exploiting the relationship in

(3.10).

Furthermore, we note that the m-th moment of ξj(θ
∗), for m ≥ 3, depends on

time through ∆tj and Uj , unless κm = 0 for m ≥ 3. If we consider Uj as a fixed

covariate, then Z{h(tj)} − Z{h(tj−1)} is an independent sequence for any increasing

h(·). Likewise ξj(θ) is an independent sequence regardless of the value of θ. This

suggests that we cannot identify θ∗ by testing for the independence of ξj(θ) if we

regard Uj as deterministic.

Unconditional properties

In this section, we examine the model properties unconditionally of {Uj}’s.

Corollary 1 Assume (3.1) and (3.2). Assume a simplified case when µ(t) = 0,

κ1 = 0 and observations are equally spaced, ∆tj = 1/n, ∀j. Let denote the deformed

time ht =
∫ t
0
τsds, where τt = f(Ut; θ) represents an instantaneous time change

with µτ := E(τt), ω := var(τt) and γh := corr(τtτt−h). Define γ∗t =
∫ t
0
γudu and
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γ∗∗t =
∫ t
0
γ∗udu. Then

E [∆X(tj)
s] = µτκs/n, s = 2, 3,

E
[
∆X(tj)

4] = µτκ4/n+ 3κ22{2ω2(γ∗∗j
n

− γ∗∗j−1
n

) + (µτ/n)
2},

Cov
[
∆X(tj)

2∆X(tj+s)
2] = κ22Cov[τtjτtj+s

] = κ22ω
2
(
γ∗∗s+1

n
− 2γ∗∗s

n
+ γ∗∗s−1

n

)

= O(n−2).

Let Mj(s) denote the moment generating function of Uj . When the discretized time

change ∆hj is modeled by (3.5), then it holds that

E[ξj(θ)
2] = κ2Mj(θ

∗ − θ). (3.12)

See Barndorff-Nielsen and Shephard (2006) Proposition 2 and 5.

The Corollary 1 states that the serial correlation in squared returns are driven by

the serial correlation in instantaneous time change. Our model achieves stochastic

volatility through time deformation. The model accommodates stylized features of

high frequency returns : skewness, excess kurtosis, and serial correlation in squared

returns. To interpret the result in (3.12), consider the case Mj(s) = g(s) for some

s 6= 0 where g(s) is a well defined function. Then the second moment of ξj(θ) is

constant for all θ s.t. θ = θ∗ + s. Such example is when {Uj} is a stationary AR(1).

On the other hand, if we have the case that Mj(s) = g(j, s), ∀s i.e., the moments of

activity variables depend on time, then ξj(θ) has a constant second moment only when

θ = θ∗. Such case is when activity variables follow a random walk. This suggests that

estimating θ by testing for a constant variance exploiting the relation in (3.12) may

work better with non-stationary {Uj}’s. Also if {Uj} is assumed to be stochastic then

Z{hj} has an independent increment property if and only if {hj} has an independent

increment property. In our model this holds if and only if it holds that {Uj}’s are

independent of {Uk} for ∀j 6= k which is empirically unrealistic.
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3.4 Estimation methods

In this section we propose set of estimation methods for the parameter in the time de-

formation function. We progressively relax the assumption on the underlying process.

The key quantity of interest is,

ξj(θ, µ) = (Yj − Yj−1)
/√

∆hj(θ)− µj

√
∆hj(θ). (3.13)

When (θ, µ) take the true value, ξj(θ, µ) should have mean value 0 and a constant

variance σ2. When we assume that log price is driven by Brownian motion, we can

write down the gaussian likelihood function to maximize over the parameter θ. In

this case, ξj is identically distributed and we may exploit this property to design a

cost function to estimate θ. For weaker conditions, we use the property that ξj is

serially uncorrelated. We lastly propose a distribution free estimation method using

the fact that ξj has a constant variance.

3.4.1 Maximum likelihood estimation

If Z(t) is a Brownian motion, ξj in (3.13) are N(0, 1). This leads to the (negative)

log likelihood function

l(θ, {µj}, σ2) = n log(σ2) +

n∑

j=1

[
log{∆hj(θ)}+

1

σ2∆hj(θ)
{∆Xtj − µj∆hj(θ)}2

]
.

(3.14)

For the Orstein-Uhlenbeck process, µj = aYj−1 + b. If we take ∆hj(θ) as defined in

(3.5), the above likelihood function is reduced to

l(θ, a, b, σ2) = n log(σ2)+

n∑

j=1

[
θ′Uj+

1

σ2∆hj(θ)
{∆Xtj −(aYj−1+b)∆hj(θ)}2

]
. (3.15)

The MLE (θ̂, â, b̂, σ̂2) is the value which minimizes l(θ, a, b, σ2). For any fixed θ,

the minimizers a = a(θ), b = b(θ) and σ2 = σ2(θ) can be obtained explicitly from

(3.15). Hence the MLE θ̂ can be obtained by minimizing the profile likelihood l(θ) ≡

117



l{θ, a(θ), b(θ), σ2(θ)}.
For the cases with deterministic µ(·), we may first replace µj in (3.14) by, for

example, kernel (or moving-average) smoothing estimators µ̃j based on Vj. We may

simply use a 8-point moving average estimators

µ̂j =
1

4
(Vj−1 + Vj) +

1

8
(Vj−2 + Vj+1) +

1

12
(Vj−3 + Vj+2) +

1

24
(Vj−4 + Vj+3).

Then the quasi-MLE for (θ, σ2) is obtained by minimizing the ‘profile’ likelihood

l(θ, σ2) ≡ l(θ, {µ̃j}, σ2).

When Z(t) is not a Brownian motion, the above method may be viewed as a

version of quasi-MLE. However, since ξj then are not identically distributed, the

behavior of such an estimator needs to be examined carefully.

3.4.2 Parametric test for i.i.d

We still assume that Z(t) is a Brownian motion and propose an estimation method

that exploits the independent increment property of ξj. To simplify the statement,

we deal with the Orstein-Uhlenbeck process first. Let

ξj(θ, a, b) = (Yj − Yj−1)
/√

∆hj(θ)− (aYj−1 + b)
√

∆hj(θ). (3.16)

When (θ, a, b) take the true value, ξj(θ, a, b) should have mean value 0 and a constant

variance σ2. Hence we may set n−1
∑n

j=1 ξj(θ, a, b) = 0. This implies that

b = b(θ, a) ≡
∑n

j=1(Yj − Yj−1)
/√

∆hj(θ)− a
∑n

j=1 Yj−1

√
∆hj(θ)∑n

j=1

√
∆hj(θ)

. (3.17)

Let ξj ≡ ξj(θ, a) = ξj{θ, a, b(θ, a)}.
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Put ωk = 2kπ/n, n1 = [n/2]. For k = 1, · · · , n1, define

I(ωk; θ, a) =
1

n
|
n∑

j=1

ξj(θ, a)e
−ijωk |

2

= γ̂(0) + 2

n−1∑

j=1

γ̂(j) cos(jωk)

Uk(θ, a) =

∑k
ℓ=1 I(ωℓ; θ, a)∑n1

j=1 I(ωj; θ, a)
,

where γ̂(j) = n−1
∑n−j

k=1(ξk− ξ̄)(ξk+j− ξ̄), and ξ̄ = n−1
∑n

k=1 ξk. Under the assumption

that ξj are i.i.d. normal, U1, · · · , Un1−1 are distributed as the order statistics of a

random sample of size (n1 − 1) from the uniform distribution on the interval (0, 1);

see, for example, Proposition of 10.2.1 of Brockwell and Davis. (1991) Therefore

we may search for a monotonic h(·) which minimizes a Cramér-von Mises type of

goodness-of-fit statistic:

D(θ, a) ≡
n1−1∑

k=1

( k
n1

− Uk(θ, a)
)2
. (3.18)

Next, We can also exploit a weaker property that ξj are serially uncorrelated by

minimizing Ljung - Box statistic:

D(θ, a) ≡ n(n+ 2)

n−1∑

j=1

γ̂(j)2

n− j
. (3.19)

3.4.3 Permutation-like test for constant variance

In this section we propose a estimation method for θ using only the first two moment

properties of ξj(θ, µ): it has mean value 0 and a constant variance σ2. Since σ2

is unknown, we partition the index set {1, · · · , n} into two halves I1 and I2. The

difference of the sample variance between the two half samples may be measured as

D(I1, I2; θ, a) =
∣∣∣ 1

|I1|
∑

j∈I1
ξj(θ, a)

2
/ 1

|I2|
∑

j∈I2
ξj(θ, a)

2 − 1
∣∣∣,
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Let I be a collection of the partitions of the set {1, · · · , n} into two subsets of the

equal size n/2 if n is even, and of the sizes (n+ 1)/2 and (n− 1)/2 if n is odd. The

estimator (θ̂, â) is defined as the minimizer of the function

D(θ, a) ≡ 1

|I|
∑

(I1,I2)∈I
D(I1, I2; θ, a). (3.20)

For dimension as low as 3 or 4, a grid-search method may be used to find the solution.

Consequently the estimator for b is defined as b̂ = b(θ̂, â), see (3.17). The estimator

for σ2 may be defined as

σ̂2 =
1

n− 2− k0

n∑

j=1

ξj(θ̂, â)
2,

where k0 is the number of components of θ.

If n is not large, we let I consist of all the partitions as specified above. When

n is large, we let I have K0 partitions, where K0 is a large integer. We may include

in I, for example, the partition with I1 = {1, · · · , n/2}, or all the odd numbers not

greater than n. The other partitions may be selected randomly as follows: generate

random variables ηi, 1 ≤ i ≤ (n+ 1)/2 from the uniform distribution on (0, 0.5), let

I1 = {[nηi] + 1 : 1 ≤ i ≤ (n + 1)/2}, where [x] denotes the integer part of x, i.e.

x = [x] + r for some r ∈ [0, 1).

Remark. (i) One added advantage for using this method is that we do not need to

estimate σ2 as far as the estimation for the deformation function is concerned.

(ii) With deterministic µ(·), the above method still applies with plug-in estimators

µ̃j, i.e. we replace (3.16) by

ξj ≡ ξj(θ) = (Yj − Yj−1)
/√

∆hj(θ)− µ̃j

√
∆hj(θ).

3.5 Numerical illustration

The numerical study is carried out in a following way. We create equally spaced

database of high frequency prices aligned on the 5 second and 30 second fixed time
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grid. In our model there are two sets of parameters - parameters for the time defor-

mation function and the another set for the homogenous Lévy process. To simulate

the intra-day return we need to have a realistic values of these parameters. We carry

out 2 stage estimation of the model. First the time deformation function is estimated

by quasi-MLE described in Section 3.4.1. Denote the estimated parameter by θ0 and

the estimated deformed time by ∆h0 = ∆tf(U, θ0) from (3.5)-(3.7). Estimate the OU

drift term by (3.17) and denote it as µ̂. Then the de-meaned return series given by

∆X − µ̂∆h0 should be distributed as Z{∆h0} according to (3.4). Next step is to es-

timate the parameters for the Lévy density. This problem is equivalent to estimating

parameters for a homogenous Lévy process that is unequally spaced. For homogenous

Lévy process Z(t), we consider Brownian motion, Merton jump diffusion and NIG

process,

Z(t) = σW (t), Z(t) = σW (t) +

N(t)∑

i=0

Ji, Ji ∼ NID(µJ , σJ)

Z(t) = µZT (t) + σW{T (t)},

where T (t) has an Inverse Gaussian distribution. Since these three Lévy processes

permit closed form pdfs, we maximize the exact likelihood to estimate the Lévy pa-

rameters and simulate K instances of Z(t) given the estimates. The above procedure

gives us the parameter values from which we can simulate the return process, ∆X

by µ̂∆h0 + Z{∆h0}. For each instances of simulation, the parameters for the time

deformation function, θk, k = 1, · · · , K are estimated by quasi-MLE (Section 3.4.1),

the nonparametric method (Section 3.4.3) and the test statistic based on IID test

(Section 3.4.2) for comparison. The finite sample properties of the estimators are

examined by the mean absolute deviation of θk from θ0.

Under different data generating processes considered and at different sampling

frequencies, Table 3.2 and Table 3.3 show that the quasi-MLE is most accurate and

efficient. The nonparametric estimation method performs better than the the method

based on testing for a serial correlation in squared returns or testing for i.i.d. The

later methods break down when activity variables are stationary. Even though the
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nonparametric method is less efficient than quasi-MLE in most of scenarios, when

underlying process is a pure jump process without diffuse component, it outperforms

quasi-MLE. We conclude that the finite sample property of quasi-MLE is better than

any of the proposed methods. The nonparametric permutation test does better than

other parametric tests and it is not as much affected by stationarity of Uj’s. For

pure jump processes, there is a weak evidence that permutation test outperforms the

quasi-MLE.

3.6 An extension: dealing with many time series

In most practical situations time deformation is considered not only for one time

period. For example, we may be interested in deforming annual sales for several

years, or interday returns over many days. If there are reasons to believe that the

time deformation remains about the same over those repeated periods, we may use

the deformation function in more general form. For example, we may assume that

θ = θ(tj), i.e. θ varies with respect to time t. Then the kernel smoothing may be

applied to (3.14) or (3.15) to estimate θ(t) by pulling together the data from different

periods (i.e. different years or different days). The local quasi likelihood function is

given by

l(θ) =

D∑

d=1

n∑

j=1

lj,d(θ)K(
tj − t

h
), (3.21)

l(θ) =
D∑

d=1

n∑

j=1

lj,d(∆hj)K(
tj − t

h
).

This give us θ̂ = θ̂(t) and ∆̂hj respectively. The Figure 3.7 reports the result for

maximizing the local likelihood (3.21) using the log number of transactions and the

log volume as explanatory variables. We carried out a local estimation of θ(t) for

every 50 observations. The fitted increment of the deformed time show an expected

U-shaped pattern.
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3.7 Empirical Application

In this section we apply the proposed model to a real data. We analysed J P Morgan

Co. (ticker: JPM) transaction data traded on NYSE during 20 days period in March

2007. The period is selected to represent a benchmark market condition since the

period following had a sharp peak in volatility and preceding was characterized by low

volatility. To check if the proposed model given by (3.1)-(3.2) and (3.5)-(3.7) describes

the high frequency data well, we use the following property of the model. Let non-

decreasing function T (t) such that h(T (t)) = t. This is the inverse of deformed clock:

T (s) := inf{t|h(t) ≥ s, s ∈ R+}.

Then it holds that

X{T (t)} = Y (t).

Once the deformed clock h(t) is estimated, the returns spaced by T (t) should possess

an independent and stationary increment property according to (3.1)-(3.2). The

Figure 3.5 and Figure 3.6 show that stock returns spaced by the equal elapse of the

deformed clock show less serial correlation. We compared the proposed method to

quadratic variation estimate, i.e. h(t) = [X ]t and conclude that the proposed method

better recovers homogeneity of stock returns for the samples examined. Table 3.4

reports homogeneity statistics applied on the returns spaced by the deformed time

using local quasi-MLE, quasi-MLE, nonparametric permutation test and the Realized

Variance. To test for the homogeneity we consider the i.i.d test given in (3.18),

the permutation test in (3.20) and portmanteau test in (3.19). In exception of the

portmanteau test statistic applied to the densely sampled data, the various tests

indicate that the proposed modeling framework yields more homogenous process than

using the Realized Variance as a proxy for deformed time. The results also suggest

that pulling many time series and estimating the deformed time locally outperforms

estimating daily series separately.
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3.8 Application to optimal order execution

How to optimally execute a large trade is an important issue for practitioners. Lets

describe the bid side of the order book at time t by {Bi(t), Qi(t)}i≥1 where Bi(t)

is a bid price and Qi(t) is an associated volume in terms of number of shares. At

each point of time, it holds that B1(·) > B2(·) > · · · therefore B1(·) is a best bid.

When a trader place a large market sell order of quantity Q at time t, the prices that

the order is filled is {Bi(t), 1 ≤ i ≤ K} for each associated Qi(t) until it holds that

Q =
∑K

j=1Qj(t). After execution of the trade, the bid price move down to BK(t).

The market order is filled immediately at the cost of the market impact given by

B1(t) − BK(t). If the investor is willing to wait in order to minimize the market

impact, then the large order can be broken down and executed over a longer time

horizon in some optimal fashion. The benchmark for such order execution strategy

is the Volume Weighted Average Price (VWAP) which is defined as follows. Given

{τj} a transaction time stamp, bid-VWAP is defined by

∑N
j=1Q1(τj)B1(τj)∑N

ℓ=1Q1(τℓ)
.

Then VWAP tracking trading strategy is ex-ante strategy that best predicts the

volume profile of the instrument to be traded over the relevant horizon. The strategy

should deliver the price that is close to ex-post VWAP. We may design an order

execution strategy based on the fitted deformation time and compare it with the

ex-post VWAP to see which strategy delivers the better execution price. We can

implement the strategy in two different ways. First way is to time the trade with

equal elapse of fixed clock time where the quantity bought or sold is proportionate

to the deformed time progression. The difference from the VWAP strategy is that

the order quantity is set according to the time deformation schedule rather than the

volume schedule. The second strategy is to time the trade with the equal elapse of

the deformed time. We trade equal amount for each trade but more frequently when

the financial clock moves fast and vice versa. We may impose an end condition by

pre-determining how many times to trade per day and divide the financial clock into
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equal intervals. The superior order execution strategy should deliver a better price;

the order size weighted prices are higher than the bid-VWAP for a sell order and

lower than the ask-VWAP for a buy order.
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Figure 3.1: Time series plot of transaction marks
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Figure 3.2: Candidate variables for modeling the financial clock : cumulative sum of
activity variables for each day
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Figure 3.3: Sample autocorrelaiton function of activity variables
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Figure 3.4: Sample cross - correlation function of activity variables
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Figure 3.5: Return spaced by equal elapse of financial time, n = 100
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Figure 3.6: Return spaced by equal elapse of financial time, n = 500
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Figure 3.7: Local likelihood estimates of time deformation function
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Table 3.2: Accuracy of test statistics: 30 second dataset
Z Uj f(·) qMLE Permutation Test Portmantau Test iid Test

θ Var(θ) MAE σ Var(σ) θ Var(θ) MAE θ Var(θ) MAE θ Var(θ) MAE
NID(0,1) NumTran expOrg 3 - - 1.5E-02 0.0E+00 3 - - 7.5 8.4 3.3 7 6.2 2.7

expNorm 3 - - 1.5E-02 0.0E+00 3 - - 7.5 8.4 3.3 7 6.2 2.7
Volume expOrg 3 - - 1.5E-02 0.0E+00 3 - - 10 - 7.0 10 - 7.0

expNorm 3 - - 1.5E-02 0.0E+00 3 - - 10 - 7.0 10 - 7.0
Dur expOrg -4 - - 1.5E-02 0.0E+00 -4 0.05 0.1 -3.5 4.6 1.3 -4 3.7 1.0

expNorm -4 - - 1.5E-02 0.0E+00 -4 0.05 0.1 -3.5 4.6 1.3 -4 3.7 1.0
t dn NumTran expOrg 3 0.05 0.10 4.0E-02 1.5E-04 3 0.83 0.7 7 5.7 3.7 7.5 6.8 3.9
2 d.f. expNorm 3 0.08 0.20 4.0E-02 1.8E-04 3 1.08 0.8 7 5.7 3.7 7.5 6.8 3.9

Volume expOrg 3 - - 3.3E-02 8.7E-04 3 1.20 0.6 10 18.1 4.5 10 16.9 4.4
expNorm 3 - - 3.3E-02 8.7E-04 3 0.95 0.5 10 18.1 4.5 10 16.9 4.4

Dur expOrg -4 0.43 0.50 5.8E-02 1.3E-03 -4.5 6.50 2.1 -4.5 2.3 1.4 -4.5 8.6 2.1
expNorm -4 0.43 0.50 5.8E-02 1.4E-04 -4.5 5.80 2.0 -4.5 2.3 1.4 -4.5 8.6 2.1

Jump NumTran expOrg 3 0.20 0.30 7.5E-03 2.0E-04 3 0.50 0.5 3.5 8.7 1.7 3 17.0 3.1
Diffusion expNorm 3.5 0.05 0.60 1.8E-02 1.5E-04 4 5.30 1.8 4 6.2 2.1 4.5 10.7 3.2

Volume expOrg 3 0.20 0.30 7.5E-03 8.0E-04 3 4.70 1.1 10 9.8 5.6 10 9.8 5.6
expNorm 3.5 1.25 0.80 1.5E-02 1.9E-06 3.5 4.00 1.4 10 12.8 5.8 10 12.8 5.8

Dur expOrg -4 - - 1.5E-02 0.0E+00 -4 - - -5 5.0 2.1 -3.5 0.6 0.7
expNorm -5 0.20 0.70 1.5E-02 1.3E-06 -5.5 8.58 2.2 -4.5 7.4 2.2 -4 4.8 1.6

NIG NumTran expOrg 4 0.20 0.80 4.3E-02 1.2E-03 5 0.83 1.8 4 12.1 3.2 4 14.6 3.3
expNorm 3 0.38 0.40 1.5E-02 8.1E-06 2 0.18 1.1 4 6.3 2.1 3 9.8 2.0

Volume expOrg 3.5 0.05 0.40 1.8E-02 3.8E-05 4 3.05 1.3 10 - 7.0 10 - 7.0
expNorm 3.5 0.43 0.50 1.8E-02 1.4E-05 1.5 1.83 1.3 10 - 7.0 10 - 7.0

Dur expOrg -5.5 - 1.50 7.5E-03 9.4E-37 -5.5 0.13 1.5 -8 0.3 3.6 -7 0.4 3.0
expNorm -5 1.68 1.40 1.8E-02 8.1E-06 -2 5.33 2.8 -8 19.6 4.3 -8 1.2 3.4

True θ value is 3 for Uj = number of transactions and volume, -4 for duration
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Table 3.3: Accuracy of test statistics: 5 second dataset
Z Uj f(·) qMLE Permutation Test Portmantau Test iid Test

θ Var(θ) MAE σ Var(σ) θ Var(θ) MAE θ Var(θ) MAE θ Var(θ) MAE
NID(0,1) NumTran expOrg 9 - - 1.5E-02 0.0E+00 9 - - 9 24.2 2.2 9 37.5 4.5

expNorm 9 - - 1.5E-02 0.0E+00 9 - - 9 24.2 2.2 9 37.5 4.5
Volume expOrg 9 - - 1.5E-02 0.0E+00 9 - - -2 - 11.0 -2 36.3 6.6

expNorm 9 - - 1.5E-02 0.0E+00 9 - - -2 - 11.0 -2 36.3 6.6
t dn NumTran expOrg 9 0.45 0.30 4.8E-02 6.1E-04 9 5.70 1.8 9 0.4 0.5 9 24.8 2.3
2 d.f. expNorm 9 0.80 0.40 4.8E-02 6.1E-04 9 6.43 1.9 9 0.4 0.5 9 24.8 2.3

Volume expOrg 9 0.05 0.10 4.8E-02 2.2E-04 8.5 1.93 1.1 8.5 56.0 5.7 8.5 23.2 2.4
expNorm 9 0.05 0.10 4.8E-02 2.2E-04 8.5 1.93 1.1 8.5 56.0 5.7 8.5 23.2 2.4

Jump NumTran expOrg 9 - - 7.5E-03 9.4E-37 9 0.05 0.1 -2 36.3 6.6 -2 24.2 8.8
Diffusion expNorm 9 0.08 0.20 7.5E-03 3.9E-05 9.5 0.50 1.0 9 0.1 0.1 9 37.5 4.5

Volume expOrg 9 - - 7.5E-03 9.4E-37 9 - - -2 36.3 6.6 -2 36.3 6.6
expNorm 9 - - 7.5E-03 9.4E-37 9 - - 9 36.3 4.4 9 36.3 4.4

NIG NumTran expOrg 11.5 0.45 2.20 6.8E-02 1.2E-03 9 3.68 1.3 4 48.8 6.9 -1 20.3 7.4
expNorm -1.5 51.43 7.40 7.5E-02 9.1E-04 9 0.63 0.6 9 25.3 2.7 9 25.3 2.7

Volume expOrg 11.5 36.58 4.20 6.8E-02 5.9E-04 8 11.08 2.5 -0.5 66.4 7.9 2.5 57.0 7.1
expNorm 10.5 30.08 3.50 1.5E-02 7.3E-04 8.5 1.93 1.3 7.5 11.4 3.4 8 38.5 4.3

True θ value is 9
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Table 3.4: Homogeneity test for returns spaced by estimated financial clock
n=100 IID test Permutation Portmantau

Local qMLE mean 0.19 0.49 104984
std 0.15 0.23 52073

qMLE mean 0.24 0.47 110526
std 0.22 0.17 49115

Nonparametric mean 0.24 0.63 89104
std 0.24 0.46 58423

RV mean 0.54 0.83 114763
std 0.75 0.60 67966

n=500 IID test Permutation Portmantau
Local qMLE mean 0.28 0.23 3234250

std 0.25 0.05 1262004
qMLE mean 0.25 0.31 3343456

std 0.27 0.15 2165752
Nonparametric mean 0.42 0.31 3962810

std 0.48 0.17 2156484
RV mean 0.61 0.30 2659933

std 0.92 0.16 1933372
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[2] Y. Äıt-Sahalia and L. Mancini. Out of sample forecasts of quadratic variation.

Journal of Econometrics, 147:17–33, 2008.
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[4] Y. Äıt-Sahalia, P. A. Mykland, and L. Zhang. Ultra high frequency volatil-

ity estimation with dependent microstructure noise. Journal of Econometrics,

160:160–175, 2010b.

[5] D. J. Aldous and G. K. Eagleson. On mixing and stability of limit theorems.

The Annals of Probability, 6:325–331, 1978.

[6] S. Alizadeh, M. W. Brandt, and F. X. Diebold. Range-based estimation of

stochastic volatility models. Journal of Finance, 57:1047–1091, 2002.

[7] R. Almgren and N. Chriss. Optimal execution of portfolio transactions. Working

Paper, University of Toronto, 2001.

[8] T. G. Andersen and T. Bollerslev. Heterogeneous information arrivals and

return volatility dynamics: uncovering the long-run in high frequency returns.

Journal of Finance, 52:975–1005, 1997.

133



[9] T. G. Andersen, T. Bollerslev, F. X. Diebold, and P. Labys. Exchange rate

returns standardized by realized volatility are (nearly) gaussian. Multinational

Finance Journal, 4:159–179, 2000.

[10] T. G. Andersen, T. Bollerslev, F. X. Diebold, and P. Labys. The distribution

of exchange rate volatility. Journal of the American Statistical Association,

96:42–55, 2001.

[11] T. G. Andersen, T. Bollerslev, F. X. Diebold, and P. Labys. Modeling and

forecasting realized volatility. Econometrica, 71:579–625, 2003.

[12] T. G. Andersen, T. Bollerslev, Diebold F. X., and G. Wu. A framework for

exploring the macroeconomic determinants of systematic risk. American Eco-

nomic Review, 95:398–404, 2005.

[13] D. W. K. Andrews. Heteroscedasticity and autocorrelation consistent covariance

matrix estimation. Econometrica, 59:817–858, 1991.
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