

Economic Implications of Psychosocial Development in Childhood: Long-Term Outcomes and the Costs of Intervention

Andrew Thomas Healey

London School of Economics and Political Science

2005

PhD Thesis

UMI Number: U205437

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U205437 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

THESES

Abstract

This thesis explores two issues: 1. the relationship between emotional and behavioural difficulties in childhood and adult economic attainment; and 2. the costs arising from the public service response to child and adolescent psychosocial difficulties.

After a review of the relevant literature, longitudinal data are used to examine the first of these issues. The relationship between psychosocial development and labour market outcomes are examined for a cohort of British males of predominantly working class origin. Similar longitudinal analyses are then repeated in a national and more socially representative British birth cohort born in 1970 who were most recently followed-up at age 30. Econometric estimations relating to age 30 earnings within the 1970 cohort are combined with cross-sectional earnings data from a large survey of the UK labour force to arrive at a series of lifecycle earnings projections for workers who experienced childhood psychosocial problems.

Potential justifications for public intervention are examined followed by an outline of current service arrangements in the UK and a discussion of recent policy developments towards child and adolescent psychosocial problems. Service utilisation data from a major epidemiological survey of the mental health of children and adolescents in Britain are then used to derive new empirical estimates of the costs to the National Health Service and education system arising from child and adolescent psychopathology. Individual variations in costs are then examined in more detail using multivariate statistical methods with a view to assessing the extent to which services are responsive to psychosocial problems that are more socially and academically disabling.

Table of contents

PREFAC	CE	11
1 PSY	CHOSOCIAL PROBLEMS IN CHILDHOOD AND ADOLESCE	NCE:
	LENCE, RISK FACTORS AND LONG-TERM IMPACTS	
1.1	INTRODUCTION	
1.1	THE PREVALENCE OF CHILD AND ADOLESCENT PSYCHOSOCIAL PROBLEM	
1.2	RISK FACTORS	
1.5	ADULT ECONOMIC ATTAINMENT PSYCHOSOCIAL DEVELOPMENT IN CHILI	
	ADULT ECONOMIC ATTAINMENT PSTCHOSOCIAL DEVELOPMENT IN CHILI TICAL FRAMEWORK	
1.5	ECONOMIC STATUS AND PSYCHOSOCIAL DEVELOPMENT: CURRENT EVIDE	
1.5 1.5.		
	2 Earnings	
1.5.	Concluding summary of the evidence	
	CHOSOCIAL DEVELOPMENT IN LATE CHILDHOOD AND	
	MIC ATTAINMENT: EVIDENCE FROM A COHORT OF WOR	
CLASS	BRITISH MALES	54
2.1	INTRODUCTION	54
2.2	THE DATA: THE CAMBRIDGE STUDY IN DELINQUENT DEVELOPMENT	
2.3	DESIGN OF THE CSDD	
2.4	CHARACTERISTICS OF THE CAMBRIDGE COHORT	
2.5	Methods	60
2.5.	Childhood psychosocial indicators	60
2.5.2		
2.5.	3 Other explanatory variables	62
2.6	ESTIMATION METHODS	
2.7	DEALING WITH MISSING DATA ON EXPLANATORY VARIABLES	68
2.8	RESULTS	71
2.8.	Multivariate estimations	74
2.9	CONCLUSIONS	80
2.9	1 Study limitations	82
2.9.2	2 Policy issues	85
3 PSV	CHOSOCIAL DEVELOPMENT IN LATE CHILDHOOD AND	
	MIC ATTAINMENT: EVIDENCE FROM A BRITISH BIRTH	
3.1	INTRODUCTION	
3.2	THE 1970 BRITISH COHORT STUDY	
3.2.	J B 1 1 1 1 1 1 1 1 1 1	
3.3	Methods	
3.3.		
3.3.2		
3.3.3	- 1 5	
3.3.4		
3.3.5	8 1 2	
3.3.0	J J 1 J	
3.4	RESULTS	
3.4.1	Descriptive comparisons	111

-

3.4.2	Multivariate estimations	
3.4.3	Lifecycle earnings projections	
3.5 Co	NCLUSIONS	136
3.5.1	Study limitations	142
3.5.2	Policy issues	147
4 SERVI	CE ARRANGEMENTS AND POLICY DEVELOPMENT	149
	IRODUCTION	
4.2 W	HY INTERVENE?	
4.2.1	Psychosocial outcomes as informational failures	151
4.2.2	Psychosocial development and externality	
4.2.3	Public intervention, equity and psychosocial development	155
4.3 Ps	YCHOSOCIAL DEVELOPMENT IN CHILDHOOD AND ADOLESCENCE: SER	VICES
AND POLIC	Y DEVELOPMENT	157
4.3.1	Current structure of services for children with emotional and	
behavio	ural problems	
4.3.2	Policy and service development	160
4.4 Co	NCLUDING REMARKS	168
5 THE C	OSTS OF INTERVENTION	169
5.1 IN	TRODUCTION	169
	TA AND COST MEASUREMENT	172
5.2.1	The British Child and Adolescent Mental Health Surveys	
5.2.2	Measurement of service use	
5.2.3	Unit costs	
	ST ESTIMATION: STATISTICAL ISSUES	
5.3.1	Confidence interval estimation	
5.3.2	Adjusting for survey design and loss to follow-up	
5.3.3	Treatment of missing data	
	ALTH AND EDUCATION SERVICE COSTS: RESULTS	
5.5 Co	ST VARIATIONS	196
5.5.1	Statistical issues and methods of estimation	
5.5.2	Explanatory variables	201
5.6 M	ULTIVARIATE ESTIMATION: RESULTS	203
5.6.1	Costs and problem severity	203
5.6.2	Other explanatory variables	
5.7 DI	SCUSSION	
5.7.1	Costs of health and education services	
5.7.2	Limitations of cost estimates	
5.7.3	Cost variations	
5.7.4	Cost variations: limitations of analysis	216
5.7.5	Policy issues	
6 CONC	LUDING DISCUSSION	224
6.1 Ps	YCHOSOCIAL DEVELOPMENT AND FUTURE ECONOMIC ATTAINMENT .	227
6.1.1	Main conclusions	227
	Summary of main study limitations	236
6.1.2	E COSTS OF INTERVENTION	239
	E COSIS OF INTERVENTION	
	Main conclusions	

.

6.3 P	OLICY IMPLICATIONS	
6.4 F	UTURE RESEARCH	253
6.4.1	Childhood antisocial conduct and earnings: reconciling discu	repancies in
the evi	dence	
6.4.2	Economic attainment at different stages of the life cycle and o	cross-cohort
сотра	risons	255
6.4.3	Age of onset	255
6.4.4	Developmental dynamics	256
6.4.5	Informing the evaluation and appraisal of policies and progr	ammes of
interve	ntion	
6.4.6	Developing and improving model specifications when explore	ing cost
variab	ility	258
6.4.7	Efficiency and resource allocation	
REFEREN	CES	
APPENDI	X: CHAPTER 2	
APPENDI	X: CHAPTER 3	
APPENDU	X: CHAPTER 5	

•

5

-

List of tables and figures

Table 2.1	72
Childhood variables (8-10 years of age) and measures of economic attainment at ag	e 32:
descriptive statistics	72
Table 2.2	73
Average weekly earnings at age 32 and childhood psychosocial indicators	73
Table 2.3	73
Employment outcomes at ages 18-19 and 32 and presence of psychosocial problems	s in
childhood	
Table 2.4	75
OLS regression: dependent variable - log of weekly earnings (age 32)	75
Table 2.5	
Probit: Unemployed for > 18 weeks (ages 18/19)	77
Table 2.6	77
Table 2.6 Probit: Unstable employment record (ages 18/19)	77
Table 2.7	
Probit: dependent variable - unemployed for >1 year over 5 years prior to age 32	
Table 2.8	
Probit: Unstable employment record (age 32)	
Table 3.1	
Economic attainment at age 30: descriptive statistics	
Table 3.2	
Explanatory variables: descriptive statistics	
Table 3.3	
Average (mean) earnings at age 30 and age 10 psychosocial index scores	
Table 3.4	
Occupational status at age 30 and age 10 psychosocial index scores	
Fable 3.5 Control Contro Control <thcontrol< th=""> <t< td=""><td></td></t<></thcontrol<>	
Employment at age 30 and age 10 psychosocial index scores	
Table 3.6	
Low income at age 30 and age 10 psychosocial index scores	
Table 3.7	
OLS regression: dependent variable - log of weekly earnings (age 30)	
Table 3.8 Table 3.8	
OLS regression: dependent variable - log of weekly earnings (age 30)	
(Psychosocial maternal ratings at age 10)	
Table 3.9	
OLS regression by occupational status: dependent variable - log of weekly earnings	
30): professional Table 3.10	120
OLS regression by occupational status: dependent variable - log of weekly earnings	
30): managerial/technical	
Table 3.11	
OLS regression by occupational status: dependent variable - log of weekly earnings	
(age 30): skilled non-manual	
(age 50): skilled non-manual Table 3.12	
OLS regression by occupational status: dependent variable - log of weekly earning	
(age 30): skilled-manual	
Table 3.13	
1 aug J. 1 J	.141

.

OLS regression by occupational status: dependent variable - log of weekly ea	
30): semi-skilled & unskilled	
Table 3.14	
Ordered probit: dependent variable - occupational status (age 30)	
Table 3.15	
Ordered probit: dependent variable - occupational status (age 30)	
(Psychosocial maternal ratings at age 10)	
Table 3.16	
Attention deficit problems at age 10 and predicted probability of achieving spocupational status at age 30: 50 th versus 90 th percentile on the attention index	deficit
Table 3.17	
Probit: dependent variable - economically active (age 30)	•••••
Table 3.18	
Probit: dependent variable - economically active (age 30)	
(Psychosocial maternal ratings at age 10)	
Table 3.19	
Economically active: predicted probabilities from probit estimations	
Table 3.20	
Probit: dependent variable - low income status (age 30)	
Table 3.21	
Probit: dependent variable - low income status (age 30)	
(Psychosocial maternal ratings at age 10)	
Table 3.22	
Low income status: predicted probabilities from probit estimations	
Table 3.23	
Age 10 characteristics and projected loss of earnings over the working life-cy	
age 30 to retirement: present value estimates	
Table 5.1	
Sample characteristics	
Table 5.2	
Unit costs for health and educational services	
Table 5.3	
Costs over three year follow-up for mentally disordered children/adolescents	(N=445
summary statistics for each service item	
Table 5.4	
Costs over three year follow-up for disordered children: mean costs for all di	
(N=445)	
Table 5.5	
Mean costs over three year follow-up by type of disorder (N=445)	
Table 5.6	
National costs for population aged 5-15 with emotional/behavioural disorder	
Table 5.7	
Cost dependent variables for GLM estimation: descriptive statistics	
Table 5.8	
Explanatory variables: descriptive statistics for GLM estimation samples (see	
only)	,
Table 5.9	
GLM cost estimations: full estimation sample	
Table 5.10	

GLM cost estimations: trimmed estimation sample	
Table 5.11	
Root mean squared error from GLMs	

Figures

Figure 1	7
Figure 3.1	
Life-cycle projection: male earnings from age 3013	1
Figure 3.2	
Life-cycle projection: female earnings from age 3013	2
Figure 5.1	0
Figure 5.2	
Health services and education resource use: mean cost for all children/adolescents with a disorder)4
Figure 5.3	-
Mental health service cost distribution: service users only)6
Figure 5.4	
Frontline educational resource cost distribution: service user only	6
Figure 5.5	
Special education resource distribution: service user only	6

Acknowledgements

The empirical investigations reported in this thesis would not have been possible without access to the following data:

The Cambridge Study in Delinquent Development (CSDD)

I am grateful to Professor David Farrington (University of Cambridge) for providing access to the CSDD. The study reported in chapter 2 is in fact a follow-up to an existing piece of work, also based on the CSDD, co-authored by myself, Martin Knapp and David Farrington (Healey et al., 2004).

The 1970 British Cohort Study (BCS70)

Data from the BCS70 were made available by the UK Data Archive (UKDA) held at the University of Essex. The BCS70 is managed by the Centre for Longitudinal Studies at the Institute of Education, London.

The British Child and Adolescent Mental Health Surveys

I would like to thank Dr Tamsin Ford (Institute of Psychiatry), Professor Robert Goodman (Institute of Psychiatry) and Howard Meltzer (Office for National Statistics) for providing full access to the baseline epidemiological data and the follow-up data on service utilisation from the British Child and Adolescent Mental Health Surveys.

All the empirical investigations reported in the thesis were conducted using various statistical software including Stata (Stata & Corporation, 2005), SPSS (SPSS & inc,

2005), NORM multiple imputations software (Schafer, 1999) and Excel (Microsoft, 2005).

All the work that I have used to complete the thesis was carried out as part of my Department of Health funded post at the LSE branch of the Personal Social Services Research Unit (PSSRU). All views and opinions expressed in the thesis are my own and not necessarily those of the Department of Health.

I would particularly like to thank my supervisor, Professor Martin Knapp (LSE), for initially encouraging me to pursue the themes addressed in the thesis, for his overall guidance, for his commentary on earlier drafts of the chapters and for allowing me the freedom and time to complete.

I am also greatly indebted to everyone who provided both encouragement and advice on the long road to completion, and particularly: Jose-Luis Fernández (LSE), Alistair McGuire (LSE), Maria Raikou (LSE), Tamisn Ford (Institute of Psychiatry), Robert Goodman (Institute of Psychiatry), Barbara Maughan (Institute of Psychiatry) and Richard Dubourg (Home Office). Finally, I thank my examiners for providing some additional references and helpful comments that have been subsequently incorporated into the thesis.

10

Preface

There is now an extensive body of evidence showing that children and teenagers who engage in antisocial behaviour, who have severe problems with attentiveness at school or who experience emotional distress and poor mental health are more likely to be disadvantaged later in life: low educational achievement, delinquency, aggression and violence, poor-interpersonal skills and psychiatric illness are all examples of the types of adult outcomes that have been shown to have some degree of continuity with behavioural and psychological development during earlier years. Public policy in the United Kingdom has become increasingly concerned with promoting lifetime opportunity through a more concerted response to social and economic inequalities that have their roots in childhood experience. As such, the psychosocial development of children and adolescents has received greater prominence in recent policy making and legislation concerned with promoting child and adolescent wellbeing broadly defined.

Aims of the thesis

The thesis pursues two specific lines of enquiry:

1. Psychosocial problems in childhood and future economic attainment

It seeks to make a further contribution to our understanding of the lasting consequences of psychosocial problems in earlier years. Existing sources of longitudinal data are used to explore the link between behavioural problems (including antisocial conduct and attention deficit problems/hyperactivity) and emotional wellbeing in late childhood and economic attainment during late adolescence and in adulthood. Earnings, occupational status, exposure to poverty levels of income, employment participation and job stability are all examined. All of these outcomes are of relevance to public policy for varying reasons. Both stable employment and earnings provide some indication of the productive contribution an individual makes to the macro-economy. Occupational status, levels of pay and employment patterns over the working life-cycle will also determine, to a large extent, the income and underlying welfare of individuals and their families as measured, for example, by life-time consumption opportunities. Earnings are also likely to have a part in affecting the likelihood of exposure to poverty: while comparatively low pay does not always result deprived living circumstances, it is certainly the case that most people living below pre-defined poverty thresholds also live in low wage households (Nolan & Marx, 2000). Financial strain has in itself been linked to broader indicators of personal wellbeing, including mental health (Weich & Lewis, 1998). Employment and income may also have a wider social significance. There is evidence, for example, that changes in pay at the lower end of the income distribution can affect marginal incentives to commit crime (Machin & Meghir, 2000; Witt et al., 1999). Unemployment, and stability of employment through time, is also both closely related to other important public policy objectives. Persistent unemployment, for example, is closely linked to "social exclusion", a concept which has had a prominent position in social policy discourse over recent years (Burchardt et al., 2002).

12

2. Costs of the public service response to psychosocial problems in childhood and adolescence.

A wide range of public services and professionals are potentially in a position to offer some response to behavioural or emotional problems experienced by children and adolescents. This thesis uses parental reported service utilisation data from a large epidemiological survey to provide estimates of the costs of public service involvement with children and adolescents experiencing behavioural and emotional problems, including contacts with teachers, special education resources, mental health professionals, primary care and children's health services.

Specific attention is paid to the measurement of the opportunity costs of targeting resources on problem children and adolescents. Knowledge of the cost consequences of behavioural problems and emotional difficulties in childhood and adolescence is of policy significance for two reasons. Firstly, it will be required when seeking to appraise the overall net contribution to societal wellbeing attributable to intervention: health and educational inputs may very well have a impact in terms of reducing behavioural problems and distress, or improving the learning capabilities of problem children, but they could also in principle be of value if allocated towards other socially productive uses. Secondly, identifying cost implications at the margin can also serve as a partial measure of the benefits of either preventing or ameliorating problem behaviour and emotional distress: effective drug treatments or behavioural interventions provided in health service settings could, for example, lower the resource demands within other sectors responding to the problems arising from behavioural and emotional difficulties,

including the allocation of teacher time and special education resources toward problem children.

The thesis also examines more closely the variability in costs among children who have some level of contact with services, and the degree to which there is a responsiveness in resource terms to the severity of the social and learning impairments arising from emotional and behavioural difficulties experienced. Multivariate analysis of cost variability can offer important additional insights regarding the extent to which services currently target resources on children and adolescents identified has having more severe difficulties - i.e. those who might be considered as being in the greatest "need" of some form of intervention.

A note on terminology

In the title of this thesis, and throughout the forthcoming chapters, frequent reference is made to the concept of "psychosocial" development (or problems and difficulties). This term is potentially inclusive of a wide range of issues concerning the mental health, psychological development, cognitive development and behavioural interaction between children/adolescents and their immediate environment. From the outset the thesis largely focuses on three specific types of psychosocial problem that have received considerable attention in the relevant literature, and are generally regarded as being the most frequently occurring of problems:

Antisocial conduct - during childhood this will typically cover a range of "externalising" behaviours such as fighting and general aggressiveness, bullying,

14

stealing and oppositionally defiant behaviour. During adolescence persistent behavioural problems may develop into delinquency and criminality including damage to property, a tendency to violence perhaps involving the use of weapons, theft, drinking and drug taking and truancy.

Attention deficit problems and hyperactivity - while distinct, both these types of problem have a tendency to co-exist and, as such, are often considered together. Attention deficit problems are characterised by an increasing tendency to be distracted and to have difficulties concentrating on basic tasks at home or within the school environment. Hyperactivity might best be described as persist restlessness or "fidgety" behaviour.

Emotional problems - including anxiety and depression. The longitudinal investigations reported in chapter 2 of this thesis also utilises a more general indicator, or risk factor, for childhood mental health problems, namely "neuroticism", a personality construct describing children who have a greater tendency to be nervous, moody, stressful, and emotionally sensitive.

It should be stressed that much of the thesis, specifically chapters 2 and 3, do not deal specifically with the identification of children who would be regarded by the psychiatric community as suffering from a specific type of mental or behavioural disorder. Each of the three general areas of concern identified above have their clinically defined equivalent requiring certain pre-specified criteria to be met before a psychiatric diagnosis can be assigned: "oppositional defiant disorder", "conduct disorder", "attention deficit-hyperactivity disorder", "anxiety disorder"

15

and "depressive disorder" are all examples. Chapter 1, which discussed evidence relating to prevalence, and Chapter 5, which draws on data from a large-scale epidemiological survey to estimate public service costs, makes greater use of these psychiatric diagnostic classifications.

Structure of thesis

The thesis is structured as follows:

Chapter 1 - Psychosocial problems in childhood and adolescence: prevalence, risk factors and long-term impacts

• Reviews evidence on the prevalence and risk factors associated with the development of child and adolescence psychosocial problems and considers the existing literature concerning their relation to future labour market outcomes.

Chapter 2 - Psychosocial development in late childhood and economic attainment: evidence from a cohort of working class British males

• Examines the association between psychosocial problems observed in late childhood and employment outcomes within a cohort of males of mainly working class origin who attended school in an area if inner-London during the early 1960s. The outcomes studied include unemployment and number of jobs held (a measure of job stability) over specified periods of time during the post-

school teenage years and prior to age 32. The chapter also considers weekly take-home pay at age 32.

Chapter 3 - Psychosocial development in late childhood and economic attainment: evidence from a British birth cohort

• Investigates the association between psychosocial problems in late childhood and future attainment, this time within a large national birth cohort of males and females born in 1970. Outcomes examined (all at age 30) include weekly earnings, occupational status, participation in employment and other human capital enhancing activities and exposure to low household income (based on a conventionally applied definition of relative poverty). Econometric estimations are used to make a series of earnings projections with a view to evaluating the potential effect on life-cycle earnings arising psychosocial difficulties observed at age 10.

Chapter 4 - Service arrangements and policy development

• Considers the possible justifications for public intervention in the psychosocial development of children and adolescents and reviews existing service arrangements and more recent policy developments in this field.

Chapter 5 - The costs of intervention

• Evaluates the costs of public service provision for children and adolescents with behavioural and emotional difficulties using data from a large-scale British epidemiological survey of child and adolescent psychiatric disorders. The emphasis is on estimating the costs to the National Health Service (mental health, child and paediatric and primary care services) and the education system (teaching and other "frontline" education inputs and special education resources).

Chapter 6 - Concluding discussion

• Overviews the main empirical findings and the main limitations of the empirical work reported in the thesis. The policy implications arising from the empirical investigations are discussed with some suggestions for future research.

1 Psychosocial problems in childhood and adolescence: prevalence, risk factors and long-term impacts

Summary

Many children and adolescents will developmental problems of a psychosocial nature. Epidemiological evidence, for example, suggests that around 10% of British children aged 5-15 will have a behavioural or emotional difficulty severe and pervasive enough to warrant a psychiatric diagnosis, though prevalence varies significantly by gender, ethnicity and family income. It is generally accepted that most psychosocial problems of childhood and adolescence are the outcome of a complex interplay between genetic heritability and environmental factors. Lower educational achievement, a persistence of behavioural problems and antisocial lifestyles and a greater risk of future psychiatric illness are all reasons for expecting lower levels of economic attainment among children and adolescents who experience psychosocial difficulties. This chapter considers published evidence on the link between child and adolescent behavioural and emotional problems and economic attainment later in life. There is overwhelming evidence that antisocial children and adolescents face a greater risk of unemployment or poor employment stability as teenagers and adults, though evidence on their relative future earnings potential remains unclear. There is an indication in some studies that child and adolescent emotional distress and attention deficit problems/hyperactivity may increase the likelihood of experiencing poor employment outcomes later in life. Collectively, however, this evidence is not as extensive, nor as consistent in its findings, when compared to those studies primarily concerned with antisocial conduct and future employment status.

1.1 Introduction

This chapter offers something of a "curtain raiser" to chapters 2 and 3, which both detail two empirical strands of research that seek to contribute to the existing body of evidence on the association between adult economic attainment and psychosocial problems during childhood. It initially provides an overview of existing estimates of the number of children and adolescents likely to be affected by psychosocial problems, including behavioural and emotional difficulties, and looks at what factors are thought to play a significant role in their development. A framework for conceptualising the link between psychosocial characteristics and adult economic attainment is then described, followed by a discussion of some the potential transmission mechanisms governing the relationships outlined in this model. The chapter finishes with a review of what the empirical literature has to say on the relationship between psychosocial development and future labour market outcomes.

1.2 The prevalence of child and adolescent psychosocial problems

Epidemiological surveys provide and important source of evidence on the number of children affected by behavioural and emotional difficulties. The focus of these surveys is usually on psychiatrically defined "caseness" - the identification of those children who meet pre-defined diagnostic criteria for specific types of mental or behavioural disorders. The most widely adopted criteria in Europe are the World Health Organisation's ICD-10 classificatory system (World Health Organisation, 1993). North American studies - an important source of evidence of population prevalence - mainly apply the fourth Diagnostic and Statistical Manual for Mental Disorders (DSM IV) as advocated by the American Psychiatric Association (American Psychiatric Association, 1994).

It is important to recognise that epidemiological prevalence estimates, whilst useful in summarising the numbers affected by specific types of disorder, generally rely on the dichotomisation of children into those who are and who are not considered to be disordered in any specific way based on accepted psychiatric definitions. However, there is clearly scope for many more children to be functionally and socially impaired by the symptoms and behavioural features associated with recognisable disorders who would not necessarily meet the required diagnostic criteria for being identified as a clinical "case". For example, Pickles et al. (2001) found that meeting the threshold for a psychiatric disorder is not necessarily a good indicator of the degree to which a specific set of problems impact on children's day-to-day functioning. This would imply that psychosocial problems in childhood and adolescence, and the social disabilities and damage to individual functioning that they engender, may be significantly more

extensive than that implied by current prevalence estimates concerning psychiatric disorder per se.

The most detailed survey of the mental health and behavioural problems of children and adolescents carried out in the United Kingdom was recently conducted by the Office of National Statistics (ONS; The British Child and Adolescent Mental Health Surveys; Meltzer et al., 2000). It estimates that over 1 in 10 of the British population aged between 5- and 15-years-of-age will experience a mental or behavioural disorder at any given time. Around 8% of children aged 5-10 are estimated to be affected, while the prevalence among secondary school-aged children is put slightly higher at around 11%. Prevalence estimates of a similar order of magnitude have also been observed in other non-UK epidemiological studies (Brandenburg et al., 1990; Costello, 1989; Padgett et al., 1993).

There is considerable variation in the prevalence of different types of disorder. Conduct disorder - characterised by persistent and frequently aggressive, destructive and disruptive behaviour in the home and at school (Scott, 1998) - is estimated by the ONS survey to be the most commonly occurring childhood psychiatric disorder in Britain, with an estimated prevalence of 4.6 % among 5-15-year-olds (Meltzer et al., 2000). Other non-UK studies have estimated rates of prevalence ranging from anything between 2% to 10% (Bird et al., 1988; Costello et al., 1988). Hyperkinetic disorders - characterised by severe restlessness, impulsiveness and impaired concentration levels - are estimated to be less common than conduct disorder, affecting around 1.5% of 5- to 10-year-olds and 1.4% of adolescents. These estimates are similar to those reported elsewhere by Taylor et al. (1991) who studied a sample of UK primary school boys.

Sensitivity of prevalence estimates to diagnostic criteria is reflected in international discrepancies in prevalence rates for attention deficit problems and hyperactivity (Lord & Paisley, 2000). North American studies, which use an alterative system of diagnostic classification to British epidemiological surveys, deliver much higher prevalence estimates for what the DSM IV criteria calls attention deficit-hyperactive disorder (ADHD). ADHD is based on less stringent criteria for the identification of psychiatric caseness compared to the ICD-10 definition of a hyperkinetic disorder. (Green et al., 1999) report US prevalence estimates ranging from 4% up to 26% for ADHD. (Lord & Paisley, 2000) also suggest that discrepancies in epidemiological findings with respect to hyperactivity and attention deficit-related problems may be due to important cultural-specific differences as regards the recognition of problem behaviour in children, as well as variability in levels of exposure to potentially important risk factors.

Emotional disorders in childhood are also of epidemiological significance. These cover a range of childhood mental health problems including types of anxiety disorder and child and adolescent depression. Depressive illness is of particular concern in the light of evidence showing increasing prevalence levels in recent decades and rising levels of adolescent suicide (Diekstra, 1995; Klerman & Weissman, 1989). Meltzer et al. (2000) estimate that only 0.2% of 5 to 10 year olds could be considered as being clinically depressed, though the prevalence rate increases to 1.8% among 11 to 15 year olds. In Britain most emotional problems experienced by children are in fact anxiety-related, affecting 3.1% of children aged 5 to 10 and 4.6% of 11 to 15 year olds.

There is evidence that the prevalence of psychosocial problems varies considerably according to gender, ethnicity, familial characteristics and parental income. Conduct

22

and hyperkinetic disorders are significantly more prevalent in boys, though genderbased differences in prevalence rates for emotional disorders are generally less marked. Of particular note are the stark inequalities in prevalence by parental income. In the ONS survey referred to earlier, the prevalence rate among all children living in families with a weekly income of more than £500 per week was estimated to be 6% compared to 16% among children whose parents were located in the poorest income bracket (less than £100 per week). Differences between the top and bottom ends of the parental income distribution in the ONS survey were also found to be even more substantial for children aged 8-10 years, with a 19 percentage point difference in the estimated prevalence of all childhood psychiatric disorders between the top and bottom income groups (Meltzer et al., 2000).

Different types of childhood psychosocial difficulties are also more likely to jointly occur with one-another, or at least with other types of developmental impairment. Conduct disorder and attention deficit/hyperactivity are co-existing problems for many children and adolescents (Biederman et al., 1991; Kaplan et al., 2000; Peterson et al., 2001). The long-term prognosis is particularly poor for children experiencing both conduct disorder and hyperactivity, most notably with regard to low achievement at school and the development of persistent antisocial and delinquent tendencies (Scott, 1998). Attention deficit problems have also been shown to co-exist with emotional problems (including anxiety-and mood-rated disorders) and a range of other developmental problems including dyslexia, dysgraphia and Tourettes syndrome (this literature has been reviewed more extensively by Brassett-Grundy & Butler (2004a)).

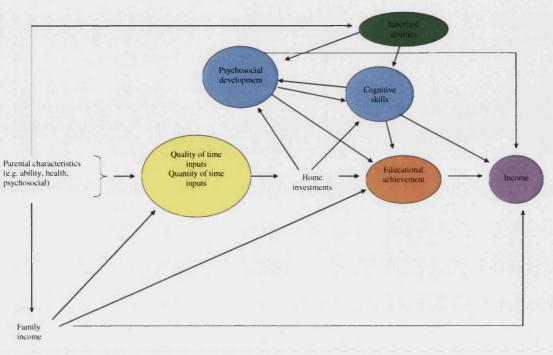
23 ·

1.3 Risk factors

The identification of factors that make an important contribution to elevated risks of experiencing emotional and behavioural problems is an important issue for social policy design, not least because they point to the types of external intervention that are likely to be most successful in preventing, or at least limiting, psychosocial difficulties experienced through childhood and adolescence. Many of the existing interventions that target mental health and behavioural problems in children have been developed from knowledge of the processes that seem to increase individual susceptibility to problems. Drug treatments for attention deficit problems and hyperactivity, for example, target biological mechanisms while social interventions promoting better parenting skills deal the quality of child and parental interactions which are known to influence the risk of a child developing and maintaining patterns of problem behaviour (Cooper, 2001; Scott, 1998; Taylor, 1994).

The debate and evidence concerning the relative contribution of nature versus nurture in psychological and behavioural development is complex. It is now generally believed that genetic heritance plays an important role, but crucially it should be seen as a *risk factor* for certain types of psychosocial problem and not in anyway deterministic (Rutter, 2002). Genetic heritability is known to be relatively important contributor to the development of hyperactivity and life-course persistent antisocial behaviour (M. Rutter, 2002; Simonoff, 2001; Tannock, 1998) - these conclusions being reached through rigorously designed "twin" and "adoption" studies. Genetic inheritance is thought to be of less importance in explaining individual susceptibility to depression and anxiety-related disorders (Rutter, 2002).

Despite scientific support for the role of genetic heritability, the effect of environmental influences both within and beyond the context of the immediate family have also been shown to be of significance. Poor parenting skills (e.g. harsh and inconsistent discipline regimes), lack of parental involvement and supervision and parental separation and marital discord are all examples of adverse environmental risk factors linked to the development of behavioural problems (Earls, 1994; Maughan, 2001; Rodgers & Pryor, 1998; Scott, 1998). Child abuse (physical and sexual) is more strongly linked to lifecourse persistent antisocial tendencies and adult personality disorders (Maughan, 2001). There is some evidence that children who have spent time within institutional settings are at greater risk of developing attention deficit problems and impulsive behavioural traits (Tizard & Hodges, 1978). Dietary intake and environmental exposure to lead - are both thought to adversely affect behavioural development (Earls, 1994; Taylor, 1994; Thomson et al., 1989). Family adversity and parental psychopathology have both been positively linked to depression in adolescence, while positive relationships with peers, parents and other adults are associated with a reduced risk of experiencing depressive outcomes (Fombonne, 1995). Away from the family, the school environment and the quality of teacher-pupil interactions have been shown to have a negative reinforcing influence on behavioural outcomes (Farrington, 2003; Maughan, 2001), while area-level deprivation has also been linked to behavioural problems in children, though the causal mechanisms behind this relationship remain unclear (Kalff et al., 2001).


While there are clear associations between nature, nurture and the development of psychosocial difficulties, the causal processes that underpin these relationships may not yet be fully understood (Rutter, 2002). For example, studies that demonstrate a link between parenting and behaviour may not fully account for the fact that both may have

an important genetic component. There are also questions regarding the degree to which psychosocial outcomes depend on more complex processes involving different mediating mechanisms. Neuro-chemical and neuro-psychological factors, which may have a strong heritable component are, for example, thought to be important causal factors behind the development of hyperactivity, conduct problems and anxiety-related disorders in childhood (Earls, 1994; Harrington, 2001; Klein, 1994; Taylor, 1994). Moreover, simply adding up the separate component effects of nature and nurture is still likely to yield unexplained variance in the psychosocial characteristics of individuals given that there are also likely to be important interaction effects between heritability and environmental factors to take into account (Rutter, 2002).

1.4 Adult economic attainment psychosocial development in childhood: analytical framework

Much of the work carried out by economists into the determinants of adult economic status has been based around the theoretical modelling of the family as a decision-making unit (Becker & Tomes, 1979; Becker, 2001; Leibowitz, 1974). Theoretical and empirical developments in this area of work have been extensively reviewed by Haveman & Wolfe (1995). The economic approach to modelling future attainment provides a useful framework within which to consider the potential long-standing effects of psychosocial development during childhood and beyond. Figure 1.1 is a version of a diagrammatic exposition of the model originally presented by Leibowitz (1974), adapted to include psychosocial development as an integral mechanism in determining adult economic status.

Figure 1 Adult economic status, psychosocial development and family background

Adapted from Leibowitz (1974) and Haveman and Wolfe (1995)

The model is a somewhat simplified version of what are likely to involve many complex inter-connections between various salient features of childhood development and economic and social outcomes later on in life. The model has two defining features. Firstly, individuals can genetically inherit natural endowments from their parents: these endowments might relate to intelligence, or specific "cultural" endowments such as a willingness to learn or a stock of highly marketable skills. It is straightforward to think of different aspects of psychosocial development as being an inclusive part of this inherited stock of personal characteristics - and as outlined in the previous section, heritability is likely to have an important role to play in this regard.

In addition to inherited endowments, parental decision-making (which in itself may have an important genetic component) also plays a central role in the economic model of future attainment. The future wellbeing of off-spring is taken to be a primary motivation behind the time allocation and expenditure decisions made by parents.¹ Parental characteristics (e.g. ability, health), prior educational investments, parental fertility (affecting the number of children in a household) and preferences are all assumed to play a role in influencing allocative decisions within the family unit. These "home investments", combined with inherited endowments, are all likely to influence educational attainment and the future earnings potential of children.

Cognitive skills development, for example, is but one type of an inherited and environmentally determined ability that is known to have a crucial impact on schooling outcomes and labour market success (Carneiro & Heckman, 2003; Heckman, 2000). This is not surprising given that cognitive development will typically encompass mathematical competence, problem solving skills and word knowledge. But parental investments and heritability are also likely to affect the psychosocial (non-cognitive aspects) of personal development from an early age. Economists are now beginning to view these additional characteristics as at least as important for future levels of attainment. Indeed, Cawley et al. (2001) suggest that the failure to account for the role of non-cognitive skills in determining future attainment has represented a major draw back of existing econometric investigations of individual labour market success. They consider various types of abilities as being of potential significance, including individual self-motivation, persistence, self-discipline and time preference, though it would be straightforward to expand this list to include the wider aspects of behavioural and emotional development. A growing body of empirical work in the economics literature is beginning to offer a growing indication of the significance of inherited and parentally determined non-cognitive endowments for educational attainment - an

¹ Becker (2001) also allows a role for public expenditures and investments in the future attainment of children. Possible justifications for public intervention in the psychosocial development of children and adolescents are outlined in chapter 4.

important contributor to how much an individual can expect to earn over their life-time (Behrman & Taubman, 1989). Hansen et al. (2004), using national longitudinal data from the US, find a significant relationship between both cognitive and non-cognitive abilities (specifically self-esteem and "locus of control") on the probability of school drop-out as well as spending time in jail, becoming a smoker and non-marital pregnancy. Increasing levels of non-cognitive performance, for example, were found to reduce the probability of being a school drop-out to almost zero for females with average cognitive skills. Elsewhere, non-cognitive performance has been found to hinder schooling with attendant implications for school achievement test scores (Hansen et al., 2004).

In principle, there are likely to be various transmission mechanisms linking the main childhood psychosocial outcomes of interest in this thesis with future economic status. Children and adolescents with more severe psychosocial problems, including conduct problems and hyperactivity/attention deficits, are less likely to do well at school (Barkley, 1990; Faraone et al., 1993; Fergusson & Horwood, 1995; Kessler et al., 1995; Lambert, 1988; Taylor, 1994). Beyond their impact on educational achievement, behavioural problems in childhood have also been shown to be an important marker for the future development of a cluster of adult behavioural characteristics indicative of an antisocial personality (Maughan, 2001; Robins, 1978; Rutter et al., 1998; Scott, 1998; Taylor, 1994). These typically include criminality, poor peer-relations and interpersonal skills, impulsiveness (i.e. acting without thinking), aggressive and violent behaviour, and heavy drinking (Moran & Hagell, 2001). There is further evidence suggesting that these behaviours and life-style characteristics are unlikely to be conducive to more favourable employment outcomes. Problem drinking and illegal drug use have been

shown to inhibit employment participation (Buchmueller & Zuvekas, 1998; Mullahy & Sindelar, 1996) and to depress earnings (Mullahy & Sindelar, 1993). Receipt of a criminal conviction can also significantly reduce the chances of gaining employment (Nagin & Waldfogel, 1995), although this may depend on the reason for conviction and the extent to which factors such as trust are viewed as an important job characteristic (Waldfogel, 1994).

As noted earlier, economists have more recently begun to address in more detail the lack of explanatory power associated with empirical models of adult attainment that specify relevant outcomes, such as the wage rate, purely as a function of human capitalrelated factors (qualifications, skills and ability), age, gender, and family background variables (Bowles et al., 2001a; Cunha et al., 2005; Filer, 1986; Goldsmith et al., 1997). Much of this work had focused on the significance of indicators of personality type (or non-cognitive skills) as additional determinants of economic status. These newer developments have a particular resonance in the context of the current discussion because of the continuity that has been shown to exist between behavioural problems in children and adult antisocial personality development. Caspi et al. (1998), for example, characterise adult antisocial tendencies as a form of depleted "personal capital." They suggest that young adults who are more prone to antisocial behaviours may have a greater propensity to select out of stable employment for various reasons: firstly, it may be indicative of an inherent preference to avoid work which in turn reflects one element of a more general syndrome of deviant, or non-conformist, choice patterns; secondly, antisocial adults may have a tendency to select into jobs that have a higher natural rate of employee turnover; and thirdly, poor social skills and an inability to get on with peers will both increase the risk of dismissal from employment.

The relationship between childhood psychosocial development and future personal/psychological capital need not only be limited to issues concerning the antisocial behaviour. There is evidence that many children who suffer from poor attentiveness or hyperactive behaviour will continue to experience these difficulties into their adult lives (Brassett-Grundy & Butler, 2004a). A persistent inability to concentrate on work-related tasks may, for example, negatively affect employment chances as well as workplace productivity and earnings.

Emotional difficulties in childhood and adolescence - including anxiety and depression may also persist. E. Fombonne et al. (2001b) and E. Fombonne et al. (2001a), report that in excess of 70% of a group of depressed children and adolescents referred to a child and adolescent mental health service also experienced depressive symptoms in adulthood, while over 40% had attempted suicide as adults. Capaldi & Stoolmiller (1999) also report evidence of continuity between depression in adolescence and early adulthood. Caspi et al. (1998) suggest that poor mental health may limit the desire and motivation to seek employment, it may interfere with workplace productivity and it may further destabilise job status if it interferes with the ability of individuals to interact appropriately with fellow workers. Various empirical studies have found that adult mental health problems do have a negative impact on both earnings (Bartel & Taubman, 1986; Frank & Gertler, 1991; French & Zarkin, 1998) and workforce participation (Bartel & Taubman, 1979; Hamilton et al., 1997).

31

1.5 Economic status and psychosocial development: current evidence

The review of existing evidence on adult economic status and psychosocial problems in childhood and adolescence is divided between those studies that have either looked at outcomes relating to employment participation and job stability and those that have focussed on pay. While the review is not systematic, it has attempted to pick up on the main sources of existing evidence using internet searches and citations made in the relevant literature. Interest in this field of study has been multidisciplinary, including empirical research reported in the developmental psychology, child psychiatry, sociological and economic literatures. Nearly all the papers published by non-economists have considered various measures of employment participation alongside, in some cases, other social outcomes (e.g. marital status, peer-relationships, criminal behaviour, drinking behaviour). Empirical investigations of the relationship between adult earnings and antecedent indicators of psychosocial development have, with the occasional exception, been carried out by economists.

All the evidence reviewed has utilised various types of longitudinal data when examining key relationships of interest, reflecting the methodological advantages of using prospectively generated data on the same individuals through time (Hakim, 1987). Longitudinal data, while having some important limitations (some of these are discussed in relation to the empirical analysis reported in chapters 2 and 3) enable hypotheses regarding causality to be tested that could not be done so in a reliable fashion using cross-sectional data (Rutter, 1994). They can facilitate the investigation of important relationships of interest (causal or otherwise) between variables that widely separated by time (so-called "sleeper effects"; (Hakim, 1987)). They also avoid the problem of recall bias often associated with cross-sectional survey designs that employ

the retrospective measurement of individual-level events and experiences that have occurred during the past (Dex, 1991).

1.5.1 Labour market participation

The evidence relating to participation in the labour market has either been concerned with employment outcomes during adulthood - mainly over the 26-36-age range - or during the post-school period of adolescence. It is also possible to further divide the evidence on employment participation into that which has looked at labour market status in relation to childhood indicators of psychosocial development - as measured typically between the ages of 5 and 10 - and those studies that focus on psychosocial outcomes during adolescence - mainly over the 13 to 19 year age band.

Banks & Jackson (1982) conducted a 2.5-year follow-up study of 480 16-year-old school leavers who were in the bottom 50% in terms of exam performance on leaving school. Employment outcomes at follow-up were examined in relation to a standard measure of psychological distress administered at age 16, including symptoms of depression and anxiety. Statistical analysis - without standardising for other antecedent risk factors - revealed no association between unemployment at follow-up and prior levels of psychological distress. Lynn et al. (1984) used a randomly selected sample of 701 15-16 year olds living in Northern Ireland to examine the relationship between employment status at a 1-year follow-up and a variety of antecedent variables relating to home background, intelligence, personality and educational attainment. The personality variables measured at age 15-16 included measures of neuroticism, psychoticism, and extraversion. At follow-up, subjects were classified as either being employed or in

further education or unemployed or in a subsidised government-training scheme. Multivariate analysis revealed no association between most of the personality measures and employment status, though, somewhat surprisingly, *lower* psychoticism scores predicted a higher likelihood of being unemployed 1 year later.

Capaldi & Stoolmiller (1999) explored the relationship between mean adolescent conduct problems and depression scores prospectively measured over the 13-16 year age range and the likelihood of being in employment or in any educational programme between the ages of 18 and 20. Their study sample was exclusively male and drawn from a population of fourth grade boys attending schools in higher crime areas of a metropolitan region of the north-western United States. Increasing adolescent conduct problems (characterised by aggression and other forms of antisocial conduct) were associated with a lower likelihood of future employment or involvement in education. Both depression and conduct problems were found to be associated with an increased likelihood of dismissal from employment. Apart from academic skills, the authors did not control for the effects of any other antecedent factors.

Caspi et al. (1998) utilise data from the Dunedin Multidisciplinary Health and Development Study - a longitudinal investigation of the health, development and behaviour of a complete cohort of births over a 12-month period in Dunedin, New Zealand. The study was concerned with identifying the main child and adolescent predictors of unemployment between the ages of 15 and 21 years. Unemployment was measured in terms of months spent out of work (excluding time allocated to further education or home-making responsibilities). The study is of particular significance, not only because of its use of birth cohort data, but also because it considered the labour

market significance of psychosocial development during childhood (3-5 years and 7-9 years) as well adolescence (at age 15).

Using a censored regression approach to control for a range of other contemporaneously measured background variables, the presence of early temperament problems (ages 3-5) were found to have the strongest association with future unemployment: their presence predicted a 14.6% increase in the probability of experiencing unemployment and an average increase in the duration of unemployment of 2.2 months for those not in work. In a separate estimation (controlling for other age 15 variables), self-reported delinquency was found to have a slightly lower effect on the number of months of unemployment and the probability of being unemployed. Behavioural problems identified at 7-9 years of age (a grouped variable including aggression and hyperactivity) had the lowest estimated effect on employment. All these relationships were reported to be statistically significant. In contrast, mental illness identified at age 15 (a combined indicator including depression, anxiety and attention deficit problems) had no significant association with later unemployment. These findings are of interest, not least because the relatively strong effect on the early temperament measure supports existing theories of adult antisocial personality development, of which non-participation in formal employment is a characteristic outcome. Moffitt (1993), for example, suggests that antisocial tendencies later in life are the outcome of a persistent pattern of behavioural problems affecting a relatively small percentage of the population. Individuals displaying these characteristics will typically have experienced significant learning deficits or behavioural problems from a very early age due to a combination of genetic, environmental and parental-related factors.

Maughan et al. (1985) examine the relationship between antisocial conduct in childhood and youth employment outcomes using follow-up data on a community sample of male 10-year-olds living in an area of inner-London. Controlling for a range of other childhood variables, conduct problems and low reading attainment at age 10 were both found to increase the risk of youth unemployment, as well as selection into unskilled work, dismissal from employment and the frequent changing of jobs. Nagin & Waldfogel (1995) consider the impact of criminality and the possession of a criminal conviction on job stability and work-participation between the ages of 17 and 19 within a cohort of British males of working class origin. Possession of a criminal record was found to be linked to an increase the length of time spent unemployed over a 1-year period, a reduction the length of job tenure and an increase the number of jobs held.²

Three studies utilise dichotomous employment measures that effectively consider the work-education decision during the early phase an individual's working life cycle. The decision to continue in education or to enter the labour market is an important feature of the human capital model (Polachek & Siebert, 1993), whereby individuals either choose to work or to invest in a higher future earnings potential through participation in educational or training programmes at the cost of forgoing current employment income. Using multivariate statistical methods applied to data on 3000 Australian 15-17 year olds, Tiggermann & Winefield (1989) compared three distinct groups over a 5 year follow-up period: those who continued in school, those who were working and the unemployed. Those who continued their schooling were found to possess the lowest number of antecedent risk factors including low levels self-esteem (a correlate of emotional difficulties). Sanford et al. (1994) also considered education versus work

 $^{^{2}}$ The data on the same cohort of British males examined in the Nagin and Waldfogel study are utilised in chapter 2 of this thesis.

participation for a community sample of 520 Canadian 17-20 year olds. Controlling for a range of other background variables, the presence of conduct disorder, prospectively identified when the sample were 13-16 years of age, was associated with a significantly increase likelihood of later work-force involvement at ages 17-20 as opposed to participation in further education. Hyperactivity and emotional disorders were found to be unrelated to the work-education decision.

Brook & Newcomb (1995) employed a representative sample of children aged 5-10 years living in New York State who were prospectively followed through time. A structural equation approach was used to test a model of the pathway from childhood aggression into various employment outcomes measured when the sample were aged between 15 and 20 and between 21 and 26 years of age. Childhood aggression was found to be directly and positively related to a latent construct, derived from observable indicators, defined as a tendency to "need more work" when the sample were age 21-26 and negatively related to "academic orientation" at the same age. Its was also found to be directly related to intermediate outcomes measured during adolescence which themselves were related to "need to work" and "academic orientation": thus aggression in childhood was positively associated with adolescent "unconventionality" (indicated by measures of rebelliousness and responsibleness) and negatively related with adolescent academic orientation. Taken together, the findings of Sandford et al and Brook and Newcomb may suggest, after allowing for earlier failings in school, that young adults who had significant conduct problems as children or adolescents have a greater tendency to discount the future more highly, as evidenced by their increase likelihood to choose work rather than education at the earlier stages of the working lifecycle.

A number of studies also consider employment status during adulthood, particularly within the mid-20s to mid-30s age range. Zoccolillo et al. (1992) investigate the continuity between childhood conduct disorders and social outcomes in adulthood. Their study used combined follow-up data on a group of young adults who had previously spent time in care and a quasi-random comparison sample living in economically deprived inner-city areas. The study utilised contemporaneous information from teacher rating and parental interviews (for those in care) in order to arrive at prospective and retrospectively determined diagnoses of conduct disorders prior to age 15. Both samples were re-interviewed regarding social outcomes during their mid-20s (average age of 26). Using logistic regression the authors concluded that the presence of conduct disorder during childhood or adolescence significantly increases the odds of experiencing more than one type of social dysfunction at age 26, after standardising for gender and care status in childhood. The social outcome measures included, among others: unemployment for at least 1 month or more than twice since age 18; 6 or more jobs over the 4 years prior to the follow-up interview; any job dismissal; ever walked out of a job; and experience of friction with workmates.

Three papers report studies that use Finnish longitudinal data to examine the association between child and adolescent psychosocial problems and unemployment during adulthood (Kokko & Pulkkinen, 2000; Kokko et al., 2000; Roenkae & Pulkkinen, 1995). The Jyväskylä Longitudinal Study of Personality and Social Development has traced, at various stages of their development, a random selection of 369 school children living in a medium-sized Finnish town from the age of 8 up until, most recently, age 36. The evidence, largely derived from structural equation modelling, generally points to a strong relationship between childhood aggression and lengthy periods of unemployment between the ages of 27 and 36 (> than 24 months). The pathway from childhood aggression into long-term unemployment was found to be mediated via maladjustment at school measured at age 14 (low interest in school work, truanting, low school achievement and receipt of punishment), involvement in heavy drinking at age 27 and a limited availability of occupational choices at age 27 (Kokko & Pulkkinen, 2000). Kokko et al. (2000) provide evidence that passive and anxious behaviour observed at age 8 is positively associated with exposure to long-term unemployment in the future, an effect mediated through lower educational attainment. Roenkae & Pulkkinen (1995), modelling developmental trajectories from childhood, provide evidence that that aggression in childhood is linked to an unstable career line observed at age 26, including long periods of unemployment, varied occupations, subsidised employment and time spent in other non-educational activities.

Burgess & Propper (1998) use data from the National Longitudinal Survey of Youth (NLSY) to examine, among other outcomes, the effect of adolescent self-reported violence and other health- and life style characteristics on adult labour supply. The NLYS is a US panel data set based on an ongoing follow-up study of a national sample of 12,686 youths aged 14-22 initially surveyed in 1979. Labour supply was measured according to the average number of weeks worked per year over the period 1981 to 1992. All antecedent variables included in the reported estimations were derived from interviews conducted when the study sample were aged between 16 and 22. The analyses were restricted to male high-school graduates. After conditioning on a range of health and life-style characteristics (e.g. illicit drug use, work-related health shocks) and other standard background variables, self-reported involvement in extreme violence ("times attacked with intent to injure or kill in past year") was found to be negatively

associated with the number of hours worked. The same direction of effect was also observed for involvement in less extreme violence ("times seriously threatened to hit; or actually hit someone in past year"), though it was not found to be statistically significant.

Five studies uncovered by the review consider the relationship between child development (including psychosocial difficulties) and adult labour market participation using British birth cohort data. Three of these studies use data from the National Child Development Study (NCDS), a long-term follow-up of 17,000 children born during March 1958. Flouri & Buchanan (2002) use the NCDS to investigate the childhood predictors of labour market participation at age 33 within a multivariate framework. They find no relationship between a combined indicator of emotional and behavioural problems at age 7 and employment status at age 33. The lack of an association may have been down to their grouping of conduct, attention deficit and emotional problems into a single index thereby masking any independent effect associated with each of these problem areas. However, their model also includes a variety of other antecedent factors measured at later stages of individual development that may serve to mediate the effects of emotional and behavioural problems at an earlier age, thereby potentially explaining their lack of significance in this type of model specification. For example, academic attainment by age 20, low academic motivation and a measure of involvement with the police at age 16 were each included. The structural equation models developed by the Finnish studies cited earlier suggest that the pathway from childhood psychosocial problems into unemployment later in life is likely to be partly routed via these types of mediating outcomes.

Hobcraft (1998) included separate indices of aggression, anxiety and restlessness, measured when the NCDS cohort were age 7, as control variables within a more general investigation into the relationship between aspects of childhood disadvantage and adult social outcomes. There were no statistically significant associations between age 7 psychosocial characteristics and the likelihood of being unemployed at age 33, though adolescent delinquency (self-reported contact with the police at age 16) was reported to elevate the risk of future unemployment for males. In a sequentially developed model of adult economic outcomes with the NCDS cohort (including being in employment at ages 23 and 33), Gregg et al. (1999) find a negative relationship between both absence from school and contact with the police at age 16 and work participation - the effect is larger for females. However, these associations are not reported to be statistically significant.

Feinstein (2000) uses data from the 1970 British Birth Cohort (BCS70 - described in more detail in chapter 3) to examine the association between psychosocial problems at age 10 and exposure to periods of unemployment prior to age 26. Some of the key age 10 indicators of relevance included antisocial behaviour, attentiveness at school and self-esteem. For males, increasing antisocial behaviour scores were found to strongly predict a higher likelihood of extended spells of unemployment (>4 months), though they were not significantly related to spells of unemployment lasting in excess of 12 months. The study also reports an estimated 6% increase in the likelihood of experiencing more than 4 months of unemployment resulting from a movement from the 20th to the 80th percentile on the age 10 antisocial score distribution. For males, self-esteem was also found to be a significant predictor of extended spells unemployment.

Female unemployment was more strongly associated with lower levels of attentiveness at age 10.

Brassett-Grundy & Butler (2004b) also use the BCS70 data to examine the association between a variety of economic and social outcomes at age 30 and attention deficit and hyperactivity measured at age 10. Controlling for a range of other childhood factors, those individuals who, at age 10, had behavioural rating scores severe enough to warrant classification as an attention deficit/hyperactivity disorder, were predicted to have an elevated risk of living in a workless household at age 30. This finding applies to both males and females. While the effect is statistically significant for both genders, the estimated change in the probability of observing this outcome is not particularly substantial - a probability increase of 0.03 and 0.05 for males and females respectively.

1.5.2 Earnings

Nagin & Waldfogel (1995), Burgess & Propper (1998), Gregg et al. (1999), Murnane et al. (2001), Heckman and Rubinstein (2001) and Cawley et al. (2001) all consider the relationship between adolescent psychosocial characteristics and adult wages/earnings. The Nagin and Waldfogel study (reported in the paper by the same authors referred to in the previous section) examined the effect of criminality and conviction between the age of 17 and 19 on weekly take home pay over the same period for a cohort of British working class males. Criminality *per se* was found to have no effect on pay though, somewhat surprisingly, the receipt of a conviction was predicted to increase weekly earnings. This finding is reported to be consistent with an earlier study carried out for young US offenders (Nagin & Waldfogel, 1993). The authors argue that these results

can, in principle, be explained by the relative wage dynamics associated with what they refer to as "career" and "spot market" jobs. The former may typically involve the forfeiting of a higher wage at the earlier stages of the working life-cycle to cover initial job-specific training costs: individuals will trade-off these initial costs against a higher future earnings profile as skills and human capital are accumulated. "Spot market" jobs are typically unskilled with no specific career structure or long-term prospects in terms of future earnings growth. They will, however, offer relatively higher labour market returns at the earlier stages of the working life cycle. Nagin and Waldfogel suggest career jobs are more likely to demand trust as an important worker characteristic, with the possession of a conviction acting as an adverse signal in this regard. As such, convicted youths are more likely to select into "spot market" employment. These conclusions highlight the importance of examining earnings at more advanced stages of the working cycle, when the wage differentials associated with job selection are likely to be more established.

Burgess & Propper (1998) examine the impact of adolescent behaviours on later earnings for male high-school graduates participating in the NLSY: they specifically consider log of earnings at age 28, mean log of earnings over an 11-year period (1981-1992) and earnings growth among male high school graduates. Their estimations included a variety of health and life style characteristics, including self-reported violence between the ages of 16 and 22. Descriptive analysis revealed that both black and white youths who reported being involved in violent/aggressive behaviour earned, on average, less than their peers. Their conditional estimations suggested that both extreme and less extreme self-reported violence were associated with depressed mean earnings over the 1981 to 1992 period, though the estimated effect is much larger for

the former. Surprisingly, the authors also report a statistically significant and *positive* association between extreme violence and earnings *growth* - the corresponding effect on less extreme violence is negative and statistically insignificant. Moreover, while less extreme adolescent violence predicted lower earnings at age 28, the corresponding effect estimated for extreme aggression and violence, while negative, is much weaker and statistically insignificant.

Gregg et al (1999), based on their sequential modelling of the NCSD data, found a negative association between the hourly wage at ages 23 and 33 and school absence and contact with the police at age 16. However, none of the estimated effects on these variables are reported to be of statistically significance. Point estimates for the effects of truancy and police contacts at age 16 on future wages are considerably larger for females.

Murnane et al. (2001) use the NLSY data to estimate the impact of male adolescent selfesteem - a correlate of behavioural and emotional difficulties - on wages at age 27-28. Conditioning on academic skills, cognitive skills, and ethnicity, the authors find a statistically significant association between a self-assessed measure of global adolescent self-esteem ("person of worth"; "able to do things as well as other people") and log of wages. The authors estimate that an adolescent whose reported self-esteem score is 1 standard deviation above the average will earn, on average, 3.8% more than their peers at age 27-28. Drawing upon evidence from the psychology literature, they suggest that self-esteem is likely to impact on earnings via a number mediating mechanisms: the ability to work productively in groups and perseverance in the face of adversity, as well as a lower risk of depression, lower resentment, tension and irritability all which may harm the ability to work productively alongside others.

Heckman & Rubinstein (2001) compare the earnings of US high school drop-outs who self-selected into the United States General Educational Development (GED) testing programme with non-GED drop-outs. The comparisons serve as a non-randomised natural experiment for testing the importance of non-cognitive skills in determining earnings. Those who select into GED are known to have similar levels of cognitive skills attainment to high school graduates - based on a standard test of performance and a significantly higher level of cognitive ability to other high school drop-outs. At a descriptive level this is borne out by the higher levels of attainment among the GED participants compared to other drop-outs. However, after controlling for measured cognitive ability, the GED drop-outs are predicted to earn less and to have lower hourly wages compared to their non-GED counterparts. The authors argue that deficits in unmeasured non-cognitive (psychosocial) skills among the GED participants accounts for this disparity in attainment. While the experiment does not unpack which specific non-cognitive skills are of greatest significance, the authors suggest that the GED test inadvertently separates out bright but undisciplined and non-persistent drop-outs from other high school drop-outs.

Cawley et al (2001) use the NLSY to examine the impact of personality traits measured during early adolescence (10th grade high school) on adult earnings (mid 20s) after controlling for measured cognitive ability (the inclusion of the latter in fact makes little difference to their key findings). The empirical estimations are restricted to white male high school pupils followed up over time. The authors consider a range of early

adolescent behavioural indicators broadly indicative of antisocial tendencies and poor socialisation skills. These were based on whether participants indicated whether they sometimes or often engaged in: school absence; being late for school; do not attend school; cut classes; talk back to teachers; do not obey instructions; fight with one another, attack teachers; and engage in alcohol/drug use. Separate regressions on the log of earnings are carried out using each measure. All estimated coefficients on each behavioural measure were negative, with four out of the 10 reaching statistical significance. For example, a 10th grade pupil reporting cutting their class attendance sometimes or often is estimated to receive 10% lower earnings 11 years hence. When the authors condition earnings upon educational attainment the estimated impact of each behavioural measure on earnings is diminished, suggesting that the effect of poor socialisation skills on labour market attainment operates via poor schooling outcomes.

The preceding studies all consider psychosocial characteristics during adolescence. Some studies have also looked at childhood indicators of emotional and behavioural wellbeing in relation to future earnings. Hobcraft (1998) finds that male workers in the NCDS data who were in the lowest earnings quartile at age 33 were more likely to have been restless children at age 7. Neither anxiety nor aggression at age 7 were found to be significantly related to exposure to low earnings status. Feinstein (2000) found that higher self-esteem was associated with higher male wages at age 26 within the BCS70, though it was found to be unrelated female pay, while increasing attentiveness was associated with significantly higher female wages. Antisocial behaviour was found to be *positively* related to the female wage, though negatively and comparatively weakly related to male earnings.

Using the NCDS, Bowles et al. (2001b) estimate a model of adult earnings allowing for the effect of personality. A measure of childhood aggression and social withdrawal, both rated when the cohort were aged 11, are used as instrumental variables for adult personality with a view to overcoming potential endogeneity. For males employed in high status jobs, a 1 standard deviation increase in aggression was estimated to increase earnings at age 33 by 14.5%. The corresponding effect is negative and less marked for male workers in low status occupations. The model also suggests that female workers employed in higher status jobs who were more aggressive at age 11 are penalised - a 1 standard deviation increase in measured aggressiveness is associated with a near 17% reduction in earnings. Men who were more socially withdrawn at age 11 were predicted to earn significantly less, irrespective of job status. Females in higher status jobs who were more socially withdrawn at age 11 were predicted to earn more than their occupational peers though the effect is negative for females employed in low status employment. Brassett-Grundy & Butler (2004b) find a positive, though statistically insignificant relationship between the likelihood of low wage status among males in the BCS70 and childhood attention deficit/hyperactivity disorder. For females, the estimated increase in the probability of being a low earner at age 30 is substantially higher for those who experienced attention deficit/hyperactivity disorder at age 10: the estimated increase in probability is around 0.12.

1.6 Concluding summary of the evidence

In all, 22 papers were identified in a review of the evidence concerning the link between adult economic employment and earnings and psychosocial problems in childhood and adolescence. The majority of papers that were examined considered teenage or adult employment participation or job stability, with seven papers also looking either at wages/earnings or low pay. With the exception of child and adolescent antisocial behaviour and its relation to future employment participation, the evidence concerning specific types of psychosocial problem does not generally offer any definitive guidance on the long-term significance of these problems for future attainment in the labour market. There is clearly scope for adding to the existing body of research with a view gaining additional insight into these issues.

The following paragraphs summarise the state of the evidence on employment outcomes with respect to those aspects of childhood and adolescent psychosocial development that are of central concern in the current thesis:

Antisocial behaviour - The most consistent body of evidence concerns the relationship between teenage and adult unemployment/job stability and antisocial behaviour observed at earlier ages. The findings from the various papers reviewed offer the unequivocal conclusion that children and adolescents who are observed to be aggressive and more generally antisocial in their behaviour at school and elsewhere face a higher risk of future unemployment or poor and unstable employment records. Six studies looked at employment outcomes in late adolescence and the early twenties, and all find a statistically significant association between poor employment outcomes and antisocial conduct during earlier years. Four of these studies considered antisocial conduct during adolescence, though three papers also considered antisocial behaviour in childhood. Of the nine papers that look at adult employment outcomes (early-mid twenties up to age 36), six find a significant relationship between childhood aggression/antisocial conduct and the risk of future periods of unemployment or having a poor employment record. One study found no significant association using data from a large British birth cohort

born in 1958. Two of the three studies that looked at adolescent conduct problems found that delinquency and violent behaviour were associated with an increased risk of unemployment and a reduction in the time spent in active employment in later years.

The evidence concerning child and adolescent antisocial behaviour and future earnings is somewhat less certain. One paper reports no statistically significant link between adolescent delinquent behaviour and adult earnings in a British birth cohort. The other paper that considered adolescent antisocial conduct found that adult earnings were lower among US adult males who had been observed to be prone to violent conduct during adolescence. However, this same study also reports a positive association between earlier violent conduct and earnings *growth* over time. Using the same source of US longitudinal data another paper reports a consistently negative association between 10 indicators of poor adolescent socialisation skills and adult earnings (for white male only). There was evidence that this effect is mediated via lower educational attainment among school pupils reported to be less socially well-adjusted.

Three papers explicitly considered childhood antisocial conduct and future earnings - all using British birth cohort data. One study reported no significant link with low income status in adulthood. Another found that female wages were *positively* associated with childhood antisocial conduct, with no statistically significant association observed for males. A third study that considered adult pay found that men and women who were more aggressive in childhood were paid less, though male wages within higher status jobs were found to be positively associated with a measure of childhood aggression.

Emotional difficulties - The evidence concerning the long-standing effects of emotional difficulties in childhood and adolescence is far from conclusive. Five papers considered

teenage employment outcomes in relation to emotional distress or related issues (i.e. neuroticism and self-esteem) in adolescence. Only two of these studies found as significant association with less favourable outcomes (not continuing with further education and the likelihood of being sacked in late adolescence). Two of these papers did not control for a range of other antecedent risk factors, thus making interpretation of the findings more difficult.

Three papers examined the association between childhood emotional difficulties (including one that considered childhood self-esteem) and adult employment outcomes. Lower childhood self-esteem was associated with longer spells of adult male unemployment in a British birth cohort. The evidence on the long-standing effect of more direct measures of childhood emotional distress is less certain: one study reported a significant and positive link between childhood anxiety and extended periods of adult unemployment while the remaining paper that considered emotional distress in childhood found no significant association with the probability of being unemployed at age 33. The findings from the latter might be considered as more reliable - the results were based on data drawn from a large national birth cohort while the author also controlled for a much wider range of childhood antecedent factors. However, both studies do consider different adult unemployment measures - the former using a measure of unemployment duration - making more direct comparisons of the findings more difficult. Two papers report lower earnings for workers who had lower self-esteem in childhood or adolescence. No studies included in the review looked specifically at earnings in relation to more direct measures of emotional wellbeing (e.g. childhood anxiety or depression).

Attention deficit problems/hyperactivity - As with emotional distress, the evidence relating to the long-term employment effects of child and adolescent inattentiveness/hyperactivity is (comparatively) uncertain. In three papers that examined British birth cohort data, one reported no link between childhood inattentiveness an adult unemployment, another reported a statistically significant association between . increasing inattentiveness and longer spells of female employment, with the third study reporting a statistically significant link between childhood attention deficit/ hyperactivity disorder and the likelihood of living in a workless household as an adult. The same three papers also considered attention deficit problems/hyperactivity in relation to adult pay. Two report a significant association between lower female pay and inattentiveness/hyperactivity in childhood (one looked at wages the other at exposure to low pay). The other paper also reported a significant association between inattentiveness in childhood and a higher likelihood of exposure to a low adult wage - this time for males.

The empirical studies described in chapters 2 and 3 will seek to add to this literature. Both describe studies that use existing longitudinal data to explore the association between psychosocial problems in late childhood and economic attainment at age 30 (or thereabouts). Chapter 2 also considers post-school teenage employment outcomes. Both chapters seek to make the following contributions:

1. To expand the existing body of evidence given the uncertainties that still exist in relation to many of the key relationships of interest - most notably concerning childhood antisocial conduct and future earnings, and whether emotional distress and attention deficit problems/hyperactivity in late childhood have any long-

standing effects on earnings and other employment outcomes. All the empirical investigations seek to condition these effects on a wide array of other childhood variables.

- 2. To examine in more detail the relationship between adult earnings and psychosocial problems in late childhood (many of the exiting studies look at employment participation). As well as considering adult earnings, chapter 3 also investigates the relationship between psychosocial problems and occupational status at age 30. Earnings are also examined for specific levels of occupational status. Together, this exploratory work will seek to provide additional insight into the extent to which the effects of behavioural and emotional problems are mediated through factors that are more likely to govern access to higher skilled and better paid work. It also seeks to contribute to our understanding of the extent to which the relationship between psychosocial problems and earnings various according to the level of occupational status achieved. The study reported by Bowles and colleagues, for example, provided some initial indication that these effects may be important in relation to childhood aggression.
- 3. The analysis reported in chapter 3 also aims at providing a better indication of the potential impact of psychosocial problems in late childhood on earnings over the working life cycle. A series of forward projections are made that combine coefficient estimates from the relevant multivariate estimations (from chapter 3) with cross-sectional UK earnings data. These projections are carried out with a view to comparing, in present value terms, average earnings across different

ages with the future income streams associated with more severe psychosocial difficulties identified in late childhood.

4

.

2 Psychosocial development in late childhood and economic attainment: evidence from a cohort of working class British males

Summary

The association between economic attainment and childhood psychosocial development is examined within a cohort of British males of working class origin. Those who were more hyperactive and inattentive at age 8-9 were estimated to earn significantly less than their peers at age 32. Confirming findings reported in the literature, antisocial conduct at age 8-9 was associated with a relatively high rate of teenage job turnover and lengthy spells of teenage and adult unemployment.

2.1 Introduction

This chapter describes the first of two empirical explorations into the relationship between psychosocial problems observed in childhood and economic attainment later in life. The study reported in this chapter specifically examines the relationship between hyperactivity and poor attentiveness, antisocial conduct and neuroticic tendencies (a risk factor for emotional distress) in childhood and various measures of adult economic status. It utilises data from the Cambridge Study in Delinquent Development (Farrington, 2001; West & Farrington, 1977), a long-term exploration of delinquent development in a cohort of males who attended primary school in an area of inner London during the 1960s. The longitudinal nature of the CSDD, and its rich array of prospectively generated information on the socio-economic circumstances and psychosocial characteristics of cohort subjects, provides an opportunity for assessing the extent to which some key aspects of childhood psychological and behavioural development contributed to future labour market attainment. A series of empirical models are estimated with a view to examining the association between childhood characteristics and three measures of future attainment: **1**. earnings at age 32; **2**. exposure to extended spells of teenage and adult unemployment; and **3.** relatively high levels of teenage and adult job turnover.

The chapter is structured as follows. The design of the CSDD is initially described followed by a description of some of the main characteristics of the cohort. After providing details of the methods of analysis that were employed, the main findings are presented followed by a discussion of the results.

2.2 The data: the Cambridge Study in Delinquent Development

The Cambridge Study in Delinquent Development (CSDD) is a prospective longitudinal study of delinquent development within a cohort of males of mainly working class origin boys who have been studied at various intervals during their childhood, adolescence and adult years. The original aim of the study was to:

"...describe the development of delinquent and criminal behaviour in inner-city males, to investigate how far it could be predicted in advance, and to explain why juvenile delinquency began, why it did or did not continue into adult crime, and why adult crime usually ended as men reached their twenties" (Farrington, 1995).

The study - despite the reference to Cambridge in its title - initially recruited a sample of 411 boys who attended primary school in an area of inner London during the early 1960s. However, since its beginning, the CSDD (sometimes referred to as the "Cambridge cohort") has been managed from the Institute of Criminology at the University of Cambridge, initially by Professor Donald West and then latterly by Professor David Farrington.

Over a number of years the CSDD has delivered a range of key findings of both academic and policy significance (Farrington, 1995, 2001, 2003). The demonstrated link between low intelligence, poor parenting skills, impulsive behaviour and poverty observed in childhood and delinquency in later years are of particular note. The longitudinal nature of the CSDD makes it ideal for studying the importance of childhood factors, albeit within an exclusively male and working class cohort, as determinants of economic attainment later in life. The criminological focus of the data generated by the CSDD does not preclude its application to studies of economic relevance. Nagin & Waldfogel (1995), for example, have already applied data from the CSDD to an analysis of the effects of criminality and criminal convictions received between the ages of 17 and 19 on employment stability and pay over this period. The focus of the CSDD on developmental processes from an early age, and the wide range of hypotheses and associations it originally set out to test, has meant that a rich array of data on the individual characteristics of cohort members and the economic and social circumstances they were exposed to over an extended period of time has been accumulated. Information on a range of social outcomes observed during adolescence and adulthood has also been collected, many of which are of obvious economic relevance - earnings, occupational status and employment participation are all examples. The study presented in this chapter follows on from an existing piece of work, based on the Cambridge cohort, that has looked into the future employment impact of different developmental trajectories from late childhood up to age 16 (Healey et al., 2004). The emphasis in that study was exclusively focussed on the long-term effects of persistent antisocial tendencies from late childhood. This chapter is restricted to a consideration of the effects of problems observed in late childhood alone, and is also somewhat broader

in its more detailed consideration of a wider set of childhood psychosocial characteristics, including hyperactivity/poor attentiveness and neuroticism.

2.3 Design of the CSDD 1

The CSDD began in 1961. All 399 boys registered with six state primary schools located in an inner-city area of south London were recruited. The schools were located within a one mile radius of a locally based research office. While there were other schools located within the study catchment area, the schools included were those that agreed to participate. A further group of boys (N=12) were recruited from a school for children with learning disabilities in order to make the sample representative of the population of 8-9-year-old males living in the area at the time. Therefore, the initial sample consisted of 411 subjects in total.

The children were subsequently interviewed and tested at school by psychologists at various ages during their childhood and adolescence and parents were also interviewed at home by psychiatric social workers. Further interviewing also took place after the boys had left secondary school, and a sub-group were also studied in more detail when they were in their early twenties. The latest completed adult follow-up was carried out in the mid 1980s, when the cohort was aged 32. The economic study reported in this chapter concentrates on psychosocial data collected on each boy between the ages of 8 and 10 years. Variables identified at this age are examined in relation to a series of employment outcomes prospectively observed at ages 18/19 and at age 32. Of the 410

¹ A full description of the study design, and the characteristics of the boys who were recruited, can be found in Farrington (2003).

boys who still alive at age 18-19, 389 (95%) were successfully traced and interviewed. Of the 403 who were still living at age 32, 378 (94%) were followed-up successfully.

2.4 Characteristics of the Cambridge cohort

Using the Registrar General's occupational classification system, close to 95% of the 411 boys recruited could be generally described as coming from a working class background. Most fathers were employed in skilled, semi-skilled or unskilled manual occupations. Compared to the general population in the early 1960s, the CSDD overrepresented boys from this type of background - a reflection of the area in which they lived and went to school: at that time, nationally only around 78% of males of that age were from working class families (Farrington, 1995). In terms of ethnicity, 357 of the participants were white and brought up by parents of British origin, 12 had at least one parent of West Indian or African origin, 14 had at least one parent of Irish origin, 12 boys had Cypriot parentage and the remaining 16 boys had at least one parent from another European country or Australia. The vast majority of the parents of the 411 boys originally recruited had not been educated beyond the age of 14 years. At the study intake, most boys had fathers who were in stable employment (80%) though nearly 10% had fathers who had previously experienced either periods of unemployment or frequent changes of employment. Around 40% had non-working mothers. Nearly a half were cohabiting with at least one brother or sister.

The social environment to which the cohort were exposed during their childhood could not be viewed as typical for the population as a whole. Ratings of living conditions made by psychiatric social workers on initial recruitment to the study were variable, with a third living in housing conditions that were considered as "unsatisfactory". This included over-crowded conditions and residence in a property selected for slumclearance - a common occurrence in British inner cities during the early 1960s. A significant minority (20%) of the study intake were living in families who had received support from social welfare agencies in specific response to financial and social difficulties. Just over 13% of the boys were rated as being exposed to a severe "social handicap" - a combination of various sources of adversity including physical neglect, large family size, low income, poor housing and contact with social agencies.

By the time they were aged 16-17 three-quarters of those successfully traced had left full-time education. At 18-19 years of age 84 % were still living with their parents. Nearly 80% were working while 6% were still at school or in full-time education. Close to half had managed to obtain formal qualifications by the time they were 18-19, including 'O' Levels, 'A' Levels or vocational qualifications. Thirty-two-percent had been employed in the same job for two years. Only 8 subjects had left school and never had a job (excluding those who continued their schooling). Thirty-five percent were employed in semi-skilled employment while 41% were in either a skilled, clerical, or professional/managerial position (or at least training for these types of position). The remainder were either in unskilled work (around 15%) or had never had a job.

Of the 378 who were successfully traced and interviewed at age 32, 70% were married, 54% were married with children, 15% were married with no children, while 18 men (4%) were neither married or had any children. Forty-eight percent owned the house or flat where they lived, with over a third renting from a local authority or living in housing association accommodation. In terms of occupational classification, 43% were employed in a skilled job (manual or non-manual) while nearly a third had reached

either managerial or professional status in their line of work. A relatively small number - just 7% - were working in manual, unskilled occupations in their early thirties.

2.5 *Methods*

2.5.1 Childhood psychosocial indicators

The CSDD contains multiple indicators of childhood behavioural, psychological and social status derived from prospectively administered tests and parental interviews carried out when the cohort were aged between 8 and 10 years. They include a large number of dichotomous measures indicating the presence or otherwise of specific characteristics relating to the children, their parents or their general living environment. All these variables have been already been used to examine the major childhood risk factors for life-course delinquent development in the main body of work relating to the CSDD (Farrington, 2001).

Three of these measures are of particular relevance to the current chapter. The first concerns antisocial conduct in childhood. It identifies those children who, at age 8-9 years, were regarded as being the most troublesome and aggressive at school as determined by ratings made by teachers and peers. A boy was subsequently defined as being "troublesome" if they were located within the highest quartile on ratings of bad behaviour. The second indicator relates to hyperactivity and poor attentiveness. Again, it identifies children in the highest quartile on teacher ratings of restlessness and poor concentration levels in the classroom at age 8-9. Both these indicators have already been shown to be significantly correlated with future delinquent and antisocial personality development within the Cambridge cohort (Farrington, 2001). The third indicator of

relevance identifies those children who were regarded as having a "neurotic" temperament at ages 8-10 based on ratings made by social workers. This type of temperamental feature is indicated by emotional sensitivity and a pre-disposition to stress, anxiety and moodiness. Moreover, there is evidence to suggest that any genetic influence on the occurrence of depressive - and anxiety-related psychiatric disorders are mediated via the presence of neuroticism (Rutter, 2002). Again, children were defined as exhibiting this specific temperamental characteristic if they were located within the highest quartile on social worker ratings of neuroticism. Each of these three measures are used to analyse the relationship between psychosocial problems in late childhood and labour market attainment at age 32 within the cohort.

2.5.2 Economic attainment

Two prospectively determined indicators of economic attainment post-school leaving are explored followed by three measures of economic status utilising interview data collected at age 32:

- Extended periods of unemployment at ages 18-19 a dichotomous variable identifying subjects who reported experiencing more than 18 weeks of unemployment over the previous 12 months.
- Unstable employment record at ages 18-19 a dichotomous variable identifying teenage subjects who reported having three or more jobs since leaving school.

- Weekly earnings at age 32 self-reported weekly take-home pay. The analysis is restricted to earnings at age 32 in order to avoid the complications of interpreting earnings differentials at a younger age: active investments in human capital during the post-school years could serve to depress earnings differentials between those individuals whose longer-term wage prospects are generally more favourable compared to those who have relatively poor employment outcomes on leaving school (i.e. those entering unskilled jobs).
- Extended periods of unemployment at age 32 a dichotomous variable identifying subjects who reported experiencing more than one year of unemployment over the 5-year period prior to age 32.
- Unstable employment record at age 32 a dichotomous variable identifying those subjects who reported having 3 or more jobs over the 5-year period prior to age 32.

2.5.3 Other explanatory variables

The previous chapter presented a simple diagrammatic account of those childhood factors that are likely to play some role in determining future economic success (figure 1.1). These will potentially include family-related and parental characteristics (e.g. income, time investments, quality of parenting) as well as other child-specific endowments (e.g. ability/cognitive attainment). Many of these factors are also likely to have some independent impact on the psychosocial development of individuals from an early age: for example, low intelligence, limited parental supervision and the size of the

family economic resource base have all been linked to the development of conduct problems in childhood and long-term antisocial personality development. Levels of parental supervision (and the quality of parenting delivered) and family income will be good indicators of the extent of parental investment in a child's emotional and behavioural development.

Given that these factors are likely to have a joint influence on adult economic status and earlier behavioural and emotional development, it is important to try and control for these relationships when examining the extent to which childhood behavioural and emotional outcomes predict future attainment. In essence, the objective of the current chapter (and the analyses presented in chapter 3) is to quantify intertemporal associations between adult employment outcomes and childhood behavioural and emotional problems while ensuring that these associations are not contaminated by the effect that other correlated variables which are also likely to have an independent influence on adult outcomes. Multivariate estimation methods used to achieve this by conditioning the main economic outcomes of interest both on indicators of maladjusted behaviour and emotional distress and on an additional set of prospectively measured childhood explanatory variables. The CSDD contains a comprehensive range of dichotomous indicators of family circumstance and child-specific characteristics derived from parent and teacher interviews and psychosocial ratings administered when the cohort were aged between 8 and 10 years. The general model of adult attainment outlined in the previous chapter, and reference to both intuition and the relevant literature concerning the kinds of variables that would need to be controlled for when looking at the key long-term associations of interest, served as the basis for choosing variables for inclusion in the multivariate estimations. These are outlined in more detail below:

- Low non-verbal IQ a dichotomous measure of low non-verbal IQ based on tests conducted at school when the cohort was aged 8-10. As a component of inherited ability and ability determined through environmental factors, IQ is seen as being a significant input in the development of cognitive skills (Cunha et al., 2005) which, in turn, are known to have an important impact on future educational and labour market success (see evidence cited in the previous chapter). As evidenced elsewhere, low intelligence and cognitive skills are also a correlate of poor psychosocial outcomes. Low IQ is therefore included as a control variable within the empirical specifications.
- Low parental income a measure of resource availability in the family using psychiatric social worker impressionistic ratings of the economic circumstances of parents when the cohort was aged 8-10. This serves to indicate the presence of limited economic resources within the family unit with subsequent implications for material investments in psychosocial development (previous work on the Cambridge cohort suggests that exposure to more serious material deprivation was a risk factor of less favourable long-term psychosocial outcomes; (Farrington, 2001)). Economic and social disadvantage within the family unit may also influence future levels of attainment via other transmission mechanisms not otherwise controlled for within the empirical specifications adopted here, with the implication that this variable should be included as an extra explanatory variable.

- Poor parental supervision a more direct measure of the quality and quantity of time allocated to child development and upbringing - based on a dichotomous variable derived from social worker ratings of parental rule making and
 vigilance when the cohort were aged 8-9.
- *Harsh parenting* a dichotomous variable based on social worker ratings of the quality of parenting, identifying exposure to harsh and inconsistent discipline at ages 8-10.
- Disrupted family environment a dichotomous measure based on data collected from interviews when the cohort were aged 8-10 on family events including parental separation.
- Parental conflict a dichotomous measure identifying exposure to poor parental relations, based on social worker ratings of parental conflict made when the cohort were aged 8-10. It seems plausible that both a disrupted family environment and unstable parental relationships could disrupt emotional and behavioural development while at the same time impacting on variables of potential significance for future attainment (e.g. the productivity of schooling inputs).
- Large family size a dichotomous indicator of time allocated to child development and upbringing based on the number of siblings living with a child at ages 8-10, with 4 or more siblings signifying a "large family". Other things equal, exposure to a larger family size would imply the receipt of a lower level

of parental input (including time and other economic resources of significance for developmental outcomes).

2.6 Estimation methods

The association between childhood psychosocial outcomes and earnings at age 32 are examined using ordinary least squares regression (OLS) with the natural log of weekly earnings as the dependent variable. This is a widely adopted specification in econometric studies of wages and earnings variability. OLS assumes that explained variance in earnings is normally distributed. The appropriateness of using an OLS specification with a logged dependent variable was therefore tested using a procedure recently advocated by Manning & Mullahy (2001) based on the Park test (Park, 1966). They recommend generating log-scaled residual earnings using one of the generalised linear model (GLM) estimators (McCullagh & Nelder, 1989). If, as was found to be the case here, the log-scale residuals are heavy tailed (a coefficient of kurtosis of >3) then the use of OLS with a logged transformed dependent variable is recommended as an appropriate estimator.

The model of log of weekly earnings (y_i) can therefore be generally represented as:

$$\log y_{i} = \alpha_{i} + \sum_{i=2}^{\kappa} \beta_{j} X_{ji} + u_{i}$$
 [2.1]

Where α_i is a constant, X_{ji} is a vector of childhood variables including psychosocial characteristics, β_j are the model parameters requiring estimation and u_i is assumed to be an independently and normally distributed random error term. All the explanatory

variables in the earnings equation are dichotomous (dummy) variables. Following (Halvorsen & Palmquist, 1980), the coefficient β is in fact equal to:

$$\beta = \log(1+g) \tag{2.2}$$

with g representing the corresponding true (proportional) effect on y_i associated with the presence of the specific childhood characteristic defined by each dummy in the earnings equation, where g itself is defined as:

$$g = \{\exp(\beta) - 1\} * 100$$
 [2.3]

The relationship between childhood psychosocial problems and the four dichotomous measures of economic attainment are examined using probit estimation (Amemiya, 1981; Dougherty, 2002). Within the probit framework the probability, P_i , of observing either of these outcomes is expressed as:

$$P_i = f(\omega_i) \tag{2.4}$$

where f(.) is the standardised cumulative normal distribution and ω_i is an index of the unobservable propensity towards observing a given outcome:

$$\omega_i = \alpha_1 + \sum_{j=2}^k \beta_j X_{ij} + \varepsilon_i$$
[2.5]

where X_{ij} are the childhood explanatory variables, β_j are parameters requiring estimation and ε_i is a random independently distributed error term with a normal distribution. Equation [2.5] is empirically derived using maximum likelihood estimation.²

2.7 Dealing with missing data on explanatory variables

As noted earlier, the rate of successful follow-up was high in the Cambridge cohort, with a relatively small percentage of the initially recruited sample lost to follow-up either because of death or because they could not be traced. Of those cases who were successfully included in the 18-19 and age 32 follow-ups, a high percentage have complete data on each of the employment measures of interest. The largest percentage of cases with missing data of this type is 8% (for the teenage job stability measure). Loss of information is, however, compounded by incomplete information on some of the childhood explanatory variables included in the multivariate estimations (the main culprits are evident in table 2.1 presented in the results section: i.e. those with recorded observations of less than 411 - the full childhood sample at intake).

Most statistical software packages carry out complete sample estimations: multivariate equations are determined only for those observations for whom there are complete data on both the explanatory variable and each of the dependent variables of interest. However, this can lead to a significant loss of information. For example, while weekly earnings are observable for n=326 of the cohort in full-or part-time work at age 32,

² The logit model can also be used to model dichotomous outcomes. It assumes a slightly different (logistic) distributional relationship between the probability of observing a given outcome and ω_i , though in practice it has been shown to generally yield similar results to the probit (Amemiya, 1981).

missing data on each childhood variable would lead to a complete case OLS regression carried out on only 285 observations: 41 cases are excluded representing around 12% of the 326 cases with complete earnings data.

Rubin (1987) describes three types of missing information: that which is missing completely at random (MCAR); data missing at random (MAR) - a process of incompleteness that is at least conditional on *observable* factors within the data; and data not missing at random (NMAR) - a systematic (non-ignorable) process whereby the probability of observing missing information is dependent on the specific variable of interest. Where data are assumed either to be MCAR or MAR then imputational methods can be used to generate values where data are absent on given variables. This may be important if there is a risk that missing data are conditional on other sample characteristics (i.e. MAR), as this could significantly change the nature of the sample upon which any estimations are carried out (Rubin, 1987).

Unconditional and conditional mean imputations are examples of commonly employed techniques for imputing values where data are missing: the later uses the sample mean for a variable based on the observed data while the latter employs regression techniques to predict means that are conditional on a set of observable characteristics. Both, however, assume that the imputations themselves are non-stochastic and therefore run the risk of underestimating variances which can lead to bias standard error estimation and inappropriate statistical inferences.

As an alterative Rubin (1987) recommends the adoption of a technique known as multiple imputation (MI), which attempts to explicitly account for the true stochastic

69

nature of imputed data when estimating parameters of interest. Rather than using a single mean for each missing value, the MI method generates values drawn from a predictive distribution of missing values. Different imputations for missing data are generated m times thereby leading to the generation of m complete data sets containing both observed and imputed data: m is normally set at between 5 and 10, though minimal statistical information is added by carrying out more than 5 sets of imputations. Five imputed data sets were therefore used to model adult economic attainment using the NORM Statistical software (Schafer, 1999).

Standard methods of econometric estimation can then be routinely carried out on each of the complete data sets. Single estimates of the parameters of interest in the estimated model (e.g. the proportional change in earnings associated with a given indicator) and its associated variance are derived using a method proposed by Rubin (1987) (the variances are used by the NORM soft ware to compute appropriate standard errors, t-statistics and 95% confidence intervals). The parameter of interest ϑ is calculated as:

$$\hat{\vartheta} = \frac{1}{m} \sum_{l=1}^{m} \hat{\vartheta}$$
 [2.6]

Equation [2.6] is simply the average of each estimated model parameter across the m inputted data sets. The total variance is estimated as:

$$\operatorname{var}\left(\hat{\vartheta}\right) = \frac{1}{m} \sum_{l=1}^{m} \operatorname{var}\left(\hat{\vartheta}\right) + \left[\frac{m+1}{m}\right] \left[\frac{1}{m-1}\right] \sum_{l=1}^{m} \left(\hat{\vartheta}_{l} - \hat{\vartheta}\right)^{2} \qquad [2.7]$$

The first term in this expression $-\frac{1}{m}\sum_{l=1}^{m} var(\hat{\vartheta})$ - measures the "average of withinimputation variances" - the variance in the mean costs within each imputed data set. The second term $-\left[\frac{1}{m-1}\right]\sum_{l=1}^{m} (\hat{\vartheta}_{l} - \hat{\vartheta})^{2}$ - identifies the "between imputation variance" - or the variance in mean costs across the *m* data sets. This essentially builds in the stochastic component associated with the data imputations upon which the estimated are partially based. The term $\left[\frac{m+1}{m}\right]$ is a bias correction factor.

As there was no a-priori reason for suspecting any of the data on each of the explanatory variables derived from the childhood BCS70 data to be NMAR, multiple imputation methods were used to impute values where data were incomplete.

2.8 Results

Table 2.1 provides descriptive statistics for each of the childhood variables used in the multivariate estimations and each economic attainment.

Table 2.1

	Mean	Std. Dev	N
Economic attainment	· · · · · · · · · · · · · · · · · · ·		
Weekly take home earnings (1985 prices)	171.50	99.09	326
Log of weekly take home earnings	5.03	0.45	326
Unemployed for > 18 weeks (age32) (1= yes;0=no)	0.11	0.31	368
Unemployed for > 1 year (age32) $(1 = yes; 0 = no)$	0.16	0.37	376
Unstable employment record (ages 18/19) (1= yes;0=no)	0.50	0.50	361
Unstable employment record (ages 32) (1= yes;0=no)	0.21	0.41	369
Childhood variables			
Troublesome/antisocial (1= yes;0=no)	0.22	0.42	411
Restless/Poor concentration (1=yes; 0=no)	0.20	0.40	410
Neurotic (1=yes;0=no)	0.29	0.46	395
Low non-verbal IQ (1=yes;0=no)	0.25	0.43	408
Low family income (1=yes;0=no)	0.23	0.42	411
Poor parental supervision (1=yes;0=no)	0.18	0.38	383
Harsh discipline by parents (1=yes;0=no)	0.28	0.45	391
Large family (1=yes;0=no) -	0.24	0.43	411
Parental conflict (1=yes;0=no)	0.22	0.41	373
Disrupted family (1=yes;0=no)	0.22	0.41	411

Childhood variables (8-10 years of age) and measures of economic attainment at age 32: descriptive statistics

Note

Mean of dummy (0-1) variables identify proportion of the sample with specified characteristic.

As a prelude to the multivariate estimations, Tables 2.2 and 2.3 provide some descriptive comparisons. While not as reliable as the multivariate estimations in terms of identifying whether there are any important relationships between childhood psychosocial outcomes and later employment outcomes, they do offer an initial insight into some interesting longitudinal patterns of association within the data. Table 2.2 considers average (mean) earnings at age 32 and the presence of each of the three main childhood characteristics of interest. At a purely descriptive level (and without testing the statistical significance of any differences) there is some evidence that those subjects who were identified as either antisocial, prone to restless/poor concentration or neurotic at ages 8-10 had a lower weekly take-home pay at age 32, though the difference in average earnings compared to the rest of the cohort is not particularly substantial. The largest difference relates to poor concentration/restless behaviour.

	MEAN WEEKLY EARNINGS (£)			
Troublesome/antisocial	166.27			
Rest of cohort	172.72			
Restless/poor concentration	150.53			
Rest of cohort	176.13			
Neurotic	165.02			
Rest of cohort	174.42			

Table 2.2 Average weekly earnings at age 32 and childhood psychosocial indicators

Note

Earnings in 1985 prices.

By contrast, the strength of association is much more noticeable when comparing childhood psychosocial characteristics with future job stability and unemployment - particularly during the late teenage years (table 2.3).

Table 2.3

Employment outcomes at ages 18-19 and 32 and presence of psychosocial problems
in childhood

	TROUBLESOME/ ANTISOCIAL	RESTLESS/POOR CONCENTRATION			
Unemployed for > 18		<u></u>			
weeks (ages 18-19)					
Yes	52.8	27.5	32.4		
No	19.5	20.1	29.3		
Unemployed for > 1 year					
(age 32)					
Yes	36.7	28.3	37.0		
No	18.4	17.7	29.0		
Unstable employment					
(ages 18-19)					
Yes	32.0	27.1	32.0		
No	13.3	15.6	26.7		
Unstable employment record (age 32)		•			
Yes	21.3	22.5	32.0		
No	21.1	19.2	24.4		

Note

All figures are percentages.

Over 2.5 times as many subjects who had experienced lengthy spells of unemployment after leaving school had been previously rated as antisocial at ages 8-9. At age 32 twice as many subjects who had experienced in excess of 12 months of unemployment over a 5 year period had been classified as antisocial at age 8-9 compared to the rest of the

cohort. Similarly, there is a strong association between post-school job instability (3 or more jobs since leaving school) and childhood antisocial conduct, though the association does not appear to be sustained when considering job instability at age 32. Childhood neuroticism and poor concentration/restlessness were also more prevalent among those with less favourable teenage and adult employment outcomes, though the associations are generally less marked when compared to childhood antisocial conduct.

2.8.1 Multivariate estimations

Weekly earnings at age 32

The OLS regression on log of weekly earnings is reported in table 2.4. A link test (Pregibon, 1981) was used to assess the appropriateness of functional form. There was no evidence of mis-specification. Heteroskedasticity (unequal error variances) can lead to bias standard error estimation when using OLS. A Breuch-Pagan test was used to assess whether this was likely to be a major problem in this instance (Breusch & Pagan, 1979). The test fails to the reject the null hypothesis of homoskedastic (constant) error variances across all the multiply imputed data sets (all test results are presented in the appendix to the chapter).

		0 0
	В	t-ratio
Antisocial	0.064	0.90
Restless/Poor concentration	-0.131	-1.88
Neurotic	-0.034	-0.60
Low non-verbal IQ	-0.074	-1.20
Low family income	-0.164	-2.21
Poor parental supervision	0.020	0.26
Harsh discipline by parents	-0.004	-0.07
Large family	-0.056	-0.84
Parental conflict	0.005	0.08
Disrupted family	0.035	0.54
Constant	5.108	133.750
Ν	3	26

Table 2.4 OLS regression: dependent variable - log of weekly earnings (age 32)

Note

significant at 1% level significant at 5% level significant at 10% level.

The multiple imputations procedure does not produce summary statistics relating to the estimated model (F-tests of joint significance of explanatory variables or R-Squared statistics). Within each of the 5 multiply imputed data sets that were used to estimate the parameters reported in table 2.4, explanatory power with respect to log of earnings at age 32 was generally low - around 0.05 in each case (the five models based on each multiply imputed data set with associated statistics are presented in the appendix to the chapter).

Poor concentration/restlessness at age 8-9 was found to be associated with lower earnings at age 32 - the average effect on this variable is statistically significant at the 10% level. The estimated coefficient corresponding to a 12% disparity in average takehome pay between workers who were more restless and had greater difficulty concentrating on school work in their late childhood and the rest of the cohort (applying equation [2.3] to the relevant coefficient from table 2.4). In contrast, earnings at age 32 were unrelated to the presence of antisocial conduct and neuroticism in late childhood at that age. Of the other childhood variables, low parental income identified at age 8-9 was the only variable to reach statistical significance (at the 5 % level).

Unemployment and job stability

A link test carried out on each of the probit models did not deliver any evidence of functional form mis-specification. As with OLS, heteroskedasticity is also a potential problem for probit estimation, in terms of the consistency of parameter estimates and variances (Greene, 2003). There is no formal test for heteroskedasticity of unknown form within a probit framework, though a procedure for detecting and correcting for the presence of unequal variances that follow a specific type of functional relationship has been recommended in the literature (referred to as the heteroskedastic probit model (Greene, 2003). However, Keele & Park (2004) have recently shown this approach to be unreliable with model parameters particularly sensitive to the assumptions made regarding the precise nature of the error variance function. Without any strong a-priori grounds for assuming any specific functional form with respect to the error variances the heteroskedastic probit model was not used in this instance. However, given that micro-level data is always likely to be prone to heteroskedasticity (Greene, 2003) a "robust" sandwich estimator is used to estimate test statistics for the coefficients in each of the probit estimations, with a view to correcting for any bias associated with the estimated variances and standard errors (White, 1980).

Teenage outcomes (age 18-19)

Tables 2.5 and 2.6 present the probit estimations for the teenage employment outcomes. In general, across the multiply imputed data sets, pseudo R-squared statistics are in the region of 0.11 and 0.16 for the unemployment and job stability models respectively,

76

with all explanatory variables jointly statistically significant at the 1% level in both cases based a χ^2 distributed likelihood ratio test (see appendix).

	β	Z
Troublesome/antisocial	0.695	3.05
Restless/Poor concentration	-0.281	-1.18
Neurotic	-0.022	-0.10
Low non-verbal IQ	0.433	2.10
Low family income	0.595	2.62
Poor parental supervision	-0.407	-1.70
Harsh discipline by parents	0.199	1.01
Large family	-0.196	-0.89
Parental conflict	0.269	0.95
Disrupted family	0.468	2.32
Constant -	-1.870	10.53
N	30	58

Table 2.5 Probit: Unemployed for > 18 weeks (ages 18/19)

Notes

1.significant at 1% level significant at 5% level significant at 10% level.

2.Robust standard errors used for z- values

Table 2.6Probit: Unstable employment record (ages 18/19)

		
	β	Z
Troublesome/antisocial	0.400	2.16
Restless/Poor concentration	0.050	0.27
Neurotic	0.017	0.07
Low non-verbal IQ	0.403	2.41
Low family income	0.127	0.65
Poor parental supervision	0.040	0.20
Harsh discipline by parents	0.222	1.34
Large family	0.592	3.22
Parental conflict	0.224	1.12
Disrupted family	0.211	1.18
Constant	-0.537	-4.79
Ν	36	51
· · · ·		

Notes

1.significant at 1% level significant at 5% level significant at 10% level.

2.Robust standard errors used for z-values

Antisocial conduct at ages 8-9 is associated with a significantly higher propensity towards extended periods of unemployment and job instability post-school leaving: the effect is statistically significant at the 1% and 5% levels respectively. Linear predictions from both sets of estimations are used to arrive at a predicted probability of observing teenage unemployment or unstable employment for those subjects who were classified as troublesome compared to the remainder of the cohort. The predictions indicate a sizeable differential in the risk of experiencing either outcome. In percentage terms, the risk of exposure to an extended period of unemployment at 18-19 years of age is estimated be around 12% for the antisocial group and only 3% for the rest of the cohort. The probability of having an unstable employment record after leaving school was 45% for those who were relatively badly behaved at age 10 compared to an average of 30% for other cohort members.

Neither restlessness/poor concentration or neuroticism in late childhood were linked to either teenage employment outcomes. Low IQ measured at age 8 is associated with a greater chance of unemployment and an unstable employment record after leaving school - in both cases the effect is statically significant at the 5% level. Low parental income and exposure to a disrupted family life are both associated with a higher likelihood of an extended periods out of work post-school leaving (both significant at the 1% and 5% levels respectively). Poor parental supervision identified at age 10 is associated with a *lower* likelihood of unemployment at ages 18-19 - the effect is significant at the 10% level. Large family size is associated with an increased likelihood of an unstable employment record after leaving school (significant at the 1% level).

Adult outcomes (age 32)

Tables 2.7 and 2.8 present the probit results for the age 32 employment outcomes.

78

	β	Z
Troublesome/antisocial	0.349	1.69
Restless/Poor concentration	0.115	0.56
Neurotic	0.197	1.12
Low non-verbal IQ	0.281	1.51
Low family income	0.382	1.78
Poor parental supervision	-0.124	-0.58
Harsh discipline by parents	-0.074	-0.42
Large family	0.081	0.39
Parental conflict	-0.005	-0.03
Disrupted family	-0.093	-0.47
Constant	-1.318	10.05
Ν		376

Table 2.7 Probit: dependent variable - unemployed for >1 year over 5 years prior to age 32

Notes

1.significant at 1% level significant at 5% level significant at 10% level. 2.Robust standard errors used for z-values

	β	Z
Troublesome/antisocial	0.010	0.05
Restless/Poor concentration	0.197	1.03
Neurotic	-0.150	-0.88
Low non-verbal IQ	-0.131	-0.72
Low family income	0.026	0.12
Poor parental supervision	-0.058	-0.26
Harsh discipline by parents	-0.092	-0.50
Large family	-0.049	-0.25
Parental conflict	-0.006	-0.03
Disrupted family	0.018	0.10
Constant	-0.712	-6.18
Ν	30	69

Table 2.8Probit: Unstable employment record (age 32)

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2.Robust standard errors used for z-values

None of the childhood explanatory variables are statistically significant in the model of job stability at age 32. Childhood antisocial conduct is, however, associated with a higher likelihood of lengthy spells of unemployment, an association that is statistically significant at the 10% level. The predicted probability for observing this outcome for the antisocial group is 17% compared to 9% for the rest of the cohort. Low parental income is also linked to a higher risk of unemployment at age 32: the estimated effect on this variable is significant at the 10% level.

2.9 Conclusions

This chapter explored the relationship between childhood psychosocial problems and future economic attainment within a cohort of British males of largely working class origin. A number of relationships were explored using multivariate methods of estimation applied to a data set containing a rich and varied array of information relating to child development and teenage and adult labour market attainment. More specifically, the reported econometric estimations give an indication of the degree of inter-temporal association between outcomes observed at age 8-10 and later employment status and earnings attainment. It is therefore important to stress that casual pathways between childhood problems and adult outcomes within the Cambridge cohort have not been examined. The impact of childhood conduct problems on adolescent and adult employment outcomes, for example, are likely to be mediated via other processes including poorer schooling outcomes and the development certain life-styles and personality characteristics that are not generally conducive to stable employment patterns. Moreover, antisocial conduct observed at age 10 will in itself be determined by prior exposure to environmental/familial factors and genetically inherited behavioural tendencies - chapter 1 discussed in more detail some of the salient risk factors linked to adverse psychosocial development.

There were two key findings:

Restlessness/poor concentration at age 8-9 was associated with lower earnings at age 32 - Employees who were classified as being restless and having difficulty concentrating on school-based tasks at age 10 were estimated to earn around 12% less than their peers. This finding is certainly consistent with existing evidence showing of

relatively poor educational attainment among children who experience attention deficit problems and hyperactivity (see chapter 1). It could also reflect a persistence of these problems into adulthood with implications for work-related productivity. Neither antisocial conduct nor neuroticism at age 30 were found to be linked to lower earnings at age 32.

Childhood antisocial conduct was found to be significantly associated with an increased risk of teenage unemployment and employment instability, though less strongly linked to poor employment outcomes identified at age 32 - Those subjects who experienced a relatively high job turnover and lengthy spells of unemployment after leaving school were significantly more likely to have been rated as troublesome when they were aged 8-9. This is consistent with existing evidence on the relationship between childhood aggression/antisocial conduct and poor employment outcomes in late adolescence observed within much of the literature reviewed in chapter 2. The results are not only of statistical significance, but the linear predictions from the probit estimations also translate into significant predicted risk differentials between those who were antisocial at age 8-9 and the remainder of the cohort. Children with conduct problems generally face a higher risk of under-achieving at school (see chapter 1), so it is perhaps unsurprising that these relationships were observed. The greater likelihood of unemployment and job instability for those who were troublesome during their late childhood could also reflect an underlying preference for choosing not to work as would be characteristic of a more general antisocial "syndrome" (Caspi et al., 1998).

The degree of association between childhood antisocial conduct and these kinds of employment outcome weakens somewhat further along the working life cycle. While there was still a statistically significant association with extended spells of unemployment at age 32 (at least at the 10% level of significance), the relationship with higher levels of job turn-over is completely dissipated. Neither childhood neuroticism nor restlessness/poor concentration was associated with any of the unemployment or job instability outcomes at ages 18-19 or at age 32.

2.9.1 Study limitations

The findings presented in this chapter offer fairly robust indicators of the strength of association between measures of childhood psychosocial development and future economic attainment - at least within the exclusively male and predominantly working class cohort who were studied. There are, however, some limitations associated with the findings.

After using imputed values for missing data on each covariate, the final estimation samples each comprised of all 32-year-old males for whom there were observable data on each economic variable of interest. Not all subjects who were included in the original cohort of boys recruited to the Cambridge cohort were therefore included in the estimation samples either due to death, failure to trace those still alive (94% were successfully included in the age 32 wave of interviewing and 95% eligible for follow-up at age 18.19) or missing data on specific items relating to the outcome variables of interest. The results presented in this chapter should, therefore, be viewed with a degree of caution, at least to the extent that the failure to observe everybody at follow-up may be non-random. Systematic loss to follow-up represents a particular problem for econometric estimation where the outcome variable of interest that drives the tendency

to select out of a study over time is unobservable. For example, it is plausible that individuals who have spent extensive periods out of work may be more difficult to trace or interview because they are more geographically mobile and because they have more unstable life-styles. This could lead to a downward bias when assessing the degree of association between a troublesome childhood and future measures of economic and social status. Non-traceability was in fact not a major problem in the Cambridge cohort - a high proportion of the original 411 recruits were successfully contacted and interviewed.

The Cambridge cohort has also a rather limited sample size, at least when compared to some of the larger longitudinal data sets in existence within the UK. This may have also contributed to a lack of statistical significance in certain instances. For example, comparisons of future attainment between groups with and without a specific psychosocial characteristic within a comparatively small data set may be made less reliable when the outcomes of interest are relatively infrequently occurring events (e.g. long spells of unemployment).

It would be inappropriate to assume that the findings reported here would necessarily apply to other cohorts of a different age and from a more representative social background. The Cambridge cohort is exclusively male - a function of the original purpose of the study, which was to examine delinquent development through time (delinquency was less frequently observed among girls at the inception of the study; (Farrington, 1995)). Because the cohort are from a fairly homogeneous working class, inner-urban background, there is likely to be considerably less variation in earnings across workers than might have been observed with more socially representative and

83

heterogeneous cohort of a similar age. For example, the standard deviation in weekly earnings in the Cambridge cohort at age 32 is only 10% of that reported for weekly earnings at age 30 within a large British cohort born in 1970 (these data are looked at in the following chapter).³ A "ceiling effect", resulting from intergenerational economic and social immobility, may have limited full earnings potential within the CSDD, which in turn could suppress differences between workers who had different psychosocial characteristics in childhood, at least when compared to what might be observed within a more nationally representative and socially diverse group of individuals.

The associations observed in this chapter may also, to some extent, be unique to individuals of a specific age. For example, an examination of a younger cohort from a similar social background, may have yielded evidence of a more significant earnings disparity in relation to childhood psychosocial development with access to higher education becoming more widespread through time (reducing previously existing constraints on social mobility). Many children with serious behavioural problems face a higher risk of experiencing poorer schooling outcomes and therefore a lower chance of selection into higher education (see evidence cited in chapter 1). To the extent that educational attainment enhances future earnings potential, this would serve to widen economic disparities across adults with different developmental histories.

The policy environment to which different age cohorts are exposed may also vary considerably at crucial points in their development. The long-term developmental prognosis for a 10 year old with serious behavioural problems born in 1950 may differ significantly compared to an otherwise similar 10-year-old born in 1990. As will be

³ Both standard deviations were compared using a GDP deflator (HM Treasury, 2004a).

discussed in chapter 4, social policy in relation to health, education and social care has only relatively recently began to target in a concerted fashion mental health and behavioural difficulties in childhood and adolescence. Moreover, the employment consequences associated with childhood disadvantage may also depend on the precise labour market conditions to which specific age cohorts are exposed. For example, the changing demand for labour relative to its supply, long-term shifts in employment incentives governed by the social security system, or changes in legislation (e.g. governing the extent to which employers can use information on criminal convictions) may all serve to narrow or widen differences in employment participation rates between individuals with more problematic psychosocial developmental trajectories.

2.9.2 Policy issues

Despite these draw backs, the results presented here begin to signal some important policy issues. Recent policy statements from the UK government have indicated a desire to limit childhood disadvantage with a view to promoting life-time opportunity and personal wellbeing, with an explicit reference made to the importance of targeting behavioural and psychological development at an early stage (HM Treasury, 2003b). The evidence presented here, combined with many of the findings reported in chapter 1, suggests that interventions that can either prevent or ameliorate psychosocial problems prior to entry into the labour market could have some important long-standing benefits for those individuals affected.

Inattentiveness/hyperactivity and antisocial conduct were noticeable candidates in this regard within the Cambridge cohort: there was evidence that the former negatively

impacts on earnings while the latter seemed to be more important in terms of affecting the likelihood of future selection into stable paid employment, particularly at the earlier stages of the working life cycle. It should be stressed, however, that the multivariate analyses presented earlier provide estimates of *average* effects: in reality, children who present with specific developmental problems are likely to be heterogeneous in terms of the extent to which the problems they experience limit their future economic and social development. This is particularly noteworthy with respect to antisocial conduct. Children in the Cambridge cohort who were more badly behaved in this regard were estimated to face a greater average risk of experiencing poor teenage employment outcomes and lengthy periods of unemployment at age 32. However, by no means all children with this characteristic went on to experience adverse employment outcomes. In fact, those men in paid employment at age 32 who had also been behaviourally problematic at age 10 were found to fair no worse in terms of how much they earned each week compared to their peers. Further exploration of the data point to a greater prevalence of persisting antisocial tendencies among those who were badly behaved at ages 8-9 who also went on to have a relative high level of job turnover when they were teenagers compared to antisocial boys who experienced more stable employment patterns: 18% of the former had received multiple criminal convictions up to age 17 compared to just 2% of the latter. The antisocial-unstable employment group were also significantly more likely to have reported involvement in violent behaviour (fights etc.) and heavy drinking at age 18-19. A key question for policy is therefore whether there are effective means of selecting out those children who present with behavioural problems that are more likely to become persistent through time - with attendant consequences for employment - with a view to exposing high risk groups to

interventions that are effective at improving long-term behavioural trajectories. This issue is returned to in subsequent chapters.

In chapter 3 the types of longitudinal relationships explored here are examined within a larger cohort of British adults. Again the emphasis is on examining the relationship between psychosocial difficulties observed in late childhood and labour market attainment, though exclusive attention is paid to outcomes observed at age 30. The adults who are studied were part of a nationwide birth cohort, born in 1970. These data provide an opportunity to examine employment outcomes separately for men and women who were from a more diverse and nationally representative social background.

3 Psychosocial development in late childhood and economic attainment: evidence from a British birth cohort

Summary

The relationship between economic attainment at age 30 and psychosocial characteristics identified in late childhood are examined within a national birth cohort of British men and women born in 1970. Attention deficit problems in childhood were found to be the most damaging of psychosocial problems identified at age 10, particularly with respect to earnings. Workers who were more prone to anxiety or poor coordinatory skills at age 10 had a higher chance of living in a low income household when they were 30. Male subjects who had higher age 10 antisocial conduct scores were statistically less likely to be economically active at age 30 - though the predicted incremental risk of being inactive is small in absolute terms for those who had more serious behavioural problems. Male workers who were more severely antisocial as children were estimated to earn significantly more than their peers, particularly those employed in skilled occupations, as were women in employed in managerial occupations.

3.1 Introduction

This chapter develops further the analyses presented in chapter 2. It explores the degree of association between adult economic attainment and childhood psychosocial development in a larger and more socially representative birth cohort of men and women who were born in 1970. Three measures of economic status at age 30 are examined: **1.** weekly earnings; **2.** participation in paid employment and other activities relating to skills and human capital development, and; **3.** exposure to low household income (as defined using a conventionally applied definition of relative poverty). After presenting some descriptive comparisons of age 30 outcomes across individual's who had differing psychosocial profiles at age 10, the chapter goes on to describe a series of econometric estimations that seek to parameterise the key relationships of interest conditioning on a wide range of additional factors identified when the cohort were aged 10. Parameter estimates from the modelling of age 30 earnings are subsequently combined with cross-sectional earnings data for different ages taken from a national survey of the UK workforce with a view to projecting forward the effect of

psychosocial difficulties on earnings at age 30 over the remaining working lifecycle. These projections seek to enable some estimate to be made of the long-term cumulative impact on employment income associated with psychosocial problems in late childhood.

The chapter begins by describing the 1970 birth cohort and then provides a description of the main indices that were used to measure psychosocial development when the cohort were aged 10, the measures of adult economic attainment that were utilised and a description of other explanatory variables that were included in the main estimations. The methods of analysis are then described followed by a presentation of the results. The chapter concludes with a discussion of the findings, including an assessment of the study's main limitations and an outline of some of the key policy issues arsing from the findings.

3.2 The 1970 British Cohort Study^{1 2}

The 1970 British Cohort Study (BCS70) is one of four large scale national and on-going birth cohort studies currently in existence in the UK (NR. Butler et al., 1986; Bynner et al., 2000). The other three include the 1946 birth cohort, otherwise referred to as the National Survey of Health and Development (Wadsworth, 1991; Wadsworth & Kuh, 1997), the 1958 birth cohort, also known as the National Child Development Study (Centre for Longitudinal Studies, 2004) and the Millennium cohort study instigated in 2000 (Centre for Longitudinal Studies, 2004). Initially covering all 17,198 children born in England, Scotland, Wales and Northern Ireland over a 1-week period during April 1970, the BCS70 was originally designed as a study of obstetric and neonatal care and

¹ The BCS70 is currently directed from the Centre for Longitudinal Studies, Institute for Education, University of London.

² More details regarding the response to the age 30 survey can be found in Bynner et al. (2000).

birth outcomes (Chamberlain et al., 1973, 1975), and has subsequently broadened into a more general study of health, educational and social development within a nationally representative birth cohort. Along with the other British Birth cohorts, the BCS70 has become an increasingly important source of data for examining the impact of social disadvantage and cognitive and non-cognitive (psychosocial) aspects of child and adolescent development on future adult economic and social outcomes (Feinstein, 2000; Schoon et al., 2002; Feinstein, 2003; Feinstein and Bynner, 2004; Brassett-Grundy, 2004). Since 1970 their have been a series of major data collection sweeps: in 1975 (when the cohort were aged 5); 1980 (age 10), 1986 (age 16) and 1996 (age 26) (Butler et al., 1986; Bynner et al., 1997; Osborne et al., 1984). The fifth and latest wave of interviewing took place in 1999/2000 when the cohort were aged 30 (Bynner et al., 2000).

3.2.1 Characteristics of the age 30 sample

The bulk of the analyses presented in this chapter relate to those births who were successfully traced and interviewed at age 30. Of the 17,198 individuals comprising the original cohort, 11,261 (65%) were successfully included in the age 30 data sweep. Forty-nine percent of those followed-up were male while 94% were classified as being white and of British origin. Sixty-seven percent were either married or co-habiting at age 30^3 - slightly less than the proportion of those who males who were married or cohabiting at age 32 in the Cambridge cohort. Nearly 60% of those who were either married or cohabiting had at least one child. Over 40% of BCS70 males and females were employed in either manual or non-manual skilled occupations. This compares with

 $^{^{3}}$ These proportions are estimated for those subjects for whom specific characteristics at age 30 (e.g. marital status) could be identified.

43% of the Cambridge cohort at a similar age. Over 40% were also employed in a managerial or professional position compared to only a third of the Cambridge cohort, while only 2% of BCS70 males and females were working in unskilled jobs at age 30, compared to 7% of those followed-up in the by the CSDD.

Those followed up at age 30 were born into and brought up within a varied range of circumstances, as reflected by differences in individual, parental and wider environmental factors identified during earlier data sweeps. At age 10, 47% had a father employed in a skilled occupation while the fathers of just over 5% of the 10-year-old sample who were working in unskilled jobs. Twenty-seven percent were living in public housing in a town or city. A small number - only 0.5% - were living away from their parents in a residential care setting, while just over 1% were either in the care of social care agencies or had experienced formal care arrangements prior to age 10. As a whole, the BCS70 children were clearly not as socially disadvantaged as the boys who were recruited to the Cambridge cohort. Over 85% of 10-year-olds in the BCS70 had lived with the same parents from birth up to age 10 years. Just over a quarter had experienced a significant illness, handicap or developmental problem prior to that age. In terms of their schooling, the vast majority had attended state run schools with only 2.5% attending an independent sector school.

3.3 Methods

3.3.1 Indexing psychosocial development at age 10

An educational questionnaire, self completed by teachers when the BCS70 were aged 10, contained 53 separate items relating to the behavioural and psychological

development of each child successfully followed-up. Teachers were asked to rate the relevance of a specific characteristic in relation to the child in question. Scoring on each item was subsequently standardised on a scale ranging from 1 to 47. The majority of the items used in the BCS70 instrument were drawn from established measures, including the Connors Teacher Rating Scale (Conners, 1969) and the Rutter Teaching Scale (Rutter, 1967). Items typically included psychosocial indicators of relevance to the themes addressed in current chapter, including aspects of antisocial conduct (e.g. bullying and property damage), hyperactivity, attention deficit problems and items relating to emotional wellbeing (e.g. nervousness and anxiety).

The teacher ratings served as the basis for developing more concise indices of psychosocial development based on the information contained in each of the item ratings. The age 10 data also include a series of maternal ratings relating to a similar, though a not identical, set of characteristics. This instrument was, again, based on established measures developed by both Conners (1973) and Rutter et al. (1970). In line with previous studies of the BCS70 data, the teacher ratings were considered to be the preferred source of data on childhood psychosocial development on the basis that teachers are more likely to provide independent and dispassionate assessments of the child in question (Osborne & Milbank, 1987). Nevertheless, the maternal data were retained for use within the multivariate estimations relating to economic attainment with a view to assessing the sensitivity of the findings to the instrumentation and the source of the ratings used in generating an index of psychosocial development across different domains.

Following-on from previous work using the BCS70 childhood data (Berglund, 1999; Brassett-Grundy & Butler, 2004b; Feinstein, 2003), a principle components analysis (PCA; Tabachnick & Fidell, 2001) was used as a data reduction tool with a view to generating a series of numerical indices relating to each of the main age 10 constructs of interest. PCA - a type of latent variable analysis - utilises the correlation structure across multiple ratings made by teachers and parents in order to identify a set of component factors that reflect some underlying latent characteristic of interest. Each component (z_i) is defined as a linear combination:

$$z_i = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n$$
 [3.1]

where $x_1, ..., x_n$ are, in this instance, a set of continuous teacher or parental ratings. The weights associated with each indicator $a_{i1}, ..., a_{in}$ are estimated in order to maximise the variance in z_i across children in the age 10 sample. Separate components are sequentially generated, each accounting for a decreasing amount of the variance across individuals. Each component is assumed to be orthogonal (uncorrelated) with previously generated components. Standardised component, or "factor", scores are generated by PCA each based on the weighted combination of indicators expressed in equation [3.1], and each having a mean of zero with a unitary standard deviation. These can be used as ordinal measures of the severity of a given latent construct for use within multivariate estimation, therefore overcoming the problem of colinearity when using multiple indicators within a single multivariate estimation.

A more complete set of results from the PCA are presented in the appendix to this chapter. Three main psychosocial components of interest were extracted from the PCA

using the teacher ratings, along with an additional index relating to coordinatory skills. These are subsequently used in the multivariate modelling relating to adult economic attainment described later. The list below labels each extracted component from the PCA carried out on the teacher ratings and provides a list of those individual items that were found to be most highly correlated with each latent component:

- Antisocial conduct (highly correlated with teacher ratings of bullying, teasing of others, temper outbursts, property damage, impulsiveness, quarrelling with other children, ease of frustration, sulky/sullenness, complaining about things, interfering with others, restlessness).
- Attention deficit problems (day dreaming, cannot concentrate on tasks, confused/hesitant, squirmy/fidgety, inattentiveness, fails to finish tasks, listless/lethargic, forgetful on complex tasks).
- Anxiety (obsessed about unimportant tasks, afraid of new situations, cries for little cause, behaves nervously, fussy/over-particular, worried/anxious, relations with others tearful/unhappy).
- *Coordination problems* (trips and bumps into things, clumsy at games, difficulty picking up small objects, drops things, accident prone, fearful in movement).

Five components extracted from the maternal ratings were retained for inclusion in the multivariate modelling:

- *Emotional problems* (miserable/distressed, irritable, sullen/sulky, outbursts of temper).
- Antisocial conduct (destroys belongings, fights, not much liked, takes others belongings, disobedient often, often tells lies, bullies others, interferes with other children).
- *Restless-impulsiveness* (very restless, squirmy-fidgety, hums or makes odd noises, restless/overactive, impulsive/excitable, given to rhythmic tapping).
- Attention deficit problems (cannot settle to do anything, inattentive, difficulty concentrating on tasks).
- *Coordination problems* (noticeably clumsy, trips or falls easily, drops things being carried).

3.3.2 Measures of economic attainment at age 30

Four measures of economic status at age 30 are used:

• Weekly gross earnings - derived from data on gross earnings over a specified period of time using self-report data derived from interviews with those members of the BCS70 who successful followed-up at age 30. The measure includes those who were employed in both full-and part-time jobs.

- Occupational status a five point multinomial outcome scale based on the registrar general's occupational classificatory system, identifying jobs of decreasing skill and educational requirements and pay ranging from unskilled occupations through to managerial and professional jobs.
- *Economically active* a dichotomous outcome variable identifying those subjects who were either working part-time or in full-time employment or at least participating in an educational programme or government work training programme.
- Low income status a dichotomous outcome variable identifying those subjects at age 30 who were living in low income households based on a conventionally applied definition of relative poverty. An individual is defined as living in a poor household if equivalised household income from all sources was less than 60% of the national median.⁴ This measure was chosen primarily because of its acceptance as a key social policy indicator within UK government (Department for Work and Pensions, 2004).⁵ Sixty-percent of median equivalised household income was around £146 per week in 1999/2000 (age 30 household income and earnings data within the birth cohort relate approximately to this period). The self-employed were excluded from this measure because the aggregated

⁴ Equivalence scales are routinely use to measure poverty, reflecting the need to standardise for the differing resource needs and scale economies associated with households of varying size and age composition. Equivalised household size was based on the modified OECD scale (Organisation for Economic Co-operation and Development, 2003) which attaches differential weights to household members of different ages: a weight of 1.0 is given to the first adult in a household, 0.5 to other household members aged 14 and over and 0.3 to persons aged under 14 years. Equivalised income per household in guestion.

⁵ Different thresholds have been applied in other contexts. For example, a recent study of poverty dynamics in six OECD countries used a threshold of 50% of the median national equivalised income (Antolín et al., 2001).

equivalised income statistics reported by the UK government leave out those who work for themselves (Department for Work and Pensions, 2004).

Descriptive statistics relating to each of the age 30 outcome measures are presented in Table 3.1.

. •

	MALES			FEMALES				
	Mean	Std. Dev	%	N	Mean	Std. Dev	%	N
Economically active								
(0=no; 1=yes)	0.92	0.28	92.0	5430	0.76	0.43	76.0	5752
Low income status								
(0=no; 1=yes)	0.30	0.46	30.0	4379	0.30	0.46	30.0	4990
Occupational status	2.65	0.85		4830	2.71	0.81		4241
1.Professional			7.97				4.43	
2.Managerial/technical			34.27				35.68	
3.Skilled			44.99				46.36	
4.Semi-skilled			10.70				11.41	
5.Unskilled			2.07				2.12	
Gross weekly earnings (£)	536.54	1752.63	_	4467	350.85	1161.35	-	3856
Log of weekly earnings	5.93	0.71	_	4467	5.366	0.94	-	3856

Table 3.1Economic attainment at age 30: descriptive statistics

3.3.3 Other explanatory variables

As in chapter 2, the multivariate estimations also condition on a range of other covariates measured when the age 30 sample were 10-years-old. Again, these were included as a means of controlling for characteristics that might jointly co-vary with the psychosocial indicators and the age 30 economic variables of interest. The general model of adult attainment described in chapter 1 (diagrammatically described in figure 1.1) provided a general framework of reference for the econometric specifications reported in this chapter. As with the analyses in the previous chapter, decisions regarding which variables to include in the specifications were also made with reference to the psycho-developmental literature as well as, in certain instances, intuition and expert guidance on what factors might potentially confound estimated associations between the main childhood psychosocial variables of interest and adult economic attainment.

The nature and breadth of childhood measures covered by the BCS70 are somewhat different to those generated by the CSDD (see previous chapter), but they offer potential indicators of the same types factors that were controlled for when modelling employment outcomes within the Cambridge cohort. They include measures of: cognitive skills attainment; childhood health and development; indicators of non-cognitive attainment including aspects of motivation (including self-esteem and "locus of control"); indicators of the quality and quantity of parental time and other resource investments in child development (hours of employment, parental health and education, family income); evidence of severe social disability within the family and stability of

upbringing (taken into care, parental separation); neighbourhood characteristics and schooling inputs (independent versus state school attendance, pupil-teacher ratio).

These variables are defined in more detail below:

Child-specific characteristics at age 10:

- Cognitive skills attainment combined verbal and non-verbal test scores of cognitive attainment derived from the British Ability Scales administered at age 10 (Elliot et al., 1978) a higher score indicating a greater level of cognitive attainment. Poor cognitive skills are known to limit future attainment (see evidence cited in chapter 1) and are also correlated with less favourable psychosocial outcomes in childhood and adolescence (evidence also cited in chapter 1).
- *Motivational measures* the Child Health and Education Study, which was responsible for the design and conduct of the age 10 interviews, sought to include indicators of child motivation as an explanatory factor in their original investigations into the reasons for variability in educational attainment (Butler et al., 1997). Two measures of motivation were used: the LAWSEQ scale of self-esteem (LAWSEQ; Lawrence, 1981), with higher scores indicating higher self esteem; and the CARALOC measure of "locus of control" the tendency to attribute success and failures either to internal factors such as effort or to external factors such as chance (Rotter, 1954). The literature review of chapter 1 cites studies that have shown a link between these aspects of non-cognitive

development and future attainment in the labour market. They are also both intertwined with the kinds of childhood psychosocial outcomes of are of central interest in the current chapter.

• Significant health or developmental problems - a dichotomous variable identifying whether, at age 10, the child had experienced any significant illness, handicap or developmental problem. This variable was derived from medical examination forms completed by a medical officer for each child using existing official health records and actual medical examinations. If significant health problems and disability at earlier stages of an individual's development limit educational development and future attainment (a-priori this seems plausible) then it would make sense to control for these influences if health problems and disability have at least some effect on childhood emotional or behavioural outcomes.

Parental characteristics:

- *Education* two dichotomous measures, based on self-report data from parental interviews, identifying mothers and fathers who had obtained formal qualifications. This variable is included as an indicator of both the quality and quantity of parental inputs.
- Hours of work two variables, derived from the parental interviews at age 10, measuring the number of hours worked by each parent over the working week.
 Increased parental labour supply would imply a substitution away from time

spent with the family. A-priori, the working pattern of mothers, who generally have primary caring responsibilities, may have a potentially greater significance for psychosocial development in childhood.

• *Health* - two dichotomous indicators of self-reported parental health since the child's fifth birthday up to age 10. These were derived from responses to questions asking parents to indicate whether they had suffered any severe prolonged illness (medical, surgical or psychiatric) or any handicap or disability. Parental health is also included as an indicator of the quality of parental inputs.

Characteristics of the family environment:

- Income a 7 point ordinal scale of total gross weekly family income based on parental self-classification into specific income bands (1=£35/week or less up to 7=£250/week or more; 1980 values). This is included as a measure of parental investment opportunities.
- Taken into care a dichotomous variable based on parental response to questions concerning whether the study child had previously been taken into care by statutory agencies. This served as an indicator of the presence of more serious problems, or social disabilities, within the family associated with a subject's upbringing and family circumstances. These factors are unlikely to promote higher levels of future attainment. Moreover, if children who experience this level social disadvantage are also generally more emotionally disturbed or behaviourally maladjusted then it would seem sensible to control

for this when looking at psychosocial outcomes as predictors of future economic success.

- Lived with same parents a dichotomous measure based on parental response to questions asking whether the child, at age 10, had lived with the same two parents since birth serving as a measure of exposure to parental separation and disruption to family life. As with the analysis of the Cambridge cohort, this variable was included given that family stability might influence psychosocial development and (independently) affect other features of childhood development of potential significance for adult attainment.
- Number of children living in household derived from parental interviews at age 10. A larger family would imply lower marginal allocations of time and other resources to each family member implying reduced levels of parental investment.

School and neighbourhood characteristics:

- Attended independent sector school at age 10 a dichotomous variable derived from age 10 educational questionnaires.
- Staff pupil ratio at school again derived from the age 10 educational questionnaire using data on the number of children and number of teachers in attendance in the classroom at the child's school of attendance. Both this and the above variable act as indicators of the quality of schooling to which each child

was to up to age 10. Schooling quality could affect the future chances of success in the labour market while at the same time the quality of school inputs might potentially impact on psychosocial outcomes (evidence for this was cited in chapter 1).

• Residence in relatively disadvantaged neighbourhood - a dichotomous measure based on the mother's description of the area in which the family lived when the child was age 10. A "disadvantaged area" is defined here as either residence on a council estate or an urban locality dominated by privately rented accommodation and overcrowding. Evidence cited in chapter 1, for example, identified arealevel disadvantage as a potential determinant of adverse behavioural outcomes. To the extent that children from disadvantaged localities might, on average, be expected to have poorer adult economic outcomes (though this may be more to do with the quality of the home or school environment than neighbourhood factors *per se*) the inclusion of a neighbourhood variable of this type would again seem reasonable.

Descriptive statistics relating to each of the explanatory variables (including standardised psychosocial scores derived from the PCA) are presented in table 3.2.

3.3.4 Estimation methods

The general specification of the empirical models were similar to those described in chapter 3. Ordinary least squares estimation with a logged dependent variable is again used to model weekly earnings variability as a function of age 10 characteristics. The

earnings regressions are carried out for the entire sample and also by different occupational classifications (managerial, professional, skilled etc.) with a view to assessing the degree to which psychosocial problems in childhood relate to earnings for workers with differing levels of skills attainment. Existing evidence linking psychosocial problems to poor achievement at school (as cited in chapter 2) suggests that that they should also indirectly limit progression to higher levels of occupational status. However, it is plausible that psychosocial difficulties may still have some influence on future earnings, conditional on given levels of skills and educational attainment achieved, not least if behavioural and psychological traits observed in childhood persist into adulthood with possible implications for earnings potential within specific occupational categories.

Table 3.2Explanatory variables: descriptive statistics

•

•		Males			Females	
	Mean	Std. Dev	N	Mean	Std. Dev	Ν
Antisocial conduct (PCA standardised score: teacher ratings)	0.009	1.006	2987	-0.105	0.913	3181
Attention deficit problems (PCA standardised score: teacher ratings)	0.107	1.027	2987	-0.208	0.917	3181
Anxiety (PCA standardised score: teacher ratings)	-0.111	0.997	2987	0.114	0.967	3181
Poor coordination (PCA standardised score: teacher ratings)	-0.041	1.020	2987	0.062	0.943	3181
Antisocial conduct (PCA standardised score: maternal ratings)	0.059	1.021	4269	-0.125	0.849	4597
Restlessness-impulsiveness (PCA standardised score: maternal ratings)	0.124	1.047	4269	-0.172	0.902	4597
Attention deficit problems (PCA standardised score: maternal ratings)	0.080	1.052	4269	-0.106	0.899	4597
Emotional problems (PCA standardised score: maternal ratings)	-0.057	0.987	4269	0.009	0.965	4597
Poor coordination (PCA standardised score: maternal ratings)	-0.024	0.980	4269	0.037	0.995	4597
Cognitive attainment (BAS combined scores)	76.415	13.933	3950	75.199	13.404	4225
Locus of control (CARALOC score)	19.580	4.892	4002	19.458	4.771	4301
Self - esteem (LAWSEQ score)	15.996	4.208	4082	14.829	4.513	4343
Health problems up to age 10 (=-no; 1=yes)	0.290	0.451	4592	0.250	0.432	4892
Mother has formal qualifications (0=no; 1=yes)	0.480	0.500	4450	0.467	0.499	4754
Father has formal qualifications (0=no; 1=yes)	0.625	0.484	4341	0.608	0.4883	4549
Hours of work: father	45.301	12.557	4279	45.030	12.452	4501
Hours of work: mother	21.640	15.143	3527	21.803	14.624	3726
Health problems from child's 5 th birthday: mother (0=no; 1=yes)	0.128	0.334	4664	0.134	0.341	4966
Health problems from child's 5 th birthday: father (0=no; 1=yes)	0.117	0.322	4664	0.126	0.331	496 6
Family income (scale 1-7)	4.072	1.257	4360	4.052	1.262	4629
Taken into care (0=no; 1=yes)	0.016	0.126	4673	0.017	0.129	4968
Lived with same parents (0=no; 1=yes)	0.884	0.320	4702	0.867	0.339	5008
Number of children living in household	2.526	1.028	4694	2.526	1.065	5011
Attended independent sector primary school (0=no; 1=yes)	0.030	0.159	4382	0.020	0.153	4640
Staff-pupil ratio at school	20.443	9.260	4181	20.816	9.333	4432
Residence in relatively disadvantaged neighbourhood (0=no; 1=yes)	0.299	0.458	4671	0.315	0.464	4985

.

.

Probit estimation is used to analyse the association between psychosocial characteristics at age 10 and both the dichotomous age 30 dependent variables (whether economically active; exposure to low household income/poverty). Occupational status is an oridinal multinomial outcome variable (with lower occupational status given a higher numerical coding on a 1-5 scale). The association between the age 10 covariates and occupational status is therefore examined using an ordered probit model (Greene, 2003). A score that indexes an individual's latent tendency towards a specified level of occupational status is modelled as a linear combination of a set of relevant explanatory variables:

$$Z_i = \sum_{j=1}^k \beta_j X_{ij} + \varepsilon_i$$
[3.2]

The β_j s are unknown parameters requiring estimation, while a series of 'cut points' are also estimated which, combined with the linear predictions derived from [3.2], are used to estimate the probability of a specific outcome, *n*, occurring. The probabilities are estimated as:

$$\Pr(\text{outcome} = n) = \Pr\left(k_{n-1} < \sum_{j=1}^{k} \alpha_j X_{ij} + \varepsilon_i \le k_n\right)$$

$$= f\left(k_{n} - \sum_{j=1}^{k} \alpha_{j} X_{ij}\right) - f\left(k_{n-1} - \sum_{j=1}^{k} \alpha_{j} X_{ij}\right)$$
[3.3]

where k_k are the cut points requiring estimation and f is the standardised cumulative normal distribution.

All the multivariate estimations are carried out for males and females separately. As already noted, the main analyses were conducted using the principle component indices based on teacher ratings of childhood psychosocial characteristics. For comparative purposes, separate estimations are also carried out using psychosocial indices derived from the age 10 maternal ratings.

3.3.5 Missing data on explanatory variables

The non-return of age 10 questionnaires (maternal self completion forms, educational questionnaires etc.), or non-response during interview to specific questions of relevance, meant that complete age 10 data on each of the explanatory variables to be included in the multivariate estimations were not available for subjects with complete data on each measure of economic attainment at follow-up. As with the Cambridge cohort data this leads to a substantial loss of information when conducting a complete case analysis on those observations for whom data on the age 30 outcome measures can be observed. Multiple imputations (as described in more detail in chapter 2) are therefore again used to replace missing data on each explanatory variable. Five data sets with complete information on each covariate were generated, with separate multivariate estimations carried out on each. Model parameters, variances and standard errors are derived using Rubin's method described in chapter 2. The sample sizes reported in the results tables therefore refer to the full estimation samples covering subjects for whom there were complete data on each age 30 dependent variable of interest.¹

¹ The NORM multiple imputations software was again used to generated the multiple imputed data sets (Schafer, 1999).

3.3.6 Lifecycle projections

Coefficient estimates from the earnings regressions are used to make a series of projections from age 30 up to retirement. Average lifecycle earnings are approximated from pooled-cross-sectional earnings data for different ages (over three quarters during 1998-99 - roughly the same time during which the age 30 cohort were interviewed) taken from the UK Quarterly Labour Force survey (QLFS; Labour Market Trends, 1999). The OLFS is an important source of micro-level labour market data in the UK. It is a large random survey of around 60,000 households sampling over 155,000 individuals. Each quarter is made up of 5 waves of around 12,000 households who are interviewed over 5 successive quarters. Within any one quarter the survey captures around 70,000 of the working population. Many of the UK's routine micro and macroeconomic statistics are based on the QLFS. The current study uses a pooled crosssection of just over 30,000 employees aged between 16 and 64 years, sampled from three quarters of the QLFS during 1998 and 1999.² Krueger (2003) and Dustmann et al. (2003) have also used this type of methodology - combining econometric estimates relating to earnings at a given age with age-specific cross-sectional earnings data - in order to project the observed effect of varying school class size on earnings over the working life cycle.

The projections are compared for workers who were positioned at the 50th (median) and 90th percentiles on a given age 10 psychosocial index. The median is taken to reflect a "typical" age 10 score. A 1.8% growth in earnings over time is assumed which (at the time of writing) corresponds to the UK Treasury's estimate for long-term growth in

 $^{^{2}}$ This same pooled cross-section was recently employed by the author and a colleague to examine mental health problems and absenteeism within the labour force (Almond & Healey, 2003).

productivity in the UK economy (HM Treasury, 2003a). The projections are made from age 30 up to retirement age which is assumed to be age 65 for males and age 60 for female employees. Earnings differentials at any given point in the life-cycle (y_i^*) between workers who had different psychosocial scores at age 10 are estimated using the compound growth/depreciation formula:

$$y_t^* = \bar{Y}_t - \left[\bar{Y}_t (1 - \beta)^{\delta} \right]$$
 [3.4]

where \bar{Y}_{t} is the mean (annual) earnings for males/females reported in QLFS at age t, β is the estimated coefficient on any given psychosocial index variable derived from the OLS regressions on log of earnings, while δ is the difference between the median the 90th percentile scores on a specific psychosocial index.

Projected earnings differentials at each age are then summed over the remaining lifecycle and described as a present value (PV) equivalent in order to account for intertemporal preferences over future income streams. Thus:

$$PV = \sum_{t=30}^{64} y_t^* / (1+r)^{\lambda}$$
 [3.5]

where r is an appropriate discount rate and λ is the length of the remaining working lifecycle starting at age 30. Two discount rates are employed: a 3.5% discount rate - that used by the UK government to discount future costs and benefits of public programmes

(HM Treasury, 2004b) - and 6% - closer to the implied private rate of discount based on market yields on long-term government bonds. All values are discounted back to age 10 with a view to adopting an appropriate time horizon when considering investments in child and adolescent development (either by public agencies or parents) at that age.

3.4 Results

3.4.1 Descriptive comparisons

This section initially presents, at a descriptive level, evidence of the degree of association between the age 10 psychosocial indices and age 30 economic attainment. The patterns of association described do not, of course, hold constant any other co-varying factors that might also be related to economic status. Nevertheless, they are initially suggestive of some interesting relationships within data. Those who were located in the highest quartile on each of the age 10 indices derived from the principle components analysis (using the teacher ratings only) - i.e. employees who were more problematic children with respect to each area of psychosocial development covered - are identified separately from the rest of the age 30 sample. This distinction is somewhat arbitrary and is imposed simply for descriptive purposes.

Table 3.3 looks at average earnings. Males in paid employment who were in the top quartile on the antisocial conduct index at age 10 have higher average weekly earnings than their working peers at age 30: the differential is around 15%. The corresponding earnings gap is smaller and in the opposite direction for females. It is also interesting to note that of those males who were in the top 1% of earners, 31% has been in the top

quartile of the antisocial conduct index at age 10 compared to only 23% who were outside the top 1% earnings bracket.

	WEEKLY EARNINGS (£)			
	Males	Females		
Antisocial conduct				
op quartile	610	328		
Rest of study sample	514	358		
Attention deficit problems				
op quartile	401	274		
test of study sample	578	372		
nxiety				
op quartile	494	282		
Rest of study sample	550	372		
Coordination problems	-			
op quartile	498	341		
Rest of study sample	549	354		

Table 3.3	
Average (mean) earnings at age 30 and age 10-psychosocial index	scores

Males and females whose attention deficit scores were in the top quartile at age 10 have lower average earnings. Females in the top quartile earn around 26% less than those outside the top quartile - the corresponding differential for males is around 30% less perweek. Higher anxiety scores at age 10 are also associated with lower earnings among male and female workers - respectively a 24% and a 10% differential between the top quartile and the rest of the sample. There is also a negative association between earnings and coordinatory problems at age 10, but the corresponding differentials are much less marked.

The direction of association between occupational status and antisocial conduct at age 10 for males is the opposite to that observed for earnings (table 3.4): a considerably higher proportion of unskilled (and therefore lower paid) workers at age 30 (32%) were located in the highest quartile on the antisocial index in late childhood compared to those in a professional or managerial occupation (19% and 22.5% respectively).

		IN TOP		
	IN TOP ANTISOCIAL QUARTILE	ATTENTION DEFICIT QUARTILE	IN TOP ANXIETY QUARTILE	IN TOP POOR COORDINATION QUARTILE
MALES				
% professional	19.0	7.8	30.0	22.1 -
% managerial	22.5	17.3	23.5	25.3
% semi-skilled	26.9	35.8	. 27.5	27.1
% unskilled	32.0	41.0	32.0	32.0
FEMALES				
% professional	20.2	8.0	21.8	22.9
% managerial	22.6	15.3	21.0	22.3
% semi-skilled	31.8	35.5	25.8	22.2
% unskilled	20.0	44.4	30.0	16.7

Table 3.4	
Occupational status at age 30 and age 10 nsychosocial index scores	

Note

Statistics based on values from single imputed data set.

Occupational status appears to be less significantly related with antisocial conduct for females. However, for both males and females the strength of association between occupational status and deficits in attentiveness at age 10 are particularly noticeable. Only 7.8% of professional males (8% of professional females) were within the top quartile on the attention deficit index at age 10 compared to over 40% of both male and female unskilled workers. The relationship between occupational status and anxiety in late childhood is stronger for females: 30% of unskilled women were within the top quartile on the anxiety index at age 10 compared to 21% both managerial and professional females. A higher percentage (32%) of men in unskilled occupations had more severe coordinatory problems in childhood compared to those in professional and managerial jobs. The corresponding association is weaker for females.

	IN TOP ANTISOCIAL QUARTILE	IN TOP ATTENTION DEFICIT QUARTILE	IN TOP ANXIETY QUARTILE	IN TOP POOR COORDINATIO N QUARTILE
MALES				
% not in paid				
employment	31.4	38.4	28.0	30.7
% in part-time				
employment	27.2	30.9	27.2	25.9
% in full-time				
employment	23.7	23.9	24.0	24.8
FEMALES				
% not in paid				
employment	27.7	33.5	29.2	27.8
% in part-time				
employment	26.6	27.5	26.7	23.7
% in full-time				
employment	22.8	19.5	22.0	24.1

Note

Statistics based on values from imputed data set.

Thirty-eight percent of males (33 % of females) who were not in paid work were in the top quartile on the attention deficit index compared to 23.9% (20% for females) in full-time employment (table 3.5). These differences are less marked for childhood antisocial conduct, anxiety and coordinatory problems. Exposure to low household income is also more strongly associated with attention deficit problems at age 10 when compared to the other psychosocial measures (table 3.6): 34% of males (33% of females) living in a low income household were in the top quartile of the attention deficit index in late childhood compared to only 22% (21 % of females) who where above the relative poverty threshold.

 Table 3.6

 Low income at age 30 and age 10 psychosocial index scores

	IN TOP ANTISOCIAL QUARTILE	IN TOP ATTENTION DEFICIT QUARTILE	IN TOP ANXIETY QUARTILE	IN TOP POOR COORDINATION QUARTILE
MALES				
% not in low income				
household		21.7	23.2	24.7
	23.7			
% in low income				
household FEMALES	24.5	34.0	28.7	29.8
% in low income				
household % in low	23.6	21.3	24.4	23.5
income household	26.7	32.8	25.8	27.9

Note

Statistics based on values from imputed data set.

3.4.2 Multivariate estimations

Weekly earnings

A series of diagnostic tests were implemented in order to test for functional form misspecification and heteroskedasticty.³ There was generally no evidence of functional form mis-specification based on a the application of a link test (Pregibon, 1981). A test for the presence of heteroskedasticity Breusch & Pagan (1979) conducted on the earnings regression for males rejected the null hypothesis of homoskedastic error variances. Robust standard errors (White, 1980) are therefore used to calculate test statistics for the model coefficients, thereby correct for bias variance estimation in the male earnings equations. The hypothesis that the error variances in the female earnings equation are homoskedastic could not be rejected, with no subsequent adjustment made

³ The appendix to the chapter provides a more complte set of results, including models estimated on each multiply imputed data set and diagnostic test results.

to the estimated standard errors. Following Manning & Mullahy (2001), a Park test (Park, 1966) supported the adoption of an OLS estimator with a log-transformed dependent variable given the observed distribution of the earnings data.⁴

Table 3.7 reports the results from the OLS regression on the log of weekly earnings for males and females. The amount of variation explained by each of the estimations carried out on the five complete data sets containing multiply imputed values yielded R-Squares of around 6-7% for males and 9-10% for females. The psychosocial variables in table 3.7 are those derived from the age 10 teacher ratings. For males, more severe antisocial conduct at age 10 is associated with higher weekly earnings at age 30, therefore backing up what was observed at a descriptive level. The estimated effect is statistically significant at the 1% level. The same direction of association for the antisocial conduct variable is observed for females, but the effect is comparatively weak and not close to statistical significance at conventional levels.

⁴ Heavy tailed log-scaled residuals derived from a generalised linear model of earnings weekly earnings were observed for both males and females.

	MALES		FEMA	ALES
	β	t-ratio	β	t-ratio
Antisocial conduct	0.046	3.53	0.022	0.96
Attention deficit problems	-0.035	-2.53	-0.087	-3.80
Anxiety	-0.027	-1.78	-0.376	-1.45
Coordination problems	-0.023	-1.28	-0.005	-0.30
Health probs: mother	-0.016	-0.45	0.036	0.79
Health probs: father	-0.051	-1.39	0.015	0.32
Formal quals: mother	0.088	3.34	0.052	1.40
Formal quals: father	0.028	0.99	0.000	0.02
Family income	0.046	4.27	0.077	5.76
Number of children in household	-0.002	-0.21	-0.018	-1.12
Working hours: mother	-0.001	-1.19	-0.001	-1.08
Working hours: father	0.000	0.51	-0.001	-0.92
Lived in disadvantaged neighbourhood	-0.055	-1.92	-0.115	-2.99
Independent school	0.142	1.48	0.126	1.19
Staff-pupil ratio at school	-0.000	-0.46	-0.004	-1.68
Health problems up to age 10	-0.001	-0.04	0.029	0.75
Locus of control (Caraloc score)	0.008	2.68	0.008	1.83
Self-esteem (Lawseq score)	0.006	1.80	0.009	2.46
Cognitive attainment (BAS combined score)	0.003	3.37	0.009	6.11
Taken into care	-0.297	-2.62	0.059	0.44
Same parents since birth	-0.008	-0.21	0.045	0.97
Constant	5.224	47.12	4.164	24.04
N	44	66	38	55

Table 3.7 OLS regression: dependent variable - log of weekly earnings (age 30)

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard errors used for t-values in male earnings equation.

The coefficients reported in the table are estimates of the marginal proportional change in earnings associated with a unit change in each psychosocial index. These marginal effects can therefore be used to compare the percentage earnings differential between individuals who were positioned at different points within the age 10 psychosocial score distributions. A male who was located at the 90th percentile of the antisocial conduct index at age 10 is estimated to earn almost 7% more than an otherwise similar worker who was located at the median. The differential increases to 9% when comparing those who were at 90th percentile with those who were positioned at the 25th percentile. Higher attention deficit problems at age 10 are strongly associated with lower earnings at age 30 for both male and female workers. In both instances the effects are highly significant statistically. A male worker who was at the 90th percentile on the attention deficit index is estimated to earn around 5% less than a male who was positioned at the median, and 7% less than a similar worker who was positioned at the 25th percentile at age 10. The income deficits are considerably larger for females: a woman who was positioned at the 90th percentile on the attention deficit index is estimated to earn 12% less than a similar worker at the median age 10 score for girls (and around 17% less than those who were positioned at the 25th percentile).

More severe anxiety and coordination problems at age 10 are also negatively associated with earnings though the effects are much weaker and do not achieve statistical significance at the 5% level. The age 10 anxiety variable is significant at the 10% level within the male earnings equations, though the estimated coefficient suggests a much smaller proportional differential in earnings across the age 10 anxiety score distribution compared to the effects estimated for attention deficit and antisocial conduct problems.

Workers whose mothers were better educated are predicted to earn more, though the effect of this variable is only statistically significant in the male earnings regression. Males and females who lived in higher income families at age 10 are also estimated to earn significantly more than workers from poorer backgrounds. Those who resided in a relatively disadvantaged neighbourhood when they were age 10 were estimated to earn significantly less than workers who grew up in other types of locality: this effect appears to operate independently of parental education and family income. Male and female workers who scored more highly on tests of cognitive attainment at age 10 and

who had a higher level of self esteem and "locus of control" were also estimated to earn more than their peers. Male workers who had experienced statutory care arrangements by age 10 appear to be particularly disadvantaged with respect to earnings, though the same significance of effect is not observed for females.

Table 3.8 presents the earnings regressions that used the psychosocial indices based on maternal ratings. For brevity, the table excludes details relating to the other explanatory variables (a complete set of results are provided in the appendix).

Table 3.8OLS regression: dependent variable - log of weekly earnings (age 30)(Psychosocial maternal ratings at age 10)

	MALES		FEMALES	
	β	t-ratio	β	t-ratio
Antisocial conduct	0.009	0.71	-0.001	-0.04
Restlessness-impulsiveness	-0.009	-0.72	-0.050	-2.69
Attention deficit	-0.003	-0.29	-0.026	-1.43
Emotional problems	-0.010	-0.88	-0.015	-0.92
Coordination Problems	-0.038	-2.80	-0.015	-0.84
N	4466		3855	

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard used for t-values in male equation.

3. All other age 10 explanatory variables also included in each model but are not reported in the table

In general, the estimated associations are in the same direction to those observed using the indicators that were based on teacher-ratings. However, the strength of association with age 30 earnings is much weaker, both in terms of estimated effect size and statistical significance. There are two exceptions. More severe coordination problems at age 10 have a negative and statistically significant association with male earnings at age 30 while the restlessness-impulsiveness variable derived from the maternal rating in negatively and significantly associated with female earnings at age 30. Tables 3.9 to 3.13 present the findings from a series of regressions on log of earnings estimated separately for workers at different levels of occupational status (again, other explanatory variables are not reported). Five separate estimations were carried out, each relating to males and female workers employed in: professional occupations; managerial/technical occupations; skilled non-manual occupations; skilled manual occupations; and partly-skilled or unskilled occupations grouped together. The diagnostic tests described earlier again generally supported the adoption of a semilogarithmic specification and robust standard errors are used where there was evidence of heteroskedastic error variances.

Table 3.9

OLS regression by occupational status: dependent variable - log of weekly earnings (age 30): professional

	MALES		FEMALES	
	β	t-ratio	β	t-ratio
Antisocial conduct	0.047	0.69	-0.025	-0.20
Attention deficit	-0.054	-0.67	-0.075	-0.60
Anxiety	-0.010	-0.21	-0.059	-0.77
Coordination problems	0.016	0.18	-0.023	-0.38
N	364		179	

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard errors used to calculate t-values (males and females).

Table 3.10 OLS regression by occupational status: dependent variable - log of weekly earnings (age 30): managerial/technical

	MA	MALES		ALES
	β	t-ratio	β	t-ratio
Antisocial conduct	0.034	1.66	0.061	2.06
Attention deficit	-0.019	-0.62	-0.043	-1.02
Anxiety	-0.026	-0.95	-0.044	-1.35
Coordination problems	-0.017	-0.68	-0.000	-0.02
N	1522		1377	

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard errors used to calculate t-values (males and females).

Table 3.11 OLS regression by occupational status: dependent variable - log of weekly earnings (age 30): skilled non-manual

	MALES		FEMALES	
	β	t-ratio	β	t-ratio
Antisocial conduct	0.079	2.52	0.008	0.23
Attention deficit	0.015	0.42	-0.046	-1.48
Anxiety	-0.053	-1.38	-0.021	-0.72
Coordination problems	-0.061	-1.69	-0.006	-0.20
N	56	51	150)2

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard errors used to calculate t-values (males and females).

Table 3.12 OLS regression by occupational status: dependent variable - log of weekly earnings (age 30): skilled-manual

MALES		FEMALES	
β	t-ratio	β	t-ratio
0.052	2.39	0.018	0.33
-0.041	-1.76	-0.127	-1.43
-0.017	-0.94	-0.052	-0.88
-0.016	-0.67	-0.016	-0.27
14	08	28	7
	β 0.052 -0.041 -0.017 -0.016	β t-ratio 0.052 2.39 -0.041 -1.76 -0.017 -0.94	β t-ratio β 0.052 2.39 0.018 -0.041 -1.76 -0.127 -0.017 -0.94 -0.052 -0.016 -0.67 -0.016

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2. _Robust standard errors used to calculate t-values (males and females).

Table 3.13 OLS regression by occupational status: dependent variable - log of weekly earnings (age 30); semi-skilled & unskilled

	MALES		FEMALES	
	β	t-ratio	β	t-ratio
Antisocial conduct	0.057	1.81	0.006	0.09
Attention deficit	0.028	0.79	-0.000	-0.01
Anxiety	-0.027	-0.83	-0.039	-0.68
Coordination problems	-0.027	-1.00	-0.012	-0.21
N	54	5	50	1

Note

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard errors used to calculate t-values (males and females).

These additional analyses offer some interesting findings that are hidden when looking at earnings status across the entire occupational range. For males, increasing antisocial conduct at age 10 is associated with higher earnings across all occupational categories – this is consistent with the findings from the single earnings regression carried out across the full occupational range: point estimates range from 0.034 for males employed in managerial/technical jobs to 0.079 for those working in skilled non-manual occupations. While no formal test of any differences by occupational category was carried out, it is still noteworthy that the estimated positive effect of increasing antisocial conduct on female earnings for those working in a managerial/technical position is somewhat larger than the corresponding effect for other occupational categories. This effect is statistically significant at the 5% level. The lack of significance in other occupational regressions for females may be down to limited sample size and statistical power (e.g. for professional females). However, the insignificance of the female antisocial conduct variable in the main earnings regression (Table 3.7) would seem to suggest that, in general, female earnings in other occupational categories are unlikely to be positively related to childhood antisocial conduct. All of the remaining psychosocial variables are negatively signed for all male and female regressions across the various occupational classifications. Again, it is important to stress that significance testing may be of limited power given the size of the estimation samples.

Occupational status

Table 3.14 presents the ordered probit results with respect to occupational status. There is no formal means of testing for heteroskedasticity within this type of modelling framework, though robust standard errors are utilised on the assumption that, with micro data of the type used here, heteroskedastic error variances are likely to be the rule rather than the exception (Greene, 2003). The female occupational status equation satisfied a link test for appropriate functional form. However, the male occupational

status results should be viewed with some caution as there is some evidence of functional form mis-specification.

The positive sign on the attention deficit variable in both the male and female ordered probit equations imply that workers who had more severe problems of this nature at age 10 were *less* likely to select into more skilled and better paid types of job (higher scores on the dependent variable indicate a *lower* level of occupational status). The same direction of effect is also observed for antisocial conduct at age 10, though the effect is not statistically significant.

Table 3.14
Ordered probit: dependent variable - occupational status (age 30)

	МА	LES	FEMA	LES
	β	Z	β	Z
Antisocial conduct	0.041	1.52	0.007	0.25
Attention deficit problems	0.126	5.15	0.134	5.72
Anxiety	0.115	0.47	0.0 07	0.24
Coordination problems	0.006	0.29	-0.012	-0.59
Health probs: mother	0.035	0.72	-0.035	-0.66
Health probs: father	0.066	1.12	-0.083	1.52
Formal quals: mother	-0.139	-3.40	-0.182	-4.01
Formal quals: father	-0.141	-3.29	-0.073	-1.64
Family income	-0.093	5.83	-0.091	-5.62
Number of children in household	0.003	0.18	0.032	1.60
Working hours: mother	0.000	0.21	0.000	0.72
Working hours: father	0.001	0.42	0.001	0.56
Lived in disadvantaged neighbourhood	0.160	3.58	0.151	3.16
Independent school	-0.246	-2.12	0.142	1.48
Staff-pupil ratio at school	0.000	0.18	-0.001	-0.46
Health problems up to age 10	-0.001	-0.02	-0.001	-0.04
Locus of control (Caraloc score)	-0.015	-3.03	-0.024	-4.96
Self - esteem (Lawseq score)	0.006	1.80	-0.001	-0.23
Cognitive attainment (BAS combined score)	-0.018	-11.87	-0.017	-8.39
Taken into care	-0.016	1.11	0.071	0.43
Same parents since birth	0.056	1.01	-0.049	-0.83
N	48	30	424	0

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard errors used to calculate z-values (males and females).

Neither of the other age 10 psychosocial variables (anxiety and coordinatory problems) are associated with age 30 occupational status for either males and females. A higher

.

locus of control score at age 10 is strongly associated with higher occupational status, as are higher age 10 cognitive attainment scores. Both male and female workers who had more educated parents and who lived in a higher income household at age 10 are predicted to have a higher status job. Workers who attended an independent sector school when aged 10 are also predicted to be in more skilled and generally higher waged jobs, while those who lived in a relatively disadvantaged neighbourhood were less likely to select into jobs of higher status at age 30. The use of psychosocial indices based on maternal ratings gave rise to a similar set of findings (Table 3.15). Again, the attention deficit index is the only age 10 psychosocial variable associated with occupational status at age 30 for both males and females: those who had lower attentiveness (as rated by mothers) were less likely to select into higher status jobs, an association which is highly significant statistically.

Table 3.15Ordered probit: dependent variable - occupational status (age 30)(Psychosocial maternal ratings at age 10)

	MALES		FEMALES	
	β	Z	β	Z
Antisocial conduct	0.021	1.28	0.005	0.23
Restlessness-impulsiveness	0.023	1.38	0.004	0.20
Attention deficit	0.098	5.39	0.081	3.76
Emotional problems	0.014	0.77	0.021	1.02
Coordination Problems	0.007	0.42	-0.027	-1.38
N	483	30	42	40

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard errors used to calculate z-values (males and females).

3. All other age 10 explanatory variables also included in each model but are not reported in the table.

The predicted probability of observing each type of occupational outcome is reported in

Table 3.16.

Table 3.16

	MALES	FEMALES
50 th percentile		
Professional	0.060	0.025
Managerial/technical	0.365	0.344
Skilled	0.478	0.513
Semi-skilled	0.084	0.105
Unskilled	0.010	0.014
90 th percentile		
Professional	0.042	0.016
Managerial/technical	0.315	0.285
Skilled	0.513	0.539
Semi-skilled	0.111	0.138
Unskilled	0.017	0.022

Attention deficit problems at age 10 and predicted probability of achieving specific occupational status at age 30: 50th versus 90th percentile on the attention deficit index

These are compared for the workers who were located at the at the 50th and 90th percentiles on the attention deficit index at age 10 (using the teacher ratings) - the only statistically significant psychosocial measure in the ordered probit estimations for males and females. The predicted probability differentials are not that substantial in terms of their absolute size. For example, the predicted chance of employment in professional occupation for an otherwise typical male worker who was located at the 90th percentile on the attention deficit index is around 4% compared to 6% for a similar worker who was positioned at the median (all the predictions fix the value of the other covariates at their average value). The corresponding differential is of a similar order of magnitude for females. The predicted probability differentials are larger as regards employment in managerial occupations: 36% for males who were at the 50th percentile and 31% for those at the 90th percentile - the corresponding predicted differential is again of a similar magnitude for females.

Economically active

Table 3.17 presents the findings from the probit models concerning the likelihood of being economically active at age 30. There was no evidence of functional form misspecification in the male probit estimations for this outcome, however the female probit estimation does fail a link test for functional form specification. Robust standard errors are used to calculate the relevant test statistics. More severe attention deficit problems at age 10 are associated with a reduced likelihood of either being in paid employment or participating in an educational programme or work training scheme at age 30. Males who had higher antisocial conduct scores at age 10 are estimated to have a lower likelihood of being economically active. All of these associations are statistically significant at the 5% level - the association between male attention deficit problems and being economically active is statistically significant at the 1% level. None of the effects relating to the other psychosocial measures are significant statistically.

	MAL	ES	FEMA	LES
, , , , , , , , , , , , , , , , , , ,	β	Z	β	Z
Antisocial conduct	0.089 **	-2.68	-0.031	-1.00
Attention deficit problems	-0.118	-3.33	-0.111	-3.10
Anxiety	-0.021	-0.71	-0.039	-1.18
Coordination problems	-0.018	-0.52	-0.020	-0.66
Health probs: mother	-0.077	-1.00	0.010	0.17
Health probs: father	-0.049	-0.50	-0.012	-0.19
Formal quals: mother	0.003	0.05	0.080	1.72
Formal quals: father	0.123	1.32	0.017	0.39
Family income	0.071	2.79	0.053	2.71
Number of children in household	-0.042	-1.65	-0.101	-5.13
Working hours: mother	0.000	0.04	-0.000	-0.25
Working hours: father	0.002	1.08	-0.001	-0.69
Lived in disadvantaged neighbourhood	-0.241	-3.42	-0.126	2.55
Independent school	-0.271	-1.36	-0.176 [*]	-1.21
Staff-pupil ratio at school	0.006	1.92	0.006	2.23
Health problems up to age 10	-0.190	-2.73	0.029	0.59
Locus of control (Caraloc score)	0.010	1.41	0.013	2.51
Self - esteem (Lawseq score)	-0.004	-0.61	-0.002	-0.39
Cognitive attainment (BAS combined score)	0.007	2.39	0.009	3.63
Taken into care	-0.397	-2.13	-0.133	-0.91
Same parents since birth	0.134	1.70	0.144	2.26
N	542	9	575	1

Table 3.17 Probit: dependent variable - economically active (age 30)

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard errors used to calculate z-values (males and females).

Larger family income, having lived with the same parents since birth, higher levels of cognitive attainment at age 10 and attending a school with a higher staff to pupil ratio are all associated with an increased likelihood of being in employment at age 30 for both males and females. Having lived in a more disadvantaged neighbourhood at age 10 is associated with a lower likelihood of being economically active at age 30. Males who had experienced being taken into care were less likely to be economically active, as were men who had experienced serious health and developmental problems prior to age 10. Having a mother with a higher educational attainment was associated with an increased likelihood of being economically active at age 30, while women who were observed to have a greater "locus of control" during late childhood were also predicted by the model to have a higher probability of being economically active.

When using psychosocial indices derived from the maternal ratings (table 3.18), more severe antisocial conduct is significantly associated with a reduced likelihood of being economically active at age 30 for both males and females (statistically significant at the 1% level). However, neither the maternal ratings-based index of attention deficit problems at age 10 or any of the other psychosocial maternal variables were found to a have a statistically significant association with this outcome.

	MALES		FEMALES	
	β	Z	β	Z
Antisocial conduct	-0.131	-5.35	-0.066	-2.85
Restlessness-impulsiveness	-0.019	-0.69	-0.019	-0.80
Attention deficit	-0.043	-1.53	-0.013	-0.52
Emotional problems	-0.033	-1.10	-0.026	-1.27
Coordination Problems	-0.005	-0.18	0.013	0.66
N	54	29	57	51

Table 3.18Probit: dependent variable - economically active (age 30)(Psychosocial maternal ratings at age 10)

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard errors used to calculate z-values (males and females).

3. All other age 10 explanatory variables also included in each model but are not reported in the table.

While the relationship between being economically active at age 30 and childhood attention deficit problems and antisocial conduct (for males) are statistically significant, these findings do not translate into large probability differentials between subjects who were positioned at the median and 90th percentiles on the relevant age 10 indices (Table 3.19). The largest predicted probability differential is observed between females located at the median on the attention deficit index (% chance of being economically active=80%) versus those at the 90th percentile (=75%). Table 3.19 shows that, for male antisocial conduct and attention deficit at age 10, the corresponding differentials are comparatively small.

MALES	FEMALES
0.958	_
0.947	_
0.959 -	0.800
0.942	0.752
	0.958 0.947 0.959 -

 Table 3.19

 Economically active: predicted probabilities from probit estimations

Low income

The probit estimates relating to low income status at age 30 are presented in Table 3.20. There was some evidence of functional form misspecification with respect to the female equation. Robust standard errors are again utilised for the calculation of test statistics. For males, antisocial conduct at age 10 is associated with a reduced likelihood of exposure to low household income at age 30, though the effect is only marginally significant statistically at the 10% level. All the other age 10 psychosocial indicators - attention deficit problems, anxiety and coordination problems are linked to a higher risk of exposure to low income for males. For females, higher attention deficit problems observed at age 10 and more severe coordinatory problems are significantly linked to a higher risk of exposure to low household income at age 30.

A higher level of cognitive attainment at age 10 and having a mother with a higher level of academic attainment was found to be associated with a lower risk of exposure to low income status at age 30 for males and females. Higher family income was also associated with a lower likelihood of being below the poverty threshold, though only for males, while women who had a higher "locus of control" were predicted to be less likely to be living in a low income household at age 30. Living in a larger family with

129

more children and in a relatively disadvantaged neighbourhood at age 10 was associated

with a higher likelihood of exposure to low income for males and females.

	MALES		FEMALES	
	β	Z	β	Z
Antisocial conduct	-0.039	-1.65	0.000	0.01
Attention deficit problems	0.096	2.81	0.097	3.60
Anxiety	0.052	2.32	0.023	0.64
Coordination problems	0.061	2.74	0.051	2.10
Health probs: mother	-0.089	-1.27	-0.049	0.81
Health probs: father	0.048	0.69	0.036	0.58
Formal quals: mother	-0.208	-4.10	-0.137	2.92
Formal quals: father	-0.085	-1.51	-0.050	0.94
Family income	-0.083	-3.98	-0.078	4.06
Number of children in household	0.047	2.17	0.083	4.31
Working hours: mother	0.002	1.39	0.002	1.27
Working hours: father	0.002	0.86	0.001	0.27
Lived in disadvantaged neighbourhood	0.098	2.01	0.139	3.00
Independent school	-0.212	-1.17	0.089	0.52
Staff-pupil ratio at school	-0.001	-0.28	-0.002	0.95
Health problems up to age 10	0.059	1.13	0.028	0.61
Locus of control (Caraloc score)	-0.007	-1.30	-0.013	2.31
Self - esteem (Lawseq score)	-0.001	-0.09	-0.004	0.85
Cognitive attainment (BAS combined score)	-0.009	-4.77	-0.011	6.10
Taken into care	0.116	0.68	0.257	1.63
Same parents since birth	0.043	0.59	-0.101	1.56
N	43	78	4989	9

Table 3.20 Probit: dependent variable - low income status (age 30)

Notes

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard errors used to calculate z-values (males and females).

The psychosocial variables based on maternal ratings are, statistically, weaker predictors of experiencing low income status (table 3.21). However, the noteworthy exception is that for males and females antisocial conduct is *positively* associated with the risk of exposure to low income status at age 30 (contradicting the findings based on the teacher ratings) - the effect is statistically significant for females at the 1% level though only significant at the 10% level for males.

(Psychosocial maternal ratings a	· U			
	MAL	ES	FEM	ALES
	- β	Z	β	Z
Antisocial conduct	0.041	1.89	0.088	3.45
Restlessness-impulsiveness	0.002	0.10	0.025	0.93
Attention deficit	0.041	1.68	0.045	1.89
Emotional problems	0.009	0.42	-0.005	-0.21
Coordination Problems	0.027	1.06	0.000	0.00

Table 3.21 Probit: dependent variable - low income status (age 30) (Psychosocial maternal ratings at age 10)

N

1. significant at 1% level significant at 5% level significant at 10% level.

2. Robust standard errors used to calculate z-values (males and females).

3. All other age 10 explanatory variables also included in each model but are not reported in the table.

Table 3.22 presents the probability predictions derived from the probit models for low income status (again using the probit results based on teacher ratings). The predicted probability differentials between subjects located at the 90th and median percentile of the score distribution are compared for attention deficit problems, anxiety (males only) and coordinatory problems.

Low income status: predicted probabilities from probit estimations				
	MALES	FEMALES		
Attention deficit problems:				
50 th percentile	0.200	0.264		
90 th percentile	0.239	0.309		
Anxiety				
50 th percentile	0.200	_		
90 th percentile	0.221	_		
Poor coordination				
50 th percentile	0.200	0.264		
90 th percentile	0.224	0.289		

Table 3.22 Low income status: predicted probabilities from probit estimations

Those subjects who had greater psychosocial problems within each of these domains were predicted to be at greater risk of exposure to low income at age 30. However, the excess risk associated with having been at the 90th percentile within each of the score distributions is, again, not that substantial in absolute terms: the largest risk differential arises when comparing female subjects at the 90th and median percentile on the age 10 attention deficit index.

3.4.3 Lifecycle earnings projections

Figures 3.1 and 3.2 present projections of earnings over the remaining working life cycle up to retirement.

Figure 3.1 Life-cycle projections: male earnings from age 30

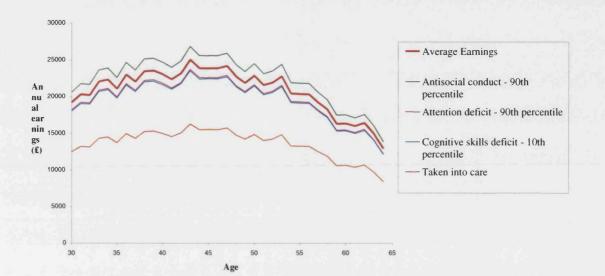
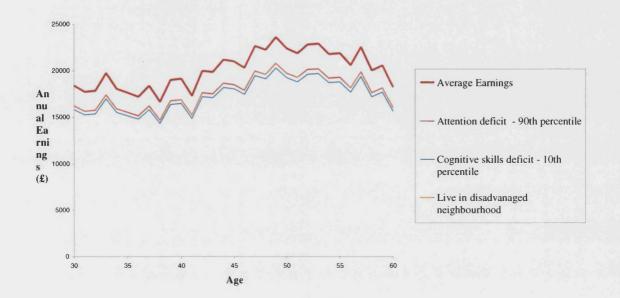



Figure 3.2 Life-cycle projections: female earnings from age 30

Trajectories for those age 10 psychosocial variables that were found to have a statistically significant association with male and female earnings are presented - antisocial conduct (for males only) and attention deficit problems (for males and females). The projections assume that a worker who had the median score at age 10 would, other things equal, would go on to earn average earnings over their remaining working life: as already explained, earnings for male and female workers at specific ages derived from the Quarterly Labour Force Survey. The methods section described how the parameter estimates from the earnings equations are used to generate the earnings trajectory for workers who were positioned at the 90th percentile on each psychosocial indicator of relevance. These projections are also compared with those relating to other sources of childhood disadvantage: experience of being taken into care prior to age 10 (for males); having lived in a relatively disadvantaged neighbourhood at age 10 (for females); and deficits in cognitive attainment (for males and females) with

earnings projections for those who were located at the BAS test score median compared with those workers who were positioned at the 10^{th} percentile.

Both figures show a typical inverse U shape pattern as earnings varying with age (Polachek & Siebert, 1993). The exact shape differs for males compared to females reflecting the differing patterns of labour supply for both genders up until retirement. Male earnings peak at around the 45-55 year age range, declining on average up until retirement age at 65. Female earnings are relatively low during the earlier stages of the working life cycle (age 30 to age 40) when women are more likely to select out of paid employment to have children.

Figure 1 shows that, for males, having experienced being taken into care prior to age 10 is associated with a significantly disabling impact in terms of earnings potential. The earnings trajectories associated with more severe attention deficit problems and a deficit in cognitive attainment at age 10 are similar for males, while the projection for those male workers who were located at the 90th percentile on the antisocial conduct measure is significantly above average earnings. For females, the projected loss of income associated with high levels of attention deficit is similar to that projected for those women who lived in relatively disadvantaged neighbourhoods at age 10. The largest projected earnings differential for females is associated with a deficit in cognitive skills observed in late childhood.

Table 3.23 describes these earnings differentials in present value terms: as already explained, age 10 is treated as the index year for discounting purposes with a view to

134

providing a rough indication of the value of discounted income streams looking forward

from late childhood.

Table 3.23

Age 10 characteristics and projected loss of earnings over the working life-cycle
from age 30 to retirement: present value estimates

	MALES		FEMALES	
	3.5%	6.0%	3.5%	6.0%
	discount rate	discount rate	discount rate	discount rate
Antisocial conduct: 90 th versus			_	_
50 th percentile	+£15,898	+£7389		
Attention deficit: 90 th versus 50 th				
percentile	-£11,951	-£5554	-£22,735	-£4843,
Cognitive attainment: 10 th				
percentile versus 50 th percentile	-£13,696	-£6366	-£26990	-£6823
Time in care	-£78,060	£36,281	_	_
Lived in disadvantaged	_	_		
neighbourhood			-£23,048	-£4988

Note

Earnings are expressed at 1998/1999 prices.

Earnings projections using two alterative rates of discount are presented - 3.5% and 6.0%. The values in table 3.23 serve to reinforce the main conclusions drawn from Figures 1 and 2. The most significant impact on earnings, at least for male workers, relates to having had an experience of being taken into care prior to age 10: this is associated with a negative earnings differential of around £78,000 in present value terms - over £2000 per year over a 35 year period (using the 3.5% discount rate). The projected costs in terms of lost earnings associated with attention deficit problems are not as significant as this, but are clearly of a similar order of magnitude to those associated with other sources of disadvantage in childhood, including deficits in cognitive attainment. Men and women who were at the 90th percentile on the age 10 attention deficit index are projected to earn respectively around £330 and £750 per year below the average (again using the 3.5% discount rate) over their remaining working lives. The present value of the increased male earnings associated with antisocial

conduct at age 10 exceeds the deficit in earnings linked to attention deficit problems around £450 per year from age 30 to retirement.

3.5 Conclusions

Following on from the analysis of economic attainment in the Cambridge cohort described in chapter 2, this chapter has used multivariate econometric methods to estimate the strength of association between psychosocial development measured at age 10 and various indicators of adult economic attainment at age 30 with a British birth cohort born in 1970. It is again important to stress that the emphasis has been on quantifying the degree of association between the main variables interest with no explicit attempt to fully model any causal linkages over time of relevance to the relationship between psychosocial development and future economic attainment.

This concluding section discusses the main results reported in this chapter in more detail, highlights some of the limitations of the study and outlines some issues of potential relevance to policy arising from the findings.

Childhood anxiety was found to be associated with a greater risk of low-income status and lower earnings for males (though the latter effect was only statistically significant at the 10% level). There was no association between economic status and childhood anxiety among females - Using a widely accepted definition of relative household poverty, childhood anxiety was found to be positively associated with the likelihood of exposure to low income at age 30 among males, with less statistically convincing evidence that men who were more anxious in their late childhood earned less. This is partially consistent with some of the evidence viewed in chapter 1. For example, two of the studies reviewed found male earnings to be positively related to higher self-esteem in childhood and adolescence (a correlate of anxiety and emotional wellbeing more generally). In fact self-esteem was also found to be positively related to earnings in the estimations reported here, independently of childhood anxiety, though the effect was much more convincing for females compared to males. Greater anxiety was found to be unrelated to the likelihood of being economically active at 30 for both sexes. Again, this is partially consistent with the evidence reported in chapter 1. No relationship between childhood anxiety and unemployment at age 33 was found in the 1958 (NCDS) British birth cohort, though evidence from a smaller Finnish study did find a link between extended periods of adult unemployment and childhood emotional distress.

It is important to stress that the *timing* of emotional problems during the course of an individual's development may be of significance: the findings reported here only consider anxiety measured in late childhood. The onset of emotional problems during adolescence, or the persistence of difficulties from childhood into the teenage years, may have the greater potential to harm educational attainment at school and may also be a more robust correlate of adult mental wellbeing (thereby having the greater potential to limit economic progression in later years). The importance of dealing with the timing and trajectory of psychosocial problems during child and adolescent development within future research will be considered again in the concluding chapter.

Attention deficit problems in late childhood were found to be associated with lower economic status at age 30 - More severe attention deficit problems were found to be linked to an elevated risk of low-income status at age 30 and a reduced likelihood of being economically active. These associations are statistically robust, though the predicted probability differentials with respect to both of these age 30 outcomes, when comparing individuals who were located at the 90th and at the median percentiles on the attention deficit index, are not particularly substantial. The relationship between childhood attention deficit problems and earnings is both statistically significant and non-negligible in terms of effect size, particularly with respect to female earnings: the projected loss of income over the working life cycle is comparable to that associated with significant deficits in cognitive skills observed at age 10 and the loss of earnings potential associated with having lived in a relatively deprived neighbourhood.

The significance of the association between attention deficit problems in childhood and lower adult economic attainment is consistent with findings from other studies, most notably those that have shown that children with this type of developmental problem tend to be relatively low achievers at school (see chapter 1). In addition, a severely impaired ability to concentrate on basic tasks can also become a more persistent problem over an individual's life-course (Brassett-Grundy & Butler, 2004b; Faraone et al., 1993): a chronic inability to concentrate on work-related tasks could in principle harm skills accumulation and productivity which, in an efficient labour market, would be penalised. In general there were no significant earnings effects in relation to increasing childhood inattentiveness within any of the other occupational categories for men or women (with the possible exception of males employed in skilled-manual jobs). These findings need to be tempered by the fact that some of the occupational specific regressions were carried out using relatively small samples of workers. Notwithstanding this limitation, the subsequent ordered probit estimations also suggest that workers who had higher attention deficit problems at age 10 were more likely to select into lower skilled and lower waged occupations. Taken together, these results would begin to

imply that any lasting damage on future attainment resulting from more severe deficits in attentiveness may be largely transmitted through mediating factors that are more important in affecting selection into higher status and better paid work. Lower academic achievement at school is an obvious example.

Antisocial conduct at age 10 is associated with a higher risk of economic inactivity at age 30 - Thirty-year-olds who were rated as more antisocial either by teachers or by their mothers in late childhood were predicted to have a lower probability of being economically active - though the effect for females is only significant when using and index of behaviour based on maternal ratings. The probability differential of observing this outcome between those whose behaviour was relatively problematic and those who had more typical behavioural patterns at age 10 is not, however, particularly large.

The observed direction of association between antisocial conduct and the likelihood of being economically active is at least consistent with much of the existing evidence that was reviewed in chapter 1, and it perhaps should be of no surprise that an effect of this nature is observed given the known link between child and adolescent conduct problems and the elevated risk of failure at school, future delinquency and other adverse social outcomes. The results reported here are also partly consistent with those described in chapter 2, though in the Cambridge cohort a much stronger link was observed between troublesome behaviour at ages 8-9 and teenage employment outcomes.

Antisocial conduct in late childhood was found to be associated with higher earnings among male employees and for women employed in managerial occupations - While there can be no doubting the persistent behavioural problems and social failings of many antisocial and aggressive children, the evidence presented in this chapter suggests a more complex story than that painted by studies that exclusively focus on future employment participation. Male workers who were relatively badly behaved when they were aged ten were estimated to earn significantly more: comparing those who were at the median and the 90th percentile on this behavioural index yields an earnings premium of around 7%. While in general no corresponding premium is observed for females, there was evidence that female managers who were more badly behaved in late childhood earn more than their occupational peers: again comparing those at the median and the 90th decile on the relevant index, the pay premium is quite substantial - close to 10%. No corresponding positive effect is observed for professional females (the coefficient on the antisocial conduct variable is in fact negative in the professional female regression) though the relatively small sample size casts some doubt on the reliability of this particular finding.

How do these findings compare to existing evidence? US evidence based on data from the NLSY is, on balance, suggestive of a negative association between indicators of antisocial behaviour and social maladjustment during adolescence and adult earnings (Burgess & Propper, 1998; Cawley et al., 2001). There is also some support for these findings using British longitudinal data, specifically those presented by Gregg et al. (1999) using the NCDS. Feinstein, 2000), using the BCS70, reported no significant relationship between childhood antisocial behaviour and hourly wages among males at age 26, though a significant and positive wage effect was observed for females (wages were not studied by occupational status). There may be a number of reasons for the differences in the findings between that study and those reported here. Firstly, both studies consider employment outcomes at a slightly different phase of the working cycle within the 1970 cohort (age 26 versus age 30), while the explanatory variables employed in both studies differ. These factors could contribute to the different results obtained. Moreover, Feinstein considers *hourly wages* at age 26 while the study reported here looked at *weekly earnings*: it is therefore possible that higher earnings at age 30 among male workers who were more antisocial at age 10 (not observed by Feinstein) may be explained by labour supply decisions affecting the number of hours worked for a given wage. This issue may warrant further exploration.

Using data from the National Child Development Study, and also contrary to the findings of this chapter, Bowles et al. (2001a) report a negative and statistically significant association between childhood aggression and future earnings for both males and females, though men in "high status" occupations who were more aggressive in childhood are predicted to earn more than their occupational peers. The study described by Bowles and colleagues used childhood aggression as an instrument for adult personality type in a structural earnings model controlling for IQ, socio-economic status in childhood, schooling attainment and years of education. They do not, however, condition on a more complete set of childhood background variables which may account for the discrepancy between their results and those reported here. It is also unclear from their published work as to the exact content of their childhood aggression measure: it may indeed relate more specifically to aspects of antisocial conduct that are more damaging in terms of future earnings potential.

3.5.1 Study limitations

The findings are subject to a number of limitations and caveats, some of which were also of relevance to the findings from the Cambridge cohort. Chapter 2, for example, discussed some of the limitations associated with drawing conclusions from results derived from longitudinal studies relating to individuals of a specific age: the developmental trajectories of adults born in different periods may vary due to the social, economic and policy-related environments to which they are exposed. These caveats also apply here. Limitations that are more specific to the findings described in this chapter are considered below.

Model specification

There was some evidence of functional form misspecification within the probit estimations relating to the probability of being economically active and exposure to low income status at age 30 for females, and within the ordered probit model of occupational status for males. Subsequently, the results derived from these models should be treated with a degree of caution, though searching for a better fitting functional relationship is not easy without prior theoretical guidance as to what form this might take.

A more general problem relating to specification concerns the possible inter-dependence between explanatory variables. All the models of adult attainment presented in this chapter (and those described in relation to the Cambridge cohort) seek to estimate the effect of each psychosocial characteristic on future attainment after accounting for

differences in other age 10 factors that might themselves be jointly related to psychosocial characteristics and economic status at age 30. This inter-dependence may arise because other childhood characteristics have an important casual role to play in affecting future outcomes, either independently or via any influence they have on psychosocial development. However, the converse may also be true: emotional wellbeing and behavioural development could, plausibly, have a role in directly affecting other age 10 explanatory variables of significance for future attainment. Attention deficit problems, for example, could limit cognitive development, and maybe self-esteem, in instances where learning or social interaction are severely affected. The findings presented might therefore be best viewed as lower-bound estimates of the key relationships of interest.

The data

The problem of incomplete data was partly addressed using the multiple imputations methodology where data were missing on covariates included in the econometric estimations. However, all the models of economic attainment at age 30 were only estimated using observations for whom earnings and other employment outcomes could be observed. Those individuals who were either unsuccessfully traced and interviewed (close to 30% of all individuals listed on the BCS70 address data base) or for whom there were missing data on key employment variables, despite inclusion in the age 30 wave of interviewing, were excluded from the model estimations.

It is important to re-emphasise that any non-random loss of information due to nonresponse is an issue of potential concern for reasons that were outlined in chapter 2. Hawkes & Plewis (2004), for example, model the probability of non-response at age 33 within the National Child Development Study (NCDS) and find some evidence of a systematic relationship between response failure and case characteristics identified at previous data sweeps. These include poor employment outcomes, lower reading attainment and behavioural problems. The characteristics of the types of birth cohort examined here are therefore likely to change over time as a result non-random loss to follow-up. This in turn could affect the types of longitudinal relationships examined in the current chapter - not least if more socially problematic individuals are more difficult to trace. However, the findings of Hawkes and Plewis at the same time do offer some encouragement given that they also find that the characteristics of responders and non-responders at within the NCDS were found to be not too dissimilar, at least in terms of observable characteristics identified at earlier time points.

There was some inconsistency between the findings based on indices of psychosocial development that used teacher ratings compared to those that were derived from maternal ratings of behaviour and psychological development. The strong positive association between the teacher ratings index of antisocial conduct and male earnings is not observed when using the maternal equivalent, while the strength of relationship between the maternal measures and the other age 30 employment outcomes are generally much weaker. Maternal ratings of behaviour could be more prone to measurement error: teachers may offer a comparatively more dispassionate and accurate assessment of psychosocial development compared to parents. This was in fact the rationale for relying on the teacher ratings of childhood behavioural and psychological development within previous work conducted on the BCS70, as well as in the study described here. Increased measurement error could partly explain the weaker statistical

associations that were observed when using the maternal indices: more "noisy" indicators of child development will have a tendency to bias downwards an estimate of the true association between a given explanatory variable and the dependent variable of interest (Dougherty, 2002). However, this cannot not explain why the association between antisocial conduct and low-income status was statistically much stronger (with an opposite direction of effect for males) when using the maternal measures. It is only possible to speculate as to what the reasons for this might be. It could, for example, reflect a correlation between maternal ratings and unobserved heterogeneity with respect to parental characteristics: for example, certain types of mothers (e.g. those with more negative attitudes towards their child which perhaps signalling a lower level of parenting quality) may have a greater tendency to rate a child's behaviour as more problematic. Crucially, these unobservables may also independently influence future attainment.

Choice of employment outcomes

The age 30 outcomes studied in this chapter only provide a "snap-shot" of an individual's economic positioning at age 30, with no account taken of the persistence, or dynamics, of employment patterns and experience of poverty. Hills (2002) highlights the importance of distinguishing between income or employment "blips" that involve transitory periods of economic disadvantage, and exposure to more sustained periods of low income or unemployment. In terms of the "snap shot" measures that were studied here, the risks of exposure were not predicted to be that substantial. However, the story could change when looking at the association between psychosocial development and the presence of more persistent social problems over time. The analysis of employment

outcomes in the Cambridge cohort, for example, did find that antisocial boys at ages 8-9 faced a significantly greater chance of extended periods of unemployment, though this was most notably observed during the late teenage years.

Lifecycle projections

The lifecycle projections, which attempt to give a more complete assessment of the long-term impact of psychosocial problems on earnings potential, are subject to a number of limiting assumptions. The proportional effect on income associated with varying severity of psychosocial difficulties in late childhood is assumed to remain constant over the working lifecycle. Whether this assumption is realistic is open to question. Further exploratory work using earnings data based on older birth cohorts might offer some guidance on how realistic an assumption this is.

The present value of future income projections is also sensitive to the choice of discount rate. Choosing an appropriate rate at which to discount the future will always involve a value judgement as to whether private or social inter-temporal preferences over future income streams are considered to be the more appropriate. Government implicitly takes the view that, privately, individuals place too low a weighting on the future consequences of public policy - at least as revealed within financial markets, by currently adopting a social rate of discount that is significantly below market interest rates. Given that the types of projections presented in this chapter could in principle inform policy judgements concerning the long-term impact of publicly funded services for children and adolescents, then a greater reliance on the present value estimates that use the 3.5% social discount rate could be viewed as more appropriate.

3.5.2 Policy issues

The evidence presented in this, and in the previous chapter, suggests that policy makers will have the potential to alter developmental trajectories and economic outcomes experienced in adulthood by changing psycho-developmental trajectories, assuming that effective programmes of intervention exist. In terms of promoting future earnings potential, for example, evidence from the 1970 birth cohort suggests that the largest gains are likely to be associated with the prevention, or at least the limitation, of attention deficit problems. A more detailed discussion of the policy implications arsing from the work presented in this, and the previous chapter, is left to the final concluding chapter. However, two issues of particular note are highlighted here.

Firstly, there is evidence that the damage to future earnings potential associated with attention deficit problems is transmitted through mediating factors that limit the potential for selection into more skilled and better paid jobs. Given that educational attainment is likely to play a key role in this regard, interventions that seek to prevent failure at school among children who are known to have more serious difficulties with attentiveness and concentration could serve to limit a significant source of the individual harm associated with this type of developmental problem. In fact, failure to detect learning difficulties of this nature until the latter stages of a child's schooling may represent an important missed opportunity to alter less favourable learning trajectories thereby limiting the scope for improving the chances of educational success and occupational progression.

Secondly, children prone to antisocial behaviour should not be treated as a homogeneous group. While a substantial body of evidence suggests that some will face a significant risk of exposure to a life-time of persistent behavioural problems and poor employment outcomes, many will also select into a stable pattern of employment, and, on average, may actually be more highly rewarded in terms of how much they earn. As already emphasised in chapter 2, the challenge for policy and professional practice will be to effectively target those badly behaved children who are the more likely to become social and economic failures in the future without some form of corrective intervention. This in turn raises an important question concerning the degree to which public services and practitioners (e.g. teachers, mental health professionals, social workers etc.) are already effective in selecting out those troublesome children who are the more likely to develop life-course persistent problems. These and other related issues are returned to in the concluding chapter. The following chapter considers more closely some of the potential efficiency- and equity-related justifications for targeting pubic resources at children and adolescents who experience psychosocial problems during the course of their development. It also examines the structure of current public service arrangements and recent developments in public policy towards child and adolescent mental health and behavioural development.

4 Service arrangements and policy development

Summary

This chapter considers various potential justifications for public intervention in the psychosocial development of children and adolescents, including arguments concerning the requirement of public policy to meet certain "basic human needs" as well as various efficiency-and equity-related considerations. Public service provision for children with behavioural and emotional problems has been historically patchy. Multi-agency responsibility for service delivery has contributed to this, with limited incentives to engage in the coordinated commissioning and funding of services. Recent policy initiatives have begun to address these perceived inadequacies with an increased commitment to invest public resources in child and adolescent mental health services, as well as the implementation of systemic reforms that encourage the central coordination of service planning and strategic planning across different agencies.

. •

4.1 Introduction

This chapter considers the public policy response towards childhood psychosocial development within a British context, providing a contextual backdrop for the final empirical chapter which considers in detail the costs associated with the delivery of public services targeted at emotional and behavioural problems experienced by children and adolescents. A variety of potential justifications for public intervention in child and adolescent psychosocial development are initially considered. This is followed by an overview of current service arrangements and recent developments in policy.

4.2 Why intervene?

It is argued that a key tenet of social policy in the UK - of which child welfare policy is an important element - is concerned with the enablement of individuals, through government intervention, to be in a position to be able to meet certain basic human needs (Glennerster, 2003; Titmuss, 1958). While there has been some debate as regards what should constitute these fundamental human requirements, Glennerster (2003), using a philosophical framework originally developed by Maslow (1954), describes a hierarchy of basic needs ranging from the physiological (the need for food, shelter and medical care where necessary), the need for safety from physical attack, to need to love and belong, the need for self-esteem and the need for "self-actualisation" - i.e. for individuals to be in a position of autonomy when making decisions that can determine their own life course. Some of these primary objectives are of particular relevance when considering child and adolescent wellbeing: protection against abuse and neglect and the targeted reduction of childhood poverty - a central theme of recent government social policy (Stewart, 2005) - clearly relate to both the physiological and personal safety components of the list of basic needs described above. Preventing or limiting the harm associated with psychosocial problems might also be seen as instrumental in meeting some of these basic needs: interventions that improve child and adolescent mental health and behavioural development might conceivably promote self-esteem. In more extreme circumstances, the detection and treatment of severe emotional problems by relevant agencies could have important safety and life-saving implications if they can effectively reduce the risk of suicidal behaviour or self-harm (Gunnell & Frankel, 1994). Moreover, the provision of resources that enable basic needs to be met may also subsequently help to promote more favourable developmental pathways: chapter 1, for example, cited evidence of a link between poverty and abuse and neglect and the incidence of behavioural and emotional problems experienced during childhood and adolescence.

Beyond a needs-based justification for public intervention, there are also likely to be some important efficiency - and equity-related factors that would provide some justification for public agencies taking an active interest in child and adolescent psychosocial development. Three areas of concern are identified here: informational

failures within the family; public externality; and the equity of economic outcomes that partly depend on the distribution of personal endowments acquired at birth and accumulated through child and adolescent development.

4.2.1 Psychosocial outcomes as informational failures

In the economic model of the family as a decision making unit (Becker & Tomes, 1979; Leibowitz, 1974) parents seek to make utility maximising choices over the allocation of time and money. Levels of parental investment in the social, educational and healthrelated development of children are therefore seen to be primarily driven by the marginal costs and benefits associated with alternative resource allocations: household income, input prices (including the opportunity cost of time and the purchase of goods and services), as well as the relative value that parents place on the current and future wellbeing of their offspring compared to other utility enhancing pursuits, are all factors that will enter into the familial cost-benefit equation. Chapter 1 has already suggested that this is a useful positive framework of analysis within which to consider the linkage between childhood psychosocial development and future attainment, not least given the extensive body of evidence pointing to the importance of parental inputs and heritable characteristics in influencing behavioural and emotional development. However, the economic model of the family also carries some important normative implications, most notably that parents are in the best position to judge what is best for themselves and for their own children. Moreover, if the preferences and values of parents are viewed as entirely sovereign, then it becomes more difficult to justify any external involvement or interference from public agencies.

This non-interventionist approach becomes somewhat less difficult to justify when accepting that, in many situations, parents are not necessarily engaged in a process of *informed* decision-making with respect to the upbringing of their children. Public services could therefore be seen as playing a crucial "agency" role, in terms of guiding parents towards making the "right" choices, at least in terms of the allocative decisions they might otherwise have made had they been more fully informed. This should not be confused with *paternalistic* motivations underpinning the statutory duty of social welfare agencies to intervene is cases where parents or carers engage in patterns of behaviour that are likely to be systematically harmful to the immediate and long-term wellbeing of a child: neglect, and physical and sexual abuse are obvious examples.

In the context of psychosocial development there are a number of examples of policy initiatives that are suggestive of public services acting as informational agents. For example, many of the pre-school programmes within the government's recently implemented Sure Start initiative (Hall, 2000) are concerned with promoting better parenting skills with a view to encouraging improved behavioural and emotional outcomes at a later age. While these types of early intervention seek to educate and inform on aspects of parenting with a view to preventing future problems, other types of initiatives' seek to guide parents towards a better approach to managing children who have already developed problematic behavioural tendencies - most notably these would include parenting programmes that specifically target persistent antisocial conduct (Scott, 1998; Woolfenden et al., 2002).

Psychiatrists, paediatricians, psychologists, social workers and other practitioners operating within the health and social welfare system also take on an important agency

role, offering guidance and expertise to parents on what they believe to be the best options available for dealing with a specific type of psycho-developmental problem.¹ Government itself can seek to reinforce the agency role of public services through directives and legislation. The Special Educational Needs and Disabilities Act 2001 (Department for Education and Employment, 2001), for example, places a statutory requirement upon local education authorities to provide information and advice to parents on available options for children identified with special educational needs, including those arising from behavioural and emotional difficulties.

4.2.2 Psychosocial development and externality

Behavioural problems not only impose significant costs on the immediate family (Knapp et al., 1999), but will also impose wider "externalities", providing a further case for public intervention. Classroom disruption, bullying, property damage and theft of property are examples of some of the harmful externalising behaviours linked to behavioural problems in childhood. For a sub-group of children, antisocial tendencies will continue to persist through adolescence and into adulthood, with classroom disruption and bullying superseded by more socially harmful behaviours. Problem drinking and drug use, for example, are known to carry significant external costs - including costs imposed on health and social welfare agencies, as well as the costs linked to drug and alcohol - related crime (Heien & Pittman, 1993; McDonnell & Maynard, 1985). Healey et al. (1998), for example, have reported an annual median cost of drug-related crime of over £1700 (mean £8000 plus) within a British sample of problem drug users (1997/1998 prices). Aggression and violent conduct can also be a

¹ The agency role of the physician has been widely discussed within the health economics literature (Arrow, 1963; Folland et al., 2001).

characteristic feature of a life-course persistent antisocial personality. Atkinson et al. (2005) estimate the cost of injuries and psychological distress arising from a "statistical" assault to be in excess of £5000 per household, with the costs associated with more serious violence (e.g. a serious wounding) increasing to more than £35,000 (2003/2004 prices). Scott et al. (2001) provide more direct evidence of the sizeable longer-term external costs associated with childhood antisocial conduct, the most significant element arising from costs to the criminal justice system - (close to £3000 per year, undiscounted, over an 18 year period for a child with a behavioural disorder; 2000/2001 prices).

A major impetus behind interventions that seek to prevent, or at least ameliorate, disruptive behaviour are likely to relate to the desire to limit these wider social harms. Statutory powers to implement exclusion from mainstream schools and the direct involvement of youth justice services where delinquent behaviour has become a persistent issue could be seen as more direct policy responses to the external costs arising from psychosocial problems. Parenting programmes, drug treatments for hyperactivity or behavioural therapies delivered by publicly funded child and adolescent mental health services may also have an important role in limiting these social costs, assuming they are found to be an effective means of altering adverse developmental pathways. The nature and evidence regarding the effectiveness of some of these interventions are discussed in more detail in the concluding chapter.

4.2.3 Public intervention, equity and psychosocial development

"Individuals' choice sets are determined not only by the social and economic barriers they face but by their initial resources or endowments, which include their natural abilities and the resources they acquire through inheritance, gifts, family background, education prior to the age of majority, etc. Equalisation of choice sets may require judicious manipulation of economic and other barriers in order to advantage the less well endowed." (Le Grand, 1991; pages 92-93).

The distribution of income and wealth across society has always been an issue of major importance within British economic and social policy. Le Grand et al. (1992) identify both inheritance and what they call "life-time accumulation" as major determinants of the distribution of economic resources. This idea relates closely to the model of adult economic status developed by Becker & Tomes, (1979) and others referred to in chapter 1. Individuals may inherit endowments in the form of inter-generational resource transfers, which might then be saved and converted at some later date into future income flows. Other inherited endowments, of a non-financial nature, include the inherent "abilities" of an individual, either passed on genetically or acquired through parental or public investments in health, cognitive, educational, and psychosocial development. These endowments may themselves have a direct bearing on future economic status. This was, to some extent, empirically illustrated in chapter 3: British adults who had a less socially disadvantaged childhood, who were more cognitively skilled at age 10, and who seemed to possess personal characteristics linked to childhood aggression ended up, on average, earning a greater income compared to their peers. Moreover, depleted levels of endowments will also affect an individual's ability to accumulate other forms of personal capital through time, including that relating to educational attainment or work-related skills accumulation. This thesis has already

made reference to the fact that children with significant attention deficit problems have a much lower chance of going on to achieve more advanced levels of educational attainment (see evidence cited in chapter 1). This in turn would seem to limit their future earnings capability later in life, as suggested by the empirical findings presented in chapters 2 and 3.

On equity grounds, to what extent should disparities in economic status arising directly from differences in individual endowments - including those relating to psychosocial development - be viewed either as socially acceptable, or worthy of correction through public intervention? Le Grand (1991) makes a convincing case for judging the fairness of an outcome, or a distribution, according to the nature of the process that brought it about and, crucially, the extent to which observed outcomes are the consequence of well informed choices and decisions made by individuals. It would seem reasonable to suggest that personal endowments accumulated from birth and through childhood and adolescence are acquired largely as a result of factors beyond an individual's control - i.e. inherited genetic characteristics and exposure to specific familial circumstances and social environments. The allocation of public resources towards interventions that seek to promote more favourable developmental trajectories could therefore be seen as a justifiable means of correcting these inherent inequities.

4.3 Psychosocial development in childhood and adolescence: services and policy development

4.3.1 Current structure of services for children with emotional and behavioural problems -

A variety of agencies in the UK deal directly with children and adolescents experiencing psychosocial difficulties. The National Health Service (NHS), local authority education and social services departments, youth justice services and the police represent those agencies are likely to have the more significant level of involvement (Knapp et al., 1999; Ford et al., 2003). Children with emotional or behavioural difficulties might be seen by a variety of NHS professionals, depending on the nature and severity of the problems experienced. In the British Child and Adolescent Mental Health Surveys, for example, the parents of children included in by the surveys reported contacts with primary care services, child and mental health services (including visits to see child psychiatrists and psychologists) as well as contacts with paediatricians, school-based nursing staff and other children's health services (Ford et al., 2003). Local authorities typically offer professional input from of educational psychologists, social workers, and youth justice workers (the latter particularly for adolescents involved in persistent delinquent behaviour). Teachers and other school support staff also play a significant role in terms of identifying special educational needs and other difficulties at school, providing additional help where emotional or behavioural problems are interfering with learning, and meeting with parents to discuss problems. The following chapter will show that teaching inputs are in fact likely to represent a major component of the public cost of targeting psychosocial problems.

A useful conceptual model of NHS and other services for children with behavioural and emotional problems has been developed by the Health Advisory Service (Audit Commission, 1999; Ford et al., 2005; The NHS Health Advisory Service, 1995). This descriptive framework breaks down services into four separate tiers of increasing specialisation:

Tier 1

- General practitioners
- Health visitors
- Residential social workers
- Youth justice workers
- School nurses
- Teachers

These are non-specialist staff who might be in a position to target the early development of problems, to provide less specialist forms of treatment where difficulties are not too severe as well as pursuing activities that promote behavioural development or mental wellbeing.

Tier 2

- Clinical child psychologists
- Educational psychologists
- Paediatricians
- Community psychiatric nursing staff or nursing specialists
- Child psychiatrists

At this level of specialisation, staff will typically seek to identify more severe or complex problems which may trigger treatment at this level, or referral on to an increased level of specialisation. Consultation will take place with families and professionals from services located in tier 1.

Tier 3

- Social workers
- Clinical psychologists
- Community psychiatric nurses
- Child and adolescent psychiatrists
- Art, music, drama therapists
- Child psychotherapists
- Occupational therapists

These are specialist services for the children and adolescents with more severe, persistent and complex psychiatric disorders. They will typically engage in treatment and, where necessary, referral to tier 4 services. They might also provide consultation and training for professionals in tiers 1 and 2.

Tier 4

- Highly specialised outpatient teams
- Day hospitals
- Inpatient units

These are much less frequently used services for those with the most severe and complex service needs. For example, inpatient units will typically admit children and adolescents who have a severe mental illness or who represent a significant suicide risk.

In addition to those services listed under the various tiers of specialisation described above, some children may also be referred by their local educational authority to a special school or pupil referral unit. This can only result after a statutory assessment (or "statementing"), involving teaching staff, parents and the local authority, of whether behavioural or emotional problems have led to the development of any special educational needs. Around 18% of special needs within primary school-aged children and close to 30% of special needs identified among children and adolescents of secondary school age, are associated directly with "behaviour, emotional and social difficulties" (Department for Education and Skills, 2004c).

4.3.2 Policy and service development

Historically, the immediate and longer-term wellbeing of children - in terms of their education, health and the protection from abuse and neglect - has always been a significant element within the British social policy agenda (Daniel & Ivatts, 1998; Glennerster, 2000). The 1944 Education Act is still the corner stone of modern educational services – including provision for universally available free education up to the age of 16, the creation of separate primary and secondary schooling systems and the introduction of a statutory school leaving age. The introduction of the NHS in 1946 widened access to children's maternity and children's health care with all services delivered free at the point of use. Prior to this, around 50% of families in Britain were

excluded from the pre-existing National Health Insurance scheme with adverse implications for child and adolescent health and physical development - particularly in more deprived parts of the country (Daniel & Ivatts, 1998). The 1944 Education Act is still the corner stone of modern educational services - including provision for universally available free education up to the age of 16, the creation of separate primary and secondary schooling systems and the introduction of a statutory school leaving age. The introduction of the NHS in 1946 widened access to children's maternity and children's health care with all services delivered free at the point of use. Prior to this, around 50% of families in Britain were excluded from the pre-existing National Health Insurance scheme with adverse implications for child and adolescent health and physical development -particularly in more deprived parts of the country (Daniel & Ivatts, 1998). Paediatric, maternity and community health services for children are now an established part of the modern-day NHS. The 1948 Children's Act was the first major piece of post-war government legislation specifically concerned with the welfare of children at risk or without parents. In fact, up to 1989, there have been six major pieces of child legislation in England and Wales largely dealing with the welfare of at risk children, usually in the aftermath of widely publicised incidents of physical and sexual abuse. More recently the 2004 Children's Act (Department for Education and Skills, 2004) was passed by parliament.

Services targeted at children and adolescents' psychosocial problems have also developed through time as part of the British system of health and local authority publicly funded services (an overview of the existing structure of these services was described in the previous section). However, until recently, publicly funded services for children and adolescents experiencing psychosocial difficulties have, arguably, been relatively low on the health and social welfare policy agenda. A House of Commons Health Committee report from 1997 (Health Committee, 1997) into child and adolescent mental health services concluded that public policy towards mental health and behavioural problems in children and adolescents had been, up to that point, fragmented. The Health Committee report quotes from a 1995 Health Advisory Service Report - one of the first major policy documents recognising a perceived inadequacy in the state of child and adolescent mental health service arrangements:

"Mental health services of children and adolescents are, essentially, unplanned and historically determined. Their distribution is patchy and they are very variable in quality and composition. The work they do deems unrelated in strength or diversity to systematically considered local need" (The NHS Health Advisory Service, 1995; page xxix).

An inquiry into the state of mental health services for children and adolescents carried out by a major mental health charity also described a service that was seriously underresourced and significantly fragmented in terms of a lack of coordination or strategic planning across the various public agencies responsible for provision (The Mental Health Foundation, 1999). Consultation with service professionals revealed that access to services was largely dependent on where a family lived, and whether their general practitioner was knowledgeable on matters concerning the mental wellbeing and behavioural development of children and adolescents.

A major independent review by the Audit Commission (1999) of child and adolescent mental health services in England and Wales found little evidence of any systematic relationship between geographical indicators of the need for child and adolescent mental health services within given localities and per capita expenditure by health authorities on these types of services. While there was evidence of improvement in the policy response and commissioning arrangements at the time of the report, less than half of all health authorities were reported to have a written policy on securing services for children with mental health and behavioural problems, with only 43% of authorities having a specific commissioning plan in place. A lack of coordination across health and local authority services was also identified as a major failing of existing arrangements.

A variety of factors are likely to lie behind the historical lack of a concerted policy response toward the psychosocial development of childhood. The 1997 House of Commons Health Committee report referred to earlier highlighted a lack of recognition, even ignorance, over the degree to which mental health and behavioural problems in childhood are worthy of public concern:

"There has been a low level of awareness of mental health problems, disorders and illnesses in children and adolescents coupled with the belief that a child will simply "grow out of it." (Health Committee, 1997; page xxix).

If true, this will have naturally inhibited the development of a concerted policy response, not least under circumstances whereby higher profile and more politically sensitive health and social problems are in a stronger position to compete for scarce public resources.

In addition, the involvement of multiple agencies in dealing with the varying educational and social needs arising from psychosocial problems has almost certainly contributed to the absence of any strategic development of services. Perennial budgetary pressures, combined with differing organisational objectives, are notorious for creating incentives for cost-shifting across agencies, as well as constructing barriers against a multi-agency based strategic co-ordination of service provision (Audit & Commission, 1986; Fernández & Forder, 2002; Lewis, 2001). Within child and adolescent mental health services, adverse organisational incentives have, in the past, been evident in a reduction of local authority input into service provision (particularly the withdrawal of social workers and educational psychologists working with children with mental health and behavioural difficulties) without any compensatory increase in service provision by the NHS (Health Committee, 1997).

Publicly expressed concern over the state of services for children and adolescents, a change of government in 1997, and growing awareness of the prevalence of child and adolescent psychopathology and its long-term implications all undoubtedly played some part in promoting a greater awareness and commitment to the improved financing and development of child and adolescent mental health services from the late 1990s. In 2001 the Department for Education and Skills, as part of its Excellence in Schools initiative, published a guidance document with a view to helping "...teachers and others, working alongside mental health professionals, to promote children's mental health and to intervene effectively with hose children experiencing problems" (Department for Education and Skills, 2001); page iv). Around the same time, the Secretary of State for Health announced a new National Service Framework (NSF) for Children, following those already initiated in areas such as coronary health and adult mental health services. The NSF was aimed at developing national standards for services relating to the healthrelated wellbeing of children with a view to improving both service quality and reducing variability in access. The NSF for Children was concerned with health and social care provision for children in general, as well as the interface between health and

educational services, including the continued development of child and adolescent mental health services. The final NSF document - outlining a ten-year plan for the development of children's health services in England - was recently published in 2004 (Department for Education and Skills and Department of Health, 2004). Similar developments in policy discourse have also taken place in Scotland and Wales (Public Health Institute of Scotland, 2003; The National Assembly for Wales, 2001).

The Green Paper Every Child Matters (HM Treasury, 2003b), announced by the Chief Secretary to the Treasury in 2003, was a direct response to the independent and statutory inquiry into the death of Victoria Climbié (Laming, 2003). While it related exclusively to policy development in England, the devolved governments in both Wales and Scotland also took an active interest in the Green Paper's development with a view to adapting areas of policy development arising from recommendations experiences taking shape in England. As regards policy towards psychosocial development of children and adolescents, the Green Paper contains two important advances. Firstly, there appeared to be a move towards a more holistic approach to developing services targeted at child welfare. The development of services and the implementation of organisational reform as a means of improving protection against abuse and neglect is still of central importance in Every Child Matters. However, it also explicitly moves beyond the exclusive consideration of those children who are at immediate risk of abuse and neglect, and considers a broader set of policy-related outcomes, including those of relevance to psychosocial development: reductions in antisocial behaviour and educational failure and improving access to child and adolescent mental health are noticeable examples. The Green Paper subsequently made an explicit commitment to increase annual investments in child and adolescent mental health services over a threeyear period - recognition of the concerns about resourcing of these services raised previously by the Audit Commission, the Mental Health Foundation and others.

A second advancement with the Green Paper was the commitment to improving multiagency coordination in the development of services – largely a response to the systemic deficiencies identified in the inquiry into the circumstances surrounding the death of Victoria Climbié. A number of new initiatives were highlighted, including the appointment of lead professionals for children known to be in contact with more than one agency (of particular relevance to many children with serious behavioural or emotional difficulties) and the development of Children's Trusts covering educational services, social services and child and adolescent mental health services delivered by the NHS. Again, this would appear to respond to publicly expressed concerns regarding the historically fragmented and uncoordinated approach to planning services. Many of the organisational reforms proposed in the Green Paper have been subsequently incorporated in to the 2004 Children's Act (Department for Education and Skills, 2004).

As well as major policy documents and legislation, the government has also implemented specific policies or programmes of investment in service developments that are either concerned with problem prevention or the promotion of favourable developmental outcomes, as well as the specific targeting of children who have already developed significant behavioural or emotional problems. The Child and Adolescent Mental Health Service Innovation Grant is an example. This was awarded to 24 specific projects dealing with early intervention and prevention, improving the mental health of children looked after under statutory care arrangements, the prevention of family breakdown and reductions in school exclusions (Kurtz, 2003). The Sure Start initiative,

a programme targeted at pre-school children and families living in disadvantaged areas, has also been a major development. This began in 1999 as part of a more general policy programme aimed at preventing social exclusion (Hall, 2000). It involved the funding of locally provided programmes partly aimed at improving the social, emotional and learning development of children from an early age (Kurtz, 2003). Five hundred programmes were operational by 2004 covering a third of children identified as living in socially disadvantaged families. Elsewhere, the Home Office implemented its "On Track" initiative involving the allocation of resources (£250 million of government funding) to 24 pilot projects targeting children identified as being at high risk of developing into career delinquents (Johnston, 2000).

The adoption of Sure Start and related initiatives marks an increasing level of awareness regarding the significance of the school years in terms of long-term psychosocial development and the need for an increasing recognition that intervention in family relationships may reduce the risk of adverse social outcomes further down the line (Harker & Kendall, 2003). Those who argue for this approach point to a body of evidence linking the promotion of better parenting to beneficial long-term outcomes (e.g. Aronen & Kurkela, 1996). Parenting programmes have also been advocated for the families of older children who have already developed severe behavioural problems – particularly where antisocial conduct is the main problem of concern (Scott, 1998; Webster-Stratton & Hammond, 1997). As noted earlier in this chapter, the Sure Start approach, and the development of parent-focussed interventions more generally, might generally be viewed as a means of addressing some of the informational failures likely to be associated with parental decision-making and child-upbringing during the preschool years. It also represents a significant break with previous attitudes towards public

policy and child welfare. Daniel & Ivatts (1998) suggest that British social policy towards children has, in the past, been largely driven by a "liberal standard" whereby external intervention in family affairs has generally been limited to extreme cases of neglect and abuse. The active promotion by government of programmes that seek to educate and train families on approaches to better parenting is a clear break with this tradition.

4.4 Concluding remarks

The public financing and delivery of services that target emotional and behavioural problems in childhood and adolescence are potentially justifiable on a number of grounds. Correction for both informational failures within the family and the public externalities associated with the development of persistent antisocial conduct and hyperactivity were both cited as examples. The allocation of scarce educational, NHS and other public resources towards children experiencing psychosocial difficulties might also be regarded as a means of correcting for inequalities in natural endowments acquired from birth and through childhood and adolescence, and the pursuit of a more equitable distribution of educational attainment, skills accumulation and earnings potential. The findings of chapters 2 and 3 suggest that correcting for the impact of attention deficit problems might be particularly beneficial in this regard. The delivery of public services targeting psychosocial problems requires a commitment to allocating scarce resources away from other socially beneficial activities. Given the intractable problem of scarcity, this will inevitably involve opportunity costs to government and society more generally. The costs of intervention are explored in more detail in the following chapter.

5 The costs of intervention

Summary

Data from a follow-up study of children who were included in the British Child and Adolescent Mental Health Surveys are used to estimate the costs to the health and education systems arising from emotional and behavioural difficulties in childhood and adolescence. The study estimates mean costs over a three year period for children and adolescents identified as having an emotional or behavioural disorder. By an order of magnitude, the education system is estimated to incur the greatest cost, including the cost of special education resource provision and teaching time within a mainstream school environment. Multivariate statistical methods are also used to examine the variation in mental health and education service costs across children and adolescents who had some level of contact with services. While sensitive to the effect of "outliers", the findings suggest that services are, to some extent, responsive to increasing levels of social and educational impairment.

5.1 Introduction

Using service utilisation data from the British Child and Adolescent Mental Health Surveys (Meltzer et al., 2000), this chapter presents new estimates of the costs of health care and education resource by children and adolescents with an emotional or behavioural disorder. Unit cost estimates are combined with parental reported information on the volume of resources consumed by a sample of 5-15 year olds with a view to estimating the relative cost impacts associated with the use of health and education services specifically in response to behavioural and emotional difficulties. Because the service utilisation data were collected at the individual level, there is also scope for examining in more detail, using multivariate statistical methods, the reasons behind the wide variations in resource use and costs observed across children and adolescents covered by the survey who had some level of service involvement.

Specific attention is paid to estimating the average (mean) costs of health services and educational resources targeted at children with more commonly occurring medically defined child and adolescent mental disorders, namely conduct disorders, hyperkinetic disorders and emotional disorders. A description of the main characteristics of these diagnostic groupings - based on the World Health Organisation's ICD-10 mental and behavioural disorder classificatory system - is provided in figure 5.1 (World Health Organisation, 1993).

Separate analyses of individual variations in costs are restricted to mental health service contacts and educational resources, and include all children who were reported to have had received some level of response from these types of services as a direct result of emotional or behavioural problems they were experiencing, irrespective of whether the problems they were experiencing were of sufficient type or severity to be medically classified as a mental disorder. This provided larger estimation samples and also introduced greater variation to the data in terms of individual level costs, measures of problem severity and other background characteristics. These analyses are primarily concerned with examining the extent to which to which costs vary with the level of social and educational impairment arising from behavioural or emotional difficulties, and thereby providing some indication of the extent to which resources are targeted on children and adolescents in greater "need" of intervention.

Figure 5.1

These descriptions are derived from: World Health Organisation (1999), *Pocket Guide to the ICD-10 Classification of Mental Disorders*, Churchill Livingston, Edinburgh.

Hyperkinetic disorders (including hyperkinesis and other hyperkinetic disorders)

The definite presence of abnormal levels of inattention, hyperactivity and impulsivity that are pervasive across situations and persistent over time, and which are not caused by other disorders such as autism or affective disorders.

- Inattention: e.g. difficulty concentrating on tasks at school, easily distracted by external stimuli.
- Hyperactivity: e.g.- often fidgets with hands or feet or squirms in seat, often runs about or climbs excessively in situations which it is inappropriate.
- Impulsivity: e.g. often interrupts or intrudes on others, often blurts out answers before questions have been completed.

Conduct disorders (oppositional defiant disorder, conduct disorder, unsocialised conduct disorder, socialised conduct disorder, other conduct disorder)

A repetitive and persistent pattern of behaviour in which the basic rights of others or major ageappropriate norms and rules are violated, lasting for at least 6 months. Examples of behavioural characteristics are:

- Unusually frequent temper tantrums
- Actively refuses adults requests or defies rules
- Often spiteful of vindictive
- Often tells lies to avoid obligations or to obtain favours
- Frequently initiates physical fights
- Destroys other people's belongings
- Exhibits physical cruelty to animals

Emotional disorders (separation anxiety, specific phobia, social phobia, panic, agoraphobia, post traumatic stress disorder, obsessive compulsive disorder, generalise anxiety disorder, other anxiety disorder, depressive episode, other depressive episode)

• Mainly exaggerations of normal developmental trends rather than phenomena that are qualitatively abnormal in themselves. They include mood (depressive)-related disorders and those relating to childhood anxiety.

5.2 Data and cost measurement

5.2.1 The British Child and Adolescent Mental Health Surveys¹

The British Child and Adolescent Mental Health Surveys follow on from other government-sponsored epidemiological surveys of mental disorders within the British population. There have in fact been five previous surveys concerned with the adult population aged 16-64, all carried out by the Office of National Statistics (ONS). The Child and Adolescent Surveys, which focus on the 5-15 age group, and again designed and conducted by the ONS, build on existing epidemiological research into the prevalence of psychiatric disorder within younger age groups. These include studies relating to specific disorders (e.g. hyperactivity/attention deficit problems - (Taylor et al., 1991) and more general surveys conducted on samples of children drawn from specific localities within the UK (the Isle of Wight, Rutter, 1989; Rutter et al., 1976; Oxford and Edinburgh, Platt et al. 1988; and Inner London, Rutter et al. 1975). The ONS surveys had a number of aims, including the measurement of the prevalence of mental disorder within the child and adolescent population in Britain, an assessment of the impact on those children and adolescents affected (e.g. on school attainment, keeping friendships and participating in leisure activities), an assessment of the burden placed on others (e.g. teachers and parents) and exploration into levels and patterns of service use within the sample (Meltzer et al., 2000).

The main "baseline" survey (time 1) was carried out in 1999 and was supplemented by two follow-up surveys conducted at 20 months (time 2) and at three years post-baseline

¹ The main report of the British Child and Adolescent Mental Health Surveys can be found in H. Meltzer et al. (2000).

(time 3). Using centralised records held by the Child Benefit Centre as a sampling frame, a representative sample of 5-15 year olds were initially surveyed at baseline. All children were drawn from postal code sectors in England, Wales and Scotland covering 90% of all British children (families with no recorded post code or whose post code was under revision were excluded from the sampling frame for the baseline survey). Four hundred and seventy-five postal sectors were sampled with the probability of being selected related to postal sector size. Stratification was carried out by socio-economic grouping and regional health authority. Thirty children aged 5-15 from each postal sector were sampled giving a potential achievable sample of 14,250. In total 12,529 individuals were considered to be eligible for inclusion: reasons for exclusion included non-traceability, failure to satisfy the 5-15 age criterion, death and the child being in foster care. Information was finally collected on 10,438 children and adolescents - 83% of those considered to be eligible. The survey involved interviews with parents, children (those aged 11-15) and the use of teacher reports.

The examination of costs described in this chapter builds on the analysis of parentalreported service use over two follow-up periods (amounting to three years) for a selected sample of 2461 children/adolescents covered by the initial baseline survey who were successfully followed up across all time points (Ford et al., 2005). All 929 children who were identified as having a psychiatric disorder at baseline and a 1 in 3 sample of those without any disorder (3063 children) were followed-up. Parents were subsequently mailed a postal questionnaire with several attempts to engage persistent non-respondents via telephone. In total 2932 completed the questionnaire - 73.4% of those eligible. The majority of non-responders were contact failures rather than refusals. The time 2 postal questionnaire served partly as an initial screening device enabling the

identification of those parents who reported that they had contacted a service for help with any behavioural or emotional difficulties experienced by their child.

Those parents who indicated that they had been in contact with frontline professionals (e.g. primary health care, teaching staff) or specialised services (e.g. child and adolescent mental health services, specialist education services) were invited to take part in a semi-structured telephone interview asking for more detail concerning contact with services, including frequency of use over the period since the baseline survey was conducted. Large numbers of parents reported meeting with teachers in response to emotional and behavioural problems. Limited research resources within the follow-up surveys therefore prevented telephone interviews with all parents reporting contact with frontline education professionals. Telephone interviewing was therefore based on the following selection criteria:

- All parents who reported contact with specialist services for emotional and behavioural difficulties (n=296).
- All parents reporting contact with primary care services since time 1 but who were not included in the above (n=61).
- All parents reporting that their child had definite problems at time 1 and time 2 according to an index of psychopathology but who had not sought professional help for emotional and behavioural difficulties (n=38).

- All parents reporting contact with teachers for emotional and behavioural difficulties who had children identified as having a psychiatric disorder at time 1 (n=55).
- Twenty-five percent of parents only reporting contact with teachers in response to emotional and behavioural difficulties with children who did NOT have a psychiatric disorder at time 1 (n=40)
- All parents who reported contacting "other professionals" for emotional and behavioural difficulties but not included already (n=9).

Four-hundred-and-thirty-nine parents were successfully interviewed via telephone at the first follow-up representing 88% of those selected based on the above criteria. The most frequent reason for non-response was failure to contact rather than active refusal to participate (Ford et al., 2003). No telephone interviews were conducted with parents who reported no contact with services in the postal survey.

The second (time 3) follow-up was a repeat of the initial baseline survey (Meltzer et al., 2003) and aimed to recruit all 5-15-year-olds whose parents had participated at the time 2 follow-up postal survey. In total 2461 children were successfully followed-up (a response rate of 89% of those eligible for participation – the vast majority of non-response was again down to contact failure). Telephone interviews regarding service use over the one year period between time 2 and time 3 were carried out on 403 parents (a response rate of 85%). Those successfully interviewed included:

- All parents reporting contact with specialist services over the preceding year in response to emotional or behavioural difficulties (n=237).
- All parents who reported meeting with teachers and primary care services over the preceding year in response to a child's behavioural and emotional difficulties
 excluding those covered by the above (n=174).
- All parents reporting that their child had definite problems at time 1 and time 3 based on an index of psychopathology who did not report any service_contacts (n=63).

Table 5.1 summarises the characteristics of the follow-up sample and the complete sample who were surveyed at baseline.

		Participated in both follow- ups (n=2461)	Complete baseline survey sample (n=10438)
Mean age		9.9	9.9
Male (%)		51.6	49.9
Mean reading quotient		104.7	103.7
Emotional disorder (%)		9.3	4.3
Conduct disorder (%)		8.9	4.7
Hyperkinetic disorder (%)		2.8	1.3
	White	94.3	91.4
Ethnicity (%)	Afro-Caribbean	1.7	2.4
	Asian	2.1	3.9
	Other	1.9	2.4
Family type (%)	Traditional	70.4	66.5
	Lone parent	18.8	22.3
	Reconstituted	10.7	11.2
Weekly parental income<£199 per week (%)		19.3	23.7
Homeowners (%)		74.8	67.8
Non-manual occupation (head of household; %)		54.8	51.1
Mean age of mother at birth		28.2	27.6

Table 5.1 Sample characteristics

Reading test quotient measured using British Ability Scale Reading Test

Notes

5.2.2 Measurement of service use

The data on service contacts were constructed by combining information reported in the telephone interviews (the only source of information on the volume of use among those parents who reported service contacts) with information on whether or not services had been used as reported in the time 2 mail questionnaire and main time 3 survey interviews (Ford et al., 2005). Parents who were asked equivalent questions on contact with services (i.e. whether or not they had made any contact) in the context of both the telephone interviews and in the time 2 postal questionnaires or main time 3 survey interview generally gave responses that were reasonably consistent (Ford et al., 2003). This offers some reassurance as to the reliability of the service use measures.

All questionnaires and interviews asked parents to detail whether they had contacted services over a defined retrospective period - in practice a two-year period at the first follow-up and a one-year retrospective period at the second follow-up interview. The telephone interviews also asked for details regarding the frequency and the usual length of each contact made. The semi-structured telephone interviews were developed by the principle investigator of service utilisation within the follow-up sample (Tamsin Ford, Institute of Psychiatry), and contained questions on service contacts drawn from existing research tools (Ascher et al., 1996; Beecham & Knapp, 2001; Stiffman et al., 2000). All cost estimations are carried out in relation to total service contacts for the entire three year follow-up period based on the contact data collected retrospectively at each follow-up survey.

The questions regarding service use asked parents to indicate contacts that were made specifically in response to concerns about a child's "emotions, behaviour and concentration". However, during the telephone interviews it was found that parents were also indicating professional contacts that were not strictly related to these kinds of difficulty. The main service use investigators have therefore used interview responses to grade each reported service contact on a 0-4 scale of relevance to emotional and behavioural problems (0= no relevance): only those contacts graded at 3 and 4 were included as an assumed response to emotional-behavioural difficulties (for example, contacts with paediatricians in the management of epilepsy were excluded, unless discussions related to mental health or behavioural problems). Service use and cost estimations should therefore be seen as an approximation of the volume of resource use and costs directly attributable to emotional and behavioural difficulties experienced over a three year period.

Parents were questioned about contact with: primary health care services, children's health services, mental health services; paediatric services; teachers (including the provision of additional help to children at school and parent-teacher meetings), specialist education professionals; social services; the police and youth justice services; private professionals and voluntary sector agencies. The cost estimations described here are restricted to health and education service contacts. Contact with privately paid for professionals and voluntary sector services (e.g. self-help groups, psychotherapists, home tuition) are not examined. These is evidence that these cost items are unlikely to be of any great significance - Harrington et al. (2000) have estimated that private and voluntary sector costs amounted to only 1% of total service-related costs in a treatment sample of children with behavioural problems. Issues of confidentiality prevented the

accessing of data on the frequency of contact with local authority social services, thereby precluding estimation of costs relating to contact with social workers and other social services professionals. While there exclusion is far from ideal, there is again evidence suggesting that they are unlikely to account for a significant proportion of total service-related costs (Harrington et al., 2000; Romeo et al., 2005).

Seven percent of the sample had been cautioned or had some other form of involvement with the police, while a smaller percentage also came into contact with the youth justice services. The relative infrequent contact with these services, combined with missing frequency of contact data across the follow-up surveys for some individual cases, precluded the reliable estimation of police and youth justice costs as a separate item using the statistical methods describe later. While this is a limitation - public service costs relating directly to crime and antisocial behaviour by children adolescents with behavioural problems have been shown to be significant in a long-term follow-up study of children with conduct problems (Scott et al., 2001) - it should not detract from the fact that resource consumption within the health and education systems are, based on current evidence, likely to account for a significant proportion of the costs to public agencies associated child psychopathology (Romeo et al., 2005; Scott et al., 2001).

The main study of service use conducted by Ford et al (Ford et al., 2003; Ford et al., 2005) also highlighted some additional problems associated with the service utilisation measures. Firstly, there was evidence that teacher contacts resulting from behavioural and emotional difficulties in the classroom were being under-reported by parents at the time 2 follow up. Education costs relating to teacher contacts are therefore likely to be biased downwards. Secondly, questions relating to service use were only asked of

parents whose children were identified as having experienced any behavioural or emotional problems based on the Development and Well-being Assessment measure which used to identify psychiatric disorder using ICD-10 criteria at time 3 (DAWBA; (Goodman et al., 2000). This is likely to have led to an underestimation of the true level of service contacts during the second follow-up period (behavioural or emotional problems may have been ameliorated because of contact with service professionals) and may have also led to the potentially inappropriate exclusion of parents from more indepth interviewing by telephone regarding frequency of service contacts. This problem affected 189 cases in total. The parents of 41 of these children had in fact already been interviewed by telephone given that their children had been identified for inclusion based on other evidence of emotional or behavioural difficulties identified at baseline (a criteria for selection with respect to telephone interviewing). Thirty-five were ineligible for inclusion in the cost analyses because they had not been followed-up at both time 2 and time 3. The overwhelming majority of the remainder (110) had been classified as having a psychiatric disorder at baseline that had resolved by time 3. With the exception of one child who had been prescribed medication for hyperactivity, all these children were not reported by their parents to have been in contact with services over the first follow-up period. The main service use investigators have therefore assumed that they were not in contact with services over the second follow-up. The child known to be receiving medication at the second follow-up was assumed to have the same level of service contact as reported for the first follow-up period.

5.2.3 Unit costs

Unit costs seek to estimate the long-run marginal opportunity cost attributable to the utilisation of resource inputs during specific contacts made with service staff and professionals or with regard to visits to specific service-related facilities (Beecham & Knapp, 2001). "Opportunity costs" reflect an endemic scarcity of resources in society compared to the need and demand for welfare enhancing goods and services provided either by the market or by government (Mishan, 1988). As such, there will always be alternative productive uses to which human skills, capital and other resources can be allocated. Marginal costs seek to reflect that value that an efficiently operating market places on the next best alternative use of a resource utilised on producing an additional unit of output - a unit of "output, in this instance, effectively being the additional child dealt with either by the health and education systems. In taking a long-run perspective, all resources inputs are assumed to vary as services respond to each additional child or adolescent with emotional or behavioural difficulties - including those resources that are normally viewed as fixed over a short-run time horizon within health and education settings (e.g. buildings, equipment and human resources). "Units" of resource within the ONS surveys were typically measured in terms of the total minutes of contact with specific types of health or education professionals over a retrospective period (e.g. school nurses; psychiatrists; educational social workers) or, less frequently, in terms of discreet units of contact with specific facilities (e.g. visits to an accident and emergency department, inpatient beds days, day hospital visits).

The main source of unit cost data on health service use was provided by the Unit Costs of Health and Health and Social Care handbook published by the Personal Social Services Research Unit (PSSRU; Netten & Curtis, 2003). All the unit cost estimates reported in this volume follow standard economic principles when estimating long-run marginal costs (Beecham & Knapp, 2001): staffing costs (salaries and additional "oncosts"), running costs, overheads and administrative costs and the estimated value of capital invested in buildings and equipment are all included. However, a number of important cost items of relevance are not covered by the PSSRU handbook and required separate estimation using data from other published sources. The unit costs associated with special schools provision for children and adolescents were taken from Education Cost Statistics for 2000-2001 published by the Chartered Institute for Public Finance and Accountancy (CIPFA, 2001). These provide annual costs per pupil associated with attendance at special schools in England and Wales. These estimates make no distinction between residential or day placements: annual CIPFA cost estimates were therefore adjusted upward (for children with funded residential placements) or downward (for day placements) in order to make some allowance for the likely general magnitude of difference between these types of special school referrals. A 40% difference is assumed based on the proportional difference in local authority residential and day care costs for elderly people published in Netten & Curtis (2003).

A number of parents reported involvement with Special Educational Needs Tribunals independent judicial bodies charged with the settlement of disputes between parents and local education authorities over the special educational needs provision for a child. Estimates of the annual costs of conducting tribunals (covering salaries, administration, accommodation and staff training) were derived from the Report of the Review of Tribunals carried out by Lord Leggatt for the Department for Constitutional Affairs (Lord Chancellor's Department, 2001).

182

Teacher costs were derived from the mid-point of the relevant salary scales published by the National Union of Teachers (National Union of Teachers, 2004) with an add-on for salary related costs (e.g. pension contributions) and institutional overheads incurred by schools and local education authorities. The costs of special educational needs officers (SENCOs) employed within schools in order to co-ordinate the special needs requirements of pupils were derived from the senior teachers' salary scale. Contact with teaching support staff (e.g. learning assistants) were costed using the mid-point salary on the unqualified teacher pay scale.

A small number of local authority-funded health and education professionals and health service facilities also have no published unit costs. In these instances a judgement was made as to which existing unit costs relating to other kinds of services would provide the most accurate approximation. For example, day hospital attendances (a rare occurrence) were valued using the unit cost estimated for NHS day care for adults with mental health problems; community nurses were valued using the unit cost for a primary care nurse (as were school nurses); and family therapists costs were based on unit costs for clinical psychologists.

Table 5.2 provides an indication of the breadth of services covered by the costing exercise, grouped by service category, with the associated unit cost used in each case. An upward adjustment was made to all unit costs applied to services used by children living in London in order to reflect the higher costs of delivery in the capital – London adjustments were based on those provided by Netten and Curtis (2003) and using salary adjustments reported for teachers working in inner- and outer-London. All costs are

expressed at their 2002/2003 values. Costs relating to specific service items (e.g. contact with psychiatrists, extra help received from teaching staff) are estimated simply by multiplying the relevant unit cost estimate by the parental-reported volume of services used. All estimates were made with reference to the three year follow-up period from baseline.

	UNIT COST
Primary care	
General practitioner	£1.91 per minute
Health visitor	£1.20 per minute
Paediatrics/children's health services	-
Paediatric inpatient	£234.00 per day
Paediatrician	£4.18 per minute
A & E	£57.00 per visit
Community nurse	£0.52 per minute
School nurse	£0.52 per minute
Dietician	£0.55 per minute
Occupational therapy	£0.68 per minute
Speech therapy	£0.67 per minute
Physiotherapy	£0.65 per minute
Mental health services	-
Psychiatric inpatient	£236.00 per day
Child psychiatrist	£4.33 per minute
Psychologist	£0.65 per minute
Family therapy	£1.10 per minute
Counselling	£0.54 per minute
School counselling	£0.75 per minute
Community psychiatric nurse	£1.17 per minute
Frontline educational resources	
Teachers	£0.63 per minute
Teaching assistants	£0.39 per minute
Special educational needs coordinators	£0.73 per minute
Special educational needs tribunals	£2495.00 per case
Special educational resources	
Educational social worker	£1.05 per minute
Educational psychologist	£1.15 per minute
	Day school (non-
	London): £7708.00 per
Special school status	academic year
	Residential school (non-
	London): £10792.00 per year

Table 5.2 Unit costs for health and educational services

Notes

e.f.-

-

All costs in 2002/2003 prices
 Adjustments have been made to account higher costs of London-based services.

Costs are grouped into four broad categories:

- Primary care costs including contact with GPs and health visitors.
- Paediatrics and child health service costs Including contact made with paediatricians, paediatric inpatient stays, community nurses, school nurses, dieticians, physiotherapists, occupational therapists, speech therapists and visits to accident and emergency departments.²
- *Mental health service costs*³ Including contact with child psychiatrists, child psychiatric inpatient stays and child psychiatric day hospital visits, counselling services provided in school and elsewhere, psychologists, family therapists, and community psychiatric nursing staff.
- *Frontline education resources* Including parental meetings with teachers, extra help provided in the school by teaching staff and learning support assistants, contact with special educational needs officers and involvement with special educational needs tribunals.

 $^{^{2}}$ None of the children in the follow-up sample visited a paediatric day hospital facility. This item is therefore not covered in the children's health services cost estimations.

³ Two children were reported to have attended a course of art/music/drama therapy. Complete data for costing this item over the entire three year follow-up period was only available for one child - though this individual was eventually excluded because of missing data on other service items: children with missing data on specific service items are automatically dropped from grouped cost estimates. The treatment of missing cost data is described later in the chapter.

• Special education resource costs - Including attendance at special schools and contact with educational social workers and educational psychologists.⁴

These groupings of individual service components generally match-those used in the existing study of service contacts based on the ONS data (Ford et al., 2005).

5.3 Cost estimation: statistical issues

The estimation of mean costs for each service category introduces three important statistical problems: the estimation of statistical uncertainty surrounding the average estimates; the adjustment of the mean values to reflect aspects of survey design and selective follow-up; and the handling of missing data on parental reported service use and cost.

5.3.1 Confidence interval estimation

Statistical uncertainty surrounding estimated means was measured using standard errors and 95% confidence intervals generated via a non-parametric bootstrapping of the cost data (Efron & Tibshirani, 1993). The (right) skewed nature of costs within the sample not untypical when dealing with resource use data of this type - invalidates standard methods of inference and uncertainty measurement which assume normality (Thompson & Barber, 2000). The bootstrap involves repeated sampling (with replacement) from the

⁴ The parents of some children also reported that their children had been in contact with a behavioural support teacher. Cost estimates for this service item for all but two children could not be determined due to missing data on frequency of contacts. Moreover, due to missing information on other specific items, the same children are not included in the mean estimates for special educational resource-related costs. Observable costs linked to teaching support for behavioural difficulties were not hugely expensive (unlike, for example, attendance at a special school) and contacts of this nature were also relatively infrequently observed compared to, say, involvement with education social workers or psychologists. The exclusion of this item is therefore unlikely to seriously affect mean cost estimates.

cost data with a view to generating a sampling distribution of mean costs upon which the bootstrapped standard errors and confidence intervals are based. The non-parametric nature of this approach implies that no prior assumptions are made regarding the way the cost data are distributed across the population of interest.

5.3.2 Adjusting for survey design and loss to follow-up

Estimating mean costs for the general population of children and adolescents with a mental disorder requires making some adjustments for sampling design. The follow-up study is highly selective: only 1 in 3 of the non-disordered children identified at baseline were included in the sampling frame for the follow-up surveys while all cases with a mental disorder identified at baseline were included for follow-up. Moreover selective non-response also changed the characteristics of the follow-up sample compared to the original baseline survey: families from more socially advantageous backgrounds were more likely to participate, while the parents of children with a mental disorder were less likely to be successfully interviewed in the later surveys. Existing sampling weights developed by the main follow-up survey investigators and the Office of National Statistics were therefore applied to the cost estimates in order that the estimated means across different types of disorder reflect the relative proportion of children and adolescents with different types of disorder that would be expected within the general population (Ford et al., 2005). These weights are in turn multiplied by sampling weights developed by the ONS in order to adjust for over-sampling in Wales and Scotland relative to England and to weight the main baseline survey (from which the follow-up surveys are drawn) back to the general population with respect to the age and gender structure of 5-15 year olds living in private households. It should be stressed

that the population weights make no attempt to adjust for the effects of sample selection and non-response on observed rates of service use (and therefore costs) within the follow-up survey.

Sampling within the main baseline survey also involved selecting families from primary sampling units (PSU) defined by postal code sector. This introduces a degree of nonrandomness into the sampling design with families drawn from the same PSUs being more likely to share similar social characteristics compared to families drawn from other areas. This "clustering" will therefore lead to the underestimation of true population variances and standard errors. Unbiased standard errors are crucial for making correct statistical inferences and for appropriately estimating 95% confidence intervals around mean cost estimates. All standard errors are therefore adjusted to allow for the effects of clustering. Population weights and adjustments for sample clustering are applied to the cost data using an option within the Stata (version 8) statistical software package designed specifically for analysing complex survey data. Taylor series linearization methods are used to adjust estimated means and standard errors using the derived weights and adjustment factors (Heeringa & Liu, 1998; Stata & Corporation, 2005).

5.3.3 Treatment of missing data

Costs can only be estimated where there are complete cost data on all individual service items of relevance (e.g. child psychiatrists, extra help from teachers, school nurses etc.). The unobservability of costs arose primarily due to missing information relating to the volume of services used: some parents whose children were known to have made contact with services were not interviewed regarding service contacts (due either to failure to contact or active refusal), while for some parents who were successfully interviewed the frequency or length of service contacts (or both) could not be determined.

With the exception of frontline education resources, costs data on each service category were missing for between 19% and 24% of all cases included in the follow-up surveys. Complete frontline education costs could only be estimated for approximately half the sample. The multiple imputation method, described in more detail in chapter 2 is again used, this time to impute cost values where parental self-report data on resource consumption are missing (Rubin, 1987; Schafer, 1999). To reiterate, the valid use of any imputation method requires that the missing data on the outcome of interest is not systematically related to the value of the outcome itself (in the instance volume of resource use and cost) - implying that the data are either "missing at random" (MAR) or missing completely at random" (MCAR) to use the standard terminology (Rubin, 1987).⁵ There was no reason to suspect that systematic non-random processes are responsible for missing cost data in the follow-up surveys, though the likelihood of observing a missing cost observation may depend on observed sample characteristics that could also influence cost. Multiple imputation methods condition imputed cost values on these observables. Five complete data sets were generated containing imputed and observable cost data using the NORM multiple imputations software (Schafer, 1999). All the mean costs and standard errors reported here are again based on the

⁵ Briggs et al. (2003) provide a useful hypothetical example of health utilisation data used for costing purposes that are not missing at random. A survey is administered to patients asking them for information on their use of health care resources after receipt of a treatment. Some of the questionnaires are not returned because the patients have been taken into hospital with complications relating to the treatment. Missing service use information in this instance should be viewed as non-random as non-response will be directly related to the outcome (cost) variable of interest - patients admitted to hospital will typically cost more than the rest of the patient population who were surveyed.

formulae developed by Rubin (1987) for generating parameter estimates from multiply imputed data sets (described in more detail in chapter 2). Crucially, this method allows for the non-stochastic nature of data imputations to be reflected in estimates of variance and 95% confidence intervals.

5.4 Health and education service costs: results

Table 5.3 lists summary statistics for each individual cost component. These relate to the entire three year follow-up period and are based entirely on the observed cost data (i.e. without any imputations for missing values). All the services listed are the ones that were included in the mean cost estimates for each service category.

Table 5.4 presents estimates of the mean cost per child for the three-year follow-up period for all children with a behavioural or emotional disorder. Each estimate is reweighted to allow for the effects of sample selection and drop-out with additional readjustment for survey design at baseline. Costs are presented for each service category along with an annual equivalent (costs divided by the three-year follow-up period), while an estimate of the mean total cost, based on the sum of costs across each service type, is also presented. All the mean cost estimates reported in this chapter relate to all children and adolescents who were identified as having a disorder at baseline irrespective of whether their parents reported that they had used services.

Table 5.3

Costs over three year follow-up for mentally disordered children/adolescents
(N=445): summary statistics for each service item

-

	MEAN (£)	MEDIAN	STD. DEV	Ν
Primary care				
General practitioner	33.53	0.00	163.75	361
Health visitor	5.96	0.00	75.26	366
Paediatrics/children's health services				
Paediatric inpatient	3.80	0.00	34.16	367
Paediatrician	46.00	0.00	192.94	363
A & E	1.58	0.00	11.13	361
Community nurse	1.80	0.00	33.68	368
School nurse	1.79	0.00	12.03	351
Dietician	0.29	0.00	2.97	366
Occupational therapy	1.80	0.00	23.62	368
Speech therapy	31.84	0.00	406.98	365
Physiotherapy	4.35	0.00	38.64	367
Mental health services				
Psychiatric inpatient -	4.49	0.00	86.11	367
Child psychiatrist	86.03	0.00	446.54	366
Psychologist	29.71	0.00	178.70	366
Family therapy	1.81	0.00	24.55	368
Counselling	6.10	0.00	44.86	368
School counselling	29.38	0.00	239.14	360
Community psychiatric nurse	5.01	0.00	61.38	367
Frontline education resources				
Parental meeting with teachers	95.69	0.00	303.21	355
Extra time spent with children at school				
(teachers and teaching assistants)	1516.37	0.00	7287.21	321
Special educational needs coordinators	14.84	0.00	57.90	360
Special needs tribunals	73.55	0.00	408.43	351
Special education resources				
Educational social worker	6.60	0.00	38.80	365
Educational psychologist	12.13	0.00	61.07	351
Special school status	1380.60	0.00	57.90	368

Note

•

Table contains *observed* costs (i.e. no data imputations for missing cost values used).

.

Table 5.4 Costs over three year follow-up for disordered children: mean costs for all disorders (N=445)

	MEAN COST: ALL DISORDERED CHILDREN OVER 3 YEARS (£)	95 % CI	MEAN ANNUAL (£)
Primary care	42.71	18.20-67.22	14.23
Paediatrics/children's			
health services	62.64	28.44 -96.83	20.88
Mental health services	174.80	69.61-279.98	58.27
Frontline education			
resources	2191.96	1302.85-3081.07	730.65
Special education			
resources	969.64	371.84 -1567.43	323.21
Total cost	3441.91	2327.98-4555.85	144.97

Notes

1. Costs estimated for all 445 cases with a psychiatric disorder included in three-tear follow-up

2. All costs adjusted for selection and non-response in follow-up sample and for sample clustering in main survey design at baseline

3. Imputed values used for missing service use data

4. Total costs are the sum of costs across each service category for each child/adolescent

The findings in the table point to the relative importance, in resource terms, of education services as a source of support for children/adolescents with emotional-behavioural difficulties. For example, for the three-year period the estimated mean cost of support per child delivered by frontline education services across all children with a disorder is over 12 times the estimated mean for mental health service contacts. The bootstrapped confidence intervals are fairly wide, and indicative of the considerable degree of variance in costs within the sample.

Table 5.5	
Mean costs over three year follow-up by type of disorder ()	1=445)

	MEAN COST (£)	95% CI	MEAN ANNUAL (£)
Uunonkinotia Digondona	MEAN COST (2)	95% CI	MEAN ANNOAL (E)
Hyperkinetic Disorders	49.44	-23.13-122.02	16.48
Primary care Paediatric/children's	49.44	-25.15-122.02	10.48
	07 74	0.50 170 00	20.25
health services	87.76	3.50-172.02	29.25
Mental health services	336.23	32.78 - 639-69	112.07
Frontline education			
resources	3260.54	1137.69 - 5383.38	1086.85
Special education			
resources	1697.97	-10 .84 - 3406.79	565.99
Total cost	5431.78	2521.00 - 8342.57	1810.59
Conduct Disorders			
Primary care	38.18	3.76 - 72.60	12.73
Paediatric/children's			
health services	65.76	17.26 - 114.26	21.92
Mental health services	. 227.56	47.53 - 407.75	75.85
Frontline education			
resources	2578.97	1554.65 - 3603.30	859.66
Special education			
resources	961.81	22.86 - 1900.77	320.60
Total cost	3872.28	2444.01 - 5300.54	1290.76
Emotional Disorders	3072.20	2111.01 5500.51	12,0.70
Primary care	48.18	7.72 - 88.64	16.06
Paediatric/children's	40.10	1.12 00.04	10.00
health services	66.13	17.67 - 114.58	22.04
Mental health services	130.05	6.66 - 253.42	43.35
Frontline educational	150.05	0.00 - 233.42	43.33
resources	1518.68	792.84 - 2244.5	506.22
Special educational	1310.00	172.04 - 2244.J	500.22
resources	955.93	12.80 - 1899.05	318.64
	2718.81	1352.44 - 4085.18	906.27
Total cost	2/10.01	1552.44 - 4085.18	900.27

Notes

Costs estimated for all 445 cases with a psychiatric disorder included in three-tear follow-up.
 All costs adjusted for selective nature of follow-up sample and non-response and for sample clustering in main survey design at baseline

.

3. Imputed values used for missing service use data

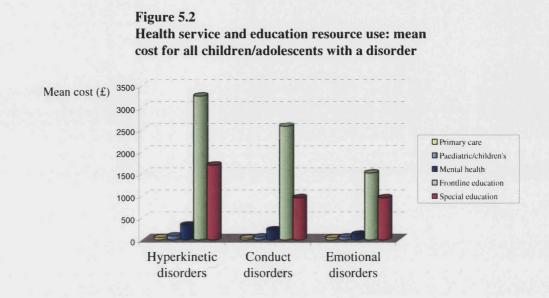


Table 5.5 describes the mean costs by type of disorder, while Figure 5.2 provides a graphical summary of the findings. Costs are generally higher for children with behavioural disorders (hyperkinetic and conduct) compared to children with emotional disorders. The overlapping confidence intervals suggest that these differences are not statistically significant at the 95% level of confidence, though the sample may be inadequately powered for detecting statistically significant differences in mean costs by disorder type.⁶ The general pattern again points to a higher resource burden imposed on education services. Primary care and paediatric/children's health services are the least significant service category in resource terms.

Table 5.6 presents national annual costs estimates for the population of children with any behavioural or emotional disorder aged 5-15 living in Great Britain. These values combine the mean costs reported in table 5.4 with current estimates of the number

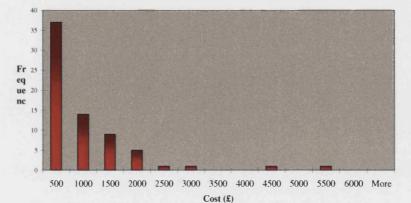
⁶ The power of a test is the probability that it will reject a false null hypothesis (that there is no difference in cost between two groups) - or the probability of avoiding a Type II error (Bowen & Starr, 1982).

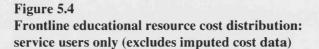
children with hyperkinetic, conduct and emotional disorders in the British population. The latter are derived using prevalence data from the British Survey of Child and Adolescent Mental Health and size of population estimates for the 5-15 age group using UK census data from 2001 (Office of National Statistics, 2004).

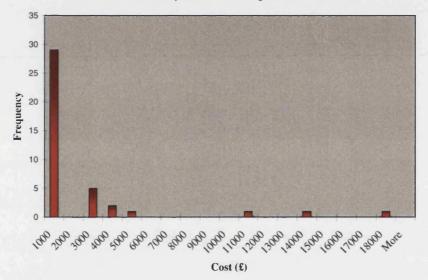
Table 5.6 National costs for population aged 5-15 with emotional/behavioural disorder

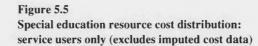
OPULATION AGED 5-15 WITH DISORDER	NATIONAL COST ESTIMATE			
	Primary care	£12,394,330		
	Paediatric/children's health services	£18,186,480		
	Mental health services	£50,753,170		
871,000	Frontline education resources	£636,396,190		
	Special education resources	£281,515,910		
	Total cost	£126,268,870		

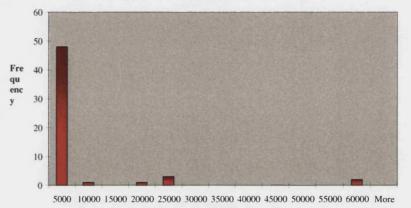
Notes


1. Population estimations taken from the UK 2001 Census (Office of National Statistics, 2004).


2. Prevalence estimates from Meltzer et al. (2000) - estimated 10% with emotional or behavioural disorder.


5.5 Cost variations


Figures 5.3 -5.5 provide a visual representation of the degree to which mental health service and education costs varied across children and adolescents who had some contact with services over the follow-up period. There was, for example, an almost 22-fold difference between the mental health service costs of children located at the 20th and 80th percentiles in the distribution. Even larger differences are observed for frontline and special education resources. Multivariate statistical methods are used to explore in more detail some of the factors that explain this variability, with a particular emphasis placed on examining the degree to which costs are an increasing function of the severity of problems experienced by a child - in terms of both social disabilities and attainment at school. This can offer some insight into the extent to which greater resource input and costs are targeted on children whose problems are not only more serious and more


Figure 5.3 Mental health service cost distribution: service users only (excludes imputed cost data)

Cost (£)

complex, but who might arguably also have a greater "need" for a more intensive or extensive involvement from services (an interpretation of "need" is offered later in this chapter). This idea of resource targeting is a well established concept within economics research applied to health and social care settings (Davies, 1981; Knapp, 1984).

Attention is restricted to mental health service and education costs, with cost variations examined for those children with greater than zero costs (i.e. those in contact with services). It is possible, and it is indeed conventional within many studies, to view the generation of service costs as being a multi-hurdle process. Within health services research, for example, a two-part specification is often adopted with a distinction made between those processes that drive the likelihood of referral, or some initial level of contact being made, and those that determine the volume of resource use and cost once an individual has entered the system (Duan et al., 1983; Dunn et al., 2003; Lipscomb et al., 1998). The current chapter therefore concentrates exclusively on the second stage of this two-part framework.⁷

The baseline (time 1) survey contains data on a range of characteristics relating to the children and adolescents covered by the survey (e.g. severity of impact of behavioural/emotional difficulties) as well to household and parental characteristics (e.g. parental occupational class; size of family; family functioning). No specific theoretical model is tested, though the types of variables included in the multivariate estimations include many that are typically included in studies of variations in health service utilisation and cost (Knapp, 1998). The concluding section provides some interpretation of the main findings and their policy significance.

⁷ Ford has examined in more detail, using multivariate methods, those factors that influence the likelihood that children will make contact with services (Ford, 2004).

The cost data relating to each service category are not statistically well behaved in the sense that residual variations in costs, using standard OLS estimation, were found to be non-normally distributed. This precludes the use of OLS regression for examining cost variability given that an OLS estimator cannot be assumed to be efficient or unbiased where the error term is non-normally distributed. For each service category costs are subsequently modelled using a gamma generalised linear model (McCullagh & Nelder, 1989). The algorithm suggested by Manning & Mullahy, (2001) - based on an application of the Park test (Park, 1966) - was applied in order to choose a GLM estimator that offered the best fitting model (the GLM "family" includes the Poisson, gamma, inverse Gaussian (Wald) and negative binomial distributions). This pointed to the adoption of the gamma distribution. The findings from the Park test are presented in the appendix to this chapter. There are no a-priori theoretical grounds for specifying any particular functional relationship between costs and the set of explanatory variables included in a model. The cost equations specified here follow empirical convention when analysing cost data of this type and adopt a log-link link functional relationship (Dunn et al., 2003; Manning & Mullahy, 2001). A link test was used to test for correct functional form specification (Pregibon, 1981). The log-link GLM fits the following relationship to the data:

 $COST_i = \exp(\alpha_i + \Sigma \beta_i x_i) + error$

$$= \exp \alpha_i \exp(\Sigma \beta_i x_i) + error$$
[5.1]

Raw-scale costs are therefore the exponent, or anti-log, of the linear predictor contained in the parentheses. The x_i 's comprise a vector of explanatory variables included in the model, while the β_i 's are parameters requiring estimation.

Each GLM was applied to variations in *observed* cost outcomes, and did not therefore draw upon multiple imputations where cost data were missing. The primary reason for engaging in the multivariate estimations is to gain additional insight into any general patterns of association between cost and measured characteristics relating to those children who came into contact with services. It was felt that this could be adequately achieved without relying on data imputations for missing cost values. However, multiple imputations were used where data were missing on an explanatory variable in order to avoid observations with complete cost data being dropped from the modelling. Table 5.7 presents descriptive statistics relating to each cost dependent variable.

Cost dependent variables for GLM estimation: descriptive statistics							
	MEAN (£)	MEDIAN	STD. DEV.	Ν			
Dependent variables - for all $COST_i > 0$							
Mental health services	899.06	288.94	2666.50	108			
Frontline education resources	2366.49	43.43	8040.11	140			
Special education resources	5050.72	138.00	12896.13	107			

 Table 5.7

 Cost dependent variables for GLM estimation: descriptive statistics

Notes

All reported statistics refer to observed costs for children/adolescents incurring a positive cost, including service users without a diagnosed behavioural or emotional disorder (no cost imputations used).

Two cost estimations were carried out, one based on the complete estimation sample for each service category another using a "trimmed" sample removing observations at the top and bottom 5% of cost distribution. A trimmed sample was employed in order to test the sensitivity of the main findings to the removal of outlying observations particularly with regard to the effect sizes estimated on variables identifying problem severity. This is a potentially important consideration when analysing costs within relatively small samples, as was the case here.

5.5.2 Explanatory variables

The ONS surveys contain data relating to the characteristics of the participating children/adolescents, their parents and the households within which they live. Most of the variables available were included in the multivariate analysis of costs. While this approach is somewhat a-theoretical, the main concern was to provide, as far as possible, an estimate of the pure effect of problem severity on costs: severity of psychosocial difficulties could co-vary with other sources of cost-related heterogeneity. The following variables, all measured at the baseline survey, were therefore included as explanatory variables when modelling cost variations:

- Age of child/adolescent.
- *Gender* (0=female; 1=male).
- Impact of emotional/behavioural problems on the child measured at baseline (rated by parents) - a 10-point scale covering severity of impact on various aspects of day-to-day living including: "upset or distressed"; "home life"; "friendships"; "classroom learning"; and "leisure activities". The scale is taken from the widely used and validated Strengths and Difficulties Questionnaire (SDQ; Goodman, 1999).

- Reading attainment at school measured at baseline Z-transformed and ageadjusted reading test scores based on the British Ability Scales (Elliot et al., 1978).
- Occupational class (head of household) identified using the Registrar General's classificatory system of occupational status (1=professional; 2=managerial/technical; 3=non-manual/skilled; 4=manual/skilled; 5=semiskilled; 6=unskilled; 7=student/never worked).
- Mother's mental health at baseline Anxiety and depression-related symptoms in mothers were measured using the General Health Questionnaire (Goldberg & Williams, 1988) an established instrument for identifying mental health problems in the adult population (scale 0-12 increasing score representing poorer mental health).
- Family functioning at baseline the general functioning scale of the McMaster Family Assessment Device (Miller et al., 1985) was used to measure family discord (scale 21-41 - increasing scores reflecting increasing dysfunction within the family). This instrument has been validated within clinical populations and focuses on measuring the degree of functioning across a range of domains relating to interpersonal relationships within the family environment.
- Large family size at baseline (0=less than 3 siblings; 1= 3 or more siblings).

202

- Child/adolescent lived in a single parent household at baseline (0=conventional or reconstituted family; 1= single parent family).
- The age of the mother when the index child/adolescent was born.
- *Ethnic origin of child/adolescent* (0=black, Asian or any other ethnic minority group; 1= white).

Descriptive statistics for each explanatory variable are presented in Table 5.8.

5.6 Multivariate estimation: results

A series of link tests applied to the GLM estimations were suggestive of a misspecification with regard to the models relating to mental health service and special education resource costs, though the null hypothesis of a correct functional specification cannot be rejected for the former when estimation is carried out using a trimmed sample (all test results presented in the appendix). On the assumption that error variances are unlikely to be homoskedastic (Greene, 2003) robust standard errors are used to calculate test statistics for each model (there is no formal test for hetroskedasticity of unknown form that can be applied to a GLM).

5.6.1 Costs and problem severity

The results from the GLM estimations carried out on the full estimation samples are presented in Table 5.9. Higher reading test scores are negatively related to costs for all

Table 5.8

Explanatory variables: descriptive statistics for GLM estimation samples (service users only)

		TAL HEALT	Ή				077.07		
	SERVICES		FRONTLINE EDUCATION			SPECIAL EDUCATION			
	Mean	Std. Dev	Ν	Mean	Std. Dev	Ν	Mean	Std. Dev	Ν
Age at baseline	10.10	3.05	69	9.57	2.89	40	10.56	2.85	55
Gender at baseline ⁺ (1=male; 0=female)	0.70	0.46	69	0.70	.46	40	0.67	0.47	55
SDQ impact score	3.18	2.46	67	2.72	2.36	39	2.92	2.60	50
Reading test score	-0.38	1.16	62	-0.39	1.26	36	-0.46	1.12	49
Age of mother at birth of child	28.29	5.62	66	27.60	5.28	35	27.55	5.93	51
Mother's GHQ score at baseline (scale 0-12)	3.29	3.25	68	2.68	3.16	40	3.35	3.24	55
Ethnicity ⁺ (1=white; 0=black, Asian or other)	0.91	0.28	69	0.95	0.22	40	0.93	0.26	55
Social class of parents									
1.Professional									
2.Managerial									
3.Non-manual skilled	3.13	1.45	67	3.18	1.25	39	3.42	1.55	53
4.Manual Skilled									
5.Semi skilled									
6.Unskilled									
7.Never worked/student									
Large family ⁺ (1=3 or more siblings; 0=less than 3 siblings)	0.03	0.17	69	0.03	0.16	40	0.00	0.00	55
Family functioning score at baseline (scale 21-41)	25.66	3.02	68	25.60	3.16	40	25.67	3.35	55
Single parent family ⁺ (1=yes; 0=conventional or reconstituted									
family)	0.26	0.44	68	0.25	0.44	40	.28	0.45	54

ı.

Note

⁺Denotes a dummy (0-1) variable. Mean values indicate the proportion of cases with the specified characteristic

Table 5.9	
GLM cost estimations: full estimation sample	

	MENTAL HE	ENTAL HEALTH SERVICES		FRONTLINE EDUCATION RESOURCES		DUCATION URCES
	β	Z	β	Z	β	Z
Age at baseline	0.12	2.13	-0.06	-0.60	0.14	1.57
Gender at baseline	0.65	1.80	-0.74	-1.56	0.36	0.74
Age of mother at birth of child	0.06	2.15	0.15	3.56	0.10	2.65
Mother's GHQ score at baseline	0.10	1.80	-0.05	-0.32	0.04	0.56
Ethnicity	0.73	1.66	-0.66	-0.54	-1.74	-1.04
Social class of parents	0.05	0.37	0.09	0.47	-0.17	-1.44
Large family	-3.50	-4.11	-0.06	-0.07	-3.18	-6.33
Family functioning score at baseline	-0.19	-2.99	0.14	0.89	-0.18	-1.96
Single parent family	0.27	0.61	-0.69	-1.04	-0.18	-0.32
SDQ impact score	0.04	0.77	0.26	1.40	0.16	1.73
Reading test score	-0.30	-1.73	-1.02	-3.68	-1.24	-8.04
Constant	6.55	3.91	0.22	0.06	8.44	2.19
N		108]	140	1	07

۰.

Notes

significant at 1% level significant at 5% level significant at 10% level
 Robust standard errors used for z-values

.

205

.

Table 5.10
GLM cost estimations: trimmed estimation sample

	MENTAL HEALTH SERVICES		FRONTLINE EDUCATION RESOURCES		SPECIAL EDUCATION RESOURCES	
	β	Z	β	Z	β	Z
Age at baseline	-0.00	-0.17	-0.01	-0.16	-0.01	-0.13
Gender at baseline	0.36	1.37	0.57	-1.25	0.77	2.20
Age of mother at birth of child	0.03	1.40	0.09	2.13	0.05	1.75
Mother's GHQ score at baseline	0.05	1.31	-0.17	-2.01	0.11	1.76
Ethnicity	0.38	1.03	-1.48	-1.46	-0.94	-0.83
Social class of parents	0.07	0.77	0.25	1.38	-0.01	-0.10
Large family	-2.07	-5.36	0.49	0.61	-3.31	-7.14
Family functioning score at baseline	-0.11	-2.04	-0.13	-2.13	-0.15	-2.18
Single parent family	-0.43	-1.70	-0.82	-1.34	-0.13	-0.28
SDQ impact score	0.16	3.69	0.20	1.28	0.26	3.33
Reading test score	0.17	-1.74	-0.85	-3.00	-1.06	-7.80
Constant	6.83	4.31	8.06	4.14	8.35	3.26
N		98	13			7

Notes

significant at 1% level significant at 5% level significant at 10% level
 Robust standard errors used for z-values

.

three types of service. The test score variable is statistically significant at the 1% level in both the frontline and special education resource cost equations, and significant at the 10% level in the mental health services equation. This implies that costs incurred in response to behavioural and emotional difficulties are an *increasing* function of *lower* reading attainment. SDQ impact scores are positively associated to each type of cost, though the statistical significance of these associations is less convincing: the SDQ impact variable is only statistically significant at the 10% level in the special education resource equation, thought it does not reach significance at conventional levels in the other cost equations.

The findings from the GLM estimations are, however, sensitive to the exclusion of observations located in the top and bottom 5% of the cost distribution (table 5.10), most notably in relation to the SDQ impact scores. The effect size of increasing SDQ scores on cost—increases substantially within the mental health services GLM and more modestly in the special education resource model. Moreover, the SDQ variable is statistically significant at the 1% level for each of the cost models when using the trimmed sample.

Table 5.11 compares the predictive power of the full and trimmed sample estimations using the root mean squared error (RSME) - a summary measure of the average predictive capability of a model with respect to the costs of specific children (Dunn et al., 2003; Kilian et al., 2002):

$$RSME = \sqrt{\frac{1}{n}} \sum \left(\hat{y} - y \right)^2$$
 [5.2]

where n is the number of observations, y is the predicted cost for a specific observation and y is the observed cost.

Table 5.11Root mean squared error from GLMs

	FULL ESTIMATION SAMPLE	TRIMMED ESTIMATION SAMPLE		
Mental health services	2643.53 - 2666.78	523.00 - 527.39		
Frontline education services	19493.45 - 28620.72	2739.26 - 6099.84		
Special education resources	13899.53 - 19613.49	6164.48 - 7871.03		

Note

Table contains range of RSME values derived from 5 multiply imputed data sets.

Not surprisingly, the predictive capabilities of each model is substantially improved on removal of the outlying data points - the RSME measure will be heavily influenced by the removal of the large predictive errors associated with children at the tail ends of the cost distribution. The concluding section to the chapter provides a more considered interpretation of these findings.

5.6.2 Other explanatory variables

Other explanatory variables were also found to be associated with cost. Children from large families are estimated to be less costly in terms of their use of mental health services and special education resources, an effect that is statistically significant at the 1% level in both cases. Maternal age at the birth of the study child/adolescent is positively associated with cost across all types of service category: the effect of this variable is statistically significant at the 5% level for frontline education services and at the 1% level for mental health services and special education resources. Age of the child is also positively associated with higher mental health service costs (significant at the 5% level), while boys are estimated to have higher mental health service costs than girls.

5.7 Discussion

Data on parental reported service use were used **1**. to estimate the public resource costs of health and education services delivered to 5-to-15-year-olds who were found to have a medically recognisable emotional or behavioural disorder within a major epidemiological survey of childhood mental health and behavioural problems in Great Britain and; **2**. to explore, as far as possible, the reasons for cost variability among children and adolescents who made at least some level of contact with mental health and education services in response to behavioural problems or emotional difficulties, irrespective of whether they were suffering from a recognise disorder during the baseline survey.

5.7.1 Costs of health and education services

The cost estimates presented here offer a general indication - in terms of order of magnitude - of the resource demands placed on health and education services by children and adolescents with psychosocial problems. The significantly higher costs associated with education service contacts can be attributed to a number of factors. Compared to mental health and other types of health services for this age group, a higher proportion of disordered children received some level of input from education professionals in response to the difficulties they were experiencing (Ford et al., 2005). Moreover, the frequency of reported contacts with specific types of education professional over the three-year follow-up period was more substantial compared to the

extent of contact made with child psychiatrists, paediatricians, community nursing staff or other health service professionals. Differences in the frequency of contact with more expensive types of resource input also partially explain the observed cost differences across service categories. Inpatient services, for example, are traditionally the most expensive of resources provided to patient groups with long-term and complex needs (Knapp & Beecham, 1993). However, only three children in the sample were admitted to an adolescent inpatient psychiatric unit over the entire three-year follow-up period. In contrast, many more children with significant psychosocial problems were being taught within special schools, the most costly of the education resource items.

Differences in costs across types of disorder were also apparent. The higher mean costs estimated for behavioural disorders is noteworthy, partly reflecting the greater likelihood of contact being made with services among children and adolescents with a behavioural and particularly a hyperkinetic disorder (Ford et al., 2003). It may also reflect genuine differences in the resource requirements of dealing with different disorders once some level of contact with services has been established. Behavioural problems - because of their more externalising and potentially more disruptive nature (e.g. in terms of classroom conduct or behaviour within the home) - may be more likely to provoke a response from parents in terms of seeking professional help, as well as from teachers and other education professionals within the school environment. By contrast, the difficulties arising from anxiety and depression in childhood and adolescence are more internalised and as such may be more difficult to detect. They may also be interpreted by some parents or teachers as in some sense "normal" or not in need of intervention or treatment.

210

How reliable are the cost estimations reported in this chapter? One way to judge this is to compare the mean estimates reported here with those provided by other studies. All the existing studies of costs in the UK have tended to use samples of children who have been referred to child and adolescent mental health services. As such, it is difficult to directly compare these estimates with those reported in Tables 5.3 and 5.4, since the latter also children with an identified disorder who were reported to have not had any contact with services. A more appropriate comparator is the mean cost of service use for those children (with a disorder) who were in contact with services (this is not reported in the earlier tables) - around £3226 per child (std. deviation=£9737). This is within the range of existing published UK estimates: Byrne et al. (1999) - £1300 per child with a behavioural disorder; Harrington (2001) - £3692 per child with a behavioural disorder; Knapp et al. (1999) - around £8000 per child with a conduct disorder; and Romeo et al. (2005) - £1277 per child with a conduct disorder. All of these estimates include contacts with NHS and education services, but also tend to cover the cost of contact with social services as well as voluntary sector costs (both of these latter service components are relatively unimportant in cost terms). While less comprehensive (though still covering the most costly service elements - excluding family-related indirect costs), the cost estimates described in this chapter are nevertheless an improvement on the existing evidence in terms of providing a more nationally representative picture of the health service and education system costs associated with child and adolescent behavioural and emotional disorders in Britain.

5.7.2 Limitations of cost estimates

Selective drop-out may have led to higher health service costs than might otherwise have been expected among the general population of children and adolescents with a psychiatric disorder. Children and parents from more disadvantaged social backgrounds were under-represented in the follow-up sample (Ford et al., 2003): this type of selective drop-out by social background has been shown to bias downwards health service utilisation estimates based on the types of survey data used here (Reijneveld & Stronks, 1999). Whether this type of selectivity issue is as serious a problem in relation to the reporting of education service contacts is open to question, although, as noted earlier, there was some evidence of *under*-reporting of contacts with education professionals by parents in the follow-up surveys.

The cost estimates can only be as reliable as the resource utilisation data upon which they are based. All the service volume data used here are based on parental reporting of service contacts over a follow-up period using a semi-structured interview schedule. There is a danger that self-report data will be open to recall bias in terms of a failure to accurately report either the frequency of use of particular services, or the nature of the professional contacts in terms of the type of professional seen or facility attended. Despite these caveats there is evidence suggesting that parental, and patient self-report service contacts more generally, are at least as reliable as other sources, including administrative records (Fendrich et al., 1999; Mirandola et al., 1999; Stiffman et al., 2000). The statistical uncertainty surrounding the estimated mean costs is considerable (as evidenced by the wide bootstrapped confidence intervals). This is partly down to the fairly limited number of children with an identified disorder contained within the follow-up study, combined with both the large variation in observed costs and the use of imputations where cost data were missing for specific cases. The degree of uncertainty is, in fact, likely to have been underestimated given that the unit cost data used to cost service contacts were implicitly treated as non-stochastic and without sampling error.

The mean estimates reported here do not distinguish children with a single primary disorder from those who were reported to have other co-existing disorders. For example, many children with a conduct disorder will also suffer from emotional difficulties and may also be prone to severe hyperactivity and attention deficit problems (Goodman, 2005). The presence of these types of "co-morbidity" are likely to increase the complexity of problems experienced by a child, which in turn may invoke a response from services.

Finally, the breadth of service coverage looked at in this chapter was not entirely comprehensive. The costs of social service contacts were not included (for confidentiality reasons the relevant data could not be accessed), though social services intervened with only a relatively small proportion of children with a psychiatric disorder over the three year follow-up period (3.7%; Ford et al., 2005). Harrington (2001) report social services costs to be only 3% of overall costs for a sample of children receiving community-based child and adolescent mental health services, while Romeo et al. (2005) estimate the cost of local authority social worker contacts to be a negligible proportion of total costs in a sample of children also attending mental health services.

Contact with the police and other youth justice services (e.g. youth justice workers) were not covered. This may be an important omission, particularly with regard to adolescents with behavioural problems that extend to antisocial behaviour and delinquency. Recent findings published by Scott et al. (2001) suggest that the crime-related costs (criminal justice system costs only) are likely to be a significant component of overall costs among adolescents with conduct problems - 64% of total costs estimated for a sample of sixteen children with a conduct disorder - though these estimates are longitudinal, referring to an 18-year period from age 10 up to age 28.

The mental health service costs reported here rely on published unit cost data that do not include an explicit allowance for the cost of medication administered to children with psychiatric disorders. Ford et al. (2003) report that, during the first follow-up period, 68.8% of children with a hyperkinetic disorder who were in contact with mental health services were prescribed methylphenidate - a psycho-stimulant drug,¹ as were almost 30% of those with a conduct disorder. Anti-depressants were prescribed to nearly 10% of children with conduct disorder who saw a mental health service professional and to just over 8% with an emotional disorder. The National Institute for Clinical Excellence report the cost of treatment with methylphenidate to be in the region of £200 per year at standard dosage levels (Lord & Paisley, 2000). Ford (2004) estimate that, within the British Child and Adolescent Mental Health Surveys, 34% of children with a hyperkinetic disorder at baseline were in contact with mental health services. Combining this with the proportion in contact with mental health professionals who were reported to have been prescribed a psycho-stimulant drug at an annual cost of £200, yields an estimated mean cost of psycho-stimulant medication of around £46 per

¹ Most commonly known by its brand name, Ritalin.

child with a hyperkinetic disorder. This is close to half the annual mean cost of mental service contacts for this type of disorder ($\pounds 112.07$ - see Table 5.5).

5.7.3 Cost variations

Variations in cost are not random. Moreover, the evidence derived from the multivariate estimations showed a positive association between cost and measures of problem severity based on reading test and SDQ impact scores. The estimated proportional effect using the trimmed sample would imply a substantial percentage difference in cost between children who are generally considered as "borderline" problematic (those with an SDQ score = 1) compared to those well within the abnormal score range (e.g. SDQ = 5): the difference is estimated to be equivalent to over 60% of the mean cost for entire sample who were in contact with mental health services.²

Frontline and special education resources costs were also found to vary positively with SDQ impact scores. However, education costs are generally more strongly correlated with reading attainment scores, irrespective of whether the top and bottom 5% of the cost distribution are removed. The differential in special education resource costs between children with borderline and abnormal SDQ scores (= 5) is estimated to be in the region of 160 % of the mean sample cost using the full sample estimation sample coefficient on this variable reported in Table 5.8. The corresponding differential for frontline education services is estimated to be around 130% of the mean cost.

² The coefficient on the SDQ impact score in table 5.10 multiplied by the differences in SDQ scores at the median and 90^{th} percentiles.

The finding of a positive relation between service costs and indicators of problem severity has also been observed within smaller UK samples of children with serious behavioural problems (Romeo et al., 2005). Moreover, empirical investigations of British national epidemiological data relating to other types of heath and social care arrangements for other "client" groups have also demonstrated a similar positive association between measures of severity of disability or symptomology and resource costs: e.g. Kavanagh & Knapp (1999) - for older people with cognitive impairment and stroke; and Knapp et al. (2004) - for adult patients with schizophrenia.

5.7.4 Cost variations: limitations of analysis

Issues relating to the quality of the data and the potentially unrepresentative nature for the follow-up sample who were analysed have already been discussed in relation the cost estimations. It is, however, also worth noting that, for the purposes of multivariate estimation, the available follow-up samples are quite small, even after imputing values where data were missing on given explanatory variables. Estimated standard errors suggest a significant degree of imprecision in relation to the model parameters estimated for the explanatory variables, including those relating to severity of impact and reading attainment. Larger samples may therefore have yielded greater statistical precision.

The analysis of cost variations was also quite selective in the sense that they purely examined variations in cost conditional on some positive level of involvement with different services. There are, of course, important questions surrounding the factors that are likely to influence the likelihood of making any initial contact with services - an issue that can in principle be addressed within a more complete "two-part" modelling

framework (Duan et al., 1983). Ford et al. (2003) have already examined the relationship between individual characteristics and the likelihood of making contact with services, again using the British Child and Adolescent Mental Health Surveys. As with costs for those children reported to have used services, and standardising for other child and family-related factors - SDQ impact scores were a significant predictor of the likelihood of contacting mental health services, social services, resources relating to special educational needs and paediatric services.

There was some evidence of a mis-specification of the chosen functional relationship between costs and the explanatory variables included in the modelling - most notably with regard to mental health service and special education resource costs: all the generalised linear models in this chapter were estimated using a log-link function. In the absence of any prior theoretical guidance on what kind functional form would be appropriate, the analyst is left with an array of possible specifications that might be adopted. Within the GLM framework these not only relate to the nature of the specific link-function used, but also the selection of an appropriate specification for the explanatory variables included in a model (e.g. the use of quadratic or cubed transformations with a view to estimating additional non-linear effects). Data mining has its pitfalls, and with this in mind a simple log-link specification and cost (Dunn et al., 2003; Kilian et al., 2002; Manning & Mullahy, 2001).

The multivariate estimations represent an attempt at identifying broad patterns of association between key variables of interest. No attempt was made to model causality. Moreover, some potentially important covariates were excluded - perhaps most notably

the type of problem (behavioural or emotional) experienced by children in contact with services. Concerns regarding the high degree of colinearity between variables and the extent to which there was sufficient independent variation in the data led to the exclusion of these additional variables - different types of disorder significantly overlap with one another. Nevertheless, the exclusion of variables identifying disorder type may somewhat confound observed associations between costs and the main covariates of interest. For example, children with a hyperkinetic disorder generally have higher SDQ impact and lower reading attainment scores compared to children with other types of difficulty. The positive association between mental health service costs and SDQ scores (in the trimmed estimations) could therefore partly be a down to a treatment availability effect, as opposed to a pure targeting effect of resource inputs on children with more intensive "needs": services respond to hyperkinetic disorders with relative ease because there is a more widely accepted (medication-based) treatment strategy.

The models were also sensitive to the exclusion of outliers - particularly in terms of the size of estimated effects and relative predictive power. The mental health service estimations are in fact most sensitive to the inclusion or otherwise of a single case whose total package of mental health care cost in excess of £25000 over three years (the next highest cost in the distribution was only just over £5000 for the same period). While this child was not described as having any mental disorder at baseline, researchers rated his/her services over follow-up as being highly related to the presence of behavioural and emotional difficulties. However, there was some evidence of unreliable measurement associated with this specific outlying case, particularly regarding his/her parent-rated SDQ impact score. At baseline, the child was rated has having no problems in the area of leisure, schooling, home-life etc. and yet they was

also identified as having a history of special educational needs, experience of a social services care placement, and contact with the police and youth justice services over the follow-up. Psychosocial difficulties are unlikely to be static, and at the time the SDQ ratings were made there may have genuinely been few problems to report in terms of social impacts, with more serious difficulties developing over the follow-up period. Either way, it is clear that the inclusion of a case with such a high cost value combined with a low baseline SDQ impact score will significantly flatten any underlying slope effect otherwise observed within a less extreme range of costs. There were generally fewer concerns that potential error in measurement among outliers was having such an extreme effect as regards those observations who were excluded when trimming the education cost samples.

Beyond concerns over data reliability, the better predictive power of the trimmed estimations and the increased significance of the SDQ and reading test variables on the exclusion of outliers is also a reflection of the challenges involved when using multivariate statistical methods to model what are inherently complex relationships. This is particularly noteworthy as regards the inability of the models to characterise the processes driving levels of service utilisation and cost towards the upper tail-end of the distribution. More generally, the predictive capabilities of these types of model are likely to be limited by the availability of data on a range of other potentially important factors. Knapp (1998), for example, has suggested that, within health and social care settings, there are likely to be a variety of reasons as to why costs will systematically differ across individuals. On the "supply-side", these are likely to include differences in the way services are delivered across localities, variations in the types of interventions offered, variations in professional practice, as well as differences in resource availability. On the "demand-side", differences in parental knowledge about services, and their preferences and levels of motivation for seeking help and the varying costs of attending services (e.g. in terms of geographical convenience) are likely to be of particular significance. Also, agencies may be responding - when allocating services - to individual needs not measured by instruments in the current data, agencies may simply miss, or misinterpret, some needs and therefore not respond appropriately or consistently.

5.7.5 Policy issues

The findings reported in this chapter suggest that the education system bears the largest cost burden when responding to child and adult adolescent psychopathology. These costs are not just restricted to the delivery of specialist services targeting the needs of children and adolescents with these kinds of difficulty: there are also sizeable costs incurred within mainstream schools - including the provision of additional teaching inputs (either by teachers themselves or support staff) as well as time spent meeting and discussing problems with parents. From a public policy perspective these resource commitments are of importance because they imply a diversion of education resources away from other socially beneficial activities (either within or outside the education sector).

Chapters 3 and 4 suggested that there may some important long-term benefits to individuals associated with either the prevention or limitation of psychosocial difficulties at an early age: hyperactivity and deficits in attentiveness were found to be the most damaging in terms of future employment outcomes. The findings in this

chapter also imply that there may more immediate benefits to the education system if these types of damaging behavioural and emotional patterns can be effectively managed or prevented by interventions delivered by, for example, child and adolescent mental health services. The wider social costs in adulthood associated with serious behavioural and problems in childhood observed in other studies (Knapp et al., 2002; Scott et al., 2001) also suggests that the social benefits of limiting or preventing these types of difficulties are likely to be felt beyond the education sector - conduct disordered children, for example, are also significantly more likely to use up police time and to come into contact with youth justice services. The findings of Romeo et al. (2005) also point to the potential for important welfare gains for affected families (e.g. in terms of reduced disruption to family life), while behaviourally or emotionally disturbed children and adolescents may themselves experience improvements in both school performance (a partial determinant of whether and how well they are likely to fare in the labour market) as well their ability to make friends and form stable relationships.

A study by the Audit Commission (1999) into the state of child and adolescent mental health service provision in England and Wales reported considerable variation in resource expenditure across health authorities in England and Wales that could not be explained by differences in "need", as measured by a standard index of area-level social deprivation. Notwithstanding some of the limitations of the analyses reported in this chapter, there was also evidence of a considerable variability in resource utilisation and cost at the individual level. Some of the variability may be "legitimate" - at least to the extent that it reflects perceived differences in the need for intervention at the margin. The positive association between costs and the severity of education and social impairment may be indicative of this. "Need" is, of course, a value laden concept that can have varying interpretations (Mooney, 1992; Williams, 1978). Nevertheless, if children with increasing severity of difficulty are viewed as having a greater deficit with respect to social functioning, or with regard to meeting acceptable education standards given their age and inherent abilities, then the cost estimations reported here do imply a targeting of resources towards those who at least may have a greater *potential* to benefit from service inputs.

However, even after allowing for differences in those need-related characteristics and other background variables, the remaining variance in mental health service and education resource costs remains considerable. This points to a degree of inequality in the way that the mental health and education systems deal with "problem" children: after standardising for other background factors the multivariate estimations suggest that children and adolescents with similar levels of reading attainment and social impairment appear to be treated very differently in terms of resource targeting and cost. It could also point to the presence of systemic inefficiencies if the observance of significant cost variability, even after accounting for need-related characteristics, indicates some deviation away from a single best practice, or efficient approach, to dealing with children with a given severity of problem. While these issues would require further exploration in order to reach more concrete conclusions, the findings in this chapter are at least suggestive of a need for a more concerted review of the extent to which public services are currently responding to child and adolescent psychosocial problems in a fair and efficient manner. Some of these issues are returned to in the concluding chapter.

223

-

6 Concluding Discussion

This thesis examined two issues:

- 1. The relationship between adult economic attainment and psychosocial development during late childhood.
- 2. The economic cost of delivering public services that target emotional and behavioural difficulties experienced by children and adolescents.

A review of the literature was suggestive of a significant link between child and adolescent psychosocial characteristics and employment outcomes in late adolescence and adulthood. Much of the evidence, all using longitudinal data, either from selective samples of children or birth cohorts, points overwhelmingly to a positive association between childhood and adolescent antisocial conduct an increased probability of future unemployment and lack of employment stability. Children and adolescents with behavioural problems are known to be at greater risk of experiencing poorer educational and other social outcomes - including delinquent and antisocial personality development - so it is perhaps of no surprise that they should also experience damage to individual opportunity and economic potential. There is an indication in some studies that the presence of child and adolescent emotional problems and attention deficit problems/hyperactivity may increase the likelihood of experiencing poor employment outcomes later in life. Collectively, however, the evidence is not as extensive nor as consistent in its findings when compared to that concerning with antisocial conduct and future employment status.

A sizeable number of studies reviewed in chapter 1 tended to focus on employment stability (e.g. number of jobs held over a period) or exposure to periods of adolescent or adult unemployment. The remainder - ten in total - considered the relationship between psychosocial development and earnings for those gaining employment. Four of these considered aspects of behavioural development observed in middle and late childhood, with the remainder focussing on adolescent development. Perhaps the most intriguing findings were provided by two studies using British birth cohort data: Feinstein (2000) and Bowles et al. (2001b) both demonstrated a significant link between antisocial conduct in childhood and future earnings - however, their findings are somewhat contradictory. Feinstein reported a positive association between female wages and childhood antisocial behaviour - no significant effect is observed for males. The opposite direction of association is reported by Bowles and colleagues for workers from a birth cohort born in 1958 using a measure of childhood aggression - though male workers in higher status occupations were actually predicted to earn more if they identified as having been aggressive during childhood. Both these studies are of significance because they begin to suggest a more complex picture than might otherwise be painted when looking exclusively at the relationship between behavioural development and measures employment participation.

The empirical investigations reported in chapters 2 and 3 aimed to build on the existing evidence base regarding the longer-term employment consequences of psychosocial development. Chapter 2 focused on a cohort of males of mainly working class origin who, at age 8-9, were attending schools located within an area of inner London. Chapter 3 utilised data from a large British national birth cohort born in 1970. Both studies considered psychosocial outcomes observed during late childhood and their relation to

earnings and other measures of employment status when both cohorts were in their early 30s. Chapter 2 also considered job stability and unemployment during late adolescence.

In chapter 4 some potential efficiency- and equity-related justifications for public intervention in child and adolescent psychosocial development were discussed. These included the need to correct, through appropriate forms of intervention, for informational failures inherent within parental decision making as well as the need to limit the wider social harms linked to the externalising effects of disruptive behavioural patterns. Beyond these efficiency-led justifications, chapter 4 also highlighted the importance of equity-led considerations. In more recent thinking regarding the inherent farness of social outcomes, the role of individual choice in the process that brought about an observed distribution of economic wellbeing has been argued to be of central importance. It is certainly the case that accumulation of individual endowments throughout childhood and adolescence, including those relating to behavioural and emotional adjustment, cannot be meaningfully considered as the outcome of a developmental process governed by personal choice: they may have an important predetermined genetic component; they may be crucially influenced by the decisions, attitudes and preferences of parents and their relationship with their children; or from the general environment to which an individual is exposed during their formative years, including the type of neighbourhood where they lived and the quality of the schooling they receive. With this in mind, the expenditure of public resources on interventions that target the sources childhood disadvantage explored in this thesis could be viewed as an important compensatory adjustment for the differences in opportunity and economic potential that essentially lie beyond an individual's control.

Chapter 5 was concerned with the estimating the costs of intervention. This was conducted using service utilisation data generated from a national epidemiological survey of the prevalence of psychiatric disorders among British 5- to 15-year-olds. Estimates of the mean costs of health and educational resource use thought to be directly attributable to behavioural and emotional disorders in childhood and adolescence were described. Multivariate methods were also used to examine factors that explained variability in costs among those children and adolescents who had some level of involvement with mental health and educational services as a direct result of psychosocial problems they experienced. A particular emphasis was place on examining the degree to which resource costs vary according to the severity of problems experienced, measured in terms of social impact (e.g. family life, ability to make friends, levels of distress experienced) and a measure of academic performance.

The remainder of this concluding chapter summarises and interprets the key findings from the empirical investigations that were carried out and then discusses some of their limitations. The discussion then goes on to consider some of the policy issues arising from the findings with a concluding consideration of some outstanding issues that might be addressed through further research.

6.1 Psychosocial development and future economic attainment

6.1.1 Main conclusions

The findings support existing evidence showing that antisocial children are more likely to experience unemployment and job instability on entering the labour market within a birth cohort born in 1970. However, earnings were found to be positively related to increasing severity of antisocial conduct in late childhood for male employees and females employed in managerial occupations.

Supporting the evidence reviewed in chapter 1, the longitudinal investigations carried out on the BCS70 data showed that 30-year-olds who had higher antisocial conduct scores at age 10 were less likely to have been economically active at that age (defined as either working or participation in an educational or work training initiative). That being said, the association was only found to be of statistical significance for males. At a descriptive level, just over 30% of 30-year-old men who were unemployed had been located in the top quartile of an index of antisocial conduct at age 10 compared to just 23% of those in full-time work. Nevertheless, conditional probability predictions (holding constant a wide range of other childhood characteristics) revealed that the difference in the chance of being economically when comparing males who were located at the median and at the 90th percentile on the antisocial conduct index were relatively small.

Chapter 2 considered length of unemployment prior to age 32 (>1 year out of work over a 5-year period). Men who experienced this outcome were more likely to have been identified as antisocial at age 10 - though the effect was only statistically significant at the 10 % level. The predicted risk differential between men who were troublesome 10year-olds and the remainder of the cohort was, however, greater than that observed within the BCS70 cohort with respect to being economically active at age 30. There are obvious differences between the Cambridge and the 1970 birth cohorts making direct comparisons difficult, but it is noteworthy that the adult employment outcome measure used in the former builds in an element of the duration unemployment experienced which may account for the differences in effect size: the BCS70 analyses use a "snapshot" measure of economic status at a given time point which may provide a less reliable indicator of underlying individual employability:

As well as considering adult unemployment, the analysis of the Cambridge cohort also looked at the link between childhood antisocial conduct and both job stability and unemployment in the teenage years. Troublesome conduct at ages 8-9 was found to be a significantly related to experience of more than 18 weeks of unemployment and also of having more than three jobs post school leaving. The predicted probabilities associated with these outcomes were substantially greater for the troublesome group compared to the rest of the cohort, though it was noteworthy that the effect diminishes over time: experience of a relatively high job turnover rate at age 32 was found to be unrelated to troublesome behaviour in late childhood, while the relationship between the main childhood indicators and a lengthy period of unemployment prior to age 32 was also comparatively weak. It clearly becomes more difficult to directly link late childhood experiences to future outcomes over increasingly extended periods of an individual's life course. This will be partly due to the fact that intermediate mediating processes become more important in determining future employment pathways and these may become increasingly influenced by factors other than childhood-related characteristics. Nevertheless, the strong link with teenage employment outcomes is of potential significance, not least given the importance of early employment experiences for future attainment in labour market (Gregg, 1999). In this sense, the disadvantages associated with behavioural problems in late childhood should be seen as a potentially dynamic and cumulative process. Despite evidence of an elevated risk of job instability and failure to gain employment, or to participate in other human capital-enhancing pursuits,

greater severity of antisocial conduct as rated by teachers during late childhood was not found to be linked to a higher average risk of adult poverty at age 30 within the 1970 cohort.

Increasing antisocial tendencies in late childhood within the 1970 cohort were strongly linked to higher male adult earnings at age 30. There was generally no evidence of a corresponding earnings premium for women, though, interestingly, women in managerial jobs who had more severe conduct problems at age 10 were estimated to earn close to 10% more than their peers - this compares to a corresponding premium of 7% for men when looking at male earnings across the full occupational range. While no formal test of the statistical significance of female earning differentials across occupational categories was carried out, this finding is intriguing to the extent that it points to possible differences in the way that certain characteristics among female workers (those relating to childhood antisocial conduct) are rewarded within higher status jobs.

While these findings are somewhat at odds with those reported in other studies where adult pay has been found to be negatively related to earlier behavioural problems (Bowles et al., 2001a; Burgess & Propper, 1998; Cawley et al., 2001), there are good reasons for not viewing the positive relationship between childhood antisocial conduct and earnings as entirely counter-intuitive. It is plausible that those individuals from the BCS70 who selected into stable paid employment at age 30, and who were relatively badly behaved at age 10, may possess latent characteristics that attract a higher wage. Children who are naturally aggressive may, for example, possess greater leadership skills - a sustainable personal characteristic for which for which certain types of

employer may be prepared to pay a significant premium. Kuhn & Weinberger (2002), using US longitudinal data (the NLSY) found a significant and positive effect of leadership skills identified during the high school years on adult wages. This finding is to some extent consistent with studies that have found a small but positive wage premium associated with participation in sporting activity at school, a potential correlate of leadership ability (Anderson, 2000; Barron et al., 2000).

Beyond the possible importance of leadership skills as an explanation for the findings reported in chapter 3, a review of the importance of personality in determining adult pay carried out by Bowles et al. (2001a) also provides some additional clues as to why childhood antisocial behaviour may promote higher future attainment for certain individuals. They pay considerable attention to a psychological construct known as "Machiavellian intelligence" - the propensity to manipulate others in the pursuit of selfinterest - and cite a number of studies demonstrating a link between this type of psychological trait and higher labour market rewards within certain types of occupation (e.g. Turner & Martinez, 1977; Schultz, 1993). As with leadership skills, Bowles et al suggest that certain types of jobs will value these types of personal "qualities" which, if in relatively scarce supply, will command a premium in the labour market. The concept of Machiavellian intelligence is of relevance to the findings of chapter 3 because it has also been shown to be correlated with measures of childhood aggression. Sutton & Keogh (2000), for example, found that a group of children prone to bullying behaviour had significantly higher "Mach" scores compared to a non-bullying control group. Moreover, pro-bullying attitudes were correlated with an increasing 'desire for social success' within the context of the school environment. Sutton, (2001) has suggested that aggressive tendencies at school may simply be, for many children, an expression of other underlying personal characteristics that find their expression in various externalising behaviours. It therefore seems plausible that, on maturation into adulthood, the persistence of underlying motivations that promote less socially desirable behaviour in childhood could also actively promote social progression and work place performance later on in life.

Childhood attention deficit problems and hyperactivity significantly limit future attainment in the labour market.

Attention deficit problems at age 10 were associated with a lower probability of being economically active and a higher likelihood of living in a low income household at age 30 within the BCS70. However, model estimations only translate into small differences in the predicted likelihood of experiencing these outcomes when comparing individuals who were located at the median and 90th percentiles on the relevant age 10 index. Contrary to these findings, there was no link between teenage or adult employment participation and restlessness/poor concentration at age 8-9 within the Cambridge cohort.

An analysis of occupational status in the 1970 cohort found that inattentiveness at age 10 was significantly related to selection into lower skilled occupations at age 30 and lower earnings. This finding was consistent with the negative effect on earnings at age 32 associated with poor concentration/restlessness in late childhood within the Cambridge cohort. In terms of average effect on weekly pay, women who were significantly more inattentive at age 10 appeared to fare significantly worse than males with similar problems in the 1970 cohort. Point estimates suggest that the negative

effect on income is over twice as large for females (12% - versus 5% for males). These also add to the gender differences found in relation to antisocial conduct (see below). These findings have some resonance with those reported by Cawley et al. (2001) who supply evidence of a gender difference with respect to the effect of cognitive ability on adult wages in the US. Why might these gender differences exist? They could reflect cross-gender differentials in occupational selectivity: females may on balance select into jobs in which productivity is more severely impaired by attention deficits that have persisted from childhood. A more cynical interpretation of the difference is that men and women with similar levels of ability (cognitive or non-cognitive) are rewarded/penalised differentially. Finally, gender discrepancies in relation to childhood attentiveness might relate to discrepancies in the educational achievements of girls and boys affected by attention deficit problems. This could result from differences in the way that attention deficits affect learning and educational development across the genders, or it may indicate differences in the way that parents or the education system responded to inattentive behaviour among girls compared to boys within the 1970 cohort. This issue warrants further exploration.

The findings from chapter 4 offered some suggestion that the impact on earnings associated with attention deficit problems may be largely transmitted through occupational selectivity rather than through damaged productivity resulting from the persistence of inattentiveness from childhood into the work place. Firstly, ordered probit estimations revealed that those workers with greater childhood inattentiveness were less likely to select into higher status jobs. Secondly, no statistically significant effect on earnings was found *within* specific levels of occupational categories (with the possible exception of males employed in skilled manual work) suggesting no residual negative

impact on earnings over and above that related to the lower likelihood of selection into more skilled occupations. It should again be stressed that these findings need to be tempered somewhat given the limited sample size upon which some of the occupational specific regressions were based.

There was less convincing evidence that emotional problems in childhood have a long-standing influence on future economic attainment.

The evidence reviewed in chapter 1 provides no consistent indication as to whether emotional difficulties experienced in childhood and adolescence will have any substantive long-lasting effect on future economic status. In the current thesis late "emotional wellbeing" was measured using an indicator neurotic tendencies (within the Cambridge cohort) and an index of anxiety and related symptoms (in the BCS70). In the 1970 cohort, there was some descriptive evidence of a relationship between lower occupational status and childhood anxiety: twenty-three percent of males in a professional job were located within the highest quartile of the age 10 index of anxiety compared to 32% of employed in unskilled occupations at age 30. However, this association does not hold for either males or females after conditioning on other variables measured in late childhood.

There was also evidence that increasing levels of childhood anxiety negatively affected earnings at age 30: the effect is stronger for males but less convincing statistically and of a lesser magnitude compared to the earnings effect associated with attention deficit problems. There was also no association between neuroticism at age 10 and future earnings within the Cambridge cohort, nor was it significantly related to other teenage or adult employment outcomes. However, for males in the 1970 cohort, increasing childhood anxiety was a statistically significant correlate of the likelihood of exposure to low income at age 30, though again, the predicted probability differentials between subjects located at the 90th and 50th percentiles on the age 10 anxiety score distribution are small in absolute terms.

Mental health problems observed later on during the adolescent years may turn out to be stronger predictors of future attainment, particularly given evidence of a continuity between adolescent mental health problems and psychiatric illness adulthood - the latter has itself been shown to affect both earnings and employment participation (see evidence reviewed in chapter 1). Hofstra et al. (2001), for example, use Dutch longitudinal data for a general population sample of 11-19 year olds to examine developmental continuities in psychopathology over a 10 year follow-up period. They found that the correlation between mental health problems in the 11-19 age group and the presence of a psychiatric disorder 10 years later decreased among those of a younger age - a finding that has some consistency with the results derived from the BCS70. More generally, depression and anxiety during adolescence were found to be associated with similar problems arising in early adulthood - though the predictive power of the models used to examine these relationships are somewhat limited. The authors note that their findings are consistent with other longitudinal evidence.

6.1.2 Summary of main study limitations

Most of the limitations associated with the longitudinal findings reported in chapters 2 and 3 have already been discussed. This section is restricted to a summary of the main limitations that are generic to both studies.

Cohort-specific effects

Both the Cambridge and the 1970 birth cohorts were born and brought-up during specific periods. The developmental trajectories of adults exposed to periods with different economic, social and policy environments could, in principle, vary. It would therefore be prudent to observe some caution when appraising the significance of the findings reported here if the long-term outcomes associated with child and adolescent development are indeed sensitive to these kinds of period specific effects. This would be of some importance, for example, when attempting to assess the potential long-term benefits of interventions that seek to prevent or limit psychosocial impairments within current generations of children and adolescents.

Selective drop-out over time

This is an easy criticism to lay at the door of longitudinal studies conducted over extensive periods of time, though without access to extensive follow-up data of the type utilised in this thesis it would not be feasible to look at associations that are essentially longitudinal in nature, except when relying on less reliable retrospective reporting within cross-sectional surveys. Nevertheless, it is important to be aware of the problems that can arise from the failure to successfully trace and interview cohort members through time, not least if the process of losing information turns out to be non-random. Numerically speaking, loss to follow-up was not a major problem with the Cambridge cohort (93% of those alive were traced at age 32) though a more substantial proportion of eligible subjects were not included in the age 30 wave of interviewing in the 1970 cohort. It seems plausible that more socially problematic individuals (who would have been more likely to have had psychosocial problems at a younger age) will be more difficult to trace. While there is evidence, for example, that this was the case within the National Child Development Study (the 1958 birth cohort), there was, in fact, little to choose to between those who were successfully followed-up and those who had dropped out on the basis of observable characteristics measured at previous waves of data collection (Hawkes & Plewis, 2004). It therefore remains to be seen as to how serious selective loss of data is in terms of its effect on the reliability of the types of longitudinal associations reported here.

Inter-dependence between explanatory variables

The analysis of adult attainment with the Cambridge and 1970 Birth cohorts may underestimate the true level of importance of psychosocial development for future attainment. This would occur in instances where behavioural or emotional difficulties are damaging to other aspects of personal development observed in late childhood motivational factors (including self-esteem) and cognitive skills development maybe good examples. These additional factors that will contribute to future attainment independently of psychosocial development were conditioned upon in the econometric estimations reported in chapters 2 and 3. As such the findings presented here, in essence, quantify the relationship between the between behavioural and emotional difficulties in late childhood and economic outcomes at around age 30, net of any other indirect influence they may have via their impact on other relevant childhood factors.

Measurement error

۰.

A final issue of generic relevance concerns the problem of measurement error. Multivariate estimation procedures of the type used in this thesis assume that variables are non-stochastic in nature - i.e. that they are measured without any error (Dougherty, 2002). This is unlikely to be a realistic assumption, particularly when relying on external ratings of children's behavioural and emotional development. Teachers, for example, may fail to accurately recall problems, or may have difficulties in making more reliable assessments of classroom behaviour if they have only taught a child for a limited period. Certain types of behaviour may be also be difficult to accurately assess bullying other children, stealing or property damage can only be meaningfully attributed to an individual if reported to a teacher or directly observed. Moreover, it may be more difficult to accurately record or rate emotional difficulties (e.g. anxieties or depressed mood) because of their more "internalised" nature, at least when compared to problems that are more externalised and easily observable due to the disruption they can cause (e.g. hyperactivity in the classroom). Both the Cambridge and the 1970 cohort used external ratings of the behaviour and emotional wellbeing of children. The former relied on a series of ratings by teachers, peers and psychiatric social workers when constructing dichotomous indicators of the presence or otherwise of specified problems. In line with previous studies, a decision was made to rely on the teacher ratings when analysing the 1970 cohort data in the belief that they would provide a more a more independent and therefore more accurate assessment of the behavioural and psychological characteristics of specific child.

Accepting that it is impossible to completely eradicate measurement error from the types of analyses conducted here, irrespective of the source of ratings eventually used, it remains important to be aware of its potential effects. Within a linear regression framework it can be shown that random error in the measurement of key explanatory variables will bias downwards estimated parameters of interest. It is therefore plausible that many of the effects relating to the main indices of interest are conservative. Moreover, the bias will worsen if the variance of the measurement error is large compared to the true value of the explanatory variable of interest.¹ If, for example, the error variance associated with the teacher ratings of anxiety-related problems are comparatively large, then this may explain the comparative lack of significance of emotional problems in the reported estimations: with BCS70 males, for example, age 10 anxiety is negatively associated with age 30 earnings but the effect is comparatively weak and only significant at the 10% level.

6.2 The costs of intervention

6.2.1 Main conclusions

Frontline education services are by far the most costly of the resource inputs targeted at behavioural and emotional disorders.

The opportunity costs arising from the allocation of mainstream school inputs towards problem children and adolescents by far outweigh any other of the service-related costs associated with problem children. These "frontline" costs include the cost of teacher time and other-related resources diverted into extra help provided at school, as well as

¹ For a proof of this result, see Dougherty (2002).

meetings with parents. It also includes the allocation of school resources for use in the assessment of any special educational needs arising directly from behavioural and emotional problems. Teachers are likely to be the first source of professional response to behavioural and emotional difficulties for most school children. The educational needs of a relatively small number of children and adolescents are also considered by special needs tribunals which, though used comparatively infrequently, are costly to deliver. Special education resources were the second most costly type of service followed by the costs of delivering child and mental health services. The latter represent only around 8% of the costs associated with frontline education resource use.

Chapter 5 provided an estimate of the total cost of frontline education and other services attributable to child and adolescent psychopathology in Great Britain as a whole. Scaling these estimates down to cover England only, the mean total costs for all disordered children reported in chapter 5 suggests that the overall cost of the response of English frontline education services to childhood mental disorders is equivalent to around 2% of total spending on primary and secondary school education in England during 2001 (around £24.5 billion; Department for Education and Skills, 2004a). These are costs that are seen to be additional to the "regular" costs of school provision for children with a psychiatric disorder.

Child and adolescent mental health service costs account for a relative small proportion of overall costs attributable to child and adolescent psychopathology, though they significantly exceed those relating to the primary care and children's health service provision. The mean cost of mental health services was estimated to be less than £60 per child over 12 months for all children with a disorder, including contacts made with child psychiatrists, psychologists, family therapists and other specialist services. In overall terms, the costs of child and adolescent mental health services at a national level, using the estimated means from chapter 5, amount to around 1% of recently published estimates of total spending on adult mental health services within the National Health Service in 2002 (£6.5 billion; Sainsbury Centre for Mental Health, 2003).

Variations in mental health service and educational resource costs are not random and children with increasing levels of "need" attract a greater level of cost.

Multivariate analysis of cost variability at the individual level revealed that resource costs associated with mental health and education services are not random, though the models of cost variability fall well short of explaining all observed variation in the sample of children examined. While the data did allow costs to be conditioned on range of explanatory variables, including those relating to the severity of psychosocial problems experienced and various family and parental characteristics, the impact of other factors, particularly those relating to the supply of services (e.g. resource availability, professional characteristics) could not be examined.

Despite these limitations, there was evidence that resource use and costs are responsive to differences in the severity of problems experienced as measured using a summary index of the impact psychosocial problems on learning, leisure, friendships, home life and levels of distress, and a separate index of reading attainment at school. This is partially reassuring, at least to the extent that it indicates a targeting of resources on those children with a greater *potential* capacity to benefit from intervention. However, the multivariate models that were fitted to the cost data are unlikely to fully capture the complexity behind those factors that drive unequal levels of resource use across children who make contact with services. This is particularly evident when more extreme cost values were retained with the estimation samples: compared to the use of "trimmed" samples, explanatory power is impaired and the importance of the problem impact score and reading attainment variables were significantly diminished. It is also important to note that the estimations reported here deal entirely with the targeting of resources among children who actually utilise services. Other analyses of the same survey data employed in this chapter show that 75% of children with a recognised psychopathology do not engage with mental health services (Ford, 2004). Targeting in these terms could therefore be regarded as being poor, though the influence of demandside factors (e.g. parental awareness and motivation) as well as local resource availability and service capacity, as opposed to service responsiveness *per se*, are likely to be more important reasons as to why service involvement appears to be so low.

6.2.2 Summary of main study limitations

Selective drop-out

The follow-up surveys of the British Child and Adolescent Mental Health Surveys were subject to a systematic loss of study participants who were included in the original baseline epidemiological survey: children and adolescents from poorer backgrounds were generally under-represented at follow-up. There is published evidence (cited in chapter 4) that selective loss of information of this nature could downward bias resource use and cost estimates.

Limited breadth of service coverage

Missing data and issues of confidentially prevented the comprehensive costing all types of services that children and parents were reported to have contacted over a three year period. Noteworthy exclusions were the costs of police and youth justice services contacts - these are likely to be of greater importance when assessing the costs associated with behavioural disorders. Costs of social services contacts were not included. Other UK studies put these types of cost at no more than 3% of the overall total. The costs of psychotropic medication were also excluded, though again, these will only make a up a relative small proportion of overall health and education service costs. The costs to families arising from child and adolescent psychopathology were also omitted. The costs of parental time inputs and general disruption to family life have the potential to be highly significant (Romeo et al., 2005). There amelioration could, in fact, represent an important source of social benefit from interventions that can effectively limit or prevent behavioural problems or emotional difficulties.

Cost variations: data and econometric limitations.

Cost variations were examined for mental health and education services using a rather limited number of cases - this was partly due to restricting the estimations to children and adolescents who had a positive level of service-related cost. Data observations with more extreme cost values subsequently had an important influence on the findings, with improvements in predictive power and in the strength of association between severity of problem measures and cost increasing when these outliers were excluded. In most instances, outliers appeared to be genuinely costly individuals, though in one instance

there was some concern as to the reliability of measured costs. Specification tests revealed some evidence of functional form misspecification: all the models assume that raw scale costs are an exponential function of the explanatory variables included in the multivariate estimations - otherwise referred to as a log-link function when using the terminology of generalised linear modelling. This is a conventionally adopted specification in studies of health care utilisation and costs in the economics and related literatures. However, it need not adequately explain all heterogeneity among children and adolescents who receive help from education and mental health services.

6.3 Policy implications

The findings presented in this thesis should be viewed as a contribution to our understanding of the long-term economic and social implications of behavioural and emotional development during childhood, and the cost consequences of public intervention. While the findings are subject to a number of limitations and caveats, they do raise some important issues that are of potential significance for public policy.

Attention deficit problems in late childhood

Recognising problems at the point of transition from primary into secondary school could enable the planning of an effective package of interventions preventing failure at school and improving opportunities for accessing better paid jobs.

The expectation is that children more severely affected by inattentiveness during late childhood will, on average, go on to earn less over their working lives. The empirical investigations described in chapter 3 offered some tentative evidence that employees in

the 1970 birth cohort who had significant attention deficit problems at age 10 ended up earnings less because they did not progress into more skilled and better paid jobs. It would seem fair to conclude that lower educational achievement at school is likely to have a significant role to play in limiting opportunities for gaining access to more economically rewarding occupations. This in turn would tend to reinforce the importance of intervention, either by the education system or mental health services, prior to the completion of formal schooling.

The findings - which relate to problems observed at age 10 - would imply that an improved awareness of significant deficits in attentiveness among pupils of that age could offer an important opportunity for the prospective planning of interventions that seek to improve learning trajectories during the secondary school years. Chapter 5 has shown that, in resource terms, schools and special education services already offer a significant level of input in targeting the educational needs associated with those children who have problems that are serious and pervasive enough to warrant a psychiatric diagnosis. Much of this input revolves around providing additional help to pupils within a mainstream school environment, as well as teaching provided within a more specialist educational environment.

However, as recognised in recent policy statements (HM Treasury, 2003b), child and adolescent mental health services may also have a vital role to play in dealing with the root cause of learning problems experienced by children who are inattentive and hyperactive, as well those with other pervasive psycho-developmental problems. Drug therapy is a common treatment strategy for children with attention deficit and hyperactivity (Lord & Paisley, 2000). In the United States around 2.5% of school

children are prescribed a medication for hyperactive behaviour - the majority are given the psycho-stimulant drug methylphenidate (Ritalin) (Cooper, 2001). While psychotropic medication for children and adolescents has proved controversial (there are concerns around the lack of knowledge concerning whether it has any long-term harmful effects), the UK has seen a 68% increase in the use of antidepressants, stimulants and other kinds of medication over the period 2000-2002 (Wong et al., 2004). Moreover, there is evidence that, with an appropriate dosage, this kind of treatment can be effective in improving attentiveness and reducing problem behaviour (Farmer et al., 2002; Greenhill, 1998; Lord & Paisley, 2000).

Evidence on the cost and cost-effectiveness of psycho-stimulant medication - an increasingly important consideration within NHS resource allocation - is less plentiful. The current annual cost of prescribing methylphenidate at a standard dosage is around \pounds 200 per child (Lord & Paisley, 2000). This is in fact a modest amount compared to the costs to the British NHS of prescribing other types of psychotropic medication, particularly those still under patent, including, for example, a-typical antipsychotic medication for adults with schizophrenia (around \pounds 1220 per patient annually; (National Institute for Clinical Excellence, 2002)). The National Institute for Health and Clinical Excellence (NICE)² has recently reviewed the cost-effectiveness relating to drug treatments for attention deficit/hyperactivity disorder (Lord & Paisley, 2000). A submission of evidence to this review - using a decision modelling approach - compared the cost and effects of drug treatment to a "no treatment" strategy. It was concluded than an additional Quality Adjusted Life Year (QALY)³ could be bought at a cost

 $^{^2}$ A quasi-regulatory body offering guidance for health service commissioning agencies on the effectiveness and cost-effectiveness of medical technologies.

³ QALYs provide a summary index of the impact of a medical treatment on a patient's quality of life and life expectancy (Drummond et al., 1996). The quality adjustment factors are derived from "utility"

significantly below the maximum threshold for what is normally considered to be a cost-effective treatment option by NICE (\pounds 30,000 per additional QALY gained).

Medication is only recommended for use within a multimodal modal approach to dealing with attention deficit and hyperactivity disorders within UK practice settings. (Cooper, 2001). This will normally include a course of behavioural therapy involving trained therapists combined with psycho-stimulant treatment. The behavioural therapies themselves can vary quite significantly and may include one-to-one sessions with child and parent, group sessions including other children and parents as well as programmes that directly involve teachers (Best Treatments, 2005). Whereas the prescribing of medication has an obvious biological focus in its approach to controlling problem symptoms, behavioural therapies target behavioural management and the interaction between parent and child. While it is yet to be established whether behavioural interventions are effective per se (Lord & Paisley, 2000), recent experimental trial evidence suggests that a multimodal approach is more effective than behavioural therapy alone (MTA & Group, 1999). The effective management of attention deficit and hyperactivity may also be made complicated by their co-existence with other types of behavioural problem - particularly conduct disorders (Goodman, 2005). There is growing evidence suggesting that the latter could be effectively dealt with using parenttraining techniques or other community-based programmes (Farmer et al., 2002; Scott Spender et al., 2001). Evidence relating to parenting programmes are outlined in more detail below.

weighting applied to various states of health-related quality of life either by the public, patients or health service professionals. It is questionable whether these measures are completely appropriate in terms of identifying treatment outcomes relating to childhood mental disorders.

Identifying troublesome children who are at much greater risk of developing persistent life-course antisocial tendencies would promote the effective and efficient targeting of resources on problems that are more individually and socially damaging in the longterm. However, many badly behaved children will not develop into adult sociopaths and may in fact possess underlying characteristics that promote future success in the labour market. Policy and practice within schools might seek to limit the immediate social harm that these characteristics engender within a school environment (e.g. bullying, fighting), perhaps by channelling aggression and other antisocial behaviour into more individually and socially productive pursuits.

There is now plenty of evidence (cited in chapter 1) showing that conduct problems in late childhood are an added risk factor for life-course persistent antisocial behaviour. Unstable employment patterns and periodic spells of unemployment are an integral feature of this type of developmental trajectory. However, it would be misleading to imply that all children with conduct problems face a lifetime of social deviancy and unemployment. Many will probably experience a relatively normal pattern of social development and will maintain a stable employment record. Moreover, the evidence presented in this thesis showed that antisocial 10-year- old boys born in 1970 who were working at age 30 tended to get paid more than their peers, other things equal, as did antisocial girls who selected into managerial occupations. There are some important policy issues that fall out of these findings. Public agencies could potentially improve the social productivity of resource allocations if they were in a position to successfully identify which troublesome individuals in late childhood are the more likely to become more socially problematic over the longerterm, and more prone to significantly diminished opportunities in terms of their own personal development and future wellbeing. Child and adolescent mental health services already seek to target children who meet the requisite psychiatric criteria for a diagnosis of conduct disorder. It may be that these psychiatric classifications already serve as an effective screening device for selecting out those children whose problems are serious and pervasive enough to imply that they are likely to be more problematic over the longer-term.

There are in fact a number of pointers as to the seriousness of late childhood conduct problems in terms of their longer-term prognosis without corrective action. Without corrective action, a 10-year-old whose behavioural problems began during the preschool years will face a significantly elevated risk of developing persistent antisocial tendencies through adolescence and into adulthood (Moffitt, 1993). Moreover, all the evidence shows that a high hereditary component, early age neuropsychological deficits, co-morbid problems (including hyperactivity and emotional difficulties), language disorders and low IQ are all characteristic features of individuals whose behavioural problems become life-course persistent from an early age (Moffitt, 1993; Moffitt et al., 1994; Silberg et al., 1996). There may also be other indicators regarding long-term prognosis. A sub-group of children with conduct problems also experience peer unpopularity resulting from major deficits in social skills. Group unpopularity has itself been shown to be a major determinant of whether antisocial children become delinquent, fail at school and experience poor employment outcomes (Hinshaw, 1992;

249

Kokko & Pulkkinen, 2000; Loeber & Hay, 1997; Rutter et al., 1998). The long-term prognosis for aggressive children may also crucially depend on the quality of their home environment and particularly the quality of relationship they have with their parents and the nature of the parenting regime to which they are exposed to (Kokko & Pulkkinen, 2000).

Publicly funded parenting programmes provided within child and adolescent mental health service settings are now gaining popularity in the UK as a means of targeting children viewed as being at high risk of developing life-course persistent behavioural problems. Review evidence does support the view that they are an effective means of behavioural management (Farmer et al., 2002). Scott et al. (2001), for example, report the findings from a multi-centred randomised experiment of a specific type of parenting programme developed in the US and tested within health service settings within the UK. All children included in the evaluation were aged 3-8 years. Those in the control group (a no treatment exposure waiting list) showed no change in behaviour 5-7 months after entering the trial. However the children of parents who were randomly assigned to the experimental intervention showed, on average, marked improvements in behaviour: mean conduct problem scores fell to within a range of normal behaviour at follow-up, though a third of the treatment group did show resistance to change.

The preceding discussion is not meant to imply that any antisocial behaviour in late childhood that does not fit a life-course persistent characterisation should be considered a public policy irrelevance. Behaviourally problematic 10-year-olds who are more likely to be "non-persistent" will generally cease any socially deviant behaviour by the time they are 18 (Moffitt, 1993). Nevertheless, bullying, fighting, disruptiveness in the

classroom, property damage and theft are all socially harmful behaviours. There may therefore still be a justifiable case for schools and other agencies to intervene in limiting this type of behaviour, even where the types of interventions required may be quite distinct from those targeted at children who come into contact with specialist psychiatric services. Evidence cited earlier in this chapter showed that many children showing aggressive tendencies share underlying characteristics that may in fact be individually beneficial in the longer-term. Bullying and other socially undesirable behaviours may therefore simply be a conduit through which some children express an underlying social competitiveness or "Machiavellian" tendency within their immediate environment (Sutton, 2001). Bad behaviour may also be indicative of underlying leadership skills which may also attract a future wage premium. In summary, the challenge for policy and practice may ultimately be to offer a means minimizing the wider social harm linked to developmental characteristics that are more likely to be individually beneficial in the longer-term.

Mental health services and costs to the education system

Behavioural and emotional disorders in childhood and adolescence result in significant opportunity costs relating educational resource use - particularly within a mainstream school environment. Expanding the provision of effective child and adolescent mental health service provision could lead to more socially productive resource allocations.

Emotional and behavioural problems in childhood and adolescence can often demand a multi-agency response. While historically this has been rather uncoordinated in terms of service provision within a British context, the effect of decisions made in one sector or by one specific agency, may have important repercussions, in resource terms, for other "stakeholders". The recently published Green Paper *Every Child Matters* and the new National Services Framework for children make an explicit commitment to further investment of public resources in child and adolescent services as well introducing measures to improve the coordination, planning and communication across different agencies. Assuming that these plans are followed through, and that there are effective services and treatment regimes that can be put in place, then this type of initiative could have wide reaching resource implications, particularly within the education system.

Chapter 5 showed that the opportunity costs associated with the allocation of teacher time and other mainstream school resources represent a significant proportion of the overall health and education system costs linked to children and adolescents identified with a psychopathology. Evidence from parental interviews within the British Child and Adolescent Mental Health Surveys show that many of the service contacts with mainstream schools were parent-teacher discussions regarding children's difficulties as well as teacher time allocated to offering additional advice to parents about mental health and behavioural issues. If behavioural difficulties can be ameliorated or emotional states improved via the delivery of effective services within the National Health Service, then there may be important opportunities available for freeing up education and other resources (including parental time) towards other socially productive uses. Ford et al. (2003) provide an anecdotal example of how these interagency processes might actually work. Their example relates to 15- year old boy with a hyperkinetic disorder:

252

"A 15-year-old with hyperkinetic disorder, whose behaviour and educational progress had improved markedly on methylphenidate at the time of the first survey continued to do well during the follow-up period. His child psychiatrist saw him with his parents four-monthly to monitor his height and blood pressure, and to discuss his academic progress and any other concerns. The psychiatrist had been instrumental in ensuring that that he would be allowed extra time in his GCSE exams. However, he was doing so well at school that his mother had required no contact with his teachers outside ordinary parents evenings. She reported that both the medication and the support from the child psychiatrist had been extremely beneficial" (taken from: Ford et al., 2003; page 50).

Investment in mental health services for children and adolescents will in itself have opportunity costs. These, of course, need to be balanced against the resource impacts for other agencies and the broader welfare impacts for children and their families when making a more complete appraisal of new investments in services.

6.4 Future research

6.4.1 Childhood antisocial conduct and earnings: reconciling discrepancies in the evidence

The previous discussion of the policy issues arising from the main findings concerning antisocial conduct in childhood is largely predicated on the assumption that the nature the relationships reported in chapters 2 and 3 hold more generally. However, there are some discrepancies between the findings that have been described here and the few studies that have looked at childhood behavioural problems and future earnings. Feinstein (2000), using an earlier wave of the BCS70 adult data, reported a positive

association antisocial behaviour at age 10 and female wages (the corresponding effect reported in chapter 3 is non-significant though positive and significant for women in managerial jobs), and a non-significant wage effect for male antisocial conduct at age 10 (chapter 3 reported a positive effect on male earnings). Based on estimations using data from the National Child Development Study Bowles et al. (2001b) report a negative association between childhood aggression (instrumenting for adult aggressiveness) and male and female earnings, though male earnings were reported to be positively associated with childhood aggression for those employed in "high status" jobs. These discrepancies point to the need for further exploratory investigations in order to gain more understanding as to why these inconsistencies arise. One possibility, for example, concerns the choice of control variables: in the study reported by Bowles and colleagues, earnings were also conditioned on IQ, years of schooling, qualifications achieved at school, childhood "withdrawal" and socio-economic status in childhood. Their model did not include other background variables, though whether this can explain the opposite direction of effect observed in the work reported is open to question. It is also worth emphasising that chapters 2 and 3 looked specifically at weekly pay (as opposed to wage rates). As such, it is possible that the differences between the findings reported here and those of other studies in relation to childhood antisocial conduct could be accounted for by labour supply-effects rather differentials in market rewards per unit of labour time supplied.

- 6.4.2 Economic attainment at different stages of the life cycle and cross-cohort comparisons
- Chapters 2 and 3 considered economic outcomes in relation to childhood psychosocial development within specific cohorts. A more extensive test of whether the same findings hold within other British birth cohorts, namely those born in 1948 and 1958 would be of added value. This would enable further examination of the extent to which the evidence derived from the types of analyses reported here are sensitive to the choice of cohort examined.

Chapters 2 and 3 also looked at outcomes at a particular stage of the working life cycle. This raises questions as to whether the same magnitude and direction of effect associated with psychosocial characteristics in late childhood will be observed at more advanced ages. An investigation of the association between behavioural and emotional development in childhood and adult attainment at middle age and beyond would help to address this issue and enable better projections to be made regarding the impact of these kinds of developmental problems over an individual's life-course. Research along these lines should be possible within the previously mentioned older birth cohorts.

6.4.3 Age of onset

Chapters 2 and 3 both considered the relationship between adult economic attainment and psychosocial outcomes in late childhood. While both investigations observed some important associations between the main psychosocial indicators of concern and future attainment, it is important to be aware that the strength of the longitudinal relationships of interest are unlikely to be independent of the age at which behavioural and emotional difficulties are observed. Signs of significant psychological and behavioural problems at an early pre-school age are known to be strongly correlated with adult antisocial personality and delinquency (Moffitt, 1993). It therefore seems plausible, for example, that behavioural problems observed at a very early age might serve as a much stronger childhood predictor of future employment participation later on in life compared to behaviour observed at more advanced stages of childhood and adolescence. This chapter has already cited evidence, for example, suggesting that the importance of emotional development for future attainment may depend on whether problems are experienced during childhood or later in the adolescent years.

6.4.4 Developmental dynamics

A related issue concerns the importance of studying the dynamic aspects of psychosocial development. The long-term damage associated with child and adolescent behavioural and emotional problems may heavily depend on whether problems observed at a given age persist or desist over the course of time. Transitional states across different ages were not explored in the current thesis, though the major British birth cohort data sets and data from other longitudinal studies, such as the Cambridge cohort, provide opportunities for pursuing this line of enquiry. Feinstein & Bynner (2004), for example, have looked at this issue in relation to cognitive development within the BCS70 data. Healey et al. (2004), in a related study to that reported in chapter 2, have examined the relative impact on future economic status of different developmental pathways, with a particular focus on childhood conduct problems and the transition or otherwise into adolescent delinquent behaviour. Troublesome boys who

256

became juvenile delinquents were significantly more likely to experience poor employment outcomes compared to those whose troublesome behaviour at age 10 did not extend into adolescent delinquency and for those whose delinquency was not preceded by troublesome behaviour during late childhood.

6.4.5 Informing the evaluation and appraisal of policies and programmes of intervention

Part of the value of conducting longitudinal investigations of the type described here is that they might begin to inform policy makers as to the potential long-term benefits of policies and programmes that target psychosocial problems prior to entry into the labour market. If interventions that seek to alter developmental trajectories are to be viewed as investments in human potential then evidence needs to be provided on their likely impacts far into the future in order that their social value can be considered along side the costs involved with implementation.

Many evaluations of new school-based interventions or trials of drug treatments and programmes delivered by child and adolescent mental health services can only feasibly observe the outcomes of these initiatives over a very limited span of time. For example, the evaluation of the parenting programme cited earlier only followed up children and parents over a period of 5-7 months after entering the trial. To follow-up children who participate in an experimental evaluation over a significant portion of their life course is likely to be difficult practically (loss to follow-up would be a more obvious problem) as well as prohibitively costly in research terms. Moreover, policy makers usually require answers to questions on the costs and outcomes of interventions within a short time

frame. Exploring ways of explicitly linking up evidence from experimental studies of child and adolescent interventions with evidence on long-term outcomes derived from the analysis of birth cohort data could be a fruitful avenue of pursuit. For example, can any observed changes in indices of emotional states or behaviour attributable to an intervention with an experimental evaluation be feasibly mapped on to the kinds of psychosocial measures used within existing longitudinal data sets? If so, this could in principle offer a means of assessing the potential effect of the these types of intervention in terms of, for example, future earnings potential or the likelihood of employment participation.

6.4.6 Developing and improving model specifications when exploring cost variability

The modelling of public service cost data is becoming increasingly common within applied economic research (Knapp, 1998; Lipscomb, 1998; Manning & Mullahy, 2001). Estimation methods for studying cost variations are also becoming increasingly more sophisticated with a growing emphasis placed applying statistical procedures that suit the data at hand, particularly where there are concerns regarding its underlying distributional properties: non-normality is the rule rather than the exception (Manning & Mullahy, 2001). However, there is generally less guidance on the types of functional specifications that are likely to best describe the underlying relationships between cost and individual characteristics. The multivariate investigations described in chapter 5 adopted a conventional "log-link" specification of the relationship between costs and a linear combination of explanatory variables (akin to the semi-log models estimated using OLS). In future, more detailed testing of other types of functional forms might yield better fitting models, while the inclusion of a non-linear specification of important explanatory variables (e.g. indicators of need) might lead to a greater understanding of how resources are allocated at the micro level: each of the models reported in chapter 5 assumed that changes in cost are proportionately linear as SDQ impact scores or measures of academic attainment increase, which may be an unnecessarily restrictive assumption. However, there are pitfalls involved with seeking out better fitting models, not least the fact that there is little theoretical guidance on what might be the most appropriate specification to adopt.

The estimations reported in chapter 5 were also unable to look in detail at the importance of supply-side factors on cost differences across children and adolescents in need of help. Local resource availability, as recently reported in an Audit Commission report on the state of child and adolescent mental health services, are one potential supply-side influence - though given recent policy commitments to improve services nationally this may become less important over time (HM Treasury, 2003b). Professional judgements, motivations and preferences over the ways in which psychosocial problems should be tackled could also, in principle, vary quite considerably. The importance of the "agency" role of clinicians and other professionals may be important, not just because of its impact on costs per se, but also because differences in the way professionals respond to different children who are similar in terms of the problems they present with may be indicative of inefficiencies and inequities in the way the health and education system as a whole responds to children and adolescents with behavioural or emotional difficulties. A more in depth empirical examination of these issues will inevitably require more extensive data relating to the types of supply-side factors discussed.

6.4.7 Efficiency and resource allocation

Multivariate models of cost variability do not, on their own, deliver any indication of whether public services currently respond in an *efficient* manner to psychosocial problems in childhood and adolescence. This requires some measure of the *productivity* of health and educational resource inputs with respect to their impact on the wellbeing of problem children, their families and the wider society. So, for example, do behavioural therapies or drug treatments delivered by mental health professionals effectively manage or improve emotional wellbeing, poor attentiveness or disruptive behaviour? Similarly, are teachers effective at managing the disruptive effects of conduct problems or hyperactive behaviour in the classroom? Will allocating additional teacher time to problem children promote a better learning trajectory and levels of educational attainment than might otherwise have been expected? Moreover, to what extent are different types of services inputs either complimentary to one another or effective substitutes? This latter issue has recently been raised in the context of the policy debate concerning the most appropriate educational settings within which to locate disruptive pupils (Curtis, 2004).

Issues of effectiveness/productivity and cost-effectiveness are traditionally explored in health care settings using randomised controlled experiments of specific types of interventions and service arrangements (Drummond et al., 1997). However, the use of non-experimental data can also yield important insights into the effect of service inputs on outcomes (however measured) so-long as confounding sources of heterogeneity can be adequately controlled for. This "production function" approach is an established technique within the economics of education literature (Hanushek, 1986), and has also

260

recently been applied to the evaluation of the productivity and efficiency of community care arrangements for elderly people (Davies & Fernández, 2000). To date the British Child and Adolescent Mental Health Surveys have provided a unique opportunity to investigate the magnitude of the costs of health service and educational resource use linked to psychosocial problems within a national epidemiological sample of British children. The surveys are, however, ongoing and are continuing to collect information at follow-up on the severity and impact of emotional difficulties for those children who were initially surveyed. Combined with the evidence generated on service use and costs, the longitudinal nature of this data could, in principle, begin to enable input allocations and costs to be linked, using appropriate econometric procedures, to any measured changes in problem severity and impact scores (e.g. using the strengths and difficulties questionnaire or other available measures). This type of exercise would provide a starting point for addressing some of the more searching questions concerning resource allocation and efficiency within public services targeting psychosocial problems in the child and adolescent population.

References

- Almond, S., & Healey, A. (2003). Mental health and absence from work: new evidence from the UK Quarterly Labour Force Survey. Work Employment and Society, 17(4), 731-742.
- Amemiya, T. (1981). Qualitative Response Models: A Survey. Journal of Economic Literature, 19(4), 1483-1536.
- American Psychiatric Association. (1994). *Diagnostic and Statistical Manual of Mental Disorders (4th edition)*. Washington, DC: American Psychiatric Association.
- Anderson, D. (2000). The effects of participation in high school on students behavior and economic success: Cornell University and University of New Mexico.
- Antolín, P., Dang, D., & Oxley, H. (2001). *Poverty Dynamics in four OECD countries* (No. 212): Organisation for Economic Co-operation and Development.
- Aronen, E. T., & Kurkela, S. A. (1996). Long-Term Effects of an Early Home-Based Intervention. Journal- American Academy of Child and Adolescent Psychiatry, 35(12), 1665-1672.
- Arrow, K. (1963). Uncertainty and the Welfare Economics of Medical Care. American Economic Review, 53(5), 941-973.
- Ascher, B. H., Farmer, E. M. Z., Burns, B. J., & Angold, A. (1996). The Child and Adolescent Services Assessment (CASA): Description and Psychometrics. *Journal of Emotional and Behavioral Disorders*, 4(1), 12-20.
- Atkinson, G., Healey, A., & Mourato, S. (2005). Valuing the Costs of Violent Crime: A Stated Preference Approach. Oxford Economic Papers, Forthcoming.
- Audit, & Commission. (1986). Making a Reality of Community Care. London: HMSO.
- Audit Commission. (1999). Children in Mind: Child and Adolescent Mental Health Services. London: Audit Commission.
- Banks, M., & Jackson, P. (1982). Unemployment and Risk of Minor Psychiatric Disorder in Young People: Cross-Sectional and Longitudinal Evidence. *Psychological Medicine*, 12(4), 789-798.

- Barkley, R. (1990). Attention Deficit Hyperactivity Disorder: A handbook for Diagnosis and Treatment. New York: Guildford Press.
- Barron, J. M., Ewing, B. T., & Waddell, G. R. (2000). The Effects of High School Athletic Participation on Education and Labor Market Outcomes. *Review of Economics and Statistics*, 82(3), 409-421.
 - Bartel, A., & Taubman, P. (1979). Health and Labor Market Success: The Role of Various Diseases. *Review of Economics and Statistics*, 61(1), 1-8.
 - Bartel, A., & Taubman, P. (1986). Some Economic and Demographic Consequences of Mental Illness. *Journal of Labor Economics*, 4(2), 243-256.
 - Becker, G., & Tomes, N. (1979). An Equilibrium Theory of the Distribution of Income and Intergenerational Mobility. *Journal of Political Economy*, 87(6), 1153-1189.
 - Becker, G. S. (2001). A Treatise on the Family. Harvard: Harvard University Press.
 - Beecham, J., & Knapp, M. (2001). Costing psychiatric interventions in Measuring mental health needs. In G. Thornicroft (Ed.), *Measuring Mental Health Needs* (2nd ed.). London: Gaskell.
 - Behrman, J., & Taubman, P. (1989). Is Schooling "Mostly in the Genes"? Nature Nurture Composition Using Data on Relatives. *Journal of Political Economy*, 97(6), 1425-1446.
 - Berglund, L. (1999). Latent Variable Analysis of the Rutter Children's Behaviour Questionnaire. Scandinavian Journal of Educational Research, 43(4), 433-442.
 - BestTreatments. (2005). Retrieved March, 2005, 2005, from http://www.besttreatments.co.uk
 - Biederman, J., Newcorn, J., & Sprich, S. (1991). Comorbidity of Attention Deficit Hyperactivity Disorder with Conduct, Depressive, Anxiety, and Other Disorders. Am J Psychiatry, 148(5), 564-577.
 - Bird, H. R., Canino, G., Rubio-Stipec, M., Gould, M. S., Ribera, J., Sesman, M., et al. (1988). Estimates of the prevalence of childhood maladjustment in a community survey in Puerto Rico. The use of combined measures. Arch Gen Psychiatry, 45(12), 1120-1126.

- Bowen, E., & Starr, M. (1982). Basic Statistics for Business and Economics. Tokyo: McGraw-Hill.
- Bowles, S., Gintis, H., & Osborne, M. (2001a). The Determinants of Earnings: A Behavioral Approach. *Journal of Economic Literature*, 39(4), 1137-1176.
- Bowles, S., Gintis, H., & Osborne, M. (2001b). Incentive-Enhancing Preferences: Personality, Behavior, and Earnings. American Economic Review, 91(2), 155-158.
- Brandenburg, N. A., Friedman, R. M., & Silver, S. E. (1990). The epidemiology of childhood psychiatric disorders: prevalence findings from recent studies. J Am Acad Child Adolesc Psychiatry, 29(1), 76-83.
- Brassett-Grundy, A., & Butler, N. (2004a). Attention-deficit/hyperactivity disorder: an overview and review of the literature relating to the correlates and lifecourse outcomes for males and females (No. 1). London: Institute for Education.
- Brassett-Grundy, A., & Butler, N. (2004b). Prevalence and adult outcomes of attention deficit/hyperactivity disorder: evidence from a 30-year prospective longitudinal study (No. 2). London: Institute for Education.
- Breusch, T., & Pagan, A. (1979). A simple test for heteroskedasticity and random coefficient variation. *Econometrica*, 47(5), 1287-1294.
- Briggs, A., Clark, T., Wolstenholme, J., & Clarke, P. (2003). Missing.... presumed at random: cost-analysis of incomplete data. *Health Economics*, 12(5), 377-392.
- Brook, J. S., & Newcomb, M. D. (1995). Childhood Aggression and Unconventionality: Impact on Later Academic Achievement, Drug Use, and Workforce Involvement. *Journal of Genetic Psychology*, 156(4), 393-410.
- Buchmueller, T. C., & Zuvekas, S. H. (1998). Drug Use, Drug Abuse, and Labour Market Outcomes. *Health Economics*, 7(3), 229-246.
- Burchardt, T., Le Grand, J., & Piachaud, D. (2002). Introduction. In J. Hills, J. Le Grand & D. Piachaud (Eds.), *Understanding Social Exclusion* (pp. 1-12). Oxford: Oxford University Press.
- Burgess, S. M., & Propper, C. (1998). Early Health-related Behaviours and their Impact on Later Life Chances: Evidence from the US. *Health Economics*, 7(5), 381-400.

- Butler, N., Despotidou, S., & Shepherd, P. (1997). The 1970 British Cohort Study (BCS70) Ten Year Follow-up: A guide to the BCS70 10-year data available at the Economic and Social Research Council Data Archive. London: Social Statistics Research Unit, City University.
- Butler, N., Golding, J., & Howlett, B. (1986). From Birth to Five: a study of the health and behaviour of Britain's Five-Year-Olds. Oxford: Pergamon.
- Bynner, J., Butler, N., Ferri, E., Shepherd, P., & Smith, K. (2000). The design and conduct of the 1999-2000 surveys of the National Child Development Study and the 1970 British Cohort Study (No. 1). London: Centre for Longitudinal Studies, Institute of Education.
- Bynner, J., Ferri, E., & Shepherd, P. (Eds.). (1997). Twenty-somethings in the 1990s: getting on, getting by, getting nowhere. Aldershot: Ashgate.
- Byrne, P., Croft, C., Chisholm, D., Nikapota, A., & Taylor, E. (1999). Development of a Methodology for the Comparison of Treatment Services and Costs in Child and Adolescent Mental Health.
- Capaldi, D. M., & Stoolmiller, M. (1999). Co-occurrence of conduct problems and depressive symptoms in early adolescent boys III. Prediction to young-adult adjustment. *Development and Psychopathology*, 11(1), 59-84.
- Carneiro, P., & Heckman, J. (2003). Human capital policy. In J. Heckman & A. Krueger (Eds.), *Inequality in America: What role for human capital policies?* Cambridge Mass: MIT Press.
- Caspi, A., Entner Wright, B. R., Moffitt, T. E., & Silva, P. A. (1998). Early Failure in the Labor Market: Childhood and Adolescent Predictors of Unemployment in the Transition to Adulthood. *American Sociological Review*, 63(3), 424-451.
- Cawley, J., Heckman, J., & Vytlacil, E. (2001). Three observations on wages and measured cognitive ability. *Labour Economics*, 8(4), 419-442.
- Centre for Longitudinal Studies. (2004). Retrieved March, 2004, 2004, from www.cls.ioe.ac.uk
- Chamberlain, R., Chamberlain, C., Howlett, B., & Claireaux. (1973). British Births 1970: the First Week of Life (Vol. 1). London: Heinemann.

- Chamberlain, R., Chamberlain, C., Howlett, B., & Claireaux. (1975). British Births 1970: the First Week of Life (Vol. 2). London: Heinemann.
- CIPFA. (2001). Education Statistics: Actuals and Estimates 2000-2001. London: Chartered Institute for Public Fnance and Accountancy.
- Conners, C. (1969). A teacher rating scale for use in drug studies with children. Am J Psychiatry, 126(6), 884-888.
- Conners, C. (1973). Rating scales for use in drug studies with children. In *Psychopharmacology Bulletin: pharmacotherapy wIth children*. Washington DC: U.S. Government Printing Office.
- Cooper, P. (2001). Understanding AD/HD: A Brief Critical Review of Literature. *Children and Society*, 15(5), 387-395.
- Costello, E. J. (1989). Developments in child psychiatric epidemiology. J Am Acad Child Adolesc Psychiatry, 28(6), 836-841.
- Costello, E. J., Costello, A. J., Edelbrock, C., Burns, B. J., Dulcan, M. K., Brent, D., et al. (1988). Psychiatric disorders in pediatric primary care. Prevalence and risk factors. Arch Gen Psychiatry, 45(12), 1107-1116.
- Cunha, F., Heckman, J., Lochner, L., & Masterov, D. (2005). Interpreting the evidence on life cycles skill formation. In E. Hanushek & F. Welch (Eds.), *The handbook* of the economics of education. Amsterdam: North Holland.

Curtis, P. (2004). Teachers warn of Tory 'boot camps'. Guardian Unlimited.

- Daniel, P., & Ivatts, J. (1998). Children and Social Policy. Basingstoke and London: Macmillan.
- Davies, B. (1981). Old People's Homes and the Production of Welfare. London: Routledge & Kegan Paul.
- Davies, B., & Fernández, J. (2000). Equity and Efficiency Policy in Community Care. Aldershot: Ashgate.

Special Educational Needs and Disability Act, (2001).

- Department for Education and Skills. (2001). Promoting Children's Mental Health within Early Years and School Settings. Nottingham: DfEE Publications.
- Department for Education and Skills. (2004a). Retrieved September, 2004, 2004, from <u>www.dfes.gov.uk/trends</u>

Children's Act, (2004b).

- Department for Education and Skills. (2004c). Statistics of Education: Schools in England. In. London: TSO.
- Department for Education and Skills and Department of Health. (2004). National Service Framework for children, young people and maternity services. London: Department of Health Publications.
- Department for Work and Pensions. (2004). Retrieved March 2004, 2004, from <u>www.dwp.gov.uk</u>
- Dex, S. (1991). *The reliability of recall data; a literature review* (No. Paper 6). Colchester: University of Essex.
- Diekstra, R. F. W. (1995). Depression and suicidal behaviours in adolescence: Social cultural and time trends. In M. Rutter (Ed.), *Psychological Disturbances in Young People*. Cambridge: Cambridge University Press.
- Dougherty, C. (2002). *Introduction to Econometrics* (2nd ed.). Oxford: Oxford University Press.
- Drummond, M., O'Brien, B., Stoddart, G., & Torrance, G. (1997). Methods for the Economic Evaluation of Health Care Programmes. Oxford: Oxford University Press.
- Drummond, M., Stoddart, G., Torrance, G., & O'Brien, B. (1996). Methods for the evaluation of health care programmes. Oxford: Oxford University Press.
- Duan, N., Manning, W., Morris, C., & Newhouse, J. (1983). A comparison of models for the demand for medical care. *Journal of Business and Economic Statistics*, 1(2), 115-126.

- Dunn, G., Mirandola, M., Amaddeo, F., & Tansella, M. (2003). Describing, explaining or predicting mental health care costs: a guide to regression models.
 Methodological review. Br J Psychiatry, 183, 398-404.
- Dustmann, C., Rajah, N., & van Soest, A. (2003). Class size, education and wages. *Economic Journal*, 113(485), F99-F120.
- Earls, F. (1994). Oppositional defiant and conduct disorders. In M. Rutter, E. Taylor & L. Hersov (Eds.), *Child and Adolescent Psychiatry: modern approaches* (3 ed., pp. 308-329). Oxford: Oxford University Press.
- Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. New York: Chapman and Hall.
- Elliot, C., Murray, D., & Pearson, L. (1978). *British Ability Scales*. Windsor: National Foundation for Educational Research.
- Faraone, S. V., Biederman, J., Lehman, B. K., Spencer, T., Norman, D., Seidman, L. J., et al. (1993). Intellectual performance and school failure in children with attention deficit hyperactivity disorder and in their siblings. J Abnorm Psychol, 102(4), 616-623.
- Farmer, E. M., Compton, S. N., Bums, B. J., & Robertson, E. (2002). Review of the evidence base for treatment of childhood psychopathology: externalizing disorders. J Consult Clin Psychol, 70(6), 1267-1302.
- Farrington, D. P. (1995). The Twelfth Jack Tizard Memorial Lecture. The development of offending and antisocial behaviour from childhood: key findings from the Cambridge Study in Delinquent Development. Journal of Child Psychology and Psychiatry and Allied Disciplines, 36(6), 929.

×. . .

- Farrington, D. P. (2001). Key results from the first forty years of the Cambridge Study in Delinquent Development. In T. Thornberry & M. Krohn (Eds.), *Taking Stock* of Delinquency: an Overview of Findings from Contemporary Longitudinal Studies. New York: Kluwer/Plenum.
- Farrington, D. P. (2003). Developmental criminology and risk-focussed prevention. In M. Maguire, R. Morgan & R. Reiner (Eds.), *The Oxford Handbook of Criminology*. Oxford: Oxford University Press.
- Feinstein, L. (2000). The relative economic importance of academic, psychological and behavioural attributes developed in childhood (No. 62). Brighton: University of Sussex.

- Feinstein, L. (2003). Inequality in the Early Cognitive Development of British Children in the 1970 Cohort. *Economica*, 70(Issu 277), 73-98.
- Feinstein, L., & Bynner, J. (2004). The Importance of Cognitive Development in Middle Childhood for Adulthood Socioeconomic Status, Mental Health, and Problem Behavior. *Child Development*, 75(5), 1329-1339.
- Fendrich, M., Johnson, T., Wislar, J. S., & Nageotte, C. (1999). Accuracy of Parent Mental Health Service Reporting: Results From a Reverse Record-Check Study. Journal- American Academy of Child and Adolescent Psychiatry, 38(2), 147-155.
- Fergusson, D. M., & Horwood, L. J. (1995). Early disruptive behavior, IQ, and later school achievement and delinquent behavior. J Abnorm Child Psychol, 23(2), 183-199.
- Fernández, J., & Forder, J. (2002). The importance of social care in achieving an efficient health care system: impact on hospital delay discharge rates (No. 7): London School of Economics.
- Filer, R. (1986). The role of personality and tastes in determining occupational structure. *Industrial and Labor Relations Review*, 39(3), 412-424.
- Flouri, E., & Buchanan, A. (2002). Childhood Predictors of Labor Force Participation in Adult Life. Journal of Family and Economic Issues, 23(2), 101-120.
- Folland, S., Goodman, A., & Stano, M. (2001). *The Economics of Health and Health Care*. Upper Saddle River, NY: Prentice Hall.
- Fombonne, E. (1995). Depressive disorders: time trends and possible explanatory mechanisms. In M. Rutter & D. Smith (Eds.), *Pychosocial disorders in young people: time trends and thei causes* (pp. 544-615). Chichester: Wiley.
- Fombonne, E., Wostear, G., Cooper, V., Harrington, R., & Rutter, M. (2001a). The Maudsley long-term follow-up of child and adolescent depression. 2. Suicidality, criminality and social dysfunction in adulthood. *British Journal of Psychiatry*, 179(Sep), 218-223.
- Fombonne, E., Wostear, G., Cooper, V., Harrington, R., & Rutter, M. (2001b). The Maudsley long-term follow-up of child and adolescent depression. I. Psychiatric outcomes in adulthood. *British Journal of Psychiatry*, 179(Sep), 210-217.

- Ford, T. (2004). Services for children with mental disorders: rates and predictors of specialist service use. Institute of Psychiatry, Kings College London, University of London, London.
- Ford, T., Goodman, R., & Meltzer, H. (2003). Service Use Over 18 Months Among a Nationally Representative Sample of British Children with Psychiatric Disorder. *Clinical Child Psychology and Psychiatry*, 8(1), 37-52.
- Ford, T., Hamilton, H., & Goodman, R. (2005). Service contacts among the children participating in the British Child and Adolescent Mental Health Surveys. *Children and Adolescent Mental Health, 10*(1), 2-48.
- Frank, R., & Gertler, P. (1991). An assessment of measurement error bias for estimating the effect of mental illness on income. *Journal of Human Resources*, 26(1), 154-164.
- French, M. T., & Zarkin, G. A. (1998). Mental Health, Absenteeism and Earnings at a Large Manufacturing Worksite. *Journal of Mental Health Policy and Economics*, 1(4), 161-172.
- Glennerster, H. (2000). *British Social Policy Since 1945* (2nd ed.). Malden, MA: Blackwell Publishers.
- Glennerster, H. (2003). Understanding the Finance of Welfare: what welfare costs and how we pay for it. Bristol: The Policy Press.
- Goldberg, D., & Williams, P. (1988). A Users Guide to the General Health Questionnaire. Windsor: NFER-Nelson.
- Goldsmith, A. H., Veum, J. R., & Darity, W. (1997). The Impact of Psychological and Human Capital on Wages. *Economic Inquiry*, 35(4), 815-829.
- Goodman, R. (1999). The extended version of the Strengths and Difficulties
 Questionnaire as a guide to child psychiatric caseness and consequent burden.
 Journal of Child Psychology and Psychiatry and Allied Disciplines, 40(5), 791-800.
- Goodman, R. (2005). Personal communication.
- Goodman, R., Ford, T., Richards, H., Gatward, R., & Meltzer, H. (2000). The Development and Well-Being Assessment: description and initial validation of

an integrated assessment of child and adolescent psychopathology. J Child Psychol Psychiatry, 41(5), 645-655.

- Green, M., Wong, M., Atkins, D., Taylor, J., & Feinleib, M. (1999). *Diagnosis of Attention-Deficit/Hyperactivity Disorder* (No. 3). Rockville, MD: Agency for Health Care Policy and Research.
- Greene, W. (2003). *Econometric Analysis* (5th ed.). Upper Saddle River, NJ: Prentice Hall.
- Greenhill, L. (1998). Childhood ADHD: pharmacological treatments. In P. Nathan & M. Gorman (Eds.), A Guide to Treatments that Work. Oxford: Oxford University Press.
- Gregg, P. (1999). Scarring Effects of Unemployement. In *Persistent Poverty and Lifetime Inequality: the Evidence*. London: Centre for the Analysis of Social Exclusion, Report 5, London School of Economics.
- Gregg, P., Harkness, S., & Machin, S. (1999). Child Development and Family Income. York: Joseph Rowntree Foundation.
- Gunnell, G., & Frankel, S. (1994). Prevention of suicide: aspirations and evidence. British Medical Journal, 308(7), 1227-1233.
- Hakim, C. (1987). Research Design: strategies and choices in the design of social research. London: Allen and Unwin.
- Hall, D. (2000). What is Sure Start? Archives of Disease in Childhood, 82(6), 435-437.
- Halvorsen, R., & Palmquist, R. (1980). The Interpretation of Dummy Variables in Semilogarithmic Equations. *American Economic Review*, 70(3), 474-475.
- Hamilton, V. H., Merrigan, P., & Dufresne, E. (1997). Down and Out: Estimating the Relationship Between Mental Health and Unemployment. *Health Economics*, 6(4), 397-406.
- Hansen, K., Heckman, J., & Mullen, K. (2004). Educational attainment, ability and test scores. *Journal of Econometrics*, 121(1-2), 39-98.
- Hanushek, E. (1986). The Economics of Schooling: Production and Efficiency in Public Schools. *Journal of Economic Literature*, 24(3), 1141-1177.

- Harker, L., & Kendall, L. (2003). An Equal Start: Improving support during pregnancy and the first 12 months. London: Institute for Public Policy Research.
- Harrington, R. (2001). Developmental continuities and discontinuities. *British Journal* of Psychiatry, 179(Sep), 189-190.
- Harrington, R., Peters, S., Green, J., Byford, S., Woods, J., & McGowan, R. (2000). Randomised comparison of the effectiveness and costs of community and hospital based mental health services for children with behavioural disorders. *British Medical Journal*, 321(7268), 1047-1050.
- Haveman, R., & Wolfe, B. (1995). The Determinants of Children's Attainments: A Review of Methods and Findings. *Journal of Economic Literature*, 33(4), 1829-1878.
- Hawkes, D., & Plewis, I. (2004). *Modelling non-response in the National Child Development Study*. London: Centre for Longitudinal Studies, Institute of Education.
- Healey, A., Knapp, M., & Farrington, D. P. (2004). Adult labour market implications of antisocial behaviour in childhood and adolescence: findings from a UK longitudinal study. *Applied Economics*, 36(2), 93-106.
- Healey, A., Krapp, M., Astin, J., Gossop, M., Marsden, J., Stewart, D., et al. (1998). Economic burden of drug dependency. Social costs incurred by drug users at intake to the National Treatment Outcome Research Study. *British Journal of Psychiatry*, 173(Mnth Aug), 160-165.
- Health Committee. (1997). *Child and Adolescent Mental Health Services* (No. Fourth Report): House of Commons.
- Heckman, J. (2000). Policies to foster human capital. Research in Economics, 54(1), 3-56.
- Heeringa, S. G., & Liu, J. (1998). Complex sample design effects and inference for mental health survey data. *International Journal of Methods in Psychiatric Research*, 7(1), 56-65.
- Heien DM, & DJ., P. (1993). The external costs of alcohol abuse. J of Studies on Alcohol, 54(3), 302-307.

- Hills, J. (2002). Does a focus on 'social exclusion' change the policy response. In J.
 Hills, J. Le Grand & D. Piachaud (Eds.), *Understanding Social Exclusion* (pp. 226-243). Oxford: Oxford University Press.
- Hinshaw, S. P. (1992). Externalizing behavior problems and academic underachievement in childhood and adolescence: causal relationships and underlying mechanisms. *Psychol Bull*, 111(1), 127-155.

HM Treasury. (2003a). Retrieved March, 2003, 2003, from www.hm-treasury.gov.uk

HM Treasury. (2003b). Every Child Matters. London: TSO.

HM Treasury. (2004a). Retrieved 1/2004, 2004

- HM Treasury. (2004b). Green Book, Apprasial and Evaluation in Central Government. London: TSO.
- Hobcraft, J. (1998). Intergenerational and life-course transmission of social exclusion: influences of childhood poverty, family disruption, and contact with the police (No. 15). London: London School of Economics.
- Hofstra, M. B., Van Der Ende, J., & Verhulst, F. C. (2001). Adolescents' self-reported problems as predictors of psychopathology in adulthood: 10-year follow-up study. *Br J Psychiatry*, 179, 203-209.
- Johnston, J. (2000, May). Evaluating National Initiatives: The Case of `On Track'. Paper presented at the National Children's Bureau symposium; Made to measure? evaluating community initiatives for children.
- Kalff, A. C., Kroes, M., Vles, J. S. H., Hendriksen, J. G. M., Feron, F. J. M., Steyaert, J., et al. (2001). Neighbourhood level and individual level SES effects on child problem behaviour: a multilevel analysis. *Journal of Epidemiology and Community Health*, 55(4), 246-250.
- Kaplan, B. J., Crawford, S. G., Wilson, B. N., & Dewey, D. (2000). Does "pure" AD/HD exist? Journal of the International Neurolopsychological Society, 6, 153.
- Kavanagh, S., & Knapp, M. (1999). Cognitive disability and direct care costs for elderly people. *Br J Psychiatry*, 174, 539-546.

- Keele, L., & Park, D. (2004). *Difficult Choices: An Evaluation of HeterogenousChoice Models*: Department of Politics and International Relations, University of Oxford.
- Kessler, R. C., Foster, C. L., Saunders, W. B., & Stang, P. E. (1995). Social consequences of psychiatric disorders, I: Educational attainment. Am J Psychiatry, 152(7), 1026-1032.
- Kilian, R., Matschinger, H., Loeffler, W., Roick, C., & Angermeyer, M. C. (2002). A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment. J Ment Health Policy Econ, 5(1), 21-31.
- Klein, R. (1994). Anxiety disorders. In M. Rutter, E. Taylor & L. Hersov (Eds.), *Child* and Adolescent Psychiatry: modern approaches (3rd ed., pp. 351-374). Oxford: Blackwell Scientific Publications.
- Klerman, G. L., & Weissman, M. M. (1989). Increasing rates of depression. JAMA, 261(15), 2229-2235.
- Knapp, M. (1984). The Economics of Social Care. London: Macmillan.
- Knapp, M. (1998). Making music out of noise--the cost function approach to evaluation. Br J Psychiatry Suppl(36), 7-11.
- Knapp, M., & Beecham, J. (1993). Reduced list costings: examination of an informed short cut in mental health research. *Health Economics*, 2(4), 313-322.
- Knapp, M., King, D., Pugner, K., & Lapuerta, P. (2004). Non-adherence to antipsychotic medication regimens: associations with resource use and costs. Br J Psychiatry, 184, 509-516.
- Knapp, M., McCrone, P., Fombonne, E., Beecham, J., & Wostear, G. (2002). The Maudsley long-term follow-up of child and adolescent depression: 3. Impact of comorbid conduct disorder on service use and costs in adulthood. Br J Psychiatry, 180, 19-23.
- Knapp, M., Scott, S., & Davies, J. (1999). The Cost of Antisocial Behaviour in Younger Children. Clinical Child Psychology and Psychiatry, 4(4), 457-474.

- Kokko, K., & Pulkkinen, L. (2000). Aggression in Childhood and Long-Term Unemployment in Adulthood: A Cycle of Maladaptation and Some Protective Factors. *Developmental Psychology*, 36(4), 463-472.
- Kokko, K., Pulkkinen, L., & Puustinen, M. (2000). Selection into long-term unemployment and its psychological consequences. *International Journal of Behavioral Development*, 24(3), 310-320.
- Krueger, A. (2003). Economic considerations and class size. *The Economic Journal*, *113*(485), F34-F63.
- Kuhn, P., & Weinberger, C. (2002). *Leadership skills and wages*. Santa Barbara: University of California.
- Kurtz, Z. (2003). Outcomes for Children's Health and Well-being. *Children and Society*, 17(3), 173-183.

Labour Market Trends. (1999). Labour Market Trends, February. London: TS0.

Lambert, N. M. (1988). Adolescent outcomes for hyperactive children. Perspectives on general and specific patterns of childhood risk for adolescent educational, social, and mental health problems. *Am Psychol*, 43(10), 786-799.

Laming, H. (2003). The Victoria Climbié Inquiry : Report by Lord Laming. London: TSO.

- Lawrence, D. (1981). The Development of a Self-Esteem Questionnaire. British Journal of Educational Psychology, 51(2), 245-251.
- Le Grand, J. (1991). Equity and Choice: An Essay in Economics and Applied Philosophy. London and New York: Harper Collins.
- Le Grand, J., Propper, C., & Robinson, R. (1992). *The Economics of Social Problems*. Basingstoke and London: Macmillan.
- Leibowitz, A. (1974). Home Investments in Children. Journal of Political Economy, 8(2), S111-S131.
- Lewis, J. (2001). Older People and the Health-Social Care Boundary in the UK: Half a Century of Hidden Policy Conflict. *Social Policy and Administration 35:343-359.*, *35*, 343-359.

- Lipscomb, J., Ancukiewicz, M., Parmigiani, G., Hasselblad, V., Samsa, G., & Matchar, D. B. (1998). Predicting the cost of illness: a comparison of alternative models applied to stroke. *Med Decis Making*, 18(2 Suppl), S39-56.
- Loeber, R., & Hay, D. (1997). Key Issues in the Development of Aggression and Violence from Childhood to Early Adulthood. *Annual Review of Psychology*, 48, 371-410.
- Lord Chancellor's Department. (2001). Tribunals for users: one system one service (Leggatt Review). London: TSO.
- Lord, J., & Paisley, S. (2000). The Clinical Effectiveness and Cost-Effectiveness of Methylphenidate for Hyperactivity in Childhood. London: National Institute for Clinical Excellence.
- Lynn, R., Hampson, S., & Magee, M. (1984). Home background, intelligence, personality and education as predictors of unemployment in young people. *Personality and Individual Differences*, 5(5), 549-557.
- Machin, S., & Meghir, C. (2000). Crime and Economic Incentives. London: Institute for Fiscal Studies.
- Manning, W. G., & Mullahy, J. (2001). Estimating log models: to transform or not to transform? *Journal of Health Economics*, 20(4), 461-494.
- Maslow, A. (1954). Motivation and Personality. New York: NY: Harper.
- Maughan, B. (2001). Conduct disorder in context. In J. Hill & B. Maughan (Eds.), *Conduct Disorder in Childhood and Adolescence* (pp. 169-201). Cambridge: Cambridge University Press.
- McCullagh, P., & Nelder, J. (1989). *Generalized linear models* (2nd ed.): Chapman & Hall/CRC, USA.
- McDonnell R, & A, M. (1985). The costs of alcohol misuse. British Journal of Addiction, 80(1), 27-35.
- Meltzer, H., Gatwood, R., Goodman, R., & Ford, T. (2000). Mental Health of Children and Adolescents in Great Britain. London: The Stationary Office.

Meltzer, M., Gatward, R., Corbin, T., Goodman, R., & Ford, T. (2003). Persistence, onset, risk factors and outcomes of childhood mental disorders. London: TSO.

Microsoft. (2005). Excel, 2005, from www..microsoft.com

- Miller, I., Epstein, N., Bishop, D., & Keitner, G. (1985). The McMaster Family Assessment Device:reliability and validity. *Journal of Family and Marital Therapy*, 11, 345-356.
- Mirandola, M., Bisoffi, G., Bonizzato, P., & Amaddeo, F. (1999). Collecting psychiatric resources utilisation data to calculate costs of care: a comparison between a service receipt interview and a case register. Soc Psychiatry Psychiatr Epidemiol, 34(10), 541-547.
- Mishan, E. (1988). Cost-Benefit Analysis (4th Edition ed.). London and New York: Routledge.
- Moffitt, T. E. (1993). Adolescence-Limited and Life-Course-Persistent Antisocial Behavior: A Developmental Taxonomy. *Psychological Review*, 100(4), 674.
- Moffitt, T. E., Lynam, D. R., & Silva, P. A. (1994). Neuropsychological Tests Predicting Persistent Male Delinquency. *Criminology*, 32(2), 277.
- Mooney, G. (1992). *Economics, medicine and health care*. Hemel Hempstead: Harvester Wheatsheaf.
- Moran, P., & Hagell, A. (2001). Intervening to prevent antisocial personality disorder: A scoping review (No. 25). London: Home Office.
- MTA, & Group, C. (1999). A 14-Month Randomized Clinical Trial of Treatment Strategies for Attention-Deficit/Hyperactivity Disorder. Archives of General Psychiatry, 56(12).
- Mullahy, J., & Sindelar, J. (1993). Alcoholism, work and income. Journal of Labor Economics, 11(3), 495-520.
- Mullahy, J., & Sindelar, J. (1996). Employment, unemployment, and problem drinking. Journal of Health Economics, 15(4), 409-434.
- Murnane, R., Willett, J., Braatz, M., & Duhaldeborde, Y. (2001). Do different dimensions of male high school students' skills predict labor market success a

decade later? Evidence from the NLSY. *Economics of Education Review*, 20(4), 311-320.

- Nagin, D., & Waldfogel, J. (1993). *The effect of conviction on income over the life cycle* (No. 4551). Cambridge, MA: National Bureau of Economic Research.
- Nagin, D., & Waldfogel, J. (1995). The Effects of Criminality and Conviction on the Labor Market Status of Young British Offenders. *International Review of Law and Economics*, 15(1), 109.
- National Institute for Clinical Excellence. (2002). Guidance on the use of new (atypical) antipsychotic drugs for the treatment of schizophrenia (No. 43). London: National Institute for Clinical Excellence.
- National Union of Teachers. (2004). Retrieved March, 2004, 2004, from <u>www.teachers.org.uk</u>
- Netten, A., & Curtis, L. (2003). Unit Costs of Health and Social Care. Canterbury: Personal Social Services Research Unit.
- Nolan, B., & Marx, I. (2000). Low pay and household poverty. In M. Gregory, W. Salverda & S. Bazen (Eds.), *Labour Market Inequalities* (pp. 100-119). Oxford: Oxford University Press.

Office of National Statistics. (2004). Census 2001. Retrieved February 2004, 2004

- Organisation for Economic Co-operation and Development. (2003). Retrieved March 2003, 2003, from <u>www.oecd.org</u>
- Osborne, A., Butler, N., & Morris, A. (1984). The social life of Britains five-year-olds: a report of the Child Health and Education Study. London: Routledtge and Kegan Paul.
- Osborne, A., & Milbank, J. (1987). The Effects of Early Education: A Report from the Child Health and Education Study. Oxford: Clarendon Press.
- Padgett, D. K., Patrick, C., Burns, B. J., Schlesinger, H. J., & Cohen, J. (1993). The effect of insurance benefit changes on use of child and adolescent outpatient mental health services. *Med Care*, 31(2), 96-110.

Park, R. (1966). Estimation with heteroskedastic error terms. *Econometrica*, 34(4), 888.

- Peterson, B. S., Pine, D. S., Cohen, P., & Brook, J. S. (2001). Prospective, longitudinal study of tic, obsessive-compulsive, and attention-deficit/hyperactivity disorders in an epidemiological sample. J Am Acad Child Adolesc Psychiatry, 40(6), 685-695.
- Pickles, A., Rowe, R., Simonoff, E., Foley, D., Rutter, M., & Silberg, J. (2001). Child psychiatric symptoms and psychosocial impairment: relationship and prognostic significance. *British Journal of Psychiatry*, 179(Sep), 230-235.
- Platt, S., Hawton, K., Kreitman, N., Fagg, J., & Foster, J. (1988). Recent clinical and epidemiological trends in parasuicide in Edinburgh and Oxford: a tale of two cities. *Psychol Med*, 18(2), 405-418.
- Polachek, S., & Siebert, W. (1993). *The Economics of Earnings*. Cambridge: Cambridge University Press.
- Pregibon, D. (1981). Logistic Regression Diagnostics. Annals of Statistics, 9(4), 705-724.
- Public Health Institute of Scotland. (2003). Needs assessment report on child and adolescent mental, from www.phis.org.uk
- Reijneveld, S. A., & Stronks, K. (1999). The impact of response bias on estimates of health care utilization in a metropolitan area: the use of administrative data. *International Journal of Epidemiology*, 28(6), 1134-1140.
- Robins, L. N. (1978). Sturdy childhood predictors of adult antisocial behaviour: replications from longitudinal studies. *Psychol Med*, 8(4), 611-622.
- Rodgers, B., & Pryor, J. (1998). Divorce and Separation: The Outcomes for Children. York: Joseph Rowntree Foundation.
- Roenkae, A., & Pulkkinen, L. (1995). Accumulation of Problems in Social Functioning in Young Adulthood: A Developmental Approach. *Journal of Personality and Social Psychology*, 69(2), 381.
- Romeo, R., Knapp, M., & Scott, S. (2005). *The economic cost of severe antisocial behaviour in children and who for pays it.* London: Centre for the Economics of Mental Health, Institute of Psychiatry.

Rotter, J. (1954). Social Learning and Clinical Psychology. New York: Prentice Hall.

Rubin, D. (1987). Multiple Imputation for Non-Response in Surveys. New York: Wiley.

- Rutter, M. (1967). A children's behaviour questionnaire for completion by teachers: preliminary findings. Journal of Child Psychology and Psychiatry, 8(1), 1-11.
- Rutter, M. (1989). Isle of Wight revisited: twenty-five years of child psychiatric epidemiology. J Am Acad Child Adolesc Psychiatry, 28(5), 633-653.
- Rutter, M. (1994). Beyond Longitudinal Data: Causes, Consequences, Changes, and Continuity. *Journal of Consulting and Clinical Psychology*, 62(5), 928.
- Rutter, M. (2002). The interplay of nature, nurture, and developmental influences: the challenge ahead for mental health. Arch Gen Psychiatry, 59(11), 996-1000.
- Rutter, M., Giller, H., & Hagell, A. (1998). Antisocial Behaviour by Young People. Cambridge: Cambridge University Press.
- Rutter, M., Tizard J, Yule W, Graham P, & K, W. (1976). Research report: Isle of Wight Studies, 1964-1974. *Psychological Medicine*, 6(2), 313-332.
- Rutter, M., Tizard, J., & Whitmore, K. (1970). *Education, Health and Behaviour*. London: Longman.
- Rutter, M., Yule, B., Quinton, D., Rowlands, O., Yule, W., & Berger, M. (1975). Attainment and adjustment in two geographical areas: III-Some factors accounting for area differences. *The British Journal of Psychiatry*, 126(6), 520-533.
- Sainsbury Centre for Mental Health. (2003). Money for Mental Health: A Review of Public Spending on Mental Health Care. London: Sainsbury Centre for Mental Health.
- Sanford, M., Offord, D., McLeod, K., Boyle, M., Byrne, C., & Hall, B. (1994). Pathways into the work force: antecedents of school and work force status. Journal of the American Academy of Child and Adolescent Psychiatry, 33(7), 1036-1046.
- Schafer, J. (1999). NORM: Multiple imputation of incomplete multivariate data under a normal model, version 2. Retrieved 3/2004, 2004, from www.stat.psu.edu/jls/misoftwa.html

- Schoon, I., Bynner, J., Joshi, H., Parsons, S., Wiggins, R., & Sacker, A. (2002). The influence of context, timing and duration of risk experiences for the passage from childhood to mid adulthood. *Child Development*, 73 (5), 1486-1504.
- Schultz, C. (1993). Situational and Dispositional Predictors of Performance: A Test of the Hypothezized Machiavellianism X Structure Interaction among Sales Persons. *Journal of Applied Social Psychology*, 23, 478-498.
- Scott, S. (1998). Aggressive behaviour in childhood. British Medical Journal, 316(7126), 202-206.
- Scott, S., Knapp, M., Henderson, J., & Maughan, B. (2001). Financial cost of social exclusion: follow up study of antisocial children into adulthood. *British Medical Journal*, 323(Issu 7306), 191-193.
- Scott, S., Spender, Q., Doolan, M., Jacobs, B., & Aspland, H. (2001). Multicentre controlled trial of parenting groups for childhood antisocial behaviour in clinical practice. *British Medical Journal*, 323(7306), 194-198.
- Silberg, J., Meyer, J., Pickles, A., Simonoff, E., Eaves, L., Hewitt, J., et al. (1996). Heterogeneity among juvenile antisocial behaviours: findings from the Virginia twin study of adolescent behaviour. In C. Bock (Ed.), Genetics of Criminal and Antisocial Behaviour. London: Wiley.
- Simonoff, E. (2001). Genetic influences on conduct disorder. In J. Hill & B. Maughan (Eds.), *Conduct Disorder in Childhood and Adolescence* (pp. 202-234). Cambridge: Cambridge University Press.

SPSS, & inc. (2005). SPSS for Windows, 2005, from www.SPSS.com

Stata, & Corporation. (2005). Stata Release 8, 2005, from www.stata.com

- Stewart, K. (2005). Towards an equal start? Addressing childhood poverty and deprivation. In J. Hiils & K. Stewart (Eds.), A more equal society? New Labour, poverty, inequality and exclusion (pp. 143-165). Bristol: The Policy Press.
- Stiffman, A. R., Horwitz, S. M., Hoagwood, K., Compton, W., 3rd, Cottler, L., Bean, D. L., et al. (2000). The Service Assessment for Children and Adolescents (SACA): adult and child reports. J Am Acad Child Adolesc Psychiatry, 39(8), 1032-1039.

Sutton, J. (2001). Bullies: Thugs or thinkers? Psychologist, 14(10), 530-535.

- Sutton, J., & Keogh, E. (2000). Social competition in school: Relationships with bullying, Machiavellianism and personality. *British Journal of Educational Psychology*, 70(3), 443-456.
- Tabachnick, B., & Fidell, L. (2001). Using Multivariate Statistics (4th ed.). Needham Heights, MA: Allyn & Bacon.
- Tannock, R. (1998). Attention deficit hyperactivity disorder: advances in cognitive, neurobiological, and genetic research. *J Child Psychol Psychiatry*, 39(1), 65-99.
- Taylor, E. (1994). Syndromes of attention deficit and overactivity. In M. Rutter, E.
 Taylor & L. Hersov (Eds.), *Child and Adolescent Psychiatry: modern* approaches (3rd ed., pp. 285-307). Oxford: Blackwell Scientific Publications.
- Taylor, E., Sandberg, S., Thorley, G., & Giles, S. (1991). *The epidemiology of* childhood hyperactivity. Oxford: Oxford University Press.
- The Mental Health Foundation. (1999). Bright Futures: Promoting Children and Young People's Mental Health. London: The Mental Health Foundation.
- The National Assembly for Wales. (2001). Child and adolescent mental health services; everybody's business: Primary & Community Healthcare Division;The National Assembly for Wales.
- The NHS Health Advisory Service. (1995). Together We stand: The Commissioning, Role and Management of Child and Adolescent Mental Health Services. London: HMSO.
- Thompson, S. G., & Barber, J. A. (2000). How should cost data in pragmatic randomised trials be analysed? *British Medical Journal*, 320(7243), 1197-1200.
- Thomson, G. O., Raab, G. M., Hepburn, W. S., Hunter, R., Fulton, M., & Laxen, D. P. (1989). Blood-lead levels and children's behaviour--results from the Edinburgh Lead Study. J Child Psychol Psychiatry, 30(4), 515-528.
- Tiggermann, M., & Winefield, A. (1989). Predictors of employment, unemployment and further study among school leavers. *Journal of Occupational Psychology*, 62(1), 213-221.

Titmuss, R. (1958). Essays on the 'welfare state'. London: Allen and Unwin.

- Tizard, B., & Hodges, J. (1978). The effect of early institutional rearing on the development of eight year old children. J Child Psychol Psychiatry, 19(2), 99-118.
- Turner, C., & Martinez, C. (1977). Socioeconomic Achievement and the Machiavellian Personality. *Sociometry*, 40(4), 325-336.
- Wadsworth, M. (1991). The imprint of time : childhood, history, and adult life. Oxford: Oxford University Press.
- Wadsworth, M. E., & Kuh, D. J. (1997). Childhood influences on adult health: a review of recent work from the British 1946 national birth cohort study, the MRC National Survey of Health and Development. *Paediatr Perinat Epidemiol*, 11(1), 2-20.
- Waldfogel, J. (1994). The Effect of Criminal Conviction on Income and the Trust `Reposed in the Workmen'. *Journal of Human Resources*, 29(1), 62-81.
- Webster-Stratton, C., & Hammond, M. (1997). Treating Children With Early-Onset Conduct Problems: A Comparison of Child and Parent Training Interventions. *Journal of Consulting and Clinical Psychology*, 65(1), 93-109.
- Weich, S., & Lewis, G. (1998). Poverty, unemployment, and common mental disorders: population based cohort study. *British Medical Journal*, 317(7151), 115-119.
- West, D., & Farrington, D. P. (1977). The Delinquent Way of Life. London: Heinemann.
- White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. *Econometrica*, 48(4), 817-838.
- Williams, A. (1978). 'Need': an economic exegesis. In *Economic aspects of health services* (pp. 32-45). Oxford: Martin Robertson.
- Witt, R., Clarke, A., & Fielding, N. (1999). Crime and Economic Activity: A Panel Data Approach. *British Journal of Criminology*, 39(3), 391-400.
- Wong, I. C., Murray, M. L., Camilleri-Novak, D., & Stephens, P. (2004). Increased prescribing trends of paediatric psychotropic medications. Arch Dis Child, 89(12), 1131-1132.

- Woolfenden, S. R., Williams, K., & Peat, J. (2002). Family and parenting interventions for conduct disorder and delinquency: a meta-analysis of randomised controlled trials. *Archives of Disease in Childhood*, 86(4), 251-256.
- World Health Organisation. (1993). The ICD-10 International Classification of Mental and Behavioural Disorders: diagnostic criteria for research. Geneva: World Health Organisation.
- Zoccolillo, M., Pickles, A., Quinton, D., & Rutter, M. (1992). The outcome of childhood conduct disorder: implications for defining adult personality disorder and conduct disorder. *Psychological Medicine*, 22(4), 971-986.

Appendices

•

Appendix: chapter 2

Models estimated on each multiply imputed data set

Variable labe	el definitions
Label	Definition
logpay	Log of weekly earnings (age 32)
untim18	> 18 weeks of unemployment since school leaving (age 18-19)
unlfy12m	> 1 year of unemployment over 5 years (age 32)
jobs_318	> 3 jobs since school leaving (age 18-19)
Jobs_332	> 3 jobs over 5 years (age 32)
tbc8	Troublesome/antisocial (1= yes;0=no)
trlc80	Restless/Poor concentration (1=yes; 0=no)
njn10d	Neurotic (1=yes;0=no)
iq8c	Low non-verbal IQ (1=yes;0=no)
if8	Low family income (1=yes;0=no)
sp10	Poor parental supervision (1=yes;0=no)
afmc10	Harsh discipline by parents (1=yes;0=no)
fs8	Large family (1=yes;0=no)
mp8	Parental conflict (1=yes;0=no)
_snp10	Disrupted family (1=yes;0=no)

Variable label definition

Data set 1

.

OLS: log of weekly earnings (age 32)

Source	SS df	MS		N	mber of obs =	326 = 1.66
Model Residual					F(10, 315) Prob > F R-squared Adj R-squared	= 0.0894 = 0.0500
Total	66.8690837	325 .205	5751027		Root MSE	= .44907
logpay	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
tbc8	.0669844	.0724468	0.92	0.356	0755563	.2095251
trlc80	1327619	.0695723	-1.91	0.057	2696471	.0041233
njn10d	0433291	.054543	-0.79	0.428	1506437	.0639856
iq8c	074901	.0619372	-1.21	0.227	196764	.046962
if8	1626868	.0742282	-2.19	0.029	3087325	0166411
sp10	.0292099	.076305	0.38	0.702	1209221	.1793418
afmc10	0061995	.0610002	-0.10	0.919	1262188	.1138197
fs8	0557331	.0657271	-0.85	0.397	1850527	.0735865
mp8	0070752	.0664084	-0.11	0.915	1377353	.1235849
snp10	.0370465	.0649877	0.57	0.569	0908184	.1649115
_cons	5.110967	.0376723	135.67	0.000	5.036846	5.185089

Probit: > 18 weeks of unemployment (age 18-19)

Probit estimates

Number of obs	=	368
LR chi2(10)	=	42.42
Prob > chi2	=	0.0000

Log likelihood	= -105.30324	1		Pseud	0 R2	= 0.1676
untim_18	Coef.	Std. Err.	z	P> z	[95% Con	f. Interval]
tbc8	.6966087	.2301522	3.03	0.002	.2455187	1.147699
trlc80	2695621	.2524641	-1.07	0.286	7643826	.2252584
njn10d	0184644	.207306	-0.09	0.929	4247767	.3878479
iq8c	.4324669	.209749	2.06	0.039	.0213664	.8435674
if8	.6030001	.248928	2.42	0.015	.1151102	1.09089
sp10	4206665	.2640302	-1.59	0.111	9381562	.0968232
afmc10	.1583292	.2214082	0.72	0.475	2756229	.5922813
fs8	2039214	.2586665	-0.79	0.430	7108983	.3030555
mp8	.3599352	.2234241	1.61	0.107	0779681	.7978385
snp10	.4737671	.2075138	2.28	0.022	.0670475	.8804867
_cons	-1.882755	.1746638	-10.78	0.000	-2.22509	-1.540421

Probit: > 1 year unemployment over 5 years (age 32)

Probit estimates Log likelihood = -154.98656				LR ch	er of obs ni2(10) > chi2 do R2	= = =	376 20.13 0.0281 0.0610
unlfy12m	Coef.	Std. Err.	z	P> z	[95% (Conf.	Interval]
tbc8	.3265148	.2096764	1.56	0.119	0844	433	.7374729
trlc80	.1323383	.2105346	0.63	0.530	280	302	.5449785
njn10d	.2439382	.16974	1.44	0.151	08874	461	.5766224
iq8c	.2680016	.184303	1.45	0.146	09323	257	.6292288
if8	.3861346	.2172038	1.78	0.075	039	577	.8118462
sp10	0717914	.2278209	-0.32	0.753	5183	121	.3747293
afmc10	0721408	.2017693	-0.36	0.721	4676	014	.3233198
fs8	.0646196	.2040593	0.32	0.751	3353	293	.4645686
mp8	0571399	.2115866	-0.27	0.787	47184	419	.3575621
snp10	0977014	.2045464	-0.48	0.633	4986	049	.3032021
_cons	-1.323804	.1300653	-10.18	0.000	-1.578	728	-1.068881

Probit: unstable employment (age 18-19)

Probit estimates Log likelihood = -222.15739				LR ch	r of obs i2(10) > chi2 o R2	= =	361 56.13 0.0000 0.1122
jobs_318	Coef.	Std. Err.	Z	P> z	[95% Co	nf.	Interval]
tbc8	.3966709	.1906709	2.08	0.037	.022962	9	.7703789
trlc80	.0541704	.1876823	0.29	0.773	313680		.422021
njn10d	0439547	.1534645	-0.29	0.775	344739	5	.2568301
iq8c	.4027918	.1649087	2.44	0.015	.079576	8	.7260069
if8	.1074741	.1959149	0.55	0.583	276512	1	.4914603
sp10	.0952748	.1897255	0.50	0.616	276580	3	.4671298
afmc10	.2103606	.1651266	1.27	0.203	113281	6	.5340028
fs8	.5850147	.183799	3.18	0.001	.224775	3	.945254
mp8	.2641108	.1793238	1.47	0.141	087357	3	.615579
snp10	.2086394	.1725824	1.21	0.227	129615	9	.5468947
_cons	5271546	.1098996	-4.80	0.000	74255	4 	3117553

Probit: unstable employment (age 32)

Probit estimates

Log likelihood = -191.12297

Number of obs	=	369
LR chi2(10)	=	3.60
Prob > chi2	=	0.9635
Pseudo R2	E	0.0093

Interval	[95% Conf.	P>_ Z	Z	Std. Err.	Coef.	jobs_332
.4299814	3979346	0.940	0.08	.2112069	.0160234	tbc8
.601718	193336	0.314	1.01	.2028238	.2041913	trlc80
.21667	4218092	0.529	-0.63	.1628814	1025676	njn10d
.213516	5034453	0.428	-0.79	.1829018	1449644	iq8c
.482733	3575618	0.770	0.29	.214365	.0625859	if8
.285916	5701205	0.515	-0.65	.2183808	1421021	sp10
.352193	3618801	0.979	-0.03	.182165	0048432	afmc10
.335781	4293566	0.811	-0.24	.1951918	0467876	fs8
.237064	5127221	0.471	-0.72	.1912756	1378288	mp8
.404599	3295882	0.841	0.20	.1872963	.0375058	snp10
500310	9367619	0.000	-6.45	.1113416	7185363	cons

Data set 2

OLS: log of weekly earnings (age 32)

Source	SS	df	MS		Number of obs F(10, 315)	
Model Residual	3.24270273 63.626381		4270273 1988511		Prob > F R-squared	= 0.1038 = 0.0485
Total	66.8690837	325 .20	5751027		Adj R-squared Root MSE	= 0.0183 = .44943
logpay	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
tbc8	.0632431	.0722123	0.88	0.382	0788364	.2053226
trlc80	1297896	.069541	-1.87	0.063	2666131	.007034
njn10d	0228058	.0553237	-0.41	0.680	1316565	.0860449
iq8c	0742339	.0619801	-1.20	0.232	1961813	.0477134
if8	1643732	.0742451	-2.21	0.028	3104522	0182942
sp10	.0129332	.0769934	0.17	0.867	138553	.1644195
afmc10	0068449	.0610671	-0.11	0.911	1269959	.1133061
fs8	0549263	.0658442	-0.83	0.405	1844764	.0746238
mp8	.0123804	.0683518	0.18	0.856	1221034	.1468642
snp10	.0352928	.065291	0.54	0.589	0931687	.1637543
_cons	5.104767	.0382535	133.45	0.000	5.029502	5.180032

,

Probit: > 18 weeks of unemployment (age 18-19)

Probit estimates Log likelihood = -105.82198				LR ch	er of obs ni2(10) > chi2 lo R2	= = =	368 41.38 0.0000 0.1635
untim_18	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
tbc8 trlc80 njn10d iq8c	.6799306 2826134 .0056553 .4302099	.2270012 .2527996 .2125994 .2099347	3.00 -1.12 0.03 2.05	0.003 0.264 0.979 0.040	.2350 7780 4110 .0187	914 318	1.124845 .2128647 .4223424 .8416744
if8 sp10 afmc10 fs8 mp8	.5917705 4083872 .2357192 1957127 .2800276	.2461299 .284926 .2166873 .2593518 .2255364	2.40 -1.43 1.09 -0.75 1.24	0.016 0.152 0.277 0.450 0.214	.1093 966 18 7040 1620	832 898 328 156	1.074176 .1500575 .6604184 .3126074 .7220708
snp10 _cons	.4643142 -1.885424	.2091448 .1764439	2.22 -10.69	0.026 0.000	.0543 -2.231		.8742305 -1.5396

Probit estimates				LR ch	r of obs = i2(10) = > chi2 = o R2 =	19.06 0.0395
unlfy12m	Coef.	Std. Err.	Z	P> z	[95% Coni	. Interval]
tbc8	.3613469	.2074095	1.74	0.081	0451683	.7678621
trlc80	.1160587	.2097196	0.55	0.580	2949843	.5271016
njn10d	.1636857	.173101	0.95	0.344	175586	.5029574
iq8c	.2813757	.1845834	1.52	0.127	0804011	.6431526
if8	.3826866	.214229	1.79	0.074	0371944	.8025677
sp10	115405	.2339111	-0.49	0.622	5738623	.3430524
afmc10	0819578	.2001722	-0.41	0.682	4742881	.3103724
fs8	.0820887	.2037616	0.40	0.687	3172767	.4814541
mp8	0080498	.2143976	-0.04	0.970	4282612	.4121617
snp10	09431	.2054139	-0.46 ·	0.646	4969139	.308294
_cons	-1.308089	.1310302	-9.98	0.000	-1.564904	-1.051275

-

. •

;

Probit: > 1 year unemployment over 5 years (age 32)

Probit: unstable employment (age 18-19)

Probit estimat	es			Numbe	r of obs	=	361
				LR ch	i2(10)	=	56.34
				Prob	> chi2	=	0.0000
Log likelihood	i = -222.05653	3		Pseud	lo R2	=	0.1126
jobs_318	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
tbc8	.4053045	.1894027	2.14	0.032	.034	082	.7765271
trlc80	.0467872	.187852	0.25	0.803	3213	959	.4149702
njn10d	.0520101	.154545	0.34	0.736	2508	925	.3549127
iq8c	.4051952	.1653123	2.45	0.014	.081	189	.7292014
if8	.1302738	.194967	0.67	0.504	2518	545	.5124022
sp10	0166248	.2003899	-0.08	0.934	4093	818	.3761323
afmc10	.2327357	.164195	1.42	0.156	0890	805	.5545519
fs8	.5952935	.1842298	3.23	0.001	.2342	096	.9563774
mp8	.2923162	.1801227	1.62	0.105	0607	178	.6453501
snp10	.2021338	.1739539	1.16	0.245	1388	096	.5430772
_cons	5577312	.1115715	-5.00	0.000	7764	073	339055

Probit: unstable employment (age 32)

Probit estimat Log likelihood		LR ch	er of obs hi2(10) > chi2 ho R2	= = =	369 3.30 0.9734 0.0086		
jobs_332	Coef.	Std. Err.	z	P> z	[95% Cor	ıf. I	nterval]
tbc8 trlc80 iq8c if8 sp10 afmc10 fs8 mp8 snp10	.0105881 .201014 1463237 1286231 .0368359 0788205 1199446 0478674 0021931 .0226916	.210607 .2026007 .1652766 .1833547 .2137928 .2221157 .1829988 .1947633 .1984697 .1879428	0.05 0.99 -0.89 -0.70 0.17 -0.35 -0.66 -0.25 -0.01 0.12	0.960 0.321 0.376 0.483 0.863 0.723 0.512 0.806 0.991 0.904	4021933 196076 4702598 4879917 3821903 5141593 4786156 4295964 3911866	5 3 7 3 3 3 5 4 5 5 5	.4233702 .5981039 .1776125 .2307456 .4558622 .3565183 .2387265 .3338616 .3868004 .3910528
_cons	7067586	.1127283	-6.27	0.000	9277021	L - 	.4858152

Data set 3

OLS: log of weekly earnings (age 32)

Source	SS d	f MS		Num	ber of obs =	326
+-					F(10, 315)	= 1.66
Model	3.34461327	10 .334	461327		Prob > F	= 0.0896
Residual	63.5244705	315 .201	L664986		R-squared	= 0.0500
+-					Adj R-squared	= 0.0199
Total	66.8690837	325 .205	5751027		Root MSE	= .44907
1						T
logpay	Coef.	Std. Err.	t	P> t	[95% Conf.	Intervalj
tbc8	.0661056	.0722171	0.92	0.361	0759833	.2081945
trlc80	131478	.0694834	-1.89	0.059	2681882	.0052322
	0447257	.0559176	-0.80	0.424	1547449	.0652936
njn10d						
iq8c	0716207	.0619086	-1.16	0.248	1934274	.050186
if8	1613153	.0744307	-2.17	0.031	3077595	0148712
sp10	.0013509	.0729776	0.02	0.985	1422342	.1449361
afmc10	.0024902	.0607212	0.04	0.967	1169802	.1219607
fs8	0525984	.0655832	-0.80	0.423	181635	.0764381
mp8 _	.0190281	.0659232	0.29	0.773	1106774	.1487335
snp10	.0327371	.0653612	0.50	0.617	0958626	.1613368
_cons	5.107409	.0382868	133.40	0.000	5.032079	5.182739

Probit: > 18 weeks of unemployment (age 18-19)

Probit estimat		Numbe LR ch Prob Pseud	368 43.92 0.0000 0.1736			
untim_18	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
tbc8	.6968872	.2291788	3.04	0.002	.247705	1.146069
trlc80	3071753	.2538849	-1.21	0.226	8047805	.1904298
njn10d	.0139411	.2160631	0.06	0.949	4095348	.4374171
iq8c	.4225363	.2100857	2.01	0.044	.0107759	.8342966
if8	.6013368	.2479057	2.43	0.015	.1154506	1.087223
sp10	4469398	.2776114	-1.61	0.107	9910482	.0971685
afmc10	.2185843	.2165713	1.01	0.313	2058878	.6430563
fs8	190937	.2591176	-0.74	0.461	698798	.3169241
mp8	.3937791	.2155053	1.83	0.068	0286034	.8161617
snp10	.450013	.2101781	2.14	0.032	.0380716	.8619545
_cons	-1.910506	.180126	-10.61	0.000	-2.263547	-1.557466

.

Probit: > 1 year unemployment over 5 years (age 32)

Probit estimat Log likelihood		3		LR ch	r of obs i2(10) > chi2 o R2	3 = = = =	376 18.86 0.0421 0.0571
unlfy12m	Coef.	Std. Err.	z	P> z	 [95%	Conf.	Interval]
tbc8	.3690821	.2077541	1.78	0.076	0381		.7762726
trlc80	.108013	.2100203	0.51	0.607	3036	193	.5196452
njn10d	.1264556	.1751117	0.72	0.470	2167	571	.4696682
iq8c	.293844	.1835655	1.60	0.109	0659	378	.6536257
if8	.3887692	.2144606	1.81	0.070	0315	659	.8091042
sp10	1744642	.2279346	-0.77	0.444	6212	079	.2722795
afmc10	04303	.1979144	-0.22	0.828	4309	351	.3448752
fs8	.093394	.2025458	0.46	0.645	3035	884	.4903765
mp8	0010593	.205403	-0.01	0.996	4036	417	.4015231

snp10	0883178	.204872	-0.43	0.666	4898596	.3132239
_cons	-1.302722	.1316502	-9.90	0.000	-1.560751	-1.044692

Probit: unstable employment (age 18-19)

probit jobs_318 tbc8 trlc80 njn10d iq8c if8 sp10 afmc10 fs8 mp8 snp10

Iteration 0:	\log likelihood = -250.22475
Iteration 1:	log likelihood = -223.11788
Iteration 2:	\log likelihood = -222.68408
Iteration 3:	log likelihood = -222.68361

Probit estimates					Number	of obs	=	361
					LR chi	2(10)	=	55.08
					Prob >	chi2	=	0.0000
Log likelihood = -222.68361					Pseudo R2			0.1101
jobs_318	Coef.	Std.	Err.	Z	P> z	[95%	Conf.	Interval]
+								

	+					
tbc8	.4095784	.1894573	2.16	0.031	.0382489	.7809079
trlc80	.0278251	.18613	0.15	0.881	3369829	.3926331
njn10d	.0277838	.155804	0.18	0858	2775864	.3331541
iq8c	.3933549	.1647949	2.39	0.017	.0703629	.7163469
if8	.1290108	.1946349	0.66	0.507	2524665	.5104881
sp10	.0830449	.1883089	0.44	0.659	2860339	.4521236
afmc10	.2285237	.1640737	1.39	0.164	0930549	.5501024
fs8	.5873654	.1832484	3.21	0.001	.2282052	.9465256
mp8	.2135397	.1745065	1.22	0.221	1284866	.5555661
snp10	.2027429	.1736329	1.17	0.243	1375713	.5430571
_cons	5419952	.1115117	-4.86	0.000	7605541	3234362

Probit: unstable employment (age 32)

probit jobs_332 tbc8 trlc80 njn10d iq8c if8 sp10 afmc10 fs8 mp8 snp10

Iteration	0:	\log likelihood = -192.92452
Iteration	1:	log likelihood = -190.96943
Iteration	2:	log likelihood = -190.96548
Iteration	3:	log likelihood = -190.96548

Probit estimates

					i2(10) > chi2	= =	3.92 0.9510
Log likelihood	= -190.9654	3		Pseud	lo R2	=	0.0102
jobs_332	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
tbc8	.0117398	.2109518	0.06	0.956	4017	7182	.4251978
trlc80	.185734	.2030437	0.91	0.360	2122	2244	.5836924
njn10d	2048295	.1682277	-1.22	0.223	5345	5496	.1248907
iq8c	1243381	.1831848	-0.68	0.497	4833	3737	.2346975
if8	.0252227	.2141199	0.12	0.906	3944	1446	.4448899
sp10	0662235	.2116	-0.31	0.754	4809	9519	.3485049
afmc10	1235861	.1810544	-0.68	0.495	4784	462	.2312741
fs8	0457776	.1944886	-0.24	0.814	4269	9683	.3354131
mp8	.0519203	.1874926	0.28	0.782	3155	5585	.4193991
snp10	.0085318	.1885597	0.05	0.964	3610	385	.3781021
_cons	6993334	.1133755	-6.17	0.000	9215	5452	4771215

Number of obs =

369

Data set 4

OLS: log of weekly earnings (age 32)

regress logpay tbc8 trlc80 njn10d iq8c if8 sp10 afmc10 fs8 mp8 snp10

Source	SS	df	MS		Number of obs F(10, 315)	
Model Residual	3.26062769 63.608456		6062769 1931606		Prob > F R-squared Adj R-squared	= 0.1012 = 0.0488
Total	66.8690837	325 .20	5751027		Root MSE	= .44937
logpay	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
tbc8	.064377	.0723792	0.89	0.374	0780307	.2067848
trlc80	1301836	.0695085	-1.87	0.062	2669432	.006576
njn10d	0237003	.0546674	-0.43	0.665	1312597	.083859
iq8c	0775993	.0624454	-1.24	0.215	200462	.0452634
if8	1635026	.0730938	-2.24	0.026	3073164	0196888
sp10	.0289646	.0739371	0.39	0.696	1165085	.1744376
afmc10	0051531	.0596216	-0.09	0.931	1224601	.1121538
fs8	0575427	.0660388	-0.87	0.384	1874756	.0723901
mp8	0042064	.0662268	-0.06	0.949	1345092	.1260963
snp10	.0364551	.065225	0.56	0.577	0918765	.1647868
_cons	5.106124	.0379898	134.41	0.000	5.031378	5.180869

Probit: > 18 weeks of unemployment (age 18-19)

Probit estimates Log likelihood = -104.49627				LR ch	er of obs = hi2(10) = > chi2 = lo R2 =	368 44.03 0.0000 0.1740
untim_18	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
tbc8	.7073262	.2298982	3.08	0.002	.256734	1.157918
trlc80	302332	.2547168	-1.19	0.235	8015677	.1969037
njn10d	0921247	.209242	-0.44	0.660	5022314	.3179821
iq8c	.4671892	.2118771	2.21	0.027	.0519177	.8824607
if8	.5627541	.2442165	2.30	0.021	.0840986	1.04141
sp10	4980309	.2825476	-1.76	0.078	-1.051814	.0557523
afmc10	.2212506	.215144	1.03	0.304	2004238	.6429251
fs8	148841	.2598763	-0.57	0.567	6581891	.360507
mp8	.3459391	.2243419	1.54	0.123	093763	.7856413
snp10	.4712856	.2105863	2.24	0.025	.058544	.8840272
_cons	-1.87624	.1743969	-10.76	0.000	-2.218051	-1.534428

Probit: > 1 year unemployment over 5 years (age 32)

Probit estimat	es			LR ch	r of obs i2(10)	= =	376 20.58
Log likelihood	= -154.75789	9		Prob Pseud	> chi2 o R2	=	0.0242 0.0624
unlfy12m	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
tbc8	.3398223	.2091695	1.62	0.104	0701	424	.749787
trlc80	.1043209	.2097184	0.50	0.619	3067	195	.5153614
njn10d	.2570329	.1675829	1.53	0.125	0714	235	.5854893
iq8c	.2909229	.1857962	1.57	0.117	073	231	.6550767
if8	.3736279	.2142472	1.74	0.081	0462	889	.7935447
sp10	1490512	.232966	-0.64	0.522	6056	561	.3075536
afmc10	1120065	.1977767	-0.57	0.571	4996	417	.2756288
. fs8	.0822297	.2049302	0.40	0.688	319	426	.4838854
mp8	.0510533	.2094799	0.24	0.807	3595	198	.4616264

snp10	0914161	.2066223	-0.44	0.658	4963883	.3135561
_cons	-1.335902	.1304607	-10.24	0.000	-1.5916	-1.080203

Probit: unstable employment (age 18-19)

Probit estimat Log likelihood		3		LR ch	r of obs = i2(10) = > chi2 = lo R2 =	361 53.31 0.0000 0.1065
jobs_318	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
tbc8 trlc80 iq8c if8 spl0 afmc10	.4121855 .0636658 0120871 .3954816 .1547906 0081742 .2473271	.1907506 .1876664 .1517922 .1657135 .193235 .195252 .164045	2.16 0.34 -0.08 2.39 0.80 -0.04 1.51	0.031 0.734 0.937 0.017 0.423 0.967 0.132	.0383212 3041536 3095944 .0706892 223943 3908611 0741951	.7860498 .4314853 .2854201 .7202741 .5335241 .3745126 .5688493
fs8 mp8 snp10 _cons	.6006989 .0982556 .2331229 5160408	.1835663 .172618 .1730096 .1095722	3.27 0.57 1.35 -4.71	0.001 0.569 0.178 0.000	.2409157 2400695 1059698 7307983	.9604822 .4365807 .5722156 3012833

Probit: unstable employment (age 32)

Probit estimat		LR ch	r of obs i2(10)	=	369 3.17		
				Prob	> chi2	=	0.9770
Log likelihood	l = -191.3378	3		Pseud	io R2	=	0.0082
job s_332	Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
tbc8	.0171112	.2109438	0.08	0.935	39633	11	.4305535
trlc80	.1939126	.2020068	0.96	0.337	20201	34	.5898386
njn10d	1288401	.1604603	-0.80	0.422	44333	65	.1856564
iq8c	1225621	.1839856	-0.67	0.505	48316	73	.2380431
if8	.018788	.2108211	0.09	0.929	39441	37	.4319897
sp10	0865066	.2162606	-0.40	0.689	51036	96	.3373564
afmc10	1177992	.1797439	-0.66	0.512	47009	07	.2344923
fs8	0440234	.1952798	-0.23	0.822	42676	48	.338718
mp8	.0551045	.1909628	0.29	0.773	31917	56	.4293847
snp10	.0153791	.1880168	0.08	0.935	35312	72	.3838853
_cons	7191362	.111751	-6.44	0.000	93816	41	5001083

Data set 5

OLS: log of weekly earnings (age 32)

Source	SS	df	MS		Number of obs F(10, 315)	
Model	3.30314881	10 .330	314881		Prob > F	= 0.0952
Residual	63.5659349	315 .201	L796619		R-squared	= 0.0494
+					Adj R-squared	= 0.0192
Total	66.8690837	325 .205	5751027		Root MSE	= .44922
logpay	Coef.	Std. Err.	t	P> t 	[95% Conf.	Interval]
tbc8	.064183	.0726811	0.88	0.378	0788188	.2071848
trlc80	1299011	.0694908	-1.87	0.063	2666258	.0068236
njn10d	0353229	.0554298	-0.64	0.524	1443823	.0737365
iq8c	0730754	.062135	-1.18	0.240	1953274	.0491766
if8	1660265	.0740514	-2.24	0.026	3117244	0203286
sp10	.0261059	.0724498	0.36	0.719	1164408	.1686525
afmc10	0061906	.0602509	-0.10	0.918	1247356	.1123544
fs8	0567859	.0659733	-0.86	0.390	18659	.0730182

.

mp8	.0056685	.0687459	0.08	0.934	1295908	.1409277
snp10	.034552	.0656483	0.53	0.599	0946126	.1637166
_cons	5.107988	.0383033	133.36	0.000	5.032625	5.183351

Probit: > 18 weeks of unemployment (age 18-19)

Probit estimat		Number of obs LR chi2(10) Prob > chi2 Pseudo R2			361 55.16 0.0000 0.1102		
jobs_318	Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
tbc8 trlc80 njn10d iq8c if8 sp10 afmc10 fs8 mp8	.3754103 .0584699 .0340966 .4188036 .1124893 .050602 .1929068 .5910084 .2502136	.1906573 .1874631 .1547431 .1650451 .1960676 .190601 .1595507 .1841848 .1811109	1.97 0.31 0.22 2.54 0.57 0.27 1.21 3.21 1.38	0.049 0.755 0.826 0.011 0.566 0.791 0.227 0.001 0.167	.00172 30895 26919 .09532 27179 32296 11980 .23001 10475	09 43 11 62 91 68 28	.7490918 .4258908 .3373875 .7422861 .4967748 .424173 .5056204 .952004 .6051845
snp10 _cons	.2080278 5440641	.1736802 .1109996	1.20 -4.90	0.231 0.000	13237 76161		.5484348 3265088

Probit: > 1 year unemployment over 5 years (age 32)

Probit estimat	es			Numbe	r of obs	=	376
				LR ch	i2(10)	=	19.28
				Prob	> chi2	=	0.0368
Log likelihood	l = -155.40802	2		Pseud	lo R2	=	0.0584
unlfy12m	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
tbc8	.3480267	.2086997	1.67	0.095	0610	173	.7570707
trlc80	.1144497	.2097448	0.55	0.585	2966	426	.5255421
njn10d	.1949163	.17346	1.12	0.261	1450	591	.5348917
iq8c	.2692982	.1845384	1.46	0.144	0923	905	.6309868
if8	.3808874	.2150178	1.77	0.076	0405	397	.8023145
sp10	1083231	.2231422	-0.49	0.627	5456	737	.3290274
afmc10	064221	.1974229	-0.33	0.745	4511	628	.3227208
fs8	.0830535	.203968	0.41	0.684	3167	164	.4828233
mp8	0107646	.2128046	-0.05	0.960	4278	539	.4063247
snp10	0920395	.2058026	-0.45	0.655	4954	052	.3113263
_cons	-1.319247	.1309533	-10.07	0.000	-1.575	911	-1.062583

Probit: unstable employment (age 18-19)

Probit estimat	LR ch	er of obs 12(10) > chi2	= =	361 55.16 0.0000			
Log likelihood	l = -222.64669)		Pseud	lo R2	=	0.1102
jobs_318	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
tbc8	.3754103	.1906573	1.97	0.049	.0017	288	.7490918
trlc80	.0584699	.1874631	0.31	0.755	3089	509	.4258908
njn10d	.0340966	.1547431	0.22	0.826	2691	943	.3373875
iq8c	.4188036	.1650451	2.54	0.011	.0953	211	.7422861
if8	.1124893	.1960676	0.57	0.566	2717	962	.4967748
sp10	.050602	.190601	0.27	0.791	3229	691	.424173
afmc10	.1929068	.1595507	1.21	0.227	1198	068	.5056204
fs8	.5910084	.1841848	3.21	0.001	.2300	128	.952004
mp8	.2502136	.1811109	1.38	0.167	1047	573	.6051845

snp10	.2080278	.1736802	1.20	0.231	1323792	.5484348
_cons	5440641	.1109996	-4.90	0.000	7616194	3265088

Probit: unstable employment (age 32)

Probit estimat		LR ch Prob	r of obs i2(10) > chi2	= = =	369 3.08 0.9796		
Log likelihood	= -191.38622	2		Pseud	o R2	=	0.0080
jobs_332	Coef.	Std. Err.	Z	P> z	[95% Co	nf.	Interval]
tbc8	0078293	.2112313	-0.04	0.970	42183	 5	.4061765
trlc80	.1980323	.2021718	0.98	0.327	198217	2	.5942818
njn10d	1657151	.1658229	-1.00	0.318	49072	2	.1592918
iq8c	1343406	.1831533	-0.73	0.463	493314	6	.2246333
if8	0129349	.2137968	-0.06	0.952	431968	9	.406099
sp10	.0833943	.2043851	0.41	0.683	317193	1	.4839816
afmc10	0932124	.1778573	-0.52	0.600	441806	3	.2553814
fs8	0582953	.1950553	-0.30	0.765	440596	8	.3240061
mp8	.0047932	.1953947	0.02	0.980	378173	3	.3877598
snp10	.0037558	.1884618	0.02	0.984	365622	6	.3731341
_cons	7156042	.1126185	-6.35	0.000	936332	5	4948759

Diagnostic tests

For each test 5 sets of results are reported based on each of the multiply imputed data sets:

Park test

Data set 1

OLS regression: Invar are the log scaled residuals and Inyhat are the log scaled predictions derived from a generalised linear model of weekly earnings.

Source	SS	df	MS		Number of obs F(1, 324)	
Model Residual	28.5105998 1581.49618				Prob > F R-squared Adj R-squared	= 0.0162 = 0.0177
Total	1610.00678	325 4.9	95386701		Root MSE	
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnyhat _cons	2.625668 -6.310507			0.016 0.259	.4883378 -17.29555	
Descriptives						
Percenti 1% -1.2970						

5%	6444502	-1.438282		
10%	4105349	-1.298002	Obs	326
25%	1165509	-1.297089	Sum of Wgt.	326
50%	.1362293		Mean	.1051686
		Largest	Std. Dev.	.4429476
75%	.357945	1.30146		
90%	.568429	1.30146	Variance	.1962026
95%	.7136731	1.805149	Skewness	2506577
99%	1.30146	1.812285	Kurtosis	5.391831

-

The important statistic is the coefficient of kurtosis. If the log scaled residuals are heavy tailed (coefficient of kurtosis >3) then OLS with a log transformed dependent variable is recommended.

Data set 2

Source	SS	df	MS		Number of obs =	
Model Residual	23.0301032		3.0301032 .38119511			= 0.0394 = 0.0130
Total	1766.53732	325 5	.43549944			= 0.0100 = 2.3197
lnvar	Coef.	Std. Er	r. t	P> t	[95% Conf.]	Interval]
lnyhat _cons	2.382031 -5.073651	1.15143		0.039 0.392	.1168013 -16.71637	4.647261 6.569063

Descriptives

	Percentiles	Smallest		
1%	-1.285192	-1.656302		
5%	6386619	-1.425482		
10%	4176049	-1.318253	Obs	326
25%	1135321	-1.285192	Sum of Wgt.	326
50%	.131239		Mean	.1053333
		Largest	Std. Dev.	.4433345
75%	.3578591	1.29439		
90%	.571002	1.29439	Variance	.1965455
95%	.7066031	1.805215	Skewness	2481091
998	1.29439	1.824933	Kurtosis	5.402284

Data set 3

٠

Source	SS	df	MS	Number of $obs = F(1, 324) =$	
Model Residual	28.9709219 1596.066	1 324	28.9709219 4.92612963	Prob > F = R-squared =	0.0159 0.0178
Total	1625.03692			Adj R-squared = Root MSE =	0.0148 2.2195
lnvar	Coef.		Err. t	[95% Conf. In	terval]

lnyhat	2.649243	1.09243	2.43	0.016	.5000919	4.798395
_cons	-6.42689	5.61474	-1.14	0.253	-17.47284	4.61906

	ves

-

	•				
	Percentiles	Smallest			
1%	-1.285948	-1.653424			
5%	6187873	-1.435314			
10%	4145079	-1.322942	Obs	326	
25%	1161456	-1.285948	Sum of Wgt.	326	•
50%	.1387625		Mean	.1052426	
508	.138/625	T			
		Largest	Std. Dev.	.4430444	
75%	.362711	1.297487			
90%	.5598269	1.297487	Variance	.1962884	
95%	.7116642	1.808302	Skewness	2517835	
998	1.297487	1.808312	Kurtosis	5.397803	

Data set 4

Source	SS	df	MS		Number of obs $F(_1, 324)$	
Model Residual Total	23.6311279 1634.11847 1657.7496		311279 357552 076799		Prob > F R-squared Adj R-squared	= 0.0312 = 0.0143
lnvar	Coef.	Std. Err.	 t	P> t	[95% Conf.	Interval]
lnyhat _cons	2.409326 -5.205672	1.113071 5.720834	2.16 -0.91	0.031 0.364	.2195686 -16.46034	4.599084 6.048998

Descriptives

	Percentiles	Smallest		
1%	-1.298137	-1.654624		
58	6420817	-1.42935		
10%	4145699	-1.302323	Obs	326
25%	1176576	-1.298137	Sum of Wgt.	326
50%	.1341544		Mean	.105267
		Largest	Std. Dev.	.4432329
75%	.3589106	1.297425		
90%	.5709715	1.297425	Variance	.1964554
95%	.7096381	1.80825	Skewness	2477038
99%	1.297425	1.818683	Kurtosis	5.394142

.

Data set 5

Source	SS	df	MS		Number of obs	
Model Residual	22.2833816 1655.43524	1 22.2 324 5.10	833816 936803		F(1, 324) Prob > F R-squared	= 0.0375 = 0.0133
Total	1677.71862	325 5.16	221115		Adj R-squared Root MSE	= 0.0102 = 2.2604
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnyhat _cons	2.334501 -4.824879	1.117859 5.74544	2.09 -0.84	0.038	.1353223 -16.12796	4.53368 6.478198

Descriptives

Percentiles Smallest

1%	-1.291964	-1.653296		
5%	6462183	-1.437363		
.10%	412303	-1.30015	Obs	326
25%	1108689	-1.291964	Sum of Wgt.	326
50%	.1354013		Mean	.1052554
		. Largest	Std. Dev.	.4430962
75%	.3622456	1.299692		
90%	.5698776	1.299692	Variance	.1963343
95%	.711905	1.810517	Skewness	251247
99%	1.299692	1.811915	Kurtosis	5.396597

.

-

Link test

Data set 1

OLS: log of weekly earnings (age 32)

OLS	regression
-----	------------

Source	SS	df	MS		Number of obs F(2, 323)	
Model Residual	3.34664982 63.5224339		/332491 663882		F(2, 323) Prob > F R-squared Adj R-squared	= 0.0003 = 0.0500
Total	66.8690837	325 .205	751027		Root MSE	= .44347
logpay	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval}
_hat	2.142004	19.84371	0.11	0.914	-36.89724	41.18125
_hatsq _cons	1146056 -2.843442	1.991263 49.41968	-0.06 -0.06	0.954 0.954	-4.032089 -100.0685	3.802877 94.38166

_hat and _hatsq are, respectively, the predicted values of the dependent variable and the predicted values squared. Statistical significance of the latter would imply functional form mis-specification.

Probit: > 18 weeks of unemployment (age 18-19)

.

Probit estimate Log likelihood			LR ch	> chi2	= = =	368 42.93 0.0000 0.1697	
untim_18	Coef.	Std. Err.	 Z	P> z	[95%	Conf.	Interval]
_hat _hatsq _cons	1.372353 .1754433 .136148	.5456822 .242695 .2849718	2.51 0.72 0.48	0.012 0.470 0.633	.3028 3002 4223	302	2.441871 .6511167 .6946824

Probit: > 1 year unemployment over 5 years (age 32)

Probit estimates Log likelihood = -154.56451				LR ch	> chi2	= = =	376 20.97 0.0000 0.0635
unlfy12m	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
_hat _hatsq _cons	.225999 4715257 2479613	.8725404 .5149396 .3561503	0.26 -0.92 -0.70	0.796 0.360 0.486	-1.484 -1.480 946	789	1.936147 .5377375 .4500805

Probit: unstable employment (age 18-19)

Probit estimat	es		Number LR chi		3 = =	361 57.70	
Log likelihood		Prob > chi2 Pseudo R2		= =	0.0000 0.1153		
jobs_318	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
_hat _hatsq _cons	1.131427 2768845 .0693892	.176521 .2175689 .088687	6.41 -1.27 0.78	0.000 0.203 0.434	.7854 7033 1044	8118	1.477402 .1495427 .2432126

Probit: unstable employment (age 32)

Probit estimate	s			Numbe	r of obs	=	369
				LR ch	i2(2)	· =	3.61
				Prob	> chi2	=	0.1644
Log likelihood	= -191.11919	Ð		Pseud	0 R2	=	0.0094
jobs_332	Coef.	Std. Err.	 Z	P> z	[95%	Conf.	Interval]
hat	1.357087	4.138819	0.33	0.743	-6.754	849	9.469024
hatsq	.2236362	2.569678	0.09	0.931	-4.812	841	5.260113
_cons	.1382024	1.643736	0.08	0.933	-3.083	462	3.359867

.

Data set 2

OLS: log of weekly earnings (age 32)

OLS regression

Source	SS	df	MS		Number of obs = $F(2, 323) =$	326 8,23
Model Residual Total	3.24406931 63.6250144 66.8690837	323 .196	203465 981469 		F(2, 323) =Prob > FR-squared =Adj R-squared =Root MSE	0.0003 0.0485 0.0426 .44383
logpay	Coef.	Std. Err.	t	P> t	[95% Conf. In	terval]
_hat _hatsq _cons	2.670478 1677774 -4.155858	20.05105 2.01371 49.89519	0.13 -0.08 -0.08	0.894 0.934 0.934	-4.129421 3	2.11762 .793866 4.00472

Probit: > 18 weeks of unemployment (age 18-19)

Probit estimate Log likelihood		LR ch	> chi2	= = =	368 42.01 0.0000 0.1660		
untim_18	Coef.	Std. Err.	z	P> z	[95% Co	nf.	Interval]
_hat _hatsq _cons	1.421327 .197839 .156824	.5591256 .2479473 .2927238	2.54 0.80 0.54	0.011 0.425 0.592	.325461 288128 416904	8	2.517193 .6838067 .7305521

Probit: > 1 year unemployment over 5 years (age 32)

Probit estimat		LR chi	• •	=	376 20.15		
Log likelihood		Prob > chi2 Pseudo R2		=	0.0000 0.0610		
unlfy12m		Std. Err.	Z	P> z	[95 %	Conf.	Interval]
_hat	.0389177	.9535546	0.04	0.967	-1.830		1.90785
_hatsq	5816883	.5612357	-1.04	0.300	-1.68		.5183134
_cons	3156325	.3859767	-0.82	0.413	-1.072	2133	.440868

Probit: unstable employment (age 18-19)

Probit estimates Log likelihood = -221.28671			Prob > chi2			361 57.88 0.0000 0.1156
Coef.	Std. Err.	z	P> z	[95% (Conf.	Interval]
1.125148	.1738408	6.47	0.000	.7844	267	1.46587
2729954	.2156891	-1.27	0.206	6957	383	.1497474
.0684945	.0884973	0.77	0.439	104	957	.241946
	= -221.2867 Coef. 1.125148 2729954	<pre>= -221.28671 Coef. Std. Err. 1.125148 .17384082729954 .2156891</pre>	<pre>= -221.28671 Coef. Std. Err. z 1.125148 .1738408 6.472729954 .2156891 -1.27</pre>	LR ch Prob = -221.28671 Pseud Coef. Std. Err. z P> z 1.125148 .1738408 6.47 0.000 2729954 .2156891 -1.27 0.206	LR chi2(2) Prob > chi2 = -221.28671 Pseudo R2 Coef. Std. Err. z P> z [95% 1.125148 .1738408 6.47 0.000 .78442 2729954 .2156891 -1.27 0.2066957	LR chi2(2) = Prob > chi2 = Prob > chi2 = Pseudo R2 = Coef. Std. Err. z P> z [95% Conf. 1.125148 .1738408 6.47 0.000 .7844267 2729954 .2156891 -1.27 0.2066957383

Probit: unstable employment (age 32)

Probit estimates Log likelihood = -190.82323				Number of obs LR chi2(2) Prob > chi2 Pseudo R2			369 4.20 0.1223 0.0109
jobs_332	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
_hat _hatsq _cons	-3.202049 -2.649258 -1.62085	4.541076 2.850598 1.790382	-0.71 -0.93 -0.91	0.481 0.353 0.365	-12.1 -8.236 -5.129	328	5.698296 2.937812 1.888234

Data set 3

-

OLS: log of weekly earnings (age 32)

OLS regression

Source	SS	df	MS		Number of obs F(2, 323)	= 326 = 8.52
Model Residual 	3.34989527 63.5191885 66.8690837	323 .196	494764 653834 751027		Prob > F R-squared Adj R-squared Root MSE	= 0.0002 = 0.0501
logpay	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_hat _hatsq _cons	4.114487 3127915 -7.748649	19.00588 1.908627 47.29735	0.22 -0.16 -0.16	0.829 0.870 0.870	-33.27646 -4.067701 -100.7984	41.50543 3.442118 85.3011

Probit: > 18 weeks of unemployment (age 18-19)

Probit estimates Log likelihood = -104.45364				Number of obs LR chi2(2) Prob > chi2 Pseudo R2		= =	368 44.11 0.0000 0.1744
untim_18	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
_hat _hatsq _cons	1.221175 .1044768 .0796212	.5233293 .2333748 .2744112	2.33 0.45 0.29	0.020 0.654 0.772	.1954 3529 4582	294	2.246882 .5618831 .6174572

Probit: > 1 year unemployment over 5 years (age 32)

Probit estimates				Number	: =	376	
				LR chi	i2(2)	=	19.84
				Prob :	> chi2	=	0.0000
Log likelihood	= -155.12811	L		Pseudo	5 R2	=	0.0601
unlfy12m	(100F	Ctd Err	z	Dulmel	95%	Conf	Interval]
	Coef.	Std. Err.	2	P > z		com.	Incervarj
		.9915127	2 0.05	0.963	-1.896		1.989881
						778	
hat	.0465517	.9915127	0.05	0.963	-1.896	778 199	1.989881

Probit: unstable employment (age 18-19)

Probit estimates		Number of obs	= 368
		LR chi2(2)	= 44.11
		Prob > chi2	= 0.0000
Log likelihood = -104.4	5364	Pseudo R2	= 0.1744
untim_18 Coe	f. Std. Err. 2	P> z [95% (Conf. Interval]
hat 1.2211	.75 .5233293 2.3	3 0.020 .19546	587 2.246882
hatsg .10447	68 .2333748 0.4	5 0.65435292	.5618831
	12 .2744112 0.2	9 0.77245822	.6174572

Probit: unstable employment (age 32)

Probit estimate Log likelihood		LR ch	> chi2	= = =	369 5.16 0.0759 0.0134		
jobs_332	Coef.	Std. Err.	 Z	P> z	[95%	Conf.	Interval]
_hat _hatsq _cons	-3.636895 -2.887229 -1.802178	4.283918 2.656526 1.700111	-0.85 -1.09 -1.06	0.396 0.277 0.289	-12.03 -8.093 -5.134	925	4.759429 2.319467 1.529978

Data set 4

OLS: log of weekly earnings (age 32)

OLS regression

Source	SS	df	MS	Number of obs =	326
				F(2, 323) =	8.28
Model	3.26063392	2	1.63031696	Prob > F = 0	.0003

Residual Total	63.6084498 66.8690837		930185 751027		R-squared Adj R-squared Root MSE	= 0.0488 = 0.0429 = .44377
logpay	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_hat _hatsq _cons	1.104203 0104615 259349	20.02349 2.01012 49.84732	0.06 -0.01 -0.01	0.956 0.996 0.996	-38.28872 -3.965042 -98.32575	40.49713 3.944118 97.80705

Probit: > 18 weeks of unemployment (age 18-19)

.

Probit estimat	es				r of obs	=	368
				LR ch	i2(10)	=	44.03
				Prob	> chi2	=	0.0000
Log likelihood	= -104.4962	7		Pseud	lo R2	=	0.1740
untim_18	Coef.	Std. Err.	z	P> z	[95 % C	onf.	Interval]
tbc8	.7073262	.2298982	3.08	0.002	.2567	 34	- 1.157918
trlc80	302332	.2547168	-1.19	0.235	80156	77	.1969037
njn10d	0921247	.209242	-0.44	0.660	50223	14	.3179821
iq8c	.4671892	.2118771	2.21	0.027	.05191	77	.8824607
if8	.5627541	.2442165	2.30	0.021	.08409	86	1.04141
sp10	4980309	.2825476	-1.76	0.078	-1.0518	14	.0557523
afmc10	.2212506	.215144	1.03	0.304	20042	38	.6429251
fs8	148841	.2598763	-0.57	0.567	65818	91	.360507
mp8	.3459391	.2243419	1.54	0.123	0937	63	.7856413
snp10	.4712856	.2105863	2.24	0.025	.0585	44	.8840272
_cons	-1.87624	.1743969	-10.76	0.000	-2.2180	51	-1.534428

Probit: > 1 year unemployment over 5 years (age 32)

Probit estimates Log likelihood = -154.24155				LR ch	> chi2	= =	376 21.62 0.0000 0.0655
unlfy12m	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
_hat _hatsq _cons	.1367234 521667 2800389	.8809591 .5164698 .3599571	0.16 -1.01 -0.78	0.877 0.312 0.437	-1.589 -1.533 9855	929	1.863372 .4905952 .4254641

•

Probit: unstable employment (age 18-19)

Probit estimates Log likelihood = -223.25459				Number of obs LR chi2(2) Prob > chi2 Pseudo R2			361 53.94 0.0000 0.1078
jobs_318	Coef.	Std. Err.	z	P> z	[95 %	Conf.	Interval]
_hat _hatsq _cons	1.085184 1852385 .0437845	.1806624 .2305389 .0883566	6.01 -0.80 0.50	0.000 0.422 0.620	.731 6370 1293	865	1.439276 .2666094 .2169602

Probit: unstable employment (age 32)

Probit estimate	Probit estimates						= 369 = 4.66	
Log likelihood	LR ch Prob Pseud	> chi2	N	0.0974 0.0121				
jobs_332	Coef.	Std. Err.	z .	P> z	[95% C	onf.	Interval]	
_hat _hatsq _cons	-4.756175 -3.660149 -2.203644	4.869748 3.084293 1.903309	-0.98 -1.19 -1.16	0.329 0.235 0.247	-14.300 -9.7052 -5.934	52	4.788356 2.384953 1.526772	

Data set 5

OLS: log of weekly earnings (age 32)

OLS regression

Source i '	SS df	MS		Numbe	r of obs =	326
Model Residual	3.30330705 63.5657767		.65353 79807		F(2, 323) Prob > F R-squared Adj R-squared	= 0.0003 = 0.0494
Total	66.8690837	325 .2057	51027		Root MSE	= .44362
logpay	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logpay hat	Coef. .4403263	Std. Err. 19.64827	t 0.02	P> t 0.982	[95% Conf. 	Interval] 39.09506

Probit: > 18 weeks of unemployment (age 18-19)

Probit estimates Log likelihood = -107.2343				LR ch	> chi2	= = =	368 38.55 0.0000 0.1524
untim_18	Coef.	Std. Err.	z	P> z	[95% C	onf.	Interval]
_hat _hatsq _cons	1.400325 .1892988 .150751	.6232684 .2817969 .3142514	2.25 0.67 0.48	0.025 0.502 0.631	.17874 36301 46517	29	2.621908 .7416105 .7666724

Probit: > 1 year unemployment over 5 years (age 32)

Probit estimates				LR ch	r of obs i2(2) > chi2	= =	376 20.48 0.0000
Log likelihood = -154.81081				Pseud		=	0.0620
unlfy12m	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
_hat _hatsq _cons	0184848 6138214 3365512	.9622671 .5643085 .3894905	-0.02 -1.09 -0.86	0.985 0.277 0.388	-1.904 -1.719 -1.099	846	1.867524 .4922029 .4268362

Probit: unstable employment (age 18-19)

Probit estimat	es			Numbe	r of obs	=	361
				LR ch		=	56.45
				Prob	> chi2	=	0.0000
Log likelihood	= -221.99871	L		Pseudo R2			0.1128
jobs_318	Coef.	Std. Err.	z	P> z	[95% C	onf.	Interval]
_hat	1.119981	.1775557	6.31	0.000	.77197	83	1.467984
hatsq	2595386	.2243978	-1.16	0.247	69935	01	.1802729
_cons	.063792	.0890009	0.72	0.474	11064	66	.2382305

Probit: unstable employment (age 32)

Probit estimate	S			Numbe	r of obs	=	369
				LR_ch	i2(2)	=	4.21
				' Prob	> chi2	=	0.1217
Log likelihood	= -190.81854	l i		Pseud	0 R2	=	0.0109
jobs_332	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
hat	-4.461525	5.248281	-0.85	0.395	-14.74	707	5.824916
- !	-3.472413	3.322717			-9.984		3.039993
_hatsq			-1.05	0.296			
_cons	-2.092272	2.048601	-1.02	0.307	-6.107	456	1.922911

Breusch-Pagan test (OLS only)

Data set 1

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
    Ho: Constant variance
    Variables: fitted values of logpay
    chi2(1) = 1.32
```

chi2(1) = 1.32 Prob > chi2 = 0.2509

Data set 2

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of logpay
chi2(1) = 1.42
Prob > chi2 = 0.2327
```

Data set 3

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of logpay
chi2(1) = 1.13
Prob > chi2 = 0.2869

Data set 4

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of logpay
chi2(1) = 1.47

Prob > chi2 = 0.2247

Data set 5

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logpay

. •

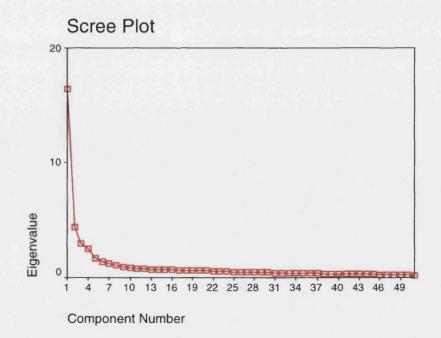
chi2(1) = 1.30 Prob > chi2 = 0.2537

Appendix: chapter 3

Principle components analysis

Principle components analysis using teacher ratings: rotated component matrix containing extracted psychosocial components and factor loadings (correlations)

		Attention	•	_
	Antisocial	deficit	Anxiety	Poor
	conduct	problems		coordination
Daydreaming	4.725E-02	.677	.174	.174
Afraid of new situations	-9.312E-02	.358	.648	6.719E-02
Cannot concentrate on tasks	.173	.636	.136	9.527E-02
Wets pants in class	3.676E-02	1.690E-02	7.454E-02	.102
Complains	.687	.200	.196	.167
Trips, falls, bumps into things	.266	.115	9.508E-02	.666
Works deftly with hands	-7.424E-02	334	-5.803E-02	197
Temper outbursts	.804	.108	8.070E-02	6.367E-02
Teases others	.786	.162	-9.551E-02	5.950E-02
Clumsy at games	.134	.231	.164	.725
Cries for little cause	.361	8.828E-02	.448	.269
Bored during class	.384	.694	5.211E-02	.146
Shows perseverance	280	748	-5.730E-02	-1.818E-02
Difficulty kicking ball	2.371E-02	.116	.189	.680
Dresses/undresses competently	-8.647E-02	-6.307E-02	-3.866E-02	-5.249E-02
Interferes with others	.725	.360	-5.321E-02	.141
Confused or hesitant	7.936E-02	.643	.438	.142
Difficulty picking up small objects	.127	.126	.130	.571
Behaves nervously	-2.081E-02	.242	.723	.174
Fussy or over-particular	.313	1.448E-03	.642	.214
Changes mood quickly	.747	.150	.300	8.224E-02
Excitable-impulsive	.632	.145	.228	6.691E-02
Worried-anxious	.101	.167	.815	9.515E-02
Restless-overactive	.627	.272	.227	9.139E-02
Squirmy-fidgety	.521	.501	.139	.161
Easily distracted	.321	.764	.106	.123
	.397 -2.764E-02	116	-7.253E-02	189
Manipulates small objects with hands	-2.704E-02	110	-7.235E-02	109
Drops things	.208	.198	.157	.562
Pays attention	285	739	-1.798E-02	-7.092E-02
Relations with others	.369	.146	.445	.200
tearful/unhappy				
Obsessed about unimportant tasks	.386	.102	.487	.250
Forgetful on complex tasks	.152	.716	.269	.183
Rather solitary	6.028E-02	6.791E-02	.327	.157
Quarrels with other kids	.802	.234	7.032E-02	.103
Can use manipulative equipment	-7.234E-02	231	-6.745E-02	233
Lethargic/listless	.126	.517	.168	.261
Destroys belongings	.607	.172	-5.862E-02	9.459E-02
Hums or makes odd sounds	.429	.220	4.960E-03	.115
Rhythmic tapping	.416	.226	1.163E-02	.115
Inadequate control of	.117	.239	5.859E-02	.309
pencil/paintbrush			5.0571-02	
Soils pants	4.219E-02	1.501E-02	4.052E-02	.106
Accident prone	.295	.147	4.052E-02 8.523E-02	.474
Bullies others	.759	.143	122	2.982E-02
	.137	.143	122	2.702L-02


Sullen or sulky	.674	.208	.161	8.148E-02
Twitches/mannerisms/tics	.179	5.467E-02	.179	.194
Truants	.155	.137	-2.898E-02	2.605E-02
Fearful in movement	-4.659E-02	.190	.283	.557
Forgetful with complex tasks	203	722	-3.558E-02	-5.787E-02
Easily frustrated	.624	.236	.233	7.830E-02
Holds instruments appropriately	-9.278E-02	232	-8.232E-02	103
Fails to finish tasks	.219	.739	3.831E-02	.101

Notes

1. First four extracted components reported.

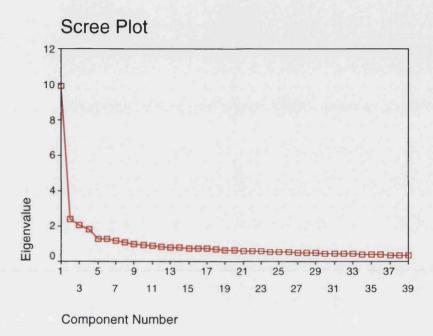
2. Varimax rotation used to extract components

"Scree plots" can be used as a visual guidance as to which components contribute to most of the variance in teacher ratings. The components extracted are shown on the horizontal axis with a measure of the variance associated each component on the vertical (the Eigenvalues). All components beyond the point at which the scree plot "kinks" - generally where the Eigenvalue are below 1 - contribute little to the total variance in the ratings. The first four components shown below correspond to those described in the table above.

	Emotional	Antisocial	Restlessness-	Attention	Poor
	problems	conduct	impulsiveness	deficit problems	coordination
Child's behaviour: very restless	9.443E-02	.121	.748	.165	5.817E-02
Squirmy or fidgety	8.814E-02	.140	.674	.185	.196
Destroys belongings	.113	.644	8.904E-02	.160	.109
Fights with other children	.235	.621	.176	2.263E-02	4.253E-02
Not much liked by other children	1.154E-02	.467	9.955E-02	5.304E-02	.149
Worried	.217	-3.158E-02	.101	.101	3.356E-03
Does things on own- rather solitary	5.443E-02	.194	9.743E-02	-4.840E-02	.113
Irritable	.675	.189	.240	5.017E-02	-2.303E-02
Appears miserable or distressed	.507	.248	-4.543E-02	.121	.184
Takes others' belongings	7.413E-02	.669	5.225E-02	.132	6.438E-02
Has twitches, mannerisms or ticks	6.011E-03	.223	.146	2.143E-02	6.541E-02
Sucks thumb or finger	1.929E-02	6.025E-02	-4.403E-02	4.633E-02	3.520E-02
Bites nails or fingers	9.336E-02	6.749E-02	.161	2.724E-02	2.364E-02
Often disobedient	.431	.455	.266	.196	6.490E-03
Cannot settle to do anything	.119	.221	.318	.664	5.668E-02
Afraid of new things/situations	.132	-8.165E-02	-1.156E-02	.185	1.999E-02
Fussy of over-particular	.253	-3.117E-02	.189	119	162
Often tells lies	.247	.627	.115	.187	8.515E-02
Bullies other children	.249	.609	9.104E-02	2.328E-02	4.528E-02
Noticeably clumsy	.106	9.003E-02	.174	.149	.801
Trips or falls easily	.146	.108	.163	9.187E-02	.785
Inattentive/difficulty concentrating	.172	.167	.282	.677	.118
Hums or makes odd noises	.108	.192	.476	.135	.143
Difficulty picking up small objects	3.964E-02	.266	-2.152E-02	8.265E-02	.338
Drops things being carried	.109	.160	.117	7.945E-02	.652
Obsessional	.385	3.791E-02	.197	5.409E-02	3.713E-02
Requests must be met immediately	.595	7.578E-02	.347	.151	-3.038E-02
Restless or over-active behaviour	.259	.158	.682	.250	3.898E-02
Impulsive-excitable	.372	7.876E-02	.569	.205	4.370E-02
Interferes with other children	.264	.497	.252	.191	7.679E-02
Sullen or sulky	.620	.215	-8.596E-03	8.855E-02	.179
Fails to finish things	.172	.129	.187	.792	.108
Given to rhythmic tapping/kicking	.125	.178	.416	.102	.153
Cries for little cause	.566	.125	-2.430E-02	.135	.195
Changes mood quickly/drastically	.713	.182	.211	.145	8.819E-02
Outbursts of temper/ unpredictable	.688	.250	.226	9.847E-02	3.236E-02

Principle components analysis using maternal ratings: rotated component matrix containing extracted psychosocial components and factor loadings (correlations)

.


.

Difficulty using	1.749E-02	.170	-3.934E-02	.212	.269
Scissors Difficulty concentrating on task	.145	.142	.150	.747	9.904E-02

Notes

1. First five extracted components reported.

2. Varimax rotation used to extract components

The first five components shown in the above scree plot correspond to the five components described in the previous table.

Multivariate models and diagnostic tests for	r each multiply imputed data set
--	----------------------------------

Label	Description
logern	Log of weekly earnings
empact	Economically active(0=no; 1=yes)
Low_inc	Low income status(0=no; 1=yes)
oclass	Occupational status (1-5 scale)
Fac1_1	Antisocial conduct (PCA standardised score: teacher ratings)
Fac2_1	Attention deficit problems (PCA standardised score: teacher ratings)
Fac3_1	Anxiety (PCA standardised score: teacher ratings)
Fac4_1	Poor coordination (PCA standardised score: teacher ratings)
Fac1_m	Emotional problems (PCA standardised score: maternal ratings)
Fac2_m	Antisocial conduct (PCA standardised score: maternal ratings)
Fac3_m	Restlessness-impulsiveness (PCA standardised score: maternal ratings)
Fac4_m	Attention deficit problems (PCA standardised score: maternal ratings)
Fac5_m	Poor coordination (PCA standardised score: maternal ratings)
mothhlth	Health problems from child's 5 th birthday: mother (0=no; 1=yes)
fathhlth	Health problems from child's 5 th birthday: father (0=no; 1=yes)
fath_ed	Father has formal qualifications (0=no; 1=yes)
moth_ed	Mother has formal qualifications (0=no; 1=yes)
Inc_10	Family income (scale 1-7)
num_chld	Number of children living in household
iq_nverb	Cognitive attainment (BAS combined scores)
mothhr	Hours of work: mother
fathhr	Hours of work: father
urban	Residence in relatively disadvantaged neighbourhood (0=no; 1=yes)
lawseq	Self esteem (LAWSEQ score)
caraloc	Locus of control (CARALOC score)
samepar	Lived with same parents (0=no; 1=yes)
incare	Taken into care (0=no; 1=yes)
mea7_1	Health problems up to age 10 (=-no; 1=yes)
j255	Attended independent sector primary school (0=no; 1=yes)
ratio	Staff-pupil ratio at school

Variable label definitions

OLS: log of weekly earnings (age 30)

Data set 1

Males

Source	SS df	MS	Number of obs = 4467
	·		F(21, 4445) = 15.91
Model	157.202541	21 7.48583527	Prob > F = 0.0000
Residual	2090.85766	4445 .470384176	R-squared = 0.0699
	, 		Adj R-squared = 0.0655
Total	2248.0602	4466 .50337219	Root MSE = .68585
·			
logern	Coef.	Std. Err. t	P> t [95% Conf. Interval]
fac1_1	.0402825	.0108709 3.71	0.000 .0189702 .0615948
fac2_1	0334432	.0117215 -2.85	0.00405642310104632
fac3_1	0390269	.0104838 -3.72	0.00005958040184734
fac4_1	0167267	.0105346 -1.59	0.1120373799 .0039264
mothhlth	0026501	.0311276 -0.09	0.9320636757 .0583756
fathhlth	050153	.0326662 -1.54	0.1251141949 .0138889
fath_ed	.0242331	.0241646 1.00	0.3160231416 .0716078
moth ed	.0747323	.0236386 3.16	0.002 .0283889 .1210756
inc 10	.0489397	.0093393 5.24	0.000 .0306299 .0672494
num chld	.0029375	.0104703 0.28	0.7790175896 .0234646
ig nverb	.003595	.0009396 3.83	0.000 .0017528 .0054372
mothhr	0008748	.0007259 -1.21	0.228002298 .0005484
fathhr	.0002907	.0008522 0.34	0.7330013799 .0019614
urban	0710822	.024485 -2.90	0.0041190850230794
lawseq	.0063392	.0027122 2.34	0.019 .001022 .0116564
caraloc	.0073152	.0025541 2.86	0.004 .0023079 .0123224
samepar	0040994	.0337168 -0.12	0.9030702011 .0620023
incare	2956564	.0965218 -3.06	0.00248488711064256
mea7_1	.0080127	.0231 0.35	0.7290372749 .0533003
j255	.1364265	.0731456 1.87	0.0620069754 .2798283
ratio	0008282	.0011128 -0.74	0.4570030098 .0013535
_cons	5.193711	.1016569 51.09	0.000 4.994412 5.393009
. linktest			
0		<i>de</i> 10	Number of the state
Source	SS	df MS	Number of $obs = 4467$
			F(2, 4464) = 168.04
Model	157.397708	2 78.6988538	Prob > F = 0.0000
Residual	2090.66249	4464 .468338373	R-squared = 0.0700
			Adj R-squared = 0.0696
Total	2248.0602	4466 .50337219	Root MSE $=$.68435
logern	Coef.	Std. Err. t	P>[t] [95% Conf. Interval]
			, , , , , , , , , , , , , , , , , , , ,
_hat	2.529106	2.369466 1.07	0.286 -2.116222 7.174434
hatsq	1290739	.1999567 -0.65	0.5195210882 .2629404
_cons	-4.524185	7.016188 -0.64	0.519 -18.27939 9.23102

_hat and _hatsq are, respectively, the predicted values of the dependent variable and the predicted values squared. Statistical significance of the latter would imply functional form mis-specification.

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of logern
chi2(1) = 10.75
Prob > chi2 = 0.0010

Park test

	Source	SS	df		MS		Number of obs	
	Model	3082.69622	1	3082	69622		F(1, 4465) Prob > F	
I		22179.7637					R-squared	
							Adj R-squared	
	Total	25262.4599	4466	5.65	661887		Root MSE	= 2.2288
		-						
	lnvar	Coof				n. 1+1	[95% Conf.	Tetorrall
	Invar			BII.	L 		[95% CONL.	Incervary
	Invhat	2.998454	.1203	649	24.91	0.000	2.76248	3.234429
							-10.21807	
	Percenti	les Sma	llegt					
18		529 -4.2						
		48 -4.10						
10%	35552	.12 -4.1	53571		Obs		4467	
25%	00995	593.9	50221	:	Sum of Wg	jt.	4467	
50%	.29690				Mean			
		โ.ลา	raest		Std Dev		6967706	

		Largest	Std. Dev.	.6967706
75%	.6134224	5.046589		
90%	.9171452	5.229254	Variance	.4854893
95%	1.198351	6.257677	Skewness	.5847735
99%	2.768722	6.533124	Kurtosis	12.60749

The important statistic is the coefficient of kurtosis. If the log scaled residuals are heavy tailed (coefficient of kurtosis >3) then OLS with a log transformed dependent variable is recommended.

Data set 2

•

Source	SS	df	MS		Number of obs F(21, 4445)	
Model	152.643601	21 7.26	874289		Prob > F	= 0.0000
Residual	2095.4166	4445 .471	409809		R-squared	= 0.0679
					Adj R-squared	= 0.0635
Total	2248.0602	4466 .50	337219		Root MSE	= .68659
logern	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
fac1_1		.0109491	4.69	0.000	.0299138	.0728452
fac2_1	0251975	.0117783	-2.14	0.032	0482887	0021062
fac3_1	0280686	.0106624	-2.63	0.009	0489722	0071649
fac4_1	0188818	.0104376	-1.81	0.071	0393447	.0015811
mothhlth	0035232	.0312041	-0.11	0.910	0646987	.0576523
fathhlth	0563527	.0326455	-1.73	0.084	1203542	.0076488
fath_ed	.0059557	.0240106	0.25	0.804	041117	.0530285
moth_ed	.1077953	.0236344	4.56	0.000	.0614602	.1541305
inc_10	.0436905	.009274	4.71	0.000	.0255088	.0618722
num_chld	.0003091	.0106053	0.03	0.977	0204825	.0211008
iq_nverb	.0034422	.0009301	3.70	0.000	.0016188	.0052656
mothhr	0008035	.000728	-1.10	0.270	0022308	.0006238
fathhr	.000086	.0008578	0.10	0.920	0015958	.0017678
urban	060885	.024578	-2.48	0.013	1090702	0126998
lawseq	.0037866	.0027112	1.40	0.163	0015286	.0091019
caraloc	.0096241	.0026123	3.68	0.000	.0045028	.0147454

samepar	0186763	.033849	-0.55	0.581	0850371	.0476845
incare	3018672	.0964798	-3.13	0.002	4910155	1127188
mea7_1	0097438	.0232359	-0.42	0.675	0552977	.0358101
j255	.132433	.0715571	1.85	0.064	0078545	.2727205
ratio	0001546	.0011218	-0.14	0.890	002354	.0020448
_cons	5.233113	.1017201	51.45	0.000	5.033691	5.432535

. linktest

Source	SS	df	MS		Number of obs F(2, 4464)	
Model Residual Total	153.133339 2094.92686 2248.0602	4464 .469	5666694 9293652 9337219		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.0681
logern	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_hat _hatsq _cons	3.548425 2151418 -7.539363	2.495272 .2106025 7.387623	1.42 -1.02 -1.02	0.155 0.307 0.308	-1.343545 6280271 -22.02277	8.440395 .1977436 6.94404

-

hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logern

chi2(1)	=	29.28
Prob > chi2	=	0.0000

Park test

Source	SS	df	MS		Number of $obs = 44$ F(1, 4465) = 749.	
Model Residual	3772.65508 22478.0295	4465 5.0			Prob > F = 0.00 R-squared = 0.14 Adj R-squared = 0.14	000 137 135
Total	26250.6846	4466 5.8	7789624		Root MSE = 2.24	137
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf. Interva	1]
lnyhat _cons	3.163372 -9.782461	.1155567 .7211306	27.38 -13.57	0.000 0.000	2.936823 3.389 -11.19623 -8.3686	

Percentiles Smallest

.

		DINGLICODO			
1%	-1.679114	-4.325078			
5%	6351824	-4.011372			
10%	3609104	-3.905119	Obs	4467	
25%	0214409	-3.825397	Sum of Wgt.	4467	
50%	.2981864		Mean	.3020999	
		Largest	Std. Dev.	.7015278	
75%	.6007872	5.202676			
90%	.9232282	5.262613	Variance	.4921413	
95%	1.225939	6.460965	Skewness	.6775379	
998	2.748427	6.655374	Kurtosis	12.82295	

Data set 3

Source	SS	df	MS	Number of obs =	4467
				F(21, 4445) =	16.64

Model Residual Total	163.877187 2084.18302 2248.0602	4445 .468)367558 3882568)337219		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.0729 = 0.0685 = .68475
logern	. Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
fac1 1	.0452301	.0105459	4.29	0.000	.0245549	.0659052
fac2 1	0347715	.0116292	-2.99	0.003	0575705	0119725
fac3 1	0183435	.0105674	-1.74	0.083	0390609	.0023739
fac4 1	0341176	.01043	-3.27	0.001	0545655	0136697
mothhlth	0298275	.0315414	-0.95	0.344	0916643	.0320093
fathhlth	0422365	.0322396	-1.31	0.190	1054422	.0209693
fath ed	.0495087	.0239731	2.07	0.039	.0025095	.0965078
moth ed	.0884557	.0236051	3.75	0.000	.0421779	.1347335
inc_10	.049033	.0092482	5.30	0.000	.030902	.0671641
num_chld	0086808	.0104917	-0.83	0.408	0292498	.0118881
iq_nverb	.0035626	.0009293	3.83	0.000	.0017407	.0053845
mothhr	0011126	.0007266	-1.53	0.126	0025371	.000312
fathhr	.0008065	.0008485	0.95	0.342	0008569	.0024699
urban	0278556	.0245951	-1.13	0.257	0760743	.0203631
lawseq	.005167	.0026714	1.93	0.053	0000703	.0104043
caraloc	.0084054	.0025987	3.23	0.001	.0033106	.0135002
samepar	.0027313	.0335252	0.08	0.935	0629949	.0684574
incare	2899173	.0962838	-3.01	0.003	4786814	1011531
mea7_1	.0030054	.0232018	0.13	0.897	0424816	.0484925
j255	.1292132	.07289	1.77	0.076	0136875	.2721139
ratio	0011457	.0011203	-1.02	0.307	0033422	.0010507
_cons	5.173786	.1015782	50.93	0.000	4.974643	5.37293
. linktest						
Source	SS	df	MS		Number of obs	
Model	163.888115	2 81.9	9440574		F(2, 4464) Prob > F	= 175.51 = 0.0000

Model Residual Total	163.888115 2084.17209 2248.0602	2 81.94 4464 .4668 4466 .503			F(2, 4464) Prob > F R-squared Adj R-squared Root MSE	= 175.51 = 0.0000 = 0.0729 = 0.0725 = .68329
logern	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_hat _hatsq _cons	.6492579 .0296023 1.037852	2.291804 .1933737 6.787045	0.28 0.15 0.15	0.777 0.878 0.878	-3.843814 3495059 -12.26812	5.14233 .4087105 14.34382

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logern

> chi2(1) = 37.58 Prob > chi2 = 0.0000

Park test

;

Source	SS	df	MS		Number of $obs = 4467$ F(1, 4465) = 780.20
Model Residual	3749.72181 21459.3273		49.72181 80612034		Prob > F = 0.0000 R-squared = 0.1487 Adj R-squared = 0.1486
Total	25209.0491	4466 5.	64465946		Root MSE = 2.1923
lnvar	Coef.	Std. Err	. t	P> t	[95% Conf. Interval]
lnyhat _cons	3.010173 -8.797333	.1077679 .6721974	27.93 -13.09	0.000 0.000	2.798895 3.221452 -10.11517 -7.479493
		lscres			

Percentiles Smallest

.

1%	-1.702352	-4.331774		
5%	6371713	-4.060833		
10%	3854389	-3.897103	Obs	4467
25%	0301895	-3.862235	Sum of Wgt.	4467
50%	.2935224		Mean	.2983991
20%	. 2333224			
		Largest	Std. Dev.	.6982343
75%	.5930381	5.152606		
90%	.9167123	5.302885	Variance	.4875311
95%	1.216899	6.496291	Skewness	.6783802
99%	2.70385	6.498583	Kurtosis	12.6708

Data set 4

Source	SS	df	MS		Number of obs F(21, 4444)	
Model Residual	153.53715 2094.45085		129286 298572		Prob > F R-squared Adj R-squared	= 0.0000 = 0.0683
Total	2247.988	4465 .503	468758		Root MSE	= .68651
logern	Coef.	Std. Err.	t	P> t 	[95% Conf.	Interval]
fac1_1	.0385407	.0107514	3.58	0.000	.0174626	.0596187
fac2_1	0446807	.0117163	-3.81	0.000	0676504	0217109
fac3_1	0321158	.0106378	-3.02	0.003	0529712	0112604
fac4_1	0066954	.0104126	-0.64	0.520	0271092	.0137185
mothhlth	0112187	.0311466	-0.36	0.719	0722817	.0498442
fathhlth	0583894	.0330667	-1.77	0.077	1232167	.0064378
fath_ed	.0348823	.0240619	1.45	0.147	012291	.0820557
moth_ed	.0865801	.0236134	3.67	0.000	.0402861	.1328741
inc_10	.0387554	.009236	4.20	0.000	.0206483	.0568625
num_chld	0047639	.0105048	-0.45	0.650	0253586	.0158309
iq_nverb	.003048	.0009399	3.24	0.001	.0012053	.0048907
mothhr	0005828	.0007278	-0.80	0.423	0020097	.0008441
fathhr	.0006395	.0008499	0.75	0.452	0010266	.0023057
urban	0601545	.0245711	-2.45	0.014	108326	011983
lawseq	.0081044	.0026848	3.02	0.003	.0028407	.013368
caraloc	.0061082	.0025927	2.36	0.019	.0010252	.0111911
samepar	.0129608	.0334661	0.39	0.699	0526494	.0785709
incare	2918032	.096482	-3.02	0.003	480956	1026504
mea7_1	0102258	.0232183	-0.44	0.660	0557452	.0352935
j255	.1515732	.073286	2.07	0.039	.0078961	.2952503
ratio	0010002	.0011165	-0.90	0.370	0031891	.0011887
_cons	5.252298	.1009501	52.03	0.000	5.054385	5.450211

. linktest

Source	SS	df	MS		Number of obs F(2, 4463)	= 4466 = 163.85
Model Residual Total	153.771746 2094.21626 2247.988	4463 .469	858732 239583 468758		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.0684
logern	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval}
_hat _hatsq _cons	7244814 .1456102 5.100798	2.43951 .2059322 7.221366	-0.30 0.71 0.71	0.766 0.480 0.480	-5.50713 258119 -9.056658	4.058168 .5493393 19.25825

•

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logern

> chi2(1) = 26.58 Prob > chi2 = 0.0000

Park test

Source	SS	df	MS		Number of $obs = 4$ F(1, 4464) = 664	
Model Residual			3032.19931 4.56014332		P(1, 4464) = 0.04 Prob > F = 0.0 R-squared = 0.1 Adj R-squared = 0.1	000 296
Total	23388.6791	4465	5.238226		Root MSE = 2.1	
lnvar	Coef.	Std.	Err. t	P> t	[95% Conf. Interv	al]
lnvar lnyhat _cons	Coef. 2.938712 -8.362537	.1139		P> t 0.000 0.000	[95% Conf. Interv 2.715286 3.162 -9.75802 -6.967	138

Percentiles Smallest 1% -1.706108 -4.296503

18	-1.706108	-4.296503					
5%	6218419	-4.220949					
10%	3436322	-4.087031	Obs	4466			
25%	0133137	-3.912617	Sum of Wgt.	4466			
50%	.3005378		Mean	.3078631	:	• •	
50%	.3005378						
		Largest	Std. Dev.	.6980316			
75ზ	.5990023	5.244084					
90%	.9223341	5.258055	Variance	.4872481			
95%	1.20282	6.546132	Skewness	.6623134			
998	2.746469	6.55062	Kurtosis	13.18693			

Data set 5

Source	SS	df	MS		Number of obs	
					F(21, 4444)	= 15.68
Model	155.082239		3486854		Prob > F	= 0.0000
Residual	2092.96352	4444 .470	963888		R-squared	= 0.0690
 m1					Adj R-squared	
Total	2248.04576	4465 .503	8481692		Root MSE	= .68627
logern	Coef.	Std. Err.	t	P> t	[95% Conf.	Intervall
IOgern	coer.	Stu. Ell.		=> u	[95% CONT.	Incervarj
fac1_1	.0542959	.0108641	5.00	0.000	.0329968	.075595
fac2_1	0384189	.011619	-3.31	0.001	061198	0156398
fac3 1	0158197	.0106041	-1.49	0.136	0366089	.0049695
fac4_1	039801	.0105196	-3.78	0.000	0604247	0191774
mothhlth	0305707	.0313163	-0.98	0.329	0919661	.0308248
fathhlth	0498279	.0331068	-1.51	0.132	1147338	.0150779
fath_ed	.0256299	.0240797	1.06	0.287	0215783	.0728382
moth_ed	.0836961	.023624	3.54	0.000	.0373812	.1300109
inc_10	.0473687	.0093215	5.08	0.000	.029094	.0656435
num_chld	0011028	.010529	-0.10	0.917	0217449	.0195392
iq_nverb	.0030006	.0009353	3.21	0.001	.001167	.0048342
mothhr	0014825	.0007249	-2.05	0.041	0029037	0000613
fathhr	.0004686	.0008471	0.55	0.580	0011922	.0021294
urban	0561815	.0246201	-2.28	0.023	104449	0079139
lawseq	.0052338	.0027045	1.94	0.053	0000683	.010536
caraloc	.0081386	.0025729	3.16	0.002	.0030945	.0131827
samepar	0341177	.0329808	-1.03	0.301	0987765	.0305411
incare	3043182	.0964439	-3.16	0.002	4933963	1152401
mea7_1	.0037491	.0232715	0.16	0.872	0418746	.0493729
j255	.1599918	.0720848	2.22	0.027	.0186697	.3013138
ratio	.0001507	.001123	0.13	0.893	002051	.0023525
_cons	5.264488	.1019157	51.66	0.000	5.064682	5.464294
. linktest						

•	ss	MS	Number of obs = 4466 F(2, 4463) = 165.38
•	155.114378		Prob > F = 0.0000

Residual	2092.93138	4463 .468	951687		R-squared Adj R-squared	= 0.0690 = 0.0686
Total	2248.04576	4465 .503	481692			= .6848
logern	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_hat	1.631132	2.41122	0.68	0.499	-3.096054	6.358318
_hatsq	05328	.2035013	-0.26	0.793	4522434	.3456835
_cons	-1.867179	7.139102	-0.26	0.794	-15.86336	12.129

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logern

chi2(1)	=	24.16
Prob > chi2	=	0.0000

Park test

Source	SS	df	MS		Number of $obs = 4466$ F(1, 4464) = 760.23	
Model Residual Total	3639.75628 21372.4125 25012.1688	4464 4.7	9.75628 8772681 0182951		$\begin{array}{rcl} F(1, 4464) = & 760.23\\ Prob > F &= & 0.0000\\ R-squared &= & 0.1455\\ Adj R-squared &= & 0.1453\\ Root MSE &= & 2.1881 \end{array}$	
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
lnyhat _cons	3.046731 -9.032108	.1105001 .6895463	27.57 -13.10	0.000	2.830096 3.263366 -10.38396 -7.680255	

	lscres					
	Percentiles	Smallest				
1%	-1.720869	-4.265748				
5%	6387153	-4.014287				
10%	3702106	-3.956023	Obs	4466		
25%	0262986	-3.921551	Sum of Wgt.	4466		
50%	.2907186		Mean	.3015395		
		Largest	Std. Dev.	.7011018		
75%	.6020761	5.264667				
90%	.9293919	5.308009	Variance	.4915438		
95%	1.209121	6.376514	Skewness	.6564457		
99%	2.733944	6.3906	Kurtosis	12.4084		

Females

Data set 1

Source Model Residual	SS 337.722743 3064.38732		MS 820354 266384		Number of obs F(21, 3834) Prob > F R-squared Adj R-squared	= 20.12 = 0.0000 = 0.0993
Total	3402.11006	3855 .882	518822		Root MSE	= .89402
logern	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>fac1_1 fac2_1 fac3_1 fac4_1 mothhlth fathhlth</pre>	.0021146 0677132 027217 0009274 .0528988 009473	.0160737 .0175 .0153965 .0156344 .0430287 .0441749	0.13 -3.87 -1.77 -0.06 1.23 -0.21	0.895 0.000 0.077 0.953 0.219 0.830	0293993 1020234 0574032 03158 0314626 0960817	.0336284 033403 .0029692 .0297251 .1372602 .0771356

fath ed	.0011648	.0333562	0.03	0.972	0642329	.0665624
moth ed	.037127	.0330482	1.12	0.261	0276667	.1019208
inc 10	.0782055	.0130769	5.98	0.000	.0525671	.1038438
num_chld	0096874	.0148135	-0.65	0.513	0387305	.0193557
iq nverb	.0104415	.0013773	7.58	0.000	.0077412	.0131418
mothhr	0005553	.0010311	-0.54	0.590	0025768	.0014663
fathhr	0019063	.0011979	-1.59	0.112	004255	.0004423
urban	1159925	.0350826	-3.31	0.001	1847749	0472102
lawseq	.0092421	.0036128	2.56	0.011	.002159	.0163252
caraloc	.0090761	.0037308	2.43	0.015	.0017616	.0163906
samepar	.0525298	.0459922	1.14	0.253	0376416	.1427013
incare	.0570789	.1337965	0.43	0.670	2052402	.3193981
mea7_1	.0245166	.0334022	0.73	0.463	0409712	.0900044
j255	.1061197	.1026769	1.03	0.301	0951869	.3074264
ratio	0043949	.0015673	-2.80	0.005	0074676	0013221
_cons	4.068911	.1430959	28.43	0.000	3.78836	4.349463

. linktest

Source	SS	df	MS		Number of obs F(2, 3853)	
Model Residual Total	338.149699 3063.96036 3402.11006	3853 .795	074849 214213 518822		F(2, 3053) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.0994
logern	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_hat _hatsq _cons	1.973116 0906669 -2.603139	1.32891 .1237344 3.562098	1.48 -0.73 -0.73	0.138 0.464 0.465	6323193 333258 -9.586916	4.578551 .1519242 4.380638

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logern

chi2(1) = 0.01 Prob > chi2 = 0.9151

Park test

•

Source	SS	df	MS		Number of obs =	3856
Model Residual Total	1988.43426 20519.6676 22508.1019	1 1988 3854 5.32	8.43426 8425211		Prob > F = 0 R-squared = 0 Adj R-squared = 0	73.47 .0000 .0883 .0881 .3074
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf. Inte	rval]
lnyhat _cons	1.904353 -1.697759	.0985419 .5704536	19.33 -2.98	0.000 0.003		97552 93387

Percentiles	Smallest

	rereencreeb	Dillarrebe		
1%	-2.023783	-4.072379		
5%	6655884	-4.033744		
10%	4581966	-3.708332	Obs	3856
25%	1242084	-3.707553	Sum of Wgt.	3856
50%	.2695682		Mean	.4105552
		Largest	Std. Dev.	.9051869
75%	.8067033	5.103036		
90%	1.516568	5.780548	Variance	.8193634
95ზ	2.089403	5.817151	Skewness	.8625672
998	3.304965	7.216298	Kurtosis	7.111701

Data set 2

Source		df	MS		Number of obs	
					F(21, 3834)	
Model	349.036751		5207977			= 0.0000
Residual			5315417		R-squared	
					Adj R-squared	
Total	3402.11006	3855 .882	2518822		Root MSE	= .89237
logern	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
fac1_1	.0289696	.0161919	1.79	0.074	002776	.0607153
fac2_1	0989919	.0179218	-5.52	0.000	1341291	0638547
fac3_1	0224309	.015381	-1.46	0.145	0525867	.0077249
fac4 1	0127047	.0154933	-0.82	0.412	0430806	.0176711
mothhlth	.041609			0.335	0430416	.1262596
fathhlth	.0293175	.0438757	0.67	0.504	0567045	.1153394
fath ed		.033388	0.34	0.733	0540515	.0768682
moth ed		.0328537	2.20	0.028	.0077264	.1365514
inc 10		.0129783		0.000	.0492976	.1001875
num chld	0166596	.014733	-1.13	0.258	0455448	.0122256
ig nverb	.0090098	.0013652	6.60	0.000	.0063331	.0116865
mothhr	0019896		-1.92	0.055		.0000401
fathhr		.0011935		0.290	0036042	.0010756
urban	1169328	.0351905	-3.32	0.001		0479388
lawseq		.0036034	2.53	0.012		.0161737
caraloc		.0037248		0.054	000112	.0144936
		.0452954		0.381		.1285101
samepar incare	.053308			0.690	0491007 208376	.3149919
mea7_1	.0041224		0.12	0.902		.0698278
j255				0.221	075732	.3273585
ratio	0035489		-2.28			0004909
_cons	4.22336	.1400877	30.15	0.000	3.948707	4.498014
linktest						
Source		df	MS		Number of obs	
					F(2, 3853)	
Model	349.193507		.596753		Prob > F	
Residual			2347925			= 0.1026
					Adj R-squared	
Total	3402.11006	3855 .882	2518822		Root MSE	= .89014
						 Tatomall
logern	Coef.	Std. Err.		P> t	[95% Conf.	Incerval]
_hat	1.55918	1.258085	1.24	0.215	9073964	4.025756
_hatsq	0521237	.1171877	-0.44	0.656	2818796	.1776322
_cons	-1.494993	3.370876	-0.44	0.657	-8.103865	5.113879
eusch-Pagan	/ Cook-Weisbe	ra test for	heteros	kedastic	itv	
	Constant varia		. Neceros	ncuuscit.		

Ho: Constant variance Variables: fitted values of logern

chi2(1) = 1.15 Prob > chi2 = 0.2842

Park test

Source	SS	df	MS		Number of $obs = 38$ F(1, 3854) = 332	
		1 170 3854 5.13	8.0562 381493		F(1, 3034) = 332 Prob > F = 0.00 R-squared = 0.07 Adj R-squared = 0.07	000 795
	21493.779				Root MSE = 2.26	
lnvar	Coef.	Std. Err.		P> t	[95% Conf. Interva	al]
lnyhat	1.791484	.0982159	18.24	0.000	1.598924 1.9840	D44

.

	Percentiles	Smallest		
1%	-1.960265	-4.241524		
5%	6977358	-4.13705		
10%	4565248	-3.960518	Obs	3856
25%	1089354	-3.744523	Sum of Wgt.	3856
50%	.2761586		Mean	.4171611
		Largest	Std. Dev.	.9078866
75%	.8124273	5.13242		
90%	1.544013	5.739849	Variance	.8242581
958	2.086778	5.934168	Skewness	.8552189
998	3.307838	6.921857	Kurtosis	7.069599

Data set 3

-

Source	. SS	df	MS		Number of obs F(21, 3834)	
Model	344.432853	21 16.4	015644		Prob > F	= 20.57
Residual	3057.67721		516225		R-squared	= 0.0000 = 0.1012
Residual	3037.87721	3034 ./9/	516225		Adj R-squared	
Total	3402.11006	3855 .882	518822		Root MSE	= 0.0983 = .89304
IOCAL	3402.11006	3035 .002	510022		ROOL MSE	09304
logern	Coef.	Std. Err.	t	P> t	[95% Conf.	Intervall
+						
fac1 1	.0099863	.0160672	0.62	0.534	0215146	.0414873
fac21	0935356	.0176227	-5.31	0.000	1280864	0589848
fac3 1	0346406	.0152853	-2.27	0.023	0646087	0046725
fac4 1	0089788	.0156921	-0.57	0.567	0397445	.0217868
mothhlth	.025316	.0428935	0.59	0.555	0587802	.1094122
fathhlth	.0305214	.0435781	0.70	0.484	0549171	.1159599
fath ed	0149382	.0334197	-0.45	0.655	0804603	.0505838
moth ed	.0473273	.0330007	1.43	0.152	0173733	.1120278
inc 10	.080835	.0130521	6.19	0.000	.0552453	.1064247
num chld	0257008	.0147013	-1.75	0.081	054524	.0031224
ig nverb	.0096506	.0013685	7.05	0.000	.0069676	.0123336
mothhr	0014907	.001048	-1.42	0.155	0035454	.0005639
fathhr	0004133	.001205	-0.34	0.732	0027758	.0019491
urban	1084126	.034807	-3.11	0.002	1766547	0401705
lawseq	.0083138	.0036105	2.30	0.021	.001235	.0153925
caraloc	.0068856	.0037696	1.83	0.068	000505	.0142762
samepar	.0629664	.0456213	1.38	0.168	0264779	.1524106
incare	.0859845	.133661	0.64	0.520	176069	.3480381
mea7 1	.0487428	.0333889	1.46	0.144	0167189	.1142044
j255	.1196755	.1010848	1.18	0.237	0785097	.3178607
ratio	003032	.0015445	-1.96	0.050	0060602	-3.88e-06
1	4.120736	.1427133	28.87	0.000	3.840935	4.400537
_cons	4.120730	.142/133	20.07	0.000	3.040935	4.400557
. linktest						
Source	SS	df	MS		Number of obs	= 3856
+					F(2, 3853)	= 217.38
Model	344.952974	2 172.	476487		Prob > F	= 0.0000
Residual	3057.15709	3853 .793	448504		R-squared	= 0.1014
+					Adj R-squared	= 0.1009
Total	3402.11006	3855 .882	518822		Root MSE	= .89076
•						
logern	Coef.	Std. Err.	t	P> t .	[95% Conf.	Interval]
+ h-+	2 020560	1 271200	1 60		462004	4 521023
_hat	2.028569	1.271288	1.60	0.111	463894	4.521031
_hatsq	0957768	.1182936	-0.81	0.418	3277008	.1361473
_cons	-2.752952	3.409934	-0.81	0.420	-9.438399	3.932496

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logern

> chi2(1) = 1.73 Prob > chi2 = 0.1890

Park test

	Source	SS	df	MS		Number of c		
F	Model Residual			765.72103 64872803		F(1, 385 Prob > F R-squared Adj R-squar	=	0.0000 0.0750
	Total	23535.9189	3855 6.	10529672		Root MSE		
	lnvar	Coef.	Std. Eri	. t	P> t	[95 % Cor	f. Int	erval}
	lnyhat _cons	1.846065 -1.436514				1.641352 -2.622883		
	Dorgonti	iles Smal						
18		32 -4.20						
5%		545 -4.14						
		211 -4.07		Obs		3856		
25%	1027	772 -3.55	53133	Sum of N	Wgt.	3856		
50%	.26998	354		Mean		.417576		
		Laı	rgest	Std. De	v	9052651		
75%	.80560	071 5.15	58467					
90%	1.5335		L4184	Variance		8195048		
		315 5.98		Skewnes	- ·	8386304		
998	3.2527	755 6.75	51332	Kurtosi	s 6	.989476		

.

Source	SS	df	MS		Number of obs F(21, 3833)	
Model Residual	358.823273 3043.27891		7.0868225 793967887		Prob > F R-squared Adj R-squared	= 0.0000 = 0.1055
Total	3402.10219	3854 .	882745767		Root MSE	= .89105
logern	Coef.	Std. Er	r. t	P> t 	[95% Conf.	Interval]
fac1_1	.0358601	.015764	3 2.27	0.023	.0049528	.0667673
fac2_1	0963634	.017773	9 -5.42	0.000	1312107	0615161
fac3_1	07052	.015031	8 -4.69	0.000	0999912	0410489
fac4_1	00241	.015052	8 -0.16	0.873	0319222	.0271022
mothhlth	.038782	.042750	7 0.91	0.364	0450344	.1225984
fathhlth	.0247679	.043005	9 0.58	0.565	0595488	.1090846
fath_ed	.0052493	.033541	4 0.16	0.876	0605114	.07101
moth_ed	.0389484	.03299	6 1.18	0.238	025743	.1036398
inc_10	.0775674	.012843	7 6.04	0.000	.0523864	.1027485
num_chld	0215024	.014547	5 -1.48	0.139	0500239	.0070192
iq_nverb	.0089335	.001366	7 6.54	0.000	.006254	.011613
mothhr	0012604	.001034	8 -1.22	0.223	0032892	.0007684
fathhr	001542	.00119	5 -1.29	0.197	0038849	.0008008
urban	1378051	.034822	4 -3.96	0.000	2060774	0695328
lawseq	.0103458	.003590	6 2.88	0.004	.0033061	.0173856
caraloc	.0055215	.003785	8 1.46	0.145	0019009	.0129439
samepar	.0366211	.04559	9 0.80	0.422	0527796	.1260217
incare	.0581801	.133100	9 0.44	0.662	2027753	.3191356
mea7_1	.0422848	.033538	8 1.26	0.207	0234708	.1080405
j255	.1112675	.102160	9 1.09	0.276	0890274	.3115624
ratio	~.0049065	.001554	3 -3.16	0.002	0079538	0018591
_cons	4.290212	.1412	3 30.38	0.000	4.013319	4.567105

Source	SS	df	MS		Number of obs F(2, 3852)	= 3855 = 227.58
Model Residual Total	359.517334 3042.58485 3402.10219	3852 .78	9.758667 39871457 32745767		Prob > F R-squared Adj R-squared	= 0.0000 = 0.1057
logern	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
_hat _hatsq _cons	2.152331 1073691 -3.081835	1.230194 .1145406 3.297337	1.75 -0.94 -0.93	0.080 0.349 0.350	2595624 331935 -9.546528	4.564225 .1171969 3.382858

.

. •

.

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logern

chi2(1)	=	4.75
Prob > chi2	=	0.0293

Park test

Source	SS	df	MS		Number of $obs = 385$ F(1, 3853) = 385.1	
Model Residual Total	1914.13264 19148.8997 21063.0323	3853 4.96	.13264 986756 523932		F(1, 353) = 353.1 Prob > F = 0.000 R-squared = 0.090 Adj R-squared = 0.090 Root MSE = 2.229)))))))6
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
lnyhat _cons	1.9119 1 -1.720075	.0974213 .5646006	19.63 -3.05	0.000 0.002	1.720908 2.10291 -2.82702613130	

.....

	Demanatiles	0		
	Percentiles	Smallest		
18	-1.954792	-4.15749		
5%	6698413	-4.148396		
10%	4439968	-3.910066	Obs	3855
25%	1145134	-3.815684	Sum of Wgt.	3855
50%	.2758198		Mean	.4176065
		Largest	Std. Dev.	.9034661
75%	.8300151	5.240058		
90%	1.526632	5.623985	Variance	.816251
95%	2.081925	5.80567	Skewness	.8234751
99%	3.201376	6.992463	Kurtosis	7.062027

Source	SS	df	MS		Number of $obs = F(21, 3833) =$	
Model Residual Total	317.614034 3084.49087 3402.10491	3833 .804	244778 719768 746473		F(21, 3833) =Prob > FProb > FR-squaredAdj R-squared =Root MSE	0.0000 0.0934 0.0884
logern	Coef.	Std. Err.	, t	P> t 	[95% Conf. I	nterval]
fac1_1 fac2_1 fac3_1 fac4_1	.0338888 0787939 0330087 0002777	.0159318 .0173701 .0154276 .015514	2.13 -4.54 -2.14 -0.02	0.033 0.000 0.032 0.986	1128495 - 0632558 -	.0651245 .0447383 .0027616 .0301387

mothhlth	.020288	.0429176	0.47	0.636	0638554	.1044314
fathhlth	.0011453	.0441208	0.03	0.979	0853573	.0876479
fath_ed	.000917	.0334001	0.03	0.978	0645667	.0664007
moth_ed	.0633895	.0331168	1.91	0.056	0015387	.1283177
inc_10	.0736902	.0130719	5.64	0.000	.0480618	.0993187
num_chld	0163382	.0146828	-1.11	0.266	0451251	.0124488
iq_nverb	.0090477	.0013798	6.56	0.000	.0063424	.0117529
mothhr	0011091	.0010427	-1.06	0.288	0031534	.0009351
fathhr	0010625	.0011991	-0.89	0.376	0034135	.0012885
urban	0975176	.0350154	-2.78	0.005	1661683	028867
lawseq	.0087011	.0036488	2.38	0.017	.0015473	.0158549
caraloc	.0099549	.0037651	2.64	0.008	.0025732	.0173366
samepar	.0372669	.0461134	0.81	0.419	0531424	.1276761
incare	.0422528	.134177	0.31	0.753	2208124	.305318
mea7_1	.0243783	.0337551	0.72	0.470	0418013	.0905579
j255	.1649312	.1032964	1.60	0.110	03759	.3674524
ratio	0016585	.0015811	-1.05	0.294	0047585	.0014415
_cons	4.114251	.1423225	28.91	0.000	3.835216	4.393286

Source	SS	df	MS		Number of $obs = F(2, 3852) =$	3855 198.51
Model _ Residual Total	317.879875 3084.22503 3402.10491	3852 .800	939938 681472 746473		Prob > F = R-squared = Adj R-squared = Root MSE =	0.0000 0.0934 0.0930
logern	Coef.	Std. Err.	t	P> t	[95% Conf. Ir	terval]
_hat _hatsq _cons	1.809014 075262 -2.167877	1.404886 .1306121 3.771864	1.29 -0.58 -0.57	0.198 0.564 0.565	3313374 .	.563405 1808134 5.227165

.

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logern

chi2(1)	=	1.32
Prob > chi2	=	0.2510

Park test

Source	SS	đf	MS		Number of obs F(1, 3853)		3855
Model Residual			97.91778 93050978		Prob > F R-squared Adj R-squared	=	0.0000 0.0762 0.0759
Total	20980.472	3854 5.4	4381732		Root MSE		2.2429
lnvar	Coef.	Std. Err.	t	P> t 	[95% Conf.	In	terval}
lnyhat _cons	1.903093 -1.700498	.1067797 .620268		0.000 0.006	1.693743 -2.916583	-	.112443 4844129

	Percentiles	Smallest		
1%	-1.938066	-4.594726		
5%	6346946	-4.178158		
10%	4145723	-4.109613	Obs	3855
25%	1070685	-3.78968	Sum of Wgt.	3855
50%	.284298		Mean	.4329208
		Largest	Std. Dev.	.9102598
758	.8229184	5.213667		
90%	1.562028	5.810974	Variance	.8285729
95≹	2.10637	5.947811	Skewness	.8558021
99%	3.285153	7.3367	Kurtosis	7.343569

Probit: economically active (age 30)

Data set 1

Males

Probit estimat	es		-		r of obs =	
					chi2(21) =	
					> chi2 =	
Log pseudolike	= -14	17.9199		Pseud	0 R2 =	0.0818
		Robust				
empact	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
fac1_1	1037552	.0250006	-4.15	0.000	1527555	054755
fac2_1	1037335	.0286511	-3.62	0.000	1598887	0475783
fac3_1	001991	.0254854	-0.08	0.938	0519414	.0479594
fac4_1	.0159935	.0259477	0.62	0.538	0348631	.066850
mothhlth	0971621	.072395	-1.34	0.180	2390537	.0447294
fathhlth	1196686	.0761027	-1.57	0.116	2688272	.0294
fath_ed	.1428787	.0586272	2.44	0.015	.0279715	.257785
moth_ed	.0063041	.0600429 _	0.10	0.916	1113778	.123986
inc 10	.0747353	.0245851	3.04	0.002	.0265493	.1229213
num chld	0448913	.0236981	-1.89	0.058	0913387	.001556
iq nverb	.0073034	.0023279	3.14	0.002	.0027409	.0118659
mothhr	.0006396	.001798	0.36	0.722	0028845	.004163
fathhr	.0028544	.0021365	1.34	0.182	001333	.007041
urban	2394732	.0555085	-4.31	0.000	3482678	130678
lawseq	0074228	.0066846	-1.11	0.267	0205243	.005678
caraloc	.0093042	.0062744	1.48	0.138	0029935	.021601
samepar	.1594606	.0731068	2.18	0.029	.016174	.302747
incare	4124054	.1853368	-2.23	0.026	7756588	049151
mea7 1	2118508	.0545133	-3.89	0.000	3186948	105006
j255	2833723	.1984875	-1.43	0.153	6724007	.10565
ratio	.0050389	.0027936	1.80	0.071	0004364	.0105142
_cons	.3944144	.2454441	1.61	0.108	0866472	.875475
linktest						
Probit estimat	- A 9			Numbe	rofobs =	542
- Jose Cotaniat				LR ch		
					> chi2 =	
og likelihood	l = -1417.91	4		Pseud		
empact	Coef.	Std. Err.	 Z	P> z	[95% Conf	. Interval]
hat	1.034707	.3263318	3.17	0.002	.3951083	1.67430
hatsq	0134693	.124053	-0.11	0.914	2566086	.229670
cons	0202434	.2072891	-0.10	0.922	4265225	.3860358

Probit estimates Log pseudolikelihood = -1427.8849				Wald	r of obs chi2(21) > chi2 o R2	= = =	5430 222.42 0.0000 0.0768
empact	Coef.	Robust Std. Err.	Z	P> z	[95% Co	onf.	Interval]
fac1 1	0975623	.0257618	-3.79	0.000	148054	15	04707
fac21	1464076	.0286155	-5.12	0.000	20249	93	0903223
fac3_1	0142912	.0260357	-0.55	0.583	065320)2	.0367378
fac4_1	0220646	.0249081	-0.89	0.376	070883	35	.0267543
mothhlth	0768926	.0744401	-1.03	0.302	222792	25	.0690072
fathhlth	0363483	.0769917	-0.47	0.637	187249	93	.1145527

fath_ed .0976326 .0573138 1.70 0.088 0147004 .2099 moth_ed .0247786 .0589161 0.42 0.674 0906949 .1402 inc_10 .0749874 .0244892 3.06 0.002 .0269893 .1229 num_chld 040414 .0244668 -1.65 0.099 0883681 .0075 iq_nverb .0049065 .0023005 2.13 0.033 .0003976 .0094	
inc_10 .0749874 .0244892 3.06 0.002 .0269893 .1229 num_chld 040414 .0244668 -1.65 0.0990883681 .0075 iq_nverb .0049065 .0023005 2.13 0.033 .0003976 .0094	99656
num_chld040414 .0244668 -1.65 0.0990883681 .0075 ig_nverb .0049065 .0023005 2.13 0.033 .0003976 .0094	02521
iq_nverb .0049065 .0023005 2.13 0.033 .0003976 .0094	29854
	75402
	94153
mothhr 0007641 .0017832 0.43 0.6680027309 .0042	42591
fathhr .0024704 .0020602 1.20 0.2300015675 .0065	65083
urban2522732 .0558056 -4.52 0.00036165021428	28962
lawseq0030461 .0066584 -0.46 0.6470160963 .010	10004
caraloc .0077398 .0063783 1.21 0.2250047614 .0203	20241
samepar .1121457 .074738 1.50 0.1330343382 .2586	86296
incare4119047 .1866483 -2.21 0.02777772870460	60807
mea7_11476358 .0549714 -2.69 0.00725537790398	98938
j2552312737 .199315 -1.16 0.2466219239 .1593	93764
ratio .006969 .0027971 2.49 0.013 .0014867 .0124	24513
_cons .5236118 .2504256 2.09 0.037 .0327868 1.014	14437

Probit estimates Log likelihood = -1427.842				LR ch	> chi2	= = =	5430 237.72 0.0000 0.0768
empact	Coef.	Std. Err.	Z	P> z	[95% Cc	nf.	Interval]
_hat _hatsq _cons	.9023714 .037968 .0571501	.3402383 .1297783 .2162346	2.65 0.29 0.26	0.008 0.770 0.792	.235516 216392 366661	7	1.569226 .2923287 .4809621

. Data set 3.

Probit estimat	es			•	er of obs =	5430
				Wald	chi2(21) =	214.20
					> chi2 =	
Log pseudolike	elihood = -14	435.681		Pseud	lo R2 =	0.0718
		Robust				
empact	Coef.	Std. Err.	z	P > z	[95% Conf	. Interval]
facl_1	0567812	.0253933	-2.24	0.025	1065511	0070112
fac2_1	1019001	.02776	-3.67	0.000	1563087	0474915
fac3_1	0242	.0254995	-0.95	0.343	0741781	.0257781
fac4_1	0112408	.0252404	-0.45	0.656	0607111	.0382294
mothhlth	0552237	.0755795	-0.73	0.465	2033569	.0929094
fathhlth	0291095	.0761995	-0.38	0.702	1784578	.1202388
fath_ed	.1481239	.0568071	2.61	0.009	.0367841	.2594638
moth_ed	0135917	.0583723	-0.23	0.816	1279993	.1008158
inc_10	.065617	.0240393	2.73	0.006	.0185009	.1127331
num_chld	0327552	.024551	-1.33	0.182	0808743	.015364
iq_nverb	.0057001	.0022801	2.50	0.012	.0012313	.010169
mothhr	.0004299	.0017776	0.24	0.809	0030542	.003914
fathhr	.0028045	.002122	1.32	0.186	0013545	.0069635
urban	2580531	.0552476	-4.67	0.000	3663364	1497699
lawseq	0029888	.0065138	-0.46	0.646	0157556	.009778
caraloc	.0147403	.0062398	2.36	0.018	.0025105	.0269702
samepar	.109613	.073546	1.49	0.136	0345345	.2537606
incare	401857	.1843786	-2.18	0.029	7632323	0404816
mea7 1	2068538	.0544453	-3.80	0.000	3135647	1001429
j255	253457	.1949115	-1.30	0.193	6354765	.1285625
ratio	.0049842	.0027968	1.78	0.075	0004975	.0104659
_cons	.3683887	.2450701	1.50	0.133	1119399	.8487173

. linktest

Probit estimates	Number of obs	=	5430
	LR chi2(2)	=	222.34
	Prob > chi2	=	0.0000
Log likelihood = -1435.5322	Pseudo R2	=	0.0719

empact	Coef.	Std. Err.	Z	P> z	[95% Conf.	[Interval]
_hat	.7981164	.3774008	2.11	0.034	.0584244	1.537808
_hatsq	.0778768	.14323	0.54	0.587	2028489	.3586025
_cons	.1201683	.2407256	0.50	0.618	3516452	.5919818

Data set 4.

Probit estimat	Probit estimates				r of obs chi2(21)	=	5429 220.60
				Prob	> chi2	=	0.0000
Log pseudolike	elihood = -14	427.034		Pseud	0 R2	=	0.0773
5.							
		Robust					
empact	Coef.	Std. Err.	z	P> z	[95% Con	nf.	Interval]
fac1_1	0838078	.0248573	-3.37	0.001	132527	L	0350885
fac2_1	1079736	.0288207	-3.75	0.000	16446	L	0514861
fac3_1	027129	.0258575	-1.05	0.294	0778088	3	.0235507
fac4_1	0338813	.0241269	-1.40	0.160	0811692	2	.0134066
mothhlth	0928714	.0739129	-1.26	0.209	237738	L	.0519952
fathhlth	0864708	.0764081	-1.13	0.258	236228	3	.0632864
fath ed	.2001924	.0577572	3.47	0.001	.0869904	1	.3133944
moth ed	.0034927	.0601218	0.06	0.954	1143439	•	.1213294
inc 10	.0618075	.0239194	2.58	0.010	.0149264	1	.1086886
num_chld	039803	.0242298	-1.64	0.100	0872924	1	.0076865
ig nverb	.0083966	.0023278	3.61	0.000	.0038342	2	.012959
mothhr	0001515	.0017423	-0.09	0.931	0035664	ł	.0032633
fathhr	.0023512	.0020374	1.15	0.248	001642	2	.0063445
urban	1762123	.0559941	-3.15	0.002	2859588	3	0664658
lawseq	0050751	.0066303	-0.77	0.444	0180702	2	.0079201
caraloc	.0091629	.0062577	1.46	0.143	003102	2	.0214278
samepar	.1617707	.0735185	2.20	0.028	.017673	7	.3058643
incare	3788508	.1847548	-2.05	0.040	7409636	5	016738
mea7 1	1500279	.0551317	-2.72	0.007	258084	ł	0419718
j255	3360158	.1860557	-1.81	0.071	7006782	2	.0286466
ratio	.0069728	.0028276	2.47	0.014	.0014309	•	.0125147
cons	.2236087	.2456578	0.91	0.363	2578717	7	.7050891
. linktest							
Probit estimat	es			Numbe:	r of obs	=	5429
				LR ch	i2(2)	=	239.23

Log likelihood	i = −1427.0022	2		LR Ch Prob Pseud	> chi2	= = =	239.23 0.0000 0.0773
empact	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
_hat _hatsq _cons	1.086507 0331874 0514836	.3489265 .1313069 .2239342	3.11 -0.25 -0.23	0.002 0.800 0.818	.4026 2905 4903	5441	1.77039 .2241693 .3874193

. Data set 5.

Probit estimat	es					= 5429 = 238.98
Log pseudolikelihood = -1424.7509					> chi2	= 0.0000 = 0.0788
empact	Coef.	Robust Std. Err.	z	P> z	[95% Con	f. Interval]
fac1_1 fac2_1 fac3 1	1019089 1278951 0390829	.0251997 .028244 .0253518	-4.04 -4.53 -1.54	0.000 0.000 0.123	1512995 1832523 0887715	0725378

fac4_1	0398994	.0245907	-1.62	0.105	0880962	.0082975
mothhlth	0616014	.0744637	-0.83	0.408	2075475	.0843447
fathhlth	.0263416	.0803871	0.33	0.743	1312142	.1838974
fath_ed	.0239607	.0585041	0.41	0.682	0907051	.1386266
moth ed	0044917	.0588979	-0.08	0.939	1199294	.110946
inc 10	.077224	.0243069	3.18	0.001	.0295835	.1248646
num_chld	0517407	.0240415	-2.15	0.031	0988612	0046203
iq nverb	.006367	.002248	2.83	0.005	.0019611	.010773
mothhr	001306	.0017322	-0.75	0.451	0047009	.002089
fathhr	.0013477	.0020995	0.64	0.521	0027671	.0054626
urban	2811785	.0559095	-5.03	0.000	3907591	1715979
lawseq	0027379	.006487	-0.42	0.673	0154521	.0099764
caraloc	.0084075	.0062494	1.35	0.179	0038411	.0206561
samepar	.1253076	.072999	1.72	0.086	0177678	.268383
incare	3813238	.1879297	-2.03	0.042	7496592	0129884
mea7_1	2351865	.0547325	-4.30	0.000	3424603	1279127
j255	2514945	.194818	-1.29	0.197	6333307	.1303417
ratio	.0051641	.0028258	1.83	0.068	0003743	.0107026
_cons	.6167275	.2412997	2.56	0.011	.1437889	1.089666

- -

Probit estimate	28			Numbe LR ch	r of obs	=	5429 245.61
Log likelihood		Prob > chi2 Pseudo R2		=	0.0000 0.0794		
empact	Coef.	Std. Err.	Z	P> z	[95% Co	onf.	Interval]
_hat _hatsq _cons	.5572252 .1732283 .2570047	.3328176 .1278647 .2104584	1.67 1.35 1.22	0.094 0.175 0.222	095085 077381 155486	9	1.209536 .4238384 .6694955

Females

. Data set 1

Probit estimat	es			Numbe	er of obs =	5752
				Wald	chi2(21) =	339.10
				Prob	> chi2 =	0.0000
Log pseudolike	lihood = -299	94.7375		Pseud	lo R2 =	0.0592
	_	Robust				
empact	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
fac1 1	0154273	.0200111	-0.77	0.441	0546483	.0237937
fac21	0920244	.0216419	-4.25	0.000	1344416	0496071
fac3 1	0355381	.0195579	-1.82	0.069	0738708	.0027946
fac4_1	0088722	.0191743	-0.46	0.644	0464531	.0287087
mothhlth	0134179	.0547427	-0.25	0.806	1207117	.0938759
fathhlth	0499362	.0554037	-0.90	0.367	1585254	.058653
fath ed	.0197277	.0415576	0.47	0.635	0617237	.1011792
moth_ed	.0745386	.0425147	1.75	0.080	0087887	.157866
inc_10	.0484225	.0174442	2.78	0.006	.0142326	.0826124
num_chld	0982802	.0175721	-5.59	0.000	1327209	0638396
iq_nverb	.0111181	.0017607	6.31	. 0.000	.0076672	.014569
mothhr	.0001261	.0013209	0.10	0.924	0024627	.002715
fathhr	0013783	.0015103	-0.91	0.361	0043385	.0015819
urban	1247452	.0424984	-2.94	0.003	2080405	0414499
lawseq	.0008302	.0045733	0.18	0.856	0081333	.0097936
caraloc	.0103379	.0047294	2.19	0.029	.0010685	.0196074
samepar	.1810538	.0538738	3.36	0.001	.0754632	.2866444
incare	1190194	.1447095	-0.82	0.411	4026449	.1646061
mea7_1	.0003865	.0425538	0.01	0.993	0830173	.0837903
j255	1859871	.1442698	-1.29	0.197	4687507	.0967766
ratio	.0059478	.0020217	2.94	0.003	.0019853	.0099103
_cons	4870461	.1774041	-2.75	0.006	8347517	1393405

. linktest

Probit estimate		LR ch	> chi2 =	= 5752 = 387.80 = 0.0000 = 0.0609		
empact	Coef.	Std. Err.	z	P> z	[95% Cont	f. Interval}
_hat _hatsq _cons	1.481058 3686328 110549	.1534703 .1096133 .0525583	9.65 -3.36 -2.10	0.000 0.001 0.035	1.180261 5834709 2135614	1.781854 1537948 0075366

Data set 2.

Probit estimat	ces			Number	of obs =	5752
				Wald d	chi2(21) =	335.07
				Prob :	chi2 =	0.0000
Log pseudolike	elihood = -299	9.9388	-	Pseudo	D R2 =	0.0575
5.						
		Robust				
empact	Coef.	Std. Err.	z	P > z	[95% Conf.	Interval]
	+					
fac1_1	060128	.019932	-3.02	0.003	0991939	0210621
fac2_1		.022285	-4.83	0.000	1512285	0638729
fac3_1	0239971	.019585	-1.23	0.220	062383	.0143889
fac4_1		.0192006	-2.14	0.033	0786542	0033893
mothhlth	0017879	.0548744	-0.03	0.974	1093398	.105764
fathhlth		.0557544	-0.35	0.728	1286612	.0898921
fath_ed		.0417998	-0.03	0.978	0830954	.0807568
moth_ed		.0426479	2.45	0.014	.0210132	.1881898
inc_10	.0500219	.0173549	2.88	0.004	.016007	.0840368
num_chld	103425	.0174512	-5.93	0.000	1376287	0692212
iq_nverb	.0072288	.0017424	4.15	0.000	.0038137	.0106439
mothhr		.0013235	-0.52	0.602	0032842	.0019039
fathhr	001 219 4	.0015088	-0.81	0.419	0041765	.0017377
urban	1636619	.0423966	-3.86	0.000	2467578	0805661
lawseq	0024669	.0046116	-0.53	0.593	0115056	.0065717
caraloc	.0142692	.0047384	3.01	0.003	.0049821	.0235564
samepar	.1130862	.0542933	2.08	0.037	.0066733	.219499
incare	1386488	.1448982	-0.96	0.339	4226441	.1453464
mea7_1		.0427903	0.56	0.579	0601184	.1076164
j255		.1440689	-1.12	0.262	4438763	.1208635
ratio	.0060721	.0020236	3.00	0.003	.0021059	.0100383
_cons	1551662	.175208	-0.89	0.376	4985676	.1882352
	·					
. linktest						
		_				
Iteration 0:	log likeliho					
Iteration 1:	log likeliho					
Iteration 2:	log likeliho					
Iteration 3:	log likeliho	pod = -2997.0	0026			
Probit estimat	es				of obs =	5752
				LR chi		372.05
				Prob >		0.0000
Log likelihood	1 = -2997.0026			Pseudo	> R2 =	0.0584
empact	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
_hat	1.347839	.1533765	8.79	0.000	1.047227	1.648452
_hatsq	2719495	.1118649	-2.43	0.015	4912008	0526983
_cons	0777048	.0521601	-1.49	0.136	1799367	.0245272

Data set 3.

Probit	estimates
--------	-----------

Number of obs = Wald chi2(21) = 5751 319.77 . •

og pseudolik	elihood = -300	06.5954		Prob > Pseudo		0.000 0.055
	 I	Robust				
empact		Std. Err.	z	P> z	[95% Conf.	Interval
facl 1	0044818	.0200831	-0.22	0.823	0438441	.034880
fac2_1	104277	.0217592	-4.79	0.000	1469243	061629
fac3_1	069432	.0193898	-3.58	0.000	1074354	031428
fac4_1	0125878	.019375	-0.65	0.516	0505621	.025386
mothhlth	.0152082	.0550736	0.28	0.782	092734	.123150
fathhlth	.0070025	.056028	0.12	0.901	1028104	.116815
fath_ed	.0249967	.0414978	0.60	0.547	0563375	.106330
moth_ed	.0664833	.0425357	1.56	0.118	0168852	.149851
inc_10	.0450335	.0173509	2.60	0.009	.0110264	.079040
num_chld	0875873	.0175919	-4.98	0.000	1220668	053107
iq_nverb	.0099917	.001752	5.70	0.000	.0065579	.013425
mothhr	002238	.0013314	-1.68	0.093	0048475	.000371
fathhr	0004973	.0015323	-0.32	0.746	0035005	.002505
urban	121317	.042204	-2.87	0.004	2040354	038598
lawseq	0015093	.0045986	-0.33	0.743	0105225	.007503
caraloc	.0124471	.004797	2.59	0.009	.0030451	.021849
samepar		.0545218	2.42	0.016	.0249341	.23865
incare	1276461	.1450859	-0.88	0.379	4120093	.15671
mea7 1_	.0531969	.0428987	1.24	0.215	0308831	.137276
j255	1598191	.1429431	-1.12	0.264	4399825	.120344
ratio	.0042751	.0019976	2.14		.0003599	.00819
cons	3553483	.1773141	-2.00	0.045	7028774	00781
teration 0: teration 1: teration 2:	log likeliho log likeliho log likeliho	pod = -300 pod = -3003.	4.57 8439			
teration 3:	log likeliho	pod = -3003.	8437			
robit estimat	tes			Number LR chi: Prob >		355.5
og likelihoo	d = -3003.8437	7		Pseudo		0.055
empact	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval
hat	+ 1.371298	.1676083	8.18	0.000	1.042791	1.69980
hatsq		.118729	-2.35	0.019	5123072	046898
	0908066		-1.59	0.111	2026002	.02098
Data set 4.						
robit estimat	tes				of obs =	
				Wald cl	ni2(21) =	
				Prob >	chi2 =	
og pseudolik	elihood = -29	992.135		Pseudo	R2 =	0.059
	1	Robust				

empact	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
 fac1_1	0341498	.0196112	-1.74	0.082	072587	.0042874
fac21	0941075	.0222819	-4.22	0.000	1377792	0504358
fac3_1	0091653	.0193011	-0.47	0.635	0469947	.0286641
fac4_1	.0059932	.0188443	0.32	0.750	0309409	.0429273
mothhlth	.0513509	.0552242	0.93	0.352	0568866	.1595884
fathhlth	.0128137	.0553782	0.23	0.817	0957255	.1213529
fath_ed	.0331679	.0417424	0.79	0.427	0486458	.1149816
moth_ed	.0651089	.0429167	1.52	0.129	0190063	.1492241
inc_10	.0549753	.0172315	3.19	0.001	.0212022	.0887485
num_chld	1081806	.0173408	-6.24	0.000	1421679	0741933
iq_nverb	.0100617	.0017605	5.72	0.000	.0066113	.0135121
mothhr	.0000262	.0013323	0.02	0.984	0025852	.0026375
fathhr	0014735	.0015156	-0.97	0.331	004444	.001497

urban	1162691	.0422195	-2.75	0.006	1990177	0335204
lawseg	0011751	.0045898	-0.26	0.798	0101709	.0078207
caraloc	.0137759	.0048494	2.84	0.005	.0042713	.0232806
samepar	.1708062	.0538894	3.17	0.002	.0651849	.2764274
incare	1382812	.1439456	-0.96	0.337	4204094	.143847
mea7 1	.0192388	.0430562	0.45	0.655	0651498	.1036274
j255	177418	.1442203	-1.23	0.219	4600846	.1052486
ratio	.0083581	.002023	4.13	0.000	.0043931	.0123231
_cons	5160507	.1757717	-2.94	0.003	8605568	1715446
				-		

Probit estimat	es .			Numbe LR ch	r of obs i2(2)	=	5751 387.08
Log likelihood		Prob > chi2 Pseudo R2		=	0.0000 0.0608		
empact	Coef.	Std. Err.	z	P> z	[95% (Conf.	Interval]
_hat _hatsq _cons	1.327048 2542574 0727362	.1453293 .1047333 .0505015	9.13 -2.43 -1.44	0.000 0.015 0.150	1.0422 4595 1717	309	1.611888 048984 .0262448

-

Data set 5.

Probit estimat	ces			Numbe	r of obs	=	5751
				Wald	chi2(21)	=	388.14
				Prob	> chi2	=	0.0000
Log pseudolike	elihood = -29	70.0598		Pseud	lo R2	=	0.0668
	1	Robust					
empact	Coef.	Std. Err.	z	P> z	[95% Co	onf.	Interval]
facl 1	0425971	.0197004	-2.16	0.031	08120	92 92	0039849
fac2_1	1549536	.0215173	-7.20	0.000	197120	56	1127805
fac3_1	0578618	.0194536	-2.97	0.003	095996	01	0197335
fac4_1	0459349	.0188917	-2.43	0.015	08296	19	008908
mothhlth	.0003627	.0549043	0.01	0.995	10724	77	.1079732
fathhlth	0105571	.0562957	-0.19	0.851	120894	17	.0997805
fath ed	.0087373	.0418054	0.21	0.834	073199) 7	.0906744
moth_ed	.0899001	.043206	2.08	0.037	.00521	78	.1745823
inc_10	.0659086	.0175167	3.76	0.000	.031576	55	.1002407
num chld	10512	.0174731	-6.02	0.000	139366	55	0708734
iq_nverb	.0076942	.0017609	4.37	0.000	.004242	29	.0111455
mothhr	.0005378	.0013261	0.41	0.685	002063	12	.0031368
fathhr	0008701	.0015091	-0.58	0.564	00382	79	.0020876
urban	1022631	.0425007	-2.41	0.016	18556	53	0189633
lawseq	0062362	.0046549	-1.34	0.180	015359	96	.0028872
caraloc	.0160764	.0047942	3.35	0.001	.006679	99	.0254729
samepar	1216944	.054772	2.22	0.026	.014343	33	.2290455
incare	1389805	.1475583	-0.94	0.346	428189	94	.1502284
mea7_1	.0474667	.0432122	1.10	0.272	03722	76	.1321609
j255	1946182	.1453254	-1.34	0.181	479450	80	.0902144
ratio	.0049065	.0020543	2.39	0.017	.000880	01	.0089329

. linktest

_cons |

j255 ratio

-.1946182 .0049065

-.2821566

Probit estimate	Number of obs				5751		
				LR ch		=	432.10
				Prob	> chi2	=	0.0000
Log likelihood = -2966.7017				Pseud	0 R2	=	0.0679
empact	Coef.	Std. Err.	 Z	P> z	 [95%	Conf	Interval]
_hat	1.331154	.1375672	9.68	0.000	1.061	528	1.600781
_hatsq	255964	.0984074	-2.60	0.009	4488	388	0630891
_cons	0708035	.0475737	-1.49	0.137	1640	462	.0224392

-1.34 2.39

-1.59

0.017

0.112

.0008801

-.6299206

.0089329

.0656075

.0020543

Probit: low income (age 30)

Data set 1

Males

Probit estimat	:es			Wald	r of obs = chi2(21) =	437 310.1
Log pseudolike	libood - JE	00 1101		Prob Pseud		0.000
Log pseudorike	siinoou = -25	00.1101		rseud	0 R2 =	0.062
	 	Robust				
low_inc	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval
fac1 1	0260211	.0215038	-1.21	 0 226	0681677	.01612
fac2 1			3.15		.0278763	.119414
fac3 1			2.45		.0101258	.091620
fac4 1		.0203813	2.58		.0126147	
mothhlth		.0606984			1811326	.05680
fathhlth		.0639755		0.245	0509348	
fath_ed	0880986	.0462218	-1.91	0.057	1786916	.002494
moth_ed	1975855	.046937	-4.21	0.000	2895804	10559
inc_10	0944848	.0191911	-4.92	0.000	1320987	05687
num_chld		.0198784	2.74	0.006	.0154249	.093340
iq_nverb					0129527	00561
mothhr		.0014651	1.35	0.176	000891	.00485
fathhr		.0016848	0.60		0022833	.0043
urban		.046378			.0137694	.1955
lawseq			0.47 -1.86		0079898	.01297
caraloc	0094575 .0012983	.005085 .0634091			0194239 1229812	.00050
samepar incare		.1684886	0.02 0.71		210186	.12557
mea7 1			0.87		049163	
		.1835793	-1.20		5800566	.13956
ratio			-0.79		0061108	.0025
cons	.5906156	.1976768	2.99		.2031762	.97805
Probit estimat	es				r of obs = i2(2) =	437 332.9
				Prob	> chi2 =	0.00
Log likelihood	1 = -2499.863	2		Pseud	o R2 =	0.062
low inc	Coef.	Std. Err.		P> z	[95% Conf.	
					[95% COIII.	
_hat	1.085657	.1344587	8.07	0.000	.8221227	1.34919
_hatsq	.0819739	.1164509		0.481	1462657	.310213
_cons	.0115613	.0391643	0.30	0.768	0651992	.08832
Data set 2						
Probit estimat	es				r of obs =	43
Probit estimat	es			Wald	r of obs = chi2(21) =	437 326.(
				Wald Prob	chi2(21) = > chi2 =	326.0 0.000
Probit estimat Log pseudolike		93.3415		Wald Prob	chi2(21) = > chi2 =	326.0 0.000
		93.3415 Robust		Wald Prob	chi2(21) = > chi2 =	326.0 0.000
			 z	Wald Prob	chi2(21) = > chi2 =	326.0 0.000 0.065
Log pseudolike low_inc	elihood = -24 Coef.	Robust Std. Err.		Wald Prob Pseud P> z	chi2(21) = > chi2 = o R2 = [95% Conf.	326.(0.000 0.065
Log pseudolike low_inc fac1_1	elihood = -24 Coef. 0473984	Robust Std. Err.		Wald Prob Pseud P> z 0.029	chi2(21) = > chi2 = o R2 = [95% Conf. 089905	326.0 0.000 0.065 Interval
Log pseudolike low_inc	elihood = -24 Coef. 0473984 .0974046	Robust Std. Err. .0216874 .0232405	-2.19 4.19	Wald Prob Pseud P> z 0.029	chi2(21) = > chi2 = o R2 = [95% Conf.	326.(0.000 0.065
Log pseudolike low_inc fac1_1 fac2_1	Coef. 0473984 .0974046 .0532873	Robust Std. Err.	-2.19 4.19	Wald Prob Pseud P> z 0.029 0.000	chi2(21) = > chi2 = o R2 = [95% Conf. 089905 .051854	326.(0.000 0.065 Interval 004891 .142955

-

-1.50

0.73

-1.91

0.135

0.466

0.056

-.2140805

-.0790342

-.1789165

.0287702

.1725487

.0023337

-.0926551

.0467572

-.0882914

mothhlth

fathhlth

fath_ed

.0619528

.0641805

moth_ed	2150162	.0468836	-4.59	0.000	3069064	1231259
inc_10	088404	.01908	-4.63	0.000	1258001	0510078
num_chld	.036979	.0201293	1.84	0.066	0024736	.0764317
iq_nverb	0095662	.0018553	-5.16	0.000	0132026	0059298
mothhr	.0017382	.0014534	1.20	0.232	0011105	.0045869
fathhr	.0028349	.0016854	1.68	0.093	0004684	.0061382
urban	.1096278	.0466135	2.35	0.019	.0182671	.2009885
lawseq	.0000575	.005392	0.01	0.991	0105107	.0106256
caraloc	0062046	.0051709	-1.20	0.230	0163395	.0039302
samepar	.0796964	.0641536	1.24	0.214	0460424	.2054353
incare	.1207849	.1687279	0.72	0.474	2099156	.4514854
mea7_1	.030255	.0455366	0.66	0.506	0589952	.1195052
j255	2016892	.1777036	-1.13	0.256	5499818	.1466034
ratio	0017148	.0022238	-0.77	0.441	0060734	.0026438
_cons	.477698	.2009494	2.38	0.017	.0838444	.8715516

```
. linktest
```

- -

Probit estimate			LR ch	> chi2	= = =	4379 348.60 0.0000 0.0653	
low_inc	Coef.	Std. Err.	z	P> z		Conf.	Interval]
_hat _hatsq _cons	1.04626 .0450036 .0056672	.12862 .1128207 .0377249	8.13 0.40 0.15	0.000 0.690 0.881	.79410 17612 0682	208	1.29835 .266128 .0796066

Data set 3

Probit estimat		Wald	er of obs = chi2(21) = > chi2 = lo R2 =	4379 341.46 0.0000 0.0671		
		Robust				
low_inc	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
fac1 1	0388431	.0210638	-1.84	0.065	0801274	.0024413
fac21	.1275177	.0232849	5.48	0.000	.0818801	.1731553
fac3_1	.0417145	.0212416	1.96	0.050	.0000816	.0833473
fac4 1	.0588427	.0203457	2.89	0.004	.0189659	.0987195
mothhlth	0855508	.0633572	-1.35	0.177	2097287	.038627
fathhlth	.0189308	.0636676	0.30	0.766	1058554	.143717
fath_ed	0722914	.0463583	-1.56	0.119	1631519	.0185692
moth_ed	2355381	.0472572	-4.98	0.000	3281605	1429156
inc_10	0817488	.0190659	-4.29	0.000	1191173	0443804
num_chld	.0488383	.0200663	2.43	0.015	.009509	.0881676
iq_nverb	0084352	.0018405	-4.58	0.000	0120425	0048279
mothhr	.0026687	.0014489	1.84	0.065	0001712	.0055085
fathhr	.0008821	.0016916	0.52	0.602	0024334	.0041975
urban	.0835599	.0468876	1.78	0.075	008338	.1754578
lawseq	.0026537	.0053061	0.50	0.617	0077461	.0130536
caraloc	0097411	.0051576	-1.89	0.059	0198498	.0003676
samepar	.0785471	.063964	1.23	0.219	0468199	.2039142
incare	.1288381	.1674422	0.77	0.442	1993427	.4570189
mea7 1	.0725879	.0451778	1.61	0.108	015959	.1611348
j255	2372987	.1783638	-1.33	0.183	5868853	.1122878
ratio	.0010779	.0022092	0.49	0.626	003252	.0054077
_cons	.3664142	.2005185	1.83	0.068	0265948	.7594233

. linktest

Probit estimates

Log likelihood = -2488.6251

=	4379
=	357.87
=	0.0000
=	0.0671
	=

•

	Coef.			P> z		-
	.9653408	.1251967		0.000	.7199596	1.210722
	0338973	.1102932	-0.31	0.759	2500681	.1822735
cons	0040733	.0370522	-0.11	0.912	0766942	.0685477

Data 4

Probit estimates Log pseudolikelihood = -2483.7873					r of obs = chi2(21) = > chi2 = o R2 =	4379 340.73 0.0000 0.0689
low inc	Coef.	Robust Std. Err.		P> z	[95% Conf.	Interval]
+						
fac1 1	044016	.0215548	-2.04	0.041	0862626	0017694
fac2 1	.107078	.0231593	4.62	0.000	.0616866	.1524695
fac3_1	.0528088	.0210586	2.51	0.012	.0115346	. 094083
fac4 1	.0753532	.0199474	3.78	0.000	.0362571	.1144493
mothhlth	0670916	.0622835	-1.08	0.281	189165	.0549817
fathhlth	.0686903	.0643749	1.07	0.286	0574821	.1948627
fath_ed	1287572	.0461663	-2.79	0.005	2192414	038273
moth_ed	2040601	.0470325	-4.34	0.000	2962422	1118781
inc_10	0750365	.0187556	-4.00	0.000	1117969	0382761
num_chld	.0552962	.0199667	2.77	0.006	.0161622	.0944302
iq_nverb	0098492	.0018752	-5.25	0.000	0135245	0061739
mothhr	.0016966	.0014693	1.15	0.248	0011832	.0045765
fathhr	.0015766	.0016856	0.94	0.350	0017271	.0048802
urban	.0851288	.0467767	1.82	0.069	0065518	.1768094
lawseq	0049199	.005287	-0.93	0.352	0152822	.0054424
caraloc	0047164	.0051333	-0.92	0.358	0147775	.0053448
samepar	.0291896	.0635806	0.46	0.646	0954262	.1538053
incare	.0727934	.1680125	0.43	0.665	2565051	.4020918
mea7_1	.0665588	.0453404	1.47	0.142	0223068	.1554245
j255	1772785	.1764146	-1.00	0.315	5230447	.1684878
ratio	0007206	.0022105	-0.33	0.744	005053	.0036119
_cons	.5345602	.1993282	2.68	0.007	.143884	.9252364

. linktest

Probit estimates			LR ch	> chi2	= = =	4379 367.68 0.0000 0.0689	
low_inc	Coef.	Std. Err.	z	P> z			Interval]
_hat _hatsq _cons	1.03875 .0381433 .0042698	.1218209 .1074233 .0363819	8.53 0.36 0.12	0.000 0.723 0.907	.799985 172402 067037	5	1.277515 .248689 .0755769

Probit estimate		Wald Prob	r of obs chi2(21) > chi2	= = =	4378 291.49 0.0000		
Log pseudolikel	.ihood = -2!	509.729		Pseud	0 R2	=	0.0587
low_inc	Coef.	Robust Std. Err.	Z	P> z	[95 % (Conf.	Interval]
fac1_1 fac2_1	0363095 .0742827	.0216201 .0230598	-1.68 3.22	0.093 0.001	07868 .02908		.0060651 .1194791

fac3_1	.0600726	.0212028	2.83	0.005	.0185158	.1016293
fac4_1	.0582806	.0202922	2.87	0.004	.0185085	.0980526
mothhlth	138642	.0624728	-2.22	0.026	2610864	0161976
fathhlth	.0296645	.0651033	0.46	0.649	0979356	.1572647
fath_ed	0486127	.0463682	-1.05	0.294	1394927	.0422673
moth_ed	1901882	.0470605	-4.04	0.000	2824251	0979513
inc_10	0775329	.0190993	-4.06	0.000	1149669	0400988
num_chld	.0415836	.0201191	2.07	0.039	.0021508	.0810164
iq nverb	0100571	.0018343	-5.48	0.000	0136522	006462
mothhr	.0030743	.001462	2.10	0.035	.0002088	.0059398
fathhr	.0018429	.0016688	1.10	0.269	0014279	.0051137
urban	.1069018	.0466016	2.29	0.022	.0155642	.1982394
lawseq	003355	.0053221	-0.63	0.528	0137861	.0070761
caraloc	0065933	.0050791	-1.30	0.194	0165481	.0033615
samepar	.0287607	.0623531	0.46	0.645	0934492	.1509706
incare	.1378556	.1665209	0.83	0.408	1885194	.4642306
mea7_1	.0852435	.0450005	1.89	0.058	0029557	.1734428
j255	2248524	.1783471	-1.26	0.207	5744063	.1247014
ratio	0004316	.0022167	-0.19	0.846	0047763	.003913
_cons	.5182513	.1977546	2.62	0.009	.1306593	.9058432

.

. linktest

..

-

Probit estimate	s		LR ch	r of obs i2(2) > chi2	= = =	4378 313.31 0.0000	
Log likelihood = -2509.6966				Pseud		=	0.0588
low_inc	Coef.	Std. Err.	z	P> z	[95 % C c	onf.	Interval]
_hat	1.032121	.138826	7.43	0.000	.760027	75	1.304215
_hatsq	.031201	.122372	0.25	0.799	208643	36	.2710457
_cons	.0043878	.0400829	0.11	0.913	074173	32 	.0829487

Females

Data set 1

Probit estimat	es			Wald	er of obs = chi2(21) = > chi2 =	4990 398.48 0.0000
Log pseudolike	elihood = -283	38.3373		Pseud		0.0707
		Robust				
low_inc	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
fac1_1	0113381	.0211691	-0.54	0.592	0528287	.0301526
fac2_1	.0804365	.0227235	3.54	0.000	.0358992	.1249737
fac3_1	.0112277	.020207	0.56	0.578	0283773	.0508327
fac4_1	.0467398	.0200969	2.33	0.020	.0073506	.086129
mothhlth	0484884	.0579329	-0.84	0.403	1620347	.065058
fathhlth	.0268766	.0581487	0.46	0.644	0870928	.1408459
fath_ed	021481	.0432954	-0.50	0.620	1063384	.0633763
moth_ed	1423312	.0441747	-3.22	0.001	228912	0557504
inc_10	0815317	.018285	-4.46	0.000	1173696	0456938
num_chld	.0781162	.0185774	4.20	0.000	.0417053	.1145271
iq_nverb	011393	.0018313	-6.22	0.000	0149823	0078037
mothhr	.003267	.0013887	2.35	0.019	.0005452	.0059888
fathhr	0007684	.0015812	-0.49	0.627	0038674	.0023306
urban	.1568931	.0441936	3.55	0.000	.0702753	.2435109
lawseq	0038149	.0047729	-0.80	0.424	0131696	.0055398
caraloc	0151821	.0048809	-3.11	0.002	0247484	0056158
samepar	1063078	.056967	-1.87	0.062	2179611	.0053455
incare	.2646524	.1556584	1.70	0.089	0404324	.5697372
mea7_1	.0419034	.0439229	0.95	0.340	044184	.1279908
j255	.0983441	.1697633	0.58	0.562	2343857	.431074
ratio	001277	.0020865	-0.61	0.541	0053664	.0028124
_cons	.8893235	.1844567	4.82	0.000	.527795	1.250852
1 / 1						

. linktest

Probit estimates Log likelihood = -2836.1088					=	4990 436.02
					=	0.0000 0.0714
Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
1.196635	.106156	11.27	0.000			1.404697
.0166313	.0326685	0.51	0.611			.0806603
	<pre>c = -2836.108 Coef. 1.196635 .2037628</pre>	<pre></pre>	<pre></pre>	LR ch Prob = -2836.1088 Coef. Std. Err. z P> z 1.196635 .106156 11.27 0.000 .2037628 .0964433 2.11 0.035	LR chi2(2) Prob > chi2 Prob > chi2 Pseudo R2 Coef. Std. Err. z P> z [95% C 1.196635 .106156 11.27 0.000 .98857 .2037628 .0964433 2.11 0.035 .01473	LR chi2(2) = Prob > chi2 = Prob > chi2 = Pseudo R2 = Coef. Std. Err. z P> z [95% Conf. 1.196635 .106156 11.27 0.000 .9885732 .2037628 .0964433 2.11 0.035 .0147375

Data set 2

Probit estimates						= 4990 = 409.24
						= 0.0000
Log pseudolike	$= -28^{\circ}$	34.5707		Pseud		= 0.0719
		Robust				
low_inc	Cōef.	Std. Err.	z	P> z	[95% Con:	f. Interval]
fac1 1	.0129808	.021222	0.61	0.541	0286135	.0545751
fac2_1	.1086823	.023423	4.64	0.000	.0627741	
fac3 1	.0481275	.0202183	2.38	0.017	.0085003	
fac4 1	.0404282	.0201294	2.01	0.045	.0009753	.0798811
mothhlth	0766984	.0583159	-1.32	0.188	1909955	.0375987
fathhlth	.0553333	.0583265	0.95	0.343	0589846	.1696511
fath ed		.0432231	-0.78	0.438	1182672	.0511644
moth ed		.0440593	-3.63	0.000	2463399	
inc 10		.0182156	-3.94	0.000	1074291	0360255
num chld		.0185206	4.79	0.000	.0523826	.1249821
ig nverb	0111123	.0018232	-6.09	0.000	0146858	0075389
mothhr	.0011698	.0014123	0.83	0.407	0015981	.0039378
fathhr	.0009885	.0015813	0.63	0.532	0021107	.0040878
			3.22	0.001		
urban	.1424198	.0441884			.0558122	.2290274
lawseq		.004812	-0.83	0.409	0134046	.0054579
caraloc	0099802	.004908		0.042	0195996	0003608
samepar		.0569714		0.210	1830962	.0402277
incare	.2778063	.1548937		0.073	0257798	.5813924
mea7_1		.044283		0.443	0528404	.1207457
j255		.167944		0.667	2570004	
ratio			-0.95		0060948	
_cons	.6780507	.1823693	3.72	0.000	.3206133	1.035488
. linktest						
Duchin				17		
Probit estimat	es					= 4990
				LR ch	• •	= 442.94
						= 0.0000
Log likelihood	i = -2832.6489	9		Pseude	0 R2 :	= 0.0725
low_inc	Coef.	Std. Err.	Z	P> z	[95% Con:	f. Interval}
hat	1.178945	.104349	11.30	0.000	.9744248	1.383465
hatsq		.0946848		0.050	.0001607	.3713185
cons	.0145797	.032411	0.45	0.653	0489448	.0781041

Data set 3

•

Probit estimates	Number of obs	=	4989
	Wald chi2(21)	=	407.75
	Prob > chi2	=	0.0000
Log pseudolikelihood = ~2835.5586	Pseudo R2	=	0.0712
**			

low_inc	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
fac1_1	0111331	.0210245	-0.53	0.596	0523404	.0300742
fac2_1	.1106413	.0231491	4.78	0.000	.0652698	.1560128
fac3_1	0113041	.0200997	-0.56	0.574	0506988	.0280906
fac4_1	.0700537	.0201441	3.48	0.001	.030572	.1095354
mothhlth	0296951	.0581903	-0.51	0.610	143746	.0843557
fathhlth	.013415	.0581976	0.23	0.818	1006501	.1274802
fath_ed	0746268	.0432554	-1.73	0.084	1594058	.0101522
moth_ed	1318883	.0442478	-2.98	0.003	2186123	0451643
inc_10	0758295	.0182412	-4.16	0.000	1115815	0400774
num_chld	.0814452	.0184369	4.42	0.000	.0453096	.1175808
iq_nverb	0116258	.0018257	-6.37	0.000	015204	0080475
mothhr	.0032323	.001411	2.29	0.022	.0004668	.0059978
fathhr	.0003707	.0016077	0.23	0.818	0027803	.0035216
urban	.120549	.0438643	2.75	0.006	.0345765	.2065216
lawseq	0060729	.0048072	-1.26	0.206	0154948	.003349
caraloc	0109862	.0049966	-2.20	0.028	0207793	001193
samepar	0937772	.0569506	-1.65	0.100	2053983	.0178438
incare	.2369412	.1562446	1.52	0.129	0692927	.543175
mea7_1	.0109991	.0441142	0.25	0.803	0754631	.0974613
j255	.1053038	.1659712	0.63	0.526	2199937	.4306014
ratio	0023219	.0020785	-1.12	0.264	0063957	.0017519
_cons	.8391754	.1843495	4.55	0.000	.4778571	1.200494

. linktest

Iteration	0:	log	likelihood	=	-3052.9211
Iteration	1:	log	likelihood	=	-2833.8351
Iteration	2:	log	likelihood	=	-2832.7605
Iteration	3:	log	likelihood	=	-2832.7603

Probit estimates				Number	of obs	=	4989	
				LR chi	2(2)	=	440.32	
				Prob >	chi2		0.0000	
Log likelihood	Log likelihood = -2832.7603					Pseudo R2 =		
low_inc	Coef.	Std. Err.	z	P> z	[95% Co	onf.	Interval]	
hat	1.219058	.1059155	11.51	0.000	1.01146	57 57	1.426648	
hatsq	.2247661	.0949661	2.37	0.018	.038635	59	.4108963	
_cons	.0193096	.032793	0.59	0.556	044963	36	.0835828	

Probit estimates Log pseudolikelihood = -2825.9029					Number of obs = 4 Wald chi2(21) = 423 Prob > chi2 = 0.0 Pseudo R2 = 0.0				
low_inc	Coef.	Robust Std. Err.	z	P> z	[95% Con	f. Interval]			
<pre>fac1_1 fac2_1 fac3_1 fac4_1 mothhlth fathhlth fath_ed moth_ed inc_10 num_chld iq_nverb mothhr fathhr urban</pre>	.0086056 .0883576 .0561682 .0505378 0512735 .0337065 0828218 1222721 0757087 .0895495 0109693 .0023082 0001004 .134854	.0207751 .0231967 .0198407 .0195563 .0588033 .0574665 .0435791 .0446383 .018072 .0185389 .0018267 .0014029 .0015997 .0439428	0.41 3.81 2.83 2.58 -0.87 0.59 -1.90 -2.74 -4.19 4.83 -6.00 1.65 -0.06 3.07	0.679 0.000 0.005 0.010 0.383 0.558 0.057 0.006 0.000 0.000 0.000 0.100 0.950 0.002	0321129 .0428929 .0172811 .0122081 1665259 0789257 1682353 2097615 1111291 .0532139 0145496 0032358 .0487278	.1338222 .0950554 .0888675 .0639788 .1463388 .0025917 0347826 0402883 .1258851 007389 .0050579 .003035			
lawseq caraloc	0039978 0160172	.0047852	-0.84 -3.23	0.403	0133765	.005381			

samepar	0874486	.0567965	-1.54	0.124	1987677	.0238705
incare	.2714796	.1553903	1.75	0.081	0330799	.5760391
mea7_1	.0244768	.0443954	0.55	0.581	0625366	.1114903
j255	.0925145	.1716112	0.54	0.590	2438372	.4288663
ratio	0033225	.0021102	-1.57	0.115	0074585	.0008135
_cons	.8775863	.1840307	4.77	0.000	.5168929	1.23828

-

Probit estimate		Numbe	z	4989			
				LR ch		=	457.62
				Prob	> chi2	=	0.0000
Log likelihood	Pseudo R2 = 0 .			0.0749			
low_inc	Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
hat	1.119281	.0995941	11.24	0.000	. 92408	05	1.314482
hatsq	.125094	.0907191	1.38	0.168	05271	22	.3029002
_cons	.0084878	.031718	0.27	0.789	05367	82	.0706539

-

Data set 5

.

Probit estimates og pseudolikelihood = -2834.1924				Wald Prob Pseud	r of obs = chi2(21) = > chi2 = o R2 =	416.35 0.0000
low_inc		Robust Std. Err.	z	P> z	[95% Conf.	Interval]
fac1 1		.0211419			0395105	.0433642
fac2 1	.0987193	.0227004	4.35	0.000	.0542273	.1432113
fac3_1	.0128148	.0196776	0.65	0.515	.0542273 0257525	.0513821
fac4 1	.0425554	.0199021	2.14	0.032	.0035479	.0815629
mothhlth	.0425554 0412108	.0574	-0.72	0.473	.0035479 1537128	.0712912
fathhlth	.0485943	.058383	0.83	0.405	0658344	.163023
fath ed	.0485943 0358938	.0432818	-0.83	0.407	0658344 1207246	.0489371
moth ed	1309412	.0444357	-2.95	0.003	2180336	0438487
inc 10	087017	.0444357 .0180836	-4.81	0.000	1224601	
num chld	087017 .0795708	.0183106	4.35	0.000	.0436826	.115459
iq nverb	011245	.0018266	-6.16	0.000	014825	0076649
mothhr	011245 .0013248	.0018266 .0014032	0.94	0.345	0014254	.004075
fathhr	.0022106	.0015757	1.40	0.161	0008777	.0052989
urban	.0022106 .1388697	.0015757 .0437968	3.17	0.002	0008777 .0530295	.2247098
	003209	.0048299	-0.66	0.506	0126755	
	0139413	.0048299 .0049589	-2.81	0.005	0236605	- 0042221
samepar	1447107	.0572211	-2.53	0.011	2568619	
incare	.2356388	1574872	1.50	0.135	0730304	.544308
mea7 1	0295714	0443717	0.67	0 505	0730304 0573956	1165384
1255	0763831	1707813	0 45	0 655	- 2583421	4111084
ratio	.0763831 0017703	002107	-0.84	0 401	2583421 0058999	.0023592
_cons	.830842	.1833452	4.53	0.000	.471492	1.190192
. linktest Probit estimate	es			Numbe	r of obs = i2(2) =	4989
				Drob	= 2(2) = 2	144.09
Log likelihood	= -2831.318	3		Pseud	$\circ R2 =$	0.0728
low_inc	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
_hat	1 221482	1057128	11 55	0 000	1.014289	1.428675
_hatsq	.2276044				.041453	
cons	0190701	.0326472	0.58	0.559	0449172	.0830573
		.0326472			0449172	

Ordered probit: occupational status (age 30)

.

Males

Data set 1

Ordered probit	: estimates				of obs = hi2(21) =	4830 969.33
Log pseudolike	elihood = -55:	15.1868		Prob > Pseudo		0.0000 0.0846
		Robust				
oclass	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
fac1_1	.0658256	.0167432	3.93	0.000	.0330095	.0986417
fac2_1	.1322228	.0175416	7.54	0.000	.0978418	.1666038
fac3_1		.0159512	1.14	0.255	0131154	.049412
fac4_1	0100278	.0161603	-0.62	0.535	0417015	.0216458
mothhlth	.0472333	.0452771	1.04	0.297	0415082	.1359748
fathhlth		.0503781 _.	1.09	0.278	044036	.1534426
fath_ed		.0364017	-3.47	0.001	1976133	0549212
moth_ed	1359328	.0355897	-3.82	0.000	2056873	0661784
inc_10	0952629	.0141569	-6.73	0.000	12301	0675158
num_chld		.0165265	-0.25	0.804	036492	.0282908
iq_nverb	0189068	.0014472	-13.06	0.000	0217432	0160704
mothhr	.0004201	.0010952	0.38	0.701	0017264	.0025666
fathhr	.0001962	.0013012	0.15	0.880	0023541	.0027466
urban		.037339	5.26	0.000	.1233437	.2697099
lawseq		.0041051	-1.14	0.253	0127411	.0033507
caraloc		.0038587	-3.38	0.001	0206207	0054948
samepar	.0721335	.0519634	1.39	0.165	0297129	.17398
incare	.1809374	.1378948	1.31	0.189	0893314	.4512061
mea7_1		.0340157	-0.18	0.855	0728713	.0604678
j255	254231	.1109768	-2.29	0.022	4717416	0367205
ratio	0018072	.0016924	-1.07	0.286	0051244	.0015099
_cut1	-3.816927	.1681637		(Ancillary	parameters)	
cut2		.1628637		(merrary	parameters,	
_cut2 cut3		.1600056				
_cut4	.059204	.1629499				
. linktest						
Ordered probit	: estimates				of obs =	4830
				LR chi	2(2) =	1039.77
				Prob >	chi2 =	0.0000
Log likelihood	l = -5505.1643	3		Pseudo	R2 =	0.0863
oclass	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
hat	.1310404	.1966414	0.67	0.505	2543696	.5164504
hatsq	198531	.0443659	-4.47	0.000	2854866	1115754
4						
cut1	-2.930178	.214498		(Ancillarv	parameters)	
_cut2	-1.537953	.2141344				
cut3	0369199	.2119931				
Cut4	.9488751	.2126652				

Data set 2

Ordered probit estimates				Number	of obs	=	4830
-			•	Wald c	hi2(21)	=	969.69
				Prob >	chi2	=	0.0000
Log pseudolikelih		Pseudo	R2	=	0.0799		
		Robust					
oclass	Coef.	Std. Err.	z	P> z	[95% (cont.	Interval]

	+					
fac1 1	.0257185	.0168474	1.53	0.127	0073017	.0587387
fac2_1	.1011673	.0172572	5.86	0.000	.0673438	.1349907
fac3_1	.0194934	.0161955	1.20	0.229	0122492	.051236
fac4_1	.0193788	.0158235	1.22	0.221	0116347	.0503923
mothhlth	.035499	.0472581	0.75	0.453	0571252	.1281232
fathhlth	.0999439	.0500971	2.00	0.046	.0017554	.1981325
fath_ed	1322205	.0360115	-3.67	0.000	2028017	0616393
moth_ed	1522426	.0357937	-4.25	0.000	222397	0820882
inc_10	0969768	.0141179	-6.87	0.000	1246474	0693063
num_chld	.0012885	.0167235	0.08	0.939	0314889	.034066
iq nverb	0181657	.0014237	-12.76	0.000	0209561	0153753
mothhr	0001108	.0010992	-0.10	0.920	0022652	.0020436
fathhr	.0005876	.0013205	0.44	0.656	0020005	.0031757
urban	.1427485	.0375723	3.80	0.000	.0691082	.2163888
lawseq	0037589	.0040897	-0.92	0.358	0117745	.0042567
caraloc	0186896	.0039531	-4.73	0.000	0264376	0109416
samepar	.0762891	.0513266	1.49	0.137	0243093	.1768874
incare	.1459837	.1391906	1.05	0.294	126825	.4187923
mea7_1	.0042175	.0342861	0.12	0.902	0629821	.0714171
j2 <u>5</u> 5	237423	·.1121272	-2.12	0.034	4571884	0176576
ratio	.0002339	.0016675	0.14	0.888	0030343	.0035021
	+					
_cut1	-3.810107	.1677723		(Ancillary	parameters)	. •
_cut2	-2.444967	.1627248				
_cut3	9477087	.1602132				
_cut4	.0436416	.1639206				

Ordered probit		L		LR ch	> chi2	= = =	4830 973.03 0.0000 0.0807
oclass	Coef.	Std. Err.	z	P> z	[95% (Conf.	Interval]
_hat _hatsq		.2051962 .0461537	1.78 -3.13	0.075 0.002			.767701 0540463
_cut1 _cut2 _cut3 _cut4	-3.156178 -1.783225 2884496 .6978203	.2251667 .2245405 .2223082 .2228914		(Ancillary	y paramet	ers)	

Ordered probit estimates				Number of $obs = 44$ Wald $chi2(21) = 998$			
						= 0.0000	
Log pseudolikelihood = -5520.4754				Pseud	IOR2	= 0.0837	
		Robust					
oclass	Coef.	Std. Err.	z	P> z	[95% Con	f. Interval]	
fac1 1	.0500142	.0160309	3.12	0.002	.0185943	.0814342	
fac21	.1399678	.0169491	8.26	0.000	.1067483	.1731874	
fac31	.0107387	.0158873	0.68	0.499	0203999	.0418772	
fac4_1	.0083894	.0158716	0.53	0.597	0227183	.0394972	
mothhlth	.019813	.0469747	0.42	0.673	0722557	.1118817	
fathhlth	.0378438	.0496356	0.76	0.446	0594401	.1351278	
fath_ed	1654474	.036339	-4.55	0.000	2366705	0942243	
moth_ed	163529	.0360806	-4.53	0.000	2342457	0928122	
inc_10	0859311	.0141823	-6.06	0.000	113728	0581342	
num_chld	.0083136	.0165864	0.50	0.616	0241952	.0408225	
iq nverb	0177161	.0014273	-12.41	0.000	0205137	0149186	
mothhr	.0001694	.0010941	0.15	0.877	001975	.0023138	
fathhr	.0000415	.0013137	0.03	0.975	0025332	.0026162	
urban	.140883	.0375878	3.75	0.000	.0672122	.2145537	
lawseq	007263	.004085	-1.78	0.075	0152695	.0007435	

caraloc 0144667 .0039164 -3.69 0.000 -	.02214260067908
	.0522586 .146401
	.1114615 .4450062
	.0643093 .0700453
	.44978390082419
	.0026486 .0039094
Iacio .0006304 .001673 0.36 0.706 -	.0020480 .0039094
cut1 -3.763623 .1685398 (Ancillary p	arameters)
cut2 -2.391487 .1636025	
_cut3 8858335 .1608558	
. linktest	
Ordered probit estimates Number of	f obs = 4830
LR chi2()	2) = 1018.69
Prob > c	hi2 = 0.0000
Log likelihood = -5515.7068 Pseudo R	2 = 0.0845
-	
oclass Coef. Std. Err. z P> z	[95% Conf. Interval]
hat .4095892 .1938712 2.11 0.035	.0296087 .7895697
	.22583260504124
_cut1 -3.175633 .2070868 (Ancillary page 1)	arameters)
_cut1 -3.175633 .2070868 (Ancillary p. _cut2 -1.795499 .2063015	arameters)
- !	arameters)
_cut2 -1.795499 .2063015	arameters)

Data set 4

-

Ordered probit Log pseudolike	Number Wald c Prob > Pseudo	4829 979.26 0.0000 0.0841				
		Robust				
oclass	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
facl 1	.0455452	.016469	2.77	0.006	.0132666	.0778238
fac21	.120626	.0175122	6.89	0.000	.0863027	.1549494
fac3_1	.025962	.015848	1.64	0.101	0050994	.0570235
fac4_1	.004397	.0160103	0.27	0.784	0269825	.0357765
mothhlth	.0465089	.046496	1.00	0.317	0446215	.1376393
fathhlth	.0952115	.0494136	1.93	0.054	0016375	.1920604
fath ed	120889	.0363518	-3.33	0.001	1921372	0496408
moth_ed	1237289	.0360681	-3.43	0.001	194421	0530368
inc_10	102705	.0142503	-7.21	0.000	1306351	0747749
num_chld	.0151341	.0163027	0.93	0.353	0168186	.0470868
iq_nverb	018467	.0014612	-12.64	0.000	0213309	0156031
mothhr	.0001698	.0011051	0.15	0.878	0019963	.0023358
fathhr	.0010205	.0013091	0.78	0.436	0015452	.0035863
urban	.1594019	.0373615	4.27	0.000	.0861747	.2326291
lawseq	0074539	.0040284	-1.85	0.064	0153495	.0004416
caraloc	0162509	.0039332	-4.13	0.000	0239598	008542
samepar	.0279392	.0518936	0.54	0.590	0737704	.1296488
incare	.1138251	.1431416	0.80	0.427	1667272	.3943775
mea7_1	.0152662	.0342174	0.45	0.655	0517988	.0823312
j255	2275772	.1170224	-1.94	0.052	4569368	.0017824
ratio	.0013187	.0016828	0.78	0.433	0019794	.0046169
_cut1	-3.805985	.1694836		(Ancillary	parameters)	
_cut2	-2.433934	.1642915		-		
_cut3	9274162	.1617853				
_cut4	.0715713	.1657713				

. linktest

Ordered probit estimates

Number of obs =

4829

Log likelihood	1 = -5514.804	4			i2(2) > chi2 o R2	=	1018.90 0.0000 0.0846		
oclass	Coef.	Std. Err.	z	P> z	[95% C	Conf.	Interval]		
_hat _hatsq	.5510456 1024436			0.005 0.021					
_cut1 -3.345855 .2159235 (Ancillary parameters) _cut2 -1.96787 .2152432 _cut3 4636567 .2127251 _cut4 .5306416 .2130307									
Data set 5									
Ordered probit	: estimates			Wald		=	965.79		
Log pseudolike	elihood = -55	37.5291			> chi2 o R2	=	0.0000 0.0808		
		Robust							
oclass	Coef.	Std. Err.	Z	P> z	[95% C	Conf.	Interval]		
fac1_1		.0165101	1.05		01503				
fac2_1		.0172797	7.94	0.000	.10332		.171063		
fac3_1 fac4 1		.0160738 .0162796	-1.06 0.43	0.288 0.669	04857		.0144292 .0388634		
Tac4_1 mothhlth	.0069559 .0253666	.0162796		0.588	02495		.1172597		
fathhlth	.0437124	.0501252		0.383	05453		.141956		
fath ed		.036446		0.000	2337				
moth_ed		.0358007		0.001	19171				
inc 10		.0143292	-6.13	0.000	11590		0597308		
rum chld	- 0037956	016497	-0 23	0 919	- 0361	10	0285479		

fathhlth	.0437124	.0501252	0.87	0.383	0545313	.141956
fath ed	1622812	.036446	-4.45	0.000	233714	0908483
moth ed	1215458	.0358007	-3.40	0.001	1917138	0513777
inc_10	0878154	.0143292	-6.13	0.000	1159001	0597308
num_chld	0037856	.016497	-0.23	0.819	036119	.0285479
iq nverb	0190392	.0014246	-13.36	0.000	0218314	0162471
mothhr	.0005557	.0011012	0.50	0.614	0016025	.00271 39
fathhr	.001131	.0012823	0.88	0.378	0013822	.0036443
urban	.1620376	.0375867	4.31	0.000	.088369	.2357061
lawseq	0042286	.0040788	-1.04	0.300	012223	.0037657
caraloc	0118238	.0038345	-3.08	0.002	0193392	0043083
samepar	.0576623	.0505998	1.14	0.254	0415115	.156836
incare	.1921333	.1361026	1.41	0.158	0746229	.4588895
mea7_1	01931	.03446	-0.56	0.575	0868503	.0482303
j255	2793655	.1126573	-2.48	0.013	5001698	0585612
ratio	.0015991	.0016819	0.95	0.342	0016973	.0048955
	+					
_cut1	-3.685126	.1661983		(Ancillary	parameters)	
_cut2	-2.316803	.1610353				
_cut3	819105	.1587754				
_cut4	· .1713844	.1628725				

Ordered probit		5		LR ch	> chi2	= =	4829 982.05 0.0000 0.0815
oclass	Coef.	Std. Err.	z	P> z	[95% C	onf.	Interval]
_hat _hatsq	.4252786 1386517	.1928014 .0458644	2.21 -3.02	0.027 0.003	.04739		.8031624 0487591
_cut1 _cut2 _cut3 _cut4	-3.130559 -1.75497 2595549 .726119	.2001441 .1991123 .1968737 .1978404		(Ancillar	y paramet	ers)	

Females

Data set 1

Ordered probit	Ordered probit estimates				Number of obs = Wald chi2(21) = 79		
Log pseudolike	elihood = -46	528.984		Prob Pseude	> chi2 = o R2 =	0.0000 0.0841	
		Robust					
oclass	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
facl 1	.0297165	.0192793	1.54	0.123	0080702	.0675032	
fac2_1	.1369095	.0202469	6.76	0.000	.0972263	.1765927	
fac3_1	0122736	.017694	-0.69	0.488	0469531	.022406	
fac4_1	021951	.0182466	-1.20	0.229	0577137	.0138117	
mothhlth	0375822	.0495762	-0.76	0.448	1347499	.0595854	
fathhlth	.0722792	.0502997	1.44	0.151	0263065	.1708649	
fath ed	0724033	.0383135	-1.89	0.059	1474963	.0026898	
moth ed	1745296	.0385096	-4.53	0.000	2500071	0990522	
inc 10	0975792	.0156806	-6.22	0.000	1283126	0668458	
num chld		.0188923	1.37	0.172	0112164	.0628401	
iq nverb	0175835	.0016048	-10.96	0.000	0207289	014438	
mothhr	.0005892	.0012428	0.47	0.635	0018466_	.003025	
fathhr	.0015873	.0014925	1.06	0.288	001338	.0045125	
urban	.158558	.0409128	3.88	0.000	.0783705	.2387455	
lawseq		.004126	-1.17	0.244	0128967	.0032769	
caraloc		.004514	-4.81	0.000	0305771	0128827	
samepar	0468363	.0550553	-0.85	0.395	1547426	.06107	
incare		.1616266	0.58	0.560	2225566	.4110082	
mea7 1		.0394814	-0.23	0.816	0865718	.0681923	
j255		.136921	-2.25	0.024	5768007	0400801	
ratio	.0030147	.0018611	1.62	0.105	0006329	.0066624	
cut1	-4.137238	.1768677		(Ancillar	y parameters)		
_cut2		.1695206		,	<i>pullumotoll</i> ,		
_cut3	9771832	.1660069					
 cut4	.0475735	.1682065					
. linktest							
Ondone di musi di				NT	a af ak-	1017	
Ordered probit	estimates				r of obs =	4241	
				LR ch:			
· · · · · · · · · · · · · · · · · · ·					> chi2 =	0.0000	
Log likelihood	1 = -4628.9692	2		Pseudo	⊃R2 =	0.0841	
		Std. Err.	<u>-</u> -		IOE& Conf	Interval]	
oclass	Coef.	SCU. EII.	z	P> z	[95% CONL.	Incerval]	
hat	.9631565	.2175641	4.43	0.000	.5367386	1.389574	
_hatsq	0083431	.0486252	-0.17	0.864	1036468	.0869606	
cut1	-4.099235	.2407003		(Ancillar	y parameters)		
	-2.462481						
_out 3	9387519	.2365572					
	.085527						
_~~~							

Ordered probit estimates				Number	c of obs	= 4241		
				Wald d	chi2(21)	=	756.66	
	•			Prob :	> chi2	=	0.0000	
Log pseudolikelihood = -4650.241				Pseudo R2			0.0799	
oclass	Coef.	Robust Std. Err.	z	P> z	[95% Co		Interval]	
fac1_1	.0005201	.0190815	0.03	0.978	03687	9	.0379192	
fac2_1	.1452527	.020447	7.10	0.000	.105177	4	.185328	

fac3_1	.0030608	.0178024	0.17	0.863	0318312	.0379528
fac4_1	0149287	.0179718	-0.83	0.406	0501528	.0202954
mothhlth	0397095	.050602	-0.78	0.433	1388875	.0594685
fathhlth	.091454	.0504239	1.81	0.070	0073751	.190283
fath_ed	0664306	.0383618	-1.73	0.083	1416185	.0087572
moth_ed	2136512	.0381966	-5.59	0.000	2885151	1387873
inc_10	089914	.0154112	-5.83	0.000	1201195	0597086
num_chld	.0385237	.0188931	2.04	0.041	.001494	.0755534
iq_nverb	0151908	.0016167	-9.40	0.000	0183595	0120221
mothhr	.0006474	.0012401	0.52	0.602	0017831	.003078
fathhr	.0013651	.0014567	0.94	0.349	0014899	.0042201
urban	.1220045	.040503	3.01	0.003	.04262	.2013891
lawseq	0034213	.0041092	-0.83	0.405	0114752	.0046325
caraloc	0237887	.0044777	-5.31	0.000	0325648	0150126
samepar	0520182	.0535504	-0.97	0.331	1569749	.0529386
incare	.0712425	.1684414	0.42	0.672	2588965	.4013815
mea7_1	.0287612	.0396079	0.73	0.468	0488688	.1063913
j255	3690526	.1363016	-2.71	0.007	6361989	1019063
ratio	.0011862	.0018604	0.64	0.524	0024601	.0048326
cut1	-3.958655	.1726102		(Ancillar	y parameters)	1
_cut2	-2.330015	.1657853				
cut3	8175169	.1625243				
_cut4	.2022328	.1641881				

Ordered probit		Number	of obs	=	4241		
				LR chi	2(2)	=	807.57
				Prob >	chi2	=	0.0000
Log likelihood	= -4650.2129	9		Pseudo	R2	=	0.0799
-							
oclass	Coef.	Std. Err.	z	P> z	[95% Co	nf.	Interval]
+							
_hat	.9508259	.210374	4.52	0.000	.538500	4	1.363151
_hatsq	0120057	.0506106	-0.24	0.812	111200	6	.0871893
+							
_cut1	-3.911915	.2166941		(Ancillary	paramete	rs)	
_cut2	-2.282393	.2151891					
_cut3	7702121	.2121626					
_cut4	.2488996	.2120874					

Ordered probit e	rdered probit estimates			Number of obs			4241
				Wald d	hi2(21)	=	783.00
				Prob >	chi2	=	0.0000
Log pseudolikelihood = -4637.4906				Pseudo	R2	=	0.0824
		Robust					
oclass	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
+							

fac1_1	.0171972	.0187891	0.92	0.360	0196288	.0540231
fac2_1	.1411728	.0205073	6.88	0.000	.1009792	.1813663
fac3_1	0114444	.0177886	-0.64	0.520	0463095	.0234207
fac4_1	005648	.0179817	-0.31	0.753	0408915	.0295955
mothhlth	0248199	.0499712	-0.50	0.619	1227617	.073122
fathhlth	.0620672	.0500235	1.24	0.215	0359771	.1601115
fath_ed	1067949	.0385015	-2.77	0.006	1822565	0313333
moth_ed	1958385	.0381307	-5.14	0.000	2705734	1211037
inc_10	0851071	.0154502	-5.51	0.000	1153889	0548253
num_chld	.0272993	.0188078	1.45	0.147	0095634	.064162
iq_nverb	0159357	.0016144	-9.87	0.000	0190998	0127715
mothhr	.0018155	.0012571	1.44	0.149	0006484	.0042795
fathhr	.0000455	.0015117	0.03	0.976	0029174	.0030085
urban	.1347041	.0402538	3.35	0.001	.0558081	.2136001
lawseq	0024776	.0041037	-0.60	0.546	0105207	.0055654
caraloc	0254578	.0045717	-5.57	0.000	0344182	0164974
samepar	0714851	.0535665	-1.33	0.182	1764736	.0335034
incare	.0349175	.1660234	0.21	0.833	2904824	.3603175
mea7_1	.0085097	.039476	0.22	0.829	0688619	.0858813
j255	3475957	.1329032	-2.62	0.009	6080812	0871102

Ordered probit	estimates .		of obs = hi2(21) = chi2 =	4240 734.32 0.0000		
Log pseudolike	lihood = -464	6.4418		Pseudo	R2 =	0.0805
		Robust				
oclass	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
fac1_1	01579	.0188333	-0.84	0.402	0527025	.0211226
fac2_1	.1296625	.020729	6.26	0.000	.0890344	.1702906
fac3_1	.0324644	.0170191	1.91	0.056	0008924	.0658211
fac4_1	0093795	.0173762	-0.54	0.589	0434362	.0246771
mothhlth	0611478	.050379	-1.21	0.225	1598889	.0375933
fathhlth	.0764745	.0499609	1.53	0.126	021447	.174396
fath_ed	0596311	.0385799	-1.55	0.122	1352463	.0159841
moth_ed	1595801	.0382503	-4.17	0.000	2345493	084611
inc_10	091567	.015413	-5.94	0.000	121776	0613581
num_chld	.0303705	.0187071	1.62	0.104	0062947	.0670357
iq_nverb	0164564	.0015858	-10.38	0.000	0195645	0133482
mothhr	.000542	.0012379	0.44	0.661	0018842	.0029682
fathhr	.0001403	.0014686	0.10	0.924	0027381	.0030186
urban	.1825965	.0400696	4.56	0.000	.1040616	.2611314
lawseq	.0019712	.0041743	0.47	0.637	0062102	.0101526
caraloc	0258134	.0046898	-5.50	0.000	0350053	0166214
samepar	0410961	.0553604	-0.74	0.458	1496005	.0674083
incare	.0697001	.166644	0.42	0.676	2569161	.3963163
mea7 1	.0102707	.0394023	0.26	0.794	0669564	.0874979
j255	3299084	.136281	-2.42	0.015	5970143	0628026
ratio	.0022385	.0018454	1.21	0.225	0013784	.0058554
_cut1	-4.025642	.1751052		(Ancillary	parameters)	
_cut2	-2.396665	.1681413				
_cut3	8835251	.1649984				
_cut4	.1384299	.1666915				
. linktest						
Ordered probit	estimates			Number	of obs =	4240
				LR chi	2(2) =	813.66
				Prob >	chi2 =	0.0000
Log likelihood	= -4646.3989)		Pseudo	R2 =	0.0805
oclass	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval}

_hat	.9381761	.2142527	4.38	0.000	.5182485	1.358104
_hatsq	0146546	.0500758	-0.29	0.770	1128014	.0834923
_cut1 _cut2 _cut3 _cut4	-3.9649 -2.334821 822056 .1990569	.2270628 .2258003 .2228243 .222421		(Ancillar	y parameters)	

Data set 5

Ordered probit	: estimates			Wald c	of obs = hi2(21) =	4240 750.45
Log pseudolike	elihood = -46	51.1825		Prob > Pseudo		
		Robust				
oclass	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
facl 1	.0021425	.0191109	0.11	0.911	0353141	.0395991
fac2 1	.1181871	.0198603	5.95	0.000	.0792616	.1571127
fac3 1	.0223587	.01763	1.27	0.205	0121955	.0569129
fac4 1	0057797	.0176962	-0.33	0.744	0404636	.0289041
mothhlth	0132863	.0491325	-0.27	0.787	1095842	.0830115
fathhlth	.1137616	.0498436	2.28	0.022	.0160699	.2114533
fath ed	0569913	.0379632	-1.50	0.133	1313978	.0174153
moth ed	166901	.0384192	-4.34	0.000	2422012	0916008
inc 10	0921428	.0154304	-5.97	0.000	1223858	0618997
num chld	.0354889	.0185695	1.91	0.056	0009066	.0718844
iq_nverb	0176016	.0015888	-11.08	0.000	0207156	0144876
mothhr	.0014005	.0012251	1.14	0.253	0010007	.0038017
fathhr	.0016806	.001479	1.14	0.256	0012182	.0045794
urban	.1595922	.0402587	3.96	0.000	.0806866	.2384978
lawseq	.002469	.0041254	0.60	0.550	0056166	.0105546
caraloc	0241811	.0044442	-5.44	0.000	0328916	0154705
samepar	0277051	.0554398	-0.50	0.617	1363651	.0809549
incare	.086938	.1639644	0.53	0.596	2344263	.4083024
mea7 1	0036808	.0397029	-0.09	0.926	081497	.0741355
j255	360869	.1366202	-2.64	0.008	6286396	0930984
ratio	.0015814	.0018546	0.85	0.394	0020535	.0052162
_cut1	-3.980645	.1779246		(Ancillary	parameters)
_cut2	-2.355544	.1712857				
_cut3	8423567	.1684079				
_cut4	.1786627	.1708888				
. linktest						
Ordered probit	estimates			Number	of obs =	4240
-				LR chi	2(2) =	802.08
				Prob >	chi2 =	0.0000
Log likelihood	i = -4650.7853	3		Pseudo	R2 =	0.0794
oclass	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval}
hat	1.191031	.2173377	5.48	0.000	.7650573	1.617005
hatsq	.0458711	.0514573	0.89	0.373	0549833	
_cut1	-4.166204	.2273379		(Ancillary	parameters	}
_cut2	-2.544056	.2257161				
_cut3	-1.029558	.2225548				
_cut4	0059832	.2221355				

. •

2

Complete results for estimations using maternal ratings

Results based on combined parameter estimates and variances from multiply imputed data sets.

Males

OLS: log of weekly earnings (age 30)

Males

Overall estimates

				Number of obs Number of obs	• •	4466 4467
logern	Coef.	Std. Err.	t	₽> t [95% Co	nf. Interva	1] MI.df
fac1_m	0101	.01146	-0.88	0.3780326	.0124	651.33*
fac2_m	.00908	.01272	0.71	0.47901664	.0348	39.24*
fac3_m	00905	.01263	-0.72	0.47903472	.01662	34.08*
fac4_m	00316	.01102	-0.29	0.77402483	.0185	430.66*
fac5_m	03817	.01363	-2.80	0.00606505	01128	195.02*
mothhlth	01422	.03366	-0.42	0.67308047	.05202	299.26*
fathhlth	05142	.03728	-1.38	0.16812452	.02169	2234.44*
fath_ed	.03101	.02873	1.08	0.2910281	.09012	25.55*
moth_ed	.08789	.02584	3.40	0.001 .03658	.13921	92.14*
inc_10	.04803	.01065	4.51	0.000 .02693	.06913	111.72*
num_chld	0009	.01111	-0.08	0.93502302	.02122	77.80*
iq_nverb	.00427	.00093	4.61	0.000 .00245	.00609	509.33*
mothhr	00083	.00081	-1.03	0.30600244	.00077	102.33*
fathhr	.00031	.00089	0.35	0.72400143	.00206	366.29*
urban	05099	.02905	-1.76	0.09111066	.00868	26.29*
lawseq	.0046	.00335	1.37	0.18100226	.01146	28.63*
caraloc	.00966	.00289	3.34	0.001 .00391	.0154	91.26*
samepar	02016	.04072	-0.49	0.62310251	.0622	39.29*
incare	30318	.11483	-2.64	0.00852826	07809	15324.28*
mea7_1	00343	.02312	-0.15	0.88204877	.0419	3096.70*
j255	.14648	.09528	1.54	0.1240403	.33326	8140.21*
ratio	00071	.00132	-0.54	0.59100336	.00193	55.25*
_cons	5.1369	.10627	48.34	0.000 4.9273	5.3464	199.24*

Females

				Number of obs Number of obs	• •	3855 3856
logern	Coef.	Std. Err.	t	P> t [95% Co	onf. Interval	l] MI.df
fac1_m	01505	.01709	-0.88	0.37904857	.01847	1202.62*
fac2_m	00083	.02203	-0.04	0.9700455	.04383	36.57*
fac3_m	05009	.01941	-2.58	0.01108866	01153	88.50*
fac4_m	02647	.01805	-1.47	0.14506215	.00921	140.00*
fac5_m	01546	.01868	-0.83	0.41305333	.02241	36.54*
mothhlth	.04758	.04451	1.07	0.28604013	.13528	228.39*
fathhlth	.02005	.04774	0.42	0.67507418	.11428	173.81*
fath ed	.011	.03564	0.31	0.7580592	.0812	247.63*
mothed	.04865	.03652	1.33	0.18502341	.1207	182.57*
inc 10	.07593	.0139	5.46	0.000 .04862	.10324	554.78*
num chld	01916	.01658	-1.16	0.24905186	.01355	191.54*
iq nverb	.01142	.00136	8.42	0.000 .00875	.01409	304.01*
mothhr	00123	.0012	-1.02	0.30900362	.00115	108.21*
fathhr	0013	.00141	-0.92	0.35700408	.00148	204.42*
urban	10005	.03903	-2.56	0.01117697	02313	221.53*
lawseq	.00887	.00375	2.37	0.018 .00151	.01624	584.22*
caraloc	.00989	.00397	2.49	0.013 .0021	.01769	818.98*

samepar	.0353	.05229	0.68	0.50006774	.13834	229.63*
incare	.04307	.15235	0.28	0.77725556	.3417	17039.74*
mea7_1	.02567	.03847	0.67	0.507051	.10234	73.27*
j255	.12103	.11557	1.05	0.2951057	.34776	1223.34*
ratio	00361	.00208	-1.73	0.09900795	.00074	20.31*
_cons	3.9898	.16107	24.77	0.000 3.6715	4.3082	144.62*

_

Probit: low income (age 30)

.

Males

Overall estimates

				Number of obs Number of obs	• •	4378 4379
low_inc	Coef.	Std. Err.	t	P> t [95% Co	nf. Interval	l] MI.df
fac2_m	.04115	.02181	1.89	0.06100188	.08417	182.35*
fac3_m	.00214	.02109	0.10	0.9190394	.04367	265.60*
fac4_m	.04131	.0246	1.68	0.10100836	.09097	41.40*
fac1_m	.00934	.02249	0.42	0.67803502	.0537	195.26*
fac5_m	.02651	.02508	1.06	0.29502362	.07663	63.28*
mothhlth	08079	.07053	-1.15	0.25522118	.0596	78.97*
fathhlth	.05351	.06824	0.78	0.43408082	.18784	280.15*
moth_ed	20271	.05017	-4.04	0.00030147	10395	271.79*
fath_ed	08713	.05808	-1.50	0.14420572	.03146	30.12*
inc_10	08551	.0208	-4.11	0.0001266	04442	154.24*
num_chld	.0382	.02226	1.72	0.08900586	.08226	123.72*
mothhr	.0019	.00164	1.16	0.24900136	.00517	86.56*
fathhr	.00177	.00189	0.93	0.35300199	.00553	88.22*
urban	.08533	.04869	1.75	0.08001031	.18097	546.55*
j255	22699	.18214	-1.25	0.21358399	.13	45198.42*
ratio	00055	.00259	-0.21	0.83200573	.00463	55.58*
mea7_1	.06989	.05008	1.40	0.16602936	.16914	109.63*
caraloc	01032	.00568	-1.82	0.07202159	.00095	94.88*
lawseq	-6.0e-05	.00655	-0.01	0.99301337	.01325	34.20*
iq_nverb	01113	.00185	-6.01	0.00001477	0075	746.31*
incare	.11475	.16946	0.68	0.49821739	.44689	57174.92*
samepar	.05837	.07387	0.79	0.43308962	.20635	56.03*
_cons	.68974	.20048	3.44	0.001 .29574	1.0837	441.53*

Females

				Number of obs Number of obs	• •	4989 4990
low_inc	Coef.	Std. Err.	t	P> t [95% Co	nf. Interval)	MI.df
fac2_m	.08838	.02561	3.45	0.001 .0373	.13947	68.89*
fac3_m	.02549	.02735	0.93	0.36003092	.08191	24.22*
fac4_m	.04503	.02384	1.89	0.06200231	.09237	93.78*
fac1_m	00472	.02277	-0.21	0.83605013	.04069	71.07*
fac5_m	6.1e-05	.02165	0.00	0.99804296	.04308	89.34*
mothhlth	04848	.06164	-0.79	0.4321697	.07274	360.96*
fathhlth	.03879	.06168	0.63	0.5300825	.16008	366.57*
moth_ed	13303	.04838	-2.75	0.00722857	03748	160.34*
fath_ed	05498	.05359	-1.03	0.31216396	.05401	33.32*
inc_10	07858	.01886	-4.17	0.0001156	04156	760.95*
num_chld	.07617	.0204	3.73	0.000 .03583	.11651	135.80*
mothhr	.00205	.00179	1.15	0.26200162	.00573	26.90*
fathhr	.00062	.00206	0.30	0.76500363	.00488	23.91*
urban	.12443	.0471	2.64	0.009 .03169	.21717	259.70*
j255	.09515	.17046	0.56	0.57723902	.42933	5402.32*
ratio	00209	.00229	-0.91	0.36400662	.00244	146.31*
mea7_1	.04028	.0447	0.90	0.36804736	.12792	4633.28*
caraloc	0153	.00539	-2.84	0.00502596	00463	137.08*
lawseq	00413	.00489	-0.84	0.39801372	.00546	2291.62*
iq_nverb	01341	.00182	-7.37	0.00001698	00983	612.00*

incare	.26153	.15856	1.65	0.099	04935	.57242	3588.82*
samepar	09213	.06666	-1.38	0.172	22571	.04144	55.13*
_cons	1.0403	.18803	5.53	0.000	.67025	1.4103	300.01*

~

Probit: economically active (age 30)

Males

· ·

Overall estimates

				Number of obs	• •	5429
				Number of obs	(max) =	5430
empact	Coef.	Std. Err.	t	P> t [95% Co	onf. Interval] MI.df
fac2 m	13073	.02442	-5.35	0.00017866	0828	806.25*
fac3 m	01902	.02761	-0.69	0.493074	.03595	77.67*
fac4 m	0425	.02775	-1.53	0.1290975	.0125	110.66*
faclm	03395	.03086	-1.10	0.27709601	.02812	47.19*
fac5 m	00505	.02877	-0.18	0.86106188	.05179	151.62*
mothhlth	07797	.07657	-1.02	0.30922819	.07225	1181.98*
fathhlth	05895	.09726	-0.61	0.54925792	.14003	28.82*
moth ed	00467	.06058	-0.08	0.93812345	.11411	2663.07*
fath ed	.11628	.09472	1.23	0.24709405	.32661	10.25*
inc 10	.06687	.02584	2.59	0.010 .01603	.11771	318.36*
num_chld	02578	.0264	-0.98	0.33007781	.02624	223.60*
mothhr	.00015	.00202	0.07	0.94200387	.00417	75.98*
fathhr	.00277	.00225	1.24	0.21800165	.0072	266.70*
urban	23208	.0698	-3.33	0.00237442	08974	31.10*
j255	24574	.20141	-1.22	0.22364067	.1492	2762.24*
ratio	.00573	.003	1.91	0.05700018	.01163	283.94*
mea7_1	19445	.0694	-2.80	0.00933671	05218	27.57*
caraloc	.01176	.00704	1.67	0.09900224	.02576	85.92*
lawseq	0032	.00697	-0.46	0.64601688	.01048	606.24*
iq_nverb	.00821	.00254	3.23	0.002 .00313	.01329	68.27*
incare	33044	.19029	-1.74	0.08270342	.04253	52454.35*
samepar	.14294	.07836	1.82	0.06901137	.29725	257.10*
_cons	.20209	.26353	0.77	0.44532029	.72446	107.60*

Females

				Number of obs Number of obs	• •	5751 5752
empact	Coef.	Std. Err.	t	P> t [95% Co	onf. Interval] MI.df
fac2 m	06624	.02327	-2.85	0.00511229	02019	125.42*
fac3_m	01913	.02405	-0.80	0.43006741	.02915	51.07*
fac4_m	01294	.02511	-0.52	0.61006395	.03806	34.35*
fac1_m	02576	.02025	-1.27	0.20406559	.01407	346.03*
fac5_m	.0132	.02006	0.66	0.51102637	.05278	192.72*
mothhlth	.00964	.06123	0.16	0.87511172	.13101	107.90*
fathhlth	02168	.06344	-0.34	0.73314789	.10454	81.05*
moth_ed	.07566	.04684	1.62	0.10801692	.16825	142.79*
fath_ed	.02699	.04316	0.63	0.53205773	.11171	784.82*
inc_10	.05121	.01865	2.75	0.007 .01447	.08795	222.40*
num_chld	09343	.02055	-4.55	0.00013462	05225	54.82*
mothhr	00044	.00179	-0.24	0.81000419	.00331	19.39*
fathhr	00111	.00156	-0.71	0.47600417	.00195	1166.84*
urban	11124	.05191	-2.14	0.0392165	00597	36.17*
j255	19266	.1444	-1.33	0.18247569	.09037	35796.56*
ratio	.0059	.00259	2.28	0.031 .00058	.01121	26.10*
mea7_1	.01882	.04773	0.39	0.69407584	.11348	102.57*
caraloc	.01593	.00566	2.81	0.007 .00452	.02734	44.97*
. lawseq	00087	.00502	-0.17	0.8630108	.00907	144.91*
iq_nverb	.01198	.00234	5.13	0.000 .00705	.0169	17.27*
incare	14025	.14543	-0.96	0.33542529	.1448	30007.38*
samepar	.14663	.06293	2.33	0.023 .02072	.27254	59.24*
_cons	64425	.22131	-2.91	0.008 -1.1012	18728	23.80*

Ordered probit: occupational status (age 30)

Males

Overall estimates

. .

Overall esti	lmates				obs (min) obs (max)	= =	4829 4830
oclass	Coef.	Std.Err.	t	P> t	[95% Conf.	Interval]	MI.df
fac2_m	.02254	.01631	1.38	.201	01147	.05441	288
fac3_m	.02146	.01674	1.28	.168	00959	.05467	246
fac4_m	.09811	.01820	5.39	.000	.06168	.13445	65
fac1_m	.01413	.01838	0.77	.445	02255	.05082	66
fac5_m	.00742	.01735	0.42	.672	02688	.04162	176
mothhlth	.03798	.04904	0.77	.439	058408	.13437	430
fathhlth	.07593	.05721	1.33	.189	03817	.19003	70
fath_ed	15008	.04171	-3.60	.0001	23333	06682	67
moth_ed	14056	.04221	-3.33	.002	22525	05586	52
inc_10	09120	.01657	-5.61	.000	12360	05881	74
num_chld	.00691	.01884	0.37	.715	03059	.04441	80
iq_nverb	02013	.00161	-12.51	.000	02335	01690	57
mothhr	.00038	.00116	0.33	.744	00191	.00267	308
fathhr	.00037	.00142	0.26	.793	002435	.00318	132
urban	.16150	.04373	3.69	.001	.07390	.24911	56
lawseq	00504	.00488	-1.03	.308	01489	.04813	43
caraloc	01719	.00467	-3.68	.001	02663	00774	40
samepar	.04577	.05705	0.80	.424	06723	.15878	115
incare	.12437	.14695	0.85	.398	16456	.41329	385
mea7_1	.00194	.03690	0.05	.958	07081	.07469	209
j255	26805	.11606	-2.31	.021	49563	04048	2847
ratio	.00032	.00228	0.14	.891	00446	.00509	19

Females

Overall est:	imated			-			
Overail est.	Imaces				obs (min) obs (max)		4240 4241
<u> </u>						•	
oclass	Coef.	Std.Err.	t	P> t	[95% Conf.	Interval]	MI.df
fac2_m	.00535	0.00236	0.23	. 822	04187	.05250	71
fac3_m	.00408	0.02045	0.20	.842	03612	.04430	390
fac4_m	.08050	0.00214	3.76	.000	.03840	0.12268	346
fac1_m	.02141	0.02097	1.02	.311	020489	.06330	64
fac5_m	02733	0.00198	-1.38	.171	06665	.01199	106
mothhlth	03923	0.05416	-0.72	.470	14162	.67726	164
fathhlth	.09005	0.05517	1.63	.104	01905	.19915	135
fath_ed	07937	0.04249	-1.87	.064	16357	.00482	112
moth_ed	18334	0.04351	-4.21	.000	2699	09674	79
inc_10	08938	0.01660	-5.38	.000	12209	05667	226
num_chld	.035092	0.01979	1.77	.075	003762	.07395	742
iq_nverb	01867	0.00182	10.23	.000	02234	01500	48
mothhr	.00130	0.00141	0.92	.359	00151	.00411	78
fathhr	.00090	0.00171	0.53	.601	002532	.00434	60
urban	.15479	0.00046	3.32	.002	.06164	.24794	67
lawseq	001404	0.00575	-0.24	.810	01353	.01073	17
caraloc	02651	0.00503	-5.27	.000	03649	01653	102
samepar	04879	0.05933	-0.82	.412	16599	.06839	156
incare	.06162	0.16754	0.37	.713	16456	.41233	21037
mea7_1	.01969	0.04293	0.46	.647	07081	.07469	168
j255	32906	0.13808	-2.38	.017	49563	04047	1850
ratio	.00225	0.00209	1.08	.282	00446	.00509	89

-

351

Complete results for OLS estimations by occupational category

Results based on combined parameter estimates and variances from multiply imputed data sets.

Males

_

Professional

Overall estimates

				Number	of obs =	364
logern	Coef.	Std. Err.	t	P> t [95% (Conf. Interval] MI.df
fac1_1	.04707	.0687	0.69	0.498 ~.0929	5.18708	31.58
fac2_1	05352	.07967	-0.67	0.5152275	5.1205	11.73
fac3_1	00962	.04589	-0.21	0.83510272	2.08349	35.68
fac4_1	.01636	.0893	0.18	0.8591863	L .21882	8.87
mothhlth	01629	.10188	-0.16	0.87321746	5.18488	163.11
fathhlth	24812	.21699	-1.14	0.2536741	7.17792	684.97
fath_ed	.0717	.12182	0.59	0.56017485	5.31825	38.28
moth_ed	.15816	.11412	1.39	0.17207109	.38742	49.63
inc_10	02121	.04395	-0.48	0.63110887	7.06645	69.33
num_chld	00206	.04387	-0.05	0.96308893	3.0848	119.44
iq_nverb	00431	.00373	-1.16	0.24901166	5.00303	292.90
mothhr	00116	.00289	-0.40	0.68900682	.00451	1629.67
fathhr	.00099	.00334	0.30	0.76800579	.00778	35.57
urban	03532	.12307	-0.29	0.77628464	.21401	37.20
lawseq	.01748	.01462	1.20	0.24401272	2.04768	23.69
caraloc	.01774	.01016	1.75	0.08100221	L .03769	593.15
samepar	.16087	.21263	0.76	0.45226444	.58618	60.07
incare	11519	.37492	-0.31	0.76391264	.68227	15.37
mea7_1	.08416	.1238	0.68	0.49916281	.33113	68.93
j255	.10934	.14548	0.75	0.45217582	2.39451	16899.23
ratio	00217	.00525	-0.41	0.68001261	L .00827	80.90
_cons	5.706	.51126	11.16	0.000 4.6988	6.7132	238.67

Managerial/technical

				Number of obs		1521
				Number of obs	(max) =	1522
logern	Coef.	Std. Err.	t	P> t [95% Co	onf. Interva	1] MI.df
facl 1	.03404	.02055	1.66	0.09800628	.07437	1321.48*
fac2_1	01914	.03096	-0.62	0.54408432	.04604	17.49*
fac3_1	02606	.02745	-0.95	0.35508358	.03146	18.70*
fac4_1	01707	.02505	-0.68	0.50406946	.03531	19.25*
mothhlth	0329	.06228	-0.53	0.5981559	.09011	156.61*
fathhlth	.0569	.07158	0.79	0.42708364	.19745	676.05*
fath_ed	0302	.05279	-0.57	0.56913555	.07515	67.33*
moth_ed	.10498	.04508	2.33	0.020 .01656	.19341	1436.22*
inc_10	.03888	.01733	2.24	0.025 .00489	.07288	1796.77*
num_chld	02104	.02205	-0.95	0.34006436	.02227	509.85*
iq_nverb	.00203	.00196	1.04	0.30100184	.0059	115.90*
mothhr	00091	.00136	-0.67	0.5060036	.00178	193.09*
fathhr	.00157	.00166	0.95	0.34400169	.00483	3512.61*
urban	00335	.05262	-0.06	0.94910697	.10028	250.57*
lawseq	.0084	.00515	1.63	0.10400173	.01853	443.68*
caraloc	.00537	.00512	1.05	0.29400468	.01542	447.30*
samepar	00705	.07571	-0.09	0.92615643	.14233	182.97*
incare	33416	.19664	-1.70	0.08971958	.05126	25362.02*
mea7_1	04136	.04535	-0.91	0.36213047	.04774	487.72*
j255	.29646	.13956	2.12	0.034 .02293	.57	38286.37*
ratio	00129	.00268	-0.48	0.63600686	.00429	21.03*
_cons	5.5282	.22239	24.86	0.000 5.0876	5.9688	112.98*

Skilled non-manual

Overall estimates

.

•

				Number	of obs =	561
logern	Coef.	Std. Err.	t	P> t [95%	Conf. Interv	al] MI.df
fac1_1	.07875	.03126	2.52	0.015 .0161	8.14132	58.36
fac2_1	.01502	.03614	0.42	0.6800579	3.08796	41.71
fac3_1	05346	.0387	-1.38	0.1821341	7.02726	20.03
fac4_1	06066	.03585	-1.69	0.1071355	5.01424	19.56
mothhlth	.10072	.1117	0.90	0.3671182	1.31966	1.37e+05
fathhlth	12838	.1071	-1.20	0.2313386	7.0819	677.25
fath_ed	03613	.0694	-0.52	0.6041739	1.10165	95.21
moth_ed	.08423	.07161	1.18	0.2440590	3.22748	59.78
inc_10	.00691	.03141	0.22	0.8270566	6.07048	38.45
num_chld	.00047	.02519	0.02	0.9850491	3.05008	247.36
iq_nverb	.00436	.00245	1.78	0.0750004	5.00916	1695.08
mothhr	.00016	.00253	0.06	0.9500048	9.00521	59.94
fathhr	0004	.0024	-0.17	0.8680051	5.00435	116.49
urban	.02353	.06565	0.36	0.7201052	7.15232	1261.17
lawseq	.00772	.00802	0.96	0.3370081	4 .02359	138.28
caraloc	00064	.00705	-0.09	0.9270144	7.01318	989.90
samepar	08244	.08715	-0.95	0.3462546	4.08977	148.91
incare	11348	.25208	-0.45	0.6536083	2.38136	777.80
mea7_1	03613	.06406	-0.56	0.5731624	5.09019	199.02
j255	45602	.28979	-1.57	0.116 -1.025	1.11304	641.11
ratio	00237	.00352	-0.67	0.5040093	9.00466	71.22
_cons	5.4622	.31792	17.18 	0.000 4.832	9 6.0916	122.33

Skilled manual

Overall estimates

				Number of obs Number of obs		1407 1408
logern	Coef.	Std. Err.	t	P> t [95% Co	mf. Interval] MI.df
fac1 1	.05164	.02159	2.39	0.028 .00624	.09704	17.78*
fac2 1	04113	.02333	-1.76	0.08908889	.00663	28.41*
fac3 1	01659	.0177	-0.94	0.35305204	.01886	56.89*
fac4 1	01633	.02451	-0.67	0.51706929	.03663	12.97*
mothhlth	01769	.05987	-0.30	0.76913918	.10379	35.41*
fathhlth	08962	.05708	-1.57	0.11720156	.02232	2181.86*
fath ed	.04886	.04239	1.15	0.25703739	.13511	32.83*
moth ed	.01118	.0389	0.29	0.77406567	.08803	152.98*
inc 10	.05942	.01881	3.16	0.003 .02126	.09758	35.86*
num_chld	0035	.01586	-0.22	0.82503465	.02765	515.76*
iq nverb	00075	.00193	-0.39	0.69900467	.00316	35.49*
mothhr	00098	.0012	-0.81	0.41600334	.00138	877.91*
fathhr	00108	.00144	-0.75	0.45700394	.00178	118.29*
urban	07765	.04567	-1.70	0.10517326	.01795	18.97*
lawseq	.00549	.00429	1.28	0.20800317	.01414	42.84*
caraloc	.00826	.00443	1.87	0.06300047	.01699	226.65*
samepar	.02577	.05338	0.48	0.63007973	.13127	147.61*
incare	10658	.14168	-0.75	0.45238427		2.99e+05*
mea7_1	.02589	.03831	0.68	0.50205074	.10252	60.01*
j255	.31349	.22277	1.41	0.16012395	.75093	640.97*
ratio	.00052	.00199	0.26	0.79700344	.00447	114.57*
cons	5.4676	.19069	28.67	0.000 5.0845	5.8508	49.51*

Unskilled/semiskilled

					Number of	obs =	545
logern	Coef.			• •			
fac1_1	.05735 .02783	.03175	1.81	0.071	00489	.11958 .10001	5087.86 29.01

fac3_1	02721	.03288	-0.83	0.41009266	.03824	78.20
fac4_1	02721	.02728	-1.00	0.31908077	.02634	767.32
mothhlth	04219	.08114	-0.52	0.60320139	.117	1221.29
fathhlth	.04392	.06223	0.71	0.48107912	.16697	137.92
fath_ed	.02303	.0531	0.43	0.66508132	.12739	463.87
moth_ed	.0315	.06239	0.50	0.61409096	.15395	834.81
inc_10	.02832	.02797	1.01	0.31302698	.08362	139.88
num_chld	.02777	.01989	1.40	0.16401134	.06688	391.95
iq_nverb	.00266	.00267	1.00	0.32300268	.00799	59.55
mothhr	00207	.00214	-0.97	0.3350063	.00216	153.04
fathhr	.00154	.00248	0.62	0.53400333	.00642	320.93
urban	02436	.05187	-0.47	0.63912609	.07737	1930.70
lawseq	0069	.00878	-0.79	0.43202416	.01036	429.03
caraloc	.00486	.00817	0.59	0.55301127	.02099	161.85
samepar	01281	.08414	-0.15	0.87917805	.15244	607.71
incare	57209	.32209	-1.78	0.076 -1.2034	.05922	75860.77
mea7_1	00548	.06524	-0.08	0.93313417	.1232	191.35
j255	10565	.29298	-0.36	0.71868005	.46875	3980.37
ratio	0006	.00308	-0.19	0.84600667	.00547	274.46
_cons	5.2187	.26105	19.99	0.000 4.6987	5.7388	74.65

-

Females

Professional

Overall estimates

				Number o	of obs =	179
logern	Coef.	Std. Err.	t	P> t [95% Co	onf. Interva	1] MI.df
fac1_1	02527	.12686	-0.20	0.84731465	.26412	8.53
fac2_1	075	.12494	-0.60	0.55633919	.1892	16.51
fac3_1	05873	.07665	-0.77	0.44521011	.09266	159.03
fac4_1	02332	.061	-0.38	0.70214322	.09659	427.37
mothhlth	.10585	.24687	0.43	0.66837965	.59134	358.33
fathhlth	.05444	.23466	0.23	0.81740636	.51525	629.93
fath_ed	.008	.22518	0.04	0.97244472	.46072	48.19
moth_ed	07731	.17257	-0.45	0.65541707	.26245	268.59
inc_10	.09289	.07595	1.22	0.22205625	.24203	641.28
num_chld	04835	.07443	-0.65	0.51619423	.09752	2.83e+05
iq nverb	.00207	.01025	0.20	0.84301993	.02408	13.86
mothhr	.00132	.00641	0.21	0.838012	.01465	21.22
fathhr	.0002	.00604	0.03	0.97401246	.01286	18.62
urban	13488	.27078	-0.50	0.62268477	.41502	34.67
lawseq	.03543	.0245	1.45	0.16401583	.0867	19.11
caraloc	03074	.02403	-1.28	0.20907944	.01797	36.53
samepar	01729	.31476	-0.05	0.95769426	.65968	13.60
incare	10376	.39577	-0.26	0.79489363	.68612	67.38
mea7_1	.16152	.15497	1.04	0.29914549	.46853	113.10
j255	.46661	.21981	2.12	0.036 .03172	.9015	129.30
ratio	.00246	.00773	0.32	0.75101287	.01778	100.38
cons	5.5294	.69599	7.94	0.000 4.1383	6.9206	62.15

Managerial/technical

				Number o	fobs =	1377
logern	Coef.	Std. Err.	t	P> t [95% Co	nf. Interval]	MI.df
fac1_1	.06106	.02968	2.06	0.047 .00091	.1212	36.75
fac2_1	04314	.04248	-1.02	0.33113644	.05017	11.20
fac3_1	04408	.03262	-1.35	0.1931125	.02433	18.41
fac4_1	00059	.02384	-0.02	0.98004743	.04625	550.85
mothhlth	00419	.05816	-0.07	0.94311883	.11045	212.73
fathhlth	.03966	.06422	0.62	0.53808733	.16664	138.36
fath_ed	06916	.05518	-1.25	0.21217823	.03991	142.18
moth_ed	.02711	.05415	0.50	0.6170798	.13403	166.47
inc_10	.06021	.02103	2.86	0.005 .01861	.10181	132.75

num_chld	04214	.02564	-1.64	0.10109252	.00824	435.48
iq nverb	.00399	.00226	1.76	0.08000048	.00846	171.53
mothhr	00194	.00165	-1.17	0.24300522	.00134	100.26
fathhr	00216	.00211	-1.02	0.30600629	.00198	1302.91
urban	07667	.06875	-1.12	0.26521177	.05843	450.86
lawseq	.00899	.00541	1.66	0.09700164	.01961	896.87
caraloc	.00701	.00613	1.14	0.25500512	.01913	126.15
samepar	05007	.08331	-0.60	0.54921521	.11507	107.92
incare	27367	.1266	-2.16	0.03152256	02477	397.17
mea7 1	00763	.05626	-0.14	0.89211993	.10466	67.34
j255	08098	.13654	-0.59	0.55334884	.18689	1282.83
ratio	-8.2e-05	.0029	-0.03	0.97800596	.00579	38.38
_cons	5.1832	.30463	17.01	0.000 4.5795	5.7869	109.92

Skilled non-manual

Overall estimates

;

				Number of obs Number of obs		1501 1502
logern	Coef	Std. Err.	 +	P> t [95% Co		
facl 1	.00767	.03364	0.23	0.82306459	.07994	13.78*
fac2_1	04581	.03086	-1.48	0.14610833	.0167	37.09*
fac3_1	02076	.02889	-0.72	0.48108112	.0396	19.48*
fac4_1	00588	.03001	-0.20	0.84706868	.05692	19.06*
mothhlth	05165	.07102	-0.73	0.46819158	.08829	231.04*
fathhlth	.10814	.075	1.44	0.15804421	.26049	34.37*
fath_ed	02143	.05062	-0.42	0.67312231	.07944	73.75*
moth_ed	.02634	.04735	0.56	0.57806654	.11922	1622.38*
inc_10	.0393	.02068	1.90	0.05900144	.08005	225.02*
num_chld	.01221	.02276	0.54	0.59203264	.05706	226.37*
iq_nverb	.00581	.00215	2.70	0.008 .00155	.01008	115.74*
mothhr	.00029	.00171	0.17	0.86700309	.00366	171.57*
fathhr	.00162	.00203	0.80	0.42400239	.00564	117.25*
urban	1033	.04994	-2.07	0.04020171	00488	222.94*
lawseq	.00734	.00575	1.28	0.20600416	.01884	58.56*
caraloc	.00765	.00667	1.15	0.25600574	.02105	50.61*
samepar	.05473	.07184	0.76	0.447087	.19647	183.06*
incare	.24494	.30917	0.79	0.42836103	.85091 6	5.30e+05*
mea7_1	.04751	.05581	0.85	0.39706354	.15855	80.87*
j255	19341	.22228	-0.87	0.38462911	.24229	13947.88*
ratio	00505	.00228	-2.22	0.02700953	00058	703.87*
_cons	4.3456	.24896	17.45	0.000 3.8476	4.8436	59.85*

.

Skilled manual

				Number	of obs =	287
logern	Coef.	Std. Err.	t	P> t [95% C	onf. Interval	MI.df
facl_1	.0176	.05328	0.33	0.74208915	. 12435	55.57
fac2_1	12682	.08849	-1.43	0.17431683	.06319	13.83
fac3_1	05156	.05873	-0.88	0.3831688	.06568	66.23
fac4_1	01551	.05693	-0.27	0.78713017	.09915	45.17
mothhlth	.34212	.21975	1.56	0.12309452	.77876	88.97
fathhlth	21103	.18747	-1.13	0.26658872	.16665	44.58
fath_ed	11791	.12842	-0.92	0.3593705	.13468	343.56
moth_ed	.02186	.16016	0.14	0.89330916	.35287	23.39
inc_10	.04583	.0729	0.63	0.5351045	.19615	24.38
num_chld	01823	.0473	-0.39	0.70011097	.07452	2230.73
iq_nverb	00106	.00673	-0.16	0.87601493	.01281	24.35
mothhr	.00062	.00501	0.12	0.90300986	.0111	18.83
fathhr	0062	.00514	-1.21	0.23901681	.0044	24.19
urban	.13089	.13068	1.00	0.3171261	.38788	361.90
lawseq	.01647	.01509	1.09	0.27501314	.04609	1035.19
caraloc	00816	.0177	-0.46	0.64604325	.02694	104.55
samepar	.07739	.17266	0.45	0.65426232	.41711	314.48
incare	.03455	.29445	0.12	0.90754411	.61321	453.70
mea7_1	12166	.12686	-0.96	0.33837108	.12776	390.28
j255	1.2363	.88406	1.40	0.16249685	2.9695	4792.27
ratio	00889	.00639	-1.39	0.16502145	.00366	376.38

_cons	5.347	8	.47325	1:	1.30	0.000	4.419	6.270	66 890.0	12

Unskilled/semi-skilled

•

				Number of obs Number of obs		500 501
logern	Coef.	Std. Err.	t	P> t [95% Co	nf. Interval]	MI.df
fac1_1	.00599	.06404	0.09	0.92612661	.13859	22.62*
fac2_1	00048	.05531	-0.01	0.99310959	.10862	190.66*
fac3_1	03861	.0567 6	-0.68	0.50315573	.07852	24.09*
fac4_1	01172	.05662	-0.21	0.83612341	.09998	186.01*
mothhlth	.12111	.13934	0.87	0.38715484	.39706	117.49*
fathhlth	.02144	.15142	0.14	0.88727621	.3191	413.49*
fath_ed	.11344	.12295	0.92	0.3581305	.35738	99.53*
moth_ed	22388	.13803	-1.62	0.1084981	.05034	90.11*
inc_10	.0292	.06173	0.47	0.63909526	.15365	43.32*
num_chld	.01845	.04938	0.37	0.70907936	.11627	115.51*
iq_nverb	.0078	.0042	·1.86	0.06300043	.01604	1141.03*
mothhr	00248	.00384	-0.65	0.5220102	.00524	46.80*
fathhr	00218	.00371	-0.59	0.55700946	.0051	2604.08*
urban	04275	.12333	-0.35	0.73129305	.20755	35.27*
lawseq	.01061	.01464	0.72	0.47301892	.04014	42.67*
caraloc	01831	.01269	-1.44	0.15404362	.007	71.16*
samepar	.04457	.1449	0.31	0.75924215	.33128	127.57*
incare	.33486	.31135	1.08	0.28227602	.94575	1125.34*
mea7_1	.12195	.11456	1.06	0.28810368	.34759	247.56*
j255	-1.9954	.2453	-8.13	0.000 -2.4793	-1.5114	187.96*
ratio	0022	.00619	-0.35	0.72501479	.0104	33.46*
_cons	4.2114	.53439	7.88	0.000 3.1483	5.2746	81.46*

Appendix: chapter 5

Multivariate models and diagnostic tests for each multiply imputed data set	
	•

Label	Definition
men	
fled	
speced	
age	Age at baseline
gender	Gender at baseline ⁺ (1=male; 0=female)
class	Social class of parents
	1.Professional
	2.Managerial
	3.Non-manual skilled
	4. Manual Skilled
	5.Semi skilled
	6.Unskilled
	7. Never worked/student
mumatbir	Age of mother at birth of child
ghqscr	Mother's GHQ score at baseline (scale 0-12)
ethgrpc	Ethnicity ⁺ (1=white; 0=black, Asian or other)
largefam	Large family ⁺ (1=3 or more siblings; 0=less than 3 siblings)
ffscr	Family functioning score at baseline (scale 21-41)
singpar	Single parent family + (1=yes; 0=conventional or reconstituted family)
pimpac00	
	SDQ impact score
readz	Reading test score

Variable label definitions

GLM (gamma) with log-link function: mental health service costs

Full estimation sample with Park test

Generalized lin Optimization Deviance Pearson		32136		Resid Scale (1/df	ual df = parameter =) Deviance =	2.248228
Variance funct: Link function Standard error	ion: V(u) = u : g(u) = 1	1^2 ln (u)			a]	2.210220
Log pseudolikelihood = -807.1054533 BIC =-262.4413842				AIC	=	15.16862
men	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
age gender mumatbir ghqscr		.3589201 .0293682	1.75		0760425 .0035112	1.330899 .1186322

ethgrpc	.8013635	.389212	2.06	0.040		1.564205				
class	.0490412	.1273836	0.38	0.700	200626	.2987084				
largefam	-3.513381	.8820552	-3.98	0.000	-5.242178	-1.784585				
	1848186			0.004						
singpar	.2948066	.458004	0.64	0.520	6028648	1.192478				
readz	3067706	.1690132	-1.82	0.070	6380305	.0244893				
pimpac00	.0399015	.0556041	0.72	0.473	6380305 0690805	.1488834				
cons		1.667175				9.706847				
men and predicted										
Correlatio	n 0	. 336								
R-squared	0	.113								
Root MSE	2654	.421								
linktest Iteration 1 :	deviance = (5.84e+08								
Residual df = Pearson X2 = Dispersion =	6.84e+08				No. of obs = Deviance = Dispersion =	6.84e+08				
Gaussian (norm	al) distribut	tion, identi	ty link							
men	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval)				
hat l	-3505.011	2153.618	-1.63	0.107	-7775.239	765.2164				
hatsq	350.7384									
_nacbq cons					-4555.06					
(Model is ordi	nary regress	ion use req	ress inst	ead)						

(Model is ordinary regression, use regress instead)

_hat and _hatsq are, respectively, the predicted values of the dependent variable and the predicted values squared. Statistical significance of the latter would imply functional form mis-specification.

Park test

OLS regression: Invar are the log scaled residuals and Inyhat are the log scaled predictions derived from a generalised linear model of cost.

Source	SS	df	MS		Number of $obs = 10$ F(1, 106) = 83.1	-
Model Residual Total	331.123097 422.084432 753.207529	106 3.9	.123097 9819286 0393227		F(1, 106) = 0.000 Prob > F = 0.000 R-squared = 0.439 Adj R-squared = 0.434 Root MSE = 1.995	0 96 13
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
lnyhat _cons	2.03345 -1.025418	.2229901 1.456174	9.12 -0.70	0.000 0.483	1.591351 2.4755 -3.912425 1.8615	-

lscres

	Percentiles	Smallest		
1%	-1.850977	-2.138377		
5%	-1.330468	-1.850977		
10%	-1.005251	-1.630874	Obs	108
25%	2266144	-1.625062	Sum of Wgt.	108
50%	.8688629		Mean	.8659408
		Largest	Std. Dev.	1.421753
75%	1.781564	3.519892		
90%	2.82869	3.52204	Variance	2.021382
95ზ	3.240273	3.918406	Skewness	.1570643
99 %	3.918406	4.657011	Kurtosis	2.492671

The important statistic is the coefficient of kurtosis. If the log scaled residuals are heavy tailed (coefficient of kurtosis >3) then OLS with a log transformed dependent variable is recommended. For coefficient of kurtosis of <3 one of the family if GLM estimators is recommended. If lnyhat = 2 (Manning & Mullahy, 2001)recommend the adoption of a GLM gamma model.

	Deviance = 188.6271434				of obs dual df le parameter df) Deviance df) Pearson	= = =	96 2.324602 1.964866
Variance funct Link function Standard erro	: g(u) = 1	ln(u)		[Gar [Loo	-		
Log pseudolik BIC	=-260	.8574544		AIC		=	15.18329
men	i	Robust Std. Err.			[95% Coni		Intervall
	+						
age	.1245942	.057245	2.18	0.030	.0123961		.2367923
gender		.3686435	1.72	0.086	08919		1.355866
mumatbir	.0538436	.0279417			0009211		
ghqscr	.08477 .5394787 .0675893	.0558312	1.52	0.129	0246572		
ethgrpc	.5394787	.4658048	1.16	0.247	1834243		1.452439
class	.0675893	.1280705					.318603
largefam	-3.543613	.8943429	-3.96	0.000	-5.296493		-1.790733
ffscr	1940085 .2416988 2441689	.0588043	-3.30	0.001	3092629		0787541
singpar	.2416988	.4380779	0.55	0.581	6169181		1.100316
readz	2441689	.1625114	-1.50	0.133	5626854		.0743477
	.0581912						
_cons	7.075838	1.505825	4.70	0.000	4.124476		10.0272
Correlatic R-squared Root MSE	0	.120					
. linktest							
Iteration 1 :	deviance =	6.79e+08					
Residual df Pearson X2					No. of obs Deviance		108 6.79e+08

Gaussian (normal) distribution, identity link

men	Coef.	Std. Err.	t	P> t 	[95% Conf.	Interval]	
_hat	-4262.407	2342.583	-1.82	0.072	-8907.316	382.5014	
_hatsq	416.1017	189.7152	2.19	0.030	39.93153	792.2718	
_cons	10763.69	7227.164	1.49	0.139	-3566.445	25093.82	
(Model is ordi	narv regress	ion, use rea	ress inst	read)	-		

(Model is ordinary regression, use regress instead)

Park test.

Source	SS	df	MS		Number of obs F(1, 106)	
Model Residual	284.984027 303.225313	106 2	84.984027 .86061616		Prob > F	= 0.0000 = 0.4845
Total			.49728356		<i>y</i> .	= 0.4798 = 1.6913
lnvar	Coef.	Std. Ei	r. t	P> t	[95% Conf.	Interval]
lnyhat cons	1.970078 5350245	.197379		0.000	1.578753 -3.091463	2.361403 2.021414

.

lscres

	Percentiles	Smallest		
18	-1.841836	-2.178889		
5%	-1.278939	-1.841836		
10%	-1.052471	-1.672244	Obs	108
25%	3290176	-1.638907	Sum of Wgt.	108
50%	.978131		Mean	.8732738
		Largest	Std. Dev.	1.423897
75≹	1.87694	3.419816		
90%	2.849332	3.663259	Variance	2.027483
95%	3.190742	3.975827	Skewness	.1464875
998	3.975827	4.650394	Kurtosis	2.494114

Deviance =	models ML: Newton-Raphson 183.1916105 207.8342766	No. of obs Residual df Scale parameter (1/df) Deviance (1/df) Pearson	= = =	2.16494 1.908246
Variance function: Link function : Standard errors :	$g(u) = \ln(u)$	[Gamma] [Log]		
Log pseudolikeliho BIC	od = -805.1796518 =-266.2929873	AIC	=	15.13296

men	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	[Interval]
age	.1154418	.0544092	2.12	0.034	.0088018	.2220819
gender	. 6532987	.3516197	1.86	0.063	0358633	1.342461
mumatbir	.0654078	.0279336	2.34	0.019	.0106589	.1201568
ghqscr	.1148897	.0552242	2.08	0.037	.0066522	.2231272
ethgrpc	.8151566	.4041545	2.02	0.044	.0230284	1.607285
class	.0363125	.1266164	0.29	0.774	211851	.2844761
largefam	-3.494824	.8181923	-4.27	0.000	-5.098452	-1.891197
ffscr	1858926	.0634936	-2.93	0.003	3103378	0614474
singpar	.2638586	.4463418	0.59	0.554	6109553	1.138672
readz	3321495	.1587139	-2.09	0.036	6432229	021076
pimpac00	.036918	.0545964	0.68	0.499	070089	.143925

_cons | 6.348017 1.707117 3.72 0.000 3.00213 9.693905 Correlation 0.338 0.1**14** R-squared 2649.516 Root MSE . linktest Iteration 1 : deviance = 6.83e+08 Residual df = No. of obs = 105 108 Pearson X2 = 6.83e+08 Dispersion = 6509093 Deviance = 6.83e+08 Dispersion = 6509093 Gaussian (normal) distribution, identity link ------Coef. Std. Err. t P>|t| [95% Conf. Interval] men | _hat | -2730.32 1773.745 -1.54 0.127 -6247.328 786.6883 _hatsq | 288.3425 144.7355 1.99 0.049 1.358711 575.3262 _cons | 6271.643 5458.999 1.15 0.253 -4552.545 17095.83 (Model is ordinary regression, use regress instead) Park test. Number of obs = 108 F(1, 106) = 121.25 Prob > F = 0.0000 R-squared = 0.5336 Adj R-squared = 0.5292 SS df Source MS Model | 382.239388 1 382.239388 Residual | 334.157968 106 3.15243366 ----------= 1.7755 Total | 716.397356 107 6.6953024 Root MSE ------Invar | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------
 Inyhat
 2.075545
 .1884896
 11.01
 0.000
 1.701846
 2.449244

 _cons
 -1.299287
 1.228706
 -1.06
 0.293
 -3.735315
 1.136742
 lscres Percentiles Smallest -1.878789 -2.070855 -2.070855 -1.878789 1% 5% -1.337118 -1.33,__ -1.013937 -758657 10% -1.620647 Obs 108 25% -.1768657 -1.610298 Sum of Wgt. 108 .8604605 Mean .8481093 Std. Dev. 1.411157 50% Largest 75% 1.684385 3.39156 90% 2.858675 3.492987 Variance 1.991365 Variance Skewness Kurtosis .1863029 3.914412 3.235829 95% 99% 3.914412 4.754675 2.55213 Data set 4 108 96 Generalized linear models No. of obs = Optimization : ML: Newton-Raphson Residual df Scale parameter = 2.174491 (1/df) Deviance = 1.92311 (1/df) Pearson = 2.174491 = 184.6185363 Deviance = 208.7511197 Pearson Variance function: $V(u) = u^2$ [Gamma] Link function : g(u) = ln(u)Standard errors : Sandwich [Log] Log pseudolikelihood = -805.8931146 AIC = 15.14617 BIC =-264.8660615

		Robust				
men	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age	.1240466	.056261	2.20	0.027	.0137772	.2343161
gender	.7090406	.3632136	1.95	0.051	0028448	1.420926
mumatbir	.0689825	.0289099	2.39	0.017	.0123201	.125645
ghqscr	.1080424	.0546013	1.98	0.048	0010259	.215059
ethgrpc	.7850798	.4360746	1.80	0.072	0696107	1.63977
class	.0585189	.1292089	0.45	0.651	1947259	.3117638
largefam	-3.462903	.8402955	-4.12	0.000	-5.109852	-1.815954
ffscr	2000219	.0616663	-3.24	0.001	3208856	0791583
singpar	.2581	.4179271	0.62	0.537	5610221	1.077222
readz	2699522	.1710744	-1.58	0.115	6052519	.0653474
pimpac00	.0434186	.0543209	0.80	0.424	0630485	.1498856
_cons	6.473692	1.629606	3.97	0.000	3.279723	9.667661

Correlation	0.349
R-squared	0.122
Root MSE	2640.016

. linktest

Iteration 1 : deviance = 6.80e+08

Residual df	=	105	No. of $obs =$	108
Pearson X2	=	6.80e+08	Deviance =	6.80e+08
Dispersion	=	6472670	Dispersion =	6472670
G aussia n (no	rma	1) distribution, identity link		

:

. •

men		Std. Err.		P> t	[95% Conf.	Interval]
_hat	-3251.648	1939.046	-1.68	0.097	-7096.417	593.1214
_hatsq	331.8302	157.562	2.11	0.038	19.41378	644.2466
_cons	7796.609	5979.598	1.30	0.195	-4059.828	19653.05

(Model is ordinary regression, use regress instead)

Park test

Source	SS	df	MS		Number of $obs = 108$ F(1, 106) = 125.31	
Model Residual Total	343.349812 290.444103 633.793915	106 2.74	349812 003871 330762		$\begin{array}{rcrr} Prob > F &= 0.0000 \\ R-squared &= 0.5417 \\ Adj R-squared &= 0.5374 \\ Root MSE &= 1.6553 \end{array}$	
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
lnyhat _cons	2.021138 8714268	.1805535 1.177554	11.19 -0.74	0.000 0.461	1.663173 2.379102 -3.206042 1.463188	

lscres							
	Percentiles	Smallest					
1%	-1.869344	-2.066499					
5*	-1.314103	-1.869344					
10%	-1.093794	-1.65462	Obs	108			
25%	2582256	-1.608282	Sum of Wgt.	108			
50%	.8790173		Mean	.8547151			
		Largest	Std. Dev.	1.413602			
75%	1.818324	3.42114					
90%	2.85297	3.433569	Variance	1.998271			
95%	3.142656	4.062833	Skewness	.1686968			
998	4.062833	4.723208	Kurtosis	2.538506			

Generalized li Optimization Deviance Pearson Variance funct Link function Standard error		Resi Scal (1/d:	e parameter f) Deviance f) Pearson ma]		6661		
Log pseudolike BIC		5.5835691 4851527		AIC		= 15.1	4044
		Robust					
men	Coef.		Z	P> z	[95% Conf	. Inter	val]
age	.1141409	.0549452	2.08	0.038	.0064502	.221	8316
gender	.6314074	.351556	1.80	0.072	0576296	1.32	0444
mumatbir	.0674238	.0290941	2.32	0.020	.0104004	.124	4472
ghqscr	.1142768	.0564275	2.03	0.043	.0036809	.224	8727
ethgrpc	.7053227	.4101208	1.72	0.085	0984993	1.50	9145
class	.0285003	.1284248	0.22	0.824	2232078	.280	2084
largefam	-3.493579	.8166328	-4.28	0.000	-5.09415	-1.89	3008
ffscr	1839541	.0661505	-2.78	0.005	3136067	054	3015
singpar	.2850751	.440445	0.65	0.517	5781813	1.14	8331
readz	3470653	.174227	-1.99	0.046	688544	005	5866
pimpac00	.0356321	.0560623	0.64	0.525	074248	.145	5121
_cons	6.398575	1.69988	3.76	0.000	3.066872	9.73	0279
Correlatic R-squared Root MSE		330 109 354					

.

. linktest

Iteration 1 : deviance = 6.85e+08

Residual df	=	105	No. of obs =	108
Pearson X2	=	6.85e+08	Deviance =	6.85e+08
Dispersion	=	6527690	Dispersion =	6527690

Gaussian (normal) distribution, identity link

men	Coef.	Std. Err.	t	P> t	[95% Conf.	
_hat	-2702.126	1786.52	-1.51	0.133	-6244.466	840.2138
_hatsq	285.8807	145.9434	1.96	0.053	-3.498039	575.2595
_cons	6192.561	5492.038	1.13	0.262	-4697.135	17082.26

(Model is ordinary regression, use regress instead)

Park test.

Source	SS	df	MS		Number of obs = 10 F(1, 106) = 126.2	-
Model Residual Total	368.39638 309.356458 677.752838	1 368 106 2.91	.39638 845715 		$\begin{array}{rcl} F(1, 106) &=& 126.2\\ Prob > F &=& 0.000\\ R-squared &=& 0.543\\ Adj R-squared &=& 0.539\\ Root MSE &=& 1.708 \end{array}$	0 6 2
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
lnyhat _cons	2.046401 -1.050774	.1821419 1.187903	11.24 -0.88	0.000 0.378	1.685287 2.40751 -3.405907 1.30435	-

lscres						
	Percentiles	Smallest	-			
18	-1.859684	-2.086031				

5%	-1.347652	-1.859684		
10%	977194	-1.626102	Obs	108
25%	2346932	-1.60421	Sum of Wgt.	108
50%	.8733231		Mean	.8518493
		Largest	Std. Dev.	1.415161
75%	1.665394	3.386171		
90%	2.93332	3.472752	Variance	2.002679
95%	3.273496	3.898791	Skewness	.1847866
998	3.898791	4.757165	Kurtosis	2.542486

GLM (gamma) with log-link function: mental health service costs

Trimmed estimation sample

Generalized li Optimization Deviance Pearson Variance funct Link function Standard error Log pseudolike BIC		Resi Scal (1/d	1]	1.111992 1.20272				
		Robust						
men	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval		
aqe		.0456092	-0.16	0.872	0967697	.0820152		
gender		.2560013	1.37		152193	.8513136		
mumatbir				0.128		.0829343		
ghqscr		.0349945		0.225	0261601	.1110158		
ethgrpc		.3436687	1.21	0.227	2588264	1.08833		
class	.0652221	.0886476	0.74		1085239	.2389682		
largefam	-2.029767	.3938985	-5.15	0.000	-2.801794	-1.25774		
ffscr		.0557169	-1.92	0.055	2159464	.0024599		
singpar	4192318	.2594846	-1.62	0.106	9278122	.0893486		
pimpac00		.0433635	3.64		.0726775	.2426595		
readz	1813766	.0993879	-1.82	0.068	3761734	.0134201		
cons	6.606499	1.601363	4.13		3.467886	9.745113		
Correlation 0.512 R-squared 0.262 Root MSE 531.793								
. linktest								
Iteration 1 :	deviance = 2	2.34e+07						
Residual df =	- 95				No. of obs =	98		
Pearson X2 =	= 2.34e+07				Deviance =	2.34e+07		
Dispersion =	= 245921.5				Dispersion =	245921.5		
Gaussian (norm	mal) distribut	ion, identi	y link					
men	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		

	54.929
	2.6002
_cons 1277.062 4177.372 0.31 0.760 -7016.071 957	0.194

_

(Model is ordinary regression, use regress instead)

Data set 2

Generalized li	near models			No	of obs =	. 98
Optimization		on-Panhgon			dual df =	
optimization .	: MD: New	con-kapiison			e parameter =	
Deviance	= 103.75	78091			f) Deviance =	
Pearson	= 96.9612			• •	f) Pearson =	
				(-) -	_,	
Variance funct	::::::::::::::::::::::::::::::::::::	ı^2		[Gam	ma]	
Link function	: g(u) = 1	ln(u)		[Log]	
Standard error	s : Sandwich	n				
Log pseudolike	= -700	0.3679916		AIC	-	= 14.53812
BIC		.5493941				
		Robust				
men	Coef.		z	P> z	[95% Conf.	Intervall
age	0064275	.0459456	-0.14	0.889	0964793	.0836243
gender	.3415961	.2580131	1.32	0.186	1641002	.8472924
mumatbir	.0292734	.0237412	1.23	0.218	0172584	.0758053
ghqscr	.0390979	.0362664	1.08	0.281	0319828	.1101787
ethgrpc	.2770922	.3793753	0.73	0.465	4664697	1.020654
class	.0809213	.0873351	0.93	0.354	0902523	.2520949
largefam	-2.094066	.3827782	-5.47	0.000	-2.844297	-1.343834
ffscr	1139906	.0517524	-2.20	0.028	2154234	0125578
singpar	4439424	.2557241	-1.74	0.083	9451525	.0572677
pimpac00	.1655568	.0413133	4.01	0.000	.0845841	.2465294
readz	1636099	.0939768	-1.74	0.082	3478011	.0205813
_cons	7.094658	1.443086	4.92	0.000	4.266261	9.923054
Correlatio	on 0.	. 525				

Correlation	0.525
R-squared	0.276
Root MSE	525.314

. linktest

Iteration 1 : deviance = 2.30e+07

Residual df	=	· 95	No. of $obs =$	98
Pearson X2	=	2.30e+07	Deviance =	2.30e+07
Dispersion	=	242287.2	Dispersion =	242287.2
Gaussian (no	rma	1) distribution, identity	v link	

Gaussian (normal) distribution, identity link men | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____hat | -1051.405 1346.553 -0.78 0.437 -3724.652 1621.841 ___hatsq | 124.9116 107.9482 1.16 0.250 -89.39274 339.2159 _____cons | 2245.978 4177.125 0.54 0.592 -6046.664 10538.62

(Model is ordinary regression, use regress instead)

Generalized linea	ar models	No. of obs	=	98
Optimization	: ML: Newton-Raphson	Residual df	=	86
		Scale parameter	=	1.120916
Deviance	= 102.2797841	(1/df) Deviance	=	1.1893
Pearson	= 96.39880162	(1/df) Pearson	Ŧ	1.120916

Variance funct Link function Standard error		[Gar {Log	nma] J]			
Log pseudolike BIC	= -292	2.027419		AIC	=	14.52304
men	Coef.	Robust	z	P> z	[95% Conf.	Interval]
+						
age	0102856 .3625686	.0449399	-0.23	0.819	0983661	.0777949
gender	.3625686	.2537846	1.43	0.153	1348402	
mumatbir	.0347418	.02207	1.57	0.115	0085147	.0779982
ghqscr	.05481	.0339507	1.61	0.106	0117322	.1213521
ethgrpc	.4331052	.3701407	1.17	0.242	2923573	1.158568
class	.0622949	.0857817	0.73	0.468	1348402 0085147 0117322 2923573 1058342 -2.836847 2188702 9597194 .0689229 3599303	.2304239
largefam	-2.068774	.3918815	-5.28	0.000	-2.836847	-1.3007
fiscr	1112002	.0549347	-2.02	0.043	2188702	0035302
singpar	4490677	.2605414	-1.72	0.085	9597194	.0615841
pimpacuu	.1551152	.0439765	3.53	0.000	.0689229	.2413075
					3599303 3.579691	
Root MSE . linktest	522	. / 3 /				
Iteration 1 :	deviance = 2	2.26e+07				
D	05					
Residual df =					No. of obs = Deviance =	
Pearson X2 = Dispersion =					Dispersion =	
Gaussian (norm						
	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	-979.4983				-3522.228	
hatso	118.9325	102 6598		0.250		322.738
	2033.328	3972.198	0.51	0.610	-5852.482	
Data set 4						
Generalized li	near models	ton Darbers			of obs =	98

-

ocherurideu it	moderb					20
Optimization	: ML: Newt	on-Raphson		Resi	dual df =	86
			•	Scal	e parameter =	1.128539
Deviance	= 104.030	05961		(1/d	f) Deviance =	1.209658
Pearson	= 97.0543	32658		(1/d	f) Pearson =	1.128539
Variance funct	ion: $V(u) = u$	ı^2		[Gam	ma]	
Link function	: g(u) = 1	ln(u)		[Log]	
Standard error	s : Sandwich	ı		-		
Log pseudolike	lihood = -700	0.5043851		AIC	=	14.54091
BIC	=-290.	.2766071				
		Robust				
men	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
+						
age	006267	.047261	-0.13	0.895	0988968	.0863628
gender	.3818714	.264763	1.44	0.149	1370545	.9007973
mumatbir	.0327011	.0245437	1.33	0.183	0154038	.0808059
ghqscr	.0482441	.0343508	1.40	0.160	0190822	.1155704
ethgrpc	.4265255	.3828498	1.11	0.265	3238463	1.176897
class	.0777782	.0905844	0.86	0.391	099764	.2553203
largefam						
rargeram	-2.095027	.3661759	-5.72	0.000	-2.812719	-1.377336

singpar	.1655536 1330133	.2415878 .0417683 .0943734	-1.82 3.96 -1.41	0.069 0.000 0.159	226084 9124132 .0836891 3179817 4.007522	.0345938 .247418 .0519551
Correlatic R-squared Root MSE	0	.511 .261 .754				
. linktest						
Iteration 1 :	deviance =	2.34e+07				
Residual df = Pearson X2 = Dispersion = Gaussian (norm	= 2.34e+07 = 245808.4	tion, identit	ty link		No. of obs = Deviance = Dispersion =	2.34e+07
men	Coef.	Std. Err.			[95% Conf.	Interval]
hat	-749.9788 99.58472	104.1301	-0.58 0.96	0.341	-3332.429 -107.1397 -6665.408	306.3091
						

(Model is ordinary regression, use regress instead)

Data set 5

Generalized li Optimization Deviance Pearson					of obs dual df e parameter f) Deviance f) Pearson		98 86 1.110237 1.202517 1.110237
Variance funct Link function Standard error	: g(u) = 1		[Gam [Log	-			
Log pseudolike BIC).1973157).890746		AIC		=	14.53464
		Robust					
men	Coef.	Std. Err.	Z	P> z	[95% Conf	E. :	Interval]
age	008136	.0459509	-0.18	0.859	0981982		.0819261
gender	.3433916	.2580698	1.33	0.183	162416		.8491992
mumatbir	.034482	.0247149	1.40	0.163	0139584		.0829223
ghqscr	.0468002	.0345369	1.36	0.175	0208909		.1144913
ethgrpc	.3712202	.3643118	1.02	0.308	3428178		1.085258
class	.0560141	.0884425	0.63	0.527	11733		.2293581
largefam	-2.061193	.3887077	-5.30	0.000	-2.823046		-1.29934
ffscr	1044229	.0566537	-1.84	0.065	215462		.0066163
singpar	422168	.2567285	-1.64	0.100	9253466		.0810107
pimpac00	.1547025	.0441353	3.51	0.000	.068199		.2412061
readz	1912044	.0972732	-1.97	0.049	3818565		0005524
_cons	6.683522	1.619433	4.13	0.000	3.509492		9.857551

Correlation	0.521
R-squared	0.271
Root MSE	527.478

. . linktest

Iteration 1 : deviance = 2.31e+07

Residual df Pearson X2 Dispersion	= = =	95 2.31e+07 243510.8			-		No. of obs = Deviance = Dispersion =	2.31e+07
Gaussian (no	rma	l) distribu	tion,	ident	ity link			
men	•	Coef.		Err.		P> t	[95% Conf.	Interval]
_hat _hatsq _cons		-892.3714 111.6716 1773.294	1367 109. 4237	.224 6734	-0.65 1.02 0.42	0.516 0.311 0.677	-3606.654 -106.0576 -6638.367	1821.912 329.4008 10184.96
(Model is or	din	ary regress	ion, u	se re	gress inst	ead)		

GLM (gamma) with log-link function: frontline education resources

. •

Full estimation sample with Park test

Data set 1

•

Generalized linear models Optimization : ML: Newton-Raphson Deviance = 635.7140768 Pearson = 732.4772283 Variance function: V(u) = u ² Link function : g(u) = ln(u) Standard errors : Sandwich Log pseudolikelihood = -1109.458205 BIC = 3.183846711			÷	Resi Scal (1/d	-			
		Robust						
fled		Std. Err.	z	P> z	[95% Conf. Interval]			
aqe	018344	.0906772	-0.20	0.840	1960681 .1593801			
gender		.4378153	-2.17	0.030	-1.809920937155			
mumatbir		.0450187	3.49		.06882 .24529			
ghqscr		.1172179	-0.49	0.624	2871542 .1723314			
ethgrpc		1.117188	-0.71	0.479	-2.980001 1.399296			
class		.1749007	0.74		2125577 .4730405			
largefam	4535737	.6852623	-0.66	0.508	-1.796663 .8895157			
ffscr		.1405686	0.71	0.478	1756661 .3753528			
pimpac00	.2287748	.1462556	1.56		057881 .5154306			
readz	-1.003808	.2291241	-4.38	0.000	-1.4528835547329			
singpar	3623655	.6384257	-0.57	0.570	-1.613657 .8889259			
_cons	.6971274	3.46693	0.20	0.841	-6.097931 7.492186			
Correlation 0.056 R-squared 0.003 Root MSE 15010.825 . linktest								
Park test								
Residual df =	= 137				No. of $obs = 140$			
Pearson X2	= 8.37e+09				Deviance = $8.37e+09$			
Dispersion =	= 6.11e+07				Dispersion = 6.11e+07			
Gaussian (norm	nal) distribut	ion, identit	y link		-			
fled	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]			

hat	1927.377	2473.97	0.78	0.437	-2964.729	6819.483	
hatsq	-49.67146	170.9093	-0.29	0.772	-2964.729 -387.6329	288.29	
cons	-8452.765	8674.639	-0.97	0.332	-25606.27	8700.737	

. •

.

(Model is ordinary regression, use regress instead)

lscres								
	Percentiles	Smallest						
1%	-2.359554	-2.770911						
5%	-1.840501	-2.359554						
10%	-1.40715	-2.093479	Obs	140				
25%	.3526455	-1.960157	Sum of Wgt.	140				
50%	2.415679		Mean	2.270407				
		Largest	Std. Dev.	2.379883				
75%	4.205305	6.374098						
90%	5.401386	6.398346	Variance	5.663845				
95%	5.89355	6.696693	Skewness	145584				
998	6.696693	7.697846	Kurtosis	2.172084				

Generalized linear models Optimization : ML: Newton-Raphson Deviance = 642.9829557 Pearson = 688.8993856 Variance function: V(u) = u^2 Link function : g(u) = ln(u) Standard errors : Sandwich Log pseudolikelihood = -1113.092645 BIC = 10.45272559			No. of obs = 1 Residual df = 1 Scale parameter = 5.3820 (1/df) Deviance = 5.0233 (1/df) Pearson = 5.3820 [Gamma] [Log] AIC = 16.072			
		Dobust				
fled		Robust Std. Err.		P> z	[95% Conf.	Interval]
age			-0.81	0.420	2306768	.0962823
gender		.4319235				.1173064
mumatbir	.1518512		3.73		.0719633	.2317391
ghqscr	0072856	.1243613	-0.06	0.953	2510292	.236458
ethgrpc	7796862	1.142905	-0.68	0.495	-3.019738	1.460366
class	.0582916	.1832401	0.32	0.750	3008523	.4174355
Targeram	. 1100011	.6901202	0.16	0.873	-1.24195	1.463272
ffscr	.1865656	.1461124	1.28	0.202	0998094	.4729406
pimpac00	.1865656 .1704901	.1623555	1.05	0.202 0.294	1477209	.488701
readz	-1.125494	.2491731				6371233
singpar	5797451	.5709761	-1.02	0.310	-1.698838	.5393476
_cons	8028032	3.558086	-0.23	0.821	-7.776523	6.170917
Correlatio		.009				
R-squared		.000				
Root MSE	28620	.717				-
. linktest						
Iteration 1 :	deviance = 8	8.45e+09				
Residual df =	137				No. of obs =	140
Pearson X2 =					Deviance =	8.45e+09
Dispersion =					Dispersion =	6,17e+07
Gaussian (norm	al) distribut	tion, identi	y link			
fled	Coef.	Std. Err.			[95% Conf.	Interval]
	2623.866		1.17		-1822.844	7070.575

_hatsq	-107.8933	154.7298	-0.70	0.487	-413.8607	198.0742
_cons	-10323.37	7927.466	-1.30	0.195	-25999.39	5352.649

(Model is ordinary regression, use regress instead)

Park test.

Source	SS	df	MS		Number of obs F(1, 137)	= 139 = 694.24
Model Residual Total	1966.75216 388.11463 2354.86679	137 2.83	.75216 295351 642521		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.8352
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnyhat _cons	2.127849 -1.029551	.080758 .5787514	26.35 -1.78	0.000 0.077	1.968155 -2.173992	2.287542 .1148903

.

lscres								
	Percentiles	Smallest						
18	-2.25239	-2.556221						
5%	-1.868955	-2.25239						
10%	-1.368448	-2.252216	Obs	140				
25%	.4578344	-2.131851	Sum of Wgt.	140				
50%	2.396657		Mean	2.296368				
		Largest	Std. Dev.	2.399891				
75%	4.155422	6.313035						
90%	5.386085	6.400499	Variance	5.759479				
95%	5.758095	6.454241	Skewness	1604717				
998	6.454241	7.734365	Kurtosis	2.126259				

Generalized linear models	No. of obs	×	140
Optimization : ML: Newton-Raphson	Residual df	=	128
	Scale parameter	=	5.586518
Deviance = 651.5960725	(1/df) Deviance	=	5.090594
Pearson = 715.0743084	(1/df) Pearson	=	5.586518
Variance function: $V(u) = u^2$	[Gamma]		
Link function : $g(u) = ln(u)$	[Log]		
Standard errors : Sandwich			
Log pseudolikelihood = -1117.399203	AIC	=	16.13427
BIC = 19.06584237	110		10.1311,
Robust			

fled	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
age	0246142	.0905125	-0.27	0.786	2020154	.1527871
gender	8074618	.4354704	-1.85	0.064	-1.660968	.0460445
mumatbir	.1533841	.0458972	3.34	0.001	.0634273	.243341
ghqscr	1422288	.0983513	-1.45	0.148	3349938	.0505361
ethgrpc	8570978	1.10136	-0.78	0.436	-3.015724	1.301528
class	.1095788	.1836375	0.60	0.551	250344	.4695017
largefam	3912486	.7015295	-0.56	0.577	-1.766221	.983724
ffscr	.1351866	.127992	1.06	0.291	1156731	.3860462
pimpac00	.3747783	.1755933	2.13	0.033	.0306219	.7189348
readz	9904905	.2578643	-3.84	0.000	-1.495895	4850858
singpar	643001	.5679478	-1.13	0.258	-1.756158	.4701562
_cons	.0989535	3.462092	0.03	0.977	-6.686623	6.88453

Correlation	-0.008
R-squared	0.000
Root MSE	26304.192

. linktest

Iteration 1 : deviance = 8.48e+09

Residual df	=	137	No. of obs =	140
Pearson X2	=	8.48e+09	Deviance =	8.48e+09
Dispersion	=	6.19e+07	Dispersion =	6.19e+07

Gaussian (normal) distribution, identity link

fled	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_hat _hatsq	3138.749	2125.743 144.4814		0.142 0.304	-1064.761 -434.7727 -26764.51	7342.259 136.6314 3188.963

(Model is ordinary regression, use regress instead)

Park test

. reg lnvar lnyhat if e(sample)

Source	SS	df	MS		Number of $obs = 13$ F(1, 137) = 651.1	-
Model Residual	2036.22363 428.441396		.22363 _ 730946		Prob > F = 0.000 R-squared = 0.826 Adj R-squared = 0.824	0 2
Total	2464.66503	138 17.8	598915		Root MSE = 1.768	-
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
lnyhat _cons	2.098546 8490059	.0822415 .5930022	25.52 -1.43	0.000 0.155	1.935919 2.26117 -2.021627 .323615	-

	lscres							
	Percentiles	Smallest						
1%	-2.264593	-2.600776						
5%	-1.773313	-2.264593						
10%	-1.303734	-2.241522	Obs	140				
25%	.5528961	-2.20626	Sum of Wgt.	140				
50%	2.438294		Mean	2.327128				
		Largest	Std. Dev.	2.430572				
75%	4.224447	6.333861						
90%	5.5736	7.147312	Variance	5.907679				
95%	5.948779	7.603399	Skewness	0949303				
998	7.603399	7.915112	Kurtosis	2.260237				

Data set 4

•

Generalized lin	near models			No. o:	tobs =	140
Optimization	: ML: Newt	on-Raphson		Residu	ual df =	128
				Scale	parameter =	5.413809
Deviance	= 638.314	8282		(1/df)	Deviance =	4.986835
Pearson	= 692.967	75317		(1/df)	Pearson =	5.413809
Variance functi	ion: $V(u) = u$	1^2		[Gamma	a]	
Link function		• •		[Log]		
Standard errors	s : Sandwich	1				
Log pseudolikel				AIC	=	16.03941
BIC	= 5.7	8459807				
		Dobust				
fled		Robust Std. Err.	_	n. I.a.l	IOF& Conf	Tate arres 11
						Incerval
age		.0844899			- 2172653	.1139292
age	.0510001		0.01	0.341	.21/2000	

gender	7162979	.4484473	-1.60	0.110	-1.595238	.1626428		
mumatbir			3.77	0.000	.075125	.2374682		
qhqscr			-0.74	0.461		.1316373		
			-0.87	0.383		1.212244		
class	970736 .0648461	1898797	0.34	0.733	3073113	.4370035		
largefam	.0002802	7106472	0.00	1.000				
ffscr		.1487227	0.99	0.321		.4391403		
	.14/0493	.140/22/		0.321	0508647	.4391403		
pimpacuu	.2442103	.1505513	1.62					
readz	-1.124026 6750307	.2645041	-4.25	0.000	-1.642444	605607		
	6750307	.5393628	-1.25	0.211	-1.732162	.382101		
_cons	.0836539	3.6644			-7.098438	7.265746		
Correlation -0.005 R-squared 0.000 Root MSE 27945.331 . linktest Iteration 1 : deviance = 8.46e+09 Residual df = 137 No. of obs = 140								
Pearson X2 =					Deviance =			
Dispersion =	= 0.186+07				Dispersion =	6.18e+07		
Gaussian (norm						-		
Tied	COEL.	SLU. EII.	L	P> L	[95% Conf.	Incervarj		
			1 26		1040 105			
_nat	2/22.5/3	2003.969	1.36	0.177	-1240.137 -390.56 -24416.62	6685.283		
_natsq	-119.3402	137.1576	-0.87	0.386	-390.56	151.8795		
_cons	-10372.23	7102.34	-1.46	0.146	-24416.62	3672.161		
(Model is ordi								
Park test								
Source	SS	df	MS		Number of obs F(1, 137)			
	2114.32122				Prob > F			
Residual	559 5121	137 4.07	673796		R-squared			
Residual					Adj R-squared			
	2672.83432				Root MSE			
TOTAL	20/2.83432	T20 TA'3	000040		ROOL MSE	= 2.0191		
1 murau				n l + l	[05% Ce-f	Totomroll		
Invar	COEL.	acu. Brr.	C	r> C	[95% Conf.	Incervall		

Residual Total					R-squared Adj R-squared Root MSE	= 0.7910 = 0.7895 = 2.0191
lnvar	Coef.	Std. Err.		P> t	[95% Conf.	Interval]
lnyhat _cons	2.119703 -1.103957	.0930778 .6672186	22.77 -1.65	0.000 0.100	1.935649 -2.423336	2.303758 .2154218

		lscres		
	Percentiles	Smallest	•	
1%	-2.269232	-2.571014		
5%	-1.862986	-2.269232		
10%	-1.369679	-2.16596	Obs	140
25%	.4631205	-2.11656	Sum of Wgt.	140
50%	2.463123		Mean	2.279695
		Largest	Std. Dev.	2.399331
75%	4.217498	6.139411		
90%	5.285341	7.262513	Variance	5.756788
95%	5.655204	7.55474	Skewness	1106855
99%	7.55474	7.829324	Kurtosis	2.230996

Generalized linear Optimization :	models ML: Newton-Raphson	No. of obs = Residual df =	= 140 = 128
-	-	Scale parameter =	= 6.942719
Deviance =	673.9612716	(1/df) Deviance =	= 5.265322

Pearson	= 888.667	9867		(1/	df) Pearson =	6.942719
Variance funct Link function Standard error	: g(u) =]	.n (u)		[Ga [Lo	mma] g]	
Log pseudolike BIC	elihood = -112 = 41.4			AIC	-	16.29403
fled	Coef.				[95% Conf.	Interval]
age				0.048		0011237
	5119076					
	.1525922			0.000	.0681257	.2370586
ghqscr	.0530768	.1484675	0.36	0.721	2379141	.3440677
ethgrpc	.0766879 .0801175	1.181991	0.06	0.948		
class	.0801175	.1993788	0.40	0.688	3106577	.4708928
largefam	.4480819 .1060235	.8132794	0.55	0.582	-1.145916	2.04208
ffscr	.1060235	.1658026	0.64	0.523	2189437	.4309907
pimpac00	2020756	1065027	1 60		0913195	.6792707
readz	8613363	.2495769	-3.45	0.001		3721747
singpar	-1.198826	.5486828	-2.18	0.029 0.792	-2.274225	1234276
_cons	1.009755	3.834096	0.26	0.792	-6.504934	8.524445
Correlatio		018				
R-squared	0. 19493.	000				
Root MSE	19493.	454				
. linktest						
Iteration 1 :	deviance = 8	.51e+09				
Residual df = Pearson X2 = Dispersion =	= 8.51e+09				No. of obs = Deviance = Dispersion =	8.51e+09
Gaussian (norm	mal) distribut	ion. ident	itv link			
fled	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_hat				0.243		7413.4
_hatsq	-117.1004	159.6409	-0.73	0.464	-432.7792	198.5784
_cons	-10936.35	8472.696	-1.29	0.199	-27690.52	5817.823
(Model is ordi	lnary regressi	on, use re	gress ins	tead)		
Park test						
Source	SS	df	MS		Number of obs	= 139
					F(1, 137)	
Model	1753.25969	1 175	3.25969		Prob > F	
					R-squared	
					Adj R-squared	= 0.8550
Total	2047.96318	138 14.	8403129		Root MSE	
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnvhát	2.097336	.0734644	28.55	0.000	1,952065	2.242607
cons	7317036	.533117	-1.37	0.172	-1.785906	.3224987
		lscres				
Percenti	les Smal	lest				
1% -2.3592	251 -2.93	7664				
5% -1.7418		9251				
			Obs		140	
10% -1.1119 25% .74112	2.29	0623	Sum of We	gt.	140	
50% 2.6996		gest		. 2	.407004 .382209	

75%	4.388035	6.073271		
90%	5.353976	6.436381	Variance	5.674921
95%	5.699359	6.629952	Skewness	2845405
998	6.629952	7.548481	Kurtosis	2.185189

Trimmed estimation sample

Data set 1

Pearson Variance funct Link function Standard error	: ML: Newt = 515.609 = 597.49 :ion: V(u) = u : g(u) = 1 :s : Sandwich	98366 94431 n(u)		Resi Scal (1/d (1/d [Gam [Log	1	119 5.020962 4.332856 5.020962
Log pseudolike BIC		3.2175343 3864482		AIC	=	14.96515
		Robust				
fled	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
-						
age	0058853	.0804965	0.07	0.942	1636556	
gender	7222114	.438874	-1.65	0.100	-1.582389	.1379659
mumatbir	.0975356	.046896	2.08	0.038	-1.332333 .0056212 3476879 -3.396783 .0069992 -1.475292	.18945
gnqscr	1875272	.0817161	-2.29	0.022	3476879	0273666
etngrpc	-1.452216	.9921442	-1.46	0.143	-3.396/83	.4923505
Class	.3129622	.1561064	2.00	0.045	.0069992 -1.475292	.6189253
largeram	0051233	.7500999	-0.01	0.995	-1.4/5292	1.465046
fiscr	1286253	.0586682	-2.19	0.028	2436129	0136377
singpar	5639791	.6553408	-0.86	0.389	-1.848423	.7204652
pimpac00	.2302074	.1268229	1.82	0.069	2436129 -1.848423 0183609	.4787757
readz	7719307	.2295119	-3.36	0.001	-1.221766	3220956
_cons	7.779469	1.822125	4.27	0.000	4.208171	11.35077
Correlatic R-squared Root MSE	0.	000				
. linktest						
Iteration 1 :	deviance = 5	.15e+08				
Residual df = Pearson X2 = Dispersion =	5.15e+08				No. of obs = Deviance = Dispersion =	5.15e+08
Gaussian (norm	al) distribut		-			
fled	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	1532.207					2982.388
_nat hatsq		56.01842		0.104	-202.5842	19.09987
					-9551.487	
	-4911.003				- 7551.40/	-2/1.0/0/
(Model is ordi						

Data set 2

Generalized linear	models	No. of obs =	131
Optimization :	ML: Newton-Raphson	Residual df =	119
-	-	Scale parameter =	4.729054
Deviance =	493.6989374	(1/df) Deviance =	4.148731
Pearson =	562.7574042	(1/df) Pearson =	4.729054

Variance funct Link function Standard error	: g(u) =]	in(u)		[Gan [Log	-	
Log pseudolike BIC	lihood = -957 =-86.4			AIC	=	14.79789
		Robust				
fled		Std. Err.			[95% Conf.	
age		.0774146			1688106	.1346491
	646435	.4320602	-1.50			.2003874
mumathir	.0917987			0.025		
ahascr	- 1584867	080185	-1.98	0.048		
etharnc	1584867 -1.655913	9579859	-1.73	0.084	-3.533531	
clage	2392652	1539616	1 55	0 120	- 062494	
largefam	.2392652 .4439536	7006814	0.63	0.120 0.526	062494 9293567	1.817264
ffscr	- 1321063	.0583609	-2.26	0.024		0177211
singpar	1321063 677624	5644984	-1.20	0.024 0.230	-1.784021	.4287726
pimpac00	.1431024	.1168998	1.22	0.221	0860171	.3722218
readz	- 943997	.230079	-4.10	0.000	-1.394943	4930505
cons	8.439574		4.59		4.837584	
Correlatio						
R-squared	0. 3567.	.005				
Root MSE	3567.	. 326				
. linktest						
Th						
Iteration 1 :	deviance = 5	.10e+08				
Residual df =	100				No. of obs =	101
Pearson X2 =					Deviance =	
Dispersion =					Dispersion =	
Dispersion =	3900/1/				Dispersion =	3980717
Gaussian (norm	al) distribut					
fled	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
hat l	1226.562	773.7067	1.59		-304.3486	2757.473
hater	-66.40175	60.99257	-1,09	0.278	-187.086	54.28247
_nacsq cons		2383.886			-8729.37	704.4809
					· · · · · · · · · · · · · · · · · · ·	
(Model is ordi	nary regressi	ion, use reg	ress inst	cead)		

Data set 3

.

_

Generalized linear models Optimization : ML: Newton-Raphson					of obs dual df	
Deviance Pearson	= 523.186 = 629.730		(1/d:	e parameter f) Deviance f) Pearson	= 4.396527	
Variance function: $V(u) = u^2$ Link function : $g(u) = ln(u)$ Standard errors : Sandwich				[Gam [Log	-	
Log pseudolikelihood = -972.0059959 BIC =-56.96172169				AIC		= 15.02299
fled	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval]
ghqscr	5324624 .0911997 2085598 -1.138355	.0804825 1.037535	-1.20 1.91 -2.59	0.967 0.231 0.056 0.010 0.273 0.045	-1.404219 0023931 3663026	.3392944 .1847925 050817 .8951766

largefam	.4235639	.7049367	0.60	0.548	9580866	1.805214
u	1259235		-1.93	0.054	2540121	.0021651
	-1.06148			0.066		
					.0173554	
					-1.105369	
					3.612941	
_cons	/.404200	1.965009	3.00	0.000	3.012941	11.31303
	on -0					
R-squared		.000				
Root MSE	5992	.218				
. linktest						
Iteration 1 :	deviance =	5.19e+08				
Residual df =	= 128				No. of obs =	131
Pearson X2					Deviance =	
Dispersion =					Dispersion =	
Dispersion :	= 4030432				Dispersion =	4050452
G						
Gaussian (nort			-			
fled	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
_hat	1371.235	681.59	2.01	0.046	22.5926	2719.877

-1.55

-1.99

0.124

0.049

-182.2796

-8773.042

- - - -

22.26918

-25.1039

_ _ _ _ _ _ _ _ _ _

-----------(Model is ordinary regression, use regress instead)

51.68843

2210.559

-80.00521

-4399.073

Data set 4

_hatsq

_____cons

						= 131 = 119 = 5.001074 = 4.204553 = 5.001074
Variance funct Link function Standard error	: g(u) = :	Ln(u)		[Gam [Log	-	
Log pseudolike BIC	0.5835123 30668882		AIC		= 14.8486	
fled	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval]
age	0150269	.0786252	-0.19	0.848	~.1691294	.1390755
gender	521205	.4431719	-1.18	0.240	-1.389806	.347396
mumatbir	.0951859	.0439447	2.17	0.030	.009056	.1813159
ghqscr	1687212	.0803398	-2.10	0.036	3261842	0112581
ethgrpc	-1.498371	.9976223	-1.50	0.133	-3.453675	.456933
class	.2195952	.1639929	1.34	0.181	1018251	.5410154
largefam	.6360041	.6932702	0.92	0.359	7227805	1.994789
ffscr	1319649	.06273	-2.10	0.035	2549133	0090164
singpar	9033691	.5499695	-1.64	0.100	-1.98129	.1745513
pimpac00	.2059965	.1365595	1,51	0.131	0616552	.4736483
readz	8815858	.2374114	-3.71	0.000	-1.346904	4162679
_cons	8.151372	1.934776	4.21	0.000	4.359281	11.94346

Correlation	0.017
R-squared	0.000
Root MSE	6099.836

. linktest

Iteration 1 : deviance = 5.12e+08

Residual df = 128 No. of obs = 131

Pearson X2	=	5.12e+08	
Dispersion	=	3996437	

Gaussian (normal) distribution, identity link

fled	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
_hat	1249.321	665.2303	1.88	0.063	-66.95138	2565.592
_hatsq	-68.13568	51.03818	-1.33	0.184	-169.1234	32.85208
_cons	-4090.496	2123.431	-1.93	0.056	-8292.068	111.0749

(Model is ordinary regression, use regress instead)

.

Data set 5

•

Generalized li Optimization Deviance Pearson		Res: Sca (1/c	of obs = idual df = le parameter = if) Deviance = if) Pearson =	119 4.785696 4.006729		
Variance funct Link function Standard error	: g(u) = 1	ln(u)		[Gar [Loc	nma] g]	
	=-103	.3477718		AIC		14.6689
		Robust		~ ! !		
tled ++					[95% Conf.	
gender	- 4403868	446797	-0.99	0.324	1766914 -1.316093 .0144444 2954164 -3.530222 1811825 387176 2382826 -1.928227 1111869 -1.449642 4.798442	4353193
mumatbir	.0924465	.0397977	2.32	0.020	.0144444	.1704487
ghaser	1380221	.0803047	-1.72	0.086	2954164	.0193722
ethorpc	-1.654301	.9571205	-1.73	0.084	-3.530222	.2216213
class	.1425051	.1651498	0.86	0.388	1811825	.4661928
largefam	.9489754	.6817224	1.39	0.164	387176	2.285127
ffscr	1259081	.057335	-2.20	0.028	2382826	0135336
sinqpar	9142291	.5173554	-1.77	0.077	-1.928227	.0997688
pimpac00	.1153861	.1156006	1.00	0.318	1111869	.341959
readz	-1.020022	.2191982	-4.65	0.000	-1.449642	5904012
cons	8.471674	1.874133	4.52	0.000	4.798442	12.14491
Correlatio	on 0.	.150				
R-squared	0 2739	.022				
Root MSE	2739	.257				
. linktest						
Iteration 1 :	deviance = 5	5.05e+08				
Residual df =	128				No. of $obs =$	131
Pearson X2 =	5.05e+08				Deviance =	5.05e+08
Dispersion =	3946137				Dispersion =	3946137
Gaussian (norm						
fled		Std. Err.	t	P> t	[95% Conf.	Interval]
						2076.974
hater	567.8727 -10.73941	62 15661	-0 17	0 863	-133.7269	112,2481
	-2169.581		-0.95	0.342	-6666.502	2327.34
(Model is ordi	nary regressi	ion use rea	regg ingt	tead)		

(Model is ordinary regression, use regress instead)

GLM (gamma) with log-link function: special education resources

Full estimation sample with Park test

.

Data set 1

Generalized linear models Optimization : ML: Newton-Raphson Deviance = 370.9738052 Pearson = 541.0464071				Res Sca (1/	le parameter = df) Deviance =	95 5.695225 3.904987
Pearson	= 541.046	4071		(1)	df) Pearson =	5.695225
Variance funct Link function Standard error	: g(u) = 1	.n (u)		[Ga [Lo	mma] g]	
Log pseudolike BIC	elihood = -895 =-72.9			AIC	=	16.95444
speced	,	Robust Std. Err.				Interval}
age		.0811658		0.075		.3035525
gender	.4074752	.465622	0.88	0.382		1.320078
mumatbir			2.65	0.008		
ghqscr	.027996	.0648781	0.43	0.666		.1551547
	-2.013185			0.159		
	1821163 -3.313045	.1144489	-1.59	0.112 0.000	406432 -4.029857	.0421994
	1668489	.0883826	-9.06 -1.89	0.059		.0063777
singpar	3510105			0.475		.6111036
		.0821922	2.07	0.039	.00891	.3310974
readz	-1.260656	.1610704	-7.83		-1.576348	
_cons	8.570414	3.900952	2.20		.9246887	16.21614
Correlatio R-squared Root MSE		441 195 075			• .	•
. linktest						
Residual df =	= 104				No. of obs =	107
	= 1.29e+10				Deviance =	
	= 1.24e+08				Dispersion =	
Gaussian (norm	nal) distribut	ion, identi	ty link			
speced	Coef.	Std. Err.	 +	P> t	 [95% Conf	Interval]
					[55 CONE.	
hat	-9659.915	4540.761	-2.13	0.036	-18664.41	-655.4163
_hatsq		303.2071	2.90		279.3246	1481.867
_cons					-6846.399	58444.84
(Model is ordi		on, use reg				
Park test						
Source	SS	df	MS		Number of obs	
					F(1, 105)	
Model	1821.88624	1 1821	.88624		Prob > F	
Residual	1264.93572	105 12.04	4/0068		R-squared Adj R-squared	
	3086.82196				Root MSE	
Inway	Coef				[05\$ Conf	Intervall
+					[95% Conf.	
lnvhat	2.387608	.194152	12.30	0.000	2,00264	2.772576
_cons						
	-3.511468					5991397
		1.468784				5991397

	lscres								
	Percentiles	Smallest							
1%	-2.104532	-2.873703							
5%	-1.636175	-2.104532							
10%	-1.052992	-1.959904	Obs	. 107					
25%	.2072594	-1.913281	Sum of Wgt.	107					
50%	1.727736		Mean	1.733522					
		Largest	Std. Dev.	2.114867					
75≹	3.041155	5.645607							
90%	4.478195	5.900963	Variance	4.472662					
95%	5.600211	6.324376	Skewness	.2246598					
99%	6.324376	7.75971	Kurtosis	2.698437					

Data set 2

.

Generalized 1: Optimization Deviance Pearson Variance funct Link function Standard error	8116 21044 1^2 .n (u)		Resi Scal (1/d		95 5.585138 3.861559	
Log pseudolike BIC	elihood = -892 =-77.0			AIC	=	16.91588
		Robust				
speced			Z	P> z	[95% Conf.	Interval]
						2250166
age	.1714627	.0834474	2.05			.3350166
gender	.3900416 .1166323	.4/529/6	0.84	0.412 0.003		1.321608
mumacDII	0204205	.0397231	2.94		105155	
gliqser	.0294205 -2.912558 2122427	1 500001	0.43	0.668 0.067 0.060	6 020070	.1639961 .2039621
etigrpe	-2.912550	1128622	-1.85	0.067	4334486	.2039621
largefor		.1120022	-1.88	0.060	-3.620948	
ffaar	-2.777146 1454464 .0490821 .1348755 -1.233736	1026072	-0.45	0.000	-3.020340	
listi	1454464	.1020073	-1.42	0.157	3467099	.055817
singpar	.0490821	.48/3606	0.10	0.920	9061272	1.004291
pimpacoo	.1348755	.0733122	1.84	0.066	0088137	
readz	-1.233736	.1542966	-8.00	0.000	-1.536152	
_cons	8.060181	4.520486	1.78	0.075	7998076	16.92017
Correlatio R-squared Root MSE		191				
. linktest						
Iteration 1 :	deviance = 1	.31e+10				
Residual df =	= 104				No. of obs =	107
Pearson X2 =	= 1.31e+10				Deviance =	1.31e+10
Dispersion =	= 1.26e+08				Dispersion =	
Gaussian (norm						
	Coef.		t	P> t	[95% Conf.	
hat					-18623.82	385.8009
	850.4135					
					-10679.39	58110.24
	23715.43	1/J77.JL		U.1/4	-100/3.33	
(Model is ordi	inarv regressi		ess inst	ead)		

(Model is ordinary regression, use regress instead)

-

Park test

Source	SS	df	MS		Number of obs = $F(1, 105) =$	
Model Residual	1633.45612 1263.27952		.45612 312335		Prob > F = R-squared = Adj R-squared =	0.0000 0.5639
Total	2896.73564	106 27.3	276947		<i>.</i>	3.4686
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf. I	nterval]
lnyhat _cons	2.31008 -2.961912	.1982569 1.494459	11.65 -1.98	0.000 0.050		2.703186 .0013242

		lscres			
	Percentiles	Smallest			
18	-2.043561	-2.804997			
5%	-1.718786	-2.043561			÷
10%	-1.146907	-2.020442	Obs	107	
25%	.1700173	-1.921277	Sum of Wgt.	107	
50%	1.853486		Mean	1.714243	
		Largest	Std. Dev.	2.026696	
75%	3.026435	5.346505			
90%	4.306331	6.001412	Variance	4.107498	
95%	5.296626	6.2108	Skewness	.0456214	
998	6.2108	6.482461	Kurtosis	2.549337	

Data set 3

Generalized linear	models	No. of obs	=	107
Optimization :	ML: Newton-Raphson	Residual df		95
		Scale parameter	=	6.31845
Deviance =	390.9867526	(1/df) Deviance	=	4.11565
Pearson =	600.2527614	(1/df) Pearson	=	6.31845
Variance function:	$V(u) = u^2$	[Gamma]		
Link function :	g(u) = ln(u)	[Log]		
Standard errors :	Sandwich	-		
Log pseudolikeliho	od = -905.0690279	AIC	=	17.14148
BIC	=-52.93198667			

		Robust				
speced	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval
age	.0949647	.0809908	1.17	0.241	0637744	.253703
gender	.1780225	.5132319	0.35	0.729	8278936	1.18393
mumatbir	.1037409	.039987	2.59	0.009	.0253678	.182113
ghqscr	.0709827	.0614481	1.16	0.248	0494534	.191418
ethgrpc	-1.539924	1.35464	-1.14	0.256	-4.194969	1.11512
class	1326866	.1205725	-1.10	0.271	3690043	.103631
largefam	-3.375034	.4380885	-7.70	0.000	-4.233672	-2.51639
ffscr	2127514	.0840779	-2.53	0.011	3775411	047961
singpar	4017477	.4956971	-0.81	0.418	-1.373296	.569800
pimpac00	.1961669	.0826532	2.37	0.018	.0341696	.358164
readz	-1.244288	.1641456	-7.58	0.000	-1.566008	92256
cons	9.429871	3.800656	2.48	0.013	1.980723	16.8790

Correlation	0.405
R-squared	0.164
Root MSE	13899.538

. linktest

-

Iteration 1 : deviance = 1.35e+10 Residual df = 104

 Residual df =
 104
 No. of obs =
 107

 Pearson X2 =
 1.35e+10
 Deviance =
 1.35e+10

 Dispersion =
 1.30e+08
 Dispersion =
 1.30e+08

Gaussian (normal) distribution, identity link

speced	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_hat	-9602.249	5151.592	-1.86	0.065	-19818.05	613.5512
_hatsq	869.591	343.1341	2.53	0.013	189.1433	1550.039
_cons	25891.44	18763.4	1.38	0.171	-11317.09	63099.97

(Model is ordinary regression, use regress instead)

Park test

_

Source	SS	df	MS		Number of obs F(1, 105)	
Model Residual Total	1709.3355 1390.56724		99.3355 434975 443654		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.5514
lnvar	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnyhat _cons	2.404531 -3.777041	.2116499 1.617337	11.36 -2.34	0.000 0.021	1.984869 -6.983922	2.824194 5701597

	lscres						
	Percentiles	Smallest					
1%	-2.147503	-2.945227					
5%	-1.610523	-2.147503					
10%	-1.21174	-1.986134	Obs	107			
25%	.1408417	-1.775157	Sum of Wgt.	107			
50%	2.205312		Mean	1.827041			
		Largest	Std. Dev.	2.082996			
75%	3.208972	5.629262					
90%	4.493219	5.862659	Variance	4.338874			
95%	5.297106	6.077029	Skewness	0502187			
998	6.077029	6.29403	Kurtosis	2.353377			

Data set 4

Generalized 1: Optimization Deviance Pearson	: ML: Newt	88746		Resid Scale (1/df	of obs = lual df = e parameter = 5) Deviance = 5) Pearson =	= 95 = 5.69767 = 3.781883
Variance funct Link function Standard error		[Gamn [Log]	-			
Log pseudolikelihood = -889.2150888 BIC =-84.63986469				AIC	-	= 16.84514
speced	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
age gender mumatbir ghqscr	.3942623 .1091652	.0761043 .4528831 .031458 .0589721	0.87 3.47		4933722 .0475087	1.281897 .1708217

ethgrp	c 34	87021	.7390801	-0.47	0.637	-1.797272	1.099868
		37053	.1086488	-1.41	0.157	366653	.0592424
largefa	m -3.0		. 3934333	-7.85	0.000	-3.858229	-2.315999
ffsc	r 20	31579	.0559314	-3.63	0.000	3127814	0935343
sinqpa	r .11 0 .0	00202	.4601371	0.24	0.811	7918319	1.011872
pimpac0	oi	90843	.0740412	1.23	0.220	0542752	1.011872 .2359612
			.1326042	-9.60	0.000	-1.532955	
con	•		2.246715	3.35	0.001	3.117859	11.92482
Correla	tion	0.4	45 -				
R-squar		0.1					
Root MS		15257.1					
	-	1000/.1					
. linktest							
Iteration 1	: deviand	ce = 1.3	25e+10				
Residual df	=	104				No. of obs =	107
Pearson X2	= 1.25	e+10				Deviance =	
Dispersion	= 1.20	e+08				Dispersion =	1.20e+08
Gaussian (n	ormal) dia	stributi	on, identi	ty link			
spece			 Std. Err.		P> t	[95% Conf.	Interval]
	+						
. —	t -929		4374.914				
_hats			290.2024				1436.545
_con	S 243	85.39	15954.36	1.53	0.129	-7252.704	56023.49
Park test							
Sourc	e	SS	df	MS		Number of obs	
	+					F(1, 105)	= 140.44
			1 1807			Prob > F	
Residua	1 1351	.70009	105 12.8	3733342		R-squared	
·	+		106 20 6			Adj R-squared	
Tota	1 3159	.61904	106 29.8	5077268		Root MSE	= 3.58/9
lnva		Coef.	Std. Err.	·	P> t	[95% Conf.	Intervall
	+					[JJi Conf.	
lnyha			.1994395			1.968046	2.75895
_con	s -3.3	59408	1.498679	-2.24	0.027	-6.331011	3878047
		1	scres				
Borgo	ntiles	Small					
	39347	-2.905					
	63465	-1.939					
	92964	-1.934		Obs		107	
	33703	-1.928		Sum of Wgt	E. ·	107	
					-	(
50% 1.6	06936	Larg	est	Mean Std. Dev.		.678873 .033922	
75% 3.0	85516	5.234			-		
	41938	5.27		Variance	4	136838	
	91543	6.242		Skewness)514812	
	42092	6.491		Kurtosis		.329821	
			•				

.

-

Data set 5

•

Generalized linear models	No. of obs	= 10)7
Optimization : ML: Newton-R	Raphson Residual df	= 9	95
	Scale parameter	= 6.4324	14
Deviance = 368.890728	(1/df) Deviance	= 3.8830	06
Pearson = 611.0817833	(1/df) Pearson	= 6.4324	14
Variance function: $V(u) = u^2$	[Gamma]		
Link function : $g(u) = ln(u)$	[Log]		
Standard errors : Sandwich			

Log pseudolike BIC	elihood = -894 =-75.0		AIC	=	16.93497	
		Robust				
speced	Coef.	Std. Err.	z	P> z	[95% Conf.	Intervalj
age	.1401291	.0809673	1.73	0.084	0185639	.2988222
gender	.4470994	.4861177	0.92	0.358	5056738	1.399873
mumatbir	.0897647	.0376711	2.38	0.017	.0159306	~ .1635987
ghqscr	.0258742	.0658048	0.39	0.694	1031008	.1548491
ethgrpc	-1.907193	1.433479	-1.33	0.183	-4.71676	.9023736
class	1713594	.1108934	-1.55	0.122	3887065	.0459877
largefam	-3.354826	.4598546	-7.30	0.000	-4.256125	-2.453528
ffscr	1675704	.0918022	-1.83	0.068	3474994	.0123585
singpar	2998361	.4931547	-0.61	0.543	-1.266402	.6667294
pimpac00	.1834978	.0691039	2.66	0.008	.0480566	.318939
readz	-1.222068	.1533211	-7.97	0.000	-1.522572	921564
_cons	8.639718	4.045907	2.14	0.033	.7098852	16.56955

Correlation	0.429				
R-squared	0.184				
Root MSE	19613.498				

. linktest

Iteration 1 : deviance = 1.24e+10

Residual df	=	104	No. of obs	=	107
Pearson X2	Ŧ	1.24e+10	Deviance	=	1.24e+10
Dispersion	` =	1.20e+08	Dispersion	=	1.20e+08

_

Gaussian (normal) distribution, identity link

speced		Std. Err.	t	₽> t	[95% Conf.	Interval]
_hat	-9487.797	4428.678	-2.14	0.034	-18270.03	-705.5616
_hatsq	863.1319	289.814	2.98	0.004	288.4199	1437.844
_cons	25542.08	16374.1	1.56	0.122	-6928.378	58012.54

(Model is ordinary regression, use regress instead)

Park test

Source	SS	df	MS		Number of $obs =$ F(1, 105) = 141	107
Model Residual 	1871.21339 1388.02069 3259.23409	105 13.2	21339 2192447 7474914		F(1, 105) = 141 Prob > F = 0.0 R-squared = 0.5 Adj R-squared = 0.5 Root MSE = 3.6	000 741 701
lnvar	Coef.	Std. Err.	 t	P> t	[95% Conf. Interv	 all
lnyhat	2.410257	.2025839	11.90	0.000	2.00857 2.811	
_cons	-3.800367	1.530967	-2.48	0.015	-6.8359937647	412

	lscres							
	Percentiles	Smallest						
18	-2.100412	-2.9474						
5%	-1.628693	-2.100412						
10%	9720821	-1.993048	Obs	107				
25%	.2623258	-1.980122	Sum of Wgt.	107				
50%	1.772101		Mean	1.723788				
		Largest	Std. Dev.	2.007217				
75%	3.087678	5.647025						
90%	4.452529	5.648638	Variance	4.028921				
95%	5.130645	5.694739	Skewness	0054011				
99%	5.694739	6.317863	Kurtosis	2.475919				

Trimmed estimation sample

Data set 1

.

Variance function: V(u) = u^2 [Gamma] Link function : g(u) = ln(u) [Log] Standard errors : Sandwich AIC = 15.78306 BIC =-149.0452644 AIC = 15.78306	Generalized li Optimization Deviance Pearson		- 51688		Res: Scal (1/c	of obs = idual df = le parameter = if) Deviance = if) Pearson =	= 85 = 3.145357 = 2.821237
BIC =-149.0452644 Robust age 0006227 0578739 0.01 0.991 112808 .1140534 gender .841737 .3291696 2.56 0.010 .1990131 1.489334 class .000976 .1135593 0.01 0.993 2215956 .2235487 mumatbir .0500078 .0272836 1.83 0.067 0034671 .1034288 ghgacr 1.030744 .0590134 1.75 0.081 0125896 .2187386 ethgrpc -1.012392 .9913089 -1.02 0.307 -2.955322 .9305378 largefam -3.380206 .3841295 -8.80 0.000 -4.133086 -2.627327 ffscr 1331223 .0693349 -1.92 0.055 2690163 .0027716 singpar 3098651 .4453029 -0.70 0.487 -1.182643 .5629125 pimpac00 .2558736 .0681442 3.75 0.000 -1.320926 7997177 _cons 7.850136 2.578148 3.04 0.002 <td>Link function</td> <td>: g(u) = 1</td> <td>ln(u)</td> <td></td> <td></td> <td>-</td> <td></td>	Link function	: g(u) = 1	ln(u)			-	
speced Robust Coef. Std. Err. z P> z [95% Conf. Interval] age .0006227 .0578739 0.01 0.991 112808 .1140534 gender .8441737 .3291696 2.56 0.010 .1990131 1.489334 class .0009766 .1135593 0.01 0.993 2215956 .2235487 mumatbir .0500078 .0272836 1.83 0.067 0034671 .1034828 ghgscr .1030744 .0590134 1.75 0.081 0125898 .2187386 ethgrpc -1.012392 .9913089 -1.02 0.307 -2.95522 .9305378 largefam -3.380206 .3841295 -8.80 0.000 -4.133086 -2.627327 ffscr 133123 .0693349 -1.92 0.055 2690163 .0027716 singpar 398651 .4653029 -0.797 0.000 .123134 .3894338 readz -1.060322 .13295639 -7.97 0.		=-149	.0452644			-	= 15.78306
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	anagad	Coof		-	Dalal	IDE& Conf	Intornall
age .0006227 .0578739 0.01 0.991 112808 .1140534 gender .8441737 .3291696 2.56 0.010 .1990131 1.489334 class .0009766 .1135593 0.01 0.993 215956 .2235487 mumatbir .050078 .0272836 1.83 0.067 0034671 .1034228 ghqscr .1030744 .0590134 1.75 0.081 0125898 .2187386 ethgrpc -1.012392 .9913089 -1.02 0.307 -2.955322 .9305378 largefam -3.38026 .3841295 -8.80 0.000 -4.133086 -2.627327 ffscr 1331223 .0693349 -1.92 0.055 2690163 .0027716 singpar 3098651 .4453029 -0.70 0.487 -1.182643 .5629125 pimpac00 .2558736 .0681442 3.75 0.000 -1.220326 7997177 _cons 7.850136 2.578148 3.04 0.002 2.797058 12.90321 festioal ff <t< td=""><td></td><td></td><td></td><td></td><td>F> 2 </td><td>[95% CONL.</td><td></td></t<>					F> 2	[95% CONL.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
class .0009766 .1135593 0.01 0.993 2215956 .2235487 mumatbir .0500078 .0272836 1.83 0.067 0034671 .1034828 ghqscr .1030744 .0590134 1.75 0.081 0125898 .2187386 ethgrpc -1.012392 .9913089 -1.02 0.307 -2.955322 .9305378 largefam -3.380206 .3841295 -8.80 0.000 -4.133086 -2.627327 ffscr 13131223 .0693349 -1.92 0.055 2690163 .0027716 singpar 3098651 .4453029 -0.70 0.487 -1.182643 .5629125 pimpac00 .2558736 .0681442 3.75 0.000 -1.320926 7997177 _cons 7.850136 2.578148 3.04 0.002 2.797058 12.90321 Correlation 0.541				2.56	0.010	.1990131	1.489334
ghqscr .1030744 .0590134 1.75 0.081 0125898 .2187386 ethgrpc -1.012392 .9913089 -1.02 0.307 -2.955322 .9305378 largefam -3.380206 .3841295 -8.80 0.000 -4.133086 -2.627327 ffscr -1.31223 .0693349 -1.92 0.055 -2.690163 .0027716 singpar 3098651 .4453029 -0.70 0.487 -1.182643 .5629125 pimpac00 .2558736 .0681442 3.75 0.000 -1.320926 7997177 _cons 7.850136 2.578148 3.04 0.002 2.797058 12.90321 .cons 7.850136 2.578148 3.04 0.002 2.797058 12.90321 .cons 0.541 R-squared 0.293 0.06409 Deviance = 3.00e+09 Residual df = 94 No. of obs = 97 Pearson X2 = 3.00e+09 Deviance = 3.00e+09 Dispersion = 3.20e+07 Dispersion = 3.20e+07 Gaussian (normal) dist						2215956	.2235487
ethgrpc -1.012392 .9913089 -1.02 0.307 -2.955322 .9305378 largefam -3.380206 .3841295 -8.80 0.000 -4.133086 -2.627327 ffscr 131223 .0693349 -1.92 0.055 2690163 .0027166 singpar 3098651 .4453029 -0.70 0.487 -1.182643 .5629125 pimpac00 .2558736 .0681442 3.75 0.000 .1223134 .3894338 readz -1.060322 .1329639 -7.97 0.000 -1.320926 7997177 _cons 7.850136 2.578148 3.04 0.002 2.797058 12.90321 Correlation 0.541 R-squared 0.293 0.004 0.002 2.797058 12.90321 Correlation 1 deviance = 3.00e+09 Deviance = 3.00e+09 97 Pearson X2 3.00e+09 Deviance = 3.00e+09 Deviance = 3.00e+09 Dispersion = 3.20e+07 Dispersion = 3.20e+07 Gaussian (normal) distribution, identity link	mumatbir	.0500078	.0272836	1.83	0.067	0034671	.1034828
ethgrpc -1.012392 .9913089 -1.02 0.307 -2.955322 .9305378 largefam -3.380206 .3841295 -8.80 0.000 -4.133086 -2.627327 ffscr 131223 .0693349 -1.92 0.055 2690163 .0027166 singpar 3098651 .4453029 -0.70 0.487 -1.182643 .5629125 pimpac00 .2558736 .0681442 3.75 0.000 .1223134 .3894338 readz -1.060322 .1329639 -7.97 0.000 -1.320926 7997177 _cons 7.850136 2.578148 3.04 0.002 2.797058 12.90321 Correlation 0.541 R-squared 0.293 0.004 0.002 2.797058 12.90321 Correlation 1 deviance = 3.00e+09 Deviance = 3.00e+09 97 Pearson X2 3.00e+09 Deviance = 3.00e+09 Deviance = 3.00e+09 Dispersion = 3.20e+07 Dispersion = 3.20e+07 Gaussian (normal) distribution, identity link	ghqscr	.1030744	.0590134	1.75	0.081	0125898	.2187386
ffscr 1331223 .0693349 -1.92 0.055 2690163 .0027716 singpar 3098651 .4453029 -0.70 0.487 -1.182643 .5629125 pimpac00 .2558736 .0681442 3.75 0.000 .1223134 .3894338 readz -1.060322 .1329639 -7.97 0.000 -1.320926 7997177 _cons 7.850136 2.578148 3.04 0.002 2.797058 12.90321 .correlation 0.541 R-squared 0.293 0.00490 2.97058 12.90321 .linktest Iteration 1: deviance = 3.00e+09 No. of obs = 97 Pearson X2 = 3.00e+09 Deviance = 3.00e+09 Residual df = 94 No. of obs = 97 Deviance = 3.00e+09 Dispersion = 3.20e+07 Dispersion = 3.20e+07 Gaussian (normal) distribution, identity link	ethgrpc			-1.02	0.307	-2.955322	.9305378
<pre>singpar 3098651 .4453029 -0.70 0.487 -1.182643 .5629125 pimpac00 .2558736 .0681442 3.75 0.000 .1223134 .3894338 readz -1.060322 .1329639 -7.97 0.000 -1.3209267997177 cons 7.850136 2.578148 3.04 0.002 2.797058 12.90321 </pre>	largefam	-3.380206	.3841295	-8.80	0.000	-4.133086	-2.627327
<pre>singpar 3098651 .4453029 -0.70 0.487 -1.182643 .5629125 pimpac00 .2558736 .0681442 3.75 0.000 .1223134 .3894338 readz -1.060322 .1329639 -7.97 0.000 -1.3209267997177 cons 7.850136 2.578148 3.04 0.002 2.797058 12.90321 </pre>	ffscr	1331223	.0693349	-1.92	0.055	2690163	.0027716
pimpac00 .2558736 .0681442 3.75 0.000 .1223134 .3894338 readz -1.060322 .1329639 -7.97 0.000 -1.320926 7997177 _cons 7.850136 2.578148 3.04 0.002 2.797058 12.90321 Correlation 0.541 R-squared 0.293 Root MSE 6164.476 . linktest Iteration 1 : deviance = 3.00e+09 Residual df = 94 No. of obs = 97 Pearson X2 = 3.00e+09 Deviance = 3.00e+09 Dispersion = 3.20e+07 Deviance = 3.20e+07 Gaussian (normal) distribution, identity link	singpar	3098651	.4453029	-0.70	0.487	-1.182643	.5629125
	pimpac00	.2558736	.0681442	3.75	0.000	.1223134	.3894338
	readz	-1.060322	.1329639	-7.97	0.000	-1.320926	7997177
R-squared NSE 0.293 Root MSE 6164.476 . linktest Iteration 1 : deviance = 3.00e+09 Residual df = 94 No. of obs = 97 Pearson X2 = 3.00e+09 Deviance = 3.00e+09 Dispersion = 3.20e+07 Deviance = 3.00e+09 Gaussian (normal) distribution, identity link			2.578148	3.04			12.90321
Iteration 1 : deviance = $3.00e+09$ Residual df = 94 Pearson X2 = $3.00e+09$ Dispersion = $3.20e+07$ Gaussian (normal) distribution, identity link speced Coef. Std. Err. t P> t [95% Conf. Interval] 	R-squared	0	. 293				
Residual df =94No. of obs =97Pearson X2 = $3.00e+09$ Deviance = $3.00e+09$ Dispersion = $3.20e+07$ Dispersion = $3.20e+07$ Gaussian (normal) distribution, identity link $speced \mid Coef. Std. Err. t P> t [95% Conf. Interval]$. linktest						
Pearson X2 = 3.00e+09 Dispersion = 3.20e+07 Deviance = 3.00e+09 Dispersion = 3.20e+07 Gaussian (normal) distribution, identity link	Iteration 1 :	deviance = 3	3.00e+09				
Pearson X2 = 3.00e+09 Dispersion = 3.20e+07 Deviance = 3.00e+09 Dispersion = 3.20e+07 Gaussian (normal) distribution, identity link	Residual df =	. 94				No. of obs =	. 97
Gaussian (normal) distribution, identity link speced Coef. Std. Err. t P> t [95% Conf. Interval] hat -7555.137 2881.816 -2.62 0.010 -13277.05 -1833.223 hatsq 715.7844 210.2079 3.41 0.001 298.4117 1133.157						Deviance =	= 3.00e+09
speced Coef. Std. Err. t P> t [95% Conf. Interval] hat -7555.137 2881.816 -2.62 0.010 -13277.05 -1833.223 _hatsq 715.7844 210.2079 3.41 0.001 298.4117 1133.157	Dispersion =	3.20e+07				Dispersion =	= 3.20e+07
speced Coef. Std. Err. t P> t [95% Conf. Interval] hat -7555.137 2881.816 -2.62 0.010 -13277.05 -1833.223 _hatsq 715.7844 210.2079 3.41 0.001 298.4117 1133.157				-			•
_hatsq 715.7844 210.2079 3.41 0.001 298.4117 1133.157	-	Coef.	Std. Err.	t	P> t		-
_hatsq 715.7844 210.2079 3.41 0.001 298.4117 1133.157	hat l	-7555.137	2881.816	-2.62	0.010	-13277.05	-1833.223
	— :						
			9534.042	2.04	0.045		
	(Model is ordi	nary regress:	ion, use reg	ress inst	tead)		
(Model is ordinary regression, use regress instead)			· · · · · · · · ·				
(Model is ordinary regression, use regress instead)							

.

Generalized lin	ear models	No. of obs =	97
Optimization	: ML: Newton-Raphson	Residual df =	85
		Scale parameter =	3.503387
Deviance	= 243.6691569	(1/df) Deviance =	2.866696
Pearson	= 297.7878828	(1/df) Pearson =	3.503387
Variance functi	on: $V(u) = u^2$	[Gamma]	

Link function : g(u) = ln(u) Standard errors : Sandwich			[Log]			
Log pseudolike BIC	lihood = -75! =-145		-	AIC	=	15.8228
		Robust				
speced	Coef.	Std. Err.		P> z	[95% Conf.	Interval
age		.0619929		0.646	0929978	.150009
class	.8089879 0236109	.1171092	-0.20	0.840	2531406	.205918
mumatbir	.0595517 .1096823	.0294519	2.02	0.043	.001827	.11727
ghqscr	.1096823	.0637533	1.72	0.085	0152719	.234630
ethgrpc	-1.677521	1.13478	-1.48	0.139	-3.901649 -3.971595	.54660
largetam	-3.069073	.4604789	-6.66	0.000	-3.971595	-2.1665
fiscr	1249758	.0757137	-1.65	0.099	273372 -1.003848	.02342
nimpac00	1646661 .2621618	0654029	4 01	0.000		.3903
readz	-1.039756	.1408345	-7.38		-1.315786	
cons		2.894349	2.67	0.008	2.063143	13.408
. glmcorr			-	. •		
-	predicted					
	F					
Correlatio	n 0. 0.	.463				
R-squared						
Root MSE	6629	.815				
. linktest	•					
Iteration 1 :						
Pearson X2 =	3.20e+09				No. of obs = Deviance = Dispersion =	3.20e+0
Pearson X2 = Dispersion =	3.20e+09 3.40e+07	ion, identit	y link		Deviance =	3.20e+(
Pearson X2 = Dispersion =	3.20e+09 3.40e+07 al) distribut			P> t	Deviance = Dispersion =	3.20e+(3.40e+(
Pearson X2 = Dispersion = Gaussian (norm	3.20e+09 3.40e+07 al) distribut Coef.	Std. Err.	- t		Deviance = Dispersion = [95% Conf.	3.20e+(3.40e+(Interva
Pearson X2 = Dispersion = Gaussian (norm speced	3.20e+09 3.40e+07 al) distribut Coef. -5462.083 551.4102	Std. Err. 3019.868 217.41	- t		Deviance = Dispersion = [95% Conf.	3.20e+(3.40e+(Interva 533.93(
Pearson X2 = Dispersion = Gaussian (norm 	3.20e+09 3.40e+07 al) distribut Coef. -5462.083 551.4102 13141.83	Std. Err. 3019.868 217.41 10121.99	t -1.81 2.54 1.30	0.074 0.013 0.197	Deviance = Dispersion = [95% Conf.	3.20e+ 3.40e+ Interva 533.93 983.08
hat hatsq cons (Model is ordi: Data set 3 Generalized li:	3.20e+09 3.40e+07 al) distribut Coef. -5462.083 551.4102 13141.83 nary regress	Std. Err. 3019.868 217.41 10121.99	t -1.81 2.54 1.30	0.074 0.013 0.197 	<pre>Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 of obs =</pre>	3.20e+(3.40e+(Interva) 533.93(983.082 33239.2
Pearson X2 = Dispersion = Gaussian (norm speced hat hatsq cons (Model is ordin Data set 3 Generalized lin	3.20e+09 3.40e+07 al) distribut Coef. -5462.083 551.4102 13141.83 nary regress	Std. Err. 3019.868 217.41 10121.99	t -1.81 2.54 1.30	0.074 0.013 0.197 	Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 of obs = idual df =	3.20e+(3.40e+) Interva 533.93(983.08; 33239.;
Pearson X2 = Dispersion = Gaussian (norm speced hat hatsq cons (Model is ordin Data set 3 Generalized lin Optimization	3.20e+09 3.40e+07 al) distribut Coef. -5462.083 551.4102 13141.83 nary regress nary regress nary regress	Std. Err. 3019.868 217.41 10121.99 ion, use regi	t -1.81 2.54 1.30	0.074 0.013 0.197 	Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 of obs = idual df = le parameter =	3.20e+(3.40e+(Interva 533.93(983.082 33239.2
Pearson X2 = Dispersion = Gaussian (norm speced hat hatsq cons (Model is ordi: Data set 3 Generalized 11: Optimization Deviance	3.20e+09 3.40e+07 al) distribut Coef. -5462.083 551.4102 13141.83 nary regress	Std. Err. 3019.868 217.41 10121.99 ion, use regu con-Raphson 21479	t -1.81 2.54 1.30	0.074 0.013 0.197 	Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 of obs = idual df =	3.20e+(3.40e+) Interva 533.93(983.08) 33239.2 3.2458(2.8950)
Pearson X2 = Dispersion = Gaussian (norm 	3.20e+09 3.40e+07 al) distribut Coef. -5462.083 551.4102 13141.83 mary regress nary regress nary regress nary regress nary regress nary regress nary regress nary regress nary regress nary regress	Std. Err. 3019.868 217.41 10121.99 ion, use regination ion-Raphson 21479 32354 1^2 in (u)	t -1.81 2.54 1.30	0.074 0.013 0.197 	Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 	3.20e+(3.40e+) Interva 533.93(983.08) 33239.2 3.2458(2.8950)
Pearson X2 = Dispersion = Gaussian (norm speced hat hatsq cons (Model is ordin Data set 3 Generalized lin Optimization Deviance Pearson Variance funct. Link function Standard error.	3.20e+09 3.40e+07 al) distribut Coef. -5462.083 551.4102 13141.83 mary regress nary regress mary regress i ML: Newt = 246.082 = 275.896 ion: V(u) = u : g(u) = 1 s : Sandwich	Std. Err. 3019.868 217.41 10121.99 ion, use regination ion, use regination 21479 22354 1^2 in (u) h	t -1.81 2.54 1.30	0.074 0.013 0.197 	Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 of obs = idual df = le parameter = if) Deviance = if) Pearson = mma]	3.20e+(3.40e+(1nterva 533.93(983.082 33239.2 33239.2 3.2458(2.8950)
Pearson X2 = Dispersion = Gaussian (norm 	3.20e+09 3.40e+07 al) distribut Coef. -5462.083 551.4102 13141.83 nary regress nary regress nary regress inary regress ion: V(u) = 1 : g(u) = 1 s : Sandwich	Std. Err. 3019.868 217.41 10121.99 ion, use regination ion, use regination 21479 22354 1^2 in (u) h	t -1.81 2.54 1.30	0.074 0.013 0.197 	Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 of obs = idual df = le parameter = if) Deviance = if) Pearson = mma]	3.20e+(3.40e+) Interva 533.93(983.08; 33239.; 33239.; 3.2458(2.8950) 3.2458(
Pearson X2 = Dispersion = Gaussian (norm speced hat hatsq cons (Model is ordin Data set 3 Generalized lin Optimization Deviance Pearson Variance funct. Link function Standard error.	3.20e+09 3.40e+07 al) distribut Coef. -5462.083 551.4102 13141.83 nary regress nary regress nary regress inary regress ion: V(u) = 1 : g(u) = 1 s : Sandwich	Std. Err. 3019.868 217.41 10121.99 ion, use regination ion, use regination 21479 32354 1^2 ln(u) 1 56.616851	t -1.81 2.54 1.30	0.074 0.013 0.197 	Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 of obs = idual df = le parameter = if) Deviance = if) Pearson = mma]	3.20e+(3.40e+(3.40e+(983.082 33239.2 33239.2 3.2458(2.8950(3.2458(
Pearson X2 = Dispersion = Gaussian (norm speced hat hatsq cons (Model is ordin Data set 3 Generalized lin Optimization Deviance Pearson Variance funct. Link function Standard error.	3.20e+09 3.40e+07 al) distribut 	Std. Err. 3019.868 217.41 10121.99 ion, use regination ion, use regination 21479 32354 1^2 In (u) 1 56.616851 .7682852 Robust Std. Err.	t -1.81 2.54 1.30 ress inst	0.074 0.013 0.197 	Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 of obs = idual df = le parameter = if) Deviance = if) Pearson = mma]	3.20e+(3.40e+(Interva) 533.93(983.08) 33239.2 3.2458(3.2458(3.2458(15.847)
Pearson X2 = Dispersion = Gaussian (norm 	3.20e+09 3.40e+07 al) distribut 	Std. Err. 3019.868 217.41 10121.99 ion, use regination ion, use regination 21479 32354 1^2 In (u) 1 56.616851 .7682852 Robust Std. Err.	t -1.81 2.54 1.30 ress inst	0.074 0.013 0.197 tead) No. Resi Scal (1/c (1/c (1/c [Gam [Log AIC	Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 of obs = idual df = le parameter = if) Deviance = if) Pearson = mma] g] = [95% Conf.	3.20e+(3.40e+) Interva 533.93(983.08; 33239.2 3.2458(2.8950) 3.2458(15.847' Interva
Pearson X2 = Dispersion = Gaussian (norm speced hat hatsq cons (Model is ordin Data set 3 Generalized lin Optimization Deviance Pearson Variance funct. Link function Standard error. Log pseudolike BIC	3.20e+09 3.40e+07 al) distribut 	Std. Err. 3019.868 217.41 10121.99 ion, use regination ion, use regination 21479 32354 1^2 In (u) 1 56.616851 .7682852 Robust Std. Err. .0568619	t -1.81 2.54 1.30 ress inst	0.074 0.013 0.197 tead) No. Resi Scal (1/c (1/c (1/c [Gam [Log AIC P> z 0.514	Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 of obs = idual df = le parameter = if) Deviance = if) Pearson = mma] g] = [95% Conf. 1485511	3.20+(3.40+(3.40+(Interval 533.936 983.082 33239.2 32239.2 3.24586 2.89508 3.24586 15.8477 Interval
Pearson X2 = Dispersion = Gaussian (norm 	3.20e+09 3.40e+07 al) distribut Coef. -5462.083 551.4102 13141.83 nary regress nary regress inary regress ion: V(u) = 1 : g(u) = 1 s : Sandwich lihood = -75 =-142. Coef. 0371038 .6733289	Std. Err. 3019.868 217.41 10121.99 ion, use regination ion, use regination 21479 32354 1^2 In(u) 1 56.616851 .7682852 Robust Std. Err. .0568619 .3407108	t -1.81 2.54 1.30 ress inst ress inst	0.074 0.013 0.197 tead) No. Resi Scal (1/c (1/c (1/c [Gam [Log AIC P> z 0.514 0.048	Deviance = Dispersion = [95% Conf. -11458.1 119.7375 -6955.624 of obs = idual df = le parameter = if) Deviance = if) Pearson = mma] g] = [95% Conf. 1485511	3.20e+(3.40e+(3.40e+(Interval 533.936 983.082 33239.2 3239.2 3.24586 2.89508 3.24586 3.24586 15.8477 Interval .074343 1.3411

ghqscr ethgrpc largefam ffscr singpar pimpac00	.1154686 756199 -3.474748 1666006 0729447 .2732932	.0600041 .8748857 .4339396 .0611028 .4356107 .0643967		0.054 0.387 0.000 0.006 0.867 0.000	-2.470944 -4.325254 2863599 9267261	.9585455 -2.624242 0468413 .7808366
readz cons			-7.95	0.000	-1.350332	
Correlatio R-squared Root MSE . linktest Iteration 1 :	0 6430	.910				
Residual df =	-				No. of obs :	
Pearson X2 = Dispersion =					Deviance = Dispersion =	= 3.07e+09 = 3.27e+07
Gaussian (norm	al) distribut	cion, identi	ty link			
speced	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
_hat _hatsq _cons	670.0687	2944.096 213.4145 9826.818	3.14		246.3292	1093.808

(Model is ordinary regression, use regress instead)

. •

. Data set 4

•

Generalized li Optimization		ton-Raphson		Resi		= 97 = 85 = 3.041892
Deviance	= 234.62				f) Deviance	
Pearson	= 258.56	08538		(1/d	f) Pearson :	= 3.041892
Variance funct Link function Standard error	: g(u) = 1	ln(u)		[Gam [Log	-	
Log pseudolike BIC		0.8878606 .2262661		AIC	•	= 15.72965
		Robust				
speced	Coef.	Std. Err.	z	P> z	[95 % Conf	[Interval]
age	0177711	.0556051	-0.32	0.749	1267552	.0912129
gender	.8483244	.3275764	2.59	0.010	.2062866	1.490362
class	.000728	.1047576	0.01	0.994	2045932	.2060492
mumatbir	.0671254	.0268023	2.50	0.012	.0145938	.119657
ghqscr	.1011323	.0565866	1.79	0.074	0097753	.2120399
ethgrpc	082545	.5932468	-0.14	0.889	-1.245287	1.080197
largefam	-3.211125	.3942533	-8.14	0.000	-3.983847	-2.438403
ffscr	187838	.0487729	-3.85	0.000	2834311	0922449
singpar	.1003456	.4070923	0.25	0.805	6975406	.8982319
pimpac00	.196839	.0671634	2.93	0.003	.0652012	.3284768
readz	-1.089234	.127398	-8.55	0.000	-1.33893	8395387
_cons	7.967824	1.561729	5.10	0.000	4.906891	11.02876

Correlation	0.500
R-squared	0.250
Root MSE	6639.231

. linktest

Iteration 1 : deviance = 3.11e+09

Residual df Pearson X2 Dispersion		94 3.11e+09 3.30e+07				No. of obs = Deviance = Dispersion =	97 3.11e+09 3.30e+07
Gaussian (no	rma.	l) distribu	tion, identi	ty link			
speced	•	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_hat _hatsq _cons	Ì	-5591.955 555.3577 13797.59	2870.012 205.2614 9631.195	-1.95 2.71 1.43	0.054 0.008 0.155	-11290.43 147.8064 -5325.373	106.5201 962.9089 32920.55

(Model is ordinary regression, use regress instead)

Data set 5

Generalized li Optimization Deviance Pearson		-		Resi Scal (1/d	of obs = dual df = e parameter = f) Deviance = f) Pearson =	= 85 = 3.236557
Variance funct Link function Standard error	: g(u) = 1	Ln(u)		[Gam [Log	•	
Log pseudolike BIC		7.9064163 .1891547		AIC		= 15.87436
speced	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
age	01766	.0607465	-0.29	0.771	136721	.1014009
gender	.6808684	.3454752	1.97	0-049	.0037495	1.357987
class	0398022	.1174164	-0.34	0.735	2699342	.1903298
mumatbir	.0463363	.0286584	1.62	0.106	0098331	.1025057
ghqscr	.1013659	.0608686	1.67	0.096	0179343	.2206662
ethgrpc	-1.182665	1.013527	-1.17	0.243	-3.169141	.8038109
largefam	-3.437275	.446247	-7.70	0.000	-4.311904	-2.562647
ffscr	1593345	.067232	-2.37	0.018	2911068	0275622
singpar	1855356	.420513	-0.44	0.659	-1.009726	.6386548
pimpac00	.2952203	.0638451	4.62	0.000	.1700862	.4203544
readz	-1.048541	.1346196	-7.79	0.000	-1.312391	7846914
_cons	9.164524	2.636304	3.48	0.001	3.997464	14.33158

Correlation	0.343
R-squared	0.118
Root MSE	7871.030

. linktest

Iteration 1 : deviance = 3.40e+09

esidual df	=	94	No. of $obs =$	
Pearson X2			Deviance =	
ispersion	=	3.61e+07	Dispersion =	3

Gaussian (normal) distribution, identity link

speced		Std. Err.		P> t	[95% Conf.	Interval]
_hat	-3331.858	2917.538	-1.14	0.256	-9124.699	2460.983
_hatsq	382.2474	208.5341	1.83	0.070	-31.80195	796.2967
_cons	6782.371	9829.308	0.69	0.492	-12733.95	26298.69

(Model is ordinary regression, use regress instead)