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A bstract

This thesis seeks to make three related contributions to our understanding of the 

causes and implications of downward nominal wage rigidity, the nature of money 

illusion on behalf of workers, and the theoretical treatment of irreversibility in factor 

demand and wage setting.

Chapter 1 seeks to contribute to the literature on downward nominal wage rigidity 

(DNWR) along two dimensions. First, I formulate and solve an explicit model of wage- 

setting in the presence of worker resistance to nominal wage cuts -  something that 

has previously been considered intractable. In particular, I show that this resistance 

renders wage increases (partially) irreversible. Second, using this model, one can 

explain why previous estimates of the macroeconomic effects of DNWR have been 

so weak despite remarkably robust microeconomic evidence. In particular, one can 

show that previous studies have neglected the possibility that DNWR can lead to 

a compression of wage increases as well as decreases. Thus, the literature may have 

been overstating the costs of DNWR to firms. Using micro-data for the US and Great 

Britain, I find robust evidence in support of the predictions of the model. In the light 

of this evidence, Chapter 1 concludes that increased wage pressure due to DNWR 

may not be as large as previously envisaged, but that the behavioural implications of 

DNWR in respect of the reaction of workers to nominal wage cuts remain significant.

Chapter 2 then contrasts the implications of two proposed models of downward 

nominal wage rigidity — those based on the form of market contracts (MacLeod 

& Malcomson [1993]; Holden [1994]), and that based on money illusion explored in 

Chapter 1. In particular, I identify a method of distinguishing between these two 

foundations empirically, by observing how the distribution of wage changes varies 

with the rate of inflation. I find evidence that at least part of the observed rigidity 

cannot be easily explained by contract models, but can be explained in the context
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of a model with money illusion.

Finally, Chapter 3 extends some of the theoretical developments of Chapter 1 

with respect to models of irreversibility. In particular, Chapter 3 presents analyti

cal results for models of dynamic factor demand in the presence of irreversibility in 

discrete time. It builds on previous work on irreversibility in the investment (Dixit 

&; Pindyck [1994]) and labour demand (Bentolila Sz Bertola [1990]) literatures which 

use a continuous time, Brownian framework. I show that, whilst there are parallels 

between the discrete time models and their continuous time counterparts, the an

alytics in discrete time allow a more general treatment, principally by allowing the 

relaxation of the assumption of shocks following a unit root. I then explore the effects 

of relaxing this assumption on optimal factor demand.
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0.1 Introduction to Thesis

This thesis fuses insights from three distinct literatures: the empirical observation of 

downward rigidity in nominal wages, the psychological phenomenon of money illusion, 

and the theoretical treatment of irreversibility.

In particular, Chapter 1 formulates and solves an explicit model of wage-setting 

informed by recent survey-based evidence that workers resist nominal wage cuts (Be- 

wley [1999], Shafir, Diamond, & Tversky [1997]). In particular, using this model we 

demonstrate that this resistance renders wage increases (partially) irreversible. In 

this way we establish the first link between the above literatures: that between money 

illusion in the form of a resistance to nominal loss, and irreversibility.

We then proceed to show that by using this model we can explain many of the 

properties of the observed downward rigidity of nominal wages found in developed 

economies (see Kramarz [2001]). Specifically, we obtain a novel finding that has not 

been addressed in the previous empirical literature on downward nominal wage rigidity 

(DNWR): that firms will optimally restrict nominal wage increases as a response to 

workers’ resistance to wage cuts. Using micro-level data from the US and Great 

Britain, we find strong evidence that this is indeed the case.

This is a useful finding on a number of dimensions. First, it is a non-trivial im

plication of worker resistance to wage cuts that is testable using conventional data. 

This is useful because the previous literature providing evidence for aversion to nom

inal loss has typically just asked people about their reactions to wage cuts (Bewley 

[1999], Shafir et al. [1997]). Economists have instinctively avoided such data on 

the basis that there may be vast differences between what people say and what they 

do (Bertrand & Mullainathan [2001]). By providing additional evidence from more
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conventional sources, we obtain a more robust insight into the nature of wage setting, 

and more fundamentally, the form of workers’ preferences.

Second, using this model, one can reconcile a tension in the empirical literature on 

downward nominal wage rigidity between the micro- and macro-level estimates. In 

particular, estimates of the macroeconomic effects of DNWR have been remarkably 

weak despite robust microeconomic evidence. We show that, by neglecting the possi

bility that downward nominal wage rigidity leads to the compression of wage increases 

as well as wage cuts, previous studies may have been overstating the costs of DNWR 

to firms. Our data from the US and Great Britain confirm that this is indeed the 

case: the estimated reduction in wage growth due to restricted wage increases offsets 

most of the estimated increase in wage growth due to restricted wage cuts in the data.

In the light of this evidence, Chapter 1 concludes that increased wage pressure 

due to DNWR may not be as large as previously envisaged, but that the behavioural 

implications of DNWR in respect of the reaction of workers to nominal wage cuts 

remain significant.

Chapter 2 then goes on to look more closely at the relationship between downward 

nominal wage rigidity and money illusion. In particular, it contrasts the implications 

of the model formulated in Chapter 1 with an alternative set of theories for DNWR 

based on the form of market contracts (MacLeod h  Malcomson [1993]; Holden [1994]). 

Specifically, we identify a method of distinguishing between these two foundations 

empirically, by observing how the distribution of wage changes varies with the rate 

of inflation. We show that the model based on worker resistance to wage cuts of 

Chapter 1 predicts that the distribution of wage increases should vary with the rate 

of inflation; contract models, on the other hand, do not.

The intuition for this result is due to the fact that contract models are based on
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the existence of real frictions that render it costly for workers (firms) to switch firms 

(workers). Since in many countries there must be mutual consent of firm and worker 

to wage changes, the default contract in the event of disagreement is no change in 

wages. In particular, wages in these models are renegotiated up (down) only when 

the worker’s (firm’s) outside option (or equivalently strike (lockout) threat; Holden 

[1994]) becomes preferable. Thus, the existence of frictions drives a wedge between 

the firm’s and the worker’s outside option, and thus the nominal wage will remain 

constant for intervals of time. In this way such frictions can yield some fixity in 

wages. However, since wage rigidity in contract models is driven by real frictions, 

they cannot explain any changes in the compression of wage increases that are related 

to the rate of inflation. The model of money illusion in Chapter 1, on the other hand, 

predicts that wage increases will become compressed when inflation is low. This is 

because low inflation implies that the only way firms can reduce real labour costs 

in the future is by cutting the nominal wage, which is costly. Therefore, firms will 

restrict wage increases as a precaution against such future costs as inflation falls in 

the model of DNWR based on money illusion.

Taking these predictions to our micro-data for the US and Great Britain, we find 

evidence that firms actively compress wage increases when inflation is low. Thus, we 

conclude that at least part of the observed rigidity in nominal wages cannot be easily 

explained by contract models, but can be explained straightforwardly in the context of 

a model with money illusion. This reinforces the conclusion that downward nominal 

wage rigidity is, at least in part, symptomatic of a particular aversion to nominal 

wage cuts on behalf of workers.

Finally, Chapter 3 extends some of the theoretical developments of Chapter 1 with 

respect to models of irreversibility. In particular, Chapter 3 presents analytical results 

for models of dynamic factor demand in the presence of irreversibility in discrete time.
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It builds on previous work on irreversibility in the investment (Dixit &; Pindyck [1994]) 

and labour demand (Bentolila & Bertola [1990]) literatures which use a continuous 

time, Brownian framework. We show that, whilst there are parallels between the 

discrete time models and their continuous time counterparts, the analytics in discrete 

time allow a more general treatment, principally by allowing the relaxation of the 

assumption of shocks following a unit root.

Chapter 3 then explores the effects of relaxing this assumption on optimal factor 

demand. We first derive a general result that increased persistence of shocks leads 

to a greater response of factor demand to current shocks. The intuition for this 

is that, when shocks are more persistent, current shocks become more informative 

about future shocks. Thus, the firm has to worry less about any costly reversals 

of current factor demand decisions. Furthermore, we additionally find that reduced 

persistence in the form of i.i.d. shocks leads to greater rigidity in factor demand. 

Intuitively, i.i.d. shocks imply some mean-reverting aspect to shocks, which leads 

firms to worry more about having to reverse current factor demand decisions, at a 

cost, in the future. Finally, we examine the impact of distributional form by solving 

the model in the presence of exponential shocks. We find that the fatter tails implied 

by exponential shocks leads the firm to reduce demand more for bad shocks, and to 

increase demand more for good shocks.

Together, then, these chapters aim to enhance our understanding of money illu

sion and irreversibility both as distinct issues, but particularly through the lens of 

downward nominal wage rigidity in labour markets.
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Chapter 1

Evaluating th e Econom ic 

Significance o f Downward Nom inal 

W age R igidity

1.1 Introduction

The existence of rigidities in nominal wages (and prices) is a cornerstone of macroeco

nomic theory. Such rigidities act as the key theoretical motivation for the existence of 

a trade-off between inflation and unemployment in the form of the Phillips curve, and 

are thus of critical importance to the conduct and efficacy of macroeconomic policy.

A recent flurry of empirically oriented research has used micro-data to address 

the question of whether such nominal rigidity exists. In particular, this research de

tails some striking characteristics of the distribution of nominal wage changes at the 

individual level. These include the existence of a mass point at zero nominal wage 

change and an asymmetry in the form of a deficit of nominal wage cuts, which are 

taken together as evidence for downward nominal wage rigidity (henceforth DNWR).
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Such evidence has been found in numerous datasets spanning a vast number of de

veloped economies (for a survey see Kramarz, 2001)1. However, a number of issues 

remain unresolved in the light of this research.

An important question relates to evidence for the expected macroeconomic effects 

of DNWR. In particular, a number of studies have shown that the above results 

predict the existence of a convex, long run Phillips curve (Akerlof, Dickens & Perry, 

1996). Intuitively, low inflation implies that reductions in real labour costs can only 

be effected through nominal wage cuts. If firms are prevented from cutting nominal 

wages, then their only recourse is to layoff workers, leading to increased unemploy

ment. Thus, when inflation is low, increased inflation can relax the constraint of 

DNWR on wage-setting for a significant fraction of firms, and thereby reduce un

employment. This result has been of particular interest in recent years due to the 

adoption of inflation targeting by many monetary authorities. In particular, the 

existence of a long-run Phillips curve implies that implementing a low inflation target 

could result in a persistent increase in unemployment.

Much of the research on DNWR addresses precisely this issue. A typical reference 

is the analysis of Card & Hyslop (1997) for the US. Their micro-level analysis finds 

strong evidence that nominal wage cuts are restricted when inflation is low, and they 

conclude that the existence of DNWR leads to an increase in average real wage growth 

of up to 1% per annum. Card &; Hyslop then assess whether the predictions of this 

micro-level evidence are corroborated by evidence at a higher level of aggregation. 

In contrast to their micro-level results, Card Sz Hyslop’s state-level results are much

lrro get an impression of the sheer ubiquity of these observations, a non-exhaustive list of such 
studies is as follows. For the US: McLaughlin (1994), Kahn (1997), Card & Hyslop (1997), Altonji 
& Devereux (1999), Groshen & Schweitzer (1999), Lebow, Saks & Wilson (1999). For Canada: 
Far6s & Hogan (2000), Christofides & Leung (2003). For Europe: Smith (2000), Nickell & Quintini 
(2003), Fehr & Goette (2003), Beissinger & Knoppik (2003), Decressin & Decressin (2003), Dessy 
(2002). For Australia: Dwyer & Leong (2003).
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weaker. In particular, whilst they find some evidence for the existence of a Phillips 

curve trade-off, they obtain estimates that are too imprecise to conclude that this 

trade-off is stronger in periods of low inflation2. Moreover, informal observation of 

the recent incidence of low inflation together with low unemployment in the US and 

UK confirms the weakness of this prediction at the most basic level. Thus, there exists 

a puzzle: if the micro-level evidence for DNWR is so robust, why is the analogous 

macro-level evidence so fragile?

We argue that we can make progress in resolving this issue via a more careful 

consideration of the theoretical underpinnings of DNWR. In particular, we present 

a model of DNWR informed by recent evidence that wage-setters and negotiators 

are reluctant to cut the nominal wages of workers (see Bewley, 1995, 1998, 1999 and 

the survey in Howitt, 2002). In particular, by interviewing over 300 managers, pay 

professionals, labour leaders etc., Bewley finds that the most common explanation 

provided for this reluctance is the belief that nominal wage cuts damage worker 

morale. Moreover, there is additional evidence that agents are subject to money 

illusion (Shafir, Diamond & Tversky, 1997). In particular, these studies show that 

agents in different economic settings exhibit significant aversion to nominal losses -  

what we will term nominal loss aversion. A typical finding is that respondents believe 

it much more acceptable to receive a 5% nominal wage increase when inflation is 

12%, than a 7% wage cut when there is no inflation (Kahneman, Knetsch & Thaler, 

1986). This is corroborated by Genesove & Mayer (2001) who find evidence from 

real-estate data that condominium owners were reluctant to sell at a price below that 

they originally paid, even though they were typically moving locally, and hence were 

buying in the same market. Thus, nominal loss aversion applied to wage cuts can

2Weak macroeconomic effects have also been found by Lebow, Saks & Wilson (1999) for the 
US, and by Nickell & Quintini (2003) for the UK. Indeed, Lebow, Saks & Wilson coined the term 
“micro-macro puzzle” for the observed tension between micro- and macro-level estimates.
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provide a key to explaining the existence of DNWR.

The need for an explicit model of wage-setting in the presence of worker resistance 

to wage cuts has been noted in the previous literature on money illusion, as well as 

by labour economists studying the distribution of wage changes:

“Plausibly, the relationship [between wages and effort] is not continu

ous: there is a discontinuity coming from nominal wage cuts.... A central 

issue is how to model such a discontinuity.” Shafir, Diamond Sz Tversky 

(1997), p.371.

“[I]t is surprising to us that there is no rigorous treatment in the 

literature of how forward looking firms should set wages when it is costly 

to cut nominal wages.” Altonji Sz Devereux (2000), p.423 note 7.

We address both these issues and show that a key insight into the implications of these 

behavioural models is that nominal wage increases become partially irreversible. In 

particular, consider a firm that raises the wage today, but reverses the wage increase 

by cutting the wage by an equal amount tomorrow. When workers resist wage 

cuts, the net effect on productivity will be negative: today’s wage increase will raise 

productivity, but tomorrow’s wage cut will reduce productivity by a greater amount. 

Thus, reversals of wage increases are costly to firms. In this sense we can think of 

there being an asymmetric adjustment cost to changing nominal wages.

Models of asymmetric adjustment costs have been widely studied in the invest

ment (Dixit Sz Pindyck, 1994) and labour demand (Bentolila Sz Bertola, 1990) litera

tures, typically in the form of continuous time models with shocks following Brownian 

motions. In contrast, we formulate and solve our model of partial irreversibility in
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discrete time3. This is done for a number of reasons. First, since data are reported in 

discrete intervals, this method allows us to align theoretical and empirical concepts 

more naturally. Moreover, many wage contracts are renegotiated on an annual ba

sis, which is more consistent with a discrete-time setup. Finally, when considering 

worker resistance to wage cuts, the time horizon over which workers evaluate a wage 

cut becomes important4. Plausibly, workers do not evaluate wage changes continu

ally, but rather at discrete intervals, which again lends itself more to a discrete-time 

model. Whilst modelling these features in discrete time has to date been consid

ered significantly less tractable than corresponding Brownian models, we develop a 

comparatively tractable solution method5.

The solution to this “behavioural” model equips us with a number of predictions 

that can potentially reconcile the two strands of evidence mentioned above. We show 

that a key limitation in the previous empirical literature is that it assumes (implicitly 

or otherwise) that the existence of DNWR has no effect on the upper tail of the wage 

change distribution. In particular, this is a key identifying assumption in Card & 

Hyslop (1997), which leads them to use the observed upper tail of the distribution 

of wage changes to infer the properties of the lower tail in the absence of DNWR. 

The predictions of our model show that this may be misguided. In particular, the 

upper tail of wage changes will be compressed for two related reasons. First, we 

show that firms may actively reduce the nominal wage paid when they increase the

3 Partial irreversibility of investment decisions has been studied in a continuous time Brownian 
framework by Abel & Eberly (1996).

4 This point has been made by Benartzi & Thaler (1995) in the context of loss aversion over asset 
returns.

5 An additional benefit of a discrete-time solution, pursued in Chapter 3, is that it allows one to 
relax assumptions on the distribution of shocks. In particular, it can be shown that a Brownian 
motion is the continuous-time analogue to a Gaussian random walk (see Dixit, 1993). A discrete
time framework allows one to use non-Gaussian shocks, as well as more generalised persistence 
assumptions in a more comfortable way.
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wage relative to a “counterfactual” world without DNWR -  what we will term “active 

compression”. In the behavioural model, this results because raising the wage today 

increases the likelihood of having to cut the wage, at a cost, in the future. Second, 

the model shows that, even if firms do not actively compress nominal wage increases, 

the upper tail of the wage change distribution will still be compressed relative to the 

counterfactual with no DNWR. This is because DNWR raises the general level of 

wages in the economy, and thus firms do not have to raise wages as often or as much 

to obtain their desired wage level. In particular, we show that this process occurs as a 

result of a steady state requirement that average wages and productivity grow at the 

same constant rate in the long run. We refer to this process as “latent compression”. 

Thus, by neglecting these effects, previous studies have potentially overstated the 

increase in wage growth due to DNWR. In this way, we can potentially reconcile the 

micro- and macro-level evidence on DNWR found in the previous empirical literature.

In the light of this, we seek evidence for these predictions using micro-data for 

the US and Great Britain. We find significant evidence that the upper tail of the 

wage change distribution exhibits a compression of wage increases that is related to 

DNWR. In particular, we find that this limits the estimated increase in real wage 

growth due to DNWR from around 1-1.5% to no more than 0.3%. We show that 

this is because firms can “save” at least 75% of the increase in wage growth due to 

restricted wage cuts by reducing nominal wage increases. This might go some way to 

explaining why the aggregate effects of DNWR are often found to be modest.

As an additional test of the implications of the model of DNWR presented, we 

show that the model also implies that increased rates of turnover should mitigate the 

necessity for firms to restrict wage increases. This occurs because higher turnover 

reduces the probability that a given worker will stay in the firm an additional period, 

and thus renders the firm more myopic. Thus firms do not need to compress wage
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increases as a precaution against future costly wage cuts to the same extent. We 

again find robust evidence for this hypothesis using the NESPD data, and to a lesser 

extent for the PSID also. This reinforces the claim that a model of DNWR based on 

worker resistance to nominal wage cuts is a useful way of understanding the empirical 

properties of wage setting.

In the light of this evidence, we conclude that the macro effects of DNWR may 

not be as large as previously envisaged, and thus may not provide such a strong 

argument against the adoption of a low inflation target. However, the behavioural 

implications of DNWR in respect of the reaction of workers to nominal wage cuts 

remain significant and we conclude that it does imply something fundamental about 

the nature of human behaviour.

The rest of this chapter is organised as follows. Section 2 presents an explicit 

behavioural model of wage-setting in the presence of worker resistance to nominal 

wage cuts; section 3 fleshes out some of the predictions of these models that we 

can take to the data; section 4 presents our empirical methodology and the results 

obtained; section 5 discusses some remaining issues for future work; and section 6 

concludes. Where possible, we omit technical details from the main text, and relegate 

them to the appendix.

1.2 A Behavioural Model of DNWR

In this section we present an explicit model of downward nominal wage rigidity based 

on the observations detailed in the empirical literatures mentioned above. In partic

ular, we study the optimal nominal wage policies of worker-firm pairs for whom the
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productivity of the worker (denoted e) depends upon the wage as follows:

e =  In (i.i)

where W  is the nominal wage, W_i the lagged nominal wage, I -  an indicator for a 

nominal wage cut, u  = W /P  the real wage, and b a measure of real unemployment 

benefits (which we assume to be constant over time). The parameter c > 0 varies 

the productivity cost to the firm of a nominal wage cut.

The motivation for this effort function is as follows. We assume that worker 

effort depends positively on the difference between the level of the real wage, lj, and 

real unemployment benefits, b. This captures the idea that, the higher the worker’s 

real standard of living from being in work relative to unemployment, the harder that 

worker will work. In addition, we model the productivity loss due to nominal wage 

cuts by assuming that effort is falling in the geometric nominal wage cut. Our 

reasoning for this is that the most obvious alternative -  that it is the absolute value 

of the cut in the nominal wage that reduces effort -  is implausible in the following 

sense. It implies that a wage cut of a cent will cause the same loss in effort whether 

last period’s nominal wage is $1 or $1,000,000. This is clearly extreme, so we employ 

the more sensible concept that it is the percentage cut in the nominal wage that 

affects effort.

The qualitative features of this effort function are illustrated in Figure 1-1. Clearly, 

there is a kink at W  = W_ i reflecting the existence of DNWR. In particular, the 

marginal productivity loss of a nominal wage cut exceeds the marginal productivity 

gain of a nominal wage increase:

de/dW\w^W i
de/dW\w^W i = l + c > l ( 1.2)
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Figure 1-1: The Effort Function

This characteristic is what makes nominal wage increases (partially) irreversible -  

a nominal wage increase can only be reversed at an additional marginal cost of c. 

Clearly, the parameter c is what drives this feature of the model.

The effort function, (1.1), can be interpreted as a very simple way of capturing 

the basic essence of the motivations for DNWR mentioned in the literature. It is 

essentially a parametric form of effort functions in the spirit of the fair-wage effort 

hypothesis expounded by Solow (1979) and Akerlof & Yellen (1988), with an addi

tional term reflecting the impact of nominal wage cuts on effort -  as envisaged in the 

quote from Shafir, Diamond & Tversky (1997) in the introduction. Bewley (1999) 

also advocates such a characterisation6:

6However, such is the intricacy of Bewley’s study, he would probably consider (1.1) a simplifica-
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“The only one of the many theories of wage rigidity that seems rea

sonable is the morale theory of Solow...” Bewley (1999), p.423.

“The [Solow] theory...errs to the extent that it attaches importance 

to wage levels rather than to the negative impact of wage cuts.” Bewley 

(1999), p.415.

In addition, an effort function with these properties can be derived from a compen

sating differentials model where worker utility exhibits nominal loss aversion7. The 

basic intuition for this is that, if workers dislike nominal losses and the firm wishes to 

cut the nominal wage, then the firm must compensate the worker in the form of lower 

on-the-job effort in order to prevent the worker from quitting. Thus, in this sense,

(1.1) can be considered a reduced form of a model in which workers dislike nominal 

loss. The goal of this chapter is not to highlight the nuances of emphasis -  which do 

indeed exist -  between these behavioural foundations, but rather to show that they 

share a common, theoretically important, qualitative implication as to the nature of a 

firm’s wage-setting choice. This is intended as a start towards richer models of these 

phenomena, and to this end aims to unify rather than to differentiate. We discuss 

the implications of alternative functional forms for the effort function in section 5.

The most comparable previous attempt at explicitly modelling the behavioural 

foundation to DNWR is that of Akerlof, Dickens &; Perry (1996). However, Akerlof 

et al. present a model in which firms have no operational discretion over wage-setting 

-  wages are given by a wage-setting relationship which firms take as exogenous, and 

which dictates that nominal wages can never fall. Thus, the implicit assumption in

tion, not least for its neglect of emphasis on morale as distinct from productivity, and of the internal 
wage structure of firms as a source of wage rigidity. We argue that it is a useful simplification as 
it provides key qualitative insights into the implied dynamics of wage-setting under more nuanced 
theories of morale.

7 See the appendix for an explicit model of compensating differentials that yields the effort function
(1.1) as its solution.
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their model is that firms do not cut wages because, if they did, all of their workers

would quit. In this way, their model effectively short-circuits any endogenous reaction 

on behalf of firms to the existence of DNWR. The model presented in this chapter 

differs critically in that firms do have a non-trivial wage-setting decision: firms can 

cut nominal wages if they wish, but it will have a strong adverse effect on productivity 

at the margin. We argue that this is a more desirable setup. In the first instance, 

it accords better with the evidence that firms restrict wage cuts due to concerns over 

morale within the firm , rather than because the external labour market dictates it 

(Bewley, 1999). Secondly, it also accords well with micro-data evidence that nominal 

wage cuts do occur, just with a lower frequency than might be expected8.

The Wage Setting Problem

We consider a discrete-time, infinite-horizon model in which price-taking worker-firm 

pairs choose the nominal wage Wt at each date t to maximise the expected discounted 

value of profits. For simplicity, we assume that each worker-firm’s production func

tion is given by a-e, where a is an idiosyncratic real technology shock which is observed 

contemporaneously, and acts as the source of uncertainty in the model. Thus, defin

ing ft G [0,1) as the discount factor of the firm, the typical firm’s decision problem is

given by:

max Et 
{wt}

(1.3)
. s = t

where

It turns out in what follows that it is convenient to re-express the firm’s profit stream

8This is seen in the vast majority of micro-data studies. Moreover, even in samples without 
measurement error in which we might expect to see fewer wage cuts, one observes, if anything, more 
frequent nominal wage cuts (see Smith, 2000 and Nickell & Quintini, 2003).



in constant date t  prices. To this end, we multiply through by Pt, which we define 

as the competitive price level at date t , and assume that it evolves according to 

Pt =  (1 +  7r) Pf_i, where ir is the rate of inflation. Finally, defining the nominal 

counterparts, At = Ptat and Bt =  Ptb and substituting for et, we obtain the following 

optimisation problem for the firm:

max E t
m y

(1.4)

We assume that the nominal shock has support [0, oo) and that its evolution can be 

described by the cumulative density function F (A'\A). Thus, rewriting the problem 

in recursive form9 we have10:

» (WLl A) = max /  A fin +  cln f JL) X-  _  W  + JL .Jv{W, A') dF {A!\A)

(1.5)

(1.5) is the basic problem that we will attempt to solve in what follows11. Before 

we begin, though, we first present an intuitive outline of the type of results we might 

expect.

We adopt the convention of denoting lagged values by a subscript, _ i, and forward values by a 
prime, \

10In addition, we make the standard assumption that the measure dF (A'\A) satisfies the Feller 
property, so that the mapping defined by (1.5) preserves continuity of the value function. A sufficient 
condition for this is that A is governed by the stochastic difference equation, A' =  g (A , e'), where g 
is a continuous function and e' is an i.i.d. innovation (see Stokey & Lucas, 1989, pp.237, 261-262). 
We maintain this assumption throughout the paper.

11 There is an issue that, for sufficiently low values of the wage, effort is potentially negative. 
However, accounting for such a non-negativity constraint significantly complicates the solution to 
the model without much gain in relevance. We maintain the assumption that the level of benefits 
is sufficiently low relative to wages as to allow almost all firms to ignore this constraint.
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1.2.1 Som e Intuition  for th e  Behavioural M odel

As the theory presented in the forthcoming sections can seem analytically compli

cated, in this section we present the economic intuition for each of the predictions of 

the model, which we deal with in turn.

First, the model predicts that there will be a spike at zero in the distribution of 

nominal wage changes across firms. This occurs because of the kink in the objective 

function at W  = W -\. In particular, this implies that for each firm there will be a 

range of values (“region of inaction”) for the nominal shock, A, for which it is optimal 

not to change the nominal wage. Since A  is distributed across firms, there will thus 

exist a positive fraction of firms each period whose realisation of A  lies in their region 

of inaction that will in turn not change their nominal wage.

Second, in the event that a firm does decide to change the nominal wage, the wage 

change will be actively compressed relative to the case where there is no DNWR. That 

nominal wage cuts are attenuated is straightforward to explain -  as wage cuts involve 

a discontinuous fall in productivity at the margin, the firm will be less willing to effect 

them. In particular, some small wage cuts that would have been implemented in the 

absence of DNWR will instead be implemented as wage freezes. Moreover, larger 

counterfactual wage cuts will be reduced in magnitude. It is slightly less obvious 

why nominal wage increases are also attenuated in this way. The reason is that, in 

an uncertain world, increasing the wage today increases the likelihood that you will 

have to cut the wage, at a cost, in the future.

A direct implication of this last prediction is that increases in the productivity 

cost of cutting the nominal wage, c, will accentuate all these effects. That is, a higher 

productivity cost due to nominal wage cuts will widen the region of inaction, thereby 

increasing the mass point at zero in the distribution of nominal wage changes, and
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will also render the active compression of nominal wage changes more acute.

The final prediction we want to emphasise at this stage is the effect of increased 

inflation on nominal wage increases. In particular, we find that the active compression 

of nominal wage increases becomes less pronounced as inflation rises. As explained 

earlier, this is because the only reason firms restrict wage increases in the model is 

the prospect of costly wage cuts in the future. Since higher inflation reduces the 

probability of this occurring, firms no longer need to worry as much about increasing 

the nominal wage.

1.2.2 Som e Special Cases

In order to get a feeling for how the model works, we first solve some models that 

are special cases of the full dynamic model. In particular, we consider two cases: 

where nominal wage increases are fully reversible (c =  0), and the case where nominal 

increases are partially irreversible (c > 0), but where firms are myopic (/? =  0). We 

will see that these will inform our approach to solving the full dynamic model given 

in (1.5).

The Case where c = 0

Note that the assumption that c =  0 removes any dynamic considerations from the 

firm’s wage-setting choice by removing the dependence of effort on last period’s wage. 

Thus the firm’s problem is simply:

max

The first-order condition for this problem is:
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(1.7)

=> W  = A, & A W  = AA

In this case, the distribution of nominal wage changes across firms will be exactly the 

same as the distribution of changes in the nominal shock. We term this result the 

counterfactual solution.

The Case where (3 =  0

In this case the firm’s problem is given by:

respect to W  is not well-defined at this point. To determine the optimal nominal wage 

policy, we take the first-order condition with respect to W , conditional on A W  ^  0.

maxw (1.8)

Here, the objective function is kinked at W  = W_1 , and thus the derivative with

Due to the concavity of the problem, this will determine when it is optimal to change 

the nominal wage (up or down) and by how much. It is thus trivial that whenever 

it is not optimal to change W , it is left unchanged. Thus, we have:

A 4  +  ^ H  - 1  =  0. i fA W ^ O (1.9)

which implies:

A =
W  if AW > 0 

if A W  < 0
k. 1+c

(1.10)
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Moreover, from the concavity of the firm’s objective, (1.8), it follows that:

A W  > 0 if A > A SU

A W  < 0 if A < A ?  (1.11)

A W  =  0 otherwise

where A% > A f  are trigger values for the firm’s nominal shock that cause the firm to

respectively raise or cut the nominal wage. Finally, we can relate (1.10) and (1.11)

by noting that, due to the continuity and concavity of (1.8), the firm’s optimal wage 

policy will be a continuous function of (A, W - 1 )12. Thus, it must be that:

A su = W (1.12)

A? = W_l
1 1 +  c

Thus, the solution implies a region of inaction for W  at W  = W_i, and a trigger 

policy as follows:

If A > W - 1  =  i4j, A W  > 0 until W  — A

If A < % £  = A f,  A1F < 0 until W  = (1 +  c) A  (1.13)

If A z [ A f ,A f } ,  A W  =  0 or W  =  W -i

To see this more clearly, consider Figure 1-2. The optimal policy function for the 

nominal wage in the non-rigid case (c = 0) is simply illustrated by the 45° line, 

whereas in this case, where c > 0 and yd = 0, the bold line represents the optimal

wage policy. By comparing this wage policy to the case where c =  0, we can see that

the firm is taking counterfactual nominal wage cuts in the interval W=L W  1
1 + c  ’ v v ~ 1 and is

instead implementing them as wage freezes. Moreover, for all counterfactual wages

12 This follows from the Theorem of the Maximum (see e.g. Stokey k, Lucas, 1989, pp.62-63).
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Figure 1-2: The Optimal Wage Policy in the Static Models

below —fj, the firm is reducing the magnitude of wage cuts by a factor Thus 

nominal wage cuts are being actively compressed as a result of DNWR.

However, the same is not true for nominal wage increases. All counterfactual 

wage increases are being implemented without alteration. The reason for this is that 

(3 = 0 implies that the firm doesn’t care about the future consequences of raising the 

nominal wage in the current period. We shall see that this is in stark contrast to 

the general case where we allow f3 > 0, to which we turn in the following section. 

However, it should be noted at this point that even in this simple case the Card 

& Hyslop (1997) method will be biased. Whilst this special case yields no active 

compression of wage increases by firms, there will still be some latent compression: 

since DNWR places upward pressure on the level of wages in the past, the firm does
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not have to raise wages as frequently to achieve their target wage today.

1.2.3 T he D ynam ic M odel

In this case we must solve the full dynamic optimisation problem as stated above:

v (W -1,A) = m a x U  In 0 Q  + cln 1 ' - W  +  ^ f  v (W ,A ')d F  (A'\A)

First we will present the general structure of the solution, and then we will obtain its 

specific form under additional assumptions as to the distribution of shocks F  (•).

The basic structure of the solution to the full dynamic model is very similar to 

that of the model in which /3 = 0 above. As before, we solve the problem by first 

taking the first-order condition with respect to W, conditional on A W  ^  0:

1 c
w w -  1 +  [  vw  (W, A') dF (A'\A) = 0, if A W  ±  0 (1.14)

1 +  7T J

Clearly, a key step is obtaining an expression for f  vw (IF, A') dF (A'\A), but we leave 

this for the moment and simply define it as the function, D (W, A), so we can re-write 

our conditional first-order condition as:

(l + a - ) ^ - l  + j £ — D (W ,A) = 0, if A W  ^  0 (1.15)

The following proposition confirms that the structure of the optimal nominal wage 

policy will be similar to that found in the case where = 0:

P roposition  1 The optimal nominal wage policy in the dynamic model is of the
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form:

I f  A > u (W _ i )  =  A., A W > 0  until W  = u~1{A)

I f  A < I (W-i) =  Ah A W  < 0 until W  =  r 1 (.4) (1.16)

I f  A  € [Ai,Au], A W  = 0 or W  = W -i

where the functions u (■) and I (•) satisfy:

+  EE 0 (1.17)

(l + c)iQp--l  + Y^D(W,l(W)) = 0

Proof. See appendix. ■

The reasoning for this is very straightforward, and parallels that for the static 

example when (3 =  0. In particular, Proposition 1 uses the conditional first-order 

condition (1.15) to define the functions u (•) and I (•), as in (1.17). These functions 

determine the optimal relationship between the nominal wage, W , and the nominal 

shock, A, in the event that wages are adjusted up or down respectively. The rest of 

the result follows from the fact that, by virtue of the continuity and concavity of the 

firm’s objective, (1.5), the optimal value of W  must be a continuous function of A.

However, to complete our characterisation of the firm’s optimal nominal wage 

policy, we need to establish the functions u (•), and I (•), to which we now turn. In

particular, we can see from (1.17) that, in order to solve for these functions, we

require knowledge of the functions D (W, u (W")) and D (W, I (W')). This is aided by 

Proposition 2:

Proposition 2 The function D (•) satisfies:

p u { W )

D(WjA)  = \
J l ( W )
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r l \ w ) A '  R  f U { W )
d F -  /  c- d F + - f -  /  D (W ,A ')dF  (1.18)

JO W 1 +  7T Jl(W)



which is a contraction mapping in D (•) over the relevant range, and thus has a unique 

fixed point over this range.

Proof. See appendix. ■

The intuition for this result is as follows. The first term on the RHS of (1.18) 

represents tomorrow’s expected within-period marginal benefit, given that W ' is set 

equal to W. To see this, note that the firm will freeze tomorrow’s wage if A' G 

[A[ = I (W ) , A'u = u(W)],  and that in this event a wage level of W  today will generate 

a within-period marginal benefit of — l ] . Similarly, the second term on the RHS 

of (1.18) represents tomorrow’s expected marginal cost, given that the firm cuts the 

nominal wage tomorrow. Finally, the last term on the RHS of (1.18) accounts for 

the fact that, in the event that tomorrow’s wage is frozen, the marginal effects of 

W  persist into the future in a recursive fashion. It is this recursive property that 

provides us with the key to determining the function D (•).

A digression at this point is worthwhile to avoid confusion. Recall that, when 

taking the derivative of the current revenue function with respect to W,  we noted 

explicitly that this was not differentiable in W  at W  = W -\. Surely, one might 

think, this would be the case for the continuation value as well. The key difference is 

that, from today’s perspective, VF_i is predetermined and hence immutable, whereas 

both W  and W ' are yet to be determined, and are in that sense flexible. That is, 

there is not an immutable threshold value of W  at which there exists a kink in the 

continuation value. Moreover, since we know that tomorrow’s nominal wage cut, 

freeze, or increase regimes are determined by whether A ' falls in each of three non

degenerate (for c > 0) intervals, we can take derivatives conditional upon being in 

each of these intervals, which are well-defined. This is the logic that underlies the 

above.
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For the purposes of the present chapter, we use a specific form for F  (•). In 

particular, we imagine that real shocks, a, evolve according to the following geometric 

random walk:

lnu' =  In a — ^-a2 + E r (1-19)&
e' ~  A f  (0, a 2)

Given that prices are assumed to evolve according to P' =  (1 +  7r) P, we obtain the 

following process for nominal shocks, A:

In A! =  In (1 +  7r) +  In A  — i<72 +  e' (1-20)

Note that this implies that E  (A'\A) = (1 +  7r) A. We can then use this information to

determine the full solution as follows. First, we solve for the functions D (W, u {W))

and D (W, I (W)) using equation (1.18), via the method of undetermined coefficients. 

Then, given these, we obtain the solutions for u (W)  and I (W)  using the equations 

in (1.17). Following this method yields Proposition 3:

Proposition 3 I f  nominal shocks evolve according to the geometric random walk, 

(1.20), the functions u (•) and I (•) are of the form:

u( W)  = u - W  

l (W)  = I • W

where u and I are given constants that depend upon the parameters of the model, 

{c ,p ,n ,a } .

Proof. See appendix. ■
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Thus, the optimal nominal wage policy takes the following piecewise linear form:

If A >  u ■W-1 = AUi > V 0 until W  == A /u

If A < 1 - ■ W-! = Ai, V<1 0 until W  == A/ l

If A € \A\, Ay\ 7 A W  = 0 or W  =--W-1

(1 .21)

1.3 Predictions

This section seeks to bridge the gap between the theory presented above and the 

forthcoming empirical section by drawing out some testable predictions of the theory. 

Recall that we are interested in two potential forms of the compression of wage in

creases: active compression whereby firms actually reduce the wage paid when they 

increase the wage; and latent compression that arises because DNWR increases the 

general level of wages and thus lessens the need for firms to increase wages by as much 

in order to reach their desired level. We show that these predictions have a precise 

interpretation in the context of the model presented above.

The starting point to understanding the effects of DNWR is the following decom

position of the unconditional distribution of log nominal wage changes:

/  (A In W) = J  f  (A In W \W -j) dF (W .i) (1.22)

An important observation to note is that we would expect the existence of DNWR to 

affect both of the distributions on the RHS of this expression. That the conditional 

distribution, /  (A inW \W -i), will be affected follows directly from the firms’ optimal 

wage policies (1.21). However, we would also expect DNWR to affect the distribution 

of lagged nominal wages, F  (W_i). In particular, we would expect DNWR to raise 

the general level of nominal wages in the economy, as it restricts firms from cutting 

wages when they otherwise would have done. We will see that this simple decompo
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sition is very important when it comes to deciding which wage change distribution is 

appropriate to analyse.

1.3.1 A ctive C om pression

As can be seen from (1.21), active compression of wage changes can be related to the 

parameters u and I. Numerical simulations of the model establish that u > 1 > I and 

that l / l  > u.13 This is precisely in accordance with our original intuition (section 

2.1). Since u > I there exists a region of inaction for the nominal shock variable in 

which it is optimal not to change the nominal wage. Moreover, because / < 1 there 

will be an active compression of nominal wage cuts. This follows directly from the 

discontinuous fall in effort following a wage cut at the margin. In addition, u > 1 

means that nominal wage increases will also be actively compressed relative to the 

counterfactual solution. Recall that the intuition for this is that raising the nominal 

wage today raises the likelihood that the firm will wish to cut the wage, at a cost, 

in the future. Finally, the fact that l / l  > u implies that the active compression of 

wage increases will not be as strong as that for wage cuts. The reason for this is that 

the potential costs associated with wage increases are discounted in two ways. First, 

some discounting derives from the fact that raising the wage may only increase the 

costs of wage cuts in the future. But, in addition to this, the probability that these 

additional future costs will be realised is less than one, leading to further discounting. 

Figure 1-3 illustrates this result by superimposing the optimal policy implied by (1.21) 

on those obtained in the special cases where c =  0, or /? =  0.

Recall that our main concern is with the characteristics of the nominal wage 

change distribution. Using (1.21) the following proposition derives the form of the log

13 Unfortunately, due to the analytical complexity of the solution, a formal proof of this result has 
proved elusive.
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( 1 +c)A A/l
A/u

Figure 1-3: The Optimal Wage Policy in the Dynamic Model

nominal wage change distribution, conditional on the lagged wage, in the behavioural 

model:

Proposition 4 The log nominal wage change density, conditional on the lagged wage, 

implied by the behavioural model is given by:

/ (A ln W  +  lnu|W _i) if A \n W  > 0

/  (A In W \W -\) =  ̂ F’(lnu|W _1) - F ( ln / |W _ 1) if A \n W  = 0 (1-23)

/ ( A l n W  + ln/lW.i) if A ln W  < 0

where F(-|W_i) and f  are the c.d.f. and p.d.f. of the counterfactual (no

DNWR) conditional log nominal wage change distribution.

Proof. See appendix. ■
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Figure 1-4: /  (A In W \W -i) implied by Theory

Figure 1-4 illustrates this result. In particular, it shows that the distribution of 

log wage cuts is exactly the same as the counterfactual distribution below In/ < 0, 

just shifted horizontally by an amount - I n /  > 0. A similar result obtains for 

wage increases. The residual density is “piled up” to a mass point at zero wage 

change. Thus, the effect of worker resistance to wage cuts is to yield a conditional 

log wage change distribution with dual censoring from above and below relative to 

the counterfactual14.

The key prediction that we will test in our empirical work is the effect of the rate 

of inflation, 7r, on the compression of wage increases. To this end, figure 1-5 presents 

results for the effect of changes in the rate of inflation on the parameter u. It is

14This censoring result has interesting parallels in the previous empirical literature. Altonji 
h  Devereux (2000) estimate an econometric model similar to (1.23) except that they neglect the 
possibility of compression of wage increases.
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Figure 1-5: Properties of the Optimal Wage Policy Parameters

clear that the firm will reduce any active compression of wage increases as inflation 

rises since u falls as it rises. The intuition for this is that active compression of 

wage increases occurs only insofar as wage increases raise the likelihood of future 

costly nominal wage cuts. To see this, note that our special case in which the firm 

does not care about the future (/3 =  0) yielded no compression of wage increases 

(u =  1). Thus, since higher inflation reduces the likelihood of future costly nominal 

cuts, the firm no longer needs to worry about raising the nominal wage. A key 

related result that we want to emphasise is that, as inflation becomes large, u —► 1. 

That is, high inflation implies that wage increases cease to be compressed relative to 

a counterfactual world without DNWR. Thus, if the behavioural model is correct, we 

would expect to observe the upper tail of /  (Ain W|W_i) becoming more dispersed 

as inflation rises. This is illustrated in Figure 1-6.
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Figure 1-6: Theoretical f  (AlnW\W-i )  for Different Hates of Inflation

1 .3 .2  L a ten t C om p ression

All of the above discussion on active compression has been in terms of the nominal 

wage change distribution conditional on the lagged nominal wage. The reason for 

this is that the lagged wage is taken as given (is part of the state) at the time of setting 

the current wage, and so all theories will yield direct implications on the conditional 

distribution, /  (A In W \W -\). However, most of the previous empirical literature has 

concentrated on the properties of the unconditional distribution, /  (A In W), typically 

by estimating some measure of the increase in average wage growth due to DNWR:

E  (A In W\DNWR)  -  E  (A In W\no DNWR)  (1.24)

to try to gain an impression of the effect of DNWR on the firms’ real labour costs. 

The following proposition demonstrates that this emphasis in the previous literature 

may well be misleading:

Proposition 5 DNWR has no effect on average wage growth in the long run for 

finite G =  u/l.
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Proof. See appendix. ■

This result can be interpreted in a number of ways. First, and closest to the 

form of the proof, note that the optimal wage policy (1.21) implies that the difference 

in the levels of the log wage with and without DNWR must be bounded (between 

— lnu < 0 and — In I > 0). Thus, it follows that the rates of growth of actual and 

counterfactual log wages cannot be different in the long run, as it would necessarily 

imply a violation of these bounds.

An alternative interpretation for this result is that it is simply a requirement 

for the existence of a steady state in which average growth rates are equal. Since 

productivity shocks grow on average at a constant rate, so must wages grow at that 

same rate in the long run. Thus, even the model with DNWR must comply with 

this simple steady state condition in the long run.

How might this result come about? First, our results above indicate that firms 

may actively compress wage increases as a precaution against future costly wage cuts, 

thereby limiting the wage growth increasing effects of DNWR. However, this cannot 

be the whole story -  we saw above that the active compression of wage increases will 

be less than that of wage cuts. In addition, we can find cases in which there will 

be no active compression of wage increases for which Proposition 5 still applies. So 

there must be an additional process at work.

Consider the case where f$ =  0. Recall that this is the case in which there is 

no active compression of wage increases as firms are myopic. Figure 1-7 shows a 

simulation of the unconditional wage change distribution implied by the behavioural 

model in this case. We can see from Figure 1-7 that, contrary to the assumption of 

previous studies, the upper tail of /  (A In W ) displays a compression in the presence
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Figure 1-7: /  (A In W) Implied by Theory when (3 =  0

of DNWR. Thus, the upper tail of the wage change distribution is still compressed, 

even if firms do not actively compress wage increases.

This provides an additional insight into the process by which this steady state 

requirement might be achieved in practice. If wage increases are not actively com

pressed, this means that when firms increase the wage, they increase it to the coun

terfactual level, A. However, recall that the existence of DNWR will tend to raise 

the general level of lagged wages in the economy, as firms will have been constrained 

in cutting wages in the past. Thus, when firms increase the wage, they do not have 

to increase it by as much or as often to reach the counterfactual wage level. Thus 

the upper tail of /  (A In W ) will indeed still be affected by the existence of DNWR -  

in particular, it will be less dispersed, as seen in Figure 1-7. We term this additional 

effect “latent compression’’
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Thus, Proposition 5 has important implications with respect to the previous em

pirical literature. By not taking into account the compression of wage increases, 

previous empirical studies could have overstated the increase in wage growth due to 

DNWR. To see this, consider Figure 1-8. This shows three simulated wage change 

distributions derived from the model of section 2. The bold line shows the wage 

change distribution with DNWR (c > 0), whereas the thick dashed line illustrates 

the true counterfactual wage change density (c =  0). In addition, we include a 

“naive” counterfactual density that is derived by imposing symmetry in the upper 

tail of the distribution with DNWR (according to the method of Card & Hyslop, 

1997). It can be clearly seen that, by using the naive counterfactual, we obtain an 

overestimate of the increase in average wage growth due to DNWR when there is a 

compression of the upper tail. By neglecting this compression, previous studies could 

have overstated the micro-effects of DNWR, which could go some way to explaining 

the observed tension between the micro- and macro- level evidence on DNWR. We 

will examine whether this is true in the ensuing empirical analysis.

1.3.3 Turnover Effects

In addition to the above, the model of section 2 can also provide predictions on the 

effect of turnover on the distribution of wage changes. To see this, imagine that 

there is now some exogenous probability that a worker will separate from the firm 

each period, 5 < 1. The effect of this is to reduce the firm’s real discount factor 

from ft to /5<5, since there is now a lower probability that the firm will survive until 

next period. As a result, sectors in which turnover is high (high S) will act more 

myopically than sectors with low turnover. In other words, high turnover sectors 

should set wages more like the special case in which /3 = 0 (section 2.2), and low 

turnover sectors should act more like the forward looking firm of section 2.3. It
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Figure 1-8: Overstatement of Costs of DNWR

follows that we should expect to see a greater active compression of wage increases in 

sectors with lower turnover. We will examine this claim in the forthcoming empirical 

section to which we now turn.

1.4 Empirical Implementation

The previous section has equipped us with a set of empirical predictions implied by 

the model of DNWR in section 2. In particular, we have shown that we would expect 

there to be a compression of wage increases as well as decreases that will reduce the 

increase in aggregate wage growth due to DNWR. In addition, we have shown that 

we would expect this compression of wage increases to be more pronounced in sectors 

with low rates of turnover. This section seeks to test these predictions using micro

data from the US and Great Britain.
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1.4.1 D ata

The data used in this analysis are taken from the Current Population Survey (CPS) 

and the Panel Study of Income Dynamics (PSID) for the US, and the New Earnings 

Survey Panel Dataset (NESPD) for Great Britain. For all datasets, the relevant 

wage measure used in this study is the basic hourly wage rate. Since the CPS and 

PSID are relatively well-known datasets, we only describe them briefly here.

The CPS samples are taken from the Monthly Outgoing Rotation Group (MORG) 

files from 1979 to 2002. We link respondents across consecutive years using a method 

similar to that advocated by Madrian & Lefgren (1999)15. This method yields ap

proximately 25,000 individual annual wage changes each year from 1980-2002, al

though changes in sampling method yield lower sample sizes in 1985-86 and 1995-96 

(see Table 1-1). Unfortunately, we cannot easily differentiate between job-stayers 

and changers using the CPS due to a lack of information on job characteristics and 

tenure16. Additional problems arise in the CPS resulting from the introduction of a 

computer-aided survey design (CAPI) in 1994. Figure 1-9 illustrates the dispersion 

of log wage changes in the CPS over the sample period, as measured by the stan

dard deviation, and the 90-10 and 80-20 percentile differentials. One can clearly 

detect a significant rise in the dispersion of wage changes starting in 1994 with the 

introduction of CAPI. In our ensuing empirical analysis we attempt to control for 

this.

15In particular, first we match individuals according to their personal identifiers, as well as their 
month of interview. We then employ Madrian & Lefgren’s “s|r|a” criterion -  i.e. that matched 
observations must report the same sex and race across years, and that the difference in their age 
must lie in the interval [0,2].

16 Card & Hyslop (1997) attempt to identify job-stayers in the CPS by restricting their analysis to 
those respondents who do not change occupation year-on-year. We do not make such an attempt as 
it is complicated by changes in the occupational classification over the period. However, we found 
that our sample displays very similar properties to that of Card & Hyslop.
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The PSID data are taken from the random (not poverty) samples for the years 

1971 to 1992. We use data on regular hourly pay rates for household heads to 

construct individual annual wage changes. We concentrate on the wage changes of 

job-stayers by excluding workers with tenure of strictly less than 12 months17, and 

additionally remove respondents who report that they live in a foreign country, and 

top-coded wage data. Our PSID sample provides us with much smaller samples than 

those from the CPS, with approximately 1,300-2,200 individual wage changes each 

year over the sample period (see Table 1-1).

Finally, the NESPD is an individual level panel which is collected in April of 

each year running from 1975 through to 2001 for Great Britain18. It is a 1% sample 

of British income tax-paying workers with a National Insurance (Social Security) 

number that ends in a given pair of digits, and in this sense is a random sample of 

the tax-paying population. The wage measure used is the gross hourly earnings, 

excluding overtime, of job-stayers whose pay is unaffected by absence. Table 1-1 

provides summary statistics for the NESPD sample. An important observation to 

make is that the statistics for the level of real wage changes in 1977 are vastly lower 

than in all other periods. In particular, median real wage growth was —7.51% in 

1977, but was never below —0.2% in any other year in the sample period. The reason 

for this is that the UK government of the time instituted an incomes policy in order 

to try  to curb high inflation. In particular, these policies were remarkably successful 

in containing wage inflation in late 1976 to early 1977 as a result of the cooperation

17 A selection issue arises when excluding job-changers. In particular, previous research has shown 
that “displaced” workers often accept significant reductions in earnings on re-employment (see Jacob
son, LaLonde & Sullivan, 1993). Thus, by concentrating on job-stayers, our results might overstate 
the true extent of DNWR. However, it is also the case that much of the previous literature has 
focused on job-stayers, so our analysis will be comparable to that of other studies. We leave these 
empirical issues for future research.

18However, much of our analysis requires the use of consistent industry and occupation coding, 
which we have up to 1999 only.
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of the unions (see Cairncross, 1995, pp. 220-221). Despite this, however, retail 

price inflation remained high, thereby leading to the significant real wage losses that 

we observe in our data. As a result of this, we treat the 1977 data as an outlier 

throughout the rest of our analysis.

The NESPD data for Great Britain have a number of key advantages for our 

purposes, especially in comparison with the CPS and PSID samples for the US. The 

first, and most obvious, is that the NESPD provides us with comparatively very large 

sample sizes: we obtain sample sizes of 60-80,000 wage change observations each year. 

This will help us to identify a more precise relationship between the distribution of 

wage changes and the rate of inflation, since we can be more confident that variation 

in the wage-change distribution is not driven by errors due to lower sample sizes.

The second advantage of the NESPD data is its sample period: from 1975-2001. 

This is particularly useful for our purposes given that we seek to use variation in 

the rate of inflation to gauge the impact of DNWR on wage changes, since the UK 

experienced significant variation in inflation over this period relative to the US. Figure 

1-10 displays the time-series of the leading UK inflation indicator -  the Retail Price 

Index (RPI) -  and the CPI-U inflation rate for the US, over the relevant periods. It 

can be seen that the UK inflation rate varied substantially, with rates over 20% in 

the 1970s down to below 2% in the 1990s. Inflation in the US, on the other hand, 

displays much less variation, with rates no higher than 11%. Thus, again we can 

expect to be able to identify a more significant relationship, should one exist, between 

the wage-change distribution and inflation for the NESPD sample by virtue of this 

greater variation.

The final key advantage of the NESPD sample is that measurement error in these 

data is likely to be at a minimum for large scale datasets relative to individually
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Figure 1-10: US & UK Inflation over the Sample Periods

reported data of the CPS and PSID samples. The reason for this is that the NESPD 

is collected from employers’ payroll records, thereby leaving less scope for error due 

to imperfect memory etc. (see Nickell Sz Quintini, 2003, for more on this). Indeed 

validation studies of leading panel datasets have used matched data from employer 

surveys to assess the extent of measurement error in worker reported earnings data. 

In particular, Bound &; Krueger (1990) and Card & Hyslop (1997) both seek to assess 

the importance of measurement error in the CPS via this method.

The existence of measurement error in hourly wages has been shown in previous 

empirical studies to act as a key impediment to inferring the extent of DNWR. As em

phasised throughout this analysis, the existence of a spike at zero in the distribution of 

nominal wage changes is a key characteristic of DNWR. Classical measurement error 

in wages and hours data would yield an understatement of the extent of downward 

nominal wage rigidity. To see this, note that the addition of classical measurement
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error will render true wage freezes to be observed as (small) wage changes, thereby 

reducing the size of the observed spike (Akerlof, Dickens & Perry, 1996). Previous 

studies have also stressed that individuals may round their reported wages. This, in 

contrast to classical error, would yield an overstatement of the extent of DNWR as 

small true wage changes are reported as wage freezes (Smith, 2000).

Some existing studies have attempted to circumvent this problem in a number 

of ways. Altonji & Devereux (1999) developed an empirical model that allows for 

the existence of a Normally distributed classical measurement error. However, the 

main criticism of this is that no account is taken of potential rounding. In addition, 

a number of studies have augmented their analyses with data obtained from payroll 

records from individual establishments (see Altonji & Devereux, 1999, and Fehr & 

Goette, 2003). These, on the other hand, are subject to the criticism that any results 

are not representative. The relative accuracy of the NESPD allows us to avoid these 

difficulties, and is thus an important virtue in this context.

Since the descriptive properties of DNWR in all of these datasets have been well- 

explored in previous analyses -  Card & Hyslop (1997) for the CPS, Kahn (1997) and 

Altonji & Devereux (2000) for the PSID, and Nickell & Quintini (2003) for the NESPD 

-  we do not seek to provide a full descriptive account of DNWR. Rather, our aim is 

to assess the validity of the predictions of the model presented in section 2. To this 

end, we simply verify that all three of our datasets display the stylised features noted 

in the previous literature on DNWR: i.e. the existence of a spike at zero nominal 

wage change, and a relative deficit of nominal wage cuts. Figures 1-11, 1-12 and 1-13 

display histograms of the observed log nominal wage change distributions for each of 

our samples, where we have differentiated between higher and lower inflation periods. 

In all histograms there is a clear spike in the distribution at zero nominal wage change, 

and a relative asymmetry in the form of a deficit of wage cuts. Moreover, it can be

51



high inflation, 1980-82 low inflation, 1983-2002

.2

1

0
-.2

Figure 1-11: Log Nominal Wage Change Distributions in High and Low Inflation 
Periods (CPS, 1980 -  2002)

clearly seen that the higher the rate of inflation, the smaller is the spike at zero 

wage change. This is consistent with the logic that higher rates of inflation relax any 

DNWR constraint since firms are more able to reduce real labour costs without ever 

cutting the nominal wage.

A final note worth making in the context of our datasets is that inflation stayed 

at persistently low levels in the US and UK from 1992 onwards, with an average 

inflation rate of 2.56% for the US 1992-2002 and 2.69% for the UK 1992-2001. This 

is important, as a criticism levelled at previous studies of DNWR has been that 

individuals will get used to receiving nominal wage cuts when inflation has remained 

low for some time (Gordon, 1996, and Mankiw, 1996). Such a criticism becomes less



high inflation 1971-1982 low inflation 1983-1992

.2 -

.1 -
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Figure 1-12: Log Nominal Wage Change Distributions in High and Low Inflation 
Periods (PSID, 1971 -  92)
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Figure 1-13: Log Nominal Wage Change Distributions in High, Mid, and Low Inflation 
Periods (NESPD, 1976 -  2001)
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1.4.2 D oes D N W R  Increase A ggregate W age Growth?

In order to test our hypotheses, we need a way of modelling empirically the wage 

change distributions, /  (A In VK|VK_i) and /  (A In W). In what follows, we will focus 

on the analogous real wage distribution counterparts to these. Note that this does not 

alter any substantive aspects of the analysis, since these are exactly the same shaped 

distributions, just shifted to the left by a constant (approximately equal to the rate of 

inflation)19. However, focusing on these does allow greater ease of comparison across 

years with different inflation rates.

The method we apply to our two empirical questions will turn out to be very 

similar. To start with, then, we motivate our preferred method in the context 

of trying to understand the impact of DNWR on the unconditional distribution of 

log wage changes, / (Ain W). Let us begin by considering some naive approaches. 

First, we might think of simply looking at the differences between the wage change 

distributions in high inflation periods and low inflation periods to see if the predictions 

of section 4.1 are confirmed at this basic level. To this end, figures 1-14(a) and 

1-15 (a) present estimates of the density of log real wage changes for periods with 

different inflation rates using the PSID for the US, and the NESPD for Britain (the 

introduction of CAPI in the CPS renders this a less useful exercise for the CPS 

data). Notice that lower inflation leads to a compression of the lower and, more 

importantly for our purposes, the upper tail of the wage change distribution, precisely 

in accordance with the predictions of section 4.120.

19This follows because A In (W / P ) =  A In W - A In.P =  A In W -7r where 7r is the rate of inflation.
20 It should be noted that the existence of the spike in the lower tail of the real wage change 

distribution (at approximately minus the rate of inflation) can lead to an overstatement of lower tail 
compression. However, our emphasis is on the effects on the upper tail, which are not subject to 
this problem.
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However, one could argue that at least some of the observed differences were due 

to changes in other variables that affect wage changes. For example, there have been 

changes in the industrial, age, gender, regional etc. compositions of the workforce in 

both the US and Britain over these time periods. So, we should control for factors 

such as these before attributing any differences to DNWR. To address this, we 

introduce a set of micro-level control variables for each dataset, summarised in Table 

1-2. In particular, we control for changes in micro-level variables by re-weighting 

the observed wage change distributions according to the method of DiNardo, Fortin 

Sz Lemieux (1996) (henceforth DFL). To do this, we first define a “base year” , T  -  

for all datasets this will be the final sample year -  and re-weight each year’s observed 

wage change distribution to obtain an estimate of what the wage change distribution 

would have looked like if the distribution of micro-level characteristics were identical 

to that at date T. In particular, if we define the log wage change as Aw;, micro-level 

characteristics as x, and the year of the relevant x  distribution as ic, we derive:

(1.26) can then be estimated simply via a probit model.

Figures l-14(b) and l-15(b) displays density estimates of the DFL re-weighted

(1.25)

for alH  < T. The key insight of DFL is that this is simply a re-weighted version of 

the observed date t wage change distribution, with weights given by:

dF (x\tx = T) _  Pr (tx = T\x) Pr (tx =  t) 
dF (x\tx = t) Pr (tx = t\x) Pr (tx = T)

(1.26)

where the second equality follows from Bayes’ Rule. The conditional probabilities in
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distribution of log real wage changes for different inflation periods, again for the 

PSID and NESPD. Again, it can be seen clearly that lower rates of inflation are 

associated with a compression both of tails of the wage change distribution, in line 

with the predictions of section 3.2.

However, even having controlled for such factors, it is still not necessarily le

gitimate to attribute all the residual difference in the wage change distributions to 

DNWR. Thus we need a way of ensuring that only the variation in wage change 

distributions that varies systematically with DNWR is attributed. To do this, we 

estimate regressions of the form:

Pnrt — Pon +  PlnPsOrt +  V n ^ t  +  4 t 7 n  +  £nrt ( I - 2 ? )

where Pnrt is the nth percentile of the real wage change distribution in region r at 

time £, 7rt is the rate of inflation at time t and thereby measures the prominence 

of nominal zero in the distribution of log real wage changes, and zrt is a vector of 

aggregate controls that could potentially affect the distribution of wage changes. Psort 

is included on the RHS of (1.27) in order to control for changes in the central tendency 

of the distribution of wage changes. That is, it “re-centres” the distributions over 

time in order to make them comparable. We estimate (1.27) by Least Squares, where 

we weight by the size of the region at each date21.

The measure of inflation used will be the CPI-U-X1 series for the US, and the 

April to April log change in the Retail Price Index for Great Britain. The aggregate 

controls will be as follows. First, we control for any distortion to the wage change 

distributions caused by peculiarities of the datasets used. So, to control for the effects

21 Formal quantile regression (Least Absolute Deviation) estimators were also tried with little 
difference in results. However, such is the computational intensity involved in estimating the 
correct standard errors for these estimators, we opted for simple OLS instead.

57



of the introduction of CAPI in 1994 in the CPS, we include a dummy variable that 

takes value one for all years from 1994 onwards when we estimate (1.27) for the CPS. 

In addition, to control for the incomes policies implemented in 1977 in the UK, we 

include a dummy that takes value one for the year 1977 in our NESPD regressions.

In addition, we control for the absolute change in the rate of inflation. This is mo

tivated by the hypothesis that greater inflation volatility will yield greater dispersion 

in relative wages regardless of the existence of DNWR (see Groshen & Schweitzer, 

1999). We also include both current and lagged regional unemployment rates. This 

is motivated by the idea that the existence of DNWR might lead to unemployment 

-  indeed, as mentioned before, this is one of the principal reasons for interest in the 

topic. Since unemployment will lead to workers “leaving” the wage change distribu

tion, it is important to control for any resulting distributional consequences. We also 

include lagged regional unemployment in accordance with the wage curve hypothesis 

of Blanchflower & Oswald (1994) that the level of wages is empirically associated 

with the level of unemployment. If this is true, then we would expect the change 

in unemployment to affect the change in wages, and so we include lagged regional 

unemployment to control for this possibility.

It should be noted that the empirical method described above is robust to a 

number of possible concerns. First, since we are exploiting variation in the tails of 

the distribution of wage changes, rather than the spike at zero, the above method is 

less subject to the measurement error concerns that much of the previous literature 

has suffered from. In particular, so long as measurement error is neither time-varying 

nor related to the rate of inflation, (1.27) will pick up the true effects of inflation on the 

wage change distribution22. Second, the specification is also robust to the existence

22 One might be concerned that higher inflation leads to greater errors in reported wage data simply
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of rigidity in real wages. The reason is that real wage rigidity, in its traditional form, 

will be invariant to inflation by definition. An exception to this is the argument put 

forward by Akerlof, Dickens & Perry (2001) that real wage rigidity is amplified as 

inflation rises because it becomes optimal for workers to direct their scarce attention 

to maintaining their real wage. However, if anything, such a possibility would work 

against the claim of the model in section 2, as it would predict that the upper tail 

of wage changes would become more compressed as inflation rises. If this were the 

case, any evidence we find for the predictions of section 3 could be interpreted as 

lower bounds on the true effects. A similar reasoning applies to any concerns one 

might have about the impact of skill-biased technical change (SBTC). Under SBTC, 

we might expect that workers obtaining high wage increases early in our samples will 

obtain even higher wage increases later on as technical change increasingly favours 

those in skilled sectors. However, since inflation is in practice declining over the 

sample periods of our data, SBTC would, if anything, work against the predictions 

of section 3. Thus, the above method is robust to a number of potential criticisms.

Clearly, the coefficients of interest in (1.27) for the purposes of estimating the 

effects of DNWR are rjn. In particular, the predictions of section 3.2 indicate that 

Sn should be negative for low percentiles, and positive for high percentiles. The rea

soning is that higher inflation should lead to an increased dispersion of wage changes, 

and thereby decrease negative percentiles, and increase positive ones.

We estimate (1.27) in three specifications. First, we simply include controls for 

the median wage change, P50, and for any dataset peculiarities such as CAPI for 

the CPS and incomes policies of 1977 in the NESPD. We then include controls

because it becomes harder to keep track of exact changes in one’s wage. However, our specification 
uses variation in log wage changes, and it is less clear that people would make greater percentage 
errors when inflation is high.
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for the absolute change in the rate of inflation, and for regional current and lagged 

unemployment rates (where possible). Finally, we implement a specification with full 

controls that estimates (1.27) using percentiles of the DFL re-weighted wage change 

distributions so we can control for a full array of micro-level characteristics as well.

Recall that we would like to obtain an estimate of the increase in average wage 

growth due to DNWR:

A =  E (A w \D N W R ) -E (A w \n o  D N W R) (1.28)

We show that such an estimate can be obtained using the estimates obtained from 

regressions of the form (1.27). In order to use this information to get an estimate of 

A, we obtain an estimate of the predicted average wage change when inflation is very 

low (e.g. 1.3% in 1993 for Britain) and subtract the analogous average wage change 

when inflation is very high (e.g. 21.8% in 1980 for Britain)23:

A =  E  (Au;|7r =  1.3%, x ,z) — E (Aw\ir =  21.8%, x , z) (1.29)

To obtain these estimates, we use estimated percentiles from (1.27) to discretise the 

distribution of wage changes. In particular, if we estimate k equi-spaced percentiles 

of /  (Aw) then a best guess of the predicted average wage change is:

1 k
E (A H *-,x,z) «  2(fc_ 1} £  ( Pi +  Pi-1) (1-30)

where i is an ascending index of the percentiles, with 2 =  1 indicating the lowest 

percentile, 2 =  2 the second lowest etc., and the Ps are the predicted values of these 

percentiles obtained from estimating equation (1.27). Thus, in this way, we can use

23 Note that this involves out-of-sample predictions for the US data.
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Figure 1-16: Discretising a Distribution using Percentiles: In this case, our best guess 
of E{x )is given by £ ? = 2  |  .

percentile regressions to obtain estimates of the increase in average wage growth due 

to DNWR. Figure 1-16 presents an intuitive treatment of this discretisation for the 

case of deciles (k =  9). Moreover, since our predicted percentiles allow us to sketch 

out a discretisation of the whole distribution of wage changes, we can decompose the 

increase in average wage growth due to DNWR into two components. The first is 

the increase in average wage growth due to compressed nominal wage cuts, which

□cedure on 99 estimated wage change percentiles, A, A, •••, P99, for each of the this pr

pecifications detailed above. three s



Empirical Results

The results from estimating our three specifications of (1.27) for each dataset axe 

reported in Tables 1-3—1-5. First, consider the results obtained for the CPS in 

Table 1-3. In all three specifications it can be seen that the estimated impact of 

inflation is negative for the 20th-30th percentiles, with strongest effects around the 

30th percentile; and positive for the 40th-90th percentiles, with strong effects in the 

70th and 90th percentiles. Thus, these results are in line with the hypothesis that 

higher inflation reduces the compression of both tails of the wage change distribution. 

Moreover, we see that the estimated effects of inflation at different points in the 

distribution are generally significant and fairly stable across all specifications. In 

addition, Table 1-3 presents estimates of the lower tail losses and upper tail gains due 

to DNWR. It can be seen that in all specifications there are substantial savings due to 

compressed wage increases, some of which even outweigh the costs from compressed 

wage cuts. In particular, our estimates broadly confirm the conclusion of Card Sz 

Hyslop (1997) that the increase in average wage growth due to compression in the 

lower tail is around 1%. However, this is offset by savings from compression of the 

upper tail of wage changes of around 1 — 1.5%.

Table 1-4 reports the analogous estimates for the PSID data. We can see that 

in all specifications the effect of inflation is negative for the 10th-20th percentiles, 

and positive for the 40th-90th percentiles. However, here the estimated effects are 

strongest in the 10th, and particularly the 20th, percentiles in the lower tail in contrast 

to the CPS results. The differences in the lower tail effects between the CPS and 

PSID results are likely to reflect the differences in the position of nominal zero in the 

respective wage change distributions, due to their different sample periods. In the 

CPS, nominal zero appears mostly between the 20th and 35th percentiles, whereas it 

appears at around the 10th-35th percentile in the PSID sample. Thus, the point at
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which DNWR binds differs across these two datasets.

Whilst the PSID results are not as significant as those for the CPS, the upper 

tail effects remain significant, and are fairly stable across specifications. In addition, 

the coefficient estimates in the upper tail are comparable to those obtained in the 

CPS results, and we again observe that there are large savings from the compression 

of the upper tail, which again in some cases even outweigh the lower tail losses. In 

particular, we find an estimated increase in average wage growth due to lower tail 

losses of around 0.4 — 0.8% which is offset by a reduction in average wage growth 

due to upper tail compression of 0.5 — 0.9%. It should however be noted that for 

the PSID, and to some extent the CPS data, these estimates are constructed from a 

number of regressions for which no significant inflation effect was detected. This is 

likely due to the relative lack of observations and inflation variation in the CPS and 

PSID compared to the NESPD. Thus, we do not want to place too much stock in the 

actual quantitative estimates obtained from this dataset. Rather, we consider our 

estimates of upper tail gains and lower tail losses for the PSID to be instructive of 

the fact that there is some significant compression of the upper tail of wage changes, 

and that this compression is of similar significance to the compression of the lower 

tail due to DNWR.

The results for the NESPD data are reported in Table 1-5. Again we observe that 

inflation has a negative impact on lower percentiles (10th-40th) and a positive impact 

on higher percentiles (60th-90th). Moreover, we obtain highly significant estimates 

for almost all percentiles and in all specifications. As mentioned above, this greater 

significance in comparison to the results for the PSID and the CPS is likely to be due 

to the superior quality and inflation variation of the NESPD. In addition, we again 

observe substantial upper tail gains due to compression of wage increases relative to 

lower tail losses, which are more consistent across specifications than those obtained
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for the CPS and the PSID. In particular, our results suggest that 77-95% of the 

lower tail losses due to DNWR is saved by restricting wage increases in the upper 

tail in the NESPD data, and that the increase in average real wage growth due to 

DNWR is of the order 0.05-0.3% -  much lower than results obtained previously.

Together, these results provide strong evidence for the prediction that the upper 

tail of the wage change distribution will be less dispersed as a result of DNWR -  in all 

specifications and for all datasets we see that wage increases become more restricted 

as inflation falls. As a result, by allowing both the upper and lower tails of the 

wage change distribution to be affected by DNWR, the estimated increase in average 

wage growth due to DNWR becomes much reduced and closer to zero -  precisely in 

line with the predictions of section 3 and Proposition 5. In fact, we observe that 

estimates of the increase in average wage growth due to DNWR fall from around 1% 

to 0.3% at the most, and may even be negative. Thus, since previous studies have 

ignored the effects of DNWR on the upper tail of wage changes, they may well have 

vastly overstated the estimated “costs” due to DNWR.

1.4.3 D oes H igher Turnover R educe th e  C om pression o f W age 

Increases?

In addition to the above, recall that section 3.3 established the claim that higher 

turnover sectors should act more myopically, and hence will feel more at liberty to 

raise nominal wages. We test this hypothesis in a manner similar to the above. First, 

we define a measure of “turnover” as the fraction of workers within an occupation 

group that are job changers each year. In a steady state this should closely match the 

fraction of workers who separate, and thus correspond to the parameter S in section 

3.3.
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Figure 1-17: Turnover Effects on the Distribution of Log Nominal Wage Changes for 
Job Stayers, NESPD

To gain an initial impression for whether such effects exist, Figure 1-17(a) plots 

density estimates of the nominal wage change distribution for job stayers in high 

and low turnover (respectively above and below median turnover) occupations using 

the NESPD data. It can be seen from this simple comparison that low turnover



any micro-level factors that may be driving the results, as well to focus on variation 

in the distribution of wage changes conditional on the lagged wage. Again, however, 

we see low turnover occupations compressing wage increases more than high turnover 

occupations, consistent with the predictions of section 3.3.

Figures l-18(a) and l-18(b) replicate the procedure for the PSID data. Again 

we can see that higher turnover sectors exhibit less compression of wage increases for 

both unweighted and re-weighted wage change distributions. However, it can be seen 

that the effects are not as strong as in the NESPD data. The main reason for this 

is that we only have an occupational classification at the 1-digit level in the PSID 

data, thereby limiting the variation in occupational level turnover we can identify and 

hence exploit. For this reason, we concentrate on using the NESPD data to identify 

turnover effects more formally.

To do this, we run Least Squares regressions of the form:

Pnort OCOn +  Q :in P 5 0 ort +  0nTot +  z'rtlpn +

where Pnort now refers to the nth percentile of nominal wage changes for job stayers, 

re-weighted for micro covariates and the lagged wage, in occupation o, region r, at 

time t. The variable of interest is r ot which denotes the fraction of job changers in 

an occupation in a given year. Under the predictions of section 3.3, we would expect 

that the coefficients, 9n will be positive for all positive percentiles of nominal wage 

changes.

Table 1-6 summarises the estimates of 0n for the 60-90th percentiles. In the first

an additional control. This is legitimate provided that DNWR has no impact on either the price 
level or trend real wage growth. Given Proposition 5 and the results of section 4.2 this does not 
seem unreasonable.
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Figure 1-18: Turnover Effects on the Distribution of Log Nominal Wage Changes for 
Job Stayers, PSID

specification (column 1), we include only basic controls for the median wage change 

and a dummy for 1977 to control for the incomes policies of that time. It can be 

clearly seen that turnover has a positive and highly significant impact on the 60-90th 

percentiles of nominal wage changes. The two additional columns address potential 

concerns one might have about the simple specification of column (1).

In particular, one concern might be that we would expect sectors with greater 

DNWR to have greater rates of turnover due to workers being made unemployed 

more often. In addition, we would also expect sectors with greater DNWR to exhibit 

a greater compression of wage increases, and thus create downward pressure on per

centiles of wage increases. In this sense there may be an omitted variables bias to the 

estimates in column (1) -  in particular, a downward bias to the estimates. Column 

(2) seeks to assess this possibility by including the current and lagged regional unem

ployment rates as controls. It can be seen, however, that this makes little difference
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to our estimated turnover effects, and, if anything, reduces the estimated coefficients. 

This suggests there is little evidence for an omitted variables problem of this type.

However, we may still be concerned that the measure of turnover is more generally 

cyclical, and thus correlated with the rate of inflation. Thus we may be worried that 

we are attributing to turnover the effects due to declining inflation. To address this 

concern, specification (3) includes time dummies. It can be seen that introducing 

these controls reduces the estimated effects of turnover, but that the coefficients 

remain positive and highly significant. We thus find robust evidence that increased 

turnover leads to an increased dispersion of wage increases, in line with the predictions 

of section 3.3.

1.5 Limitations and Future Directions

A number of issues remain in the light of the previous findings. First consider the 

theory presented in section 2. A particular assumption that one might be interested 

in relaxing is that of the form of adjustment costs in the effort function caused by 

nominal wage cuts. In particular, one might be interested in the implications of a 

fixed adjustment cost whereby effort falls dramatically for even very small wage cuts. 

This represents a more difficult theoretical challenge in the current framework, but has 

been considered in other applications. In particular, Degeorge, Patel h  Zeckhauser 

(1999) study a simple two-period model of corporate earnings management with this 

fixed cost structure. They show that, for intermediate latent earnings losses, it 

is optimal for an executive to report no loss, but that for a sufficiently low latent 

earnings shock, it is optimal to “take a bath” -  i.e. to» report very low earnings now 

in order to reduce the chances of having to report losses in the future. This differs 

from the results of the model of section 2 in that we would expect to see a “hole” in
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the wage change distribution to the left of zero.

A related issue is that one may be interested in more general forms of convexity 

in wage cuts in the effort function, especially given the stylised evidence in favour 

for convexity of the utility function in losses from the literature on loss aversion 

(Kahneman & Tversky, 1979). Again, we might expect to observe firms “taking a 

bath” in a similar way to that described above. However, it should be noted that it 

is not immediately clear on theoretical grounds that such a convexity in losses should 

map from workers’ utility functions into their effort functions. In particular it will 

depend on how workers’ utility depends on effort as well as on wage changes. Whilst 

casual observation of the wage change distributions studied in this chapter does not 

seem to provide strong support to the claim that there is a hole to the left of zero 

in the distribution of nominal wage changes, further theoretical and empirical work 

may be worthwhile to assess this more formally.

Finally, our theory has neglected the possibility of DNWR motivated by factors 

other than worker resistance to wage cuts. Other models of DNWR have been for

mulated based on the legal requirement in many countries (notably excluding the US 

and UK) that wage contracts may only be renegotiated by mutual consent of the firm 

and the worker (MacLeod & Malcomson, 1993; Holden, 1994). The current chapter 

does not seek to deny the existence of such motivations, but merely to draw out and 

test the implications of behavioural foundations to DNWR. Indeed, as pointed out in 

Holden (2004), contract and behavioural motivations may even reinforce one another 

in explaining DNWR.

In addition to such theoretical issues, a number of questions arise from the empir

ical work of section 4. One such question is whether such findings can be explained 

by models of nominal rigidity other than DNWR. In particular, one may contend
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that a standard model of menu costs can explain the observed compression of wage 

increases in times of low inflation. In particular, Sheshinski Sz Weiss (1977) show 

that, in a deterministic price-setting model, increased inflation will result in more ex

treme price increases -  as firms increase prices less often to avoid successive payment 

of menu costs in high inflation environments, when they do increase the price, they 

will increase it by more. However, if this were the correct model, we would again 

expect to see holes either side of zero in the distribution of nominal wage changes, and 

that these holes would widen as inflation rises. Whilst previous empirical work has 

found some evidence for menu cost effects, these effects have only a modest impact on 

wage changes around zero (Card Sz Hyslop, 1997), and certainly are not accentuated 

in times of high inflation. Moreover, in a deterministic setting with positive inflation, 

such as that of Sheshinski Sz Weiss (1977), firms always want to increase prices in the 

absence of menu costs. This no longer holds in an uncertain setting, as there will be 

situations in which the firm will wish to cut prices. In this case, it is no longer clear 

that the firm wants to set more extreme price increases under high inflation. The 

reason is that higher prices can increase the probability of wanting to cut the price 

in the future in an uncertain world, which is also costly in a menu cost setting. So 

it is by no means clear on a priori grounds that a menu cost model could explain the 

results presented in section 4.

More generally, there is a need in the literature on DNWR for an empirical model 

that can conform well with an explicit theory of wage setting as well as with the 

structure of the data. In particular, whilst the empirical methods of section 4 allow 

the data to speak more -  by allowing different effects of inflation at different points in 

the wage change distribution, and by assuming nothing about the parametric form of 

counterfactual wage changes -  they do not provide us with direct estimates that can 

be related back to a model of wage setting. However, the current chapter seeks to
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contribute to this process by showing how one can write down models of wage setting 

based on worker resistance to wage cuts, and by also providing empirical evidence that 

can inform future, more complex, models of DNWR. This will enable the formulation 

of more realistic structural models of DNWR that can be successfully estimated with 

meaningful parameter estimates.

1.6 Conclusions

This study seeks to make contributions on two outstanding issues in the literature on 

DNWR. In the first instance, it presents a fully explicit model of wage-setting in the 

presence of worker resistance to nominal wage cuts. We show that a key new insight 

in the context of such “behavioural” models is that nominal wage increases become 

partially irreversible. We then use this model to obtain testable predictions that 

allow us to address an outstanding issue in the literature on DNWR. In particular, 

we attempt to reconcile the remarkably robust micro-level evidence for DNWR across 

datasets and countries, with the weak evidence found for the expected macroeconomic 

effects. We show that the previous literature has neglected the fact that the upper 

tail of the distribution of wage changes will be compressed in such an environment 

for two related reasons. First, we find that the existence of DNWR can lead to the 

active compression of wage increases -  i.e. firms pay a lower wage when they increase 

the wage relative to a world without DNWR. This occurs because increasing the 

nominal wage today raises the likelihood of having to cut the wage, at a cost, in the 

future. Second, we show that there will be a latent compression of the upper tail of 

the wage change distribution because the existence of DNWR raises the general level 

of wages in the economy, and thus firms do not have to increase the wage as often 

or as much in order to obtain their desired level. Thus, we argue that by neglecting 

these effects, previous studies could have overstated the increase in wage growth, and
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hence the expected macroeconomic effects, of DNWR.

Using panel data from the CPS and PSID for the US, and the NESPD for Great 

Britain, we find evidence that the upper tail of the wage change distribution is indeed 

compressed when we allow the entire distribution of wage changes to be affected by 

DNWR. In particular, we estimate that increased wage growth due to DNWR is no 

more than 0.3%, as opposed to figures of around 1% that are obtained by more naive 

estimates which only allow the lower tail to vary. Moreover, our results suggest that 

firms in practice can make significant savings relative to the costs of reduced wage 

cuts by compressing wage increases. In particular, we estimate that wage growth 

savings from compressed wage increases of at least 75% of the increase in costs due to 

restricted wage cuts. Thus, previous studies could have vastly overstated the wage 

costs of DNWR.

To further test the model of DNWR based on worker resistance to nominal wage 

cuts, we draw out additional predictions from the model in respect of the impact of 

turnover on the compression of the wage change distribution. In particular, we show 

that the model predicts higher turnover sectors should exhibit a reduced compression 

of wage increases as firms act more myopically. Again, we find robust evidence for 

this claim using the NESPD data, and, despite the limitations of the data, for the 

PSID also.

In the light of this evidence, we conclude that the increase in wage pressure due 

to the existence of DNWR may not be as large as previously envisaged. However, we 

have shown that the evidence on DNWR is consistent with a model in which workers 

resist nominal wage cuts along a number of dimensions. Hence, the behavioural 

implications of DNWR in respect of the reaction of workers to nominal wage cuts 

remain significant.
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It should be noted, however, that it does not follow that DNWR is of little sig

nificance with respect to the workings of the macroeconomy. There may still remain 

important effects of nominal wage cuts on workers’ productivity/effort at work. In 

this sense, low inflation may reduce productive efficiency in the economy. Moreover, 

the existence of kinked preferences implies first-order risk aversion on behalf of work

ers so that even small scale risk is welfare reducing (Rabin, 2000). It follows then 

that the welfare costs of business cycles may be much higher than previously claimed 

(Lucas, 1987). We leave these as topics for further research.
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Tables for C hapter 1
Table 1-1: Descriptive Statistics of Wage Changes, CPS, PSID, NESPD

Year

1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986

US Data: 
CPI-U-X1

4.36
3.02
6.31 
9.96 
8.29 
5.69 
6.4 
6.8 

9.63 
11.22 
9.48 
6.1 

4.18
4.32 
3.56 
1.86

CPS
N

26,221
28,981
28,009
27,131
27,230
13,386
7,063

% Freeze

5.87
5.95
10.75
13.11
13.08
12.51
13.89

PSID
N

1,328
1,344
1,352
1,421
1,467
1,315
1,321
1,357
1,406
1,449
1,534
1,498
1,456
1,453
1,519
1,608

% Freeze

10.69
11.76
9.25 
8.8 

7.84 
7.91 
9.16 
8.4

7.25 
4.42 
8.02 
8.81 
14.9 

13.97 
11.92 
16.73

NES Data: 
RPI N

18.9 
17.5
7.9 
10.1 
21.8

12
9.4
4

5.2
6.9 
3

61,320 
65,802 
67,100 
66,490 
67,330 
71,068 
76,398 
78,477 
76,093 
75,737 
74,881

% Freeze

0.74
1.5

2.23
2.38
0.47
2.67
3.07
2.1
5.13
1.73
1.42

7 8 72,826 2.21 1989 4.82 27,351 12.27 1,614 15.3
1 9.4 71,295 2.57 1990 5.4 28,728 11.41 1,612 13.7
2 6.4 72,615 2.82 1991 4.21 29,392 11.87 2,240 14.8
6 4.3 76,923 4.94 1992 3.01 29,226 13.74 2,273 17.1

1.3 78,758 7.02 1993 2.99 29,157 13.53
2.6 78,756 6.45 1994 2.56 27,257 12.21
3.3 80,281 5.65 1995 2.83 10,474 12.55
2.4 83,306 1.62 1996 2.95 8,686 11.67
2.4 81,018 1.79 1997 2.29 26,003 10.92
4 77,737 4.21 1998 1.56 25,905 10.52

1.6 77,967 4.49 1999 2.21 26,168 10.09
3 77,494 4.47 2000 3.36 25,898 9.88

1.8 80,427 0 2001
2002

2.85
1.58

25,244
27,301

9.54
10.61



Table 1-2: Micro-Level Controls used in Addition to Age, Age2, & Sex

CPS PSID NESPD
Education 
Industry (2-digit)

Region (50+ metropolitan 
dummies)
Non-white

Public Sector 
Self-employed

Education 
Industry (1-digit) 
Occupation (1-digit)

Region (6 dummies)

Self-employed
Tenure

Industry (2-digit) 
Occupation (2-digit) 
Region (10+ London 
dummies)

Major Union Coverage

Table 1-3: Regressions of Percentiles of Real Wage Changes on the Rate of 
Inflation and Controls (CPS, 1980 -  2002)

Coefficient on Inflation Rate*
Percentile No Controlsb Aggregate Controls0 Full Controls'1

3oH

- 0 . 0 6 1 [ 0 . 1 3 4 ] 0 . 0 5 4 [ 0 . 1 4 3 ] - 0 . 0 5 4 [ 0 . 1 4 0 ]

20th - 0 . 2 5 7 [ 0 . 0 7 1 ] * * * - 0 . 1 6 5 [ 0 . 0 8 7 ] * - 0 . 1 6 7 [ 0 . 0 8 7 ] *

30th - 0 . 3 4 [ 0 . 0 7 3 ] * * * i o to VO [ 0 . 0 7 3 ] * * * - 0 . 3 6 8 [ 0 . 0 6 7 ] * * *

3ow

0 . 0 4 1 [ 0 . 0 4 4 ] 0 . 0 4 9 [ 0 . 0 4 8 ] 0 . 0 3 2 [ 0 . 0 4 2 ]

60th 0 . 0 5 [ 0 . 0 2 5 ] * 0 . 0 5 1 [ 0 . 0 2 7 ] * 0 . 0 4 4 [ 0 . 0 3 1 ]

70th 0 . 1 2 1 [ 0 . 0 5 0 ] * * 0 . 1 2 1 [ 0 . 0 5 1 ] * * 0 . 1 2 9 [ 0 . 0 5 5 ] * *

80th 0 . 1 7 2 [ 0 . 0 9 1 ] * 0 . 1 9 1 [ 0 . 1 0 0 ] * 0 . 1 6 6 [ 0 . 1 0 4 ]

90th 0 . 1 4 8 [ 0 . 1 5 5 ] 0 . 2 4 7 [ 0 . 1 6 8 ] 0 . 3 4 9 [ 0 . 1 2 7 ] * *

Lower Tail 
Losses + 1 . 0 3 % + 0 . 4 2 % + 1 . 0 1 %

Upper Tail 
Gains - 0 . 9 4 % - 1 . 4 0 % - 1 . 5 0 %

t in Aw due
to DNWR* + 0 . 0 8 5 % - 0 . 9 8 % - 0 . 4 9 %

Notes:
a. Reports Least Squares estimates (weighted by region size) of real wage change percentiles on the rate of inflation and controls.
b. Includes a dummy for the years 1994 onwards to control for the increase in dispersion of real wage changes following

introduction of CAPI.
c. As b, but includes additional controls for the absolute change in the rate of inflation, and the contemporaneous and lagged state 

unemployment rate.
d. As c, but uses real wage change percentiles re-weighted for changes in age, age2, sex, race, region (including metropolitan 

dummy), 2-digit industry, education, public sector employment, and self-employment.
e. Predicted effect on real wage growth of a change in inflation from 22% (maximum NESPD sample inflation, 1980) down to 

1.3% (minimum NESPD sample inflation, 1993). Computed from estimation of 99 percentile regressions of the form 
summarised in the Table using die method outlined in the main text.

f. Standard errors in brackets: robust to non-independence within years.
g. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Table 1-4: Regressions Percentiles of Real Wage Changes on the Rate of Inflation
and Controls (PSID, 1971 -  92)

Coefficient on Inflation Rate*
Percentile No Controls Aggregate Controlsb Full Controls0

10th - 0 . 2 0 3 [ 0 . 0 7 5 ] * * - 0 . 1 3 4 [ 0 . 0 5 6 ] * * - 0 . 1 5 4 [ 0 . 0 6 8 ] * *

20th - 0 . 6 1 7 [ 0 . 0 9 2 ] * * * - 0 . 5 7 9 [ 0 . 0 9 6 ] * * * - 0 . 5 8 6 [ 0 . 0 9 5 ] * * *

30th 0 . 0 1 2 [ 0 . 0 3 5 ] 0 . 0 0 8 [ 0 . 0 4 3 ] - 0 . 0 1 3 [ 0 . 0 4 1 ]

40th 0 . 0 2 4 [ 0 . 0 2 4 ] 0 . 0 3 3 [ 0 . 0 2 3 ] 0 . 0 2 7 [ 0 . 0 2 1 ]

60th 0 . 0 2 6 [ 0 . 0 2 4 ] 0 . 0 1 6 [ 0 . 0 2 4 ] 0 . 0 1 2 [ 0 . 0 2 6 ]

70th 0 . 1 [ 0 . 0 4 5 ] * * 0 . 0 9 [ 0 . 0 3 7 ] * * 0 . 0 3 7 [ 0 . 0 4 0 ]

00 o £ 0 . 1 7 [ 0 . 0 7 3 ] * * 0 . 1 3 7 [ 0 . 0 7 4 ] * 0 . 1 2 [ 0 . 0 6 6 ] *

90th 0 . 3 1 3 [ 0 . 1 1 5 ] * * 0 . 3 3 3 [ 0 . 1 2 3 ] * * 0 . 2 7 5 [ 0 . 1 3 2 ] *

Lower Tail 
Losses + 0 . 8 0 % + 0 . 3 8 % + 0 . 6 1 %

Upper Tail 
Qains - 0 . 8 7 % - 0 . 7 3 % - 0 . 5 4 %

t in A w  due 
to DNWR* - 0 . 0 6 3 % - 0 . 3 5 % + 0 . 0 6 9 %

Notes:
a. Reports Least Squares estimates (weighted by region size) of real wage change percentiles on the rate of inflation and controls. 

Observations from Alaska and Hawaii are dropped due to incomplete unemployment information before 1976.
b. Controls for the absolute change in the rate of inflation and the contemporaneous and lagged regional unemployment rate.
c. As b, but uses real wage change percentiles re-weighted for changes in age, age2, sex, education, 1-digit industry, 1-digit

occupation, region, self employment, and tenure.
d. Predicted effect on real wage growth of a change in inflation from 22% (maximum NESPD sample inflation, 1980) down to 

1.3% (minimum NESPD sample inflation, 1993). Computed from estimation of 99 percentile regressions of the form 
summarised in the Table using the method outlined in the main text.

e. Standard errors in brackets: robust to non-independence within years.
f. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Table 1-5: Regressions of Percentiles of Real Wage Changes on the Rate of
Inflation and Controls (NESPD, 1976 -  2001)

Coefficient on Inflation Rate*
Percentile No Controls11 Aggregate Controls0 Full Controls*

10th - 0 . 1 3 7 [ 0 . 0 6 2 ] * * - 0 . 0 5 7 [ 0 . 0 6 2 ] - 0 . 1 0 3 [ 0 . 0 7 0 ]

20th - 0 . 2 8 7 [ 0 . 0 3 3 ] * * * - 0 . 2 2 9 [ 0 . 0 1 8 ] * * * - 0 . 2 4 1 [ 0 . 0 2 0 ] * * *

30th - 0 . 1 9 7 [ 0 . 0 2 3 ] * * * - 0 . 1 4 9 [ 0 . 0 2 0 ] * * * - 0 . 1 4 4 [ 0 . 0 2 4 ] * * *

40th - 0 . 1 0 1 [ 0 . 0 1 6 ] * * * - 0 . 0 8 9 [ 0 . 0 1 6 ] * * * - 0 . 0 9 [ 0 . 0 1 1 ] * * *

60th 0 . 0 8 8 [ 0 . 0 0 8 ] * * * 0 .  0 7 7 [ 0 . 0 1 0 ] * * * 0 . 0 7 4 [ 0 . 0 0 8 ] * * *

70th 0 . 1 6 6 [ 0 . 0 1 6 ] * * * 0 . 1 4 7 [ 0 . 0 1 7 ] * * * 0 . 1 5 [ 0 . 0 1 4 ] * * *

eo o e 0 . 2 0 5 [ 0 . 0 2 8 ] * * * 0 . 1 7 5 [ 0 . 0 2 7 ] * * * 0 . 1 7 4 [ 0 . 0 2 3 ] * * *

VO o 0 . 1 1 6 [ 0 . 0 5 3 ] * * 0 . 0 6 5 [ 0 . 0 4 7 ] 0 . 1 [ 0 . 0 4 4 ] * *

Lower Tail 
Losses + 1 . 3 1 % + 0 . 7 4 % + 1 . 1 1 %

Upper Tail 
Gains - 1 . 0 1 % - 0 . 7 0 % - 0 . 9 9 %

t in A w  due 
to DNWR* + 0 . 3 0 % + 0 . 0 4 7 % + 0 . 1 2 %

Notes:
a. Reports Least Squares estimates (weighted by region size) of real wage change percentiles on the rate of inflation and controls.
b. Includes a dummy for the year 1977 to control for the dramatic fall in real wage growth due to the incomes policies

implemented in the UK at that time.
c. As b, but includes additional controls for the absolute change in the rate of inflation, and the contemporaneous and lagged 

regional unemployment rate.
d. As c, but uses real wage change percentiles re-weighted for changes in age, age2, sex, region (including London dummy), 2- 

digit industry, 2-digit occupation, and major union coverage.
e. Predicted effect on real wage growth of a change in inflation from 22% (maximum NESPD sample inflation, 1980) down to 

1.3% (minimum NESPD sample inflation, 1993). Computed from estimation of 99 percentile regressions of the form 
summarised in the Table using the method outlined in the main text.

f. Standard errors in brackets: robust to non-independence within years.
g. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Table 1-6: Effect of Turnover on Percentiles of Nominal Wage Increases for Job 
Stayers, NESPD

Coefficient on Fraction of Job Changers in Occupation/Year
Percentile Group

(1) (2) (3)
60 th 0.057 [0.012]*** 0.048 [0.010]*** 0.026 [0.007]***

o rt D* 0.094 [0.017]*** 0.074 [0.017]*** 0.043 [0.015]***

00 o ft tf 0.151 [0.020]*** 0.119 [0.019]*** 0.091 [0.018]***

90 th 0.257 [0.027]*** 0.209 [0.027]*** 0.222 [0.027]***

Controls Median Wage Change 
1977 Dummy

(1) + Current & 
Lagged Regional 

Unemployment Rates
(2) + Year Dummies

Notes:
a. Report Least Squares estimates, weighted by occupation size.
b. Uses nominal wage change percentiles for job stayers, re-weighted for changes in adjusted lagged wage, age, age2, sex, region

(including London dummy), 2-digit industry, 2-digit occupation, and major union coverage.
c. Standard errors robust to heteroscedasticity.
d. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Chapter 2 

Is Downward N om inal W age 

R igid ity driven by M oney Illusion?

2.1 Introduction

There is now a burgeoning literature that provides evidence for the existence of down

ward nominal wage rigidity using micro data (for a survey, see Kramarz [2001]). In 

particular, much of the research identifies some intriguing properties of the cross- 

sectional distribution of wage changes. First, these distributions exhibit a mass-point 

at zero nominal wage change, indicating that there is some rigidity in nominal wages. 

Second, they display a relative lack of nominal wage cuts. Together, these findings 

have led many to conclude that nominal wages are downward rigid. These properties 

have been shown to be very robust, and have been replicated in a large number of 

studies for many countries, and across datasets within countries.

These results are of great interest to economists on a number of dimensions. First, 

nominal rigidities have been shown to be the key to the Phillips curve trade-off be

tween inflation and unemployment in macroeconomics. This has led a number of
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researchers to study the implications of downward nominal wage rigidity (henceforth 

DNWR) for the conduct of macroeconomic policy (see Akerlof et al. [1996], Holden 

[2004], and Chapter 1 of this thesis). In this study, however, we address another key 

question in the light of the evidence for DNWR -  what causes DNWR? In his recent 

book, Bewley [1999] set out to discover the answer to this question. In particular, he 

documents an array of interview evidence showing that wage-setters and negotiators 

are reluctant to cut the nominal wages of workers because they believe that wage cuts 

severely harm worker morale (see also the survey in Howitt [2002]). In addition to 

this evidence, there is a growing body of evidence that suggests people are subject to 

a particular form of money illusion in more general settings (Shafir, Diamond & Tver- 

sky [1997]). This research shows that agents are reluctant to accept nominal losses 

in a number of economic contexts. From a simple questionnaire study, Kahneman 

et al. [1986] report that most people prefer to receive a 5% nominal wage increase 

when inflation is 12%, than a 7% wage cut when there is no inflation. This is corrob

orated by recent evidence from an experimental pricing game (Fehr Sz Tyran [2001]) 

which demonstrates that participants are much more likely to raise their prices fol

lowing a monetary expansion, than they are to cut their prices following a monetary 

contraction. Finally, in real-estate markets, Genesove & Mayer [2001] find evidence 

that condominium owners were reluctant to sell at a price below that they originally 

paid, regardless of market prices. Together, all these studies suggest a role for an 

asymmetric form of money illusion that we will term nominal loss aversion.

In the light of this evidence, it is tempting to conclude that the existence of 

downward nominal wage rigidity is simply a manifestation of nominal loss aversion in 

labour markets, along the lines of the evidence presented in Bewley [1999]. However, 

such a conclusion would be premature. An alternative set of theories has also been 

suggested to explain DNWR based on the form of market contracts in the presence
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of labour market frictions (MacLeod & Malcomson [1993]; Holden [1994]). In these 

models it is shown that institutional restrictions which stipulate that wage contracts 

may only be renegotiated by mutual consent of the firm and worker can result in fixed 

nominal wage contracts. In particular, it is shown that wages in these models axe 

renegotiated up (down) only when the worker’s (firm’s) outside option (or equivalently 

strike (lockout) threat; Holden [1994]) becomes preferable. It follows that, if there 

exist some frictions that yield rents to the continuation of a current match, a wedge is 

driven between the firm’s and the worker’s outside option, and thus the nominal wage 

will remain constant for intervals of time. Moreover, the existence of inflation will 

mean that the worker’s outside option will bind more often than the firm’s, and that 

consequently nominal wages will be raised more often than cut. Thus, an alternative 

explanation based on the existence of labour market frictions can also explain the 

empirical evidence for DNWR. As a consequence, it is not immediately clear in 

practice that DNWR represents evidence of money illusion on behalf of workers. It 

is therefore of key importance to our understanding of both the nature of wage setting 

in labour markets, and more fundamentally of workers’ preferences, to assess whether 

DNWR really is driven by money illusion.

In distinguishing between these theories, much of the discussion (if any) has come 

down to a fairly nuanced treatment of labour law in various countries (Malcomson 

[1997]). In particular, one can argue that significant evidence for DNWR has been 

found in countries in which renegotiation by mutual consent is not required by law 

(e.g. the US and Switzerland), thereby casting doubt on the relevance of contract 

models. However, even in the US, where employment is “at will” , one can find cases 

where employer attempts to unilaterally alter a contract have not been upheld by 

courts (again, see Malcomson [1997]). Thus, it is not clear that such a discourse is 

likely to be fruitful in distinguishing between these theories.
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In this chapter, we take a closer look at the implications of these two theories with 

respect to wage setting. In particular, we show that both theories predict that firms 

may actively reduce the nominal wage paid when they increase the wage relative to a 

“counterfactual” world without DNWR -  what we will term “active compression” of 

wage increases. The intuition is as follows. In the “behavioural” model with money 

illusion, this results because raising the wage today increases the likelihood of having 

to cut the wage, at a cost, in the future (see Chapter 1 for an explicit model). Thus, 

it is optimal for firms to restrict wage increases as a precaution against future costly 

wage cuts. In contract models, on the other hand, such a compression can result 

if there exists a friction to workers in switching employers (or to striking), so that 

workers will accept a delay before bidding up their wage to outside levels.

We then demonstrate that the nature of this active compression of nominal wage 

increases in the behavioural and contract models provides us with a mechanism for 

differentiating between these two theories. In particular, we observe that the models’ 

implications differ critically in the predicted impact of inflation on this upward com

pression. Specifically, the behavioural model implies that increased inflation reduces 

firms’ desire to cut nominal wages, and hence relaxes the constraint of DNWR on the 

wage setting choice of the firm. This will in turn render the active compression of 

wage increases less pronounced when inflation is high in a model with money illusion. 

In contrast, contract models do not have this implication. The intuition for this is 

that, since workers’ costs of switching employers are driven by real phenomena (e.g. 

search frictions), there is no reason to expect that workers’ ability to bid up their 

wages would vary with inflation. Thus, by examining the impact of inflation on 

wage increases, we can determine which of these effects is likely to be present. It is 

this result that we argue is the key to distinguishing which theoretical foundation is 

driving the existence of DNWR.
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In the light of this, we seek evidence for these predictions using micro-data for 

the US and Great Britain. We find robust evidence that the existence of DNWR 

leads firms to actively compress both nominal wage cuts and increases, and that 

the active compression of wage increases is diminished as inflation rises -  precisely 

along the lines of a model with asymmetric money illusion. Thus, in the light of the 

above discussion, we argue that this represents important evidence for the behavioural 

motivation for DNWR, and in this sense tells us something fundamental about the 

nature of preferences.

However, we argue that this may not imply that contract-based models are irrele

vant to the existence of DNWR. In particular, we go on to assess whether inflation- 

related compression of wage increases is diminished in unionised contexts. We do this 

because it seems more likely that the structure of contract models, with its emphasis 

on bargaining threats and the requirement of mutual consent to wage changes, is 

relevant for union wage setting. We find some modest evidence that inflation-related 

compression is reduced for union workers, but it is not fully offset by the existence of 

unions. That is, there still remains some residual compression of wage increases as 

inflation falls even in union contexts.

The rest of this chapter is organised as follows. Section 2 surveys results from 

the model of wage-setting in the presence of worker resistance to nominal wage cuts 

analysed in Chapter 1; section 3 then analyses the implications of contract models of 

DNWR; section 4 fleshes out some of the predictions of these models that we can take 

to the data; section 5 presents our empirical methodology and the results obtained; 

and section 6 concludes.
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2.2 A Model of DNWR based on Money Illusion

This section briefly summarises some of the results obtained from the explicit model 

of downward nominal wage rigidity based on money illusion formulated in Chapter

1. In particular, in this model worker effort, e, is given by:

nominal wage cut, lj =  W /P  the real wage, and b a measure of real unemployment 

benefits. The parameter c > 0 varies the productivity cost to the firm of a nominal 

wage cut.

According to (2.1), workers increase their effort the higher is the real wage in 

work relative to real benefits out of work. This property is standard in fair-wage- 

effort models of the labour market (see Solow [1979], and Akerlof & Yellen [1988]). 

However, the key addition that captures workers’ aversion to nominal wage cuts lies 

in the second term in (2.1). This says that workers reduce their effort discontinuously 

at the margin following a nominal wage cut, and that the subsequent loss in effort 

varies in proportion to the percentage cut in the nominal wage. This additional term 

is thus informed by the evidence for money illusion found in the previous literature.

Together, the properties of the effort function (2.1) can be seen in Figure 1-1 

of Chapter 1. In particular, note the existence of a kink in the effort function at 

W  = W - 1  which reflects the existence of DNWR. Another way of thinking about this 

is to note that the marginal effort loss of a nominal wage cut exceeds the marginal 

effort gain of a nominal wage increase. Chapter 1 shows that this interpretation 

is particularly useful as we can think of nominal wage increases as being (partially) 

irreversible -  a nominal wage increase can only be reversed at an additional marginal

(2.1)

where W  is the nominal wage, W_i the lagged nominal wage, 1 an indicator for a
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cost of c. In this sense, nominal loss aversion acts an asymmetric adjustment cost 

on the firm’s wage setting decision. Since models of asymmetric adjustment costs 

have been widely studied in the previous investment (Dixit & Pindyck [1994]) and 

labour demand (Bentolila h  Bertola [1990]) literatures, much of the intuition from 

these literatures maps across to the current model.

Along these lines, the optimal wage setting policy of worker-firm pairs facing the 

effort function (2.1) turns out to take a convenient and familiar form in the presence 

of shocks that evolve according to a random walk:

R esult 1 I f  nominal shocks evolve according to a geometric random walk the optimal 

nominal wage policy takes the following piecewise linear form:

W =  <
W */uB if W* > uB ’ W -i

W - 1  otherwise (2.2)

W */lB if W* < lB - W -1

where W* is the nominal wage that would be paid in the absence of DNWR, and uB,lB 

are constants such that uB > 1 > lB and l / l B > uB.

The intuition for this result is quite straightforward. First, since lB < 1, it follows 

that firms are setting higher wages when they cut the wage than in a world without 

DNWR. That is, firms are actively compressing wage cuts. Clearly, this is a direct 

result of the fact that effort falls discontinuously at the margin following a nominal 

wage cut in a world with DNWR. More interestingly, the fact that uB > 1 implies 

that firms are setting lower wages in the event that they increase the wage -  i.e. 

they are actively compressing wage increases as well. The intuition for this is that 

increasing the wage today increases the probability that the firm will want to cut the 

wage, at a cost, in the future. Thus, firms restrict wage increases as a precaution
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against future costly wage cuts. Third, since uB > 1 > Ib , there is a region of values 

for the counterfactual wage, W* G [Ib  * W -\ ,u B • W - 1 ], such that it is optimal for the 

firm not to change the nominal wage at all. This occurs because of the kink in the 

effort function at W  = W_i, which yields a familiar “region of inaction”. Clearly, 

this region of inaction allows the model to explain the existence of the spike at zero 

in the distribution of nominal wage changes. Finally, the fact that 1 /Ib > ub implies 

that the compression of wage cuts will be stronger than that of wage increases. This 

occurs because any costs due to increasing the wage are discounted: first because they 

yield costs in the future, and second because the probability that the firm will indeed 

cut the wage in the future is less than one.

To see that this result can explain the observed properties of the distribution of 

wage changes, note that the typical firm’s optimal wage setting policy (2.2) implies 

the following form of the log nominal wage change distribution in the behavioural 

model:

R esult 2 The log nominal wage change density, conditional on the lagged wage, im

plied by the behavioural model is given by:

/ ( A l n W l W L i )  =  <

/ (A inW  +  \nus\W -.i) if  A ln V F > 0

F Q n u s lW -J -F Q n lB lW -!)  if  A lnW  =  0 (2.3)

f  (A ln W  +  In lB\W -i) if  A ln V F < 0

where F  (-|VF_i) and f  are the c.d.f and p.d.f. of the counterfactual (no

DNWR) conditional log nominal wage change distribution.

Result 2 establishes clearly that the behavioural model implied that there will be a 

mass point at A In W  =  0 in the distribution of wage changes. In addition, it shows 

that the existence of the compression of wage cuts (through Ib ) and wage increases



(through ub) will also alter the form of the wage change distribution (as illustrated 

in Figure 1-4 in Chapter 1). In particular, the compression of wage cuts will cause 

some counterfactual wage cuts to be “swept up” onto the spike at zero, and that the 

remainder of the left tail of wage changes will be shifted rightwards. Conversely, the 

compression of wage increases will lead to some counterfactual wage increases to be 

“swept back” onto the spike at zero, and that the remainder of the upper tail will be 

shifted leftwards.

The key comparative static result that we will use to differentiate this model with 

those based on contracts is the impact of the rate of inflation on the upper tail of the 

wage change distribution. In particular, a greater rate of inflation leads to a decline 

in the value of the parameter ub in the behavioural model. The intuition for this is 

that higher inflation relaxes the constraint of DNWR on wage setting because firms 

can effect real reductions in labour costs without having to resort to nominal wage 

cuts. Thus, firms no longer need to be cautious about increasing the wage when 

inflation is high. We will see that this is in stark contrast to the implications of 

models based on contracts. The next section introduces such contract models.

2.3 The Contract-Based Approach to DNWR

A number of related theories based on the form of market contracts have been devel

oped that can potentially explain the existence of DNWR (see MacLeod & Malcomson 

[1993]; Malcomson [1997]; Holden [1994], [1999], [2003]). These theories come in sev

eral forms, but share a key common implication, and so we review only one of them 

here: the model of general investments and switching costs of MacLeod & Malcomson 

[1993] (henceforth MM). The results of the model are driven by the following key
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assumptions:

1. Previous wage contracts may only be renegotiated by mutual consent of the 

firm and the worker.

2. The party responsible for a breakdown in trade is not verifiable.

3. There exist frictions that yield rents to the continuation of a current worker-firm 

match.

4. Firms and workers bargain over the nominal wage.

MM then show that a simple contract can ensure efficient general investments by the 

firm and the worker. This specifies a fixed wage such that both the firm and worker 

prefer to trade rather than not trade in all states of the world, which is renegotiated 

up (down) if and only if the worker’s (firm’s) outside option constraint binds.

To understand the intuition behind this result, three preliminary insights must be 

made. First, if the firm and the worker prefer to trade at the contract wage, then 

no renegotiation will occur. This is because at least one party must lose from rene

gotiation, and since renegotiation is by mutual consent, that party will not consent 

to a change. Second, if either the firm or the worker prefers not to trade ex post, 

the contract will be renegotiated according to surplus-sharing. The reason for this 

is that, since the identity of the cause of a breakdown in trade is not verifiable, the 

contract cannot specify penalties to a refusal to trade. Thus, refusal to trade can 

act as a credible threat during renegotiation, leading to surplus-sharing. Finally, if 

either party’s outside option becomes preferable to the inside payoff, the wage is then 

renegotiated to match the outside option. Whilst this seems intuitive, one might 

expect surplus-sharing to obtain -  as in the case with a refusal to trade. The reason
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this doesn’t occur is that exercising an outside option leads to the immediate termi

nation of bargaining, whereas a refusal to trade merely extends bargaining to another 

round. Thus, outside options do not act as a threat point during bargaining, but 

rather as a constraint on each party’s payoff1.

In the light of these insights, the intuition for the MM contract is as follows. 

First, the contract must ensure that both parties prefer to trade ex post, as otherwise 

renegotiation will result in surplus-sharing. Since surplus-sharing yields payoffs that 

do not reflect each party’s investment, a positive probability of surplus-sharing leads 

to inefficient ex ante investments. Second, renegotiation of the wage when a party’s 

outside option binds preserves investment incentives since the general nature of in

vestments will ensure that outside option payoffs reflect the full marginal return on 

investment.

Thus, defining W  and W* as the current inside and outside nominal wage respec

tively, W - 1  as the lagged nominal wage, cw and cF respectively as the worker’s and 

the firm’s real switching cost, and P  as the current price level, a simple formalisation 

of this result would be:

R esult 3 An efficient contract in the context of Assumptions 1~4 is of the form:

W =  <

(1) W* — P  - cw if W* — P ' cw > W -i

(2) W - 1  otherwise (2.4)

(3) W* + P -c F if W* + P  - cF < W -i

where cw , cF are real frictions and W* is the nominal wage that would be paid in the 

absence of frictions.

1This is the result established by Binmore, Shaked & Sutton (1989).
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That such a wage policy results in DNWR is typically justified as follows. First, 

the existence of frictions, cp, cw > 0, drives a wedge between the minimum wage 

the worker will accept, and the maximum wage the firm will pay. Thus, there will 

be intervals of time in which neither outside option will bind, and the nominal wage 

will remain constant in those intervals. Second, in an inflationary environment, the 

outside nominal wage, W*, will increase on average over time, rendering it more likely 

that the worker’s outside option constraint (regime (1)) binds than the firm’s. Thus, 

nominal wages are bid up more often than they are bid down, providing a potential 

explanation for DNWR.

It should be noted that wage policies of the form of (2.4) have been derived via 

a number of characterisations for cp, cw > 0. In particular, such frictions can be 

justified by the existence of search costs (MacLeod &; Malcomson [1993]), costly strike 

and lockout threats in union contexts, efficiency wages and employment protection 

in non-unionised contexts, and risk aversion with respect to uncertain payoffs from 

strikes or lockouts (Holden [1994], [2003], and [1999] respectively).

Recall that we are interested in comparing the impact of the rate of inflation on 

wage increases in contract models such as these with the behavioural model outlined 

above. In particular, section 2 showed that, in the behavioural model, firms actively 

compress wage increases, and that this compression declines as inflation rises. We can 

see from (2.4) that there may also be some upward compression of nominal wages in 

contract models if there exists a friction to the worker (i.e. if cw > 0) so that workers 

wait before bidding up their nominal wage. How would we expect this compression 

to change as inflation rises?

To compare more directly the implications of the wage policy summarised in (2.4) 

with that derived from the behavioural model (2.2), let us further assume that the
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frictions cp and cw are given by2:

W* W*
CF =  ' l F - - p " ,  <V =  7 w - p -  (2-5)

Such an assumption can be motivated by the idea that higher outside real wages 

reflect more productive matches for the employer or employee, which require greater 

search costs. Under this assumption, (2.4) can then be written as:

W =  <
(1) W */uc  if W* > uc  • W - 1

(2) W - 1  otherwise (2.6)

(3) W */lc  if W* < l c - W - 1

where un =  — > 1 > tt— =  lc • Notice that this is of the exact same structure
°  1 - 7 w  ! + 7 f

as (2.2), and thereby allows greater comparison across the two models. In particular, 

note that Result 2 will hold again here, yielding a similar “dual censoring” impli

cation for the distribution of log wage changes. However, a key difference that we 

shall emphasise between the two solutions is that the compression parameters in the 

contract model, uq and lc , are predicted to be unrelated to the rate of inflation.

The key intuitive insight at this point is that, in these contract models, the only 

way a worker can obtain a wage increase is via exercising a credible threat, either 

to permanently leave the firm (i.e. taking an outside option), or to impose costs on 

the firm by striking etc. Thus, for increases in the rate of inflation to reduce the 

compression of wage increases, uc, one would have to argue that workers’ threats 

become more credible as inflation rises. In the model summarised in Result 3, there 

is no sense in which this can happen as the worker-side friction, cw , reflects the real

2 This assumption does not affect the subsequent qualitative statements, and is employed only in 
order to sharpen comparison with the behavioural model.
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costs of search and work disruption, and these costs are therefore invariant to the rate 

of inflation. Therefore active compression of wage increases is not predicted to fall 

as inflation rises in these contract models. Note that this is in direct opposition to 

the implications of the model of DNWR informed by money illusion detailed earlier.

Moreover, this result is unlikely to be altered by the introduction of forward look

ing dimensions to these contract models. In particular, MacLeod &; Malcomson 

[1993] (Proposition 10) show that a wage policy analogous to (2.4) will also ensure ef

ficient investments in a multi-period version of their model, except that wage increases 

(decreases) are instead determined by the present discounted value of the worker’s 

(firm’s) outside options. By a completely analogous logic to that above, it can be 

seen that, since workers’ outside options are unrelated to inflation, the compression 

of wage increases will also remain invariant to the rate of inflation.

2.4 Predictions

In this section we draw out precise predictions from the two models reviewed above 

that can be used to verify empirically whether a model of money illusion can explain 

DNWR.

An important first point to note is that, in order to differentiate the effects of 

money illusion on wage setting, we need to concentrate on the properties of the 

distribution of nominal wage changes conditional on the lagged nominal wage. The 

reason for this is that the lagged wage is known at the time of setting the current 

wage (it is a state variable), and hence all wage policies will be functions of the lagged 

nominal wage. To see this in practice, simply observe that the wage policies in both 

behavioural and contract models, (2.2) and (2.4) respectively, depend explicitly on 

the lagged wage. Since all previous empirical studies of DNWR concentrate on the
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unconditional distribution, this is an important note to bear in mind.

The previous sections argue that we can distinguish between contract and be

havioural models of DNWR by observing the properties of the upper tail of this 

conditional distribution, /  (A In W \W_i). In particular, we have shown that the key 

difference between these models lies in the impact of increased inflation on the active 

compression of wage increases relative to a counterfactual world with no DNWR. In 

the behavioural model, increased inflation reduces this compression because it reduces 

the likelihood that firms will want to cut nominal wages, and so the firm doesn’t have 

to worry about the effect of current wage increases on the future costs of wage cuts. 

Thus, if the behavioural model is correct, we would expect to observe the upper tail of 

/  (A In W \W -i) becoming more dispersed as inflation rises. However, we have shown 

in section 3 that contract models do not have this implication because workers’ costs 

of switching employers are unrelated to inflation.

In the forthcoming empirical analysis, we will look at percentiles of the log wage 

change distribution to get an impression of whether there is an active compression of 

wage increases that is related to the rate of inflation. We can use our derivations 

in (2.3) to obtain precise predictions as to what we might expect to observe in the 

behavioural and contract cases respectively. In particular, note that the conditional 

c.d.f. of nominal wage increases is given by:

F  (A \n W \W -i, A W  > 0) =  F  (Ain W  +  lnu^W -i) , for i = {B , C}  (2.7)

and that the nth percentile in the domain of nominal wage increases, Pn (A In W\W_i), 

solves:
-  71

F[Pn (£±\n.W\W-i) +  ln«j|W^_i] =  —— (2.8)
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Thus:

Pn (AlnVr|W'_1) =  - l n « i +  F - 1 ( ^ )  = - l n u i +  Pn (2.9)

Thus, for all wage change percentiles in the domain of wage increases, both models 

imply that there will be a decrease in the percentile by a constant In it* relative to 

the counterfactual percentile, Pn. Thus, from the above discussion, we would expect 

these positive percentiles to increase as inflation rises in the behavioural model. In 

contract models, on the other hand, we would expect to see if anything the opposite. 

We will explore whether this prediction is verified in our empirical section.

2.5 Empirical Implementation

In this section, we assess the evidence for the predictions made in section 4 using 

data from the US and Great Britain. In particular, we use the Current Population 

Survey (CPS) and Panel Study of Income Dynamics (PSID) data for the US, and the 

New Earnings Survey Panel Dataset (NESPD) for Great Britain. The samples used 

are identical to those used in Chapter 1, so we review them only briefly here.

The CPS data are taken from the Monthly Outgoing Rotation Group samples for 

1979-2002. We longitudinally match respondents using a method similar to that 

advocated by Madrian & Lefgren [1999] to yield a sample of around 25,000 wage 

change observations per year. Problems arise in the CPS data due to a change 

to a computer-aided survey design in 1994 (known as CAPI). This led to a sharp 

increase in the dispersion of wage changes from 1994 onwards. We control for this 

by including a dummy variable equal to one for all years from 1994 onwards into our 

econometric specifications. The PSID data are simply extracted from the random 

(not poverty) samples from 1970-1992. Finally, the NESPD data used run from 

1975-2001 and provide around 70,000 wage change observations for each sample year.

94



Since much of the NESPD data are drawn from employer payroll records, the data 

are less subject to measurement error concerns (see Nickell Sz Quintini [2003] for more 

on this). A problem arises with the NESPD data for 1977 as a result of the wages 

policies instituted by the government in the UK at the time. In particular, this led 

to median real wage growth of -7.5% in 1977 when median real wage growth in all 

other sample periods was almost never negative. We control for this by including a 

dummy variable for 1977 in all empirical specifications for this data.

Empirical Method

Recall that section 4 provided us with predictions about the impact of higher rates of 

inflation on the dispersion of the upper tail of the wage change distribution conditional 

on the lagged wage. Thus an important empirical step is to identify variation in this 

conditional distribution. Clearly it will not be possible to obtain an exact empirical 

counterpart to this distribution, as in all probability the workers in our samples will 

have been paid different lagged wages. However, we can get close to this distribution 

if we can control for changes in the distribution of lagged wages. To see this, note 

that we can decompose the observed wage change distribution according to:

/  (A In W ) =  f  f  (A In W  | dF {W -i) (2.10)

By controlling for changes in the distribution of lagged wages, F  (W_i), we can infer 

that any variation in the resulting distribution is due to variation in the conditional 

distribution, /  (A In W \W -i). This is exactly the variation we require to differentiate 

between contract and behavioural foundations for DNWR. We identify this variation 

by employing the technique of DiNardo, Fortin Sz Lemieux [1996] (henceforth DFL).

In particular, we define a set of micro-level covariates (to be described shortly) that 

we would like to control for in estimating the impact of inflation on the wage change
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distribution, x, which includes a measure of lagged wages. DFL then show that one 

can obtain the distribution that would have resulted if the distribution of x had not 

changed over time by simply re-weighting the observed distribution. Specifically, we 

can re-weight all distributions so that the relevant time distribution of the xs, tx, is 

equal to that in some comparison period, T  (this will be the final sample date in our 

specifications). Thus, defining the log wage change as Aw, we derive:

f  (Aw]tx = T) = J  f  (Aw\x) dF (x\tx = T) = J  /  (Aiu|x) • ip • dF (x\tx = t) (2.11)

The weights ip are given by:

= dF(x\ tx = T)  =  Pr (tx = T\x) Pr (tx = t)
dF (x|tx =  t) Pr (tx = t\x) Pr (tx = T)

where the second equality follows from Bayes’ Rule. The conditional probabilities 

on the RHS of (??) can then be simply estimated using a Probit model.

Following this procedure, along the lines of (2.9), we test the predictions of section 

4 by running regressions of the form:

P n r t  =  (3 On +  ( 3 \n P s 0 r t  +  V n ^ t  +  K t ^ n  +  £ r t  (2.13)

Pnrt is the nth percentile of the re-weighted distribution of wage changes in region r  

at time t. izt is the rate of inflation at each date. This is measured by the CPI-U- 

XI index for the US, and the Retail Price Index for the UK. Finally zrt is a set of 

aggregate control variables, to be defined shortly.

An issue arises when implementing this procedure, however, because the level of 

lagged wages has increased dramatically over the sample period with inflation and 

productivity growth, rendering lagged nominal wages at different dates potentially
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non-comparable. We address this issue by first adjusting the lagged nominal wage in 

each date t for price inflation to obtain equivalent lagged wages in our base year (date 

T) dollars/pounds. We then make a further adjustment by taking out a time trend3. 

Since all we want to control for is any changes in the distribution of lagged wages that 

may be due to the existence of DNWR, this is legitimate if we are willing to believe 

that DNWR has no effect on either the price level or trend real wage growth. Whilst 

the former seems reasonable, one might worry about the latter claim. However, 

Chapter 1 shows that, as both a theoretical and an empirical issue, DNWR has little 

effect on aggregate wage growth. This suggests that assuming DNWR has no effect 

on trend real wage growth is not an unrealistic assumption.

Controls

As mentioned previously, there are two levels at which we control for additional 

covariates in our empirical method. First, we control for micro-varying variables 

using the DFL technique. These controls are summarised for our three datatsets in 

Table 1-1 of Chapter 1, and we provide some motivation for these choices here.

First, we control for a quadratic in age and gender. This is simply to take into 

account demographic trends in the labour markets of the US and Britain. We also 

include, where possible, measures of education. This is motivated by the idea that 

more educated workers have become increasingly in demand with processes such as 

skill-biased technical change in the labour market. Thus the education composition of 

the workforce might affect the distribution of wage changes as demand polarises across 

skills, leading to, for instance, more extreme wage increases for the high-skilled. We

3In particular, we use residuals from an OLS regression of lagged log real wages on a quadratic 
time trend. Alternative methods of detrending, including the use of data on GDP per hour, and 
linear detrending were tried with little difference in results.
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also control for industry, occupation, and region to purge any effects due to changing 

sectoral composition of the workforce, or regional migration over time.

In addition to these, we control for a set of aggregated controls by adding regres

sors to the RHS of (2.13). In particular, we include current and lagged regional 

unemployment rates to control for any unemployment effects of DNWR, leading to 

observations “leaving” the wage distribution. Moreover, we include a measure of the 

absolute change in the rate of inflation. This is to control for any increase in the 

dispersion of wage changes due to increased volatility of inflation (as suggested by 

Groshen & Schweitzer [1999]).

Results

Given these, we then perform regressions of the form in (2.13) using percentiles of 

the wage change distributions, re-weighted for the controls listed in Table 1-1, as well 

as adjusted lagged wages, using the DFL technique. The results are summarised 

in Tables 2-1-2-3. Table 2-1 presents the results for the CPS. It can be seen 

that inflation has a negative impact in the 20th and 30th percentiles, and a positive 

impact thereafter. Moreover, these effects are highly significant for the 20th and 

30th percentiles in the lower tail, and the 70th-90th percentiles in the upper tail. 

Thus, lower wage change percentiles which represent negative wage changes become 

less negative as inflation falls, indicating a compression of wage cuts. In addition, 

however, it also implies that positive wage change percentiles become less positive as 

inflation falls. Thus, lower inflation leads to an active compression of the upper tail 

of the wage change distribution. Recall from the discussion of section 4 that this is 

predicted by a model of DNWR based on money illusion, but not from a model based 

on contracts.

Similar, if a little less significant, results are obtained for the PSID data in Table
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2-2. Here we observe negative inflation effects in the 10th and 20th percentiles in the 

lower tail, and positive inflation effects in the 80th and 90th percentiles of the upper 

tail. In particular, the lower tail effect is very significant at the 20th percentile, in 

contrast to the CPS results. This is most likely due to the fact that a zero nominal 

wage change occurs further into the lower tail for the PSID as a result of the relatively 

higher rates of inflation experienced in the PSID sample period. However, the upper 

tail effects are again significant, and comparable to those found in the CPS. Again, 

this is in line with the predictions of the behavioural model, outlined in section 4, 

suggesting that at least some of the observed rigidity reflects money illusion.

Finally, Table 2-3 presents the results for the NESPD data. These represent the 

most significant estimates out of all the three datasets used in this study. This is 

likely to be a result of the relatively larger sample sizes, reduced levels of measurement 

error, and greater variation in the rate of inflation over the sample period for the 

NESPD compared to the CPS and PSID. Again, we see negative and significant 

inflation effects for the 20th-40th percentiles of wage changes, and positive and highly 

significant inflation effects in the 60th-90th percentiles.

Altogether, these results provide strong evidence from a range of datasets, with 

a number of controls, that lower inflation leads to an active compression of wage 

increases as well as decreases. This is precisely in line with the predictions of the be

havioural model based on money illusion, and thus provides support to the hypothesis 

that DNWR is motivated by worker resistance to nominal wage cuts.

2.5.1 Is M oney Illusion Im portant in  U n ion  C ontexts?

The above results provide robust evidence that can be explained in the context of a 

model of money illusion for the wage change distribution of all workers. In this sec
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tion, we delve a little deeper to see if our conclusions change when we concentrate on 

workers covered by union contracts. The reason we concentrate on unionised workers 

is because one might expect that the contract based models provide a more accurate 

description of wage setting in union contexts, with their emphasis on bargaining 

threats, and mutual consent to the alteration of existing wage contracts. Indeed, 

Holden [2004] argues that DNWR due to contract based considerations is likely to 

be more prominent in unionised sectors because firms need only replace one worker 

to achieve a reduction in that worker’s wage in a decentralised context; in a union 

context, the firm would have to replace all workers, which is arguably much more 

costly.

To this end, Figure 2-1 illustrates density estimates of log nominal wage changes 

for union vs. non-union workers using the NESPD data. In particular, we divide 

the sample period into 3 sub-periods based on the rate of inflation: a high inflation 

period from 1976-81, a mid-inflation period from 1982-91, and a low inflation period 

from 1992-99. If the predictions of contract models are correct, we would expect that 

non-union wage increases will become compressed as inflation falls, but that union 

wage increases should be unchanged or less compressed. However, it can be seen 

from Figure 2-1 that wage increases become compressed in a very similar manner 

even for workers covered by union contracts. Moreover, it appears to be the case 

that, if anything, DNWR is less prominent in the union sector, in contrast to the 

predictions of the contract models. Thus, in this simple comparison, there seems to 

be evidence for money illusion in the union sector.

To address this question more formally, we adapt our percentile regression equa

tion (2.13) to see if the active compression of wage increases is mitigated as unionisa

tion increases. In particular, we add an interaction term on the RHS of (2.13) that
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Figure 2-1: Union vs. Non-Union Distribution of Wage Changes, NESPD.

measures how the impact of inflation varies as unionisation increases:

Pnrt =  Pon +  PlnP50rt +  Vn*t +  f a  ' Urt) +  < t7„ +  ^  (2.14)

Here, ur( is the fraction of union workers in region r  at date t; all other variables 

are as before. Thus, if unionised workers experience reduced compression of wage 

increases as inflation falls, we would expect the coefficient on the interaction term, 

in, to be negative.

Table 2-4 reports the results of this estimation. It can be seen that we find some 

evidence that greater unionisation leads to a diminished compression of wage increases 

as inflation falls, as indicated by negative parameter estimates for in. Thus, more 

formal estimates provide evidence that suggests tha t contract based models may have 

greater predictive power in union contexts. However, in general these effects are not
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significant, except for at the 70th percentile. Moreover, comparing these estimates 

with the coefficients on the rate of inflation suggests that the magnitudes of the 

coefficients in are not sufficient to cancel out the overall effect of inflation. This 

implies that there still remains some compression of wage increases in union sectors 

that is related to inflation.

2.6 Conclusions

By looking closely at the implications of the two proposed explanations of DNWR, this 

chapter has presented a method for differentiating between the behavioural theory for 

DNWR, and its alternative theories based on the form of market contracts (MacLeod 

&; Malcomson [1993]). In particular, we have shown that the behavioural theory 

implies that the active compression of nominal wage increases will fade as the rate of 

inflation rises: the greater the rate of inflation, the less firms have to worry about the 

costs of wage cuts in the future, and the more they will feel at liberty to raise the wage 

today. This is in contrast to the predictions of contract models. In these models, 

workers can only bid up their wage by making a credible and costly threat to change 

employers or to strike etc. However, in these models, the costs of switching employers 

or striking are, critically, driven by real economic forces.. Thus, we would not expect 

a compression of wage increases related to inflation in these contract models, in direct 

contrast to the predictions of the behavioural model.

Using micro data for the US and Great Britain, we provide strong evidence that 

firms do indeed actively compress wage increases, and that this compression is reduced 

as inflation rises. Moreover, this is robust to controls for a number of characteristics, 

as well as to alternative theories for the effect of inflation on the distribution of 

wage changes. It follows that an important aspect of the observed properties of the
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distribution of wage changes can be explained simply in the context of a model with 

money illusion, and cannot be easily explained by contract models. In this way, 

it suggests that the subjective evidence presented by Shafir, Diamond Sz Tversky 

[1997] and Kahneman, Knetsch & Thaler [1986], the experimental evidence of Fehr 

& Tyran [2001], and the real estate evidence of Genesove Sz Mayer [2001] on nominal 

loss aversion are all corroborated by the evidence on DNWR. Thus, the evidence 

presented here provides yet another dimension to the evidence on money illusion, 

and reinforces a view of preferences in which nominal losses loom large. Thus, we 

conclude that behavioural concerns must play an important role in wage-setting.

However, it does not necessarily follow that contract models are completely ir

relevant. In particular, we find some weak evidence that the compression of wage 

increases related to inflation is less prominent in unionised contexts. It is arguable 

that wage setting in unionised sectors is more closely related to the bargaining models 

that underlie contract models of DNWR. Thus, these findings present suggestive ev

idence that contract models may be relevant where unions are pervasive. Moreover, 

it may well be the case that money illusion and contract considerations are mutually 

reinforcing, as suggested by Holden [2004].

Thus, the results of this chapter should not be taken as a direct refutation of 

contract models, but rather as a statement that the motivations of the behavioural 

model have an appreciable bearing on the existence of DNWR. In this sense, the 

evidence presented in this chapter adds to the growing body of evidence for money 

illusion in the form of nominal loss aversion, and thus tells us something fundamental 

about the form of preferences.
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T ables for C hapter 2
Table 2-1: Percentile Regressions of Real Wage Changes, including Controls for Adjusted Lagged Wages (CPS, 1980 -  2002).

Percentile 10 th to o 30th 40 th 60th >4 O rt t* 3oCO 90th

Inflation Rate 0 . 066 - 0 . 1 4 1 - 0 . 3 0 7 0. 038 0. 046 0 . 1 4 6 0 . 269 0 . 447
[0 . 127] [ 0 . 0 7 8 ] * [0 . 0 7 1 ] * * * [0 . 050] [0 . 028] [ 0 . 0 6 0 ] * * [ 0 . 1 1 0 ] * * [ 0 . 1 5 4 ] * * *

Median 0 . 829 0 . 75 0 . 439 0. 775 1. 094 1. 311 1 . 637 2 . 1 0 8
[ 0 . 3 2 9 ] * * [ 0 . 1 7 7 ] * * * [0 . 0 9 6 ] * * * [ 0 . 033] *** [ 0 . 0 3 2 ] * * * [ 0 . 0 5 3 ] * * * [ 0 . 1 1 0 ] * * * [ 0 . 2 2 0 ] * * *

1 (year>=1994) - 0 . 1 1 - 0 . 0 4 7 - 0 . 0 0 3 0 0 . 004 0. 012 0 . 0 3 2 0 . 067
[ 0 . 0 0 9 ] * * * [0 . 0 0 5 ] * * * [0 . 002] [0 . 001] [0 . 0 0 2 ] * * [ 0 . 0 0 4 ] * * * [ 0 . 0 0 7 ] * * * [ 0 . 0 1 3 ] * * *

State U/E Rate - 0 . 0 1 - 0 . 0 0 6 - 0 . 0 0 1 - 0 . 0 0 1 0 0. 001 0. 003 0 . 005
[ 0 . 0 0 4 ] * * [ 0 . 0 0 2 ] * * [0 . 001] [0 . 0 0 0 ] * * * [0 . 000] [0 . 001] [ 0 . 002] [0 . 005]

State U/E Rate.i 0 . 008 0 . 005 0. 001 0. 001 0 - 0 . 0 0 1 - 0 . 0 0 2 - 0 . 0 0 3
[ 0 . 0 0 4 ] * * ' [ 0 . 0 0 2 ] * * [0 . 001] [0 . 000] [0 . 000] [0 . 001] [0 . 002] [0 . 004]

|Change in CPl| 0 . 725 0 . 235 - 0 . 2 1 7 0. 077 0. 033 - 0 . 0 8 6 - 0 . 3 6 5 - 0 . 8 3
[0 . 492] [0 . 283] [0 . 199] [0 . 060] [0 . 069] [0 . 187] [ 0 . 382] [ 0 . 587]

Constant - 0 . 2 3 2 - 0 . 0 8 2 - 0 . 0 3 1 - 0 . 0 2 6 0. 027 0 . 064 0 . 1 2 5 0 . 261
[ 0 . 0 0 7 ] * * * [ 0 . 0 0 4 ] * * * [ 0 . 005] *** [0 . 003] *** [0 . 0 0 2 ] * * * [ 0 . 0 0 5 ] * * * [ 0 . 0 0 8 ] * * * [ 0 . 0 1 4 ] * * *

Observations 1107 1107 1107 1107 1107 1107 1107 1107
R-squared 0 . 3 6 0 . 26 0 . 42 0 . 65 0 . 8 0 . 58 0 . 42 0 . 32
Notes:

a. Reports Least Squares estimates (weighted by region size) of real wage change percentiles on the rate of inflation and controls.
b. Uses real wage change percentiles re-weighted for changes in adjusted lagged wage, age, age2, sex, race, region (including metropolitan dummy), 2-digit

industry, education, public sector employment, and self-employment.
c. Standard errors in brackets: robust to non-independence within years.
d. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Table 2-2: Percentile Regressions of Real Wage Changes, including Controls for Adjusted Lagged Wages (PSID, 1971 -  92).

Percentile 10th 20 th 30th 40th 60 th 70th 00 o ft tf 90th

Inflation Rate - 0 . 0 6 3 - 0 . 5 6 9 0. 012 0 . 037 0. 032 0 . 072 0 . 1 7 6 0 . 402
[0 . 065] [ 0 . 0 9 8 ] * * * [0 . 045] [ 0 . 0 2 1 ] * [0 . 023] [0 . 042] [ 0 . 0 7 2 ] * * [ 0 . 1 5 7 ] * *

Median 0 . 879 0 . 278 0. 879 1. 001 1 . 05 1 . 113 1 . 1 8 5 1 . 279
[ 0 . 1 5 0 ] * * * [ 0 . 0 7 4 ] * * * [ 0 . 046] *** [0 . 0 1 7 ] * * * [ 0 . 0 2 5 ] * * * [ 0 . 0 3 8 ] * * * [ 0 . 0 6 2 ] * * * [ 0 . 1 5 1 ] * * *

State U/E Rate - 0 . 4 6 5 0 - 0 . 1 3 5 - 0 . 1 1 4 0 . 121 0 . 102 0 . 0 3 4 - 0 . 4 9 5
[ 0 . 1 9 7 ] * * [ 0 . 120] [0 . 087] [ 0 . 039] *** [ 0 . 0 6 9 ] * [0 . 123] [ 0 . 160] [ 0 . 375]

State U/E Rate.i 0 . 648 0 . 044 0. 052 0. 057 - 0 . 1 3 8 - 0 . 2 3 9 - 0 . 3 6 5 - 0 . 0 0 5
[ 0 . 1 9 3 ] * * * [0 . 114] [0 . 074] [0 . 050] [ 0 . 0 5 7 ] * * [ 0 . 1 1 1 ] * * [ 0 . 1 5 3 ] * * [ 0 . 343]

|Change in CPl| 0 . 071 - 0 . 0 7 8 0 . 17 0. 021 - 0 . 0 7 3 - 0 . 1 4 5 - 0 . 0 0 2 0 . 1 9 5
[0 . 210] [0 . 154] [0 . 099] [0 . 049] [0 . 067] [0 . 117] [ 0 . 182] [ 0 . 452]

Constant - 0 . 1 0 4 - 0 . 0 2 1 - 0 . 0 3 5 - 0 . 0 1 6 0. 017 0 . 0 4 8 0 . 0 9 0 . 1 5 8
[ 0 . 0 1 2 ] * * * [ 0 . 0 0 5 ] * * * [ 0 . 006] *** [0 . 002] *** [0 . 0 0 2 ] * * * [ 0 . 0 0 5 ] * * * [0 . 0 0 8 ] * * * [ 0 . 0 2 0 ] * * *

Observations 88 88 88 88 88 88 88 88
R-squared 0 . 4 7 0 . 73 0 . 77 0 . 94 0 . 9 5 0 . 8 1 0 . 6 2 0 . 31

Notes:
a. Reports Least Squares estimates (weighted by region size) of real wage change percentiles on the rate of inflation and controls. Observations from Alaska 

and Hawaii are dropped due to incomplete unemployment information before 1976.
b. Uses real wage change percentiles re-weighted for changes in adjusted lagged wage, age, age2, sex, education, 1-digit industry, 1-digit occupation, region, 

self employment, and tenure.
c. Standard errors in brackets: robust to non-independence within years.
d. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Table 2-3: Percentile Regressions of Real Wage Changes, including Controls for Adjusted Lagged Wages (NESPD, 1976 -1999).

Percentile 10th 20th 30th 40 th 60th 70th 80 th 90th

Inflation Rate - 0 . 1 1 1
[0 . 069]

- 0 . 2 2 8  
[ 0 . 0 2 0 ] * * *

- 0 . 1 6 2  
[ 0 . 0 2 1 ] * * *

- 0 . 1 0 3  
[ 0 . 009] ***

0. 084  
[0 . 0 0 8 ] * * *

0 . 158  
[ 0 . 0 1 4 ] * * *

0 . 247  
[0 . 0 3 3 ] * * *

0 . 383  
[ 0 . 0 9 8 ] * * *

Median 0 . 983 0 . 756 0 . 793 0 . 8 6 6 1 . 09 1. 183 1 . 266 1 . 516
[ 0 . 1 6 2 ] * * * [ 0 . 0 6 9 ] * * * [ 0 . 046] *** [ 0 . 0 2 1 ] * * * [0 . 0 2 4 ] * * * [ 0 . 0 4 5 ] * * * [ 0 . 0 8 1 ] * * * [ 0 . 3 5 7 ] * * *

1(year=1977) 0 . 028  
[ 0 . 0 1 5 ] *

0 . 003
[0 . 007]

- 0 . 0 1  
[ 0 . 0 0 4 ] * * *

- 0 . 0 0 8  
[0 . 0 0 2 ] * * *

0. 007  
[ 0 . 0 0 2 ] * * *

0 . 014  
[ 0 . 0 0 4 ] * * *

0 . 0 0 6
[0 . 006]

0 . 012
[ 0 . 021]

Region U/E Rate 0
[0 . 002]

- 0 . 0 0 3  
[ 0 . 0 0 1 ] * *

0
[0 . 001]

0
[ 0 . 001]

- 0 . 0 0 1  
[ 0 . 0 0 0 ] *

- 0 . 0 0 2  
[0 . 001]**

- 0 . 0 0 4  
[ 0 . 0 0 1 ] * * *

- 0 . 0 0 7  
[ 0 . 0 0 2 ] * * *

Region U/E Rate.i 0. 003
[0 . 002]

0 .004  
[0 . 0 0 1 ] * * *

0 . 001
[0 . 001]

0
[ 0 . 001]

0 . 001
[0 . 000]

0 . 001
[0 . 001]

0 . 002
[0 . 001]

0. 003
[0 . 002]

|Change in RPl| 0 . 06
[ 0 . 138]

0 . 041
[0 , 047]

- 0 . 0 5
[0 . 041]

0 . 004
[0 . 027]

0 . 03
[0 . 018]

0. 019
[0 . 036]

- 0 . 0 6 2
[0 . 070]

- 0 . 4 3  
[0 . 1 5 8 ] * *

Constant - 0 . 1 2 1 - 0 . 0 3 8 - 0 . 0 1 3 - 0 . 0 0 4 0. 012 0 . 034 0. 077 0 . 172
[0 . 0 0 9 ] * * * [ 0 . 0 0 3 ] * * * [0 . 0 0 2 ] * * * [0 . 0 0 1 ] * * * [0 . 0 0 1 ] * * * [ 0 . 0 0 2 ] * * * [ 0 . 0 0 4 ] * * * [ 0 . 0 1 1 ] * * *

Observations 240 240 240 240 240 240 240 240
R-squared 0 . 6 4 0 . 91 0 . 96 0 . 98 0 . 99 0 . 9 5 0 . 8 7 0 . 47
Notes:

a. Reports Least Squares estimates (weighted by region size) of real wage change percentiles on the rate of inflation and controls.
b. Uses real wage change percentiles re-weighted for changes in adjusted lagged wage, age, age2, sex, region (including London dummy), 2-digit industry, 2-

digit occupation, and major union coverage.
c. Standard errors in brackets: robust to non-independence within years.
d. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Table 2-4: Percentile Regressions including Interaction between Inflation & Unionisation (NESPD, 1976 -1999).

Percentile 60 th 70th 00 o 90th

Inflation Rate 0 . 1 2 1 0. 302 0 . 39 0 . 717
[ 0 . 0 3 7 ] * * * [ 0 . 062] *** [ 0 . 1 2 2 ] * * * [ 0 . 2 7 1 ] * *

- 0 . 0 6 2 - 0 . 2 4 1 - 0 . 2 4 - 0 , 5 6Inflation*Union
[0 . 060] [ 0 . 091] ** [ 0 . 215] [ 0 . 545]

Median 1 . 097 1 . 211 1. 294 1 . 581
[ 0 . 0 2 4 ] * * * [0 . 0 4 5 ] * * * [0 . 075]*** [ 0 . 3 3 7 ] * * *

0 . 008 0 . 017 0. 009 0 . 021(year=1977)
[ 0 . 0 0 2 ] * * * [ 0 . 004] *** [0 . 006] [ 0 . 018]

Region U/E Rate - 0 . 0 0 1 - 0 . 0 0 2 - 0 . 0 0 4 - 0 . 0 0 6
[ 0 . 0 0 0 ] * [ 0 . 0 0 1 ] * * [ 0 . 0 0 1 ] * * * [ 0 . 0 0 2 ] * *

Region U/E Rate.i 0 . 0 0 1 0. 001 0. 002 0 . 004
[0 . 000] [0 . 001] [0 . 001] [0 . 002]

|Change in RPI| 0 . 029 0 . 017 - 0 . 0 6 5 - 0 . 4 3 7
[ 0 . 1 6 3 ] * *[ 0 . 019] [0 . 034] [0 . 071]

0 . 0 1 1 0 . 03 0 . 074 0 . 163Constant
[ 0 . 0 0 2 ] * * * [ 0 . 003] *** [ 0 . 0 0 5 ] * * * [ 0 . 0 1 2 ] * * *

Observations 240 240 240 240
R-squared 0 . 99 0 . 96 0 . 87 0 . 47
Notes:

a. Reports Least Squares estimates (weighted by region size) of real wage change percentiles on the rate of inflation and controls.
b. Uses real wage change percentiles re-weighted for changes in adjusted lagged wage, age, age2, sex, region (including London dummy), 2-digit industry, 2-

digit occupation, and major union coverage.
c. Standard errors in brackets: robust to non-independence within years.
d. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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Chapter 3 

Dynam ic Factor Dem and w ith  

Irreversibility: A  D iscrete T im e  

Solution

3.1 Introduction

It has long been recognised in economics that the accumulation of capital and labour 

is subject to adjustment costs (see Oi [1962] for an early study in labour markets, and 

Arrow [1968] for a treatment of the investment case). In particular, much interest has 

focussed on the idea that investment and labour demand are subject to asymmetric 

adjustment costs that render factor demand irreversible to some degree. In the 

case of labour markets, these occur if there exist firing costs that make it difficult 

to reverse employment decisions. In the investment literature emphasis has been on 

the existence of installation and moving costs of machinery, capital specificity, and 

potential “lemons” problems in the market for second hand capital. It is argued 

that these costs drive a wedge between the purchase and resale prices of capital, and
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thereby render investment to some extent irreversible.

These observations have led to the development of a class of theoretical models 

which seek to characterise the effects of such irreversibility on optimal factor demand. 

To date, the vast majority of such models has adopted a particular specification in 

which time advances continuously and the shocks facing a firm evolve according to a 

Brownian motion (see Dixit & Pindyck [1994] for the investment case, and Bentolila 

& Bertola, [1990] for the labour demand case). This assumption has been used 

primarily for reasons of analytical tractability, but might be considered to be quite 

restrictive. In particular, it can be shown that a Brownian motion is the continuous 

time analogue to a discrete time random walk (Dixit [1993]).

This chapter seeks make a simple contribution to our understanding of such mod

els by analysing the impact on factor demand of alternative assumptions about the 

structure of shocks facing a firm. To do this, we first formulate and solve a general 

model of partial irreversibility in discrete time. We find that we can characterise the 

solution in a manner analogous to, but more general than, existing Brownian mod

els. In particular, the key analytical challenge in all such models is to characterise 

the marginal impact of current factor demand decisions on the future profits of a 

firm (“marginal q” in investment models). We show that this marginal value has 

a recursive structure which can be expressed in the form of a contraction mapping 

in discrete time. This contraction is analogous to the familiar differential equations 

obtained for the marginal value function in previous models that utilise Brownian 

motion. However, these differential equations may only be derived once one has 

assumed a structure for the shocks facing a firm; the contraction property derived in 

this study holds for a wider class of shocks. This greater generality thus allows a 

more comprehensive look at the implications of different shock processes.
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Factor irreversibility in discrete time has been considered previously by, among 

others, Lucas & Prescott [1971]. The closest in spirit to the current chapter, however, 

is Sargent [1980], which considers the implications of complete investment irreversibil

ity, in which it is infinitely costly to disinvest. In contrast, the model presented in this 

chapter addresses the more general case of partial irreversibility, in which disinvest

ment (or firing in the labour case) is costly, but not infinitely so. More fundamentally, 

though, the contraction property of the marginal value function characterised in this 

chapter has not been established previously in the literature on factor irreversibility, 

and significantly simplifies analysis of the discrete time case. Moreover, we show that 

this contraction property is analytically useful in the context of specific assumptions 

about the form of shocks facing the firm.

To this end, we apply this general contraction result to illustrate the impact of 

some simple alternative specifications for the evolution shocks. In particular, we first 

present the solution to the discrete time model in the face of a geometric Gaussian 

random walk. As explained above, this is the analogue to the common assumption 

of geometric Brownian motion in the previous literature, and can thus be used as 

a benchmark to assess the impact of alternative assumptions. We then analyse in 

turn the impact of simple alternative assumptions about the persistence of shocks, 

and the functional form of the distribution of shocks. We first derive a general result 

that increased persistence of shocks leads to a greater response of factor demand 

to current shocks. The intuition for this is that, when shocks are more persistent, 

current shocks become more informative about future shocks. Thus, the firm has to 

worry less about any costly reversals of current factor demand decisions. We then go 

on to verify that this is the case in practice by solving the model with i.i.d. Gaussian 

shocks. From this, we additionally find that reduced persistence in the form of i.i.d. 

shocks leads to greater rigidity in factor demand. Intuitively, i.i.d. shocks imply some
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mean-reverting aspect to shocks, which leads firms to worry more about having to 

reverse current factor demand decisions, at a cost, in the future. Finally, we examine 

the impact of distributional form by solving the model in the presence of exponential 

shocks. We find that the fatter tails implied by exponential shocks leads the firm to 

reduce demand more for bad shocks, and to increase demand more for good shocks.

It is also worth noting, however, that these findings are also useful for a number 

of other reasons. In particular, more generally the model provides guidance to the 

solution of any optimisation problem with a kinked objective function. This has 

been shown to have important applications in models of loss aversion as applied to 

downward nominal wage rigidity (see Chapters 1  and 2  of this thesis). Finally, by 

adopting the familiar techniques and findings of discrete time dynamic programming 

(Stokey & Lucas [1989]), providing a discrete time solution may open up the research 

agenda on adjustment costs to more researchers by no longer requiring investment 

into the concepts and methods of stochastic calculus.

The remainder of this chapter is organised as follows. Section 2 presents a general 

result on the structure of optimal factor demand in the face of partial irreversibility. 

Section 3 then proceeds to apply this general result to different assumptions about 

the evolution of firm shocks, in particular by considering different persistence and 

distributional assumptions. Section 4 concludes.

3.2 A General Result

We assume that the firm uses a single factor of production, x, to produce output, y, 

according to the production function:

y = g (x ,A )  (3.1)
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where > 0, gx > 0, and gxx < 0. In addition, we assume that gxA > 0 so that 

the demand for x is increasing in A. A  is a shock variable that can be thought 

of as a combination of demand and/or technology shocks and acts as the source of 

uncertainty in the model. We make the standard assumption that A  follows a Markov 

process, with c.d.f. given by F (A'\A).

x  can be thought of as either capital or labour. Accumulation of x  comes at a cost 

bu > 0  per unit; decumulation provides a return bi which may be greater or less than 

zero depending on the case in hand. We assume that accumulation of x  is irreversible, 

so that bu > bi. In the case where x is capital, bu and bi can be thought of as the 

purchase and resale prices of capital respectively, where bi is typically positive. That 

the purchase price may exceed the resale price of capital has typically been justified 

by the existence of a lemons problem in the market for used capital (see Arrow [1968], 

for the original intuition, and Abel & Eberly [1996], for a Brownian model with this 

property). In the case where x  is labour, bu and —bi can be thought of as the per 

worker costs of hiring and firing respectively, where bi is now assumed to be negative.

In addition to these adjustment costs, we allow for the existence of a per unit cost 

of maintaining and running x, which we denote w. Clearly, in the labour demand 

case this has the obvious interpretation of wage costs. Finally, we assume that a 

proportion 5 of x  depreciates each period, so that we can describe the evolution of x 

by:

Arc =  AX -  6x-i (3.2)

where AX represents the change in x gross of depreciation. In the capital case, AX 

is just the total purchases less sales of capital, and S is simply the fraction of capital 

that depreciates each period. In the labour case, AX is the number of hires less
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fires, and 8 can be interpreted as the fraction of workers that quits each period.

The firm seeks to maximise the expected present discounted value of profits. Thus, 

defining the firm’s discount factor, f} =  where r is the real rate of interest, 1 + 

and 1 “ as indicators for A X  > 0 , respectively A X  < 0, we can write down the firm’s 

objective as:

g (x, A) — wx — bu A X  1 + — bi A X  1 “ 

+ P jv (x ,A ')d F (A '\A )  J

To complete our characterisation of the firm’s problem, we make the standard assump

tion that the measure dF (A'\A) satisfies the Feller property, so that the functional 

mapping defined in (3.3) preserves continuity of the value function1. To solve this 

problem, we proceed by taking the first-order condition with respect to x, conditional 

on A X  7  ̂0:

gx (x, A) - w  -  bul + — 6 *1 “ +  (3D (x, A) = 0 (3.4)

where we define D (x, A) = f  vx (x, A') dF (A!\A). Clearly, a key step to obtaining 

a solution is determining the function D(-). As a first step, however, we need to 

characterise the general form of the firm’s optimal demand function, to which we now 

turn.

First, note that equation (3.4) depends only on A  and x. Thus, in principle this 

can be solved for A as a function of x for the cases in which the firm accumulates x

1A sufficient condition for this is that the evolution of A be governed by the stochastic difference 
equation, A' =  h{A,e),  where e is an i.i.d. random variable, and h (•) is a continuous function. See 
Stokey & Lucas [1989] for more details.

v (x_i, A) = max
X
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(1 + =  1 ) and the firm decumulates x ( 1  = 1 ). We define these relationships as:

A = u(x) if AX > 0
(3.5)

A — l{x) if A X  < 0

Now notice that the firm’s objective function, (3.3), is concave in x. Thus it follows 

that the firm will only accumulate (decumulate) x  if it receives a sufficiently positive 

(respectively negative) shock:

AX > 0  if A > Au

A X  < 0 if A < A i  (3.6)

AX =  0  otherwise

where Au > Ai. To complete our characterisation of the firm’s demand policy, we 

need to specify how these “trigger” values for A  are determined. To do this, note 

that, since the firm’s objective (3.3) is continuous and concave, the optimal value of 

x will be a continuous function of the state variables (x_i, A)2. Thus, it must be the 

case that:

K  =  « (x - i)  (3-7)

A, = l(x~ i)

where x~\ =  ( 1  — <5) x_i. Piecing all these findings together, we establish Proposition 

1 :

2This follows directly from the Theorem of the Maximum -  see Stokey & Lucas [1989], pp. 62-63.
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P roposition  6  The optimal demand policy for x is of the form:

u 1{A) if A > u ( x - 1 ) 

x = { otherwise

 ̂ l - 1 (,4) i f  A <1 (X_ 0

where x~\ =  ( 1  — &) £ - 1  and the functions u(-) and I (•) are defined by:

(3.8)

gx (x ,u (x)) — w — bu +/3D (x ,u (x))  =  0 

gx (x, I (x)) — w — bi +  (3D (x, I Or)) =  0

(3.9)

Clearly, to complete our solution for the functions u (•) and I (•), we need to 

characterise the functions D (x, I (x)) and D (x, u (x)). We approach this as follows. 

First, note that, due to the recursive nature of the problem, the trigger values next 

period will be given by:

A ,  = I (x_i) 

Au = u (x_i)

Al =  I (X) 

A'u = u (x)

(3.10)

Moreover, if we define v~//0/'+ as the value functions conditional on each of the three 

possible continuation regimes in which A X ' = 0 respectively, we can re-write D (•) 

as:

D (x ,A ) =
pl(x) ru(x) poo
/  v - (x ,A ')d F +  /  vQx (x ,A )d F +  /  v+(x,A')dF(3.1 1 )

Jo Jl(x) Ju(x)
+ (1 - 5 )  I' ( x )  { v ~  (:r, I (x)) -  v°  Or, I (x))}

+ ( 1  -  6) v! (x) {v° (x , u (x)) -  v+ Or, u (x))}

^(x)
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Since the value function is continuous3, it follows that the last two terms above equal 

zero. These “value-matching” conditions therefore yield:

rKx) ru(x) roo
D (x ,A ) = v~ (x ,A ')d F  + v° (x, A') dF + I v+ (x ,A ')dF  (3.12) 

Jo J lix) J u(x)

Finally, straightforward application of the envelope theorem allows us to pin down 

two of the forward derivatives in (3.12):

vx fa  A') = ( 1  -  S) bi 

v+ (x , A') = ( 1 - 5 )  bu

(3.13)

To determine the forward derivative in the “do nothing” (AX' =  0) regime, note 

that:

v°x (x ,A )  =  ^ L ( x , A ' ) - w x  + l3 jv (x ,A " )d F (A " \A ’) \  (3.14)

=  ( l - 5 ) { gx( x , A' ) - v> + PD(x,A')}

Thus, by substituting these envelope-type properties into (3.12), we obtain Proposi

tion 2 :

P roposition  7 The function D (•) satisfies: 

D fa A )  = ( l-8 )<
/ 0,(x) b,dF + / “‘x) \gx (x, A') -  w] dF

+ f Z b*dF + Pf?MD(X’A')dF
(3.15)

where x  = (1 — 5) x. This is a contraction mapping in D  (•) and hence has a unique 

fixed point.

3 Recall that this follows from our assumption that the distribution of the shock variable A satisfies 
the Feller property.
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Proof. For proof of contraction property, see appendix. ■

This result provides us with a relation that we can use to pin down D (•) and thereby 

derive a solution for the optimal demand for x using (3.4).

Proposition 2 is worthy of discussion from the perspective of its contribution to 

our understanding of the analytics of factor irreversibility. In particular, it builds on 

previous work of Sargent [1980], which deals with the case of complete irreversibility 

-  i.e. the case in which bi —► — oo, so that factor demand reversals are infinitely costly. 

In particular, Sargent goes to some pains to establish the existence and uniqueness of 

the marginal value function. Proposition 2  allows us to establish these results more 

simply. Existence and uniqueness of the marginal value follow directly from the 

contraction property of (3.15). Thus, Proposition 2 provides a more parsimonious 

representation of the solution to models of irreversibility in discrete time than existing 

solutions.

3.2.1 Com parison w ith  Brow nian Solutions

In addition, however, Proposition 2  also provides a more general solution to a model 

of partial irreversibility (Abel & Eberly [1996] and Bentolila & Bertola [1990] are the 

closest Brownian analogues). To see this, a comparison with the structure of the 

existing Brownian models is instructive. In particular, the analogous representation 

to the objective function (3.3) in continuous time is given by the following Bellman 

equation:

rV (x ,A )  =  max i g  (x, A) — wx — budX  1 + — bidX 1 ~ +  ^  {dV(x i - )̂] 
x [ at j

s.t dx =  dX  — Sx • dt
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Note that, in order to make any progress in solving such a model, we must specify a 

process for the shock variable A  so that we may establish the structure of the expected 

capital gain, E [dV (x , >1)] /dt. In particular, as mentioned above, the vast majority 

of studies employ the convenient assumption that shocks follow a geometric Brownian 

motion of the form:

dA = iiAdt +  a Adz (3*17)

where dz = ey/dit is a standard Wiener process, and e ~  AT (0,1). Under this 

assumption, application of Ito’s Lemma provides us with the following representation 

for the future expected capital gain:

E  [dVd t ' A)] =  ~ SxVx+ ^ AVa + \ ° 2a 2Vaa (3-18)

Only now can we begin to consider taking the derivative of the Bellman equation and 

thereby find the optimal demand for x. Doing so yields the following differential 

equation for the marginal value function4:

rVx (x , A) =  gx (x, A) -  w -  6VX (x , A) -  SxVxx (x, A) (3.19)

+ î AVAx (x , A) +  ^(t2A2Vaax {%, A)

Given particular assumptions about the form of the production technology g (•), one 

can then use this equation to characterise the demand for x  (see Abel Sz Eberly [1996] 

for details).

Proposition 2, on the other hand, characterises the solution to the model (3.3) for

4Note that the terms reflecting accumulation costs cancel out in (3.19). The reason is that 
an additional unit of x increases the value of the firm by Vx and costs bu, thereby yielding a net 
contribution of d X + [Vx — bu]. This is always equal to zero since if it is optimal for the firm to 
accumulate x then the firm will set Vx =  bu\ otherwise the firm does not accumulate and d X + =  0. 
A symmetric logic applies to decumulation of x.
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a wide class shock processes F(-). In this sense, (3.15) represents a more general 

solution to models of irreversibility than those that have employed Brownian shocks 

reviewed above. In particular, (3.15) is the discrete time analogue to the differential 

equation obtained for the marginal value function in (3.19). However, recall that 

the only way to derive these differential equations in continuous time is to specify 

beforehand the evolution of shocks, typically given by a geometric Brownian motion 

such as (3.17). No such assumption had to be made to derive (3.15).

It is also worth noting that the contraction property of the mapping defined in 

(3.15) admits further potential in respect of deriving numerical solutions to more 

complicated technology and shock structures. In particular, it implies that successive 

recursions on (3.15) from an initial starting point will converge to the fixed point 

function D (•) defined implicitly by (3.15) in Proposition 25. Thus, this also provides 

an insight into potential methods of solving adjustment cost models numerically.

In the remainder of this chapter, we consider just one of these developments -  

the impact of different assumptions about the distribution of shocks facing the firm 

on optimal factor demand. To focus ideas, we analyse the simple Cobb-Douglas 

production function:

g(x ,A ) = Axa (3.20)

with a E (0,1). We now turn to the implications of different assumptions about the 

evolution of A.

5 This follows from a simple application of the “N-Stage Contraction Theorem” -  see Stokey & 
Lucas (1989), p. 53.
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3.3 Assessing the Impact of Different Forms of Un

certainty using Simple Examples

This section seeks to present some simple examples of how different assumptions about 

the structure of shocks facing the firm can alter optimal factor demand policies. We 

start with a treatment of the analogue to existing Brownian models, where shocks are 

assumed to follow a random walk. We then use this as a benchmark to examine the 

impact of first changes in persistence of shocks, and then changes in the distribution 

of shocks.

3.3.1 G eom etric G aussian R andom  W alk

As a first example, then, consider the case that is most closely linked to the Brownian 

motion assumption of the previous literature -  that of a geometric Gaussian random 

walk. In particular, we assume that A  evolves according to:

A'

e' ~  N  (0, a2)

exp ( s' (3.21)

Given this assumption, we can attempt to solve for D (•) using (3.15). To do this, 

we employ the method of undetermined coefficients to obtain solutions for D  (•) and 

thereby for the functions u (•) and I (•) also. Doing so yields:

P roposition  8  I f  a firm ’s shocks evolve according to the geometric random walk, (), 

then the functions u(-) and I (•) are of the form:

x,1— a

u(x)  = U-
a

,1—a

(3.22)

l(x)  =  /•
x

a
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where u and I are given constants which depend upon the parameters of the model, 

{a, /?, 5, p, a , Q, i?} and where Q = w/bu, R  =  bu/bi.

Proof. See appendix. ■

To get an idea of the implications of the adjustment costs 6 / and bu in the model, 

Figure 3-1 plots the firm’s optimal demand policy in the case with fully reversible 

factor accumulation (6 / =  bu =  b), and the case with partial irreversibility (6 / < bu). 

In particular, we observe three departures from the reversible policy. First, the firm 

attenuates the extent to which it decumulates x. To see this, notice that for all 

values of A  below At, the firm’s demand for x is now greater than in the reversible 

case. This follows from the fact that the firm no longer receives the same return on 

decumulation of x. Recall that in the capital case this is due to the resale price of 

capital being lower than the purchase price. In the labour demand case, this results 

because it may be costly to fire workers. Second, the firm also attenuates the extent 

to which it accumulates x. This is because firms now realise that accumulation of x 

is irreversible to some extent, and as a result they limit accumulation as a precaution 

against being unable to decumulate as profitably in the future. Third, there is a range 

of values for the firm’s shock, A, for which there is no change in the firm’s optimal 

factor holdings gross of depreciation. This “region of inaction” arises as a result of 

the kink in the firm’s objective function created by the existence of asymmetric kinked 

adjustment costs. We can now use this case a benchmark with which to compare 

the implications of other forms of shocks on optimal factor demand.

3.3.2 T he Im pact o f  th e  P ersistence o f Shocks

A question that immediately arises in the light of the results for the random walk 

case is that of the effect of the persistence of shocks on the optimal demand for a;. In
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Figure 3-1: The Impact of Irreversibility on Optimal Factor Demand

particular, we have noted that the assumption of Brownian shocks in continuous time 

in the previous literature is analogous to assuming shocks follow a random walk in 

discrete time (Dixit [1993]). Thus, it is of interest to understand what might change 

as the persistence of shocks declines from a unit root. To this end, we characterise 

first a general result on the effect of shock persistence and then consider the specific 

case of i.i.d. Gaussian shocks as a concrete comparison with the Gaussian random 

walk results presented above.

First, assume that the evolution of shocks is governed by the stochastic difference 

equation:

A' =  h (A, e') (3.23)

where e1 is assumed to be an i.i.d. innovation. We can think of changes in the 

persistence of shocks facing the firm as changes in the response of A' to A: i.e.

1 2 2



h,A (A, e'). Given this, we can then establish the following result:

P roposition  9 An increase in the persistence of shocks, hA, renders optimal factor 

demand more responsive to changes in A.

Proof. See appendix. ■

The intuition behind this result is quite straightforward. As shocks become less 

persistent, or hA falls, shocks will have more of a tendency to revert towards a mean 

in the future. Thus, low values of A  today are more likely to be followed by higher 

values in the future. As a result, firms will not feel as compelled to reduce their 

holdings of factor x following a bad shock relative to a case in which shocks are very 

persistent. Similarly, when shocks are less persistent, we would expect good shocks 

to lead to a lesser increase in factor demand, as lower values of A  will be expected 

in the future. Thus, reduced persistence pivots the firms optimal demand for x  as a 

function of A  clockwise.

I.i.d. Geometric Gaussian Shocks

We now examine how the general result of Proposition 4 might obtain in practice by 

returning to our case of Cobb-Douglas technology. In particular, we illustrate the 

impact of changes in persistence by comparing the results of section 3.1 with those 

from a model with i.i.d. Gaussian shocks:

A' (3.24)

s' ~  N (0 ,a 2)

Note that this implies E  (A') = A  is the stationary mean value of the shock in every 

period6. In this case it is clear that, since today’s shocks, A, have no impact on future

6For simplicity, we do not incorporate growth into this specification. Thus, all subsequent 
comparisons with the random walk case impose p =  0 in (3.21).
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shocks, A \  the marginal effects of today’s factor demand on future profits must also 

be independent of A:

D ( x , A ) = D(x)  (3.25)

Thus, taking this into account, and solving out the integrals in (3.15)7, we obtain:

bu ( 1  — ^ 2 ) — tu ( ^ 2  — ^ 1 )'  , v 2  1 ;
+ a x “ ( $ 3  -  $ 4)

(3.26)

where:

0 1 =  $ [ i ( l n / ( x ) - l n A  + i<72)]; f 2 =  3» [± (lnu (x ) -  ln.4 +  ±<r2)]

=  $  [£ (lnu(x) -  In A -  i<r2)] ; $ 4  =  $  [ i  (ini (x) -  ln ii -  §<r2)]

Finding an analytic solution for D (•) using (3.26) is not as straightforward as in the 

random walk case, principally because of the non-linear terms $*, i =  1, ..,4, which

depend on x. However, we can obtain further analytical results for the case in which

there is no depreciation, 8 = 0, so that x  — x - I*1 this case, we solve (3.26) for D (x) 

given by:

D {x) =  J  J ** + 6. (1 -* ,)-» (* ,-  *0 |  (3.28)
1 -  0  ( $ 2  -  $ 1 ) I +axa~l ( $ 3  -  $ 4) I

rLemma 1 in the appendix establishes that, for a random variable lnx ~  N  (/x, cr2) then 
f*  xdF (x ) =  exp [fj, -1- i<j2] — a j — $  p-n-̂ pH — aj where $  (•) is the standard Normal
c.d.f.
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Substituting back into the first order conditions, (3.9), we obtain:

u (x ) =  [w +  bu — (3D (u (x ) , I (a;))] • - —  (3.29)
a

l(x)  =  [w +  bi — {3D (u(x) ,1 (x))] •  -----
a

where we have used a slight change of notation to emphasise the dependence of D  (•) 

on x  through the values of u (•) and I (•). These provide us with a system of two 

non-linear equations that can be solved for the functions u (x) and I (x) , and thus 

allow us to identify the optimal demand for x.

Figures 3-2 and 3-3 illustrate the optimal demand functions for x  with i.i.d. shocks 

obtained by solving the system (3.29), and compare them with the benchmark case 

of a geometric random walk. It can be seen that the existence of i.i.d. shocks leads 

to a clockwise tilting of the firm’s optimal demand as a function of the shock, A , 

exactly along the lines of Proposition 4. In particular, Figures 3-2 and 3-3 illustrate 

the solution for two different values for A  -  the stationary mean in the i.i.d. case. 

We observe that, for values of the shock variable A  below A, the demand for x  in 

the i.i.d. model exceeds that for the random walk model. Conversely, for values of 

A  above A, the demand for x  is higher in the random walk model. Why might this 

be the case? The intuition is that, when shocks are i.i.d., there is a mean-reverting 

aspect to the firm’s profitability. That is, the firm expects A  to revert back to its 

mean, A, in all future periods. Thus, when the current shock is below A, the firm 

expects its profitability to get better in the future, and vice versa. In the random 

walk model, however, the firm expects future values of A  to be equal to the current 

value for all future periods. Thus, for current values of A  equal to A, we obtain 

identical results for the i.i.d. and random walk cases.
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Figure 3-2: Geometric Random Walk vs. i.i.d. Gaussian Shocks: .A =  1
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Figure 3-3: Random Walk vs. i.i.d. Gaussian Shocks: A =  1.3



Figure 3-4: Extent of Inaction as a Function of - Random Walk vs. i.i.d. Gaussian

Figure 3-4 then illustrates the impact of assuming i.i.d. shocks on the extent 

of inaction. We measure this inaction by finding the geometric distance between 

the upper and lower triggers for accumulating and decumulating x: G =  7^— In 

particular, Figure 3-4 plots G as a function of in each case. We see that assuming

i.i.d. shocks leads in general to an increase in the degree of inaction. The reason for
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Figure 3-5: Exponential vs. Log-Normal Distribution

3 .3 .3  T h e  Im p act o f  th e  D is tr ib u tio n  o f  S h ock s

In this section, we consider the impact of departing from the assumption of log- 

Normal shocks by instead looking at shocks drawn from an exponential distribution. 

To see the implications of this, Figure 3-5 compares the exponential distribution to 

a log-Normal with identical mean and variance. It can be seen that the exponential 

distribution has fatter tails relative to the log-Normal, particularly in the left hand 

tail. Thus, the exponential distribution yields more extreme values more often than 

the log-Normal.

In what follows, we assume shocks A are i.i.d. exponential, and that their density
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and distribution functions are therefore respectively given by8

f (A' )  = - e x p (—A'/s)

F  (A ') =  1  — exp (—A '/s ) (3.30)

In this case, we can solve the integrals in (3.15) to obtain the analogue to (3.26) in 

the i.i.d. Gaussian case:

D (x)-j3  (1 -  8) (F2 -  F 0  D (x) =  (1 -  S) {
+<*X

a—1

b\F\ +  bu (1 — F2) — w (F2 — Fi)

[s +  u (x)] F2 — [s + l (x )] Fi 

-  [“  (x) - 1 (x)]
(3.31)

where Fi — F  [I (x)] and F2 = F  [u (x)]. As before in the i.i.d. Gaussian case, we 

concentrate on the analytically more tractable case in which there is no depreciation, 

<5 =  0. It follows that we can then solve for D (•) given simply by:

D(x)
l — /2 (F2 — Fi) Fax

biFi +  bu (1 — F2) — w (F2 — Fi)

[s +  u (z)] F2 - [ s  + l (a;)] Fi 

-  [u (x) -  I (x)]
a —1

► (3.32)

Once again, together with (3.29), this provides us with a set of non linear equations 

that can be solved for u (•) and I (•).

Figure 3-6 now compares the solution to the exponential model with that obtained 

for the Gaussian model. We can see that the existence of exponential shocks with 

fatter tails leads to a reduction of the demand for x  for low values of the firm’s shock

8 Note that the exponential is a one parameter distribution with mean and variance given respec
tively by s and s2. In all comparisons with log-Normal results, we match these two moments so 
that they are identical.
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Figure 3-6: Optimal Factor Demand in the face of Gaussian vs. Exponential Shocks

A, and to higher demand for x for higher values of A. The intuition for this is that 

lower values of A are more common in the exponential relative to the Gaussian case 

(see Figure 3-5). Thus, firms are more likely to reduce their demand for x following 

a bad shock because they are less confident that the shock will return to a higher 

value in the future in the exponential model (although on average, by construction 

they expect the same value of A  in all future periods). The converse is also true to a 

lesser extent for good shocks. In particular, the fatter upper tail in the exponential 

case leads the firm to be more confident of obtaining very good shocks in the future, 

and thus leads the firm to be more likely to accumulate x  as well.
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3.4 Conclusions

This chapter has provided new results on the analytics of factor accumulation in the 

presence of asymmetric adjustment costs in discrete time. In particular, we have 

established that the marginal value function obeys a contraction mapping, and that 

this property has a number of useful implications. First, we have shown that this 

result holds for a wider class of shock structures than previous solutions. Specifically, 

we have shown that previous continuous time models have had to specify the form of 

shocks -  typically Brownian motions -  before being able to characterise the marginal 

value function. No such assumption has to be made in the framework discussed in 

this chapter.

We then go on to show that the contraction property allows one to characterise 

the properties of optimal factor demand under alternative assumptions about first 

the persistence of shocks, and second the distribution of shocks. In particular, we 

establish a general result that an increased persistence of shocks raises the response of 

factor demand to current shocks. In addition, by solving a model with i.i.d. Gaussian 

shocks, we find that reduced persistence leads to greater rigidity in factor demand. 

In this sense, Brownian models may imply a lower extent of inaction than would 

be predicted by less persistent shocks. Finally, by solving a model with exponential 

rather than Gaussian shocks, we establish that fatter tails in the distribution of shocks 

lead to reduced demand under bad shocks, but higher demand under good shocks. 

In this way, we can begin to understand the impact of distributional assumptions on 

models of factor demand under irreversibility.
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Chapter 4

Conclusion to  Thesis

This thesis has sought to unify the concepts of downward nominal wage rigidity 

in labour markets, money illusion in the form of an aversion to nominal loss, and 

irreversibility in a novel way.

In particular, Chapter 1  shows that money illusion in the form of nominal loss 

aversion on behalf of workers implies that firms’ wage decisions become irreversible 

to some extent. To see this, note that if a firm increases the wage today, and then 

reverses its decision by cutting the wage by an equal amount tomorrow, the net effect 

on productivity will be negative. This is because cutting the wage involves a larger 

reduction in productivity than an equal-sized wage increase raises productivity.

Chapter 1 then links this finding to the observation of DNWR in labour markets. 

In particular, it shows that we can obtain a better understanding of the nature of 

DNWR by noting that such a model has the novel that firms have an incentive to 

attenuate wage increases as well as decreases.

This finding has not been addressed in the previous literature on DNWR, and 

allows a potential explanation for why the expected macroeconomic effects of DNWR
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have not been observed, despite remarkably robust evidence for DNWR in micro-level 

data. In particular, by not accounting for this compression of wage increases, and 

the related cost savings to firms, Chapter 1  argues that the previous literature may 

have overstated the increase in wage pressure due to DNWR at the micro level. In 

this way, we can therefore potentially reconcile the macro and micro level results in 

the literature.

Chapter 1  then tests whether this hypothesis does indeed explain the data on 

DNWR using micro data from the US and Great Britain. We find strong evidence 

that firms do indeed compress wage increases, precisely along the lines of a model in 

which workers resist nominal wage cuts. This then augments and links the current 

evidence on money illusion and DNWR in the literature. Moreover, we also find 

that this compression of wage increases is of a sufficient magnitude in the data to 

offset much of the increase in aggregate wage growth due to restricted wage cuts. 

Thus, again along the lines of the theory, we can reconcile the micro and macro level 

estimates for DNWR.

Chapter 2 then seeks to reinforce the link between the observed DNWR in labour 

markets and the phenomenon of money illusion. It does this by drawing out more 

carefully the implications of the model of DNWR based on money illusion in Chapter 

1, and comparing them to the implications of alternative models of DNWR based 

on wage contracting. Chapter 2  shows that the key intuitive distinction between 

these two sets of models is that these alternative “contract” models are based on 

real economic frictions, whereas, almost by definition, the model of money illusion is 

based on a nominal friction (i.e. a resistance to nominal wage cuts).

In particular, contract models explain wage rigidity by noting that in many coun

tries (notably excluding the US and UK) there is a legal requirement of mutual consent
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of firm and worker to any wage change. It follows that the default option in any rene

gotiation is for the wage to remain unchanged. When combined with frictions (e.g. 

search costs) that make it costly for firms (workers) to switch workers (firms), and 

hence drive a wedge between the outside options of each party, it follows that wages 

will stay constant for periods of time. Moreover, in an inflationary environment, 

wages will be bid up more often than down, and hence wages will appear downward 

rigid. However, since this rigidity in contract models is intrinsically related to real 

frictions, it follows that these frictions should be unrelated to the rate of inflation. 

In the money illusion model of Chapter 1, on the other hand, lower inflation will lead 

to a greater compression of wage increases as firms worry more about their ability to 

cut nominal wages in future periods.

Chapter 2  then tests this additional prediction using micro data from the US 

and Great Britain. Specifically, it finds clear evidence that nominal wage increases 

become more compressed as inflation falls, exactly in fine with the predictions of the 

model of money illusion. This suggests that at least part of the observed DNWR 

is driven by resistance to nominal wage cuts an behalf of workers, rather than the 

motives underlying contract models. Thus, the results of Chapter 2  confirm the link 

between money illusion and DNWR underlying the model in Chapter 1.

Finally, Chapter 3 extends the theoretical findings of Chapter 1 with respect to 

models of irreversibility. In particular, it analyses these models in their original 

context -  that of dynamic factor demand -  to obtain some insights into the effects of 

the process of shocks facing a firm on optimal factor demand.

Specifically, Chapter 3 presents a more general solution to models of irreversibility 

by developing a discrete time setup. It shows that previous models of irreversibility in 

continuous time require the assumption that the shocks facing a firm follow a Brown

134



ian motion -  the continuous time analogue to a random walk. By adopting a discrete 

time approach, the solution in Chapter 3 allows a more general characterisation of 

optimal factor demand in the face of a much wider class of shocks.

Chapter 3 then goes on to summarise the effects of relaxing the assumption of 

random walk shocks. In particular, we establish a quite general result that reduced 

persistence of shocks renders optimal factor demand less responsive to shocks. The 

intuition for this is that greater persistence renders current shocks more informative 

about future shocks. It follows that firms are more willing to respond to current 

shocks because they are more certain that they will not have to reverse their decision 

in the future. In addition to this general finding, Chapter 3 also presents some results 

from specific assumptions about the process of shocks facing the firm. By assuming

i.i.d. Gaussian shocks, we find that this creates greater rigidity in optimal factor 

demand. Intuitively, when shocks are i.i.d., the firm knows that they will revert back 

to some mean in the future. Thus, is makes less sense to sink resources into changing 

factor employment following a shock when the firm knows it will likely have to reverse 

its decision, at a cost, in the future.

Together, then, these chapters aim to enhance our understanding of money illu

sion and irreversibility both as distinct issues, but particularly through the lens of 

downward nominal wage rigidity in labour markets.
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A ppendix A

Nom inal Loss Aversion as a 

Foundation for D N W R

In this appendix we show that an effort function with the qualitative features of (1.1) 

can be derived from a stylised compensating differentials model with worker nominal 

loss aversion. The setup is as follows. The firm must choose an effort level (working 

conditions), e, as well as the nominal wage, W, to maximise the expected discounted 

value of profits in such a way as to maintain worker utility above their reservation 

utility. If we define R  as the gross real rate of interest in the economy, the typical 

firm’s decision problem is given by:

max
{ w t ,et }

s.t.

E, ^ {ases -  ljs}
s= t

(A.1)

UsEt > Ueuh ^  worker-firm was employed in t — 1  

UuEt > Uuuti if worker-firm was unemployed in t — 1

where Uijt denotes the utility of a worker who was in state i in period t — 1 , and 

in state j  in period t where i , j  G {E ,U }  and E  and U denote employment and
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unemployment respectively. We adopt the following formulation of within-period 

utility, it1:

M  (  M  '  cV
“ =  exp (-e) (A.2 )

where, M  = <
W  if worker is currently employed 

B  if worker is currently unemployed

or any positive monotonic transform thereof2. Thus, we can write the worker’s 

lifetime utility as:

U = u + ~E[U'] (A.3)

The key characteristic of this specification of worker utility is that the marginal 

disutility of a nominal loss exceeds the marginal utility of a nominal gain. This 

property corresponds to:

du/dM \mMri 
d u / d M ^ ^  + c >

This characteristic is what we term nominal loss aversion. Finally, we assume that 

an employed worker-firm becomes unemployed with probability 5, and that an unem

ployed worker-firm becomes employed with probability m. each period. Given this 

setup, we can establish the following result:

1 From now on, for notational simplicity, we drop time subscripts, and denote lagged values by a 
subscript, _ i, and forward values by a prime, '.

2Note that here we define 1“ more generally so that:

*1 _ = l  f  ^ and y l ~ = I  V if y < 0i f x > l  1 0 i f y > 0
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P roposition  10 I f the worker’s reservation utility is not subject to nominal loss 

aversion, then a firm solving (A .l) acts as if it were solving the wage-setting problem 

in the main text, (1.5).

Proof. First, note that if a worker’s utility from unemployment is unrelated to 

nominal earnings losses, it follows that without loss of generality, we can write:

/  w \ cl 1
Uee  =  exp (-e ) + -{5 E U 'EU + ( l-S )E U 'EE}

Ueu = b +  — {mEU'UE +  ( 1  — ra) EU'uy} =  Uuu (A.5)

A direct implication of the second line is that:

Ueu =  ~  ^ uu (A-6 )
1 R

We now concentrate on worker-firms that were employed last period (so we can see 

the effect of a wage cut). Then note that, since firm profits are increasing in e 

and Uee is decreasing in e, the firm will choose effort such that Uee  =  Ueu, if the 

worker-firm was employed last period. It therefore follows that:

Uee =  w ( £ )  exp (“ e) +  S  { r r x  } =  I T T  =  (A-7)

Solving this equation for effort yields:

e =  l n 0 + d n ( ^ - ) 1-  (A.8 )

Clearly, this is precisely the effort function stated in the main text, (1.1). ■

Thus, if workers do not treat nominal earnings losses from job loss as they do 

wage cuts, then we obtain the exact same wage-setting problem as in the main text.
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The intuition for this is that, if the firm wishes to cut the nominal wage, then it has 

to compensate the worker in the form of lower on-the-job effort in order to ensure it 

is optimal for the worker to remain working at the firm.

However, one may consider this assumption unrealistic: job loss is typically as

sociated with nominal earnings losses associated with losing one’s wage and moving 

onto benefits. The next result allows for this, and establishes that the implicit effort 

function relevant to wage-setting in this case retains the same qualitative properties 

as those in (1 .1 ).

P roposition  1 1  I f  a worker’s utility from unemployment is related to nominal in

come loss through job loss, then a firm solving (A .l) acts as if  it were solving a 

wage-setting problem analogous to (1.5) in which effort is given by:

= l n 0 + c l n G ^ )  r - x W - u W )

where x =  In 1 + ( — )Cl R  ~  \ W - 1 )  R \ w )
c l ' , and reflects the impact of nominal loss

related to job loss in the present and future.

Proof. For simplicity, we assume that real benefits are constant over time (b1 = 

6 ), which implies that nominal benefits rise deterministically with inflation (B ' = 

( 1  -f 7r) B) and thus never fall3. In this case, the relevant value functions for the

3This assumption is entirely innocuous to the firm’s wage choice, since the level and change in 
benefits over time is completely exogenous to the firm. Thus, none of the qualitative properties of 
the ensuing analysis depends on this assumption.
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worker are given by:

Uee

Ueu

Uue

=  u

=  UJ

(  W  \  1
( —  ) exp ( -e )  +  -  {5EU'eu + ( 1 - 6 )  EU ’e e }

6 { . W l )  +  i  { m B U 'U E  + C1 -  m) EU'uu)

(  W  V 1” 1

( f t ;  exp (_e) + r  { 6 e u 'e u  +  ( 1 " s) EUee}

(A.9)

t W  =  b + - { m E U l fE +  ( l - m ) E U { /u}

Again, note that, since firm profits are increasing in e and Uee> are decreasing in 

e, the firm will choose effort such that Uee = Ueu> if the worker-firm was employed 

last period, and Uue = Uuu-, if the worker-firm was unemployed last period. It then 

follows that:

Uee

Uue

=  uj

=  UJ

O c «*(-**)+5^™ =*(£)* io)
/  VK V 1 1 1
{ b z J  exp (" et/) +  r EUee =  b +  R EU>uu =  ^  (A,11)

Again, we concentrate on worker-firms that were employed last period (so we can see 

the effect of a wage cut). Using (A. 10) we obtain:

ejt =  InW + c l n ( ^ - ) l - - l n  b { ^ f  +  ± E  (U'uv -  U'EE) (A. 12)

Furthermore, subtracting (A.10) from (A. 1 1 ) and forwarding one period, we obtain:

U'uu - U fEE =  b 1 - - )W j

c l '

(A-13)

Substituting back into (A. 1 2 ) above completes the proof.
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Note that this effort function is almost exactly the same as that in the main text, 

(1.1), except for the term x- In particular, it retains a kink at W  = W - 1 , which 

implies that nominal wage increases are still partially irreversible in this model -  the 

key qualitative characteristic this chapter seeks to analyse. The intuition for x is as 

follows. The greater the nominal loss from job loss today (lower (B /W -i)cl ), the 

worse is the worker’s outside alternative from quitting the job, and thus the greater 

the effort that the firm can extract from the worker. However, less clear is the effect 

of (B '/W )cl . The intuition here is that, the greater the nominal loss from job loss 

tomorrow (lower (B '/W )cl ), the worse is the ability of the worker to obtain a high 

wage tomorrow. This then reduces the value of continued employment to the worker, 

and thus the worker works less hard. Crudely put, the greater the nominal loss from 

job loss tomorrow, the more the worker has to lose by staying in the firm.

Our final result in this section establishes that the dynamic structure of x is such 

that it may well not have a significant impact on wage-setting:

P roposition  1 2  I f  (i) the worker’s reservation utility is subject to nominal loss aver

sion; (ii) the firm ’s shocks, a, evolve according to the random walk, (1.19); and (Hi) 

the level of uncertainty is sufficiently low, then a firm solving (A .l) acts (approxi

mately) as if it were solving the wage-setting problem in the main text, (1.5).

Proof. First we establish the result for the deterministic problem (a = 0). It

therefore follows from continuity of the problem in a that the result holds in a neigh

bourhood around a = 0  -  i.e. for sufficiently low levels of uncertainty.

In the deterministic case, a' = a with probability one, and it follows that x =  x! -

The contribution of x and x 7 in the intertemporal maximand is given by:
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and their effect on the wage-setting choice is determined by:

dl _  a d _  a' d ( & Y 1
dW  R  • exp (x) dW  \  W  )  R -  exp (%') dW  \  W  )

Thus, the existence of the x terms has no effect on the wage-setting choice, and the 

firm acts as if effort were given simply by (1 .1 ). ■

To understand the flavour of this result, note that raising today’s wage, W , has 

two effects through increasing the nominal loss through job loss tomorrow ((B '/W )cl 

falls). First, this reduces the worker’s current valuation of continued employment at 

the firm, and thereby reduces effort today along the fines discussed above. However, 

by increasing the nominal loss through job loss tomorrow, a higher wage today also 

means that the firm can extract greater effort from the worker tomorrow. Thus, 

these two effects work against each other, and under the assumptions of Proposition 

8 , cancel out completely. Thus, there are good reasons to believe that a firm faced 

with a worker subject to nominal loss aversion will set wages similar to those derived 

from the problem in the main text, (1.5).
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A ppendix B

Technical D etails of Chapter 1

B .l Lemmas and Proofs

P ro o f of P roposition  1 . Note first that equation (1.15) depends only on A  and

W. In principle this can be solved for A  as a function of W  when the nominal wage is

increased (I-  =  0), and when it is decreased (1 ~ =  1). We define these relationships 

as:
A = u (W )  if A W  > 0

(B.l)
A = l(W )  if A W  < 0

At this point, we assume that the problem is concave and verify this later1. It follows 

that:
A W  > 0 if A > A U

A W  < 0 if A < Ai (B.2)

A W  =  0 otherwise

where Au > Ai . Moreover, we can relate (B.l) and (B.2) by noting that the 

continuity and concavity of v ensure, via the Theorem of the Maximum, that the

1Note that concavity of the problem is not trivial because the revenue function is convex in W-\ .  
We verify that the problem is indeed concave in W  in Appendix C.
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optimal value of W  as a function of (A, W- 1) is continuous. It therefore follows that:

Au =  tx (W_!) (B.3)

Ai =  l (W .  i)

Thus, the statement must hold.

Lem m a 1 The value function defined in (1.5) has the following properties:

tv (W U ')  =  - c £  (B.4)

vaw(w,A!) =  £L-\ + JL.Diyr,A') 
vw W  A )  = 0

Proof. This is simply an extended application of the Envelope Theorem. First 

define:

Q (W ',W ,A ') = A'
l n ( l P ) + c 'n { w ) \ - w ' +  T h f v  ( W '' A "] d F  {A“lA,)

(B.5)

as the ex ante objective function of the firm. Thus, by definition:

v (W , A’) =  max n  (W, W, A') (B.6 )
W'

and:
dW'

vw (W,A') = nl—  + Sl2 (B.7)

Now consider the value of this derivative in each of the three continuation regimes. 

Note first that, if W ' is indeed changed, optimality dictates that it will be changed in 

such a way that fix =  0. This is the exact same logic used in the Envelope Theorem.
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It therefore follows that:

v„ (W ,A ') = n j  =  - c j jJ

v& (w ,a ')  =  n j = o

(B.8)

where f2 +/~ is defined analogously to v+/~ to denote the ex ante objective conditional 

on W' being adjusted up or down respectively. It is only slightly less obvious what 

happens when J\W ' = 0, i.e. when the wage is not adjusted. In this case, W ' =  W  

and this implies that:

v°(W ,A') = Sl°(W,W,A!) (B.9)

=  A' In ( j p j  —W + J  v (W , A") dF (A"\A’)

It therefore follows that:

v°w (W, A') = £  -  1 + J L  J  vw (W, A!') dF (A!'\A!) (B.1 0 )

Since, by definition D (W ,A ') =  f  vw (W, A") dF (A"\A'), the statement holds as 

required. ■

P ro o f of P roposition  2 . First, note that we can re-write the continuation 

value conditional on each of the three possible continuation regimes:

v(W ,A ') = <

v~(W ,A ') if A' < A \ 

v°(W ,A ') if A  e  [A',, A £  

v+(W,A') if A’ >A'U

(B .ll)
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where superscripts /°/+ refer to whether the nominal wage is cut, frozen, or raised 

tomorrow. Note also that, due to the recursive nature of the problem:

^  =  I (W _!); Au = u (W .r) (B.1 2 )

= ^ A J  =  Z(W); A'u = u(W )

Thus we can write2:

/ rl\yv) pu\W ) poo

v (W, A’) dF (A'\A) = v~ (W , A') dF+ /  v° (W, A') dF+ /  v+ (W , A') dF
Jo  Jl{W) Ju(W)

(B.13)

Taking derivatives with respect to W  and recalling the definition of D (•), we can 

write:

[ f o W) vw (W, A') dF  +  V-  (W, I (WO) I' (W) 
D (W, A) = \  +  / “W  v°w {W, A1) dF + v° (W, u (WO) u' (W) -  v° (W,, I (WO) I' (WO 

[ +  f%r) <  W  A') dF -  v+ (W, u (W O)« ' (WO
(B.14)

Since v{W, A') is continuous, it must be that v~ (W J(W )) = v°(W ,l(W ))  and 

v° (W, u (V^)) =  v+ (W, u (W')). These “value matching” conditions allow us to write:

pi(W) pu(W) poo

D (W ; A) = v  {W, A!) dF + I v°w (W, A )  d F +  ti+ (W, A') dF
Jo Jl(W) Ju{W)

(B.15)

2Henceforth, “dF” without further elaboration is to be taken as “dF (A'\A)”.
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Finally, using the Envelope conditions in Lemma 1, and substituting into (B.15) we 

obtain (1.18) in the main text:

r u ( W )  a i  p i ( W )  a i  o  i > u { W )

D (W ,A )=  — - 1  d F -  c— d F + D ( W , A ' ) d F  = (C D )(W ,A)
Ji(w) [W  J Jo yy 1  + 7T Ji(W)

(B.16)

To verify that C is a contraction mapping over the “relevant range” (to be defined 

shortly), we confirm that Blackwell’s sufficient conditions for a contraction hold here 

(see Stokey h  Lucas, 1989, p.54). First, note that any values for (W,A) that render 

C  unbounded cannot obtain under optimality, since they will necessarily violate the 

conditional first-order condition, (1.15). Thus, we can restrict our attention to a 

subset of values for (W, A) around the optimum for which C  is bounded. This is 

what we define as the “relevant range”. That C then maps the space of bounded 

functions into itself over this range holds by definition. Given this, monotonicity 

and discounting are straightforward to verify. To verify monotonicity, fix {W, A) =

(W, A), and take D > D. Then note that:

pU(w) _ _ ru(W)
/  D ( W ,A ')d F (A '\A ) -  /  D (W ,A ')d F (A '\A )  (B.17)
Ji(w) Ji(w)

r ( W ) r -  i
=  J  \b{W , A') -  D (W, A ')J dF (A'\A) > 0

Since (W ,A )  were arbitrary, it thus follows that C is monotonic in D. To verify 

discounting, note that:

[C(D +  a)](W,j4) =  (C D )(W ,A) + - ^ — a [ F ( u (W ) \A ) - F ( l ( W )  |^(fp.l8 )
1 +  7T

< (C D )(W ,A) + J ? - a
1 +  7T
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Since we know that < 1  it follows that C is a contraction over the relevant range. 

It therefore follows from the Contraction Mapping Theorem that C has a unique fixed 

point over the relevant range. ■

P ro o f of P roposition  4. Using (1.21), note that we can re-write the optimal 

nominal wage policy as:

1

(1 ) In {A /W -i) — lnu if In (A /W -i)  > lnu 

A In W  = (2 ) 0 otherwise

(3) ln (i4 /W L i)-ln / if In (A/W -x) < \nl

To derive the implied log nominal wage change density, given W_i, we take each 

regime in turn. The log nominal wage change c.d.f. in regime (1) is given by:

F (A ln  W|VU_i, A ln iy  > 0 ) =  Pr [In (A /W -i) ~  Inn < A ln ^ lW L j

= Pr[ln(j4/W _i) < A lnW  -t-lnu|VP_i]

= F (A \n W  -f In it| W_i)

where the last line follows from the fact that W  — A  in the counterfactual (no DNWR) 

case. It follows that the log nominal wage change density, given W - 1 , in regime (1 ) 

is simply f  (A ln W  +  lnu\W -i) as stated. A completely analogous logic applies to 

regime (3). Finally, the density in regime (2) is given by:

/  (Ain W|VF_i, AinVF =  0) =  Pr{ln(A/VF_1) G [ln/,lnu] llU-i}

=  F (]nu\W-x) -  F  Qnl\W-i)

as stated. ■
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P ro o f of P roposition  5. Denote the counterfactual nominal wage at time t as 

W f — A t. We seek the properties of the difference in average wage growth between 

the “actual” (with DNWR) and counterfactual cases, which we define as A:

* - * | > ( & w | > ( & )  <->
-  H - G t ; ) - ' " ® }

Then note that, from the optimal wage policy of the firm, (1.21), it follows that the 

log-difference between the actual and counterfactual wages must be bounded:

In ^ [ -  In u, -  In I] (B.20)

Thus:

Therefore, for finite G :

sup At =  jj; [In tz — In I] = ^  InG (B.21)

inf At =  ^  [In I — In it] =  — ̂  In G

lim sup At =  0 =  lim inf At (B.22)
T—>oo T—*oo

B.2 Technical Details of Proposition 3

The following lemma will turn out to be useful in what follows:
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Lem m a 2  If In x  ~  N  (//, a2) then it follows that: 

/ xdF  (x ) =  exp
J X

r 1 2 U In x — fi 
-------------a

In x — fi
a

2 i a a } (B.23)

where $  (•) is the c.d.f. of the standard Normal.

Proof. Since x  is log-Normally distributed, the p.d.f. of x  is given by:

, ,  x 1  , /  In x  — u 
ax \ a

where (j) (•) is the p.d.f. of the standard Normal. It follows that:

[  x d F (x )=  f
J X  J X

x- exp
1  ( In x  — /i
2_ _ axy/27r

Defining z =  In x — fi => dx =  exp (fi +  z) dz , we obtain:

dx

/** /* ln i—(j,

I xdF (x) =  I — exp 
Jx_ J in x —fi a y / 2 ' K

Completing the square for the term in brackets:

1  o

tl + Z ~ 2 ^ Z dz

2a2 Z Z 2 a21  ( * ’ - 2  a*z) = ± ( z - o * ) a - \ o *

Substituting back into the former expression:

f  xdF (x) =  f  
J x  J In

lnx—fi

y/2rt
exp

In * —/i @

=  ex p |/i +  icr5

=  exp

ll H— a ----
2 2

1  ( z — a2 \ 2 '

dz

p \ a x —fi l  j 2-

J l n x - p  < T ^ eX P  .

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

dz

r 1  2 I In x — fi
a 1 ---

-1 Ef IH 1

1 <3 . 
.1

2 I a L ° }
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as required. ■

B .2.1  O btaining th e  functions D (W , u (VF)) and D (W7,1 (WQ) 

For ease of reference we re-write (1.18) here as:

•W  Ato pu(W) p

D (W, A) -  —̂ — /  D (W ,A ')d F =  /
1  +  7r 7 z(w) .//(

u ( W )

l ( W)
* - 1IF

rl\w) a> 
d F -  c— dF  (B.29) 

Vo ^

and proceed by using the method of undetermined coefficients. We conjecture that 

D (W, A) is of the form:

D (W, A) = a Y—  +  a 2 (B.30)

and verify that this will indeed be the case for A = u (W) or I (VF), using Lemma 2 

to solve out the integrals in (B.29). Following this method yields3:

D( W, u(W) )

D { W J ( W ) )

( 1  +  tt) 

( 1  +  tt)

u(W)
W

IJW)
w

« 1  -  ( 1  +  c) $ 1 /C2  — ^ 2

1 - P  (/Cl -  $ l ) .
$ 3  -  ( 1  +  C) K i

1  ”  I+£ ( K 2  ~  $ 2 )
$4 —

(B.31)

1 -  P ( $ 3  -  Ki) J 1 -  ( $ 4  -  AC2 )

where:

=  $  [I (— InG — In ( 1  +  7r) +  §<r2) -  a] $ 2  =  $  [£ ( - In G  -  ln ( l +  w) + A<r2)]

$ 3  =  $  [ i  (in G — In ( 1  +  7r) +  |<7 2) — <t] 5>4  =  $  [ j  (in G -  In (1 +  7r) +  §<r2)]

Ki  =  $  [?  ( “ ln  (1 +  tt) +  | ^ 2)  -  «2  =  $  [£  ( -  In  (1 +  tt) +  |<T2)]
(B.32)

and we define G =  the geometric gap between the two trigger values for A.

3 Technical details of this derivation are available on request from the author.

158



B .2.2 Obtaining the functions u (W) and I (W)

It is now straightforward to solve for the functions u (W)  and I (W)  by substituting 

the above (B.31) into the equations (1.17) to obtain after some algebra:

dv
dW
dv

dW

A W >0

A W >0

u(W)
W

i(W)
w

1  — cP&i
1 - P  ( « i  -  $ i ) _

1  +  c -  c/3$ 3

1 ~ 1 + 7  (R 2 -  $ 2)
=  0 (B.33)

1 — /3 ( $ 3  — Ki) 1 -  i f ;  ( * 4  -  «2)
=  0 (B.34)

It is thus clear that the functions u (W) and I (W) are given by:

u{W)  = 

l (W)  =

1 -  P( ki -  $ 1) 1

1  -  ( « 2  -  $ 2 ) ’ 1  -  cp*  1

1 -  P ( $ 3  -  «i) 1

(B.35)

1  -  I+? (^4 -  «2) 1 +  C -  C /?$3

These two equations clearly depend on G = which is unknown so far. However, 

we can determine G using our expressions for u (W)  and I (W)  above:

U( ^ )  = G =  1  +  V ~  18 ( $ 4  ~  ”2) • . 1  +  c -  =  T rG\ (B 36)
I (MO 1 +  7T -  /3  ( k 2 ~  $ 2 )  1 -  P  ( ^ 3  -  « l )  1 -  C 0 $ 1

Note that all the terms on the RHS of this equation are functions of G, and not of 

W. Obtaining the relevant value of G requires solving for the fixed point (s) of the 

mapping defined by this equation. Given the relevant value of G , this implies that 

the <3>jS, i = 1, will be given constants, as will the coefficients on W  in (B.35), 

and it follows that:

u(W)  = u - W  

l (W)  = l - W

(B.37)
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as stated in the main text.

B .2 .3 P roperties o f  th e  M ap T  (G)

The completion of the solution requires finding the set of fixed points, G* = {G : G = T  (G)}. 

The set G* represents the set of inaction regions that are internally consistent with the 

optimality conditions for W  defined by the conditional first-order condition, (1.15).

If G* is a singleton, then the solution is complete. However, if there exist multiple 

solutions for G , then there exists an associated value of the firm for each G G G*. 

Simulations of the mapping T  (G) in (B.36) reveal that, whilst there always exists at 

least one fixed point for T  (G), there is not, in general, a unique fixed point. Thus, 

in the case where there exists more than one fixed point, we need a criterion for iden

tifying which fixed point value of G maximises the value function, which is provided 

by the following proposition:

P roposition  13 Where there exist multiple fixed points for the mapping T  (G), the

wage policy that maximises the value function is that associated with G 1 =  min {G : G = T  (G)}.

Proof. Take the case in which there exist 3 fixed points, and define these as 

G1 < G2  < G3. The associated value functions are then given by:

vl (W -i,A ) = max < ► , s.t. G = Gl (B.38)

for i = 1, . . ,  3. We claim that the following must be true:

V1 > v 2 > v3 (B.39)

To see this, note first that a higher value of G only serves to restrict the firm’s choice 

of W  by widening the region in which wages are not changed. In particular, under a
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lower value of G, the firm can always choose a W  arbitrarily close to W - i ,  and hence 

replicate the wage policy under a higher G , if it wishes. In general, though, the firm 

can do better than this under lower values of G. Thus the statement must hold. ■

B .2 .4 V erifying C oncavity o f  th e  Value Function in  W

In order to verify that the solution obtained is indeed a maximum, and that the 

solution method employed in the main text is valid, we need to verify concavity of 

the value function in W , to which we now turn. Taking derivatives of equation (1.15) 

we obtain:
&  1 , ( I V  . A ' \  A  R

(B.40)
d2v ( W - UA) . . A  P „

v ;- =  - ( l  +  c l - )  —  + t J ± -D w (W,A)
dW 2 V 7 W 2 1 + 7T

Then note that, from the definition of D (W, A) in equation (B.29):

■W a, MW) a, o m w)
>d F  ~  I  777td F  +  TT~Z rl ( W )

f l ( W )  a , r u { W )  a ,  a  M W )

Dw(W,A)  = /  c— d F -  dF + - ^ ~  Dw (W ,A ')dF
Jo W 2 Jl(m W 2 1 + icJuw)

-  C
l (W)

+

W
u (W)

l  +w 1 +  7T
D( W, l (W) )

W - 1  +
1 +  7T

D{W,u(W)) u' (W)

I ' m

(B.41)

Recalling the conditions for u (W ) and I (W)  in (1.17), the terms in square brackets 

cancel, and we obtain:

Q  M W )  p l ( W )  A ,  p n ( W )  A /

Dw (W, A) -  /  Dw (W, A1) dF = /  c— dF -  /  —  dF  (B.42)
1  +  7T J i (w)  J 0 W  Jl(W) W

i(w) A, -t*(W ) A t

fl ( W )

which is recursive in the function Dw  (W, •). Thus, again we can use the method of 

undetermined coefficients to verify its form. We conjecture that this function is of 

the form:

Dw (W, A) = a
W 2
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and verify that this will be the case for A — u (W)  or I (W ), again using the results 

in Lemma 2. Following this method in each case yields4:

Dw {W,u(W))  =  (1 +  tt) 

Dw (W,l(W))  = ( 1 + tt)

u{W)
W 2

i jw )
w2

( 1  +  c) $ 1  -  K1

1  - /? (« !  -  $ i)
( 1  +  c) Ki — $ 3

(B.43)

1  ~ P ( $ 3  -  Ki)_

Substituting into (B.40) and using the solutions for the functions u( W)  and l (W),  

we obtain:

d2v (W-UA)
d W 2

d2v ( W . u A)
d W 2

1
A W > 0  W f1" /1 +  7T

( « 2 - - * 2 )

- 1

<  0

1
A W < 0  W f1" /1 +  7r

( $ 4 - k 2 )

- 1

< 0 (BAA)

Since both of these expressions are strictly negative, it follows that the value func

tion is concave in W  at the optimum, and the solution obtained above is indeed a 

maximum.

4 Again, technical details of these derivations are available on request from the author.
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A ppendix C

Technical D etails o f Chapter 3

P ro o f o f C ontraction  P ro p e rty  in P roposition  2. First, we define the func

tional mapping in (3.15) as C:

D( x ,A)  = ( l - S ) <
/ 0i(x) bidF + [gx (x, A') -  w] dF 

+ f ~ x)K d F  + /3jl'l$>D (x,A’)d F  J
> = ( C D) (x,A)

To verify that C is a contraction mapping we confirm that Blackwell’s sufficient 

conditions for a contraction hold here (see Stokey & Lucas, 1989, p.54). First, note 

that any values for (x , A) that render C unbounded cannot obtain under optimality, 

since they will necessarily violate the conditional first-order condition, (3.4). Thus, 

we can restrict our attention to a subset of values for (x, A) around the optimum 

for which C is bounded. That C then maps the space of bounded functions into 

itself over this range holds by definition. Given this, monotonicity and discounting 

are straightforward to verify. To verify monotonicity, fix (x, A) = (x, A ), and take
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D > D. Then note that:

Mx) ^
/  D ( x , A ' ) d F ( A ' \ A ) ~
J m

Since (x, 4̂) were arbitrary, it thus follows that C is monotonic in D. To verify 

discounting, note that:

[C(D +  a ) ] ( M )  =  ( C D ) ( x , A ) + P ( l - 8 ) a [ F ( u ( X) \ A ) - F ( l ( X)\A)lC.2) 

< ( C D ) ( x , A ) + / 3 ( l - 6 ) a

Since we know that fi ( 1  — 8) < 1  it follows that C is a contraction over the relevant 

range. It therefore follows from the Contraction Mapping Theorem that C has a 

unique fixed point over this range. ■

P ro o f of P roposition  3. We conjecture that the functions D and I (•)

are of the forms:

m x )
/  D( x ,A ) d F ( A ! \ A )

JKy)
( C . l )

Mx)rnx) r „ i
/  D ( x , A ' ) - D ( x , A ' )  d F ( ^ ) > 0

Jl{x)

D (x , A) =  'i/j1A xa~1 +  ip2 (C.3)

u (x) =  v x 1-a 

I (a:) =  Ax1_a

and verify that these are the case for A  =  l(x)or A  =  u (x)- To this end, first
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re-write (3.15) as:

rnx)
D ( x , A ) - ( 1 - 6 ) 0  /  D ( X,A' )dF

f  rKx) M x )  /*°° 'I
= (1 -  5) < I b,dF + [A'aXa- 1 - w ] d F +  I b*dF (C.4) 

(yo Ji(x) Jvix) J

First consider the case where A = u(x)  or A X  > 0. In this case, we can use (C.3) 

and Lemma 1 to solve out the integrals in (C.4). Doing so and equating coefficients 

yields:

D (x , u (x)) = u (re) ax  

+ (1 - 6)

O f — 1

1  -  /? ( 1  -  5)“ ( 1  +  fi) (k2  -  $ 2) 
6 „ ( 1  -  Kl) +  -  w («i -  <J>i)

l - / 3 ( l - 5 )  ( « ! - $ ! )

(C.5)

Similarly, following the same procedure for the case where A = I (x) or A X  < 0  we

obtain:

D (x, I (a;)) =  I (re) ax

+ (1 — 5)

a —1 (1 -  5) a  (1 +  n )  ($4 -  /c2)
1  — (9 (1 -  5)“ (1 +  p) ($ 4 - k 2)

blK 1 +  bu (1 -  $ 3 ) -  W  ( $ 3  -  K l )
1 - 9 ( 1  - S )  ( $ 3 - « l )

(C.6 )

where:

$ i =  $

$ 3  =  $

i ( - l n G  +  l n ^  +  I ^ ) ] ;  $ 2  =  $
l ( l nG +  ln ilz 2 ^  +  l ff2 ) ] ; i ( l n G  +  ln G ^ y - l a 2)]

* 1 = *  [ i  K t S F + H ]  ■> =  *  [ i  ■- H ]
(C.7)

and G = is the geometric gap between the upper and lower trigger values for 

changes in x. Substituting these back into the relevant first order conditions, and
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solving for u (x) and I (x) we obtain:

u (x) = |w +  bu < 1  -  P ( 1  -  5) l - — *i }]
1  -  0 ( 1  -  <5)“ ( 1  +  /i) (k2  -  $ 2 ) i 1 “

l - 0 ( l - < 5 ) “ (l +  ,x) ($ 4 - « 2)x
q:

1 —a

1  -  p  ( 1  -  6) ( $ 3  -  ki ) S“ >
where R  =  ^  is the geometric gap between the costs of gaining and losing the factor 

x. To complete the solution, we need a method for determining G, to which we now 

turn. First, if we define Q = f-,  note that we can write:

»(*)

Qfl +  f l { l - 0 (l-<S) [ l - ^ i ] }  
<?iJ + 1  -  0  (1 -  (5) [fl -  (R -  1 ) $ 3 ] 

l - 0 ( l - < ? ) ° ( l + / i )  (k2 -3>2)
1 -  0(1  -  5)“ (1 +f i )  ( $ 4 - « 2)
1 -  0  (1 -  <5)  ($3  -  Ki)
1 —0 ( 1  — *)(«! — $!)

=  T(G)

(C.9)

To determine the relevant value of G, we must solve for the fixed point of the mapping 

T  (G). Given this fixed point, the <£;, z =  1 ,..., 4 will be given constants, and the 

functions u (•) and / (•) will be of the form:

u (x) =  u 

l(x)  =  I-

x 1 —a

X

a
1 —a

(C.10)

a

as required. ■

P ro o f of P roposition  4. Note first that we can totally differentiate the first
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order condition, (3.4), to obtain:

dx _  gxA +  /3Da 
dA gxx +  f3Dx

> 0 (C .ll)

which is positive by virtue of the concavity of the value function (gxx +  (3DX < 0). 

The impact of the persistence of shocks, hA, operates through the term DA, to which 

we now turn. It will turn out to be useful to use the following change of variables 

result:
rb rk(b;A)

/  j  (A ) dF (A'\A) = j[h  (A, e')] dF (s') (C.1 2 )
J a J k(a;A)

where s' = k (A'; A) is the inverse of the ^-section of h, and where F  is the distribution 

function of ef. Using this we can write:

D( x ,A)  =  ( 1  - S ) i
C j  ̂  M F  +  g,  be, h (A, ef)\ dF  -  WdF

+ / ™  W F  + P / t o  1D \X, h{A,d)]dF
(C.13)

Thus, defining fcj =  k [I ( x ) ; A] and ku = k[u (x ) ; A] for notational simplicity, and 

taking the derivative w.r.t. A  we obtain1:

Da (x ,A) = ( 1 - 8 )  <

g* (6 | +  w -  gx tx, h (A, kl)} -  0D be, h (A, A:,)]) 

+Fa (_6“ -  w +  9x [x.h (A *u)] -  [x,h {A M l)
+ / £  9,A be, h (A, £')] • hA (A , s') dF 

+13 /* “ Da [x, h (A, e')] • hA (A, s') dF
(CM)

Now notice from the first order condition, (3.4), the first two lines of this expression

1 We assume that the support of A', [0, oo), is invariant to A, so that dk [0; A] /dA  =  0 =  
dk [oo; A] jdA.
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must equal zero. Thus:

Da (x, A) = ( 1  -  <5) { J  gxA[x,h(A,e' ) \ -hA -dF + P J  DA \x,h(A,e ' )}-hA - 

(C.15)

It follows that Da is increasing in the persistence of shocks, Ha - 

Using a similar derivation, we can also establish that:

Dx (x, A) =  ( 1  -  S) |  j T ” gxx [x, h (A, e')} dF + /? jT Dx [x, h (A, e1)} dF  j  (C.16)

It is thus also possible that Iia will affect Dx through its effect on h. However, the 

size of Ha has a first-order effect on whereas its effect on Dx is higher order. 

Thus the effect through Da must dominate in (C .ll), and it follows that greater 

persistence (higher Ha ) leads to a greater response of factor demand to shocks at the 

optimum, dx/dA , as required. ■
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