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Abstract

This thesis makes explicit, develops and critically discusses a concept o f causality 

that is assumed in structural models in econometrics. The thesis begins with a 

development of Herbert Simon’s (1953) treatment o f causal order for linear 

deterministic, simultaneous systems o f equations to provide a fully explicit 

mechanistic interpretation for these systems. Doing this allows important 

properties of the assumed causal reading to be discussed including: the invariance 

of mechanisms to intervention and the role of independence in interventions. This 

work is then extended to basic structural models actually used in econometrics, 

linear models with errors-in-the-equations. This part of the thesis provides a 

discussion of how error terms are to be interpreted and sets out a way to introduce 

probabilistic concepts into the mechanistic interpretation set out earlier. The 

resulting analysis is then critically compared with similar work by economists, 

Stephen LeRoy (1995) and Kevin Hoover (2001a) who both develop Simon’s 

work on causal order in different ways. In the latter part o f the thesis, the 

mechanistic interpretation set out at the beginning is used to interpret 

identification conditions. Typically, these are presented in econometrics as 

mathematical conditions for determining whether unknown parameters in 

equations can be measured from observation. In the thesis it is shown that the 

identification conditions imposed on sets of equations when interpreted 

mechanistically require a sparseness o f causal structure that ensures that 

experiments are hypothetically possible o f the causal structure. It also analyses 

the role o f identifiability conditions in causal inference. The final part of the 

thesis shows that the mechanistic interpretation developed in the thesis succeeds, 

unlike Simon’s own methods for analysing spurious correlation, in avoiding 

important criticisms by Nancy Cartwright (1989) whose own approach to 

inferring causal structure from observations is also critically analysed.
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Chapter 1 

Introduction

1. Causality in Philosophy and Economics

Causal claims matter. So many actions are guided by beliefs about causes: from 

simple actions, such as taking vitamin C pills to avoid catching a cold, to 

institutional actions, such as tightening border controls to keep out illegal 

immigrants. To successfully navigate and control our environment, it helps to 

know the causes o f things.1 Economics is no exception. As shown by the 

recession that followed the previous government’s hurried withdrawal from the 

Exchange Rate Mechanism in 1992, it is important to get economic decisions 

right. Crucial to this is understanding the causal relations in the economy.

It may seem a truism to say that to intervene effectively requires information 

about causal relations. But for most of the last century, in both philosophy and 

economics, explicit causal talk was frowned upon. In philosophy there were 

important influences that inhibited the explicit use of causal concepts. Perhaps 

most influential was (and remains) David Hume’s (1739) analysis of causality in 

terms of time-ordered, contiguous and constantly conjoined events. This analysis 

has formed the basis of subsequent Humean attempts to explain causal concepts 

away using regularities.2 Also influential at the time was Bertrand Russell’s 

(1913) argument that causal concepts should be dropped in favour o f functional 

relationships like those used in the physics. Russell argued that the concept of 

causality was ambiguous and confusing and, as seen by its absence in physics, 

unnecessary. Both Hume and Russell’s work were highly influential on the
th

logical positivism that dominated philosophy in the first half of the 20 century. 

Logical positivism restricted the attribution of truth to empirically verifiable 

claims. This left no place for metaphysics. Following both Hume and Russell,

1 This is enshrined in the motto o f the London School of Economics: rerum causas cognoscere (‘to 
know the causes o f things’).
2 Hume’s influential idea is that the necessity in the relationship between a cause and its effect 
cannot be observed, all that can be observed is the constant conjunction o f a cause and its effect, 
that is, repeated observations o f the cause and effect happening together. Humean views of  
causality take this to heart and try to reduce causal relations to regular associations between types 
of events.
3 See, for example, Carnap (1932).
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the logical positivists viewed talk of causality as unduly metaphysical, ambiguous 

and to be avoided.

Economics and econometrics were not immune to this reluctance to engage in 

causal talk. 4 In a recent paper entitled ‘Lost Causes’, Kevin Hoover (2004) 

provides historical evidence and a discussion of the phenomenon.5 Interestingly, 

the dip in causal talk is particularly pronounced in the period after econometrics 

developed (1930-40’s). Despite its development during the period when logical 

positivism was dominant, the founders of econometrics analysed the problem of 

how to distinguish causal and non-causal relations.6 Though not always explicitly 

put in causal terms, one o f their aims was to develop a method for identifying 

causal relations between factors o f interest from economic data, which could be
n

exploited for policy purposes.

Indeed for a short time at the beginning of the 1950’s causal language was 

particularly explicit in some papers on econometric method. This is clear in 

Koopmans (1950), Orcutt (1952) and Simon (1952; 1953; 1954). In these papers 

the word ‘cause’ is freely used. O f these papers, Herbert Simon’s (1953) paper is 

perhaps the most interesting. This is because in it he attempts to present a formal 

definition o f causal order. However, his work is not antithetical to the strict 

empiricism of the time. Though Simon sees causal order as a useful concept in 

science (unlike Russell), he attempts to make it empirically respectable by 

operationalising the concept. This attempt to bring together explicit causal talk 

and the empiricism of the time, however, in fact preceded the drop in causal talk 

discussed in Hoover (2004). This, according to Hoover (2001a, pp. 147-149), was 

in part due to Simon’s assuming an equivalence between his definition o f causal

4 Perhaps the most striking example o f the use o f language that hides causal content is the 
continued use o f ‘structural’ rather than ‘causal’ to characterise relations that are, in common sense 
terms, causal.
5 Kevin Hoover has nice graphs showing the decline o f causal language in economic and 
econometric papers (2004, pp. 152 -153).
6 See Morgan (1990) for a relevant history o f the development o f econometrics.
7 For examples of relevant early econometric work, see Tinbergen (1939) and Frisch (1938).
8 ‘Causal order’ is Simon’s term for causal structure, I also use it in this way throughout the thesis.
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order and conditions for identification.9 This encouraged subsequent econometric 

analysis to take the non-causal identification conditions as an acceptable substitute 

for causal discussion. As Hoover puts it, after the Simon paper ‘[c]ausal language 

simply faded away.’ (2001a, p. 147).

Happily for those who think causal language eases discussion of intervention, talk

of causes is no longer taboo in philosophy. Logical positivism is no longer

dominant and philosophers, such as Patrick Suppes (1970) and Nancy Cartwright

(1983) have attacked Russell’s dismissal of causality.10 In addition, Suppes,

Cartwright and other philosophers have developed diverse analyses o f causality.11

Since then, the philosophy of causality has blossomed. One area where work has

progressed particularly rapidly is in the Bayesian Network analysis of causal

relations. This work, developed by Peter Spirtes, Clark Glymour, Richard
10Schemes, Judea Pearl and others, assigns a causal interpretation to a Bayesian 

network.13 Other important developments have included the growth of analysis 

on the relationship between causal relations and counterfactuals.14

This resurgence in interest in causality is not confined to philosophy. 

Econometrics too has recently begun to discuss causality more openly. One 

concept o f causality which has been accepted by the econometric mainstream is 

that of Granger causality, see Granger (1980; 1988). This concept, closely related 

to Suppes’s theory of probabilistic causality, is Humean in flavour.15 It is an 

approach where, like Hume, causes are assumed to precede their effects in time.

9 Identification conditions for a set o f structural equations with unknown coefficients ensure that 
the unknown values o f the coefficients can be deduced from observations and knowledge about the 
form o f the equations.
10 Suppes (1970, pp.6-7) argues that Russell’s arguments based on physics no longer apply, since 
modern physics does use causal concepts. While Cartwright (1983, chapter 1) argues that Russell 
is wrong to see functional relationships as an adequate substitute for causal concepts, since causal 
concepts are required to account for the difference between effective and ineffective strategies.
11 Suppes (1970) is a classic text setting out his theory o f probabilistic causality. Cartwright’s can 
be found in her books (1983), (1989) and (1999).
12 See, for example, Spirtes, Glymour and Scheines (1993) and Pearl (2000).
13 A Bayesian network is a convenient representation of a joint probability distribution using a 
directed acyclic graph. The connection with causality comes by relating conditional probabilities 
with causal relations, as is standard in theories o f probabilistic causality. See Williamson (2004) 
for an overview o f Bayesian Networks and their relationship with causality.
14 See Collins et al. (2004) for a selection o f recent papers on the topic.
15 Roughly, one earlier random variable is a ‘Granger-cause’ o f another later variable, if  the history 
the earlier variable improves predictions o f the later variable given the later variable’s and other 
relevant variables’ history.
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The Granger approach contrasts with the approach of the Cowles Commission in 

the 1950’s where causes could be simultaneous with their effects.16 This latter 

approach is motivated by a desire to model equilibrium relationships using
1 *7

simultaneous equation systems. It is also a key characteristic o f Simon’s 

treatment of causal order (1953) that two or more variables can be 

(simultaneously) co-determined. Recently, there has also been renewed interest in 

Simon’s work in econometrics. Economists such as James Heckman, Kevin 

Hoover and Stephen LeRoy18 have developed formal definitions of causal 

relations based to a greater or lesser extent on Simon’s 1950’s work.

The general resurgence of causal discussion in econometrics is also evident in a 

recent special issue in the journal of econometrics. The issue is built around a 

paper by Adams et al. (2003) that presents a mammoth study o f the causal 

relationships between socioeconomic status and health in elderly Americans. The 

paper is very rich and breaks new ground by supplementing the Granger approach 

to causality with invariance tests typically associated with the structural (Simon- 

like) approach to causality. Unsurprisingly, the paper generates a lot of comment 

which the rest o f the journal presents. The commentaries can be broken into two 

camps: those that discuss the hypotheses Adams et al. test (e.g. Adda et al.(2003), 

Poterba (2003)); and those that discuss the methodology, that is, definitions of 

causal relations and methods used for finding out about them (e.g. Florens (2003), 

Geweke (2003), Granger (2003), Hausman (2003), Heckman (2003), Hoover 

(2003), Mealli and Rubin (2003), and Robins (2003)). The fact that the 

disproportionate number of comments fall in the second, methodological camp 

shows the importance to econometricians today of obtaining clear answers to the 

following two questions.

(i) What is meant by a causal relation?

(ii) How does one find out about causal relations?

16 During the 40’s and 50’s there was a methodological debate between those who wanted to 
restrict modelling to time-ordered, dynamic systems and those who wanted to admit simultaneous 
equation models. See Morgan (1991).
17 This motivation can be understood in part by the overwhelming emphasis o f economic theory on 
modelling systems in equilibrium.
18 See, for example, Heckman (2000), Hoover (2001a; 2001b) and LeRoy (1995; 2004).
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This thesis addresses these two questions for a particular treatment o f causality: 

the influential position set out in Simon (1953). In this way, it aims ultimately to 

contribute to the growing discussion o f causality in econometrics.

Note also that these two questions matter to anyone affected by economic policy. 

This is because the way results of studies like Adams et al. (2003) are interpreted 

and used depends vitally on answers given to (i) and (ii). For instance, Adams et 

al. claim that their study supports the hypothesis that there is no causal impact 

from socioeconomic status to health in the elderly population they study. Such 

claims might encourage significant policy changes, such as cuts in government 

spending on pensions. Policy changes like these are everyone’s concern. 

Therefore, the answers given to questions (i) and (ii) are important, not only to 

philosophers and econometricians, but ultimately to all those affected by 

economic policy decisions. This is in part what motivates this thesis.

2. Overview o f  Thesis

This thesis aims to develop a clear, explicit presentation o f a particular treatment 

of causality. The type of causal relations analysed are those that are implicitly 

assumed in simultaneous structural equation models in econometrics. Such 

models are used widely throughout economics and econometrics, wherever 

equilibrium relations are modelled as static relations.19 Since modelling 

equilibrium relations in this way is central to economic theory, focussing on these 

systems gives the work a wide relevance.

It is important to note that the particular formalisation o f causal relations -  which 

this thesis presents, develops and critically compares with that o f others -  is not 

intended as a universal theory of causal relations. I make no claim that this 

approach to causality can be used everywhere and anywhere. Instead, the aim is 

to make explicit one particular way of attributing causal content to one kind of 

mathematical model used in econometrics. Ultimately this should help in 

understanding how econometrics results, like Adams et a l 's (2003), can be

19 Strictly speaking the approach here is general in that it can also be applied to time-ordered 
relations. What is distinctive about the approach is that it is tailor-made to fit simultaneous 
equation systems. However, this does not prevent it being applied to non-simultaneous systems.
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understood and used.20 Nevertheless, for systems where the assumptions of the

formal system of causal relations presented in this thesis are met, then this

treatment o f causal relations is applicable. However, in cases where the

assumptions are not met, one must be cautious. There may well be other, possibly

inconsistent views o f causal relations that may be more appropriate for
91

understanding such cases.

To give a brief outline of the thesis, chapter two develops a strong reading of 

Herbert Simon’s (1953) formal treatment of causal order. In doing this, it aims to 

unpack the causal content attributed to simple sets of equations of the kind Simon 

analyses. The resulting strong reading is an explicit formalisation of causal 

concepts that can be attributed to such systems o f equations. Unlike Simon’s 

treatment however, it is not assumed that an equivalence holds between
99identification conditions and causal order. The chapter finishes with an 

exploration o f some of the important properties of the causal concepts in this 

formalisation.

Chapter three continues the work of chapter two by extending the strong reading 

to apply to more general systems of equations. The aim is to move from the 

extremely simple deterministic, linear systems of equations, for which a causal 

interpretation is provided in chapter two, to slightly more complex systems like 

the simplest models actually used in econometrics. Importantly, this includes 

introducing error terms and random variables. The chapter also takes advantage 

of one proposed extension to present a brief exploration o f different types of 

interventions.

The next chapter looks in some detail at work by Stephen LeRoy (2004) and 

Kevin Hoover (2001a). Their work is particularly relevant since both hold

20 Though the thesis develops a causal interpretation for simple systems o f equations like those 
used in econometrics (see chapter three), the highly complex models used in studies like Adams et 
al. (2003) are beyond the scope o f the thesis. The aim expressed here remains to be fulfilled 
through further work.
21 A strong advocate o f having different theories of causality for different situations is Nancy 
Cartwright. See, for example, Cartwright (2003c).
22 This makes the treatment here more general than Simon’s since it can be applied to 
unidentifiable systems o f equations.
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positions on causal order that are developed from Simon’s work on causal order. 

The chapter begins with a presentation of LeRoy’s position and raises some 

relevant criticisms. The chapter then looks at Hoover’s treatment and concludes 

that Hoover and LeRoy’s positions are both unduly restrictive when compared 

with the strong reading.

Chapter five analyses the relationship between identification conditions and 

causal order. As mentioned above, this is important given Simon’s equivalence 

claim between causal order and identification conditions. In this chapter, Simon’s 

position is set out clearly and criticised. The next part of the chapter analyses, 

from the perspective o f the strong reading, just what imposing identification 

conditions on structural equations requires of the causal order denoted by that 

system. The chapter ends with a brief look at the epistemic role of the 

identifiability conditions, both for measuring the values of structural coefficients 

(those that represent the strength of causal influence between factors) and for 

performing limited inferences about the causal order (i.e. structure) between 

factors.

The final chapter moves more deeply into the questions of how causal relations 

can be inferred from observation, by looking in some depth at work by Simon 

(1954), which controversially claims to show that causal relations can be deduced 

from observed correlations. It considers and develops Cartwright’s (1989) 

criticism of this claim, concluding that the strong reading provides a better 

approach for setting out how causal relations can be inferred from observation in 

the way Simon would like. It then critically considers Cartwright’s own method 

for inferring causal order. The chapter finishes with a brief comparison of 

Cartwright’s method for inferring causal order with that o f the strong reading.

Finally, the thesis ends with some brief comments on how the work in the thesis 

might be developed in the future in relation to both econometrics and the 

philosophy of science.
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Chapter 2

Mathematical Equations and their Causal Interpretations:

The Strong Reading of Herbert Simon’s Concept of Causal Order

1. Introduction

This chapter explores one way sets o f linear equations can be used to represent 

causal relations. It focuses and builds on Herbert Simon’s influential 1953 paper 

‘Causal Ordering and Identifiability’ in which Simon defines a causal order for 

sets of equations. Simon’s work is focused on because it presents one of the best 

attempts to set out explicitly the causal content o f deterministic linear 

simultaneous structural equation models. This is particularly relevant to 

econometrics since these models are simpler versions of the models actually used 

in econometrics to model equilibrium relations.

Herbert Simon’s paper presents a detailed formal definition of causal order for 

sets of equations, but gives only a sketchy discussion of how this formal order is 

to be interpreted. Therefore, this chapter attempts to extend Simon’s interpretative 

discussion to present a more complete and explicit picture of how Simon’s 

formally defined ‘causal’ order for sets o f equations can be interpreted. It also 

aims to make explicit the properties of causal relations that the resulting 

interpretation assumes. Importantly, the position set out in this chapter differs 

from Simon’s in that it is more general. Unlike Simon’s treatment of the causal 

order in his 1953 paper, here it is not required that causally ordered systems be 

identifiable.1 Instead, the chapter focuses on the first part o f Simon’s paper, 

before he introduces identification, and builds on the analysis there to set out a 

distinctive ‘strong reading’ o f Simon’s formal order for sets o f equations.

The strong reading presents a formalisation of causal concepts. However, it is 

important to note that I do not claim that this formalisation of causal concepts 

holds of, or applies to causal systems in general. The aim is simply to set out

1 An equation is identifiable in a set o f equations if  its coefficients can be deduced from knowledge 
o f the form o f all o f the equations and from observations o f the variables in the system o f  
equations. In chapter five I discuss identification and how Simon ties his concept o f causal order 
to it in more detail.
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clearly the causal content that can be attributed to simple mathematical models, 

like those used in econometrics. Ultimately, the hope is that this reading can be 

developed to provide a causal semantics for structural models actually used in 

econometrics.

The chapter is structured as follows. It starts by presenting a problem faced when 

trying to represent causal relations with equations, the problem that 

mathematically equivalent sets of equations can have different causal 

interpretations. This ‘conceptual equivalence problem’ needs to be overcome if 

sets of equations are to explicitly represent causal relations. The next section 

presents Simon’s formal definition of causal order and shows how it helps with, 

but does not suffice to solve the conceptual equivalence problem. The problem is 

that it lacks an explicit causal interpretation, so the next section fills this in so that 

the conceptual equivalence problem is avoided. This is done by building on 

Simon’s comments on how the formal order is to be understood. The result is a 

clear interpretation of sets of equations and a definition o f the causal order that 

such sets of equations represent. With this in place, the chapter identifies and 

discusses important properties of the now explicit causal relations. Finally, the 

chapter reconsiders how the conceptual equivalence problem is solved to 

emphasise the importance of directly controllable factors and mechanisms in the 

reading o f sets of equations. It then proposes a formal change to the syntax of 

equations to make formally explicit the strong reading, the causal interpretation of 

equations developed in this chapter.

2. A Challenge to Representing Causal Relations with Mathematical Equations 

Mathematical models are widely used in economics and in many other disciplines. 

Of their different uses one of the most significant is to present idealized 

hypotheses o f the causal relations that obtain between different factors of interest 

to the modeller. For example, consider

p  = a

q = Pp + Y,(P <0)

as presented these equations can be interpreted using a purely mathematical 

interpretation, that is, there are two variables p  and q and three coefficients a, /?, y 

and these satisfy the two linear equations and the inequality above. Now suppose
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that these equations are intended to act as a mathematical model of ‘something 

else’ which is done by attributing the equations with some further content. 

Suppose that p  denotes the price o f a good and q denotes quantity demanded of 

that good. Suppose also that the coefficients a, ft, y denote factors that are not 

caused by those denoted by p  and q. Finally, suppose that factors denoted on the 

right hand side of an equation are causes, while the factor denoted on the left is 

the effect of the causes denoted on the right. This additional content provides an 

alternative model interpretation for the equations: the equations denote a causal 

model of demand in which increases/decreases in price cause decreases/increases 

in demand.

This simple mathematical model of demand highlights a general point about 

mathematical models: the functional relations o f a mathematical model can be 

read in two ways. The first way is as a piece o f pure mathematics, that is, the 

equations in virtue o f being mathematical equations have a mathematical reading 

under which they can be manipulated according to the rules of algebra (or 

whatever calculus is appropriate). However, when a set o f equations is used as a 

model o f ‘something else’ then in virtue of being about something else, there will 

be a distinct ‘model’ interpretation of the set o f equations. Typically, the model 

interpretation is much richer than the mathematical interpretation since it draws 

on a wealth o f background knowledge and theory about what is to be modelled 

using the set o f equations. The mathematical interpretation, on the other hand, is 

much simpler since it relies solely on the highly abstract semantics o f pure 

mathematics.

One of the main reasons for mathematising a model is that, if  done successfully, 

one can derive mathematical results from the equations that when interpreted from 

the model perspective (hopefully) provide new and interesting claims about the 

model the equations represent. This is beneficial for many reasons. Among other 

things, it can aid model development and can be used to generate predictions for 

testing hypotheses in the model. However, the mathematical and model 

interpretations of the equations must correspond in the right way for this to work. 

Specifically, benefits of mathematical modelling are put in jeopardy if  there is a
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divergence between the acceptable mathematical manipulations o f the set of 

equations and the model interpretation.

To see how such problems can occur, reconsider my simple example above. 

Mathematically, one is perfectly entitled to manipulate the equations and redefine 

the coefficients to obtain the following mathematically equivalent set of 

equations.

q -  a'

P  = P'q  + Y \ ( P ' <  0)

where a'=a/3 + y , /?' = (1 I p)8cy'=-{y  / /?).

Being mathematically equivalent, these equations have identical meaning to the 

original set o f equations under the mathematical interpretation. However, this is 

not true under the model interpretation. If one follows the method for reading 

equations used earlier (reading effects on the left hand side and causes on the 

right) this new set of equations has a radically different model interpretation to the 

first set of equations: an increase/decrease in demand causes a decrease/increase 

in price. Thus, by performing mathematically acceptable transformations one 

completely changes the earlier model interpretation of the equations in the 

original demand model. This is a serious problem because this derived set of 

equations no longer represents the original demand model. As such, it is o f no use 

for developing that demand model, for testing it using predictions and so on.

I call this a ‘conceptual equivalence’ problem. The problem is that the two sets of 

equations above are equivalent under a mathematical interpretation but not under 

a model interpretation. It is a serious problem because it implies, if one uses the 

first set of equations as a model in the way set out earlier, that one is not free to 

mathematically manipulate the equations since this may unwittingly change the 

meaning o f the set of equations under the model interpretation. More intuitively, 

the problem is that important aspects under the model perspective have no explicit 

counterpart under the mathematical perspective. In the example here, the 

mathematical form of the demand model did not make explicit the causal order 

assumed in the model interpretation of the equations. Since there was no 

mathematical feature o f the equations that denoted this causal order, it was
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possible to implicitly change this causal order when deriving an alternative, 

mathematically equivalent set o f equations.

The most direct way to solve a conceptual equivalence problem is to impose 

conditions that ensure that the two sets of equations are mathematically equivalent 

if  and only if they are equivalent under the model interpretation for those 

equations. One way to do this is to ensure that an isomorphism holds between 

the mathematical equations and a ‘model reading’ of those equations. Specifically, 

this requires that for each mathematical term there is a corresponding model term 

and that mathematical relations satisfied by the mathematical terms correspond to 

model relations satisfied by the model terms which correspond to the 

mathematical terms.2 Essentially, this is to demand a clear set of translation rules 

for moving between the mathematical and model interpretation o f the equations, 

constructed such that both mathematical and model reasoning respect these 

translation rules. If this is done, then however one reasons with the equations, be 

it mathematically or directly using the model concepts, one can be sure that if  one 

translates the results o f such reasoning, one obtains a meaningful and correct 

result in the other interpretation.

In this chapter the object of interest is the representation of causal relations using 

mathematical equations. Therefore the conceptual equivalence problem that I am 

concerned to solve is that of the example presented here: how can one ensure that 

one has a mathematical formalism which makes explicit the causal content in the 

model so that mathematical derivations from those equations respect that content? 

An obvious first step is to define in the mathematical domain something that can 

represent the causal content in the model. This is why in this chapter, I start from 

Herbert Simon’s work because his formal order definition in his 1953 paper 

provides an ideal candidate for this. I now present his formal order and consider 

how it helps with the conceptual equivalence problem.

2 More precisely, the isomorphism is between a set o f mathematical terms and a subset o f model 
terms. So the requirement is simply that formalism represent correctly a subset o f the model 
concepts. In this way the requirement allows the model language to be richer in content than the 
mathematical language. This is necessary because typically the model language embodies on a lot 
o f theory, other hypotheses, specifics about the situation being modelled and other influences 
which cannot be fully formalised. Indeed, as is discussed below, the model concept o f  
‘experimenter/nature’, used by Simon, is an example of a model term which is not represented 
explicitly by the mathematical formalism.
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3. Sim on’s Formal Ordering Method

In this section, I set out Herbert Simon’s formal methods for causally ordering 

variables in a set o f equations. The section begins with a brief outline of two of 

Simon’s ordering methods, one mathematical the other logical, before discussing 

the contribution it makes towards solving the conceptual equivalence problem.

3.1. The Formal ‘Causal ’ Order fo r  Sets o f  Equations

In his 1953 paper Simon presents a method for determining what he calls the 

‘causal order’ for a set of equations. The sets o f equations for which formal 

orders are defined are special systems that meet certain conditions. First, the 

equations relate coefficients and variables (where Greek letters denote coefficients 

and Latin letters variables). The distinction between variables and coefficients is 

important as they are later interpreted in different ways by Simon. It is also 

assumed that the equations are linear in the variables and coefficients4 and that 

they are linearly independent.5 Simon also distinguishes between linear structures 

and linear models. A linear structure is a set of equations meeting the conditions 

above, where coefficients have specific, non-zero values. A linear model is the 

set of equations where coefficients can take any possible value; in other words it 

is the set of possible linear structures where all o f these have the same functional 

form. A linear structure is called ‘self-contained’ if  it is solvable for the variables 

in terms o f the coefficients. Simon defines his formal ‘causal’ order for self- 

contained linear structures.6 In simpler terms, Simon’s formal order is defined for 

sets o f linear equations that are solvable for the variables and which have no 

equations that are redundant for solving for the variables.

3 In the discussion that follows I prefer to use ‘formal order’ rather than Simon’s ‘causal order’. 
The reason is that the order that Simon defines is itself merely an ordering that arises from where 
variables appear in equations. As it stands, there is nothing causal about this. This is why I prefer 
to use ‘causal order’ for the model reading o f the formal order, where the intuitive causal content 
is clearer.
4 Simon also extends his ordering method for non-linear systems that are solvable by sequential 
substitution in the way that solvable systems o f linear equations are. However, I omit discussion 
of this here as it is not substantively different from the linear case.
5 This means that no equation in the set can be derived using other equations in the set.
6 Though it is immediate from the way that formal order is defined that all the self-contained linear 
structures in a self-contained linear model have the same formal order, see Simon (1953, p.15). So, 
one can equally take the definition o f formal order as applying to self-contained linear models.
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To find the formal order for a set of solvable linear equations using Simon’s 

method, one begins by identifying the smallest subsets o f equations which can be 

solved for the variables that appear in them: the complete subsets o f 0th order. 

One then solves for the variables in these subsets in terms of coefficients and 

substitutes these solved variables into any equations that remain outside of the 

complete subsets (provided there are some). These remaining equations are the 

derived set of equations. One then repeats the process, treating the derived set of 

equations as the whole set of equations was treated above. In other words, one 

identifies the complete subsets (now of 1st order) for the set o f equations, solves 

for the variables in these and then substitutes these into any remaining equations. 

Continuing this until no equations remain, the result is an ordered partition (the 

complete subsets) o f the equations, in which a complete subset of equations of n- 

1th order ‘directly precedes’ a complete subset o f nth order if  one of the variables 

solved for using the equations of the first complete set was substituted into some 

equation(s) o f the second complete set when solving for that second set of 

equations. This sometimes branched order of sets o f equations is what Simon 

calls the ‘causal order’. From this order, Simon defines a variable as ‘exogenous’ 

relative to a complete subset o f equations if it appears in that set o f equations and 

in an earlier complete subset. A variable is ‘endogenous’ relative to a complete 

subset of equations if  that complete subset is the first in which it appears.

In addition, Simon defines an alternative causal order over the variables that 

appear in the complete subsets of equations. In this case one orders the variables 

according to the order in which they are solved. For example, a set o f variables 

that are solved for in a complete subset o f 0th order o f equations, form a 

corresponding complete subset of variables of 0th order. In this definition of 

causal order complete subsets of equations are replaced by the sets o f variables 

that are solved using the complete subsets o f equations. In this order, one 

complete subset o f variables precedes a second subset if  and only if a variable in 

the first is exogenous with respect to the equations that are used to solve for the 

variables in the second.
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Despite the involved terminology, Simon’s method is straightforward in practice. 

To see this, recall the earlier demand example (p and q are variables and a, f t  and y  

are coefficients). 

p  -  a

q = Pp + r>(P< 0)
Following Simon’s method, the first equation is solvable for p  in terms of 

coefficients but the second equation is not solvable for q using that equation only. 

Thus the first equation forms the only complete subset o f 0th order. Solving for p  

and substituting its solution into the remaining equation gives us an equation for q 

which is solvable for q in terms of coefficients, so the second equation forms the 

only complete subset of 1st order. At this point no equations remain so the process 

is complete. Since p  was substituted into the second equation to solve for q, the 

complete subset of the first equation is causally ordered prior to the complete 

subset containing the second. It follows from this that p  is endogenous relative to 

the first equation and exogenous relative to the second, while q is endogenous 

relative to the second equation.

To calculate the alternative formal order among the variables, note that p  is solved 

for using the first equation alone so {p} appears at the beginning of the ordering. 

Since q is solved by substituting p  into the remaining equation, {q} comes next in 

the order. This covers all the variables in the equations and since p  is necessary 

for solving for q, the formal order among the variables is {p} {q}.

It is important to note that Simon’s formal ordering method applies to 

simultaneous equation models like those used in economics to model equilibrium 

relations. Consider, for instance, 

i = co

q = Sp + Tji 

q = <fp + v

where i denotes income, q the equilibrium quantity transacted o f a good and p  the 

equilibrium price of that good. The second equation is the demand equation, 

while the third is the supply equation. As a whole, it can be read as a simple 

supply and demand model of a good. This system can be ordered using Simon’s 

method. Here, i can be solved for using just the first equation so it comes at the
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beginning o f the order, while q and p  can only be solved for together using the last 

two equations once i has been solved for. So Simon’s order here is {i} {p,q}.

In such a system, p  and q are in the same complete subset, they are ‘co- 

determined’. Note also that in this example the ‘effect on the left, causes on the 

right of the equals sign’ reading the causal relation does not give the same order. 

This shows that Simon’s ordering method is distinct from this other way of 

reading a causal order though in some cases, like the simple previous demand 

example, the two readings coincide.

Before considering whether this formal ordering method helps deal with the 

earlier conceptual equivalence problem, I first present for purposes of 

completeness an alternative version of Simon’s formal ordering method that is set 

out in logical rather than mathematical terms.

3.2. An Alternative formalism: Sim on’s Logic o f  the Causal Order 

Simon (1952) proposes a logic o f the causal relation, in the style of Carnap, in 

which causal order is defined in a way that fits neatly with the way it is defined 

for equations. In this definition, one takes as given an object language based on a 

finite number of logically independent and empirically testable atomic sentences, 

subject to a set o f empirically testable laws. Importantly, the atomic sentences are 

partitioned into two groups, condition and observation sentences, a distinction that 

corresponds to the distinction made between coefficients and variables in the 

equations above. Laws are taken to be empirical sentences asserting material 

conditionals from a condition sentence to a molecular sentence constructed from
o

the observation sentences. In this set up, the causal order is defined as a partition 

on a complete9 and consistent10 set of laws. As in the equation case, the causal

7 The reason for introducing the ‘effect on the left o f an equation and causes on the right’ method 
of reading causes earlier was so that the conceptual equivalence problem could be presented. As 
shown in the simultaneous system here, this simple way o f ordering variables in equations is not 
that of Simon.
8 Here laws are the analogue to equations in the mathematical version: laws set out implications 
from condition sentences to observation sentences, just like the set o f equations sets out how the 
values o f the coefficients determine the values of variables.
9 A set o f laws is complete if their conjunction determines, given the truth o f all the condition 
sentences, the truth value o f every observation sentence. This is the analogue of the solvability 
constraint on sets o f equations in the mathematical version.
10 In order to get a unique causal order, Simon requires that the set o f empirical laws be consistent, 
that is, if  two sets o f laws determine the same observation sentence then one o f  the sets must be a

24



order can equivalently be taken as defined over sets of observation sentences {cf 

variables) that are determined {cf solved for) by the correspondingly ordered 

subsets of laws {cf complete subsets o f equations). When the causal order is 

defined over sets of laws, the key is to give precedence to the smaller subsets of 

laws that determine observation sentences.11 In other words, the smallest subset 

of laws that determine the smallest set of observation sentences comes first in the 

causal order. Further minimal subsets of laws that determine further observation 

sentences (and thus properly contain the smallest subset) come subsequently in 

the order.

To show how this approach gives results consistent with the mathematical 

approach, I formalise the demand example in terms of Simon’s logical analysis. 

Recall the equations of the demand example: 

p  -  a

9  =  Pp+rAP < o )
Define the following as the condition and observation sentences, for some

arbitrarily chosen a, b and c, where the condition sentences are constraints on the

values of the coefficients, the observation sentences constraints on the values of 
10the variables.

Condition Sentences: Cj iff a = a

C2 iff P = b and y =c 

Observation Sentences: Oj iffp  = a

O2 iff q = ba + c

The next step is to add laws that correspond to the two equations above.

Laws: C; —> Oi (if a = a thenp  = a)

C2 —> {Oj O2 ) (if p  = b and y = c, then p  = a iff q=ba + c) 

To get the causal order, note that the first law determines the truth value of the 

observation sentence Oj if  C/ is true. While both laws together determine both Oi 

and O2 if  Cj and C2 are true. Since the set of the first law is contained in the set 

of the two laws together, it follows that the condition sentence determined by the

subset o f the other. This is the analogue o f the linear independence requirement on sets of 
equations in the mathematical version.
11 A subset o f laws determines an observation sentence if, when the antecedents o f all the laws are 
true, the observation sentence has determinate truth value.
12 Here C]t C2, Oj and 0 2 are assumed to be logically independent. This assumption corresponds 
to the variation free assumption in the mathematical case, which is discussed later in the chapter.
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first law alone causally precedes the condition sentence determined by the two 

laws. In other words for arbitrary a, b and c: p  = a causally precedes q=ba + c, 

which matches the ordering obtained for the equations in the mathematical causal 

order.

This logical version of the causal order also shows that Simon’s formal definitions 

fit closely with other analyses of the logic o f causal relations. Nancy Cartwright 

(1989, pp.25-29) shows that Simon’s treatment of equations can be interpreted in 

terms of John Mackie’s treatment o f causes as INUS conditions for their effects. 

In Mackie’s (1974) work, a development o f John Stuart Mill’s, causes are 

generally INUS conditions for their effects13 where A is an INUS condition for B if 

and only if  A is an insufficient but necessary part o f an unnecessary but sufficient 

set of conditions for B. A cause which is not an INUS condition because it is 

sufficient is called a ‘complete cause’.

From the presentation above, one can see quite immediately that for the first law, 

that Ci is a complete cause for Ou since C/ is sufficient for Oj. Similarly, the 

second law implies that (C2AO 1) —> O2 , which shows that C2 and Oj are INUS 

conditions for O2.14 Returning to the equation form, this is to say the following, 

for any a,b and c.

a = a is a complete cause for p  = a

P = b ,y  = c and p  = a are each INUS conditions for q=ba + c

In short, Simon’s logical approach implies that causally precedent variables and 

coefficients are INUS conditions or complete causes for the causally antecedent 

counterparts.15

13 Mackie and Cartwright both make the point that not all INUS conditions are causes. I discuss 
this in more detail in chapter six.
14 Strictly speaking they are INS conditions since they are not unnecessary. This is a result o f the 
simple example used and does not affect the content o f the discussion.
15 More precisely, it is variables constrained to certain values that are the INUS conditions.
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3.3. Does Sim on’s Formal Order Help Solve the Conceptual Equivalence 

Problem?

Having presented Simon’s formal methods for ordering variables, I now return to 

the conceptual equivalence problem. In the version o f the problem presented 

earlier, the set o f equations on the left in table 2.1 could be transformed into the 

mathematically equivalent set o f equations on the right. The problem is that the 

two sets o f equations have different causal interpretations.

Table 2.1. Equations, Formal Order and Model Interpretation

Mathematical
Equations

p  -  a

q = Pp + y 
( / 0<O)

q = a '

p = p'q + f , (P '<  0)
where a '=afl + y, J3' = Q / /3) & /  = -(y  / P).

Intuitive
Causal
(Model)
Interpretation

‘price
causes

demand’
‘demand causes price’

Sim on’s 
Formal Order

(p) ->{q> {q}->{p}

How can Simon’s formal order help? Well, applying Simon’s formal ordering 

method for variables to the first set o f equations gives {p} {q}, while for the

second it gives {q} fp}. This is an attractive result because it clearly matches

the intuitive causal interpretations for the respective sets.

The formal order also helps with the conceptual equivalence problem because it 

changes if one transforms the system on the left to that on the right. So, adding 

Simon’ formal order to the mathematical representation would rule out the 

problematic transformation of the first set into the second that lead to the change 

in intuitive causal interpretation. This is because the different formal orders, now 

part of the formal representation, imply that the two sets of equations are no 

longer formally equivalent. So, by providing an explicit mathematical counterpart 

for the causal interpretation o f the equations Simon’s formal order seems to solve 

the conceptual equivalence problem.

However this is too hasty. Simply adding a formal order to the mathematics 

cannot be a full solution to the conceptual equivalence problem. This is because 

to solve the problem requires that an isomorphism hold between the mathematical
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and the relevant model interpretation of the equations so that one can move 

between the mathematical and model interpretation of the equations without 

jeopardising the way the equations are read under either interpretation. Yet no 

detailed information has been presented about a model interpretation.16 Without 

this one cannot be sure that the required isomorphism holds between the model 

interpretation o f the equations and the mathematical equations to which Simon’s 

formal order is added. The worry is: even if one restricts mathematical 

transformations on the equations to those which preserve Simon’s formal order, 

what reason is there to believe that this preserves the model interpretation of the 

equations?

Obviously in order to complete the solution to conceptual equivalence problem, 

more information is required about the model interpretation o f the equations. 

Only in this way can one be sure that the Simon’s formal order adequately 

represents the causal order assumed in the model. If one wants to be sure that 

Simon’s formal order represents causal order in the model interpretation, one 

needs to set out the causal order in the model that corresponds to Simon’s formal 

order. This is what is done in the next section.

4. The Model Reading o f  the Equations

In this section I set out a model reading for equations by building on some short 

comments made by Herbert Simon about how his formal order is to be interpreted. 

In doing this, I assume that an isomorphism holds between model terminology 

that Simon introduces and the mathematical terminology of the set of equations. 

The resulting model concepts that are isomorphic to the equations I call the model 

reading o f the equations.17 In this way the conceptual equivalence problem 

discussed earlier is avoided by construction. The key result o f this analysis is a 

model counterpart to Simon’s formal order: the causal order that is represented by

16 All that has been provided is an informal, loose way o f reading causes on the right o f the 
equation and the effect on the left.
17 It is important to note that the model reading is not the same as the model language, the model 
language is the language which is used to talk about the model, whereas a model reading is the 
model interpretation o f a set o f equations (which by construction is isomorphic to the set o f  
equations). The model reading is expressed using the model language but the model language also 
contains terminology that is outside the model reading. See appendix 2.1 for a formal definition of  
the model reading.
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the formal order of a set of equations. Finally, to distinguish the position 

developed here from Simon’s, I call my interpretation of Simon’s work the strong 

reading

The section begins with a brief overview of the philosophical influences on Simon 

at the time he wrote his 1953 paper. This provides some context as to how he 

goes about providing an interpretation to his formal order.19 The subsequent part 

works from Simon’s relevant discussion to set out an appropriate model 

interpretation for sets of equations with formal order.

4.1. Sim on’s Empiricism

In order to make sense o f how equations are to be interpreted a la Simon, it helps 

first to review briefly the philosophical views that were most influential on 

Simon’s 1950’s work on causal order. The first influence was operationalism and 

its influence is evident in repeated parts o f his writings. To give just one example, 

he notes in the introduction to his 1957 volume, following Bridgman, that an 

‘operational definition of a variable is a specification of the way in which the 

variable is to be measured’ and is necessary to ‘relate the model to empirical 

observations’ (1957, p.6). Simon sees his work as extending this process of 

operationalising concepts to relate them to empirical data. In particular, he views 

his work on causal order as an attempt to provide an operationalisation of the 

intuitive asymmetry between cause and effect. Or, as he puts it in his paper, ‘the 

aim of this chapter is ... to provide a clear and rigorous basis for determining 

when a causal ordering can be said to hold’ (1953, p. 12). The second obvious
• 90 •  • « •influence was logical positivism. This influence is very clear in his 1952 paper 

which sets out a logic of the causal order in the style of Carnap. Consistent with 

his admiration of operationalism and logical positivism, Simon espouses a strong 

scepticism for metaphysics. This is expressed when he states, following Hume,

181 call it ‘strong’ because it adopts a stronger reading of mechanisms than Simon’s operationalist 
position does, this is reflected in the fact that I, unlike Simon, do not require identifiability o f sets 
of equations. For more on this and on Simon’s position, see chapter 5.
19 It also provides some context for later discussion o f Simon in chapter five, where I discuss the 
role identification plays in his view o f causal order.
20 It is debatable just how consistent Simon is being in mixing operationalist and logical positivist 
approaches (for a brief discussion o f the need to distinguish between operationalism and logical 
positivism, see Suppe (1998)). This said, I do not elaborate on this since the main aim o f this 
chapter is to make explicit the structural view o f causality that Simon uses to interpret equations, 
and this structural view can be held in tandem with a whole range o f metaphysical positions.
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that ‘[observation reveals only recurring associations’ (1953, p. 10) and that ‘[t]he 

only “necessary” relationships among variables are the relationships of logical 

necessity that hold in the scientist’s model o f the world’ (ibid., p. 11). So, just like 

Hume, for Simon it seems that the world provides us merely with regularities, 

which one then models/interprets as being necessarily connected as cause and 

effect. Or as Simon puts it ‘causal orderings are simply properties o f the 

scientist’s model’ (ibid.,p. 11).

This brief overview o f Simon’s philosophy also helps to explain the way he sets 

out an interpretation o f his formal order. He does this by introducing a 

‘metalanguage’ which is used when speaking about the set of equations. This 

approach fits with his philosophical position because it attempts to avoid 

metaphysical assumptions he views as problematic. So, whereas a realist might 

explain the causal interpretation o f mathematical models by setting out what real 

metaphysical elements the terms in the mathematical language of the equations 

refer to, Simon’s approach takes a reverse approach. He introduces a 

metalanguage containing terms that have intuitive causal meaning, and associates 

this terminology with the object language, that is the mathematical (or logical) 

language o f the equations. O f course, this metalinguistic move is not in itself 

sufficient for avoiding metaphysical assumptions, since one still requires some 

explanation o f what the truth of metalinguistic sentences consists in. Presumably, 

to maintain his empiricist approach Simon would hold the view that the truth of a 

metalinguistic sentence can be determined by a some measurement procedure.

In any event, here the focus is on the metalanguage, not what determines the truth
91of its sentences. In the interpretative analysis o f Simon’s formal order that 

follows, I take the metalanguage to correspond to what I call the model language. 

The analysis builds on Simon’s discussion o f the metalanguage to make explicit a 

model reading for sets of equations.

21 Though this is obviously a very important discussion to have.
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4.2. Interpreting Equations Causally

In this section I rationally construct connections between terms in the model
00language (Simon’s metalanguage) and terms in the formal language 

(mathematical or logical). The rationality assumed in this construction is that the 

model terms should be isomorphic to the formal terms so that movements between 

the formal language and the model language are not contentious in respect to the 

set o f equations. This is rational because it ensures that a conceptual equivalence 

problem is avoided. The model counterpart that results for a set of equations is 

the model reading.

The reconstruction begins by drawing on various comments of Simon to establish 

basic connections between terms in the model language and the formal language.
O'!

These basic connections are set out in the table 2.2. Once these first connections 

are set out, it then uses Simon’s treatment of formal order to stipulate, given the 

isomorphism assumption, the model terminology that consistently corresponds to 

the formal terminology. Table 2.3 is the result o f this part o f the reconstruction.

Table 2.2. Basic Model -  Formal Language Correspondences

Model Language Formal Language (logical version)

A mechanism. A mechanism is a relation

between a set o f directly and indirectly 
24controllable factors, it constrains the 

possible values that the factors in the set can 

take as a group.

A linear equation25 (A law)

Experimenter/Nature

22 Ideally a formalisation o f both the terms in the model language and the formal language should 
be presented in order to make fully explicit the isomorphism that holds between the two. An 
attempt to do this is presented in appendix 2.1.
23 The rationality in the reconstruction is visible in the fact that corresponding elements in this 
table and others are chosen so as to be structurally similar i.e. terms correspond as do the relations 
among those terms.
24 Here ‘factor’ is introduced as a model term that corresponds to either coefficients or variables. I 
assume that factors are quantitative i.e. they can take on a numerical values.
25 For the more general nonlinear version, simply replace ‘linear equation’ by ‘functional relation’ 
in the right hand column.
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A factor in a mechanism that is directly 

controllable by experimenter/nature

A non-zero coefficient in a linear equation 

(Condition sentences26)

A factor in a mechanism that is indirectly 

controllable by experimenter/nature

A variable in a linear equation (Observation 

sentences)

A directly controllable factor is intervened 

into by experimenter/nature to take a 

particular value

A coefficient has a particular value (A condition 

sentence has determinate truth value)

Directly controllable factors can be 

independently controlled.

The coefficients are variation free, that is, the set 

of possible values o f a group o f coefficients is the 

Cartesian product o f the set o f possible values for 

each.27 (Logical independence o f condition 

sentences)

Table 2.2 is constructed from a series o f comments by Simon. The first

correspondence draws on the following quotes:

‘the phrase ... will perhaps become clearer if  we substitute 
“mechanism” for “equation’” (1957, p.7)

‘To provide an operational definition for a mechanism is to specify a 
method for determining whether the mechanism is operative or 
inoperative (other than by measuring the variables that the 
mechanism is supposed to connect).’ (my emphasis, 1957, p.7)

The first quote clearly suggests a correspondence between ‘mechanism’ and the

formal term ‘equation’ while the emphasised part of the second quote suggests the

role in mechanisms in constraining factors. The next four correspondences in

the table follow from Simon’s comment that:

‘We suppose a group of persons whom we shall call 
“experimenters.” If we like, we may consider “nature” to be a 
member of the group...[they] are able to choose the nonzero 
elements of the coefficient matrix o f a linear structure, but they may 
not replace zero elements by nonzero elements or vice versa (i.e. 
they are restricted to a specified linear model). We may say that they

26 Strictly speaking, a condition sentence is a constraint on a coefficient e.g. ‘a = 2 ’ is a condition 
sentence. Similarly, observation sentences are constraints on variables (that may include 
coefficients).
27 In other words, each coefficient can take on any value regardless o f the values o f others.
28 To keep model and mathematical terminology separate, I use ‘factor’ as a model term that 
corresponds to either a variable or a coefficient.
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control directly the values of the nonzero coefficients... [and] control 
indirectly the values o f these variables’ (original emphases, 1953,
p.26)

Thus, directly controllable factors correspond to coefficients, indirectly 

controllable factors correspond to variables and direct controlling of a factor 

corresponds with a coefficient being set to a value. The last correspondence in 

table 2.2 connects ‘independence’ in the model language with the condition that 

the coefficients are variation free. Formally, this means that the domain of 

possible values for coefficients as a group is the Cartesian product of the sets of 

their individually possible values.29 Informally, it means that the coefficients can 

take any value as a group as they can individually. This correspondence is 

slightly difficult since Simon is not very explicit about the need for independence 

among directly controllable factors/coefficients. It is hinted at in the quote above 

when mentions that the experimenters are able to choose presumably freely  the 

non-zero values of the coefficients. Though this is not sufficient to imply the 

variation free assumption, I have read it as such since this seems to fit best with 

the way he changes coefficients freely in the dialogue and with his comments 

above about the experimenters choosing values o f the coefficients.

It is important to note that in the table 2.2 there is no correspondent to 

‘experimenter/nature’ in the formal language, since there is simply nothing in the
o i

mathematics that can play that role. It is included nonetheless because the 

experimenter/nature plays a role in the way Simon discusses what the sets of 

equations represent. However, the absence of a formal correspondent to 

‘experimenter/nature’ does not undermine the isomorphism between the equations 

and the model reading. This is simply because I assume the model reading to be 

just those model terms which correspond to formal terms. So 

‘experimenter/nature’ is not part of the model reading of a set of equations. 

Nevertheless, ‘experimenter/nature’ is a relevant and an important term in the

29 So a set (aIt a2,..., a„}of coefficients is variation free, letting PfaJ denote the set o f possible 
values for ah if  and only if P(ah a2, a „ )  = P(a])xP(a2)x...xP(an).
30 Kevin Hoover also reads it in this way (Hoover, 2001a, p.61-62). James Heckman also assumes 
that inputs are variation free in his treatment of structural models which is in part based on 
Simon’s work (Heckman, 2000, p.54).
31 Ultimately it is the person who solves for the variables who seems to be taking the place o f the 
experimenter/nature! But this is clearly not part o f the formal language.
32 See the definition o f the model reading in appendix 2.1.
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model language because it bears important connections with model terms that are 

in the model reading for a set o f equations. For instance, it is relative to the 

experimenter/nature’s ‘control’ that the distinction between indirect and direct 

controllable makes sense.

In table 2.3 below, correspondences are constructed by holding fixed the 

correspondences in the first table above and using the isomorphism assumption to 

make explicit some model terminology that adequately corresponds to formal 

terminology used in Simon’s definition of the formal causal order. Though this 

sounds involved, the process is straightforward. The right hand column in table 

2.3 is populated with descriptions of important steps/definitions in construction in 

the Simon’s formal order. To infer the corresponding model terminology, one 

simply ‘translates’ as much as possible into the model language using the links in 

table 2.2 with any remaining gaps postulated using the rationality assumption 

above.

Table 2.3. Implied Model language -  Formal Language Correspondences

Model language Formal Language (logical version)

A set o f mechanisms whose directly 

controllable factors are fixed to particular 

values.

A linear structure, that is, a set o f linearly 

independent equations whose coefficients have 

particular values. (A set o f laws whose condition 

sentences have determinate truth value)

A set o f mechanisms whose directly 

controllable factors are unfixed, that is, are 

free to be fixed at any one o f a set o f possible 

values.

A linear model, that is, a set o f linearly 

independent equations whose coefficients can have 

any non-zero values. (A set o f laws whose 

condition sentences can take on different possible 

truth values)

33 It could be argued that the terminology used in this chapter should be modified to make this 
more intuitive since ‘model reading’ may naturally be conflated with ‘model language’. I have 
some sympathy with this view, but given the clarification presented here, however, I stick with this 
terminology for now and leave its modification as further work.
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A determining set o f mechanisms, that is a set 

of mechanisms, which if it has its directly 

controllable factors set to particular values, 

constrains all o f its indirectly controllable 

factors to take a unique value.

A self-contained linear model. A set o f linear 

equations which has a unique solution for its 

variables in terms o f coefficients. (A set o f laws 

for which, if  condition sentences have determinate 

truth value then its observation sentences have 

determinate truth value.)

A minimal subset o f mechanisms o f 0th order. 

This is a subset o f mechanisms in which only 

the directly controllable factors in the 

mechanisms need to be set to particular values 

for the indirectly controllable factors in the 

subset to take particular values.

A complete subset o f O'* order. A minimal subset 

o f linear equations in a model for which all 

variables can be solved in terms of the 

coefficients. (The smallest set o f laws that 

determines the truth value of an observation 

sentence.)

A minimal subset o f mechanisms o f nm order. 

A minimal subset o f mechanisms in which, 

given that other minimal subsets o f lower 

order have indirectly controllable factors fixed 

at particular values, when its directly 

controllable factors are set to particular values 

all o f its unfixed indirectly controllable factors 

are fixed to particular values.

A complete subset o f nth order. A minimal set o f  

linear equations for which all variables can be 

solved in terms o f the coefficients and variables 

solved in complete subsets o f order less than n. 

(The smallest set o f laws that determines the truth 

value o f an observation sentence. )

An indirectly controllable factor is exogenous 

relative to a minimal subset o f mechanisms, if  

it figures in those mechanisms and it needs to 

be taken as fixed for that minimal subset of  

mechanisms to have its unfixed indirectly 

controllable factors set to particular values.

A variable is exogenous relative to a complete 

subset, if  that variable appears in the equations and 

its value must be given for the complete subset to 

be solved for all its variables. (An observation 

sentence is exogenous to a set o f laws which is not 

the smallest set that determines it.)
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An unfixed indirectly controllable factor is 

endogenous relative to a minimal set o f  

mechanisms, if  it has its value is fixed by that 

minimal set o f mechanisms.

A  variable is endogenous relative to a complete 

subset, that is a variable which is solved for when 

a complete subset is solved for all its variables. 

(An observation sentence is endogenous to the 

smallest set o f laws that determines it.)

A minimal subset o f mechanisms, C, is 

directly causally dependent on another 

minimal subset, B, (B-+C) if  at least one fixed 

indirectly controllable factor in C has its value 

fixed by B.

A complete subset o f equations, C, is directly 

causally dependent on another complete subset, B, 

(B—*C) if  at least one endogenous variable for B is 

an exogenous variable for C.34 (A minimal set o f  

laws is directly causally precedent on another if  at 

least one observation sentence, endogenous for the 

former, is exogenous for the latter).

A minimal subset o f mechanisms, C, is 

causally dependent on the minimal subset of  

mechanisms, B, if there exists a sequence of  

minimal subsets such that that B-^Bj—̂ Bi-*... 

—*■ Bk~+ C.

A complete subset (minimal set o f laws), C, is 

causally dependent on the complete subset of  

equations, B, if  there exists a sequence o f complete 

subsets (minimal sets o f laws) such that that 

B—*Bj—>5;—►... —► B/c—► C.

The second last row of table 2.3 is o f particular interest since it provides what I 

have been aiming for: an explicit definition of causal order in the model 

language:

A minimal subset of mechanisms, C, is directly causally dependent 

on another minimal subset, B , (B-+C) if  at least one fixed indirectly 

controllable factor in C has its value fixed by B.

There are other important definitions in the table, namely the definitions of 

exogeneity and endogeneity for factors and a definition o f causal dependence 

among subsets of mechanisms (the last row).

34 In his definitions o f causal relations (1953, pp. 18,22), Simon defines the relations over the sets 
of endogenous variables for the complete subsets o f equations. The versions presented here take 
the complete subsets as the relata, which Simon also allows. This is done because it fits more 
neatly into the presentation above.
35 Note that causal dependence is the transitive closure o f direct causal dependence. Therefore the 
causal relation defined here is transitive.
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The correspondences here have been constructed from the formal order defined 

over equations to give a counterpart causal order over mechanisms. A more 

intuitive causal order can also be defined over sets of indirectly controllable 

factors, as a counterpart to the formal order defined over variables. To define this 

version of the causal order one merely replaces the minimal subsets of 

mechanisms with the corresponding sets of indirectly controllable factors that are 

fixed by those mechanisms. This gives us the causal order among factors in the 

model.

4.3. The Model Interpretation o f  the Earlier Example

Though the table above provides a full interpretation for the equations, including 

an interpretation of the causal order from the model perspective, it is all somewhat 

obscured by the dense presentation style. So to bring out some of the intuitive 

content of this model interpretation for a set o f equations, reconsider the earlier 

demand example:

p = a

q = P p + r , ( P <  o)

Read as a model, the first equation represents a mechanism that determines price. 

The coefficient a denotes a directly controllable factor that, if  set to a value by the 

experimenter/nature, given the price mechanism causes the price factor to 

indirectly takes a value (here the price equals to the value o f the a-factor). The 

second equation represents the demand mechanism, if the experimenter/nature 

directly sets the values o f the f  and y factors and also indirectly sets the price 

factor to a value (by directly setting the a-factor using the price mechanism 

above) then this, given the demand mechanism, indirectly sets the quantity 

demanded to a particular value (i.e. ftp + y). The causal order among the 

indirectly controllable factors is that the price directly precedes quantity 

demanded.

36 This is the same trick that was used earlier to get the formal order over variables from that over 
equations. Though this time it is done in the model reading.
37 Note that though the experimenter/nature is used in describing the model interpretation of the 
equations, the experimenter/nature is not itself represented by the equations since there is no 
formal term that represents it. So, as noted above, ‘experimenter/nature’ is a term in the model 
language but not the model reading o f the equations. Nevertheless the term bears important 
relations to terms that are in the model reading such as ‘directly controllable factor’.
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There are two interesting points here. First, the discussion just given exactly 

mirrors the way p  and q were solved for in the demonstration of Simon’s formal 

order earlier in the chapter. Solving for p  first using the first equation corresponds 

to the price being set to a value using the price mechanism, while solving for q 

using p  corresponds to the quantity demanded being set given values for price and 

the other directly controlled factors in the demand mechanism. This 

correspondence brings out clearly the isomorphism built into the table above.

Second, this correspondence between the formal order and the way price and 

quantity are set, also brings out what Simon’s formal order represents in the 

model. In my above example, price causally precedes quantity demanded in the 

model because in order to set the quantity demanded the price needs to be set to a 

value. The converse is false, quantity demanded does not need to be set to a value 

in order for price to be set to a value. Price does not require that any other 

indirectly controllable factor be set to a value in order for it to be set to a value, 

which is why it comes at the beginning of the causal order. Only price (among 

the indirectly controllable factors) needs to be set to a value for quantity 

demanded to be set, so only price causally precedes quantity demanded. This 

gives us the causal order in the model that price causally precedes quantity 

demanded. This is how the formal order {p} {q} for the variables is interpreted

using the model language.

To conclude, this section has attempted to make explicit the connections between 

the formal languages of mathematics and logic, and a model terminology used for 

interpreting these. This has been done by drawing on comments made by Simon 

and building model counterparts from these by assuming an isomorphism holds. 

The result is the model reading.

In addition, note that the absence o f identification in the analysis shows that it 

diverges from Simon’s own (1953) treatment. The role identification plays in 

Simon’s treatment is discussed in detail in chapter five. So, unlike Simon, no
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assumption is made here that the equations need to be identifiable in order to be
<5Q

attributed a causal order. For this reason, I call the position set out here the 

strong reading of Simon.

With this model interpretation of the equations and the formal order, it is now 

possible to explore the properties o f the causal order. This is done in the next 

section.

5. Important Properties o f  Causal Order in the Model

With this interpretative machinery in place, it is worthwhile to look in some more 

detail at what a causal order in the model entails. In particular, it is worthwhile to 

investigate the properties that a system of factors with causal order, represented 

by a set o f equations with formal order, is assumed to have. This is important 

because ultimately one would like to know when and under what conditions this 

concept o f causal order can be applied in modelling real-world situations.

The section maps out some important properties of the system of factors 

represented by a set o f equations with formal order. It first clarifies the concept of 

mechanisms before considering the factor properties. These properties are (i) the 

close relationship between changes in factors and causal order, (ii) the invariance 

of mechanisms to factor changes, (iii) the independence of directly controllable 

factors and (iv) the possibility o f factors cancelling each other out. Going through 

these helps to clarify the nature o f causal concepts that are assumed in model 

reading presented above.

Before doing this, however, I first define a few more relations to add to Simon’s 

analysis. This helps with the subsequent analysis and also extends the causal 

order to apply to intuitive situations not covered by Simon’s formal definitions.

38 Recall that an equation is identifiable in a set o f equations if its coefficients can be deduced from 
knowledge o f the form o f all o f the equations and from observations o f the variables in the system 
of equations.
39 So the approach here is more general than Simon’s since it can be applied to non-identifiable 
sets o f equations.
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5.1. Aside: Some Supplementary Causal Relations

In this short aside, I propose some extensions to Simon’s definitions. This is to 

remedy some counterintuitive omissions in Simon’s treatment.40 The first 

counterintuitive omission is that Simon does not include coefficients in his formal 

order.41 From the model perspective, this restriction of the causal ordering to 

indirectly controllable factors seems unnecessary since, intuitively, directly 

controllable factors can be causes. So the first extension is to generalise the 

formal order to cover coefficients. The second counterintuitive omission is that 

Simon’s definition of formal order is defined over sets of entities (equations or 

variables) rather than the entities themselves; this is odd since causal relations 

intuitively hold between entities themselves: one is inclined to say that a factor is 

a cause of another rather than some set o f factors is causally ordered prior to 

another set. So here I define relations that hold between individual variables. I 

then present model definitions that are counterparts for these formal definitions.

First, I extend Simon’s formal order to apply to coefficients in addition to 

variables. This is done by treating coefficients that appear in a complete subset 

of equations as if  they were exogenous variables to that complete subset of 

equations. The reason for treating coefficients like exogenous variables in 

Simon’s formal ordering method is that the values o f coefficients are taken as 

given when solving for the endogenous variables, just like exogenous variables.

One can add coefficients to Simon’s formal order over variables by putting the 

coefficient in a singleton set and placing that set as directly precedent in the 

formal order to any complete subset of variables for which the coefficient appears 

in the equations in which those variables are endogenous (i.e. are solved). So in 

the demand example

40 The extensions proposed in this section do not add any content since they are defined using 
Simon’s formal relations and do not make any additional assumptions.
41 Recall that coefficients denote factors that can change, not constants as in some other treatments 
(e.g. LeRoy who is discussed in chapter four). This is why it is intuitive to include them explicitly 
in the causal order.

40



p  = a  
q = pp + y , ( p <  0)

the formal order among the variables and coefficients, expressed here as a causal 

graph, where the arrows denote the relationship o f direct causal precedence of 

formal order among sets of variables,42 would be:

m  m m

Hp}

The coefficient {a} directly precedes {p} because a appears in the equation which 

is used to solve for p, and likewise for {p} and {y} in relation to {q}. To keep this 

new ordering separate from Simon’s formal order, I call this order which includes 

coefficients the extended formal order.

The second extension is to define relations that apply to individual variables (or 

coefficients) rather than sets of variables (or coefficients). The first relation is:

For x and y  any two variables in a self-contained linear model with 

formal order: x  is causally equivalent to y  if  and only if x  and y  are 

endogenous for the same complete subset o f equations.

In simpler terms, two variables are causally equivalent if  and only if  they are in 

the same complete subset in the formal order o f the variables. With this new 

relation, I then define

For x  any variable or coefficient and y  any variable in a self- 

contained linear model with formal order: x  is a direct cause o f y, if 

and only if  x  is a coefficient which appears in some equation in the 

complete subset of equations for which y  is endogenous, or x  is a 

variable, or is causally equivalent to a variable, which is exogenous 

to the complete subset o f equations for which y  is endogenous.

In simpler terms, a variable or coefficient is a direct cause o f another variable if 

and only if it appears in the complete subset o f equations for which y  is solved, 

but is not endogenous to that set. In the extended formal order above, a direct 

cause appears in a set which directly precedes the set containing the other 

variable.

42 See, for example, Simon (1953, pp.21,23).
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With this, recursively define a causal relation between variables (or coefficients) 

as follows.

For x any variable or coefficient and y  any variable in a self- 

contained linear model with formal order: x  is a cause o f y  if  and 

only if

(i) x  is a direct cause o fy  

OR

(ii) x  is a direct cause of, or is causally equivalent to, a cause 

ofy.

By construction cause is a transitive relation. Also as defined, two causally 

equivalent variables are not causes of each other because in order to get the 

recursive definition of cause to work at least one ‘link’ from a cause to its effect 

needs to be directly causal. This is done intentionally to avoid the possibility of 

two variables causing each other which, by transitivity, would imply the 

counterintuitive result that each of the two variables is a cause of itself. In 

addition, it is easily checked that the direct cause relation is anti-symmetric and 

anti-reflexive, from which it follows that cause as defined here is also anti

symmetric and anti-reflexive. Since it is transitive, anti-symmetric and anti

reflexive, the causal relation defined here satisfies some of the basic a priori 

intuitions one has for the causal relations.

Finally, it is straightforward to ‘translate’ the relations defined above into the 

model language to obtain counterpart model relations. To do this, simply define 

direct cause and causal equivalence in the model (using the links in the tables 

above) as:

Two factors cj and C2 in a determining set o f mechanisms with 

causal order are causally equivalent if  and only if they are both fixed 

by the same minimal set of mechanisms.

For two factors c and e in a determining set of mechanisms with 

causal order: a factor, c, is a direct cause of a factor, e, if  and only if  

c is a directly controllable factor that figures in the complete subset 

of equations for which e is endogenous, or c is, or is causally
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equivalent to, a factor which is exogenous to the complete subset of 

equations for which e is endogenous.43 

The causal relation among factors is defined recursively in exactly the same way, 

but using the model relations rather than the formal relations.44

5.2. Properties o f  the Causal Relations in the Model

With this framework in place, I now investigate some of the important properties 

of the causal order.

5.2.1. Clarifying Mechanisms

Before beginning the discussion on causal properties, it helps to elaborate a little 

on what mechanisms are and how they relate to directly and indirectly 

controllable factors. To do this, consider the following two systems o f equations 

and their formal orders.

p  = cc q = 5p + A
(A) * (B) „q = Pp + y q = fip + y

(p} -> (q) {.p.q}
Suppose that system (A) denotes the simple demand model presented throughout 

the chapter, that is, the first equation denotes the mechanism that determines price 

of a good (say the government sets the price by law) while the second equation 

denotes the demand mechanism for that good. Suppose that in system (B) the 

second equation denotes the same demand mechanism as in the first model, but 

instead of government controlling price as in the model denoted by (A), in this 

model the market is free, that is, the first equation denotes a supply mechanism 

relating price and quantity of the good.

These two systems illustrate some important features o f mechanisms. First, is that 

in the first system price is exogenous with respect to the demand mechanism45 

while in the second system, though the demand mechanism is the same, the price 

factor is now endogenous with respect to that mechanism. This shows that which 

indirectly controllable factors are exogenous or endogenous fo r  a mechanism

43 For definitions o f exogenous and endogenous for factors see Table 2.3.
44 I omit the definition because it would be identical to that above, given the caveat here.
45 Sincep  is taken as given in solving for q using the second equation when applying Simon’s 
formal order.
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depends on the other mechanisms in the system. More generally, the causal order 

among the indirectly controllable factors depends on the whole set of mechanisms 

acting together, so to speak.

Another way o f understanding how this arises is to see mechanisms as constraints 

on the possible values of indirectly controllable factors. So in system (A) the first 

equation denotes a mechanism that constrains price to be equal to the value o f the 

directly controllable factor denoted by a. Likewise, the second equation denotes a 

demand mechanism where the possible values of price and quantity are 

constrained so that their values satisfy the equation q = ftp + y. It is important to 

note that though indirectly controllable factors’ values are constrained by 

mechanisms, the directly controllable factors values are not. Mechanisms 

constrain the values o f  indirectly controllable factors but not directly controllable 

factors. So in system (A), since price is completely constrained by the first 

(government price control) mechanism, the demand mechanism then fixes the 

quantity sold given the (already) fixed price. Whereas in system (B) the supply 

mechanism does not fully constrain price, instead it constrains both the quantity 

sold and price together. It is only when the supply and demand mechanisms act 

together that price and quantity take a fixed value (given the values of the directly 

controllable factors). This shows how the causal order among the indirectly 

controllable factors is determined by subsets o f mechanisms given values of 

directly controllable factors. Directly controllable factors are not constrained by 

mechanisms, instead they are determined outside the system by the 

experimenter/nature.

5.2.2. Change and Causal Order

The relationship between causal order and change is easiest to appreciate by 

looking at the demand example again.

p = a

q = Pp + r , ( P <  0)

Here the formal order among the variables is (p) {q}. Formally, this is the

order of substitution for p  and q using Simon’s method. But this isn’t very 

enlightening. It is more instructive to consider what happens to the solutions of p
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and q if  one changes the values of only one coefficient. The different possibilities 

are set out in table 2.4.

Table 2.4 Changes in Variables Given Changes in only one Coefficient

Only Change Coefficient Variable Changes

a p  and q change

P q changes

y q changes

Given the equations, if the value for a changes then the solved value for p  

changes, and since the other coefficients do not change, q also has a different 

solved value. However, if either /? or y changes alone then only the solved value 

for q changes. This captures the core idea of Simon’s formal order, that changes 

in values of variables are necessarily accompanied by changes in the values of the 

variables that follow them in the causal order. Or as Simon puts it, the ‘[formal] 

causal ordering specifies which variables will be affected by intervention at a 

particular point (a particular complete subset) of the structure’ {ibid., p.26). He 

presents a precise version of this claim in a theorem:

‘Theorem 6.1: Let A be a self-contained linear structure, let Aj be a 
complete subset o f order k in  A, and let A ’ be a self-contained linear 
structure that is identical with A [and of the same linear model] 
except for a single equation belonging to A] .. .Then (a) the values of 
all variables in A that are neither endogenous variables o f Aj nor 
causally dependent, directly or indirectly, on the endogenous 
variables in A] are identical with the values o f the corresponding 
variables in A and (b) the values of all variables in A that are 
endogenous variables o f Aj or are causally dependent on the 
endogenous variables o f A / are (in general) different from the values 
of the corresponding values in A ’ '{ibid., p.25)

Put simply, the theorem states that if  one has two systems o f equations that are 

identical except for the value of a coefficient appearing in one equation in a 

complete subset, then the variables exogenous with respect to that complete subset 

will be identical cross-systems while the endogenous variables and variables 

causally dependent on those will generally46 differ.47

46 The ‘in general’ in the theorem is there to cover the case where, due to other coefficients
happening to have a particular set o f values, one or more endogenous or causally dependent
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With the model correspondences and supplementary causal relations, light can be 

shed on the causal order in the model by translating this formal theorem into its 

model counterpart. To do this, I read the difference in the coefficient(s) in the 

equation which differs across systems in the theorem 6.1 as a directly controllable 

factor in the mechanism being changed by the experimenter/nature from the value 

it had in the first system to the value it had in the second. Interpreted in this way, 

one gets a counterpart theorem in the model language.

Model Counterpart to Theorem 6.1: Let A be a determining set of 

mechanisms. If a minimal subset of mechanisms, A has exactly one 

of its mechanisms changed by the experimenter/nature changing the 

directly controllable factor(s) in that mechanism then: (a) indirectly 

controllable factors that are not fixed by that minimal subset of 

mechanisms nor caused by factors that are will remain unchanged;

(b) indirectly controllable factors that are fixed by that minimal 

subset of mechanisms and factors caused by these will generally 

change.

This version is interesting because it helps to make explicit important properties 

of the causal order. To start with, it follows immediately from this counterpart 

theorem that causes have the property that when changed by experimenter/nature 

their effects and factors causally equivalent to them generally change. 

Conversely, factors that are not causally equivalent nor effects o f changed factors 

do not change. In short, the causal order maps out how changes in factors go 

together.

variables ‘coincidentally’ do not have a distinct value across the systems. I analyse this 
qualification in more detail later in the section.

Though Simon does not discuss this case, theorem 6.1 can be extended to cover cases where 
more than one equation has distinct coefficients across the two systems. In that case any variable, 
that is endogenous or causally dependent on an equation which changes, ‘in general’ changes 
while variables that are not causally dependent with respect to all equations that change, do not 
change. Importantly, this extended result shows that it is not a problem to apply Simon’s formal 
ordering methods to sets o f equations in which coefficients appear in more than one place in the 
equations, since the extended result permits changes in more than one equation. Also note that the 
model reading set out here does not depend in any way on whether coefficients are repeated or not. 
So sets o f equations with repeated coefficients are not a problem for the strong reading set out in 
this chapter.
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To see this, consider the earlier demand example with its extended formal order 

on the right.

To indirectly change price, the a-factor must be changed directly by the 

experimenter/nature. If the experimenter/nature does this then the price changes, 

by the price mechanism. Assuming there is no direct change to either o f the /?-

factor, directly causes a change in the quantity demanded by the demand 

mechanism. Similar descriptions can be given for changes in the either of the /?- 

and y-factors. For example, if  only the ^-factor is directly changed by the 

experimenter/nature then quantity demanded changes but price does not.

The way that changes in factors go together is particularly easy to appreciate 

using the extended formal order for the variables. Roughly, the theorem implies 

that changes ‘flow down’ the arrows, so in the model reading changes in a-factor 

are followed by changes in price and quantity. While changes in the /7-factor or y- 

factor lead to changes in quantity, but do not lead to changes in price.

5.2.3. Invariance o f  Mechanisms to Change

An important assumption in Simon’s theorem 6.1 is that the functional form of the 

two sets of equations being compared is the same across the two systems in the 

formal theorem. The only difference between the two systems is that some values 

of non-zero coefficient(s) in an equation change. When this feature is interpreted 

from the model perspective, it amounts to an assumption that the mechanisms are 

invariant to factor changes. Invariance is the property o f a mechanism that 

ensures that a mechanism does not change given changes in the directly 

controllable factors or indirectly controllable factors brought about by 

experimenter/nature.

Invariance is a strong assumption and it is not difficult to imagine cases where it 

fails. To give a simple example of invariance failure, imagine an elastic band 

holding a pack o f cards together as a mechanism (it constrains positions of the

{q}

and y-factors then the change in the price, directly caused by the change in the a-
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cards relative to each other). Then imagine the act o f the experimenter slipping in 

an extra card into the pack as a direct change. Now, there is a point at which the 

slipping in of an extra card is one too many, the elastic band snaps and no longer 

constrains the positions of the cards. The elastic band as a mechanism is not 

invariant to the direct change of introducing the final card. Since the elastic band 

is invariant to some direct changes o f introducing cards, this example of 

invariance failure in a mechanism suggests that the assumption of the invariance 

of mechanisms should ideally be made relative to a space o f possible factor 

changes to which it is invariant.48,49

Kevin Hoover (1995, p.69) briefly discusses two hypothetical examples of 

invariance failure that have been highly influential in econometrics. The first is in 

Trygve Haavelmo’s seminal paper (1944, pp.27-28) on econometric

methodology.50 It is an example o f the observed relationship in a car between the 

depression o f the accelerator and the speed at which the car travels. Haavelmo’s 

point is that this relationship can be accurately determined, however it is not 

invariant to a variety of changes, say to the engine of the car or to the conditions 

of the track on which the car travels. Changes in any of these would radically 

change the relation between accelerator depression and speed. So the relationship 

is not invariant to changes in the engine or in the track.51

48 Hausman and Woodward (1999, p.537) use a similar example o f a spring to make the same 
point.
49 Note that the invariance assumption is even stronger in systems with many mechanisms. This is 
because the invariance required is that no mechanism changes given changes in any factors in the 
system, including those that do not appear in the mechanism. Therefore, in complex systems 
being modelled by this type of formalism, one would ideally be clear about the set o f a possible 
changes for all factors, to which each mechanism is invariant.
50 Historically, it is not a surprise that Haavelmo’s discussion fits well with Simon’s since 
Haavelmo (1944) was influential on Simon.
51 This is an interesting feature to this example. The accelerator-speed relationship is invariant {all 
else being equal) to changes to the accelerator. So, as set up here whether or not the relationship is 
invariant or not depends on what is included in the model. For instance, if  one just includes the 
accelerator-speed relation and treats the accelerator position as directly controllable then the 
relationship is invariant. However, if one also models mechanisms that relate accelerator position 
to the petrol entering the engine and mechanisms describing the working o f the engine and so on, 
then the relation is not invariant to factors brought in. So, the point here is that the invariance 
property o f mechanisms described here is relative to the factors in the model. As Haavelmo’s car 
example shows, this then implies that the usefulness o f a relation will depend on whether the 
model is large enough to include factors that are relevant to situations to which the model is to be 
applied. For example, the fact that the accelerator-speed relation is invariant to changes in the 
accelerator is not particularly helpful if the car is to be used in a wide variety o f track conditions 
and in cases engine may suffer slight changes dues to wear and tear etc..
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The other discussion of invariance failure52 that Hoover mentions is the famous 

‘Lucas Critique’. In his (1976) Robert Lucas argues that policy interventions 

based on econometric models that fail to incorporate agents’ rational expectations 

will have results unforeseen by the model. In the context here, the problem is that
f - i

such models assume ‘mechanisms’ that are in fact not invariant to policy 

interventions. Lucas constructs a series o f hypothetical examples in which this 

occurs. One of the examples Lucas gives is that of government which aims to 

stimulate investment by introducing a tax credit. Lucas uses it to show that a 

model which overlooks the rational expectations o f investors about the duration of 

the tax credit significantly underestimates the impact o f a tax credit on 

investment. For my purposes here, Lucas’ example shows that a model that 

leaves out rational expectations wrongly assumes that observed relations between 

investor behaviour and government actions are invariant to the government act of 

introducing a tax credit.

The Haavelmo and Lucas examples show the importance o f distinguishing the 

invariant from non-invariant relations in doing structural modelling, while the 

elastic band shows the importance of the limits of invariance in mechanisms. All 

three examples show that invariance is a crucial property o f mechanism: it is 

required to ensure that interventions have results in line with observed functional 

relations.

5.2.4. Independence o f  Directly Controllable Factors

Recall that in Simon’s theorem 6.1 only one equation is distinct between the two 

systems. This is possible because the coefficients can take values independent of 

the values o f other coefficients, that is, because the coefficients are variation free. 

An interesting question is how this variation free assumption is to be interpreted 

from the model perspective. If  one applies the isomorphism used in constructing 

the model reading earlier, the corresponding model interpretation of the 

‘independence’ o f directly controllable factors is that it is possible for the 

experimenter/nature to set the values of the directly controllable factors 

independently o f the values of the other directly controllable factors.

52 Hoover describes it as relating to invariance. Lucas does not describe it in these terms.
53 The scare quotes are here to highlight that since they are not invariant to factor changes, strictly 
speaking these are not mechanisms, since it is a property o f mechanisms that they are invariant.
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However, care must be taken not to misread the resulting independence property 

o f the directly controllable factors. In particular, independence does not require 

that a directly controllable factor has no impact on any other directly controllable 

factors. To give a simple example from thermodynamics, imagine a container of 

gas with a movable piston where the container’s temperature can be directly 

controlled, as shown in figure 2.1.

Figure 2.1 -  Gas Container
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Assume the piston’s position can be directly controlled by placing weights onto it, 

so that it falls to the point at which the pressure exerted by the weights and that of 

the gas equalises.54 In this example, one can directly control both the temperature 

of the gas and the position of the piston. Assuming the ideal gas law holds55 then 

increasing the temperature of the gas, assuming constant weight on the piston, 

expands the gas so that the piston moves upwards. In other words, the directly 

controllable position of the piston changes as a result of a change in directly 

controllable temperature. Nevertheless, the values of temperature and position of 

the piston are variation free. Since regardless of the temperature at which the gas 

is set one can always adjust weights on the piston to get any desired position of 

the piston.56

The way in which the independence o f controllable factors relates with 

intervention is discussed in more detail in the next chapter. The important point

54 Simon and Rescher (1966, pp.331-332) present a similar example in a paper giving a concise, 
tidied up reading o f Simon’s causal order concepts. However, their example is not used to make 
the point made here.
55 The ideal gas law is PV=nRT, where P denotes pressure, V denotes volume, T denotes 
temperature, n is the number o f moles o f gas and R is the universal gas constant, see Halliday and 
Resnick (1978, pp.497-509).
56 One might quibble over whether the position o f the piston is really directly controllable here, 
arguing that it is not really directly controllable because it depends on temperature. However, this 
would be to strengthen the concept o f direct control. Here the aim is to show just how weak the 
concept o f ‘direct control’ constrained only by the variation free requirement is.
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here is simply that an independence assumption holds among the directly 

controllable factors in the model reading, which requires that the values of 

directly controllable be variation free. Moreover, it does not imply that directly 

controllable factors are independent in the stronger sense that changing one 

directly controllable factor must have no impact on any other directly controllable 

factor.

5.2.5. Simon's ‘In general ’ Caveat: The Possibility o f  Cancelling Out 

I finish this section on the properties of causal order by considering just what is 

meant by the ‘in general’ caveat in the theorem 6.1. It can be illustrated by the 

following abstract example.

*1 =  <*10 

* 2  =  <*21*1

* 3  =  # 3 0  + < * 31*1 + # 32*2

For these equations the formal order can be represented by the causal graph.

{xi}

{*2}

T*.,T
{xs}

So according to the model version o f theorem 6.1 changes in first mechanism, in 

aio, should lead to changes in all of the factors denoted by xj, X2 and X3 . However, 

suppose that 0 3 1  = - 0.320*21 happens to hold,57 then the value o f X3 will not change 

since the third equation in this case reduces to

* 3  =  # 3 0  '

Since this equation holds independent of changes to ajo, X3 will not change value. 

Under the model reading, in this case the indirect influence of xy-factor on X3-  

factor via the ^-facto r and its direct influence on xj-factor cancel each other out. 

In either formal or model readings, this would be a counterexample to the theorem 

if  the ‘in general’ caveat were not inserted by Simon.

Therefore, the insertion of ‘in general’ is qualifying the theorem by implicitly 

bringing in a statement that for most values o f  coefficients, that is, those for which 

such ‘cancelling out’ features do not occur (in this case where 0 3 1  - 0 3 2  0 2 1 ) the

57 It cannot hold systematically otherwise the coefficients would not be variation free.
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conclusion of the theorem holds. This ‘in general’ caveat says the consequent only 

holds in certain cases (where no cancelling out occurs). It is similar to what 

Spirtes et al.{1993) call ‘the faithfulness condition’ and Pearl’s calls ‘stability’ 

(2000, p.48),58 which assume that such cancelling out values o f coefficients do not 

occur for a system.59

One can question whether or not this restriction is likely to hold in systems 

modelled in practice. Some, for example Spirtes et a/.(1993, p.95), argue that this 

kind of assumption is innocuous since the chance that coefficients will happen to 

fall on these particular values where changes ‘cancel each other out’ is remote. 

However, this view assumes that the inconvenient values for the coefficient are 

highly unlikely, which is debatable depending on the system. For instance, Kevin 

Hoover (2001a, pp. 168-170) argues that in systems where agents exercise 

optimising behaviour, coefficients may be chosen by agents for their own 

purposes to have just such cancelling out values, and thus the likelihood that 

coefficients in the system happen to meet cancelling out conditions need not be 

unlikely. Indeed, as Hoover notes, it may even be likely in economic systems in 

which rational agents exercise optimal control.

6 . Conceptual Equivalence Revisited and The Strong Reading 

Having presented the key properties of causal relations, I now complete the 

chapter by returning to the original conceptual equivalence problem, in order to 

show the importance o f specifying what is directly controlled and what are the 

mechanisms. The section finishes by presenting a formal way of representing the 

causal systems developed in the chapter.

58 These conditions apply to indeterministic systems and require that any zero partial correlations 
be indicative of causal structure, and not arise due to different causal influences ‘cancelling each 
other out’ as in the example above.
59 Though it is not identical to faithfulness since Simon does not assume these cancelling-out 
values o f coefficients do not occur. Nevertheless the ‘in general’ caveat is similar to the 
faithfulness and stability assumptions since it limits the usefulness o f his theorem 6.1. to cases 
where cancelling out does not occur.
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6.1. Solving the Conceptual Equivalence Problem in the Earlier Example 

This chapter began with two mathematically equivalent sets o f equations. Using 

the strong reading of Simon, set out in this chapter, one can see clearly how the 

conceptual equivalence problem with which the chapter started is avoided. The 

two sets, now treated as two models are:

Model 1 (p q) Model 2 (q -> p)

p - a  q = a '

q = Pp + r p = P 'q  + f

Since the systems are mathematically equivalent the following must hold.

a '= a p  + y ,p '= ( \ l  P ) 8c f = - ( y l  P)  ... (*)

Consider a general change in the coefficients. For the first set this is a change 

from (a, p, y) to (a+Aa, P+Ap, y+Ay) while for the second it is a change from (a \ 

P y ’)  to (a ’+ A a /T+A/T, y ’+Ay’). It can be shown from (*) that the following 

relations hold between the shifts in the coefficients in the two sets, given their 

mathematical equivalence.60

A a'=  aA p + p A a  + Ay

■■■ < • * >

yty-J&r 
P(P + A /J)

With this background, one can consider how shifts in the values o f coefficients are 

read from the perspectives of model 1 and model 2. This is set out in table 2.5.

60 For both sets o f equations (*) and (**) the reverse equations (for getting model 1 coefficients 
from model 2) can be got by swapping primed variables for their non primed counterparts and vice 
versa.
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Table 2.5. Two Models And Their Two Causal Orders

s:o
M o d e l  1 ( { p }  ~ > {q }) M o d e l  2 ({q}~> {p})

a  1s:

I
Formal

change

Experimenter

/Nature

Causal Story Formal

Change

Experimenter

/Nature

Causal Story I §;

1. A a+0 Only changes p  is caused A a'+O Only changes q is caused p  and q

Afi=0  

Ay =0

p  mechanism to change 

and p  causes 

q to change

Af i ’=0 

A y ’=0

q mechanism to change 

and q causes 

p  to change

change

2. A a=0 Only changes q is caused A a ’±0 Changes both q is caused q

or A y

+0)

q mechanism to change, p  

stays same

Amo,
Ay ? 0

mechanisms to change, p  

stays same: 

change in 

other 

mechanism 

‘cancels out’ 

effect o f  q 

on p

changes

P

doesn’t

3. A a£0 Changes both p  is caused A a ’=0 Only changes p  is caused P

mo,
m o

mechanisms to change, q 

stays same: 

change in 

other 

mechanism 

‘cancels out’ 

effect o f  p  

on q

(Afi’̂ 0 

or Ay’ 

*0)

p  mechanism to change, q 

stays same

changes

q
doesn’t

The first row considers a change to a in system 1, that is, a shift from (a, p, y) to 

(a+Aa, p, y). Using (**) this is equivalent to a shift from (a ’, p \  y ’)  to ( a ’+ A a ’, 

p \  y )  for model 2. The respective model interpretations are distinct: in model 1 

the intervention is a change in the mechanism that determines p, and since p  

causes q in model 1, this leads to a change in q. In model 2, on the other hand, the 

intervention is a change in the mechanism that determines q, and since q causes p  

in model 2, this leads in turn to a change in p. For both models p  and q both 

change. The second and third rows are to be read in a similar way. In these rows, 

however, the coefficient changes are interpreted by one of the models as changes 

to two mechanisms; these cells are shaded in the table. These shaded cells are
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interesting because in these only one indirectly controllable factor changes though 

both mechanisms are directly changed. As such, they are cases o f cancelling out 

which the ‘in general’ caveat in Simon’s theorem 6.1 served to exclude. The shift 

in these shaded cells is interpreted as a situation in which the changing of the 

second mechanism offsets the change in the first, so that a cause changes though 

its effect does not. In these cases the alternative model interpretation is not one of 

cancelling out, in the alternative model interpretation just one mechanism is 

changed and only one indirectly controllable factor changes. So in all rows, the 

model interpretations are distinct.

This table also shows how to avoid the conceptual equivalence problem noted at 

the beginning o f the chapter. By stipulating what the coefficient and variables 

are in the equations and the form of the equations, Simon’s formal order follows. 

This stipulation of coefficients, variables and equation form allows a causal story 

to be given for the set of equations. As the table shows, it can be generated for 

changes in the values o f variables in two mathematically equivalent systems. 

There is a clear distinct model reading of each set o f equations given the distinct 

stipulation of coefficients, variables and equation form. Thus the conceptual 

equivalence problem is avoided.

6.2. The Importance o f Stipulating the Coefficients and the Form o f  the Equations 

As is clear from the table above, what set of coefficients are chosen in a set of 

equations plays a key role in solving the conceptual equivalence problem. This 

can be seen by considering an analogy to the example of the two models above. 

Imagine a box which has six levers, three levers each on two opposite sides, and 

two dials on a third side perpendicular to the sides with the levers. Suppose that 

the levers on one side are labelled a, /? and y, levers on the other side a f t ' and y \  

and that the two dials are labelled p  and q respectively. Suppose also that the 

angle of a lever corresponds to the value of the coefficient it matches and the dials 

given the values for p  and q. Suppose also that the levers’ positions always satisfy 

(*). Finally, suppose that an experimenter can pull levers on one side at a time 

and that levers on the side she is moving only change if  she pulls them. However, 

if  the experimenter moves the levers on one side, the levers on the other side 

move to ensure (*) is maintained. This ‘lever box’ is illustrated in figure 2.2.
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Figure 2.2 The ‘Lever Box’

Here a choice o f coefficient set is analogous to the experimenter moving levers on 

a particular side o f the box. If the experimenter pulls levers on side A then model 

l ’s set o f coefficients is appropriate; if  the experimenter pulls levers on side B 

then model 2 ’s set o f coefficients is appropriate. The inconsistency o f the two 

sets, which rules out the conceptual equivalence here, is analogous to the 

impossibility that the experimenter be on both sides o f the box at the same time.61

The point here is that which model is appropriate depends on which levers are 

those that are directly controlled by the experimenter. So, if the a-lever, /?-lever 

and y-lever are those directly controlled, the experimenter is on side A and model 

1 applies. Conversely for the other side. Therefore, the stipulation that certain 

factors are those that are directly controlled, where I assume that this means that 

each of these factors can be varied independently of the others like levers, plays 

an important role in distinguishing the two models. Without it, one cannot be sure 

which side o f the box the experimenter is ‘on’ and thus which model holds, in that 

case a conceptual equivalence problem remains.

This shows that it is necessary to stipulate what the coefficients are in order to 

establish distinct model interpretations for mathematically equivalent sets o f 

equations. However, the stipulation o f the set o f coefficients to be read as directly 

controllable is not in itself sufficient to rule out all conceptual equivalence 

problems. The insufficiency o f coefficient stipulation for solving conceptual 

equivalence can be seen from a simple example. Consider the first o f the earlier

61 Formally, if  one set o f  coefficients {a, /?, y} is stipulated, then these are variation free. This then 
implies that none o f the other coefficients a /?’ or y ’ can also be variation free in relation to {a, f$ 
, y} given the assumed mathematical relations between the two sets o f  coefficients.
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two systems and another equivalent system of equations, and both of their 

extended formal orders.62

Model 1 {a} ffi} {y} Model 3 {a} {fi} {y}

; : ; * 4  u  M /
{phM q} {p} {q}

In this case the two sets of equations are mathematically equivalent and have the 

same coefficients and the same variables. Therefore they both have the same 

directly and indirectly controllable factors in their respective model readings. 

And yet their causal orders are distinct. The model on the right, instead o f reading 

price as a direct cause of quantity like the first model, takes price and quantity to 

have the a-factor as a common cause.

Clearly, the reason these two systems differ is that the second equation in the 

system on the right contains a rather than p. This leads to a distinct causal order 

in the model interpretation because this equation represents a correspondingly 

different mechanism from that assumed in the model reading of the first set of 

equations. Therefore, the difference in model readings is due to a difference in 

equations. It follows that merely stipulating the set o f coefficients and variables 

in a set o f equations is not sufficient to remove all conceptual equivalence 

problems between the two systems of equations. One must also stipulate the form 

of the equations because different equation forms imply different mechanisms in 

the model readings. For instance, the second equation in model 1 denotes a 

mechanism that relates two indirectly controllable factors and two directly 

controllable factors. Whereas in model 3, the second equation denotes a 

mechanism that relates three directly controllable factors and one indirectly 

controllable factor. The two equations respectively denote two different 

mechanisms, and this leads to different causal relations in their model 

interpretations.

62 It could be objected that model 3 below is not acceptable since its second equation isn’t linear in 
the coefficients. Though this is correct, one could easily reformulate it so that it is, for example, by 
introducing a new variable x and replacing the system above by x=a  , p= x  and q=fix + y. 
Alternatively, one could keep the above set up but drop fi from the equations in both systems. 
However, I stick to the example above because it is intuitively clearer. Also, given that Simon’s 
methods can be extended to such non-linear cases it is not a serious problem.
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Finally, it is important to note that here I diverge from Kevin Hoover’s (2001a) 

reading o f sets o f equations, which is also developed from Simon’s analysis. As 

is discussed in chapter four, Hoover’s view takes the attribution o f direct control 

to coefficients (or ‘parameters’ in his terminology) as sufficient for determining 

the causal order o f a set of equations. The problem with this is, as Nancy 

Cartwright (2002) points out, is that Hoover’s position cannot then causally 

distinguish between systems like model 1 and model 3 above. In contrast, the 

approach adopted here avoids this problem.

6.3. Making the Strong Reading Explicit in Sets o f  Equations 

Ultimately the goal of this chapter has been to set out an explicit causal 

interpretation of sets of equations that are simpler versions of those used in 

econometrics. To complete the process I now propose a modification to the 

mathematical formalism by which causal orders in the model are to be 

represented. This is necessary because if one simply writes down a set of 

equations then one is restricted to mathematical symbols that have conventional 

meanings in the representation. As discussed repeatedly in this chapter, these 

conventional meanings allow the equations to be transformed into alternative 

equivalent forms that have different causal orders. So, to explicitly rule this out I 

propose a change in the mathematical syntax.

The basic idea is to replace *=’ with ‘=m’ in the equations to indicate it does not 

merely indicate an equality but that it denotes a mechanism .64 Also, I assume that 

in such an ‘M-equation’ Greek letters are coefficients and Latin letters are 

variables. Now ‘ =u cannot have exactly the same properties as *=’. In particular, 

it is only preserved under transformations that do not change the variables that 

appear in the corresponding equation. This is crucial because Simon’s method 

relies entirely on the form of the equations, that is, which variables appear in 

which equations. If these change then the formal order changes, so does the model 

interpretation developed here.

63 Given the reduced form o f the equations, see chapter four.
64 This proposed symbol t=M* plays a similar role as ‘c = ’ does in Cartwright’s (2003a) analysis 
and as the causal graphs assumed in Spirtes, Glymour and Scheines (1993) and in Pearl (2000). It 
provides an extra formal symbol by which causal content can be explicitly represented by the 
formalism.
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Appendix 2.1 presents formal analysis which attempts to precisely define i=M • 

However, the detail is cumbersome and rather opaque. So instead of discussing it 

here, consider the two original equations with which the chapter started, with the 

coefficients and variables moved to the left hand side o f equations. 

p - a  = 0

q - P p - y ^ Q

One can define two functions as equal to the respective left hand sides of these 

equations: fj(a, p, y, p, q) = p  -  a and p2 (a, p, y, p, q) = q - f t p -  y. Then the two 

equations above can be written as 

f](a, p, y, p, q) = 0  

f 2 (a, P, y, p ,q ) = 0

Now these equations correspond to mechanisms in the model, the coefficients 

correspond to directly controllable factors, and variables to indirectly controllable 

factors. To make this explicit, replace the ‘=’ by ‘=m to get.

fi(a , p, y, p, q) =M 0

f 2 (a, P, y, p, q) =m 0

This addition o f ‘a/ to the equals sign signifies that the equation denotes a 

mechanism. Each of these M-equations also is assumed to imply the 

corresponding equation, so for example, the first implies fi(a, p, y, p, q) = 0 .

In appendix 2.1, it is shown that one can multiply these M-equations by non-zero 

constants65 and reorder them to obtain new M-equations that represent the same 

mechanisms so that their model reading is unchanged. Finally, to increase the 

flexibility o f the notation, it is also assumed terms can be moved across between 

the left and right hand sides of the *=*/ just as one does for ‘= \  However, as it is 

defined in the appendix 2.1, a linear combination o f M-equations does not yield an 

M-equation because this changes the corresponding model interpretation.

With this background, the two original equations of the demand model that are to 

be read using the model reading, can be represented using two M-equations:

P = m <*
fip+r

65 A constant is fixed relative to coefficients and variables.
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These M-equations can have terms moved across between left and right hand side 

and they can be reordered and rescaled. So for instance, the above is equivalent 

to:

? = «  Pp  + y
2 p - 2 a  =M 0

However, one cannot linearly combine the equations, so the above is not 

equivalent to

p  + q = u  a  + /}p + r

? = «  Pp + y

To see the motivation for introducing i=M note that if  one applies Simon’s formal

order to the sets of equations that correspond to the equivalent sets o f M-equations

above then one gets the same formal order. Whereas one gets a different order for

the two M-equations that are not equivalent, that is, applying Simon’s formal

method to either

p  = a  q = Pp + y
or

q = Pp + Y 2 /7  - 2 a  = 0 

gives the same formal order i.e. {p} -> {q}. While applying it to 

p  + q = a  + Pp + yp

q = Pp  + y

yields formal order {p, q} which is distinct from that of the previous two sets.66 

This shows that the reason to introduce ‘=m’ is to modify the equality relation so 

that mathematical transformations can only be applied to it that respect the formal 

order and model reading. It formalises the solution to the conceptual equivalence 

problem presented earlier.

Finally, the introduction of this ‘=a/  makes explicit that the strong reading of 

Simon’s analysis is intended. The strong reading is one which attributes a model 

interpretation for a set of equations as set out in detail in this chapter. It assumes 

that the each equation as written denotes a mechanism, in which each coefficient

66 Strictly speaking they could have the same formal order over the variables. However, formal 
order is originally defined over equations and such transformations radically change the equations 
and thus the formal order over these. This does not occur in rescalings however, because I do not 
take two equations that differ by a scaling constant as different for the purposes o f the model 
reading. This is why I implicitly treated p =  a  and 2p-2a = 0 as identical in the previous example.
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denotes a directly controllable factor and so on. It reads Simon’s formal order as 

the causal order in the model, assuming that the mechanisms and causal order 

relations meet the invariance, independence properties discussed above. In 

simplest terms, the strong reading takes a set of equations to which Simon’s 

formal order is to be used, such as:

p - a
q = Pp + y

And assumes that these should be modified to read

P = m <*

<i=u Pp+r
so that the equations explicitly are to be interpreted in the way set out in this 

chapter. This completes the solution to the conceptual equivalence problem by 

introducing a formal modification that augments the mathematical syntax and 

semantics in a way that corresponds with the way equations are to be causally 

interpreted. It makes formally explicit the causal semantics that are to be 

attributed to the equations.

7. Conclusion

This chapter began with a simple problem. This problem was that equations in a 

mathematical model of a causal system could be mathematically manipulated in 

ways that changed the causal meaning of the model. As a beginning of a response 

to this problem, it presented Herbert Simon’s method for deriving formal orders 

from sets o f equations. It then developed Simon’s work to make explicit the 

connections between Simon’s formal orders and corresponding model concepts so 

that mathematical equations can be causally interpreted in an explicit way. This 

development o f Simon’s method for causally interpreting equations is called the 

‘strong reading’. As with any formalisation of concepts, it committed the 

resulting concepts of causes and causal order to having certain features. Among 

these features, the chapter discussed how factor changes are related to causal 

orders, the invariance of mechanisms to factor changes, the independence of 

directly controllable factors and the possibility that causal impacts cancel out. 

These properties highlight important constraints that actual systems need to satisfy 

if  they are to be accurately represented using causal models o f the sort analysed
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here. Lastly, the chapter finished with a discussion of just how the original 

conceptual equivalence problem was solved and on the importance of stipulating 

the coefficients and the form of the equations in this solution.

In short, the chapter has presented an explicit interpretation of Simon’s formal 

order and the deterministic sets of equations for which it is defined. In contrast to 

Simon’s approach the method here has not assumed identifiability in the 

definition of causal order. Instead, the strong reading assumes that it is in virtue 

o f equations denoting mechanisms, that will be muddled if equations are 

manipulated (in any way but rescaling and reordering) that a unique causal order 

is attributed to a set of equations. Chapter five picks up the discussion later when 

it analyses the role identifiability in Simon’s approach and how identifiability of a 

set o f equations can be causally interpreted using the strong reading proposed 

here.

Finally, as is clear from the limited nature o f the sets of equations treated, there 

remains work to extend the interpretation to sets of equations like those actually 

used in econometrics. This chapter is limited to deterministic, simultaneous 

equation models. As such it is open to the criticism that it is not immediately 

relevant to probabilistic models of econometrics. This is why in the next chapter I 

attempt to extend the strong reading of equations to cover the simplest type of 

models actually used by econometricians: linear models with errors-in-the- 

equations.
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Appendix 2.1 -Beginnings of a Formalisation of Mechanisms and Causal 

Order

To develop a formal treatment o f = m ,  first define:

A Linear M-System (LMS) relative to the set of coefficients C= 

{aj,a2, and the set of variables V -  {xi,X2, ...,x„} is the ordered triplet 

(C, V, E(F)) where E(F) is a set o f equations, f= 0  for all f  e F. F  is a set of 

linearly independent functions f:  PcxPy R  that are linear in variables, V, 

and linear in the coefficients C, such that the set E(F) o f equations is 

solvable for all o f the variables in V  in terms o f the coefficients in C. For 

a, in C, Pat is the set o f possible values (the domain) for at and similarly 

for xt in V, PXi is the set o f possible values o f x, in V. To simplify the 

notation, let Pc = PajxPa2X...xPam and Py = Pxix...xPxn. The set o f possible 

values for any variable or coefficient is a subset of R.

And also define:

Two linear M-systems relative to (C, V), (C, V, E(Fi)) and (C, V, E(F2)), 

are M-equivalent if and only if there exists a bijective operator G: Fj
fillF2 , such that for each function /  in Fj there is a non-zero constant c such 

that G(f) = c f.

To justify it being termed ‘equivalent’, I prove that it is an equivalence relation.

Theorem 2.1: M-equivalence is an equivalence relation.

Proof. Given (Cj, V], E(Fj)) an LMS relative to (C, V). Define an 

operator G(f) = f  for all /  in Fj, since G is the identity operator it is a 

bijection. Therefore, G meets the conditions o f the definition, so (Cj, Vj, 

E(F1)) is M-equivalent to itself i.e. M-equivalence is reflexive.

67 A constant is fixed relative to changes in coefficients and variables.
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Given (Cj, Vj, E(Fj)) M-equivalent to (C2, V2, E(F2)) then there is a G 

such that for each / i n  F  there is a non zero c such that G(f) = c f  For any 

function h in F2 , since G is a bijection, there is a u n iq u e /in  Fj such that h 

= Gff) = cj,\ for some non-zero c. For each such h, define G2 Q1)  = (l/c)h 

= f  This defines a bijective operator G2 '. F2 Fj which meets the 

conditions in the definition of M-equivalence. So (C2, V2, E(Fj)) is m- 

equivalent to (Cj, Vj, E(F1)) and M-equivalence is a symmetric.

Given ((Ci, Vj, E(F1)) M-equivalent to (C2, V2, E(F2)) which is itself M- 

equivalent to (C3, V3, E(Fj)) then there is a Gj: Fj F2 that multiplies 

each function in Fj by a non-zero constant to get a function in F2 . 

Likewise there is a G2 .F2 F3 does the same for each function in F2 

mapping it onto a function in F3 . Then the composition G3 = G2 o Gj 

multiples each function in Fj by a non-zero constant to get a function in 

F3. Moreover, since Gj and G2 are bijective so is G3 , the composition of 

the two. Therefore (Cj, Vi,E(Fj)) is M-equivalent to (C3, V3,E(F3)) and 

M-equivalence is transitive.

Since M-equivalence is reflexive, symmetric and transitive it is an 

equivalence relation. □

To simplify the notation in an intuitive way now introduce ‘=m •

Definition o f  ‘=m ’- Given (C, V,E(F)) a LMS relative to (C, V) where C = 

{aj,..., am}  and V= {xj, Denote the LMS by listing the equations for 

each function/in  F  where = is replaced by =m- 

f i(a i, . . . ,  am,X]>...,xn) = M 0 

f 2(0-1,..., am,xi,...,xn) = M0

f n(oi,..., OmiXl,...,Xfj) M 0

Assume (to extend the usefulness of this notation) that for f  which 

satisfies f  = hu  - h n  for hn  and hi2 linear in the coefficients and
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variables, where these are functions only o f coefficients and variables that 

appear in/y, that

h n  = m  h i 2  < = >  f i  = m  0

Given this, one can move terms across the =m sign in the same way as one 

does for =.

It is worth noting several important properties that are assumed in the definition:

(i) A set o f  M-equations implies the corresponding se t o f  equations  i.e.

If f i(a j, . . . ,  am,xi,...,xn) = M0

fn (o  ],..., Om,X],...,XfJ

Then

f  1(0.1,..., am,xl,...,xn) = 0

f n(o i, ..., am,X],...,Xn) =  0

(ii) One can reorder and rescale M-equations :

f  1(0 j , ..., am,X],...,XfJ ~m 0

fi(O j,..., Om,X],...,XfJ m O

Then for any non-zero constants {cj, C2, ..., cn}  and bijection 

k : { l , . . . ,n } ->  { ! , . . . ,n}  which reorders indices,

C]fk(l)(Ol,..., Oni)Xl, ...,XfO M@

Orfk(n)(Ol,..., Om,Xl, ...,XfJ m O

As discussed in the main body of the chapter, the symbol ‘=m is introduced to 

limit mathematical transformations on sets of equations (to which Simon’s formal 

order is applied) to those that preserve the formal order. To show that it 

accomplishes this, I need to prove the following.

Theorem 2.2  Two LMS relative to (C, V) have the same formal order if 

and only if they are M-equivalent.
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Doing this first requires defining Simon’s formal order for an LMS. Loosely this 

can be done by

A form al order for the LMS (C, V, E(F)) is the relation over the partition 

of E(F) that results from applying Simon’s method for generating a formal 

order to the linear equations corresponding to the M-equations i.e.

f  1(0.1,..., Om,Xj,... ,Xn) — 0

fn(0 ],..., Om, X X r J  = 0

Since theorem 2.2 makes reference to ‘same formal order’, it is important to be 

clear about the identity conditions for formal orders over equations. However, 

since the formal order is defined over the set o f equations, to make sense of when 

the formal order o f two sets of equations is identical, it is first necessary to be 

clear as to what is required for two sets of equations to be identical.

Aside: Relevant Identity Conditions

In line with the standard identity condition for sets, first assume that two sets of 

equations are identical if  and only if they contain identical equations.

But what is meant by ‘identical equations’? Again following convention, assume 

that two equations, /  = 0 , g  = 0  are identical only if f = 0  and g = 0  are 

mathematically equivalent, that is both have the identical solution sets:

{ ( a a m,xh ...,xn) e P cxP v \f(o1,..., am, =0} =

{(oj, ..., am,xh ....Xrje PcxP v | g(ai, ..., am, xj, ...,x^ =0}

In addition assume that for f-Q  and g=0 to be identical it is necessary that/ and g
A ftare functions o f the same set of coefficients and variables . By the set of 

coefficients and variables of which /  is a function I mean the subsets o f C U V ,  on 

which the value of/ depends. For example, if C={o],0 2 ,0 3 } and V = {xi,X2} and 

f(oi, 0 2 , 0 3 , xj, X2)  = 0 2 X1+ 0 3 , then the set of coefficients and variables of which/

68 Here I take it that any coefficient or variable that does not appear in the equation is not a part of 
that set.

66



is a function is {a.2 , as, xj}. So, although/ can be expressed as a function of all 

the coefficients and variables, here I mean by the ‘set of coefficients and variables 

o f which/ is a function’ just those that actually figure in the functional expression 

for f  This condition which will be justified in the discussion of mechanisms that 

follows the proof of the theorem below.

Summarising the identity conditions for equations:

Two equations that are linear in the coefficients and variables, f= 0  and 

g = 0  are identical if  and only if

(i) f = 0  holds if and only if g = 0  i.e. they have the same solution

set.

(ii) The set o f variables and coefficients of which /  and g  are 

functions are the same.

Finally, assume two formal orders over two sets of equations are identical if  and 

only if  the two sets of equations are identical and when Simon’s formal ordering 

method is applied the two sets of equations, the same causal precedence, 

exogeneity and endogeneity relations hold over equations and variables.

End o f  Aside.

With this background in place I can set out a proof of theorem 2.2.

Theorem 2.2 Two LMS relative to (C, V) have the same formal order if 

and only if they are M-equivalent.

Most o f the proof follows from the following lemma

Lemma\ For two LMS relative to (C, V), (C, V, E(F)) and (C, V, E(G)), the 

two sets of equations, E(F) and E(G), are identical if and only if  the LMS 

are M-equivalent.

Proof o f Lemma:
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(i) ‘ Only I f : E(F) and E(G) are identical => the LMS are M-equivalent.

For f = 0  an equation in E(F) assume that g = 0  is the corresponding identical 

equation in E(G). Since these equations are identical they are mathematically 

equivalent, that is

{(ai,..., am>xi,...,xn) e P cx P v \f(ai,. . . ,  am, =0} =

{(aI}..., am,xi,...,xn) e P cx P v I g(ai,'~, am, x j , . . . ^  =0}

Now define

fa(x) =f(a,x) and ga(x) = g(a,x)

f a(x) is a linear function on the variables defined by f(a, v) where the vector of 

coefficients, a, takes a particular value. Similarly, g a(x) is defined in the same 

way but for g.

By the definition of fa(x) and ga(x) and the mathematical equivalence of/  and g, it 

follows ihdXfa(x) and ga(x) are mathematically equivalent i.e.

{ ( x i , . . . ^  e P v\ fa(Xl,'..,Xn) = 0} = {(X],...,Xn) e P v \  g a f x j , . . . ^  =0}

SineQfa(x) and ga(x) are linear functions in the variables, they can be expressed as

/« (* ) = l t b:X>
1=1 where the b ’s and c ’s  are constants.

n

g a ( X) = ' Z C‘X:
i=1

So the equivalence between^fx^) and g a(x) can be expressed as:

{(xi,.",X r)\'£ lbtx i =0} = {(xh ...,x j  | ^Ci X,  =0} ... ( 1)
/=i »=i

Note that at least one constant, bt, in the expression for f a must be non-zero, 

otherwise f a(x) = 0  and thus f(a, x) = 0  at some non-zero coefficient value a. 

However, this is not possible given that coefficients must be non-zero and f(a, x) 

is linear in the coefficients and variables,69 since for functions o f this form one

69 These are conditions specified by Simon, see the main body o f the chapter.
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can always find some non-zero x , regardless of the (non-zero) value of a , such that 

f(a, x) ± 0. So,

At least one bt in the expression for f a(x) is non-zero... (2)

i=l
Now for (zi,Z2, .,.,ZrJ any element in {(xj, ...,xr) \ ^ b ix l =0}, so from (1) it follows 

that

£ c , z ,  = 0  ... (3)
/=]

By (2) one can assume without loss of generality that b„ is a non-zero. Given
n

= 0  then
/=]

K  M

Substituting (4) into (3) yields.
n- 1 M-l
’E c , z l - ( T L) 'E b,zl = 0

bn 1=1i=1 

n - 1

X
i=l b„

z, = 0

(4)

(5)

Now, consider any (zi,Z2, ...,z„.j) in R n l , letting

1 n-l
z „ = - ( t - ) X btz t

bn /=i
n

implies that (zj,Z2, ...,z„) satisfies biz i = 0 , so (5) holds of this (zi,Z2, ■■•,zn-i).
i=i

But this implies for all (zi,Z2, ...,zn.i) in R

n- 1

,n-l

/=1
z. = 0

which implies that

,c„bj.
c. -  ( -* -4  = 0 Vi 

b '
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that is

(6)

But this implies

fafa) = ~  ga(x)

Or letting Aa = , that f a(x) = l a ga(x)

Since cn and bn are non-zero for f a(x) and ga(x), Xa is a non-zero constant. It 

follows that ga is a rescaling of/a. So, 

f(a,x) = X(a)g(a,x) ... (7)

Note that X(a) may not necessarily be constant, it is only has been shown so far 

that it is a non-zero constant for fixed a i.e. for/ and g  when the coefficients are at 

a particular value.

However, (7) can be strengthened if one considers the second necessary condition 

for f= 0  and g=0 to be identical. It requires that f(a,x) and g(a,x) be functions of 

the same set o f coefficients and variables. This implies that X(a) can only be a 

function of coefficients that appear in g(a,x) otherwise /  would be a function of 

more coefficients than g .71 Moreover, since f(a,x) and g(a,x) are linear in the 

coefficients, if  X(a) is a function of some coefficients (i.e. not a constant) then 

either X(a)g(a,x) is not suitably linear (since it contains products o f coefficients) 

or, if  these products of coefficients all ‘cancel out then X(a)g(a,x) is a function of 

fewer coefficients than g(a,x) which is ruled out by the second identity condition 

that must hold between/ and g. So it follows that X(a) must be a constant, that is

70 c„ is non-zero because otherwise ga(x) = 0 from (6) which is false.
71 Recall that the coefficients are variation free, so it is not possible that coefficients in X(a) that do 
not appear in g(a ,^cancel out with coefficients in g(a,x).

f(a,x) = Xg(a,x) (8)
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So for e a c h /in  E(F) there is unique g  in E(G) such that (8 ) holds for some non

zero constant L  Being identical, it follows that E(F) and E(G) also contain the 

same number o f equations, so there exists a bijection between E(F) and E(G) such 

that each element in E(G) is an equation in E(F) multiplied by some non-zero 

constant. In other words, the two LMS are M-equivalent. □

(ii) ' I f :  the LMS are M-equivalent => E(F) and E(G) are identical.

Since the two LMS are M-equivalent, for each f= 0  in E(F) there is a unique g  = 0 

in E(G) such that

f - k g  for some non-zero constant k 

It follows trivially that/ and g  are functions of the same coefficients and variables 

and that f= 0  and g=0 have the same solution set. Therefore for each f= 0  in E(F) 

there is a unique g=0 in E(G) which is identical to it. Moreover, since the LMS 

are M-equivalent there is bijection between E(F) and E(G) so they have the same 

number o f equations. Therefore, E(F) is identical to E(G). □

With the lemma, the proof o f the theorem is straightforward.

Proof of Theorem:

(i) ‘I f  (M-equivalent LMS => same formal order)

Assume the M-equivalent LMS are (C,V,E(F)) and (C,V,E(G)) respectively. 

From the lemma it follows that E(F) and E(G) are identical.

By M-equivalence, the second LMS can be represented as a rescaling and 

reordering o f the first LMS. This does not influence the solution properties o f the 

equations. In particular, it does not change which equations and which variables 

are solved for in which order when using Simon’s formal method for determining 

formal order. This implies that applying Simon’s formal ordering method will 

yield the same results for a rescaled and reordered set o f equations. Therefore, 

E(F) and E(G) are identical and the relations among the equations and variables
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got by applying Simon’s formal order will be the same. Therefore, the two formal 

orders of the two LMS are identical. □

[Aside: This is similar to analysis by Simon (1953, pp.29-30) where he shows that 

multiplying equations by non-zero constants (i.e. rescaling) does not change their
77formal order. ]

(ii) 'Only i f:  (Two LMS have the same formal order => The LMS are M- 

equivalent)

Since the two LMS have the same formal order, E(F) and E(G) are identical. 

Therefore we have two LMS (C, V,E(F)) and (C, V,E(G)) for which E(F) and E(G) 

are identical. By the lemma they are M-equivalent. □

Comment on Theorem 2.2, Identity Conditions fo r  Equations and Mechanisms 

Theorem 2.2 formalises the solution to the conceptual equivalence problem 

presented in the main body o f the chapter since it shows that the new symbol 

‘=m\  as defined here, limits mathematical manipulations o f the set of equations to 

those that preserve Simon’s formal order over equations. The fact that it is the 

formal order over equations and not variables which is preserved is also 

important. Especially since the identical formal order over variables for two LMS 

does not imply M-equivalence (this is essentially noted by Simon in his footnote 

(1953, [11], p.30) when he observes that some linear combinations of equations 

may preserve the formal order over the variables). This highlights an important 

difference between formal orders over variables and over equations which is 

implicit in Simon’s treatment. In the analysis here, it is the fact that identical

72 Note, however, that in contrast to the strong reading Simon claims reordering equations does not 
preserve the formal order because, as he interprets it, this muddles the interpretation o f the 
equations. While the strong reading is ‘reordering blind’ i.e. it does not matter what order the 
equations are written in since a reordering o f the equations is assumed to be accompanied by a 
suitably reordered interpretation for those equations. In any event, the difference between Simon 
and the position here is not significant since for both positions the appropriate interpretation o f an 
equation is preserved, either because the interpretation is also reordered (the strong reading) or 
because the order o f the equations is fixed (Simon).
73 It can be shown the formal order over equations is the more fundamental concept, for instance, 
from the fact that Simon uses which variables appear in which equations to define relations among 
variables such as direct causal precedence. However, since it is not directly relevant to the analysis 
o f the thesis, I leave discussion o f this difference as further work.
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formal order over equations requires identical equations that allows one to derive 

M-equivalence.

Given this, a natural question arises as to what the formalism above has to do with 

the causal interpretation. To understand this, the identity conditions for equations 

need to be considered in light of the fact that these equations are taken to denote 

mechanisms in the strong reading. Specifically, the identity conditions for 

equations require two things: (i) that the solution set for the equations be the same 

and (ii) that the functions in the equations (e.g. /  in f = 0  and g  in g= 0 ) must be 

over the same variables and coefficients. Both o f these conditions have natural 

interpretations when the equation is read as a mechanism.

To see this, consider the first identity condition which requires that the equations 

f = 0  and g = 0  be identical as constraints on the set of possible values of the 

variables and coefficients. In the model reading this implies that two mechanisms 

are identical only if  they constrain the possible values o f directly and indirectly 

controllable factors in the same way. This is an intuitive necessary condition for 

mechanisms to be identical since if one mechanism allowed a value o f a factor 

which was not allowed in another mechanism, one would naturally consider the 

mechanisms to be distinct.

A similar remark applies to the second identity condition which requires that the 

respective functions in the identical equations be defined over the same variables 

and coefficients. In the model reading, this requires the identical mechanisms to 

relate the same indirectly and directly controllable factors. This too is a natural 

necessary identity condition for mechanisms since mechanisms that constrain 

different factors are intuitively distinct.

So, the identity conditions assumed here for equations are motivated by intuitive 

considerations as to what is necessary for two mechanisms to be identical. 

Assuming the causal order over mechanisms of two systems of mechanisms can 

only be identical provided the mechanisms are identical, then provides the basis 

for the identity conditions on the formal order over equations.
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To complete this appendix, I now attempt to clarify the concept of a mechanism 

formally.

Let D  be the set of directly controllable factors and I  the set of indirectly 

controllable factors. For d  in D , let PdQ R  be the set o f possible values for 

the factor d, and similarly define Pt for a factor i in I.

For D={di, ...,dm} and I  = {ij, ...,i»} define a mechanism, m*, as the ordered 

triplet (Sd, Si, (pm*=0)  where S d  is a non-empty subset of D, and Si a non

empty subset o f/, and (pm* is a linear function <pm*:PsDxPsi R  (where P s d  

is the Cartesian product of the individual sets of possible values for d  in 

Sd, and similarly, Psi is the Cartesian product o f the sets of possible values 

for i in Si). For a mechanism, m *, let nm* a function defined as follows, 

PdxPi R  (where Pd = Pdix...xPdm and Pi =Pux...xPin) such that fim* 

= (pm+ (this is introduced for convenience, and is just the function <pm* but 

whose domain is expanded to include all other the sets of possible values 

for other factors i.e. those factors not in the mechanism, that is, not in Sd 

not Si). Let M  denote a set of mechanisms.

To clarify this, a mechanism is defined using three components (i) SD, the directly 

controllable factors that are in the mechanism (ii) Si, the set of indirectly 

controllable factors in the mechanism and (iii) (pm * = 0  the constraint on the values 

o f the factors in Sd and Si that can co-occur. So a mechanism relates directly and 

indirectly controllable factors and constrains the possible values of factors.74

With this, define the model reading:

74 Ideally this should be refined so that it is only possible values o f indirectly controllable factors 
that are constrained by the mechanisms, as discussed in the main body o f the chapter. I leave this 
refinement as further work, however.
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The ordered triplet (D, I, M) is the model reading for (C, V, E(F)) under 

(h ifa M )  where h\\ C D, h2: V I  and hy. E(F) M  are bijections, if

and only if

(i) V a in C, Pa = Phi (a).

(ii) V x in V, Px = Ph2(x).

(iii) Vf= 0  in E(F) such that m *= h2(f=0)\

{(ai,..., am,x i, . . . , X r ) e PcxP v I f (a j , .. • > 0-m> X l , . . . , X r J  = 0}

={(Whl(al), -•,Whl(am),Wh2(xl), •••,Wh2(xn)) c PdXPi | f2m*(^dl,

W d m ,W i l , ~ ' ,W i r < ) = 0 ) }

This formalises the isomorphism assumed in the chapter in moving from Simon’s 

formal concepts to the model concepts. Though it looks formally involved, it 

simply performs a relabeling, replacing coefficients by corresponding directly 

controllable factors, variables by corresponding indirectly controllable factors and 

functional equations by mechanisms. Importantly, it imposes that the possible 

values of coefficients must equal the possible values o f directly controllable 

factors, the possible values o f variables must equal the possible values of 

indirectly controllable factors and the constraints on possible values on factors 

imposed by mechanisms must be identical with those o f the equations that denote 

them.

Given this machinery it is not difficult to define a causal order for the model 

reading of a LMS (one does this analogously to the definition of the formal order) 

and other model concepts from suitably defined formal concepts (e.g. complete 

subsets, exogeneity, endogeneity). I don’t do this here because it would take too 

much space and would not add much beyond what is already set out in the 

chapter. I leave it as further work.

Finally, given the model reading, it follows that by applying the model reading to 

theorem 2.2 that two LMS have the same causal interpretation i f  and only i f  they 

are M-equivalent. This follows simply by stipulation o f the unique model reading 

for an LMS over (C, V, E(F)) i.e. (D, I, M) and by theorem 2.2 which states that 

M-equivalent and only M-equivalent LMS have the same formal order. This is 

the formally completed solution to the conceptual equivalence problem.
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Chapter 3

Causally Interpreting Simple Models Used In Econometrics and 

Exploring Intervention

1. Introduction

The last chapter set out a causal interpretation for sets of solvable, linearly 

independent, deterministic equations by building on Herbert Simon’s work on causal 

order. Using it one can causally interpret a set of equations such as:

*1 = rio + 7 n x 2
x 2 ~ 7 2 0  + 7 23*3 (x’s variables, y’s coefficients)

X 3 =  730

This is a first step for interpreting the models actually used by econometricians. 

However it is only a first step since as it stands it is not sufficient for interpreting any 

models econometricians actually use.

Models used by econometricians are more complex than the simple, deterministic sets 

of equations interpreted in the last chapter. They are stochastic, have error terms, and 

typically treat variables and coefficients differently. To see just how different the 

systems of equations actually used by econometricians are, consider the following 

simple simultaneous equation model which might be used for econometric analysis: a 

supply and demand model for the wheat market.

q = ccp + fir + ux... supply 
q = yp + Si + u2 ...demand

Suppose that q denotes equilibrium quantity of wheat transacted, p  denotes 

equilibrium wheat price, r denotes rainfall, i denotes income, and uj and U2 are 

unobserved error terms denoting omitted factors. The coefficients a, /?, y and S are 

unknown but assumed constant. Rainfall and income are assumed to be independent 

of the supply and demand mechanisms, so r and i are treated as external (exogenous) 

variables. Quantity and price are determined by the supply and demand mechanisms, 

so q and p  are treated as internal (endogenous) variables. Assume rainfall and income
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and the error terms are random so that all variables in the equations are random 

variables. Also, assume that the error terms are normally and independently 

distributed of each other and of the r, i variables. This is the kind of simple 

structural model one finds in econometrics textbooks.1

As is clear from this example, the simplest sets of equations that econometricians 

actually use to model causal relations differ from the extremely simple sets of 

equations interpreted in the last chapter in several key ways:

(i) Variables are partitioned into two groups: those that are internal, or

endogenous, and those that are external, or exogenous.2

(ii) The equations contain error terms.

(iii) Error terms are stochastic, and external variables may be stochastic. 

As a result internal variables are stochastic.

(iv) Coefficients in the equations are constant.3

The work of the last chapter did not cover sets of equations which have these 

features. The main aim of this chapter is to extend the causal interpretative method, 

developed in the last chapter, to models that have the four characteristics above. It 

does this by working from the simple sets of equations, like those interpreted in the 

last chapter, assuming the strong reading holds for these and then adding further 

assumptions to allow the more general systems (with the differences above) to be 

causally interpreted.4 In this way, it extends the strong reading of the last chapter to 

causally interpret the simplest models that econometricians use.

1 Using such a model, the econometrician would use sample observations for q, p, r and i to estimate 
moments of the joint distribution for these variables to estimate values for the unknown coefficients.
2 Here I use ‘external’ rather than ‘exogenous’ and ‘internal’ rather than ‘endogenous’. This is because 
I have already used endogenous and exogenous in the previous chapter to mean something slightly 
different. In addition, as Stephen LeRoy (2004, p.3) notes, there are different interpretations of  
‘exogenous’ and ‘endogenous’. For these reasons I stick to the less ambiguous internal-external 
terminology.
3 Though this generally holds in simple analyses, it is not always assumed. In more sophisticated 
models coefficients may change values; they may be random variables, functions o f time etc.. For an 
example o f this kind of econometric modeling, see Cooley and Prescott (1976).
4 This means that the characteristics o f the strong reading apply here. For instance, equations denote 
mechanisms that are invariant to factor changes, directly controllable factors are independent and so 
on.
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A second aim of this chapter is to use the analysis developed in extending the causal 

interpretation to present a short exploration of interventions. It is possible to do this 

because the causal interpretation developed for sets of equations with internal and 

external variables assumes that these sets of equations are incomplete versions of sets 

o f equations which contain only variables and coefficients (like those of the last 

chapter). In other words, the sets of equations looked at in the last chapter are taken 

to be ‘complete’ with their coefficients taken to denote the ultimate, relevant causes 

of the factors that are of interest to the modeller.5 In contrast, sets of equations with 

internal and external variables are taken to be ‘incomplete’, that is, taken to represent 

a subset of the causal relations denoted by some complete set. In addition to 

providing an intuitive way of introducing external and internal variables, this method 

has the advantage of allowing one to discuss the properties of the causal inputs 

modelled by a incomplete set. This allows a discussion of different kinds of 

intervention.

The chapter is structured as follows. It begins the extension of the causal 

interpretation to sets of equations with external and internal variables by 

differentiating between complete and incomplete sets of equations. In doing this, it 

presents a few formal results that make explicit how incomplete and complete sets 

relate to each other, when the former represents a subset of the causal relations 

represented by the latter. Once this is done, the chapter uses this to present a brief 

discussion of different kinds of interventions. The chapter then returns to the 

problem of extending the causal interpretation by introducing error terms and 

stochastic features into sets of equations and presenting a causal reading for these.

2. Introducing External and Internal Variables: Complete vs. Incomplete Sets 

In the sets of equations of the last chapter, coefficients could vary. This enabled 

coefficients to denote the ‘causal inputs’, the directly controllable factors, which

5 Though this sounds like a very strong claim, in fact the motivation is pragmatic. It is simply a way of 
delimiting the causes that are relevant to the purposes o f the model. I do not discuss here the 
conditions under which a model can be taken to be complete, particularly for purposes o f causal 
inference, though clearly this is important. Instead, I assume that one has good reason for treating a 
model as complete, whatever those reasons are, and leave the analysis o f those reasons as further work.
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influenced other factors. In the simplest structural models econometricians use, 

coefficients are typically fixed and it is the external variables that vary and denote 

causal inputs. This suggests an obvious and straightforward way to extend the 

interpretation of the last chapter to equations with fixed coefficients and 

internal/external variables: treat the external variables in the same way that 

coefficients were treated in the last chapter. In other words, read these as the directly 

controllable factors. This is simple and would do the job. However, I take the 

analysis a step further and instead develop the idea that a set of equations which has 

internal and external variables is an incomplete version of a complete set which has 

variables and coefficients. This approach is logically stronger6 but has the advantage 

of allowing an analysis of interventions later in the chapter.

2.1. Incomplete Sets o f  Equations and their Causal Interpretation

To begin, I present a definition of a complete set. These are the sets of equations

which were interpreted in the last chapter.

A complete set of linear equations is a set o f equations that are linear 

in the (non-zero) coefficients and linear in the variables, where the 

equations are linearly independent and solvable for the variables in 

terms of the coefficients. The coefficients are variation free.

This definition essentially matches Simon’s definition of linear model (1953, p. 14). 

The only substantive difference is that a variation free requirement on the coefficients 

is made explicit. Recall from the last chapter that coefficients being variation free
n

means that the coefficients can take any value as a group as they can individually. 

This was necessary for interpreting the coefficients as directly controllable in the 

model reading.

An incomplete set is defined in a similar way to a complete set, but some of its 

variables are termed ‘external’ and are treated as if they are coefficients.

6 Since it assumes, in addition to the set o f equations with internal and external variable that a larger 
more comprehensive complete set holds. In addition, when causally interpreted it assumes that model 
readings hold for both sets of equations.
7 Formally a set {zI,z2,...,zn}  of coefficients or variables is variation free, letting P(zJ denote the set of 
possible values forz,, if and only if P(z],z2,...,zn) = P(zi)xP(z2)x...xP(zn).
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An incomplete set of equations is a linearly independent set of 

equations that are linear in the variables and the (non-zero) 

coefficients and in which variables are partitioned into two sets: 

external and internal. The equations are such that internal variables 

can be solved for in terms of the coefficients and external variables.

The set of coefficients and external variables together are variation 

free.

As is clear from the two definitions, if one reclassified the external variables in the 

incomplete set as coefficients one would obtain a complete set. This implies that one 

can apply Simon’s formal ordering methods to incomplete sets by treating external 

variables as if they were coefficients.8

For example, consider the incomplete set of equations:

T l  =  « 1 0  ^ 1 2 ^ 2  A  1 * 1  P \ 2 X 2

y 2 — (%20 "*■ ^ 2 lT l  A l * l  P x 3X 3

T 3 =  a 30 **32^2 A l4 * 4

(x’s external, y ’s internal, a and /Ps coefficients)

Suppose one applies Simon’s formal ordering method treating the external variables 

as coefficients and internal variables as variables. First, one solves for yi and y 2 from
tVithe two first equations to get that the first two equations are a complete subset of 0  

order of equations. This also gives {yj, y 2} as the corresponding complete subset of 

0th order of the internal variables. The third equation can then be solved for >>5, so it 

forms the only complete subset of equations of 1st order. Likewise, this gives {y3} as 

the corresponding complete subset of 1st order in the internal variable ordering. So 

the formal order over the internal variables is (yj, y 2} {y3}.

That one can apply Simon’s formal ordering method to these incomplete sets suggests 

that they can also be interpreted using the model reading of the last chapter. The key 

to this, as when applying Simon’s ordering method, is to treat external variables as if 

they are coefficients. That said, since external variables and coefficients are

8 Strictly speaking this requires the non-linear version o f Simon’s methods.
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nevertheless formally distinct, applying the model reading to an incomplete set, one 

should read coefficients as directly controllable factors, external variables as 

indirectly controllable factors that can be treated as i f  they are directly controllable 

and internal variables as indirectly controllable factors.

One could leave it at this, after all this gives a way to causally interpret sets of 

equations with internal and external variables. Doing it in this way, one simply re

labels the external variables in the equations as ‘as if coefficients’ and reads the 

resulting equations using the method of the last chapter. However, there is 

something unsatisfactory about this re-labelling approach. In particular, it reveals 

nothing as to why variables can be treated as external. In the model reading, if one 

reads variables as indirectly controllable factors, why is it that some of these (the 

external variables) can be read as directly controllable factors?

To answer this question requires a framework within which an explanation can be 

provided as to how indirectly controllable factors can be treated as directly 

controllable. To give such a framework, I make an additional assumption that in the 

model reading an incomplete set represents just some o f  the causal relations 

represented by a complete set. With this additional assumption, incomplete sets 

‘abbreviate’ complete sets. This assumption provides the necessary extra content for 

analysing how an incomplete set can have some its variables, its external variables, 

read as if they denoted directly controllable factors. The next section begins this 

work of setting out more precisely the relationship between an incomplete set and the 

complete set which it abbreviates.

2.2. Constructing Incomplete Sets from Complete Sets

To analyse the relationship between complete and incomplete sets, I first consider 

how an incomplete set of equations can be mathematically derived from a complete 

set. This is then used to show how an incomplete set can have an intuitively 

inconsistent causal interpretation from that of the complete set from which it is 

derived. This helps later in setting out a definition of how an incomplete set can be
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causally consistent with a complete set, which provides formal conditions for when 

an incomplete set represents just some of the causal relations represented by a 

complete set.

One way to derive an incomplete set from a complete set is straightforward: one 

linearly transforms the complete set of equations into any other set, drops any 

equations one likes and then stipulates that sufficiently many variables in the 

resulting equations be external so that the resulting equations are solvable for the 

remaining (internal) variables in terms of coefficients and external variables.9

To see how this works, consider the complete set: 

zx= a

*2 =*i + r
z3 = zx + z2+ X

One can drop the first equation to get.

*2 =*1+7 
z3 = zx + z2 + X

Suppose one classifies z; and Z2 as internal and z3 as external, then one gets, 

z = z ■+■ y
2 1  (z/ and Z2 internal, z3 external)

z3 = z, + z2 + X

For this to be an incomplete set, it is necessary that the set /z3, y, X} be variation free. 

If one solves z3 in terms of coefficients in the complete set, one can see that it 

depends on a. Since {a, y, X} are variation free in the complete set, 10 it follows that 

{z3i y, X} are variation free. Since the set of derived equations is solvable for the 

internal variables and has variation free external variables and coefficients, it is an 

incomplete set of equations. Also, since the incomplete set has been derived from the 

complete set, it is mathematically consistent with it.

9 Note that the many different ways of doing this shows that a complete set o f equations will generally 
have many different incomplete sets that can be mathematically derived from it.
10 Recall in the definition of a complete set, the coefficients are variation free.
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What is interesting here is the causal order for both the complete set and the 

incomplete set.11 These are:

Complete Set 1 Causal Order {y}
Zj = a
z2 = zt +y  
z3 = ^  + z2 + X

Incomplete Set 1 Causal Order {y}  ̂{X}
z2 =Z j + ^
z3 = Zj 4- z2 + X
(zj and Z2 internal, Z3 external) { zj, Z2} <--------------{Z3}

In this example the derived incomplete set has intuitively12 an inconsistent causal 

interpretation from the complete set from which it has been derived. This is because 

in the incomplete set Z3 and X are direct causes of zy and Z2 while none of these 

relations hold in the causal order of the complete set. So spurious causal relations, 

absent from the formal order of complete set, have been introduced in constructing 

the incomplete set. In addition, since a  is a direct cause of z/ for the complete set but 

not the incomplete set, it also has left out a cause of one its internal variables (i.e. zy).

Clearly in such a case, the derived incomplete set does not represent just some of the 

causal relations represented by the complete set. It adds causal relations that are not 

present in the original causal order (for example, X directly causing zy and zi) and it 

leaves relations out (for example, from a to zi). So not all incomplete sets of 

equations that can be mathematically derived from a complete set intuitively 

abbreviate it. So, which derived incomplete sets do abbreviate the complete set?

2.3. Causal Consistency o f  Incomplete and Complete Sets o f  Equations

The question that needs to be answered is: under what conditions does an incomplete

set have a causal interpretation that is consistent with a complete set from which it is

11 Here the coefficients and the external variables are included in the causal order, using the concept of 
extended formal order defined in chapter two.
121 say ‘intuitively’ because a definition for consistency has yet to be given.

83



derived. As the example above suggests, to be consistent with a complete set, an 

incomplete set should have a causal interpretation involving only mechanisms, 

factors and order relations that hold among these that are represented by the complete 

set and it should not leave out causal relations among the factors that it models. 

Together, these lead to a natural way of stipulating how an incomplete set represents 

just some of the causal relations represented by the complete set without leaving 

important causal information out. It suggests the following definition of causal 

consistency.

An incomplete set is causally consistent with a complete set if and 

only if

(a) Each of its equations is an equation in the complete set.

(b) All of the formal order relations, obtained using Simon’s 

formal ordering methods, between equations in the 

incomplete set, and between its internal variables, also 

hold for those equations and variables in the formal order 

of the complete set.

(c) Formal order relations in the complete set that hold 

among internal variables and equations that appear in the 

incomplete set also hold in the formal order of the 

incomplete set.

(d) The external variables and coefficients in the incomplete 

set of equations are variation free in the complete set.

Requiring (a), that each equation in the incomplete set appear in the complete set, 

ensures that every mechanism denoted by the incomplete set is also denoted by the 

complete set.13 Stipulating (b), that all the formal order relations that hold among 

equations and variables in the incomplete set hold in the complete set, ensures that all 

the causal relations in the interpretation of the incomplete set also hold in the 

interpretation of the complete set. In this way, nothing spurious is introduced by the

13 At the end of the last chapter it was shown that rescalings o f equations also preserve the mechanism 
denoted by the equation in the model reading. From this it follows that an incomplete set could also 
consist o f rescaled equations of the complete set. I do not include this slightly weaker possibility here 
because such rescalings are not significant from a causal perspective. Also, it keeps the discussion 
simpler.
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incomplete set. While the (c) condition ensures that any causal information about the 

factors modelled in the incomplete set as modelled by the complete set is modelled by 

the incomplete set. In this way nothing causally important is left out about the factors 

and mechanisms to be modelled by the incomplete set. Finally, (d) is added to 

ensure that the set of external variables and coefficients that appear in the incomplete 

set, which must be variation free by the definition of an incomplete set, are also 

variation free in the complete set.

This definition gives a precise answer as to when an incomplete set is causally 

consistent with a complete set from which it can be derived. In other words, it makes 

clear what it means for an incomplete set to represent just some of the causal relations 

represented by a complete set.

2.4. Why some Indirectly Controllable Factors can be Treated as Directly 

controllable

One reason for developing the concept of an incomplete set representing just some 

causal relations of a complete set is to attempt to answer: why is it that some 

indirectly controllable factors can be treated as if they are directly controllable in an 

incomplete set of equations?

In order to address this, I present a necessary condition for an incomplete set to be 

causally consistent with a complete set it abbreviates. This gives a more intuitive, 

causal condition for what is required for a set of equations and variables from a 

complete set to form an incomplete set. The following theorem, proved in appendix

3.1, gives a necessary condition.

Theorem 3.1: An incomplete set of equations is causally consistent 

with a complete set of equations only if it meets (NC).

(NC): (I) The incomplete set is a union of complete subsets of 

equations in the formal order of the complete set.

(II) Its set of internal variables is the union of those variables 

which are endogenous for those complete subsets.
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(Ill) For any two internal variables y  and z such that y  causes 

z in the formal ordering of the incomplete set, then in the 

formal order of the complete set either y  is a direct cause of z 

or there exists a chain of direct causes such that y->  

where for all j ,  wj is an internal variable.

In (NC) ‘exogenous’ and ‘endogenous’ are meant in the technical sense used in the 

last chapter and by Simon (1953). Though the condition may sound opaque, it is an 

interesting result. For example, (II) and (III) put limits on what variables can be 

external. (II) requires that all and only internal variables are endogenous (in the 

ordering of the complete set) for the equations that are included in the incomplete set. 

This implies that variables that are to be treated as external must be exogenous (in the 

ordering of the complete set) or unordered with respect to the equations in the 

incomplete set. Whereas (III) requires that for variables to be treated as external, they 

must not block all of the ‘causal paths’ from one internal variable to another (in the 

ordering of the complete set). If this were not met then treating these variables as 

external would ‘break’ the causal path from one internal variable to another, implying 

that first internal variable would not cause the second internal variable in the 

incomplete set, while it did in the complete set. So the incomplete set would not then 

be causally consistent with the complete set.

Note that in the example above, the intuitively inconsistent incomplete set 1 did not 

meet (NC) for complete set 1, because its external variables were not all exogenous in 

the ordering of the complete set, that is, it failed condition (II) in (NC) because zj was 

treated as external despite it being endogenous for the complete subset of equations 

(in the ordering of the complete set) which was included in the incomplete set.

To contrast with this earlier example, consider the following incomplete set which 

satisfies (NC). First recall the original complete set, and an incomplete set.
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Complete Set 1 Causal Order {y}
z, = a
z2 = zx+y  
z3 = z] + z2 + X

Incomplete Set 2 
z2 = Z]+r  
z3 = Zj + z2 + X
(zy external, Z2 and zj internal)

Causal Order {y}

*
Incomplete set 2 is causally consistent with the original complete set. The first 

incomplete set simply drops the information about the causes of zy. Since zy is not 

caused by any other variable in the complete set, this leads to a straightforwardly 

causally consistent incomplete set.

The following incomplete set is also causally consistent with complete set 1 but it is 

more interesting since in it the variable, Z2, is treated as external even though it is 

caused (in the ordering of the complete set) by another variable, zy, which is internal.

Incomplete Set 3 Causal Order

Zj = a
z3 = z, + z2 + /1
(zy and zj internal, z  ̂external) {Z2} ^  {Z3}

It may seem surprising that a variable can be treated as external even though it is 

caused by an internal variable. After all, if external variables denote ‘causal inputs’ 

then one would expect them to be determined outside the system and not be 

dependent on a variable internal to the system. This counterintuitive result suggests 

that the causal consistency definition provided here may be usefully supplemented by 

a second stronger version which rules out such cases. So, I also define a stronger 

form of causal consistency as follows.

An incomplete set is strongly causally consistent with a complete set

if and only if it is causally consistent with it and none of its internal

14 To check this note that is variation free with respect to y and X, also the incomplete set only 
contains formal order relations that are in that o f the complete set, and it does not omit any relation 
between internal variables and included equations.
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variables is a cause of any of its external variables in the order of the 

complete set.

This stronger form of causal consistency rules out these counterintuitive cases where 

an internal variable is caused by an external variable. Obviously, since strong causal 

consistency implies causal consistency, (NC) is also a necessary condition for strong 

causal consistency.

Returning to (weak) causal consistency, it is important to note that though (NC) is 

necessary for causal consistency it is not sufficient. Consider the following new 

complete set, which is the same as the previous complete set except that y has been 

dropped from the second equation. Then, reconsider incomplete set 3 above.

Complete Set 2 Causal Order {a} {X}
z, = a I
z2 = 2 , A z }}
z3 = Z, +  Z2 +  / 1

fa }  ► f a }

Incomplete Set 3 Causal Order {a} {X}

kZj = a

z3 = z, + z2 +/1
(zy and Z2 external, zj internal)

Incomplete set 3 meets (NC) for complete set 2. In addition, since it is an incomplete 

set its external variables, zy and Z2, must be variation free.15 However, if  complete set 

2 holds then zy and Z2 are not variation free because they always have identical values 

(both are equal to a). Therefore, though it meets (NC) incomplete set 3 fails 

condition (d) of the definition of causal consistency and so is not causally consistent 

with complete set 2. This shows that (NC) is not sufficient for causal consistency.

In addition, it is interesting to note the that incomplete set 3 is causally consistent 

with complete set 1 but not complete set 2. The reason is that in complete set 1, Z2 

has its own particular cause, y, which is absent from complete set 2. This extra cause 

‘gives’ Z2 the freedom to vary relative to the coefficients in incomplete set 3 so that it

Recall that this was part of the definition of the incomplete set.
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is variation free in complete set 1. This extra cause is absent in complete set 2, so Z2 

cannot be variation free as required for causal consistency with that complete set. 

Therefore, this extra causal input in complete set 1 that is particular to 2 2  is important 

for allowing the variation free condition, (d), of the causal consistency to be met. 

This suggests a possible connection between the variation freedom requirement and 

external variables in an incomplete set having separate ‘causal inputs’ from the other 

external variables in the complete set. This suggests in turn that it may be fruitful to 

investigate what causal conditions are necessary and sufficient for the variation free 

condition to be met. I leave this as further work, however.

To conclude, this section has shown several things. It has provided a method to 

extend the model reading of the last chapter to sets of equations with internal and 

external variables. The trick is to take the external variables to denote indirectly 

controllable factors that can be treated ‘as i f  they are directly controllable. More 

interestingly, it has provided a partial explanation of why external variables can be 

treated in this way in the interpretation of incomplete sets. Given the intuitive 

definition of causal consistency adopted here, the key requirements are, in the formal 

order of the complete set from which an incomplete set is constructed, that the 

endogenous variables for those equations be treated as internal, while the exogenous 

variables be treated as external. In addition, external variables should not block 

causal paths between internal variables in the ordering of the complete set. 

Interestingly, it was then shown that this definition of causal consistency was rather 

weak in that it permitted internal variables to cause external variables in the complete 

set. Therefore, a definition of strong causal consistency was offered as a way of 

ruling this out. Finally, it was noted that the variation free condition of causal 

consistency, in certain situations, required external variables to have their own ‘causal 

inputs’ separate from other external variables. This suggested an interesting area for 

further work.
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3. Using Incomplete Sets to Explore Intervention

One of the reasons for setting out explicit conditions for an incomplete set of 

equations to be causally consistent with a complete set, is to provide a framework 

within which to discuss interventions into the factors denoted by an incomplete set. 

Interventions are important in any discussion of causal order since they are the ‘point 

of entry’ into the explicitly modelled causal relationships. They form the bridge 

between the implicit: what is required to bring about an intervention, and the explicit: 

what an intervention does to the modelled causal order.

In practice, being clear about intervention is also important for describing and 

performing experiments. For example, if one wants to test a putative causal relation 

from a factor, c, to a factor, e, then following John Stuart Mill’s method of 

concomitant variations (1851, pp.398-401), one changes c to see if e changes. 

However, this method is useless if in varying c one unknowingly varies a common 

cause of c and e rather than just a cause of c. In that case, any observed co-variation 

of c and e does not give conclusive grounds for believing c is a cause of e, since it 

may be due to the common cause varying both c and e rather than any influence from 

c to e. The point is that to set out when Mill’s method of concomitant variations is an 

effective way to identify causes, it is important to distinguish an intervention of c that 

does not activate a common cause of c and e (which is desirable) and one which does 

(which is undesirable). To make distinctions such as these, requires clarity about 

what is meant by ‘intervention’.

This section shows how the analysis of the previous section can be used to explore 

intervention. By looking at a simple example, the discussion sets out some different 

ways an incomplete set can be intervened into. The analysis is then loosely 

generalised to make some general comments about interventions.

To keep the discussion simple, strong causal consistency between incomplete and 

complete sets is assumed in the example, that is, internal variables do not cause 

external variables in the ordering of the complete set. This simplifies the discussion
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because otherwise the possibility that internal variables cause external variables in the 

complete set would need to be dealt with. Though it would be interesting to 

investigate what results hold for interventions in this case, it would be more complex 

and involved. Since the aim here is to give a brief simple analysis of interventions, I 

leave this more complex case as further work.

To ease the discussion, I introduce some new terminology. Let an external factor be a 

factor that is denoted by an external variable in an incomplete set, an internal factor a 

factor denoted by an internal variable. Let an incomplete model be the model reading 

of an incomplete set and a complete model that of a complete set. Also, I define an 

intervention and a basic intervention as follows.

An intervention in a complete model is a change to one or more 

directly controllable factors in the complete model. An intervention 

in an incomplete model is a change to one or more directly 

controllable or external factors in the incomplete model.

A basic intervention on a factor, x, in a complete model is an 

intervention that changes one and only one directly controllable 

factor, x, in the complete model. A basic intervention on x  in an 

incomplete model is an intervention that changes one and only one 

external or directly controllable factor x  in the incomplete model.

If one uses ‘causal input’ to denote any factor in a model that is directly controllable 

or external,16 then an intervention is a change in one or more causal inputs in a model, 

whereas a basic intervention in a model is a change in just one causal input in the 

model. Basic interventions are intuitive -  they describe the surgical, clean 

interventions of changing just one causal input which are particularly desirable for 

carrying out experiments.

16 Strictly speaking, causal inputs in a complete model are the directly controllable factors. While in 
an incomplete model, the causal inputs are the directly controllable or external factors.
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Note also that this concept of basic intervention fits neatly with the Simon-based 

analysis developed in this thesis. This is because Simon’s theorem 6.1, discussed in 

the last chapter, which sets out which variables change value as a result of a change in 

just one equation, can be recast in terms of basic interventions. The theorem, under 

the model reading, implies that a basic intervention on a causal input ‘in general’ 

changes all factors that are causally dependent on the causal input while all other
17factors do not change.

3.1. Different Ways to Vary Just One External Factor

With this background, imagine an incomplete model, denoted by the following 

incomplete set, holds.18

Incomplete Set Causal Order fyi} {x^}
Ti =*,
y  2 = T i  + * 2
(x’s external, y ’s internal) {yj}^

Suppose that one wants to investigate the strength of the causal relationship between 

yj and ̂ 2- Following Mill’s methods, the simplest way to do this is to perform a basic 

intervention for the ^/-factor19 and to observe the change in the ^/-factor and the 

change in ^-factor. But how can the required basic intervention be brought about? 

To answer this requires more background information, so in the following four cases, 

different possible background causal orders for the x’s are considered. More 

precisely, four different complete models each strongly consistent21 with the 

incomplete model are looked at. This allows the exploration of different ways a basic

17 This result is used in the cases below to deduce changes given a basic intervention.
18 There are no coefficients in this incomplete set to simplify the causal graphs below, though the 
analysis can be extended for cases where there are coefficients in the incomplete set.
19 From now on I use ‘a basic intervention for x ’ rather than ‘a basic intervention for the x-factor’ to 
make the wording less awkward.
20 One might wonder if  a basic intervention on Xj is possible at all. In fact, it is because o f the variation 
free requirement in the definition of a incomplete set, which ensures that basic interventions are 
possible for all directly controllable factors and external factors. Likewise, the variation free 
assumption ensures that basic interventions are possible for all the directly controllable factors in a 
complete model.
21 A complete model is strongly consistent with an incomplete model if a complete set that denotes the 
complete model is strongly causally consistent with an incomplete set that denotes the incomplete 
model.
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intervention in an incomplete model can come about, depending on the background 

causal order.

The first case is where the following strongly causally consistent complete set 

applies.

Case (a) Causal Order {arf {a 2}

{xi} {x2}

\
jc, = a x

X2 ~ &2 

yi = x i 
y i = y i + x 2

{ y iK ±
fo }

In this case, the only way to perform a basic intervention22 on xi in the incomplete 

model is to perform a basic intervention on ay in the complete model. The causal 

order of the complete model makes this straightforward because ay is a direct cause of 

xj that is exclusive to xj. Moreover, since xy doesn’t cause any other external factor, a 

change only in ay leads to a change only in xy, giving the desired basic intervention.

A slightly more complex case is where xj and x2 share a common cause in the 

complete set.

Case (b) Causal Order { a j  {a2}

f \ l
*2 a , + “ 2 {xi} {x2}
Ti = x i I
y2=yi+x2 1

fyiK±
I h }

In this case a basic intervention on xj can only be brought about by a non-basic 

intervention on ay and a2 together such that A ay =-A a2. This is because the only way 

to vary xj is by varying its cause ay which ceteris paribus changes x2, so a2 also needs 

to be changed in order to keep x2 fixed. Here xj does not have a direct cause that is

22 In subsequent discussion, to simplify the discussion I leave out ‘relative to ... model’ when 
discussing basic interventions. In the discussion, basic interventions on a ’s are relative to the complete 
model, while basic interventions on x ’s are relative to the incomplete model.
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exclusive to it among the external factors. Given this, additional direct causes of the 

other external factors must be varied to keep those external factors from changing.

Another interesting scenario is where xj is a cause of X2 .

Case (c) Causal Order { a j  {a.2}
x \ = I I
X2 =  X\ ■*" a 2 I  \ f  \{x1}_> {x2} 
t ,  = * 1 I

y 2 = y i + x 2 t
(y iK ±  1

m
Here a basic intervention on xj can only be brought about by a non-basic intervention 

that changes aj and a.2 together so that Aay =-Aa2 . The change in a2 is necessary to 

prevent X2 changing as a result of xj changing. Unlike the last case, xj has a direct 

cause that is exclusive to it (ay), yet X] causes X2 in the complete model, so changing 

x j’s exclusive direct cause does not bring about a change in xj alone. So a direct 

cause of X2 must also be changed to keep it fixed.

In the final case xj and X2 are codetermined in the complete set.23, 24

Case (d) Causal Order {aj} {a2}

{xi,x2}
xl=  x2 + CC\
x2 = —xl + a 2

Ti = * 1

y 2 =y\ +x2

In this case a basic intervention on xj can only be brought about by a non-basic 

intervention that changes ay, a2 together so that Aay =Aa2. The case is similar to the 

previous case in that xy is causally ordered relative to X2 . However, unlike the

23 By co-determined I mean that both appear in the same complete subset o f the causal order.
24 One might think that since they are codetermined the two x ’s cannot be variation free. After all, how 
can two variables be free to vary relative to each other if they are co-determined? However, this 
intuition is mistaken. The first two equations o f the complete set imply that jc; = Zifa] +ad  and x2 = 
V2 (a2 -a.}). It is easy to check that a7 +a2 =a and a2 -a2 = b can be solved for any a and b. Given a7 
and a2 are variation free, it follows that x, and x2 are variation free (as required by the definition of an 
incomplete set).
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previous case, both «y and a.2 both directly cause xi and x2 so there is no direct cause 

exclusive to xj.

These four cases, though clearly not exhaustive, show how basic interventions on xj 

in the incomplete model can arise in different ways, depending on the causal order 

that determines the external factors. It shows the many ways in which a statement 

such as ‘x/ is varied but not x f  can hold for an incomplete model. Since these 

different background causal orders are all strongly consistent with the incomplete 

model, the external factors of the incomplete model have values that are variation free 

in all cases. The cases also show how weak the variation free assumption is, for 

example, that the variation free requirement on the external factors does not require 

that the external factors have exclusive causes nor that they do not cause each other.

The four cases can also be used to develop some tentative general observations about 

interventions in incomplete models that are strongly consistent with an underlying 

complete model. For instance, the only case where a basic intervention in the 

complete model leads to a basic intervention in the incomplete model is the first case. 

There xi has an direct cause exclusive to it, and xj does not cause and isn’t causally 

equivalent to any other external factor. In all the other cases, at least one of these 

conditions fails and a non-basic intervention is required.

In fact, a general form of this result holds. For a basic intervention in a directly 

controllable factor, a, to lead to a basic intervention in an external factor, x, then the 

directly controllable factor must only cause the external factor. This then implies 

that the directly controllable factor can (i) only cause an external factor via x  and (ii) 

x must not cause nor be causally equivalent to any other external factor. Conversely, 

if (i) and (ii) hold then the external factor, x , has a directly controllable factor, a, that

25 Recall the gas container example in the last chapter which made a similar point: the independence 
implied in the model reading by a variation free condition on the coefficients does not imply that these 
cannot denote factors that are causally related.
26 Purely to keep the discussion simple, here I am setting aside the possibility that the directly 
controllable factor can cause other factors but that its impact cancels out. In a more rigorous treatment 
this problem would not be put aside and would instead be dealt with explicitly.
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causes it and no other external factor, so a basic intervention on a in the complete

leads to a basic intervention in the incomplete model.

The importance of conditions (i) and (ii) can be highlighted by returning to the 

epistemic problem of investigating the causal relation between yi and y j  in the 

assumed incomplete model

Here, if one knows that xj only causes yi among the internal factors, and if xj meets 

condition (i) and (ii) then one can vary xj using a directly controllable factor, a, so 

that only yj changes. In this way a suitable experiment for analysing the causal 

relation between yj and y 2 can be carried out. However, if (i) and (ii) are not met, 

then the directly controllable parameters need to be varied in a ‘just so’ way, that is a 

non-basic intervention needs to be performed so that only xi changes. As seen in the 

above cases, this requires that certain causal impacts cancel out, which radically 

changes what is required of the experimenter. In particular, it requires detailed 

knowledge of the background causal order, omitted from the incomplete model, in 

order to carry out the desired experiment.

This relationship between interventions and experiments has been analysed by others, 

and conditions (i) and (ii) seem to fit well with some of these analyses. For instance, 

Julian Reiss (2003) gives a definition of an experimental handle:

‘Z is an “experimental handle” [for X  relative to Y] if it satisfies the 
following assumptions:

27 Again I am overlooking the possibility that the influence from a to x cancels out. In a more rigorous 
treatment this would be dealt with explicitly.
28 Of course, these are only necessary and sufficient if the canceling out possibility is ruled out. See 
footnotes above.

model, leads to a basic intervention on x .21 In this way (i) and (ii) are necessary and 

sufficient28 conditions for there to be a basic intervention in the complete model that

Incomplete Set Causal Order {xj} {x2}
Ti = * 1

y 2 = y  1 + x 2

(x’s external, _y’s internal)
{y2}
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EH-1 Z Causes X
EH-2 Z Causes Y if at all only through X
EH-3 Z and Y  do not have causes in common (except those
that might cause Y  via Z and X ).’ (Reiss, 2003, p. 12).

As Reiss points out, this is very close to James Woodward’s (2003, p.98) definition 

of an ‘intervention variable’. Woodward’s definition of an intervention variable also 

has EH-1 and EH-2 as conditions and has a statistical independence version of EH-3. 

In addition, Woodward goes further than Reiss by characterizing an intervention on X  

with respect to Y  as the use of some intervention variable Z for X  with respect to Y  to 

influence X.

There is a connection between this Reiss and Woodward type analysis and that 

developed here. For x an external factor such that (1) x causes yj (EH-1) and (2) x 

only causes another internal fac to ry  if at all via yj (EH-2) then, if conditions (i) and 

(ii) are met for x, then there is a directly controllable factor, a, that is an experimental 

handle for yj relative to y 2 . To see how, first note that conditions (i) and (ii) ensure 

that there is a directly controllable factor, a, which is an exclusive cause of x  among 

the external factors. Therefore, by transitivity of the causal relation a causes y i  and 

so meets EH-1. Since a exclusively causes x among the external factors and internal 

factors are caused by the external factors, a can only cause y 2 if at all via x. Since x 

can only cause y 2 if at all via^y, a too can only cause y 2 if at all via_yy. In this way a 

meets EH-2. Finally, EH-3 is met given an important additional assumption that the 

complete model is suitably ‘complete’ in the sense that that there are no common 

causes between a directly controllable factor and an indirectly controllable factor. So 

provided some important additional assumptions are met (i.e. x meets EH-1 and EH-2 

and the complete model is ‘complete’) then conditions (i) and (ii) can be sufficient for 

there being a directly controllable factor which can be used for investigating, by 

experiment, the causal relationship between two internal factors.

In addition, conditions (i) and (ii) also connect with the concept of an ‘Open Back 

Path’ which originates from Nancy Cartwright (1989) and which has been adopted by
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others such as Daniel Hausman (1998). The connection can be seen from the obvious 

similarity of Hausman’s open back path condition to Reiss’s experimental handle 

conditions and Woodward’s definition of an intervention variable. Hausman’s open 

back path condition, for instance, is essentially the conjunction of EH-2 and EH-3 in 

Reiss’ formulation of an experimental handle.

‘(Open back path condition). Every cause a of b that has any causes
has at least one cause d  such the only path from d  to b is via a’
(Hausman, 1998, p.83)

Such connections between (i) and (ii) and other characterisations of interventions 

show that the analysis of interventions begun here, using the incomplete and 

complete sets, yields some results similar to those already in the literature.

Nevertheless, it is important to mention some differences between the concept of 

intervention adopted here and that developed by others. Here an intervention is 

simply a change to one or more causal inputs and a basic intervention is a change to a 

unique causal input. While additional conditions, such as (i) and (ii) or those of the 

experimental handle, are desirable for epistemic reasons (since they ensure that it is 

possible to experiment to investigating causal relations among internal factors) it is 

not assumed here that such epistemically convenient conditions must be met for a 

change to be an intervention. Crucially, this is in contrast to certain other important 

analyses of interventions, such as those by James Woodward (2000) and Judea Pearl 

(2000).

As mentioned above, Woodward’s characterises an intervention as influencing a 

variable using an intervention variable for it, which by definition meets conditions 

EH-1, EH-2 and a version of EH-3. Moreover, Woodward assumes that causal 

structures are such that there exists an intervention variable for every variable 

denoting an effect. His key assumption is that sets of equations representing true 

causal structures are modular, which requires that ‘for each equation there is a 

possible intervention on the dependent variable that changes only that equation while

29 Indeed, this shouldn’t be surprising since Cartwright’s (1989) work which developed the open back 
path was highly influential on the work o f Hausman, Reiss and Woodward.
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the other equations in the system remain unchanged’ (Woodward, 2000, p.329). 

Since in Woodward’s causal interpretation of structural equations, the dependent 

variable denotes the effect and the independent variables the direct causes of that 

effect, this ensures that each effect factor in a causal structure has a cause that meets 

conditions EH-1, EH-2 and EH-3. This means that in Woodward’s approach, for any 

causal structure, one can investigate a putative direct causal connection from x to y  

from simply by varying the associated intervention variable for x. So, Woodward 

limits interventions to changes to the system that meet certain experimentally 

desirable conditions and assumes, rather strongly, that all causal structures are such 

that there one can intervene cleanly on any variable in that system. Both of these 

assumptions distinguish it from the approach taken here.

A similar approach to Woodward’s is taken by Pearl (2000). Simplifying 

somewhat,30 Pearl treats interventions into an effect as follows: replace the structural 

equation for that effect (where, like Woodward, the dependent variable in the 

equation denotes the effect, and the independent variables the direct causes of that 

effect) by an equation assigning the effect-variable to a particular value; in other 

equations where that effect appears, replace the effect-variable by the value to which 

it is set.31 By assuming that structural equations can be individually intervened to in 

this way, Pearl assumes that for each effect there is a possible intervention that only 

impacts on that effect (and through it, its effects in turn). So, like Woodward, Pearl 

assumes that causal structures are modular.

A related divergence between Pearl’s treatment of interventions and that taken here 

can be seen from an interesting criticism of Pearl presented by Stephen LeRoy (2004, 

pp.25-26). In his discussion, LeRoy considers the following structural equations, 

taken from Pearl (2000, p.217),

30 See Pearl (2000, p.85) for further details.
31 This is a simplification of Pearl since in fact, one conditions on the other variables given the effect 
variable is set to the particular value. However, this more complex treatment reduces to this simpler 
account above in the deterministic case which is what I am focusing on here.
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q = a lp  + i 
p  = a 2q + w

where q and p  denote internal factors, i and w denote external factors. LeRoy 

considers the response to the following question raised by Pearl: what would the 

value o f q he i f  one were to intervene to set the p  to pi?  Following Pearl’s calculus 

of intervention, one answers this question by replacing the second equation by p=pj, 

and replacing p  in the first equation by pj. From this, one would answer the question 

a la Pearl that the value of q would be aipj+i as a result of this intervention.

LeRoy’s criticism of Pearl is that this answer diverges from the standard response 

given by economists.33 In contrast, in my set up (and LeRoy’s) the question is 

unanswerable without further information. In my analysis, given that p  and q are 

codetermined by w and /, one needs to know how these external factors change to 

bring about the intervention on p  in order to understand what would happen to q. 

Another way of seeing the difference is to note that for Pearl the intervention to p  

‘only goes through’ the second equation. This means that some direct cause of p  is 

used to change p  without changing any other effect in the system (except via p). In 

this case, this means that the intervention on p  is assumed to be affected purely via w. 

To use Woodward’s terminology, w is the intervention variable for p, and the 

intervention on p  is carried out using it. The relevant contrast between Pearl’s 

approach (or Woodward’s) and mine is that I do not assume a priori all interventions 

come via equation-specific intervention variables. And, as LeRoy comments, this has 

the advantage of being more in keeping with conventional economic interpretations 

of structural equations.

32 Again, I am simplifying this question a little because I have made the question deterministic since I 
have yet to introduce indeterminism to models. However, incorporating indeterminism would not alter 
the substance o f the discussion presented here.
33 Pearl notes that when he presented this example to economists, most could not answer the question 
as posed (Pearl, 2000, p.216, [10]). Pearl attributes this to a lack o f clarity over the causal 
interpretation o f structural equation models for which he sees his formalism as a useful tool for 
addressing. In contrast, LeRoy considers the economists correct to reject Pearl’s reading o f the 
intervention. As noted above, my approach matches the LeRoy’s and the economists’ view rather than 
Pearl’s.
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So in summary, both Woodward and Pearl assume that interventions directly affect 

only one effect factor (and through it, its effects in turn) in the causal structure. In 

addition, they assume that all causal structures are modular, that is, that such 

interventions are possible for any effect in the causal structure. In contrast to 

Woodward and Pearl, I do not assume that causal structures are modular nor that 

interventions are equation-specific. More generally, I do not assume a concept of 

intervention that requires epistemically convenient conditions such as (i), (ii), EH-2 

or EH-3 to be m et.34 Nevertheless, the analysis here converges with work by others 

on intervention, in that the results are similar in the sense that when additional 

epistemically convenient conditions (e.g. (i), (ii), EH-2, EH-3 etc.) are met, then the 

causal structures are similar to other approaches, such as Woodward and Pearl’s 

approaches.

To conclude, this section used the relationship between incomplete sets and strongly 

causally consistent complete sets to briefly explore interventions in an incomplete 

model. It did this by looking at some different ways interventions could be brought 

about in an incomplete model, depending on the complete model that holds. The 

analysis shows how, by introducing the complete model strongly consistent with an 

incomplete model, one can make partially explicit what is involved in intervening to
1 c

change just one external factor in an incomplete model. Finally, it presented some 

similarities and differences between this approach to interventions and that of other 

authors.

4. Introducing Error Terms

This section returns to the problem of extending the causal interpretation to models 

actually used by econometricians. A way has already been presented for interpreting 

internal and external variables. This section proposes a way to interpret error terms.

34 In chapters four and five, I discuss further how my approach attempts to avoid building in 
epistemically convenient assumptions into its concept o f causal order.
35 It is only partially explicit because in the analysis a basic intervention in an incomplete model is 
causally unpacked relative to a complete model in which an unanalysed intervention (the basic 
intervention or non-basic intervention on the directly controllable factor) is assumed.
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The standard reading of error terms is that these denote causal factors omitted out of 

ignorance. For example, according to Kevin Hoover ‘error terms might be thought to 

represent those INUS conditions that, though they help to determine the effects and 

are not constant, are not explicitly measured or modelled’ (2001a, p.50). While 

Herbert Simon (1954) states that “‘error terms” ... measure the net effects of all other 

variables (not introduced explicitly) upon the system’ (1954, p.40). Finally Nancy 

Cartwright (1989, p.29) states that the error terms are ‘supposed to represent the 

unknown or unobservable factors that may have an effect’. In short, it is 

conventional to take error terms to represent the impact of omitted causal inputs from 

the set of equations.

In his (1954) Herbert Simon analyses sets of linear equations with error terms. 

Unfortunately, the brief quote above on error terms is as explicit as Simon gets in 

explaining how to apply his causal ordering method to sets o f equations with errors. 

Nevertheless, his actions speak louder than words since in the paper he reads these 

sets of equations by implicitly treating the error terms as if they are coefficients.36 

This provides a way to apply Simon’s formal method to systems of equations with 

error terms: treat them as coefficients. It also suggests the following definition for 

incomplete sets of equations with error terms.37

An incomplete set o f  equations with errors is a linearly independent 

set of equations that is linear in the variables and the (non-zero) 

coefficients and in which variables are partitioned into two sets: 

external and internal. Each equation contains one error term. The 

equations are such that internal variables can be solved for in terms 

of the coefficients, external variables and error terms. The set of 

coefficients, external variables and error terms together are variation 

free.38

36 See, for example, Simon’s discussion of system II (1954, p.40).
371 work from incomplete sets not complete sets because an incomplete set can also be a complete set 
if it has no external variables, in this way the treatment is more general.
38 The variation free requirement on the external variables implies there can be no equation in an 
incomplete set that contains only external variables.
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This definition follows by intuitively extending the definition of an incomplete set 

and complete set given earlier. It is defined so that Simon’s formal ordering method 

can be applied to such systems by treating error terms as coefficients. Likewise, a 

model reading can be applied to these sets of equations by treating the error terms ‘as 

i f  they denote directly controllable factors.

With this definition for an incomplete set with error terms, one could perform an 

investigation analogous to that carried out earlier in setting out the relationship 

between complete and incomplete sets using causal consistency. This would 

investigate the relationship between incomplete sets of equations with error terms and 

those without. It would proceed by extending the definition of causal consistency 

and then trying to find necessary and sufficient conditions for an incomplete set of 

equations with error terms to be causally consistent to an incomplete set without error 

terms. In a similar way that intuitive conditions, i.e. (NC), must hold for indirectly 

controllable factors in a complete model to be treated as directly controllable in an 

incomplete model, such an analysis should give conditions under which factors in an 

incomplete model can be ‘omitted’, that is, denoted as part of an error term. This 

would give an explicit interpretation of what the error term in an incomplete set with 

errors can denote, from the perspective of an incomplete model where no factors are 

omitted, without jeopardising the causal content of that incomplete model.

However, instead of carrying out this involved analysis, I leave it as further work and 

take a small shortcut. Here I propose an interpretation of error terms and show that it 

meets intuitive causal consistency requirements. In line with conventional readings, 

I propose the following definition of an error term, relative to an incomplete set 

without error terms.

Given an incomplete set of equations without error terms, /, define 

an error term for the j th equation, as any non-zero sum of terms in 

that equation that do not contain any internal variable in /. Define 

the j th equation with error term to be j th equation in I  in which the 

terms in the sum are omitted and replaced by the error term (which is

103



their sum). Denote the set of all such equations, where each 

equation is given an error term, IE.

This gives a formal way to construct an incomplete set with error terms from an 

incomplete set without errors. One simply chooses a set of terms from each equation 

and provided none contains any internal variables, replaces these by an error term that 

is by definition the sum of these omitted terms. This ensures the resulting equation is 

mathematically consistent with the original equation. The result is a mathematically 

consistent set of equations in the internal variables with error terms, IEi which are 

solvable in terms of non-omitted coefficients, external variables and error terms.39 In 

addition, since no internal variables are omitted, each equation with error term 

contains all the internal variable terms of the original equation from which it was 

derived. This implies that applying Simon’s formal order to the equations with errors 

gives the same formal order relations among the internal variables as the formal order 

for the original incomplete set of equations without error terms.

The mathematical consistency and matching formal order relations between the 

variables in I  and those in IE suggests that IE is causally consistent with /. But, as 

with the earlier insufficiency of (NC) for causal consistency, a variation free 

condition must also be met. Here it is required that the constructed error terms be 

variation free relative to any external variables and coefficients that explicitly appear 

in the incomplete set of equations with error terms. Provided this is also met, then a 

causally consistent set of incomplete set of equations with error terms, constructed as 

above, is causally consistent with the incomplete set without error terms from which 

it was constructed.

All of this can be clarified by way of an example. Consider the following incomplete 

set without error terms.

39 Since the error terms are taken as given and no equation or internal variable has been removed, it 
straightforwardly follows that one can solve for the internal variables in these equations with errors.
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T l ~  <*10 ^ 12^2 P \  1*1 P \ 2 X 2

y 2 ~  <*20 ^  < * 2 lT l "*" @ 2 \ x \ /^ 2 3 * 3

y 3 = a 30+ a 32y 2 + P 34x4
(x’s e x te r n a l ’s internal, a and/?’s coefficients)

This system has causal order among the internal variables: fyi, y2} {yp.  Now 

suppose that some coefficients and external variables are omitted using the method 

set out above, that is, one picks some terms in equations that do not contain internal 

variables, drops these and adds an error term to each equation where terms are 

omitted.

Here suppose one omits the aio, xi and X2 terms from the second equation, the x3 term 

from the second equation, and the x4 term from the third equation, adding an error 

term, a «, to each equation where one or more terms are omitted. This gives.

T l =  ^ 12^ 2  M1 W1 =  <*10 ^  P n X l P \ 2 X 2

y 2 = a 2Q + a 2]y, +  P2lxx +  u2 where u2 =  P23x3

y 3 = a 30 +  a 32y 2 + u 3 u3 = fi34x4

(x’s external, _y’s internal, a  and /?’s coefficients, m’s error terms)

It easy to check that the m’s are variation free in relation to each other, the external 

variable, xu and the coefficients. Given this, the derived set of equations is an 

incomplete set with errors to which the formal ordering methods and model reading 

can be applied. Moreover, since no internal variables are dropped, Simon’s formal 

order is unchanged, the order among the internal variables is still {yj, y2j {y3}- In 

this way, the resulting system is causally consistent with the original since its formal 

relations among its internal variables are the same as the original.40

In addition, this way of introducing error terms fits well with the conventional 

reading of error terms. In the approach set out here, the error term denotes the joint 

role of some causal inputs (directly controllable factors and/or external factors) in a

40 Another important part of causal consistency is that no equations are linearly combined in deriving 
the set o f equations with errors, therefore the derived equations can be assumed to denote the same 
mechanisms as those of the original incomplete set o f equations without error terms.
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mechanism. In this way, the error terms denote the net ‘effect’ of omitted exogenous 

factors (‘causes’) in a mechanism.

It is important to note that this way of introducing error terms is rather permissive. 

For instance, it allows external variables and coefficients to be omitted from some 

equations but not others, like xj in the example above. This case is epistemically 

troubling because if one wanted to intervene in the system using xj to find out about 

the causal order, then xj would impact the system in ways that are both explicit and 

implicit (since it also acts in an error term). This is analogous to the situation where 

Mill’s method of concomitant variation fails because one unknowingly activates a 

common cause, and like in that case, methods of causal inference can fail to give 

reliable information.

This possibility might lead some to conclude that the method here for introducing 

error terms is too permissive and that external variables should either be omitted from 

all equations or from none when defining error terms. I think this would be a mistake 

since it rules out using the incomplete sets with errors to describe situations where 

causal inference would go wrong because an error term hides a factor included 

elsewhere in the model. The reason for being more general in the conceptual analysis 

here is to allow the representation and analysis of both epistemically convenient and 

inconvenient systems.41

5. Constant Coefficients and Adding Stochasticity

In this final section, I present a way to deal with the two outstanding differences of 

the models actually used by econometricians from those interpreted in the last 

chapter. The first difference is that of coefficients being constant. This is

41 It might be retorted that keeping the variation free assumption throughout the analysis, as I have 
done, also restricts the analysis unnecessarily, since it rules out talking about systems where factors are 
not variation free. I think this is a fair point. For this reason, it would be worthwhile to generalise the 
analysis o f  this chapter and the last, without assuming the variation free condition. I leave this as 
further work however.
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straightforward to bring in. The second difference is the stochastic variables and 

error terms in the sets of equations.

5.1. Constant Coefficients

There is nothing in Simon’s treatment of formal order or in the version of it set out 

here that requires that every coefficient must vary. Simon’s formal order and the 

model reading tell us what factors change given changes in one or more directly 

controllable factors. If some directly controllable factors do not change, then this is 

also covered in the analysis by Simon and in the strong reading set out here. This 

implies that imposing that coefficients in a model are constant is not problematic. 

Nevertheless, to distinguish the coefficients that can vary from those that are 

constant, I call a ‘constant’ any coefficient that does not vary. In the model reading 

these denote factors that are fixed relative to changes in all other factors.

5.2. Introducing Stochasticity

In order to introduce stochasticity, I begin with complete sets of equations. The 

extension to the other kinds of sets of equations (incomplete sets and incomplete sets 

with error terms) then follows by assuming that these are causally consistent with a 

stochastic complete set of equations.

To begin, consider the following rather unwieldy complete set of equations.42

*i = SX x 4 = y 2

(A) x 2 - 8 2 y x -  a xx x + crlx 3 + fix

*3 =7i y2= A  Ti + ci2x2 + < j2x 4 +  / / 2

(Greek letters coefficients, Latin letters variables)

The way to introduce stochasticity is simple, one attributes a joint distribution to a

subset of coefficients appearing in the sets of equations. So, for example, assume

here that the two y’s are independently normally distributed with mean zero and

variance one.

42 The reason for the unwieldy choice is that it is a complete set that is causally consistent with an 
incomplete set with error terms which has a very simple and recognizable form, as will be clear later in 
the discussion.
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In the model reading this implies that the directly controllable factors they denote are 

directly controlled by nature to take values according to distribution. As for the other 

coefficients, assume that the a’s and ft’s denote constant factors, assume that a  and fx 

are non-random coefficients that denote factors directly controllable by nature, while 

the S’s denote non-random factors that are directly controllable by an experimenter.

If one treats the x ’s as external and y ’s as internal to construct an incomplete set,43 

one then gets an incomplete set with stochastic variables.

Ti = #]*] +cr]x 3 +
(B) where

y  2 = P\y\ + a 2x 2 +<J2XA+]U2

'  ( f $\  ( I  0 ^
N

0 1JJ
(y’s internal, x’s external)

The distribution of variables xj and X4 follows from the equations relating to them to 

the y’s in the complete set. This gives an incomplete set of equations with two 

external random variables, xj and x4 that denote stochastic factors that are indirectly 

controlled by nature. While xy and X2 are deterministic factors controlled by the

experimenter.44

Finally, if one assumes that X5, x4 , a and ju’s are unobserved and omitted from the 

equations, one can define error terms for these omitted factors by.

Wj = cr j x3 + 
u2 = cr2x4 + fi2

Then, substituting in the error terms, one gets a (causally consistent) incomplete set 

with stochastic error terms.

(C)
y x = tfjXj + Wj

where
y 2 = P\y\ + a 2x 2 + u 2 

(y’s internal, x ’s external and m’s error terms)
\ uu

N
( (  ./ X f  _2 Ah 1 I cr,

^ 2 .

0

2 JJ

43 Note that this respects the conditions for causal consistency with (A).
44 There is no assumption here that the stochastic factors must be controlled by nature, an experimenter 
may be able to control a stochastic factor by controlling features that determine its distribution. For 
example, by cutting down the number o f  cigarettes one smokes, one can lower ones chance o f  having a 
heart attack.
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At this stage, the original unwieldy complete set has been transformed into an 

innocuous looking incomplete set of equations with error terms, just like the simplest 

models used by econometricians. All of the coefficients explicit in the equations are 

constant and the error terms are stochastic. Under the model reading, the external 

variables denote variation free exogenous factors for the mechanisms in which they 

appear,45 while the error terms denote the joint impact of other external factors and 

directly controllable factors, some of which take values stochastically.

This example presents the method for introducing stochastic coefficients, variables 

and error terms to the sets of equations. But just how is the attribution of a joint 

distribution to coefficients to be understood under the model reading? I read the 

attribution of a distribution to one or more directly controllable factors in the 

complete model as the experimenter and/or nature using a randomizing device, or 

‘rolling a dice’, to determine the values of those directly controllable factors. 

Crucially, if the model relations are still to hold, then the attributed random variation 

of directly controllable factors should not violate the important assumptions discussed 

in the last chapter: the invariance of mechanisms to factor changes and the 

independence of directly controllable factors. To preserve these, I assume that the 

fact that the values taken by factors are random does not undermine the invariance of 

mechanisms. Moreover, I assume that in the attributed distribution no coefficients 

are perfectly correlated, since this would violate the requirement that coefficients be 

variation free.

Of course, the analogy of the experimenter/nature rolling a dice in the model reading 

is not very enlightening for explaining stochasticity. However, it could be unpacked 

according to different views on indeterminism. For example, it could be consistent 

with a Laplacean view that assumes that the source of the randomness is epistemic 

uncertainty about an ultimately deterministic system. Conversely, the randomness 

could denote actual indeterminism of modelled systems. Likewise, a Bayesian 

interpretation viewing the distribution as rational expectations about uncertain events

451 am using (NC) here.
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is also feasible. In short, the approach taken here sidesteps the difficult issues in the 

interpretation of probability by simply attributing a joint distribution to coefficients in 

a complete set of equations.46 Given the constraints on invariance and independence 

mentioned above, it leaves open how this attributed randomness is to be interpreted.

5.3. Aside: The Extended Model Reading, Weak and Super Exogeneity 

To finish the chapter, it is interesting to note that the extension of the strong reading 

to simple stochastic linear models can be used to make an explicit connection to 

important concepts of exogeneity proposed by Engle, Hendry and Richard (1983)47 

This shows that the extension of the strong reading developed in this chapter is 

relevant for, and may ultimately be useful for interpreting important concepts in the 

econometric literature.

To see this, assume system (C) with its model reading holds, that is

(C)
y x = a xx 2 +Wj

where
( r

~ N Mi
KMiJ

0 \ \

0 2 J Jy2 = ATi +a2x2 +U2 Ku2j
(y’s internal, x ’s external and m’s error terms)

In this case the marginal distribution for yj  is given by D(yj; xj, aj, pi,oi)= N(ajX]

+Pi, of ) .  While the conditional distribution for >>2 on yi is given by D(y^ y j ; X2, pi,

0.2, P2, 02)= N(piy} + a2x2 +^2, o22).

For Engle et al. if the coefficients (and here external variable) in the marginal density 

function are variation free with respect to the coefficients (and here external variable) 

in the conditional density function, then yj is weakly exogenous for y 2 (Engle et al., 

1983, p.3 3 7) .48 In system (C) yj is weakly exogenous forj^- This is because (C) is 

assumed to be causally consistent with sets (A) above, so the coefficients in the

46 Obviously, if  one were to tie the analysis o f  this chapter and the last to a particular metaphysics o f  
causation then this would put constraints on which interpretations o f randomness were appropriate.
47 For a relatively clear exposition o f  the relevant exogeneity concepts discussed here, see David 
Hendry (1995, pp. 162-164, pp. 172-177).
48 This is a useful condition for estimation purposes since it means one need not estimate the marginal 
distribution o fy 7 in order to estimate the conditional distribution o f y 2 on.y7.
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respective conditional and marginal distributions, that are coefficients in (A), are 

variation free.

The second more important connection with Engle et al.’s analysis is with super 

exogeneity. As defined by Engle et al., yi is super exogenous for y 2 if it is weakly 

exogenous for y 2 and intervening to change any of the coefficients (or external 

variable) in the marginal distribution for yj has no impact on the form and the values 

of the coefficients on the conditional distribution (ibid., p.339). Like weak 

exogeneity, super exogeneity of yj for y 2 also holds in (C). This is because the 

coefficients in the conditional and marginal distributions denote directly controllable 

factors in mechanisms in the complete set (A) that underlies (C). Therefore, by the 

invariance of mechanisms denoted by (A), changes in one directly controllable factor, 

denoted by a change in just coefficient in the marginal distribution ofyy do not lead to 

a change in any directly controllable factor denoted by a coefficient the conditional 

distribution of}^ onyj.

The fact that yj  is weakly exogenous and super exogenous for y 2 in system (C) and 

that explanations can be given as to why these hold, suggests that the extended model 

reading of this chapter may provide a way to interpret Engle, Hendry and Richard’s 

definitions of weak and super exogeneity. This is because in system (C) the relevant 

features that imply weak and strong exogeneity, the variation freedom of coefficients 

and external variables and the invariance property of mechanisms, derive from of 

properties of systems that are assumed in the system (A) that underlies system (C). 

This suggests that it may be possible to develop a general analysis for when 

incomplete sets of equations with error terms, that are assumed to be abbreviations of 

complete set of equations, have internal variables that are weakly exogenous and 

super exogenous. This could provide a fruitful way of making more explicit 

conditions under which an internal variable in a set of equations is weakly and super 

exogenous. More generally, it shows that the extended reading, set out in this 

chapter, not only allows simple econometric models to be interpreted, but it also
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shows promise that it can be used to analyse relevant concepts, such as weak and 

super exogeneity, that are important in econometrics.

6. Conclusion

This chapter began with simple sets of equations interpreted as in the last chapter and 

has set out step-by-step how to extend the causal interpretation of the last chapter to 

sets of equations that differ from those of the last chapter in four ways. Those sets of 

equations, like the simplest actually used in econometrics, contain external and 

internal variables, have error terms in the equations, have constant coefficients, 

stochastic error terms and (sometimes) stochastic external variables.

To interpret sets of equations with external and internal variables, a distinction was 

introduced between incomplete and complete sets of equations. Complete sets of 

equations are the sets of equations interpreted in the last chapter, while incomplete 

sets containing internal and external variables represent just some of the causal 

relations modelled by a complete set of equations. With this introduction of 

incomplete sets of equations, the chapter presented a short exploration of how this 

could be used to analyse interventions. In particular, by considering different 

possible strongly causally consistent complete sets of equations that could underlie an 

incomplete set, it was possible to describe using a simple example, the diverse ways 

in which a simple intervention, changing just one external factor in an incomplete 

model, could be brought about.

In the second part of the chapter, an interpretation for incomplete sets of equations 

with error terms was introduced. It presented a way by which error terms could be 

introduced into equations without jeopardising the causal interpretation for the set of 

equations. The resulting interpretation for error terms was that these denote the joint 

impact of omitted, external factors from a mechanism. This reading fit well with 

conventional views of error terms in structural equations.
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The chapter finished by introducing constant coefficients and stochasticity. Constant 

coefficients were introduced simply by allowing coefficients in a system of equations 

not to vary. While stochasticity was introduced by attributing a joint probability 

distribution to a subset of coefficients in the complete set of equations. By assuming 

that an incomplete set, and an incomplete set of equations with errors were causally 

consistent with a complete set with some stochastic coefficients, stochasticity was 

introduced to error terms and variables in these systems of equations.

To conclude, the chapter has extended the causal reading to the very simplest types of 

sets of equations that econometricians actually use in structural modelling. This is 

clearly an important step for any attempt to analysis causality in econometrics. In 

addition, the chapter has attempted to do this in a rigorous way.49 The key 

assumption for doing this was to assume that underlying all the sets of equations 

analysed here was a complete set of equations, read using the strong reading of the 

last chapter. Though this is highly restrictive, some assumption of this sort is 

required if one is to make explicit the interpretation of structural equation models 

used in econometrics. It is an important further question to consider how such 

assumptions restrict the applicability of this formalisation of causal relations.50

49 Ultimately, a full formalisation o f  the concepts introduced here would need to be provided.
50 Recall that I do not claim that the formalisation o f causal relations presented here can be used to 
generally represent causal systems. Instead, the aim o f  the last two chapter has been to set out an 
explicit causal content for the simplest models used by econometricians.
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Appendix 3.1 - A Necessary Condition for An Incomplete Set to be Causally

Consistent with a Complete Set

An incomplete set is causally consistent with a complete set if and only if

(a) Each of its equations is an equation in the complete set.

(b) All of the formal order relations, obtained using Simon’s formal 

ordering methods, between equations in the incomplete set, and 

between its internal variables, also hold for those equations and 

variables in the formal order of the complete set.

(c) Formal order relations in the complete set that hold among internal 

variables and equations that appear in the incomplete set also hold in 

the formal order of the incomplete set.

(d) The external variables and coefficients in the incomplete set of 

equations are variation free in the complete set.

Theorem 3.1: An incomplete set of equations is causally consistent with a complete

set of equations only if it meets (NC).

(NC) (I) The incomplete set is a union of complete subsets of equations in the 

formal order of the complete set.

(II) Its set of internal variables is the union of those variables which are 

endogenous for those complete subsets.

(III) For any two internal variables y  and z such that y  causes z in the formal 

ordering of the incomplete set, then in the formal order of the complete set 

either y  is a direct cause of z or there exists a chain of direct causes such that 

y-> w W j - > z  where for all j , Wj is an internal variable.

Proof

Let C denote the complete set of equations, I  denote the incomplete set of equations.

By (a) /  c C ,  (NB - recall that the complete subsets of equations are the subsets of

equations obtained by applying Simon’s formal ordering method not to be confused
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with complete set of equations, which is one of the systems of equation to which the 

formal order is applied.)

First note that by (b) any complete subset of equations for /  must be a complete 

subset of equations in C, since (b) requires that all the properties of formal ordering 

of I  also hold for C. Given this, since the complete subsets of I  partition the 

equations of /, it follows that I  is a union of some complete subsets of equations for 

C. This gives the part (I) of (NC).

Now in determining the formal ordering for /, external variables are treated as 

coefficients. Therefore, in calculating the formal order each internal variable in /  will 

be solved for (by solvability of equations in I) and only these will be solved for. 

Therefore, every internal variable is endogenous relative to some complete subset of 

equations in I. By (b) then it follows that each internal variable is endogenous for the 

same complete subset of equations in C. Conversely, by (c) any variable which is 

endogenous for a complete subset of equations in C of which /  is the union must be a 

variable that is endogenous for that complete subset of equations in I. Therefore, any 

such variable must be an internal variable in I. This shows that the union of 

endogenous variables for the complete subsets of equations of C o f which I  is a union 

is equal to the set of internal variables. This gives the part (II) of (NC).

Consider any two internal variables in /, y  and z, such that y  causes z in the ordering 

for I. Since y  causes z in the formal ordering for /, then either y  is a direct cause for z 

or there must be some chain of direct causes y  ->V] -h>j ->z. If y  is a direct cause 

of z in the ordering for /, then by (b) the same must hold in the ordering for C. If y  is 

not a direct cause of z in the ordering for /, then there must be some chain of direct 

causes yj ->vi m̂v jm̂y 2 in the ordering for /  by which yi causes y 2 , and since only 

internal variables are endogenous in the formal ordering for /, it follows that all v’s 

are internal variables. But by (b) this must hold in the ordering for C, so there is a 

chain of direct causes yj ->vi -^vj ->y2 in the ordering for C by which yj causes y 2 ,

in which all v ’s are internal. So (III) holds and (NC) follows.□
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Chapter 4

Alternative Views on Causality based on Simon: Stephen LeRoy and 

Kevin Hoover

7. Introduction

This chapter presents and critically analyses Stephen LeRoy and Kevin Hoover’s 

respective positions on causal order. Both of these positions are developed from 

Herbert Simon’s (1953) paper, which was the basis for the strong reading of 

equations in chapter two. Here the aim is to contrast LeRoy and Hoover’s views on 

causal order with that of the strong reading. 1

The chapter begins with an overview of Stephen LeRoy’s treatment of causal order as 

applied to linear systems of equations. LeRoy’s position is highly influenced by, 

though significantly stronger than Herbert Simon’s. His definition of causal order is 

based on two conditions, the subset condition and the sufficiency condition. The 

subset condition is particularly interesting because LeRoy uses it to provide an 

alternative way2 to characterise Simon’s causal order. This part of the chapter sets 

out LeRoy’s definition of causal order, his characterisation of Simon’s causal order 

and makes some relevant criticisms.

The second part of the chapter looks at the treatment of causality by Kevin Hoover 

who, like LeRoy, is strongly influenced by Simon. It fleshes out Hoover’s view and 

shows ultimately that it is very similar to LeRoy’s characterisation of Simon. The 

chapter concludes that both Hoover and LeRoy’s positions build in unnecessary 

conditions in their definitions of causal order which prevent these from being applied

1 Ideally, the work o f this chapter should be extended to include other important works that have been 
influenced by Simon. In particular, work by Judea Pearl (2000, chap 7) is important and bears 
similarities with the strong reading proposed in chapter two. Nevertheless, in this chapter I focus on 
LeRoy and Hoover because they use simultaneous equation systems and are focused on causal models 
in economics. Pearl’s (2000) does not apply to simultaneous systems nor is economics-specific. For 
this reason, and also the keep the discussion manageable, I do not analyse Pearl here.
2 It provides an alternative way (from Simon’s) for defining Simon’s formal order over variables.
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to intuitively causal situations. This is in contrast to the strong reading developed in 

chapter two.

2. Stephen LeRoy ’s Treatment o f  Causal Order

Stephen LeRoy provides his most explicit and general discussion of causality in his 

paper ‘Causal Orderings’ (1995). In this paper, he sets out what it means for one 

variable to cause another in a general non-linear system of functional equations. 

Since I am concerned here only with linear systems of equations, I focus mainly on 

LeRoy (2004) where the general approach of (1995) is made specific to the linear sets 

of equations like those discussed in chapter three. In LeRoy (2004) the focus is on 

deterministic sets of equations that are linear in the coefficients and variables, and 

where coefficients are constant. The variables are partitioned into external and 

internal, the equations are linearly independent and solvable for the internal variables 

in terms of the external variables and the non-zero coefficients.3

2.1. LeRoy Causality -  Simple and Conditional Causes

For LeRoy, a variable in a linear set of equations is either structural or non- 

structural.4 The structural variables are those which a modeller specifies as either 

external or internal, while the non-structural are those left unspecified. In his (2004) 

all variables in the set of equations are assumed to be structural. A structural variable 

is external if it is ‘determined outside the model and subject to direct and independent 

intervention’, internal if it is ‘determined by the model and therefore not subject to 

direct intervention’(1995, p.212). This shows that LeRoy’s concepts of ‘direct’, 

‘intervention’ and ‘independent’, important primitives in his analysis, fit closely with

3 The sets o f equations he analyses are examples of what I called ‘incomplete sets o f equations 
without errors’ in the last chapter, but with constant coefficients.
4 In his earlier paper LeRoy (1995) defines causal order that applies to variables and parameters (i.e. 
coefficients) for a set o f non-linear functions. There LeRoy allows parameters to satisfy the same 
relations as a those for a variable. So parameters, like variables, can be structural or non-structural 
and for structural parameters, internal or external. His reason for treating parameters and variables in 
the same way is that LeRoy does not think (like Kevin Hoover does) that the distinction between 
parameters and variables is fundamental. In addition, LeRoy claims that his approach allows one to 
model the distinction in economics between ‘shallow’ and ‘deep’ parameters, by treating the former as 
an internal parameter and the latter as an external parameter. This is important for LeRoy’s discussion 
of the Lucas Critique in his (1995) and (1999).
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Simon’s corresponding concepts. For example, like Simon’s treatment of 

coefficients, for LeRoy an external variable is directly controllable, its value can be 

directly changed independently of the equations of the model. Similarly, like 

Simon’s treatment of variables, an internal variable is indirectly controllable, it can be 

controlled using external variables (c f  coefficients for Simon) to take values in line 

with the equations in the model.

With this background, LeRoy defines two types of causal relation that can occur 

between external variables in a linear set of equations: simple and conditional. 5 An 

important concept for the definitions is that each internal variable, y , is assumed to 

have an external set, e(y), which is the smallest set o f external variables which 

determines that variable. To determine the external set for an internal variable in a 

set of structural equations, one simply solves for the internal variable using the 

equations. The external variables that appear in the solution (the reduced form 

function) for the internal variable are those in its external set.

LeRoy then defines simple causation as follows:

yi is a simple cause of y 2 denoted, y \ => y 2 , if and only if:6

(1) The subset condition: e(yj) is a proper subset of e(y2).

(2) The sufficiency condition: there is a non-zero constant /? such that

y 2 = J^yi+^ , a j z 2-1 j where Z2-1 is the vector of elements in
;

e(y2)  - e(yj)

In addition, LeRoy defines conditional causation

yi is a conditional cause of y 2 given the set of internal or external 

variables Z={zJ, denoted yk=>yj\{zj> if and only if

5 LeRoy (1995) also defines joint causation as an extension o f simple causation that applies to sets of 
variables. I do not discuss it here because it is absent from LeRoy (2004) and because situations of  
joint causation can be modelled using conditional causation which is discussed here.
6 LeRoy (1995, p.214) also includes the ‘non-constancy condition’ in his definition of simple

causation. This requires that f \  _ (v ,) is not constant, so that no matter what value Z2 -1 takes the
I Z j _ j

resulting function still varies with>»7. LeRoy doesn’t mention the non-constancy condition in his 2004 
paper, but given that he restricts his analysis there to linear functions with non-zero coefficients, this is 
unsurprising since the condition is trivially met.
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(1) The subset condition is met: e(yi) is a proper subset of efo).

(2) The sufficiency condition is met: given the variables in Z are 

constant, there is some non-zero constant /? such that

•^2 I {zk =constant} l{z* ^constant) ^  j  ^ 2- 1'-/j{rjt =constant)
i

where Z2-1 is the vector of elements in e(y2)  - e(yi)

As is obvious from the definitions, conditional causation is simple causation where 

one or more internal or external variables are fixed. In order to see beyond these 

formal definitions, it is helpful to flesh out the causal relations using some simple 

examples.

First, consider the following abstract system of linear equations. 

y ] = a ]x l

y 2 = « 2*2 + & y  3
y 3 = a 3x 3

(x’s external, y ’s internal, a and /Ts constant coefficients)

The first step in determining what causal relations hold among the internal variables 

is to find the external sets for each internal variable. If one solves for them’s in terms 

of the x’s one gets the following reduced form equations7 for they’s:

Ti =
y 2 = a 2x2 + p 2a \x\ + A  <*3*3 

y 3 = a 3x3

From these, the external sets are: efyj) = {x f ,  e(y2) = (xj, X2, X3} and e(y3)  = {X3}. 

Since e(yi) and e(y3)  are both properly contained in e(yi), y 2 meets the subset 

condition relative to bothyy and yj.

In addition, the following two equations can be derived for y2.

y2 = a 2x2 + P2y x + p 3ct3x3 

y 2 = a 2x2 + p 2a lxl + p 3y 3

1 Structural equations are those to which causal order is attributed, while the reduced form is the set o f
equations obtained by solving the structural equations for the internal variables in terms of the external
variables.
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The first equation gives 72  as a linear function of yi  and the external variables that are 

in efo)  but not e(yj), so it implies that ̂ 2  meets the sufficiency condition for^y. The 

second equation gives y 2 as a linear function of y 3 and external variables that are in 

e(y2)  but not e(y$), so y 2 meets the sufficiency condition for yj. Since y 2 meets the 

sufficiency and the subset condition relative to yi and y 3, it follows that yi => y 2 and 

y 3 => y 2, that is, y 3 and yj are both simple causes of y 2. Finally, note that if X3 is 

constant then the sufficiency condition still holds for y 2 and yj, so yj conditionally 

causes y 2 given X3 . By an analogous analysis, it can be shown that y 3 conditionally 

causes >>2 given xy.

This example shows how to calculate LeRoy’s causal relations for a system of 

equations, but what is the intuitive content of those causal relations? To see this, it 

helps to consider direct changes in the external variables in the example. Given the 

equations, if xj is directly changed alone then both yi and y 2 indirectly change. If X2 is 

directly changed alone then only y 2 changes. Because the external set of y 2 contains 

the external set o f yi, changes toj'y lead to changes in ̂ 2- However, since the external 

sets o f y i is properly contained in that of y 2, one can chan g e^  without changing yj. 

Both of these features follow from the subset condition: the external set for 

properly contains the external set ofyy.

This last point shows that the subset condition ensures that if an internal variable is a 

simple cause of another internal variable, then a change in the first variable changes 

the latter, but it is possible to change the latter internal variable without changing the 

first. In short, the subset condition is a way of ensuring the following holds for 

simple (or conditional) causes and their effects: a change in just one cause is 

accompanied by changes in each o f its effects, but each o f  its effects can also be 

changed without changing that cause (since each of its effects has other causes). 

Behind this is the standard manipulability intuition for explaining causal asymmetry: 

causes can be used to bring about their effects but not vice versa.
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LeRoy’s simple causal relation also assumes the sufficiency condition. If yj is a 

simple cause of y 2 , the sufficiency condition requires that information about the value 

of yi be sufficient, given the values about external variables on which y 2 depends but 

not yi, for determining y 2 . This can be seen in the abstract example above where the 

value of y i , with that of the two external variables, x 2 and xj, determines the value of 

y 2 . The intuition behind this condition can be appreciated if one again considers 

changes to variables. For instance, in the example above if X2 and X3 are fixed, but 77 

is directly changed, then the change in y 2 is fully determined by the change in yj. 

This means no matter how the change in yi came about, it is ceteris paribus sufficient 

for determining the resulting change in y 2 . LeRoy himself gives a neat 

characterisation of his sufficiency condition when he states ‘causal statements 

involving internal variables as causes are ambiguous except when all interventions 

consistent with a given change in a cause variable map onto the same change in the 

effect variable.’ (2004, p.9, original emphasis).

The quote also shows LeRoy’s motivation for the sufficiency condition. While the 

subset condition ensures that changes in causes are accompanied by changes in their 

effects but not vice versa, the sufficiency condition strengthens this by requiring that 

how much a cause changes be ceteris paribus sufficient for how much the effect 

changes. In this way, an undesirable ambiguity in how much an effect changes is 

avoided. Putting the two conditions together, LeRoy wants a change in a cause to be 

ceteris paribus sufficient for a change in an effect (the subset condition) and he wants 

how much a cause changes to be {ceteris paribus) sufficient for how much an effect 

changes (the sufficiency condition). As the title of the relevant section in the paper 

puts it, this is ‘[c]ausality as sufficiency’ (2004, p.9) .8

8 As LeRoy points out, systems that meet these criterion provide an unambiguous answer to how much 
an effect will change if one of it causes changes by a certain amount. This shows the operationalist 
flavour of LeRoy’s position, he is tying his concept o f causality to questions that can be 
unambiguously answered. Indeed, LeRoy introduces his concept of causality in response to a question 
he poses: ‘What is the content of “operationally meaningful” in this context...?’ (2004, p.9).
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2.2. The Farmer Example and the Restrictiveness o f  the Sufficiency Condition 

To clarify LeRoy’s causal relations a little further and to show how restrictive his 

sufficiency condition is, I consider the following hypothetical example.9 A farmer 

chooses to water his prize pumpkin plant according to how much sunshine the plant 

receives, though he can only water the plant provided he has enough spare time from 

his other jobs. Assume the pumpkin weight also depends on soil quality, which is 

assumed to be independent of sunshine levels. The pumpkin’s weight is determined 

by the sunshine levels, soil quality and the water it receives from the farmer. These 

causal relations are represented in the following intuitive causal graph.

(sunshine) (spare time)
X] X2

yi (water added)

y 2 (pumpkin weight)

To model this using equations let the external variables be: the sunshine level (xy), the 

spare time (x^) and the soil quality (xj) . 10 Let the internal variables be the amount of 

water farmer adds to the pumpkin plant (yi) and the pumpkin weight (y2). Finally, 

suppose the following linear structural equations hold, where the coefficients 

represent the constant contributions along the causal arrows in the graph above. 

y i  =  «/X y +  0 .2 X 2  

y 2 = a?xy + 0 4X3 + a5yj  

(y’s internal, x’s external)

From these two equations, it is easily checked that the subset condition holds for yj 

and y 2 , that is, all the external variables that influence the amount of water added to 

the pumpkin also influence the pumpkin weight, and it is possible to change pumpkin 

weight without changing water added (i.e. by changing soil quality, say by adding 

fertiliser).

9 Kevin Hoover (2001a, p. 173) gives a similar example in his discussion o f LeRoy, also to show how 
restrictive the sufficiency condition is.
10 These are external because they are all determined by unmodelled causal relations.
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However, water added to the pumpkin is not a simple cause of pumpkin weight since 

the sufficiency condition fails. 11 The sufficiency condition requires that the amount 

o f water added, with the soil quality (this is the only external variable in the external 

set of pumpkin weight but not in that of water added) be sufficient to determine the 

pumpkin weight. This fails in this example because, given different levels of spare 

time, the same amount of water may be added under diverse sunshine scenarios, and 

these different sunshine level scenarios each lead to different pumpkin weights. In 

other words, the same amount of water added may be added given fixed soil quality 

in different sunshine scenarios, and since sunshine also directly determines pumpkin 

weight, the pumpkin weight will vary in these different scenarios, even though the 

water added and soil quality do not. So the values of water added and the soil quality 

do not alone determine pumpkin weight, and the sufficiency condition fails. LeRoy 

would consider this case ambiguous and to be ruled out. So in LeRoy’s definition of 

causal order, water added is not a simple cause of pumpkin weight.

Yet intuitively the amount of water added to the pumpkin plant is a contributing 

cause to the pumpkin weight. The fact that LeRoy’s sufficiency condition rules this 

out shows that it is too restrictive a condition. More generally, the farmer example 

shows where a cause shares a common cause with its effect then the sufficiency 

condition rules out using LeRoy’s simple cause relations to model the relationship 

between the cause and its effect. 12 This is a strong restriction on what causal relations 

can be modelled since it is intuitive to have a cause and effect which share a common 

cause. The sufficiency condition, though it provides an attractive property of

11 Formally this follows from the fact that though =f(x],x2) and y 2 = g(x1,x2,x3), y 2 £  h(yi,X3)  is not 
met for any linear function h as required by the sufficiency condition.
12 There is an apparent exception to this claim, where the cause’s only cause is the common cause with 
its effect. In that case, the value of the cause will be consistent with only one value o f the common 
cause and thus sufficient to determine the effect. This suggests that in that case LeRoy’s simple cause 
relation could be used to model the relation between cause and effect. However, this is incorrect 
because in the case where the cause only has one cause (the common cause with the effect) then the 
external set o f the cause and its cause are identical, so the subset condition fails. So, this situation 
cannot be modelled by LeRoy’s simple cause relation.
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connecting a particular change in a cause to a particular change in the effect (i.e. it 

avoids ambiguity) does not apply to a wide range of causally intuitive systems.

The sufficiency condition makes simple cause a restrictive causal relation. However,
1LeRoy’s conditional causal relation is weaker and more flexible. By holding 

variables fixed, one can obtain conditional causal relations where simple causality 

fails. In general conditional causality can hold wherever the subset condition holds, 

by holding fixed sufficiently many external (or internal) variables that cause the 

conditional cause variable. For instance, in the farmer example holding fixed the 

level of spare time, one obtains conditional causality from water added to pumpkin 

weight. This holds because if spare time is fixed, then how much the farmer waters 

the pumpkin is consistent only with one sunshine level. In that case the farmer’s 

watering amount and soil quality, since they are consistent with just one sunshine 

level, are sufficient to determine pumpkin weight.

Despite this, using conditional causation to model the intuitive causal relation 

between the farmer’s watering and the pumpkin weight is still somewhat 

unsatisfactory. This is because intuitively the farmer watering is a straightforward 

cause of the pumpkin weight and not one which is conditional on spare time levels 

being constant. 14 So, despite the ability of LeRoy’s conditional causal relation to 

formally model the farmer example, it is debatable whether it really does capture the 

intuitive causal connection from water added to pumpkin weight.

2.3. Summary

To summarise LeRoy’s concept of causal order, the idea is that for two internal 

variables x and y  in a system of equations: x is a (simple) cause of y  if any thing 

which changes x also changes y  but not vice versa (the subset condition) and if the

13 Note that in spite of developing a concept o f conditional causation, LeRoy is concerned (2004, p.l 1) 
that it is not consistent with his treatment o f external variables. In particular, he worries that the 
introduction of fixed variables in conditional causal relation violates a requirement that external 
variables are suitably independent o f each other. As a result, LeRoy prefers his strong concept of  
simple causality.
14 Why, after all, should the causal relation from the water added to the pumpkin weight be contingent 
on how much spare time the farmer has?
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value of x , along with those of other causes o fy  that do not cause x, carries sufficient 

information for determining the value of y  (the sufficiency condition). However, as 

shown in this farmer example, the sufficiency condition in particular imposes a rather 

strong restriction on the concept of causal relation, since it rules out the possibility of 

common causes between a simple cause and its effect. This is restrictive and rules 

out certain causal systems from being modelled using LeRoy’s simple causal relation. 

It shows the price to be paid in ruling out ‘ambiguous’ systems like the farmer 

example above.

3. LeRoy’s Characterisation o f Simon

In addition to presenting his own view of causality for linear systems of equations, 

Stephen LeRoy (2004) also presents an interpretation of Herbert Simon’s (1953) 

work on causal order, using his subset condition. LeRoy sets out, much as described 

in the previous chapter, how to determine Simon’s formal order among the internal 

variables by solving for the internal variables in terms of external variables using the 

smallest subsets of equations for which these can be solved. 15 In addition, LeRoy 

interprets Simon as solving the conceptual equivalence problem16 using what he calls 

the ‘exclusion condition’.

This section begins by exploring LeRoy’s claim that Simon solves the conceptual 

equivalence problem using the exclusion condition. Here the aim is not to determine 

whether or not LeRoy correctly interprets Simon17 but rather to show that there is a 

problem in using the exclusion condition to solve the conceptual equivalence 

problem. To show this, it presents a counterexample against the claim that the 

exclusion condition is sufficient for solving the conceptual equivalence problem, and 

also criticises LeRoy’s response to the counterexample. Having done this, the section

15 See chapters two and three. Recall that Simon also defines a formal order over the equations, LeRoy 
does not discuss this alternative.
16 Recall the conceptual equivalence problem is that the causal content attributed to equations can be 
changed by mathematically acceptable transformations.
17 The discussion of what Simon assumes in his treatment of causal order is discussed in the next 
chapter. The analysis there agrees with LeRoy that Simon makes an exclusion condition assumption, 
but differs slightly from LeRoy in the interpretation of that condition.
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then sets out how LeRoy’s subset condition and the exclusion condition, when 

suitably qualified taking the counterexample into account, provide a characterisation 

o f Simon’s causal order.

3.1. How Simon solves the Conceptual Equivalence Problem according to LeRoy 

In his discussion of Simon’s causal order for sets of equations, LeRoy notes the 

conceptual equivalence problem that ‘innocuous mathematical operations alter causal 

orderings’ (2004, p.5). Recall that in the strong reading adopted in chapter two, the 

conceptual equivalence problem was solved by assuming that each equation in the set 

denoted a separate mechanism. This ruled out all but the most trivial mathematical 

manipulations of equations (reorderings and rescalings) because transformations that 

linearly combined equations were taken to mix up the separate mechanisms denoted 

by the equations. In this way, formal-order-changing mathematical manipulations 

were ruled out and the conceptual equivalence problem avoided. 18

LeRoy, on the other hand, outlines a different approach for solving the conceptual

equivalence problem. He reads Simon as imposing an ‘exclusion condition’ on the

sets of equations to which his formal order is applied.19

{LeRoy’s Exclusion Condition) ‘each equation contain[s] at least one 
external variable not found in any other equation’ (2004, p.5, 
original emphasis removed).

To see why this should solve the conceptual equivalence problem, consider two
90mathematically equivalent sets of equations with different formal orders, where one 

meets the exclusion condition (system A) while the other (system B) does not (y’s 

external, x ’s internal).

18 Specifically, the manipulations were ruled out by introducing a new equality operator i=M' that 
made explicit that an equation denoted a mechanism.
19 As LeRoy notes, Simon (1953) is not very clear about exactly what is assumed in his definition of 
causal order. This is why I have called it ‘LeRoy’s exclusion condition’.
20 The formal orders are obtained using Simon’s method.
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Set o f Equations Formal Order Among Internal Variables
{yi} (ys)

y l = a xx,
\  /

(A) y 2 = a 2x2 +P2yx+P3y 3 { y j
T3 =  « 3*3

{yi)~^{yi}
y x = a xxx- S y 3 + Sa 3x3

\  /
(B) y 2 = a 2x2 + p 2y x+ p 3y 3 {yi}

y3 = « 3*3

To derive system B from system A one adds S times the third equation to the first in 

A, to derive the first equation in B. System B is mathematically equivalent to A but 

has different formal order, so this is an example of the conceptual equivalence 

problem. Yet system A meets the exclusion condition since every one of its 

equations contains an external variable unique to it, while system B violates the 

exclusion condition since its third equation does not contain an external variable not 

contained in any other equation. Therefore, in constructing system B the exclusion 

condition has been violated. So imposing that the set of equations meet the exclusion 

condition rules out the problematic transformation from system A to system B and 

avoids the conceptual equivalence problem.

Intuitively one would expect the exclusion condition to be sufficient for solving the 

conceptual equivalence problem, because whenever one linearly combines two 

equations from a system meeting the exclusion condition and introduces the resulting 

equation in place of one of the original equations, then the other original equation 

contains only external variables that appear in the new equation so the resulting set of 

equations does not meet the exclusion condition. This is the intuition behind LeRoy’s 

claim that ‘[t]he exclusion condition rules out algebraic operations that involve more 

than one equation (because if the original model satisfies the exclusion conditions, 

the modified model will not).’ (2004, p.5). However, this intuition overlooks a 

problem, since a counterexample can be constructed to the claim that the exclusion 

condition is sufficient to solve the conceptual equivalence problem.
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3.2. A Counterexample to LeRoy’s Exclusion Condition

Here I show that the exclusion condition is not sufficient for solving the conceptual 

equivalence problem. To see this consider the following set of equations (y’s internal, 

x ’s external).

v, = ccx, + Bx?...(\)
(C) Formal Order, {yj}, {y2} (i.e. unordered)

y 2 =pc2 +Sx3...( 2 )

In this set of equations, xj appears only in (1) while xj appears only in (2), so the 

exclusion condition is met for this system. Moreover, applying Simon’s ordering 

method to it yields that^y and >>2 are not causally ordered relative to each other.

To construct the mathematically equivalent system with different causal order, first 

solve (2 ) for X2.

Substituting (3) for in (1) and rearranging one gets (4) below. If one combines (4) 

with (2) one gets a new set of equations, D, which is mathematically equivalent to 

system C.

y 2 =yx2 +Sx3...( 2 )

Crucially, system D also meets the exclusion condition since xj only appears in (4) 

and X2 only appears in (2). However, applying Simon’s ordering method to it gives 

that y 2 causally precedes yj. Therefore, these are two mathematically equivalent 

systems of equations both meeting the exclusion condition, but both yielding a 

different causal order when Simon’s ordering approach is applied. Thus a set of 

linear equations meeting the exclusion condition is not sufficient to solve the 

conceptual equivalence problem.

More generally, counterexamples of this type can be constructed in any set of 

equations with more external variables than internal variables and in which there is an

Formal Order: {y2} {yi}
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0 1external variable that appears in more than one equation. But what does the 

counterexample imply for the exclusion condition? Can this solution to the 

conceptual equivalence problem be salvaged?

An answer to this can be found in observing that in system D if the compound 

coefficients are relabelled as simple coefficients then these satisfy a functional 

relationship amongst themselves. To see this, reconsider system D.

y  2 = ) * 2  +<&3- ( 2)

Re-label the compound coefficients in equation (4) as follows to get system D \

In system D’, a functional relationship holds between three of its coefficients namely

however he responds to it in his (2004) by introducing a caveat. Instead of

concludes that it is sufficient for the causal order to be generically unique. In other

variable appears, with the exception of the equation which was used to derive the expression for that 
variable. At this stage, one should be left with a different, yet mathematically equivalent system that 
still meets the exclusion condition, because the variable that was multiply occurring now occurs only 
in the substituting equation, while the external variable that occurred only once in that substituting 
equation now appears in all the equations in which the original multiply occurring variable appeared. 
So by ‘swapping’ one external variable that appeared in only one equation for another multiply 
occurring variable in this way, one constructs a visibly different system o f equations that has different 
formal order from the original.
22 One might be tempted to conclude that since the coefficients are variation free this problem is ruled 
out. However, this would be to forget that in the systems analysed here by LeRoy, the coefficients are 
assumed constant. It is meaningless to assume that the constants are variation free, since constants 
cannot vary.
23 See LeRoy (2003), the counterexample was shown to LeRoy in correspondence.
24 Note that the conceptual equivalence problem is equivalent to the problem of defining a unique 
causal order for sets of equations.

where

S ' = - j 3 ' 8 .  So system D, though it satisfies the exclusion condition and is 

mathematically equivalent to C, has a functional dependency among its coefficients.22

In an earlier version of the paper23 LeRoy was not aware of this counterexample,

concluding the exclusion condition is sufficient for unique causal order,24 he

21 This can be done by first deriving an expression for the multiply occurring external variable in terms 
of other variables by picking one of the equations in which it occurs and rearranging. Then one 
substitutes this expression for the multiply occurring external variable in all the places in which that
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words, he introduces an assumption that for most systems, that is, those with 

coefficients whose values do not have functional dependencies among the 

coefficients (like those in D’ above), the exclusion condition rules out problematic 

mathematical manipulations and solves the conceptual equivalence problem.

LeRoy then claims that such problematic cases (where these functional dependencies 

occur) have already been ruled out. He states ‘[s]ince we have already ruled out non

generic special cases (see note 2), it is seen that Fennell’s observation about 

nonuniqueness of causal orderings ... does not involve anything new’ (2004, p.5). 

This is surprising because the note 2 he refers to rules out non-zero values for 

coefficients, not the functional dependencies above. So, pace LeRoy, ruling out of 

coefficients that meet the functional dependencies, like those in system D’, does 

involve adding something new. It is different from assuming coefficients have non

zero values and in fact amounts to ruling out causal relations that cancel out.

To see this, consider System D’ once again, with its extended formal order.

According to the formal order, yi is causally dependent on X3 . So following Simon’s 

theorem 6.1 25 (1953, p.25) one expects changes in X3 to imply changes in yj. 

However, given that system D’ implies equation (1) of system (C) (recall D’ and C 

are mathematically equivalent) yi satisfies yi = axj + pX2> It follows from this 

equation that changes in X3 are not accompanied by any change in yi. In other words, 

this is an example of ‘cancelling out’. System D, read causally, assumes that X3 is a 

cause of yi that has no net impact on y j .26 This illustrates that ruling out the 

inconvenient functional dependencies among the coefficients, as LeRoy does in his

25 See chapter two.
26 This was discussed in chapter two in relation to Simon’s ‘in general’ caveat in his theorem 6.1.

(D ’) y ' = a x i + P ' y 2 + s ' x i 
y 2 =yx2 +Sx 3

where J3'= & S'=  - ^ /
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caveat, amounts to an assumption of ruling out certain systems that include causal 

relations in which the influence of a cause cancels out.27,28

In conclusion, LeRoy needs to rule out these problematic functional dependencies 

among coefficients if he is going to solve the conceptual equivalence problem to 

equations using the exclusion condition.

3.3. Relating LeRoy’s Causality and Simon’s Formal Order

Returning to LeRoy’s interpretation of Simon, there is a neat relationship that holds 

between LeRoy’s treatment of causality and Simon’s formal order for systems of 

equations that meet the exclusion condition. LeRoy claims (2004, p. 11) that in a 

system that meets the exclusion condition an internal variable causally precedes 

another in Simon’s formal order if and only if LeRoy’s subset condition is met. 

Surprisingly, LeRoy does not prove this important claim. So first I present an outline 

o f a proof.

3.3.1. Aside: Prooffor LeRoy’s Equivalence claim

A linear system of equations that meets the exclusion condition is such that whenever 

an internal variable, y , is solved for using Simon’s formal ordering method, its 

solution will contain (provided there is no cancelling out) every external variable that 

appears in the equations for which it is endogenous or on which it is causally 

dependent. Since the exclusion condition ensures every equation has an exclusive 

external variable, an internal variable z that is causally dependent on y  in Simon’s 

formal order must depend on extra external variables than y  (for instance those that 

appear in equations for which z  is endogenous buty is not). Moreover, since y  is used 

to solve for z, all of the external variables on which y  depends, z  must depend on also.

27 This, as noted in chapter two, is similar to the faithfulness assumption made by Spirtes, Glymour 
and Scheines (1993).
28 This needs a more careful formulation, because it may be possible to have a system that meets the 
exclusion condition which has some cancelling out causal relationships, but when the system is 
mathematically transformed into another system which does not have any cancelling-out relations, the 
resulting system does not meet the exclusion condition. So, a more precise explication o f  exactly 
which systems are ruled out by LeRoy’s caveat is required. I leave this as further work.
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These two features imply that the external set for>> is properly contained in that z, that 

is, LeRoy’s subset condition is met.

Conversely, assume the subset condition is met between two internal variables y  and 

z, in a linear system of equations that meets the exclusion condition. Then the 

solution (reduced form) for y  contains all the external variables in the solution for the 

other variable, z. Since all of the external variables that are exclusive to the equations 

used to solve for y  appear in its reduced form {provided there is no cancelling out) 

they must also appear in the solution for z. This then implies that all of the equations 

used to solve for y  are necessary for solving z, since there are no other equations that 

contain those variables. However, by the subset condition, z also depends on some 

external variables on which y  does not depend. This implies that at least one equation 

was used to solve for z that was not required for solving for y. This implies that y  

must be causally precedent to z in the formal order. This completes the proof.

3.3.2. Characterising Simon’s Causal Relation Using the Subset Condition 

As expected from the counterexample discussed above, LeRoy’s equivalence claim 

relies on the functional dependencies above being ruled out so that no cancelling out 

of external variables occurs when solving for internal variables. This can be seen in 

the emphasised statements in the proof. The no-cancelling-out condition is important 

because it ensures that the external set for an internal variable is equal to the set of 

external variables that appear in the equations necessary to solve for it. This 

underpins LeRoy’s equivalence claim.

So correctly stated LeRoy’s equivalence claim is that: fo r  solvable sets o f  linear 

equations in external and internal variables where the exclusion condition holds and 

there are no problematic functional dependencies among the coefficients, then an 

internal variable y  is causally precedent to another z in Simon’s formal order i f  and 

only i f  the external set fo r  y  is contained in that o f  z. This shows how LeRoy’s subset
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condition given the exclusion condition and no functional dependencies among
90coefficients provides an alternative characterisation Simon’s causal relation.

Finally, note that this equivalence also shows that the difference between LeRoy’s 

treatment of causal order and Simon’s rests with the sufficiency condition. LeRoy 

adds the sufficiency condition to the subset condition to obtain a stronger concept of 

causal relation (simple cause) than Simon’s causal relation. This can be illustrated by 

looking at the equations of the farmer example above.30 

yi = ajxj + (X2X2 

y 2  =  a y c j  +  0.4X3 +  a s y j  

(y’s internal, x’s external)

From the earlier discussion, yj  is not a simple cause of However, if one applies 

Simon’s formal order one obtains the intuitive causal order {y]} {y2}. So, unlike

LeRoy’s simple cause relation, Simon’s formal order captures the intuitive causal 

relation for this system (from water added to pumpkin weight). In short, the reason’s 

LeRoy’s simple cause relation fails to hold while Simon’s does, is that LeRoy further 

strengthens his causal position by imposing the sufficiency condition. This is done to 

rule out systems like the farmer case, which he views as ambiguous.

Having set out and critically discussed LeRoy, I now look at another economist’s 

work on causal order: Kevin Hoover’s. The analysis there shows that his position 

closely matches LeRoy’s characterisation of Simon.

4. Kevin Hoover on Causality

Kevin Hoover’s views on causality in macroeconomics are presented in his two 

recent books (2001a, 2001b). Like Stephen LeRoy’s position on causal order, 

Hoover’s position on causality is a development of Simon’s (1953) work on causal

29 Importantly, it characterises the causal not the direct causal relation.
30 Note that this system o f  equations meets the exclusion condition. I assume also that the coefficients 
have values that rule out the problematic functional dependencies. By LeRoy’s equivalence claim, this 
implies that by the subset condition holding for y 2 and y 2, y i  causally precedes y 2 in Simon’s formal 
order.
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order.31 Indeed, in many respects Hoover’s reading of Simon’s formal order appears 

very close to the strong reading of chapter two. In particular, Hoover stresses the 

distinction between direct and indirect control, the independence of directly 

controllable factors and the invariance of causal structure to intervention in factors. 

Despite this, however, there is an important divergence between Hoover’s position 

and the strong reading proposed in chapter two. The difference is in the attitude to 

the equations and what they represent. This difference is important and Hoover’s 

position is significantly different from the strong reading as a result.

This section gives a brief presentation of Hoover’s treatment of causal order fleshing 

out how his approach is similar to and differs from the strong reading. The result of 

the analysis is that Hoover’s position is seen to fit closely the way LeRoy 

characterised Simon. Hoover’s definition of causal order can also be interpreted by a 

subset condition holding in systems where an exclusion condition is met.

4.1. Hoover’s Simon-based Reading o f Sets o f  Equations

To understand how Hoover reads equations and Simon’s formal order, it is first 

necessary to be clear about the systems of equations which he attributes causal order 

to. These are sets of equations that are solvable for variables in terms of 

coefficients.32 In this respect, he stays faithful to the systems Simon analyses in his 

(195 3).33 However, unlike Simon and the discussion of chapter two, Hoover does not 

assume equations to be linear.34

31 Unlike Simon (1952, 1953), Hoover rejects the metaphysical scepticism on causality inspired by 
David Hume. Instead Hoover points out the causal richness o f  Hume’s writings on political economy 
to support his own causal realist position (Hoover, 2001a, pp.2-11; 2001b, pp.98-99). Hoover 
believes that sets o f  equations are attributed causal content in virtue o f  their claim to denote causal 
structures in the world.
32 Hoover uses the term ‘parameter’ instead o f  Simon’s ‘coefficient’, I stick to coefficient here to keep 
the discussion clear, and to make the connections with earlier analyses explicit.
33 In the terminology o f  the last chapter, Hoover looks at complete sets o f  equations.
34 In addition, Hoover includes sets o f  equations with error terms, where error terms represent omitted 
causal factors, as in the interpretation o f  error terms in the last chapter (2001a, pp.49-51). To keep the 
presentation simple, I do not discuss sets o f  equations with error terms here.
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There are many similarities between Hoover’s reading of systems of equations with 

Simon’s formal order and the reading in chapter two. In particular, Hoover’s 

interpretation of the distinction between coefficients and variables, o f the 

independence assumption for coefficients and of the invariance assumptions appear 

to match closely the reading in chapter two.

The similarities are clear from the way Hoover describes and builds from Simon’s

reading of the equations. Describing Simon, he writes

‘[a]ssume there exist experimenters...who can alter the parameters 
[coefficients] of a causal system. The class of interventions defines 
a higher-order relation called direct control. If by altering a 
parameter [coefficient]...the experimenter can change the value of a 
variable...he has direct control over [that variable]’(200la, pp.38-39, 
original emphasis).

While in his generalisation of Simon’s formal order (2001a, chap 3), Hoover 

interprets the independence assumption as a requirement that the coefficients are 

variation free.

‘The idea that true parameters [coefficients] may be chosen 
independently is embodied in the definition of P as a Cartesian 
product (every possible option is open).’ (2001a, p.62)35

In addition, Hoover stresses the importance of invariance of causal structure to 

intervention.

‘Models of causal structure trace out the claims of modal invariance.
Given the structures, a change in one part of the structure -  i.e, a 
change in parameterization -  is transmitted according to the causal 
order in a reliable way.’(200la, p.56)

So in summary, the way that Hoover builds on Simon appears to fit very closely with 

the strong reading presented earlier. Both readings draw on Simon’s comments about 

direct control, both read the independence assumption of coefficients as the variation 

free condition and both set out the importance of the invariance of causal structure to

35 P  is the domain o f  the vector o f coefficients. Given this, the quote here amounts to a claim that the 
domain o f  the vector o f  coefficients is the Cartesian Product o f  the domains o f  the individual 
coefficients, that is, the set o f  coefficients is variation free.
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changes in factors, that is, to interventions.36 This similarity is perhaps not surprising 

given that both readings, Hoover’s and that of chapter two, take Simon’s comments 

on how equations are to be interpreted as their starting point.

Despite these similarities, there is a crucial difference between Hoover’s reading and 

the strong reading. In particular, recall that in the strong reading it was assumed the 

attribution of direct control to factors and the interpretation of equations as 

mechanisms was necessary for solving the conceptual equivalence problem.37 In 

short, the strong reading takes equations as fundamental entities to which causal 

content is to be attributed.

Hoover, however, takes a different view. For him it is the choice of coefficients and

variables not the equations that is fundamental. He makes this clear when he writes.

‘Simon himself may lead readers astray by writing as if the equations 
were the fundamental building blocks of his system. A sympathetic 
reading, I believe, would take the choice of parameterization 
[coefficients] to be fundamental as I do here.’(2001a, p.39, [6])

Equations, for Hoover, can be mathematically manipulated provided the variables

and coefficients in the equations stay the same.

‘ [I]t is the choice of parameterization [coefficients] that assigns the 
arrowheads to the causal linkages represented in a graph. If we 
respect that distinction, any mathematically equivalent syntax will 
equally represent the same causal structure.’ (2001a, p.40)

In other words, Hoover takes the attribution of direct and indirect control to factors 

denoted by variables and coefficients to be fundamental and in this way avoids the 

conceptual equivalence problem.

36 See chapter two for the strong reading o f  these features.
37 See Section 6.2 chapter two.
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That said, equations still do play an important role for Hoover since they determine 

the solution for variables in terms of coefficients (the reduced form equations for 

the variables). It is this mapping from variables to coefficients, the reduced form 

equations implied by the structural equations, that denotes the causal structure for 

Hoover. Nevertheless, Hoover’s treatment of the structural equations is weaker than 

that assumed in the strong reading, since it only takes the reduced form equations 

implied by the structural equations to be causally significant. In contrast, the strong 

reading takes the structural equations themselves, not just the solutions that follow 

from them, to be causally significant. It takes each structural equation to denote a 

mechanism, and as such it cannot be linearly combined with any other equation. In 

simple terms, Hoover takes the reduced form equations as a group to denote the 

causal structure, whereas the strong reading takes each structural equation to denote a 

separate mechanism in the causal structure.

To see the difference between Hoover’s position and the strong reading more clearly 

it helps to reconsider an example of two mathematically equivalent systems given in 

chapter two.

System 1 {a} 0 }  {yj System 2 {a} {$} {y}p = a i | / „ = « k | ,
q = pp + y i  |  ^ q = pa+  y t  \  ▼ r

{p}-*iq} fp} {q}
As pointed out in chapter two, according to the strong reading of equations, these two 

mathematically equivalent systems have different causal interpretations which is 

visible from their distinct causal orders. This stems from the different second 

equations in the two systems: they represent different mechanisms. However for 

Hoover these two systems are not just mathematically equivalent, they are causally

38 The structural equations are those to which Simon’s formal order is to be applied, while the reduced 
form equations are the equations derived from these that give the variables solved in terms o f  
coefficients.
39 This explains why in the quote above Hoover states that one can mathematically manipulate the 
structural equations. This is because the reduced form functions do not change if  one manipulates the 
set o f structural equations without changing the variables and coefficients that appear in them. This 
contrasts with the strong reading where one could only reorder and rescale equations, because each 
particular equation denoted a particular mechanism that would change if  the equations were 
manipulated in other ways.
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equivalent. This is because what matters is the choice of coefficients and variables. 

Since both systems contain the same variables, coefficients and are mathematically 

equivalent, the systems imply the same reduced form equations. So their causal order 

a la Hoover is the same.

This shows the important difference in the treatment of causal order of both Hoover 

and the strong reading. But what does Hoover’s causal order mean? How is it to be 

read intuitively? I now turn to this.

4.2. Hoover’s Causal Order

For Kevin Hoover the causal order attributed is fully determined by the reduced form 

equations and the sets of coefficients and variables. Nevertheless, Hoover still uses 

Simon’s formal order for sets of structural coefficients, which seems inconsistent 

given that this method is sensitive to the form of the equations, as seen in systems 1 

and 2 above.

I think the way to make sense of the apparent inconsistency here is to assume that 

Hoover reads Simon’s formal order in the same way as LeRoy. That is, system 2 has 

the same formal order as system 1, {p} {q} because any changes to the value of p

are accompanied by changes in q, since both depend on a. Whereas, there are 

changes in q that are not accompanied by changes in p , because it depends on /? and y 

whereas p  does not. This reads Hoover as assuming a subset condition like LeRoy.40 

This solves the inconsistency provided one applies Simon’s formal ordering method 

to systems where the exclusion condition is met, since then LeRoy’s equivalence 

claim holds and Simon’s formal order always matches the orderings obtained by 

applying the subset condition.

Importantly, this reading fits well with Hoover’s assumption that it is the reduced 

form equations rather than the structural equations that denote the causal structure,

40 Though for Hoover, the external set would be for variables, rather than internal variables, and would 
contain coefficients rather than external variables.
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because the sets of coefficients on which any variable depends (the external sets in 

Hoover’s systems) are determined by the reduced form equations. Therefore, the 

reduced form equations carry all the information (the external sets) for determining 

whether the subset condition holds between two variables in a system of equations, 

and thus, for determining the causal order between two variables. So this reading 

makes sense of Hoover’s reliance on reduced forms.

O f course, if Hoover’s causal order matches LeRoy’s characterization of Simon and

his view of causal order is characterized by the subset condition applied to systems

that meet the exclusion condition, then one should find evidence in Hoover’s writings

that he restricts his analysis to systems of equations that meet the exclusion

condition. In fact, there is clear evidence At one point, Hoover states that Daniel

Hausman’s independence assumption (1998, p.64) applies to the systems he analyses.

Paraphrasing Hausman’s independence assumption, Hoover writes:

‘If A [causes] B (or if A and B are causally connected only as effects 
of a common cause) then B has a cause that is distinct from A and is 
not causally connected to A. The implication of independence is that 
all effects have multiple causes and not all causes are directly or 
indirectly causally connected...The point to notice is that 
independence arises naturally in the structural [Hoover’s] account 
with its emphasis on the causal fie ld  (error terms in econometric 
applications) and parameters [coefficients]’ (emphasis added,
Hoover, 2001a, pp. 103-104).

So it seems that Hoover thinks that the structural view implies Hausman’s 

independence assumption. This implies that a set of structural equations, read using 

Hoover’s approach, must be such that if a variable x causally precedes a variable y, 

then there must be a coefficient on which y  depends but x does not. Since if this were 

not the case then the factor denoted by y  would only have directly controllable factors 

that are causally connected41 to directly controllable factors causing the x-factor, 

which would violate Hausman’s independence assumption. From this, it is necessary 

if one variable is to cause another in Hoover’s causal order that the effect-variable be

41 According to Hausman (1998, p.59) two factors are causally connected if  and only if  one causes the 
other or they share a common cause.
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dependent on a coefficient on which the cause-variable does not depend. But, for this 

to work in systems of equations where Simon’s formal order is applied, requires that 

each equation contain an exclusive coefficient.42 This follows from LeRoy’s 

equivalence claim 43

These considerations support a reading of Hoover’s causal order as one that matches 

LeRoy’s characterisation of Simon’s formal order. So I read Hoover’s casual order 

as applying Simon’s formal ordering method to systems which meet the exclusion 

condition, that is, have an exclusive coefficient in each equation.44 This means that, 

for Hoover, given a system satisfying the exclusion condition one variable causally 

precedes another if and only if the subset condition is met.45 Since the subset 

condition relations are determined entirely by the reduced form equations, this is 

consistent with Hoover’s taking the reduced form equations as denoting causal 

structure.

All of this shows that Hoover’s treatment of causal order closely matches LeRoy’s 

reading of Simon. In both, ‘x causes y ’ is equivalent to all the direct controllable 

causes of x being directly controllable causes of y , and y  having some directly 

controllable cause that is not a directly controllable cause of x. In short, for both 

LeRoy and Hoover, x causes y  i f  whatever changes x also changes y, but not vice 

versa. Note that unlike LeRoy, however, Hoover does not introduce an additional 

sufficiency condition on causal relations.

42 Strictly speaking it requires only that each complete subset o f  equations contain an exclusive 
coefficient. But since this is essentially the same as the exclusion condition, and it would only add 
unnecessary complexity to the discussion to introduce this caveat everywhere, I assume the exclusion 
condition follows instead.
43 See the earlier proof outline o f  the equivalence claim. Also, strictly speaking it holds for LeRoy’s 
equivalence claim, properly re-labelled to apply to the sets o f  equations Hoover analyses that have 
variables and coefficients rather than internal variables and external variables.
44 Obviously, since the causal inputs in Hoover’s equations are denoted by coefficients, the exclusion 
condition for Hoover assumes that a unique coefficient, rather than a unique external variable appears 
in each equation.
451 leave out the earlier caveat about cancelling-out relations to keep the discussion simple.
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5. The Advantage o f  The Strong Reading over Hoover and LeRoy 

The discussion of Kevin Hoover has shown that his view of causal order closely 

matches Stephen LeRoy’s characterisation of Simon’s formal order. The problem 

with both positions is that they limit the application of Simon’s formal ordering 

method to equations that meet the exclusion condition. In contrast, the strong reading 

permits a causal interpretation of systems of equations where the exclusion condition 

is not met.

The motivation for imposing an exclusion condition is operationalistic. When a 

system of equations meets the exclusion condition, then the mechanism denoted can 

be intervened into separately from any of the others, which makes causal inference 

easier. This can be seen from the fact that Daniel Hausman’s independence 

condition, seen in the discussion of Hoover above to imply the exclusion condition, is 

very similar to his Open Back Path condition mentioned in chapter three.46 As seen 

there, a causal order that meets the Open Back Path condition allows certain causal 

inferences to be made. Therefore, LeRoy and Hoover, like Hausman, build into their 

concepts of causal order a condition which makes it convenient for these things to be 

known about.47 I think this is a mistake since it rules out using causal order as a 

concept to describe situations where causal inference is difficult or impossible. These 

are important situations to be able to describe if one is to make sense of the 

possibility of mistaken causal inference. After all, the world may well present us 

with causal systems that are difficult to find out about, why rule out conceptualising 

such systems a prioril It leaves us without no formal language for discussing 

situations where causal relations are difficult to discover. More generally, it leaves 

no formal language for discussing some of the limits of causal inferential methods.

In addition, the earlier discussion of LeRoy’s characterisation of Simon showed that 

it relied on ruling out causal systems which have causal relations that cancel out.

46 Recall Hausman’s Open Back Path condition: ‘every cause a  o f  b that has any causes has at least 
one cause d  such the only path from d  to b is via a ’ (Hausman, 1998, p.83)
47 It is a surprising position for Kevin Hoover who criticises those who ‘conflate the concept o f  cause 
with the method o f  inferring cause’ (2001a, p.22).
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This is problematic in a similar way to the exclusion condition, since it too rules out a 

large range of natural and social systems from being modelled. The strong reading, 

in contrast, has no problem analysing such systems.

Finally, LeRoy’s treatment of causal order also builds in the sufficiency condition. 

This is a particularly strong requirement which, as shown in the earlier farmer 

example rules out analysing causal relations in which a cause shares a common cause 

with its effect. This is particularly restrictive, and though LeRoy’s conditional causal 

relation seems to offer an alternative approach for analysing these situations, it does 

so at the price of introducing an artificial conditionality on the other causal relation 

being analysed.

In summary, the strong reading of causal order has an advantage of being applicable 

more generally than both LeRoy and Hoover’s definitions of causal order. It avoids 

building in conditions that permit causal inference into the very concept of causal 

order. This is important if one is to make formally explicit the pitfalls and limits of 

causal inference using one’s concept of causal order.

6. Conclusion

This chapter has set out both Stephen LeRoy and Kevin Hoover’s views of causal 

order. It has critically presented LeRoy’s characterisation of Simon’s formal order 

and shown it to match closely with Hoover’s treatment of causal order. The essence 

of both LeRoy and Hoover’s views on causal order is that changes in causes lead to 

changes in their effects but not vice versa since it is possible fo r  effects to change 

without changes in causes. LeRoy also makes an additional assumption that 

information about a cause must be sufficient for determining its effect. This 

sufficiency condition was seen to be particularly restrictive, which lead it to fail in 

describing some intuitive causal systems (the farmer example).

In addition, it was shown that Hoover and LeRoy’s positions, when applied to linear 

systems, require that an exclusion condition holds. This requires that each equation
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have its own external variable (or coefficient in Hoover’s case) that does not appear 

in any other equation in the system. This epistemically motivated assumption 

unnecessarily restricts the scope of both Hoover and LeRoy’s concepts of causal 

order. The strong reading, however, has the advantage of not making this assumption 

and can be used to conceptualise a wider range of causal systems.
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Chapter 5

Identification and Causal Order

1. Introduction

This chapter looks at one important part of econometric methodology: 

identification. Put generally, relations that hold among observable and 

unobservable entities are identifiable if given some a priori knowledge about the 

relations, previously unknown characteristics o f those relations can be deduced 

from observations. Typically in the econometrics literature, the identification 

problem is presented as the problem of inferring unknown coefficient values in 

systems of equations from observations. Yet a natural question comes to mind 

when these equations are structural (taken to denote a causal structure): what does 

requiring identif ability fo r  a set o f  structural equations require o f  the causal 

structure represented? What features of causal structures ensure that they can be 

denoted by identifiable equations?

The main aim of this chapter is to answer this question by clarifying in an 

intuitively causal way what identifiability of a set o f structural equations requires 

of the causal structure it represents. The ultimate aim is to ‘translate’ the classic, 

mathematical conditions for identification of structural equations in econometrics 

into intuitive conditions on the causal order denoted by a set o f structural 

equations.

In order to provide some context, the chapter begins with a discussion of what is 

typically known as ‘the identification problem’. The next section critically 

reviews Simon’s (1953) discussion of the relationship between identifiability and 

causal order, and concludes that the way Simon requires identifiability of systems 

of equations to operationalise causal order precludes his analysis from being used 

to causally interpret the identification conditions. It argues instead that the strong 

reading, developed in chapter two, should be used since it does not make 

identifiability necessary for attributing causal order to sets o f equations. The 

chapter then presents a useful theorem showing how identifiability o f a structural 

equation is equivalent to it being possible that any two variables in the equation
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can vary relative to each other while all other variables in it remain unchanged (a 

‘two-variable experiment’). Though this result applies to the functional equations 

and not the causal order, the strong reading of equations is then applied to develop 

an analysis o f what identifiability requires of a causal order. The final section ties 

up the chapter with a brief discussion of the role that identifiability plays in causal 

inference.

2. The Identification Problem

Mary Morgan’s (1990) book on the historical development o f ideas in 

econometrics dedicates a chapter to identification. According to Morgan, the 

development of ideas on ‘the identification problem’ was tied to practical 

difficulties faced in measuring supply and demand elasticities from observation. 

As Morgan discusses, in early applied empirical work on supply and demand 

measurement concerns were sometimes raised that measurements did not actually 

measure what was claimed (pp. 163-168). The difficulty was (and remains) that 

observed prices and quantities of goods transacted result from supply and demand 

mechanisms acting together. This raised a practical challenge o f how to identify 

properties o f one mechanism without mistakenly mixing in properties o f the other 

mechanism. The subsequent development o f identification concepts in 

econometrics arose to clarify the conditions under which one could claim to have 

measured properties of the individual demand and supply mechanisms.

In this section, I present a brief account of the identification problem which is 

similar to accounts one finds in introductory textbooks in econometrics.1 

However, it is also slightly different because I present a deterministic example. 

This is done because the analysis of the rest of the chapter focuses on 

deterministic systems of equations.

1 See, for example, Maddala (2001), Gujarati (1995).
2 Specifically, I focus on linear systems of equations with internal variables, external variables and 
constant coefficients in which the internal variables are solvable in terms o f the external variables. 
These were called ‘incomplete sets o f equations’ in chapter three.
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2.1. A Deterministic Example

Suppose an economist is in the following situation, she knows that observations of

quantity and price are generated by a causal system represented by the following

pair o f structural equations. In the equations q and p  are two internal variables

denoting equilibrium quantity and price respectively, while t is an external

variable denoting a tax that the government imposes on all transactions, paid in

part by the consumer and in part by the supplier.

q = a xp  + a 2t ... demand 

q = a 3p  + a 4t ... supply

Suppose also that she knows that a i  < 0, 0.3 >  0, a 2  <  0 and 0.4 <  0 in line with 

what is known about demand and supply mechanisms respectively.

The economist’s aim is to measure the values o f the coefficients in the equations 

from the observations she has for p, q and t. Obviously, if  the tax level remains 

fixed then equilibrium quantity and price will be constant. But suppose that the 

government cannot make up its mind about the level at which to set the tax, so it 

changes the tax level. Then price and quantity will change in response to the tax 

shift. The graph below shows how two observations o f price and quantity would 

be generated by the supply and demand mechanisms if  the government increased 

tax.

Price, p  mistaken regression line
Demand 2 Demand 1

Supply 1

Supply 2

____________________________________________________________________ Quantity q
Figure 5.1 -Identification Problem for Deterministic Supply-Demand-Tax Model

Now the aim of the economist is to measure the structural coefficients from 

observations. Unfortunately, these coefficients cannot be identified. As one can 

see from the graph, if  the economist were to straightforwardly regress a line 

through the two observations for price and quantity, then she would obtain the 

‘mistaken regression line’ shown in the graph. Such a regression would not be
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measuring the slope coefficient o f either the supply or demand curves. Instead, 

since both curves have shifted (tax shifts both intercepts in the price-quantity 

plane as shown in figure 5.1) she would be measuring some unknown linear 

combination of the slope coefficients in the demand and supply equations.

2.2. Koopmans’ Supply-Demand Example

A more standard example o f the identification problem, presented by Tjailing

Koopmans in his influential paper on identification (1949, p. 127) and often given

as an example in textbook discussions of identification, is that o f a supply and

demand model in which there are two error terms uj and «2 covering the factors

not explicitly represented in the demand and supply equations. In this case, the

structural equations are:

q = a ]p  + ul ... demand 
q = a 3p  + u2 ... supply

Since the w’s are error terms they are unobservable.4 The identification problem in 

this case arises in part because one does not know, given two (or more) 

observations for quantity and price, whether and by how much uj and U2 differ 

between observations.

To see this, suppose one observes two distinct price and quantity observations 

which one knows were generated by mechanisms correctly represented by the 

structural equations above. First note that there is no way to know whether the 

change was due to a shift in uj, a shift in U2 or both. For instance, suppose (q2, 

P2)  lies ‘northeast’ o f (qi,pj), then there are two possibilities to explain the shift:5 

(1) a shift in both mechanisms («/ and ui) and (2) a shift in just the demand 

mechanism (in ui). These are represented in the two graphs below

3 Note that this is not a problem o f having too few observations, even if the government changes 
tax repeatedly, all the observations for price and quantity will lie on the same spurious line above. 
All the observations lie on the same spurious line in this system because both price and quantity 
shift in proportion to the tax shift (easily checked if one calculates the reduced form for p  and q). 
Since this ratio of the observed shifts o f price and quantity is constant and independent o f the tax 
shift, the observations must lie on the same (spurious) line.
4 I am assuming in line with convention that the error terms denote factors omitted out of 
ignorance.
5 I haven’t included a case where only the supply mechanism shift occurs as possible, because that 
would require that the demand mechanism were upward sloping, which I assume is known not to 
be the case.
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■Figure 5.2 -Possibility 1: Shift in both Supply and Demand

Price, p

Demand 1 Demand 2
regression line 

Supply 2 

Supply 1

________Quantity q
(in Ui and u2)

Price, p
Demand 1 Demand 2 regression line

Supply (unchanged)

Figure 5.3 -Possibility 2: Shift only in Demand (in u,)

The first graph shows how the observations would have been generated if both the 

supply and demand mechanisms were shifted, while the second shows how they 

would have been generated if the change was only due to a shift in the demand 

mechanism. Since the changes in the w’s are not observed, there is no way of 

knowing which of the two possibilities above it is. Moreover, even if  one 

somehow knew that both error terms had shifted, one would not know by how 

much and so that knowledge would not help to identify the equations. However, 

if  one knew that only the demand mechanism shifted, as shown in the second 

graph, then one could regress on the observations to measure the supply equation 

because, as the figure 5.3 illustrates, in this case the regression line fits on the 

supply equation.

2.3. Solving the Identification Problem

This second possibility above suggests a way out: attributing shifts to particular 

mechanisms. If one has a way of observing shifts that can be attributed to one 

mechanism but not another then identification may be become possible. To see
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this, suppose that both examples above are modified so that there is an extra 

observable external factor, income, which figures in the demand mechanism but 

not the supply mechanism (and so income appears in the demand equation but not 

the supply equation). Then one can identify the supply equation in both systems.6

In the first (deterministic) example, income could allow the supply mechanism to 

be measured in the following way. In this case the correct structural equations 

would become (where i is the external variable denoting income).

q = a lp  + a 2t + a 5i ... demand

q = a 3p  + a 4t ... supply

To identify the supply equation, one would ask the government to keep the tax 

level fixed and then wait to observe a change in income. Once income changes, 

one gets a situation like that represented in Figure 5.3 above. Income leads the 

demand mechanism to shift while the supply mechanism does not shift (since 

income is ‘excluded’ from it). Here, since one observes that only income changes 

(among the external variables) and since one knows the form of the structural 

equations, one can simply fit the supply equation to the observed two points. This 

is possible because knowing that only the demand mechanism has shifted it is

known that the two points must lie on the unchanged supply equation.

As an aside, note that here we have an ‘experiment’ to observe the coefficients of 

the supply equation in the following way: tax is held fixed while income changes 

lead to a systematic change in the equilibrium price and quantity. Since the 

observed changes in price and quantity must satisfy the known form of the supply 

equation, this can then be used to infer the strength o f connection between price 

and quantity in the supply mechanism. Later in the chapter, I discuss in more 

detail how such experiments relate to a necessary and sufficient condition for 

identification, the rank condition.

6 In the second system one also needs that the error terms are uncorrelated with income and each 
other, otherwise this correlation in the error terms will lead to a bias in the estimates for 
coefficients.
7 It is not necessary that the government hold tax fixed, identification is also possible if tax varies 
sufficiently. Later in the chapter, I discuss this in more detail.
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In the second example (with errors), things are somewhat complicated by the fact 

that one cannot hold the m’ s  fixed, as was done with tax in the first example. In
Q

this case, adding in income, one obtains the set o f structural equations.

q = CC\P + a 5i + u] ... demand

q = a 3p  + u2 ... supply

Provided that the m’ s  are not correlated with one another nor with income,9 then

identification o f the supply equation is possible. To see this, imagine that income 

changes to six different levels while the error terms change in an uncorrelated way 

with each other and income. The graph below shows how six such observations 

might be generated given the shifts in income and error terms.

Price, p
▲ D2 D5 D6

S3 S4 S2 S6 S5

Quantity, q

Figure 5.4 Multiple Observations for Income changes with Error term changes.

Under these conditions,10 the regression line fitted through the observations11 

(which is shown in the graph below) should have a slope which is a good fit with 

the inverse coefficient for price in the supply equation.12

8 This case follows closely Koopmans’ own discussion (1949, p. 129) and countless examples in 
introductory econometric discussions o f  identification.
9 Stephen LeRoy calls this requirement ‘the uncorrelatedness assumption’ see LeRoy (2004, 
pp.16-17).
10 As an aside, note that if the impact on the mechanisms o f the variation in income is small 
relative to the impact due to the variation in the error terms, then estimates o f  the coefficients will 
be highly inaccurate. In the graph above we have implicitly assumed that this is not the case, by 
assuming that the ‘spread’ o f shifted demand equations is greater (since income changes it not 
supply) than the spread o f  the supply equations.
11 Using a suitable estimation procedure.
12 In the case where the error terms were correlated with each other or with income then these 
points would trend away from the underlying supply equation, introducing a bias in the 
measurement o f  the slope coefficient. This is a problem o f identification not merely o f  statistical 
inference because, not knowing the correlation, one cannot infer back to the correct coefficient, no 
matter how well the sample o f observations represents the population. In cases where these 
correlations are known, identification can become possible again. Indeed, specifying constraints
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A  Price, p
Regression line

 ►
Figure 5.5 Regression Line for Income changes with Error term changes.

In both examples, identification of the supply mechanism is possible given that 

the demand mechanism contained a factor which was excluded from the supply 

mechanism.13 This is an example of identification being secured due to variables 

being excluded from equations, or at the causal level, due to factors being absent 

from mechanisms.

This ‘exclusions’ approach can be generalised to give conditions for identifiability 

o f equations in sets o f linear equations. The conditions for identification o f an 

equation in such systems of equations, where all variables are observable, are:14, 15

The Order Condition (Necessary for Identification)

Given a system o f n linear equations in n internal variables and m 

external variables in which all variables are observable, a necessary 

condition to identify all the coefficients in an equation is that the 

equation exclude at least n-1 variables (internal or external).

on the covariance matrix for error terms is another way identification can be secured, for a detailed 
discussion o f  this see Fisher (1966, chapter 4).
13 Note that the method used in the two examples above cannot be used to identify the demand 
equations. This is because there are no observable variables which the demand equation excludes. 
Therefore, there is no way o f attributing an observable shift to the supply mechanism alone, which 
is what is required to make inferences about the demand equation.
14 For more on these conditions, see Fisher (1966, pp.39-41), Gujarati (1995, pp 657-669) and 
Maddala (2001, pp.348-352).
15 In line with the standard econometric treatment, I assume that all coefficients in the system o f  
equations are unknown and that there are no constraints on the external variables (i.e. they are 
variation free). Given this, the only way to secure identifiability is by exclusions o f  variables from 
equations.
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The Rank Condition (Necessary and Sufficient fo r  Identification)

Given a system of n linear equations in n internal variables and m 

external variables, in which all variables are observable, a necessary 

and sufficient condition to identify all the coefficients in an equation 

is that the submatrix of coefficients formed from the columns o f the 

coefficients of the variables (internal and external) excluded from 

that equation has rank n-1 . 16

These conditions are not discussed in detail here. Instead, later in the chapter a 

theorem is presented that allows one to interpret the rank condition in a way that 

makes explicit a general connection between it and the possibility o f experiments 

like that described above in the tax example. The aim in doing this is to make 

clear just what requiring a structure to be identifiable entails, from an explicitly 

causal perspective.

Before that however, I return to Herbert Simon’s important work on causal order. 

This is because Simon ties his causal order intimately with identification 

conditions. This is done for the purposes of clarifying what Simon said and also 

for critically evaluating the claims that he makes in relating identification and 

causal order. This is important since this chapter aims to flesh out the relationship 

between identifiability and causal order.

3. Simon on Identification and Causal Order

In chapter two, a strong reading for causally interpreting linear systems of 

equations was developed by building on Herbert Simon’s (1953) paper on causal 

order. Unlike Simon however, my reading was developed without assuming that 

identifiability of those systems was necessary for attributing them a meaningful 

causal order. There the conceptual equivalence problem was dealt with by 

assuming the equations denoted mechanisms, which ruled out the equations being 

mathematically manipulated to change the formal order. O f course, Simon also 

wants to avoid the conceptual equivalence problem, or, as he puts it ‘we sought an

16 The rank o f a matrix is the dimension o f the space spanned by its rows or columns.
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operational basis for the concept of causal ordering, a basis that would make of 

the ordering something more than an arbitrary property o f a particular (arbitrary) 

way of writing the equations governing certain empirical variables’ (1953, p.27). 

In contrast to the strong reading and in line with his operationalism, however, 

Simon uses an identifiability condition for sets o f equations to avoid the 

conceptual equivalence problem. This section sets out the role identification plays 

in Simon’s (1953) treatment of causal order.

3.1. Interpreting Simon on Identifiability and Causal Order

Clarifying Simon’s position on identification and causal order is not easy because

Simon’s paper is sometimes ambiguous. To give just one example, consider the

following quote in which Simon apparently makes a claim for an equivalence

between causal order and identifiability.

‘the conditions under which the causal ordering o f a structure is 
operationally meaningful are generally the same as the conditions 
under which the structural equations can be distinguished from 
nonstructural equations, and the same as the conditions under which 
the question of identifiability o f the equations is meaningful’. 
(Simon, 1953, p.27)

Unfortunately, this quote can be read in (at least) two ways. One reading is that 

Simon is claiming that operationally meaningful causal order and identifiability 

are equivalent. This would read ‘the conditions under which the structural 

equations can be distinguished from nonstructural equations’ as conditions for the 

identifiability o f structural equations. But a problem with this reading comes 

immediately from the third part o f the quote: what does Simon mean by 

‘conditions under which the question o f identifiability is meaningful’? This last 

part suggests a second reading: that operational causal order is equivalent to a 

precondition for considering identifiability not to the identifiability conditions 

themselves.

As the quote shows, it is not always very clear what Simon means. So in order to 

avoid such interpretative difficulties, I look at the more explicit, formal analysis 

that Simon presents to develop a concrete interpretation of the logical relationship 

he claims holds between causal order and identifiability.
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In his formal discussion Simon sets out which mathematical transformations 

preserve his formal order for sets of equations. He shows that for any set of 

equations, rescalings17 of the equations (transformations that multiply each
1 ftequation by a non-zero constant) preserve the formal order among the variables. 

Other transformations are problematic, for instance, linear combinations o f 

equations since these typically change the variables which appear in the equations 

and thus change the formal order over variables.19,20 So, in short, Simon shows:

(1) The formal order o f a system of equations is preserved by 

rescalings of the equations.

A connection between this result and identifiability then follows from Simon’s 

claim that ‘[t]he definition of identifiability implies that a linear structure is 

completely identifiable if and only if the a priori restrictions on the model...are 

such as to permit only [rescalings of equations]'(ibid., p.30). Here by a priori 

restrictions Simon means exclusions of variables from equations, as in the above 

discussion o f the identification problem. By exclusions permitting only 

rescalings, he means that there must be sufficiently many zeros in the coefficient 

matrix so that any linear combination of equations leads to a system with fewer

17 Simon’s uses ‘S-transformations’ to denote mathematical transformations that rescale equations, 
I think this terminology is unnecessarily cumbersome, so I use ‘rescalings’ instead.
18 Note this result fits with the properties o f M-equations in appendix 2.1, since there it was shown 
there that linear combinations of equations preserve the formal order over equations and therefore 
over variables.
19 Simon rules out transformations that reorder equations because he sees reordering as rearranging 
the interventions that are associated with each equation. I think this is unnecessary since I doubt 
anyone would consider a model to have a different meaning merely because its structural 
equations were written in a different order. Arguably, interventions associated with equations 
would be reordered along with the equations. This is why in the strong reading M-equations can 
be reordered. That said, these reordering transformations are not important since either they are 
ruled out (like Simon) or easily brought into the set o f acceptable transformations (like the strong 
reading). I do not discuss them here as they merely complicate the discussion without contributing 
to its substance.
20 Importantly, there may be some non-rescaling transformations that do not change the formal 
order over variables. In a footnote Simon points out that linear combinations o f equations in the 
same complete subset o f equations does not change the formal order among the variables (1953, 
p.30, [11]). Though this may sound like it contradicts theorem 2.2 in Appendix 2.1, where it was 
shown that the formal order is preserved only by rescalings and reorderings, this is not the case. 
This is because, as set out there, non-rescalings (nor reordering) transformations always change the 
formal order over equations. This was motivated by the particular interpretation o f equations (as 
denoting specific mechanisms) adopted in the strong reading, which is muddled given any linear 
combination o f equations. So, though there are some non-rescaling and non-reordering 
transformations that preserve the formal order over variables, these change the identity of 
equations (in the strong reading) and thus change the formal order over equations. So the 
contradiction is only apparent. See Appendix 2.1 for details.

154



• 21exclusions or exclusions of variables in different parts o f the equations. So 

Simon claims:

(2) A system is identifiable by a priori exclusions if and only if  the 

exclusions permit only rescalings of the equations.

To understand the connection between this and Simon’s operationalism, consider

Simon’s comment:

‘An important guiding principle in the relationship between 
mathematical models and empirical data is that a property of a 
mathematical model cannot be regarded as reflecting a property of 
the empirical world the model purports to describe unless this 
property is invariant under permissible (operationally nonsignficant) 
transformations of the equations specified by the model.’(my 
emphasis, ibid., p.28)

But what transformations on sets of equations are operationally nonsignificant? 

To answer this, consider a set of equations whose coefficient values are unknown. 

If that set of equations fits a set o f observations, then any set of equations that is 

an invertible linear transformation of that set of equations will fit the observations 

equally well. Therefore, if  one is restricted to fitting a set of equations with 

unknown coefficients to the observations as the operation for measuring 

coefficients, then all invertible linear transformations o f that set of equations are 

operationally nonsignificant. As noted by Simon, the problem with this is that it 

makes the formal order of the set of equations an arbitrary feature o f the way 

equations are written because then the formal order can be changed by an 

operationally nonsignificant transformation. Therefore, without further conditions, 

formal order is not ‘operationally unique’ and is operationally meaningless!

In contrast, if one has operations for specifying sufficiently many exclusions of 

variables from a set of equations (i.e. the exclusions are operationally meaningful) 

then one can avoid the operational meaningless o f formal order. This is because if 

one has a set o f equations which has sufficiently many exclusions o f variables so 

that the set of equations is identifiable, then the formal order o f the set of 

equations is operationally unique. This follows because the set of transformations

21 It is crucial that one reads the exclusions as having a particular location. What is important is 
that the locations o f the exclusions are preserved by transformation, not just the number o f  
exclusions in an equation.
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that preserves the exclusions in an identifiable set o f equations, by (2), are 

rescalings of the equations. Since, by (1), rescalings preserve formal order the 

formal order is then the same under all operationally nonsignificant 

transformations. So the formal order is operationally unique and is operationally 

meaningful. In this way, identifiability for a set o f equations ensures an 

operationally unique formal order for a set of equations. In summary, (1) and (2), 

assuming operationally meaningful exclusions of variables, imply

(3) A set o f equations has operationally unique formal order if  it is 

identifiable.

Given this, it seems Simon could simply require that sets o f equations be

identifiable so that they have operationally unique formal order. Interestingly

however, Simon’s operationalism22 drives him even further. Simon states that

‘[operationalism] requires us to associate with each equation a procedure (set of

operations) for altering its constant term or coefficients’ (ibid., p.27, original

emphasis removed). Simon connects this with his analysis o f formal order and

identification when he notes:

‘[i]f with each equation of a structure we associate a specific power 
o f intervention, then, under S-transformations [rescalings] this one- 
to-one correspondence between equations and interventions between 
equations will retain its identity. But under [other transformations], 
the equations will be scrambled and combined’ (1953, p.30).

To interpret this, recall that ‘experimenters’ intervene into equations using 

external variables,23 so requiring that each equation have a specific power of 

intervention is best interpreted as a requirement that each equation have a unique 

external variable that only appears in that equation. In other words, Simon 

requires that the following hold.

(4) Sim on’s Exclusion Condition: Each equation has a specific 

external variable unique to that equation.

22 See chapter two for a short discussion o f Simon’s operationalism.
23 Strictly speaking, for Simon it is coefficients not external variables that denote the factors by 
which experimenters intervene. However, since in this chapter I focus on linear systems o f  
equations in internal and external variables, I reformulate Simon’s exclusion condition for these 
systems. I focus on these systems o f equations because these are more like those analysed in 
econometrics (see chapter three), which makes it more straightforward to relate Simon’s 
discussion to the standard identification discussions.
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This exclusion condition is related to rescalings by the subsequent part o f the 

quote, which can be restated as a claim that.

(5) If each equation has an external variable unique to that equation 

then only rescalings of equations preserve each equation having 

its unique external variable.

This last claim ensures that the exclusion condition by permitting only 

rescalings of equations, ensures that the formal order attributed to the set o f 

equations is operationally unique.

Given this, Herbert Simon’s position on the relationship between formal order and 

identifiability can be summarized by two important claims. The first is

Sufficiency o f  Identifiability fo r  Operationally Unique Causal Order 

A set of equations has operationally unique formal order if  it is 

identifiable.

This is complemented by Simon’s operationalist requirement that the set of 

equations satisfy his exclusion condition. So his second key requirement is that 

the systems o f equations to which his formal order is applied, satisfy.

Sim on’s Operationalist Requirement In a system of equations, the 

exclusion condition must hold, that is, each equation must have an 

external variable unique to that equation.

Simon’s operationalist requirement ensures that the system of equations is 

identifiable, which in turn ensures that the set of equations has a operationally 

unique formal order.

Interestingly, Simon’s approach can also be seen as a solution to the conceptual 

equivalence problem. Recall that the conceptual equivalence problem is that sets 

of equations to which causal order is attributed can have their causal order 

changed by mathematically manipulating equations. Simon solves the conceptual 

equivalence problem by requiring that each equation have its own unique external 

variable that is unique to that equation. This implies that the system of equations 

is identifiable,24 which fixes a operationally meaningful unique formal order for 

the set of equations. So the exclusion condition ensures that the formal order

24 See appendix 5.1 for a proof.
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attributed to a set of equations is unique, which solves the conceptual equivalence 

problem.

Finally, note that this interpretation of Simon is very similar to Stephen LeRoy’s 

reading discussed in chapter four. Like LeRoy, I read Simon as assuming an 

exclusion condition. However, I read Simon’s exclusion condition as stronger 

than LeRoy’s version. To see the difference, contrast LeRoy’s version with 

Simon’s.

(LeRoy’s Exclusion Condition) ‘[E]ach equation contain[s] at least 

one external variable not found in any other equation.’ (LeRoy,

2004, p.5).

(Simon ’s Exclusion Condition) Each equation has a specific external 

variable unique to that equation.

Despite the obvious similarity, the two conditions are not equivalent. The Simon 

version requires that a particular external variable uniquely appear in a particular 

equation. So, for instance, that variable X] appears only in the first equation. In 

contrast, a system that meets LeRoy’s exclusion condition need not require that a 

particular variable be specific to a specific equation. All it requires is that in each 

equation contain some external variable that does not appear in any o f the other 

equations. In certain circumstances, systems that meet LeRoy’s conditions can be 

mathematically manipulated to get a mathematically equivalent set where the 

equations are scrambled to have different unique variables in the equations. An 

example o f such a system was presented in the discussion of LeRoy in chapter
c

four. In contrast, the version of the exclusion condition I attribute to Simon 

rules out this possibility. Any system created by a linear combination of 

equations in a system that meets Simon’s exclusion condition, changes which 

exclusive variable is specific to which equation, and so violates his exclusion 

condition.

There are two reasons why I read Simon as making this stronger exclusion 

condition. The first is that Simon says ‘with each equation of a structure we

25 See system (D) in chapter four.
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associate a specific power of intervention’ (emphasis added, 1953, p.20) and I 

take the stronger exclusion condition to be suggested by his use o f ‘specific’. 

The second reason is that, unlike LeRoy’s exclusion condition, this stronger 

condition implies identifiability. This is necessary if Simon’s claims, set out 

above, are to be valid. So, being charitable, I read Simon as adopting the stronger 

exclusion condition above rather than LeRoy’s.

3.2. How Simon Contrasts with the Strong Reading and Related Criticism 

Recall that my strong reading assumes that interpreting equations as mechanisms 

imposes the constraint that equations cannot be linearly combined. As an 

example, consider the earlier unidentifiable system of equations, the supply and 

demand example with tax as an external variable common to both equations.

q = a xp  + a 2t ... demand
q = a 3p  + a 4t ... supply

In my reading, I assume that there are principled reasons for taking the first 

equation to represent a demand mechanism and the second a supply mechanism. 

Though the two equations relate the same variables (representing equilibrium 

price, quantity of a good and tax), they cannot be linearly combined without 

jeopardizing the mechanistic interpretation o f the equations. In this case, linearly 

combining the demand equation and the supply equation may give a new equation 

(here with the same variables) but it would not give an equation that represents a 

mechanism.

In contrast, Simon would not consider the set o f equations here to have an 

operationally meaningful causal order because neither equation has an exclusive 

external variable. In Simon’s view, for sets of equations like those above, though 

they can be attributed a unique formal order (using his method) this formal order 

is not operationally meaningful because there is no independent way of 

intervening into the respective equations, that is, Simon’s exclusion condition is 

not met. This condition operationalises the causal order because it allows each 

equation to be varied independently of the others and thus allows each complete 

subset in the causal order to be varied independently. This naturally fits with the 

possibility o f experimenting to investigate each part o f the causal order, or, in
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others words allows an operation for discovering how different variables (or 

equations) vary under intervention.26 In this way, Simon’s operationalism leads 

him to tie his concept o f causal order to a condition for finding out about causal 

order.

In contrast, under my reading the supply-demand example has a unique causal 

order simply because the equations are taken to denote mechanisms. In the strong 

reading, it is not the exclusions of variables that ensures unique causal order, but 

rather an appeal to content which is not explicit in the equations, or at least, not
2 7explicit in the exclusions o f variables from equations.

Simon’s reading achieves uniqueness of causal order by relying on excluding 

sufficiently many variables. This is a rather strong requirement, and problematic 

because it denies a causal interpretation to unidentifiable (underidentified) 

models. Of course, the motivation behind an approach like Simon’s is to avoid 

metaphysics, or more prosaically, to avoid talking about things about which we 

cannot know. So, a defender o f Simon might argue: what sense is there in talking 

about a model whose relations are unknowable? And he would claim that this 

makes talking about underidentified models (like that above) meaningless, since 

in these cases one cannot deduce the values of coefficients from observations.

As with Stephen LeRoy and Kevin Hoover’s position at the end of chapter four, I 

think this is mistaken. To see why, remember that in the discussion o f the 

identification problem in section two above, measuring the values o f coefficients 

relied on knowing the correct structural form of the equations. Now the obvious 

question is: where does this a priori knowledge come from? There are clearly a 

lot of possibilities. For instance, in our demand-supply example, one might 

appeal to everyday ‘folk’ knowledge that consumers buy less when prices go up, 

or one might appeal to more sophisticated rationality claims about the utility of 

consumers. However, in almost all o f these cases, the a priori causal knowledge 

has not been gained by setting up some more general set o f equations, excluding

26 And, as is shown in detail below, identifiability is equivalent to the possibility o f experiments.
27 The content is partially explicit in the equations because the coefficients in the demand and 
supply equations are different with different interpretations. Also, recall at the end o f chapter two 
that to make the strong reading explicit I suggested that a new equality symbol =M be used.
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variables to secure identification and fitting data to them to see what values of 

coefficients fit best.28 My criticism isn’t that a priori knowledge is required, but 

is instead that to restrict causally ordered systems to those that are identifiable 

reveals an inconsistent attitude. On one the one hand, the attitude makes free use 

of a priori knowledge that does not rely on identification to support the functional 

form which is used to interpret the observations. While on the other, it requires 

that the functional form be identifiable to be meaningfully causally ordered. It 

seems simply arbitrary that identifiability (or even stronger, an exclusion 

condition) should be necessary for reading equations causally in the second case 

but not the causal claims underlying the functional form in the first.

On a closely related issue, Nancy Cartwright (2001) presents criticisms against 

those who claim modularity is necessary for causal relations. Modularity is a 

similar, though stronger requirement than identifiability, that requires that each 

factor have its own causal factor that influences it alone.29 It is attractive, 

according to Cartwright, because it implies ‘epistemic convenience’. Epistemic 

convenience is essentially another name for identifiability, it ensures that 

coefficients in the systems of equations to be measured from observed values for 

the variables (given other conditions are met). One criticism she gives o f 

modularity, which is particularly relevant here, is her argument that 

operationalism does not give a good reason for adopting modularity (pp.73-74). 

Earlier in the paper, she shows that modular systems allow coefficients to be 

identified using a simple method of concomitant variation, that is, one can vary 

one particular cause of an effect to observe the strength of its influence. 

However, she argues that this method of concomitant variation is just one o f the 

methods that are open to operationalists. For example, more complicated versions 

of concomitant variation and other methods for finding out about causal

28 Model selections methods are an example o f this. However, even if it is done this way, that is, 
by testing a more general identifiable set o f equations one is still left with the same problem ‘one 
level up’. Where does the a priori knowledge for this more general set o f equations come from? 
Eventually, we must rely on some method that does not involve inferring coefficients in 
identifiable systems.
29 The similarity o f modularity to the exclusion condition should be obvious.
30 The next section o f the paper presents a similar result, but generalized to cover simultaneous 
equation systems.
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connections are possible. This implies that operationalism is not restricted to 

modular systems in what it can operationalise.

My argument above makes a similar point. The claim is that in order to make use 

o f an identifiable system, one uses methods other than those that require 

identifiability to obtain the background ‘a priori’ knowledge which is needed to 

identify the coefficients. Given this is the case, it seems odd to tie having a causal 

order to identifiability because that seems to arbitrarily privilege one method for 

knowing over others. It ties the causal interpretation to just one method among 

many for obtaining causal knowledge.

3.3. Concluding Comments on Simon

This section has presented an interpretation o f Simon’s discussion on the 

relationship between causal order and identifiability. It has shown that Simon 

(1953) restricts his definition of formal order, for operationalistic reasons, to 

systems that meet his exclusion condition of having a unique external variable in 

each equation. Systems of equations that meet his exclusion condition are 

identifiable, which Simon shows to be sufficient for a unique formal order 

equations. In this way he avoids what I call the conceptual equivalence problem.

In contrast, my strong reading, developed in chapter two, does not build in 

identifiability as a condition for solving the conceptual equivalence problem. 

Instead, it takes equations to denote particular mechanisms which alone is 

sufficient for ruling out the problematic transformations that lead to conceptual 

equivalence problems. This approach has the advantage over Simon’s that it does 

not limit the causal interpretation of systems o f equations to those that are 

identifiable.

This advantage o f the strong reading is exercised in the remainder o f the chapter, 

where I attempt to use it to discuss what identifiability requires o f a causal order. 

This question is meaningful in the strong reading, where both identifiable and 

unidentifiable systems of equations can be causally interpreted. This is ruled out 

in Simon’s approach since, in his reading, in order for a set of equation to have a 

meaningful causal order it must be identifiable. This leaves no scope for
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investigating what interesting features, if any, causal orders must have in order to 

be identifiable.

4. What Identifiability Requires o f  Causal Order

The aim o f this section is to set out an explicit causal interpretation of 

identifiability using the strong reading of chapter two. The underlying goal is to 

facilitate the understanding of identifiability of causal structures in a way that 

makes causally intuitive how the identification conditions allow one to measure 

the strength o f causal connections.

In standard discussions of identification in econometrics, two conditions are 

presented for linear systems of equations to be identifiable. These are the order 

condition and the rank condition presented at the end of section two. The rank 

condition is the more powerful of the two conditions since it is a necessary and 

sufficient condition for identifiability o f an equation, whereas the order condition 

is only necessary. The rank condition requires that a submatrix (formed using 

exclusions) o f the coefficient matrix o f a linear system of equations have a certain 

rank, that is, as a transformation it preserves sufficiently many dimensions. As 

this description makes clear, the rank condition is a purely mathematical condition 

on a matrix, it does not make explicit what special features, if  any, a causal order 

denoted by an identifiable system of equations has. Though the rank condition 

ensures identifiability for a system of equations, it does not give any clue as to 

what is special about a causal order denoted by an identifiable system of 

operations.

Yet, it is intuitive that causal orders that are denoted by identifiable systems of 

equations should have interesting properties. After all, if  a system o f equations is 

identifiable, then one can measure its coefficients from observations. If the 

system of equations is structural, and thus denotes some causal order, then these 

coefficients are structural, they measure the strength o f causal connections. In this 

case identifiability allows strengths of causal connections to be measured. 

Intuitively, one expects this to require something of the causal order which it 

represents since not all causal orders ‘will permit’ the strengths o f their causal

163



connections to be deduced from observations. This intuition suggests that 

identifiability of systems of equations that denote causal orders, should imply that 

their causal orders satisfy certain conditions that make them epistemically 

convenient. It is the aim of this section to flesh out what these properties are.

The section begins by presenting and discussing a theorem that shows that the 

rank condition is equivalent to an alternative condition, which is easier to interpret 

causally. It then introduces the strong reading in order to interpret just what 

identifiability requires of causal order.

4.1. An Equivalence between Identifiability and Possible Experiments 

In appendix 5.2 I prove a theorem which shows that identifiability o f an equation 

is equivalent to any two variables in that equation being able to vary, while all 

other variables in the equation remain constant. This situation where at least one 

of two variables in an equation change but all other variables in the equation do 

not change, I call a ‘two-variable experiment’ since it has features one associates 

with ideal experiments. Namely, it is a situation where two factors can vary while 

some other relevant factors are fixed.

This relationship between identifiability and possible changes in variables has 

been suggested by others. For example, Stephen LeRoy states what is essentially 

the same result in his discussion of identification in his recent paper31 (2004, p. 19) 

attributing the result to James Heckman (2004). Though I have not been able to 

trace a clean statement of the result that LeRoy gives, a similar claim is made for 

a specific supply-demand model in recent works by Heckman (2000, pp. 57-59) 

and (2001, p.34). Also, Nancy Cartwright in various works (e.g. 2003a) has

31 Stephen LeRoy writes ‘the coefficient ay represents the effects of internal variable j  on internal 
variable i condition on the other variables in equation i being held constant, if  and only if ay is 
identified.’ (2004, p. 19, original emphasis removed).
321 have discussed the reference with LeRoy. I now think LeRoy may be referring to Heckman’s 
statement that ‘the causal effects are defined if the parameters are identified in the Cowles 
definition o f identification’ (Heckman, 2004, p.39). Since Heckman defines causal effects using 
ceteris paribus manipulation, like a two-variable experiment, this may be the source of LeRoy’s 
claim.
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stated and proved similar results but these do not cover the simultaneous equation
'X'Xsystems covered by the theorem here.

The theorem and the relevant concept o f experiment are:

Theorem 5.2: Given an incomplete set of equations,34 the rank 

condition holds for an equation if and only if  a two-variable 

experiment is ‘possible’ between any two variables in that equation.

Let zy and Z2 be two variables that appear in an equation, a two- 

variable experiment occurs for zy and Z2 in that equation if  and only if

(i) All variables in the equation except zy and Z2 do not ‘change’.

(ii) At least one of zy and Z2 changes.

The terms in scare quotes require clarification. First, ‘possible’ is to be 

understood as being constrained in the following ways.

- Each value in the domain of an external variable is possible in some 

primitive sense.

- The variation free assumption on the external variables is to be read 

as each individually possible value o f an external variable being 

possible independent o f the values taken by other external 

variables.35

- A value is possible for an internal variable if and only if there are 

some possible values for the external variables which, given the
%fsequations, imply that value for the internal variable.

33 Also, Cartwright’s approach is slightly different since she derives further causal knowledge 
from limited causal knowledge and knowledge about functional relations. In the work here, the 
analysis essentially stays at the level o f functional relations, since as we will see in the later part o f  
this section, causal order needs to be assumed separately in order for identifiability (or the 
experiments here) to yield causal knowledge.
34 Recall from chapter three that incomplete sets o f equations are linear systems o f equations in 
internal and external variables, just like those being discussed in this chapter. I use the term again 
here because it is a convenient way o f specifying the linear systems o f equations in internal and 
external variables to which the theorem applies. Note that these systems do not contain error 
terms. The extension o f this analysis to systems with error terms is left as further work.
35 So the set o f jointly possible values for the external variables is the Cartesian product of the sets 
of the individually possible values for each external variable.
36 Formally, the set o f possible values for an internal variable is the range of the reduced form 
function for that variable. Here I also assume that the domains o f the external variables have 
‘nice’ properties, that is the domains are open intervals in the set o f real numbers. I also assume 
that these domains are such as to allow the joint changes in one or more external variables to
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The second term ‘change’ refers to a difference in two values for a variable. A 

possible change is a difference between two possible values of a variable. Finally, 

a two-variable experiment between z; and Z2 in an equation is possible if there is a 

set of possible changes in the external variables, which given the equations, 

implies that at least one of z; and Z2 changes while all other variables in the 

equation do not change.

To clarify this by example, consider the system of equations (p and q are internal, 

the x’s external) where the external variables are variation free. 

p  = ax]
n Formal Order {p} {q}q = Pp + yx2

It is easily checked that the second equation is identifiable using the rank 

condition. The theorem also allows us to see why, in terms of two-variable 

experiments. By definition, a two-variable experiment is possible between p  and 

q in the second equation if it is possible that the external variables, xj and X2 , 

change so that at least one of p  and q varies without any other variable in the 

second equation varying. Since the external variables are variation free, it is 

possible that xj changes but not X2 . Such a change (in xj but not x?) leads to a 

change in p  (by the first equation) and this change in p  leads to a change in q (by 

the second equation). Since X2 does not change, then only p  and q change in the 

second equation and a two-variable experiment occurs. It follows then that a two- 

variable experiment is possible between p  and q in the second equation. By 

analogous reasoning, one can also show that two-variable experiments are 

possible in the second equation for q and X2 , and p  and X2 . By theorem 5.2 

above, this is sufficient for the second equation to be identifiable.

cancel out in the systems o f equations analysed. These assumptions would be made formally 
explicit in a fuller, more rigorous treatment. However, they are not central to the analysis o f the 
chapter so I do not discuss them in depth here.
37 These interpretations are chosen so as to be as weak as possible, while consistent with the 
treatment using functional relations. Any stronger view o f  ‘possible’ that is consistent with these 
requirements could also be assumed.
38 Recall the requirement that the external variables be variation free in order to causally interpret 
systems of equations, that is, for the external variables to denote suitably independent factors in the 
strong reading. See chapter two.
39 Though for the two variable experiment between p  and x2, q must be held fixed by the joint 
impact o fp  and x2 cancelling out.
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This clarifies the theorem but what is the connection with identifying values of 

coefficients? After all, the value of identifiability is that it allows one to deduce 

values of unknown coefficients given known functional forms and observations of 

variables. So it is necessary to assume that the form of the equations above is 

known, that the values of the coefficients are not known and that the variables are 

all observable.40 In this case, identifiability of an equation should allow one to 

deduce the value of the unknown coefficients from the known functional form and 

observations of the variables. One advantage o f the theorem above, is that it 

makes particularly intuitive how coefficients can be measured.

To see this, reconsider the system above with its identifiable second equation. By 

the theorem, this means that a two-variable experiment is possible for p  and q. 

Such a two-variable experiment occurs when only xj changes among the external 

variables. Suppose such a two-variable experiment occurred, then one would 

(since the variables are observable) observe changes in xj, p  and q but not X2 . In 

addition, since the form of the equations are known, it is known that this is a two- 

variable experiment for the second equation.41 Therefore one would know that,

A q = PA p  + yAx2 = j3Ap + / 0  = /3Ap 

from which it follows that it is known that

This last equation is known to hold and its right hand side can be calculated from 

the observed changes in p  and q. The left hand side, the originally unknown 

coefficient /?, can now be deduced from the ratio of shifts in q and p. In this way, 

a two-variable experiment that occurs given observable variables and known 

equation forms, allows coefficient values to be deduced, that is, it allows 

coefficients to be identified in the equations.

In summary, the theorem above gives an alternative necessary and sufficient 

condition for identifiability o f an equation. It has the advantage over the rank

40 These are the conditions under which the rank condition above permits the measurement o f  
coefficients.
41 Because it is known that only p, q and x2 appear in the second equation.

A q = p A p
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condition of showing in intuitive terms just how identification of coefficients from 

observations can take place. Moreover, it does this using a concept which appears 

to fit closely with an intuitive concept of experiments.42,43

Having given a flavour of the theorem by example, there are a couple o f important 

points to be made. First, it is important not to mix up two-variable experiments 

being possible and such two-variable experiments actually occurring. The second 

important point to note is that the discussion here holds independent o f causal 

order. I consider each of these in turn.

4.2. Possible vs. Actual Experiments

The theorem shows identifiability requires that it be possible that functional 

relations generate an experiment not that they in fact do. The latter condition is 

much stronger and likely to occur only in systems which can be suitably 

controlled or happen to be naturally shielded. In practice, if  one knows the form 

of the equations and can observe variable values, then if these equations are 

identifiable then one can infer values of coefficients even if two-variable 

experiments do not occur.

To see this consider the example again, where as before, external variables are 

variation free, the form of the equations is known, but the values of the 

coefficients are not.

p  = axl 
q = Pp + yx2

Suppose that one observes two separate shifts in the variables. Suppose that one 

observes a first shift (A x/, A xJ , Ap1, Aq1)  and later a second shift (Axj2, Ax-?,

42 The theorem only shows how to identify slope coefficients. However, identifying an intercept 
coefficient is also possible once one has measured all the slope coefficients. In that case, it can be 
done by substituting all the observed values of the variables in the equation. The intercept 
coefficient is equal to the sum of these values multiplied by their corresponding slope coefficients 
(assuming the equation is written with the intercept on one side o f the equation and all other 
variables and coefficients on the other).
43 The theorem suggests an obvious generalisation for non-linear systems. The generalised theorem 
would be an equivalence claim between the existence o f partial derivatives for the reduced form at 
a point and local identifiability at that point. For an example o f non-linear analysis, see Heckman 
(2000, 2001).
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Ap2, Aq2). Then substituting into the associated difference equations (which are 

known, given the equations are known) gives four known equations.

A/?1 = a  Ax/ 

Ap 2 = aAxj2 

A ql = /3Apl + yAx2 

A q2 = j3Ap2 + yAx2

These are four known equations in three unknown coefficients, so provided the 

shifts are independent44 one can solve for the unknown coefficients. Importantly, 

this case can happen without any two-variable experiment occurring, that is, 

where all the variables change in both shifts. Nevertheless, the coefficients can be 

measured. So clearly an actual two-variable experiment is not required. The 

connection with possible experiments is simply that only a set of equations for 

which a two-variable experiment is possible, will be such that it uniquely fits the 

observed variable shifts.

Obviously, requiring that some condition be possible is much a weaker 

requirement that requiring that the condition applies. Therefore, the theorem 

might tempt some to conclude that identifiability is a rather weak requirement. 

Strictly speaking, this is correct in the sense that it is weaker than requiring that an 

experiment actually occur. However, as seen above, identifiability is only useful 

for finding out the values of coefficients if other strong conditions are met. In 

particular, it is required that (i) the form  o f  the equations is known and (ii) that 

variables are observable.45 The point is that identification may be a ‘weak’ 

condition relative to certain others, but it is only useful when other ‘strong’ 

conditions are met.

4.3. The Missing Causal Order

The second important point is that this experimental interpretation o f the 

identification in the theorem is independent o f the causal order for a system of

44 That is, the shifts in jc7 and x2 must not be o f the same ratio in both cases. Since the variables are 
variation free this cannot be systematically the case, so here I assume that they are not related in 
this way.
45 In the examples here I have assumed all variables are observable. However, one can derive 
further identification conditions for cases where some variables are unobservable.
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equations. This shows up an important limitation of the concept o f experiment 

presented here. To see this, consider the following two mathematically equivalent 

systems with different formal orders.

It is easily checked that the both systems of equations are identifiable, using the 

rank condition. By the theorem, two-variable experiments are possible for both 

systems and coefficients can be measured in either system.

If one assumes that functional relations have the form on the left, then those 

coefficients can be measured and conversely, if  the functional form on the right is 

chosen. Since both systems are correct qua functional relations, identifiability 

allows the measurement of coefficients in either set of equations. So which one 

gives us causal connections? It depends on which, if  any, has the ‘true’ causal 

order. If one knew that the first system had the correct causal order, then the 

coefficients inferred from observation would measure causal strengths. If the 

second, then its coefficients measure the causal strengths. So, in order fo r  

identifiability to measure causal strengths one must know, not only a correct 

functional form, but that it has the correct causal order.

This implies that the two-variable experiments are in the absence o f knowledge 

about causal order, not ‘experiments’ at all, at least not experiments that measure 

causal connections. In fact, this is not very surprising if  one looks back at how 

two-variable experiments are defined, since the concepts used are entirely 

functional concepts. All they require is that two variables in an equation have 

different values while all other variables in the equation have the same values. As 

is clear from it being put in these terms, this does not use any causally substantive 

concepts. The causal content must come from elsewhere, as the above example o f 

the two systems shows. The next section adds this causal content, using the 

strong reading o f chapter two, to obtain a picture of what identifiability requires of 

causal order.

p  =  axl 

q = Pp + pc2 

{.P} -*■ {?}

q = /}cK1+pc1
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4.4. Identifiability and Constraints on Causal Order

This section asks for a system of equations read using the strong reading what 

identifiability requires of the causal order denoted by that set o f equations. 

Another way of putting this is: what makes one causal order identifiable, and 

another one not?

The first step in understanding what identifiability requires of causal order is to 

introduce causal content using the strong reading. So suppose that one has a 

linear system of equations in external and internal variables, that is causally 

interpreted using the strong reading. Suppose that an equation in this system is 

identifiable. This implies, by the theorem above, that in that equation it is 

possible that any two variables change relative to each other while all other 

variables remain fixed. In the strong reading this implies that the mechanism, 

corresponding to that equation, in the causal system is such that for any two 

factors in the mechanism it is possible for those two factors change relative to 

each other while no other factor changes. Call a situation in which just two 

factors change relative to each other in a mechanism a two-factor experiment.

This moves us from two-variable experiments to two-factor experiments. It 

moves from the functional domain to the causal domain by using the strong 

reading. However, this merely ‘translates’ the earlier condition for identifiability 

into a condition on a mechanism denoted by an identifiable equation in a causally 

interpreted systems o f equations. What is lacking is some causal story as to what 

is required of a causal system in order for a two-factor experiment to be possible 

for a mechanism.

To help with this, recall the model version o f Simon’s theorem 6.1 discussed in 

chapter two. It stated that an indirectly controllable factor in a causal order 

changes ‘in general’ if  one of its directly controllable factors causing it changes, 

but does not change if  none of the directly controllable factors causing it change. 

The ‘in general’ caveat covers the case where one or more directly controllable 

factors change but the joint impact of these cancel out, which implies that it is 

possible for causal directly controllable factors to change without causing a

171



change in an indirectly controllable factor. These features can be summarised in a 

useful ‘Change condition’.

(iChange Condition) If an indirectly controllable factor, y, in a 

system changes then at least one directly controllable factor causing 

it changes. Conversely, if  an indirectly controllable factor, y, does 

not change then either no directly controllable factor causing it 

changes OR one or more directly controllable factors change and 

these changes cancel out to have no impact on y.

This is useful, because it allows one to infer back from factors that do or do not 

change in a mechanism to conditions on the directly controllable factors. This 

allows one to infer from a two-factor experiment to conditions on directly 

controllable factors.

So, suppose that a two-factor experiment between zy and Z2 is possible for a 

mechanism, m\ what kind of causal order must be in place to allow this?

To simplify the discussion, let S  be the set of directly controllable factors that 

either appear in the mechanism, m, or are causes of the indirectly controllable 

factors that do. This is the set o f directly controllable factors that can be used for 

varying factors in the mechanism m. Let Sfree be the set o f directly controllable 

factors that are either identical to, or causes of zy and Z2 (the two factors that are 

free to vary in the two-factor experiment). Likewise, define S/lxed to be the same 

set, but for those factors in m that are to remain fixed in the two-factor 

experiment.46

The two-factor experiment requires that at least one of zy and Z2 vary, while all 

other factors remain fixed. Given this, the change condition implies that some 

directly controllable factor in Sfree must be changed (to vary the one or more o f the 

two factors zy and zi) to perform a two-factor experiment. Similarly, the change 

condition implies that the factors in Sfaed must either be left unchanged, or varied 

in a particular way, with cancelling out, so that the other factors in the mechanism 

remain fixed as required by the two-factor experiment.

46 By definition, both Sfree and SfUe<i  are contained in S, and their union is S. They need not be 
disjoint however.
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Now there are two possibilities either Sfree and Sfixed overlap or they do not. If they 

do not overlap, then the two-factor experiment is straightforward. Simply vary 

some directly controllable factors in Sfree and leave those in Sfaed unchanged. 

Then provided there is no cancelling out,47 then at least one o f the two factors will 

change, while the other factors will remain unchanged since none o f their causes 

have been changed. So, in a case where Sfree and Sflxed do not overlap there is no 

problem carrying out the two-factor experiment.

However, this nice result is not relevant because it is not possible for Sfree and Sflxed 

not to overlap.48 To see why, recall that every factor in a mechanism is either 

exogenous or endogenous for the mechanism, and that every mechanism contains 

at least one endogenous factor.49 Also recall that any exogenous factor in a 

mechanism is a direct cause o f every endogenous factor in the mechanism .50 

Given this, if  zy and Z2 are both exogenous factors, then there must be some other 

factor, Z3 , in the mechanism which is endogenous. In that case, both zy and Z2 are 

direct causes o f Z3 so then, either zy and Z2 are in Sflxeci or some o f their causes are; 

in either case Sfree and Sfaed overlap. On the other hand, if  either z /  and Z2 is 

endogenous, then if there is another exogenous factor in the mechanism, zj, then it 

causes the factor of zy and Z2 which is endogenous. In this case, z j  or some cause 

of it is in Sfree, so Sfree and Sfaed overlap. Whereas if  zj is endogenous, then it is 

causally equivalent with either z /  or Z2, whichever is endogenous. Since z j  is 

causally equivalent it then has the same causes as either zy or Z2.51 In that case 

SfXed and Sfree must overlap since the causes of z j  must all be in Sfree. In

47 Since identifiability is assumed two-factor experiments are possible for any two factors in the 
mechanism (recall that the question is what this implies for the mechanism) then it must be 
possible to vary elements in Sfree so that one or more o f z t and z2 changes.
48 Bar the trivial exception where z } and z2 are the only two factors in the mechanism. In that case, 
Sfree and Sflxed trivially do not overlap since Sflxed is the empty set as there are no factors to be held 
fixed.
49 Recall from chapter two, that an exogenous factor is one that is not determined by the 
mechanism, while an endogenous factor is one which is. Each mechanism must contain an 
endogenous factor, otherwise it would be denoted by an equation which is not used to solve for 
any internal variable in the system. That equation would be redundant to solving for the internal 
variables which violates the conditions of the systems o f equations that are attributed causal 
content. See chapters two and three.
50 See chapter two for the definition o f direct cause.
51 Recall from chapter two that two factors are causally equivalent if they are both endogenous for 
the same mechanisms.
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conclusion, however one chooses the two factors, z/ and Z2 , in the mechanism Sfree 

and Sflxed will overlap.

Since Sfree and Sfaed must overlap, this leaves two possibilities. The first is where 

there is a part o f Sfree which is not in S/lxed- In that case one can vary those factors 

in Sfree that are not in Sflxed and leave factors in Sflxed unchanged. This implies that 

one can vary the two factors using their directly controllable causes without 

varying any cause o f the factors that must remain fixed. In this case a two-factor 

experiment is possible because there exists a cause of one or more o f the two 

factors that does not cause any of the other factors in the mechanism. This is a 

similar to what Nancy Cartwright (1989, p.33) calls an ‘Open Back Path ’ .54,55

The second possibility is where Sfree is contained in Sfixed- In that case one cannot 

keep the other factors unchanged by not changing the factors in S/ued, since if  all 

the directly controllable factors in Sfxed were fixed then no factors in Sfree would 

change, and neither of the two factors (of which one must vary for a two-factor 

experiment) would change. This implies that to vary these factors some change 

must be made to some factor(s) in Sflxed- In that case, a two-factor experiment will 

be possible if  and only if the changes made to vary the two factors, can be 

accompanied by changes to other factors in Sflxed that cancel out any impact on the 

factors to be fixed. Only in this way can the other factors remain fixed while the 

two factors can vary.

So to summarise, the two ways a two-factor experiment is possible for zj and Z2 in 

a mechanism, m , are :56

52 Assuming there are more than two factors in the mechanism. See footnote 45 above.
53 Or, if the factor is directly controllable, then it does not cause any the other factors (those that 
must be fixed for the two-factor experiment) in the mechanism.
54 There are important differences too. I discuss Cartwright’s work and open back paths in more 
detail in the next chapter.
55 The name is suggestive because at least one o f the two factors has a ‘back path’ o f causes such 
that at the ‘top’ o f that back path there is a directly controllable factor that does not cause any of  
the other factors (those fixed for the two-factor experiment) in the mechanism. In this way, the 
back path is ‘open’ with respect to those other factors.
56 The wording o f the condition may sound awkward, but it is put this way to cover the case where 
either one or both o f z; and z2 are directly controllable factors.
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(a) Either of z/ and Z2 has as a cause, or is equal to, some directly 

controllable factor that does not cause, and is not, one o f the 

other factors in the mechanism.

OR

(b) Either of z/ and Z2 has as a cause, or is equal to, some directly 

controllable factor that does cause some o f the other factors 

in the mechanism. However, it is possible to change this 

factor to vary one or more of z/ and Z2, while not changing 

the other factors, though this may require changing other 

directly controllable factors to cancel out any influence o f the 

first directly controllable factor on the other factors.

In case (a) some directly controllable factor(s) are varied that change z/ and Z2, but 

these do not cause any of the other factors, so by not changing any other directly 

controllable factors, a two-factor experiment for z/ and Z2 results. In case (b), 

some directly controllable factor(s) are varied that change z/ and Z2, but since 

these cause some o f the other factors, that must remain fixed, then other directly
en

controllable factors may need to be varied to cancel out this unwanted influence.

To complete the connection with identifiability, recall that an equation being 

identifiable is equivalent to a two-variable experiment being possible for any two 

variables in that equation. In the corresponding mechanism, m , this requires that 

the causal order be such that for any two variables z/ and Z2 in m either (or both)
f  o

(a) or (b) hold. That is, a mechanism in a causal order is ‘identifiable ’ i f  and 

only i f  the causal order is such that fo r  any two factors in that mechanism either 

(a) or (b) holds.

This gives an answer to what identifiability requires of a causal order. In short, 

identifiability o f systems of equations that are read causally (using the strong 

reading) requires, roughly, that the causal factors in a causal order not be too 

‘connected’ with one another. To see how, note that (a) puts limits on common

57 It is also possible that varying other directly controllable factors is also not necessary in this 
case, if the changing directly controllable factor only causes other factors on which it has no net 
impact, that is, for which it ‘cancels itself out’.
581 put scare quotes because I haven’t defined identifiability for mechanisms.
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causes between factors in mechanisms.59 Whereas (b) requires in cases where 

there are common causes, that there be sufficiently many other causal inputs that 

can be used to neutralize any unwanted influence (on the factors that are to remain 

fixed in a two-factor experiment). Generally, the conditions require that the 

casual order be ‘open enough’ so that any two factors in a mechanism can vary 

alone, without any other factors in the mechanism varying. In summary, requiring 

identifiability for systems of equations that denote causal orders puts strong limits 

on the causal orders that can be modelled.

4.5. An Example

To simplify all o f this, consider the following identifiable system of equations 

with its causal graph on the right.

fa }  M  {*,3}
y\ V 1
y-i = a 2x 2 {yd fy2}

>’3=A^I+A>,2+«3^ V
(x ’s external, y  ’s internal, coefficients constant) /yjj

Suppose one wishes to identify the coefficients in the third mechanism. To 

perform a two-factor experiment for y? and X3 is straightforward, it is an example 

of case (a). Here the directly controllable factors that control the two factors, X3 

and y 3 are given by the set Sfree = {xj, X2, X3}. The other factors, y j and y2, are 

controlled by the factors in Sflxed = fxi, X2}. Since Sfree is not contained in Sjixed it is 

a case o f (a). By varying X3 one can activate an ‘open back path’ that directly 

varies X3 and only causes yj to vary. As long as xj and X2 are not varied, y/ and y^ 

stay fixed. So the two-factor experiment is performed by varying X3 but not xj and 

x2.

In this case, one can see how, when complemented by the causal interpretation, 

the concept o f a two-variable experiment fits neatly with an idealised concept o f 

an experiment. The idealised picture is that o f an experimenter changing one

59 Unsurprisingly, (a) is a similar condition to that seen to be necessary for Mill’s method o f  
concomitant variations in chapter three. The discussion here can be seen as a generalisation o f the 
discussion o f interventions in chapter three. Though here, the discussion is directly related to an 
epistemic virtue for simultaneous systems o f equations (identifiability).
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cause, while holding all other causes o f an effect fixed, to see by how much the 

effect changes due to the change in that cause.60 ,61

One can also perform a two-factor experiment between yi and y 2 - In that case Sfree 

—{xj, X2} and Sfixed = {*]> x2> X3}. Since Sfree is contained in Sjtxd it is a case o f (b). 

This implies that to perform the experiment one must vary the factors in Sfaed so 

that ys and X3 do not change. The only way not to change X3 is to directly fix it, 

so one sets A T o  get yj not to change requires that 

Ay3 = 0 = ^  Ay, + fi2Ay2 

Substituting this requires

0  = a , j3lAxl + a  2p 2^ x i • • • ( V  

This constraint (*) can be met since xj and X2 are variation free. Suppose xj and X2 

are both varied so that (*) is met but X3 is not changed, then y i and y 2 are both 

caused to change but y 3 does not change because its direct causes ‘cancel out’. 

This is how this two-factor experiment is possible in this case.

This last two-factor experiment is rather odd since it requires changes in two 

causes of yj so that their impacts cancel out. In this way one can measure the 

proportional effect each has on yj. Interestingly, in this case this ‘odd’ type of 

experiment isn’t in fact necessary to identify the mechanism. In fact, one can 

perform (a) type experiments for the following pairs of factors {y3, y j ,  {y3, y 2} 

and fy3, X 3 } ,  which is sufficient for measuring the coefficients in the third 

equation. In these cases one is always testing to see the effect o f a cause (yj, y 2 or 

X3) on the effect (yj) so there is no need to hold the effect constant in the 

experiments.62, 63 So one does not always need to perform an ‘odd’ type (b) 

experiment.

60 Note the similarity between this and the discussion of interventions in chapter three.
61 Not all two-factor experiments will be readable in this ideal way; only those that are between 
one factor which is a cause o f another. Recall that a two-factor experiment can take place between 
any two factors in an equation, so the two factors may be causally ordered, in the same complete 
subset or even causally unordered (if both factors are exogenous to the mechanism).
62 In this case the fact that the cause in each two-factor experiment has an ‘open back path’ relative 
to other causal factors in the mechanism is sufficient for identification. This is essentially an 
instance of what Cartwright (1989, p.37-38) proves generally for time ordered systems.
63 This suggests an interesting avenue for further work. I suspect one can show that identifiability 
of mechanism holds if and only if every two-factor experiment between an endogenous and 
exogenous factor in a mechanism is possible. If this result held then one would have an arguably
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However, there are also identifiable systems in which one can only perform two- 

factor experiments o f type (b). Consider, for example, the classic supply-demand 

example presented in the earlier discussion of the identification problem.

q = fi]P + a lx l ... supply 

q = p 2p  + a 2 x 2...demand

Suppose one wants to identify the supply mechanism and this is to be done by 

performing a two-factor experiment between p  and xj. In that case one must vary 

xj but this ceteris paribus changes q. So to keep q fixed one must vary X2 to offset 

the impact of xi on q , so that q remains fixed. Similar remarks apply for all the 

other two-factor experiments in the system: between q and xj\ q and xy, p  and xy  

and p  and q. So, in this classic identifiable economic system it is not possible to 

perform an experiment that meets condition (a), that is an experiment that uses 

some ‘open back path’.

4.6. The Rank Condition vs. The Order Condition from  a Causal Perspective 

To finish, I show that this causal reading of identifiability can be used to highlight 

an important difference between the order and rank conditions for identification. 

Consider the following set of equations and its causal graph in which the third 

equation meets the order condition but not the rank condition.

Consider what happens if an experimenter tries to perform the following two- 

factor experiment: varying y2 and75  while holding xi fixed in order to measure fo- 

Since he must hold X2 fixed, the only directly controllable factor that he can vary 

is x /. According to the causal order, changing xj directly causes y/ andy 2 , w ithy/ 

in turn also directly causing y* So its sounds that it should be possible to vary y 2

nicer and more intuitive result that relates identifiability with possible experiments to measure 
relationships from (direct) causes to their effects in a mechanism.

y 1 =

y 2 = A y i+ a 2xi + a 3x2

y } = A y 2 + a 4x2

•where = - { a ]/„ 1
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by changing xj. However, there is a problem, if the first equation is substituted 

into the second equation, one gets

y  2 = « 3*2

This implies that xj has no net impact on y 2 because its indirect impact on y>2 

throughly and its direct impact on y 2 cancel out (due to the value of pi). So, when 

the experimenter attempts to vary y 3 and y 2 holding X2 fixed, he also keeps y 2 

fixed. But then all the direct causes of y^ are fixed, so it too is fixed. Therefore in 

this system that two-factor experiment is not possible (as expected given that the 

third equation is not identifiable).

In contrast, in an alternative system which differs from the system above only in 

that pi f  -0 .2/ 0 .y, then the rank condition holds for the third equation and it is 

identifiable. All of the two-factor experiments for the third mechanism are then 

possible.

More generally, cases in which the order condition holds for an equation but the 

rank condition fails, are situations like the example presented here. In these 

situations, the values of the coefficients cancel out some influence from some 

directly controllable factor(s) which would have otherwise permitted 

identification. These are also systems like those discussed in chapter two in 

which changes to some cause of another factor did not lead that factor to change. 

As discussed in chapter two, these are systems which violate ‘faithfulness’. If one 

rules out such unfaithful systems then the order condition becomes sufficient for 

identification (for the kinds of systems of equations analysed here) .64,65

5. Causal Inference using Identifiable Systems

In this final section, I consider two ways in which identifiable sets of equations 

are useful for causal inference in econometrics: (i) for measuring strengths of

64 I do not prove this rigorously. However, the proof is straightforward, if an equation in a system 
meets the order condition, then since none of the impact of the excluded variables vanishes (I have 
ruled out such unfaithful systems) then one has sufficient variation in the observed variables to 
uniquely fit the equation to be identified.
651 suspect that an implicit faithfulness assumption lies behind the standard econometric textbook 
emphasis of the order condition over the rank condition. For example, Andrew Harvey (1990, 
p.328) states ‘[fortunately, the order condition is usually sufficient to ensure identifiability, and 
although it is important to be aware o f the rank condition, a failure to verify it will rarely result in 
disaster’.
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causal connections and (ii) for doing limited inferences about causal order. 

Hence, in this section I move away from the earlier question of what 

identifiability requires o f causal structures, to the epistemic question of the role 

identifiability plays in causal inference.

Identifiability of an equation ensures that its unknown coefficients can be inferred 

from observations and knowledge of the form of the system of equations. 

Reconsider the earlier identifiable supply-demand example.

q = P xp  + a xx x.. .supply 

q = p 2p  + a 2 x 2... demand

If all variables are observable and the forms o f the equations are known but 

coefficients are unknown, then coefficients can be calculated from observation.66 

All that is required is some sufficiently diverse variable observations from which 

the values of the coefficients can be solved. In this example, all one needs is two 

distinct observations, say (q1, p l, x / ,  x j )  and (q2, p 2, x 2, x 2). Substituting these 

observations into the known forms of the equations one gets.

q l = Pxp x + a  jjq1 ...supply 1 

tf1 = P iP X + a 2x 2 ...demand 1

q 2 = p xp 2 + a xx x2 ...supply2  

q 1 = P2p 2 + a 2x22 ...demand2 

Since the equations are identifiable, these four equations can be solved for the 

four unknown coefficients.

However, as noted above, identifiability of a system of equations is insufficient 

for determining the causal relationships between quantity, price and the external 

factors. The method for determining coefficients does not ensure that the 

equations are rightly interpreted as structural,67 that is, denote the correct causal 

order. O f course, if  one knows that the equations do have correct causal order, 

then it is known that the measured coefficients are structural and do measure the 

strength of causal connections between factors.

66 Recall that these are standard assumptions for the simple identification problems looked at in 
this chapter.
67 Here, to simplify the discussion I introduce the term ‘structural’ to characterise equations read 
using the strong reading. So structural equations are those interpreted using the strong reading, 
while structural coefficients are coefficients in these equations.
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So there are two important points here. The first is that the method for measuring 

coefficients above gives structural coefficients, that measure the strength of causal 

connections, only if background knowledge can be used to infer that the causal 

order of the set of equations is correct. If  this condition is met, and if  the set of 

equations are identifiable then the coefficients can be measured and interpreted as 

structural. Conversely, if  there is insufficient background knowledge for knowing 

whether the equations denote the correct causal order then, if  the equations are 

identifiable the coefficients can be measured but there is no guarantee that the 

coefficients are rightly interpreted as structural, as measuring the strength of 

causal connections.

This suggests that identifiability of systems of equations is tangential to finding 

out if  functional equations can be causally interpreted, since to measure structural 

coefficients one must already know the causal order of the system a priori. If  it is 

necessary to know the causal order a priori and the form of the functional 

equations that represent the causal order before identifiability o f these equations 

can be exploited to measure coefficient values, then identifiability plays a small 

role in causal inference. Identifiability appears to be simply a condition on 

functional relations that, when these are known to correctly denote causal order, 

implies that the strengths of causal connections of that causal order can be 

inferred from observation.

However, there is a case in which one can make an inference to causal order using 

a system of identifiable equations. To see how, reconsider the two equations 

above.

q = P x p  + supply

q = P 2p  + a 2 x 2... demand

As discussed above, where it is known that these equations hold and known that 

they denote the correct causal order, then structural coefficients can be inferred 

that measure the strengths of causal connections. There is a however, a small 

generalising move that can be made. Instead o f assuming that the equations 

denote the correct causal order, one can weaken the assumption very slightly, and
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assume that the equations are consistent with the correct structural equations, 

where one or more coefficients may be zero.68

In other words, instead of assuming that the equations above are known to hold 

and to be structural, assume instead that it is known that whatever the structural 

equations are, they will be o f the form above, where some of the coefficients may 

be zero. In this case, this is equivalent to knowing that one o f the sixteen 

following sets of structural equations in fact holds (in each o f these coefficients 

are all non-zero):

q = 0 ... supply q = 0 ... supply
(1) „ /  \  OR (2)

q -  0 ... dem and q = f i 2 p ... dem and

q = f t p . . .  supply q = P^p...supply
OR (4) ^

q = 0 ... dem and q = p 2 p...dem and

q = B, p...supply q = B p  + a ,*,... supply
OR (15) ' OR (16) ' f t  '

q = p 2p  + a 2x 2...demand q = p 2p  + a 2x2..demand

However, one must be careful because some of the possible structural equations 

are not solvable for the internal variables in terms o f external variables which is a 

condition for the systems of equations to be attributed causal order, that is, to be 

structural. For instance, system (4) is not solvable. Since these unsolvable 

systems have no causal interpretation, they are assumed not to be possible. A 

second problem is that some of the possible sets of equations are not identifiable. 

For instance, in system (15) the first equation is not identifiable. One cannot 

allow as possible unidentifiable systems because the method used to determine the 

value of coefficients assumes identifiability.69

68 The idea here stems from the possibility that structural coefficients are inferred to be zero, so 
that one could revise the original belief that the equations are structural with non-zero coefficients, 
to assume that instead a more restricted set o f structural equations holds. The proposal here 
revises the interpretation of the identifiable system o f equations to permit this.
69 Strictly speaking, this should be equation specific. One could allow systems with 
underidentified equations, provided the equation one is investigating is identifiable in all possible 
systems.
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So here the set of possible systems must be restricted to those that are solvable 

and wholly identifiable.70 This reduces the number of possibilities to the three.

, KS<1 = P \P  + a xxv ..supply q  =  a ,x ,... supply
(A) OR (B)

q = a  2x2... dem and q  =  p 2p  + a 2x2...demand

q = B ,p  + a , x,...supply
0 R  (c ) ^  ^  q =  p 2p  + a 2x2...demand

At this stage, the earlier assumption that the causal order is known has been 

weakened to an assumption that it is known that true structural equations either 

have form (A), (B) or (C).71 Since each of these is identifiable the coefficient 

values can be measured regardless of which system actually holds. So measuring 

the coefficients from observations, one can then determine which of the three 

systems above is the correct set of structural equations.

More generally, the logic of this method for inferring causal order is as follows.

(i) A set o f identifiable linear equations is known to hold, and it is 

known that the true structural equations are identifiable and may 

be obtained by setting one or more, if  any, of the coefficients in 

this general set of linear equations to zero.

(ii) A sufficiently varied set o f observations for the variables is 

obtained, so that the coefficients of the general set of equations 

can be measured from observation.

THEN By measuring coefficients and finding out which if any are 

zero, one can deduce which o f the possible systems of structural 

equations holds, and thus deduce the causal order.

Though this sets out a way in which identifiable system can be used to make an 

inference to causal order, it is important to note just how restrictive the 

assumptions are for being able to infer causal order in this way. One must know a 

priori that the true structural equations representing the mechanisms are 

identifiable and must be consistent with some known, identifiable general set of

70 Again, if one is interested only in identifying one structural equation, then one could weaken 
this restriction to the set o f systems in which that equation is identified.
71 Where all o f these have non-zero coefficients.
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equations. This is particularly strong. It also is rather odd in some ways, for 

instance, how is one to know that the true structural equations are identifiable 

even if one does not know their form? Clearly this method would require some 

serious justification of these a priori claims in order to justify its use for inferring 

causal order. It is only a slight weakening o f the previous situation where 

identifiable systems of equations can be used to infer structural coefficients, given 

the equations were known to have correct causal order.

To conclude this section, note that this method for inferring causal order provides 

an interpretation of a process for selecting an appropriate causal model from a 

known set o f possibilities. In this way, this approach suitably generalised may 

provide an interpretative framework with which to interpret model selection 

methods that are current in econometrics. Though this would require a great deal 

more work, it is interesting to note the possibility. Model selections methods such
77as the LSE methodology developed by David Hendry and others might be one 

particularly suitable candidate. This is because this method is based on working 

from general models to more specific ones by eliminating irrelevant variables, that 

is, those whose coefficients are inferred to be zero from observations. The 

similarity of the LSE methodology and the approach here of using inferred zero 

coefficients to select a causal model is obvious. In cases where the LSE 

methodology is used to select models that are to have a causal interpretation, a 

version of the approach above, developed to a much greater sophistication, might 

be able to help understand these model selection methods in a causally explicit 

way.

6 . Conclusion

This chapter has attempted to relate one particular part o f econometric 

methodology, identification, with more intuitive concepts of causal order and 

experiment. Focusing on the simplest case o f linear deterministic sets of 

equations, it has begun by looking at relevant work by Herbert Simon, mapping 

out the relationships he claims hold between causal order and identifiability. In 

the process, I have clarified Simon’s position as strongly operationalist. This

72 For more on the LSE methodology, see David Hendry (2000).
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position has been criticised as unnecessarily restrictive. It is not necessary, even 

from an operationalist perspective, to limit oneself to sets o f equations whose 

causal order is uniquely specified, purely in virtue of excluded factors.

The second part of the chapter analysed what identification of a set of equations 

that is taken to denote a causal order requires of that causal order. Or in simpler 

terms, what constraints does identifiability place on causal orders? Using a 

theorem relating the rank condition to conditions for two-variable experiments, it 

was shown that ‘identifiable’ causal orders must either have limited common 

causes among factors, or have sufficiently many causal inputs to ensure that the 

effect of common causes can be suitably cancelled out to permit causal inference. 

This provided an alternative, causally explicit reading o f identification which 

differs from the typically a-causal mathematical presentation of identification 

found in econometrics textbooks.

The last section looked at the role of identification in causal inference. 

Importantly, it was seen that identifiability, in order to be useful for learning about 

the strength of causal connections, needed to be supplemented with strong 

background knowledge for determining the causal order. In an extension o f the 

use of identifiable sets o f equations to determine structural coefficients, it was 

shown that identifiable sets of equations could also be used to make inferences to 

causal order. However, this method also depended on very strong background 

assumptions, in particular, an assumption that it is known what the possible sets of 

structural relations are and that these are all consistent with a known identifiable 

system of equations.
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Appendix 5.1. Simon’s Exclusion Condition Implies Identifiability

Theorem 5.1 Given an incomplete set of equations that meets Simon’s exclusion 

condition then the rank condition holds for any equation.

Notation: The incomplete set o f equations are given by:

A y  = B x  + c
nx] ram mx 1 nx 1

o  (A | -B )

where

= c

y  is the nxl vector of internal variables. 

x  is the m xl vector o f external variables.

A is the nxn non singular matrix of (constant) coefficients. 

B is a mxn matrix of (constant) coefficients. 

c is the nxl vector o f (constant) intercept coefficients.

Proof.

Assume without loss of generality that we are interested in the identifiability of 

the last equation.

Now, since the structural equations meet the exclusion condition, there is a unique 

external variable that appears in that equation. So, assume without loss of 

generality that for all x t is the unique equation in the ith equation.73

In that case the structural equations have form:

Ay = ( D \ F ) unique 

V ^  other J

+  C

73 At this point, by assigning particular variables to particular equations, I am assuming Simon’s 
version o f  the exclusion condition, as discussed in the chapter.
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Where xunique is the nxl vector of the exclusive external variables, x other is the (m- 

n)x 1 vector of other external variables. D is a diagonal matrix, with non-zero 

diagonal elements o f order n. F  the submatrix for the ‘remainder’ o f B  i.e. B =

(D\F).

Now, to apply the rank condition for the last equation we construct the submatrix 

o f (A\-B) formed by o f the columns that correspond to excluded variables for the 

last equation. We also exclude the row for the last equation. In this case the 

resulting submatrix must include the first n-1 rows and columns of D, since these 

external variables are excluded from the last equation, by the exclusion condition. 

This implies that the submatrix contains a diagonal matrix o f order n-1 (which has 

non-zero diagonal elements) so it has rank of at least n-1. But the submatrix only 

has n - 1  rows (since it contains coefficients from the other n - 1  equations), so it has 

rank of at most n-1. It follows that the submatrix has rank n-1. This is the rank 

condition (see Appendix 5.2), so the result follows. ■
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Appendix 5.2. An Alternative Necessary and Sufficient Condition for 

Identification

Theorem 5.2: Given an incomplete set of equations, the rank condition holds for 

an equation if and only if  a two-variable experiment is possible between any two 

variables in that equation.

Definition ‘Two-variable experiment''. Let z; and Z2 be two variables that appear in 

a equation, a two-variable experiment occurs for z\ and Z2 in that equation if  and 

only if

(i) All variables in the equation except z/ and Z2 do not change, 

i.e. Azk = 0 fo r  a llz* in the equation such that k j ^ l  a n d k ± 2

(ii) At least one of z/ and z  ̂changes i.e. 

i.e. Az]± 0  or Az2 ± 0

Finally, a two-variable experiment for z/ and Z2 is possible for zj and Z2 in an 

equation if and only if  there exist a set of changes in external variables {Axj,..., 

Axm} which imply that a two-variable experiments occurs for z; and Z2 in their 

equation.

Notation:

The incomplete set of equations is given by:

A y  = B x  + c
'nx 1 nxm mx 1 nx 1

<=> 0* I -B )

where

ry\
-  c

y  is the nxl vector o f internal variables. 

x is the m xl vector of external variables.

A is the nxn non-singular matrix of (constant) coefficients.74 

B is a mxn matrix of (constant) coefficients.

74 A is invertible because the systems o f  equations analysed are solvable for the internal variables 
in terms o f  the external variables. In other words, the structural equations A x +  B y =  c are 
solvable uniquely for the y ’s in terms o f  the x ’s. This is one o f  the conditions for the systems o f  
equations to be attributed causal order, using Simon’s method.
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c is the m l  vector of (constant) intercept coefficients.

The corresponding reduced form is given by: 

y  -  C x + d
nxm mx\

C is the mxn reduced form matrix, and C = A ' 1 B . 

d  is the nxl vector o f the reduced form intercept coefficients d=A'Ic

Assume without loss o f generality that the equation we are concerned with is the 

first equation. Divide up the internal and external variables into those that are 

included in the equation and those that are excluded. Let

kx = number of external variables excluded from the equation. 

ky = number of internal variables excluded from the equation.

Assume also without loss of generality that the included variables are labelled 

with lower indices than the excluded variable. With this set up, we can partition 

the matrices of the structural form as follows.
(

A i
1 x ( n - k y )

\

1 A 2
l Xky

f  \

y  incl 
( n - k y )x  1

B u  1
( n - k y ) x ( m - k x )

B n  )
(n - k y )xkx

f  \  

X incl 
{m - k x )x ]

(  \  

C incl 
(n - k y ) x ]

- +  ~ - = + - — + -

A i
K( n - \ ) x ( n - k y )

1 A i
(,n - \ ) x k y J

y  excl
V V 1

^ 2 1  1
^ ( n - l ) x ( m - k x )

^ 2 2
( n - \ ) x k x

X  excl
V M i

C excl
K M 1

However, since the excluded variables do not appear in the first equation, we must 

have Ajj = 0 and Bj2 = 0. So the structural form is, by construction:

f  A A\\ 1 0 > 
+

'y,„d
—

'B n 1 0 > 
+

( x  \incl

+
(c  \c incl

to

1 A 1 /1 2 2 J \ y excl j \ ^ 2 \ 1 B22 j \ X excl
n

\  excl J
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Also partition the reduced form as follows.

r \
y  incl 

( n - k  )x  1

y  excl
\  V 1 j

c
c „

(n - k y ) x ( m - k x )

\
c\ 12 

( n - k y )xkx

f  \

X incl 
( m - k x )x  1

^  incl 
( n - k y )*1

- + — + —

c 21
^ kyx ( m - k x)

1 c  1 22
kyxkx J

X ex cl
V k*x]

d e x c l
V kyx l  y

By definition of the reduced form, C=A'1B , this is equivalent to B=AC , so in our 

partitioned versions of the matrices we have.

r B u 1 0 N (  A  A \\ 1 0 "( c'“■'11 1 c   ̂1 12

- + - - + - +
^21 1 B 22J ^ 2 1

1 A 1 22 / c  \ 21 1 c1 77 J

% 1 0 ' (  A C  ^ 11 ^1 1 1 A C  \  1 1 1 1 2

- + = - +  -

^ 2 1 1 B 22 y ^^21^11 ^22^*21 I A r  4- A C  1 2 1 1 2  T  22 22 y

So we must have for the matrices as partitioned that A 11C 12 = 0  

Note that with this set up the Rank Condition for identification is 

The Rank Condition fo r  Identification.

An equation is identifiable if and only if Rank (A2 2VB22)  = n~U where (A2 2VB22)  is 

the submatrix of (A\-B) formed by dropping the row (in A  and B) corresponding to 

the equation and dropping any columns (in A and B) containing a variable 

included in the equation.

Before proving the theorem, we start with two useful preliminary lemmas.
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Lemma 1 A matrix, Mo, which has the form ( /  is the identity matrix o f order k ,0  a 

zero matrix)

M,1 i M i j

satisfies

Rank(M 0) -  k  + Rank{M 2)

Proof Consider the two submatrices of Mo".

j

No column in the first can be a linear combination o f the columns in the second 

because the l ’s in the identity matrix in the first submatrix cannot be generated by 

linearly combining the zeros in the upper part of the second submatrix. In 

addition, the columns of the first matrix are linearly independent (because of the 

identity matrix). This implies that adding the first submatrix to the second (to 

form Mo) gives us a columnspace of Mo whose dimension is the sum of the 

dimensions of the columnspaces of the two submatrices, that is

'  I  N '  0 "

Dim Colspace (M 0) = Dim Colspace - + Dim Colspace -

But this is simply

f  1  1 '  °  1
Rank(M 0) = Rank - + Rank -

f  1  1
0  N

Rank = k & Rank

K. ^ 2  j

Rank{M 2)

The first follows because it has k  linearly independent columns from the identity 

matrix while the second is immediate. Substituting then gives the desired result. 

Rank(M Q) = k  + Ranh(M 2) □

[Aside: It is also straightforward to prove that the same conclusion holds where 

Mo has a form where the 0 and I  matrix are appear in different parts of the matrix
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(provided that M 2 is diametrically opposite to the identity submatrix). For 

example, the result holds for Mo o f the form:

' I | A/, ' '0 1 M f \ o ' 'm 2 1 Mt' '  0 i n
-  +  - 5 - + 9 - +  - 9 - +  - 9 - +

,0 I M 2y J 1 1 f , 0 1 I  , , M 2 1

Lemma 2. If zj, Z2, zjhed (a vector of variables), and x a vector of a set of variation 

free variables (partitioned into two vectors X flxed  and X free)  satisfy the following 

linear difference matrix equation.

f ^  1 f

A z 2
—

f ixed  ,
VV^ll.2

M 12,1

+

M

r *.. 'n
fixed

12.2 y

Ax

AXr V free J

(+)

Then it is possible that
VAz2,

* 0 while Az^ê  and Axy&*/ = 0, if  and only if

Rank(M n )> Rank(M l2 2) where M n =

\ ^ \ 2 , 2  J

Proof.

Given (+) it is possible that 

^Az ^

Azj

VAz 2j

z2j

*  0 while Azflxed and AXfixed = 0, if  and only if 

=  M m A x free * 0  and Az faed = 0 = M n 2A x free

These together are equivalent to 

Axfree £ Nullspace(M]2]) 

and
Axfree e Nullspace(Mn 2)

[Aside:

By the fundamental theorem of linear algebra75 for any linear transformation M, 

we have:

75 This is a well known result in linear algebra, see Strang (1980, pp.84-88) for a discussion.
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Nullspace(M) u  Colspace(MT) = Domain(M)

and

Nullspace(M) n  Colspace(MT) = {0}

Where the colspace (Mr)  is the row space (M) with all of its vectors transposed76) 

End o f  Aside]

So using the Fundamental Theorem, the first o f the condition above is equivalent 

to

Axfree e Colspace(Mj2]) and Axfree * 0 

While the second is equivalent to

Ax free£Colspace(M X22)o r  Axfree =0

But since the set of columns in M n  is the union of the columns in M n , ] 7  and 

Ml2,2

Colspace{MTn ) = Colspace{Mxlx) u  Colspace(M Tn 2 )

Given this, the two conditions above hold if and only if 

Axfree e Colspace(M (2) \ Colspace{MTn 2)

Since the x ’s are variation free, Axexci can take any value so this holds if and only 

if

Colspace{MTn ) \ Colspace{MTn 2) * <t>

Which holds if and only if

Colspace(M(2) ^  Colspace(M (2 2)

This holds (transposing vectors) if and only if 

Rowspace(Mx2) *  Rowspace(M l2 2)

Given that M n j  is a proper submatrix consisting o f rows o f M ]2 this holds if  & 

only if

Rank(M n ) > Rank(M u 2) □

76 Transposing is necessary because the vectors in the nullspace are column vectors whereas the 
vectors o f the rowspace are row vectors.
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Lemma 2 is useful because if  the x ’s are the external variables, zy and Z2 are two 

variables in an equation and Zflxed are the other variables in that equation, and the 

matrix equation (+) follows from the structural equations, then it gives a necessary 

and sufficient condition in terms of matrices for a two-variable experiment is 

possible for zy and Z2 in the equation in which they appear.

With these preliminary lemmas, we can now begin the proof of the theorem. First 

we prove an alternative rank condition for identification.

Lemma 3 (A Reduced Form Rank Condition): The Rank condition for an equation 

holds if and only if Rank(Cn)=n-ky- l  for C n  defined as above.77

Proof.

The rank condition is Rank(A2 2 \-B22)  = n-1. So first we establish a useful identity 

involving the matrix (A2 2 VB22)'

To do this, note first that it follows from B=AC that 

B J2 = AuC]2 +Ai2C22 

B 2 2  =  A 2 1 C 1 2 + A 2 2 C 2 2

But the right hand side is equal to

77 This result was first proved by Koopmans and Hood (1953). Fisher also has a proof (1966, 
p.54). I include my own proof here for completeness.

But from above we know A 12 = 0 and Bi2 = 0  so we have 

Bj2 =Ai jC ]2 = 0

So

( 0  1 0  W  0  I - i , c n
+
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f  0 I
+

A  I
V 22 I

AnCn

(A21C12 + A 22C22) j

(AA\\ 1 0 ' "o | - C   ̂12 'o  | - C  ^ 12
= - + -  + - = A -  + -

1 ^22 >J  1 - C 22 J J  1
_ r

22 J

Substituting,

'  0 1 0  " 'o  1 - C  \  12
- + = A -  + -
AV̂ 22 1 _ ^ 2 2  > J  1 - C 22 J

Since A is invertible it preserves rank, so it follows that

00

"0 | - C   ̂^12

Rank + = Rank -  + -

^ 22 l ~ B 22 ; J  1 - C 22 /

But the rank of the right hand side matrix is simply rank(A2 2 \-B22), so 

Rank(A22 \ - B 22) = Rank
^0 | - C 12'

-  +

/  I - c 22 J

The identity in the right hand side matrix is o f order ky, so applying lemma 1, we 

have

Rank
'0  I - c I2'  

-  +

I  I - CK 1 I 22 J

= Rank(C]2) + k

Substituting, we get

Rank(A22 \ - B 22) = Rank{Cn ) + ky 

It then follows that

Rank(A22 \ - B 22) = «-!<=> Rank(Cu ) = n - k y - 1  □

We can now prove the theorem.

Theorem 5.2: Given an incomplete set of equations, the rank condition holds for 

an equation if and only if  a two-variable experiment is possible between any two 

variables in that equation.

195



Proof

Part I ‘Only i f  (Rank Condition-^ Experiment possible between any two 

variables).

There are three distinct cases, when one picks two variables from an equation to 

see if an experiment is possible between them.

(i) Both variables are internal.

(ii) One is internal the other external.

(iii) Both variables are external.

Case(i):

For any two internal variables y t and yj9 assume without loss o f generality (simply 

by reordering the indices on the variables) that they are y j  and y 2 - The reduced 

form difference equations for the internal variables that appear in the equation is 

given by78

Aymd = c uhxlncl + c ,2 hxad

To simplify the analysis, partition y inci as follows:

y  incl

y  fixed

Where yfixed denotes the internal variables other than y j and y 2 in the equation, 

which are labelled as ‘fixed’ since these would not change in the relevant possible 

experiment.

Correspondingly we can partition the reduced form (here the difference) equations 

for the variables that appear in the equation of interest as follows:

78 In what follows the ‘excl’ subscript applies to variables that do not appear in the structural 
equation and ‘incl’ to those that do.
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'  Av, '  
Ay2 c 11,1 1 c   ̂1 12,1

+ . . .  (/)

v Ay f a e d  j

c
^ 1 1 , 2 1 c\ 12,2 J ^ t e e x c l  x

(  \ (  \
r'“'11,1 r 12,1

2 x ( m - k x) 2 xkx

— an d  C, 2 = -

c'-'11,2
(n - k y )xkx c 12,21£

 
VH <N 1SK1C K( n - k y - l ) x k x ,

where Cn
( n - k  ) x ( m - k x )

N o w  (/) has the  fo rm  ap p ro p ria te  fo r lem m a 2, so an  ex p e rim en t is p o ssib le  

b e tw e e n ^ ;  and  ̂ 2 i f  an d  on ly  i f  Rank(Cn ) > Rank(Cn 2 ) , ca ll th is  co n d itio n  (*).

N o w , the rank  co n d itio n  ho lds so , by  lem m a 3, Rank(Cn) =  n-ky- l .  In  ad d itio n , 

C /2,2 has n-ky-2 row s so rank (C j2,2.) <  n-ky-2, so it fo llo w s th a t Rank(Ci2,2)  < 

Rank (C12). In  o th er w o rd s, co n d itio n  (*) is m et, an d  an  ex p e rim en t is p o ssib le  

b e tw een  the  tw o  ch o sen  in terna l variab les. □

Case (ii):

A ssum e w ith o u t loss o f  g en e ra lity  th a t w e w an t to  sh o w  an  ex p e rim en t is p o ssib le  

b e tw een  y i  and  xj (w e can  a lw ays change in d ices  o th erw ise ). T h en  w e can  sp lit 

up  the  red u ced  form  as.

(  A > 
A v i

/ c  1 '“'11,1 1 ru,i
\

1 ^12,1
' t e f i a e d '

\ x m - k x- \ Ixl 1 xkx

- = + + Ax,

^  f i x e d . c  1 11,2 1
^ ( n - k y - ] ) x m - k x -1

r u ,2
{ n -k y - l ) x l

1 ^12,2
( n - k y - l ) x k x j

t e e x c l

V J
w here

C„ =

f \ /  \ f  \
Q l , 3 1 / l l , l r—̂12,1 Ax,

\xkx Ixl 1 xkx 1,1
- + r  = ’ 12 - a n d  t e M = -

r'“'11,4 1 r 11,2 Cl2,2 t e fixedTis: ***HTi ^m -k x-  I X l j

A dding  the  eq u a tio n  fo r Ax; = Ax/ to  the  m atrix  eq u a tio n  above  w e get.
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Ax, 'j
/

Ay,

Ay fa*d

\  /
V

0  1
1

1 0  "c  .11,1 Yn,i I ^12,1
\xm-kx- \ lx 1 \xkx --

+ + Axj

c  1 11,2 1 y 11,2 1 c  \ 12,2
i -ky -])xm-kx- l (n -ky -X)x\ (,n-ky - \ )xkx

V

This has the form appropriate for lemma 2, so an experiment is possible between 

xj and y i is possible if and only if.

f  1 i ^ \

Rank

l | 0
+

r 12,1r  n.i 
+

c

>Rank{yXX2 I ^ 12,2 )

kY 1 1 ,2  1 ^ 12,2 j

By lemma 1 the left hand side equals

Rank

1 | 0
-  +  -

/n ,i  I ^ 12,1
-  +  -

y 11,2 I C'

= Rank
r C ^^ 12,1

rV 12,2

+1 = Rank(Cn ) +1

12,2 j

Substituting we get

Condition**: An two variable experiment is possible betw een^/ and xi if  

and only if Rank(Cu ) +1 > Rank{ yxx2 | C, 22)

Since the rank condition is met Rank(C]2)  = n-ky-1 , so substituting this into 

condition ** an experiment is possible if and only if 

n - k y >R a n k ( y xx2 | C122)

Now the matrix ( y 1]2 | CX 2 2 ) has n-ky-1  rows and so

Rank(yxx2 \ Cx2 2 ) < n - k y - 1 

i.e. Rank{yXX2 \ CX2 2 ) < n -  ky

So condition ** holds and the two variable experiment is possible. We have 

shown that if  the rank condition is met for an equation then the experiment is 

possible between any internal and external variable in the equation. □

198



Case (iii)

In this case assume without loss of generality that the two external variables we 

are considering are xy and X2 . Using the same set up as in Case (ii), the situation 

can be represented by

'  Ax, ^
Ax,(AxA f 1 0 AJ

= 10
^ 2 , [p l 1 J

\Ax„dy

and Ay me! — fixed  ~  ( / 11 I ^ 12  )

j

Putting these two equations into one we get

'  Ax, '  
Ax,

f \ 0(  A AAx, 0 1 1
Ax2 - +

fixed j Yn 1 12
\ ^ Xexcl J

This has a form appropriate for lemma 2, so an experiment is possible between xy 

and X2 if and only if.

f \ 0 
0 1

Rank

0

+

h  1 I C.12

> Rank(yu | C,2)

By lemma 1, the left hand side satisfies

0

Rank

f \ 0
0 1

+

Vn I C12

= Rank(Cl2)+ 2

Substituting we get:

Condition***: A two-variable experiment is possible between y j  and xy if 

and only if  Rank(Cn ) + 2> R ant(yu | C,2)
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N o w  th e  m atrix  (yu | C ]2) has n-ky row s. So 

n -  ky +1 > Rank(yn | C ]2)

S in ce  th e  ran k  co n d itio n  ho lds, b y  lem m a 3, n-ky-l = Rank(Cj2). So 

Rank(C]2)+ 2  > Rank(yu | C 12)

In  o th e r w ords, co n d itio n  (***) is m et. So w e h av e  sh o w n  th a t i f  th e  rank  

c o n d itio n  ho lds th en  an  ex p e rim en t is possib le  b e tw e en  an y  tw o  ex tern a l 

v ariab les .

S in ce  the  rank  co n d itio n  im p lies a  tw o  variab le  ex p e rim en t is p o ss ib le  in  cases (i),

( ii) and  (iii), it covers all p o ssib le  cases and  the  ran k  co n d itio n  im p lies an  

e x p e rim en t is p o ssib le  b e tw een  an y  tw o  variab les in  th e  eq u a tio n . □

P a rt II ‘I f  (E x p erim en t p o ssib le  b e tw een  any  tw o  v ariab les  ->  R an k  C o n d itio n )

I f  an  ex p e rim en t is p o ssib le  fo r any  tw o  v ariab les  th en  fo r all p o ssib le  Cj2,2

7 Q

su b m atrices  o f  C /2, w e have Rank(Cn,2) < Rank (C12)  fro m  lem m a 2. S ince 

Ci2,2 is a subm atrix  o f  C12 co nsisting  o f  row s o f  C /2  th is  im p lies 

Rowspace(Cn ) * Rowspace(Cn 2)

W e first show  th a t th is  is n o t p o ssib le  i f  Rank(Ci2) < n -k y -l.

I f  Rank(Cn) < n-ky-l th en  th ere  are  tw o  v ariab les th a t h av e  a  C /2,2 such  th a t the 

ro w s o f  C /2,2 span  th e  ro w sp ace  o f  C /2. T his m u st be the  case  since i f  the 

ro w sp ace  o f  C /2  has d im en sio n  less th an  n-ky-l, it fo llo w s th a t on e  can  p ick  a 

su b se t o f  a t m o st n-ky-2 row s o f  C /2 to  span  its row space. T h en  on e  can  sim p ly  

p ick  the  tw o  v ariab les  so th a t C /2,2 (w h ich  consists o f  n-ky-2 ro w s) co n ta in s  those  

ro w s th a t span  C /2. In  th a t case Rowspace(Cn) = Rowspace(C 12,2)  w h ich  im p lies 

an  ex p e rim en t is n o t po ssib le , a  con trad ic tion . T h erefo re , Rank(Cn) > n-ky-l.

S o i f  an  ex p e rim en t is p o ssib le  fo r any  tw o  v ariab les  th en  Rank (C n)>  n-ky-l.

N o w  C /2  has n-ky row s, so Rank (C n)<  n-ky.

79 Since the choice o f two variable in an equation determines the rows in CJ2 that are rows in Cn,2 -
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Therefore, we must have n-ky-l < Rank (C12) < n-ky

Finally, note that Rank(Cj2)  /  n-ky. This immediate because given that A u C  12 = 0 

for A n  ± 0  (see preliminaries) so the rows of C /2 are linearly dependent, therefore 

the dimension of its rowspace, its rank, is less than its number of rows so Rank

(C j2)< n -k y .

We have shown that n-ky-l <Rank (C12) < n-ky so Rank(Cn) =n-kyl.

Applying lemma 3, the rank condition holds for the equation. ■
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Chapter 6

Deducing Causal Order from Observation: Herbert Simon and 

Nancy Cartwright

1. Introduction

The last chapter finished with a brief analysis of a way in which identifiable 

systems of equations can be used to make inferences about causal orders.1 This 

chapter continues this analysis by looking in more detail at the conditions required 

for making inferences about causal order. Specifically, the chapter focuses on two 

ways of doing this. The first approach is set out by Simon in his 1954 paper on 

spurious correlation. The second, alternative approach is set out by Nancy 

Cartwright in chapter one of her 1989. In both of these, the logic of the inferential 

method is deductive, that is, new knowledge claims are deduced from 

observations and existing knowledge claims. This approach to testing and 

warranting hypotheses is what Clark Glymour and Nancy Cartwright call 

‘bootstrapping’.2

The problem of how to infer causal order is discussed in many forms and in this 

chapter it is discussed under three slightly different terminologies. The first and 

most explicit terminology is simply to describe it as the problem of inferring 

causes from correlations, probabilities or observations. This is the way Nancy 

Cartwright (1989) discusses the problem. A second way the problem is discussed 

is as ‘the problem of spurious correlation’. In this form the problem is how to tell 

if  a correlation between two factors is due to a direct causal relationship or instead 

due to something else, such as common causal factors. This is a variant o f the 

first problem where the focus is on two factors. Herbert Simon’s 1954 paper, 

discussed here, aims to provide a solution to this problem. The third and final 

way the problem is presented in this chapter is as ‘the problem of observational 

equivalence’. In this case the problem is how to distinguish between different

1 As elsewhere in the thesis, causal order does not simply mean the order o f causation between two 
factors, it is a term that denotes which factors directly cause which for a set o f factors. Though 
‘causal structure’ may be a better term, I use causal order in line with Simon’s usage. For a 
definition of causal order, see chapter two.
2 This is not the same way that ‘bootstrapping’ is used in statistics, see Cartwright (1989, p.22).
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causal orders that are consistent with the same observations. Clearly, this is the 

problem of inferring causal order put in a different way. Instead o f asking what 

causal order generated observations tout court, it asks ‘which o f the causal orders 

that are consistent with the observations (observationally equivalent causal orders) 

generated the observations?’ Obviously, any solution to the problem of inferring 

causal order must be able to solve this problem of observational equivalence, 

since it must be able to rule out all but one causal order as being responsible for 

observations.

This chapter begins with a discussion o f the solution Simon gives to the problem 

of spurious correlation in his 1954 paper. In that paper Simon’s key claim is that 

the causal order among internal variables in a linear system o f equations can be 

deduced given knowledge of uncorrelated error terms and o f a strict time order for 

the internal variables. This claim, however, is criticised by Nancy Cartwright as 

unsuccessful. Given this, I explore the limits of Simon’s key claim by attempting 

to construct counterexamples to it. From this analysis, it is seen that Simon’s key 

claim seems to hold provided one takes the set of internal variables in the 

equations as given. However, I say ‘seems to allow a unique causal order’ because 

there is a deeper problem for Simon. The problem is that no matter how many 

internal variables are introduced into the set of equations, it is always possible that 

the causal relations asserted by the system of equations are spurious. In this way, 

Simon’s claim is undermined. To avoid the problems Simon’s approach faces, an 

alternative ‘S-approach’ using the strong reading is suggested. This is very close 

to Simon’s approach and avoids Cartwright’s criticism, but does so at the price of 

making some very strong assumptions about background knowledge. The chapter 

then presents and criticises Nancy Cartwright’s alternative approach for inferring 

causal order. The final section briefly compares the strong reading approach with 

Cartwright’s.

3 For the ‘bootstrapping’ logic o f causal inference assumed here, this requires that one be able to 
deduce the correct causal order from observations and background knowledge. Other approaches 
to inference may treat the problem o f inferring a unique causal hypothesis differently, for instance, 
the hypothetico-deductive (H-D) method. With the H-D method the set o f possible hypotheses is 
always logically underdetermined by observation. Therefore, for this method o f testing hypotheses 
some other principle, such as a principle o f induction, could be used to choose (here inductively 
rather than deductively) a unique hypothesis from the different observationally equivalent 
hypotheses.
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2. Sim on’s Method fo r  Inferring Causal Order from  Correlations 

In his 1954 paper, Herbert Simon shows how one can solve the problem of 

spurious correlation, provided certain a priori conditions are met. In this section, 

I briefly describe his analysis in the paper and set out his key claim that causal 

relations can be deduced from knowledge of correlations and time ordering.

Before discussing Simon, it is important to note some differences in the systems 

of equations Simon analyses in his 1954 paper from those looked at in his 1953 

paper. First, the 1954 paper restricts analysis to cases where there is a strict time 

order between causally ordered factors. For these systems, one factor can causally 

precede another only if  it occurs earlier in time. This implies that the complete 

subsets in his causal orders now contain only one factor and that the systems of 

equations analysed can be reordered to be lower triangular.4 Second, unlike his 

earlier paper, Simon’s models here have an error term in each equation to cover 

omitted factors. In his 1954 analysis, the direct control passes through the error 

terms.5

2.1. Sim on’s Solution to the Problem o f  Spurious Correlation 

Herbert Simon’s (1954) focuses on recursive models o f the following kind, where 

the z’s are internal variables written with indices that indicate their time order and 

the w’s are the error terms that denote omitted factors.

Z, = « !

z2 = a2]z l +u2

Z „ ~ a n \ Z 1 + ' ’ - +  a n n - l Z r,-] + U n

These equations are to be read using his causal ordering method o f his 1953 

paper, treating the error terms as if they are external variables. In such models, it 

is easy to show from Simon’s definition of causal order that one variable, z„ is a

4 In contrast with the simultaneous equation systems, which Simon considers in his (1953) and 
analysed in the previous chapters o f the thesis, whose equations can be reordered to be block 
triangular.
5 As in the previous chapter, I reformulate Simon’s systems so that his variables are treated as 
internal variables and his coefficients are treated as external variables. With this relabelling, 
Simon’s paper considers systems that contain internal variables but no external variables. In these 
systems the error terms are source o f ‘direct control’ into these systems; they are treated by Simon 
as if they are external variables.
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direct cause of another, zy, if and only if in the equation with zj on the left hand 

side, z,- appears with a non-zero coefficient on the right hand side o f the equation.

The problem Simon tackles is the problem of spurious correlation. Suppose that 

two factors zj and Z2 are correlated, that zj precedes Z2 in time, but one is 

suspicious that the correlation is spurious. In other words, one is not happy to 

accept a structural equation in which z/ causes Z2 i.e. Z2 = zj + u. Simon notes that 

this situation is typically dealt with by looking for an earlier third factor, zo, which 

is correlated with both z/ and z .̂ One can then test whether the original 

correlation is spurious by conditioning on zo. If  the correlation vanishes the 

original correlation between z; and Z2 is deemed spurious.

In his paper Simon shows that this method for testing spurious correlation can be 

formalised in a way that shows that one can deduce whether or not the correlation 

between z/ and Z2 is spurious, given the time order o f the variables and 

uncorrelated errors in structural form equations relating zo, zj and z .̂ Simon 

analyses the following general form of equations for three internal variables.6

*o = uo
*1 = 0 ,0 * 0 ^1

Z2 # 2 0 * 0  021*1 ^ 2

Simon shows that if one assumes that the error terms are uncorrelated, then one 

can deduce the values of the coefficients from observation. He sets this out 

explicitly by showing how the zero correlation of the error terms implies that a set 

o f equations holds for covariances o f the variables and coefficients in the system. 

These equations can then be solved for the coefficients in terms o f the 

covariances. Since the covariances can be estimated (the variables are
n

observable) this allows one to calculate estimates for the coefficients. For 

instance, it is easily derived from the fact that uo and uj are uncorrelated that aw 

must satisfy.

aio = E(z0Z])/E(zo2)

6 This is the general three variable system in which there are no simultaneous relations and no a ’s 
appear in the equations that would imply that a later factor causes an earlier one (so the equations 
respect the time order of: z0 then zy then z2).
7 This is essentially a version o f the case, discussed in the previous chapter, in which one 
calculates the coefficients by fitting the set o f equations to observations. Though the process here 
is slightly complicated by the error terms, which is why it is necessary to take expectations.
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Since E ( zqZ j)  and E ( zq 2)  can be estimated from sample data, a jo  can be estimated. 

Though Simon does not mention it explicitly in the paper, the time order 

assumption among the variables ensures the above general equations are 

identifiable, and this is why one can deduce the values o f the coefficients from 

observation.

In much the same way as in the last section of the previous chapter, Simon 

explicitly associates certain coefficients being zero with different causal orders 

relative to the set o f error terms uo, My, and U2 . In his analysis Simon considers all 

the different cases for the three equations above (1954, pp.44-45). For instance, 

he notes that if  only aio = 0 then zq  does not cause zi but both cause z* Since zy 

causes Z2 in this case, the correlation between zy and Z2 is not spurious. Similarly 

if only a2 i = 0 , then zo causes zy and Z2, but zy does not cause Z2, so in this case the
o

correlation between zy and Z2 is found to be spurious. In this way, one can 

deduce whether the correlation is spurious or not.

So, as was done at the end of the last chapter,9 Simon uses estimated ‘zeros’ for 

coefficients in the proposed general equations to make inferences to more 

restricted sets of equations. And, in the three variable case he considers, this 

allows him to show that one can deduce by introducing an earlier factor whether 

or not the correlation between two factors is spurious.

2.2. Simon’s key Claim and his General Approach to Inferring Causal Order 

In describing the result o f his paper, Simon does not hold back. He claims that his 

paper shows ‘ correlation is proo f o f  causation in the two-variable case i f  we are 

willing to make the assumptions o f  time precedence and non-correlation o f  the 

error terms’ (1954, p.43, original emphasis). As can be seen from its emphasis in 

the paper, this is the key claim in Simon’s paper. This is a strong and contentious 

claim with which many people would take issue.10 In this chapter I consider

8 Simon proceeds to cover other cases in a similar way.
9 Recall the discussion o f identification at the end o f the previous chapter, in which a method was 
set out where by measuring certain coefficients to be zero a causal order could be inferred.
10 Consider the well-known maxim that Simon quotes in the first sentence o f his paper: ‘Even in 
the first course in statistics, the slogan “Correlation is no proof o f causation!” is imprinted firmly 
in the mind o f the aspiring statistician or social scientist.’ (1954, p.37). Simon’s key claim is
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Nancy Cartwright’s objection to the claim, because I later consider her own 

proposal for inferring causal order.

It is also important to note that Simon’s method can be generalised to systems of 

equations with more than three variables and three equations. One can extend his 

method to any lower triangular system of equations in which the variables are 

time ordered and the error terms are uncorrelated. As discussed later, all such 

systems are identifiable so one can follow Simon’s method above to deduce, from 

sample estimates for population covariances of the variables, the values of the 

coefficients.

As Simon notes, this approach assumes that the form of the equations is known, 

that the variables in those equations are strictly time ordered and that error terms 

in those equations are uncorrelated. Simon’s key claim is that one can solve for 

unknown coefficients in this case, and thus solve for the causal order among the 

variables. Having presented this claim, I now consider Cartwright’s objection to 

it.

3. Cartwright vs. Simon: Can Correlations Really be Used to Infer Causal Order? 

This rather long section first presents Nancy Cartwright’s criticism that Simon’s 

method fails to deduce causal order from observation. In other words, Cartwright 

claims that it fails to solve the problem of observational equivalence.11 This is 

followed by a presentation of some counterexamples Cartwright constructs to 

show that Simon’s claim fails to solve the observational equivalence problem. 

Unfortunately no counterexample is given that applies to the key claim presented 

in Simon’s 1954 paper. Given this, I present an additional counterexample to 

Simon’s claim and conclude from this that Simon’s key claim fails to solve the 

observational equivalence problem. With this done, I discuss a way in which 

Simon’s claim might be weakened to avoid the counterexample. However, it is

controversial because it does claim that correlation can be a proof o f causation under certain 
conditions.
11 Recall that two systems are observationally equivalent if they are consistent with the same 
observations. The problem o f observational equivalence is how to narrow down the possible 
causal systems to just one from observation. As discussed in the introduction, it is a variant o f the 
problem of inferring causal relations from correlations.
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then noted that even if Simon’s claim is weakened in this way, it still faces an 

observational equivalence problem. The section then concludes by presenting an 

alternative ‘S-approach’ that assumes a strong reading for equations. In contrast 

to Simon’s approach, this method solves the observational equivalence problem. 

However, it constitutes limited progress since it does so at the price of ‘almost’ 

assuming the problem o f observational equivalence away.

3.1. Cartwright’s Criticism o f  Simon

In the first chapter of her 1989 book, Nancy Cartwright is concerned to show how 

causes can be inferred from probabilities (or correlations). After a brief review of 

how Simon’s analysis in his 1954 paper, Nancy Cartwright makes a bold 

criticism:

‘.. .there is a stock objection: the bulk o f Simon’s paper is devoted to 
showing that the parameters can be determined from the
probabilities. But the problem occurs one stage earlier, in the
interpretation o f the data and the selection o f the variables. The 
argument given here assumes, roughly, that dependent variables are 
effects and independent variables are causes. But the facts expressed 
in a system of simultaneous equations do not fix which variables are 
dependent and which are independent.’ (1989, p.20).

To support her claim, she presents a long quote by Clark Glymour (1983) which

criticises the contentious section in Simon’s 1953 paper where Simon

distinguishes between different mathematically equivalent systems by ‘wiggling’ 

coefficients (Simon, 1953, p.24). According to Glymour, Simon is attempting to 

solve the problem of distinguishing between observationally equivalent systems. 

Under his reading of Simon, Glymour argues that Simon’s ‘wiggling’ approach 

does not suffice to resolve the equivalence. Glymour does this by constructing an 

observationally equivalent case in which the ordering is reversed. The logic of 

Glymour’s point is essentially the same as that o f some o f the discussions in 

chapter two, where it was shown that one could change the causal order by 

mathematically manipulating the equations. However, Glymour uses this logic to 

claim that Simon fails to resolve the observational equivalence problem, whereas 

in chapter two I restricted the discussion to the conceptual equivalence problem.
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In any event, Nancy Cartwright disagrees with Glymour’s view that Simon was 

attempting to solve the observational equivalence problem. Instead, she uses 

Glymour’s analysis to note that ‘whether it was Simon’s intent or not, there is a 

prima facie plausibility to the hope that it will solve the [observational] 

equivalence problem, and it is important to register clearly that it cannot do so’ 

(1989, p.22). Is this right? Well, as seen in chapter two, one must assume 

something beyond the mathematical equations if  the causal order is to have a well 

defined meaning. This was the solution to the conceptual equivalence problem. 

Given this, Glymour is clearly correct in that one cannot use observed facts about 

the equations alone to distinguish which system is correct. Depending on how the 

system is written and what coefficients are changed, different orders, and different 

changes in the variables follow. As long as one simply infers mathematical 

equations, one cannot distinguish between the causal orders o f different systems. 

So Cartwright’s point stands.

As shown in the quote above, Cartwright’s general criticism is that one cannot use 

facts about mathematical equations to determine facts about causal relations. 

Another version of this criticism is that Simon’s method can fail to distinguish 

between observationally equivalent systems. But if this is the case, then it should 

be possible to construct observationally equivalent systems, that is systems that 

are mathematically equivalent and thus consistent with the same observations, but 

which have different causal orders. Constructing such examples would then be 

explicit counterexamples to Simon’s method for determining whether correlation 

is spurious, and more generally to his method for inferring causal order.

In a recent unpublished work, Cartwright attempts to construct such examples, 

cases of mathematically equivalent systems which have different causal order, that 

would falsify Simon’s key claim that ‘correlation is proof of causation ... if  we 

are willing to make the assumptions o f time precedence and non-correlation o f the 

error terms’ (1954, emphasis removed). These counterexamples are important 

because they make explicit why Simon’s method cannot merely rely on facts 

about equations in order to learn about causes. Without such examples, 

Cartwright’s criticism, though persuasive, might be dismissed as a merely
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philosophical scepticism, of no consequence to practical causal inference from 

correlation. For this reason, I now look at various proposed counterexamples.

3.2. Attempted Counterexamples To Sim on’s Claim

To begin the discussion, consider a well-known example presented in Cartwright 

(1995, p.51), (2003b, p.9) of observationally equivalent systems with different 

formal orders.

A Z l = “ l D Z 2 = V2 .  C = ~r~~t V1 = ( 1  -ac^-cu,A. B, where a +1
z 2 =azl + u2 z ,= c z 2 + v, V2=aUi+th

{ z j  -> {z2} {z2} {z,}

In this case, A and B are mathematically equivalent. Moreover, the error terms in 

A are uncorrelated if  and only if those in B are. Also, A and B have reverse 

causal orders. So, this is an example of two mathematically equivalent, and 

therefore observationally equivalent, systems with different causal orders. This 

shows more simply than Glymour’s discussion, and in a way which is more 

relevant to Simon’s analysis in the 1954 paper (given that the errors are 

uncorrelated in both systems), the problem of determining causal order from 

correlations. The problem is that both systems will be consistent with the same 

observations, so how can they distinguished by observation? In such a case it is 

clearly impossible to distinguish, merely by using correlations o f zy and Z2, which 

causal order is correct.

This example clearly rebuts a generalised version of Simon’s claim that one is 

able to infer causes from correlations in the case o f simultaneous equation 

systems. However, a problem remains. In his 1954 paper Simon deals only with 

time ordered variables, which rules out the example of A and B above as a 

counterexample to his 1954 analysis. Since if zy precedes Z2 in time then system B 

is ruled out, while if  Z2 precedes zy then A is ruled out. Cartwright herself notes 

this: ‘[i]n that case, our counterexample is no counterexample because time 

ordering will fix the causal order’ (2003b, p.9). So, though this counterexample is 

a counterexample to a version of Simon’s claim extended to apply to simultaneous 

systems, it fails to rebut Simon’s 1954 claim. This also shows how Simon’s
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stipulation of time order among the internal variables helps rule out some 

observationally equivalent systems with different formal orders.

Since Cartwright is aware that the last counterexample fails in the time ordered 

case, she proposes another counterexample where the time order among the 

variables is respected. In this case, she presents the following two systems 

(2003b, p.9).

z, =w, z, =u, b . 11 1  1 1  c = — + \,d  = —
C z2 = az, + u2 D z 2 -  azl + u2 where a a

z u
z3 = hzl + u3 z 3 =cz]+dz2+v v = —z, + — + w3 — -

a a

Unfortunately, this counterexample fails. Though it is not immediately obvious, 

appendix 6.1 shows that though D has uncorrelated error terms and preserves the 

time order among the internal variables, it is not consistent with system C unless it 

is identical to it. The reason is that from the definition o f v it follows that either 

the formulae above for c and d  are incorrect, or D is not consistent with system C. 

If the formulae for c and d  are incorrect, then D must be identical to system C so 

in that case the counterexample fails. Whereas if D is not consistent with C, then 

it cannot be observationally equivalent with it. So the counterexample fails. 

Unfortunately in her discussion Cartwright overlooks the inconsistency and 

concludes that this provides a time ordered counterexample to Simon. The result 

here shows this to be mistaken.

An obvious next question is whether or not a counterexample like the one

attempted by Cartwright can be constructed. If it is possible then there exists a

system D ’ below, distinct from system C, which can be derived from C, where D ’ 

has uncorrelated error terms.

Z| Z/j Zj — Wj

C z2 = azj + u2 D ’ z 2 -  az] + u2

z3 = &Zj + w3 z3 = czj + dz2 + v

However, appendix 6.1 shows this is not possible. It shows that if  one assumes 

the above form for D ’, and assume that its error terms are uncorrelated then 

system D ’ must be identical to system C.
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So, as it stands, Simon’s key claim in 1954 paper, that causal order can be inferred 

from time order and uncorrelated errors, remains unrebuted by the examples of 

observationally equivalent systems considered here. This, then raises a question: 

does Cartwright’s criticism that correlations and time-ordering alone are 

insufficient for determining a unique order apply to the systems that Simon 

analyses in his 1954 paper? Or perhaps Simon is correct, and imposing a strict 

time order among variables is sufficient to rule out observationally equivalent 

systems with different causal orders. I now consider this.

3.3. A Time Ordered Counterexample to Sim on’s Claim

In fact, there is a good reason why counterexamples are difficult to construct. 

This is because there is a general impossibility result that shows that no such 

counterexample can be built. To see why, first recall that the systems that Simon 

considers in his 1954 paper have, on time ordering the equations, the following 

lower triangular form.

In appendix 6.2 it is shown that such systems are identifiable when the error terms 

are uncorrelated. This seems to put the matter to rest, since identifiability (by 

definition) prevents systems being manipulated into mathematically equivalent 

systems with the same functional form but with different coefficient values. This 

is exactly what one does in attempting to construct a counterexample to Simon’s 

claim. Identifiability rules this out.

Therefore, it appears hopeless to attempt to construct a time ordered 

counterexample. This is because any observationally equivalent system, to be 

mathematically equivalent, must be constructed from the original system. Since 

the equivalent systems must have the same functional form as the original (lower 

triangular with uncorrelated errors) they must, since the original system is 

identifiable, have all the same coefficient values as the original. Therefore, it 

appears impossible to construct a counterexample like A and B for the time 

ordered case. As a result, Simon’s position appears strengthened.

= u.

a 2 ] Z l +  U 2

a n \ Z \ +  '- ' +  a n n - \ Z n~] + U n
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However, one should not be too quick to opt in favour of Simon here. There is in 

fact an important implicit assumption in the impossibility result just presented. It 

is a condition that Cartwright notices in the quote presented earlier: ‘...the 

problem occurs one stage earlier, in the interpretation o f the data and the selection 

o f the variables. ’ (1989, p.20, my emphasis). In turns out that changing the 

internal variables that appear in the equations is key to constructing a 

counterexample.

To show this, I construct a counterexample from system C. Assume as before that 

system C holds, where the variables are time ordered according to index, where 

the w’s have zero mean, variance 1 , and are uncorrelated with each other.

*i = ux
C z2 = azx + u2 

z3 = bzx + w3

Appendix 6.3 shows that one can derive the following system from A.

z2 = v2 v2 = aux + u2

D ’ ab where b ab
z3 = — - y z 2 +v3 v3 = - — r w1 — u2 +w3

1 + a 1 + a 1 + a

By construction, system D ’ is mathematically consistent with system C (though it

is not equivalent since it omits zf) and has uncorrelated error terms. The causal

order for D ’ is that Z2 causes z ,̂ whereas in C, Z2 and zj are jointly caused by z/.

So, unlike the earlier examples, the two systems C and D ’ do present a

counterexample against Simon’s claim in his 1954 paper. This is because if  the

equations in system C hold, then those o f system D ’ do also. According to

Simon’s claim, System D ’ is a system that meets the required time order and

uncorrelated error assumptions12 for deducing causal order and yet, if  system C is

the system with the correct causal order then system D ’ has incorrect causal order.

So, Simon’s claim that one can deduce the causal order from time ordered

variables and uncorrelated error terms fails for D ’ and Simon’s key claim is false.

12 The error terms in D ’ will not have variance 1 in this system. This is not important however 
since which, if  any, error terms have variance 1 depends entirely on the choice o f scale for the 
variables being analysed. To rely on this choice of scale to break the observational equivalence 
between the systems would be tantamount to claiming that which causal order is correct depends 
on a choice of scale for the variables, which would be absurd.
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There is something surprising about this counterexample. If system C and its 

causal order are true, System D ’ is the system one infers if  one regresses zj on z .̂ 

In that case, if one reads system D ’ causally then one makes the mistake of 

spuriously reading the correlation between Z2 and zj as indicative of a causal 

connection. This is the problem of spurious correlation all over again. So, the 

counterexample is particularly damaging to Simon, since it shows that his method 

fails to address the paradigmatic case it was meant to deal with, that is, the 

problem of spurious correlation among two variables.

In spite of this counterexample, there is a clearly a way out for Simon, that is, to 

assume that it was known that the set of internal variables being considered are 

somehow ‘given’, that is, no important internal variables have been omitted like in 

the example above.13 This is because in that case the earlier impossibility result 

holds, so it is not possible to construct, keeping the time order among the same 

variables and the error terms uncorrelated, an observationally equivalent system 

with different causal order for the same set of variables. This rules out the 

possibility of a counterexample like that presented here.

However, it should be immediately obvious that this move won’t do for Simon. 

The method proposed in his 1954 paper is to solve the problem of spurious 

correlation by introducing a third earlier variable to fit the correlated variables in a 

larger model to see whether or not the original two variables are spuriously 

correlated. If Simon solves the problem of spurious correlation by introducing a 

variable, he can hardly put a limit on the number of variables that can be included 

in the model, in order to avoid the possibility that the causal connections, in a 

model that showed another a correlation was spurious, turn out themselves to be 

spurious in a larger model.

13 The conditions under which the internal variables modelled can be taken as ‘given’ or suitably 
‘complete’ is therefore a crucial question. It is a difficult question however, given that there will 
always be omitted causes not explicitly represented by the system of equations. Bayes-net 
methods, for instance, assume a modelled set o f factors is ‘causally sufficient’ which requires that 
any common cause of two modelled factors also be modelled and in this way avoid the problem 
above, see Spirtes et al. (1993, p.45). Also, chapter three, by attempting to set out when equations 
could model only some causal relations and when factors could be omitted using error terms, 
provides the beginnings o f an attempt to set out the conditions under which variables can be left 
out, and when they can be covered in error terms, given the strong reading.
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3.4. A Way to Salvage Sim on’s Claim?

This section considers another way o f salvaging Simon’s claim. To do this, I 

attempt to construct a more damaging counterexample to his analysis. When it is 

shown that it is not possible to do so, a way Simon’s claim seems to hold in spite 

o f the above counterexample is observed.

The attempt is to construct from a system, with variables zq, zy, Z2  and z2 in which 

Z2 does cause Z3, a smaller system without zo which read causally asserts that z2 

and Z3 are both caused by zy but do not cause each other. Let (I) denote the larger 

system, (II) the smaller. In other words, the attempt is to construct equations for

(II) from those of (I) where the causal graphs for each system are given by.

(II):

If successful, this would be particularly devastating to Simon, because system (II) 

is just like System A, and we have just shown in our counterexample that such a 

system is in turn consistent with another system, say (III), in which Z2 causes Z 3 . 

So, if this new counterexample can be constructed then (I) and (II) would both be 

consistent with

(III) z2 ►zj .

But then the following situation would be possible. Suppose that (I) is the true 

but unknown underlying system with correct causal order. It is consistent with the 

equations of systems (II) and (III). Now suppose that a correlation between z2 and 

Z3 is observed, but that it is assumed that the causal relation between z2 and z2 is 

spurious. Suppose also that it is known that zy is a common cause of z2 and z2. 

Then, following Herbert Simon’s approach and good scientific practice, zy is 

incorporated into the model relating z2 and z2. Estimating the coefficients in such 

equations would then yield system (II),14 which would suggest that the causal

14 I am glossing over some details here, but if it is possible to construct a system (II) from (III) 
then it can be shown that applying Simon’s method of inferring coefficients from observed 
covariances, will in fact yield system (II), if one assumes equations o f the form o f (II).
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connection between Z2 and Z3 is spurious when in fact, given system (I) holds, it is 

not.

Clearly, if it were possible to construct such an example, it would be a serious 

problem for Simon since it would imply that one could not be certain that a 

spurious correlation discovered using Simon’s method in fact held, because for all 

one knew there might in fact be another larger system in which a causal 

connection between the ‘spuriously’ correlated variables obtained.15

Luckily for Simon, however, it is not possible to construct such a case. Appendix 

6.4 shows that it is not possible to construct a system (II) where Z2 does not cause 

zj, provided the coefficients in the system (I) are not functionally related. Why 

this happens can be seen from analysis of the more general case. Suppose, 

analogously to (I), that a lower triangular system and its causal order holds among 

some set of time order factors, where the error terms are uncorrelated. 

Generalising the attempt above, the aim is to derive another system from this 

system, that relates a proper subset o f the original variables but with different 

causal order.

In this general case, the system to be derived has form with uncorrelated error 

terms.

z, = u]

Z2 — ^ 2 1 ^ 1  ^ 2

z„ =a„,z, + ... + a„„ ,z„ , +u„n n i i  nn—i n—i n

To derive this system, one must solve for its coefficients from those of the 

original system. To do this, one uses the n(n-l)/2  pairwise orthogonality 

constraints to be met by the error terms.16 In addition, there are, provided none are

15 The problem of causal connections changing when extra variables are introduced is general 
problem of causal inference. It is a form of Simpson’s paradox. In its general form, Simpson’s 
paradox is the problem that conditional probability relations e.g. P(A\B) > P(B) can always be 
reversed or removed by conditioning on some other variable. Causal systems where the 
introduction o f another variable leads a correlation to vanish is an example o f the paradox, see 
Malinas and Bigelow (2004).
16 This follows because there are C(n,2) = n(n-l)/2 ways o f choosing two distinct error terms from 
the n equations. So this gives the number of constraints implied by the pairwise independence of  
errors. Since joint independence o f errors is not implied by pairwise independence however, it
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1 n
assumed to be zero, exactly n(n-l) / 2  unknown coefficients (a ’s) to be solved for 

in order to solve for the derived system. Therefore, functional dependencies in 

the coefficients of the original system aside,18 one can solve for the coefficients of 

the derived system if and only if no coefficient is assumed to be zero in the 

derived system. Otherwise there would be fewer coefficients than constraints and 

there would be no solution for the derived system. Therefore, if  the system can be 

derived it has only non-zero coefficients. In this way systems like (II) are ruled 

out since in these it is assumed that some causal connections are absent, that is, 

there are equations with some zero coefficient(s).

Taking a step back from the formalism, it follows that the only systems that can 

be derived from larger systems with greater numbers o f variables are those that, 

when read causally, assume that all possible causal connections among the 

variables hold. This implies that one cannot derive a system from a larger system, 

which read causally asserts that some earlier variable does not cause a later 

variable.

So, for example, if we observe a correlation between Z2 and z j ,  which we suppose 

to be spurious, and suppose that we introduce an earlier variable zy which screens 

off the correlation between Z2 and z j .  Read causally, the resulting model states 

that Z2 does not cause z j .  The above analysis shows that any larger model 

containing zy, Z2 and z j ,  along with other time ordered variables and uncorrelated 

error terms, will be such that when read causally, Z2 will not cause zj.

This result highlights an important asymmetry in what can be inferred. From the 

counterexample we presented above, it was shown that a causal connection 

between Z2 and zj in a model which respected time order and had uncorrelated 

errors, could in fact be due to an omitted, earlier common cause zy. However, it

may be possible to get more constraints by assuming the error terms are jointly independent. This 
in turn may help ruling out further observationally equivalent systems. This suggests an interesting 
topic for further exploration, which I leave as further work.
17 This is because if none o f the a ’s are assumed to be zero, then by counting there are: J+2+... +n- 
1 = n(n-l)/2 a ’s to be solved in deriving the system.
18 This is an important and now familiar caveat since it rules out original systems that have 
cancelling out relationships. In a fuller, more rigorous analysis these systems would not be 
excluded.
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has just been shown that in a model where Z2 does not cause Z3 it is not possible to 

construct a larger model19 including all the variables of the smaller model, in 

which Z2 does cause zj.

Putting these two results together, it has been shown that:

(*) If a linear model o f time ordered variables with uncorrelated 

errors is such that, when read causally, it asserts that zy directly 

causes Z2, then there may be a larger model with more variables in 

which this causal connection vanishes. However, if  in the model z  ̂

does not directly cause zj then there is no larger model, which read 

causally, asserts that Z2 directly causes zj.

This inferential asymmetry is important, it suggests that although one cannot be 

sure o f causal connections inferred using Simon’s method, one can be sure about 

the absence of causal connections. In this way part o f Simon’s claim appears to 

be salvaged. The analysis here appears to show that one can deduce from time 

ordered variables and uncorrelated errors that two factors are not causally 

connected.

However this respite for Simon is short lived. Since, in spite o f appearances, even 

this modified claim is undermined. I now show how.

3.5. A Further Problem fo r  Sim on’s Claim

The above appears to suggest a way in which Simon’s claim can be weakened, in 

light of the counterexample, so that it holds. The suggestion is to limit his claim 

that only absences of causal claims can be deduced from observations given 

uncorrelated error terms and time order. However, this claim also fails.

Suppose one infers, using Simon’s method, that zy, Z2  and z j satisfy a set o f three 

equations that has the following causal graph.

19 Strictly speaking, it is not possible to construct a larger model with no cancelling out 
relationships, see previous footnote.
20 Assuming no functional dependencies among its coefficients, see two previous footnotes.
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Zi

Now, (*) above states that one can be sure o f  the lack o f  causal connection 

between Z2 and z j  but cannot be sure that the connections between zy and Z2 ( z j )  

are spurious. And yet, the inference to a lack of causal connection between Z2 and 

Z3 is contingent on the causal connections holding from zy to z 2 and Z3. This is 

clear because one can always fit a smaller model without zy , which read causally 

asserts that Z2 causes Z5.21 So, how can one be sure that there is no causal 

connection between Z2 and z j  if the claim relies on an uncertain claim o f causal 

connections from zj to z2 and Z3I  It seems then that we can’t be sure o f the lack of 

causal connection either. Moreover, it doesn’t help to enlarge the model by 

introducing earlier variables since, at best, this merely introduces further causal 

connections of which one cannot be sure.

This problem raises a serious problem. It shows that:

(**) No matter how many variables one introduces one cannot be 

sure that the equations, when read causally, are not in fa c t spurious. 

Moreover, since claims as to the lack of direct causal connection 

between variables also depend on other causal connections holding 

in the model, this means that ultimately inferences to absences of 

causal connections among variables are also not secure.22

To conclude, Simon’s weakened claim fails to hold. This undermines confidence 

in inferences to a lack of direct causal connection in spite of the result (*) shown 

above: that any time ordered linear model that assumes that two variables are not 

directly causally connected, cannot be embedded in a more general linear model 

in which the same two variables are directly causally connected.

21 This is what above time ordered counterexample to Simon (systems C and D ’) does.
22 Bayes-nets methods are interesting here, since these analyse all possible causal graphs for a 
causally sufficient set o f factors. These are interesting because causal sufficiency rules out the 
possibility of any common causes being omitted, on which (**) ultimately depends. Whether or 
not this is progress, though, depends on how the causal sufficiency assumption is justified.
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So what, if  anything, can be done to salvage Simon’s approach? The answer is to 

bring in the strong reading developed in chapter two.

3.6. The Right way to Salvage Simon: Introduce the Strong Reading 

Nancy Cartwright’s criticism of Simon is based on one key point. It is 

encapsulated in her statement that ‘the facts expressed in a system of simultaneous 

equations do not fix which variables are dependent and which are independent.’ 

(1989, p.20). This problem was also made clear in chapter two: the facts in the 

equation are insufficient to determine the causal interpretation. The time ordered 

counterexample (of C and D ’) shows also that stipulating time order doesn’t fix 

the problem because then the causal interpretation is contingent on the variables 

that are included in the equations. While (**) shows that adding more variables 

doesn’t help because whatever variables are added, one still has a model that can 

change its causal interpretation when even more variables are added. In short 

Cartwright’s point still applies. A set of equations relating time ordered variables 

with uncorrelated error terms, underdetermines the causal interpretation. So why 

should one believe that such a set o f equations describes the causal relations 

among factors?

Clearly something is missing, one needs to stipulate that the equations represent 

causal relations, and one must have some way for justifying the truth o f these 

causal claims. A set o f equations among variables with error terms does not fix 

the causal semantics, nor does a set of true equations among variables fix the truth 

of causal claims among the factors those variables represent.

So, what is the solution? One needs to explicitly assume that relations represented 

by the equations are causal, and to assume that to learn about causal relations one 

must have background knowledge about those causal relations. This is the point 

of Nancy Cartwright’s (1989) maxim ‘no causes in, no causes o u t’.

In fact, these conditions for dealing with Cartwright’s criticism are met in the 

approach for inferring causal order presented at the end o f the last chapter (see

23 This point is made in Cartwright (forthcoming).
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section 5). Under this approach there are two key assumptions that are not made 

by Simon.24 The first is that the strong reading of the equations is adopted. This 

strong reading, as set out in chapter two, ensures that one cannot manipulate 

equations (in all but non trivial ways) without changing their causal content. It 

assumes that there are principled reasons for taking equations to represent 

mechanisms and that causal order among factors follows in virtue of relations 

among the mechanisms. This strong reading introduces content outside the 

equations which ensures the causal order as represented by a set o f equations is 

unique. In other words, it adds the content required to fix the causal interpretation 

of the equations.

The second assumption necessary for overcoming Cartwright’s criticism is made 

in the discussion of the role identifiability plays in causal inference at the end o f 

the last chapter. There strong background knowledge was assumed in order to 

make an inference to causal order using identifiable systems of equations. In 

particular, it was assumed that a set o f possible causal orders was known, that 

were consistent with a known identifiable system of equations. By measuring 

coefficients for this system from observation, then one could deduce from 

observation which of the possible causal orders is correct. The key point is that 

background causal knowledge is assumed and used to deduce further knowledge.

I call this approach to inferring causal order the ‘S-approach’. The S-approach 

avoids Cartwright’s criticism, because it accepts that one cannot have causes out 

without causes in, both in the interpretation of equations and in making causal 

inferences. Nevertheless, the method bears very close similarities to the method 

set out by Simon in his 1954 paper. In fact, the method is essentially Simon’s but 

with corrections made to deal with the criticism of Cartwright and Glymour.

To see this more clearly, recall the logic o f the inferential method (the S- 

approach) presented at the end of the last chapter (see section five).

24 Perhaps one should say ‘not made explicitly by Simon’ if one wants to be charitable. Either 
way, the point made here stands.
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(i) A set of identifiable of linear equations is known to hold, and it 

is known that the true structural equations are identifiable and 

may be obtained by setting one or more, if  any, o f the 

coefficients in this general set of linear equations to zero.

(ii) A sufficiently varied set of observations for the variables is 

obtained, so that the coefficients of the general set o f equations 

can be measured from observation.

THEN By measuring coefficients and finding out which if any are 

zero, one can deduce which of the possible system of structural 

equations holds, and thus deduce the causal order.

Unlike Simon’s approach, the S-approach for inferring causal order does not rely 

on mere correlations and time orders. It works by building in a strong knowledge 

claim about what causal orders there may be among the factors. This is why it 

avoids Cartwright’s criticism. Otherwise the approach is like Simon’s, formally it 

requires fitting identifiable equations to observations and inferring, from 

coefficients that are found to be zero, which causal order obtains.

In addition, Simon’s 1954 analysis can be put in these terms to make his 

arguments valid. In that case, the assumption that it is known which variables are 

relevant for the analysis and their time order, is read as an assumption that it is 

known that only causal orders among those factors with that time order are 

possible. Since all of these are identifiable by the time order restriction and the 

uncorrelated errors, then, just as Simon shows, one can deduce the causal order 

from observation.

Finally, one should note that this S-approach is not circular. Using it, one does 

not infer to a causal order by assuming that the correct causal order holds a priori. 

Though the assumption that one knows the set of possible causal orders is strong, 

it does not imply that the actual causal order is known.

25 There is an important problem which is by-passed in this discussion. The S-approach here needs 
to be generalised to cover systems with error terms. This is a very important but difficult analysis 
which I leave as further work. In discussion o f the S-approach in the remainder o f the chapter I 
focus on systems o f equations without error terms.
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That said, as the discussion at the end of the last chapter made clear, the 

background knowledge assumptions are very strong. One needs to know an awful 

lot about the causal order before one can use an identifiable system o f equations to 

infer causal order like Simon does in his (1954). So, though the S-approach 

avoids Cartwright’s criticism of Simon, in some ways it does not provide a very 

satisfying analysis of how to find out about causal order because so much needs to 

be known before it can be used. Another way of seeing this is that the 

background knowledge assumed requires that many o f the problems discussed 

above for Simon’s claim have been somehow dealt with. For instance, in 

assuming that it is known that the only causal orders that are possible are those 

consistent with a known identifiable system of equations, one takes as ‘given’ the 

set of internal variables in that system of equations. This was criticised in 

discussing Simon’s claim. Therefore, a more complete analysis would ultimately 

be desirable to unpack how the background knowledge required to use the S- 

approach might be obtained.

4. Cartwright’s Alternative Approach fo r  Deducing Causal Order 

In this section, I consider another way to infer causal order. This approach is 

developed by Nancy Cartwright as an alternative way to solve the problem of 

observational equivalence.

In her analysis, Cartwright (1989) focuses on time ordered systems like those 

considered by Simon (1954). To make clear the causal content of equations, she 

stipulates that a causal equation be such that there be one variable on the left hand 

side which denotes the effect, while the variables on the right hand side of the 

each denote causes o f that effect. Given this assumption and the time order 

assumption, the systems Cartwright analyses also have lower triangular form 

(where indices of variables denote time order):



In her 1989 work, an equation, that has one variable on the left hand side of the 

equality, is causally correct if and only if it is functionally correct and all o f the 

variables on the right hand side denote causes o f the effect denoted by the variable 

on the left hand side. Cartwright’s analysis on how to infer causal order then 

proceeds by analogy with the problem of spurious INUS26 conditions and that of 

observationally equivalent linear models. She then proposes a solution for INUS 

conditions from which she develops an analogous solution for linear models.

4.1. Using Spurious INUS conditions and Open Back Paths to Infer Causal Order 

In her discussion, Cartwright briefly reviews John Mackie’s claim that causes are 

INUS conditions for their effects. She then presents Mackie’s (1974) famous 

example of the two factories that shows that being an INUS condition is not 

sufficient for being a cause, which shows how one can construct ‘spurious’ INUS 

conditions for effects.

In Mackie’s example there are two factories, one in London and one in 

Manchester. In both, if  it is five o’clock this causes the hooters to blow in the 

respective factories. Quoting Mackie, Cartwright formalises the example as 

follows (1989, p.26).

X 2 = A X i v W  

X 3 = BXj  v V 

where

Xj\ It is five o ’ clock

X 2: Manchester hooters sound

X 3: London hooters sound

A: Conditions under which ensure Manchester hooters blow if  it is 5 

o’ clock

B: Conditions under which ensure London hooters blow if  it is 5 o’ 

clock

W: Conditions under which the Manchester hooters will blow when 

it is not 5.

26 Recall that an INUS condition is an insufficient but necessary part o f an unnecessary but 
sufficient condition.
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V: Conditions under which the London hooters will blow when it is 

not 5.

In the correct causal representation, X] is an INUS condition for both X 2 and X 3, 

which is to be expected since it is assumed thatX; is a cause of both X 2 and X 3 .

In this case one can, in a similar way to Cartwright, derive the following 

proposition from the two propositions above.

X 3 =BX 2 -  WvBAXj I Vv  B- 'AXj  v V  

In this proposition, if the Manchester hooters blow (X2) and the conditions are met 

under which the London hooters blow if it is five o’ clock (B) and conditions are 

not met under which the Manchester hooters blow when it is not five o’ clock 

( - 1W), then the London hooters blow (X3). O f course, this works because this 

conjunction ensures that it is five o’ clock and conditions for the London hooters 

to blow at five are met, which implies the London hooters blow. However, the 

proposition is spurious since, if one was to read its INUS conditions as causes, 

then this would mistakenly imply that that Manchester hooters blowing is a cause 

of the London hooters blowing.

Cartwright’s key point in setting out this example is that if  one has sufficient 

background causal knowledge then one can rule out this spurious proposition. In 

this case, she notes, if  one knows that neither W nor ^  W  can be a cause o f X 3 

except possibly via X 2 , then one can rule out the spurious proposition. This is 

because in that case, any attempt to derive a proposition in which X 2 is an INUS 

condition for X 3 also introduces W or ^  W as an INUS condition. Then, if  it is 

known that neither of these can cause X 3 not via X 2 , then the derived propositions 

in which X 2 is an INUS condition for X 3 are spurious propositions. So, if  all o f the 

propositions in which X 2 is an INUS condition are known to be spurious then X 2 is 

known not to be a cause of X 3 . Finally, note that this is plausible in this hooters 

example, since one could easily rule out the conditions under which the 

Manchester hooters blow when it is not five as not independently causally

27 This is slightly simpler than the proposition that Cartwright derives (1989, p.27). However, it 
makes Cartwright’s point just as well since in it X2 is a spurious INUS condition for X3.
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connected with the London hooters blowing and in this way rule out the derived 

proposition as spurious.

Cartwright also presents an analogous problem for linear models. Instead of 

following her analysis strictly, one can also see her point by making a direct 

analogy with the two propositions above. Suppose the following are the true but 

unknown causal equations.

X2 = axj + w 

X 3  = bx 7 + v

Substituting xj out from the second equation we get an equation analogous to the 

derived proposition above.

X3 = b/a(x2 -w ) + v

Finally, the analogous conclusion to Cartwright’s conclusion for the INUS 

conditions, is that if we know that w doesn’t cause X3 except possibly via X2 then 

we know that this equation must be spurious.

Cartwright’s general conclusion from this is that if  we have a set o f possible 

causes for an effect, and we know that each of these possible causes, c, has a 

cause, u, which cannot cause the effect or interest except via c, then if  an equation 

holds between the effect and the possible causes then any attempt to derive 

another equation from this introduces a factor which cannot cause the effect in 

question. In that case any derived formula is spurious and the original formula 

must be causally accurate, and all the possible causes genuine.

This condition is formulated in Cartwright’s requirement that each putative cause 

have an open back path relative to the effect. Her definition o f an open back path 

is:

‘ OBP: x(t) has an open back path  with respect to xe(0) just in case at 
any earlier time t \  there is some cause, u (t’), o f x(t), and it is both 
true, and known to be true, that u(t’)  can cause xe(0)  only by causing 
x(t) . 9 (1989, p.33)

In order to use this condition to infer causal order, Cartwright also makes explicit 

the need for some further assumptions. She assumes what she calls the 

‘Generalised Reichenbach Principle’ which assumes that all true functional
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relations can be derived from the true set o f causally correct equations, and also 

assumes transitivity of causality.

Given these assumptions, she then proves that her inferential claim above holds

generally (1989, p.37). Specifically, she proves that if  an equation x e = ^ ]aix i is
/

known to hold, and if  every factor on the right hand side has an open back path 

with respect to xe, then the equation is causally correct, that is, every factor on the 

right hand side is a cause o f xe. In this way, Cartwright generalises her 

observation of how the problem of spurious INUS condition could be resolved, to 

propose a distinctive approach for inferring causal order information from 

observations.

Cartwright’s distinctive approach to inferring causal order obviously raises many 

questions. The most interesting one is: what is the relationship between the 

method here outlined by Cartwright for inferring causal order and that of the S- 

approach? Before an attempt is made to answer this, however, I highlight a few 

problems with her OBP definition and her inferential claim. Once this is done, I 

compare the S-approach with Cartwright’s.

4.2. A Few Criticisms o f  Cartwright

The discussion above shows that Nancy Cartwright’s open back path requirement 

lies at the heart of her approach for deducing the causal order from a correct

28 Recently, there has been renewed debate as to whether or not causation is transitive. Many 
counterexamples have been given to show that causation is not transitive (e.g. a dog bites a 
terrorist’s left hand which causes him to push the button of a bomb with this right hand, which 
causes the bomb to explode, but one would not say that the dog biting the terrorist’s hand caused 
the bomb to explode). There has been much discussion o f this and other examples, and various 
solutions have been proposed. See, for example, Hall (2000). This discussion ultimately has 
relevance for the theories o f causal relations discussed in this thesis (i.e. Simon’s approach, the 
strong reading, Cartwright’s etc.) since all o f these assume a transitive causal relation. Therefore, 
it would be important to analyse whether the counterexamples to transitivity o f causation imply 
that there are important situations that could not be treated using the theories o f causal relations 
analysed here. However, since the thesis focuses on making clear, comparing and contrasting the 
different causal positions discussed, the question is not o f immediate relevance for the discussion 
o f the thesis. For this reason, I flag the problem and leave its investigation as further work. In 
passing, it is interesting to note that some have used structural equations approach to fruitfully 
analyse the intransitivity examples, for example, Hitchcock (2001). So, in addition to the 
intransitivity examples being relevant to structural approaches to causality, the converse may also 
hold, that is, structural approaches may be beneficial for discussing the intransitivity 
counterexamples. This too suggests further work.
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functional relation. However, the definition is challenging in several respects. In 

this section, I suggest a slight reformulation. Second, I set out an example to 

emphasise that Cartwright’s (1989) analysis allows the inference o f causally 

correct equations, it is insufficient for inferring certain direct causal relationships. 

Lastly, a counterexample is presented to the proof that shows the need for another 

condition to be added to safeguard her inferential claim.

The first issue considered here is the following unusual feature in Cartwright’s 

OBP definition: it incorporates both an ontological and an epistemic element. 

This is explicit in the definition which requires that ‘it is both true, and known to 

be true’ (1989, p.33, emphasis added). This is an unusual philosophical move 

since it intertwines ontology and epistemology in the same definition. 

Cartwright’s motivation is clear enough from her preceding discussion though. In 

the Manchester hooters example, one needs not only that W be spurious but one 

must also know that it is not a cause except possibly via X 2 . Since the OBP 

requirement follows by generalisation from this example, it is not surprising that it 

mixes the epistemic requirement with the ontological requirement.

I think this mixing of epistemic and ontological elements in the open back path is 

unnecessary and liable to lead to confusion. So, I prefer the following 

reformulation.

OOBP\ x(t) has an ontological open back path  with respect to xe(0) 

just in case at any earlier time t \  there is some cause, u(t) ,  o f x(t), 

and u(t’)  can cause xe(0)  only by causing x(t).

KOBP: x(t) has an known open back path  with respect to xe(0) just in 

case that x(t) has and is known to have an ontological open back path 

with respect to xe(0).

Clearly, Cartwright’s open back path matches what I call here a known open back 

path (KOBP).

The second critical point about Cartwright’s analysis can be seen from the 

following interesting case. Consider the following simple causal structure, where
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xi is a direct cause of X2 , and x2 is a direct cause of X3 , and where xi only causes X3 

by x2.

Suppose xj has an OOBP with respect to X3 where this back path is denoted by the 

OOBP in the causal graph. Here the interesting question is: does X2 have an OOBP 

with respect to jcj? Since xj only causes X3 by causing X2, and there is a back path 

of causes o f xj which only cause X3 by causing xu  then all o f the causes on this 

back path also cause X3 only by causing X2 (since X2 is an intermediate cause on the 

path from xi to X3 ) .29 So it follows that X2 also has an OOBP with respect to X3 .

To see why the case is interesting, suppose that the following are the causal 

equations associated with the causal graph above (where a and b are non-zero 

constants).

X2 = bxj

Then it is easily derived that the following equation holds for any non-zero 

constant d.

Now suppose that this functional equation is known to hold and it is known that 

both x\ and X2 have OOBP’s. Then in that case the conditions for Cartwright’s 

proof are met, and it follows by her proof that (+) is causally correct, that is, both 

xj and X2  are causes of X3.

The interesting point is that though (+) is causally correct, in the sense that every 

right hand variable is a cause of the left hand variable, it is unlike the two original 

equations in that every right hand side variable does not denote a direct cause o f 

the factor denoted by the left hand side variable. This interesting case makes clear 

that Cartwright’s (1989) inferential result allows one to infer causally correct

29 Note that the argument uses the transitivity o f causality, which is assumed by Cartwright in her

X j

X3 = ax2

X3 = dax2 + (l-d)abxj (+)

analysis.
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equations but not direct causal relationships, like those represented in the causal 

graph above.

That said, it might be possible to strengthen Cartwright’s inferential claim to 

allow inference of direct causal relationships. To see how, note that I have read 

the OOBP condition in a particular way. In the example I read the OOBP of xy 

with respect to X3 as implying that any effect, X2 , o f xy that are causes o f X3 such 

that the influence from xj to xj must pass via X2 , also has an OOBP for xj. One 

way to strengthen the inferential claim would be to modify the definition of an 

open back path to rule this out. However, I think this would be a mistake since it 

would require a very strong stipulation along the lines of: if  xy has an OOBP for X3 

it cannot have any intermediate cause between it and xj. This would turn the 

OOBP condition into a requirement that xy is a direct cause for xj which is clearly 

very restrictive.

There are other features which might be used to strengthen Cartwright’s 

inferential claim. For instance, in the example xj being a cause of X2 is crucial in 

constructing the causally correct equation where the right hand variables do not 

denote direct causes. If situations like this are ruled out then one cannot infer to 

the causally correct equation (+) in the example above. Therefore, the following 

condition might be added to strengthen Cartwright’s inferential claim: it is known 

that no right hand side variable (in the known functional relation) is a cause of any 

other. However, the problem with this restriction is that it is also very strong 

since it rules out causal inference in cases in which a right hand factor directly 

causes another. Perhaps a better, less restrictive alternative is to require that each
<5 A

right hand variable be known to have a distinct OOBP from those o f the others. 

This would be less restrictive while also ruling out the inference to the undesirable 

causally correct equation, (+), because in the system, xy and X2 share an OOBP.

Indeed this last option is suggested by Cartwright in a later work (2003a). 

Describing her (1989) result, Cartwright (2003a) claims ‘[t]he [known] equation 

for xe is thus a true causal law, so long as nothing appears on the right-hand side

30 How exactly to formulate what makes two OOBP’s distinct would need to be fleshed out.
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that is from  the back path o f  any other factor that appears there’ (emphasis

added, 2003a, p.214). By ‘causal law’ Cartwright has in mind equations like

those that correspond to the causal graph above where the right hand variables
11 •

denote direct causes of that denoted by the variable on the left. So, this claim is 

a restatement of her (1989) result but with a stronger consequent and with a 

condition that no two variables share an OOBP. Whether or not this stronger 

claim is justified by her later paper (she presents some very extensive formal 

analysis there) I leave as further work. Nevertheless, the statement at least shows 

the intent of the (later) Cartwright to extend the 1989 result to make stronger 

causal inferences.

To finish this section, I present a counterexample to Cartwright’s inferential

claim. This shows a need for a further strengthening of the conditions for inferring

causal order. In the example, assume the following causal graph and causally

correct equations hold, that the variables are time ordered according to index and

that X2 and xj both have KOBP’s with respect to x$.  Also, assume that the OOBP

for X2 passes through uo,  while that for X5 passes through U2 .

Xo =  Y2 U0 

Xi = -yjuo
x2 = ui + yixo + y2xi 
X3 = P2U2 

X4 =  - P 1U2

X5 =  a i u 1 +  P 1 X 3  +  P 2 X 4  

X 6 =  0.2X2 x e  X 5

It is easy to see that both x$ = oiU\ and X2 = wy hold. This is because the

bifurcated causal paths from uq and U2 into X2 and xj respectively cancel

themselves out. It then follows that xj = a 1X2 . From the last equation it follows

that xe = Xa2x2 + (1- X)0.2X2 for any X. Substituting X5 for x 2 in the first term, one

gets.

Xe =  k o 20  ;Xj +  ( 1 -  1) 0 2 X2 (+ + )

By construction, (++) holds for any X. The problem for Cartwright is that if  (++) 

is known to hold for a non-zero 2 , then we have a known equation which is 

causally incorrect but functionally correct, in which every factor on the right hand

/

31 Strictly speaking, Cartwright avoids using this terminology o f direct causes. A fuller analysis 
would give a more careful description o f her characterisation o f a causal law. However, this 
simpler characterisation is an acceptable simplification o f the concept for my purposes here
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side has a KOBP with respect to x<5. This is a counterexample to Cartwright’s 

1989 theorem, since the theorem implies that x5 is a genuine cause o f x& when it is 

not.

So Cartwright’s inferential claim can fail in cases where possible causes’ OOBP 

cancel themselves out. Note also that imposing that the OOBP be known, that is, 

that a KOBP holds is o f no help here, since one can know that a factor has an 

OOBP without knowing that it cancels itself out.

I propose to fix this by adding an additional condition to the definition o f an 

OOBP: no OOBP fo r  a factor can have coefficient values that imply that the 

factors along it would have no net influence on the factor whose OOBP it is. 

Since for almost all possible values o f the coefficients this will hold, it is not a 

very restrictive additional assumption. In the subsequent analysis I assume that 

this condition holds.

To conclude, the discussions here have shown up an ambiguity in Cartwright’s 

analysis, emphasised that her result allows inference of causally correct equations 

but need not capture direct causal information and has presented a counterexample 

to her proof. To avoid the counterexample, a modification has been proposed 

that the OOBP condition be strengthened so that the influence o f an OOBP not 

cancel out. With these clarifications, I now address the earlier question: how do 

the Cartwright and the S-approaches to inferring causal order compare?

5. Cartwright’s Approach to Inferring Causal Order vs. the S-Approach 

Ideally, this section would present a generalised formulation that would give 

conditions under which Cartwright’s approach and the S-approach to inferring 

causal order would imply one another, and conditions when they did not. 

Unfortunately, the work carried out has yet to reach this level o f analysis. So 

instead, I work by way of example to compare the two approaches.
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5.1. An Example o f  Inferring Causal order using the Cartwright and the S- 

approach

The example assumed is the following. Assume that the following causal graph 

denotes the actual causal relations that are o f interest.

X i  X 2  X 3

Assume that the following is known by an experimenter:

- y i is caused by at least one of xi and/or X2 and at most by both.

- y 2 is caused by at least one of X2 and/or x3 and at most by both.

- y i andy 2 have OOBP’s with respect to y 3.

- y 3 = ayi + by2 for known a and b.

The first two assumptions are made to keep analysis o f the example simple. 

While the second two assumptions match the conditions for Cartwright’s 

inferential claim. Also assume that Cartwright’s Generalised Reichenbach 

Principle holds and that the causal relation is transitive, in line with the other 

conditions for her inferential claim.

Given these assumptions, it follows from Cartwright’s inferential claim that y 3 = 

ayi + by2 is causally correct. Therefore, if  the above assumptions are met then it 

can be deduced that both^; and y 2 are causes o f y 3.

Now consider the same case using the S-approach. Recall that the S-approach 

works by assuming that the some general, identifiable equations are known to 

hold and that it is known that the true structural equations are identifiable and 

consistent with the general equations where some coefficients in the general 

equations may be zero. One then infers from observations which, if  any, 

coefficients in this general form are zero to determine which o f the possible 

structural forms holds.

32 They can be relaxed and since Cartwright’s conditions are still met, one can make the inference 
made here. However, doing this in this example would require a much larger number o f  
possibilities be analysed, so I impose these extra assumptions.
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So, assume that the experimenter knows that the general identifiable set of 

equations holds (for unknown coefficients).

y x = a xxx + a 2x 2

y 2 = a 3 * 2  +  « 4 * 3

y 3 = a 5y , + a 6̂ 2 
(x’s external, y ’s internal)

Also assume, as above, that it is known that

- yi is caused by at least one of xj and/or X2 and at most by both.

- y 2 is caused by at least one of X2 and/or xj and at most by both.

In line with the S-approach, assume that it is known that the true structural 

equations are identifiable and consistent with the general set above, where one or 

more of the coefficients can be zero.

First, consider those possible sets of structural equations in which the knowledge 

about the possible causes o f y/ and y 2 is taken into account. This amounts to the 

assumption that one o f the following sets of equations (where coefficients are 

non-zero in the first two equations)34 is the set o f true structural equations.

Ti = a ]x l + a 2x 2 y i = a ]x l y i = a 2x 2

(a) y2 = a 3x 2 + a 4x 3 (b) y2 = a 3x 2 + a 4x 3 (c) y2 = a 3x 2 + a 4x 3

y3= a 5y ] + a 6y 2 y3 ii a Vs +<*6y2 y3 = « 5Ti +<*6y2

yi = a  ,jc, + a 2x  2 y i = a jX, ■f  a 2x 2 y\ = a lx l

(d) y2 = a 3x 2 (e) y2 - a 4x 3 (f) y2 = a 3x 2

y3 = « 5Ti + a6y2 y3 yr\
SII + « 6t2 y3 = a 5y , + a 6y 2

y\ = a xx  j yi = a 2x 2 Ti = a 2x  2

(g) y2 = a 4x 3 (h) y2 = a 3x 2 (0 y2 = a 4 x 3

y3= a 5y l + a 6y 2 y3 + a 6y 2 y3= a 5y x + a 6y 2

Since the S-approach assumes that the true structural equations are identifiable, 

this rules out case (h) because in that case the third equation is not identifiable. In 

all of the other possible systems the three equations are identifiable. So if  it is 

known that one of the above systems bar (h) is the true set o f structural equations, 

then following the S-approach, one can infer the values o f as and ag are non-zero

33 The jc’s are external because they are determined outside the equations.
34 I do not explicitly write down all the possibilities where the coefficients in the last equations 
take different non-zero values, because this is not important for the identifiability o f the equations. 
Also, it helps keep the presentation o f the set o f possible systems to a manageable number.
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in the third equation from observation in order to determine whether x3 is caused 

by x 1 and X2 . Therefore, if  it is known that X3 = axj + bx2 for non-zero a and b, as 

assumed in the Cartwright analysis, this then implies that as -  a and = b, so it 

can be inferred that both yj and y 2 are causes of ys. So in this example, applying 

the S-approach gives the same result as Cartwright’s method.

5.2. Comparing the Two Approaches

The key difference between the two approaches is that the S-approach assumes a 

known identifiable general form of equations with which the true identifiable 

structural relations are consistent, while Cartwright assumes that a KOBP holds 

for the factors in a known functional relation. But just how significant is this 

difference?

In the example, treated using the S-approach, a key assumption is that the 

experimenter knows the true structural form is identifiable. This rules out the case 

(h). To contrast this with Cartwright’s OBP assumption, consider the different 

possible cases above (from (a) to (i)) where either yj or y 2 fails to have an OOBP 

with respect to y$. These are cases where the conditions for Cartwright’s 

inferential claim are not met. There are only three such cases: (c), (d) and (h). 

Their failure to meet the OOBP condition can be seen in their causal graphs for yj 

and y 2 .

In each of these graphs, at least one o f the two factors, y i and y 2 , fails to have an 

OOBP with respect to yj, because in each one factor only has a single cause which 

also causes the other factor. For instance, in case (c) y j is caused only by X2 

which may also c au sey  v ia >>2 (ify i  causes y?), so y i  does not have an OOBP with 

respect to y$.

This shows that the KOBP assumption plays a somewhat similar role as the 

assumption in the S-approach that it is known that whatever the true structural 

equations are, they are identifiable. This is because the KOBP assumption, like 

the identifiability condition in the S-approach, rules out case (h). However, the

{yi} {yi} {yi} M {yi} fa}

235



example also shows that it differs from identifiability condition since, unlike the 

identifiability condition, the KOBP condition also rules out cases (c) and (d).

The analysis of the last chapter, where it was shown that the identifiability 

required a certain sparseness of causal structure, is relevant here. Specifically, it 

was shown there that for a two-factor experiment to be possible between two 

factors in a mechanism (part of what was shown to be required for identifiability)

allow, by compensating ‘cancelling out’ changes, to change just those two 

factors.

These two possible ways in which two-factor experiments can be carried out can 

be illustrated by case (c). Consider its causal graph (where the dashed arrows 

represent possible causal connections).

The first way a two-factor experiment is possible can be illustrated by y 2 , which 

has an OOBP (xj) with respect to y 3. Here it is possible by varying x 3 O^’s 

OOBP for y 3) to perform a two-factor experiment between y 2 and y 3. This 

suggests that a factor having an OOBP implies that a two-factor experiment is 

possible. The second way a two-factor experiment is possible can be seen from yi 

which has no OOBP with respect to y 3. Here a two-factor experiment between yj 

and y 3 requires varying both X2 and x3, because X2 needs to be varied to vary yj 

while x3 needs to be varied to cancel out any unwanted influence o f X2 on y 2 . The 

fact that having an OOBP seems to permit a two-factor experiment o f the first 

type, while its absence appears to rule out this type o f two-factor experiment, 

justifies the use of the ‘open back path’ terminology to describe the first kind of

351 use scare quotes because it is not exactly the same as Cartwright’s OOBP.
36 More precisely, there was a directly controllable factor that caused the two factors but not the 
other factors, see (a) section 4.4, chapter five.
37 See (b), section 4.4, chapter five.

-j c
either an ‘open back path’ had to obtain between these two factors and the other 

factors36 in the mechanism, or there had to be sufficiently many causal inputs to

(c ){xj} {x2} {x3}

{ys}
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two factor experiment in chapter five.38 It suggests a clear connection between 

Cartwright’s OOBP and two-factor experiments.

Finally, it is interesting to note that a system can be identifiable even though it has 

no open back paths. This can be seen in the following, simple system with its 

causal order on the right.

It is easily checked, using the rank condition, that every equation in this system is 

identifiable. Importantly, the fourth equation can be read, in Cartwright’s terms, 

as causally correct. However, no cause of y 4 (i.e. y u  y 2 or y 3) has an OOBP with 

respect to y 4 in the causal order, because every cause of.y/, y 2 or y 3 also causes ̂  

via another y. In this causal order the two-factor experiments that are possible for 

the pairs of factors in the last mechanism (by identifiability) can only be carried 

out by varying common causes together (i.e. xj, X2 and x3). Here identifiability 

holds without open back paths.

This two last examples appear to show that the S-approach can be used in cases 

where Cartwright’s cannot. In particular, there are identifiable systems with 

insufficient OBP’s to use Cartwright’s approach for which causal inference can be 

carried out using the S-approach. This may seem to show that the S-approach is 

more powerful that Cartwright’s. However, this is too hasty a conclusion. I think 

judgment should be suspended until the strong assumptions made by the S- 

approach are considered in more detail. Recall that the S-approach assumes that it 

is known that only a finite set of structural equations are possible where each is 

identifiable. Although, if  these assumptions are met, the S-approach may be able 

to perform causal inferences not possible using Cartwright’s method, the really 

important question is what is required to limit the set of causal orders known to be 

possible in the way assumed by the S-approach. The concern is that in cases like

38 See (a), section 4.4, chapter five.
39 Though I leave a detailed analysis o f this connection for further work.

y i  =  0.1X1 +  0.2X2 
y 2 = a3x2 + a4x3 

y 3 = a 5X1 + age 3
y 4 =  p i y 3 +  02y2+  p 3y 3 { y i}  {y2} {y3}
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the example just presented, the S-approach simply builds in more background 

knowledge than Cartwright’s method, which allows it to be used in situations 

where Cartwright’s cannot be used. So, until there is analysis o f how this 

background knowledge is to be obtained, I think it is premature to claim an 

advantage of the S-approach over Cartwright’s from examples like that just 

presented.

6 . Conclusion

This chapter has asked how one can deduce causal order from observations and 

background knowledge. It has considered Simon’s approach in his 1954 paper, 

proposed an alternative S-approach, and looked at Cartwright’s OBP approach 

presented in her 1989 book. The S-approach and Simon’s method are very 

similar, though the S-approach makes stronger assumptions about how structural 

equations are to be read and about the background causal knowledge to hand. It 

was shown that the failure of Simon’s 1954 method to make these assumptions 

left it open to Nancy Cartwright’s criticism that his key claim (that one can 

deduce causal order from knowledge of time order and uncorrelated errors) fails.

In addition, important counterexamples were constructed to Simon’s key claim. 

One counterexample was of two observationally equivalent systems that met the 

time order and correlation assumptions required by Simon, but which had 

different causal order. This was then used to show a deeper problem with 

Simon’s 1954 method: it relied on causal connections holding in order to solve the 

spurious correlation problem, but since the causal connections on which it relied 

were also possibly spurious, the method fails. In response, the S-approach was 

proposed as an alternative.

The last part of the chapter presented Nancy Cartwright’s alternative approach and 

some criticisms of it. These criticisms were that there was an important ambiguity 

in her definition of the open back path and that her conditions for inferring causal 

order needed to be strengthened to rule out a case where a factor’s open back path 

‘cancelled itself out’. Finally, the two inferential methods, Cartwright’s and the 

S-approach were compared for simple examples. This showed important
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similarities and differences between the two methods, and suggested interesting 

avenues for further work.
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Appendix 6.1. Cartwright’s Observ ationally Equivalent Counterexample

Cartwright’s Time Ordered Example

In her example Cartwright presents two systems C and D. In system C, the error

terms are orthogonal.

z, = u, z, = u, b - . I1 1  1 1  c = — + l,d  = —
C z2 = az] +u2 D z 2 = flfz, + u2 where a a

Z  H
z3 = bz{ +u3 z3 =cz]+dz2 +v v = -z, + —  + u3 — -

a a

First note that for system D

z2 u2v = - z l + — + w3 -
a  a

V =  -M , +  M, +  —  +  M3  -
a a

v = u3

Since v is identical to wj, v is orthogonal to uj and U2 , so the error terms in D are 

orthogonal.

However, System D is not consistent with System C. To see this subtract the last 

equation of system C from the last equation in D.

z3 - z3 = ( c - b)zl + dz2 + (v -  w3)

0 = ( c -  b)zj + dz2

Substituting in equations for z; and Z2 from System C we get.

0 = (c -b )u ] +d(bu] + u2)

Multiplying by U2 and taking expectations implies d=0 

While multiplying by uj and taking expectations implies 

0 = ( c - b  + db)

=> c - b  = 0  

So, c = b and d = 0.

Therefore, for system D with v as defined c=b and d  = 0, this implies that system 

D is identical to system C.
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This shows that if one assumes like Cartwright that

a ’ aa
u
a

Then System D as defined is not consistent with System C because in order for D 

to be consistent given the definition o f v, one must have c=b and d= 0 . □

Attempted Reformulation: The Impossibility o f  a suitable Equivalent System

The aim is to construct C system D ’ from C , which has orthogonal errors in

which d  is non-zero. Now solving for v in terms o f w’s one gets.

v = bz] +u3 - c z l - d ( a z x +u2) 
v = ( b - c - a d ) z x + w3 - du2 

v = (b -c -a d )U \ - du2 + u3

For the error terms in D ’ to be orthogonal one must have E(vui) = E(vuf) = 0. 

E(vuj) = (b-c-ad) = 0 

E(vui) = -d = 0

Therefore for D ’ to have orthogonal error terms d  must be zero. Moreover, if  d=0 

zero then c = b, so D ’ is then identical to C. Therefore, it is not possible to 

construct the required counterexample in this case. □

C z 2 = azx + u 

z, = bz. + u,

D ’ z 2 -  azl +u2 

z, = cz, + dz0 + v
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Appendix 6.2. Identifiability of Lower Triangular Systems Simon Analyses

Preliminaries:

Consider the following system of n equations, the aim is to show that it is 

identifiable.

Z]  =  Ui

Z2 — a2 lZj + U2

zn = a„izi + ... + ann.iz„.j + un where E(Uj) = 0 fo r  all i,

Cov(Ui,Uj) = 0, fo r  i,j distinct 

Bringing all the z terms to the left hand side, we can represent the set of equations 

as the following:

Az = u

where

1 0 ... 0" V ux

~ a 2\ 1

0
*2 and u =

®n\ ~ a n2
... 1_

_ v

[Aside: Note that A has full rank since it is impossible to make a non-trivial linear 

combination of any subset of its rows sum to zero. Thus the inverse o f A, A '1, 

exists. Since A is lower triangular its inverse A 1 is lower triangular (the inverse of 

a lower (upper) triangular matrix is itself lower (upper) triangular). Also it is 

important to note the following that the product o f two lower (upper) triangular 

matrices has as a diagonal the product of each o f the corresponding diagonal 

terms, that is,

d x 0 . . .  0" o . . .  0" 0 . . . 0 "

2̂1 d 2 ■
•. 0

/2, e2
•. 0

= ™2 l d fr

•. 0 (*)

Ki k„2 ' •• d m_ L 1 ,2  * 3 1 ” %2 • 1

which in turn implies that A ' 1 has the same form as A i.e. has a diagonal o f l ’s. ]

The problem is to show that the following representation is unique, that is, 

identifiable. So the aim is to prove the following theorem.
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Theorem 6.1 Given Az = w, where A is lower triangular with a diagonal o f ones, 

E(u) = 0 and E(uu ) = D, where D  is diagonal with positive diagonal coefficients, 

then the system is identifiable, that is there does not exist any B and u* such that 

Bz = u*, and either B f  A or u, where B is lower triangular with a diagonal of 

ones, E(u*) = 0 and E(u*u*r) = £>*, where D* is diagonal with positive diagonal 

coefficients.

Proof: Assume it is false, that is, there exists, B and w* such that Bz = u*, and 

either B f. A or u * f u, where B is lower triangular with a diagonal o f ones, E(u*) 

= 0 and E(u*u*r) = D*, where D* is diagonal with positive diagonal coefficients.

Given its form B  (like A) is invertible. Therefore we have the following.

z = A '1u = B '1u* (1)

It follows that

u* = BA'!u (2)

and u = A B ']u*

Hence,

E(u*u*r) = E(BA'1u(BA'1u)r)

= E(BA'Iuur(A"I) rBr)

= BA'1E(uut)(A-1) tB t 

= BA-iD(A'1) tB t 

But the left hand side = D* so we have,

D* = BA-'D(A-')tBt

Thus,

AB-'D* = D(A-')tBt

Now the left hand side is the product of three lower triangular matrices and is 

thus lower triangular. Similarly, the right hand side is the product o f three upper 

triangular matrices and is thus upper triangular. Therefore, the identity asserts 

that both sides are both upper and lower triangular, that is diagonal. So AB^D*  is 

diagonal, let us say, Dj.

AB'JD* = Di

AB ' 1 = DjD* (D* ' 1 exists since D * ’s diagonal coefficients

are all positive, also D * ' 1 is diagonal)
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The right hand side is diagonal, so AB ' 1 is diagonal also. But now consider (*) it 

implies that B' 1 has only l ’s in its diagonal, which in turn means that the product 

of A and B ' 1 by (*) must also have only l ’s in the diagonal, since both A and B ' 1 

do. Thus AB ' 1 is the diagonal matrix with l ’s in its diagonal, that is, the identity. 

We have shown that

AB ' 1 = I  

so A = B

Substituting into (2) it follows that 

u*= A A '}u = u

Hence, B = A, u* = u. This is a contradiction so the result follows.□
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Appendix 6.3. A Time-Ordered Counterexample to Simon’s 1954 Claim

Assume as before that system C holds, where the variables are time ordered

according to index, where the w’s have zero mean, variance 7, and are orthogonal.

z, = u]

C z2 = flZj + u2

z3 = bzx + u3

Now assume that another system D ’ for some c, and V3 also holds.

z, = v,
D ’ 2 2

z3 = cz2 + v 3

By construction the variables in D ’ have correct time order. If D ’ is to serve as a 

counterexample, it must have orthogonal errors. So if we can solve for c, V2 and 

V5 so that V2 and vj are orthogonal, we will have constructed the required 

counterexample.

To solve for c, V2 and vj, note that if  D’ holds then by substituting out Z2 and zj 

from D’ using the equations in C we get.

aux +u2 = v2 v2 = aw, + u2

bux +u3 = cau] + cu2 + v3 v3 = (b -  ac)ux -  cu2 + u3

Since the w’s have zero mean, so must the v’s. Therefore V2 and Vj are orthogonal
y yif and only if E(v2V3)  = 0. But given E(ujU2) = 0, and E ( u j )  and E(u2 )  are both 

7, E(v2V3) = 0 is equivalent to.

a(b-ac) —  c =  0 

Solving for c we get 

abc = -------—
(1 + 0 )

Substituting c back into the equations gives the required system

z2 = v2 v2 = aux + u2

D ’ at  where t  ab
Z 3 “  .  2 Z 2 + V3 V 3 ~  1 2 U\ ~ 1 nl U 2 + U 31 + a I + a 1 + a

Since the system was derived from C, and has orthogonal errors and correct time 

order among the variables it meets the conditions to be a counterexample. □
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Appendix 6.4. An Attempted Extension of the Simon Counterexample

Assume that a system (I), with its causal order, time ordered variables and 

orthonormal error terms (the w’s) holds. Assume all c’s are non-zero.

= wo

^  2 1 ~ C102 0 + w\

2 2 = ^20^0 ^ 2]2\ ^2 

2 2, ~  ^302 0 " * " ^ 31^1 " * " ^ 32 ^2  ^ 3

The aim is to construct a spurious system (II) with orthogonal errors which, read

causally, asserts that z/ causes both Z2 and z3, but Z2 does not cause z3. In other

words, the equations o f (II) will have form.

Zj = u]

(II) z2 = a2lz ] +u2

z3 =a3]zY+u3

To construct this system from (I) we must solve for the a's  in terms of the c’s 

requiring that the error terms in (II) are orthogonal. This is done, by substituting 

out the z’s to solve for the w’s in terms of w’s, and then imposing the 

orthogonality constraints on the w’s to solve for the a ’s. Solving for the w’s in 

terms o f the w’s yields:

u \ =  C 10W 0 + w i

U2 =  [c20 +(^21 — ^ 21)^10  ]^0 + ( C21 ~  a 2 \ ) W\ + W2

W3 ~  (^ 3 0  "*” ^ 20^ 3 2 ) ^ 0  " ^ (^ 3 1  ^31 C 32C 2 l ) ( ^ 1 0 W 0 " ^ W l ) ^ " C 32W 2

Since the w’s have zero mean, the w’s have zero mean, so the orthogonality 

requirement on the error terms in (II) is equivalent to E(ujU2)  = 0, E(uju3)= 0  and 

E(u2u3)=0. Now, if  one calculates these E(UiUj)'s and imposes the three 

orthogonality conditions, one obtains three equations in the c ’s and the a ’s. If one 

can solve these for the cr’ s  one is done. However, there is a problem. There are 

only two unknown a's  (a2i and a3i) and there are three equations relating c ’s to 

the cCs (one for each orthogonality condition). This implies that there will be no 

solution for the two a’s unless these three equations are functionally dependent. It 

is easily checked that the equations are only functionally dependent provided the 

c’s are functionally related in some appropriate way in (I). Since for almost all 

values o f the c’s this will not be the case, it follows that for almost all values of c 

it will not be possible to solve for the o's. In other words, barring the occurrence
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of particular functional dependencies among the c ’s in (I), it will not be possible 

to construct the spurious system (II) from (I). So, the attempted counterexample 

fails.
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Moving Forward From Here

This thesis developed an explicit causal interpretation, a ‘strong reading’, for 

simple sets of simultaneous linear equations used in econometrics. This was done 

by building on Herbert Simon’s definition of causal order. It then explored some 

important features of the causal interpretation such as the relationship between 

causal order and changes in factors, the invariance o f mechanisms to factor 

changes and the independence o f directly controllable factors. It also investigated 

different kinds o f intervention, how the standard identification conditions could be 

causally interpreted and how unknown causal orders could be inferred from 

observation. In the thesis relevant work o f important philosophers and 

economists, Nancy Cartwright, Kevin Hoover, Stephen LeRoy and Herbert Simon 

was also presented and critically analysed. This brought out important similarities 

and differences between their definitions of causal order, their methods for finding 

out about causal order and those of the strong reading.

As discussed in the introduction, the aim of the thesis is to clarify the causal 

concepts assumed in econometric modelling and to clarify the methods by which 

causal relationships are discovered in econometrics. Both of these are crucial if  

one is to understand clearly the claims of econometric studies and to set out the 

strengths and weaknesses of the methods that these studies use. Ultimately, this is 

motivated by policy relevance. Econometric studies inform economic policy 

decisions that influence us all, therefore it is important that is clear just what the 

econometric ‘view’ of causes is, and just how it goes about finding out about 

causes.

This aim suggests one way the work of the thesis might be extended. Ideally, the 

strong reading would be extended to the point at which it can be used to clarify 

actual, important econometric studies, for example, ground-breaking studies such 

as Adams et al. (2003).1 Of course, to do this requires a great deal o f further 

work. For some studies, this would require setting out a clear relationship between

1 See chapter one.
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the reading of causal order set out here and Granger causality. The relationship 

between Granger causality and structural views of causality, such as that 

presented in this thesis, is an important topic in econometrics.3 In addition, the 

extension of the strong reading to cover more complex sets of equations might 

also allow an analysis of different exogeneity concepts used in econometrics. 

This is suggested by the brief analysis of weak and super exogeneity set out at the 

end of chapter three. Parallel to this work of extending the sets o f equations to 

which the strong reading can be applied, would be work to analyse methods for 

finding out about causal relations. For instance, how might econometric tests for 

exogeneity be understood causally? What about model selection methods, such as 

the LSE methodology? As was done here with the identification conditions in 

chapter five, there remains valuable work to be done in clarifying what causal 

interpretations such important methods of econometrics have.

The above shows a rich potential for further work in econometrics. However, in 

setting out an explicit causal reading of sets of equations, the thesis also presents 

the beginnings of a theory of causal relations.4 This gives the work many possible 

avenues of development in relation to current philosophical analyses o f causal 

relations. For instance, the strong reading sets out that causal relations arise from 

the joint actions o f mechanisms. This shows potential to connect the strong 

reading in this thesis with current philosophical analyses o f mechanisms. What 

exactly is a mechanism? What concepts of mechanism are appropriate for the 

reading developed here? Progress on these questions could be made by 

investigating the recent literature on causality and mechanisms and connecting it 

with the strong reading proposed here.5

Another way the work here could be developed would be to extend the formal 

analysis. This work, begun in appendix 2.1, would develop a rigorous

2 This would be the case for Adams et al. since Granger causality plays a key role in their analysis.
3 See, for example, Hoover (2001a, pp.150-155).
4 Though it does not claim to provide a theory o f causal relations that can apply in all situations. A 
very important outstanding question is when a formal treatment of causal relations, like the strong 
reading, can be applied successfully and when it can’t.
5 See Steel (2004), Glennan (1996) for some recent work on mechanisms and causality. 
Cartwright’s work (1989; 1999) on capacities and nomological machines is also relevant, as are 
Woodward (2003) and Elster (1998).
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formalisation of causal relations in the strong reading.6 In addition, a set 

theoretical treatment could also facilitate a rigorous introduction o f probabilities 

using measure-theoretical probability theory. Moreover, a suitably developed 

strong reading should yield interesting connections with other formal theories of 

causal relations. In particular, there is good reason to believe that the algebraic 

approach of the strong reading here should, under certain conditions, be 

compatible with the graph theoretical, Bayes-net approaches to causality. Indeed, 

this hope is expressed by Hoover (2001a, p. 191-192) and some work connecting 

structural theories of causal relations with Bayes-nets approaches has already been
n

carried out.

As this very brief survey shows, there are many ways in which the work o f this 

thesis could be developed. Moreover, the proposed work is ultimately of 

relevance to the larger goal o f clarifying the strengths and limits of structural 

modelling in econometrics. For example, exploring what concepts o f mechanisms 

can be joined to the strong reading opens up possible ontological discussions 

about econometrics. In other words, if econometric methods assume that 

structural equations denote mechanisms with certain features, one can then 

investigate the extent to which the systems studied by economics do have these 

features. Similarly, work that extends the formalism of the strong reading by 

making explicit connections with other well-developed analyses, such as Bayes- 

nets methods, opens a way of bringing existing rich work, such as that on Bayes- 

nets, to bear on econometrics.8 So in conclusion, though this thesis takes a first 

few steps in exploring these interesting issues, a long and exciting road remains to 

be travelled.

6 Ideally, the analysis would be extended to cover mechanisms denoted by non-linear functions.
7 See Pearl (2000, chap 7).
8 There is existing work on Bayes-nets and econometrics see, for example, Spirtes (2005) which 
applies Bayes-net semantics to econometric models.
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