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A bstract

The focal point of this thesis is on identification and estimation of nonparametric models, 
as well as the efficiency and higher order properties of a class of semiparametric estimators 
in Microeconometrics.

We present a new identification result for a particular nonparametric model tha t nests 
many popular param etric/ nonparametric Econometric models as special cases. Estimators 
are proposed and their asymptotic properties derived; in particular, they axe shown to be 
consistent and asymptotically pointwise normally distributed. We implement these estima­
tors for the nonparametric estimation and testing of production functions in 4 industries 
within the Chinese economy in the years 1995 and 2001.

The statistical properties of an entire family of semiparametric estimators for Limited 
Dependent Variables models are also analyzed. The derived theoretical results have direct 
applicability to a wide range of estimation problems. In particular, we derive the semipara­
metric efficiency bounds and show that some of the already-proposed estimators achieve 
these bounds. A connection with the Programme Evaluation literature is established as 
well.

Finally, we derive an asymptotic approximation to the Mean Square Error of this class 
of semiparametric estimators to aid the choice of smoothing param eter. It is demonstrated 
tha t this choice can be made on the basis of bias alone. Possible extensions in this framework 
are also discussed.

3



Table o f Contents

T ab le  o f C o n te n ts  4

L ist o f F ig u re s  6

L ist o f T ab les 7

1 In tro d u c tio n  9

2 Id e n tif ic a tio n  a n d  N o n p a ra m e tr ic  E s tim a tio n  o f  a  T ra n sfo rm e d  A d d itiv e ly  
S e p a ra b le  M o d e l 12

2.1 In troduction .........................................................................................................................12
2.2 Id e n tif ic a tio n ..................................................................................................................... 15
2.3 Estim ation .........................................................................................................................19
2.4 Asymptotic P ro p e r tie s ..................................................................................................... 22

2.5 Numerical R e s u l t s  . ......................................................................................... 26
2.5.1 S im u la tio n s ..............................................................................................................26
2.5.2 Generalized Homothetic Production Function E s t im a t io n ........................ 29

2.6 Conclusion and Extensions ........................................................................................... 37
2.A Main P ro o fs .........................................................................................................................40
2.B Technical L e m m a s ........................................................................................................... 49
2.C Tables &; F ig u re s ...............................................................................................................67

3 E fficiency B o u n d s  in  S e m ip a ra m e tr ic  M odels  d e fin ed  b y  M o m e n t R e s tr ic ­
tio n s  u s in g  a n  E s t im a te d  C o n d itio n a l P ro b a b il ity  D e n s ity  85
3.1 In troduction ........................................................................................................................ 85
3.2 Efficiency and In form ation .............................................................................................. 88

3.3 Some Efficiency B o u n d s ..................................................................................................91
3.3.1 Model 1 ....................................................................................................................91
3.3.2 Model 2 ....................................................................................................................93
3.3.3 Model 3 ............................................................................................  94

3.4 A Monte Carlo Investigation ........................................................................................95
3.5 Conclusion .........................................................................................................................98

4



Table of Contents

3.A Main P ro o fs ......................................................................................................................... 99
3.B T a b le s .................................................................................................................................106

4 O p tim a l B a n d w id th  C hoice for E s tim a tio n  o f In v e rse  C o n d itio n a l—D e n s ity -  
W e ig h ted  E x p e c ta tio n s  116
4.1 In troduction ....................................................................................................................... 116
4.2 Asymptotic Mean Square E r r o r ......................................................  118

4.2.1 F ra m e w o rk ...........................................................................................................118
4.2.2 Sensitivity Analysis ...........................................................................................121

4.2.3 ‘Nonparametric’ vs ‘Semiparametric’ Optimal B andw id th s ......................124
4.3 Optimal ‘plug-in’ Bandwidth E s t im a to r ...................................................................125
4.4 Monte Carlo E x p e r im e n ts .............................................................................................128
4.5 E xtensions.......................................................................................................................... 131

4.5.1 Mixed Continuous and Discrete C a s e ............................................................. 131
4.5.2 Bandwidth Selection using the ra-out-of-iV  B o o ts tra p ............................ 134

4.6 Conclusion ....................................................................................................................... 135
4.A Main P ro o fs .......................................................................................................................137
4.B Technical L e m m a s ..........................................................................................................166
4.C Tables &; F ig u re s ............................................................................................................. 185

B ib lio g rap h y 198



List of Figures

2.1 Q — Q plots for G , F  and H .............................................................................................74
2.2 Simulation Envelopes for M , G and F ........................................................................... 75
2.3 Generalized Homothetic Translog Isoquants................................................................. 76
2.4 Generalized Homogeneous M  ( 1 9 9 5 ) ........................................................................ 77
2.5 Generalized Homogeneous Component G (1995)...................................................... 78
2.6 Generalized Homogeneous Component F  (1995).....................................................  79
2.7 Strictly Monotonic Component H  (1995).................................................................  80
2.8 Generalized Homogeneous M  (2 0 0 1 ) ........................................................................ 81
2.9 Generalized Homogeneous Component G (2001)...................................................... 82
2.10 Generalized Homogeneous Component F  (2001).....................................................  83
2.11 Strictly Monotonic Component H  (2001).................................................................  84

4.1 Visualization of Design 1 ................................................................................................ 192
4.2 Visualization of Design 2 ................................................................................................ 193
4.3 Visualization of Design 3 ................................................................................................ 194
4.4 Simulated M S E  of Design 1 ..........................................................................................195
4.5 Simulated M S E  of Design 2 ..........................................................................................196
4.6 Simulated M S E  of Design 3 ..........................................................................................197

6



List o f Tables

2.1 Median of Monte Carlo fit criteria over grid for Design 1. . . . ! ........................68

2.2 Median of Monte Carlo fit criteria over grid for Design..2 .......................................... 69
2.3 Param etric General Production Function Estim ates ( P I ) ......................................... 70
2.4 Param etric Generalized Homothetic Estimates (P 2 ) ................................................... 71
2.5 Param etric Translog Estimates ( P 3 ) ............................................................................. 72
2.6 Average Substitutability, T  (k, L ) ......................................................................................73
2.7 Average Return to Scale, R T S  (M , L ) ..............................................................................73

3.1 Monte Carlo results for Design 1 ..................................................................................107
3.2 Monte Carlo results for Design 1 ..................................................................................108
3.3 Monte Carlo results for Design 1 ..................................................................................109
3.4 Monte Carlo results for Design 2 ..................................................................................110
3.5 Monte Carlo results for Design 2 ..................................................................................I l l
3.6 Monte Carlo results for Design 2 ..................................................................................112
3.7 Monte Carlo results for Design 3 ..................................................................................113
3.8 Monte Carlo results for Design 3 ..................................................................................114
3.9 Monte Carlo results for Design 3 ..................................................................................115

4.1 Monte Carlo results for Design 1: Bandwidth Estim ation ...................................186
4.2 Monte Carlo results for Design 1: Param eter r j .......................................................187
4.3 Monte Carlo results for Design 2: Bandwidth Estim ation ...................................188
4.4 Monte Carlo results for Design 2: Param eter t j .......................................................189
4.5 Monte Carlo results for Design 3: Bandwidth Estim ation ...................................190
4.6 Monte Carlo results for Design 3: Param eter r ) .......................................................191

7



Acknowledgem ents

I would like to extend my most sincere thanks and appreciation to my supervisor, Oliver 
Linton, for his support, priceless advice and patience. Oliver’s optimism and good humour 
were always very helpful during the completion of this dissertation. His valuable insights 
were crucial for this work. I will always consider myself incredibly fortunate to have worked 
under his supervision.

Jezamin Lim, my partner, deserves special mention. She has been my inspiration and 
source of strength during good and bad times. Her love, understanding and support have 
made this dissertation possible. I will be forever in debt with her.

Throughout my higher education, I have received financial support from the Department 
of Economics at the London School of Economics and Political Science, and the Escuela 
Superior Politecnica del Litoral (Ecuador). Many thanks goes to everyone at these places.

Finally, I would like to thank my parents, family and friends for their unconditional 
encouragement and caring in all these years.



Chapter 1

Introduction

Nonparametric and semiparametric specifications are common in Econometric models. In 
Microeconomics, they are informative about consumer or firm behavior while imposing 
a minimum set of restrictions in order to  achieve identification of the main features of 
interest. Furthermore, non/semipaxametric econometric estimators can be constructed (in 
some cases efficiently) to remain consistent in situations where param etric models are not. 
This robustness property remains the most im portant aspect in this literature.

The calculation of fully nonparametric estimators, while modeling economic relation­
ships, imposes enormous data  requirements when a large number of variables is involved. 
This problem, known as the ‘curse of dimensionality’, can be alleviated by the use of cer­
tain functional structures tha t may be imposed by Economic theory. These nonparametric 
functional forms are more restrictive than a fully nonparametric specification, but their as­
sumptions are weaker than  those with a finite-dimensional param etric specification. These 
particular forms (as we will show in this dissertation) can be used to identify the model 
itself, and we build estimators tha t achieve faster rates of convergence relative to their non­
parametric counterparts. On the other hand, semiparametric models are also very attractive 
alternatives to reduce this ‘curse of dimensionality’. They impose some param etric restric­
tions on the economic relationship tha t we try  to model, while allowing functional form of 
many of its other components to remain unknown. A large number of the derived semipara­
metric estimators achieve parametric rates of convergence, and a tta in  the semiparametric 
efficiency bounds induced by their underlying assembly.

This thesis makes contributions to these two related efforts to reduce the necessity of 
functional form restrictions, which are needed to identify and estimate efficiently Econo­
metric models. The outline of the thesis is as follows:



C h a p te r  2: Id e n tif ic a tio n  a n d  N o n p a ra m e tr ic  E s t im a tio n  o f  a  T ran sfo rm ed  
A d d itiv e ly  S e p a ra b le  M odel. We first introduce a flexible structure for a function of 
random variables th a t nests many features of Econometric models as special cases. This 
particular form involves a smooth monotonic transform ation of another smooth function, 
which is assumed to be separable, either additively or multiplicatively, with respect to one 
of its argument. For example: This particular functional form could represent the condi­
tional mean or quantile function of the observed outcome in Limited Dependent Variable 
Models. It could also represent homothetic functions widely used in Economic modeling. 
In a regression model with unknown transformation of the dependent variable, the condi­
tional distribution of the dependent variable given the observed regressors, also shares this 
functional form.

Unlike other authors in this literature, we make full use of the implied strictly mono­
tonic link function in the examples above to achieve nonparametric identification of all their 
unknown components. Furthermore, we propose a computationally simple nonparametric 
estimation algorithm th a t does not require any optimization or matching. The resulting es­
tim ators have pointwise asymptotic normal distributions under regularity conditions. Their 
rates of convergence are also faster than those of a fully nonparam etric alternative. We 
also find th a t they perform fairly well in comparison with other nonparametric estimators 
previously proposed in the literature, for a variety of Monte Carlo designs dealing with small 
sample sizes.

Finally, the idea of Generalized Homothetic functions is introduced in order to estimate 
production functions for various industries within the Chinese economy during the years 1995 
and 2001. We also estimate and test a range of param etric specifications for comparison 
purposes. In certain industries, we find that their implied measures of input substitution 
and scale are very different to those implied by our more flexible specification.

C h a p te r  3: E fficiency B o u n d s  in  S e m ip a ra m e tr ic  M o d e ls  de fined  b y  M o m en t 
R e s tr ic tio n s  u s in g  a n  E s tim a te d  C o n d itio n a l P ro b a b il ity  D en sity . In this chapter, 
we calculate the semiparametric efficiency bounds for an entire class of semiparametric 
estimators proposed in the literature of Limited Dependent Variable models. Regardless of 
the inherent nonlinearities of this type of model, these estimators are computationally easy 
to calculate as they have ‘closed’ formulae. In some cases, they resemble Least Squares or 
Linear Instrum ental Variable estimators in a simple linear regression model. They are also 
robust to measurement errors, endogeneity and heteroskedasticity of unknown form.

It is shown th a t these bounds are sharp. T hat is, two previously proposed estimators in 
the literature achieve these bounds. The bounds are also applied to estimators of treatm ent 
effects. We find th a t they are also efficient among a particular family of propensity-score- 
weighted estimators. We also find tha t using an estimate rather than the real conditional
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probability density in the construction of these estimators is more efficient. Furthermore, 
the general result presented in this chapter can be directly applied to any new estimator 
tha t belongs to this class. All these results seem to be new in the literature.

Our theoretical findings are confirmed in a simulation study involving a variety of designs, 
frameworks and kernel-based estimators. We find marginal improvements in terms of fitting 
criteria when Local Linear instead of Local Constant regression is used for the nonparametric 
component of the estimator.

C h a p te r  4: O p tim a l B a n d w id th  C ho ice  for E s tim a tio n  o f  In v erse  C o n d itio n a l-  
D e n s ity -W eig h te d  E x p e c ta tio n s . The kernel-based implementation of the class of semi­
parametric estimators discussed in Chapter 3 requires the choice of a smoothing parameter. 
This chapter characterizes its optimal value. We obtain a ‘closed’ formula for the optimal 
bandwidth by minimizing the leading terms of a second-order mean squared error expansion 
of the estimator with respect to this smoothing parameter.

It turns out th a t we can choose the optimal value for the bandwidth based on bias 
alone. In particular, we show that there are two sources of biases: a ‘smoothing’ bias, and 
a ‘degrees-of-freedom’ bias. The optimal bandwidth makes these biases’ contributions to 
the asymptotic mean square error have the same order of magnitude. Based on the derived 
formula for the optimal smoothing parameter, a simple ‘p lug-in’ estimator for the optimal 
bandwidth is proposed. We prove its consistency under regularity conditions.

We examine the quality of the asymptotic approximation in finite samples for simple 
Monte Carlo designs. The proposed ‘plug-in’ estimator for the optimal bandwidth is also 
shown to perform fairly well under various circumstances and sample sizes. Finally, we 
examine how our results adapt in the presence of discrete regressors. The potential use of 
a Bootstrap bandwidth selection mechanism is also presented.

Each chapter can be read independently from each other. This means th a t there is 
variation in the notation used within each chapter.
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Chapter 2

Identification and Nonparam etric 
Estim ation of a Transformed 
A dditively Separable M odel

2.1 Introduction

For vector x  and scalar z , let r (x, z ) be a function that, along with its derivatives, can 
be consistently estimated nonparametrically. Unconstrained nonparam etric estimation of r 
is usually unattractive when x  € is multidimensional, because the rate  of convergence 
decreases rapidly as d increases, yielding very imprecise estimates with samples of practical 
size, see Stone (1980). We may overcome this curse of dimensionality by making assump­
tions about the functional form of r  th a t are stronger than those of a fully nonparametric 
estimator, but weaker than  those of a finite-dimensional param etric model, see Stone (1986). 
In the fully nonparametric framework, one such dimension-reduction method is to assume 
there exist functions iif, G and F  such that

r (x, z) = H [ M  (x , z)\ = H  [G (x) + F  (z)] (2 .1.1)

where M  (x, z) = G (x) +  F  (z) and H  is strictly monotonic. This chapter provides an 
identification result th a t allows us to recover H, M,  G and F  in the above specification. An 
estimation algorithm is then proposed when r  (x, z) represents a conditional mean function 
for a given sample {Yj, ^t}"=1- We also provide limiting distributions for the resulting 
nonparametric estimators of each component of (2 .1.1), as well as present evidence of their 
small sample performance in a limited Monte Carlo experiment.



2.1 Introduction

This framework encompasses a large class of economic models. For example, the func­
tion r (x, z) could be utility or consumer cost functions recovered from estimated consumer 
demand functions via revealed preference theory, or it could also be a production or pro­
ducer cost function th a t can be recovered directly from a data  set. W hen H  [m] =  m, 
the identity function, Chiang (1984), Simon and Blume (1994), Bairam (1994), and Chung
(1994) reviewed popular parametric functional forms used in economics. In demand analy­
sis, Goldman and Uzawa (1964) provideed an overview of the variety of separability concepts 
implicit in such specifications.

Many methods have been developed for the identification and estimation of strongly 
or additively separable models, where r (x, z) =  Yl t=i  @k (%k) +  F  (z) or its generalized 
version r ( x , z ) =  # E j t = i  Gk {%k) +  ^ ( 2:)]. Friedman and Stutzle (1981), Breiman and 
Friedman (1985), Andrews (1991), Tjpstheim and Auestad (1994) and Linton and Nielsen
(1995) are examples of the prior and Linton and Hardle (1996), and Horowitz and Mammen 
(2004) proposed estimators of the latter for known H.  Horowitz (2001) used this assumed 
strong separability in order to identify the components of the model when H  is entirely 
unknown, and proposed a kernel-based consistent and asymptotically normal estimator. 
When d — 1, specification (2.1.1) is nested in the class of models Horowitz considers. 
However, many econometric models imply link functions, H,  th a t are strictly monotonic 
but otherwise unknown (see examples below). By making use of this extra information, our 
identification result does not requires G to be additive in its argument, in order to achieve 
full identification.

As strong separability may be too restrictive in the context of an empirical application, 
models satisfying equation (2.1.1) axe called weakly separable. They offer a more flexible 
specification th a t allows for some interaction among regressors, as well as a faster rate 
of convergence compared to fully unrestricted nonparametric estimation. Pinkse (2001) 
provides a general nonparametric estimator for this class of models under weaker conditions 
on M , i.e. no separability, and on H , which is assumed to be increasing only. However, in 
this partly separable specification, Pinkse’s estimator will compute M  up to an arbitrary 
monotonic transformation; while ours, by making use of the assumed strict monotonicity of 
H,  provides the unique (up to sign-scale and location normalization) M , and by virtue of 
marginal integration, the unique G and F.

These transformed partly additive models could also arise as ordinary partly additive 
regression models in which the dependent variable is censored, truncated or binary. These 
would be models in which Y* = G (X) -1- F  (Z ) +  e for some unobserved Y* and e, with 
e independent of (X , Z)  with an absolutely continuous distribution function, and what is 
observed is (Y, A , Z), where Y  = Y*1 (Y* > 0), or Y  = Y*\ Y* > 0, or Y  = 1 (Y* > 0), in 
which case r (x, z) =  E  [ Y| X  — x, Z  =  z] or r  (x , z) =m ed[Y | X  =  x, Z  = zj. The function 
H  would then be the distribution or a quantile function of e. Threshold or selection equations
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2.1 Introduction

in particular are commonly of this form, having Y  = 1 [G (X) +  e >  —z], where — z is some 
threshold, e.g. price or bid, with G (X)  +  e being willingness to pay. In this sense, our 
identification result is similar to Lewbel and Linton (2002) for the censored or truncated 
regression, though it is applicable to a wider range of Limited Dependent Variable models, 
and makes use of the extra assumed separability.

Model (2.1.1) may also become evident in a regression model with unknown transfor­
mation of the dependent variable, F  (z) = G (x ) +  £, where e has absolutely continuous 
distribution function H  which is independent of x, F  is an unknown monotonic transfor­
mation and G, an unknown regression function. It follows tha t the conditional distribution 
z given rr, F z \ x > is given by H  (F {z) — G(x))  = r  (z, x ), where F z \ x  =  r  (z >x )- For this 
model, Ekeland, Heckman, and Nesheim (2004) provided an identification result that also 
exploits separability between x  and z, but not the monotonicity of H  as we do here. More 
generally, M atzkin (2003) considered identification of models of the form Y  = m  (X , Z, e) 
with e independent of (X,  Z).  In this framework, our model makes no assumption about 
the role of unobservables, as well as provides no estimates of these other than a limiting 
distribution theory for estimates of r.

Moreover, the proposed identification result may also be extended to the transformed 
multiplicative sub-models of the form H  [M (x, z)\ = H  [G (x) F  (z)], which are very com­
mon in production literature. Particularly, a function r (x, z) is said to  be homothetic if 
and only if r (x, z) = H  [M* (x, z)] where H  is strictly monotonic and M*  is linearly ho­
mogeneous, i.e. M*  (Ax, Az) =  AM* (x, z) or equivalently M* (x, z) =  A- 1M* (Ax, Az). If 
A =  z -1  and x =  x /z , it follows that M  (x, z) =  G (x) F  (z), where G (x) =  M* (x, 1) and 
F  (z) =  z. Our estim ator can readily be used in order to identify this homothetic model, 
as well as a more general class of functions where F  (z) is not a simple power function of 
z. We implement our methodology for . the estimation of generalized homothetic production 
functions for four industries in the People’s Republic of China. For this, we have built 
an R package (see Ihaka and Gentleman (1996)), JLLprod, incorporating functions that 
implement the techniques proposed here.

Although the functions H , G and F  may not be of direct interest in some applications, 
our proposed estimators might still be useful for testing whether or not functions have the 
proposed separability, by comparing r  (x, z) with H[G (x) +  F  (z)], or in the production the­
ory context, to test whether production functions are generalized homothetic, by comparing 
F  (z) = z  with F  (z). In addition, the more general model r  (x, z ,w)  = H  [M (x, z ) , w\ can 
also be identified when M  (x, z) is additive or multiplicative and H  is strictly monotonic 
with respect to its first argument.

Section 2.2 sets out the main identification results. Our proposed estimation algorithm 
is presented in Section 2.3. Section 2.4 analyzes the asymptotic properties of the estima­

14



2.2 Identification

tors. A Monte Carlo experiment is presented in Section 2.5 comparing our estimators to 
those proposed by Linton and Nielsen (1995), and Linton and Hardle (1996), both of which 
use knowledge of H , and with Horowitz (2001). This section also provides an empirical 
illustration of our methodology for the estimation of generalized production functions in 
four industries within the Chinese economy for the years 1995 and 2001. Finally, Section
4.6 concludes and briefly outlines possible extensions.

2.2 Identification

The main identification idea is presented in this section. Firstly, observe tha t (2.1.1) is 
unchanged if G and F  are replaced by G + cq  and F+c p ,  respectively, and H  (m)  is replaced 
by H  (m) = H  (m — c q  — cp). Similarly, (2.1.1) remains unchanged if G  and F  are replaced 
by cG and cF  respectively, for some c ^  0 and H  (m)  is replaced by H  (m) = H  (m/c).  
Therefore, as it is commonly the case in the nonparametric literature, location and scale 
normalizations are needed to make identification possible. We describe and discuss these 
normalizations below, but first, we state the following conditions which are assumed to hold 
throughout our exposition.

A ssum ption  I:

(11) Let W  =  (A, Z)  be a ( d  +  l)-dim ensional random vector with support SSfx x \I/Z, 
where C  9ftd, and ’Fz C 9ft, for some d  > 1. The distribution of W  is absolutely 
continuous with respect to Lebesgue measure with probability density f w  (w ) > 0 
for all w = (x ,z ) G ^a: x \k2. There exists functions r, H , G and F  such that 
r (rr, z) = H  [G (x) +  F  (z)] for all w = (x , z) G x \kz.

(12) (i) The function H  is strictly monotonic and H , G and F  are continuous and dif­
ferentiable with respect to any mixture of their arguments, (ii) F  has finite first 
derivative, /  (z), over its entire support, and f  (zq) = 1 for some zo G i n t ( ^ z). (iii) 
Let H  (0) =  ro, where ro is a constant. In addition, (iv) Let r (x, z)  G ^ r(X)Zo) for all 
w = (x , z) G vFc x \kz, where '&r(x,z) the image of the function r (x, z).

Assumption (II) specifies the model. The functions M , thus G and F  are not non- 
parametrically identified if (X,  Z)  has discrete elements, a restriction which is common in 
nonparametric models with unknown link function (see Horowitz (2001)). Assumption (12) 
defines the required location and scale normalizations th a t makes identification possible. It 
also requires th a t the image of r  (x, z) over its entire support is replicated once r  is evaluated 
at zq for all x. This assumption also implies tha t s (x, z) =  dr  (x, z) j d z  is a well defined
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2.2 Identification

function for all w E x  ^ z . Then, for the random variables r  (X , Z)  and s (X, Z ), let us 
define the function q (t , z) by

q( t , z )  = E [ s  (X, Z )| r  (X, Z)  = t , Z  = z].  (2 .2 .1)

The assumed strict monotonicity of i f  ensures tha t i f -1 , the inverse function of if ,  is
well defined over its entire support; also, let h (M ) = (M ) be the first derivative of H.

T h e o re m  2.2.1 Let Assumption I  hold. Then,

r(x,z)

M ( x , z )  = G( x )  + F ( z )  = j  (2 .2 .2)
ro

P ro o f. It follows from Assumption (II) tha t s (x , z) = h [M (x , z )] /  (z), so

E  [s (X, Z )| r  (X, Z)  = t, Z  = zo] =  E  [h [M (X, Z)] f  (Z) \ r  (X, Z)  = t , Z  = *0]

— E  [h [H - 1 (r (X , Z))} f ( Z )  \ r  (X , Z)  = t , Z  = zo]

= h [ i f -1  (<)] /  (zo), and

q (t, zo) =  h [ i f -1  (t)] f  (^o)- Then using the change of variables m  =  i f -1  (<), and noticing 
that h [ i f -1  (£)] =  h (m)  and dt =  h (m) dm, we obtain

r(x,z) r(x,z)
dt  _  f  dt

q{t , z0 ) J  h[ H~ l ( t )]f{zo)
ro ro

H ~ l \r{x,z)\
h (m) dm 

h (m) /  (z0)
H - Mro]

=  lr (*> ^)] -  -1  N )  ( 1 / /  («o)) = M  (x , z )  = G (x) + F ( z ),

as required. ■

In the special case of an identity link function, i.e. H  (m ) =  m, q has a simple form 
q(t ,zo) = f  (zo) =  q(zo) which is constant over all t and equals 1 by Assumption (12). It 
is clear from the proof of this theorem, th a t without knowledge of zo and ro, Assumptions
(12)(ii) and (I2)(iii), the function M  (x,z)  can only be identified up to a sign-scale factor 
1 / /  (*o), and location constant H ~ l [ro] ( 1 / /  (zo)) provided | /  (zo)| > 0 and |H ~ l [ro] | <  oo. 
In addition, (12) (iv) depends on a range of (X, Z)  th a t is large enough to obtain the function 
r  (X, Z)  everywhere in the interval ro to r  (x , z). T hat is, it ensures th a t q exists everywhere
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2.2 Identification

on ^rr (x,z) x making M  (x, z) identifiable for all x and z.

Lewbel and Linton (2002) also used a similar result (2.2.2) in the nonparametric censored 
regression setup, Y  = max [0, M  (W)  — e]. Their estimator assumes independence between 
W  and e with E  (e) =  0. For the proposed partly separable case, Theorem 2.2.1 above 
replicates their Theorem 3 (page 769), but with additional normalizations. In particular, 
q (t, z0) = Fe [# _1 (t )] /  (2:0)5 where Fe is the cumulative distribution function of e and

771

$  (m) =  /  Fe (e) de. As is in our case, their location constant must be known a priori. The
—00

assumed additive separability with respect to z  also adds an extra normalization on \PZ.

For the multiplicative model, M  (x , z) = G (re) F  (z), the following assumption and corol­
lary provides the necessary identification.

A s s u m p t i o n  I*:

(1*1) Let W  = { X , Z)  be a (d +  l)-dim ensional random vector with support x ^ z,
where 'Fx C 9?d, and z C for some d > 1. The distribution of W  is absolutely
continuous with respect to Lebesgue measure with probability density f w  {w) > 0 
for all w = (x , z ) 6  \I/X x ^!z . There exists functions r, H,  G  and F  such that 
r  (x, z) =  H  [G (x) F  (2:)] for all w = (x, z) e  ^ x x ^ z.

(1*2) (i) The function H  is strictly monotonic and H ,  G and F  are continuous and differen­
tiable with respect to any mixture of their arguments, (ii) F  has finite first derivative, 
f  ( z ) ,  such th a t F  (zo) / /  (^o) =  1 for some zq G int  ( ^ z). (iii) Let H  (1 ) =  r\,  where 
r\  is a constant. In addition, (iv) Let r (x ,z )  G ^rr(X)Zo) for all w  =  (x ,z) G ^ x x  \&z , 

where ^ r (X)Z) is the image of the function r (x, z).

C o ro lla ry  2 .2 .2  Let Assumption F hold. Then,

r(x,z) \
dt

q(t ,zo)
r 1

(2.2.3)

P ro o f. See Appendix. ■

If ri is greater than  r (x,z) ,  for any nonnegative constant, r/, then the integrals of the 
form / r /x,z  ̂ above are to be interpreted as — $ x’z\  for I = 0,1. Once M  (x , z ) has been 
pulled out of the unknown (but strictly monotonic) function H  in (2.2.2) or (2.2.3), we may 
recover G and F  by standard marginal integration, see Linton and Nielsen (1995). Let Pi 
and P2 be deterministic discrete or continuous weighting functions with dP\  (z ) =  1 and
ftp dP2 (x) =  1. These integrals should be interpreted in the Stieltjes sense. Let p\  and P2
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2.2 Identification

be the densities of Pi and P2 with respect to Lebesgue measure in 9? and respectively. 
Then

ap 1 ( x ) =  /  M  (x, z) dP\  (z ) , and ap2 (z) =  / M  (x, z) (IP2 (x ) .

In the additive model, apt (a;) =  G (x) +  ci and ap2 (z ) =  F  (z) +  C2, where ci =  
f y ^ F ( z ) d P i ( z )  and C2 =  f ^ ^ G  (x) (IP2 (x). While in the multiplicative case, ap 1 (x) =  
c\G [x] and ap2 (z) = C2 F( z ) .  Hence, ap 1 (x) and ap 2 (z) are, up to identifiability, the 
components of M  in both additive (c =  ci +  C2) and multiplicative structures (c =  ci x C2).

Given the definition of r  (x , z), it follows that

H  (M  (x, z)) = E [ r  (X, Z ) \ M  (X, Z)  = M  (x, z ) ] ,

thus the function H  may also be identified. If r ( x ,z )  =  E [ Y \ X  =  x, Z  = z] for some 
random Y, then the equality H  (M  (x, z)) =  E  [Y\ M  (X, Z)  = M  (x, z)] may also be used 
to identify H.

We could replace the sign-scale normalization in Assumption (12) (ii), by another that 
assumes there is a bounded, non-negative function, u,  such that

/ 7S5'— '
with u  integrating to one over its compact support. For the applied researcher, a normal­
ization restriction such as (12) is empirically appealing because it entails the selection of 
a single value rather than  a whole function. From a practical point of view, it will also 
ease computational time. Besides, these restrictions may well be imposed by economic the­
ory. For example, the neoclassical production function (positive but decreasing marginal 
products with respect to each factor) of two inputs, with constant returns to scale, implies 
that its two production factors, K , capital and, L, labor are essential in the sense that 
positive inputs of both factors are needed for a positive output. If r  (K , L)  represents such
a function, r\  = r (0, L) = r (K , 0) =  min r (K , L) is a natural choice. Furthermore, such

K,L
a production function has a multiplicative structure (see Section 2.5) with F  (L ) = L , in 
which case f  (L ) =  1 and any L q > 0 may be chosen and full identification can be achieved.

Strict monotonicity of the link function plays an im portant role in these results. Be­
cause of it, the conditional mean of s (x, z) given r and z is a well-defined function, with 
a known structure which is separable in z. This contrasts with Horowitz (2001) and Eke- 
land, Heckman, and Nesheim (2004), where strict monotonicity is neither assumed nor is it 
exploited for identification, rather it is the separability of the partial derivatives of r (x, z) 
that is used instead. It is also worth noticing that our identification result does not need 
the existence of stochastic variation in s(x, z) -  it could be known or take on random values
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2.3 Estimation

-  once conditioned on r and z.

2.3 E stim ation

In this section, for the case r (x , z) = E  [F | X  = x, Z  = z], we describe estimators of M,  G, 
F  and H  based on replacing the unknown functions r (x ,  z), s ( x , z )  and q ( t , z ) in (2 .2 .2) 
by multidimensional smoothers. Since an estimator of the partial derivative of the regres­
sion surface, r ( x , z ), with respect to z is needed, a natural choice of smoother will be a 
Local Polynomial estimator, which produces estimators for r  and s simultaneously. These 
nonparametric estimators also have better boundary behavior and the ability to adapt to 
non-uniform designs, among other desirable properties (see Fan and Gijbels (1996)).

For a given random sample {Yi, X j, Zi}™=1, estimators of M,  G , F  and H  in the additive 
case, can be constructed by following these steps:

1) Obtain a consistent estimator of fi =  r ( X i , Z i )  and s', =  *s(Xi,Zi)  by local p i-th  
order polynomial regression of Yi on Xi  and Zi  with corresponding kernel K\ ,  and 
bandwidth sequence hi =  hi (n) for i =  1, . . . ,  n.

2) Obtain a consistent estimator of q (t , z ), given z q  for all t, by local p2-th  order poly­
nomial regression of s* on f* and Zi  with corresponding kernel K 2 and bandwidth se­
quence h.2 =  h2 (n) for i = 1 , . . . ,  n. Denote this estimate as q (t, 20) =  E\  slr(X , Z)  =  
t ,  Z  =  z q ].

3) For a constant ro, define an estimate of M  (z, z) = G (x) F  (z) by

.?(*,*) dtrnx,z) dt
M ( x , z ) =  (2.3.1)

Jr0 Q (*. Zq)

4) Estim ate G  (x) and F  {z) consistently up to an additive constant by marginal integra­
tion,

a P l ( x ) =  f  M ( x , z ) d P 1 (z) ,  (2.3.2)
J y z

a F2 ( z ) =  [  M ( x , z ) d P 2 (x) .  (2.3.3)

5) Now for c = (1/2) ^J<s,x dcp1 (x) dP2 {x) + / ^ z Sp2 {z) dP\ (z) , define G {x) = apl {x)—c

, F  (z) = ap2 (z) — c and M  (Xi, Zi) =  G (Xi)  +  F  (Zi) -f c, then we can obtain a
consistent estimator of H  (m)  by local p*-th polynomial regression of Yi or r (Xi,  Zi)
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2.3 Estimation

on M  (X i , Zi) with corresponding kernel fc* and bandwidth sequence h* =  h* (n ) for 
i =  1 , . . . ,  n. Denote this estimate as H  (m).

If we are interested in estimating a partly multiplicative model instead, we can replace 
steps 3-5 by:

3*) For a constant r\,  define an estimate of M  (x, z) = G (x) F  (z ) by

^  /  rr{x, z )  d t  \

M ( i ’*) = e x p U

4*) Estim ate G (x ) and F  {z) consistently up to a scale factor by marginal integration,

&Pi (x ) = M  (x i z ) dp i iz ) i
JVz

«P2 (z ) = M  (*>z ) d p 2 (x ) •
J v x

5*) Now for c = (1/2) a Pl (x) dP2 (x ) +  a P2 (z) dPi  (z )] , define G {x) =  a Pl (x) / c, 

F  (2:) =  ap 2 (2:) /c, and M  Zi) =  G (A-*) F  (Af) c, then we can obtain a consistent 
estimator of H  (m) by local p*-th polynomial regression of Yi or r (Xi,  Zi) on M  (Xi,  Zi) 
with corresponding kernel k* and bandwidth sequence h* =  h* (n) for i = 1, . . .  ,n.  
Denote this estimate as H  (m).

We can immediately observe how im portant the joint-unconstrained nonparametric es­
tim ation of r and s is in step 1. They will not only be used in estimating q in step 2, 
but r along with the preset ro (r\) will also define the limits of the integral in (2.3.1) in 
step 3 (3*). Operationally, because of estimation error in step 1, the function q(t ,zo)  is 
only observed for t  G range (r (Xi,  zq)), but we continue it beyond this support by linear 
extrapolation (with slope equal to the derivative of q a t the corresponding end of the sup­
port) elsewhere in step 3 (3*). Moreover, (2.3.1) can be easily evaluated using numerical 
integration. A convenient choice of P\ (z) and P2 (x),  in (2.3.2) and (2.3.3), are Fz (z) and 
Fx (x), the distribution functions of Z  and X  respectively. Given th a t they are in general
unknown in practice, we can replace them by their empirical analog, Fz (z) and Fx (a:), so
we have a 1 (x) =  n -1  M  (x, Zi) and a 2 (z) = n -1  XliLi M  (Xi,  z). Finally, notice that 
H  in step 5 (5*) involves a simple univariate nonparametric regression.
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2.3 Estimation

K n o w n  L in k  F u n c t io n

In many practical situations, especially with binary and survival time data, the conditional 
distribution of Y  given (X , Z ) belongs to a known family with known link function, H , for 
example the logit and probit link functions are common for binary data, and the logarithm 
transform for Poisson count data, see McCullagh and Nelder (1989). More generally, if H  
is twice continuously differentiable such tha t h ( M )  =  (M ) = d H  (m) /d m \m=M 7̂  0
over its entire support, the function q(t ,zo)  in Theorem 2 .2.1 and Corollary 2.2.2 can be 
replaced by qadd (0  =  h [.H -1  (£)] in the additive case, or by qmuit (t) =  h [H -1  (t)] H ~ l (t ) 
in the multiplicative one, so scale normalization is not needed. Specifically,

r(x,z) r'(x,z)

/ i 5 o +*"w - /lEF(0l+r ,w  (2l‘l
ro

=  H ~ l [r(x, z)] = M  (x, z)  = G (x) +  F  (z) ,
ro ro

r —1

and similarly

6XP (  /  S )  +  ln [ril))  =  6XP (  J  h [ H - 4 ) ] H - ' ( t )  + H ~l [ri1
\  n  /  \  n  /

=  H ~ l [r(x, z)] = M  (x, z) = G (x) F  (z ) ,

(2.3.5)

by a change of variables m  = H  1 (£), such tha t dt = h (m) dm.  The above equalities hold 
for any r/ such th a t H ~ l [rj] < 00 for I = 0,1, so it does not require a location normalization 
as well. Notice th a t q (t , z q ) -  qadd (t ) ( l / f { z 0)) and q (<, z 0 ) =  qmuit (t ) (F { z q ) /  f  (z0) ) , in 
the additive and multiplicative case respectively.

After replacing the unknown conditional mean function r(x , z ) ,  in (2.3.4) and (2.3.5), 
by local p i-th  order polynomial regression of Y  on X  and Z  with kernel Ki ,  and bandwidth 
sequence h\ = h\  (n), we obtain M  (x , z) =  H ~ l [r(rc, z)], which corresponds to  the estimator 
proposed by Linton and Hardle (1996) and to th a t proposed by Linton and Nielsen (1995) 
for the identity link. In the fully additive case, G (x) = Y!k= iG  ix k), they also derive the 
asymptotic properties of M , Gk and F.  In Section 2.5, we compare the performance of our 
procedure to th a t of these two estimators in the special case when H  is known and d = 1.
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2.4 Asymptotic Properties

2.4 A sym ptotic  Properties

This section gives assumptions under which we present theorems providing the pointwise 
distribution of our estimators of M,  G, F  and H  for some z = zq and r =  ro- This is done 
for the additive case in conditional mean function estimation as described in the previous 
section. The technical issues involving the distribution of M  and H  are those of generated 
regressors, see Ahn (1995), Ahn (1997), Su and Ullah (2004), Su and Ullah (2006), and 
Lewbel and Linton (2006). Once the asymptotic normal distribution of M  is established, 
the asymptotic properties of G and F  will follow from ordinary marginal integration results.

A s s u m p t i o n  E :

(E l) The kernels K i , I =  1,2, satisfy K\  =  (u>j), K 2 =  Ilf= 1/c2 (vj),  and k/, I = 1,2,
are bounded, symmetric about zero, with compact support [—c/,q] and satisfy the 
property th a t ki (u ) du =  1. For I =  1 and 2, the functions = u3Ki (u ) for 
all j  with 0 <  |j| <  2p/ +  1 are Lipschitz continuous. The matrices M r and M 9, 
multivariate moments of the kernels K \  and K 2 respectively (defined in the Appendix) 
are nonsingular.

(E2) The densities f w  of , and f y  of Vi for = ( X j ,  Zi) and Vi = (rj, Zi) respectively 
are uniformly bounded and they are also bounded away from zero on their compact 
support.

< 00 where er^ =
Xi  = x, Zi = z =  C r ? ( x , z ) ,

(E3) For some £ >  2, < 00 , E[|eg)i|^] < 00 , and E
Yi -  r (Xi,  Zi) and £Q}i = Si -  q(ri ,Zi) .  Also, E  e2r i

be such th a t vpx (z) =  f  pj (z) of (x , z) f ^  (x, z) q~2 (r, zq) dz < 00 and vp2 (z ) =
I  pi  ( x )  at  (x , z) (x, z) q~2 (r, z0) dx < 00 .

(E4) The function r (•) is (pi +  1) times partially continuously differentiable and the func­
tion q (•) is (p2 +  1) times partially continuously differentiable. The corresponding 
(pi +  l ) th  or (j>2 +  l) th  order partial derivatives are Lipschitz continuous on their 
compact support.

(E5) The bandwidth sequences hi,  and h.2 go to zero as n —* 00 , and satisfy the following 
conditions:

(i) n h i+lh f n+1) -* c e [0 , 00),

(ii) n ' V h f + ' h l / l n  n —> 00 ,

(iii) n h f + 1  h ^ pi+1  ̂ - > c £  [0 ,oo), and nh f +1 hlPlh2 - > c £  [0 , 00 ).
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Assumptions (E1)-(E4) provide the regularity conditions needed for the existence of 
an asymptotic distribution. The estimation error eq^  in Assumption (E3), is such that 
E[eq>i\ r (X i , z) = r, Z{ = z] = 0. However, E  [e^ l X{ =  x, Zi =  z] ^  0, so we write eqj  = 
gq (x , z) +  rji, where E  [r]i \ X i = x, Zi — z] =  0 by construction. Assumption (E4) ensures 
Taylor-series expansions to appropriate orders.

Let uin =  n _ 1/ 2h ^ d+1^ 2\/In  n  +  hP l+ 1  and V2n =  n -1 / 2^  1V lnn  +  h22+1, then by 
Theorem 6 (page 593) in Masry (1996a), max || r {Wj )  — r ( W j )  ||=  Op (uin), max ||

1<j<n
^(W j) ~  s (Wj)  ||=  Op ( h ^ u i n )  and sup || q(v)  — q(v)  ||=  Op f a n )  if the unobserved

V

{V i,...,V ^}  were used in constructing q. Because { V i , . . .  ,Vn} were used instead, the 
approximation error is accounted for in Assumption (E5)(ii), which implies th a t (h^ 1 vin ) 2 = 
c^n-1 /2/ ^ 1) and so h ^ v in  = o ( l) , where the appearance of h j 1 is because of the use 
of Taylor-series expansions in our proofs. Assumption (E5) perm its various choices of 
bandwidths for given polynomial orders. For example, if p\ = p2 = 3, we could set hi oc 
n -1/9, and h,2 = bbxhi when d = 1, for a nonzero scalar 66, as in our Monte Carlo experiment 
in Section 2.5. More generally, in view of Assumption (E5)(iii), hi oc n -1 /[2(pi+1)+d] and 
h2 oc n -1 /[2p2+3l will work for a variety of combinations of d, p i, and p2-

T h e o re m  2.4.1 Suppose that Assumption I  holds. Then, under Assumption E, there exists 
a bounded continuous function B (x, z) such that

(* ? (« , *) -  M ( x , z )  -  B  ( * , , ) )  4  N  [o, q H ^ X \ XiZ) ,

where [A]0 0 means the upper-left element of matrix A .

P ro o f. The proof of this theorem, along with definitions of each component, is given in the 
Appendix. ■

We should mention tha t there are four sources of biases, defined in the Appendix, i.e. 
B (x , z) =  hpl+1Bi (x, z) +  h j1 h2^2 (x, z) +  hP2+1Bs (x, z) +  hPl+1B4 (x, z), where B3 corre­
sponds to the ordinary nonparametric bias of q if the unobserved r  and s were used instead 
in step 2 , and B4 corresponds to the standard nonparametric bias while calculating r in step 
1 weighted by q~l (r,zo). B\  and B2 are because of the use of generated regressor r, and 
generated response 's in constructing q respectively in step 2.

Given this result,

E { M  (x, z)} -  M  (x, z) =  0 {h Pl+1) +  0 ( h p1 1h2) + 0 { h P 2 + 1 ), and 

V a r { M  (x, z)}  =  0 ( n _1h ^ d+1^),
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and these orders of magnitude also hold at boundary points by virtue of using Local Polyno­
mial regression in each step. By employing generic marginal integration of this preliminary 
smoother, as described in step 4, we obtain by straightforward calculation the following 
result:

C o ro lla ry  2 .4 .2  Suppose that Assumption I  holds. Then, under Assumption E  

yfnh^ (&Pl (x ) -  a Pl (x) -  J B  (x, z) dPi (z)^ - i  N  0, vPl (x) , (2.4.1)

y /n h i ( a Ps (z) ~  olP2 (z) -  J B (x, z )dP 2 (x)^ - i  N  0, vp2 (z) . (2.4.2)

where [A]00 means the upper-left element of matrix A .

P ro o f. The proof follows from results in Linton and Nielsen (1995) and Linton and Hardle
(1996), and therefore is omitted. ■

Our procedure is similar to many other kernel-based m ulti-stage nonparametric proce­
dures in tha t the first estimation step does not contribute to the asymptotic variance of the 
final stage estimators, see Linton (2000), Xiao, Linton, Carroll, and Mammen (2003). How­
ever, the asymptotic variances of M  (x , z ), ap x (x) and a P2 (z) reflect the lack of knowledge 
of the link function H  through the appearance of the function q in the denominator, which 
by Assumption I is bounded away from zero and depends on the scale normalization zq, 
and the conditional variance of (x, z) of Y . They can be consistently estimated from the 
estimates of r (x, zo), q(r,zo)  in steps 1 and 2, and of (x ,z). For example, if Pi, I = 1,2, 
are empirical distribution functions, the standard errors of a Pl (Xi)  and a P2 (Zi) can be 
computed as

- l
i )l ( k \ ) a l n  1 '^2 ^fw ( X i , Z j ) q 2 ( r ( X i , Z j )  , z 0)  ̂ f z ( Z j ) ,  and 

j=1
n

V-2 (fci) S fn-1 £  [ f w  (Xj ,  Zi) f  (r ( X jt Z i ) , 20)] f x  PO)

respectively, in which i/j1 (k\) =  for I = 1, 2 , f w ,  f x  and f z  are the cor­
responding kernel estimates of f w ,  f x  and f z ,  while [Yi — r (X i ,  Zi )]2 or

=  n - 'E .L j K  -  H ( M( X i , Z i ) ) } 2.

Since our estimators are based on marginal integration of a function of a preliminary 
(d-1- 1) —dimensional nonparametric estimator, hence the smoothness of G  and F  must 
increase as the dimension of X  increases to achieve the rate n~Pl^ 2pi+1\  the optimal rate 
of convergence when G  and F  have p\ continuous derivatives, see Stone (1985) and Stone
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(1986).

Now consider H.  Define \1>m (x,z) — {m : m  = G (x) + F  ( z ) , (x , z) e  ^ X x  If G
and F  were known, H  could be estimated consistently by a local p*-polynomial mean 
regression of Y  on M  ( X , Z )  = G ( X ) +  F ( Z ) .  Otherwise, H  can be estimated with un­
known M  by replacing G (Xi)  and F  (Zi) with estimators in the expression for M  (Xi,  Zi). 
This is a classic generated regressors problem as in Ahn (1995). Denote these by apx (A*) 
and ap2 (Zi), with Mi = a Pl (Xi) +  ap2 (Zi) -  c and =  apx (Xi)  +  ap2 (Zi) -  c. 
Let hf =  ma.x(hPl+1, hP2+1, hPlh2 ), then max || Mj  — Mj  ||=  Op (vjn), where v^n =

n - 1/ 2/iJj"d//2\ / ln n  -j- h\.

We also make the following additional assumption:

A s s u m p t i o n  F :

(FI) The kernel is bounded, symmetric about zero, with compact support [—c*,c*] and 
satisfies the property th a t k* (u) du =  1. The functions H+j =  v?k* (u) for all j  with 
0 <  j  <  2p* +  1 are Lipschitz continuous. The m atrix M /f, defined in the Appendix, 
is nonsingular.

(F2) Let fM  be the density of M  (X,  Z),  which is assumed to exist, to inherit the smoothness 
properties of M  and fw  and to be bounded away from zero on its compact support.

(F3) The bandwidth sequence h* goes to zero as n —> oo, and satisfies the following condi­
tions:

(i) nht^p*+1 +̂1 —> c G [0, oo), nh*h2 —» c G [0,oo),

(ii) r ^ ^ h f h ^ 2/ Inn —► oo, and n lf2h2Kf^^2 —* 0 .

Assumptions (FI) to (F3) are similar to those in Assumption E. As before, Assumption 
(F3)(ii) implies th a t ( h ^ u ^ ) 2 = o(n~l / 2 h ^ 1̂ 2) and also tha t (/i* 1^fn) =  o (1). Assumption 
(F3) imposes restrictions on the rate at which h* —> 0 as n —» oo. They ensure tha t no 
contributions to the asymptotic variance of H  are made by previous estimation stages. Let 
aH (m ) = E [ e 2\ M  (X,  Z)  = m],  then we have the following theorem:

T h e o re m  2.4 .3  Suppose that Assumption I  holds, then, under Assumption E  and F, there 
exists a bounded continuous function B p  (•)> such that

J n h ,  ( f f ( m )  -  H(m) -  BH (m ) )  4  N  ( o ,  .

for  m  G ^M{x,z)t where [A]00 means the upper-left element of matrix  A .
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P ro o f. The proof of this theorem, along with definitions of each component, is given in the 
Appendix. ■

When p* =  1, h* admits the rate n -1 / 5 when hi and hi are chosen as suggested above 
when d = 1, as it is done in the application and simulations in Section 2.5. In which case, 
3 h  (■) simplifies to the standard bias from a univariate local linear regression. Standard 
errors can be easily computed from the formula above. By evaluating H  a t each data point, 
the implied estim ator of r (Xi,  Zi) = H[ M (Xi, Zi)] is Op( n- 1/ 2/ f o r  large h\  and 
d, which can be seen by a straightforward local Taylor-series expansion around M  (Xi,  Zi). 
That is, our proposed methodology has effectively reduced the curse of dimensionality in 
estimating r by 1 with respect to its fully unrestricted nonparametric counterpart.

2.5 N um erical R esu lts

2 .5 .1  S im u la t io n s

In this section, we describe a small Monte Carlo experiment to study the finite sample 
properties of the proposed estimator, and compare its performance with tha t of direct 
competitors in two leading scenarios: When the link function is known and the case when 
it is not. Code for these simulations was written in GAUSS. The different designs considered 
below do not reflect any model of interest in economics. They were chosen to emphasize 
performance issues rather than empirical relevance. In order to  simplify things we also 
restricted our attention to d = 1.

K now n  L ink  F u n c tio n

We contrast the performance of our estimator with th a t of Linton and Nielsen (1995) and 
Linton and Hardle (1996). Although they are not fully efficient, these alternative estimators 
use knowledge of the link function. Hence, they provide an appropiate benchmark allowing 
the performance of our estimator to be compared.

In this case, the experiment was performed as follows: A number, n, of observations 
(Y, X ,  Z)  were generated from Y  =  r (X,  Z)  + ar -e, where the distributions of x  and z  were 
U [0,1], and e was chosen independently of X  and Z  with a standard normal distribution. 
For each scenario, cr2 =  1 and cr2 =  2, two particular specifications of H,  in r (x, z) =
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H  [M (x , z )] where M  (x , z) =  G (x) +  F  (z), were used for the same G and F.

G (x) = (1/ 2 ) sin (27rx)

F { z ) =  - 2 z 2 +  2 z -  1/3

H  [m] = m (2.5.1)

i f  [m] =  In ^m  +  \ / 1 -+- m 2  ̂ +  3. (2.5.2)

The curvature and non-monotonicity of G and F  provide a test for the estimators describe 
in Section 2.3. Notice th a t neither G nor F  is homogeneous and both were chosen such that 
E  [G (X)] = E [ F  (Z)\ =  0. Also, a t zq = 1/4, we have /  (zo) =  1- To obtain our estimators 
M , G , F  and H , we use the second order Gaussian kernel ki (u ) = (l/\/27r) exp (—tz2/ 2), 
i =  1,2,*. The integral in M , step 2 in Section 2.3, was evaluated numerically using the 
trapezoid method. We also fixed p\ = 3, P2 = 1 and p* =  1. We used the bandwidth 
hi =  ccsw n-1 /9, where cc is a constant term  and spv is the squared root of the average of 
the sample variances of X{ and Z{. Namely, this bandwidth is proportional to the optimal 
rate for 3rd-order Local Polynomial estimation in the first stage, whereas for simplicity, hi  
was fixed as 3hi. The bandwidth h* was set to follow Silverman’s rule (1.06n-1/5 times the 
squared root of the average of the regressors variances). Three different choices of cc were 
considered: cc G {0.5,1,1.5}.

Each function was estimated at a 50 x 50 equally spaced grid in [0,1] x [0,1] when 
n =  150, and at another 60 x 60 uniform grid on the same domain when n = 600. Two 
criteria summarizing goodness of fit were calculated, the Integrated Root Mean Squared 
Error (IRMSE) and Integrated Mean Absolute Error (IMAE), at all grid points and then 
they were averaged. Tables 2.1 and 2.2 report the median of these averages over 2000 
replications for each design, scenario and bandwidth. They also report the results obtained 
when using the estimators proposed by Linton and Nielsen (1995) when (2.5.1) is used, and 
Linton and Hardle (1996) when (2.5.2) is used instead, on the first column from the left 
under each fitting criteria respectively. They were constructed using the same unrestricted 
first stage nonparametric regression used by our estimator.

As seen in the tables, for either sample size, lack of knowledge of the link function 
increases the fitting error of our estimator by roughly 5 to 85 percent relative to estimates 
using th a t knowledge. For each scenario, the IRMSE and IMAE decline as the sample 
size is quadrupled for both sets of estimators, at somewhat the same less than y /n-rate. 
Larger bandwidths produce superior estimates for all functional components in all designs. 
Estimates of M  in both designs and scenarios are generally less accurate than the others. 
In the estimation of the additive components, G and F , the fitting criteria for Linton and 
Nielsen (1995) and Linton and Hardle (1996) estimators are of approximately the same 
magnitude, while the proposed estimator has a smaller IRMSE and IMAE when estimating
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F  relative to estimates of G. There does not seem to be a dram atic difference in estimates of 
H  between estimators in both designs. All sets of estimates deteriorate when ar is increased.

Unknown Link Function

As it was pointed our earlier, when d = 1, model (2 .1.1) is nested in the class of models 
Horowitz (2001) considers. Consequently, it is natural to make a comparison with his 
estimator in this specific case. We replicated Horowitz (2001) original experiment1 which is 
as follows: 1000 observations (Y , X , Z)  were generated from, Y  = 1 (G (X)  +  F  (Z ) — e > 0), 
where e ~  N  (0,1), X  ~  N  (0,16) and Z  ~  N  (0,16), and independent of each other. The 
functions G, F  and H  are2

G (x ) =  3 sin ^ x ,

F  (z) = 3 [exp (0.35,z) — 1], and

H  (m ) =  $  (m ),

where $  is the standard normal distribution function. This is a binary probit model, where 
P r ( y  = l \ X  = x, Z  = z) = $  (G (x) + F  (z)) =  r (x, z ).

Horowitz (2001) (NP2) used the following fourth and second order kernels to estimate
G, F  and H\

105
K  (u ) =  —— ( l  — 5 u 2 +  7 u 4 — 3 u 6) 1 ( |u | <  1 ) ,

64

K h ^  =  i f  ^  “  U 1 ^  '

The weight functions used to calculate G, F  and H  were W2 (x) =  K h { x ) ,  w \  ( z )  =  
(1/2) ( z / 2), and w h  (x ,z )  =  W2 (x ) w \  (z) respectively. He also used bandwidths h\\  =
6 , h,2 \ = 5, and h n  = 3.25. He chose these bandwidths through Monte Carlo experimen­
tation to approximately minimize the unweighted Integrated Mean Squared Errors of his 
estimators of G , F  and H.  The additional bandwidths his estim ator needs were set using 
his suggested rule-of-thum b, 2 = hk \n~l f 72 for k — 1, 2 .

We implement our proposed estimator (NP1) for this design, using a second order Gaus­
sian kernel as before, with p\ = 0, P2 = 1, and p* =  1. We also found the optimal band­
widths hi =  0.925, /12 =  2.5 and h* =  0.2 for this design, by Monte Carlo experimentation 
as Horowitz (2001) did.

1The computer code we wrote to implement Horowitz (2001) estimator, was not fast enough to conduct 
large scale simulations as before.

2In Horowitz (2001) notation: F  =  / ] ,  G  =  /a , and II =  G, with x 1 =  z, x2 =  x  and v  =  m.

28



2.5 Numerical Results

Figure 2.1 shows the standardized Q-Q  plots of both set of estimators at different points 
well in the interior of the support of each function. These points were chosen sufficiently far 
from the boundary of the data  to avoid boundary effects for both  estimators. These plots 
were based on 300 replications. We observe tha t the normal approximation of our estimator 
for G and F  are better than  Horowitz’s at the chosen points. Similar results (not presented) 
hold for other points well in the interior of the support of (X, Z)  for G and F.  On the 
other hand, the normal approximation of our estimator for H  is similar to Horowitz’s for 
low values of m  only, while it outperforms Horowitz’s for higher values.

Finally, Figure 2.2 displays a visualization of the resulting output of 5000 replications 
of a fourth design using only our procedure. D ata was generated as before with the same 
G and F , but H  [m] =  1 +  (16/7) m, with o% =  1. Other information was set accordingly, 
for example n  = 400, h\ = 0.15, /i2 =  0.7, p\ = 3, and P2 =  1. The white plane and 
dashed lines represent medians of simulations, and gray planes and dotted lines represent 
90% simulation envelopes.

2.5.2 Generalized Homothetic Production Function Estimation

Let y be the log output of a firm and (z, z) be a vector of inputs. Starting with Shephard 
(1953) and Shephard (1970), many parametric production function models of the form y = 
r* (x , z) +  £r* have been estimated that impose either linear homogeneity or homotheticity 
for the function r. In the homogenous case, corresponding to known H  (m) =  m, many 
models have been proposed, see Bairam (1994) and Chung (1994) for param etric examples, 
and Tripathi and Kim (2003) and Tripathi (1998) for fully nonparam etric options. Zellner 
and Ryu (1998) provides empirical comparisons of a large number of different homothetic 
production functional forms. In the nonparametric framework3, Lewbel and Linton (2006) 
presents an estim ator for a homothetically separable function r*.

However, a more general definition of homogeneous and homothetic functions is given 
below:

Definition 2.5.1 A function M* : C 5Rd+1 —> zs said to be generalized homogeneous
on ^ w i f and only i f  the equation M*  (Aw) =  g (A) M* (w) holds for  all (A, w) G 3£++ x ^ w 
such that Aw G Sfrw. The function g : 5?++ —» is such that g (  1) =  1 and dg (A) / d \  > 0 
for all A.

3Other examples of nonparametric estimators include Varian (1984) and Primont and Priraont (1994). 
Also, Hanoch and Rothschild (1972) discussed a test to verify whether a homothetic production function 
exists that could, without statistical errors, generate a given data set. Although these papers do not assume 
a parametric functional form, by assumption they have no statistical errors. Consequently, they have also 
no associated distribution theory.
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D efin itio n  2.5.2 A function r* : C —♦ 5? is said to be generalized homothetic on
i f  and only i f  r* (w ) =  H  [M * (iu)], where H  : 3? —> 3? is a strictly monotonic function 

and M* is generalized homogeneous on tyw.

It is clear from Definitions 2.5.1 and 2.5.2, tha t homogeneity of degree k and homoth- 
eticity are the special case in which the function g takes the functional form g ( A) =  XK. 
Given a generalized homothetic production function we have

r* (£, z) = H  [M* (x, z)] =  H  \m* { x / z , 1) g (1 / z ) ~ l

= H[G  (x) F  (z)\ = H [ M  (x, z)\ =  r {x, z ) , (2.5.3)

where x  = x / z  and F  (z) =  1/g (1 fz) .  When H  is assumed known and equal to the identity 
function, Tripathi and Kim (2003) and Tripathi (1998) use the assumption th a t M  [x,z)  
is a homogeneous function of degree one, i.e. F  (z) = l / z ,  in order to identify the model 
and achieve dimensionality reduction. Lewbel and Linton (2006) used the same functional 
assumption regarding F  but with an unknown strictly monotonic link function H.  In the 
contrary, the proposed estimator in this chapter could easily be implemented in order to 
identify M ,  G, F  and H  in models such as (2.5.3), i.e. y = r (x , z )  +  £r > without imposing 
any such param etric specification of F,  but exploiting the partial separability of M  with 
respect to z instead along with the fact th a t f  (z) > 04. For the same reasons, it does also 
reduce the dimensionality by 1 as explained earlier.

We have built an R package, JLLprod, which along with its manual can be freely down­
loaded from the author’s website. After installation, the user also has access to a production 
data set from the Ecuadorian economy in 2002, and will be able to reproduce the informa­
tion presented in this section. We then use it in order to estim ate generalized homothetic 
production functions for four industries in mainland China5 in two time periods, 1995 and 
2001. For each firm in every industry, we observe the net value of real fixed assets K , the 
number of employees L,  and Y  defined as the log of value-added real output. K  and Y  
are measured in thousands of Yuan converted to the base year 2000 using a general price 
deflator for the Chinese economy. For details regarding the collection and construction of 
this data  set, see Jefferson, Hu, Guan, and Yu (2003).

We consider both nonparametric and parametric estimates of the production function 
r (k,L)  G V,  which is a set of smooth production functions, and k  =  K / L  as in (2.5.3). To 
eliminate extreme outliers in both sets of estimates, we sort the data  by k  and remove the 
top and bottom  2.5% of observations in each industry and year. Both regressors were also

4As d g ( A) / d \  >  0, and A =  z ~ x, it follows that F  (z) is strictly increasing, i.e. f  (z) =  d F ( z )  / d z  >  0 
over its entire domain.

5Package JLLprod also contains production data of 406 firms in the Petroleum, Chemical and Plastics 
industries in Ecuador in 2002.
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normalized by their respective median prior to regression.

Parametric

Consider a general production function (P I) in which log output Y  — r^pl (k , L) +  er , where

r1j)pi (k , L) =  0O +  0i In (k ) +  02 In {L + 7 ) +  03 [In (fc)]2

+  04 In (k ) In (L +  7 ) 05 [In (L +  7 )]^ , (2.5.4)

and ^ p i =  (0o, 0 i ,02, 03, 04, 0s)T- When 20105 — 0204 =  0 and 6 \Q§ — 0^03 =  0, this general
model nests the following generalized homothetic production function (P2) specification,

M  (k , L) = ka {L + 7 ) 

r^ P2 (k , L) = H  (M) =  /?o +  f t  In (M ) +  f t  [In (M )]2 , (2.5.5)

where ipP 2  =  (a, f t ,  /3i, f t , 7 )T- Furthermore, if we also impose a third param eter restric­
tion6, 7  =  0, we obtain the homothetic Translog production function (P3) of Christensen, 
Jorgenson, and Lau (1973) as a special case as well, i.e.

M ( k , L )  = kaL

7 ^ 3  (*, L) = H  (M) =  f t  +  f t  In (M ) +  f t  [In (M )]2 , (2.5.6)

where ipP 3  = (a, f t ,  f t ,  f t ) T .

Figure 2.3 shows isoquants for P2 with ipP 2  = (1 /2 ,1 0 ,1 /2 ,1 ,7 )T, where 7  =  —1,0, +1. 
At any level of output, these isoquants are steeper at high levels of k  for negative 7  than for 
positive 7 . However, as in the homothetic case, 7  =  0, the slopes of their level surfaces are 
constant along rays through the origin. This im portant property is preserved by this more 
general specification.

F itting these models by Nonlinear Least Squares in each year yields the parameter es­
timates reported in Tables 2.3-2.5 (Heteroskedasticity robust standard errors are in paren­
theses).

6If we were to impose this restriction alone, (2.5.4) reduces to the ordinary unrestricted Translog produc­
tion function.
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S p ec ifica tion  T est
Two sets of param etric restrictions are tested on model (2.5.4) for each year and industry. 
In order to assess whether model (2.5.4) may be further simplified by (2.5.5),

H q : 20105 — 02$4 =  0;

$le5 -  e p 3 = o

is tested by means of a Wald statistic, W n  which is distributed under Ho as X(2) • A further 
simplification, (2.5.6), is also tested by a Wald statistic, W13, which under the

H 0 : 20105 — =  0;

0105-0203 =  0 ;

7  =  0 ,

is distributed as %(3). The results of these tests are presented below.

Industry

w 12

1<
p-value

)95

W 13 p-value W i2
20( 

p-value
)1

W13 p-value

Chemical 1.280 0.527 2.244 0.523 17.286 0.000 1,095 0.000

Iron 8.834 0.012 14.261 0.003 2.272 0.321 2.343 0.504
Petroleum 1.790 0.409 3.076 0.380 0.791 0.673 0.813 0.846
Transportation 1.735 0.420 1.997 0.573 7.980 0.019 8.252 0.041

Models (2.5.5) and (2.5.6) are valid parametric simplifications of the general production 
function (2.5.4), except for the iron industry in 1995 and the chemical and transportation 
industries in 2001 .

The suitability of the parametric Generalized Homothetic and Translog production func­
tion fits, r ^ 2 (k , L ) and in these industries may be also judged by the use of
a residual based test. For this purpose, we decide to employ the test proposed by Zheng 
(1996) for the hypothesis

Ho : r e V  { r  E V \ r  = r ^pi for some ippi} .

For I =  2,3, their test statistics are given by

1 n n

U”  = 12̂2 E £  (y‘ - (*. LJ )  ( Y> -  rf Pl Li ) )  K
i=l j=l

(2.5.7)
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with kernel K  (•), the Gaussian kernel here, and bandwidth A, set equal to hi in all cases. 
Given some regularity conditions, under the null hypothesis th a t the param etric specifica­
tions are correct,

nXUpi ~  N  ^ 0 ,2  J  K 2 (u) du J  [a?{k ,L )p{k ,L ) ]2 d k d L j  , (2.5.8)

by replacing integrals by sums and unknown functions by their nonparam etric estimates in
(2.5.7) and (2.5.8), we obtain the following test results:

Industry
A

1995

Up2 p-value A
2001

UP 2 p-value

Chemical 5.125 -0.7698 0.7793 2.25 -0.4728 0.6818
Iron 4.250 -0.7532 0.7743 4 -0.7367 0.7693
Petroleum 2.750 -0.8117 0.7915 11 -0.7325 0.7681
Transportation 1.750 -0.6519 0.7428 4.37 -0.7124 0.7619

A UP 3 p-value A UP 3 p-value

Chemical 5.125 -0.7721 0.7800 2.25 -0.4130 0.6602
Iron 4.250 -0.7195 0.7641 4 -0.7417 0.7709
Petroleum 2.750 -0.8088 0.7907 11 -0.7327 0.7681
Transportation 1.750 -0.6503 0.7422 4.37 -0.7065 0.7601

We fail to reject both Ho for all industries in both years at any level of significance. In all 
cases, test results are not altered by the choice of smoothing param eter A. Both sets of results 
justify the use of both models as sensible parametric simplifications of the data7 against 
which we may compare our more flexible specification. Other kernel-based specification 
tests are Bierens (1990), Hardle and Mammen (1993), Gozalo (1993) and Horowitz and 
Spokoiny (2001), for example.

N o n p a ra m e tr ic

Figures 2.4 to 2.11 show generalized homothetic nonparametric estimates M (fc,L), G(k) ,  
F  (L ) and H  (M ) for both years. For each industry and year, we use local quadratic regres­
sion with a Gaussian kernel and bandwidths, h\,  given by a standard unrestricted leave-one- 
out cross validation method for regression functions. In the second stage, we set bandwidth 
h-2 to be the same in local linear regressions across industries and time. We also choose the

rAlthough the appropriateness of these parametric models may change through time, see Konishi and 
Nishiyama (2002).
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location and scale normalizations through experimentation to obtain estimated surfaces M  
with approximately the same range, yielding the following normalizations:

Industry
n

1995 
In L q ro n

2001 

In L0 ro

Chemical 1560 3.40 7 1637 3.06 7.0
Iron 376 -0 .37 7 341 4.06 8.0

Petroleum 93 2.73 7 119 2.27 8.5
Transportation 989 3.44 7 1230 4.04 7.5

The nonparametric fits of the generalized homogeneous component, M , shown in Figures 
2.4 and 2.8, are quite similar. They are both increasing in k and L  with ranges varying more 
with labor than  with respect to capital to labor ratios, as we would expect8. Nonparametric 
estimates of the functions G and F  are different to the param etric Translog model estimates 
(P3) in Figures 2.5, 2.6, 2.9 and 2.109, but they are roughly similar to param etric generalized 
homothetic model (P2) at low levels of L. They are all strictly increasing in their arguments, 
but show quite a bit more curvature, departing most markedly from the param etric models 
for F  in 1995 and G in 2001 for most industries. Comparing the nonparametric estimator 
of F , in Figures 2.6 and 2.10 , with the parametric ones also provides a quick reference 
to check for the presence of homotheticity in the data  set. If homotheticity were present,
i.e. F  (L ) =  L, all curves would be close to each other, as it happens for the chemical and 
transportation industry in 1995 and petroleum and transportation industries in 2001. In any 
case, they are all strictly increasing functions in labor, implying a generalized homogeneous 
structure for M  as conjectured. Figures 2.7 and 2.11 show param etric and nonparametric 
fits of the unknown link function H , obtained by a local linear regression of r on M  with 
a normal kernel and bandwidth, h*, given by Silverman’s rule. They also show fits from 
the unconstrained estimator of the function r  used in the construction of our estimator in 
the first stage for each (fc, L)  for which M  was calculated. The nonparam etric fits of r and 
those of H  are quite similar in all industries and years, indicating th a t the imposition of 
generalized homotheticity is reasonable for these industries. The param etric fits are also 
broadly similar to the nonparametric ones, but showing more curvature in 2001 for the 
chemical and iron industries. These also show the design densities at the bottom  of each 
plot.

8It was a similar observation by Cobb and Douglas (1928) that motivated the use of homogeneous functions 
in production theory, see Douglas (1967).

9Tlie means of the observed ranges were subtracted from both sets of curves, before plotting.
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S p ec ifica tio n  T est
We are interested in testing our proposed nonparametric generalized homothetic specifica­
tion within our da ta  set, th a t is

H 0 : r e V { r e V \ r  = H [ G ( k ) F  (L)] for some H , G and F} .

Given H , G and F , the implied restricted estimator of the regression surface is r ( k , L ) =  
H[G (k) F  (L)]. As before, we employ a [/-sta tistic  based test as suggested in Fan and Li 
(1996). T hat is,

1 n n ,

£ <)) w  - f  (%. Li ) ) K  (
i=l j = 1

kj /  / j  i j
] K '

which under the null hypothesis tha t the generalized homothetic specification proposed in 
this chapter is correct,

n \ U NP ~  N  (o ,2  J K 2 (u)du  J  [a2 ( k ,L ) p ( k ,  L ) ] 2 d k d L j  .

The results are as follows:

Industry
A

1995

U n p p-value A
2001

U n p p-value

Chemical 5.125 -0.7702 0.7794 2.25 -0.1448 0.5575
Iron 4.250 -0.7578 0.7757 4 -0.2274 0.5899
Petroleum 2.750 -0.8458 0.8012 11 -0.7334 0.7684
Transportation 1.750 -0.6472 0.7413 4.37 -0.7047 0.7595

As in the param etric case, at all levels of significance, we fail to reject the hypothesis 
tha t our specification is a correct nonparametric simplification of the data  for all industries 
and years. As both param etric models are special cases of the transformed partly separable 
model th a t was fitted, this result is as expected.

S u b s t i tu ta b i l i ty  a n d  R e tu rn s  to  Scale
Given a generalized homothetic production function E [ Y \ k , L \  = r (k ,L)  — H  [M  (/c, L)], 

im portant properties of production are measures of substitutability of inputs and the elas­
ticity of substitution. A standard measure of the substitutability of inputs for production 
is the Technical Rate of Substitution, <r*, defined as the slope of the isoquants in Figure 
2.3, th a t is, a* = — (dK/dL) \r k̂ Lj=r, for some constant level of output r. For an arbitrary 
production function r (k , L), consider an alternative measure of input substitutability given
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by

T ( k , L )  = \ n [ j

f d r ( k , L ) \  / dr  ( k , L ) \
= l a { ~ d i n r ) - l a { - n i r ) -  (2-59)

Moreover, if r ( k , L )  is generalized homothetic (NP), T ( k , L ) =  In ( d in F  (L )/d In L )  — 
ln (d ln G  (k ) / d i n k ) .  For parametric model (P2), this is T  (k , L) =  In (L /  (L +  7)) — In (a), 
and T ( k , L )  — —In (a ) for the Translog model (P3). We use, for the nonparametric 
model (NP), the approximation T  (k , L) =  ln[(lnF  (Lj) — I n F  ( L j - i ) ) /  (In Lj  — ln f t - i ) ]  — 
ln[(ln G (k j ) — In G ( k j - 1) ) /  (In kj — In k j - 1)] after ordering the estimation grid points j ,  and 
approximations for (P2) and (P3) were obtained by replacing unknown quantities with their 
param etric estimates. Table 2.6 provides their averages along with standard deviations in 
parenthesis.

Another property of production tha t is empirically im portant, is economies of scale, 
defined as e* ( K ,L )  — (dr* (c K ,c L ) /d ln c ) |c=1, which by (2.5.3), it simplifies to e (k ,L )  = 
dr (k, L) / d l n L .  If r ( k , L )  is generalized homothetic, then e ( k , L ) =  R T S  (M  (k,L)  ,L ), 
where

For model (P2), this is R T S  (M, L) =  [ft +  2(32 In (M)] (L / (L +  7)), and R T S  (M, L) = 
f t  +  2 f t  In (M ) for the Translog model (P3). They were calculated by replacing the un­
known param eters with their respective parametric estimates. In the nonparametric model 
this measure is estimated as R T S  (M,L )  = [(H ( M j ) — H ( M j - i ))/(In  M j — InMj^i)]  x 
[(In F  (Lj) — ln F  (Lj_ 1) ) / (In Lj — lnL j_ i)], using the same ordering as before. Table 2.7 
provides summary statistics for all 4 industries in both years.

Calculating these measures in our data  set have generated mixed results. Both para­
metric estimates have similar T  (k, L) in average each year, but roughly differ from those 
predicted by the nonparametric fit, which show a sizeable increase in 2001 relative to their 
values in 1995 for all sectors but the petroleum industry (which may be caused by the small 
number of observations for this industry in 1995, n =  93). This industry is also the only 
one for which these three averages coincide in 2001 , because of the closeness of the para­
metric models to the nonparametric fit in Figures 2.9 and 2.10. However, all models show a 
reduction in economies of scales for all industries between 1995 and 2001. Although average 
increasing returns to scale, R T S  (M ,L )  > 1, are predicted for some sectors in 1995, none is 
present in 2001. In fact, the chemical and iron industries seem to have decreasing returns to 
scale, R T S  (M, L) < 1, in 2001, while the remaining sectors report approximately constant 
returns to scale, R T S  (M, L) ~  1, in the same year.
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In view of our various tests and the shape of the nonparametric estimates of G and F , the 
findings for T  (fc, L)  may simply be the result of misspecification while constructing the es­
tim ated averages in (2.5.10) for both parametric models. Economically, homotheticity (P3) 
generalizes the idea th a t pure economic profit will be zero. Since this situation is descriptive 
of the long-run equilibrium under perfect competition, another possible explanation may 
be the substantial ownership reform during this period of time. While many larger firms in 
the Chinese industrial sectors may have been state-owned in 1995, many other enterprizes 
were open to foreign capitals after 1995 and so could have substantially restructured, and 
others may have been created as well, thereby enhancing their productivity and increasing 
competition. For instance, we believe tha t this along with the hetereogenity regarding dif­
ferent firms specializing in different products in each industry, may explain why combining 
them into a single cross section might then create the appearance of decreasing returns on 
average in all models for two industries in 2001. However, these changes over time may more 
generally be due to changes in technology, demand, and other aspects of China’s increasing 
economic liberalization and growth over this time period.

Another possible explanation is the likelihood th a t firms with positive productivity 
shocks may respond by using more inputs, i.e. endogeneity. In the next section, we ex­
plain how our estimator can be adapted in order to deal with this potential problem in a 
more general framework.

2.6 C onclusion and E xtensions

We provide a general nonparametric estimator for a transformed partly additive or mul­
tiplicative separable model. This type of functional structure is shared by many popular 
empirical models implied by economic theory. An estimation algorithm is also proposed 
that does not require any maximization or matching. The resulting estimators are shown to 
have pointwise asymptotically normal distributions. Their rates of convergence are faster 
than those of a fully nonparametric alternative. We also provide an empirical application of 
our proposed methodology to estimation and testing of generalized homothetic production 
functions. We conclude by describing the following natural extensions.

Additional Regressors

Consider identification of G (x) and F (z ) ,  in the model r ( x , z , w )  = H  [M (x, z) ,w\ = 
H[G (x) +  F ( z ) , w \ ,  where H  is strictly monotonic (and therefore invertible) on its first 
element, (x , z ) G 9ftd+1, and w G \I/w Q is a vector of additional regressors. It 
is straight forward to extend Theorem 2.2.1 or Corollary 2.2.2 in these cases. Specifi-
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2.6 Conclusion and Extensions

cally, let s (x , z, w) = dr  (x , z, w) /d z ,  and define the function q (t , z, w)  by q (t , z , w ) = 
E[s  (X , Z, W ) | r  (X, Z, W) =  £, Z =  z, W  = w]. Then, the desired identification is achieved 
by replacing q(t,  zq) in (2.2.2) or (2.2.3) by q(t,  zo,w).  For example, in the additive case, 
s (x, z ,w)  = h [M (x , z ) , iu], where h now represents the first derivative of H  with respect 
to its first argument, and consequently q (r, z) =  h [H -1  (r, w ) , w] f  (z). It follows that

r(x,z,w)

J dt
r(x,z,w)

/ dt
q ( t , z 0 ,w) J  h [H ~l (t,w) , w \ f  (z0)

r0,w r0,w

H ~ 1[r(x,z,w),w]
h (m, w) dm  

h (m,w) f  ( z q )j
H ~ x[r o.hj.u;]

= {H~l [r (x, z, w ) , w } ~  H ~ x [r0|tl>, w;]) (1// (^))
=  ( H ~ 1 [H  [M (x, z ) , w ] , it;]) =  M  (x , z ) ,

where the second equality follows from the change of variables m  = H ~ 1 ( t,w),  so dt =  
h (m, w ) d m , and the last equality follows after assuming th a t /  (zo) =  1 and that ro =  
H[0,w]  for all w. This result holds for all w G and (x, z), so it holds in expectation 
replacing w with W , thereby yielding

M  (x, z) = E

r (x , z ,W)

/ dt

q ( t , zo ,w )
L o,w

A consistent estimator of M  (x, z) and therefore, by virtue of marginal integration, of G (x) 
and F  {z), is then given by

M { x , z )  =
i=1

r{x,z,Wi)

I
dt

ro
q(t ,  zo, Wi)

(2 .6 .1)

and a consistent estimator of h is then given by a nonparametric regression of r (x ,z ,w )  
on (M  (x, z ) , iu), as before. The asymptotic properties of these estimators can be analyzed 
using similar tools as in Lewbel and Linton (2006).

Endogenous Regressors

Now consider estimation of M  (x, z) = G (x) + F  {z) in the model y = H* [M  (x, z ) , e ] where 
e is now unobserved and H* is strictly monotonic in its first argument. If e iL (X , Z), then 
r (x, z) = E  [V| X  = x, Z  =  z) = H  [M (x, z)], and our estimator can be applied. However, 
when some of the covariates (X, Z) are endogenous, and so correlated with e, estimation
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of M  (x, z) is still possible, under the following conditions. For an observed vector T  of 
exogenous covariates10, which may include exogenous elements of ( X ,Z ) ,  define m x (t) = 
E [ X \ T  = t], Ux =  X  — m x (£), m z (t ) =  E [ Z \ T  =  t], Uz =  Z  — m z (t ) and let U = (UX,UZ). 
Then by construction e \ X , Z , T  ~  e\ U, T.  Define r ( x , z , u )  = E [ Y \ X  = x, Z  = z ,U  = u] 
and H  [M (x, z ) , u] = E  [H* [M (x, z ) , e:]| X  = x, Z  = z , T  =  t ,U  = u\. If we then assume 
that

e\XJ,T ~  e\U  (2.6.2)

the form of endogeneity analyzed in the control function models of Blundell and Powell 
(2003)11, it then follows th a t r ( x , z , u )  =  H  [M (x, z ) , u\. If U were observed, then the 
estimator proposed in (2.6.1) could be used by redefining FT as 17. Otherwise, U must 
be estimated. T hat is, we first estimate rhx (Tj) and rhz (T*) by nonparam etric regressions 
of X  and Z  on T  respectively. We compute r as a nonparam etric regression of Y  on 
(X ,Z,Ui) .  Then we construct (2.6.1) by replacing Wi everywhere with Ui = (Ux>i,UZ)i), 
where Uxj  =  X{ — rhx (T^), UZji =  Zi — rhz (T{). Consistency of the resulting estimator of the 
functions M  and H  will follow from uniform consistency of the nonparametric estimators 
involved.

Recovery of the function H* will in general require some additional structure. Once 
M  (x, z) is known, it can be treated as an observed endogenous regressor, and estimation 
of H* (or any identifiable functional of H* th a t are of applied interest) then reduces to 
estimation of a nonparametric triangular system. Examples of estimators of such systems 
are Blundell and Powell (2003), Imbens and Newey (2002) and Chesher (2001).

F u r th e r  T e s tin g

In production theory, homotheticity of production functions can be assessed by comparing 
the estimated component F  with the parametric model, F  (L ) =  L.  The assumed separa­
bility may also be tested by comparing the unrestricted nonparam etric estimator r ( k ,L )  
with the implied estimator for r given by the proposed structure, th a t is, r{M  (fc, L )). Such 
tests can be performed as in Gozalo and Linton (2001), by using asymptotic critical values 
or by direct implementation of their bootstrap procedure. Nonetheless, their theoretical 
justification in our framework would require considerable further work, and it remains a 
topic of future research.

10In production theory, they could include investment as in Olley and Pakes (1996), or intermediate inputs 
as suggested by Levinsohn and Petrin (2003).

“ Assumption (2.6.2) also yields a nonparametric triangular system similar to Newey, Powell, and Vella 
(1999) and Imbens and Newey (2002)
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A ppendix

2.A  M ain Proofs  

Preliminaries

We use the notation as well as the general approach introduced by Masry (1996b). For the 
sample {Yit X it Z i } ^ v  let Wt = (X T ,Z i )  so we obtained the p i-th  order local polynomial 
regression of Y{ on Wi by minimizing

Qr,n{e) = n - 1 h ^ d+1) Y j K j
1 = 1  '

W i - w
hi

(2.A.1)

where the first element in 6  denotes the minimizing intercept of (2.A.1), 9q, and

1 d ^ r { w )
v\ =  — —

J j !  d ^ w i  • • • d i t W d d i ^ W d + i  

We also use the following conventions:

d-f-l

j =  ( i l l  • • - , j d , j d + i ) T  , j !  =  j i !  X  . . .  x j d  X  j d + 1 !, | j |  =  5 ~ 2 j k

k=l

aj =  a f  x . . .  x a3dd x a j f t
Pi k k k

E = E E - E  E
0 < L j | < P i  k=0ji=0 jd=0jd+i=0 

ji+—+jd+3d+l=k

where w = (zT ,z )T . Let N r>̂  =  (1 +  fc — 1)!/(/! (fc — 1)!) be the number of distinct 
k — tuples j  with | j |  =  I,  where k  =  d  +  1 . After arranging them  in the corresponding 
lexicographical order, we let denote this one-to-one map. For each j  with 0  <  | j |  < 2 p i ,
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let

(ATi)= [  v?K\ (u) du,

(ATi)= [  v? Kl { u) du ,
JRd+i

7k, \ ( K i) =  /  /  (wd» ui)k (wd> ^l)1 Ki  {udi ^l) K i  i'U'di'Ui) du\du\, and
JRd Ju JR

7 k , l ( ^ i ) = /  /  /  (ud> wi)k (̂ d> wi)1̂ !  (ud, ui) ATi (ud, ui) duddud,
JfH Rd

where and ui  represent the first d and last element of the d +  1 vector u respectively. 
Define the N r x N r dimensional matrices M r and r r , and the N r x N r^p 1+1) m atrix Br by

M r =

Mr-r;0,0 Mr-r ; 0 , l Mr-r;0,pi

Tr =

Mr;l,0 M r;i,i l^rjljPi
>

_ M r;Plio M r;p1(i . ..  M r;pi(Pl _

IVjo.o r r;o,i • • r r;0,Pi ^^r;0,pi + l
r r;i,0 r r;i,i .. r r;l,Pl , Br —

^^r;l,pi + l

rV;piil . . r• a t-;pi.pi . .  ^^r;pi,pi + l

(2 .A.2 )

where N r = Y ^ L o N rt(i), and T r]i j  are N r^  x N r ^  dimensional matrices whose
(Z,m) elements are and respectively. T j and are defined similarly
by the N r^  x N r^  matrices 1^ . ,  whose (Z,m) elements are given by
and 7^.^) ^.(m) respectively. The elements of M r = M r (K \ ,p i )  and Br = Br (K \ ,p i)  are 
simply multivariate moments of the kernel K\.

Similarly, for the generated sub-sample set {s{X i ,Z i )  , r ( X i , Z i )  ,Z j}”=1, an estimator 
of the function q, defined as q (t, z) = E [ S \ r  (X, Z)  = t, Z  = z\, is obtained by the intercept 
of the following minimizing problem,

Qq,n(e) = n - 1 h ? Y j K 2

1 = 1

V i - v
h2

S i -  E  * i ( £ - ”) J
0 < | j | < P 2

where Vi = ( r i ,Z i)T and v = (t , z )T , define Vi =  { r^Z i )T accordingly. Let N q̂  = 
(I + k — 1)!/(Z! x (k — 1)!) be the number of distinct k —tuples j  with |j| =  Z, where k =  2 . 
After arranging them  in the corresponding lexicographical order, we let 0j-1  denote this
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one-to-one map. For each j  with 0 < |j| <  2 p 2 , let

/ij {K2 ) =  /  ui K 2 (u) du , and 
J& 2

7j (K2) = f  u3K l  (u ) du.
J  3?2

Define the iVg x iVg dimensional matrices Mg and Tg, and the Nq x Nq (p2+i ) m atrix Bg by

M ?;0,0 M 9;0,i ^Vtg;0,p2

M q = M 9ll,0 

. M g ;p2)o

M g;!,! M g ;l )P2

Mg;p2jp2 _

5

r 9;0,0 r 9;0,l •• q̂;0,P2 ■^9;0,P2+i

r *  =
r 9; 1,0 r 9;i,i •• q̂;l,P2 5 B g  — M9I1.P2 + 1

. ■̂19;P2,o ■^9;P2,i • ■ rA 9;P2,P2 J . ^9;P2,P2+i

(2.A.3)

where -^9,(0 ’ an<̂  are -^9,0 ) x -^9,(fc) dimensional matrices whose
(Z,m) elements are (/)+<£,.*(m) and 7<k,: •,•(/)><£<,* (™) respectively. The elements of M g =  
M 9 (AT2>P2) and Bg =  Bg (K 2 ,P2 ) are simply multivariate moments of the kernel K 2 . To 
facilitate the proof, let £ 2,1 (u) be a N q x 1 vector, (v ) be a N q x 2 matrix, and Mg)Tl (u)
be a symmetric N q x N q m atrix such that

IC2,i (v) =

^ 2 ,i-,Q (v) 
^ 2,i;l (v)

. ^ 2,i;p2 i.v ) .

. M  =

^ 2,i;0 (V) 
^ 2,];! (V)

/C(1)
2,i;p2 M  .

(2.A.4)

M g >n (V ) —

{V) M g)n;0,l (U) . . . IVIg^jO^ {v)
M g )n;l,0 i v ) M g in;l (l  (u ) . . .  M g )Tj;l )P2 (u )

.  Mg,n:p2,0 iV) Mg)Tl;p2)l (V) . . .  M gtn;p2]p2 (V) _

where K-2 ,i;i (v) is a N q ^  x 1 dimensional subvector whose Z°-th element is given by [JC2 ,i-i (^)]jo 

=  ((Vi — v ) / h 2 )^q,l(l } K 2((Vi — v ) / /j-2)• The N q ^  x 1 m atrix JC^h (v ) has 1° element being 
the partial derivative of [K,2 ,i-i (t , z )]l0 with respect to r, and (v ) is a N q ^  x N q ^
dimensional subm atrix with the (Z, Z°) element given by

[M 5 ,n ;^W ]i,(< > -nft2 E (  h 2  )  K 2
i=l h2
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/C2|< (v ) and M 9>n (v) are defined similarly as K,2 ,i (f) and M g>n (v ) respectively, but with 
the generated regressors {ri}^=1 in place of the unobserved variables {n lJL j. Let us define
the functions K,2 , i{z) =  J  h2 lK,2 , i{t ,z) dt and £ ( t ,z)  = d  [ fv  {t, z) q2 (t, 2:)] 1 /dt ,  which
are well defined given Assumptions (E l) and (E2). Thus, by integration by parts, it follows 
that

r(x,z)

J  h i 1 £ 2 }  (*>z ) [ fv  (*> z ) Q2 (*» z ) \_1 dt = {^ 2,i (r, z) [fv  (r, z) q2 (r, z )\_1 -  /C2,* (ro, z) x
ro

r(x,z)

[fv  (ro ,2)g2 (r0,z ) ] -1 } -  J  JC2,i (t, z) C (t, z) dt
ro

= e h  -  e h -  (2 .A.5)

Similarly, let us define dQ (t) = 1 (ro < t < r (x, z)) dt, so we write

h2 I/C2)i (*, z) [fv  (t, z) q2 (t, z )]_1 dQ (t) = el,i ~  el,2 ,/
where e h  and g j 2 are like g®̂  and £?2 in (2 .A.5), but with K 2i (r, z) replacing K,2 ti (r , z ), 
where K, 2 i (r, z) = £ 2,1 (s, z) ds, a N q x 1 vector with well-defined functions as elements
by virtue of Assumption (E l). Furthermore, (r >z) converges to M* Qf y  (r , z)
in mean squared, where M * 0 is a N q x 1 vector with Iq element given by f  u ^ :dl°^K2 (u ) du, 
and K 2 (u ) — f ^ OQK 2 (v)dv.  Similarly, Ti~l h ^ 2 H=lK 2 ,i { t , z )  converges in mean squared to 
M %  f v ( r , z ) .

Let also arrange the N r ^  and N q̂ m) elements of the derivatives

D mr(w )  =   ----- ------------------, D mq(v)  =  ----------------  for |m | =  m

as the iVr (m) x 1 and N q ^  x 1 column vectors (w ) and q(m) (v ) in the lexicographical
order mentioned above.

Let i\ =  ( 1 ,0 , . . . ,  0)T E $lNr and i\ = ( 0 ,1 ,0 , . . . ,  0)T E $lNr, then by equation (2.13) 
(page 574) and Corollary 2(ii) (page 580) in Masry (1996a), we write

r (w )  — r (w) = i j  [Mrf  (iy)] 1 {1 +  op (1)}

+  I n  (w ) } ,x { n  l h l {d+l)^ j K.h j {w) 
j = 1

£r, i +  S  W  ~  W ) 1
| k |= p i + l

(2.A.6)
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s ( w ) - s  (w) = h Y [Mr /  (iy)] 1 {1 +  op (1)}- l

x n  1 h 1 {d+1) Y^ )C h j {w)
j =l

£rJ +  J 2  (Wi ~  W)1
| k |= p i + l

+  In  (w)

(2.A.7)

uniformly in w, where

In (w) =  (Pi +  1) n _1/ i^ (d+1)i  2 2  K i J  (w ) (W j  -  w )'
|k |= p i  +  l

f  {D^r(w  +  r  (Wi — w )) — D kr(w)}  (1 — r ) pi dr.
Jo

As before K i,* (w ), a N r x 1 dimensional vector, is defined analogously as K,2 ,i (^) in (2.A.4), 
with a N r^  x 1 dimensional subvector with l°- th  element given by [JCij-j (u>)]jo =  ((W* — 
w ) / hi)^1"’1^ 0 )K \  ((Wi — w ) / hi ) ,  such tha t n - 1/ i ^ d+1  ̂ ,j (w) converges in mean squared
to 'M.rfifw (w)- Define 7  (w) =  E  [yn (w)], then by Proposition 2 (page 581) and by Theorem 
4 (page 582) in Masry (1996a), it follows that

supIt M  I =  o ( h f +1),
w

su p |/i^ pi+1 7̂n (w) — 7  (w) | =  hpl+1Op(n- 1/2Zi^d+1̂ 2V/inn). (2 .A.8)

Let

Pn (w ) =  n 1 h 1 (d+1) 2 2  (w ) j"; ^ 2  D *r (w ) (w i ~  w )k » and
3 = 1 |k |= p i + l

P (w ) =  B rr(pi+1\ w ) f w  (w) ,

then by Theorem 2 (page 579) in Masry (1996a), it follows th a t

s u p \ h ^ Pl+1  ̂Pn (w) — P (u>) | =  Op(n~1^2 h ^ d+1^ 2 y/lnn). (2.A.9)

For the set {V ,̂ M i} ”= 1 , as discussed in the main text, an estim ator of the function H  is 
obtained by the intercept of the following minimizing problem

QH,n(0) = n 1 h * 1 22k*
i = 1

Mi — m
hit

0 < j< P *
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Because this is a simple univariate nonparametric regression, its associated matrices M h , 
M j j Q, T h , B Hi M # )n(ra), and vector fC*j.ti(m)  have simpler forms. They are as
those previously described but replacing the responses by Yi and the conditioning variables 
by Mi  or Mi  accordingly.

Proof of Corollary 2.2.2

As before, given Assumption I*, it follows th a t s ( x , z ) =  h[G (x) F  ( z) \G (x) f  (z), con­
sequently <7 (M o) = h [H~1 (£)] H ~ l (£) [f (zo) / F  (zq)\, and using the change of variables 
m  = H ~ x (t ), after noticing tha t h \ H ~ l (£)] =  h  (m) and dt = h (m) d m , we obtain

r(x,z) r(x,z)
f  d t f  Fjzp)

J q( t , zo)  J  h [ H- 1 (t)) H ~ l (t) f  (Zo)

This proves the result.

H l (r{x,z))

=  J  h ( I ) m } ( z 0) h i m ) d m
H~  i(rx)

=  [7 ^ ]  Pn (H '_1 Ir (*> *)D ~~ln (H ~ 1 tr iD]

=  In (M  (x, z)) = ln (G (x) F  ( z ) ) .

Proof of Theorem 2.4.1

Rearranging terms, we have

M
rr(x,z) Jt

(x , z)  — M  (x, z) = /
J  T[

/  rr\x,z)  r

\ J r n  J r  t

M x , z )  d t

r0 2 (Mo) J r 0 fl(Mo)
r(x,z)y dt ^  { q ( t , z o ) - q ( t , z o )f r { X > Z )  /

q ( t , z 0) Jro V <7 (Mo) g (Mo)
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By mean value expansions of the first term, in the last equality above, and after some 
manipulation we obtain,

M  (x , z) -  M  (x, z) ^  1 (r (x , 2) -  r  (x, 2)) +  f  g (^^o) q ^ ,Z°^dt (2.A.10)
Q v  1 Zo) Jr0 9 (M o)
r W >  q (t,* D )-g (* ,zo ) _  (g ( t ,z 0) - g (<,zo))2

ir(x,») 0) J ro « (M o ) ? 2 ( t,z 0)
(2 .A.11)

-  A4i,„ (a;, 2 ) +  A f2,n (®, z) +  ^M ,n (®, z ) . (2 .A.12)

The terms in (2.A .10), A4i)n (z ,z ) and A ^.n  are linear in the estimation error from
the two nonparametric regressions, while the remaining terms in (2 .A .11), 72-Mn (^, z), are 
both quadratic in such errors, and thus they will be shown to be of smaller order. Af i,n (x, z) 
is just a constant times the estimation error of r (x, z), the unconstrained first-stage non­
param etric estim ator of r  (x, z), and under Assumption E, it can be analyzed directly using 
Theorem 4 (page 94) in Masry (1996b), given tha t q (r (x, z ) , z) >  0 over VPx x T hat is,

K ,  (x, *) -  A T 1*  (*.«>) -4 N  [0, qT ( ^ X \ x , z )  W r w X o  .

#4 (x, z) =  |^M“ 1B rr ^ 1+1  ̂ (x, z)]  ̂  ̂g-1  (r, z0) (2.A .13)

where [A]0 0 is the upper-left element of m atrix A. In order to analyze the second term, 
A42,n (2 , z ) , we first notice tha t for any two symmetric nonsingular matrices A\  and A2, we 
have tha t A ^ 1 — A ^ 1 =  A ^ 1 (A 2 — A{)  AJ"1, which implies

q{t, z) q (t, z) = ^  j ^  ^  1 ^  +  1 ^  ^ 2  1 ^

= 4 (w) [ q 2  M ]_1 Vg.n (v) + 4 Mg,i («) [ q 2  (*>)] _ 1  V q ,n  (v)

q2 (t ,z)

+  4 (v ) [q2 (v)] 1 Bq,n (v)

= 4  [fv {V) q2 (v) M j 

+  4  [fv (v) q2 (v) M q] ' 

-  4  [fv  (v) q2 (v) M J'

-  4  [fv (v) q2 (v) Mg] '

-  4  [fv (v) q2 (u) Mq\ '

V g,n (v) + 4  [/v M 92 (v) MJ 1 V * n  (v)

B q,n (v )

Mq>n (v) -  f v  (v) M ,] M " i  (v) Vq,n (v) 

M q >n (v) -  f v  (v) Mg] M " i  (v) Vq*tn (v) 

Mqtn (u) -  f v  (V) Mg M~1 (v) B q,n (V)

— -̂ 9,n,l {v) “I" ^ 9,n,2 {v) d* -̂ g,n,3 (^) -̂ g,n,4 (^) (v) -̂ g,n,6 (,y)
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where M g is defined in (2. A.3). We have also defined V q,n  (v) = VqiTl (v ) +  V*n (u), where 
the N q x 1 vectors Vq,n (v ), V*n (u), and B q̂n (v ) are

n

Vqin (v) = Tl~l h~2 ^  jC2,i {v) £qj,
i=1 
n

Vq% («) =  n - ' h - 2 Y ,  « 2,i («) [Si -  $]■
i=1 

n

Bq,n (v) =  n~ l h ~ 2 ^ 2  ^ 2 ,i (v) Ag>i (V) , and
i =  1

0<|m|<p2

C o n seq u en tly ,

M i n  ( x ,  z )  =  T q tn ti  (X, z )  +  7^ „,2  ( z ,  * ) +  T q^ Z (x ,  z )  +  H q,n  (X , z )  ,

w h ere  7 ^ nj/ ( x ,  z )  =  /  T9)Tl)/ (£, zo) d Q  ( 0  f ° r / =  1 ,2 ,3  a n d  dQ ( t ) =  1 (ro <  t <  r (x , 2:)) dt. 
T h e se  te r m s, a lo n g  w ith  th e  rem a in d er  'R,q n̂  (x , z )  =  Y 2 i=4 f  ^ g ,n ,l  (^5 z o ) dQ  (<) are d e a lt  w ith  

in  L em m a s 2 .B .1  to  2 .B .4 , from  w h ich  w e  c o n c lu d e  th a t

M 2„ ( x , z )  =
E  [r(» '+ 1>(X, Z)g ,  (X,  Z ) \ r  (X , z0) = r , Z  = z0]

q2 (r, zo)

E  [ r< f+1>(X, Z)g„ (X, Z ) \ r  (X,  z0) = r0, Z  = z0]

+ / i f

q2 (ro, zo)

E  [r<»+1)(X, Z )I r  (X,zp)  = r , Z  = z0] 
q2 (r, zo)

E  [ r ( « +1)(X, Z ) \ r  (X,  z0) =  r0, Z  =  z0]
q1 (ro, zo)

r(x,z)

+  A «+ 1tj M - 1B , j  ^  dt +  oP( n - 1/2f tr (<i+1)/2)
ro

=  /ij1+15 i  (a;, z) +  h \ l h2 B2 (x , z) +  /i22+1#3  (z, 2 ) +  op(n_ 1/ 2/ i ^ d+1^ 2).
(2 .A .14 )

F inally, th e  la st term  in  (2 .A .12 ), 7Im , t i  ( x , z )  =  O p (u i n ) O ^ h ^ v i n  +  h ^ ^ i n  +  ^2n) +  

O p (( f i2 1v \ n  +  ^ r ^ i n  +  ^2n )2), by T h eorem  6 (page 59 4 ) in  M asry  ( 1996a) and Lem m a

2 .B .5 . T herefore, it  follow s from  A ssu m p tion  (E 5 ) th a t 7Z m ,u  (x > z ) — op(n - 1/ 2/iid+1^ 2). B y  

grouping term s, B m  (x , z) =  h i 1+1B i (a;, z ) +  h ^ h 2B 2 (x , z )  +  /i22+1#3  ( ^  2 ) +  h i 1+1#4  (x , z ) , 

we con clud e th e  p roo f o f  th e  theorem .
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Proof of Theorem 2.4.3

As before, we write

T O —1

= I'J [ fM{m)MH\

-  [fM(m)MHY

-  t'J [/mNM/j]'

= I'J [ fM{m)MH]' 

+ I'J [ f M( m) MH]~

-  t j  [fM{m)M ff]'

-  •'I [ /m ("2-)M//]"

.T

VH,n{ m)  +  lJ  [ f M( m) MH] 1 B H,n ( m )  

|M tf)U(m) -  / m H M / / J  M H]n{m)VH,n(m) 

|^M/f)n(m) -  /m H M # J  M H]n{m)BHln(m) 

Vff,n(m) +  i j  U m M M h } - 1 V ^ n(m)

BH,n(m )

M ^ n(m) -  f M( m ) M H\ M ^ n(6)fe,n(&) 

-  / M(m )M #] M ^ n (m )V ^n (m) 

M/f,n(m) -  / m M ^ n(m)JB//iTl(m)

=  i(m ) +  T/f)n)2(m) +  Th ^ M 171) ~  'r H,n,4(m ) ~  T ^>ni5(m) -  Th^ M 171)̂

where

V f f .n M  =  V H ,n { m )  +  V ^ in(m ),  
n

V//,n(ra) =  n - 1 / ^ 1
i=l
n

Vff,„(m) =  n ~ l h~x Y  and
Z=1

n

B h A 171) = n ~ l h y l ^ K * yi{m)&HA{m), with 
i=l

Atf.i(m) = H { M i ) -  Y  ^ H i r n i / d m ^ M i - m y .
0<j<p. 3’

We analyze the properties of T ^ n)/(6), / =  1 , . . . ,  6 in Lemmas 2.B.7 to 2.B.10, which show 
th a t Ttfin)i(m ) =  Op(n_ 1/ 2h7 1/2) and tha t TH,n,2 {m) BH2 (m), THyn^{m)  B/ / 3 (m),
where

S „ 2 (m) =  - i J M ^ M ° HfiE  [ i f '1) (M (X, Z)) /3 (X, Z )| H  ( M  (X,  Z)) = m  

B H3  ( m )  =  ( m ) ,
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with P (w) =  f  B (x, z) dP\ (z) +  J  B (x, z) dP2 (x) +  /  /  B (x , z) dP\ (z) dP2 (x) which is 
O (h j) by construction. By defining Bh (m) = B h 2 ijn) +  B r z  (m ), the proof is completed.

2.B Technical Lem m as

L em m a 2.B .1 Under Assumption E, we have

sup |Tg>n)i (t , z )| = 0 P (h 2 1uin +  n-1/2̂ 1 Vhvn) , and (2 .B.1)

r(x,z)

J  T,,„, 1 {t, z) dt = Op ( n - l/ 2 h i (d+1)/2} . (2.B.2)
r o

Proof. We may rewrite

n n
Vq,n (t , z) = n h ^ 2 Y 2  ^ 2,i (v) eq%i +  n h ^  ^ 2 ^ 2 ,i (v) -  JC2,i (u)]e9,i-

i=l i=l

Then, by Theorem 5 (page 593) in Masry (1996a), it follows th a t the first term  is

n

n h i 2 ^ 2  ^ 2«* =  Op ( n ^ ^ h ^ V l n n j  .
i= i

In the other hand, after a Taylor-series expansion, the second term  is bounded by

n

n h 2 2 ^ 2 i ^ 2 ,i M -  /C2l* (v)]e9li
i = 1

n

< {n_ 1h2 3 ^ | / C ^ ( t , 2:)||£9)i|} max \r{ -  n \  +  Op ( t q ‘2v 2n)
’ l<i<n%—i

=  Op(h2 1V\n) +  Op(n_1/ 2/ i ^ d+1^ 2), 

by Assumption (E5(ii)). After collecting terms, (2.B.1) follows.

By using (2.A.6 ), we further write 

%,n («) -  v,,„ (v) = [V„,nfi (v) + Vq,n,c (v) + Vq̂ d M ] {1 +  op (1)} +  0p( n - 1/2ft-(d+1)/2),
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where

n n
V ^ i  (v) -  n - 2f t-(<i+1)ft2- 2 (Wi, Wj; v ) ,

i= 1 j= l
n

Vgyn,c (v) =  n _ 1/i2 2 h 2 lK%i (u) eq,iPn (W j), and 
i=l 
n

Vqyn,d (v) = n ~ l h2 2 5 3  ^2 (V) ff9.i7n (Wi) J 
2=1

and, we define

S n  (Wi, W j;t>) =  ( » )  ^  [M r/ (Wj)j- 1 K \ j  (Wi) £,,i£ r j ,

A.(to) =  n - 1^ (,i+l)tI'[Mr/ ( t i ; ) r 1^ A C i j ( « ; ) i  £  D \ ( w )  (W< -  w f , and
J=1 ' |k|=pi+l

7n  (« 0  =  [M r /  (w ) ]_1 7„  ( i u ) .

Thus, we have

J T q yn , 1 ( t i  z )  dQ (t ) =  T q yn yi a +  ( T q ^ u ,  -f T q yn y\ c +  T q ^ i d )  {1 +  Op  (1)} +  Op(n_1/2/l1 (d+1^ 2)} 

where

1 n ^
Tq,n,la =  ^ j ^ 2 £QAL2 M q 1 J  (V) [fv (v) q2 (v)] _1 dt,

i=1 r0
r(x.z)* n n f

T"'n'u =  2 t ( W ) t 2 E E ^ X ’ /n h x h 2 i - i  j =i ^

n r (x ’z)

TJ.n.lc =  ^ 2  5 3 £9.**2*M g 1 J  h 2 (V) Ai (Wi) [ /y  (t/) tf2 (v)] dt, and
2 i=1 r0

n r(x’z)

7 9,n,id =  J  h2 l K {2 l { v ) i n ( W i ) [ f v { v ) q 2 {v)]~l dt.
‘2 1= 1

7-0

Firstly, by the Law of Iterated Expectations, notice th a t E  [7^n)ia] =  0. While using
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representation (2 .A.5), we are able to rewrite

n n
T q fn ,la  =  Tl' 1^ 1 ^ i . l  +  n _ 1  X }  ^ 2  V , 2

x=l i=l
=  7"(̂ ) _i_ n~(H)<7,n,la ' q,n,lo’

By another change of variable and integration by parts, it is not difficult to see tha t T ^ J \ a = 

Op (n -1 / 2/^ ) which is clearly op(n- 1/2/ i ^ d+1^ 2). Moreover, T ^ la satisfies the Linderberg- 

Feller Central Limit Theorem by virtue of Assumption E (see Hardle (1990)), thus =

Op (n -1/ 2) and we conclude tha t y jnh f+1Tq)ntia = op (1).

Now, under Assumptions (E l) -  (E5), it is straightforward to  extend the proof of Lemmas 
3.1 (page 24) and 3.3 (page 26) in Lewbel and Linton (1999) to show th a t

t =

= op( n - 1^ h ^ (d+I)/2).

Let /3 (w ) = i j M ~ 1B rr(pi+1) (w), then

su p |/i^ Pl+1 /̂?n (w) — (3 (w ) | =  Op(rT l / 2 h ^ d + l ^ 2 Vln n),
u>

by (2.A.9). Therefore, we write (recall v = (t , z ))

W  =  ^ ? , i c  +  ^ " L  

T$,lc  =  ^ 1+1™ -1^ _ 2 E % i ‘2 M " 1
i= 1

— hPl+1n ~ l h ~ 2 £ i J M - 1 q ,n ,lc  1 71 n 2 /  £ q ,iL2 iV1q
i=l

x I  h ^ 1 I C ^ ( v ) ( h ^ pl+1% ( W i) - 0 ( W i ) ) l f v ( v ) g 2 (v)]-1 dQ ( t ) .

Recall eQii = gq (Wi) +  rji with E  [r]i\ Wi] = 0, then we further write

T ^  =  T ^ -0 ) _i_ 7"(7_b) whereq ,n ,lc  ~  q ,n ,lc  +  J q,n ,lc  > w n ere

^!n7c =  K +ln - % 2 J 2  g,  (Wi) 4 ( Wi )
x=l 
n

-  h ? +1n - 1hZ1 '52g ,  (W i) i j M ^ h ^ e U i W i ) ,
1=1
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and Tqn ^  is like T^n^ ! , but with r)i replacing gq (Wi). It follows by Bochner’s Lemma that

\ E  Z)gq (X,  Z ) \ r (X,  zp) =  r , Z  = zp]
\ n , l c  h l  ‘2 M <J M ?,0 ? 2 ( r ,2 0)

E [ i j M - 1B rr ^ ) ( X , Z ) g q ( X , Z ) \ r ( X , z 0) =  r 0, Z  =  zo]]  , , - i n ^ - ( d + W ,
27 \ °p\n )

T  (r 0 , zo)

= hpl+lBi  (x , z ) + Op(n_ 1/2h ^ d+1^ 2), by Assumption (E5(iii)).

Similarly, by construction T^n ^  has mean zero and by the Cauchy-Schwarz inequality,

l^.nTlcI =  Op( h f + 1  n ^ V )  +  Op( f t f + 1n - 1/2)

=  OpCn-1/2^ (<!+1)/2),

by Assumption (E5). W ith regards to ' g >n j c, this term  may be w ritten as

T (II) _  , T (//-»)
q ,n ,lc  q,n ,lc q ,n ,lc  ’

which are like ^  and , but with h ^ Pl+1 /̂3n (Wi) — (3 (Wi) replacing (3 (Wi). Then
by using similar arguments as above, we can show that

T q{!r!,ic a) =  Op(/ipl+1)Op(n "1/2^ (d+1)/2v ^ )  +  Op( h f +1h2)Op(n -1/2h " (d+1)/2V/h ^ )

=  op(hPl+1/i2) +  op(hp l+ 1  h \ ) , by Assumption (E5(ii)),

=  op(n~1^2 h ^ d+1^ 2) by Assumption (E5(iii)).

Define 7  (w) = E  [7n (u>)], then by result (2.A.8), it follows th a t 

sup|7 (ry) | =  o(hPl+1), and
w

|^-(pi+i)~^ ^  | =  /^ 1+1Op(n- 1/ 2h ^ d+1)/2\/In  n) uniformly over w.

Therefore, we write
n~   'T'CO 1 q ~ {H )
I q ,n ,\d  q ,n ,\d  ' <7,n ,ld ’

Where r q!n,ld an d  Tq[n,ld are  Hke ^ n , l c  and  Tg,n!lc’ b u t  w ith  7  (W*) an d  / ^ (Pl + 1)7n (W i) -  

7  (Wi) replacing ft (Wi) and h ^ pi+1^pn (Wi) — (3 (Wi) respectively. Then by the Cauchy- 
Schwarz inequality,

I n i d i  =  hPl+10p(n- 1/ 2hi’^ +1^ 2) +  hPlh2 0 p(n~1/2 h i^d+1^ 2) by Assumption (E5(iii)).
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Similarly, by Assumption (E5(ii)),

=  o r i n - ^ h ^ 2).

Thus, \ J n h f +lTqtn>ld =  op (1). ■

L em m a 2 .B .2  Under Assumption E, we have

sup |TgiTl)2 (t, z)\ = Op (hj uin) , and (2.B.3)
t , Z

r(xjz)

j  T„,„,2 (t, 2 ) dt =  Op ( n - 1''2h ^ (,i+1)/2)  . (2 .B .4 )

ro

P ro o f. Let Si — Si = |i) l1,0lr (A*, Zj) — Z>l1,0lr (Xi, Zi) |. Then, by Theorem 6 (page 594) 
in Masry (1996a),

max |Si -  Si\ = Op (hx 1 vln)l<i<n
We now write

V ’n (v) =  n t q -2 J 2  «2,< W  (Si -  Si) +  n h j2 £ [ K 2,i (v) -  K 2,i (« )]($  -  Si).
i = 1 z= l

The first term  is clearly

n

n ^2 2 ^ 2,i (u) {Si — Si) = Op ( h ^ u i n )  uniformly in v.
i= i

The second term, after a Taylor-series expansion, is

n

nhJ 2 £ [ & , i  (o) -  >C2.i (u)](Si -  Si)
1=1

n

< {n~l hz 3 ^  |/c£? (t, z ) |} mac |r* -  r f | max #  -  Si +  Op (h f  V n )  Op {h^'2^in) ,l<i<n l<i<ni=l ---  ---
=  Op (h 2 1 uin) Op (hj 1 uin) +  Op (/ij 1i^in) Op (h2 2 vln) , by Assumption (E5(ii)), 

=  op(n~1/ 2h 7 (d+1)/2).

Therefore, (2.B.3) follows immediately.

We write

n :»  ( « ) = K n,a w + w + v,:„,c w i  { i + op ( i ) } + o p tn -1/ v * " ) / 2)
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by using (2.A.7), where

(«) =  n~2 h ! (d+2)ft2 2 £  “ n (W<> ^  “ ) ’
i=l j= l

n

( « )  -  n - V  £  K 2li (b )  f a  (W .), and
Z=1

n

vjn.c (”) = V  Y .  £ * .<  M 7 n  (Wi)
i= 1

with

s ;  (Wi, Wj; v) = K 2,i (v) t ; 1 (Mr / W (Wi) ] " 1 £1  j  (Wj) er j ,
n

f a  (w) =  n "  (Mr / W (w) ] - 1 5 ]  ACu- («,)
j  = l

x — ^  D kr(iy) (Wi — w)k , and
|k|=pi+l

7 ;  (w) = [Mrf w  M p 1 7n ( w ) .

Thus, we have

J T q , n ,2  (t , z) dQ (t ) — (7 ^ )Tl)2a +  Tq,n,2b +  % ],n,2c) {1  +  Op (1 ) }  +  Op(n 1^2 h 1 (d+1^ 2)}

where

r(x,z)
1 IV IV A

r? 'n'2a =  2 ,(d+2 ) ,2 £  £  *2 1 /  w ,  ^ «) [ /v  w  «2 w ] -1  * ,
71 h l h2 i=1 j =1

n r X̂’̂
r , , „ l2t =  ^ ? ^ t2T M - 1 J  h ^ K 2 , i ( » ) f a n ( W i ) [ f v ( v ) q 2 ( v ) } - 1 d t , m d  

1 2 i=1 r0

n  r x̂,z)

r ,,n,2c =  ^ 2  £ * 2  M ,-1 J  h ? K 2 ,i (b ) %  (Wi) [/„  (b )  q2 (b ) ]  - 1  d t .
2  1 = 1  1 1  r0

Using (2.A.5),

j  h i xa'n (Wi, Wj; v) [ fv  (v) q2 (b ) ]  _1 dQ (t)

= an,i (Wi> Wj-; r, r0, *o) ~ a£,2 W> W};H) ,  *o),
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where

a n,i (W*> W j \ r, r 0, z0) =  Q i^ i?  [Mrf w  (Wi)]-1  JCij (Wi) er j , and 

a n,2 (Wi, Wj\r ,  r0, z0) = g\ 2^ T [Mrf w  (Wi)]-1  fCij (Wi) £r>j.

By the Law of Iterated Expectations, E  [a*^] =  E  [a£)2] =  0, and by applying a second 
order U-statistic theory for random samples (e.g. Powell, Stock, and Stoker (1989)), it is 
not difficult but lengthy to show that

T,,n,2a =  Op( n - % ^ m ) + O p( n - l h ^ d+2)/2h2).

Thus, by Assumption (E5), J n h d+1 Tqf,^a =  op (1).

By (2.A.9),

sup|A^pl+1*/9* (w) -  /3* (w) I =  Op(n~1̂ 2hi^d+1^ 2 V lnn),
W

where (3* (w) = *,*TM “ 1B rr(pi+1)(iu). Therefore, we write

Tq,n,2b =  T q J j b  +  ^g,n,26> w h ere

4 m - 1 f  h2 l K 2<i (v) r  (W i) [ fv  (v) q2 („)] - 1 dQ (t ) ,
1 = 1

C  = ̂ n'V E ^ '
t=i

X J  h z lK.2,i (v) (/£<*+»%  (Wi) -  f  (Wi))[fv  (v ) q2 (u)]"1̂  ( t ) .

Then, by using representation (2.A.5), we may further write

r , (,u ,26 =  n - ' h ^ h ?  J 2  ‘2 M t ' e U '  (Wi) -  n - ' h f  J 2  ‘2 M , - 1h 2- 1e},2^* ( W j ) .
i=l i=l

The right-hand side of the above expression converges in mean squared to (by Bochner’s 
Lemma)

E  [ i j M ^ B r r b ' + V j X ,  Z)  | r ( X , z 0) = r , Z  = z0]
Q2 (r, zo)

E  [ t j M " 1B rr ^ +1)(X, Z )| r  (X, z0) = r0, Z  = zo]
Q2 (ro, z0)

= / ii: h2#2 (x ,z)  +  op(n~1^2 h ^ d+1^ 2), by Assumption (E5(iii)).

+  op(n- 1/ 2h -(d+1)/2)
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Furthermore, T ^ 2h is like 7 ^ 2b, but with hx (pi+1)/3* (w ) - 0 * (w ) replacing 0* (Wi). Then, 
it follows by Cauchy-Schwarz inequality, that

I r fn lb l  = 0 , K 1A j)0 ,(n -1/ sf tr<‘'+1)/2v ^ )  +  Op(h\ lhl)Op( n - ll2h ^ i + m s/ ta^ ) ,

=  Op(hi1 h 2 )op (h2) +  Op(/iPlh2)op (h2) , by Assumption (E5(ii)),

=  Op(n_ 1/ 2h1 (d+1W2) by virtue of Assumption (E5 (iii)).

Consequently, \ Jnhd+lTq^ 2b =  Op (1).

Define 7 * (w ) = E  [7 * (iu)], then by result (2. A.8), it follows th a t 

sup|7 * (w ) | =  o(hpl+1), and
w

|h 1 P̂1+ 1̂ 7„ (w ) — 7 * (w ) | =  hpl+1Op(n- 1/|,2h1 d̂+1^ 2 V ln n )  uniformly in w. 

Therefore, we write
7” r, =  n~U) A .q 'U U  ■*9,71,20 q,n,2c 9,n,2c>

where these two terms are like 7 ^ 26 an(  ̂ ^qnlb^ but 7 * WO anc* WO —
7 * (Wj) replacing /?* (Wj) and hj b>1+1)/?* (Wi) — 0* (Wi) respectively. Then by the Cauchy- 
Schwarz inequality,

l ^ (,n,2cl =  O r i h l ' h i ^ n - ^ h ^ ' 2)

+ Op(fJqh%)op{n~il ‘1h i^d+i^ 2) by Assumption (E5(iii)).

Similarly, by Assumption (E5(ii)) and (E5(iii)),

I ^ S c I  =  0 ^ h 2 ) h l '+1 0 T( n - V 2 h ; ( d+1)/2 V i ^ l )

+  Op{ h f h l ) h f +1 Op{ n - ^ d+1)l2^ )

= Op(n~1^2 h ^ d+1^ 2).

Thus, \J nh1+ Tq^n,2r_ =  Op (1). ■

Lem m a 2 .B .3  Under Assumption E, we have

sup |T, iBi3 (f, z) | =  Op fhP2+1)  > and (2.B.5)
t y Z

r(x,z)

f  r „,» ,3 ( i ,*) dt =  Op ( n - 1''2ft“ (t!+1)/2)  . (2.B.6)
ro
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P ro o f. Define
A ?,<M =  ? (V i) -  £  g £ > kg ( „ ) ( V i - J,)k ,

0 < | k | < p 2

and A9ii (i>) is like A q>i (u) but with V* in place of V{ =  (r Z i ) , Zi)T . Then by Assump­
tion (E4),

A ,, i ( » )=  £  i o V ) ( V ( - » ) k
| k | = P 2  +  l

for some v* th a t lies between Vi and u, also

A , , i W =  £  g£> k9( c * ) ( v ; - v ) k ,
| k | = p 2 + l

where v* lies between Vi and v. It is also clear that ||u* — t>*|| =  Op (I'in) and |A9ij (v ) | =  
Op{h22+1) for \ \V i-v \ \  < c/i2- These observations along with Assumption (E5(ii)) imply 
that

£  g O k? (S * )[ (» 5 -v )k - ( V j - » , ) k]
| k | = p 2 + l

+  £  g [ ^ k? (S * ) - .D k9 ( v * ) ] (V ;-v )k ,
|k |= p 2  +  l

=  Op{hp22uin) = op(n~1/2h ^ d+1)/2), 

uniformly in v and i such tha t ||Vf — u|| <  c/i2- So we conclude th a t

|A,,i (») | =  Op(h%+l) + ^ ( n - V V * * 1’/2) 

uniformly in v and i for \\Vi — v|| <  c/12.

We now write

B 9i„ {t,z)  -  B 9>n ( t ,z )  <  | ^ | $ 1 1^2,i ( t , z )11 mMcsup|Ag>< (v) -  A 9ji (v) | (2.B.7)

+  |  ^ 2  5 Z  |^ 2,» (*,*) -  ^ 2,i (*, 2 ) |  max sup |A g,i (v) |. (2 .B.8)

It is clear th a t (2.B.7) is op(n- 1/2h ^ d+1^ 2) . The order in probability of (2.B.8), after a
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Taylor-series expansion, is given by

n

{n~l h2 (*> *) 1}™ ^ -  ri\ “ “ C sup|A g j (v) I +  Op ( ^ :2^i„) max sup|A 9)i (v) |
*—* ’ l < t < n  l < t < n  v l < i < n  v
i = l

=  Op( /£ 1«/i„)0 ,(A ?+1) +  0 , ( h 2- 2^ „ ) 0 p( / ^ +1)

=  op(n- 1 2̂/ i ^ d+1^ 2), by Assumption (E5(ii))

Therefore,

sup |B 9in (v) I < sup |B qtn (v)| +  sup |B 9)n (v) -  B 9)Tl (v) I
V  V V

=  O p ( h ^ + 1 )  +  O p ( h ^ + 1 u l n ) ,

proving (2.B.5). Furthermore, we rewrite

T g , n ,3 ( t , Z 0 )  = /i?+1i2t M -1B ,9(«+i) ( t , z 0 ) q ~ 2  ( t , z o )

+ h l2+1i j M" 1 [B,,„ (t, z0) -  B , / v  (t, 2o ) ] ? (’’2 + 1 ) (t, zo) q~2 (t, z0)

+  0p( n - 1/2f tr<d+1)/2).

Clearly, the first term  of the above equation is O p ( h ^ 2 +  ), and the second is o p { h ^  ) by 
Corollary 2 (page 580) in Masry (1996a). Then,

r(x,z) r(x,z)

J  T q ^ ( t , z ) d t  =  h ^ + 1 i J2 M -'B , J  9y * - - +  o p ( n - ^ h ^ )

ro ro

=  (x, z) +  op{n~lf2h ^ d+l^ 2)

follows. ■

L em m a 2 .B .4  Under Assumption E, we have

re„,„ ( x ,  z )  =  (t, zo) d Q  ( t )  +  J T w ' S  ( t , z 0 ) d Q ( t )  +  J T q ^ o  ( t ,  zo) d Q  ( t )

=  op(n - 1/ 2/ i ^ d+1,/2).

P ro o f. A typical element of M 9)n (v) — M qiTl (v) is given by
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After a Taylor-series expansion of the last expression at Vi, it is not difficult to show that

SUp| [Mg)Tl)j k (£, z)]lj9 — (t, z)]j jo | =  Op (h,2 n) •
t,z

By the triangle inequality, we have

sup |M g>n (t , z ) - f v  ( i ,z )M 9| <  sup |M 9)n ( t , z ) - M q,n (t , z ) |+ s u p |M g)n (t , z ) - f v  (£ ,z)M g|.
t,z t,z t,z

The first term  of the right-hand side of the inequality is Op ( h ^ v i n )  = op (1), while the 
second is, by Corollary 2 (page 580) in Masry (1996a), Op(n_ 1/2/i2 1\ / ln n  +  h2) =  op ( 1). 
Furthermore, by Assumption (E l), M “ * (v) = Op ( 1) with probability approaching one. 
Therefore, results (2.B.2), (2.B.4) and (2.B.6) imply tha t

J  T,,„,4 (t, 20) dQ (t) =  op (1) Ov(n~ll2h1(d+1)l\

J  Tqns (t, zo) dQ (t) =  op (1) Op(n~1̂ h q <d+1 '̂2), and 

J  Tq,„,6 (t, z0) dQ (t) = o„( 1) Op(-nrll2h ^ i+i)l2),

respectively. ■

L em m a 2 .B .5  Under Assumption E, we have

sup \q{t, z) — q (t, z)\ = Op ( h ^ v i n  +  +  v2n) ■
t,z

P ro o f. This result follows from (2.B.1), (2.B.3), (2.B.5) and Lemma 2.B.4. ■

L em m a 2 .B .6  Let Assumptions E  and F  hold, then the estimators apx (x ) and ap2 (z) 
satisfies the following asymptotic expansions:

a Pl (x ) -  a Pl (z) =  1 i 1 +  °v (*)}

dPi (z)
j , h  —

j =l

n r r
I  h i 11Ci , j {x ,z )

j=1

+  J B ( x ,  z) dPi (z) +  RpltTl ( x ) ,

q ( r , z 0) f w  {x,z)_ ' r >3
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ap2 (z ) -  ap2 (z) =  i j M r 1 {1 +  op (1)}

dP2 (*)

3= 1

+  J B  (x, z) dP2 (*) +  # p 2)„ (2) ,

- r j

where op (1) ’s are uniformly in x  and z, and the remainder terms Rp1>n (x), and Rp2iU (z) 
satisfy

sup |RpllU 0*01 =  op(n- 1/2h* 1̂ 2), and
X

sup |-Rp2,n (2:)! =  op(ri~l t2h* 1̂ 2) respectively.
z

P ro o f. This result follows from Lemmas 2.B.1-2.B.5 and Assumption (F3). ■

L em m a 2 .B .7  Let Assumptions E  and F  hold, then

V n h .T H,n,i (m) 4  N  (o , J g  [ M ^ I W ^ )  .

P ro o f. Let Vn,n (wi) = nh~ l X)?=i (m ) £r,i> then we have

1 n ^
VHyn (m) -  VH,n (m) = (rn) -  /C*,i {m)]e:r>i

*  i = l

= J ?  E (™) W i  -  Mi)erii + Op (h ;2rfn)
* 1=1

=  E  (m ) W )  -  “ A W )]
* 1=1

“I- [ojp2 (^i) &P2 (^i)] \pi ^i]} £r,i

+  op(n_ 1/ 2hid+1^ 2),

where the second equality follows from a Taylor-series expansion and Assumption (F3), and 
the last by Assumption (F3(ii)). So,

T h ,ti (w i) =  TH,n,a (w i) +  T H)Tlfi ( m )  { l  +  o  ( 1 ) }

+  TH,n,c (wi) +  TH>n>d (m ) +  op{n~l/2h * l/2),
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where

EE [ f M { m ) M H] 1 a n (&, £ j \m ) ,
*=i j =l

n n
(2.B.9)

TH,n,c (m ) =  ^ 2  L* [ fM(m)MH] 1 /C $  (m) er^  (Wi) , (2.B.10)

TH,n,d M  =  - r j  2 J  ^  £ $  (m) er, A  (W -).
n  * i=l

(2.B.11)

We now discuss the properties of each term  above.

Firstly, let Ty/  and T #  be the sigma algebras generated by W T = ( X T , Z)  and r (W) =  
H  [M (W)] respectively, then by the tower property of conditional expectations, i.e. Theo­
rem (34.3) in Billingsley (1986), we have E [ e rj \ r  (Wi)] =  0, which implies tha t E fo] =  0 
by the Law of Iterated Expectations, where

where £* =  (W^T , er,i)T • Thus, by applying a second order [/-statistic theory for random 
samples (e.g. Powell, Stock, and Stoker (1989)), we can show th a t under Assumptions E 
and F,

— h* (wi) £r,i'

Therefore, by Theorem 4 (page 94) in Masry (1996b), it follows th a t

n

where g 2h  (b) = E[e2̂ \B (Wi) =  b\. The term  an in (2.B.9) may be w ritten as 

«n (&, b) =  oin (& ,£j\b) +  a ”  ( & , b) -  a Tnn  ( & , b) , with

q ( r i , z 0) f w  (Wi )£r'3' 
dP1 (Zi)dP2 (Xi)
q ( r i , z0) f w  (Wi)£rj’

THtn,b (m) = Op( n - 1/i"d/2^ " 3/2) +  O p ^ h - ^ h ^ 2) +  Op(n~l h : V2).
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Consequently, by Assumption (F3(ii)),

yjnh*THtn,b (m) = y/

+  y/nh+Op{n~l K l l l2h**t2) +  y/  nh*Op{ri~l h*2/ 2)

— Op{n~l^2h ^ 2h~l ) +  Op(n~ll 2h 1 lt2h~ l ) +  Op(n_ 1/ 2h“ 1) =  op (1).

Similarly,

/3 (w ) = J B (x, z) dP\ {z) +  j  B  (®, z) dP2 (x) + J  j  B  (x , z) dP\ {z) dP2 (x ) ,

=  O (hf) by construction.

Then, by Assumption (F3(ii)), (2.B.10) is h^Op{n~1l2h*3^2), so

y/nh*TH,n,c (m) = Op ( h ^ h ' 1) = op (1).

Finally, the term  (2.B.11) satisfies

n
n - ' K 2 Y .  Vm W M h ) -1 K?} (m ) er,iRn (Wi)

i=1

< 3 x sup |Rpun (®)| I  n ~ l h~2 J ]  L j  (m) er,i
I i=i

and the right-hand side is Op{n~lf2h ^ 1̂ 2) by Lemma 2.B.6, completing the proof.

L em m a 2 .B .8  Let Assumptions E  and F  hold, then

TH,n,2 (m) =  Op ( n - ' / V 172)  .

P ro o f. Firstly, max |H{M{)  — H(Mi)\ = Op (I'+n) by Assumption (12). Let
l< i<n

=  n - ' h ; 1 Y £ * , i ( m ) l H ( M i )  -  H(Mi)],
1= 1
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then after a Taylor-series expansion,

n

V 5 , n ( ™ )  -  VH,»(™) =  n - ^ K 1 Y  { « »  -  «.,<("»)} -  H(Mi)\
1=1

n

=  n - 1^ - 2 Y K S W W  -  M i -  H(Mi)\  + Op( h ; 2v f o
i—l

= Op(h~l v$n) + Op(h~2Vjn) = Op{n~1/2h 7 1/2), 

by Assumption (F3(ii)). Consequently, after a further Taylor-series expansion,

n

Th ,n,2 (rn) = n - ' h - ' Y & s M W M i )  ~ H(Mi)\ + op(n~l l2h : 112)
t=l

=  - n  1K  1 X  dHQ ^ [Mi -  Mi] +  Op (u2n) +  op{n 1/2h * 1/2)
i=l

=  - n ~ l K l X ^ , i ( m ) L f (1) (Mi) [Mi -  M {] +  O p ^ "1/ 2^ 172),
i=l

where the last equality follows from Assumption (F3(ii)). Therefore, by Lemma 2.B.6, we 
have

Th ,u,2 (m) = TH,n,2a (™) {1 +  Op (1)}

+  TH^2b  (m) +  TH,n,2c (m) +  Op{n~1/2h * 1/2),

where

- n  n

Th,n,2 « (rn) =  - - 2j - Y Y , 1* t o N M f f ] ' 1 <  (Wi, W y  m ) ,
U * 1=1 j =1

Th ,n,26 ("*) =  “ ^  (1) (M<) 0  (W ,),
i=l

1 ”
TH,n,2c (m) = — r Y 1'  [ /m M M /,] - 1 K , , i ( m ) H ^  (Mi) Rn (W i ) ,nh* . , 

1 = 1

with (5 (•), and Rn (■) defined as in Lemma 2.B.7, and

o£ (Wi, W y  m)  =  a l 1 (Wi, Wy, m) + a ;" (W i, W y  m)  -  a*„, n (Wi, W y m ) ,  with

dPi (Zi)
c t f ( W i , W y m )  =  h ? K , , i ( m )  [ ( Wi )  . r,„

J q{r i , zo )Jw {Wi)

(Wi, W y  m)  =  h ^ K , , i  (m) f  h ^ o j M ^ K i j  (Wi)
J q{ri,zo) Jw {Wi)

(Wi, W y  m) = K.,, (m) J  J  h ^ d+1h j  M ; 1̂  (Wi)
dP1 (Zi )dP2 ( X i)

' £ r

q{ r i , z0) f w  (W iY r'r  
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Again, by applying a second order U-statistic  theory (e.g. Powell, Stock, and Stoker (1989)), 
we can show th a t under Assumptions E and F,

Th , n,2a (rn) =  O y i n - ' h ^ h ; 1' 2) + Op( n - 1h i 1,2h ^ 1/2) +  O ptn” 1^ 172)

— Op(n_I/ 2/^ */2).

By Bochner’s Lemma and Lemma 2.B.6, it follows th a t T n , n ,2b ( m )  converges in mean 
squared to

B h 2 (m)  =  [H «  (M  (X,  Z ) ) 0 (X,  Z ) \ h  (M  (X,  Z))  =  m ] ,

which is O (h^). Finally, the last term  is bounded by

\Th ,u,2c (rn)| <  max |Rn (Wi)| max I (M{) { n~ l h~l Y ) \ i j  [,f M ( m ) M H }~1 /C*,i(m) 1 ,
l<i<n l<i<n I I I I    I i =l  J

where the right-hand side is op(n~1/2h* 1̂ 2). ■

Lem m a 2.B .9  Let Assumptions E  and F  hold, then

TH,n,3(m)  =  Op ( n - 1/2/l."1/2)  .

P ro o f. As in Lemma 2.B.3, by Assumption (E4), we write

&H,i (m)  -  A H}i ( m ) =  ^ 2  -r[ (dj H(fri*)/dmj ) [(Mi -  m )j -  (Mi -  m) j ] 
j=p*+l J '

+  ^ 2  Tj- \p*H(rh*)/dm^ — cPH(m*)/dm:'] (Mi — m,y  , (2.B.12)
j=p* + 1  J '

where (m*,m*) lie between (Mi, Mi) and m , such tha t || fh* — m*\\ = Op (v-|-n). For 
\\Mi — 77i|| <  ch*, (ra) | =  Op(h%*+1). These observations imply th a t (2.B.12) is
Op(h**v-j-n), which by Assumption (F3(ii)), is op(n_1/ 2h ^ 1//2). Therefore, we conclude that

|A H,i (m) | =  Op(hl*+1) +  op(n_ 1/ 2h ^ 1/2)

uniformly in m  and i for ||Mi — m\\ < ch*. Now, we write by the triangle inequality

B H,n (rn) -  B Hn (m) < < - 7- Y  (m )l \  max sup\AH,i (m) -  A Hyi (m) | ̂nn* '  J i<i<n 5

+  S 4 - E  |^*,» (m ) -  £*,» M  f max sup| Ajf.i (m) |.
[  n '1* i 1 J b
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The sup of the first term  is op(n and by Taylor-series expansion, the second term
is

nhl i= 1
M i - M i (m) | +  Op((h* 1u\n) 2) m axsup|A tf,i (m)1 <t<n 1,

= op (K'vin) op(ft;*+1) + op((a.-V)2)op(/»:-+1)
=  Opfn-1^2^ 1 ) uniformly in m  by Assumption (F3).

Therefore, we conclude that

Bif,n ( m )  =  B H ,n  {rn) +  op(n~1/2h * 1/2) 

uniformly in m, and by Kolmogorov’s Law of Large numbers, it follows th a t 

Z W m )  =  (m) +  O p^"1/ 2/ ^ 2),

as required. ■

L em m a 2 .B .10  Let Assumptions E  and F  hold, then

F,H,n {rn) =  T/f.n,4 (m) +  T ^ iTIi5 (m) +  (m)

=  op .

P ro o f. For a typical element of M H,n (m ) ~  M H,n {m) is given by

= — vnh* f—'t=i

M{ — m  
h*

Mi  — m

m

After expanding the last expression at Mi, it is not difficult to show that 

supK M tf^fc  (m)]Z)Zo -  [MH,n,j,k {m)]ltlo \ = Op (h " 1^ )  .
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By the triangle inequality, we have

sup|M //,n (m)  -  f M (m) M H\ < sup |M #)n (m) -  M H,n (m) \ 
b b

+  sup |M #)n (m) -  f M (m)  M //| 
b

=  Op (h~l v^n) +  Op (n - 1 / 2/ C 1//2\ / l n n  +  h*) — op ( 1 ) ,

where the last equality follows from Assumption (F3(ii)) and Corollary 2 (page 580) in 
Masry (1996a). Furthermore, by Assumption (FI), M ^ n (m) =  Op ( 1) with probability 
approaching one. Therefore, Lemmas 2.B.7-2.B.9 imply

Th,ti,4 (m ) = op (1) Op(n~1/2h * 1/2),

T h ,ti,5 {m) = op (1) Op(n _1/2h* 1/2), and  

Th,u,6 (m) = op (1) O p (n " 1/2h ^ 1/2),

respectively. ■
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Table 2.1: Median of Monte Carlo fit criteria over grid for Design 1.

M
cc

vs M  
n I R M S E

= 1
I M A E

a r
I R M S E

= 2
I M A E

0.5 150
600

0.2491
0.1299

0.4526
0.2101

0.2027
0.1067

0.3119
0.1669

0.3511
0.1826

0.6744
0.3230

0.2855
0.1493

0.4795
0.2412

1 150
600

0.2491
0.1299

0.4073
0.2026

0.2028
0.1067

0.2942
0.1592

0.3512
0.1827

0.6486
0.3028

0.2854
0.1494

0.4606
0.2264

1.5 150
600

0.2470
0.1250

0.3888
0.1860

0.2004
0.1024

0.2854
0.1473

0.3471
0.1752

0.6292
0.2631

0.2821
0.1434

0.4405
0.2025

G vs 
cc

G
n I R M S E

= 1
I M A E I R M S E

= 2
I M A E

0.5 150
600

0.1600
0.0854

0.2863
0.1546

0.1301
0.0697

0.2420
0.1334

0.2243
0.1192

0.4374
0.2173

0.1833
0.0972

0.3415
0.1849

1 150
600

0.1600
0.0855

0.2651
0.1467

0.1301
0.0696

0.2267
0.1247

0.2242
0.1191

0.3821
0.2028

0.1832
0.0973

0.3116
0.1731

1.5 150
600

0.1583
0.0820

0.2558
0.1401

0.1291
0.0671

0.2170
0.1201

0.2223
0.1136

0.3988
0.1890

0.1808
0.0926

0.3198
0.1626

F  vs 
cc

F
n

0$
I R M S E

= 1
I M A E

o 2r
I R M S E

= 2
I M A E

0.5 150
600

0.1573
0.0815

0.2359
0.1118

0.1289
0.0661

0.1878
0.0917

0.2220
0.1153

0.3223
0.1744

0.1826
0.0937

0.2532
0.1428

1 150
600

0.1571
0.0817

0.2113
0.1050

0.1289
0.0662

0.1709
0.0865

0.2221
0.1154

0.2978
0.1624

0.1823
0.0937

0.2314
0.1323

1.5 150
600

0.1554
0.0775

0.2028
0.0944

0.1279
0.0628

0.1608
0.0768

0.2195
0.1094

0.2849
0.1401

0.1801
0.0886

0.2262
0.1124

H  vs 
cc

H
n

* 2
I R M S E

= 1
I M A E I R M S E

= 2
I M A E

0.5 150
600

0.2491
0.1299

0.2874
0.1607

0.2027
0.1067

0.2241
0.1263

0.3511
0.1826

0.3939
0.2275

0.2855
0.1493

0.3089
0.1786

1 150
600

0.2491
0.1299

0.2876
0.1607

0.2028
0.1067

0.2232
0.1262

0.3512
0.1827

0.3958
0.2270

0.2854
0.1494

0.3114
0.1784

1.5 150
600

0.2470
0.1250

0.2816
0.1474

0.2004
0.1024

0.2178
0.1142

0.3471
0.1752

0.3908
0.2082

0.2821
0.1434

0.3044
0.1611
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Table 2.2: Median of Monte Carlo fit criteria over grid for Design 2.

M
cc

vs M  
n

°r
I R M S E

= 1
I M A E

o2r
I R M S E

= 2
I M A E

0.5 150
600

0.2836
0.1421

0.5179
0.2325

0.2297
0.1148

0.3518
0.1800

0.4210
0.2023

0.7313
0.3690

0.3378
0.1643

0.5354
0.2644

1 150
600

0.2834
0.1422

0.4762
0.2172

0.2297
0.1149

0.3393
0.1710

0.4206
0.2023

0.7035
0.3334

0.3382
0.1640

0.5139
0.2454

1.5 150
600

0.2804
0.1363

0.4545
0.1994

0.2268
0.1109

0.3245
0.1574

0.4155
0.1923

0.6845
0.2877

0.3344
0.1566

0.5064
0.2187

G vs 
cc

G
n

a 1
I R M S E

= 1
I M A E

<7%
I R M S E

= 2
I M A E

0.5 150
600

0.1801
0.0925

0.3243
0.1696

0.1461
0.0752

0.2702
0.1426

0.2661
0.1301

0.4954
0.2391

0.2141
0.1058

0.4090
0.1999

1 150
600

0.1800
0.0925

0.3052
0.1588

0.1461
0.0752

0.2559
0.1334

0.2663
0.1302

0.4605
0.2218

0.2141
0.1061

0.3677
0.1842

1.5 150
600

0.1778
0.0887

0.2939
0.1491

0.1442
0.0723

0.2495
0.1260

0.2614
0.1243

0.4745
0.2025

0.2112
0.1014

0.3775
0.1732

F  vs F  
cc n

ar
I R M S E

= 1
I M A E

ar
I R M S E

= 2
I M A E

0.5 150
600

0.1801
0.0908

0.2553
0.1261

0.1440
0.0741

0.2027
0.1034

0.2679
0.1300

0.3525
0.1926

0.2119
0.1061

0.2812
0.1533

1 150
600

0.1800
0.0909

0.2371
0.1153

0.1439
0.0742

0.1922
0.0934

0.2678
0.1301

0.3215
0.1734

0.2124
0.1060

0.2601
0.1392

1.5 150
600

0.1774
0.0861

0.2272
0.1038

0.1410
0.0701

0.1822
0.0847

0.2625
0.1229

0.3105
0.1557

0.2086
0.0999

0.2533
0.1262

H  vs H  
cc n

ol
I R M S E

= 1
I M A E I R M S E

= 2
I M A E

0.5 150
600

0.2582
0.1321

0.2875
0.1625

0.2098
0.1069

0.2240
0.1272

0.3717
0.1869

0.3910
0.2298

0.3030
0.1525

0.3083
0.1794

1 150
600

0.2582
0.1323

0.2870
0.1626

0.2099
0.1070

0.2228
0.1273

0.3717
0.1870

0.3948
0.2283

0.3031
0.1526

0.3101
0.1788

1.5 150
600

0.2556
0.1263

0.2818
0.1483

0.2077
0.1032

0.2183
0.1146

0.3673
0.1777

0.3890
0.2087

0.2992
0.1457

0.3038
0.1608
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Table 2.3: Param etric General Production Function Estim ates (P I)

Industry 0
1995

0
2001

0
1995 2001 1995

2
2001

0
1995

3
2001

0
1995

4
2001

0
1995

5
2001 1995

r
2001

Chemical 9.622
(0.043)

9.771
(0.036)

0.452
(0.041)

0.498
(0.032)

0.932
(0.056)

0.799
(0.028)

0.064
(0.046)

0.092
(0.022)

0.047
(0.046)

0.001
(0.025)

0.053
(0.027)

0.050
(0.015)

-0.028
(0.038)

-0.022
(0.001)

Iron 10.148
(0.122)

10.191
(0.390)

0.835
(0.113)

0.434
(0.133)

1.028
(0.146)

1.280
(0.370)

0.053
(0.116)

0.027
(0.071)

-0.162
(0.069)

0.251
(0.105)

0.060
(0.047)

-0.073
(0.085)

-0.032
(0.098)

0.301
(0.253)

Petroleum 11.090
(0.217)

11.337
(0.290)

0.724
(0.183)

0.809
(0.101)

1.419
(0.339

1.252
(0.440

-0.224
(0.186)

0.060
(0.071)

0.272
(0.175)

0.030
(0.098)

-0.120
(0.114)

-0.079
(0.160)

0.061
(0.118)

0.120
(0.194)

Transportation 8.963
(0.588)

9.630
(0.150)

0.493
(0.147)

0.493
(0.048)

1.538
(0.512

1.071
(0.165

-0.005
(0.070)

0.172
(0.037)

0.259
(0.117)

0.116
(0.053)

-0.084
(0.117)

0.023
(0.049)

0.546
(0.389)

0.118
(0.124)



Table 2.4: Param etric Generalized E
Industry- 0

1995 2001
/5

1995
0

2001
/5

1995
h

2001
P

1995
2

2001 1995
r

2001
Raw chemical materials 
(Chemical)

0.500
(0.050)

0.605
(0.064)

9.609
(0.037)

9.736
(0.070)

0.926
(0.055)

0.877
(0.072)

0.053
(0.021)

0.024
(0.018)

-0.025
(0.029)

0.077
(0.058)

Smelting and processing 
of ferrous metals (Iron)

0.563
(0.130)

0.653
(0.112)

9.634
(0.417)

10.518
(0.082)

1.570
(0.329)

0.816
(0.071)

-0.066
(0.058)

0.059
(0.020)

0.399
(0.246)

-0.019
(0.028)

Petroleum processing 
(Petroleum)

0.823
(0.177)

0.783
(0.155)

10.860
(0.102)

11.352
(0.128)

1.099
(0.128)

1.014
(0.131)

0.013
(0.031)

0.033
(0.032)

-0.054
(0.026)

0.004
(0.034)

Transportation equipment 
(Transportation)

0.689 
( 0.092)

0.601
(0.061)

9.605
(0.090)

9.819
(0.060)

0.923
(0.089)

0.911
(0.059)

0.075
(0.027)

0.073
(0.019)

0.017
(0.079)

0.021
(0.043)

omothetic Estimates (P2)



Table 2.5: Parametric Translog Estim ates (P3)
Industry

1995
*

2001
/s

1995
0

2001
/5

1995
i

2001
/5

1995
2

2001
Raw chemical materials 
(Chemical)

0.479
(0.041)

0.696
(0.040)

9.585
(0.026)

9.815
(0.032)

0.961
(0.035)

0.783
(0.028)

0.045
(0.019)

0.036
(0.013)

Smelting and processing 
of ferrous metals (Iron)

0.932
(0.095)

0.621
(0.098)

10.262
(0.064)

10.499
(0.079)

1.025
(0.055)

0.847
(0.051)

0.017
(0.019)

0.054
(0.018)

Petroleum processing 
(Petroleum)

0.674
(0.121)

0.795
(0.125)

10.810
(0.100)

11.351
(0.125)

1.271
(0.093)

1.001
(0.081)

-0.020
(0.031)

0.036
(0.028)

Transportation equipment 
(Transportation)

0.705
(0.062)

0.626
(0.045)

9.623
(0.038)

9.839
(0.038)

0.905
(0.046)

0.883
(0.031)

0.078
(0.024)

0.079
(0.016)
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Table 2.6: Average Substitutability, T ( k , L ) .

Industry P
1995

2
2001

P
1995

3
2001

N
1995

P
2001

Raw chemical materials 
(Chemical)

0.728
(0.042)

0.384
(0.135)

0.738 0.390 0.795
(0.135)

1.328
(0.762)

Smelting and processing 
of ferrous metals (Iron)

0.163
(0.376)

0.474
(0.108)

0.081 0.480 0.383
(0.510)

1.188
(0.244)

Petroleum processing 
(Petroleum)

0.286
(0.165)

0.234
(0.023)

0.442 0.228 0.451
(0.259)

0.255
(0.158)

Transportation equipment 
(Transportation)

0.351
(0.020)

0.473
(0.049)

0.352 0.470 0.147
(0.321)

0.834
(0.842)

Table 2.7: Average Return to Scale, R T S  (M, L ).

Industry P
1995

2
2001

P
1995

3
2001

N
1995

P
2001

Raw chemical materials 
(Chemical)

0.962
(0.074)

0.796
(0.120)

0.968
(0.073)

0.799
(0.077)

1.016
(0.166)

0.752
(0.181)

Smelting and processing 
of ferrous metals (Iron)

1.186
(0.428)

0.881
(0.178)

1.035
(0.049)

0.881
(0.179)

1.034
0.373)

0.828
(0.201)

Petroleum processing 
(Petroleum)

1.231
(0.279)

1.020
(0.124)

1.258
(0.060)

1.016
(0.126)

1.162
(0.173)

0.946
(0.147)

Transportation equipment 
(Transportation)

0.934
(0.153)

0.901
(0.183)

0.932
(0.152)

0.896
(0.182)

0.944
(0.291)

0.964
(0.328)
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2.C Tables & Figures

Figure 2.1: Q — Q plots for G, F  and H .
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2.C Tables & Figures

Figure 2.2: Simulation Envelopes for M,  G and F.

M(x, z)
G(x)

0.5 -

0.0 -

-0.5 -

0.2 0.4 0.6 0.8

F(z)

0.2 -

0.0 -

- 0.2  -

-0.4 -

0.2 0.4 0.6 0.8

a h\ = 0.15, h2 = 0.7, pi = 3, P2 =  1, and n = 400.
b White planes and dashed lines represent medians. Gray planes and dotted lines represent 

90% simulation envelopes.
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Figure 2.4: Generalized Homogeneous M  (1995)
ln(M(k, L)) -1 9 9 5

Chemical 

(h , .h 2) = (5.125. 5.25)

Iron

(h i. h2) = (4.25. 5.25)

Petroleum

(h i, h2) = (2.75, 5.25)

Transportation

(h ,. h2) = (1.75, 5.25)

a Raw Chemical Materials and Chemical Products: 1560 plants; Iron and Steel: 376 plants; 
Petroleum Processing and Coking: 93 plants; Transportation Equipment Manufacturing: 
989 plants.

b Data Source: Jefferson, Hu, Guan, and Yu (2003).
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Figure 2.5: Generalized Homogeneous Component G  (1995)
ln (G (k ) ) -1995

C hem ical Iron

NP

0.0 -

-0.5 -

- 1.0 0.0 0.5 1.0 1.5 2.0

0.5 -

0.0 -

-0.5 -

-1.0 -
imu-1.5

1.0 -0.5 0.0 0.5 1.0 1.5

ln(k) ln(k)

P etro leum T ra n sp o rta tio n

0.0 -

-0.5 -

-1.5 -

- 2.0  - *

1.0 -0.5 0.0 0.5 1.0 1.5

-0.5 -

- 1.0 -

- 1.0 0.0 0.5 1.0 1.5

ln(k) ln(k)

a Raw Chemical Materials and Chemical Products: 1560 plants; Iron and Steel: 376 plants; 
Petroleum Processing and Coking: 93 plants; Transportation Equipment Manufacturing: 
989 plants.

b Data Source: Jefferson, Hu, Guan, and Yu (2003).
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Figure 2.6: Generalized Homogeneous Component F  (1995)
ln (F (L ) ) -1995

C hem ical Iron

NP

-2 -

-4  -

- 6  - I

2-2 0 4

10 -

-5

-2 0 2 4

ln(L) ln(L)

P etro leum T ra n sp o rta tio n

4

2

0

-2

■4

-2 1 0 1 2 3

-2 -
-3  -

JUJJUU
2 -1  0 2 31 4

ln(L) ln(L)

a Raw Chemical Materials and Chemical Products: 1560 plants; Iron and Steel: 376 plants; 
Petroleum Processing and Coking: 93 plants; Transportation Equipment Manufacturing: 
989 plants.

b Data Source: Jefferson, Hu, Guan, and Yu (2003).
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Figure 2.7: Strictly Monotonic Component H  (1995) 
H (M )-1995

C hem ica l Iron

16 -

14 -

12 -
I 10 -

2 6-4 0 2 4

+  Local Q uadratic 
-  -  NP14 -

12 -
2
X 10 -

■4 -2 0 2 4

ln(M) ln(M)

P etro leum

h-=1.72

T ra n sp o rta tio n

 h^!2___

ln(M) ln(M)

a Raw Chemical Materials and Chemical Products: 1560 plants; Iron and Steel: 376 plants; 
Petroleum Processing and Coking: 93 plants; Transportation Equipment Manufacturing: 
989 plants.

b Data Source: Jefferson, Hu, Guan, and Yu (2003).
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Figure 2.8: Generalized Homogeneous M  (2001) 
ln(M(k, L))-2001

Chemical Iron

(hi, h2) = (2.25.5.25) (h1t h2) = (4, 5.25)

Petroleum

(hi, h2) = (11,5.25)

Transportation 

(hi, h2) = (4.37, 5.25)

a Raw Chemical Materials and Chemical Products: 1637 plants; Iron and Steel: 341 plants; 
Petroleum Processing and Coking: 119 plants; Transportation Equipment Manufactur­
ing: 1230 plants. 

b Data Source: Jefferson, Hu, Guan, and Yu (2003).
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Figure 2.9: Generalized Homogeneous Component G (2001) 
ln(G(k))-2001

C hem ical Iron
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0

1
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-2 1 0 1 2
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0.0

-0.5

- 1.0

■2 1 0 1

ln(k) ln(k)

a Raw Chemical Materials and Chemical Products: 1637 plants; Iron and Steel: 341 plants; 
Petroleum Processing and Coking: 119 plants; Transportation Equipment Manufactur­
ing: 1230 plants. 

b Data Source: Jefferson, Hu, Guan, and Yu (2003).
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Figure 2.10: Generalized Homogeneous Component F  (2001)
ln (F (L ))-2001

C hem ical Iron

NP

-2  - ■* '

-4  -*
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a Raw Chemical Materials and Chemical Products: 1637 plants; Iron and Steel: 341 plants; 
Petroleum Processing and Coking: 119 plants; Transportation Equipment Manufactur­
ing: 1230 plants. 

b Data Source: Jefferson, Hu, Guan, and Yu (2003).
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Figure 2.11: Strictly Monotonic Component H  (2001) 
H (M )-2001

C hem ical
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a Raw Chemical Materials and Chemical Products: 1637 plants; Iron and Steel: 341 plants; 
Petroleum Processing and Coking: 119 plants; Transportation Equipment Manufactur­
ing: 1230 plants. 

b Data Source: Jefferson, Hu, Guan, and Yu (2003).
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Chapter 3

Efficiency Bounds in 
Sem iparam etric M odels defined by 
M om ent R estrictions using an 
E stim ated Conditional Probability  
D ensity

3.1 Introduction

The main objective of this chapter is to derive efficiency bounds (minimum asymptotic 
variance) for estimating some unique finite-dimensional param eter 7To in an im portant class 
of econometric models. These models satisfy the following unconditional moment restriction:

E  [g (y ,w i ,w 2;7roJ/w 1|wa)] =  (3.1.1)
/ . m (y ,w i ,w 2;7r0)g  ( y ,  wi, w 2; 7r0, / W1|W2) =  — z :---- r  -  s (tt0) ,

1 / w i |w2 (w i |w 2)

where m(-) and s(-) axe known vector-valued functions of an observed random vector 
(y,wj",wf) with joint density / y,WllW2 (y ,w i,w 2). The function / W1|W2 (w i |w 2), although 
unknown, represents the conditional probability density of wj given w2.

Models defined by restrictions such as (3.1.1) are examples of distribution-free1 mod­
els, where the param eter space contains a finite-dimensional component, 7To, as well as an

1Those in which the distribution of unobserved error terms is unknown.



3.1 Introduction

infinite-dimensional one, / Wl|W2- Chamberlain (1992) and Ai and Chen (2003) obtained 
the semiparametric efficiency bound for regular estimators of the finite-dimensional compo­
nent in such models. Our analysis is different from theirs in tha t they did not impose any 
particular structure for the unknown function in their moment restrictions, such unknown 
function happens to be a conditional density function in (3.1.1). Here, we make full use of 
this extra restriction in our calculations. A commonality within the literature of semipara­
metric efficiency bounds derivation is that this type of extra information would typically 
lead to different conclusions2.

Unconditional moment restrictions such as (3.1.1) are induced by the identification of 
Limited Dependent Variable3 (LDV) models. We illustrate this using three leading exam­
ples:

M o d e l 1: (G e n e ra l L im ite d  D e p e n d e n t V ariab le  M o d e l)  Let (y, u ,x T,z T) be an 
observed random vector generated from the model y = L  (olqv +  x T/?o +  e ) , where L 
is a known or unknown function, and e is an unobserved error term. Lewbel (1998) 
showed th a t the following unconditional moment is sufficient to identify (ao,/?^):

E
aovO (y ) f f v|X|Z(v |x ,z )  

_ z a g u 0 (y ) / /v|X)Z(u |x ,z )
k i
K2 E  [z] -  k \ E  [z x t ] Pq

(3.1.2)

where 0 is a known real-valued function, with constants [L (a)] da and
[L (a )] da. The ‘special’ regressor v is assumed to have large support and, 

conditional on (xT , zT), not to affect the distribution of e. The error e is also assumed 
to be uncorrelated with variables z, i.e. E  [ze] =  0.

M o d e l 2: (S e lec tio n  o r  T re a tm e n t M odel) Let (y, d, u ,x T ,z T) be a random vector 
from a data  generating process (dgp) where y = y* x d, with d = 1 (0 < v +  M*  <  c), 
for some known c <  oo, and unobserved random scalars y* and M*.  Furthermore, for 
some finitely-parameterized (by 0 6 0 )  known vector-value function ^  (■), the un­
conditional moment E  [\I> (y*, u ,x T, zT; 0q)] =  0 holds. Then Lewbel (2006) showed 
that the following unconditional moment is also satisfied:

E  (y, v, x T, zT; 0O) d / f v|X)Z (u| x, z) =  0 , (3.1.3)

for the same unknown 0o G 0 , which is assumed to be unique. The ‘special’ variable 
v is again assumed to have large support and, conditional on (xT,z T)T, not to affect 
the distribution of M*.

2See Tripathi (2000) for an example where information that the unknown function has certain shape may 
lead to substantial asymptotic efficiency gains in estimating the parameter of interest.

3Loosely speaking, LDV models are where the data generating process (dgp) induces a probability distri­
bution on the realized observations that differs from the underlying distribution, for which inferences are to 
be made.
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3.1 Introduction

M o d e l 3: (P ro g ra m m e  E v a lu a tio n )  Let (y, d, x T) be an observation generated from a 
dgp where y = y\d  +  yo (1 — d), d equals one if an observation is treated  and zero oth­
erwise. Hirano, Imbens, and Ridder (2003) used an ‘unconfoundedness’ assumption, 
d _1L (2/1, 2/0) I x, and the conditional probability, p (x )  =  P r (d  =  1| x), (also known as 
the propensity score) to construct a weighted moment condition

E u t„ s i  vd y i l - d )  _
(x ) I / \ 1 / \ 0> ( x )  1 - p  (x) =  0 , (3.1.4)

to identify average treatm ent effects for different subgroups of the population by care­
fully choosing the weighting function h. If h (x )  — 1, the moment restriction above 
identifies tq  = E  [y\ — yo], the average effect of the treatm ent in the population and if 
h (x) =  p  (x), it identifies tq =  E [ y \  — yo \d=  1], the effect on the treated.

A simple look at (3.1.2), (3.1.3), and (3.1.4) is sufficient to realize th a t all these un­
conditional moments are nested in (3.1.1). In particular, by setting y =  y, wi = v, 
and W2 =  (xT,z T)T we obtain Model 1. Likewise, setting y =  (y, d)T, wi =  v , and 
W2 = (xT,z T)T gives us Model 2, and setting y  =  y, w i =  d, and W2 =  x will give us 
Model 3. T hat is, Models 1, 2 and 3 belong to the same class4.

The regularity conditions behind the existence of moments (3.1.2), (3.1.3), and (3.1.4) 
are similar in nature. They are explained in great detail by their proponents: Lewbel 
(1998), Lewbel (2006), and Hirano, Imbens, and Ridder (2003) respectively. For example 
the ‘special’ regressors, v in Models 1 and 2, and d in Model 3, are assumed to be redundant 
in explaining the realized y once conditioned on x and z. They are also assumed to have some 
special properties ensuring th a t moments such as (3.1.1) exist. For instance, the random 
variable v is assumed to have a conditional distribution th a t is absolutely continuous with 
respect to a Lebesgue measure with nondegenerate Radon-Nikodym conditional density 
/  (u| x, z), which is bounded away from zero5. The programme participation indicator d, in 
Model 3, is such th a t 0 < p  (x) < 1 almost everywhere on the support of x.

The advantage of looking at an object such as (3.1.1) is th a t it will allow us to unify 
the efficiency-bound-derivation theory for Models 1, 2, and 3. Similar to the lower bound 
for Generalized M ethod of Moment (GMM) estimators, the derived efficiency bound in 
this chapter shares its form, and it has the desireable property of being easy to compute.

4Other examples of models defined by this type of unconditional moment restrictions are Lewbel (2000b), 
Honore and Lewbel (2002), and Khan and Lewbel (2006).

5The use of density functions has a long history of aiding identification in LDV models. Examples 
range from the fully parametric maximum likelihood technique assuming normality of errors, to the use of 
likelihood based semiparametric estimators such as Cosslett (1983), Gabler, Laisney, and Lechner (1993), 
Gozalo and Linton (2000) in the Binary Choice models. Other density-based estimators in Censored linear 
regression models are for example Buckley and James (1979), Horowitz (1986), Moon (1989), Horowitz 
(1988), Powell, Stock, and Stoker (1989) and Ichimura (1993), among others.
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3.2 Efficiency and Information

The bound is also sharp. Estimators tha t use plug-in kernel estimators of the conditional 
density in (3.1.2), and (3.1.3) are shown to achieve these bounds. On the other hand, for 
Model 3, we are also able to show that the efficiency bound for any regular estimator of to 
(which is based on (3.1.4)) coincides with that derived by Hahn (1998). Hirano, Imbens, 
and Ridder (2003) proved th a t a semiparametric estimator based on (3.1.4) achieves Hahn 
(1998)’s bound. They also found tha t using an estimate rather than the true propensity 
score is efficient.

Semiparametric estimators of LDV models are attractive because they can remain con­
sistent in situations where a fully parametric estimator is not. However, this robustness 
property comes at a price in terms of asymptotic variance. In this sense, semiparametric 
efficiency bounds are of fundamental importance because they quantify the efficiency loss 
tha t can result from the use of a semiparametric, rather than  a param etric estimator. These 
bounds are also used here to prove tha t using an estimate rather than the true conditional 
density in (3.1.1) is more efficient. The result presented in this paper also generalizes earlier 
results of Hirano, Imbens, and Ridder (2003) and Magnac and M aurin (2004). We further 
explore this in a small Monte Carlo experiment, where we also compare the performance of 
three different kernel-based estimators and assess their relative efficiency.

The chapter is organized as follows: We derive the semiparametric efficiency bound of 
regular estimators of 7To based on a particular functional form of (3.1.1) in Section 3.2 where 
we also prove th a t estimators that use the true conditional density are inefficient compared 
with those using an estimated conditional density instead. Section 3.3 applies the efficiency 
bound to Models 1, 2 and 3, and shows tha t the estimator proposed by Lewbel (1998), and 
Lewbel (2006) are semiparametric efficient. A direct link with Hirano, Imbens, and Ridder 
(2003) is also discussed. Section 3.4 describes the results of a simulation experiment and 
Section 3.5 concludes.

3.2 Efficiency and Inform ation

The framework is as follows: The information on one unit in a random sample is contained in 
a d x 1 vector uT = (yT, w j ,  w j )  e  U with unknown density /  (y, w i, W2) with respect to 

a dominating measure fi = /iy x  /jwi x  //W2 =  x x where
d = dy +  d\ +  d2• Since u can have discrete components, the /% ’s, fiWli's and need
not be Lebesgue measures. Furthermore, /  can be decomposed into conditional probability 
densities with respect to measures fiy , /iWl and îW2; th a t is, if g: U —> is an integrable
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function, then

j g (u)f(u)n(du) = j j j g ( u ) / y | w ( y | w )  Hy (dy) x

/ w i|w2 ( w i |w 2)mwi (<iwi) / W2 (w2) / iW2 (dw2),  (3.2.1)

where / y|w> /w i|w 2 anc  ̂ /w 2 are the implied densities with respect to the conditional mea­
sures /iy, /iWl and /iW2 respectively. For a given open set II C define functions m: 
U  x II —> 3ft9 and s: II —> 3ft9 such tha t for each tt e  II, m  (•; 7r): U  —> 3ft9 is measurable, and 
for each u  e  U , V ^m  (u; 7r) and V^s (7r) are continuous mappings on II. The restrictions 
on / y|w, / Wl|W2 and / W2 also involve the following unconditional moment:

E
m  (u; 7r0)

/ wi|w2 (w i |w 2) -  S (7T0) =  0, (3.2.2)

where 7ro is some point in II, and / Wl|W2 is the true (conditional) density of w i given w 2. 
This notation will become clearer in the proof of the following theorem.

T h e o re m  3.2.1 Assume that the true distribution of  u  satisfies (3.2.2) for a unique value 
7T0 E II, where II C Rp, and that the matrix E  g (u ;7To, / w i | w 2 )  g (u i ^o, /w i|w 2) T w i, w 2J 
is finite and nonsingular with probability one, then the semiparametric efficiency bound for  
regular estimators of  7tq is given by

(M jfio ’Mo) -1 (3.2.3)

where

g (ll, 7TQ, /w i|w2)
m (y? W i , W 2 ; 7T0)

S (ttq) ,
/ Wl|w2 (W l|w 2) 

g (u; 7T0, / Wl|w2) =  g -  E  (g | Wi, w 2) +  E  (g | w 2) , 

Mo =  E  [Vwg (u, 7Tq, / w i | w 2 ) ]  >

g (ll, 7Tq , /w i |w2 ) g (^) TTQ i /w i  |w2 )
T

P ro o f. See Appendix. ■

These matrices can easily be estimated by replacing population moments with their sam­
ple counterparts and unknown functions with their nonparametric estimates. The function 
—M og (u; 7To, / Wl|W2) is an influence function, as Hampel (1974) defined.

It is worth noticing tha t the bound (3.2.3) characterizes the variance of an optimal 
regular estimator of 7To defined by a set of assumed unconditional moment restrictions. 
Therefore, they can be interpreted as in the standard GMM case. These restrictions are not
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assumed to produce estimators of 7To that are optimal under different identification criteria 
other than  (3.2.2). This means that it is possible to improve upon this estimator by using 
(or assuming) extra information regarding the dgp, as in the generic GMM framework. 
However, we do not pursue this here.

Relative Efficiency

By the assumptions of the theorem above, Q q = E  [ggT] is of full rank, q. If the con­
ditional density / Wl|W2 was known, hence so it is no longer in the param eter space, the 
lower bound (Lb.) for the variance of regular estimators for t t q  based on the unconditional 
moment restriction (3.2.2) is given by tha t of the generic GMM bound, (Mq Oq 1M o)-1 . 
However, we have previously calculated the bound when such density is unknown and it 
is given by (M ^JIq 1M o)-1 . The relationship between these two bounds is given by the 
following corollary:

C o ro lla ry  3.2 .2  The variance of the estimate of  t t q ,  defined by the unconditional moment  
condition (3.2.2), when / Wl|W2 is known, is not smaller than that when / Wl|W2 is estimated.

P ro o f. See Appendix. ■

Lewbel (2000b) first noticed this property through a Monte Carlo experiment of a binary 
choice estimator constructed using a moment condition such as (3.2.2). This conjecture 
was later proved by Magnac and Maurin (2004) for this particular case. They suggested 
the result may be better understood by using similar arguments to the ones proposed by 
Crepon, Kramarz, and Trognon (1998). Hirano, Imbens, and Ridder (2003) also report 
similar findings for their estimator based on (3.1.4). Using a similar canvas as in (3.1.4) in a 
missing data  im putation model, Wang, Linton, and Hardle (2004) found th a t some of their 
estimators remained consistent although m  may have been incorrectly specified.

As long as the conditional density can be consistently estimated when it is unknown, this 
knowledge does not affect the identification or estimation of the param eter of interest but its 
efficiency. This would highlight the fact tha t knowledge of / Wl|W2 is ancillary for consistent 
estimation of econometric models based on the above unconditional moment restriction. 
However, conjectures from Corollary 3.2.2 should be taken with caution. This ‘loss’ of 
efficiency while using the true density is among the class of consistent estimators tha t uses 
(3.2.2) as the only source of identification. The corresponding result does not pertain to 
estimators th a t would efficiently incorporate this new information. Therefore, Corollary 
3.2.2 can be viewed as the consequence of the fact tha t estimators based on (3.2.2) do not 
necessarily make optimal use of this extra knowledge. Although it is rarely the case that
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a researcher has partial observability of the dgp in a da ta  set, if such conditional density 
were known, the information may efficiently be used in this estimation framework while 
constructing the sample counterpart of (3.2.1).

A variety of efficiency results have also been found and estimators proposed in the 
literature for many LDV models. Examples are Chamberlain (1986), Cosslett (1987), Klein 
and Spady (1993) in the Binary Choice model, Newey and Powell (1990), Lai and Ying 
(1992), Kim and Lai (2000), and Cosslett (2004) among others in the Censored or Truncated 
regression framework. W ith the exception of Newey and Powell (1990), all these estimators 
assume some sort of conditional or unconditional independence between unobservables and 
regressors.

3.3 Som e Efficiency Bounds

In the following, we use an approach suggested by Magnac and M aurin (2004) for a vector­
valued param eter of interest. If the parameter of interest is a vector @q th a t appears ev­
erywhere in (3.2.2) as 7rp = E  [zxT] /?o, we consider the calculation of the efficiency bound 
in two steps. Firstly, we calculate the efficiency bound at np, call it Vp, then under the 
standard regularity conditions, by Newey and McFadden (1994), the variance matrix of the 

corresponding is given by ( e  [zxt ] V ^ l E  [zxT] j

3.3.1 Model 1

Define m  =  (m i,m 2)T as m i (y, v, x, z; 7To) =  ao9{y)  and m 2 (y, v, x, z; 7To) =  zaj)v9(y).  
Also assume th a t the function L  is known. Lewbel (1998) proved th a t under some conditions 
regarding a ‘special’ regressor v and its conditional distribution, the following moment 
restrictions hold,

E
m i / / ( v | x , z ) «1

_ m 2/ / ( w | x , z )  _ K2 E  [z] -  k \ E  [ z x t ] /3q
(3.3.1)

We are interested in the calculation of the efficiency bound a t (ao, P o ) T • Let our parameter 
of interest be 7r j  =  (7ro;i, 7̂ 2) where 7To;i =  ao and 7To;2 =  E  [zxT] (3q. Then the resulting 

lower bound for the variance m atrix is given by (M 0 x) f20 (M 0 *)T =  E  ( Q Q J ) as in 
Theorem 3.2.1, for a nonsingular m atrix Q =  Mg 1 [g — E  (g | v, x, z) +  E  (g | x, z)] and m  =
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m  (?/, v, x, z; 7ro) f v|^ z (u |x , z). Using (3.3.1), it is not difficult to show th a t

g (?/) x, z; 7T0, /u|X|Z) =
L * V'<0;13 VU\V)J x̂/| JtjZi; — ffc2J&

« i  / 7Tn.i 0 T
Mo,£[V „g] =

M q  1 =

M q 1m  =

7TO;10(2/) /  1 ( v | x , z )  -  Ki  

z(7T0; l )2 ^  (7/)  / - 1  ( u | x , z )  -  [z] +  «l7T0;2

« l A 0;l 0 T

0
, and

7 T 0 ; l / « l

[ 7ro;2£ - £ [ z ] ^  « r l j (f l- i )  J

(7TQ;l)̂ (y)
K l / ( u | x , z )

27r0;ifl(y) F  r^ i  2/t27ro;ig (y )  , ^  (7r0; i ) 2ufl(y)
7r°’2 «: l /  ( J K f / ( t » | x , z )  2  K l / ( V | X , Z )

where 0  is a q x 1 vector of zeros and I (n) is the identity m atrix of order n. Some straight­
forward algebra gives the efficiency bounds (Lb.) evaluated ao and fio as

l.b.(S) = E[ ' f l]  

l.b. (/?) =  ( e  [ z x t ] ^ p lE  [ z x T ]
-1

where

l a  =

101 =

g 00 (y)
« i / ( u | x , z )

— ao — E

E zxT' A, —  ~ E [ z ] 2«;2
_ ao «iao.

. « i / ( v | x , z )

l a

u,x, z + E <*oe  ( y ) X,  z

102 =  Z
a§u<9 (?/)

« l / ( v | x , z )  

and 73 =  7^  +  7^  with ^  =  E  [7/37J] •

i>, x ,  z +  £
agu0 (y)

« i / ( v | x , z )
X,  z

For simplicity, let’s assume that £  [s] =  0, E  [x] =  0, E  [z] =  0, i? [zs]  =  0 and E  [ z x T ] =  

I  (the vector of instruments z  has the same number of elements as the vector x ) .  In this

10*tJ«] with  7/3* =  10{ +  7/32 and 
y  th a t the asymptotic variance of

case, Lb. (a) =  E  [7^] as before but Lb.((3) =  ’F/?* =  E  
7 /3* =  A) (2/ao) 7a- Then, it is straightforward to veri 
the estimator of (ao,/?o) given in Lewbel (1998) (equations (3.9) and (3.10) on page 113) is 
equal to the lower bound we have just obtained as a special case.

For the case where L  and hence k\ and k2 are not known, we may only identify the
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param eters (7ro;i , 7To;2) =  (tti/t*o>Po/&o) given the above assumptions. T hat is,

Q { y ) f ~ l  ( V | X , Z )  - 7 T 0 ;ig (y ,u ,x ,z ;7r0, / v|X)Z) =  

E [ V n  g] =

zv9{y) f  1 (v |x ,z ) +  7r0;27r0;i 

- 1  0 T 

_ 7T0;2 no-,lI(q-l)

Mq 1 =

M0"1m =

- 1 0

- M 0,

, and
_ 7r0;27r0;l .

{y) / _1 (v |x , z)
_ t t o ^ i1# (y) f -1 (v| x, z) +  Z7T̂ Ju0 (y) f ~ l ( v\x, z)

where x (and therefore z) does not include a constant as the location is not identified. In 
this special case, the efficiency bound for regular estimators of P / a  is given by

l .b.(P/a) =  E  ^rrTJ , where

r  =  7r0;27r^Jg2 +  q ^ } ,  with 

Q2  = 9 ( y ) f ~ 1 Mx,z)
-  7T0;1 + E [ d ( y ) f ~ 1 (v|x,z)|v,x,z] -  E  [ 9 { y ) f ~ l (v| x,z)| x,z] , 

q = zv9 { y ) f ~ l (v|x,z)
+  7ro;27TO;i + E  [zv9 {y) f ~ l (v \ X, z)I V,  x, z] - E [ z v 9 ( y ) f ~ 1 (v|x,z)|x,z] ,

as on page 113 in Lewbel (1998). Therefore, Lewbel (1998)’s estimator, which uses a ratio 
of two kernel density estimates as an estimator for / -1  (u| x, z), is semiparametric efficient. 
This result seems to be new in the literature.

3.3.2 Model 2

It is clear from our earlier discussion tha t the sample or treatm ent model above is an example 
of (3.1.1) where m  (?/, d, u , x t , z t ;7To) =  (y ,u ,x T, zT; 7ro) x  d, s (7To) =  0, with 7Tq =  0o- 
If ^  (•; 7r) is continuously differentiable in 7r, it then follows from Theorem 3.2.1 tha t the 
semiparametric efficiency bounds for regular estimators of 7Tq is given by
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where So = E g (y, d , v, x T, zT; t tq , f v|x>z) g (y, d, v, x T, zT; tt0 , / v|X)2) T] , and

g ( y, d, v, x T, zT; 7T0, / w|Xl* ) =  ^  ( 7 —  v > x >z ) + ^  ( 7 —  x > z ) .
/ v | X,Z \ / v | X,Z /  \ / u | X,Z J

with m =  \I> (y, v, x T, zT; 7To) x d.

As an illustration, consider the ‘example model’ in Lewbel (2006), where the object of 
interest is 7To =  E  [y*] or equivalently, it is defined by E  (y*; 7To)] =  0, where ^  (y*; tto) =  
y* —  t t q .  It then follows from Theorem 1 in Lewbel (2006) that,

E v  (y; tto) d
=  0

J v |x ,z  ( v | x , z ) .  

also defines ttq uniquely. It is simple to show that,

l.b. (7ro) =  7^ 2V ar (m — E  (m | u,x, z) + E  (m | x, z)),

where 70 =  E  [ d / f v|X)Z (v| x, z)], and m  (y, d, xT, zT; tt0; /«|x>z) = ^ (y; tt0) d / / v|X)2 (v| x, z). 
Therefore, Lewbel (2006)’s estimators are semiparametric efficient.

3.3.3 Model 3

We are interested in the calculation of semiparametric efficiency bounds of estimators based 
on the following weighted moment restriction as proposed by: Hirano, Imbens, and Ridder 
(2003)

E  [g (y, d, x; 7T0, p (x))] =  0, (3.3.2)

where
g ( y , d , x ; 7 r 0 , y ( x ) )  =  /i(x) [yd/p (x) -  y  (1 -  d) /  (1 -  p  (x)) - 7 r0) ,

and 7ro represents their weighted average treatm ent effect. Given the unconfoundedness 
assumption along with a regularity condition, 0 <  p (x ) < 1 , ensuring the existence of the 
above moment, it follows by the law of iterated expectations tha t

E  [ h (x) Yi | D,  X  =  x] =  E  [ h (x) Yx \ X  =  x] =  h (x) p i ( x ) , 

E l h ( x ) Y 0\ D , X  = x] =  £ [ h (x ) Y 0|X  =  x] =  h (x )p o  ( x ) ,

E  [h (x) YD \  X  =  x] =  h (x) fi\ ( x )p  ( x ) , and 

E  [h (x) y  (1 -  D )| X  =  x] =  h (x) po (x) (1 -  p ( x ) ) .
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We can again apply our general result and conclude th a t the efficiency bound is given by

E [ h ( x ) y
:E

u , w  Y D  Y ( l - D )  
h (x ) I - 7^7  -  - — t t t t  ~  * 0

P (x ) 1 -  P (x )

- E h (x )

1

E[h(x )Y

Y D  _  Y ( l - D ) 
P (x) 1 -  p (x)

E

D , X  = x + E h (x )
Y D  Y  (1 -  D)

P (x) 1 -  p (x)
X =  x

u f w  Y D  Y ( l - D )  
h (x) ( -    TTTT -  ^0P (x) 1 -  p (x)

- h  (x) ( ^  (X) D _  MO ( x ) ( l - £ > ) \  + h ^ f  Mi (x) p  (x) p 0 (x) (1 -  p (x))
p (x )

E [h (x )Y
■E /i(x ) :

1 -  P (x)

Y D  Y ( l - D )  
P (x) 1 -  P (x)

P(x)

-  TTQ I -

1 -  P (x)

Mi (x) Mo (x)
P (x) 1 -  p (x)

( D - p ( x ) )

This efficiency bound corresponds to that of Theorem 4 described in Hirano, Imbens, and 
Ridder (2003). Using a series estimate for p (x), they also showed th a t the bound was sharp 
for the Average Treatment Effect (ATE), E  [y\ — yo], when h (x) =  1 and the Treatment on 
the Treated Effect (TTE), E [ y \  — yo \d =  1], when h (x) =  p  (x). Interestingly though, we 
have found th a t their estimator is semiparametric efficient among regular estimators of -kq 
defined by (3.3.2). It turns out that these bounds are the same as those originally obtained 
by Hahn (1998) for ATE and TTE. This explicit link has not been previously noticed in the 
literature.

3.4 A  M onte Carlo Investigation

The finite sample performance of estimators based on (3.1.1) have been widely explored 
by their proponents under different controlled circumstances and scenarios. Comparisons 
to other semiparametric estimators have also been performed, as well as studies regarding 
their sensitivity to underlying identification assumptions. In order to study the theoretical 
properties relating to their efficiency discussed in this chapter, we construct a small Monte 
Carlo experiment with three further goals in mind. Firstly, we are interested in measuring 
the efficiency loss when using a semiparametric instead of a fully param etric estimator. This 
is done in a variety of scenarios. Secondly, we verify the theoretical predictions of Section 
3.2. Finally, we also contrast three different kernel-based estimators of (3.1.1).

The simulated latent variable is generated as

y* = v +  fa +  P2 X +  e,
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for scalar random variables v, x  and e. The variable e is generated as N  (0,1) and x  was gen­
erated independently of e as Beta  (ai, &i) — 1/4 with probability 1/2 and Beta  (<22, 62) +  1/4 
with probability 1/2 minus 1/2, where the shape param eters are (a\,bi) = (2,4) and 
(02 , 62) =  (4,2). This mixture of Betas  is designed to yield a distribution tha t is both 
bimodal and symmetric around zero with variance one. Three different scenarios are con­
sidered, based on the relation between the special regressor v and the scalar covariate x:

The first design assumes independence among regressors, while the second makes v mean 
dependent on x. Design 3 is similar to 2 but with added increasing heteroskedasticity with 
respect to x.

We also consider three different latent variable specifications, L(-), for the observed 
y = L(y*):  A binary choice model (LDV I), L{y*)  =  1 (y* >  0), a censored regression 
model (LDV II), L (y*) = y* x 1 (y* >  0) with no =  (/?i,/?2) where (3\ =  1 and @2 =  1/2, 
and finally an ordered choice model6 (LDV III), L  (y *) = Y ^ = i J  ’ 1 (aj - 1 < V* < aj)  with 
7ro =  ( a i , 0:2, P2 ) where P\ = 0, @2 = 1, ao =  —00, ol\ =  —3/2, 0 .2  =  3/2 and 0:3 =  + 00. 

The censored regression model, LDV II, corresponds to model 1 discussed in the text. We 
implement the related estimator by using knowledge of the L  function along with 9 (y) = 
y2 exp ( ~ y 2), as suggested in Lewbel (1998). Models LDV I and LDV III were not discussed 
in the main text, but are consider in this experiment because they provide valid examples of 
the generality of the results under discussion. Also, we notice th a t these Limited Dependent 
Variable models require different moment restrictions for semiparametric identification.

We consider the well-known kernel smoother, here denoted by //vw , proposed by Rosen­
blatt (1969), the Local Linear estimator, proposed by Fan, Yao, and Tong (1996), and 
the Two-steps estimator, J25 , recently suggested by Hansen (2004). Although bandwidth 
selection methods are readily available for them, as we will explain in the next chapter, 
\/jV-sem iparametric estimators require undersmoothing relative to optimal pointwise con­
vergence of their nonparametric component. Although, we could use the ‘p lug-in’ optim al- 
bandwidth estim ator (see Chapter 4) when calculating /jvw, the optimal bandwidths when 
using f ll  or / 2s  will be generally different. It is for this reason th a t we have taken a 
simplified and sensible approach for bandwidth selection. For each sample size N  = 200,

6As discussed in Section 6 (page 161) in Lewbel (2000b). Apart from the experiment presented in this 
chapter, Stewart (2005) also provides Monte Carlo evidence with regards to its performance and compares 
it against other semiparametric competitors. However, they do not use any kernel-based estimator as we do 
here, but instead they employ the ordered data estimator of Lewbel and Schennach (2005) in place of the 
inverse of the unknown conditional density.

v\ x  ~  N  (0 ,6) 
v\ x  ~  N  (x, 6 ) 
v\ x  ~  N  (x, 6 ( l  +  x 2)).

(Design 1) 
(Design 2) 
(Design 3)
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400 and 600, in 2000 replications, we calculate the semiparametric estim ator using each of 
these estimators for the nonparametric component. We repeat this over the same grid of 
band widths, in which their semiparametric optimal band widths were known to lie through 
experimentation. Then we report the results for the fixed bandwidth th a t yield the small­
est combined root mean squared error for each estimator. Although unfeasible in a real 
application, this procedure provides a fair framework in which the performance of these 
semiparametric estimators can be compared. The same second order kernel and also the 
same bandwidth is used in all dimensions or steps for all three estimators. In these simu­
lations, we also calculate the optimally-weighted semiparametric estim ator using the true 
conditional density, / ,  and the maximum likelihood estim ator (MLE), which is not only 
consistent but also the most efficient estimator in all designs and models.

The results are presented in Tables 3.1 to 3.9. As would be expected, for all designs and 
models, the variance of semiparametric estimators based on (3.1.1) are bounded below by 
the variance of the MLE. In view of Corollary 3.2.2, they are also bounded above by the 
variance of the estimator tha t uses the true / .  The loss in efficiency varies among models 
for a given design. For example, using Design 1 in Tables 3.1, 3.2 and 3.3, the average loss 
ranges between 3-8% while using an estimated /  compared to  a loss of around 32% using 
the true density for fa  in LDV I. These relative losses, with respect to the MLE, become 
more dram atic in LDV II, with substantial losses of 47-57 % and 125% respectively. For 
the same design, Table 3.3 reports efficiency losses for estimation of c*i and a.i up to 5 times 
when using the true density in place of an estimated one. These losses seem to slightly 
increase in all models when using Designs 2 and 3 for all sample sizes.

Biases are sizeable when using any / .  Although they tend to decrease as the sample size 
increases, for a small sample size, N  = 200, in Design 2 they can be as high as 26% while 
using f 2 s  in LDV II (Table 3.5) for example, leads to an overall to reasonably higher R M S E .  
Likewise the MLE, the semiparametric estimator using /  is virtually mean unbiased in all 
models and designs. Nevertheless, their bigger variances lead significantly to the highest 
root mean squared error among all the estimators under consideration. It is also the case 
tha t the associated measures of fitting criterias, R M S E  and M A E , are bounded below by 
tha t of the MLE and above by tha t of the estimator th a t uses knowledge of / .  For all 
estimators, these fitting criteria tend to deteriorate as the dependence between v and x  
intensifies in all models.

W ith reference to the relative performance of /atw> J l l  andr / 2s,  Tables 3.1 and 3.3 
show no clear ranking in their performance. For LDV I and LDV III, f x w  seems to produce 
smaller R M S E  in estimating intercepts and using f n  produces better estimates of fa in 
LDV III and of P\ in LDV II. Nonetheless, Tables 3.5, 3.8, 3.6 and 3.9 (Designs 2 and 3) 
show that the use of the Local Linear estimator of Fan, Yao, and Tong (1996), produces 
smaller root mean squared errors than its competitors for all param eters in LDV II and LDV
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III. Two reasons may explain this improvement. Firstly, the associated pointwise bias of 
f n  does not depend on the unknown probability density function of x  as ]n w , and / 2s  do, 
and therefore makes it design adaptive (see Fan (1992)). Secondly, it is also known that the 
asymptotic bias and variance of Jll are of the same order of magnitude in the interior as well 
as near the boundary of the support of x , while this is not the case for Jn w , and / 2s . This 
later result is likely to produce fewer outliers arising from near-zero /  values, and might be 
alleviated with trimming. In our experiments however, no trimm ing is performed. It might 
also be possible th a t modifications, proposed by Hyndman, Bashtannyk, and Grunwald 
(1996) and De Gooijer and Zerom (2003), to the Nadaraya-W atson estim ator may help 
to mitigate the problem. In conclusion, at least in theory, the Local Linear estim ator’s 
design adaptation and its immunity from boundary effects makes it a more attractive choice 
than the others. Modifications by Hyndman and Yao (2002) may also further improve its 
performance. It is also true tha t the performance of / 2s  is always dominated by either 
or / ll  in terms of R M S E .

3.5 C onclusion

We derive the semiparametric efficiency bound for a class of estimators, which are based 
on unconditional moment restrictions that involve weighting by the inverse of a conditional 
probability function. The efficiency bound resembles th a t of Chamberlain (1987). It is 
easy to compute and its form is shown to mimic tha t of the standard GMM. In this uni­
fying framework, we also prove that the asymptotic variance of these estimators, when the 
conditional probability is known, is not smaller than when it is unknown. These findings 
generalize those of Magnac and Maurin (2004), as they are simply special cases of these 
more general results. An explicit link is made with Hirano, Imbens, and Ridder (2003), as 
we are able to reproduce their bound using our calculations. We show this as well as prove 
tha t the estimator for a general LDV model, proposed by Lewbel (1998), is semiparametric 
efficient, a finding th a t seem to be new in the literature. Similarly, we prove th a t estimators 
in Lewbel (2006) are also semiparametric efficient.

A small Monte Carlo experiment is performed in which we do not only confirm the 
validity of our results, but also compare three different kernel-based estimators. We find 
evidence th a t the use of the Local Linear estimator of Fan, Yao, and Tong (1996) outperforms 
the other two in certain cases.
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3.A Main Proofs

A ppend ix

3 .A  M ain Proofs

Although, the procedure described in Newey (1990) has dominated most of the literature 
of semiparametric efficiency bound derivation, we have taken a different bu t equivalent ap­
proach to calculating such bounds. Using some standard Hilbert space theory, Severini and 
Tripathi (2001) presents a simplified approach to computing efficiency bounds in semipara­
metric models. In our case, this approach greatly simplifies the derivation. The reader is 
encouraged to consult Severini and Tripathi (2001) for a  wider explanation on the steps 
discussed in the proofs below.

N o t a t i o n : In what follows, L 2 (Sw \fiw) represents the set of all real-valued functions 
on S w which are square integrable with respect to the fiw measure. L 2 (5W; w) also denotes 
the set of all real-valued functions on S w which are square integrable with respect to the 
probability distribution of w. We also use the symbol Ew to denote integrals with respect 
to the distribution of w, and E  [-| w] as conditional expectation given w.

P r o o f  o f  T h e o r e m  3 .2 .1

The random vector u = (y, wi,W2) has unknown density function /(y,wi,W 2) (with re­
spect to a dominating measure fi =  fiy x fiyfl x /zW2) which is rew ritten as

/ ( y , w i , w 2 ) =  / y | w ( y | w i , w 2 ) / W l |W2 ( w i | w 2 ) / W2 ( w 2 )

=  (y | W l ,  W 2 ) 0g;1 (w i| W 2 ) 0O;2 O 2) ,

where ipo G (j)o;i G $ 1, </>o:2 G $ 2 and

^  =  4> G Sy x 5Wl x 5W2 —> K, ip2 (y | w) > 0, bounded, /  V>2 (y |w )  fly (dy) = 1
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3.A Main Proofs

$ 2 =  <

01 G L2 (Sw il/iw i), moment (3.2.2) exists, /  01 (w i| w 2) /iWl (dwi) =  1

02 G L2 ( 5 W 2; ^ W 2 ) , 02 (w 2) > 0 , bounded, J  0 2 (w)/zW2 (dw2) =  1

?W2

> .

The idea is to think of $ i  as imposing some restrictions on elements of L 2 (5Wl; Pwi) 
such tha t (3.2.2) exists. These restrictions will be motivated by the functional form of 
m  (u;7To,0o;i) as we^ as underlying assumptions regarding the subvector w i. The as­

sumption th a t m atrix E  g (u; 7ro, 02;1) g (u; 7To, 0o;i ) T exists and is not singular, implies 

tha t none of the components of m  (u; 7To, 0 q;i) — s (7To) axe redundant, i.e. linearly depen­
dent, where m  (u; 7ro, 0 q;1) =  m  (u; 7ro) / 0 o;i-

We want to calculate the efficiency bound for estimating 7To G Rp, our parameter of 
interest. To simplify this problem, we look at a real-valued function, consider estimating 
P (0 0 , 0O;i, 0 O;2) =  cT7To as our ‘structural’ parameter of interest, where c G Kp is arbitrary.

A s d escrib ed  in  S ection  2 in  Severini and T rip ath i (2001) w e b eg in  by p aram eter­

iz in g  0 o , 00;l and  0o ;2 as a o n e-d im en sio n a l subproblem . For som e to >  0  le t t  i— > 

(0 f , 0 t;i, 0 t;2 , n t )  b e  a curve from  [0, to] m to  $  x  3>i x $ 2 x R p w hich  p asses through  

(0o,0O;i,0O;2,7To) a t £ =  0. L et th e  tan gen t sp ace to $  x $ 1  x  $ 2 x R p at th e  true  

value (0 o ,0 O ;i, 0O;2) b e d en oted  by l i n  T ( $ x $ i x $ 2 x  Rp, ( 0 o, 0 o-,i , 0O;2))- T h is tan gen t  

sp ace is th e  sm allest linear sp ace w hich  is closed  in  th e  L 2-norm  and w hich  con ta ins all 

6  L 2 ( S y  x  5 Wl x  5 W2; P y  x  Mwi x  M w 2 ) th a t are ta n g en t to  x  $ 1  x  $ 2 x  Rp at 

(00 , 00; 1, 0O;2)•

As shown7 in Severini and Tripathi (2001), the tangent space is the product of lin T  (\&, 0o),

rIn fact, they showed this for //y and /xW2 Lebesgiie measures. These sets can be made more specific in a 
given LDV model, at the expense of additional notation and complexity without altering the final result.
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lin T  ($ 1 , (j>o;i) and lin T  ($ 2 , 4>0;2 ) where

lin T  (’F, 0o) =  < * p e L 2 (Sy X ‘S'wi X *Sw2 j Ây X w) , 

/ * *  ( y |w ) % (dy) =  0 for almost all w

lin T  ($2) 0O;2) =  < 02 e  (S'waJ A*wa) > J  0 2 0 O;2 (w2) Mw2 (dw2) =  0

jw2

> .

We notice that there is no need to define explicitly the set lin T  ($ 1 , (f>o-i) since (f)\ will soon 
be shown to be zero, which is always an element of the tangent space, whatever it may be. 
This enforces our earlier claim that <f)o;i is ancillary to 7To. They also provided the framework

in which we define, for any (0,0!,<£2 ) and ('0/» 0i > <̂2 ) elements of the tangent space, the 
Fisher information inner product (•, •)F and the corresponding norm ||-||F as

< (0, 0 i, 02), (0'i 0i> 02) > F  = 4 J (d y )  + 4E W2 J  0j0i/xwi (dwi)

+  4 J  0202^w2 (dw2)

\

/
(3.A.1)

(0 , 01, 02) = < (0,01, 02), (0,01, 02) >F

However, not every ( 0 ,0 1, 02 ) £ T(\I/,0o) x X* (^>1, 0o;i) x ^  T  ($>2 ,<f>o-,2 ) may be
used to calculate (•, -)F. After differentiating the unconditional moment conditions,

£  [m (u; 7Tt, 0?;1) -  s (7rt)] =  £  [g (u; tt0, 0q;i)] ,
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3.A Main Proofs

with respect to t, we can notice tha t only those (0 i , 0 , 0 2) may be used th a t also satisfy 

0 = J  V tt  [ ( m  ( y ,  W i , w 2 ; t t0 ) -  s  ( t t0) 0 q ;i ) ]  0 o 0 o ;2My (d y ) Mwx (r f w i )  Mw2 ( d w 2) *

5 y  X  S -w  2

+ 2 J  jm(y,Wi,W2;7r0) ̂ 0 O0 0 O;2 + 0 O0 O;2 0 2^
5 y  x 5 w j  x 5 w 2

-  S (tt0 ) ^0O00O;10O;2 +  0O0O;1010O;2 +  0O0O;10O;202^ j  My (d y )  Mwi ( ^ 1) /zWa ( d w 2) 

/  { ' ■  [m ( y ,  W i ,  W 2 ; 7T0) (0O;l) 2 — s  (7T0)] 0O;10O0O;2*'

v j  X 5 w 2

+  2m (y, w i, w2; tt0) ^0o00o;2 +  0o0O;202  ̂J My (dy) Mwi (dwi) jLiW2 (dw2) 

0 =  [JBVffg (y ,w i,w 2;7ro,0§;i)] tt +  2 J  m (y ,w i,w 2;7r0, ^ ;1) 0§;i x

0  =

5 y  X 5 w j  X iSw 2

5vx5Wi xSi

0o00o;2 +  0o0o;202 ) My (dy) MW! (dwi) p W2 (dw2)

The second equality follows from the fact tha t for any (0 ,0 i ,0 2) in fbe tangent space,

/ 5y ipoippy (dy) =  0 for almost all w, J5w 0o;i0iMwi (dw i) =  0 and / 5w 0 O;202Mw2 (dw2) =
0. Since q > p, i.e. 7To may be over identified, the above equation will generally have a 
nonunique solution in tt. A sufficient condition for ttq to be locally identified (see Rothenberg 
(1971)) is tha t we find a nonstochastic full rank q x q m atrix W  such th a t the m atrix 

(M qW M q ) " 1 exist, where M 0 =  E  [V^g (u; 7r0, 0q;i)] >

tt = -2 J  |MflWM0j MjWm(y,wi,w2;7ro,0o;i)0o;i 0̂o00o;2 +0o0O;202
( S y X iS w j X

x fjy (dy) /zWl (dwi) j[iW2 (dw2) .

The tangent vector (ip, 0 i , 02) used to calculate 7r also has to satisfy Vp(ip, 0 i, 02) =  cT7r. 

It is clear that Vp is a linear functional on the product tangent space and that 

[lin T  (®, ipo) x lin T  ($ 1 , 0o;i) x lin T  ($ 2,0o;2), (•, ■))

is a Hilbert space. Then the Riesz-Prechet theorem implies that for all (0 ,0i,02) in 
the tangent space there exists a unique (0 * ,0 i,0 2) E lin T  ($!, ipo) x l in T  ( $ 1, (po-i) x
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lin T  ($ 2,0 o;2) such that

Vp{\ l>,<f>i,<t>2 ) = <  (^*>01,05) ,(0 ,01 , 02) >F

Firstly, notice th a t Vp(0, 0 i , 02) can be rewritten as 

V p (0 ,0 !,0 2)

=  - 2  J  j c T (M jW M o j^ M jW r h x

0o;i ( ^ 0^ 0:2 +  0 o0 o;202^ |  Py (dy) p Wl (dwi) p W2 (dw2) 

=  - 2  [> J  cT ^Mq W M 0) _1 Mg W in  (u;7ro,^o;i) x

Sy XiSwj

5 W 1 X S w 2

0 o0 0 o;i 0 o;2  ̂Pwi (dwi) p W2 (dw2) p y (dy)

0o0o;iPy (dy) pWl (dwi) ► 0 O;202Pw2 (dw2)

Comparing the above expression with (3.A. 1) and using the fact th a t Js  ^oV'Py (dy) =  0

for almost all w  and f s^  0 O;202Pw2 (dw2) =  0 for any 0  and 02 in the tangent space, it is 
possible to deduce (0 * ,0 i ,0 2) as

0* ( y |w i ,w 2) =  - ^ c T ( m 0t W M 0) M q W [ m - E ( m | w i , w 2)]^o

01 (w i |  w 2) =  0

02 (w2) =  ~ \ c T (m J-W M o ) " 1 M jW  [E (m | w 2) -  E  (in)] 0 O;2.

It is straightforward to verify tha t the proposed ( 0 * , 0 i , 0 2) belongs to the tangent space,
i.e. JSy 0o0*Py (dy) =  0 and f Sw 0 O;202Pw2 (dw2) =  0. Therefore, from the Riesz-Frechet 
theorem we can conclude tha t Vp is not only linear but also continuous which implies that 
our object of interest p (0o, 0O;i, 0O;2) is pathwise differentiable.

As shown in Severini and Tripathi (2001), we can use (0*, 0 j, 02) with the efficiency
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bound for the asymptotic variance of regular estimators of cT7ro now given by

II «>*, « , « ) ! &

= cT (m Jw Mo)" Mjx

W E  [(m -  E  (m| wi, w2)) (m -  E  (m| wj, w2))T WTM0 (m JWM0) c 

+ cT WM0j _1 Mg x

W E  [(£ (m| w2) -  E  (m)) (E  (m| w2) -  E  (m))T WTM0 (mJWM0) c 

= cT (mJWM0j _1 W E  [(in -  E  (m) -  E  (m| wx, w2) + E  (m| w2)) x 

(m -  E  (m) -  E  (m| wx, w2) + E  (m| w2))T] WTM0 (mJ WM0) c 

= cT (mJWMo) _1 M jW n0WTM0 ( M q WMo) _1 c.

However, this result is not satisfactory, because the lower bound depends upon W, the 
auxiliary matrix used to solve for n. Since by assumption, fio is nonsingular, and using 
Hansen (1982)’s trick, it is possible to show that

Lb. ( c T7fn) =  cT (M jW M o ) 1 Mq W f20W TM 0 ( m J w M 0) *c >  cT( M ^ Q ^ M o ) - 1̂

Therefore the efficiency bound for regular estimators of cT7ro is given by c t ( M q  f i g 1M o ) _ 1 c. 

Because c G ffl* was arbitrary, we conclude that the efficiency bound for regular estimators 
of 7Tq is (M^fig 1Mo)-1 . ■
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P ro o f o f  C orollary 3 .2 .2

We prove that (Mq S70 1Mo) 1 — (Mq f t Q 1Mo) 1 is a positive semi-definite matrix, which 
is equivalent to prove that Mg fig *^0 — = Mg (fig 1 — is negative
semi-definite or that Aq =  flo — is positive semi-definite. Recall

fin ~  E gg

f Iq = E  [ggTJ ,

whereg =  g (y ,w i,w 2;7r0) ,g =  g - E (g| w i, w 2)+E  (g| w2) =  g -h a n d  h = E  [g| wj, w2] -  
E  [ g| w 2 ] • Then it follows that

A  = E  |ggT - (g - h) (g - h)T 

=  E  [ghT + hgT - hhT]

= E  ^E [g| wi, w2] hT + hE  JgT| wi, w2J - hhTj 

= E  JhhT -I- E  [g| w2] hT + hjE JgT| w2j j 

=  E  [hh"

where the last equality follows after noticing that E \ E [  g| w2] hT] =  E  [E [g| w2] E  [hT | w2] ] 
= 0. As A = E  [hhT] is positive semi-definite, the result follows. ■
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Table 3.1: Monte Carlo results for Design 1

Slope: fo Intercept: Pi
N Est. Bias S D R M S E M A E Bias S D R M S E M A E

200 MLE -0.0125 0.3116 0.3118 0.2491 -0.0031 0.1423 0.1423 0.1130
f { v \ x ) -0.0096 0.4028 0.4028 0.3198 -0.0106 0.1865 0.1868 0.1497

I n w  M  x ) -0.0365 0.3244 0.3264 0.2623 -0.0498 0.1498 0.1578 0.1262
I I I  Ms) -0.0516 0.3129 0.3170 0.2557 -0.0649 0.1493 0.1627 0.1297
f 2s ( v \ x ) -0.0354 0.3375 0.3393 0.2722 -0.0522 0.1548 0.1634 0.1306

400 MLE -0.0074 0.2252 0.2252 0.1798 0.0003 0.1002 0.1002 0.0798
f ( v \ x ) -0.0028 0.2955 0.2954 0.2340 -0.0015 0.1315 0.1315 0.1046
I n w  M  x ) -0.0318 0.2313 0.2334 0.1857 -0.0494 0.1029 0.1141 0.0917

I I I  H z ) -0.0260 0.2344 0.2357 0.1879 -0.0253 0.1071 0.1100 0.0876
f ‘2 s ( v \ x ) -0.0296 0.2381 0.2399 0.1915 -0.0508 0.1066 0.1181 0.0948

600 MLE -0.0051 0.1852 0.1852 0.1470 -0.0022 0.0822 0.0822 0.0662
f ( v \ x ) -0.0025 0.2469 0.2469 0.1979 -0.0019 0.1089 0.1089 0.0878
I n w  (v| x ) -0.0212 0.1956 0.1967 0.1575 -0.0335 0.0859 0.0922 0.0747

I I I  (u|®) -0.0306 0.1912 0.1936 0.1556 -0.0425 0.0856 0.0955 0.0773

f ’2S M  x ) -0.0206 0.2009 0.2019 0.1614 -0.0341 0.0884 0.0947 0.0765

a Binary Choice Model (LDV I): y = 1 (v -F (3\ +  p2x  +  £ > 0).
b Results are based on 2000 replications. For each semiparametric estimator, optimal band- 

widths were chosen by minimizing the simulated combined R M S E  over 40 fixed grid points.
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Table 3.2: Monte Carlo results for Design 1

Slope: fo Intercept: fo
N E s t . Bias S D R M S E M A E Bias SD R M S E M A E

200 MLE -0.0063 0.1749 0.1750 0.1404 -0.0027 0.0805 0.0805 0.0640
f ( v \ x ) 0.0008 0.3890 0.3889 0.3077 -0.0075 0.1729 0.1730 0.1361
I n w  M  x ) -0.1980 0.2212 0.2968 0.2441 0.0521 0.0986 0.1115 0.0891
/ l l ( v \ x ) -0.2258 0.2061 0.3057 0.2555 0.0566 0.0943 0.1100 0.0881
f 2 s { v \ x ) -0.2004 0.2239 0.3004 0.2476 0.0511 0.0995 0.1118 0.0891

400 MLE -0.0019 0.1242 0.1242 0.0979 -0.0009 0.0568 0.0568 0.0456
f ( v \ x ) 0.0023 0.2793 0.2792 0.2215 -0.0029 0.1233 0.1233 0.0977
I n w  ( f |  x ) -0.1123 0.2023 0.2314 0.1867 0.0312 0.0910 0.0962 0.0764
I I I  { v \ x ) -0.1392 0.1924 0.2374 0.1931 0.0353 0.0883 0.0951 0.0754
f 2s ( v \ x ) -0.1136 0.2054 0.2347 0.1905 0.0303 0.0908 0.0957 0.0758

600 MLE -0.0028 0.1004 0.1004 0.0797 -0.0010 0.0462 0.0462 0.0368
f ( v \ x ) -0.0008 0.2288 0.2287 0.1811 -0.0034 0.1005 0.1005 0.0790
f Nw  M e ) -0.0808 0.1756 0.1932 0.1546 0.0199 0.0795 0.0819 0.0650
/ l l  ( v | x ) -0.1031 0.1686 0.1976 0.1593 0.0233 0.0780 0.0814 0.0644
f 2s { v \ x ) -0.0803 0.1775 0.1948 0.1554 0.0203 0.0796 0.0821 0.0655

a Censored Regression Model (LDV II): y  — [v +  fo +  f o x  +  e] x 1 (u +  Pi +  f o x  +  e  > 0). 
b Results are based on 2000 replications. For each semiparametric estimator, optimal band- 

widths were chosen by minimizing the simulated combined R M S E  over 40 fixed grid points.
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Table 3.3: Monte Carlo results for Design 1
Slope: /?2 Threshold: a i Threshold: 0 .2

N Est . Bias S D R M S E M A E Bias S D R M S E M A E Bias S D R M S E M A E
200 MLE 0.0030 0.2359 0.2359 0.1859 -0.0083 0.1448 0.1450 0.1158 0.0050 0.1479 0.1479 0.1184

f j v \ x ) -0.0121 0.3717 0.3718 0.2954 0.0028 0.2101 0.2101 0.1665 0.0058 0.2137 0.2138 0.1715
f m v  (v| x) -0.0404 0.2813 0.2842 0.2249 0.0324 0.1581 0.1613 0.1288 -0.0322 0.1626 0.1657 0.1323
? l l { v \ x ) -0.0373 0.2707 0.2732 0.2159 0.0181 0.1623 0.1633 0.1304 -0.0180 0.1665 0.1675 0.1337
h s { v \ x ) -0.0425 0.2920 0.2950 0.2336 0.0356 0.1636 0.1674 0.1339 -0.0349 0.1680 0.1715 0.1364

400 MLE -0.0028 0.1655 0.1655 0.1306 -0.0041 0.1019 0.1020 0.0811 0.0014 0.1056 0.1056 0.0843
f ( v \ x ) -0.0133 0.2608 0.2611 0.2078 0.0021 0.1523 0.1523 0.1218 0.0019 0.1513 0.1513 0.1212
I n w  M x ) -0.0336 0.1889 0.1918 0.1526 0.0302 0.1099 0.1139 0.0917 -0.0307 0.1134 0.1175 0.0939
? l l { v \ x ) -0.0297 0.1870 0.1893 0.1497 0.0153 0.1142 0.1152 0.0927 -0.0163 0.1169 0.1180 0.0945
? 2  s ( v \ x ) -0.0357 0.1950 0.1982 0.1573 0.0317 0.1131 0.1175 0.0947 -0.0323 0.1156 0.1200 0.0961

600 MLE 0.0004 0.1343 0.1343 0.1062 -0.0032 0.0849 0.0849 0.0675 -0.0018 0.0867 0.0867 0.0696
f j v \ x ) -0.0078 0.2161 0.2162 0.1730 0.0042 0.1276 0.1276 0.1014 0.0004 0.1241 0.1241 0.1004
I n w  M  x) -0.0185 0.1554 0.1564 0.1255 0.0179 0.0922 0.0939 0.0754 -0.0201 0.0932 0.0953 0.0762
( l l { v \ x ) -0.0149 0.1542 0.1549 0.1239 0.0061 0.0956 0.0958 0.0767 -0.0081 0.0958 0.0961 0.0772
h s ( v \ x ) -0.0194 0.1600 0.1612 0.1292 0.0192 0.0940 0.0959 0.0768 -0.0208 0.0946 0.0968 0.0774

a Ordered Response Model (LDV III): y  =  2 f = i  0 ' 1 (a j - i  ^  v  +  Pi  +  f o x  +  £ < aij).
b Results are based on 2000 replications. For each semiparametric estimator, optimal bandwidths were chosen by minimizing the

simulated combined R M S E  over 40 fixed grid points.
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Table 3.4: Monte Carlo results for Design 2

Slope: P2 Intercept: fi\
N Est. Bias S D R M S E M A E Bias S D R M S E M A E

200 MLE 0.0091 0.3339 0.3340 0.2665 0.0011 0.1475 0.1475 0.1160
f ( v \ x ) 0.0009 0.4359 0.4358 0.3464 0.0004 0.1979 0.1978 0.1577
f N W  H z ) -0.0626 0.3462 0.3517 0.2803 -0.0512 0.1518 0.1601 0.1278
I I I  Ws) -0.0588 0.3378 0.3428 0.2732 -0.0624 0.1532 0.1654 0.1320
f 2 S  (v|®) -0.0423 0.3665 0.3689 0.2941 -0.0508 0.1590 0.1669 0.1344

400 MLE 0.0085 0.2355 0.2356 0.1882 0.0011 0.1007 0.1007 0.0800
f { v  \x) 0.0025 0.3012 0.3011 0.2392 -0.0011 0.1366 0.1366 0.1094
f N W  ( v |  X) -0.0427 0.2474 0.2510 0.2008 -0.0243 0.1049 0.1076 0.0860
I I I  M ® ) -0.0252 0.2457 0.2469 0.1984 -0.0263 0.1072 0.1103 0.0881

h s  ( v \ x ) -0.0149 0.2567 0.2571 0.2059 -0.0221 0.1086 0.1108 0.0889
600 MLE 0.0063 0.1922 0.1923 0.1534 0.0012 0.0840 0.0840 0.0675

f ( v \ x ) 0.0015 0.2487 0.2486 0.1988 -0.0001 0.1121 0.1121 0.0894
f N W  ( v |  x ) -0.0354 0.2002 0.2032 0.1624 -0.0346 0.0863 0.0930 0.0747

f L L  ( v |z ) -0.0171 0.2038 0.2045 0.1639 -0.0145 0.0900 0.0911 0.0731
f 2 S { v \ x ) -0.0226 0.2070 0.2082 0.1664 -0.0343 0.0882 0.0947 0.0763

a Binary Choice Model (LDV I): y = 1 (v +  Pi +  p 2 % +  £ > 0).
b Results are based on 2000 replications. For each semiparametric estimator, optimal band- 

widths were chosen by minimizing the simulated combined R A I S E  over 40 fixed grid points.
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Table 3.5: Monte Carlo results for Design 2

Slope: 02 Intercept: 0\
N Est. Bias SD R M S E M A E Bias S D R M S E M A E

200 MLE 0.0054 0.1801 0.1802 0.1432 -0.0043 0.0832 0.0833 0.0661
f { v \ x ) 0.0036 0.4186 0.4186 0.3295 0.0020 0.1790 0.1790 0.1401
f NW (w| x) -0.1055 0.3225 0.3393 0.2733 0.0159 0.1408 0.1417 0.1112

I I I  H z ) -0.1370 0.3027 0.3322 0.2707 0.0208 0.1358 0.1374 0.1076
f2S H  x ) -0.2629 0.2236 0.3451 0.2935 0.0560 0.0967 0.1118 0.0893

400 MLE -0.0002 0.1278 0.1277 0.1026 -0.0027 0.0583 0.0584 0.0463
f { v \ x ) -0.0030 0.2821 0.2820 0.2218 0.0016 0.1273 0.1273 0.1008
f NW {v\x) -0.0671 0.2358 0.2451 0.1965 0.0112 0.1079 0.1084 0.0857
I I I  (v \ x ) -0.0762 0.2297 0.2419 0.1938 0.0136 0.1067 0.1076 0.0848
.f‘2 s ( v \ x ) -0.0531 0.2451 0.2507 0.1981 0.0107 0.1110 0.1115 0.0875

600 MLE 0.0012 0.1036 0.1035 0.0821 -0.0011 0.0471 0.0471 0.0378
f ( v \ x ) -0.0032 0.2318 0.2317 0.1848 0.0018 0.1051 0.1051 0.0831
f NW (v| X) -0.0547 0.1987 0.2060 0.1649 0.0085 0.0904 0.0908 0.0724

I I I  (^|^) -0.0319 0.2025 0.2049 0.1631 0.0059 0.0928 0.0930 0.0738

/ 2 5 ( ^ | ^ ) -0.0376 0.2059 0.2092 0.1668 0.0075 0.0914 0.0917 0.0730

a Censored Regression Model (LDV II): y =  [i> +  0\  4- 02X A- e] x 1 {v +  0i  +  02% +  £ > 0 ) .  
b Results are based on 2000 replications. For each semiparametric estimator, optimal band- 

widths were chosen by minimizing the simulated combined R M S E  over 40 fixed grid points.
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Table 3.6: Monte Carlo results for Design 2
Slope: /?2 Threshold: <*i Threshold: cli

N E s t . B i a s S D R M S E M A E B i a s S D R M S E M A E B i a s S D R M S E M A E

200 M L E 0.0114 0.2472 0 .2474 0 .1970 -0 .0003 0 .1544 0.1544 0 .1228 0 .0030 0 .1563 0.1563 0 .1242
f ( v \ x ) -0 .0070 0 .3919 0 .3919 0.3136 0 .0052 0 .2274 0.2274 0 .1832 -0 .0015 0 .2274 0 .2274 0 .1808

I n w  ( v l x ) -0 .1360 0 .2736 0.3055 0 .2464 0 .0914 0.1661 0.1896 0 .1523 -0 .0892 0 .1643 0.1869 0.1512
/ l l { v \ x ) -0 .0593 0.2860 0 .2920 0.2348 0.0304 0 .1770 0.1796 0 .1423 -0 .0259 0 .1759 0 .1777 0.1415

f 2 s ( v \ x ) -0 .0 6 0 7 0.3116 0.3174 0.2541 0.0468 0.1823 0.1882 0 .1503 -0 .0446 0.1790 0.1845 0 .1476
400 M L E 0.0058 0.1750 0.1751 0.1383 0 .0018 0.1079 0.1079 0 .0863 0 .0013 0.1081 0 .1080 0.0859

f ( v  \ x ) -0 .0049 0.2820 0 .2820 0.2263 0 .0065 0.1616 0 .1617 0 .1296 -0 .0008 0 .1622 0.1622 0 .1288

I n w  (u | x ) -0 .0965 0 .2009 0 .2229 0 .1787 0.0501 0.1175 0.1277 0 .1027 -0 .0459 0.1174 0.1260 0 .1009
I l l { v \ x ) -0 .0436 0 .2013 0.2059 0.1645 0 .0245 0.1218 0.1243 0 .0999 -0 .0186 0 .1222 0 .1235 0 .0987

f 2s ( v \ x ) -0 .0478 0 .2138 0.2191 0 .1747 0 .0429 0.1236 0.1308 0.1051 -0 .0382 0.1230 0 .1287 0 .1030
600 M L E 0.0064 0.1422 0 .1424 0 .1136 -0 .0014 0.0883 0.0883 0 .0699 0 .0017 0.0881 0.0881 0.0697

f { v \ x ) -0 .0029 0 .2307 0 .2306 0 .1836 0 .0044 0.1325 0.1325 0 .1064 0.0023 0 .1314 0 .1314 0.1043

I n w  ( v \ x ) -0 .0815 0 .1657 0 .1846 0 .1484 0.0333 0.0969 0.1025 0 .0823 -0 .0304 0 .0959 0 .1006 0.0807

I l l { v \ x ) -0 .0285 0.1656 0 .1680 0 .1336 0 .0100 0.1006 0.1011 0 .0808 -0 .0062 0 .1005 0 .1006 0 .0802
f 2 s { v \ x ) -0 .0298 0.1753 0 .1778 0 .1408 0 .0243 0.1012 0.1040 0 .0835 -0 .0216 0.0999 0 .1022 0 .0820

a Ordered Response Model (LDV III): y  =  Y ^ j= i 3 ' 1 (a j - i  — v  +  fa  +  f a x  +  £ < ocj).
b Results are based on 2000 replications. For each semiparametric estimator, optimal bandwidths were chosen by minimizing the

simulated combined R M S E  over 40 fixed grid points.



3.B Tables

Table 3.7: Monte Carlo results for Design 3

Slope: P2 Intercept: P\

N E s t . B i a s S D R M S E M A E B i a s S D R M S E M A E

200 MLE 0.0291 0.3306 0.3318 0.2641 0.0091 0.1517 0.1519 0.1210
f ( v \ x ) 0.0241 0.4463 0.4468 0.3583 0.0018 0.2053 0.2053 0.1623
I n w  H z ) -0.0535 0.3506 0.3546 0.2822 -0.0492 0.1582 0.1656 0.1325
I I I  (v|&) -0.0521 0.3479 0.3517 0.2792 -0.0520 0.1603 0.1685 0.1351
f 2s ( v \ x ) -0.0255 0.3690 0.3698 0.2968 -0.0477 0.1672 0.1739 0.1390

400 MLE 0.0192 0.2368 0.2375 0.1893 0.0056 0.1064 0.1065 0.0846
f ( v \ x ) 0.0149 0.3169 0.3171 0.2552 0.0036 0.1451 0.1451 0.1149
f N W  (v| x ) -0.0403 0.2442 0.2475 0.1988 -0.0538 0.1106 0.1230 0.0992
f L L { v \ x ) -0.0184 0.2540 0.2546 0.2035 -0.0163 0.1153 0.1164 0.0928
f ‘2 s { v \ x ) -0.0246 0.2568 0.2579 0.2071 -0.0525 0.1155 0.1268 0.1018

600 MLE 0.0142 0.1941 0.1946 0.1543 0.0033 0.0849 0.0849 0.0674
f { v  \ x ) 0.0089 0.2581 0.2582 0.2073 0.0020 0.1174 0.1174 0.0936
f N W  ( v | X) -0.0334 0.2023 0.2050 0.1641 -0.0368 0.0885 0.0958 0.0770
f L L  ( v \ x ) -0.0131 0.2098 0.2101 0.1684 -0.0063 0.0923 0.0925 0.0736
f 2 s { v \ x ) -0.0163 0.2097 0.2103 0.1683 -0.0351 0.0925 0.0989 0.0789

a Binary Choice Model (LDV I): y  = 1 ( v  +  P i  +  P 2x  +  £ >  0 ).
b Results are based on 2000 replications. For each semiparametric estimator, optimal band- 

widths were chosen by minimizing the simulated combined R M S E  over 40 fixed grid points.
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3.B Tables

Table 3.8: Monte Carlo results for Design 3

Slope: fo Intercept: Pi
N Est . Bias SD R M S E M A E Bias S D R M S E M A E

200 MLE 0.0034 0.1801 0.1801 0.1428 0.0011 0.0821 0.0821 0.0654
f ( v \ x ) 0.0170 0.4041 0.4044 0.3200 0.0057 0.1827 0.1828 0.1447
f N W  H  x ) -0.1000 0.3182 0.3334 0.2680 0.0265 0.1429 0.1453 0.1154
/ l l ( v \ x ) -0.1357 0.2966 0.3261 0.2637 0.0307 0.1380 0.1413 0.1123
f 2 S  H ^ ) -0.0913 0.3204 0.3331 0.2672 0.0252 0.1452 0.1473 0.1165

400 MLE 0.0038 0.1302 0.1303 0.1036 0.0004 0.0582 0.0582 0.0461
f ( v \ x ) 0.0125 0.2905 0.2907 0.2291 0.0043 0.1321 0.1321 0.1056
f N W  H  x ) -0.0564 0.2425 0.2489 0.1978 0.0157 0.1092 0.1103 0.0881
f L L  H z ) -0.0712 0.2376 0.2480 0.1981 0.0177 0.1082 0.1096 0.0875
/ 2s  H z ) -0.0398 0.2490 0.2521 0.1992 0.0154 0.1108 0.1119 0.0892

600 MLE 0.0021 0.1073 0.1073 0.0852 -0.0002 0.0464 0.0464 0.0373
/ H z ) 0.0073 0.2371 0.2372 0.1870 0.0025 0.1044 0.1044 0.0824
f N W  H  z) -0.0427 0.2017 0.2061 0.1632 0.0098 0.0883 0.0888 0.0710
f L L  { v \ x ) -0.0472 0.2003 0.2058 0.1645 0.0109 0.0878 0.0884 0.0705
f ‘2 s {v \x ) -0.0228 0.2078 0.2090 0.1651 0.0094 0.0895 0.0900 0.0720

a Censored Regression Model (LDV II): y =  [v +  Pi +  @2 % +  e] x 1 (v 4- (3\ +  ft2% -f £ > 0). 
b Results are based on 2000 replications. For each semiparametric estimator, optimal band- 

widths were chosen by minimizing the simulated combined R M S E  over 40 fixed grid points.
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Table 3.9: Monte Carlo results for Design 3
Slope: fo Threshold: ot\ Threshold: c*2

N Est. Bias SD R M S E M A E Bias SD R M S E M A E Bias SD R M S E M A E
200 MLE 0.0154 0.2496 0.2500 0.1997 -0.0074 0.1540 0.1541 0.1230 0.0033 0.1569 0.1569 0.1237

f j v \ x ) 0.0157 0.4092 0.4094 0.3289 -0.0131 0.2347 0.2350 0.1867 -0.0031 0.2352 0.2351 0.1871
I n w  H  x) -0.1192 0.2856 0.3094 0.2502 0.0836 0.1635 0.1836 0.1485 -0.0888 0.1673 0.1894 0.1511
I I I  H a;) -0.0734 0.2873 0.2965 0.2383 0.0358 0.1717 0.1754 0.1410 -0.0433 0.1771 0.1823 0.1445
f2 s (v \x ) -0.0404 0.3178 0.3202 0.2557 0.0375 0.1782 0.1820 0.1461 -0.0453 0.1810 0.1865 0.1482

400 MLE 0.0096 0.1760 0.1762 0.1385 -0.0057 0.1077 0.1078 0.0868 0.0045 0.1099 0.1100 0.0868
f { v  \x) 0.0092 0.2950 0.2951 0.2370 -0.0063 0.1635 0.1636 0.1306 0.0058 0.1646 0.1647 0.1312
fNW H  x) -0.0840 0.2040 0.2206 0.1756 0.0434 0.1155 0.1234 0.0987 -0.0419 0.1172 0.1245 0.0992
? l l { v \ x ) -0.0373 0.2060 0.2093 0.1654 0.0040 0.1204 0.1204 0.0961 -0.0040 0.1230 0.1230 0.0974
?2s ( v \ x ) -0.0348 0.2173 0.2200 0.1750 0.0340 0.1214 0.1261 0.1002 -0.0348 0.1236 0.1284 0.1015

600 MLE 0.0086 0.1446 0.1448 0.1141 -0.0069 0.0895 0.0898 0.0719 0.0034 0.0908 0.0909 0.0722
f j v \ x ) 0.0072 0.2458 0.2458 0.1976 -0.0078 0.1348 0.1350 0.1084 0.0053 0.1368 0.1369 0.1077
fNW  H  x) -0.0725 0.1683 0.1832 0.1459 0.0274 0.0977 0.1014 0.0808 -0.0285 0.0971 0.1012 0.0805
T l l ( v \ x ) -0.0402 0.1651 0.1699 0.1341 0.0119 0.1001 0.1008 0.0799 -0.0132 0.1003 0.1012 0.0804
? 2 S ( V \ X ) -0.0196 0.1786 0.1796 0.1443 0.0173 0.1012 0.1027 0.0822 -0.0194 0.1021 0.1039 0.0819

a Ordered Response Model (LDV III): y  =  3 ' 1 (a j - i  ^  v  + Pi + f o x  +  5 <  oc j ) .

b Results are based on 2000 replications. For each semiparametric estimator, optimal bandwidths were chosen by minimizing the
simulated combined R M S E  over 40 fixed grid points.



Chapter 4

O ptim al Bandw idth Choice for 
Estim ation of Inverse 
Conditional—D ensity—W eighted  
E xpectations

4.1 Introduction

An im portant class of semiparametric estimators, first proposed by Lewbel (1998), involves 
the use of kernel-based nonparametric estimates in place of the true conditional density in 
objects of the form

rj = E
UJ

(4.1.1)
L / v | u ( V |U ) .

where {u;T , V, U T } is a random vector, and f y \ u  (•) denotes the conditional density function 
of a scalar continuous random variable V  given the random subvector U. This conditional 
density function is assumed to be estimated here by the ratio of kernel estimators for f y j j  (•) 
and / u  (•)> the joint and marginal densities of (V,UT) and (U) respectively.

For Limited Dependent Variable models, examples of estimators belonging to this class 
are Lewbel (1998), Lewbel (2000b), Honore and Lewbel (2002), and Khan and Lewbel 
(2006). Results derived in this chapter are directly applicable to these estimators. Specifi­
cally, if one has a random sample from the joint distribution of {cjt , V ,U T }
for i = 1 , . . . ,  N,  implementation of any of these estimators requires choosing the numeri­
cal value of a bandwidth parameter, h, for the nonparametric kernel estim ator of f y \ u  (•) 
in (4.1.1). This chapter discusses formally how to perform this selection. Given that the



4.1 Introduction

asymptotic (first-order) distribution of this semiparametric estimator, rj (h), of (4.1.1) does 
not depend on the bandw idth1 h , any optimal bandwidth formula must be based on a 
higher-order approximation to such distribution. Technically, such approximations become 
more complex in the presence of stochastic denominators in a simple ‘plug-in’ semipara­
metric estimator of (4.1.1) as explained above. Therefore, we take an alternative approach. 
We first show th a t rj (h) is asymptotically equivalent to a linear combination of functions 
of [/-statistics, which we call its ‘asymptotic representation’, rj(h), and does not have a 
stochastic denominator. This asymptotic representation includes functions of a [/-sta tistic  
of order one (a simple sample average), and two data  dependent (via the bandwidth pa­
rameter h) second-order [/-statistics. Finally, we find a formula for the optimal bandwidth 
tha t minimizes (with respect to h) the leading terms of an asymptotic approximation to

E  \\rj(h) — r) \ \2 

where ||-|| is the standard Euclidean2 norm.

Related calculations to the ones derived here can be found in the literature of bandwidth 
selection for average derivative estimation, see e.g. Hardle, Hart, Marron, and Tsybakov 
(1992), Hardle and Tsybakov (1993) and Powell and Stoker (1996). Our results are dif­
ferent from theirs in tha t the optimal bandwidth for semiparametric kernel estimators of
(4.1.1) can be chosen on the basis of bias alone. In particular, we show th a t the leading 
terms in the Mean Squared Error (M S E ) are two biases. One is attribu ted  to the pointwise 
‘smoothing’ bias of the kernel density estimator used, and the other to its variance. Lin­
ton (1991) called the latter ‘degrees-of-freedom’ bias. Similar results were found by Jones 
and Sheather (1991) for the kernel-based integrated squared density derivatives estimator of 
Hall and M arron (1987), and by Ichimura and Linton (2005) for a kernel-based implementa­
tion of Hirano, Imbens, and Ridder (2003)’s estimators of treatm ent effects. Linton (1991) 
discussed a similar result for the variance estimator in the presence of unknown mean. 
Furthermore, unlike the standard case in average derivative estimation3, semiparametric 
estimation of (4.1.1) could include discrete elements (specifically in U ) through its non­
parametric component without the need of additional conditions. We explain this extension 
in greater detail in our discussion below.

One of the main conclusion from this chapter is th a t the derived asymptotically optimal 
bandwidth, hopt, must shrink more rapidly to zero than  it would be for optimal pointwise 
kernel estimation of f v \ v  (•)> i-e - estimating this function at a point. In this sense, ‘asymp­

xSee Lewbel (1998), Lewbel (2000a,) Lewbel (2000b), Honore and Lewbel (2002), and Khan and Lewbel 
(2006) for precise derivations.

2Similarly, we could replace ||a|| everywhere in this chapter by ||a ||w  =  a 7 W a, where W  is any positive 
sexnidefinite weighting matrix. The results will not change.

3IIorowitz and Hardle (1996) adapted the average derivative estimator to allow for some discrete compo­
nents. This requires additional conditions than in the standard case.
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4.2 Asymptotic Mean Square Error

totic undersmoothing’ is necessary for \/]V-consistent estimation of (4.1.1). This feature is 
explained in the unifying theory of Goldstein and Messer (1992), whose main focus was to 
highlight differences in the conditions of limiting theory between nonparametric and semi­
param etric estimation, but did not address the issue of bandwidth selection for particular 
applications such as the one discussed here.

The remainder of the chapter is organized as follows: Section 4.2, presents the notation 
and assumptions used throughout the chapter. In this section, we analyze the sensitivity 
of kernel-based semiparametric estimator of (4.1.1) to the choice of bandwidth, and its 
kernel’s order via a second-order asymptotic expansion of its M S E .  We also make explicit 
the difference between ‘nonparametric’ and ‘semiparametric’ optimal bandwidths. Section 
4.3 discusses how to exploit the asymptotic representation of rj(h) in order to construct 
a simple estimator of the optimal bandwidth. We also prove its consistency. In Section 
4.4, a Monte Carlo experiment is performed to assess the small sample behavior of the 
proposed ‘plug-in’ estimator of the optimal bandwidth. We also compare its performance 
against other reference rules proposed in the literature for estimation of the nonparametric 
component f v \ u  (•)• Section 4.5 examines how results in Section 4.2 can be extended to 
cases when some components of U are discrete, and outlines how a bootstrap procedure for 
bandwidth selection, shown to work for average derivatives, can be adapted to work in our 
framework. Section 4.6 summarizes and gives concluding remarks. All proofs are presented 
in the Appendix.

4.2 A sym p totic  M ean Square Error

Firstly, we introduce some notation and definitions that will aid the latter discussion.

4.2.1 Framework

We assume th a t each observation in a data set, vii u 7}> an independently, identically 
distributed draw from the joint distribution of {wT, V, UT} for i  =  1 ,. . . ,  N ,  where U is a 
d — 1 vector, V  is a scalar, and u> another dim (u) x 1 observed vector of random variables 
or known functions of random variables. The distributions of U and (V,UT) are absolutely 
continuous with respect to some Lebesgue measures, with Radon-Nikodym densities f \ j  (u) 
and f v u ( f ju )  with bounded supports flu  and fV u  respectively.

For a bandwidth sequence h = h (N ) —> 0 and IV —> oo, the nonparam etric estimators of

118



4.2 Asymptotic Mean Square Error

the unknown densities f j j  (u) and f v u ( v ,  u) used here are the well known kernel smoothers:

N

/ v  ("i; h ) = i r ,  ( ~ 2~ h ~ i ') ’ and (4 2 1 )
j = i

j¥=i

=  ( 4 -2 - 2 )  
j = 1 '

respectively. Here

d - 1

/C (3?l, • • . , (®j) > (*̂T> • • • > xd—l) ^ ^  j
J = 1

where K  and W  are one-dimensional bounded symmetric kernel functions th a t integrate to 
one. We have also used the ‘leave-one-out’ paradigm in the construction of our smoothers 
above. A natural estimator4 for f v u  (vj| u») is then given by f v \u (^i| Uj; h) = f v u  (v{, u*; h) 
/  f u  (ui; h ), and its inverse can be estimated by

7  / . \  /u ( u i ;h )W u  ( )  =
f vu (v i ,  u*; h )

and an estimator of 77 =  E  [uj/  f  (u| u)] is then given by

N
rj(h) =  iV-1  ^  ujilvu (Vi, \ii’, h ) . (4.2.3)

i= 1

As previously noted, this estimator is technically inconvenient to  handle given the presence 
of the stochastic denominator in l y u  (vi, 11*; h). Therefore, we also define an asymptotic
representation which will be the basis of our analysis below,

N
rj(h) = A T 1 ^ 2  “i L w  (v», u f; h ) , (4.2.4)

i= i

where

f u i  , 0 f u i  n f m f v U iL v v  (vuUi\h) =  ------+  2 -  2 2
JVUi JVUi 1/Ui
f v U i f u i  f u i f v u i

'VUi JVUi

and f a  =  / u  (u»; h) ,  f v u i  =  f v u(i>», u 4; /i).

+  (4.2.5)
/v u i  / i

4This estimator was first proposed by Rosenblatt (1969), for the case d =  2 , and later analyzed by 
Hyndman, Bashtannyk, and Grunwald (1996).

119



4.2 Asymptotic Mean Square Error

Now, let us define the following quantities:

N

<̂1 = A -1 (/ui//vu<) 5
1=1

N

?2 (h ) =  iV _1 Y M f u i / f v u i ) ,
1=1
N

?3 (h ) =  TV-1  Y ^ i i f m f v u i / f V U i ) ,  
i=1 
N

64 ( h )  =  iV -1  Y Ui ( / v U i f u i / f V U i )  1 

i = l  

N

^5 {h) = N  1 { j u i f v u i / f v u i )  •
i = l

It then follows tha t

V (h) =  £1 +  2J2 (/i) -  253 (h) -  <54 (h ) +  £5 ( h ) , (4.2.6)

T hat is, rj (h ) can be written as a linear combination of functions of certain [/-statistics. 
In particular, 6 2  (h ) and S3 (h) are generic second-order [/-statistics:

- 1

Y P 2  and
i<j

- 1

Y P 3  (^>*3 j',h) ,
i<j

where tJTi = (wJTi}vi}u J ) } and tJTi = (wJTi,V i ,u [ ) ,  w ith m 2i =  U i / fv u i ,  and w 3i = 
W ifu i / f v u i  respectively. By simple inspection, we notice th a t these [/-statistics ‘ker­
nel’ functions P2 (•) and P3 (•) are symmetric -  th a t is, P2 {t2i , t 2j', h) = P2 {t2j , ^ 2i ’, h) and 
P3 ( t3i, t 3;-; h) = P3 ( t3j , t 3i; h ). Powell, Stock, and Stoker (1989) derived first-order limiting 
theory for this type of linear functions tha t involves data-dependent (via the bandwidth 
param eter h) [/-statistics. Similarly, we also define W4 i =  uJ i / fyu^  and. 1375i =  ^ i f m / f y u v
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4.2 Asymptotic Mean Square Error

It then follows, under conditions explained below, tha t

rl = l i m E  [n(h)]h—>0

=  E Si + 2 x lim. E  ^ 2  (h)J 2 x lim E
h-+0

S3 (h ) — lim E  [^4 (h ) +  lim P  [^5 (h ) 
J h—+ 0 L J h—>0 L

=  r7 -h 277 — 277 — 77 +  77.

Also, notice th a t by construction

r j (h )  — r j (h )  =  d ( h ) ,

where (h ) = N ~ 1 (h ) -  $ 2i (h))ui , with

7?1 i ( h ) =  ( f v u i  -  /vui)2(/ui -  f u i ) / ( f v u i f v u i ),  and 

$ 2i ( h ) =  ( f v u i  -  f v u i ) 3f \ j i / ( f v v i f w i ) -

4.2.2 Sensitivity Analysis

The objective of this chapter is to characterize the optimal bandwidth hopt for computing
77. Towards th a t end, we make the following assumptions:

A ssum ption  A:

(Al) The kernels W  : [—1,1] —> 9ft, and K  : [— 1 ,1] —► 9ft are bounded, continuously differ­
entiable, symmetric such tha t J W ( c ) d c  = f K  (c) d c =  1 .

(A2) Kernels W  (c), and K  (c) have order P , tha t is, there exists a positive integer P  > 2 
such tha t f  c?W (c) dc = JcPK (c) dc =  0, j  =  1 , . . . ,  P  — 1 , /  cp W  (c) dc = dw ^  0 
and f  cp K  (c) dc =  d#  ^  0.

(A3) The continuous density functions f u (u), f v u(^> u) exist and are bounded away from 
zero. The functions 7Ti (u) =  P[a7i|U  =  u], 7r2 (u) =  E[zu 2 |U =  u], 7fi(u,u) = 
E  [wi \ V  = u,U = u], 7T2 (u, u) = E  [cc72| V  = u,U = u], 7r3 (u, u) = E[w^\  V  = v, U = 
u], 7T4 (u, u) =  E[zU4 \ V  = v, U =  u], 7T5 (v , u) =  E[u751 V  = v, U =  u] exist and have 
bounded continuous partial derivatives up to the order P on their compact supports 
fiu =  n , t ;  [ Hj i Uj ]  and Qvu =  [V_, V]  x Ou respectively, for — oo <  V_ <  V  < 0 0 ,

and —00 < Uj  < Uj  < 00, for j  =  1, . . . ,  d — 1.

(A4) supfivu ||o;|| <  00 , and E  [||u;||e| V  =  v, U  =  u] has bounded continuous partial deriva­
tives up to order P  on their compact support, for e =  1 ,2 ,3 ,4
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4.2 Asymptotic Mean Square Error

(A5) hopt <x N - 1Hp+i>.

Assumptions (A1)-(A3) are standard conditions when using kernel smoothers ensuring 
the regularity of W ,  /C, /y u ,  and /u -  Assumption (A4) will facilitate the proofs and can 
be relaxed at the expense of more complicated mathematics. The last Assumption, (A5), 
predefines the optimal rate of hQpt, which is derived below. The following Lemma guarantees 
th a t the M S  E - e x  pansion of rj(h) is equivalent to tha t of rj (h ) up to the third power.

L em m a 4.2 .1  (Asymptotic Representation) Under Assumptions  (A1)-(A5), 

y /N d(h )  = op ( j \ H p - dV(p+d)) , as N  oo.

P ro o f. See Appendix. ■

This Lemma guarantees the asymptotic equivalence between rj(•) and rj(•), which means 
th a t (4.2.3) may be replaced by (4.2.4) for purpose of this analysis. We make an additional 
technical assumption before we state the main result of this chapter:

(A 6 ) The vectors of errors e\ —  v j \  —  7Ti (u ), e\ =  w\ —  7Ti(u, u), £2 = w 2 — ^ 2  (u), 
£2 = ZJ2 -  7T2 (v , u), £ 3  =  ZU3 -  7T3  (u, u), £4 = VO4 -  7T4 (u, u), and £ 5  = W5 -  7T5 (V, u)
are such that a\  (u) =  E  [ej"£\ | U  =  u ], a\  (u, u) =  E  [ej"£\ | V  = v, U  =  u ], c \  (u) =  
E  [e2 e2\ U  =  u ], (u,u) =  E  [ £ 3  £s| V  = v, U =  u ], a\  (u,u) =  E[e j £ 4| V  = u,U  =
u], a\  (u,u) =  E  [ e ^ l  V  = v , V  = u], a12 (u) =  E  U  =  u], (v,u) = E[eI
e$\V — v , V  = u], a u  (v,u)  =  E  [e'j'-e4 1 V  = v ,U  =  u], a i5  (v,u) = E[eJ £ 5 1 V  = 
V,U = u], C2Z (v, u) =  E  V = v, U  =  u ], cr24 (v,u) =  E l e ^ e ^  V  = v, U = u],
^ 2 5  (v,u) =  E  [ es|  V = u,U  =  u], 0-34 (v,u) =  E  [e je4| V = v, U  =  u ], <735 (v,u) =  
E  [£3 6 5 ! V  =  v,XJ = u], and <745 (v,u) = E  [£4 £5 | V  =  u ,U  =  u] are bounded on 
their respective compact supports fiu and fVu-

We now formulate the Mean Square Error of rj(h) for 77, in terms of the dominant 
components in an asymptotic expansion.

T h e o re m  4 .2 .2  I f  Assumptions  (A l)-(A 3), and (A6), hold, then

E m h ) - v f ] = 0 ( N - 1) + — 1 U—d+  <&2 N ~ l h

hp  1 \  ( h p  1+ 0(lv +  W ) + 0 {~W +  Wh™ + h2 P (4.2.7)
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4.2 Asymptotic Mean Square Error

as N  —> oo, where

©1 = J  (u) SK (u) f u  (u) d u -  J  7r3 (v, u) SwK  (v, u) f v u  (v, u) dvdu, 

© 2  =  CwK J  7T3 (v, u) f v u (v, u) dvdu,

and

C w k  = J  W 2 (c) dc J  K 2 (c) dc
d- 1

<7 C..1 J l \ p 9 P/ u ( u )
S k  w  = d* p 2 ^ - & r -j=l 3

Sw K  (v ,u) =  p
dP M j  (v, u)

dvp

d - 1
d p f v u  (v, u)

J=1 3

(4.2.8)

(4.2.9)

P ro o f. See Appendix. ■

The first bias, 051, is related to the ‘smoothing’ bias of the kernel smoother used, while 
the second bias, 052, comes from its pointwise variance. This ‘degrees-of-freedom’ bias 
dominates the O (N ~ 2 h~d) variance term that would otherwise appear in the expansion 
(see Powell and Stoker (1996) for such calculation).

O p tim iz a tio n

The result of Theorem 4.2.2 can be used to optimize the performance of (4.2.4) with respect 
to bandwidth choice and order of kernel.

C ho ice  o f  h
The asymptotically optimal bandwidth is obtained by minimizing (4.2.7) on the basis of 

h. This is achieved when
hopt =  Co x (4.2.10)

where Co is a proportionality constant. The choice of bandwidth equates the leading orders 
of both biases, 25ihp  and 952-/V- 1/i_d. By choosing this bandwidth, we have

E -  ,||21 = o  (iv-1)
+ » ! < #  +  ©2^0-d n - 2  P/{P+d) (4.2.11)

+  O {N~2) +  o{N~2P^ p+d)), as N  —> oo.
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4.2 Asymptotic Mean Square Error

T hat is, the decreasing rate of the best bandwidth optimizing second-order terms is of order 
which results in an optimal M S E - rate of convergence of AT-1 . In comparison 

with the leading term, the second term in (4.2.11) is not small in general, since their ratio is 
0 { N ~ ( p ~d}/(p+d)). This means that very large values of N  are needed before its influence 
eventually disappears.

Interestingly, unlike other semiparametric estimators (see Hall and Marron (1987), and 
Linton (1995)) the use of ‘leave-one-out’ estimators ((4.2.1) and (4.2.2)) has not fully elim­
inated the ‘degrees-of-freedom’ bias5 of order 0 ( N ~ 2 h~2d).

C hoice  o f  P
If we believe th a t f v u , f u ,  K 2  ( u )  and 7r3 ( v , u )  are infinitely many times continuously 

differentiable, it follows from (4.2.11) th a t the best O (A/--1) rate  of the M S E ,  is not attained 
unless P  > d. For example, in the case d = 2, we must use P  > 2. As Assumption (A2) 
permits, a higher value for P  must be chosen for larger values of d. In this sense, the use of 
oscillating higher-order kernels guarantees the best rate of convergence.

4.2.3 ‘Nonparametric’ vs ‘Semiparametric’ Optimal Bandwidths

For the case d = 2, the asymptotic properties of the kernel estim ator f v \ u  ( f |  u; h), used in
(4.2.3), were first derived by Hyndman, Bashtannyk, and Grunwald (1996), and discussed 
further by Chen, Linton, and Robinson (2001). When d > 2, it follows from their results 
tha t the Integrated M 5i?-minim izing optimal bandwidth is

h+pt oc AT-1/(2P+d). (4.2.12)

A direct comparison with (4.2.10) indicates tha t in the semiparametric case, the optimal 
bandwidth shrinks to 0 at a faster rate of its nonparametric component’s optimal bandwidth 
h^pt . This phenomenon is known as ‘asymptotic undersmoothing’. O ther semiparametric 
estimators sharing this feature are Robinson (1988), Powell, Stock, and Stoker (1989), Hardle 
and Stoker (1989), and Hardle, Hart, Marron, and Tsybakov (1992), among others.

It should also be noticed tha t this comparison does not imply th a t hopt is numerically 
smaller than  h^pt in any particular case or sample size. Particularly, let A q be the propor­

5Ichimura and Linton (2005) proposed an explicit bias correction mechanism that indeed ‘knocked’ this 
term out, allowing for a smaller M S E  for Hirano, Imbens, and Ridder (2003)’s estimator. This method can 
be easily adapted to  our framework.
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4.3 Optimal ‘p lug-in’ Bandwidth Estimator

tionality constant6 in (4.2.12). It then follows that

hopt = D 0 E N h i pt , where

D 0 =  C o/ A q,

E n  =  N —P/[(2P+d)(P+d)\ '

Do is an adjustment factor tha t depends on the underlying structure of the bias and variance 
° f  f v |U an(i  V- general, D q ^  1, and it does not vary with sample size. On the other 
hand, the adjustm ent term  for sample size, E jv is always less than  1 when N  >  2. Therefore, 
whether hopt is larger or smaller than h*pt will depend on Co being larger or smaller than 
Aq , and this, in turn, relies on the bias and variance structure in a particular application.

4.3 O ptim al ‘p lu g -in ’ B andw idth  E stim ator

If we knew 031 and in (4.2.11), we can define Co (and therefore hopt)  by the following 
minimization problem:

Co =  arg min 
C0e£++ ® iC ?  +

As these quantities are unknown in general, a feasible procedure will be to replace them 
by consistent estimators based on empirical implementations of (4.2.8) and (4.2.9). These 
estimators for the ‘smoothing’ and ‘degrees-of-freedom’ bias terms are denoted here as 03i, 
and 032, respectively. However, with a sample of practical size, any kernel-based estimator
may be affected by boundary effects which are endemic in kernel density estimation, see
Silverman (1986). In view of Assumption (A3), this technicality is resolved here by using a 
known asymptotic trimming function, aT (v , u) in their construction7, th a t is

m  t u  \ r } ( & h o ) - r } ( h o )  , A 0 ^

®‘ {k0) ftf (Ap — 1) ’ (4-31)

® 2 (M  =  ^ £ > . 3 r i ,  (4.3.2)
1= 1

where £7*3™ =  WiaT ( v i ,  u^) f * u i / f % v u i ’ f m / f v u ^  a n d  ^  is  a  k n o w n

constant which is greater than 1. Here we have used f *v \J i  = f v u  ( î? Ui; h*), /*ui =  
/ u  (ui; h*), f v u i  = f v u  i v i t  u 0) and f m  = f u  (uf) in order to ease notation, where / u  (•)> 
and f v u  (0 are given by (4.2.1), and (4.2.2) respectively. The estimator rj(•) is like (4.2.3), 
after replacing a b y  U{aT ( , Uj) everywhere. The estimator (4.3.1) is similar to the average

6See Bashtarmyk and Hyndrnan (2001) and Chen, Linton, and Robinson (2001) for derivations.
7Another possibility would be to use boundary kernels, see Gasser, Muller, and Mammitzsch (1985). 

Fernandes and Monteiro (2005) derived the asymptotic behavior of asymmetric kernel functionals.
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4.3 Optimal ‘p lug-in’ Bandwidth Estimator

derivative as proposed by Powell and Stoker (1996). The quantities /i* and ho are pilot 
band widths which must be chosen beforehand.

The type of asymptotic trimming used here is tha t proposed by Lewbel (2000a):

d - 1

ar (Vi ,  U j)  =  1 (Vi e  [V + r ,  V  -  r ] ) J ] 1 ( u ? 1 6  [Uj + t , Us -  r ] )  , (4.3.3)
3= 1

where 1 (■) is the indicator function tha t equals 1 if its argument is true and zero otherwise, 
the values U_j and Uj, were defined in Assumption (A3), and u ^  refers to the j - t h  element 
of the vector u. By using this type of trimming in the construction of our estimators
(4.3.1) and (4.3.2), we set to zero all terms in these averages th a t have observations within 
a distance r  of the boundary of the support where bias of the kernel estimators are of a 
different order than  for the interior points. The following assumption guarantees th a t the 
trimming induced bias goes to zero rapidly, so the consistency of the estimators are not 
affected.

(A7) The value r  is such th a t ho/r  —► 0, and N t 2 —> 0 as N  —► oo.

This trimming has a disadvantage in th a t it requires knowledge of the support of (v , u). 
Nevertheless, this support could be estimated in practice. For example, Khan and Lewbel 
(2006) proposed a data-dependent trimming function, by replacing U_j, U j , V_, and V  in
(4.3.3), by the observed maximums and minimums from a sample of N  observations of the 
corresponding variables. They showed that this data-dependent feasible trimming func­
tion is asymptotically equivalent to (4.3.3). Their result is applicable in situations where 
the boundary of the support is unknown, and r  equals the bandwidth used in the kernel 
estimators above.

Consequently, the optimal bandwidth is estimated as

hQpt = Cq x N - ^ p+d\  where

Co = argm in
C ' o € 5 K + +

® i C0p  +  ® 2^ (4.3.4)

An interesting characteristic of estimators (4.3.1) and (4.3.2) is th a t they do not require 
estimation of higher order derivatives of unknown functions. This feature makes their cal­
culation computationally very simple. Likewise, the minimization problem in (4.3.4) is also 
computationally straightforward, because it only involves a univariate numerical search over
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4.3 Optimal ‘p lug-in’ Bandwidth Estimator

strictly positive real numbers. The consistency8 of this procedure is ensured by the following 
proposition:

P ro p o s it io n  4.3 .1  Let Assumptions (A1)-(A3), (A4), (A6 ) and (A7) hold. I f  h* —> 0, 
ho —> 0, with N h d —> oo, and N h^p+d —» oo as N  —» oo, then

®i (*o) -*► ® i,

®2 (A.)^®2.

P ro o f. See Appendix. ■

An im portant part of this estimator of the optimal bandwidth is the choice of pilot 
bandwidths h*, ho, constant A, and trimming param eter r . Given the conditions on h*, an 
obvious way of choosing this bandwidth would be by standard cross-validation methods9, see 
Silverman (1986); or using a reference rule for kernel-based conditional density estimators, 
see Section 4.4. The resulting bandwidth, h*, would be of order N ~ l/(2P+d\  We can then 
set ho =  h* x N s, where 0 < 5 < 1/  (2P  +  d). As a result, only A > 1 and r  > 0 are left to 
be chosen. In practice, for a fixed number of observations, a feasible approach would be to 
fix the value t ,  and choose a high value of A and then decrease it until *8 1 does not vary 
significantly.

A technical proviso explained by Powell and Stoker (1996), for the estimated optimal 
bandwidth of the average derivative estimator, is also applicable in this framework. That 
is, we have not shown that Assumption A will guarantee the proposed ‘plug-in’ estimator 
^(h0pt) is asymptotically equivalent to rj{hopt). Firstly, the calculation of 77 itself would be 
subject to some trimming with a fixed-size sample. Doing this alone will increase the M S E ,  
by the square of the trimming-induced bias. Secondly, the (stochastic) bandwidth hopt was 
calculated using the same data as it is used in the construction of 77. All the calculations 
used to derive the asymptotic M S E  expansion in Theorem 4.2.2 implicitly assume a fixed 
rather than  a stochastic value of h. From this, it does not immediately follow that hopt will 
be of the same order as hopt- Powell and Stoker (1996) discussed possible solutions to this 
problem in the framework of density-weighted average derivative estimators.

8An alternative estimator for *82 is given by

and its consistency can be proven by the exact same arguments used in this section.
9Wand and Jones (1995), chapters 3 and 4, described in great detail many other (computationally simpler) 

bandwidth selection procedures that could be used instead.
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4.4 Monte Carlo Experiments

4.4 M onte Carlo E xperim ents

This section reports the results of a small-scale Monte Carlo investigation of the finite 
sample behavior of our proposed ‘plug-in’ estimator for the optimal bandwidth, and the 
behavior of the associated estimated rfs. Samples were generated from a two-dimensional 
random variable (V, U) having a bivariate normal distribution doubly truncated with respect 
to both variables. The joint distribution is given by

f v u  (v , u) = g (v , u ) /G,  v < v < v ,  u < u < u ,

where

g{v ,u )  = rl'KOvOu\J\ — p2 

f 1
2(1 - P 2 )

exp < - v ~  _ 2 p (  v ~  ^  ( H Z Jlhi] +  ( u ~  '  2

and
U V

G = J  J g(v ,u )  dvdu.

The marginal density of U is then given by

f u  (w) =  h (u ) / G , u < u < u,

where

1 / \ A ( U fJ‘uh (u) =  — cp $ 1 1 1  — - p f
(Jy J  \

V ~ H v

where </>(•) and $  (■) represent the density and cumulative distribution of a standard normal 
random variable. The object of interest in this simulation is

V = E [ l / f v \ u ( V \ U ) ] ,

where
f v \ u { v \ u )  = g{v ,u)  / h { u ) .
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4.4 Monte Carlo Experiments

For simplicity, we set v = u =  — 3, v = u = 3, pv — 0, a 2 = a 2 = 6 , and consider 3 designs

Design 1: pu =  0;

Design 2: /iu =  1;

Design 3: pu = 2.

For each design, we consider 2 cases based on possible values for p : (a) p = 0, and (b) 
p =  1/4. Their associated joint, conditional and marginal densities can be visualized in 
Figures 4.1, 4.2, and 4.3. These designs were chosen so th a t their associated marginal 
densities are bounded well above zero at the boundary of their support. A similar property 
is displayed by their conditional densities.

We set P  = 2, and set W  = K  to be a gaussian second-order kernel. Their associated 
constants are d x  =  1, and Ck  =  1/ 2 i / 7t.

Reference Rules

Preliminary bandwidths employed in this simulation study axe based on the following three 
assumptions underlying the joint distribution of (V , U):

( R l )  f v u  (v >u ) = 9  v )i with v = u = —oo, v =  u = +oo, p v — Pu — u, and 
a 2. Under this assumption, Chen, Linton, and Robinson (2001) calculated

A q = a
16W 2(1 -  P 2 f 2 C 2k
(15p4 -  50p2 +  39) d\K

1 /6

=  A r i .

(R 2 ) V \ U  =  u  ~  N (c  +  du, (p +  qu)2), U is uniform over [u, u\, with —oo < V  <  +oo. 
Under this assumption, similar calculations to those in Bashtannyk and Hyndman 
(2001) shows

256<7\/7rC' -̂
A q =

1/6

=  A r 2 ,
3z {4 + w + 8 d2 - 1 2 q2 ) d 2K ' 

where w — 19^4 +  4d4 +  28g2d2, and z =[{p + qu ) 4  — (p +  qu)4]/ (p +  qu) 4 {p +  qu)4.

(R 3) f v u  (v, u) =  g (u, v), with v = u = —oo, v — u =  +oo, p v = p u = 0, p = 0, and 
a 2 = a 2. Under this assumption, f v \ u i v \u ) = f v  ('y)? for which Silverman (1986), 
pages 45-47, calculated

'8 ^ C k i1/S
A q =

3 d2K
& = A r 3.
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4.4 Monte Carlo Experiments

We make these reference rules operational by making A r i ,  A r 2 , and A r 3 vary with each 
replication. We define these quantities as A r i ,  A r 2 , and A r z  respectively. Specifically, let 

be a size-JW generated data set at draw s, then A r i  is obtained by replacing 
a 2, and p by a 2 = JV- 1££L i (vf -  vs), and p = [a2 (N  -  l) ] -1 ^ !  (vf -  v s) (uf -  us) 
respectively. Likewise, A r 2 is calculated by setting u = m in ^ i,...^  u f , u = maxi=i uf, 
(c, d) as the least squares coefficients from a regression of v on u , and (p , q) as the least 
squares coefficients from a regression of the squared residuals from the previous regressions 
on u  including a constant term. Similarly, Arz  is made operational by replacing a 2 by a 2 

as calculated above.

Hence, we calculate rj using Iiri = A r \ N ~-1/6, JiR2 = A r 2 N ~ 1/6, and Iirz — A r $ N -1/6. 
Of course, in our designs these band widths are neither optimal for 77, nor do they have the 
optimal rate  of convergence derived in Section 4.2.2. However, we have chosen them for 
comparison purposes because of their computational simplicity, as well as the fact th a t they 
were the most likely to be chosen by a practitioner prior to  the results discussed in this 
chapter.

We also look at the behavior of rj using our ‘plug-in’ estim ator for the optimal bandwidth 
explained in Section 4.3. We implement this estim ator by setting ho =  h*RiNs, where 
h*Rl = hRi  for I = 1 ,2,3. Other parameters are chosen accordingly and kept constant 
throughout the experiments, i.e. S = 1/12, r  =  0 (no trimming) and A =  2. The results of 
2000 replications are presented in Tables 4.1 to 4.6.

Tables 4.1, 4.3, and 4.5 report the small sample performance of the proposed ‘plug-in’ 
estimator for the optimal bandwidth under different conditions. The true optimal band- 
widths hopt, are also reported in the first row for each case. As we would expect, higher 
correlation between V  and U entails a larger bandwidth in each design. These results show 
that the proposed ‘plug-in’ estimator performs fairly well in all circumstances. This good 
performance seems not to be affected by the choice of pilot bandwidths, h* and ho in large 
samples. On the other hand, there is more variation among the bandwidths predicted by 
the reference rules than among the estimated ones. Numerically, differences among them 
become more evident when samples sizes are large. The bandw idths’ simulated standard 
deviations increase as we increase the theoretical mean of U. The use of trimming could 
reduce these variances.

The respective M S E  are presented in Tables 4.2, 4.4, and 4.6. We notice th a t the 
main component of these simulated M S E  is bias instead of variance in each case, as is 
predicted by the expansion derived here. The use of either the theoretical or estimated 
optimal bandwidths dominates the use of those predicted by the reference rules in terms of 
M S E ,  for all sample sizes, designs and scenarios. The M S E  associated to  the estimated 
optimal bandwidths are numerically very close to the simulated theoretical ones.
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In our designs, it is also the case tha t the ‘degrees-of-freedom’ bias is numerically large, 
up to 10 times greater than the ‘smoothing’ bias. Similar calculations for other designs (not 
presented here) have also shown such a pattern. This lends support to the use of an explicit 
bias correction mechanism for such term, see for example Ichimura and Linton (2005). This 
remains a topic for future research.

Finally, Figures 4.4, 4.5 and 4.6 show how close the theoretically optimal bandwidths are 
to the actual M S E-minim izing bandwidths. The M S E  for rj are obtained by simulation as 
functions of a grid of fixed bandwidth parameters. The vertical gray lines represent the op­
timal bandwidths predicted by Theorem 4.2.2 in each case. Note th a t even for small sample 
sizes, the approximation results are very good. However, the quality of the approximation 
may deteriorate in situations where trimming is necessary.

4.5 E xtensions

In this section, we examine the situation in which the conditioning variables, U , have 
continuous as well as discrete components. In this case, the order of magnitude of the 
optimal bandwidth only depends on the number of continuously distributed elements of the 
random vector (V, U T). We also discuss how we could adapt a technique for bandwidth 
selection proposed by Horowitz (1998) in semiparametric estimation to our bandw idth- 
selection problem.

4.5.1 Mixed Continuous and Discrete Case

Let us consider the case when the random vector, U , can be partitioned as U  =  (U ^ )T, U (2)T) , 

with U^1) € fiu(i), and G fiu(2), where fyjC1) and f2u(2) c  *s a set
with finite number of real points, such tha t d^  = d w ith d^  > 1 as before. Let

/y u a ^ th 2) ( v»u ^ |  u ^ )  i>e the probability density of (V, U^1̂ ) conditional on U^2) =  u(2), 

k t  / u ( 1)|u(2> ( U (1)| U (2)) be the probability density of conditional on U (2) =  u^2\  and 

let p (u^2)) be the probability mass that u^2) e  ^ u (2)- Then

f v u ( v , u ^ , u (2)) =  f v u { v , u )  = / vu (i)|U(2) ( ^ u (1) u (2))p (u(2)), and 

/ u ( u (1), u (2)) =  /u (u )  =  / u (l)|u(2) (u (1) u (2))p (u(2)).



4.5 Extensions

W e also  replace (4 .2 .1 ) and (4 .2 .2 ) w ith  

/ u f u f ^ u f ^ f t )  =

3=1 
j¥*

f v  u K  u,-11, u f h )  =  Y l
3=1

(4 .5 .2)

resp ective ly , and  reca lcu la te  (4 .2 .3 ) and (4 .2 .4 ). W e a lso  redefine Trifuf1) ,u ( 2)) =  t t \  (u ), 

^ ( u / 1), U^2)) =  7T2(u), 7Ti (u, U^1), ll(2)) =  7Tl(v,  u), 7T2 (V , U ^ )  =  ^ { v ,  u), 7T3 (u, U ^ ,  )

=  7T3( v , l l ) ,  ff4 ( t ) ,u W ,U ^ )  =  7T4( u ,u ) ,  7 T 5 (v ,U ^ ,u (2)) =  7r5( u , l l ) ,  0 - J ( u ^ ,U ^ )  =  <rj(u), 

^22(uW. u(2)) =  ° 2 (u )i <712 (u(1), u(2)) =  <ri2(u), cr f (v ,  u 1̂), û 2)) =  a f ( v ,  u), cr13(v ,  u 1̂), u ^ )
=  2ri3( v ,u ) ,  5ri 4(n ,u ^ 1) , u ^ )  =  a 14( v , u ) ,  a 15(v ,  u ^ ,  u ^ )  =  cr15( v , u ) ,  a 23 (v ,  u ^ ,  u ^ )  =  

(?23( v , u ) ,  <724 ( u ,u (1), u (2)) =  ct24( u ,u ) ,  cr25(v ,  u (1), u (2)) =  a 25 (u, u ) ,  < rf(i;,u (1), i i (2)) =  

< r|(w ,u ), a 34( u ,u (1\ u ( 2)) =  a 34( v ,u ) ,  ct35(v, u ^ ,  u (2)) =  ct35( v ,u ) ,  f r J ^ u ^ j U ^ ) ,  <r45(t;, 

u (1) > u (2)) =  cr45(v ,  u ) ,  and o |( u ,  u ^ ,  u ^ )  =  cr§(v,  u ).

In  order to  ex ten d  our resu lts to  th is  m ixed  case, w e need  to  r e -s ta te  A ssu m p tion s (A 3) 

and (A 6) as:

(A3*) / u(i)|U(2)(u (1)| u(2)), 7Ti(u(1),u(2) ) /u(1)|U(2)(u ^ | u(2>) and7r2 (u(1),u(2 ) ) /u(1)|U(2)(u(1)| 
u^2)), understood as functions of u^), exist and have bounded continuous partial 
derivatives up to the order P  on fiu(i) =  IIj=i_ 1  , where - 0 0  < u f ^  <

u f ) <  00, for j  = Furthermore, / v u (1)|u(2)( f ,u ( 1)| u(2)), 7ri(u, u ^ ,  u(2))

x /y u a ) |u ( 2) ( ^ u(1)| u(2))) ^ 2(v ,u (1),u (2) ) / v u (1)|U(2)(u ,u (1)| u(2)), 7t3( u ,u ^ ,u ( 2)) x 

f v u ^ lu w  ( u>u(1) I u(2))> ^ ( v ,  uW , u(2) ) x / y u (1)ju(2)(u, u(J) | u(2)), and tt5(u, u ^ ,  u(2)) 

x /vuC 1)|uC2>( 1,5 | u 2̂̂ ) understood as functions of v and u ^ ,  exist and have
bounded continuous partial derivatives up to the order P  on fiyuP) =  [F, F ] x fiu(i), 
for —00 < V  < V  <  00. The probability mass function p(u^2 )̂ >  0.

(A6*) The functions, (jf(u(1),u (2) ) / u (1)|u(2)(u (1)| u^2)), cr22(uW , u(2) ) / u (1)|u(2)(u (1) | u(2)) and 

(J 12 ( u ^ \ u ^ )  /u ( i) |u (2) (u ^^l u ^)>  understood as functions of u ^ ,  are bounded on 

their compact support fiu(i). Similarly, <r2(v, u ^ ) / VU(i)jU(2)(u, u ^ l  u ^ ) ,  a%(v

, u^1), u^2^)/yrU(i)|u(2) (u, u^1)| u^2)), <r\{v, u^2^ )/y U(1)ju(2) (u, | u^2)), ^ ( u ,

> u(2)) /v u (D |u (2) ('u>u(1) I u(2))> and °ik{v, u (1), u ^ ) / vu(1)|u(2) (u, | u(2)), for VZ, k =
1, 2, 3, 4 such that Z ^  k, understood as functions of v and u^1), axe bounded on their 
compact support fi^uC1)-
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As expected, in this mixed case scenario, similar conditions have to be imposed on the 
continuous part of the problem, but no new techniques are required in order to prove the 
following corollary:

C o ro lla ry  4.5 .1  Let Assumptions (A l), (A2 ) hold, and Assumptions  (A3*) and (A6*) 
hold for  every u^2) £ fiu(2) , then

h(1) - r (1)™opt -
V 1 /(P+ddl)

, where

Cq ' =  argm in 
c j1)e3i++

and

Û £ ^ u(2)

- ^ 2  J  (4.5.3)
U(2)€ n u(2)

= c w k  Y 1  J 7r3(v>u(1)’u ^ ) f v u(v, u(1\u(2))dvdu(1),
Il(2) (2)

with

Cw k  = J  W 2 (c) dcj |y  K 2 (c) dc
dM-i

dM-l
S g > (u « ,u W ) -  J ' ^ ‘ _ ^ _ / o(u « , u « ) .

^  j= i ( ^ }

u(1)>u(2)) =  ^  dw ^jp fv u ( t > ,u (1) , u (2))

ddi-i

^  ( a u ^ y
/v u (v ,u (1),u (2))

(4.5.4)

P ro o f. See proof of Theorem 4.2.2 in the Appendix. ■

From this result, and similarly to other nonparametric and semiparametric models (see 
Delgado and Mora (1995)), we note that the M S E -minimizing rate of bandwidth shrinkage 
in our case only depends on the number of continuously distributed random variables in our 
sample from (V,U). The unknown constants (4.5.4) and (4.5.3) can be consistently esti­
mated, by simple extensions of the estimators described in Section 4.3. Likewise, trimming
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(if needed) should be performed only with respect to the continuously distributed variables, 
in particular

dW-1
ar (Dj,uS1)) =  l ( » i 6 [ V  +  T ,F -T ] )  n  l ( “ P ' e  [u$1) + T , u f ) - t ] ) .

3 =  1

4.5.2 Bandwidth Selection using the m-out-of-TV Bootstrap

Horowitz (1998), Chapter 2 (page 51), suggested a bootstrap-based m ethod for bandwidth 
selection in the density-weighted average derivative estimator. This bootstrap technique 
involves resampling without replacement, and Goh (2004) proved its validity while choosing 
the asymptotically M S E -minimizing optimal bandwidth of general /7-statistics. We could 
use this technique here because of the fact that (4.2.3) is asymptotically a linear combination 
of functions of /7-statistics (see equation (4.2.4) above).

Some of the notation used earlier is redefined, and new definitions is introduced in 
order to make the explanation clearer. Firstly, let Fn  denote the empirical distribution 
function of our original random sample {u>j, Vi, u^} , for i = 1 , . . . ,  TV, where Uj could have 
a mixed composition as explained in Section 4.5.1. Let Fn  denote the distribution of the 
bootstrap sample generated by resampling m < TV members of the original sample without 
replacement. Let’s call this sample u*T}, for i = 1 , . . .  ,m . We also make explicit
the dependence of (4.2.3) on these samples, as well as on some fixed bandwidth, h , as

rj(h]FN) =rj{h), (4.5.5)

and similarly rj(h\ F*n ) represents (4.2.3) when the bootstrap sample is used in its calculation 
instead. Let 9 be an element of © C 9?++, a finite set of strictly positive numbers. Then, a 
bootstrap-based bandwidth selection procedure is carried out in the following way:

S te p  (1 ) Calculate F/v) using the original estimation sample, {a;*, Vi, u J
for some known constant c.

S te p  (2 ) Resample m  < N  observations without replacement from the original estimation 
sample. Calculate rj(9m~1̂ p+d -̂, F^ )  using this data, {a;*, t£, u*T }*™ 1? for each 9 G 0 .

S te p  (3) Repeat J-tim es step 2 and call these estimators: rjj(8 m'  for j  =
1 , . . . ,  J. Define 9 to be the solution to the problem

l ^ r  12
m i n j ^  \rjj{9m-l/{p+d)\F ^ )  -  fftcJV"1/ * ^ ;  FN )\ . (4.5.6)

J= 1
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Then 6  estimates consistently Co in (4.2.10), and the bootstrap estim ator of hopt is 
given by

ftopt =  e N - ^ p+d>.

This bandwidth selection mechanism also requires the use of a pilot bandwidth in step 
1 as in the ‘p lug-in’ estimator described in Section 4.3. In view of Theorem 4.3.1, we could 
set c =  Co, where Co is defined in (4.3.4). In practice, we would also minimize (4.5.6) 
numerically over a suitable grid of values for 6 . This is can be rapidly and easily computed.

We do not compare the performance of this procedure against th a t of the proposed 
‘plug-in’ estim ator in Section 4.4, purely because of the computational burden impacting 
its implementation in a Monte Carlo experiment. Similar difficulties were faced by Goh 
(2004), who instead used numerical approximations in a limited simulation study with 10 
Monte Carlo replications, while setting J  =  100 for 3 unrelated designs.

4.6 C onclusion

A crucial part of estimators with a nonparametric component is the choice of the smoothing 
param eter. Our main objective in this chapter is to provide some guidance for choice of 
bandwidth for a class of semiparametric estimators th a t employ kernel estimators in the 
form of inverse-conditional-density weighted averages. By exploiting the fact th a t these 
estimators can be asymptotically represented as a linear combination of functions of 17- 
statistics, we derive a formula for the optimal bandwidth based on a second-order Mean 
Squared Error expansion. The derived formula for the optimal bandwidth equates the order 
of m agnitude arising from the squared of the sum of two biases: a ‘smoothing bias’ and a 
‘degrees-of-freedom’ bias. This formula shows that the optimal bandwidth, for estimating 
the param eter of interest, must decrease towards zero at a faster rate  than the optimal for 
its nonparam etric component. In this sense, asymptotic undersmoothing (as explained in 
Powell and Stoker (1996)) is needed.

A ‘plug-in’ estimator of the optimal bandwidth is also constructed exploiting the semi­
param etric estim ator’s biases formulae. The problem of random denominators is also ad­
dressed in the construction of the proposed estimator through the use of a trimming function. 
This trimming function, proposed by Lewbel (2000a), is set to give zero-weights in the av­
erages, to  observations which are within a certain distance of the boundary of the observed 
support of the distribution. This estimator is shown to perform fairly well in small samples 
in a Monte Carlo experiment. We also describe the use of other data-driven bandwidth 
selectors, such as the bootstrap. In this sense, we also explain how the ra-out-of-iV  boot­
strap, proposed by Horowitz (1998), is a viable bandwidth selection alternative, although
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4.6 Conclusion

its validity in our framework is yet to be shown formally, and its performance analyzed in 
a Monte Carlo experiment. We also discuss how the formula for the optimal bandwidth 
can be adapted when continuous as well as discrete elements are present in the weighted 
averages.
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4.A Main Proofs

A ppend ix

4 .A  M ain Proofs

Let ||-|| denote Euclidean norm, and let (•,•) represent the inner product when applied to 
vectors. We also use the following results from Masry (1996a) (see Silverman (1978) and 
Collomb and Hardle (1986) for earlier results):

max \ fVu  (vi,Ui]h) -  f v v  (u^u*)
z = l , . . . , n  I

f u  (ui; h) -  f v  (u i)max

= Or

= Or

log N  
N h d

log N
p I V N h d~ 1

+ hj

Proof of Lemma 4.2.1

Firstly, from Assumption (A3), it follows th a t $2i (h) is

(h) | <  ( iV '1/2E i I i  II Will |Aj»|) .m inn \ fv\ j i

i S Z n  l̂ Uix max
1 i = l , . . . , n

-1

-1

. min \ fvui \
1 = 1 , . . . ,T l

-1

-1

(4.A.1)

(4.A.2)

fvUi  -  f v u

< O v - 1/2E " i M I / u i l )

x max \ f v u i - f v u i  min 1/ ^
| _ i = l , . . . , n  I t=l,...,n

=  o p ( V n ) o J  y w  + 3)  = o„ ,

(4.A.3)

where (4.A.3) follows after observing that
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and the last inequality follows from (4.A.1). Finally, by the exact same argument, it also 
follows tha t

max \ f v v i  ~  fvu i li = l I  I

=  op ( n - ( f - 0 /(J>+<0 )  ,

as required.

. min \ fvui\
i= l,. .. ,n

-1

max
i= l,. .. ,n

f u i  ~  fu i min \ \fvvi\\‘i=l

P r o o f  o f  T h e o r e m  4 .2 .2

This is a long proof. It consists mostly of repetitive steps and calculations. Specifically, we
look at the contribution to the M S E  from each element on the right-hand side of (4.2.6).
Firstly, let us denote

6 i  = E  [ m i ] ,

fc =  J5? M U ) A j (U ) ] ,  

6 z = E[n 3 (V,U) /v u  (V .U )], 

8 a =  E  [tt4 (V,‘U) f u  (U) f v u  (V , U )] , and 

6 5  = E  [^5 (K U) f v u  (V, U ) ] .

Then, by using the definitions in Section 4.2 and the properties of conditional expectations, 
it follows th a t

1̂ =  8 2  =  S 3  =  8 4  =  6 5  =  7].

In particular, we have for example,

S3 = E[7r3 ( V , V ) f Vu  (V,V)} 
w /u (U )

=  E  

= E  

= E  

=  V-

l f v u  (K U ) 
w /u  (U)

V  =  v, U  =  u f v u  (V,U)

f v u  (VBU)
ujfu  (u)

f v u  (v ,u);
= E

p  =  v,U  =  u

UJ

. / v |u ( v |u ) .

Similar results hold for the rest.
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Therefore, we can write E[\\rj(h) — rj\\2] as,

E W v ( h ) -V \ f = E

+  4 E

+  4 E

+ E

+ E  

+  4 E

S i - S i  

h  (h ) -  52 

S3 (h) -  S3

- 4  E  

- 2  E

Ss(h)

( S i - 6 u S 2 ( h ) - 5 2 )

-  <5ii ^3 (h) -  63^  

\ S i - 6 u 6 t ( h ) - 6 A)] 

+  2 E

- B E  [ (? 2 (J0 -* 2 ,? 3 ( /0 -< y 3

- 4 E  [ ( s 2 ( h ) - s 2, 54 ( h ) - 64

-f- 4 E  ( d 2 ( h ) — S2 , ^5 ( h )  — 65 

+  4jE ( h )  — £3 ,64 ( h )  — 64

— 4E  ( s 3 (h ) — £3, 5 $ (h) — £5

— 2 E  ^64 (h ) — 64,65 ( h )  — 65

In what follows, we look at each of the 15 terms above.

T erm : E S i - S !

Firstly, notice th a t JE?[|| ?i -  <$1 ||2] =  E[\\ N  1 Y li= i £u II2] + ̂ [|| N  1 E ili *u  
clearly

E [ 4 e y |  (Vu U j ) , . . . ,  (W , Ujv)] =  |  ^  0 4  Ui)o’ * ^  h.

so
E S i - S i

=  0 { N ] -

(4.A.4

(4.A.5

(4.A.6

(4.A.7

(4.A.8

(4.A.9

(4.A.10

(4.A.11

(4.A.12

(4.A.13

(4.A.14

(4.A.15

(4.A.16

(4.A.17

(4.A.18

<Si ||2], and

(4.A.19)
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T e r m s :  E S2 (h ) -  82 a n d  E 83 ( h )  -  83

W e have

E 82 ( h ) -  82 =  E

+

1 N ~
J j ^ £ 2 i / u  (u»)

i= l

i= l

+  E
1 N

] y X  (6* "  ^  [C2t])
1=1

, and

E 83 ( h )  — 83 =  E

+

1 N ~
f l ' 5 2 eSifv\J (v», U<)

1=1

1 N 2
- ^ [ C 3 i ] - < 5 3 ,

i= l

1 N
- ^ ( C 3 i - £ [ C 3i])

1 = 1

w ith  ( 2i =  7t2 (11, )  f u  (u i) ,  and ^ 3i =  ^ 3 (w», Ui) f v u  (v», u*). T h e y  are su ch  th a t E  [£2i] =  

E  [C21] =  92, and -£7 [C3i] =  ■E'[C3i] =  93 > w here w e u se  th e  d efin ition s g2 =  - ^ [ ^ ( U i )  x  

K h (U2 -U i)], q3 =  E [ t t 3 (VijUi) Wh (V2 -  V \ )K h (V 2 ~  Ui)], and n o ta tio n  Wh(c) =  

h~ l W ( c / h )  an d  K h (c )  =  h ^ - ^ K ^ c ) .

N o tice  th a t,

E  [^2i£2j

s [ 4 £ 3 j | ( V l , U l ) , . . . , ( V rW,UA,)‘

o \  ( V i ) , i  =  j ,

0 , i ^ j .

0-3 i  =  j ,

0, i  ±  j .

and w e w rite

E
1 N ~

J ^ £ 3 i f v u  (v*,U*) 
1= 1

1 N

i= 1
0 3 ( ^ u i) fvu (Vi ,U i )

—-------9 [  o \  (v, u ) E
J - 1 ) 2 J  3 V '

N

Y , W h ( V t - v ) ) C h ( V t - u )  
t= 2

f v u  (v , u )  dudu.
N  ( N  — l ) 2

W e have £ [ | |  £ "  2 W A (Vj -  v )  K.h  ( U t -  u )  ||2] =  ( N  -  1 ) E { \ \ W h (Vi -  v )  K h  ( U ,  -  u )  ||2) +  

( N  — 1) ( N  — 2) \ \ E  ( W h  (V \  — v ) K h  ( U i  — u ) )  ||2 . I f  follow s from  L em m as 4 .B .1  and 4 .B .2  

th a t
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E
N  2

5 2 w h ( V t - v ) I C h ( U t - u )
t = 2

=  (N  -  1) |c W k /v u  (v, u) h d +  î w k  {h, (u, u)) 

+  (N  ~  1) ( N  ~  2) \ \ f vu  (u, u) +  hp S wk, (u, u) +  /V /c (h, (u, u)) ||2 .

Thence

£
1 *  -

t = l
= j ° l  K u ) f v u  K u ) dvdu  

+  J al  (u’u ) / v u  (*>,u )

+ 0 + ]̂ ) + 0 G\40 ’ ̂  “* °°’ (4.A.20)

by similar arguments, we also show that B[|| N ~ l Y.^=i ^ 2i f u  Oh) ||2] =  jV-1 /  erf (u) x 
/& (U) du +  N - 2 h - « - » C t c f o l  (u) /*  (u) du +  O ( N - 1^  + N ~ 2) + o ( N - 2 h - V ~ » ) ,  N
OO.

Next,

E
1 N

(Cu — [Ci»])
i = l

- N  N

=  j p E £ £ KCii,C«)]-IIE[Cii]f
»=1 j = 1 

N N  N

= w i t E N l 2] + ] h E E £ K C h . C y ) l  -  II e [ C u l l l
i = l  i =  1 7 =  1

N
E

i = 1 i = l

i^j

lie,II2] h— ^ [ < 0 i »  O2)] -  M 2 , (4 .A.21)

for I =  2,3.
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Now, we have

e f l l C s i l l 2 : E
N  N

IN (Vi, U i) ||2 Y ,  £  w h (Vf -  V,) JCh (U , -  U i)  x
t=2 s=2( N  — l ) 2 

^ ( K - V i J A C h t U . - U x )

= m h ? f h 3 i v ' u ) f E

f v u  (v , u )  d v d u ,

( N -  1)

Wfc (v ;  -  w) /Cfc ( U s — u )

N  N  

t= 2  s = 2

where

iV TV
£ Y E W » w  - u) * *  (u < - u ) n  - « )  ^  (u » - u )

t = 2  s = 2  

N

= £ * [ 11̂  (Vi - t-)/cfc (u, -  u ) | |2]
t=2 
N  N

+J2Ye <v* - u)** (u« -  u)iE [w* <y> - v) £h (u» -  u)i
t = 2  s= 2  

t^s

=  (AT -  1) E  [ ||W * (V , -  u) /Cft ( U ,  -  „ )» * ] +  (JV -  1) (AT -  2) | | £  [W* (V , -  v )  K h ( U ,  -  u)

It follows from Lemmas 4.B.1 and 4.B.2 that 

N  N
E  '' <y* -  v) (U< -  “ ) w h (V. -  ») ICh ( u ,  -  u)

t=2 s=2

=  ( N  -  1) ( C w ic fv u  (v, u) h~d +  i/iivfc (ft, («, u )))

+  (JV -  1) (JV -  2) H /vu («, u) +  hp S WK (v, u) +  f a / e  (ft, (t>, u ) ) ||2

Hence

j j E  [llC3i II2 =  - -  J  ||7T3 (u, u )  ||2 / 3U (v, u) d v d u + j j ^  J  \\7r3 (v , u) ||2 / 2U (v, u) dvdu

+  O (iV-1 /ip +  N ~ 2) +  o ( j \ r 2/ r d)  , as N  00 , (4.A.22)

by Assumption (A3), and the properties of ip w ic  ( h , (v ,u )) and (3 w jc  ( h , (v ,u)). Similarly,
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we show th a t

^ [ | | C 2i | | 2 =  J  IK2 ( u ) | | 2 / u  (u )  J  I I ^  (u ) l |2 f u  (u )

+  O ( N - ' h 13 +  A T2) +  o (A r-2h " (d_1))  , as N  -► 00 . (4.A.23)

Now consider the term  

N - l
N  ̂[(C21, C22)] = N  (N  — 1) E  K7̂  ( U i ) , 7t2 (U 2))

N  N

x E  (u * -  u i) K h (Vs  -  u 2)
t=i 5=1 
t^l,s^2

^ N  N

= jv (F T T )E E A^ .

where A 2,ta =  E  [<w2 (U i) K h (U , -  U i ) , ir2 (U 2) K k (U . -  U j))]. Similarly, N ~ '  (N  — 1) x 
E  [(Car, <3!>] =  N - 1 ( N  -  I ) - 1 £ " i E jL iA s,to , with

<7̂ 1,5̂ 2

As,(* =  B[(trs (Vi,Ur) m  (V, -  Vi) K* (U , -  U i ) , tt3 (V2, U 2) W h(Va -  V2 )Kh (U . -  U 2))].

Furthermore, for I = 2,3, we write

^l,tS — <

Bi,i 
Bi,ii 
Bi,in  
E i , i v

s = t,
S ^  t ,  t  ̂  2, S 7̂  1,
s = t 8z t = 2, s ^  1 or t ^  2, 5 =  1,
s ^  t, t = 2, s =  1.

Here we make the following definitions:

B2,7 =  £  [ | |£  [tt2 (U i ) AC* (U 3 -  U i) | U 3] f  

B2,II =  ||B  [TTj (U j) AC* (U 3 -  U j)]||2 =  ||?2||:

$ 2 ,111  = E

$ 2 , I V  = E

<7T2 (U i) , tt2 (Ua)) K h (U 2 -  U i) K h (U 3 -  U 2)] 

'<̂ ra (U i) ,»T2 (U 2)> ||/Cfc (XJr -  U 2)||2]
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B3j  = E  [ ||£  [773 (Vi, U j) W h (V3 -  Vi) Kh (U 3 -  U ,) | V3, U 3]||2]

B3,// =  ||£  [tt3 (Vi, U j) W h (V3 -  V{) K h (U 3 -  U i)] ||2 =  ||93||2
63,77/ =  B  [(tt3 (Vi, U j) , 773 (V2, U 2)) Wh (V2 - V { ] K h (U 2 -  U t) x

W h (V3 - V 2)K h (  U 3 -U 2 ) ]
63,717 = 6 [ (7 7 3 (Vi,Ui),773 (V2,U 2))||W0, ( V i - y 2)AC/l( U i - U 2)||2 , and

Therefore, we are able to write 

N  -  1
N

N  — I 
N

E  [«21, <22>1 =  ^  { (JV -2 )  6 2,7 +  (1V2 — 5 N  +  6) ||?2||;

+  2 (N  -  2) B2 J I 1 + B2 , i v } ,

E  KCsi, C32)] =  N 7^ _ \ <  { ( N - 2 )  B w  + ( N 2 -  5 N  +  6) \\q3\\:

+  2 (N  -  2) B3 J 11 +  B3 j v }

(4.A.24)

(4.A.25)

We now show the working of (4.A.25), because (4.A.24)’s is the same. As N  —> 00 , it 
follows th a t

~ n ~ e  [(C31, C32)] =  ^  i&3,i+ 2^3 ,///] +  ii©ir 

1
' - i +  N 2 Bs>IV

+  jv2 [6 I I ®  I I 2 -  2SV  -  4^3 , / / / ]  +  0 (A T2)

= 11̂ 3 { v , u ) f  f$ j ( v ,u )d v d u +  (1̂ 3 if

+  J  («. «)ll2/vu K U)
+  O (AT2) +  o N ~ 2 h~d +  N ~ l hp ^ ,

1 -

N

(4.A.26)

where the last equality follows from Lemmas 4.B.1 and 4.B.6. We now put together (4.A.22), 
(4.A.26) in (4.A.21) and obtain,

E
1 N 

i=l

+

: b  [4/  ( ^ u ) d u d u - 5 | |d 3||2

J  117t3 (v, u)||2 f 2 v  (v, u) dudu

+  O (AT2) +  o ( N ~ 2 h~d +  A T 1/ ^ )  , as N  -> 00 , (4.A.27)
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similarly

=  M 4/ 11** M l 2 $ (« )< * “ - s llfcll2 

/  h ( “)f  /u(u)du
+  O ( N ~ 2) +  o +  A T 1/ ^ )  , as N  -> oo,

E
1 N  

i = 1

Also, it follows from equations (4.B.4) and (4.B.3) in Lemma 4.B.1, tha t

j r T , E [ ( 3i] ~ S 3

1= 1
=  ii<73-<y2

=  \ h p /  7r3 (v, u )  S Wk  (v ,  u )  f v u  (v, u )  dvdu  +  7 W k  (h)

=  h2P I j  7r3 (u ,  u )  S w k  (v, u ) f v u  (v, u )  d u d u  

+  o (h2P) , as TV —» 00 , (4.A.28)

and similarly N  1 || E  [C2 *] -  h  ||2 =  h2P || / 7r2 ( u )  Sjc ( u )  f u  (u) du ||2 +  o (h2P). Fi­
nally, it follows from (4.A.20), (4.A.27) and (4.A.28),

E S3 (h) -  5z = h2P II I 7r3 (v, u )  S w k  (v , u )  f v u  (v, u )  dvdu
+ 0 ( ^ ) + 0 ( w j p

+ o i i r + j h ) + 0 ( i T  + w + m ? +h2F  1 ’ 88 N  "* °°-
(4.A.29)

Similarly

E 6 2  (h ) -  8 2 =  ft2 p |  /  ^ ( u l S s W / o l u ) *  +  0  +  0

+  0 ( 7 7  +  ^ ) + 0 ( l r  +  ^  + j v ^ r  +  ft2P) ’ a s J V _ OO.

(4.A.30)
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4.A Main Proofs

Terms: E [||«4 (h) -  (54||2j and E  [||«6 (ft) -  6S||2

We have

E 64 (h ) — S4 = E

+

1 N ~

j y  X ^ 4i / u  (u*) f v U  (Vi, U i) 
i= l

1 N
[< « ] -« .

1 = 1

+ E
1 N

— 5 3  (C4i -  -B [C4i])
1 = 1

, and

E 65 (h )  -  S5 E

+

1 N
j j J 2 £bif v u  ( ^ ’U*)

i= l

1 N
n Y e  ~  65

i= l

+ E
\  N
„ Y  (Cm -  -EKm])
NZ  1 t=i

(4.A.31)

We only show the working for i?[|| 65  (h ) — £5 ||2], the dom inant term. We also work with 
the following expression

E
N  N

£  £  w h (Vt -  v) Kh (U , -  n) W h (V, -  v) Kh (U . -  u)
t=2  s = 2

= ( N - 1 ) ( N -  2) ( N  -  3) (JV — 4) ||B  \Wh (V2 -  v) Kh (U 2 -  u)]||4 

+ 6 ( N - 1 ) ( N - 2 ) ( N - 3 ) E  [|| Wh (V2 -  v) Kh (U 2 -  u)||2] || B  [Wh (V3 -  v) Kh (U 3 -  u) 

+  3  (AT -  1) (JV -  2) E  [||Wfc (V2 -  v) Kh (U 2 -  u)||2] E  [||W* (V3 -  v) Kh (U 3 -  u)||2] 

+  4 (JV — 1) (JV — 2) E  [Wl  (V2 -  t>) K \  (U 2 -  u)] E  [Wh (V3 -  v) K h (U 3 -  u)] 

+  (N  -  1) E  [|| W h (V2 -  v) Kh (U 2 -  u)||4' .

Firstly, Lemmas 4.B.1 and 4.B.2, imply that

E

N

1 N
J j Y £5 if v u

i= l

= ------   j  [ erf (v , u) E
N ( N - 1 )4J

= O ( N - 1) +  O ( l \ r 2/T rf)  +  O (jV -3/ r 2d)  +  O (A T 4/ r 3d) 

+  O ( N - ' h 413) +  o (iST1 +  AT2/T d)  .

Y W h ( v t - ^ ) ^ h  ( U * - u )
t= 2

f v u  (v , u) d v d u  (4.A.32)
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We now analyze the next term,

E
1 N  

2 = 1

=  j f E  [lICsill2; +  ^ £ [ ( C 5 1 , C 5 2 ) ] - | | B [ C 5 l ) | | 2 .

The first term  in the last equation is like (4.A.32), after replacing <r| (v , u )  by ||7r5 (v , u ) | | 2 , 

and therefore, it is of the same order of magnitude. Now

N  — 1 

N Ej [(C51 5 C52)]

■E
n (n -  i y

N  N

*5 (Vi, U i)  £  (Vt -  V,) Kh (U , -  U j)  Wh (V, - V i ) K h (U s -  U !)
t= 1 3 = 1 
#1,3^1

N  N  \

, *5 (v 2, U 2) £  Y W h  (Vi -  V2) Kh (U , -  U 2) Wh {V, -  V2) K h (U s -  U 2) )
t= 1 3=1 /
tj£2 ,sj^2

Let us introduce the following notation here

7T5;t = tt5 (Vt , V t)

W h.tiJCh.)ti = Wft (VI - V i  ) K h (U* -  U i ) , and 

W h.t2 K,h ,t 2 = W h (Vt -  V2) JCh (U* -  U 2) ,

then it follows 

N  — 1

N Ej [(C51 j C52)] =
N ( N - i y

[85,1  +  # 5 , / /  +  8 5  ' I IJ  +  B s j v  +  8 s y  +  8 s y j \  +  8 5 j y
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4.A Main Proofs

where

B5,/ =  B [ K i ,7 r 5;2>Wh4.12/Cj.12] ,

Bi,Il  =  (JV -  2 ) E  [Kl,W5;2> W l 12K 3h.u Wl1;3 2 ICh;32 ] ,

B s j i i  = (N  — 2) E  [ fo il ,  *5;2> W l n K 2h.u W h,3 1 lCh,3 1 W h.fi2 Kh,3 2 ] ,

Bs,/V =  (JV -  2 ) (JV -  3) [<7T5;1, 7r5;2> ,

J?5,V =  E  [(irSil, 7r5;2) W,(1;12 Ĉ(ii12X

{(JV -  2 ) £  [Wfci31Cfci3iW £32K:2i32| ( V i .U i ) , (V 2,U 2)] +

+  2 (JV -  2 ) (N  -  3) E  [Whi3 1ICh;3 1 Wh.,32lCh.32Wh;i2lCh;i2\ (V i, U i ) , (V 2, U 2)]

+  (JV -  2) (JV -  3) E  [Wh.A1KhA1 W l 3 2 Kl.3 2 \ ( V y U i ) , (V 2, U 2)]

+  (JV -  2) (JV -  3) (JV -  4) E  {Wh.3 1 K h;3 1 W h.A2 K.h.A2 W h.fi2 K.h&\(V ,, U i ) , (V 2, U 2)]}], 

Bs.vi  =  E  [(ir5il, 7r5;2> W l 12K.l.12y

{(JV -  2) E  [ W l 3 2 K.\.32\ (V j.U j)  , (V 2,U 2)]

+  (JV -  2 ) (JV -  3) E  [Wh.3 2 K hi32 WhA2 K.hAi \ (V i, U , ) , (V 2, U 2)]}], and

^5,VII = ■E 7T5;1 7T5;2 Y^=?^h,s2^h\32
N  (N  — l )3

Then by Lemmas 4.B.7, and 4.B.8, this term  is simply

KCsi,G>2>] =  IIS [Csilll2 +  o (JV-1) +  o (jv-2/^) +  o (jv-3h-2d) 
+  O ( l \ r 4/ r 3d) +  O ( N - ' h 1* ),

and conclude tha t

E
1 N  

1=1

=  O (TV-1) +  O (N ~2) +  O (AT2 / r d)

+  O ( N ^ h 1*) +  o (A T 1 +  N ~2h~2d̂ j . 

We now tu rn  our attention to (4.A.31). Firstly,

E  [Csi] =  j^ j E  f a  (V,, Un) W l (V2 -  Vi) K \  (V 2 -  V ,)] 

+  E  [*r5 (V-I, U i)  W h (V3 -  Vi) Kk (V 2 -  V ,)  W h (V3 -  V,) Kh (V 3 -  V ,)]

CwK.
N h d

J  7r5 (v , u) f v u  (u, u) dvdn +  2hp J 7r3 ( v ,  u ) Swk. ( v ,  u) f v u  ( v ,  u) dvdu

+  £5 +  o l h d ĵ + o (hp ) ,  and conclude
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ll-Efcsi] - < y 2 =  || j ^ f v u  ( v , u )  d v d u

+ 2 h p  j 7t3 (d ,  u )  S w k  (v ,  u )  f v u  ( v ,  u )  d v d u

because of Lemmas 4.B.5, and 4.B.1, and noticing tha t

U fu  (U)
7r5 (v , u) f v u  (v , u) =  E  

= E

U v u  WU) 
U fu  (U)

L /J u W U )

= 7T3 (v, u) .

7  =  d,U  =  u

y  =  u ,U  =  u

f v u  (v, u)

In conclusion, we have that

E £5 (h ) — 65
Cwk.
N h d

J  * 3 ( v , - a ) f v v { v , u )  d v d u

+ 2 hp J 7r3 (u, u) S w k .  (v , u) f v u  ( v ,  u) d v d u  

+  0  ( N - 1) +  O (iV~2/ r d)  +  O ( N~ 1h2P +  TV"2) .

By the exact same argument, we could also show that 

2
E 84 (h ) — 84 = h 2P J J 7r2 (u) Sic ( u )  d u + J 1r3 ( v ,  u) S w k  (v, u) f v u  (v , u) d v d u  

+ 0  ( n ^ H 2^ - 1̂  + O (TV_1) + O ( i \r 2 h"d) + o  { N - ' h 21* + N ~2) , 

where the first term  of the last equation follows from Lemma 4.B.I.

T erm s: E -  <5i,?2 ( h )  -  £2)  a n d  E  (Zi -  <$i,? 3 ( h )  -

As it was previously done, we have 

<̂$1 — <5i, 8 2  (h) — 8 2 ^E =  E

+ E

1= 1
TV

TV'i=l
1 N  1 ^~ Y  (*1< - E kid) • J f H  £ [C»])

i=l i=l
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E (& 1 — ^1) 3̂ (h) — £3^ = E

+ E

1 N „ 1 N ~
y ^ l i )  - ^ y ^ £ 3 i f v u  (Vi , U j)

iV f-f A” iV. , 1 = 1  1 = 1

N1 N 1 N
f a  -  E  M )  > j ^ y Z  (C3» -  £  [CsiD

i=l i=l

(4.A.33)

. (4.A.34)

We show the working for E  (Si  -  6 1 ,^ 3  (h) - S 3) only. Firstly, Lemma 4.B.1 implies that 
(4.A.33) equals

1 N

J ^ y Z E  l̂ 13 f v u  (vi, u i)
i=l

f — p: / ai3 u ) EN ( N - l )

N

E w h(V t -v )> C h ( V t - u )
l t=2

f v u  (v, u) dvdu

= j j j a  13 (v, u) f y u  (v , u) dvdu +  O (hp /N )  +  o (hp) ,  as N 0 0 ,

where E  [^n£3i | (V\, U i ) , . . . ,  (V/v, Ujv)] = 1 (i = j) 0 4 3  (Vi, Ui), from Assumption (A6 ). 
Also

E J j E  (? li “  E  fa il)  ’ -jj?D (<■« -  E  [<3i])
i=l N-i= 1

=  J f E K'7r 11* C 3l)l

d ~n~ E  K̂n» C32)] -  (E prn], E  [C31]) •

The first term equals, N  lE  [(7141, £3 1 )],

1 - 1 ) /  <714 ( u , u ) , tt3 (v ,u ) )EN ( N - l )

N

Lt=2
f v u  K  u) dvdu

i  J  (714 (v , u ) , 7T3 (v ,  u ) )  / y - u  (u, u) dvdu +  O (hp /N )  +  o (hp ) , as JV 0 0 ,

from Lemma 4.B.I. The second term, N  (N  — 1 ) E  [(tth, C32) ] , equals

N
E

N

(5?i W , U i ) , n3 (V2, U 2)> £  W„ (Vt -  Vi) K.h (U , -  U 2)
t= 1 t^2

1 „ /  JV — 2 ,
= I — J 013,//,

where Bia./ = E  [(ni (Vi, U i ) , tt3 (V2 , U 2)> Wfc (Vi -  V2) /Cfc (U i -  U 2)] and £ 13,// =  £[<tti
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(V i,U i) , 7T3 (V2, U 2 ) ) Wh (V3 — V2 ) )Cfi (U 3 — U 2)]. I t follows from Lemma 4.B.9 tha t 

TV- 1
TV ■E  [<71-11, <32)1 =  J j j  <7T1 (v, u ) , 7T3 (v, u ) )  f l u  (v, u )  dvdu  +  ^ 1  -  < ^ ,5 3 )

+ h p J (v, u)) S w k  u) dvdu

f h p  1

+ 0 y w  + N

Finally (E  [7r n ] , E  [C31]) =  (^1)^3) + hp f  (Si, 713 (u , u)) S w k  (u, u )  dvdu + o (hp ). Therefore, 
we conclude

E

E

(S\  -  <5i, £ 3  (h) — £3  ̂

5i — <5i, 82  (h) — 8 2

=  °  ( f )  + °  ( V )  + °  ( 7 7  +  ) ’ and similarly- (4 A.35)

= 0 |^ )+0(t7)+0(V +F.)' (4'a'36>

T erm s: .E (? i  (M -  i i ,?4  (ft) -  «„)] a n d  B  [ (? , (ft) -  SU S5 (ft) -  i 5)

As it was previously done, we have

E (81 — 81,84 (h) -  £4 ^ = E

+ E

N
2 = 1  2 = 1

JV JV

^  [^d) ’ at 5Z  ^ 4i “  E  K4*])
i=l TV'

2= 1

E 8 \ — 8 1 , 85 (h) — 85 =  E

+ E

I N „ I N
afX / 1*’ (v*,Ui)TV^—'  TV .

2 = 1  2 = 1

JV1 N 1 N V
J j Y  ~  E  ’ t f ' Y ,  ~  E  f e l )  )

2= 1  2= 1  /  .

(4.A.37) 

. (4.A.38)
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We show the working for E  ( <$i -  £1, 6 5 (h ) - £ 5) only. Firstly, Lemma 4.B.2 implies that 
(4.A.37) equals

[a i 5  (Vi’Ui) f v u  (Vi’Ui)
1 = 1

^ — 2 J f f !5  (v, u) E
N ( N - l )

CwK, 
N 2 hd

Y , W h ( V t - v ) f C h ( V t - v i ) f v u  (V, u ) dvdu

J ? i 5 (v, u) f y j j  (v, u) dvdu+ ^j  J a f 5 (v, u ) (v , u )  dvdu

+  0  (hp /N )  +  o (hp ) +  o 2h , as N  —> 0 0 ,

where E  [e je s j | (Vi, U j ) , . . . ,  (Vjy, Ujv)] =  1 (* =  j )  045 (V i,Uj), from Assumption (A6 ). 
Also

E
1 N 1 N

n Il , ~  E  > j f ' 5 2  ~  E  i&J)
i=i i=i

= ^-^[(^11^ 51)]

H----- ~ —E  [ (^ ii>  C52)] — (E  [tth] , E  [Csi]) •N

The first term of the last equality, N  1E  [(7rn , Csi)]) is

N  (N  -  1 )

Cwk.
N 2 hd

^  ^ ’u ) ’7rs (v ’n ) ) E

N

t=2
f v u  (v, u )  dvdu

J  (*■! ( v , u) , 7r5 (v, u ))  f y u  (v, u ) d vdu+ ^j  J  (tti (v, u) , tt5 (u, u)) / J u  (v, u) dudu

+  O (hp /N )  +  o (hp ) -+- o ^iV 2h , as iV —> 0 0 , from Lemma 4.B.2 

The second term, iV- 1  (iV — 1) E  [(tth , C52) ] ? equals

N { N -  1) 

1

E
N

2-i

(5f i ( U ,U i ) , i r 5 (V2,U 2)) X ) M" '> W - v 2)K h ( u t - u 2)
t=1 
# 2 .

N ( N - l ) [(N -  2) Bi5j  +  (N  -  2) (iV -  3) £ 1 5 , / /  +  2 (JV -  2) B is,/// +  # 15,/^]

=  jy [#15,/ +  2Bi5,///] +  # 1 5,// - s +  ^ 2 # 1 5 , / V

+  ^ 2  -  2#i5,/ -  4Bi5,///] +  O (N  2) , where
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Bis,/ =  E  [(?! (Vi, U i ) , 7T5 (V2, U 2) W i (V3  -  V2) K l  (U 3 -  U 2))]

B is,// =  E  ((?! (Vu  U i ) , n5  (V2, U 2) Wh (V4 -  V2) K h (U 4 -  U 2) W h (V3 -  V2) K h (U 3 -  U 2)>] 

B is ,m  =  E  [(?! (Vi, U 4) W h (Vi -  V2) Kh (U i -  U 2) , ir5 (V2, U 2) W h (V3 -  V2) K h (U 3 -  U 2))j 

Bis,IV =  E  [(?! (Vj, U i ) , ns (V2, U 2) W% (Vi -  V2) K \  (U 4 -  U 2)>]

Finally, (E  [5FU] , E  [Csi]) =  JV ^B is,; +  B is,//, and conclude from Lemma 4.B.10 that 

E  [(?! -  «!,?5  (h ) -  is ) ]  =  O (JV-1) +  O ( iV -2/!-*)

+ 0  ( w  +  ^ ) + 0 ( m ^  +  w  +  w +h2 P) ' a a N ~ t c c

Similarly, we infer from this result that

E (Si -  6 1 , 6 4  (h) -  6 4 )] =  O ( N - 1) +  O ( a T 2/ ^ ' 1))

+ ° *  N  + N 2 ) + ° \ N 2 h(d~1) ' N  ' N 2

and therefore of smaller order.

Terms: E  [ ( ? 2 (h) -  <S2, S3  (h) -  i3)]

We have

E \ 6 2 ( h ) - 6 2 , S3 ( h ) - 6 3 ) = E

+ E

i=i
N

3 = 1
(4.A.39)

(& -  B'lCnl) - ^ E  (6 * -  B [<3iD
i = l  i = i

+ ^[C 2l] “  ^21 E  [C3l] -  1

(4.A.40)

(4.A.41)

where Cn  =  ^ 2 (^i, Ui) / u  (u^), and by construction E  [s2i| (Vi, U i ) , . . . ,  (V/v, Ujv)] =  0. As 
before

&23 (Vi, U i ) , i =  j ,

0, i  ±  j .
E £2i£3j

By Assumption (A6 ), the term  (4.A.39) is equal to 

1

N ( N
L — j [ * 2 3  (», u) E  ( E  W h (Vt -  v) Kh (U, -  u ), £  K h (U, -  u )\ f v v  (v, u) dodu,
' \ t = 2  s= 2  /
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where from Lemmas 4.B.1, 4.B.2 and 4.B.4, it follows that

/ N  N  \

E ( ^ 2 w h ( V t - v ) K k ( V t - u ) , ^ 2 lCh ( V , - v . ) \
\ t =2 s=2 /

=  ( N  -  1) E  [ W h (Vi -  v )  ||ACft (Uj -  u ) ||2'

+  ( N  -  1 ) (AT -  2 ) E  [W h (Vi -  v ) Kh (U , -  u)] E  [K* (U i -  u)]

=  ( N  -  1) [ C k / f u  (« , u ) +  i i w K ( h ,  ( v ,  u )) j

+  (N  -  1) (N  -  2) [ fv u  (v , u ) +  hp S w k  (v, u) +  P w k  (h , (u, u ))]  x 

[fu  (u ) +  hpS£ (u ) +  f c  (h, u )] .

Therefore, we have th a t the term  (4.A.39) is equal to

1 f  C k  f
—  I  a 23 ( v ,  u ) / v2u (V, u ) f u  (u ) d v d u +-N 2 ^ d_ 1 I  ?23 (v ,  u )  f y j j  ( v ,  u )  d v d u  

+  0 ( !W  +  ^ ) + 0 ( N ^ ) ' a s N ^ C° -

Let us tu rn  our attention to term  (4.A.40),

(c2i ~  ~  E
k i=i j =l i

1 N 1 N N ~

“  ] v a £ B [ ( & - & ) ]  +  [ (< * < * > ]  -  ( u f o i U K a i l )
i=l j= l 

i^j
N  -  1

^ [ ( < 2 1 ,  C s i) ]  ■ ^

Also E  [^C2i>C3i ) ]  equals

E [^C21,C32^] -  (92,93)

^ 2  J  (iT2 ( V , U ) , 7 T 3 ( U , U ) )

where E

E
N  N

Y  Y  K » (u< - u) w » iv> -v)** (u> - u)
,t=2 s=2

f v u  (v , u )  d u d u ,

E ^ 2 E " = 2 ^ ( u ( - u ) M/' / . W - t' ) ^ ( u » - u )] =  ( A f - l ) £ [ W h ( V i - t ; ) x  

\\Kh (U i -  u ) | | 2l  +  (N  -  1) (N  -  2) E  \Kh (U i -  u ) ]  E  [Wh (V, -  v) Kh (U , -  u ) ] .  It follows
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from Lemmas 4.B.1, 4.B.2 and 4.B.4 tha t

' N  N  

_t—2 s=2

= (N  - 1 ) (C jcfvu  (v, u) +  -iphic (h > K  *0))

+  (AT -  1) (N  -  2) [ fu  (u) +  (u) +  /fc (/i, u)] x

[ /v u  (^, u) +  h p S w k  (u, u) +  (A, ( v ,  u))] .

Therefore,

^ [ ( C 2i,C3i ) ]  =  ^  J  (V2 ( v ,u ) , 7r3 ( v ,u ) ) /£ u ( v ,u ) / u (u)dvdu

+  N Thd - i CiC J  (v >u ) > 7r3 ( v ,u ) ) / J u  (v ,u ) dvdu 

+  O (A T1^  4- A^"2) +  o ( N ~ 2 h -(d- 1')') , as N  —► oo.

We now turn  our attention to 

N - l N  N

N E  [(O a.C sj)] =  N ~ 3 ( N -  1) £ £ a 23,(s,
t= 1 S = 1

where A 23,(a =  £[(5f2 (Vi, U j)  K h (U , -  U , ) , tt3 (V2, U 2) W h (V. -  V2) K h (U . -  U 2)>]. Fur-
thermore, we write

A 23 ,ts =  <

^23,7 
#23,77  

#23,777  

# 2 3 ,7V

S = t,

s = t &c t = 2 , s 7  ̂ 1 or t 7  ̂ 2 , s =  1, 
s /  £, t =  2 , s =  1.

Here we make the following definitions:

# 23,7 =  E  [(E  [7f2 (Vi U i) K h (U 3 -  U i)| U 3] ,
E  [tt3 (Vi, U i)  W h {VS ~Vi)JCh (U 3 -  U i) | V3, U 3])] ;

# 23,77 =  (E  [7f2 (Vi.Ui) Kh (U 3 — U i) ] ,
E  [tt3 (Vi, U i)  JV* {Vs - V i ) K h (U 3 -  U i)]) =  (q2, ©> i

# 23,777 =  E  (tt2 (Vi U i) , tt3 (V2, U 2)) K h (U 2 -  U i) W h (V3 -  V2) K h (U 3 -  U 2)] ;

B23,iv =  E  [(Sr2 (14,U j)  ,tt3 (V2,U 2)> Wh (Vi -  V2) \\Kh (Ur -  U 2) ||21

155



4.A Main Proofs

Therefore, we are able to write 

N  -  1
N E  [ (^ 2 1 )  C32^] =  [#23,7 +  2 # 2 3 , / / / ]  +  (q2, Qz)

■ - i
1

+  ^ 2  [6 ^ 2 ’ ^3 ) “  2 ^23,7 -  4 # 2 3 ,777] +  0  (N  )

Finally, term  (4.A.41) is such that

(£[C2l] -  52, E  [C3l] -  5^J =  (Q2 -  52, 93 “  ^3)

=  ^  ( /  ^  ^  S>C ^  ̂  rfU’ /  ^  ^  dVdU
+  o (h2P) ,  as N  —> 00 ,

which follows from Lemma 4.B.5.

Combining these pieces together, we obtain

E (?2 (ft) -  <52, S3 (ft) -  h ) ]

=  h 2 p  ( / 7T2 ( u )  5a: (U )  Zu ( u )  du, J  ir3 (v, u )  5iyjc (v, u )  /v u  (v, u )  d u d u

+ o  (JV-1) +  o  ( j v V - 1)  +  0  +  E )

+  0 * 7 7  +  ] P  +  h2P * ’ as N  ^  °°'
(4.A.42)

T erm s: E ( i 2 (ft) -  <52, ?4 (ft) -  <54)]  a n d  E  [(?2 (ft) -  <52, ?5 (ft) -  <5s)]

As before,

E [ ( 5 2 ( h ) - 5 2 ,54 ( h ) - 5 4)] = E
1 N ~  1 N ~  

j j Y j x f v  (u )̂ f v u  (v3> u i)
i=l AT.

j ' = i

+  £ ^ E  ( c *  -  £ 6 i i ) . ^ E  ( c «  -  *  [C41D
*=i j= i

+ (#[?2i] “  £2, E  [C41] -  ^4)  , similarly

(4.A.43)

(4.A.44)

(4.A.45)
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£ ' ( 6 2 ( h ) - f a  6 5 ( h ) - 6 5)' = E

+ £

^ N  N  '

(Ui) ’ U Uj)
i=l
N

j =1

^E (c* - £[&]), j r j 2  Km -  e  fei])
*=1 J - l

+ ^£[£21] -  82, £  [Csi] — £5^

We also notice tha t

[‘£  I ?2^4j W,Ui) , . . . , (Viv, u Ar) =

£ [ e £ e 5 j |(V i l U 1) , . . . , (V iv >U jV)] =

^ ( V i . U i ) ,  i =  j ,

0 , t ^  j .

0 ^ 2 5  ( V i , U i ) ,  i  =  j ,

0, i  ±  j .

In what follows, we also use the following quantities:

I N  N  N  \

e / Y ^ I C h
\  i=2 j=2 Jfc=2 /

=  (JV -  1 ) £  [Wh (Vi -  v ) K? (U2  -  u)]

+  (N — 1) (N — 2) E (Wh (V3 -  «) C* (Us -  u)] E  [K\ (U 2 -  u)]

+  2 (JV -  1 ) (N -  2) E  [Wh (Vi -  v) K\  (U 2 -  u)] E [Kh (U 3 -  u)]

+  (JV -  1) (JV -  2) (JV -  3) ||£  [Kh (U4 -  u ) ] | | 2 E  [Wh (V3 -  v) K.h (U 3  -  u)]
/  N  N  N  \

E I E  ^  (Ui -  u) . E  E  (Vi -  ") ** -  u) Wh (14 -  t>) K h (U* -  11) )
\  i=2 j=2 k=2 /

= ( N - 1 ) E  [Wl (Vi -  v) K l  (U 2 -  u)]

+  2 (JV -  1) (N  -  2) E [Wh (V3 -  v) K \  (U 3 -  u)] E  [Wh (V2 -  v) Kh (U 2 -  u)]

+  (N  -  1) (JV -  2) E  [Kh (Us -  u)] E [Wg (V3 -  v) K \  (U 3  -  u)]

+ (JV -  1) (JV -  2) (JV -  3) E  [K„ (U 4  -  u)] ||E [Wh (V3 -  v) Kh (U 3 -  u ) ] | | 2 .

(4.A.46)

(4.A.47)

(4.A.48)

(4.A.49)

(4.A.50)
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By Assumption (A6), the terms (4.A.43) and (4.A.46) are

/  N  N  N  \

x E  ( £  Kk (Uj — u ) , Y ,  Y .  (Uj -  “ ) Wh (Vh -  «) Kh (U* -  u ) )  f v u  (v, u) dvdu,
\  i —2 7=2 k = 2 /

w v h ? f a {v’u)
/  N  N  N  \

x B I Y ,  £h  (U i -  u ) , Y ,  E  W>> W  -  v) (Uj -  u) Wfc (Vh -  v) Kh (U* -  u) )
\  i= 2  j = 2 k = 2  /

and 

(4.A.51)

(4.A.52)

x f v u  {v, u) dudu.

After plugging (4.A.49) and (4.A.50) in (4.A.51) and (4.A.52) respectively, and using Lem­
mas 4.B.1, 4.B.2, and 4.B.4, it follows that

r / i * _  i  *  ^  \ '

E ( ’ jy ^  /
\  i= l j= l /

=  O (A T 1) +  O +  O ( a T 2/ ^ " 1)) +  O ( N - 1^ ) , and

' ^ N  N  '

(Ui), j j Y 2 £ ^ f v U (VJ > uj)
1 i=l j= l i

=  O (TV-1 ) +  O (jV "3/ r (2d-1))  +  O (jSf~2 h~d ĵ +  O ( a T 2/ ^ ' 1)) +  O (A T1/ ^ ) . 

Now, terms (4.A.44) and (4.A.47) can be written as

(?2* “  ^ 6 1 ]) » ^  lC4il)\

£

3 =  1

=  ^  [ (& 1’ & 1)]  +  ^ a T 'E K C21> C42) l  “  ( ^ [C2l]’E  [C4l])  ’ and

E ]̂ Z 2i ~ sK2i]) * ̂  Z - E K51!)
z=l 3= 1

= j j E  [^21 , Csi)] +  ~ J j ^ E  [(C21,C52)] -  (£[C 2i],£[C 5i]) respectively.

The terms N  1E  
replacing <724 (v , u

’(C21.C*i)] and JV-‘£;[(c2 i,C 5i)] are like (4.A .51) and (4.A.52) after 
and <725 («, u) by (772 (v, u ) , 774 (v, u)), and (772 (v, u ) , 775 (v, u)) respec-
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tively. Therefore, they are of the same order. In particular,

j f E [ ( & ,< « ) ]

=  O ( N - 1) +  O +  O ( N - 2 h -(d~1)y)  +  O (JV_1/ip ) , and

J j E  [ (S i-C s i)]

=  O ( N - 1) +  O ( A r 3/ r ( 2d_1>) +  O (iV "2h " d)  +  O ( A r 2/T<d_1))  +  O (A T1/ ^ ) .

We only show the working for N -1 (N  — 1) E[( C21»C52 )]? which is the leading term, in any 
case:

( N - l )
N

E [ ^ 21, ( 52)]

N  ( N — 1)
2 [# 2 5 ,/  +  # 2 5 ,11 +  # 2 5 , / / /  +  # 2 5 ,IV +  # 2 5 ,V +  # 2 5 ,Vi]  +  # 2 5 , IV,

where

# 2 5 , /  =  E  [(7T2;l57r5;2) Wh-12^ ;12] >

# 2 5 , / /  = {N - 2 )  E  [{tT2;1, 7T5;2) ^ ; 1 2 ^ / i ; 3 2 ^ / i ; 3 2 ]  j 

# 2 5 , / / /  =  2 (N -  2) E  [<7T2;l,7T5;2) W fc ju /C ^ a ^ ]  ,

#25,/v = E  [<7f2;i,7T5;2) /Cfcjia {(AT -  2) WhflilCln + (AT -  2) (JV -  3) % ^ i42̂ } ]  ,

#25,V = E  [(5f2;lj 7T5;2) £fc;12 {(Af — 2) Kh,3\^h\32^h\32 + {N — 2) (N — 3) /Cfa;3iW/i;42 /̂i;42}] >

#25,v/ = E  [(7T2;i, 7r5;2) Wfcjia/C/jjia {(AT — 2) K.h\Z\K’h\Z2 + (JV — 2) (JV — 3) /C ^i/C /^} ],

# 2 5 ,V / /  = 7r2;lXl£;3^'Ml>7r5;2 Y^t=3 ^h-,t2 ^h;t2
JV (JV -  l ) 2

It then follows from Lemmas 4.B.1, 4.B.12 and 4.B.13, tha t

^ ^ b [ ( S i ,Cs2)] =  (£ [C 2 l] ,S [C 5 l] )+ 0 (W -1)

+  O ^JV-2 h_2(d-1^  +  O (JV-1 /ip )

and conclude

( C 2 > - £ [ C 2 l ] ) , ^ E ( C « - . E [ C 4 l ] )
1 i=l j= l /

= O (AT-1) + O (A r2/ r 2<d_1>) + O (AT2/T d) +  O (A r2/r<d_1>) + O (JV"1̂ ) .

Likewise, (4. A.44) will be of smaller order than this term  and therefore, it will not contribute 
towards the leading terms in the expansion. The only contributions will be from terms
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(4.A.45), and (4.A.48). In particular,

( £ [ C 2 l ] - * 2 , £ [ C 4 l ] - * 4 )

=  ^  ( /  ^  ^  SlC ^  ^  dU

, j  7t2 ( u )  Sic ( u )  f u  (u) d u +  j  nr3 (w, u) S w k  K  u) f v u  K  u) dvdu^ +  o ,

^ [ C 2 i] -  fa, E  [Csi] -  £5 ^

=  2 h 2P ( / . 2 ( u )  S*; ( u )  / u  ( u ) d u ,  /  7t3 (v , u )  S w k  (v , u )  / k u  (v , u )  d v d u ^

+  N ~ l hp ~d ( / . 2 (u) S/c (u) / u  (u )d u ,C W  J 7t3 (v ,u ) /V u  (v ,u )d u d u ^  . 

by Lemma 4.B.I.

Terms: E ( ? 3  (h) -  i 3, Si (h) -  <54)], E  [ ( i 3 (h ) -  S3 , Si (h) -  i 5)]  

and E  [ ( i 4 (h) -  i 4, i 5 (h) -  is )]

As before,

' ( j s { h ) - S z X { h ) - 8 i jE = E
1 N ^  1 N ~

Jj^>2£3ifvU (V, Ui) , — y ^ £ 4 j/u  (Ui) /V u (Uj, Uj)
i = l J=1

+  £ (  (O n -  £ [ < » ] ) ,  (C4j -  E  I C i ] ) )
\  7 = 1  7 = 1  /

+  < £ [& ]- i3 ,S [ C 4 l ] - i4 > ,

£ (?3 (A) -  i 3,?5 (ft) -  i 5) ]  = E
N N

j f T , * * * ™  Ui) 5 a ^ i ^ f v u  f a ,  uo)
7 = 1 J = 1

+  £
1 N 1 N \

7 7  S  ^3i _ ~ E  )
i = i  j = 1 /

+  (£?[C3i] -  £3, E  [C51] -  £5) , similarly

(4.A.53)

(4.A.54)

(4.A.55)

(4.A.56)

(4.A.57)

(4.A.58)
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E ( 84( h ) -  84, 85 ( h ) - 85) \  = E
1 N 1 N

(u i) f v U  (Vj, U j )  , J j ^ ^ j f v U  ( V j , U j )
1=1 J = 1

+ E - f i Y l  ^  ~  E  ^41l) ’ (&' “  E  [C5 l ] ) \
. j = 1 3= 1  /

+  (£^41] ~  &4j E  [C5l] -  ^5)

(4.A.59)

(4.A.60)

(4.A.61)

As it was proven above, terms such as (4.A.53), (4.A.54), (4.A.56), (4.A.57), (4.A.59), and 
(4.A.60) will not contribute towards the leading terms in the expansion. However, terms 
(4.A.55), (4.A.58) and (4.A.61) will. In particular, in view of Lemma 4.B.1, it follows

<£[C 3l]-*3,£[C 4l]-*4>

= h2P ( / „ 3  u) S w k  (V, u) f v u  (V, u) dvdu

J  7T2 ( u )  Sic  ( u )  f u  (u) du+ J  7r3 (v, u) S w k  (v, u )  f v u  (v, u) dvdu^ -I- o ,

<£[C si] “  83, E  [£51] -  (̂ 5 )

=  2 h 2P J 7r3 (w, u )  S w k  (v , u) f v u  (v, u )  duduj 

d -A T 1/ ^  ( /  7T3 (v, u) (y, u ) f v u  (v, u ) dvdu,Cwk J  ̂ 3 (v, u ) f v u  («, u ) d udu^

(■®[C4i] — 84 , E  [C51] — ^5 )

=  2 h 2P i l  7T2 ( u )  Sic  (u) f u  (u) du  +  J  7r3 (u, u ) S w k  ( v ,  u) / v u  (v> u ) dvdu,

J  7r3 (u, u )  SV/c (v, u ) f v u  (v, u ) dvdu^j

+  N ~ 1h p ~ d </ ̂2  ( u )  Sac (u ) f u  (u ) d u  +  J  7r3 ( d ,  u) S w /c  (v , u) / v u  (Vj u) dudu, 

Cwk J  *3 (v, u) / v u  (v, u) d u d u ^  .
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S u m m a ry

Summarizing, let us define the following quantities:

© i,i = J  7T2 (u) Sic (u) f v  (u) du,

7r3 (u, u) Swk. (v, u) f v u  (v , u) dvdu, and 

©2 =  CWk  /  tt3 (u, u) / v u  (v, u) dudu, 

then the contributions of each of the terms analyzed above will be:

Term: Contribution: h2P Contribution: N  l hp d Contribution: N  2h 2d

(4.A.4) - - -
(4.A.5) +4 II®!,ill2 - -
(4.A.6) + 4  II®1,2||2 - -
(4.A.7) + ||®1,1+®1,2||2 - -
(4.A.8) +4||®i,2||2 +4 (® 2, © 1,2) Il®2||2
(4.A.9) - - -
(4.A.10) - -
(4.A.11) - - -
(4.A.12) - ~
(4.A.13) —8 (© i,ij © 1,2) - -
(4.A.14) —4 (©1,1, ©1,1+©1,2) - -
(4.A.15) +8 (© 1,1, © 1,2) +4 (®2, © l,l)
(4.A.16) +4 (53i ,2, © i ,i + © i ,2) - -
(4.A.17) - 8 ||® i ,2||2 - 4 ( ® 2>B 1|2) -
(4.A.18) —4 (© 1,1+ © 1,2, © 1,2) — 2 (® 2, © 1,1+ © 1,2) -

Net: II®1,1 -  ®1,2||2 2 (© 1,1 - © 1,2, © 2) Il®2||2
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Therefore, we conclude that the leading terms are:

h 2 P  y* 7t2 (u) Sic  (u) f u  (u) du- J  7r3 ( v , u) S w k  (v, u) f v u  K  u) d v d u

+  ~ J f ^ T h P  (  I  ^  (u, u ) / v u  (w, u )  dvdu

, J  tt2 (u) S*; (u) / u  (u) du- J  tt3 (u, u) (v, u) / vu (v, u) d v d u ^  

/ t t 3 ( u , u ) / v u K u )  d v d u
C 2 u W K

N 2 h2d

=  h2f> I I B u - a M *  +  2 - ^ u  +

—1 l—d 2
N 2 h2d

where 951 = 0 5 i , i—® i,2? as required.

Proof of Proposition 4.3.1

In what follows, we make use of the following identities:

h i  f v i  . h i - h i

f v U i  f v U i  f v U i  f v U i

f u i  ( j v U i  ~  f v U i J  ( f v U i  ~  f v U i j  ( / u i  ~  / u i )

f v U i f w i  f v U i f v U i

h i  h i  h i  -  f m  f v i  i ? VVi ~ fv v i)  V v v i  +  fv v i)
f a n

and

V U  i J V Ui f v U i /i4VU  i

+
f u i  (JvUi ~ fvUi') ( fvUi  + fvUi')

f4 f 2 J V U iJV U i

(/vU i “  fvUi^j (Ju i ~  /U i) (/vU i +  /vU i)

f 2 T2J VUiJ VU i

(4.A.62)

(4.A.63)
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T e r m : *Bi (ho)

F irstly , it  follow s from  (4. A .62) th a t

77 (A h o ) — 77 ( ho )  =  82 (A h o) — ^2 (ho )  — ^3 (A h o ) — 83 (^ 0 )]

N
+  A -1  (A h 0) -  ?2 i ( A h 0 ) ) u i a T (v*, u*)

i=i
iV

^  1 ^ ° )  “  (ho) )uiaT (Vi, U i )  ,

(4 .A .64)

(4 .A .65)
i= 1

w here (4 .A .64) and (4 .A .65) are Op(iV 1h0 d lo g iV  +  /igP ) b eca u se  o f  A ssu m p tion s ( A l) ,  

(A 2 ), (A 3 ), (A 4 ), an d  resu lts (4 .A .63), (4 .A .1 ), (4 .A .2 ). T h a t is,

77 (A h 0) - v ( h o )  

h(£  ( A p  — 1)

IV

2

IV

2

-1

-1

E
i<j

E

P2 (t2ri> t2rj; A ftp ) — P2 (t2Tj, t2rj; ftp) 

P3 ( t3 r t ,  t 3 r j ;  A /lo )  — P3 (t3-ri > t3 T, ' ; ho )

h g (  A P - 1 )

+ Op((N h g + d ) ~ 1 log JV +  h f ),

w hich  m ean s th a t 23i (ho) is th e  sum  o f tw o [ / - s ta t is t ic s  p lus a rem inder th a t is op ( l ) ,  

b ecau se  under th e  con d ition s o f  th e  prop osition , ho —> 0 and N h p + d  —» 00  as N  —> 0 0 . G iven  

L em m a 4 .B .1 4 , it  th en  follow s from  L em m a 3.1 (page 1410) in  P ow ell, S tock , and Stoker 

(1989), and  T h eorem  A  (page 4) in  L ew bel (2000a), th a t  (77 (A h o ) — v ( h o ) ) / ( h p ( A p  — 1)) 

is co n sisten t for

E u
(  S M U ) f v ( V ) S w , c ( V , V ) \
I m T ^ u )  f a r , u )  )  (v ’u )

T h is is tru e b ecau se ,

Sjc (U)
E UJ f v ( U ) S WK (V,U)

<

f v  u (V .U ) /J u ( V iU )

Sic  ( u )  / u  ( u )  S w k  ( v , u )

( l-O r (V ,U ))

su p  ||u;|| sup  
flyu flyu f v u  (v, u ) / 2 u  (v, u )

E [ l - Or ( V , U ) ] (4 .A .66)

N ow  E  [1 — a T (V ,  U )]  eq u als th e  p rob ability  th a t (u, u )  is w ith in  a d ista n ce  r  o f th e  b oun d ­

ary o f  Q y u ,  w hich  is less or eq u al to  su p ^ vu  f y \ j  (u, u ) t im es th e  vo lu m e o f  th e sp ace w ith in  

a d ista n ce  r  o f  th e  b ou n d ary  or f V u -  T h is vo lu m e is O  ( r ) ,  so from  A ssu m p tio n s (A 3) and  

(A 6), w e have th a t  (4 .A .66) is O  ( r )  =  0 ( lV _1/ 2(lV 1/ 2r ) )  =  o(iV - 1 / 2), w here th e  la st equal­

ity  follow s from  A ssu m p tio n  (A 7). Therefore, under th e  co n d itio n s o f  th e  p rop osition , we
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conclude th a t © i (ho) © i as N  —* oo.

Term: © 2 (M

Notice that,
r  N r  N

©2 (h„) = Y Z  w *ri + Y Z  ™*3ri ~  G73Ti> (4.A.67)
t=l i=1

where the second term  on the right-hand side of (4.A.67) is bounded above by 

N
f v i  f u i

f  2JVVi JW i

which is op (1) by Assumption (A4), representation (4.A.63), and the assumptions of the 
proposition (h* —> 0 and Nh*  —> oo as N  —► oo). The result follows from Kolmogorov’s 
Law of Large Numbers when applied to the first term  in the right-hand side of (4.A.67), 
and conclude that

(h*) © 2, as N  —» oo.
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4.B  Technical Lem m as

L em m a 4 .B .1  Let Assumptions (A1)-(A3) hold. Then

E  (Wh (Vi -  v ) JCh (U i -  u ))  =  f v u  (v , u )  +  hp S w k .  (v, u) +  f}WK (h, (v, u ) ) , (4.B.1)

E  (Kh (U i -  u ))  =  / u  (u ) +  hp S K (u ) +  pjc (h, u ) , V (v, u ) e  (4.B.2)

where sup(uu) \ fiwK (^> (w, u ))| =  o (hp ), supu |Pjc (h , u)| =  o (hp ) as h —> 0, and

93 = h  +  hp J  7r3 (v, u) S WK (v, u) f v u  (v, u) dvdu  +  j WK ( h ) , (4.B.3)

= S2 + hp J  7t2 ( u ) S/c ( u ) f u  (u) du +  7^  (h) ,

+  I w k  ( h ) ,Q5 =  $5 +  2h p  TV3 (v ,  u ) Sw/C (u, u )  / y u  (u, u ) d vd u  

94 =  <̂4 +  hp \^J7T2 ( u ) Sic  ( u ) d u + J 7r3 ( v ,  u ) S V /c (v, u ) f v u  (v, u) dvdu

where I7 w k  (h)| =  o (hp ), and I'y/c (/i)| =  0 (hp ) as h —► 0 .

(4.B.4)

(4.B.5)

+  7 W7C {h) ,

(4.B.6)

P ro o f. We prove (4.B.1) and (4.B.3) only, as (4.B.2) and (4.B.4) follow the exact same 
arguments. By a simple change of argument,

E  (Wh (Vi -  v) K h (U i -  u)) =  L  J f v v  („ +  eft, u  +  c h) W  (c) K  (c) dcdc.

Assumption (A3) ensures th a t a Taylor series expansion is valid, and, uniformly in (c ,  c) E

i - i . i ] " ,

jJa|
f v u  (v + ch, u  +  ch) -  V  - T - D af v u  (v ,  u) (c ,  c)a

z '  a !
0 < |a |< P

<  PWK (K  (V,U)) ,

where sup(vu) |( 3 w k  [h, (v, u ) ) |  =  0 (hp ), with h —> 0. We use the notation a = (07, . . . ,  ay), 
a! =  a i!  x . . .  x a d\, \a\ = (c. c )a =  cQl x c“2 x . . .  x c j i 15 Eo< |a |<p =

E f= o  E 3a i=0 ■ ■ • E i,,= o> and
a i+...+ad=j

nan  f \   daf v u  (v, u)
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It follows from Assumption (A2),

E  (Wh (Vi -  v) Kh (U , -  u)) =  f v u  (t>, u) +  V  D af v v  (v, u)
. Oil

x  J  (c, c)“ IV (c) /C (c) dcdc+pwK. (h, (v, u))

= f v u  («, u) +  hp S WK (u, u) + Pwk. (h, (v , u ) ) .

Given this expression, It also follows

93 = E  [7T3 (Vi, UO W h (V2 -  Vi) K h (U2 -  UO] 
= E  [tt3 (Vi, Ui) E  [W„ (V2 -  V) Kh (U2 -  Uj)| V = Vj, U = U2]] 
= E  [tt3 (Vj.Ur) (f v u  (Vi.Ui) + hp S WK (Vj.Ur) + 0WK (h , (Vi.Ui)))]

where the last equality follows from sup/u uj \Pwrc (h, (if, u ))| — o  ( h  ) , and /  713 (if, u) x 
f v u  (if, u) dvdu  <  00 since 713 and f v u  are bounded on the compact support f ly u . Similarly, 
we have

94 = E  [7T4 (Vi, UO W h (V2 - V i ) K h (U 2 -  U i) Kh (U 3 -  Ur)]

= E  [7T4 (Vi, UO E  [W h (V2 -  V,) Kh (U 2 -  U 0 | V = Vi, U  = U a] 

x E [ K h (U 3 -  U j)| V =  V i,U  =  Ui]]

=  E  [tt4 (V i,U i) { fv U (Vi, U i)  +  hp S WK (V i,U i) + p WK (h, (Vl5U i)))  

X ( /u  (U i) +  hp SK. (U i) +  0K (h, U i))]

=  J 7T4 (u, u) f y u  (v, u )  f u  (u ) d v d u + h p  J 7t4 (w, u) f y V  ( v ,  u )  S )c (u )  rfudu 

+  hp  /  7T4 (v, u) S V k  (v, u) / v u  (u, u) / u  (u) cfodu +  7 W/C (h)

= (5s + hp

= 6 4 + hp \^J7T2 ( u )  S/c ( u )  d u + J  7t3 (v, u )  S wk (v , u )  f v u  (v, u )  dvdv^ +  'ywK {h) ,
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where the last equality follows from observing that 

7r4 (v, u) f Vu  (v, u) =  E  

= E

u>
V  = v ,U  = u

. f t v ( V , U )
U)

V  = v ,U  = u
l f v u ( V , V )

f v u  {v, u)

= 7T2 (u, u) , such tha t 

E  [tt2 (v , U )| U  =  u] =  J 7f2 (u, u) f v |U (u| u) dv = 7T2 (u) , and

7T4 (V , u) / u  (u) =  E  

= E

u

f l  u (V ,U ) 
w /u  (U)

l / f v K U )

=  JT3 («, U) .

V =  u, U  =  u

V  = v, U  =  u

/ u ( u )

By the exact same arguments, we have

«5 =  E  [ir5 (Vi, U ,)  ||E  [Wh (V2 -  Vj) Kh (U 2 -  U ,) | V  =  Vt , U  =  U i] ||2]

=  E  [ir5 (Vi, U ,)  ( f v u  (Vi, U i)  +  hp S WK. (Vi, U ,)  +  0WK (h , (Vi, U ,) ) ) 2]

=  J  ''rs (v, u) f y U (v, u) dvdu + 2 hp f i r s  (ti,u) S wk  (V i,U i) f v u  (v, u) dvdu + 7ivie (h)

= Sb + 2 hp 

as needed. ■

J t t3 ( v ,  u ) S wk  (v, u) f v u  (v, u) dvdu +  I wk. (h).

L em m a 4 .B .2  Let Assumptions (A l)-(A 3) hold. Then

E [ W h ( V \ - v ) K \  ( U i - u  

E [ W h ( V i - v ) K l  ( U i - u  

E [ W l ( V i - V)JC2h { U i - u  

E [ W i ( V 1 - v ) K , 3h( V 1 - u  

E  [Wjl (Vi — v) (U i — u  

E [ W % { V \ - v ) K Ah ( U i - u  

E [ W f i ( V i - v ) K i {  U i - u

=  CicfvU (u, u ) +  fpWK.,12 K  u )) I 

= CK,zfvU (v, u ) h_2(d_1) + 1pwJC,1 3  (h ’ (v >u)) >
=  C w t z f v u  (v , u ) h ~ d +  ipw ic  (h , (v , u ) ) ,

=  C w K . ,2 z f v U  (^> u ) +  IpWIC,23 (*>> u ) )  ,

=  CwK.,Z?>fvU  u ) h _2d +  TpWK.,33 (h ,  (v , u ))  ,

=  C w ic ,u fvu  (u5 u ) h _ 3̂d_1  ̂ +  1pwic,34: {h, (v, u ) ) , 

=  CwiCMfvu  (vj u) h~3d +  rfrwKM (^> (u>u )) >

^iv/C,13(^(t,»u )) = 0 (/i 2(d 1})>where sup(v u) ^ /C , i 2 ( M v>u )) =  o ( r (d- 1}), siipM  ^ / c , i 3 ( M v>u )) =  0 I' 

suP(V)u) Ww/c (&, (v, u ))| =  o (h~d) } sup(UiU) \^Wk,23 (&, (v, u ))| =  o (h~(2d- V) ,  
sup(U)U) \ipw]C,33 (h, (v ,u ))| =  o (h~2d), sup(v u) l^vy^.34 (h, (v ,u )) | =  o ( / r ^ -1*), 

and sup(V)U) \^ WK.M %  (v> u ))l =  0 (h~3d) .
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P ro o f. Firstly,

E  [1W l  (V! -  „) K \  (U j — u )] =  J W 2 ( ^ )  K? ( j ^ )  f v v  (t , t )  dtdt

— J w 2 (c) K? (c) f v u  (v + ch, u  +  ch) dcdc.

Similarly, we have that

E  [Wh (Vi -  v) K?h (U , -  u)] =  ^  J w { ^ \ k 2 ( ^ )  f v  u  (t, t )  dtdt

= L J W  (c) K 2 (c) f v u  (v + ch, u  +  ch) dcdc.

It follows from Assumption (A3), th a t fvv-t and f u  are Lipschitz continuous on fV u  and 
f lu  respectively, with some Lipschitz constants L f vv  and L f v . Thus,

I f  1
W 2 (c) K, 2 (c) f Vu  (v +  ch, u  4- ch) dcdc—^ C w i c f v u  («, u)

 ̂ J  \\W(c)lC(c)\\2 \\(c,c)\\dcdc,

J W  (c) K 2 (c) f Vu  (v + ch, u  +  ch) d c d c - ^ - ^ C k .  f v u  («, u)

<  % r % f \ \ W ( c ) \ \  ||iC(c)H2 ||(c ,c ) ||£icdc,

which proves this Lemma. The same argument applies to each of the other components. ■

L em m a 4 .B .3  Let Assumptions (A1)-(A3) hold. Then

E  [Wh ( V - Vl) K h (U  -  ill) Wh (V  -  v2) K h (U -  u 2)] (4.B.7)

=  h~d ( WK,  W K )  Ul h U2^ f v v  (vi, u i)  +  iP(wk:,wic) (h, (v , u ) ) ,

E [ K h ( U - u i ) K h (U — u 2)]

=  h - ^ - V  (1C, 1C) ^ Ul h ~ 2 ĵ f v  (u i) +  ^</c,/c) {h, u)
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E  [Kh (U  -  u j)  W h (V  -  t,2) Kh (U  -  u 2)]

=  h - V - V  (K, W K ) ^ T 1 )  ^ u  K  u i) +  ^IC,WK) (h, («, u ) ) ,

E  [Kh (U  -  Ul) W l  (V  -  v2) K \  (U  -  u 2)]

=  h - W - »  (K, W 2 K 2> f v v  (VI, U!) +  (h, («, U )),

E  [Wh (V  -  vi) K h (U  -  Ul) (V  -  v2) K2h (U  -  u 2)]

=  h~2d ( WK ,  W 2 K2) f w  (« i,u i)  +  Ixy/K.WK?) (h , (t>,u)),

where ( /, <7) (u, u) =  f  f  (c,c) g (c — v ,c  — u) dcdc, and

sup 1>(Wic,wic) {h, (u, u)) =  o ,

supV^/c./C) (h,u)  = o ,

sup ip(ic,w)C) {K (u ,u)) =  o ,
fivu  V '

sup ll>(ic,w*K?) (h > (v> u )) =  0  ( ^ -(2d_1))  , 

sup 1p(W!C,W^) (K  (v, u)) =  o ( / r 2d) ,

P ro o f. We only show the working for (4.B.7), as all other term s follow the exact same 
argument. Firstly,

E  [Wh (V  -  ui) K h (U -  u i)  (V -  v2) Kh (U -  u 2)]

= b l w  ( n r ) K ( r r ) w  ( r r ) K ( r r ) ™ dtdt

=  i  J w  (c) K  (c) W  ( c  +  K \ C +  u i ~ " 2)  f v u  (t>i +  ch, Ul +  ch) dcdc,

It follows from Assumption (A3), that f v u> und f u  are Lipschitz continuous on fV u  and 
f2u respectively, with some Lipschitz constants L /vu and L fc .  Similarly, from Assumption 
(A2), W K  is also Lipschitz continuous on [0, l]d, with some Lipschitz constant Lwic• Thus,

I J w  ( c ) K ( c ) W  ^c + Vl ^ ^  j  K + Ul ^ U2 )  f v v  (vi +  ch, u i +  ch) dcdc 

- ± ;  (WK,  WK )  f w  (v i.uO

< LWf d- ( VV J  l|W (c)/C (c)|| ||(c ,c)||dafc .
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L em m a 4 .B .4  Let Assumptions (A1)-(A3) hold. Then

E  [||Kk (U i -  u)||2] =  C/cAj ( u )  f t - * " " 1) +  ( h , u ) ,

E  [ 4  (U i -  u)] =  Cjc,3/u  (u) +  V-k,3 (/», u ) ,

E  [||Kft (U , -  u)||4] =  CKAf v  (u) ft-3^ - 1) +  V-c,4 (ft, u ) ,

where supu |V>(c (ft, u)| =  a , supu \tp̂ 3 (ft, u)| =  o (ft-2*''-1'), and supu |Vjc,4 (ft, u)| ,
0 (ft- 3(4- i) )

P ro o f. These are special cases of those in Lemma 4.B.2, with Wh (•) empty. The result 
follows by the same arguments. ■

L em m a 4 .B .5  Let Assumptions (A1)-(A3) hold. Then

E  [tt3 (Vi, U i)  W h (Vi -  v) K h (U i -  u)] =  tt3 (v , u) f v u  (v, u)

+  hp Swic ,3 (v, u) +  PwtC,3 (h, (V, u ) ) , (4.B.8)

E  [tt5 (Vi , U i ) W h (Vi -  v) K h (U x -  u)J =  tt5 (v, u) f v v  (u, u)

+  hPSWK,5 (v, u) +  Av/C.5 (&, (v, u)) ,

E  [tt2 (U i)/Cfc ( U l -  u)] =  7T2 (u) / u  (u) +  hp 5/c,2 (u) +  Pic,2 {h, u ) ,
(4.B.9)

E  Pf2 (Vi, U l) JCh (U l -  u)] =  7T2 (u) / u  (u) +  hp S ^ 2 (u) +  (h, u ) ,
(4.B.10)

E  [tt5 (V2, U 2) W l  (V2 -  v) K \  (U 2 -  u)] =  h r dCWKtt5 (v, u) f v v  (v, u) +  AvK.5 (/», (w, u))
(4.B.11)

where

S w k ,i (v>u) =
d p qp

d w Offp fa (v>u) f v v  fa u)] + dK^ 2 ^ p  fa fa u) /vu fa u)]
i = i  J

S jc,2 ( u ) =  ^ 2 ( u ) / u  f a ) ] ,
j=i J

S*K,2 fa) =  J  fa (V’ U) U)1
J=1 •?

and sup(v u) fiwK,l f a  fa, u)) =  o (h d), for I = 3 and 5, supu / f c f a u )  = o (h J)),
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s u P(v,u) P i  (h, u) = o ( h  (d *)), and sup(V)U) \(3WK,s (h, (u, u ))| =  o (h d) as h -* 0.

P ro o f. As before, we only show the results for (4.B.8), (4.B.10), and (4.B.11) as the others 
follow the exact same arguments. By a simple change of argument

E  [tt3 (Vi, U j)  W h (Vi -  v) )Ch (U i -  u)] 

=  J  7t3 (u +  ch, u  +  c h) f v u  {v +  ch, u  +  ch) W  (c) K. (c) dcdc 

= 7T3 (w, u) f v u  {v, u) +  hp V  — D a [tt3 (w, u) f v u  (v, u)]
, 7—' a!
|a |=P

x J  (c, c)Q W  (c) JC (c) dcdc + pwic {h, {v, u ) ) ,

where the last equality follows from Assumptions (A3) and (A2). Similarly, we can write 
(4.B.10) as

E  [tt2 (Vi, U i)  JCh (U i -  u)] =  J  7r2 (v, u  +  ch) f v u  (^, u  +  ch) JC (c) dvdc 

= 7T2 (u) / u  (u) +  hP X  “ 7 /  D V 1*2  (v, u) f v u  (v, u)] dv
M=P ^  J

X /  Ca/C +

Also,

E  [tt5 (V2, U 2) W l  (V2 -  v) K l  ( U 2 -  u )]

=  h~d J  7T5 (v +  ch, u  +  ch) f v u  (v +  ch, u  +  c /i)  W 2 (c) Jj/C (c )  ||2 dcdc 

= h~dCwK^ 5  (v ,  u )  f v u  (v, u ) +  j§W/c,5 (^, (u, u ) )

as required.
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Lemma 4 .B .6  L e t  A s s u m p t i o n s  (A1)-(A 3) ho ld .  T h e n  a s  h  —> 0 ,

#3,7 =  J  Ik3 (v ,  U ) | |2 f y \ j  {v, u) d \ l + 0  ( h P ) ,

83.111 =  J  Ik3 i v ,  u)||2 f v u  K u) d u + O  (h p ) ,

83 ,1V  =  \ c w k . J  ||7T3 (v , u) f v u  (v ,  u)||2 d u  {1 +  o  (1)} ,

82,1  =  J  l\n2 (u)||2 f h  (u) d u + O  (h p ) ,

82.111 =  J  IK2 (u)||2 (u) d u + O  (h p ) ,

82 ,1 V  =  J  lk2 (u) f u  (u)||2 d u { l  +  o  (1)} .

Proof. For this Lemma, we show the results for 82,1, for I =  I ,  I I I ,  I V ,  for notational 
convenience. The proof of B 3 J ,  for I =  I ,  I I I ,  I V  follows the exact same arguments, and 
therefore is omitted.

By Lemma 4 .B.5 , it follows

B 2,i  =  E  [ ||£  [7T2 (U i) K h (U3 -  U ,)| U 3]||2'

=  j  /u W H B ^ t U O /C ^ u - U O lf d u  

= J  f v  (u) jt2 (u) f v  (u) + hp S)c (u) + 0K (h, u) du 

= J  lk 2 (u )/u (u )||2 /u (u )d u + 0  (hp ) .

Using Lemmas 4 .B.1 and 4 .B.5 , we obtain

82,111 =  E  [ fa  (U i) , 7T2 (U2)> K h (U2 -  U x) K h (U3 -  U 2)]

=  J  (*-2 (x ) , 7T2 (y)) K h (y -  x) K h  (z -  y) f u  (x) f u  (y) f u  (z) d x d y d z

=  I  ( / 7r2^  (y _ x ^ W dx,/ 7r2 (z ”  y) f u  ( z ) d z ^  /u  (y) d y

=  J  (tt2 (y) f u  (y) +  h p Sic (y) +  Pic (h ,  y ) , 

tt2 (y) [ f u  (y) +  h p Sic  (y) + Pic (h ,  y )]) f u  (y) d y  

=  J  IK2 (u )/u  (u)||2 /u  (u) du+O (h p) .
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Finally, by the change of variables: c =  (x — y) h *, we have

8 2 , I V  =  E  [(7T2 (U 2) , 7T2 (U 2)> \\Kh (Uj -  U 2)||2'

=  J  ( * 2  ( x )  , 7T2 (y)) \\JCh (x -  y)||2 f u  (x) f u  (y) dxdy  

= J  ̂ 2 (y  + c h ) , 7r2 (y)> f u  ( y  + ch) f u  (y )  ||/c (c) | | 2 dydc.

From Assumption (A3), it follows tha t f u  and 7T2 are Lipschitz continuous on fiu- Then

=  fti_ , J  IK2 ( u ) /u ( u ) | |2 du f  ||Jt(c)||2dc{l + 0(ft)}

1
hd~l J  ||7T2 (u) f u  (u )||2 du 1  ||/C(c)||2dc {1 +  0 (1)}

which concludes the proof. ■

L em m a 4 .B .7  Let Assumptions (A1)-(A3) hold. Then as h —» 0,

8 5 , 1  = 0 h.~3d)  ,

8 5 ,1 1  = 0

1 to

8 5 ,1 1 1  = 0 N h ~ 2d>j  ,

8 5 ,1 V =  0 N 2 h~d"j ,

8 5 ,v  = 0 N h ~ 2d^ +  0  (iV2/ i - d)  +  0  (A 3) +  0  (.N 3 hp ) ,

8 5 ,VI = O jv/r2d) + 0  (w2/rd)

P ro o f. As before, it follows from Lemma 4.B.2,

^[<7r5;l,7r5;2)^4;12/C^;12]

=  E  [tt5 (V i.U i) E  [tt5 (V2 ,U 2) w £  (Vt -  V2) K 4h (U i -  U 2)| U ,]]

=  E

CwK
h~3d

"tts (Vi, U i)  { h r ^ C WK M ^  (V i,X Ji)  f v u  ( V i . U O  +  p w KM (h, ( V i . U O ) ) ]  

J  11*5 (v, u ) ||2 f l u  (W| u) dvdu {l +  o (1)} ,
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Similarly, we have

E  [(7T5;i,7r5;2) W^;12^M2^M2^/i;32]

=  ( ^ f  71-5 (x, x) (y -  x ) JCl (y -  x) f v v  (x, x) dxdx

1 ^ 5  (y, y) J  W h { z -  y) K h (z -  y) /vu (*, z) dzdz^ / v u  (y, y ) dydy

=  J  (y> y) ( C w ic w fv u  (y> y) h~2d +  ipwic,33 {h, (y, y )))

* 5  (y, y) [ M j  (y, y) +  hp S Wic,5 (y, y) +  Awc .5 (fc, (y, y ) )] ) / v u  (y, y) <fydy 

=  / l l 71"5 (y>y)\\2 f v u  (y, y)  dydy { l  + o (1)} , and

from Lemma 4.B.3, it also follows

E  [(7T5;1, 7T5;2) ^ ;1 2 ^ ;1 2 ^ //i;31^;31^/i;32^/i;32]

= E  [ fa il, 7r5l2> W l il2K.2h.n  x E  \Wh,3lKhi31Wh,32Kh,32\ f a ,  U j ) , (V2, U 2)]]

=  11E  [(«S;U*5-,2)Wg.12ICl.12(WIC,W>C) f v v  f a , Ul) {1 +  o(l)}

=  O ( h~M)  ■

Also, from Lemma 4.B.1 it follows

E  [<7T5;1, 7T5;2) WjJ;12/Cj;12Wfc;4i/C/»;4iWfc;32/Cfc;32]

=  E  [ f a ;1, jt5;2> W^12£ £ ;12 x E  [Ww lCh,t t \ f a ,  UO] E  [Wh,32Khi32\ f a ,  U 2)]]

=  o  (ft- *) .

By Lemmas 4.B.1 and 4.B.3, all other terms are 

E  [(7r5;i,7r5;2) W/l;i2/C/l;i2W/l;3i/C/l;3i^ . 32^ . 32]

=  E  [fa ,!, 7r5;2) Whil2IChil2E  [Wki31ICh.31W l t32K2h.32\ f a . U O , f a ,  U 2)]]

=  ^ d E  ( ^ u ^ , 2) W h.i2K h.12( W K ,W 2K.2) / v u f a . u i )  { l +  o(l)}

=  O ( h - 2d ĵ .

E  [<7T5;l, 7T5;2) W'/l;12/C/l;12Wfc;3l/Cfc;3lW/l;32/Cfc;32lVfc;42ACfc;42]

=  E  [{7T5;1, 7T5;2) Wh'Ufch,12

x E  [Wfc;3i/CM iWfc:32/Cfc;32| (V iiU x), (V2, V 2)} E  [Wh.42)Ch,42| V2,XJ2}]

=  o  ( h - d) ,
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4.B Technical Lemmas

P ro o f. Firstly,

&5,VI = 
1

N ( N - i y
1

;E 7T5;1 »7T5;2 E "= 3W'ft;»2>W,;S2

■E [(7r6;i,7T5:2>
N ( N - i y

+  TV ( f t  ^ ; 4 1 ^ ;4lWM 2 ^ ; 4 2 ^ ;5 1 ^ ;5 1 ^ ;5 2 ^ ;52]

+  A; (J^ _ - l ) ( £  h ; l ^ 2;3 l4 ;3 l] ■ E  >

+  J f  ( E  K i W h2.314 ;31]

+  (•£■ ['TT5;1^7i;41 /̂l;4i W^jSi/C^jSi] , i? [7T5;2 W>i;42^^;42 W>i;52^^;52]) •

Now, it follows from Lemma 4.B.3, that

E  [<7T5;i, 7T5;2) W i.3 1 IC l3 1 W i.3 2 K l 32]

= E  {{^■1 , ^ - 2 ) E  [ ^ 2;31^3xl V j.U ,] E  K ^ i C ^  K2,U 2]]

=  O > and

E  [(tTBjI , 7TB;2) ^ 'h l41^h;41^/hl42^hl42^h;rA^h;51^/h;52^h;52i 

= E  [<7r5;i, ir5:2) E  [Wh.M K h.M W h,i 2 K h.A2\ (Vi, U , ) , (V2, U 2)] 

x E [ W h;5 1 ICh,5 1 Wh.5 2 IC ^ 2\ (V i .U ,) , (V̂2,U 2)]]

=  O (h ~ d) .

The result follows after noticing th a t HE1 [Csi]l|2 =  (4.B.12) +  (4.B.13) +  (4.B.14).

L em m a 4 .B .9  Let Assumptions (A1)-(A3) hold. Then as h —► 0,

# 13,7 = J  <7T1 (V, u ) , 7T3 (v , u)) f y u  (v , u) dvdu  {1 +  o (1)} ,

#13,77 = (Si,S3 ) + hp f  (ffi, 7T3 (V, u)) Swk. (w, u) dvdu  +  o (hp ) ,  

# 12,7 =  J  (7T1 (u) , 7T2 (u)) (u) dll { 1 +  O (l)} ,

# 12,77 =  <^i, <̂2) +  hp J  (5i,tt2 (u)) Sic (u) du  +  o (hp ) .

(4.B.12)

(4.B.13)

(4.B.14)
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P ro o f. As before, we show the results for Bi2)j, for I = I , I I .  Prom Assumption (A2) and 
(A3), we have

B i2 ,i = E  [<7T1 ( U i ) , 7T2 (U2)) JCh (Ui -  Ua)]

=  J  {*i ( x ) , 7t2 (y)) JCh (x -  y) f v  (x) f v  (y) dxdy

=  J  (tti (y +  ch ) , 7r2 (y)) f u  (y +  ch) f u  (y) JC (c) dydc

= J  (tti ( y ) , 7T2 (y)) f u  (y) d y { i  + o ( i ) } ,

where the last equality comes from the change of variables: c =  h~ l (x — y). Finally, from 
Lemma 4.B.1, we obtain

B 1 2JI  =  E[(iri ( U i ) , 7T2 (U2)) JCh (U3 -  U 2)]

=  J  (tti (x) , 7r2 (y)) JCh (z -  y) f u  (x) f u  (y) f u  (z) dxdydz

- f d  *i (x) f u  (x) dx, J  7r2 (y) JCh (z -  y) f u  (z) dz^j f u  (y) dy  

=  J  (<5i , 7T2 ( y ) ) / u ( y ) dy + hPJ  (^1 ^ 2  (y)) S jc (y )d y + o  (hp ) ,

the result follows after noticing tha t E  [7r2 (y) / u  (y)] =  <52. ■

L em m a 4 .B .10  Let Assumptions (A1)-(A3) hold. Then as h —> 0,

Bi5,i = j j i  \cw k . J  W ,7 r5 (y ,y ))/Ju (2 /,y )d 2 /d y { l +  o (l)}  ,
B i5 ,n  = , J  tt5 ( j/ ,  y) / J u  (y , y) cfr/dy^ +  O (hp ) ,

B i5 ,iii = J  (tti (2/, y ) , 7T5 (3/, y) /v u  (y, y)) f v v  (y , y) d?/dy+ 0  (/ip ) , and

J3l5,IV = hd CwK. J  (tti (x , x )  , 7T5 (z , x )  / y u  (x , x ) )  f VV (x , x )  {1  +  O (1 )}
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P ro o f. Firstly, by Lemma 4.B.2, it follows 

#15,7 =  ( ^ j  7T1 (x, x) f v u  (x, x) dxdx,

J  7T5 (y , y) w l  (z -  y) K \  (z -  y) f v v  (z, z) d z d z fv v  (y, y) dydy^

=  / 71-5 [ ^ w / c / v u ( y , y ) ^ _ d  + V ^ / d M ^ y ) )  f v v  (y ,y )d y d y ^

= ^  [cw*: J  (s*, 7t5 (y, y)) f l u  (y, y) dydy ( i  + o (i)} •

Also, from Lemma 4.B.1, it follows

#15,// = , f  7T5 (y, y) [Mj (y, y) + (y, y) + /?w/c (h, (y, y))]2 /yu (y, y) dydy^

= ( ^ ’/  ^  (y,y)-^u ( y i y ) dydy ^

+  2hp (<yj, 7T5 (2/, y) Svy/c (y, y) /v u  (y> y) dydy) + 0 ( O  •

Similarly,

#15,777 =  J  (tti (z, x) W h (x -  y) Kh (x -  y) f v v  (z, x) d x d x ,

7T5 (y, y) W& (z -  y) K h (z -  y) f v v  (z, z) dzdz) / v u  (y, y) dydy 

=  J  (5ri (y +  ch, y  +  ch) VF (c) /C (c) /y u  (y +  ch, y  +  ch) dcdc,

7T5 (y, y) [ iv u  (y, y) +  hp Swic (y, y) +  (ft, (y, y))]) f v v  (y, y) dydy

=  J  (tti (y, y ) , 7T5 (y, y) / y u  (y, y)) f v v  (y, y) dydy 

+  hp  (tti (y, y ) , tt5 (y, y) S W  (y, y)) / v u  (y, y) dydy +  o (hp ) .

Finally, from Assumption (A3), it follows tha t f v v  and tt5 are Lipschitz continuous on ffyu- 
Then

# 15,71/  =  E  [ ( t t i  (Vi, U i)  , tt5 (V2, U 2) W l  (Vi -  V2) K 2h (U i -  U 2))]

=  J  (tti (z ,x ) ,rr5 (y,y))

x Wh (x -  y) K 2 (x -  y) f w  ( i ,  x) f v v  (y, y) dxdxdydy

= h l  v 1 {x' K )’ J t t 5 (x +  ch, x  +  ch) W 2 (c) ||/C (c) || f v v  (as +  ch, x  +  ch) dcdc 

x / y u  (as, x) dzdx

=  ” h^  E/  (7fi (®,x),7T5 ( x , x ) f v v  (x ,x ))  f v v  ( x ,x ) d x d x {  1 + 0 (1)},

179



4.B Technical Lemmas

as required. ■

L e m m a  4 .B .11  Let Assumptions (A1)-(A3) hold. Then as h —> 0,

#23,/ =  J  <7T2 ( y ) , 7T3 (y, y)) f u  (y) f v u  (l/» y) dydy+ O  (hp ) , 

f e , / / /  =  J  (tt2 ( y ) , 7T3 (2/, y)) / u  (y) f v u  y) d y d y + o  (hp ) ,

Cic J  (7r2 { v ,u ) ,n 3 (v ,u )) f y l J (v ,u )d v d u  ( l  +  o (l)}  .

P ro o f. By Lemma 4.B.5, it follows

523,/ =  E HE [tt2 (Vi U i) (Us -  U i)| Us] ,

E  [tt3 (Vi, U j) (V3 -  Vi) Kh (U3 -  U 0 | V3, U 3])]

=  J  (* 2  { y ) f u ( y )  + hPS i:(y )  + 0 i c(h, y) ,  

7T3 (2/, y) f v u  (y> y) +  hp S Wic (y, y) +  / W  (ft, (y, y ) ) )  M j  (y, y) dydy 

=  J  (tt2 ( y ) , tt3 (y, y )) / u  (y) f v u  (y» y ) d y d y + o  (hp ) .

Also, by Lemmas (4.B.1) and (4.B.5), we have

B23,/// =  E  [<5=2 (Vi, U j ) , 7T3 (V2 . U 2 )) AC* (U2 -  U , ) W h (V3 -  ^2) K* (U3 -  U 2)]

<7T2 (z, x ) , 7T3 (y, y)) K h (y -  x) X 

Wh (z -  y) /Cfc (z -  y) f v u  (®, x) / y u  (y, y) / v u  (*, z) dxdxdydydzdz  

7T2 (®, x) /Cfc (y -  x) f v u  (®, x) dxdx,

J  7T3 (y, y) Wh (2 -  y) K.h (z -  y) / v u  (+  z) d^dz^ / v u  (y, y) dydy  

= J  (?T2 (y) f u  (y) +  hp Sfc (y) +  (h, y ) ,

*3 (y, y) [ /v u  (y, y) +  (y, y) +  Pw k  (h, (y, y ) ) ] ) f v u  (y, y) dydy

= J  (tt2 ( y ) ,7T3 ( y ,y ) ) /u ( y ) /v u  (y>y) d y d y + o  (hp ) .

^23,/y =  ^ T T
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Finally, after a change of variables c =  (z — x) h _1 and c =  (z — x) h_1, we have

023,/v  = E  [(5=2 (V i.U i) , 7/3 (V2 ,U 2)> W h (Vi -  V2) ||x:k (U , -  u 2) ||2'

=  J  ( ? 2  (x ,x ) , 7/3 (z, z)) Wh (z -  x) \\Kh (z -  x ) ||2 f w  ( x ,x )  f v v  (z, z) dxdxdzdz

hd~l J  (tt2 (x, x ) , 7T3 (a; +  ch, x  +  ch)) x

f v u  +  ch, x  +  ch) f v u  (#> x) W (c) ||JC (c)||2 dxdxdcdc  

=  j j j z i  J  (7T2(^,x),7r3 ( x ,x ) ) / J u  ( x , x ) d x d x  J  \\K (c)||2 dc { l +  0  (hp ) } ,

as required. ■

L em m a 4 .B .12  Let Assumptions (A1)-(A3) hold. Then

025,/ =  O ,

025,// =  0  (f t-f* -1)) ,

025,/// =  o  ('NhT2V - l))  +  O (./V2) +  O (JV2ftp ) ,

025,/v  =  o  +  O ( N 2) + O ( N 2hp ) ,

025,v  =  o  +  O ( N 2) + O  (N 2hF) ,

025,v i  =  O + O ( N 2) + O  (N 2hp ) .

P ro o f. Firstly,

025,/ =  E  [(Sr2 (Vi , U j)  , 7/5 (Vi, U 2)> W h (Vi -  V2) K.3h (U 2 -  U /)]

=  J  (5/2 (x, x ) , 7/5 (y, y)) W), (y -  x)  K?h (y -  x) f v v  (x, x) f v v  (y, y ) dxdxdydy

- ft2(d-i) J  (5/2 (x, x ) , 7/5 (x +  ch, X + ch)}

x W ( c ) K 3 ( c ) f v v ( x , x ) f v v ( x  -f ch, x  +  ch) dcdcdxdx  

= O ^h-2^ -1^  , by a further Taylor-series expansion.
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It follows from Lemmas 4.B.1, 4.B.2, 4.B.3, and 4.B.4 th a t all other terms have the following 
orders of magnitude:

E  [(7f2;l,7T5;2) ^^;12W/l;32/C/l;32]

= E  [<7T2;1, 7T5;2) ̂ h-uE  [Wh,-t32^h\32\ Vl, U2]]
=  O ,

E  [(tT2;1, ^5:2) 

= E  [(7T2;1,7r5;2) Wh.12JC2h.l2E  [/CM2| v2, U 2]]

=  o  ,

E  [<5f2;l>7r5;2)̂ C/i;12W')i;32̂ 'h;32]

= E  [<7T2;1, TTŜ) ̂ h]l2E [ W/i;32̂ /!;321 ^2,^]]
=  O ( / r 2(d_1)) ,

E  [(7T2;1, 7T5;2) ̂ Ch,;12̂ C/i;32̂ /i;42̂ /i;42] 
= E  [<7T2;1, 7T5;2) £/i;12-E [̂ Ai;32| 2̂, U2] E  [ W/l;42̂ /i;42| V2, U2]]
=  0 ( l)  +  0 (hp ) ,

E  [<7T2;1, 7T5;2) ̂ h;12^h;31^h;32^h;32] 
=  E [(7f2;i,7T5;2) /Ch;12E [JCh;31^h;32^h;32\ (VI, U i)  , (V2,U2)]]

=  o  ( / r (d_1)) .

Similarly,

E  [<7T2;1, ̂ 5;2) K.h\\2K>h'fi\Wh\A2̂ h\4sA 
=  E  [(5r2;i, ir5;2) £ h.12E  [/CM i|V i, Ui] E [Wh,A2Kh.A21 V2, U 2]]

=  0 (l)  +  0 (hp ) ,

E  [(7T2;1, 7T5;2) ^/i;12^/i;12^/i;31^/i;32]

=  £7 [(7f2;l, 7T5;2) [̂ Cfc;31 ;̂321 (Vl, U i)  , (V2, U 2 )]]

=  O , and

E  [(7T2;1, 7T5;2) Wh-12^h-,12^h,31^h,32] 
= E  [(7T2;1, 7T5;2) Wh-,\2^h\\2E [/C/i;3l| 1̂> Ui] E [JChA2\ V2, U 2]]

=  0 ( l)  +  0 (hp ) ,

as needed. ■
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L e m m a  4 .B .13  Let Assumptions (A1)-(A3) hold. Then

025,VII =  (jS[C2l],0[C5ll) + 0  + o ( jV ~ 1) .

P ro o f. Firstly,

#25 ,VII

^2t=3^h;t2f^h-,t2
N  (N  — l )2

=  J p E  [(5?2;l>7r5;2)/C/l;3iWfc;32/Cj;32]

+ jjE [(7T2;1> 7T5;2) /C/i;31 W/i;32̂fc;32W'/i;42̂Cfc;42]
+  ^  < 0  [5?2;lACft;3l] , E  [* 5 ;2 W lA2IC l.i2 ] )

+  ( #  [7f2;l£/i;3l] , -E [7T5;2 .

Now, it follows from Lemma 4.B.3, that

E  [ (5r2;l, ^ 5;2 ) ^ / i ;3 1 ^ ;3 2 ^ h ;3 2 ]  

=  E  [(7fS;l,7T6;2> #  [ ^ . 3 2 ^ .3 2  | ( V i , U l )  , (V2 , U 2 )]]

=  O , and

E  [<7T2;1, 7T5;2) £/i;31 W//i;32^/i;321̂ / i ;42^ /i;42]

=  E [ ^ 2;l,7r5;2> ( F ^ U i )  , (F 2 , U 2)]

x E [ W h.A2ICh-42\ (V2 , U 2 )]]

=  0 (h).

The result follows after noticing tha t ( E[^2i \ ,E  [£51] ) =  (4.B.15) +  (4.B.16).

L em m a 4 .B .14  Let Assumptions (A1)-(A3), (A4), (A6 ) and (A7) hold, then

E

E

||P3 (t3rl, t3r2; Aho) ~  P3 (t3rl, t3r 2j ho) | |2 /  [Lq ( l  ~  A P )] =  O (N ) ,

||P2 ( t2r l , t 2r 2; A/lo) ~ P 2 ( t2r l , t 2T2;^o)||2 /  [^0 ( l  _  ^ P )] = o ( N ) .

(4.B.15)

(4.B.16)

(4.B.17)

(4.B.18)
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P r o o f .  Recall t j r l  =  Vi, U ^ ) ,  where 073.7-1 = v o z \a T (V i,U i), and define g eT (o , u )  =

E  [ 11̂ 3x1 ||c| V\ =  u , U i  =  u] for e =  1,2,3,4. Then

E ||P3 ( f  3x1 j f3r2j A /lo ) -  P3 ^ 3 x 1 ^ 3 ^ ;  h o )||2 /  [h P  ( l  — A P )]

=  E

=/

_£a \
hl p )

CA
, < p+d.

^3x1 +  073x2 W 4
V l - V 2

h0
K 4

U 1 - U 2
ho

f v v  (z +  cho, z +  ch0) f v u  (z, z) x

[Q2 t  (z +  cho, z +  c/lo) +  Q2t  (z, z) +  2  (̂ Ox (2 +  cho, z +  ch o ), QOt (z, z ) ) ]  X  

W 2 (c) K? (c) dzdcdzdc 

= 0 (h o {2P+d)) = 0 { N { N h lp+d) " 1) =  o(JV),

where ca  =  ( l  — A 2) /  (A ( l  — A p ) ) 2, and qqt  (o, u) =  1? [073.7-11 V\ = v, U i =  u]. The 
second equality uses the change of variables from ( y , y T , z, zT) to (c = h$ 1 (y — z) ,cT = 
/ig 1(y — z)T, 2 , zT) with jacobian hg. This change of variables is not affected by boundary 
effects because of Assumptions (A l) and (A2), and the fact th a t aT (z, z) =  0 for all (z, z) 
within a distance r  of the boundary of fV u , with H q/t —♦ 0. The last equality uses the 
continuity of the £er’s and Assumption (A7). (4.B.18) follows the exact same arguments 
and therefore it is omitted. ■
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Table 4.1: Monte Carlo results for Design 1: Bandwidth Estimation

N  = 
M ean

200
SD

N  = 
M ean

400
SD

N  = 
M ean

600
SD

p =  0 ^opt 0.6530 - 0.5491 - 0.4962 -
^opt;i?l 0.7006 0.0583 0.5654 0.0228 0.5024 0.0151
^opt;/i2 0.6994 0.0628 0.5651 0.0227 0.5024 0.0144
hoPt\R3 0.6877 0.0311 0.5626 0.0146 0.5019 0.0104

hRi 0.5955 0.0220 0.5317 0.0135 0.4968 0.0102
hR 2 0.6055 0.0395 0.5450 0.0237 0.5100 0.0178
hR 3 0.6846 0.0252 0.6110 0.0155 0.5706 0.0117

P — 1/4 hQ pt 0.6664 - 0.5603 - 0.5063 -
^opt;/?l 0.7024 0.0802 0.5698 0.0354 0.5059 0.0192
^■opt;/?2 0.7029 0.1012 0.5693 0.0399 0.5058 0.0195
^opt;/23 0.6872 0.0399 0.5636 0.0190 0.5033 0.0124

^/ei 0.5918 0.0210 0.5283 0.0133 0.4938 0.0102

hR2 0.5931 0.0385 0.5336 0.0237 0.5003 0.0181
h>R3 0.6823 0.0243 0.6083 0.0153 0.5686 0.0118

a Means and standard deviations (SD) are based on 2000 replications. 
b Estimated bandwidths: hopt ;m ,  hopt ;j?2) and h0pt;.R3 were calculated 

by setting h,0  = h^ijV1/ 12, h0 = hR2 N 1/ 12, and h0 = Tir^N 1/ 12 in 
Section 4.3, respectively. Similarly, auxiliary bandwidths were set h* =  
hRi, h* =  h,R2 , and h* = Hrz respectively.
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Table 4.2: Monte Carlo results for Design 1 : Param eter 77

B ias
N  =  200  

SD M S E B ias
N  =  40 0  

SD M S E B ias
N  =  60 0  

S D M S E
p  =  0 J7 (^ o p t )

7/(/lopt;H 2)

'n{h0 pt;R3)

0 .8 0 9 2

0 .7 9 3 2

0 .7 9 2 4

0 .7 9 8 0

0 .1 5 9 8

0 .1 5 9 4

0 .1 5 9 5

0 .1 5 7 6

0 .6 5 4 8

0 .6 2 9 1

0 .6 2 7 9

0 .6 3 6 8

0 .6 5 9 3

0 .6 5 8 3

0 .6 5 8 5

0 .6 5 9 6

0 .0 9 5 3

0 .0 9 6 1

0 .0 9 6 2

0 .0 9 5 9

0 .4 3 4 7

0 .4 3 3 3

0 .4 3 3 6

0 .4 3 5 0

0 .5 8 8 2

0 .5 8 7 8

0 .5 8 8 0

0 .5 8 8 4

0 .0 7 3 1

0 .0 7 4 1

0 .0 7 4 1

0 .0 7 4 0

0 .3 4 6 0

0 .3 4 5 5

0 .3 4 5 8

0 .3 4 6 3

rj{hRi) 
V{hR2 ) 
ri(hm)

0 .8 3 7 8

0 .8 3 8 7

0 .8 1 2 4

0 .1 6 5 8

0 .1 6 4 1

0 .1 5 7 5

0 .7 0 1 9

0 .7 0 3 4

0 .6 6 0 0

0 .6 6 1 6

0 .6 6 3 7

0 .6 7 0 0

0 .0 9 5 5

0 .0 9 6 0

0 .0 9 7 8

0 .4 3 7 7

0 .4 4 0 5

0 .4 4 8 9

0 .5 8 9 6

0 .5 9 2 4

0 .6 0 6 2

0 .0 7 3 7

0 .0 7 4 7

0 .0 7 6 4

0 .3 4 7 7

0 .3 5 1 0

0 .3 6 7 5
p =  1 /4 J7 (h0p t)  

1](h>opt-,Rl) 
’n{h'opt,R2) 

'n{hopt]Rz)

0 .7 8 1 6

0 .7 6 8 8

0 .7 6 8 8

0 .7 7 2 0

0 .1 6 5 0

0 .1 6 4 1

0 .1 7 2 5

0 .1 5 9 1

0 .6 1 0 8

0 .5 9 1 1

0 .5 9 1 1

0 .5 9 5 9

0 .6 3 9 5

0 .6 3 5 7

0 .6 3 5 5

0 .6 3 7 1

0 .1 0 1 6

0 .1 0 1 4

0 .1 0 1 8

0 .1 0 1 0

0 .4 0 9 0

0 .4 0 4 1

0 .4 0 3 9

0 .4 0 5 9

0 .5 7 5 1

0 .5 7 3 8

0 .5 7 3 7

0 .5 7 4 0

0 .0 7 7 3

0 .0 7 8 0

0 .0 7 8 0

0 .0 7 7 8

0 .3 3 0 7

0 .3 2 9 2

0 .3 2 9 1

0 .3 2 9 5

r}{hm)
v{h]R2 )
v ih R z )

0 .8 1 6 6

0 .8 2 3 0

0 .7 8 5 1

0 .1 8 5 5

0 .1 9 8 9

0 .1 6 2 8

0 .6 6 6 9

0 .6 7 7 4

0 .6 1 6 4

0 .6 4 5 3

0 .6 4 6 8

0 .6 4 3 6

0 .1 0 3 7

0 .1 0 4 7

0 .1 0 1 8

0 .4 1 6 4

0 .4 1 8 3

0 .4 1 4 2

0 .5 7 5 9

0 .5 7 8 3

0 .5 8 6 8

0 .0 7 7 6

0 .0 7 8 0

0 .0 7 9 4

0 .3 3 1 7

0 .3 3 4 4

0 .3 4 4 4

a Simulated biases, standard deviations, and average Mean Squared Error (MSE) are based on 2000
replications.



4.C Tables &; Figures

Table 4.3: Monte Carlo results for Design 2: Bandwidth Estimation

N  = 
M ean

200
SD

N  = 
M ean

400
SD

N  = 
M ean

600
SD

p =  0 hopt 0.6595 - 0.5545 - 0.5011 -
^opt;/ll 0.7027 0.0826 0.5671 0.0331 0.5032 0.0175
hopt;/i2 0.7011 0.0951 0.5665 0.0343 0.5031 0.0166
hopt;/?3 0.6883 0.0408 0.5630 0.0186 0.5021 0.0112

hR\ 0.5961 0.0214 0.5317 0.0134 0.4971 0.0103
hR2 0.6053 0.0398 0.5445 0.0244 0.5107 0.0185
hR3 0.6853 0.0246 0.6109 0.0154 0.5710 0.0118

p =  1/4 hopt 0.6755 - 0.5680 - 0.5133 -
hopt\Rl 0.7090 0.1729 0.5722 0.0652 0.5084 0.0299
hopt;/?2 0.7100 0.2604 0.5719 0.0724 0.5082 0.0322
hopt;fi3 0.6906 0.0712 0.5655 0.0324 0.5050 0.0164

0.5917 0.0216 0.5276 0.0132 0.4934 0.0101

hR2 0.5924 0.0407 0.5332 0.0246 0.4996 0.0184
hR 3 0.6820 0.0249 0.6071 0.0153 0.5681 0.0116

a Means and standard deviations (SD) are based on 2000 replications. 
b Estim ated bandwidths: hopt-m > hopt-R2 , and hopt ;i?3 were calculated 

by setting h 0 = h m N 1/ 12, h0 = hR2N 1/ 12, and h 0 =  T1R3 N 1/ 12 in 
Section 4.3, respectively. Similarly, auxiliary bandwidths were set h* = 
Ii r i , h * =  Hr2 , and h* =  K r z  respectively.
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Table 4.4: Monte Carlo results for Design 2: Param eter 77

B ias
iV =  200 

SD M S E B ias
N  = 400 

SD M S E B ias
N  - 6 0 0  

SD M S E
p  =  0 JJ { h o p t )

r} { h o p t ; R 2 )  

T } ( h o p t ; R 3 )

0.8048
0.7952
0.7955
0.7978

0.1655
0.1638
0.1643
0.1601

0.6477
0.6323
0.6329
0.6365

0.6640
0.6621
0.6622
0.6634

0.0977
0.0984
0.0984
0.0976

0.4409
0.4383
0.4385
0.4401

0.5925
0.5920
0.5918
0.5919

0.0729
0.0737
0.0737
0.0736

0.3511
0.3504
0.3503
0.3503

r}(hm) 
rj(hR 2) 
W&Ra)

0.8336
0.8362
0.8098

0.1814
0.1852
0.1625

0.6950
0.6993
0.6558

0.6667
0.6682
0.6732

0.0982
0.0988
0.0991

0.4445
0.4465
0.4532

0.5932
0.5965
0.6100

0.0734
0.0744
0.0761

0.3519
0.3559
0.3721

p  = 1/4 ( ^ o p t )

7 7 ( / i o p t ; H l )

' n { h o p t ; R 2 )

7 / ( / io p t ; /? 3 )

0.7750
0.7630
0.7646
0.7644

0.1804
0.2567
0.4242
0.1704

0.6006
0.5822
0.5846
0.5843

0.6410
0.6363
0.6365
0.6375

0.1093
0.1113
0.1129
0.1062

0.4109
0.4049
0.4052
0.4064

0.5749
0.5719
0.5721
0.5724

0.0779
0.0778
0.0779
0.0775

0.3305
0.3271
0.3273
0.3276

l ( h R i )

r j ( h R 2 )

v{hRz)

0.8187
0.8274
0.7811

0.2796
0.4854
0.1797

0.6702
0.6847
0.6101

0.6470
0.6486
0.6461

0.1168
0.1192
0.1082

0.4186
0.4207
0.4174

0.5748
0.5762
0.5844

0.0787
0.0795
0.0799

0.3304
0.3320
0.3416

a Simulated biases, standard deviations, and average Mean Squared Error (MSE) are based on 2000
replications.
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Table 4.5: Monte Carlo results for Design 3: Bandwidth Estimation

N  = 
M ean

200
SD

N  = 
M ean

400
SD

N  -  
M ean

600
SD

p = 0 hoPt 0.6834 - 0.5747 - 0.5193 -
^■optjRl 0.7090 0.1552 0.5706 0.0672 0.5065 0.0395
Aopt;/i2 0.7070 0.1991 0.5694 0.0692 0.5061 0.0376
hopt;R3 0.6904 0.0694 0.5648 0.0311 0.5037 0.0200

hRl 0.5947 0.0213 0.5309 0.0133 0.4961 0.0100

hR2 0.6040 0.0444 0.5439 0.0264 0.5096 0.0197
hR3 0.6837 0.0245 0.6102 0.0153 0.5699 0.0115

p =  1/4 hQ pt 0.7101 - 0.5971 - 0.5396 -
^■optjRl 0.7169 0.4016 0.5797 0.1363 0.5138 0.0955
^opt;R2 0.7183 0.8889 0.5797 0.1708 0.5134 0.1141
^opt;R3 0.6937 0.1440 0.5699 0.0624 0.5085 0.0433

hm 0.5919 0.0208 0.5273 0.0134 0.4931 0.0102

hR2 0.5910 0.0451 0.5305 0.0283 0.4972 0.0212

hR3 0.6816 0.0239 0.6068 0.0154 0.5675 0.0118

a Means and standard deviations (SD) are based on 2000 replications. 
b Estim ated bandwidths: /i0pt;Ri> hopt tR2 , and Aopt ;R3 were calculated 

by setting ho = h ,R \N l ! 12, ho =  hR2 N 1/ 12, and ho =  h^AT1/ 12 in 
Section 4.3, respectively. Similarly, auxiliary bandwidths were set h* =  
A ri, h* =  Ar2) and h* =  hRs respectively.

190



Table 4.6: Monte Carlo results for Design 3: Param eter 77

B ias
N  =  200 

SD M S E B ias
N  — 400 

SD M S E B ias
N  =  600 

SD M S E
p = 0 V {hopt)

ViJ^opt^Rl)
'n{hopt,R%)

0.7943
0.7863
0.7879
0.7858

0.1692
0.2013
0.2506
0.1639

0.6310
0.6183
0.6208
0.6175

0.6539
0.6515
0.6515
0.6510

0.1008
0.1048
0.1038
0.1001

0.4276
0.4244
0.4244
0.4238

0.5891
0.5855
0.5855
0.5857

0.0756
0.0779
0.0771
0.0759

0.3470
0.3428
0.3428
0.3430

rj{hm)
r](hR2 )
lihR z)

0.8282
0.8334
0.8020

0.2195
0.2643
0.1688

0.6859
0.6946
0.6433

0.6600
0.6602
0.6612

0.1051
0.1062
0.1014

0.4357
0.4359
0.4371

0.5871
0.5902
0.6027

0.0764
0.0771
0.0778

0.3447
0.3483
0.3632

p = 1/4 V (^opt) 
^?(^opt;/tl)
'n{hopt,R2 )
^/(^opt;il3)

0.7791
0.7721
0.7758
0.7718

0.1957
0.7231
1.9588
0.2156

0.6069
0.5961
0.6019
0.5957

0.6487
0.6427
0.6431
0.6429

0.1101
0.1535
0.2037
0.1079

0.4208
0.4130
0.4136
0.4133

0.5801
0.5741
0.5745
0.5738

0.0818
0.1041
0.1269
0.0801

0.3365
0.3296
0.3301
0.3293

v(hRi)
v(hR 2 )
V{hR3)

0.8268
0.8383
0.7903

0.8472
0.8563
0.2415

0.6835
0.7027
0.6246

0.6556
0.6575
0.6526

0.1488
0.1869
0.1115

0.4298
0.4323
0.4259

0.5787
0.5810
0.5878

0.0963
0.1095
0.0815

0.3349
0.3375
0.3455

a Simulated biases, standard deviations, and average Mean Squared Error (MSE) are based on 2000
replications.
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Figure 4.1: Visualization of Design 1

  fu(u)
-  • W u W W 3 )-4 V °u<-3))

p=1/4

fVi u ( v | U = u )  W u )

a Each row represents a variation of Design 1: (a) p = 0, and (b) p =  1/4 in descending 
order.

b First column from the left shows their joint densities, f v u  (^w ). Middle column shows 
their associated conditional densities, f y \u  (v l U = u), and last column shows their 
marginal distribution, f u  (u), with respect to U, as well as th a t of a univariate truncated, 
[—3,3], normal with parameters: pu = 0, and =  6.
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Figure 4.2: Visualization of Design 2

p=0 f v i u ( v | U = u ) f u ( u )

O
CMO

O

O
CM
d

to
o

o

o

to
o
d fu(u)

8
©

-3 2 1 0 1 2 3

a Each row represents a variation of Design 2: (a) p — 0, and (b) p — 1/4 in descending 
order.

b First column from the left shows their joint densities, f v u  (v,u).  Middle column shows 
their associated conditional densities, f y \ u ( v \ U  = u), and last column shows their 
marginal distribution, f u  (u ), with respect to £/, as well as tha t of a univariate truncated, 
[—3,3], normal with parameters: p,u =  1, and a \  =  6.
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Figure 4.3: Visualization of Design 3

fvlu(v|U=u) fu(u)

a Each row represents a variation of Design 3: (a) p = 0, and (b) p = 1/4 in descending 
order.

b First column from the left shows their joint densities, f vu  {v, u). Middle column shows 
their associated conditional densities, f v \ u { v W  — u)i and last column shows their 
marginal distribution, f u  (u), with respect to U, as well as th a t of a univariate truncated, 
[—3,3], normal with parameters: pu = 2, and a \  — 6.

194



M
SE

(n
(h

)) 
M

SE
(r

i(h
))

4.C Tables & Figures

Figure 4.4: Simulated M S E  of Design 1
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a Each row represents a variation of Design 1: (a) p = 0, and (b) p = 1/4 in descending 
order.

b Simulation based on 1000 replications. Dashed gray lines represent the optimal band­
width predicted by our results in each case.
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N=200

Figure 4.5: Simulated M S E  of Design 2 
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a Each row represents a variation of Design 2: (a) p — 0 , and (b) p = 1/4 in descending 
order.

b Simulation based on 1000 replications. Dashed gray lines represent the optimal band­
width predicted by our results in each case.
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Figure 4.6: Simulated M S E  of Design 3 
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Each row represents a variation of Design 3: (a) p = 0, and (b) p = 1/4 in descending 
order.
Simulation based on 1000 replications. Dashed gray lines represent the optimal band­
width predicted by our results in each case.
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