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Chapter 1

Implied volatility and smile 

modelling

“Suppose we use the standard deviation . . .  of possible future returns on a stock 

. . .  as a measure of its volatility. Is it reasonable to take volatility as constant 

over time? I  think not.” Fischer Black (1976)

1.1 M otivation

One of the pivotal assumptions the Black-Scholes-Merton theory (Black & Scholes [1973], 

Merton [1973]) builds on is that security prices follow a geometric Brownian motion with 

constant volatility. However, the quotation above suggests that this assumption was doubt­

ful from the outset, and a large body of research shows that it is indeed inadequate (cf. 

e.g. Rubinstein [1994]). Log-returns in equity, foreign exchange and fixed-income markets 

are found to deviate heavily from normality, thus contradicting the constant-volatility 

premise, which would imply normally distributed log-returns.

The only non-observable parameter in the Black-Scholes formula is volatility. Given the 

market price of an option with a certain strike and maturity,- we can find a value of the 

volatility parameter, the so-called implied volatility, such that the corresponding Black- 

Scholes price matches the market price of the option. The implied volatility can be ob­
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tained by numerically inverting the Black-Scholes formula, and its uniqueness is guaranteed 

by the monotonicity of the Black-Scholes formula as a function of volatility. In an idealised 

Black-Scholes world, implied volatilities of options on a certain stock would be constant 

over all strikes and maturities. In reality, however, this is far from true. Real-world im­

plied volatilities normally exhibit strong dependence both on strike level and on time to 

maturity, which is in stark contrast to the original Black-Scholes assumptions.

At this point, it is legitimate to ask why a parameter that stems from the inversion of an 

obviously ’incorrect’ formula should deserve any attention at all. Lee [2002] gives a good 

answer:

“ . . .  it is helpful to regard the Black-Scholes implied volatility as a language 

in which to express an option price. Use o f this language does not entail any 

belief that volatility is actually constant. A  relevant analogy is the quotation of 

a discount bond price by giving its yield to maturity, which is the interest rate 

such that the observed bond price is recovered by the usual constant interest 

rate bond pricing formula. In no way does the use or study of bond yields entail 

a belief that interest rates are actually constant. As Y T M  is just an alternative 

way o f expressing a bond price, so is implied volatility just an alternative way 

of expressing an option price. The language of implied volatility is, moreover, 

a useful alternative to raw prices. It gives a metric by which option prices can 

be compared across different strikes, maturities, underlyings, and observation 

times; and by which market prices can be compared to assessments o f fair 

value. It is a standard in industry, to the extent that traders quote option 

prices in VoT points, and exchanges update impUed volatihty indices in real 

time.”

The challenge now is to specify models that are able to explain real-world implied volatility 

structures (IVSs for short).
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1.2 Approaches to sm ile-m odelling

Many different approaches have been proposed to better approximate real-world dynamics 

of asset prices and explain volatility smiles. In this section, we present a brief and casual 

overview of what we deem the most important ones and outline their main advantages 

and disadvantages.

We consider a frictionless financial market with a riskless bank account and a risky asset, 

and we assume that the price process (B t) of the riskless bank account is described by 

(ert) (i.e. the bank account continuously accrues interest at a rate r  > 0). We further 

posit that the price process of the risky asset (St) is described by

dSt =  rStdt +  aSt dWt

under a risk-neutral measure Q. Then the price at time t  of a European call option with 

strike K  and maturity T  is given by the Black-Scholes formula

CBS(St,K,t,T,r,a) = StN(ch) -  e-<T-^KN(d2),

with

ln(St/ g )  + (r + <r2/2 )(r -t)
1 o y /T = t

and

d2 =  d\ — a \/T  — t.

Now the concept of implied volatility can be formalised as follows:

Definition 1.1. Denote the market price at time t of a European call option with strike 

K  and maturity T  by C (t,T ,K ). Then its Black-Scholes implied volatility is given by 

the unique positive solution atrnp(S t,K ,t,T ,r )  of the equation

^ ( S t ' K X T ^ c r ^ S u K ' W r ) )  = C(t,T,K).

For atmp(S t ,K ,t ,T ,r ) , we use the shorthand notation
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The function t^ tmp(T ,K )  represents the implied volatility surface at time t.

A natural question arising at this point is whether one can specify alternative models 

that are able to reproduce or at least approximate real-world implied volatility patterns. 

Every alternative model implicitly gives rise to an implied volatility surface that can be 

obtained by calculating the model-specific call-prices C(t, T, K ) and then backing out the 

Black-Scholes implied volatilities. By comparing the shapes of model-implied volatility 

surfaces with volatility surfaces one typically encounters in the market, one has a natural 

criterion to assess the quality of a model.

1.2.1 S toch astic  v o la tility  m od els

A topic that has been subject of intensive research are stochastic volatility models. In 

this model class, (a function of) the volatility parameter is assumed to follow a stochastic 

process. More formally expressed, we assume that our asset-price process, considered 

under a risk neutral measure Q, is governed by the following system of SDEs:

dSt = rS t dt +  'y(vt)St dW j,

dvt = a (t , St , vt) dt +  (3{t, St , vt) dW%,

where (W /) and (Wt2) are two Brownian motions with correlation p E [—1,1]. Under 

suitable regularity conditions, it can be shown that a unique solutions exists for the above 

system of stochastic differential equations. Here, we find ourselves in an incomplete market 

setting, since (vt) is not assumed to be a traded asset. Probably the most popular 

parameterisations in the above general framework are the Hull & White [1987] model 

given by

dSt = rS td t + VVtSt dWt\  

dvt =  cttvt dt + £vt dW.:f ,

and the Heston [1993] model defined by

dSt = rSt dt +  VvtSt dW}, 

dvt = (at -  KVt) dt + iy /v td W f.
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Calibrating a stochastic volatility model to a typically steep short-dated implied volatility 

curve results in unrealistically high parameters for correlation p and volatility of volatility 

£. To compensate for this, calibration to a longer-dated smile requires choosing a large 

mean-reversion parameter k. This suggests that stochastic volatility models are mis- 

specified, and in particular that steep short-term implied volatility curves are not only 

due to stochastic volatility, but other factors, such as jumps in the asset price.

1.2.2 M od els w ith  ju m ps in  th e  asset price

Incorporating jumps in the asset price process can add a certain degree of realism, because 

real-world asset price evolutions are far from continuous, in contrast to what diffusion- 

models postulate. Merton [1976] was the first to introduce jumps in the asset price by 

positing a jump-diffusion process of the form

N t
St = So exp {(r -  o2/2)t +  crWt j  J J  Jn,

71=1

where (Nt) is a Poisson process and the jumps Jn are lognormal, iid and independent of 

(N t) . As there is a continuum of possible jump sizes in this model, we face an incomplete 

market situation. Implied smile surfaces generated by the Merton model can fit steep 

smiles for shorter maturities (often encountered in reality) quite well, but they typically 

flatten out too quickly for longer maturities, thereby making it problematic to generate 

sufficient skewness to reproduce market smiles. Kou [2002] proposes a jump-diffusion 

model of the above form where the log-jump-sizes log(Jn) have an asymmetric double 

exponential distribution. Kou’s model enhances the fit to empirical return data, and -  

unlike Merton’s model -  produces analytical pricing formulae for a range of exotic options.

Bates [1996] generalises Heston’s model by adding a jump component to the asset price:

Nt

dSt = rSt dt +  dW.,} +  Std ^(J„ -  1),
71=1

dvt — (ctt — KVt) dt +  fiy/v~t dW?.

This formulation combines the advantages of stochastic-volatility and jump-diffusion mod­

els in so far as it is flexible enough to generate both steep skews on the short end and
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moderate skews on the long end, which allows good fits to most real-world implied volatil­

ity surfaces.

Recently, exponential Levy models have become quite popular (see e.g. Madan et al. [1998] 

for the Variance Gamma model and Carr et al [2003] for a generalisation, Barndorff- 

Nielsen [1998] for the Normal Inverse Gaussian model, Prause [1999] for the Generalised 

Hyperbolic model, etc.). They incorporate jumps in the asset price and thereby -  quite 

naturally -  generate steep implied volatility structures at the short end. However, if 

calibrated to short maturity smiles or skews, volatility surfaces typically flatten out too 

quickly. If calibrated to moderate smiles or skews at longer maturities, the models produce 

implied volatility surfaces that are often too steep at the short end. This problem can be 

alleviated by using additive processes, that do not -  in contrast to standard Levy processes 

-  feature stationary increments. Needless to say that Levy models lead to incomplete 

markets.

1.2 .3  L ocal v o la tility  m od els

Probably the most natural extension of the original Black-Scholes framework is due to 

Dupire [1994] and Derman Sz Kani [1994]. They introduce deterministic volatility func­

tions that can be both time- and state-dependent, which leads to risk-neutral asset-price 

dynamics of the form

dSt — rS t dt +  a(t, St)St dWt ,

with a local volatility function cr(-, •) : R+ x R+ i—> R+ that is sufficiently regular. As 

opposed to stochastic volatility- and jump-models, local volatility models are complete. 

Moreover, local volatility models can be calibrated to exactly match implied volatility sur­

faces (provided these give rise to arbitrage-free option prices), whereas stochastic volatility 

or jump models usually cannot match all prices. As a consequence, the main purpose of a 

(calibrated) local volatility model is not the pricing of vanilla options or the identification 

of possible mispricings in the vanilla market; prices of standard options axe regarded as 

inputs to the model. Rather, a calibrated local volatility model will typically be used to 

price exotics in line with vanilla options, i.e. local volatility models are mostly used as
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relative pricing tools. The main problems associated with this model class is the deter­

mination of a suitable local volatility function, namely one that matches observed prices 

while being sufficiently realistic and regular, and the fact that local volatility models often 

predict future implied volatility smiles that are much flatter than current ones. Derman

[2003] calls this “... an uncomfortable and unrealistic forecast that contradicts the om­

nipresent nature of the skew.” We defer a more technical treatment of this issue and local 

volatility models in general to the following chapters.

1 .2 .4  O ther approaches

Recently, so-called universal volatility models have been proposed that combine all the 

above features (stochastic volatility, jumps, local volatility) and allow even for a jump 

component in the volatility process. Of course, this class of models is the most realistic, 

but this is paid for by a large number of parameters, most of which cannot be directly 

observed and estimated, associated with the problem of unstable parameter estimates 

that can lead to unstable hedging strategies when the model is recalibrated. Again, these 

models lead to highly incomplete markets, which raises hedging issues.

1.3 Sm ile-m odelling in the context of LIBOR market mod­

els

Not only can volatility smiles be observed in equity or foreign exchange markets, but also, 

as documented e.g. by Jarrow et al. [2003], in interest rate markets. These authors also 

find that smiles have become more pronounced after September 11, 2001, and that the 

standard LIBOR market model (LMM for short) -  incapable of incorporating smiles -  

gives rise to large pricing errors and performs poorly after that date.

In recent years, the standard LMM has been extended in a variety of ways. For example, 

Andersen & Andreasen [2000] developed a constant elasticity of variance LMM, which falls 

into the local volatility category, Andersen Sz Brotherton-Ratcliffe [2001] and Rebonato

[2004] introduced stochastic-volatility LMMs and Glasserman Sz Kou [2003] formulated a
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jump-diffusion LMM. However, as Jarrow et al. [2003] find, the existing LMMs are not 

able to fully capture the volatility smiles observed in real-world markets. This observation 

motivates one of the main objectives of this dissertation: to develop fully smile-consistent 

LMMs.

1.4 Outline

The remainder of the dissertation is organised as follows. Chapter 2 is devoted to the 

study of local volatility models. We shall first derive the meanwhile classical results of 

Dupire, before extending them to forward options. Then, we will use our insights to 

develop an approximate analytical solution to the single smile problem, and numerically 

test the approximations we propose. Chapter 3 is dedicated to the development of the 

theory of what we term generalised extended LMMs, which generalise the class of extended 

LMMs introduced by Andersen & Andreasen [2000]. We shall argue that this new class 

can be calibrated to any discrete set of caplet-smiles (e.g. by using the methods presented 

in Chapter 2), and subsequently develop and test price-approximations for caplets and 

swaptions. Chapter 4 introduces Levy-driven LMMs. We will give a novel derivation of 

the relations between the various forward measures, and derive the LIBOR dynamics under 

the terminal measure. Subsequently, we will propose an approximate Levy-driven LMM 

by introducing certain simplifying assumptions. Then, issues concerning implementation 

will be discussed, and the approximate model is subject to numerical testing. Finally, 

we shall contrast the smile dynamics induced by generalised extended LMMs with those 

induced by Levy-driven LMMs. Chapter 5 summarises our findings and concludes.



Chapter 2

Local volatility functions and 

Dupire’s formula

Probably the most demanding task when using and implementing a local volatility model is 

determining the local volatility function. The principal problem is that one has just a finite 

set of options that serve as calibration instruments (namely those that are traded in the 

market and thus have an observable price), which apparently is not sufficient to uniquely 

determine a time- and level-dependent local volatility function cr(t, S) that reproduces 

these prices. Typically, optimisation methods are applied to such under-determined (also 

called ill-posed) problems: Among the class of local volatility functions, the one that 

solves an optimisation problem for a specific objective function (and possibly satisfies 

some additional criteria) is chosen.

There is a considerable literature devoted to this issue, and different ways to tackle this 

problem have been proposed. Early approaches by Derman &; Kani [1994] and Rubinstein 

[1994] suggest algorithms for constructing binomial or trinomial trees that are consistent 

with observed option prices, where consistency is attained by exploiting the degrees of 

freedom implicit in the construction of the trees. The local volatility function is then 

implicit in the option-price consistent trees. These methods are notorious for their in­

stability in the presence of pronounced smiles and/or high interest rates. In these cases, 

the algorithms can lead to negative branching probabilities and failure to reproduce input
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prices (cf. Barle k  Cakici [1995] and Li [2001], who also propose enhancements). Another 

point of criticism is that these algorithms only recover the local volatility function at a 

discrete set of points (the tree-nodes), which only covers a triangular region of the whole 

(t , S) domain. Avellaneda et al [1997] suggest a relative-entropy minimisation method 

that uses a subjectively specified prior local volatility function to construct a time- and 

level-dependent representation of a(-, •). This method is known to lead to local volatility 

functions with sharp peaks and troughs. Apart from the fact that such a behaviour of 

local volatility is not overly realistic, one is likely to encounter numerical problems and 

instabilities when using it for pricing purposes. Lagnado k  Osher [1997] present a regular- 

isation method to find a smooth function cr(-, •) that minimises a function of the gradient 

of the local volatility function and the difference between theoretical prices and market 

prices. Shortcomings of this method, as pointed out by Jackson et al [1999], are the high 

computational cost and the fact that it only generates a discrete representation of the local 

volatility function described by a relatively small array of nodes, which may be insufficient 

when pricing exotics. Jackson et al [1999] represent cr(-, •) by a space-time-spline that 

is determined by a numerical strategy that approximately minimises a functional of the 

difference between theoretical prices (that are determined by a(-, •)) and known market 

vanilla prices over a range of strikes and maturities. An overview of further optimisation 

methods in this context can be found in Bouchouev k  Isakov [1999].

A common feature of the above approaches is that they just assume the existence of a 

finite number of vanilla options that serve as calibration instruments. In his acclaimed 

articles (Dupire [1994] and Dupire [1997]), Dupire takes a different road (see also Derman 

k  Kani [1998] for a more technical treatment). Under the assumptions that European 

calls of all strikes and maturities have observable prices and that the stock price follows a 

diffusion, he is able to show that the local volatility function is uniquely determined. Only 

recently, Klebaner (cf. Klebaner [2002] and Klebaner [2003]) extended Dupire’s insights 

to the case when the stock price process is a continuous semimartingale.

The remainder of this chapter is organised as follows. First, we will provide a formal 

derivation of Dupire’s results, originally stated for options on spot prices. Subsequently, we 

will extend Dupire’s insights to options on forward prices. Then, we shall derive a formula
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that explicitly links local and implied volatilities for forward options. This sets the stage 

for tackling the so-called single smile problem. We will derive analytical approximations 

for the aforementioned problem, and subject these to extensive testing. Sections on issues 

arising in the practical application of local volatility models and a summary of our results 

conclude.

2.1 D upire’s formula for spot options

Our formal setup is a stochastic basis =  (-Ft)o<t<T>P)- The stochastic basis is

assumed to satisfy the usual conditions, i.e. !Fq contains all P-null sets of T , and F is 

right-continuous. We further assume that (Wt)o<t<T is a Brownian motion with respect 

to F. The frictionless financial market under consideration has a finite trading horizon r  

and consists of a riskless bank account B  with price process (B t) = ^exp  ̂ rs ds'j ̂  , 

where (rt)o<t<T is a deterministic interest rate process, and a risky asset S  with spot 

price process (St)o<t<T which we assume to follow a one-factor diffusion-process of the 

form

dSt =  (rt -  Qt)St dt -I- cr(t, St)St dWt (2.1)

under the P - equivalent martingale measure Q. Here, (qt)o<t<T is the deterministic 

process of the dividend payout rate, and a : [0, r] x R+ i—> R+ is always assumed to be 

sufficiently regular to guarantee the existence of a unique solution of (2.1).

Theorem 2.1 (Dupire). Assume that the t -market prices C ( t ,T ,K ) of European call 

options for all (T , K) E [t, r] x R+ are known and arbitrage-free, and that the derivatives 

d C (t,T ,K )/d T  and d2C (t,T ,K )/d K 2 exist for all (T ,K ) E [ t ,r ]x R + . Further assume 

that the local volatility function a : [£, r] x M+ R+ defined by

a (T ,K ) =

\
+ C (t,T ,K ) + K (rT - q T) ? ^ i j £ ^

K , eP C (t,T K )  
d K 5

is well-defined for all (T, K ) E [t,r\ x R+. Then a is the unique market-consistent local 

volatility function in the sense that it reproduces the given market prices:

C(t, T, K ) = exp ( -  /  rs ds)  Eq [(Sr  -  K)+ \ T t] .
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In the proof, we need the forward Kolmogorov equation (also called Fokker-Planck equa­

tion), compare e.g. Shreve [2004], p.291, 0ksendal [2000], p.159, or Esser h  Schlag [2001]:

Theorem 2.2. The transition density p (t, x; T, y) from state x at time t to state y at 

time T  of a diffusion (Xs)s>o defined by dX s — p(s, X 3) ds +  cr(s, X s) dWs satisfies the 

forward Kolmogorov or Fokker-Planck equation

dp(t, x\ T, y) d [p(T, y)p{t, x\ T, y)] =  I d2 [cr2(T,y)p(t,x-,T,y)\ 
dT dy 2 dy2

for fixed (t, x) 6 R+ x R. The boundary condition is given by

p{t, x\ t, y) = 5{x — y ) , 

where 8 is the Dirac delta-function.

Proof o f Theorem 2.1: We obtain the arbitrage-free t -price V (t,S t]T ,K )  of a Euro­

pean call option with strike K  and maturity T  by means of the risk-neutral valuation 

formula:

V(t, S t ; T, K ) =  exp ( -  J *  rs ds) Eq [(St  -  K )+ \ T t]

= exp rs ds) Eq [(ST -  K )+ | S'*]

=  exp jT t s i£)p(i^ T*j j dS. (2.3)

Here, we denoted the transition density of (St) by p and used that (St) is a diffusion- 

process and as such Markovian, exp rs ds'j p(t, x \T , y) is called the state-price

density. Differentiating (2.3) twice with respect to K  gives

p(t, Sf, T, K ) = exp ( j T  rs d ^ j K ) . (2.4)

Formula (2.4) is originally due to Breeden &; Litzenberger [1978]. By the forward Kol­

mogorov equation, the transition density p satisfies the PDE

d p (t,S f,T ,K ) d[(rT - q T)K p (t,S f,T ,K )\ 
dT dK

= l d 2 [o2(T ,K )K 2p (t,S f,T ,K )\
2 d K 2 (2.5)
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for T  E (t,r], K  > 0 and fixed (t ,S t). The boundary condition is given by

p(t, S; t,u ) = S(S — u), (2.6)

where 5 is the Dirac delta-function.

We will now use representation (2.4) to express the three terms in the Fokker-Planck 

equation (2.5) through V, thereby eliminating p. Doing so for the first term gives

d p (t,S f,T ,K )
dT

d_
dT exP I I r*d s i  -------

d V (t,S f,T ,K )
or

=  exp ( I r * ds)or dT
+ rTV (t,St',T , K)

The second term yields

d[(rT -q T )K p (t,S f,T ,K )]
dK

= (rr-flr)g£

=  (rT ~ qr) exp

K „ p  I / % . * '>  ^ n t . S r . T . K )or
C M  £ K

d2K

d2V (t,S f,T ,K )
d2K

Finally, the third term takes the form

ld * [ a 2(T ,K )K 2p (t,S f,T ,K j\

1 a2
2 d K 2

d K 2

d2K

= 12 e XP( i
T r ds] —  

s O K 2
a \ T , K ) K ^ V ^ T ^

d2K

Inserting (2.7), (2.8) and (2.9) into the Fokker-Planck equation (2.5) leads to

'd V ( t,S f,T ,K )I /  T  A  ^  ^exp ( I rs ds
d K 2 dT

+ (rr -  Qt) exp ( I rs ds ̂ dK
K

+  rTV (t,S t ;T, K )

d2V(t, St -,T, K )
d2K

= 12 e X P ( l
T A ^ ^r„ ds d K 2

A T , K ) K ^ V ^ T ^
SPK

(2.7)

(2.8)

(2.9)
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which reduces to

d 2

d K 2

dV ( t ,S t;T ,K )
dT

+ rTV ( t ,S t; T ,K ) + (r r  — qr)
_d_
dK

K
d2 V(t, S t’,T, K)

d2K

1 d2

2 d K 2
’ 2 ,t  r n T C 2 d 2 V(.t,St ;T ,K ) (2 .10)

Boundary condition (2.6) can be alternatively expressed as

d2 V {t,S ] t ,K )
d2K

= S(S — K). (2 .11)

We now integrate (2.10) with respect to K to obtain

d
d K

dV (t ,S t -,T,K)
dT

+ rTV(t, S t;T ,K )

1 _d_
2 dK

S (T , K ) K ^ V ^ T ’V
d2K

+ (rr — 1t ) K

+  j4(T)

d2 V (t ,S f ,T ,K )
d2K

(2.12)

with an integration-constant A(T). Integration of the boundary condition (2.11) produces

d V ( t ,S \ t ,K )
dK

=  H (S  — K). (2.13)

where H  denotes the Heaviside-function. Integrating (2.12) and (2.13) again with respect 

to K  finally yields

dT dK
,a2F ( i ,5 (;T ,ff)

=  -<t2(T, K ) K 2 ~ ' + A (T )K  + B{T) (2.14)

with an integration-constant B (T ) and boundary condition

V ( t , S; t, K) = max(5 -  K, 0). (2.15)

Following Dupire [1994], we assume that all terms involving V  and its derivatives approach 

zero when K  goes to infinity. Under this assumption, A{T) and B(T)  must be zero, 

and we get

»; r, X) + m , ,  S,;T, X)
dT dK

d2K
(2.16)
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Substituting C (t,T ,K )  for V{t, St’, T, K)  in the forward-PDE (2.14) and the boundary 

condition (2.15) while assuming that all terms that involve C  and its derivatives approach 

zero when K  goes to infinity, we get

(2.17)

with boundary condition

C(t, t, K ) = max(<S't — K, 0).

□
Note that equation (2.16) is of a slightly different flavour from equation (2.17). While 

(2.16) relates our theoretical (model) prices V  to a local volatility function a (which -  ab­

stracting from our problem of determining a local volatility function -  could also be taken 

as given), PDE (2.17) relates observed market prices to an unknown local volatility func­

tion cr. By solving (2.17) for cr(T,K) , we can therefore back out the market-consistent 

local volatility function, which is of the form (2.2).

In this context, it is important to mention that the ’real-world process’ that generates the 

market prices C(t, T, K)  need not necessarily be a diffusion. It could as well be a jump- 

diffusion, a stochastic volatility process, a Levy process etc., or need not even be known. 

As long as the conditions of the theorem are met, it is possible to reproduce the observed 

prices with a diffusion-model, no matter what the real-world process is. However, it is not 

possible to reproduce any set of arbitrage-free option prices with this approach, because, 

as Dupire put it, “diffusions cannot generate everything” }

Before proceeding, some further remarks are in order. In the course of the proof, we 

derived a forward PDE for the t -price V(t, S t’, T, K )  of a European call option (that also 

holds for a European put) in the forward variables K  and T, which we restate (in slightly

1For a simple counterexample, see Dupire [1993].
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different notation) for the convenience of the reader:2

VT (t, S; T, K) + qTV{t, S\ T, K ) + (rT -  qT)KVK(t, S; T, K)

=  <̂7 2 (T ,K )K 2 VKK (t,S ;T ,K ) .  (2.18)

Here, S  and t are fixed. The corresponding boundary condition for the call is V (t,S ', t ,K )  

= max(S  — K, 0), and V (t , <S'; t, K)  =  max(iir — S, 0) for the put. Note that the derivation 

of (2.18) hinges on the fact that the risk-neutral density-function can be expressed as the 

second derivative of European call or put prices with respect to the strike, and that the 

boundary condition is a direct consequence thereof. This not the case for other types of 

options, which implies that the forward PDE holds only for European vanilla options.

In contrast, the fundamental Black-Scholes PDE for the t  -price V (t , S , T, K )  for Euro­

pean options with strike K  maturing in T  is of the form

rTV(t,S-,T ,K)

= Vt (t, S; T, K ) + (TT -  qr)SVs(t, S; T, K) + |c r2(t, S )S 2 Vss(t, S; T, K),  (2.19)

and has to be solved under the boundary condition V ( T ,S ; T, K ) =  max(5 — K, 0) for 

calls and V(T, S'; T, K) = max(jK — S, 0) for puts. The Black-Scholes PDE is a backward 

PDE in the so-called backward variables S  and t , while K  and T  are fixed. A solution 

V  of (2.19) is therefore a function that maps a pair (t, S ) to the price of a European call 

with fixed strike K  and fixed maturity T. As opposed to the forward PDE, the backward 

PDE can be solved under arbitrary boundary conditions (i.e. for arbitrary payoffs in T ) 

to yield the arbitrage-free price of the European contingent claim under consideration, and 

is therefore more flexible.3 However, the use of the forward PDE renders the simultaneous 

valuation of a whole range of options with different strikes and maturities possible, which is 

an enormous computational advantage. So, apart from its usefulness when inferring local 

volatilities from option prices, the forward PDE is also a handy tool for the numerical 

solution of pricing problems, e.g. through finite-difference methods,

derivatives of V  are denoted by subscripts.
3 Depending on the type of European claim, it might be appropriate to drop the K  in the notation of 

(2.19).
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2.2 Dupire’s formula for forward options

The To -forward price of a non-dividend paying stock4 at time t is

F(t,T0) = e ^ ° r-dsSt.

Assuming that the spot price (St) follows the SDE

dSt = rtSt dt + (j(t,St)StdWt

under the martingale measure Q, we can apply Ito’s formula to get

dF(t, T0) =  - r te£° r' * St dt + e$ ° r* *  dSt

= - n e £ °  r‘ dsSt dt +  rte£ ° r* *  St dt + c(t, St)e^ ° r* dWt

= <7(t,St)e^°r' dsSt dWt 

= a(t,St)F(t,T0)dWt 

=  <r (t, e" J'«To r* * F ( t , To)) F(t, To) dWt

= aF(t, F(t, T0))F(t, T0) dWt (2.20)

with

<7 F(t, x) = a (t, xe~ ° Ta ds>j  .

This shows that the To-forward price (F(t,To)) follows a Q-martingale.

Since T(To,To) =  S t0-> it is obvious that the t -price of a European vanilla option with 

maturity To on the To -forward price (F(t, To)) must equal the t -price of the correspond­

ing option on (St). In case the volatility function is constant,5 there exists a closed-form 

representation for the price of a European option on a forward price (or shorter a forward 

option), which is known as Black’s formula (cf. Black [1976]).6 Denoting the t -price of 

the forward option by CBlack, we have7

CBlack(F(t,T0),K,t,T0, (r.),<7) =  e~ r‘ds(F(t,T0)N(d1) -  KN{d2)),

4 The extension to stocks paying dividends at a deterministic rate is straightforward and will not be

considered here.
5This holds also if it is deterministic and only time-dependent.
6The derivation follows standard arguments and is therefore omitted.
7Here, we only need to consider the case where option maturity and To agree.



Chapter 2. Local volatility functions and Dupire’s formula 29

with
J Iog(F(t, T0)/K)  +  <72/2 (T o  -  t)
1 a y /T ^ T i

and

d<2 — d\ — a y/To — t.

Observe that in contrast to the Black-Scholes formula, the interest rates (rs) do not enter 

the di terms.

We can use this observation to relate Black-Scholes implied volatilities observed for Euro­

pean options on (St) to Black implied volatilities for the corresponding forward options:

C(t,To,K)

=  CBS(St , K, t, To, (rs) , tcrimp(To, K))  

= CBlack(F(t,T0),K, t, To, (r,), &*"*'*’(T0, K)) 

= CF(t,T0,K),

where CF(t,To,K ) is the t -price of a European option on (F(t, To)) with maturity 

To and strike K, tcrzmp(To, K )  its Black-Scholes implied volatility, and t^ imp,F(To,K) 

its Black implied volatility, both observed at time t. This leads us to conclude that 

given t&irnp(To, K)  (or the corresponding option prices), we can (numerically) compute 

tcrlTnp’F(To, K)  and vice versa.

We now establish Dupire’s theorem for forward prices.

Theorem 2.3. Assume that the t-market prices CF( t ,T ,K ) of European call options 

on a forward price (F(t,To)) are known for all (T ,K)  G [t,To] x R+ and arbitrage-free, 

and that the derivatives dCF( t ,T ,K ) /d T  and d 2 CF(t,T, K ) / d K 2 exist for all (T ,K )  G 

x R+. Further assume that the local volatility function aF : [i, To] x R_|_ R+ 

defined by

dCF(k f ' K ) + rTCF (t, T, K )oT
K 9 & C F( t ,T ,K )

a (T, K) =

\ dl

is well-defined for all (T , K ) G [t, To] x R+. Then crF is the unique market-consistent

2      (2 .21)
r \2 /~ lF  m  t s - \  V J

d K 1'
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local volatility function in the sense that it reproduces the given market prices:

CF(t, T, K )  =  exp ( -  j f  r s ds)  E q  [(F(T, T0) -  K)+\ Ft] ■

Proof: The proof follows the same logic as that of Dupire’s theorem for spot options and 

will thus only be sketched. The arbitrage-free t -price V F(t, F ( t , To); T, K)  of a European 

call option on F(t, To) with strike K  and maturity T  is

V F{t, F(t, To); T, K)

»T
exp  ( -  r ,  ds j  E q  [(F(T, T0) -  K)+ \ Ft]

I  r ‘ ds)  L
\ F - K ) p F(t,F (t ,T 0 )-,T,F)dF ,=  exp (2 .22)

where the risk-neutral transition density of (F(t,To)) is denoted by pF. Differentiating

(2.22) twice with respect to K  gives

p (t, F(t, Tq)’,T ,K )  = exp / rs ds
a ;

\  d2VF(t,F(t,T0y,T,K)
(2.23)/  d2K

By (2.20) and the Fokker-Planck equation, the transition density pF satisfies the PDE 

dpF(t,F(t,T0y,T,K) _  1 a2 [<tf (T, K)2K 2pF(t, F(t, To); T, K )]
Sfl 2 d K 2

for T  € (t,To], K  > 0 and fixed (£, F(t, To)). The boundary condition is given by

pF(t, F; t , u) = 8 (F — u).

(2.24)

(2.25)

Using representation (2.23) to express the two terms in the Fokker-Planck equation (2.24) 

through V F and simplifying leads to

d2 dVF(t,F(t,T0);T,K)
dK2 

1 d2

dT

2 d K 2
a (T, K y K

+ rTV F(t,F (t ,T 0 );T ,K )

2„ 2d2VF(t,F(t,T0y,T,K)
d2K (2.26)

Boundary condition (2.25) can be alternatively expressed as

d2 V F(t ,F ; t ,K )
d2K = 8 (F -  K). (2.27)
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Integrating (2.26) and (2.27) twice with respect to K  yields

+ rTV F(t,F (t,T 0 y ,T ,K )dV F(t,F (t,T 0 );T ,K )  , __JrFl
dT

= ^ a F(T ,K ) 2 K 2d2VF('t ’F̂ ' ^ ' T ' K  ̂ +  A (T )K  +  B(T), (2.28)

with integration-constants A (T ) and B(T)  and boundary condition

V F(t,F-,t,K) = m a x (F ~ K ,0 ) .  (2.29)

Substituting CF(t,T ,K )  for V F(t, F(t,To)]T, K )  in the forward-PDE (2.28) and the 

boundary condition (2.29) while assuming that all terms that appear in (2.28) and involve 

CF and its derivatives approach zero when K  goes to infinity, we get

dCF(t ,T ,K )  F 1 ,  2 2 d 2 CF(t,T ,K )
 ^  + r TC (t ,T ,K )  =  —<7 (T ,K ) K  ------^ ------

with boundary condition

CF(t, K , t) = max(F(t,T0) -  K, 0).

□
Formula (2.21) is the basis for the next section.

2.3 Linking implied and local volatilities

In the preceding section, we proved a formula that relates option prices to the correspond­

ing local volatility function. However, in real-world options markets, options are mostly 

quoted in terms of their implied volatilities. Thus, when trying to back out the market- 

consistent local volatility function from market observables, it is convenient to have a 

formula at hand that directly links implied volatilities (rather than option prices) to local 

volatilities. In this section, we will establish such a formula for options on forward prices. 

For a corresponding result for spot options, compare Andersen &; Brotherton-Ratcliffe 

[1998], Dempster &; Richards [2000] or Gatheral [2003].
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Theorem  2.4. Let t&tmp'F{T,K)  > 0 be the arbitrage-free implied volatility surface8  

observed at time t with (T ,K ) G [t,To] x R+. Then, for fixed F  = F(t,To) and fixed t, 

the market-consistent local volatility function aF(T ,K ) is given by

fjF(T TO? -  2 s l {T,K) + ( T ~ t ) s 2 {T,K)
(± ' K ) s3 (T ,K ) + ( T - t ) Si( T , K ) - { T - t y s s ( T ,K ) ’

with

Si (T, K ) = 2ttjimp,F(T, K ) \  

s 2( T , K )  =  

s3 (T, K )  =  4 [taimp’F(T, K ) + K  log(F/K)ta™p'F(T, K )]*, 

s 4(T , K ) = i K taimp'F(T, K f  la )? P-F(T, K ) + K t<T^’F(Tt K)  

s 5{ t , k )  =  F V imp’F ( r , F ) V * !’’F Cr >-fQ 2-

where subscripts denote partial derivatives, which we assume to exist.

Proof: By equation (2.21) 

aF( T , K f  

=  2
n CF(t ,T ,K )  + rTCF(t ,T ,K )

=  2

=  2 -

K*Cf,K{t,T ,K )

St r,ia (FN{d\ ) -  KNifo))] + r T e~  £  T- *  (FN(di) -  KN(<h)) 

K 2~ ^ l  [e~ £ r ‘ d 3  (FN(di) -  K N (d 2))] 

e - t f r . d s ^  -  K N {d2)}

e- f ,Tr,dsK 2 ^  [FN(d!) -  K N (d 2)] 

„ ^ I F N j d J - K N j c k ) ]  

K ^ ^ 2 [FN(d1 ) - K N ( d 2)}' 

with di = di (F, K, t, T, ta tmp'F(T, K ) ) . We introduce the notation 

CF(t ,T ,K )  = CBlack (F ,K , t ,T , taimp'F(T ,K)) = FN(di) —K N (d 2)

8By an arbitrage-free implied volatility surface, we mean one whose associated set of option-prices is 

free of arbitrage.
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for the undiscounted option price, and we omit the arguments and the index t  when no 

confusion may arise. After some standard algebraic manipulations, we get the following 

relations (as usual, subscripts denote partial derivatives):

K  W  5

2 _
+  ° K

r iF  _  riB lack  , n im p ,F B la c k ,  , (  im p ,F \1 ^ B la ck  , im p,F  Black 
^ K K  ~  t ' K K  +  Z a K  U a K  +  y * K  )  +  a K K  »

+ a p p’FCl

r FU K
sy Black 

~  U K

r iF^ K K
syBlack 

~  u K K

c f

RiBlack

syBlack-- Kjrp

=  < t> {d i)f

fyB lack  
^crcr

_QiBlack

sy Black 
U a K

_ RiBlack

fiB lack
U K K

_ Q B lack

syBlackKyrj, _Q B lack

(  dl F -  V T ^ t ) ,y a im p,F  v I ’

di
K y/T  -  t a im P’F  ’

1
K 2 ( T -  t)aim^ F '
fjim p,F

2{T - 1 ) ’

where (f> denotes the density function of the standard normal distribution. It follows that

Amp,F/  „ im p ,F  \
r iF    riB lack  (  , ~ im p,F  \
C t ~ c ° \ W = t )  T )

4(T -  t )  ( a im P>F ) s

Moreover, we get

fiB la ck
(«i (T ,K ) + { T - t ) s 2 (T ,K )) .

CFK K

_  FiBlack ( ____ \_______ i____ 2d\(JK P____ /  d\ I _  A (  im p ,F \ 2 , im p,F
a y a imp ,F K2 T a imP’FK y / T  -  t  1 /  \  K  )  K K

syBlack  r 0
= --------- ^2 s 4 (aimp'F) + 8 K\og(F/K)tTimp'F<jfp

4(T -  t )K 2 {a™v,Ff  L v ’ K

+ 4(T -  t )K  (a i m p 'F ) 3  a ^ p + 4K 2  (\o g (F /K ) f  (a  

- ( T  -  t)2 K 2 (<Timp'F) i  2 + 4(T -  t )K 2 (aimp'Ff  a\

riB lack
[s3 (T ,K ) + ( T - t ) s 4 ( T , K ) - ( T - t ) 2 s5 (T ,K ) \ .  (2.31)

im p
K K

4(T -  t )K 2 (crimP’F ) 3
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Summing up,

_Fr r  p- \ 2  « C $ (t,T ,K ) s 1 (T ,K) + ( T - t ) s 2 (T ,K )
’ & C FK (t,T ,K ) s3 (T ,K ) + ( T - t ) Si( T , K ) - ( T - t ) ^ ( T , K y

We still have to make sure that the term on the right-hand side is non-negative. Since 

we assumed that the given implied volatility function is positive and arbitrage-free, we 

can conclude by standard no-arbitrage arguments that CF(t, T , K)  is monotonically non­

decreasing in T  and strictly convex in K , which completes the proof. □

In case t&tmp,F(T, K )  is constant in K  and T, i.e. tatmp,F(T, K) = ao, formula (2.30) 

reduces to crF(T ,K ) 2 = ctq, which is exactly what one would expect. If t ^ imp,F (T, K )  

is purely time-dependent, i.e. t0 imp,F(T ,K) = tG%rnp’F{T), (2.30) implies aF(T ) 2 = 

ta imp’F(T)2 +  2(T -  t)ta 'mp'F(T)taiy>p'F(T). Hence,

f  aF( T f  dT =  — - [  ta,mp'F(T)2 +  2(T - (T)t(r l̂p’F(T) dT 
l o  ~  * J t  J-0 — t  Jt

= [ °  § r  [(T -  t v ^ c r ) 2] dT

=  t<Timp'F(T0) \  

and we recover a well-known result.

A by-product of our above analysis is the following corollary that links implied volatilities 

to state-price densities and transition probabilities.

C orollary  2.1. Assume the conditions of the above theorem hold true. Then

(i) the market-implied state-price density function <j>F(t ,T ,K )  at time t is given by 

<t>F(t ,T ,K )

B lack

= W  [Si{T’K )  + [ T - t )S i {T ’ K ) - { T ~  <)2S5(T’K)]  ■ (2'32)
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(ii) the market-implied transition density pF( t ,F \T ,K )  of the forward price process is 

given by

pF(t ,F ;T ,K )

Q B la c k
a

4(T -  t )K 2  (aimP-Ff
[s3(T, K ) + ( T -  t)Si(T , K) — (X — t)2s5(T, K ) \ . (2.33)

Proof: With equation (2.23), we have

pF{t, F; T, K ) = eS? r‘ ̂ C ^ t ,  T, K ) = C&K (t, T, K),

and

<t>F{t,T ,K )  =  C%K (t,T ,K ) = 

and the results follow with (2.31). □

As already mentioned, similar results can also be derived for options on spot prices. How­

ever, we will confine ourselves to the results in the forward setting, as we will need only 

these in later chapters.

2.4 The (single) smile problem

A meanwhile almost classical problem in local volatility modelling is the (single) smile 

problem that consists of determining a time-homogeneous local volatility function a : 

R+ i—> R+ such that the price-dynamics given by

dSt =  rtSt dt +  cr(St)St dWt

under the risk-neutral measure Q give rise to option prices which are consistent with the 

option prices observed in the market for a given and fixed maturity To. More precisely, 

given the market prices C(t,To,K)  for all K  > 0  and fixed t and To, we are looking 

for a time-homogeneous local volatility function a such that

C(t, To, K)  =  exp ( -  /  rs d s) E q  [(S To -  K ) +\Ft]
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holds for all K  > 0. Alternatively, the single smile problem can be formulated for forward 

options: Given CF(t,To, K)  for all K  > 0 and fixed t and To, find <j f  : R+ i—> R+ such 

that with

dF{t,T0) = aF(F{t,T0 ))F(t,T 0 )dW t

we have

CF(t, To, K )  =  exp ( — J  ° ra ds)  Eq [(E(i, T0) -  K)+\Tt] ■

In the following, we will adopt the latter formulation, as it does not feature a drift term 

and therefore is more amenable to the solution methodology we are going to propose.

By now, no exact solution to the single smile problem has been found, but a number 

of different approximate solution methods have been suggested. Bouchouev Sz Isakov 

[1997] and Bouchouev & Isakov [1999] reduce the identification of the unknown time- 

homogeneous local volatility function to the solution of a non-linear Fredholm integral 

equation, which they simplify by dropping terms of higher order, and then propose an 

iterative solution of the simplified equation. There are some downsides to this approach. 

First, the integral equations involved are typically non-trivial, as is the iterative solution 

algorithm proposed, which relies heavily on numerical techniques. Second, the solution 

obtained after following some steps of the iterative algorithm is -  loosely speaking -  just 

an approximate solution of the simplified problem, whose quality is unknown. Because 

of the approximation error, the algorithm is not well-suited for long times to maturity. 

Third, even if implied volatilities are given in closed form, the output of the algorithm will 

only be numerical.

In a more recent paper, Jiang et al. [2003] advocate an iterative algorithm that recovers 

the local volatility function from market option prices in an optimal control framework. 

The problems associated with this algorithm are similar to those mentioned above: Their 

algorithm is highly non-trivial, iterative and approximate in nature, and purely numerical.

In this section, we propose a novel approach to the single smile problem. In contrast to 

the existing approaches, our approach is analytical: Given a closed-form implied volatility 

function that is reasonably well-behaved, we are able to state an (approximate) solution to 

the single smile problem (i.e. a time-homogeneous local volatility function) in analytical 

form.
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Next, we will prove two propositions that are the basis for our analytical solution method, 

which will subsequently be worked out in detail. Then, we will test the quality of the 

solutions proposed in a number of different scenarios.

2.4 .1  E xten d in g  sm iles to  surfaces

The starting point of our analysis is a given implied volatility function observed at time 

t, t&irnp’F(To, K), for a single fixed maturity To < r. We assume that it is arbitrage-free 

and sufficiently well-behaved, i.e. that all necessary derivatives exist.9

The idea underlying our approach is to extend t&lTnp,F(To, K ) to a time-homogeneous im­

plied volatility surface, i.e. we want to define an implied volatility function ta tmp,F (T, K)  

by
t& i m p , F K J =  t a im p ,F ^  ^  >  y T  G ^

It is by no means clear that such an extension is admissible if we want to assure that the 

option prices implied by the newly introduced function ta%mp,F(T, K )  are arbitrage-free. 

The following proposition sheds light on this problem.

P ro p o sitio n  2.1. Let taimp’F(T0 , K ) > 0 be arbitrage-free. Then tairnp'F(T, K) as 

defined above gives rise to arbitrage-free option prices for all strikes K  > 0 and all 

maturities T  € (t,Toj.

Proof: We have shown that (see (2.31))

C l K (T) =  C ^lack{T)  r +  S K l 0 K(F/K)<7 imp’Fa p p'F
4(T - t ) K 2 (0 imp'F f  L v ’ 6 w  / K

+ 4(T — t)K  3 </£p'F + 4K 2 (log(F /K ) ) 2  (a%'p’F) 2

- ( T - t f K 2  (aimp'F) i  U k V ’F ) 2  + 4(T - ()if2 (aimp’F)3 <^kkF . (2-34)

and the above expression is positive if and only if the prices given by CF(T) admit no 

arbitrage. Thus, it suffices to show that C ^ k {Tq) > 0 implies C ^ K (T) > 0 for all

9This assumption is not at all restrictive, because in real-world applications, implied volatility functions 

are typically obtained by interpolating and extrapolating discrete points on the implied volatility ’curve’. 

Interpolating functions can easily be chosen in such a way that differentiability is ensured.
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T e  (t,T0]. As C*lack(T) > 0, we can confine our attention to the term

CFk k {T)
Cglack(T)

Now

~  Ck k V )d_
dT C  Black (T)

4  ^ j im p ,F  + K lag(F /lQ o% p'Fy  +  (T -  t)2 K 2 ( a *  P,F) ‘

4(T -  t)2 K 2 (cr™p'Fy
< 0,

which demonstrates that the term in square brackets is monotonically decreasing in T. 

Combining this with the positivity of C ^ ck(To) and C ^lack{To), we conclude that

r t F  ( m \    r iB la c k f r r \  ^ K K C ^ )  \  r iB la c k fr n \  ^ K K ^ ^ )  ^  n
K K '  ) cr V ’ c B U K k p )  -  V ’ c B l a c k f T o )  >  ° ’

which proves the claim. □

As is obvious from the proof, the extension will generally not work forward in time, i.e. 

an implied volatility function that is arbitrage-free for a maturity To is not necessarily 

arbitrage-free for T  > To. More precisely, for any non-flat implied volatility function that 

is arbitrage-free for To, there exists T > To such that the related state-price density 

becomes negative for some K  and thus offers arbitrage opportunities.10 This can easily 

be understood by considering representation (2.34) of the state-price density that features 

a negative term that is quadratic in T.

2.4 .2  L ocal vo la tility  fu nctions for tim e-h om ogen eou s im p lied  v o la tility  

surfaces

We have just proved that we can extend a given, arbitrage-free smile to an arbitrage-free 

and time-homogeneous implied volatility surface. The thus obtained smile-surface gives 

rise to a local volatility function. Now, one could suspect that a time-homogeneous implied 

volatility surface leads to a time-homogeneous local volatility function. Unfortunately, this

10 Gatheral [2000] derives a similar result.
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is not the case as the following proposition, which is a direct consequence of Theorem 2.4, 

shows.

P ro p o sitio n  2.2. Let t&imp’F(To,K) > 0  be an arbitrage-free implied volatility func­

tion for a fixed maturity To and t&irnp,F(T ,K) := t&lTnp’F(To, K ) be the extrapolated 

arbitrage-free implied volatility surface at time t with (T , K ) E [t, To] x R+ . Then, for 

fixed F  = F(t,To) and fixed t, the local volatility function aF(T ,K ) that is consistent 

with ta'imp,F(T, K) is given by

<jf {T, K f  =  +  (T _  t )u3 ( K ) -  (T  -  t) 2 Ui(K) ’ (2'35)

with

ui (K) = 2t<rimp,F(To,K)4,

«2(K) =  4 [t<rim!,’'F’(ro ,K )  +  K l o ^ F / K ^ a ^ i T o , K ) ]2 ,

«3(K) = i K t o ^ i T ^ K f  [ta - fp'F(T0 ,K )  + K t<T%%'F(T0 ,K )\  , 

ui{K)  =  A'2(a i™!,'F(ro,i<')4t^ !,"F(ro ,if )2,

where subscripts denote partial derivatives, which we assume to exist.

By means of the local volatility function given by (2.35), we are able to exactly reproduce 

our input implied volatility function t^ tTnp,F(To,K).

Although the above proposition tells us that the local volatility function is non-homogeneous 

in time, it does not give us an idea of the degree of inhomogeneity. One could suspect 

from the formula that inhomogeneity -  especially for small to medium times to maturity 

T  — t -  is not too pronounced, since for smiles that are not too pathological (after all we 

assume that all smiles we deal with are arbitrage-free), ta%̂p’F and t<*%K K F should be 

small compared to ta‘imp,F itself. The reader will get a feel for the behaviour of the local 

volatility function in the following.

2.4 .3  T im e-hom ogen eou s loca l vo la tility  fu nctions

In this section, we set out to propose a solution to the single smile problem. In order to do 

so, we have to find a time-homogeneous local volatility function that reproduces (or at least
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approximates) an initial, given smile ta imp,F(To, K) observed at time t. Formula (2.35) 

provides an excellent starting point for this task: If we manage to approximate aF(T ,K)  

by a time-homogeneous function o ^ ^ K )  in a way that the difference between these 

two functions is small, we can -  loosely speaking -  also expect the difference between 

taimp,F(To, K )  and the implied volatilities generated by cr̂ rox(K) to be small. In the 

following, we propose a couple of time-homogeneous approximations that differ in the 

degree of sophistication and approximation error. In order to make the following methods 

more intuitive, we apply them to a concrete example, which will accompany us throughout 

this section. So let t  = 0, To =  1 and the current To-forward price of an asset be 

F  = F(t,To) = 100, and suppose that we are given an implied volatility smile for time 

To of the form
taimp,F(To> K ) =  0 5 _  o x exp _  J o g (K / p f \  1

where F is the current (i.e. t  = 0) forward price of the underlying. As demonstrated 

above, we can extend the single smile t&%rnp’F(To, K )  to a surface *crtmp,F(T, K )  in an 

arbitrage-free manner by setting

t 0i m p , F J Q  =  t(J i m p , F ^

Figure 2.1 displays the such defined time-homogeneous implied volatility surface. As 

implied volatility surfaces are intrinsically linked with state-price density surfaces, it is 

appealing to visualise the state-price density surface that corresponds to Figure 2.1. This 

is what we do in Figure 2.2.11 To complete the picture, we also consider the (time- 

inhomogeneous) local volatility function aF(T ,K ) that corresponds to (2.1), which is 

given by formula (2.35) and displayed in Figure 2.3.

Comparing implied and local volatility surfaces, we observe that there are differences, both 

in shape and level. The most striking difference is that although the implied volatility 

surface is monotonically decreasing for small K , this is not the case for the corresponding 

local volatility surface that increases for small strike levels K  before reaching a maxi­

mum. Another difference -  although not very pronounced -  is the inhomogeneity in time

n Please note that the state-price density function was cut off at 0.05.
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Implied vol 0.4L

Figure 2.1: Time-homogeneous implied volatility surface

exhibited by the local volatility surface. This example indicates that the relations between 

implied and local volatility surfaces (even for the simple case of a time-homogeneous im­

plied volatility surface which we are considering here) are not straightforward at all.12

To get a better impression of the degree time-inhomogeneity, we display the local volatil­

ity function crF(T ,K ) for T  =  0 and T  = 1 in Figure 2.4. While we can observe a 

considerable divergence between the two curves for strikes around K  = 30, they are close 

to each other for strikes over K  = 50.

The mild degree of inhomogeneity for all but very low strikes is good news, as our ob­

jective is to find an approximating time-homogeneous local volatility function, and we 

can expect (at least in this example) the approximation error arising from the transition 

from the exact, time-inhomogeneous function to an approximating, time-homogeneous lo­

cal volatility function to remain small. In the following, we discuss how this transition

12Derman et al. [1995] describe some rules of thumb for the relation between local and implied volatilities 

that can help develop a rough intuition.
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200

Figure 2.2: State-price density

can be accomplished.

Two simple approxim ations

Possibly the most obvious approximation comes about by dropping the time-inhomogeneous 

terms in (2.35):

<7F, ( i f )  2 =  <rF (i, i f ) 2 =  , (P I)

or equivalently

ctF ( k )  = t<rimp'F(Tg, i f ) 2___
, < 7 ^  (T0, i f )  +  i f l o g ( f ’/ i f ) i CTj ‘p'F (T0, i f ) ’

for K  > 0. As we will see later on when we look more closely into the quality of the 

approximations proposed, formula (PI) -  in spite of its simplicity -  gives a remarkably 

good fit to the input data. Even a superficial look at formula (2.35) reveals the reason: For 

reasonably well-behaved implied volatility functions, we can expect us(K) and u^(K) to
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Figure 2.3: Time-inhomogeneous local volatility surface

be of a much smaller order of magnitude than u2 (K), such that even for large values of 

T  — t, u2 (K) dominates the other two terms in the denominator. Another advantage of 

(PI) is that we get rid of the second derivative, which is desirable from a computational 

perspective.

A slightly more sophisticated approach that takes u$(K) and u±(K) into account is to 

evaluate (2.35) halfway between t and To :

aF2 ( K ) = a F((t + T0 )/2 ,K)

= ( ?« ,( jo   y /2 (P2)
\ n 2(K) + ((t + T o ) /2 - t )n 3( K ) - ( { t  + T o ) /2 - t ) H 4(K )J

If crF(T,K) is not too far from linear in T , we can hope to get some kind of ’average’ 

volatility along the path from t to Tq.
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Figure 2.4: Local volatility functions crF(0,K ) (red line) and <7-̂ (1, if) (blue line) 

In teg ra ting  out T

Formula (PI) altogether neglects the information contained in 143 (if) and u±{K). A 

natural step towards a more exact and sophisticated approximation is to incorporate us 

and U4 in the approximation, under the restriction that time-homogeneity is guaranteed. 

We can achieve this by integrating over <tf (T, i f )2, as the following formula shows:

/  1 /•To \  1/ 2

« (* )  = G — t j t

1 f To 2   1/2
T o - t J ,  u 2 ( K )  +  (T  -  t-  (T  -

2«i (K)
(T0 -  t)v ^ I  W  + 4«2(/<:)«4

log
+  2T0t
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_  ^  j y / u j ( K )  +  4u2( K ) u4(K)  -  u 3(K )  +  2t m ( K ) x '  1/2 

(  2 m ( K )
\ ( T 0 -  t)^ /u23(K) + 4u2(K)ui (K)

/ ,  Vttjj(X) + 4u2(K ) M K )  - «3(g )  +  2Tq«4(A')\ \ 1/2 
V  V ^ T + 4 % C K > ^ - " 3 ( j V )  +  2tU4(if) / /

Alternatively, instead of integrating over the squared volatility, we can integrate over 

crF(T ,K ):

•7b

a * { K ) = v h t j t  0 , y F t T ' K ) d T

- x = - . n

^ { K )  d T
u2{K) + (T  -  t)us(K ) — (T  — t ) 2Ui(K)

(T0 - t ) y / u K j C j
arcsin /  ^ /M K )(2 T 0ui ( K ) - u 3(K)) )  

V ̂ 4 u 2( K ) u j ( K )  + u 3( K f u i ( K ) )

— arcsin f  x / M K ) ( 2 t u 4( K ) - u 3(K) )  \

\ y / i u 2( K ) u i ( K ) + U i ( K ) 2uA(K )  j
(P4)

Albeit a bit more complicated than (PI), above formulae are still given in closed form and 

can be evaluated efficiently.13 Rather unsurprisingly, (P2) to (P4) generally lead to better 

approximations than formula (PI), as we will soon see.

W eighting w ith the state-price density

When we simply integrate T  out as shown above, we neglect the fact that for a fixed 

strike Kq,  different points on the term-structure of local volatility defined by crF (T ,Ko)  

should receive different weights. Why is that? First we observe that the state-price 

density function for a given maturity is tantamount to the ’discounted’ marginal density 

of the risk-neutral forward price process.14 As we can see in Figure 2.2 , the density is

13Using our previous results and standard algebra, it can be checked that all of the above expressions

(in particular the integrands) are well defined.
14Cf. formulae (2.32) and (2.33).
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concentrated around F  = 100 for short times to maturity, and flattens out for increasing 

times to maturity. If we look at the SDE that governs the evolution of (F(T , To)) when 

using a time- and level-dependent local volatility function

dF(T, T0) = aF(T, F(T, T0))F(T, T0) dWT

and consider the corresponding state-price density, it becomes clear that for T  close to 

t, the values of the local volatility function for strikes away from the money have almost 

no bearing on the process. For larger values of T  — t however, the flattening of the risk- 

neutral distribution implies that also local volatilities away from the money start having 

an impact on the process. So it is intuitively clear that the higher the state-price density 

in a point (T ,K),  the greater the impact of the value of the local volatility function in 

that point on (F(T,To)) and its marginal distributions. This observation lies at the heart 

of an approximation method which we will now make precise. We set

- F  , k \2 _  f To F ( T  k \2 PF ( t i F ' ,T ,K )
VpSKK) — a  Uj - KJ rT0 F (  „Jt Jt p* (t, F\ u , K ) du

i.e. for fixed K, we weight every point on the term structure of local volatility with its 

normalised transition density, where the latter is of course based on our time-homogeneous 

implied volatility surface. Using previous results and simplifying yields

nF ( K \ = ( l -  F °  Ct ( ^ T ’K ) CFK( t ,T ,K )  \ 1/2
 ̂ \ K * J t CFK( t ,T ,K ) t f ° c FK(t,u,K)du )

1/2
v/2 (  CF( t ,T ,K )d T  \  
K  \ t f ° C £ K ( t ,u ,K )d u )  

V2 ( CF(t,T0,K )  -  CF( t , t ,K ) \  
K V $ ? C FK {t,u,K)du j

1/2

V2 I CF(t,To, K) -  (F(t,To) -  K )+ V /2 
K  \  f ? ° C FK (t,u ,K )du  J

Of course, we can apply the same idea to weight over ctf (T , K)  :

f T° f ( t  PF ( t ,F - ,T ,K )
o A K ) =  /  a  (T ’K > fib F u  FJt Jt pb (t , F\ u, K ) du

V2 ( T° I CF(t,T ,K ) C l K{t,T ,K )

(P5)

fK  Jt v Ck k (^t < k ) / tTo C%K(t,u ,K) du
dT
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=  y/2 It ° T, K )C $K {t, T, K ) dT

~  K  t f ° C F K(t ,u ,K )d u  '

When it comes to practical applications, the drawback of the last two approximations -  

although given in closed form -  is that they have to be evaluated by numerical integration. 

We will see soon whether this effort pays off in terms of goodness of fit to given smiles. 

Before proceeding, we remark that all the proposed approximations are able to recover the 

correct local volatility function for flat (i.e. state-independent) implied volatility functions
aimp,F'

2 .4 .4  T estin g  th e  tim e-h om ogen ou s approxim ations

In this chapter, we perform extensive tests for all the proposed approximations. We 

investigate their quality in six different scenarios, each of which is characterised by a 

different combination of maturity To and implied volatility function. As in our example 

above, we assume t  = 0 and the current To -forward price of the asset to be F  — 100. 

The scenarios are summarised in Table (2.1). The table shows that we consider both

T0 skew smile

1
12 tcrimP’F(j'o, K) = 0.2 +  2e~27 taimp'F(To,K ) = 1.2 -  0.3e1-(log£ ) 2

1 ta«nP,F(Toi j q  =  02  +  04e- f taimP'F(To,K ) = 0.5 -  0.1e1_(log£ ) 2

10 taimP'F{ t 0,K )  = 0.2 +  0.1e“°'6£ taimP'F(To,K ) = 0.25 -  0.025e1_(log^ ) 2

Table 2.1: Test scenarios

smile-shaped and skewed implied volatility functions for short, medium and long times to 

maturity. Thereby, we hope to cover most cases of practical interest. We intentionally 

choose quite extreme implied volatility patterns that feature pronounced changes in level
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and non-negligible first and second derivatives. This can be regarded as stress-testing our 

methodology, the rationale being that a method that works for such extreme input-data 

should perform even better in most real-world situations, which can safely be assumed to 

be more moderate.

Before we come to the numerical results, we first outline our testing methodology. First, 

we calculate the time-homogeneous local volatility functions (PI) to (P6), which we do 

analytically for (PI) to (P4) and by numerical integration for (P5) and (P6). Then we 

use (PI) to (P6) as inputs for a Crank-Nicolson finite-difference algorithm implemented in 

C ++, by means of which we compute the prices of standard European calls on (F(t,To)) 

for strike prices 10 ,20 ,..., 200 for To =  1/12 and strike prices 1 0 ,20 ,..., 300 for To =  1 

and To =  10. For the finite-difference grid, we use 200 time-steps for To =  1/12, 1000 

time-steps for To =  1, and 10000 time-steps for To =  10. For all maturities, we choose 

10000 spatial steps, resulting in finite-difference grids with 2 • 106, 107 and 108 grid- 

points, respectively. This might seem excessive at first, but the objective of our tests is 

to be able to assess the approximation error that stems from the substitution of the exact 

local volatility function by our approximations (PI) to (P6). Therefore, we have to make 

sure that the discretization error arising from the use of a finite-difference method is kept 

as low as possible, which we achieve by choosing very fine grids. We also conducted tests 

with even finer grids that in most cases lead to slightly lower overall errors (by overall 

error we mean the sum of approximation- and discretization error). This indicates that 

the errors reported in the following are conservative.15 We then use a Newton-Raphson- 

method to numerically invert the option prices computed with our algorithm (henceforth 

termed ’model prices’) to back out the corresponding implied volatilities (’model implied 

volatilities’) for a range of strikes that depends on the time to maturity of the option 

under consideration.16 Thus, for all six scenarios, we obtain the model prices and model

15Even if we postulate that finer grids lead to lower discretization errors, it is not imperative that they 

also reduce the overall error, which results both from the use of an approximate local volatility function 

and the discretization error due to the finite-difference method. This is because approximation error and

discretization error can also offset each other.
16Here we have to bear in mind that the vega on an option tends to zero if we move away from the money,

or, for options away from the money, if the time to maturity goes to zero. Expressed differently, the price 

of an option that is fax in- or out-of-the-money or one that is not at-the-money and about to expire, is
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Figure 2.5: Implied volatility skew (red) and smile (blue) for To = 1/12

implied volatilities for each of our approximation methods (PI) to (P6). Finally, we plot 

the model implied volatilities against the ’true’ ones, and, to get a better impression of the 

approximation error, the differences between them. The numerical values underlying the 

graphs are reported in Appendix A, along with the exact and model prices (respectively 

their differences).

The following results are grouped according to time to maturity.

Short tim e to  m aturity : To = 1/12

The implied volatility functions for To = 1/12 are shown in Figure 2.5. Obviously, the 

levels and slopes of both implied volatility curves are quite extreme, yielding good test- 

cases.
insensitive to changes in (implied) volatility, so that it is not possible to reliably invert the price-formula to 

back out the implied volatility. In the literature, this fact is often paraphrased as the information-content 

of implied volatilities of options far away from the money being low.
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Figure 2.6: Local volatility functions (PI) to (P6) for the skew-case and Tq = 1/12

The corresponding local volatility functions (PI) to (P6) are shown in Figure 2.6 for the 

skew case and Figure 2.7 for the smile case. In these figures, and also in the remainder of 

this chapter, we use cyan for (PI), yellow for (P2), lilac for (P3), red for (P4), green for 

(P5) and blue for (P6).

As we can see, the local volatility functions exhibit pronounced non-monotonicity for low 

strikes, i.e. in a region where the corresponding implied volatility functions are monotonic. 

The slopes and levels of the local volatilities are even more extreme than those of the 

underlying local volatilities; while the implied volatility skew does not exceed 120%, the 

local volatility almost attains a level of 400%. We observe that the local volatility functions 

are almost identical for strikes greater than 50, while they show a marked difference 

for lower strikes. This suggests a high degree of time-inhomogeneity in the exact local 

volatility function in this region. Furthermore, it is striking that methods (P2) to (P4) 

and (P5) and (P6) produce almost identical local volatilities throughout the whole strike 

range. We will observe this phenomenon in our other scenarios as well.
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Figure 2.7: Local volatility functions (PI) to (P6) for the smile-case and Tq = 1/12

Comparing the exact implied volatilities (dotted black lines) with the model implied 

volatilities (cf. Figures 2.8 and 2.9), and the corresponding approximation errors, i.e. 

the differences between model- and exact implied volatilities (cf. Figures 2.10 and 2.11), 

we find a remarkably good fit of the model implied volatilities to the given ones. While 

even for the simple approximation (PI) the approximation errors do not exceed 0.4 per­

centage points for the skew-case and 1.2 percentage points for the smile-case, the more 

sophisticated approximations (P2) to (P6) perform even better, as the errors never exceed 

0.5 percentage points over the whole strike range from 50 to 150. Near the money, i.e. for 

strikes ranging from 80 to 120, the errors are typically even less than 0.1 percentage points 

for the methods (P2) to (P6). The corresponding price differences are reported in Appen­

dix A. Finally, it is also worth noting that, although there is a plainly visible difference 

in the local volatility functions (especially for lower strikes), this is not the case for the 

implied volatility functions, the reason being that the local volatility functions differ only 

in regions away from the money. As the impact of local volatilities away from the money
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Figure 2.10: Approximation error for (PI) to (P6) for the skew-case and To = 1/12

-  especially for short maturities -  on option prices (respectively implied volatilities) is 

limited, these differences in local volatilities do not translate into significant differences in 

implied volatilities.

M edium  tim e to  m aturity : To = 1

Figure 2.12 displays our test functions for Tq =  1, which -  though being less extreme 

in nature -  share the characteristics of those for To = 1/12. It would not have been 

possible to use the same implied volatility functions for To =  1 as we did for To = 1/12, 

because the corresponding option prices would not have been arbitrage-free for To =  1. 

Although the skew and smile are less pronounced than before, they are also ’extreme’ in 

the sense that the risk-neutral distributions they imply show considerable deviations from
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Figure 2.11: Approximation error for (PI) to (P6) for the smile-case and To = 1/12

comparable log-normal ones.17

Not surprisingly, the corresponding local volatility functions (cf. Figures 2.13 and 2.14), 

though more moderate, are qualitatively similar to those presented for To =  1/12. The 

main differences compared to the short time-to-maturity case are the smaller first and 

second derivatives of the implied volatility functions. However, this does not necessarily 

imply a lesser degree of time-inhomogeneity, because although the functions us(K) and 

ua{K) (which influence the degree of inhomogeneity) are smaller than in the previous 

case, they receive higher weights (cf. formula (2.35)), so that we have two counteracting 

effects, and it is not obvious which one prevails for what K.

As before, we represent the model implied volatilities and the approximation errors graph­

ically (cf. Figures 2.15 to 2.18). To take the greater time to maturity compared to the

17In order to get an impression of the deviation of the implied risk-neutral distributions from log- 

normality, one could for example take log-normal distributions based on the same at-the-money volatilities 

as a benchmark.
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Figure 2.12: Implied volatility skew (red) and smile (blue) for To =  1

previous case into account (implying that also implied volatilities further away from the 

money axe significant in terms of information content, and that stable numerical inversion 

is possible for a broader range of strikes), the curves cover strikes ranging from 40 to 200.18 

Again, we can observe an almost perfect fit to the input volatility structures (dotted black 

lines) over the whole strike range: The approximation errors for the methods (P2) to (P6) 

hardly ever exceed 0.1 percentage points for the skew case and 0.2 percentage points for 

the smile case. The approximation in the skew case seems to be somewhat better than 

in the smile case. This can be explained by the higher absolute values of the first and 

second derivatives for the smile, which lead to a comparatively higher degree of time- 

inhomogeneity, which in turn causes the approximation error to be higher.

18The corresponding numerical results can again be found in Appendix A.
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Long tim e to  m aturity : To =  10

Finally, we consider the case To =  10. The implied volatility functions that serve as inputs 

for our tests are depicted in Figure 2.19. Prima facie, they might seem very moderate, 

but indeed they are not. The long time to maturity imposes strong restrictions on the 

possible shapes of implied volatility structures, as we demand that the latter be arbitrage- 

free. But for long maturities, even seemingly moderate implied volatility structures can 

give rise to risk-neutral distributions that are rather pathological. For example, the risk- 

neutral distribution implied by our smile is bimodal. One aspect that makes long times to 

maturity interesting for our purposes is the fact that the terms u${K) and u±(K) in the 

denominator of the exact local volatility functions are scaled with factors of up to 10 and 

100, respectively, suggesting a considerable degree of time-inhomogeneity, even though 

us(K) and u±{K) are smaller than in the previous cases. Thus we can expect (PI) to 

perform worse than in the other cases, as it totally neglects these two terms. The local 

volatility functions in Figures 2.20 and 2.21 look as expected, the only difference being
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Figure 2.14: Local volatility functions (PI) to (P6) for the smile-case and Tq = 1

that in the smile-case, (PI) now visibly differs from (P2) to (P6) over the whole strike 

range.

For the implied volatility and error plots (Figures 2.22 to 2.25), we consider a strike 

range from 30 to 300. Again, as for the shorter maturities, the approximations are very 

good. The maximum approximation errors for (P2) to (P6) are always less than 0.1 

percentage points for the skew and 0.5 percentage points for the smile. Even the rather 

naive approximation (PI) never differs by more than 0.3 percentage points for the skew 

and 1 percentage point for the smile from the exact value.

Sum m ary

The above six test scenarios were chosen so as to cover both skews and smiles, which are the 

volatility patterns most often encountered in practice, and a maturity spectrum ranging 

from very short to very long maturities. Summarising our test results, we can claim that 

our approximations did very well throughout all scenarios, which are characterised by
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Figure 2.17: Approximation error for (PI) to (P6) for the skew-case and To = 1

rather extreme volatility patterns. Therefore, we can hope that they perform even better 

in most real-world cases, which are likely to be more moderate. A comparison of the quality 

of the individual approximations confirms our initial conjecture that methods (P2) to (P6) 

outperform (PI). However, it is not possible to identify a single best approximation that 

is superior to all others throughout. Perhaps surprisingly, the rather simple method (P2) 

seems to be of similar quality than the more complex methods (P3) to (P6). As we already 

remarked above, (P5) and (P6) have to be worked out by means of numerical integration 

and are therefore computationally quite expensive and prone to numerical errors. This 

leads us to conclude that, while (PI) is by far sufficient for most practical applications, 

(P2) to (P4) are the methods of choice when accuracy is an issue, as they strike a good 

balance between computational complexity and goodness of approximation.

Before concluding this section, it is worth mentioning that the quality of the approxima­

tions is invariant under scaling, i.e. independent of the absolute numerical values of the 

prices used, the reason being that we could have also worked in terms of relative moneyness
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Figure 2.18: Approximation error for (PI) to (P6) for the smile-case and To =  1 

F /K  instead of using absolute values.

2.5 Local vo la tility  m odels in practice

At this point, the reader might ask why we bother with time-homogeneous (i.e. purely 

level-dependent) local volatility functions that are in most cases only approximate solu­

tions to the single smile problem, even though we are able to state time-dependent local 

volatility functions that are exact solutions (compare formula (2.35)) or even fit a whole 

given volatility surface. The main reasons are of practical nature: In practice, one only 

encounters a finite, discrete set of vanilla prices that can serve to calibrate the model. It 

might well be the case that there is only one option-maturity for which the correspond­

ing options are liquid enough to reliably serve as calibration instruments, so that the 

calibration-problem in practice often boils down to the single smile problem. Even if there 

exist a couple of liquid maturities, it might not be desirable to incorporate all of them
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Figure 2.19: Implied volatility skew (red) and smile (blue) for To = 10

in the calibration process, as this often leads to wildly fluctuating and implausible local 

volatility functions. However, a time-homogeneous local volatility function, appropriately 

scaled with a purely time-dependent function, leads to a separable volatility function that 

gives the user full control over the term structure of local and implied volatilities. This is 

not the case with non-separable local volatility functions obtained by the classical Dupire 

approach. In addition, there exists a very accurate analytical approximation for option 

prices if the dynamics of the underlying are governed by a separable local volatility func­

tion, whereas for non-separable ones, one generally has to resort to numerical methods. 

We will now elaborate on the above points.

2.5.1 S ep a rab le  local v o la tility  fu n c tio n s

A separable local volatility function can be factorised: It can be represented as \(T)cr(K) 

with a bounded and deterministic function A : R+ ■-* R+ . Now assume that we are given 

a purely level-dependent volatility function <r(K), which for example could be obtained



Chapter 2. Local volatility functions and Dupire’s formula 64

Local vo l

S trike
50 100 150 200

Figure 2.20: Local volatility functions (PI) to (P6) for the skew-case and To =  10

by the methodologies detailed in the previous section. We describe the term structure of 

local volatility between t  — 0 and To by a function A : [0, To] i—> R+ with the property

f T°
/  A(T) dT = To.

Jo

Suppose that the To -forward price follows

dF(T, T0) =  A(T)a(F(T, T0)) dWT. (2.36)

To keep our notation simple, we set

f T
v(T) = / A(s)2 

Jo

Then, by a standard deterministic time-change argument (cf. e.g. 0ksendal [2000], Chap­

ter 8.5), (W t 'J with
rT

W v(t ) = [  A(s)dW 3 
Jo

is a standard Brownian motion. Setting f(v (T )) =  T(T, Tq), we get

df(v(T)) = dF(T, T0) = X(T)a(F(T , T0)) dWT = a(f{v{T)) dWv{T),
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Figure 2.21: Local volatility functions (PI) to (P6) for the smile-case and To =  10 

or equivalently, as integral equation,

f ( v ) =  [  cr(f(u)) dW u.
Jo

Now,

but also

Tq

F(To,T0) =  f ( v ( T 0)) =  /(T 0) =  [  ° a ( f ( u ) ) d W u,
Jo

T(T0,T o)=  [ T° \ ( T ) a ( F ( T yT0) )dWT.
Jo'o

This demonstrates that multiplying by an appropriately scaled function A does not alter 

the distributional properties of T(To,To), while allowing the user to exogenously specify 

a volatility term structure. As many exotic options (e.g. forward-start options) are very 

sensitive to the term structure of local volatility, the specification of a realistic A is of 

prime importance, as it will severely affect the pricing and hedging performance of the 

model.
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Figure 2.22: Implied volatility functions for (PI) to (P6) for the skew-case and Tq =  10
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Figure 2.24: Approximation error for (PI) to (P6) for the skew-case and To =  10 

2.5.2 A n a ly tica l ap p ro x im a tio n s

Apart from the ability to fully control the term structure of volatility while matching a 

future smile, separable local volatility functions offer another important advantage: While 

for non-separable local volatility functions, even standard options have to be priced by 

numerical methods, there exist very good analytical approximations for European calls and 

puts for separable ones. Hagan & Woodward [1999] propose the following approximation. 

Suppose that (F(T, To)) follows (2.36). Then the t = 0 -price CF (0,T, K) of a European 

call option with maturity T < To and strike K  on the To -forward price forward price 

can be approximated by CBlack(F(0, To), 0, T, K , atmp, (rs)) with
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Figure 2.25: Approximation error for (PI) to (P6) for the smile-case and Tq =  10

where

„  F(0,T0
F av — n •

Hagan and Woodward stress the excellent accuracy of their approximation, which they 

show to be of similar quality to PDE-based methods.

2.5.3 H edging in local volatility  m odels

Local volatility models are complete one-factor models. This implies that any derivative 

can be perfectly replicated. For hedging- or replication purposes, it is important to be 

able to calculate the Greeks of an option -  in particular its delta -  quickly and accurately.



Chapter 2. Local volatility functions and Dupire’s formula 70

The delta of a European call is

C Block[ F ^  Tq)i t< T) T())i T ) K ) t  (r<))

=  A Black(F(t, T0), t, T, K, taimp'F(F(t, T0 ),T , K ), (rs)) 

+  VBlack{F(t,T0), t, T, K, {F{t, T0), T, K ), (rs)) ■ t<rfp’F(F(t, T0 ),T , K),

(2.38)

where &Black and VBlack denote the standard delta and vega in the Black model. Here, 

it should be emphasised that t<jimp'F is determined by the a priori given local volatility 

function and therefore endogenous to the model. As already mentioned, in a local volatility 

setting, option prices (and also implied volatilities) normally have to be worked out by 

numerical methods, and this apparently also applies to the calculation of delta. But 

approximation (2.37) can also be utilised to calculate approximations for delta, which can 

also be expected to be highly accurate.

Formula (2.38) indicates that the implied volatility of an option is liable to change as 

time unfolds or as the price of the underlying changes.19 This raises the issue of implied 

volatility dynamics in a local volatility model. The specification of a local volatility func­

tion already fully determines the dynamics of the whole implied volatility surface (i.e. the 

implied volatility surface that extends from the current time to the end of the modelling 

horizon and over all positive K ):  A forward price F(T, To) observed at a future time T  is 

uniquely linked to the implied volatility surface that prevails in the state (T ,F (T ,To)).20 

A natural question is whether future implied volatility surfaces generated by local volatil­

ity models are realistic. There is a consensus in the literature that, unfortunately, local 

volatility models predict the wrong dynamics of the implied volatility surface (see e.g. Ha­

gan et al. [2002]), as they result in implied volatility skews/smiles moving in the opposite 

direction to the price of the underlying, which is in contrast to typical market behaviour, 

where skews/smiles and underlying move in the same direction. This is believed to be 

the main reason for inaccurate and unstable hedges often encountered in a local volatility

19 A delta hedging strategy according to (2.38) also implicitly provides a hedge against changes in implied

volatility due to changes in the price of the underlying.
20This is one of the major differences between local- and stochastic volatility models: In a stochastic

volatility model, different implied volatility surfaces can prevail in a future state (T, F(T, To)).
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framework, as reported by Dumas et al. [1998] and Balland [2002]. It is also this defi­

ciency that has spurred much of the recent interest in stochastic implied volatility models 

(see e.g. Brace et al [2001], Brace et al [2002], Ledoit et al [2002] and Daglish et al 

[2003]), which can be perfectly calibrated to observed implied volatility patterns, while 

still granting relative freedom when it comes to exogenously specifying implied volatility 

dynamics.

2.6 Summary

In this chapter, we present a methodology for constructing local volatility functions that 

exactly reproduce given volatility smiles. In this context, we give explicit analytical formu­

lae for state-price densities and transition densities. Furthermore, we propose approximate 

solutions to the single smile problem: Given an implied volatility function, we are able to 

state a time-homogeneous local volatility function that approximately reproduces the given 

implied volatility function. Numerical tests based on several extreme volatility scenarios 

show that our methods provide an excellent fit to the input implied volatility structure 

over a wide range of strikes and maturities. Being based directly on implied volatilities 

rather than option prices, our method avoids the problem of interpolating option prices, 

as it is by no means clear how to interpolate a discrete set of option prices in such a way 

that the radicand in the classical Dupire formula is well-defined (see Berestycki et al 

[2002]). In contrast, direct interpolation of implied volatilities is more robust.

The methods detailed in this chapter are tailor-made for the construction of smile-consistent 

LIBOR market models, which is the content of the next chapter.



Chapter 3

Smile-consistent generalised 

extended LIBOR market models

The so-called market models of LIBOR and swap rates have enjoyed increasing popularity 

during the last few years. The main reason for the success of this approach to term 

structure modelling, developed in a series of papers by Brace et al. [1996], Miltersen et al.

[1997] and Jamshidian [1997], can be seen in its consistency with the market practice 

of pricing caps, floors and swaptions by means of the Black [1976]-formula, while at the 

same time providing a consistent and coherent framework for the joint modelling of a 

whole set of forward rates. Further aspects that set the class of market models apart 

from other interest rate models is the relative ease of calibration to market data (e.g. 

term structures or cap-prices), and the use of discretely compounded forward LIBOR 

rates -  directly observable in the market -  as fundamental quantities in the modelling 

process. By contrast, traditional short-rate or Heath-Jarrow-Morton models are based on 

the description of the arbitrage-free dynamics of continuously compounded instantaneous 

short or forward rates, which are not market observables.

Recently, several studies (e.g. Andersen & Andreasen [2000], Joshi k, Rebonato [2001], 

Joshi k  Rebonato [2003] and Jarrow et al. [2003]) have documented the presence of non­

flat IVS (when quoted in terms of Black implied volatilities) in cap and floor markets. 

The inability of standard LIBOR market models (LMMs for short) to capture these smiles
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or skews has spurred the development of the class of extended LIBOR market models 

(henceforth EMMs), which we will discuss in the following, where we will find that even 

models of this class -  although more general than standard LMMs -  are not flexible enough 

to meet all practical requirements. For this reason, we will extend the existing theory on 

EMMs to a more flexible model class, which we will term generalised extended LIBOR 

market models (GEMMs).

This chapter is structured as follows. After introducing the mathematical set-up, we will 

formally develop the theory of GEMMs. Then, we shall demonstrate how to price caplets 

and floorlets in the GEMM setting. Subsequently, we will focus on pricing swaptions and 

derive a swaption-approximation, which will be tested in several scenarios. Finally, we 

shall touch on some issues concerning the practical implementation of our model, and 

conclude with a short summary.

3.1 Description of the econom y

We start by defining the tenor structure T  = {T o ,...,T n} as a set of maturities Ti 

with 0 =  To < T\ < • • • < Tn , where Tn is the time horizon of our economy. A 

given tenor structure T  is associated with a set of {ti, . . .  , r n} of year fractions, where 

Ti = T i~  i, i = 1 , . . . ,  n. We assume that in the financial market under consideration, 

there exist zero-coupon bonds p(-,3i) of all maturities Ti, i = 1 , . . . , n .  The discretely 

compounded forward LIBOR rate prevailing at time t  over the future period from Tj_i 

to Ti is defined by

0 <  t < T i- i .
TiP\t, l i)

We assume further that we are given a stochastic basis (fl, F =  (Tt)te[o,Tn})3:', P ) , on 

which a d -dimensional Brownian motion W  = (W (t))iG[0)Tn] is defined. The stochastic 

basis is assumed to satisfy the usual conditions.
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3.2 From the standard LMMs to GEM M s

We axe now in the position to introduce the important notion of the forward LIBOR 

measure.

D efinition  3.1. Let T'k € T . We call a P -equivalent probability measure QTk the forward 

LIBOR measure for the maturity Tk, or more briefly Tk forward measure, if  all bond price 

processes

\p ( t ,T k) ) t e l 0 M T k ) ] '

relative to the numeraire p(-,Tk) follow local martingales under QTk . Correspondingly, 

the tuple (QTk,p{-,Tk)) is called the numeraire pair for the maturity Tk .

Now -  bearing in mind the definition of L(-, •) -  it can be easily observed that the process 

of the forward LIBOR is a local martingale under QTk . So if we 

place ourselves in a diffusion setting, we can posit, for every k G {1, . . . ,  n}, the following 

driftless dynamics under the respective forward LIBOR measure QTfe :

dL(t, T ^ )  =  <7(t, Tk-!)d W T‘ (t)

d

i=1

with a standard d -dimensional Brownian motion W Tk with respect to F under the 

measure QTfc, and a d -dimensional row vector a as adapted volatility function that 

satisfies the standard integrability conditions. This general framework allows for a wide 

variety of interest rate dynamics. In order to derive further results, one has to impose a 

certain structure on a. For instance, the standard LIBOR market models mentioned in 

the introduction are specified by volatility functions of the form

a(t,T k) = L (t,T k) \( t ,T k) (3.1)

with bounded and deterministic functions A(-,Tj) : [0,Tj] —► M+, T* G {Ti, . . .  ,Tn_i}. 

This formulation leads to log-normally distributed LIBOR-rates, and is therefore consis­

tent with the market practice of pricing caplets with the standard Black-formula. While 

A can be used to capture the term structure of volatility (for example to calibrate the
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model to the prices of at-the-money caplets of different maturities), the above formulation 

does not allow for calibration to implied volatility structures observed in the market. As 

all LIBORs in this formulation are log-normal under their respective forward measure, the 

model can only reproduce flat (level-independent) volatility structures. This limitation 

motivates the generalisation to separable volatility functions of the form

&{t,Tk) = (j>(L(t,Tk) ) \( t ,T k),

(f> : R + —> R+, which characterise the class of extended LIBOR market models (for short 

EMMs). Within this framework, specialising 0 further to

(f>{x) =  x a, a  > 0,

or

(j)(x) = xm in {xa-1 ,ea_1} , a : ,e>0 ,

leads to the classes of constant elasticity of variance (CEV) and limited constant elasticity 

of variance (LCEV) models studied in Andersen & Andreasen [2000]. Setting

<p(x) = a +  bx +  x 2

defines the class of quadratic volatility models explored in Ziihlsdorff [2002]. All of the 

above formulations can only generate a limited number of different shapes of the implied 

volatility structure (IVS), as one could have already guessed by the maximum of two 

parameters available for calibration purposes. The CEV-model, for example, produces 

downward sloping IVSs for 0 < a < 1, a flat IVS for a  =  1, and upward sloping IVSs for 

a > 1. In particular, it is impossible to generate smile-shaped IVSs often observed in the 

market. A further drawback of EMMs in general is that the function <j> is independent 

of Tk, which makes it impossible to fit the model simultaneously to IVSs for multiple

maturities Tk . The logical consequence is the introduction of more general functional

classes for a, which are rich enough to allow for a greater variety of IVS shapes. At

the far end of this spectrum, we find model-specifications with volatility functions of the 

general form

a(t,Tk)=&(t,L(t,Tk),Tk). (3.2)
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Most notably, the mixture-of-log-normals model introduced in Brigo et al. [2003] falls 

into this class. While this model features closed-form transition densities and caplet- 

price formulae, and offers the user an arbitrary number of parameters (which depends on 

the number of log-normal distributions superimposed) for calibration purposes, is it only 

capable of generating a limited number of different IVS patterns. However, this limitation 

is specific to the mixture model. In general, formulation (3.2) can accommodate any 

arbitrage-free IVSs. This follows directly from the results of the previous chapter: Using 

formula (2.35), we are able to specify a volatility function a that is compatible with any 

finite set of arbitrage-free IVSs.1 However, when using formula (2.35), and also in the 

formulations offered by Brigo & Mercurio [2003], the volatility function cr is completely 

determined by the IVSs one wants to fit, leaving the user no influence whatsoever on its 

term-structure. As a consequence, future IVSs induced by the model may be unrealistic 

and implausible. As for example Balland [2002], Brigo et al [2003] and Rebonato [2004] 

point out, future IVSs are an important criterion in judging the quality of a model, since 

they may have a strong impact on its pricing- and hedging-performance. From this point 

of view, formulation (3.2) is unsatisfactory. For this reason, building on results of the 

previous chapter, we consider a formulation that is general enough to yield a very good 

fit to any finite set of IVSs, yet allows the user to retain full control over the volatility 

term-structure and therefore the evolution of future IVSs. More precisely, we consider 

separable volatility functions of the form

v (t,T k) = cf>(L(t,Tk),Tk) \( t ,T k), (3.3)

<f> : R+ x {Ti,. . .  ,Tn_i} —> R+, which define the class of generalised extended market 

models (GEMMs). Although being somewhat more restrictive than formulation (3.2), 

GEMMs -  as already pointed out -  offer a high degree of flexibility when it comes to 

fitting given IVSs, while, by their separable structure, giving the user control over the 

volatility term-structure, and offering a high degree of numerical tractability. The price 

one has to pay for the added flexibility compared to the LMM- and EMM-classes is that

1 Compare Brigo & Mercurio [2003], who also find a completely smile-consistent volatility function in 

this set-up. However, as opposed to our model, which will turn out to be explicit and numerically well 

tractable, their formulation is rather implicit in nature and hard to handle numerically.
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closed formulae for the prices of standard derivatives such as caplets can no longer be 

expected to exist, which is in contrast to the standard LMM, and the CEV and quadratic 

volatility models of the EMM class. But, what is a closed-form solution anyway? As 

Ziihlsdorff [2002] points out, the evaluation of the noncentral chi-square distributions in 

the CEV-caplet formula is computationally expensive and difficult to implement, and also 

the evaluation of the caplet-formula in the quadratic volatility setting involves a high 

computational effort. In sharp contrast, the analytical approximation proposed by Hagan 

Sc Woodward [1999] can be implemented and evaluated very efficiently, while at the same 

time being highly accurate. So even in the presence of closed caplet-price formulae, one 

might be better off using the Hagan-Woodward proxy outlined in the previous chapter. 

The bottom line of the above is that it makes little sense to artificially confine the class 

of functions admissible for </>, as this only restricts a model’s ability to generate realistic 

IVSs, while offering little or no computational advantages. The only arguments that can 

be brought forward in favour of restricting oneself to a low-dimensional parametric class for 

(f> are avoiding overfitting and simplifying the calibration process, but still these points 

are not convincing: overfitting can be ruled out by parametric classes that are not as 

inflexible as the above, and calibration can also be efficiently tackled for high-dimensional 

parametric classes, as will become clear in the following. But before we touch on these 

points, we will develop the general theory of GEMMs.

3.2 .1  L IB O R  dyn am ics under th e  forward L IB O R  m easure

Our next step will be to derive the dynamics of L(-,Tfc_i) under the QT* forward-measure, 

with Ti G T, assuming throughout that o  is of the form (3.3). In the course of the 

derivation, we will exploit the following version of Girsanov’s theorem (cf. e.g. Hunt Sc 

Kennedy [2000], p. 103):

T heorem  3.1 (Girsanov). Suppose W  is a d -dimensional (F,P) Brownian motion, 

Q ~  P, and the strictly positive IP -martingale (  with (,(t) = ^  

version. Then Z  defined by

has a continuous
Ft

z m  = Wi(t) - \ W i , f  C(s)-1  dC(*)l (t), * =  1, • ■ •, d, 
Jo



Chapter 3. Smile-consistent generalised extended LIBOR market models 78

is a d -dimensional (F, Q) Brownian motion.

This leads us to the main result of this section.

T heorem  3.2 (LIBOR-dynamics under various forward measures). Take Tk £ {T i,. . . ,  Tn} 

as fixed and assume

dL{t,Tk-\) =  <r

where W Tk is a standard d-dimensional (F, QTk) Brownian motion. Then the following 

relations for the LIBOR dynamics under the forward measure QTi, Ti E T, hold:

i < k : dL(t,Tk-{) =cr(t,Tk- i)

i > k : dL(t,Tk- i )  =cr(t,Tk- 1 )

where 0 <  t < min{Ti,Tjt_i} and W Ti is a standard d-dimensional (F, QTi) -Brownian.

Proof: First we consider the case i < k . We may assume that k > 2, because k = 1 

leads to i = 0 and 0 < t < To = 0, which is trivial. We start by deriving the LIBOR 

dynamics under QTk~1 . In order to obtain the Radon-Nikodym derivative of Q7 *1- 1 with 

respect to QTk , we employ the change-of-numeraire technique (see e.g. Geman et al. 

[1995] or Bingham &; Kiesel [2004], Chapter 9):

= p(o,rfc)p(rfc- i ,r fc-i)
d®Tk plTk. u Tk)p(0 ,Tk^ )

_  1 +  rkL(Tk- i ,  Tfc_i)
1 +  rkL(0,Tk- i )
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dQTk T t

T t

Now for 0 < t < Tfc_ i,

_ F ( W P * - 1
Tt ®Tk V dQTk

 tcj, ( i  +  TfcL ( r fc- i , r fc- i )
QTfeV l  +  rtLCO.T^!)

_ 1  +  TkL(t,Tk~ i)
1 +  rfcL(0,Tfc_ i ) ’

where the last equation follows because L(-,Tk- 1 ) is a QTfc-martingale. The above version 

of Girsanov’s theorem tells us that the process W T k ~ 1 defined by

f k- '  = w f k - \ w ? k, x ] ,  i =  l , . . . , d ,

with

1 1 +  '^ (O , Tfc_i) ^ 1 +  ta;L(s, Tfc_i)f  1
X i t )  =  Jo 1 +  Ifc-i) "  V1 +  rkL(0 , Tt-x)

- i ‘ r r s b v r ) J < I + ’> I( ’ ' T* -‘l)

-f.r Tk
+  ^ ^ ( 5 , ^ - 1 ) 

is a Q7 ^ - 1 -martingale. Simplifying, we get

-  d W

=  dw['{t) -  dWfk{t)dX(t)

= dWjk (t) -  d,Wfk (t) x +  ^  o(t, Tk̂ )dWTk(t),

or in vector form

d W Tk- ' ( t )  = d W Tk(t) -  rT* . d W Tk(t)<r(t,Tk- 1) d W V ‘(t)1 +  TkL{t,  ±k - l )

= dW Tk(t) -  

= dW Tk(t)

Tk
1 +  rkL (t,T k- i)

Tfc
1 +  TkL(t,Tk- 1 ) 

For the LIBOR dynamics under Q7 * - 1 we obtain

dW Tk (t) dW Tk {t)' a (t , Tfc-i)'

dL(t,Tfc_1) = <7(t,TA:_1)dTFTfeW

<T(t’r * -l) ( i  +  J ( t , r fc_1) g (t’rfc- l) 'dt +  ^ r t~1(t))  ’
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which completes the proof for the case i = k — 1. The corresponding result for general 

i < k — 1  can now easily be obtained via backward induction by repeating the above 

argument. The case i > k can be handled in a similar fashion. □

An immediate consequence of the above theorem is that a forward LIBOR process L(-, Tk-i) 

is a martingale only under its respective forward measure QTfc. In the standard LIBOR 

market model, the above result also implies that a forward LIBOR rate is log-normal only 

under its respective forward measure.

The following existence theorem for GEMMs slightly generalises the corresponding result 

for EMMs due to Andersen & Andreasen [2000].

T heo rem  3.3. Suppose that L(0,Tk-i) > 0 for all k £ {1 ,... ,n}. I f  <f>

(i) is locally Lipschitz continuous, i.e. Vz 3c(z) > 0 such that for 0 < x ,y  < z and 

Vfc £ { 0 , . . . ,n  — 1} : \4>{x,Tk) -  <f)(y,Tk)\ < c(z)\x - y \ ,  and

(ii) satisfies a linear growth condition:

3c > 0 such that 'ix > 0 and Vk £ { 0 ,... ,  n — 1} : <f)(x, Tk ) 2 < c( 1 4 - x)2,

then a non-explosive, unique solution of the system of SDEs in Theorem 3.2 exists under 

all measures QTfe. I f  further L(0,Tk~i) > 0 for all k £ { l , . . . ,n } ,  then the solution is 

positive for all t>  0 .

The local Lipschitz condition in the above theorem guarantees the uniqueness of the so­

lution, the linear growth condition its non-explosiveness in finite time. The proof, which 

uses standard existence and uniqueness arguments, proceeds exactly along the same lines 

as the one in Andersen & Andreasen [2000], to which we refer for further details.

In general, it is not possible to state an explicit solution of our system of SDEs, not even 

for the standard LIBOR market model. As a consequence, one has to resort to numerical 

methods such as Monte Carlo simulation when pricing certain complex derivatives that 

depend on the simultaneous realisation of several LIBOR rates in the above setup. The 

relation given in the following corollary is central for the simulation of the LIBOR market
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model, as for simulation purposes one measure QTk has to be chosen, under which all 

forward LIBOR rates have to be evolved simultaneously.

C orollary  3.1. Under the assumptions of Theorem 3.2, we find the following relation

between the Brownian motions W Tk and W T k ~ 1 under the respective measures QTk and 
QTk- 1  :

=  dW Tk{t) _  _ _ ^ _ _ a{tjTky d t

Supposing that we choose e.g. the terminal measure QTn as a reference, the above corol­

lary helps us to inductively construct the LIBOR processes L(-,Tn_i), L(-,Tn_2 ) etc. 

under QTn.

3.3 Pricing caplets and floorlets in a GEMM

A caplet with reset date Tk, maturity Tk+i and strike rate K , or briefly a Tk -caplet with 

strike K , is a derivative that pays the holder

rk+1 (L(Tk,Tk) -  K ) +

at time Tk+1 . Hence a caplet can be regarded as a call option on a LIBOR rate, or, 

equivalently, an insurance against interest rates rising above a certain level. A Tk -floorlet 

with strike K  is a derivative that pays the holder

rk+1(K  -  L(Tk,Tk))+

at time Tk+1 . The arbitrage-free price of a Tk -caplet at time t is

Tk+1 (L(Tk,Tk) -  K)+
p{t) Tk+i)EoT)k+ 1 p(Tk+i,Tk+i)

= rk+ip(t,Tk+i)EQTk+1 [(L(Tk,Tk) -  K )+ \F t]

The Feynman-Kac connection now allows us to state the following theorem.

T heorem  3.4. The t -price C (t,Tk,K ) of a Tk -caplet with strike K  is given by

C(t, Tk, K ) = rk+1p(t, Tk+1 ) f{L (t , Tk),v{t, Tk))
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with

v(t,T k) = J  k ||A (s,2y | | 2 ds, 

where f ( x ,r )  solves the initial value problem

\<l>(x,Tk)2 - jL f ( x ,T ) =

with initial condition

f(x ,0 )  = (x -K ,0 )+ .

A similar result holds for floorlets, with the difference that the initial condition is f ( x ,  0) =  

(K —x, 0)+ . The proof, which uses a deterministic time-change argument and the Feynman- 

Kac formula, can be found in Andersen &; Andreasen [2000]. The above PDE can be solved 

efficiently by numerical methods, e.g. a Crank-Nicolson finite difference scheme. In addi­

tion, it is also possible to use the Hagan-Woodward proxy to get approximate caplet-prices. 

As caps and floors axe portfolios of caplets and floorlets, the above results readily extend 

to the pricing of these instruments.

3.4 Pricing swaptions in a GEMM

An interest rate swap (IRS) is a contract to exchange fixed against floating payments, 

where the floating payments typically depend on LIBOR rates. An IRS is specified by 

its reset-dates Ta , Ta+1 , . . . ,  T p-i, its payment-dates Ta+1 , . . . ,  Tp, and the fixed rate K. 

At every Tj G {Ta+i , . . .  ,Tp}, the fixed payment is tjK  with Tj =  Tj — T j- 1 , while 

the floating payment is T jL (T j- i,T j- i) . That is, the floating payment in Tj is already 

determined in T j- 1 . The set of fixed (floating) payments is called the fixed (floating) leg 

of the swap, and the party that makes the fixed (floating) payments is said to hold a payer 

(receiver) swap. The value of a swap in t  < T a can be determined without making any 

distributional assumptions on the LIBOR rates, as the following considerations show. The 

Tj- 1  -value of the floating payment T jL (T j-i,T j-i)  that is paid (respectively received) at
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time Tj is

P(Tj - i ,T j )r jL (T j- i ,T j - i )  =  p{Tj- i ,Tj) r j  — ~  ^

= 1 — p(Tj-i ,  Tj),

and therefore the t -value (t  < T j - 1 ) of the floating payment must be p(t, T j - 1 ) —pit, Tj). 

It follows that the value of a payer swap in t < T a is

0 0
Y  (p(t,T<_ l)-p (t ,T <) ) -  Y  Ti)TiK
i=a+l i=a+l

0

=  Y  (P(*> T- i )  -  C1 +  r i K ) p { t ,  % ) )
i=a+l

0

=  Y  P ( t , T i ) T i ( L ( t , T i - 1 ) -  K ) ,  (3.4)
i=ot+1

or alternatively

0 0
^ 2  (p{t,Ti-i) - p ( t ,T i ) )  -  ^ 2  P{t,Ti)TiK

i=a+1 i=a+1

0
= p{t ,Ta) -  p(t,Tp) -  ^22 p{t,Ti)TiK, (3.5)

i=a+l
since other prices obviously give rise to arbitrage opportunities. Accordingly, the value of 

a receiver swap is

0
Y  p{t,Ti)n{K -  L{t,T^{))

i=a+1

0
=  pfaTp)  -  p(t,Ta) +  ^ 2  p(t,Ti)riK.  

i=a+l

The forward swap rate (FSR) at time t of the above IRS, which we denote by Sa^(t) , is

the value for the fixed rate K  that makes the t -value of the IRS zero. Sa^ (t)  can thus

be obtained by equating expression (3.4) to zero and solving for K,  which gives

0
Sa,0(t) = ^ 2  m ( t )L ( t ,T i - 1 ) (3.6)

i=a+1
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with

Tip(t, Ti)
Wi ( t )  =   a-

Tfj=a^ r jp{t,Tj y  

or equivalently by equating (3.5) to zero, which gives

s  (t) = p(t,Ta) -  p(t,Tp)
Z to r t . in p f c r , ) '

Equation (3.6) shows that the FSR can be expressed as a suitably weighted average of the 

spanning forward LIBORs.

Now we introduce swap options, or swaptions for short, which, along with caps and floors, 

constitute the most popular instruments in the interest rate derivatives world. A European 

payer swaption gives the holder the right to enter a swap as fixed-rate payer at a fixed rate 

K  (the swaption strike) at a future date that coincides with the first reset date Ta of

the underlying swap. Similarly, a European receiver swaption gives the holder the right to

enter a swap as fixed-rate receiver. To express the value of a payer swaption as a function 

of the swap rate, first notice that the following relation, which can easily be verified, holds 

for the t -value of a payer swap: For 0 < t < Ta ,

0 0
Y  p(t,T i)n (L (t,T i- 1) - K )  = -  K ) Y ,  np(t,T i). (3.7)

i=a+l i=a+ 1

Needless to say, a similar formula can be derived for receiver swaps. The advantage of the 

expression on the right-hand side of equation (3.7) over the expression on the left-hand 

side (which is our formula (3.4)) is that one can instantly tell from Saip(t) if the t -value 

of the payer swap is positive or negative, which is not at all obvious from formula (3.4). 

At the maturity date Ta, a payer swaption is exercised if and only if the value of the 

underlying swap is positive, which is the case if and only if Sa,p{Ta ) — K  > 0  holds. 

Clearly, the payer swaption-value in Ta is

0
(SadT a) -  K)+ Y  np{Ta ,Ti),

i=a+ 1

and the receiver swaption-value is

0
(K  -  Safi(Ta))+ Y  np{Ta,Ti). 

i=a+ 1
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3.4 .1  A n  app roxim ate pricing form ula for sw ap tion s

Now we turn to the problem of deriving an approximate pricing formula for swaptions. In 

an LMM, swaptions generally have to be priced by Monte Carlo simulation. For calibration 

purposes, it can be helpful to have an analytical approximation at hand, as this can 

considerably speed up the calibration process. Analytical approximations can also be 

useful for calculating sensitivities, because sensitivities obtained by Monte Carlo simulation 

are notoriously unstable and prone to numerical errors. 2 We observe that

P

Aatp ( t )=  ^ 2  Tip{t,Ti) 
i =cc+1

is the t -price of a portfolio of bonds (i.e. a traded asset). Consequently, A a^(t), which if 

known as accrual factor or present value of a basis point, can be used as numeraire. Now 

note that

o _  P(t>Ta) -  PfoTp)
s ^ { t >  C T  ’

where the numerator can be regarded as the price of a traded asset as well. We conclude 

that, in order for our model to be arbitrage-free, the swap rate Sa,p has to be a martingale 

under the numeraire pair (Qa’̂ , A atp(-)). Qa>̂ is the so-called forward swap measure.

In order to derive a tractable SDE for (Sa,p(t)) given by (3.6), we need some simplifying 

assumptions. First, for most reasonable shifts of the LIBOR curve, the weights W i ( t )  vary 

only little, and therefore can be approximated by their initial values u;i(0) (’freezing the 

weights’) . 3 Second, if the LIBOR curve experiences predominantly parallel shifts (as is 

the case in practice), approximating

with (ps(') defined by

P

<t>s{Sa,p(t)) = ^ 2
i= a + l

2 See also Glasserman & Zhao [1999], who deal with the problem of calculating sensitivities in an LMM

by Monte Carlo methods, and present algorithms that substantially improve on a naive Monte Carlo

approach in terms of quality and speed.
3This can be shown by simulation studies.
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by its initial value often reasonable. Third, assuming zero drifts of the
0S'(Oq!)/3(O))

LIBOR processes under the forward swap-measure will typically have a negligible impact 

on swaption prices (’collapsing all measures’). Applying these simplifications leads to

0

dSafp(t) «  ] j r  Wi(Q) dL(t,T i-i)  
i=a+l

0
~  wi(Q)HL̂ Ti-l)̂ Ti-l)Kt T̂i-l)dWaAt)

i=a+l

P
= <t>s{Sa,p(t)) ^  uJi\(t,T i-i)dW a^(t)  (3.8)

i=a+l

with

_ /rv\ 0 (^(0 ) -fi—1 )> l)— tUj (0 ) ■
0s(5a,/3(O))

and Waj/g(-) a standard d -dimensional Brownian motion under Qa>̂ .

For the price S(0,Ta,T p ,K ) of a payer swaption with strike K  at time t  = 0, we get

S{0,Ta,Tp ,K )
^a,/?(0 )

which reduces to

= Et )<X,0

CSaJ>(Ta) - K ) +
A a jP a )  A°A T “>

S (0 ,Ta ,T p ,K )  =  ^ (0 )E q„,s [(Sa^(r„) -  isr)+] .

Approximating the swap rate process by (3.8) leads us to conclude that we can calculate 

the approximate price of above swaption by the same method as caplet-prices in the 

GEMM:

T heorem  3.5. The price S{0, Ta, Tp, K ) of a payer swaption in a GEMM can be approx­

imated by

S(0,Ta,T p ,K )  ss ^ ( 0 ) f l ( 5 aj3(0),t>s(0,Ta )) (3.9)
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with

where g(x, r) solves the initial value problem

1 , , 2  ̂ & r \
2 <f's (x ) f a t s(x ,T ) =

with initial condition

g(x, 0) =  (a; -  K, 0)+ .

The above price can be worked out numerically, or, as for caplets, the Hagan-Woodward 

formula can be used to get an approximation for (3.9). Hull k  White [2000] derive a 

somewhat more exact approximation in the standard LMM by proceeding along similar 

lines. Their approximation can also be readily extended to our GEMM setting.

3.4 .2  N um erica l te s ts

The quality of the proposed approximation will generally depend on the concrete choice 

of functions and parameters involved in the (exact) swap rate dynamics. While it is not 

feasible to test the approximation for all realistic scenarios, a closer look at a few typical 

ones might already suffice to convey a good impression of its quality. We choose to study 

the scenarios detailed in Table 3.1. 4

We assume that the current time t  is 0, and calculate the prices of swaptions with maturi­

ties of 1, 5 and 10 years on swaps that run for 1, 5 and 10 years and are reset semi-annually, 

i.e. n  = t  = 0.5 for all i . 5 These test-cases are inspired by those in Andersen k  An­

dreasen [2000]. The choice of closely related test-scenarios enables us to compare our 

results with those of Andersen and Andreasen, whereby we can gauge the impact of allow­

ing for a differential volatility structure (with </>(*, l i )  depending on Ti rather than using 

one fixed <f> for all maturities) on the quality of the approximation. For all three scenarios, 

the motivation behind the choice of the local volatility function (j> is the empirically ob­

served flattening-out of the IVS with increasing times to maturity. Scenario 1  corresponds

4 In the table, [T — t] denotes the integer part of T  — t .
5For example, a swaption maturing in 1 year on a swap running for 5 years is called a 1 into 5 swaption.
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Scenario 1

L(0, Ti) = 0.06, Ti G {0,0.5,..., 19.5}

A(t, Ti) =  0.05, Ti 6 {0.5,1,..., 19.5}

<p(x,Ti) = xmin {a;0-057*-1, 20} , Ti G {0.5,1,..., 19.5}

Scenario 2

L{0, r*) =  0.06, Ti G {0,0.5,..., 19.5}

\{t,Ti) = max {0.1 -  O.Olpi - 1], 0.01} , Tt G {0.5,1,..., 19.5}

<t>(x,Ti) = sm in {xO.02571-0  ̂2o} , Tj e  {0.5,1,..., 19.5}

Scenario 3

£(0, Ti) =  0.06, Ti 6 {0,0.5,..., 19.5}

\{t,T i) =  (A1{t,Tj),A2( t,r4)) =  (o.04,0.04-0.015x/[T4- t ] )  , Tj e  {0.5,1, . . . ,  19.5} 

4>(x,Ti) = x m m {x 0 025Ti-° '5,20}, Tj e {0.5,1,..., 19.5}

Table 3.1: Test scenarios

to a simple one-factor model with constant A. Scenario 2  builds on a decreasing function 

A which takes account of the empirically motivated rule of thumb that the volatility of 

LIBOR rates decreases with increasing time to maturity. Finally, scenario 3 is a two-factor 

model, where Ai represents parallel shifts of the term structure, and A2 changes of its 

steepness (often called twists) . 6 In all scenarios, A is chosen to be stationary, in the sense 

that it only depends on the time to maturity T  — t, which is desirable from an empirical 

viewpoint (see Brigo &; Mercurio [2001]). Figures 3.1 and 3.2 show c/)(x,T)/x and A(t,T )  

for scenarios 2 and 3, respectively. 7

We pursue the following testing plan: For every swaption, we perform a Monte Carlo 

simulation with 10 million antithetic paths. To keep the discretization-bias arising in the 

course of the simulation-procedure as low as possible, we use a step-size of 0.0625 (years) 

for the simulation, and choose piecewise constant functions A. 8 Then we calculate the 

means and standard errors reported in Tables 3.2, 3.3 and 3.4. The approximations in the

6This choice can be justified by principal component analysis of empirical term structure data.
7For comparison: In a standard LMM (cf. (3.1)), we have <f>(x,T)/x =  1.
8 For practical applications, one would typically choose a significantly larger step-size to speed up the 

simulation procedure without losing much accuracy.
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local vol

Figure 3.1: (f>(x,T)/x for scenarios 2 and 3
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Figure 3.2: A(t ,T)  for scenarios 2 and 3
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Swaption Ta Tp Simul. price Std. err. Proxy Abs. error Rel. err. in %

l x l 1 2 147.797 0 . 1 0 2 146.612 -1.186 -0.802

1 x 5 1 6 520.820 0.579 522.522 1.702 0.327

1  x 1 0 1 1 1 712.767 0.706 717.940 5.172 0.726

5 x 1 5 6 148.672 0.103 148.517 -0.156 -0.105

5 x 5 5 1 0 520.749 0.252 523.227 2.477 0.476

5 x 10 5 15 712.131 0.400 718.672 6.541 0.918

1 0  x 1 1 0 1 1 78.099 0.072 78.055 -0.044 -0.056

10 x 5 1 0 15 273.027 0 . 2 0 0 273.567 0.540 0.198

1 0  x 1 0 1 0 2 0 373.457 0 . 2 0 1 375.406 1.949 0.522

Table 3.2: Simulated and approximate prices of at-the-money payer swaptions for scenario 

1  in basis points

tables are obtained by numerically solving (3.9) with a Crank-Nicolson finite difference 

scheme.

Even a superficial glance at the tables reveals that the quality of approximation in our test 

cases is excellent, the approximation error never exceeding 1%. A comparison with the 

approximation errors reported by Andersen and Andreasen for their test-cases shows that 

they are of the same order of magnitude, and -  at least in the scenarios under consideration 

-  our more general approximation that allows for maturity-dependent functions 0  does 

about equally well as their limited one. As already mentioned, testing could be extended 

to a sufficiently rich set of scenarios, in order to get a better impression of the reliability 

of our approximation and the determinants of its quality. For reasons of scope, we will 

refrain from doing so at this point, and leave this for further research.

3.5 GEM M s in practice

Numerical issues are of paramount importance for the practical applicability of a financial 

model, even more so if it is geared to become a uniformly accepted market standard. In 

the following, we will briefly touch on questions concerning calibration and simulation in
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Swaption Ta Tp Simul. price Std. err. Proxy Abs. error Rel. err. in %

l x l 1 2 78.506 0 . 1 0 2 78.465 -0.041 -0.053

1 x 5 1 6 253.113 0.313 253.456 0.343 0.135

1 x 1 0 1 1 1 303.541 0.309 304.126 0.585 0.193

5 x 1 5 6 84.064 0.098 84.109 0.044 0.053

5 x 5 5 1 0 258.899 0.324 259.898 0.999 0.386

5 x 10 5 15 301.658 0.283 303.441 1.783 0.591

1 0  x 1 1 0 1 1 47.495 0.064 47.509 0.015 0.031

10 x 5 1 0 15 142.783 0.070 143.066 0.283 0.198

1 0  x 1 0 1 0 2 0 167.378 0.168 168.006 0.628 0.375

Table 3.3: Simulated and approximate prices of at-the-money payer swaptions for scenario 

2  in basis points

Swaption Ta Simul. price Std. err. Proxy Abs. error Rel. err. in %

l x l 1 2 43.714 0.046 43.863 0.149 0.072

1 x 5 1 6 144.073 0.163 144.051 -0 . 0 2 2 -0.015

1  x 1 0 1 1 1 205.107 0 . 2 1 2 204.758 -0.349 -0.004

5 x 1 5 6 49.071 0.050 49.045 -0.026 -0.052

5 x 5 5 1 0 177.357 0 . 2 0 1 177.423 0.066 0.037

5 x 10 5 15 261.717 0.181 262.017 0.300 0.115

1 0  x 1 1 0 1 1 34.200 0.024 34.188 -0 . 0 1 2 -0.034

10 x 5 1 0 15 128.764 0.059 128.743 -0 . 0 2 1 -0.016

1 0  x 1 0 1 0 2 0 194.403 0.194 194.512 0.109 0.056

Table 3.4: Simulated and approximate prices of at-the-money payer swaptions for scenario 

3 in basis points
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the GEMM-context. For an exhaustive treatment of these points in a standard LMM 

context, we refer to Brace et al. [1998], Glasserman Sz Zhao [1999], Glasserman Sz Zhao 

[2000], Hull Sz White [2000], Pelsser [2000], Brigo Sz Mercurio [2001], Rebonato [2002], 

Rebonato [2003] and Rebonato [2004].

3.5 .1  C alibration

The only major difference between the standard LMM and the GEMM with regard to 

calibration relates to the choice of the functions </>(•, T/.) : Once the IVSs for all maturities 

Tk have been obtained (e.g. by fitting functions of a certain parametric class to market- 

observed implied volatilities), one of the approximations (PI) to (P6 ) is chosen to calculate 

the <f)(‘,Tk); this already ensures smile-consistency, without having to go through compu­

tationally expensive and often unstable calibration procedures. After this step, one can 

proceed in much the same way as for standard LMMs. For example, the functions A(-, Tk) 

can be chosen so as to reflect a trader’s view on future IVSs, and the remaining degrees 

of freedom (e.g. the number of driving factors) can be utilised to calibrate the model to 

swaption prices and/or historical LIBOR correlations.

3.5 .2  S im ulation

The simulation procedures for EMMs (as outlined e.g. in Andersen Sz Andreasen [2000]) 

can be adapted in a straightforward fashion to the GEMM-setting. Perhaps a bit surpris­

ingly, despite the complex LIBOR-dynamics, GEMM-simulations can be carried out as 

efficiently as LMM-simulations, provided that the values of the functions </>(•, Tk) are tab­

ulated before running the simulation. Thereby, the evaluation of <f> after each simulation- 

step can be avoided. The numerical error introduced by tabulating the </>(•, Tk), which 

amounts to approximating them by piecewise constant functions, is negligible as long as 

the discretization-mesh is reasonably fine. Another issue relates to the choice of the step- 

size in the simulation process; this question was explored by Andersen Sz Andreasen [2000] 

in the EMM setting. At this point, suffice it to say that simulation studies we conducted 

for different classes of </> have shown that using the same step-sizes as the above-mentioned 

authors for the EMM also leads to negligible discretization errors in the GEMM.
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3.6 Summary

In this section, we develop the theory of generalised extended market models. Building 

on and extending results from Andersen &; Andreasen [2000], we show that there exist 

efficient approximations for both caps/floors and swaptions, regardless of the specific form 

of (f>. The calibration procedures for standard LIBOR market models that rely on efficient 

approximations can therefore be used in the GEMM setting. Combined with our results 

from the previous chapter, this means that we are able to fit any given set of implied 

volatility smiles for the maturities of the tenor structure (almost) exactly, while at the same 

time preserving numerical tractability. Calibration to caplet smiles is, by the methods 

outlined in the previous chapter, almost immediate, and calibration to volatility term 

structures and swaption prices can follow the same methods as in the standard LMM. 

Summing up, we propose a very flexible framework that is both smile-consistent and 

numerically highly tractable.



Chapter 4

LIBOR market models driven by 

Levy processes

Modelling equity prices through Levy processes has become very popular in recent years 

and has been the subject of many studies (see e.g. Eberlein k  Keller [1995], Barndorff- 

Nielsen [1998], Chan [1999], Prause [1999], Raible [2000], Barndorff-Nielsen et al. [2002], 

Carr et al [2002], Carr et al. [2003], Bingham k  Kiesel [2004]). Levy-driven models im­

prove on many of the shortcomings of the classical Black-Scholes approach. As pointed out 

in numerous publications, empirical evidence strongly contradicts the log-normality and 

path-continuity assumptions underlying the Black-Scholes model: Empirical log-return 

distributions are typically skewed and more leptokurtic than the normal distribution, and 

jumps in price processes can easily be identified. 1 Levy processes, in contrast, are much 

better able to capture these stylised properties. What makes Levy processes of particular 

importance for our purposes is the inherent deviation from the log-normality assumption, 

in combination with the great flexibility they provide when it comes to fitting marginal re­

turn distributions, as these features allow for an excellent fit to observed implied volatility 

surfaces (see e.g. Schoutens et al. [2003] for a treatment in the equity context).

However, research in interest rate models with Levy processes as driving noise is still in its

lrThe simple fact alone that trading takes place only at discrete time-points causes discontinuities in 

price processes.
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infancy. The relative sparseness of research in this area seems to be due to various reasons. 

Firstly, the development in mathematical finance during the last decades clearly shows that 

extensions and modifications of the classical Black-Scholes paradigm, such as incorporating 

jumps, local or stochastic volatility in price processes, have first been extensively studied 

in the equity or foreign exchange context before finding their way into the interest rate 

world. Evidently, this is due to the additional mathematical complexity one faces in the 

construction of interest rate models, which prevents approaches that work in the equity 

world from being carried over in a straightforward fashion. Secondly, only in recent years 

have advanced interest rate models, such as the Heath-Jarrow-Morton [1992] framework 

and most notably the LIBOR market models (Brace et al. [1996], Jamshidian [1997], 

Miltersen et al. [1997]) been thoroughly understood and embraced by both practitioners 

and the academic community. Now that these models are at a relatively mature stage and 

their practical application is under control, an extension to the Levy context seems to be 

a natural step.

To the best of our knowledge, the only treatments of Levy-driven LIBOR market models 

are Ozkan [2002] and Eberlein & Ozkan [2004].2 However, those are purely theoretical, 

and the reader is left without a clear idea regarding the (non-trivial) implementation and 

related numerical issues. In what follows, we shall make an attempt to at least partially 

bridge this gap. After laying out the mathematical basis, we shall, using a change of 

numeraire argument, give a novel derivation of the relationships between the various for­

ward LIBOR measures, which are the essential building blocks of our model. Then, we will 

proceed by proposing approximation techniques that substantially facilitate implementa­

tion. Their quality will subsequently be studied using a concrete parameterisation. In this 

context, we will also discuss further issues concerning simulation and implementation.

4.1 Levy processes, additive processes and beyond

First, we give a short introduction to Levy processes and compile some important results 

in order to render a self-contained treatment of Levy-based LMMs possible. More detailed

2 But see Glasserman Sc Kou [2003], Glasserman Sc Merener [2003a] and Glasserman Sc Merener [2003b] 

for a jump-diffusion LIBOR market model and related numerical methods and approximations.
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accounts on Levy processes can be found e.g. in Bertoin [1998], Sato [1999], Genian [2002], 

Protter [2003], Schoutens [2003], Applebaum [2004], Bingham fa Kiesel [2004] and Cont 

fa Tankov [2004].

4.1 .1  L evy processes

Definition 4.1. Assume a filtered probability space (0 ,F  =  [T t) ,T , P) satisfying the usual 

conditions. A cadlag3, adapted process X  = (Xt)t>o with Xq = 0 a.s. is a Levy process 

i f4

(i) X  has increments independent of the past, i.e. X t — X s is independent of Fs, 

0  < s < t < oo.

(ii) X  has stationary increments, i.e. X t — X s has the same distribution as 

0  < s < t < oo.

(Hi) X  is continuous in probability, i.e. Ve > 0 and Vt > 0 we have 

limh_o P(|Xt+/i -  X t \ > e) = 0 .

It follows immediately from the defining properties that X t can be expressed as

Xt =  ( x t -  -X tn=l) +  ( X t^ 1 -  X t +  • • • +

that is as the sum of n  G N independent and identically distributed random variables: X t 

has an infinitely divisible distribution. The following theorem clarifies the relation between 

infinitely divisible distributions and Levy processes (see e.g. Cont fa Tankov [2004], p.69):

Theorem 4.1. Let X  = (Xt)t>o be a Levy process. Then for every t, X t has an 

infinitely divisible distribution. Conversely, if F  is an infinitely divisible distribution, 

then there exists a Levy process X  such that F  is the distribution of X \ .

3 In principle, it is possible to define a Levy processes without imposing the cadlag-property. But it 

can be shown (see e.g. Protter [2003], Chapter 2, Theorem 30), that every Levy process (defined without 

the cadlag-property) has a unique cadlag modification. So there is no loss of generality in imposing the

cadlag-condition.
4 For notations! simplicity, we consider only R-valued processes.
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A major result, which relates the characteristic function of X t to the characteristic triplet 

of the Levy process A, is the Levy-Khintchine representation (see e.g. Cont k  Tankov 

[2004], p.83):

T heorem  4.2 (Levy-Khintchine representation). Let X  = (At)t>o be a Levy process. 

Then the characteristic function of X t is

E [eiuXt] =

with

<f>(u) = I 7 u 2  ~  +  /  0 - ~  elUX) v {dx) +  f  (l — etux +  iux) v{dx),

where 7  E R is called the drift of the Levy process and b2 > 0 the diffusion coefficient, v 

is a positive measure on R with ^({0}) =  0 such that

J' m m { l,x 2 }u(dx) < 0 0
R

and is called the Levy measure of the process X , and (7 , b2 ,v) is called the Levy triplet 

or characteristic triplet of the process X . 5

The next theorem -  the Levy-Ito decomposition -  is intimately related to the Levy- 

Khintchine representation. The close link between these fundamental results is detailed 

e.g. in Bingham & Kiesel [2004], p. 183, and Cont & Tankov [2004], p.79. But first, we 

need the following definition (see Sato [1999], p.119).

D efinition 4.2 (Poisson random measure). Set I  = (0,0 0 ) x R, and denote the Borel 

a-algebra of I  by B(I). Let be a a-finite measure space. A family of integer­

valued, non-negative random variables {Q{B) : B  6  B(I)} is called Poisson random 

measure on I  with Levy (or intensity) measure v, if the following conditions hold:

(i) For every B  e B(I), Q{B) follows a Poisson-distribution with mean v{B).

(ii) I f  B i , . . . ,  Bn G B(I) are disjoint, then Q (B i) , . . . ,  Q(Bn) are independent.

5It is worth noting that the drift 7 depends on the truncation function being used; see e.g. Cont & 

Tankov [2004], p.83, or Bingham & Kiesel [2004], p.217, for details. Here and in what follows we use the 

canonical truncation function l(|cc| <  1).
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(Hi) For every u, Q(-,w) is a measure on I.

The integral of a function / : / • —> M with respect to a measure Q is written as

[  f ( s , x ) Q(ds, dx), A e B(I).
Ja

Theorem  4.3 (Levy-Ito decomposition). Let X  = (Xt)t>o be a Levy process with char­

acteristic triplet (7 ,b2 ,v). Then X  can be decomposed into

X t = j t  + bBt + Mt + Jt

with

• a drift-term 7 1 with constant 7  G R

• a standard Brownian motion (B t) scaled by a constant b G R

• a quadratic pure jump process6

Mt = [  x(Q([0 ,t],dx) —tv(dx)),
J \x \< \

where Q(dt, dx) is a time-homogeneous Poisson random measure on R+ x R and 

v the corresponding intensity (Levy) measure (also called P -compensator of Q ). 

(Mt) can be regarded as a compensated (finite or countably infinite) sum of jumps 

with absolute size smaller than one.

• a compound Poisson process

\A X S\>1

xQ([0 ,t],dx) = V '  AXS,

where we use the notation A X S = X s — X s-  with X s-  =  limt / 's Xt.

Tie processes appearing in the decomposition are independent Levy processes, and (bBt)

a%d (Mt) are martingales. 7

6A  process (Mt) is called quadratic pure jump, if the continuous part of its quadratic variation 

process, ([M, M]t),  is identically zero. In this case, the quadratic variation reduces to [M, M]t =

7 Again we note that the drift depends on the truncation function chosen in the decomposition



Chapter 4. LIBOR market models driven by Levy processes 99

In case |a?| v(dx) < oo, 8 the Levy-Ito decomposition of a Levy process with charac­

teristic triplet ( 7 ,b2 ,v) simplifies to

X t = *jft + bBt +  Jt

with
a x 3̂ o

xQ([0,t],dx) = ^ 2  A X a 
se(o,t]

a compound Poisson process, and

7  =  7 — / xv(dx).
J \x \ < l

4 .1 .2  A d d itive  processes and generalisations

When building concrete Levy-based financial models, one soon encounters their main lim­

itation: the stationarity of increments leads to rigid scaling properties, which are hardly 

ever observed in real-world financial data. This makes incorporating observed term struc­

tures (for instance of implied volatilities) an almost hopeless effort. The logical conse­

quence of this shortcoming is to give up stationarity and allow for time-inhomogeneity, 

which leads to the class of (time-)inhomogeneous Levy processes, also known as additive 

processes. Fortunately, additive processes are almost as tractable as Levy processes, while 

providing a much greater degree of flexibility.

Definition 4.3. Assume a filtered probability space (0 ,F  =  {T t),T , P) satisfying the usual 

hypotheses. A cadlag, adapted, real-valued process X  = (X t ) t> 0  with Xq = 0 a.s. is an 

inhomogeneous Levy process or additive process if

(i) X  has increments independent of the past, i.e. X t — X s is independent of T s, 

0  < s < t < 0 0 .

(ii) X  is continuous in probability, i.e. Ve > 0 and Vt > 0 we have 

lim/^o PflXt+fc -  X t \ > e) = 0 .

8In the absence of a Brownian component, Xjrcici M u(fix) <  00 holds if and only if the paths of the 

Levy process axe of finite variation on finite time intervals a.s.
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In analogy to the time-homogeneous case, one has (see Sato [1999], p.52, or Cont &; Tankov 

[2004], p.457)

Theorem  4.4 (Levy-Khintchine representation for additive processes). Let X  =  (^t)*>o 

be an additive process. Then X t has an infinitely divisible distribution, and the charac­

teristic function of X t is

E [eiuXt] = e~Mu)

with

(j>t{u) = ^ u2 -  iTtu +  [  (l -  etux) pt {dx) +  f  ( l -  elux +  iux) pt{dx)
d\x\>\ J\x\<\

The so-called spot characteristics (Tt,b2, p t)t>Q satisfy the following conditions:

• pt is a positive measure on R with /z*(0) =  0 and f R min {x2, l}  Pt(dx) < ooVt > 

0 .

•  (6 ?) and (Tt) are deterministic processes.

• bo =  0 , po = 0 , To =  0 .

• for 0 < s < t, we have b2 > b2s and pt(B) > ps(B) for all B  E B(R).

• for s —> t, we have b2 —* b2, r s —> r* and ps(B) —> pt(B) for all B  E B{R) with

B  C {x : \x \>  e} for some e > 0.

Conversely, for a family of triplets (T1*, b2, Pt) t > 0  that satisfies the above conditions, there 

exists an additive process with (r* ,6 f, Pt) t> 0  as spot characteristics.

Observe that for additive processes, the exponent of the characteristic function is no longer 

linear in t.

The following example provides a convenient way to construct additive processes.

Exam ple 4.1. Consider a continuous deterministic function a : [0, T] i—> R with Jq a2 dt < 

oc, a family (^t)te[0 T] of Levy measures verifying j^ / Rmin { l,;r2} vt (dx) dt < oo, and
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a deterministic function 7  : [0, T] i-> R of finite variation. Then the spot characteristics 

( r u t f , f i t) te[0T] given by

r  t -  [ i s  ds
Jo

bt = [  a2s ds
Jo

^ ( B )  = f  us(B) ds VB G B(R) Vt G [0,T]
Jo

define a unique additive process. (7 *, af, vt)te[Q T] are called local characteristics.

We now state a version of the Levy-Ito decomposition for additive processes under some 

simplifying assumptions, compare Cont & Tankov [2004], p.452.

T heorem  4.5 (Levy-Ito decomposition for additive processes). Let X  = (^t)te[o,T] be 

an additive process with local characteristics ( 7 *, a?, ^t)te[o T] • Assume that the conditions

(i) z/([0, t],dx) = pt{dx) is absolutely continuous in t with respect to the Lebesgue- 

measure, i. e. is of the form

i/([0, t] ,B )=  pt (B )=  f  vs(B )ds V B e B ( R) Wg[0,T]
Jo

with a family (vt)te[o,T] of Levy measures verifying JQT f R min {1, x2 } vt(dx) dt < 0 0  

(il) Jo Jjx|>i \x \ Vs(dx) d s<  0 0  

hold. Then X  can be split into

X t = f t  +  f  as dBs +  Mt 
Jo

with

• a drift-term f t =  /g 7 S ds +  Jg Jja. |> 1  x vs(dx) ds

• a quadratic pure jump process (Mt) with

Mt = f  x  [Q([0, t], dx) — ^([0, t], dx)\ = f  f  x[Q(ds,dx) — v6 (dx) ds]
J R JO J R

and Q(dt, dx) a time-inhomogeneous Poisson random measure on [0, T] x R and v 

the corresponding Levy measure.
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The processes appearing in the decomposition are independent Levy processes, and ^ Jq as dB^j 

and {Mt) are martingales.

The Levy-Ito decomposition can of course be formulated under less restrictive assumptions. 

However, the above version is still general enough to serve our purposes.

The following definition generalises the notion of a Poisson random measure.

D efinition  4.4. A random measure on I  = (0, oo)xR is a family Q = {Q{u>; dt, dx) : w G fi) 

of non-negative measures on (I,B{I)).

In the following section, we will deal with processes more general than additive ones, which 

will be of the form

f  t +  f as dBs -\- f f x[Q{ds,dx) — v{ds,dx)\ (4.1)
Jo Jo JR

where the compensator v is a predictable measure with the consequence that the incre­

ments of the process are not necessarily independent any longer. That is, we will have to 

deal with semi-martingales with jumps of the form (4.1), which will generally have neither 

stationary nor independent increments. An integer-valued, non-negative random measure 

Q(dt, dx) governs the mechanism whereby jumps occur. The compensator v  of Q is the 

unique predictable measure with the property that

Q{[0,t],B) -v {[0 ,t] ,B )

is a martingale for all B  6  B{R). It is also possible to characterise the compensator as 

the unique predictable measure such that

E l u  H{s, x) [Q{ds, dx) — i/{ds, dx)] =  0

for all B  G B{R) and all predictable processes H\ see, for instance, Chan [1999].

We now recall Ito’s formula for cadlag semi-martingales (see e.g. Protter [2003], Chapter 

2, Theorem 32, or Bingham &; Kiesel [2004], Theorem 5.10.1).

T heorem  4.6 (Ito’s formula). Let {Xt) be a cadlag semi-martingale, and f  G C2 (R).
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Then (f { X t)) is again a cadlag semi-martingale, and the following formula holds:

/(X t)= /( X o )+  f  f ' { X , - ) d X 3 + \  [  /" (X ._ )d [X ,X ]‘
J0+ z j 0+

AXs#0

+  £  [/'(X .) - / '(X ._ ) - / '(X ._ )A X .] .
0 <s<t

The next important result essentially translates Theorems 3.24 and 5.19 of Chapter 3 of 

Jacod Sz Shiryaev [1987] to our present setting, and describes how a change of measure 

affects the Brownian and jump parts of a process of the form (4.1), compare also Chan 

[1999].

T heo rem  4.7. Let (Gt)te[o,T] be a predictable process, (H (t,x))te[0)t ] be predictable for 

fixed x  and the mapping x  ■-> H (t ,x ) Borel-measurable for fixed t. Assume H  > 0 and 

H(t, 0) =  1 for all t G [0,T]. Define a process Z  =  (Zt)tG[o,r] by

Zt =  exp {f. G .dB . —  f *  Cfld8 + f *  j  (H(s,x) — 1  )(Q(ds,dx) —

H(s,AXs)^0
■ J ]  JT(s, AX.) exp { - » ( « ,  A X .)+  1}.

0<s< i

Then Z  is a non-negative local martingale with Zq = 1 and Z  is positive if and only if 

H  > 0. Assume E [Zt ] =  1. 9 Then the measure P* with

is absolutely continuous with respect to P on T t •

For (5 t)t€[0 )T] a ^  -Brownian motion, the process (-B*)te[o,T] with

BJ = B t -  f  Gs ds  
J o

is a Brownian motion under P*, and for Q a random measure with P -compensator 

v{dt,dx) =  dtut (dx), the P* -compensator is of the form v*(dt,dx) = dt (dx) with

vl(dx) = H (t,x ) vt (dx).

Now we have all the necessary tools at hand to give a novel construction of a Levy-based 

LIBOR market model.
9 Observe that this implies that Z  is a martingale.
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4.2 Levy-driven LIBOR market models

Our setup is very much the same as in Chapter 3. We are given a tenor structure T  = 

{To,. . . ,  Tn} as a set of maturities T* with 0 =  To < T\ < • • • < Tn , where Tn is the time 

horizon of our economy. T  is associated with a set of { r i , . . . ,  rn} of year fractions, where 

T i = T i -  Tf_i, i — 1 , . . . ,  n. For simplicity, we assume t* =  5. Moreover, we assume that 

in the financial market under consideration, there exist zero-coupon bonds p(-, T*) of all 

maturities T*, i = 1 , . . .  ,n .  The discretely compounded forward LIBOR rate prevailing 

at time t  over the future period from T*_i to T* is

Our model is built on a stochastic basis (O, F =  (Ti)t6 [0 ,Tn_i]»̂  PTn) satisfying the usual

conditions, on which an additive process LTn =  ( LTn ) is defined. We assume
V * /te[o>rn- 1]

that PTn is the Tn -forward measure. As we already know, the forward LIBOR process 

(L(t,Tn- 1 )) must be a Pr” -local martingale. Now we take an approach that deviates 

from the one we followed in the diffusion setting: We do not posit an SDE for the LIBOR 

dynamics. Rather, we describe the dynamics directly by an exponential additive model by 

postulating

L>(t,Tn—i) =L(0,Tn_i) exp A(s,2^l_i)

= £ (o ,r„ _ i)e x p ( jr (Tn~1) , t  e  [o,r„_i]

with L(0,Tn_i) > 0, and a deterministic function A(-,Tn_i) : [0,Tn_i] i—>• R+ which is

bounded by a constant M Tn~1 G R+. A(-,Tn_i) describes the term structure of volatility

of L(-,Tn_i). The definition of x j n~l is obvious. 10

10A naive replication of the SDE-approach taken in Chapter 3 would -  in the presence of jumps smaller 

than -1 -  lead to negative LIBOR rates. Special care would have to be taken to avoid this, for instance 

by introducing stochastic X's  which would extremely complicate the modelling process, or by severely 

restricting the class of driving processes by excluding those with jumps smaller than -1. Both approaches 

are unsatisfactory.
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We posit11 that the driving additive process LTn is parameterised as in Theorem 4.5:12

L jn = f  7 Jn ds + (  a jn d B jn 4 - f [  x  [Q(ds, dx) — v jn(dx) ds] , 
jo  Jo Jo J r

assuming that (o%n) and (zvjn) are deterministic, and that all integrals, here and in what 

follows, are well defined. As we will soon see, (7 j n) is also deterministic.

X T n ~ 1 is an additive process (which motivates the name exponential additive model),

since

X t " - 1 = I  X(s,Tn- 1)d L j’
Jo

=  [  X(s, T n - i ) ^ "  ds + f X(s,Tn- i ) a ^  dBj"  
Jo Jo

4- f [ \ ( s ,T n- i ) x  [Q{ds, dx) — v jn(dx)ds] 
Jo J R

=  [  A(s,Tn_ i)7 j n ds 4- [  \ ( s ,T n-i)a%n d B jn 
Jo Jo

+ [ f x \ Q  [ds, 
Jo  JR

'0

dx
Vs ds,

dx
ir L \  A(s,Tn_ i)y  s \  ’ A(s,Tn_i) 

Now we apply Ito’s formula to derive the dynamics of (L(t,Tn- 1 )).

exp (X (T”- ' )

= 1+ /  ex p (x fr ‘) dX?"-' +  \ J  ex p ^ J r 1) d[XT"-\XT"-'fs 
+  [ex p  -  ex p  ( x j r 1)  -  e x p  ( x j r 1. )  A X j - 1

0 < s < t

=  1 +  J* ex p  ( x f r 1)  d X j" - '  + 1  j *  ex p  ( x j r 1)  X(s,Tn- i f  (oj" ) 2 ds 

A x J n_V 0
+  Y,  [ex p  (xjz*1 + A X j " -1  j  -  e x p  — ex p  (xj"-1̂ AXj"-1

0 < 8< t

= 1 +  J* ex p  (Xjr1) dXjn~l + \ f  ex p  ( x j r 1)  X{s,T „ _ i ) 2 ( a j " ) 2 ds

+ f  / e x p  (xj"-1) (ex -  1 -  x) Q (ds, — ^ — r 
J 0 + J R  '  '  \  A ( s , J n - l )

11Compaxe also Bjork et al. [1997], p.151, who use a similar approach.
12 Jo ^ere corresponds to f t  in Theorem 4.5.
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=  1 +  j T  e x p (x sTr l )  d X j - '  +  l  £  exp ( x j r 1)  A(a,T„_1)2 (a?>)s d«

+  J  J  exp ( x f r 1)  ( e A(s,Tn_l)x -  1 -  A (s,T „_i)x) Q(ds,<ix).

In differential form, we get

dexp ( x f n_1) 

exp ( X ^ - 1)

=  dX ^ - 1 +  iA (t,Tn_ i ) 2 (a ^ ) 2 dt +  J  ( c^ . T»-i)* -  1  -  A(t,Tn_ i)x ) Q(dt,dx)

=  A(t, Tn- i) 7 ^n dt 4 - A(t, Tn-i)aJn d B jn +  J  A(t, Tn_i)x [Q(dt, dx) -  v jn (dx) dtj 

+  ^A(t, Tn_ i ) 2 dt +  j  (ex(t,Tn-i)x _ i _  ^  Q(dt, dx)

=  A(t, r n_ i)7 tTn dt +  A(t, Tn_ i)a fn d-BtTn +  f  ^eHt,Tn-i)x _  r n_i)x -  l )  ^Tn(dx) dt
«/R

+  ^A(t,Tn_ i ) 2 dt +  J  (eKt,Tn-i)x _  ^Q(dt, dx) — v jn(dx) dtj .

We have the semi-martingale decomposition13

exp ( x l n~1 ) = M t + Vt , 

where (Mt) is a martingale with

dM t =  exp I A(t, T„_i)af" dBtr“ +  J  ( eA(f'T"-i>* _  ^  ^  ^  dt

and (Vt) is a process of finite variation with

dVt = e x p  (x ^ ”- 1)  A(t,Tn_ 1)7f ” (it +  lA (i,T n_ i)2 ( o f 1) 2 dt

+ J  (e A(t'T"-l )x -A (t ,T „ _ 1) x - l )  icf” (da:)(itl .

Now we have to make sure that ^exp ^ x j71-1̂  (and thus (L(t,Tn- 1 ) ) ) is a martingale 

under PTn. We achieve this by demanding that dV* =  0 PTn -almost surely for all t > 0, 

which leads to

A (i,r„_ 1 )7 f" +  | a ( i , ^ - ! ) 2  ( o f 1) 2 +  j  (eA<!'T"-'>x -  A(t,Tn- i ) x  -  l )  v j ^ d x )  =  0.

13Compare e.g. Cont & Tankov [2004], p.284.
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Solving for 'y'[n then gives

7tTn =  — A(t,Tn_i) ( a t y  -  j f  ( eA(t’T̂ l)x -  A(t,T„_i)x -  l )  z/tTn(dz),

and all parameters are uniquely determined. Using this deterministic (thus predictable) 

process ( 7 ?“) , we find Vt = Vo for all t > 0, and thus

e x p ( x tr”- ' )  = M t +  V0,

or

dexp (x j'n- 1) = exp(x?:~ 1)  [a(4, Tn_ i)a f“ dBj"

+ j  (eA(‘’r—l)x - 1) [Q(dt,dx)-v‘f"(dx)dt

This translates to the following exponential SDE for the LIBOR-dynamics:

dL(t,Tn- i )  =L(t—,Tn- i )  ^A(£, Tn—i^cij.n dB^n

+  J  (eA (,’T" - 1 -  l )  \(2 {dt,dx) -  u j’'{dx)dt^ ,

and apparently, (L(t, Tn_i)) is a stochastic (or Doleans-Dade) exponential and as such a 

martingale under PTn.

As we know from Chapter 3, the Tn_i -forward measure PTn_1 is the martingale measure 

with respect to the numeraire p(-,Tn_i), and, as already shown, the LIBOR process 

(L(£, Tn- 2 )) has to be a PTn- 1 martingale. Thus, an application of the change of numeraire 

theorem (see Geman et al. [1995] or Bingham &; Kiesel [2004], p.239) leads to

dFT n ~ 1

dFTn
_  1 +  5L(t, Tn- 1 ) 

Ft 1 +  5L(0, Tn- 1 )
, t e  [0 ,Tn_2 ].

The dynamics of the Radon-Nikodym density process ( z j n ^  are 

1 +  5L(t,Tn- 1 )dzT* - 1 =d
1 -1- 8L(0,Tn-i)  

6

l  +  <5L(0,Tn_i)

6 L ( t - ,T n- 1 ) 
l  +  SL(0,Tn_i)

dL(t, Tn_i)

A(t, Tn_i)afn d B jn
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+  j  _  i )  [Q(dt, dx) -  vj"(dx) dt

1 -f SL(t—, Tn- i )  6 L(t—,Tn- 1 ) \ ( t ,T n- i)a t n dBt
1 +  5L(0, Tn- i )  1 +  5L(t—, Tn- \ )

+ j  ( eA(t'T" - l):c -  l )  \fi(dt,dx) - i /* ’" (<&)<«]]

-Zj™ 1 [g ^1 1 d B j"  + J  ( H r"_1 (t, x)  — l) [<3(dt, dx) — u f"  (dx) dt (4.2)

with

gT " - 1 =
SL(t , 2n—l)

1 +  6 L ( t - ,  Tn_i) 

a predictable process, and

a process with the property that it is predictable for fixed x  and the function x  h-> 

H Tn~x(t,x) is Borel-measurable for fixed t. Furthermore, we recognise as a

Doleans-Dade exponential with14

z j ' - 1 = exp y ‘ G j- 1 dBj"  -  1 J *  (G^ - 1 ) 2

4 - f f (H Tn~x (s, x) — l) [Q(ds, dx) — vFn (dx) ds] \
Jo J r  )

H Tn - i ( s , A X 3) ^ 0

n  H T n ~ 1 (a, AX5) exp { - t f 7 ’" - 1 (s, A X S) +  1} ,
0 <s<t

rT’n — 'iwhere by convention the empty product is equal to 1. So Z 0 = 1 , and a closer look 

at the definition of H  reveals that H  is strictly positive, and thus Z Tn~x is a strictly 

positive martingale, as we would have expected from its definiton as Radon-Nikodym 

density process. We are now exactly in the situation of Theorem 4.7, which tells us that

B̂ - 1 =  Btr» -  fc^-'ds  
Jo

is a Brownian motion under P ^ - 1, and

v jn 1 (dx) — H 1 71-1 (t , x) v]:n(dx)Tn-1

lFor general solutions to SDEs of the form (4.2), see Cont &; Tankov [2004] or Protter [2003].
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is the IP7 " - 1  -compensator of Q(dt,dx).

Now we posit that the dynamics of (L(t , Tn_2 )) under P7 " - 1  are given by

L(t, T„_2) =L(0, T„_2) exp ( J  X(s,Tn- 2)

=L(0,T„_2)exp ( x (T"-2)  , t e  [0,T„_2],

with L(0, Tn_2) > 0. In analogy to above, we assume that

j^Tn-i _  f  ^Tn~ 1 _|_ f  dB j" - 1  +  f  f  x  [Q(ds, dx) -  (dx) ds] , (4 .3 )
Jo Jo Jo J r

with deterministic ; that is, we assume that (L(t, Tn_2 )) is driven by the same

noise as (L(t,Tn_ 1 )).

At this point, we need to stress that (4.3) is no additive process anymore, since the 

compensators axe obviously stochastic, as they depend on the realisation of the

LIBORs. Therefore, (L(t,Tn_2 )) will in general lack the independent increments property.

Proceeding as above, we have

xf-'-2 =  f  \{s,Tn-2)dLj’-'
Jo

=  [  A(s, r„ _ 2 )7 sr " - ‘ ds +  T  A(«, r n_2 )a f"-‘ dB j- 1 
Jo Jo

+ [ L X [Q i ds ’ ~ ^  (H t f h r )) •

Imposing the condition that (L(t,Tn- 2 )) be a P7 " - 1  -martingale and following the same 

arguments as above implies the condition

= -  ^A(t,T„_2) ( a f - 1) 2

“  xn  I  \ f  (eXit'T' - 2)x -  A(s,Tn_2)x -  l )  i/f- 1 (dx) PT"-'-a.s. (4.4)
A(t, i n- 2j J r  v 7

for the drift, which is, due to the stochastic nature of the compensator, also stochastic, and 

in addition predictable, since is predictable. Again, with (4.4), all parameters

in (4.3) are uniquely determined. With this specification of , the martingale
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dynamics of (L(£,Tn_2 )) under PT n _ 1  are

dL(t, T„_2) = L ( t - ,T n- 2 ) [A(t,rn_2 )of”- 1 dB tr " - 1

+ J  ( e M t ’T ’' - 2 ) x  -  l )  [<2 (dt, dx) -  v f " - 1 (dx) dt]

We find it instructive to carry out one more step of our inductive procedure. By the 

same reasoning as above, an application of the change of numeraire theorem provides the 

Radon-Nikodym density of the Tn _ 2 -forward measure PT n - 2 with respect to PT n _ 1  as

jTn- 2  ,= <WTn-*
H ' dPTn-l

1 4- 6L(t, Tn- 2 )
, f G [0,Tn_3].

Tt  ̂ ^ n - 2 )

The dynamics of the Radon-Nikodym density process ^Z^n~2̂ j are

G jn ~ 2 d-B̂ n _ 1  + J  (H Tn~2 ( t ,x ) — l)  [Q(d£, dx) — v jn~1 (dx)d z jn~2 = Z?T2 dt

with

A(t,TB- 2 )atr " - 1
_ &L(t , Tn- 2)

‘ 1 +  5L(t—,T„-2)

a predictable process, and

- 1  =  ( eA<t'T" '2 ) l"  

a process with the property that it is predictable for fixed x  and the function x  1—> 

H Tn~2 (t, x) is Borel-measurable for fixed t. (^zjn~2̂ j is a Doleans-Dade exponential with

z f ' - *  =  exp { j f  G j- 2 dB j- 2 -  i  J ‘ (G j- 2 ) 2  ds

+  f f (HTn~2 (s, x) — l) [Q(ds, dx) — I'J” - 1  (dx) ds] 1 
Jo Jr  J

n  H T"-2 (s, A X S) exp { —H Tn- 2 ( s , / \X S) +  1} •
0 < s< i

We are now in the position to apply Theorem 4.7, and conclude that
r t

B( 2 =B j 1 -  /  G j” - 2 ds
Jo

= B fn -  f  G jn _ 1  ds -  / '  G j" - 2 ds 
do do
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is a Brownian motion under PTn-2, and

v jn 2 (dx) = H Tn~2 (t,x) v jn X(dx)

= H T n ~ 2 (t, x )H T n ~ 1 (t, x )v jn (dx)

is the PTn-2-compensator of Q(dt,dx).

The following central theorem summarises our findings.

T heo rem  4.8 (LIBOR dynamics in a Levy-based LIBOR market model). Let the above 

assumptions hold true. Then the dynamics of the LIBOR process (L(t, Tn_i_fc)), k e 

{ 0 ,.. . ,  n — 2}, are described by the SDE

dL(t,Tn—i—k) = L ( t - ,T „ - 1_*) [ \(t,Tn^ . k) a ^ - k d B j" -k

+ f  (eA(t'T"-i-*)x -  l )  \Q(dt, dx) -  Vtn- “(dx) dt1 (4.5)MtTn-l-k

with

a FTn- k -Brownian motion, and

k
(dx) =  i/tT" (dx) U  H t «-> (t, x)

the FTn~k -compensator of Q(dt,dx).

As the proof is just an inductive application of the arguments used above, it is omitted . 15

The above theorem is vital for the implementation of our model, as it allows us to simulate 

all LIBOR-rates under one measure, which in this case is the terminal measure PTn.

4.3 Pricing caplets and floor lets in a Levy LMM

The pricing of caplets and floorlets in Levy-driven LMMs does not always entail time- 

consuming simulation procedures. In this section, we outline two methods that reduce

15The above result can also be derived by following the arguments of Eberlein & Ozkan [2004].
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the caplet-pricing problem to integral evaluations. It goes without saying that the same 

methods also apply to floorlets. This section adapts the corresponding section in Schoutens

[2003] to the interest rate context.

A caplet with maturity Tk and strike K  pays the holder 6 (L(Tk,Tk) — K )+ at time 

Tk-|-i. Its value at time t  = 0 is therefore

C(0,Tk,K )  = 5p(0>Tt+ 1 )Ep 3 i+ 1  [(L(Tk,Tk) -  K )+] .

4 .3 .1  P ric in g  by m eans o f  th e  d en sity  fu nction

If the density function of L(Tk,Tk) under PTfc+1, say f(x ) ,  is known, we can work out 

the caplet price by (possibly numerical) integration:

OO
(x  — K )f{x )  dx.

r

4 .3 .2  P ric in g  by  m eans o f  th e  characteristic  fu n ction

If the characteristic function of the logarithm of the LIBOR rate,

4>{u) = EpTfc+1 [exp (iu log L(Tk, Tk))], 

is known, then, according to Bakshi h  Madan [2000], we can represent the caplet-price as 

C{Q,Tk,K )  =  6p(0,Tk+1) (L(0,Tk)Ih  -  K U 2)

with
Hi =  1 +  1 [°°R e {  e*p(-m log K)(j){u-i)

2 7T J0 V iu

n2 = i + i  r R j ^ 2 t i ^ £ m \ du.
2 7T J0 \  IU J

Similarly to the Black-case, III is the delta of the option, while II2 is the probability of 

finishing in the money.

C(0,Tk,K) = Sp(0,Tk+1) f
Jh
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4.4 Approximations

4 .4 .1  A pp rox im ate  L IB O R  dynam ics

As Theorem 4.8 shows, the dynamics of the LIBOR rates are quite involved. The principal

problems when it comes to implementation are

• stochastic drifts of the various Brownian motions,

•  stochastic compensators,

•  stochastic drift terms (7 j ) .

These points render the implementation not only complicated, but also inefficient, since 

in the simulation procedure, only relatively small step-sizes can be chosen, as one has 

to account for the stochastic and time-dependent nature of the above quantities. Quite 

naturally, one looks for simplifications that do not distort the spirit of the model too much, 

while facilitating and speeding up its implementation and reducing its computational 

burden. Inspired by an approximation technique -  commonly dubbed ’freezing the drift’ 

-  that has been successfully used in the standard LMM-context for quite a few years, we 

apply a similar idea to our present setting . 16

T heorem  4.9 (Approximate LIBOR dynamics under the terminal measure). The dynam­

ics of the LIBOR process (L(t,Tn- i-fc)), k G {0 ,... ,n  — 2 } , under the terminal measure 

PTn can be approximated by

dL(t,Tn- 1- k) = L ( t - ,T n+ k) [A

(4.6)

with

16 See also Chapter 3, where we applied a related technique to derive an approximation formula for 

swaption prices.
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where is a PTn -Brownian motion, and with

k
pf"-k(dx) = u f " ( d x ) l [ H T̂ ( t , x ) ,  (4.7)

i— 1

where v jn is the PTn -compensator of Q. Furthermore,

r r ^ n - i    3 L ( 0 , T n — i )  . .  T n _ i + 1

-  1 +  5 L(0 , Tn-i) Tn-i)as

and

- 1 -  r a r o  -  ■) <“ >

are deterministic processes.

The above simplifications lead to deterministic compensators, thus independent incre­

ments, and therefore to all LIBOR processes being additive Levy processes. The drift 

processes (which appear in the integrated form of the LIBOR dynamics) become

“  A ( t ,r L i- t )  L  ( eA(‘,Tn"1- ‘)l -  A(t,TB_ 1_ t ) i  -  l )  v j ' - k{dx). (4.9)

Summing up, we have got rid of all the problems mentioned above. But, as always in 

life, there’s no such thing as a free lunch, and also our simplifying assumptions have their 

price, which comes in the form of a violation of the no-arbitrage condition. The LIBOR 

processes defined above (apart from (L(t,Tn- 1 )) will in general cease to be martingales 

under their respective forward measures. Even though we also adapt the drifts (%) to 

our new situation, the martingale-condition will be violated. The reason becomes clear 

if we recall the construction of the drifts, where we used that the compensated jump- 

parts are martingales under the respective forward measures. Making the compensator 

deterministic (as we do above) implies that the resulting compensated jump-parts will no 

longer be martingales. As we do not correct the drifts for this (because it would make 

them stochastic), we wind up with LIBOR processes that are devoid of the martingale 

property under their respective forward measures.
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One might legitimately ask whether an approximation that introduces arbitrage opportu­

nities makes sense at all. In view of this, let us give two justifications of our approach. 

Firstly, the simulation procedures proposed in the literature for standard LMMs are not 

arbitrage-free either, because the very discretization of the underlying continuous time 

processes results in arbitrage opportunities. However, the violation of the no-arbitrage- 

condition due to discretization is deemed negligible (see Brigo &; Mercurio [2001], p.236). 

Secondly, the main purpose of an LMM is to price interest rate derivatives. As simula­

tion experiments for standard LMMs show, ’freezing the drift’ has only a minor impact 

on derivatives prices for (almost) all sensible parameterisations, 17  and we can expect this 

property to carry over to our current setting. Of course, simulation studies have to be 

conducted to corroborate this conjecture. This is the purpose of the following section.

4.5 Implementation: A worked exam ple

4.5 .1  Im p lem en tation  o f  th e  approxim ate m od el

In this part, we demonstrate step by step how to implement the approximate LMM based 

on formulae (4.6) through (4.8) in a concrete setup. In order to keep the exposition as 

simple as possible, we assume a pure jump process as driving noise. This assumption 

does not constitute a major limitation, since, as argued in Geman et al. [2001] (see also 

Schoutens [2003], p. 76), a realistic model for the price process of a financial asset requires 

a jump component, while a diffusion component is dispensable. Pure jump Levy models 

can capture both (relatively rare) large jumps and (relatively frequent) smaller moves 

in price processes. The empirical performance of pure jump models normally cannot be 

enhanced by adding a diffusion component.

As for the concrete parameters, we choose 5 =  1 , n = 1 0 , a flat initial term structure 

L(0, Ti) =  0.05, Ti G {0,. . . ,  9}, and A(-, •) =  1.

As driving Levy process, we take a symmetric Variance Gamma process with drift (see e.g. 

Madan et al. [1998], Schoutens [2003] or Cont & Tankov [2004] for details on Variance

17But see also Joshi & Rebonato [2001] for possible pitfalls.
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Gamma processes), which takes the form

Jo

where

LJ10 =  f f x[Q(ds,dx) — ^ 1 0(dx) ds]
Jo Jr

is a symmetric, driftless Variance Gamma process under PTl° and as such a PTl°- 

martingale.

We assume the symmetric Levy measure to be given by

vTl° (dx) = i/J10 (dx) = <
Cexp  {—G|a;|} |a;| 1 dx x ^ O

, s > 0,
0  x = 0

with C > 0 and G > 0; in particular, a time-homogeneous Levy process. L ^ 10

is VG(C, G) distributed, and its characteristic function reads

4>vg(u-,C,G) =  ( g ? + u 2

Furthermore, using the time-homogeneity of (j^J10 ̂  , we find m ° s - L ? °  rsj VG(sC , G). 

By virtue of the symmetry of the given Levy measure, we find

j  xvTl° (dx) = 0
Jr

and thus LJ10 =  f f xQ(dx,ds).
Jo Jr

We choose C — 2 and G — 1 2 . The drifts can now be calculated using formula (4.9), 

which can be evaluated to give

7 tTi° = 7 Tio = -  f  (ex -  x  -  1) vT l0  (dx) = -0.013937.
Jr

The (exact) LIBOR-dynamics are described by

L(t, Tg) =  L(0, Tg) e x p  {Zf10 -  0.013937*} , 

which is a PTl° -martingale.
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Now we will pin down the dynamics of L(t,Tg). First, we observe that by formula (4.8)

H T>{t,x) -  1 =  H t ° ( x ) -  1 =  £ 2 |  (e* -  1),

and by formula (4.7)

vTg (dx) = vTl° (dx)HTg (x) ,

and thus

=  -  f  (ex -  x  -  1) vTg(dx) = -0.013961.
Jr

Continuing,

LJg = f f  x \Q(ds,dx) — i?Tg(dx)ds]
Jo Jr

=LJ10 —t f  xvTg (dx)
Jr

= L l 10 -  tkTg 

=LJ10 -  0.001332t

with an evident definition of kTg. The deterministic process (tkTg) approximately ac­

counts for the difference in the drift of the driving Levy process under the measures PT l0  

and PT9 ; recall that is an approximation for the PTq -martingale with

»t

r0 JR

Summing up, we get

Ljg = ( f  x [Q(ds, dx) — vTg(dx) ds] . 
Jo Jr

L(t, Ts) = L(0, Tg) exp {Z^° +  t f *  -  tkT° } .

Proceeding in the same fashion for the remaining Ti then gives the PTl° -dynamics 

L(t, Ti) = L{0, T ) exp {Zf10 +  t j T i+ 1  -  tkTi+1} .

The numerical values of 7 Ti and kTi can be found in Table 4.1.

Now that we have worked out all parameters, we can turn to the simulation procedure, 

which turns out to be remarkably simple. Assume that the interest rate derivative to price
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Ti /yTi kTi

1 0 -0.013937 0

9 -0.013961 0.001332

8 -0.013985 0.002666

7 -0.014012 0.004004

6 -0.014040 0.005344

5 -0.014070 0.006688

4 -0.014101 0.008035

3 -0.014134 0.009386

2 -0.014169 0.010740

Table 4.1: Drift terms

depends only the LIBORs observed at times T* (and not on their intermediate values) . 18  

Simulation can be performed by the following algorithm :19

For 2 =  1 to n — 1

Generate a VG(C, G)-distributed random number Ri.

For j  = i to n — 1 

L(Ti,Tj) := L(Ti-i,Tj) exp {Ri + 7 rJ+ 1  -  kT̂ +1} .

The result of the above algorithm will be an upper diagonal matrix that represents the 

evolution of the whole LIBOR curve through time. This forms the basis for pricing interest 

rate derivatives.

4 .5 .2  Im p lem en tation  o f th e  exact m od el

Implementation of the exact model is more cumbersome, the main reason being the sto- 

chasticity of the compensators. After each step of the simulation procedure, the compen­

sators have to be calculated anew. This brings about the problem of having to re-evaluate

18This is a very weak restriction that most interest rate derivatives obey. If necessary, it can be easily 

relaxed.
19We assume the L(0,T*) to be properly initialised.
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the integrals involving the compensators after each step of the simulation, as can be seen 

from formulae (4.4) and (4.5). In general, one cannot expect closed formulae for these 

integrals, and consequently one would have to perform several numerical integrations af­

ter each timestep, rendering the simulation extremely slow and almost infeasible. For our 

concrete parameterisation, however, closed formulae for the relevant integrals exist, with 

the consequence that simulation of the exact model is practicable and not prohibitively 

time consuming. We will take advantage of this in the next section.

4.6 Testing our approximation

In this section, we test the impact of the approximation proposed on zero-bond, caplet and 

swaption prices. As already mentioned, in our concrete setup, it is possible to simulate 

not only the approximate, but also the exact model efficiently, which allows us to calculate 

the prices of the aforementioned products based on 1 0  million antithetic paths, thereby 

keeping the simulation error very low. A great number of paths is of particular relevance 

in this context, as we want to be able to gauge the error due to our approximation while 

keeping the distortion due to the simulation error20 as low as possible. We choose a 

size of 1 year for the timesteps, and thus incur a certain discretization error. It is this 

discretization error the pricing errors generated by the exact LMM stem largely from, 

while the simulation error, as measured by the standard error, is almost negligible. In 

contrast, the approximate model does not suffer from discretization error, i.e. decreasing 

the step-size of the simulation to values less than 1  would not give more accurate results. 21

Table 4.2 contrasts the prices of zero bonds with face value 1 calculated with the exact 

(column exactLMM) and approximate (column proxLMM) models with the exact bond 

prices. Both (relative) differences and standard errors for both models are of negligible

20 Here, by simulation error we mean the deviation of the calculated arithmetic mean from the ’true’ 

expected value. It is not to be confused with the discretization error that stems from approximating a

continuous time model by a discrete one.
21 This property of the approximate LMM is rather a peculiarity of our concrete parameterisations than

a general fact. Were we to choose e.g. functions A that change during the timesteps of the simulation, it 

would no longer hold true.
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Maturity

Ti Mean

exactLMM 

Std. err. Err. Mean

proxLMM 

Std. err. Err.

Exact

1 0.95241 0.00003 0.003% 0.95241 0.00003 0.003% 0.95238

2 0.90707 0.00004 0.005% 0.90711 0.00003 0.009% 0.90703

3 0.86388 0.00004 0.005% 0.86399 0.00005 0.017% 0.86384

4 0.82273 0.00004 0.004% 0.82287 0.00004 0 .0 2 1 % 0.82270

5 0.78354 0.00004 0 .0 0 2 % 0.78368 0.00003 0 .0 2 0 % 0.78353

6 0.74621 0.00004 -0 .0 0 1 % 0.74633 0 . 0 0 0 0 2 0.015% 0.74622

7 0.71066 0 . 0 0 0 0 2 -0 .0 0 2 % 0.71074 0 . 0 0 0 0 2 0.008% 0.71068

8 0.67682 0 . 0 0 0 0 2 -0.003% 0.67684 0 . 0 0 0 0 1 0 .0 0 1 % 0.67684

9 0.64460 0 . 0 0 0 0 1 -0 .0 0 2 % 0.64459 0 . 0 0 0 0 1 -0.003% 0.64461

Table 4.2: Bond prices

magnitude.

The situation looks different for caplets, where we compare the prices of at-the-money 

caplets that pay 10000(1/(7*, 7*) — 0.05)+ at time 7*+i- The exact prices reported in Ta­

ble 4.3 are obtained by integrating the caplet payoff against the probability density of the 

corresponding LIBOR-realisation. In the case of the exact LMM, comparing the pricing 

errors with the corresponding standard errors, one can conclude that the former must 

largely stem from discretization, i.e. they can be reduced by choosing smaller timesteps. 

Even for a timestep as large as one year, the discretization error is well within tolerable 

limits. For the approximate LMM, the maximum relative error is roughly twice as large, 

but still reasonably small. In both cases, the errors become smaller for maturities ap­

proaching 9. This observation conforms with the intuition that the approximation errors 

get larger the further we move away from the terminal measure PTl° and the associated 

LIBOR process (L(t,Tg)), which -  both for the exact and approximate LMMs -  suffers 

neither from discretization nor approximation error.

Next, we consider the prices of at-the-money 5-into-5 payer swaptions (see Table 4.4). In 

absence of an exact swaption price, we can only compare the two model-prices directly. 

The picture is very much the same as before: The prices are almost identical, the relative
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Maturity exactLMM proxLMM Exact

Ti Mean Std. err. Err. Mean Std. err. Err.

1 28.83 0.07 1.49 % 28.88 0.04 1.65 % 28.41

2 39.94 0.08 1.36 % 40.25 0.06 2.15 % 39.41

3 46.97 0.09 1.26 % 47.60 0.08 2.61 % 46.39

4 51.76 0 . 1 0 1.06 % 52.69 0.08 2.87 % 51.22

5 55.10 0.13 0.84 % 56.20 0 . 1 1 2.84 % 54.64

6 57.39 0 . 1 2 0.58 % 58.50 0.13 2.53 % 57.06

7 58.89 0 . 1 0 0.30 % 59.83 0.13 1.90 % 58.72

8 59.81 0.09 0.06 % 60.39 0.14 1 . 0 2  % 59.78

9 60.27 0.08 -0.16 % 60.34 0.15 -0.05 % 60.37

Table 4.3: Caplet prices

e

Mean

xactLMM 

Standard error Mean

>roxLMM 

Standard error

249.62 0.48 251.69 0.29

Table 4.4: 5x5 swaption prices in basis points



Chapter 4. LIBOR market models driven by Levy processes 122

difference being less than one percent.

To conclude, our simulation experiments show that the approximate LMM is both an 

efficient and accurate alternative to the exact LMM for the model at hand. In case 

the concrete parameterisation of the exact LMM does not admit closed formulae for the 

integrals involving compensators, the approximate LMM is the only viable alternative. 

Our simulation experiments should be extended to a broader range of driving processes 

and parameterisations to further substantiate our findings, but for reasons of scope, we 

leave that for future research.

4.7 Implied volatilities and their dynam ics in a Levy LMM

As already pointed out in Chapter 2 , a paramount criterion for the adequacy of a modelling 

approach is not only its ability to statically reproduce observed implied volatility patterns, 

but also the dynamics of implied volatilities it induces. In this section, we investigate 

both the static and dynamic properties of implied volatilities induced by Levy LMMs. We 

commence with the dynamic point of view.

4 .7 .1  Sm ile dynam ics

The following two propositions contrast the dynamic behaviour of implied volatility sur­

faces in time-homogeneous versus time-inhomogeneous exponential Levy models.

P ro p o sitio n  4.1 (Smile dynamics in a time-homogeneous exponential Levy model). In 

a time-homogeneous exponential Levy model, Black\mplied volatilities of caplets are a 

function of moneyness m  = L / K  and time to maturity r  = T  — t only. In other words, 

time-homogeneous exponential Levy models exhibit the so-called forward-propagated smile 

property .22

22Compare Rebonato [2004], p.593.
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Proof: Denote the price of a caplet with strike K , maturing in T  and paying in T  +  <5 

by CLevy(L, K, t, T), where t is the current time and L = L(t,T).  Then

CUvy(L, K, t, T) = p(t, T  +  6 )Epr+s [(L(T, T) -  K ) +\L(t, T) = L]

— p (t ,T  +  <5)Epr+a \(L(0 ,T )eLteLT~Lt -  K ) + \L(t,T) = L

= p{t,T  +  <5)Ept+« f(LeiT — K )

L
— jp(t, T  “I- 5).KlEpT+<5

and thus

+ '

As the Black-Scholes model is an exponential Levy model, we get

Cb s(L,K,LT,<j ) , rc , ^ - £-’ -  -■ J- = p(t, T  + 5)g (m, t , <t).

We conclude that the implied volatility function aimp, which is implicitly defined as the 

solution to the equation

must have the form <jimp(m ,r). □

P ro p o sitio n  4.2 (Smile dynamics in a time-inhomogeneous exponential Levy model). In 

a time-inhomogeneous exponential Levy model, Black implied volatilities of caplets are a 

function of moneyness m  = L /K , current time t and maturity T  only. In the terminol­

ogy of Rebonato [2004], time-inhomogeneous exponential Levy models exhibit the so-called 

floating smile property . 23

23Other authors, e.g. Derman [1999], call this the sticky moneyness property.
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Proof:

CLSvy(L, K, t, T) = p(t, T  +  a)EPr +i [(L(T, T) -  K)+\L(t, T) = L]

= p (t ,T  +  (5)EPr+j UL(0,T)eL,eLj'~L‘ — K ) + \L(t,T) = i j

=  p(t, T  +  <5)Epr+j \{LeLT~Lt - K ) +

and thus

=  P ( t ,T  +  S) r LT_ Lt _
L m  Lv ' J

= p (t ,T  + 6 ) g ^ ( m , t , T ) .

For the Black-Scholes model, we get

 ' Î t -T- (7̂  = p(t, T  +  S)gBS(m , t, T, a).

We conclude that the implied volatility function crimp, which is implicitly defined as the

solution to the equation

must have the form crimp(m ,t,T ).  □

It is obvious how to interpret the above results: As is the case for local volatility models, the 

future implied volatility surface (observed in terms of moneyness) for any future date t is 

already known today .24 In a time-homogeneous model, the implied volatility surface, when 

observed in terms of moneyness and time to maturity, remains constant, which means that 

neither moves in the underlying nor the passage of time alter the implied volatility surface: 

it remains stationary in time to maturity and moneyness. In a time-inhomogeneous model, 

however, the passage of time changes the shape of the implied volatility surface, while 

moves in the underlying (with t held fixed) don’t. Thus, while time-inhomogeneous 

models give us much more flexibility when it comes to fitting term structures, they bring 

about non-stationarity of implied volatility surfaces, which is generally deemed a rather 

undesirable property. We will elaborate on this shortly.

24 But observe that for local volatility models, the knowledge of the t  -implied volatility surface is con­

ditional on knowing the realisation of the underlying at time t.
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Figure 4.1: Variance Gamma one year caplet smiles in terms of strike

We shall now visualise the caplet smile dynamics in our Variance Gamma-model, and 

contrast them with the corresponding dynamics obtained in a local volatility model. In 

both cases, we will look at smiles of caplets on L( 1,1) paying in T  = 2. We confine 

ourselves to smiles (rather than whole surfaces), because qualitatively, the corresponding 

surface dynamics are exactly the same.

Figure 4.1 shows Variance Gamma smiles in terms of absolute strike levels for L(0,1) =  

0.04 (red line), L(0,1) =  0.05 (blue line) and L(0,1) =  0.06 (green line). Apparently, 

the smiles move in the same direction as the underlying. In stark contrast, one observes 

in Figure 4.2 that in local volatility models, smiles move in the opposite direction of the 

underlying. As already mentioned in Chapter 2, Hagan et al. [2002] remark that this 

contradicts real-world smile dynamics, where smiles move in the same direction as the 

underlying. Thus, smile dynamics induced by Levy models are considerably more realistic 

than those induced by their local volatility counterparts.25

250 f  course, Levy smile dynamics are also only a crude approximation to reality. As documented by e.g. 
Derman [1999] or Cont & da Fonseca [2002], empirical implied volatilities quoted in terms of moneyness
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Figure 4.2: Local volatility one year caplet smiles in terms of strike

Figures 4.3 and 4.4 display the smile dynamics in terms of moneyness. While Figure 

4.3 shows the sticky moneyness property, Figure 4.4 makes the characteristics of local 

volatility models already observed for absolute strikes even more obvious.

4.7.2 Im plied volatility  surfaces

Now we consider the qualitative properties of implied volatility surfaces induced by a 

time-homogeneous Levy model on the basis of our Variance Gamma example.

As Figure 4.5 shows, our model produces a realistic-looking implied volatility surface for 

short maturities. For medium to long maturities, however, the smile becomes almost 

flat, while typical real-world caplet implied volatility surfaces show considerably more 

pronounced smile patterns (see Jarrow et al. [2003]). This so-called flattening-out effect 

is a consequence of the central limit theorem . 26 Similarly, when the model is calibrated

show considerable variability, which contradicts the sticky smile property.
26 But see also Carr &; Wu [2003] for an exponential Levy model based on an a  -stable Levy process with
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Figure 4.3: Variance Gamma one year caplet smiles in terms of moneyness

to the smile-patterns at the long end of the maturity spectrum, smiles at the short end 

will typically be much too steep to be consistent with real-world ones. This dilemma 

can be ^voided by using time-inhomogeneous Levy models, which allow simultaneous and 

almost perfect fits to all observed caplet smiles. But this often comes at the price of a 

high degree of non-stationarity: In order to match real-world implied volatility patterns, 

the parameters typically have to be chosen in a way that makes these models highly non- 

stationary. This property leads to future implied volatility surfaces that are very different 

from today’s, which is undesirable, one of the reasons being that it gives rise to unrealistic 

prices of derivatives that strongly depend on future implied volatility surfaces, such as 

forward start options or cliquets.

For local volatility models, there is a phenomenon that is related to the just described

flattening-out effect. Local volatility models, when calibrated to implied volatility surfaces

maximum negative skewness, where the central limit theorem does not apply and the implied volatility 

surface does not flatten out.
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Figure 4.4: Local volatility one year caplet smiles in terms of moneyness

that are steep for short maturities and relatively flat for longer ones, predict future implied 

volatility surfaces that are ’flatter’ than the current one. The reason is clear from the 

discussion in Chapter 2: In the course of time, the ’short end’ of the local volatility 

function that generates the steep patterns for shorter maturities ’disappears’, i.e. loses 

its impact on the implied volatility surface. Thus, flattening out in local volatility models 

is a dynamic property that depends on the initial shape of the implied volatility surface, 

while in time-homogenous Levy models, it is a static one.

Summarising, we can say that in terms of smile (respectively surface) dynamics, Levy 

models are clearly superior to their local volatility counterparts, as for the former, smiles 

(or, more generally speaking, implied volatility structures when observed in terms of ab­

solute strike levels) move in the same direction as the underlying, while for the latter, the 

opposite is the case. The cross-sectional performance (that is, the capability of reproduc­

ing a smile for a certain maturity) of both local volatility and Levy models is excellent. 

However, when it comes to fitting whole volatility surfaces, time-homogeneous Levy mod-
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Figure 4.5: Variance Gamma caplet implied volatility surface

els are severely limited, while time-inhomogeneous Levy and local volatility models are 

not, but this flexibility is bought dearly by a typically high degree of non-stationarity 

associated with the unwanted side-effects outlined above. This leads us to conclude that, 

among the three model classes considered, time-inhomogeneous Levy models are the class 

of choice when the emphasis is on an accurate fit to observed implied volatility surfaces 

and plausible smile dynamics, and the derivative to price is not overly sensitive to the 

non-stationarity exhibited by this model class.

A discussion on Levy models is not complete without a few words on market incomplete­

ness, the choice of an equivalent martingale measure, calibration and hedging. Apart from 

few exceptions (when the driving noise is a Brownian motion or a Poisson process), Levy 

models are incomplete, and therefore there is no unique martingale measure. But, as we 

follow an implied approach, this does not pose a problem: If we choose the driving Levy 

process from of a certain parametric class, we can obtain its parameters by calibrating 

the model prices (respectively model implied volatilities) to those observed in the market,
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which basically means that we let the market choose the measure.27

For reasons of scope, we do not address the issue of hedging in Levy models here. Suffice 

it to say that, as perfect hedging in incomplete markets is (by definition of an incomplete 

market) not possible for all contingent claims, one has to resort to approximate hedging 

strategies (for instance minimum-variance hedging). Schoutens [2003] and Cont &; Tankov

[2004] provide overviews.

4.8 Summary

In this chapter, we give a novel derivation of LIBOR dynamics and measure relationships 

in a Levy LMM using a change of numeraire argument. We develop an approximation 

technique that simplifies and speeds up implementation and simulation considerably. Sub­

sequently, we test our approximation on the basis of a concrete numerical example, and 

find that it performs well. We discuss numerical issues involved in the implementation of 

a Levy LMM and point out possible complications and limitations. Finally, we explore 

the smile dynamics induced by our Levy LMM and contrast them with those encountered 

in LMMs based on local volatility functions.

27Calibration techniques for Levy models can be found in Cont & Tankov [2004], p.463.
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Summary and conclusion

The objective of this dissertation is to develop smile-consistent financial models with a 

special emphasis on LIBOR market models.

Chapter 1 provides a general overview of approaches to smile modelling. In Chapter 2, we 

propose analytical approximate solutions to the single smile problem. Extensive numerical 

tests based on several extreme volatility scenarios show that our methods provide an 

excellent fit to the input data. The methods we detail in this chapter are tailor-made for 

the construction of smile-consistent LIBOR market models. In Chapter 3, we develop the 

theory of generalised extended LMMs. Relying on our results from Chapter 2, we are able 

to fit any given set of implied volatility smiles for the maturities of the tenor structure 

(almost) exactly, while at the same time preserving numerical tractability. Moreover, 

we propose a swaption approximation, which we subject to numerical testing, and find 

that its quality in the test-cases considered is excellent. In Chapter 4, we give a novel 

derivation of LIBOR dynamics and measure relationships in a Levy-driven LMM using 

a change of numeraire argument. We discuss an approximation technique that simplifies 

and speeds up implementation and simulation considerably. Subsequently, we test our 

approximation on a Levy LMM driven by a Variance Gamma process, and find that 

it performs well. We discuss numerical issues involved in the implementation of Levy 

LMMs and point out possible problems and limitations. Finally, we contrast the implied 

volatility dynamics induced by a Levy LMM with those encountered in LMMs based on
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local volatility functions, and find that the former are more realistic.

Both model classes considered -  GEMMs and Levy LMMs -  are capable of providing an 

excellent fit to given implied volatility surfaces. However, they differ with regard to nu­

merical tractability, induced smile dynamics, and market completeness. While GEMMs 

are easier to handle and preserve completeness, Levy LMMs feature more realistic smile 

dynamics. However, both GEMMs and time-inhomogeneous Levy LMMs suffer from non- 

stationarity. Thus, while we can consider the problem of smile-consistent modelling in 

a LIBOR context solved, a challenging problem remains: To identify a class of LIBOR 

market models that is flexible enough to fit real-world implied volatility surfaces, while at 

the same time giving rise to realistic implied volatility dynamics and preserving station- 

arity. A possible way to tackle this issue could be to develop Levy-based,LMMs that also 

incorporate stochastic volatility, e.g. by extending the approach pursued in Carr et al. 

[2003] to the interest rate world. We are confident that this approach can improve on the 

current state of the art, but we have to leave the proof for future research.



Appendix A

Numerical Results
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Strike Exact price A PI AP2 AP3 AP4 AP5 AP6

10 90.000 0.000 0.000 0.000 0.000 0.000 0.000

20 80.001 0.000 0.000 0.000 0.000 0.000 0.000

30 70.004 0.000 0.000 0.000 0.000 0.000 0.000

40 60.011 0.000 -0.001 -0.001 -0.001 -0.001 -0.001

50 50.031 0.001 -0.001 -0.001 -0.001 -0.001 -0.001

60 40.086 0.003 -0.001 -0.001 -0.001 -0.003 -0.003

70 30.249 0.007 -0.003 -0.003 -0.003 -0.005 -0.005

80 20.738 0.013 -0.006 -0.006 -0.006 -0.008 -0.008

90 12.116 0.017 -0.010 -0.010 -0.010 -0.010 -0.010

100 5.416 0.016 -0.013 -0.013 -0.013 -0.010 -0.010

110 1.579 0.009 -0.009 -0.009 -0.009 -0.008 -0.008

120 0.245 0.002 -0.003 -0.003 -0.003 -0.003 -0.003

130 0.016 0.000 0.000 0.000 0.000 0.000 0.000

140 0.000 0.000 0.000 0.000 0.000 0.000 0.000

150 0.000 0.000 0.000 0.000 0.000 0.000 0.000

160 0.000 0.000 0.000 0.000 0.000 0.000 0.000

170 0.000 0.000 0.000 0.000 0.000 0.000 0.000

180 0.000 0.000 0.000 0.000 0.000 0.000 0.000

190 0.000 0.000 0.000 0.000 0.000 0.000 0.000

200 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A .l: Approximation errors for the 1 month skew case. A P  is the price difference

between the model price and the exact price. Positive figures indicate overpricing by the

model.
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Strike Exact price A PI AP2 AP3 AP4 AP5 AP6

10 90.000 0.000 0.000 0.000 0.000 0.000 0.000

20 80.000 0.000 0.000 0.000 0.000 0.000 0.000

30 70.000 0.000 0.000 0.000 0.000 0.000 0.000

40 60.000 0.000 0.000 0.000 0.000 0.000 0.000

50 50.001 0.000 0.000 0.000 0.000 0.000 0.000

60 40.003 0.001 0.000 0.000 0.000 0.000 0.000

70 30.019 0.003 0.000 0.000 0.000 -0.001 -0.001

80 20.147 0.012 -0.001 -0.001 -0.001 -0.003 -0.003

90 11.028 0.037 -0.002 -0.002 -0.002 -0.003 -0.003

100 4.426 0.059 -0.001 0.000 0.000 0.006 0.006

110 1.321 0.048 0.002 0.002 0.002 0.001 0.001

120 0.350 0.026 0.002 0.002 0.002 -0.002 -0.002

130 0.101 0.013 0.002 0.002 0.002 -0.001 -0.001

140 0.035 0.007 0.001 0.001 0.001 -0.001 -0.001

150 0.015 0.004 0.001 0.001 0.001 -0.001 -0.001

160 0.008 0.003 0.000 0.000 0.000 0.000 0.000

170 0.005 0.002 0.000 0.000 0.000 0.000 0.000

180 0.003 0.001 0.000 0.000 0.000 0.000 0.000

190 0.003 0.001 0.000 0.000 0.000 0.000 0.000

200 0.002 0.001 0.000 0.000 0.000 0.000 0.000

Table A.2: Approximation errors for the 1 month smile case. A  P is the price difference

between the model price and the exact price. Positive figures indicate overpricing by the

model.
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Strike Exact price A PI AP2 AP3 AP4 AP5 AP6

10 90.000 0.000 0.000 0.000 0.000 0.000 0.000

20 80.007 -0.001 0.000 0.000 0.000 0.000 0.000

30 70.067 -0.005 -0.002 -0.002 -0.002 0.000 0.000

40 60.276 -0.015 -0.005 -0.005 -0.005 -0.002 -0.001

50 50.774 -0.027 -0.010 -0.009 -0.009 -0.007 -0.003

60 41.732 -0.036 -0.014 -0.013 -0.013 -0.013 -0.007

70 33.341 -0.040 -0.016 -0.016 -0.016 -0.019 -0.011

80 25.789 -0.037 -0.017 -0.016 -0.016 -0.023 - 0.013

90 19.234 -0.028 -0.015 -0.014 -0.014 -0.025 -0.013

100 13.780 -0.017 -0.012 -0.012 -0.012 -0.023 -0.012

110 9.450 -0.005 -0.009 -0.008 -0.008 -0.020 -0.009

120 6.184 0.003 -0.006 -0.005 -0.005 -0.016 -0.007

130 3.854 0.008 -0.003 -0.003 -0.003 -0.013 -0.005

140 2.283 0.010 -0.002 -0.002 -0.002 -0.010 -0.004

150 1.284 0.009 -0.001 -0.001 -0.001 -0.007 -0.003

160 0.687 0.007 0.000 0.000 0.000 -0.005 -0.003

170 0.349 0.005 0.000 0.000 0.000 -0.003 -0.002

180 0.169 0.003 0.000 0.000 0.000 -0.002 -0.001

190 0.078 0.002 0.000 0.000 0.000 -0.001 -0.001

200 0.035 0.001 0.000 0.000 0.000 -0.001 0.000

210 0.015 0.001 0.000 0.000 0.000 0.000 0.000

220 0.006 0.000 0.000 0.000 0.000 0.000 0.000

230 0.002 0.000 0.000 0.000 0.000 0.000 0.000

240 0.001 0.000 0.000 0.000 0.000 0.000 0.000

250 0.000 0.000 0.000 0.000 0.000 0.000 0.000

260 0.000 0.000 0.000 0.000 0.000 0.000 0.000

270 0.000 0.000 0.000 0.000 0.000 0.000 0.000

280 0.000 0.000 0.000 0.000 0.000 0.000 0.000

290 0.000 0.000 0.000 0.000 0.000 0.000 0.000

300 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A .3: Approximation errors for the 1 year skew case. A P  is the price difference

between the model price and the exact price. Positive figures indicate overpricing by the

model.
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Strike Exact price A PI AP2 AP3 AP4 AP5 AP6

10 90.000 0.000 0.000 0.000 0.000 0.000 0.000

20 80.002 -0.001 -0.001 -0.001 -0.001 0.000 0.000

30 70.020 -0.002 -0.004 -0.004 -0.003 -0.002 -0.002

40 60.066 0.004 -0.007 -0.006 -0.006 -0.006 -0.006

50 50.155 0.026 -0.006 -0.005 -0.005 -0.011 -0.011

60 40.354 0.066 -0.004 -0.003 -0.002 -0.015 -0.015

70 30.852 0.121 -0.004 -0.002 -0.001 -0.017 -0.017

80 22.063 0.190 -0.006 -0.003 -0.002 -0.010 -0.011

90 14.629 0.257 -0.008 -0.004 -0.002 0.010 0.009

100 9.083 0.295 -0.006 -0.002 -0.001 0.027 0.025

110 5.447 0.294 -0.002 0.002 0.003 0.018 0.017

120 3.282 0.267 0.002 0.006 0.007 0.003 0.002

130 2.052 0.231 0.005 0.008 0.009 -0.007 -0.008

140 1.355 0.195 0.006 0.008 0.009 -0.013 -0.014

150 0.949 0.163 0.005 0.007 0.008 -0.015 -0.016

160 0.703 0.135 0.003 0.005 0.006 -0.016 -0.017

170 0.545 0.112 0.001 0.003 0.004 -0.016 -0.017

180 0.439 0.091 -0.001 0.000 0.001 -0.016 -0.016

190 0.365 0.074 -0.004 -0.002 -0.002 -0.016 -0.016

200 0.310 0.059 -0.006 -0.005 -0.004 -0.015 -0.016

210 0.268 0.046 -0.008 -0.007 -0.007 -0.015 -0.015

220 0.234 0.036 -0.010 -0.009 -0.008 -0.014 -0.015

230 0.207 0.027 -0.011 -0.010 -0.010 -0.014 -0.014

240 0.184 0.019 -0.012 -0.011 -0.011 -0.013 -0.013

250 0.165 0.013 -0.013 -0.012 -0.012 -0.013 -0.013

260 0.148 0.008 -0.014 -0.013 -0.012 -0.012 -0.012

270 0.133 0.004 -0.014 -0.013 -0.012 -0.011 -0.011

280 0.119 0.001 -0.014 -0.013 -0.012 -0.011 -0.011

290 0.107 -0.002 -0.013 -0.013 -0.012 -0.010 -0.010

300 0.097 -0.003 -0.013 -0.012 -0.012 -0.009 -0.009

Table A.4: Approximation errors for the 1 year smile case. A  P is the price difference

between the model price and the exact price. Positive figures indicate overpricing by the

model.
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Strike Exact price A PI AP2 AP3 AP4 AP5 AP6

10 90.060 -0.003 0.001 0.001 0.001 0.001 0.001

20 80.610 -0.028 0.001 0.002 0.002 0.005 0.005

30 71.967 -0.074 -0.001 0.000 0.000 0.005 0.005

40 64.179 -0.127 -0.005 -0.003 -0.003 -0.002 -0.002

50 57.200 -0.177 -0.009 -0.007 -0.007 -0.012 -0.012

60 50.959 -0.220 -0.013 -0.011 -0.010 -0.024 -0.025

70 45.382 -0.252 -0.015 -0.012 -0.012 -0.036 -0.036

80 40.400 -0.272 -0.015 -0.012 -0.012 -0.044 -0.045

90 35.949 -0.281 -0.014 -0.010 -0.010 -0.049 -0.050

100 31.975 -0.281 -0.010 -0.007 -0.007 -0.050 -0.050

110 28.428 -0.274 -0.006 -0.003 -0.003 -0.046 -0.047

120 25.264 -0.261 -0.002 0.002 0.002 -0.040 -0.041

130 22.442 -0.244 0.004 0.007 0.007 -0.033 -0.033

140 19.928 -0.224 0.009 0.012 0.013 -0.025 -0.025

150 17.689 -0.202 0.014 0.017 0.018 -0.017 -0.017

160 15.697 -0.179 0.019 0.022 0.022 -0.009 -0.010

170 13.926 -0.157 0.023 0.026 0.027 -0.003 -0.003

180 12.352 -0.135 0.027 0.030 0.030 0.003 0.002

190 10.954 -0.115 0.031 0.033 0.033 0.007 0.007

200 9.714 -0.095 0.033 0.036 0.036 0.011 0.011

210 8.615 -0.078 0.035 0.037 0.038 0.014 0.014

220 7.640 -0.062 0.037 0.039 0.039 0.016 0.016

230 6.776 -0.048 0.038 0.040 0.040 0.018 0.017

240 6.011 -0.035 0.038 0.040 0.040 0.018 0.018

250 5.334 -0.024 0.038 0.040 0.040 0.019 0.019

260 4.735 -0.014 0.038 0.040 0.040 0.019 0.019

270 4.204 -0.006 0.038 0.039 0.039 0.019 0.018

280 3.735 0.001 0.037 0.038 0.038 0.018 0.018

290 3.320 0.006 0.036 0.037 0.037 0.017 0.017

300 2.952 0.011 0.035 0.036 0.036 0.016 0.016

Table A .5: Approximation errors for the 10 year skew case. A P  is the price difference

between the model price and the exact price. Positive figures indicate overpricing by the

model.
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Strike Exact price A PI AP2 AP3 AP4 AP5 AP6

10 90.012 -0.002 -0.002 -0.002 -0.002 -0.001 -0.001

20 80.224 -0.022 -0.029 -0.028 -0.027 -0.014 -0.014

30 70.841 -0.022 -0.079 -0.075 -0.073 -0.044 -0.045

40 61.873 0.075 -0.110 -0.103 -0.100 -0.065 -0.067

50 53.373 0.274 -0.111 -0.100 -0.096 -0.060 -0.063

60 45.484 0.531 -0.094 -0.078 -0.073 -0.030 -0.034

70 38.376 0.790 -0.074 -0.053 -0.046 0.019 0.013

80 32.183 1.013 -0.058 -0.032 -0.023 0.075 0.067

90 26.954 1.176 -0.049 -0.018 -0.008 0.123 0.113

100 22.653 1.273 -0.046 -0.012 -0.002 0.148 0.138

110 19.178 1.310 -0.048 -0.014 -0.003 0.144 0.133

120 16.400 1.297 -0.056 -0.022 -0.011 0.120 0.109

130 14.182 1.246 -0.069 -0.036 -0.025 0.088 0.077

140 12.407 1.169 -0.085 -0.053 -0.043 0.053 0.043

150 10.973 1.075 -0.104 -0.074 -0.064 0.019 0.010

160 9.803 0.972 -0.124 -0.096 -0.087 -0.012 -0.020

170 8.836 0.866 -0.145 -0.119 -0.110 -0.039 -0.047

180 8.026 0.761 -0.166 -0.141 -0.133 -0.063 -0.070

190 7.338 0.660 -0.185 -0.161 -0.154 -0.083 -0.090

200 6.745 0.565 -0.203 -0.180 -0.173 -0.100 -0.107

210 6.230 0.477 -0.219 -0.197 -0.190 -0.114 -0.120

220 5.776 0.396 -0.232 -0.211 -0.205 -0.126 -0.131

230 5.372 0.323 -0.244 -0.223 -0.217 -0.134 -0.140

240 5.010 0.258 -0.253 -0.233 -0.227 -0.141 -0.146

250 4.682 0.200 -0.260 -0.241 -0.235 -0.145 -0.150

260 4.384 0.149 -0.265 -0.246 -0.241 -0.148 -0.153

270 4.111 0.104 -0.268 -0.250 -0.244 -0.150 -0.154

280 3.861 0.065 -0.269 -0.252 -0.246 -0.150 -0.154

290 3.629 0.032 -0.269 -0.252 -0.247 -0.149 -0.153

300 3.415 0.003 -0.267 -0.251 -0.246 -0.147 -0.151

Table A .6: Approximation errors for the 10 year smile case. A  P is the price difference

between the model price and the exact price. Positive figures indicate overpricing by the

model.
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Strike Exact imp vol A PI AP2 AP3 AP4 AP5 AP6

50 93.58% 0.26% -0.34% -0.31% -0.31% -0.48% -0.48%

60 80.24% 0.39% -0.19% -0.19% -0.19% -0.36% -0.36%

70 69.32% 0.36% -0.15% -0.15% -0.15% -0.26% -0.26%

80 60.38% 0.28% -0.13% -0.13% -0.13% -0.18% -0.18%

90 53.06% 0.20% -0.12% -0.12% -0.12% -0.12% -0.12%

100 47.07% 0.14% -0.11% -0.11% -0.11% -0.08% -0.08%

110 42.16% 0.10% -0.10% -0.10% -0.10% -0.09% -0.09%

120 38.14% 0.07% -0.09% -0.09% -0.09% -0.11% -0.11%

130 34.85% 0.05% -0.08% -0.08% -0.08% -0.11% -0.11%

140 32.16% 0.04% -0.07% -0.07% -0.07% -0.10% -0.10%

150 29.96% 0.04% -0.06% -0.06% -0.06% -0.10% -0.10%

Table A.7: Approximation errors for the 1 month skew case. A P is the difference between 

the model implied volatility and the exact one. Positive figures indicate overpricing by 

the model.

Strike Exact imp vol A PI AP2 AP3 AP4 AP5 AP6

50 69.56% 1.28% 0.00% 0.00% 0.00% -0.50% -0.50%

60 57.18% 1.25% 0.04% 0.04% 0.04% -0.53% -0.53%

70 48.19% 0.85% -0.02% 0.01% 0.01% -0.31% -0.31%

80 42.41% 0.62% -0.03% -0.03% -0.03% -0.17% -0.17%

90 39.35% 0.52% -0.03% -0.02% -0.02% -0.04% -0.04%

100 38.45% 0.52% -0.01% 0.00% 0.00% 0.05% 0.05%

110 39.19% 0.57% 0.02% 0.03% 0.03% 0.02% 0.01%

120 41.12% 0.67% 0.06% 0.06% 0.06% -0.04% -0.04%

130 43.88% 0.81% 0.10% 0.10% 0.11% -0.09% -0.09%

140 47.18% 0.98% 0.15% 0.16% 0.16% -0.13% -0.13%

150 50.81% 1.18% 0.20% 0.21% 0.22% -0.18% -0.18%

Table A.8: Approximation errors for the 1 month smile case. A  P is the difference between

the model implied volatility and the exact one. Positive figures indicate overpricing by

the model.
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Strike Exact imp vol A PI AP2 AP3 AP4 AP5 AP6

40 46.81% -0.42% -0.14% -0.14% -0.14% -0.06% -0.02%

50 44.26% -0.34% -0.12% -0.12% -0.12% -0.08% -0.04%

60 41.95% -0.25% -0.09% -0.09% -0.09% -0.09% -0.05%

70 39.86% -0.18% -0.07% -0.07% -0.07% -0.09% -0.05%

80 37.97% -0.13% -0.06% -0.05% -0.05% -0.08% -0.05%

90 36.26% -0.08% -0.04% -0.04% -0.04% -0.07% -0.04%

100 34.72% -0.04% -0.03% -0.03% -0.03% -0.06% -0.03%

110 33.31% -0.01% -0.02% -0.02% -0.02% -0.05% -0.02%

120 32.05% 0.01% -0.02% -0.01% -0.01% -0.04% -0.02%

130 30.90% 0.03% -0.01% -0.01% -0.01% -0.04% -0.02%

140 29.86% 0.04% -0.01% -0.01% -0.01% -0.04% -0.02%

150 28.93% 0.05% 0.00% 0.00% 0.00% -0.04% -0.02%

160 28.08% 0.06% 0.00% 0.00% 0.00% -0.04% -0.02%

170 27.31% 0.06% 0.00% 0.00% 0.00% -0.04% -0.02%

180 26.61% 0.07% 0.00% 0.00% 0.00% -0.04% -0.03%

190 25.98% 0.07% 0.00% 0.00% 0.00% -0.05% -0.03%

200 25.41% 0.07% 0.00% 0.00% 0.00% -0.05% -0.03%

Table A.9: Approximation errors for the 1 year skew case. A  P is the difference between

the model implied volatility and the exact one. Positive figures indicate overpricing by

the model.
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Strike Exact imp vol A PI AP2 AP3 AP4 AP5 AP6

40 38.26% 0.26% -0.48% -0.45% -0.44% -0.47% -0.47%

50 33.19% 0.79% -0.19% -0.17% -0.17% -0.35% -0.35%

60 29.06% 0.96% -0.06% -0.04% -0.04% -0.23% -0.23%

70 26.06% 0.91% -0.02% -0.01% 0.00% -0.13% -0.13%

80 24.14% 0.81% -0.03% -0.01% -0.01% -0.05% -0.05%

90 23.12% 0.75% -0.02% -0.01% -0.01% 0.03% 0.02%

100 22.82% 0.74% -0.02% -0.01% 0.00% 0.06% 0.06%

110 23.06% 0.77% 0.00% 0.01% 0.01% 0.05% 0.05%

120 23.71% 0.82% 0.00% 0.01% 0.02% 0.01% 0.00%

130 24.63% 0.88% 0.01% 0.03% 0.03% -0.03% -0.04%

140 25.73% 0.95% 0.02% 0.04% 0.04% -0.07% -0.07%

150 26.94% 1.00% 0.03% 0.05% 0.05% -0.10% -0.10%

160 28.20% 1.04% 0.03% 0.05% 0.05% -0.13% -0.13%

170 29.49% 1.03% 0.01% 0.03% 0.03% -0.16% -0.17%

180 30.76% 1.01% -0.02% 0.00% 0.01% -0.19% -0.20%

190 32.00% 0.96% -0.06% -0.04% -0.03% -0.22% -0.23%

200 33.19% 0.88% -0.10% -0.08% -0.07% -0.25% -0.25%

Table A. 10: Approximation errors for the 1 year smile case. A  P is the difference between

the model implied volatility and the exact one. Positive figures indicate overpricing by

the model.
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Strike Exact imp vol A PI AP2 AP3 AP4 AP5 AP6

30 28.61% -0.29% 0.00% 0.00% 0.00% 0.02% 0.02%

40 28.19% -0.30% -0.01% -0.01% -0.01% 0.00% 0.00%

50 27.79% -0.30% -0.02% -0.01% -0.01% -0.02% -0.02%

60 27.41% -0.29% -0.02% -0.01% -0.01% -0.03% -0.03%

70 27.05% -0.28% -0.02% -0.01% -0.01% -0.04% -0.04%

80 26.70% -0.27% -0.02% -0.01% -0.01% -0.04% -0.04%

90 26.38% -0.26% -0.01% -0.01% -0.01% -0.05% -0.05%

100 26.07% -0.24% -0.01% -0.01% -0.01% -0.04% -0.04%

110 25.77% -0.23% -0.01% 0.00% 0.00% -0.04% -0.04%

120 25.49% -0.21% 0.00% 0.00% 0.00% -0.03% -0.03%

130 25.22% -0.19% 0.00% 0.01% 0.01% -0.03% -0.03%

140 24.97% -0.18% 0.01% 0.01% 0.01% -0.02% -0.02%

150 24.72% -0.16% 0.01% 0.01% 0.01% -0.01% -0.01%

160 24.49% -0.15% 0.02% 0.02% 0.02% -0.01% -0.01%

170 24.27% -0.13% 0.02% 0.02% 0.02% 0.00% 0.00%

180 24.07% -0.12% 0.02% 0.03% 0.03% 0.00% 0.00%

190 23.87% -0.10% 0.03% 0.03% 0.03% 0.01% 0.01%

200 23.68% -0.09% 0.03% 0.03% 0.03% 0.01% 0.01%

210 23.50% -0.08% 0.03% 0.04% 0.04% 0.01% 0.01%

220 23.33% -0.06% 0.04% 0.04% 0.04% 0.02% 0.02%

230 23.17% -0.05% 0.04% 0.04% 0.04% 0.02% 0.02%

240 23.01% -0.04% 0.04% 0.05% 0.05% 0.02% 0.02%

250 22.87% -0.03% 0.05% 0.05% 0.05% 0.02% 0.02%

260 22.73% -0.02% 0.05% 0.05% 0.05% 0.02% 0.02%

270 22.59% -0.01% 0.05% 0.05% 0.05% 0.03% 0.02%

280 22.47% 0.00% 0.05% 0.05% 0.06% 0.03% 0.03%

290 22.35% 0.01% 0.06% 0.06% 0.06% 0.03% 0.03%

300 22.23% 0.02% 0.06% 0.06% 0.06% 0.03% 0.03%

Table A .ll:  Approximation errors for the 10 year skew case. A  P is the difference between

the model implied volatility and the exact one. Positive figures indicate overpricing by

the model.
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Strike Exact imp vol A PI AP2 AP3 AP4 AP5 AP6

30 23.41% -0.13% -0.47% -0.45% -0.44% -0.26% -0.27%

40 22.07% 0.23% -0.35% -0.33% -0.32% -0.21% -0.21%

50 20.80% 0.56% -0.23% -0.21% -0.20% -0.12% -0.13%

60 19.77% 0.79% -0.14% -0.12% -0.11% -0.04% -0.05%

70 19.02% 0.93% -0.09% -0.06% -0.05% 0.02% 0.01%

80 18.53% 1.01% -0.06% -0.03% -0.02% 0.07% 0.07%

90 18.28% 1.04% -0.04% -0.02% -0.01% 0.11% 0.10%

100 18.20% 1.05% -0.04% -0.01% 0.00% 0.12% 0.11%

110 18.27% 1.05% -0.04% -0.01% 0.00% 0.11% 0.11%

120 18.43% 1.03% -0.04% -0.02% -0.01% 0.10% 0.09%

130 18.66% 1.00% -0.06% -0.03% -0.02% 0.07% 0.06%

140 18.93% 0.95% -0.07% -0.04% -0.04% 0.04% 0.04%

150 19.23% 0.90% -0.09% -0.06% -0.05% 0.02% 0.01%

160 19.55% 0.84% -0.11% -0.08% -0.08% -0.01% -0.02%

170 19.87% 0.78% -0.13% -0.11% -0.10% -0.04% -0.04%

180 20.19% 0.71% -0.16% -0.13% -0.13% -0.06% -0.07%

190 20.50% 0.64% -0.18% -0.16% -0.15% -0.08% -0.09%

200 20.80% 0.57% -0.21% -0.19% -0.18% -0.10% -0.11%

210 21.08% 0.51% -0.24% -0.21% -0.21% -0.12% -0.13%

220 21.35% 0.44% -0.26% -0.24% -0.23% -0.14% -0.15%

230 21.60% 0.37% -0.29% -0.26% -0.26% -0.16% -0.16%

240 21.84% 0.31% -0.31% -0.29% -0.28% -0.17% -0.18%

250 22.07% 0.25% -0.33% -0.31% -0.30% -0.18% -0.19%

260 22.27% 0.19% -0.35% -0.33% -0.32% -0.20% -0.20%

270 22.47% 0.14% -0.37% -0.35% -0.34% -0.21% -0.21%

280 22.65% 0.09% -0.39% -0.36% -0.36% -0.21% -0.22%

290 22.81% 0.05% -0.40% -0.38% -0.37% -0.22% -0.23%

300 22.97% 0.00% -0.42% -0.39% -0.38% -0.23% -0.23%

Table A. 12: Approximation errors for the 10 year smile case. A  P is the difference between

the model implied volatility and the exact one. Positive figures indicate overpricing by

the model.
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