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ABSTRACT

The Thesis develops the framework of competitive equilibrium in infinite-dimensional commodity and
price spaces, and applies it to the problems of electricity pricing and investment in the generating
system. Alternative choices of the spaces are discussed for two different approaches to the price
singularities that occur with pointed output peaks.

Thermal generation costs are studied first, by using the mathematical methods of convex calculus
and majorisation theory, a.k.a. rearrangement theory. Next, the thermal technology, pumped storage
and hydroelectric generation are studied by duality methods of linear and convex programming.
These are applied to the problems of operation and valuation of plants, and of river flows. For
storage and hydro plants, both problems are approached by shadow-pricing the energy stock, and
when the given electricity price is a continuous function of time, the plants’ capacities, and in the
case of hydro also the river flows, are shown to have definite and separate marginal values. These
are used to determine the optimum investment.

A short-run approach to long-run equilibrium is then developed for pricing a differentiated good
such as electricity. As one tool, the Wong-Viner Envelope Theorem is extended to the case of convex
but nondifferentiable costs by using the short-run profit function and the profit-imputed values of the
fixed inputs, and by using the subdifferential as a multi-valued, generalised derivative. The theorem
applies readily to purely thermal electricity generation. But in general the short-run approach
builds on solutions to the primal-dual pair of plant operation and valuation problems, and it is this
framework that is applied to the case of electricity generated by thermal, hydro and pumped-storage
plants. This gives, as part of the long-run equilibrium solution, a sound method of valuing the fixed

assets—in this case, the river flows and the sites suitable for reservoirs.
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Chapter 1

INTRODUCTION

Since Boiteux’s seminal article [12], a large amount of research has been done on the theory of peak-
load pricing but, with the exception of a landmark study of hydro-thermal electricity generation by
Koopmans [55], the significant body of theory is set up in the framework of discretised time and
sufplus maximisatioh.1 The Best and most comprehensive account of what has been achieved in that
approach is to be found in the book by Crew and Kleindorfer [17], which is essentially up-to-date
despite having been completed in 1979. Their analysis assumes constant returns to scale (c.r.t.s.)
in electricity generation. Transmission, which has increasing returns to scale, is left out; its share of
the total costs of supply is, however, relatively small.2

In this Thesis, returns to scale are also taken to be constant or decreasing, but this is used to put
the problem in a different framework—that of general competitive equilibrium with continuous time.
The analysis is also extended to include energy storage by giving the first realistic model of pumped
storage and by recasting the hydro operation problem as one of profit maximisation. This is a setting
that is relevant for a modern decentralised electricity supply industry, and it also allows a much
simpler solution than does Koopmans’s problem of hydro-thermal cost minimisation. A successful
analysis of operation and plant valuation for the three technologies (thermal, pumped storage and
hydro, in Chapters 2 to 4) means that the long-run equilibrium problem can be approached by
building on the short-run solutions (Chapter 5). This is much easier than a direct long-run analysis,
and it is also a practical approach in view of the importance of the short-run solution.

The model is deterministic, and so the equilibrium price is a pure time-of-use tariff (TOU tariff).
A basic extension to the case of stochastic demand (assuming risk neutrality and symmetric infor-
mation) requires little more than a re-interpretation of the time variable as time-and-event. This
produces a weather-dependent tariff, e.g., an electricity price dependent on the current temperature
as well as time.

The use of continuous time turns out to facilitate the treatment of the plant operation and

In [79, 8.D.b), the problems of maximising the social surplus and the monopoly profit are set up in continuous

time. Continuous time is also used for an econometric cost-benefit appraisal of peak-load pricing in [28].
2 Although Crew and Kleindorfer mention the issue of i.r.t.s. in public utility pricing, they assume c.r.t.s. for the

mathematical analysis [17, pp. 26, 37, 69, 171], except in brief passages on pricing subject to a profit constraint [17,
pp- 16-17 and 59-60]. Their case study of electricity comprises only the thermal generation techniques [17, Chapter
10, p. 159], which have c.r.t.s. In hydro generation (which they exclude from their model of the technology), returns
to scale are decreasing once account has been taken of the fixity of the river flows and the sites suitable for reservoirs

(at the very least, the marginal cost of expanding these inputs is steeply increasing).
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valuation problems. It also gives verisimilitude in describing commodity differentiation in physical
flows of goods. As for the surplus concept with its well-known shortcomings, it is made unnecessary
by the equilibrium framework: in the first-best theory, it can serve no purpose other than deriving
the marginal-cost pricing principle as in [17, (2.8)-(2.9)], but the principle is of course a part of the
competitive equilibrium concept.

The basic results that verify the model’s consistency have been published in three papers [43],
[45] and [47).3 Referred to a number of times (starting with Section 2.2, in Chapter 2), these results
establish: (i) the continuity of the demand map and the existence of a competitive equilibrium [47],
(ii) the representation of the equilibrium price system by a density function, i.e., by a time-dependent
price rate in §/kWh [43], and (iii} the continuity of the equilibrium price as a function of time [45].
The demand continuity result of [47] is a basis not only for an equilibrium existence proof but also
for the sensitivity analysis that is necessary in any implementation of the equilibrium solution: it is
essential to know that small deviations from the equilibrium price system will not result in large shifts
of demand. It should also be noted that the density representation of prices in [43] is a result that
adapts Bewley’s framework to continuous-time pricing problems by relaxing his so-called “Exclusion
Assumption” on the production sets [10, p. 524 and Theorem 3]. Applied to electricity pricing, the
price-density result settles Boiteux’s conjecture on the shifting-peak problem: his spread-out form
of capacity charges obtains if brief interruptions of consumption would cause little loss to the users.
In mathematical terms, this is the case when the consumers’ utility functions and the industrial
users’ production functions are Mackey continuous. This is assumed in the Thesis when it comes to
the general equilibrium analysis of electricity supply (Section 5.15, in Chapter 5). Under additional
assumptions, the price density is a continuous function of commodity characteristics such as time
[45]. A continuously varying time-of-use tariff (TOU tariff) has two uses in electricity pricing. First,
it precludes demand jumps that would arise from discontinuous switches from one price rate to
another. Second, in the problems of operating and valuing hydroelectric and pumped-storage plants
(studied in Chapters 3 and Chapter 4), price continuity guarantees that their capacities (viz., the
reservoir and the converter), the energy stocks, and in the case of hydro also the river flows, have
well-defined marginal values.

The equilibrium existence and price continuity results of [43], [45] and [47] are set in the com-
modity space L [0,T], which consists of all the essentially bounded functions on the time inter-
val that represents one pricing cycle. This is the largest commodity space that can be used for

cyclical continuous-time problems involving capacity costs or constraints. There are advantages,

3The three papers are not part of the Thesis, but are on its list of references as {43], [45] and [47], published in
Economic Theory (vols 20 and 26) and Banach Center Publications (vol. 71). These papers were written on an equal
basis with Anthony Horsley on grant R000232822 from the Economic and Social Research Council for the project

“Applications of modern equilibrium theory”.
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spelt out later, to be had from using the smaller commodity space of continuous functions, C [0, T].
But L* [0,T] is mathematically the more convenient setting for capacity pricing with interrupt-
ible demand, since it contains the 0-1 indicator function 1jg 1)\ g that describes the users’ switch-off
response to a capacity charge concentrated on a set of small measure, E. Furthermore, being a
rearrangement-invariant space, L [0,T)] is also an appropriate setting for formulating the weak
symmetry-like conditions that underlie the price continuity result of [45].

In this Thesis, the commodity space is therefore taken to be L* [0, T], the space of essentially
bounded functions on the time interval that represents one pricing cycle, and it is paired with
L' [0, T}, the price space of integrable functions (with the space of continuous functions, C [0, T}, as
a price subspace). This means that price singularities, which represent concentrated charges, are
excluded in general equilibrium (on the assumption of interruptible demand). They are, however,
included in the discussion of price systems and marginal costs for the three supply technologies
(Chapters 2 to 4). This is because, although both Bewley’s and later work on the L°°-model has been
preoccupied with excluding price singularities, these do actually have an essential role in continuous-
time problems as capacity charges concentrated on pointed peaks (as opposed to capacity charges
spread out as a density over a peak plateau). When singular prices are an essential term of the
equilibrium price system, the task is not to exclude them but to give them a tractable mathematical
representation. This cannot be done within the L°-model, but it can be achieved by restricting
the commodity space to the space of continuous functions, C [0,7]. Then an instantaneous capacity
charge on a point peak takes the form of a Dirac measure; it is a charge in § per kW demanded at
the peak instant, and it is additional to a price density (which is a price rate in $§/kWh). A price
of this form can arise in equilibrium when some of the demand is uninterruptible, i.e., when the
user’s utility or production function is norm-continuous but not Mackey continuous: see [39] and
Section 2.2 (in Chapter 2).4

In the context of storage and hydro plant valuation, continuity of the electricity price function
turns out to guarantee that all the fixed inputs—viz., the river flows, the reservoirs and the gen-
erating equipment—have unique, fully definite marginal values. That is, the short-run profit is a
differentiable function of these inputs (Section 3.9, in Chapter 3, and Section 4.9, in Chapter 4). In
other words, the infinite-dimensional linear programme of plant valuation has a unique solution.

But other optimal values, such as the short-run and long-run joint costs of thermal electricity
generation are manifestly nondifferentiable as functions of the output (as well as of the other argu-
ments). Therefore, the marginal costs are formalised by using the subdifferential as a generalised,
multi-valued derivative. An effective extension of the Wong-Viner Envelope Theorem for nondiffer-

entiable costs is provided as one of the tools for the short-run approach (Section 5.9, in Chapter 5).

4The norm in question is the supremum norm on C [0, T}, which, as a subspace of L™ [0, T}, carries also the Mackey

topology (for the pairing of L with L1).
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It uses, in an essential way, the short-run profit function and the profit-imputed values of the fixed -
inputs.

Thus it is shown that infinite-dimensional equilibrium analysis can be much enhanced and made
more applicable by exploiting the usually under-used mathematical resources of linear and convex

programming and the subdifferential calculus. This is the wider programme of this work.

In summary, Chapter 2 sets up a continuous-time model of the thermal technology of electricity
generation using the commodity space of essentially bounded functions. Since there are advantages to
using the smaller commodity space of continuous functions, feasibility of this choice is also discussed.
Explicit formulae are given for the optimal solution, values and marginal values of the problems of
short-run or long-run cost minimisation and short-run profit maximisation (Section 2.3). Because
the joint costs are convex but nondifferentiable, marginal costs are formalised as subdifferentials.
As a function of the cyclical trajectory of output, the short-run cost is a convex integral functional.
By applying rearrangement and majorisation theory, the long-run cost (net of the peak term) is
shown to be a basic symmetric function, and its subdifferential is calculated by using the Hardy-
Littlewood-Pélya Inequality. The peak term of the long-run cost is the supremum functional, and the
known formula for its subdifferential is quoted. So is the formula for the cost-minimising generating
system. Given a TOU electricity tariff, the short-run profit-maximising output and the capacity
value are also spelt out, in Section 2.4, for use in the short-run approach to market equilibrium
(in Chapter 5). The role of profit-imputed capacity values in extending the Wong-Viner Envelope
Theorem to nondifferentiable costs is also described.

In Chapter 3, the duality method of linear and convex programming is applied to the problems of
operation and rental valuation of facilities for conversion and storage of electricity (when it is priced
by time of use). Both problems are approached by shadow-pricing the energy stock (which is a purely
intermediate commodity), and the marginal values of the plant’s capacities are expressed in terms of
the stock’s shadow price function 9 and the given TOU market price p for electricity (Section 3.9).
In particular, the unit reservoir rent equals the total positive variation of 1 over the cycle. If p
is a continuous function of time, then the short-run profit is shown to be a differentiable function
of the capacities, which therefore have definite and separate marginal values, despite being perfect
Allen-Hicks complements. (In the case of perfect conversion, v itself is unique if p is continuous.)
The optimal storage policy is also given in terms of ¢ and p (Section 3.8). The marginal capacity
values are used to determine the optimum investment in storage plants (Section 3.11). Finally,
the conditions which guarantee that the storage technology can be included in a continuous-time
competitive equilibrium model of peak-load pricing with the space of essentially bounded functions
as the commodity space are verified (Section 3.16).

Chapter 4 gives a parallel analysis for hydroelectric operation: the duality method of linear

programming is applied to the problems of operation and rental valuation of a hydro plant (when
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electricity is priced by time of use in the cycle). Both problems are approached using time-dependent
shadow-pricing of water; and if the given market price for electricity, p, is a continuous function of
time, then the shadow price function for water, v, is shown to be unique (Section 4.9). The marginal
values of the plant’s capacities—defined as derivatives of the short-run profit—are expressed in terms
of ¢ (and p). In particular, the unit reservoir rent equals the total positive variation of v over the
cycle. The profit-imputed values of the river flow and of the hydro capacities (reservoir and turbine)
are therefore definite—unlike the corresponding values imputed from fuel savings for a mixed hydro-
thermal system (as in the Koopmans’s work). The optimal water storage policy is also given in
terms of ¥ and p (Section 4.8). The marginal capacity values are used to determine the optimum
investment in hydro plants (Section 4.12). '

In Chapter 5, the preceding studies of operation and valuation of the three plant types are first
summarised and then used in applying the short-run approach to the long-run equilibrium pricing of
electricity (Sections 5.13 and 5.14, and Section 5.15). Before its application, the short-run approach
itself has to be developed. This is done in Sections 5.3 to 5.9 for an individual producer’s optimum,
and in Sections 5.10 and 5.11 for the general equilibrium model with a focus on the market supplied
by a particular industry—such as the electricity supply industry.

Thus Chapter 5 gives a new formal framework for the theory of competitive equilibrium and
its applications. The “short-run approach” means the calculation of long-run producer optima and
general equilibria from the short-run solutions to the producer’s profit maximisation programme and
its dual. The marginal interpretation of the dual solution means that it can be used to value the
capital and other fixed inputs, whose levels are then adjusted accordingly (where possible). But
short-run profit can be a nondifferentiable function of the fixed quantities, and the short-run cost is
nondifferentiable whenever there is a rigid capacity constraint. Nondifferentiability of the optimal
value requires the introduction of nonsmooth calculus into equilibrium analysis, and subdifferential
generalisations of smooth-calculus results of microeconomics are given, including the key Wong-
Viner Envelope Theorem. This resolves long-standing discrepancies between “textbook theory” and
industrial experience. The other tool employed to characterise long-run producer optima is a primal-
dual pair of programmes. Both marginalist and programming characterisations of producer optima
are given in a taxonomy of seventeen equivalent systems of conditions (with six systems spelt out
in full detail). When the technology is described by production sets, the most useful system for
the short-run approach is that using the short-run profit programme and its dual. This programme
pair is employed to set up a formal framewbrk for long-run general-equilibrium pricing of a range
of commodities with joint costs of production. This gives a practical method that finds the short-
run general equilibrium en route to the long-run equilibrium, exploiting the operating policies and
plant valuations that must be determined anyway. These critical short-run solutions have relatively

simple forms that can greatly ease the fixed-point problem of solving for equilibrium, as is shown



16

on an electricity pricing example. Applicable criteria are given for the existence of the short-run
solutions and for the absence of a duality gap. The general analysis is spelt out for technologies
with conditionally fixed coefficients, a concept extending that of the fixed-coefficients production
function to the case of multiple outputs. The short-run approach is applied to the peak-load pricing
of electricity generated by thermal, hydro and pumped-storage plants. This gives, for the first time, a

sound method of valuing the fixed assets—in this case, river flows and the sites suitable for reservoirs.
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Chapter 2

COST MINIMISATION AND PROFIT MAXIMISATION FOR THERMAL

ELECTRICITY GENERATION IN CONTINUOUS TIME

2.1 Introduction to Chapter 2

This is a formal account of the multi-station constant-coefficients model of thermal electricity genera-
tion technology in continuous time. T'wo sets of problems, set in the framework of infinite-dimensional
commodity and price spaces, are discussed: (i) calculating the short-run and long-run costs and mar-
ginal costs, and determining the optimal generating system (i.e., the system that minimises the total
production cost), and (ii) running the plants to maximise their operating profits and valuing the
plants on the basis of these profits.

The cost calculations are of particular interest to a centralised public utility that aims to meet
demand at a minimum operating cost, optimise its capital stock, and price its outputs at long-
run marginal cost (LRMC). Through these policies the utility can achieve a long-run competitive
equilibrium outcome. And even if the utility does not actually price its output at marginal cost, it
is still interested in minimising its cost and in knowing its marginal costs.

The thermal technology of electricity generation is so simple that, except for the fixed-point
problem of market clearance, all the problems of the cost approach have explicit solutions. These
are presented in Section 2.3. Cost-minimising operation of a thermal system consists in switching
the stations on in the order of increasing unit operating cost, a.k.a. the merit order. The system’s
SRC is additively separable over time and so the SRMC is described by the usual SRMC curve in
the instantaneous quantity-price plane (Figure 2.1 and Theorem 2.3.1). The cost-minimising plant
mix can be determined from the break-even points on the load-duration curve. This comes along
with the calculation of the LRC for an output trajectory of a special form, viz., a unit output of an
arbitrary duration per cycle (Figure 2.2), asin, e.g., [9], [60], [64] and [83]. This argument is extended
by following Horsley [33, (3)] to give an integral formula for the LRC of any output trajectory by
slicing the area between it and the time axis, in parallel to that axis, into infinitesimal outputs of
varying durations. This is then used, as in [33, (5) and (6)], to derive a formula for the LRC that
can be explicitly differentiated to calculate the LRMC; the heuristic calculation in [33, (6)] is fully
formalised in [36, Section 5]. Here, this analysis is presented in Theorems 2.3.3, 2.3.6 and 2.3.7 and
their variants (Theorems 2.3.9 and 2.3.10).

For mathematical rigour, these calculations require subdifferential calculus, since both the SRC
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and the LRC functions are nondifferentiable at the points qf most interest. A continuous-time analysis
requires, furthermore, a suitable function space as the commodity space for electricity outputs.
Because of the capacity costs and constraints, this must be a space of bounded functions and, for the
main part, the largest of such spaces—viz., the space L™ [0, T] of all the essentially bounded functions
on the time interval that represents one pricing cycle—is used here. An alternative formulation, which
is also presented, uses the smaller commodity space of continuous functions, C [0,7]. This choice is '
not without its difficulties in equilibrium analysis, but it allows both a more realistic representation
of electricity flows and a better representation of singular charges such as the capacity charges
concentrated on pointed peaks. This was first recognised in [33, (6)]. The variants of marginal cost:
calculations with C [0, T] as the commodity space are given in Theorems 2.3.8, 2.3.9 and 2.3.10.

The short-run profit (SRP) calculations are of interest to producers in a decentralised electricity
supply industry, but they can also be useful to a centralised public utility as a basis for another
way of arriving at the long-run competitive equilibrium, with two advantages. Unlike the policy
of LRMC pricing, this method consists in calculating the short-run equilibrium and then adjusting
the capacities until their profit-imputed unit values are equal to their prices. This is the short-run
approach which is developed in Chapter 5 and in [46]. As is also pointed out there, the short-run
approach to equilibrium can, in principle, be based on calculating the SRC instead of the SRP, but
the cost approach is problematic when there are different kinds of plant with dissimilar technologies.
This is because the generating system’s minimum operating cost is, as a function of output, the
infimal convolution of the individual plants’ operating costs—which means that cost-minimising
operation requires splitting the system’s output optimally among the plants. This is known as
optimal system despatch. Despatch of a purely thermal system is obvious from the plants’ merit
order—see (2.3.5)—but the problem becomes difficult when another plant type, such as hydro or
pumped storage, is added. For a hydro-thermal system, its cost-minimising despatch problem is
determined by Koopmans [55]; his solution is unavoidably very complicated. The profit approach
by-passes the despatch problem because profit maximisation by plants using a common output price
system results “automatically” in a cost-minimising allocation of the total output among the plants.
The total output is, of course, determined in the process instead of being given. This means that
the profit approach is of little use to a utility intent on minimising its costs but not on competitive
equilibrium pricing. Such a utility has no choice but to tackle the formidable pfoblem of cost-
minimising despatch.

By contrast, the SRP calculations for hydro and pumped storage plants are relatively simple,
as is shown in Chapters 3 and 4. And for a thermal station they are essentially trivial: given a
time-of-use electricity tariff p, the profit-maximising output rate for a thermal plant of capacity k
with a running cost w is k at a time ¢t when p(t) > w and 0 when p(t) < w (when p(t) = w, it

is anything between 0 and k). The operating profit per unit capacity is therefore fOT (p(t) - w)+dt
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(where the “+” means the nonnegative part). This is spelt out in Section 2.4, for use in the short-
run approach to equilibrium with a generating technology containing thermal, hydro and pumped

storage techniques (Chapter 5 and [46]).

2.2 The commodity and price spaces for electricity

Cyclical continuous-time problems that involve capacity costs or constraints, such as peak-load pric-
ing of electricity, must be set up in a commodity space which consists entirely of bounded functions
of time. An obvious choice is the space of continuous functions C[O, T]—and an immediate mod-
elling benefit is that its norm-dual, the space of all Borel measures M [0, T}, is available as the price
space. This can accommodate the instantaneous capacity charges that arise in the case of firm point
peaks. However, as is well known, C [0, 7] is not a dual Banach space, and equilibrium analysis with
C [0,T)] as the commodity space is hampered by the consequent lack of a vector topology that would
make the unit ball compact. One way to get round this mathematical difficulty is to use the larger
commodity space of essentially bounded functions, L* [0,7]. Unlike C[0,T], the space L*[0,T]
does have a norm-predual, which is L* [0, T, the space of Lebesgue integrable functions. Bewley [10]
uses this first to give an equilibrium existence result with a price system p* in the norm-dual L*°*,
and then to deduce the existence of an equilibrium price system in the subspace L' under additional
assumptions. This is done by showing that any singular part of p* can be deleted without disturbing
the equilibrium; hence the remaining density part, which belongs to L1, is itself an equilibrium price.
Some important cases allow the stronger conclusion that p*, the original price system, is itself a pure
density function. As long as L™ is the commodity space, the price density result is an indispensable
part of the analysis because the singularities in L°°* are mathematically intractable and therefore
unsuitable for describing prices. But, since the L-price functions obviously cannot represent the in-
stantaneous capacity charges, some equilibria cannot be adequately described within the L*°-model;
this is its basic limitation. '

As is shown in [43], Bewley’s model can be adapted to peak-load pricing if the users’ preferences
and production functions are Mackey continuous. This assumption means that demand for the good
in question is harmlessly interruptible, i.e., that brief interruptions of consumption flows cause only
small losses to the users. In this case, the customers would switch off briefly rather than pay any
concentrated or instantaneous charges. So, being ineffective, such charges cannot be part of an equi-
librium tariff. This is the continuous-time interpretation of Bewley’s argument that singular prices
would “make an arbitrarily small set of commodities extraordinarily expensive”, so that consumers
“would prefer to trade them for cheaper ones” [10, p. 523]. In the context of peak-load pricing, it
can be seen as Boiteux’s solution to the “shifting-peak problem” [12, 3.4 and 3.3.3]. A concentration

of the capacity charge during a short-lived peak can cause the peak to shift, but the incentive to
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shift demand may be removed by spreading the capacity charge over a flattened peak. In this type of
equilibrium, the capacity charge is spread as a density over a peak plateau in the output trajectory.
This is the only type of equilibrium that the price space L! [0, T] can accommodate.

Since Bewley’s type of equilibrium obtains only under the restrictive assumption of interruptible
demand, it is by no means always valid. With uninterruptible demand, it is a salient feature of the
peak-load pricing problem that the demand trajectory can have a firm, pointed peak. In such a
case, the peak capacity charge is levied wholly at the peak instant; it is then a charge for the rate
of consumption at that instant, and not a charge per unit of the good. In the context of electricity
pricing, this is a capacity charge in § per kW demanded at the peak instant—and it is additional
to the marginal fuel charge, which is a price density, i.e., a price rate in §/kWh. In other words,
as is pointed out by Horsley [33, (6)], there is a charge per unit of power taken at peak, as well a
charge per unit of energy at any time. Such a price system can be represented by the sum of a point
measure and a measure with a density (with respect to the Lebesgue measure), but this requires
restricting the commodity space to C [0, T] and pairing it with the price space M [0, T]. This can be
done from the start if time-continuity is taken to be a physical constraint on consumption bundles,
as is assumed in [39]. If this is not assumed, then the commodity space has to be L™ [0, T] to start
with, and it is restricted to C[0,T] only in the end, after the equilibrium allocation has been shown
to liein C.! The equilibrium price functional p € L>* can then be restricted to C, and its restriction
can be represented by a measure pc € M. Like any measure on [0,7], pc is the sum of an absolutely
continuous measure (which is identified with its density) and a measure that is singular (with respect
to the Lebesgue measure). The two parts of pc need not always correspond to the density and the
singular parts of p as an element of L°*, but they do in peak-load pricing when the equilibrium
output has a peak of zero duration: this is spelt out at the end of this section.

Therefore, although a singular linear functional on L* is unsuitable as a final mathematical
representation of a price system, it is useful as a working representation of prices for two very
different purposes: either to show that the equilibrium price system contains no singularity (i.e., lies
in L!), or to represent the price singularity in another way (as a measure) if it does arise in general
equilibrium. For both reasons, singular terms are included in the formal discussion of marginal costs

and prices.

The commodity space L [0, T] is the vector space of all essentially bounded real-valued functions;
a function y: [0,T] — R is essentially bounded, with respect to the Lebesgue measure (w.r.t. meas),
if y is bounded on [0,T] \ N for some set N with meas N = 0. Functions which are equal almost

everywhere (a.e.)—i.e., differ only on a set of measure zero—are identified with each other. The

IThis can be done by extending the argument of [45, Section 6], albeit under rather restrictive assumptions (in
particular, those users capable of consuming discontinuous bundles must have additively separable utility or production

functions).
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space L* is normed by the supremum norm

yll, :=ess sup |y (t)|:= inf sup |y (¢)]-
Wl =5 sup Wy (@i=, inf s (o)

The notation for the essential supremum of y is abbreviated to EssSup (y).

For a complete mathematical description of marginal costs and prices, the commodity space
L*[0,T] must be paired with its norm-dual L°*. This is larger than the norm-predual of L,
which is L [0, T}, the space of functions integrable w.r.t. meas. A function p € L' [0, T] represents a
time-of-use (TOU) electricity tariff that is a price density, i.e., a time-dependent price rate p(t) in
$/kWh. But not all price systems have this form and, what is more, there are output trajectories
with no marginal costs of the pure-density form: see Theorems 2.3.1 and 2.3.7. When L [0,7]
serves as the commodity space for a cyclically priced good such as electricity, a general TOU tariff
is represented by a p € L>* {0, T, and such a p can be identified with a finitely additive set function
vanishing on the meas-null sets: the integral of a y € L* w.r.t. such a set function defines a bounded
linear functional on L™. See, e.g., [25, IIL.1-1IL.2 and IV.8.16] or [86, 2.3]. As an additive set
function, a p € L>* has the Hewitt-Yosida decomposition into pca + pra, the sum of its countably
additive (c.a.) and purely finitely additive (p.f.a.) parts: see, e.g., [10, Appendix I: (26)-(27)], [25,
I11.7.8] or [86, 1.23 and 1.24].2 The c.a. part of p is identified with its density w.r.t. meas, which exists
by the Radon-Nikodym Theorem [25, I11.10.2]—so it is a price function pca € L! [0,T]. The p.fa.
part of p can be characterised as a singular element of L°* [0, T, i.e., pra is concentrated on a subset
of [0, T] with an arbitrarily small Lebesgue measure. Formally, a p € L°* [0,T] is concentrated on,
or supported by, a measurable set A C [0,T]if (p|y) = (p|yla) for every y € L™, where 14 denotes
the 0-1 indicator of a set A (i.e., the function equal to 1 on A and to 0 outside A). A sequence of
sets (A;) is evanescent if Aj41 C A; for every,j and meas (ﬂ‘;‘;l A,-) =0, and p is called singular if
there exists an evanescent sequence (A;) such that p is concentrated on A; for each 5. A p € L>*
is singular if and only if it is p.f.a.: see [86, 3.1]. This gives ppa the interpretation of an extremely
concentrated charge.

However, a singular element of L>* [0,T] cannot be a fully satisfactory representation of a ca-
pacity charge on a pointed peak. This cannot be achieved with this price space: a linear functional
representing such a charge should be concentrated on the exact output peaks, but if this is a set of
Lebesgue measure zero, then it cannot support any nonzero functional on L*°. With this commodity
space, a capacity charge on a peak of zero duration can be formalised only as a singular element of
L*>* that is concentrated arbitrarily close to the peak, i.e., on the e-near-peaks for every € > 0. Con-
centration on the exact output peaks cannot follow from this, and indeed it does not because e cannot
be set equal to 0 for lack of countable additivity (of the p.f.a. set function that defines the singular

functional). As a result, this representation of a pointed-peak charge is not only awkward but also

2A p.f.a. set function is one that is lattice-disjoint from every c.a. one.
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always nonunique: the EssSup functional on L* has multiple subgradients at every y € L—unlike
the Max functional on C, which, at every y € C with a single peak at £, has a unique subgradient
and thus a Gateaux gradient (viz., the unit point measure at t): see Corollary 2.3.11. With C as the
commodity space, nonuniqueness of the peak charges in the LRMC comes—as it should in a “clean”
model—only from the nonuniqueness of the peak instants.

Since the integral w.r.t. a p.f.a. set function is one that lacks some basic properties [86], the
symbol [ is reserved here for integration w.r.t. measures, which are countably additive by definition
(so the only measures in L°°* are those having densities). The Hewitt-Yosida decomposition of the

value of a flow y € L™ [0,T] at a TOU tariff p € L>°* [0, T} is therefore written as

T
wly) = /0 poa (£)y (£) dt + (pea |9) (22.1)

In summary, for all its shortcomings, the L°°*-representation of a concentrated capacity charge is
useful as a means to one of two ends: either to exclude a price singularity (in the case of interruptible
demand with a flattened peak and a pure density as the equilibrium price), or to re-represent it as a
measure on [0, T] by restricting the equilibrium price functional p € L®* to the commodity subspace
C[0,T]. The measure pc that represents this restriction has an absolutely continuous part and a
singular part. For an arbitrary p € L**, the two parts of pc need not correspond to pca and ppa
because the restriction to C of a singular (p.f.a.) element of L®* can be an absolutely continuous
measure, rather than a singular one [82]. But if ppa is supported by an evanescent sequence of closed
sets (A;), then its restriction to C is represented by a singular measure, i.e., a measure concentrated
on a set of Lebesgue measure zero (viz., ﬂ;’?_.l Aj;). This measure is then the singular part of p¢, and
Pca is the density of the absolutely continuous part of pc. This is the case when, for every constant
€ > 0, pra is concentrated on the set of e-near-peaks {t : y (t) > Max (y) — €} of a continuous function
y with an exact peak of zero duration, i.e., with meas{t: y (t) = Max (y)} = 0. The restriction of

pra to C is then a singular measure concentrated on the latter set, i.e., on the exact peaks of y.

2.3 Thermal technology of electricity generation and its marginal costs

A thermal technique generates an output flow y € LY [0,T] from two input quantities: k (in kW)
of generating capacity, and v (in kWh) of fuel of the matching kind. Its long-run production set is

the convex cone
1 T
Yon := { (y; -k, —v) € LY x R? :y <K, ;]—/ y()dt<v,y>0 (2.3.1)
0

where the constant 7 is the efficiency of energy conversion (the ratio of electricity output to heat
input); any startup or shutdown costs and delays are ignored for simplicity. The unit fuel cost w (in

$ per kWh of electricity output) is the fuel’s price (in § per kWh of heat input) times the heat rate
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1/n. Henceforth, it is taken to represent all of the unit running cost (a.k.a. operating or variable
cost).3

There is a number of thermal techniques # = 1, 2,..., ©. Each has the same structure (2.3.1),
but it uses its own input commodities, viz., the capacity of type § and the suitable type of fuel, £,.4
Its production set, Yy, is formally Y1, embedded in the full commodity space by inserting zeros in
the input-output bundle at all the positions other than 0, {; and the t’s. The relevant quantities and
prices are indicated with the subscript 8: technique 6 generates an output flow yg from an input kg
of generating capacity of type @ and from an input vy of fuel of type &,. Its unit fuel cost is its heat

rate 1/n, times its fuel’s price w¢,. From here on, the unit fuel cost of plant type 6 is denoted by

we = '{Eﬁo/nﬁ'

Without loss of generality, one can assume that the thermal techniques are numbered in the order

of increasing unit operating cost (a.k.a. the merit order), i.e., that
w <we <... <we. (2.3.2)

The instantaneous short-run cost per unit time (in $/h) of generating an output rate y (in kW)
from a single thermal plant of capacity k& with a running cost w is wy if 0 < y < k, and +oo
otherwise. The one-station short-run cost of a periodic output y € L™ [0, T} is therefore w fOT y(t)dt
if 0 < y(t) <k for ae. t, and +0o otherwise. Thus the SRC function represents the capacity and

nonnegativity constraints as well as the variable cost actually incurred.

A thermal system’s short-run cost, i.e., the SRC of producing a total output y, € L [0, T] from

a thermal system of plants with capacities

k= (k17"'7k9)
and unit running costs
w = (wi,...,we)
is the convex integral functional
T
Csr (Y10, kyw) = / csr (Yo (t) s by w) dt (233)
0

where csg (Y10, k, w) is the system’s instantaneous short-run cost per unit time when its total output
rate is yt.. As a function of yt,, it is the infimal convolution of the individual plants’ short-run

costs, i.e.,

[°] (]
c oy Kyw) = inf weYg : 0 < yg < kp for each 0, y1, = 234
SR (YT ) o {; 0o yo < ko YT ; yo} ( )

3The other components of unit running cost (extra maintenance, etc.) can be accounted for by a levy on fuel.
4For example, if 8 is a nuclear station then g is uranium (whose quantity is measured as its energy content).
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for y1o € [0, 209=1 kg]. Under (2.3.2), the infimum is attained at y; = y1, A ky := min {yro, k1}, y2

= (y10o — k1)t A ko, etc., i€, at

61 + 0-1 +
yo = kg A (yTo ~ Z kw) := min { kg, (YTO - Z k“,) foro0=1,...,0 (2.3.5)

w=1 w=1

where at denotes the nonnegative part of a number a; the sequence of capacity cumulatives
(ZZ=1 kw)oe—o starts from Zgzl k, = 0. A counterpart formula to (2.3.4) gives the system’s
SRC for the ;ycle as the infimal convolution of the individual plants’ costs, i.e.,

e T e
Csr (YTo, k,w) =  inf ng/ yo (t)dt : VO ko > y9 > 0, y1o = Zyg . (2.3.6)
(y1,--150) o1 0 paet

Notation The notation for the system’s total output, yt,, is abbreviated to y—except when this
might conflict with the presumption that y = (y1,y2,...), i.e., when the individual plants’
outputs (yg) are also explicitly discussed, as in (2.3.6).

In terms of k£ and w, and with 14 denoting the 0-1 indicator of a set A, the instantaneous SRC

of an output rate y € R can be given as

y ©
csr (y, b, w) = A S woljgact e, ) (@) (2.3.7)
=1
S e-1 0 +
=wiy+ Y (wor1 — wp) (y - Z kw)
6=1 w=1

f0<y< E?=1 ko; otherwise cgr (y, k, w) = +oo. This is an increasing and convex (and piecewise
linear) function of the scalar y € [0, Eoe=1 kg], with cgg (0) = 0. See Figure 2.1a, which shows the
case of a two-station system (© = 2 with w; < ws). |

The integrand in (2.3.7), viz.,

e
y— Z'wgl[zz—:]] ka0 s k] (y) (2.3.8)
6=1

is the system’s marginal variable cost as a function of the output rate y, i.e., this is the unit variable
cost of the system’s marginal station on line when the system load is y. Its graph is also known as
the capacity-incremental operating cost curve: see, e.g., [9, Figure 5(a)]. With the jumps “filled in”,
it becomes, in the terminology of [70, 24.3], a complete nondecreasing curve: more precisely, it is the

right-angled broken line consisting of (i} the © “horizontal” segments

0-1 0
[ kw,ka]x{wg} for6=1,...,0
w=1 w=1

(with kg := 0) and (ii) the © 4+ 1 “vertical” segments

]
{ka} x [wg,wg41] for6=0,1,...,0
w=1
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(with wo+i := +00, and with wQ := —oo since free disposal is not included). Known as the short-run
marginal cost curve (SRMC curve) in the instantaneous quantity-price plane, it is the graph of the

subdifferential correspondence

decSR dcSR
y BdesR(y) = oo Of (2.3.9)
d y'd+y

The left derivative dc/d_y and the right derivative dc/d+y exist at each y G jO, A but they
differ at y = where dc/d_y < wg-i (with equality if kg-\ > 0) and dc/d+y > wg (with
equality if kg > 0), foreach 9 = 1,..., 0. In other words, when x+> 0 (i.e., kg > 0 foreach 9= 1,...,

B),5

(—o0,uq] ify=20
{u;*} ify6 (Yi=\k», T L 1k*)

dyCsR (y. k, w) = [ye, wilH] ify=YL- 1 k*and1<0<0 -1 o (2.3.10)
[«©,+00) ify= Yle=ike

0 ify> Ho=lkoory<2o0

Figure 2.1b shows the case of two station types (i.e., 0 = 2).

¢ SR(y,fc) (8/h) ®

(kW)

FIGURE 2.1. Thermal short-run costs: (a) instantancous SRC as a function of the output rate vy,
for a two-station generating system k = (fci,/*) with unit running costs w = {w\|,#2), and (b) the

system’s SRMC curve.

For the reasons given in Section 2.2, the following descriptions of the thermal SRMC and LRMC
are not limited to densities and include singular charges. Offpeak, the SRMC, as a function of time

t in the cycle, is simply a trajectory of the system’s marginal variable cost, i.e., it is the function

50bvious changes are needed in (2.3.10) when k is not strictly positive.
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(2.3.8) evaluated at the time-varying output rate y = y (t). In addition to this, the density part of
the SRMC includes a peak charge if the maximum output reaches the system’s capacity and has a
positive duration: the density part it is a trajectory of the instantaneous SRMC over time, i.e., it is
an integrable selection from 9,csg, evaluated at y = y (t). Since 9,cgg is unbounded from above at y
= 29921 kg, the density of the capacity charge can be arbitrarily high. The singular part of the SRMC
is also a capacity charge with an indefinite total. (The capacity charge is determined in the short-run
equilibrium of supply and demand, but it cannot be determined just by SRC calculations.) Aty =0,
negative charges are, in principle, possible because the output is constrained to be nonnegative,
but these will not appear in general equilibrium with monotone consumer preferences or monotone
production functions of industrial users. Formalised next, this description of the SRMC is a case of

subdifferentiating a convex integral functional.

Theorem 2.3.1 (Thermal SRMC). Assume that 0 < y < Eoe=1 k¢ and k > 0 (i.e.,, k >0 and k
# 0, and so Z?:x kg > 0). Then p € 8,Csr (y, k,w) if and only if p € L>*[0,T) and:

1. pca (t) € dycsr (¥ (t) , k, w) for almost every t € [0,7].

2. pra = k—v for some k and v in L™ [0, T] such that, for every number € > 0, x is concentrated

on {t:y(t) > Y. k—¢€} and v is concentrated on {t : y (t) < €}.§
Proof. Apply the formula given in, e.g., [72, Corollary 1B] and [50, Section 4: Theorem 1}. O

Comment (short-run capacity charges): In Theorem 2.3.1, the density part of the short-run
capacity charge is (pca — maxg {wg : kg > 0})* and the singular part is pi, = x. Both van-
ish if EssSup (y) < Zoe=1 kg. The density part vanishes also when EssSup(y) = Z?:l ke but
meas {t 1y (t) = Z?=l kg} =0.

To calculate the thermal LRMC, the LRC is first expressed as a sum of two terms, in Formula
(2.3.19). One term is the minimum cost of providing sufficient capacity: it equals the maximum
output times the unit capital cost of the least capital-intensive type of station. Its subdifferential
is the long-run peak charge, which has a definite total but an indeterminate distribution over the
output peaks. (The distribution is determined in the long-run equilibrium of supply and demand,
but it cannot be determined just by LRC calculations.) The peak charge need not be a pure density,
i.e., it can include a singular charge; indeed, it is entirely singular if the peak has a zero duration.
The other term of the LRMC is the marginal fuel cost of the optimal generating system; it is always a
pure density. Formalised next, these concepts and results are taken from Horsley’s work [33, Section

2], which is expanded here and in {36] by using rearrangement and majorisation theory.

61t follows that: (i) x = 0 if EssSup (y) < 29931 kg, (ii) » = 0 if EssInf (y) > 0, (iii) x is lattice-disjoint from v

(i.e., k Av =0), and (iv) both & and v are p.f.a. or, equivalently, singular.
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Given a unit capacity cost rg (a.k.a. fixed cost, in $/kW) for each 6§ € ©—in addition to the unit
running cost wy (a.k.a. variable cost, in §/kWh)—the long-run cost (LRC) of generating an output

y € L*{0,T] from the thermal technology is, by definition,
Crr (y,m,w) = inf {r-k+ Csr (y, k,w)}. (2.3.11)

Any k yielding the infimum is an optimal thermal generating system for the given output (i.e., a
system that minimises the output’s total cost). The set of all the cost-minimising systems is denoted
by K (y,r,w); when it is unique, the optimal thermal system is denoted by & (y, 7, w).

In terms of Legendre-Fenchel conjugacy, Formula (2.3.11) means that Cpg is, as a function of r,
the concave conjugate of —Csg as a function of k (with y and w fixed). This is, of course, a general
relationship between the LRC and SRC for any technology whatsoever. To give specific formulae
for the optimal thermal system and the thermal LRC, the special case of a unit output of any given
duration, 7, per cycle—i.e., an output 1, with meas A = 7—is dealt with first. An optimal plant
type for generating such an output is a § that minimises rg + T7wg; the set of all such plant types is
ArgMin, (rp + Twy).” Except for a finite number of 7’s, the optimal plant type 8 (7) is unique, in

which case its unit variable and fixed costs are denoted by
W(T) :=wp(,y and F(7) =Ty (2.3.12)

The function w is nonincreasing and piecewise constant on (0, T]. If the numbers

T9 — To+1

To (r,w) := for6=1,...,06-1 2.3.13
0( ) Woy1 — Wo ’ ( )

form a decreasing sequence in (0,7), i.e., if
0<feg_1<...<T2<71<T (2.3.14)

(which can be ensured by discarding any redundant plant types from the technology), then these
are the jump points of the function w, which equals wy on the interval (79,74-1), with ¥g := 0 and
7o := T. In other words, 8 (1) = 0 for T € (74,79_1). Therefore, 74 is called the break-even load
duration (a.k.a. equilibrium duration) for the two “adjacent” types of station (6 and § + 1). See
Figure 2.2a, which shows the case of three station types (i.e., © = 3); in the terminology of [60,
Figure 14.3], the 7¢’s are found by intersecting the “screening lines”.

The (minimum) thermal LRC of a unit load of duration 7 > 0 (i.e., an output 14 with meas A
=7)Iis

ar (7,mw) = min (ro +Twe) =7 (1) + 7w (7). (2.3.15)

For a fixed r and w, this is an increasing and concave (piecewise linear) function of 7, with

cLr (04) =Min(r) := mﬁin g (2.3.16)

"The ratio 7/T is a special case of the load factor (the ratio of the average to the maximum output rate).
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but cpg (0) := 0. Also,

der , .
I (r)y=w(7) (2.3.17)

except for a finite set of 7’s, which are exactly the 74’s under (2.3.14). The graph of cpgr, also known
as the total cost—duration curve, is shown in Figure 2.2a here (as well as in, e.g., [9, 61-65: Figure
7], [64, pp. 37-40: Figure 3-4] and [83, 6.2: Figure 6.1]). Figure 2.2b shows @ as a function of 7.
The optimal (cost-minimising) thermal generating system % can be determined by referring the
break-even durations (74) to the load-duration curve, as is done in Figure 2.2¢ here (and in, e.g.,
[9, 61-65: Figure 7], [64, pp. 37-40: Figure 3-4] and [83, 6.2: Figure 6.1}). The load-duration
curve (LDC) is next introduced formally, as the graph of the decreasing rearrangement of the output

trajectory.

Definition 2.3.2 (Monotone rearrangement). Let L° [0, T] denote the space of all equivalence classes
of measurable functions on [0,T]. The nonincreasing rearrangement y; of a y € L°[0,T) is the
nonincreasing function on [0,T] with the same distribution, relative to the Lebesgue measure, as the

distribution of y. That is, y| is nonincreasing and, for every Borel set B C R,
meas{r € [0,T] :y; (r) € B} = meas{t € [0,T): y(t) € B}.

For definiteness, y, is taken to be right-continuous on [0,T), so y, (0) = EssSup (y). Also, ify >0
then y, (T') :=0 (a useful convention).

In this notation, the optimal system k contains y; (7¢) — y; (F¢_1) units (kWs) of plant of type
0 (if, for the optimal system to be unique, y, is assumed to be continuous, at least at all the points
of the sequence 7g_; < ... < 72 < ¥1). Note that y| (7e) := y, (0) = EssSup (y) and that, to take
account of the base load, y (¥o) :=y; (T') := 0 (not EssInf (y)).

The LRC of any output y € LY [0,T] is next given in terms of the LDC (y,;) by slicing the
area between its graph and the time axis in parallel to that axis and adding up the LRCs of all the
infinitesimal slices—i.e., by evaluating cp g at the duration of each load level y, and then integrating
along the load axis. After the substitution y = y; (1), the integral can be evaluated by parts; these
key steps were first made in [33, (3) and (5)].

Theorem 2.3.3 (Thermal LRC and cost-minimising system). For every y € LY [0, T
Cir (y,7,w) = — /[0 - ar (1, w)dy; (1) (2.3.18)
’ T
= Min () EssSup (y) +/ w () y, (r)dr. (2.3.19)
0

(For the purpose of Lebesgue-Stieltjes integration in (2.3.18), y, (0—) := EssSup (y) and y; (T+)
:=0, i.e., dy; {0} = 0 and dy, {T} = EssInf (y).) Furthermore, a thermal system k € R® minimises
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($/KW)
w.
0o T r
w(r) ($/kWh) ©
w 3
W2
Wi
. . ()
0 To T T
(kW)
0 v ToT

FIGURE 2.2. Thermal long-run costs and cost-minimising system: (a) LRC of a unit output as a
function of its duration r, for a three-station technology with unit capacity costs (h,7-2,r3) and
unit running costs (wi, W2, W3), (b) unit running cost of the optimal station as a function of its load

duration r, and (c) load-duration curve and the optimal system (fci, A2?"3) -
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the total cost of y in (2.8.11)—i.e., k € K (y,r,w)—if and only if

9
Z k., € [yy (Fo+),y, (Fo—)] foreach8=1,...,0. (2.3.20)

w=1

Proof. Substitute the integral (2.3.7) for csg in (2.3.3), and apply Fubini’s Theorem: with
Ty (y) :=meas{t:y(t) >y} (2.3.21)

denoting the total time when the output rate y (t) exceeds any given level y, this gives

T ry(t) ©
Csr (v, by w) = /0 /0 Zw"I[ZZ;’J kuns0_y ko] (V) dy dt
=1

ki1+...+ke

o Ef;:l ko o
= 'lUg/ meas{t:y(t)Zy}dyzzwa./ 7, (y)dy
6=1 2:_:]1 ko 9=1 ki+...+kg—1

ify < Zoe=1 ko (otherwise Csg (y,k,w) = +00). Substitute this expression for the SRC in the
conjugacy formula for the LRC (2.3.11) to obtain

1 K

o > sk )
Cir (y, 7, w) = ir’:f {Z (rgko + wp »/Z"’ . Ty (y) dy) : Zka = EssSup (y)} (2.3.22)

6=1 w=1 "w 0:1
EssSup(y) _
> / cLr (7y () , r,w) dy
0

(since rg +weT > cg (7,7, w) for every § and 7). To show that the integral actually equals CLg, take
any k such that ZZ=1 k. € [y; (Fo+),yy (To—)] for each 8 = 1,..., ©: at such a k, the minimand
on the r.h.s. of (2.3.22) is equal to the integral of cpg. To see this, note first that for y > Zf;ll ko
ify(t) >ytheny(t) > Zf,‘___ll ko > y; (F9-1+) by the choice of k, and so

Ty(y) Smeas{t:y(t) >y (fo-1+)} < Fo-1

(since meas {t : y (t) >y, (t+)} < 7, with equality if y; has a jump at 7). Second, for y < 23:1 ku,
if y(t) >y, (Fo—) then y (t) > Zle k., >y (again by the choice of k), and so

Ty (y) > meas{t:y(t) >y, (fo—)} > 7o

since meas {t : y (t) > y; (7+)} > 7, with equality if y; hasa jump at 7. Fory € (Ef;ll ks Zf,:l k“,]
this shows that 7, (y) € [T, T9—1] and hence cLr (T (¥) , 7, w) = ro+we7. By adding over 0, it follows
that, at any k satisfying (2.3.20), and only at such a k, the minimand on the r.h.s. of (2.3.22) is

equal to the integral of c g, 1.e.,

EssSup(y) _
Cir (y,r,w) = / cLr (Ty (y) ,ryw) dy. (2.3.23)
0

This proves the characterisation (2.3.20) of K and provides a basic integral formula for Crg. To
transform the integral into (2.3.18), substitute y = y| (7) in (2.3.23). Finally, use (2.3.16) and
(2.3.17) to integrate (2.3.18) by parts and thus transform it into (2.3.19). O
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Comment: Ty(y) = (yl)—1 (y) for nearly every y € [0,EssSup (y)] when y; is inverted as a
nonincreasing interval-valued correspondence from [0, T} onto [0, EssSup (y)], i.e., when the LDC has
its jumps filled in—so that, in particular, (yl)_1 (y) =T for y € [0,EssInf (y)]. The exceptional y's
are those with meas{t: y (t) =y} > 0, i.e., any plateau levels of y.

Formula (2.3.18) can be used to calculate the thermal LRMCs, i.e., to subdifferentiate CLr w.r.t.

y. Since this is done term by term, denote
T
CNs (y,r,w) == / w(t)y, (r)dr fory e LY [0, T} (2.3.24)
0

with CRg (y) equal to +oo (like C’LR and C'sﬁ) if y. 7 0. This is thé integral term of Cpg in the
decomposition (2.3.18); it is the long-run cost net of the peak capacity cost (i.e., net of the supremum
term).® Along with CER, it is useful to study also the function—denoted by ng—that is defined by
the same formula (2.3.24), but for every y € L* (instead of L$); this is the simplest finite extension
of CE‘R from L to all of L. Being sublinear, i.e., subadditive and positively linearly homogeneous

(p.1.h.), it is the support function of some convex set S, i.e., it equals

T
5% (y | S) :=S\;p{/o p(T)y(T)dT=p€S}

for some S C L! [0, T}; the superscript # means that this is the Fenchel-Legendre convex conjugate
of 6 (- | ), the 0-co indicator function of the set S (0 on S and 400 outside of S). This set is next
identified, in Proposition 2.3.5, as the set of all the functions on [0,T] that are majorised by w, in

the sense of the Hardy-Littlewood-Pélya order <upp (abbreviated to <).

Definition 2.3.4 (Majorisation). A function p € L' [0, T] is weakly majorised by another integrable
function f if fg p (t)dt < fg fi (t)dt for every T € [0,T); this relationship is denoted by p << f.
If, in addition, equality holds for T = T then f majorises p; this is written asp < f.

The set of all the functions majorised by f is denoted by
maj(f) = {p€ L'[0,T]:p < f}

and its subset consisting of all the functions equidistributed to f—a.k.a. the rearrangements of f,

i.e., the functions on [0, T] with the same distribution (w.r.t. meas) as that of f—is denoted by
eqd (f) := {p : measp™! (B) = meas f ! (B) for each Borel set B C R}.

The set maj(f) is convex and weakly compact [77, Theorem 2], and it is equal to the closed convex

hull of eqd (f), both for the L'-norm and for the weak topology w (L!,L>): see, e.g., [14, 21.9],

8This is the minimum cost of providing sufficient capacity, not the capital cost of an optimal system.
9The order << is also known as the Jower weak majorisation and denoted by <w (to distinguish it from the upper

weak majorisation <%) in, e.g., [61].
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(19, 5.2] or [59, 15.6 (i)]. (The same is true even for the L°°-norm when f € L°: see [19, 5.2].) A
stronger result of Ryff [78, p. 1026] is that eqd (f) is the set of all the extreme points of maj (f), i.e.,

extmaj (f) =eqd(f). (2.3.25)

Proposition 2.3.5 (Luxemburg). For each f € L' [0,T),!°

T
§* (y | maj (f)) = /0 fi(")y, (r)dr for every y € L [0,T]. (2.3.26)

So the finite extension of CER defined by (2.5.24) for everyy € L™ is

' T
N, (v) == /0 @ (), (r) dr = 8% (y | maj (&) (2.3.27)

i.e., it is the support function of the set of functions majorised by the nonincreasing function w

defined by (2.3.12).

Proof. This is based on the Hardy-Littlewood-Pélya Inequality, which is that

T T
/ f@)y(r)dr < / fi (7w, (r)dr (2.3.28)
1] 0

(see, e.g., [14, 12.2], 19, 3.4], or [59, 8.2]). In other words,

T T
/OP(T)y(T)dTS‘/Ol fi(t)y, (r)dr for every p € eqd (f)

and, given that maj (f) = clconveqd (f), it follows that

T T
/0 p(r)y(r)dr < /0 fi(m)y, (r)dr for every p € maj(f). (2.3.29)

Finally, note that this upper bound (on [ pydr) is attained at a suitable choice of p from eqd (f):
take any Lebesgue measure-preserving map p: [0, 7] — [0, T] such that y = y; 0 p, and set p := f)0p.
Then
T T T
| r@vmar= [ ne@ueme= [ n@umar.

(The required p exists by the Lorentz-Ryff Lemma: see, e.g., [14, 6.2], [19, 3.3] or [77, Lemma 1].)
The proof of (2.3.26) is complete, and (2.3.27) follows because W is a nonincreasing function on

[0, 7). O

Comment (continuity of LRC as function of output): Since maj(f) is a w (L!, L°°)-compact set,
its support function (defined on L> [0, TY) is continuous for the Mackey topology m (L>, L'). Its
continuity follows also from its representation (2.3.26) as the composition of the linear functional
(f1|-) and the nonincreasing-rearrangement operator (y — y, ), since the latter is Mackey continuous

on L°: see [34]. Since continuity of a convex function implies that all of its algebraic subgradients are
10This is in, e.g., [14, 13.8 (i)] and [59, 9.3].
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continuous linear functionals—see, e.g., [32, 14B: Proof of Theorem]—the algebraic subdifferential
8*CY (y) lies wholly in L!. Similarly 8*EssSup (y) C L°*, since EssSup is a norm-continuous

function on L. The two subdifferentials are calculated next (Theorems 2.3.6 and 2.3.7).

Comment (CNy as a “basic” function): A function y — C (y) on a Lebesgue space L2 [0,T] is
called symmetric a.k.a. rearrangement-invariant if C (y) = C (y;), i.e., if its value depends only on
the distribution of its argument. A function of the form (2.3.26) is the simplest example—and it
has been called a basic convex symmetric function in [36] because every convex symmetric function
is the supremum of a family of sums of such a function and a constant: see [14, 20.2] or [59, 13.4].
Thus such a function is to a general convex symmetric function as a linear function is to a convex

one.

When S is a nonempty, convex and closed subset of a real vector space P that is paired with
another space Y by a bilinear form {-|-): P x Y — R, its support function can be subdifferentiated
by the formula

8% (y| S) = argmax (-ly) = {p €S:(plyy=6*(y| S)} (2.3.30)

which is given in, e.g., [70, 23.5.3] and [73, p. 36, lines 1-7]. This is a variant of Euler’s Theorem on
homogeneous functions. Applied to S = maj(f), as a subset of the space P = L! [0, T| paired with
Y = L*>®[0,T], it gives

T T
06* (y | maj(f)) = {P eL':p<f, / p(r)y(r)dr = / fi()yy(7) dT} : (2.3.31)
0 0

This formula can be further spelt out by analysing the case of equality in (2.3.29). This can be done
similarly to the case of equality in the Hardy-Littlewood-Pélya Inequality (2.3.28), which is dealt
with by Day [18, 5.2 and 6.2]; it can also be deduced from Day’s analysis and (2.3.25). When y, is
strictly decreasing, the result is that the conditions foTp('r) y(r)dr = fOT LDy (r)drandp< f
imply that p is actually equidistributed to f (i.e., p; = f|) and, furthermore, that p = p; o p for p
= (yl)_l o y—which is the unique Lebesgue measure-preserving map p such that y =y, o p. When

y; is not strictly decreasing, the set of its plateau levels is
P,:={yeR:meas{t € [0,T]:y(t) =y} > 0} (2.3.32)
and, for a p < f, the equality foTp('r) y(r)dr = fOT f1 (1) y; (7) d7 holds if and only if:

p=flo(y) oy on {te[0,T]:y(t) ¢ Py} (2.3.33)

f) restricted to {t:y, (t) =y} majorises the restriction of pto {t:y(¢) =vy}. (2.3.34)

Since CPy (y) = 6% (y | maj (w)) if y > 0 (with C}y (y) = 400 otherwise), a description of 8,CNy
follows from (2.3.33) and (2.3.34).



Theorem 2.3.6 (Thermal LRMC net of peak charge). For everyy >0, p € 8,CNy (v, r,w) if and
only if p € L°°* [0,T) and:

1. pca (t) = pn — v for some py and v in L [0,T] such that:

(a) pn=wo(y) oy on {t:y(t) ¢ Py}.
(b) PN |{t:y(t)=y} < W|{t:y,(t)=y} for anyy € Py (i.e., for any plateau level of y).

(c) v vanishes almost everywhere outside of {t : y (t) = 0}.
2. pra <0 and ppa is concentrated on {t : y (t) < €} for every number € > 0.
Proof. Fix any r and w. Since
CNa (-yryw) = OB (-, w) + 6 (-] L) (2.3.35)

and one of the terms (C}, ) is continuous on L (for the norm topology and even for m (L°°, Ll)),
subdifferentiation is additive at every point where the other function (6 ( | L?,f’)) is finite, i.e., at
every y > 0: see, e.g., [73, Theorem 20 (i) under (a)] or [80, 5.38 (b)]. In view of (2.3.27) and (2.3.31),
a pn € 8CR, (y) C L' is fully characterised by (2.3.33) and (2.3.34) with & in place of f)—i.e., by
Conditions 1a and 1b. And a A € 96 (y | LY) if and only if y > 0, A < 0 and (A|y) = O—which

translates into Conditions 1c and 2 on v := —Aga and ppa = Apa. O

Comment (extreme subgradients of Cly): Formulae (2.3.33) and (2.3.34) can be enhanced by
describing the extreme points of 367 (y | maj(f)). This can be done in terms of the measure-
preserving maps p: [0,7] — [0,T] such that y = y; o p. The set of all such maps—which are called
the ranking patterns of y—is denoted by R (y). If y; decreases strictly (i.e., P, = @), then y has a
unique pattern, viz.,

py (1) = @1)™" (¥ (t) =meas {7 :y (1) 2y (1)}
In other words, p, (t) /T is t’s “percentage above”—the fraction of [0,T] on which y is above its
“current” value y(t). Thus p, ranks the points of [0, T] by the value of y (hence its name, “the
ranking pattern”). When y, is not strictly decreasing, p € R (y) if and only if, for each y € P, (i.e.,

for each plateau level of y):
P|{t:y(t)=y} 15 @ measure preserving map of {t:y(t) =y} onto {t:y, (t) =y}
p=@) "oy on{t:y(t)¢P,}.

In these terms,

ext 86% (y | maj(f)) = {fop: pe R(y)} (2.3.36)

i.e., the extreme subgradients of the support function of maj (f) are those rearrangements of f which

have a common pattern with y or, in other words, are arranged similarly to y in the sense of Day
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(18, p. 932].!! This is a result derived from (2.3.25) in [36, Theorem 3]. With w in place of fy, it
gives ext OCY, (y)—which equals ext dCN; () if y > 0 (i.e., if y (t) > 0 for almost every t).

_ The other term of the LRMC is the peak charge, which is formally a subgradient of EssSup as
a function on the space L*° [0, T] paired with its norm-dual L>* [0, T]. The following description of

O EssSup (y) as a unit “mass” concentrated on the near-peaks of y is in, e.g., [24, Example 4.7].

Theorem 2.3.7 (LRMC peak charge). For every y € L, v € OEssSup (y) if and only if v €
L°°*[0,T] and:

1. >0 and Il =1, ie., (7] 1[0,T]> =1.

2. v is concentrated on {t : y (t) > EssSup (y) — €} for every number € > 0.

For a vy € L'[0,T), these conditions simplify to: v > 0, fOTfy(t) dt = 1, and vy vanishes outside of
the set {t : y (t) = EssSup (y)}-

Including the peak charge, the set of all LRMCs at a y > 0, in the price space L>*[0,T], is
therefore

0,CLr (y, 1, w) = ayC’ER (y,7,w) + Min (r) d EssSup (y)

which is the sum of the subdifferentials described in Theorems 2.3.6 and 2.3.7. (As in the Proof of
Theorem 2.3.6, subdifferentiation is additive: see, e.g., [73, Theorem 20 (i) under (a)] or [80, 5.38
(b)].) It follows that if Min (r) > 0 then an LRMC represented by a density exists at y if and only
if y has a peak plateau, i.e., L' N 8,CLgr (y) # 0 if and only if meas {t : y (t) = EssSup (y)} > 0.

Comments (inclusion of free disposal in the cost function):

e The simplest finite extension of C}y (viz., C},) is adequate as a tool for subdifferentiating it

as the sum (2.3.35), but another finite extension is of additional interest. It is defined by
T
Cl (y,ryw) := Cy (v, w) = / w(r)y) (r)dr (2.3.37)
0

where y* := sup {y,0} is the nonnegative part of y, and y1+ means (y*), = (yy)*. With the

peak term included, the extension of Cpr (from LY to all of L*°) is

T
C{R (y,m,w) == Crr (y*,, w) = / W (T) yi" (7) dr 4+ Min (r) EssSup (y*) (2.3.38)
0

and this is the cost function that corresponds to the free-disposal hull of the production set:
see [37).

1Day’s definition of similarity of arrangement [18, p. 932] is equivalent to the existence of a common ranking

pattern by [18, p. 939, 5.6]. See also [45] for a discussion and applications of arrangement similarity and useful weaker

conditions.
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e By adapting the Proof of Proposition 2.3.5, one can show that Cg;' is the support function of

the set of all the nonnegative functions on [0, T] weakly majorised by w, which is denoted by
wmjt (@) == {p: 0 < p << w}.

So this function can be subdifferentiated by Formula (2.3.30), with the result that: py €
BC'S,I (y) = 86* (v | wmj* (w)) if and only if (i) pn = wo(yy) toyon {t:y(t) >0,y (t) ¢ Py},
(ii) PN | {t:y(t)=y} < W|{t:y,(t)=y} fOr any positivey € P, (i.e., for any positive plateau level of y),
(1) PN | {t: y(1)=0} <~ W|{t:y,(t)=0} if meas {t : y (t) = 0} > 0 (i.e.,if0 € Py), and (iv) pn (£) =0
for any t with y(¢) < 0. Furthermore, the extreme subgradients are characterised in [36,
Theorem 4] by using the counterpart of (2.3.25) for the set wmj™ (f), which is given in [35].

Finally, variants of these results are given for the restrictions of the SRC and LRC functions from

L*[0,T] to C[0, T]; these are denoted by

Csric (+, k, w) := Csr (-, ky w)cpo,m)

Crric (7 w) = CLr (7 W)ycpo,1y -

With the commodity space restricted to contain only the continuous functions, singular capacity
charges have a simpler mathematical representation by a measure k or -y that—unlike its counterpart
in Theorem 2.3.1 or 2.3.7—is concentrated on the set of exact output peaks. Being a level set of
a continuous function, this set is closed, and k is concentrated on it if and only if the set contains
the support a.k.a. carrier supp (x), which is defined as the smallest closed set of full k-measure. So
this set can be used to describe the capacity charges when C [0, T] is the commodity space (it has no
counterpart for k € L°°*).

A measure p € M [0, T] has the Lebesgue decomposition into pac + psi, the sum of its absolutely
continuous and singular parts, with respect to the Lebesgue measure: see, e.g., [25, I11.4.14]. The
singular part, ps;, is a measure concentrated on a set of zero Lebesgue measure (not generally a
closed one). The absolutely continuous part of p is identified with its density w.r.t. meas (which

exists by the Radon-Nikodym Theorem)—so it is a price function pac € L! [0,T].

Theorem 2.3.8 (Thermal SRMC of continuous outputs). Assume thaty € C[0,T], in addition to
0<y< Zoe=1 kg and k > 0. Then p € 3,Csgc (y, k,w) if and only if p € M[0,T] and:
1. pac (t) € Bycsr (y (t) , k, w) for almost every t € [0,T).

2. psi = Kk — v for some k and v in My [0,T)] such that supp (k) C {t 1y ()= de=1 kg} and

supp (v) C {t : y () = 0}.12
121t follows that: (i) x = 0 if Max(y) < 36, ke, (ii) ¥ = 0 if Min(y) > 0, (jii) supp (x) N supp(¥) = @ (so, a

fortiori, k Av =0), and (iv) both s and v are singular (w.r.t. meas).
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Proof. This follows from Theorem 2.3.1: see, e.g., [72, Corollary 4B], or apply [50, Section 4:
Theorem 2] to C as a subspace of L. O

The restriction to C does not change the mathematical form of the LRMC net of the peak charge,
except for simplifying the term that comes from the nonnegativity constraint, i.e., from the indicator
term in (2.3.35). Formally, 8,C}, stays exactly the same (as a subset of L!), i.e., 3ych|c =9,CN,
at every y € C[0,T]. This is because: (i) CY, (given by (2.3.27)) is m (L*, L!)-continuous, and
(ii) €[0,T] is m (L, L!)-dense in L [0,T]. Finally, a measure X is in 86(y | C4) if and only if
y >0, A <0 and f[O,T]y(t)/\(dt) = 0. Spelt out in terms of v := —Asc and ps; = Apa, this

modification of the Proof of Theorem 2.3.6 gives the following variant.

Theorem 2.3.9 (LRMC net of peak charge for continuous outputs). For every y > 0, p €
3quIfmc (y,r,w) if and only if p € C{0,T] and:

1. pac (t) = pn — v for some py and v in L} [0,T) that meet Conditions la-Ic of Theorem 2.3.6.
2. psi <0 and supp (psi) C {t: y (t) =0}

The other term of the LRMC is the peak charge, which is formally a subgradient of Max as
a function on the space C[0,7] paired with its norm-dual M [0,T]. The following description of
OMax (y) as a unit measure concentrated on the exact peaks of y is in, e.g., [24, Example 4.5]
and [51, 4.5.2]. At a continuous y with a single peak, §Max (y) is therefore single-valued. (For
comparison, d EssSup (y) is multi-valued at every y € L*°, as is noted in, e.g., [85, 4.4.8].)

Theorem 2.3.10 (LRMC peak charge for continuous outputs). For everyy € C[0,T], v € 8 Max (y)
if and only if v € M[0,T] and:

1. y>0andv[0,T]=1.
2. v is concentrated on ArgMax (y), i.e.,

supp (7) € ArgMax (y) := {t € [0,T] : y (t) = Max (y)} .

Corollary 2.3.11 (Unique LRMC peak charge). Ify € C[0,T] and ArgMax (y) = {t} then d Max (y)
= {e;}, i.e., it is the Dirac measure at t. So Max is Gateauz-differentiable at y (but it is not Fréchet
differentiable).

Proof. By Theorem 2.3.10, § Max (y) is the singleton, and Gateaux-differentiability at y follows:
see, e.g., [32, 7E] or [51, 4.2.1: Example 1] or [80, 5.37). O

Comment: That Max is not Fréchet-differentiable is noted in, e.g., [85, 4.4.4]. It is readily seen

by considering an increment Ay, of unit norm, that equals 0 at ¢ (the maximum point of y) but
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equals 1 on an interval which approaches ¢ (as the increment varies). The first-order approximation
to Max (y + eAy) is then Max (y) + 0, and the supremum of its error (over Ay) is e—so it fails to be
of a lower order than e. This exemplifies the difference between Gateaux and Fréchet differentiability
of convex functions on infinite-dimensional normed spaces. (For convex functions on R”, the two

concepts are equivalent.)

2.4 Profit-maximising operation and valuation of a thermal plant

Given a TOU electricity tariff p, the profit-maximising operation of a thermal system with capacities
and running costs »

(kly"'yke) and (’LUI,...,'U)Q)

is defined by the SRMC curve, since this is also the system’s short-run supply curve: formally, the
short-run instantaneous supply correspondence is the inverse of the instantaneous SRMC correspon-
dence (2.3.9), so the two have the same graph (Figure 2.1b). Another way to obtain the system’s
supply correspondence is to sum, over @, the supply correspondences of the individual plants, which
are:

{0} ifp<wy

S (p, kg, wg) := [0,ke] if p=wp for0=1,...,0. (2.4.1)

{kg} ifp > wy

This means that, given a price function p € L! [0, T, a profit-maximising output trajectory for plant

0 is a selection from the correspondence
t— S(p(t), ks, ws) (24.2)

and the system’s profit-maximising output is obtained by adding up the plants’ outputs over 6.
When the price system p lies in the larger price space L°°*[0,T], there may be no profit-
maximising output, but any optimal output remains optimal after replacing p by its density part
pca—which narrows down the search for any profit maxima at p. This can be shown by a duality
argument (Corollary 2.4.2). The dual programme can also be used to value the capacity, although
the thermal technology is so simple that the marginal capacity value can be obtained by differen-
tiating the short-run profit function directly. These results are formalised next. It is assumed that
p > 0 (since this is usually the case in general equilibrium); recall that p has the Hewitt-Yosida
decomposition (2.2.1) into pca + pra. For the rest of this section (except its final Comment), k and

w are scalars (i.e., characteristics of a single plant, and not of a whole system of plants).
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The linear programme of maximising the operating profit of a single thermal plant of capacity k&

with a unit running cost w is:

Given (p,k,w) € LY*[0,T] x Ry x R} (2.4.3)
T
maximise / (pca (t) — w)y (¢) dt + (pra | y) over y € L= [0,T] (2.4.4)
0
subject to: 0 <y(t) <k for almost every t. (2.4.5)

Its optimal value is the (maximised) one-station operating profit IIZ} (p, k,w); its solution set is
denoted by Y1y, (p, k,w). When p € L!, this is the set of all selections from (2.4.2); if addition-
ally p(t) 9év w for a.e. t then the solution is unique, in which case it is denoted by the lowercase
91h (P, k,w). The profit-maximising output of a thermal system (k:g)ge=1 is >, Yon (», ko, ws), and
its (maximum) total operating profit is ), III2 (p, kg, we).

The standard dual of a plant’s operation LP is obtained—in the way described in, e.g., [73,
Examples 1’ and 4’]—from the standard parameterisation of the primal constraints, which consists
here in adding time-dependent increments (Ak (t), An (t)) to the constants (k,0) € R xR in (2.4.5).
Like the capacity increment Ak, the negative of the increment An to the zero floor for the output
in (2.4.5) can be thought of as a resource increment. The increments (Ak, —An) € L™ x L™ are
paired with Lagrange multipliers (k,v) € L** x L**. Thus, by considering a separate increment
Ak (t) for each t, one can impute an instantaneous value, k (t), to capacity services at any time ¢,
if p e L'[0,T). (When p € L>™* \ L}, this has to be formally rephrased as imputation of the value
(k]14) to capacity services on any time subinterval A C [0,7].) Similarly, v () is the loss of profit
from raising the output floor by a unit, at time ¢ (i.e., from perturbing the constraint y (t) > 0 to
y () > 1). The standard dual is therefore the following programme for the flow of capacity rent

and for v (the Lagrange multiplier for the nonnegativity constraint on y):

Given (p,k,w) as in (2.4.3) (2.4.6)
minimise k (x| 1jo.7]) over k € L>* [0, T} and v € L=*[0, T} (2.4.7)
subject to: k>0, v >0 (2.4.8)

pP—w=K-—V. (2.4.9)

As is spelt out next, the dual solution exists, and it is unique if k¥ > 0, is (the term pg, vanishes

if p > 0, as can be assumed with free disposal).
Proposition 2.4.1 (Dual solution and optimality conditions). Assume that p > 0. Then:

1. For every k > 0,'3 the dual programme of capacity value minimisation (2.4.6)-(2.4.9) has a

13When k = 0, the only feasible output is y = 0. The primal and dual optimal values (the operating profit and the
capacity value) are both zero, and every feasible (x,v) is a nonunique dual optimum (so (2.4.10)-(2.4.11) is a dual

solution also then).
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unigque optimal solution, viz.,

fn (p,w) = (p— w)" = (pca —w)" + pra (2.4.10)

brn (pw) = (p—w)” =(pca —w)” . (2.4.11)
The programme’s optimal value—i.e., the thermal capacity value—is therefore

T
k /0 (Poa (£) — w)* dt + k {pea | 10,77 (2.4.12)

and it is equal to the plant’s short-run profit TIZE (p, k, w), which is the optimal value of (2.4.3)-
(2.4.5)- ’ '

2. Ay € L™ is an optimal solution to the primal (2.4.3)-(2.4.5) if and only if:

(a) y is feasible, i.e., 0 <y < k.

(b) (i) y = 0 almost everywhere on {t:pca (t) < w}, (i) y = k almost everywhere on
{t : pca (t) > w}, and (iii) for every number ¢ > 0, ppa is concentrated on the set
iy > ke

Proof. Part 1 is nearly obvious: the dual constraints (2.4.8) and (2.4.8) mean that s and v must
equal (p — w)* + 0 and (p — w)™ + o for some o > 0 (viz., for 0 = k Av). Since k > 0, (2.4.7) is
minimised if and only if o = 0. And this translates into (2.4.10) and (2.4.11) because p > 0. So the
dual value is (2.4.12). That this is also the primal value can be shown directly, but it also a case
of a general result given in, e.g., [73, Theorem 17 (a)]: when k¥ > 0, the primal constraints meet
the generalised Slater’s Condition of [73, (8.12)] with the supremum norm on the primal parameter
space L™ x L™ (since L has a nonempty interior).

For Part 2, apply the Kuhn-Tucker saddle-point characterisation of optima—given in, e.g., [73,
Theorem 15 (e) and (f)]—which, as with any LP and its standard dual, translates into the conjunction
of feasibility and complementary slackness. Here, primal feasibility is Condition 2b, and complemen-
tary slackness means that, for every number € > 0, &1y, (p,w) is concentrated on {t:y (t) > k — €},
and Dy, (p, w) is concentrated on {t : y (t) < €}. Since ATy, and 1y, are given by (2.4.10) and (2.4.11),

the concentration conditions translate into Condition 2b. O

As is shown next, it follows that the singular part, ppa, can be removed from a price system
supporting a plant’s output. Although this lowers the plant’s rent by the second term in (2.4.12),
any optimal output continues to be so: investment may cease to be profitable, but this has no effect

on the operation of existing plant.

Corollary 2.4.2. Y1y, (p,k,w) C Y1 (pca,k,w) for every p € L>* [0,TY, i.e., if p supports a

y € L*[0,T) as a profit-mazimising output of a thermal plant, then so does pca .
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Proof. Any y € Y, (p, k,w) and the dual solution (AT, (p,w) , #rp (p, w))—abbreviated to (&, )—
meet the Kuhn-Tucker Conditions 2a and 2b of Proposition 2.4.1. It readily follows that, after p has
been replaced by pca, the Kuhn-Tucker Conditions hold for the same y with (&ca, Pca) instead of
(K, %). This shows that y € Yn (pca, k, w) and, also, that (kca,Pca) is the dual solution (now that

the output price is pca). O

An output that maximises the operating profit obviously exists if the price system is a pure
density function (by Part 2 of Proposition 2.4.1 with ppa = 0). If the price does have a singular
part, then an optimal output exists if (and only if) the singular charge comes at a time when the
price rate of the density part is not less than the unit running cost (and is thus consistent with an

output rate equal to capacity).

Corollary 2.4.3. Assume that k > 0 and p > 0. Then: Y (p, k,w) # O if and only if ppa is
concentrated on {t : pca (t) > w}.

Proof. Since p > 0, prpa = kpa by the formula for @ = &1, (p,w). Fix any positive ¢ < k.
If y € Y (p, k,w) then, by Condition 2b of Proposition 2.4.1, prpa = Kpa is concentrated on
{t:y(t) > k — €} and a fortiori on {t : y () > 0}. And this set is contained in {t : pca > w} because
(pca — w)~ equals &, which vanishes outside {¢ : y (t) = 0}.14

For the converse, one profit-maximising output is

0 ifp(t)<w
y(t) =
ko ifp(t) > w

because, with ppa nonnegative and concentrated on {t : pca (t) > w}, it gives

T
(lv) =k/0 (poa (8) — w)* dt + (pea | k) = TIZR (p, k, w)
by (2.4.12). O

Comment: The SRP function can be used to extend the Wong-Viner Envelope Theorem to the
case of convex but nondifferentiable cost functions—such as the thermal SRC and LRC. The naive
extension is false: an SRMC of an optimal system k = (k(;)ﬁ,a=1 need not be an LRMC, i.e., when p
€ 0,Csr (y,k,w) and k € K (y, k, w), it does not follow that p € 0yCLr (y,,w). This is readily seen
with the thermal technology (even with the one-station technology).!> But if p € 8,Csr (¥, k,w)
and r € ;IR (p, k, w) 1= —8 (—TIsR) (p, k, w),1® then it does follow that p € 9yCur (y, 7, w), and

14Without assuming that p > 0, the same argument shows that pgA is concentrated on {t:pca (t) > w} and,
similarly, that pg, is concentrated on {t : pca (t) < w}.

151t is the reverse inclusion between the cost subdifferentials that always holds (for any technology), i.e., if k
€ R (yy Ty w) then 6’yCLR (yx L) w) g ayCSR (y: kvw)

18 This is the superdifferential of IIsg as a concave function of k.
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also that & € K (y,r,w). In other words, if the profit-imputed marginal values of the fixed inputs are
equal to their rental prices, then an SRMC is an LRMC. When p € 3,Csg, the valuation condition is
stronger than cost-optimality of the fixed inputs (which is why it works); for the thermal technology
(when p € L! and k > 0), it reads: 1y = fOT (p(t) — wg)" dt for each 6. This is a case of the
extension of the Wong-Viner Theorem in Section 5.9 and in [46].

2.5 Conclusions from Chapter 2

A continuous-time model of peak-load pricing can be adequately set up in the commodity space of
essentially bounded functions but the smaller commodity space of continuous functions affords a
better representation of the instantaneous capacity charges that arise in the case of pointed peaks.
These charges are terms of the marginal costs that come from the capacity cost or constraint in the
long-run or short-run cost function. Since the costs are convex but nondifferentiable functions of the
output bundle, the subdifferential must be used to formalise the concept of marginal cost. For the
thermal technology of electricity generation, the cost functions can be expressed by formulae that can
be subdifferentiated by using the Hardy-Littlewood-Pélya theory of rearrangements and majorisation.
Thus a cost-based analysis of the supply side of the long-run competitive equilibrium problem is
feasible with a purely thermal technology. This ceases to be the case once other technologies, such as
hydro or pumped storage, are included in the model. But, as is shown elsewhere, the short-run profit
maximisation problem for those types of plant is still tractable, and its counterpart for a thermal
plant is very simple (as has been shown here). This provides a basis for the short-run profit approach

to the long-run equilibrium.
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Chapter 3

EFFICIENCY RENTS OF PUMPED-STORAGE PLANTS AND THEIR USES

FOR OPERATION AND INVESTMENT DECISIONS

3.1 Introduction to Chapter 3

The problems of optimal operation and rental valuation of storage facilities for cyclically priced goods
have been studied mainly in the context of hydroelectric generation by, among others, Koopmans
[55] and Bauer et al. [7]. The corresponding questions for pumped storage of energy and other goods
have received less attention, and existing models of such technologies lack verisimilitude.! To fill
this gap, a realistic but tractable model of pumped storage (PS) is set up, and plant operation and
valuation is analysed in the framework of short-run profit maximisation. Given a time-of-use (TOU)
market price p(t) for the good in question (say, electricity), an optimal TOU value v (t) is imputed
to the stock (of energy converted to a storable form). This essentially solves the operation problem:
see (3.8.2). It therefore makes sense to value the plant’s capacities by their marginal contributions
to the maximum operating profit, Hgﬁ; and these efficiency rents can be expressed in terms of p and
1) (Theorem 3.9.2). The rental values can serve as guides to investment (Section 3.11).

When the given tariff p is a continuous function of time, the stock’s shadow price function 9 is
unique, either literally or at least at the times which matter for capacity valuation. It follows that the
capital inputs—viz., the reservoir and the converter or “pump-turbine”—have definite and separate
marginal values, 0I1/0ks, and OI1/0kc,. Their ratio gives a well-defined rate of substitution in
product-value terms. This is a striking property because the inputs are also perfect complements—
in the sense that no input substitution is possible after fixing the output bundle. That is, the
conditional input demands for the storage and conversion capacities depend only on the trajectory
of net output from storage, y (t), over the cycle [0, T7.

That perfect complements can substitute for each other may seem paradoxical, and of course it
would be impossible with a homogeneous, one-dimensional output good: in such a case the output
from an input bundle k could only have the familiar fixed-coefficients form min {ky, k2, ...}. But with

a multi-dimensional, differentiated output good, perfect complementarity would imply fixed input

I The existing literature disregards one or both of the main factors in pumped storage, viz., the storage capacity
cost and the conversion capacity cost. Pyatt {68, p. 752, (10)] assumes that there is no capacity constraint on the
stock. Nguyen [65, pp. 242-243] excludes both types of capacity cost and concentrates on the running cost (which is
of little importance in pumped storage). Gravelle {30] limits his treatment to a two-subperiod model which loses the

distinction between the different kinds of storage costs.
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proportions only if the output proportions were fixed—and they are not. With output proportions
(as well as scale) allowed to vary, it is the output price system p that aggregates the output bundle
y into a scalar, viz., the revenue; and, given a suitable p, substitution in revenue terms is possible.
With multiple outputs, the inputs can be perfect complements without, like a nut and bolt, having
to be used in a fixed proportion.

The problem of maximising the operating profit of a storage plant can be formulated as a linear
programme (3.4.5)—(3.4.10). Its dual (3.5.1)—(3.5.6) is the problem of minimising the plant’s value
subject to a constraint which decomposes the given price p (t) into a sum of the values of the plant’s
capital services (plus a constant A). The dual can be reformulated as a problem of shadow pricing
for the stock (3.7.7)—(3.7.9); this change of variables makes the analysis more transparent and leads
to new insights.

The imputed capacity values are useful in planning investment, either as an expansion of existing
plants or as a large-scale development of new sites. The investment problem is formulated and
it is shown how to solve it for the optimal capacities by equating their marginal values to their
marginal costs: see (3.11.1)-(3.11.2) and (3.11.6)—(3.11.7). It is worth noting that the marginal
values are, explicitly or implicitly, essential for any profit-based appraisal of investment plans. Even
a comparison of just two alternatives, k' and k”, requires the knowledge of I3 (p, k) for k = K/, k",
but there is no explicit formula for Hgﬁ {except with the crudest of tariffs, such as the two-valued p of
Example 3.15.1). By contrast, once the marginals V,II are known, the total profit can be evaluated
as I1 (k) = ViII-k by Euler’s Theorem.? This is what is done when II is calculated as the dual value
(since the dual solution is equal to the marginal value): see Section 3.9. And although II could be
evaluated as the primal value, the successful algorithms exploit duality and provide the dual solution
along with the primal one.

For its general approach—viz., a continuous-time treatment of storage rents—this study takes
inspiration from Koopmans’ pioneering paper [55] on optimal water storage policies for a hydro-
thermal electricity generating system. In all other respects, however, this work is different. One of
its main purposes is to provide a flexible, general framework for dealing with a whole class of problems,
whilst Koopmans’ analysis is limited to hydroelectric storage—i.e., the storage of a given, natural
inflow—and it does not readily extend to similar technologies such as pumped storage. Furthermore,
the profit-imputed rental values are unique—unlike Koopmans’ rents, which are typically nonunique
as a result of being imputed from the saving on the (thermal) operating cost. Also, the dual to
the profit maximisation programme is a simple and direct way of deriving the marginal values,
whereas Koopmans’ rents are given in terms of a complex operating solution: they do serve his
main purpose—which is to verify the cost-optimality of the storage policy he constructs—but the

nonuniqueness and complexity of the construction are obstacles to their use in practical investment

2This identity can also be used to divide the plant’s total rent between the fixed inputs on marginalist principles.
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analysis.

In the short-run cost-minimisation framework, a production technique with practically no operat-
ing cost, such as energy storage, can be studied only in conjunction with others that do have variable
costs—such as the thermal fuel cost in Koopmans’ problem. By contrast, the profit-maximum for-
mulation allows such a technique to be analysed separately; and this approach is better suited to the
more decentralised structure of today’s utilities. Also, the switch from cost minimisation to profit
maximisation is actually essential for removing the indeterminacy of marginal capacity values. This
is because valuations of the storage plant’s capacities depend on two time-of-use (TOU) prices, p (t)
for the marketed good and 1 (t) for the stock. In the cost-minimum approach, both commodities
must be shadow-priced, and both p and v can be to some extent indeterminate. But in competitive
maximisation of the short-run profit, the good’s price function p is treated as given. And a possible
indeterminacy of 1 is excluded (at least at the times which matter) by a problem-specific argument,
viz., an examination of the Lagrange multipliers for the capacity constraints (Lemma 3.13.1 with
perfect conversion, and Lemma 3.13.3 with imperfect conversion).

Profit-imputed values of capital inputs are useful in investment calculations not only to privately-
owned industry, but also to a publicly-owned (or regulated) utility which aims to meet the demand,
price its outputs at long-run marginal cost and optimise its capital stock. The utility can achieve
this by meeting the demand at short-run marginal cost and adjusting its capital inputs until their
rental prices are equal to their marginal values. But these values must be imputed by the short-run
profit, and not by the short-run cost if the latter is nondifferentiable (as is the case in peak-load
pricing): see Chapter 5.3

Time-continuity is not just a natural assumption on the good’s price p and the only one to
guarantee uniqueness of the imputed capacity values:! it is also an assumption that is verified for
the competitive equilibrium price in [45], where the price function is proved to be continuous for
a class of problems that includes peak-load pricing with storage. The general equilibrium model is
set up in a commodity space of bounded functions of time. In part, it is an application of Bewley’s
framework [10], which is adapted and extended in [49], [43] and [47]; some mathematical tools are
provided in [34], [35], [36] and [42]. It is hoped that this will lead to an integration of hitherto largely
separate economic, engineering and OR studies of topics such as peak-load pricing and energy storage.

Section 3.2 describes the technology. Formal analysis is preceded by heuristics, in Section 3.3.

In Sections 3.4 and 3.5, the short-run profit maximum problem and its dual are set up as linear

3In particular, to extend the Wong-Viner Theorem to the case of nondifferentiable costs, it is insufficient just to
maintain the usual assumption of fixed-input cost-optimality (i.e., total-cost minimisation). It must be strengthened

to equality between the inputs’ rental prices and their values imputed by the short-run profit (not cost).
4Discretisation of time is, however, necessary in solving the relevant programmes by standard numerical methods.

In this context, uniqueness of the continuous-time solution ensures that the approximate solutions converge as the

discretisation is refined.
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~ programmes (LPs) that are doubly infinite: with continuous-time dating of commodities, the primal
(3.4.5)—(3.4.10) contains a continuum of output variables y and also a continuum of dated capacity
constraints (on the flow y and on the stock s). The primal and the dual are shown to be soluble, and
their optimal solutions are characterised in Section 3.6. In Section 3.7, the dual LP is reformulated
as an unconstrained convex programme (CP) for shadow pricing of stock. Sections 3.8 and 3.9 give
formulae, in terms of an optimal stock price 9, for the optimal output ¢ and for the operating profit
IIES and its derivatives w.r.t. the reservoir and conversion capacities. These marginal values are
the basis for calculating the optimum investment, in Section 3.11. This uses the bounds on the
marginals which are established in Section 3.10. This completes the core matter, which is followed
by proofs. Proofs for Sections 3.5 to 3.8 are gathered in Section 3.12. Proofs for Section 3.9 are
given in Section 3.13, along with the required auxiliary results.

The rest of this chapter consists of various supplements. In Section 3.14, the optimal output §
is shown to be invariant under monotone transformations of the price function p, i.e., § depends on
the ranking pattern of p but not on the distribution of p. Also, the dual (shadow-pricing) problem is
reformulated by using a distance concept known from the Monge-Kantorovich mass transfer problem
(a.k.a. the transportation problem). Section 3.15 presents a counterexample to the existence of VIl
when the price p is a discontinuous step function (so that time is effectively a discrete variable).
Section 3.16 verifies the conditions for including the storage technology in an equilibrium model with
the commodity space of bounded functions, L* [0, T].

Table 3.1 summarises the notation.

3.2 Pumped-storage technology

Consider a cyclically priced good that, once put in storage, can be held at no running cost (or loss of
stock), as long as the stock does not exceed the reservoir’s capacity, ks;. The reservoir is charged and
discharged with converters; the equipment is so called because the good itself is actually nonstorable
(or too costly to store directly), and so it must first be converted into a storable medium. This
is a purely intermediate commodity, useful only for reconversion to the original good. Examples
include gas liquefaction and conversion of electricity to a storable form of energy: in both cases
the running cost of storage is negligible. Each of these techniques is referred to as pumped storage
(PS), irrespectively of the particular good (AC electricity, natural gas), the medium (DC electricity,
potential or other energy; liquid gas) and the corresponding devices.?

A nonreversible charger or discharger is termed a pump or a turbine (Pu or Tu, respectively);

this terminology originates from energy storage (ES). Some conversion processes involve considerable

losses; and the “round-trip” technical efficiency is 9y, = 7p,np, < 1, where 7p, and 7, are the

5AC/DC means alternating/direct current.
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Role in prog- Variable Notation Unit
ramme pair
Fdrll:; data electricity price at time ¢ p(t) $/kWh
parameters)
reservoir capacity kst (t) = const. kWh
. energy-stock floor ng (£) =0 kWh
dQ;znfmty turbine capacity kru (t) = const. kW
. turbine’s output floor ny (1) =0 kW
(primal pump capacity kpy (t) = const. kW
parameters) pump’s output floor npy () =0 kW
top-up of stock (=0 kWh
Quantity turbine’s output rate y1u (t) kW
decisions pump’s output rate ypu (t) kW
(primal (at time t)
variables) energy stock at time 0 and T S0 kWh
plant’s net output rate Y (t) :== yu () — ypu (t) kW
Derived at time ¢
- rate of outflow from reser- F(t) =l up, (2) kW
quantities . . Tu .,
voir at time ¢ (71ys Tp, are efficiencies) (100%)
energy stock at time ¢ s(t) :=sp — f(: f(r)dr kWh
unit reservoir value kg (dt) $/kWh
Shadow on interval of length dt
. value of energy-stock floor vs (dt) $/kWh
I();f:ls {nonnegativity constraint)
decision unit turbine value at time ¢ KTu (t) $/kWh
variables value of turb.’s output floor vy (1) $/kWh
aired ’ {nonnegativity constraint)
fo rimal unit pump value at time ¢ Kpu (t) $/kWh
P value of pump’s output floor vpy () $/kWh
parameters) {nonnegativity constraint)
energy-stock value at 0 and T A $/kWh
energy-stock value at time ¢ P() =2+ ("StT_ vst) [0,1] $/kWh
Derived total reservoir rent kst [0,T] = [ Kse (dt) $
valuations for whole cycle [0, 7] r
total turbine rent Jo KT (t)dt $
total pump rent [T kpy (£) dt $

TABLE 3.1. Notation for Chapter 3. Some functions of time (ks;, etc.) are equated to "const.".
This indicates that they are constants in the original, unperturbed programme, but are perturbed
with time-varying increments (Akg, (t), etc.) to interpret the time-dependent dual variables (Akg;,
etc.). The duality scheme (Section 5) similarly uses a nonzero increment A¢ to ¢ = 0 (paired with
the dual variable )).
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one-way rates of transformation, of the good into the medium and vice versa. Both transformations
are taken to be instantaneous (although a constant lag can be readily taken into account). Also, both
Np, and 7p, are assumed to be constant. With the stock s (t) measured in potential terms—i.e.,
as the amount of the good that it would yield after a perfect transformation—both 7p, and 7y,
are dimensionless numbers between 0 and 1. In the case of perfect conversion 7p, =, = 1 (ie.,
NRo = 1)

The pump or turbine capacity, kp, or kry, is its maximum output rate (i.e., the rate of inflow to
reservoir or outflow from plant). In other words, in unit time a unit pump can turn 1/7p, units of
the good into 1 unit of the storable medium; and a unit turbine can turn 1/7, units of the medium
into 1 unit of the good.

It suffices to analyse the case of nonreversible equipment. The reversible case is readily deduced,
but it is spelt out for completeness; and henceforth a converter (Co) means reversible equipment,
capable of transforming both ways, though not necessarily at the same rate. A converter’s capacity,
kco, is by convention defined as the maximum output rate in the charging mode. A unit converter
provides, then, a unit of charging capacity, whilst its discharging capacity is some 8 > 0. (In other
words, a unit converter is operationally equivalent to a unit pump together with 3 units of turbine:
in unit time a unit converter can either turn 1/7p, units of the good into 1 unit of the storable
medium, or turn 3/nr, units of the medium into B units of the good.) The converter is termed
symmetric if = 1.

Energy storage techniques include pumped-water energy storage (PWES), in which electricity
(the good) is used to pump water from the lower to the upper reservoir, and the accumulated
potential energy (the medium) is reconverted by releasing the water through a turbine-generator.
Compressed-air energy storage (CAES) is similar: air is pumped under pressure into a reservoir (such
as an underground cavern), and it is later let out through a gas turbine. In both techniques the
converter is usually a reversible pump-turbine, although nonreversible multi-stage pumps have also
been used in high-head PWES plants. Another ES technique is the superconducting magnetic energy
storage (SMES), in which AC electricity (the good) is converted by a reversible inverter into DC
electricity (the medium), to be stored in a superconductive coil. There is also battery storage (of DC
electricity) and inertial storage (of kinetic energy, in a flywheel). With each of these techniques, ks
can be measured in kWh (of the intermediate form of energy); both kr, and kp, can be measured
in kW (of, respectively, electric and intermediate forms of power). In PWES and CAES, 7y, is
typically around 70% to 75% (i.e., 0.7 kWh of electricity is recovered from a kWh used up): see [60,
p. 89]. In SMES, g, is over 95%, with 3 close to 1: see [63].

Storage is studied here as a large-scale technique to be used for profit maximisation (or cost min-
imisation). For this purpose the Electricity Supply Industry (ESI) uses at present mainly pumped-

water and compressed-air plants, but superconductive coils and batteries may also become economical
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for bulk storage. Another use of storage plants is as fast-response emergency backups for control of
quality (frequency and voltage) when thermal generators break down or there is an unanticipated
surge in demand. Start-up times of PWES and CAES plants are around 1 to 5 minutes (like those of
hydro and gas turbines): see, e.g., [60, Table 8.2].5 SMES coils and batteries are thousands of times
faster to respond (switching from charging to discharging in 4 to 20 ms). This makes them unrivalled
for elimination of brief outages and quality disturbances; and small or medium-scale SMES devices
are used by both suppliers and users of electricity to ensure transmission stability and uninterruptible
power supply to sensitive equipment: see {13] and [63]. These are important applications but, being
specific to electrical engineering, they are left out of this analysis.

The rate of outflow of the good, from the plant’s turbine to the market, is denoted by ym, > 0;
the inflow (from market to the plant’s pump) is yp, > 0. The storage plant’s net output rate is
therefore the signed, periodic function

Y =YTu ~ YPu

defined on a time interval [0, 7] which represents one price cycle. The pair (y1,,ypy) is termed a
storage policy. When 7, < 1, it is convenient to allow an overlap of yq, and yp,. This is a purely
formal trick that does not require simultaneous charging and discharging to be actually feasible,
since this could never be optimal if the good’s prices are positive (Lemma 3.8.2).

The nonnegative and nonpositive parts of the output, y* and y~, represent the outflow of the

good (from plant to market) and the inflow (from market to plant). Note that
Yo =y =Ypu— 9 =ynuAyYpu 20

where A means the smaller of the two. The associated flows of the medium, from reservoir to turbine

and from pump to reservoir, are

f"p,_l = g-’I-E and fpu = NpyYPu- : (3.2.1)
Ty

The signed outflow from the reservoir is therefore

y* _ 1
f=fra—fPu= (— — NpyY ) + (— - npu) (¥1u A ypPu) - (3.2.2)
MTu N

This shows that an “overlapping” policy (y1v, ypu) has the same effects as the corresponding reduced
policy (y+,y~) together with the “spillage” represented by the last term in (3.2.2). Thus the overlap,
YTu A Ypu, amounts to a limited form of free disposal; and it is allowed in the model in order to
represent the efficient input-output bundles as the frontier of a convex production set. The frontier
itself is not a convex set (except for the case of gz, = 1), since the penultimate term in (3.2.2) is

not linear in y: see Figure 3.1.

8The start-up times must be distinguished from the very much shorter loading times applicable to the generators

already on line.
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The stock of medium, s (t) at time ¢, is an absolutely continuous function on [0, T that satisfies

the evolution equation s :=ds/dt = — f.7 This can be restated as

t
s(t) =s(0) - / f(r)dr (3.2.3)
0
and it follows that s is a Lipschitz function. This is because

kPu

ko 2y 202> —ypy > —
NPu

which shows that both y and f are bounded. That is, y and f belong to L> [0, T], which is the
vector space of all essentially bounded functions, with functions equal almost everywhere (a.e.) being

identified with each other. This space is normed by the supremum norm
flvll o :=EssSup |y| =ess sup |y(t)}.
te[0,T)

The space of all continuous functions C [0, T}, which contains the Lipschitz functions, is normed by
the maximum norm

lislloe = Max |s| = D, s ()]

Its norm-dual C*, which serves as the price space for the services of storage capacity, is identified as

the space of all (signed, finite) Borel measures M [0, T] by means of the bilinear form

(] s) 1= /m 5 (£) u (dt)

fors€C and p € M.

The available capacities are taken to equal the installed capacities, and therefore to be constant
over the cycle. This does play a part in some of the main results, including the determinacy of
rental values (Theorem 3.9.2).2 However, to take full advantage of sensitivity analysis, the constant
existing capacities k are perturbed with increments Ak which are (periodic) functions of time; this
is further explained in Section 3.5. (The notation Ak, etc., is always to be interpreted as a single
symbol meaning “an increment to k”.)

On the assumption of constant capacities k = (kss, k1u, kpu), the long-run production set of the

pumped-storage technique (with nonreversible equipment) is the convex cone
Yps := {(y, —k) € L* xR : 3 (ym, ypu) € LY [0, T] x L [0, T (3.2.4)

Y = YTu — YPu; YTu < kru; Mpuypu < kpy

T
/0 (1w () /7 — Tpuvpa () dE =0 and

7Since s is absolutely continuous, its derivative ds/dt is well defined for almost every (a.e.) t. For these concepts

see, e.g., [27), [76] or [84].
8The available capacities (i.e., the capacities in service) might generally vary because of maintenance schedules,

etc.
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14
50 €RVE 0 < sp— / (ym (T)/nn—npuypu(r»drskSt}.
0

This formulation imposes the periodicity constraint on the stock or, equivalently, the balance con-
straint on the flows to and from the reservoir ( fér f (t)dt = 0), but the stock level at the beginning
or end of a cycle is taken to be a costless decision variable, sg. In other words, when it is first
commissioned, the reservoir comes charged up to any required level at no extra cost, but its periodic

operation thereafter is taken to be a technological constraint.

3.3 Heuristics for valuation of stock and capacities

To start with, assume that not only the good’s market price, p(t), but also the stored medium’s
shadow price, v (t), is known. Then the operating decisions can be decentralised within the storage
plant, with the reservoir “buying” or “selling” the medium at the price 1 (t) to or from the converter,
which buys or sells the good at the market price p (t) outside the plant. Short-run profit maximisation
separates into two problems with obvious solutions, one for each kind of capacity. For simplicity,
consider the case of a perfectly efficient, reversible and symmetric converter.® The maximum profits
of the storage and the conversion capacities, ITSt (1, ks;) and II€° (p — 9, kg, ), are both linear in k. A
unit converter can earn the profit flow (p — )~ by putting the good into storage when p () < 9 (t), as
well as earning (p — ¥)" by taking the good out of storage when p (t) > 1 (t). In both modes, profits
are earned only at the times of full capacity utilisation, since the optimum output is y (¢} = tkc,
whenever 1 (t) # p (t): see Figures 3.2a and 3.2b.

In total over the cycle, the value of a unit converter is therefore
HCo T
== rO-vela
Co 0
As for the reservoir, a unit can earn a profit of 3 (7) — 1 (r) by buying stock at a time 7 and selling
it at a later time 7 when ¢ (7) > ¥ (z). The value of a unit reservoir is therefore the sum of all
shadow price rises in a cycle. In precise terms: if ¢ (T') > 9 (0), then
St

=~ vart (¥)
kst

which denotes the total positive variation (a.k.a. upper variation) of 1, i.e., the supremum of
S (¥ (Tm) — ¥ (T,2)) over all finite sets of pairwise disjoint subintervals (7,,,7m) of (0,7).1°

If ¥ (T) < ¥ (0), the reservoir should start the cycle full, and refill towards the end of the cycle.
This brings an extra profit of ¥ (0) — 1 (T'), so in general the unit rent is the cyclic positive variation

Var} () := Vart (9) + (¥ (0) — v (1)) " . (3.3.1)

91n this case the conversion constraints on an output y simplify to: —kco < ¥ < kco; and stock evolution simplifies

to: $=—y.
10For a discussion of Var™ see, e.g., (27, Section 8.1] or [84, Section 3.5].
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It is later shown that actually v (0) =4 (T) if p € C[0,T) and p (0) = p(T).

The maximum operating profit of the whole storage plant (II£3) is, however, a function not of 1
but of the problem’s parameters (p, ks, kco) alone: 9 is an auxiliary function which must eventually
be given in terms of (p, kss, ko). Then OIIES /0ks, and OIILS /8kc, can be obtained by substituting
the correct 9 into the expressions Vary () and fOT Ip(t) — 4 ()] de.

The correct value, 9, is that stock price function which minimises the total value of the storage
plant’s fixed resources (kss, kco). So, given a cyclic TOU tariff p, one can find % by unconstrained
minimisation of

T
kse Var? (%) + ko /0 Ip(t) - ()| dt (3.3.2)

over %, an arbitrary bounded-variation function on (0, T).

The main feature of this programme is the trade-off between minimising the variation (which on
its own would require setting 1 at a constant value) and minimising the integral (which on its own
would require setting 9 equal to p). From this trade-off it is clear to what extent the local peaks of
p should be “shaved off” and the troughs “filled in” to obtain the optimum shadow price }—at least
in the case of a piecewise strictly monotone market price p. The solution, presented graphically in
Figure 3.2a, is determined by constancy intervals for %, on each of which either p (t) < {b throughout
(around a trough of p) or p(t) > ¥ throughout (around a local peak of p). Unless ksi/kco, the
time needed to fully charge or discharge the reservoir, is relatively long, these intervals do not abut,
and must all be of that length. This is the first-order condition (FOC) for the dual optimum: the
increment in the minimand (3.3.2) that results from shifting the constant value of v up or down by
an infinitesimal unit, on an interval of length 7, is + (ks, — kco7). Equating this to zero gives the
optimum as ¥ = kgs/kco, i-€., kst/kco is the common length of the intervals on which alternately
¥ > por P < p.!! This makes it feasible to produce the “bang-coast-bang” output (viz., y (t) = tkco
when 9 (t) # p(t), with y(£) = 0 when 9 (t) = p(t)): the reservoir goes alternately from empty to
full and vice versa (Figures 3.2b and 3.2c). This is the optimal output.

The same marginal calculation for the dual problem also shows that an optimum function ¢ can
be nonunique if p is discontinuous. Suppose, for example, that p jumps at the beginning, and drops

at the end, of an interval A = (ﬁ, ?), of length ks /kco, with

pt-)Vp(+) <p(l+)Ap(t-) = infp(t) (3.3.3)

where V and A mean the smaller and the larger of the two, and p(t—) and p(¢t+) denote the left
and right limits at . Just before ¢ and just after #, an optimal 1 equals p, i.e., ¥ (t—) = p(t-)
and ¥ ({+) = p(f+). Inside A, p > ¢ = const.; but an optimal constant value of 3 on A can

11 Matters complicate when the ratio ks; /kc, is comparable to the times elapsed between the successive local peaks
and troughs of p, so that the neighbouring constancy intervals of ¥ start to abut; but a similar optimality rule applies

to such clusters.
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FIGURE 3.2. Trajectories of: (a) the optimal shadow price of stock (b) the output of pumped-
storage plant j/ps, and (c) the stock s, in the case of a perfectly efficient and symmetric converter.
Unit rent for storage capacity is Var* = (dipj + (dipj , the sum of rises of ). Unit rent for
conversion capacity is Jg |p () —j (£)| dt, the sum of dark grey areas in (a). In (b), each of the light

grey areas equals the reservoir’s capacity kstmBy definition fps = &st/ “Com
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be anywhere between the two unequal terms of (3.3.3): the jump and the drop of p create an
“indifference zone” for ip\A. Figure 3.3 shows this when p (t+) < p{t—) < p(t+) < p (9 so
p (t— < ip\4 < p (£+). Different values from this range divide the same total rent differently between
the two capacities. The jump dip {£} := ip (£+) —ip (t+—) can be any fraction of p (t-f) —p (t—, and
it is an indeterminate contribution to the reservoir’s unit rent. The interval’s contribution to the
converter’s rent, fA (p (t) —ip) dt, is similarly indeterminate (since it depends on the arbitrary choice

of ip (¢+), which fixes the constant value of ip on A).

(SAWh)

¥j = const.

drplt,t) Y

Figure 3.3. Indeterminacy of an optimal shadow price of stock ijp when the TOU price of good p
has jump discontinuities (at instants differing by fps = ~st/*Co)- In the case shown, the constant
value of ip on (#,¢) can be set at any level between p (r—) and p (£+); so the jump of ip at ¢ is an
indeterminate part of the reservoir’s unit rent. The dark grey area represents f* p(¢) —ip ()| dt, the

interval’s contribution to the converter’s unit rent.

Conversely, given a continuous p, the optimum i is unique (Lemma 3.13.1). Therefore the
gradient Vfell exists; and this result extends to the case of imperfect conversion (Theorem 3.9.2).
3.4 The linear programme of plant operation

In terms of the production set (3.2.4), the problem of profit-maximising operation of a storage plant

is

Given (p; kst, k=j*, kPu) € L+* [0,T] x R+ (3.4.1)

maximise (p|y) overy GL°° [0, 7] 3.4.2)
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subject to: (y, —kst, k1w, ~kpu) € Yps defined by (3.2.4). (3.4.3)

Notation The optimal value of (3.4.1)-(3.4.3) is the (maximum) operating profit of the storage
plant, denoted by IIES (p, k). The (optimal) solution set is Yps (p, k), abbreviated to ¥. The

corresponding lowercase notation, §, is used only when the solution is known to be unique.

The space L** appearing in (3.4.1) is the norm-dual of L®. It contains L!, the space of all
functions integrable with respect to (w.r.t.) meas, the Lebesgue measure. Much of the analysis
applies not only to a TOU tariff represented by a price function p € L![0,7] but also to a tariff
represented by a p € L°*[0,T]. Such a p can be identified with a finitely additive set function
vanishing on meas-null sets, since the integral of a y € L® w.r.t. such a set function defines a
bounded linear functional on L°°: see, e.g., [25, II1.1-1IL.2 and IV.8.16] or [86, 2.3]. As an additive
set function, a p € L°°* has the Hewitt-Yosida decomposition into pca +pra, the sum of its countably
additive (c.a.) and purely finitely additive (p.f.a.) parts: see, e.g., [10, Appendix I: (26)-(27)], [25,
I11.7.8] or [86, 1.23 and 1.24].12 The c.a. part of p is identified with its density w.r.t. meas (which
exists by the Radon-Nikodym Theorem); so it is a price function pca € L'[0,7]. The p.f.a. part
can be characterised as a singular element of L>* [0, T], i.e., pra is concentrated on a subset of [0, T
with an arbitrarily small Lebesgue measure. (Formally, a p € L** is concentrated on, or supported
by, a measurable set S if (p|y) = (p|yls) for every y € L>°, where 1g denotes the 0-1 indicator of S
(equal to 1 on S and to 0 outside). A sequence of sets (Sy,) is evanescent if Sy, 41 C S, for every m
and meas ((),-_, Sm) = 0; and p is called singular if there exists an evanescent sequence (Sp,) such
that p is concentrated on S,, for each m. A p € L** is singular if and only if it is p.f.a.: see [86,
3.1].) This gives pra the interpretation of an extremely concentrated charge. In the storage context
it can arise as a turbine capacity charge (Remark 3.14.6).

The value of y € L™ at p € L*™* is

T
PlY) poos 1o = /0 pea (t)y (t) dt + (pra | y) (3.4.4)

which is abbreviated to (p|y). Although the last term in (3.4.4) is also an integral, it is one that
lacks some basic properties; and the symbol f is reserved here for integration w.r.t. a measure,
which is countably additive by definition. The only measures in L®* are those having densities, i.e.,
L>*NM =1L

By definition, a p € L>* is (strictly) positive as a linear functional on L if (p|-) is positive on
LS\ {0}. This is the case if and only if prpa > 0 and pca > 0 a.e. on [0, T]. The latter condition
is also written as pca > 0, or as pca € L£_+. For the subspace C, note that p € C,, if and only if

Min (p) > 0.

12 A p.f.a. set function is one that is lattice-disjoint from every c.a. one.
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The plant operation problem is next formulated as an LP. With the constants ks, k1, and kp,
viewed as special cases of cyclically varying functions, this primal LP is:

Given (p; kse, kru, kpu) € LE* x R} € LP* x (C4 x LY x L) with pca > 0 (3.4.5)
maximise (p|y1u — ypu) Over (Ymu,ypu) € L x L= and sg € R (3.4.6)
subject to: 0 <y (t) < kry, forae. ¢ (3.4.7)
0 < 7npyypu (t) <kp, forae t (3.4.8)
T
/ Ft)dt =0 (3.4.9)
0 .

t
0<s0— / f(r)dr < kgy foreveryt (3.4.10)

0

where f = y1u /Ty — TpuYPu as per (3.2.1)-(3.2.2).

The two formulations of the operation problem are equivalent in the sense that y solves (3.4.1)-
(3.4.3) if and only if y = y1u, — ypu for some (Y1, ypu, o) that solves (3.4.5)—(3.4.10)—in which case
(y1u,yPu) together with the specific value

t t
YTu (T)
= = —_— u . .1
LY zme[oax,T] /‘J f(r)dr tme[oax,T] A ( ” NpuYP (-r)) dr (3.4.11)

is a solution: s, is the lowest initial stock required for s (t) never to fall below 0. (Unless there

YYTusYPu
is spare storage capacity, this is actually the only feasible value for sg, given (y1u,¥pu).) One can

therefore restrict attention to points (Y1, ¥pu, S0) with so = sg .. .. ; and so the stock trajectory

»YTu

associated with a storage policy (y1u,ypu) is

" (ymu (1)

§(t) = Soyruge. = | | T —puypu(7) ) dr. (3.4.12)
0 Tu

The dual programme, introduced next, serves the purposes of characterising optimal operation

and calculating the marginal capacity values. To ensure that the problem is nontrivial-—and that

the dual is soluble—for the most part it is assumed from here on that k > 0, i.e., that!3

k1w >0, kpy > 0and kg > 0. (3.4.13)

3.5 Capacity valuation as the dual linear programme

As is set out in, e.g., [73], the dual to a convex programme depends on the choice of perturbations

for the primal parameters. A choice of admissible perturbations determines the structure of the

13 A srtictly positive k means that the primal meets Slater’s Condition. This standard constraint qualification for
CPs is, in the infinite-dimensional case, useful with LPs as well. Without it, the primal and dual values may be
different, or there may be no dual optimum. For example, if p € L!, k1, > 0 and kpy, > O but kg = 0, then the
primal and dual values are equal (viz., 0); but if additionally g, = 1, then the dual optimum exists only if p € BV

(in which case the optimal stock price is ¥ = p). See also [4, p. 31.].
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dual variables (a.k.a. Lagrange multipliers) to be paired with the parameter increments. Therefore,
the dual programme depends not only on the particular values of the primal parameters, but also
on the vector space of parameter increments or perturbations. This “ambient” space for the given
parameter point can be chosen to suit one’s purpose.

In the case of (3.4.5)—(3.4.10), the programme contains a separate set of capacity constraints
for each time t—so, by considering a separate increment Ak (t) for each t, one can impute an
instantaneous value, k (t), to capacity services at each time ¢t. In other words, not only their total
value, but also its distribution over the cycle can be determined. Even if the existing capacities k
are actually constant, it is useful to consider the cyclically varying increments Ak because this gives
a marginal interpretation to the time-dependent Lagrange multipliers for the capacity constraints:
denoted by k = (kst, KTu, kPu), these are the unit values of the capacities’ services at any particular
time. As part of the “variation of constants”, a varying increment Ang; (t) to the zero floor for the
stock in (3.4.10) is also considered, as are cyclically varying increments, Ant, (¢) and Anp, (t), to
the zero floors for the turbine and pump output rates in (3.4.7) and (3.4.8). This gives a marginal
interpretation to the time-dependent Lagrange multipliers for the nonnegativity constraints: denoted
by v = (Vst, YTu, YPu), these are the unit values of lowering the “floors” at any time. Finally, a scalar
A( is an increment to the zero on the r.h.s. of (3.4.9); this can be thought of as the quantity of the
medium taken to be available for topping up the reservoir between cycles. Its multiplier, a scalar A,
is the marginal value of stock at the beginning (or end) of cycle. All the multipliers (x, ¥ and \) are
terms of the TOU price p in its decomposition (3.5.6) below, which is a part of the dual programme’s
constraints.

The short-run profit maximisation problem (3.4.5)—(3.4.10) is thus embedded in the family of
perturbed programmes obtained by adding an arbitrary cyclically varying increment (Aks;, Ang,
Akyy, Anyy, Akpy, Anp,) and a scalar A € R to the particular parameter point consisting of the
constants (ks;, 0, k1y, 0, kpy, 0) and 0. This perturbation is termed refined, to distinguish it from
the coarser perturbation by constant increments.

The function spaces for the resource increments, already indicated in (3.4.5), are: C|[0,T] for
Akgy and Ang, and L [0, T] for Akry, Anty, Akp, and Anp,. These are paired with M [0, T] and
L*>*[0,T} as the shadow price (multiplier) spaces. With an infinite-dimensional parameter space
such as L, the dual programme depends also on the choice of the dual space—and L*° can be
usefully paired with either L>* or L'. But when p € L! [0, T, the pairing of L> with L>* is needed
only in proving the dual’s solubility: any optimal k1, and xp, are actually in L' (as are vq, and
Vpy)-

In other words, the marginal value of the storage capacity services on an interval A C {0,7] is
given by a measure kg (A); this is the incremental operating profit from the availability on A of an

extra unit of the reservoir. Another measure, vg; (A), gives the incremental profit from lowering the
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stock floor by a unit, on A. The marginal value of the turbine capacity services, on A, is the integral
of a kqy € L>™*; similarly, the marginal value of the pump capacity services, on A, is the integral of
a kpy € L. The value of lowering the conversion rate floor by a unit is is the integral of a vy, € !
for the turbine, and of a vp, € L** for the pump.

Thus the complete shadow-price system (kst, Vst; KTu, VTu; KPu, VPu; A) values all the resource
increments (Aks;, —Angy; AkTy, —AnTy; Akpu, —Anpy; AC). Of course, it also values the particular
resource bundle (ksy, 0; k1u, 0; kpu, 0; 0) that represents the plant itself—and the dual to the
operation programme (3.4.5)—(3.4.10) is to minimise the plant’s value by an admissible choice of the
shadow prices. The main dual constraints (3.5.6) are two decompositions of the good’s price p into
a signed sum of: the conversion capacity charge, the value of the conversion floor, and the shadow
price of stock. There is one decomposition for the turbine and one for the pump. The stock price,
later denoted by 1, is the sum of: the initial price A, the cumulative of reservoir capacity charges

Kst, and the cumulative of —vg;; it is the middle sum in (3.5.6). This spelt out next.

Theorem 3.5.1 (Fixed-input value minimisation as the dual). The dual of the linear programme
(3.4.5)-(3.4.10), relative to the refined perturbation and the pairing of the parameter spaces C and
L*>® with M and L** respectively, is:

Given (p, kst, k1u, kpu) as in (3.4.5) (3.5.1)
minimise kst /[’ ]ns,; (dt) + kru (57w | Ljo,17) + kPu (kPu | Lj0,77) (3.5.2)
over A € R and (Kst, Vst; KTus VTu; KPu, VPu) € M2 X (L°°*)2 X (L"°*)2 (3.5.3)
subject to:  (Kst, ¥St, KTus ¥Tuy KPuy VPu) = 0 (3.54)

kst [0, 7] = vs: [0, T) " (35.5)
NP — M1y (BTw — V1u) = A+ {Kse — st ) [0,] = Wiu + (Kpu — Vpu) - (3.5.6)

Remark 3.5.2. Under (8.4.13), any solution to (3.5.1)-(3.5.6) has the disjointness properties that
kg ANvy =0 for ¢ =5t,Tu,Pu and kg {0,T}Avs {0, T} =0 (3.5.7)
i.e., it is not optimal for the dual variables to overlap and partly cancel each other out.!
Comments:
o Therefore the programme (3.5.1)—(3.5.6) can be reformulated in terms of the signed variables
By =Ky —vg for ¢ = St,Tu,Pu (3.5.8)

by replacing (x4, v4) with (,u;, ,u;) At an optimum, g, {0} and g, {T} do not have opposite
signs.

!For ¢ = St, this means that kg, and vg, are disjoint as measures on the circle obtained from the interval [0, 7],

and not only on [0, T] itself.
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e If ng, =1, then k1, = vp, and kpy, = vy, from (3.5.6) and (3.5.7); so in this case

KTu A Kpy = 0. (359)

e Since p > 0, one has kmy A kpy = 0 also when 7z, < 1. (This is because, as can be seen by
using (3.5.6) to expand ((1/7p,) — y) Ps if KTu AKpy > 0 then Kk, Avm, > 0 or Kpy Avpy > 0,
which contradicts (3.5.7).) As for v, with 7y, < 1 it can be that v, Avp, > 0.

e By the Hewitt-Yosida decomposition, (3.5.6) can be restated as

ra (Pca — K50 + V50) (8) = A+ (Kse — vsi) [0,8] = (Zﬂ + Kpo — Vge) )

Pu

for a.e. t, with

KTe — Ve = PFa = —7pu (KB4 — VEG) - (3:5.10)

e Since pra > 0, (3.5.7) and (3.5.10) give

Vi = Kba =Ppa =0 and KL =np,vhy = Pis = Pra- (3.5.11)

So kpy, € L!, and the third term of (3.5.2) can be rewritten as kp, f(;P kpy (t)dt. Ifp € LY,
i.e., pra = 0, then also k1, € L!; and in this case the second term of (3.5.2) can similarly be

rewritten as kty fOT k1w (t) dt.

3.6 Conditions for optimal operation and valuation

The dual programme (3.5.1)-(3.5.6) has a solution, in which xp, and v, are in L! by (3.5.11), whilst
KTy and vp, are generally in L°* (and kgy and vgg are in M). The primal and dual optima are
characterised by the Kuhn-Tucker Conditions, which for LPs reduce to feasibility and complementary
slackness. Spelt out next, these conditions are later used to determine plant operation in terms of
the stock price, and to establish that this shadow price is unique (at least at the times which matter,

and literally unique if g, = 1).
Proposition 3.6.1 (Dual solubility and optimality conditions). Assume (3.4.18). Then:
1. The fized-input value minimisation programme (8.5.1)-(8.5.6) has an optimal solution
(nSty’;ShK’Tu,VTu,KIPuyVPu,)\) EMXMxL® x L' x L' x L™* xR.

The programme’s value is finite and equal to the short-run profit HIS:’IS{ (p, kst, kTu, kpu), the
optimal value of (3.4.5)-(3.4.10). Furthermore, if p € L'[0,T), then also km, € L! and

vpu € L! in every solution.
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2. Points (y’n_,,ypu, §0’y“,ypu) € L® x L™ x R and (Kst, Vst, KTu; VTus KPu, VPu, A) are optimal

solutions to, respectively, the primal (3.4.5)-(3.4.10) and the dual (8.5.1)-(3.5.6) if and only
if:
(a) (yq\,,ypu,_.s;o,m,ypu) and (Kss, Vs, KTus YTu, KPu, VPu, A) are feasible, i.e., satisfy (3.4.7)-
(8.4.10) and (3.5.4)~(3.5.6).
(b) The measure kg is concentrated on {t € [0,T] : s(t) = ks¢}, and vs; is concentrated on
{t : s(t) =0}, where s is given by (8.4.11)-(3.4.12).
(c) For every number € > 0, kpy € L°* is concentrated on {t : ym, (t) > kru — €}, and the
SJunction vy, €>L1 vanishes a.e. outside of {t :ymu (t) = 0}. Similarly kp, € L! vanishes
a.e. outside of {t : np,ypu (t) = kpu}, and vp, € L°* is concentrated on {t : ypy (¢) < €}
for each € > 0. If p € L', then also K, € L' and vp, € L' (and then these functions
vanish a.e. outside the sets {t : y1, (t) = k1w} and {t : yp, (t) = 0}, respectively).

The following reformulation of the dual problem extends its pricing interpretation to the valuation

of stock.

3.7 Shadow pricing of stock as the dual problem

By the change of variables from (}, ks (dt), vs, (dt)) to
P (t) =X+ (ks —vsi) [0,t] forte (0,T) (3.7.1)

and by using the dual constraints (3.5.4)-(3.5.6) and the disjointness condition (3.5.7) to eliminate
the other dual variables, the dual problem can be transformed into one of unconstrained minimisation

over 1, an arbitrary bounded-variation function on (0, T').

Notation The space BV (0,T) consists of all functions 1 of bounded variation on (0,7") with 1 ()
lying between the left and right limits, ¢ (t—) = lim, ~ % (7) and ¢ (t+) = lim ¥ (7).15 A
¥ € BV (0,T) is extended by continuity to [0,T]; i.e., ¥ (0) := ¢ (0+) and ¥ (T) := ¥ (T-).
The cyclic positive variation of 9 is defined by (3.3.1).
If finite numbers 9 (0—) and 9 (T+) are additionally specified, then ¢y € BV [0—,T+]; and

such a v defines a measure on [0, T] by

AP [, t"] = (t"+) — ¥ (£'-) (3.7.2)

for ¢’ < t”. The Lebesgue-Stieltjes integral of a function s w.r.t. the measure (dy)* is written
as [s (dy)t or [s(t)(dy (t))*. When ¢ (0-) = v (T'+), the usual variation norm of (dy)*
equals Var} ().

15The one-sided limits exist at every £ and are equal nearly everywhere (n.e.), i.e., everywhere except for a countable

set. Specification of ¥ (t) between 3 (t—) and ¥ (+) is unnecessary.
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Formulae (3.7.1) and
Y(0-) =9 (T+)=2A (3.7.3)

define together a one-to-one map of the set of all those (A, ks, vst) satisfying (3.5.4), (3.5.5) and
(3.5.7) onto the set of all those ¥ € BV {0—,T+] with v (0—) = ¢ (T'+) lying between 1 (0+) and
¥ (T—). The inverse map is given by (3.7.3) together with

ks = ()t and vg, = (do)”. (3.7.4)

As for the variables K1y, YTy, kpy and ¥py, these can now be eliminated by using (3.5.4), (3.5.6)

and (3.5.7) to express them as

(KTu, KPu) = ((p— %)Jr <n_§: —¢)~) (3.7.5)
(1o, vPu) = ((p - %) B (51;—“ - ¢) +) . (3.7.6)

Proposition 3.7.1 (Stock pricing as the dual). Assume (8.4.18). Then the fired-input value min-
imisation programme (8.5.1)-(8.5.6) is equivalent, through the change of variables, to the following

convex programme:

Given (p, kst, kTu, kpu) as in (3.4.5), minimise (3.7.7)
+ T -
kst Vart (1) + b <( - i) |1> + kpu / (M - ¢(t)) dt (3.7.8)
MM 0 NMpPu
over € BV(0,7). (3.7.9)

Notation The (optimal) solution set for (3.7.7)—(3.7.9) is denoted by ¥ps (p, k), abbreviated to ¥.

Again, the corresponding lowercase notation, %, is used only when the dual solution is unique.

The function 1 defined by (3.7.1) can be interpreted as the shadow price of stock at any time
t. Heuristically, this follows from the marginal interpretations of x, v and A (viz., that kg, as
the multiplier for the upper reservoir constraint, represents the reservoir capacity value, with a
similar interpretation of the multiplier vg; for the lower constraint, whilst )X is the stock value at the
beginning of cycle).!®

It is this formulation of the dual that leads to the idea of obtaining ¢ by “levelling off” the local
extremes of p in the way described in Section 3.3. The insight can be developed into a specialised

algorithm for the case of a piecewise monotone p. In this appfoach the dual is tackled first, in the

16The shadow-price interpretation of 1 can be formalised as a rigorous marginal-value result by introducing a
(hypothetical) exogeneous inflow to the reservoir, e € L, as an additional parameter with its own multiplier 1. This
means that (3.4.9) and (3.4.10) are perturbed by replacing y with y — Ae. Then (3.7.1) becomes a constraint of the
dual problem, whose solution 'fbps equals VJIES at e = 0 (in pumped storage). This is formally similar to the case

of hydro, in which e is the river flow, and {()H equals V,HIS’IR at the given, positive e: see Chapter 4.
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CP form (3.7.7)-(3.7.9), with the primal solution found subsequently. For comparison, the simplex
method for LPs finds both the primal and the dual solutions simultaneously.

3.8 Determination of optimal storage policy

A storage plant’s operation problem is soluble for every p € L [0,T], though not for every p € L™®*.
The assumption that p € L! (i.e., that ppy = 0) is maintained from here on until Remark 3.14.6.

Proposition 3.8.1 (Primal solubility). For every p € L, and k = (ksy, kru, kpu) > 0, the short-
run profit-mazimisation programme (3.4.5)-(8.4.10) has a solution (Yr1u,ypu, S0). Equivalently, the
problem (8.4.1)—(8.4.8) has a solution, i.e., Y (p, k) #£0.

When ng, < 1, simultaneous charging and discharging would be counterproductive (if it were at

all feasible). This is next stated formally (since it is used in proving the optimal-output formula).

Lemma 3.8.2 (Nonoptimality of conversion overlap). Assume that ng, < 1 and p € L%, (or,
more generally, p € LY and pca > 0). Then yu A ypu = 0 for every solution to the primal
(3.4.5)~(3.4-10). So f =y* [, — mpuy~ from (3.2.9).

Once the dual is solved, so that an optimal 1 is known, the operation problem largely reduces
to maximisation of instantaneous profits (as Part 2c of Proposition 3.6.1 shows). At each ¢ with
NP (t) # ¥ (t) # p(t) /npy, the optimum output y (¢) is of the “bang-coast-bang control” type,
either km, or 0 or —kpy/7p, (when 7, = 1, this simplifies to a “bang-bang” y on {p # ¥}). Any
remaining part of an optimal y is a “singular control”, which arises at a time ¢ when the instantaneous
optimum is multi-valued because v (t) equals 7,,p (t) or p(t) /np,. This part can be determined on
the assumption (3.8.1) that p has no plateau: this ensures that np,p(t) = (t) or ¥ (t) = p(t) /np,
only when the reservoir is full or empty (respectively); and at those times the output rate must be

0. See Figure 3.2 (for 7z, = 1) and Figure 3.4 (for g, < 1).

Proposition 3.8.3 (PS output with plateau-less price). In addition to p € L}, [0,T] and k =
(kst, ku, kpu) > 0, assume that p has no plateau, i.e., that

VpeR; meas{t:p(t)=p}=0. (3.8.1)
IfyeY (p,k) and ¢ € ¥ (p, k), i.e., y solves (3.4.1)-(3.4.8) and v solves (3.7.7)~(3.7.9), then
kru if npup () > 9 (t)
y®=q 0 if 7P () <9 () <p(t) /ey - (3.8.2)

—kpu/Mpy P (2) /1P, <% (1)

So (8.4.1)-(3.4.8) has a unique solution § (p, k).
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p(«)
($/kWh)

FIGURE 3.4. Trajectories of: (a) an optimal shadow price of stock ip, (b) the output of pumped-
storage plant yps, and (c) the stock s, in the case of imperfect conversion (7Ro = PTUVPU < !)e
Unit rent for storage capacity is Var~(ip), the sum of rises of ip. Unit rent for the pump capacity
is fO (p(t) /r)Pu —ip(t))~ dt, the sum of black areas in (a). Unit rent for the turbine capacity is
Jg (p (t) —ip (¢) /r;Tu)+ dt, the sum of dark grey areas in (a) times I/*Tu- 1° (k), eac®  “he light

grey areas equals the reservoir’s capacity kstm
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3.9 Marginal capacity values in terms of stock price

By definition, II§§ is the optimal value, max, (p|y), of the primal (operation) problem. Since the
dual and primal values are equal (Proposition 3.6.1), a dual (stock-pricing) solution v gives II as the
total capacity value (the plant’s total rent); and it has the advantage of giving the marginal values
VI as well.

Corollary 3.9.1 (Dual calculation of SR profit). Assume that k = (ksg, k1w, kpu) > 0 andpe LL .
Then, for every € ¥ (p, k),

T . + .
TES (p, k) = kst Vard () + by /0 (p(t)— ’f)—i?) dt (3.9.1)

v [ (22 -400)

T T T
[ voroas [ (p(t)—m)yw)dw | e - peny e

1

Furthermore, this sum equals

term-by-term, for everyy € Y (p, k).\"

Since II is positively homogeneous of degree 1 (a.k.a. linearly homogeneous) in k,'® Euler’s The-

orem shows that if II is differentiable in k,!? then

onE] AIgR OTIER
PS _ SR SR SR 9.2
HgR (p, k) = kst ks + kry o, + kpu Bkepy (3.9.2)

A comparison with (3.9.1) suggests that if there is a unique optimal 1), then the partial derivatives of
IT do exist and equal the coefficients of ks, k1, and kp,, in (3.9.1); formally this follows from (3.7.1)
and the marginal interpretation of kg;, KTy and kp, (spelt out in the Proof of Theorem 3.9.2). And
the optimal stock price 1) is indeed unique at the times which matter if p, the TOU price of the good,

is continuous. The result extends to the case of a p € L™*, if pca is continuous (Remark 3.14.6).

Theorem 3.9.2 (Efficiency rents of a storage plant). Assume that p € C44[0,T]. Then the op-
erating profit of a pumped-storage plant—i.e., the value of the primal problem (3.4.1)-(3.4.8)—is
differentiable with respect to the capacities (of the reservoir and the conversion equipment), at every

k = (kst, kTu, kpu) > 0. The derivatives defining the unit rents are given by the formulae

PS
TSR (5, k) = Var? (1) (3.9.3)
St

17This shows that the capacity values are equal to the capacities’ profits— (3| f) for the reservoir, etc.—when the

shadow price 9 is used to decentralise the operation within the plant (as is described in Section 3.3.2).

18That is, I1{p, ak) = oIl (p, k) for every scalar a > 0. Note also that ¥ and ¥ are positively homogeneous, in k,
of degrees 1 and 0 respectively; i.e., ¥ (p,ak) = a¥ (p, k) and ¥ (p,ak) = ¥ (p, k) for a > 0.

191f 11 is nondifferentiable, then II (k) = 7 - k for every r € 5;JI (the superdifferential of II as a concave function of
k).
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3Hsa 55 1) = /0 ( ) - ¢;)) (3.9.4)
3Hsn E (5, k) = / (ni’:) ¢(t)) dt (3.9.5)

in which v is any solution to the dual problem (3.7.7)-(3.7.9) of shadow pricing the stock. (The
above values are the same for every ¢ € ¥ (p, k), and this set is nonempty by Proposition 3.6.1. If
additionally g, = 1, then there is a unique dual solution, ) (p,k).)

Comment: In the case of a reversible converter of capacity kc, one obtains, by setting k1, = Bkco

and kpy = kco in (3.7.8) and by adding up the two integrals (3.9.4)-(3.9.5), that

glg—(sl:*?=/:( ((t) Q/’(t)) +(%u)—¢(t))—)dt

where 1 is any solution to (3.7.7)—(3.7.9) with the above substitutions. The integral simplifies to
fOT |p(t) — 1 (t)] dt if the converter is symmetric and perfectly efficient (i.e., if 3 =1 and 7z, = 1).

3.10 Bounds on marginal capacity values

For this and the next sections the conversion equipment is assumed to be reversible (but not neces-
sarily perfectly efficient or symmetric). Recall from Section 3.2 that a unit converter provides a unit
of pump capacity (with efficiency 7p,) and 3 units of turbine capacity (with efficiency 7y,).

Since IIES (p, kst, kco) is, by Proposition 3.7.1 (with p € L!), the minimum of

ks Var () + koo [ i (ﬂ <p (t) - ’fl—i?f + (ni) w(t)) )

over 1 € BV, an upper bound on IT/ k¢, that depends only on p can be obtained by setting 1 = const.
Assume that p € C; then the best (minimising) constant value for v is unique, and it is the ¥y € R
that satisfies (3.13.25)—(3.13.26). It is denoted by

gq (pa ﬂ7 n’I\nnPu)

since it generalises the quantile concept: when 7p,nm, = 1, gq(p, 5) is the lower quantile of p of
order 3/ (8 +1).2° From this and from (3.9.2)

BHSR HSR
< < T .10.
Fron = Fg, STCe (3.10.1)

= /OT (ﬁ (p (t) - __gq(gf,n))’L + (f’—(-: - ga(», 6, n))_) dt

Choosing a 1 between 7,p and p/ 71p, Shows similarly that

Okgy, kSt
20For the quantile’s definition, see (3.13.10) with kg, = Bkco and kpy = kco.

R <7, minf {Var': @) imp << } (3.102)
Pu
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This bound is finite if, as is assumed henceforth, 77z, < 1 or p € BV (in the latter case 7g; <
Var} (p) < 400).

With p fixed, ViII is homogeneous of degree 0 in k, i.e., it depends only on the capacity ratio
¥ := kgo/kst. As ¥ increases from 0 to +oo, 911/8ks; increases, whilst 911/9kc, decreases to 0 (in
the limit as ¥ /" +00), since ——

et S ST

by (3.9.2) and the second inequality of (3.10.2). A similar argument using (3.10.1) shows that
o O ER_
kco Oksy ~ kco
so 8I1/0ks, decreases to 0 as 9 \, 0. Furthermore, whilst 81I/dkc, may never equal 0,2! 811/0ks;

actually is O for small enough ¥ = kco/kst. This is obviously the case for 9 < (8+ ny,) /8T: an

extra unit of the reservoir is then useless because it is already so large that it cannot be fully charged
and discharged in one cycle (since this takes ksi/kco plus 7q,kst/Bkco, which exceeds T). The
largest ¥ with 8I1/9ks, = 0 is denoted by 3. (It can be given explicitly in terms of p, 3 and 7.) Note
that 8I1/8kc, attains its upper bound at (and only at) ¥ < 9.22 See Figure 3.5a.

3.11 Optimum investment in storage plants

The marginal capacity values V,IIES can be used to determine the optimum investment into pumped
storage on the basis of a given TOU tariff p and the supply costs of the two inputs, the reservoir and
the (reversible) converter. The following formulation of the problem applies chiefly to energy storage
techniques such as PWES and CAES, which utilise special geological features. The converter’s unit
cost, 7co, can be reasonably regarded as constant, i.e., independent of the capacity kc,. By contrast,
in PWES or CAES the reservoir’s marginal cost, rs;, typically increases with kg; because the most
suitable parts of the site are developed first. In formal terms, on a potential site for a particular
storage technique, a reservoir can be built at a cost which is a strictly convex and increasing function,
G, of its capacity kg, € [0, ESt], with G (0) = 0. Although G may be nondifferentiable, it has the
one-sided, left and right derivatives, dG/d_ks; < dG/dks;. Where these differ, the subdifferential
0G = |dG/d kg, dG/d kst] is multi-valued; but this can be the case only on a countable subset of
(0, ESt). In other words, the two-sided derivative dG/dks; exists nearly everywhere; and its right
or left limit equals dG/dyks;, respectively. Also, G (0) = [0, (dG/dks:) (0+)] and 8G (ks;) =
[(dG/dksy) (kst—) , +00). See Figure 3.5b.

The investment problem is:

Given (p,rco) € C[0,T] x R4+ (and given the function G) (3.11.1)

211f the local peaks and troughs of p are strict, and Min (p) < ng, Max (p) as in Remark 3.14.1, then an extra unit

of converter is always useful because it allows conversion to be concentrated closer to the troughs and peaks.
221f 9 < 9, then 811/8ks, = 0; i.e., P =gq (p, B,m). so equalities hold in (3.10.1).
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maximise IT§5 (p, kst, kco) — G (kst) — Tcokco over (kst, kco) € R (3.11.2)

It can be solved in two stages, first for the proportion 9 := kg, /kst, and then for the scale: since IT

is positively linearly homogeneous in &,

kco rcok
T5R (9, kst kco) — G (kst) — reokce = kst (ngg (p, 1, k(s:t ) - Lks%) - G(ks)  (3.11.3)

for kgy > 0; and—with p suppressed from the notation—the subproblem of maximising
T§R (1,9) — reed (3.11.4)
over ¥ € R, can be solved first. Once a maximum point 9 is known, it only remains to maximise
ksy (TIER (1,9) — rood) — G (kst) (3.11.5)

over ks, € R,. The solution gives the other optimum capacity as kg, = Jksy.-

When max; (II (1,9) — rco¥) < (dG/dks:) (0+), the maximum of (3.11.5) is at ks, = 0, and this
means that the maximum of (3.11.2) is at (kss, kco) = (0,0). Therefore a necessary condition for a
nonzero solution to (3.11.2) is that r¢, is less than the F¢, defined in (3.10.1). This is because, from
Section 3.10, Tc, is the maximum of d1/dkc,, so maxy (I1(1,9) — rcod) = 0 if 7o > Teo-

Given any rc, < Tco, @ ¥ maximising (3.11.4) can be found from the FOC?3

ONgR = ree. (3.11.6)

Okco | (ksy koo)=(1,9)
This has a solution because 8II/0kc, \, 0 as ¥ /' +oo, at least if ng, < 1 or p € BV: see
Section 3.10. In general the maximum points of (3.11.4) form a (nonempty) subinterval of (4, +o0),
but if p has no plateau, then the solution is actually unique, in which case it is denoted by 9* (r¢c,),
as in Figure 3.5a.

Given an optimum 9, the ks; maximising (3.11.5) can be found from the condition IT(1,9) —

rco¥ € OG (kst), which is equivalent to

€ 3G (kst) (3.11.7)
kst | ks, kco)=(1,9)

by (3.11.6) and (3.9.2). Since G is strictly convex, the solution for kg is unique: see Figure 3.5b.
In summary, given an r¢, < T, and a plateau-less continuous p of bounded variation, there is a
unique optimum investment, k&, (G,7co) and k&, (G, rco), which can be found by using VII: first
(3.11.6) is solved to obtain 3" (rc,), and then (3.11.7) with ¥ = 9" is solved to obtain k3, and hence
also k&, = 97k, .2

Comments:

23This can be solved numerically by, e.g., the secant method—which requires no more than the calculation of

811/8kc, at the successive approximations.
24The procedure is valid also when k3, = 0 because 9" is the candidate for the optimum capacity ratio, and it can

be found without presupposing that the ratio is well defined (i.e., that kg, > 0).
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a6

st

Ficure 3.5. Optimal investment on a storage site: determination of (a) the capacity ratio d* (given
rco)> and (b) the reservoir’s capacity fcgt (and hence the converter’s capacity k"0 = The

shaded area in (b) represents the site’s rent.

e The maximum of (3.11.2) equals rgtfegt - G (kS$t), where

flnPS /mPS
rkire) - (1,'rtco)) = (*& (G,ra ), (G,rc)).
Since rst € dG (fegt), this is the price for storage capacity that would induce a price-taking
owner of the site to build a reservoir of the optimum size fcgt, to be optimally complemented
by ké¢o of the converter. In practice the site owner is likely to either build a complete plant
himself or let the site for a rent to the highest-bidding entrepreneur. With perfect competition
the entrepreneur’s net profit is zero, i.e., the rent for the site is Tgtfcgt —G (fagt) Per cyc’e (the

shaded area in Figure 3.5b).

* The analysis obviously extends to any number of sites and techniques (for storing the same
good with the tariff p). On all of the sites for a particular storage technique the optimum

capacity ratio d* is the same, since it depends only on 700.

e The independence of d* on G gives a simple but useful comparative statics result: a fall in the
marginal cost schedule to some dG'/dkst < dG/dfcst changes the scale of optimum investment
but not the optimal capacity ratio. So if the reservoir construction cost falls to G’ after an
investment on the basis of G, optimality can be restored by a proportional expansion of the
existing plant. (This is usually feasible with sizeable projects, which are planned to be carried

out in stages.)
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3.12 Proofs for Sections 3.5 to 3.8

These proofs are largely routine applications of duality for optimisation in infinite-dimensional spaces,
as expounded in, e.g., [73, Examples 4, 4’, 4”] and [4, 3.3-3.7]. To put the primal constraints in the
operator form required by this framework, define the integrals Iy and Ir: L* [0,T] — C[0,T] by

(Iof) (¢) —/ f(r)dr and (I7f)(t) / f(r)dr. (3.12.1)

The reservoir constraints (3.4.10) on (y1u, ¥pu, So) can then be rewritten as
0 < solp,r — Iof < kst. (3.12.2)

A formula for the adjoint operation I§: M [0,T] — L°* [0,T] is needed. (As for the embedding
R 3 s+ sljg ) € C, its adjoint is: M > k+— (k|1) = [0,T].)

Lemma 3.12.1. The adjoints I§, I} map M [0,T] into BV [0,T] C L [0,T]. They are given by
(G () =pl,T) and  (Iw) () = w08 for ae. t,
for every pe M. If p[0,T] =0, then —I{pu = p[0,-] = I}p.

Proof. The linear operation Ip: L> — C [0, T] is obviously norm-to-norm continuous, so its adjoint

maps M [0, T] into L°*. To calculate I3, use Fubini’s Theorem: for up € M[0,T] and f € L™,

(F1I3m) = {Tof | ) = / /f(f)dw(dt /f(TM[T,T]dT

This means that I} is represented by the function equal a.e. to |-, T]; so it belongs to BV c L. A
similar argument applies to I}.. To complete, note that [, T] = p(-,T] a.e. (and actually n.e.). O

Remark 3.12.2. The operations Iy, Ir: L — C are m (L™, L)-to-||-||,, continuous, where

m (L*°, Ll) is the Mackey topology on L™ for the duality with L.

Proof. For I, this follows directly from the definition (3.12.1), used in conjunction with two facts:
(i) that the 0-1 indicators {1jo, : ¢ € [0, T]} form a uniformly integrable subset of L, and (ii) that
m (L°°, Ll) can be characterised as the topology of uniform convergence on uniformly integrable sets
(since these are the same as the weak relative compacts of L!, by the Dunford-Pettis Criterion). A

similar argument using 1, 1 applies to I}. DO

Comment: That I§ and I} map M into L! follows also directly, without any calculation, from

their Mackey-to-norm continuity (i.e., from Remark 3.12.2).

Proof of Theorem 3.5.1 (Fixed-input value minimisation as the dual). Since (3.4.5)-
(3.4.10) is an LP, it would suffice to apply results such as those of [4, 3.3 and 3.6-3.7]. However, to
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facilitate extensions and adaptations requiring convex but nonlinear models, this proof is couched
in CP terms. The dual to a concave maximisation programme consists in minimising, over the dual
variables (the Lagrange multipliers for the primal), the supremum of the Lagrange function over the
primal decision variables: see, e.g., {73, (4.6) and (5.13)]. The “cone model” of [73, Example 4’}—also
expounded in, e.g., [16, 4.2] and [57, 7.9]—is applicable, since (3.12.2) and (3.4.7)—(3.4.8) represent
the inequality constraints of the primal programme (3.4.5)-(3.4.10) by means of the nonnegative
cones (C; and L) and convex constraint maps (which are actually linear). The dual variables
here are the kg, Vsi; KTu, VTu, KPu, VPu and A of (3.5.3); and these are paired with the parameter
increments Akgg, —Ang,, Ak, —Anty,, Akpy, —Anp, and A( (as is discussed in Section 3.5).2%
The primal variables are (y1u,¥pu,S0) € L™ X L™ x R, and the Lagrange function (of primal and
dual variables) is

I-IExt: (yTunyuyso; K,V, /\) +V (K') if (Ki V) 2 0
L(y’[\,, YPu, SOy K, V, /\) = (3123)

+00 if (k,v) 20
where
Vi= (K‘St I kSt)M,C + (K'I\l lkT\l)Lac-iLao + (KPu I kPu)Lant,Lm (3124)

and, with the notation (3.5.8) and with f := y1u /%1, — 7puYPu as per (3.2.1)—(3.2.2),

Hexe :=(p|y1u — ¥Pu) — (kst — Vst | 50 — Tof) = (KTu — V1u | yTu) (3.12.5)
— Npy (KPu — VPu |Ypu) — A(1] f)
=(plyma — ypu) + opse | £) — (st | 50) — (pru | y10)
= Tpu (Bpy | YPu) — A(1] f)
=(p|yru —ypu) — (A — psy (7] | f) — sops, [0, T
~ (b Y1) — ey (Bpu | YPY)

since I pug, = pg, (-, T'] by Lemma 3.12.1.

To calculate the dual minimand when (x,v) > 0 (which is a dual constraint, since the minimand
is 400 otherwise), note that

sup L=V+ sup Igxe
(yTu,¥Pu,%0) (¥Tu,yPuss0)

since V is independent of (y1u, Ypu, S0)- By (3.12.5), IIgy. is linear in these variables, so its supremum
is either 0 or +o0; and it is zero if and only if Ollgx./0sp = 0 and V,, IIgyc = 0 for ¢ = Tu, Pu.
These conditions are equivalent to (3.5.5)—(3.5.6). So the dual programme is: given (p, k), minimise
the V (k, k) of (3.12.4) over (k,v) > 0 and ), subject to (3.5.5)—(3.5.6). O

25These parameter increments are what Rockafellar [73] calls “parameters”. This is because, unlike [73], here the

origin of the parameter vector space is not placed at the original parameter point, which is (kst, 0; kTu,0; kpy,0; 0).

This helps keep track of the the dual programme’s dependence on the primal parameter point.
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Comment: In (3.12.4)—(3.12.5), V is the value of the available resources k, priced at k. And Hgy,
is, for an entrepreneur buying all the inputs, the excess profit (a.k.a. pure profit) from a storage
policy (y1u,ypu) and the use of an initial stock sp: the sum (3.12.5) defines Ilg,. as the total over
the cycle of the revenue minus the cost of the resources needed at any time ¢. The resources in
question are: the time-varying minimum requirements for the three capacities (priced at ), for the
three floors (for stock and for turbine and pump outputs, priced at v), and for the required top-up
(priced at A). To see this, recall that s = sg — Ipf is the stock trajectory (since f is the flow from

the reservoir).

Proof of Remark 3.5.2. If this were false, then the minimand’s value could be decreased by re-

placing (Kst, Vst; KTu, YTu; KPus VPu) With (udy, pig,; pohy, #1ys 5y #p,) defined by (3.5.8). O

Proof of Proposition 3.6.1 (Dual solubility and optimality conditions). Like that of The-
orem 3.5.1, this proof is put in CP terms. Since the nonnegative cones in the (primal) parameter
spaces (C; and L) have nonempty interiors (for the supremum norm), the framework of [73, Exam-
ples 4, 4’, 4”] is applicable. To verify the Generalised Slater’s Condition of [73, (8.12)] for the primal
constraints (3.4.7)-(3.4.10), it suffices to take yq, = € = g ypu (so that f = 0) with a sufficiently
small constant € > 0, setting sg at any value strictly between 0 and ks;. So the dual has a solution,
and the primal and dual values are equal (and finite): see, e.g., [73, Theorems 18 (a) and 17 (a)].
Furthermore, v1y, and xp, belong to L! by (3.5.11). This proves Part 1.

For Part 2, apply the Kuhn-Tucker saddle-point characterisation of optima—given in, e.g., [73,
Theorem 15 (e) and (f)]—to the primal (3.4.5)—(3.4.10) and its dual (3.5.1)—(3.5.6). This shows that
(yTu, YPu, S0} and (k, v, A) form a dual pair of solutions if and only if they maximise and minimise
(respectively) the Lagrange function £ given by (3.12.3). The minimum in question is characterised
by: nonnegativity (3.5.4), primal feasibility (3.4.7)—(3.4.10) and complementary slackness, which
translates here into Conditions 2b—2c. As for the maximum in question, it is characterised by the

conditions Ollgxc/0so = 0 and V,IIgs. = 0 for ¢ = Tu, Py, i.e., by (3.5.5)-(3.5.6). O

Comment: Existence of a dual optimum in the norm-dual spaces (xs; and vg; in M = C*, and
KTu, YTu, kPu and vp, in L°°*) comes automatically from (3.4.13), which ensures that the Generalised
Slater’s Condition of [73, (8.12)] holds with the norm topologies on the primal parameter spaces L
and C. The density representation (of the dual variables other than kg and vg;) comes from the
problem’s structure and the assumptions on p: with p > 0, every optimal kp, and vy is in L!; and

if p € L' then every optimal k1, and vp, is also in L!.

Proof of Proposition 3.7.1 (Stock pricing as the dual). This is a reformulation of Theorem
3.5.1: substitute the ¢ given by (3.7.1) into (3.5.6), and note that, given 1 (and p), the best choices
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for ksi, kTu and kp, are as in (37.7.4)—(3.7.5), because ks; > 0, kn, > 0 and kp, > 0. This reduces

the dual programme (3.5.1)—(3.5.6) to minimisation of

kSt/m (d¢(t))++k'm<( —;”’;y |1> +kpu/0T («p(t)—"—,’hﬂ—?ydt

over ¢ € BV {0—,T+], subject to ¢ (0—) = ¢ (T'+) lying between 1 (0+) and 9 (T'—). Hence the first
of the integrals equals the sum of (1 (0+) — ¢ (T—))" and f(o o) (d9)"; and this sum is Var} (¢). O

Proof of Proposition 3.8.1 (Primal solubility). With p € L!, the maximand of (3.4.6) is con-
tinuous for the weak* topology w (L°°,L1). The feasible set is bounded: in (yTu,ypu) by (3.4.7)-
(3.4.8), and in sy by (3.4.10) with, e.g., ¢ = 0. So, being also weakly* closed, the feasible set is
compact by the Banach-Alaoglu Theorem. And it is nonempty, since the point (0, 0, 0) is feasible by

assumption. So an optimum exists by Weierstrass’s Extreme Value Theorem. O

Proof of Lemma 3.8.2 (Nonoptimality of conversion overlap). Assume (3.4.13), since oth-
erwise the result holds trivially.?® Take an € > 0 and a solution (x,v, A) to the dual (3.5.1)-(3.5.6).
By Part 2c of Proposition 3.6.1, v, = 0 = vp, on the set S¢ := {t : (y1u A ypu) (t) > €}. So

1 1
02—(Tlmﬂm+ﬁpu)=(;——nm)z72(n _"I’I\J)PCA on S,

Pu Pu
by (3.5.6) and because pra > 0.27 Since pca > 0 and 7y, < 1, this implies that meas S, = 0. And

this means that ym, A ypy = 0 a.e. (since € is arbitrary). O

At this stage, it is useful to introduce a notation for the sets of those times when the reservoir is

empty or full or neither. The sets (which have already appeared in Condition 2b of Proposition 3.6.1)

are:
E(f):={te[0,T]:s(t)=0} (3.12.6)
F(f k) = {t € [0,T) : 8(2) = kst} (3.12.7)
B(f,kst) = [0, T)\ (EUF) = {t:0 < 5(t) < kst} (3.12.8)

where f := Y1, /%, —MpuYpu for a storage policy (y1u,ypu) meeting the balance constraint foT f@)de
= 0, s(t) is given by (3.4.11)-(3.4.12), and ks, > Max(s). (Whenng, =1, f =¥ = y1u — ¥pPu.)
Since 5 (0) = s(T), 0 and T are either both in B, or both in E, or both in F.2¥ From (3.4.11),
E # 0. Unless there is spare reservoir capacity, F' # () also; and then all three sets are nonempty.
Their connected components are subintervals of [0, 7]; and, being open, B is the union of a countable

(finite or denumerable) sequence of intervals. Those not containing 0 or T are denoted by

261f kmy, or kpy is 0, then yp, = 0 = yp, is the only feasible point. If ksy = 0 then f = 0, i.e., ¥Tw = NRo¥YPu

throughout; so the unique optimum is yp, = 0 = ypy.
2TFor p’ and p” in L%, p’ < p” on A means, by definition, that (p/|yla) < (p” |yla) for each y € LY.
28 These cases do not really differ if p € C and p (0) = p(T).
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form=1,...,M < oo, where 0 <t <%, <T. If {0,T} C B, then B additionally contains two
subintervals whose union is

Ao = (to, T)U [0,%0)

for some 0 < %y <ty < T. When 0,T ¢ B, set for completeness ¢, = T and iy = 0, so that Ag = 0
in this case. In either case, B = J,,5q Am.

All these sets may be thought of as subsets of the circle that results from “gluing” 0 and T
into a single point 70. Then (Am),,>, are the component arcs of B (a.k.a. B-arcs); Ag is that arc
which contains T'0 (if T0 € B); and ¢, and %,, are the beginning and the end of arc A,, (w.r.t. the
“clockwise” orientation). ' ’ '

The formula for the output y, in terms of any v € ¥, is proved next. On the set {t : nmup(t) #
¥ (t) # p(t) /np,}, the optimal y equals unambiguously k1, or 0 or —kp,/np,. Uniqueness of y
on {t:np,p () =y ®)}U{t: ¢¥(t) =p(t) /mp,} comes from the no-plateau assumption (3.8.1) on p:
this ensures that

i =vanufeve =221 cpur

Pu

up to a null set. And at each t € EU F one has f (t) = —3(¢) = 0 (and hence y (t) = 0), since s has

an extremum at ¢.

Remark 3.12.3. Ifs: [0,T] — [0,1] is absolutely continuous, then $ = 0 almost everywhere on the
set E:={t €[0,T]:s(t) =0}.

Comment: By using Lebesgue’s Metric Density Theorem, one can also show that the derivative
of a Lipschitz function vanishes a.e. on a constancy set—i.e., if s: [0,T] — R is a Lipschitz function,
then $ = 0 a.e. on the set E := {t € [0,T]: s(t) = 0}. The result is nontrivial unless the open set
[0, T] \ E consists of a finite sequence of intervals.

Proof of Proposition 3.8.3 (PS output with plateau-less price). Take any y € Y (not yet
known to be unique) and any 3 € ¥ (which may be nonunique, unless p € C and g, = 1). The first
and the third lines of (3.8.2) follow from Part 2c of Proposition 3.6.1 with (3.5.6) and (3.7.1), which
also show that f =0 a.e. on {t: n1,p(t) < ¥ (t) < p(t) /np,}- It remains to show that f =0 a.e. on
the set

S = {t:p(t) = ﬂt—)}u{trp=npu¢}-

NTu
For each m, one has 1 = const. on A, (f, kst) by Part 2b of Proposition 3.6.1. So meas{SNA,) =0

by (3.8.1), and hence meas (S N B (f, kst)) = 0 by countable additivity. This means that S is, up to
a null set, contained in the set F' (f, ks;) U E (f), on which f = —3 =0 a.e. and hence y = 0 a.e. (by
Remark 3.12.3), Lemma 3.8.2 and (3.2.2)). This completes the proof of (3.8.2). It follows that Y is
a singleton, even when ¥ is not. _ (Given any ¥ € ¥, any 3 and y” from Y satisfy (3.8.2) and are
therefore equal.) O
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3.13 Proofs for Section 3.9

Proof of Corollary 3.9.1 (Dual calculation of SR profit). Formula (3.9.1) follows from Pro-
positions 3.6.1 and 3.7.1. To derive it term-by-term, use the optimality conditions (complementary

slackness and feasibility) to expand {(p|y):
= [ povoa= [ povo-vormes [ vosow

- /0 (p(t)(y+(t) - (1) - w(—‘—)—npuy (t)))m / B(t) 1 () e

_[r _¥@® _ -
-/ (p<t) nm)y+(t)dt+ /0 (b (0= p D)y -+ / v f (B)dt

=kT\./0T(P(t)—¢n—;Q)+dt+kpuA ( p{t) 1/)(t)) dt / vy LW g

integrating the last term by parts to obtain

T
- / () ds (t) = — [ps)=TF + / 5 (£)dv (£) = 5 (0) (¥ (0=) — ¥ (T+)) + kst / (dy (£))*
0 [0,7] [0,T]

]

= 0+ kst Var} (¢)
as required. O

Except for the shadow-price determinacy results (Lemmas 3.13.1 and 3.13.3 below), the derivation
of Theorem 3.9.2 is a routine use of the marginal interpretation of the dual solution. Before a
formal proof, it is worth retracing in the present context the familiar argument which establishes
the derivative property of the value function when differentiability is taken for granted. With the
dual minimand (3.7.8) denoted by V (k, 1), the r.h.s.’s of (3.9.3)-(3.9.5) are obviously the partial
derivatives of V in k, evaluated at the dual optimum 12' (k). And the total derivatives, in k, of the
dual value V (k, 171 (k)) are equal to the corresponding partial derivatives, since the partial derivative
of V in 1 vanishes by the FOC for optimality of ¥. To complete the calculation, note that the dual
value equals the primal value H (if £ > 0).2° This is, indeed, the substance of the first step
in the Proof of Theorem 3.9.2, except that a standard convex duality result is used instead of the
above derivation “from first principles”. This is necessary because a rigorous application of the chain
rule would run into difficulties, since it would require the differentiability of % in &, and of V in 1.
This would make their composition II (k) =V (k,121 (k)) differentiable, but neither this nor even the
uniqueness of an optimal ¢ (i.e., the existence of 1) may be presupposed. Differentiability of IT must
be proved—by using price continuity, since it is known to fail in general if p ¢ C (Example 3.15.1).

Filling this gap requires lemmas on uniqueness of an optimal 1. The cases of perfect and imperfect

29 Conversely, the equality of short-run profit to the capacity value can be rederived from (3.9.3)-(3.9.5) by applying

Euler’s Theorem to Il as a homogeneous function of k.
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conversion are separated, since they differ in the properties of ¢y and y, and therefore require different
arguments. It is only with 7z, = 1 that % is unique at all times.

Before a detailed proof that 1 is unique when 7z, = 1 (and p € C), it is worth presenting the
main ideas. The key principle is that a rent can be earned only at a time of full capacity utilisation.
In the present context this means that p — v can be nonzero only when the converter (taken to
be symmetrically reversible) is working at full power (i.e., when y () = t+kg,); and therefore v (t)
equals p(t) whenever the reservoir is either full or empty (since s(¢) = 0 or s(t) = ks implies
that y (t) = —§(¢t) = 0 # %kc,). By the same principle, 1) can be rising or falling only when the
reservoir is full or empty (respectively); so 9 stays constant on each open interval (L, Z) during which
the reservoir constraints are inactive (i.e., 0 < s < kg¢). Together, these conditions determine the
function 9 almost completely—except for the possibility of jumps or drops of 3 that may occur
at the endpoints of a (closed) interval on which the reservoir is either full throughout or empty
throughout.3® Suppose, for example, that t is the end of an interval on which the reservoir is full.
At that instant, 9 can jump but not drop; and the same is true of p — v (since p = ¢ just before ¢,
and p > 9 just after ). So neither term, 9 or p — 1, can jump at ¢t if their sum (p) is continuous.

This determines the constant value of ¥ on (t,%) as p(t); so ¥ is unique.

Lemma 3.13.1 (Shadow-price uniqueness with perfect conversion). Assume that g, = 1, p €
Cyy [0,T] and k = (kst, by, kpu) 3> 0. Then the dual (3.7.7)-(3.7.9) has a unique solution v, which
belongs to Cy 4 [0,T). If additionally p(0) = p (T), then also ¢ (0) = 3 (T).

Proof. Fix any primal solution y € Y (p, k), which exists by Proposition 3.8.1 (though it may be
nonunique). To show that there is just one dual solution, every dual solution ¥ € ¥ (p, k) will be
expressed by the same formula in terms of y.3!

In the case of F (y, ks;) # 0, which is dealt with first, the Kuhn-Tucker Conditions will be used

to show that any ¢ € ¥ can be given, in terms of y, as
P(t)=p(t) foreveryte (EUF)(y,ks)\ {0, T} (3.13.1)

whereas on the m-th component A,, of B (y, kst), whose endpoints are t,, and %,,, it is the constant

p(tn) ift,#0
P(t) = for every t € A, (v, kst) (3.13.2)

p(tm) fim #T

30To simplify, it is assumed here that the times when the reservoir is full form a set F that consists of a finite

number of intervals (which may be single instants, as in Example 3.15.1). Although F can be more complex, this is

only a technicality (dealt with in the Proof of Lemma 3.13.1).
31The basis for this strategy (used also in proving Proposition 3.8.3) is that every dual solution supports every

primal solution; i.e., the set of Kuhn-Tucker (saddle) points for a dual pair of convex programmes is the Cartesian

product (of the primal and dual solution sets): see Proposition 3.6.1.
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for each m > 0. Since both E and F are nonempty, A,, # (0,T), so at least one line of (3.13.2)
applies; and when both do, they are consistent. So (3.13.1)-(3.13.2) fully determine 1 on (0,T'), and
hence on [0, T'] because 4 (0) and 1 (T') are defined by continuity.

To use the optimality conditions as stated in Proposition 3.6.1—i.e., in terms of (k,v, X) rather
than ¢—recall from Section 3.7 that if a ¢ € BV (0, T') solves (3.7.7)—(3.7.9), then (3.5.1)—(3.5.6) is
solved by: (kmy, kpu) = ((P" UNNCE ¢)_), any A between v (0+) and 9 (T—), and (kss, Vst) =
(udi, 5, ), where pg, = di on (0, T) with {0} = ¢ (0+) — X and p{T} = A — ¢ (T-).

With np, = np, =1, (3.5.6) gives

P=A+ (kst —vse)[0,-] + (Kru — Kpu) = Y + (kTu — Kpu) a.e. (3.13.3)

It suffices to show that, at every point of (EU F) \ {0,T}, v is continuous and equal to p: then
(3.13.2) follows, since 1 is constant on each B-component A,,, and since A,, # (0,7).

A discontinuity of ¥ could only be a jump at a time when the reservoir is full, or a drop when it
is empty. If ¢t € F say, then, being full at ¢, the reservoir cannot be being discharged just before ¢ or
charged just after .32 A fortiori, the capacity charge k1, must be zero just before ¢, and xp, must
be zero just after t. So p — ¥ = KTy — Kpy is nonpositive just before ¢ and nonnegative just after ¢,
and hence p — % cannot drop at a ¢t € F. This means that any discontinuous changes in ¢ and p — ¢
are of the same sign and cannot cancel each other out. So 9 (and p — 1) must be continuous if p
is. And it follows (from the signs of p — 1 before and after t) that p(t) = (t). The “upside down”
version of this reasoning applies to t € E.

Since k, and kp, are classes of a.e. equal functions (rather than functions), this argument is
formalised by using the essential limit concept—for which see, e.g., [20, IV.36-IV.37] or [81,‘ I1.9:
p- 90]. It is also convenient to say that an inequality between functions (of ¢) holds somewhere on
A C [0,T] to mean that it holds on an A’ C A with measA’ > 0 (i.e., it is not the case that the
reverse inequality holds a.e. on A).

The storage policy y1, := y* and yp, := y~, with the s, of (3.4.11), solves (3.4.5)-(3.4.10).33
Consider first a t € F \ {0,T'}. For every At > 0, it cannot be that ¥y > 0 a.e. on (¢ — At,t); i.e.,
somewhere on (t — At,t) one has y < 0 so y1, = y* = 0 < kpy. Therefore k7, = 0 somewhere on
(t — At,t), by Part 2¢ of Proposition 3.6.1; and, as At — 0, this shows that the lower left essential
limit of k1, at t is zero. Similarly, somewhere on (t,t + At) one has y > 0 so yp, =y~ =0 < kpy.
Therefore kp, = 0 somewhere on (t,t + At). This means that the lower right essential limit of kp,

at t is zero; i.e.,

ess lim\i}r:xf Kpy (T) =0 =ess lim}{lf kme(r) forte F\{0,T}. (3.13.4)

32This, by the way, is where the constancy of kg; over time is used.
33To show this formally, it suffices to take any optimal (¥Tu,yPu) With ¥y — ypy = ¥ and note that (y"',y‘) is

also feasible (since y* < y1u, ¥~ < ypu and, with g, = 1, the last term in (3.2.2) vanishes even if y1, and yp, do

overlap).
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Given (3.13.3) as well as continuity of p and nonnegativity of kp, and «ry, it follows from (3.13.4)
that34

p(t) — ¥ (t-) = ess lim (kmu — kpu) (7)

= ess hin/l‘{)f Kmu (T) — ess llin/'l?f Kpu (1) 0 (3.13.5)
< esslim T — ecs b _ 13,
< ess h{rn \1‘{1f Kt (T) — ess luTn \Tf Kpu (7) = ess ll\mt (k1w — Kpu) (T) (3.13.6)
=p(t) —¢(t+).

Therefore 1 (t—) > 1 (t+) from a comparison of the first and the last sums. But also, since t € F

Y (=) <P (t+) (3.13.7)

by Part 2b of Proposition 3.6.1; so all three inequalities of (3.13.5), (3.13.6) and (3.13.7) must actually
hold as equalities. This shows that ¢ (t—) = ¢ (t+) = p(t), i.e., the two-sided limit of ¢ at ¢ exists
and equals p(t). (Since it exists, it also equals 3 (t) because 1 (t) always lies between 4 (¢—) and
1 (t+).) The same can be shown for t € E (by an “upside down” version of the preceding proof for
te F); so

P(t) = li_'rntzl)(r) =p(t) forte (EUF)\{0,T}+#0. (3.13.8)

Nonemptiness of this set follows from the assumption that F # @, since E # @} always, by (3.4.11).

By Part 2b of Proposition 3.6.1, ¢ is constant on each A,,. This and (3.13.8) show that ¢ €
C(0,T). (Equivalently ¥ € C [0, T}, since 9 (0) := 4 (0+) and ¥ (T) := ¢ (T-).)

It remains to check that the proven properties of ¢ imply (3.13.2). Since EUF ¢ {0,T}, the
set B consists of two or more nonempty components A,,. Each of these has at least one endpoint
that is neither 0 nor T; ie., t,, # 0 or t, # T (t,, # T and %,, # 0 always). Say it is ¢,,; then
tm € (EUF)\{0,T}, since t,, ¢ A (A is an open arc). So, by (3.13.8) and the constancy of ¥
on A,

Pn) =%, =v¢(t) foreveryte Ap. (3.13.9)

If T # %, then (3.13.9) holds with %,, in place of t,,,, by the same argument. This also shows that
p(t,) =p (tm) if both t,, # 0 and %, # T. (All this applies to m = 0 as well, if Ag # 0. In this case
1 is additionally constant on Ap D {0,T}; so ¥ (0) = 4 (T') even if p(0) # p(T).) This completes
the proof of (3.13.1)-(3.13.2) when F # 0.

If p(0) = p(T), then ¥ (0) = ¢ (T) follows by virtually the same argument as that proving
(3.13.8), with 0 and T thought of as a single point of the circle.

34This argument uses also the fact that liminf (A — B) < liminf A — liminf B < limsup (A — B) whenever the
middle term is well defined. It equals lim (A — B) if the latter exists, as here (although the inequalities suffice). The

same holds with limsup A — limsup B as the middle term.
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Finally, consider the case of F (y, kss) = @, which is trivial in that the reservoir is never used to
capacity, and it earns no rent. Formally, kg = vs, = 0 by Part 2b of Proposition 3.6.1 and (3.5.5);
so 1 is a constant. Its uniqueness is readily shown: % minimises (3.7.8) over BV (0, T), so, a fortiori,

it minimises (3.7.8) over R. Since for 1 € R the sum (3.7.8) simplifies to

T T
b [ - v )+ ke [ @O )"
the minimum in question is characterised by the FOC

. k'I“)
meas{t .p(t) < ’R/J} < Tm

u

<meas{t:p(t) <} (3.13.10)

which means that 1 is a lower quantile of order kq,/ (km, + kpy) for the distribution of p w.r.t.
meas /T. And the quantile is unique if p € C [0, T}, since the cumulative distribution function of p is

then strictly increasing on the interval (Min (p) , Max (p)). O

Comment: Although (3.13.4) suffices for the argument, both inf signs can be deleted, i.e., (3.13.4)
can be strengthened to: kr,(t—) = 0 = kp, (t+) with kp, (t—) > 0 and kT (t+) > 0, for t €
F\ {0,T}, whenever p (t+) exist.3> This is because, by (3.5.9) and the continuity of k — x* € Ry,
the four limits exist and are equal to (ku — 5py)~ (t£) = (p — w)i (t+). All four limits are zero if

p is continuous at t.

i

The case of imperfect conversion is dealt with next. With ng, < 1, the restriction of an optimal
1 to EUF lies between 71,p and p/7p,, (Figure 3.4a), instead of being equal to p as in (3.13.1). This
obviously makes 1) both nonunique and in general discontinuous, but not at those instanfs which
matter for capacity valuation—as is shown in Lemma 3.13.3 below. And this case is simpler in some
ways. For example, piecewise monotonicity of 1 is easier to establish because, when ngr, < 1, each
of the sets B, E and F has only a finite number of connected components. This in turn follows
from a lower bound on the length of any component of E or F that does not contain 0 or T and is,
therefore, a closed subinterval R = [L,Z] of [0, T]: once the reservoir becomes, say, full, it must stay
full for as long as it takes the price p (t) to rise sufficiently to reverse the profitable action from that
of charging, until ¢, to discharging, from ¥ on. The price p (i) must be higher than p(t) by a factor
of at least 1/ng, > 1; so p (f) must exceed p(t) by at least the fraction 1/ng, — 1 of the lowest price,
Min (p). And such a price rise takes a certain minimum time to come about, since a price jump is

excluded by assumption.?® A similar argument applies to a price fall while the reservoir is empty.

35The abbreviations & (t£) for the essential (one-sided) limits should not be mistaken for the ordinary limits of a

particular variant of k, in as much as the ordinary limits may be nonexistent.
361f p(0) = p(T), this also applies to any component arc of F or E that contains the point T0 of the circle formed

from {0, 7.
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Lemma 3.13.2 (Minimum arc length with imperfect conversion). Assume that ng, < 1, p €
C4+[0,T) and k = (kst, k1w, kpu) > 0. If R = [t,%] is a component arc of the set (F U E) (£, ks)—
where f = (y* /) — puy” and y € f’(p, k), i.e., y solves (8.4.1)-(3.4.3)—and if 0,T ¢ R,
then

lp () —p@®)| > (i; - 1) téx[l(}}]p(t) > 0. (3.13.11)

So there exists a positive number § (which depends only on p and ng, ), such that
measR>6>0 (3.13.12)

for every component R.of E or F (except possibly one). Therefore E, F and B have only a finite

number of components.

Proof. Fix a solution, ¥ € ¥, to the dual (3.7.7)~(3.7.9). To apply Proposition 3.6.1, introduce the
corresponding (k, v, A) as in the Proof of Lemma 3.13.1 (except that here K1y, Kpu, ¥1u and vp, are
given by (3.7.5)-(3.7.6) with g, < 1).

By Lemma 3.8.2 (and the remark preceding (3.4.11)), the storage policy ym, := y* and ypy :=
y~, with the s, of (3.4.11), solves (3.4.5)~(3.4.10). Consider a component R = [t,f] of F with
0 <t <T<T. Forevery At > 0, it cannot be that f < 0 a.e. on (f,Z+ At). So somewhere3” on
(t,t+ At) one has f > 0, i.e., yr, =y* > 0 and therefore v, =0 and 7p,p = ¥ + PryFu > ¥, by
Part 2c of Proposition 3.6.1, (3.5.6) and (3.7.1). In the limit as A¢ \ 0, this gives

P (E) =9 (I+). (3.13.13)

Similarly, somewhere on (t — At,t) one has f <0, i.e., ypy =%~ > 0 and so vp, = 0 and p/np, =

¥ — kpy < ¥. In the limit this gives
PO ). (3.13.14)
NPu

With 9 (£+) > 9 (t—) by Part 2b of Proposition 3.6.1, (3.13.13)~(3.13.14) give

p()-p() 2 (nnln - 1)p(z)

and hence (3.13.11). To deduce (3.13.12), note first that Min (p) > 0, since p € C;4[0,T}. So, by

Pu

the uniform continuity of p on [0, T] with the usual metric (of R, not the circle), choose a § > 0
such that |t/ — ¢”| > & whenever |p(t') —p(¢")] > (1/9r, — 1) Min (p). Then measR =% —1t > § by
(3.13.11). A similar argument applies when R is a component of E. O

Lemma 3.13.3 (On stock price determinacy with imperfect conversion). Assume that
Nro < 1, P € C44 [0,T) and k = (ksi, kru, kpu) > 0. Ify € ¥ (p,k) and ¢ € ¥ (p, k)—i.e., y solves
(8.4.1)-(3.4.8) and ¢ solves (8.7.7)-(8.7.9)—and if F (f,kss) # 0, where f =y /np, —npuy ™, then

i) <9 @) < 2 for every t € (EUF) (, ko) \ 0,7}, (3.13.15)

ey

37The precise meaning of “somewhere” is defined in the Proof of Lemma 3.13.1, before (3.13.4).
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whereas for t € Ap, (f, ksi)—i-e., on the m-th component of B (f, ksy)— is the constant

(

P (t) =< (3.13.16)
p(zm) [Mpu if T # tm € F (£, kst)

| b () T AT € E(f)

form=1,...,M < co. (At least one line of (3.13.16) applies; and when two do, they are consistent.)
Furthermore, v 1s continuous at all the endpoints of B-arcs (or, equivalently, endpoints of F-arcs
and E-arcs). In general 4 (0).and ¢ (T') may differ, but if additionally p(0) = p(T), and 0 or T is
an endpoint of a B-arc, then also ¢ (0) = ¢ (T).
Given the constancy of ¢ on the B-arcs, an equivalent form of (8.13.16) is that for every F-arc
[L, f] that does not contain 0 or T

i
Y() = z% and ¥ () =nn,p (F), (3.13.17)
Pu
whilst for every E-arc [L,f] that does not contain 0 or T
_ _r(@®
Y () =nnp() and ¥ (f) = . (3.13.18)

In the case of an F-arc or E-arc [t,T|U [O,f] containing {0, T}, where 0 <t <t < T, this applies
alsotot ift#T, and tot if T #0.38

Proof. ‘As in the Proof of Lemma 3.13.2, take a ¢ € ‘i’, and introduce the corresponding (k, v, \) to
apply Proposition 3.6.1. Formulae (3.13.15) and (3.13.17)—(3.13.18) will be proved. (The equivalence
of (3.13.17)—(3.13.18) to (3.13.16) follows from the fact that if the beginning of a B-arc is in F, then
it is the end of an F-arc, etc.)

On any F-arc R = [t,f] C (0,T) one has s = const. so f =0 a.e., and so (3.13.15) holds a.e. on
R by (3.5.6) and Part 2c of Proposition 3.6.1. Actually (3.13.15) holds for every ¢ € int R = (t,7).%°

Since int R # 0 by (3.13.12), the inequalities (3.13.15) for ¢ € int R (together with Part 2b of
Proposition 3.6.1) give, by passing to the limit as ¢ — £ or as t — %, that

np () < ¥ (F-) < v (t+) (3.13.19)
# >y ) 29 (t-). (3.13.20)
Pu

38 These conditions fully characterise a dual solution 1.
39This is because if ¥ is a function of bounded variation, p’ and p” are continuous and p’ < ¢ < p” a.e. on an

open interval I, then p’ < ¢ < p” everywhere on I. (This is so for every l.s.c. p’, us.c. p’’ and regulated ¥ with 9 (t)
between 9 (t—) and % (t+) for each t.)
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Given the reverse inequalities (3.13.13)—(3.13.14), all of (3.13.19)—(3.13.20) must actually hold as
four equalities. This proves (3.13.17) and the continuity of 1 at both ¢ and %; so (3.13.15) holds also
at the endpoints of R. See Figure 3.4a.

For an E-arc R = [t,7], a similar argument establishes (3.13.15) and (3.13.18). O

Proof of Theorem 3.9.2 (Efficiency rents of a storage plant). The first, routine step is to
identify the dual variables as marginal values of the primal parameters, with the marginal val-
ues formalised as supergradients (of the primal value, a concave function of the parameters): see,
e.g., [73, Theorem 16: (b) and (a), with Theorem 15: (e) and (f)] or [51, 7.3: Theorem 1’]. This
is applied in such a way as to give the marginal interpretation to the boptimal x and v themselves,
rather than only to their totals over the cycle, although the formulae to be proved are for the total

values. Therefore the short-run profit is considered as a function, ﬁgﬁ, of all the quantity parameters
(kStvnShkT\nnT\nkPuynPu)C) ECXCXL®XxL®xL®xL*®xR

discussed in Section 3.5. It is an extension of the optimal value of the programme (3.4.5)—(3.4.10),
ie.,

TIES (9; kst, kru, kpu) = TIES (95 kst, 0; kru, 0 kpu, 0;0)  for (ksy, kru, kpy) € RS,

where the scalars are identified with constant functions on [0, T]. In this setting, the result giving

the marginal values of the primal parameters is?

a3 71PS .
Oks1,nst,kra,nmukpu,npu,¢ ISR = {("St’ ~VSt, KTus —VTuy KPu, —VPus A) * (K, 1, A)

meet Conditions 2a,2b and 2c of Proposition 3.6.1} (3.13.21)

where & denotes the superdifferential (a.k.a. the supergradient set) for a concave function (so an
= —9(~II), where 9 is the subdifferential). For differentiation of I1£3, with respect to the constant
capacities, it follows from (3.13.21) that

T T
Okse ero ko JIER = {( / kst (dt), / KTu (t) dt, / Kpu (t) dt) :
{0,T} 0 0

I (k,—v, ) € gk.n,(ﬁgrsi}

_ T O\, [T r®\" ).
—{(Var;"(w), /0 (p(t)—m) dt, /0 (w(t)-m) dt) : (3.13.22)
¥ € ¥ (p, kst, kru, kpu) }

by using (3.7.5) and substituting kg, = (dz/))"'.

40The corresponding result for the marginal values of the dual parameters is that 9,IIES = ¥, which is a case of

Hotelling’s Lemma.
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It remains to use the preceding lemmas to show that the set in question is actually a singleton;
i.e., that the triple in (3.13.22), which consists of the r.h.s.’s of (3.9.3)-(3.9.5), is the same for every
¥ € ¥. In the case of perfect conversion (g, = 1), this is obvious because the set ¥ itself is a
singleton (Lemma 3.13.1).

Now consider the case of imperfect conversion (ng, < 1). Fix any y € Y, a solution to (3.4.1)-
(3.4.3), which exists by Proposition 3.8.1. The storage policy ym, := y* and yp, :=y~, with the s,
of (3.4.11), solves (3.4.5)—(3.4.10).#' The flow from the reservoir is f = y*/nqn, — 7p,y~- Although
the three values in (3.13.22) involve a nonunique ¥ € ¥, each value is unique because, as is shown
below, it can be expressed in terms of only p, f and ks;.

By Lemma 3.13.2, the sets F, F and B have a finite number of component arcs; and by Part 2b
of Proposition 3.6.1 and (3.5.5) with (3.7.1) and (3.7.2),

Var} (¥) = Var™ (¢) V Var™ (3)

where
Var* () = Y {d¢(R) : Ris an F-arc and 0,T ¢ R} (3.13.23)
R
Var™ () = Y _{d¢(R): Ris an E-arc and 0,T ¢ R}. (3.13.24)
R

To express Var] (1) in terms of p, f and ks;, use Lemma 3.13.3 (on the assumption that F (f, ks;) #
@) to substitute

dyp(R) = npp(f) - I:’(t) for an F-arc R = [t,1]
Pu
dy(R) = ;:(t) —nnp(t) for an E-arc R = [t,{]
Pu

into (3.13.23)—(3.13.24).

The unit turbine and pump rents are

[ (o-32) a5/ (ro-52)'s

and these integrals can be expressed in terms of p, f and ks by substituting for i) the value given
by (3.13.16), for each B-arc A,,. This completes the proof for the case of F # 0, as in Figure 3.4a.

The case of F = ( is, again, trivial: 9 is a constant, and the reservoir’s rent is zero. If
Min (p) /mp, > 71, Max (p), then the turbine and pump rents are also zero (with 1 nonunique if

the inequality is strict). If Min(p) < 7g, Max (p), then the minimum of (3.7.8) over ¢ € R is
41 As in the Proof of Lemma 3.13.2, this follows from Lemma 3.8.2 and the remark preceding (3.4.11).
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characterised by the following FOC, which is (3.13.10) generalised to ng, < 1:

_Fn meas {¢ : pq,p (t) > ¥} + kpy meas {t : p(t) < d)} <0 (3.13.25)
N MPu
< e meas {t : §p,p (t) > ¥} + kp, meas {t : p(t) < ¢} . (3.13.26)
Ty NPy

To show that a 1 meeting these conditions is unique, note that if such a i is replaced with a
4’ > 1, then the sum in (3.13.25) cannot remain nonpositive because it increases by more than the
previous difference between the two sums in (3.13.25)—(3.13.26). This is because the c.d.f. of p (w.r.t.
meas) is strictly increasing (since p € C). In the case of a ¥’ < %, the sum in (3.13.26) similarly

decreases and ceases to be nonnegative. O

Comment: Some weaker results on the relationship of an optimal 1 to p are simpler to establish
than (3.13.1)-(3.13.2) or (3.13.15)—(3.13.16), but such results are so weak as to be of little use by

themselves. For example:

1. When the number of B-arcs is finite, the inclusion ¥ € [1,p,p/7p,] a.€. on F U E can be
shown by the first argument of the Proof of Lemma 3.13.3—viz., that § = const. and so § =0
a.e. on each F-arc or E-arc R, so ¥ € {np,p,p/7p,] 2.. on R (and everywhere on int R if p is
continuous, in which case it follows that ¥ € [nq,p,p/7p,] on F U E, except possibly at the
endpoints of F-arcs and E-arcs, the number of which is finite). But capacity valuation requires
also the values of ¥ on the B-arcs, and this necessitates the additional arguments in the Proofs

of Lemmas 3.13.1-3.13.3.

2. By using Remark 3.12.3, the inclusion ¢ € [nq,p, p/7p,] a.e. on F U E can be shown for every
p € L} . But this may even be vacuous (F U E may be a null set, unless both p € C and
Nro < 1); and the stronger results (3.13.1) and (3.13.15) do depend on the continuity of p.

3.14 Miscellaneous remarks

A storage plant is profitable to operate if (and only if) the lowest-to-highest price ratio is less than
TRo (the round-trip technical efficiency).

Remark 3.14.1 (Nonzero output from storage). Given any p € L} [0,T] and k = (kst, kv, kpu) >
0, the condition EssInf (p) < g, EssSup (p) is necessary and sufficient for 0 ¢ Y (p,k). (When
Nro = 1, this simplifies to: 0 ¢ Y (p, k) unless p is a constant.)

With perfect efficiency (g, = 1), the storage plant’s optimal output is invariant under monotone

transformations of the price function p.
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Remark 3.14.2 (Output invariance under monotone price transformation). Assume that ng, =1,
k = (kst,kTu,kpu) > 0, and p € L1[0,T]. If ¢ is a strictly increasing (real-valued) function on
p[0,T) such that top € L', then'?

Y(top,k)=Y (p,k) and W (ropk)=1ro0¥(p,k) (3.14.1)
where Lo W := {10 : 1) € U}

A general continuous function of bounded variation may fail to be monotone on any interval: see,

e.g. [27, 8.1: Exercise 1]. But this is not so with the optimal .

Remark 3.14.3. With ks, > 0, every shadow price ¢ € ¥ (p,k)—i.e., every solution to (3.7.7)-

(3.7.9)—is always piecewise monotone (also when p is not and ng, = 1).

When the good’s price p is of bounded variation (e.g., when it is piecewise monotone), the
shadow pricing problem can be reformulated as minimisation of a weighted sum of two distances:
the variation norm of ¢ and the Kantorovich-Rubinshtein-Vassershtein (KRV) distance of 1 from p,

with the time circle as the underlying metric space.

Remark 3.14.4 (Reformulation of the dual). When p € BV (0,T), the dual problem (3.83.2)—which
is (8.7.7)-(3.7.9) with ng, = 1 and kpy, = k1y, = kco assumed for simplicity—can be restated as:

Given (p, kst, kco) (3.14.2)
N | N
Zk o [l — (@) 14,
minimise kst | etllvvar + ko [t — (dp) KRV (3.14.3)
over p € MN (3.14.4)

where MN is the space of (signed) null measures on the circle. (It is a subspace of M€, the space

of all measures on the circle, which is the norm-dual of C.)

Comment: The reformulation leads to an alternative proof of the dual’s solubility. This is based
directly on Weierstrass’s Theorem and makes no reference to the primal (unlike the earlier Proof of
Proposition 3.6.1, which relies on Slater’s Condition for the primal). Note first that the range of u

in (3.14.4) can be restricted to the closed ball, centred at 0, of radius ”(dp)Nl in the variation

Var
norm. This is because if |||, > ”(dp)N”V (and (kss, kco) > 0) then the minimand’s value at p
ar

is strictly larger than it is at (dp)". On the ball, as on any I lya;-bounded subset of M<N, the KRV

norm topology is equivalent to the weak* topology w (M¢,C¢): see, e.g., {53, VIIL.4: Theorem 3.

The ball is weakly* compact. Furthermore, ||-||y,, is weakly* lower semicontinuous (ls.c.), on the

428ince a p € L! is defined only up to a null set, p [0, T] means here the essential range of p, i.e., the smallest closed

set whose inverse image under p has full Lebesgue measure. For p € C, this is the usual range of p.
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whole of M¢; and the KRV norm is weakly* continuous on each |||\, -bounded set (by the afore-
mentioned equivalence). Therefore the problem (3.14.2)—(3.14.4) is effectively one of minimising an

Ls.c. function on a compact set (so an optimum point exists).

As is stated next, the reservoir and the (reversible) converter are Wicksell technical complements
in product-value terms; this is always the case with constants returns to scale and just two inputs.

Implications for comparative statics of investment are spelt out in [40].

Remark 3.14.5. The N5} is a supermodular function of k = (ks kco), i.e., IL(k') + IL(K”) <
IL(K' AK") + TL(K'V K") for each k' and k" in R}. (This means that 8°11/0ksidkco > 0 whenever

the mized second partial derivative exists.)

The assumption needed for Vkﬂgﬁ to exist is next weakened to: pca € C. That is, the density
part of p is required to be continuous on [0,T], but p may also have a nonzero p.f.a. part (in the
Hewitt-Yosida decomposition (3.4.4)). If ppa > 0, it can be interpreted as the “concentrated” part of
turbine capacity charges (since pra = <X at every dual optimum by (3.5.11)). Unless demand for the
flow in question is interruptible, such a charge can arise in general equilibrium, and it has a tractable
mathematical representation by a singular measure (such as a point measure) if the consumption and
output rates are continuous over time: see [39, Example 3.1]. Out of equilibrium, the presence of a
nonzero pra can result in nonexistence of an optimum y for the primal (3.4.1)-(3.4.3): see Case (b)
in Part 4 below. Except for this, the preceding analysis extends mutatis mutandis to the case of a

p € LY}, as is spelt out next.
Remark 3.14.6 (Concentrated charges). For every p € LY* with pca > 0:

1. The dual problem of stock pricing is (3.7.8)-(3.7.9) with pca instead of p and with kry, ||pralls,
added to the minimand (3.7.8).43 Since the extra term is a constant (i.e., is independent of

v), its addition does not change the solution set, i.e., W (0, k) = ¥ (pca, k).

2. Formulae (3.9.8)-(8.9.5), which give ViII53 in terms of p and 1, hold with p replaced by pca
on their r.h.s.’s and with ||pra|l;, = (pra | 1) added to the r.h.s. of (8.9.4).4

3. The Kuhn-Tucker Conditions 2a—2c of Proposition 3.6.1 imply the same but with pca in place

of p and with kS in place of k1u. (The converse is obviously false.) It follows that, for

43This also points to cases of the primal value being strictly less—it is never greater—than the dual value. This is
when ppa > 0, pca € BV and kq, > 0 but kgy = 0: the short-run profit is then 0, but the capacity value (as found
from the dual) is kyy, |lpralls, > 0, since a dual solution is any ¥ € [pp,PCA,PCA/Mpy)- (Similarly, if kp, = 0 instead
of ks¢ being zero, then the short-run profit is again 0, but the capacity value is at least ky, ||pralls,.) When k> 0,

the primal and the dual values are of course equal.
44To see this, note that, by Part 1 and the equality of the dual and primal values (when kps > 0), I'Igl;sL (p) —

NES (pca) = kru [IPFAllL-
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k= (kst) k‘Tu’kPu) > O;
Y (p, k) C Y (poa, k)

i.e., if p supports y as a short-run profit maxrimum, then so does pca (or, put formally, if
y solves (8.4.1)-(3.4.8), then it also solves (3.4.1)-(3.4.3) with pca in place of p). So the
conclusions about any optimal output y, such as (3.8.2), hold also with pca in place of p. Such

results are of course vacuous when, at p, there is no optimal y.

4. The timing of ppa matters for the existence of an optimal output. Consider the cases in which
a pra > 0 is concentrated on each neighbourhood of: either (a) a peak t, or (b) a trought, of a
piweMse monotone pca € C¢. Withng, = 1 for simplicity (and k > 0), one has § (pca) = kmu
around?, and § (pca) = —kpy aroundt. At p = pca+pra, one has§ (p) = § (pca) in Case (a),
but ¥ (p) =0 in Case (b).45

3.15 Indeterminacy of marginal values with discrete time

As is next shown by means of a two-period model (with 3 = 1 and 7y, = 1), discretisation of time can
make Hgg (p, k) nondifferentiable in k. This is because it forces p to be piecewise constant and thus
discontinuous; and the optimal %’s are nonunique if p has a jump paired with a drop at two instants
which differ exactly by ksi/kco—which is always the case in the two-period model (unless there is
spare capacity of one kind or the other). In the following example the cycle is divided into subperiods
of lengths d and T — d. Then II(k) is proportional to min {ks;,6kco}, where § := min {d,T — d}.
The only efficient capacity ratio is kst/kco = 6; and II is obviously nondifferentiable at such a k.
The form which IT (k) has in the two-period model may create the false impression that storage
is a fixed-coefficients technology—but actually even the two-period framework (with a varying d)
reveals that this is not so: although, given a two-valued tariff p, there is just one efficient capacity
ratio §, it is not determined by the technology alone because it depends on the price duration d
(while being independent of the two price levels in p). This is why the example is not limited to the

case of d = T'/2, although it is this case that is shown in Figure 3.6.

Example 3.15.1 (Indeterminacy of marginal values with discontinuous price). The short-run profit

function of the pumped storage technique (3.2.4) can be nondifferentiable in (ksy,kco). To see this,

45In heuristic terms, this is because in Case (b) the extra price term requires a brief switch from charging to
discharging around t—the briefer the better, so no storage policy is best. (The same idea leads to an example of
nonexistence of a consumer optimum with Mackey-continuous preferences but p ¢ L!: see {47].) For a formal proof,
compare the increments to ngg and to the value of the output §(pca) that result from adding ppa: in Case (a) both
increments are equal (to kry ||prall > 0), so ¥ (pca) remains optimal, i.e., § (p) = # (pca). But in Case (b), the profit
increases by kry ||prall by Part 2, whereas the output’s value decreases by kp, ||pral|; so there is no optimum at p

(since g (pca) is the only possibility, by Part 3).
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take any numbers p > p > 0 and d € (0,T), and set a piecewise constant tariff

ift<d

(le-]

p(t) =
p ift>d

Then, for a storage plant with capacities (ksy, kco), @ profit-mazimising output is'

— (kst A bkco) /d ift<d
y(t)=
(kst A Skco) /(T —d) ift>d
where § :=dA (T — d). So
1
== Pngg , kst kCo) = kst A 6kgo := min {ks;, 6kco} - (3.15.1)

Therefore Hgﬁ is nondifferentiable in (ksi, kco) whenever ks, = 6kco.

Comment: With (p, k) as above, an optimum 1% is nonunique; and it is almost completely inde-

terminate if d = T/2: in this case it is any two-valued function

Y ift<T/2
bW =4 = (3.15.2)
P ift>T/2
subject only to the obvious conditions, viz.,4?
p<P<Y<Pp. (3.15.3)

3.16 Conditions for equilibrium in commodity space of bounded functions

To ensure that the storage technology can be included in an Arrow-Debreu model of general equi-
librium with L* [0,T] and L' [0,7] as the commodity and price spaces, two conditions have to be

verified. The first one is needed for the existence of a price system in the larger price space L**.
Lemma 3.16.1. The set Ypg is w (L*°, L')-closed.

Proof. By the Krein-Smulian Theorem (for which see, e.g., [32, 18E: Corollary 2]), it suffices to show
that Ypsg is closed for the bounded weak* topology of L>. Since the bounds on k1, and kp, bound y

46This y implements the policy of carrying over, from the low-price period to the high-price period, as much stock
as the capacity constraints allow, viz., min {kg¢,8kco}. It is optimal independently of the two price levels, as long
as p > p. (Also, it is the only two-valued optimal output function; but in the class of all functions it is the unique
optimum if and only if d = T/2 and kg¢ > kcoT/2.)

171f d # T/2 then d replaces T/2 in (3.15.2); but additionally ¥ = p if d < T/2, and similarly p=yifd>T/2.
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P(t)

($/kW h)

0 1/2 !

FIGURE 3.6. Indeterminacy of an optimal shadow price of stock ip (in the case of two equal subpe-
riods). The jump ip—ip, which equals the reservoir’s unit rent, can take any value not exceeding the
jump of p. The total dark grey area in (a) represents the converter’s unit rent. In (b), each of the

light grey areas equals the reservoir’s capacity fest (since fest/fcco = 7/2).
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as well, it suffices to establish that, for each k = (ks¢, kpu, kru) € R3, the set YpsN{(y, —k) : k < k}
is weakly* compact. This set is the image, 7 (5), of the set S of all those points (y1u,Ypru, —k; S0)
with k& < % that meet Conditions (3.4.7)—(3.4.10), under the projection map 7 that sends such a
point to (Yy1u — Ypu, —k). And 7 (S) is weakly* compact because 7 is weak*-to-weak* continuous,

and because S is weakly* compact by the Banach-Alaoglu Theorem. O

To ensure the existence of a price system in the price space L!, one needs to verify the Exclusion .
Condition of [43].48 This is facilitated by the use of an input requirement function.

To work out the storage capacity requirement as a function of f, the signed outflow from the
reservoir, the initial stock sq is eliminated from the reservoir constraints (3.12.2) on f, by setting so
at its lowest possible value (3.4.11). The time-continuum of reservoir constraints is thus summarised

as: Max (Iof) — Min (Iof) < ks, with Iy defined by (3.12.1). So the capacity requirement is
kst (f) = Max (Iof) — Min (Iof) = Max (Iof) + Max (I7f) (3.16.1)

since f f = 0 implies that Iyf = —Irf. The requirement function itself is defined only on the
subspace Lg® = {f € L*: [ f =0}, but the above rule defines a finite, convex extension to the

whole of L™.
Lemma 3.16.2. The set Ypg meets the Ezxclusion Condition of [43].

Proof. This follows from Mackey continuity of ks (The upper semicontinuity is what is relevant
here.) To see this, take any (p,r) € L®* x R3 and an evanescent sequence of measurable sets
Sm C [0, T) supporting pgs (so meas S, — 0 as m — o). Take any (y, —k) € Ypg; i.e., there exist
(¥1u,Ypu) 2 0 such that y = y1u — ypu and

T
YTu < k"[\.u Npu¥YPu < kPuy / f(t) dt = 05 and kSt (f) S kSt, (3.16.2)
0

where f := y1u/Tm, — TpuYPu- As can readily be shown, there exists a sequence Z,, D Sp, with

meas Z,, — 0 and me f (t)dt = 0. Define y§\, = ypuljo,r)\z,, 2nd YT, =.y’I‘ul[0,T]\Zm; then

ym
y™ = YT — Ypu = Yljo,N\2,, and 7= ﬁ — Mpu¥YPu = flo,T\Z.n

where 14 denotes the 0-1 indicator of a set A. Define also
kgt = kst — kst () + kst ™.

Then fOT f™ =0; and ks, (f™) < k& (from the definitions and the inequality kst (f) < kse). Also,
v < ypu < kpu/Mp, and ¥T, < y1u < k. As m — 0o, one has f™ — f in m (L, L) and,
therefore, kJ; — ks by (3.16.1) and Remark 3.12.2. Put together, this shows that the sequence

(y™, k™) = (y™, —kgt, —kpu, —k1u) € Yps

48This is less restrictive than Bewley’s Exclusion Assumption in [10].
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has the required properties, viz.,

((r)pa | @™ —-E™)) = (ppaly™) =0
<(p’ T)CA l (ym, —'km) - (y7 _k» = (pCA Iym - y) - (kg:; - kSt I TSt) -0

as m — oo. O

It follows that pure density prices obtain in a general equilibrium model of peak-load pricing with
storage if the users’ utility and production functions are Mackey continuous: see [43]. For the case
of electricity supplied from thermal generation and pumped storage, this means that if the demand
for electricity is interruptible (i.e., é brief interruption causes only a small loss of utility or output),

then the equilibrium TOU tariff is a time-varying rate in $/kWh (with no instantaneous charges in
$/kW).

3.17 Conclusions from Chapter 3

This analysis gives, for the first time, a sound basis for valuation and optimal operation of existing
pumped-storage plants, as well as for investment decisions. This model of the technology distin-
guishes the different types of capacity within a storage plant, viz., the reservoir and the converter.
Their marginal contributions to the operating profit turn out to be well defined, at least when the
given TOU price is continuous over the cycle. These values can be calculated by solving a linear
programme (or an equivalent convex programme). It has also been shown how to use the marginal
values to determine the optimum investment into storage. The framework is flexible and can deal
with similar storage problems: for example, that of hydroelectric generation studied in Chapter 4

(which, unlike pumped storage, is a case of storing an exogenous inflow).
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Chapter 4

EFFICIENCY RENTS OF HYDROELECTRIC STORAGE PLANTS AND

THEIR USES FOR OPERATION AND INVESTMENT DECISIONS

4.1 Introduction to Chapter 4

In view of the economic significance of hydroelectric generation to many countries, the scale of the
investment it can entail, and the planning and operational difficulties it presents, it is unsurprising
that it is the subject of so much study by engineers, operations researchers and economists. A
common economic understanding should instruct this work and, indeed, in his 1957 article [55], and
again in his 1975 Nobel Lecture {56, pp. 262-263], Koopmans pointed to the efficiency rents of
the fixed inputs (river flow, reservoir and turbine) as the elements that can underpin the various
approaches. In fact, the models of different researchers have remained largely separate,! and this is
because of the technical obstacles faced by economists in taking their part of the project forward—for
although Koopmans’s work is much cited, it has never been used in practice or, until now, followed
up in theory.

Koopmans’s operation problem is recast here as one of competitive profit maximisation, which
is the relevant setting for modern decentralised electricity supply industries. Several advances in
mathematical economics inform the solution, and Koopmans’s continuous-time formulation can now
be handled as part of a general equilibrium problem in an infinite-dimensional commodity space.
The framework used is the adaptation of Bewley’s equilibrium model [43] that has been developed
to investigate Boiteux’s conjectures on the peak-load pricing of electricity [12, 3.4 and 3.3.3]. Koop-
mans’s scheme, like Boiteux’s, is marginalist, and both encounter the problem of nondifferentiability
of joint cost functions. Subdifferentials are employed to describe multi-valued derivatives and gener-
alisations of the smooth-calculus results that economists commonly use are worked out, including a
subdifferential version of the Wong-Viner Envelope Theorem on the equality of short-run and long-

run marginal costs (Chapter 5).2 The short-run approach to long-run general equilibrium devised in

11n [41, Sections 5 and 6], Koopmans’s analysis is discussed in more detail, and other work on cost minimisation
for a hydro-thermal system is reviewed, including [26, Chapters 5 and 6], [52] and [64]. See also the overview in [3,
pp. 277-282]. A more recent operational study of hydro in (7], [29] and [67] is set up as a profit maximisation problem
for a single hydro plant, but it concentrates entirely on operation and does not address the economic questions of
valuation and investment (it makes no use of the dual solution v, except as a tool for deriving the primal operating

solution, and does not point to the interpretation of ¥ as the marginal value of water).
2See also Chapter 2 or [36] for subdifferentiation of symmetric functions, such as the thermal generation cost (as a

function of the output bundle).
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Chapter 5 is the wider conceptual setting for this study of hydro. This is because a key element of
the short-run approach is the profit-based valuation of capital inputs.

Koopmans undertakes the task of minimising the operating cost of an entire electricity supply
system by constructing a water storage plan for the hydro-plant operation that minimises the fuel
cost incurred by the thermal generating plant in producing a given output of electricity. From this
operating solution he imputes time-of-use (TOU) values both to electricity (p) and to water (¢), and
thence the two hydro capacities, viz., the reservoir and the generator. These shadow prices enable
him to verify that his water storage plan is optimal. His objectives are of particular interest to a
centralised utility (with a predominantly thermal system) that seeks efficient utilisation of its plant
and needs to calculate the marginal costs of electricity in its system. However, he adds greatly to his
difficulties by setting out to infer all the values associated with the hydro plant (the shadow prices
of electricity, water and the hydro capacities) in one fell swoop. As is shown in Chapter 5, it is much
simpler to split the complex problem of simultaneous valuation of both outputs and fixed inputs into
subproblems, one of which entails short-run profit calculations—even when cost minimisation is the
explicit operational objective.® Furthermore, Koopmans’s method has little or no place in today’s
largely deregulated and decentralised supply industry in which each plant aims to maximise its own
profit (as opposed to participating in the collective cost-minimising operation of a system of plants).

Having profit maximisation as the optimising principle not only allows us to address the problems
of a decentralised supply industry (as well as those of a centralised utility), but also it facilitates a full
and simple solution. In particular: (i) profit-maximising hydro operation and the dual problem of
valuation can be handled (in the case of a constant hydrostatic head) by means of linear programmes
(LPs), rather than the convex programmes (CPs) needed for Koopmans’s cost minimisation; (ii) one
can depict simply the solutions to the operation and valuation LPs, which is not possible with
Koopmans’s operation CP or its dual; and (iii) profit-imputed values of the hydro capacities and the
river flow (i.e., their marginal contributions to the operating profit) turn out to be fully determinate—

unlike Koopmans’s cost-imputed values of the hydro inputs (i.e., the marginal savings on the thermal

3In terms of the sub- or super-differential, 8 or 5—a generalised, multi-valued derivative of a convex or concave
function—the split calculation uses the rule: (p,—r) € 8, xCsr (v, k) if and only if both p € 8,Csr (y,k) and
S 5,,1'153 (p, k), where Cgp is the operating a.k.a. short-run cost as a function of the output bundle y and fixed-input
bundle k, and Ilgg is the operating profit as a function of k and the output price system p. If the joint marginal
values are nonunique (i.e., 8, xCsr is multi-valued because Csgr is nondifferentiable) then, for a p € 8,Csr (v, k),
the set 5kl'ISR (p, k) is generally a proper subset of —8xCsg (y, k), and it may even be a singleton (in which case the
ordinary gradient vector VIIgg exists): indeed, this is so in Theorem 4.9.3. That is why 8, xCsr does not factorise
into the Cartesian product of 8,Csr and 8;Csg, and why its calculation in terms of partial subdifferentials requires
the function Ilgg (which is, by definition, a partial convex conjugate of Cgr). Like all results on marginal values of
optimisation programmes, the splitting of 8, xCsr can be reformulated in terms of programme solutions (in particular,
any 7 from 5)JISR can be obtained from the fixed-input valuation programme that is dual to the profit-maximising

operation programme). This is also spelt out in Chapter 5.
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operating cost).

In this setup, the TOU electricity value p (t) is a given market price; it is not an imputed shadow
price as in Koopmans’s analysis. Given p, an optimal TOU value, 1 (t), is imputed to water (or, more
precisely, to the water’s potential energy). This essentially solves the operation problem (Section 4.8):
the hydro plant is operated just like a thermal plant with a time-varying “fuel” price 1 (¢). It makes
sense, then, to value a hydro plant’s capacities by their marginal contributions to the maximum
operating profit, a.k.a. short-run profit IIISﬂR. These rents can be expressed in terms of the electricity
and water values p and ¢ (Theorem 4.9.3). For a hydro plant with a constant head, the shadow
price for water () can be determined from a linear programme (4.5.1)—(4.5.7) that is dual to the
LP of profit-maximising operation (4.4.4)-(4.4.8). By using the dual constraints to eliminate the
dual variables other than 1), the dual is reformulated as a convex but unconstrained programme of
shadow pricing the water (4.7.5)—(4.7.7). This leads to a simple characterisation of the solution: the
optimal % is obtained from p by “shaving off” the local peaks of p and “filling in” its troughs, and
the optimal output (y) follows from this (Section 4.3, Figures 4.1a and 4.1b).

This last insight also makes it easier to identify a critical case of the dual solution: the imputed
TOU value of water (the function ) is unique if the given TOU electricity price (p) is a continuous
function of time (Lemma 4.9.2). It then follows that the capital inputs (reservoir and turbine)
also have definite marginal values (91§, /0ks; and 811y /0kx,). This is not so in Koopmans’s cost-
minimum framework because he has to value both flows (electricity and water), and the shadow-price
pair (p and 1) is typically indeterminate (although for each continuous p there is just one ). With
competitive profit maximisation, the output price (p) is unique simply because it is treated as given,
and although a fixed-input’s shadow price (1) might still be indeterminate, this possibility can be
excluded by a problem-specific argument (which in this case consists in examining the structure of
Lagrange multipliers for the capacity constraints). This is a major advantage of the profit approach.

The imputed values of the hydro capacities and the river flow are useful in making investment
decisions, whether to expand an existing plant or to develop a new hydro site. This is an end Koop-
mans envisaged for his cost-imputed values,® but their nonuniqueness causes complications because,
for example, it means that the incremental value of investment becomes nonadditive (superadditive)
when two or more hydro inputs are being varied. Such calculations are made much simpler by using
the profit-imputed values: being unique, they can be simply equated to the corresponding marginal
costs of investment to determine the optimal capacities. Also, the dual LP (or the equivalent uncon-
strained CP) gives a simple and direct way of imputing the values. By contrast, Koopmans’s values

are derived from a tortuous operating solution. They do serve his immediate purpose—to verify the

4The dual is the problem of minimising the plant’s value subject to the constraints that decompose the given price
p(t) into the sum of values of the plant’s capital services (x) and the Lagrange multipliers () for the nonnegativity

constraints on water stock and electricity output (plus a constant, X).
5See [55, pp. 194, 200, 225-226].
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cost-optimality of his storage plan—but the nonuniqueness of his values is an obstacle to their use
in practical investment planning.

Time-continuity is not just a natural assumption on the electricity price p and the only one
to guarantee uniqueness of the imputed values of water and of the hydro capacities: it is also an
assumption that is verified for competitive equilibrium in the commodity space of bounded functions
in {45], where the price function is proved to be continuous for a class of problems that includes
peak-load pricing with storage.b

Section 4.2 describes the hydro technology. Formal analysis (with proofs in the Appendix) is
preceded by heuristics, in Section 4.3. In Sections 4.4 and 4.5, the short-run profit maximum problem
and its dual are set up as linear programmes (LPs) which are doubly infinite: with continuous-time
dating of commodities, the primal (4.4.4)-(4.4.8) contains continua of output and input variables
(electricity y and river flow e) as well as continua of dated capacity constraints (on the electricity
flow y and on the water stock s). The primal and the dual are shown to be soluble, and their
(optimal) solutions are described in Section 4.6. In Section 4.7, the dual LP is reformulated as an
unconstrained CP of shadow-pricing the water. In Sections 4.8 and 4.9, the optimal water price (12:)
is shown to be unique if the given electricity price p is continuous over time; and formulae are given,
in terms of p and 7, for the optimal output (9) and for the profit derivatives that represent the
marginal values of the reservoir and the turbine (8I1% /0ks; and 8I1Yg /8k1y,). This completes the
core matter, which is followed by proofs (along with the required auxiliary results) in Section 4.10.

The rest of this chapter consists of various supplements. Section 4.11 indicates the changes
needed when the policy of pure “coasting” (y = e) is infeasible, i.e., when e £ kry,.; the hydro plant
operation may then necessitate spillage. Section 4.12 sketches the use of marginal capacity values
as a basis for calculating the optimum investment. Section 4.13 presents a counterexample to the
existence of Vi Il when the price p is a discontinuous step function (so that time is effectively a
discrete variable). Section 4.14 deals with the possibility that the price system (p) may, in general,
contain a concentrated charge (such as an instantaneous capacity charge in §/kW), in addition to a
price density function (which is a time-dependent price rate in §/kWh).

Table 4.1 summarises the notation.

In [48], the analysis, and especially the valuation method, is extended to the case of a variable
head. This requires the use of a controlled differential equation, and the optimisation problem
becomes nonlinear (although it remains convex). Another reason for presenting that case separately
is that the “hydro” technology has other interpretations, in which there is no equivalent of head
variability. For example, the model herein is applicable to water supply (when priced by TOU), as

well as to other natural energy flows (e.g., geothermal or tidal).

6The case of thermal electricity generation with pumped storage is fully worked out in [45]; the case of hydro-thermal

generation is similar.



Role in prog- Variable Notation Unit
ramme pair
Price data electricity price p(t) $/kWh
(dual .

at time ¢
parameters)

: reservoir capacity ks (t) = const. kWh
Quantity water-stock floor ng: (t) =0 kWh
data turbine capacity k1 (t) = const. kW
(primal electr. output floor n, (t) =0 kW
parameters) river inflow rate at ¢ e(t) kW

top-up of stock ¢=0 kWh
Quantity hydroe]ef:trlc output y(t) kW
decisions (water discharge
(primal rate) at time ¢
vzr jables) water stock So kWh
at time 0 and T
t) = -
Derived rate of 'outﬁo?v from f@)=y(t)—e(t) kW
uantities reservoir at time ¢ .
q water stock at time ¢ s(t):=s0— [y f(r)dr kWh
unit reservoir value Kst (dt) $/kWh
Shadow on interval length dt
prices value of stock floor (non- vgy (dt) $/kWh
(dual negativity constraint)
decision unit turbine value K1u (2) $/kWh
variables, at time ¢
paired value of output floor vy (t) $/kWh
to primal (nonnegativity constraint)
parameters) water value at time ¢ P (t) $/kWh
water value at 0 and T A $/kWh
: T
Derived total reservoir rent ks [0,T] = [, ks (dt) $
. for whole cycle [0, T]
valuations al turbi T $
total turbine rent j‘o KTy (t) dt
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TABLE 4.1. Notation for Chapter 4. Some functions of time (kgg, etc.) are equated to "const.".
This indicates that they are constants in the original, unperturbed programme, but are perturbed
with time-varying increments (Akg; (¢), etc.) to interpret the time-dependent dual variables (Aksy,
etc.). The duality scheme (Section 5) similarly uses a nonzero increment A{ to { = 0 (paired with
the dual variable A). NB: 9 (t) = A + (kst — ¥st) [0,¢] by a constraint of the dual (valuation) LP.
Also, Section 11 uses an extra primal variable o to denote spillage.
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4.2 Hydro technology

Hydro generation produces electricity, a nonstorable good with a cyclical demand and price, from a
storable input of water.” It is assumed that a water stock, up to the reservoir’s capacity, ks, can
be held at no running cost (or loss of stock). Water is stored at a height, called the head, which
determines its potential energy. This is converted in penstocks to kinetic energy, and then to electric
energy by a turbine-generator (or “turbine” for brevity). The effective head is assumed to be fixed.
Therefore the energy stock s (t) is always in a constant proportion to the stored water volume, and
it can be referred to as “water”. Similarly, the rate of river inflow, e (t), can be measured in terms
of power (instead of volume per unit time).

The turbine-generator’s technical efficiency is also taken to be constant.? ;I‘he water stock can
therefore be measured as the output it actually yields on conversion (i.e., in kWh of electric energy).
The turbine capacity, ky, is its maximum output rate (in kW of electric power), i.e., in unit time
a unit turbine can convert a unit of stock into a unit of output.

The river inflow e is taken to be known with certainty. It varies periodically over time; and a
common cycle for the water inflow and the output price is represented by an interval [0, T] of the
real line R. The cycle is generally a year because of seasonal variation.’

The inflow function e is usually continuous, but it suffices to assume that e is assume that e
is bounded. That is, e belongs to L [0,T], which is the vector space of all essentially bounded
functions, with functions equal almost everywhere (a.e.) being identified with each other. This space
is normed by the supremum norm

el := EssSup |e| = ess sup |e(t)].
t€[0,T]

The hydro plant’s output rate is also a periodic function, y. A storage policy generally consists
of an output rate y (t) > 0 and a spillage rate o (t) > 0 for each ¢. However, except in Section 4.11,
spillage is excluded by the assumption that kr, > e. This makes it feasible for the plant to “coast”,
i.e., to generate at the rate equal to the inflow rate e (¢). It also means that all the incentive to use
the reservoir comes from a time-dependent output price: if p were a constant, the plant might as

well coast all the time.

"The model applies also to other forms of natural energy, e.g., geothermal energy. It can be adapted to the case of
tidal energy, although this requires changing the assumption that, when s(t) > 0, the output rate y(t) is constrained
only by kry, and is, therefore, independent of the inflow rate e (t). And it applies also to the supply of other goods,
such as water and natural gas (when priced by TOU). In the case of water supply, e(t) is the rainfall collected in

reservoirs; its conversion to the consumable good consists in water purification and pumping to users.
81n reality the equipment is not perfectly divisible, and a turbine’s efficiency varies with the load, reaching 90%

to 95% at full load. At one-quarter load it goes down to 80-85% for movable-blade types, or 60-70% for fixed-blade

types. The generator’s efficiency is 90-95%.
9The weekly cycle is also considered, e.g., in [29].
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The net outflow from the reservoir is the signed function
f=y—e+o (4.2.1)

and the stock, s (t) at time ¢, is an absolutely continuous function on [0, T} that satisfies the evolution

equation $ := ds/dt = —f. This can be restated as

t t
s(t)—s(0)= -—/ f(r)dr:= / (~y+e—o)(r)dr. (4.2.2)
0 0
So s is actually a Lipschitz function, since kt, > ¥ > 0 a.e., and since both e and ¢ are also bounded
(by assumption).
The space of all continuous functions C [0, T], which contains the Lipschitz functions, is normed
by the maximum norm
= M = t .
lell, = Max|s| = max |s(0)
Its norm-dual C*, which serves as the price space for the services of storage capacity, is identified as
the space of all (signed, finite) Borel measures M [0, T] by means of the bilinear form

wle)i= [ s()ulan

’

for s € C and p € M.

The available capacities are taken to equal the installed capacities, and therefore to be constant
over the cycle. This does play a part in some of the main results, including the determinacy of rental
values (Lemma 4.9.2 and Theorem 4.9.3). However, to take full advantage of sensitivity analysis,
the constant existing capacities k are perturbed with increments Ak which are periodic functions of
time; this is further explained in Section 4.5. (The notation Ak, etc., is always to be interpreted as
a single symbol meaning “an increment to k”.)

On the assumption of constant capacities k¥ = (kg, k1u), the long-run production set of the hydro

technique is the convex cone

Yq := {(y, —k,—e) € LT [0,T] x R2 x L™ [0,T]:0<y <kn, and (4.2.3)
T
Jo € [0,¢€] (/0 (y(t)~e(t)+o(t))dt=0 and

dsg e RVE 0S30—/0t(y(7')—e(7')+0(7'))d7'§kSt)}.

This formulation imposes a periodicity constraint on the stock s(T) = s(0) or, equivalently, a
balance constraint on the flows to and from the reservoir ( fDT f (t)dt = 0), but the stock level at
the beginning or end of a cycle is taken to be a costless decision variable. In other words, when it
is first commissioned, the reservoir comes filled up to any required level at no extra cost, but its
periodic operation thereafter is taken to be a technological constraint. As for the constraint o < e,
it is never binding (see Section 4.11), but it is realistic, and it simplifies a proof that Yy is weakly*

closed (Lemma 4.14.2).
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4.3 Heuristics for valuation of water and capacities

To start with, assume that not only the market price of electricity, p (t), but also the shadow price of
water, 1 (t), is known.!? Then the operating decisions can be decentralised within the hydro plant,
with the reservoir “buying” water at the price v (¢) from the river and “selling” it to the turbine,
which in turn sells the generated electricity at the market price p(f) outside the plant. Short-run
profit maximisation separates into problems with obvious solutions, one for each kind of capacity.
The maximum profits of the reservoir and the turbine, IISt (1, ks;) and II™ (p — 1, k1y,), are both
linear in k. A unit turbine can earn the profit flow (p — ¢)+, which is the nonnegative part of p — 9,
by generating when p(t) > v (t). The profit is earned only at the times of full'capaéity utilisation,
since the optimum output is y () = kt, when p(t) > 9 (t): see Figures 4.1a and 4.1b.

In total over the cycle, the value of a unit turbine is therefore

Tu T
1,}; - A (p(t) - ¥ ()" dt.

As for the reservoir, a unit can earn a profit of ¥ (7) — 9 () by buying stock at time 7 and selling it
at a later time 7 when v (T) > 1 (7). The value of a unit reservoir is therefore the sum of all shadow

price rises in a cycle. In precise terms: if 4 (T') > 9 (0), then

St
I Vart ()
kst

which denotes the total positive variation (a.k.a. upper variation) of 1, i.e., the supremum of
S (¥ (Fm) — ¥ (T,))" over all finite sets of pairwise disjoint subintervals (,,,7m) of (0,T). (For
a discussion of Var* see, e.g., [27, Section 8.1).)

If ¢ (T) < ¥ (0), the reservoir should start the cycle full, and refill towards the end of the cycle.

This brings an extra profit of 1 (0) — 1 (T'), so in general the unit rent is the cyclic positive variation .
Varf () := Vart () + (¥ (0) — ¢(T))* . (4.3.1)

Later it is shown that actually ¢ (0) =4 (T) if p(0) = p(T) and p € C[0,T).

The maximum operating profit of the whole hydro plant (IIf;) is, however, a function not of ¢
but of the problem’s parameters (p, k, €) alone: 9 is an auxiliary function which must eventually be
given in terms of (p,k,e). Then OIIL; /Oks, and 811y /Okt, can be obtained by substituting the
correct 9 into the expressions Var (¢) and fOT (p(t) — v (@)t dt.

The correct value, 12), is that water price function which minimises the value of the hydro plant’s

fixed resources (k,e). So, given a TOU electricity tariff p, one can find ¥ by unconstrained minimi-

10When 1 is formally introduced, as the Lagrange multiplier paired with the parameter e, it is by definition the price
of the inflowing water. However, it must equal the price of water stored for hydro generation because, by assumption,
there is no alternative use. This is why the inflow’s price cannot exceed that of the stock. The reverse inequality is

obvious.
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sation of r r
ke Var (1) + kny /0 (p(t) = v (&) dt+ /0 b (8)e (t) dt (4.32)
over 1, an arbitrary bounded-variation function on (0, T).

In the case of kny > e(t) > 0 for every ¢, the sum of the two integrals in (4.3.2) has a minimum at
(and only at) ¢ = p.1! Therefore the main feature of this programme is the trade-off between min-
imising the variation (which on its own would require setting 1/ at a constant value) and minimising
the integrals (which on its own would require setting 1 equal to p). From this trade-off it is clear
to what extent the local peaks of p should be “shaved off” and the troughs “filled in” to obtain the
optimum shadow price z’z;—at least in the case that the market price p is piecewise strictly monotone
and kq, > e > 0 at all times. (An extension dispensing with the upper bound on e is sketched in
Section 4.11.) The solution, presented graphically in Figure 4.1a, is determined by constancy inter-
vals of 9, on each of which p(t) — ¢ has a constant sign. If ks,/ Min (e) and ks;/ (kn, — Max (e)),
upper bounds on the times needed to fill up and to empty the reservoir, are sufficiently short, then

the constancy intervals do not abut. Around a trough of p, there is an interval (;, f) characterised

by .
kst = / e (t) dt (4.3.3)

on which p(t) < % throughout. Around a local peak of p, there is an interval (z,f) characterised by

e = /t  (bm — e (1)) dt (4.3.4)

on which p(t) > ¥ throughout. These are the first-order conditions (FOCs) for the dual optimum:
(4.3.3) or (4.3.4) is obtained by equating to zero the increment in the minimand (4.3.2) that results
from shifting the constant value of ¢ by an infinitesimal unit, on an interval around a peak or a
trough of p.!? These conditions make it feasible to produce the “bang-coast-bang” output (viz., y (t)
= krw when 9 (t) < p(t), y(t) = e(t) when 9 (t) = p(t), and y (t) = 0 when 9 (¢) > p(t)): the
reservoir goes alternately from empty to full and vice versa (Figures 4.1b and 4.1c). This is the
optimal output.

The same marginal calculation for the dual problem also shows that an optimum 1 can be

nonunique if p is discontinuous. Suppose, for example, that p jumps at the beginning, and drops at

11 This is proved by subdifferentiating, w.r.t. 9, the two terms Vi, (¥) := k“f(;r (p—v)t dt and Vg; (W) =
f(;'r yedt. For a rigorous proof, consider V = Vi, + Vg; as a convex and ||-|},-continuous function on L [0, T)]. It has
a minimum at a 1 if and only if 0 € 8V () C L (i.e., the zero function belongs to the subdifferential, a.k.a. the set
of all subgradients, of V at ). And g € 8V, (¥) if and only if: g = kyy, a.e. on {t:9¥ <p}, kv > g > 0 a.e. on
{t:¢¥=p}, and g =0 a.e. on {t: ¥ > p}. Also, VVR; = e. Since k1, > e > 0 a.e., it follows that 0 € 8V (¢) if and

only if y = p a.e.
12Matters complicate when, for relatively large ks;, the neighbouring intervals of water collection and of discharge

abut; but a similar optimality rule applies to such clusters.
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'Ip = const.
'Ip = const.
p<Ilp
P<
to TO
T0
S(t) (kWh)
s
TO

FIGURE 4.1. Trajectories of: (a) shadow price for water V] (b) profit-maximising hydro output yn,
(c) water stock. Unit rent for storage capacity is Var* (2> = (dift)’' + (d*)", the sum of rises of

Unit rent for turbine capacity is Jg (p{t) —=0)j dt, the sum of dark grey areas in (a). In (b),
each of the light grey areas equals the reservoir’s capacity ksz- When yw (t) * e (?) in (b), the thin

line is the inflow trajectory e, and the thick line is yu-
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the end, of an interval 4 — (¢,#) meeting (4.3.4) and the condition

max {p(t-) ,p(t+)} < min{p(t+) p(t-)} = ti‘gjp(t)- (4.3.5)

Just before ¢z and just after 7, an optimal ip equals p, i.e., ip(t—) = p(t— and ip (t+) = p (<+).
Inside 4, p > ip = const.; but an optimal constant value of ip on A can be anywhere between the
two unequal terms of (4.3.5): the jump and the drop of p create an ‘indifference zone” for ipiA.
Figure 4.2 shows this when p (<+) < p{t—) < p{t+) < p (t sop(t—) < ip\4 < p(t+). Different
values from this range divide the same total rent differently between the three fixed inputs: the jump

{£} := * (tA)-ip (t—) can be any fraction ofp (¢+)—p (£—), and it is an indeterminate contribution
to the reservoir’s unit rent. The interval’s contribution to the turbine’s rent, f4 (p (t) —ip) dt, is
similarly indeterminate (since it depends on the arbitrary choice of ip (t+), which fixes the constant

value of ip on A). And the indeterminate ip\A4 itself is the river’s unit rent, on A.13

p(t)

($/KWh) ey

p(t-)
dip{t} * =008

p(t+)
dMt, t)

FIGURE 4.2. Indeterminacy of an optimal shadow price of water ip when the TOU price of good p
is discontinuous. In the case shown, the constant value ofip on (7,¢) can be set at any level between
p(t—) and p (t+); so the jump of ip at ¢ is an indeterminate part of the reservoir’s unit rent. The

dark grey area represents f* (p (¢) —ip (t))+dt, the interval’s contribution to the turbine’s unit rent.

Conversely, given a continuous p, there is a unique optimum, ip (Lemma 4.9.2). Therefore the

gradient Vfc)ell exists, and Vell = ip (Theorem 4.9.3). The directional derivative of II w.r.t. the

13The case of p dropping at the beginning, and jumping at the end. of an interval 4 — (¢,#) that meets Condition

(4.3.3) is similar, except that the turbine’s rent on A4 is zero (since p <
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capacities and the inflow is then a linear function of their increments; i.e.,

Oks;

o,
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