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A bstract

Throughout this thesis, we are concerned with filling some of the gaps in the lit­
erature concerning parametric and semiparametric Whittle estimation of long-run 
and/or cyclical persistence in economic time series. In Chapter 2, we consider local 
Whittle estimation, and without relying on the assumption of a linear model, we 
establish sufficient conditions for consistency and provide expansions and rate of 
convergence for the estimator. In Chapter 3, we apply the results of Chapter 2 to 
examine the local Whittle estimator for the signal plus noise model and some special 
cases of it: structural model, nonlinear transformations of a Gaussian process, and 
long memory stochastic volatility model. Under these specifications, we establish 
the asymptotic properties of the estimator, and raise several issues concerning its 
rate of convergence and finite sample bias. In Chapter 4, we employ Monte-Carlo 
simulations to investigate the finite sample properties of the local Whittle estimator 
under the linear and nonlinear specifications of Chapters 2 and 3. Furthermore, we 
apply local Whittle estimation to expected and realized inflation rates, nominal and 
real interest rates, and transformations of foreign exchange rate returns, in order to 
assess their long-run persistence and address several issues that have appeared in 
the empirical literature. Finally, Chapter 5 presents two testing procedures, based 
on the parametric Whittle method, for the null hypothesis of no persistent compo­
nent in the data. We derive the asymptotic properties of our test statistics, and 
moreover introduce and validate a bootstrap scheme for calculating their critical 
values. A Monte-Carlo study of the finite sample performance of our testing pro­
cedures, and an empirical application on the growth rate of industrial production 
and unemployment rate are also included.
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C hapter 1

Introduction

1.1 The notion of persistence

The persistence property of a time series, defined as the degree of dependence be­
tween observations in time, is of undoubted interest for several reasons. First, 
the degree of persistence gives the practitioner an indication of the existence and 
strength of mean reversion, and as a by-product, of the sensitivity to shocks of the 
time series under consideration. Second, a correct understanding of the degree of 
persistence is a crucial step towards building an appropriate model for the dynamics 
governing the data. Last, but not least, prior knowledge of the level of persistence 
is essential for performing correct statistical inference, as different degrees of persis­
tence may give rise to different distributional properties of the same test statistic. 
Two broad types of persistence are the main focus of this thesis, which we refer to as 
long-run persistence and cyclical persistence. The former relates to the dependence 
of observations that are far apart in time, while the latter is concerned with the 
dependence of observations in the same phase of a cycle.

Numerous empirical studies have found evidence of long-run persistence in macro- 
economic and financial time series. It was first pointed out by Granger (1966) that 
various economic times series, such as industrial production and commodity prices 
indexes, exhibit strong long-run persistence. Such behaviour has been consequently 
reported by various authors using different approaches, sample periods and trans­
formations of the data. Among others, we cite Greene and Fielitz (1977) for stock 
returns, Nelson and Plosser (1982) for different measures of output, wages, indus­
trial production, employment, prices, money stock, stock prices and interest rates, 
Diebold and Rudebusch (1989) for output, Diebold and Rudebusch (1991) for vari-
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ous measures of income, Sowell (1992) for output, Ding, Granger, and Engle (1993) 
for the S&P500 series, Backus and Zin (1993) for inflation rate, interest rate and 
money growth, Cheung (1993) for various exchange rates, Ding and Granger (1996) 
for various stock returns and exchange rates, Baillie, Chung, and Tieslau (1996) 
for inflation rate, Andersen and Bollerslev (1997) for exchange rates, Gil-Alana 
and Robinson (1997) for output, industrial production, employment, different mea­
sures of prices, wages, money stock, velocity, bond yield and stock prices, Lobato 
and Robinson (1998) for various exchange rates, Lobato and Velasco (2000) for the 
stock market trading volume, Sun and Phillips (2004) for nominal and real interest 
rates, inflation and expected inflation rates. In the aforementioned studies, there is 
an overall agreement that the long-run persistence of the various series examined is 
strong.

On the other hand, the empirical literature on cyclical persistence is rather lim­
ited and it is usually concerned with the seasonality of the data. Strong seasonal 
behaviour has been reported by Arteche and Robinson (2000) for inflation, and by 
Arteche (2004) for stock index. Nonseasonal cyclical pattern is evident in various 
macroeconomic time series and is attributed to business cycle behaviour, see King 
and Watson (1996) for output growth, employment growth, real balance growth, 
money supply growth, inflation rate, nominal and real interest rate. The persistence 
of the business cycle component however was not quantified by King and Watson 
(1996), although the theoretical business cycle literature emphasizes that the busi­
ness cycle behaviour is strongly persistent, as deviations from the average level of 
economic activity are maintained for considerable lengths of time, see for example 
Diebold and Rudebusch (1999).

1.2 Quantifying persistence

Suppose that we are interested in analyzing the persistence properties of a covari­
ance stationary process {xt}tei with mean nx and variance o\. The main tool for 
describing dependence in the time domain is the autocovariance function {7x{t )}teZ 
given by

7*(t) =  E  ((zt -  f!x) (xt+T -  nx) ) . (1.2.1)

In this thesis, we focus on the frequency domain approach. To that end, we assume 
further that {xt}tez has an absolutely continuous spectral distribution function, so
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that the spectral density function f x(.) of {xt}tez exists, and it is such that
7T

7 .( t)  =  J  eM f x(X)d\, (1.2.2)
— 7r

where f x(.) is a non-negative, even and periodic function of period 27T when extended 
beyond the range (—7r,7r].

The spectral density function is the main tool in the frequency domain for an­
alyzing dependence. It is essentially the Fourier transform of the autocovariance 
function and therefore, the spectral density function captures the same information 
about the structure of {xt}tez as the autocovariance function. Since the spectral 
density function records the contribution of the components belonging to a given 
frequency band to the total variation of the process, the decomposition into long-, 
medium- and short-run comes more naturally, see for example Chapter 7 in Ander­
son (1971). Notice that the long-run is associated with low frequency components, 
while a cycle of period Tx corresponds to the frequency u x = jr.

If {xt}tez were a white noise sequence, then it would not exhibit either long-run 
or cyclical persistence. Notice that for white noise processes, we have 7x(r) =  0 
for all t  7̂  0, and f x(A) =  c for all A G [0,7r] and some 0 < c  < 0 0 . If {xt}tez 
followed a covariance stationary Autoregressive Moving Average model of orders p, 
q (ARM A(p,q)), then it is well know that its dependence would be rather weak, 
resulting to an autocovariance function that is absolutely summable and thus to a 
spectral density function such that 0 < f x(A) < 0 0  for all A G [0,7r]. White noise 
sequences and covariance stationary A R M  A(p, q) models fall in the class of weakly 
dependent processes.

Here, the concept of weak dependence corresponds to time series that have an 
autocovariance function, which is absolutely summable. On the other hand, we 
refer to a time series process being strongly dependent, when its autocovariance 
function is not absolutely summable. It should be mentioned that the notion of 
weak/strong dependence is not always associated with summability properties of 
second moments. For example, Doukhan (1994) and Nze, Biihlmann, and Doukhan 
(2002) quantify dependence as a measure based on the covariance between func­
tions of the past and the future. An earlier and similar concept was introduced 
by McLeish (1975), known as mixingale or general near epoch dependence, which 
measures how fast the conditional moments converge to the unconditional ones. 
Stronger concepts are those of strong-mixing, see Rosenblatt (1956), or ^-mixing, 
see Volkonskii and Rozanov (1959), which are based on the variation norm between
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the joint probability function and the product of their marginal.

1.2.1 Long-run persistence

A common "local” parameterization of the spectral density function for the purpose 
of quantifying long-run persistence is

/*(A) ~  cq)X |A| Qi , as A —► 0, (1.2.3)

with — 1 < ax < 1 and 0 < Co,x < oo. Here, the notation ~  means that the ratio of 
left and right hand side tends to 1. The parameter ax is referred to as the memory 
parameter and it quantifies the degree of long-run persistence of the process {xt}tez- 
Notice that for 0 < ax < 1, the spectral density function is unbounded at zero, so 
that the variation associated with the zero frequency component, i.e. the long-run, 
is substantial. Actually, the higher the value of the memory parameter, the more 
of the variation is explained by the long-run component and hence, the stronger 
the long-run persistence is. This case is usually referred to as {xt}tez having long 
memory. For ax = 0, the spectral density function is bounded and bounded away 
from zero at the zero frequency. Then, the variation of {xt}tez explained by the 
long-run component is not significant, and {xt}tez is said to have short memory. 
Hence, white noise sequences and covariance stationary ARM A(p , q) models exhibit 
short memory. For — 1 < ax < 0, the spectral density function is equal to zero at 
the zero frequency, and it is said that {xt}tez has negative memory. In empirical 
applications, such a situation is not commonly found in the levels of the data, but 
arises when the data has been overdifferenced.

The earliest model satisfying (1.2.3) is the fractional noise introduced by Man­
delbrot and van Ness (1968), whose autocovariance function satisfies

The spectral density function of the fractional noise is complicated, see Sinai (1976), 
but indeed satisfies (1.2.3).

The most widely used parametric model satisfying (1.2.3) is the Autoregressive 
Fractionally Integrated Moving Average model of orders p, d, q (A R F IM A (p , d, q)) 
introduced by Adenstedt (1974) and explored by Granger and Joyeux (1980). The 
latter specification is an extension of the Autoregressive Integrated Moving Aver­
age of orders p,d,q  (ARIM A(p,d ,q )) model of Box and Jenkins (1976) with the

7* (t ) = ~ (\t + 1 £*x+ i  2 |7"|Qx"^ + |t —1|°-+1) .  (1.2.4)
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parameter d allowed to take noninteger values. Under such a specification, {xt}tez 
is given by

a(L)(l -  L f x t =  b(L)st, (1.2.5)

where — |  < rf < |  is referred to as the differencing parameter, L is the lag operator, 
{£t}tez is a white noise sequence, and a(L) and b(L) are the autoregressive and 
moving average polynomials

a(L) = 1 — a\L — ... — avLP and b(L) = 1 +  b\L +  ... +  bqLq, (1.2.6)

respectively, all of whose zeros lie outside the unit circle and a(L) and b(L) have no 
common zeros. Then, the spectral density function is given by

f x W  ~  2;r I I |a(e~a )|2 ’ 7 r< X - * '  (L2-7)

It can be easily shown that (1.2.7) satisfies (1.2.3) with ax = 2d, noticing that 
11 — e~lX\ 2d = |2 sin | |  2d and sin A ~  A, as A —► 0.

Finally, we should mention the extension of the exponential model of Bloomfield 
(1973) considered by Robinson (1994a), whose spectral density function is given by

/x(A) =  |l  -  e“*A| 2dexp ( y ,  cfc cos ((fc -  1) A)^ , -7r < A < ir. (1.2.8)

Then, one can easily check, as in (1.2.7), that (1.2.8) satisfies (1.2.3) with ax = 2d.

1.2.2 Cyclical persistence

Cyclical persistence at a known frequency u x ^  {0,7r} is just an extension of the 
long-run one described in Subsection 1.2.1, as now one needs to be concerned with 
the frequency ujx instead of the zero one. A "local" parameterization of the spectral 
density function for quantifying cyclical persistence is

/x(A) ~  Cq,cj,x |A -  Ux\~a“’x , as A u x, (1.2.9)

with — 1 < aUtX < 1 and 0 < Co)CJ)X < oo. We refer to the parameter aU}X as the 
cyclical memory parameter, which quantifies the strength of the cyclical component. 
As in the case of long-run persistence, when 0 < aUfX < 1, the spectral density 
function is unbounded at the frequency cux. Then, a substantial amount of the 
variation of {xt}tez is associated with the cyclical component, and the higher the 
value of aUiX the stronger the cyclical component is. Hence, for 0 < aUyX < 1
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we say that {xt}tez has long cyclical memory. For aUtX = 0, the spectral density 
function is bounded and bounded away from zero at the frequency u x, so that the 
cyclical component of {%t}tez is weak. We refer to this case as {xt}tez having short 
cyclical memory, and notice that white noise sequences and covariance stationary 
ARMA(p, q) models fall in this category. When — 1 < aUjX < 0, the spectral density 
function is equal to zero at the frequency u x, and it is said that {xt}tez has negative 
cyclical memory. The latter situation is rather uncommon in practical situations, 
but might arise if the data has been seasonally overdifferenced, that is, a procedure 
has been applied to the data to extract the seasonal component but the initial 
strength of the seasonal component had been overestimated.

A parametric model satisfying (1.2.9) is the Gegenbauer Autoregressive Moving 
Average model of orders p,du,q  (GARMA(p , du, q)) of Gray, Zhang, and Woodward 
(1989). Under such specification, {xt}tez is given by

a(L)( 1 — 2 cos (ljx) L -f L2)d“xt =  b(L)et, (1.2.10)

where we refer to — \  < du < \  as the cyclical differencing parameter, and a(L), 
b(L) and {£t}tez are as defined above in (1.2.5). Then, the spectral density function 
is given by

f x W  = Tp |l  -  2cos(ux)e~lX +  | | 2 , -ir  < A < 7r. (1.2.11)
lit |a (e-zA)|

It can be easily shown that (1.2.11) satisfies (1.2.9) with = 2du, noticing that 
11 — 2 cos(o;a;)e_*A +  e-2iA | 2du> =  |4 sin sin | 2d and sin A ~  A, as A —► 0.

1.2.3 Comments

Notice that models (1.2.3) and (1.2.5) can be considered as special cases of (1.2.9) 
and (1.2.10) respectively. Hence, the latter specifications can be combined in the 
case that the nature of the possibly persistent component is not known. One can 
regard the following "local" specification for the spectral density function

/*(A) ~  Q),io,x |A -  ujx\~aw'x , as A —> cjx, (1.2.12)

with — 1 < olu,x < 1, 0 < Co^x < oo and u x G [0,7r ] . On the other hand, when we 
are concerned with parametric modelling, we can consider (1.2.10), that is,

a(L)(l — 2 cos (cjx) L +  L2)d“x t = b(L)et, (1.2.13)
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with — \  < du < \  when ujx G (0,7r) and — \  < du < \  when ujx G {0,7r}, while 
a(L), b(L) and {£t}tez are as defined above in (1.2.5). In both (1.2.12) and (1.2.13), 
the frequency ujx is unknown, and therefore, u x can be treated as another parameter 
that needs to be estimated.

Before we proceed with overviewing the methods for estimating persistence, 
there are three points that we need to add. Firstly, we concentrate on covariance 
stationary processes, and therefore, we require the parameters ax and to be less 
than 1. In practical situations, it is likely that one would encounter data sets with 
nonstationary characteristics. Here, we assume that appropriate transformations 
can be applied to the data, so that the resulting series axe covariance stationary 
with ax and/or aUiX less than 1.

Secondly, the specifications presented in Subsections 1.2.1 and 1.2.2 are not the 
only parametric models satisfying (1.2.3) and (1.2.9), respectively. For example, 
(1.2.5) satisfies (1.2.9) with aU)X = 0, while (1.2.3) holds for (1.2.10) with ax = 0. 
Furthermore, the ARFIMAijp^d^d^.q) model, see Robinson (1994c) and Giraitis 
and Leipus (1995), is given by

o (i)(  1 -  2 cos (u .) L  +  -  L)dx t =  b(L)et, (1.2.14)

where d, dw, a(L), b(L) and {et}tez are as defined above in (1.2.5) and (1.2.10), and 
satisfies (1.2.3) and (1.2.9) with ax = 2d and = 2du), respectively. Actually, we 
show in Chapter 3 below, that various nonlinear models satisfy (1.2.3) and (1.2.9) 
such as linear combinations of ARFIM A(p,d,q)  and/or GARMA(p, d^, q) mod­
els, as well as nonlinear transformations of A R F IM A (p , d, q) or GARMA(p , dw, q) 
models.

Lastly, when examining cyclical components at a frequency ujx ^  {0,7r}, the 
specifications (1.2.9), (1.2.10), (1.2.12), (1.2.13), and (1.2.14) entail the assumption 
that cycles with frequencies just above and below ojx have the same contribution to 
the total variation of {xt}tez• One could relax such a restriction as it was done in 
Arteche and Robinson (2000), however we are not going to consider this case here.

1.3 Estim ation o f persistence

As described above, the parameters ax and quantify the long-run and cyclical 
persistence of {xt}tez> respectively. Suppose now that a stretch of data {xi,..., xn} 
is available, where n denotes the sample size, and we are interested in performing
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inference on ax and/or a WiI. In this section, we overview different methods for their 
estimation that have been proposed and analyzed. The existing methodologies fall 
in two categories, parametric and semiparametric.

Parametric methods require specifying, up to a finite set of unknown parame­
ters, the spectral density function over the whole range of frequencies. That is, 
fx (A) =  /x(A; 6X) for all A € [0,7r], and examples include the parametric models of 
Section 1.2. On the other hand, in semiparametric methods the spectral density 
function is only locally parameterized around a frequency and it is left otherwise 
unrestricted, as it was done with the specifications (1.2.3) and (1.2.9). Although 
parametric estimation is more efficient than semiparametric one under correct model 
specification, it is likely to suffer from inconsistency if the model has been misspec- 
ified.

1.3.1 Param etric m ethods

In the parametric framework, the most popular approach to estimate the mem­
ory parameter a x, along with any other parameters of the model, is based on the 
Gaussian log-likelihood. If {xt}tez were a sequence of Gaussian random variables 
with zero mean, then it would be natural to consider estimates maximizing the 
log-likelihood

- - log IS, (9X)I -  - x ' S - 1 (9X) x, (1.3.1)
n n

where x = (x i,..., xn)' and Ex (6X) is the covariance matrix of x, which has (j, /c)-th 
element equal to 7x(j — k). The maximization of (1.3.1) is taken over a compact set 
of values for 6X that guarantee the stationarity of {xt}tez-

It can be shown that
7T

— log|E , (<y| -  ^  f log/,(A;<ydA, (1.3.2)
n Zir J

— 7r

as n —> 0 0 , see Chapter 3 of Hannan (1970). Moreover, the {j,k)~th  element of 
(0X) satisfies by definition

7r

7.(7 -  *) =  /  ei(j_'!)Vx(A; ex)d\, (1.3.3)
— 7r

so that the (j , k)-th  element of S " 1 (6X) can be approximated by
7r

S*U ~ k) =  7A 2 I  e ,)d \. (1.3.4)(27r) J
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Then, the matrix Sx (9X), whose (j, k)-th element is sx( j—k), approximates T,x 1 (9X) . 
Next, introduce the discrete Fourier transform and periodogram of the data

n 1 -

;X(A) = n ~ ^ ^ 2  xt^~ltX and 4  (A) =  — |u>*(A)|‘

Since we can write
t=i

ix '5 :c(ei ) a: =  - t  [  y j  dX, 
n 2n J f x[X\9x)fx{ A; 6X)

—7T
the objective function (1.3.1) can be approximated by

7r 7r
4(A)

(1.3.5)

(1.3.6)

IJlosUX-^dX-^f
fx(X’,9x)

dX, (1.3.7)

and maximizing the criterion (1.3.1) is equivalent to minimizing the objective func­
tion

J log f x(X-,6x)dX + J (1.3.8)

If furthermore it is assumed that f  log f x(A; 6x)d \  > —oo, then it is well known
—7T

that {xt}tez can be written as

x« =  J 2  vl*  < °°>
j —0 j =o

(1.3.9)

where {£t,x}tez is a sequence of uncorrelated random variables with zero mean and 
variance <7 ,̂ see Chapter 3 of Hannan (1970). Then, we can parameterize the 
spectral density function of {xt}tez as

(1.3.10)fx(X;6x) = kx(X;if)x),

where 8X = of J '  and kx( A; i>x) =

0, we have that

E
3=0

. If moreover f  log kx(A; ipx)dX

/i

J  log f x(A; 9x)dX = 2tr log a2£x -  2tt log (27r ) , (1.3.11)
—7T

and then the objective function (1.3.8) is up to a constant proportional to



As we are interested in inference on the memory parameter ax which is precluded 
in ,ipx, one has to minimize over 'ipx the objective function

7T

(1.3.13)
—7T

Next, for integer j, denote by Aj =  ^  the j -th Fourier frequency. Due to 
the symmetry around zero and periodicity of the spectral density function, and

The objective function (1.3.14) has the advantages that is computationally easier 
to derive by the means of the fast Fourier transform, and does not require the as­
sumption of a known mean for {xt}tez- The latter is the case since the periodogram 
Ix (.) evaluated at the Fourier frequencies A j, j  =  1,.., n — 1, is invariant to location 
shift in {x t}tez.

The approximation of the Gaussian log-likelihood, resulting to the objective 
function (1.3.8) and its subsequent forms (1.3.13) and (1.3.14) are due to Whittle 
(1951) and are therefore referred to as the Whittle likelihoods, while the resulting 
estimators as the parametric Whittle (PW) estimators. The first major contribution 
on the asymptotic properties of the PW estimators came from Hannan (1973). His 
main condition for consistency is the ergodicity of {x t}tez, which is satisfied for the 
parametric models presented in Section 1.2. Hannan (1973) also showed that the 
PW estimators are rA-consistent and asymptotically normal, however under condi­
tions that rule out strong persistence. The latter properties for the PW estimator 
based on the objective function (1.3.13) were first established under long memory 
by Fox and Taqqu (1986) for a Gaussian sequence {xt}tez following a rather gen­
eral parametric form. Again under the assumption of Gaussianity and long memory 
of {xt}tezi Dahlhaus (1989) studied both (1.3.1) and (1.3.8) and showed that the 
Cramer-Rao efficiency bound is still achieved. For the same PW estimator as in Fox 
and Taqqu (1986), Giraitis and Surgailis (1990) relaxed the Gaussianity of {xt}tez 
to a linear process of the form (1.3.9) with the innovation process {st,x}tez being a 
sequence of identically and independently distributed (i.i.d.) random variables with 
finite fourth moments. Hosoya (1997) considered multivariate models and allowed 
for martingale difference innovation sequence {£t,x}tez- The case when {xt}tez has

replacing the integral with a discrete sum evaluated at the Fourier frequencies, the 
objective function (1.3.13) can be further approximated by

(1.3.14)
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negative memory was recently been examined by Velasco and Robinson (2000) for 
the PW estimator based on (1.3.14) under conditions similar to those in the case 
of long memory. Lastly, we should mention the work by Giraitis and Taqqu (1999), 
where the asymptotic properties of the PW estimator examined by Fox and Taqqu 
(1986) were established for polynomial transformations of a Gaussian long memory 
sequences. Giraitis and Taqqu (1999) showed that the PW estimator remains con­
sistent, but the -consistency and asymptotic normality were not found to hold 
for all the transformations considered there.

The above mentioned references mainly concentrate on the case of a long-run 
component, but can be easily extended to the case of a cyclical component of 
known frequency u x. The case of a persistent component at an unknown frequency 
was examined by Giraitis, Hidalgo, and Robinson (2001). The authors treated ljx 
as another unknown parameter precluded in i/)x and examined the PW  estimator 
based on the objective function (1.3.14). Under long memory and conditions similar 
to those in the case of a know frequency, they established the asymptotic properties 
of the PW estimator, which were found to be unaffected by the lack of knowledge 
of u x.

As far as performing statistical inference on the memory parameter ax or the 
cyclical memory parameter au>x, one can construct test statistics based on the PW 
estimators described above and derive, under appropriate assumptions, the asymp­
totic distribution of the statistic using the theoretical results of the aforementioned 
references. Hence, given knowledge of the frequency of the possibly persistent com­
ponent, one can test for different values of ax or au x̂ in (—1,1). When the fre­
quency is unknown, one needs to assume that {xt}tez has long memory or cyclical 
long memory, and then inference on values of ax or au>x falling in (0,1) can be 
performed. However, in the latter case, it is not possible to test whether the data 
does not exhibit a persistent component against the alternative that it does.

Before we proceed to discuss semiparametric methods, we should add that the 
PW estimators dominate the literature of parametric methods. Another method 
for the estimation and testing of the memory parameter axi in the context of the 
A R F IM A (0, d, 0) model, is based on the rescaled range statistic R /S  and a mod­
ified version of it, see Hurst (1951), Mandelbrot (1975) and Lo (1991). The R /S  
statistic is the range of partial sums of deviations of a time series from its mean, 
rescaled by its standard deviation. The R /S  statistic is easy to compute, and a 
transformation of it provides a consistent estimate for ax. However, the resulting 
estimator of ax has an asymptotic distribution that is difficult to compute its quan-
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tiles from, and furthermore, has a slow rate of convergence.

1.3.2 Semiparametric m ethods

Semiparametric estimation and inference on the long memory parameter ax is based 
on the specification (1.2.3). They rely on the fact that the spectral density function 
around 0 can be approximated by Cq>x |A|_Qi , and therefore use information only 
from a neighbourhood of the zero frequency, as opposed to parametric methods that 
take into account the whole band of frequencies.

This idea was first initiated in the work of Geweke and Porter-Hudak (1983), 
see Robinson (1995a) for a precise treatment, who proposed regressing the log- 
periodogram ordinates log (Ix (Aj ) )  on a constant and log X j , for j  = 1, ...,ra, and 
estimating ax by the minus of the estimated slope coefficient. Notice that Robinson 
(1995a) considered trimming the first j  = 1,..., I log-periodogram ordinates. The 
integer m  is referred to as the bandwidth parameter and is taken to satisfy

m  —► oo and m = o(n), as n  —*■ oo, (1.3.15)

so that information from a degenerating neighbourhood of the zero frequency are 
taken and the approximation of f x ( Xj )  by CoiXX~ax is valid. The estimator of ax of 
Geweke and Porter-Hudak (1983) is commonly referred to as the log-periodogram 
estimator.

The latter approximation was also employed by Ktinsch (1987), see also Robin­
son (1995b), who proposed estimating ax and c0)x by minimizing, over the stationary 
range of admissible values, the objective function

, u , 6)

Observe that (1.3.16) is a local discretized version of the Whittle likelihood (1.3.8), 
since instead of evaluating the sum at the Fourier frequencies A j, j  — 1, ...,n — 1, 
only the first m  of them are employed so that f x ( Xj )  in (1.3.8) can be replaced by 
Co,x^Jax- Concentrating on the memory parameter qx, it can be easily shown that 
the estimator of ax resulting from (1.3.16) is that based on minimizing the objective 
function

\  3=1 3 /  3- 1

The estimator of Ktinsch (1987) is usually referred to as the Gaussian semipara­
metric or local Whittle (LW) estimator. Notice again that the assumption of a
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known mean for {xt}tez is not required, since the periodogram Ix (.) evaluated at 
the Fourier frequencies Xj ,  j  =  1 , n  — 1, is invariant to location shift in {xt}tez-

The estimators of Geweke and Porter-Hudak (1983) and Ktinsch (1987) consti­
tute the most popular semiparametric procedures in the literature. Other methods 
include the FEXP estimator of Robinson (1994a), the averaged periodogram es­
timator of Robinson (1994b), the estimators of Hidalgo and Yajima (2003) and 
Hidalgo (2005), and the exact local Whittle estimator of Shimotsu and Phillips 
(2005). All these estimation methods, with the exception of Hidalgo (2005), were 
proposed in relation to the memory parameter ax. They can be easily extended 
to allow for the estimation of the cyclical memory parameter a W)I if the frequency 
ujx is known. In Hidalgo (2005), the frequency ujx is taken to be unknown and a 
two stage estimation method is proposed. The first stage of this method involves 
estimation of the unknown frequency u x, while in the second, the parameter a x or 
aUtX is estimated using a method similar to that of Hidalgo and Yajima (2003). An 
analogous two stage procedure was also proposed in Hidalgo and Soulier (2004), 
where the unknown frequency is estimated by the method of Yajima (1996) and the 
parameter ax or aUiX by the estimator of Geweke and Porter-Hudak (1983). The 
results of Hidalgo and Soulier (2004) and Hidalgo (2005) show that the asymptotic 
properties of the estimator of ax or are unaffected by the first stage estimation 
of LJX.

The consistency and asymptotic distribution of the aforementioned estimators 
are well established under appropriate conditions; in Robinson (1995a) for the log- 
periodogram estimator of Geweke and Porter-Hudak (1983), in Robinson (1995b) 
for the LW estimator of Ktinsch (1987), in Moulines and Soulier (1999) and Hur- 
vich and Brodsky (2001) for the FEXP estimator of Robinson (1994a), in Robinson 
(1994b) and Lobato and Robinson (1996) for the averaged periodogram estimator 
of Robinson (1994b), and in Hidalgo and Yajima (2003), Hidalgo (2005) and Shi­
motsu and Phillips (2005) for the corresponding estimators. Hence, the estimation 
methods of Geweke and Porter-Hudak (1983), Ktinsch (1987), Robinson (1994b), 
Hidalgo and Yajima (2003) and, Shimotsu and Phillips (2005) and their asymptotic 
properties can serve as the basis for constructing statistical procedures for testing 
for specific values of ax or a U)I in (—1, 1), assuming that frequency of the possibly 
persistent component is known. If latter is not the case, then the method of Hidalgo 
and Soulier (2004) or Hidalgo (2005) can be used to construct a statistic technique 
in order to test for specific values of a x or in (0,1). Finally, a test statistic for 
whether the data does not exhibit a persistent component against the alternative
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that it does, was provided and examined by Hidalgo (2006).

With few exceptions, the asymptotic properties of the above mentioned semi­
parametric estimators and test procedures are established under the assumption of 
Gaussianity or linearity of the process {xt}tez- Notice that by the term linearity, we 
refer to processes satisfying (1.3.9) with innovation sequence {£t)X}tez being a mar­
tingale difference satisfying mild conditions, see in more detail Assumption A.5 in 
Chapter 2. The asymptotic properties of the estimator of Geweke and Porter-Hudak 
(1983) and the LW estimator of Ktinsch (1987) were examined for a particular non­
linear model, the sum of a long memory Gaussian or linear process with that of a 
white noise or i.i.d. or short memory linear sequence, see Deo and Hurvich (2001) 
and Sun and Phillips (2003) for the estimator of Geweke and Porter-Hudak (1983) 
and, Arteche (2004) and Hurvich, Moulines, and Soulier (2005) for the LW esti­
mator of Ktinsch (1987). However, besides these cases, nothing is known about 
the asymptotic properties of the various semiparametric estimators for nonlinear 
models.

1.4 Description of the thesis

Throughout this thesis, we are concerned with filling some of the gaps in the litera­
ture concerning the estimation and inference of long-run and/or cyclical persistence 
discussed at the end of Subsections 1.3.1 and 1.3.2. We concentrate on parametric 
Whittle and local Whittle methods due to their popularity, efficiency and theoretical 
tractability.

In Chapter 2, we consider the LW estimator of the memory parameter ax. We 
establish general conditions that are sufficient for consistency and provide expan­
sions and rate of convergence for the estimator, without relying on the assumption 
of linearity of the data generating process. As an illustration, we apply our re­
sults to the case of a linear process and reaffirm the results obtained by Robinson 
(1995b).

The practicability of the results in Chapter 2 is demonstrated in Chapter 3. 
In this chapter, we apply our general results of Chapter 2 in order to assert the 
asymptotic properties of the LW estimator for nonlinear models. We examine the 
signal plus noise model and some special cases of it: structural model, nonlinear 
transformations of a Gaussian process, and long memory stochastic volatility model. 
Under these specifications we discover that the asymptotic properties of the LW 
estimator, consistency and asymptotic normality, are unaffected by the presence
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of the nonlinearity. However, we also find that the rate of convergence and finite 
sample bias of the LW estimator are worse off as compared to the case of a linear 
process.

Chapter 4 examines, by the means of Monte-Carlo simulations, the finite sample 
properties of the LW estimator for the linear and nonlinear specifications considered 
in Chapters 2 and 3. We find that the consistency property of the estimator is not 
affected by the presence of nonlinearity. However, we discover that the finite sample 
properties are worse off as compared to the case of a linear process. Furthermore, we 
apply LW estimation to real data, expected and realized inflation rates, nominal and 
real interest rates, and transformations of foreign exchange rate returns, in order to 
assess their long-run persistence and address several issues that have appeared in 
the empirical literature.

Finally, Chapter 5 presents two parametric testing procedures for the null hy­
pothesis of no persistent component in the data against the alternative that the 
data exhibits a persistent component. Our methodologies are based on the Wald 
and Lagrange multiplier principles and involve PW estimation method. We derive 
the asymptotic distribution of our test statistics for a wide class of linear processes 
having a parametrically specified spectral density function, and moreover we estab­
lish their consistency and power against local alternatives. As our test statistics are 
found to have an asymptotic distribution that is nonstandard and model dependent, 
we introduce a bootstrap scheme for the purposes of calculating valid critical values, 
and furthermore establish its validity. The finite sample performance of our test­
ing procedures is investigated by the means of Monte-Carlo simulations. Finally, 
we apply our testing methods to data for the growth rate of industrial produc­
tion and unemployment rate, and find evidence that these series exhibit persistent 
components for most of the time periods considered.

As we are examining the PW and LW estimators based on the objective functions 
(1.3.14) and (1.3.17), respectively, we can assume without loss of generality that 
fix =  0. In what follows C denotes a generic positive finite constant, denotes 
convergence in probability, and convergence in distribution. Moreover, d/dy and 
d /dy  denote derivative and partial derivative, respectively, for a generic column 
vector or scalar ?/, and by z we denote the conjugate of a generic z.
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Chapter 2

General conditions for local 
W hittle estim ation

2.1 Introduction

As discussed in Chapter 1, the memory parameter ax characterizes and summa­
rizes the long-run dependence structure of the process {xt}tez» and its consistent 
estimation is of undoubted interest. The related literature focuses on parametric 
and semiparametric methods, and various estimators have been proposed and an­
alyzed. In the majority of the cases, assumptions of Gaussianity or linearity of 
the process are imposed. However, it is not uncommon in empirical applications 
in Macroeconomics and Finance, that the practitioner deals with time series data, 
which, possibly after some transformation, do not appear to be generated from a 
linear process. Therefore, the problem of drawing appropriate inference on ax arises 
and, consequently, theoretical justification of the estimator is needed for its use in 
nonlinear setups.

In the present and next chapters, we address this problem in the context of 
semiparametric estimation, and in particular, we consider the LW estimator of 
Kiinsch (1987), see also Robinson (1995b). Recall that semiparametric methods 
have the advantage of requiring less a priori known information on the true struc­
ture of {xt}tez- Naturally, the latter feature of semiparametric estimation is very 
appealing in the framework of nonlinearity, as it allows for greater flexibility in 
the modelling of {xt}tez- Notice also that results for the parametric Whittle were 
derived by Giraitis and Taqqu (1999) in the case of polynomial transformations of 
a Gaussian long memory process.
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The statistical properties of the LW estimator were initially investigated by 
Robinson (1995b), where for his proof of consistency, the assumption of linearity of 
the process was imposed. Some departures from the linear framework have been re­
cently discussed in Arteche (2004) and Hurvich, Moulines, and Soulier (2005). They 
address the consistent estimation of ax in the context of the stochastic volatility 
model for asset returns introduced by Taylor (1994). In both Arteche (2004) and 
Hurvich, Moulines, and Soulier (2005), the logarithmic squared returns are trans­
formed into a signal plus noise model. Under such specification, the process of 
interest {xt}tez is the sum of the signal process {yt}tez and the noise {zt}tez- The 
memory parameter ay of {yt}tez is taken to exceed that of {zt}tez, so that ax — ay 
and {yt}tez "signals" the long-run behaviour of {xt}tez- The linearity of the signal 
process is an assumption made commonly in Arteche (2004) and Hurvich, Moulines, 
and Soulier (2005) for showing the consistency of the LW estimator. In addition, 
the structure of the noise is restricted to be a white noise sequence in Hurvich, 
Moulines, and Soulier (2005) and a linear short memory process in Arteche (2004). 
However, the latter author restricts the signal and the noise processes to be mutu­
ally independent, while the former authors allow for dependence, of a specific form, 
between the two processes.

Naturally, once the linear framework is abandoned, the consistency of the LW 
estimator has to be examined on a specific basis, as in Arteche (2004) and Hurvich, 
Moulines, and Soulier (2005). It would be therefore of interest to establish general 
sufficient conditions that guarantee the consistency of the LW estimator without 
relying on a specific linear or nonlinear specification for {xt}tez- Once these sufficient 
conditions are established, they can be employed to examine the consistency of 
the estimator in each particular case, without resorting to proving the consistency 
from first principles. The first objective of this chapter is to provide such general 
conditions, and show that they are indeed sufficient for the consistency of the LW 
estimator.

Besides the consistency property, the rate of convergence and asymptotic distri­
bution of an estimator are also of interest. Robinson (1995b), Arteche (2004), and 
Hurvich, Moulines, and Soulier (2005) established these properties for the LW esti­
mator. Again their results are particular to the specification of {xt}tez, and so our 
second objective in this chapter is to obtain expansions and rate of convergence for 
the estimator, without imposing a specific structure on {xt}t£z- We can then apply 
our results to examine the bias, rate of convergence, and asymptotic distribution of 
the estimator in individual cases.
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The remainder of this chapter is as follows. In Section 2.2 we introduce the LW 
estimator. In Section 2.3, we present and discuss the assumptions. Section 2.4 deals 
with the theoretical results. As an illustration, in Section 2.5 we apply our findings 
to the linear process considered by Robinson (1995b), while Section 2.6 contains 
some final comments. The proofs of Sections 2.4 and 2.5 are found in Appendix 
2. A of this chapter, that use a series of technical lemmas placed in Appendix 2.B.

2.2 The local W hittle estim ator

For the estimation of the memory parameter ax, we use the LW estimator, see 
Ktinsch (1987) and Robinson (1995b). Recall that, given a set of data {x±, . . . , r r n }, 

the estimator is defined as
ax =  arg mmUn(a), (2.2.1)

<*€[ -1, 1]

where

«.<•> - + k t w )
\  3= 1  J J  3=1

m  \  m

- £ / m )  - S ^ logJ- (2-2-2)
j =i I  j =i

Notice that contrary to Robinson (1995b), the minimization of Un(a) is taken over 
the interval [—1, 1], instead of a closed subinterval of (—1, 1) which can be chosen 
arbitrarily close to [—1,1]. From hereafter, we assume as in Robinson (1995b) that 
the bandwidth parameter m — m (n) is such that

m  —► oo and m = o(n), as n —► oo. (2.2.3)

The theoretical results of Robinson (1995b) are based on the whitening principle 
of the normalized periodogram at the Fourier frequencies

,?3> =  7 ( M ’ J =  1 ™" 2̂'2'4^

Roughly speaking, it means that behaves as if it were a sequence of un­
correlated random variables with unit mean. This property holds if {xt}tez were 
a sequence of i.i.d. random variables, and asymptotically if {xt}tez were a weakly 
dependent process. However, for strongly dependent processes and fixed ordinates, 
Ktinsch (1986) showed that the normalized periodograms no longer have unit mean
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and are uncorrelated. Nevertheless, Theorem 2 of Robinson (1995a) implies that the 
latter bias of the normalized periodograms can be bounded, and that the bound 
decreases with the distance from the origin, so that for j  —► oo the asymptotic 
unbiasedness holds. Furthermore, it follows from Theorem 2 of Robinson (1995a) 
that the correlation between distinct normalized periodograms can also be bounded, 
and this bound vanishes when j, k —► oo. Therefore, theoretical results for strongly 
dependent follow as if were a sequence of uncorrelated random variables
with unit mean.

Notice that under Assumption A.3 below, Lemma 2.6, a version of Theorem 2 
of Robinson (1995a), implies that, uniformly in j  —* oo, such that j  < m,

E irij,x) =  l  +  oW* as n —> oo. (2.2.5)

If, in addition, it were to be that for j  k

cov{r}j>x, 77*. J  —► 0, as j, k -► oo, (2.2.6)

then from Lemma 2.7 below, it follows under Assumption A.3 that
- m

~  Z X *  ^  ^  ^ n °°- (2-2-7)
J=1

Next, for j  =  1, ...,m, we denote

nU = (2-2-8)K) ,xAj

Observe that under Assumption A.3 and condition (2.2.3) on the bandwidth para­
meter m, we have that

^  =  C1 +  °0-))Vj,x, (2.2.9)Co,x

as n —*■ oo. In addition, under Assumption A.3, we have by Lemma 2.7 that con­
vergence (2.2.7) is equivalent to

1 m
~  5 2  Vi* ^  i, as n —» oo. (2.2.10)

j =1

The proof of (2.2.10) is one of the key steps in the proof of consistency of the esti­
mator in Robinson (1995b). In particular, assuming that {xt}tez is a linear process
satisfying Assumptions A.3 and A.6 below, Robinson (1995b) showed convergence
(2.2.10). Hence, (2.2.10) is needed for the proof of consistency of the estimator and
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therefore, serves as one of the two sufficient conditions for the consistency of the 
LW estimator. Notice also that (2.2.5), which holds by Assumption A.3, implies 
that

E(r,lx) < C (2.2.11)

uniformly in j  = 1, ...,ra. The latter condition was also established by Robinson 
(1995b) in his proof of consistency of the LW estimator. The last displayed inequal­
ity functions as the second sufficient condition for the consistency of the estimator.

2.3 Assum ptions

We introduce the following assumptions:

A .l Uniformly in j  = 1,..., m,
E(n*,x) < c. (2.3.1)

A.2 We have - m
— as « ^  oo- (2-3.2)

j=i

A.3 The spectral density function f x(.) satisfies

f x(A) =  \X\~ax hx{A), -7T < A < 7T, (2.3.3)

where — 1 < ax < 1 and hx{A), — ir < A < 7r is an even, non-negative function
such that

hx(A) —► co)X, as A —► 0+, (2.3.4)

with 0 < Co)X < oo.

A.4 The spectral density function f x(.) satisfies

fx(^) — A Qx (co,x +  CijXÂ x +  o(A^x) ) , as A —> 0+, (2.3.5)

with — 1 < ax < 1, 0 < Co,x < oo, 0 < |ci)X| < oo and (3X G (0, 2].

We now discuss these assumptions. As described in Section 2.2, Assumptions 
A.l and A.2 are our main general conditions. We show in Theorem 2.1 below, 
that they are sufficient for the consistency of the LW estimator. They are based 
on the periodogram of the data through r}*x, and do not require stationarity or 
impose a specific structure on {xt}tez and its spectral density function. It is worth
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mentioning that for the consistency of the LW estimator, we require essentially 
the sequence {rjj x}jLi to behave as if it were ergodic. This should not come as a 
surprise, bearing in mind that in the proof of consistency of the parametric Whittle 
estimator by Hannan (1973), ergodicity of the series {xt}tez is the main condition.

Assumption A.3 is Assumption A.l of Robinson (1995b). This assumption is 
common in the literature on semiparametric estimation of the memory parameter, 
see Robinson (1994b, 1995a,b), Hidalgo and Yajima (2003), Hidalgo (2005) and 
Shimotsu and Phillips (2005). As discussed at the end of the previous section, 
Assumption A.3 implies A.l. Besides in the proof of Theorem 2.1 and equation
(2.4.6) of Theorem 2.3, Assumption A.3 is taken to hold true. Assumption A.l 
however is easier to check, as we demonstrate in the next chapter for the case of 
the signal plus noise model.

Assumption A.4 strengthens Assumption A.3 by imposing a known rate of con­
vergence of to 1, as A —► 0-K The parameter f3x characterizes the smoothness
of the function hx(.) in A.3. For example, if {xt}tez follows an ARFIM A(jp , ^f-,#) 
process, then Assumption A.4 holds with (3X =  2. Assumption A.4 is not needed to 
prove consistency of the estimator, but is required in order to derive expansions, 
rate of convergence, and the asymptotic distribution of the LW estimator. This as­
sumption is standard in the related literature; it was made by Robinson (1995a,b), 
Lobato and Robinson (1996), Hidalgo and Yajima (2003), Hidalgo (2005) and Shi­
motsu and Phillips (2005) to derive the asymptotic distribution of the corresponding 
semiparametric estimators in the case of Gaussian or linear processes.

2.4 Theoretical results on local W hittle estim a­
tion

In this section we present our theoretical results on the consistency, expansions, and 
rate of convergence for the LW estimator. The proofs of this section are found in 
Appendix 2.A of this chapter.

2.4.1 Consistency of the local W hittle estim ator

We begin by showing the consistency of the LW estimator under the general As­
sumptions A.l and A.2. Notice that we could follow the key steps for the proof of 
consistency by Robinson (1995b), but here we present a different approach. The
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main idea of our proof is to show that asymptotically, with probability tending to 
1, for every 0 < e < \ , the derivative of the objective function -J^Un(a) is strictly 
positive when a  E [a^ +  £, 1] and strictly negative when a  G [—1, ax — e], so that 
Un(a) attains a minimum in (ax — e, ax +  e).

Theorem 2.1
Suppose that there exists ax £ (—1,1) and 0 < Co)X < oo such that Assumptions 
A .l and A.2 are satisfied. Then, as n —> oo,

a ^  ax. (2.4.1)

Next, assume that {xt}tez is a covariance stationary process with spectral den­
sity function /*(.). The next theorem shows that if the spectral density function of 
{xt}tez satisfies Assumption A.3, then the LW estimator ax consistently estimates 
ax, as long as Assumption A.2 is satisfied. The proof of the theorem is based on 
Theorem 2.1, and requires showing that Assumption A.3 implies Assumption A.l.

Theorem 2.2
Assume that Assumptions A.2 and A.3 hold. Then, as n —► oo,

ax -A ax. (2.4.2)

Assumption A.2 is essential in the proof of Theorem 2.1, but might be difficult 
to establish in certain cases. So, now we present a simple sufficient condition for 
Assumption A.2. Denote

E fe -A m<x = max E
l<k<m

3= 1

(2.4.3)

Notice that Assumption A .l implies that Amx < 2 V  E(n]x) < Cm. The next' • i3 = 1
proposition shows that Am)X =  o(m) together with Assumption A.3 imply Assump­
tion A.2, and therefore, the consistency of the estimator ax.

Proposition 2.1
Suppose that Assumption A.3 holds and A m>x = o(m). Then, {xt}tez satisfies As­
sumption A.2 and, as n —* oo,

Sx ax. (2.4.4)

Theorems 2.1, 2.2 and Proposition 2.1 provide general conditions that guarantee 
the consistency of the LW estimator ax. These conditions can be directly employed 
to prove the consistency of ax for specific classes of data generating processes, as 
we demonstrate below in Section 2.5, and in Chapter 3.
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2.4.2 Expansions and convergence rate for the local W hittle  
estim ator

We start with deriving expansions for ax. Denote

3 ”*.* =  m  £  ( log ( “ )  +  X)  (2'4'5)

Under the conditions of Theorem 1, we first write ax — ax in terms of Qm,x using the 
mean value theorem. Then, by imposing Assumption A.4, we examine E  (Qm,x), 
and provide a further expansion for ax — ax.

T heorem  2.3
Under the assumptions of Theorem 2.1,

&x — Oix = —Qm,x( 1 +  °p (l)) +  Op ^ ^ . (2.4.6)

If, in addition, the spectral density function f x(.) satisfies Assumption A.4, then

Cl,a 
Q),a

+ O p ( +  ( ^ ) ^ )  , (2.4.7)

oix — a x — — ( —\  -^-B px — (QmiX — E  (QmiX)) (1 +  op(l))
\  Tl J Cn -r

where

< 2 -4 ' 8 )

Under the general Assumptions A.l and A.2, (2.4.6) provides a simple expansion 
for ax — o lx . It could be used to obtain the asymptotic distribution of ax, if one 
derives the asymptotic distribution of Qm,x- If? in addition, Assumption A.4 is 
satisfied, then we have a further expansion (2.4.7) for ax — ax. Observe that the 
second term in (2.4.7) has mean zero. Hence the first term, i.e. — ( ^ ) /?x is
the dominant term in the finite sample bias of the estimator ax. Expansion (2.4.7) 
also shows that the rate of convergence of ax depends on the bias term and the 
stochastic order of Qm,x — E (Q  m,x) •

R em ark  2.1
Under the assumptions of Theorem 2.3, the sign of the finite sample bias depends 
overall on the sign of Ci)X given in Assumption A.4. The magnitude of the finite 
sample bias is determined by m ,n,Ci)X,CotX and (3X. In absolute value, the bias 
decreases when the sample size n increases, increases when the bandwidth parameter
m increases, and is also proportional to the ratio With an increase in the 

smoothness parameter f3x, the term (^ )^ x decreases, while the term Bpx increases.
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Recall from Proposition 2.1 that Assumption A.3 and condition A m>x = o(m) 
are sufficient for the consistency of the estimator ax, where A miX is defined in 
(2.4.3). If, in addition, it is assumed that the spectral density function f x(.) satisfies 
Assumption A.4, and A mjX = o then, as the next proposition shows, the
stochastic order of Qm,x ~ E  (Qm,x) in (2.4.7) is a function of A mtX. Furthermore, we 
obtain an expansion for Qm)X — E (Qm,x) , which can be employed to obtain, under 
further assumptions, the asymptotic distribution of ax. Define

^  =  ^ E  ( lQg ( ^ )  +  *) - E  ) • (2-4.9)

Proposition 2.2
I f  A m>x = o and Assumption A.4 holds, then

^  ^  f . logm  _ i  /m \P x \
ax - a x = Op f A m>x— —  +  m 2 +  J J ? (2.4.10)

and Qm,x — E(Qm)X) in (2.4.7) can be written as

Qm,z -  £(Qm,x) =  Vm,x +  0p ( 0 )  J  • (2.4.11)

Expression (2.4.10) is used in Corollary 2.1 below in order to derive, under ad­
ditional regularity conditions, the rate of convergence of the LW estimator. Before 
we introduce Corollary 2.1, we formulate conditions in terms of {xt}tez that con­
trol the order of magnitude of A mtX in expression (2.4.10). We now assume that 
{xt}tez is a fourth-order stationary sequence, and we denote by cx( t i ,t2, £3, £4) =  
cum(xtl, x t2, x t3, x t4) the fourth-order cumulant of the variables x tl , x t2, x tz, x t4 given 
by

cx(ti, t2, t3, U) = E (xtlxt2xt3xu ) -  E (x tlx t2)E (xt3xu )

- E ( x tlx t3)E(xt2xu ) -  E (xtlxu )E{xt2xu ), (2.4.12)

recalling that, without loss of generally, we can assume E (xt) = 0. Denote further

00
Dx = E Ic-(*i.*2,<3,0)| , (2.4.13)

t\,t2 ,tz= —0 0

n
D'n,x =  E 1̂ 1 - f2 ,*3 ,0)|, (2.4.14)

ti,t2,tz=—n
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and n
D n,x = , max V  \cx{tu t2 +  u ,u ,0 ) |. (2.4.15)

u=—n
Note that for a wide class of fourth-order stationary short memory models, e.g. 
stationary and invertible ARM A(p , q), we have

Dx < oo. (2.4.16)

Observe also that E (x j) < C, implies

D“ < Cn. (2.4.17)

We use the quantities £)* and D™ in Lemma 2.2 to estimate Am)X.

Now, we combine expression (2.4.10) of Proposition 2.2 and Lemma 2.2 to derive
the rate of convergence of the estimator ax.

Corollary 2.1
Suppose that {xt}tez is a fourth-order stationary sequence with spectral density 
function satisfying Assumption A.4. Then, it holds that

ax - a x = Op log2 m  +  * -1- , (2.4.18)

where

i) if  ax = 0 and Dx < oo,
rm =  0; (2.4.19)

ii) i f  o lx  E (—1,0), Dx < oo and n^rnr1 log2 m = o(l),

rm = nAmT1 log2 m = o(l); (2.4.20)

iii) if ax e (0,1) and D'n x = o ( 35^ )  ,

rm =  ( Ĵ £ )  ( ^ )  l°g2 m  =  °(*); (2.4.21)

iv) i f  a* € (0, 1), £>**, =  O for some 0 < 7 < 1, and =  0 (1),

771 \  — 0
—J log n =  o(l). (2.4.22)

V n  /  V 

Remark 2.2
It is evident from Corollary 2.1 that, in the case of a fourth-order stationary se­
quence with spectral density function f x(.) satisfying Assumption A.4, the estimator 
converges faster the higher the smoothness parameter (3X is, and it has a better rate 
of convergence under short memory than under long or negative memory.
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2.5 An example: Linear process

It is of interest to show that our general results in Subsections 2.4.1 and 2.4.2 
hold true for the type of linear processes considered by Robinson (1995b). Prom 
hereafter, we say that {xt}tez is a linear process, if it satisfies Assumption A.3 of 
Robinson (1995b), that is

A.5 We have oo oo

xt = '52 Y  v l*  < °° ’ (2-5-1)
j =0 j =0

where
E (£t,x\Ft-i) =  0, E (e\x\Ft^ ij =  1, a.s., t G Z, (2.5.2)

in which Ft is the a —field of events generated by eS)X, s < t, and there exists 
a random variable e such that E (e2) < oo and for all 77 > 0 and some K  > 0, 
Pr (\ettX\ > 77) < K  Pr ( |e | > rf) .

00
Next, we denote 4>x(X) = ^ j i e2jA the transfer function of {xt}tez, and intro-

j = 0

duce the following conditions:

A.6 In a neighbourhood (0,5) of the origin, f x(.) is differentiable and

d
dX log/r(A) =  O (A-1) , as A -> 0 +  . (2.5.3)

A.7 In a neighbourhood (0, S) of the origin, 4>x(.) is differentiable and

=  Q ( J M M j  t ^  a _  0+. (2.5.4)

A.8 The sequence { e t>x} t e z  in Assumption A.5 further satisfies

E  i s l x \ F t - i ) =  a-s-. E  ( £ t , x )  =  At,*, f 6 (2.5.5)

for finite constants n3 x and iiA x.

Assumption A.6 is Assumption A.2 of Robinson (1995b) and it is employed 
there for the proof of the consistency of ax. It requires the function hx(.) to be 
differentiable in a neighbourhood (0,5) of the origin, and to satisfy ^  loghx(X) = 
O (A-1) , as A —► 0 + . This assumption is not strong and, for example, it is satisfied 
when { x t } t e z  follows a stationary ARFIM A(p, d) model.
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Assumptions A.7 and A.8 are Assumptions A.2’ and A.3’, respectively, in Robin­
son (1995b), and are used there to derive the asymptotic distribution of ax. Assump­
tion A.7 strengthens Assumption A.6, since f x{A) =  . Assumption A.8 further
restricts the type of linear processes considered. It implies that the process {xt}tez 
is fourth-order stationary, and holds if for example {et,x}t£z is a sequence of i.i.d. 
variables with finite fourth moment.

Robinson (1995b) showed the consistency of the LW estimator for linear processes 
whose spectral density function satisfy Assumption A.3 and A.6. If furthermore, 
Assumptions A.4, A.7 and A.8 are satisfied, Robinson (1995b) also established the 
asymptotic distribution,

m h (ax — ax) - i  N (0 ,1), as n —► oo, (2.5.6)

where the bandwidth parameter m  has to be chosen so that log2 m = o( 1).

In the next proposition, we show that the assumptions of Theorem 1 in Robinson 
(1995b) imply the assumptions of our Theorem 2.1. Furthermore, under Assump­
tions A.4 and A.8, we derive a bound for A m>x in order to apply Theorem 2.3 and 
Proposition 2.2 to investigate the rate of convergence of the estimator and provide 
an expansion for ax — ax. If furthermore, Assumption A.7 is satisfied, we derive the 
asymptotic distribution of Vm>x given by (2.4.9), which is used to examine further 
the asymptotic distribution of ax.

Proposition  2.3
Suppose that {xt}tez is a linear process.

i) I f  Assumptions A.3 and A.6 hold, then {xt}tez satisfies Assumptions A .l and 
A.2, so that

ax -£> a*, (2.5.7)

as Ti —► oo.

ii) Under Assumptions A.4, A.6 and A.8, we have that

iii) Under Assumptions A.4, A.7 and A.8,

mAVmp —+ AT(0,1), as n —> oo. (2.5.9)

Proposition 2.3 part i) implies that our general consistency conditions, Assump­
tions A.l and A.2, are indeed sufficient in the framework of the consistency theorem 
of Robinson (1995b).
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Moreover, under Assumptions A.4, A.6 and A.8, Proposition 2.3 part ii) implies 
that

Am,* =  o ( r-Tf—'I , when m  = o ( — \ —  J . (2.5.10)
\log m J Vlog57 n J

Notice that the latter requirement on the bandwidth parameter m  is not restrictive, 
as it is satisfied for example, when m = [n7] for any 0 < 7 < 1. Hence, relation
(2.4.11) of Proposition 2.2 holds, which together with (2.4.7) of Theorem 2.3 yields 
the expansion

ax - a x = -  ( —Y x — Bpx -  Vm)X(l +  op(l)) +  op ( m ~i +  ( —)  , (2.5.11)
\  U  /  CofX \  \ 7 l  /  J

that is valid when m — 0  ( — J . Since E  (Vm)X) — 0, the term — (^ )^ x ^ B p x
\  log Pi n J  ,X

determines overall the finite sample bias of the estimator, see also Remark 2.1. 
In addition, the latter displayed expansion is useful for examining the asymptotic 
distribution of the estimator ax. We combine (2.5.11) and convergence (2.5.9) of 
Proposition 2.3 part iii) to conclude the following remark.

Remark 2.3
Under Assumptions A.4, A.7 and A.8:

(  \I fm  = o i n 2131+1 J , then

m ^(ax — ax) - i  AT(0,1), as n —► 0 0 . (2.5.12)

2£rr /  \
On the other hand, i f  ri-~ ~  = 0(1) and m = o I —\ — J , then

\ lo g ^ i  n J

( — Y *  (ax -  ax) Bpx, a sn -^ o o .  (2.5.13)
\777-/

T _?
In the special case that m = 77,2/3x +  1

m^{ax — ax) - i  N  ( - ^ - B p x, 1 J , a s n —>oo. (2.5.14)
V °o,x x J

2.6 Final comments

In this chapter we have described and examined results for the LW estimator of the 
memory parameter ax. Without relying on the assumption of linearity of the data 
generating process, we have established conditions that are sufficient for consistency
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and we have provided expansions and rate of convergence for the estimator. As an 
illustration, we have applied our results to the case of a linear process and have reaf­
firmed the results obtained by Robinson (1995b). Although, we have concentrated 
on the case of examining long-run persistence, the results can be easily extended to 
the case of a persistent component of known frequency

There are two significant aspects that we have not considered in this chapter. 
Firstly, we have focused on stationary processes, and in particular, we have concen­
trated on the case — 1 < ax < 1. It would be of theoretical and empirical interest 
to establish similar results to those presented here for higher values of the memory 
parameter. This problem is likely to be dealt using techniques analogous to those 
employed here, in conjunction with those of Velasco (1999), who established the as­
ymptotic properties of the LW estimator for linear processes with ax > —1. Using 
the notion of the pseudo spectral density function as in Velasco (1999), we expect 
the results on consistency to follow when — 1 < ax < 2, while those on expansions 
and rates of convergence for —1 < ax < 1.5. Examination of the LW estimator un­
der higher values of ax is likely to require in addition tapering of the observations, 
as in Velasco (1999).

Secondly, we have assumed knowledge of the possibly persistence component 
of the data, in the sense that its frequency ujx is known a priori. The extension 
to the case of unknown frequency is certainly non-trivial, as the estimation of the 
frequency u x has been studied only for Gaussian or linear processes, see Yajima 
(1996), Hidalgo and Soulier (2004) and Hidalgo (2005), while the existing results in 
the semiparametric literature have not concerned LW estimation, see Hidalgo and 
Soulier (2004) and Hidalgo (2005).

2.A Appendix

This section contains the proofs which use a series of lemmas found in Appendix 
2.B below.

P ro o f of T heorem  2.1. We have
m m
E i “ logj7,(Ay) m E j'V j-U A j)

°  TT (  \  —  j = 1  V '  l  • _  j = 1   .
dot ~  rn g j  — rn y  / \ » ( * * )

^  £ i Q4(A,) Vn[a)
j =i j =i
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where  ̂ m
vj =  io g j— y^iog/c, m L—'k=1

- m /  • \  a—aa
I v ^ / JTn(a) = -  V ' f i ' j U X j )  = -  y ;  -  m m ^ \ mj=i v -j=i

and 1 771 / • \  a~1 f  J
Vn(a) =  -  =  -  E  -

771 771 ' V 771J=1 x 'J=1
fj,x*

(2.A.2)

(2.A.3)

(2.A.4)

Let 0 < e < By Lemma 2.1 below, for any 5 > 0,

Pr | sup
q€[—1,1] :a—ax>—1+e

Tn(a)
> 5

Vn(a) 1 +  a -  ax 

and there exists constant 0 < C (e) < oo such that

Pr (  sup 7 r f-[  ^  ~ C (e)
ya€[—l,l]:a—ax<—1+e Vn\&)

as 77 — > oo.

0, (2.A.5)

(2.A.6)

Let’s consider first the case a < ax — e. (2.A.5) implies that uniformly in a  € 
[—1, 1] : — 1 +  £ < a — ax < — e

Tn(a)
<  £ (2.A.7)

Vn(a) 1 +  a -  aa

with probability tending to 1, as n —► oo, where we have chosen 5 — s. Notice that 
the function is strictly increasing when x  > —1. Therefore, for a  € [—1,1] • 
—1 + e < a — ax < — e, we obtain that

Tn{a) OL OLx  £
< e +   --------------< £ +Vn(a) 1 +  a — aa I — £ 1 — £

< 0 (2.A.8)

with probability approaching 1, as 77 —► oo. On the other hand, (2.A.6) implies that 
uniformly in a € [—1, 1] : a  — ax < — 1 +  e

Tn{a)
Vn(a)

< - C (e ) (2.A.9)

with probability tending to 1, as n —» oo. The last two displayed bounds imply that 
uniformly in a  € [—1,1] : a — ax < —£, for some constant 0 < C' (e) < oo,

^  TT (~\ Tnipt) ^  ^ii ( \
d f " {a) = U a j - ~ C  (£)

(2.A.10)
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with probability approaching 1, as n —> oo, that is

Pr ( sup ^ -U n(a) < - C '( e) ) -»> 1, (2.A.11)
y a e [ —1 ,1 ]:q —a x < —e

as n —> oo.

Next, we consider the case a — ax > e. Using (2.A.5), it follows that uniformly 
in a G [—1,1] : a  — ax > e

Tn(a) a — aa
< |  (2.A.12)

Vn(a) 1 +  a  -  a

with probability tending to 1, as n —► oo, where we have chosen S = Hence, 
bearing in mind that the function is strictly increasing in £ > —1,

■̂ *(a ) > a  ~  ax _  £ > £ _  £ > ~ > n  (o A IS')
Vn(a) ~  1 +  a  — a x 2 ” l + £  2 2(1 +  6:)

The latter displayed inequality implies that uniformly in a  G [—1,1] : a — ax > £, 
for some constant 0 < C" (e) < oo,

£ % ( « )  >  C" (e) (2.A.14)

with probability tending to 1, as n —> oo, that is

Pr ( inf -£-Un(a) > C" (e)) -  1, (2.A.15)
\o:e[—l,l]:a—a x > e  OOt J

as n —► oo.

Recall that Un(a) is a continuously differentiable function in a. Hence, from 
(2.A. 11) and (2.A. 15), it follows that Un(a) is strictly decreasing in the interval 
[—1 ,a x —s] and strictly increasing in the interval [ax+£, 1], with probability tending 
to 1, as n —> oo. Therefore, the minimum of Un(a) falls in the interval (ax—s, ax+e) 
with probability tending to 1, as n —> oo, so that

Pr(|ox - a x\ > e) =  Pt (  inf Un(a) <  inf Un( a ) )  —> 0,

(2.A.16)
as n —► oo, and for every 0 < £ <  i ,  which implies (2.4.1) and concludes the proof 
of this theorem. ■

P ro o f of T heorem  2.2. In view of Theorem 2.1, it suffices to show that As­
sumption A.3 implies A.l. Under Assumption A.3, Lemma 2.6 implies that, as 
n —* oo,

£(!,*.) =  l  +  o ( ! 2 p ) + 0(1) (2.A.17)
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uniformly in j  = 1, m. Hence, by Assumption A.3, as n —► oo,

E (iU ) = C0,x ĵ
CQiX\ j a * +  o ( \ j a * )  

CO,:

=  (l +  0( l ) ) ( l  +  o ( ^ ) + 0 ( l) )

=  l  +  O ^ A + o ( l ) < C

(2.A.18)

(2.A.19)

uniformly in j  =  1,..., m, so that Assumption A.l holds true. ■

P ro o f of P roposition  2.1. By Theorem 2.2, it suffices to show that Assumption 
A.2 is satisfied. We know from the proof of Theorem 2.2, that, as n —> oo,

£(„*x) =  l  +  o ( ^ ) + o ( l ) (2.A.20)

uniformly in j  = 1 , m.  Thus, as n —* oo,

[log m

T e (vU) =  -m

- m 1 [log m \ m

™E^,*)— E E  m*)
3=1 j = 1 j= [lo g m ]+ l

m

m

m

j = i

[log 771 ]

Eow + s S  (1+° ( ¥ ) +o(1)
j = l  j= [lo g m ]+ l '  '  '

V m
+  0

logm
m  j  *— '  7

j= [lo g m ]+ l

H—  (m -  [logm]) (1 +  o(l)) 
m

Q /  [log H A | Q / log2™
\ m J \ m 

1 + 0(1).

)  + 1  + 0(1)

(2.A.21)

On the other hand, by the definition of ATO)X, we have that

E < Cm 1Am>x =  o(l), (2.A.22)

since Am>x =  o(m). The last two displayed relations imply that, as n —► oo,



and so, Assumption A.2 is satisfied. ■

P ro o f of T heorem  2.3. Let 0 < e < min{l — ax, 1 +  ax}. From Theorem 2.1 we
Phave that ax —> ax, as n —> oo. Therefore, as n —► oo,

l ( \a x -  ax\ < e) =  1 +  op(l) and I ( \a x -  ax\ > e) = op(l), (2.A.24)

where X(.) denotes the indicator function. We show that

(Sx -  ax) T(\ax -  0*1 < e) = -Qm,x{ 1 + op(l)) + Op ( ^ H  • (2.A.25)

Then, the last two displayed equalities imply that

0LX Oix  — ( 0LX 0LX | £ )  ~|- ('0LX Q^e) X(|QJa; 0^x\ ^

=  - <?m,i(l +  °p(l)) +  O p  ( a x  ~  a x )  ° p (  1) (2.A.26)

and hence,

(ax — ax) (1 — Op(l)) =  —Qm,x( 1 +  °p(l)) +  O p  ^ 5 (2.A.27)

which implies that

a * ~ a * = 1 -  o„(l) ( _C?m'a:(1 +  +  ° ” ( “ I - ) )

= -QmA 1 + Op(l)) + Op ( ^ )  , (2.A.28)

since (1 — op( l))_1 =  1 +  oP(l), and shows (2.4.6).

To show (2.A.25), we first notice that \ax — ax\ < e implies

i ™ /  j  \  i ™ /  n \ £

Vn(ax) = -  £  I 2-) nlz > -  E  (2-A-29)m \  m  J m \ m jj=i \ / J=i \ /

From Lemma 2.3, because the random variables {77̂ a.}™=1 satisfy conditions (2.B.50)
and (2.B.51), while the function xe,0 < x  < 1 satisfies conditions (2.B.52) and

1
(2.B.53), we have that the right hand side of (2.A.29) is f  x£dx +  op(l). Thus,

0

Vn(ax) > —j— + op(l), (2.A.30)
1 +  £

so that Vn(ax) > 0 with probability tending to 1, as n —► 00. Notice that ax G 

(—1,1), since |ax — ax\ < e and 0 < e < min{l — ax, 1 +  ax}. Thus, ^ Un(ax) = 
=  0 implies T„(a x) = 0.
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m _
Recall that Tn(a) — ~ Y 1  (m)Q ^  where Vj are given in (2.A.2). By the

3 = 1
mean value theorem,

Tn(ax) -  Tn(ax) =  ^ -Tn(a*) (ax -  a x) , (2.A.31)

where a* is an intermediate point between ax and ax. From (2.A.31), since Tn(ax) = 
0, we have that (2.A.25) holds, if we show that, as n —> oo,

T„(ax) = Qra.x + Op f (2.A.32)

and
^ r „ ( a * )  =  l  +  op(l). (2.A.33)

Applying in the definition of Tn(a) equality

„ , =lc* ( i )  +  1 +  0 ( ! ^ ) .  „ A . » )

see (2.B.13) below, we have that

Tn(ax) =  l £ ( l o g ( i - ) + 1 ) , ?.
m V \ m  J J J' m  \  m J ~  J’j=i N v N ' j=i

'• ~  Qm,x +  Rm’ (2.A.35)

By Assumption A.l, we have E(rjjX) < C uniformly in j  =  1, ...,ra, which implies
that

E  |1 U  =  - O  £  E(r,lx) =  O ( 1 ^ )  (2.A.36)m \  m J Jt \  m J

and proves that Rm = Op ( ^ p )  • Hence, equality (2.A.32) follows.

We now show (2.A.33). From the definition of Tn(a), we have that

3= 1
-  m  /  /  . \  /  .

\ _ I J
= + « » b ;a  h i -  (2-A-37)m *—' \  \m  j \m

3= i

where

and
’ (£“) ■"*(£) (‘“‘ (i)*1) (2A381

‘ • ( ; ;' ) ‘ k !( ; ) ( ; )  (2JU9>
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To examine (2.A.37), we use Lemma 2.4 below. We first notice that the random 
variables {rjjX}jLi satisfy conditions (2.B.50) and (2.B.51). Secondly, the function 
p(x;a), 0 < x < 1, a  G [—1,1] satisfies assumptions (2.B.52) and (2.B.53), since for 
any fixed 0 < b < 1, uniformly in b < x < 1, a  € [—1, 1]

A ;P(x-,a) <c,

and for x —* 0, uniformly in a  € [—1, 1]

\p{x\a)\ < C |logrr|2 < CaT7,

(2.A.40)

(2.A.41)

for any 0 < 7 < 1. Finally, we check that the functions {qm(x] o)}^=1,0 < x < 
1, a 6 [—1,1] satisfy the assumptions (2.B.67) and (2.B.68). Using relation (2.A.34) 
we obtain that

( j  \Qm 1 j O! ] —
\ m  J log ( — )m ) \ m

o l — o lx

log | i ) + l  +  0 ,1 0 g "1
m m

< P  I — \ o t  m

a*—a x
-  1

+ log|n
m J \  m J V m

(2.A.42)

Thus, for any fixed 0 < b < 1 and uniformly in b < x < 1, a  € [—1,1] we have

log 771
\qm(x;a)\ < C \x a ax -  1 +  |logx| xa Qa O

m
= o(l), (2.A.43)

because a* ax. On the other hand, we obtain from (2.A.42) that, for x —► 0 and 
uniformly in a  € [—1, 1]

log 771
\qm(x;a)\ < C |logx |2 |:r “*1 — l | +  |logx| x  Qa:' 

< Cx~£ | log rc |2 < C x~~7 ,

O m

(2.A.44)

for any 0 < 7 < e, since \a* — ax\ < e. So, we can apply Lemma 2.4, to conclude 
that

m 1

(p  ( £ ’“ )  +  «•» ( r o ’“ ) )  r,'hx ^  j lo&x (Xo&x + l )dx =  (2.A.45)
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and from (2.A.37) we deduce (2.A.33).

Finally, it remains to show (2.4.7). From (2.4.6) it follows that

Ot-x &x == (Qm,x ^(Q m ,i)) (1 “t“ ®p(l)) ^(Q m ,i)( 1 H" ^p(l))

Next, notice that, under Assumption A.4, Lemma 2.6 implies that uniformly in 
j  =  1,..., m, E (r)jx ) =  1 +  0  +  o(l), as n -> oo. Thus,

-  i  L  ('"!■ ( i )  + 1K 1 +i?'?'- “ K'j-•><»)

4 §  ( + ) + ( ¥ )
- s g ( i'*(£)+')(1+“(A'-)+”<,>)

Co,* . . .  J=1

Cot, . . . .  ... i=1

1 m 1 
+0(log2 m)— -



 ̂  ̂J (log x +  1 )x^xdx +  o(l)

m
+0(log2m )— f  —dx, (2.A.47)

777* J  X  
1

1 1 
where (2.A.47) follows from Lemma 2.5. Since /(logx  +  1 )dx = 0 and /(lo g x  +

1 )x@xdx = (2.A.47) yields that

x (m \P xC \Xn (  _i /m \Px's
E(Qm,*) -  ( - )  +  0 ( m 2 +  ( - )  ^

(2.4.7) now follows by (2.A.46) and (2.A.48).

P ro o f o f P roposition  2.2. Using (2.4.7), (2.4.10) holds if

log 777

(2.A.48)

E  |Qm,x — E(Qm,x) | — O m (2.A.49)

To show the last displayed bound, we apply summation by parts, that is,

771 771— 1  j m
^  v a j b j  =  ^   ̂{pj ~  b j+ l )  ^  1 a k +  bm  ^  ^
3=1 j=1 k=1 j=1

(2.A.50)

For A; =  set 6* =  J2 ~ ^ ( 1lj,x)) • Then using (2.A.50) with aj =
j=i

-  £ f e )  and bj =  loS (£ ) +  !> yields that

771— 1

3=1

Qm,x -  E(Qm<x) =  ^  ^  (log ( ^  j  -  log —  ) ) s ,  +  - 5 m. (2.A.51)m m

By the definition of Am)X, we have that E  |5fc| < Am)X, for k = 1,..., m. Therefore,

1 m /  I '
E \Qm,x — E{Qm>x)\ < — l ° gf l  +  ~

m  3=1 '  3 >
E\Sj\ + - E \ S m\ 

J m

. j _ A l  _1. A_  Amx ^ . +  Ama
777 *— ' 7 777

7= 1  J

= O A,
lo g  777

777
(2.A.52)

since log(l +  x) < a;, for a; > 0.
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Next, we prove (2.4.11). It suffices to show that

(2.A.53)

By the definitions of Qm,x and VmtX, together with relation rjj X =  r)jX, it
follows under Assumption A.3 that

j=1
Qm,x -  E(Qm,x) ~  Kn,x =  — ^  ( log ( — ) +  1 f/* x -  E ( f a ) )

711/ \  \  771J

{^j,x E (t)j x)) )
Q),a

3= 1

X f e  -  E ( r $ J ) .

Because by Assumption A.4 we have that, as n —► oo, 

1 1 _  C!,xA^ +  o (  A f)

(2.A.54)

co)X hx(Aj) ^  +  Cl x\P* +  o  (a?1) )

ci.xAf1 +  o (aJ‘ )

co,x +  0  ( ^ * )

=  tr^+oW0> (2.A.55)

since (1 +  O(x)) 1 =  l+o(x) for x —> 0, we have that the right hand side of (2.A.54) 
is

i  E (>°g { i ) + 1 )  ( I : + ° f e  -  E (*u)) ’ (2.A.56)

and so

^ |Q m ,*-.E (Q ra ,x )-K niX| <  E

'0,x

j=i
m

+ 1 E771 'J=1
: =  i?i +  i?2-

log ^  +  1
771 « ( Ai*) W

(2.A.57)
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We first examine R\. For j  =  1 , m,  define pj =  (log (£ ) +  l) (j ) ^  . Then,

+ 1m

+ 1m

=  |log jf - lo g ( j  +  l)| ( -

+  |logC? +  l) — logm + 1|

j  +  1

_ ^  + 1J

log

+  |log(j +  1) -  logm + 1| ( - 1 - ( i + T (2.A.58)

By the mean value theorem, we have for every j  =  1,..., m  that

‘ - H r - H f - H

for some 8 G (0,1). Since log(l +  x) < x  for every x > —1,

m \ P x  1
j

(2.A.59)

\Pj~Pj+1| < Clogm  ( (2.A.60)

For k = 1 ,...,m , we have by the definition of A mjX that F? |Sfc| < A miX. Applying 
equality (2.A.50) with aj = p*x — E(rjjX) and bj = pj gives

< C

-  C ( n )  Am'x 

= C ( n )  Aro’x

logm m - 1 1

E ^ 1/  ^ 'j m



since by assumption, Am>x =  o •

Now, we consider R2. Noticing that under Assumption A.4, Lemma 2.6 implies 
that E{rij}X) < C uniformly in j  = 1, ...,ra, and using Lemma 2.5, we obtain that

+ 1* - •((=)'■)= £h(*)

■ ‘■(O’' ) ( / |l0g, + 1|*:+O(s)
-.((=)*■) ( w  + o ( i ) )  -.((=)*■), <W«)

1
since f  |log x + 1| dx < oo. The last two displayed inequalities together with (2.A.57) 

o
imply (2.A.53), and complete the proof of (2.4.11). ■

P ro o f of C orollary 2.1. Noticing that Assumption A.4 is stronger than Assump­
tion A.3, Lemma 2.2 implies that

m~lAm>x =  O ^log (m) m~^ +  ^ ^  ^ , (2.A.63)

and in the case 0 < ax < 1, it holds that

m_1AmjX =  O ^log logn^ . (2.A.64)

Moreover, if Am>x =  o , Proposition 2.2 imphes that

~ ^  ( .  logm _i (m \P x \ax -  ax =  Op ( Am>x——  +  m 2 +  j  \ . (2.A.65)

i) Observe that D ^x < Dx < oo. So, from expression (2.A.63) with ax = 0, it
follows that

Am)X = O (log (m) rrA +  m n~^j = O (log (m) rri^j =  o ^ )  ’ (2.A.66)

We can therefore apply bound (2.A.65) and deduce that

ax - a x = Op ^m_s logm +  ( ^  , (2.A.67)

which proves (2.4.18) with
rm = 0. (2.A.68)
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ii) We have that D*nx < D X < oo. Hence, (2.A.63) gives

Am,x =  O (log (m) vnh +  mrT* )  = 0 ( i0^ m )  ’ (2.A.69)

under the assumption a x G (—1,0) and r&vrC1 log2m = o(l). Then, (2.A.65) yields

-  ^  (  - i ,  2 _ i  ( m \ a* . 2 / m \ P x \
a x - a x = Op [m  2 log m +  n 2 y— J log m  +  J 1

„ /  _11 o - i 71 i 2 / m \ 0*\=  Op I m 2 log m +  n 2 — log m  + ^—J J

= Op ^m 2 log m +  ^—J + n 2m log m j , (2.A.70)

which proves (2.4.18) with
rm — n^m ~l log2 m. (2.A.71)

iii) From (2.A.63) we have that

Aro>,  =  O (log (m) m i + m  ( ^ )  2 =  o ( ^ )  . (2.A.72)

under the assumptions O* x =  o ( iQ̂ n) and ax G (0,1). We can therefore apply 
(2.A.65) to obtain that

ax - a x = Op ^m ~5 log2 m  +  ( ““ ) l°g2 m  +  ( “ ) > (2.A.73)

which implies that (2.4.18) holds with

r™=(%£)2 G r iog2m- (2 -a -74)

iv) From (2.A.64) it follows that

Am,, = O (log (m) m i + m  ( ^ i )  ( ^ )  + ’ log nj = o ( j+ T ^ )  - (2.A.75)

since ax G (0,1), D**x =  0 ( ) for some 0 < 7 < 1, and m~1n ' ^  = 0(1). Using
(2.A.65), gives

ax - a x = Op log2 m +  ( ^ )  l°g71 l°g2 m  +  ( “ )

= Op ( m - i \o g m + Q 0* + ( ^ ) *  0 - 1+“'log3nV(2.A.76)
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which implies (2.4.18) with

T m. — ®  log=n,x \ I " u \ “ i^„3
n j \ n

n

and completes the proof of the corollary.

Proof of Proposition 2.3. i) Let I£x(A) =  ^ T. £t,x&t=l
it\

(2.A.77)

and, for A: =  1,..., m,

write
k k k

E % *  =  E 2^ * ^ ) + E  -  2^ . ( Ai)) :=  (fc) + (fc) • (2-A-78)
j=i j=i j=i

We have already shown in the proof of Theorem 2.2 that Assumption A.3 implies 
A.I.

On the other hand, under Assumption A.3, we have from Lemma 2.7 that As­
sumption A.2 follows if

^ m

m ^  J,x j=i
(2.A.79)

as n —> oo. To establish (2.A.79), it suffices to show that

— S'n i  (m )  1 (2 .A .8 0 )
m

and
- S n ,2 (m )  0 , (2 .A .8 1 )m

as n —► oo. Convergence (2.A.80) follows from Robinson (1995b) pp. 1637-1638.
Moreover, from relation (3.17) of Robinson (1995b), it follows that, as n —> oo,

1
/log .A

(2 .A .8 2 )

Thus,

E
m Sn,2 (m)

3=1 
l . i< Cm 2 log2 m I — ^

=  Cm 2 log2 m I J x  2ch +  o(l)

< Cm 2 log2 m =  o(l),

(2.A.83)

(2.A.84)
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where (2.A.83) follows from Lemma 2.5 below. The inequality (2.A.84) implies 
(2.A.81).

ii) Using (2.A.78), we have

k  k  k

Y  =  Y  + Y w *  ~ = Sn-1 w + S n>2 w + ^  w  ’ (2-A-85)
i=i i=i j=i

where fl„(fc) =  E (^ ,x  -  »?,>)■ Thus>
j=1

— max E
l < k < m E fe - ̂ ) )

j=i

< max (£7 |S„,i(fc) -  £ S n>i(fc)l +  E  |S„|2(fc) -  £ S n>2(fc)ll<fc<m

+£7 |J^(fc) -  £7i^(A:)|). (2.A.86)

Prom the proof of relation (4.9) in Robinson (1995b), it is evident that

E  (5 „ ,i( fc )  -  E S n ^k ))2 = 0(k)  (2.A.87)

and from Cauchy-Schwarz’s inequality, it follows that

E  |SM (fc) -  £S„,i(fc)l < (£(5„,i(fc) -  £5„,!(fc))2)^ =  O (**) .

Using similar arguments as in (2.A.84), we have that

E \S U}2(k) -  E Sn>2(k)| < 2E  \Sn>2(k)\ < C ki log^ /c. (2.A.88)

It remains to examine E  \Rn(k) — E R n(k) \ . Observe that, under Assumption 
A.4, Lemma 2.6 implies that, as n —► oo, E(r}jX) < C  uniformly in j  = 1 ,...,m . 
Moreover, under Assumption A.4, as n  —► oo,

E \ V j tX V j , x \ + o(A?‘ )
CQ,x E ^ = 0 { & ) ’ (2-A-89)

which implies that

ElRnik) -  ERn(k)\ < 2E \R n{k)\

i = i

(2.A.90)
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From (2.A.86), (2.A.87), (2.A.88) and (2.A.90), we conclude that

A m , x  =  O  ^ 771* log^ 771 +  771 , (2.A.91)

which shows (2.5.8).

iii) We first write

m hvm<x = m  ( lo§ y — J  +  fe,* ~

+m~i Y  ( loS (“ ) + (2^ 4 , (Aj) -  1)
- , s xm .J=1 N N '

771

+TO * Y  ( lQg [ - J  +  1J  b  -  E  fa> ))

— Kn,! +  +  Vm,3' (2.A.92)

To show (2.5.9), it suffices to show that

I—» a> (2.A.93)

vm,2 - i  JV(0, 1), (2.A.94)

Vm,3 o, (2.A.95)
and

a s  77 —► o o .

We start by showing (2.A.93). Applying summation by parts (2.A.50) with
dj — r)j X — 2nI£x(Xj) and bj =  log (^ ) +  1 implies that

K n,i =  m-i Y  ( loS [~j -  loS ( ^ r ) )  J2 (% *  -  27r/£x(Aj ))

m
+m~i Y  i1!],* ~  ^ h A \ ) )  • (2.A.96)

J = 1

From the proof of equation (4.8) in Robinson (1995b), it follows that, as 77 —► oo, 

Y  f e ,*  “  25r/£x(A})) = Op ( j i  logs j  + j i n _i )  . (2.A.97)
fc=1
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Thus, as n —► oo,

771—1

Vm,l =  m  2 ^  lo g  

i = i

+ra 2

=  m  2

(j^iog" j + i 2n i )  

^Op log^ m +

12°p  l̂Zlog(1 + y) ( j t l o g z j + j l n

+Op (m~* logs m  +  n ~ ^

*Op -. (j*  logs j  +  j +  Op(l)

/  771—1 771—1 \

2O p  ( l o g ^ m ^  + n " 4  ^ 2  j~ *  I + O p ( l )

=  m  2

=  m  2
j'= i
m

3= 1
771

=  m~^Op I logs m I x~^dx + n~* I x~^dx J +  op(l) 
\  0 0 /

=  r a _ 2 O p  ^ l o g s  r a ^  m s  +  n ~ * r a 2 ^ - f  o p ( l )

=  O p  ( ( l o g s  r a ~ s  +  n - * )  +  O p ( l )  =  o P ( l ) ,

as required.

Next, we show (2.A.94). Using equation (2.B.13), we can write

Vm, 2 =  rn * f K £ H i > ( = ) )  < * •« » -*
771

+m _s (27T/«.(Ai ) - 1 )

= m ^ J 2 ^ j (2TrIez( \ j ) - l )
3= 1

+m 2 —
j=i

J = 1

+m - s ^ J \ogxdx +  o(l) +  1^  Op ( r a ^
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=  m  2 Vj (2irl£x(\j)  — 1) +  op(l), (2.A.99)
3= 1

m
where we have used equation (4.9) of Robinson (1995b), that is (27r/£a.(Aj) — 1) =

j=i
( i \  m 1
m 2 J , and that ^  1°6 (m) =  I^ °Z X(̂ x +  o(l) by Lemma 2.5. It follows by

'  k=1 o
Robinson (1995b) pp. 1644^1647 that, as n —► oo,

m
m - i ^ i  ( M M  -  1) ^  JV(0,1), (2.A.100)

j=l

which together with (2.A.99) imply (2.A.94).

Finally, we show (2.A.95). We have from Theorem 2 of Robinson (1995a) that
E (r]j,x) =  1 +  0  uniformly in j  =  1,..., m, as n —► oo. Thus,

=  o ( m - h o g 2m ] r V )

=  O log3rnj =  o(l), (2.A.101)

as n —► oo, which proves (2.A.95) and completes the proof of (2.5.9). ■

2.B Appendix

This section contains a series of technical lemmas used in the proofs in Appendix 
2.A above.

Lemma 2.1
Suppose that Assumptions A .l and A.2 hold. Then, as n —*■ oo, for every 0 < e < 1 
and S > 0,

Pr j sup
a£[—1,1] :a—ax>—1+e

Tn(a) a — aa
> <5) -> 0 (2.B.1)

Vn(a) 1 +  a - a  

and, for every 0 < e < 1, there exists constant 0 < C (e) < oo such that

P r (  sup Z i M < - C ( e) | - l .  (2.B.2)
\aS[-l,l]:a-ai<-l+£ Vn\PL)
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Proof. Define

tm ( —; « )  =  ( —V m ) \ m

a—ax
l/j,

a—ax

l0g(m j+1
and

V ( ~ ; a ) =  \ \ m  J \ m

a—ax

(2.B.3)

(2.B.4)

(2.B.5)

where vj is given by (2.A.2). Then, from the definitions (2.A.3) and (2.A.4) of 
Tn(a) and 14(a), we can write

24(a) =  — tm ( —; a  j 77*
m  '  \m  J J'

j= 1

and

Define further

Vn(a) =  — ( — ;a j rj*m  ' \ m  J J’j=i

T(a) = a  — a,
and V  (a) =

(2.B.6) 

(2.B.7) 

(2.B.8)

(2.B.9)

14(a) V(a), (2.B.10)

uniformly in a  G [—1,1] : a  — a x > — 1 +  e. Then, (2.B.9) and (2.B.10) imply that 
uniformly in a  G [—1, 1] : a — ax > — 1 +  e

Tn(a) T(a)

(1 +  a — ax)2 v 7 1 +  ol — ax

We start with the proof of (2.B.1). It suffices to show that, as n —► oo,

T„(a) ^  T(a)

and

0, (2.B.11)
Vn(a) V(a)

as n —> oo, which shows (2.B.1).

We first derive (2.B.9). Note that from Lemma 2 of Robinson (1995b), we have 
that

logm
m

V4

as m —► oo. Hence,

=  i o g ( i ) - l f : i o g ( A ) = l o g ( i )  +  1 +  0 ^ ™  
\ m / m f  ̂ V m / \ m /
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Since a — ax > — 1 +  e, (2.B.14) implies that

= « ( —; a )  +  ( —

\ m  J \ m J \  m

—1+£
o

log m
m

=  t ( L a) +m^ 0 ( ^
\ m  J \ m

=  t ( ^ , a ) + o ( X ) . (2.B.15)

We use equation (2.B.15) to apply Lemma 2.3. We first notice that the vari­
ables {rjj }jL1 satisfy Assumptions A.l and A.2 and, therefore satisfy (2.B.50) 
and (2.B.51). The function tm{x\a) satisfies (2.B.52) and (2.B.53), since (2.B.15) 
implies that, for any fixed 0 < b < 1, uniformly in x G [b, 1] and a  G [—1,1]

d , a —atx —1 |l0g£ +  1| +  Xa—ax —1+  o(l) < C, (2.B.16)< \a  — ax\x 

whereas for x —► 0,

|tm(x; a)| < xa~ax |logx +  l |+o(l )  < x~1+£ |logrr +  1|H-o(l) < C x ~ ^ ~ (2.B.17)

taking into accoimt that a — ax > —1 + e. So, by Lemma 2.3 we conclude that, as 
n —► oo,

l_
msup — y ] t m  ( —;a  I r)3m  f J  \  nm I J’

P 0, (2.B.18)l x ~  /  t(x-,a)dx 
'  o

which implies (2.B.9).

Next, we show (2.B.10). As before, {f7j |X}JLi satisfy conditions (2.B.50) and 
(2.B.51) of Lemma 2.3. In addition, for any fixed 0 < b < 1, uniformly in x G [b, 1] 
and a G [—1,1], we have that

d_
dx

v(x ; a) — \a — a T \xa—ax—l <c, (2.B.19)

whereas for x  —> 0,
v(x]a) | =  xa ax < x  ^  e\ (2.B.20)



recalling that a — ax > — 1 +  e. Therefore, from Lemma 2.3, we deduce that, as 
n —> oo,

 ̂ m

m
sup

<*€[-1,1]

1
J v(x; a)dx * 0,m V \ m ' a )  T̂1'z

3=1 0
which implies (2.B.10), and completes the proof of (2.B.1).

Finally, we prove (2.B.2). Let 0 < S < Write

1 /  • \  i m / • \
T„(a) =  — V ' ( —; a ;) tj* H V  tm ( —; a )  rf

\ m  J n j f c L !  \ m J
- — T n,i(oi)  +  T n> 2 ( a ) (2.B.22)

and

Pml /  • \  m , .
Vn (a) = — —; « * ) » £ +  — ^ 2  v [ — ’a ) rll1m 2-—' V m J Jy m  f—' V ^  7m

3=1

: =  K i,i(« ) +  ^ 2(0:). (2.B.23)

From (2.B.13) and the definitions of tm (^ ; a) and v (^ ; a) , it follows that, uni­
formly in a  G [—1,1] : a  — a* < — 1 +  e and j  = [6m] +  1,..., m

N  < c , m
< C ( s ) , v \ — ;a 

m
< C (e ) , (2.B.24)

for some constant 0 < C (e) < 00. Using the same argument as in (2.B.65), As­
sumptions A.l and A.2 imply that, as n —► 00,

Hence, we have that

and

sup |Tn>2(a)| < C(e)
a—ax<—l+e

sup \Vn>2(a)\ < C ( e ) ,
a—ax<—l+e

(2.B.25)

(2.B.26)

(2.B.27)

with probability tending to 1, as n —* oo.

Next, using (2.B.13), we obtain that, for j  = 1,..., [5m]

Vj < —2 +  o(l) < —1 , (2.B.28)
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since 0 < 6 < Thus,
Tn,i(a) < -V n>1{a). (2.B.29)

Then, if
Vn, i ( a ) - C ( e ) > 0  (2.B.30)

with probability tending to 1, as n —> oo, (2.B.26), (2.B.27) and (2.B.29) imply
that, uniformly in a  € [—1, 1] : a — ax < — 1 +  e

^n(oQ _  ^ti,i(q) +  Tn^{cx) . —Vn,i(oQ +  C (g) _  , .
Vn(a) Vnfl(a) + Vn>2( a ) ~  Vn>1 (a) -  C (e) K J

with probability tending to 1, as n —* oo, which proves (2.B.2).

It remains to show (2.B.30). Define the function v(x;  a) = x~1+£ if 0 < x < 5
and v (x’, a) = 0 if 5 < x  < 1. Since a — ax < — 1 +  e, we have v (^ ; a) > v (^ ; a)
for j  — 1,..., [5m]. Therefore,

1 PH /  * \  i m /  • \
Vn,i(a) =  — ( —; a )  rjj > — ^ v  ( — ;a)r}* . (2.B.32)m  ' V m )  m  r —f V m Jj=i N ' j=i N '

By assumption, {r)jX}Jhj satisfy (2.B.50) and (2.B.51), while the function v ( x ; a), 0 < 
x < 1, a E [—1,1] satisfies piecewise conditions (2.B.52) and (2.B.53). Thus, by 
Lemma 2.3 and Remark 2.4, we obtain that, as n —► oo,

m 1
Vn,i(a) >  ^ ] T y  ( T ;  aj rfj,x J  v (x\ a) dx = j  > C  (e) , (2.B.

n
33)

for 0 < e < 1 small enough. ■

Lem m a 2.2
Suppose that {xt}tez is a fourth-order stationary sequence with spectral density 
function f x(.) satisfying Assumption A.3. Then

m_1 A m>x =  O ^log (m) ( “ ) ^  • (2.B.34)

Moreover, in the case 0 < ax < 1, it holds that

m_1 Am)X =  O Aog(m ) ( ^ j  lognj  . (2.B.35)
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P ro o f. Denote vx(X) =  / ■Wx̂  -ax. Then, we can write TjjX = |^T(Aj)|2 , and
■y 27TCo,x 1̂ 1 x  1

for j  —  1, ...,n — 1, we have E  (vx(Xj)) — E(v^(Xj)) = 0. From Theorem 2.3.2 of 
Brillinger (1975), we obtain that

cov (vx(̂ XjS)vx(̂ Xj), vx( Xp)vx (Ap)) — c%ltyi{%) x(Xj}, vx (A j) , (Ap), (^p))

E  (vx (Aj ) Vx (Ap) ̂ E(vx (Aj )'UX (Ap)) 

+£7(va:(Aj-)t^(Ap))^(i^(Aj)vx(Ap)).(2.B.36)

Thus,

E  f e  f e  -  ^,x)
\ j=i  /  j,p=i

k
— COV (^^(Aj)'Ua;(Aj) , ‘Uj;(Ap)'Ua:(Ap))

J,P=1
fc

< ^  (|£:K (A ,)t;1(Ap))|2 +  |£:(t;x(AJ.)^(A),))|2)
j.P = l

k
+ ^  ^ C l L T f l { v x ( X j ) ,  V a ;(A j) ,  f x ( A p ) , U x ( ^ X p ) )

j ,P = l

: =H„,i(A:) +  /2 n>2 (fc ). (2.B.37)

Then, the Cauchy-Schwarz’s inequality implies that

\  2 \  i

Aro'* -  i S S ,  I E  ( X  f e  _  E{vl*))
J =1

= max ( i ? n , l(&) +  Rn,2(k ))*l<k<m

<  max ( R l ^ k )  +  K*a(fc)) , (23.38)

where the last displayed inequality follows since (|a| +  |6|)3 < |a |5 +  |6|5 .

We first consider Rn>i(k). By Lemma 2.6, it follows that, as n —> oo,

^ i(fc) - c (1̂ ( ( & +^ ^ ) +S (1+0(l2̂ )+0(1)))
< C | log2m ^  (j — p)~2 ^  p - \ < * x \ j - 2 + \ a x \ _|_ m  j

\  1 <p<j<m 1 <p<j<m /
771 OO

< C ( log2 m  EE j  2 +  log2m p ^ p  1+laa:lj 1 +  m
p = l  J  =  1  l < p < j < 7 7 l
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=  C I log2 (m) m  +  log2 m

< C ^log2 (m) m  +  log2 m  ( X - *  l J  + m

< C (log2 (m) m  +  log4 m  +  m) < C  log2 (m) m.

Next, we examine Rn,2 (k). We have
k

**•2{k) ~ Cq)X (27rn) ^ p==1
n

x |e<(tl" ta)Aj‘e<(t3“t4)Apcum(a;tl, xt2i x t3, x u ) \

(fc \   ̂ n

X AH  X  | Cx ( t \ , 2̂ j 3̂ 5 4̂ ) |

j=l J  ti,t2,t3,U=l
2

(2.B.39)

* c - "  e r -  = e  a
3=1

^   ̂ |Px(ti, t2, t3, t4)|
*1>*2 ,̂ 3̂ 4=1

(2.B.40)

where (2.B.40) follows, since, for —1 < a x < 1, we have that ^  (m)** =

f  x axdx +  o(l) =  0 (1).
0

From (2.B.38)-(2.B.40) we obtain that

A m,x < C I log (m) 7712 +  m
D

n
n,x \ 2 (2.B.41)

which completes the proof of (2.B.34).

Now to prove (2.B.35), we provide a sharper bound for Rn>2(k). Define Bk(t) = 

2̂  £  for k = 1, Thus,
j=i

i2n,2(fc) = y i  — t2)Bk{t$ — t±)Cx(ti, t2, t3, £4)
1̂ ĵ 2 )̂ 3>̂4=1 

n
£  -E?fc(£i — t2)Bk{tz — U)

X Cx ( f i  — t 2 , 0 ,  £3 — £4 — ^2 ) (2.B.42)
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< n  ^ 2  B k ( u i ) B k ( u 2)cx ( u u  0 , u 2 +  u 3 , u 3)
ui,U2,U3=—n

n

(2.B.43)

<  n  5 3  \ B k ( u i ) B k (u 2) \  5 3  |C*(u l . 0 . “ 2 +  u 3 . u 3 )|
ui,U2=—n U3=—n

^ nDz  E (2.B.44)

where equality (2.B.42) follows from the properties of the cumulant and, inequality 
(2.B.43) by the change of variables, u\ = t\ — t2} u2 =  £3 — 14 and u3 = U — t2. We 
show below that, when 0 < ax < 1,

(2.B.45)

where | t | , =  m ax{|t|, 1}. Then,

R ^ ( k )  <  C n D “  ( ^ ) 2“ '  ( 5 3  ^
, t = —n

< CnDn'x ( ^ )  * log2 n ,

which together with (2.B.38) and (2.B.39) imply (2.B.35).
p  . .

It remains to show (2.B.45). Set sp =  e f°r P = •••> Then,

(2.B.46)

3= 1

Sn — A\t 1 -  eipXi

s m | -

1 — e tXt

- l

<
e: 2 (e 2 — e 2 J

< c
71

WU’
(2.B.47)

where the last inequality follows since —► 1, as x —► 0. Using (2.A.50) with
a,j =  eltXj and bj = j ax, we have that

(
fc-i

5 3  +  1)a i ) si  +  k *XSk

Hence, it follows from (2.B.47) that

\Bk(t)\ < Cn~°‘* \t\-1 ( 1£ \ j ° ‘* - ( j  + ir'\ + k‘
\ j = 1

(k-1

E ( c ? ' + 1 )“' - ^ ) +fcC
3=1

= Cn~ax Itl; 1 (2 k“x -  1 ) < C  Itl" 1,
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as required.

Lem m a 2.3
Assume that the random variables {yj}™=1 — are such that

E  \yj\  <  C

uniformly in j  = 1,..., m and, for any 0 < r  < 1,

[mi]

(2.B.50)

r - r Z w * 1.\Tm\L 1 J=1
(2.B.51)

as m  —> oo. Suppose further that there exists function w(x;a),  0 < x < 1, a  £ 
[ai, C R such that

sup sup
&<x<l oG [01 ,02]

d_
dx

w(x; a) < C ,

for any 0 < b < 1 and, there exists 0 < 7 < 1 such that

sup |w(x\ a) | < Cx 7,
a€ [01,02]

(2.B.52)

(2.B.53)

as x  —* 0. Then, as m  —*■ 00,

sup
a€ [01,02]

— w (  — ’, a )  yj — [ w(x;a)dx\m J J ^  0. (2.B.54)
j - i  0

Proof. First notice that from (2.B.51) we have that, for any 0 < r\  < T2 < 1,

1
[r2m]zM  -  [ r i m ] [ r am ] -

/  hm] [rim] \
1, (2.B.55)

a sm- >oo .  Next, we fix 0 < b < 1 and split the sum in (2.B.54) in two sums,

1 /  • \  1 /  • \  1 m /  • \
— Z w ( ' a ) y j  = — Z W  ’a ) y j  + — Z  ”’ ( >“ )%• (2.B.56)

We begin by examining the first sum on the right hand side of equation (2.B.56). 
In view of assumptions (2.B.50) and (2.B.53), we deduce that, for any 0 < b < 1,

E  ( sup
oe[oi,Q2]

* M  / .

m Z ®  ( £ ; « ) »j = 1 v

[bm\ , . v _7

m *—' v m
3= 1
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1 - 7

because 0 < 7  < 1. Thus, asm -> oo ,

[6m]

[6m] , . . _ 7

< m \ m jj=i \ '

<  C  x 7dx +  o(l)

- (2.B.57)

sup
a€ [<*1 ,0 :2] j =1 '  /

(2.B.58)

as b —> 0 .

Next, we consider the second sum on the right hand side of equation (2.B.56). 
Let e >  0 and define the partition of [6,1], b =  t \ < ... < Tp =  1, where t p+i —rp =  e 
for p =  1 ,..., P  — 1 for some fixed P. Then, we can write

1  £  w U ; a ) yj =
m  Z ' V m J rn Z Z ' \ m /j=[6m]+l X 7 771 z ' \  771

P_1 rP<m—tp+1
1 P_1

=  X ,  w(TP’a )yi
P_1 Tp<i<TP+i 

p - i

E  ( » ( - ; « ) - w ( T , ; a ) ) »
p_1 rP<m—rP+l

: =  5*1 +  (92. (2.B.59)

We first examine S\. Since for every p  =  1 ,..., P, we have —> rp, as m —► 0 0 ,
and using (2.B.55) we obtain that

p - 1

Si =  (l +  op( l ) ) ^ w ; ( r p;a ) ( rp+1- T p)
p = i

( p ~ i Tp  .

=  (1 +  0 , ( 1)) £  / (vj(tp; a) — to(i; a)) dx +  I w(x\ a)di
V=I i  r=l i

=  (1 +  0p(l)) j O (Pm) + J w(x; a)dx J , (2.B.60)

r p+ 1
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where (2.B.60) follows from the mean value theorem with

p - i t p + i

P =■* 777.

P-1 Tn
sup sup

b<X<\ aG[Q:i,Q:2]
d_

dx
w(x ; a) (x — rp) dx = eO (1), (2.B.61)

by (2.B.52) and since r p+1 — rp = e. Hence, we can write (2.B.60) as

Si =  ( 1  +  O p ( l ) )  |  £O ( 1 )  +  J w(x\ a)dx (2.B.62)

In (2.B.62) the term 6( e ) = eO (1) —► 0, as e —> 0, and thus, we can make <J(e) 
arbitrarily small by choosing small enough e. Hence, using assumption (2.B.52),

which implies that f  w(x;a)dx
b

< oo, we deduce

Si = J w(x\ a)dx +  op(l) +  5(e), (2.B.63)

where op(l) —► 0, as m —► oo and 6(e) —► 0, as e —► 0.

Next, we consider S 2 . Applying the mean value theorem and then using (2.B.50), 
we obtain

h p - i

£|SJ s E
<

<

P_1 Tp<^<Tp+1
r P~l
-E  E

P ~ l  tp<£:<tp+ 1

w ( — ;a ) -  w(rp;a) E \Vj

 r ?
771

sup
TP<Z<i;

p- 1

<

— E  E  It p + i  ~  tp\ s u p  s u p
m U Tp< ttr p+1 « < l a 6[ai«]

Ce ^ 1
771

E E (2.B.64)
P_1 Tp<^<Tp+i J- 1

for any fixed e > 0, by assumption (2.B.52).

Since e can be chosen arbitrarily small, (2.B.59), (2.B.63) and (2.B.64) imply 
that, uniformly in a  G [ai, 02],

m 1
— ^  w ( — ]ot\yj-£* j w ( x ; a ) d x , (2.B.65)
m j=m + i '  {
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as m —> oo. Notice also that, as b —► 0,

1 1 6 1 /  b

J w(x;a)dx = J w(x',a)dx + J w(x\ a)dx =  J w(x-,a)dx + 0  I J x  7dx
0  6 0  6 \ 0  

1 1

= J w(x; a)dx +  0 (61-7) = J w(x; a)dx +  o(l), (2.B.66)
6 6

since 0 < 7 < 1.

The latter displayed equation together with (2.B.65) and (2.B.58) complete the 
proof of the lemma. ■

R em ark  2.4
Lemma 2.3 holds when the function w(x; a) is piecewise differentiable in (0,1) and 
satisfies piecewise the assumption (2.B.52) and (2.B.53).

Lem m a 2.4
Assume that the random variables {yj}™^ and the function w(x;a) satisfy the 
assumptions of Lemma 2.3, and the random variables {rm(x; a)}“ =1, 0 < x  < 1, 
ol G [c*i, <22] C R  are such that, as m —► 00,

sup sup \rm(x;a)\ = op(l), (2.B.67)
6 < X < 1  q £ [ q i ,Q!2]

for any 0 < b < 1 and, there exists 0 < 7  < 1 such that, as m  —► 00,

sup \rm(x;a)\ =  0 p(x~7 ), (2.B.68)
ae[ai,a2]

as x  —> 0. Then, a s m —>00,

sup
ae[ai,a2]

m 1

i  (£: ■“) + ( i ’“) ) » -  /  »(*: ̂
J —1 n

i  0. (2.B.69)

P roof. In view of Lemma 2.3, for the proof of (2.B.69) it suffices to check that 
uniformly in a  G [ a i ,  02 ]

( ~ ;Q!) yi ^ ° ’ m \ m J
(2.B.70)

j=1

a s m —>00. We split the sum in (2.B.70) in two sums,



for some fixed 0 < b < 1.

We start by examining the first sum on the right hand side of (2.B.71). By 
(2.B.68) and (2.B.50), we have that

[6m]

E  ( sup
ae[ai,a2] 3= 1

— X / m ( —; a ) %m \  m I

[6m] . . * _7

J=1
/  w

bm

<  C  I m~1+1 J x  1 dx

=  C m “1+7

< C61-7 .

(6m) 1 -7

1 - 7

(2.B.72)

Since 0 < 7 < 1, we deduce that, as b —► 0,

[6m]

sup
C*e [011,0:2]

0. (2.B.73)

On the other hand, using (2.B.67) and then (2.B.55), we deduce that, for any 
fixed 0 < b < 1, the second sum on the right hand side of (2.B.71) is bounded in 
absolute value by

m / * \ 1 m

— rm m f—'j=[6m]+l
< 0,(1) m £  %j=[6m]+l

—  op(1), (2.B.74)

uniformly in a  G [ai, ol̂ \.

Hence, from (2.B.73) and (2.B.74), it follows that (2.B.70) holds uniformly in
ol G \ol\  , 0:2] • ®

Lemma 2.5
Let g(x), 0 < x  < 1 be an integrable function.

i) I f  there exists 0 < 7 < 1 such that dg(x)
dx < Cx 7 for 0 < x  < 1, then

m 1

b ' E , 9 ( m )  =  / 5 +  °  (m_1) ’ (2.B.75)
-7=1 n
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as m —► oo.

ii) I f  there exists 1 < 7 < 2 such that \g{x)\ <  (7x_7+1 for 0 < x < 1, and 
< Cx~7 for 0 < a; < 1, thendg(x)

dx

m 1
^ £ s ( £ ) = / < K z ) d *  +  0 ( m ^ ) ,

J—1 n
(2.B.76)

asm  00.

Proof, i) The sum on the left hand side of (2.B.75) can be written as

[mx] +  1 dx
m

1

= J  (p dx + J  g(x )dx. (2.B.77)
0 0

P r o m  t h e  m e a n  v a l u e  t h e o r e m  w e  h a v e  t h a t ,  f o r  s o m e  £  6  (x, lm l l+ 1 ) ;
m i l  + 1 \  ,  .

9 1 —  -  a(®)m
dg(0 [mx] +  1

< sup

m
dg{ 0 [mx] — mx 1

1— J +  —m m

which, under the assumptions of the lemma, is bounded by

c sup r 7
[mx] — mx 1
I  i +  —

m m
< Cx"7- ,  m

, (2.B.78)

(2.B.79)

uniformly in 0 < x < 1, since 0 < 7 < 1. Hence, 
1 1

9
[mx] + 1

m
-  g(xfj dx < J\g E L ± i )  _  5 ( x )  

0
dx

m  J
< C — j  x~Jdx = C 

0

1 1
m 1 — 7

=  O (m-1) . (2.B.80)

The latter displayed bound together with (2.B.77) proves (2.B.75).

ii) In view of (2.B.77), it suffices to show that

/  if ( ^ m + 1 )  “  9̂ ) dX = ° ( m7~2)- (2.B.81)
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We take the integral in (2.B.81) and split it up in two parts,

i £
( [mx] +  19 I ) -  s (x) ) dx =

m m

+ /(■
[mx] +  1

m

-  g(x) ) dx

— g(x) ) dx. (2.B.82)

We now examine the first integral on the right hand side of (2.B.82). Since 
0 < x < —, we have that [mx] =  0. Then,

dx

m
< C J  (to7-1 +  x“7+I) dx

= 0(mr~2). (2.B.83)

Consider next the second integral on the right hand side of (2.B.82). Using the 
same argument as in (2.B.79), we have that

s , ^ 4 ± i , - s W
m < Cx~7— m

(2.B.84)

uniformly in 0 < x < 1, since 1 < 7 < 2. Thus,

~9(x) ~ fm J
dx < C — J  x 1dx

i  
m

l7- 2m m -1

\ 7  — 1 7 — 1
= O (m?-2) , (2.B.85)

since 1 < 7 < 2.

From (2.B.82), (2.B.83) and (2.B.85), (2.B.81) follows. ■

The following lemma is an extension of Theorem 2 of Robinson (1995a) that can 
be found in Abadir, Distaso, and Giraitis (2005). Recall that we denote ^(A)  =

w x (X)

y/2Trc0tX\ \ \ ~ ax
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Lem m a 2.6
Let Assumptions A .3 be satisfied. Then uniformly in 1 < k < j  < m — o (n) , as 
n —► oo,

l) e ( s w ) * i + 0 ( ¥ ) +°(11' (2BM)
where o(l) —► 0 uniformly in 1 < j  < m, as n —> oo,

ii) E  =  O , (2.B.87)

iii) E  = O +  O ( ^ I S d  )  > (2.B.88)

iv) E  M A > X(A*)) =  O +  O ( ^ s i p s r J  • (2.B.89)

Lem m a 2.7
Suppose that Assumption A. 3 is satisfied.

i) I f  cov(r}j X, r)k x) —> 0 when j  ^  k and j, k —► oo, then

-  771

i = i

as n —► oo.

ii) Convergence (2.B.90) is equivalent to Assumption A.2.

Proof. First notice that under Assumption A.3, it follows by Lemma 2.6 that, as 
n —► oo,

=  1 +  0  +  o(l) (2.B.91)

uniformly in j  =  1,..., m.

i) Write

^ 771 .* 771 *1 777

„E ^  = ~E fe* - £(%*))+- E := (2-B-92)
i = i  j = i  i = i

To prove (2.B.90), it suffices to show that, as n —► oo,



We first show convergence (2.B.93). Let e > 0. Since cov(rjjX,r]kx) —> 0 when 
j  ^  k and j, A; —> oo, we can find K e G N large enough, such that \cov(r)^x,r}kx)\ < 
| ,  for any j  ^  k and j, k >  K e. We have that

=  - E  f e x  -  ■Sfex)) +  -  E  f e x  -  fa*.)) :=  ^ 1+ ^ * -  (2.B.95)MC/ I I I ,3=1 j=Ke+l

Then, from (2.B.91) it follows that, for a fixed G N,

E  I f l^ l  < ^ - 2 ^  £ ? (^ )  < l c / f .  =  o(l), (2.B.96)
/ / V lit3=1

as n —> oo. On the other hand,
 ̂ m

E iR™?) = -Zfl E  c(w(% x,% ,j

^  771

^  ^ 2  E  l ^ f e x . ^ x ) !
m  A t = j r .+1

1 /  m m

^  i  E  1 +  E  c
\j,fc=Ke+l:j7̂ A: j=/re+l >

< I  +  — C < e, (2.B.97)2 771 V '

as n —> oo. From (2.B.96) and (2.B.97) we have that, for every e > 0, E  \Rm7i\ —► 0 
and .£/ |T2m,2| < \/^7 as n —► oo. This implies that 7̂ |aSVjt,,i| —► 0, as n —► oo, and 
hence (2.B.93) holds.

Next we show (2.B.94). Using the bound (2.B.91), we have that

(i)l-  ^E(1+0(J72) +0

= i+ ^ e ¥ V ‘«
3

=  1 +  o(l), (2.B.98)

as n  —* oo, since



a s  n  —► oo.

ii) By the definitions of rj^x and ry*x, we have that

E
^ m

m  ~~ Vjix)
j = 1

=  — E  
m E ( i -

3= 1

< - J 2m  ~
3= 1  

1 r,*

< C '-V 'm /  J

Q),aAj 

fx(Xj)

-ax I ^3,x

, ax

3=1

1 -

Co,aAjf 

f x(^j )
Q) ,x^j—Otx = o(l), (2.B.100)

as n  —► oo, given that under Assumption A.3, E  \rjj>x\ <  C  and 1 — =
\ - ax

— (co,x — h x ( \ j ) )  = o(l) uniformly in j  = 1, ...,ra, as n  —► oo. From (2.B.100)
CO j
it follows that 1 ut

- J K ^ - v l x )  ^ o ,
3=1

(2.B.101)

as n  —► oo. Hence, convergence (2.B.90) is equivalent to Assumption A.2.
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Chapter 3

Local W hittle estim ation for 
nonlinear tim e series

3.1 Introduction

In the previous chapter, we described sufficient conditions for the consistency of the 
LW estimator ax of the memory parameter a z, along with rates of convergence and 
expansions for ax — ax. The most attractive feature of our conditions is that they 
do not require the process {xt}tez to be linear, and are satisfied in the case that it 
is. We now turn to examine the asymptotic behaviour of the LW estimator ax of 
specific nonlinear processes. Under suitable assumptions, we establish consistency, 
convergence rate and the asymptotic distribution of a z, using our general results 
in Section 2.4 without needing to derive these asymptotic properties from first 
principles.

The starting point for our analysis is the signal plus noise model. Under such 
specification, the process {xt}tez is written as

x t = yt + zt, (3.1.1)

where {yt}tez is the signal process and {zt}tez is the noise. The memory parameters 
a y and a z of {ytjtez and {zt}tez, respectively, are such that ay > a z, so that 
olx  —  a.y and {yt}tez signals the long-run behaviour of {xt}tez- Notice that since we 
are interested in estimation and inference on the memory parameter ax, our pursuit 
would be trivial if the signal process were to be observed.

Although the model (3.1.1) looks rather simplistic at its first glance, it captures 
a wide range of data generating mechanisms. For example, macroeconomic and
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financial data often exhibit long memory and, involve measurement errors either 
occurring in the collection of the data or arising because the process of interest 
is not directly observed. Then, {yt}tez represents the process that is subject to 
sampling errors or is unobserved, whereas {ztjtez plays the role of measurement 
errors, which is usually taken to be a white noise sequence.

Furthermore, observations of macroeconomic and financial time series often ex­
hibit long- and short-run dynamics, and in some cases cyclical/seasonal behav­
iour. The most common representation for modelling such behaviour is a structural 
model, under which {xt}tez is written as

xt = Ht,x +  °t,x + (3.1.2)

where {nt>x}tez denotes the long-run component of {xt}tez, {<h,x}tez the cycli­
cal/seasonal one and, {vt>x}tez the short-run one. Given that > ac, av, it 
is evident that (3.1.2) is special case of the signal plus noise model (3.1.1) with 
yt = ntyX and zt — Ct,x +  Vt . Notice also that allowing for the presence of separate 
stochastic elements, the long-, medium- and short-run dynamics of {xt}tez are not 
restricted to be driven by the same innovation process, as is the case for example 
with ARF IMA(p , q) and ARFIMA(p , q) models.

In addition, the signal plus noise model (3.1.1) can incorporate nonlinear speci­
fications, other than the model (3.1.2). If for example {xt}tez is a nonlinear instan­
taneous transformation G(.) of a Gaussian process {£t}tez, then as long as moments 
up to second order exist, {xt}t<=z admits a Hermite expansion

oo
** =  G (£t) =  x ;  (3.1.3)

k=ko

where #&(.) is the k-th  Hermite polynomial, c*. is the k-th Hermite coefficient and 
k0 is the Hermite rank, whose definitions are found in Section 3.4 below. Observe 
that if {xt}tez exhibits long memory, then (3.1.3) can be written as (3.1.1) with yt =

oo
0 (ft) and zt = X! §-^fc(ft) • From the properties of the Hermite polynomials

fc=fco +  l
given in (3.4.6) and (3.4.7), it follows that {yt}tez and {zt}tez are uncorrelated from 
each other, whereas the proof of Theorem 3.3 implies that the memory parameters 
of {yt}tez and {zt}tez satisfy ay > az.

The evidence of nonlinearity and long-run persistence are particularly strong 
in the empirical finance literature. Returns series have often been found to display 
short memory in the levels but exhibit long memory when nonlinear transformations 
are taken, the squared and logarithmic squared being the most popular ones. A
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model capturing such features is the long memory stochastic volatility (LMSV) 
proposed independently by Breidt, Crato, and de Lima (1998) and Harvey (1998), 
which is a particular case of the class of stochastic volatility models introduced 
by Taylor (1994). Under the LMSV specification, the return sequence {rt}tez is 
written as

rt = £t&t, (3.1.4)

where {<Jt}tez is the volatility process and {et}tez is usually taken to be a sequence 
of i.i.d. variables with mean zero, finite variance and independent of {(Jt}tez- The 
latter assumption guarantees that the returns is a sequence of uncorrelated zero 
mean random variables. The volatility process is further restricted to be of the 
form

ot =  exp , (3.1.5)

where {£t}tez is a long memory process independent of {st}tez- Then, the logarith­
mic squared returns are given by

logr? =  f t +  21og|et |, (3.1.6)

which is a special case of the signal plus noise model (3.1.1) with xt = log r f , yt =  
and zt = 2 log \et \ , noticing that {zt}tez is a sequence of i.i.d. random variables.

The asymptotic properties of the LW estimator were examined by Arteche (2004) 
and Hurvich, Moulines, and Soulier (2005) in the context of the LMSV model 
(3.1.4)-(3.1.5). As in (3.1.6), the authors transform the logarithmic squared returns 
into a signal plus noise model, and take the signal to follow a long memory lin­
ear process. In Arteche (2004), the noise process is taken to be a short memory 
linear process independent of the signal. On the other hand, Hurvich, Moulines,
and Soulier (2005) restrict the noise to be a sequence of uncorrelated random vari­
ables, but allow for a specific form of contemporaneous correlation between the 
noise process and the innovation sequence in the linear representation of the sig­
nal. Under further regularity conditions, the aforementioned authors established 
the consistency and asymptotic distribution of the LW estimator.

The models considered by Arteche (2004) and Hurvich, Moulines, and Soulier 
(2005) constitute the only nonlinear representations under which the asymptotic 
properties of the LW estimator have been derived. Due to the restrictions imposed 
on the noise process and its dependence with the signal, the results of Arteche (2004) 
and Hurvich, Moulines, and Soulier (2005) cannot be employed for the models 
(3.1.2) and (3.1.3), and in the case of the LMSV model, rely heavily on the functional
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form (3.1.5) of the volatility process and the logarithmic squared transformation 
(3.1.6) employed.

In this chapter, we examine LW estimation for the signal plus noise model 
(3.1.1) using our general results of Section 2.4. We establish the consistency and 
asymptotic normality of the estimator using assumptions far less stringent than 
those in Arteche (2004) and Hurvich, Moulines, and Soulier (2005). In particular, 
we allow for the signal and noise processes to possibly have long, short or negative 
memory, the dependence between the signal and the noise series is left unrestricted,
while no assumptions are imposed on the structure of the noise process other than
mild conditions on its spectral density function. The flexibility of our conditions in 
the signal plus noise model allows us to further examine the LW estimator in the 
models (3.1.2) and (3.1.3), along with the LMSV model (3.1.4), without resorting to 
specification (3.1.5) and a logarithmic squared transformation of the return series.

Section 3.2 is devoted on studying the LW estimator for the signal plus noise 
model (3.1.1). The sections thereafter examine the LW estimator for the various 
subcases of the signal plus noise model described above. In particular, Section 3.3 
considers the structural model (3.1.2), while Section 3.4 examines nonlinear trans­
formations of a Gaussian process (3.1.3) and, the LMSV model (3.1.4) is further 
investigated in Section 3.5. Some concluding remarks are placed in Section 3.6, 
while the proofs of Sections 3.2-3.5 are found in Appendix 3.A of this chapter, that 
use a series of technical lemmas placed in Appendix 3.B. Throughout this chapter, 
we make use of the assumptions given in the previous chapter, see Section 2.3.

3.2 Signal plus noise process

Suppose that our observed process {xt}tez is given by

xt = yt + zt, (3.2.1)

where {yt}tez and {zt}tez are covariance stationary processes having well defined 
spectral density functions and memory parameters that satisfy ay > a z.

The first part of the next theorem shows that if {yt}tez and {zt}tez satisfy 
Assumption A.3, then LW estimation applied to the process {xt}tez consistently 
estimates ax = ay, as long as the signal process {yt}tez satisfies Assumption A.2. 
The proof of consistency is based on demonstrating that {xt}tez satisfies Assump­
tions A.l and A.2 of Theorem 2.1. Furthermore, using (2.4.6) of Theorem 2.3, we
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provide an expansion for ax — ay in terms of ay — ay, see (3.2.5) below. The latter 
expansion allows us to further investigate the rate of convergence and asymptotic 
distribution of ax, without needing to impose any additional assumptions on the 
noise process {zt}tez■ In particular, in part ii) of the theorem, we further assume 
that {yt}tez satisfies Assumptions A.4 and Am,y < Cm1, for some 0 < 7 < 1, and 
establish convergence rate for ax by combining expansion (3.2.5) and Proposition 
2.2 for {yt}tez- If moreover, {yt}tez is a linear process satisfying Assumptions A.6

and A.8 and the bandwidth parameter m  is such that m — o I — I , then part
Vlog^ n )

iii) of the theorem provides convergence rate for ax. Under additional conditions,
Assumption A.7 on {yt]tez and ^  — o with r = min {(3y, ay~ — } , the as­
ymptotic distribution of ax is also derived. The results of part iii) of the theorem 
use expansion (3.2.5) in conjunction with Theorem 2.3 and Propositions 2.2 and 2.3 
applied on {yt}tez-

Theorem 3.1
Suppose that {xt}tez is as defined in (3.2.1), and that the spectral densities f y(.) 
and f z(.) are such that

fy W  = co,y\~av +  o(A-Q*), / , ( A) < CX~a% as A —► 0+, (3.2.2)

with
-1  < a z < ay < 1. (3.2.3)

i) I f  {yt}tez satisfies Assumption A.2, then, as n —► 00,

ay. (3.2.4)

Moreover,

olx — ay = (oiy — a y)(l +  op(l)) +  Op  ̂ -I— ^ . (3.2.5)

ii) I f  {yt}tez satisfies Assumptions A.4, and Am>y < Cm1 for some 0 < 7 < 1, then

dtx -  ay = Op ^m7_1 logra + m~% +  v +  2 ^  . (3.2.6)

iii) I f  {yt}tez is a linear process satisfying Assumptions A.4, A.6 and A.8, and

m — o I —\ — ) , then
Vlog^ n j

dtx — 0 Ly = Op (m  2 +  ^ , (3.2.7)
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where r — min {/3y, 2 } . I f  furthermore, Assumption A. 7 holds, then

(3.2.8)

with m  = o ^2r+l^ 

Theorem 3.1 shows that the LW estimator ax is a consistent estimator of ay. 
The assumptions imposed on the signal process essentially require that {yt}tez is 
such, that if we applied LW estimation to {yt}tez, then the memory parameter ay 
would be consistently estimated. On the other hand, the assumptions on the noise 
process are very mild, as they only require that the spectral density function f z(.) 
to be such that {zt}tez is indeed the noise process, see (3.2.2). By imposing further 
assumptions only on the signal process, part ii) and iii) establish convergence rates, 
while in part iii) we also derive the asymptotic distribution of ax by assuming that 
the signal process {yt}tez satisfies the conditions of Robinson (1995b) in his theorem 
concerning the asymptotic distribution. Notice that the asymptotic properties of 
the LW estimator ax are unaffected by the presence of the additive noise process. 
However, there axe two important points that arise from the results of Theorem 3.1.

Remark 3.1
Relations (3.2.6) and (3.2.7) of Theorem 3.1 indicate that the presence of the noise 
{zt}tez worsens the rate of convergence of the LW  estimator. For example, i f  the 
assumptions of Theorem 3.1 part iii) hold and we further assume that j3y = 2, as 
is done frequently in empirical applications, then the rate of convergence of ax is

/  1 / ^  V CLy—OLz \
Op fra-  2 +  (^ ) 2 J , whereas without the noise process, the rate of convergence

o fax would be of order Op (rn~* +  ( ^ ) 2̂  . Relations (3.2.6) and (3.2.7) also suggest 
that the bigger the difference between the memory parameter of the signal and the 
noise, the better is the rate of convergence of the estimator.

Remark 3.2
In part iii) of Theorem 3.1, the condition on the bandwidth parameter m for es­
tablishing the asymptotic distribution of ax has been affected by the presence of 
the noise process. Here m = o with r =  min {fiy, av~az j  5 while in the case

without the noise, the condition would bem  = o . I f  we assume that (3y =

2, then the condition on the bandwidth parameter becomes m = o

Hence, in the implementation of (3.2.8), the problem of bandwidth choice arises, as 
a y  — olz is an unknown quantity. The latter is the reason why the rule for choosing
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the optimal bandwidth suggested by Henry and Robinson (1996) cannot be imple­
mented, and notice also that if  it could, it would suggest a bandwidth parameter 
smaller than in the case without the noise process.

Three are the main advantages of our conditions in Theorem 3.1. Firstly, the 
dependence between the signal and the noise process is left unrestricted. Secondly, 
we do not require the noise to be a linear process exhibiting short memory. Lastly, 
the signal is not assumed to be long memory linear process, although linearity of 
the signal is needed for establishing the asymptotic distribution of ax.

Our results and remarks are in line with that of Arteche (2004) and Hurvich, 
Moulines, and Soulier (2005), but require less restrictive conditions than those im­
posed by these authors. In the proof of consistency in Arteche (2004), the signal 
{yt}tez is taken to be a linear process satisfying Assumptions A.4 and A.6 with 
oty > 0, the noise {zt}tez is required to be a linear process satisfying Assumption 
A.3 and A.6 with az = 0 and, the signal and noise processes are assumed to be 
independent from each other. Hence, our consistency conditions in part i) of The­
orem 3.1 are more general than those of Arteche (2004), noticing that under his 
assumption on the signal process, we have from Proposition 2.3 that Assumption 
A.2 is satisfied for {yt}tez- Moreover, for deriving the asymptotic distribution of ax, 
Arteche (2004) further imposed Assumptions A.7 and A.8 on {yt}tez, so that our 
result in part iii) of Theorem 3.1 relies on less stringent conditions. On the other 
hand, for the proof of consistency of ax, Hurvich, Moulines, and Soulier (2005) 
assumed that {yt}tez is a linear process satisfying Assumptions A.3 with a y > 0 
and their Assumption H.3, while {zt}tez is taken to be a white noise sequence 
contemporaneously correlated with the innovation process {£t,y}tez in the linear 
representation of {yt}tez- The authors also established the asymptotic distribution 
of the LW estimator, by further restricting the structure on the noise process {zt}tez 
and its dependence with {£t,y}tez> and assuming that the signal satisfies Assump­
tion A.8. Notice that Assumption H.3 of Hurvich, Moulines, and Soulier (2005) is a 
milder version of our Assumptions A.4, A.6 and A.7. Besides this point, our results 
in Theorem 3.1 part i) and iii) are more general than those of Hurvich, Moulines, 
and Soulier (2005).

We have already noted that the presence of the noise {zt}tez does not alter the 
asymptotic properties of the LW estimator ax, but does worsen its convergence rate. 
In order to investigate further the finite sample behaviour of ax, we now restrict 
the dependence between the signal and noise processes as in Arteche (2004) and 
Hurvich, Moulines, and Soulier (2005).
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Let’s first assume that the series {yt}tez and {zt}tez are uncorrelated from each
other. Then, the spectral density function of {xt}tez satisfies

/«(A) =  /y(A) +  /,(A), (3.2.9)

for all A G (—7r, 7r]. If {yt}tez and {zt}tez satisfy Assumption A.4 and — a z < (3y, 
we have that, as A —► 0+,

/*(A) =  c0,vA-“» + c 1,yA ^-a,» + o (A ^ -“»)

+c0lIA-“* +  cM + o (A's*-“»)

=  A““» (ci,,y +  Co,*A“, - “‘ +  o (A“«-“* )) , (3.2.10)

so that {xt}tez satisfies Assumption A.4 with ax = ay, Co)Z =  Co,y, Ci)X =  Co,* and 
Px = ay ~ az there. If the assumptions of Theorem 3.1 part i) hold, then we 
conclude from (2.4.7) of Theorem 2.3 and Remark 2.1 that the finite sample bias of 
ax is mainly determined by -  ( ^ ) aw”a* ^ B ay- az.

Let’s assume next that {yt}tez and {zt}tez are correlated processes in the sense 
that the innovation terms {£t,y}tez and {et,z}tez in the representation (2.5.1) axe 
such that E  (£t,y£a,z) =  P if t = s and, E  (£t,y£a,z) =  0 if t ^  s. Then, the spectral 
density function of {xt}tez satisfies

f* W  = fv W  + A W  +  2pRe (^ (A )^(A )) , (3.2.11)

for all A G (—7r, it]. If {yt}tez and {zt}tez satisfy Assumption A.4 and ^  - < / v  
we have that, as A —► 0+,

/*( A) =  c0ll,A_Q'' +  city\Pv~ay + o(A^_“v)

+ co,sA_“‘ +  cM A/5«-“* +  o (A ^-Q>)
OlŷOLZ

+2py/c0>yc0>z\~  2 (l +  0 (l))

=  X~ay (co,y +  2py/Co)2/co)2A-Zi2~£ +  0 , (3.2.12)

so that { x j tez satisfies Assumption A.4 with a x =  ay, co)Z =  Co,y, Ci)X =  2py/c 0>ycoiZ 
and 0X = 2itz2* there. If the assumptions of Theorem 3.1 part i) hold, then we 
have from (2.4.7) of Theorem 2.3 and Remark 2.1 that the finite sample bias of ax 
is overall determined by — (^ )  2 2 p < J ^ B *v-<xz .

Remark 3.3
In the signal plus noise model, under the assumptions discussed above, the finite 
sample bias of the estimator ax tends to be negative i f  the signal and noise processes
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are uncorrelated or positively dependent, and positive i f  the two processes are neg­
atively dependent. The finite sample bias increases with an increase in the signal- 
to-noise ratio and convergences faster to 0 the bigger the difference ay — a z is. 
Furthermore, the finite sample bias tends to be smaller and rate of convergence is 
faster, when the signal and noise processes are uncorrelated.

Theorem 3.1, together with results in Section 3.4, enable us to study the as­
ymptotic behaviour of the LW estimator under the nonlinear models discussed in 
the Introduction of this chapter.

3.3 Structural model

Suppose now that our observed process {xt}tez is decomposed as

xt = x "I- +  r)t>x, (3.3.1)

where {ptyX}tez is the trend of {xt}*GZ, {ctyX}tez is its cyclical component of known 
frequency ujx ±  0 and, {r)t>x}tez corresponds to the short-run component of {xt}tez- 
The processes {pt,x}tez, {°t,x}tez and {r)t)X}tez are taken to be covariance stationary 
having well defined spectral density functions. Given the decomposition (3.3.1) of 
{%t\tez and the interpretation of its three components, it is natural to assume that 
the cyclical and short-run component do not exhibit long-run persistence, so that 

> aCx, OiVx = 0. Then, model (3.3.1) is a special case of the signal plus noise 
model (3.1.1) with yt =  pt x̂ and zt = CtyX +  r)t x. Notice that we are allowing for the 
cyclical component to be persistent, i.e. a W)Cj > 0.

The next theorem shows that, under assumptions similar to those in Theorem
3.1, the LW estimator ax is a consistent estimator of the memory parameter a^x 
and is asymptotically normally distributed. The proof of the next theorem is a 
simple extension of Theorem 3.1 and is therefore omitted.

Theorem 3.2
Suppose that {xt}tez is as defined in (3.3.1), and that the spectral densities fnx(-), 
f^ i- )  and f Vx(-) satisfy Assumption A.3 with aMx > aCx,a Vx — 0.

i) I f  {pt,x}tez satisfies Assumption A.2, then, as n —► oo,

olx a Mx. (3.3.2)

Moreover,

olx ~  OLpx = (SMx -  a Mx)(l +  op(l)) +  Op ' (3.3.3)
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ii) I f  { p t , x } t e z  satisfies Assumption A.4 and Am>Mtx < Cm7 for some 0 < 7 < 1, 
then

OLx -  =  Op ^m7-1 logra +  *** +  2 ^ . (3.3.4)

iii) I f  { p t , x } t e z  is a linear process satisfying Assumptions A.4, A.6 and A.8, and

olx ~ ®nx = Op (m~^ +   ̂ , (3.3.5)

where r = min , ^f4-} . I f  furthermore, Assumption A .7 holds, then

m%(ax — ctpx) N (0,1), as n  —> 00, (3.3.6)

with m = o .

Similar observations to those following Theorem 3.1 can be made here. How­
ever, there is one important point that we need to address in the case that the 
frequency u x of the cyclical component is rather small. The LW estimator consis­
tently estimates the memory parameter otpx, even if the cyclical component {ct>x}tez 
is stronger than the trend {pt>x}tez- Essentially, for very big samples we have that 
Am <C ojx, so that no information is included from the frequency u x and {ct>x}tez 
acts as an additive noise with a Cx = 0. However, for small samples and when the 
frequency u x is small, it can happen that ujx  <C Am. Suppose now that the spectral 
density function of {ct,x}tez is such that

/c(A) ~  co>U})Cx |A -  u x\~a“’x , as A u x. (3.3.7)

Hence, if ljx <C Am, the cyclical component {ctyX}tez behaves as if it satisfied As­
sumption A.3 with aCx = a W)X. This observation leads to the following remark.

Remark 3.4
Suppose that the sample size n and the frequency ujx  are such that ujx  <C Am. I f  
ctpx > a W|Ci, then the cyclical component {ct)X}tez still acts as an additive noise 
and the trend component {pt,x}tez as the signal. However, when aMx < aUiCx, these 
roles are reversed, so that {ct)X}tez behaves as the signal and {pt)X}tez as the noise. 
In the latter case, the estimator ax is Ukely to be biased towards a WiCl in finite 
samples.
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3.4 Nonlinear functions o f a Gaussian process

In this section, we consider estimation and inference on the memory parameter a x, 
when the process {xt}tez is an instantaneous nonlinear transformation of a Gaussian 
process {£t}tez- More formally,

xt = G (Q , (3.4.1)

where {^t}tez is a stationary zero mean and unit variance Gaussian sequence, and 
G : R —► R is a measurable function such that

E (G (Q ) = 0 and £(G 2(£()) < oo. (3.4.2)

Notice that the conditions on the moments of {£t}tez are not restrictive, since
the sequence {£t}tez can always be standardized by a transformation G(.). Also, al­
though we assume that {£t}tez is a Gaussian sequence, the resulting process {xt}tez 
is strictly stationary having finite second moments and unrestricted marginal prob­
ability density function.

We start by determining the relationship between the autocovariance functions 
of {xt}tei and {£t}tez- For that purpose, we use the Hermite expansion technique 
on {x t}tzz, developed by Taqqu (1979) and Dobrushin and Major (1979).

Hermite expansion

Under the assumptions E(G(£t)) = 0 and E(G2(£t)) < oo, the sequence {xt}tez 
can be written as the sum of Hermite polynomials

oo

=  (3-4-3)
k = \

where Hk(x) is the k-th Hermite polynomial defined as

Hk(x) = \  i € l ,  (3.4.4)

and Ck is the k-th  Hermite coefficient given by

ck = E{G (Q H k(Q ), k > 0. (3.4.5)

Note that the summation in (3.4.3) starts from k =  1, since we have assumed that 
E(G(£t)) = 0, which implies that cq = E(G(£t)) = 0, given that H0(x) = 1. The 
Hermite polynomials have the following properties:

E(H k(Q ) = 0, E(Hk(£t)Hk(£s)) = k\'y*(t — s), k >  1, (3.4.6)
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and
E(Hk(Q H ,(Q )  =  0, k , l > l , k ^ l .  (3.4.7)

The minimal integer ko> 1 such that Ck0 ^ 0 is referred to as the Hermite rank of
G(.). Then, (3.4.3) can be written as

oo

x‘ = E  (3-4.8)
k = k  o '

The assumptions on {xt}tez and {ft}*€Z> together with the two properties (3.4.6) 
and (3.4.7), imply that

oo 2 00 2

7x(t ) = E  H7^ T) 811(1 7*(°)= E^  =  E  < °°- (3-4-9)
k= ko  k= ko

In the next proposition we further relate the autocovariance function of {xt}tez 
with that of {£t}tez-

Proposition 3.1
The autocovaxiance function of {xt}tez satisfies

7 x W = 7 |° (r ) (^  + iiT) ) (3.4.10)

where
Rr —> 0, as r —> oo. (3.4.11)

We now use Proposition 3.1 to investigate the summability properties of the 
autocovariance function of {xt}tez and {£t}tez, which allows us to describe the 
connection between the dependence structure of {xt}tez and {£t}tez- The following 
proposition shows why the Hermite rank of the function G(.) plays an important 
role in describing the dependence structure of {xt}tez-

Proposition 3.2
It holds that

—Lr E  i^ (r)i ^ E  M 7-)!*0 ^ c ' E  • (3-4-12)lx\ ) reZ r€Z

From the results of Proposition 3.2, we have the following remark.

Remark 3.5
Proposition 3.2 shows that i f  ^2 |7^(r)| < oo, then \lx(r ) I < 00• On the other

tGZ r€Z
hand, when |7^(r )| =  °°j Proposition 3.2 implies that i f  the Hermite rank k0 is
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such that J2 |7^(T) |fc° < °°> ^ en S  l7x(r )l < °°> while i f  |7^(r ) |fc° =  °°5 then.
tEZ tEZ  tEZ

l7x(r )l =  00 • Hence, transformations of a Gaussian process do not increase the
tEZ
degree o f persistence.

We introduce the following assumptions:

S .l  The autocovariance function 7X(.) of {xt}te% is absolutely summable,

5 2 |7 i (t )I <  °o. (3.4.13)
tEZ

L .l The spectral density function f x ( . )  satisfies Assumption A.3 with 0 < olx  < 1.

L.2 The spectral density function f ^ ( . )  satisfies Assumption A.4 with 0 < < 1
and /?£ =  2. Furthermore, the autocovariance function 7^(.) of {£t}tEZ has the 
property

7$(t) ~  c^r_1+a?, as r  —► 00, (3.4.14)

with 0 < |cf | < 00.

In the current and next section, we refer to {xt}tEZ having short or long mem­
ory, when the Assumptions S.l or L.1-L.2 are satisfied, respectively. In the short 
memory case, Assumption S.l is very general as it does not place directly any re­
strictions on the underlying process {£t}tEZ- It requires the spectral density function 
of {xt}tEZ to be bounded and bounded away from zero in (—7r, 7r], which implies that 
Assumption A.3 is satisfied with ax = 0, but excludes the possibility that {xt}tez 
has a persistent component of frequency u x ^  0. In the case of long memory, the 
assumption placed on the spectral density function of {xt}tEZ is the one that we 
have considered throughout the previous and the current chapters. We also restrict 
the spectral density function of {£t}tEZ to satisfy Assumption A.4 with smoothness 
parameter = 2 and the autocovariance function 7^(.) of {^t}tEZ to have the long 
memory type decay. Assumption L.2 is needed to establish the relationship between
the memory parameters ax and Notice that Assumption L.2 is satisfied, if for
example, {£t}tEZ is a Gaussian ARFIM A(p, q) process.

Next, denote by the k-th order convolution of the spectral density func-
tion /{(.),

7T 7T

f i k \ A) =  J...J f ( ( \  -  Zj -  ... -  lk _ 1) f ( ( l 1) . . . f ' ( l k _ 1) d l 1...cUk - 1, (3.4.15)
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where we assume that /t(.) is periodically extended in R. The next proposition 
establishes the relationship between the spectral density functions f x(.) and /^(.).

Proposition 3.3
Under Assumption S.l or L.2, the spectral density function f x(.) can be written as

00 r 2

M * ) = E  M k)w -  (3-4-16)k '-

Lemma 3.1 in Appendix 3.B examines, under Assumption L.2, the behaviour of 
f t % ) ,  for k > 2. Next, we combine Lemma 3.1 with Proposition 3.3 to analyze 
the spectral density function of {xt}tez around the zero frequency.

Proposition 3.4
Suppose that {£t}tez satisfies Assumption L.2.

i) I f  k0( 1 — a^) < 1, then the spectral density function of {xt}tez satisfies

m  =  g / r W d  +  o(l)) =  c ^ A " -  +  o (A -~ ) , (3.4.17)

as A —► 0+, with
ax = l -  k0( 1 -  c^), (3.4.18)

and some 0 < Sk0 < 00.

ii) I f  k0(l — a^) =  1, then for any arbitrarily small S > 0, the spectral density 
function of {xt}tez satisfies

< C \~ s, (3.4.19)

as A —> 0 +  .

iii) Ifko (l — Of) > 1, then the spectral density function of {xt}tez is bounded,

f x(A) < C, (3.4.20)

for all A G (—7r, 7r].

Finally, we combine the results of the propositions above with the results in 
Section 3.4 and Theorem 3.1 to investigate the asymptotic properties of ax. In the 
case of short memory, only Assumption S.l is required for the proof of consistency, 
while in the long memory case, assumptions in the spirit of Theorem 3.1 are imposed. 
We also derive the rate of convergence and asymptotic distribution of ax in the 
special case that {xt}tez exhibits long memory and the Hermite rank of G(.) is 1, 
again by placing assumptions in line with Theorem 3.1.
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Theorem 3.3
Suppose that {xt}tez is as defined in (3.4.1).

i) I f  {xt}tez satisfies Assumption S.l, then, as n —> oo,

ax 2>ax = 0. (3.4.21)

ii) I f  {xt}tez satisfies Assumptions L .l and L.2, and m  is such that n1 < m  — o(n) 
for some 1 — ^  < 7  < 1, then, as n —> 0 0 ,

olx  olx . (3.4.22)

iii) In the case of ii), i f  ko — 1, {£*}*<=z satisfies Assumption A.6, and m  is such that 
n1 < m  — o(n) for some 7  > 0, then

ax - a x = Op (m~^ +  ( ^ j  )  , (3.4.23)

where r = min {^ } . Moreover, i f  {£t}tez satisfies Assumption A.7, then

(ax — ax) - i  N (0,1), as n —► 0 0 , (3.4.24)

with m  = o .

Theorem 3.3 establishes, under appropriate conditions, the consistency of the 
LW estimator ax. In part iii) of this theorem, we also derive the asymptotic dis­
tribution of ax in the case of long memory and when the Hermite rank of G(.) 
is 1. Hence, the asymptotic properties of the LW estimator are unaffected by the 
presence of the nonlinearity, at least in the cases that we examine here. However, 
as in the case of the signal plus noise model, there are three points that are worth 
raising.

Remark 3.6
Under the assumptions of part ii) of Theorem 3.3, we expect the finite sample bias 
of the estimator ax to be negative, see Remark 3.3.

Remark 3.7
Under the assumption of part iii) of Theorem 3.3, the existence of nonlinearity 
worsens the rate of convergence of ax as compared to the linear case. Moreover, 
the rate of convergence is faster when ax is closer to \  and slower when ax is close 
to the boundary points 0 and 1.

Remark 3.8
Part iii) o f Theorem 3.3 implies that the bandwidth parameter m needed to im­
plement (3.4.24) depends on the unknown memory parameter ax, so that the issue
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of bandwidth choice arises. The optimal bandwidth choice procedure suggested by- 
Henry and Robinson (1996) cannot be implemented, and even if  it could, it would 
suggest a bandwidth parameter smaller than in the Unear case.

3.5 Long memory stochastic volatility model

In this section, we consider the LMSV model of Breidt, Crato, and de Lima (1998) 
and Harvey (1998) under which the return series {rt}tez is such that

rt = €t(Tt, (3.5.1)

where {at}tez is the volatility process and {£t}tez is a sequence of i.i.d. variables 
with mean zero and finite variance. The volatility process is furthermore restricted 
to be of the form

at = exp (Q  , (3.5.2)

where {£t}tez is a stationary long memory Gaussian process independent of {£t}tez- 

As was already mentioned above, the logarithmic squared returns

log rj =  2^  +  2 log \et \ (3.5.3)

is a special case of the signal plus noise model (3.1.1) with xt = logrf, yt = 2£t and 
z t = 2 log \£t \ , and under this specification the properties of the LW estimator were 
analyzed by Arteche (2004) and Hurvich, Moulines, and Soulier (2005). However, 
there are evidence in the empirical literature that powers of the absolute return 
series, and not just their logarithmic squared transformation, exhibit long memory. 
Also, it is evident that the signal plus noise decomposition of the logarithmic squared 
returns (3.5.3) relies heavily on the form of the volatility process (3.5.2).

Here, we analyze the properties of the LW estimator for the model (3.5.1), 
allowing for a more general specification of the volatility process and considering 
the p-th  power of the absolute return series. In particular, we assume that

<ft =  G (( t) , (3.5.4)

where {£t}tez is a stationary long memory Gaussian process with zero mean, unit
variance and independent of {£t}tez, while G(.) is a strictly positive function. We
study

=  \et\p G* (£(), (3.5.5)
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where p > 0 is such that {Gp (£t)}tez is long memory process with finite second 
moment. Observe that we can write

N ” =  E  (|£tn  G> (Q  + (\£t\p -  E  (|eiH ) <? (tt) ■ (3.5.6)

Then, (3.5.6) is a signal plus noise model x t =  yt +  zt with x t = \rt \p , yt = 
E  ( \et \p) Gp (ft) and zt — (\st \p — E  (|£*|p)) Gp (£t) . Observe that the signal process 
{yt}tez is a nonlinear transformation of a Gaussian sequence, and denote by k^p 
the Hermite rank of Gp (.). Furthermore, under the assumption that {£t}tez and 
{st}tez are independent, we have that the noise process {zt}tez is a sequence of un­
correlated random variables, while the signal process {yt}tez is uncorrelated from 
the noise {zt}tez- We can therefore combine the results of Theorem 3.1 and 3.3 to 
establish the asymptotic properties of the LW estimator for the model (3.5.6).

Theorem 3.4
Suppose that {\rt \p}tez is as defined in (3.5.5).

i) I f  {Gp (it)}tez satisfies Assumptions L .l and L.2, and m  is such that n1 < 
m — o(n) for some 1 — jL- < 7 < 1, then, as n —► 0 0 ,

a |rjp a\r\p = 1 — ko>p(l — a^). (3.5.7)

ii) I f  in case of i), k0)P = 1, {£t}tez satisfies Assumption A.6, and m is such that 
n7 < m  =  o(n) for some 7 > 0, then

S|r|p -  a |r|p =  Op (m~  2 +   ̂ , (3.5.8)

where r = min { ,  l^p-} . Moreover, i f  {£t}tez satisfies Assumption A.7, then

m ih ( a | r |p — Qj|r |p) A ^ ( 0 , 1 ) ,  a s  n  —» 0 0 , ( 3 .5 .9 )

with m = o .

Theorem 3.4 part i) establishes, under appropriate conditions, the consistency 
of the LW estimator S|r|p. In part ii) of this theorem, we derive under further 
conditions the rate of convergence and asymptotic distribution of ajr|p when the 
Hermite rank of Gp(.) is 1. Remarks similar to those following Theorem 3.3 can also 
be made here. There is an additional comment that needs to be pointed out.

Remark 3.9
Theorem 3.4 part i) suggests that different p-th power transformations may lead to 
different long memory parameters. Furthermore, in the case that k0)Pl = k0)P2 for all
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Pi,P2 > 0, we expect the signal-to-noise ratio to depend on p, so that the finite sam­
ple bias of the LW  estimator may vary across different p-th power transformations, 
see Remark 3.3.

Notice that in the case of (3.5.2), we have k0)P = 1 for all p > 0. Hence, oi\T\p =  
for all p > 0, in line with the results of Harvey (1998), who established that for 
all p > 0, the autocovariance functions 7 |r|p(t) and 7^(r) of {\rt \p}tez and {£*}tez> 
respectively, have the same rate of decay to 0, as r  —► 00.

Different p-th power transformations of asset returns have been found to be 
display different levels of persistence, see Ding, Granger, and Engle (1993) and 
Ding and Granger (1996). The results presented here raise the question as to 
whether this fact is actually driven by either of the two following sources. Firstly, 
the volatility process is not given by (3.5.2) but rather by (3.5.4) with a function 
G(.) such that different p-th transformations give rise to different Hermite ranks 
k0>p and therefore to different memory parameters. Secondly, the volatility process 
is of the form (3.5.2) and the different p-th power transformations produce finite 
sample bias of different magnitude.

3.6 Final comments

In this chapter, we have applied our general results of Chapter 2 in order to assert 
the asymptotic properties of the LW estimator for several nonlinear models. We 
have examined the signal plus noise model and some special cases of it: structural 
model, nonlinear transformations of a Gaussian process, and LMSV model. Under 
these specifications we have discovered that the asymptotic properties, consistency 
and asymptotic normality, are unaffected by the presence of the nonlinearity. We 
have also found that the rate of convergence and finite sample bias of the estimator 
are worse off when compared to the case of a linear process. Hence, in order to 
achieve the same level of accuracy as in the linear case, a large sample size is 
required. In addition, the issue of bandwidth choice has arisen. It should be also 
added, that in the case of nonlinear transformations of a Gaussian process, we have 
established the asymptotic distribution of the LW estimator only when the Hermite 
rank =  1. It remains an open question whether the asymptotic distribution of 
the LW estimator is Gaussian in the case of ko > 2. However, the work of Giraitis 
and Taqqu (1999) on the PW estimator leads us to consider the possibility of a 
non-Gaussian asymptotic distribution for the LW estimator in the latter case.
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The extension to the case of a persistent cyclical component of known frequency 
ujx 7̂  0 is straightforward, as was already mentioned in the final comments of 
Chapter 2. In addition, one can expect to retrieve the asymptotic properties of 
the LW estimator for most of the models presented here when ax > 1, as long as 
the general conditions of Chapter 2 are extended to this case. We should add that 
Hurvich, Moulines, and Soulier (2005), for their type of signal plus noise model 
discussed in Section 3.2 above, showed the consistency of the LW estimator when 
ax < 2  and established its asymptotic distribution when ax < 1.5.

The choice of the bandwidth parameter m  is an important issue that we hope 
to address in the future. The rule of Henry and Robinson (1996) for choosing 
the optimal bandwidth relies on setting j3x = 2 and using an iterative procedure 
that involves estimation of a linear regression model. However, we have seen above 
that the presumption =  2 cannot be made in general for nonlinear models, so 
that estimation of the parameter f3x is also required. The regression model used 
in the iterative procedure of Henry and Robinson (1996) now becomes nonlinear, 
and preliminary simulations show that the estimation of f3x is rather imprecise in 
the latter regression model. The work of Giraitis, Robinson, and Samarov (2000) 
is likely to provide an estimator of /3X, however further investigation on its finite 
sample performance is needed. If the latter estimation is precise, then the procedure 
of Henry and Robinson (1996) can be performed, replacing f3x by its estimate.

Another significant issue that we plan to examine is bias reduction. The results 
presented in this chapter suggest that the finite sample bias of the LW estimator 
can be severe for nonlinear models. Hurvich, Moulines, and Soulier (2005), in the 
context of the signal plus noise model examined there, proposed a modification 
of the LW estimator by including an additional term to account for the presence 
of the additive noise. Monte-Carlo experiments performed by the authors indeed 
showed a reduction in the finite sample bias at the expense of an increase in its 
dispersion. The methodology of Hurvich, Moulines, and Soulier (2005) is dependent 
on their signal plus noise model, but is likely to be extended to the nonlinear models 
examined here. However, its performance in small samples is rather unsatisfactory, 
as Monte-Carlo experiments performed by Gongalves da Silva and Robinson (2006) 
suggest that the modified estimator displays bimodality. And since it is in small 
samples that a bias reduction method is essential, the usefulness of the method of 
Hurvich, Moulines, and Soulier (2005) is doubtful. Another possibility, would be to 
employ the method of Andrews and Sun (2004). The latter authors combined LW 
estimation with local polynomial approximations, and established the asymptotic
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properties of their modified estimator. However, linearity of the process and a 
certain degree of smoothness were required, so that the technique of Andrews and 
Sun (2004) is not likely to be extendable to the type of nonlinear models considered 
here. A possible solution to the problem of bias reduction would be first estimating 
the parameters Co)X, ci)X and (3X in order to retrieve the bandwidth parameter m  and 
then calculating the term — ( ^ ) /3x which has been found in Chapter 2 to be
the main determinant of the finite sample bias of the estimator. Then, once the LW 
estimator is corrected for this term, the finite sample bias is likely to be reduced 
without affecting the variance and distribution of the LW estimator.

3.A  Appendix

This section contains the proofs which use a series of lemmas found in Appendix 
3.B below.

P ro o f of T heorem  3.1. i) We start by showing convergence (3.2.4). By Theorem
2.1, it suffices to show that Assumptions A.l and A.2 axe satisfied with ax = a y 
and cq>x = Co,y there. We have that

f x(*j) =  K (A j)|2 =  ^  K(Aj) +  tu2(Aj)|2

=  2^  K (A ,- ) |2 +  2^  ( M A j ) | 2 +  u > s,(A jW A j) +  w v ( \ ) w z ( X j ) J  
: =  Iy{\j) +  Vj, (3.A.1)

with Vj  = I z ( Xj )  +  ^  (wy(Aj)u;z(Aj) +  wy(Xj )wz(Xj )Sj  for which,

\Vj\ < Iz{Xj) +  — \Wy(^j)\ ^^(^j)! • (3.A.2)7r

We first establish Assumption A.I. Taking expectations over (3.A.2), and using 
the Cauchy-Schwarz inequality, we have

E  |u ,| < C  ( E  ( / , (A ,) )  +  (E (Iy( \ j ) )  E  (/.(A^)))*)

<  C  ( / 2(A3) +  f j (A j)/# (A ,-))  , (3 .A .3 )

where the last displayed inequality follows from Lemma 2.6, since under (3.2.2),
{yt}tez and {zt}tez satisfy Assumption A.3. Now, using (3.2.2), we have that



Expressions (3.A.1) and (3.A.4) imply that

(3.A.5)< C + CXj 2 < c ,

since we have from Lemma 2.6 for {yt}te z that Cq̂ X ^ E  (Iy{Xj)) < C, and a z < ay. 
Hence, {xt}tez satisfies Assumption A.l with parameters ax = ay and CofX — co)3/ 
there.

It remains to show that {xt}tez satisfies Assumption A.2 with c0jX = co,y and 
ax = cty Using (3.A.1), write

Since {yt}tez satisfies Assumption A.2, we have that the first sum on the right hand 
side of (3.A.6) satisfies

noticing that az < ay. Thus, we obtain that the second sum on the right hand side 
of (3.A.6) satisfies

as n —► oo. Hence, { x t }tez  satisfies Assumption A.2 with ax =  ay and cq>x =  co,y 
there.

(3.A.6)

(3.A.7)
j=1

as n —> oo. On the other hand, the bound given in (3.A.4) implies that

m

(3.A.8)

(3.A.9)

as n —> oo. Using (3.A.7) and (3.A.9) in (3.A.6), we have that

(3.A.10)

98



Next, we show (3.2.5). Since the assumptions of Theorem 2.1 are satisfied with 
otx = ay and Co)X =  Co,y, we have from expression (2.4.6) of Theorem 2.3 that

Oix — oty = —QmfX( 1 +  °p(l)) +  Op ^ ^ ^  . (3.A.11)

From (3.A.1) and (3.A.4), it follows that

Qm,x — — (log ( ) +  1m  V \ m  I 3,x
3= 1

Vi

- Qm,y + 0 P( l)m  g  (log + 1)  h
O L y — OLz 

2

~ Qm,y + Op(
C t y — a z  \

\  2 1 1

m

O ty  — O tz  

2

. ( 3 . A . 1 2 )

j=i
TTl ocy — acz 1 av—az

From Lemma 2.5, it follows that — (log (^ )  +  l) (^ )  2 =  /(logaH-l)a; 2 dx+m .̂=1 m m  Q

1 a - a 2
f( \o g x  + l)x  2 dx 
0

O (m) * Since a z < ay, we have that < 00, and then

O t y — CXz/ m \  2—Qm,x — Qm,y “I- Op ( J (3.A.13)

Since {ytjtez satisfies Assumptions A.2 and A.3, we have that expression (2.4.6) of 
Theorem 2.3 applies for {yt}tez, that is

OLy — Oty = —Qm,y( 1 +  °p(l)) +  Op ^ ^ ^  , (3.A.14)

which together with (3.A. 13) imply that

"  <*((=)Q , , 1 /iX ( -(S„ -  ay) + Op ( ^  ) I +
Oty —Otz/m \  2—

1 +  Op(l)
cty—az

■ ( a y  —  t t y ) ( l  +  o p ( l ) )  +  O p  ( ^  +
log m

Thus, from (3.A.11), we have that
Oty — Otz/m \  2 log m

olx oty —  | ( o ; y  t t y ) ( l  +  O p ( l ) )  +  O p  [ +  m

O ty  — O tz

—  ( t t y  -  t t y ) ( l  +  O p ( l ) )  +  O p  N  — ^  +
logm

m

(3.A.15)

( 1  +  O p ( l ) )

(3.A.16)
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as required.

ii) Since {ytjtez satisfies Assumption A.4 and Am>y < Crri7, for some 0 < 7 < 1, 
we have that {yt}tez satisfies the assumptions of Proposition 2.1. Hence, from part
i) of this theorem, it follows that {xt}tez satisfies Assumptions A.l and A.2, and 
that expression (3.2.5) is valid. Notice also that by the assumptions of the theorem, 
{yt}tez satisfies Assumption A.4 and Am>2/ =  o • Therefore, the conditions
of Proposition 2.2 hold for {yt}tez and, (2.4.10) implies that

-  ^  /  A log mOLy OLy -- Op ( Am,y m 2
1 +(=)')

=  Op ^ra7-1 logm +  » (3.A.17)

for some 0 < 7 < 1. The latter displayed bound, together with (3.2.5), imply that

ax -  ay = Op ( m7 1logm + m * +  ( ” )  (1 +  °p(1))

+ 0 , 1  + m
cxy—cxz

= Op ym 1 xlogm -V m  % +  v +  2 J  • (3.A.18)

iii) Since {yt}tez is a linear process satisfying Assumptions A.4, A.6 and A.8, it 
follows from (2.4.7) of Theorem 2.3 that

ay -  ay = Op -  (Qm,y -  E  (Qm,y)) (1 +  op(l)) +  op ( m ~ ^  , (3.A.19)

whereas (2.5.8) of Proposition 2.3 implies that Am)2/ =  O (m? log^ m  +  m =

o ( , ™ ) , since m = o ( —\ — ) . So, from (2.4.11) of Proposition 2.2 we deduce
'  og Vlog ŷ n j

that
Qm,y — E  (Qm,y) =  Vm,y +  Op f  J  5 (3.A.20)

which together with (3.A. 19), implies that

ay -  ay = -Vm,y( 1 +  0p(l)) +  Op ^  +  op . (3.A.21)
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Then, from (3.2.5) we have that

otx — a y  =  — V m)y ( l  +  0p(l)) +  ^ O p  ^ + °p (j™ (1 +  °p(^))

OCy— OCz 1  log 771
+ 0 p  I ©  2 + m

— —Kn,y(l +  °p(l)) +  Op )  )  +  °p (jn  • (3.A.22)

Since {yt}tez is a linear process satisfying Assumptions A.4, A.7 and A.8, we have 
from Proposition 2.3 part iii) that

d—* iV(0,1), as n —> oo.

Hence, Vm,y = Op and (3.A.22) implies that

ay - a y = Op (m~* +  )  ,

while for m — o , it follows from (3.A.22) and (3.A.23) that

(ax — ay) - i  N (0,1), as n —► oo,

which completes the proof of this theorem.

P ro o f of P roposition  3.1. From (3.4.9), we have that

r 2 °°7,(T) = rV£(r)+ E §7j(r)
 ̂ fc=fco+l

c5.
= ^ « h n  + E

00 c2k+ko
W  + *b)!

7?(r)

which shows (3.4.10) with

^  = E
00 k̂+ko

(3.A.23)

(3.A.24)

(3.A.25)

(3.A.26)

(3.A.27)
£  (A +  M !

Recall that the process {£t}tez has unit variance, so that |t^(t)| <  1 for every 
r  G Z. Hence,

\ R r \  =

00 r2

E Cfc+fcp

_ ( k  +  k 0 ) \
7|(r)

OO 9

fc+fco

§ ( f c  +  fco)!
< C |7 4( r ) |,  (3.A.28)
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0 0  „ 2

because by (3.4.9), J2 J j^ y . < E  *! =  7*(0) < °°. Since {Zthez is a sequence of
fc=l k=ko

stationary random variables, 7^(r) —> 0 as r  —>• oo, which together with (3.A.28), 
implies (3.4.11). ■

P ro o f of P roposition  3.2. By (3.4.10) and (3.A.28), we have that for every 
t  G Z,

7 * ( r ) = 7 £ ° ( r )  ( +  ) ,

where

l*r| =
OO 9

Uk+ko kE—'  (fe + fe0)!

since |7^(t)| <  1 for every r  € Z. Thus,

c l

(3.A.29)

(3.A.30)

r2
-T .+ R tk0\ ^ E

OO 9

fc+fcp
—((& + fc0)! =  7*(0). (3.A.31)

fc=0

Then, from (3.A.29), we have that for every r  G Z, |7x(r)| <  |7^('r)|fc° 7x(0)j which 
implies that

r ^ E M T) I ^ E k M r o- (3.A.32)
JxK J r e Z rez

Moreover, since by (3.4.11), Rr —> 0, as r  —► oo, there exists r 0 G N such that,
c2

for every |r | > To, \Rt \ < Thus, for every |r| > To,

CkQ
T1 + Rt k0\

>
r2

_  c fco 

2knV
(3.A.33)

which together with (3.A.29) implies that |7̂ ('7_) |fc° < 73̂  |7x(r )l f°r every |r | > r 0.
fc0

Hence,

5 3  b e W l-  ^  ^  E  ’ (3.A.34)
|t |>t 0

while for |r | < To, we can write
k° |r |> ro

5 3  b f W i 0 <c  e  i7xWi.
|t | < t o  | t | < t q

and conclude that

E b « (r)l*° ^ c E i 7*(r)i.
t€ Z

which completes the proof of (3.4.12).

(3.A.35)

(3.A.36)
t GZ

102



7T

P ro o f of P roposition  3.3. We have that 7^(r) =  J  etrXf^(X)dX. Thus,
—7r

7r 7r(̂T) = j  ■■■ j  ̂ h+' Mk)h ih ) - -M h )d h ..d lk. (3.A.37)
— 7T — 7T

Setting A =  Zi +  ... +  Jfc, we get that
k lT  TT 7T

7e(r) = J  J  ••• J  e lrA X ( —7r < X  — li — — lk- 1 <  vr)

— &7T — 7T — 7T

~ h -  • • •  ~  l k - i ) d l \ . . . d l k - i d \

IT 7T

=  J . . .  J  e TXU { x - h - . . . - i k- i )
— IT — IT

x f ( {h)...f( (lk- 1)dh...dlk- 1d \  (3.A.38)
7T

= J  e,rXf ^ k\ \ ) d \ ,  (3.A.39)
— IT

0 0  ^ 2

where in (3.A.38), we set /^(A) =  (A +  27r) for A G R. Since 7x(r) =  J ]  kt'Y((T)
k = k o

by (3.4.9), using (3.A.39) we can write

00 2 /*

t' . m  =

00 /* 2

= E /
M —1 ^  o 00 /* 2

=  E /  ^ / f ^ W ^ + E  J  ^ e iTXf ? k)W d*, (3.A.40)
k — k n  „  k = M  _u—7T —7T

for every M g N  with M  > ko.

We first deal with the second sum on the right hand side of (3.A.40). Notice 
that (3.A.39) implies that

f t )W  = ^ ^ ir^ y  (3.A.41)27r tGZ
I &0Under Assumption S.l, we have from Proposition 3.2 that ^ ( r )^ 0 < 00 and

tGZ
hence,

f t k)W  < |7f(r)r < ( ? E  |t{(t)|‘° < C, (3.A.42)
t G Z  t G Z
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since |7^(t)| < 1. On the other hand, under Assumption L.2, we have that 7^(r) ~  
c^r_1+Q̂ , as t  —> oo. Hence, |7$(t)| < C | t |_1+q* for every r  ^  0. Moreover, we can 
choose M G N  in (3.A.40) big enough, such that M(1 — c ^ )  >  1. Then, for every 
k > M ,

f t k\ A) < C ^ | 7 c(r) |'[
t GZ

= cf E b«(r)lfc + K(°)r
\ t GZ:t ^ 0

 ̂ cf e  Mr)r+i)
\ t GZ:t ^ 0  /

< c l c  ^  | r r M(1_“s) +  1 J < C,
\  T G Z :r^ 0 /

(3.A.43)

since |7 $ ( t ) |  < 1 for every t  G Z and, M M^ < 00 f°r -^(1 — at) > 1-
t GZ:|t |^ 0

Hence, under Assumption S.l or L.2, we have that, for every r  G Z,

irX  f ( * fe) / \ \
Id  (A)

< C

uniformly in A and k > M, and
00 J2
E  TT^/f^CA)

k= M

OO 9
cr

^ c E r ^ ( 0 ) = c ’
k=ko

(3.A.44)

(3.A.45)

for every A. The last two displayed bounds imply that, in the second part of the 
right hand side (3.A.40), we can interchange the integral with the infinite sum, 
using the Weierstrass M-test, see Apostol (1967) p. 427. Hence,

7T 7Too p 2 a oo oE J %e"*4*k\X)d\ = J  E (3.A.46)
k= M k= M

On the other hand, the first sum on the right hand side of (3.A.40) is finite and 
so is the integral. Thus,

M - 1 \  2 j A f - 1  2

E  I  y e M f ^ k\X)dX  = / E  | e iT7e(‘4)(A)dA. (3.A.47)
k = k o _ n  _ n  k = k o

Using the last two displayed expressions in (3.A.40), we have that

7.(T) =  / ^ ( e I / E w )  dX- (3.A.48)
k̂=ko
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7T

Recall that by definition 7x(r) =  J  eirXf x(X)dX and 7X(0) =  /  / x(A)dA, so that
—7r

oo

■kw = E (3-A-49)
s i fc!

as required. ■

P ro o f of P roposition  3.4. By Proposition 3.3, the spectral density function of 
{xt}tez can be written as

oo 2

= e  i / r ' w -  (3-a -5°)
s ; fc!

i) We choose the smallest M  G N, M > k0, such that M(1 — > 1 and, write the
sum in (3.4.8) as

M —1 oo

xt = E %Hk̂  + E := »+*■ (3-A-51)
k=ko k= M

Notice that both {yt}tez and {z*}fez admit a Hermite expansion. In the case of 
{yt}tez, the Hermite rank is ko and the Hermite coefficients satisfy Ck = 0 for every 
k > M, while {zt}tez has Hermite rank greater or equal to M. Also, it is evident 
from (3.4.7) that {yt}tez and {zt}tez are uncorrelated. This implies that the spectral 
density function of {xt}tez can be written as

/«(A) =  / y(A) +  /,(A). (3.A.52)

Consider first the spectral density function of {zt}tez• Notice that for k > M, 
we have that k(l — a^) > 1. By Proposition 3.3, we have that

00 r 2 00 Z2

= E  ̂E i c ̂  c’ (3-A-53)
k —M  ’ k= M

since by Lemma 3.1 part iii), f**k\ A) < C for all A G (—7r,7r] and, ^  <
k= M

OO o

E  w =  7i(0) < OO by (3.4.9).
k=ko

Consider next the spectral density function of {yt}tez- Suppose first that k0 > 2. 
Recall that k0(l —a^) < 1 and, notice that for k < M —1, we have that k ( l—a^) < 1. 
Hence, from Lemma 3.1 part i), it follows that, as A —► 0+,

A) =  cJ^C/b0A-1+,!°(1-“£) +  o , (3.A.54)
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for some constant 0 < Ck0 < oo and

f ^ k)(X) = 0 (  A-1+t<i-“e)) =  o(A“ 1+,!°<1“Q<>)> (3.A.55)

for k < M  — 1 such that A;(l — a^) < 1. If it happens that (M — 1)(1 — =  1,
then from Lemma 3.1 part ii) we have that, as A —► 0+,

/ e(*(M- i» (A )  =  0(X~S) = o , (3 .A .5 6 )

for 0 < 5 < 1 — ko(l — Of). Therefore, as A —► 0+,

2 M —l  2

fvW = r j f t 0)W +  E
k= k0+ l

r 2 M —l  o

=  ^ ^ C i:oA-1+'!o(1- “«)(l +  o (l))+  Y ,  m°(A“1+fco<1““«))
k= ko+ l

= cj^stoA~1+M1~“<) +  o(A~1+'*(1~°«)), (3.A.57)

ckQ
with Sk0 = °’| o, 0 ■ In the special case that ko =  1, Assumption L.2 implies that, as 
A —► 0+,

/ f 11 (A) =  / { (A) =  e^A"** +  o  ( A - ^ ) . (3 .A .5 8 )

Using the same arguments as in (3.A.54)-(3.A.56), we have that, as A —► 0+,

/<**>(A) =  O =  o (A"“« ) , (3.A.59)

for 2 < k < M  — 1. The last two displayed expressions imply that, as A —► 0+,

M —1 2

m  =  < z# 1)w + ' E % # k)wf k\
k - 2

M-l 2 w
— c ^ A  a ? ( l  +  o ( l ) )  +  ^ 2  a c )

k = k o + l

=  c ^ 1A-Q«+ o(A ““«), (3.A.60)

with Si — co^.

Now, set ax = 1 — ko(l — o^). Using the bounds (3.A.53), (3.A.54)-(3.A.56) and 
(3.A.58)-(3.A.59), we have that

o M —l  2

/-(A) = 7^/f0)(A)+ E +
K°' fc=fco+l

4
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as A —► 0+, which implies that

/.(A ) =  j j j i f ‘#,(A)(l +  o(l)), (3.A.62)

as A —> 0+, and hence, the first part of (3.4.17) is shown. Using the last displayed 
equality together (3.A.54) and (3.A.58), implies that, as A —► 0+

/.(A ) =  c ^ A - 1- ^ 1- 0̂ !  +  o(l)) +  o(A-1+fc°(1-^>)
=  4 . s*oA-q- +  o(A-q-), (3.A.63)

with Sk0 = °’| o! 0, when ko > 2 and Sk0 = c q when k0 =  1, which proves the
second part of (3.4.17).

ii) Set M  = ko +  1 and write x t =  yt +  zt as in (3.A.51). Using similar arguments 
as in part i), we obtain that

r 2 00 r 2m) = fvW+m) = jsiftk0)w+ E (3-A-64)
fc°! k X n k -

Since k0(l — a^) =  1, we have by Lemma 3.1 parts ii) and iii) that, as A —> 0+, 
f(*ko) (a) =  0(X~S) for every S > 0 and, f^*k\ A) < C uniformly in k > M. Hence, 
the spectral density function function of {xt}tez satisfies

OO 9

/-(A ) <  0(A~S) +  E  BC = 0{X~S)’ (3-A '65)
fc=fco+l

o o  ^  OO c 2

as A —► 0+ and, for every 5 > 0, noticing that -ft < it = 7®(0) < 00 by
fc=fco+l k = k o

(3.4.9).

iii) In this case we assume that k0{ 1 — c^) > 1 and hence, k( 1 — a^) > 1 for 
every k > ko. So, from Lemma 3.1 part iii), it follows that, for all A G (—7r,7r], 
f^*k\ A) < C  uniformly in k > ko, which implies that

OO 9  OO 9

= E if(k)w z E  ̂c> (3-A-66)
k = k o  k = k o

00 c2for all A G (—7r,7r], using again that < oo by (3.4.9). ■
k = k o

P ro o f of T heorem  3.3. i) Assumption S.l implies that the spectral density 
function of {xt}tez satisfies Assumption A.3 with ax = 0 and cq>x = /r(0). We show 
that

^m.x — max E
1 < k < m
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Then, in view of Proposition 2.1, Assumption A.3 and (3.A.67) imply convergence
(3.4.21).

Since {xt}tez satisfies Assumption S.l, we have from Proposition 3.2 that

E  bf(T)l*° < °°-
t E Z

(3.A.68)

Let M  > ko be such that Cm+i ^  0. Split up the sum in (3.4.8) in two sums,

M

k=ko k= M + 1
k\

(3.A.69)

Using analogous arguments to those in (3.A.1), we write /®(Aj) =  Iy(\j)+ V j, where 
Vj = I z(\j)  +  A- \w y(\j)w z(\j)  +  wy{\j)w z{Xjyj . Then,

E £ ( / , ( Aj) -  E (Ix(Aj)))
3 = 1

= E Y  ( (J» M  -  EilyiAj))) + (vj -  E (Vj))))
j = 1

< E \S k\ + E \R k\, (3.A.70)

where

s k = Y  ( W i )  -  E ( - 311(1 &  =  Y < v* -  E (v>»- (3-A-71)
3 = 1  3 = 1

We first consider E \ R k \ . Prom (3.A.3), we obtain that

E  M  < C ( f z{Aj) +  f ! (Aj ) f l (A,.)) . (3.A.72)

OO

Recall that zt = J2 and therefore, expression (3.4.9) is satisfied for
k = M + 1

{zt}tez with Hermite rank M + 1. Then, the autocovariance function of {zt}tez can 
be written as

7;

00 r 2

■W= E
k = M + 1

(3.A.73)

and therefore,

°° _2 °° 9
|7 ,( r ) |<  ^  TT l'r€('r)|fc < |'T«('r)|fc° E  w =  k ( r )l*° e"> (3.A.74)it! 1 '5V '' -  1 '' fc!

f c = M + l  k = M + 1

since |xy^(y7") | < 1, where 6m =  ^  From (3.A.68) we have that ^  |7f(r ) |fc° ^
f c = M + 1 t EZ

OO 9 OO o

C , while 6m —► 0, as M —> oo, because by (3.4.9) i* = 7x(0) < 00•
k = M + l k=ko
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Hence, the spectral density function of {zt}tez can be bounded by

^  E  i^(T)i  ̂^  E  M r)l*°  ̂Ce"- (3.A.75)
rGZ

M
On the other hand, since yt = ^2 and |o/̂ ('r ) | < 1> applying (3.4.9) and

k=ko
the bound (3.A.68) implies that

fyW -  ^ E k ^ lr£ z
M c?

tG Z fc=fco 

M A ifco

rGZ k=ko

< C j 2 h ( r t < C , (3.A.76)
rGZ

M  c2 00 c2
using again that ^  -A < < 00 • The latter displayed bound together withfc! — ^  fc! 

k=ko  k=ko

(3.A.75) and (3.A.72) imply that E \vj\ < C e Thus,
k

E \R k\ = E  

Hence,

^ 2 (v j  -  E(vj)) 
i=i

fc 1 1
<  2 ^  E \Vj | < 2 C e l < C m el. (3.A.77)

j=1 j=l

J57|/k| =  o(ro), (3.A.78)

as M —► 00.

Next, we examine E  |Sfc| . Since the spectral density function of {yt}tez is bounded, 
we have that {yt}tez satisfies Assumption A.3 with ay = 0. Recall that {?t}tez is a 
stationary Gaussian sequence with finite second moment, so that {yt}tez is fourth- 
order stationary. Next, using the bound of Lemma 2.2 for {yt}tez with ay = 0, we 
have that

m_1Am)y =  O (log (m) m~^ +  n~%D*^ ,

where

and

Am ,y = max E
l < k < m

(3.A.79)

(3.A.80)

(3.A.81)
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Then,

D n,y =  E  lCUmfe l.S /< 2 >2/t3,y o )l
1̂ >̂2 >̂3==  ̂

n

=  ^  ^  |c u m {y ti  + * 4  +7X5 2 / i 2 + i 4 + r a j  2 / t 3 + * 4 + n j  Vu+n)  I

1̂ >̂2 >̂3 — TO 
 ̂ n n

=  ; E  E  |cii?7l(?/t1+ i4+ n , 2/t2+*4+ n> 2/t3+*4+^J Ut^+n) |71/ 4̂”1 ̂  1 2 >̂3 TO
1

< -  E  I c ^ f e n  2fe,8/f3>m4)l-n z—'1̂*̂2 >̂3)̂4 — 1

Using the bound (3.B.30) of Lemma 3.2 part i), it follows that, a s n - ^ o

3 n

®n,y — r, E  |cum(ytl,yt2,yt3,yt4)|!t l̂>̂21̂3>̂4 — 1
3 n.

= 1  En 1'1̂ >̂2 >̂3>̂4 — 1
M

M

***  ( E  E

M
Cfc2

Â:i=fco 
M

A*! k2=ko k,\

E  E
k3=ko k^—ko

3 n. M

< i  E  EÎii2)i3)i4=l ki,k2,k4,k4=ko

c k i Cfc2 Cfc3 Cfc4 . . .

1 M 
=  1  E

Cfcx Cfc2 Cfc3 cfc4 3n

fci,fc2)̂ 4jfc4=fco

i m•*■ \  A ^fci Cfc2 Cfc3 Cfc4 / 2 \  /  \
=  ~  7  T i 7 i 7 i 7 i ° K )  =  ° \ n ) -

n t t e hL  * W W  W WAC 1 , / C 2 ,  n ? 4 ,  A C 4 = A C O

Hence, J9* =  o(rc) and, from (3.A.79) we deduce that

1  1  * i  1  1 1
Am>y =  0 (m2 log (m) +  mn~^Dn%) = 0{m* log (m) +  mn~^o{n^)) =

Therefore,

£ |S * | =  E E ( ^ ( ^ )  -  ^ W i ) ) )
i = i

^  ^0,y^7n,y — o(m).
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o(m ).

(3.A.84)

(3.A.85)



The estimates (3.A.78) and (3.A.85) together with (3.A.70) imply that

m a x
l < f c < 7 7 l

<  m a x  E  I 5 J  +  m a x  E \ R k \  =  o ( m ) ,
~  1 <k<m 1 1 l<fc<m 1 1l < f c < 7 7 l

(3.A.86)

as required.

ii) We first write x t = yt +  zt as in (3.A.69) with M  = k0. We show that the spectral 
densities of {yt}tez and {zt}teZ are such that

In addition, we show that {yt}tez satisfies Assumption A.2. Then convergence
(3.4.22) follows by Theorem 3.1 part i).

We begin with the proof of (3.A.87). Notice that yt =  ^ H ko(£t), and since

with ay =  1 — ko(l — a$) and for some 0 < sko < oo, which shows (3.A.87) with

Next, we show (3.A.88). Recall that zt = ^H k(£t) and denote ko)Z the
fc=/co+l

Hermite rank of {zt}teZ. Since {£t}teZ satisfies Assumption L.2, we can apply Propo­
sition 3.4 to {zt}teZ. We consider three cases for ko,z( 1 — a f).

If ko)Z(l — Of) < 1, then we have by Proposition 3.4 part i) that, as A —► 0+,

with a z = 1 — k0)Z(l — Q̂ ) and some 0 < Sk0tZ < oo. Hence, (3.A.88) is satisfied with

fy(^) — °o,y^ ay “I" o(A ay), as A —> 0+, 

with ay = 1 — ko(l — a$) and Co,y =  cl0Sk0, for some 0 < Sk0 < oo, while

/z(A) < C \~ a'z, as A —> 0+,

(3.A.87)

(3.A.88)

where
0  <  OLz  <  OLy. (3.A.89)

{£t\tez satisfies Assumption L.2, we have from Proposition 3.4 part i) that, the 
spectral density function of {yt}tez satisfies

c 0,y — CkQS k0 -
oo

(3.A.91)

0 < a'z =  a z. (3.A.92)
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Since ko,z > ko, we have that
olz < a y, (3.A.93)

which together with (3.A.92) shows (3.A.89).

If fco,z(l — a^) =  1, then it follows by Proposition 3.4 part ii) that, as A —► 0+,

/ , ( A) < C \ - \  (3.A.94)

for any arbitrarily small 5 > 0. Therefore, (3.A.88) is satisfied with

clz =  S .  (3.A.95)

We can choose S  arbitrarily small, so that

0 < a'z < ay, (3.A.96)

which shows (3.A.89).

If ko)Z(l — a ^ )  >  1, then Proposition 3.4 part iii) implies that, for all A G (—7r, 7r],

f z(A) < C. (3.A.97)

Hence, (3.A.88) is satisfied with
olz = 0. (3.A.98)

Since 0 < ay < 1, we have that

0 =  olz < a y, (3.A.99)

which implies (3.A.89).

It remains to show that {yt}tez satisfies Assumption A.2. In the case that 
&o =  1, we have that yt = ci£t. Then, since {Ct}tez is a Gaussian sequence with finite
moments, we have that {y*}tez is a linear process. In addition, as discussed above,
Assumption A.3 is satisfied for {yt}te% ■ Hence, Proposition 2.3 part i) implies that 
{yt}tez satisfies Assumption A.2. Next, consider the case k0 > 2. Using the same 
argument as in part i), we have that {yt}tez is fourth-order stationary sequence. 
In addition, it is evident from (3.A.87) that Assumption A.3 holds for {yt}teIl with 
0 < oty < 1. Hence, we can apply the bound (2.B.35) of Lemma 2.2 for {yt}tez »

ra-1Am)y =  O (\og(m)m~% +  ( — ^logn^j , (3.A.100)

where

= ^ 2  M 0 , t u h  + u,u)\. (3.A.101)
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Since Assumption A.3 holds for {yt}te%, we have by Proposition 2.1 that, {yt}teIl 
satisfies Assumption A.2 if

=  o(l). (3.A.102)

To show (3.A.102), we apply the bound (3.B.31) of Lemma 3.2 part ii), which 
implies that

\cum(ytl, y t2, y t3, y ti)\ =  C

< C (y2(ti -  t3) + 7|(ii -  U) + 7|(42 -  t3)
+7?(*2 -  U)) ■ (3.A. 103)

By Assumption L.2, we have that 7^(r) ~  C£T_1+“€, as r  —» 0 0 . Therefore, 7|( r )  < 
C r-2*1-0^  for every r ^ O .  Notice also that 0 < 2(1 — a^) < 1, because k0 > 2 and 
0 < 01$, ay < 1 with ay = 1 — &o(l — Hence,

n

|ci|,|c2|<n t t= —n 
n

-  D  ( 7 l ( - i 2 - « ) + 7 | ( - « )  +  7 | ( * i - i 2 - « ) + 7 K ti - u))
u=—n 

3 n  3n
. - 2( 1- o £)< 7 |(t) < C ' £ t- 2<1- “<

r = —3 n  r = l

3 n

< C j  x - 2(1~a^dx  < Cn2“s_1, (3.A.104)
0

since 0 < 2(1 — a^) < 1. Using the latter displayed bound in (3.A.100), implies that

 1 » ^  A  / N _ I  / n 2a«_1y  / T O N - ^ v771 Am>y =  O I log (m) 771 2 +  1 ---   1 j  log 77

=  O ^log (771) ?7i-  ̂+  ’ (3.A.105)

since a y  =  1 — fc0(l — a^). Under the assumptions of the theorem, we have that 
n 1 < m  — 0 ( 7 7 ) , for some 1 — ^  <  7  <  1. Hence, there exists some e  >  0 such that 
7 7 1 _ I o+e <  7 7 1 . Therefore, ( ^ ) fc°7i_1 <  n ~ ek° — 0 (7 7 _ e ) and so,

77i-1Am)y =  O  ^log ( m )  m ~ %  +  n ~ e^1~ a^  log 77  ̂ =  o ( l ) ,  (3.A.106)

as required.
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iii) We first write xt = yt +  zt as in (3.A.69) with M  = k0 = 1. As in part ii) of 
this theorem, (3.A.87)-(3.A.89) hold. Hence, condition (3.2.2) of Theorem 3.1 is 
satisfied. We have that yt =  Ci£t, where {^t}tez is a stationary Gaussian sequence, 
so that {yt}tez can be written as a linear process satisfying Assumption A.8. Under 
Assumption L.2 on the spectral density function of {£t}tez, {yt}tez has spectral den­
sity function satisfying Assumption A.4 with (3y = 2. Moreover, by the assumptions 
of the theorem, we have that {yt}tez satisfies Assumption A.6, and n1 < m  — o(n)

for some 7 > 0, so that m  =  o I —r|— ) . Hence, we can apply Theorem 3.1 part
V lo g ^ y  n )

iii), which yields that

_  /  _ i  f m \  -JLi r ^ \  
olx  -  o ty  =  O p  1 m  2 +  I . (3.A.107)

We show that
OLy --- (3.A.108)

and that the spectral density function of { z t } t e z  is such that, as A - ■+ o+,

MX) < cx~a'z, (3.A.109)

with
0 <  Oiz  <  OLy, (3.A.110)

where
o lz  =  0, if a t  < i , (3.A.111)

0 < o lz  < 2 o t£  — 1, if c t£  > ^ (3.A.112)

and

^ z  ^  0’ (3.A.113)

for arbitrarily small S > 0. Then, from (3.A. 107), it follows that

= Op , (3.A.114)

with r — min , which shows (3.4.23).

As in part ii), see equality (3.A.92), we have that ay =  1 — ko(l — o^). Then 
(3. A. 108) follows since k0 = 1. Using the same arguments as in the proof of (3.A.88) 
and (3.A.89), we obtain expressions (3.A. 109) and (3.A.110). It remains to show 
(3.A.111)-(3.A.113).
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Consider first the case Notice that {zt}teIi admits a Hermite expansion
with rank ko)Z > 2. Then, (3.4.10) and Assumption L.2 on the autocovariance 
function of imply that, for every r / 0,

|7 ,W | < C |7t M|*** < C7|( r )  < (3.A.115)

since |t^(t)| < 1. Thus,
oo /  00 \

E  = 2 1 3  l7*(T)l +  1 ^  C I E r "2(1' “S) +  1 ) < °°> (3.A.116)
r € Z  t—1 \ r = l  /

because \  imphes that 2(1 — a^) > 1. Hence, the spectral density function of 
of {ztjtez is bounded and satisfies (3.A.109) with a'z =  0, which imphes (3.A.111).

Next consider the case Notice again that {zt}teZ admits a Hermite
expansion with rank kojZ > 2. Now, as in part ii) of this theorem, we have by 
Proposition 3.4 part i) that, if k0>z(l — a^) < 1, then, as A —► 0+,

Sz{ A) =  co,zA-a* +  o{\~a*\ (3.A.117)

with az = 1 — k0)Z( 1 — a^) and Co)Z = cf0 Ŝfc0z, for some 0 < Sfc0z < oo. Hence 
(3.A.109) is satisfied with a'z — a z — 1 — ko,z(l — ctf) < 1 — 2(1 — a^) =  2 — 1, 
since ko)Z > 2. If &o,z(l — c*f) — 1, then from Proposition 3.4 part ii), we obtain 
that, as A —> 0+,

/*(A) < CX~S, (3.A.118)

for arbitrarily small £ > 0. Therefore, (3.A. 109) is satisfied with afz — 5 < 2a^ — 1 
for small enough S > 0, since If fco,z(l — a^) > 1, then by Proposition 3.4
part iii), it holds that, for all A G (—7r,7r],

/*(A) < C. (3.A.119)

Thus, (3.A. 109) is satisfied with a'z = 0 < 2a% — 1, since In all three cases,
we obtain that olz < 2a^ — 1 when which shows (3.A.112).

Finally, consider the case that Since k0iZ > 2, we have that ko}Z(l — a^) >
1. If k0)Z(l — a%) = 1, then Proposition 3.4 part ii) implies that, as A —► 0+,

MX) < CX~S, (3.A.120)

for arbitrarily small S > 0. Therefore, (3.A. 109) is satisfied with a'z =  5 < for
small enough <S>0, which shows (3.A.113). If k0>z(l — a%) > 1, then by Proposition
3.4 part iii), it holds that, for all A G (—7r, 7t],

f z(A) < C. (3.A.121)
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Thus, (3.A.109) is satisfied with a'z =  5 < c^, which implies (3.A.113).

Finally, notice that if in addition Assumption A.7 is satisfied for {£t}tez, then 
using the same arguments as in (3.A. 114), it follows from Theorem 3.1 part iii) that

m h (ax — ax) - i  N (0,1), as n —> oo, (3.A.122)

with 77i =  o , which shows (3.4.24) and completes the proof of the theorem.

3.B Appendix

This section contains a series of technical lemmas used in the proofs in Appendix 
3.A above.

Lemma 3.1
Let k > 2. Suppose that {ft}tez satisfies Assumption L.2.

i) I f  k (l  — a f) < 1, then, as A —► 0+,

f ( ' k \ A) =  ( * A C k a -'+ M i-o j)  +  Q / A-i+ k (i - Q£) \   ̂ (3 .B .1 )

for some 0 < Ck < oo.

ii) I f  k( 1 — a^) =  1, then, as A —► 0+,

/{* * '(A) <  C \ ~ s , (3 .B .2 )

for any S > 0.

iii) I f  k( 1 — a^) > 1, then, for every A G (—7r ,  7r ] ,

A) <  C .  (3 .B .3 )

Proof. Let 0 < e < 1. By definition,
7T 7T

4 * fc) (A) =  J...J MX -h- ... -  t*_i )Mh)-Mh-x)dh-dlk-i
—7T —7T 

£ £
=  J...J / { ( A -  i i  -  . . .  -  h-i)Mh)-Mh-i.)<Ui-dk-i

— £  — £

dlk-
3 at least one Zp:|Zp|>e

: = / 1(A) +  / 2(A). (3 .B .4 )
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i) We show that for a given 0 < e < 1, as |A| —► 0,

A(A) = 4 a |A|-1+fc(1- “^ C.(A) +  0 (e2 |A r1+fe(1-“e) C,(A)), (3.B.5)

where C£(A), given in (3.B.15) below, is such that, for any fixed 0 < e < 1, as 
|A| -  0,

Ce(A) -  Ck, (3.B.6)

with some constant 0 < Ck < oo defined in (3.B.17) below. Then, (3.B.5) and 
(3.B.6) imply that, for any given 0 < £ < 1, as |A| —>0,

A (A) =  |A|-1+fc<1-“e) +  O (e2 |Aj-1+fc<1- “«>'). (3.B.7)

Since e can be made arbitrarily small, we obtain that, as |A| —► 0,

A (A) =  |A rl+fc(1- “«) +  o (\X\-1+k̂ )  . (3.B.8)

Furthermore, we show that, for all A 6 (—7r, 7t],

J2(A) =  0(1), (3.B.9)

which together with (3.B.4) and (3.B.8) imply that, as A —► 0+,

f W  (A) =  A-1+i(1_a«) +  o ( a _1+,!(1_“£))  , (3.B.10)

and hence part i) of the lemma holds.

We start by showing (3.B.5). By Assumption L.2 we have that, as |A| —>• 0,

m  =  IA P 4 (co,( +  Ci,e |A|2 +  o (|A|2)) =  c *  |A p £ (l +  O (|A|2) ) . (3.B.11)

Hence, for |A| < £,
M A) =  cot |A p £ (l +  O (e2) ) . (3.B.12)

Thus,
e e

A (A) =  [ . . .  f  f i ( \ - h - . . . - l k- 1)f((l1)...fi (lk- 1)dh...dlk- 1
— £  — £

£ £

= Ĉ  j  j  _  ̂_ _ ^(l+^K^2))
— £  — £

X \h \  a* ( l  +  O (s2) ) ... \ h - i \  a* (l +  O (s2)) d l i . . . d l k - i
£  £

=  ck  (l +  O (e2)) j ... /  |A -  A -  ... -  A - i n
— £  — £

x |A|"“£ ... |A - x r £ dA -dA -i. (3.B.13)
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By the change of variables l'p — l-f, P — 1 , k — 1, we obtain that

A  A
X  X

h (  A) =  4 ,CW - 1+H1~a()( l  + 0 ( e 2)) j  ... J t |

_e_  e_
X  X

x i*ir{ -  K-iH  d i’1...d i’k_1
= co,( |A|_1+^ 1_“{) Ce(A) +  0  (e2 |A|_1+I[(1_a{) Ce(A)^ , (3.B.14)

which proves (3.B.5) with

A  A
X  X

Ce(A) =  J  ... J  |1 -  h -  ... -  k - i P '  \ h n  -  \ h - i r “‘ dh...dlk_1. (3.B.15)
_e _
A X

Next, we show (3.B.6). Since the integrated function in C£(A) is positive, we 
have that, for any fixed 0 < e < 1,

C£(A) /  Cfc, as |A| \  0, (3.B.16)

where
oo oo

Ck = J  ... J  |1 -  k  -  ... -  lk^  ... dh...dlk^ .  (3.B.17)
—oo —oo

It remains to establish that
Ck < oo. (3.B.18)

We use the inequality
oo

J \y — x\~^x \x\~^2 dx < C  |y|1-^ 1+̂ 2̂ ? (3.B.19)
—oo

for any 0 < /5l3 /32 < 1 with fdx +  (d2 > 1, which holds true because, after a change 
of variables x’ = - , the integral in (3.B.19) becomes

oo
|^ |i-(0i+02) J  |i  _  a/1”0i |x7|- ^2 dx'

1 ^ 1+02̂ j J  |l  — x\ \x\ ^2 dx + J  |1 — x\ ^  l'*-!

\r€K:|a;|<| xeR:|<|a:|<2

_  |^| kpi Pi) / |1 —x| 1 |x| 2ch +  / |1 — x| |x| 2 dx
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+  J  |1 — x\ ^  |x| dx
xeR:\x\>2

< (2*. J  /  11 - «i-»'*
\  x e R : |x |< ±  x € R ; i < | x | < 2

+2». J
xGR:|x |>2

< C '|y|1_(̂ 1+̂ ) , (3.B.20)

since 0 < /?l5/52 < 1 and Pi + P2  > 1- To prove (3.B.18) we use repeatedly the 
inequality (3.B.19) with (31 = (p — l)o;^ — (p — 2) and (32 = f°r p =  2,..., fc. Recall 
that 0<O!f < 1, 0 < A;(l — c^) < 1 and k > ho + 1 > 2. The latter inequalities imply 
that, for p =  2,..., k } we have 1 — J < < 1 and hence  ̂ < (p — l)a^ — (p — 2) < 1
to show that 0 < /3j < 1. It is evident that 0 < (32 < 1 and also, +  /32 =
pot£ — (p — 2) > 1 for p = 2,..., k , since > 1 — J. Hence,

00 00
c* <  C f  ... J  \ l - l 2 - . . . - l k- 1\ - ^ - 1)\l2\-at . . . \ lk- 1\-a‘ dl2...dlk- 1

—00 — 00

00

< ... < c k- 2 J  \i -  \ik- ! \ -a< d i ^

< C*"1 < oo, (3.B.21)

as required.

Finally, we show (3.B.9). For p = 1 , A; — 1, we define the set Ap = {/1, ..., G 
(—7r ,7 r ]  : |ZP| > e}. Then, for all A G (—7r ,  7t],

/ 2(A) =  /{(A — /1 — ... -  lk-i)f({li)...f((lk-i)dli...
3 at least one Zp:|Zp|>e  

fc-1
< 5 3  f . . .  [ f ( ( \ - h - . . . - i k- 1) f( (l1) . . j ( (lk- 1)dl1...dlk- 1. (3.B.22)

P = 1  AA f

Without loss of generality, we consider the integral

J ... J / f(A -  h -  ••• -
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=  / • • • /  J  /f(A -  h  -  -  -  Ik-1) X f S i Y - M k - M h - d l k - i .  (3.B.23)
—7r —7T Z i€ (—7r,7r]:|/i|>£

Since |/i| > e, we have under Assumption L.2 that /$(/i) < C. Hence, the last 
displayed integral is bounded by

7r 7r

C I ” I  I
—7r —n- Z i€ (—!T,7r]:|Zi|>e

7T 7T

=  C J ... J  f((l2)...f((lk-i)
— 7T —  7T

(  /  /,<A\ie(—77,̂ -]:!/! |>e
/  / l7T

< c f . . . f  f ( (l2)...fe(h-i) ( /  /«(A)dA j taa—rfifc-! (3.B.24)
\-k-vr—7r —7T

fc-l

~  C \ j  I =  C’ (3.B.25)

7r
since f  f^(X)dX = Var(£t) = 1. Recall that in (3.B.24) we set /^(A) =  /^(A +  2ir)

—TV
for A g M. From (3.B.22) and (3.B.25), (3.B.9) follows.

ii) As in part i), we have that, for all A G (—7r,7r], / 2(A) =  0(1). We show that 
/i(A) =  O (|A|-<5̂  for every S > 0, as |A| —► 0. Then (3.B.2) follows from (3.B.4). 
Now, as in part i) we have that, for any 0 < e < 1, and |A| < e,

h (  A) =  ck0t ( l  +  O( e2) ) J . . . j \ X - h - . . . - l k - 1\ -a*
—£ — £

x ... |/fc_ar “£ dh...dlk (3.B.26)

Let a i be such that 0 < 1 and set 7 =  ol'̂  — a£. Then, 0 < k( 1 — a^) <
fc(l — =  1 and, as in (3.B.14),

£ £

Jfc /1 , 2>/i(a) < < e( i + o ( ^ ) ) y  . . . j  \\ -  h - . . .  -  k - i n
— £  — £
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=  O (|A |-1+fc(1- ^ )  =  O (’|A|-1+fc(1- “‘j)- fcT̂

=  O (lAp*7)  =  O (|A|-4)  , (3.B.27)

as |A| —► 0, where 6 =  ky. Since 7 can be made arbitrarily small, we have that, for 
every S > 0, A(A) =  O ^|A|”^  , as |A| —► 0.

iii) By Assumption L.2, we have that ^ ( r )  | < C | r |_1+Q* , for every |r | ^  0. Hence,

£ M t ) | * < C  Y  M "fc(1+“{) +  1 < C, (3.B.28)
t € Z  t €Z :t ^ 0

since A:(l — a^) > 1. The latter displayed inequality and (3.A.41) imply that, for 
every A G (—7r,7r],

f t k)W < C Y h ( T)\k ^ C’ (3.B.29)
t GZ

which completes the proof of this lemma. ■

Lem m a 3.2
Let ko > 2  and {£t}tez> t E Z be a stationary zero mean and unit variance Gaussian 
sequence such that |t^('7_) 1̂ ° < 00• Then the Hermite polynomials Hk(-), k > ko

rGZ
have the following properties:

i) For any k i , ..., k± > fc0,

n
Y  \^ rn {H kl( ^ , H k2( ^ , H k3^ t3),H k̂ J ) \ = o ( n 2) .  (3.B.30)

ii) For any fixed k >  2, uniformly in t i , ..., £4 G Z,

|cum(Hk(£tl) ,H k(Zh ),Hk(£h ),H k(£u ))\ < C ( t | (ti - 13) + (tr -  U)

+7{ (̂ 2 — h)  + 1\ (̂ 2 — ti) )(3.B.31)

Proo£ i) Let j  > 3. From the proof of bound (2.9) in Giraitis and Surgailis (1985), 
p. 201 it is evident that for every &a,..., kj > k0,

n
\cum(Hkl(ti),...,Hkj(tj )) \ = o ( n 2) .  (3.B.32)

11 —1

In our case we have j  = 4, which proves (3.B.30).
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ii) It is well known, see for example Giraitis and Surgailis (1985) pp. 194-195, that

dy1...dyr, (3.B.33)
v

where V = {Vi,.., Vr} is a partition of the table W  :

( ( i , i )  ... a ,* )  ^
(2.1) ... (2, k)
(3.1) ... (3, k)

\  (4,1) ... (4, k) )

w = (3.B.34)

into subsets (edges) V 1 = {(ii,i,ji,i), (i2>i, .72,1) } ,  • K  =  fe.r, JV)} where
r  =  2k.

For I = 1, ,.,r, we define dyt = 7  ̂(U — U>) when VT =  {(i,j), (^ ,/)} - The sum 
in (3.B.33) is taken over all connected partitions V  =  {Vi, .., Vr }  without flat

v
edges. Recall that a diagram V  =  { V i , Vr} is called connected when the rows 
of the table W  cannot be divided into two groups, each of which is partitioned by 
the diagram separately. A diagram V  =  { V i , Vr} is said to have no flat edges if 
h,i ^  *2,i for all I = 1 ,..,r.

It suffices to show that for any partition V  =  { V , .., K-},

\ dVl . . . d Vr\ < C (jI  (ti -  t 3) + 7|  ( t i  -  U )  +  71 ( t 2 -  t3) +  7|  (t2 -  *4) )• (3.B.35)

Since the sum in (3.B.33) has a finite number of terms, then (3.B.31) follows from 
(3.B.33) and (3.B.35). Suppose that there are two edges Vfe, V3 of the partition V  

connecting rows 1, 2 with rows 3, 4 of the table W. Since \dvt \ < 1 for all I = 1,.., r, 
then

\dvi---dvrl < \dvkdya\ < ^ (Î Vfc|2 +  l^vj2) • (3.B.36)

There are four possible cases for the values d y k : d y k =  7  ̂( î — t 3) , d v k =  7  ̂( t i  — U ) ,  

d y k =  7  ̂( t 2 — t 3) , d y k =  ( t 2 — t ± ) . Hence, (3.B.35) follows.

It remains to show that each partition V = { V i , V r }  has edges Vfc, V s connect­
ing rows 1, 2 with rows 3, 4 of the table W. Since the diagram is connected, there 
exists at least one edge 14 connecting rows 1, 2 with rows 3, 4. Without loss of 
generality, we assume that Vc =  {(1,1), (3,1)} and suppose that none of the other 
edges of V  have this property, i.e. there are no other connections between rows 1, 2 
and rows 3, 4. Since there are no other connections between rows 1, 2 and rows 3, 
4, we have k — 1 elements in row 1 that have to be connected with the k elements

122



of row 2. This is impossible, since any edge has to contain 2 points.

^  (3.B.37)
(2,1) (2,2) ... (2 ,k) K ’

Hence, each partition V  =  { 1 4 ,1 4 }  has at least two edges 14,14 connecting rows 
1, 2 with rows 3, 4 of the table W. ■
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Chapter 4

Local W hittle estim ation:
M onte-Carlo sim ulations and 
em pirical applications

4.1 Introduction

In the previous two chapters we analyzed the LW estimator of the memory parame­
ter under various setups, linear and nonlinear ones. We found that the consistency 
property of the estimator is not affected by the presence of nonlinearity. However, 
our results also suggested that its finite sample properties are likely to be worse off 
when compared to the case of a linear process. We now turn to establish our find­
ings by means of Monte-Carlo simulations. Furthermore, we apply LW estimation 
to real data to access their long-run persistence and address several issues that have 
appeared in the empirical literature.

We start by performing Monte-Carlo simulations to examine the finite sample 
bias, standard deviation and root mean squared error (RMSE) of the LW estimator 
under the linear specification and nonlinear setups discussed in Chapter 3. The 
main purpose of the experiments is to assess whether the LW estimator is indeed 
consistent for the nonlinear models we have considered, and under these specifi­
cations to contrast its finite sample behaviour against that of a linear model. In 
addition, we want to address the issue of bandwidth choice, which according to our 
findings is affected by the presence of nonlinearity. The Monte-Carlo simulations 
also aim to confirm the various remarks reported in Chapters 2 and 3. In partic­
ular, we seek to establish whether the LW estimator performs better under short
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memory than under long or negative memory. Furthermore, we aim to find how the 
finite sample bias behaves in the signal plus noise model under various combina­
tions of the memory parameters of the signal and the noise and, different forms of 
dependence between the two processes, as well as various magnitudes of the signal- 
to-noise ratio. Moreover, in the structural model, we attempt to understand how 
strong cyclical persistence might affect the finite sample bias of the LW estimator 
when the frequency of the cyclical component is small. We also seek to establish 
if in the case of long memory nonlinear transformations of a Gaussian process, the 
finite sample bias is negative and the LW estimator performs better for moderate 
values of long memory. Finally, for the LMSV model having an exponential repre­
sentation for the volatility process, we address the finite sample performance of the 
LW estimator for different transformations of the return series. Overall, the Monte- 
Carlo experiments performed here confirm our findings and remarks presented in 
Chapters 2 and 3.

As a next step, we apply the LW estimator to real data sets. We start with 
examining the degree of long-run persistence of different measurements of inflation 
and expected inflation rates. Although, the rational expectations hypothesis implies 
that all these series should have the same degree of long-run persistence, we find 
substantial differences in the point estimates of their memory parameters. The 
latter observation however can be easily explained by our findings on the signal plus 
noise model. Since the various measures of inflation and expected inflation rates are 
associated with short-run components of different variation, the differences in the 
point estimates of their memory parameters are attributed to the effect of the signal- 
to-noise ratio. We also apply LW estimation to the nominal and real interest rates 
in order to assess their degree of long-run persistence. Over a particular time span, 
the estimates of their memory parameters are unrealistically high, as they suggest 
that the two series have an explosive behaviour. Using a monetary policy function 
along with the results on the structural model, we provide an explanation as to why 
these unexpectedly high estimates arise. We conjecture that the LW estimates are 
actually driven by the strong cyclical component of these series and overestimate the 
true degree of long-run persistence. Finally, we examine several foreign exchange 
rates and apply the LW estimator to different transformations of their returns. 
The observed estimates vary across the different transformation employed, a result 
that has already been reported in the literature for other exchange rates and asset 
returns, and that is in line with our findings on the LMSV model.

The remainder of this chapter is as follows. In Section 4.2, we discuss and com­
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ment on our Monte-Carlo experiments on linear process, signal plus noise model, 
structural model, nonlinear transformations of a Gaussian process and LMSV model. 
Section 4.3 deals with applying the LW estimator on inflation and expected infla­
tion rate, nominal and real interest rate, and various exchanges rates. Some final 
comments are found in Section 4.4, while Appendix 4.A contains the results of 
the Monte-Carlo experiments of Section 4.2, and Appendix 4.B the data and the 
corresponding LW estimates examined in Section 4.3.

4.2 M onte-Carlo simulations

We now present our Monte-Carlo simulations. In the majority of our experi­
ments, we employ the Davies and Harte (1987) algorithm to generate Gaussian 
ARFIM A(0,d ,0)  processes. In the signal plus noise model, when examining the 
effect of the dependence between the signal and noise processes, as well as in the 
structural model, we generate Gaussian ARFIM A(0,d,0)  and GARMA(0, d^, 0) 
processes by truncating at 5,000 terms the M A (oo) representation of these models. 
We carry out 5,000 replications of sample sizes n = 128,512,2048 and take the 
bandwidth parameter to be of the form m  =  [n7] with 7 =  0.5,0.525,0.55,..., 0.8. 
We calculate the Monte-Carlo bias, standard deviation and RMSE. In all the ex­
periments below, the Monte-Carlo standard deviation decreases with increases in 
n and m. It is almost the same across the various models for a given n and m, 
and hence any differences in the RMSE across the various models are driven by 
differences in the bias. The Monte-Carlo standard deviation is not reported here, 
while the Monte-Carlo bias and RMSE are found in Appendix 4.A.

4.2.1 Linear process

We start by simulating standard Gaussian A R F IM A (0, 0) processes with ax =
—0.8, —0.4,0,0.4,0.8. The Monte-Carlo bias and RMSE are reported in Figures 
4.1-4.10. The results are in line with those of Robinson (1995b). The Monte-Carlo 
bias and RMSE decrease in absolute value with an increase in n, suggesting that 
the LW estimator is consistent. For a given n and m, the magnitude of the bias 
and RMSE are on similar levels for the different values of the memory parameter 
ax. Overall, the bias tends to increase in absolute value with m, while the RMSE 
decreases as m  increases. In the case of short or long memory, the bias is negative, 
but in case of negative memory the bias tends to be positive. From the different
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bandwidth parameters employed here, m  =  [n0,8] gives rise to the minimum RMSE 
for all samples sizes and memory parameters considered.

4.2.2 Signal plus noise model

Now, we examine the signal plus noise model (3.2.1). First, we simulate the signal 
as a standard Gaussian A R F IM A (0 , ^f-,0) process with ay = 0.8 and the noise 
as a standard Gaussian ARF/MA(0, t*, 0) process with a z =  —0.8,—0.4,0,0.4. 
Moreover, the signal and noise processes are taken to be independent from each 
other. The Monte-Carlo bias and RMSE are found in Figures 4.11-4.18.

Next, we turn to examine the effect of the signal-to-noise ratio on the finite 
sample properties of the LW estimator in the signal plus noise model. We simulate 
the signal as a standard Gaussian A R F IM A {0, ^ , 0 )  process with ay = 0.8, and 
generate the noise process as an i.i.d. Gaussian sequence with variances a2 = 
0.5,1,2 and independent of the signal process. Notice that the case a2 = 1 is 
already considered above, and hence the results are found in Figures 4.15 and 4.16. 
The outcomes when a2 — 0.5,2 are presented in Figures 4.19-4.22.

Finally, we consider different types of dependence between the signal and the 
noise processes and examine the finite sample properties of the LW estimator in 
the signal plus noise model. Here, we simulate the signal as a standard Gaussian 
A R F IM A (0 , ^ , 0 )  process with ay =  0.8 by truncating the M A (oo) representa­
tion of this model. The innovation term in the latter representation, which is a 
sequence of i.i.d. standard Gaussian variables, is then multiplied by p = —0.5,0.5 
and standardized to generate the noise process. Hence, when p =  —0.5 the signal 
and noise processes are negatively dependent, while when p — 0.5 they are positively 
dependent. The Monte-Carlo bias and RMSE of these experiments are presented 
in Figures 4.23-4.26. Notice that we have also generated the noise as a sequence of
1.1.d. standard Gaussian variables independent from the innovation sequence in the 
MA(oo) representation of the signal. As expected, the results are very similar to 
those presented in Figures 4.15 and 4.16 and are therefore not reported.

In all these cases, see Figures 4.19-4.26, the Monte-Carlo bias and RMSE de­
crease with an increase in n, which supports our finding that the LW estimator is 
consistent. Overall, the bias increases in absolute value with m, in line with Remark
2.1. Comparing the finite sample bias of the experiments on the signal plus noise 
model with that from the linear process with ax = 0.8, Figures 4.9 and 4.10, it 
is evident that the magnitude of the Monte-Carlo bias, and therefore that of the
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RMSE, is fax bigger in the case of the signal plus noise model. This observation 
confirms Remark 3.1, noticing that the simulated linear and signal processes have 
PxiPy = %• On the other hand, the Monte-Carlo RMSE tends to first decrease and 
then increase as m  increases. Contrary to the linear model, there is no unique m  
across the different samples sizes and memory parameters that gives rise to the min­
imum RMSE. The bandwidth parameters corresponding to minimum RMSE vary 
from [n0 525] to [n0-775], and hence axe smaller than in the case of a linear process. 
The latter comments on the bandwidth parameter are in line with Remark 3.2, 
noticing that the signal process in these experiments has (3y = 2.

Concentrating on Figures 4.11-4.18, it is clear that Monte-Carlo bias is smaller 
the bigger the difference ay — a z is, except in the case az =  0.4 and n =  128,512. 
Furthermore, the finite sample bias converges faster to 0 the larger the difference 
a y  — olz  is. This observations is in line with Remark 3.1, recalling that the signal 
process simulated here has (3y = 2. Also, it is worth noticing that for n — 2048 
and olz = —0.8, —0.4,0, the bandwidth parameter minimizing the RMSE increases 
when OLy — a z increases. The latter comment confirm our findings in Remark 3.2.

It is evident from Figures 4.15, 4.19 and 4.21 that for all n and m, the higher 
the magnitude of the signal-to-noise ratio the smaller is the Monte-Caxlo bias and 
therefore the RMSE. The latter observation is in line with Remaxk 3.3. It is also 
worth mentioning that the higher the value of the signal-to-noise ratio, the bigger 
is the bandwidth paxameter which minimizes the RMSE, see Figures 4.16, 4.20 and 
4.22.

The different types of dependences between the signal and noise processes give 
rise to different finite sample properties for the LW estimator. In particular, when 
the two processes are negatively dependent the Monte-Carlo bias is overall positive, 
see Figure 4.23, while when the two processes are uncorrelated or positively depen­
dent the bias is negative, see Figures 4.15 and 4.25. We should add that in the case 
that the signal and noise processes axe negatively dependent, the bias does not seem 
to decrease with an increase in n, see Figure 4.23. However, we performed for this 
particular model Monte-Carlo simulations with higher sample sizes, and the finite 
sample bias does decrease with increase in n. It is likely that the result of Figure 
4.23 is due to small sample properties. It is also worth noticing, that the finite 
sample bias is smaller when the signal and noise processes are independent from 
each other, compare Figure 4.15 with Figures 4.23 and 4.25. These observations 
supports our findings in Remark 3.3.
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4.2.3 Structural model

The structural model (3.3.1) is the next specification to be considered. We simulate 
the trend process {/\ x}tez as a standard Gaussian A R F IM A (0, 0) with a^x =
0.4 and the cyclical process as a standard Gaussian GARMA(0 , 0) with cux =
0.15 and qW|Ci =0.1,0.3 by truncating the M A (oo) representation of these models. 
The two processes {nt,x}tez and {ct,x}tez are taken to be independent from each 
other, while for simplicity we do not include the noise process {r)tiX}tez- Notice that 
we chose u x to be small in order to examine Remark 3.4, and we set the particular 
value according to an empirical observation in Subsection 4.3.2. The results are 
given in Figures 4.27-4.30.

In theory, one should expect to see results similar to those for a signal plus 
noise model with ay — a z = 0.4, since the cyclical component has aCx =  0. However, 
comparing Figures 4.27 and 4.29 with Figure 4.17, it is clear that the latter is not the 
case. This rather peculiar behaviour of the finite sample bias of the LW estimator 
is down to the relatively small frequency u x of the cyclical component {ct,x}tez- We 
have that u x corresponds approximately to the Fourier frequency A3 when n = 128, 
to the Fourier frequency A12 when n =  512, and to the Fourier frequency A48 when 
n = 2048. On the other hand, the minimum value for the bandwidth parameters 
considered here is 11 when n = 128, 22 when n =  512, and 45 when n = 2048. 
Hence, for these sample sizes, one cannot consider having a^  =  0, since information 
from the cyclical component is included in the LW estimation. Instead, the cyclical 
component should be regarded as if it were a trend component with aCx =  2 ^ ^ ,  
taking into account Remark 3.4 and that {ct>x}tez follows a GARMA{0, ^ p - ,0 )  
model.

When aUiCx =  0.1, the cyclical component behaves as if it were a noise process 
with = 0.2. The finite sample bias in this case, see Figure 4.27, decreases slowly 
in absolute terms with n. However, this is not the case for small and moderate 
values of m. We believe that this is a small sample problem and it is driven by the 
small difference between =  0.4 and aCx =  0.2. Overall, the finite sample bias 
decreases in absolute terms with m , resulting to a RMSE that decreases with m. 
Notice that m = [n0-8] gives rise to the minimum RMSE, see Figure 4.28.

On the other hand, when a WA =  0.3, the cyclical component behaves as if it 
were a trend component with aCx =  0.6. Hence, the roles of {^t>x}tez and {ct,x}tez 
are reversed, and {ct)X}tez becomes the signal process, while {fit,x}tez is now the 
noise. Notice that the bigger the bandwidth parameter, the more information from 
the cyclical component is included in the LW estimation. Hence, for large values of
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m, the finite sample bias is positive, as the LW estimator is estimating aCx = 0.6 
instead of a^x = 0.4. The latter is particularly apparent for the smaller sample 
size, see Figure 4.29. The Monte-Carlo bias is negative for the low values of the 
bandwidth parameter, increases with increases in m, and is positive for moderate 
and large values of m. The finite sample bias in this case decreases in absolute value 
with n for large values of m. However, this is not the case for small and moderate 
values of m, although we believe this is due to the small frequency of the strong 
cyclical component. Overall, the RMSE decreases with increases in m, and the 
bandwidths [n0 725] and [n°'s] result to the minimum RMSE, see Figure 4.30.

We should add that the rather peculiar behaviour of the LW estimator in this 
experiment is in line with Remark 3.4. This behaviour is driven by the choice of 
the frequency u x and the relatively small sample sizes, and it is not going to persist 
for bigger samples. Essentially, if the sample size or the frequency ujx is big enough 
so that Am < t oXJ the finite sample behaviour of the LW estimator in the structural 
model is comparable to that in a signal plus noise model with az = 0.

4.2.4 Nonlinear functions of a Gaussian process

We now examine the finite sample behaviour of the LW estimator in the case of 
nonlinear transformations of a Gaussian process (3.4.1). We consider two transfor­
mations, the exponential and the squared ones. The process {£t}tez is generated 
as a standard Gaussian ARFIM A(0, ^f-,0). In the case of the exponential trans­
formation, we chose = 0,0.4,0.8, and according to Proposition 3.4 we have 
ax = 0,0.4,0.8, respectively, since the Hermite rank is equal to 1. In the case of the 
squared transformation, we set a% = 0,0.3,0.7,0.9 resulting to ax =  0,0,0.4,0.8, 
respectively, by Proposition 3.4 and since the Hermite rank is equal to 2. The results 
of the Monte-Carlo experiments are found in Figures 4.31-4.44.

It is evident that, in all but one case, the finite sample bias decreases with an 
increase in n, while in all cases the RMSE decreases with an increase in n. Although 
the bias in the case of the squared transformation with =  0.3 does not seem to 
decrease with an increase in n, we repeated this experiment with even higher sample 
sizes and the bias does decreases with an increase in n, suggesting that the outcome 
of Figure 4.39 is probably due to small samples. Hence, the results confirm that 
the LW estimator is consistent for these models. Overall, the Monte-Carlo bias and 
RMSE tend to decrease with increase in m. As far as the choice of m  is concerned, 
the bandwidth parameter that minimizes the RMSE in the case of short memory
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is [n0,8], the same as for the linear process, while in the long memory case it varies 
from [n0 75] to [n0 8]. The latter finding only partially confirms our Remark 3.8.

It is worth noticing that for both transformations and when =  0, the finite 
sample bias and RMSE, see Figures 4.31, 4.32, 4.37 and 4.38, are almost the same 
as to those of a linear process with ax = 0, see Figures 4.5 and 4.6. In the case of the 
squared transformation and = 0.3, the finite sample bias has clearly a different 
behaviour, but its magnitude and that of the RMSE, see Figures 4.39 and 4.40, 
are very similar to those of a linear process with ax =  0, see Figures 4.5 and 4.6. 
However, when the nonlinear transformations exhibit long memory with parameters 
ax = 0.4,0.8, the finite sample behaviour of the LW estimator, see Figures 4.33- 
4.36 and 4.41-4.44, is far worse compared to the linear case with ax =  0.4,0.8, 
see Figures 4.7-4.10. Hence, the LW estimator performs better under short memory 
than under long memory, and the nonlinearity worsens its finite sample performance 
in the case of long memory. These comments are in line with the Remarks 2.2 and
3.7. Also, notice that in the case of long memory, the finite sample bias is negative 
and is smaller in the case of moderate values of the memory parameter, see Figures 
4.33, 4.35, 4.41 and 4.43, as predicted by Remarks 3.6 and 3.7. Comparing the 
finite sample bias of the two nonlinear transformations in the case of long memory, 
Figures 4.33, 4.35, 4.41 and 4.43, it is evident that the bias is smaller in the case of 
the squared transformation. This should not come as a surprise, bearing in mind 
that the squared transformation entails only one Hermite polynomial in its Hermite 
expansion, while the exponential one involves all Hermite polynomials.

4.2.5 Long memory stochastic volatility m odel

Lastly, we examine the LMSV model (3.5.1) with volatility process following the 
commonly used exponential form (3.5.2). We generate as a standard Gaussian
A R F IM A {0, 0) process with a$ = 0,0.4,0.8, while the process {et}tez is drawn
as a sequence of i.i.d. standard Gaussian variables. Furthermore, the process {st}tez 
is taken to be independent of {£t}t€z- We consider the absolute, squared and loga­
rithmic squared transformations of the return series resulting to memory parameters 
ax — 0,0.4,0.8, according to the findings of Section 3.5. The Monte-Carlo bias and 
RMSE are presented in Figures 4.45-4.62.

It is evident that in all the cases, the finite sample bias and RMSE decrease with 
increase in n , confirming that for these models, the LW estimator is consistent both 
under short and long memory, although the first was not established in Section 3.5.
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In the short memory case, the finite sample bias and RMSE decrease in absolute 
terms with m, see Figures 4.45-4.46, 4.51-4.52 and 4.57-4.58, while in the long 
memory case they tend to increase in absolute terms, see Figures 4.47-4.50, 4.53- 
4.56 and 4.59-4.62. Notice also that in all the cases, the finite sample bias is 
negative, see Figures 4.47, 4.49, 4.53, 4.55, 4.59 and 4.61. This result is expected 
in the long memory case, since the LMSV model is essentially a signal plus noise 
model with the signal and noise processes uncorrelated from each other, see Remark 
3.3 and the Monte-Carlo experiments in Subsection 4.2.2. As far as the choice of 
m  is concerned, the bandwidth parameter that minimizes the RMSE in the case 
of short memory is [n0 8], see Figures 4.46, 4.52 and 4.58, the same as for a linear 
process, while in the long memory case it varies from [n0 5] to [n0,8], see Figures 
4.48, 4.50, 4.54, 4.56, 4.60 and 4.62. The latter finding only partially confirms our 
Remark 3.8.

It also interesting to notice that the Monte-Carlo bias and RMSE are smaller 
in the short memory case, see Figures 4.45-4.46, 4.51-4.52 and 4.57-4.58, than in 
the long memory case, see Figures 4.47-4.50, 4.53-4.56 and 4.59-4.62, as predicted 
by Remark 2.2. In the long memory case and for the absolute and squared returns, 
the finite sample behaviour of the LW estimator is better for moderate values of 
the memory parameter, see Figures 4.47-4.50 and 4.53-4.56, in line with Remark
3.7. Furthermore, in the long memory case, the finite sample bias and RMSE of the 
absolute returns is smaller than that of the squared returns, see Figures 4.47-4.50 
and 4.53-4.56. The latter observations asserts our findings in Remark 3.9 and the 
succeeding discussion.

Finally, it worth noticing that the logarithmic squared transformation is the 
most preferable in this experiment, as in the long memory case, it gives rise to 
smaller finite sample bias and RMSE compared to the absolute and squared trans­
formations, see Figures 4.47-4.50, 4.53-4.56 and 4.59-4.62. Recall that under the 
LMSV representation employed here, all three transformations of the return series 
can be written as a signal plus noise model with the signal and noise processes 
being uncorrelated from each other and the noise process being a sequence of un­
correlated variables. However, there is a crucial difference between the signal plus 
noise decomposition of the logarithmic squared returns and those of the absolute 
and squared returns: in the case of the logarithmic squared transformation, the sig­
nal process is linear, while in the case of the absolute and squared transformation, 
the signal process is nonlinear. Actually, in the latter case, the signal process is 
exp (ft) , which according to Remark 3.6 and the results of the Monte-Carlo exper­
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iments of Subsection 4.2.4 induces further negative finite sample bias to the LW 
estimator.

4.3 Empirical applications

Now, we apply LW estimation to various data sets to assess their degree of long-run 
persistence. We examine inflation and expected inflation rates, nominal and real 
interests rates, and various exchange rates and their transformed returns.

4.3.1 Inflation and expected inflation rates

One of the first attempts to quantify the long-run persistence of prices and inflation 
was taken by Nelson and Plosser (1982). The authors considered U.S. data on con­
sumer prices for the period 1860-1970 and GNP deflator for the period 1889-1970, 
and examined the long-run persistence of these series by performing the Dickey- 
Fuller test with a linear trend for the null hypothesis of a unit root against the 
alternative of a stationary AR(p). Using log-transformation of the data, they failed 
to reject the null hypothesis of a unit root, that is ax = 2. Gil-Alana and Robinson 
(1997) extended the data of Nelson and Plosser (1982) up to 1988, and reexamined 
their degree of long-run persistence by the means of a Lagrange multiplier type 
of test introduced by Robinson (1994c). The latter test procedure allows for test­
ing various degrees of long-run persistence, as opposed to the Dickey Fuller method 
which essentially tests for the null hypothesis ax =  2 against the alternative ax = 0, 
as well as more general specifications for the data generating mechanism. The re­
sults of Gil-Alana and Robinson (1997) suggested values of ax ranging from 1 to
4.5 depending on the specification used. In a later study, Backus and Zin (1993) 
considered U.S. data for inflation measured as the growth rate in the implicit price 
index for consumption of nondurables and services covering the period 1959-1989. 
The authors estimated A R F IM A (p , q) models by means of maximum likelihood 
techniques, and found the estimates of ax ranging from —0.3 to 0.98 depending on 
the choice of the orders p, q. The ARFIMA(jp , f̂,<?) model with conditional het- 
eroscedasticity in the error term was also considered by Baillie, Chung, and Tieslau 
(1996) for U.S. data for inflation measured as the growth rate in the consumer 
price index (CPI) during the period 1948-1990. The authors propose an estimation 
procedure for this model based on the maximum likelihood method. Their results 
suggested that the memory parameter ax varies in the region (0.6,1). Phillips (1998)
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examined the data of Baillie, Chung, and Tieslau (1996) for the period 1934-1997, 
although constructed three-month inflation instead of one-month. He employed LW 
estimation with bandwidth parameter m  =  [n0 75] over various time periods. De­
pending on the time span, his estimates of ax varied from 1.06 to 1.396. The data 
of Phillips (1998) were extended by Sun and Phillips (2004) up to 1999, and the 
degree of long-run persistence was reexamined using the log-periodogram estimate 
of Geweke and Porter-Hudak (1983) and the exact Whittle estimator of Shimotsu 
and Phillips (2005) with bandwidth parameters m = [n0,55], [n0-55] +1,..., [n0-8]. The 
estimates of ax varied from 0.6 to 1, depending on the choice of estimator and band­
width parameter. Sun and Phillips (2004) also considered proxy data on expected 
inflation rate, and found estimates of ax much higher than those for the realized 
inflation rate.

Under the assumption of rational expectations, the inflation rate 7rt differs from 
expected inflation rate 7r® by an unexpected shock et , that is

nt = ir t+ eu (4.3.1)

where et is usually taken to follow a martingale difference process. The aforemen­
tioned studies clearly suggest that the inflation and expected inflation rate exhibit 
strong long-run persistence, so that ane > 0. On the other hand, the rational 
expectations hypothesis indicates that the shock et is uncorrelated from 7rf and is 
such that ae = 0. Hence, (4.3.1) can be considered as a signal plus noise model, 
where the signal process is the expected inflation rate 7r® and the noise process is the 
unexpected shock et. As expected inflation rate 7r® is unobserved, one can use data 
on the inflation rate 7rt to infer the degree of persistence of the expected inflation 
rate 7r®. This line of reasoning was adopted also by Sun and Phillips (2004).

However, as Nelson and Schwert (1977) and Sun and Phillips (2004) among 
others pointed out, when the variance of the forecasting error et is large compared 
to the variance of the expected inflation rate 7r®, the degree of persistence of the 
inflation rate 7rt is masked by the short-run variability of its component et, so that 
in finite samples estimates of the memory parameter based on irt are likely to be 
smaller than those based on 7r®. For that reason, Sun and Phillips (2004) adjusted 
their estimation methods to take into account the structure of (4.3.1). The modified 
estimators were applied again to the data, and the new estimates of the memory 
parameters of the realized inflation rate 7rt were in line with those from the proxy 
of the expected inflation rate 7r®.

The LW estimator is no exception to this effect, as we now discuss. Using
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quarterly data from the Survey of Professional Forecasters1 we employ the mean 
of one-period ahead forecasts on inflation rate as a measure of expected inflation 
rate 7r®, as in Sun and Phillips (2004). We compare this series with two series for 
realized inflation rate 7rt calculated as the percent change in the price level between 
two subsequent quarters based on CPI and GDP deflator data2. Figure 4.63 plots 
the data, all in annual rates, for the period 1981Q4 to 2005Q4, when the data from 
the Survey of Professional Forecasters are available. It is clear from Figure 4.63 
that the three series have the same long-run tendencies, so that one would then 
expect the estimates of the memory parameter of the three series to be similar. 
However, it is also evident from Figure 4.63 that the measure of expected inflation 
rate 7r® is the least volatile, while the realized inflation rate based on CPI data is the 
most. Notice that the inflation rate calculated from the CPI data is the growth in 
prices of a particular basket of goods consumed, while the inflation rate calculated 
from the GDP deflator data takes into account all goods consumed in the economy. 
Hence, the CPI inflation rate is more sensitive to changes in the economy or external 
shocks, and therefore is subject to higher short-run variability. Notice for example, 
that the spikes in the CPI inflation rate series are mainly due to sharp changes in 
the price of oil, an effect that is not transmitted so dramatically in the inflation 
rate series based on GDP deflator data. On the other hand, the proxy of expected 
inflation is the mean value of forecasts provided by several practitioners, resulting 
to a rather smooth series having moderate short-run variation.

Thus, taking into account Remark 3.3 and the Monte-Carlo experiment of Sub­
section 4.2.2, we expect the LW estimates of the memory parameter of the proxy 
of the expected inflation rate to be the higher, while those of the CPI inflation rate 
to be the lower. Figure 4.64 plots the LW estimators of the memory parameters 
of the three series across the different bandwidth parameters, where we employ all 
bandwidths ranging from [n0,5] to [n0-8]. Indeed, as Figure 4.64 shows, the estimates 
of the memory parameters of the three series are rather different, with those of 
expected inflation rate being the highest and those of the CPI inflation rate being 
the lowest.

It is clear from this discussion, that assessing the true degree of long-run persis­
tence of an inflation rate series is a rather difficult exercise, given the small sample 
size available. One might think that the data from the Survey of Professional Fore­

1The Survey of Professional Forecasters is found at http://www.phil.frb.org/econ/spf/.
2 CPI data are taken from U.S. Department of Labor: Bureau of Labor Statistics, Series I.D. 

CPIAUCSL, http://stats.bls.gov. GDP deflator data are taken from U.S. Department of Com­
merce: Bureau of Economic Analysis, Series I.D. GDPDEF, http://www.bea.gov.
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casters should be used for such purposes, recalling that we employed one-period 
ahead forecasts on inflation rate as in Sun and Phillips (2004). However, we have 
also applied LW estimation to current-period and two-period ahead forecasts of 
inflation rate from the Survey of Professional Forecasters, and the LW estimates 
are lower than those from the one-period ahead forecasts since the two series have 
slighter higher short-run variability. Actually, the new estimates are closer to the 
LW estimates from the inflation based on GDP deflator data.

4.3.2 Nom inal find real interest rates

The long-run properties of the short-term nominal and real interest rates have re­
ceived a great deal of attention. Initially, Fama (1975) employed techniques based 
on the sample autocorrelation function, and inferred that the real interest rate 
remains approximately constant over the period 1953-1971. In a later study, cov­
ering the longer periods 1953-1979 and 1931-1952, Mishkin (1981) used the same 
methodology as in Fama (1975), and rejected the constancy in the real interest rate. 
Subsequent investigations by Rose (1988) provided evidence in support of unit roots 
in the series of the nominal and real interest rates over various time periods span­
ning from 1892 to 1986. However, as the critical values of the Dickey-Fuller test 
employed by Rose (1988) had often been found misleading in finite samples, see for 
example Schwert (1987), Mishkin (1992) performed a similar analysis using critical 
values from Monte-Carlo simulations. For data spanning from 1953 to 1990 and 
for different subperiods, Mishkin (1992) inferred that the nominal interest rate is 
a unit root process, while the real interest rate is short memory process in all but 
the post-1982 period where he found evidence supporting the existence of a unit 
root. More recently, Phillips (1998) concluded that the nominal interest rate has 
a higher memory parameter than the inflation and real interest rates, for different 
subperiods over the 1934-1997 period. The outcome, which was clearly at odds 
with the Fisher equation, which states that the real interest rate is the difference of 
the nominal interest rate and inflation, was reexamined by Sun and Phillips (2004). 
With the availability of data on inflation forecasts from the Survey of Professional 
Forecasters, they found that the memory of the real interest rate had been underes­
timated, and fell in the nonstationary region. To eliminate this negative bias, they 
proposed a modified version of the estimators employed, see the discussion in Sub­
section 4.3.1, and furthermore suggested a testing procedure for the null hypothesis 
of equal memory parameters. Using data for the period 1934-1999, they inferred 
that the three variables in the Fisher equation have the same memory parameter,
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which was found to fall in the nonstationary region.

In a parallel line of research, Garcia and Perron (1996) reanalyzed the data of 
Rose (1988) over the period 1961-1986, using regime shift techniques, and found that 
the real interest is constant subject to regime shifts dating 1973 and 1979. Using 
regression techniques and tests for parameter stability, Huizinga and Mishkin (1986) 
reported breaks in the process of the real interest rate, where the dates of the breaks 
were found to be 1979 and 1982. On the other hand, the results of Clarida, Gali, 
and Gertler (2000) suggest that the relationship of the nominal interest rate and 
inflation shifted in 1979, while that of the nominal interest rate and output gap in 
1987. The latter authors employed the Taylor (1993) rule for their analysis, which 
has been found to do a fairly accurate job in describing the generating mechanism 
of the short-term nominal interest rate.

Here, we reanalyze the long-run persistence of the nominal and real interest 
rates using the LW estimator and taking into account the results of Clarida, Gali, 
and Gertler (2000). The ex ante real interest rate r\ at time t on a given security 
maturing at time t +  1 is defined from the Fisher (1930) equation

it =  +  r tc, (4.3.2)

where it is the nominal interest rate on the given security issued at period t, ma­
turing in period t +  1, and 7r® is the expected inflation rate between periods t and 
t +1. The empirical analysis of the ex ante real rate of interest r® is complicated by 
the factor that rf is not directly measurable as the expected inflation rate 7r® is not 
observed. One way to overcome this problem is to obtain proxies for the expected 
inflation rate from some survey, e.g. from the Survey of Professional Forecasters as 
in Sun and Phillips (2004).

The most common approach is to use data on the realized inflation rate 7rt and 
calculate the ex post real interest rate rt from

it =  ?Tt +  rt. (4.3.3)

As discussed in Subsection 4.3.1, under rational expectations, the forecasting error 
e* =  7Tt — 7r® is a martingale difference. In such a case, the ex post and ex ante 
real interest rates differ by martingale difference process, so that r® and rt have 
the same memory parameter. That is, the ex post and ex ante real interest rates 
have the same long-run properties and one can make inference on the long-term 
behaviour of the unobserved r® using data on the observed rt. However, as in the 
case of inflation and expected inflation rates, when the variance of the forecasting
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error et is large compared to the variance of the ex ante real interest rate r®, the 
degree of persistence of the ex post real rate of interest rt is masked by the short-run 
variability of its component et. Therefore, when calculating the ex post real interest 
rate rt we use the inflation rate based on the GDP deflator data. For reasons to 
become clear below, we study the long-run behaviour of the real interest rate mainly 
in the post-October 1987 period. For this sample period, given the availability of 
data from the Survey of Professional Forecasters, we present estimation results for 
the ex ante real interest rate rf using the expected inflation rate 7r® as calculated 
in Subsection 4.3.1 above.

The data are quarterly time series spanning the period 1954Q3-2005Q4. We 
use the average Federal Funds rate in the first month of each quarter, expressed in 
annual rates, as the nominal interest rate i*3. Figure 4.65 below plots the data for 
the nominal interest rate it and inflation rate 7r* along with the resulting ex post 
real interest rate rt. The vertical lines in Figure 4.65 stand for the dates 1979Q3 
and 1987Q3 when Paul Volcker and Alan Greenspan were appointed Chairman 
of the Board of Governors of the Federal Reserve System. The sample is split 
into three subperiods: the pre-Volcker period (1954Q3-1979Q2), Volcker period 
(1979Q3-1987Q2) and post-Volcker period (1987Q3-2005Q4). Notice that the re­
sults of Clarida, Gali, and Gertler (2000) suggest that the relationship of the nominal 
interest rate it and inflation rate 7rt shifted in 1979Q3, while that of the nominal 
interest rate it and output gap gt in 1987Q3. Figures 4.67, 4.69 and 4.71 plot the 
nominal interest rate it , inflation rate 7Tt and ex post real interest rate rt for these 
three periods, while Figure 4.73 plots the nominal interest rate it, expected inflation 
rate 1r® and ex ante real interest rate r\ for the post-Volcker period.

Next, we apply LW estimation for the full sample and for the three subsamples. 
The resulting estimates are plotted in Figures 4.66, 4.68, 4.70, 4.72 and 4.74 against 
the different bandwidth parameters, where we employ all band widths ranging from 
[n0,5] to [n0-8]. For the full sample and the first two subsamples, see Figures 4.66, 
4.68 and 4.70, the estimates of the memory parameter of it and nt are of similar 
magnitude and are both higher than that of rt . On the contrary, for the last sub­
period, see Figure 4.72, the estimates of the memory parameter of irt is lower than 
that of both rt and it. Also, notice that in the first two subperiods the estimates of 
the memory parameter of rt fall in the stationary region, while for the last subperiod 
in the nonstationary region. Similar observations can be made for the ex ante real

3 Federal Funds rate data are taken from Board of Governors of the Federal Reserve System, 
Series I.D. FEDFUNDS, http://www.federalreserve.gov.
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interest rate r® in the last subperiod, see Figure 4.74. Overall, the estimates of the 
memory parameter of i t  tend to exceed that of both 7rt and 7r®.

It is rather surprising that for the post-Volcker period the estimates of the 
memory parameter of i t , rt and r® exceed 2, see Figures 4.72 and 4.74. A value 
of the memory parameter greater than 2 would impose no upper bound on the 
path of these processes. However, it is clear from Figures 4.71 and 4.73 that the 
series i t , rt and rf do not have an explosive behaviour, so that our estimates of their 
memory parameters are far from realistic. In addition, it is reasonable to assume 
that any shocks to these processes eventually dissipate, so that one would anticipate 
estimates below 2. Notice also from Figures 4.71 and 4.73 that the nominal interest 
rate i t seems to exhibit similar long-run tendencies with the inflation rate 7Tt and 
the expected inflation rate 7r® . Then, we would expect estimates of the memory 
parameter for the nominal interest rate i t  to be on the same level as those for the 
inflation rate irt and the expected inflation rate 7r®, or lower if we take into account 
that i t  looks more volatile than 7r®. However, the estimates of the memory parameter 
are overall higher for i t  than those for 77 and 7r®, raising doubts as to whether i t 

can be cointegrated with 7rt and 7r®.

Here, we seek to provide an explanation for the instability of the estimates of 
the memory parameters of the real interest rate over the three different sample 
periods. We start by considering a monetary policy reaction function in the lines 
of Taylor (1993) and Clarida, Gali, and Gertler (2000). According to the principles 
of the Taylor rule, the level of the nominal interest rate is a linear function of 
the gaps between expected inflation and output and their perspective target levels. 
Therefore, we can write

i t  =  i* +  P f r t  -  7T*) +  79 t  +  Vt ,  ( 4 -3 -4 )

where i*  and 7r* are the target levels of the nominal interest rate and inflation, 
respectively, gt is the output gap and rjt is the error term capturing the short-run 
dynamics of the nominal interest rate i t . Hence, the ex ante real interest rate r® is 
determined by

r\ =  a +  (P -  1)tTt +  7Qt +  (4-3-5)

where a = i * — /?7r*, while the ex post real interest rate rt is given by

rt = a + ( P -  1)7Tt +  jg t +  q , (4.3.6)

where qt = r\t — Pet- The results of Clarida, Gali, and Gertler (2000) suggest that 
for the pre-Volcker period (3 = 1 and 7 =  0, for the Volcker period ft > 1 and 7 = 0, 
while for the post-Volcker period j3 > 1 and 7 > 0.
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Hence, for the pre-Volcker period, (4.3.4) is essentially a signal plus noise type of 
model, and the nominal interest rate it and expected inflation rate 7r® should have a 
common long-run component, which is not transmitted however in the ex post real 
interest rate rt. The plot of the data, Figure 4.67, clearly support this statement. 
On the other hand, the LW estimates for the nominal interest rate it and inflation 
rate 7r*, see Figure 4.68, are not identical, but the LW estimates for the ex post real 
interest rate rt are lower than those for the nominal interest rate it and inflation 
rate 7r*. The discrepancy between the estimated memory parameters of the nominal 
interest rate it and inflation rate 7Tt is likely to be attributed to the higher short-run 
variability of the inflation rate Trt as opposed to that of the nominal interest rate it.

For the Volcker period, the results of Clarida, Gali, and Gertler (2000) imply 
that both the nominal it and ex post real rt interest rates should inherit the long- 
run component of the inflation rate 7rt. The plot of the data, Figure 4.69, support 
this argument, but the LW estimates of the three series do not. However, given the 
very small sample size for this period, one can hardly make any definite statements 
about the magnitudes of the estimated memory parameters. We can say at least, 
that the order of the estimated memory parameters is in line with our Monte-Carlo 
experiments on the signal plus noise. Notice that the nominal interest rate it reacts 
more than one-to-one to expected inflation rate 7rf, the inflation rate 7Tt reacts one- 
to-one to expected inflation rate 7rf, while the ex post real interest rate rt reacts 
less than one-to-one to expected inflation rate 7r®. On the other hand, Figure 4.69 
suggests that the short-run variability of the ex post real interest rate rt is the 
highest, followed by that of the nominal interest rate it and inflation rate 7rt. The 
latter observations imply that the signal-to-noise ratio is the lowest for the ex post 
real interest rate r t, and according to our findings and Monte-Carlo experiments on 
the signal plus noise model, we should see the LW estimates for the ex post real 
interest rate rt to be the lowest ones.

Finally, for the post-Volcker period, the results of Clarida, Gali, and Gertler 
(2000) imply that both the nominal it and ex post rt (ex ante rf) real interest rates 
should inherit the long-run component of the (expected 7rf) inflation rate 7t£ , while 
their cyclical component is driven by output gap gt. The plot of the nominal interest 
rate it , expected inflation rate 7rf, ex ante real interest rate r\ and output gap gt 
over the period 1987Q3-2005Q4, see Figure 4.75, supports this statement. Here, we 
have calculated output gap gt as the percent deviation between actual GDP and 
its corresponding target4. Hence, (4.3.4) and (4.3.5) can be considered as types of

4GDP data axe taken from U.S. Department of Commerce: Bureau of Economic Analysis,
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structural models (3.3.1) with /Xj =  fire = / v  and q  =  cr« =  cg. One would then 
expect the memory parameters of the nominal interest rate it , expected inflation 
rate 7rf and ex ante real interest rate rf to be similar. However, as we saw already 
above, the LW estimates of the memory parameters of the nominal it and ex ante 
real rf interest rates are unrealistically high and rather different from those from 
expected inflation rate 7rf.

Remark 3.4 and the Monte-Carlo experiments on the structural model (3.3.1) 
can easily explain this discrepancy. First, notice that the shaded areas in Figure
4.75 correspond to recessions according to the NBER business cycle chronology. The 
duration of the only business cycle recorded in this period is 128 months, calculated 
either from peak to peak or from trough to trough. This duration corresponds 
to a period of approximately 42 quarters, giving a frequency uj = 0.15, which 
corresponds approximately to just the second Fourier frequency for this particular 
sample. Secondly, notice in Figure 4.75 that most of the variability of the nominal it 
and ex ante real rf interest rates is explained by the cyclical component rather than 
the long-run one, although this not the case for the expected inflation rate 7rf. The 
latter observations are further supported by the plot of the sample autocorrelation 
function and periodogram of the nominal interest rate it, expected inflation rate 
7rf, ex ante real interest rate rf and output gap gt, see Figures 4.77 and 4.78. 
The sample autocorrelation function of the nominal interest rate x*, ex ante real 
interest rate rf and output gap gt have a very similar cyclical pattern of approximate 
period 42, i.e. the period of the business cycle, which is not observed in the sample 
autocorrelation function of the expected inflation rate 7rf. It is also worth noticing 
that the periodogram of nominal interest rate it , ex ante real interest rate rf and 
output gap gt peak at the same frequency 0.19, which is very close to the frequency 
uj =  0 of the business cycle, contrary to the periodogram of the expected inflation 
rate 7rf which peaks at the first frequency.

To summarize, in the post-Volcker period, the nominal it and ex ante real rf 
interest rates exhibit a cyclical component of approximate frequency 0.15, and this 
cyclical component is stronger than the trend one. Taking into account that the 
frequency of the business cycle corresponds approximately to just the second Fourier 
frequency used in the LW estimation of the memory parameter, Remark 3.4 and 
the Monte-Carlo experiments on the structural model (3.3.1) suggest that the LW 
estimates are likely to be subject to substantial positive bias driven by the strong

Series I.D. GDPC96, http://www.bea.doc.gov. Potential GDP data are taken from U.S. Congress: 
Congressional Budget Office, Series I.D. GDPPOT, http://www.cbo.gov.
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cyclical component. Furthermore, as output gap gt seems to be the source of the 
cyclical component, one would expect LW estimation on this variable to retrieve 
estimates close to those of the nominal it and ex ante real r® interest rates. Figure
4.76 plots the LW estimates of the nominal interest rate it , expected inflation rate 
7r®, ex ante real interest rate r® and output gap gt for this period. Indeed, the LW 
estimates of output gap gt are very similar to those of the nominal it and ex ante 
real r® interest rates.

4.3.3 Exchange rates

A common finding in the empirical literature of asset returns is that the returns 
rt themselves are martingale differences or at least short memory processes, but 
absolute returns |r*|, power transformations |rt |p for p > 0, and logarithmic squared 
transformation log rf exhibit long memory. Recall, that as was discussed in Chapter 
3, a model capable of generating such behaviour is the LMSV model of Breidt, 
Crato, and de Lima (1998) and Harvey (1998). For various stock returns, Ding, 
Granger, and Engle (1993) and Ding and Granger (1996) established that, among 
the various power transformations, this long memory property is strongest when p = 
1. Ding and Granger (1996) also considered the foreign exchange rate returns for the 
Deutschmark with the US dollar and found instead that for power transformation 
p = \  this property is strongest. Here, we consider the foreign exchange rates for 
the UK pound with the US dollar (UK£/US$) and for the Japanese yen with the 
US dollar (JP¥/US$).

The data are monthly and span the period 1971M1-2006M55. We construct the 
returns rt as the difference of the logarithmic exchange rate between period t and 
t — 1, and examine the absolute returns \rt \, the squared returns rf, the quartered 
returns |rt |* , and the logarithmic squared returns log rf. The data are plotted in 
Figures 4.79-4.83 for the UK£/US$ exchange rate, and in Figures 4.85-4.89 for 
the JP¥/U S$ exchange rate. We employ all bandwidths ranging from [n0-5] to 
[n0,8] and apply LW estimation on the absolute returns \rt \, the squared returns 
rf, the quartered returns \rt \* , and the logarithmic squared returns log rf for both 
exchange rate series. The results are presented in Figure 4.84 for the UK£/US$ 
exchange rate, and in Figure 4.90 for the JP¥/U S$ exchange rate. The observation 
of Ding and Granger (1996) that the exchange rate of the Deutschmark with the 
US dollar exhibit strongest long-run persistence when p = \  across different p-

5UK£/US$ and JP¥/US$ exchange rate data are taken from Board of Governors of the Federal 
Reserve System, Series I.D. EXUSUK and EXJPUS, respectively, http://www.federalreserve.gov.
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th  power transformations holds clearly for JP¥/U S$ exchange rate, and partially 
for the UK£/US$ exchange rate. The estimated memory parameters are highest 
when p — \  compared to p = 1,2 for all bandwidths parameters in the case of 
the JP¥/U S$ exchange rate, see Figure 4.90, and for moderate and big values of 
the bandwidth parameter in the case of the UK£/US$ exchange rate, see Figure 
4.84. Notice also, that for moderate and big values of bandwidths parameter, the 
estimated memory parameters of the logarithmic squared returns tend to exceed 
those of the p-th power transformations, particularly in the case of the JP¥/US$ 
exchange rate.

The results here cannot directly support the use of the LMSV model (3.5.1) 
of Breidt, Crato, and de Lima (1998) and Harvey (1998) with the exponential 
specification of the volatility process. But as the LW estimates of the various 
transformations of the returns of these series are in fine with our theoretical findings 
of Section 3.5 and the corresponding Monte-Carlo simulations of Subsection 4.2.5, 
one cannot exclude this specification for the UK£/US$ and JP¥/U S$ exchange 
rates. Furthermore, one cannot say with certainty that the memory parameters 
of the different transformations of the returns series are distinct. It could be the 
case that the differences in the LW estimates across the various transformation are 
driven by differences in the magnitude of the finite sample bias of the LW estimator.

4.4 Final comments

In this chapter, we have analyzed by the means of Monte-Carlo simulations, the 
finite sample properties of the LW estimator for the linear and nonlinear specifica­
tions discussed in Chapters 2 and 3. The results of the Monte-Carlo experiments 
have confirmed the theoretical findings and remarks of Chapters 2 and 3. The LW 
estimator is consistent for the nonlinear models considered, but the nonlinearity 
worsens its finite sample performance as compared to the linear model. Hence, in 
the presence of nonlinearity, a larger sample is required to achieve the same level 
of accuracy as in the linear case. The outcome of the Monte-Carlo simulations has 
also suggested that for nonlinear models, the bandwidth parameter that minimizes 
the RMSE is, compared to that for the linear case, expected to be of moderate 
value, possibly in the range [n0,5] — [n0-75]. However, we should notice that smaller 
values of the bandwidth parameter are likely to be required if short-run dynamics 
are further included in the simulated processes.

We have applied the LW estimation to inflation and expected inflation rates,
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nominal and real interest rates, and transformations of the returns of two foreign 
exchange rate series. Overall, we have found that estimating the true degree of long- 
run persistence can be a difficult task given the small sample sizes and presence of 
nonlinearity. However, there are some points that can be inferred with certainty 
from this empirical exercise. Firstly, one should not employ data on the CPI series 
in order to assess the degree of long-run persistence of the inflation series. Instead, 
one should use data on the GDP deflator series, or employ some proxy for the 
expected inflation rate. In general, caution has to be exercised when the data are 
subject to substantial short-run variability. The latter variability masks the true 
degree of long-run persistence, leading to underestimates of the memory parameter. 
Secondly, in data where the cyclical component is stronger than the trend and 
has a period that is big compared to the sample size, one might want to refrain 
from estimating the degree of long-run persistence. The long-run component is 
masked by the cyclical one, and the LW estimates are driven by the strong cyclical 
behaviour. The latter has been found for the U.S. nominal and real interest rate over 
the post-1987 sample period, but we believe it is likely to be manifested in other 
data sets. Finally, one cannot say with certainty if the property that a certain 
p-th power transformation of return series exhibits the highest degree of long-run 
dependence, is a stylized fact of return series or just a small sample behaviour of 
the LW estimator.

The Monte-Carlo experiments and empirical applications presented here indi­
cate the need of an estimation procedure for the memory parameter which is subject 
to smaller finite sample bias. Certainly, it would be preferable if such a procedure 
did not increase the dispersion, at least not substantially, and did not need to in­
corporate the different nonlinear structures. The issue of bandwidth choice remains 
an open problem, and is the main reason for not presenting confidence intervals in 
our empirical applications. Clearly, a bias reduction method and a general rule for 
bandwidth choice are important matters that we plan to examine in future research.

A further issue that we hope to address in the future, is the parametric and/or 
semiparametric modelling of persistence of business cycle behaviour. Currently, it is 
common amongst practitioner to employ the Markov switching model of Hamilton 
(1990) for modelling business cycle behaviour, see Diebold and Rudebusch (1999) 
and the references therein. However, the latter model does not allow for smooth 
transition between the different states of the economy, and furthermore it is not 
clear how persistence is quantified in this setup. On the other hand, models (1.2.9) 
and (1.2.10) can be used to quantify business cycle persistence. However, these

144



specifications entail the assumption that the business cycle is periodic and symmet­
ric, which is clearly violated as business cycles have variable duration and recoveries 
tend to last longer than recessions. Perhaps, a combination of these models might 
give an answer to this problem.
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Figure 4.1: Bias of LW estimator; linear process with ax = —0.8.
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Figure 4.2: RMSE of LW estimator; linear process with ax = —0.8.
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Figure 4.3: Bias of LW estimator; linear process with ax = —0.4.
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Figure 4.4: RMSE of LW estimator; linear process with ax = —0.4.
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Figure 4.5: Bias of LW estimator; linear process with ax = 0
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Figure 4.6: RMSE of LW estimator; linear process with a
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Figure 4.7: Bias of LW estimator; linear process with ax =  0.4.
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Figure 4.8: RMSE of LW estimator; linear process with ax = 0.4.
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Figure 4.9: Bias of LW estimator; linear process with ax =  0.8.
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Figure 4.10: RMSE of LW estimator; linear process with ax = 0.8.
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Figure 4.11: Bias of LW estimator; signal plus noise model with ay =  0.8 and 
olz —  — 0 .8 .

—  n=128 —-n=512 — n=2048

0.6

0.5

0.4 J

0.3 \

0.2 ^

0.1 A

o 4-
[n05] [noss] [n06] [n°65] [n° [n°75] [n

Figure 4.12: RMSE of LW estimator; signal plus noise model with ay = 0.8 and
ol7 =  - 0 . 8 .
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Figure 4.13: Bias of LW estimator; signal plus noise model with ay = 0.8 and 
az =  -0.4.
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Figure 4.14: RMSE of LW estimator; signal plus noise model with ay 
az = —0.4.
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Figure 4.15: Bias of LW estimator; signal plus noise model with ay =  0.8 and
otz = 0.
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Figure 4.16: RMSE of LW estimator; signal plus noise model with ay = 0.8 and
a z =  0 .
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Figure 4.17: Bias of LW estimator; signal plus noise model with ay = 0.8 and 
az = 0.4.
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Figure 4.18: RMSE of LW estimator; signal plus noise model with ay =  0.8 and
a2 = 0.4.
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Figure 4.19: Bias of LW estimator; signal plus noise model with ay = 0.8, a z =  0 
and signal-to-ratio = 2.
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Figure 4.20: RMSE of LW estimator; signal plus noise model with ay = 0.8, a z = 0
and signal-to-ratio =  2.
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Figure 4.21: Bias of LW estimator; signal plus noise model with ay = 0.8, az =  0 
and signal-to-ratio = 0.5.
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Figure 4.22: RMSE of LW estimator; signal plus noise model with ay = 0.8, az = 0
and signal-to-ratio = 0.5.
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Figure 4.23: Bias of LW estimator; signal plus noise model with ay = 0.8, az — 0 
and p — —0.5.
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Figure 4.24: RMSE of LW estimator; signal plus noise model with ay — 0.8, a z =  0
and p — —0.5.
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Figure 4.25: Bias of LW estimator; signal plus noise model with ay = 0.8, az =  0 
and p =  0.5.
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Figure 4.26: RMSE of LW estimator; signal plus noise model with ay =  0.8, az = 0
and p =  0.5.
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Figure 4.27: Bias of LW estimator; structural model with =  0.4, a W)Cx =0.1 
and lj = 0.15.

—  n=128 — n=512 — n=2048

0.5

0.4

0.3

0.2 -

0.1 J

[n°S] [n055] [n06] [n0 65] [n07] [n075] [n08]

Figure 4.28: RMSE of LW estimator; structural model with a ^  = 0.4, au,Cx =0.1
and u  = 0.15.
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Figure 4.29: Bias of LW estimator; structural model with a ^  = 0.4, au,Cx = 0.3 
and uj =  0.15.
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Figure 4.30: RMSE of LW estimator; structural model with =  0.4, =  0.3
and u  =  0.15.
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Figure 4.31: Bias of LW estimator; exponential of Gaussian process with ax =  0 
and a,£ = 0.
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Figure 4.32: RMSE of LW estimator; exponential of Gaussian process with a x = 0 
and =  0.
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Figure 4.33: Bias of LW estimator; exponential of Gaussian process with ax = 0.4 
and a,£ = 0.4.
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Figure 4.34: RMSE of LW estimator; exponential of Gaussian process with ax =  0.4 
and ci£ =  0.4.
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Figure 4.35: Bias of LW estimator; exponential of Gaussian process with ax = 0.8 
and a$ =  0.8.

—  n=128 — n=512 — n=2048

0.4 J

0.3

0.2

0.1 ■]

V 5] [n055] [n06] [n065] [n07] [n07S] [n08]

Figure 4.36: RMSE of LW estimator; exponential of Gaussian process with ax =  0.8 
and d£ = 0.8.
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Figure 4.37: Bias of LW estimator; square of Gaussian process with ax =  0 and 
=  0.
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Figure 4.38: RMSE of LW estimator; square of Gaussian process with ax — 0 and
a,£ =  0 .
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Figure 4.39: Bias of LW estimator; square of Gaussian process with ax = 0 and 
= 0.3.
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Figure 4.40: RMSE of LW estimator; square of Gaussian process with ax = 0 and
a,£ = 0.3.
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Figure 4.41: Bias of LW estimator; square of Gaussian process with ax =  0.4 and 
a,£ =  0.7.
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Figure 4.42: RMSE of LW estimator; square of Gaussian process with ax = 0.4 and
a,£ — 0.7.
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Figure 4.43: Bias of LW estimator; square of Gaussian process with ax = 0.8 and 
d£ — 0.9.
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Figure 4.44: RMSE of LW estimator; square of Gaussian process with ax = 0.8 and
a,£ = 0.9.
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Figure 4.45: Bias of LW estimator; LMSV model, absolute returns with ajr | =  0 
and ot£ — 0.
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Figure 4.46: RMSE of LW estimator; LMSV model, absolute returns with 0 |r| =  0
and ct£ — 0.
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Figure 4.47: Bias of LW estimator; LMSV model, absolute returns with aj|r | =  0.4 
and ct£ = 0.4.
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Figure 4.48: RMSE of LW estimator; LMSV model, absolute returns with o:|r| =  0.4
and ct£ = 0.4.
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Figure 4.49: Bias of LW estimator; LMSV model, absolute returns with ai|r| =  0.8 
and = 0.8.
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Figure 4.50: RMSE of LW estimator; LMSV model, absolute returns with a\r\ =  0.̂
and Q!£ = 0 .8 .
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Figure 4.51: Bias of LW estimator; LMSV model, squared returns with a r 2 = 0 and 
= 0.
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Figure 4.52: RMSE of LW estimator; LMSV model, squared returns with a r 2 = 0
and ot£ =  0.
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Figure 4.53: Bias of LW estimator; LMSV model, squared returns with a r 2 =  0.4 
and =  0.4.
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Figure 4.54: RMSE of LW estimator; LMSV model, squared returns with a r 2 = 0.4
and ct£ = 0.4.
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Figure 4.55: Bias of LW estimator; LMSV model, squared returns with a r 2 =  0.8 
and a$ = 0.8.
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Figure 4.56: RMSE of LW estimator; LMSV model, squared returns with ari = 0.8
and ai£ =  0.8.
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Figure 4.57: Bias of LW estimator; LMSV model, log-squared returns with a \o g r 2 = 
0 and ot£ = 0.
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Figure 4.58: RMSE of LW estimator; LMSV model, log-squared returns with
ĉ iogr2 =  0 and a% = 0.
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Figure 4.59: Bias of LW estimator; LMSV model, log-squared returns with Oiog r2 =  
0.4 and =  0.4.
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Figure 4.60: RMSE of LW estimator; LMSV model, log-squared returns with
a iogr2 =  0-4 and a$ =  0.4.
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Figure 4.61: Bias of LW estimator; LMSV model, log-squared returns with aiogr2 = 
0.8 and = 0.8.
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Figure 4.62: RMSE of LW estimator; LMSV model, log-squared returns with 
ĉ iogr2 =0.8  and =  0.8.

176



4 .B  A p p e n d ix

l —  Inflation rate (CPI) —  Inflation rate (GDPDEFL) —  Expected inflation rate (SPF)

15

10

5

0

-5

Figure 4.63: Data on inflation rate (CPI), inflation rate (GDPDEFL) and expected 
inflation rate (SPF) for the period 1981Q4-2005Q4.
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Figure 4.64: LW estimates for the data in Figure 4.63.
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Figure 4.65: Data on nominal interest rate, inflation rate and ex post real interest 
for the period 1954Q3-2005Q4.
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Figure 4.66: LW estimates for the data in Figure 4.65.
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Figure 4.67: Data on nominal interest rate, inflation rate and ex post real interest 
for the period 1954Q3-1979Q2.
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Figure 4.68: LW estimates for the data in Figure 4.67.
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Figure 4.69: Data on nominal interest rate, inflation rate and ex post real interest 
for the period 1979Q3-1987Q2.
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Figure 4.70: LW estimates for the data in Figure 4.69.
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Figure 4.71: Data on nominal interest rate, inflation rate and ex post real interest 
for the period 1987Q3-2005Q4.
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Figure 4.72: LW estimates for the data in Figure 4.71.
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Figure 4.73: Data on nominal interest rate, expected inflation rate and ex ante real 
interest for the period 1987Q3-2005Q4.
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Figure 4.74: LW estimates for the data in Figure 4.73.
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Figure 4.75: Data on nominal interest rate, expected inflation rate, ex ante real 
interest and output gap for the period 1987Q3-2005Q4.
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Figure 4.76: LW estimates for the data in Figure 4.75.
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Figure 4.77: Sample autocorrelation function of nominal interest rate, expected 
inflation rate, ex ante real interest and output gap for the period 1987Q3-2005Q4.
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Figure 4.78: Periodogram of nominal interest rate, expected inflation rate, ex ante 
real interest and output gap for the period 1987Q3-2005Q4.
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—  Returns UK£/US$
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Figure 4.79: Data on UK£/US$ foreign exchange rate returns rt for the period 
1971M2-2006M5.
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—  Squared returns UK£/US$
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Figure 4.81: Data on UK£/US$ foreign exchange rate squared returns r\ for the 
period 1971M2-2006M5.
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Figure 4.83: Data on UK£/US$ foreign exchange rate log-squared returns log rf for 
the period 1971M2-2006M5.
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Figure 4.84: LW for UK£/US$ foreign exchange rate absolute returns |r*|, squared
returns r f ,  quartered returns \rt\* and log-squared returns log r f  for the period
1971M2-2006M5.
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—  Returns JP¥/US$
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Figure 4.85: Data on JP¥/U S$ foreign exchange rate returns rt for the period 
1971M2-2006M5.

—  Absolute returns JP¥/US$

0.12

0.10  -

0.08

0.06

0.04 i

0.00

Figure 4.86: Data on JP¥/US$ foreign exchange rate absolute returns \rt \ for the
period 1971M2-2006M5.
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1 —  Squared returns JP¥/US$
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Figure 4.87: Data on JP¥/US$ foreign exchange rate squared returns rf for the 
period 1971M2-2006M5.
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Figure 4.89: Data on JP¥/U S$ foreign exchange rate log-squared returns log rf for 
the period 1971M2-2006M5.
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Figure 4.90: LW for JP¥/US$ foreign exchange rate absolute returns \rt \ , squared
returns r f ,  quartered returns | r * | 5  and log-squared returns log r f  for the period
1971M2-2006M5.
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C hapter 5

Param etric bootstrap tests for 
weak persistence

5.1 Introduction

As was already discussed in the Introduction of this thesis, parametric estimation 
and inference on the memory and cyclical memory parameters ax and a W)I are 
dominated by the parametric Whittle method. The asymptotic properties of the 
PW estimator are well established for Gaussian or linear processes having a rather 
general parametrically specified spectral density function. In the case that the 
frequency of the possibly persistence component is known, see Hannan (1973), Fox 
and Taqqu (1986), Dahlhaus (1989), Giraitis and Surgailis (1990), Hosoya (1997) 
and, Velasco and Robinson (2000), the asymptotic distribution of the PW estimator 
can then be used to test for values of ax or in (—1,1). When the process exhibits 
long or cyclical long memory and the frequency of the persistent component is 
unknown, see Giraitis, Hidalgo, and Robinson (2001), the asymptotic distribution 
of the PW estimator can be employed to test for values of ax or in (0,1).

However, it is not possible to test whether the data does not exhibit a persistent 
component against the alternative that it does, when the practitioner is not certain 
about the frequency of the possible persistent component. The latter situation is 
likely to arise in practice, when the practitioner deals with macroeconomic and 
financial data sets that are subject to business cycles fluctuations. Notice that 
business cycle chronology is not available for all countries, and even when it is, 
the dating of the peaks or troughs of the business cycle are usually reported few 
months after they have taken place, and are calculated based on specific measures
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of economic activity, so that the business cycle component of a certain series does 
not necessarily have a frequency matching that from the business cycle chronology.

The main objective of this chapter is to provide testing procedures for the hy­
pothesis that the data does not exhibit a persistent component against the alter­
native that it does, noticing also that these hypotheses can be reinterpreted as the 
data being weakly dependent against being strongly dependent. We describe two 
different tests; the first one is a Wald (W ) type of test, whereas the second one is 
based on the Lagrange multiplier (LM) principle. The tests are based on whether 
the supremum of a sequence of random variables is significantly greater than zero. 
In particular, the W  and the LM  types of tests are based on the supremum of a 
sequence of PW estimators and the score function, respectively, when it is believed 
that the frequency of the possibly persistent component falls in [0,7r]. Notice that 
the W  type test presented here relies on the same principle as that of Hidalgo 
(2006) in the semiparametric context. As a next step, we establish the asymptotic 
distribution of these test statistics, as well as examine their consistency and power 
properties.

However, the asymptotic distribution of our test statistics is nonstandard and 
therefore difficult to implement in practice for the purposes of calculating critical 
values for our hypothesis testing. Taking also into account that the tests are based 
on the supremum of a sequence of random variables, one might expect that the 
rate of convergence of the finite sample distribution to the asymptotic one to be 
slow, see Hall (1979) who established that the rate is logarithmic for a related sta­
tistic. Hence, the second objective of this chapter is to propose and examine a 
bootstrap approach to our hypothesis testing. Bootstrap schemes, introduced by 
Efron (1979), have become a routine method for approximating the distribution 
of a statistical quantity, partly due to the increasing computational power. At a 
theoretical level, bootstrap algorithms have attracted considerable effort to their 
development for two reasons. Firstly, they are capable of approximating the finite 
sample distribution of statistics more effectively than those based on their asymp­
totic counterparts. Secondly, they allow computation of valid asymptotic quantiles 
of the limiting distribution in nonstandard situations, and in particular, when the 
limiting distribution is unknown or if known, the practitioner is unable to compute 
its quantiles.

The remainder of this chapter is as follows. In Section 5.2, we formulate our 
hypotheses of interest and introduce the W  and LM  type of tests. In Section 5.3, 
we present and discuss the assumptions, while Section 5.4 deals with the theoretical
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properties of the test statistics. In Section 5.5 we present a bootstrap algorithm and 
establish its validity. Section 5.6 contains Monte-Carlo simulations, while Section 
5.7 applies our testing procedure on data for industrial production and unemploy­
ment rate. Section 5.8 contains some final comments. The proofs of Sections 5.4 
and 5.5 are placed in Appendix 5.A of this chapter, that use a series of technical 
lemmas placed in Appendix 5.B, while the results from the Monte-Carlo simulations 
and empirical applications are found in Appendix 5.C.

Before we proceed, we note some changes in notation for expositional simplicity. 
From hereafter, the subscript x  referring to the sequence {xt}tez is suppressed, 
but subscript referring to any other sequences remain. Also, we abbreviate £ (A^;.) 
by (.) for a generic function £(.;.). Moreover, since the frequency of the possible 
persistent component is not assumed to be known, we denote by ao the true memory 
parameter of either the long-run or cyclical component, and by ujo the frequency of 
the possible persistent component. Furthermore, ao, Uo, ip0, Oo, o\ e denote the true 
value of the parameters, while a, u, 'tp, 0, a\ denote any admissible value. Finally, we 
denote by the j -th element of a generic vector b, by B ytk) the (j, k)-th. element 
of a generic matrix B , and by V& the vector of partial derivatives d/db for a generic 
column vector or scalar b.

5.2 Test statistics

Suppose that the spectral density function /( .)  of {xt}tez is known up to a finite 
set of parameters (ip'0, 0o e) ; > and is of the form

2

f W  = ^ M o ) ,  (5-2.1)

where cr^ > 0, C Rfc+1, and k(\;ip0) 1S a known even function. Re­
call that (5.2.1) captures a wide range of parametrically specified models, includ­
ing ARMA(p,q), ARFIMA(jp,d,q) and GARMA(jp, cL,g) models. Actually, any 
covariance stationary process with no deterministic component and well defined 
spectral density function satisfies (5.2.1).

Under the null hypothesis of no persistent component in {xt}tez, we have that 
/( .)  is bounded and bounded away from zero for all A G [0, tt] . This means that 
there exists constant 0 < K  < oo such that

K ~ l < /(A) < K,  for all A e [0, tt] . (5.2.2)
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Hence, our hypothesis of interest can be written as

H0 : {K - 1 < k{A; ^ 0) < K , for all A G [0, tt] }  . (5.2.3)

On the other hand, under the alternative hypothesis of a persistent component 
in {xt}tez, the spectral density function /( .)  is unbounded at some frequency ljq e 
[0,7r]. Then, we can consider that there exist ujq 6 [0,7r] and 0 < a0 < 1 such that

/(A) ~  Co |A — o;0|-Q:o, as A —» cj0, (5.2.4)

for some 0 < Cq < 1. Hence, our alternative hypothesis can be formulated as

Hi : {3 uj0 G [0,7r] and 0 <  a 0 <  1 : A;(A; ip0) =  g (A; a0, u>0 ) h (A; 0O), (5.2.5)

where ip0 = (a05 Q'o)' > while the functions h (.; 0o) and <7 (.; a 0, u;o) are such that

AT-1 < h (A; 0O) < K, for all A G [0,7r], (5.2.6)

and
g (A; a 0, w0) ~  Co |A — w0|_Q!0, as A —► w0, (5.2.7)

for some 0 < Co < 1} .

5.2.1 Wald test Tw

Assuming that /( .)  follows model (5.3.1)-(5.3.3) in Condition C.l below, suppose 
that for a given uj0 we have an estimator of (o0, 0'Q: 5 and denote by As the
closest Fourier frequency to cjo- For example, given a stretch of data {xi, ...,xn}, 
we can use the PW estimator discussed in the Introduction. Recall that the PW 
estimator is defined as

= argmin Q (a, 6, s) and = Q f a s, 0, sV  (5.2.8)
'  '  (a.fl'/enx© '  '

where

Q (a,0 ,s) = ^ Y ,  ( t \ h (OV (5'2-9)n j^ l  9j (a > X°) h3 \°)

where the sets n  and 0  are given in Condition C.l below, and ft = [f] wit*1 [•] 
denoting the integer part.

Next, suppose that as is computed for all s = 0,1,..., ft. Because under suitable 
regularity conditions, given in Section 5.3 below, the PW estimator is consistent, we
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expect that under Hq, a s «  0 for all 5 =  0,1, ...,fi, whereas under Hi, there exists 
an s such that as > 0. So, a test statistic for the null hypothesis (5.2.3) against the 
alternative hypothesis (5.2.5) can be based on whether a3 is significantly greater 
than zero for some s =  0,1,..., n. More precisely, the test statistic is given by

s = 0 , l , . . . ,n

rejecting Hq if Tw is greater than some critical value.

5.2.2 Lagrange multiplier test T l m

The statistic described in (5.2.10) involves the estimation of ao (As) , the memory 
parameter associated with the component of frequency Xs, along with any other pa­
rameter of the model, for all s = 0,1,..., h, which can be highly computing intensive 
as nonlinear optimization algorithms are employed. Moreover, as the asymptotic 
distribution of Tw is not standard, see Theorem 5.1 below, to obtain critical values, 
bootstrap methods are required. Because of that, the implementation of the W  
type of test can be a prohibitive task in computing time. Thus, we introduce a 
L M  type of test which does not require the estimation of ao (As) under Ho. This is 
computationally simpler and bootstrap algorithms are easier to implement.

To that end, consider the PW estimator of (#o, <Jo,e)/ under Hq, that is

given the model (5.3.1)-(5.3.3) for / ( . )  in Condition C.l below. Next, for all s = 
0,1, ...,n, consider the first derivative of Whittle objective function (5.2.9) with

Tw = sup Ss, (5.2.10)

9 =  arg min
eee

(5.2.11)

respect to (a, 9') ', and denote

(5.2.12)

and

(5.2.13)

where

' d (a, 9 )
(5.2.14)
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Notice that under standard suitable conditions, V (a, 9, s) /  (2ir)2 is an estimate of 
the asymptotic covariance matrix of fAq (a, 9, s ) .

Next, suppose that we fix a frequency As for some s = 0,1,..., n. Then, the LM  
test for the hypothesis H0 : aQ (Aa) — 0, becomes whether q3 is not significantly 
different than zero, where

5* =  (v ^ l) (o, 0, s ) )  2 fAq{l) (o, 0, s) , (5.2.15)

recalling that (̂i) (.) denotes the first component of the vector q(.) and, is the
element (1,1) of the matrix V~l (.). Because under suitable regularity conditions, 
given in Section 5.3 below, the PW estimator is consistent, then under H0, we 
expect that q3 «  0 for all s = 0,1,..., h.

Notice that our hypothesis testing is one sided. So, in the same way that for 
the W  type of test we reject the null hypothesis if a3 > 0 for some s = 0,1,..., n, 
we need to find the direction of departure from the null hypothesis, that is the sign 
that q3 takes under the alternative hypothesis. It is clear that the sign of qs is that 
of

< 5 ' 2 1 6 1

where qs (.) is the first element of the vector qj (.). Notice that because Condition 
C.5 below implies that {xt}tez is ergodic, see Stout (1974) Theorem 3.5.8, we have 
that a2 ctq)£ > 0. Because we are under the alternative hypothesis, there exists 
an s = 0,1, ...,n for which olq (Xs) > 0. Suppose for simplicity that s =  0 and 
h (A; Qq) = 1. Then, we have that the last displayed expression becomes

d log g, (0,0) A  d  log g, (0,0)t  u 0 , e  u /  (  ( n \  n \
=  ~ ^ Y ---------Q-a -------- f t ( “ o ( 0 ) , 0 )

d log gj (0,0)

h “  da 2tth “  da
3=1 3=1

A y ,h ' da
3= 1

■9j (ao (0), 0)

x (  / Y  -  TT*) • (5.2.17)\9 j  (“ o (0) ,0) 27t J

Now, under Conditions C.l, C.5 and C.6, Lemma 3 of Delgado, Hidalgo, and Velasco 
(2005) implies that the second term on the right of the last displayed equation is

- i  £  ah«»<o,o)a  (ao m  10) + % . (5118)
j=l  ̂ '
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Moreover, by standard results on Ijte, see for example Giraitis, Hidalgo, and Robin­
son (2001), the last expression is Op ■ On the other hand, under Condition

C.l below, it follows that g (A; ao (0) ,0) =  |2sin ( | )  | 2a° ^  . Then, from the mean 
value theorem, we have that the first term on the right of (5.2.17) is

ao,e
7ra ^ 2sin (t

— 2 q 0 ( 0 )

log 2sin(y
_ a0,£ 

7r n •'
3=1

- 2“o (°) I  i t
xlog2

3= 1

2sin(y

2sin (y

2 s i n ( y

—2a0(0)

(5.2.19)

where ao (0) is an intermediate point between 0 and ao (0). Next, by an obvious 
extension of Lemma 2 of Robinson (1995b), see also Lemma 1 of Delgado, Hidalgo, 
and Velasco (2005), and since f*  log |2sin ( | ) |  d \  =  0, the first term on the right of 
the last displayed equality is O ( ^ p )  , whereas the second term is strictly negative

n / y  \  i —  2 q o ( 0 )  (  \
since ao (0) > 0 and 4 y  2 sin | log 2 sin is bounded away from

zero. Hence, we conclude that #(i) (0,0) c < 0, as n —► oo.

Therefore, the test for the null hypothesis (5.2.3) against the alternative hy­
pothesis (5.2.5) is based on the test statistic

r LM = sup - q 3,
s = 0 , l , . . . ,n

rejecting H0 if 7j,M is greater than some critical value.

(5.2.20)

5.3 Conditions

We introduce the following regularity conditions.

C .l  The spectral density function /(.) satisfies

where

/(A) =  V'o * « o) ,  - tt < A < 7r,

k{A; ip0} w0) =  g (A; a 0, u 0) h (A; 0O) ,

(5.3.1)

(5.3.2)
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with
/x x . A — ujq . A +  ojq 1 a° 

^(A;ao,w0) = 4 sin — -—  sin
2 - 2  ’ ( 5 ' 3 ' 3 )

where 90 G ©, a compact set in Rfe, a0 G II, where II =  [0,1) if ujq g  (0,7r) 
and II =  [0,1/2) if uq = {0,7r} . Furthermore, the function h (A; 6), — 7r < A < 
7r, is even in A, bounded and bounded away from zero, and the derivatives 
V0/1 (A; 0) , Vah (A; 6) , V#Vah (A; 6) and (A; 6) are continuous.

C.2 For all 6 G 0 , the function h (.;.) satisfies

f  log (h (A; 6)) d \  = 0. (5.3.4)
J  —TT

C.3 It holds that

/
7T 

■TT

'  fc(A; a;o,0o, w0) dA =  1> (5.3.5)
fc(A; a, 0,6J0) 

and the set

{A : k(A; a 0, 0o,^o) t^ a, 0,cj0)} for (a0, ^o) 7̂  (a > #0 > (5.3.6)

has positive Lebesgue measure. Also, the matrix

1 r
^  =  47r j  ^ loS^(^5 'ipo,Wo)'V^k(\’,'ip0,LJ0)d \  (5.3.7)

is positive definite for all u;o € [0,7r].

C.4 Oq is an interior point of the compact set © G R fc.

C.5 The process {z*}tez is defined as

00 00
xt= ^2< pjSt-j ,  °, </,o =  i > (5.3.8)

j = 0  j=o

where {£t}tez is a sequence of ergodic processes satisfying

E  (£t \Ft-i)  = 0, E  (e?|Fi_i) =  <7̂ ,  a.s., t G Z,

F  \Et- i ^  — iit < 00,  ̂=  3,..., 8, a.s., t G Z, (5.3.9)

where F* is the <r—algebra of events generated by {e3,s  < t}  , and

/  \  If 1̂ 2̂ 3̂ 4̂ /p. n  1 /-»\c«m(£tl,e(2,ei3,£i4) =  othenv.se . (5.3.10)
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oo
C.6 The transfer function </>(A) =  <Pjel*x is differentiable in A G [0,7r]\ {a;0} and

We now comment on our conditions. Condition C.l covers a wide range of 
short memory models having spectral density function h including covari­
ance stationary and invertible ARM A(p , q) and Bloomfield (1973) ones, although 
it allows for models with autocovariance function decaying to zero much slower 
than the previous two models. Condition C.2 is not very strong and implies that 
J l n l°g (A:(A; ip, cj0)) d \  = 0, since log |2 sin ( ^ p )  | dX = 0. It follows that <7q £ is 
the one-step mean square linear prediction error, see Hannan (1970) pp. 121-123. 
Notice also that this condition is employed in the construction of the PW estimator, 
see Subsection 1.3.1. The first part of Condition C.3 is an identifiability assumption, 
while the second part is required in order for the variance in the asymptotic distrib­
ution of the PW  estimator of ip0 to be well defined. Condition C.4 is trivial and very 
mild. Condition C.5 requires the process {xt}tez to be linear and is an extension 
of Assumptions A.5 and A.8 in Section 2.5. The normalization <p0 = 1 is consis­
tent with (5.3.4), while the finite eighth moments assumed for {£t}tez are needed 
to show the tightness condition of some process indexed by r  G [0,1], required to 
show Theorem 5.1 below. Notice that the assumptions on {£t}tez in Conditions C.5 
are satisfied for a sequence of i.i.d. random variables with finite eighth moments. 
Condition C.6 is extension of Assumption A.7 in Section 2.5 to the whole band of 
frequencies [0,7r] excluding u>o.

We should notice that Conditions C.1-C.6 are essentially those of Giraitis, Hi­
dalgo, and Robinson (2001) employed there to establish the consistency and as­
ymptotic normality of the PW estimator in (5.2.8). Overall, these conditions are 
standard in the literature on PW estimation, see Hannan (1973), Fox and Taqqu 
(1986), Dahlhaus (1989), Giraitis and Surgailis (1990), Hosoya (1997) and, Ve­
lasco and Robinson (2000), and are satisfied for processes whose short memory 
component, having spectral density function h (.;.), is a covariance stationary and 
invertible ARMA(p,q) or Bloomfield (1973) model. There are only two differ­
ences between the assumptions of Giraitis, Hidalgo, and Robinson (2001) and ours. 
Firstly, we require {et}tez to have eighth finite moments, while in Giraitis, Hidalgo, 
and Robinson (2001) finite moments slightly above four are needed. Secondly, we 
restrict the cumulant of {£t}tez to be of the form (5.3.10), an assumption that is not 
imposed by Giraitis, Hidalgo, and Robinson (2001). Notice also that as in Giraitis, 
Hidalgo, and Robinson (2001), we could have changed Condition C.l to
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C .l' The spectral density function /( .)  satisfies
2

/(A) =  -^ ^ (A ; wo), —7r < A < 7r, (5.3.12)

where
, a  , x _  / |A - w 0p Qofti(A ;^0,a)0), if 0 < A < 7T 

( ,^ 0.«°) \|A  +  wo|-0»A1(A;^ 0lw#) , i f - 7 r < A < 0  ( ' '  )

such that for —7r < A < 7r, 0o G O, a 0 € [0,1), hi (\-,ip,u0) is even in A, 
bounded and bounded away from zero, V^h\  (A; ip, cuo) and V ^V ^hi (A; ip, ujq) 
are continuous and bounded, hi (A; ip, cj0) and V^/ii (A; ip, cj0) satisfy uniform 
Lipschitz conditions in uq of order greater than while, for 0 < |A| < 7r, 
9 G 0 , ujq G [0,7r], V \h i  (X’,ip,cj0) and V^V^hi (X;ip,Uo) are bounded.

For a motivation and comparison with Condition C.l we refer to Giraitis, Hidalgo, 
and Robinson (2001).

5.4 Statistical properties of T\y and Tlm

In this section, we establish the asymptotic distributions of the test statistics Tw 
and Tlm and discuss their consistency and power properties under the conditions 
of Section 5.3. First, denote

A ( t ) =  (  )
\A 2 ,1 )(T) A 2,2) /

>(5.4.1)(f  1 dlog|g(7rx;0,7TT)l 91og[g(7ra;;0,7r-r)| t f l  91og|g(7r:c;0,7rr)| 9  log hjTrxtfo) ,
JO da  d a  aX Jo d a  W  UX

r  1 aiogh(7rs;fl0) dlog|ff(7ra;;0,7rr)l j  f  1 9  log /i(7rx;g0) dlogh(nx-,0o) r
Jo dd da  aX Jo dd W

where 7r_1As -> rG  [0,1], as n —> oo, and let

Also, write

c  (ri, r2) = -4 ^ , (ri) (r2) K. ( t , ,  t 2 )  + (r2) A^2) (rj) 24(2i1) ( t 2 )

+ j4(M) (Tl) A i,2) (ti) 24^!, (r2) +  A ^ 2) (n) 24(2,2)24^, (r2) , (5.4.3)

where
£  ( ti, r 2) =  /  log |p (7nr; 0 ,7rri)| log |p (7nr; 0 ,7rr2)| da;. (5.4.4)

Jo
The next theorem establishes, under Conditions C.l-C.6, the asymptotic distri­

bution of our test statistics Tw and Tlm under Hq given in (5.2.3).
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Theorem 5.1
Assume that Conditions C.1-C.6 are satisfied. Then, under Hq given in (5.2.3), we 
have that

i) nATw —» max Q ( r ) , as n —► oo, (5.4.5)
TG[0,1]

ii) h^TiM max Q ( r ) , as n —> oo, (5.4.6)
re [0,1]

where Q (r) is a process such that for fixed t ,  Q (r) is distributed as X  (r) T  (X  (r) > 0), 
where X  (r) is a Gaussian process with covariance structure given by C { t\,T 2 ) .

One basic requirement for any test is its consistency. Also it is useful to learn 
about its power function against local alternatives to gain some insight about the 
characteristics of the test. To this end, consider

C72
Ha : {3 uj0 e  [0,7r] : /  (A) =  - ^ g  (A; a (n) , u 0) h (A; 0O) , (5.4.7)

where a (n) — with ocq > 0} . Under the same conditions and using similar
techniques as in Theorem 5.1, we establish in the following corollary the asymptotic 
distribution of our test statistics Tw and Tlm under Ha given above.

Corollary 5.1
Assume that Conditions C.l-C.6 are satisfied. Then, under Ha given in (5.4.7), we 
have that

i) hATw max £̂7 (r) +  C (t, t )~* a 0 (r)^ , as n —► oo, (5.4.8)

ii) fiATLM - i  max ^  (r) +  C (r, r)~% a 0 (r f j  , as n —► oo, (5.4.9)

where ao (r) =  olqT (t  — .

From the results of Corollary 5.1, it is straightforward to observe that the tests 
are consistent. This is the case because for fixed alternatives, that is, a (n) = ao > 0,

p ____________ _ 1̂
Tw —> C (r, r )- 2 olq > 0. So, we have that for any z > 0,

Pr (n^Tw > —> 1, (5.4.10)

as n —► oo. Similarly, we have that for any z > 0,

Pr (nATLM > z j  -> 1, (5.4.11)

as n —> oo.

The results of Theorem 5.1 give the (asymptotic) justification of the tests. How­
ever, the rate of convergence of the finite sample distribution to the asymptotic one
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might be slow, see Hall (1979) who established that the rate is logarithmic for the 
maximum of independent standard Gaussian variables. So, critical values relying 
on the asymptotic distribution might be a poor approximation to those of the fi­
nite sample distribution. One solution would be to employ Edgeworth expansions. 
However, Hall (1990) showed that they do not perform well, compared to bootstrap 
schemes, at the tails of the distribution, which is the most important region when 
performing hypothesis testing. On the other hand, when exploring the properties of 
the bootstrap for the maximum of the kernel density estimator, Hall (1991) found 
that the bootstrap performs better than Edgeworth expansions in terms of their 
accuracy to the finite sample distribution of the suprema. In addition, because the 
asymptotic distribution of rATw and tA'Tlm is nonstandard and model dependent, 
it seems necessary to rely on Monte-Carlo algorithms to compute asymptotically 
valid critical values. For all these reasons, in the next section we propose a bootstrap 
scheme and establish its validity.

5.5 Bootstrap algorithm for Tw and Tlm

Bootstrap methods have become a routine method for approximating the distribu­
tion of a statistical quantity, partly due to the increasing computation power. At 
a theoretical level, bootstrap algorithms have attracted considerable effort to their 
development, as they are capable of approximating the finite sample distribution 
of statistics more effectively than those based on their asymptotic counterparts, 
and also because they allow for the computation of valid asymptotic quantiles of 
the limiting distribution in nonstandard situations. In particular, when the limit­
ing distribution is unknown or if known, the practitioner is unable to compute its 
quantiles.

The first contribution on bootstrap methods in the i.i.d. setup goes back to Efron 
(1979). The basic idea of the bootstrap is, given a stretch of data Z n =  {z\ , ..., zn} 
say, to treat the data as if it were the true population, and to carry out Monte-Carlo 
experiments in which pseudo-data is drawn randomly with replacement from Z n. 
An obvious drawback of this method is the rather restrictive assumption that the 
data are taken from an i.i.d. population. To circumvent this problem in the case 
that homoscedasticity is violated, Wu (1986) proposed the wild bootstrap.

In the time series context, the data cannot certainly be assumed to be inde­
pendent and the need of bootstrap methods that preserve the time dependence 
structure arises. For this reason, Kiinsch (1989) proposed to resample not from the
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data themselves, but from blocks of data so that inside the block the dependence 
structure of the series is maintained. A similar method was put forward by Politis 
and Romano (1994), where blocks of data were again constructed, but contrary 
to Kiinsch (1989) they did not resample from these blocks of data, and instead 
considered the blocks as subseries. However, both these methods suffer from the 
disadvantage that for their implementation the choice of block length is needed. It 
is also evident that when examining long-run or cyclical persistence, the length of 
the block has to be chosen big enough to capture the relevant information. How­
ever, this would leave the practitioner with few blocks available for resampling or 
to act as subseries, which in turn results to a poor performance of the bootstrap 
method.

In later studies, various bootstrap methods have been proposed that do not 
rely on the construction of blocks of data, but require a priori knowledge of that 
data generating mechanism of the time series. Examples include the residual based 
bootstrap of Franke and Kreiss (1992) and the sieve bootstrap of Buhlmann (1997). 
In Franke and Kreiss (1992) the data are assumed to follow a covariance station­
ary A R M  A(p, q) model, and the bootstrap algorithm is performed by resampling 
randomly with replacement the residuals of the A R M  A(p, q) model. In Buhlmann 
(1997) the data generating process is assumed to be linear, and is approximated 
by an AR(p) model in which p = p(n) increases with increases in the sample size. 
The residuals of the latter model are constructed and the bootstrap scheme is per­
formed in line with that of Franke and Kreiss (1992). The latter bootstrap methods 
are based on the time domain, but frequency domain bootstrap algorithms have 
also been proposed. Examples include the studies of Franke and Hardle (1992), 
Dahlhaus and Janas (1996) and Hidalgo and Kreiss (2004) for covariance station­
ary linear processes with bootstrap algorithms utilizing the fact the the normalized 
periodogram ordinates behave as if they were a series of uncorrelated processes, and 
therefore the resampling is performed on the normalized periodogram ordinates.

In our context, the resampling method must be such that the conditional distri­
bution, given X n  =  { x \ ,  ...,xn}, of the bootstrap statistic, say f A T ^  the bootstrap 
analogue of tATw, consistently estimates the distribution of max Q{r) under the

null hypothesis H0 and the local alternatives Ha. That is, tA t ^  ^  max Q (r) in
d*probability under H0 Ui7a, where —► denotes convergence in bootstrap distribution, 

that is,
Pr (n*T^ < z \ x n' j - ^ G ( z ) ,  (5.5.1)
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at each continuity point z of G ( z )  — Pr y  max Q (r) < 2 J  , as defined in Gine and

Zinn (1990). A second requirement is that under Hi, must also converge in
bootstrap distribution, although possibly to a different one than under H0. Likewise 
for the bootstrap analogue of T l m , denoted by T£M. To achieve the first requirement, 
due to the (pseudo) Gaussian behaviour of the limit distribution, one key condition 
is that the resampling algorithm should preserve the correlation structure of the 
original data x. On the other hand, the second requirement would be guaranteed if 
we were capable to bootstrap under the null hypothesis Ho.

To achieve both aims, we propose the following bootstrap algorithm. Suppose
£7̂that we are under the null hypothesis H0, so that /  (A) =  (A; 0O) . Recall that

the discrete Fourier transform w (.) of the data {x \ , ..., xn} , given in (1.3.5), satisfies

n

x t — Y & W j .  (5.5.2)
3=1

Notice also, that under Condition C.5, we can apply the approximation

wj «  $  {e~iXj) Wfc, (5.5.3)

00 1 n
where $  (2) =  ^  (pjẐ  and Wj)£ — n~ 2 £te~ltxi , and the approximation error is 

j=0 ’ t=1
op(l) uniformly in Aj, see the proof of Theorem 10.3.1. in Brockwell and Davis
(1991). Here, «  should be read as "approximately”. Hence, combining (5.5.2) with
the latter approximation, we have that

n

X t  Ri Xt = :  n ~ i  ^  e a x ^  (e“ iAi)  w Jt£. (5.5.4)
j=i

We now show that {xt}tez preserves (asymptotically) the covariance structure
of {xt}tez- First, notice that under the assumptions on the innovation sequence
{st}tez in Condition C.5, it follows that E (wj>£Wk^) — =  k ) . Hence, the
autocovariance function of {xt}tez satisfies



because |<E> (e zA) |2 =  h (A; 0O) , and under the assumptions on h (.;.) in Condition
n

C.l, we have that ^ ^ 2  h(Xj\9  o)e*rA* —* ^  J0n h(X;60) etTXdX, as n —> oo, see
i=1

Problem 1.7.14 of Brillinger (1975).

Thus, if in the right side of (5.5.4), $  (e~lXj) was replaced by a consistent es­
timator, the problem of obtaining a bootstrap sample {x j,..., x *n} , becomes one of 
performing a valid bootstrap algorithm for {wi)£, ..., wnt£} .

The previous arguments suggest the following bootstrap algorithm.

S tep  1: Let x* =  {xj,...,x*} be a random sample with replacement from the 
empirical distribution of the standardized data {ah,..., xn}

i t  — —zr— j with x — — x t, cr2 = — (x t — x )2 , (5.5.7)

and obtain the discrete Fourier transform of x* as
n

Wj,x* — d%e~ttXj, (5.5.8)
t=l

for j  = l , ..., n.

Step  2 : For t = l , ..., n, compute
n

xl = d£n~^ Y  eltx^  (e~tXj) Wj$*, (5.5.9)
j=i

where
5  ( e " ^ ) =  l +  +  ... +  tpne~inXi, (5.5.10)

with
1 n —1

& =  ̂ E  h* f a t )  , (5.5.11)
j = - n +1

for I = 1, ...,n, while and 6 are given in (5.2.11).

S tep  3: For j  = 1 ,...,n , compute the periodogram of the bootstrap sample 
{xl, ...,a;*} evaluated at the Fourier frequencies

2
r *    ^

J 27m E
i=l

(5.5.12)

and consider the Whittle objective function



To obtain the bootstrap analogue of Tw, consider for all s = 0,1,..., h

(a*,6 \  = argmin Q* (a, 0, s) and a*2 =  Q* fa:*, 9 , sV  (5.5.14)
'  '  (a,d'Ye nx© '  '

whereas to obtain the corresponding bootstrap for Tlm , let

9 = argmin^ ? - { . and a*2 — — 7 ^ \ -  (5.5.15)
f£9 n f z h i Q )  ‘ n U h j (e ‘)

Then, for all s = 0,1,..., n, denote

5* (<*, 6, s) =  —5T X  9# (“ >9’s) > (5.5.16)
ae n t ^  j '

where qj (.) is given in (5.2.14). From here, for all s = 0,1,..., h, compute

S  =  (^(7]) (O.«*,»))'* niq{i) (O,?*,«) , (5.5.17)

recalling that (.) denotes the first element of the vector q* (.) and the matrix 
F(.) is defined in (5.2.13).

S tep 4: Compute the bootstrap test statistics

Tw = sup a*, (5.5.18)
s = 0 , l , . . . ,n

T£m = sup - g .  (5.5.19)
s = 0 , l , . . . ,n

The bootstrap scheme, described in Steps 1 to 4 above, is similar to the residual-
based bootstrap of Franke and Kreiss (1992) and the sieve bootstrap of Buhlmann
(1997), but contrary to them, it is performed in the frequency domain and does 
not require the choice of initial values. If the coefficients (ph I =  1,..., n, were easily 
obtained from the vector of parameters Oo, say ipe (9o) , then 4> (e_*Aj) in Step 2 can 
be computed as

$  (e- a J) =  1 + Vl [9) e~iX> +  ... +  <pn (6) t~inX>. (5.5.20)

An example of the latter is when {xt}teZ follows an AR  (1) model.

One possible criticism, when compared to residual-based and sieve bootstraps, 
is that we do our resampling from the standardized original data {xi, ...,xn} and 
not from estimates of the innovations {^i,..., en} . Because of that, we envisage that 
we can modify our algorithm to allow bootstrapping from estimates of {^i,..., en} . 
This method to bootstrap the data {x \ , ..., xn} may be preferable over that given 
above, as it may capture higher order moment properties of {xt}tez-
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Remark 5.1
The bootstrap algorithm given by Steps 1 to 4 can be modified as follows. For 
t = 1 compute the residuals

—2
£t = n~^ e'tXl5  (e,A>) 5  {e~iXi) Wj, (5.5.21)

3= 1

and obtain the standardized residuals

St =  With ?  =  1  ^2 % ,  of = ^  ^  (et - 1) . (5.5.22)
^  "  !=1 ”  !=1 7

Then in Step 1, instead of resamphng with replacement from { x i , xn} to ob­
tain { x j , x * }  , we resample with replacement from with {si, obtaining a
bootstrap sample {el, si, • Then, for j  = l,...,n ,  we compute

Wj,r = n - i J 2 r te -u^ .  (5.5.23)
t = l

Hereafter, proceed as in Steps 2 to 4 replacing {wi$*, }  with { w ^ w n^*} .

Next, we establish ,under Conditions C.1-C.6, the asymptotic distribution of our 
bootstrap test statistics and T£M under Hq U H i given in (5.2.3) and (5.2.5).

Theorem 5.2
Assume that Conditions C.l-C.6 are satisfied. Then, under H0UHi given in (5.2.3) 
and (5.2.5), we have that, as n —* oo,

l d*i) h^T^r —► max ^  ( r ) , in probability, (5.5.24)

ii) maxC/ ( r ) , in probability. (5.5.25)

Theorem 5.2 indicates that the bootstrap test statistics given in 7 ^  and T£M 
are consistent. That is, let ( c n , i and ci_p be such that

Pr (ri^Tw > <££.„) = P (P r (n*TLM > c £ f^ )  =  /?) (5.5.26)

and, as n —► oo,

Pr (n*Tw > c?_^) -  p (Pr (n*TLM > c ? ^ )  -  p)  , (5.5.27)

respectively. Thus, Theorems 5.1 and 5.2 imply that —* ci-p)

and c{Yp ci_^j , respectively, where c ^  (c^-p1)  is defined by

Pr ( n ^  > <££) =  P (Pr (n*T£M > c ^ M) = p) . (5.5.28)
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Typically, the finite sample distribution of 1S n°f available, so

that the critical value )  is obtained by standard Monte-Carlo simula-
tions, which can be approximated as accurately as desired. To that end, consider 
the 6-th bootstrap sample x*^ = J , 6 =  1,..., H, and compute

(T lm ) 85 *n (5-5.18) (in (5.5.19)) for each 6 =  1 Then, ^

approximated by the value satisfying

i £ z ( ^ > > c ; ? f ) = / ?  (5-5-29)
6=1 \  6=1 /

5.6 M onte-Carlo simulations

In order to investigate the finite sample performance of our testing procedures, 
we perform Monte-Carlo simulations. Throughout our Monte Carlo experiments, 
we employ 2,000 replications with samples sizes n =  64,128. For the calcular 
tion of the bootstrap critical values we generate 1,000 bootstrap samples, that 
is, we choose B  = 1,000 in (5.5.29), while we consider the significance levels 
P =  10%, 5%, 1%. We employ the Davies and Harte (1987) algorithm to generate 
any Gaussian A R F IM A (0yd,0) and GARMA(0, du, 0) components of the models 
simulated below.

To assess the empirical size of the W  type of test 7JJ-, we simulate Gaussian
i.i.d. processes. The empirical power of 7 ^  is examined under the Gaussian 
A R F IM A  (0, d, 0) model with d = 0.1,0.2,0.3,0.4. Under these sets of models, we 
also investigate the finite sample performance of the LM  type of test T£M. Further­
more, we explore the empirical size of T£M under the Gaussian AR  (1) and M A  (1) 
models with autoregressive parameter ai = 0.5 and moving average parameter bi = 
0.5, respectively, and its empirical power under the Gaussian GARMA(0, 0), 
ARFIM A(l,d ,Q ), A R F IM A (0 ,d ,l) ,  G A R M A (l,du,Q) and G A R M A & d ^ l )  
models with parameters a\ = 0.5, b\ = 0.5, d, du = 0.1,0.2,0.3,0.4 and u  = | .

When {xt}tez is simulated as either an i.i.d. sequence or an ARFIM A(0, d, 0) 
model or a GARMA(0, du, 0) model, we have under the null hypothesis H0 that 
{x t}tez is a sequence of i.i.d. random variables. Hence, the bootstrap procedure 
is performed by resampling randomly with replacement from the data. On the 
other hand, when {xt}tez is simulated as an AR(1) (MA  (1)) process, the residu­
als from the AR(1) (M A  (1)) model can be easily obtained. This is also the case 
when {xt}tez is taken to follow an A R F IM A (l,  d, 0) (A R F IM A (0 , d, 1)) model or
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a GARMA(1, du, 0) (GARMA(0, d^, 1)) model, since {xt}tez becomes an AR(  1) 
(M A (  1)) process under the null hypothesis H0. Hence, when the simulated model 
involves an AR(1) (MA( 1)) short memory component, the following bootstrap pro­
cedure can be performed.

S tep  1': Let et — x t — 'a\Xt- \  (et =  xt — , for t — 2, ...,n, and e\ —

(1 — of)2 x\ (ei =  x \ ) , where d\ (bij is the PW estimator of a\ (bi) given by 
(5.2.11). Notice that in this model Oo — a\ (0o = bi) . For t = 2,..., n, compute the 
standardized residuals

et = e‘_  with ^  =  -  V ]  (et -  e)2. (5.6.1)
n t (  n t (

Let {e j,..., e*} be a random sample with replacement from the empirical distribution 
of {ei, ...,en} , and obtain the bootstrap sample {x\, as

Xf = a i i j . j+ e J  (x*t =  g  +  &ig_1)  , t =  2 ,...,n

i* =  ( l - a ? ) _ i el (xj =  g ) .  (5.6.2)

S tep  2': Exactly as Step 3 in Section 5.5, but with {rrj,..., x*n} as generated in Step 
1'. Then, for all s — 0,1,..., h, compute

g  =  ( v £ ,  ( o ,y , s ) Y  nk*m (o ,T , s) , (5.6.3)

* ~ \
noticing that in this model 0 = a\ I 0 = 6J) .

S tep  3': Compute the bootstrap statistic

T£m = sup - g .  (5.6.4)
s = 0 , l , . . . ,n

Observe that the bootstrap scheme described in Steps V to 3' generates the boot­
strap sample { x \ , x*} according to the residual based bootstrap of Franke and 
Kreiss (1992). We refer to our bootstrap algorithm in Section 5.5 as Method 1, 
which we compare to the one given by Steps V to 3', referred to as Method 2. The 
results of our experiments are given in Tables 5.1-5.32 found in Appendix 5.C.

Tables 5.1-5.4 present the empirical size of the TJJ- and T£M tests, whereas 
Tables 5.5-5.32 illustrate the empirical power of the 7 ^  and T£M tests, for the 
various models described above. Overall, the empirical size and power of the 7 ^  
and T£m tests are very satisfactory, and the performance of both tests improves with 
an increase in the sample size. Notice also that the bootstrap method described
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in Section 5.5 appears to be a good competitor to the residual based bootstrap 
of Franke and Kreiss (1992), as the empirical size and power of the T£M test are 
on the same level for the two methods, see Tables 5.3 and 5.4, and Tables 5.17- 
5.32. As Tables 5.1 and 5.2 illustrate, in terms of the empirical size, the T£M test 
tends to perform better than the T ^  type test, in line with the consensus that LM  
type of tests have better size performance as compared to W  type of tests. On 
the contrary, our simulations results go against the principle that W  type of tests 
have better power against LM  type of tests, see Tables 5.5-5.8 and Tables 5.9-5.12. 
This observation is probably driven by the fact that our W  type of test is based on 
the PW estimator as, s = 0,1, ...,n, which tends to be downwards biased in finite 
samples, see Giraitis, Hidalgo, and Robinson (2001).

Regarding the size of the T£M test, we observe that its performance does not 
seem to be affected by the various short-run models, see Tables 5.2-5.4. When 
we consider the power performance of the T£M test relative to the short memory 
component and the frequency of the persistent component, we observe the following. 
Firstly, the power is low when the short memory component follows an AR(  1) model 
and u = 0, see Tables 5.17-5.20. This is consistent with the empirical observation 
that an AR( 1) model with a high value of a\ and an A R F IM A (0, d, 0) model with 
d > 0 cannot be easily discriminated. This is also the conclusion obtained from 
the Monte-Carlo experiment considered by Lobato and Robinson (1998). However, 
notice that when the short memory component follows a M A(  1) model and lj = 0 
the power is quite high, see Tables 5.25-5.28, and is slightly lower that in the case 
with no short-run component, see Tables 5.9-5.12. Secondly, as the frequency u  
moves away from 0, we see that the influence of the short-run AR( 1) or MA{ 1) 
component seems to be negligible, see Tables 5.21-5.24 and 5.29-5.32, as compared 
to the case of no short-run component, see Tables 5.13-5.16. This may be somehow 
expected, as the location of the maximum of the spectral density function for an 
AR( 1) model with positive a\ and our GARMA(0, dw, 0) models with u  = |  are 
very different. Observe also that the empirical power is higher when u  = |  than 
when u = 0, compare Tables 5.9-5.12, 5.17-5.20 and 5.25-5.28 against Tables 5.13- 
5.16, 5.21-5.24 and 5.29-5.32, respectively. Finally, it is worth noticing that for 
both and T£M tests, the empirical power increases with increases in d or d^, 
see Tables 5.5-5.32. The latter is expected as the “distance” between the null and 
alternative hypotheses becomes greater as d or dw becomes bigger.

We should also mention that we have performed Monte-Carlo simulations with 
the bootstrap method suggested in Remark 5.1. However, we did not find any
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significant difference with the results presented here, even in the case that the 
distribution of {xt}tez was chosen to follow a x? or a xl-

5.7 Empirical applications

We now apply our testing procedures to various data sets to assess whether they 
exhibit persistent components. We examine the rate of growth of industrial pro­
duction and unemployment rate. An important complication in the implementation 
of our testing procedures is the choice of the short-run component of the data. It 
is common in empirical applications to consider that the latter component follows 
an A R M A (p , q) model. The orders p and q of an ARM A(p , q) model are usually 
chosen on the basis on some information criterion, like the A IC  of Akaike (1973), 
the B IC  of Schwarz (1978) and the H IC  of Hannan and Quinn (1979), the latter 
applicable when q = 0. Beran, Bhansali, and Ocker (1998) considered these three 
information criteria for the A R F IM A (p , d, 0) model and showed that the A IC  does 
not provide a consistent estimate of p, but the B IC  and H IC  do. Hence, if one 
is certain that the possible persistent component of the data is the long-run one, 
the B IC  and H IC  methods can be employed when q =  0. The results of Beran, 
Bhansali, and Ocker (1998) are likely to be extendable for our model (5.3.1)-(5.3.3) 
with short-run component following an ARMA(p, q) model, but the implementa­
tion of the information criterions is likely to be computationally intensive. For this 
reason, we choose instead various models for the short-run component of the data, 
and in particular, we consider i.i.d., AR( 1), and M A(  1) models. The results on the 
empirical applications are presented in Appendix 5.C.

5.7.1 Industrial production

The series of industrial production for the U.S. has been found by various authors 
to exhibit strong long-run component, see for example Nelson and Plosser (1982) 
and Gil-Alana and Robinson (1997). This strong long-run behavior is clear from the 
data of the series, found in Figure 5.1, where we employ monthly data for the U.S. 
spanning the period 1960M1-2006M51. As the data clearly exhibit nonstationary 
behavior, we consider examining the growth rate of industrial production, measured 
in percentage points and calculated as the first differences of the logarithmic of

1 Industrial production data are taken from Board of Governors of the Federal Reserve System, 
Series I.D. INDPRO, http://www.federalreserve.gov.
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industrial production, see Figure 5.2. It is clear from Figure 5.2 that the growth 
rate of industrial production does not exhibit any breaks in its mean level, but 
seems to be less volatile in the post 1984 period. This is also the conclusion derived 
by van Dijk, Osborn, and Sensier (2002), who employed tests for changes in the 
mean level and volatility of various economic time series, and in the case of the 
U.S. industrial production growth rate report no change in the mean level of the 
series, and one change in its volatility occurring around 1984M3. The vertical line 
in Figures 5.1 and 5.2 correspond to this date.

Thus, we consider applying our testing procedures to the full sample of the data 
and two subsamples, the first one covering the period 1960M1-1984M3, and the 
second one spanning the period 1984M4-2006M4. The results are given in Tables 
5.33-5.35. For the full sample period, see Table 5.33, the null hypothesis of no 
persistent component is rejected at all significance levels and under all short-run 
models considered. For the sample covering the period 1960M1-1984M3, see Table 
5.34, the null hypothesis is rejected at all significance levels, when the short-run 
component is i.i.d. or a MA(1) model. In the case of an AR( 1) short-run compo­
nent, the statistic rejects the null hypothesis at the 10% and 5% significance 
levels, but fails to reject at the 1% significance level, while the T£M statistic fails 
to reject the null hypothesis at all significance levels. Finally, for the sample period 
1960M1-1984M3, see Table 5.35, the null hypothesis is rejected in all but one case; 
the T ^  statistic fails to reject the null hypothesis at the 1% significance level and 
when the short-run component follows a M A(  1) model.

Given the overwhelming evidence against the null hypothesis, and our simulation 
results in Section 5.6 on the low power of our tests in the case of a short-run Aft(l) 
component, we conclude that the data exhibit a persistent component for the various 
sample periods considered. Hence, the growth rate of industrial production exhibits 
a persistent component, so that ARMA{p, q) models are not likely to provide a good 
fit of these data.

5.7.2 Unem ploym ent rate

There are conflicting evidence as to whether the series of unemployment rate for 
the U.S. exhibits a strong long-run component, see for example Nelson and Plosser 
(1982), Gil-Alana and Robinson (1997) and Papell, Murray, and Ghiblawi (2000). 
Various authors have also reported breaks in the unemployment rate both in its 
mean and variance. In particular, Papell, Murray, and Ghiblawi (2000) found that
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the series of unemployment rate is subject to two breaks in its mean, with the dates 
of the breaks being 1974 and 1986, while van Dijk, Osborn, and Sensier (2002) report 
a break in the variance of the growth of the unemployment rate at 1986M2. Here, 
we employ monthly data for the U.S. spanning the period 1960M1-2006M52. Figure 
5.3 plots that data, while Figure 5.4 plots the growth of the unemployment rate, 
calculated as the first differences, while the vertical lines in the figures correspond 
to the dates of the breaks.

We apply our testing procedures to the full sample of the data and three subsam­
ples, the first one covering the period 1960M1-1973M12, the second one spanning 
the period 1974M1-1986M2, and the third one extending the period 1986M3-200M5. 
The results are presented in Tables 5.36-5.39. For the full sample period, see Table 
5.36, the null hypothesis of no persistent component in the data is rejected in all 
but one case; the 7 ^  statistic fails to reject the null hypothesis at the 1% signif­
icance level and when the short-run component follows an AR( 1) model. For the 
sample covering the period 1960M1-1973M12, see Table 5.37, the null hypothesis 
is rejected at all significance levels, when the short-run component is i.i.d. or a 
MA(1) model. In the case of an AR( 1) short-run component, the 7 ^  statistic fails 
to reject the null hypothesis at all significance levels, while the T£M statistic rejects 
the null hypothesis at the 10% and 5% significance levels, but fails to reject at the 
1% significance level. For sample period 1974M1-1986M2, see Table 5.38, the null 
hypothesis is rejected at all significance levels, when the short-run component is an
i.i.d. or MA(  1) model. The 7 ^  statistic fails to reject the null hypothesis at all 
significance levels, when an AR( 1) model is assumed for the short-run component, 
but the T£m statistic rejects the null hypothesis in this case at all significance lev­
els. Finally, for the sample spanning the period 1986M3-2006M5, see Table 5.39, we 
reject the null hypothesis at all significance levels when an i.i.d. or MA(  1) model 
is chosen for the short-run. However, when the short-run component follows an 
AR(1) model, both tests fail to reject the null hypothesis at all significance levels.

For the full sample and the first two subsamples, there are strong evidence 
against the null hypothesis, taking into account the results of the Monte-Carlo 
simulations in Section 5.6 on the power of our tests in the case of an Ai?(l) short- 
run component. Hence, we conclude that for these periods, the unemployment rate 
exhibits a persistent component. The results for the last subsample are mixed, 
and therefore a solid conclusion cannot be made. The data for the last subperiod

2Unemployment rate data axe taken from U.S. Department of Labor: Bureau of Labor Statis­
tics, Series I.D. UNRATE, http://stats.bls.gov.
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certainly require further investigation.

5.8 Final comments

In this chapter, we have presented two testing procedures for the null hypothesis of 
no persistent component in the data against the alternative that the data exhibits a 
persistent component. Our methodologies have been based on the W  and LM  prin­
ciples and involved the PW estimation method. We have derived the asymptotic 
distribution of our test statistics for a wide class of linear processes having paramet­
rically specified spectral density function, and moreover we have established their 
consistency and power against local alternatives. As our test statistics were found 
to have an asymptotic distribution that is nonstandard and model dependent, we 
have introduced a bootstrap scheme for the purposes of calculating valid critical 
values, and furthermore we have established its validity. The finite sample perfor­
mance of our testing procedures has been investigated by the means of Monte-Carlo 
simulations, and has been found overall to be very satisfactory. Finally, we have 
applied our testing methods to data for the growth rate of industrial production and 
unemployment rate, and we have found evidence that these series exhibit persistent 
components for most of the time periods considered. In the practical implementa­
tion of our testing procedures, the issue of choosing the appropriate model for the 
short-run component of the data arised. Clearly, this is an important problem that 
we hope to address in the future.

Although we have only considered the situation when {xt}t(=z is observed, it 
appears that the same results should hold true when {xt}tez are the errors of a 
regression model. That is, consider the linear regression model yt = p'zt +  x t, 
t = 1 where {xt}tez follows a ARF IM A(p ,d ,q). When d = 0, it is well 
known that, under suitable regularity conditions, the GLS  estimator Pqls °f /?, 
and the PW  estimator of the parameters of the A R M  A  (p, q) process of {xt}tez 
are (asymptotically) independent. Moreover, Robinson and Hidalgo (1997) showed 
that the same holds when {xt}tez exhibits strong dependence. So, this observation 
leads us to think that the results obtained in the paper are likely to hold true when 
Xt = y t~  @QLszt is used instead of the unobserved {xt}tez-

We finish mentioning two more issues. Firstly, although we have only considered 
stationary processes, our tests statistics should also detect nonstationary alterna­
tives. Velasco and Robinson (2000) established, under a certain class of nonstation­
ary linear models, that the PW estimator remains -consistent and asymptotically
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normally distributed, if tapering of the data is employed. Hence, following Velasco 
and Robinson (2000), we expect that the same type of results presented here, hold 
under nonstationary alternatives. Secondly, we have concentrated on linear mod­
els, but it would be of theoretical and empirical interest to extend our results for 
nonlinear models. However, this task is of great difficulty, as for nonlinear models, 
the PW estimator is not always r)k-consistent and asymptotically normally distrib­
uted, see Giraitis and Taqqu (1999). Moreover, bootstrap algorithms for strongly 
dependent time series data tend to concentrate on the linear case, and are likely to 
require knowledge of the nonlinear model.

5. A Appendix

This Section contains the proofs which use a series of lemmas found in Appendix 
5.B below.

P ro o f of T heorem  5.1. i) First notice that for a given As, the closest Fourier 
frequency to cjo, it follows under Conditions C.1-C.6 that, as n —> oo,

^ a a, (o -  0O) ^ -2>0 and ($ -  0O) ^ =  Op (1), (5.A.1)

see for example Velasco and Robinson (2000), among others. Next, denote £jtn (a, 0, s) = 
g (a xi)h (d) ~ Then, proceeding as Giraitis, Hidalgo, and Robinson (2001), we have 
that for all s = 0, 1,..., n,

h  h  f t

^ 2  ej}n (a, 0, s) =  ^  £j>n (0, 00, s) +  (Dk n  (°> 00, s))' (a s, (0 -  0O)')'
j = i j = i j = i

+1 (a., (e -  60)') j r  D % „  (0,00,») (a., (9 -  So)')'
3 - 1

+Rn (a , 0, s ) , (5.A.2)

where D and D2 denote the first and second generalized derivatives as defined in
Andrews (1999), respectively, and

sup (a ,0 ,s)| =  op ( l ) , (5.A.3)
( a ^ T ^ n x © :  n ^ |a |< 7 ;  n S | |0 —0 o ||< 7

for any 0 < 7 < 00. Let =>■ denote weak convergence of a sequence of stochastic
processes indexed by r  6 [0,1]. We show below that

n
n ~ i  ( ° >  6 ° ’ I " ' ] ) ) '  = *  X  ( • )  ( 5 -A -4 )

3 = 1
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and

i £ z ? 24 „ (0 ,M n .] )= » A ( .) .n A—4o=i
(5.A.5)

Then, by (5.A.1)-(5.A.5), and proceeding as in Theorem 2 of Andrews (2001), the 
finite-dimensional limit distributions are those from minimization of

(c — X  (t)) C ( t , t )  (c — X  (r)) (5.A.6)

with the constraint that c > 0. Then, the result follows by the continuous mapping 
theorem, since sup is a continuous functional in C [0,1].

Now, we show (5.A.4) and (5.A.5). Notice that under Conditions C.l, C.5 and 
C.6, an obvious extension of Lemma 3 of Delgado, Hidalgo, and Velasco (2005) 
implies that

sup
s = 0 , l , . . . ,n

and

sup
s = 0 , l , . . . ,n

~_i A  (D loggj  (0, Xs) \  /  Ij _  T \  
^[DloghjiOo) J UW JV

D log Qj (0,AS) (  D log Qj (0, As)
Dloghj (0O)

x ' w k - ^

=  oP (1) (5.A.7)

=  op (1) (5.A.8)

Recall that ir 1XS —> t € [0,1], as n —► oo. Hence, to estabhsh (5.A.4) and (5.A.5), 
it suffices to show that

X n  ( • )  = >  X  ( . )

and
A n  (.) => A(. )  ,

where

f Z \  Dloghjido) 

and

An (r) = - y (  D l°S9j (° ’A[Sti) )  (  Dl0S3j (M|iiTl) V , ,  (5.A.12)

T _ ^ £  
2tt

(5.A.9)

(5.A.10)

(5.A.11)

i=i D log hj(90) D log hj (0O) )

We begin with the proof of (5.A.9). It suffices to show that, for any finite 
collection r ^ ,  . . . , t * p ,

/ d
(Xn (r/J , x n (rlp))'  4  ( x  (Ttl) ,.... X  ( t * ) ) ' ,

216

(5.A.13)



where (X  ( r ^ ) ,..., X  (t£p))' a  N  (0, A ) , with ~  read as distributed, and the (r^ , T£2)~ 
th  element of A  is given by

.D log £ (to , 0,71-^) 
Dlogh  (to; 6q)

D  logg  (to , 0, n T £ 2 ) 

D log h (to; #o)
logp(TO,0,7TT^) 
D logh (to; 6q)

D log g (the, 0, 7tt̂ 2) 
D log h (to; #o)

dx (5.A.14)

and moreover, that the process X n (r) is tight in the space ID) [0,1] with the Skoro- 
hod’s metric, and for every e > 0, it holds that

Then, Theorem 15.6 of Billingsley (1968) implies (5.A.9).

Notice that (5.A. 13) holds true using standard results on PW estimation, see 
Giraitis, Hidalgo, and Robinson (2001) among others. To prove the tightness of the 
process X n ( r ) , and since the second component of X n (r) does not depend on r , it 
suffices to show the tightness of

comments that follow, Theorems 15.4 and 15.6 of Billingsley (1968) imply that it

for all 0 < T\ < r  < T2 < 1, some S > 0, some generic constant 0 < K  < oo and 
some nondecreasing and continuous function F  (.).

First, we observe that we can focus on the case h-1 < T2 — T\. If T2 — T\ < rT1, 
then either t \ and r  lie in the same subinterval [ ^ ,  | )  , with p = 1, . . . ,  h, or else 
r  and 7*2 do; in either of these cases the left hand side of (5.A. 17) vanishes. Then, 
notice that the Cauchy-Schwarz inequality implies that the left hand side of (5.A.17) 
is bounded by

Pr (|A(1) — X  ( t ) |  > e) —* 0, as r  —► 1. (5.A.15)

j—

Because the limit process has continuous paths, see below the proof of (5. A. 15) and

is sufficient to check the Kolmogorov-Chentsov’s moment condition

E  ( |X „(1) ( t )  -  X n(1) ( n ) |2 |X„(1) ( r2) -  X nm ( r ) |2) 

< K  (F (r2) -  F  ( n ) ) 1+s, (5.A.17)

( e  IX nm (r) -  X„(1) (n )  I4) 1/2 ( e  |X„(1) ( t2) -  X nm (r) |4) 1/2, (5.A.18)

and since F  (.) is a nondecreasing function, we have that

(F (r) -  F  (n ))  (F  (r2) -  F  (r)) < (F  ( r2) -  F  ( n ) )
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Hence to show the tightness condition (5.A.17), it suffices to show that 

E  |x „ (1) (T2) -  x n(1) ( n ) |4 <  K (F (T 2) -  F ( n ) ) 1+S, 

for all 0 < Ti < T2 < 1.
2

Choose F  (r) =  r , and denote ^  =  Ijf£ — Then,

(5.A.20)

E  | A n(i) ( t 2) — A n(!) ( t i ) | = ^  nz
j=i

=  — v  f r io g  ( 9ii (~ 1,AiflTi1̂

9 j i  (~1? [̂nTi]) | 
9 j i  ( — 1? ^ [n r 2] )  J

f=l

= ^  e  n ios
= 1 =̂1

«*<*) E
4

+ — V  TTiog ( 9n ( ~ 1|ApTi1) )  

xcum^.CA.Cjs.CiJ- (5.A.21)

Theorems 2.3.1 and 4.3.2, and in particular the equation (4.3.15), of Brillinger 
(1975) imply that the cumulants in (5.A.21) are finite. Since the function log9 |sin x | , 
q =  1, ...,4, is integrable, we have that

4 nE  \Xnil) (r2) -  An(i) (n )  |4 < K n  2 log

< K ( t2 -  r i) 1 + 5 (5.A.22)

for any 0 < S < 1, since f r 1 < r 2 — ri. On the other hand, Proposition 10.3.2 of 
Brockwell and Davis (1991) implies that the first term on the right of (5.A.21) is

2

(5.A.23)3 4 , ( i f :  log2 (
’ \ n j^ [ \9 jl (“ l.Apr,])

Applying twice the inequality (a +  b)2 < 2a2 +  2b2, we have that the last displayed 
expression is bounded by



We examine the first term, being the second identically handled. This term, without 
the square and except constants, is

[»»Tl]

* £ i ° g 5n
3=i

U T 2 ]

+ 4  £  log
j= [nr  i ] + l

[̂ni)

1 **
+ ;  E  k« ‘

)
J = [n r 2 ]+ 1

sin j

sin f -̂3 [̂nr2l \
V 2 J

(5.A.25)

An extension of Lemma 2 of Robinson (1995b), see also Lemma 1 of Delgado, 
Hidalgo, and Velasco (2005), implies that the difference between (5.A.25) and

T1 

/ log5
sin

+ / l o g

sin (1 1 2 ^ 1 1 ) 

sin

1
du + J  log"

T2

sin ( 7TH—7TT1 \  
2 )

sin ( a r m ) du

r  i

du (5.A.26)

is bounded in absolute value by

M _1 log2 n < K  (r2 — Ti)- "̂ } (5.A.27)

for any 0 < 8 < 1. Hence, the proof of (5.A.20) is completed, if we show that
l+ < 5

(5.A.26) is bounded by K  ( r2 — T\) 2 , for any 0 < S < 1.

Observe that since u € (0, T \) , we have that log2 |sin (7rri~7rTX) | > log2 |sin ( 
Hence,

7TT2 —71*11 
2

log sin
7TT i  — 7TU

- lo g sin
7t t 2 — 7r u

< log2 sin
7TTi — 7TU

-  log' sin
7TT 2 — 7TU

(5.A.28)

Then, the first integral in (5.A.26) is bounded by

n

/ log2 sin
7TT i  — 7TU

Tl

/d u — I log" 
o

sm 7TT2 — 7TU du

=  t f ( n ) - . f f ( T 2) + # ( 7 - 2 - 1 - ! )

<  #  ( r 2 -  T i )  , (5.A.29)
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where i f  (r) =  / 0Tlog2 |sin (—) | du, because i f  (ri) < i f  (r2) for 0 < T\ < r 2 < 1. 
Next, we examine the second integral in (5.A.26). Notice that since u G (r2, 1), we 
have that log2 |sin (7rT1~7nx) | < log2 |sin ) | . Hence,

log sin
7TU —  7TT i

log

< log5
ITU —  7TT 2

log5 sm

iru — 7t t 2

ITU —  7TT i

Then, we have that the second integral in (5.A.26) is bounded by

T 2

log5 sin
7TT2 — 7T7Z

) h - / log5 sin
7TT i  —  7T1/

du
r  2

(5.A.30)

=  i f  (1 — r 2) — fT (1 — Ti) +  i f  (r2 — Ti) 

< H  ( r 2 — T i )  , (5.A.31)

because i f  (1 — r 2) < i f  (1 — r i)  for 0 < T\ < r 2 < 1. Finally, by a change of 
variables, the third integral of (5.A.26) is

T2-T1
2 J  log2 sin du = 2i f  (r2 — T i). (5.A.32)

1 + 5
Since H ( t ) < K r  2 , for 0 < r  < 1, and for any 0 < <5 < 1, we conclude that the 
all the integrals in (5.A.26) are bounded by

1+5
K  ( t 2 -  T i )  2 , (5.A.33)

for any 0 < 6 < 1, as required.

To complete the proof of (5.A.9), it remains to establish (5.A. 15). It suffices to 
show that, for every positive (  > 0,

sup C Pr (|A” (t +  f) — X (t)| > f) —► 0, as f  -+ 0. 
o<r<i-c

(5.A.34)

The latter condition implies that the process X  (r) belongs to the space C [0,1] by 
Problem 15.3 in Billingsley (1968). Theorem 5.3 in Billingsley (1968) implies that

E \ X ( t  + 0 - X  ( t ) | 4 < liminf E  |X„(1) (r +  C) -  *n(i) (r) |4 , (5.A.35)
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recalling that only the first term of Xn (.) depends on r. Then, Markov’s inequality 
implies that (5.A.34) holds true, if the right side of the last displayed inequality 
satisfies

sup C_1 liminf E  |Xn(i) (r +  £) — X n^  ( r ) |4 —► 0, as £ —i► 0. (5.A.36)
0 < r < l - C  n->oo

But, this is the case because (5.A.20) implies that

liminf C ' E  |X„(1) (r +  C) -  X nW ( t ) |4 < K ? ,  (5.A.37)
71—>00

with 0 < S < 1.

To complete the proof, we need to establish (5.A.10). The (1, l)-th element of 
An (r) is

n  2 n

(D  log <7, (0, A[flTl) ) 2 A.e =  ^n j = 1

j= l

The second term on the right hand side of (5.A.38) satisfies

(5.A.38)

sup
s = 0 , l , . . . ,n

i £ ( D l o g 3 j (0,As))2
j  = 1 '

— op (1) (5.A.39)

i n /  a 2 \
since we have already shown that n ' s j  D log g j  (0, A^r]) ( I j >£ — ^  j =  Op (1).

j = i '  ’ '
On the other hand, the first term on the right hand side of (5.A.38) satisfies

sup
s = 0 , l , . . . ,n

=  o ( l) ,  (5.A.40)i y " ( n i o g f t (0,As))2 - i  f  (D log 5 (A; 0, As))2 d \  
n * r i  tt J

3 - 1 o

by an extension of Lemma 2 of Robinson (1995b), see also Lemma 1 of Delgado, 
Hidalgo, and Velasco (2005). The rest of the elements of An (r) can be similarly 
handled, and (5.A. 10) follows.

ii) Here we show the asymptotic properties of the LM type of test Tlm- The proof 
for Tlm is similar to that for Tw, and we only sketch any differences. We examine 
the term

.   n Fi l r v r r  n . (C\ ^TI 2E
i=i da hj [6

(5.A.41)
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Now, the mean value theorem implies that

91ogft(0,.) I j  =  . _ i ^ k a i o g s 3 (0,.) I j__1n 2E
3= 1

da hj lO E
3= 1  

n

-f i-* E
i = i

5a hj (&o) 

a  log gj (0,.)

X

5a

a  log a ,( s )  ij 
as' hi (s) ( s -  S0)  ,

where 0 is an intermediate point between 0 and 9$.

On the other hand, by definition of 0, we have that

^  â
51og/iJ (0o) Ij i

=  n  2

j=i
n

E
3=1 as' ^ (60)

,= - i  ^  92 \og hi(e0) ij t~ \
+ n  E  ^  4 “  e°)

-ft-* E
i=l

50'50 ^  (0)

5 log hj (9) 5 log hj (0) Ij
5(9' 5(9 ( s - s 0) .

Now, we show that

sup
0G0

1 " 
- E

i = i

5 log hj (0) 5 log hj (0) Ij
80' 5(9 hj (0)

o\ e f  d log hj (9) d log hj (9) h (A; 0O)
27T2/ 50' 50 h (A; 0)

dX —  op (1) .

By the triangle inequality, the left hand side of (5.A.44) is bounded by

<70,e
~oZrsuPdee

1 " 
- En '

3= 1

5 log hj (0) 5 log hj (0) hj (0q)
50' 50 hj (S)

7T

4/
+ sup 

dee

dXd log hj (0) 5 log hj (0) h (A; 0O)
50* 50 h (A; 0)

1 51og/ij (0) 51og/ij (0) hj (90)
ri /  ^

*3
3=1

as'
  U0,£

30 h j  (S) ^ /ij (S0) 27r
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Under Condition C.l, we have by Problem 1.7.14 of Brillinger (1975) that the 
first term of (5.A.46) converges to zero. On the other hand, the second term of 
(5.A.46) converges to zero in probability, because by standard arguments, the finite 
dimensional distributions of

--1  y >  dlog hj (8) d loghj (8) hj (fl0) /  I} cr0i£ . , , 47\
p  88’ 89 hj(B) \ h j  (80) 2tt I ( ' ’

converges to a Gaussian random variable, whereas the Kolmogorov-Chentsov’s tight­
ness condition trivially holds true. Hence, the second term of (5.A.46) is op (1). 
Similarly, it can be shown that

sup
dee

d2 log hj (6) Ij 
h ^  dO'dO hj (6)

o \ e f  d 2 log hj ( 0 )  h (A; 0O) ̂/27r2y ae 'ae  h(x-,e) = op (1). (5.A.48)

Next, because 8 -=-> do, it implies that in equation (5.A.43), sifter solving for 
(0 — 8g) , (5.A.41) is equivalent to

„ „ 91ogg3 (0,.) I ,  2_ i ^ a i o g ^ ( e 0) I j
TI 24 u 1Q&9j •) 1j

Z ^  Fin, Z ^

X

j=1 da h j ( 0oy  DO' hj (0O)

/  '  1 \
 ̂ - 1

1 A  aioggj^O,.) a  log hj(6o) I 1 d\oghj(0Q) 5  log hj(dQ) d2 log hj (dp)
n d a  d6' I n  A /  90' 50 dd dd

7= 1 V 7 = 1 )

. (5.A.49)

So, examining the weak convergence of (5.A.41) is equivalent to show the weak 
convergence of

n
i j  ( 5 A 5 0 )

P '  da hj (80)

whose proof proceeds exactly as that given in part i) and so it is omitted. ■

P ro o f of C orollary 5.1. Notice that a s =  a s — a  (n) + a  (n) and hka (n) = a$. 
The proof follows as in the proof of Theorem 5.1 but with d s replaced by a s — a  (n).

The bootstrap construction induces a conditional probability P*, given the sam­
ple {xij ...,xn}. Any quantities with respect to P* are denoted with an asterisk *.
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P ro o f of T heorem  5.2. We only examine part i), since in view of Theorem 5.1, 
part ii) follows almost immediately from i).

First, by Lemma 5.1, we have that

£ o .  (5.A.51)

On the other hand, proceeding as inHidalgo and Kreiss (2004), we have that

n i  ( a : ,  ( T  -  ? ) ' )  =  Op. (1), (5.A.52)

J*
and writing t j n (a, 0, s) =  - \ s)hj(o)» we can further obtain

=  ^ < J n ( o , ? , « ) + ^ ; ( 2J ^ n (o,? , « ) ) ' ( « . , ( « - ? ) ' )
j=1 j =1 j=1 ' '

+ i  (a .,  ( » - ? ) ' )  )

+ K ( a ,0 ,s ) ,  (5.A.53)

where for all s = 0 ,1,

sup  ̂ I K  (a, 0, s)l =  Op (!) > (5.A.54)
(a^/enx©: n5 |a|<7; n5 ||<?—#||<7

for any 0 < 7 < 00. Proceeding as with the proof of Theorem 5.1 and following its 
arguments, it suffices to show that

^ ( ’■) =  f i - * ^ i o g a ( ° , A p h.]) (5.A.55)

and

a *  t  \  1 (  D l o g g j  ( 0 5 A [ ^ r ] )  ^  (  D X o g g j  ( 0 ,  A[„,r]) ^  I j

•4 - w - « g l  D k , * , ( 8 )  J l  d w M  ) z w  <5 A 5 6 >

converge in bootstrap sense to the same processes as

x «  (t) =  n - ^ D  log® (0, Am) (  Ij -  ^  ) (5.A.57)
\ 9 j  ( ° , A [fiT] ) / l j ( 0 o )  2* 1
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and

A  <T l =  i v (  D l ° g  9 i  (°’ A[St1) W  D l 0 g  9 i  (0> A[St]) ) '  7J (K  A 581
n j=i \  D log hj (90) J {  D log hj (60) )  hj (Oo)

respectively.

We begin with the proof that X* (r) converges to the same process as X n (r). 
The proof is split into three lemmas. Lemma 5.2 shows that X* £ (r) has a covariance 
structure, conditional on x, that converges in probability to /C ( t i , t2) given in 
(5.4.4). Lemma 5.3 shows that the finite dimensional limiting distribution of X* (.) 
is Gaussian centered at zero. Finally, Lemma 5.4 proves the tightness of X* (.). 
Therefore, combining Lemmas 5.2 to 5.4, we have that X* (r) ==> X  (r) in ID) [0,1] 
in probability, as defined by Gin6 and Zinn (1990).

Finally, it is straightforward to show that A* (r) converges in bootstrap to A  ( r ) , 
following the ideas in Lemma 5.2 and Theorem 5.1. ■

5.B Appendix

This Section contains a series of technical lemmas used in the proofs in Appendix 
5.A above.
Lem m a 5.1
Suppose that 6 convergences almost surely in ©. Then,

0* - 0  = op* (1). (5.B.1)

Proof. Because by construction, conditional on the sample {x \ , ..., xn}, {x%}tez is 
a sequence of zero mean and unit variance i.i.d. random variables, then it is also 
ergodic in a quadratic mean sense. Then, proceeding as in the proof of Lemma 1 of 
Hannan (1973), we have that uniformly in 0 € 0

- n - 1 j *  /* /  *

Now,following the proof of Theorem 1 of Hannan (1973), we have that

T - 0  =  O p . (  1), (5.B.3)

because

6 = arg min j  X g{ (5.B.4)
see —7r
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which concludes the proof.

Lem m a 5.2
Suppose that Conditions C.1-C.6 are satisfied. Then,

(5.B.5)

for 0 < T\ < T2 < 1.

Proof. Denote ^  - (s) =  ^  log gj (0; Xs) . First, notice that

—itXi

t= 1 t=l
(5.B.6)

because by definition of x* and that X) e%vXj =  ^  (j =  0 ,2n ,...), the left hand side
p = i

of (5.B.6) is

^2 n /  n Ti \ 7i

^ 5 3  ( (e- a *) Y^x'pe~lpXi ) (e"iAi) ^ ^ e““Aj- (5-B-7)
t=l \*=1 p=l

Next, E* (X* (ri) X* (r2)) becomes

i=l

n hj2 16

( £ # - g ) V  <«•»
J 1 J 2 = 1 /ij2 (61

Because {x*}tez is a sequence of zero mean and unit variance i.i.d. random 
variables, the second term of (5.B.8) is

1 "
~ X , ^ 1(’rri)^(7rr2)

/ 5 2

Jl J2 = l 27r/iJ:l (0

x
$  (e

2irhj2 [ 9
e

2ir (5.B.9)
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which is equal to zero, since (5.B.6) implies that

n  n —1

$ ( e - ^ )  =  - J 2  eiqX>hi
9 = 1 £ = —n + 1

-  E  »'
£ = - n + l  9 = 1

= fci , (5.B.10)

since J ]  efqXl~i = n l ( j  = I) .
9 = 1

Hence, to conclude the proof, we need to show that the first term of (5.B.8) 
converges in probability to /C (ti,T2). But because {x l}te% is a sequence of zero 
mean and unit variance i.i.d. random variables, by Proposition 10.3.2 of Brockwell 
and Davis (1991), this term is

1 n  ^  n

-  W 7” -2) +  iM ttc-i ) (7TT2)
3= 1  31,32=1

  n
=  K ( r1,T2) ( l  +  O (n-1 logn)) +  ^  ( ^ 1) ^  ( ^ 2), (5.B.11)

n iiA=i

by a straightforward modification of Lemma 2 of Robinson (1995b), see also Lemma 
1 of Delgado, Hidalgo, and Velasco (2005). However, because by a well known 
argument, see Theorem 3.5.8 of Stout (1974), Condition C.l implies that { x t } t e z  is 
an ergodic sequence, we have that

=  (5.B.12)
t = 1 \  t =  1 /

From here, the conclusion follows because

f  log n z—/ 7r /
7=1 n

. /A  i  7TT 
4 sin — -— dA =  C > ( ^ P ) ,  (5.B.13)

n3-* o

by a straightforward modification of Lemma 2 of Robinson (1995b), see also Lemma
7r

1 of Delgado, Hidalgo, and Velasco (2005), and that f  log |4sin ( ^ z ) \ d \  — 0 for 

all 0 < r  < 1. ■

Lem m a 5.3
Under Conditions C.1-C.6, the finite-dimensional distributions of X* (.) converge 
in bootstrap law to those of a centered Gaussian process.
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Proof. Fix Ti, ...,rq E [0,1] and constants ci, ...,cg. By the Cramer-Wold device, 
it suffices to examine the limit distribution of

p=i \  j=i

2 ^ 7  ^2

w ~ a-
(5.B.14)

By Lemma 5.2, the (bootstrap) second moment of (5.B.14) converges in probability 
to

cp1cp2£ ( 7>1, r p2)- (5.B.15)
Pl,P2 =  l

So, to complete the proof, it remains to verify that (5.B.14) satisfies the Lindeberg’s 
condition, that is for every 8 > 0,

i=i

x J  I -  
n

$3 (Tp)
2ttI*

hj I 9

27T n 
( t p )  I — 7 i r  ~  

hj [9
> 8 (5.B.16)

or the sufficient condition

-E*
n h j  ( e N

|E I ^ W |4^o- (5-b.it)
3 = 1

But this is the case, since proceeding as in Theorem 5.1 and Lemma 5.4, the left 
hand side of the last displayed expression is

4

h-'a lE *
t = 1

— Op (ft 1) , (5.B.18)

by Theorems 2.3.1 and 4.3.2 of Brillinger (1975) since {x l} tez is a sequence of 
zero mean and unit variance i.i.d. random variables and {xt}tez is ergodic in that

n S  M r ~ E  \x t\r = op (1) for r = 1,..., 8, and a2e = Op (1). ■
t=i

Lem m a 5.4
Under Conditions C.1-C.6, conditional on {x i , ..., xn}, X* (.) is tight.

Proof. Denote C  — -  x t e ltXj ~  1- Proceeding as with the proof of Theorem
t=l

5.1, we only need to check the Kolmogorov-Chentsov’s condition. That is, we need
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to show that

E* "  * X ( ^ J  (Tl) -  (r 2))
1=1 hj 18

< G n (n ,T 2) | n - n | 1''"S, (5.B.19)

for any 0 < T\ < r 2 < 1, for some 5 > 0 and some Gn ( r i , r 2) which bounded in 
probability. Now, by definition of /?, the left hand side of (5.B.19) is

t i * h * X  (Ti) _ ^  (T2)) <i
3= 1

=@4i x nf^ sin {*’< + T‘l)

sin f

j= i

sin ^ 2 )
^ n<i <5B»)

g=l

We examine only the first term on the right hand side, the second being identically 
handled. That term is

27r J  n£ x  n *
Jl> —J 4 = l  £=1 

2 \  4 n 4

sin ^ 2

sin ( Aj< + r*l)

+(£U x nK sin ^ i ]

{<*<*}

sin

By Theorems 2.3.1 and 4.3.2 of Brillinger (1975), and in particular equation (4.3.15), 
and the integrability of log9 |sinrr|, q =  1,..., 4, we obtain that the second term on 
the right hand of (5.B.21) is bounded in absolute value by

K n 2 log2 h J  < K  J (r2 -  r i )1+<) < Gn (ti, r 2) (r2 -  r i ) i+0, (5.B.22)

for any 0 < S < 1, noticing that Gn (t i , t 2) is bounded in probability since a2 = 
Op (1). So, to complete the proof we need to examine the first term on the right 
hand side of (5.B.21), which is

« /  s i n f ^ t ^ l )  \ 2\
< Gn ( T i ,  t 2) In  —r 2r +,s, (5.B.23)

;2 \  4 \  4
,1+5 ,1+5

proceeding as in Theorem 5.1.

sin I 2 )
sin ^j~ [̂ir-r2] J

I 2 J
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5.C Appendix

oII 0  = 5% 0 =  1%
n — 64 10.65 10.10 10.10

n =  128 11.00 5.15 4.15

Table 5.1: Size of 7]jj- test; i.i.d. model.

P =  10% P = 5% II i—
1

3 II O
i 10.60 5.00 1.20

n =  128 9.65 5.10 1.40

Table 5.2: Size of T£M test; i.i.d. model.

Method 1 Method 2
p  =  10% P =  5% P = 1% 0 =  10% 0 =  5%

i-HII

COIIss 10.05 5.40 1.35 n =  64 10.05 5.55 1.25

3 II i—
‘

to 00 9.65 4.30 1.45 n = 128 10.20 4.60 1.50

Table 5.3: Size of T£M test; AR( 1) model.

Method 1 Method 2
p =  10% 0 =  5%

i-HII 0  =  10% 0 =  5%

r*HII

ti — 64 9.50 5.55 1.10 n = 64 9.85 5.35 1.05
n = 128 10.00 4.80 1.60 n = 128 9.80 4.70 1.60

Table 5.4: Size of T£M test; M A( 1) model.
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0 = 10% 0 = 5% 0 =  1%
n — 64 11.80 11.40 11.40
n =  128 15.10 7.95 6.45

Table 5.5: Power of test; A R F IM A (0 ,0.1,0) model.

II i—1 o

LOII r-HII
n =  64 26.95 15.20 3.55
n = 128 49.80 34.40 11.50

Table 5.6: Power of test; A R F IM A (0,0.2,0) model.

oII 0  =  5% 0 =  1%
n =  64 55.20 39.30 14.20

ti =  128 86.60 75.30 47.65

Table 5.7: Power of 7 ^  test; ARFIM A(0,0.3,0) model.

or-HII 0  =  5% 0 =  1%
Ti =  64 81.50 68.45 39.30
7i =  128 98.75 96.60 86.25

Table 5.8: Power of test; A R F IM A (0 ,0.4,0) model.
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0 =  10% 0 =  5% 0 =  1%

3 II 05 14.60 8.05 2.00
n = 128 22.90 15.05 5.45

Table 5.9: Power of T£M test; ARFIMA(Q, 0.1,0) model.

or"HII ~cs
> II Cn 0  =  1%

n = 64 38.10 26.75 12.90

3 II i—1 to OO 68.45 57.55 38.00

Table 5.10: Power of T£M test; A R F IM A (0 ,0.2,0) model.

or-HII 0  =  5% II

n = 64 66.70 57.75 38.50
n = 128 94.45 91.70 81.10

Table 5.11: Power of T£M test; A R F IM A (0,0.3,0) model.

0 =  10% II cn 0 =  1%
n = 64 86.25 81.15 66.60

n = 128 99.35 98.95 97.50

Table 5.12: Power of T£M test; A R F IM A (0,0.4,0) model.
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0 =  10% 0 =  5% 0 =  1%

IIe 18.10 9.60 2.20
n =  128 28.55 20.00 7.30

Table 5.13: Power of T£M test; G ARM A(0,0.1,0) model.

0 =  10% 0 =  5% 0 =  1%

3 II 05 47.45 36.85 17.90
n —  128 76.55 67.85 49.35

Table 5.14: Power of T£M test; G ARM A(0,0.2,0) model.

0 =  10% 0 =  5% 1II

n = 64 80.65 73.75 56.90
n = 128 97.55 96.05 90.90

Table 5.15: Power of T£M test; G ARM A(0,0.3,0) model.

0 =  10% 0 =  5% 0 =  1%

3 II 05 96.85 94.40 88.35
n =  128 99.90 99.90 99.55

Table 5.16: Power of T£M test; GARM A(0,0.4,0) model.
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Method 1 Method 2
/3 =  10% 0 =  5% 0 =  1% p  =  10% 0 =  5% 0 = 1 %

n — 64 11.30 6.20 1.10 3 II o> 11.60 6.05 1.20
n = 128 11.75 6.15 1.05 72 =  128 11.65 6.30 0.95

Table 5.17: Power of Tj*M test; A R F IM A (  1,0.1,0) model.

Method 1 Method 2
0 =  10% II Cn

rHII 0  =  10% 0 =  5%

i-HII<=a

t i — 64 11.85 6.35 1.20
COIIS 12.20 6.70 1.25

n =  128 11.95 6.75 1.15
ooCNIIs 12.05 6.95 1.05

Table 5.18: Power of T£M test; A R F IM A (1 ,0.2,0) model.

Method 1 Method 2
0 =  10% 0 =  5% 0 =  1% 0 =  10% 0 =  5% 0 =  1%

t i  — 64 13.65 7.45 1.45 n =  64 13.60 7.65 1.35

s II i—» to 00 12.85 7.30 1.45 n =  128 13.35 7.50 1.50

Table 5.19: Power of T£M test; A R F IM A (1 ,0.3,0) model.

Method 1 Method 2SSol—lII toII<Q.

r-HII oII toII<30. 0 = 1 %
n  = 64 15.55 9.00 2.05 t i  =  64 15.90 9.75 1.95
77 =  128 17.60 10.20 2.60 n  = 128 17.85 10.40 2.85

Table 5.20: Power of T£M test; A R F IM A (1,0.4,0) model.
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Method 1 Method 2
0 =  10% 0 =  5% 0 =  1% 0 =  10% 0 =  5% 0 =  1%

n =  64 19.70 10.85 2.80 ti — 64 19.65 10.70 2.70
n =  128 27.05 18.10 5.95 n = 128 26.50 17.75 6.15

Table 5.21: Power of T£M test; GARM A( 1,0.1,0) model.

Method 1 Method 2
0 =  10% 0 =  5% 0 =  1% 0 =  10% 0 =  5% II

n =  64 46.85 34.50 16.55 77, =  64 47.00 34.80 16.00
n =  128 72.55 62.65 43.85 n =  128 72.55 62.70 43.40

Table 5.22: Power of T£M test; GARM A( 1,0.2,0) model.

Method 1 Method 2
0 =  10% 0 =  5%

rHII

oII 0 =  5% 1II

3 II 05 79.15 71.60 51.75 n =  64 79.00 71.15 52.20
n =  128 96.55 94.95 88.05 n =  128 96.55 94.90 87.70

Table 5.23: Power of T£M test; G ARM A(1,0.3,0) model.

Method 1 Method 2
0 =  10% 0 =  5% II 0 =  10% ■C

o II Cn 0 =  1%

COII3 95.90 93.65 84.35 n =  64 96.05 93.40 84.10

3 II i—
‘

to 00 99.90 99.85 99.15 n — 128 99.90 99.90 99.20

Table 5.24: Power of T£M test; GARM A( 1,0.4,0) model.
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Method 1 Method 2
0 =  10% 0 =  5% II t—‘ p =  10% 0 =  5% II

n = 6 4 15.30 9.05 2.45 n = 64 15.10 8.65 2.85
n = 128 19.25 11.65 4.95 n = 128 19.35 11.45 4.85

Table 5.25: Power of T£M test; A R F IM A (0,0.1,1) model.

Method 1 Method 2
p = 10% P = 5% 0 =  1% 0 =  10% 0 =  5% IIĈL

n = 64 33.30 23.25 11.25 77, = 64 33.75 23.50 11.60
n = 128 56.45 45.60 27.05 n = 128 56.45 45.60 27.20

Table 5.26: Power of T£M test; A R F IM A (0,0.2,1) model.

Method 1 Method 2
0 =  10% 0 =  5% 0 =  1% 0 =  10% 0 =  5% 0 =  1%

t i  — 64 57.60 47.95 31.60 n =  64 57.85 48.75 31.25
n  = 128 87.05 81.55 68.65 n  = 128 87.50 81.80 69.25

Table 5.27: Power of T£M test; A R F IM A {0,0.3,1) model.

Method 1 Method 2
0 =  10% ■C

b II Or 0  =  1%

oII 0  =  5% 0 =  1%
n =  64 79.10 72.15 57.25 n =  64 79.20 72.70 57.50
n =  128 98.60 97.55 92.00 n =  128 98.55 97.50 92.15

Table 5.28: Power of T£M test; A R F IM A (0,0.4,1) model.
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Method 1 Method 2

oII ■cs
> II Cn II p  =  10% P =  5%

l—lII

n =  64 21.00 13.20 3.55 n =  64 21.05 13.35 3.85
n =  128 30.65 21.25 8.40 n =  128 30.20 20.95 8.40

Table 5.29: Power of T£M test; G ARM A(0,0.1,1) model.

Method 1 Method 2

ol—
l

II /3 =  5% P =  1% II I—
1

o P = 5%

rHII

n =  64 51.75 39.80 21.10 n =  64 52.45 40.05 21.0500CNT—
1

IIg 75.35 67.30 48.00 n =  128 75.50 67.55 48.25

Table 5.30: Power of T£M test; G ARM A(0,0.2,1) model.

Method 1 Method 2
P = 10% II P = 1% p = 10% P =  5%

i-HII

n =  64 80.65 74.35 57.30

COIIg 80.55 74.20 58.15
128 97.00 95.00 88.85 n =  128 96.95 95.05 89.10

Table 5.31: Power of T£M test; G ARM A(0,0.3,1) model.

Method 1 Method 2
P = 10% P =  5%

i-HII p = 10% P = 5%

rHII

COIIg 96.35 93.40 87.90 n =  64 96.35 93.75 88.70
n =  128 99.90 99.85 99.15 n = 128 99.90 99.85 99.30

Table 5.32: Power of T£M test; GARM A{0,0.4,1) model.
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—  Industrial production
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Figure 5.1: Data on industrial production for the period 1960M1-2006M5.

—  Growth rate o f industrial production

O' o ©

Figure 5.2: Data on growth rate of industrial production for the period 1960M1-
2006M4.
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T*2w
* B ,W

C90%
* B ,W

C95%
* B ,W

C99%
T*2 L M

* B ,W
90%

* B ,W
95%

* B ,W
c 99%

i.i.d. 0.33 0.12 0.13 0.15 i.i.d. 1.56 0.32 0.37 0.45
AR( 1) 0.41 0.20 0.23 0.29 AR{ 1) 0.77 0.43 0.48 0.56
MA{ 1) 0.41 0.20 0.25 0.39 MA{ 1) 1.30 0.43 0.48 0.58

Table 5.33: 7 ^  and T£M statistics and their bootstrap critical vaules for growth 
rate of industrial production for the period 1960M1-2006M4.

T*2 w
* B ,W
90%

* B ,W
95%

* B ,W
C99%

T*2 l m
* B ,W
90%

* B ,W
C95%

* B ,W
°99%

i.i.d. 0.42 0.15 0.17 0.22 i.i.d. 1.53 0.32 0.37 0.47
AR(1) 0.36 0.26 0.30 0.42 AR(1) 0.36 0.42 0.47 0.59
M A( 1) 0.37 0.25 0.29 0.37 MA{ 1) 0.91 0.41 0.46 0.55

Table 5.34: 7 ^  and Tj*M statistics and their bootstrap critical vaules for growth 
rate of industrial production for the period 1960M1-1984M3.

T*2w
* B ,W
90%

* B ,W
95%

* B ,W
C99%

T*2 l m
* B ,W
90%

* B ,W
C95%

* B ,W
.Sa.9%.

i.i.d. 0.15 0.16 0.19 0.24 i.i.d. 0.43 0.19 0.23 0.28
AR( 1) 0.45 0.24 0.28 0.35 A R (l) 0.83 0.40 0.45 0.58
M A( 1) 0.42 0.28 0.33 0.47 MA{ 1) 0.88 0.39 0.45 0.58

Table 5.35: 7 ^  and statistics and their bootstrap critical vaules for growth 
rate of industrial production for the period 1984M4-2006M4.
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—  Unemployment rate
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Figure 5.3: Data on unemployment rate for the period 1960M1-2006M5.

—  Growth o f unemployment rate
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Figure 5.4: Data on growth of unemployment rate for the period 1960M1-2006M4.
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T*Jw
* B ,W
90%

* B ,W
95%

* B ,W
99% T*2 l m

* B ,W
90%

* B ,W
95%

* B ,W
99%

i . i .d . 0.99 0.12 0.14 0.17 i . i .d . 15.56 0.41 0.46 0.56
AR{\) 0.14 0.11 0.13 0.17 AR( 1) 1.05 0.50 0.56 0.68
MA{ 1) 0.99 0.13 0.15 0.19 M A( 1) 9.71 0.42 0.49 0.96

Table 5.36: 7 ^  and T£M statistics and their bootstrap critical vaules for unemploy­
ment rate for the period 1960M1-2006M5.

T *2w
* B ,W
90%

* B ,W
95%

* B ,W
99% T*2 l m 90%

* B ,W
95%

* B ,W
99%

i . i .d . 0.99 0.21 0.24 0.29 i . i .d . 5.06 0.40 0.46 0.55
AR(1) 0.15 0.18 0.22 0.32 AR( 1) 0.49 0.36 0.41 0.54
MA{ 1) 0.99 0.23 0.26 0.35 MA(1) 4.30 0.41 0.46 0.60

Table 5.37: 7 ^  and T£M statistics and their bootstrap critical vaules for unemploy­
ment rate for the period 1960M1-1973M12.

T*2w
* B ,W
90% 95%

* B ,W
99% T*2 l m

* B ,W
90% 95% 99%

i.i.d. 0.99 0.21 0.24 0.34 i.i.d. 5.29 0.41 0.46 0.62
Ai?(l) 0.16 0.21 0.26 0.42 Ai?(l) 0.68 0.35 0.39 0.53
M 4(l) 0.99 0.23 0.28 0.37 M 4(l) 3.44 0.37 0.42 0.55

Table 5.38: 7 ^  and T£M statistics and their bootstrap critical vaules for unemploy­
ment rate for the period 1974M1-1986M2.

T*2w
* B ,W

C90%
* B ,W

C95%
* B ,W

C99% T*2 l m
* B ,W

C90%
* B ,W
95%

* B ,W
99%

i.i.d. 0.99 0.18 0.21 0.27 i.i.d. 5.73 0.32 0.36 0.47
AR(1) 0.07 0.17 0.19 0.23 AR{ 1) 0.20 0.38 0.42 0.52
MA(1) 0.99 0.20 0.23 0.34 M A( 1) 5.20 0.39 0.46 0.66

Table 5.39: 7 ^  and T£M statistics and their bootstrap critical vaules for unemploy­
ment rate for the period 1986M3-2006M5.
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