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Abstract

This thesis examines structural breaks in time series regressions where both
regressors and errors may exhibit long range dependence. Statistical proper-
ties of methods for detecting and estimating structural breaks are analysed
and asymptotic distribution of estimators and test statistics are obtained.
Valid bootstrap methods of approximating the limiting distribution of the
relevant statistics are also developed to improve on the asymptotic approxi-
mation in finite samples or to deal with the problem of unknown asymptotic
distribution. The performance of the asymptotic and bootstrap methods are
compared through Monte Carlo experiments. A background of the concepts
of structural breaks, long memory and bootstrap is offered in Introduction
where the main contribution of the thesis is also outlined. Chapter 1 proposes
a fluctuation-type test procedure for detecting instability of slope coefficients.
A first-order bootstrap approximation of the distribution of the test statistic
is proposed. Chapter 2 considers estimation and testing of the time of the
structural break. Statistical properties of the estimator are examined under
a range of assumptions on the size of the break. Under the assumption of
shrinking break, a bootstrap approximation of the asymptotic test procedure
is proposed. Chapter 3 addresses a drawback of the assumption of fixed size
of break. Under this assumption, the asymptotic distribution of the estimator
of the breakpoint depends on the unknown underlying distribution of data
and thus it is not available for inference purposes. The proposed solution is a
bootstrap procedure based on a specific type of deconvolution.
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Introduction

This thesis examines structural breaks in time series regressions. The main
contribution to the literature in the field is twofold. First, statistical proper-
ties of methods for detecting and estimating structural breaks are analysed
when both regressors and errors are allowed to exhibit long range dependence.
Second, valid bootstrap methods of approximating the limiting distribution
of relevant estimators are developed under possible long range dependence.

The principal keywords of the thesis are structural breaks, long memory
and bootstrap. The following sections offer some background notes on these
concepts and explain in what way this thesis adds to the body of knowledge
in respective fields. The last section outlines the notation used throughout
the thesis.

Structural breaks

Structural stability is a desirable property of any econometric model. Models
that are structurally unstable tend to lead both to erroneous in-sample analy-
sis and out-of-sample forecasts. Tests of parameter instability and structural
change have therefore been a subject of a large body of statistical and econo-
metric literature. The maintained hypothesis of parameter stability has been
tested against both specific and general forms of alternative hypothesis.
When employed as a model-diagnostic tool, stability tests are frequently
constructed against all possible functions describing the evolution of parame-
ters over time. In the linear regression context, such tests are based on the
behaviour of regression residuals, as in CUSUM tests of Brown et al. (1975)
and Ploberger and Krimer (1990, 1992), or on the behaviour of parameter



estimates, as in the fluctuation tests of Sen (1980) or Ploberger et al. (1989).

Alternatively, parameter stability tests can be designed against a specific
alternative. Example of specific alternatives are one-time change in para-
meters as in the papers by Quandt (1960) or Andrews (1993), or parameters
following random walk (Nyblom (1989)). Though constructed to detect a spe-
cific parameter behaviour, these tests are usually shown to have power against
a broader range of departures from the null of parameter constancy.

Beside specification testing, the presence or absence of structural stability
may be of interest in itself. If a structural change is detected, an inquiry
into the character of the change may reveal factors that caused the structural
shift and may lead to a successful revision of the original model. A prime
example of this is the article of Perron (1989) who argues that many key
economic variables should be modelled as stationary around a deterministic
trends with breaks. Such models imply that the majority of shocks in economy
are transitory and only few shocks have a permanent effect. The structural
break model of Perron is an answer to the stochastic trend model of Nelson
and Plosser (1982) which imply that all random shocks have a permanent
effect on the economy. The work of Perron brought a change in the common
view of the nature of dynamics of economic variables and inspired further
investigation of instability in economic systems.

When it is known that the parameters of a model undergo a break, the
knowledge of the date of break is often relevant to researchers, for exam-
ple when judging a delay in reaction of agents to a change in economic pol-
icy. There is a steadily growing body of literature on estimating the time of
change. Hinkley (1970), Yao (1987) and Bhattacharya (1987) deal with max-
imum likelihood estimation of time of a shift in mean of otherwise identically
distributed independent observations. In the context of dependent observa-
tions, Bai (1994, 1997b) allows for a linear process with short memory while
Bai (1997a), Bai and Perron (1998) and Fiteni (2002, 2004) analyse estima-
tors of the time of break in parameters of linear regression model with mixing
data.

An interesting observation is that in order to obtain a distribution-free
asymptotic theory for estimators and test statistics, the magnitude of the
structural change is assumed small in a majority of work on both detecting
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and locating structural change. More specifically, the size of change is assumed
to decrease with increasing sample size. Examples of articles that adopt this
assumption are Ploberger et al. (1989) and Andrews (1993) for detecting the
structural change and Picard (1985) and Bai and Perron (1998) for estimating
the date of break.

In the context of testing for parameter instability, this assumption may
be regarded as innocuous since it can be argued that if a test procedure is
capable of detecting small changes in the structure of the model, it will also
be capable of detecting large changes. However, in the context of estimating
the date of break, the assumption is no longer incontroversial. The gain in
information due to the increase in the sample size is not sufficiently large to
offset the loss of information due to the decrease in the magnitude of the
break. The dispersion of the breakpoint estimator grows to infinity and tests
of hypotheses about the date of change against fixed alternatives lose power
in growing samples.

The only solution to this problem is to model the break as having a fixed
size. Under the fixed break assumption, however, the limiting distribution of
the location estimator depends on the distribution of the data and is therefore
generally unknown and unavailable for the purposes of statistical inference.
Hinkley (1970) attempts to circumvent the problem of intractability by as-
suming that the distribution of data is known. His method is difficult or
impossible to implement in any but the most simple settings and in any case
the assumption that the distribution of data is known is unrealistic. Since
then, attempts to reconcile the advantages in assuming fixed breaks with the
need for a tractable asymptotic distribution have been largely abandoned,
with an exception of Antoch et al. (1995) who devise a bootstrap method for
regression with independent identically distributed errors.

The current state of the research on structural changes in linear models
with time series has been reviewed by Banerjee and Urga (2005) and Perron
(2006). Other overviews of the work on structural breaks include the article by
Stock (1994) and the special issue of the Journal of Econometrics on "Recent
developments in the econometrics of structural change" edited by Dufour and
Ghysels (1996).

Regarding models with strongly dependent data, the effect of long range

10



dependence on estimators of time of break has been examined by Antoch et al.
(1995, 1997), Horvath and Kokoszka (1997) and Kuan and Hsu (1998) in the
framework of linear processes with a break in mean. Hidalgo and Robinson
(1996) propose tests for a change in parameter values at a known time point
in linear regression models with long-memory errors while Hidalgo (2003b)
designs a test for the presence of breaks in nonparametric regression function
with possibly strongly dependent errors.

This thesis

This thesis examines stability of slope coefficients in the linear regression
model. An important distinction from the majority of existing literature is
that we allow both regressors and errors to be possibly long range depen-
dent. We are interested in two aspects of the problem of parameter stability.
First, we examine methods of detecting structural instability and estimating
the date of structural change. Second, we analyse in some detail the effect
of the assumed size of break on statistical properties of estimators and test
statistics, and attempt to resolve the difficulties arising from the imposition
of the standard assumption of shrinking breaks.

Chapter 1 proposes a fluctuation-type method of testing for structural sta~
bility. The procedure is based on a process of least-squares slope coefficient
estimators. The fluctuation of the process is measured by a continuous func-
tional and the presence of instability is indicated by large fluctuation. Though
the test is constructed to have power against the alternative of a structural
break, it is shown to be powerful against a broader range of alternatives, such
as multiple breaks, smooth transition between two steady levels of parameters
and a continual change of parameter. The functional defining the test statistic
can be chosen to reflect beliefs about the form of alternative and so improve
the power of the test procedure.

The limiting distribution of the test statistics considered in the literature
is typically a functional of Brownian motion. The main contribution of the
Chapter 1 is to confirm that this fact remains true in linear model with sta-
tionary long memory series. This may seem a simple and straightforward
conclusion but it is actually somewhat surprising since when dealing with
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long memory time series, fractional Brownian motion processes are usually
expected to appear in expressions describing the asymptotic distribution. In
our stochastic regressor framework, the effect may be viewed as a mutual sto-
chastic dampening of regressors and errors where the individual series may
exhibit long memory but their product displays short memory.

In Chapter 2, we examine a least squares method of estimating the time of
the break. Here again the results from the short memory literature carry over
to our long memory setting under the assumption of a break of both fixed and
shrinking size. The magnitude of break, however, turns out to be crucial in
determining the qualitative properties of the asymptotic distribution of the
breakpoint estimator. One of the main contribution of Chapter 2 is therefore
an analysis of the asymptotic behaviour of the estimator under various as-
sumptions on the size of break, ranging from a fixed size of break through a
size shrinking at a certain rate to zero size. While the assumptions of fixed and
shrinking breaks have been examined in a variety settings with short memory
data, and we extend the analysis to the long-memory time-series regression
setting, the assumption of a weak break, that is break of a rapidly decreasing
size, has not been analysed yet in the literature.

The conclusion is that when the size of the break is fixed, the asymptotic
distribution depends on the entire joint distribution of the regressors and the
error term. When the size of the break is shrinking but more slowly than
the square root of the sample size, the asymptotic distribution of breakpoint
is free of nuisance parameters and is explicitly known. When the size of the
break is shrinking faster than the square root of the sample size, or when
there is no break in the data generating process, the question of estimating
the location of the break becomes vacuous because in this circumstance the
break is not detectable. In the borderline case of the size of break decreasing
with exactly the square root of the sample size, the break can be detected but
there is insufficient information for estimating its location.

We argue that to obtain an efficient breakpoint estimator and a power-
ful test procedure, only the assumption of fixed break should be used. Since
under this assumption the asymptotic distribution of the estimator of the
breakpoint depends on the unknown underlying distribution of data and thus
it is not available for inference purposes, a method of estimating the distrib-
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ution is called for. One such procedure, based on the bootstrap, is proposed
in Chapter 3.

Long memory

The phenomenon of the slow decay of correlation between observations that
are far apart had been observed in various scientific fields since well over one
hundred years ago. One of the first important statistical treatments of long
memory has been in hydrology by Hurst (1951) who considered the rescaled
adjusted range statistic and found its behaviour inconsistent with short range
dependence assumption. In economics, one of the first to observe the long-
memory properties of economic time series has been Adelman (1965) who
observed peaks of estimated spectral functions around zero frequency. The
peaked spectral density has been claimed by Granger (1966) to be the typical
spectral shape of an economic variable.

For stochastic processes, the property of possessing long memory has been
variously defined through the behaviour of the autocorrelation function as hav-
ing hyperbolically decaying autocorrelations or having autocorrelations that
are nor absolutely summable, through the behaviour of the spectral density as
having a pole at zero frequency, or through the behaviour of the partial sums
of the process as having variance that is increasing faster than the sample size.
These definitions are closely related but not equivalent.

The degree of memory of a process may be described by the parameter
d which we take to be the order of the singularity of the spectral density
at zero. Estimation of d is a well-researched topic and a wide array of esti-
mators is available to practitioners. Recent surveys of developments in long
memory estimation and testing include Robinson (2003) and Banerjee and
Urga (2005). Various results are collected in surveys by Robinson (1994a)
and Baillie (1996), in a book by Beran (1994) and in a recent special issue of
the Journal of Econometrics on "Long Memory and Non-Linear Time Series"
edited by Davidson and Terésvirta (2002).

It has long been known that certain classes of processes can mimic long
memory behaviour. Among such processes are regime switching processes
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(Diebold and Inoue (2001)), processes with certain type of deterministic trend
(Bhattacharya et al. (1983)), error duration processes (Parke (1999)) and,
importantly from our point of view, processes with structural breaks (Engle
and Smith (1999) and Granger and Hyung (2004)). Accordingly, there is a
growing body of literature on distinguishing genuine long memory time series
from those with other features (Kiinsch (1986), Shimotsu (2005) and Berkes
et al. (2006)).

There is also work that nests both long memory and some of the above
features, but focuses on the analysis of one feature only. Iacone (2006) ex-
amines the degree of memory of a given series with possible presence of the
nuisance deterministic components including broken trends. In the opposite
direction, Hidalgo and Robinson (1996) allow for the presence of long mem-
ory but regard it as a nuisance phenomenon and concentrate on testing for
structural breaks in the framework of linear regression. A similar approach is
taken in articles by Antoch et al. (1995, 1997), Horvath and Kokoszka (1997)
and Kuan and Hsu (1998) mentioned in the previous section.

This thesis

In this thesis, we are interested in structural breaks and view long memory as
a nuisance. Our aim is to develop methods in which the user does not need
to know the degree of memory of the data, as long as the data are stationary.
As a result, we do not discuss the estimators of the long memory parameter
and we only use the existing estimators.

In Chapters 1 and 2, we show that the classical least squares methods for
detecting and locating breaks, devised originally under the assumption of no
or short memory in regressors and errors, can be used without change under
long memory, and the degree of memory does not need to be estimated. We
also show that the statistical properties of the estimators remain unchanged.
The only place where an allowance for possible presence of long memory needs
to be made is when the user wishes to conduct a bootstrap test since it seems
convenient to carry out the bootstrap procedure in the frequency domain.

In Chapter 3, the bootstrap procedure involves estimation of the degree
of memory of regression residuals as a preliminary step. We suggest that the
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researcher uses the local Whittle estimator proposed by Robinson (1995b) and
we show its consistency when the underlying series is replaced by residuals.

Bootstrap

When the distribution of an estimator or a test statistic is unknown or if it
is difficult to calculate, it can be approximated by the bootstrap. Bootstrap
methods can also be used to provide more accurate approximation of the
finite sample distribution than the approximation obtained from first order
asymptotic theory.

The core idea of the bootstrap is to replace the unknown distribution of a
random variable by the empirical distribution of a random sample drawn from
that distribution. However, when the data are not independent and identically
distributed, the basic bootstrap of Efron (1979) is not valid and the bootstrap
procedure needs to be modified to reflect the dependence or heterogeneity
structure of the data. In the time series context, an early adaptation of the
basic bootstrap method rests on the assumption that the data are generated
by a finite-order stationary ARMA process with independent identically dis-
tributed innovations (Freedman (1984), Efron and Tibshirani (1986)). In a
direction towards nonparametric methods, Bithlmann (1997, 1998) approxi-
mates the linear infinite-dimensional process by a sieve of finite-dimensional
autoregressive processes whose order is growing with the sample size. Diebold
et al. (1998) propose a purely nonparametric bootstrap method based on the
Cholesky factorization. '

A different way of approximately preserving the temporal dependence
structure of the data is to resample blocks of data. Carlstein (1986) and
Kiinsch (1989) propose to resample nonoverlapping and overlapping blocks of
data, respectively, and to concatenate the blocks to generate a bootstrap sam-
ple. Politis and Romano (1992) introduce an idea of subsampling, regarding
blocks of data — subseries — as new pseudo-samples.

A problem shared by nonparametric bootstrap methods is that they require
an intervention by the researcher in choosing a dimension parameter of the
procedure, be it lag length, bandwidth or block length. The performance of
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time-series bootstrap can be highly sensitive to the choice of the dimension
parameter, particularly in samples of moderate size. Although automatic
procedures for choosing the dimension have been devised for some methods,
they can be computationally expensive.

Nonparametric bootstrap procedures can alternatively be carried out in
the frequency domain where either frequency domain data, that is the dis-
crete Fourier coefficients, or their squares, that is the periodograms, can be
bootstrapped. This approach is motivated by the observation that converting
a stochastic process from the time domain to the frequency domain reduces
serial correlation of the process though it induces heteroskedasticity. Boot-
strap method of Ramos (1988) for Fourier coefficients or Franke and Hardle
(1992) and Dahlhaus and Janas (1996) for periodograms require a consistent
estimate of the spectral density and therefore a choice of a bandwidth. Local
periodogram bootstrap of Paparoditis and Politis (2000) avoids the need for
estimating the spectrum but again demands a bandwidth choice.

Hidalgo (2003a) proposes a method that eliminates the choice of lag length
or bandwidth. He suggests to bootstrap OLS residuals in frequency domain.
His bootstrap procedure is easy to implement and computationally inexpen-
sive. His approach is the only one among the methods cited so far that has
been shown to be valid for strongly dependent data.

This thesis

One of the goals of this thesis is to design bootstrap procedures that are valid
for short as well as long memory time series. As with parameter estimation,
we aim to avoid the need for the researcher to know or estimate the degree
of memory of the data, as long as the data are stationary. We first propose a
bootstrap procedure that is useful for approximation of the distribution both
of test statistics for detecting the break in Chapter 1 and of the estimator of
the date of break under shrinking break in Chapter 2.

The main idea of the proposed bootstrap procedure is to transform a given
series into the frequency domain and thereby to translate the problem of
dependent bootstrap to a problem of heteroskedastic bootstrap. The quantity
to be resampled are the scaled frequency domain regression residuals. The
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heteroskedasticity is accounted for by re-scaling the resampled values.

The procedure is essentially that of Hidalgo (2003a). However, to prove the
validity of the method in the context of time series regression with structural
breaks, it is necessary to show that the method is successfully estimating not
only the distribution of the normalized sum of a time series, but also the
distribution of the entire process of its partial sums. The relevant concept
here is the bootstrap weak convergence of Giné and Zinn (1990). The proof
of bootstrap weak convergence of the partial-sum process is one of the main
contributions of the thesis.

The proposed procedure inherits the advantage of the original method of
Hidalgo (2003a) of not requiring a user-chosen parameter such as the block
length in the block bootstrap of Carlstein (1986) or the lag length in the sieve
bootstrap of Bithlmann (1997, 1998).

While the bootstrap inference procedure in Chapters 1 and 2 is an op-
tional and advantageous alternative to asymptotic inference procedures, in
Chapter 3 the limiting distribution of the breakpoint estimator depends on
the unknown joint distribution of data and the use of the bootstrap or some
other estimating procedure becomes a necessity if inference is to be carried
out. The bootstrap procedure proposed in Chapters 1 and 2 asymptotically
matches the covariance structure of the underlying process. The ability to esti-
mate the second moment dependence structure is sufficient for approximating
distributions that are entirely described by the second-order structure, for ex-
ample the Gaussian distribution. However, it does not suffice for estimating
a general joint distribution of a process.

In Chapter 3, we therefore design a more refined bootstrap method. The
idea behind the bootstrap procedure is to fractionally difference the series
in question and to approximate the resulting short memory process by an
autoregressive process. The values to be resampled here are the estimated
innovations of the process, and the bootstrap sample is created by refiltering
and fractionally integrating the resampled innovations.

We find it convenient to execute both stages of prewhitening, that is frac-
tional differencing and filtering, in the frequency domain. After obtaining a
preliminary estimate of the memory parameter d, an estimate of the linear
coefficients of the fractionally differenced process is achieved via the canon-
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ical spectral decomposition of a smoothed estimate of the spectral density
corresponding to the differenced process.

In contrast to the bootstrap procedure in Chapters 1 and 2, estimation of d
cannot be avoided though d remains a nuisance parameter. Moreover, the user
needs to choose a bandwidth parameter for smoothing and a number of lags
of the truncated linear process. Interestingly, however, it turns out that the
two parameters are directly related so that effectively the user chooses only
one bandwidth parameter, and the value of this parameter can be determined
by a cross-validation procedure. In return for the additional user input, the
bootstrap delivers approximation of finite-dimensional joint distributions of
the process.

To our knowledge, there is currently no bootstrap procedure available that
approximates the joint distribution of data while allowing for strong serial
dependence. Construction of such a bootstrap procedure is therefore one of
our main contributions to the literature.

Notation

Throughout the thesis, W denotes a p-dimensional vector of independent stan-
dard Brownian motion processes on [0,1] or on a set A C (0,1), ”=" de-
notes weak convergence in the space D (A)? of p-vectors of right-continuous
functions with left-hand limits, endowed with the uniform metric p(z,y) =
sup,ep ||z (1) — y (7)]] for z,y € D(A)*. The statement yr ~ zr is equivalent
to the statement % — 1 as T — oo. For o-algebras F, G, FV G is their
union, that is the smallest o-algebra containing all elements of F and G.

For any real numbers a and b, aVb = max {a, b} and aAb = min {a, b}. For
any integers j and k, |j — k|, = max {1,|j — k|}. For a set S and a constant

a, S-a={za:z € S}. For nonnegative numbers [, m,

m
Im Zt:l—i—l ag l< m,

Zat= 0 l=m,
t

!
Dtemiur @ L>m.

For integers j, k and [/, we write j = k mod! if j — k is divisible by [. Notation
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[-] signifies integer part and I(-) is the indicator function of a set.

For a Hermitian matrix A, Ayin (A) and Apax (A) denote the smallest and
the largest eigenvalue of A, respectively. Inequalities A > B and A > B
among two matrices hold if all the eigenvalues of A — B are nonnegative and
positive, respectively. For any matrix A, ||| denotes the maximum-eigenvalue
norm, that is ||A|| = supj;=; [|Az|| = A2 (A’A). We have ||A||® < tr A’A and
due to the equivalence of norms also tr A’A < C'||A||* for a constant C > 0.

For a generic function ¢, we denote p; = ¢ (};), where \; = 2mj/T,
j =1,...,T are Fourier frequencies. For sequences {at}f;l and {bt}tT=1 of
p-dimensional vectors,

A€ [-m, 7],

\/F Z ae™
is the discrete Fourier transform of {a;} and
Ip(N) =wa A, (A), A€ [-mm],

is the cross-periodogram matrix of {a;} and {b:}. Notation f,, is reserved for
the spectral density of a process {v:}.

Starred notation in k*, 4%, E*, Op+ and similar refers to quantities condi-
tional on data, taken with respect to the corresponding bootstrap probability
measure. In particular, notation P* distinguishes the probability conditional
on the o-algebra Fr V Gr. For example,

P (lr -kl < 2) =P(|/‘c*—k|gx|fTng).

Similarly, E*, var* and cov* denote expectation, variance and covariance con-
ditional on Fr V Gr, respectively. For a random variable X and a sequence
{Xr} of random variables, the statement Xz 2, X is equivalent to the state-
ment

P*(Xr<z) B P(X<2) as T — oo

for each z which is a continuity point of F' (z) = P (X < z). When the limiting
variable X is a constant, we write X7 = X. Further, for a stochastic process
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Y and a sequence of stochastic processes {Yr}, Yr == Y stands for the weak
convergence in probability as defined by Giné and Zinn (1990).
Stochastic orders of magnitude op+, O,+ are defined as follows. Let {¢} be
a sequence of positive finite numbers. We say that X7 = Op (¢7) as T — oo
if and only if for every € > 0 and 5 > 0 there exist finite M and Ty such that
forall T > Ty,
P(P*(|Xr| > Mpr) >n) <e.

We say that Xt = op (p7) as T — oo if and only if for every n > 0,
P* (| Xz| > nor) = 0, (1).

It is easy to verify some useful relations for the orders of magnitude o,« and
Op+. For example, 0y« (1) - Op (1) = 0p+ (1) 0Or 0pe (1) 4+ 0p (1) = 0p+ (1).

Finally, C' and D stand for generic constants. Unless specified otherwise,
all limits are taken as T' — oo, where T is the sample size.
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Chapter 1

Testing for structural change in
regression with long memory

processes

1.1 Introduction

Parameter instability and structural change have been a subject of a large
body of statistical and econometric literature. The maintained hypothesis of
parameter stability has been tested against both specific and general forms of
alternative hypothesis. When employed as a model-diagnostic tool, stability
tests are constructed against all possible functions describing the evolution
of parameters over time. Such tests are based on the behaviour of regression
residuals, as in CUSUM tests of Brown et al. (1975) and Ploberger and
Kramer (1990, 1992), or on the behaviour of parameter estimates, as in the
fluctuation tests of Sen (1980) or Ploberger et al. (1989).

Alternatively, parameter stability tests can be designed against a specific
alternative. Example of specific alternatives are one-time change in parame-
ters as in the papers by Quandt (1960) or Andrews (1993), or parameters
following random walk (Nyblom (1989)). Though constructed to detect spe-
cific parameter behaviour, these tests are usually shown to have power against
a broader range of departures from the null of parameter constancy.

This chapter considers tests for stability in slope coefficients in linear re-
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gression model where both regressors and errors are allowed to be long range
dependent. The main contribution of the chapter is twofold. First, the lim-
iting distribution of the test statistics considered in the literature is typically
a functional of Brownian motion. It is shown that this remains true for test
statistics based on the slope coefficient estimator in linear model with station-
ary long memory series. Secondly, as an alternative to computing the critical
values for the test statistic, a first-order bootstrap approximation of the dis-
tribution of the test statistic is proposed and the validity of the bootstrap
procedure is shown.

The chapter is organized as follows. Section 1.2 describes the model and
the hypotheses of interest and states distributional results for the test statistic.
Section 1.3 proposes a bootstrap approximation of the testing procedure and
shows its validity. Section 1.4 offers a Monte Carlo study of the small sample
performance of the bootstrap testing procedure. Section 1.5 concludes. The
proofs of the results stated in the text are gathered in Section 1.A. Section
1.B contains some auxiliary results.

1.2 Model and asymptotic results

We are interested in testing for structural change in regression models with
processes that may possess long memory. We consider the model

Y = o+ BiTs + uy, t=1,...,T, (1.1)

where y; is the observed dependent variable, « is an unknown intercept, £, is
a p-dimensional vector of unknown parameters, z; is a p-dimensional vector
of the explanatory variables and u; is an unobserved stochastic disturbance.
Our hypothesis of interest is whether the parameter vector 3, stays constant,

Hy: B,=p forsomepf, forallt=1,...,T.
The alternative is that of general parameter instability,

Hy: B,#p0, forsomel<t,s<T.
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Test procedures for the hypothesis of structural stability of general models
are based on test statistics that can be written as

ZT = ¢(ET) )

where Er is a stochastic process on [0,1] or its subset with values in the
space of right-continuous functions with left-hand limits and ¢ is a continuous
functional. The process Er is based on an estimator of parameters of a given
model and its form reflects the choice of the testing principle. For example, if
{e:,p <t < T} is the sequence of cumulative recursive residuals from the OLS
estimates of the model (1.1) under the null as in the CUSUM test procedure
of Brown et al. (1975), the stochastic process Er can be defined as Er =
{Er () = e, p/T < 7 < 1}. Further examples of processes considered in
the literature are Wald-, LM- and LR-like test statistic processes of Andrews
(1993), CUSUM of squares process of Brown et al. (1975), OLS CUSUM
process of Ploberger and Krémer (1992), OLS parameter estimates process
of Ploberger et al. (1989) and Sen (1980) or MOSUM process of Chu et al.
(1994).

The functional ¢ measures the excess fluctuation of the process Er with
respect to its hypothesized fluctuation. Depending on the belief about the
form of the alternative, the functional ¢ can be chosen to obtain good power
of the test. A functional widely used in literature is the supremum functional.
The test statistic can also be based on the L,-distance like Cramér-von Mises
test statistic with ¢ = 2. The range functional, that is the difference between
the maximum and the minimum of a function, can have power advantage
over the supremum functional in detecting smaller fluctuations of a process
which changes its sign, as argued by Kuan and Hornik (1995). The average
exponential functional of Andrews and Ploberger (1994) is shown to enjoy
asymptotic optimality with respect to a weighted average power criterion.

In this chapter, we base the test procedure on the OLS estimators of the
coefficient § in the model

v = o+ Bz + 82 + ug, t=1,...,T, (1.2)
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where

T t<|[rT],
4 =2(r) = { Ot othe[rwi]se (13)

where J is a p-dimensional vector of parameters and where 7 lies in a subset A
of (0,1). In the interest of clarity, the explicit notation of dependence of z; on
7 is sometimes dropped in what follows. The choice A = (0, 1) appears natural
but for technical reasons the set A needs to be restricted to have closure in
(0,1). The grounds for the restriction are discussed after stating Theorem 1.2
and its Corollary 1.1 below. In addition to technical reasons, there may be
other motives for restricting the set A away from (0,1). It may be suspected
that the instability in question occurred in a specific subperiod of a given
period. For example, if data for postwar productivity growth are examined,
the attention might be focused on testing for an abrupt or gradual change in
a period around the 1973 oil price shock.

For any fixed 7 € A, the OLS estimator of the parameters £ and ¢ in (1.2)
is given by

(Zj(r) ) _ ( R EAD YR P ) ( ST (@~ D) >
4(7) EtT=1 (2t — z) E:tr=1 (2 — 2) 23;1 (2: — 2) %1 4)’

where 7 =713} z,and 2 =T} ZE{J z;. Alternatively, model (1.2) can
be translated into the frequency domain, becoming

wy()\,-) = ,B'wx(/\j) + J’wz()\j) + wu()\j), ] = 1, v ,T -1 (15)

Identifying w,()\;) and w,(]);) as regressors and w,();) as an error term, the
OLS estimate of the parameters 8 and ¢ in (1.5) for 7 € A is given by

( B ) _ ( ST L) T L) ) ( i I (M) ) e
5(7) 25;11 Izw()‘j ) Ef;f Izz()‘j) Z}:ll Izu(’\j )

Leaving out the zero frequency from the frequency domain regression is equiva-
lent to mean-correcting data before running the regression in the time domain.
The estimators defined in (1.4) and (1.6) are therefore identical. Omission of
the zero frequency permits inference on the slope parameters when the in-
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tercept is unknown. It is worth noting that due to the symmetry of the
periodograms, (1.6) is equal to

B\ _ (e S L) T 100 |\
5 ) T U\ S L0 S0
/2 (A
X Re ( %-"z” I,,,EA,; ) (.7

for T odd. When T is even, (1.7) differs from (1.6) only by the order of
0, (1/7T). )

For each 7 from a set A C (0,1), an estimator 0 (7) of § can be obtained
from (1.6) and a process § can be defined as § = {3 (r),7€ A}. For any T
and any realization of processes {z;} and {u,} the function & is bounded and
constant on the subintervals [j/T, (j + 1) /T) N A, j € N, and the process §
is a random element of the space D (A) of p x 1 vectors of right-continuous
functions on A with left-hand limits endowed with uniform metric.

The test statistic based on the process 8 is then Zp = [0 (ﬁs) for any
continuous functional ¢: D (A)” — R. For example, the Kolmogorov-Smirnov
(or Bartlett) test statistic is defined as

KSr = sup\/T“cAS(‘r)”

TEA

and the Cramér-von Mises statistic is given by
. 2
CvMr = /THJ(T)H dr.
A

Under the null hypothesis, the additional regressor z; has no explanatory
power and the process é is uniformly close to zero, whereas under the alter-
native, & can be expected to differ significantly from zero on a set A; C A of
Lebesgue measure greater than zero. The norm functionals like KS and CvM
constitute one-tailed tests, rejecting Hy for large values of the test statistic.
In principle, two-tailed tests can be constructed for functionals whose range
includes both positive and negative values.

It can be expected that the test procedure based on model (1.2) has power
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mainly against one-time break alternatives of the form

H: ﬂt={ﬁ+5 t=1,...,[rT] 19

,8 t=[TOT]+1,...,T

for some 79 € A and some constants § and § with § # 0, but we show that
our test procedure has power under a broader range of alternatives.

In our analysis, we assume that {z;} and {u;} are covariance stationary
linear processes that satisfy the following conditions.

Condition 1.1

00 )
SEt:Zajft_j, Z||a,-||2<oo, G,0=I,
Jj=0 Jj=0

) )
U = ij&'t_j, Zb? <00, by=1.
—

J=0

Let F; and G; be the o-algebras of events generated by &,, s < t, and &,
s < t, respectively.

Condition 1.2 {£,} is a stochastic process that satisfies
1. E(¢|F-1VG) =0 a.s.,
2. E(£&|Fi-1VG) = E(££) =E as., and

3. the joint fourth cumulants of &,,;,, ji=1,...p andi=1,...4, where §,;
denotes the j-th component of the vector &,, satisfy

K¢ j1,52,33.54 @S- 1 =1 =t3 =14,
- (gtl.‘il’£t2j2’£t3j3’§t4j4[gT) - { 0 as otherwise
.8, ,

with |ke| = maXji=1,. pim1,..4 [Ke 1 nis.dal < 00-
Condition 1.3 {e;} is a stochastic process that satisfies

1. E (Etlf't \% gt_l) =0 a.s.,
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2. E(e}|F:VGi—1) =E(e?) =02 as., and

3. the joint fourth cumulant of e;,, i = 1,...4 satisfies

K a.s. tl = t2 = t3 = t4,

cum (etnetza €tz Et4lFT) = { 0 a.s otherwise
.S. 3

with |k| < oo.

Condition 1.4 The functions
A (ev‘) = ZajeijA and B (ei'\) = Ebjeij’\
=0 =0

satisfy the following assumptions:

1. there exist constants 0 < Cy,Cy < 00 and dyg,d € [0,3), k =
1,2,...,p, such that |Aw (A)| ~ CopA™%*, |B (e?)| ~ Ca % as A —
0+,

dA!eiAI

2. A(e?) and B () are differentiable on (0, and || —5

dB! eir }

dA

A

-o(t),

=0 (Jﬂiiﬂ) uniformly over (0,7] as A — 0+, and

3. ||A(¢*)|| >0 and | B (¢*)| > 0 for A € (0, ).

Condition 1.5
/ feeW) Wl dA <00, Blzizl) >0,

where fyz(A) and fuu(\) are spectral densities of processes z; and u;, respec-
tively.

The conditions are similar to those used by Robinson (1995a,b, 1998) and
Hidalgo (2003a). Conditions 1.1-1.3 imply homoskedasticity of regressors and
errors. This assumption could presumably be relaxed to allow for a certain
degree of heterogeneity. Conditions 1.1-1.3 also imply that z; and u, are
uncorrelated for all ¢t and s and that E (zyuziu,) = E(z:2),) E (ugus) for
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all £ and s and therefore that the spectral density of z;u; at frequency zero is
27 " faz (A) fuu (A) dX if Condition 1.5 holds. One of the reasons for imposing
the condition F (ziu:zius) = E (z2),) E (usu,) is that it allows us to use

T-1
T z; Ips (’\j) I ()‘J')
=

of Robinson (1998) to consistently estimate 27 ["_ foz (A) fuu (A) dA without
having to select a bandwidth. If the condition E (ziu;zius) = E (z:zh) E (usu,)
is not valid, the long run variance of z;u; has an additional component which
is a function of the fourth cumulants and which is not estimated by the ex-
pression displayed above. When z; and u; are short memory processes, the
results of Taniguchi (1982) and Keenan (1987) can be used to estimate the
additional component of variance, but no estimation methods are available for
long memory time series. Relaxing condition F (z;uziu,) = E (z:2)) E (usus)
would thus come at a price of a considerable amount of technical work. There-
fore, though assumption of no correlation between regressors and errors is
admittedly somewhat restrictive and excludes for example some cases of in-
terest studied by cointegration literature, we do not attempt to relax this
assumption.

A further remark on Conditions 1.1-1.3 is that while the fourth moments
are assumed constant, the third moments are free to vary and so only second
order stationarity is required.

Condition 1.4 allows for a possible singularity at the zero frequency but
the results of this chapter could be generalized to the case of a singularity at a
nonzero frequency or of more than one singularity. The validity of the bound
|dB (¢2) /dA| = O (|B (¢*)| /X) implies that |dfuu (A) /dA] = O (fuu (X) /N)
since fuw = |B(¢*)|*0?/(27). Similar implication holds for the spectral
density matrix f;;. Examples of scalar processes that satisfy Condition 1.4
are FARIMA model of Granger and Joyeux (1980) or Hosking (1981), and
fractional Gaussian noise of Mandelbrot and van Ness (1968). These models
satisfy f (\) ~ CA™2? as A — 0+ for some memory parameter d € [0, %) An
example of a model with singularities at nonzero frequencies is the Gegenbauer
model of Gray et al. (1989).
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Condition 1.5 has been used by Robinson (1994b) and Robinson and Hi-
dalgo (1997). The condition restricts the collective memory of regressors and
errors. For regressors with long memory parameter d, and errors with long
memory parameter d, Condition 1.5 imposes restriction d, + d < % This
condition ensures that the standard least squares estimation procedure of the
slope coefficients is v/ T-consistent and leads to a Gaussian limit distribution
(Robinson (1994b)). As Hidalgo (2003a) remarks, the first part of Condition
1.5 seems to be very mild and appears to be necessary and minimal for the
central limit theorem for OLS estimates of slope coefficient to hold. In a re-
lated proposition of Giraitis and Surgailis (1990) an analogous condition is
required for convergence of quadratic forms in linear processes. The validity
of the CLT carries over to the functional CLT in the present chapter. The
restriction d; + d < % could be relaxed by employing estimators of a class of
weighted least squares estimators proposed by Robinson and Hidalgo (1997)
or a class of generalized least squares estimators proposed by Hidalgo and
Robinson (2002), but for notational simplicity we keep Condition 1.5 as it
stands.

The main result of this section can now be stated.

Theorem 1.1 Under Conditions 1.1-1.5 and under the null hypothesis,

B(r)-8
VT 5(r) _ 1 210z (+W (1) — W (7))
va \ S(T) T(l-71)\ =103 (W(r)-W (1))

on A, where Q@ =27 [ foz(A) fuu(A)dA and = E(z,x}).

Theorem 1.1 implies in particular that

VT3(r) = T(l;_r)z-ln% (W (7) — W (1))
so that for each fixed T € A,
VTo(r) 5 N (0,V5(7)), (1.9)
where
Vi (r) = 7(11- R



It is interesting to note that when z; or u; are long memory processes, the
limiting distribution remains to be a function of a Brownian motion rather
than of a fractional Brownian motion that often arises in asymptotic results
in long memory environment. A result that is crucial for validity of Theorem
1.1 is that T-Y2Y 11 L, (\;) = T2 I 2, (u — @ (7)), where @(7) =
T-1 ZE{J ug, converges weakly to a Brownian motion. When a strongly de-
pendent process z; is considered separately, normalization by T-3~¢ is re-
quired to achieve weak convergence of the partial sum ZE;] z; and the limit-
ing process is a fractional Brownian motion. However, the case of the partial
sum }:ﬁf{l z: (ug — 4 (7)) is different. Intuitively, while the memory of the
processes z; and u; is of a long range, the product z; (u; — @ (7)) displays
short memory behaviour. This phenomenon may be regarded as analogous to
that of Robinson (1998) where the sample autocovariances of processes z; and
u; are stochastically dampening each other in his estimator of (2.

To assess the power of th(la test procedure, we examine limiting behaviour
of the process ([3 (r),é ('r)') under alternatives. We restrict ourselves to the
local alternatives

ﬁt=ﬁ+%h<%), t=1,....T, (1.10)
for some (3, where h is a p-dimensional vector of bounded variation functions
on [0,1]. This class of alternatives comprises many types of structural change
that may be of interest. For instance, a function h (1) = 6l (7o < 7) describes
the alternative of an abrupt break of size § at time 7¢. A step function h
defines multiple structural breaks. A function s consisting of two constant
segments connected by a smooth curve depicts smooth transition between
two steady levels of a parameter, while a general smooth function A captures
continual change of the parameter.

For the limiting distribution under local alternatives the following result
is obtained.

Theorem 1.2 Under Conditions 1.1-1.5 and under the local alternative hy-
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pothesis (1.10),

B(r)-8 1 BU1Q% (rW (1) — TW (7))
‘/T( br ) = -7 ( 5108 (W (r) — W (1)) )

N 1 ('rf:h(u)du )
T(1—1) (fofh(u) du—'rfolh(u) du)
for T € A.

By the continuous mapping theorem, an immediate consequence of Theo-
rem 1.2 is the following corollary.

Corollary 1.1 Let ¢ be a continuous functional on D (A)®. Let
Zr=¢ (\/Tg (T)) and

Zh = ¢ (T(TI—T_)E—IQ% (W (T) —-TW (1)) +

ﬁ(/oTh(u)du—'r/Olh(u)du)).

Under the conditions of Theorem 1.2,

The corollary shows that the test based on Zr has nontrivial local power
against a broad range of alternatives. The limiting random variable Z, is
indexed by functions h specifying local alternatives. Under the null, when
h = 0, the test statistic Zr converges in distribution to Z,

¢ (ﬁs (T)) < (W%T)E_IQ% (W () — W (1))) .
The asymptotic test at a significance level « is based on a critical region C,
constructed from the asymptotic null distribution, P (Z € Cy) = a. The
asymptotic test rejects the null when Zr € C,.

The form of the limiting distributions in Theorems 1.1 and 1.2 explains
the reason for the necessity of bounding the set A away from 0 and 1. The
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restriction on A guarantees that the convergence of the estimator ) , which
is the basis of the test statistic, is uniform. Moreover, it can be shown that
for A = (0,1) many functionals, including the sup- and L,-norms, diverge to
infinity in probability.

The trimming restriction on A can be avoided by allowing the limiting dis-
tribution of the test statistic to be of a different form than a functional of the
Brownian bridge. The results of Jaeschke (1979) and Eicker (1979) suggest
that the supremum of § (), taken over subsets of (0,1) that are increasing
towards (0, 1) at an appropriate speed and that are normalized by a suitable
centering and rescaling sequences, should converge to an extreme value distri-
bution. However, relaxing the restriction on A in such a way comes at a cost.
The convergence of the test statistics to the extreme value distribution can
be expected to be very slow. The results of Hall (1979) indicate that the rate
of convergence could be as slow as logT. The asymptotic critical values are
therefore not appropriate for tests in samples of moderate size and an elab-
orate bootstrap procedure would be required to improve on the performance
of the asymptotic test. We do not pursue this possibility in this thesis.

It is interesting to note that

W (r) =W (1) 1

vat T(1—17) =7'(1—7')

is not constant across A which means that under the null, the probability that
the process “3’ (1) H crosses any horizontal line above the real axis is smallest
at T = % This may lead us to inquire whether the power of the test based
on supremum and other functionals can be improved by levelling the variance
of the estimated process § across A. Given the restriction of A away from
(0,1), we may normalize the process by multiplying it by [r (1 — 'r)]l/ 2, By
Theorem 1.1, under the null,

(1 = )]} VTo(r) = ﬁz-%ﬁ (W (r) — 7W (1)),

—T)2

where the variance of the limiting distribution is equal to ¥71QX~! across
A. The rejection probabilities of the test based on the levelled process 4 in
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samples of moderate size is examined in a Monte Carlo experiment in Section
1.4.

Our test procedure is based on the behaviour of the OLS estimator of the
0 coefficient. At the core of the limit behaviour of the test statistics lies the
fact that T-Y/2 37, o1 Wa(r) (A;) Wa (A;) converges weakly to a Brownian motion
process. Using this fact, the asymptotic behaviour of other tests based on the
behaviour of OLS slope coefficient estimators can be obtained. For example,
if Bz is the OLS estimator of 3 in the regression y, = a + B'z; + u; for
t =ty,...,ts, then under the local alternative (1.10)

(B -8) = sk W (n) - W ()

+(/01h(u)du—7'/0.1h(u)du)

in correspondence with the results of Ploberger et al. (1989). If £ and
are consistent estimates of ¥ and 2, then the Wald-statistic process based on
partial sample slope estimators,

Tl T N8 i ?)>m T 4T
(081 IB[TT]+1) (T(l ) ) ()61 ﬁ[TT]+1)
has limiting distribution J ()’ J (), where

J(r) = —— (W (r) = W (1))

[-( —T)]
—_Qiy% (/ h (u) du—'r/ h(u du)
as in Andrews (1993).

On the other hand, the limiting distribution of tests based on behaviour

[N

up—-

[ (1—7‘

of the OLS residuals depends crucially on the weak convergence of Et _q U to
a limiting process. Under long memory, the appropriately normalized partial
sum can be expected to converge to a fractional Brownian motion and thus
to be different than under short memory.
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1.3 Bootstrap procedure

The limiting distribution of the process § in (1.9) depends on unknown para-
meters {2 and ¥. The process 4 can be normalized by consistent estimates 2,
3 of these parameters. Such consistent estimates are for example

T
= %Zm; (1.11)
t=1
and
A~ Ar? A
j=1

Consistency of ¥ follows from ergodicity of z; in the variance implied by
Conditions 1.1 and 1.2. The estimator 2 is based on results of Robinson

(1998) and its consistency is asserted in the following theorem.
Theorem 1.3 Under Conditions 1.1-1.5 and under the local alternative,
Q50

The normalized process & (r) = 2254 () has a limiting distribution
which is free of nuisance parameters,

W(r)—1tW(Q)

VT3 (1) => e

(1.13)

In special cases, distributions of functionals of Brownian motion are known
analytically and quantiles of the distributions can be easily computed. Ex-
amples are supremum of a Brownian motion and supremum of a Brownian
bridge. In other instances, critical values have been computed by simulation
and tabulated, as in case of the supremum of the square of a standardized
tied-down Bessel process in Andrews (1993). However, in majority of cases,
including non-supremum functionals of the limiting distribution in (1.13), the
critical values of the test statistic need to be simulated by the researcher.
An alternative to computing asymptotical critical values by simulation is to
employ a bootstrap procedure. The basic bootstrap of Efron (1979) estimates
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the unknown distribution of a random variable by the empirical distribution
of a random sample drawn from that distribution. However, time series data
cannot be regarded as a random sample, and the bootstrap procedure needs
to be modified to accommodate the time dependence structure of the data.

A number of time-domain bootstrap procedures for time series has been
proposed, ranging from parametric procedures such as those of Freedman
(1984) or Efron and Tibshirani (1986) to nonparametric methods, such as the
block bootstrap of Carlstein (1986) and Kiinsch (1989), subsampling algo-
rithms introduced by Politis and Romano (1992), or sieve bootstrap proposed
by Kreiss (1988) and explored by Bithlmann (1997, 1998). Frequency domain
approaches have also been examined. Among others, we can cite the peri-
odogram ordinates bootstrap of Franke and H&rdle (1992) or Dahlhaus and
Janas (1996). The validity of all of these procedures, however, is subject to the
assumption that the dependence between distant observations is sufficiently
weak. This assumption excludes processes with long memory. Moreover, all
the nonparametric methods cited above require a user intervention in the form
of choosing a lag length, a bandwidth or a block length. The performance of
time-series bootstrap can be highly sensitive to the choice of the dimension
parameter, particularly in samples of moderate size. Although automatic pro-
cedures for choosing the dimension have been devised for some methods, they
can be computationally expensive.

Hidalgo (2003a) proposes a method that eliminates the dimension choice.
He suggests to bootstrap OLS residuals in frequency domain. His bootstrap
procedure is easy to implement and computationally inexpensive. Moreover,
it is one the first bootstrap procedures shown to be valid for long memory time
series in a fairly general context, adding to a still thin body of the literature
on long memory time series bootstrap.

In this chapter we propose to approximate the critical values of the testing
procedure described in Section 1.2 by a bootstrap procedure based on the
ideas of Hidalgo (2003a). The procedure consists of the following steps.

Step 1 Compute OLS estimates 3 () and & () from (1.4) or (1.6) for 7 € A.
Compute 7 = argmax,ca ||3(7')||, the OLS estimates 3 = 3(#) and
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& = § (#) and the OLS residuals

ty=y—-Bo-8z(#), t=1,..,T.

Step 2 Compute
1 .
wﬁ(’\j)=ﬁzﬂtelvﬁa j=1,...,T -1,
t=1

and

o O -1, (A
Ba(\;) = wa () ~ 777 Y=t Wa ) . j=1,...,T-1.

(?171 S lwa (V) — 75 Tkt wa (Ak)| )

W=

Step 3 Draw arandom sample nj, .. ., Mir/2 from the distribution P* (n; = u")ﬁ()\k))
[T g fork=1,..., [T/2] and generate a bootstrap sample

wt (N) = Bowa(Ny) + lwaQg)lml, G =1,...,[T/2],

where 3, is the estimate of 8 from the null regression of w, ();) on
wz(A;) alone.

Step 4 Compute (8" (1), (7))’ as

B*(T) _ ET—IIZM ET llzz,z -
é (1) ZT'IIm ET—I Lz
sze( 2y g sy )
S ey lwag|

where the right-hand side depends on 7 through the definition z; =
zl (t < [rT)) in (1.3).

Step 5 Compute the value of the functional used for the original data, Z} =
¢ (vT5").
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The distribution of the bootstrap test statistic Z1 can be used to approx-
imate the asymptotic null distribution of Zr, that is to construct a bootstrap
test. To show the validity of the bootstrap procedure, we need to prove that
the bootstrap process

A% A _ -1
)B (j;) - 160 — T— ! sz,J ET ' I:cz,]
0 (T) Zf_lIzzJ ZT lIzzJ
(T/2 *
x2Re %/21 Vg g fwa,| 3 (1.14)
Di1 War),j [wa| nj

consistently estimates the null behaviour of the process (B (ry = 8,58 (r)

It must be shown that under the null and under the local alternative the
process 2Re T-1/2 zg_r/ 2wy [wa g 1}, conditionally on data, converges weakly
in probability to the same process as T~/2 E}:ll L. (), that is,

(/2]
1
2367 Z Wy(ry j lwa il 1 = -ﬂQQW(T)-

The consistency of the bootstrap is asserted in the following theorem.

Theorem 1.4 Under Conditions 1.1-1.5 and under both the null and the local
alternative hypotheses,

B ()-8 1 27105 (rW (1) — TW (7))
ﬁ( 8" (r) ) ) ( T-103 (W () — 7W (1)) ) '

A straightforward consequence of Theorem 1.4 and the continuous map-
ping theorem is the following corollary.

Corollary 1.2 Let ¢ be a continuous functional on D (A)?. Let
Zr=4¢ (\/TS* ('r)) and let Zy be Zy, of Corollary 1.1 with h =0, i.e.

Zo=¢ ((T 1 -7t (W (r) — W (1))) .
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Under the conditions of Theorem 1.4,

75 7,

The bootstrap test is constructed using a critical region C} based on the
bootstrap distribution in such a way that P(Z; € C%) = a, where a is a
level of significance. The bootstrap test rejects when Zr € C%. Let Fj} (z) =
P(Z} < z|FrV Gr) denote the distribution function of Z} conditional on
data and F (z) = P(Z < z) the null asymptotic distribution function. The
bootstrap p-value for a one-tailed test is pr = 1— F} (Zr). The bootstrap test
rejects Hy when Zr is large, that is when pr is small. By Corollaries 1.1 and
1.2, Zr 4, Zy, and Fr. =£s F. The continuous mapping theorem implies that
prSH1-F (Zr). The p-values based on the bootstrap distribution Fj. are
therefore asymptotically equivalent to the p-values based on the distribution
F.

It should be noted that the proposed bootstrap is not the only possibil-
ity. The variables n} in Step 3 are drawn from the empirical distribution of
normalized discrete Fourier transform of the OLS residuals. Alternatively, ex-
ternal bootstrap can be carried out by drawing 7} from any complex-valued
distribution with zero mean, unit variance and Enj? = 0. A natural choice is
a complex normal distribution. The proof of validity of the external bootstrap
procedure remains identical to the current proof. Another valid modification
is to multiply 7} in Step 3 by the value of ws (};) instead of its modulus.
The proof of validity in this case goes through with only minor alterations as
noted at the end of the proof of Lemma 1.12 in Section 1.A below. A simula-
tion study suggests that none of the methods above dominates the others in
performance.

Hidalgo (2003a) interchanges the resampling with the Fourier transforma-
tion, first resampling the normalized time-domain residuals and then trans-
forming the resampled data into the frequency domain. His simulation results
seem to suggest that there is no substantial advantage in exchanging the order
of the operations. In the simulation experiments in this chapter we use the
procedure given in Steps 1-5.
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1.4 Finite sample properties

In order to assess the performance of the bootstrap procedure in finite samples,
a small Monte Carlo study is conducted. Data are generated according to a

simple linear model
Y = o+ B,z + uy, t=1,...,T,

where scalar series {z;} and {u;} follow a FARIMA(0, d, 0) process and where
a = 0. The long memory parameters d, and d for the regressor z; and errors
u; are either 0 (short memory) or 0.2 (stationary long memory). The series z;
and u; are generated using the Davies-Harte (1987) algorithm. The set A of
feasible break dates is taken to be the interval [T, (1 — €) T] where £ = 0.05,
so that approximately 5% of potential break dates are discarded from each side
of the 1,...,T range. The sample sizes considered are 32, 64, 128, 256. While
a sample of length 32 may be too short to yield satisfactory results in the long
memory case, the Monte Carlo simulation can still offer useful insights into
the performance of the method for the short memory case. Two functionals
are chosen on which to base the test procedure: a Kolmogorov-Smirnov- (or
Bartlett-) type statistic, whose discrete version is

)

KS = sup VT ‘3 (l)
[eTI<i<[(1-€)T] T

and a Cramér-von Mises-type statistic based on Lo-distance, with a discrete

version

The bootstrap test is based on the estimated process & obtained from (1.4) or
(1.6). Since the limiting variance of the process 4 (r) varies with 7, we also
consider a normalized version [r (1 — 'r)]% 4 (1), whose variance is level across
A.

The asymptotic test is based on the process 8 (r) = Q7235 (), where £
and () are computed as in (1.11) and (1.12), respectively. A levelled version
[r(1- 'r)]% 8 (1) is also considered. The values of the Kolmogorov-Smirnov
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and Cramér-von Mises test statistics are compared with quantiles of their as-
ymptotic distribution. These quantiles are estimated by approximating the
limiting processes by their discrete versions over a grid of 10 000 points spaced
equally across the interval [0, 1] and by simulating the distribution of function-
als of these processes by Monte Carlo. The number of Monte Carlo replications
is 108,

The results in each of the tables are all obtained conditionally on a set
of 5000 replications of a 256 x 2 matrix of independent identically distrib-
uted N (0,1) elements. Within each replication, 1000 bootstrap samples are
generated. The rejection probabilities are based on 5% nominal significance
level.

Table 1.1 gives the results of the examination of the level of the bootstrap
and asymptotic tests. In this table and in Table 1.2, the heading "raw”
denotes the size of the test based on the original process § (r) defined in (1.4)
or (1.6) whereas the heading "norm” refers to the size of the test based on the
levelled process [7 (1 — T)]% & (1). The bootstrap test is non-conservative, with
level approaching the nominal value from above as the sample size increases.
Overall, neither KS nor CvM test statistic can be said to generate better test
as far as level is concerned. The actual level tends to be closer to the nominal
value when the memory of the error is of short range. Levelling the variance
of the process § does not seem to bring substantial changes in the size.

The asymptotic test performs poorly for the range of sample sizes under
consideration. Again, neither of the Kolmogorov-Smirnov and Cramér-von
Mises tests dominates the other. Levelling the variance of the process 8 ac-
tually seems to slightly damage the null rejection probabilities for a range of
sample sizes.

In order to explore the power of the test under the alternative, the alterna-
tive is set up as a break in the middle of the sample, 79 = 1/2, with unit size of
the jump, 6 = 1. In the experiment the alternative is fixed, that is the size of
break does not change with the sample size. The outcome of the simulation of
rejection probabilities under the alternative is reported in Table 1.2. In terms
of rejection probabilities under the alternative, the CvM test appears to be
strictly preferable to the KS test for both the bootstrap and the asymptotic
test. This is in agreement with expectation of Ploberger and Krimer (1992)
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who suspect that Ly-norm CvM test might perform better than sup-norm KS
test in case of the one-time structural break. The rejection probabilities of
the asymptotic test are larger than those of the bootstrap test in a majority
of parameter combinations. However, such a comparison is not informative
since the actual critical values have not been corrected to yield 5% level of the
tests. An important observation is that levelling the variance of the process )
unambiguously and substantially improves the power of all forms of the test.

Overall, the outcome of the simulation exercise provides evidence that
the bootstrap procedure proposed in the chapter performs reasonably well
already for samples of moderate size. The results of the exercise further seem
to suggest that (a) the bootstrap test is preferable to the asymptotic test for
small to moderately sized samples, (b) Cramér-von Mises-type of test statistic
is preferable to the Kolmogorov-Smirnov-type, at least for one-time change
alternatives, and (c) levelling the variance of the test process é across A may
be recommended, at least for some forms of the alternative hypothesis.

1.5 Conclusions

The chapter examines a test for parameter instability in a linear model where
memory of both regressors and errors is allowed to be of a long range. The
testing procedure is based on a process of OLS slope coefficient estimators.
The choice of a continuous functional of this process for constructing the test
statistic can reflect beliefs about the form of alternative and can improve the
power of the test procedure.

A bootstrap procedure is proposed to approximate the distribution of the
test statistic to the first order. The procedure is carried out in frequency
domain and does not require choice of any tuning parameter such as block
length in block bootstrap methods. A Monte Carlo study suggests that the
bootstrap produces good results and is superior over the asymptotic test for
moderate size samples.

There are several natural directions in which the current work can be
extended. First, the condition that < oo could be relaxed to allow for
greater degree of collective memory of regressors and errors. In this case,
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d, d
T=32

0 0

0 0.2
0.2 0
0.2 0.2
T=64

0 0

0 0.2
02 0
0.2 0.2
T=128
0 0

0 0.2
02 0
0.2 0.2
T=256
0 0

0 0.2
02 0
0.2 0.2

9.9
12.3
9.9
12.2

9.1
10.2
8.8
10.1

6.5
6.9
6.4
7.4

5.3
5.8
5.4

Bootstrap test

KS

CvM

raw norm raw norm
99 94 9.3
12.2 11.9 10.5
104 10.2 94
12.6 123 11.0
9.2 8.8 7.7
96 83 7.5
86 8.7 8.1
94 93 8.5
6.3 6.7 6.5
64 6.7 6.5
6.5 6.9 6.7
73 7.2 7.1
57 5.9 5.9
55 5.9 5.9
53 6.1 6.1
6.0 6.1 6.0

6.3

Asymptotic test

KS CvM
raw norm raw norm
46.7 41,5 523 346
48.8 43.1 54.6 36.1
49.7 44.6 56.9 41.0
50.5 45.5 58.8 42.9
179 15.0 15.7 94
18.7 15.8 17.1 10.1
20.7 18.2 21.6 13.5
19.9 18.2 22.6 15.5

7.6 46 64 4.7
8.2 50 6.8 4.5
9.5 6.2 8.5 6.1
8.7 64 9.6 74
3.7 1.7 4.0 3.3
4.0 19 4.2 3.4
4.8 24 5.2 4.1
4.0 22 55 4.7

Table 1.1: Size of the bootstrap and asymptotic test at 5% nominal level
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d, d
T=32

0 0

0 0.2
0.2 0
0.2 0.2
T=64

0 0

0 0.2
0.2 0
0.2 0.2
T=128
0 0

0 0.2
0.2 0
0.2 0.2
T=256
0 0

0 0.2
0.2 0
0.2 0.2

Bootstrap test
CvM

raw norm raw norm

KS
11.0 198
13.0 209
119 21.0
143 225
155  83.1
156 514
16.8 53.4
175  50.8
323 919
31.0 903
34.7 925
323  89.2
79.4 100.0
746 999
81.5 100.0
71.6 100.0

24.9
26.5
26.2
279

68.3
66.6
68.9
66.0

97.5
96.5
98.1
95.0

100.0
100.0
100.0
100.0

36.9
38.4
37.9
38.4

80.9
79.6
81.5
77.1

99.1
98.7
99.4
97.9

100.0
100.0
100.0
100.0

Asymptotic test

KS CvM
raw norm raw norm
48.0 52.1 75.8 70.0
49.9 53.0 76.8 71.0
52.3 58.9 81.1 76.2
52.6 58.9 80.5 75.8
17.5 54.7 78.9 82.4
11.7 544 784 81.8
22.4 65.0 84.3 87.5
21.5 60.5 81.0 83.8
16.0 91.5 97.1 98.5
16.0 89.9 96.3 98.0
24.5 94.8 98.3 99.2
19.9 88.8 95.7 99.2
61.7 100.0 100.0 100.0
100.0 100.0 100.0 100.0
73.7 100.0 100.0 100.0
493 999 99.8 100.0

Table 1.2: Rejection probabilities of the bootstrap and asymptotic test under

the alternative at 5% nominal level
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the OLS estimation procedure could be replaced by a GLS-type procedure.
Second, partial structural change could be considered and gains in efficiency
from allowing partial change evaluated. Third, a bootstrap procedure might
be shown to approximate the distribution of the test statistics to an order
higher than first. These topics can be examined in future research.

Further, under the assumption that the alternative hypothesis holds and
is of the one-time structural break form, the date of break could be esti-
mated and, based on the distribution of the break date estimator, inference
conducted. Estimation of the date of break is the topic of Chapters 2 and 3.

1.A Proofs

For notational simplicity, the process {z:} in Theorems 1.1-1.4 is taken to be
scalar. Asymptotic results for vector processes can be obtained using Cramér-
Wold device for stochastic processes as defined for example in Lemma A4 of
Andrews (1993). We denote A; = A (¢*) and B; = B (eV).

Validity of Theorems 1.1-1.4 rests on the fact that under Conditions 1.1-
1.5,

T-1
% S L= %Q%W (1), (1.15)
j=1
1 T-1 1
7 D Why,jBhye; = T /0 hy (t) he (t) dt (1.16)
j=1
and
/2] o 1
2Reﬁ > wey, lwaglmy > 3 SBEW (1) (1.17)
j=1

over {0, 1], where for any function h, {wps;,j =1, ..., T} is the discrete Fourier
transform of the sequence {h(t/T)z;,t =1,...,T} and where the random
variables i} are defined in Step 3 of the bootstrap procedure. In all three
cases, the convergence is shown in two steps. First, convergence is proved
for weighted innovation processes {£,} and {e:}. The result for the processes
{z:}, {u¢} is then established by showing that the difference between the left-
hand sides of (1.15)-(1.17) and their weighted-innovation analogues converges
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to zero in probability uniformly over [0,1]. Lemmas 1.1-1.12 in Section 1.B
below establish convergence in (1.15)-(1.17). The validity of Theorems 1.1-1.4
is argued employing Lemmas 1.1-1.12.

Proof of Theorems 1.1 and 1.2. Under the local alternative,

\/T B(T) —,3 ) - ( TZT_IIE::,J T T 1I:z:z,] ) < TZT 1I:z:'u,] )
o(r) T 23—11 Lwj 7 ET ¥ Lz f Z —1 Lo j

(A ) (AT )
TE 1 Lezyj TZ 1 dzz f‘E; 1 Wz,jWha,j

By Lemma 1.9 with h; (z) =1 and hy (z) =I(z < 7),

Similarly, £ 377 Tooj & £E and £ 37 L.; 2 £, and therefore

71* Z?—.—ll Ia:a:,y 711 3:11 Izz,j — 17 ® — 1 Bl y
1 ZT—II T lI r T o
T 2Z,j T 2z,j

over [0,1]. Since matrix inverse is a continuous function for 7 € A,

-1 -1
1
— ( T ) ®2ryL.
T T

over A. Under the null, that is when h = 0, the second term on the right of
(1.18) vanishes. By Lemma 1.7,

B(r)-8 1 2103 (rW (1) — W (7))
ﬁ( 3(r) ) = a-n ( T3 (W (1) — TW (1)) )

and Theorem 1.1 is proved.

( %E;r——ll I:m:,] TET llzz,J )

T—1 T 1
T 2 Izw,] T IZZ,J
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Under the alternative, h # 0 and by Lemma 1.9

T-1

1 1 T
—E wz-'LT)z-=>——2/htdt
,—Tj=1 J Wha,j o1 Jo ()

over [0,1]. Therefore the second term in (1.18) converges to

1 7 [ h(u) du
T(1-1) (forh(u)du—*rjgh(u)du)
and Theorem 1.2 is established. m
Proof of Theorem 1.3. By Theorem 1 of Robinson (1998),
47{'2 T-1
? Z Ia::c,quu,j ﬂ) Q (119)

=1

Proceeding as in part (c) of the proof of Lemma 1.12, write

A N 1
Wyj — Waj = (/5 - ﬂ) Wz, + OWs(s),5 — T b

Therefore
Lisg — Tuuj = |wuj — wajl® — 2Re (waj — Wa) Wu,g
and
1 T-1 1 T-1
=Y Lo (Tang = Tuug)| < 7 ) (W [wa; — wal?
T 4 T 4
j=1 j=1
1 T-1
2
+r 3wl g — was) )
=1

The first term is o, (1) as shown for (1.42) in Lemma 1.12 part (c). By the
Cauchy-Schwarz inequality, the second term is bounded by

1 T-1 % 1 T-1 %
2 2 2 2
(TZ'“’W" |wu,; — wa,i ) (T D lwg s wa] )
=1

j=1
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whose second factor is O, (1) because of (1.19). Therefore indeed Q50 =
Proof of Theorem 1.4. Write

B*(T) - B — ET:II I-T-’”:J T ET-I Izz,J) -
\/T ( 3*(T) ) - ( iz-;" IIZ“’»J T ZT iy IZZ;J *

R ( LS fwa | ) _

T/2
is ZL/ W(r) g |Wa,| 7

Applying Lemmas 1.9 and 1.12, it can be seen that Theorem 1.4 holds. m

1.B Lemmas

This section contains some results employed in Section 1.A.

Lemma 1.1 Let g be a complez-valued function on [0, 7] which satisfies (a)
|g|? is integrable on [0,7], (b) g(\) = O (A™%) for X\ — 0+ for some d < }
and (c) g is bounded on any subinterval of (0,7]. Then for anya >0, 3>0
such that 2da+ 8 < 1,

[T/ 2]

Z I lea i/w Ig()\)l2ad/\
2T 0 )\ﬂ )
Proof. Fix € > 0. For any small 7,

T/2 o o
[Z/]' ]F [l lg WP\
27r T

[nTl 2a 2a
1 | Jl |9 ()‘
s T ; ,\ﬁ 27r _/ @

[r/2) 20 2%
1 |95 Ig()\)l

= Y - BT —d) (1.20)
Tj=[nT]+1 Aj 27T A

By assumption, for small enough 7 >0 and 0 < A < 7,
2a
g (;‘3| < O)\~2a—B o o)1t
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for some § > 0. Therefore

Similarly

1 7 Ig ()‘)Iza )
— — <
5 /0 SCa C

The third term in (1.20) converges to zero by integrability of |g|>. For small
enough 7 and large enough T, the left-hand side of (1.20) is smaller thane. ®

Lemma 1.2 Let g be a complez-valued function on [0, 7] which satisfies (a)
g(=X) = g(\) for all X € (0,7], (b) |g|* is integrable on [0,7], (c) g(\) =
O (A™%) for A — 0+ for some d <  and (d) g is bounded on any subinterval
of (0,7]. Under Conditions 1.1-1.3,

fzg,w«mww=>(aga = /o |dA) W) e

on [0,1], where the sequence {, (1)} is defined as {¢, (7)} = {£,1(t < [7T)),
t=1,...,T}.

Proof. The left-hand side of (1.21) can be written as
] /T

5 (z e )
s=1

where
=
=72 9.
j=1
Denoting d; = T-2Y°T_ ¢,c,_,, the process Gy can be written as

[rT]

Gr(r)=)_&d.
t=1

The realizations of the process Gr belong to the space D [0, 1] of real functions
which are right continuous with left hand limits. The sequence {¢,d;, ;-1 V Gr,
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1 <t < T} is a martingale difference sequence. The first two moments of the
process G are

EGT (T) = 0,

E|Gr (1)* = o2o3 5 375 oil” = TR E|Gr (DI

T

The variance of the process G therefore increases asymptotically linearly in
7 and the weak convergence of the process Gr in (1.21) holds if the following
two conditions of Scott (1973) are satisfied:

() Ticy B (&l | Foa v Or) 5 0otaz [T lg WP dA asT oo and

(b) 7, E(|di€.]*L(|di&,| > 6)|Fi-1V Gr) 2 0 for any positive 4.

These two conditions have been checked by Hidalgo (2003a) under simi-
lar assumptions on the weight function g and identical assumptions on the
processes {{,}, {e:}. After making appropriate adjustments for complex
weight functions and replacing Lemma 1 there with our Lemma 1.1, the proof
remains valid in our case. ®m

Lemma 1.3 Let h be a bounded variation function on [0,1]. Let H()\) =
ST h(t/T)e*™. Then for a constant 0 < C < oo independent of T,

(a) |H(’\)| <& ™ for A€ (0,7],

(b) f A)| dA = O (log j) uniformly over 1 < j < [T'/2].

Proof. (a) Letting D, (\) = _t_, €**, noting that

(i

A
giM1+t)/250 5 sin &
~ A

/\
sin £ 2

1D (N)| =

for 0 < A <, and using summation by parts, we have

B < fwtml{h(%)—h(t;l)\+|DT(A)Hh(1)|

< H(EHE) - e59we)
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due to the boundedness of the total variation of the function A.

(b)
Aj T Aj 1 O
/ [H(A)|d\ = / |H()\)|d)\+/ |H()\)ld)\_<_T/ d,\+/ Xd/\
0 0 * 0 i
= O(logj).
|

Lemma 1.4 Let h be a bounded variation function on [0,1]. Let {z:} be
a covariance stationary process satisfying Conditions 1.1, 1.2 and 1.4. Let
Hr(\) =YL, h(t/T)e® and Knr (\) = 52 |Hr (A)|>. Then

[,

uniformly over integers 1 < j < [T/2].

Al)

Aj -1

2
KhyT()\—/\j)dz\=O(%) asT — o0

Proof. The function A satisfies assumptions A1, A2’ of Robinson (1995b).
Furthermore, the kernel Hr has the property

T
AP

by Lemma 1.3. Therefore the lemma is valid by the arguments of Robinson
(1995b) in the proof of his Lemma 3. =

|Hr (A)| < O<A<m T>1,

Lemma 1.5 Let {z1:}, {z2:} be scalar covariance stationary processes satis-
fying Conditions 1.1, 1.2 and 1.4. Let hy, hy be bounded variation functions
on [0,1]. Denote by Ay the transfer functions of the processes {zi}, k =1,2.
Let v (\)) = V2mwy;/ (02 Ak (€)), where {wy;,j=1,...,T} is the dis-
crete Fourier transform of the sequence {h (t/T) zxt,t =1,...,T}. Then
(a) B {ve () 8 ()} = % S0y e (£) bt () + 0 (252) and
(5) E{ve () v ()} =0(1)
uniformly over integers 1 < j < [T'/2], for k, 1 =1,2.
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Proof. (a) Denote A (¢) = A ;. We have

oo (F5 (1)) ot

2

g - —_
= ﬁ (Ak( ) Ai(N) — AkiArs) K (A = ;) d),

-

where

Kua (V) = 5 e () i ()

and
T : .
He(N) =) h (T) e k=12
t=1

Condition 1.4 implies that we can choose 7 > 0 such that for A € (-n,0) U
(0,7), for some di, d; € [0,3) and for some 0 < C < oo, [Ax (A) A (V)| <
C IN~@+%) and | LA, (V) A (V)] < C N~ 4*+91. Furthermore by Lemma
1.3 the kernels K}; and Hj display properties required in the proof of Theorem
2 of Robinson (1995a), namely Ky (A) = O (T~A7?) for 0 < [A| < 7 and
f , [Hi (M) dA = O (log 5), k = 1,2. The proof of part (a) therefore follows
as in the first part of case (a) of Theorem 2 of Robinson (1995a). We obtain

_ ag 1 T t t - logj —(dk+dl)
t=1

from which it can be deduced that
Eu 0 E h t h +0 @
kiUl = T k 1 j
as required.

Part (b) follows from part (a) by the Cauchy-Schwarz inequality. =

Lemma 1.6 Let g be a function satisfying assumptions of Lemma 1.1. Then
foranya>0,>0,8>0andy>1,

/2] | . |2 10 _ ) o(1) 2da+ 6 21,
(a') Ta Z I J| { O (T—a—ﬁ‘i'l log T) 2da+ﬂ < 1,
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(b) 2= S S 955 ) (M52t )
_J o) 2da+ 6 2> 1,
| (TP T)  2da+B< 1.

Proof. (a) The assumptions of the lemma imply that |g()\)] < CA™¢ for
0 < A < 7 for some C. Therefore

Z I 1
Ta | J|2a Og .7 OgaT Aj—2daj~ﬂ — CT—a+2da log‘s Z j_2da_5
Jj=1 =1

O (T*@4-D10g’ T) 2da+ > 1,
= O (T V]og™*'T) 2da+pB=1, (1.22)
O (T*-*Plog’ T) 2da+ B < 1.

From here, the part (a) follows easily.
(b) By the Cauchy-Schwarz inequality, the sum in question is bounded by

(T/2] \ [T/2] [T/2] \ j (T/2] 1
a < CX
Ta2| 9l JB ZU kT~ Tazl 9l ;

(r/2]

Cl 6+1 Zl Jl2a
T"‘ e

IA

and part (b) now follows from (1.22). =

Lemma 1.7 Under Conditions 1.1-1.5,
Yict I,
< 97 et Lo |
I7 2ot Leu

Proof. It suffices to show that 7-1/2 ET_I Luj = (2m) ' Q3W (7) over
[0,1]. The function

Ni= =

Sl 8-
09

over [0,1].

g9(\) = —A () B (%)

27
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satisfies the conditions of Lemma 1.2. The present lemma is then proved if

-1 YT .
_lﬁ D_A(™) B(e) (ﬁ({;ﬁ)’ )j_f;w(il(,\)?)) — We(r) (A4) e (A,-)) = 0.

j=1
(1.23)
The left of (1.23) can be written as
h(n+Ya(r)+Ys (),
where
1 War).j ) (wu,- - )
Yi(r) = A;B; ( — We(r =2 — W j |,
1 \/-Z A] ¢()g BJ J
= w
Vi) = Al (%5 - v ) o
j
and r
, T-
Y; (1) = \/_ EA B, W (7). ( B ws,,) (1.24)

Processes Y;, Y, and Y3 are of the form

T)*—Zg] W, i=1,2,3,

where V; (1) and W; stand for the third and the fourth factor, respectively,
of the summands of the processes Y;. To prove that Y; => 0 for 7 € [0,1] it
suffices to show that finite dimensional distributions of the process Y; converge
to zero in probability and that the process Y; is tight. Take any n € N, any
numbers 7, ..., T, from the interval [0,1] and any finite complex constants
@1,...,0n. The first moment of > ", oY; (7)) is zero for i = 1,2,3. The
second moment is

T-1 4 T2
= Z 9k Esit EW;Wy < = Z |9;k| | Esji| | EW;Wk|
J:k_l ],k——l
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where

Sjk = Z QamVj (1) Vi (Tm) -

l,m=1
For i = 1,2 the factor V; (7) is equal to w,(s);/Aj —w¢(r),;- The total variation
of functions h,(z) = 1(0<z < 7), 7 € (0,1] is equal to one, therefore by
Lemma, 1.5 part (a)

Dlogj
J

(1.25)

Wa(r).i
sup E l— — We(r),5
re0] Aj ¢(1).3

as T — oo uniformly over integers 1 < j < [T'/2]. Using the Cauchy-Schwarz
inequality,

l

log]logk' log jlogk\ 2

< < o4 S
B < D (FELRER ' S fallonl <D pa

l,m=1

When ¢ = 3 the factor V; (7) equals w¢(,),;. For any 7, o € [0,1],

7l o2 1 M
Ewe(r),jU¢(o) k = Z Eg.£ ethimisM = S Z it M)
T t=1

2
For j = k, the last expression is equal to %Iﬁ%‘)ﬂ, while for j # k,

((rA0)T] s ( Ao T :‘r_f\lz)
LIS gy _ LI 1 1
T = T sin (—J—'\;’\") T|sin (—L;’\")
1 T 1

< = = - .
= Thy—M 2 -H
In sum,

1
E’UJ T W o =O —_— 126
¢(),3 W¢(a),k (I] — k‘|+) ( )
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uniformly over (7,0) € [0,1> and 1 < j,k < [T/2], where li—kl, =
max {1, |j — k|}. Therefore when i = 3,

1 D
7 — k|+ |7 — k|+

n
|Esiel <D Y lou| lowm

l,m=1

Turning to the factor Wj, for i = 1,3 it is equal to wy ;/B; — w, ;. By Lemma
1.5 part (a),

Wuj Dlogj
BJ wsﬂ j

as T'— oo and by the Cauchy-Schwarz inequality,

E

(1.27)

logjlogk
|EWWk|<D( 7k )

In case i = 2, W; = w,; and

EwEJwE’C - 2 T E EE Es nAJ-*-wA" = 27TT Z ""t(A'—)\k) - E]I(] — )

t,s=1

Collecting the bounds obtained for moments of the factors V; (7) and W; and
using Lemma 1.6, the following results are obtained:

Zaz}’i (1)

p /2
logjlogk
<—Z|,k g’ == =o(1),

Jk=1

p 772 2jlogh\ 3
) < 23 lgad (——T) 1G =)
Jik=1 J
p /2
lo
= —zm gf (1),
p 772
logjlogk\z 1
7'1) <= |Jk|( . =0(1).
szl k |J - k|+
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An application of the Cramér-Wold device together with the Markov inequal-
ity establishes convergence of finite dimensional distributions of processes Y;,
1 =1,2,3, to zero in probability.

Tightness of the processes Y; is implied by the moment condition of Billings-
ley (1999), Theorem 13.5, page 142,

ElYi(p) - Y: ) |Yi(r) = Yi(p)|* < (F (1) = F (0))**, i=1,2,3,
(1.28)
where a > %, o0 < p < 7 and F is a nondecreasing, continuous function on
[0,1]. The fourth moment of the difference Y; (1) — Y; (o) is given by

ElY;(r) - Y (o)*
16 (T/2] L ) )
< 7 O 1999Fnl |BV; ViVl |EW; WiW W],

j)k7!7m=1

where V; = Vj(7) — V;(0). Fori = 1,2, V; = (War)j — Wa(e)j) [Aj —
(we(r)j = weo)) and

cum (V;, Vi, Vi, Vi)
P 4 eiA et
- I (42-1) (452
y ( A (e%) ~ 1) ( A (ei(—_A—M—C)) ~ 1)
A An

X H A+ X3) H (= M) H (¢ + M) H (=X — = ¢ = Ap) dAdpd,

where k¢ = cum (&, &;, €., &), H(A) = 0L, A (H/T) €™ and h(z) =1(0 < 2 < 7).
Proceeding as in the proof of (4.8) in Robinson (1995b), we get

|cum (V;, Vi, Vi, Vim) | < DP} P} P2 P3,

P-

where )

ey
2nT

A
A H A+ )2 dx
A;
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Denoting Ky r (\) = (2¢T) " |H (\)|?, it can be seen that

-1 Kl,(-,-_a)T (/\ + /\J) dA\

_ (T-a)oG)

uniformly over (7,0) € [0,1]* and 1 < j < [T/2] by Lemma, 1.4.
Likewise

2 T i 2
2 - % Ae?) 1 32
EVE = 2 [ =1 Gop H O+ 2P
= DP_,'=(T—0’)O(%).
By the Cauchy-Schwarz inequality,
|V, Vi
_ _ 1
< |eum (V;, i, Vi, Vi) | + 3 (E|V;* E Vil E [Vi|” E |[Vin[*)?
< Clr—-o)i i tiript (1.29)

For i =3, V; = wg(r)—¢(),s and

cum (Vj, Ve, Vi, Vin) = —= %// H(A+ )
XH (p— M) H(C+ Aj) H(=A — p— ¢ — A) dAdpd(

which by using periodicity of H and the Cauchy-Schwarz inequality can be
shown to be (1 — ¢)? O (1) uniformly over (r,0) € [0,1]% and 1 < j,k,1,m <
[T/2]. Similarly,

2

o ™
BV = gar [ IHO+ 3P <Cr-0),

and so for i = 3, |EV;ViViVi| = (1 - 0)?0(1).
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Regarding the factor Wj, for ¢ = 1,3 we have W; = w,;/B; — w,; and
reasoning as in case of V; (i = 1,2) we obtain

|cum (W;, Wi, Wi, W) | < DP} ;P P4,PE,,

and
E|W;|* = DPgj,

where
B ( eiA)

B; -1

2
1 2
== [H (0 4+ )" dA

PB’j = /

with A = 1 in the definition of H (). By Lemma 1.4, Pg; = O (57'), therefore

EW;WWiWy, = O (j“%k‘%l‘%m-%)

uniformly over 1 < j,k,I,m < [T/2].
Finally, when i = 2, W; = w,,

T
- - . 1
cum (W, Wi, Wi, Wp,) = —4’;62 —-;2 et~ N=dm) — O (7;)
t=1

and

_ 1 .
EW; W, = --1(j = k) =0 ()

uniformly over 1 < j,k,l,m < [T/2].
Due to the bounds obtained above for moments of V; and W;, the following
inequalities hold:

(T/2]
EMO-YOI < 5 Y 19:9agml (r— o) 5k m?
3,k lym=1
P T y
= Dir—of [y 38| =D(r=0)'o()
Ti & J
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uniformly over (7,0) € [0,1]? by Lemma 1.1,

(T/2]
Elz(r) =Y ()" < T3 > |9igkqigm| (T — 0)? Ak 3 Em
ik lym=1
1%\ .
(T 0) T% j§=1: J% (T a) 0( )

by the Cauchy-Schwarz inequality and Lemma 1.1. The same bound applies
to E|Ys (1) — Y3 (0)|*. By the Cauchy-Schwarz inequality,

EY:(p) = Yi (o) |Yi(r) = Y% (o)’ < D ((p— 0)* (r = 0)?)? < D (1 —0)*

for i = 1,2,3 and the moment condition (1.28) is verified with @ = 2 and
F (t) = Dr2. This proves the uniform convergence in (1.23). The lemma is
established. m

Lemma 1.8 Let g be a function satisfying the assumptions of Lemma 1.2.
Let hy, ho be bounded variation functions on [0,1]. Let {wpej,j=1,...,T}
be the discrete Fourier transform of the sequence {h (t/T)&,t=1,...,T}.
Under Conditions 1.1-1.2,

Zng wh1£awhzfa / Ig()‘| d/\/ ha () ha (t) d

Proof. Denote hy = hy (t/T) and

e
E:lgy Why £,jWhyt,j-
j=1

We have

EZ = ZI %l 5 Tt;Ests cha,et= s
2 T 1

= Z|QJ| Zhlthzt—’—/ lg (V)2 d)\/ hy (t) hy (t) dt

=1
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by Lemma 1.1. Further,

Bl2f = o eIl DD B M e e

],k_ t,s,mv=1

4 T-1 T 2
= ng Z |gigx|” Zhithgﬁ' Z |g;gx|” (Zhlthzt)

Jsk 1 ],k 1
4 T-1

g —i
+_71—iz |gggk| ZhZ it(A; Ak)Zh2 it(Aj—Ak)

k=1
4 T-1

0 2
+ma D 1939
Jk=1

2

z hlchteit(/\j+)\k)

t=1

The first term is O (T'!) by Lemma 1.1. Proceeding as in the computations
leading to (1.26), it can be seen that

T
Zh2 it(Aj— k) < CT l= 1,2.
7 — k|+

Therefore the third term is bounded in absolute value by

[T/ 2]

T2 =5 nggkI kl

Jk=1 +

which is 0 (1) by Lemma 1.6.
Similarly, the fourth term is 0(1). The second term is dominant and

(g% /:r lg (V)]? A /: ha (£) ha (2) dt)z

by Lemma 1.1. In sum,

converges to

2 T 1
EZ - ;—; g AN [ Ry () ha (2) dt
-7 0
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and E|Z|* — |EZ|?. An application of the Markov inequality completes the
proof. m

Lemma 1.9 Let hy, hy be bounded variation functions on [0,1]. Let
{wWhz,j,3 =1,...,T} be the discrete Fourier transform of the sequence {h (t/T') x:,
t=1,...,T}. Under Conditions 1.1-1.5,

_Zwm.z,]whzz,j 2/ hl h2

Proof. The function g (\) = A () /v/2r satisfies the conditions of Lemma
1.2. Tt is sufficient to prove that

Wh, z, i Wh, z, _
TZ| A4l ( llx‘;l 2 —wme,jwhzs,j) - 0. (1.30)

j=1

The left-hand side of (1.30) is equal to

T 1 _
Wh z, Whoz,j _
I3 l4 ( s -wm) ( hoeg -w,ue,j)

i=1 7
= wh

T Z |4; | ( f;w - whx&]) What,j
i=1 I

Tl
| 451 wh,e (—h—z——wfw)
TZ 1§67 A] 28,7

By the Cauchy-Schwarz inequality, the expectation of the modulus of the first
term is bounded by

[T/2]
25 4 (

J =1
(T/2]
D og
< Té j —£d o(1)
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by Lemma 1.5 part (a) and Lemma 1.6. A bound for the expectation of the
absolute value of the second term is

[T/2]
23w (2]
[T/2]

< TZ[A| <l°g”) —0(1)

by Lemma 1.5 part (a) and Lemma 1.6. The third term can be bounded in
the same way as the second term. Therefore (1.30) holds and by Lemma 1.8,

W=

whlﬁ,]
- wh’l 69.7

2\ 2 ,
) (B |whae 1)

L 1

1 — .

Tzwhmwhm LN ;—fr L4 (7)) dr f by (t) hs (t) dt
j=1 0

0

- -21;2 / ha (8) b (2) dt
0

Lemma 1.10 Under Conditions 1.1-1.5, with a function g satisfying the con-
ditions of Lemma 1.2,

T—
23 o s el = (1 0) ek [lgPar (13

7=1

uniformly over (7,0) € [0,1]>.

Proof. First moment of the expression on the left of (1.31) is

T_
[(T/\O' )T) o302 1 2
TZngI Bwg(r) j0¢(0)i B lweg|” = 4n? TZI l

422/| (I

—
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by Lemma 1.1 because

[rT] 2
- 1 it-spr; _ (TA0)T]O
B o) = 5o O, Be,e M = S ok, (1.32)

t,s=1

Second moment of the expression on the left of (1.31) is

T-1
1 2 - - 2 2
T > 19i9k1” By j0¢(0), 1 (r) e (o) 4 B 10,517 we el
J)k=1

T-1
1 2 — — 2 2
= 75 2 gigel” cum (weery g, Do) > Bery s Weo) k) B e [wee]
Jk=1
1 T-1
2 _ _ 2 2
+rg D 195041 By ¢(0) EWe(r) kwe(o) B [wel [we il
3,k=1
1 T-1
2 _ _ 2 2
i D 1939kl" Bwger) j0¢n s Eg(a),10e(o)k B [ el
Gok=1
1 -1
— _ 2 2
i D |9308]" Briger) jweio) k Ber) k0e(0) 5B |we|” [wel”
jok=1
(1.33)
Now
cum (w¢(r) g, We(o).gr V()b Welo) k) =
[(rAa)T]
1 ke 1[(tAo)T) 1
= W Z cum (§t7£h£t,€t) = 4_7:2T—T_' =0 T
t=1

uniformly over (7,0) € [0,1]%. The fourth moments of &, are finite, therefore
the first term of (1.33) is bounded by DT3 Eﬂ/_ﬂ |lg;gx|* which is O (T)
by Lemma 1.1. Further, from (1.26),

B 0oye| < e
| Bwe(r),0¢(0),4] TR
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uniformly over (7,0) € [0,1]* and 1 < j,k < [T/2], and the third term of
(1.33) is bounded by DT E[i/zll lgigel? 15 — Ic|_12 which is 0(1) by Lemma
1.6. Similarly, the fourth termis o (1). Therefore we are left with the dominant
second term,

T-1

1

T Z |g;1” We(r),5We (o), |we,.1|
j=1

([(mam) 1w

T A2 T2 Z |9)gk| E|we,J| |w5k| +0(1).

Jk=1
Since

1

_ _ K
cum (We,j, Bej» We e Weik) = > _ cum (e, €, €0, €0) = T
t=1

and Ew, ;W =1(j = k) 0%/ (27), we have

T-1 5
1 2 2 2 Kk 1 2
ﬁjkz__-l |gjgk| E |we,j| lws.kl - 4TI'2TTE Z=:1 |gjglc| 4 2 T2 Z |ngk|

Jk=1
+4—é§6|97~/z| I(T even) —2;&
ot
= 62 T? kz Igjgkl +0(1)
Jk=1

by Lemmas 1.1 and 1.6. That means that

((T/\0422/|g ld)\).

The second moment of the process T"-! Zf____ll |951® We(r),iWe(0).4 | we 3| therefore

T-1

Z 19517 we(r), (o). [e il
J—l

1

converges to the square of the limit of its first moment. By Markov inequality,

T-1

1 aa 1
7 2l wcrsicon sl 2 (rAo) T [ lsyrar
=1
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for each (7,0) € [0,1]%. Since the limiting function is continuous and increas-
ing in 7 and o, the convergence is uniform. m

Lemma 1.11 Let hy,...,hy be bounded variation functions on [0,1]. Let
{z:} be a covariance stationary process satisfying Conditions 1.1, 1.2 and 1.4.

Let {wh,z,j,j =1,...,T} be the discrete Fourier transform of the sequence
{h- t/T)zs,t =1,...,T}, r=1,...4. Let I 2haz,j = Whyz,jWhyz,j- Then

T 1

T Z Ih1:c haz,j Ihaz Jhaz,j = Op (T)
=1

Proof. We have

—'Zlhw,hzzalhazhwa TZ 224 (@5 + b + ¢ +dj), (1.34)
Jj=1
where
o Tnyzhazi —’hlehze,a Thashaai _ o Thethats
i = ) 2 J
fzz,] fa:z,] Uf
b = [Imomsi oo Ihle,hzsa o Ihsf’ufa
’ f:cz,j
G = o Ihlehzea Ihaz,fuz,j _27|,Ih3£h4€,.7 and
F: Jozj of
472
dj = —gInghailhaghacs:
¢

The second moment of the first factor of a; is

— — 12
FE Iuljuzj - ’Ulj’vzj| = aij + azj,

where
u V2T Wh, o, j v v 27rw
:' = J = ———Wn ;'
T.j o Aj ) TJ o r&.J)
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alj = cum(ulj,ﬁzj,ﬂlj,uzj)—cum(ulj,ﬂzj,ﬁlj,vzj)

— cum (1, Taj, Taj, z;) + cum (v1, Taj, T, V25)

and, denoting h,s = & 31, h, (¢/T) h (t/T) for r,s = 1,2,

Az =
(Emﬂzj = h12) (Eﬁlj%j — hi2) + (Euuﬁzj — h12) + (ETyjugj — hi2)

+h%2 + (Euljﬁlj - hll) (Eﬁ2j'u2j - h22) + (Eul,-ﬂlj — hll)

+ (Egjuz; — has) + hahas + Busjug; B;h;

— (BuUgj — haz) (BV15v35 — h12) — (Bualia; — haz) — (B0 — haa)
—h%, — (BuyjBy — huy) (Bajva; — haa) — (Buayy; — hut)

- (Eﬂzj'vzj - h22) - h11h22 - Euljvngﬁgﬁlj

— (B2 — haz) (Ejug; — hag) — (BviU2; — hiz) — (Etjug; — hia)
—h?;, — (BuijTy; — hi1) (BUgugj — ha) — (BvijTy; — ha1)

- (Eﬁzjﬂgj - hgz) - h11h22 - EvljU2_,-E172jﬁlj

+ (B2 — haz) (ET1v25 — haa) 4+ (BviU25 — hag) + (EU1jv95 — hig)
+h2, + (Ev1j01j — hi1) (ETgjve; — hoo) + (Evij01j — hu)
+ (E’l_)zjvzj - hzz) + hy1hoe + E’U1j’U2jE52jW1j.

The term ay; is equal to

5 11 ([ (AN AEW ) [A(S)AEE0)
sarn L (M0 ) ()

XHy(A+ Aj) Ha (k= ;) Hy (C+ Aj) Ha (=X — o — (= ;) dAdpd,
(1.35)

where H, (\) = Y1_, hr (t/T) €**, r = 1,2. Proceeding as in the proof of (4.8)
in Robinson (1995b), expression (1.35) can be written as a sum of components
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of three types. The first component is
/// (A(ei“) _ 1)
A ei(=A—n—()
y (Q _ 1) (M _ 1)
Aj Aj

X Hy (A7) Hy (= A7) Hy (¢ + Aj) Ha (=X — p — ¢ = Ay) dMdpd.

Using the Cauchy-Schwarz inequality, periodicity of the integrand and the fact
that [7_|H, (\)|*d\ = O(T), this component can be shown to be bounded in
absolute value by

CPy;P,;,

where )

A | &, (A= X;)dA

Aj

P= [
-

and K, (\) = |H, (\)[*/ @2n7T).
A typical representative of the second type of component of (1.35) is

s [ (A1) (442 1) (269 )

X Hy (A + ;) Hy (= X;) Hy (C+ Aj) Ha (=X — p— ¢ = A;) dhdpd(

whose absolute value can be similarly shown to be bounded by
1
CP 1 ,_1 P 22’.7.
The last type of component is exemplified by

= [ (A2 ) (442 )

le(/\'*')\J)Hz p—Ag) Hy (C+ Aj) Ha (=X — p — ¢ = Aj) dAdpd(
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s I (457 ) ()

XHy A+ X)) Hy (A= ¢ — 80— X)) ;) Ha (6 — );) dAdfd¢

By

XxHy A+ X)) Hy (C+ XA HP (A= ¢ —2))dAd¢ (1.36)

since .
/ H,(u+ ) H, (v—A)d\ = 2rH? (u+v),

where H® () = 27| k2 (t/T) €. Since I
ulus of (1.36) is bounded by

@ ,\)] d\ = O (T), the mod-

CT 1P,

By Lemma 1.4 the term a;; is O (j‘2 +j73 +j‘1T‘%). Applying Lemma
1.5 gives az; = O (1). Therefore the first factor of a; is O (1). Likewise, the
second factor of a;, and therefore a; itself, is O (1).

Denoting h,s = h, (t/T), the second moment of Ip,¢ n.e,; is

1

T
2 et
E IIh1e,h2€,J'| = W E hlthlshzr]vaEta,gErEvei( s+r—v)A;

t,8,r,u=1

- 4W2T2 Ee} Z 3k, + ot Z Z h2,h3,

t=1 s=1
s#t

T T T T
+o? Z Z hithishaha €92 4 o 4 Z E hithishashat

t=1 s=1 t=1 s=1

s#t 8#t
= 0(Q1)

because the fourth moments of ¢; are finite. In the same way, the factor
Iha hat,j is O (1). Using the Cauchy-Schwarz inequality, the sum a;+b;4c;+d;
in (1.34) is O (1) uniformly over integers 1 < j < [T//2]. The proof of the
lemma is then completed by applying Lemma 1.6 part (a) with g (A) = A (e).
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Lemma 1.12 Under Conditions 1.1-1.5,

[T/2],w News |
2Re( Z[T/zl e [Was >=”><

I 2ot Wan)g [wags| 7}

S} )
o= Nl=

W (1) )
W (r)

Proof. Define n;._; = nj for j = [T/2] +1,...,T — 1. Then

over T € [0, 1].

(7/2] T-1

1 1
2Re_ wz'r ‘Iw.3.|n‘: wz‘r’ wupln +r( )
\/T ; (r).d {Wa,j1 715 \/—; ( )JI gl il
where (1) = T 2w,y 12 |qu/2|17T/2 (T even) = (T‘l/z) uniformly

over T € [0 1). It is therefore sufficient to show that 7"-1/2 23 21 Wa(r), |wa | 7}
=L (27) 1 Q3W (1) over 7 € [0,1]. We need to prove that

(a)
1 = N
T ;gjwc&)a' |we|mj = 5 Q2W (1), (1.37)
(b)
= ,
W Z; (95We(r) g [We 5| M} — We(ry 3 [wujlm;) == 0 and (1.38)
J=
(c)
1 T-1 p
Wi D (We(r) 5 [was| 1§ = Wair) 4 lwagl ;) = 0 (1.39)
=1

over T € [0,1] for any € > 0, where g (A) = A (e*) B (™).

To prove the convergence in part (a), we need to show that finite dimen-
sional distributions of the process Y = T2 Y7 gjwe(r) ; lwe 3| n} converge
in probability to the finite dimensional distributions of a centered Gaussian
process with covariance function K (7,0) = (7 Ao)$/ (4n?) and that the
process Yr is tight. First, E*Yr (1) = 0 and

T 1
var* Yr (1) = TZIQJI [wetryl” el
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By Lemma 1.10, the last expression converges in probability to

1 GEU
271' 472

|d)\——Q

Second, we need to show that the Lindeberg condition is satisfied,

T-1
2 E

g=1

L .2 T L2
T2 A;Bjwe(r) g IwE,le’j’ I (‘T 2 A; Bjwe(n) g |we,j|77,~’ > 6) 0

(1.40)
for each € > 0.
We examine sup, T~ |A;B;|? | I¢¢ jLce ;|- From An et al. (1983), we have

2r 1 2)
su We <1 as.
j=1,...,I[)T/2] ( o? 108 T log T Ve

2 1
su <1 as.
j=1,...,l[)T/2]( 2logT| ml )

Therefore

1
sup 4By Lo ilees] < Dsup 7 _|4,B,[* 108’ T as.
j=1,.1/9 T
< DT2(d’+d) 1og? T as.

As nj, given the data, are independent identically distributed variables, the
sum in (1.40) is bounded by

(7/2]

2
E* |771| H(I"Jl > T4 log™ 2T) ZIA Bl Te¢ilee,s-
j=1

The first factor converges to zero since 7; has finite moments and 1 —2d > 0.
The second factor is O, (1) by Lemma 1.10 with g; = A; B;. Therefore the left-
hand side of (1.40) is o, (1) and by the Lindeberg-Feller central limit theorem
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the pointwise convergence

T-
; W), wa]ln] '_) N (01 #Q)

is proved.
Further,
=
COV* (YT (T) 7YT ( Z |g.7| wC(T)»JwC(f’)J |w€:]|
]—1

which converges in probability to (7 A o) 2/ (47?) by Lemma 1.10. The proof
of convergence of the finite dimensional distributions in part (a) is completed
by using the Cramér-Wold device.

We now prove tightness of the process Y7 (7). By Theorem 13.5 of Billings-
ley (1999) it is sufficient to check the moment condition

E* Yz (p) = Yr (o) Y7 (1) = Yr (0)* < (1 + 0, (1)) (F (1) — F (0))%,
(1.41)
where o > %, o < p <7, F is a nondecreasing, continuous function on A and

0, (1) is uniform over (7,0) € A%. Denoting w; = w¢(r),j — We(o),j, We have

E*|Yr (1) = Yr (0)[*
T-1

= 2Z|gj| sl eyl B° ||

T-1T-

2 2 2 2 2 2 2
ZZ |959k1" w;” [wrl® [we, | |weel* B |75]” k]
=1 k=1
k#j
1 T-1T7-1
iz D D G TRy e’ lwel” B
=1 =1

3]

.
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=

20 (212 2 2

< T2 ZL%‘gkl [w;]° |w]” |[we,;]” |we k|
jk=

1 ’
= C( > gl s st,j|2) :
j=
By Lemma 1.10,

T-1 2
1
2 2
(TZ'QJ |wJ| |we,1|) 5 C(r-0) 471.2Q

uniformly over (7,0) € [0, 1]%. It follows that by the Cauchy-Schwarz inequal-
ity the left-hand side of (1.41) is bounded by D? (1 — 0)® (1 + 0, (1)) since
(t — p) (p — o) < (1 — 0)*. The moment condition (1.41) is thus verified with
F (1) = D7 and a = 2. This establishes tightness in probability of the process
Yr and completes the proof of the uniform convergence in part (a).

For the convergence in part (b), we have

T-1
1 D, *
ﬁ 2 (A3 Bjw(r)j [We,j| — Watr) 5 |wu s]) 1]
< D %l A;B;| We(r),j w Wuj We s
— T pm ] Aj ¢(m)d Bj €,
T-1
D
VT “ Z |4;B;| (T)] — W(r),5| [We,1
D Wy i
Z |A4;Bj| IwC(T)J éLJ We,j
= J

and proceeding as in the proof of Lemma 1.7 it can be shown that the last
expression is o, (1) uniformly over 7 € [0, 1].
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To verify the convergence in part (c), we write the difference between errors
and residuals under the local alternative as

. . ~ ~ 1
U — U = (a—a)+ (6—,B)xt+62t—ﬁ$tht,
where 2, = 2z (7) = =, (¢t < [7T]). Therefore

. A 1
Wyj — Wa,j = (ﬂ - /3) Wg,j + OW,(#),j — ST e

Jj=1,...,T -1, where wy; is the discrete Fourier transform of the sequence
{hszs,1 <t < T}. Since |[wys| — [wal|* < lwuj — wagl,

T-1 2
B |77 2 s (sl = )
S 2 2 o [, *|2
= T |warys] Nwagl = lwasll® E* |n5]
1 T-1 R \
s T;M(rml |wu,; — wa,l (1.42)

R 2111 9 s a2l % 2 2
<3 (ﬁ - ﬁ) T E |waryg|” [wal” + 30 TZ |lwam " |wan gl
j=1 j=1

3 T-1 9
2
s |waryi|” [whel” -
=1

By Theorem 1.2, 3 — 8 = O, (T-%/?) and § = O, (T~/?). Also, by Lemma
1.11 with functions h; (z) = he(z) = 1(0<z <7) and h3(z) = hye(z) =

I(0<z<7),
T-1

1
7 2 lwstnyal* [wsnal” = 05 (T)
Jj=1

uniformly over 7 € [0, 1], and similarly for the other sums. Therefore the right-
hand side of the last displayed inequality is 0,(1) uniformly over [0,1]. The
uniform convergence in (1.39) is established by using the Markov inequality.
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Replacing |we j|, |wu,j| and |wa ;| in (1.37)-(1.39) by wej, wy; and waj,
and drawing 7; from any complex distribution with mean zero, unit variance,
finite fourth moment and with En’;2 = 0, it can be seen that the proof remains
valid with only small modifications. In particular, expressions for var* Y (7)
and cov* (Yr (1), Yr (¢)) do not change, inequalities in part (a) for suprema
in the Lindeberg condition and for E*|Yy () — Y7 (0)|*, in part (b) for the
conditional first moment and in part (c) for the conditional second moment
continue to hold with minor changes in intermediate steps where required.
This observation shows that there are several valid modifications of the basic
bootstrap procedure described in Section 1.3.
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Chapter 2

Locating structural change in
regression with long memory

processes

2.1 Introduction

When a presence of a structural change is detected in an econometric model,
the time of change is frequently of interest. There is a steadily growing body
of literature on estimating the time of change. Hinkley (1970), Yao (1987) and
Bhattacharya (1987) deal with maximum likelihood estimation of time of a
shift in mean of otherwise identically distributed independent observations. In
the context of dependent observations, Bai (1994, 1997b) allows for a linear
process with short memory while Bai (1997a), Bai and Perron (1998) and
Fiteni (2002, 2004) analyse estimators of the time of break in parameters of
linear regression model with mixing data. The current state of the research on
structural changes in linear models with time series is reviewed by Banerjee
and Urga (2005) and Perron (2006).

In the last decades, however, it has been recognized that many economic
and financial data possess a dependence structure stronger than that displayed
by mixing data. The effect of long range dependence on estimators of time
of break has been examined by Antoch et al. (1995, 1997) and Horv4th and
Kokoszka (1997) in the framework of linear processes with a break in mean.
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The first purpose of this chapter is to develop a procedure for estimation and
testing of the time of change in slope coefficients in a linear regression model
where both regressors and disturbances are allowed to possess long memory.
It is shown that estimators employed for weakly dependent data continue to
be valid for strongly dependent data, and the researcher does not need to
distinguish between the short and long memory type of dependence at any
point of the estimation procedure.

It is known that asymptotic properties of parameter estimators in struc-
tural change models depend qualitatively on the magnitude of change. The
second purpose of this chapter is therefore to examine the asymptotic behav-
iour of estimators under various assumptions on the size of break, ranging
from a fixed size of break through a size shrinking at a certain rate to zero
size.

Asymptotic theory for the breakpoint estimator is derived, including con-
sistency, rate of convergence and limiting distribution. Under the assumption
of fixed size of the break, the date of break is estimated with highest relative
asymptotic efficiency, but the asymptotic distribution of the breakpoint esti-
mator depends on the joint distribution of the regressors and the error term
and is not amenable to hypothesis testing. The problem of unknown limit-
ing distribution of the breakpoint estimator under fixed break is the topic of
Chapter 3. Breaks of a fixed magnitude can be regarded as large.

To obtain a distribution-free asymptotic theory of the breakpoint estima-
tor, the size of break can be assumed shrinking as the sample size increases
but at the slower speed than the square root of the sample size. This has been
a mainstream assumption in the literature for the last two decades. Under a
slowly shrinking break, this chapter shows that the asymptotic distribution
of our breakpoint estimator is invariant to the distribution of data also when
the data are strongly dependent.

The case of breaks shrinking with the square root of the sample size or
faster is also considered. Breaks shrinking at such a rate can be denominated
as weak. The plausible situation where a researcher estimates the date of a
presumed break when the parameters of the processes do not break can be
analysed as a special case of a weak break. It is shown that if the break is
weak, its location is not estimable. Since the breaks can be detected only
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when their magnitude shrinks at the rate of the square root of the sample size
at the fastest, this rate constitutes a borderline case when the break can be
detected but cannot be consistently located.

Beside the asymptotic theory of the breakpoint estimator, we also consider
asymptotic properties of the slope coefficient estimators. When the break is
large, the slope estimators are asymptotically normal and their distribution is
the same as if the time of change were known. Asymptotic normality breaks
down for a weak break, under which a nonstandard distribution is obtained.

In the case of a shrinking break, the form of the limiting distribution of
the breakpoint estimator allows construction of hypothesis tests. Since the
limiting distribution function is known, asymptotic tests can be carried out
easily. However, it is known that asymptotic tests may not perform well in
small samples. For this reason, we propose a bootstrap procedure to approxi-
mate the limiting distribution of the break point for the purpose of hypothesis
testing. A small Monte Carlo study compares the performance of the boot-
strap and asymptotic tests and confirms that in small samples the bootstrap
test seems preferable to the asymptotic test.

The chapter is organized in the following way. Section 2.2 introduces a
linear regression model with break in the slope parameter and presents a least
squares procedure for estimating the time of break and the slope coefficients.
Asymptotic properties of estimators are studied in Section 2.3. Section 2.4
comments on the difference in testing hypotheses about the time of break un-
der fixed and shrinking break. Section 2.5 discusses the cases of weak break
and no break. In Section 2.6, a bootstrap approximation of the asymptotic
test procedure is proposed. Section 2.7 reports the results of a small Monte
Carlo simulation conducted to investigate small sample properties of the pro-
posed bootstrap procedure. Section 2.8 concludes. The proofs are collected
in Section 2.A which refers to Section 2.B for intermediate results.
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2.2 Linear regression with break

We examine a special case of model (1.1) - a linear regression model with a
break in the slope parameter. Let

yt=a+,3'mt+5}zt+ut, t=1,...,T, (21)

where
Tt t=1,...,k'0

zt=zt(k0)={0 t=ko+1 T

and where kg is an unknown date of break and S8 and é7 are p-dimensional
vectors of unknown parameters with ér # 0. It is assumed that ko = [T
for some 7y € A € (0, 1), where the set A has closure in (0,1). The size of the
break dr can be assumed either dependent on the sample size T or fixed at
(ST =4.

We are interested in estimating the time of the break and the slope coef-
ficients # and dr. In addition to the point estimation, we are also interested
in testing hypothesis of the form

Ho: ko = ky
for some constant ky against the alternative
Hll ko 7é kH.

In this chapter, we focus on breaks in regression coefficients of stochastic
regressors. Break in the regression intercept has been analysed by Kuan and
Hsu (1998) in a similar setting.

Model (2.1) can be written in the matrix form as

y=ou+ XB+ Zodr + u, (2.2)
where y = (y1,...,97r), ¢t = (1,...,1)", X = (z1,...,z7) and where Z; =

(z1,...,Tk,0,...,0) is a T x p matrix comprising first k rows of the matrix
X and completed with zeros, Zy, is denoted as Zy, and u = (uy,...,ur)".
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We estimate the parameters of the model by the least squares method.
Denote Wy = (X, Z;) and Map = I— Pap, where PAp=Pc=C (C”C’)_1 c’
is the matrix of orthogonal projection on the column space of a matrix C =
(A, B). Let i (k) be the vector of residuals from the least squares regression
of y on X and Z;,

’&(k)=M,,,x,zky, k=1,...,T -1,

and let Bk and d, be the least squares estimators of the slope parameters,

(?’“ ) = (WIMW,) ' WMy, k=1,...,T—1.
k

The least squares estimator & of the breakpoint kg is obtained by minimizing
the objective function

Sr (k) =|lak)|®, k=1,...,T-1, (2.3)

that is
k = arg min Sr(k),

where A-T = {k: k/T € A}. If the point of minimum is not unique, we define
k = min {k : Sy (k) = minepr Sy (I)}. While the expressions for 3, and
are explicit, the breakpoint ky is estimated implicitly.

Denote @ = d(k), B = B,; and & = 3,;. The quantities @, 3 and § can be
regarded as least squares estimators of errors and slope coefficients of model
(2.2) when the location of break is unknown. Beside the estimator of the date
of the break, an estimator 7 of the relative time of break 7¢ can be defined as

k
r

#=

Since some of the properties of our estimators are more easily established
in the frequency domain, it is useful to transform data from the time domain
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to the frequency domain. In the frequency domain, model (2.1) is given by
wy (A7) = B'we (Ny) + 07warho) (V) +wu (A;),  J=1,....,T—1 (24)

Omission of the frequency zero in (2.4) permits the researcher to avoid estimat-
ing the unknown intercept a. As the discrete Fourier transform is invariant to
location shift of the sequence for 1 < j < T — 1, the regression (2.4) is equiv-
alent to a time-domain regression in deviations from the mean. Defining F'

as the (T' — 1) x T matrix of the discrete Fourier transform at the frequencies
Ajy
1

VrT

model (2.4) can be written in the matrix form as

Fjr = e j=1..T-1k=1,...,T,

Fy=FXB+ FZyr + Fu. (2.5)
In the least squares regression of F'y on F.X and FZ;, let
Fu (k) = Mpx,rz,Fy = Mrw,Fy (2.6)

be the vector of residuals and

. ~ L
( B ) = (W,;F’ka) WFFy, k=1,..,T-1,
Ok

be the estimators of the slope coefficients, where now P4 in the definition of
Myis Pa=A(A A)_1 A’ where A’ is the complex conjugate of a complex
matrix A. The least squares estimator of the date of break is now a point of
minimum of the objective function Sy (k) = ||Fu (k) ||2. From the definition
of F and M, it follows that FF F = M,/2n and so (B;’S;c), = (ﬁ;,3;)’
Moreover, FM, = F and

Mpw F = FMyw, = FM,My,w, = FM, w,,
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which implies that

Fu(k)=Fa(k), k=1,...,T—1,

IFa@)I? = o la®IF k=171
Therefore for the purpose of estimating the time of break and the slope co-
efficients in a linear regression model with unknown break, estimation in the
time and frequency domain is equivalent.
In the following analysis, it is assumed that {z;} and {w;} are covariance
stationary linear processes that satisfy Conditions 1.1-1.5 and the following
additional condition.

Condition 2.1

! 1
(a) Sup;>1 %Zt=1xt$£” = 0,(1), Sup;>1 H%Ztki:o-i—l T T,

k
Sup;>, % Ztiko_z.u -’L'tz;” = Op (1);

OP (1) ’

(b) there exists A > 0 such that for every € > 0, there exists ly such that
PN <)) <eand P(A\T <)) < € foralll > ly, where A} and
ko+l

—_— . . . . 1 /4
A; are the minimum eigenvalues of the matrices 3 .2 .| Tz and

1 ko / :
T 2tm ko141 TtTt, TESpectively.

Condition 2.1 constrains matrices sup;»; Szl Sup;>; Zﬁg +1 DT
and sup;5; Ztkiko_, +1 Z:%; to be uniformly stochastically bounded as T in-
creases. Moreover, it constraints the latter two matrices to have minimum
eigenvalues bounded away from zero with large probability for large {. This
would be implied for example by the strong law of large numbers for the
sequence {z;z}}.

2.3 Asymptotic properties of the breakpoint

and slope estimator

In the discussion of the asymptotic properties of the breakpoint and slope co-
efficient estimators, we first examine the rate of convergence of the breakpoint
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estimator. Deriving the rate of convergence not only allows us to character-
ize consistency properties of the estimators, but is also necessary in order to
establish the limiting distribution. In this section we consider breaks whose
size is fixed or is shrinking but at a speed smaller than the square root of the
sample size.

Proposition 2.1 Assume Conditions 1.1-1.5 and 2.1 are satisfied. If the
size of break is fired, r = & # 0, or if it is shrinking with 67 — 0 and
T ||67]|* — oo, then

b~ k=0, (II521172). (27)

Proposition 2.1 implies that if the magnitude of break is fixed, k—ky=
O, (1) and the quantiles of distribution of & — ko remain of the same order as
T grows. On the other hand, if the size of break is shrinking, the dispersion
of k — ko grows at the rate of ||d7||~2. Strictly speaking, k is not a consistent
estimator of ko. However, if # = k/T defines an estimator of the relative time
of break ¢, the rate in (2.7) implies consistency of 7 with the convergence
rate of T2 ||07|| ™ = 0 (1). Whether the size of break § is fixed or shrinking,
Proposition 2.1 guarantees the consistency of the estimator 7 of the relative
time of break 7 as long as the shrinking is not too fast.

The rate of convergence in (2.7) is typical for changepoint problems in
general and holds over a range of models and estimators. In the context of
estimation of the time of shift in mean in a stochastic processes, this rate of
convergence has been obtained earlier by Bhattacharya (1987) and Yao (1987)
for maximum likelihood estimators with independent identically distributed
data, Antoch et al. (1995) for an estimator with independent identically dis-
tributed processes and Bai (1994, 1997b) for a least squares estimator of shift
in the mean of linear process under mixing conditions. Regarding estima-
tors of the time of break in linear regression models, Bai (1997a) and Bai and
Perron (1998) discuss least squares procedures in regression with mixingale er-
rors and possibly trending regressors and Fiteni (2002, 2004) considers robust
estimators in regression with strongly mixing data.

The following proposition characterizes the asymptotic distribution of the
slope estimators for the case of a known and unknown date of break, respec-
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tively, for the cases of a break whose size is fixed or whose size decreases at a
moderate speed as the sample size decreases.

Proposition 2.2 Assume Conditions 1.1-1.5 and 2.1 hold. If T ||67|]* — oo,
then

(a) A
ﬁ(@ko_ﬂ )—d>N(0,V) and
ko — 0T
(t) A
B=B 1\ a
«/:F(g_éT)—»N(o,V),
where
_ 1 To —To ~1 —1
V_—To(1~To)(—To ) )®E Qr

and where ¥ and §) are defined in Theorem 1.1.

The limiting distribution of the slope estimators 3 and & in the case of
unknown date of break is the same as if the date of break were known. It is
worth noting that neither the rate of convergence nor the form of the asymp-
totic distribution depends on whether the size of break is assumed fixed or
shrinking, as long as the magnitude of break does not decrease too fast.

Similar results have been obtained by Bai (1997a) for breaks in linear re-
gression model with mixingale errors and possibly trending regressors. Fiteni
(2002) has also reported asymptotic normality of a robust estimator of regres-
sion coefficients. The asymptotic normality found elsewhere in the structural
change literature therefore carries over to linear regression where regressors
and errors possibly exhibit strong dependence.

In contrast to the rate of convergence of the breakpoint estimator and the
asymptotic distribution of the slope estimator, the asymptotic distribution
of the estimator of the location of break requires a separate discussion for
the cases of fixed and shrinking break. First, we consider the case of a fixed
magnitude of break, 7 = § # 0. Define the process W° on the set of all
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integers as

& Z:=1 ;330 — 20’ 2;1 Tt §2>1,
Wo(s)=4¢ 0 s=0, (2.8)
5, E?=3+1 :ctxid + 25’ Z?:.H-l Tyt s S -1

The following proposition gives the asymptotic distribution of the breakpoint
estimator for the case of fixed break. To avoid dependence of the asymptotic
distribution of the estimator on the unknown date of break k3, we need to
ensure shift invariance of the distribution of data by strengthening the as-
sumption of second order stationarity implicit in Conditions 1.1-1.5 to strict
stationarity.

Proposition 2.3 Assume that Conditions 1.1-1.5 and 2.1 hold and that in
addition the process {z, us} is strictly stationary. Assume further that (5’:I:t)2:l:
268'ziuy has a continuous distribution. If the magnitude of break is fized,
d0r =6 #0, then

e — ko S argmsinW0 (s).

The asymptotic distribution of the breakpoint estimator with a break of
fixed size therefore depends not only on the nuisance parameter é but also on
the joint distribution of z; and u;. While the size of jump ¢ can be consis-
tently estimated by Proposition 2.2, the distribution of the data is generally
unknown. Unless the joint distribution of data is estimated, inference about
the time of break cannot be based on the distribution of the limiting random
variable. The estimation of the distribution of data is discussed in the next
chapter.

It is worth noting that the distribution of the location estimator k is dis-
crete. Therefore even when the distribution of argmin W° is known, tests
of hypotheses about the time of break cannot be performed at any arbitrary
level of significance. In this situation, hypothesis testing can be approached
in two ways. One possibility is to carry out tests at the significance levels
given by the quantiles of the limiting discrete variable. Alternatively, given a
nominal level of confidence, conservative tests can be constructed by taking
the next higher quantile of the limiting distribution. The latter approach has
been adopted for example by Bai (1997a) and Antoch and Hugkova (1999).
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The problem of dependence of the asymptotic distribution of the break-
point estimator on the joint distribution of data can be overcome if we are
willing to modify the assumption on the size of the break. Consider the case
of a diminishing magnitude of break. Define the process W as

. Wi+ p>0,
W (p) = 2
@) {Wz(—p)+1§l p<0,

where W;, W, are independent standard Brownian motion processes defined
on [0,00). The following proposition describes the asymptotic distribution of
the breakpoint estimator for the case of shrinking break.

Proposition 2.4 Assume that Conditions 1.1-1.5 and 2.1 hold and that 7 —
0 and T ||07||* — co. Let 3 and Q be consistent estimators of & and . Then

(F8) . .
T3 (k—ko)eargr;gnr‘lW(p).

Results similar to those of Propositions 2.3 and 2.4 have been also obtained
by Bai (1994, 1997 a,b), Antoch et al. (1995, 1997), Bai and Perron (1998)
and Fiteni (2002, 2004).

An example of consistent estimator of ¥ is

T
& 1

whose consistency follows from Conditions 1.1 and 1.2 because z; is ergodic.
A consistent estimator of {2 is

2 T-1

A 47
Q= - ;Im (A7) Taa (V).

Consistency of €} is asserted by the following proposition.

Proposition 2.5 Assume that Conditions 1.1-1.5 and 2.1 hold and that T'/257 —
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§#0 or TY2||67|| — oco. Then

O5Q.

The distribution of arg min, W (p) is not only free of nuisance parameters,
but also the explicit form of its distribution function G is known,

1+\/;i;e‘%—-;-(x-lﬁ)@(—g)+ge’¢(—¥> z>0,
G(z) = 1-G(-x),

Q
~~
8
N
It

see for example Yao (1987). The two-sided critical values at the 0.1, 0.05 and
0.01 significance level are 7.687, 11.033 and 19.767, respectively.

While assuming shrinking size of break leads to a distribution-free asymp-
totics for the breakpoint estimator, it has also some disadvantages. One such
disadvantage, a loss of information reflected in a loss of power in testing hy-
potheses on the time of break, is discussed in the following section.

2.4 Hypothesis testing

The results of the previous sections allow us to make inference about the date
of break. The null hypothesis of interest is

Ho: ko = k‘H,

where kg is the true value of the break date and kg denotes the hypothesized
time of change.

When the size of break is assumed fixed, Proposition 2.3 gives the limiting
distribution of k — ko under the null hypothesis. The test of the null hypothe-
ses can be based on the test statistic Zy = k— kg. Under the alternative
hypothesis

Hi:ko=kg+A (2.10)
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with a constant A # 0, we have
Zr % ko — ky + argmin WO (s) .
8

Since ko — kg # 0 and argmin, W% (s) = O, (1), the test based on Zr has
asymptotical local power against the alternative hypothesis (2.10). However,
since the asymptotic distribution of Zr under both null and alternative hy-
potheses depends on the underlying joint distribution of z;, u;, the critical
values for the test are in general not available.

Under the assumption that the size of break is shrinking with ér — 0 and
T |6z — oo, Proposition 2.4 indicates that the limiting distribution of &—kq
normalized by 9% = (3%3)2 /Slﬁ’é\ is invariant to the underlying distribution

of data. This suggests to use Zr = 02 (k — k) as a test statistic. Proposition
2.4 then gives the asymptotic distribution of Zr under the null. Under the
alternative hypothesis (2.10),

Zr =74 (I}—ko) + A2 S a.rgm}nW(p).

The distribution of Z is therefore identical under both the null and alternative
hypothesis, and the test based on Zr has asymptotically no power against the
alternative that kg = kg + A.

If we consider a sequence of local hypotheses in the form of

H1: ko = kH + AT, (211)

where Ar depends on the sample size, the test based on Zr has asymptotic
local power against such alternatives if Az' = O (||or]|*). When A7 =
o (||67|*), the test is consistent, or has global power, against the alternative
hypothesis (2.11). For example, if we consider an alternative hypothesis to be
Hy: kg = kg + T - A, which corresponds to the alternative fixed in terms of
the relative time of the break, Hy: 79 = 7y + A, the test has global power
since Az! = T1A = o (||67][%).
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2.5 Weak breaks

In the preceding analysis we have assumed that there is a break of a nonzero
magnitude. It is interesting to examine the asymptotic behaviour of the break-
point estimator when the researcher erroneously estimates the time of break
when there is in fact no break in the data generating process, that is when
dr = 0. More generally, it is of interest to study the statistical properties of
the breakpoint estimator when only a weak break is present, that is when the
size of the break is nonzero but decreasing fast with 7" in such a way that
T [|éz* = O (1).

For the purposes of analysing asymptotic properties of estimators under
the assumption of weak break, we define

1 1.1 m(T) 1
———273Q (W (1) - TW (1)) + ———L— %26
T (W (r) =W (1))

(r-7)2

for 7 € (0,1), where for § # 0 the function m is defined as

m(T)={T(1_TO) T < To,

G(r)=

W=

o(l—7) T2>T0,

and for § = 0 the function m can be left undefined. Further, we define
L =argmaxG (1) G (1).
TEA

By the definition of A, the random variable L takes values in a subset of
(0,1). The following proposition describes the asymptotic distribution of the
breakpoint estimator under a weak break.

Proposition 2.6 Assume that Conditions 1.1-1.5 and 2.1 hold and that TY?61 —
0 with 0 < ||6|| < co. Then

. d
7= L.

Proposition 2.6 implies that the estimator 7 of the relative time of break
T is not consistent when the break is weak. Moreover, since for the cases of
both 67 = 0 and T'||67||* — 0 the limiting value § is equal to zero, Proposition
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2.6 indicates that the presence of a break shrinking to zero faster than T%/2 is
asymptotically equivalent to the absence of the break.

The asymptotic properties of the slope coefficient estimators B and & under
weak breaks are given in the following proposition.

Proposition 2.7 Assume that Conditions 1.1-1.5 and 2.1 hold and that T'/267 —
0 with 0 < ||6]| < oo. Then

B-B a1 D105 (LW (1) — LW (L))
“T(é—&r) '*Lu—L)(zrm%mwn—Lwa» )

1 L(ro—L)I(L < 70)
'%u—m(m—mwmsm—m)®&

The random variable W (L) has a mixed normal distribution where the
mixing variable is L, in the sense that for any real p-vector b, the cumulative
distribution function P (W (L) < b) is given by [,_, ® (b/\/i) dF;, (1), where
® is the distribution function of a p-dimensional standard normal variable, Fi,
is the distribution function of L and where the inequality W (L) < b is to be
taken componentwise.

Proposition 2.7 together with Proposition 2.2 imply that f remains a v/T-
consistent estimator of 8 for the whole range of assumptions on the size of
the breaks, from breaks of size zero to breaks of a fixed size. Similarly, 6=
61 + Op (T~Y/2) under a break of any size.

While the rate of convergence of the slope coefficient estimators under a
fixed or shrinking break continues to hold under a weak break, the asymptotic
normality does not. The form of the asymptotic distribution of the slope
estimators reflects the fact that the estimation is attempted in the situation
where the point of break is not well identified.

The results up to this point imply that the location of the break can be
estimated only when the magnitude of break diminishes slower than 7-%/2, A
related question is when the break is detectable, that is, what is the range of
alternatives against which tests of the null of no break have nontrivial power.
The tests may be based on continuous functionals of the sum of squares St (k).
As it transpires in the proof of Proposition 2.6 in Section 2.A, if T%/257 — 4,
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then
yYM,xy — Sr ([T]) = G ('r)' G(7).

Therefore it can be seen that while tests based on continuous functionals of
St ([rT]) have nontrivial power against the alternatives where T%/2§; — § #
0, the test have no power against the alternatives where dr = o, (T*/2)
since the limiting distribution is identical for cases d7 = 0 under the null and
TY25; — 0 under the alternative.

In sum, the analysis of the asymptotic properties of the breakpoint esti-
mator under a range of assumption on the size of break shows that while a
break with T [|0r||> — oo can be detected and its location can be estimated,
a break with T'||67||* — 6 # 0 is detectable but its location is not estimable,
and a break with T'||07||*> — 0 cannot be detected.

2.6 Bootstrap under shrinking break

The results of the preceding sections suggest that if the magnitude of change
is too small, the changepoint cannot be identified. On the other hand, if the
size of break is large, dr = 4, the relative time of break can be estimated
T-consistently but its asymptotic distribution is intractable for the purposes
of hypothesis testing. The only circumstance when a consistent breakpoint
estimator with distribution-free asymptotic properties is available is the case
of a break whose magnitude is diminishing but more slowly than the square
root of the sample size. In this instance, tests of hypotheses about the time of
break can be based on the asymptotic distribution of the breakpoint estimator.

However, it is known that the finite sample distribution of a statistic may
not be well approximated by its asymptotic distribution when the sample size
is small. The purpose of this section is to obtain a bootstrap procedure that
approximates the asymptotic distribution of the breakpoint estimator and
that may improve on the performance of the asymptotic distribution in small
samples.

To approximate the distribution of the breakpoint estimator, we propose
to use a method similar to that employed by Hidalgo (2003a) and ourselves
in Chapter 1. The procedure consists of the following steps.
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Step 1 Compute the least squares estimate k= arg mingea.r St (k) in equa-
tion (2.3). Compute the least squares estimates 3 = ,@,; and 6 =4 ; and
the least squares residuals

where 2, = z,1 (t < IE)

Step 2 Compute

T
1 .
wg (N) = Tpe™ i=1,...,[T/2],
) = —== ; : J (T/2]
and
/2,
'lI)ﬁ (A]) = ( ) [T/2] Zkvl U ( ) - % )
T, T/2
([T/Zl S |wa (A v o wg ()‘k)l )
Step 3 Draw a random sample Ty - -1 7Mizyy from the distribution

P*(n; =@a(M)) = gy for k = 1,...,[T/2], define nj = 7iy._; for
1 < j < T/2 and generate a bootstrap sample

wl (N) = Bug (A) +8ws () +wa Og) 7, d=1,...,T—1.
In matrix notation,
Fy* = FXB + FZ$ + HF4,

where H = diag (n},...,7%_1)-

Step 4 Let [3,: and 3; be the least squares estimators of the slope coeflicients
and let 4* (k) be the vector of residuals from the least squares regression
of Fy* on FX and FZ;. Let

St (k) = |la* (k)|
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Compute the bootstrap estimator k* of the breakpoint as
k* = arg an, St (k)

and obtain 3° = B, §" = b;. and 4* = 4% (k*).

Step 5 Compute the bootstrap test statistic

where 3 is defined in (2.9) and where O = 4—;2 7.:11 Lz (Ag) Tasae (M)
Alternatively, compute a nonpivotal statistic

Zx = k* — k.
The following proposition demonstrates that the proposed bootstrap pro-
cedure consistently estimates the distribution of slope estimators 3 and 8.

Proposition 2.8 Assume that Conditions 1.1-1.5 and 2.1 hold and that 7 —
0 and T ||67||* — co. Then

O T

ﬁ%?i )ﬂwa,

where V 1is defined in Proposition 2.2.

The distribution of the bootstrap test statistic Z} defined in Step 5 of
the bootstrap procedure can be used to construct a bootstrap test as an ap-
proximation of the asymptotic test based on the asymptotic null distribution
of the test statistic Zr. The approximation is valid if bootstrap distribution
estimator consistently estimates the null distribution of Zr. Denoting the
null distribution of Zr as P (Z < z|H,) and taking the Kolmogorov-Smirnov
distance, consistency requires that

sup |P* (Z3 < z) — P(Zr < z|Hp)| & 0.

T€ER
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Under the null, Zr converges in distribution to a continuous distribution func-
tion F, P (Zr < z|Hy) — F (z), therefore it is sufficient to show that

P*(Zh<2) D F(z)

pointwise, see for example van der Vaart (1998, p. 329). This observation is
exploited in the following proposition asserting the consistency of bootstrap.

Proposition 2.9 Assume that Conditions 1.1-1.5 and 2.1 hold and that dr —
0 and T ||67||> — oo. Then

N ) P
ZT:T(k —k) —-»argm;nW(p).

Given the consistency of the bootstrap procedure, a bootstrap test can
be constructed to approximate the asymptotic test. The asymptotic a-level
critical region C, based on the asymptotic null distribution, P (Z7 € C,) = a,
is replaced by a critical region C, based on the bootstrap distribution, where
C:, satisfies P* (Z} € Cax) = a.. Proposition 2.9 guarantees that the bootstrap
test has asymptotically correct size.

2.7 Finite sample properties

In this section we assess the performance of the proposed tests in samples
of small and moderate size via a small Monte Carlo experiment. Beside the
overall assessment of the tests, we are particularly interested in the comparison
between bootstrap and asymptotic tests.

The data for the regressor z; and error term u; in model (2.1) are gener-
ated as scalar ARFIMA(0, d,0) processes where d is the memory parameter
and where the innovations are normally distributed with zero mean and unit
variance. Values of 0, 0.2 and 0.4 for d; and d are considered in admissible
combinations such that 0 < d; + d < 1/2. Samples of size T = 64, 128, 256
and 512 are generated by the algorithm of Davies and Harte (1987). Each
sample is normalized to have the standard deviation equal to one. Number of
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Monte Carlo replications in each experiment is 5000. For bootstrap tests, the
number of bootstrap replication is 800.

The break in the model is located in the middle of the sample, 79 = 1/2.
The size of the break is set to 7 = §oT~/4, where the shrinking rate 7~
is chosen such that @ = 1/4 is the midpoint of the interval (0,1/2). The
parameter d is equal to 2 so that for T = 64, 128, 256 and 512 the size of the
break is 0.84, 0.71, 0.60, 0.50, respectively. The value of the slope coefficient
is g=0.

We examine performance of three tests: two bootstrap tests, of which one
is based on the distribution of a nonpivotal bootstrap test statistic k* —k and
the other on the distribution of a pivotal bootstrap test statistic (3“23*)2

axla ax\~1 /a A
X (5 "6 ) (k* - k), and an asymptotic test based on the limiting distrib-

ution of the test statistic (3’23) ’ (3If23) - (l;: - ko) under the null hypothesis
that kg = ko. Nominal significance levels of 10%, 5% and 1% are considered.
The two-sided critical values for the asymptotic test are 7.687 at the 10%
level, 11.033 at the 5% level and 19.767 at the 1% level of significance.

Table 2.1 reports the rejection probabilities of the three tests under the
null hypothesis ki = ky. The size of all three tests converges very slowly to
the nominal values of 10%, 5% and 1%. Both bootstrap tests approximate the
asymptotic test well. The pivotal bootstrap test improves on the performance
on the asymptotic test at all sample sizes, and the improvement seems to be
more pronounced for higher sample sizes. This indicates that even in relatively
large samples it may be beneficial to carry out the bootstrap rather than the
asymptotic version of the testing procedure.

The nonpivotal bootstrap test does not fare as well as the pivotal test.
This is to be expected, but even the nonpivotal test slightly outperforms the
asymptotic test when the sample size is 512.

To examine the power of the tests, we select 79 = 5/8. This is an alterna-
tive which is fixed in terms of the percentage location of the break, therefore
the tests under shrinking breaks have global power, that is the rejection rates
of all tests under this alternative should converge to one as the sample size
increases. The rejection probabilities of the tests under the alternative are
given in Table 2.2.
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The rejection rates under the alternative mirror the behaviour of the re-
jection rates under the null in that the convergence to 100% rate is very
slow. Moreover, the convergence is non-monotonic. The rejection rates of
the asymptotic test are slightly higher than those of the bootstrap tests. It is
however worth noting that the critical values of the tests are not size-adjusted,
therefore we cannot conclude that the asymptotic test is more powerful against
the chosen alternative.

The results of the simulation exercise suggest that the bootstrap tests
offer a good approximation of the asymptotic test. The bootstrap tests, and
in particular the pivotal test, can improve on the asymptotic test. Whether
the improvement achieved by carrying out the bootstrap test justifies the cost
of running the bootstrap will depend on the particular circumstances in which
the test is carried out.

2.8 Conclusions

In this chapter, statistical properties of estimators of location of a structural
change are examined in the context of a linear regression model under mild
conditions on regressors and error term. These conditions avoid the need
for specifying the type of mixing conditions that are frequently used in the
literature, and include data which display long memory behaviour.

Results of our analysis show that the range of assumptions on the size of
the break can be divided into five cases: Break of fixed size, of size shrinking
at a rate smaller, equal or bigger than the square root of the sample size, and
of zero size.

Under the fixed break, the asymptotic distribution of the breakpoint esti-
mator has the smallest relative order of variance but the distribution is not
amenable to hypothesis testing. A tractable asymptotic distribution is ob-
tained only if the magnitude of change is assumed to be shrinking but more
slowly than the square root of the sample size. In that case, the asymptotic
distribution function is free of nuisance parameters and is explicitly known.
When the size of the break is shrinking faster than the square root of the
sample size, or when there is no break in the data generating process, the
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T=64
0
0.2

0.2
0.4

T=128

0.2

0.2
0.4

T=256

0.2

0.2
0.4

T=512

0.2

0.2
0.4

d

0
0
0.2
0.2
0
0.4

0
0
0.2
0.2
0
0.4

0
0
0.2
0.2
0
0.4

0
0
0.2
0.2
0
0.4

Nonpivotal
bootstrap test

10%

35.3
35.8
35.1
37.1
37.1
37.6

25.5
25.6
25.4
28.6
28.2
27.0

18.6
18.7
18.8
20.9
20.7
20.4

15.3
15.5
14.8
16.9
17.2
16.3

5%

30.3
31.0
30.0
32.1
32.0
32.5

20.6
20.6
20.3
23.3
229
21.3

12.8
13.1
13.4
16.3
15.1
14.8

9.7
9.8
9.4
11.7
11.2
10.3

1%

26.1
26.7
25.7
28.1
28.1
28.0

16.4
16.7
16.3
19.5
18.7
17.3

8.5
9.2
9.2
12.1
10.8
10.3

4.9
5.2
5.1
7.6
6.1
5.3

Pivotal
bootstrap test
10% 5% 1%

26.8 194 121
274 199 12.7
26.6 19.5 12.1
28.5 21.2 133
29.1 216 14.3
293 223 14.6
192 133 74
193 134 7.1
194 128 74
210 142 8.1
22.2 1562 8.7
21.1 142 89
141 85 338
147 87 4.2
150 9.0 41
16.9 10.7 5.5
172 11.0 5.2
16.7 102 4.9
126 69 2.2
132 72 25
126 6.8 2.5
136 79 3.5
153 91 34
136 78 2.7

Asymptotic
test
10% 5% 1%
205 21.2 123
30.3 22.0 12.7
28.8 20.8 11.8
28.9 21.7 125
324 243 14.2
30.1 22,5 13.7
23.8 16.7 8.9
246 170 8.9
23.6 165 8.8
24.7 175 9.2
28.2 20.1 104
245 175 99
20.2 13.0 5.9
204 13.7 6.2
203 135 6.2
219 148 7.0
239 165 7.7
212 145 7.0
178 109 4.1
18.1 114 46
17.8 11.0 4.6
188 120 5.6
20.7 136 5.8
181 114 49

Table 2.1: Size of the bootstrap and asymptotic tests
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dy d
T=64

0 0
0.2 0

0 0.2
0.2 0.2
04 0

0 04
T=128

0 0
0.2 0

0 0.2
0.2 0.2
0.4 0

0 0.4
T=256

0 0
0.2 0

0 0.2
0.2 0.2
0.4 0

0 04
T=512

0 0
0.2 0

0 0.2
0.2 0.2
0.4 0

0 0.4

Table 2.2: Rejection probabilities of the bootstrap and asymptotic tests under

the alternative

Nonpivotal
bootstrap test

10%

48.3
48.6
48.8
49.5
49.9
51.5

479
47.7
48.0
46.9
47.3
49.5

52.6
52.9
52.7
50.1
52.3
55.1

67.6
67.2
68.5
69.7
65.3
70.2

5%

39.2
39.5
39.8
41.0
42.0
42.5

35.2
35.0
34.9
35.3
35.5
36.4

34.9
36.2
36.2
34.3
36.3
38.2

47.2
46.7
47.5
40.5
46.0
49.9

1%

314
31.8
32.2
33.9
34.2
34.5

24.3
24.3
24.2
26.5
25.9
25.7

18.3
18.6
17.7
20.3
20.0
19.0

18.5
18.6
194
18.3
20.1
19.1
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Pivotal

bootstrap test

10%

36.7
37.0
36.6
37.6
39.6
39.8

37.1
36.6
36.7
35.6
37.7
37.9

41.7
42.6
42.6
38.6
44.0
44.8

87.7
58.0
89.7
48.5
S7.7
61.2

5%

25.6
26.0
25.8
27.0
28.6
28.9

22.5
22.9
22.3
23.2
24.9
244

244
25.6
25.0
23.2
27.6
26.5

36.0
36.0
36.4
29.0
38.4
38.4

1%

14.7
14.7
14.8
16.2
16.6
17.6

10.3
10.4
10.4
12.1
12.4
12.0

8.3
8.9
8.2
9.3
10.8
9.1

9.5
10.3
10.1

8.6
13.3
10.6

Asymptotic

10%

43.8
45.3
44.2
42.8
48.2
47.0

52.0
52.5
51.6
47.7
54.3
52.3

63.9
64.5
63.1
56.2
65.3
64.0

78.7
78.8
79.5
68.6
79.5
79.7

test
5%

30.3
31.6
30.5
29.8
34.6
32.8

34.7
35.1
34.4
31.6
37.9
35.7

43.0
44.1
43.0
37.1
47.5
44.7

60.9
61.4
61.8
49.2
62.8
62.7

1%

14.4
14.9
15.4
15.4
17.8
17.5

13.9
14.5
14.0
13.8
17.1
15.4

14.6
15.5
14.2
13.2
18.6
15.6

21.3
22.0
22.2
16.7
25.7
24.0



question of estimating the location of the break becomes vacuous because in
this circumstance the break is not detectable. In the borderline case of the
size of break decreasing with exactly the square root of the sample size, the
break can be detected but there is insufficient information for estimating its
location.

The asymptotic properties of estimators of the slope coefficients also de-
pend on the assumption on the size of break. Slope estimators are asymptot-
ically normal with identical covariance matrix under fixed as well as slowly
shrinking breaks but the distribution is nonstandard for weak breaks.

In addition to the thorough examination of the asymptotic properties of
estimators, the chapter proposes a bootstrap approximation of the asymp-
totic test procedure under the standard assumption of shrinking breaks. A
Monte Carlo experiment indicates that the bootstrap procedure improves on
the performance of asymptotic test when the sample is of small or moderate
size.

There are several natural directions in which the findings of this chapter
might be generalized. First, it is desirable to devise a method of estimating
location of more than one break for both known and unknown number of
breaks. Some methods of locating multiple breaks have been suggested by
Bai (1997b), Bai and Perron (1998) or Altissimo and Corradi (2003). Second,
to broaden the applicability of our method, the restriction on the collective
memory of regressors and errors needs to be relaxed to allow for greater col-
lective range of memory. A natural direction here is to employ the weighted
least square estimator of Robinson and Hidalgo (1997) or generalized least
squares estimators of Hidalgo and Robinson (2002). These topics are left for
possible future research.

Finally, for the case of a fixed magnitude of break, it is of interest to find
a method of estimating the distribution of the breakpoint estimator when the
underlying distribution of data is unknown in order that confidence intervals
could be given for the time of break. Such a method is proposed in Chapter 3.
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2.A Proofs

This section contains the proofs of the results in the main body of the chapter.
We define N (K) = {k: |k — ko| < K||67||*} and N°(K) = A-T — N (K).
For integers [, m, we define

Za@my = (Zm — Z1) sgn (m — 1)

and denote Za = Za(o k). We let ¢ = (1,...1,0,...,0) be a T-vector with
the first k elements equal to 1 and the remaining elements equal to 0, so that
¢ = vr. We denote tg = i, and ta = (L — to) sgn (k — ko). Further, we define

Qr (k) = 672uM, x,7, Zobr
and
Ry (k) = 2(5 Z’ szku +u (ML,X,Zk - ML,X,Zo)u

so that
St (k) — St (ko) = Qr (k) + Rr (k) - (2.12)

Proof of Proposition 2.1. Fix e > 0. For any A > 0,

P (|1Ac — ko| > KH6T||_2) <P <Nll'(lf{) St (k) < Sr (kO))

k Rr
sp(Ng(l,f{)lfT(k)l_M|«sT||) (sup\k (kj\ A||5T||2). (2.13)

Lemma 2.4 implies that A can be chosen such that the first term on the right
of (2.13) is smaller than £/2 for large K. We now show that the second term
on the right of (2.13) is smaller than ¢/2 for large K. To that end, write

Rr (k) = —-203Z\M,usgn(k— ko)
+285Z\ MWy, (WLM, W)™ WiM,usgn (k — ko)
+U’ (ML,X,Zk - ML,X,Z[)) Uu. (214)
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The contribution of the first term of (2.14) to (2.13) is

200 Z\Mu| _ A \Mu A
Pl sup |[ZZZA 2 S 2512 ) < P sup [[22==([ > 26 ,
(Wg) At > 2 Tn)_ (Nc(% ot > 2 ord
which is bounded by

C 1 C £

= <
Morl* KllorlI™* MK 6

for large K by Lemma 2.5. Regarding the second term of (2.14),

uDye(ry | ZAMIe/ (k = o)l = Op (1), (WLMWe)™ = O, (T1) and WiMou =
O, (T%) uniformly on A - T by Lemma 2.2, and T2 |l57]| = o (||ér]?).
Therefore the contribution of this term to (2.13) is bounded by £/6 for large
K and T. The contribution of the third term of (2.14) to (2.13) is bounded
by

v (M, xz, — M. xz)u
k— ko

P ( sup 2> 2 ||‘5T||2)
Ne(K)

AK €
< P ( sup ||u' (M,x,7, — M, x,z) ul| > T) < 5
kEA-T

for large K by Lemma 2.3. This concludes the proof that for large K the
second term on the right of (2.13) is bounded by £/2. The proposition is
proved. m

Proof of Proposition 2.2. (a) Denote Wy = (X, Zy). We have

VE( B8 N (Lwaw) Lwrasa
5ko_5T T o \/T o

By Lemma 2.2,

Ly 2 ( L ) ®%
T To To

1 1 d Q%W(l)
T oM = ( QW (ro) ) '

and
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!
Therefore the asymptotic distribution of vT ((ﬁko - ﬂ)’ , (Sko - JT)’) is

normal with zero mean and variance V.

(b) We have
B - ﬂ 1 ! ! 1 1 1 '

T % = T k [3 k = i [ y— i 2 - k .
vT ( 55, TWiMWe ) | Z=WiMa+ —=WiM, (Zo - Z;) br
Write

ZiMZ;, = ZyM,Zy+(Zj, — Zo) M, (Z; — Zo)
+ (ch — Zo), M, Zy + Z{JML (ch - Zo)
and
ZIMX = (Zy — Zo) MX + ZyM,X.
For any M > 0,

P (|12 ~ 2o} M.(Z ~ Zo)|| > M lozl|™*)

< P (2 sup sup ||ZAM.Z|| > M||6T||_2) + P (|IE - ko‘ > K||6T||—2) .

N(K) 1IST
By Proposition 2.1, the second term on the right of the last displayed in-
equality is bounded by €/2 for large K. The first term on the right of the
this inequality is bounded by &/2 for large M by Lemma 2.2. It follows that
(Z, — Zo) M. (Zy — Zo) = O, (||6r]|™®). In a similar way, (Z; — Zo) M.Zo
and (Z; — Zo)' M.X are O, (||67||"%). Therefore

1 1 _ 1
-fwléM‘WE = TW(;MLWO + Op (T_l I|6T|| 2) = TWéMLWO + Op (]_)
and by Lemma 2.2,
1 - P 1 7o -
(TW;:MLW,;) nd =PI (2.15)
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By the same arguments,

1 - _
ﬁWf:ML (Zo — Z3) 61 = Op (T2 (67|17 [[62ll) = 05 (1) - (2.16)
The term 7Y W] M,u can be written as
-—l-W’Mu——l—W'Mu+L(W~—W)'Mu (2.17)

where (W; — Wo)' Mu = (0, ((Z; — Zo)’ M.u)')'. For any any M > 0,
P (||(Z; — Zo) Muu|| > M ||67])7)

< P (sup |25 M| > MnaTn‘l) +P(Je—ko| > K llorll ™)
N(K)

The terms on the right of the last display are bounded by /2 for large M and
K by Lemma 2.2 and Proposition 2.1, respectively. Therefore T~/2(Z; — Z,)' M,u
is Op (T~/2||67||™") = 0, (1) and by (2.17) and Lemma 2.2,

1., a4 WWQ)
—WiMuS | ) .
VT R (mww)

The last display together with (2.15) and (2.16) imply that
- -1 1
(B s (1 ) gua)( BWQ
6 — 67 To To Q2W (7o)
1 To —To —10%-1
~ N|0,————— TTOY
( To(l—To)(—To 1 )® )

as maintained by the proposition. m

Proof of Proposition 2.3. Letk = arg miny (k) St (k), ™ = arg min,, W° (m)

and 71 = arg miny,<x W° (m). For any K > 0 and for any integer j,

P(ic—ko=j) =P(1‘c—ko=j,]/}-k0] 5K)+P(l§—ko=j,‘k—kol >K).
(2.18)
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Since the event {|IE - ko‘ <K } is equivalent to the event {k = I~c}, the first
term on the right of (2.18) is equal to

P(E—%:j)—P(E—%=ﬁ%%—%|>K).
By similar arguments,
P(fu=j)=P(m=j)— P(i=j,iml > K) + P (= j, || > K),
and therefore
|P (k- ko =4) - P(h=3)|
< |P(k-k=4) - P@m=4)
+2P (‘k - k0| > K) +2P (| > K). (2.19)

Since ZAM,Zp = Z)\ZA + 0p(1) and ZAM,u = Z)u + 0, (1) uniformly on
N (K), Lemma 2.6 implies that

St (k) — Sr (ko) = 0’ ZAZa6 — 28’ Z)usgn (k — ko) + 0, (1)

uniformly on N (K). It follows from the continuous mapping theorem that
for any K > 0,

k= arg min (S (k) - Sr (ko) 2, arg min (6'Z\Za6 — 26' Zusgn (k — ko))

which has the same distribution as arg minj,<x W?° (mn) under strict station-
arity. The first term of (2.19) is therefore equal to 0 when |j| > K by definition
and smaller than £/3 for large T' when |j| < K. The second term of (2.19) is
smaller than ¢/3 for large K by Proposition 2.1. Since by Conditions 1.1 and
1.2, WO (m) & oo for |m| — oo, we have that 7 = O, (1) and that the third
term of (2.19) is smaller than ¢/3 for large K. It follows that for each j,
P@—%=ﬁ—P%=ﬁﬁ&l

Proof of the Proposition 2.4. Let v2 = (6p567)° /6,07. Forany K > 0
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and for any real z,

P (s (k—k) <z) = P(k—ko<azu?, ‘k — ko| < Kvp?)
+P (k — ko < 2072, ik -~ k0| > Kv;z) :

Let k = arg ming,_<xvz2 St (k) p = arg minyer W (p) and
p = argminye—x,x] W (p). Reasoning as in the proof of Proposition 2.3, we
obtain

|P (3 (k- k) <2) - P <a)| < |P((F-k) <2) - P(p< 1)
+2P (’k - ko| > Kv;'~’) +2P(|p| > K). (2.20)

Since vZ (I:: - ko) = arg min, ol<[Kuz?] vz St (ko + pvz?), Lemma 2.7 implies
that v2 (E - ko) 2, argminy<x W (p). Therefore the first term of (2.20) is
bounded by /3 for large T. Since k — ko = O, (||67||7%), vz2 = O (||67]7%)
and since the properties of the Brownian motion with drift imply that p =
Oy, (1), the last two terms of (2.20) are smaller than /3 for large K and T.
Inequality (2.20) then implies that

! 2
Lig%— (lAc - ko) 2, arg mjnV_V (p) - (2.21)

Since 3, §) are consistent estimators of ¥, 2 and since & = é7 + O, (T‘%),
convergence in (2.21) remains valid with the quantities d7, ¥ and Q replaced
by their estimators 3, Yand Q. =

Proof of Proposition 2.5. Assume for simplicity that {z;} is a scalar
process. By Theorem 1 of Robinson (1998),

471'2 T-1

T ZIwz,quu,j _I:’ Q. (222)
j=1
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It is therefore sufficient to prove that
1 I-1
‘f Z Iz:z:,j (Iﬁﬁ.j - qu,g) '2’ 0. (223)
j=1

Using the fact that Igq; — Luu; = |wa; — wuj|* — 2Re (wa; — Wy ;) Wy j, We
obtain that the left-hand side of (2.23) is bounded on absolute value by

T—l 9 T-1
2
T Z lwml lwa,; — wu,]' T Z |wa " wa,; — wu,s] lwug| - (2.24)
i=1

From (2.5) and (2.6) and the definition of ,

Wy,j — Wy,j = Wa,j (’8 - B) + (w"”j - wzfe»j) Or + Wy g (JT - 3) )

Using the c,-inequality, the first term of (2.24) can be bounded by

(ﬂ B) Z[ww,_)| + 5 6 lel,.’ll |w20,.7 wzkaJl
=1

j=1
3 ) 2T—1 , \
+7 (JT—J) 3w sl (2.25)
j=1

By Propositions 22 and 27, 3-8 = O, (T-*/?), and by Lemma 1.11,
T-1Y 5 [wegl* = 0, (T), therefore the first term of (2.25) is o, (1). The
second term of (2.25) is bounded by

3 T-1 % T-1 4 %
4
26 (bt ) (Shons - sl

by the Cauchy-Schwarz inequality. The expression in the last bracket is
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bounded by

kO)

)" E |Ts 52z |

t,s,rv
ko,k
Z |z:zszrzy| (1 4+ TI(t — s+ 7 —v =0 modT))

t,s,rv

Z ez(t —s+r—v)};

1
(27T)?

I

1

ko, 4 ko, k ko, ko,
(2nT)? (Z| tl) (2n)? TZ|£L't|les (Zlaﬂ let_,+v|)

where the last inequality follows from the Cauchy-Schwarz inequality. For any
K>0and M >0,

ko, k ko+K |67 ~2
P> |lzl=M|br||?| < P Z |ze| > M ||67| 7
t

t=ko—K||ér]| 2
+P (|k — ko

>K|orl ). (226)

By Proposition 2.1, the second term on the right of (2.26) is smaller than ¢/2

for large K. By the Markov inequality and by Conditions 1.1 and 1.2, the

first term on the right of (2.26) is bounded by CK/M which is smaller than

/2 for large M. Therefore Zf“’f‘ |z:| = Op (||6T||_2). By similar arguments,
k"’ |z:|? is O, (||67 %) Since

ko+K||é7] 2 ko+3K|67| 2

Z 2 2

sup Ixt—s+v| < E : |$v| ’
t,seN(K _ _
sEN( )v=ko—K||6T|| 2 v=ko—3K||67[~2

it follows that the second term of (2.25) is
0, (T 18211 0 (T) Op (T~ 1871~ + T~ 211 %) = 0, ().
The sum in the third term of (2.25) is bounded by
T-1 T-1 \
Z |wz7J|2 |w10)j|2 + Z |wx|.7|2 |w101j - wzfcﬂ ) (2'27)
J=1 J=1
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where the first term is o, (T%) by Lemma 1.11 and where the second term is
Op (T~1/2|167||™®) by the previous discussion. Noting that d7—8 = O, (T~1/2)
by Propositions 2.2 and 2.7, we conclude that the third term of (2.25), and
hence the first term of (2.24), is o, (1).

The second term of (2.24) is bounded by

1
2

1 T-1 % 1 T-1
¢ (T > g |wag - wu,,-|2) (T Y lwagl? lwu,jlz) = 0p (1)
Jj=1 Jj=1

since the first bracket is o, (1) as has been just shown, and where the second
bracket is O, (1) by (2.22). =
Proof of Proposition 2.6. Write

k 1 . :
T = g min Sr (k) = arg min St ([7T1)
= argmax (y' M, xy — Sr ([rT])) .

The maximand is equal to

Y M. xy — Y M.xz,nY =Y M.xZm) (Z[IrT]JML,XZ[TT])_1 ZinM. xy

1 1 1 -1
= (ﬁélq"fzéMc,XZ[rﬂ + _uIML,XZ[TT]) (“Z[,TT]ML,XZ[-»'T])

vT T
1 1
x (TZf,T] M, x ZoVTér + ﬁz[;ﬂ ML,Xu) (2.28)

where d7 may be equal to zero. By Lemma 2.2,

1
T

1

-1
Z(I)ML,)(Z[TT] = lZ(’)MLZ['rT] — %Z(’]MLX (-I—X'MLX) —X'MLZ{TT]

T T T
= (ToAT)Z =12 7S =m(1)Z

on [0,1] and similarly $Z{ M. xZ1) => 7(1 —7) Z on [0,1]. Further, by
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Lemma, 2.2,

1 1
ﬁZfTT]ML,Xu = ﬁZfTT]MLu Z[.,.T]MX ( ) —?X’M’Ul

= MW (r) —7ES7I0IW (1) = Q2 (W (1) — 7W (1))
on [0,1]. Therefore
Sr([7T]) —y' M. xy = G (1) G (1)

on A and the proposition follows from the continuous mapping theorem (see
for example Theorem 3.2.2 of van der Vaart and Wellner (1996)). =
Proof of Proposition 2.7. Define

Yr(r) = «/T( o — 61 )

and

, 1 DI (W (1) - TW (7)) (7))
)y e W@ - w@) )

1 —-7)I(r <
4 T (10 —7) (T < 70) 6.
TA=7)\ (ro—7)[A(ro £7)=7) J-7)
We need to show that Yz (7) -5 Y (L). To that end, write

1 -1
Yr(r) = (TWI'mMaW{m)
1
(e imb+
Expressions y'M, xy —y'M, x Z,yY In (2.28) and Yr (7) in (2.29) are continu-
ous functions of matrices T-1/2Z! rry Mo, T~ Z[TT]M Zirry, T7'X'M, Zjp1y and
T-1ZyM,Z.1) on T € A, therefore we need to study the joint convergence of

%W[’TT]ML (Zo = Zirmy) \/TJT) . (229)

1 1
(WZ[ITT]M U, TZ[,.T]M Z[,,.T], TX,MLZ[TT]a TZ(I]MLZ[TT]> . (230)
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But by Lemma 2.2, T‘IZ[’,_T]M Zi;) = T7X and T1X'M, Zirr) = 7Y and
T7'ZyM.Zirry = (1o AT) Eon [0,1]. Also by Lemma 2.2, T-2Z] , Mu =
Q2W (7) on [0,1]. Hence (2.30) converges weakly to

(Q%W (1), 72,78, (To A T) E)

because all but the first component converge weakly to constant functions in
the space C [0, 1] of p-vectors of continuous functions on [0, 1]. The continuous
mapping theorem, Proposition 2.6 and the assumption T%/267 — § imply that

(Yr (), ) = (Y (7),L) (2.31)

on D (A) x A.
For an arbitrarily small > 0, choose points 7¢,7y,..., 7, such that 0 =
To < T1 < ... <7y =1and sup;¢;c, |7i — Ti-1| < 7. Fori=1,...,v, denote

D; = [1i-1,7:) N A. Then for arbitrary p > 0 and any z,

P(YT(A) < .'17)

< ZP(YT (Tic1) <z +p,7 € D;, sup |YT(t)—YT(s)|<p>

i=1 t,s€D;

t,s€D;

+ZP(TeDz, sup [Yr (t) = Yr (s)| Zp).

By (2.31) and by the portmanteau lemma (see for example Theorem 2.1 of
Billingsley (1999, p. 16)), the right-hand side of the last displayed inequality
converges to

ZP(Y(T, ) <z+p,LeED;, sup |Y(t)— Y(s)|<p)

i=1 t,seD;

+iP (LG D, sup Y (t) - Y (s)] 2 p)

i=1 t,s€D;

< P(Y(L) Sz+2p)+P( sup |Y (¢) =Y (s)| ZP)

[t—s|<n

as T' — oo. For any € > 0, the second term on the right of the last displayed
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inequality is bounded by ¢ for sufficiently small 1 because the random function
Y takes values in C [0,1]. Therefore

limsup P(Yr(#) <z) < P(Y(L)<z+2p)+e
T—oo
for small 7. Proceeding similarly, we obtain that

P(Y (L) 5x—2p)—e§limTinf P(Yr(7)<ux).

Since the distribution of the random variable Y (L) is continuous and since p
and ¢ are arbitrarily small, we conclude that

P(Yr(f)<z)—>P(Y(L)<7z)

as desired. m
Proof of Proposition 2.8. We have

Fy* = FXB+FZ+HFq
= FXB+FZ.b5+14,

where @ = HFii+ F (Z;, — Z;.) 8. Therefore

B -3 1., — B2 R
ﬁ(&*-?s) = ( FFW,;.) <—W,-C,FIHFu

T * JT
+ %ng’zr (Z; - Z;.) 3) :
Write
ZLFFZ. = Z\FFZy+(Z. — Zo) FF (Zy — Zo)
+(Zi — 20) FFZy+ ZF F (20 — 2o)
and

XFFZi.=XFFZ+ XFF (2. — Z).

For any K > 0, expression P* (

‘(z,;. — Z))FF(Z. - zo)” >M ||5T||-2) is
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bounded by
P (f&?}?) g — ko‘ > K ||5T||-2) .
(2.32)

Fix €,7 > 0. Expectation of the first term of (2.32) is smaller than ¢/3 for
large M and T by Lemma 2.2. The second term of (2.32) is bounded by

P"(

where the first term exceeds 1 with probability smaller than ¢/3 for large K

AFFZa|| > M |16T||—2) +P(

. K. 1 K . _
R S Rl (B

by Lemma 2.12 and where expectation of the second term is smaller than €/3
for large K by Proposition 2.1. Therefore

(% — 2 FF(Z4. — 20) = Op (T 16217%) = 0- (1).

By Lemma 2.2, T'X'FFX and T-'Z}F FZy are O,(1). The Cauchy-
Schwarz inequality implies that the terms T~ (Z;. — Zo)' F FZo and
T-1(Z;. — Z,)' F FX are o, (1). It follows that

%Wé,?’FWE. = %,—W{F'FWO + 0, (1)

and by Lemma 2.2,
(lwz FFW, )-1 2, on < 1 7o )_1 QoL
Tk K To To
Second, write
%ng,ﬁ'ym = %Wéﬁ'HFﬁ + (% (Wi — WO)F’HFa) . (2.33)

Expression P* ( I(W,;. - Wo)’F’HFaH > M ||5T||-1) is bounded by

Z\FHF%

i — k0| > K||5T||-2) . (2.34)

P* (sup > M||6T||‘1) +P(
N(K)
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By Lemma 2.8, the first term of (2.34) is smaller than 7 with probability at
least 1 — ¢/2 for large M. Arguing as in (2.32), the second term of (2.34) is
smaller than 7 with probability at least 1 — /2 for large K. Therefore

1 — N 1 _
7= Wi - Wo) F HF = O, (T |16z 1) = 0, (1)
and by (2.33) and Lemma 2.8,
1 — ~a 1 1 W (1)
—W!.FHFu % —Q :
\/T k* ’U/—>27r 2<W(TO)
Finally, for any M > 0,
P (

< F (4 sup  sup ”ZIAFFW/I”>M”(5T“_2>

l(ch. — ZE)’FIFW,‘C.

> M |lézlI?)

N(K/2) 1<IST
+P*
+P* (

i —kol > K [16r11)
b ko| > K|157II"?). (2.35)

By Lemma 2.2, expectation of the first term of (2.35) is smaller than £/3 for
large M. Proceeding as before, we obtain

—
7T

where the bound for 4 is due to Proposition 2.2. By the continuous mapping

Zi — Z) FFW.8 = T30, (162172) O, (I621) = o (1),

theorem,

~x - -1 1
=B -8\ & 1 7o L\ 1 [ @wq)
T(S*—S) 27"((7_0 To) ®E )QW(Q%W/(T()))

This implies that the proposition holds true. m
Proof of Proposition 2.9. For any 0 < K < oo, let p, p and v2 be
defined as in the proof of Proposition 2.4 and let k* = arg min [k—k|<Koz? S3 (k).
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Proceeding as in the proof of Proposition 2.4, write

p* (v%(fc*—fc) Sx)—P(ﬁSx)\

P*(v%(fc*—fc)ﬁx)—P(ﬁSm)'S

+2P* (

k- k| > Kv;z) +2P (5| > K). (2.36)

Fix ,7 > 0. Since vZ (E* - E) = argminlpls[m;z]/v;z St (l::+ [pv;z]),
Lemma 2.14 implies that

vg (k —fC) £ arg min W () = 5

and so the first term on the right of (2.36) is smaller than 7/3 with probability
at least 1 — ¢/3 for large T. By Lemma 2.12, the second term on the right of
(2.36) is smaller than /3 with probability no smaller than 1 — ¢/3 for large
K and T. The third term on the right of (2.36) is bounded by 7/3 for large
K because p = O, (1). Therefore the right-hand side of (2.36) is 0, (1) and

ErZ00)* (re 1Y & v min i
52 i 8) 5 wama ).

Since 8" = § + Op+ (T“%) = 07 + Op» (T‘%) by Propositions 2.7 and 2.8,
$ 2 ¥ by Conditions 1.1 and 1.2, and {* 2 Q by Lemma 2.15, it follows
that )

(3*’23”)

~

(IA;:* - k) LR arg min W (p) .

p

2.B Lemmas

This section contains the some auxiliary results and their proofs. Throughout
this section, it is assumed that Conditions 1.1-1.5 and 2.1 hold.
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Lemma 2.1 For any matric

A'MgA> A\ Mp, A

Proof. The inequality is related to the fact that in the context of a projection
of vectors on the space spanned by the columns of matrix B, the sum of
squared residuals is nondecreasing as the number of observations increases.
For a proof, see for example Lemma A.1 of Bai and Perron (1998) or Lemma
2 of Brown et al. (1975). =

Lemma 2.2 For any 0 < K < o0,
(a) 3+ 2mM, Zier) = (T Ao) T on (1,0) € [0,1]%,
(b) TZTT]MU = QiW (1) on 1 €0, 1],
(c) supgenr ”(WkM W)™ 1” =0, (T_l) ’
(d) suprgrer Wil = O, (T#),
(e) supicri<r 12, MZ)|| = Op (T),
(f) SUDgen(k) SUP1<i<T |ZAM.Zi|| = Oy (||5T||_2):
(9) if T ||87|* — oo then supy(x, |ZaMull = Op (1621 7"),

Z\M.Z
(h) SUPkeNe(Kk) SUP1<i<T ” k—Fo =t | =0p (1).

Proof. Parts (a) and (b) follow from Lemmas 1.9 and 1.7, respectively, after
noting that

T_

1 2 -

T2imMZen = =2 F FZon = § , WD) De(loT)
j=1

and

T-1
1 2T —
ﬁz["rT]Mbu = V_fZ[,TT]F Fu= \/_ sz([ﬁ]),,ww
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Parts (c), (d) and (e) are implied by parts (a) and (b). Part (f) follows from
the bound
2 1 I
S NZall” + 1k = kol* 1 Zall 7 11 2]
(2.37)
and from Conditions 1.1, 1.2 and 2.1. Turning to part (g), for any given K
and p € [-K, K], write k = ko + [p ||6T||_2]. Part (b) implies that

1

! —
1ZaM.2]| = .

Z’AZ[ - ZALAL;,Zl

1 QF (W(ro+p)—W(r0)) p=0
—=2Z; T T M,, = <o
VT AlroTH o AT T { Q% (W (r0) =W (r0+p)) p<0,

from which it follows that

Q%WI (P) p2 0,

or|| Z\Mu =
el Za Mo {Q%WZ(_M 20

where W;, W, are independent p-vectors of independent standard Brownian
motion processes on [0,00). Therefore supyen(xy ZaMu = O, (|67]7"). Fi-
nally, part (h) follows from (2.37) after noting that Condition 2.1 implies that
SuBkene(ay [k — kol ™ 1 Zall* = O, (1). m

Lemma 2.3 As T — oo,
(a) v (M, x,z, — M, x,z,)u= 0, (1) uniformlyonk € A-T,
() if T ||67||* — oo then o' (M, x.z, — M, x,z,) u = 0, (1) uniformly on
N (K).

Proof. Denote W = (Wi, — Wp) sgn (k — ko) = (0, Za). For any nonsingular
matrices A and A + B,

Pap—P1=B(AA) 7 A+AAA)'B+B(AA)' B
—(A+B) ((A +B) (A+ B)) - (AB+B'A+B'B)(AA)" (A+B)".
(2.38)
Let A= M, W, and B = M,Wasgn (k — ko). Then

u (M, x.2, — Mo x,z,)u= (Mu) (Pruw, — Puw,) Mu
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= 2u'MWa (WeMW,) ™ WiM,usgn (k — ko)
+u' MWa (WM Wo) ' WaM,u
—u' MWy (WM W) {(WiMWa + WAM,Wy) sgn (k — ko)
+ WAMWA} (WM, W,) ™ WiM,u.

The bounds in part (a) and (b) are implied by Lemma 2.2. =

Lemma 2.4 There exists p > 0 such that for every e > 0, there exists K < oo
such that Qr (k)
P( inf X2 > 5|16 2) >1-—¢.
(jint, 72 > oleril) >
Proof. By the definition of Qr (k), the left-hand side of the last displayed
inequality is bounded from below by

) Z\M, xz ZA) )
P inf Mg (2222278 ) 5 5, 2.39
(NC(K) ( |k — kol =P (2.39)

Consider first the case k > ko. Since the columns of the matrix (¢, X, Zj) lie
in the column space of matrix (¢, ta,¢ — tk, Zk, X — Zi), we have

! 7 /
ZAMl',XyszA 2 ZAM"(’:"A:L"LksZer—ZkZA 2 ZAM"(J:LAkaZA

= ZW\M, Zp(ZiM,y .\ Z) " ZEM,, Zo,

where the last inequality is due to Lemma 2.1 and where the equality follows
from a simple algebra. Since for any symmetric matrices A and B, inequality
A > B implies Amin (A) > Amin (B) (see for example Magnus and Neudecker
(1988), page 204), we have

Z\M, x 2,2 Z\M,,Za (1 11
Amin (ﬁ) > /\min {lAk_—?cOI (TZIIcMLo,LAZk) TZ(,)MLUZO .

(2.40)
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Similar inequality is obtained in the case k < ko,
- (ZIAML,X,ZkZA)
|k — kol

ZW\M,, Za -1
> : _— -
> Amm{ = ko (T (X —2Z1) M, (X Zk))

1

X (X = 2 Mooy (X = 2. (2.41)

By Conditions 1.1 and 1.2, as I — oo and | — —oo0, {71 Ek°’k°+l:c -2, 0and

-t Zf okotl g2t 25 % with ¥ > 0, therefore the eigenvalues of the matrix

Z\M, Za Kok ko 1 &k
:Cl' _— T
lk—ko| k- kolz T\ Tk - kolz |k—kolz,: ‘

are bounded from below by p > 0 with probability at least 1—¢/3 for large K.
Similarly, since T~ 37 z, £+ 0 and T7' 3.1, 7, 2> T the eigenvalues
of matrix

k

TZ’M thz‘t ( th) (—;zt)
are bounded and bounded from below by a positive number with a large
probability for large 7" uniformly on ¥ € A-T. Since M,,,, < M,,, the
same is true of the eigenvalues of matrix T'IZ,’CMLMAZ;C, and similarly for
the remaining factors of (2.40) and (2.41). Since for a symmetric matrix A,
Amin (A) = inf, ||Az]| / ||z]|, it is easy to see that for any positive semidefinite
matrices A and B, Apin (AB) > Amin (A) - Amin (B). It follows that there exists
p > 0 such that (2.39) is greater than 1 — ¢, and the lemma is established. m

The following lemma extends the H&jek-Rényi inequality to the cross-
product of two mean-adjusted series possibly exhibiting long-memory depen-
dence.

Lemma 2.5 Letuw =T E?:l ut. Then for any a > 0 and for any integers
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m and T such that m < T,

k

Z Ty (ut - ﬁ)

D
> a) < 02_ (242)

1
P ( max_—
m<k<T k
for some positive D < 00.

Proof. Assume without loss of generality that {z;} is a scalar process. Let
Sy =3¢ | 2 (u; — @) and let an event Ay be defined as

ae={tisi>a bl satormss <k},

Proceeding as in the proof of Theorem 1 of Kounias and Weng (1969) and in
the proof of a version of the maximal inequality of Kuan and Hsu (1998), we

obtain
1 k
P (mn<lk<T 'I; ;iﬂt (ut — U) > a)
< L(Les+ ¥ Lp(st-s) (-1 -1 (Am)))
k-m+1
1
< o) (——ES2 + k—zm;l 2 Ezk( Uk — u) + 2|Ex (ux — T) Sk— 1|))
(2.43)

We have

ES? = Z Exz upu, — — Z Z Ez,x,usu, + T3 Z Z Ezxx.umu,.

t,s=1 t s=1 r=1 t,s=1rv=1

Since

|EzeTsurty| < C‘Plt—sﬂ/’lr—vl
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where ¢, = 3% |aj| |a;x| and ¢, = 3772 |bj| [bj+k|, We obtain that the first
term of ES? is bounded in absolute value by

kE &k

CZZS%-.«:I‘W s| = < CZITK Z(psws—r =

t=1 s=1

by Lemma 2 of Robinson (1998). Similarly, the second term of ES? is bounded
by CT = Y8,y or ) @pes¥jr—r) and the third term by CT-23 5, S°F
Pt—s|¥|r—v» bOth of which, proceeding as with the last displayed inequality,
can be seen to be bounded by Ck by Lemma 2 of Robinson (1998). Therefore

ES: C

ke 2

k2 ~ k

for all 1 < k <T. Further,

Ex} (u —1)° < Exjui + Zwlk—sl +—= Z Yip—g) < C

t,9=1

by the second order stationarity and Lemma 1 of Robinson (1998). Next,

k-1 T

C
|Ezk, (uk — @) Sg-1] < Z‘Pk Wkt + = T Z Z‘Pk ¢ (Vik—s) + Vs
t=1 s=1
k-1 T

2 Z Z Pr— t¢|s—r| <C

t=1 s,r=1

uniformly in k¥ by Lemma 2 of Robinson (1998). Therefore the second term
in the bracket on the right of (2.43) is bounded by

T1 C

and thus we conclude that (2.42) holds true. m
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Lemma 2.6 If T'||67||> = oo, then for any K < oo,
St (k) — Sr (ko) = 67 ZAM,ZadT — 2072 M,usgn (k — ko) + 0, (1),
where the o, (1) term is uniform on N (K).

Proof. Write
Qr (k) = 60 Z\M,Zpb1 — 85 Z\ MWy (Wi MW,) ™ WM, Zab7.

Since by Lemma 2.2, the terms and Z) M,W; and (WM, W;,) ™" are O, (||67|| %)
and Op (T!) uniformly on N (K), respectively, the second term of Qr (k) is
Oy (167> 167]|™* T*) = 0, (1). Further, since W} M,u is O, (T'*/2) uniformly
on A - K by Lemma 2.6 and v’ (M, x,z, — M, x,z,) u is uniformly on N (K by
Lemma 2.3, the decomposition of Rz (k) in (2.14) implies that

Rr(k) = -207Z)\Musgn(k— ko) + O, (|67 67|72 T2 T*2) + 0, (1)
= —260ZxMusgn(k— ko) + 0, (1).

The lemma now follows from (2.12). m

Lemma 2.7 For 67 # 0, let v2 = (6p587)° /87Q08r. If the conditions of
Proposition 2.4 are satisfied then for any K > 0,

. ) d S /
arg min St (ko + [pv7°]) = arg min W (p).

Proof. For any given K and p € [— K, K], write k = ko + [pv’]. By Lemma,
2.6,

ST (ko + [p’l)q_-'2]) — ST (ko) = f’TZIAMLZA(ST - 2(5:’1~Z’AML’U, sgn [p’Ug_-2] + Op (1) y
(2.44)
where the 0, (1) term is uniform on N (K). Lemma 2.2 implies that

1
T28ten (e+am M Zagon o ram) = 10l
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uniformly on {(¢,p) : 0 < 0,0 + p < 1}, from which it follows that
2 1 P
vrZaM.Za = |p| B

uniformly on p € [-K, K]. Proceeding as in the proof of part (g) of Lemma
2.2, it can be seen that

Z\ My ==
roatit {QéWz(—P) p <0,

where Wy, W, are independent p-vectors of independent standard Brownian
motion processes. Since —205v7 Q22 W, (p) and 25TvT1(22W2 (p) are equal in
distribution to 2 (J'TQJT)% v W) (p) and 2 (6}967-) vr'W2 (p), respectively,
the left-hand side of (2.44) is equal in distribution to

rZor , ,(6rfer)?
vT U

o
= 2T () +0, (1)

(W1(p)I(p = 0) + W2 (—p)I(p <0))+0p(1)

uniformly on p € [~K, K]. Now observing that

!

0 Q7
arg mm 26’ 5, LW (p) = arg Inll_m W (p),

the proof of the lemma is completed by an application of the continuous
mapping theorem. m

For the proofs of the statements about bootstrap quantities, define
Q3 (k) = 8 ZLF Mpw,FZ;
and

Ry (k) = 28 Z.F Mrw, HFa + @F H (Mpw, — Mrw,) HF4,
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so that

Qr (k) + By () = 1) =Sp(k)—Sp (k). (245)
Let
N(K) = {k: |k - k‘ <K ||a||-2}, (2.46)
NC(K)=A-T - N(K) (2.47)
and denote ZA = ZA(fc,k)'
Lemma 2.8 As T — oo,
(a) 22, /F HF i 2> Q3W (7),
(b) for any K >0, supienir Supraicr | ZaF HF 23| = Opr (116717%),

(c) for any K > 0, supy(x, “ZAF’HFUH =0 ( ||5T||_1)

(d) for any K > 0, supycgx) SUP1<i<T ”ZAF FZ,” = ||6T||“1)
(e) WF HF i = O, (T"/2) uniformly over 1 < k < T,
-1

) (%Wé?’FW,;) . ) ez,

To To
(9) for every € > 0O there exist K, M > 0 such that

P| sup sup 1 - ”ZZF‘IFZIH >M) <e,
keNC(K) 1SIST |k - k'|

(h) for every e, > 0 there exist K, M > 0 such that

PP sup sup 1 - ‘
keNC(K) 1SIST |k - kl

Proof. Part (a) follows from Lemma 1.12 and from the remark at the end of

7 F’HFZ,H > M) > n) <e.

its proof because
T-1

L F HFG=Y " Wy0) jwa ;-

j=1

To show the validity of part (b), define matrix G as G = F HF. By the
definition of matrices F' and H, matrix G is a real circulant matrix with
elements g;s = gs—t, 1 < t,8 < T, where g; = (27rT)_1 217.:11 n;ei"ft. Let
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g = (9-t+1,---,9-1,90, 91, - -, gT~1-1) be the t-th row of matrix G. By the
Cauchy-Schwarz inequality,

ko,k ko,k % ko,k %
|osr e =[S < (Ser’) (Shoar)
t t t
Therefore
sup sup Z’A?’HFZz“

keEN(K) 1<ILT

ko+ Koz ~2 T [ ko+Klorl? i
< Z [EATR Z sup ||¢'Zi]| ) (2.48)

_, 1<I<T
t=ko~K||67|* t=ko—K||d7] "2

D=

The expression in the first bracket on the right of (2.48) is O, (||67| %) by
Conditions 1.1 and 1.2. Further,

||th1“2 =g'Z,7Z, (gt)' <gtXX'(¢) =tr (gt)/g‘XX'

and so E*sup, <7 lgtZ||? < tr E* (¢*)' ¢! XX'. For any t and s,

. 1 1 1
E9t93=4—ﬂ_2(—ﬁ+TI(t=3)),

therefore E* (¢*) g* = (4n*T) ™' M, and

1 R U SV
MXX' = SuzX'MX=0,(1) (249)

E* 7|1 <t
12?% ||g l” =4 4r2T
by Lemma, 2.2. By the Markov inequality, the expression in the second bracket
of (2.48) is Op» (||5T|]_2) and part (b) is established. Part (c) follows from part
(a) in the same way as part (g) of Lemma 2.2 follows from part (b) of Lemma
2.2. To prove part (d), write

or|F el < ol + - H o] 12

123



For any M > 0,

k+K o)~
P( sup 2a >Ml[6T||‘2> <Pl X lzd?®> Mlor]
keN(K)

t=h—K[67]~?

which is bounded by CK/M by the Markov inequality and Conditions 1.1 and
1.2 and which is bounded by ¢ for large K. From here we can conclude in the
same way as in the proof of part (e) of Lemma 2.2. Part (e) follows from part
(a) and part (f) follows from (2.15). In part (g), we have

A2 .
2\FFz |2a| |2a]
sup 2r|2a——2| < sup i—L + sup - sup —||Zl||.
kENC(K) - keNC(K) ‘k - k‘ keNC(K) lk i|? 1sisT
1<I<T
Now
k—k
sup |ZA“ < 2 sup k= kol Py k 1 Za ]
keNS(K) keNC(K) |k k| keNC(x) | |k — ko

12 swp —— % - %l
keNC(K) k—k‘

The factor supyegox) lk k’ |k — ko| is bounded by max {1, K~? 167||? }<

C. Forany M > 0, the probability that the factor sup,c yox) 1k — kol | Za?
is greater than M is bounded by

P sup a7 > 31) + P ([f= ko > 5 Jorl ) . (250)
lk—kal2K/2 |k — kol

The second term of (2.50) is bounded by ¢/2 for large K by Proposition 2.1

and the first term of (2.50) is bounded by /2 for large M by Condition 2.1.

Further, for any N > 0,

1 _
P| sup —11Z; = Zo|* > M | < P(||Z; — Zl* > MK ||67]7)
keNC(K) |k -

124



ko+N|é67| 2 .
<Pl X led’> MK ||5T||—2) + P ([k—ko| > N6z ?).

t=ko—N||ér( 2

(2.51)
By the Markov inequality the first term on the right of (2.51) is bounded
by CN/MK. Proposition 2.1 then implies that both terms on the right of
(2.51) can be bounded by /2 for large M and N for any K > 0. Gathering
the results and recalling that the factor sup;,<rI¥/?T7|Z)|| is O, (1) by
Condition 2.1, we can conclude that part (g) holds.

Finally, to prove part (h), we follow the steps in part (b) and write

sup ——— ”Z’AF'HFZIH
keNC(K) Ik — k|
1<IST

1
2

Z [l )

< sup
Re(k) ‘k —

2
(sup s 5 ”gtz,”) 25
Proceeding as in the proof of part (g), it can be seen that the expression

NC(K) 1<ILT
EP* | sup Z lze||* > M sup
NC(K) |k - ‘ NC(K) |k -

is smaller than e/2 for large M and K. The expression in the second bracket
on the right of (2.52) is equal to sup; ;<7 || ¢'Z)||°. Part (g) is then implied by
(2.49) and by the Markov inequality. m

1

Lemma 2.9 (a) supyerr @F H (Mpw, — Mpw,) HF i = Op- (1),
. a5 N
(b) if T||67||* — oo, supg g @F H (Mpw, — Mpw,) HFi = o, (1).

Proof. Denote W = (W;, — W;) sgn (k - IAc) = (0, ZA). Proceeding as in
Lemma 2.3 and taking A = FW; and B = FWasgn (k - I}) in (2.38), we
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obtain that

WFH (Mpw, — Mpw,) HFi=4F H (Ppw, — Prw,) HFG
— RedFHFWa (WFFW,) W FHF& ;
= 2Red Wa (W{FFW;) WF HFasgn (k- k)
— ~ - -1 .
+dFHFWs (WFFW,)  WiF HFa
—_ —_ -1 — a P ~
.xﬁﬁmn@wﬁwg Km#mm+wuwmﬁ@@—@
o A — -1 —
+wgﬁng}@%FTw@ W/ F HF4.
Therefore the lemma holds by Lemmas 2.2 and 2.8. m

Lemma 2.10 There exists A > 0 such that for every € > 0, there exists
K < 00 and Ty < oo such that for all T > Ty,

Ep-(inf % >A|\5||) e
RO |k —

Proof. If an event A does not depend on 7} for j = 1,...,T — 1, then
P*(A) =1 (A) and therefore EP* (A) = P (A). Since Q3 (k), k and & do not
involve 77, the left-hand side of the hypothesized inequality is bounded from

5 .
P | inf Apin -ZA—A/Ii'X—'—f"—ZA >2mA ).
RE(K) ’k—-k

Denote ia = (¢x — ¢;) sgn (k — I}) Proceeding as in the proof of Lemma 2.4,

below by

we obtain inequality

ZW\M, x.2,. 2 Z\ M Zp (1 11
Amin (—_lk—_—]’;— > Amin % T‘ZLM'IZA,%Z’C TZ]:;M Zk

(2.53)
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for k > k and

)\ ZuM,xz.2n
k—k

5 5 -1
> Mm{—iﬁéé( (X - zwA@MﬂAX—zn)

% (X = 2 My, (X — z,;)} . (2.54)

) |

for k < k. Write the first factor in the curly bracket in (2.53) as

BMala  DhBs
=i o] (|k qz“) (|k_

We have
AN k—ko| ZAZ
sla [k-kl ZpZa 1 _yz_ g,
B LT
For any § > 0,
P\ sup ‘k_kf)—ll 0} = P| sup k—AO >0
ﬁC(K) k—k NC(K) k—

< P(|k—k| > 6K ozl )

which is smaller than £/2 for large K by Proposition 2.1. Also, for any § > 0
and any M > 0,

112, — Zol? ok L
P | sup lk k| >8] <P |l > K |||
t

NC(K)
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ko+M||67||~2
<P ful > K o)
t:

—ko—M|l6] 2
+P (‘k — ko

> M |é7l|"). (2.55)

The second term of (2.55) is smaller than /2 for large M by Proposition
2.1. By the Markov inequality, the first term of (2.55) is bounded by CM/§K
which is smaller than e/2 for large K. Therefore as K — oo,

Z0Zn _ ZWZA
[~k

= To—ko] +0,(1).

ko ko+ .
o ko+ 2, 5 %, the eigen-

Since by Conditions 1.1 and 1.2, limy_+e0 |I| ™
TS B
values of matrix lk — kl Z\Z are bounded away from zero with probability

at least 1 — €/2 for large K. Similarly, it can be shown that as K — oo,

E,k kDyk

1
Z:L't = mit:l‘t +Op(1) =0p(1).

N N A
It follows that the eigenvalues of matrix ‘k — k| WM;, Zx are bounded from
below by A > 0 with probability at least 1 — ¢/3 for large K.
The third factor in the curly bracket in (2.53) can be written as

1, 1, (1 1A,
TZI::M"I}Z’E = T ZSL’t.’Bt - T th Z Z.’L‘t .
t=1 =1 t=1

Since T2 7, B 708, T-'3% 2, 5 0 and Ik - k0| = 0, (6172,
the eigenvalues of matrix T‘IZ}CMLE Z;, are bounded from below by a positive
number with large probability for large T' by the arguments of the proof of
Lemma 2.4. Similarly, the eigenvalues of the remaining factors of (2.53) and
(2.54) are bounded from below by a positive number. Concluding as in the
proof of Lemma 2.4, the current lemma is established. =
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Lemma 2.11 Let H be the matriz defined in Step 3 of the bootstrap procedure.
Then for any a > 0 and any integers m and T such that m < T,

EP* ( “z,;’F’HFu“ > a) <2
m<k<T ac‘m

for some positive C < oo.

Proof. Without loss of generality, assume that {z;} is scalar. Let S} =
Z,’CF’H Fu=Y¥_ z,d;, whered; = Y7, g,_su, and g, = (27T Z}:ll njet.
Arguing as in the proof of Lemma 2.5,

p* (m< x - IZkF HFu‘ > a)

1
< ( —E*Si2 + Z k2 (E*z} §+2|E*xkdks,;_l|)). (2.56)

2
o k=m+1

Because E*g,g, = (4n2) ™' (-T2 4+ T~ (¢t = s)), we have

E T kT
1
* Q2 —r — —
E*S:* = 1T tg Z; T u Ul (8 — s =1 — v) 47r2T2 t; ,.;1 T4 T o UpUy.
In a similar way, E*z2d? = (4n2T) ' 22 3.7 w2 — (4n?T?) ™" 2y ot Urlhy

and E* xkdkSk L= (@rT) e ol ZT LUl (k—t=r— v)

U=

— (4r*T?)  mp Y @ Yor ) UrUy.  Proceeding as in the proof of Lemma
2.5, it can be shown that expectation of E*S}? is bounded by Ck and that
expectation of E*zld? and E*z;dyS;_; is bounded by C for all 1 < k < T.
Therefore the expectation of the right-hand side of (2.56) is bounded by

1 {c & c) C
1=+ Y 5)<—.
a? (m t;rl m2 a?m
n

Lemma 2.12 If T ||67||* — oo, then

k' —k = 0p (I162]7%) -
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Proof. Fix ¢, > 0. For any K < o0,

P (

REw) |k — k|

B —k| > K167l %)

8

2) + P* ( sup |R*T(If)| > )\”3|
NC(K) ’k-—kl

2)
By Lemma 2.10, we can choose A > 0 and K < oo such that

EP* (“inf Qr(k) |5||2) <e (2.57)
RO (k) ‘k - k]

for large T'. Write

Ry (k)

= 2§ Z4F Mpw,HF o+ @F H (Mrw, — Mrw,) HF @

= 28 2\ FHFu—- 25 Z\F FW; (W,;?’ka) T WFHFL  (258)
+28' Z,F HF (i — u) + @F H (Mpw, — Mpw,) HF2.  (2.59)

Examining the first term of (2.58), we have

28’Z'AF’HFu| 2
pP* (.sup ' —_— > /\“6” )
NC(K) ‘k — k‘
>2 uaTn)

i < %uaTn) . (2:60)

Z\FHFu
k—k

< P*| sup
NC(K)

+P* ('

By Lemma 2.11 and by the second order stationarity, expectation of the first
term on the right of (2.60) is bounded by

C e
Morl* K [lérl ™ NK

<

N ™

130



for K large enough. Further, since P* (

i <16 =1 ] < 1)

expectation of the second term on the right of (2.60) is equal to P (” 0 “ <1ilér |])

which is smaller than £/2 for large T' because by Proposition 2. 2 65 8.
Regarding the second term of (2.58), the factor (W,;F F Wk) is O, (T71)

uniformly over ¥ € A-T by Lemma 2.2 whereas the factor W,QFIH Fi is
Op+ (T*?) uniformly over 1 < k < T by Lemma 2.8. Moreover, for any M > 0,

2 Z,FFW;

VT k—k

Z\F FW;
k—k

P*| sup
NC(K)

< P*| sup
NO(K)

> A6

)
>M)+P*(

|5|| < %%> (2.61)

Expectation of the first term on the right of (2.61) is bounded by £/2 for large
M by Lemma 2.8 and expectation of the second term on the right of (2.61) is
bounded by €/2 for large T since § = 67 + O, (T""4/2) by Proposition 2.2 and

since T3 ||67]| ™" = o (1).

Turning to the first term of (2.59), we have from (2.5) and (2.6) and from

the definition of 4 that

F(a—uw) = FX (8- B)+F (%~ %) b+ FZ; (60 —3).

(
SRR

Therefore o
l T —
P sup 20 Z\F HF:(u
ﬁC(K) k—k
2 FHFX (ﬁ — B)
< P*| sup »
NC (k) k—k
- B
+P sup “FHF (ZOA ;) Or
ﬁC(K) k—k
WF HFZ;, (67 - §)
+P* | sup <
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For any M > 0, the first term on the right of (2.62) is bounded by

P (e 200)+ 7 (|- g i) o

By Lemma 2.8, the first term of (2.63) is smaller than /6 with probability
larger than 1 — ¢/6 for large K and M. Expectation of the second term of
(2.63) is smaller than /6 for large T' because by Proposition 2.2, § — 3 and
§ — &7 are O, (T~Y/?), and because T-/2 = o(||6z|)). In a similar way, the
third term on the right of (2.62) can be shown to be smaller than 7/3 with
probability at least 1 — ¢/3 for large T'.

For any K > 0, the second term on the right of (2.62) is bounded by

2\ F HFX

P (el o P E o 20 2 559

< P (sup sup
N(K) 1<IST

z’AF’HFz,” > 2% ||6Tl|‘2) + P (

o] < 3 16x1)

+P* (|k - k0| > K ||5T||—2) . (2.64)

By Lemma, 2.8, the first term on the right of (2.64) is smaller than 7/3 with
probability no smaller than 1 — ¢/3 for large K and T'. Expectation of the
second and third term on the right of (2.64) is bounded by /3 for large T
and K, respectively.
Finally, for the second term of (2.59),
p* (Asup
NC(K)

A

2
5 )
< P sup ’&’F,ﬁl (MFWk MFW;;) HFU AK
RO(K) 4

P (HSH <l naTu) . (2.65)

VFH (Mpw, — Mpw,) HF|
k—k -
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By Lemma 2.9, the first term on the right of (2.65) is smaller than 7/2 with
probability at least 1 — /2 for large K and T. Expectation of the the second
term of (2.65) is P (HS” <i ||6T||) which is smaller than /2 for large K by
Proposition 2.2.

Collecting the results, we conclude that for arbitrary € > 0 and > 0,
there exists K such that

p (p* ( aup L) ZAH:;”Z) >n) <
NC(K) |k — k‘

for large T'. This together with (2.57) and with the Markov inequality imply

that
P (P* (

for large K and T as required. m

i — k‘ > K||<ST||'2) > n) <e

Lemma 2.13 If 7 — 0 and T ||0r||> — oo, then
i (k) — Sk (k) = 8. 20F F2abp — 28,2, F HFiisgn (k - k) +op (1),
where op» (1) is uniform on N (K).

Proof. Write

A

A oA, e A A Al A, —, —_ -1 —_—r A A
Qn (k) = § 2, FF255 — § 2. F FW, (W,;F’ka) W/F FZab

and
RL(k) = —28'2\F HFisgn (k - k)
Al A — -1 — ~
+28' 2, F FW, (W;F’ka) W/F HFtsgn (k - k)
+F H (Mpw, — Mrw,) HF@.

By Lemma 2.8, Z4AF FW;, = O, (167 72) uniformly on N (K) and by Lemma
— -1

2.2, (W,:F'FW;J = Op (T7!) uniformly on k € A - T. Further, by Propo-

sition 2.2, § = O, (||6r||). Also, by Lemma 2.8, W/F HFa = O, (T'?)
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uniformly on 1 < k£ < T and by Lemma 2.9, JFH (Mpwk - MFW,;) HFu=
oy (1) uniformly on N (K). It follows that

Q- (k) =8 Z\FFZab +0,(1)

and
Ry (k) = —28' 2. F HFasgn (k - k) +0pe (1)

uniformly on N (K). By (2.45),

St (k) — St (12:) =5 INF FZp6 — 23lZgF/HF'& sgn (k - lAc) + 0pr (1)
uniformly on N (K). m

Lemma 2.14 Let v2 be defined as in Lemma 2.7. If the conditions of Propo-
sition 2.9 are satisfied, then for any K > 0,

arg min S+ (I}+ _2)£>a.r min W (p).
8 pi<k T [vr’] 8 Pk (o)

Proof. Write k + [pv5?] = k. From Lemma 2.13,
St (k+ [ov7?]) 55 (k) = 67 20F F2n67—207 2, F HF issgn (k - k) +op- (1).
By Lemma 2.2,
1,, P
TEn(oT o+ M Zagon (o+om) = 1P| T
uniformly on {(c,p) : 0 < 0,0 + p < 1}. Hence
BI\FFZp 5 lels,
2w
uniformly over |p| < K. Lemma 2.8 implies that

B W(o+p)-W() p20,

1 —_—
_ZI }I‘F‘A —_E->
AT e+ HEU { QW(e)-W(o+p) p<0,

VT

S-S
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on {(p,0) : 0 < 0,0+ p <1} from which it follows that

5 = . LW, >
vrZaF HFdsgn (k - k) £ 2 ; 1 (0) p20
ﬂﬂzwz (—P) p <0,
where W;, W, are independent p-vectors of independent standard Brownian
motion processes. Proceeding as in the proof of Lemma 2.7, we deduce that

St (k+ [po7%]) - 53 (B) £W (o) + 0pr (1)

on p € [—K, K] where "E" stands for the equality of distribution conditional
on data. The lemma now follows from the continuous mapping theorem. m

Lemma 2.15 AsT — oo,
o .

Proof. As in the proof of Proposition 2.5, assume that process {z;} is scalar.
By definition, matrix $* is equal to
471'2 T-1

4 2 T-1
T Iz 130 |TI;|2 + _T7r_ Zsz,j (Iaw,j — Iaj |77;|2) . (2.66)
=1

J=1

Let 2} = 2z (k*). Writing
~ ~ % ~ A Ak «
Woe j = (5 -8 ) Wr,j + 0 (Ws,j — Wee5) + (5 -0 ) Wer j + Wa, i

and proceeding as in the proof of Proposition 2.5, it can be seen that, up to
a multiplicative constant, the second term of (2.66) is bounded in absolute
value by

|2

1 T-1
T > lwel* [wae j — wam]
j=1

2 T-1
tT > lwa I |was j — wam} | |mjwag)| (2.67)
i=1
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and that the first term of (2.67) is bounded by

T-

3 o 3
= (8- )Dw + 75 ® 5™ boagl? sy — vl

j=1

(3 5 ) Z |we i * wse ;I (2.68)

j=1

'ﬂlw

By Proposition 2.8, 8" = O, (T-/?), and by Lemma 1.11, T Z we|* =
0p (T"), therefore the first term of (2.68) is o, (1). By the Cauchy-Schwarz in-
equality, the second term of (2.68) is bounded by

2 T-1 % T-1
; (Dwz,,-r) (zlwﬁ—w‘)

j=1 j=1

=

N e

The sum in the second bracket of the last displayed expression is bounded by

o=

(2nT)? T) (Z' tl) r )2 Z|$t|§:|$a| (ler|22|xt_,+v|)

For any K > 0 and M > 0,

kk* ko+2K||67| =2
P e > Mo 72 | < P > ml = M|e|”
t

t=ko—2K||é7| 2
+P (|5 -

Proposition 2.1 implies that expectation of the second term on the right of
(2.69) is bounded by £/3 for large K. By the Markov inequality and Conditions
1.1 and 1.2, expectation of the first term on the right of (2.69) is bounded by
CK/M which is bounded by ¢/3 for large M. For any n > 0, the last term on
the right of (2.69) is smaller than 7 for large K and T" with probability at least
1 — /3. This means that Efk |zs| = Ops (||67]|%). By similar arguments,

f’r“ |z:|* = Ope (||67 7). Hence, because § = 61 + O, (T-Y/2) = O, (67|

‘ > K ||5T|I‘2) + P ( i

- k‘ > K ||6T||"2) : (2.69)
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by Proposition 2.2 and because

ko+2K |67 "2 ko+6K||67| =2

2 2

sup § Ixt—s+v| S E Izv| ’
t,seN(2K - _
SENCK) ko—2K67] 2 v=ko—6K 672

we conclude that the second term of (2.68) is op« (1).
Next, the sum in the third term of (2.68) is bounded by

'i

-1 T-1
Iwz1| |wz,J| +Z|wxal fwgej — wz,]| (2.70)

j=1

I
—

J

The first term of (2.70) is o, (T?) by the reasons given in the discussion of

(2.25) and (2.27). The second term of (2.70) is Op (7Y |67 ™) by the

reasons discussed above. Since § —§" = O, (T~1/2) by Proposition 2.8, the

third term of (2.68) is op+ (1). It follows that the first term of (2.67) is ope (1).
The second term of (2.67) is bounded by

1

T-1 3 /. T-1 3
1« 1«
Jj=1 j=1

by the Cauchy-Schwarz inequality. The first bracket of (2.71) has just been

shown to be 0, (1). The conditional expectation of the expression in the

second bracket of (2.71) is € which is O, (1) by Proposition 2.5. Thus the

second term of (2.67), and consequently the second term of (2.66), is o, (1).
Further, the first term of (2.66) is equal to

2 T-1 2 —1

4
—T—Zh g+ T = szz'm,,[uw (In,l -1)
4 2 T-1
Ia::v,y (qu,] uu,] |nJ| . (272)
Jj=1

By the Theorem 1 of Robinson (1998), the first term of (2.72) converges to
in probability. Further, the conditional second moment of the second term of
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(2.72) is bounded by

T-1 T-1 2 2
_C_E :IZ J2 . = Q} :fz 2 Izw,j qu,j
T2 zz,j Uy T T2 zz,jJ uu,j 2 2 '

j=1 Jj=1

xx,j J U,

By a routine extension of the proof of bound (4.8) of Robinson (1995b), it
can be shown that factors IZ, ;/fZ ; and I2,/f2,; are O, (1) uniformly in
1 <j<T-1. An application of Lemma 1.6 to g(A) = 12 (\) o2 (A)
leads to the conclusion that the last displayed expression is o, (1). By the
Markov inequality, the second term of (2.72) is o, (1). Finally, by the proof
of Theorem 1.3 the conditional expectation of the third term of (2.72) is o, (1).

Combining results, we have

Q*=Q+Opt (1)
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Chapter 3

Inference on the time of break
in regression with long memory

processes

3.1 Introduction

When making inference about the location of the breakpoint in a linear re-
gression model, a problem that we encounter is that the limiting distribution
of the location estimator depends not only on unknown parameters of the
model but, more importantly, on the distribution of the regressors and the er-
ror term. The limiting distribution is therefore data dependent and unknown
in general and thus it is intractable for the purposes of statistical inference.
The problem of intractability of the limiting distribution of the breakpoint
estimator has been approached in several ways. One approach to this prob-
lem has been to assume that the distribution of the data is known. This is
the approach followed by Hinkley (1970), who considered a regression model
with deterministic regressors and independent identical Gaussian distributed
error term. He found an analytic solution for the limiting distribution but,
in absence of a close form for the solution, he had to rely on numerical ap-
proximations to obtain critical values. However, with nonnormal errors or
nondeterministic regressors, this approach seems to be difficult or impossible
to implement. A more recent method would be to approximate the limiting
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distribution by Monte Carlo simulation. However, since the exact form of the
underlying distribution is a crucial determinant of the form of the limiting
distribution, the assumption that the underlying distribution of the data is
known is untenable.

Another direction that has been pursued in the literature is to assume that
as the sample size increases, the magnitude of the change shrinks to zero. If the
size of break diminishes at an appropriate rate, the limiting distribution of the
breakpoint estimator is invariant to the form of distribution of the regressors
and the error term and depends only on the first two moments of these series,
as we have seen in Chapter 2. The motivation behind the assumption of the
shrinking break is that in finite samples the distribution of the location of the
break for small breaks can be used as an approximation for large breaks as
the sample size increases. One of the first authors to consider asymptotics
with break magnitude local to zero has been Picard (1985) in the context of a
Gaussian autoregressive process. The assumption of shrinking break has since
become standard and has been adopted or discussed in various settings. The
assumption of shrinking break has been also examined in Chapter 2.

However, obtaining distribution-free asymptotics comes at a price. As
the sample size increases, information contained in the sample is sufficient to
detect changes that are tending to zero but the increase in information is not
fast enough to maintain the precision of the location estimator. The dispersion
of the distribution of the estimator grows. As a result, tests of hypotheses
about the date of change against fixed alternatives lose power as the sample
size increases. In other words, for tests where the date of break under the null
and alternative hypothesis is a given number of periods apart, the percentage
of rejections of the null hypothesis converges toward zero. This may be seen
as an unacceptable consequence of modelling the break as diminishing,.

Given the power loss under the shrinking break, it appears reasonable to
model the size of break as fixed. Under the fixed size of change and un-
known distribution of data, a possibility for making inference feasible is to
estimate the joint distribution of data. A possible estimation technique is
the bootstrap. When data are assumed to be independently and identically
distributed, bootstrap estimation can be carried out in a relatively straightfor-
ward manner. Antoch et al. (1995) bootstrap residuals from regression with
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fixed break and independent identically distributed errors. When data are
serially correlated, however, the basic assumption of independence, essential
to the validity of bootstrap, is violated. The bootstrap procedure needs to
be modified to reflect the dependence structure of the data. In our case, the
dependence in the data is possibly of long range.

A bootstrap procedure that is valid for short as well as long memory time
series is the frequency bootstrap of Hidalgo (2003a), employed with modi-
fications in Chapters 1 and 2 of this thesis. This procedure asymptotically
matches the covariance structure of the underlying process. The ability to
estimate the second order dependence structure is sufficient for approximat-
ing distributions that are entirely described by the second-order structure,
for example the Gaussian distribution. However, it does not suffice in our
current scenario where a general joint distribution of a process needs to be
approximated. To our knowledge, there is currently no bootstrap procedure
available that approximates the joint distribution of data while allowing for
strong serial dependence. It is nevertheless worth mentioning that Biihlmann
(1997) has observed that the sieve bootstrap offers a valid approximation of
the finite dimensional joint distribution for weakly dependent processes.

In this chapter, we wish to maintain the assumption that the magnitude
of break is fixed for all sample sizes and that the underlying distribution of
data is unknown. We consider nondeterministic regressors and we allow for
strong temporal dependence in both regressors and errors. In order to obtain
valid inference procedures, we propose a bootstrap method for estimating the
joint distribution of weakly or strongly dependent processes. To accommodate
the potential presence of long memory, the memory parameter is estimated
explicitly and information about memory is incorporated in the model in a
way that essentially amounts to fractional differencing of data in the frequency
domain. Apart from modelling the memory parameter, no further assumptions
are made about the structure of the model for data, and the procedure can
be viewed as semiparametric within a class of linear processes.

In what follows, Section 3.2 proposes a new bootstrap procedure for es-
timating the distribution of the breakpoint estimator under the assumption
that the magnitude of break is fixed. Asymptotic properties of the proposed
bootstrap procedure are examined in Section 3.3. Section 3.4 concludes and
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suggests possible extensions of the bootstrap procedure. The proofs of all
results are collected in Section 3.A which refers to auxiliary results in Section
3.B.

3.2 Bootstrap under fixed break

We consider the linear regression model (2.1) with a break in the slope para-
meter,

v =+ B+ 02 + u, t=1,...,T, (3.1)

where the magnitude é of break is fixed and different from zero. We are
again interested in making inference on the parameters of the model and in
particular in testing the null hypothesis kg = ky, where kg is a constant,
against the alternative hypothesis kg # ky. We estimate parameters k, § and
é by the least squares procedure discussed in Chapter 2, that is,

. _ .
k = arg min |[M.w,y|

(? ) = (WiMW;) ™ WiMy.

When processes {z;} and {u;} are strictly stationary and mutually inde-
pendent and (6’:z:t)2 +28'z,u, has a continuous distribution, it has been shown
in Chapter 2 that under appropriate regularity conditions,

fe - ko 5 argmin W0 (s) (3.2)
and

Nod R 4 N, V), (3.3)
0 —or
where the process W° and the covariance matrix V are defined in (2.8) and
Proposition 2.2, respectively.
The result in (3.2) indicates that the asymptotic distribution of k depends

on the underlying distribution of {z;} and {u:}. When the distribution of
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data is unknown, it needs to be estimated in an appropriate way. The main
purpose of this section is to propose a bootstrap method of approximating the
limiting distribution of the time of the break.
The strategy is to obtain an estimate k* of the time of break kg from the
regression
y;‘=&+3mt+3zt+u;‘, t=1,...,T,

where u3,...u} is a bootstrap sample obtained by resampling the residuals
@i;. Given the nature of the limiting distribution (3.2) of the breakpoint esti-
mator l::, the distribution of u; needs to approximated not only the marginal
distribution of u; but also the finite-dimensional joint distributions of ;.

For covariance stationary processes with an AR(oo) representation, Biihl-
mann (1998) proposes to approximate the dependence structure by AR(p)
models where the order p = pr increases at a certain rate with the sample
size. Bithlmann’s bootstrap procedure based on resampling the fitted AR(p)
residuals delivers a valid approximation of the finite-dimensional joint distrib-
utions of the underlying process provided that the coefficients p; of the AR(o0)
representation satisfy Y ;25! |p;| < oo, the process has finite fourth moments
and pr =o0 ((T/ log T)1/4).

The assumption of summability of | p;| does not admit processes where the
correlation between increasingly distant observations decays slowly and where
the AR(oc0) coefficients are absolutely summable but the series ), 1|p)| di-
verges. To accommodate a stronger degree of dependence, the AR(oco) process
would need to be approximated by AR(p) model with a faster increase in pr.
However, with increasing ratio pr/T, the variance of estimators of the au-
toregressive coefficients increases and it is not immediately evident that the
estimators would remain consistent. Similar observations apply to the trade-
off between the block length or the subsample length and the precision of
estimators in the block bootstrap of Carlstein (1986) and Kiinsch (1989) or
the subsampling bootstrap of Politis and Romano (1992), respectively.

We propose a bootstrap procedure based on prewhitening of the process
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u;. Suppose that u, is a covariance stationary linear process given by
o0
Uy = Zblet_l =B (L) Et, t e Z,
1=0

where by = 1, 3772 b < 00, B(2) = 3 2 bp2?, L denotes the lag operator,
Le; = €1, and where {¢;} is a serially uncorrelated process with Fe;, = 0. If
u; has long memory, the spectral density f,. of u; has a pole of order —2d at

the zero frequency,
fuuAN) ~CA™2 asA—0+.
In this case, process u; can be conveniently represented as
u=(1—-L) ¥ (L)e, (3.4)

where ¥ (L) = (1 — L)? B(L). The corresponding representation of the spec-
tral function is

fuu(A) =g (N h(A), (3-5)

where g(\) = |1 —ei"|_2d and h(\) = |¥ (e"’\)|20'§/ (27). When d > 0,
function g dominates over h around the zero frequency, therefore the behaviour
of the spectral density of the process at low frequencies is described by g.
Correspondingly, we refer to g and h as long- and short-memory part of the
spectral density, respectively.

Let
2 T it
at=\/7;jé=l’wa(/\j)€ 7, t=1,...,T,

be the inverse discrete Fourier transform of a generic sequence {w, (};) T

=t
Representation (3.4) suggests to approximate the discrete Fourier transform

of u; as

wy (A5) = B (€M) we () = (1 — €)' (M) we (),  (36)
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and hence to approximate u; as
2 —
U N 1/? Ze‘“’\fB (e™) we (A;)
=1
T
_ /2?” T e (1 - e) TN () w (), 3.7)
=1

where ”=” should be read as ”approximately”. The existence of the pole
of function (1 — ei"f)_d at zero may prompt doubts about the reliability of
the Bartlett approximation (3.6) of wy, (A;) for frequencies near zero, but the
results in Section 3.3 below indicate that the approximation is asymptotically
valid provided B is replaced by a modification of B based on a truncated
Fourier series of B.

If on the right-hand side of (3.7) the quantities d, ¥ (e) and w, (};)
are replaced by consistent estimators d, ¥ (¢*) and wz ();), respectively, the
problem of obtaining a bootstrap sample uj, ...} becomes a problem of de-
signing a valid bootstrap algorithm for the discrete Fourier transform w; (A;),
j = 1,...,T. These arguments lead us to propose the following bootstrap
algorithm for estimation of the distribution of the breakpoint estimator.

Step 1 Obtain the centered least squares residuals
N _ N ~ IR _
h=w-0)-B (&—-3) -0 (-2, t=1,.,T,

where § = TI 4, 2 = T130 @, 2 = z] (t < k) and 2 =
T-13°T | 5, and where I denotes the indicator function. By definition,

ey e =0.
Step 2 Estimate d by the local Whittle estimator d proposed by Robinson
(1995b),
d= in H 3.8
arg min H (a), (3-8)

where 0 < A < 1/2,

1 <= .24 2a
H (a) = log ('n—% Z)\g Taa (/\j)) T Zlog Aj

J=1
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for an integer m € (1, [T/2]), where the bandwidth m satisfies condition
1/m+m/T — 0.

Let

m

=57 2 1 e 0

be our estimator of A () in (3. )-

Step 3 Let M = [T’/ (4m)] and estimate innovations &; as

T
M Ry (),  t=1,..T,

j=1

where
~ Mo
B = Y pe™, j=1,.,T,
=
1=t
S N EL
Jj=
By = (1-e¥)"471(eY), j=1,..T-1,
and where
X M
s meaf-f]. e
r=1
and
(T/2] 1 [T/2]
ér:‘ Z log fye™™ = Z log b (\) cos Ty, r=1,.., M.
l—m+1 l—m+1

Step 4 Draw a random sample &* = (g},€3,...,e%) with replacement from
the empirical distribution of the residuals &, P* (e} =¢;) = T! for
i,7 =1,...,T, and compute the discrete Fourier transform w.. of &*,
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that is

*1tA s
Wes (A5) \/FZE 7, i=1,...,T.

Step 5 Compute

e~ A
u;=,/_7_’fze—w3jwe‘(,\j), t=1,..,T, (3.9)
j=1

where
~ M
Bj = ane’“", j=1,...,T,
=0
. 1=,
bl = TZBjC_d'\j, l=0,...,M,
j=1

B, = (l—ei’\f)_d\il(ei)‘f), j=1,...,T -1
Step 6 Construct bootstrap sample y;,
Y = f?lxt +8%+ uy, t=1,..,T. (3.10)

The regression intercept is set to zero because only the slope coefficients
are of interest. Compute the bootstrap counterparts 4* (k) and k* of
estimates 4 (k) and k, that is 4* (k) = M, w,y* and

k* = arg krgﬂ" St (k) = min {k : S (k) = lrer}\igS} (l)} )

where Sk (k) = ||@* (k)||* — ||a*(k)||?>. Finally, compute the bootstrap
counterparts B' and & of estimators B and § as

(? ) = (WLMW;.) " W My".

Step 2 of the bootstrap procedure requires a consistent estimator of the
memory parameter d. In our procedure, we use the local Whittle estimator of
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Robinson (1995b) but other estimators may prove suitable for the purposes of
bootstrapping the date of break.

The estimator & of the short-memory part of the spectrum in Step 3 is
obtained by reweighting the periodogram of residuals by the estimated long-
memory part § = |1 — ei'\[_2d of the spectrum and then smoothing. Normaliz-
ing periodogram I3 by § approximately corresponds to fractional differencing
of the data. It is possible to estimate h by reversing the operations of smooth-
ing and weighting, that is by reweighting the smoothed periodogram by g.
The latter method, however, is likely to produce a higher variance estimator.
Reweighting periodogram prior to smoothing may be likened to applying log-
arithm to data in order to equalize variance across the sample. The estimator
¥ in Step 3 is obtained by the canonical spectral decomposition of h, see for
example Brillinger (1981, page 78-79).

It is interesting to compare Step 5 of our bootstrap to analogous Step 4 of
the bootstrap procedure of Hidalgo (2005), where the function (1 — e*) ~ is

replaced by the square root of a partial sum of the Fourier series of | 1-—e* | _2d,

Y
that is by lth;—l:r 1 G with

(—1)’1“(1—2&)
r(l-d+1)r(1—l-¢i)'

G =

The replacement is motivated by a concern about the adequacy of the Bartlett
approximation (3.7) for frequencies around zero because, in contrast to our
case, the asymptotic distribution of the test statistic of Hidalgo (2005) depends
only on the behaviour of the spectral density function for frequencies in a
shrinking neighbourhood of zero. It would be informative to evaluate the
performance of our bootstrap procedure under the two choices of estimator of
(1—e?)™
Definition (3.9) in Step 5 implies that

M T
up = ZI;,ZE:]I (s=t—1! modT), t=1,..,T. (3.11)
I=0 s=1
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Apart from the circularity of the bootstrap innovations, (3.11) could be viewed
as a description of a time domain bootstrap for u;. By Condition 3.4 below,
the lag order M in (3.11) is required to satisfy M = o ((T/ log T)Y 3) and
M~ = o (T-'/%). A comparison with the lag order pr = o ((T/ log T)Y 4)
of Bithlmann (1997) leads to the observation that our bootstrap calls for a

greater number of lags. This is to be expected as our procedure allows for
strong dependence of data.

3.3 Asymptotic properties of the bootstrap

procedure

The bootstrap procedure is discussed under the assumption the that {z:}
and {u.;} are stochastic processes that satisfy Conditions 1.1-1.5 and 2.1 with
Conditions 1.2, 1.3 and 1.4 strengthened by Conditions 3.1, 3.2 and 3.3 below,
respectively.

Condition 3.1 {£,} is an independent identically distributed stochastic process
with E¢, =0, E (£,£,) = E > 0, and with finite fourth moments.

Condition 3.2 {¢;} is an independent identically distributed stochastic process
that is independent of {£,} and that satisfies Ee; = 0, Ee? = 02, and Ee} <
00.

Condition 3.3 The function B (e*) (1 — e"’\)d is twice continuously differ-
entiable on (0,7) and has one-sided second derivatives at 0 and 7.

In addition, we need to impose the following conditions.

Condition 3.4 As T — oo,

4 2

m

Condition 3.5 When 0 < d < 1/2, the coefficients b, satisfy

|bl—bl+1]§% for alll > L and some L < 0o, D < o0,
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and
b=0 (ld_l) asl — oo.

Conditions 3.1 and 3.2 are strong but necessary for the validity of the
bootstrap procedure because shift invariance and mutual independence of the
joint distributions of z; and wu; is required. While finiteness of the moments
up to fourth order only is imposed on the innovations of z;, the innovations
of u; are required to have finite eighths moments. The stronger condition is
introduced to guarantee convergence of the estimator of the short memory
part of the spectral density of u;.

Conditions 1.4 and 3.3 imply that the spectral density f,, of the process
u; can be written as

fiu Q) =gNh), Ae[0,n], (3.12)

where 0 < d < 1, g(\) =[1- ei"|—2d and where the function h is positive,
symmetric around zero, twice continuously differentiable on (0,7) with one-
sided second derivatives at 0 and 7.

Condition 3.4 gives upper and lower bounds on the rate of increase to
infinity of the smoothing parameter m. For example, a bandwidth in the form
of m = T* would satisfy Condition 3.4 for a € (2/3,3/4). It is worth noting
that an identical bandwidth is used in the estimation of d in Step 2, in the
smoothed estimate of prewhitened periodogram in Step 3, and through the
parameter M also in the truncated sums in Steps 3 and 5 of the bootstrap
procedure.

Condition 3.5 corresponds to Conditions (4.1) and (4.2) in Assumption 7
of Robinson (1994b). The condition is slightly stronger than quasi-monotonic
convergence of b, to zero which requires that b — 0 as I — oo and that
bir1 < b (14 C/l) for some C < oo and for all sufficiently large {. Condition
3.5 implies that b, have bounded variation, that is Y ;o |bi — bi41| < co. The
condition is introduced to ensure that residual Fourier sums of the transfer
function B are sufficiently small.

Condition 3.5 together with Conditions 1.1, 1.4, 3.2 and 3.3 are nearly
equivalent to Condition C1 of Hidalgo (2005). The difference is that imposi-
tionof g(A) = |1 — e“‘rw on the factorization f,, () = g (X) A (}) in our case
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implies the necessity to allow for functions h that have an angular point at 0
and 7 and are smooth everywhere else. Hidalgo (2005), on the other hand,
imposes smoothness of i and A’ at 0 and 7, which means that the function g
in factorization fu, = gh in general will not be equal to |1 — e”"|“2d.

Conditions 3.1-3.3 are stronger than those conditions that are sufficient
for obtaining the rate of convergence of the breakpoint estimator k and as-
ymptotic normality of the slope coefficient estimators B and 8. To obtain
these results, only a weaker form of Conditions 3.1-3.3 is needed. More specif-
ically, Conditions 3.1 and 3.2 can be weakened to a requirement that £, and
g; are homoskedastic martingale difference processes with finite fourth cumu-
lants with an allowance for a certain degree of cross-dependence, see Chapter
2 for details. Moreover, a smaller degree of smoothness is required, that is,
the functions A and B only need to be once differentiable and so Condition
3.3 is not required. The limiting distribution of k under the assumption of
diminishing size of break can also be obtained under these weaker conditions.
The asymptotic distribution of location estimator k under fixed break obtains
without a need for imposing Condition 3.3, but it is necessary to impose strict
stationarity, finite fourths moments and mutual independence of regressors
and errors.

We can now describe the statistical properties of the estimators employed
in the bootstrap procedure. The first stage of the bootstrap procedure is to
perform approximate fractional differencing with the difference parameter d.
The following proposition affirms consistency of the local Whittle estimator d
of d.

Proposition 3.1 Under Conditions 1.1-1.5, 2.1 and 3.1-3.4,

Robinson (1995b) shows that the local Whittle estimator d is an m!/2
consistent estimator of the memory parameter d of a linear process. Proposi-

tion 3.1 implies that d remains m!/2

-consistent when the process w; is replaced
by the regression residuals #;. We select the local Whittle estimator to es-
timate d but any consistent estimator of d can be utilized provided its rate

of convergence is at least m/2. Since the spectral density is smooth away
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from the pole, an alternative candidate for the d estimator is the broadband
estimator of Moulines and Soulier (1999).

The next prerequisite for the success of the bootstrap procedure is a valid
approximation of the joint distribution of finite stretches of data.

Proposition 3.2 Assume Conditions 1.1-1.5, 2.1 and 8.1-8.4 hold. Then for
any finite K,
* * d‘
(uko—K7 e 7uko+K) = (Ukg—Ks - -+ » Uko +K) -
Proposition 3.2 deals with continuous blocks of data in a neighbourhood
of the true date of break, but the proposition can be generalized for any finite-
dimensional joint distribution of the process. The result is used in subsequent

steps of our bootstrap procedure, but is itself of interest and could be adapted
for other purposes.

Proposition 3.3 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.5 are satisfied.
Then
B —k=0,(1).

Proposition 3.3 mirrors the corresponding result (2.7) for the rate of con-
vergence of k. The rate of convergence of k* can be regarded as a preliminary
result in the analysis of the limiting bootstrap distribution of k*.

The following theorem is the core result of the chapter. The theorem
asserts consistency of the proposed bootstrap procedure and gives the asymp-
totic distribution of the bootstrap estimator of the date of the break.

Theorem 3.1 Assume (6'z;)’ + 28'zyu; has a continuous distribution. Then
under Conditions 1.1-1.5, 2.1 and 8.1-3.5,

-k argrr%inWO (k),

where the process W° is defined in (2.8).

The assumption of continuity of the distribution of (§'z;)? + 26'z;u, identifies
the bootstrap breakpoint estimator k* by ensuring that the process W° has a
unique minimum.
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A bootstrap approximation of the asymptotic test can be constructed on
the basis of the conditional distribution of ¥* — k. For the test of the null
hypothesis Hy: ko = kg, the bootstrap rejection region C;, at a level of sig-
nificance o is constructed in such a way that P* (I;:* —ke C’;) = a. The

bootstrap test rejects when k—kye C;. By Theorem 3.1, the bootstrap
rejection region C}, consistently estimates the asymptotic rejection region C,
where C, is such that P (arg miny W° (k) € C,) = a.

While the examination of the asymptotic distribution of the bootstrap
breakpoint estimator is the main focus of our analysis, the statistical proper-
ties of the slope estimator are also of interest. The following theorem char-
acterizes the asymptotic distribution of the bootstrap counterparts of 3 and
0.

Theorem 3.2 Assume Conditions 1.1-1.5, 2.1 and 8.1-8.5 hold. Then

ﬁ(?_’f)i‘w(o,w,

where V' is defined in Proposition 2.2.

Theorem 3.2 states that the asymptotic normality of slope coefficient es-
timators is preserved under fixed breaks when employing the proposed boot-
strap procedure.

3.4 Conclusions

This chapter examines the problem of obtaining valid inference for the date
of break under the assumption that the size of break does not change when
the sample size increases. The problem of unknown distribution of underlying
data is dealt with by devising a bootstrap procedure which approximates the
distribution of innovations of the linear process of errors. The method is
based on prewhitening procedure which delivers estimates of the innovations
of a linear process. The deconvolution of the residual process is carried out
in two stages. First, the degree of memory of the process is brought down
by filtering out the high amplitude at low frequencies. The second stage is
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similar to the sieve bootstrap of Biihlmann (1997). It seems convenient to
perform the prewhitening in the frequency domain.

The bootstrap values of innovations are used to generate a bootstrap sam-
ple of the left-hand side variable y; for the purpose of obtaining a bootstrap
distribution of the date of break, but the bootstrap procedure for u; or its
estimate 4, is itself of interest and can be adapted for other purposes.

There are several ways in which the techniques proposed in this chapter
can be extended. The bootstrap procedure could be modified for estimation
of the distribution of the date of break in a nonlinear regression

yt=f(xt,5¢)+ut, t= 1,...,T, (313)

where §; = d¢ for t < 79T and é; = 4, for t > 7T with §y # 6;. The procedure
could also be adapted to allow for heteroskedastic errors in regression (3.1),
that is, for errors of the form i; = o (z:,d;) us, where J; is as in (3.13), u,
satisfies conditions given in Section 3.3 and ¢ is a function known up to a
finite number of parameters. In this case, the least squares residuals in Step
1 of the bootstrap procedure could be standardized by o (xt, St) where 8, is
a T'/2-consistent estimator of §;.

While several steps of the proposed bootstrap procedure, and in particular
the fractional differencing, are executed in the frequency domain, it is likely
that the underlying ideas could be realized also in the time domain. Steps
3-5 of the proposed bootstrap procedure could be modified in the following

manner.

Step 3’ Let &; be the coefficients of the binomial representation of (1 — z)*

atd= tf, that is,
r (j - ci)

P(j+1)r(-d‘)’

&; = i=0,1,...,

where I" denotes the gamma function. Compute
T
nt=z&jﬁt—j7 t=1,...,T,
=0
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with 4, = 0 for ¢ < 0. Let n, =0 for ¢ < 0 and compute

pr
ét:nt—z¢pnt—p7 t=1,...,T,
p=1
where @,,...,{, . are estimated coefficients of an AR(pr) model for 7,

and where pr increases with the sample size T' at an appropriate rate.

Step 4’ Draw a random sample €},..., €3, with replacement from the cen-
tered residuals

1 T
~=A—— E t=1...T-
t=¢& T;&, ) )

Step 5’ Compute
pPr

n;=e:+z¢pez_p, t=1,...,2T
p=1

with the initial condition e = 0 for ¢ < 0. Let [3]- be the coefficients of
the binomial representation of (1 — )™ at d = d,

- I‘(j+a§) ol
j—r(j+1)1‘(d)’ IR

and obtain

T
uf =njr+ Y Bmiry  t=1,...,T.
=1

Details and validity of the proposed extensions would need to be examined
in future research.
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3.A Proofs

In what follows, we assume for simplicity that process {z:},.; is scalar and
2

denote var z; = o%.

Proof of Proposition 3.1. On account of Theorems 1 and 2 of Robinson
(1995b), it suffices to show that

sup
a€B

D X (Taag — Lunyg)
1

j=

= 0, (m'/?). (3.14)

Define #; = u; — 4;. By the definition of 4;, we have wy; = w, ; — wg; for
j=1,...,T —1, where

Waj = (B - 5) Wz,j + (8 - 5) Wsj + dwasz,j (3.15)
and {A‘ét}tT=1 ={z%- Zt}?:l = {Zt(’;’) — 2; (ko) }{_;- Hence
Iﬁa,j - Im,,j = Iﬁﬁ,j + 2Re Iﬁu,j

and the left-hand side of (3.14) is bounded by

> Masg = Tuugl < ) (Taag + 2| Taugl)
1 1
m m 2 m 2
< Z Igaj; +2 (Z Iﬁﬁ,j) (Z qu,j) (3.16)

due to the triangle and Cauchy-Schwarz inequalities. By the Cauchy-Schwarz
inequality and (3.15),

T3, <3 (B - ﬂ)2 |wz s> +3 (5 - 5)2 [wsl* + 36 |was 1

Further, Lemma 1.5 implies that E ([wz([ﬁ]),jlz / |Aj|2) < C uniformly over
integers 1 < j < [T'/2] and over 7 € [0,1] for some C, and Condition 1.4
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implies that |4;|® )\?dz < C uniformly over integers 1 < j < [T'/2]. Therefore
m m i T 2d;
E Izz < C A-_Z T = - .
Brscore o))

. . 2
By Lemma, 1.7, § — & = O, (T"-'/2), therefore the contribution of (5 - 6) L.
into the first term of (3.16) is O, ((T/m)z‘i’—l) which is o, (m!/?) by Con-
dition 3.;1. Likewise, the contribution into the first term of (3.16) due to
(B - ﬁ) Iz jis Op ((T/m)%’_l). Further, we show that

sup IAQAE,J' = Op (T—l) . (317)

1<5<(T/2)

For any D > 0 and any finite K,

P( sup IA,;M,,->£;->5P(K k‘ﬁf xgzp)+P(|k—kO|>K).

1<5<(T/2) tmko—K
(3.18)

By the Markov inequality, the first term on the right of (3.18) is bounded by
02K?/D < ¢/2 for sufficiently large D. The second term on the right of (3.18)
bounded by &/2 for large K by (3.2). It follows that (3.17) holds. This implies
that the contribution due to I;,; into the first term of (3.16) is o, (m!/2). We
have thus shown that the first term of (3.16) is O, ((T/m)zd’_l).

Proceeding in a similar way, we obtain that 37", Iuu; = Op (m (Z)Zd)
and hence that (3.16) is

o ((2)) 0 [ ()°) -t

by Condition 3.4, because d; +d < 1/2. =
Proof of Proposition 3.2. Using the Cramér-Wold device, we need to
prove that for any finite constants ak,—x, . . . , Oky+x,

ko+K ko+K

2 : « d° } :
QiU — QU

t=ko—K t=ko—K
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From the definition of u; in Step 5 of the bootstrap, we obtain
M T
up=>) by el(s=t—1modT).

For large enough T', kg — K > M + 1 and we can write u} = Z{Zo Ele;‘_, and
ko+K ko+K
5% aur =30 3 et

t=ko—K =0 t=ko—K

Let w > 0 be such that 6, § + 3w and @ — 3w are continuity points of the
distribution function of u;. Then

ko+K kot+K
P* ( Z apuy < 0) < P* (Z b Z e <6 +w)
t=ko—K = t=ko—K
. ko+K
Z (bl - bl) Z atet 1

M
e (

=0 t=ko—

)

By the Markov and Cauchy-Schwarz inequalities, the second term on the right
of the last displayed inequality is bounded by

1
2

1 M . ko+K K M . 2
=N (B-b)| X |at|E*|s:_,|s;(MZ(bz-bz)) 6.
1=0 t=ko—K =0

which is Kw™'0, (1) by Lemmas 3.13 and 3.15. Further, for any N > 0,

M kotK
p* (Z b Z o <0 +w)

=0 t=ko—K
ko+K
(sz > ol ,<9+2w)
=0 t=ko—K
ko+K
( Z b Z QuEf >w) (3.19)
I=N+1 t=ko—

By the Markov inequality, the second term on the right of (3.19) is bounded
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2

ko+K 02 M
—E* Z b Y, aery| =CK—£ > i
I=N+1 t=ko—K w? I=N+1

Due to the square summability of b;, the sum on the right of the last displayed
equality tends to 0 as N — oo. The first term on the right of (3.19) is bounded
by

ko+K
(Z b Z ouer < 0+ 2w)

I=0 t=ko-K
ko+K ko+K
P (Zb; $ aet §0+2w> - (Zb, 3 e 50+2w) ,
=0 t=ko—K =0 t=ko—K
where the first term is bounded by
(o) ko+K ko+K
(sz > atst_zS0+3w) ( dob ) aEs|>w
I=0 t=ko-K I=N+1  t=ko—K
(3.20)

The first term of (3.20) is bounded by o2w=2CK? Y2 ., b? by the Markov
and Cauchy-Schwarz inequalities.
Fix € > 0. Collecting results, we have that for any > 0.

ko+K ko+K
P*( Z atuzgﬂ) SP( Z atuts9+3w)

t=ko—K t=ko—K

N ko+K N ko+K
P* (Z by, ol <0+ Zw) -P (Z by, oue 1 <0+ 2w>

=0 t=ko—K =0 t=ko—K
n
2

N (3.21)

with probability at least 1 —e/2 for large " and N. Lemma 3.16 and Cramér-
Wold device imply that for any ¢ and for any fixed N, the last term on the
right of (3.21) is smaller than 7/2 with probability no smaller than 1 — £/2
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for large T'. This means that

ko+K ko+K
P* ( Z Uy 30) sP( Z atut$0+3w) +n
t

=ko—K t=ko—K

with probability at least 1 — ¢ for large T and N.
In a similar way, it can be shown that

ko+K ko+K
P( Z atut§0—3w> —nSP*( Z atu§_<_0)

t=ko—K t=ko—K

with probability greater than 1—¢ for large T" and N. The lemma now follows
because w, € and 7 are arbitrarily small. =

Define Za = (Zi — Z;) sgn(k — k).
Proof of Proposition 3.3. Let u* = (u},...,u%) and 4* = (4},...,%%)"
By definition, 53 (k) = [la ()II* — [[a (£) | = @& (k) + Bf (), where

Qu(k) = 8ZMw 234 and
T k W~k
.R/}' (k) = 23’Z£ML,W,‘u* + U*I(M,,,Wk — ML,WE )u*.

By standard arguments, for any K > 0,
pP* ( k* —icl > K) <P*| inf —Q}(’f) <A|+P*| sup lR}(ki)' > )\) ,
wote) [Js — & #ew [k - i
(3.22)
where NC (K) is defined in (2.47). Fix ¢,7 > 0. Expectation of the first term
on the right of (3.22) is equal to

S 7 M w 2.5
P| inf —SEWTE 5]
RO (K) ik—k‘

By Lemma 2.10, there exists A > 0 such that for every € > 0, there exists

K < oo such that the last displayed expression is smaller than /2 for large
T. Select such A.
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Write
Ry (k) = Rir (k) + R3r (k) + Rar (k) + Rir (k)

where
(k) = 25'Z\M*asgn (k - k) ,
R (k) = 28'Z\M, (u* —4*)sgn (k - k) ,
R (k) = —25 2\ MW, (W.MW,) " W.Mu* sgn (k - k) ,

Rir (k) = w'(M,w, — M,w,)u"

The contribution due to R} (k) into the second term of (3.22) is bounded by

(g 5L ) o

Ne(k) |Ic—k ~ 16|6]|

\5” >2 1|5u) . (3.23)

By Lemma 3.23, the first term of (3.23) is smaller than /4 with probability
at least 1 — £/4 for large K and T. Since § = § + O, (T'"%/?) by (3.3), the
expectation of the second term of (3.23) is o, (1).

We now turn to the term R (k). Write

T M
=Y ey (13, —b,)n(s =t—1 modT)
s=1 =0
and define
T M R 1 T M .
n=%eaY (b, - b,)n(s =t—1 modT) — (TZE;) 3 (bz - b,) .
s=1 =0 s=1 =0
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We have

N

sup ~
NC(K) |k: —k

aM, (u* —a5)

< (Nscu(g{) l’“‘ |lewzll)

1
2
X | sup .
NC(K)
Since (a — b)? < 2(a? + b?), we obtain

T M 2
r? < 2(2£§Z(5;—b;)]1(s=t—lmodT))

s=1 =0

+2 (TZE> (Z( b,))z. (3.24)

=0

By the Cauchy-Schwarz inequality, the first term on the right of (3.24) is
bounded by

T M M R 2
Y ey Is=t—1modT)y (b,,—b,,) .
s=1 =0 p=0

For sufficiently large T',

ke T

sup ! ZZ&”ZH (s=t—1 modT)

Ne(K) k_,} t s=1

1 M k,k M
S ) ST pp g Jpy
Feqry |k — k| =0 3 =0 N¢(K) lk k|

. 2
Since M 3", (b, - b;) is Op (Mm™2T1logT) = 0, (1) by Lemma 3.13 and
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Condition 3.4, the second term on the right of (3.24) is bounded by

1 Z 2 M R 9
2(T;s;) Mz(b,—b,) =0, (1).

=0

Therefore
sup Z'rt = 0p» (1)
NC(K)
and also
sup |2 @)| = op (1)
NC(K) ‘k k‘

Kk |z is O, (1). It follows that

ZI\M, (u* —@*)
P* sup |R2T (k)l > i S P* sup “ A ~ 1 Z A
RC(K) l NO(K) - 16 4]|

4
+P*( ?5’>2||5|1),

where the first term on the right is smaller than 7/4 with probability equal or
larger than 1 — ¢/4 for large K and T.

Regarding Ry (k), Lemma 2.8 implies that Z) M, Wi/ ‘k - fc| is Op (1)
uniformly on NC (K) and (WiM,W,)™* is O, (T~!) uniformly on N€ (K).
Further, Wi M,u* is Oy« (T"/2) uniformly over 1 < k < T by Lemma 3.22. It

follows that
P sup BB SN
NC(K) |k—k‘ 4

with probability no less than 1 —e/4 for large T Finally, since R}y is Op (1)
uniformly on N (K) by Lemma 3.24, we have

P*{ sup |R4T(A)I < P*| sup |R4T(k)|>‘)'\'l£ <1
RO(K) lk kI Re(K) 4 4

with probability larger than 1 —¢/4 for large K and T'. Collecting the results,

w3
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the bound k* — k = O,» (1) is established. m
Proof of Proposition 3.1. Write k* = k + argmin, .., ; S#(k +r). Fix
K >0 and let

k* = arg min S; (k) =k + arg min S} (l%+r) ,
keN(K) Irl<K

where N (K) is defined in (2.46). We have

pr(k—k=j) = P (b-k=j

k- k‘ < K)
+P* (k k=3 ‘k - k! > K) . (3.25)

~ A

k* — kl < K} is equivalent to the
event { k* = I~c"}, the first term on the right of (3.25) is equal to

Since conditionally on data, the event {

P (k—k=j)-P (F-k=j,

IE‘—IEI>K).

Let 7 = argmingey W°(m) and m = argming,<x W°(m). Arguing as
above, P (i = §) = P (= §) — P (7 = j, || > K) + P (1 = §, || > K).
Therefore

P (fc*—ic=j) — P =j)
+2P*(

<

P (k*—k=j) - P(m=)

P k‘ > K) +2P (] > K). (3.26)

By strict stationarity of z; and w;, the conditional joint distribution of
(Ziy,— 2 ,;)' u* is equal to the conditional joint distribution of (Z,4r — Z,) u*
for |r| < K, and the finite dimensional joint distributions of distribution of
(Ziyr — Z3) (Zi,, — Z;) is equal to the finite dimensional joint distributions
of (Zrysr — Zky) (Zrosr — Zx,) for r € Z. Therefore by Lemma 3.25 and
Proposition 3.2,

St (k+7) 58 (Ziotr = Zio) (Zrotr — Zio) 8 — 28/ Frorr=Fia)y

on |[r| < K. The distribution of the right-hand side of the last displayed
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expression is the same as distribution of the process W (r). By assumption,
(¢ :ct)2 + 26'z4u; has a continuous distribution. Therefore the process W has
a unique minimum,

e 1 . 0

k*—k= arglnlurll{ST (k+r) = arglﬁE%W (r),
and the first term on the right of (3.26) is smaller than /3 with probability
at least 1 —¢/3 for large T. The second term on the right of (3.26) is smaller
than 7/3 with probability no smaller than 1 — £/3 for large enough K and T
by Proposition 3.3. The third term on the right of (3.26) is bounded by 7/3
for large K because 1 = O, (1). In sum, P* (lAc* —k =j) 2, P (=) for
each j and so k* — k LR arg min,, W0 (m) as required. m
Proof of Theorem 3.2.

From the bootstrap model (3.10), we have

A

g

v —-Xﬂ+Z6+u —W'M(3)+(Z,;—Z~.)3+u',

where y* = (y1,...,yr) and u* = (u},...,u})". Therefore

T
-1
(TW,:,MLW,;.) WM

Proceeding as in the proof of Proposition 2.8, we obtain

1 -1
* 1 To
WL, MW, d X!
(T o > - (To To )

! M, (Z; — Z;.) = Ope (T—%) .

. .
ﬁ(?:f) - (%WI{,MLWE.> Ly M.(2, - 2,.)8

and

v
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Lemma 3.21 implies that

1 QiW (1)
— Wi Mu* £ ‘
VT R ( QBW (1) )

By Proposition 2.2, § = § 4+ O, (T-1/2). The theorem follows from these
results and from the continuous mapping theorem. =

3.B Lemmas

Let us introduce the following notation:

At 2d
2sin <%) I'u.u,l+jv

2d

>
=—m
m
ill = 2m1+ - ;m 2sin (3‘%) qu,z+j
>

WY
2sin (f) Juui+i

b =

forl=m+1,...,[T/2]. In what follows, when supremum is taken over values
of [, the range is l = m + 1,...,[T/2] unless stated otherwise.

Lemma 3.1 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 hold. Then

2=o(%).

Proof. The proof is a standard extension of Theorem 1 of Hidalgo and Yajima
(2002), and it is omitted. =

T2 ;o

% Z hi — Ry

E
l=m+1 ha

cos (rA;)

Lemma 3.2 Assume Conditions 1.1-1.5, 2.1 and 3.1-8.4 hold. Then
(a) uniformly in1 <r < M,

1 [T/2] ﬁl—iz

T Z —L cosTA = O, (T_%) ' (3.27)

l=m+1 l
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(b)

[T/2]

% Z (iu - ﬁl)zcosr}\l =0, (m™),

l=m+1
and

(c)
31l1p|7u - ﬁll =0,(1).

Proof. (a) This bound follows from Lemma 3.1 and the Markov inequality.
(b) By an obvious extension of Theorem 2.1 of Hidalgo and Robinson

(2002), E (ﬁ; - ﬁ,) = O (m™!) uniformly over m +1 < [ < [T/2], and so

TS (h=F) =0, (m™).
(c) Write

sup |7n - ﬁz| < sup |hat| + sup |hat| + sup |hail

where

1 = Ly 27
hy = 1 Z hiyj ( ] - ;Ies,m’) ,

j=—m fuu,l+J €
hl i 2
1 = 2r
h3l = 2m + 1 j;_m (hH—j - hl) (;?Ies,l+j - 1) .

Noting that (sup; |a;|)’ < 3, a] for p > 0, we have

2 (T/2) I 2
2 : uu,l+j '
(Slllp |h11|> (2m + 1 (fuu. I+3 0'3 IEE’H-J) ) ) (328)
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Proceeding as with the proof of (4.8) of Robinson (1995b), the expectation of
the right-hand side of (3.28) is bounded by

Cm [TX/E] l+m C'log T
(2m +1)° 2

)
m
m+1

so that by the Markov inequality and Condition 3.4,
sup |hy| = O, (m"l/z log®/? T) =0,(1).
!

Next,

CIE [Tf]f#(m +1Z( Leesti - ))4 (3.29

l=m+1

By the arguments in the proof of Theorem 7.7.4 of Brillinger (1981), the
expectation of the right-hand side of (3.29) is bounded by

(/2]
C E him™2 < CTm™2 =0(1)

=m+1

because h is a bounded function. By the Markov inequality, sup; |ha| = o, (1).
Further, by the Hélder inequality,

4 lT/2] m 4
sup |h < su (h l )
( lpl Sll) m+1SlSp[T/2] i Pt 2m+ _Z ( feeins =
-m<j<m

- o((p))am-o, (%) = 0p(1)

because hy1j = by + O (m/T) uniformly in ! and j and because ¢; is an i.i.d.
sequence with finite eighth moments. In sum,

Sl.llp Vn - ﬁl‘ =0, (1)

as required. m
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Lemma 3.3 Forl=m+1,...,[T/2],

M 0<d<1,
2m+1z’\‘“ { § § <0.

Proof. When 0 < § < 1, the function A\’ concave and so (/\f_j : +J) /2< N
for —m < j < m. The bound easily follows. When é < 0, convexity of the
function A° implies that

1 1
o2m +1 Z A;s‘l"J < 5 (A‘s + )‘H-m) < )‘;s-m
J=-m

Lemma 3.4 Assume Conditions 1.1-1.5, 2.1 and 8.1-8.4 hold. Then
(a) uniformly in1 <r < M,

(T/2] 2
1 h; 1y _1logr slog®T
T E 7 costA =0, (m 2-T—) +0, (m2 ) , (3-30)

l=m+1

) (/2]
1 v \2 _
= > (h=h) =0, (m™) (3.31)
I=m+1
and
(c) ]
=0, (1)
Proof. Let us define
A\ 2
¢;=(d- d) log |2sin (-2-)

and

¢p+a hl+J oz
ol = 0_2 2m+1 Z l ( egl+j — %) .
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for p > 1. We first observe that A; = (2m + 1)_1 E;.":_m hi4j, so that by the
Taylor theorem, hi=h + O, (M~2) uniformly in m+1 <[ < [T/2).
(a) By the Taylor theorem,

El—hl

m 2d
= Z l ( H_J) <¢l+]+ ¢l+]) uu,l+j
+1

+
( I+ ALtj
o 2sxn( 5 ) 2sm( 2 )

where d is an intermediate point between d and d. The first term on the right
of (3.32) is

od
log®

qu,l+j 1(332)

j=—m

1 i 1 2 qu’[.'_j 271'
hu (qu + gu) + el By + §¢z+j hiyi | 77— — 5 leei+j

f uu,l+j o¢

1 = 1
+2m 1 Z (¢z+j + ‘2‘¢12+j) hiyj. (3.33)

j=—m

The contribution of the first term of (3.33) into the left-hand side of (3.30) is
bounded in absolute value by

( hy
sup | ==

because h is bounded and bounded away from zero, h; = h; + O (M~2) uni-
formly in [, d — d = O, (m~%/?) and because

[T/2]
) Z lqu + qu| = O ( )

I=m+1

2

2 m 2
qpl C . Aj hl+j o
d— d) =
< Cm1/2
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By the Cauchy-Schwarz inequality, the square of the contribution of the second
term of (3.33) into the left-hand side of (3.30) is bounded by

(T/2] m 2
C 1 1, Tywpy; 2w
—_ L4 — ] =L ] . .34
T t=§;1 2m+1 j=z—: (¢l+’ " 2¢l+’) s (fuu,t+j g2 et (334
Now for p > 1,

f uu,l+j €

e )

C = . /\H—' qu I+j 2m 2
log? ( 2 ’ 7 AT I :
T j;m og ( sin = )E ( b o et 14 (3.35)

1 =~ ¢f+j qu,l+j 2T
Y ljzz_m ol i — —gleciti

Proceeding as with the proof of expression (4.8) of Robinson (1995b), we

obtain R .
B (qu,l+j _ i—ﬂlea,lﬂ') < Clog ( +]),

f uu,l+j E l + .7

where the constant C does not depend on ! and j. Since log? (2 sin '\L;J-) <
Clog? T, the right-hand side of (3.35) is bounded by C (I — m)™" log (I — m)

x log? T. By the Cauchy-Schwarz and Markov inequalities, (3.34) is

(T/2]
. 2p log?® T log (I — m)
(1070, (25T 3 i

I=m+1

M

p=1

_log*T _log®T _dog*T
= Op(m 1T+m ZT =0,(m I_T_

and the contribution of the second term of (3.33) into the left-hand side of
(3.30) is O, (m~Y/2T~/210g?T).
Regarding the third term of (3.33), we have by standard arguments that

. N4j . (A
2sin (L;-’-) 2sin <El) ‘ hy

m? logP 1T
+O(l—m T )

hiyj = logP

1 m
P
2m+1 Z log
j=—m
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uniformly in m+1 < I < [T/2] for p > 1, and so the contribution of the third
term of (3.33) into the left-hand side of (3.30) is

[T/2]
— Z ( ¢’ ) cosSTN\

l-—m+1
[T/2]

(- @-9)o (32 ). o

|=

The first term of (3.36) can be written as

(T/2) 1 (T/2] ¢ .
— Z (¢l )cos T)\l + T Z (¢l l) (ﬁ_ 1) COoSs T')\l. (337)

l—m+1 l=m+1 l
Since for p > 1,

T/2

2 . )\1
_2:1 P 2
T,] 0g 2sm< )

by Theorem III-23 of Yong (1974), the first term of (3.37) is O, (m~%/?)
o(r~*logr). Also, since log”|2sin (4)| is absolutely integrable for p > 1
and sup, !hz/ by — ll = O, (M ~2), the second term of (3.37) is O, (m~Y/2M~2)
which is o, (m~!) by Condition 3.4. The second term of (3.36) is

O, (m™>’m?T210g? T) and so the total contribution of the third term of
(3.33) into the left-hand side of (3.30) is

cos(rA) =o(r 'logr)

-1/2,.—1 —1/2 3 7—2 3/21082T
op (m™rtogr) + O, (M 2M2) + O, [ m —5
2
= 0,(m*rlogr) + 0, (m3/2b—§;é—z)

by Condition 3.4.
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Finally, the contribution of the second term on the right of (3.32) into the
left-hand side of (3.30) is bounded in absolute value by

log®T T4 1
Z Cr— Z Lt (3.38)

l=m

ola-d 25

Employing the arguments from the proof of Proposition 3.1 and applying
Lemma 3.3, we obtain

1 m _.2d m —2d
E2m+1 Z quH—] = 2 + Z H._-, - (T) .

By the Markov inequality, expression (3.38) is

1 A s\
O, (m™%210g*T) O, 7 > (—T—) =0, (m™*?10g’T).

l=m+1

Collecting the results and applying Condition 3.4, we arrive at the bound

[T/2] 2 2
1 h h log“r log“T
7 E - . Leosth =0, (m‘l/ng)—%Op (m3/2 ?2 )
I=m+1

(b) By (3.32), (3.33) and the Cauchy-Schwarz inequality, the left-hand side
of (3.31) is bounded by

(T/2]
= Z a5 + ¢3)
l—m+1
(T/2] m 2
1 qu,l+_’i 27
+TIZ+1 ( j=— ( ) ivs (fuu,lﬂ' 0? feeiva
[T/2] m
+— Z 2m 1 Z & +97)
=m+1 =
[T/2] m
. 6 1
6
+C (d - d) log® T l; 3 By (3.39)
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The first two terms of (3.39) are O, (m™2) and O, (m™'T~!log*T), respec-
tively, by the arguments employed in the proof of part (a). The third term of
(3.39) is bounded by CT! ZEQ{LI (¢} + ¢;) which is O, (m™") by Proposi-
tion 3.1 and by the integrability of the function log? |2sin (\;/2)| for p > 1.
We have

'u.ul+g

uu,l+j

By the arguments in the proof of expression (4.8) of Robinson (1995b), the
expectation of the factor I2,,;,,/f2, 1, is O (1) uniformly in integers 1 < j <
[T/2]. Moreover, fu, (A) < CA~% for 0 < A < 7 by Condition 1.4, therefore
by Lemma 3.3,

1 ul—i—
E [2 'u J
:Zm + 1 Z uu,l lj

j=—m =—m uu J43

m
2

c ad
< i1, Z Mg < onte (3.40)

and 5o (2m + 1) BEL T2, i5 O (L = m) /T)™) uniformly over | =
m+1,...,[T/2]. Discussion of the sum 7'~} ZEZ{:]H ((t = m) /T)™** for values
d €[0,1/4), d = 1/4 and d € (1/4,1/2) together with the Markov inequal-
ity leads to the conclusion that the fourth term of (3.39) is O, (m~3log’ T).
Employing Condition 3.4, we conclude that (3.39) is O, (m™1).

(c) Noting that sup; |a;| < 3 |a| and sup, |a;| = (sup, |a:|*) "2 and using
(3.32), (3.33) and the triangle and Cauchy-Schwarz inequalities, we obtain
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that sup; livu - 7z¢| is bounded by

(r/2) :
Z (¢ + a3) +C'Slip|¢z+¢zzl

l=m+1
1
[T/2] 2\ 2
1 ¢l> (qul+j 27 )
+ ¢ hiy; Y Y
(Z (2m+1,§,,(' 4 (Fomrry ™ Gl
/2] 3
+C (d d) log® TI-ZH — Z 2l (3.41)

By the arguments employed in parts (a) and (b), the first, third and fourth
term of (3.41) is O, (T*/?m), O, (m™'/210gT) and O, (T*/*m~%/210g"* T),
respectively. Further, it is obvious that by Proposition 3.1, sup, |¢l + ¢l| =
O, (m 2 log T) Condition 3.4 implies that sup, |hl — h;l =0p(1). m

Lemma 3.5 Assume Conditions 1.1-1.5, 2.1 and 3.1-8.4 hold. Then forl =
m+1,...,[T/2],

(a) )
L _1
2m +1 Z lIﬁﬁvl'*'J' - uu.l+j| = Op (T 2) T,
j=—m
(b)
1 iis )
2m+1 Z (ag4j — qu,z+j)2 =0p (T 1) s,
j=—m
where the O, terms are uniform overl =m+1,..., (T/2] and where

I—m —(dz+d) l—m -2(dz+d)
E|r1|<D( T ) and E|s;|<D< T ) ,

with a constant D that does not depend onl and T.
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Proof. (a) By the arguments employed in the proof of Proposition 3.1, it is
sufficient to examine the behaviour of

1

(3.42)

By (3.15) and the Cauchy-Schwarz inequality, the first term of (3.42) is bounded
by

=

£ (( ) ozl+j + (5 - 3)2122,1+j + 52IA2A2,1+,-) ,

Employing the arguments from the proof of Lemma 3.4, we obtain

l— —2dz
—2d,
2m+1 Z ”l+"“2m+1 Z’\“ﬂ = ( T )

The same bound applies for E (2m +1)™" > iv—m Jzz+j- In a similar way,
E@m+1)" Tuugss < D ((1 = m) /T)"%. The fact that ([3 ﬂ) =

J——m g =

O, (T-1) and (6 - 6) = O, (T"!) together with bound (3.17) and the Cauchy-
Schwarz inequality now imply that (3.42) is bounded by O, (T‘%) r; where
Eln| < D((—m)/T)™*™

(b) The Cauchy-Schwarz inequality indicates that we need to investigate the

o=

m

stochastic magnitude of
l
1 &
uul+] (mj;mlﬁﬂ,l-kj) (2m+11_z_:m uul+3) .
(3.43)

Another application of the Cauchy-Schwarz inequality bounds the first term
of (3.43) by

N 4
:8 /8 m Cl(d—-6 m 064
gm + 1) _Z: soi+i T 2(m + 1) Z Igz,m‘ + om+ 1 Z IzsAz,Hj'

j=—m J=—m
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From (3.40), we have (2m + 1)~ EEJ__m w 145 S CA%E. In a similar way,
it can be shown that (2m+1)'EY " _ 12, 4 < C/\”“d’. Furthermore,
the arguments used in the proof of Lemma 1.11 indicate that for z; (k) =
It <k), E( O(1) uniformly in1 < j < [T/2)and 1<k <T.
Therefore we have also

zz,J/ a::c,J) =

—4d,
2m+1 z zzl+J<C’\ g

The conclusion now follows in the same way as in the part (a). =

Lemma 3.6 Assume Conditions 1.1-1.5, 2.1 and 8.1-8.4 hold. Then (a) uni-
formlyinl <r <M,

[T/2]
1 hl b cosr/\l O, (T"%),
I=m+1 l
®) [T/2)
1 . w2
T Z h; — hl) = Op (T_l) s
I=m+1
(c) o
81’1p|h1—h1 =0,(1).

. -1
Proof. (a) Since sup, |th = 0 (1), we have by standard inequalities that

1 (T/2] ;“ C (T/2] 1 m
T Z l cosr/\z < T Z o1 Z [ Taa,i+5 — Tuui+jl -
l=m+1 I=m+1 j=-m

By Lemma 3.5 part (a), the right-hand side of the last displayed inequality is
O, (T‘%) T-132 | 7, where

<C.

1 &/ p 174 [ — m\ ~(datd)
T

The conclusion follows from the Markov inequality.
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(b) Using part (b) of Lemma 3.5, the proof follows by arguments similar
to part (a).

(c) Forl=m+1,...,2m, we have

m 3m
1 1
T 1 j=§_m|Iaa,z+j — L] < Tl jE=1 | Taa; — Tuujl -

‘ilt—;tzl <

From (3.14), we obtain that supmt1<i<am ’ﬁ, - ﬁll = o, (m12),

For | =2m+1,...,[T/2], write | = 2mp + k for some 1 < p < M and
1 <k <2m. We have

m
homp+k — hom ‘< _S_ Taa i — j
+k| = ail,2mp+k+ uu,2mp+k+
p+ P 2m + 1 =, | P J 74 J

Ly
= | Laa,2mp+s — Tun,2mp+ ]
2m+1 Pt
+ |Iﬁﬁ,2mp+j - uu,2mp+j|
2m+1 Pt
1 m
Z Taa2mp+i — Tuu,2mp+il
2m+1 =
1 m
+2m +1 Z |Iﬁﬁ,2m(p+1)+j - uu,2m(P+1)+j| .
j=-m
Therefore for 1 <p < M,
- v 1 m
sup |h. r—h k’ < L, i — Ly omps 5
1<k<2m 2mp+ 2mp+ om + 1 ;ml uit,2mp+j uu mp+]|
1 m
+2m+1 Z |Iﬁﬁ72m(l’+1)+j - uu,2m(p+1)+j|
Jj=-m
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and

h2mp+k ’

sup ‘h; — hll < sup sup
2m+1<I<([T/2] 1<p<M 1<k<2m
M

§ sup ’h2mp+k - h2m1H-kl

p=1 1<k<2m

IN

M+1 1
Z 2m+1 Z lquZmp—H — duu,2mp+j

IA

which by Lemma 3.5 is O, (T=%/2) Y7 ry,n, Where

M —(ds+d)
<D} (2’”” m) =0 (Tm™)

p=1

M
FE E T2mp
r=1

so that by the Markov inequality and Condition 3.4,

sup |ﬁ, - 7u| =0, (M%) +0, (T7?) 0, (Tm™?) = O, (T*m™!) = 0, (1).
.

Lemma 3.7 Let ¢ be a piecewise twice continuously differentiable function
on [0, 2n] with ¢ (0) = ¢ (27). Then uniformly in s # 0,

(a)
/2190()\) cos SAdA = { g(s—l) s real,

(s72) s integer,

(b) 2 )
/ @ (M) sin sAd\ = { O(s™) s red,
0

O(s72) s integer.

Proof. Let ¢{; < ... < t,_;, where t; > ¢, = 0 and ¢,_; < t, = 2m, be the
points of discontinuity of .
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(a) Integrating twice by parts, we obtain

Ms

2T ts
/ @ (A)cossAdA = / ’ @ (A) cos sAd\
0 t

j—1

j=1

I
'M"’

I}
-

t
(% [ (A) sin s)\]z_l - % / ¢’ () sin s)\d)\)

J ti-1

_ 1(<p(27r)sin27rs— (0)sin0)

tj
_-Z( [~ () cos A7, %/ <P"(/\)coss/\d)\)
tji—1

1
= = (¢ (2m)sin27rs — ¢ (0)sin0) + = (cp (27) cos 2ms — ¢’ (0) cos 0)
1 2

- "
=3 " (A) cos sAdA.

From here the bound follows easily.
(b) The proof is similar to the proof of part (a) and is therefore omitted.
|

Lemma 3.8 Let ¢ be a function on [—m, 71| that is symmetric around zero and
twice continuously differentiable on (0, ) with one-sided second derivatives at
0 and m. Then its Fourier coefficients v, = o= [" ¢ (X) e™*"d\ satisfy

| < C
forr > 0.

Proof. Let v) be the Fourier coefficient of ¢”, that is

"o__ 1 i 1" —irA
U =5 /_Wgo (A) e,
A simple algebra gives

v = %(,0’ () cos (rw) — rv,. (3.44)
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By the Bessel inequality, see for example Zygmund (2002, p. 13),
112 1 /W " 2
< —
TE_O |'v, o). |<p ()\)| d\ < o0

because ¢” is bounded and piecewise continuous. Therefore v/ — 0 and (3.44)
implies that |r?v,| < C. m

Let us define
(T/2] ) 1 T/
é = 7 Z log h; cosT Ay, C"T=T Z log hycosrA; and
l=m+1 I=m+1

— 1 " —irA _ 1 "
o= o _nlogh()\)e d\ = 27r/0 log h (X) cosTAdA.

Lemma 3.9 Under Conditions 1.1-1.5, 2.1 and 3.1-3.4, uniformly in 1 <
r<M,

(a) & — & = O, (T“% +m"%r‘llogr) ,

(b) & — ey = 0p (M),

(c) err — ¢ = Op (T71r7Y),

(@) 22y €™ =0 (M7H).

Proof. (a) By the Taylor theorem,

[r/2]

1 . -
Cr—6 = — log hy — log hy ) cosT
r 2 ( )
-1 [Tf by — LcosT A + 1 [Tz:ﬂ] —(i” _ El)z cosTA
2 )
T I=m+1 l T I=m+1 UG

where 7, is an intermediate point between hy and h;. The right-hand side of
the displayed equality is equal to

T/2] 3 {T/2] ¥
1 h 1 —-h
T Z hl CoSTA + T Z hl L cos o
l=m+1 l =m+1 l
N2
2L cosTA + = —————cosTA.  (3.45)
T l=m+1 T l=m+1 m
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By part (a) of Lemmas 3.2, 3.4 and 3.6, the first three terms of (3.45) are
Op (T2 + m™' + m~Y2rtlogr 4+ m%2T~21og? T) which by Condition 3.4
is Op (T‘% +m-ir-! log? r). By the Cauchy-Schwarz inequality, the fourth
term of (3.45) is bounded by

(o) & 5 (b= (=B + (= )").

l=m+1

By part (c) of Lemmas 3.2, 3.4 and 3.6,
81[1p |iz; — 7u| < Sl:p |7u - 7u| +s111p |7n — 7LI| +Sll1p Iﬁl - ﬁl| =0,(1).

Since h is bounded and bounded away from zero, this implies that sup, n,‘z =
O, (1). Further, by part (b) of Lemmas 3.2, 3.4 and 3.6,

%152/21 <(ﬁl - 71,)2 * (7“ - ]'1,)2 + (hl B ill)z) =0, (m_l + T_l) =0, (m‘l) .

From here the conclusion of part (a) is obvious.
(b) By the mean value theorem,

(/2 WL ‘

1 ~ 1
& —enr| £ = lloghz-loghz = = Z — - h
Tl-—;i—l l Tl=m+1 ™

where 7, is an intermediate point between h; and F;. Since h; = b+ O (M~2)
uniformly in [ and therefore also sup, |17,|_1 = 0 (1), the last displayed expres-
sion is O, (M~2) = o, (T‘%) uniformly in m+1 <1 < [T/2].

(c) By symmetry, we have

T-m-1

1 T
CrT = Cr = o Z log hycosTA; — o - log h (A\) cosTAdA

I=m+1
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which by the formula of Brillinger (1981, p. 15) is equal to

—/2" ( o [ 2/;} - %) }ii((;\)) cos (rA) dA

_r / ” (T_ - [T A ] %) logh(\sin(rA)d).  (3.46)

27
Since the function h is piecewise twice continuously differentiable, the first
term of (3.46) is O (r~2T!) by Lemma 3.7 and the second term of (3.46) is
O (r~'T~!) uniformly in r. Therefore ¢, — ¢, = O (r~1T71).
(d) Since function logh (\) is piecewise twice continuously differentiable
on [0, 7], Lemma 3.8 implies that

o0 (o o]
Z crei™i| < Z ler| < Z %:O(M“l).
r=M+1 r=M+1 r=M+1

n
Let us denote ¥; = ¥ (¢) and ¥; = ¥ (e™).

Lemma 3.10 Under Conditions 1.1-1.5, 2.1 and 3.1-3.4,

sup
1<G<T

\i/j - \I‘j‘ =0 (m’lT%) .

Proof. By the Taylor theorem,

. U, 0 Mo
U, -0, = ¥, (-\il—;- - 1) =Y; (exp {Z crei™ — Zé,e"’\j} - 1)

r=1 r=1

= \I; el (Z crezr)\, _ ZC ezr)\,) :

r=1

where 0 < |n;] < |Z 0 e — M & eimi|, The last display is equal to

M
T el ( > e+ Z )€™ + Y (crr — &) €

r—M+1 r=1
+ § : z'r)\;,)
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By Lemma 3.9, the bracket of the last displayed expression is o(M™!) +
O (T log T)+0, (M~)+0, (MT-% +m}log? T) whichis O, (m-lT%) =
0p(1) by Condition 3.4. This also implies that sup;<;<r|n,;| = 0p(1) and
therefore sup; ;<7 |€"| = O, (1). Since sup;¢;<r|¥;| < C by (3.5) and Con-
dition 3.3, we obtain sup;;<r

¥, - ‘Ilj‘ =0, (m‘lT%) as required. m

Let us denote 4; = (1 — e""f)_d and v; = (1— e""i)_d.

Lemma 3.11 Under Conditions 1.1-1.5, 2.1 and 3.1-3.4,

(a) )
Y ‘ -1
su —= —-1|=0,|m 2logT),
15:'5[;.')’/21 Re] p( & )
(b)
Yj -1
su = -1/=0,|m 2logT).
151‘511%/2] Vi ’ ,,( & )

Proof. (a) For 1 < j <[T/2], write
A d—d .
Y (1- ei,\j)d—ci _ (2 sin Aj ) ei(d—d)f),-,
Y 2

where 0 < 6; < 27. By the mean value theorem,

. A] d-d . AJ . )‘j J A
<2smg) -1 In (2s1n? ZSIH? |d—d|,

where 0 < |§| < |d—ci’. Since for 0 < A <, 2sin$ > 2, we have

In (2 sin ﬁ) In (2 sin ﬁ) < ‘ln (z)\l)
2 2 T
Further,

N fa-d fa-d
sup (2 sin ﬁ) < (2 sin ﬂ) < (2 /\1)
1<5<[T/2) 2 2 T

<

sup <

1<5<(T/2)

=0(InT).




because by Proposition 3.1, d — d = O, (m~'/2), and because by Condi-
tion 3.4, T™ " = ¢m /?16T _, 1 It follows that (2sin (Aj/2))d-d =1+
O, (m~'/21og T) uniformly over 1 < j < [T/2].

Further, by the Taylor theorem, eild=d)f — 1 +0 (d - J) uniformly in 6,
and therefore

A

% 1\ =0, (m‘% logT) .

sup
Rf]

1<5<[T/2]

(b) Part (a) implies that

V; 1 1
;7-;-' B 1+ 0, (m“% logT) =140 (m ilogT)

uniformly over 1 < j < [T/2]. m

Lemma 3.12 Let ¢ be a complex function satisfying the following conditions:
There exist constants 0 < C < oo and d such that |cp( )| ~ C,A™ as
A= 0+, () s | = ( ) uniformly over
(0,7] as A — 0+, [¢(A)] > 0O for/\ € (0 1r] and ¢ (2r —X) = @()\) for
A€ (0,7). Then forr=0,...,M,

(a)
. O@FT+T1) -1<d<0,
1 irh; 1 irA —1 —1
TZQD(Aj)e =0 | p(NePdA=¢ O(T ' +T'ogT)  d=0,
=1 - O (rT-1 + T4 1) 0<d<1,
(%)
TZ 'Lr)\] _ O (log T) d= 1)
= O(T%1) d>1.

Proof. (a) The assumptions of the lemma imply that | (A)] < CA™¢ for
0 < A < 7 for some C. We have

T

1
Tz(p 1.1',\ 27r (P()\) uv\d)\

-

2 M
<glel+g [ lewia
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9 (7/2]

A . .
o Z (/,\ (P (M) €™ = p(A)) €™) d/\) .

j=2

+ (3.47)

The first term on the right of (3.47) is bounded by CT~*A;% = O (T"!). The
second term on the right of (3.47) is bounded by C [ \~%dA = O (T%1) for
—1 < d < 1. Regarding the third term on the right of (3.47), we obtain

Aj )
A ((p()\)e"’\—go()\) zr,\,)d)\

j—1

IN

(P(A) WA—QO()\)G".)‘J)I/ d\

Aj 1<A<A |(
c c o M)

< g, (0 O+rle O < 77, mae (2l o)

< C (Td—l —d 1 + ,,.Td—2j—d)

for j =2,...,[T/2], where the second inequality follows from the mean value
theorem. Therefore the third term on the right of (3.47) is bounded by

(/2] (/2] . o(T) -1<d<0,
d—2 —d d—1 —d-1 r 1 _
CT*? " j=4+CT }:g O(T)+ O(T'logT) d=0,
= = 0 (T4-1) 0<d<l.

Collecting the results, we obtain the bound in part (a).
(b) The expression 7! 237':11 ¢ (\j) €™ is bounded in absolute value by

21000 + qu (A-)eiw—lfr e ]+ 2= [ o)) dx
T\ T % o ¥ 2r Jy, O

(3.48)
The first term of (3.48) is bounded by CT-'A{¢ = O (T"!). By the same

arguments as in the proof of part (a), the second term of (3.48) is bounded by

(7/2] (T/2] _
O(rT'logT+1) d=1
CT?? —d 4 ord! —d-1 ’
TZJ ZJ O(Td-l) d>1.

j=2 j=
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The third term of (3.48) is bounded by

o [ gy — O(logT) d=1,
AL ) (Td—l) d>1.
These results yield the bound in part (b). =

Let us denote B; = B (¢**) and R; = B; . Conditions 1.1 and 1.4 imply
that €; has a representation

oo
€ = E prut—1,

=0

where p; are square summable and

R T L)Y
pl——2w[,R(e ) e dA
with R (¢?) = B~ (e).

Lemma 3.13 Assume Conditions 1.1-1.5, 2.1 and 8.1-8.4 hold. Then
(a)

M
> (13, — b,)2 =0, (m™*TlogT),

(b)

M

(B — p1)* = Op (m™Tlog T) .
=0

Proof. (a) Define

1T—1
i =il _
b,_T;B,ew, 1=0,...,.M

and write
M R N2 1 T-1T-1 ) ——— M ‘
3 (b, - b,) -2 (Bj - Bj) (Bk - Bk) Y e, (3.49)
=0 ]=1 k=1

=0
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lﬁi_Bi’ = |ﬁj‘i’j—')’j‘1’j‘
2RI 2B Z B Al 78 2

uniformly over 1 < j < T — 1 by Condition 3.4 and Lemmas 3.10 and 3.11.
Also, simple algebra yields

M an _ M+1 A=0,
€ imn
% i)l a0
2

Sincesin% > % for0< A<, itis
Z e—ilg=20) (T 1 )
=0 |J - k|+
Therefore (3.49) is

T-1

’i
,_a

1 1

=) 23 3 bynl Gow = O (' TlegT)

E
Il

J=1 1

by the Cauchy-Schwarz inequality and Lemma. 1.6.
Further, by Lemma 3.12,

T 1

bi—b = ZB -2 / B (¢%) e=™d\ = O (T + T log T + T%Y)

uniformly in ! = 0,..., M, and so Y17 (b — ) = O (m=3T + m~1T?%¢-1).

2
Elementary inequalities imply that Zz:o (bl - b,) =0, (m™?TlogT).
(b) Define

1T—1
. _ Z —ilA _
pl—T'=lee i 1=0,...,M.
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Proceeding as in part (a), we obtain that Z,Aio (5 — p)? = 0, (m™2T'logT).
By Lemma 3.12,

1
mJ_

T-1 .
b— o= %Z Rje ™ — o R\ e™dA=0(T'r+T'10gT)
=1

for [ =0,...,M, and so 317, (B — p,)° = O (MT~?). This implies that
Lo (B = p1)* = 0p (M™?Tlog T) + O (m™°T) = Op (m™*Tlog T). m

Lemma 3.14 Assume Conditions 1.1-1.5, 2.1 and 8.1-8.4 hold. Then

Nl -

T
Y- =0,(1). (3.50)

Proof. Assume for simplicity that process {z.} is scalar. From the definition
of £; in Step 3 of the bootstrap procedure,

3

-1

g = - —i(t=D)A;

piwy,;€

|
—

i
Mz I[Mx

pyWy je—-i(t—l)Aj +

.,
-~
]
(=]
.
|
-
o~
i
o

g L
L

_ Sl 8-
M= g[\’JE

+

pr (wa; — wy ;) e ¢

N .
L

(b1 — p1) (waj — wyz) e 0N,

S~ s

1=l

.
|l

-

o

where the T-th frequency in the sum over j is omitted because wyr =
T-1/257 4 = 0. Since |[a+b+c+d> < 4(|al* + B> + [c|* + |d]*), we
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have

1T 1 L ;] T M 2
Py < 13 (DY mea)
s Tz T 5=
4 T1 M 2
2
i D lwagl* (Y (B = ) €
i=1 =0
4 T Mo P
+f Z |wa,; — wugl® szed'\j
j=1 =0
4 71 M NG
+T lwa,; wu,j|2 Z (B — py) €™ (3.51)
j=1 1=0
Write
] Tl M M T Mo, T
—ﬁ . Zp,wu,]-e—’("’)’\i = Epl Eusll t-Il=s modT)—Z AT Zus.
J=1 =0 =0 s=1 =0 s=1

Since &; = Y0 prut—j, we have

1 T-1 M . oo
VT Z Z prwy je N = E P11 — Z P Z Us
=1 1=0 I=M+1 TS

M
+ZP1 (U—t4r — we) L(t < M)

1=t

and therefore by the Cauchy-Schwarz inequality, the first term on the right of
(3.51) is bounded by

() o) (45

s=1

+§Z (Zﬂz (ue—tp — e 1)) : (3.52)

t=1 I=t
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Expectation of the first term (3.52) is bounded by

o 2
C= Z Z lplpplElut 1Ut—p| <C< Z |Pl|) .

t—l Lp=M+1 I=M+1

The coefficient p; is equal to Z;.:o X;®i—;> Where

X; = (277)_1/ (1- e”‘)d eMd,

When d > 0, x; = O (j=7¢) by the Stirling formula. Since ¢; = O (I7%), p,
is O (1"'7%) and therefore it is absolutely summable. When d = 0, p, = ¢,
and p; is again absolutely summable. It follows that the right-hand side of the
last displayed inequality is o(1). The second term of (3.52) is o, (1) because
M, |oi| < oo and @ = o, (1) by Conditions 1.1 and 3.2. Expectation of the

2
third term (3.52) is bounded by CT-1 "M, (Zﬁt | p,|) . When d > 0,

1M (M 2 C’ M /M 2 O M
T Z (Z |Pz|> T Z (Z l—l—d) T Z 42 — —1M1—2d)

t=1 =t
while when d = 0,

t=1 I=t t=1

By the Markov inequality, the first term on the right of (3.51) is o, (1).
To obtain a bound for the second term on the right of (3.51), we observe
that

2

M
D (i—p)e™| < MZ =0, (Tm ™~ logT)
=0 =0
= 0,(1) (3.53)

by Lemma 3.13 and Condition 3.4. Since T~ 37 ' |wu|* = T1 30 (ue — @)°
is Op (1) by Conditions 1.1 and 3.1, the second term of (3.51) is o, (1).
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Turning to the third term on the right of (3.51), the absolutely summability
of p, implies that

Z o ezl)\,

=0

C’ T-
T Z lwa,; — wu,J| T Z; qu

Arguing as in the proof of Proposition 3.1, we obtain
1 Il \
T ; |wa,j — W]
RS D = 1=
< ()6 ﬂ) Z: :r::c,J +3 (6 - 6) T Zlii,j + 352T IAEAE,J'-

For 1 <k < T,sup T~ ' L.y < 277130, 22 = O, (1) by Conditions

1.1 and 3.2, and sup;¢jcr_1 Jazaz; = Op (T71) by (3.17). By Lemma 1.7,
. 2 . 2
(ﬂ - [3) =0, (T ') and (6 - 5) = O, (T!). This means that

'ﬂ
L
~
—
N
|

<
1
A
<.
|l
-

T—l

Tleu,, wui|® = 0p (T7Y) (3.54)

and that the third term of (3.51) is o, (1).
Finally, combining results (3.53) and (3.54), we can see that the fourth
term of (3.51) is 0, (1). =

Lemma 3.15 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 are satisfied. Let
52 =T-13T_ &2 Then

625 o2,
Proof. Write
1 & L2 T 1 &
_ 2 “ _ 2
= T tE=1 (Et €t T Ezl Et Et €+ = T tE=1 &+

The first term is o, (1) by Lemma 3.14. The third term converges in probability
to o2 by Conditions 1.1 and 3.2. By the Cauchy-Schwarz inequality, the second
termis o, (1). m
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Lemma 3.16 Assume Conditions 1.1-1.5, 2.1 and 8.1-8.4 hold. Then
« d*

Proof. Denote by d;(-,-) the Mallows metric as defined for example by
Bickel and Freedman (1981). Let Fr(z) = T-'3C 1(6 < z), Fr(z) =
T3 I(e; < z) and F(z) = P (e, < z). Then

& (Fr,F) < d3 (Br, Fr) +dy (Fr, F). (3.55)

Let U be a random variable distributed uniformly on {1,2,...,7}. We have

—Et

Me

dz (FT,FT) <Ey(tv-ey)’=

=1

By Lemma 3.14, the last expression converges to zero in probability. The

second term of (3.55) converges to zero almost surely by Lemma 8.4 of Bickel

and Freedman (1981). Therefore ds (FT, F) = 0,(1) and the lemma holds.

n

For integers 0 < ! < T, let {we(k);,1 < j < T} be the discrete Fourier

transform of the sequence {a,I(t <1),1 <t <T}.

Lemma 3.17 Let 7 A 0 = min{r,0}. Under Conditions 1.1-1.5, 2.1 and
8.1-8.4,

T 1 g
T Z |A; By ” We(trry jweqorns = (T A 0) o= E [ |A(e”) B ()] ax

- (3.56)
on (1,0) € [0,1]%

Proof. We first prove that

T—1

Z|A Bl |weqrmy s =Ty / |A () B ()" dA (3.57)
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on 7 € [0,1]. By Lemma 1.1, the expectation of the the left-hand side of
(3.57) is

ek o 5 ot 2 B (M)
Z|AB| — o / |A (e) B (¢*)]" dA (3.58)
and its second moment is

T-
1 2 _ _
T Z |A;B; AxBx|” cum (@e(r11).i» WetrT1).0 We(rTD > We(ir1) k)
T-

1 1
tT2 |f‘1ijAchk|2 E |wegern|* E [weern,e|”
Jk=
< 2
Z |A;Bj AcBil” | B swerm |
Jk=1

T—
1 2
tr E , |4;B; Ak Byl | Bwgqrany jweqrmi| - (3.59)

We have

[TT] <C C

cum (ig(r1) 4, We(rT) s WelrT) e Be(rT k) = 75 ¢ < 75

uniformly over 7 € [0, 1], where ke = cum (§;,§;,&:,€;). The first term of
(3.59) is bounded by CT33"; T 1 |A;B;AxByi|* which is O (T!) by Lemma
1.1. The second term on the right of (3.59) is equal to

() ot (3 wm 7)o ([ ey sera)

by Lemma 1.1. Since

ot A c

_ —zt

| Ewgrryswermyi] = |75 D_e ™| < Gk,
t=1
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the third term on the right of (3.59) is bounded by

T-1 T-1
CT* " |A;B;AcBil’ T <CT?) |A;Bjl*=0(1)
3.k=1 J + j=1

due to the Cauchy-Schwarz inequality and Lemma 1.6. Similarly, the fourth
term on the right of (3.59) is 0 (1). It follows that

2 — 72 (g /w |A (¢*) B (¢”) |2d)\)2. (3.60)

-

1 T-1 9 2
E|% Y |4;B;|" |wegrry ]
7=1

Convergence of the expectation and the second moment in (3.58) and (3.60)
together with the Markov inequality implies that for each 7 and o from [0, 1],

T-1 2
1 2 2 o [" i iy |2
TZIAJ'BjI |wegey)i|” = Tgf; |4 (e*) B(e?)]" ax.
i=1 -
Since T~ Y7, |A; Bj|* w} .1, is increasing in 7 and the limiting function
is continuous, the convergence is uniform over 7 € [0, 1] by the arguments in
the proof of Lemma A.10 of Hansen (2000). This proves (3.57).
Next, (3.57) and stationarity of &, imply that also

1 ™ 02 " i i 2
7 2 [4iBil? |wegern — weqorns|” = 17— ol 52 / [ (e”) B ()] dX
2 .
’ (3.61)
on (7,0) € [0,1]%. Consider 7 > 0. Writing
wemal” = |weomal” + [weermys — weornal”

+2 Re (@e(rry).j — De(lot1) ) We(loT)).d

and noting that 37,7 [A4;B;|” (e(r1).j — De(to1)s) We(o) I8  real number
due to the fact that We(r1y),; = werry),r—j forallT € [0,1]and j =1,...T-1,
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we obtain

3

—1
27— —_
|4;B;|* (@e(ir1y.s — Beqtor))i) WeloTl) s

N »o
<.

Il
KA

~
-

1
= 72 14Bi* ([weqrmal” - [weqornal” = [wetrmys — wegernal”)
j=1

2 g
— (T—a—|T-a|);—;/_ A () B ()P dr =0

by (3.57) and (3.61). This means that the left-hand side of (3.56) is equal to

1 T-1 _ _ 1 T-1
T > 1A B; [ (eqrryys — Deomy)s) wedors + T > 1A;B;l? lweqor).g ’
j=1 =1
‘7% " i i (2
= o3> _W|A(e ) B (¢*)]"dA.

Noting that ¢ = 7 Ao for 7 > ¢ and that symmetrical arguments hold for the
case 7 < o, we arrive at (3.56). m

Lemma 3.18 Assume Conditions 1.1-1.5, 2.1 and 3.1-8.5 hold. Let B; =
M bieli. Then

(a) i
B;—B;=0 (,\;1 (g) ) i=1..,[T/?,

and

(b)
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Proof. (a) When 0 < d < 1/2, we have

) l
§ : bl eil)\j § : eip)\,-

o0
18- B;| = <Y lo—bun
I=M+1 I=M+1 p=M+1
om & C X |  C X .,
< TS p-bal<S Yy B O s e
J I=M+1 J 1=M+1 J I=M+1

7\ 41
0 (,\;1 (—) ) :

m
where the first inequality follows from the summation by parts, the second
inequality is due to the fact that |Efa= M1 eip’\| <w/Afor 0 < A <, and the
remaining two inequalities are due to Condition 3.5.

When d = 0, the function B is piecewise twice continuously differentiable
on [0, 7] and by Lemma 3.8, b; = O (I"2). In this case,

|8, - By < f: 12 =o( f: 1—2) =o (M) = (,\;1 (%)d)

I=M+1 I=M+1

(b) When 0 < d < 1/2, Conditions 1.4 and 3.5 imply that

5 y o M .\ d
_B_J = B;* Zbleiz,\,- < C)\?Z|bl| < C,\‘J?Zl"nd <C <i) .
i I=1 =1 =

(3.62)
Whend = 0, IBJ-I"l < C by Condition 1.4, and (3.62) imply that IB,-/B,-| <C.
]

Lemma 3.19 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.5 hold. Then
=S )
T IR B - B[ =o(D).
=1
Proof. By Condition 1.4, there exists a constant D such that |A (e?)| <

DX % and |B (¢*)] < D)% for 0 < A < 7. By Lemma 3.18 part (b), |éj| <
. 2 (2
C|B;| for j = 1,...,m, therefore ‘BJ- ——Bj‘ < 2‘Bj‘ +2|B;|* < C|B;)?
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when 1 < j < m. By Lemma 3.18 part (a),

[T/2] (T/2]
ZIAJI 5,-5 < EY B+ L S 140 |5 - B
_1 =1 j=m+1
< % i ~2(detd) | 1 [Tf A;2a2 (T)zd_z
j=m+1

Il
)

m\ 1-2(dz+d)
7) ) =o()

because d, + d < % Therefore

TZIAJI ;- B[ = [2/31|A| 8- B[ +0(3) =o.

Lemma 3.20 Under Conditions 1.1-1.5, 2.1 and 3.1-3.5,

T-1

= ZA By (o) Wer s > VW (7).

w3

Proof. Denote Y3t (r) = T~Y/2 1! A;B;wWe(r17),jwe- ;- To show that Yz (1) =&
Q3 W (1), we need to show that the finite dimensional distributions of the
process Y7 converge in probability to the finite dimensional distributions of
the process QY/2W, and that the process Y7 is tight. First, E*Yy (7) = 0 and

A2 T-1
UE

cov* (Y7 (), Y7 (0)) = =5 D 143 B[ we(rny yweqom -
=1
By Lemmas 3.15 and 3.17,
» ool [™ " (2
cov* (Y7 (1), Y7 (0)) = (7'/\0)7”—/ |A(e?) B(e?)|[ dr=(rA0)Q

for any (r,0) € [0,1]>. The covariance structure of Y;: therefore converges
in probability to the covariance structure of the Gaussian process Q%W, and
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the convergence of the finite dimensional distribution occurs as long as the
Lindeberg condition is satisfied, that is,

T-1

1 . 1

'T E |Aij|2 IE,J'E |w€.~’j|2ll (T |Aij|2 I&j |’w5-’j|2 > 0) N 0 for any g > 0.
j=1

J1=

(3.63)
An et al. (1983) showed that
2r 1 2
sup | m—=|we;° ] <1 as.
ISJ'S[%] (0? logT J )

This implies that
1 -
sup |A;B;|’I; < sup ¢ |A;B;|*logT < sup g—)\j 2d=td) 1og T
1<i<[3] 1<i<[§) T 1<i<(5]

< CTdAd) 11T

The left of (3.63) is therefore bounded by

o |

1

-1
7 |A; B Ie j E* |wee 5 T (|wes 5|* > COT* 2=+ 1og™1 T) . (3.64)
J

Il
A

The expectation of T'1 2?:11 |A;B;|? I ; is bounded because El; = o? and
7! 2,7-:11 |A;B;|* = O (1) by Lemma 1.1 and Condition 1.4. The conditional
expectation in (3.64) converges to zero in probability because w,« ; has finite
fourth moment. This means that the Lindeberg condition (3.63) holds and
therefore that the finite dimensional distributions of Y converge to those of
QW

In order to show that Y; is tight, it is sufficient to verify the moment
condition (13.14) for Theorem 13.5 of Billingsley (1999). This condition is
validiffor0< p<o<7<1,

E* Y7 (p) = Y7 (0)1* Y2 (1) = Y7 (0)* = O, (1) (7 — 0)*, (3.65)
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where O, (1) is uniform over p, o and 7. With the purpose of proving (3.65), we
examine E* |V} (1) — Yi (0)|*. Let a;, j =1,...,T — 1, be complex constant
such that ar_; = &;. Then

4

E : QjWes,j

]—1
T-1
E OO O Ot B Wes jWer kWes 1Wes m
_1 k,l,m=1
r% =
= — E a;j0k0oyaml(j —k+1—m =0 modT)
J,k l,m=1
,.4 T-1

'~3|.—.

3

ol (3.66)

3,k 1

because

* — —
E*wes JWe* kWes [ Wer m

= %]I(j—k+l—m=0 modT) + 641 (j = k,1 =m modT)

+64(I=T—-j5m=T-k modT)+6%(j =m,k=1 modT).

By the Cauchy-Schwarz inequality, the first term on the right of (3.66) is
bounded by

R_I T-1 T 1 T-1
) ~ - 2
T3 E lojai P T(j —k+1—m=0 modT) = & e E lovjoe|”
J.kilym=1 Jk,l,m=1

and therefore

* 1 = 2
E ﬁ;ang-,j K:+3 (TZIaJI)
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Taking o = f_lij'u_)j where w; = we((17),; — We((o1)),; @0d where 0 < 7,0 < 1,
we obtain

T-1 2
e "> * A A 1
E* Y7 (1) = Y7 (o)|* < (R +367) (T > 14;B;P? |wj|2) . (367
—

The expression in the second round bracket on the right of (3.67) converges
weakly to |7 — o|Q by Lemma 3.17. Since & + 36% = O, (1), the Markov
inequality implies that

E* Y7 (1) = Y2 (o) = 0, (1) (T — 0)?,
where O, (1) is uniform over (7,0) € [0,1]>. By the Cauchy-Schwarz inequal-

ity, for any 0 < p <7,

1
2

E'Y; (o) - YF P () =Y = 0,(1) ((p—0)*(r-p)?)
= OP (1) (T - 0)21

where O, (1) is uniform over (r,0) € [0,1)>. We conclude that (3.65) holds
and that the process Y; is tight. The lemma is established. ®

Lemma 3.21 Under Conditions 1.1-1.5, 2.1 and 3.1-8.5,

1

VT

Proof. Lemma 3.20 implies that it is sufficient to prove that

Z Mot L QIW (7).

T-1
1 . 1R,
ﬁszﬂML“ 77 > A;Bjwg(iry) jwer g == 0. (3.68)

j=1
We prove (3.68) in three steps. In the first step, we prove that

L
VT

L

Z[,TT] M,,u* - \/T

ZimMu £ 0, (3.69)
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where 4* = (i,..., %) and
M T
=Y by el(s=t-l modT), t=1,..,T.
=0 s=1

Denote Y74 (1) = T/ 2Z['TT]ML (u* — @*). To prove that Yy =% 0, we need
to show that Y% (1) 2, 0 for every 7 € [0,1] and that the process Y% is tight.
To this end, we examine E* |} (1) — Y4 (0)|* for (r,0) €[0,1]. For o < T,
write

Y7 (1) - Yir(o) =a -5,

where
M M T
= — b — b J(r=t—1 modT
a \/Th%ﬂxt;(l ,) r=15 (r mod T')
1 [rT) M )
b = — by —b )&
\/Tt=[,,zq~]:+1$tzz=;(l l)

_ —1 T
and where &* =T-13",_, ef. We have

~

kK t=s=r=uv,
E*cieiere; =< 6% t=s#r=vort=r#s=vort=v#s=r,
0 otherwise
and therefore
[+ M

E*a* = % Z LT Ly L Z (13, - bl) (Bp - bp)

t,s,t,8'=[oT]+1 Lpl',p'=0

X (i)p - bp) (Ep h bp)

x{flt—l=s—p=t -lI'=5—p modT)
+36(t—l=s—pt —I'=¢—p modT)}.  (3.70)

The factor in the curly bracket on the right of (3.70) is bounded by
(R+362)I(t—l=s—p modT)I(t' ~!' =5 —p' modT)

202



and therefore (3.70) is bounded by

2
[T M
1 - R
N ad —_—
(& +36%) (? > waw ) (h—b) (Bt It -l=s5-p modT))
t,s=[cT]+1 1,p=0
, MoM . 1 M 2
< (R+388) [z 2 sz(b,—b,) Y Y I¢t-s=1-p modT)
t=[cT]+1 =0 s=[cT]+1 p=0
2
[+T} M 2
A | o 1 o 2
< (ﬁ+30’;1) (T Z IL'?) (M (bl '_bl) ) ’
t=[oT]+1 1=0
where the first inequality is due to the Cauchy-Schwarz inequality. Further,
. k  306%
E (6 )4 = T3 + T;

and so by the Cauchy-Schwarz inequality,

A 1] 2/ M 2
Ebt < (% +3;3) (:lp S xf) (MZ(E,—b,)z) .

Since (a — b)* < 8(a* + b*), we obtain

B* Y ()~ Yir (0)' < E'a*+ Bt

[T} ? M 2
= 0,(1) (% [}; zf) (M;(E,—b,)z)
t=[cT]+1 =

because # and &% are O, (1). By Conditions 1.1 and 3.1, T~} Zg’:{lﬂ T =
(r — o) 02 and by Lemma 3.13 and Condition 3.4,

M
MYy (b- b,)2 =0, (Mm™T1ogT) = 0, (1).

=0

Therefore
E* Yy (1) = Yir 0)* = (1= 0)? 0, (1). (3.71)
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Since Y;7 (0) = 0, the Markov inequality and (3.71) imply that Y3 (7) con-
verges to zero in probability for every 7 € [0,1]. Further, by the Cauchy-
Schwarz inequality, for any 0 < p < 7,

Ni=

B % (0) - Yir @F Vir (1) = Yir F = 0, (1) (0= 0)* (r = p)?)
= o,(1)(r—0).

By Theorem 13.5 and Condition (13.14) of Billingsley (1999), the process Y
is tight. We conclude that Y, == 0.

In tlje second step, we write 71/ 2Z[’TT]M;&* =T-1/2 E;‘f:ll Bj(r1y), jWes s
where B; is defined in Lemma 3.18, and show that

T-1 T-1
1 1 . ,
Bj@ogery e j — —= S A;B;w Wee s =25 0. 3.72
r—; (T, We ﬁ; ; Bjg(irry) jwe 5 (3.72)
Denoting
< Wa((r1])
T P FARY » —_
Yor(r) = ZA iBj ( : —ws([mu) Wes 5

= J

and proceeding as with expression (3.67), we obtain
=" 5 2
* [k * A A », 2
E* |Yr (1) = Yir (0)I* < (& +367) (T‘ > |4i] il ) :
i=1

where V; = (wa(irm1)j — Wa(rrn)s) /Ai — (Werm)s — We(tomn)s)- In the proof of
Lemma 1.7, it has been shown that

VAR sc(r—«r)ﬁ;%

uniformly over (7,0) € [0,1]* and 1 < j,k < [T/2]. This means that

1 I-1 2
E(T;|A,.B,-|2|V,.|2) <C(r—o (TZ |AB])
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By the Cauchy-Schwarz inequality,

11-14 g T=

T;A - ,-] -,_f; - |4;B;? +TZ|A| ’B B’ (3.73)
By Condition 1.4, the first term on the right of (3.73) is bounded by

T-1
Z /\—Z(dz+d) i—1 < QT 1+2ds+d) Z j- Adstd) < OT-142dstd) — 1)

]—1 j=1

because d, +d < 1/2. By Lemma 3.19, the second term on the right of (3.73)
is 0(1). It follows that

2
( ZIABI IVIZ) =(r-0)’0(1)

j=1

and therefore by the Markov inequality that

E* Y3 (1) = Yar (o) = (1 —0)? 0, (1).

Proceeding as with the process Y}}, we conclude that Y == 0.
The third and final step is to prove that

T-1 T-1
1 - = 1
— A;jBjWe([r11),jWe*,j — ZA i BjWe([r)),j We= 5 =L 0, (3.74)
\/T Jj=1 \/— J=1

where B; = 312, bie™™. We define
T-1

Yir(r) = \/I_ZA (B; - B;) werm.gtvens

and note as before that E* |Yyy (1) — Yy (0)|* is bounded by

T- 2
2| 2 _ 2
(k+35¢) ( ZlAil |, - B IWs<[m>,j-wmm>,j|) :
j=1
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From the proof of Lemma 1.7 we know that

_ _ 2 _ _ 2 2
B (|@erma — Beqomna|” [@eeme — Degorpal”) < € (= 0)

uniformly in (7,0) € [0,1]? and 1 < j, k < [T'/2], therefore
T-1 2
1 215 2 — _ 2
E\7 > 14 ’B,- - Ba" |De(prry).i — Deqrory)
j=1

= 3 2\ 2
< C(r-o)? (T;IA,-I2|BJ-—B;‘)
= (T-—a)zo(l)

by Lemma 3.19. In the same way as in the previous steps, we conclude that
Y =0, =

Lemma 3.22 Assume Conditions 1.1-1.5, 2.1 and 8.1-3.5 hold. Then
(a) T-2 ZLM,u* = O, (1) uniformly over 1 <k < T,
(b) ZyMu* = Op (1) uniformly over N (K).

Proof. (a) This bound follows from Lemma 3.21.

(b) We have
M T
up = Zb[zé:;]]: (s=t—1! modT)
=0 s=1
and .
kk
Z\Muy* = Zwt (uf —@").
t
Since

M
E*ulul = 62 Z bibyI(t—s=1—p modT),
l,p=0
it is

k.k k& M
var* Zztuz = &gthms Z BZEPH (t—s=1l—p modT).
t

t,s l,p=0
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By the Cauchy-Schwarz inequality, the last display is bounded by

k+K M k+K M k+K
2> @Y F D N I(t-s=1-pmodT)<CK&2 Y = Zzﬁ
t=k-K =0 s=f_K P=0 t=k—-k =0
By Lemma 3.15, 42 = O, (1). Further, f*,f‘ (22 =KO, (1) = 0, (1) and
M R M M R 2
Zb?gQbe+2Z(b,-b,) =0,(1) +0, (1)
=0 =0 =0

by the square summability of b; and by Lemma 3.13, and so var* Zf’k zyuy is
0, (1).
Next,

k.k k.k
var* E 0" = E T2, E* 0 = ops (1)
t t,s

because Zf" ; = O, (1) uniformly on N (K) and because

262 (2 (i )2
< (be+2(bl—b,) ) =0, (1).
=0 =0

These results imply that Z4 M,u* = O, (1) uniformly on N (K). =

Lemma 3.23 Assume Conditions 1.1-1.5, 2.1 and 8.1-3.5 hold. Let " =
T-1 23;1 ity. Then for any a,e,n > 0, there exists K and Ty such that for all

T 2 TO;
1
P|P*| sup — >al>n|<e (3.75)
k<k<T k [

k

Proof. Let S; = 3% 2, (4 —T") and let an event A} be defined as

1 1
;:{-E|S;|>a,3|s;| <aform<j<k| iUt,Ut}-
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Proceeding as in the proof of Theorem 1 of Kounias and Weng (1969) and in
the proof of a version of the maximal inequality of Kuan and Hsu (1998), the
conditional probability inside the outer bracket in (3.75) can be bounded by

a?

1 (E*S*2+ Z tzE* S *31) (1_11( ;_1)—,..—11(14:”)))

).

t=K+1
6'2
< a—;DK, (3.76)
where
AzD _E*S;{z d 1 E* 2~k T2 E* 2w  TH % E*S*2 %
62Dy = K2+Zt_2 xt(ut—u)+2( 7 (4 — 0 )) (E*S?2))
t=K+1
We have

M
E* (i —-@) (43 —T) =062 bibl(t—s=1—p modT) — T52t?,

I,p=0

where b= T-1 3" b, and so
M ) M
B (i - T)° = 6% (Z B~ sz) <Co > 8
1=0 1=0

by the Cauchy-Schwarz inequality. The square summability of b; implies that

E

677t (i - T)’| < C,

where the constant C' does not depend on t. Further,

k M k
E*SP =62 mz, Y bibl(t—s=1—p modT) - T620* Y _ za,,
ts=1 Lp=0 ts=1
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so that

k oo M
B6;* [E'S] < 373 lal|agspall D [oulIbp|1(E =5 =1 = p modT)

t,s=1 j=0 1,p=0
k k
+C— Z Ex?
<C E ZZ Ia’Jl |a'1+|t s|| |bl |bl+|t—g|| + C'—
t,s=1 j=0 (=0

Arguing as in the proof of Lemma 2.5, it can be shown that

oo M

k
Z ZZ |aj| |asie—ol| 1B1] |Btie-si| < CK

t,s=1 j=0 1=0

where the constant C' does not depend on k, and therefore that
k2
E&;? |E*S;2| <C (k + —) .
m
There results imply that

E|Dg| < CK+m “ic Z (1+t%+m—%t)
t—K+1

< C (K—% +m3 logm) .
By the Markov inequality, the left-hand side of (3.75) is bounded by

7270 E|Dk|+ P (62 > 202).

By Lemma 3.15, the second term of the last displayed sum is smaller than €/2
for large T'. It follows that for large T and K, the left-hand side of (3.75) is
smaller than . m

Lemma 3.24 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.5 hold. Then
(a) supier.a U*I(ML,WR - M. w,)u* = Op (1),
(b) sup g sy u” (M,w, — M, )u* = Ope (T71/7).
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Proof. Define
Wa = (W — W;) sgn (k - lAc) = (0, ZA) .
Proceeding as in the proof of Lemma 2.9, write

U*,(ML,W& - ML,Wk)u*
= WMWa (WIMW;) ™ WiMu® +u’ MW, (WIMW;) ™ WaMu*
+u MWa (WMW;) ™ WaMu*
—u MWy (WLM,Wi) ™ (W,{MLWA + WAM,W; + WAMLWA)
x (WLMW;) ™ WiMuw'.
By Lemma 3.22, WiM,u* and WiM,u* are O, (T/?) uniformly over 1 <
k < T. In addition, WA M,u* is O (1) uniformly on N (K). By Lemma 2.8,
. R . . -1
W!M,Wa and Wi M,W, are O, (1) uniformly on N (K) and (W,.:MLW,;) =
O, (T7!). By Lemma 2.2, WM ,Wy. = O, (T") uniformly over 1 < k < T and
(WIM,W;)™" = O, (T~?) uniformly on T'- A and therefore also WéMLWA and
WAMLWA are Op (1) uniformly over 1 < k < T'. Stochastic magnitude of the

individual factors give the stochastic magnitude of w*(M,w, — M, w, )u" for
k€ T-A and for k € N (K) in part (a) and (b) of the lemma, respectively. m

Lemma 3.25 Assume Conditions 1.1-1.5, 2.1 and 8.1-8.5 are satisfied. Then
for any finite K > 0,

St (k) = 8'(Zk — Z;) (Zk — Z;) 6 — 28" (Z — Z;) u” + 0p (1)
uniformly on N (K).
Proof. From the proof of Proposition 3.3, we have
Sy (k) = 8 ZLM,w, 28 + 28 ZL M, wou* + ™ (Mow, — Mo, )u".
Write
ZiM,w,Z; = Z\M, 25 — Z\MWi, (Wi MWi) " WM, Za. (3.77)
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By the arguments employed earlier, the second term on the right of (3.77) can
be shown to be O, (T!). The first term on the right of (3.77) is equal to

kk
A 1 « PN
IAZA — T Z(Btl'; = Z/AZA + Op (T_l)
t,s
uniformly on N (K) because ka z; =0, (1) on N (K).
In a similar way, write

Z,fcML,Wku* = (ch - Zk)l M,,'u* — (ch - Zk)l M,,Wk (WéMLWk)_l W,:M,,u*.
(3.78)
The second term on the right of (3.78) is O, (1) O, () Op (TY?) = Op (T71/2).
The first term on the right of (3.78) is equal to
kk
(Zi - 2w + )z = (% — Ze) u* + 0pr (1)
t

by the arguments employed in the proof of Lemma 3.22.
The third term of S is Op+ (T~/2) uniformly on N (K) by Lemma 3.24
and therefore

Se(k) =8 (Zu— 2) (% — 2) 8- 6 (2 — Z) w" + 05 (1)

Since § = § + O, (T~*/?) by Proposition 2.2, sup ) 12k — Zill = Op (1) and
SUP (k) ”(ch - Z)'s | = O, (1), the lemma is established. =
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