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Abstract

This thesis examines structural breaks in time series regressions where both 
regressors and errors may exhibit long range dependence. Statistical proper
ties of methods for detecting and estimating structural breaks are analysed 
and asymptotic distribution of estimators and test statistics are obtained. 
Valid bootstrap methods of approximating the limiting distribution of the 
relevant statistics are also developed to improve on the asymptotic approxi
mation in finite samples or to deal with the problem of unknown asymptotic 
distribution. The performance of the asymptotic and bootstrap methods are 
compared through Monte Carlo experiments. A background of the concepts 
of structural breaks, long memory and bootstrap is offered in Introduction 
where the main contribution of the thesis is also outlined. Chapter 1 proposes 
a fluctuation-type test procedure for detecting instability of slope coefficients. 
A first-order bootstrap approximation of the distribution of the test statistic 
is proposed. Chapter 2 considers estimation and testing of the time of the 
structural break. Statistical properties of the estimator axe examined under 
a range of assumptions on the size of the break. Under the assumption of 
shrinking break, a bootstrap approximation of the asymptotic test procedure 
is proposed. Chapter 3 addresses a drawback of the assumption of fixed size 
of break. Under this assumption, the asymptotic distribution of the estimator 
of the breakpoint depends on the unknown underlying distribution of data 
and thus it is not available for inference purposes. The proposed solution is a 
bootstrap procedure based on a specific type of deconvolution.
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Introduction

This thesis examines structural breaks in time series regressions. The main 
contribution to the literature in the field is twofold. First, statistical proper
ties of methods for detecting and estimating structural breaks are analysed 
when both regressors and errors are allowed to exhibit long range dependence. 
Second, valid bootstrap methods of approximating the limiting distribution 
of relevant estimators are developed under possible long range dependence.

The principal keywords of the thesis are structural breaks, long memory 
and bootstrap. The following sections offer some background notes on these 
concepts and explain in what way this thesis adds to the body of knowledge 
in respective fields. The last section outlines the notation used throughout 
the thesis.

Structural breaks

Structural stability is a desirable property of any econometric model. Models 
that are structurally unstable tend to lead both to erroneous in-sample analy
sis and out-of-sample forecasts. Tests of parameter instability and structural 
change have therefore been a subject of a large body of statistical and econo
metric literature. The maintained hypothesis of parameter stability has been 
tested against both specific and general forms of alternative hypothesis.

When employed as a model-diagnostic tool, stability tests are frequently 
constructed against all possible functions describing the evolution of parame
ters over time. In the linear regression context, such tests are based on the 
behaviour of regression residuals, as in CUSUM tests of Brown et al. (1975) 
and Ploberger and Kramer (1990, 1992), or on the behaviour of parameter
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estimates, as in the fluctuation tests of Sen (1980) or Ploberger et al. (1989).
Alternatively, parameter stability tests can be designed against a specific 

alternative. Example of specific alternatives are one-time change in para
meters as in the papers by Quandt (1960) or Andrews (1993), or parameters 
following random walk (Nyblom (1989)). Though constructed to detect a spe
cific parameter behaviour, these tests are usually shown to have power against 
a broader range of departures from the null of parameter constancy.

Beside specification testing, the presence or absence of structural stability 
may be of interest in itself. If a structural change is detected, an inquiry 
into the character of the change may reveal factors that caused the structural 
shift and may lead to a successful revision of the original model. A prime 
example of this is the article of Perron (1989) who argues that many key 
economic variables should be modelled as stationary around a deterministic 
trends with breaks. Such models imply that the majority of shocks in economy 
are transitory and only few shocks have a permanent effect. The structural 
break model of Perron is an answer to the stochastic trend model of Nelson 
and Plosser (1982) which imply that all random shocks have a permanent 
effect on the economy. The work of Perron brought a change in the common 
view of the nature of dynamics of economic variables and inspired further 
investigation of instability in economic systems.

When it is known that the parameters of a model undergo a break, the 
knowledge of the date of break is often relevant to researchers, for exam
ple when judging a delay in reaction of agents to a change in economic pol
icy. There is a steadily growing body of literature on estimating the time of 
change. Hinkley (1970), Yao (1987) and Bhattacharya (1987) deal with max
imum likelihood estimation of time of a shift in mean of otherwise identically 
distributed independent observations. In the context of dependent observa
tions, Bai (1994, 1997b) allows for a linear process with short memory while 
Bai (1997a), Bai and Perron (1998) and Fiteni (2002, 2004) analyse estima
tors of the time of break in parameters of linear regression model with mixing 
data.

An interesting observation is that in order to obtain a distribution-free 
asymptotic theory for estimators and test statistics, the magnitude of the 
structural change is assumed small in a majority of work on both detecting
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and locating structural change. More specifically, the size of change is assumed 
to decrease with increasing sample size. Examples of articles that adopt this 
assumption are Ploberger et al. (1989) and Andrews (1993) for detecting the 
structural change and Picard (1985) and Bai and Perron (1998) for estimating 
the date of break.

In the context of testing for parameter instability, this assumption may 
be regarded as innocuous since it can be argued that if a test procedure is 
capable of detecting small changes in the structure of the model, it will also 
be capable of detecting large changes. However, in the context of estimating 
the date of break, the assumption is no longer incontroversial. The gain in 
information due to the increase in the sample size is not sufficiently large to 
offset the loss of information due to the decrease in the magnitude of the 
break. The dispersion of the breakpoint estimator grows to infinity and tests 
of hypotheses about the date of change against fixed alternatives lose power 
in growing samples.

The only solution to this problem is to model the break as having a fixed 
size. Under the fixed break assumption, however, the limiting distribution of 
the location estimator depends on the distribution of the data and is therefore 
generally unknown and unavailable for the purposes of statistical inference. 
Hinkley (1970) attempts to circumvent the problem of intractability by as
suming that the distribution of data is known. His method is difficult or 
impossible to implement in any but the most simple settings and in any case 
the assumption that the distribution of data is known is unrealistic. Since 
then, attempts to reconcile the advantages in assuming fixed breaks with the 
need for a tractable asymptotic distribution have been largely abandoned, 
with an exception of Antoch et al. (1995) who devise a bootstrap method for 
regression with independent identically distributed errors.

The current state of the research on structural changes in linear models 
with time series has been reviewed by Banerjee and Urga (2005) and Perron 
(2006). Other overviews of the work on structural breaks include the article by 
Stock (1994) and the special issue of the Journal of Econometrics on "Recent 
developments in the econometrics of structural change" edited by Dufour and 
Ghysels (1996).

Regarding models with strongly dependent data, the effect of long range

10



dependence on estimators of time of break has been examined by Antoch et al. 
(1995, 1997), Horvath and Kokoszka (1997) and Kuan and Hsu (1998) in the 
framework of linear processes with a break in mean. Hidalgo and Robinson 
(1996) propose tests for a change in parameter values at a known time point 
in linear regression models with long-memory errors while Hidalgo (2003b) 
designs a test for the presence of breaks in nonparametric regression function 
with possibly strongly dependent errors.

This thesis

This thesis examines stability of slope coefficients in the linear regression 
model. An important distinction from the majority of existing literature is 
that we allow both regressors and errors to be possibly long range depen
dent. We are interested in two aspects of the problem of parameter stability. 
First, we examine methods of detecting structural instability and estimating 
the date of structural change. Second, we analyse in some detail the effect 
of the assumed size of break on statistical properties of estimators and test 
statistics, and attempt to resolve the difficulties arising from the imposition 
of the standard assumption of shrinking breaks.

Chapter 1 proposes a fluctuation-type method of testing for structural sta
bility. The procedure is based on a process of least-squares slope coefficient 
estimators. The fluctuation of the process is measured by a continuous func
tional and the presence of instability is indicated by large fluctuation. Though 
the test is constructed to have power against the alternative of a structural 
break, it is shown to be powerful against a broader range of alternatives, such 
as multiple breaks, smooth transition between two steady levels of parameters 
and a continual change of parameter. The functional defining the test statistic 
can be chosen to reflect beliefs about the form of alternative and so improve 
the power of the test procedure.

The limiting distribution of the test statistics considered in the literature 
is typically a functional of Brownian motion. The main contribution of the 
Chapter 1 is to confirm that this fact remains true in linear model with sta
tionary long memory series. This may seem a simple and straightforward 
conclusion but it is actually somewhat surprising since when dealing with
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long memory time series, fractional Brownian motion processes are usually 
expected to appear in expressions describing the asymptotic distribution. In 
our stochastic regressor framework, the effect may be viewed as a mutual sto
chastic dampening of regressors and errors where the individual series may 
exhibit long memory but their product displays short memory.

In Chapter 2 , we examine a least squares method of estimating the time of 
the break. Here again the results from the short memory literature carry over 
to our long memory setting under the assumption of a break of both fixed and 
shrinking size. The magnitude of break, however, turns out to be crucial in 
determining the qualitative properties of the asymptotic distribution of the 
breakpoint estimator. One of the main contribution of Chapter 2 is therefore 
an analysis of the asymptotic behaviour of the estimator under various as
sumptions on the size of break, ranging from a fixed size of break through a 
size shrinking at a certain rate to zero size. While the assumptions of fixed and 
shrinking breaks have been examined in a variety settings with short memory 
data, and we extend the analysis to the long-memory time-series regression 
setting, the assumption of a weak break, that is break of a rapidly decreasing 
size, has not been analysed yet in the literature.

The conclusion is that when the size of the break is fixed, the asymptotic 
distribution depends on the entire joint distribution of the regressors and the 
error term. When the size of the break is shrinking but more slowly than 
the square root of the sample size, the asymptotic distribution of breakpoint 
is free of nuisance parameters and is explicitly known. When the size of the 
break is shrinking faster than the square root of the sample size, or when 
there is no break in the data generating process, the question of estimating 
the location of the break becomes vacuous because in this circumstance the 
break is not detectable. In the borderline case of the size of break decreasing 
with exactly the square root of the sample size, the break can be detected but 
there is insufficient information for estimating its location.

We argue that to obtain an efficient breakpoint estimator and a power
ful test procedure, only the assumption of fixed break should be used. Since 
under this assumption the asymptotic distribution of the estimator of the 
breakpoint depends on the unknown underlying distribution of data and thus 
it is not available for inference purposes, a method of estimating the distrib
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ution is called for. One such procedure, based on the bootstrap, is proposed 
in Chapter 3.

Long memory

The phenomenon of the slow decay of correlation between observations that 
are far apart had been observed in various scientific fields since well over one 
hundred years ago. One of the first important statistical treatments of long 
memory has been in hydrology by Hurst (1951) who considered the reseeded 
adjusted range statistic and found its behaviour inconsistent with short range 
dependence assumption. In economics, one of the first to observe the long- 
memory properties of economic time series has been Adelman (1965) who 
observed peaks of estimated spectral functions around zero frequency. The 
peaked spectral density has been claimed by Granger (1966) to be the typical 
spectral shape of an economic variable.

For stochastic processes, the property of possessing long memory has been 
variously defined through the behaviour of the autocorrelation function as hav
ing hyperbolically decaying autocorrelations or having autocorrelations that 
are nor absolutely summable, through the behaviour of the spectral density as 
having a pole at zero frequency, or through the behaviour of the partial sums 
of the process as having variance that is increasing faster than the sample size. 
These definitions are closely related but not equivalent.

The degree of memory of a process may be described by the parameter 
d which we take to be the order of the singularity of the spectral density 
at zero. Estimation of d is a well-researched topic and a wide array of esti
mators is available to practitioners. Recent surveys of developments in long 
memory estimation and testing include Robinson (2003) and Banerjee and 
Urga (2005). Various results are collected in surveys by Robinson (1994a) 
and Baillie (1996), in a book by Beran (1994) and in a recent special issue of 
the Journal of Econometrics on "Long Memory and Non-Linear Time Series" 
edited by Davidson and Terasvirta (2002).

It has long been known that certain classes of processes can mimic long 
memory behaviour. Among such processes are regime switching processes
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(Diebold and Inoue (2001)), processes with certain type of deterministic trend 
(Bhattacharya et al. (1983)), error duration processes (Parke (1999)) and, 
importantly from our point of view, processes with structural breaks (Engle 
and Smith (1999) and Granger and Hyung (2004)). Accordingly, there is a 
growing body of literature on distinguishing genuine long memory time series 
from those with other features (Ktinsch (1986), Shimotsu (2005) and Berkes 
et al. (2006)).

There is also work that nests both long memory and some of the above 
features, but focuses on the analysis of one feature only. Iacone (2006) ex
amines the degree of memory of a given series with possible presence of the 
nuisance deterministic components including broken trends. In the opposite 
direction, Hidalgo and Robinson (1996) allow for the presence of long mem
ory but regard it as a nuisance phenomenon and concentrate on testing for 
structural breaks in the framework of linear regression. A similar approach is 
taken in articles by Antoch et al. (1995, 1997), Horvath and Kokoszka (1997) 
and Kuan and Hsu (1998) mentioned in the previous section.

This thesis

In this thesis, we are interested in structural breaks and view long memory as 
a nuisance. Our aim is to develop methods in which the user does not need 
to know the degree of memory of the data, as long as the data are stationary. 
As a result, we do not discuss the estimators of the long memory parameter 
and we only use the existing estimators.

In Chapters 1 and 2 , we show that the classical least squares methods for 
detecting and locating breaks, devised originally under the assumption of no 
or short memory in regressors and errors, can be used without change under 
long memory, and the degree of memory does not need to be estimated. We 
also show that the statistical properties of the estimators remain unchanged. 
The only place where an allowance for possible presence of long memory needs 
to be made is when the user wishes to conduct a bootstrap test since it seems 
convenient to carry out the bootstrap procedure in the frequency domain.

In Chapter 3, the bootstrap procedure involves estimation of the degree 
of memory of regression residuals as a preliminary step. We suggest that the
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researcher uses the local Whittle estimator proposed by Robinson (1995b) and 
we show its consistency when the underlying series is replaced by residuals.

B ootstrap

When the distribution of an estimator or a test statistic is unknown or if it 
is difficult to calculate, it can be approximated by the bootstrap. Bootstrap 
methods can also be used to provide more accurate approximation of the 
finite sample distribution than the approximation obtained from first order 
asymptotic theory.

The core idea of the bootstrap is to replace the unknown distribution of a 
random variable by the empirical distribution of a random sample drawn from 
that distribution. However, when the data are not independent and identically 
distributed, the basic bootstrap of Efron (1979) is not valid and the bootstrap 
procedure needs to be modified to reflect the dependence or heterogeneity 
structure of the data. In the time series context, an early adaptation of the 
basic bootstrap method rests on the assumption that the data are generated 
by a finite-order stationary ARMA process with independent identically dis
tributed innovations (Freedman (1984), Efron and Tibshirani (1986)). In a 
direction towards nonparametric methods, Btihlmann (1997, 1998) approxi
mates the linear infinite-dimensional process by a sieve of finite-dimensional 
autoregressive processes whose order is growing with the sample size. Diebold 
et al. (1998) propose a purely nonparametric bootstrap method based on the 
Cholesky factorization.

A different way of approximately preserving the temporal dependence 
structure of the data is to resample blocks of data. Carlstein (1986) and 
Ktinsch (1989) propose to resample nonoverlapping and overlapping blocks of 
data, respectively, and to concatenate the blocks to generate a bootstrap sam
ple. Politis and Romano (1992) introduce an idea of subsampling, regarding 
blocks of data -  subseries -  as new pseudo-samples.

A problem shared by nonparametric bootstrap methods is that they require 
an intervention by the researcher in choosing a dimension parameter of the 
procedure, be it lag length, bandwidth or block length. The performance of
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time-series bootstrap can be highly sensitive to the choice of the dimension 
parameter, particularly in samples of moderate size. Although automatic 
procedures for choosing the dimension have been devised for some methods, 
they can be computationally expensive.

Nonparametric bootstrap procedures can alternatively be carried out in 
the frequency domain where either frequency domain data, that is the dis
crete Fourier coefficients, or their squares, that is the periodograms, can be 
bootstrapped. This approach is motivated by the observation that converting 
a stochastic process from the time domain to the frequency domain reduces 
serial correlation of the process though it induces heteroskedasticity. Boot
strap method of Ramos (1988) for Fourier coefficients or Franke and Hardle
(1992) and Dahlhaus and Janas (1996) for periodograms require a consistent 
estimate of the spectral density and therefore a choice of a bandwidth. Local 
periodogram bootstrap of Paparoditis and Politis (2000) avoids the need for 
estimating the spectrum but again demands a bandwidth choice.

Hidalgo (2003a) proposes a method that eliminates the choice of lag length 
or bandwidth. He suggests to bootstrap OLS residuals in frequency domain. 
His bootstrap procedure is easy to implement and computationally inexpen
sive. His approach is the only one among the methods cited so far that has 
been shown to be valid for strongly dependent data.

This thesis

One of the goals of this thesis is to design bootstrap procedures that are valid 
for short as well as long memory time series. As with parameter estimation, 
we aim to avoid the need for the researcher to know or estimate the degree 
of memory of the data, as long as the data are stationary. We first propose a 
bootstrap procedure that is useful for approximation of the distribution both 
of test statistics for detecting the break in Chapter 1 and of the estimator of 
the date of break under shrinking break in Chapter 2.

The main idea of the proposed bootstrap procedure is to transform a given 
series into the frequency domain and thereby to translate the problem of 
dependent bootstrap to a problem of heteroskedastic bootstrap. The quantity 
to be resampled are the scaled frequency domain regression residuals. The
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heteroskedasticity is accounted for by re-scaling the resampled values.
The procedure is essentially that of Hidalgo (2003a). However, to prove the 

validity of the method in the context of time series regression with structural 
breaks, it is necessary to show that the method is successfully estimating not 
only the distribution of the normalized sum of a time series, but also the 
distribution of the entire process of its partial sums. The relevant concept 
here is the bootstrap weak convergence of Gin6 and Zinn (1990). The proof 
of bootstrap weak convergence of the partial-sum process is one of the main 
contributions of the thesis.

The proposed procedure inherits the advantage of the original method of 
Hidalgo (2003a) of not requiring a user-chosen parameter such as the block 
length in the block bootstrap of Carlstein (1986) or the lag length in the sieve 
bootstrap of Btihlmann (1997, 1998).

While the bootstrap inference procedure in Chapters 1 and 2 is an op
tional and advantageous alternative to asymptotic inference procedures, in 
Chapter 3 the limiting distribution of the breakpoint estimator depends on 
the unknown joint distribution of data and the use of the bootstrap or some 
other estimating procedure becomes a necessity if inference is to be carried 
out. The bootstrap procedure proposed in Chapters 1 and 2 asymptotically 
matches the covariance structure of the underlying process. The ability to esti
mate the second moment dependence structure is sufficient for approximating 
distributions that are entirely described by the second-order structure, for ex
ample the Gaussian distribution. However, it does not suffice for estimating 
a general joint distribution of a process.

In Chapter 3, we therefore design a more refined bootstrap method. The 
idea behind the bootstrap procedure is to fractionally difference the series 
in question and to approximate the resulting short memory process by an 
autoregressive process. The values to be resampled here are the estimated 
innovations of the process, and the bootstrap sample is created by refiltering 
and fractionally integrating the resampled innovations.

We find it convenient to execute both stages of prewhitening, that is frac
tional differencing and filtering, in the frequency domain. After obtaining a 
preliminary estimate of the memory parameter d, an estimate of the linear 
coefficients of the fractionally differenced process is achieved via the canon
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ical spectral decomposition of a smoothed estimate of the spectral density 
corresponding to the differenced process.

In contrast to the bootstrap procedure in Chapters 1 and 2, estimation of d 
cannot be avoided though d remains a nuisance parameter. Moreover, the user 
needs to choose a bandwidth parameter for smoothing and a number of lags 
of the truncated linear process. Interestingly, however, it turns out that the 
two parameters are directly related so that effectively the user chooses only 
one bandwidth parameter, and the value of this parameter can be determined 
by a cross-validation procedure. In return for the additional user input, the 
bootstrap delivers approximation of finite-dimensional joint distributions of 
the process.

To our knowledge, there is currently no bootstrap procedure available that 
approximates the joint distribution of data while allowing for strong serial 
dependence. Construction of such a bootstrap procedure is therefore one of 
our main contributions to the literature.

N otation

Throughout the thesis, W  denotes a p-dimensional vector of independent stan
dard Brownian motion processes on [0,1] or on a set A C  (0,1), ”= ^ ” de
notes weak convergence in the space D (A)p of p-vectors of right-continuous 
functions with left-hand limits, endowed with the uniform metric p(x ,y)  =  
supreA \\x (t ) — y (t )|| for x ,y  € D (A)p. The statement yr ~  x t  is equivalent 
to the statement ^  —> 1 as T  —> oo. For cr-algebras T , Q, TM  Q is their 
union, that is the smallest cr-algebra containing all elements of T  and Q.

For any real numbers a and 6, aVb =  max {a, 6} and aAb — min {a, b}. For 
any integers j  and A;, |j — k\+ = m ax{l, |j — fc|}. For a set S  and a constant 
a, S  • a = {xa : x  G S}. For nonnegative numbers I, m,

i,m, H t = i + i  a t  I

y  at = < 0 I = m,

, Et=m +1 I > m.

For integers j ,  k and I, we write j  =  k mod J if j  — k is divisible by I. Notation
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[•] signifies integer part and I (•) is the indicator function of a set.
For a Hermitian matrix A , Amin (A) and Amax (̂ 4) denote the smallest and 

the largest eigenvalue of A , respectively. Inequalities A > B  and A  > B  
among two matrices hold if all the eigenvalues of A  — B  axe nonnegative and 
positive, respectively. For any matrix A, ||*|| denotes the maximum-eigenvalue 
norm, that is \\A\\ =  sup||x ||=1 ||A:r|| =  Â a2Y {A!A). We have ||j4| |2 < t iA 'A  and 
due to the equivalence of norms also tiA !A  < C  ||^4||2 for a constant C > 0.

For a generic function </?, we denote <Pj =  (Aj), where Aj =  27rj/T ,
j  = 1 , . . . , T  are Fourier frequencies. For sequences {at}J=1 and {bt}J=1 of 
p-dimensional vectors,

t « a ( A )  =  - 1= =  ^  a t e ’*A) A  €  [ - 7 T ,  ?r] ,
v 2 t t T  f r ?

is the discrete Fourier transform of {at} and

Iab(X) =  Wa (A) w'b (A), A G [ - 7 r, 7r ] ,

is the cross-periodogram matrix of {at} and {bt}. Notation f vv is reserved for 
the spectral density of a process {vt}.

Starred notation in k*, u*, E*, Op* and similar refers to quantities condi
tional on data, taken with respect to the corresponding bootstrap probability 
measure. In particular, notation P* distinguishes the probability conditional 
on the a-algebra T t  V Qt- For example,

P * (l** -  k\ < x) =  P  <  x T t  V G t) ■

Similarly, E*, var* and cov* denote expectation, variance and covariance con
ditional on T t  V Gt, respectively. For a random variable X  and a sequence 
{ XT} of random variables, the statement X t  ^  X  is equivalent to the state
ment

P*(XT < x ) ^  P { X  < x )  a s T  —too

for each x  which is a continuity point of F (x) — P  (X  <  x). When the limiting
variable X  is a constant, we write X t  —> X .  Further, for a stochastic process
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Y  and a sequence of stochastic processes {Y t }, Yt  => Y  stands for the weak 
convergence in probabihty as defined by Gine and Zinn (1990).

Stochastic orders of magnitude op*, Op* are defined as follows. Let {y?T} be 
a sequence of positive finite numbers. We say that X t  =  Op* (<pT) as T  —► oo 
if and only if for every e > 0 and 77 > 0 there exist finite M  and Tq such that 
for all T  > To,

P(P*( \XT\> MipT)>rj)  <e.

We say that X t  =  op* {<pT) as T  —► 00  if and only if for every 77 > 0,

P * ( \ X t \ > W t ) =  op ( 1 ) .

It is easy to verify some useful relations for the orders of magnitude op* and 
Op*. For example, op* (1) • Op (1) =  op* (1) or op* (1) +  op (1) =  op* (1).

Finally, C and D stand for generic constants. Unless specified otherwise, 
all limits are taken as T  —> 0 0 , where T is the sample size.
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Chapter 1

Testing for structured change in 
regression with long memory 
processes

1.1 Introduction

Parameter instability and structural change have been a subject of a large 
body of statistical and econometric literature. The maintained hypothesis of 
parameter stability has been tested against both specific and general forms of 
alternative hypothesis. When employed as a model-diagnostic tool, stability 
tests are constructed against all possible functions describing the evolution 
of parameters over time. Such tests axe based on the behaviour of regression 
residuals, as in CUSUM tests of Brown et al. (1975) and Ploberger and 
Kramer (1990, 1992), or on the behaviour of parameter estimates, as in the 
fluctuation tests of Sen (1980) or Ploberger et al. (1989).

Alternatively, parameter stability tests can be designed against a specific 
alternative. Example of specific alternatives are one-time change in parame
ters as in the papers by Quandt (1960) or Andrews (1993), or parameters 
following random walk (Nyblom (1989)). Though constructed to detect spe
cific parameter behaviour, these tests are usually shown to have power against 
a broader range of departures from the null of parameter constancy.

This chapter considers tests for stability in slope coefficients in linear re

21



gression model where both regressors and errors are allowed to be long range 
dependent. The main contribution of the chapter is twofold. First, the lim
iting distribution of the test statistics considered in the literature is typically 
a functional of Brownian motion. It is shown that this remains true for test 
statistics based on the slope coefficient estimator in linear model with station
ary long memory series. Secondly, as an alternative to computing the critical 
values for the test statistic, a first-order bootstrap approximation of the dis
tribution of the test statistic is proposed and the validity of the bootstrap 
procedure is shown.

The chapter is organized as follows. Section 1.2 describes the model and 
the hypotheses of interest and states distributional results for the test statistic. 
Section 1.3 proposes a bootstrap approximation of the testing procedure and 
shows its validity. Section 1.4 offers a Monte Carlo study of the small sample 
performance of the bootstrap testing procedure. Section 1.5 concludes. The 
proofs of the results stated in the text are gathered in Section l.A. Section 
l.B contains some auxiliary results.

1.2 M odel and asym ptotic results

We are interested in testing for structural change in regression models with 
processes that may possess long memory. We consider the model

yt =  a +  (3'tx t +  Wt, £ =  1, . . . ,T,  (1.1)

where yt is the observed dependent variable, a  is an unknown intercept, f t  is 
a p-dimensional vector of unknown parameters, x t is a p-dimensional vector 
of the explanatory variables and ut is an unobserved stochastic disturbance. 
Our hypothesis of interest is whether the parameter vector f t  stays constant,

Ho: f t  =  (3 for some f t  for all t =  1, . . . ,  T.

The alternative is that of general parameter instability,

Hi : f t  7̂  f t  for some 1 < £, s < T.
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Test procedures for the hypothesis of structural stability of general models 
are based on test statistics that can be written as

Z t  =  <f> ( E t  ) ,

where Et is a stochastic process on [0 , 1] or its subset with values in the 
space of right-continuous functions with left-hand limits and 0  is a continuous 
functional. The process Et  is based on an estimator of parameters of a given 
model and its form reflects the choice of the testing principle. For example, if 
{et,P < t < T}  is the sequence of cumulative recursive residuals from the OLS 
estimates of the model (1.1) under the null as in the CUSUM test procedure 
of Brown et al. (1975), the stochastic process Et  can be defined as Et = 
{E t  (t) =  e[TT\,p /T  < r <  l} . Further examples of processes considered in 
the literature are Wald-, LM- and LR-like test statistic processes of Andrews
(1993), CUSUM of squares process of Brown et al. (1975), OLS CUSUM 
process of Ploberger and Kramer (1992), OLS parameter estimates process 
of Ploberger et al. (1989) and Sen (1980) or MOSUM process of Chu et al.
(1994).

The functional ( f )  measures the excess fluctuation of the process E t  with 
respect to its hypothesized fluctuation. Depending on the belief about the 
form of the alternative, the functional < f ) can be chosen to obtain good power 
of the test. A functional widely used in literature is the supremum functional. 
The test statistic can also be based on the Lg-distance like Cram6r-von Mises 
test statistic with q = 2. The range functional, that is the difference between 
the maximum and the minimum of a function, can have power advantage 
over the supremum functional in detecting smaller fluctuations of a process 
which changes its sign, as argued by Kuan and Hornik (1995). The average 
exponential functional of Andrews and Ploberger (1994) is shown to enjoy 
asymptotic optimality with respect to a weighted average power criterion.

In this chapter, we base the test procedure on the OLS estimators of the 
coefficient 5 in the model

yt = ol +  (3'xt +  8'Zt +  Ut, t = 1 , . . . ,  T, (1 .2 )
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where
, X /  Xt t <  [t T]  ,

zt =  zt (r) =  < . (1.3)
I 0 otherwise,

where 8 is a p-dimensional vector of parameters and where r  lies in a subset A 
of ( 0 ,1). In the interest of clarity, the explicit notation of dependence of zt on 
t  is sometimes dropped in what follows. The choice A =  ( 0 ,1) appears natural 
but for technical reasons the set A needs to be restricted to have closure in 
( 0 ,1). The grounds for the restriction are discussed after stating Theorem 1.2 
and its Corollary 1.1 below. In addition to technical reasons, there may be
other motives for restricting the set A away from ( 0 ,1). It may be suspected
that the instability in question occurred in a specific subperiod of a given 
period. For example, if data for postwar productivity growth are examined, 
the attention might be focused on testing for an abrupt or gradual change in 
a period around the 1973 oil price shock.

For any fixed r  G A, the OLS estimator of the parameters and 8 in (1.2) 
is given by

(  (zt -  x) x[ E l  i (*t -  x) 4 \  1 [  E L  (xt -  x) yt \
V Hr) )  \  E L  (* -  *) *5 E h  (zt -  *) 4 j  V E L  ( * - * ) » / ’

(1.4)
where x — T -1  E h  x t and z = T -1  E rtS  x t- Alternatively, model (1 .2 ) can 
be translated into the frequency domain, becoming

wy{^j) — P'wx ( \ )  +  5,wz(Xj) +  wu(Xj), j  =  1, . . . , T  -  1. (1.5)

Identifying wx(Xj) and wz(Xj) as regressors and wu(Xj) as an error term, the 
OLS estimate of the parameters f} and 5 in (1.5) for r  G A is given by

(  H r )  \  _  (  E h i  W A .) E L % ( ^ )  V 7  E j L  \  n
V Hr) J V e U u v  e l 1 '..(a,-) J V E L 1 J

Leaving out the zero frequency from the frequency domain regression is equiva
lent to mean-correcting data before running the regression in the time domain. 
The estimators defined in (1.4) and (1.6) are therefore identical. Omission of 
the zero frequency permits inference on the slope parameters when the in
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tercept is unknown. It is worth noting that due to the symmetry of the 
periodograms, (1 .6 ) is equal to

=  ^Re 

x Re

YAt/2\ t ( \ \  v AT/2\ tZ^j=l 1xx\^3) L^j=\ 1X
Y^[t / 21 t  T2-jj= 1 £*tj=l 1Z

\  ( i.7)
E j S l21 h y { \ )

for T  odd. When T  is even, (1.7) differs from (1.6) only by the order of 
Op (1 /T).

For each r  from a set A c  (0,1), an estimator 8 ( t ) of 8 can be obtained 
from (1.6) and a process 8 can be defined as S =  ( r ) , r G  a | .  For any T  

and any realization of processes {xt} and {ut} the function 8 is bounded and 
constant on the subintervals [)/T, (j +  1) /T )  D A, j  G N, and the process 8 
is a random element of the space D (A)p of p x 1 vectors of right-continuous 
functions on A with left-hand limits endowed with uniform metric.

The test statistic based on the process 8 is then Zt  = (f> (^/T8^ for any 
continuous functional <j>: D (A)p i—>• R. For example, the Kolmogorov-Smirnov 
(or Bartlett) test statistic is defined as

KSt =  sup V f
rGA

5 ( t )

and the Cram6r-von Mises statistic is given by

CvM'i =  /  t \ H t )
J A 1

dr.

Under the null hypothesis, the additional regressor Zt has no explanatory 
power and the process 8 is uniformly close to zero, whereas under the alter
native, 8 can be expected to differ significantly from zero on a set Ai C A of 
Lebesgue measure greater than zero. The norm functionals like KS and CvM 
constitute one-tailed tests, rejecting Ho for large values of the test statistic. 
In principle, two-tailed tests can be constructed for functionals whose range 
includes both positive and negative values.

It can be expected that the test procedure based on model (1.2) has power
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mainly against one-time break alternatives of the form

Hr: A  =
/3 + S t = l , . . . , [ r 0T]

j3 t = [tqT] +  1 ,... ,T
(1.8)

for some To G A and some constants (3 and 6 with 6 ^ 0 ,  but we show that 
our test procedure has power under a broader range of alternatives.

In our analysis, we assume that {xt} and {ut} are covariance stationary 
linear processes that satisfy the following conditions.

C ondition  1 .1

Let Tt and Qt be the cr-algebras of events generated by £5, s < t, and es, 
s < t, respectively.

C ondition  1.2 {£t} is a stochastic process that satisfies

3. the joint fourth cumulants of ji =  1 ,.. .p and i = 1 ,... 4, where 
denotes the j-th  component of the vector £t, satisfy

oo oo
1 .

j =0 j =0

t-i V &t) — 0 a’S‘,

2. V Qt) = E (£tQ  =  E a.s., and

cum J2J3J4 a'S'
0  a. s.

t1 = t2 = ts — U, 
otherwise,

with |/Cf| — maxji==i)..,p)i=i)...4 | , j 2,j3 1 ^  00•

C ondition 1.3 {et} is a stochastic process that satisfies

1. E  V Qt-1) — 0 a.s.,
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2. E (et\F t V Qt-1) =  E{el) = a\ a.s., and

3. the joint fourth cumulant of Eti} i = 1, .. .  4 satisfies

( I'T* \ J ^  0>’S. t\ = t2 = t$ = £4,
CU7n\£t ’̂l£t2iSt '̂)Et^\jT) j n ,,I 0 a.s. otherwise,

with |k;| < oo.

Condition 1.4 The functions

oo oo

A  (eiX) =  Y , ai e^  and B  (e‘X) = Y L bi e'jX
j=0 j=0

satisfy the following assumptions:

1. there exist constants 0 < Cx,k,Cu < oo and dXtk,d  G [0 , ! ) , &  =  
1 , 2 , . . .  ,p, such that \Akk (A)| ~  CX}kX~dx'k, \B (eiA)| ~  CuX~d as \  
0+,

2. A  (elA) and B  (etA) are differentiable on (0,7r] and

d B ( e iX)
dX

dA(etX̂
=  0dX

— q  uniformly over (0,7r] as A —► 0+, and

3. 11A  (elA) 11 > 0 and |B  (e*A) | > 0 for A e (0,7r]. 

C ondition 1.5

rj \\fxx(X)fuu{X)\ \ d \  < oo, E (xtx't) > 0,

where f xx{A) and f uu{A) are spectral densities of processes x t and ut, respec
tively.

The conditions are similar to those used by Robinson (1995a,b, 1998) and 
Hidalgo (2003a). Conditions 1.1-1.3 imply homoskedasticity of regressors and 
errors. This assumption could presumably be relaxed to allow for a certain 
degree of heterogeneity. Conditions 1 .1-1.3 also imply that xt and us are 
uncorrelated for all t and s and that E  (xtutx'su3) =  E (xtx's) E  (utus) for
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all t and s and therefore that the spectral density of xtut at frequency zero is 
2n £ ,  f xx (A) f uu (A) dX if Condition 1.5 holds. One of the reasons for imposing 
the condition E  (xtutx'au3) =  E (xtx'a) E  (utus) is that it allows us to use

4  2 T ~ l  

j= 1

of Robinson (1998) to consistently estimate 27r J** f xx (A) f uu (A) dX without 
having to select a bandwidth. If the condition E  (xtutxau3) =  E  {xtx'a) E  (utu3) 
is not valid, the long run variance of xtut has an additional component which 
is a function of the fourth cumulants and which is not estimated by the ex
pression displayed above. When x t and Ut are short memory processes, the 
results of Taniguchi (1982) and Keenan (1987) can be used to estimate the 
additional component of variance, but no estimation methods are available for 
long memory time series. Relaxing condition E  (xtutx'au3) =  E  (xtx'g) E  (utu3) 
would thus come at a price of a considerable amount of technical work. There
fore, though assumption of no correlation between regressors and errors is 
admittedly somewhat restrictive and excludes for example some cases of in
terest studied by cointegration literature, we do not attempt to relax this 
assumption.

A further remark on Conditions 1.1-1.3 is that while the fourth moments 
are assumed constant, the third moments axe free to vary and so only second 
order stationarity is required.

Condition 1.4 allows for a possible singularity at the zero frequency but 
the results of this chapter could be generalized to the case of a singularity at a 
nonzero frequency or of more than one singularity. The validity of the bound 
|dB (elA) /dA| =  O (\B  (elA) | /A) implies that \dfuu (A) /dX\ = O (f uu (A) /A) 
since f uu = \B (elA) |2 a2/  (27r). Similar implication holds for the spectral 
density matrix f xx. Examples of scalar processes that satisfy Condition 1.4 
are FARIMA model of Granger and Joyeux (1980) or Hosking (1981), and 
fractional Gaussian noise of Mandelbrot and van Ness (1968). These models 
satisfy /  (A) ~  CX~2d as A —► 0+ for some memory parameter d € [0, | ) . An 
example of a model with singularities at nonzero frequencies is the Gegenbauer 
model of Gray et al. (1989).
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Condition 1.5 has been used by Robinson (1994b) and Robinson and Hi
dalgo (1997). The condition restricts the collective memory of regressors and 
errors. For regressors with long memory parameter dx and errors with long

condition ensures that the standard least squares estimation procedure of the 
slope coefficients is v^T-consistent and leads to a Gaussian limit distribution 
(Robinson (1994b)). As Hidalgo (2003a) remarks, the first part of Condition
1.5 seems to be very mild and appears to be necessary and minimal for the 
central limit theorem for OLS estimates of slope coefficient to hold. In a re
lated proposition of Giraitis and Surgailis (1990) an analogous condition is 
required for convergence of quadratic forms in linear processes. The validity 
of the CLT carries over to the functional CLT in the present chapter. The 
restriction dx +  d < ^ could be relaxed by employing estimators of a class of 
weighted least squares estimators proposed by Robinson and Hidalgo (1997) 
or a class of generalized least squares estimators proposed by Hidalgo and 
Robinson (2002), but for notational simplicity we keep Condition 1.5 as it 
stands.

The main result of this section can now be stated.

Theorem  1 .1  Under Conditions 1.1-1.5 and under the null hypothesis,

memory parameter d, Condition 1.5 imposes restriction dx 4 - d < ±. This

i /  x - 'n l  (t\v  {l) -  t\v  (t)) 
^  r (1 -  t )  (  E-ifi§ (W (t) -  tW  (1))

on A, where Q = 2ir / I I (A)/uu(A)dA and X) =  E (xtx't).

Theorem 1.1 implies in particular that

so that for each fixed t E A,

(1.9)

where
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It is interesting to note that when x t or ut are long memory processes, the 
limiting distribution remains to be a function of a Brownian motion rather 
than of a fractional Brownian motion that often arises in asymptotic results 
in long memory environment. A result that is crucial for validity of Theorem 
1.1 is that T -1 /2  Izu (Aj) =  T~1/2 x t {ut -  u ( t) ) , where u ( r )  =  
T~l ut-> converges weakly to a Brownian motion. When a strongly de
pendent process xt is considered separately, normalization by T~i~d is re
quired to achieve weak convergence of the partial sum Y l tS  x t and the limit
ing process is a fractional Brownian motion. However, the case of the partial 
sum 52*3 xt (ut — u (t)) is different. Intuitively, while the memory of the 
processes xt and ut is of a long range, the product xt (ut — u ( t ) )  displays 
short memory behaviour. This phenomenon may be regarded as analogous to 
that of Robinson (1998) where the sample autocovariances of processes x t and 
ut are stochastically dampening each other in his estimator of Cl.

To assess the power of the test procedure, we examine limiting behaviour 
of the process (ft (r) ' , 8 (r)'J under alternatives. We restrict ourselves to the 
local alternatives

0 t = 0 + f - 0  , t = l , . . . , T ,  (1.10)

for some /?, where h is a p-dimensional vector of bounded variation functions 
on [0,1]. This class of alternatives comprises many types of structural change 
that may be of interest. For instance, a function h (r) =  51 (to < r) describes 
the alternative of an abrupt break of size 8 at time To- A step function h 
defines multiple structural breaks. A function h consisting of two constant 
segments connected by a smooth curve depicts smooth transition between 
two steady levels of a parameter, while a general smooth function h captures 
continual change of the parameter.

For the limiting distribution under local alternatives the following result 
is obtained.

Theorem 1.2 Under Conditions 1.1-1.5 and under the local alternative hy-
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pothesis (1.10),

1 /  ( t W  (1) -  t W  ( r ) )  \

t  (1 -  t )  y  ( W  ( t )  -  t W  (1 ) )  )

1 /  T J )  h  ( u )  d u

+ T  (1 -  r )  ^  ( / 0T h  (u ) d u  — t  h  (u ) d u )

^  t  (1 -  r )  ( ( W  (t) -  r f f  (1))(1 -  t )  I E - 'n i  (W (t)  -  tW  (1))
1 (  E - 1 f25 ( t W  (1) — t W  ( r ) )1 /  E - ' Q i  ( r V F ( l ) - r H ^ ( r

/o r t  G A.

By the continuous mapping theorem, an immediate consequence of Theo
rem 1.2 is the following corollary.

Corollary 1 .1  Let $ be a continuous functional on D (A)p. Let

The corollary shows that the test based on Zt  has nontrivial local power

indexed by functions h specifying local alternatives. Under the null, when 
h = 0, the test statistic ZT converges in distribution to Zq,

The asymptotic test at a significance level a  is based on a critical region Ca 
constructed from the asymptotic null distribution, P  (Zq G Ca) = a. The 
asymptotic test rejects the null when Z t  G Ca.

The form of the limiting distributions in Theorems 1.1 and 1.2 explains 
the reason for the necessity of bounding the set A away from 0 and 1. The

Zh = * (r ( i ~T) (W  ~  tW W) +

Under the conditions of Theorem 1.2,

against a broad range of alternatives. The limiting random variable Z^ is

4> ( V r s  ( t) )  -4 <j> (W  (r) -  tW  (1)))
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restriction on A guarantees that the convergence of the estimator 6, which 
is the basis of the test statistic, is uniform. Moreover, it can be shown that 
for A =  (0 , 1) many functionals, including the sup- and Lg-norms, diverge to 
infinity in probability.

The trimming restriction on A can be avoided by allowing the limiting dis
tribution of the test statistic to be of a different form than a functional of the 
Brownian bridge. The results of Jaeschke (1979) and Eicker (1979) suggest 
that the supremum of 6 (r), taken over subsets of (0 , 1) that are increasing 
towards (0 , 1) at an appropriate speed and that are normalized by a suitable 
centering and rescaling sequences, should converge to an extreme value distri
bution. However, relaxing the restriction on A in such a way comes at a cost. 
The convergence of the test statistics to the extreme value distribution can 
be expected to be very slow. The results of Hall (1979) indicate that the rate 
of convergence could be as slow as logT. The asymptotic critical values are 
therefore not appropriate for tests in samples of moderate size and an elab
orate bootstrap procedure would be required to improve on the performance 
of the asymptotic test. We do not pursue this possibility in this thesis.

It is interesting to note that

W ( t ) - tW (  1) 1
var —

t (1 —t)  t (1 —t)

is not constant across A which means that under the null, the probability that 
the process 6 (r) crosses any horizontal line above the real axis is smallest 
at r  =  This may lead us to inquire whether the power of the test based 
on supremum and other functionals can be improved by levelling the variance 
of the estimated process 6 across A. Given the restriction of A away from 
(0,1), we may normalize the process 6 by multiplying it by [r (1 — r)]1//2. By 
Theorem 1.1, under the null,

[ t  (1 -  T )] i  VT5(t )  = >  1 . S - ' n i  (W  ( r )  -  tW  ( 1 ) ) ,
[r(l — r)]5

where the variance of the limiting distribution is equal to across
A. The rejection probabilities of the test based on the levelled process 6 in

32



samples of moderate size is examined in a Monte Carlo experiment in Section
1.4.

Our test procedure is based on the behaviour of the OLS estimator of the 
8 coefficient. At the core of the limit behaviour of the test statistics lies the 
fact that T -1 / 2 YlJ=i w z {t )  (Aj) Wu (Aj) converges weakly to a Brownian motion 
process. Using this fact, the asymptotic behaviour of other tests based on the 
behaviour of OLS slope coefficient estimators can be obtained. For example, 
if is the OLS estimator of (3 in the regression yt = a  +  (3'xt +  ut for 
t = t i , . . . ,  2̂? then under the local alternative (1 .10)

t V t ( 0 ™ - £ )  =*■ E - ' n ^ W ^ - r W W )

+  ( J  h (« )du — t  J  h (u )d u j

in correspondence with the results of Ploberger et al. (1989). If S and Cl 

axe consistent estimates of E and f2, then the Wald-statistic process based on 
partial sample slope estimators,

has limiting distribution J  (f)' J  (r), where

=  , , 1 ( W { r ) - r W (  1))
[r (1 — r)]2

H  ----- [ I h(u)du — T I h(u)du
[t(1-t)]3 \ J o J o

as in Andrews (1993).
On the other hand, the limiting distribution of tests based on behaviour 

of the OLS residuals depends crucially on the weak convergence of ^  
a hmiting process. Under long memory, the appropriately normalized partial 
sum can be expected to converge to a fractional Brownian motion and thus 
to be different than under short memory.
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1.3 Bootstrap procedure

The limiting distribution of the process 6 in (1.9) depends on unknown para-
  A A

meters ft and E. The process S can be normalized by consistent estimates ft, 
E of these parameters. Such consistent estimates are for example

T  ,t=i

and
4  2 T ~ 1

A - - J - (1 .12)
j=1

Consistency of E follows from ergodicity of x t in the variance implied by 
Conditions 1.1 and 1.2. The estimator ft is based on results of Robinson 
(1998) and its consistency is asserted in the following theorem.

Theorem  1.3 Under Conditions 1.1-1.5 and under the local alternative,

ft^> ft.

The normalized process 6 (r) = ft~^E§ (r) has a limiting distribution 
which is free of nuisance parameters,

r j - r w m
r  (1 — r)

In special cases, distributions of functionals of Brownian motion are known 
analytically and quantiles of the distributions can be easily computed. Ex
amples are supremum of a Brownian motion and supremum of a Brownian 
bridge. In other instances, critical values have been computed by simulation 
and tabulated, as in case of the supremum of the square of a standardized 
tied-down Bessel process in Andrews (1993). However, in majority of cases, 
including non-supremum functionals of the limiting distribution in (1.13), the 
critical values of the test statistic need to be simulated by the researcher.

An alternative to computing asymptotical critical values by simulation is to 
employ a bootstrap procedure. The basic bootstrap of Efron (1979) estimates
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the unknown distribution of a random variable by the empirical distribution 
of a random sample drawn from that distribution. However, time series data 
cannot be regarded as a random sample, and the bootstrap procedure needs 
to be modified to accommodate the time dependence structure of the data.

A number of time-domain bootstrap procedures for time series has been 
proposed, ranging from parametric procedures such as those of Freedman 
(1984) or Efron and Tibshirani (1986) to nonparametric methods, such as the 
block bootstrap of Carlstein (1986) and Ktinsch (1989), subsampling algo
rithms introduced by Politis and Romano (1992), or sieve bootstrap proposed 
by Kreiss (1988) and explored by Btihlmann (1997, 1998). Frequency domain 
approaches have also been examined. Among others, we can cite the peri- 
odogram ordinates bootstrap of Franke and Hardle (1992) or Dahlhaus and 
Janas (1996). The validity of all of these procedures, however, is subject to the 
assumption that the dependence between distant observations is sufficiently 
weak. This assumption excludes processes with long memory. Moreover, all 
the nonparametric methods cited above require a user intervention in the form 
of choosing a lag length, a bandwidth or a block length. The performance of 
time-series bootstrap can be highly sensitive to the choice of the dimension 
parameter, particularly in samples of moderate size. Although automatic pro
cedures for choosing the dimension have been devised for some methods, they 
can be computationally expensive.

Hidalgo (2003a) proposes a method that eliminates the dimension choice. 
He suggests to bootstrap OLS residuals in frequency domain. His bootstrap 
procedure is easy to implement and computationally inexpensive. Moreover, 
it is one the first bootstrap procedures shown to be valid for long memory time 
series in a fairly general context, adding to a still thin body of the literature 
on long memory time series bootstrap.

In this chapter we propose to approximate the critical values of the testing 
procedure described in Section 1.2 by a bootstrap procedure based on the 
ideas of Hidalgo (2003a). The procedure consists of the following steps.

S tep  1 Compute OLS estimates ft (r) and 6 (r) from (1.4) or (1.6) for r  £ A.
Compute f  =  arg max^A $ (t) , the OLS estimates ft = ft ( f ) and
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6 = 6(f)  and the OLS residuals

ut = V t -  fix t - S 'z t ( f ) ,  £ =  1,. . .  ,T.

S tep 2 Compute

and

-  \  w u ( ^ j )  T - l  Efc=l WU (Afc) .Wu(\j) =   ----------------------------------------------------- r ,  j  =  i , . . . , r - i .
2 \  2

f r r i E ^ i 1 “  ?=T E L i  (A*) )

Step 3 Draw a random sample rjl, . . . ,  77̂ /2] from the distribution P* (77J =  u^(Afc))

wm=  yfm for k = 1 , . . . ,  [T/2] and generate a bootstrap sample

w,y 0 j )  =  h wx(Xj) +  Iwu(Aj)toJ) .7 =  1 , . . . ,  [T/2],

where /30 is the estimate of (3 from the null regression of wy (Aj) on 
wx(Xj) alone.

S tep 4 Compute 0*  (r); , 6*(r)')' as

(  b \ r )  \  ( Y S i V 1
U V ) y  vsjji1 ̂  e ^ J

/  E wx j \wui\ rfi \x2Re h I

where the right-hand side depends on r  through the definition Zt =  
xtl  (t < [tT]) in (1.3).

S tep 5 Compute the value of the functional used for the original data, ZJ. =
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The distribution of the bootstrap test statistic Z£ can be used to approx
imate the asymptotic null distribution of Zt , that is to construct a bootstrap 
test. To show the validity of the bootstrap procedure, we need to prove that 
the bootstrap process

/  0  ( T )  0 0  \  /  5 ^ 7 = 1  £ j = l  I x z , j

V *V) J ~
x2 Re (  3 ?  WxJ ^  f ,  )  (1.14)

\  Y lj= 1 Wz(r),j \wu,j \ Vj J

consistently estimates the null behaviour of the process (j3 
It must be shown that under the null and under the local alternative the 
process 2 R eT-1/2 Y lfJ ?  wz(r),j \w% j| rjj, conditionally on data, converges weakly 
in probability to the same process as T -1/2 Izu (Aj), that is,

j  [T/2]
2  lw ” j l  ^  2^a iw  ( r )  •

The consistency of the bootstrap is asserted in the following theorem.

T heorem  1.4 Under Conditions 1.1-1.5 and under both the null and the local
alternative hypotheses,

V f /?* ( r )  - ^  1 f  E - ' S l l  ( t W  (1 )  -  t W  ( t ) )

6* (t ) ^ T ( l - r ) {  ( W  ( t )  -  t W  ( 1 ) )

A straightforward consequence of Theorem 1.4 and the continuous map
ping theorem is the following corollary.

C orollary 1.2 Let (j) be a continuous functional on D (A)p. Let 
= <f> (>/T6 (t)^ and let Zq be Zh of Corollary 1.1 with h = 0, i.e.

ZQ =  <f> ((r (1 -  r))”1 E -'fii {W (r) -  tW  (1))) .
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Under the conditions of Theorem 1.4,

ry* d* ry
Z/j> ► ZJQ.

The bootstrap test is constructed using a critical region C* based on the 
bootstrap distribution in such a way that P (Z? G C*) =  a, where a  is a 
level of significance. The bootstrap test rejects when Z t  € C*. Let (x) = 
P (Z£ < x \T t  V Qt) denote the distribution function of Z? conditional on 
data and F  (x) =  P (Z0 < x) the null asymptotic distribution function. The 
bootstrapp -value for a one-tailed test is p t  =  1 — F} (Z t). The bootstrap test 
rejects Ho when Z t  is large, that is when Pt is small. By Corollaries 1.1 and 
1.2, Z t  —> Zh and F f ==> F. The continuous mapping theorem implies that 
P t  —* 1 — F(Zh). The p-values based on the bootstrap distribution F} are 
therefore asymptotically equivalent to the p-values based on the distribution 
F.

It should be noted that the proposed bootstrap is not the only possibil
ity. The variables 77J in Step 3 are drawn from the empirical distribution of 
normalized discrete Fourier transform of the OLS residuals. Alternatively, ex
ternal bootstrap can be carried out by drawing rjj from any complex-valued 
distribution with zero mean, unit variance and E rf2 — 0. A natural choice is 
a complex normal distribution. The proof of validity of the external bootstrap 
procedure remains identical to the current proof. Another valid modification 
is to multiply rj* in Step 3 by the value of Wu (Aj) instead of its modulus. 
The proof of validity in this case goes through with only minor alterations as 
noted at the end of the proof of Lemma 1.12 in Section l.A  below. A simula
tion study suggests that none of the methods above dominates the others in 
performance.

Hidalgo (2003a) interchanges the resampling with the Fourier transforma
tion, first resampling the normalized time-domain residuals and then trans
forming the resampled data into the frequency domain. His simulation results 
seem to suggest that there is no substantial advantage in exchanging the order 
of the operations. In the simulation experiments in this chapter we use the 
procedure given in Steps 1-5.
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1.4 F in ite sample properties

In order to assess the performance of the bootstrap procedure in finite samples, 
a small Monte Carlo study is conducted. Data are generated according to a 
simple linear model

where scalar series {xt} and {ut} follow a FARIMA(0, d, 0) process and where 
a  =  0. The long memory parameters dx and d for the regressor x t and errors 
ut are either 0 (short memory) or 0.2 (stationary long memory). The series Xt 
and ut are generated using the Davies-Harte (1987) algorithm. The set A of 
feasible break dates is taken to be the interval [eT, (1 — e) T] where e = 0.05, 
so that approximately 5% of potential break dates are discarded from each side 
of the 1 , . . . ,  T  range. The sample sizes considered are 32, 64, 128, 256. While 
a sample of length 32 may be too short to yield satisfactory results in the long 
memory case, the Monte Carlo simulation can still offer useful insights into 
the performance of the method for the short memory case. Two functionals 
are chosen on which to base the test procedure: a Kolmogorov-Smimov- (or 
Bartlett-) type statistic, whose discrete version is

yt = a  +  Ptxt +  ut, t = 1, . . .  ,T,

KS =  sup
[eT\<j<l(l-e)T\

and a Cramer-von Mises-type statistic based on Z/2-distance, with a discrete
version

The bootstrap test is based on the estimated process 6 obtained from (1.4) or
(1 .6 ). Since the limiting variance of the process 6 (r) varies with r , we also

1 *
consider a normalized version [r (1 — t )]5 6 (t), whose variance is level across
A.

The asymptotic test is based on the process 5 (r) =  f W s J  (r), where S 
and Cl are computed as in (1.11) and (1.12), respectively. A levelled version 
[t (1 — t )]2 5 (t ) is also considered. The values of the Kolmogorov-Smirnov
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and Cramer-von Mises test statistics are compared with quantiles of their as
ymptotic distribution. These quantiles are estimated by approximating the 
limiting processes by their discrete versions over a grid of 10 000  points spaced 
equally across the interval [0 , 1] and by simulating the distribution of function
als of these processes by Monte Carlo. The number of Monte Carlo replications 
is 106.

The results in each of the tables axe all obtained conditionally on a set 
of 5000 replications of a 256 x 2 matrix of independent identically distrib
uted N  (0,1) elements. Within each replication, 1000 bootstrap samples axe 
generated. The rejection probabilities are based on 5% nominal significance 
level.

Table 1.1 gives the results of the examination of the level of the bootstrap 
and asymptotic tests. In this table and in Table 1.2, the heading ’’raw” 
denotes the size of the test based on the original process 6 (r) defined in (1.4) 
or (1 .6 ) whereas the heading ’’norm” refers to the size of the test based on the

1 A
levelled process [r (1 — r ) ]2 S (r). The bootstrap test is non-conservative, with 
level approaching the nominal value from above as the sample size increases. 
Overall, neither KS nor CvM test statistic can be said to generate better test 
as fax as level is concerned. The actual level tends to be closer to the nominal 
value when the memory of the error is of short range. Levelling the variance 
of the process 6 does not seem to bring substantial changes in the size.

The asymptotic test performs poorly for the range of sample sizes under 
consideration. Again, neither of the Kolmogorov-Smirnov and Cram6r-von 
Mises tests dominates the other. Levelling the variance of the process 6 ac
tually seems to slightly damage the null rejection probabilities for a range of 
sample sizes.

In order to explore the power of the test under the alternative, the alterna
tive is set up as a break in the middle of the sample, tq =  1/ 2 , with unit size of 
the jump, <5 =  1. In the experiment the alternative is fixed, that is the size of 
break does not change with the sample size. The outcome of the simulation of 
rejection probabilities under the alternative is reported in Table 1.2. In terms 
of rejection probabilities under the alternative, the CvM test appears to be 
strictly preferable to the KS test for both the bootstrap and the asymptotic 
test. This is in agreement with expectation of Ploberger and Kramer (1992)
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who suspect that L2-norm CvM test might perform better than sup-norm KS 
test in case of the one-time structural break. The rejection probabilities of 
the asymptotic test are larger than those of the bootstrap test in a majority 
of parameter combinations. However, such a comparison is not informative 
since the actual critical values have not been corrected to yield 5% level of the 
tests. An important observation is that levelling the variance of the process 6 
unambiguously and substantially improves the power of all forms of the test.

Overall, the outcome of the simulation exercise provides evidence that 
the bootstrap procedure proposed in the chapter performs reasonably well 
already for samples of moderate size. The results of the exercise further seem 
to suggest that (a) the bootstrap test is preferable to the asymptotic test for 
small to moderately sized samples, (b) Cram6r-von Mises-type of test statistic 
is preferable to the Kolmogorov-Smirnov-type, at least for one-time change 
alternatives, and (c) levelling the variance of the test process 6 across A may 
be recommended, at least for some forms of the alternative hypothesis.

1.5 Conclusions

The chapter examines a test for parameter instability in a linear model where 
memory of both regressors and errors is allowed to be of a long range. The 
testing procedure is based on a process of OLS slope coefficient estimators. 
The choice of a continuous functional of this process for constructing the test 
statistic can reflect beliefs about the form of alternative and can improve the 
power of the test procedure.

A bootstrap procedure is proposed to approximate the distribution of the 
test statistic to the first order. The procedure is carried out in frequency 
domain and does not require choice of any tuning parameter such as block 
length in block bootstrap methods. A Monte Carlo study suggests that the 
bootstrap produces good results and is superior over the asymptotic test for 
moderate size samples.

There are several natural directions in which the current work can be 
extended. First, the condition that ft < oo could be relaxed to allow for 
greater degree of collective memory of regressors and errors. In this case,

41



Bootstrap test
KS CvM

Asymptotic test
KS CvM

dx d raw norm raw norm raw norm raw norm
T = 32
0 0 9.9 9.9 9.4 9.3 46.7 41.5 52.3 34.6
0 0 .2 12.3 12.2 11.9 10.5 48.8 43.1 54.6 36.1
0 .2 0 9.9 10.4 10.2 9.4 49.7 44.6 56.9 41.0
0 .2 0 .2 12.2 12.6 12.3 11.0 50.5 45.5 58.8 42.9
T = 64
0 0 9.1 9.2 8.8 7.7 17.9 15.0 15.7 9.4
0 0 .2 10.2 9.6 8.3 7.5 18.7 15.8 17.1 10.1
0 .2 0 8.8 8 .6 8.7 8.1 20.7 18.2 2 1 .6 13.5
0 .2 0 .2 10.1 9.4 9.3 8.5 19.9 18.2 22.6 15.5
T = 128
0 0 6.5 6.3 6.7 6.5 7.6 4.6 6.4 4.7
0 0 .2 6.9 6.4 6.7 6.5 8 .2 5.0 6.8 4.5
0 .2 0 6.4 6.5 6.9 6.7 9.5 6.2 8.5 6.1
0 .2 0 .2 7.4 7.3 7.2 7.1 8.7 6.4 9.6 7.4
T = 256
0 0 5.3 5.7 5.9 5.9 3.7 1.7 4.0 3.3
0 0 .2 5.8 5.5 5.9 5.9 4.0 1.9 4.2 3.4
0 .2 0 5.4 5.3 6.1 6.1 4.8 2.4 5.2 4.1
0 .2 0 .2 6.3 6 .0 6.1 6.0 4.0 2.2 5.5 4.7

Table 1 .1: Size of the bootstrap and asymptotic test at 5% nominal level
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Bootstrap test
KS CvM

Asymptotic test
KS CvM

dx d raw norm raw norm raw norm raw norm
T = 32
0 0 11.0 19.8 24.9 36.9 48.0 52.1 75.8 70.0
0 0 .2 13.0 20.9 26.5 38.4 49.9 53.0 76.8 71.0
0 .2 0 11.9 21.0 26.2 37.9 52.3 58.9 81.1 76.2
0 .2 0 .2 14.3 22.5 27.9 38.4 52.6 58.9 80.5 75.8
T = 64
0 0 15.5 53.1 68.3 80.9 17.5 54.7 78.9 82.4
0 0 .2 15.6 51.4 66 .6 79.6 11.7 54.4 78.4 81.8
0 .2 0 16.8 53.4 68.9 81.5 22.4 65.0 84.3 87.5
0 .2 0 .2 17.5 50.8 66 .0 77.1 21.5 60.5 81.0 83.8
T = 128
0 0 32.3 91.9 97.5 99.1 16.0 91.5 97.1 98.5
0 0 .2 31.0 90.3 96.5 98.7 16.0 89.9 96.3 98.0
0 .2 0 34.7 92.5 98.1 99.4 24.5 94.8 98.3 99.2
0 .2 0 .2 32.3 89.2 95.0 97.9 19.9 88 .8 95.7 99.2
T = 256
0 0 79.4 100.0 100.0 100.0 61.7 100.0 100.0 100.0
0 0 .2 74.6 99.9 100.0 100.0 100.0 100.0 100.0 100.0
0 .2 0 81.5 100.0 100.0 100.0 73.7 100.0 100.0 100.0
0 .2 0 .2 71.6 100.0 100.0 100.0 49.3 99.9 99.8 100.0

Table 1.2: Rejection probabilities of the bootstrap and asymptotic test under 
the alternative at 5% nominal level
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the OLS estimation procedure could be replaced by a GLS-type procedure. 
Second, partial structural change could be considered and gains in efficiency 
from allowing partial change evaluated. Third, a bootstrap procedure might 
be shown to approximate the distribution of the test statistics to an order 
higher than first. These topics can be examined in future research.

Further, under the assumption that the alternative hypothesis holds and 
is of the one-time structural break form, the date of break could be esti
mated and, based on the distribution of the break date estimator, inference 
conducted. Estimation of the date of break is the topic of Chapters 2 and 3.

l .A  Proofs

For notational simplicity, the process {xt} in Theorems 1 .1-1.4 is taken to be 
scalar. Asymptotic results for vector processes can be obtained using Cramer- 
Wold device for stochastic processes as defined for example in Lemma A4 of 
Andrews (1993). We denote Aj = A  (etÂ ) and Bj = B  (e*Aj).

Validity of Theorems 1.1-1.4 rests on the fact that under Conditions 1 .1-
1.5,

T —1

( L 15)
j = 1

T —1 1

1  £ whlxJw'^xJ i s  /  hx {t)h«(t)dt (1.16)

and

2 R e ^ / f  X J W  (1‘17)

over [0,1], where for any function /i, {whxj,j =  1 , . . . ,  T }  is the discrete Fourier 
transform of the sequence {h (t /T ) x t , t = 1 , . . . ,  T }  and where the random 
variables rjj are defined in Step 3 of the bootstrap procedure. In all three 
cases, the convergence is shown in two steps. First, convergence is proved 
for weighted innovation processes {£t} and {et}. The result for the processes 
{xt}, {ut} is then established by showing that the difference between the left- 
hand sides of (1.15)-(1.17) and their weighted-innovation analogues converges
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to zero in probability uniformly over [0,1]. Lemmas 1.1-1.12 in Section 1.B 
below establish convergence in (1.15)-(1.17). The validity of Theorems 1.1-1.4 
is argued employing Lemmas 1.1-1.12.
P ro o f o f Theorem s 1.1 and  1 .2 . Under the local alternative,

( p { T ) - p \  =  ( i Z U j  7 I - J  Y  ( J r

I Hr) )  V t p }

, (  S j  = l  Ix x , j  I  E j = l  ^  (  ^ / f Y l j = 1 W X,j'U)hx,j  \  /I io \
I  1  s r T - 1  J  l o M r  I I  1  y v r - i  -  I -
\  T  2 ^ j = l  1 z x , j  T  2 ^ j = l  1 z z , j  J  \  y /T  2^1 j = 1 w z , j w h x , j  J

By Lemma 1.9 with h\ (x ) =  1 and /12 (x ) = I (x < r),

1 T~1
T  J  2n

j = 1

Similarly, T 4 i , j  ^ 2  and £ Y%=i l z z j  ^  and therefore

f  r  E ^ i 1 _ / ^ i  r  ^ (O,
I ? e j =i‘ J U

over [0,1]. Since matrix inverse is a continuous function for r  G A,

/  i  V T-! 1 I r f - l ,  \ - l
I r  Z^j=i t  Z^j=i \ __4
I  L y ^ 7 1 - 1 /  . 1  y T ~ 1 T . I  '\  T  z ^ j = l  J -zxj T  2 ^ 3 = 1  I z z , j  J

over A. Under the null, that is when h =  0, the second term on the right of
(1.18) vanishes. By Lemma 1.7,

=  / H r ) ~ P \  1 (  (tW  (1) — tW  (t)) \
\  Hr) J t ( 1 - t)  ̂E-ini (W(t) - tW(I)) J

and Theorem 1.1 is proved.

® 27rE
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Under the alternative, h ^ O  and by Lemma 1.9

T—1i i r T
—jf= wzjWhx,j — > Jq ^ ^ dt

over [0,1]. Therefore the second term in (1.18) converges to 

1  /  T f t  h (u) du
T (l ~ T) \  ( /0T/l(«)d u - r /„ h (u) du)

and Theorem 1.2 is established. ■
P ro o f of Theorem  1.3. By Theorem 1 of Robinson (1998),

T - 1

UUJ Q.
j= 1

Proceeding as in part (c) of the proof of Lemma 1.12, write

Wuj ~  Wu,j = { $ - & )  wX}j +  6wz(f)J -  ~^=Whxj .

Therefore

Iuu,j Iuu,j = | ̂ u,j Wu,j I 2 Re (yj-dj wuj ) wuj

and

j=i j'= i

r - i

+ b  S  _  “ “-’I
3 -1

(1.19)

U,j

The first term is op (1) as shown for (1.42) in Lemma 1.12 part (c). By the 
Cauchy-Schwarz inequality, the second term is bounded by



whose second factor is Op (1) because of (1.19). Therefore indeed Cl ft. 
P ro o f of Theorem  1.4. Write

_ / 0 * ( t ) - 3 \  * E jJ i1 U i )
I  J  1= E j r ;  i ZZJ

-1

X

/  -4= y } T/?] w x j  \wu j \  rft \  
x 2 Re ( *j l  , , J •

\  ~JfJ2j=1 Wz(r),j \w u,j\ rfj J

Applying Lemmas 1.9 and 1.12, it can be seen that Theorem 1.4 holds.

l .B  Lemmas

This section contains some results employed in Section l.A.

Lem m a 1.1 Let g be a complex-valued function on [0,7r] which satisfies (a) 
\g\2 is integrable on [0 , 7r], (b) g (A) =  0  (A_d) for A —> 0+ for some d < \  
and (c) g is bounded on any subinterval of (0,7r]. Then for any a  >  0, /3 > 0 
such that 2da + 0 < I,

[T/2] , |2a

T j r t ~  T , J a ~ x ^ dX

Proof. Fix e > 0. For any small 77,

[T/2] , _ ,2a
i y ^ r  1 r i f f w r , .

~ ^ r dX

.  i ^ m 40 . 1 r i s ( A ) i 2“ .

-  t u ^ T

1  v 1 r m f i
T  , j k ,  A? 2 * 1  Afl

dX

By assumption, for small enough 77 > 0 and 0 < A < 77,

Iff (A)|2“
Â

< CA-2**^ < CX~1+i 
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for some 5 > 0. Therefore

1 i n  i2q! n  /  a \  —

i g V ? £ ( * )

Similarly

5 f k r ^ ‘ *

The third term in (1.20) converges to zero by integrability of \g\ . For small 
enough rj and large enough T, the left-hand side of (1.20) is smaller than e. ■

Lem m a 1.2 Let g be a complex-valued function on [0 , 7r] which satisfies (a) 
g (—A) =  (7 (A) for all A G (0,7r], (b) \g\2 is integrable on [0 , 7r], ( c)  g (A) =  
O (A-d) for A —► 0+ for some d < \  and (d) g is bounded on any subinterval 
° f (0 , 7r]. Under Conditions 1.1-1.3,

= >  J  ls(A)|2dA)  W ( t )  (1 .2 1 )

on [0,1], where the sequence {Ct (r)} is defined as { (t (r)} =  {£tI (t < [rT] ) , 
t =  1,. • • ,T}.

Proof. The left-hand side of (1.21) can be written as

1 [rT\ /  T  \

where
T - l

ct = J , Y . 3 i eitX’-
j=i

Denoting dt = T -1 / 2 5^1=1 £s°t-s> the process Gt  can be written as

[rT]

t= 1

The reahzations of the process Gt belong to the space D [0,1] of real functions 
which are right continuous with left hand limits. The sequence {£tdt, T t -1  V Qt ,
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1 < t < T}  is a martingale difference sequence. The first two moments of the 
process G t  are

EGt (t) =  0 ,

E  | G t  ( t ) | 2  =  Y , J = i  \ d j \ 2  =  l ^ r  ( 1 ) | 2  •

The variance of the process G t  therefore increases asymptotically linearly in 
t  and the weak convergence of the process G t  in (1 .2 1 ) holds if the following 
two conditions of Scott (1973) are satisfied:

(a) £ f= i E  ( |< % |2 | * u  V gT) i  a \o \±  £ ,  Ig (A) |2 dX a sT  -  oo and
(b) £ f= i E  (K ?t|21 (Kftl > 8) l^ i-i V Qt ) o for any positive S.
These two conditions have been checked by Hidalgo (2003a) under simi

lar assumptions on the weight function g and identical assumptions on the 
processes {£*}, {et}. After making appropriate adjustments for complex 
weight functions and replacing Lemma 1 there with our Lemma 1.1, the proof 
remains valid in our case. ■

Lem m a 1.3 Let h be a bounded variation function on [0,1]. Let H (A) =  
1la=i h ( t / T )e%tX- Then for a constant 0 < C < oo independent ofT,

(a) |#(A)| < |£[ for X € (0,jr],
(b) |H (A)| dX = O (log j)  uniformly over 1 <  j  <  [T/2 ],

P roof, (a) Letting Dt (A) =  £ t =1 elfcA, noting that

IA(A)| =
sin A |A|

for 0 < A < 7T, and using summation by parts, we have

T—1

\H(X)\ < £ |A ( A ) |
t=l

<

+  |Ar(A)||fc(l)|

+ 1̂ 1 (1)1 I
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due to the boundedness of the total variation of the function h.
(b)

f t  /••'j f t  f x> c
/  \H(X)\d\  =  / \H{X)\dX+ I \ H( X) \ dX <T  dX + I j d X

=  O(logj).

Lem m a 1.4 Let h be a bounded variation function on [0,1]. Let {:ct} be 
a covariance stationary process satisfying Conditions 1.1, 1.2 and 1.4- Let 
Ht (A) =  i h (t / T ) eitx and K h,T (A) =  ^  |HT (A)|2. Then

L A (e‘x) _
Kh,T (A — Aj) d \  — O { — } as T  —> ooA,

uniformly over integers 1 < j  < [T/ 2].

Proof. The function A  satisfies assumptions Al, A2 ’ of Robinson (1995b). 
Furthermore, the kernel Ht  has the property

| f f r ( A ) | < p r ,  0 < A < t t ,  T > 1 ,

by Lemma 1.3. Therefore the lemma is valid by the arguments of Robinson 
(1995b) in the proof of his Lemma 3. ■

Lem m a 1.5 Let {xit}, {x21} be scalar covariance stationary processes satis
fying Conditions 1.1, 1.2 and 1.4• Let h\, /12 be bounded variation functions 
on [0,1]. Denote by A k the transfer functions of the processes {xkt}, k = 1 , 2 . 
Let vk (Aj) = y/2nwk,j/ {<j\Ak (elX>)), where {wkj , j  = 1 , . . . , T }  is the dis
crete Fourier transform of the sequence {hk {t/T) x kt, t =  1 , . . . ,  T}. Then

(a) E  H  (A,)«, (A#)> =  i  Ef=i hk ( i )  h, (£) +  O )  and
( b )E { vk (Xj )v l (Xj )} = 0 ( l )

uniformly over integers 1 < j  < [T/2], for k, I = 1,2.
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Proof, (a) Denote Ak (elXj) = Akj.  We have

where

and

EwkjWij  2^ ( y )  ^  ( y ) )  ^,3 -^

27r I  ^  ^  ^  ~~ ^ fc>i A i )  Kki (A -  Aj) dA,

« « (A) =  5 L . &  (A) H, (A)

1 , 3

Condition 1.4 imphes that we can choose 77 > 0 such that for A G (—77,0) U 

(0 , 77), for some dk, di G [0, | )  and for some 0 < C < 0 0 , \Ak (A) Ai (A)| < 
^ |A |-(dfc+di) (A) A(A)| < C  |A|- ^ fc+d̂ -1. Furthermore by Lemma
1.3 the kernels K ki and H k display properties required in the proof of Theorem 
2 of Robinson (1995a), namely K ki (A) =  O  (T- 1A“2) for 0 < |A| < 7r and 
S-dx (A)I dX = O (log j), k = 1 , 2 . The proof of part (a) therefore follows 
as in the first part of case (a) of Theorem 2 of Robinson (1995a). We obtain

E m j m j  ( I )  h ' ( I ) )  =  0

from which it can be deduced that

(* ) h  ( i )  + O  ( ^ )

as required.
Part (b) follows from part (a) by the Cauchy-Schwarz inequality. ■

Lem m a 1.6 Let g be a function satisfying assumptions of Lemma 1.1. Then
for any a >  0,/3 >Q, <5 > 0 and 7  >  1 ,

(a) J - V [r/2] lo l2“ !2 4 i  =  /  2da + P >  1,
/  \9j \ j T  |  0 ( r - “- 'J+1log'T) 2da +  /3 < 1,
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( b )  £  E f J ?  E E 2'9 ? g  (A*)“ 5 ^
_  j  o(l) 2da + / 3 > l ,
~  [ O (T~a~P+1 log5+1 T) 2da + /3< 1.

P roof, (a) The assumptions of the lemma imply that |^(A)| <  C \~ d for 
0  < A <  7r for some C. Therefore

1 [T/21 lr /2l
™ E  l*|2“ “f r  < C~ k r  E  XI 2da3~0 = CT-°+2d° log{ 5] r 2̂

7=1 3  j = l  j = l

' Q  ( T a(2d-1) lo g 5 T ) 2 d a  +  P  >  1 ,

=  |  O ( T ^ " 1) log5+1 T) 2da +  = 1, (1.22)
k 0  {Tl~a-P log5 T) 2da +  p < 1.

From here, the part (a) follows easily.
(b) By the Cauchy-Schwarz inequality, the sum in question is bounded by

1 [T/2] w *  a ™  t n  F / 2] } n a s  • P 7 2l i1 i |2a J 1 < C y-v - .2q log J 1
T ° ^ l5il 7̂  ^  |7 -  k\z_ -  T a "  J 7̂  ^  k

j = 1 J fc=i IJ ■+ j= i  J k= 1

[r/2] , _ ,2a

7=1 ^

and part (b) now follows from (1 .22). ■

Lem m a 1.7 Under Conditions 1.1-1.5,

J f J 2 j =i -kuj \  /  ^ W { \ )

over [0 , 1].

Proof. It suffices to show that T  ly/2 J2j=i Izu,j =>  (27t) l Ul*W (t) over 
[0,1]. The function

9 {\) = ^ A { e * ) B { e * )
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satisfies the conditions of Lemma 1.2. The present lemma is then proved if

‘ («“ .)  B  (<“ .)  (A,)) _ >  0.
y/T \  A  (eiXi ) B {eiXi )

The left of (1.23) can be written as

Y1 (t ) +  Y2 (t ) +  Y3 (t ) ,

where

* {T) =  i r % A j B j (^ f "W<<T>J) (w~*eJ) ’

r p  i

( r )  =  7 f X J  -  w< ^ w,e , 3

and

(1.23)

r p  i

r3 M = - j f  E  -  «*j) ■ (L24)
3

Processes Yi, >2 and Y3 are of the form

1 r _ 1
=  < =  1.2.3,

where Vj (r) and Wj stand for the third and the fourth factor, respectively, 
of the summands of the processes Y*. To prove that Y* ==>• 0 for r  € [0,1] it 
suffices to show that finite dimensional distributions of the process Y* converge 
to zero in probability and that the process Y{ is tight. Take any n G N, any 
numbers t i ,  . . . ,  r n from the interval [0 , 1] and any finite complex constants 
« ! , . . . , a n. The first moment of ]CILi (Tf) ze r0  f°r ® =  1,2,3. The 
second moment is

1 T - i  . [T/2]

-  Y ,  9 i 9 k E s ] k E W j W k  < f Y  l » 5 * l  1 ^ * 1  l E ^ l  -

j , f c = l  j , f e = l
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where

S j k  — ^   ̂ aiOLm V j  ( t i )  V k  (T m ) .
1,771=1

For i =  1 ,2 the factor Vj (r) is equal to wz(T)j /A j  — w ^T) j . The total variation 
of functions hT(x) = I (0 < x  < r), r  £ (0 , 1] is equal to one, therefore by 
Lemma 1.5 part (a)

sup E  
r e  [0,1]

wz(r),j
A?

WC(r),j < D logj
(1.25)

as T  —> oo uniformly over integers 1 < j  < [T/2]. Using the Cauchy-Schwarz 
inequality,

|E„.I < o (M itsi)' £  icni w  < D (!al is*)'.

When i =  3 the factor Vj (t) equals w ^T)tj. For any t ,  <r £ [0,1],

[tT] 2 [(T'w)r]

^C(rw%.)> = 53? E  = 5^r E  eW*'A‘)-
i,s= l t= l

2
For j  = fc, the last expression is equal to while for j  ^  /c,

T

[(tA<t)T\
1

~  Tt= 1

s in ([(T A < r)r]^ 2 ^ )

sin
1 7T

( ^ )
1

<
sin ( ^ i )

In sum,

-  2 |j — k\

(1.26)
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uniformly over (r, <j ) E [0, l]2 and 1 < j ,  k < [T/2], where \j — k\+ =

m ax{l, \ j  — k\}.  Therefore when i — 3,

\Esjk\ < D ^  |a/| |o;m| . _  . < t j —
l,m=l

Turning to the factor Wj,  for 2 =  1,3 it is equal to wuj / B j  — wej .  By Lemma
1.5 part (a),

E
wu,j ~ WPBj

< D \ogj
(1.27)

as T  —► oo and by the Cauchy-Schwarz inequality,

]EWjWkl< D ( ] 2 M ^ y

In case i  =  2 , Wj — w£j  and

m j w e,k =  = J t L 'Z e - * * - * )  =  g l  (j = fc).
t ,s= l 27tT t=l

1  
2tr'

Collecting the bounds obtained for moments of the factors Vj ( t ) and Wj  and 
using Lemma 1.6, the following results are obtained:

E
1 = 1

2 D  [T/2]

j,k=1 j  k

E J 2 ociY2 {ti)
i=i

D
[T/2]

D

j,k=1 
[T/2]

E £ a t Y 3 (Ti)
1 = 1

3=1

2 < ^ E i ^ / l 0 g j l 0 g f c V
j,k=l j  k J \ j - k \ _

=  o( l) .
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An application of the Cramer-Wold device together with the Markov inequal
ity establishes convergence of finite dimensional distributions of processes Yi, 
i =  1 , 2 ,3, to zero in probability.

Tightness of the processes Yi is implied by the moment condition of Billings
ley (1999), Theorem 13.5, page 142,

E\Yi (p) -  Yi (<r)|2 \Y, (r )  -  Y, (/>)|2 < (F (r )  -  F  (<r))2“ , i  =  1 ,2 ,3 ,

(1 .28 )

where a > cr < p < r  and F  is a nondecreasing, continuous function on 
[0,1]. The fourth moment of the difference 1* (t) — Yi (a) is given by

16 [T/2]
< ^  Y  \9i9k9i9m\ \EVjVkV,Vm\ \EWjWkWiWm\ ,

j , k , l ,m=1

where Vj = Vj (r) -  Vj(a). For i = 1,2, Vj =  {wz(t)j -  wz{a)J) /A j -  

{ W C(r) , j  ~  W C(<?),j) an<^

cum (Vj, Vk, y , Vrn)

x H  (A +  Xj) H ( p -  Xk) H  (C +  A,) H (-X  -  p -  C -  Am) dXdp.dC,

wherek£ =  cum (Ct,Ct,Ct,Ct), H (A) =  h (t/ T ) e‘tX andh(x) = l(cr < x  < t ) .  

Proceeding as in the proof of (4.8) in Robinson (1995b), we get

|cum (Vj, Vk, V,, Vm) | < D P l P * p i d ,

where
r W _ ,

J-* Aj

2

1 |tf(A +  Xj)\2dX.
2?tT
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Denoting K^t (A) =  (27xT) 1 \H (A)|J, it can be seen that2

Pj = (r — c) f  
J — IT

A  (eiA)

4  1
Ki,(T—a)T (A +  A j) dX

=  ( r - a ) 0 [ j

uniformly over (r, a) G [0, l ]2 and 1 < j  < [T/2] by Lemma 1.4. 
Likewise

r p  2 p i t

m f  -  g t
A  (eiA)

A T ' 1
1

2irT
\H  (A H- A j)|2 dA

=  D P j =  (r  — a )  O ( j  ) .

2 \ 2

By the Cauchy-Schwarz inequahty,

\EVjVkV,Vm\

< |cum (Vj, Vk, Vh Vm) \ + 3 ( E |V}|2 E\Vk\2 E |VJ|2 E |K .|2)

< C i T - a f f h ' h ^ m ^ .  (1.29)

For i =  3, Vj =  and

cum (Vj, Vh Vm) =  J H (X + A#)

x (/X -  Afc) H  (C +  A,) H i - X - f i - C - X k )  dXdfldC

which by using periodicity of H  and the Cauchy-Schwarz inequality can be 
shown to be (r  — a)2 O (1) uniformly over (r, a) G [0, l ]2 and 1 < j ,  k , l ,m  < 
[T/2]. Similarly,

E \vi\2 = S r J j H { x + A a ) |2  dX -  c  (T _  a) ’

and so for i =  3, \EVjVkViVm\ = (r -  a)2 O (1).
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Regarding the factor Wj, for i =  1,3 we have Wj = wuj / Bj — w£j  and 
reasoning as in case of Vj (i = 1 , 2 ) we obtain

i i i i
m|cum {Wh Wk, Wh Wm) | < D P l j P l ^ P l j P l

and
E\Wj\2 = DPb j ,

where

Pb j  =  f
J  — 7T

B  (eiA)

- k ^ - 1

2

1 \H{X + Xj)\2dX2irT

with h =  1 in the definition of H  (A). By Lemma 1.4, Pb j  = 0  ( j -1), therefore

EWjWkW,Wm = 0  ( j - h - i r l m - ' A

uniformly over 1 < j ,k , l ,m  < [T/2].
Finally, when i =  2, Wj = w£j ,

cum {W j,w k, w h w m) = =  0  ( f )
and

EWjWk =  -^1  (j = k) = 0  (1)

uniformly over 1 < j, k, I, m < [T/2].
Due to the bounds obtained above for moments of Vj and Wj, the following 

inequalities hold:

D  [T/2]

E \ Y 1 { t ) - Y 1 { g ) \ 4‘ <  —  ^  19 j 9 k 9 i 9 m \ { r - ( r ) 2

j , k , l ,m=1
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uniformly over (r, a) € [0, l]2 by Lemma 1.1,

E \ Y 2 (t ) - Y 2 (c t)|4 <  —  \gjgkgi9m \ ( r - c r ) 2 j  h  *1 * m  %

by the Cauchy-Schwarz inequality and Lemma 1 .1 . The same bound applies 
to E  |y3 (t) — Y3 (cr)|4. By the Cauchy-Schwarz inequality,

E  \Yi (p) -  Y( (c )!2 \Yt (t ) -  Y, (p) |2 < D ( ( p -  <jf (r -  o)2)* < D (r -  o ) 2

for i =  1,2,3 and the moment condition (1.28) is verified with a = 2 and 
F  ( t ) =  D r2. This proves the uniform convergence in (1.23). The lemma is 
established. ■

Lemma 1.8 Let g be a function satisfying the assumptions of Lemma 1.2. 
Let hi, /12 be bounded variation functions on [0,1]. Let j  = 1, . . .  ,T}
be the discrete Fourier transform of the sequence {h ( t/T )£ t, t  = 1 , . . .  ,T}. 
Under Conditions 1.1-1.2,

j,k,l,m= 1

y__ i  2 7r 1

Y 1 2  l&l2 ^  J  \g dX J 0 h l ®  h2 ̂  d t

Proof. Denote hkt = hk (t/T)  and

2?r T_1
^  ^  ] \dj\ whi£,jwh2£,j'

Y  E t e .h lth2,e'
T —l T

E Z



by Lemma 1.1. Further,

1 T - l  T

E \ Z \ 2 = E
j,k= 1 t,s,r,u=l

= ™ E E +f* E f E hitfi2t
j , k =1 t= l  j,fc=l \ t = l  ,
4 r - i  r  r

+4 E isis*i2Ehi‘e“(Al wE**e i,(Al At)<7
J> 4

j,fc=l

of r - ‘
J>4

i= l

T
t= l

+tI E
j,fc=l t=i

The first term is O (T *) by Lemma 1.1. Proceeding as in the computations 
leading to (1.26), it can be seen that

Y ^ h l e ^ s - ^  <  . . C T C . ,
^  h - k \ +

1 =  1, 2 .
t= l

Therefore the third term is bounded in absolute value by

n m  1

^ ^ 9 i9 k ? \ T W +j , k = l

which is o (1) by Lemma 1.6.
Similarly, the fourth term is o (1). The second term is dominant and 

converges to

(lir /  ^(A)l2(1XJ  hi ( t ) h2( t )d t j
by Lemma 1.1. In sum,

E Z  —> ^  J ” |s (A) |2 dX J '  h  (t) h2 (t ) dt
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and E \Z \2 —► \EZ\2. An application of the Markov inequality completes the 
proof. ■

Lem m a 1.9 Let hi, /12 be bounded variation functions on [0,1]. Let
{whx,j, j  = 1 , . . . ,  T} be the discrete Fourier transform of the sequence {h (t/T) x t,
t = 1 , . . .  ,T}. Under Conditions 1.1-1.5,

1 1 r 1
—  ̂  ̂whix,j'Ujh,2X,j 2^ ^  J  (̂ ) ̂ 2 (0

Proof. The function g (A) =  A  (elA) / \/27r satisfies the conditions of Lemma 
1.2. It is sufficient to prove that

T E l A I2 I w h ix ,j 'W h 2x ,j  _  1 P n
\Ai\ I  , 7 .2 -  w h i U w h2U  I 0 -

j =1 \  IA?i

The left-hand side of (1.30) is equal to

(1.30)

+ f  J 2  1 4 1* ( ^ 4 ~  -  wh!(j) WI*U

T - l
1 1 I A |2 W h2x ,j

+ T  A s  \Ai\ Wh^ i  [ ~ A ~  ”j= l \

By the Cauchy-Schwarz inequality, the expectation of the modulus of the first 
term is bounded by

[T/2]

T  E  141* E
3 = 1

[T/2]

1Th\Xyj

<  £ E I 4 I
logi =  o(l)

w h ( J

2 \  2

E ^h2x,j
Aj

Wh2U
2 \ 2

3=1
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by Lemma 1.5 part (a) and Lemma 1.6. A bound for the expectation of the 
absolute value of the second term is

[T/2]

r  E  l^l2 E

D

3=1 
[T/2]

whix,j
Aj

2 \  2
2 \ i

(£ K w l )

,2 /'log A  5 _
■ 5

by Lemma 1.5 part (a) and Lemma 1.6. The third term can be bounded in 
the same way as the second term. Therefore (1.30) holds and by Lemma 1.8,

T —1 2 v  ^

f  E  Whizjtihtxj ^  I & \A  (eiX) |2 d \  j  h, (t) h2 (t) dt
.7=1 n

1

= ~ E  J  hi (t) h2 {t) dt.

Lem m a 1.10 Under Conditions 1.1-1.5, with a function g satisfying the con
ditions of Lemma 1.2,

uniformly over (r,a) E [0 , l]2.

Proof. First moment of the expression on the left of (1.31) is

i t ! .  ,2 n  _ ,2 [(t A a) T] cr\cr2e 1 ^ . l2
^  ■̂ wC(r),jwC(^),j^\w£j\  — — 4^2~2" XZ

j=i j=l

{ T A a ) ^ B i f j 9 W ? dX
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by Lemma 1.1 because

^  =  1(Ty ) r l g -  (1.32)
t,a= l

Second moment of the expression on the left of (1.31) is

1  T _ 1  2 -  2 2 ~J*2 E  I ff iS fc l2 E™<(T),jU>a<')jWc(T),kW«<,),kE\wcj | 2  | w £iJfe| 2
j,fc=l

1 r _ 1  2 -  2 
= T2 CUm (WCWj) Ĉ(T),fc> wC(<r),k) E \w£,j\ \W£,k\

j,k= 1

1 T_1
E  ^ wC(r),jwC(cr),j^wC(T),kwC(c7),kE\w£j\ \w£tk\

j,k= 1

1  T _ 1  2 -  2 2 + T 2 E  lffj5k|2 f;,"CWj«'{(T),tS«i'c(<T),i«'C(„),(:£;|u;£j | 2 |w£,fc|2
j,A:=l

1  r _ 1  2 -  2 2 E  \dj9k\ EW£(T)tjW£(a)tkEW(;(:T)tkW£((T) jE \w £j\ \w£)k\ •rp2
j,k= 1

(1.33)

Now

cum (w£(t)J, w C(<r),jiW <(T),k ,  w t ( (T ) ,k )  —

^  k { 1 [(t A < 7 ) T ]
4 -̂2212 /  . cum (£t, £() ^^2 j '  y  ( 2 1/

t= 1

i2uniformly over (t, cr) G [0,1] . The fourth moments of et are finite, therefore 
the first term of (1.33) is bounded by DT~3 Yl^k=i \9j9k\2 which is 0 ( T -1) 
by Lemma 1.1. Further, from (1.26),

Q
|-^w;C(T)j%(cr),fc| ^  y  _  £|
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uniformly over (t,ct) G [0, l ]2 and 1 < j, k < [T/2], and the third term of 
(1.33) is bounded by DT~2 Y^k=i \9j9k\2 I j  — &|+2 which is o(l) by Lemma 
1.6. Similarly, the fourth term is o  (1). Therefore we are left with the dominant 
second term,

E 1 T_1 2
If ^  19j I WC (r) ,j W«a) j We,j I

i = i

( [(r A <j ) T\ \ 2 &£ 1 , |2 ci i |2 i |2 , ^  \
=  (  f  J 2-s \9j9k\ E\W'j\ \w£>k\ + o ( l ) .

'  '  j,k= 1

Since

1 T K
cum (w£j,w£)j,w£)k, w£>k) = J^2f 2 1 3 cum 5 6t' £t’£t  ̂ =  4^2

t= 1 4tt2T

and E w £)jW£jk = I  (j =  fc) a2/  (27r), we have

^ 2  l*Sfcl2 E  lWeJ'l2 lWe'fcl2 =  ^  H  I*®*!2 +  ¥ 2  Z )
j,k= 1 j,fc=l

r - i
k / 2 f  I (T even) +

7=1

a '  1 I9j® |2 +  0 (1)4tr2 T2

by Lemmas 1.1 and 1.6. That means that

2

E 1 ^  2
^  I fi'j I ,j (o-) J I w£,j I

j=i
(r A cr) 1

47T2 27T f  i<?w i :J — IT

dX

The second moment of the process T 1 YlJ=i \9j\2 wC(r),jwc( )̂,j \we,j\2 therefore 
converges to the square of the limit of its first moment. By Markov inequality,

J, ^ 2  Iftl2 u'C(t)j®«.)J K /  (r A cr) J ^  Is (A) |2 dX
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for each (t,cr) 6  [0 , l]2. Since the hmiting function is continuous and increas
ing in t  and cr, the convergence is uniform. ■

Lem m a 1.11 Let / i i , . . . , / i4 be bounded variation functions on [0,1]. Let 
{xt} be a covariance stationary process satisfying Conditions 1.1, 1.2 and 1.4- 
Let {whrX,j,j =  1 , . . . ,T }  be the discrete Fourier transform of the sequence 
{hr (t/T') t = 1 , . . . ,  T}, r = 1, . . .  4. Let Ihrx,hax,j = 'Whrx,j'Whax,j• Then

1 T~1
7p  }  y  Ihix,h2X,jIh3X ,h4X ,j =  °P (T) •  

j = 1

Proof. We have

j  T - l   ̂ T - l

7 p  }   ̂I h , i x M x , j I h 3 X , h 4 x j  =  ™ " f x x j  ( a j  Cj  +  ^ j )  > (1 * 3 4 )rjp rj-\
j = i  j = 1

where

 ̂ | h\x,h.2x , j  _  n ^ Ih i £ , h2 £ , j  | j Ih3X,h.4X,j _  2 7r^3$VMCJ
r2 -/ x x j  O’? /  \  f x x , j

fo. — (  I h i x f a x j  _  2 7 J . ^ i £ i ^ 2 C J  J  

3 ~~ \  f x x j  o \  J  <j\

=  2TTI h l( ^ u  ( Ih ’*’h*xJ  -  27rI h A h ‘u  1 a n d
<2|  \  / x x j  /

47T2
dj = g.4 Ihit,h2Z,jIh3t,h4Z,j’

The second moment of the first factor of aj is

E  Vlj'V2j | — 0>ij  -j- 02j,

where
y / t o w ^ j  y /2 n

U r,j  ~  a 5 'Or.j — W h r £ , j :<j£ Aj <7£
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aij =  c u m  (uij , u2j , u i j , u2j )  —  c u m  ( i i y , u2j  , u y , v2j )

-  c u m  ( u y ,  v2j, U i j , u2j) +  c u m  ( u y , v2j, U y , v2j)

and, denoting hrs =  ^  E*Li hr {t/T) hs {t/T) for r, s =  1 , 2 , 

o2j =
{ E u \ j U 2 j  —  h i 2 )  { E u \ j U 2 j  —  / 112)  +  { E u i j U 2 j  —  h \ 2 )  +  { E u i j U 2 j  —  h i 2 )  

+ /1 1 2  d *  { E u i j U i j  —  / i n )  { E u 2 j U 2 j  —  h 2 2 )  +  { E u i j U i j  —  / i n )

-4- ( E u 2 j U 2 j  —  h 2 2 )  +  h \ \ h 2 2  +  E u i j U 2 j E u 2 j U \ j

—  { E u i j U 2 j  -  h 1 2 )  ( E v i j V 2 j  -  / 112)  -  ( E u i j H 2 j  -  h 1 2 )  -  { E v X j v 2 j  -  h 1 2 )  

- h { 2  -  { E u i j V i j  -  / i n )  { E u 2 j v 2 j  -  h 2 2 )  -  { E u i j V i j  -  h n )

—  ( E u 2 j V 2 j  —  h 2 2 )  —  h \ \ h 2 2  —  E u i j V 2 j E u 2 j V i j

—  ( E v i j V 2 j  —  h \ 2 )  ( E u \ j U 2 j  —  / 112)  —  ( E v \ j V 2 j  —  h \ 2 )  —  { E u \ j U 2 j  —  h i 2 )  

^12  {EvijV'ij tin) (Ev2jU2j h 2 2 )  {EvijUij / i n )

—  ( E v 2 j U 2 j  —  h 2 2 )  —  h n h 2 2  —  E v i j U 2 j E v 2 j i i i j

+  ( E v i j V 2 j  -  h u )  { E v i j V 2 j  -  h u )  +  { E v i j V 2 j  -  h i 2 )  +  ( E v i j V 2 j  -  h i 2 )  

+ / i ?2 +  { E v i j V i j  -  h u )  ( E v 2 j v 2 j  -  h 2 2 )  +  ( E v i j V i j  -  h n )

+  { E v 2 j v 2 j  —  h 2 2 )  4 -  h n h 2 2  +  E v i j V 2 j E v 2 j V i j .

The term ay is equal to

« 1 1 [ [ [ *  ( A  (eiA) A (eifX) , \  { A  (e*) A  ( c ^ " ^ )  ^
<4(2 * )» T * J j L {  \Aj\2 \ A #  J
x H i  (A +  Xj) H2 (jt -  Aj) ^  (C +  X,) H 2 ( - A  -  n  -  (  -  Xj) dXdfidt, 

(1.35)

where Hr (A) =  Ylt=i hr (t / T ) eltx, r = 1 , 2 . Proceeding as in the proof of (4.8) 
in Robinson (1995b), expression (1.35) can be written as a sum of components
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of three types. The first component is

f f r  I A  (eiA) \  ( A(e» )

* $ ( 2 i r ) 3 T * J J J ^ {  A j ) \  A j

x H i  (A +  Aj) H2 {fi -  Aj) ^  (C +  Xj) A,) d\dfid(.

Using the Cauchy-Schwarz inequality, periodicity of the integrand and the fact 
that J** \Hr (A) |2 dX = O (T), this component can be shown to be bounded in 
absolute value by

CPl,jP2,j j

where
2

r  U ( e ^ )

rJ "  L  Aj
Kr (A -  Xj) dX

and K r (A) =  |Hr (A) | 2 /  (2 itT).
A typical representative of the second type of component of (1.35) is

« i i rrr fA(e'x) A M(^) / A (r) \
*1 ( 2* ) 3 T 2 j J J _ „ {  A ,  l )  \  Aj  )  ̂  Aj  J

x H j  (A +  Xj) H2 (n -  Xj) H,. (C +  Xj) H 2 ( - A -  -  C -  Aj) dAd/rdC

whose absolute value can be similarly shown to be bounded by

C P ijP l -

The last type of component is exemplified by

^ J J f£ ) J J J — 7T y J  y S*] J
x H i  (A +  Xj) Hi  (fi -  Xj) J?i (C +  Xf) Hi  (-A  -  p  -  C - A,-) dXdfidC
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\ 4 7 T )  J -  J  J  J - 1 r y  ^ 3  /  \  3

x H 1(X + Xj) H2{ - X - ( - 6 -  Xj) Hi  (C +  Xj) Hi  (9 -  Xj) dXdSdC,

x Hi ( X  + Xj) Hi  (C +  Xj) H ( -X  -  C -  2Xj) dXdt) (1.36)

since
f  Hr (u + X) Hr (t; -  X) dX = 27tH P  (u + v) ,

J —7T

where (A) =  Y/a =\ {t/T) e*At- Since H?^ (A) dX = O (T), the mod
ulus of (1.36) is bounded by

C T -iP ij .

By Lemma 1.4 the term aij is O (j~2 +  j~% +  j _1T ~ ^ .  Applying Lemma
1.5 gives a2j =  O (1). Therefore the first factor of aj is O (1). Likewise, the 
second factor of aj, and therefore aj itself, is 0(1).

Denoting hrt =  hr (t/T), the second moment of I  hit fat, j

1 T
E\Ihie,h2e,j\2 ~  ^ 2j v  5 3  h\th\sh2rh2vE£t£a£r£vel(t S+r V̂ 3

t,a ,r ,v= l

/
1

47r2T2 E 4  h\thl t + ^ X ) E
t=  1 t=  1 3=1

\
l = l  1=1 3=1

T  T  T  T \

t=  1 a = l  t = 1 s = la ^ t  a ^ t  J

=  0 (1)

because the fourth moments of £t axe finite. In the same way, the factor 
IhsZMU is 0(1).  Using the Cauchy-Schwarz inequality, the sum a j - \ - b j - \ - C j + d j  

in (1.34) is 0(1)  uniformly over integers 1 < j  < [T/2]. The proof of the 
lemma is then completed by applying Lemma 1.6 part (a) with g (A) =  A  (e*A) .
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Lem m a 1 .1 2  Under Conditions 1.1-1.5,

2 T ie (  ^ r ' ^ j = i Wxd\w^d\Tlj \  j? . (  W  \
\  E fJl «»,(r)j K j l  1J] J  ^  W (r) J

over t G [0,1].

Proof. Define = Vj f°r j  =  [T/2] +  1 , . . . ,  T — 1. Then

1 m  T - l

^ ̂  5 3  Wzu)j \wu,j \ V j=  5 3  Wz(T)j \w^j \ V j+ r (t ) j

where r  (r) =  T  l,2wz{r)tT/2 \w z iT / 2 \ v t / 2 1 ( t  even) =  0 p (T  V2) uniformly 
over r  G [0,1]. It is therefore sufficient to show that T -1 / 2 Y^j=i wz{r),j \wu,j\ Vj 
=£$> (2tt) _1 (r) over r  G [0,1]. We need to prove that
(a)

T — 1

■^Y<9m <.T)j  K j I  vj ^  M  > (L37)

(b)
l  r ' x

2 J  K j l  V j  -  U>z(r),j  K j |  V j )  0  ^  ( ! - 3 8 )

(c)
1 T~1

J 2  (w ^  _  ' "' Wj  lw“j l  Vj) 0 (1 3 9 )

over r  G [0,1] for any e > 0, where g (A) =  A  (etA) B  (e*A) .
To prove the convergence in part (a), we need to show that finite dimen

sional distributions of the process Yp = T -1 / 2 Y2j=i 9jwC(r),j \we,j\ Vj converge 
in probability to the finite dimensional distributions of a centered Gaussian 
process with covariance function K {r ,o )  =  (t A a) Q/  (4tt2) and that the 
process Yp is tight. First, E*Yp (r) =  0 and



By Lemma 1.10, the last expression converges in probability to 

- 1 ^ / j s W |2^  =  4 ^ -27T 47T2 y _ 7

Second, we need to show that the Lindeberg condition is satisfied,

T_1 i 2 (
y ! E  T *AjBjW£(T)j \w£tj\r]j II f T  2AjBjW£(T)j\w £tj\r]j 
j = i  '

> s  I AO  

(1.40)
for each e  > 0 .

We examine sup, . ! 1 1 \AjBj\2 \ I^ j I££j \. From An et al. (1983), we have

/ 2 tt 1 . l2\  ^  ,sup —  -— — \w£ j\ < 1 a.s.
j=1,S /2 ] W e '0 g  T '

and

Therefore

sup  I t I tA K j I2 ] ^ 1 a s -
j = 1 [T/2] \  <T? lo g  T

1 • - -  |2 I T T  I ^  t™\ 1 i \  n  |2_1___2sup -IAjBjI  \ l c c , j l e e , j \  < D s u p - \A jB j \  log T  a.s.
j= l,...,[T /2] -L j  J-

< D T ^ + Q - 1 log2 T  a.s.

As 77*, given the data, are independent identically distributed variables, the 
sum in (1.40) is bounded by

X 9  [T/2]
E ’ llJl * (h*l > e T ^ l o g - ’ T )  -  £  | IKJIctj .

3=1

The first factor converges to zero since 77J has finite moments and 1 — 2d > 0. 
The second factor is Op (1) by Lemma 1.10 with gj =  AjBj. Therefore the left- 
hand side of (1.40) is op (1) and by the Lindeberg-Feller central limit theorem
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the pointwise convergence

J2 9iw<wj k j l  vs * n  (o, ̂ n )

is proved.
Further,

1 T_1cov* (Yt  (t) , Yr ( c r ) )  =  -  I s /  n w j f y w j  k j | a
j =1

which converges in probabihty to (r A cr) Q/  (47T2) by Lemma 1.10. The proof 
of convergence of the finite dimensional distributions in part (a) is completed 
by using the Cramer-Wold device.

We now prove tightness of the process Yt  (t). By Theorem 13.5 of Billings
ley (1999) it is sufficient to check the moment condition

ET \Yt (p) -  Yt  ( c t ) |2 \Yt  (r) -  YT (p)|2 < (1 +  op (1)) (F  (r) -  F (a))a ,
(1.41)

where a > ^ , a < p < T ,  F  is a nondecreasing, continuous function on A and 
op (1) is uniform over (r, cr) 6 A2. Denoting Wj = w ^T),j — wc(a),ji we have



By Lemma 1.10,

C  ^  E  N 2 j  ^  C (r -  ff)2 4̂ 2n

uniformly over (r, <r) G [0, l]2. It follows that by the Cauchy-Schwarz inequal
ity the left-hand side of (1.41) is bounded by D2 ( t  — a)2 (1 -1- op (1)) since 
(r — p){p — a) < ( t  — a)2. The moment condition (1.41) is thus verified with 
F  (r) =  D t  and a  =  2. This establishes tightness in probability of the process 
Yp and completes the proof of the uniform convergence in part (a).

For the convergence in part (b), we have

D T - l

V T U

D

E \Ai Bi
j - -  

T - 1

Ai

W z(r ) ,j

Ai

W C (r ) ,j  

~~ W C (r),j

Bj

£,3\

X J  \w C(r) , j \
w u, j

Bj
-  w.E,3

and proceeding as in the proof of Lemma 1.7 it can be shown that the last 
expression is op (1) uniformly over r  G [0,1].



To verify the convergence in part (c), we write the difference between errors 
and residuals under the local alternative as

ut -  ut =  (a -  a) +  (jl -  (fj x t +  Szt -  -^=xtht , 

where zt =  zt (f) =  xtl  (t < [tT]). Therefore

Wu,j wu,j = {b P̂ j WXyj +  fiwz(f)j ~  ^y—Wfxxj,

j  =  1 , . . . ,  T — 1, where Whx,j is the discrete Fourier transform of the sequence 
{htxu 1 < t < T } .  Since \\wuJ\ -  k u ,j||2 < | wUtj -

1 T~1
E  ~J= ^  Wz(r),j (ku.jl “  \Wu,j\) Tjj

j=1

=  _  K j i i 2^* k i i2
j =i 
T - 1

^  1 I |2 - |2
—  r p  /  J \ W z ( T ) , j  I \ W U , j  W U , j \ (1.42)

3=1

2 1 T~1 2 1 T~1 
— ^ (b ~  7p \Wz(r),j I +  36 — kz(r),j | |^«(f)j

j=1 j = l

T - 1

^2 ^  | ̂ z(r),j | k/ix,il •
i=i

By Theorem 1.2, b ~  P — Op (T-1/2) and 5 =  Op (T_1//2). Also, by Lemma 
1.11 with functions hi (x) =  /12 (x) =  1(0 < x < r) and /13 (x) =  /14 (x) — 
I (0 < x < f),

1 r - i
7^ y i  | ^ z (T)»i I I ̂ ( ^ . i  I =  ° p  (-^0

i=i

uniformly over r  G [0,1], and similarly for the other sums. Therefore the right- 
hand side of the last displayed inequality is op(l) uniformly over [0,1]. The 
uniform convergence in (1.39) is established by using the Markov inequality.
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Replacing \ w e j \ ,  \ w u , j \  and \wnjl in (1.37)-(1.39) by w£j ,  w u < j  and Wuj, 
and drawing rjj from any complex distribution with mean zero, unit variance, 
finite fourth moment and with Erjj2 =  0, it can be seen that the proof remains 
valid with only small modifications. In particular, expressions for var* Yp (r) 
and cov* (Yp ( r ) , Yp (cr)) do not change, inequalities in part (a) for suprema 
in the Lindeberg condition and for E* \Yp (r) — Yp (cr)|4 , in part (b) for the 
conditional first moment and in part (c) for the conditional second moment 
continue to hold with minor changes in intermediate steps where required. 
This observation shows that there are several valid modifications of the basic 
bootstrap procedure described in Section 1.3.
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Chapter 2

Locating structural change in 
regression with long memory 
processes

2.1 Introduction

When a presence of a structural change is detected in an econometric model, 
the time of change is frequently of interest. There is a steadily growing body 
of literature on estimating the time of change. Hinkley (1970), Yao (1987) and 
Bhattacharya (1987) deal with maximum likelihood estimation of time of a 
shift in mean of otherwise identically distributed independent observations. In 
the context of dependent observations, Bai (1994, 1997b) allows for a linear 
process with short memory while Bai (1997a), Bai and Perron (1998) and 
Fiteni (2002, 2004) analyse estimators of the time of break in parameters of 
linear regression model with mixing data. The current state of the research on 
structural changes in linear models with time series is reviewed by Banerjee 
and Urga (2005) and Perron (2006).

In the last decades, however, it has been recognized that many economic 
and financial data possess a dependence structure stronger than that displayed 
by mixing data. The effect of long range dependence on estimators of time 
of break has been examined by Antoch et al. (1995, 1997) and Horv&th and 
Kokoszka (1997) in the framework of linear processes with a break in mean.

75



The first purpose of this chapter is to develop a procedure for estimation and 
testing of the time of change in slope coefficients in a linear regression model 
where both regressors and disturbances are allowed to possess long memory. 
It is shown that estimators employed for weakly dependent data continue to 
be valid for strongly dependent data, and the researcher does not need to 
distinguish between the short and long memory type of dependence at any 
point of the estimation procedure.

It is known that asymptotic properties of parameter estimators in struc
tural change models depend qualitatively on the magnitude of change. The 
second purpose of this chapter is therefore to examine the asymptotic behav
iour of estimators under various assumptions on the size of break, ranging 
from a fixed size of break through a size shrinking at a certain rate to zero 
size.

Asymptotic theory for the breakpoint estimator is derived, including con
sistency, rate of convergence and limiting distribution. Under the assumption 
of fixed size of the break, the date of break is estimated with highest relative 
asymptotic efficiency, but the asymptotic distribution of the breakpoint esti
mator depends on the joint distribution of the regressors and the error term 
and is not amenable to hypothesis testing. The problem of unknown limit
ing distribution of the breakpoint estimator under fixed break is the topic of 
Chapter 3. Breaks of a fixed magnitude can be regarded as large.

To obtain a distribution-free asymptotic theory of the breakpoint estima
tor, the size of break can be assumed shrinking as the sample size increases 
but at the slower speed than the square root of the sample size. This has been 
a mainstream assumption in the literature for the last two decades. Under a 
slowly shrinking break, this chapter shows that the asymptotic distribution 
of our breakpoint estimator is invariant to the distribution of data also when 
the data are strongly dependent.

The case of breaks shrinking with the square root of the sample size or 
faster is also considered. Breaks shrinking at such a rate can be denominated 
as weak. The plausible situation where a researcher estimates the date of a 
presumed break when the parameters of the processes do not break can be 
analysed as a special case of a weak break. It is shown that if the break is 
weak, its location is not estimable. Since the breaks can be detected only

76



when their magnitude shrinks at the rate of the square root of the sample size 
at the fastest, this rate constitutes a borderline case when the break can be 
detected but cannot be consistently located.

Beside the asymptotic theory of the breakpoint estimator, we also consider 
asymptotic properties of the slope coefficient estimators. When the break is 
large, the slope estimators are asymptotically normal and their distribution is 
the same as if the time of change were known. Asymptotic normality breaks 
down for a weak break, under which a nonstandard distribution is obtained.

In the case of a shrinking break, the form of the limiting distribution of 
the breakpoint estimator allows construction of hypothesis tests. Since the 
limiting distribution function is known, asymptotic tests can be carried out 
easily. However, it is known that asymptotic tests may not perform well in 
small samples. For this reason, we propose a bootstrap procedure to approxi
mate the limiting distribution of the break point for the purpose of hypothesis 
testing. A small Monte Carlo study compares the performance of the boot
strap and asymptotic tests and confirms that in small samples the bootstrap 
test seems preferable to the asymptotic test.

The chapter is organized in the following way. Section 2.2 introduces a 
linear regression model with break in the slope parameter and presents a least 
squares procedure for estimating the time of break and the slope coefficients. 
Asymptotic properties of estimators are studied in Section 2.3. Section 2.4 
comments on the difference in testing hypotheses about the time of break un
der fixed and shrinking break. Section 2.5 discusses the cases of weak break 
and no break. In Section 2.6, a bootstrap approximation of the asymptotic 
test procedure is proposed. Section 2.7 reports the results of a small Monte 
Carlo simulation conducted to investigate small sample properties of the pro
posed bootstrap procedure. Section 2.8 concludes. The proofs are collected 
in Section 2.A which refers to Section 2.B for intermediate results.
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2.2 Linear regression w ith break

We examine a special case of model (1.1) - a linear regression model with a 
break in the slope parameter. Let

yt — ol +  $  x% +  5'Tzt +  ut, t = 1 , . . . ,  T, (2.1)

where
/» \ /  x t t =  l , . . . , fc0

* = * ( * 0 = 1  o

and where k0 is an unknown date of break and f} and ST are p-dimensional 
vectors of unknown parameters with St ^  0. It is assumed that ho = [tqT] 
for some tq £ A E (0,1), where the set A has closure in (0,1). The size of the 
break St  can be assumed either dependent on the sample size T  or fixed at 
S t  — S.

We are interested in estimating the time of the break and the slope coef
ficients (3 and S t - In addition to the point estimation, we are also interested 
in testing hypothesis of the form

Hq: ko =  ktf

for some constant kn  against the alternative

Hi: k0 ±  kH.

In this chapter, we focus on breaks in regression coefficients of stochastic 
regressors. Break in the regression intercept has been analysed by Kuan and 
Hsu (1998) in a similar setting.

Model (2.1) can be written in the matrix form as

y — on +  X/3 +  Z qS t  +  u, (2-2)

where y = (yu . . .  ,yT)', t =  (1, . . . ,  1)', X  = (x i , . . . ,  xT)' and where Zk =  
( x i , . . . ,  xk, 0 , . . . ,  0); is a T  x p matrix comprising first k rows of the matrix 
X  and completed with zeros, Zko is denoted as Z q , and u = {u\, . . . ,  u t ) ' -
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We estimate the parameters of the model by the least squares method. 
Denote Wk = (X , Zk) and Ma,b = I ~ P a,b , where Pa ,b = Po = C (C'C)~l C' 
is the matrix of orthogonal projection on the column space of a matrix C = 
(A, B). Let u (k) be the vector of residuals from the least squares regression 
of y on X  and Zk,

u (h) =  MhX,zky, k =  1 , . . . ,  T  -  1,

and let (3k and 8k be the least squares estimators of the slope parameters,

(  1  j  =  W^ y’ k = l , . . . , T - l .

The least squares estimator k of the breakpoint k0 is obtained by minimizing 
the objective function

ST (k) = \\u(k)\\\  fc= (2.3)

that is
k = arg min S t  (k ) , 

k e A T  v y

where A -T  = {k: k /T  e  A}. If the point of minimum is not unique, we define 
k =  min {k : St (k) = min^A T St (/)}. While the expressions for j3k and 8k 
are exphcit, the breakpoint ko is estimated imphcitly.

  A A A A A   A A

Denote u =  u(k), {3 = (3̂  and 8 =  5 .̂ The quantities u, (3 and 8 can be 
regarded as least squares estimators of errors and slope coefficients of model 
(2.2) when the location of break is unknown. Beside the estimator of the date 
of the break, an estimator f  of the relative time of break tq can be defined as

k

Since some of the properties of our estimators are more easily established 
in the frequency domain, it is useful to transform data from the time domain
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to the frequency domain. In the frequency domain, model (2.1) is given by

wy (A?) — @ Wx (^i) ^Twz(ko) (Aj) 4" wu (Aj) , j  — 1 , . . . ,  T  1. (2.4)

Omission of the frequency zero in (2.4) permits the researcher to avoid estimat
ing the unknown intercept a. As the discrete Fourier transform is invariant to 
location shift of the sequence for 1 < j  < T  — 1, the regression (2.4) is equiv
alent to a time-domain regression in deviations from the mean. Defining F  
as the (T — 1) x T  matrix of the discrete Fourier transform at the frequencies 
Aj,

Fjk = 7 7 = e i3' \  j  =  1. • • •. T  -  1, k =  1 , . . . ,  T, 

model (2.4) can be written in the matrix form as

Fy =  FX(3 +  FZ q5t  "I- Fu. (2-5)

In the least squares regression of Fy  on F X  and F Z ^  let

Fu  (k) =  Mpx,FzkFy = MpwkFy  (2.6)

be the vector of residuals and

(  h  )  =  [W^ FWk] _1 K F 'F y ,  k =  1 , . . . ,  T  -  1,

be the estimators of the slope coefficients, where now Pa in the definition of 
Ma is Pa = A  (A'A) -1 A! where A! is the complex conjugate of a complex 
matrix A. The least squares estimator of the date of break is now a point of 
minimum of the objective function St  (k) = ||Fu (k) \\2. From the definition 
of F  and ML it follows that F'F  =  M J2 tt and so •
Moreover, FM L =  F  and

MpwkP = FM Mcwk = FM LMMtwk = FM L>wk,
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which implies that

Fu(k) = F u (k ) ,  fc =  1,. . .  ,T  — 1,

Therefore for the purpose of estimating the time of break and the slope co
efficients in a linear regression model with unknown break, estimation in the 
time and frequency domain is equivalent.

In the following analysis, it is assumed that {xt} and {u*} are covariance 
stationary linear processes that satisfy Conditions 1.1-1.5 and the following 
additional condition.

Condition 2.1

(a) sup^j

SUPf>i

j E L ^ ' t  =  OpW* suPz>i =  Op (l) ,

] E t V m  XtXt ~  Op (1)>

(b) there exists A > 0 such that for every e > 0, there exists Iq such that 
P  (A* < A) < e and P  [Xf < A) < e for all I > lo, where Xj and 
A J are the minimum eigenvalues of the matrices y EtSfco+i2̂ '* and 
7 E t = f c 0 - z + i  xtxt> respectively.

Condition 2.1 constrains matrices s u p y  E t= i xtxt> suPz>i y EtSto+i XtXt 
and sup^>! y Et=jt0-z+i XtXt uniformly stochastically bounded as T  in
creases. Moreover, it constraints the latter two matrices to have minimum 
eigenvalues bounded away from zero with large probability for large I. This 
would be implied for example by the strong law of large numbers for the 
sequence {xtx't}.

2.3 A sym ptotic properties o f th e breakpoint 
and slope estim ator

In the discussion of the asymptotic properties of the breakpoint and slope co
efficient estimators, we first examine the rate of convergence of the breakpoint
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estimator. Deriving the rate of convergence not only allows us to character
ize consistency properties of the estimators, but is also necessary in order to 
establish the limiting distribution. In this section we consider breaks whose 
size is fixed or is shrinking but at a speed smaller than the square root of the 
sample size.

P roposition  2 .1  Assume Conditions 1.1-1.5 and 2.1 are satisfied. I f  the 
size of break is fixed, 6t =  5 ^  0 , or if it is shrinking with 5t  —► 0 and 
T  ll^r | |2 —► oo, then

k - k o  = Op (\\6T\\-2) .  (2.7)

Proposition 2.1 implies that if the magnitude of break is fixed, k — ko = 
Op (1) and the quantiles of distribution of k — k0 remain of the same order as 
T  grows. On the other hand, if the size of break is shrinking, the dispersion 
of k — ko grows at the rate of ||^ r ||-2. Strictly speaking, k is not a consistent 
estimator of ko. However, if f  =  k /T  defines an estimator of the relative time 
of break To, the rate in (2.7) implies consistency of f  with the convergence 
rate of T _1 ||5r | | -2  =  o(l). Whether the size of break S is fixed or shrinking, 
Proposition 2.1 guarantees the consistency of the estimator f  of the relative 
time of break tq as long as the shrinking is not too fast.

The rate of convergence in (2.7) is typical for changepoint problems in 
general and holds over a range of models and estimators. In the context of 
estimation of the time of shift in mean in a stochastic processes, this rate of 
convergence has been obtained earlier by Bhattacharya (1987) and Yao (1987) 
for maximum likelihood estimators with independent identically distributed 
data, Antoch et al. (1995) for an estimator with independent identically dis
tributed processes and Bai (1994, 1997b) for a least squares estimator of shift 
in the mean of linear process under mixing conditions. Regarding estima
tors of the time of break in linear regression models, Bai (1997a) and Bai and 
Perron (1998) discuss least squares procedures in regression with mixingale er
rors and possibly trending regressors and Fiteni (2002, 2004) considers robust 
estimators in regression with strongly mixing data.

The following proposition characterizes the asymptotic distribution of the 
slope estimators for the case of a known and unknown date of break, respec
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tively, for the cases of a break whose size is fixed or whose size decreases at a 
moderate speed as the sample size decreases.

P roposition  2 .2  Assume Conditions 1.1-1.5 and 2.1 hold. /fT ||& r||2 —► oo, 
then

(a)

| ± N ( 0 ,V )  and 
S ^ - S r  J  V '

where

V  = — 7T -----\ (  r ° _T° V E' lnE_1T0 (1  ~  T0) \ - T 0 1 J

and where £  and Q are defined in Theorem 1.1.

The limiting distribution of the slope estimators and 6 in the case of 
unknown date of break is the same as if the date of break were known. It is 
worth noting that neither the rate of convergence nor the form of the asymp
totic distribution depends on whether the size of break is assumed fixed or 
shrinking, as long as the magnitude of break does not decrease too fast.

Similar results have been obtained by Bai (1997a) for breaks in linear re
gression model with mixingale errors and possibly trending regressors. Fiteni 
(200 2 ) has also reported asymptotic normality of a robust estimator of regres
sion coefficients. The asymptotic normality found elsewhere in the structural 
change literature therefore carries over to linear regression where regressors 
and errors possibly exhibit strong dependence.

In contrast to the rate of convergence of the breakpoint estimator and the 
asymptotic distribution of the slope estimator, the asymptotic distribution 
of the estimator of the location of break requires a separate discussion for 
the cases of fixed and shrinking break. First, we consider the case of a fixed 
magnitude of break, St =  S 0. Define the process W° on the set of all

VT
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integers as

’ s' Y .‘t=i x tx 'tS -  2(5' X)t=i xtut S >  1,
r ( s ) =  0  s  =  0 ,  ( 2 . 8 )

. S' EL+i x ‘x'tS + 2S' EL+i s < - 1 .

The following proposition gives the asymptotic distribution of the breakpoint 
estimator for the case of fixed break. To avoid dependence of the asymptotic 
distribution of the estimator on the unknown date of break /c0, we need to 
ensure shift invariance of the distribution of data by strengthening the as
sumption of second order stationarity implicit in Conditions 1.1-1.5 to strict 
stationarity.

P roposition  2.3 Assume that Conditions 1.1-1.5 and 2.1 hold and that in 
addition the process {xt, ut] is strictly stationary. Assume further that (S x t) ±  
2S'xtUt has a continuous distribution. I f  the magnitude of break is fixed, 
ST =  6 7̂  0, then

k — ko - i  arg min W° (s ) .3
The asymptotic distribution of the breakpoint estimator with a break of 

fixed size therefore depends not only on the nuisance parameter S but also on 
the joint distribution of xt and Uf. While the size of jump 6 can be consis
tently estimated by Proposition 2.2, the distribution of the data is generally 
unknown. Unless the joint distribution of data is estimated, inference about 
the time of break cannot be based on the distribution of the limiting random 
variable. The estimation of the distribution of data is discussed in the next 
chapter.

It is worth noting that the distribution of the location estimator k is dis
crete. Therefore even when the distribution of arg min W° is known, tests 
of hypotheses about the time of break cannot be performed at any arbitrary 
level of significance. In this situation, hypothesis testing can be approached 
in two ways. One possibility is to carry out tests at the significance levels 
given by the quantiles of the limiting discrete variable. Alternatively, given a 
nominal level of confidence, conservative tests can be constructed by taking 
the next higher quantile of the limiting distribution. The latter approach has 
been adopted for example by Bai (1997a) and Antoch and HuSkovd (1999).
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The problem of dependence of the asymptotic distribution of the break
point estimator on the joint distribution of data can be overcome if we are 
willing to modify the assumption on the size of the break. Consider the case 
of a diminishing magnitude of break. Define the process W  as

W (p)
w , { p )  +  ^  P >  0 ,

W2(-p )  + l§1 P <  0 ,

where Wi, W2 are independent standard Brownian motion processes defined 
on [0,0 0 ). The following proposition describes the asymptotic distribution of 
the breakpoint estimator for the case of shrinking break.

P roposition  2.4 Assume that Conditions 1.1-1.5 and 2.1 hold and that 5 t —* 
0 and T  ||5 r ||2 —5► 0 0 . Let £  and Cl be consistent estimators ofH and Q. Then

(
a /  a  a \  2
6X8)

(k — ko) - i  arg min W  (p)
s 'n s  v w

Results similar to those of Propositions 2.3 and 2.4 have been also obtained 
by Bai (1994, 1997 a,b), Antoch et al. (1995, 1997), Bai and Perron (1998) 
and Fiteni (2002, 2004).

An example of consistent estimator of £  is

1 T
£  =  - £ > * ; ,  (2 .9 )

t = 1

whose consistency follows from Conditions 1.1 and 1.2 because xt is ergodic. 
A consistent estimator of Q is

j = 1

Consistency of Cl is asserted by the following proposition.

P roposition  2.5 Assume that Conditions 1.1-1.5 and 2.1 hold and thatT^-^ST
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<5 ytO or T ^ H ir ll  - to o . Then

n i s i .

The distribution of arg min,, W  (p) is not only free of nuisance parameters, 
but also the explicit form of its distribution function G is known,

c ( x )  = 1 + \/5e“f_5(l + 5)$(_̂ )+leX$(_¥ )  I > 0 ’

G (x) — 1 — G (—x),

see for example Yao (1987). The two-sided critical values at the 0.1, 0.05 and 
0.01 significance level are 7.687, 11.033 and 19.767, respectively.

While assuming shrinking size of break leads to a distribution-free asymp
totics for the breakpoint estimator, it has also some disadvantages. One such 
disadvantage, a loss of information reflected in a loss of power in testing hy
potheses on the time of break, is discussed in the following section.

2.4 H ypothesis testing

The results of the previous sections allow us to make inference about the date 
of break. The null hypothesis of interest is

Hq: ko = kjj,

where ko is the true value of the break date and kn  denotes the hypothesized 
time of change.

When the size of break is assumed fixed, Proposition 2.3 gives the limiting 
distribution of k — ko under the null hypothesis. The test of the null hypothe
ses can be based on the test statistic Zt  = k — kn- Under the alternative 
hypothesis

Hi : k0 =  kH +  A (2.10)

86



with a constant A ^  0, we have

Zt  -h► ko — kn  +  arg min W° (s ) .8

Since k0 — kn ^  0 and argmina W° (s) = Op (1), the test based on ZT has 
asymptotical local power against the alternative hypothesis (2.10). However, 
since the asymptotic distribution of Zt  under both null and alternative hy
potheses depends on the underlying joint distribution of xt, ut, the critical 
values for the test are in general not available.

Under the assumption that the size of break is shrinking with S t —*■ 0 and 
T | |£ t | |2 —* oo, Proposition 2.4 indicates that the limiting distribution of k — ko

2 xs/  --
normalized by Vj* =  (6 EJ J /5 £16 is invariant to the underlying distribution

of data. This suggests to use ZT = V r(k  — kn'j as a test statistic. Proposition 
2.4 then gives the asymptotic distribution of Zt  under the null. Under the 
alternative hypothesis (2.10),

Zt = V r (k  — kô j +  Av \  - i  arg min W  (p).

The distribution of Zt is therefore identical under both the null and alternative 
hypothesis, and the test based on Zt has asymptotically no power against the 
alternative that ko =  kn  +  A.

If we consider a sequence of local hypotheses in the form of

Hi: ko = kn  +  A r, (2-11)

where A T depends on the sample size, the test based on Zt has asymptotic 
local power against such alternatives if A^1 =  O ( ||^ t||2)- When A^1 = 
o (||^r||2)j the test is consistent, or has global power, against the alternative 
hypothesis (2.11). For example, if we consider an alternative hypothesis to be 
Hi', ko =  kH +  T  • A, which corresponds to the alternative fixed in terms of 
the relative time of the break, H \m. To =  th  +  A, the test has global power 
since A^1 =  T -1A-1 =  o ( ||£ r ||2)-
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2.5 W eak breaks

In the preceding analysis we have assumed that there is a break of a nonzero 
magnitude. It is interesting to examine the asymptotic behaviour of the break
point estimator when the researcher erroneously estimates the time of break 
when there is in fact no break in the data generating process, that is when 
St =  0. More generally, it is of interest to study the statistical properties of 
the breakpoint estimator when only a weak break is present, that is when the 
size of the break is nonzero but decreasing fast with T  in such a way that 
T ||St ||2 =  0(1).

For the purposes of analysing asymptotic properties of estimators under 
the assumption of weak break, we define

G M  =  , , 1 W M - t W (i)) +  , ,ro (r)» . s*<
(t ( 1 - t ) )»  (t (1 — t ) ) 2

for r  G (0,1), where for S ^  0 the function m  is defined as

I  - r ( l - T 0 )  T < T 0 ,

{  T o  ( 1 - T )  T >  T o ,

and for 6 =  0 the function m  can be left undefined. Further, we define

L =  arg max G ( t ) '  G ( r ) .
r e  A

By the definition of A, the random variable L takes values in a subset of
(0,1). The following proposition describes the asymptotic distribution of the
breakpoint estimator under a weak break.

P roposition  2.6 Assume that Conditions 1.1-1.5 and 2.1 hold and th a tT ^2ST 
S with 0 < ||5|| < oo. Then

„ d T 
t  — ► L .

Proposition 2.6 implies that the estimator t  of the relative time of break 
r  is not consistent when the break is weak. Moreover, since for the cases of 
both St = 0 and T  ||^r||2 —* 0 the limiting value S is equal to zero, Proposition
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2.6 indicates that the presence of a break shrinking to zero faster than T 1/2 is 
asymptotically equivalent to the absence of the break.

The asymptotic properties of the slope coefficient estimators f} and 5 under 
weak breaks are given in the following proposition.

P roposition  2.7 Assume that Conditions 1.1-1.5 and 2.1 hold and thatT l/25T 
6 ivith 0 < ||£|| < oo. Then

d 1 (  (LW  (1) -  LW  (L)) \
L ( l - L ) y  {W {1) -  LW  (1)) J

1 f  L ( t q - L ) I ( L  < t q) \

L(1 -  L) \  (r0 -  L) ( I ( r0 < L ) - L )  J

The random variable W  (L) has a mixed normal distribution where the 
mixing variable is L, in the sense that for any real p-vector b, the cumulative 
distribution function P (W  (L ) < b) is given by f leA$  (b /V fj dFL (I), where 
$  is the distribution function of a p-dimensional standard normal variable, Fl 
is the distribution function of L and where the inequality W  (L) < b is to be 
taken componentwise.

Proposition 2.7 together with Proposition 2.2 imply that ft remains a y/T- 
consistent estimator of /? for the whole range of assumptions on the size of 
the breaks, from breaks of size zero to breaks of a fixed size. Similarly, 5 =  
St +  Op (T-1/2) under a break of any size.

While the rate of convergence of the slope coefficient estimators under a 
fixed or shrinking break continues to hold under a weak break, the asymptotic 
normality does not. The form of the asymptotic distribution of the slope 
estimators reflects the fact that the estimation is attempted in the situation 
where the point of break is not well identified.

The results up to this point imply that the location of the break can be 
estimated only when the magnitude of break diminishes slower than T -1/2. A 
related question is when the break is detectable, that is, what is the range of 
alternatives against which tests of the null of no break have nontrivial power. 
The tests may be based on continuous functionals of the sum of squares St (k). 
As it transpires in the proof of Proposition 2.6 in Section 2.A, if T ^ 2St  —> 6,
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then
y 'M ^ y  -  ST « t T ])  = >  G ( r ) '  G ( r ) .

Therefore it can be seen that while tests based on continuous functionals of 
S t  ([t T ]) have nontrivial power against the alternatives where T 1/25 t —► S ^  
0, the test have no power against the alternatives where St = op (T-1/2) 
since the Hmiting distribution is identical for cases S t  =  0 under the null and 
T 1/2S t  —► 0 under the alternative.

In sum, the analysis of the asymptotic properties of the breakpoint esti
mator under a range of assumption on the size of break shows that while a

II2break with T  —► oo can be detected and its location can be estimated,
a break with T  ||<Jr||2 —> <5 ^  0 is detectable but its location is not estimable, 
and a break with T ||5T ||2 —> 0 cannot be detected.

2.6 B ootstrap under shrinking break

The results of the preceding sections suggest that if the magnitude of change 
is too small, the changepoint cannot be identified. On the other hand, if the 
size of break is large, St = S, the relative time of break can be estimated 
T-consistently but its asymptotic distribution is intractable for the purposes 
of hypothesis testing. The only circumstance when a consistent breakpoint 
estimator with distribution-free asymptotic properties is available is the case 
of a break whose magnitude is diminishing but more slowly than the square 
root of the sample size. In this instance, tests of hypotheses about the time of 
break can be based on the asymptotic distribution of the breakpoint estimator.

However, it is known that the finite sample distribution of a statistic may 
not be well approximated by its asymptotic distribution when the sample size 
is small. The purpose of this section is to obtain a bootstrap procedure that 
approximates the asymptotic distribution of the breakpoint estimator and 
that may improve on the performance of the asymptotic distribution in small 
samples.

To approximate the distribution of the breakpoint estimator, we propose 
to use a method similar to that employed by Hidalgo (2003a) and ourselves 
in Chapter 1 . The procedure consists of the following steps.
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Step  1 Compute the least squares estimate k =  arg min^A.t  St {k) in equa
tion (2.3). Compute the least squares estimates ft = flk and 6 = 5  ̂ and 
the least squares residuals

ut = y t~  (3xt - 6  zt, i =  1 ,... ,T,

where zt =  x tl  ( t <k^j.

Step  2 Compute

1 T
wa ^  =  5  j  =  i. • • •. p y 2 ],

and

wi  \ \ )  =  -------------------- -------------------------------

( p ^ J  E £ i 21 K  (A#) -  p f a  E K 1 to . (A .)

1 *
2\ 2

S tep  3 Draw a random sample 77py2] from the distribution
P* faj =Wu{Afc)) =  [772] f°r h = l , . . . , [ T / 2], define 77; =  77̂ .  for 
1 < j  < T /2  and generate a bootstrap sample

^y  (A7) =  (Aj) “I- fiviz (Aj) -t~ (Aj) Tjj, j" 1 , . . . ,  T  1.

In matrix notation,

Fy* =  FAT/3 +  F ^ 5  +  t f  Fu, 

where H  = diag (77* ,.. . ,  ?7y_1) .
A Jfc A $

Step  4 Let /3k and be the least squares estimators of the slope coefficients 
and let u* (k) be the vector of residuals from the least squares regression 
of F y* on F X  and FZk. Let

SJ(fc) =  ||« * (fc )||2 .
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Compute the bootstrap estimator k* of the breakpoint as

k* = arg min S£ (k) 
keA -T  1 v '

and obtain (3* =  $■*, 6* = Sy  and u* = u*(k*).

Step  5 Compute the bootstrap test statistic

where E is defined in (2.9) and where fi* =  4® (Aj) I  a* a* (A j ) .

Alternatively, compute a nonpivotal statistic

The following proposition demonstrates that the proposed bootstrap pro-

P roposition  2.8 Assume that Conditions 1.1-1.5 and 2.1 hold and that 6t

where V  is defined in Proposition 2.2.

The distribution of the bootstrap test statistic defined in Step 5 of 
the bootstrap procedure can be used to construct a bootstrap test as an ap
proximation of the asymptotic test based on the asymptotic null distribution 
of the test statistic Zt - The approximation is valid if bootstrap distribution 
estimator consistently estimates the null distribution of Zt . Denoting the 
null distribution of Zt as P  {Zt < £|Ho) and taking the Kolmogorov-Smirnov 
distance, consistency requires that

Z£ = k*~  k.

cedure consistently estimates the distribution of slope estimators ft and 5.

0 and T  ||£r||2 -► oo. Then

sup |P* (Z*T < x ) - P { Z T < x|H0)| ^  0.
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Under the null, Zt converges in distribution to a continuous distribution func
tion F , P  (Zt  < x|Ho) —> F (x), therefore it is sufficient to show that

pointwise, see for example van der Vaart (1998, p. 329). This observation is 
exploited in the following proposition asserting the consistency of bootstrap.

P roposition  2.9 Assume that Conditions 1.1-1.5 and 2.1 hold and that 6t  —> 
0 and T  ||5r||2 —► oo. Then

( r ' t r ) 2 d.
%t =  (k* - k )  arg min W  (p).

s  n*6 v }  p

Given the consistency of the bootstrap procedure, a bootstrap test can 
be constructed to approximate the asymptotic test. The asymptotic a-level 
critical region Ca based on the asymptotic null distribution, P  (Z t  E Ca) = a, 
is replaced by a critical region C* based on the bootstrap distribution, where 
C* satisfies P* (ZJ E Ca*) = a. Proposition 2.9 guarantees that the bootstrap 
test has asymptotically correct size.

2.7 F in ite sample properties

In this section we assess the performance of the proposed tests in samples 
of small and moderate size via a small Monte Carlo experiment. Beside the 
overall assessment of the tests, we are particularly interested in the comparison 
between bootstrap and asymptotic tests.

The data for the regressor x t and error term ut in model (2.1) are gener
ated as scalar ARFIMA(0, d, 0) processes where d is the memory parameter 
and where the innovations are normally distributed with zero mean and unit 
variance. Values of 0, 0.2 and 0.4 for dx and d are considered in admissible 
combinations such that 0 < dx -\-d < 1/2. Samples of size T  = 64, 128, 256 
and 512 are generated by the algorithm of Davies and Harte (1987). Each 
sample is normalized to have the standard deviation equal to one. Number of
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Monte Carlo replications in each experiment is 5000. For bootstrap tests, the 
number of bootstrap replication is 800.

The break in the model is located in the middle of the sample, to =  1/2. 
The size of the break is set to 5t  =  £oT-1/4, where the shrinking rate T~a 
is chosen such that a  =  1/4 is the midpoint of the interval (0,1/2). The 
parameter do is equal to 2 so that for T  =  64, 128, 256 and 512 the size of the 
break is 0.84, 0.71, 0.60, 0.50, respectively. The value of the slope coefficient 
is p  =  0.

We examine performance of three tests: two bootstrap tests, of which one 
is based on the distribution of a nonpivotal bootstrap test statistic k* — k and

/  £ /  A A ^ |\ 2

the other on the distribution of a pivotal bootstrap test statistic ( £ £ <$ )

(
A.*/ A -* * \  1 /  A A \

6 Q*d ) lk* — k ), and an asymptotic test based on the limiting distrib

ution of the test statistic £5^ (d'&d'j (jc — ko'j under the null hypothesis 
that kn = ko. Nominal significance levels of 10%, 5% and 1% are considered. 
The two-sided critical values for the asymptotic test are 7.687 at the 10% 
level, 11.033 at the 5% level and 19.767 at the 1% level of significance.

Table 2.1 reports the rejection probabilities of the three tests under the 
null hypothesis kn  =  ko. The size of all three tests converges very slowly to 
the nominal values of 10%, 5% and 1%. Both bootstrap tests approximate the 
asymptotic test well. The pivotal bootstrap test improves on the performance 
on the asymptotic test at all sample sizes, and the improvement seems to be 
more pronounced for higher sample sizes. This indicates that even in relatively 
large samples it may be beneficial to carry out the bootstrap rather than the 
asymptotic version of the testing procedure.

The nonpivotal bootstrap test does not fare as well as the pivotal test. 
This is to be expected, but even the nonpivotal test slightly outperforms the 
asymptotic test when the sample size is 512.

To examine the power of the tests, we select tq =  5/8. This is an alterna
tive which is fixed in terms of the percentage location of the break, therefore 
the tests under shrinking breaks have global power, that is the rejection rates 
of all tests under this alternative should converge to one as the sample size 
increases. The rejection probabilities of the tests under the alternative are 
given in Table 2.2.
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The rejection rates under the alternative mirror the behaviour of the re
jection rates under the null in that the convergence to 100% rate is very- 
slow. Moreover, the convergence is non-monotonic. The rejection rates of 
the asymptotic test are slightly higher than those of the bootstrap tests. It is 
however worth noting that the critical values of the tests are not size-adjusted, 
therefore we cannot conclude that the asymptotic test is more powerful against 
the chosen alternative.

The results of the simulation exercise suggest that the bootstrap tests 
offer a good approximation of the asymptotic test. The bootstrap tests, and 
in particular the pivotal test, can improve on the asymptotic test. Whether 
the improvement achieved by carrying out the bootstrap test justifies the cost 
of running the bootstrap will depend on the particular circumstances in which 
the test is carried out.

2.8 Conclusions

In this chapter, statistical properties of estimators of location of a structural 
change are examined in the context of a linear regression model under mild 
conditions on regressors and error term. These conditions avoid the need 
for specifying the type of mixing conditions that are frequently used in the 
literature, and include data which display long memory behaviour.

Results of our analysis show that the range of assumptions on the size of 
the break can be divided into five cases: Break of fixed size, of size shrinking 
at a rate smaller, equal or bigger than the square root of the sample size, and 
of zero size.

Under the fixed break, the asymptotic distribution of the breakpoint esti
mator has the smallest relative order of variance but the distribution is not 
amenable to hypothesis testing. A tractable asymptotic distribution is ob
tained only if the magnitude of change is assumed to be shrinking but more 
slowly than the square root of the sample size. In that case, the asymptotic 
distribution function is free of nuisance parameters and is explicitly known. 
When the size of the break is shrinking faster than the square root of the 
sample size, or when there is no break in the data generating process, the
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dx d

N onpivotal 
b o o ts trap  te s t

10% 5% 1%

Pivotal 
b o o ts trap  te st

10% 5% 1%

A sym ptotic
te s t

10% 5% 1%
T = 6 4
0 0 35.3 30.3 26.1 26.8 19.4 12.1 29.5 21.2 12.3
0.2 0 35.8 31.0 26.7 27.4 19.9 12.7 30.3 22.0 12.7
0 0.2 35.1 30.0 25.7 26.6 19.5 12.1 28.8 20.8 11.8
0.2 0.2 37.1 32.1 28.1 28.5 21.2 13.3 28.9 21.7 12.5
0.4 0 37.1 32.0 28.1 29.1 21.6 14.3 32.4 24.3 14.2
0 0.4 37.6 32.5 28.0 29.3 22.3 14.6 30.1 22.5 13.7
T = 128
0 0 25.5 20.6 16.4 19.2 13.3 7.4 23.8 16.7 8.9
0.2 0 25.6 20.6 16.7 19.3 13.4 7.1 24.6 17.0 8.9
0 0.2 25.4 20.3 16.3 19.4 12.8 7.4 23.6 16.5 8.8
0.2 0.2 28.6 23.3 19.5 21.0 14.2 8.1 24.7 17.5 9.2
0.4 0 28.2 22.9 18.7 22.2 15.2 8.7 28.2 20.1 10.4
0 0.4 27.0 21.3 17.3 21.1 14.2 8.9 24.5 17.5 9.9
T = 256
0 0 18.6 12.8 8.5 14.1 8.5 3.8 20.2 13.0 5.9
0.2 0 18.7 13.1 9.2 14.7 8.7 4.2 20.4 13.7 6.2
0 0.2 18.8 13.4 9.2 15.0 9.0 4.1 20.3 13.5 6.2
0.2 0.2 20.9 16.3 12.1 16.9 10.7 5.5 21.9 14.8 7.0
0.4 0 20.7 15.1 10.8 17.2 11.0 5.2 23.9 16.5 7.7
0 0.4 20.4 14.8 10.3 16.7 10.2 4.9 21.2 14.5 7.0
T = 512
0 0 15.3 9.7 4.9 12.6 6.9 2.2 17.8 10.9 4.1
0.2 0 15.5 9.8 5.2 13.2 7.2 2.5 18.1 11.4 4.6
0 0.2 14.8 9.4 5.1 12.6 6.8 2.5 17.8 11.0 4.6
0.2 0.2 16.9 11.7 7.6 13.6 7.9 3.5 18.8 12.0 5.6
0.4 0 17.2 11.2 6.1 15.3 9.1 3.4 20.7 13.6 5.8
0 0.4 16.3 10.3 5.3 13.6 7.8 2.7 18.1 11.4 4.9

Table 2.1: Size of the bootstrap and asymptotic tests
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N onpivotal 
b o o ts trap  te s t

P ivo tal 
b o o ts trap  te s t

A sym ptotic
te s t

dx
T = 6 4

d 10% 5% 1% 10% 5% 1% 10% 5% 1%

0 0 48.3 39.2 31.4 36.7 25.6 14.7 43.8 30.3 14.4
0.2 0 48.6 39.5 31.8 37.0 26.0 14.7 45.3 31.6 14.9
0 0.2 48.8 39.8 32.2 36.6 25.8 14.8 44.2 30.5 15.4
0.2 0.2 49.5 41.0 33.9 37.6 27.0 16.2 42.8 29.8 15.4
0.4 0 49.9 42.0 34.2 39.6 28.6 16.6 48.2 34.6 17.8
0
T —128

0.4 51.5 42.5 34.5 39.8 28.9 17.6 47.0 32.8 17.5

0 0 47.9 35.2 24.3 37.1 22.5 10.3 52.0 34.7 13.9
0.2 0 47.7 35.0 24.3 36.6 22.9 10.4 52.5 35.1 14.5
0 0.2 48.0 34.9 24.2 36.7 22.3 10.4 51.6 34.4 14.0
0.2 0.2 46.9 35.3 26.5 35.6 23.2 12.1 47.7 31.6 13.8
0.4 0 47.3 35.5 25.9 37.7 24.9 12.4 54.3 37.9 17.1
0
T = 256

0.4 49.5 36.4 25.7 37.9 24.4 12.0 52.3 35.7 15.4

0 0 52.6 34.9 18.3 41.7 24.4 8.3 63.9 43.0 14.6
0.2 0 52.9 36.2 18.6 42.6 25.6 8.9 64.5 44.1 15.5
0 0.2 52.7 36.2 17.7 42.6 25.0 8.2 63.1 43.0 14.2
0.2 0.2 50.1 34.3 20.3 38.6 23.2 9.3 56.2 37.1 13.2
0.4 0 52.3 36.3 20.0 44.0 27.6 10.8 65.3 47.5 18.6
0
T = 512

0.4 55.1 38.2 19.0 44.8 26.5 9.1 64.0 44.7 15.6

0 0 67.6 47.2 18.5 57.7 36.0 9.5 78.7 60.9 21.3
0.2 0 67.2 46.7 18.6 58.0 36.0 10.3 78.8 61.4 22.0
0 0.2 68.5 47.5 19.4 59.7 36.4 10.1 79.5 61.8 22.2
0.2 0.2 59.7 40.5 18.3 48.5 29.0 8.6 68.6 49.2 16.7
0.4 0 65.3 46.0 20.1 57.7 38.4 13.3 79.5 62.8 25.7
0 0.4 70.2 49.9 19.1 61.2 38.4 10.6 79.7 62.7 24.0

Table 2.2: Rejection probabilities of the bootstrap and asymptotic tests under 
the alternative

97



question of estimating the location of the break becomes vacuous because in 
this circumstance the break is not detectable. In the borderline case of the 
size of break decreasing with exactly the square root of the sample size, the 
break can be detected but there is insufficient information for estimating its 
location.

The asymptotic properties of estimators of the slope coefficients also de
pend on the assumption on the size of break. Slope estimators are asymptot
ically normal with identical covariance matrix under fixed as well as slowly 
shrinking breaks but the distribution is nonstandard for weak breaks.

In addition to the thorough examination of the asymptotic properties of 
estimators, the chapter proposes a bootstrap approximation of the asymp
totic test procedure under the standard assumption of shrinking breaks. A 
Monte Carlo experiment indicates that the bootstrap procedure improves on 
the performance of asymptotic test when the sample is of small or moderate 
size.

There are several natural directions in which the findings of this chapter 
might be generalized. First, it is desirable to devise a method of estimating 
location of more than one break for both known and unknown number of 
breaks. Some methods of locating multiple breaks have been suggested by 
Bai (1997b), Bai and Perron (1998) or Altissimo and Corradi (2003). Second, 
to broaden the applicability of our method, the restriction on the collective 
memory of regressors and errors needs to be relaxed to allow for greater col
lective range of memory. A natural direction here is to employ the weighted 
least square estimator of Robinson and Hidalgo (1997) or generalized least 
squares estimators of Hidalgo and Robinson (2002). These topics are left for 
possible future research.

Finally, for the case of a fixed magnitude of break, it is of interest to find 
a method of estimating the distribution of the breakpoint estimator when the 
underlying distribution of data is unknown in order that confidence intervals 
could be given for the time of break. Such a method is proposed in Chapter 3.
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2.A  Proofs

This section contains the proofs of the results in the main body of the chapter. 
We define N  (K) = { h  \k -  k0\ < K  ||5T| r 2} and N C(K) = A - T  - N ( K ) .  
For integers l , m , we define

Z A ( l , m )  =  { Z m  Z / )  S g n  ( T Y l  I )

and denote Za  =  ^A(fc0,fc)* We let ik = (1 ,... 1 , 0 , ,  0); be a T-vector with 
the first k elements equal to 1 and the remaining elements equal to 0, so that 
i — lt- We denote lq — iko and la = {ik — io) sgn (k — k0). Further, we define

Qt (k) = S'TZ'0M^x,zkZq5t

and

so that

Rt  (k ) =  28,TZ'0Mhx,zku +  u'{Mhx,zk — Mi,x,z0)u

ST (k) -  ST {kQ) =  Qt (k) +  RT (k) . 

P ro o f of P roposition  2.1. Fix e > 0. For any A > 0,

( k — ko > K  | |iT| r 2)  < P  I inf ST (k) < ST (ko)

< p (  inf ^ —X  <  A ll^rll2̂ ) + p (  sup|* — fed| " )  U c (£)
Rr(k)
k — ko

(2.12)

Lemma 2.4 implies that A can be chosen such that the first term on the right 
of (2.13) is smaller than e/2 for large K.  We now show that the second term 
on the right of (2.13) is smaller than e/2 for large K.  To that end, write

Rt  {k) =  — 28,TZ ,AMl/usgn (k — ko)

+26'TZ'AMtWk {W'kM/Wk)~l W'kMLu sgn {k -  k0)

+u' (Mltx jZk ~ ML}x ,zq) u. (2.14)
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The contribution of the first term of (2.14) to (2.13) is

P  I sup
\ N C(K)

2S,TZ ,AMtu
k — ko 

which is bounded by

> -z P r | |2 < P  I sup
3 I \ n '(K)

Z'a M lu

k — ko

c 1

A H^rll II^H
1 - 2

C £ 
\ 2K  < 6

for large K  by Lemma 2.5. Regarding the second term of (2.14), 
su p jv w  \\Z*MtWk/  (k -  fco)|| =  Op (1), (W M W k V 1 = Op ( T - 1) and W'kMtu 
0 P ( ^ )  uniformly on A ■ T  by Lemma 2.2, and T -1/2 |l<fr|| =  o (||^r||2) • 
Therefore the contribution of this term to (2.13) is bounded by e/6 for large 
K  and T. The contribution of the third term of (2.14) to (2.13) is bounded 
by

P  I sup
\ N ° ( K )

u' (Mhx,zk -  Mt>x<z0) u
k — ko > 2 ll^rir

<  P (  sup I|u'(MI,x,zl -  MCtx,z0)u\\ > ^
\ k e A T  o J 0

for large K  by Lemma 2.3. This concludes the proof that for large K  the 
second term on the right of (2.13) is bounded by e/2. The proposition is 
proved. ■
P ro o f of P roposition  2.2. (a) Denote Wo =  (X , Zo). We have

By Lemma 2.2,

and

I w j M W o ^ f 1 T° )
1 \  T 0 T0 J

d (  o i w ( l )
-J=W^ M„u

f W ( - r 0)
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Therefore the asymptotic distribution of y/T  , ^fc0 — ^ is

normal with zero mean and variance V.
(b) We have

V f ( l l  J =  (JpWj'M'.Wij 1 (Z0 -  Z-k) 6T)

Write

Z't MiZSs =  Z'0MlZa + {Zt - Z a) 'M, (Zi - Z 0)

+ (Zk -  Z0)' M ,Zq + Z'0M,. (Zk -  Zo)

and
Z'^M.X = (Z-k -  Zo)' MlX  + Z ’oMJC.

For any M  > 0,

P  (IK ^  -  Zo)'M„ (Z-k -  Z0)\\ > M \\St \\~2) 

< P \ 2sup sup \\Z'AMtZ,\\> M\\5t \\-2) + p (  k - k o  > isTH'MI-2') •
\  N(K)  1<1<T J  V /

By Proposition 2.1, the second term on the right of the last displayed in
equality is bounded by e/2 for large K. The first term on the right of the 
this inequality is bounded by e/2 for large M  by Lemma 2.2. It follows that 
(Zk -  Zoy Mt (Zk -  Z0) =  Op (||5T| r 2). In a similar way, (Zk -  Z0)'M CZ0 
and (Zk — Zo)'MLX  are Op (H^tII-2)* Therefore

+  Op (T -1 ||<Sr ||- 2) =  Iw 'M .W o +  (1)

and by Lemma 2.2,

( I - W V V ;  ' • )  0 . 15)
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By the same arguments,

^ W |M 4 (Zo -  Zt ) ST = Op ( T ^  ||<5r | r 2 ||<Sr ||) =  op (1). (2.16)

The term T -^W '^M .u  can be written as

^  W jA f.u  +  - J =  (W-k -  W o)' M,u, (2.17)

where (W). — W o)7 MLu = (O', ((Z^ — Zo)1 Mtu)')'. For any any M  > 0, 

P (\\(Z-k -  Z0)' Mtu\\>  MWSt V )

- M + p ( | f c - A ; o | > A ' | | (5r | r 2)< P  s u p ||^ M ,u ||> M ||< 5 T|
\ N ( K )

The terms on the right of the last display are bounded by e/2 for large M  and 
K  by Lemma 2.2 and Proposition 2.1, respectively. Therefore T -1/2 (Z^ — Zo)' MLu 
is Op (T-1/2 H^tII-1) =  ° p  (1) by (2.17) and Lemma 2.2,

- > u W  a ! w m  V/T  * \  n ilV { r0) j

The last display together with (2.15) and (2.16) imply that

V f i  * - p j - 4  V s - s T )

N O ,

1 T o

TO T 0

1 /  T 0 - T 0
TO (1  -  T0) I - T 0 1

-1
i-l

- l n v - i

niw(i)
& W ( t 0)

E_1fiE

as maintained by the proposition. ■
P ro o f of P roposition  2.3. Let k = arg min n (k ) St  (k),rh = arg minm W° (m) 
and rh — argmin|m|<^ W°  (ra). For any K  > 0 and for any integer j ,

P  (k -  k0 =  i j  = P ( k - k 0 = j , k -  k0 < K^j +P ( k - k 0 = j, k — fa > k ) .
2.18)
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Since the event ||A; — ko < K j  is equivalent to the event =  fcj, the first 
term on the right of (2.18) is equal to

P ( k - k 0 =j ^ j  -  p ( k - k 0 =  j ,  k  — k0 > K^j  .

By similar arguments,

P ( m  =  j )  =  P ( f h  =  j )  -  P ( m  = j , \m\ > K )  +  P ( r h  =  j ,  \m\ > K ) ,

Since ZAMLZA = ZAZA +  op (1) and ZAMLu = ZAu +  op (1) uniformly on 
N  (K),  Lemma 2.6 imphes that

ST (k) -  ST (k0) = 8'Z'AZA8 -  28'Z'Ausgn (k -  k0) +  op (1)

uniformly on N  (K).  It follows from the continuous mapping theorem that 
for any K  > 0,

k = arg min (St (k) — St (ko)) arg mm (8’Z'AZA8 — 28'Z'AusgTi (k — ko))

which has the same distribution as arg min|m|<x W° (m) under strict station- 
arity. The first term of (2.19) is therefore equal to 0 when \j\ > K  by definition 
and smaller than e/3 for large T  when \j\ < K.  The second term of (2.19) is 
smaller than e/3 for large K  by Proposition 2.1. Since by Conditions 1.1 and 
1.2, W° (m) oo for \m\ —> oo, we have that m = Op (1) and that the third 
term of (2.19) is smaller than e/3 for large K.  It follows that for each j ,  
P  (k -  k0 =  f j  -  P  (m =  j )  -» 0. ■

P ro o f of th e  P roposition  2.4. Let v% = (8'tE8t )2 / 8't £18t • For any K  > 0

and therefore

(2.19)
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and for any real x,

P  (v? (k  — kô j <x^j =  P  (k — ko < x

+ P  (k — kQ <

t  »

xu - 2
T  »

k — ko

k — ko

< K vt2)

> K v j 2) .

Let k = a r g i n i n ^ ^ ^ s  ST (k), p =  argminp€R W  (ft) and
p = argminPe[-K,K\ W  (p)- Reasoning as in the proof of Proposition 2.3, we
obtain

|P (v? (k  — kô j < x ĵ — P (p < x) < |P (vt (jc — kô j < x'j — P (p  < x)

+2P  (lit -  fc0| >  K v f 1)  +  2P(\p\ > K ) . (2.20)

Since v2 (k — =  a rg m in ^ ^ j^ -a j^ a  St  (ko +  Pvt 2) ’ Lemma 2.7 implies

that v \ (k  — ko) —> a rg m in ^K  W(p).  Therefore the first term of (2.20) is

bounded by e/3 for large T. Since k — ko = Op ( ||^ r ||_2)» Vt 2 = O (ll^r||~2) 
and since the properties of the Brownian motion with drift imply that p = 
Op (1), the last two terms of (2.20) are smaller than e/3 for large K  and T. 
Inequality (2.20) then implies that

(s'Tx5Ty
ShtCISt

(k  — ko'j - i  arg min W  (p) . (2.21)

A A A /  J \

Since E, Q, are consistent estimators of E, 0  and since 8 = 5? + Op IT ~ 2 J, 
convergence in (2.21) remains valid with the quantities 8t , E and Q replaced 
by their estimators 8, E and Cl. m
P ro o f of P roposition  2.5. Assume for simplicity that {xt} is a scalar 
process. By Theorem 1 of Robinson (1998),

— Y i  1 ■r p  /  j  ■L X X , ] 1U U , J Q. (2.22)
j =1
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It is therefore sufficient to prove that

1 T_1
f  £  Ixxj ( h i j  -  Iuuj) ^  0. (2.23)

j=1

Using the fact that Iuû j Iuu,j — |^u,j 'Mu,j | 2 Re ( iUu,j') we
obtain that the left-hand side of (2.23) is bounded on absolute value by

1 T_1 2 T_1
J, }  '  \ wx,j\ \wu,j ~ wu,j| +   ̂\wx,j\ \wu,j ~  wu,jI \wu,j\ • (2.24)

j=i j=i

From (2.5) and (2.6) and the definition of u ,

Wuj -  wu,j =  (/5 -  (?) +  (u;zo,i “  w *t j )  St  +  w ZjeJ ( s T -  <$) •

Using the cv-inequality, the first term of (2.24) can be bounded by 

3 /„  3 T-1
£  K j I 4 + £ i ^ ' i 2 -  w*kA2
j=l j=i

T —1

+ ! ( a r - i ) 2£ K J |2 K , 3f .  (2.25)

By Propositions 2.2 and 2.7, (3 — (3 = Op (T~^2), and by Lemma 1.11, 
T -1 l^xjl4 =  (T), therefore the first term of (2.25) is op (1). The
second term of (2.25) is bounded by

„ ( T - 1 \  5 / T —l  \  I

- 4  ( £  |ioxj|4J  ( £  K » j  -  w^ j | 4j

by the Cauchy-Schwarz inequahty. The expression in the last bracket is
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bounded by

ko,k
— 3 - 2  ^2 \x tx sx rx v \ 
(27xT) t3rv

T - l
( t—s+ r—v ) \ jE e“

j =1
fco,fc1  ̂ *

<  ----- ~2 E  |xt2;sa;ra:v| (1 +  71 (t — s -f r  — v =  0 modT1))
C2 n T ) t,s ,r ,v

1 / fco,fc \   ̂ - fco.fc / fco.fc ko,k \  2

-  (27TT)2 ^  J + (2?r)2 T ^  ^  ^  ^  ^  l^ -s+1;|2

where the last inequality follows from the Cauchy-Schwarz inequality. For any 
K  > 0 and M  > 0,

ko,k \  /  fco+i^lliTlI-2
pl^N̂ MUHr2 <  ̂ E w^ii-yr2

* /  \ t = k o - K \ \ 6 T \ \ - 2

+ p ( | f c - f c 0 | >  A-||(5r | | - 2) .  (2 .26)

By Proposition 2.1, the second term on the right of (2.26) is smaller than e/2 
for large K.  By the Markov inequality and by Conditions 1.1 and 1.2, the 
first term on the right of (2.26) is bounded by C K / M  which is smaller than 
e/2 for large M.  Therefore \xt\ =  Op (H^rll-2)- By similar arguments,

Y t 0,ie W 2 is Op ( I M -2 ). Since

k o+ K\ \ 5T \ \ - 2 fco+3X||<5r | r 2
sup E

^ N (K ) V= k0-K \ \5 T \ \-2 u=fco-3iC||<yT|r :

I I2 
\ x v \ j

it follows that the second term of (2.25) is

Op (T -1 ||<5r||2) 0P ( T ) 0„ ( r - 1 ||<Sr ||-4 +  T - W  ||<5T||-3) =  op ( 1 ) .

The sum in the third term of (2.25) is bounded by



where the first term is op (T2) by Lemma 1.11 and where the second term is 
Op (T-1/2 \\St \\~3) by the previous discussion. Noting that 6t ~S  = Op (T-1/2) 
by Propositions 2.2 and 2.7, we conclude that the third term of (2.25), and 
hence the first term of (2.24), is op (1).

The second term of (2.24) is bounded by

(1 T_1 2 2 V  /1  T_1 2 2\  *
C  ^  \ w x,j\  \w u,j ~  w u,j\ J   ̂ \w x,j\  \Wu,j\  J  = 0p ( l )

since the first bracket is op (1) as has been just shown, and where the second 
bracket is Op (1) by (2.22). ■
P ro o f of P roposition  2.6. Write

k 1
j ,  = y arg mjn ST (fc) =  arg nun ([rT])

=  arg max (j/Mt,x y -  ST ([t^])) •
r €  A

The maximand is equal to

y'MhXy -  y'MhX,z[TT]y =  y'MLxZ[TT\ [Z[t7̂ M^x Z\tt\) 1 Z{Tr\MhXy

=  (VT6't —Z'QMhXZ[TT\ +  ( ^ Z { tT]Mlx Z{ttyJ

X ( ^ Z ^ M ^ x ZoVTSt  + -j=Z[rTiMt,x v \  (2.28)

where 6t  may be equal to zero. By Lemma 2.2,

±Z'0M,,x Z 1tT] = ^ M tZ[rT] -  ^Z 'aMtX  ( ^ X ' M tx \  ± X 'M tZ{TT]

= >  (To A t ) S  — t 0E E - 1 t E  =  m  ( t )  E  

on [0,1] and similarly ^Z^tT^MlxZ[t t\ =>  r  (1 — r) S on [0,1]. Further, by
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Lemma 2.2,

^= Z '[tT]M,<x u = - ^ Z { tT]Mlu -  ~Z{rn MLX  ( ^ X 'M LX \  1 -^ X 'M „ u

= *  n * W ( r )  -  tY Z - '& W  (1) =  f t i  (W  (r) -  rW  (1))

on [0,1]. Therefore

ST ([t T])  -  y ' M ^ x y  = *  G (r)# G ( r )

on A and the proposition follows from the continuous mapping theorem (see 
for example Theorem 3.2.2 of van der Vaart and Wellner (1996)). ■
P ro o f of P roposition  2.7. Define

and

1 /  (tW  { ! )  -  rW  {t ))
t (1 — t) ^  S - 1n 5 ( V r ( l ) - r iy ( l ) )

1 /  t ( t 0 - t ) I ( t  <  To)

t  (1 -  t )  I ( r0 -  r) (I ( t 0 < t ) - t )  t  (1 -  t )  I ( r0 — r) (I ( t q  < t ) - t )
®5.

We need to show that Yp (t ) - i  Y  (L). To that end, write

x ( - jL w fo M tt  +  (Zo -  Z 1tT]) V f S T )  . (2.29)

Expressions y'M^xV — V*Mhx,z[rT]y in (2.28) and Yp (t) in (2.29) are continu
ous functions of matrices T -1/2Z[Tp\MLu, T~l Z[tT\MlZ[tp\, T~1X ,M1Z[tt \ and 
T~l Z'QMLZ(Tp] on t  € A, therefore we need to study the joint convergence of



But by Lemma 2.2, T _1 Z[t7^MlZ[tt] = >  t E  and T~lX ' M lZ[tT} ==> t E  and 
T ~ * Z qM lZ ^  = >  ( to  A t )  E  on [0,1]. Also by Lemma 2.2, T -1 / 2Ẑ t1^Mlu = >  

0,2 W  (r) on [0,1]. Hence (2.30) converges weakly to

( f j i  W ( r ) , tE ,  tE ,  (r0 A r) e )

because all but the first component converge weakly to constant functions in 
the space C  [0,1] of p-vectors of continuous functions on [0,1]. The continuous 
mapping theorem, Proposition 2.6 and the assumption T 1/25t —* 5 imply that

(Yt (t ) , t ) ^ ( Y ( t ) ,L)  (2.31)

on D (A) x A.
For an arbitrarily small 77 > 0, choose points To, t i ,  . . . ,  t v such that 0 =  

To <  T \  <  . . .  <  t v =  1 and s u p j^ ^  |t* — t*_i| <  77. For i  =  1, . . . ,  v ,  denote 
Di =  [Tf_i, n  A. Then for arbitrary p > 0 and any x,

P( YT { f ) < x )

< T p ( y t  ( tv , )  <  X + p, f  6 Di, sup IYT (t) -  YT (s)| <  p )
\  t,s£Di J

+ J 2 p ( *  e  A , sup \YT (t) - T r (s)| > p)  .
\  t jeD t  J

By (2.31) and by the portmanteau lemma (see for example Theorem 2.1 of 
Billingsley (1999, p. 16)), the right-hand side of the last displayed inequality 
converges to

P  ( y  (Ti-!) < x  + p , L e D i ,  sup \Y 01) - Y ( s ) \ < p )
1 \  t,s£Di J

+  Y >  A e  A , sup \Y {t) -  Y  (s)| >  p )
\  t,s£Di J

< P ( Y { L ) < x  + 2p) + P \  sup | y ( t ) - y ( a ) |  > p )
\l*-«l<»7 J

as T  —► 0 0 . For any e > 0, the second term on the right of the last displayed
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inequality is bounded by e for sufficiently small 77 because the random function 
Y  takes values in C  [0,1]. Therefore

lim sup P  (Yt ( f ) < x ) < P ( Y  (L ) < x  +  2p) +  e
T —>00

for small 77. Proceeding similarly, we obtain that

P  (Y  (L) < x — 2p) — e < lim inf P  (Yp (f) < x ) .
T —>00

Since the distribution of the random variable Y  (L) is continuous and since p 
and e are arbitrarily small, we conclude that

P ( Y t (t ) < x ) - + P ( Y ( L ) < x )

as desired. ■
Proof of Proposition 2.8. We have

Fy* = F X $  + F Zk8 + HFu  

=  F X 0  +  F Z y5  +  u,

where u =  H Fu  +  F  (Z^ — Z y ) 5. Therefore

(
A ̂  A \  1

r - i )  = ( ■ j f K P n ™  

+ - f f K * fF(zi - z h) » y

Write

and

Z 'yF 'F Z y = Z'0F,FZo + {Z-k. - Z 0)'F'F(Z-k. - Z 0)

+ (Z-k. -  ZoY ^ F Z o + Z'oF f  (Z y  -  Z0)

X 'F 'F Z k. = X'F'FZo + X 'F 'F  (Zk. -  Za) .

For any K  > 0, expression P* f  (Zk, — Zo) F*F (Z-k, — Zo) > M  ||<5j-|| 2)  is
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bounded by

P* sup
\ N ( K )

Z ^ f 'f Za  > M \\6 t \\" ) +p*( k * - k 0 > K m \ 2)  •

(2.32)
Fix e,r] > 0. Expectation of the first term of (2.32) is smaller than e/3 for 
large M  and T  by Lemma 2.2. The second term of (2.32) is bounded by

k* - k
K

> j  IIMr2)+-P* k — ko > f  \\St\1-2

where the first term exceeds rj with probability smaller than e/3  for large K  
by Lemma 2.12 and where expectation of the second term is smaller than e/3 
for large K  by Proposition 2.1. Therefore

1  {Z-k. -  Zo 'fT 'F  (Z y -  Zo) = O p .  (T -1 ||«5r | | - 2) =  <y (1) .

By Lemma 2.2, T ^ X 'F 'F X  and T^ZqF 'F Zq  are Op (1). The Cauchy- 
Schwarz inequality implies that the terms T -1 ( Z y  — Zq)' 'F'FZq and 
T~l ( Z y  — Zq)' FrF X  are op* (1). It follows that

^ W y f F W y  =  h w ^ F W o  +  Op. (1)

and by Lemma 2.2,

Second, write

- /= W ’y ? H F u  =  -±=W{,f 'H F u +  (  (W y -  Wo) F ^H F ij . (2.33)

Expression P* ( {Wy -  Wa)'T*HFu > M  Hirl!-1)  is bounded by

E .

P* I sup Z '^ H F u '*) + P* ( km- k 0 > A-Hdrir2) .  (2.34)
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By Lemma 2.8, the first term of (2.34) is smaller than rj with probability at 
least 1 — e/2  for large M. Arguing as in (2.32), the second term of (2.34) is 
smaller than rj with probability at least 1 — e/2 for large K. Therefore

^  (Wy -  WofpHFC = o p. ( r - J  P r i r 1)  =  < y  (1) 

and by (2.33) and Lemma 2.8,

-^= W l.F 'H Fii £  
s/T  k 2?r

W (  1) 
W ( t0)

Finally, for any M  > 0,

P , { l{Z i . - Z k)'F 'F W y > M II^HI 2)

< P* (4  sup sup Z 'J?F W t\ > M \\6 1
\  N ( K / 2 ) l < l < T  II

1 -2

+ P * (

+ P * (

k * -k o  

k — ko

>tf||<Hr2)
> /c ii5 Ti r 2) . (2.35)

By Lemma 2 .2 , expectation of the first term of (2 .3 5 ) is smaller than e / 3  for 
large M. Proceeding as before, we obtain

( Z y  -  Z t f f F W y i  =  T - iO y  (||<M |-2) Op (II fe ll) =  <V (1) -

where the bound for 6 is due to Proposition 2 .2 . By the continuous mapping 
theorem,

n * w ( i )

2?r n l w ( r o )

This imphes that the proposition holds true. ■
P ro o f of P roposition  2.9. For any 0 < K  < oo, let p, p and v \  be 
defined as in the proof of Proposition 2.4  and let k* =  arg miniA._n</fi;-2 (k).

ro r 0

112



Proceeding as in the proof of Proposition 2.4, write

P* ( vt {%* — k̂ j < x ĵ — P (p < x) < |p* (v? (k* — k j  < ^  — P (p < x)

+2P* (life* -  jfcl > K vy2) +  2P(\p\ > K ) . (2.36)

Fix s,i) > 0. Since v \  (fc* — k j = a rg in in ^ r^ -a i^ -a  S f (fc +  [/wf2] j, 
Lemma 2.14 implies that

v \  (k* - k )  a ig m n  W  (p) =  p

and so the first term on the right of (2.36) is smaller than 77/3 with probability 
at least 1 — e/3 for large T. By Lemma 2.12, the second term on the right of
(2.36) is smaller than 77/3 with probability no smaller than 1 — e/3  for large 
K  and T. The third term on the right of (2.36) is bounded by 77/3 for large 
K  because p = Op (1). Therefore the right-hand side of (2.36) is op (1) and

(< ^ E 5 T )2 / -  ? \  d* . t l r  f  \
-$r£ljfT ~ \ k ~ k)  arg mm 17 (p) .

Since 5* =  8 +  Op* ( t  2  ̂ =  5T +  Op* (t  2  ̂ by Propositions 2.7 and 2.8,
A «  A p*

E —► E by Conditions 1.1 and 1.2, and H* —► Cl by Lemma 2.15, it follows 
that

( r t ? ) 2 dm
(k* -  k) -* arg mm 17 (p) .

6 Sl*8 v '  p

2.B  Lemmas

This section contains the some auxiliary results and their proofs. Throughout 
this section, it is assumed that Conditions 1.1-1.5 and 2.1 hold.
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Lemma 2.1 For any matrix

and A  =  I I and B  =

A'M bA > A[MBlA v

Proof. The inequality is related to the fact that in the context of a projection
of vectors on the space spanned by the columns of matrix B, the sum of
squared residuals is nondecreasing as the number of observations increases. 
For a proof, see for example Lemma A.l of Bai and Perron (1998) or Lemma 
2 of Brown et al. (1975). ■

Lem m a 2.2 For any 0 < K  < oo,
(a) ±Z [TT\MLZ[(rT) = >  ( t  A a) £  on (r, a) e  [0, l]2,
(b) - ^ Z '^ M .u  = >  (t) o n r  € [0,1],
(c) supfceA.T ||(W lM M y 'W  = Op (T -1) ,
(d) sup!<fc<T \\W'kMLu\\ =  Op ( t s ) ,
(e) sup\<k,i<T \\Z'kM,,Zi\\ =  Op (T),
( f )  SUP k e N ( K )  s u P i < i < t  \ \ Z & M l Z i \ \  =  O p  ( ||£ r || 2),
(g) ifT \\S T \\2 oo then swpN{K) | |^ A f tu|| =  Op (H^rll-1),

(h) s\ipkeNc(K) suPi<i<t  1 = ^p(1)-

Proof. Parts (a) and (b) follow from Lemmas 1.9 and 1.7, respectively, after 
noting that

1 27r / 27r
- z {tT\Mlz [(Tt\ = y z [tt\f  FZwn =

7=1

and
1 27T / 27T T ^

—j =Z^tt\Mlu =  —j=ZyTj^F Fu =  y ^ u >z([Tr]),j'^u,j'
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Parts (c), (d) and (e) are implied by parts (a) and (b). Part (f) follows from 
the bound

< | | Z A | | 2 +  | f c - f c o | 5 | | Z A || |  I IZl l l

(2.37)
and from Conditions 1.1, 1.2 and 2.1. Turning to part (g), for any given K  
and p G [-K , K], write k = ko +  [p ||£ t||-2] • Part (b) implies that

± _ 7 , , trf l = a J  ^ ( ^ K  +  p ) - W ( r 0)) p > 0 ,
^  A([r0T],[(ro+p)I1) * |  Ql (W (tq) -  W ( t0 +  p)) P < 0,

from which it follows that

\  n l w t ( - p )  p < o,

where Wi, W2 are independent p- vectors of independent standard Brownian 
motion processes on [0,0 0 ). Therefore supkeJV̂  Z'AMtu = Op (||<5T||-1). Fi
nally, part (h) follows from (2.37) after noting that Condition 2.1 implies that 
SUP k e N c ( K )  l& ~  k 0 \ 1 | | ^ a ||2 =  O p  ( 1 ) .  ■

Lem m a 2.3 As T  —> 0 0 ,
(a) v! (MhX>zk ~  Ml}X,z0) u = Op (1) uniformly o n k e h - T ,
(b) ifT \\5 T\\2 —► 00 then v! (Mt}X,zk ~  MLtXtZo) u = op (1) uniformly on 

N (K ).

Proof. Denote W& = (Wk — Wo) sgn (k — ko) =  (0, Z&). For any nonsingular 
matrices A  and A  +  J3,

P a + b  - P a  = B  (A!A) _1 A' + A  (A'A) B ' +  B  (A'A ) _1 B' 

~ (A  + B ) ( ( A  + B ) '(A  + B)V* (A'B  +  B'A  +  B'B) (A 'A )"1 (A + B ) ' .
(2.38)

Let A = M lWq and B  = MlWa  sgn (k — ko). Then

u' {MliX,z0 — MttXizk)u  =  (M lu )' (P MlWk — P m lWq) M lu
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=  2v!MlWA (WqMlWo) 1 WqM,u sgn (k — ko)

+u'McWA (W^M W oT 1 W'a M,u

- u 'M .W k  (W ^ M .W k ) - 1 {(WqMjWa + W ’A M tW o) sgn (k -  k„) 
+ W'A M ,W A } (W ^ M .W a Y 1 W'kM lU.

The bounds in part (a) and (b) axe implied by Lemma 2.2. ■

Lem m a 2.4 T h e re  e x is ts  p > 0 su c h  th a t  for e v e ry  e  > 0, th e re  e x is ts  K  < oo 
su c h  th a t

P f  inf > /o|lftr||2>) > 1 -  g-
\N*(K)  \ k ~  fc0| J

Proof. By the definition of Q r(k), the left-hand side of the last displayed 
inequality is bounded from below by

p ( 4 , u ( ^ f ) ^ ) '  (239)
Consider first the case k > ko. Since the columns of the matrix (i,X , Zk) he 
in the column space of matrix (to, tA, t — ik, Zk, X  — Zk), we have

ZAMt,X,ZkZA > Z'a MLq̂ ,L-ik,zk,x-zkZa > Z'AML0)l̂ ZkZA 
=  Z ^ M ^ & M ^ Z k Y 1 Z'oM^Zo,

where the last inequality is due to Lemma 2.1 and where the equality follows 
from a simple algebra. Since for any symmetric matrices A  and B, inequality 
A > B  implies Amin (A) > Amin (B) (see for example Magnus and Neudecker 
(1 9 8 8 ), page 204), we have

\  ( ZAMLix,zkZA\  > A f  Z'AMlAZA /  1 , z \ X- Z ' M z \
m in V  \k -k o \  J  -  m in \  \k -  ko\ \ T  kM t0t*  k)  r  0 40 0 J  ■

(2.40)
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Similar inequality is obtained in the case k < ko,

( Z'a M ,x a Za \  
min ^  lit -  Jfcbl J

> Amin |  { X  ~ Z u)' ( X  -  zo ) 1

X i  ( X  -  Zoy  M,_l0 ( X - Z a) \ .  (2.41)

By Conditions 1.1 and 1.2, as I —► oo and Z —> —oo, Z-1 Y ^ 0,k°+l x t 0 and 
Z*1 ^ J 0,/c°+i E with E > 0, therefore the eigenvalues of the matrix

Z'AMtAZA _  1 * *  /  1 / ^ _ y i  A
\ k - k 0 \ \ k - k o \ ^ f  t  y \ k - k 0 \ 2 - s  J  y \ k  -  k 0 1 ^  * J

are bounded from below by p > 0 with probability at least 1 — e/3  for large K. 
Similarly, since T~l Ylt=i x t 0 and T _1 xtxt ~ ^  E the eigenvalues 
of matrix

=

are bounded and bounded from below by a positive number with a large 
probability for large T  uniformly on k G A • T. Since Mt0(tA < Mtk, the 
same is true of the eigenvalues of matrix T ^ Z ^ M ^ ^ Z k ,  and similarly for 
the remaining factors of (2.40) and (2.41). Since for a symmetric matrix A, 
Amin (A ) = inf a, || Ax\\ /  \\x\\, it is easy to see that for any positive semidefinite 
matrices A  and B, Amin (AB) > Amin (A) • Amin (B). It follows that there exists 
p > 0 such that (2.39) is greater than 1 — e, and the lemma is established. ■

The following lemma extends the H&jek-Renyi inequality to the cross- 
product of two mean-adjusted series possibly exhibiting long-memory depen
dence.

Lem m a 2.5 Let u =  T -1 Ylt=i ut ’ Then for any a > 0 and for any integers
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m and T such that m < T ,

P  [ max v
\ m < k < T  k

for some positive D < oo.

^ 2  x t { u t - v )
t =1

> a <
D

crm
(2.42)

Proof. Assume without loss of generality that {xt} is a scalar process. Let 
Sk = Ylt=i x t (ut ~  u) and let an event A k be defined as

A k = j i  \Sk\ > a, j  |5j| <  a  for m < j  < A; j .

Proceeding as in the proof of Theorem 1 of Kounias and Weng (1969) and in 
the proof of a version of the maximal inequality of Kuan and Hsu (1998), we 
obtain

P  [ max t
\  m < k < T k

xt (ut - u )
t =1

\  k = m + l J

- i f + E  i  (Exl {Uk _ ")2+2 {Exk {Uk ~ Sk~i1D)  ■\  k—m + l  J

(2.43)

We have

k T k TA, 2 J
e s ? = E  E xtxsutus -  — EE E xtxsutur +  —  EE ExtXauruv

t , s —l t , s=1 r = l t ,s= l r , v=1

Since
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where <pk =  YUjLo \ai\ \aj+k\ and tpk = J2%o Ifyl l̂ j+fcl» we obtain that the first 
term of E S k  is bounded in absolute value by

k k
-  G  E  m 3*  E  <  C k|r |<oot=l 3=1 t=1 1 1 3=1

by Lemma 2 of Robinson (1998). Similarly, the second term of E S k  is bounded 
by C T ~ l  E t = i  E r = i  V \ t - s \ i > \ t - r \  and the third term by CT~2 X ) ( ,5=1 E £ « = i  

i p \ t - s \'lP \ r - v \ i  both of which, proceeding as with the last displayed inequality, 
can be seen to be bounded by C k  by Lemma 2 of Robinson (1998). Therefore

E S I  ^  C  
— -  <  —  

k 2 k

for all 1 < k  <  T .  Further,

C  T  C  T
E x \  ( u k  -  u f  <  E x \ u \  +  —  2 3 ^ 1 * - , !  +  f i  E  -  C

3 = 1  t , 3 = l

by the second order stationarity and Lemma 1 of Robinson (1998). Next,

fc - l q  Jfc-l T

| E x k  ( u fc -  u )  S k - i |  <  ^ 2  V k - t & k - t  +  ^ E E  <Pk-t {4>\k-*\ +  i> i « - . | )
t=  1 t =  1 3=1

C  ^
+  f 2  ^  v ^  > V k - t t y |3 -r | — C  

t= 1 s ,r= l

uniformly in k by Lemma 2 of Robinson (1998). Therefore the second term 
in the bracket on the right of (2.43) is bounded by

c  E, Z—' , k z  771
K=m+1

and thus we conclude that (2.42) holds true. ■
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Lemma 2.6 J/T ||&r||2 —* °°> then for any K  <  oo,

ST (&) -  S t (&o) =  5'TZ'^MLZ&5T -  28,TZ ,AMLusgn (k -  k0) +  op (1), 

where the op (1) term is uniform on N  (K ).

P roof. Write

Qt  (k) = 6'TZ'AMLZAST -  S'TZ'AM,Wk (W'kM.Wk)~1 WkM,.ZA8T.

Since by Lemma 2.2, the terms and ZAMLWk and {WjgM.Wi,)-1 are Ov (||<Sr||-2) 
and Op (T-1) uniformly on AT (K ), respectively, the second term of Qt  (k) is 
Op (ll^rll2 ll^rll-4 ?1-1) =  op (1). Further, since W^M^u is Op (T1/2) uniformly 
on A • K  by Lemma 2.6 and u' (Mhx,zk — Mttx,z0) u is uniformly on N  (K) by 
Lemma 2.3, the decomposition of Rt  (k ) in (2.14) implies that

R r ( k )  =  -2<S,T̂ M.usgn(fc-fco) + 0,(||«r||Prir2T-1r l/3)+ oi)(l)
=  -28'TZ'AMlu sgn ( k -  ko) + op (1).

The lemma now follows from (2.12). ■

Lem m a 2.7 For St ^  0, let Vj< = (5t T,5t )2 /S't ^ISt - I f  the conditions of 
Proposition 2.4 a,re satisfied then for any K  > 0,

arg min St (ko +  \pVr2 1) —> arg min W  (p).
\p\<K V \p\<K

Proof. For any given K  and p £ [—K , K], write k =  ko +  [pi^2] . By Lemma 
2 .6 ,

Sr (kQ +  [pi^2]) -  S t (k0) =  S't Z^M .Z^St  -  2S'TZ ,AMtus^a. [pv^2] +  op (1),
(2.44)

where the op (1) term is uniform on N  (K). Lemma 2.2 implies that

j i ZA([a'r\,[(a+p)T])MtZA([cTT\^+p)T]) \p\ S
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uniformly on {(cr, p) : 0 < a, a  +  p < 1}, from which it follows that

v l z ' A M tz A ^ \ P \ i :

uniformly on p E [-K , K]. Proceeding as in the proof of part (g) of Lemma
2.2, it can be seen that

m  _ p . \  (p) p >  0,
Vt Z A M lU ==r> < I ,

\ & W 2 (-p)  p <  0,

where W\, W2 are independent p-vectors of independent standard Brownian 
motion processes. Since — 25'Tv^ lQ^Wi (p) and 28,Tv^1Q^W2 (p)  are equal in

- — i / i _ 1
distribution to 2 (8t Q 5 t ) 2 v T W\ (p)  and 2 (St Q 5 t ) 2 v t  W2 (p), respectively, 
the left-hand side of (2.44) is equal in distribution to

%ESt  + 2( W - ) *  {Wi {p) I (p >  0) +  w 2 (_ p) I (p < 0)) +  0p (1)
Vjy Vt

=

uniformly on p E [—K, K).  Now observing that

rYr / \  . j j r  / \
aig P&l Jr YrS~ W  =  aig Pgfl W  W  ’\p\<K OrpZjOT \p\<K

the proof of the lemma is completed by an application of the continuous 
mapping theorem. ■

For the proofs of the statements about bootstrap quantities, define

Ql (k)  = $Z'kFfMPWhF Z fB6

and

Ki. (Jfc) = 2% Z'^F MFWkH Fu + u'f 'T? (MFWk -  MFWl) HFu,
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so that

Let

Q*t (k ) + Kr {k) = IKII2 -  ||u£ ||2 =  SJ. (*) -  SJ (*) . (2.45)

N (K) =  {fc: k - k \ < K  | | i | r 2} , 

N C ( K ) = K - T - N ( K )

(2.46)

(2.47)

and denote Za =  ZA(  ̂ky

Lem m a 2 .8  As T  —> oo,
(a) ^ Z [ tT̂ H F u (r),

(b) for any K  > 0 , supkeNIK) sup!<,<r

(c) for any K  >  0, sup^^) z ' .f 'h f u

(d) for any K  > 0, sup*6^ (K) suplsl£T

Z'^F1 HFZi^ = O p. (H^rll-2),

=Op- (ii^ir1),
Z'AF F Z ,

(e) W'kF 'H Fu  =  Op. (T1/2) uniformly over 1 < k < T ,
/  \  - 1

(f) { ^ W '^ F W ^ f 1 2tt ^  1 O S " 1,

(gj /o r even/ £ > 0 £/iere exist K ,M  > 0 such that

1 r 0

P  I sup sup
IkeNC(K) 1 <1<T k - k

z '.f ’f z , > M  \ <£,

(h) for every e, 77 > 0 there exist K ,M  > 0 suc/i that

P  P* sup sup
kefiC (K )  1 <1<T k - k

Z'a F 'H F Z i > M \  > 7 7  < £ .

Proof. Part (a) follows from Lemma 1.12 and from the remark at the end of 
its proof because

t -  1

Z ' ^ F ' H F u  =  ' Y J W z(j)jW < i,jT fj.
j = l

To show the validity of part (b), define matrix G as G — f 'HF. By the 
definition of matrices F  and H, matrix G is a real circulant matrix with 
elements gt<3 = ga_t, 1 < £,s < T, where gt =  (27rT)_1 VjeiXjt' Let

122



gl =  {g-t+i, . • ., g-i, go, gi, . . . ,  ^T-t-i) be the t-th row of matrix G. By the 
Cauchy-Schwarz inequality,

Z'a F H F Z i 

Therefore

ko,k 'ko,k 2 / k 0 ,k

< E i w 1 E l l ^

sup sup
k e N ( K )  1 < 1 < T

Z^F 'H FZi

<
k o + K\ \ 6 T \ \ - 2

E M!
,t=fc0-/cii<jr ir2

k o+ K\ \ 6T \\-

E ,!?p Ill'll' (2.48)

The expression in the first bracket on the right of (2.48) is Op (||5r|| 2) by 
Conditions 1.1 and 1.2. Further,

y Z tW 2 = gfZtZt (.g*)’ < g 'X X ' (g*)' = tr (g1)’glX X ’ 

and so E* sup\<i<T ||^Z /||2 < tri?* (g*)'glX X '.  For any t and s,

E r g t 9 a = i  (_^ + t 1 (<=5)) ’

therefore E* (g1)' gl =  (47r2T)_1 Mt and

£T rap Ilfl^H2 < tr ^  t r i x 'M X  =  Op (1) (2.49)
4?r2 T

by Lemma 2.2. By the Markov inequality, the expression in the second bracket 
of (2.48) is Op* ( l l ^ i r 2) and part (b) is established. Part (c) follows from part
(a) in the same way as part (g) of Lemma 2.2 follows from part (b) of Lemma
2.2. To prove part (d), write

27T Za f ' FZt < + k - k
V-
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For any M  > 0,

P  I sup
\ k e N ( K )

Za
- 2

k+K\\5T\\-2
< P  I ] T  IN I2 > M||(Sr|

f=k-K\\6T\r2

- 2

which is bounded by C K /M  by the Markov inequality and Conditions 1.1 and 
1.2 and which is bounded by e for large K. From here we can conclude in the 
same way as in the proof of part (e) of Lemma 2.2. Part (e) follows from part 
(a) and part (f) follows from (2.15). In part (g), we have

SUp 27T
k e N c ( K )

K l < T

z l f 'f z .
k - k

< sup
k e N ° ( K ) k - k

+  sup
k e N c ( K ) k - k

T sup ^  ||Z,||
2 1 < K T  -L

Now

sup
k e N c ( K ) k - k

ZA < 2 sup
k e N c ( K )

+2 sup

|k -  k0\

k — k 
1

k e N c ( K ) k - k

SUP  7 7 ----- 7-j
k e N c { K )  \K  Ko|

IIZt -  z 0\\2.

I |2 a ||:

-1
The factor s u p k — k \k — ko\ is bounded by max {l, K  1 ||^ t||2} < 
C. For any M  > 0, the probability that the factor supfcê C(^) \k -k o \~ 1 ||ZA||2 
is greater than M  is bounded by

1
P  SUp -rr —

\ \ k - k 0 \ > K / 2  \K  ~  ^0|
\\z a \\2 > m ] + p k — ko > f  ll*xir ) • (2-50)

The second term of (2.50) is bounded by e/2 for large K  by Proposition 2.1 
and the first term of (2.50) is bounded by e/2 for large M  by Condition 2.1. 
Further, for any N  > 0,

P  I sup
k<=Nc ( K ) k - k

II Z-k -  Z o f  > M \ < P  (II Z-k -  Zo|| > M K  ||5r ||-2)
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fco+wii<sTr 2
<pi E \M \2 > m k \ \ s t \

,t=k0-N\\6T\ r 2

- 2
+  P k — ko > N W l  2)  •

(2.51)
By the Markov inequality the first term on the right of (2.51) is bounded 
by CN / MK .  Proposition 2.1 then implies that both terms on the right of 
(2.51) can be bounded by e/2 for large M  and N  for any K  > 0. Gathering 
the results and recalling that the factor sup!<K r p /2! 1-1 ||Z/|| is Op (1) by 
Condition 2.1, we can conclude that part (g) holds.

Finally, to prove part (h), we follow the steps in part (b) and write

sup
k e N c (K)

K l < T

< [ sup
N C(K)

k - k
Z'a F H F Z i

k,k

m > u ;
k — k\ t

x | sup
N C(K)

sup IW z i (2.52)

Proceeding as in the proof of part (g), it can be seen that the expression

( k,k \  (  k,k

sup — ~ r r  E  Ill'll2 > -^  I =  W  sup - ^ r  E  ||*t||2 >  M

n c {k ) k - k \  t  J  \ n c (k ) k - k \  t

is smaller than e/2  for large M  and K. The expression in the second bracket
on the right of (2.52) is equal to s u p ^ ^  ||gfZ/||2. Part (g) is then implied by
(2.49) and by the Markov inequality. ■

Lem m a 2.9 (a) supfceA.r  u'F 'T f (Mpwk — Mpwk) H Fu = Op* (1),
(b) ifT \\5 T\\2 -> oo, sup^(K) u'F'H' (MFWk -  MFWk) H Fu = op. (1).

Proof. Denote W& = (Wk — Wk) sgn (k  — k'j =  ^0, Z& j. Proceeding as in 

Lemma 2.3 and taking A  =  FW k and B  =  FW ^sgn (̂ k — k j  in (2.38), we
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obtain that

u'F 'h ' (Mfw% -  MFWk) H Fu  =  u'F 'H ' (PFWt -  PFWi) H Fu

=  2 Re u'F 'h 'FW ^ ( w ' ^ F W ^  ~ W '^ H F u  sgn (it -  it)

+ u'F 'h 'F W a (w 'kF 'F W - X 1 W '^PH Fu.

—if P T f  FWk (w [F 'F W k\ _1 (  ( w ^ F W a  + W'J?FW-^\ sgn (k  -  k )  

W ' X f w A  ( W ' X F W - X 1 W ' X H F u .+

Therefore the lemma holds by Lemmas 2.2 and 2.8. ■

Lem m a 2.10 There exists A > 0 such that for every e > 0, there exists 
K  < oo and Tq < oo such that for all T  > T q,

E P * inf Qt {kj- > A 6
k - k

> 1 -  £.

Proof. If an event A  does not depend on rjj for j  = 1, . ..  ,T  — 1, then 
P* (A) =  I (A) and therefore EP* (A) = P  (A). Since Q? (&), k and S do not 
involve ijj, the left-hand side of the hypothesized inequality is bounded from 
below by

P  I inf Amin
N C ( K) k — k

> 27tA

Denote I a = {ik — £&) sgn — k j . Proceeding as in the proof of Lemma 2.4, 
we obtain inequality



for k  >  k  and

Amir [ W h 4 |

(  k - k  )

^  Amin i ~A~ f A ( f  (* -  (x -  z k))

x ± ( X - Z - j M ^ t ( X - Z k) \ .  (2.54)

for k  <  k .  Write the first factor in the curly bracket in (2.53) as

Z'a Za

k  — k k - k k  — k \  t

We have
ZAZ&

k - k

|/c — ko\ ZAZ& 1

k - k | k  -  k 0 \ k  — k

k  — k \  t

IIZt -  z °\t

For any S > 0,

P  I sup
\ N C ( K )

k  -  k 0
> s \ =  P  I sup k  — k o

k  — k ) \ N C ( K ) k  — k
> 6

<  p ( | f c - f c o |  > 5 X | | 5 t | | - 2)

whidi is smaller than e/2 for large K  by Proposition 2.1. Also, for any S > 0 
and any M  > 0,

/  ko,k
P  I sup

N C ( K )
11 ̂  24 > <5 < P E 11**11* > 5 K  ll̂ ll- 2

k - k V 1
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fco+M||5T||-2
< P i  £  ||x,||2 > SK  ||5r||

t = k Q- M \ \ 5 T \\~2

+ p ( | f c - f c 0 | > M | | ( 5 T | r 2) .

-2

(2.55)

The second term of (2.55) is smaller than e/2 for large M  by Proposition
2.1. By the Markov inequality, the first term of (2.55) is bounded by C M /8K  
which is smaller than e/2 for large K. Therefore as K  —> oo,

z ' J *  Z ' Z ±
k — k |k -  k0\

Since by Conditions 1.1 and 1.2, lim^±oo
- i  *

+ op (1)

I 1 J2t°,ko+l x tx[ -2* S, the eigen

values of matrix 
at least 1 — e/2

k - k Z'AZ& are bounded away from zero with probability
or large K. Similarly, it can be shown that as K  —► oo,

k - k \

It follows that the eigenvalues of matrix 
below by A > 0 with probability at leas

k - k
- l

Z'a M i^Z a are bounded from
; 1 — e/3 for large K.

The third factor in the curly bracket in (2.53) can be written as

K  t =1t=1 t =1

Since T _1 x t4  ** t 0E, T~l E t=i x t -£• 0 and k - k 0 = Op ( P t I P 2), 
the eigenvalues of matrix T~lZ'^MLkZ-k are bounded from below by a positive 
number with large probability for large T  by the arguments of the proof of 
Lemma 2.4. Similarly, the eigenvalues of the remaining factors of (2.53) and 
(2.54) are bounded from below by a positive number. Concluding as in the 
proof of Lemma 2.4, the current lemma is established. ■
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Lem m a 2.11 Let H  be the matrix defined in Step 3 of the bootstrap procedure. 
Then for any a > 0 and any integers m  and T  such that m  < T ,

E P* ( max r  Zip'H Fu  > a ] < - 9 -\m<k<T k K J a2m

for some positive C < oo.

Proof. Without loss of generality, assume that {x<} is scalar. Let Sk =  
Z ’kF fH Fu  =  x tdu where dt = 9r-tUr and gt = (2ttT)_1 Y%=i rfjeiXjt.
Arguing as in the proof of Lemma 2.5,

P* ( max i  ZtP'fl'Ful > a\m<k<T k I

~  i  ( + £  i  ^ xldl +  2 \E ' x^ SU ) )  ■ (2-56)
\  fc=m +l /

Because E*gtg3 =  (47r2)-1 (—T~2 +  T _11 (t =  s)), we have

 ̂ k T j k T
E * S *2 =  4 ^ T  ^  ^  X t X 8U r U v l  (t - S  = r - V ) -  ^  Z  X t X s U r U v .

In a similar way, £*0^  =  (47r2r ) _1 x\ Y ^ =1 u2r -  (47r2T2)-1 x2k J2r,v=i uruv 
and E*xkdkSk. =  (47r2T)_1 xk x t Ylr,v=l (k - t  = r - v )
— (47r2T2)-1 x k Ylt=i x t J2r,v=i urUv- Proceeding as in the proof of Lemma 
2.5, it can be shown that expectation of E*Sk2 is bounded by Ck and that 
expectation of E*x\dk and E*xkdkSk_1 is bounded by C  for all 1 < k < T. 
Therefore the expectation of the right-hand side of (2.56) is bounded by

- ( - +  V  ° \ <  ca2 \ 77i J , m2 I ~  a2m ‘ \  t=m+1 /

Lem m a 2.12 IfT \\5T\\2 —> oo, then

k* — k = Op. (H^tII-2)
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Proof. Fix e, 77 > 0. For any K  < 0 0 ,

k * - k > K

< P* I inf Q ziQ .  <  \  lUII2 I +  p*
N C ( K ) k — k

\R r W \ ^  ,sup 1— . > A
N C ( K ) k - k

By Lemma 2.10, we can choose A > 0 and K  < 00  such that

E P * inf Qt  (K - < A 6
k - k

< e (2.57)

for large T. Write 

IVr (k)

=  2~s' Z 'J^M pw kH Fu + u'F 'h ' (MFWt -  MW () H Fu  

= 2~s'z '&f 'h F u -  2l> Z 'J? F W k ( w U ' f w X 1 W'^Ph F u (2.58)

+25'Z'AF 'H F  ( u - u ) +  u 'F V  (MFWk -  MFWk) HFu. (2.59)

Examining the first term of (2.58), we have

P* I sup
N C ( K )

25,Z'a F,H F u

< P* ^ 

+P*

sup
N C ( K )

k — k
■j

> A

ZAF  H Fu
k - k

> -j ||&r|

(2.60)

By Lemma 2.11 and by the second order stationarity, expectation of the first 
term on the right of (2.60) is bounded by

C
1 - 2

J L  < £
\ 2K  ~  2

130



for K  large enough. Further, since P*  ̂ 6 < \  ||5r||^ =  I \  ||^r||^,

expectation of the second term on the right of (2.60) is equal to P   ̂ 15 < \  ||5 t||)  

which is smaller than e/2 for large T  because by Proposition 2.2, 6 S.
Regarding the second term of (2.58), the factor (w kF' FW kj is Op (T_1)

uniformly over k G A • T  by Lemma 2.2 whereas the factor W'kF H Fu  is 
Op* (T1//2) uniformly over 1 < k < T  by Lemma 2.8. Moreover, for any M  > 0,

< P*

sup
kN c ( K )

sup
, N C ( K )

26 ZAF F W k
V T  k - k  

Z'AF'FW k

6> A

k - k
> M  j  +  P* ( < (2.61)

Expectation of the first term on the right of (2.61) is bounded by e/2  for large 
M  by Lemma 2.8 and expectation of the second term on the right of (2.61) is 
bounded by e/2  for large T  since 6 =  6t  +  Op (T-1/2) by Proposition 2.2 and 
since T ~ 2 ||5r||_1 =  o(l).

Turning to the first term of (2.59), we have from (2.5) and (2.6) and from 
the definition of u that

F ( u - u )  = F x ( p - b ) + F { Z 0 -  Z-k)ST + FZ-k (<5r  -  S) . 

Therefore

P*

< P*

+P*

+P*

sup
,NC(K)

sup
N C ( K )

sup

sup
N C ( K )

25 Z ’a F  H F ( u - u )

k - k
> X

z 'af 'h f x  ( p - p )

k - k

Z ’J ^ H F  (Z0 — Zk) ST

~  6

k - k

Z'a f ' H F Zk (sT -  S)

X> - 6~  6

k - k ~  6
(2.62)
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For any M  > 0, the first term on the right of (2.62) is bounded by

P* sup
\ N C ( K )

Z'a F  h f x

k - k
> M  \ + P* P~P >

m
(2.63)

By Lemma 2.8, the first term of (2.63) is smaller than 77/6 with probability 
larger than 1 — e/ 6  for large K  and M. Expectation of the second term of 
(2.63) is smaller than e/ 6  for large T  because by Proposition 2.2, (3 — (3 and 
6 — St  are Op (T-1/2), and because T -1 / 2 =  o(||<yr ||). In a similar way, the 
third term on the right of (2.62) can be shown to be smaller than 77/3 with 
probability at least 1 — e/3 for large T.

For any K  > 0, the second term on the right of (2.62) is bounded by

P* -  ||5r ||3 sup Z[F H F ( Z 0 -  Zf.)
V A K l < T

A> — S
“  12

< P* I sup sup
\ N ( K ) l < l < T

Z t f H F Z , |  > ^  || V ~2

+ P * ( k — ko > K

< 2 i i^ i

(2.64)

By Lemma 2.8, the first term on the right of (2.64) is smaller than 77/3 with 
probability no smaller than 1 — e/3 for large K  and T.  Expectation of the 
second and third term on the right of (2.64) is bounded by e/3 for large T  
and K,  respectively.

Finally, for the second term of (2.59),

sup
N C ( K )

u'F 'h ' (MFWk -  MFWk) H F u

k - k
6>  x

< P* I sup
\ N C ( K )

+P*

u'F 'H ' (.MFWk -  MFWf)  HFu > XK

(2.65)
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By Lemma 2.9, the first term on the right of (2.65) is smaller than rj/2 with 
probability at least 1 — e/2 for large K  and T. Expectation of the the second 
term of (2.65) is P  ^ 6 < \  ||£ t||)  which is smaller than e/2 for large K  by 
Proposition 2.2.

Collecting the results, we conclude that for arbitrary e > 0 and 77 > 0, 
there exists K  such that

P  I P* ( sup
N C ( K ) k — k

> A > 77 < £

for large T.  This together with (2.57) and with the Markov inequality imply 
that

p(p*( | i fe*-fc |  > ^ i i 5 Ti r 2) > » ? ) < £

for large K  and T  as required. ■

Lem m a 2.13 I f  5 t 0 and T  ||£r||2 —► 00, then 

SJ (it) -  ( it )  =  S'TZ'J?FZ&5t  -  26't Za F 'H Fu  sgn (fc -  fc) +  <y (1),

where op* (1) is uniform on N  (K ).

P roof. Write

Qr (it) = s'z'AF 'F Z j  -  5'z'AF'FWk { w ' ^ F W ^  W ^ F Z j

and

H^(k)  =  ^ s ' z ^ F ' H F u s g n f k - t y

+2$Z'AF'FW k ( W ffPFW ^ 1 W '^ H F u sg n  (k  -  fc) 

+v!f 'h ' (MFWk -  MFW.k) H F u .

By Lemma 2.8, Z'a F'FW k = Op (Ĥ rll -2) uniformly on N  (K ) and by Lemma

2.2, (w'kF' FWk'j = Op (T-1) uniformly on k G A ■ T. Further, by Propo

sition 2.2, 8 = Op(||5r||)- Also, by Lemma 2.8, W ^F'HFu = Op* (T1/2)
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uniformly on 1 < k < T  and by Lemma 2.9, u'F 'h ' (Mpwk ~ MFwk) H Fu  =  
op. (1) uniformly on N  (K ). It follows that

Q*t  (k) = 5,Z'a F,FZa5 +  Op (1)

and
Wp (k) = -2 S 'z ’AF'H Fusgn ( k - k \  + <y (1) 

uniformly on N  (K ). By (2.45),

Sp (k) -  Sp (fc) =  $Z'a F iF Z a S -  2 S 'Z ^ f  H Fu sgn ( k - k \  + op. (1) 

uniformly on N  (K).  ■

Lem m a 2.14 Let v \  be defined as in Lemma 2.7. I f  the conditions of Propo
sition 2.9 are satisfied, then for any K  > 0,

arg min St ( k +  Ipy™2] ) ^  arg min W  (p) .
\p \< K  1 \  L J V \P\<K

Proof. Write k +  [p%2] =  k. From Lemma 2.13,

Sp (k  + [/nip2]) - S p  (k )  = 5'pZ'J?FZa 6t -25't Z'aT H F it  sgn (k  -  fc) +op. (1) 

By Lemma 2.2,

\p\ E

imiformly on {(o’, p) : 0 < a, a +  p < 1}. Hence

vI z ' J ’f z * ^  M E

uniformly over \p\ < K . Lemma 2.8 implies that

^ ( W ( a  + p ) - W ( a ) )  p >  0,
V T  i x-sik  ( w  {ex) - w ( ?  +  p)) p < o,
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on {(p, a) : 0 < <r, a +  p < 1} from which it follows that

vt Z'a F 'H F u sgn (k  -  k) =£> [  * f \  P ~  ° ’
 ̂ '  \ £ n * w i ( - p )  p <  0,

where Wi, W2 are independent p-vectors of independent standard Brownian 
motion processes. Proceeding as in the proof of Lemma 2.7, we deduce that

S f (k  +  [puf2] )  -  S f (jfc) =  W  (p) + o„. (1)

on p G [—K,K]  where "=" stands for the equality of distribution conditional 
on data. The lemma now follows from the continuous mapping theorem. ■

Lemma 2.15 A s T  —>0 0 ,
A •)*sr

Proof. As in the proof of Proposition 2.5, assume that process {xt} is scalar. 
By definition, matrix Cl* is equal to

4 2 T~1 4 2 T~1
- j r  £  \n) r  +  - J T  £  Ixx j  ( h - u - j  -  I m j  \rfj |2)  • (2-66)

j=1 j=1

Let z*t =  zt (k*). Writing

^u*,j ~  (j^  ̂ ^x,j “I- 3 {^z,j Wpj )  ^   ̂ W2*}j 4~ WujTJj

and proceeding as in the proof of Proposition 2.5, it can be seen that, up to 
a multiplicative constant, the second term of (2.66) is bounded in absolute 
value by



and that the first term of (2.67) is bounded by

i2

(2.68)

By Proposition 2.8, — Op* (T-1/2) , and by Lemma 1.11, T~l i \w x , j \ 4 =

op (T), therefore the first term of (2.68) is op* (1). By the Cauchy-Schwarz in- 
equality, the second term of (2.68) is bounded by

-8  J

j=i

+ f (*-**)’i W i “

W x , j  I \ W S J -

3 = 1

2

The sum in the second bracket of the last displayed expression is bounded by

/ k,k* \   ̂ .. k,k* / k,k* k,k*

(2nT)2 ( ^  ^  J  +  (2?r)2 T  ^  ^  ^  ^  ^  ^  ^  \Xt~a+v\

For any K  > 0 and M  > 0,

k ,k * \  /  feo+2/<'||57’|| 2

p* | y , w  >  M  i w *  <  H  E  n  >  m  nfri
t  J  \ t = k o  —2K \\5 t  || ~ 2

- 2

+ P * ( k -  A;0| >  K  ||<Sr|r2) +  P* ( f c *  - f c > K (2.69)

Proposition 2.1 implies that expectation of the second term on the right of 
(2.69) is bounded by e/3 for large K.  By the Markov inequality and Conditions 
1.1 and 1.2, expectation of the first term on the right of (2.69) is bounded by 
C K / M  which is bounded by e/3 for large M.  For any rj > 0, the last term on 
the right of (2.69) is smaller than rj for large K  and T  with probability at least 
1 — e/3. This means that Y t ’k \xt \ — Op* (H^rlp2)- By similar arguments, 

|xt |2 =  Op. (||<5T | r 2) .  Hence, because 5 = ST +  Ov (T’ 1/2) =  Ov (||<Sr ||)
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by Proposition 2.2 and because

k0+2K \\5T \ r 2 k0+6K \\5T \\~2

SUp ^   ̂ —s+v| — ^   ̂ \^v\ j
~N (2 K ) v = k o -2 K \\6 T \\~2 v = k 0-6 K \\5 T \\

x , |2

we conclude that the second term of (2.68) is op* (1).
Next, the sum in the third term of (2.68) is bounded by

T - 1 T - 1

^  ;  \ w x , j \  \wz,j\ "I"  ̂\w x , j \  \W Z*, j  ~  W Z, j \  ' (2.70)
j = 1 j = 1

The first term of (2.70) is op* (T2) by the reasons given in the discussion of 
(2.25) and (2.27). The second term of (2.70) is Op* (T-1/2 ||^ r||—3) by the 
reasons discussed above. Since 6 — 6 = Op* (T-1/2) by Proposition 2.8, the 
third term of (2.68) is op* (1). It follows that the first term of (2.67) is op* (1). 

The second term of (2.67) is bounded by

^ X J | ^ | 2 K j |2 | ^ | 2J  (2-71)

by the Cauchy-Schwarz inequality. The first bracket of (2.71) has just been 
shown to be op* (1). The conditional expectation of the expression in the 
second bracket of (2.71) is ft which is Op (1) by Proposition 2.5. Thus the 
second term of (2.67), and consequently the second term of (2.66), is op* (1). 

Further, the first term of (2.66) is equal to

T —l  , 9 T —l

j = 1 j = 1

4  2 T ~ 1

+-JT  E  -  W  k* r  • (2-72)
7=1

By the Theorem 1 of Robinson (1998), the first term of (2.72) converges to ft 
in probability. Further, the conditional second moment of the second term of
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(2.72) is bounded by

By a routine extension of the proof of bound (4.8) of Robinson (1995b), it 
can be shown that factors I*xJ/f* xJ and I luJ/ f 2u>j a r e  ° p ( 1 )  uniformly in 
1 < j  < T  — 1. An application of Lemma 1.6 to g (A) =  fH 2 (A) f l i 2 (A) 
leads to the conclusion that the last displayed expression is op (1). By the 
Markov inequality, the second term of (2.72) is op* (1). Finally, by the proof 
of Theorem 1.3 the conditional expectation of the third term of (2.72) is op (1). 
Combining results, we have

Q* — +  op* (1).
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Chapter 3

Inference on the tim e of break 
in regression with long memory 
processes

3.1 Introduction

When making inference about the location of the breakpoint in a linear re
gression model, a problem that we encounter is that the limiting distribution 
of the location estimator depends not only on unknown parameters of the 
model but, more importantly, on the distribution of the regressors and the er
ror term. The limiting distribution is therefore data dependent and unknown 
in general and thus it is intractable for the purposes of statistical inference.

The problem of intractability of the limiting distribution of the breakpoint 
estimator has been approached in several ways. One approach to this prob
lem has been to assume that the distribution of the data is known. This is 
the approach followed by Hinkley (1970), who considered a regression model 
with deterministic regressors and independent identical Gaussian distributed 
error term. He found an analytic solution for the limiting distribution but, 
in absence of a close form for the solution, he had to rely on numerical ap
proximations to obtain critical values. However, with nonnormal errors or 
nondeterministic regressors, this approach seems to be difficult or impossible 
to implement. A more recent method would be to approximate the limiting
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distribution by Monte Carlo simulation. However, since the exact form of the 
underlying distribution is a crucial determinant of the form of the limiting 
distribution, the assumption that the underlying distribution of the data is 
known is untenable.

Another direction that has been pursued in the literature is to assume that 
as the sample size increases, the magnitude of the change shrinks to zero. If the 
size of break diminishes at an appropriate rate, the limiting distribution of the 
breakpoint estimator is invariant to the form of distribution of the regressors 
and the error term and depends only on the first two moments of these series, 
as we have seen in Chapter 2. The motivation behind the assumption of the 
shrinking break is that in finite samples the distribution of the location of the 
break for small breaks can be used as an approximation for large breaks as 
the sample size increases. One of the first authors to consider asymptotics 
with break magnitude local to zero has been Picard (1985) in the context of a 
Gaussian autoregressive process. The assumption of shrinking break has since 
become standard and has been adopted or discussed in various settings. The 
assumption of shrinking break has been also examined in Chapter 2 .

However, obtaining distribution-free asymptotics comes at a price. As 
the sample size increases, information contained in the sample is sufficient to 
detect changes that are tending to zero but the increase in information is not 
fast enough to maintain the precision of the location estimator. The dispersion 
of the distribution of the estimator grows. As a result, tests of hypotheses 
about the date of change against fixed alternatives lose power as the sample 
size increases. In other words, for tests where the date of break under the null 
and alternative hypothesis is a given number of periods apart, the percentage 
of rejections of the null hypothesis converges toward zero. This may be seen 
as an unacceptable consequence of modelling the break as diminishing.

Given the power loss under the shrinking break, it appears reasonable to 
model the size of break as fixed. Under the fixed size of change and un
known distribution of data, a possibility for making inference feasible is to 
estimate the joint distribution of data. A possible estimation technique is 
the bootstrap. When data are assumed to be independently and identically 
distributed, bootstrap estimation can be carried out in a relatively straightfor
ward manner. Antoch et al. (1995) bootstrap residuals from regression with
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fixed break and independent identically distributed errors. When data are 
serially correlated, however, the basic assumption of independence, essential 
to the validity of bootstrap, is violated. The bootstrap procedure needs to 
be modified to reflect the dependence structure of the data. In our case, the 
dependence in the data is possibly of long range.

A bootstrap procedure that is valid for short as well as long memory time 
series is the frequency bootstrap of Hidalgo (2003a), employed with modi
fications in Chapters 1 and 2 of this thesis. This procedure asymptotically 
matches the covariance structure of the underlying process. The ability to 
estimate the second order dependence structure is sufficient for approximat
ing distributions that axe entirely described by the second-order structure, 
for example the Gaussian distribution. However, it does not suffice in our 
current scenario where a general joint distribution of a process needs to be 
approximated. To our knowledge, there is currently no bootstrap procedure 
available that approximates the joint distribution of data while allowing for 
strong serial dependence. It is nevertheless worth mentioning that Btihlmann 
(1997) has observed that the sieve bootstrap offers a valid approximation of 
the finite dimensional joint distribution for weakly dependent processes.

In this chapter, we wish to maintain the assumption that the magnitude 
of break is fixed for all sample sizes and that the underlying distribution of 
data is unknown. We consider nondeterministic regressors and we allow for 
strong temporal dependence in both regressors and errors. In order to obtain 
valid inference procedures, we propose a bootstrap method for estimating the 
joint distribution of weakly or strongly dependent processes. To accommodate 
the potential presence of long memory, the memory parameter is estimated 
explicitly and information about memory is incorporated in the model in a 
way that essentially amounts to fractional differencing of data in the frequency 
domain. Apart from modelling the memory parameter, no further assumptions 
are made about the structure of the model for data, and the procedure can 
be viewed as semiparametric within a class of linear processes.

In what follows, Section 3.2 proposes a new bootstrap procedure for es
timating the distribution of the breakpoint estimator under the assumption 
that the magnitude of break is fixed. Asymptotic properties of the proposed 
bootstrap procedure are examined in Section 3.3. Section 3.4 concludes and
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suggests possible extensions of the bootstrap procedure. The proofs of all 
results are collected in Section 3. A which refers to auxiliary results in Section 
3.B.

3.2 Bootstrap under fixed break

We consider the linear regression model (2 .1) with a break in the slope para
meter,

yt =  a  +  P'xt + 8'zt + ut, t =  1 , . . . ,  T, (3.1)

where the magnitude 8 of break is fixed and different from zero. We are 
again interested in making inference on the parameters of the model and in 
particular in testing the null hypothesis ko =  kn, where kn  is a constant, 
against the alternative hypothesis ko ^  kjj- We estimate parameters k , (3 and 
8 by the least squares procedure discussed in Chapter 2 , that is,

k =  arg min ||MliWts /f

and

K  J =

When processes {a;t} and {ut} are strictly stationary and mutually inde
pendent and (8'xt)2±28'xtut has a continuous distribution, it has been shown 
in Chapter 2 that under appropriate regularity conditions,

k — ko arg min W°  (s) (3.2)3

and

^ ( s - S t  )  ^ N (0 ’V ) ’ (3'3)

where the process W°  and the covariance matrix V  are defined in (2.8) and 
Proposition 2.2, respectively.

The result in (3.2) indicates that the asymptotic distribution of k depends
on the underlying distribution of {a;*} and {ut}. When the distribution of
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data is unknown, it needs to be estimated in an appropriate way. The main 
purpose of this section is to propose a bootstrap method of approximating the 
limiting distribution of the time of the break.

The strategy is to obtain an estimate k* of the time of break ko from the 
regression

y\ =  d +  fixt +  Szt +  u*, t = 1 , . . . ,T ,

where wj,.. .u ^  is a bootstrap sample obtained by resampling the residuals 
ut. Given the nature of the limiting distribution (3.2) of the breakpoint esti
mator k , the distribution of u*t needs to approximated not only the marginal 
distribution of ut but also the finite-dimensional joint distributions of ut.

For covariance stationary processes with an AR(oo) representation, Btihl- 
mann (1998) proposes to approximate the dependence structure by AR(p) 
models where the order p = Pt increases at a certain rate with the sample 
size. Btihlmann’s bootstrap procedure based on resampling the fitted AR(p) 
residuals delivers a valid approximation of the finite-dimensional joint distrib
utions of the underlying process provided that the coefficients pt of the AR(oo) 
representation satisfy YIZo l\Pi\ < °o, the process has finite fourth moments 
and pr  =  o ^(T/ log T)1̂ .

The assumption of summability of / \pt \ does not admit processes where the 
correlation between increasingly distant observations decays slowly and where 
the AR(oo) coefficients are absolutely summable but the series di-
verges. To accommodate a stronger degree of dependence, the AR(oo) process 
would need to be approximated by AR(p) model with a faster increase in pr- 
However, with increasing ratio P t / T , the variance of estimators of the au
toregressive coefficients increases and it is not immediately evident that the 
estimators would remain consistent. Similar observations apply to the trade
off between the block length or the subsample length and the precision of 
estimators in the block bootstrap of Carlstein (1986) and Ktinsch (1989) or 
the subsampling bootstrap of Politis and Romano (1992), respectively.

We propose a bootstrap procedure based on prewhitening of the process
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Ut- Suppose that ut is a covariance stationary linear process given by

oo
Ut = ^  bl£t~l =  B  (L ) 1 G

Z=0

where 60 =  1 , Y lZ o tf < 00  ’ B  (2 ) =  ^  denotes the lag operator,
Let = et- i,  and where {st} is a serially uncorrelated process with Eet — 0 . If 
ut has long memory, the spectral density f uu of ut has a pole of order —2d at 
the zero frequency,

/™ (A )~C A -2d as A —*■ 0 + .

In this case, process ut can be conveniently represented as

ut =  (l - L ) - d* (L )e t , (3.4)

where 4/ (L ) =  (1 — L) B  (L). The corresponding representation of the spec- 
tral function is

fun (A) = g(X)h  (A), (3.5)

where g(X) =  | l  — elA| 2d and h ( A) =  (elA) |2o \ f  (27r). When d > 0, 
function g dominates over h around the zero frequency, therefore the behaviour 
of the spectral density of the process at low frequencies is described by g. 
Correspondingly, we refer to g and h as long- and short-memory part of the 
spectral density, respectively.

Let

be the inverse discrete Fourier transform of a generic sequence {wa (Aj)}J= r 
Representation (3.4) suggests to approximate the discrete Fourier transform 
of ut as

wu (A,-) ss B  (eiXi) wc (Xj) =  (1 -  eix> yd (eiA>) we (A,), (3.6)
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and hence to approximate ut as 

**• w v / f
3=1  

T

Y , e~UXj { l - e i^ )~ d -H(ei,'‘ )w s (Xj ), (3.7)
j = 1

where ”» ” should be read as ’’approximately” . The existence of the pole 
of function (l — elXj)~d at zero may prompt doubts about the reliability of 
the Bartlett approximation (3.6) of w u  (Aj )  for frequencies near zero, but the 
results in Section 3.3 below indicate that the approximation is asymptotically 
valid provided B  is replaced by a modification of B  based on a truncated 
Fourier series of B.

If on the right-hand side of (3.7) the quantities d, ^  (etXj) and w£(Xj) 
are replaced by consistent estimators d, ^  (elX>) and w£ (Aj), respectively, the 
problem of obtaining a bootstrap sample u \ , . . .u^  becomes a problem of de
signing a valid bootstrap algorithm for the discrete Fourier transform w£ (Aj), 
j  = 1, ...,T. These arguments lead us to propose the following bootstrap 
algorithm for estimation of the distribution of the breakpoint estimator.

S tep  1 Obtain the centered least squares residuals

<H =  { y t - y ) -  f t  ( x t -  x )  -  s '  ( z t  -  J ) , t  = i , ..., r,

where y = T~l J2t=i Vu x  =  T~1Ya=ixu — xt& (t  < and z  = 
T~l %t and where I denotes the indicator function. By definition,

Y2t=i — o.
Step  2 Estimate d by the local Whittle estimator d proposed by Robinson 

(1995b),
d = arg min H  (a) , (3.8)

oe[o ,A ]

where 0 < A < 1/2,

( 1 \  n 771

j = i  /  j = i
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for an integer m  G [1, [T/2]), where the bandwidth m  satisfies condition 
1/m +  m /T  —> 0.

Let
1 m

h { X ) = 2^ T l  £  +
j = —m

be our estimator of h (A) in (3.5).

S tep  3 Let M  = [T/ (4m)] and estimate innovations et as

1 T
et =  - j = ' £ e - itx’ R j w <i(Xj ) ,  t = l , . . . , T ,

where

M
R j  =  j  =

1=0
T —l

ft =  / =  0,
3 = 1

R j  =  j  = 1, . . . ,T  — 1,

and where

^  (elA) =  exp

and

1 [T/2] „ 1 [T/2] 
cr =  -  log hie~irXl =  — ^  logh(Az)cosrAi, r  =  l,...,M .

Z=m+1 Z=m+1

Step 4 Draw a random sample e* =  (ej, £$,..., with replacement from 
the empirical distribution of the residuals i t , P* (£* =  £j) =  P -1 for 
i , j  = 1 ,... ,T , and compute the discrete Fourier transform w£* of £*,

M

E
r = l

CreirX
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that is 

Step 5 Compute

=  t = (3.9)
j = 1

where

M
B ,  =  £ 5 , e fl4  j  =  1 , . . .  ,T ,

1=0

1 T_1
fci =  2 =  0 , . . .  , M ,

J=1

4  =  j  =  l , . . . , T - l .

Step 6 Construct bootstrap sample y*,

y*t =  /& +  <5  ̂+  uj, t =  1 , T.  (3.10)

The regression intercept is set to zero because only the slope coefficients 
are of interest. Compute the bootstrap counterparts u* (A;) and A;* of 
estimates u (k) and A;, that is u* (k ) =  ML>wky* and

k* =  arg 5J. (A;) =  min : S? (k) = min 5J. (I) | , 

where S^(k)  =  ||u*(A;)||2 — ||u*(A;)||2. Finally, compute the bootstrap
A £ A 11| A A

counterparts and 8 of estimators /3 and 8 as

(  I- )  = ( n - M<w k-)~l w i-M‘y'-

Step 2 of the bootstrap procedure requires a consistent estimator of the 
memory parameter d. In our procedure, we use the local Whittle estimator of
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Robinson (1995b) but other estimators may prove suitable for the purposes of 
bootstrapping the date of break.

ing periodogram Iuu by g approximately corresponds to fractional differencing

ing and weighting, that is by reweighting the smoothed periodogram by g. 
The latter method, however, is likely to produce a higher variance estimator. 
Reweighting periodogram prior to smoothing may be likened to applying log
arithm to data in order to equalize variance across the sample. The estimator

The replacement is motivated by a concern about the adequacy of the Bartlett 
approximation (3.7) for frequencies around zero because, in contrast to our 
case, the asymptotic distribution of the test statistic of Hidalgo (2005) depends 
only on the behaviour of the spectral density function for frequencies in a 
shrinking neighbourhood of zero. It would be informative to evaluate the 
performance of our bootstrap procedure under the two choices of estimator of

The estimator h of the short-memory part of the spectrum in Step 3 is 
obtained by reweighting the periodogram of residuals by the estimated long- 
memory part g = 11 — elX I 2d of the spectrum and then smoothing. Normaliz-

of the data. It is possible to estimate h by reversing the operations of smooth-

^  in Step 3 is obtained by the canonical spectral decomposition of h, see for 
example BriUinger (1981, page 78-79).

It is interesting to compare Step 5 of our bootstrap to analogous Step 4 of 
the bootstrap procedure of Hidalgo (2005), where the function (l — elA) d is 
replaced by the square root of a partial sum of the Fourier series of 11 — etX I 2d,

1/2
that is by Y^T=-t+i ^ie%lX with

(l — ea )~d.
Definition (3.9) in Step 5 implies that

M  T

=  =  modT ) , t = (3.11)
/=0 3=1
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Apart from the circularity of the bootstrap innovations, (3.11) could be viewed 
as a description of a time domain bootstrap for itt. By Condition 3.4 below, 
the lag order M  in (3.11) is required to satisfy M  = o ^(T /logT)1̂ 3̂  and

M -1 =  o (T-1/4). A comparison with the lag order px =  o ^(T/ log T)1//4̂  
of Btihlmann (1997) leads to the observation that our bootstrap calls for a 
greater number of lags. This is to be expected as our procedure allows for 
strong dependence of data.

3.3 A sym ptotic properties o f the bootstrap  
procedure

The bootstrap procedure is discussed under the assumption the that {a;*} 
and {ut} are stochastic processes that satisfy Conditions 1.1-1.5 and 2.1 with 
Conditions 1.2, 1.3 and 1.4 strengthened by Conditions 3.1, 3.2 and 3.3 below, 
respectively.

C ondition 3.1 {£t} is an independent identically distributed stochastic process 
with E£t =  0, E  (£t£j) =  E > 0, and with finite fourth moments.

C ondition 3.2 {et} is an independent identically distributed stochastic process 
that is independent of {£t} and that satisfies Eet =  0, Eel — ae> an^ E £t < 
oo.

C ondition 3.3 The function B  (e*A) (l — elX)d is twice continuously differ
entiable on (0,7r) and has one-sided second derivatives at 0 and tt.

In addition, we need to impose the following conditions.

C ondition 3.4 As T  —> oo,

m4

™- +  - 3 log7’ -»0 .I 6 m6

C ondition 3.5 When 0 < d < 1/2, the coefficients bi satisfy

I bi ~  fy+il < ^ 1  for all I > L and some L < oo, D < oo,
6
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and
bi = O (Id_1) as I —► oo.

Conditions 3.1 and 3.2 are strong but necessary for the validity of the 
bootstrap procedure because shift invariance and mutual independence of the 
joint distributions of xt and ut is required. While finiteness of the moments 
up to fourth order only is imposed on the innovations of x t, the innovations 
of ut are required to have finite eighths moments. The stronger condition is 
introduced to guarantee convergence of the estimator of the short memory 
part of the spectral density of Ut.

Conditions 1.4 and 3.3 imply that the spectral density f uu of the process 
ut can be written as

f u u W = 9 W h ( X ) ,  Ae[0,7r], (3.12)

where 0 < d < g (A) =  11 — elA|~2d and where the function h is positive, 
symmetric around zero, twice continuously differentiable on (0, it) with one
sided second derivatives at 0 and n.

Condition 3.4 gives upper and lower bounds on the rate of increase to 
infinity of the smoothing parameter m. For example, a bandwidth in the form 
of m =  T a would satisfy Condition 3.4 for a  G (2/3,3/4). It is worth noting 
that an identical bandwidth is used in the estimation of d in Step 2, in the 
smoothed estimate of prewhitened periodogram in Step 3, and through the 
parameter M  also in the truncated sums in Steps 3 and 5 of the bootstrap 
procedure.

Condition 3.5 corresponds to Conditions (4.1) and (4.2) in Assumption 7 
of Robinson (1994b). The condition is slightly stronger than quasi-monotonic 
convergence of bi to zero which requires that bi —* 0 as Z —> oo and that 
bi+i < bi (1 +  C/l) for some C < oo and for all sufficiently large Z. Condition 
3.5 implies that bi have bounded variation, that is YIZo Ih — fy+i| < oo* The 
condition is introduced to ensure that residual Fourier sums of the transfer 
function B  are sufficiently small.

Condition 3.5 together with Conditions 1.1, 1.4, 3.2 and 3.3 are nearly 
equivalent to Condition Cl of Hidalgo (2005). The difference is that imposi- 
tion of g (A) =  |l  — elX\ on the factorization }uu (A) = g(X)h  (A) in our case
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implies the necessity to allow for functions h that have an angular point at 0
and 7r and are smooth everywhere else. Hidalgo (2005), on the other hand,
imposes smoothness of h and h! at 0 and 7r, which means that the function g

 2^
in factorization f uu = gh in general will not be equal to 11 — elX |

Conditions 3.1-3.3 are stronger than those conditions that are sufficient 
for obtaining the rate of convergence of the breakpoint estimator k and as
ymptotic normality of the slope coefficient estimators f$ and 6. To obtain 
these results, only a weaker form of Conditions 3.1-3.3 is needed. More specif
ically, Conditions 3.1 and 3.2 can be weakened to a requirement that £t and 
St are homoskedastic martingale difference processes with finite fourth cumu- 
lants with an allowance for a certain degree of cross-dependence, see Chapter 
2 for details. Moreover, a smaller degree of smoothness is required, that is, 
the functions A  and B  only need to be once differentiable and so Condition 
3.3 is not required. The limiting distribution of k under the assumption of 
diminishing size of break can also be obtained under these weaker conditions. 
The asymptotic distribution of location estimator k under fixed break obtains 
without a need for imposing Condition 3.3, but it is necessary to impose strict 
stationarity, finite fourths moments and mutual independence of regressors 
and errors.

We can now describe the statistical properties of the estimators employed 
in the bootstrap procedure. The first stage of the bootstrap procedure is to 
perform approximate fractional differencing with the difference parameter d. 
The following proposition affirms consistency of the local Whittle estimator d 
of d.

P roposition  3.1 Under Conditions 1.1-1.5, 2.1 and 3.1-3.4,

d — d = Op (m-1/2) .

Robinson (1995b) shows that the local Whittle estimator d is an m1/2- 
consistent estimator of the memory parameter d of a linear process. Proposi
tion 3.1 implies that d remains m 1/2-consistent when the process Ut is replaced 
by the regression residuals ut. We select the local Whittle estimator to es
timate d but any consistent estimator of d can be utilized provided its rate 
of convergence is at least m1/2. Since the spectral density is smooth away
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from the pole, an alternative candidate for the d estimator is the broadband 
estimator of Moulines and Soulier (1999).

The next prerequisite for the success of the bootstrap procedure is a valid 
approximation of the joint distribution of finite stretches of data.

P roposition  3.2 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 hold. Then for 
any finite K ,

{u k o - K i  •  •  •  » Uk0+ K )  ( u k o - K ,  •  > u ko+K)  •

Proposition 3.2 deals with continuous blocks of data in a neighbourhood 
of the true date of break, but the proposition can be generalized for any finite
dimensional joint distribution of the process. The result is used in subsequent 
steps of our bootstrap procedure, but is itself of interest and could be adapted 
for other purposes.

P roposition  3.3 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.5 are satisfied. 
Then

k * - k  = Op* (1).

Proposition 3.3 mirrors the corresponding result (2.7) for the rate of con
vergence of k. The rate of convergence of k* can be regarded as a preliminary 
result in the analysis of the limiting bootstrap distribution of k*.

The following theorem is the core result of the chapter. The theorem 
asserts consistency of the proposed bootstrap procedure and gives the asymp
totic distribution of the bootstrap estimator of the date of the break.

T heorem  3.1 Assume (5'xt)2 ±  28'xtut has a continuous distribution. Then 
under Conditions 1.1-1.5, 2.1 and 3.1-3.5,

k* — k arg min W° (k) ,k

where the process W° is defined in (2.8).

The assumption of continuity of the distribution of (8‘x t)2 ±  25'xtut identifies 
the bootstrap breakpoint estimator k* by ensuring that the process W° has a 
unique minimum.
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A bootstrap approximation of the asymptotic test can be constructed on 
the basis of the conditional distribution of k* — k. For the test of the null 
hypothesis Ho: &o — kn, the bootstrap rejection region C* at a level of sig
nificance a  is constructed in such a way that P* (k* — k E C^j = a. The 

bootstrap test rejects when k - k H e  C*. By Theorem 3.1, the bootstrap 
rejection region C* consistently estimates the asymptotic rejection region Ca 
where Ca is such that P  (arg min* W° (k ) E Ca) =  a.

While the examination of the asymptotic distribution of the bootstrap 
breakpoint estimator is the main focus of our analysis, the statistical proper
ties of the slope estimator are also of interest. The following theorem char
acterizes the asymptotic distribution of the bootstrap counterparts of ft and 
5.

T heorem  3.2 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.5 hold. Then

where V  is defined in Proposition 2.2.

Theorem 3.2 states that the asymptotic normality of slope coefficient es
timators is preserved under fixed breaks when employing the proposed boot
strap procedure.

3.4 Conclusions

This chapter examines the problem of obtaining valid inference for the date 
of break under the assumption that the size of break does not change when 
the sample size increases. The problem of unknown distribution of underlying 
data is dealt with by devising a bootstrap procedure which approximates the 
distribution of innovations of the linear process of errors. The method is 
based on prewhitening procedure which delivers estimates of the innovations 
of a linear process. The deconvolution of the residual process is carried out 
in two stages. First, the degree of memory of the process is brought down 
by filtering out the high amplitude at low frequencies. The second stage is
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similar to the sieve bootstrap of Btihlmann (1997). It seems convenient to 
perform the prewhitening in the frequency domain.

The bootstrap values of innovations are used to generate a bootstrap sam
ple of the left-hand side variable yt for the purpose of obtaining a bootstrap 
distribution of the date of break, but the bootstrap procedure for ut or its 
estimate ut is itself of interest and can be adapted for other purposes.

There are several ways in which the techniques proposed in this chapter 
can be extended. The bootstrap procedure could be modified for estimation 
of the distribution of the date of break in a nonlinear regression

Vt = f  (xu 5t) + ut, t =  l , . . . , T ,  (3.13)

where St =  5o for t < tqT  and St =  £1 for t > tqT  with So ^  S\. The procedure 
could also be adapted to allow for heteroskedastic errors in regression (3.1), 
that is, for errors of the form ut =  a (xt, St) ut, where St is as in (3.13), ut 
satisfies conditions given in Section 3.3 and a  is a function known up to a 
finite number of parameters. In this case, the least squares residuals in Step 
1 of the bootstrap procedure could be standardized by a (x t,S^j where St is 
a T 1/2-consistent estimator of 6t.

While several steps of the proposed bootstrap procedure, and in particular 
the fractional differencing, are executed in the frequency domain, it is likely 
that the underlying ideas could be realized also in the time domain. Steps 
3-5 of the proposed bootstrap procedure could be modified in the following 
manner.

S tep  3’ Let aj be the coefficients of the binomial representation of (1 — x)d 
at d =  d, that is,

r  0  “
otj = ----------   j — ^ r ,  j  =  0 , 1 , . . . ,r { j  + 1) r (-d)

where T denotes the gamma function. Compute

T

T)t ^  t !>•••)
3=0
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with Ut =  0 for t < 0. Let rjt = 0 for t < 0 and compute

Pt

et = rit -'52<ppr)t-.p, t = l , . . . , T ,
p= 1

where . . . ,  (pPT are estimated coefficients of an AR(pr) model for r jt  

and where p t  increases with the sample size T  at an appropriate rate.

S tep  4’ Draw a random sample e j , . . . ,  £2t with replacement from the cen
tered residuals

S tep  5’ Compute

T t=i

Pt

Vi = e: + '5 2 f ,peZ-p> t = 1, . . .  ,2T
p= 1

with the initial condition ej =  0 for t  < 0. Let be the coefficients of 
the binomial representation of (1 — x)~d at d = d,

r (j + d)
r { j  +  i ) r ( d )

and obtain

T

u t =  Vt+T + '%2Pjr}*t+T-j, t = 1 , . . . ,T.  
j = i

Details and validity of the proposed extensions would need to be examined 
in future research.
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3.A  Proofs

In what follows, we assume for simplicity that process {xt}teIi is scalar and 
denote va ix t = cr2.

P ro o f of P roposition  3.1. On account of Theorems 1 and 2 of Robinson 
(1995b), it suffices to show that

sup
a60 3=1

=  op (m1/2) . (3.14)

Define ut = ut — Ut- By the definition of Ut, we have w^j = wuj  — Wy,j for 
j  =  1 , . . . ,  T  — 1, where

wu,j =  (P ~ I3) wx,j +  ~  <*) ™z,j +  SwA2j  (3.15)

and {Azt}J=1 =  {zt -  zt}t=i =  {zt(k) -  Zt (fco)}£=i- Hence

Iuu,j -fUU,j = Iuu,j "t- 2 Re Iuu,j

and the left-hand side of (3.14) is bounded by

m m

^  1 I I u u , j  ~  I u u , j  | ^  ^   ̂ { I u u , j  +  2 | I u u , j  | )
j -1 j=1

2

< 5 > « y  +  2 ( E 7̂ )  (3-16)
J=1 \i= i /  \J=1 /

due to the triangle and Cauchy-Schwarz inequalities. By the Cauchy-Schwarz 
inequality and (3.15),

Iuu,j < 3  ( h ~ P )  \w x j \ 2 +  3 ( 5  -  \wB,j\2 +  36 \wA2j \2 .

Further, Lemma 1.5 implies that E  (\wz{[TT]),j\2 /  |^ j |2) < C  uniformly over 
integers 1 < j  < [T/2] and over r  G [0,1] for some C, and Condition 1.4
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implies that \ A j \2 X2dx < C uniformly over integers 1 < j  < [T/2]. Therefore

2 dx

j =1 j = l

ẐZ,jBy Lemma 1.7, 5 — 8 = Op (T 1/2), therefore the contribution of ^

into the first term of (3.16) is Op ^(T/m)2dx_1̂  which is op (m1//2) by Con
dition 3.4. Likewise, the contribution into the first term of (3.16) due to 

— p'j Ixxj  is Op ^(T/m)2dx_1̂ . Further, we show that

sup IazAzj = Op (T-1) . (3.17)
l< j<[T /2]

For any D > 0 and any finite K,

p (  sup W j > £ )  < P \ K  E  x2t> D )  + p ( k - k o  > k ) .

(3.18)
By the Markov inequahty, the first term on the right of (3.18) is bounded by 
cr2i f 2ID  < e/2  for sufficiently large D. The second term on the right of (3.18) 
bounded by e/2 for large K  by (3.2). It follows that (3.17) holds. This implies 
that the contribution due to Iuuj into the first term of (3.16) is op (ra1/2) . We 
have thus shown that the first term of (3.16) is Op ^(T/m)2dx_1̂ .

Proceeding in a similar way, we obtain that ^uu,j = Op (m  ( ^ ) 2d) 
and hence that (3.16) is

1 1 — 1

by Condition 3.4, because dx + d < 1/2. ■
P ro o f of P roposition  3.2. Using the Cramer-Wold device, we need to 
prove that for any finite constants ctk0-K, • • •, Ofc0+/c5

k o + K  k o + K

^ 2  atu*t ^  ^ 2  a tv*’
t = k o ~ K  t —ko—K
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From the definition of u* in Step 5 of the bootstrap, we obtain

M  T

ut =  E ^  E * ^ 1 (s = t - 1 m°d T ) •
1=0 3=1

For large enough T, ko — K  > M  +  1 and we can write u* =  YliLo ^i£t-i and

k o + K  M  k o + K

E a tu*t =  ^ 2 k  E at£t-i’
t= k o ~ K  1=0 t= k o —K

Let u  > 0 be such that 9, 6 + 3u> and 9 — 3lj are continuity points of the 
distribution function of ut. Then

(k o + K  \ /  M  k o + K

X  < 61 < p* X 6* X  at£U < o +
t= k 0- K  /  \  1=0 t= k 0- K

M  . k o + K+P' E ~ b>) E
1=0 t= k a ~ K

>U) .

By the Markov and Cauchy-Schwarz inequalities, the second term on the right 
of the last displayed inequality is bounded by

1
u

M  k o + K  IS (  M  2\  2

X  (*< - b‘)  X  N £ + N < -  ^ E  a

k o + K

E
1=0 t= k 0- K  "  \  1=0

- 1.which is K uj op (1) by Lemmas 3.13 and 3.15. Further, for any N  > 0,

(M  k o + K

E 6< E  <*^-<<0+
1=0 t= k 0- K  J

(N  k o + K

^ 2 b i  ^ 2  a t £ t - i  <0  + 2UJ 
1=0 t= k 0- K  

/  M  k o + K

+p* E  E
\  l= N +1 t= k 0- K

>  UJ . (3.19)

By the Markov inequality, the second term on the right of (3.19) is bounded
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by

~ 2 E 'UJ1

M  k o + K

Y b‘ Y  a,e*_i
l —N + 1  t = k 0- K

~ 2 M
= C K  2^§ Y  b‘■

UJ1 'l=N+1

Due to the square summability of bi, the sum on the right of the last displayed 
equality tends to 0 as N  —> oo. The first term on the right of (3.19) is bounded 
by

/  N  k o + K  \

p  ( at£t~l - e +  2uj)
\ l = 0 t = k o - K  /

( N  k o + K  \  /  N  k o + K  \Y b‘ Y ate*t-i < 6 +  2oj J — P [Yb> Y at€t-i < 0 +  2a; I
1=0 t = k 0- K  J  \  1=0 t = k 0- K  )

where the first term is bounded by

( oo k o + K  \

y*] bi y ]  cxt£t-i <  0 +  3a; j +  P

1=0 t = k 0~ K  J

oo k o + K

y  ^  ^ 2  oitEt-i
l = N + 1 t = k o ~ K

> U

(3.20)
The first term of (3.20) is bounded by o2uj~2C K 2 Y2Zn+i by the Markov 
and Cauchy-Schwarz inequalities.

Fix e > 0. Collecting results, we have that for any rj > 0.

( k o + K  \  /  k o + K  \

y  a tu*t < 0 J < P  I ^ 2  a tut < 0 +  3a; J

t = k 0 - K  J  \ t = k 0- K  J

+
( N  k o + K  \  /  N  k o + K  >

Y b‘ Y ott^t-i — ^ d* 2a; j — P ottSt-i < 0  + 2oj
1=0 t = k 0- K  )  \  1=0 t = k 0—K  J

(3.21)

with probability at least 1 — e/2 for large T  and N. Lemma 3.16 and Cramer- 
Wold device imply that for any 0 and for any fixed N, the last term on the 
right of (3.21) is smaller than 77/2 with probability no smaller than 1 — e/2
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for large T. This means that

/  ko+K  \  /  ko+K \

p* ( 5 3  atu* — Q ^  ( 5 3  atUt — ^ +  77
\ t= k 0- K  J  \ t= k 0- K  J

with probabihty at least 1 — e for large T  and N.
In a similar way, it can be shown that

/  ko+K  \  /  ko+K \

P I ^ 2  a tu t < 9 — 3u j \ — T ) < P *  I a tu t  ̂e )
\ t= k 0- K  J  \ t= k 0- K  J

with probability greater than 1 — e for large T  and N. The lemma now follows 
because lu, e and 77 are arbitrarily small. ■

Define Z& =  (Z^ — Z^) sgn(fc — k).
P ro o f of P roposition  3.3. Let u* =  (uf, . . . ,  ulj)' and u* =  (fi{,. . . ,  Uj)'. 
By definition, (k) =  ||u* (fc)||2 — u* (jcj =  Q? (k) +  R? (k ), where

Q*T (k) =  5*Z'~kMhWkZ{5 and

R^(k)  =  2 tiz'kM w hu' + u«{MhWh- M w k)u\

By standard arguments, for any K  > 0,

k * - k > K )  < P* f inf 
/  \ n c (k ) k - k N C ( K ) k ~ k

(3.22)
where N c  (K ) is defined in (2.47). Fix e, 77 > 0. Expectation of the first term 
on the right of (3.22) is equal to

5 Z'tM^ wkZ i6 \ 
P  I inf — * ’ * * < A I .

k - k

By Lemma 2.10, there exists A > 0 such that for every e > 0, there exists 
K  < 00  such that the last displayed expression is smaller than e/2 for large 
T. Select such A.
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Write
(k) = R\t (k) +  R%T (k) +  R*3T (k) +  R\t ( k ) ,

where

R \t  (k) ~  25 ZAM*usga (k  — k̂ j , 

i?2j> (&) =  25 ZAML ( u * — u*) sgn (k  — k̂ j ,

fljr(fc) =  - 2 6 'z ^ M m  (W'kMLWk) - 1 W'kMLu' sgn (fc -  fc) ,

RlT (k) =  u*'(MLyvk — Mt}wk)u*.

The contribution due to i?Jr  (A:) into the second term of (3.22) is bounded by

A
sup

N C { K )

Z'AMtu*

k — k
>

16||5||
+  P * ( ||i | |  >2||<S||). (3.23)

By Lemma 3.23, the first term of (3.23) is smaller than 77/4 with probability 
at least 1 — e/4 for large K  and T. Since 5 = 5 +  Op (T-1/2) by (3.3), the 
expectation of the second term of (3.23) is op (1).

We now turn to the term R%T (k ). Write

T  M

<  -  u) =  £  £; £  (6, -  6,) I (S =  i -  ( m od i’)
3=1 1=0

and define

T  M  /  1 T  \  M

rt =  S  (&< “  b‘) I (s =  4 - 1 modi’) -  I =  ~ b‘)  ■
3=1 1=0  \  3=1 /  1=0
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We have

sup -
1

Z'AML(u*-u*t ) < sup -
N C ( K ) k - k \ n ° ( K )

k,k '  2
i2m >.n!

A: — Ar t

x I sup
1 ,̂fc

^ E ,*2

A -  A

Since (a — b)2 < 2 (a2 +  fe2), we obtain

/  T  M

r f  < 2 I ^ 2  e*s ^ 2  (f>i ~ bi) I (s =  t -  I mod T)
.3=1 1=0

«(*£<) ( g M (3.24)

By the Cauchy-Schwarz inequality, the first term on the right of (3.24) is 
bounded by

T  M  M  2

E e»2E I(s=t_i  modT) E ( ^ -i>p) •

5=1 1=0 p = o

For sufficiently large T,

k,k T  M

sup
N C( K )

= sup
N C( K )

^ t t E E ^ E  I (s  = t — I mod T)
k k\ t s=i i=o

M  k,k MM  AjjAi M  m fcjfc

^ t t E E ^ E * *  - A r E #k k r—ir=0 t r = 0  N ' ( K ) k - k \

=  MOp* (1).

Since M ^ 0 — bî j is Op (Mm~2T  log T) = op (1) by Lemma 3.13 and

162



Condition 3.4, the second term on the right of (3.24) is bounded by

2

( 1 T \  M 2
M j 2 ( b i - b i )  = o p. (  1)

s = l /  1=0

Therefore

and also
sup

N C ( K )

sup
N ° { K )

1

1 k,k

—T| X / r *2 =  ° f  C1)k - k

because sup^c^) k - k

k — k

- l

ZAML ( u * -  u*) = op* (1)

II II2 is Op (!)• ft follows that

p* I W L A .  ^  D*.  
sup ■ —  > — I < P \ sup

N C ( K ) k - k N C ( K )

+ p * (|

Z'a Ml (u* --u*)

k — k

V to IE

where the first term on the right is smaller than 77/4  with probability equal or 
larger than 1 — e/4 for large K  and T.

A A

Regarding R%T (/c), Lemma 2.8 implies that Z'A M LW k /  k — k is Op (l) 

uniformly on N c (K)  and (W^M.W^ 1 is Op (T_1) uniformly on N C (K).  
Further, WkMLu* is Op- (T1/2) uniformly over 1 < k <  T  by Lemma 3.22. It 
follows that

l^3T W l ^ \ ^  VP* | sup
N C ( K ) k - k

with probabihty no less than 1 — e/4 for large T. Finally, since RAT is Op* (1) 
uniformly on N °  (K) by Lemma 3.24, we have

p .  j su p  B z i M l  >  *  |  <  p .  ^ s u p ^ W I  >  |
N C ( K ) k - k

with probabihty larger than 1 — e/4 for large K  and T. Collecting the results,
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the bound k* — k = Op* (1) is established. ■
P ro o f of P roposition  3.1. Write k* = k +  arg minre:r.A_£ S^(k  +  r). Fix 
K  > 0 and let

k* =  arg min (k) = k + arg min S? ( k +  r ) , 
k £ N ( K )  \ r \ < K  \  J

where N  (K ) is defined in (2.46). We have

p* [%' -% = j )  =  p* ( e - k = j,

+p*(r-fc  = j,

< k )

fc* -  k\ > K )  . (3.25)

Since conditionally on data, the event f  fc* — fc < /sT 1 is equivalent to the 

|A;* =  fc*|, the first term on the right of (3.25) is equal toevent

k * - k > K ) •

Let m  =  arg minmĜ  W°  (m) and rh =  argmin|m|<^ W°  (m). Arguing as 
above, P (m = j)  = P ( m  = j)  — P (rh = j , \m\ > K) + P ( m  = j, \m\ > K ). 
Therefore

P* ( k ' - k  = j \  -  P (m  =  j ) | < |P* ( k ' - k  = j \  — P ( m  = j )

+2P* ( | * * - * |  > K )  +2P( | to |  > K) .  (3.26)

By strict stationarity of Xt and ut, the conditional joint distribution of 
{ Z ^ r — Z ^y  u* is equal to the conditional joint distribution of (Zk0+r — Zk0)' u* 
for |r| < K,  and the finite dimensional joint distributions of distribution of 
(Zf,+T — Z ^y  (Z^+r — Zj.) is equal to the finite dimensional joint distributions 
of (Zk0+r — Zk0)f (Zk0+r — Z kq) for r  £  Z. Therefore by Lemma 3.25 and 
Proposition 3.2,

SJ. (k  + r )  £  S' ( Z ^ r  -  Z j  (Zko+r -  Z k0) S -  2<S'(z*°+’" z*°)'u 

on |r| < K . The distribution of the right-hand side of the last displayed
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expression is the same as distribution of the process W° (r). By assumption, 
(8'xt)2 ±  26'xtUt has a continuous distribution. Therefore the process W° has 
a unique minimum,

k* — k = arg min S? ( k +  r) —> arg min W° (r) ,
\r \< K  1 \  J \ r \< K  V '

and the first term on the right of (3.26) is smaller than 77/3  with probability 
at least 1 — e/3 for large T. The second term on the right of (3.26) is smaller 
than 77/3 with probability no smaller than 1 — e/3 for large enough K  and T  
by Proposition 3.3. The third term on the right of (3.26) is bounded by 77/3 

for large K  because rh = Op (1). In sum, P* (k* —k = j >j  P (m  = j)  for

each j  and so k* — k —> arg minm W° (m) as required. ■
Proof of Theorem 3.2.

Prom the bootstrap model (3.10), we have

y ' = X 0  + Zt 6 + u* = W ,l . Ml [ ^  ] +(Z-k -Z -k.)5  + u*,

where y* =  (7/1, . . . ,  yr)' and u* =  (uj , . . . ,  u^)'. Therefore

^ ( r - s )  = \ k w '*-m V k )  z y )~5

Proceeding as in the proof of Proposition 2.8, we obtain

-1  '  - 1
i w . ) “ *  ( ;  - 1

and
(zt -  z-k.) = op. (r -i)
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Lemma 3.21 implies that

- j . H 5 . i t . -  j .  ( ) .
y/ T k J

By Proposition 2.2, S = 5 + Op (T-1/2) . The theorem follows from these 
results and from the continuous mapping theorem. ■

3.B  Lemmas

Let us introduce the following notation:

h i  =

h i =

1 m
— —  y2m  + 1

3 = —m
m

2 sin

1 +  2 sin ( + +
. + i  V 2 /j=—m x '
1 m

2 d

2d

'uu,l+j ?

'uu,l+j

3=—m
2 sin ' A,w

2d
fuu ,l+ j

for I =  m + 1 ,. . . ,  [T/2]. In what follows, when supremum is taken over values 
of Z, the range is Z =  771 +  1 , . . . ,  [T/2] unless stated otherwise.

Lem m a 3.1 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 hold. Then

E
[T/2] hi -  hi

T i ^ +i hi
cos (r \ i ) =  0 1 -

Proof. The proof is a standard extension of Theorem 1 of Hidalgo and Yajima 
(2002), and it is omitted. ■

Lem m a 3.2 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 hold. Then
(a) uniformly in 1 < r  < M ,

1 [T/2] h h ,  V
1 £  ^ h cosrXl = 0p T +
1 h  V /

(3.27)
l=m+1
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(b)

and
( c )

1 11-/21 / .  - ,.2
T  5 3  { b i - h i j  c o s r A ;  =  O p  ( t o - 1 ) ,

Z—m+1

sup
Z

hi -  hi =  O p  ( 1 ) .

Proof, (a) This bound follows from Lemma 3.1 and the Markov inequality.
(b) By an obvious extension of Theorem 2.1 of Hidalgo and Robinson 

(2002), E  (hi — hi) = 0  (m *) uniformly over m  +  1 < I < [T/2], and so

E & i ( k - h , ) 2 = Op (m -').
(c) Write

sup
i

hi — hi < sup \hu\ +  sup \h2l\ +  sup | / l 3z| , 
I I I

where

hu =

h2i =

hzi =

1 771 /  
2m"-t-T .53  h l+ i (

1——m  '

Iu u ,l+ j  2 t t

hz
2m +

fuu ,l+ j G

r  £  ( g ' « «  - ' )  •
~ — m  \  C  /

3 = - m
m

3=—m
m

2m + i  5 3  X)
3=—m  N 6 '

Noting that (supz |flz|)P < Sz af f°r p > 0, we have

2 [T/2],  [T/2] /  m  n

( s u p m )  < 5 3  ( 2^ 1 . 5 3  ^ ( 7
x '  Z—m+1 \  3=—m  N

uu,l+j 27T
2 1ee,l+jf  , • /T2 ^Juu,l+3 e

(3.28)
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Proceeding as with the proof of (4.8) of Robinson (1995b), the expectation of 
the right-hand side of (3.28) is bounded by

Cm  P 3  log2 (I + m) log3 T  
I

so that by the Markov inequality and Condition 3.4,

sup \hu\ = Op (m ~1/2 log3/2 T'j = op (1).

Next,

,  \  4 [T/2] /  ro f  v \ 4

(su p |M )  < £  ht —  £  . (3.29)
v '  l=m+ 1 \  j=—m J

By the arguments in the proof of Theorem 7.7.4 of BriUinger (1981), the 
expectation of the right-hand side of (3.29) is bounded by

[T/2]

C  ^  hfm ~2 < C Tm ~2 = o (1)
l=m+ 1

because his a bounded function. By the Markov inequality, sup* |/i2/| =  op (1). 
Further, by the Holder inequality,

/  \ 4 1 m /27r \ 4
(supIhztI) < sup (h,+ j- h t)4 £  £  - 1

because hi+j =  hi +  O (m/T) uniformly in I and j  and because is an i.i.d. 
sequence with finite eighth moments. In sum,

sup h i -  hi =  Op (1)
i

as required.
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Lemma 3.3 For I =  m + l , . . . , [ r / 2 ] ,

1 m f xs

h r , £  > ! «  s
j = —m  \  l —m

0 < 6 < 1, 
2m + l  ~  1 Af_„ S<  0.

Proof. When 0 < 5 < 1, the function A5 concave and so (Af_j +  AJm) /2  <  Af 
for — m < j  < m. The bound easily follows. When 8 < 0, convexity of the 
function X6 implies that

1 m .

—Y E  *  2 (A‘- m +  A'+m) -  A'-™'2m + 3=—m

Lem m a 3.4 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 hold. Then
(a) uniformly in 1 < r  < M ,

l ^  h - h  , „  /  _i lo g r \  „  (  s log2T \
y  E  ~ ^ —  cosrAj =  Op (jn  * ~ ^~ J  +  Op " y ~ J  , (3-30)

and

(c)

Proof. Let us define

1 [T/2] /  x 2
-  ^  =  Op (m-1)

Z= 7 7 1 + 1

sup
z

hi -  hi =  oP (1) .

<t>j = ( d - d ? )  log 2 sin I ^

and
_ i+j hi+j

ul 2m  +  1 p\ hi
2?r 1 ^

Qpl ~  _2 O™ , J /  v
j  = ~  771

Iee,l+ j ~ 1 •
<7
27T

(3.31)
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for p > 1. We first observe that hi =  (2m +  I)-1 ^+j» so that by the
Taylor theorem, hi =  hi +  Op (M -2) uniformly in m  +  1 < I < [T/2].

(a) By the Taylor theorem,

ht -  hi

2m  +  1 I V 2
3 = - T

8 (d — d̂ j 

2m +  1 j= —m
2 sin W+j 2d

log3 2 sin Am.Z+j >(3.32)

where J is an intermediate point between d and J. The first term on the right 
of (3.32) is

h i  ( q u  + q 2i) + 2m + j- XI + 2^+j)  ^+J (
j ——m  '  '  '

+ 2 ^ n  E  + 2 ^ ) h,+j-n = —m ' '

Iuu,l+ j 27T

fuu ,l+ j &
2 Iee,l+j

(3.33)
J=—m

The contribution of the first term of (3.33) into the left-hand side of (3.30) is 
bounded in absolute value by

sup
z

\  1 [T/2]

) y  E  i®‘+ = °»(m_1)
'  l=m+ 1

because h is bounded and bounded away from zero, hi =  hi +  O (M  2) uni
formly in I, d — d = Op (m-1/2) and because

E
\

9*

d - d ]

< Cm 1/2.
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By the Cauchy-Schwarz inequality, the square of the contribution of the second
term of (3.33) into the left-hand side of (3.30) is bounded by

n  [T/2]

l= m + l

Now for p > 1,

2m  + 1 i ? ,+i + 2^ +i)  hl+i ° l  h t ''+i
(3.34)

<

1 0 f+ j , /  Iuu,l+ j 27T

2m  +

771 /

1 X) loS2P ( 2 s in
j = —m  '

J =  771

^l+j E luu ,l+ j _  2tt

Juu,l+j v e
(3.35)

Proceeding as with the proof of expression (4.8) of Robinson (1995b), we 
obtain

\  fuu,l+j J I 3

where the constant C  does not depend on I and j .  Since log2p ^2 sin < 
C\og2pT, the right-hand side of (3.35) is bounded by C (I — m)-1 log (I — m) 
x log2p T. By the Cauchy-Schwarz and Markov inequalities, (3.34) is

p = i Z = 7 7 l+ 1
m

n  (  _j log4 T  , _ 2  log6 T ^ ^  (  .jlo g 4 7 ^
=  O p l m  j ,  m  — j  =  O p  I m  —  1

and the contribution of the second term of (3.33) into the left-hand side of 
(3.30) is Op (m-1/2T -1/2 log2 T ) .

Regarding the third term of (3.33), we have by standard arguments that



uniformly in m + 1  < I < [T/2] for p > 1, and so the contribution of the third
term of (3.33) into the left-hand side of (3.30) is

m2 log T
m  T

(3.36)

The first term of (3.36) can be written as

[T/2] /  / 2 \  ,  [T/2]

j  ( * + 1 )  “ • ' A' + 1  J £ ,  ( * + ? )  ( s  -  0  (137 )i= m + l

Since for p > 1,

T / 2

\  l0gP 2 Sil1 ( y ) C°S = ° (r_1 l0g 0

by Theorem 111-23 of Yong (1974), the first term of (3.37) is Op (m-1/2) 
o (r-1 logr). Also, since logp |2sin (^-) | is absolutely integrable for p > 1 
and supf hi/hi — 1 = Op (M -2), the second term of (3.37) is Op {m~l/2M~2) 
which is op (m-1) by Condition 3.4. The second term of (3.36) is 
Op (ra-1/2m2T -2 log2 T) and so the total contribution of the third term of 
(3.33) into the left-hand side of (3.30) is

op (m~1/2r _1 logr) -I- Op (ra-1/2M -2) +  Op ^m3/2^ ^

=  op (m_1/2r _1 logr) +  Op 

by Condition 3.4.
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Finally, the contribution of the second term on the right of (3.32) into the
left-hand side of (3.30) is bounded in absolute value by

C d - d
3 1  J T  P V 2] /  .

1+3 (3.38)
l = m +1 ] = —m

Employing the arguments from the proof of Proposition 3.1 and applying 
Lemma 3.3, we obtain

j = —m  j = —m  x

By the Markov inequality, expression (3.38) is

/ 1 [T/2] / /  ™ \- 2d\
° p  i m ~ 3 / 2  l o s 3 T) °p [ t  £  ( ~ t ~  ) I =0p ( m ~ 3 /2  l o e 3 T) ■

Y l = m + 1 J

Collecting the results and applying Condition 3.4, we arrive at the bound

[T/2]

T
hi — hi

l = m +1 hi
cos r \i = Op I m -i/2 lQg2r 3/2

ji2

(b) By (3.32), (3.33) and the Cauchy-Schwarz inequality, the left-hand side 
of (3.31) is bounded by

9 [T/2]

f  £  («ii+ <&i)
l = m +1

n  II!3 1 m

+ r  £  £  ( # + * ? )
t = m + l  j ——m

6 1 i m
+ C ( J  -  d )  tog* r _  £  £  (3.39)

3 = —m
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The first two terms of (3.39) are Op (m~2) and Op (m_1T _1 log4 T), respec
tively, by the arguments employed in the proof of part (a). The third term of 
(3.39) is bounded by CT~l ]C!=m+ 1 (0j +  fij) which is Op (m_1) by Proposi
tion 3.1 and by the integrability of the function log2p |2 sin (A;/2)| for p >  1. 
We have m 1 m j2

1 r2 _  1 *2 ■Luu,l+j
2m  +  1 ^  uu'l+j 2m +  1 Juu'l+j f 2 . , , 'j= —m j= —m Juu,l+j

By the arguments in the proof of expression (4.8) of Robinson (1995b), the 
expectation of the factor IuUX,i+j/fuuj+j O (1) uniformly in integers 1 < j  < 
[T/2]. Moreover, f uu (A) < CX~2d for 0 < A < ir by Condition 1.4, therefore 
by Lemma 3.3,

-i m  m j2
p  1 V '  T2 — 1 f2  p  uu,l+j

2m + 1  h L  2m + 1

C
j = —m  3 = —m

m

< ^ T E2m +
3 = —m

l+j

pi ™
< ^ T T E ^ < C A -  (3.40)

3  = — T T l

and so (2m +  1) 1 E  I lUyl+j is O (((/ -  m) /T ) 4d) uniformly over I =

m + 1 ,.. . ,  [T/2]. Discussion of the sum T -1 SEm +i (V ~ m ) /T )-4d for values 
d G [0,1/4), d =  1/4 and d G (1/4,1/2) together with the Markov inequal
ity leads to the conclusion that the fourth term of (3.39) is Op (m_3log7T). 
Employing Condition 3.4, we conclude that (3.39) is Op (m-1).

(c) Noting that supz |az| < Kl and supz \ai\ = (supz \ai\2) ^ 2 and using 
(3.32), (3.33) and the triangle and Cauchy-Schwarz inequalities, we obtain
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that supi hi -  hi is bounded by

/  [T/2] \  2

c \ ] C  ( ? i i+ 4 )  + C  sup I fa + t f  I
y / = m + l  J  ^

( , , 6 [T/2] 1

2 \  2

(3.41)
j = —m

By the arguments employed in parts (a) and (b), the first, third and fourth 
term of (3.41) is Op (T 1/ ^ - 1 ) , Op (m-1/2 log2 T ) and Op ( r l/2m ~3/2 log7/2 T^j, 
respectively. Further, it is obvious that by Proposition 3.1, sup* | <̂  +  </>21 =  
Op (m ~ 2 logT j . Condition 3.4 imphes that supz hi — hi| =  op (1). ■

Lem m a 3.5 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 hold. Then fo r i  =  
771 +  1, . . . , [T /2 ],

(a)
 ̂ m

, I ^   ̂ \Iuu,i+j ~~ luu,i+j I =  O p ( t  2^ ri,
2m  +

j = - m

(b)
-  m

2m +  1 ^  (Iuu,i+j ~  Iuu,i+j) — Op (T  ) si,
j = —m

where the Op terms are uniform over I = m +  1 , . . . ,  [T/2] and where

E\r,\ < D and E  |s/| < D
I -  77i\ - 2{d*+d)

T  )  V T

with a constant D that does not depend on I and T.
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Proof, (a) By the arguments employed in the proof of Proposition 3.1, it is 
sufficient to examine the behaviour of

m  \  2^  f t  v /  ^  t fb I f  1

2 ^ T l  ^  +  ( 2 m + ~ l  ^  )  ( 2 m + ~ l  ^  /u “',+ j I ■
3 = —m  \  3 —- m  /  \  j = - m  /

(3.42)
By (3.15) and the Cauchy-Schwarz inequality, the first term of (3.42) is bounded 
by

2m +  1 f  (^  _  ^ )  ^xx’l+i "b ^ ^AzAz.Z+ĵ  •
j ——m  '  '

Employing the arguments from the proof of Lemma 3.4, we obtain

1 m n  rn / /  \  —2d*

j = —m  j = —m  x '

The same bound applies for E  (2m +  l ) -1 Y ^ j= -m  ^ x x , i + j  • bi a similar way,

E  (2m + I)"1 £ ”l_ m / uu,!+j < D ( ( l -  m ) /T ) -2". The fact that (/? -  ,§) =  

Op (T-1) and f<5 — 4^ =  Op (T-1) together with bound (3.17) and the Cauchy- 

Schwarz inequality now imply that (3.42) is bounded by Op ( T~i J  rt where 

E\r,\ <£>((/ — to) /T)~dx~d.
(b) The Cauchy-Schwarz inequality indicates that we need to investigate the 
stochastic magnitude of

 ̂ m  m  \  2 /  i m  \  2

2m +  1 / *y+3' +  ( 2m +  1 I ( 2m + 1 A  ) '
3 = - m  \  3 = - m  /  \  3 = - m  /

(3.43)
Another application of the Cauchy-Schwarz inequality bounds the first term 
of (3.43) by

c ( p - p f  m c(4 -4 )4 » C(54 m
2m + 1  “ •'+■< 2m + 1  2m + 1  AtAW

j = —m  j = —m  3 = —m
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From (3.40), we have (2m +  1) 1E  _m I%U}l+j < C \ ^ .  In a similar way, 
it can be shown that (2m +  I)-1 E Yl’jL-m ^xx,i+j — Furthermore,
the arguments used in the proof of Lemma 1.11 indicate that for zt (k) =  
ztl  (t < k), E  ( l2Zjj/ f xxJ) =  O (1) uniformly in 1 < j  < [T/2] and 1 < k < T. 
Therefore we have also

1 m

E -    V  l f iM  < CX74
2m +  1 '  3 ~

4:d>x
m

3=—m

The conclusion now follows in the same way as in the part (a). ■

Lem m a 3.6 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 hold. Then (a) uni
formly in 1 < r  < M,

A V1 [T/2] h -  h , x
-  E  — - c o s r X i =  ° p  ( T ~ ^ )  >
1 1 h‘ v '

(b)

( c )

1 m  /  x 2

f  E  {h‘ -  K‘)  = ° p ( T ~1) ’
l = m +1

sup
I

hi — hi =  op ( 1).

-1
Proof, (a) Since supz hi = O (1), we have by standard inequalities that

[T/2]

Z=m+1

hi — hi
h

cos r \i
c  [T/2] 1

-  t  2m +  1 ^  \h*,i+j -  Iuu,i+j\-
7=m +l j = —m

By Lemma 3.5 part (a), the right-hand side of the last displayed inequality is 
Op ( r - i )  T - 1 £ ™ + i  n , where

[T/2] [T/2]

l = m + l
T  ^  \  T  

l = m +1

7 m \  ~(dx-\-d)I — m \
<C.

The conclusion follows from the Markov inequality.
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(b) Using part (b) of Lemma 3.5, the proof follows by arguments similar 
to part (a).

(c) For I = m  +  1 , . . . ,  2m, we have

hi — hi
^ m ^ 3m

— 2m  +  \  ^  ~  I u u , i + j | <  2m + T  ^  ^ u u '^  '
j ——m  j =1

h-i — hi = op (m 1/2 )From (3.14), we obtain that supm+i</<2m
For / =  2m +  1 , . . . ,  [T/2], write I =  2mp +  A; for some 1 <  p < M  and 

1 < k < 2m. We have

h2mp+k h2mp+k
j  m

— 2m +  1 E 11uu,2mp+k+j Iuu,2mp+k+j |
3=—m

_j_  ̂ ^  ] \Iuu,2mp+j ~  Iuu,2mp+j
j= —m+k 

- m+k

^ + i  . E  i7**.2mp+j Iuu,2mp+j |
j= m + 1

2m 

4 2m

Therefore for 1 < p < M,

a

SUp h2mp+k h2mp+k 
l<k<2m

_|_ l X̂  \Iuu,l
j= —m  

.. m

"+T E

2mp+j Iuu,2mp+j \

2m[p+l)+j Iuu,2m (p+l)+j \
j= —m

<
j  m

2 m + ~ l  E 2mp+j f  uu,2mp+j |
j= —m  

m

2m + 2m (p+l)+j -fuu,2m(p+l)+j
j= —m
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and

sup
2 m + l < l < [ T / 2 ]

hi -  hi < sup sup
1 < P < M  l < k < 2 m  

M

h2mp+k h2mp+k

SUp h 2 m p + k  h 2 m p + k  
, l < k < 2 mp =  1 -----

M + l  - m

-  2 £  2m + T  ^  |4 u '2mp+J I u u , 2 m p + j  \
3 = —m

which by Lemma 3.5 is Op (T 1/2) Y^=i r2mp where

E
M

^  ^ T2mp
p =  1

so that by the Markov inequality and Condition 3.4,

sup
i

hi — hi = op (m  1/2)+O p (T  1/2) Op (Tm  *) =  Op (T1/2m *) =  op (1)

Lem m a 3.7 Let p be a piecewise twice continuously differentiable function 
on [0,27r] with p  (0) =  p  (27r). Then uniformly in s ^  0,

(a)

(b)

/*Z7r

I p  (A) cos sXdX = 
Jo

/ (p (A) sin sXdX =  
Jo

O (s -1) s real,
0  (S- 2) s integer,

0  (»- 1) s real,
o ( s- 2) s integer.

Proof. Let ti < . . .  < tp- 1, where t\ > to = 0 and tp-1 < tp = 2tt, be the 
points of discontinuity of p.
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(a) Integrating twice by parts, we obtain

_ 7  XJ ( 7 (A)cos sAiti-i + \ J tj v "  ̂ cos sAdA)
1 1
-  {p (27r) sin 27rs — tp (0) sin 0) +  - 5  {p' (2ir) cos 27rs — p' (0) cos 0)5 5

1 r 2n 
— 2 /  v" W cos sAdA. 

s  J o

From here the bound follows easily.
(b) The proof is similar to the proof of part (a) and is therefore omitted.

■

Lem m a 3.8 Let p be a function on [—7r, 7t] that is symmetric around zero and 
twice continuously differentiable on (0 , 7r) with one-sided second derivatives at 
0 and 7r. Then its Fourier coefficients vr = ^  p  (A) e~lXrd \ satisfy

r2 |iv| < C

for r > 0 .

P roof. Let v" be the Fourier coefficient of p '\ that is

A simple algebra gives

(3.44)
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By the Bessel inequality, see for example Zygmund (2002, p. 13),

° °  -I /»7T

^ 2  k 'i 2 -  2^  y  w i 2 dA < 00

because p" is bounded and piecewise continuous. Therefore v" —> 0 and (3.44) 
implies that \r2vr\ < C. ■

Let us define

c, =  -  £  log hi cosrA*, Ct,t = j ,  ^ 2  ^°&hi cosr^i 311(1
i= m + l Z=m+1

cv =  y -  [  logh (A) e~trXd \  =  /  log/i (A) cosrAdA.
4?r 27r 7o

Lem m a 3.9 Under Conditions 1.1-1.5, 2.1 and 3.1-3.4, uniformly in 1 < 
r  < M,
(a) dr — Cr =  Op ( t ~ 2  +  m- 5r-1 l o g ,
(b) cr - c riT =  Op (M -2),
(c) CriT ~ c r =  Op (T~lr~l ),

W  crC<rAi =  0

Proof, (a) By the Taylor theorem,

1 [T/2] /  ~ \
~ dr =  f  ^  (log S i- lo g  S,) cosrA*

Z = 7 T O + 1

(A, -  ft,)1 ! ^ l  f t ,- f t ,  , , 1 ™  [ h i - k f
=  — > — =— cos rXi +  — >  -----5—— cosrA*,

r ^ i  h> r ,= t t i

where 77* is an intermediate point between hi and hi. The right-hand side of 
the displayed equality is equal to

1 [T/2] h I  1 I  I1 hi — hi 1 r-^ hi — hi
-  2_, — f— cosrA, +  — 2__ — y— cosrA,
r  ,= m + l ^  r  ,= m + l

1 ™  ft, -  ft, 1 ™  ( f t , - f t , ) 2
+ T  ~ f — cosr A, +  — V  ,  cosrA,. (3.45)

T , ± i ,  ft, r  ,± 1 ,  wZ=m+1 { Z=m+1
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By part (a) of Lemmas 3.2, 3.4 and 3.6, the first three terms of (3.45) axe 
0 P (T-1/2 +  m_1 + ra-1/2r _1 logr +  ra3/2T -2 log2 T) which by Condition 3.4 
is Op ( r - i  +  log2 r^. By the Cauchy-Schwarz inequality, the fourth
term of (3.45) is bounded by

By part (c) of Lemmas 3.2, 3.4 and 3.6,

=  0„(1).sup
I

hi — hi < sup
I

A \J

hi — hi +  sup
i

hi — hi +  sup 
i

hi — hi

Since h is bounded and bounded away from zero, this implies that sup, rj, =
Op (1). Further, by part (b) of Lemmas 3.2, 3.4 and 3.6,

% x )  ( f a  ~ + f a  ~ 'h‘) 2 + f a  -  ~h> y ) = °p  (m _ i+ r _ i ) = °p  (m_i)
l=m+1 '  '

From here the conclusion of part (a) is obvious.
(b) By the mean value theorem,

1 [T/2] _ i [T/2] i
|C r -C r ,r |< y  ^ 2  I log hi — log ft; = -  ^  ~

l = m +1 ‘ll=m+1
hi -  hi

where r)i is an intermediate point between hi and hi. Since hi =  hi + 0  (M ~2) 
uniformly in I and therefore also supt \r]i\~1 =  O (1), the last displayed expres
sion is Op (M~2) — Op uniformly in m  +  1 < I < [T/2].

(c) By symmetry, we have

 ̂ T m 1  ̂ /»tt

Cr,T ~ Cr = —  loS hi cos r \i  -  —  /  log h (A) cos rXdX
2T i=tti 4*  J - *
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which by the formula of Brillinger (1981, p. 15) is equal to

T T~2n 2 J h (A)
I  [ *  ( t A _
T Jo  \  2tr 

r  f 2ir (  A r A1 1 \
T  Jo (  2tt _ 2tr. 2 )

1 \  h! (A)
cos (rA) dA

— -  ) log h (A) sin (rA) dX. (3.46)

Since the function h is piecewise twice continuously differentiable, the first 
term of (3.46) is O (r_2T _1) by Lemma 3.7 and the second term of (3.46) is 
O (r-1T -1) uniformly in r. Therefore — cv =  O (r_1T _1).

(d) Since function log h (A) is piecewise twice continuously differentiable 
on [0,7r], Lemma 3.8 implies that

E
r= M + 1

eve, ir \ i c

r= M + 1 r = M + 1

Let us denote ^  (elAj) and 4  (etAj). 

Lem m a 3.10 Under Conditions 1.1-1.5, 2.1 and 3.1-3.4,

sup
1 <j<T

= Op .Wj  -

Proof. By the Taylor theorem,

( | j  -  i )  = f | f > e ^  -  E  ̂  |  - 1
/  00 M  \

=  Y.Cre,rX‘ ~ E ^ 6" ^  ■

M

. r = l r = l

where 0 < \ r j j \  < cre*rAi —  5 ^ 1 1 C r e % r X j  • The last display is equal to

/  00  M  M

^  E  ^e<rAi+ E ( * - ^ eirAi+ E - * ) eirAi
\ r = M + l  r = l  r = l

M  \

+  ^ ( c r - c r)eirM
r = l  /
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By Lemma 3.9, the bracket of the last displayed expression is o(M  x) +  
OCT-M ogrH O pCM -^+O p (M T ~ \ + m -h o g 2 T ) which is Op (tiT 'T tS  = 
op ( 1) by Condition 3.4. This also implies that s u p ^ - ^  \r]j\ = op (1) and 
therefore s u p ^ - ^  \eT1̂ \ — Op (1). Since sup1<J<T \tyj\ < C  by (3.5) and Con
dition 3.3, we obtain sup1<J<T 4fj — = Op as required. ■

Let us denote 7  ̂ =  (l — etXj) d and 7 j = (l — etXj) -d

Lem m a 3.11 Under Conditions 1.1-1.5, 2.1 and 3.1-3.4, 
(a)

sup
l< J < [T /2]

2 i - i
%•

=  Op (m  h o g r ) ,

0>)
sup

i<j<ir/2]
^ - 1 = Op (m  2 log T^j .

P roof, (a) For 1 < j  < [T/2], write

=  (1 -  eiXi)d~* =  ( 2 sin e<d- S)e

where 0 < 9j < 2n. By the mean value theorem,

„ • A,- 2 sin-^- 
2

d-d
- 1 < In ( 2 sin ^ (2 si“ ~2 ) d - d

where 0 < |5| < d - d . Since for 0 < A < tt, 2 sin ^ > -A, we have
—  —  '  Z  —  7T '

sup
i<j<[r/2]

ln | 2 s i n ^ < In f 2 sin < In [ —Ai
7r

Further,

n • ^  («  • A1sup 1 2 sin I < I 2 sin —
i < j < [ t /2] V 2 J \  2

- d - d

< | - A ,
7r

=  O (lnT)

\i-d\



because by Proposition 3.1, d — d = Op (rn 1/2), and because by Condi
tion 3.4, T m~1/2 = em~1/2logT -> 1. It Mows that (2sin(Aj /2))d_J =  1 +  
Op (m-1/2logT) uniformly over 1 < j  < [T/2].

Further, by the Taylor theorem, el(d-d)0 =  1 +  O (d, — ctj uniformly in 0, 
and therefore

=  Op (m~ 2 log T^j .sup
l < j < [ T / 2 ]

(b) Part (a) implies that

* - 1
7.7

1± 
7i

1

1 +  Op (m  2 log T^j 

uniformly over 1 < j< [ T /2 ] .  ■

= 1 + Op (rn 2 logT^

Lem m a 3.12 Let ip be a complex function satisfying the following conditions:
C<p\- d as

_  q  uniformly over
There exist constants 0 < Ĉ , < oo and d such that |< (̂A)|
A —► 0+, <p{\) is differentiable on (0,7r], —d 
(0,7r] as A —> 0+, (A) | > 0 for A G (0,7r] and <p(2'K — X) = v?(A) for
A G (0,7r]. Then for r =  0 , . . . ,  M ,
(a)

(A,) e'rX’- ~  j T  <p (A) e"xd \
' O (rT "1 +  T -1) - 1  < d < 0,

O (rT -1 +  T~l log T) d = 0,
. o(rr-1+ ri-1) o < d < i,

(b)

— V '  in ( A A e irA)' =  /  ^  ^ 0 g ^  d  — 1,
T j~ i \  O p * - 1) d > 1.

P roof, (a) The assumptions of the lemma imply that \ip (A)| <  CX for 
0 < A < 7r for some C. We have

(A#) eirA’ ~ ^ j y  W  e""dX  ̂|  |v (A,)| +  £ j f *  |v> (A) | dA
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+
2 [T/2] /  /•*>

2^ E  ( A  (V (A) ^  -  V (Ai) ^ 0  dA (3.47)

The first term on the right of (3.47) is bounded by CT~lX[d =  O (Td~1). The 
second term on the right of (3.47) is bounded by C / QAl X~ddX =  O (Td_1) for 
—1 < d < 1. Regarding the third term on the right of (3.47), we obtain

(tp (A) eirX — <p (Xj) eirXj) dX

-  i  f  d XAj-i<A<Aj JXj-i

-  §  v S f c * ,  W  (A)I +  r  ^  (A)I) *  S  A, “ “ <A, +  " lV>
< c  ( r d~lj~ d~l +  rTd~2j~ d)

for j  =  2 , . . . ,  [T/2], where the second inequality follows from the mean value 
theorem. Therefore the third term on the right of (3.47) is bounded by

[T/2] [T/2] f  0 ( T -1) -1  < d  < 0,
CTd- \ ^ 2 r d+ C T ^  =  0  G?0 +  i  O iT - 'lo g T )  d = 0,

A=2 A=2 [ O (Td- 1) 0 < d < 1.

Collecting the results, we obtain the bound in part (a).
(b) The expression T -1 <P (A?)e%rXj i® bounded in absolute value by

|  b (Aoi + ( f  X >  m  e<rAi - i j ' v (A) eirAdA) + i j j v  (A)I dA-
(3.48)

The first term of (3.48) is bounded by CT~lX^d = O (Td-1). By the same 
arguments as in the proof of part (a), the second term of (3.48) is bounded by

= (  ^ o g T  + l) d -  1,
U  U  \ 0 ( T d- ')  d>  1.
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The third term of (3.48) is bounded by

A, 1 oi'i1-1) d > i .

These results yield the bound in part (b). ■
Let us denote Bj = B  (elX>) and Rj = B j l . Conditions 1.1 and 1.4 imply 

that et has a representation

oo

£t = ^ ^ P iut-i,
1=0

where Pi are square summable and 

with R  (etA) =  B~x (elA) .

Lem m a 3.13 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 hold. Then
(a)

M  2
= Op (m~2T \ o g T ) ,

1=0

(b)
M

Y , { h - P i ?  =  0 9 {m-*T\ogT).
1=0

Proof, (a) Define

T - 1  

j = 1

and write

M  2 1 T - l T - 1    M

E (*« - 8.) = ̂ EE (4 - B >) ( B * -  B *) E e~a^ \  (3.49)
1=0 j=l k=l 1=0
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where

B j - B j  = &

< \% - 7 j | l * i l  +  | 7 j | | + \ i j ~  l i I 

= |73|O p (m -17’2)

uniformly over 1 < j  < T  — 1 by Condition 3.4 and Lemmas 3.10 and 3.11. 
Also, simple algebra yields

M

1=0

M  + l
c_t4A/sin(A(M+l))

sin 4

A =  0, 

A 7̂  0.

Since sin |  ^ for 0 < A < 7r, it is2 7T

Therefore (3.49) is

O p  ( m - 2 T )  h 7 * |  =  O p  K ^ i o g r )

3 = 1  k = l

by the Cauchy-Schwarz inequality and Lemma 1.6. 
Further, by Lemma 3.12,

T —1

6,-fc, =  I J 2  Bje~axi ~  f ’ B  (eiX) e~uxdX =  O (T~H + T~x log T  + T * '1)
j =1 ^

uniformly in I =  0 , . . . ,  M, and so X)z!fo — ^ ) 2 =  ^  {jn~^T +  ra-1! ^ -1) .

Elementary inequalities imply that — — Ov (m~2T  log T).
(b) Define

1 T_1
Pi = ^ Y , Ri e~ilXi  ̂ I = 0, . . .  ,M.

j = l
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Proceeding as in part (a), we obtain that (Pi ~ Pi)2 ~  Op (m  2T\ogT). 
By Lemma 3.12,

3 =1

for I =  0 , . . . ,  M, and so o (Pi ~  Pi)2 ~  O (M T  2). This implies that 
Ei=o (Pi ~ P if = 0 P (m~2T  log T) +  O (m~sT) = Op (m"2T log T). ■

Lem m a 3.14 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 hold. Then

1 T
(3.50)

t= 1

Proof. Assume for simplicity that process {xt} is scalar. From the definition 
of et in Step 3 of the bootstrap procedure,

1 T- 1 M
Ct = - 7 f T , Y . P i m Je ^ l)x=

V  j = 1 z=o 
1 T—l M 1 T—1 M

=  ~ W  E  £  + 7 = £ X > ‘-ft)
V i j=l /=0 V j=l z=o

1 T—l M
+ _ ^  £  £  ̂  ~  Wup> e-*(t-o*j

V ^  j=l Z=o 
1 T—l M

+~ w  £ £ & -  -  “’»■*)
j=i z=o

where the T-th frequency in the sum over j  is omitted because w^ t =  
_  o. Since |a +  6 +  c +  d|2 <  4 (|a |2 +  |&|2 +  |c|2 +  |d|2), we

[  R ( \ ) e - a>' d \  =  0 ( T - 1r +  T - 1\ o g T )
2tt J — -rr
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have

i t  a T (  -\ T_1 M '
^ E ^ ) 2 *  Piwu,je  ̂  ̂ i £t

t =  1 t= l  \ V i  j = l  f=0 ,

„ T —l  M

Write

T —l M

+  r j n  5 3  \ W u d \

j=1 J=0

4 T_1
+ j* 5 3  — wu,j\

3=1

4 T_1
"h — Wu>3 I

j = l

Af T

M

E « e'
1=0

M

J 2 ( p i - p i ) eilXs
1=0

. (3.51)

... . . . .  M .  T

t t ^ E E  /O/^uje i(t l)x* = E « E «  aI (t — / =  5 mod T) — E f t y E " -
V - t  j =1  j= 0  /= 0  3 = 1  i = 0  3 = 1

Since et — Piut-ji we have

T —l  M

£t ~ - 4 E E f t ^ e i(t °A) = E  ft“t - ' - E f t ^ ^ Us
V T  j = i  {=0 f= M + l 1=0 3=1

M

+ 5 3  pi K -*+r ~ Ut~i) 1 (* -  M )
i=t

and therefore by the Cauchy-Schwarz inequality, the first term on the right of
(3.51) is bounded by

+c(x>) U t u.

C

t =1 \ l = M + 1 

M  /  M

, 1=0 3=1

+T E  E  Pi (“<-<+r -  • (3.52)
t=l \  l=t
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Expectation of the first term (3.52) is bounded by

- T  oo /  oo \  ^

c f Y  Y  \pif>v\E  ̂c  ( E  ifti) •
t = 1 l , p = M + 1 \ l = M + l  J

The coefficient p* is equal to Y?j=o Xj<l>i-j> where

Xj = (2n) - 1 f  ( l - e iA)V «dA .
J  — IT

When d > 0, Xj =  O ( j_1_d) by the Stirling formula. Since (fij =  O (l~2), Pi 
is O (Z~1_d) and therefore it is absolutely summable. When d = 0, pt — fa 
and pi is again absolutely summable. It follows that the right-hand side of the 
last displayed inequality is o(l).  The second term of (3.52) is op (1) because 

o \PiI < °° u = op (1) by Conditions 1.1 and 3.2. Expectation of the 

third term (3.52) is bounded by CT~l • When d > 0,

- M /  M \  2 n  m  /  m  \  2 n  M

E \Pi\) < ? E  D " 1̂  < - < T r 2d = ° ( T - ' M ' - 2d)
t = i  \  i = t  )  t = i  V i = t  /  t= i

while when d — 0,

- M / M  \  2 n  m  /  m  \ 2 ^  M

t E I E w )
t= l  \  l = t  J  t =1 \ i = t  /  t= l

By the Markov inequality, the first term on the right of (3.51) is op (1).
To obtain a bound for the second term on the right of (3.51), we observe

that

M

E  -  ft)eilAi
z=o

M

< M ^ ( f t - f t )2 =  Op (T2m -3logT)
1=0

=  ° p  (i) (3.53)

by Lemma 3.13 and Condition 3.4. SinceT 1 |tft,j|2 =  T  1 2 i= i (ui — u)2 
is Op (1) by Conditions 1.1 and 3.1, the second term of (3.51) is op (1).
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Turning to the third term on the right of (3.51), the absolutely summability 
of pi implies that

1 T~1
w.U, J\

3 = 1

M

1=0

T —l

rjp /  j I W U,j W U,j | 
3=1

Arguing as in the proof of Proposition 3.1, we obtain

1 r_1
th y i  \ wu,j ~  wu,j i

3 = 1
T —l  T —l  T —l

<  3  (jS  -  / 3 ) 2 i £ / x x j  +  3  ( a  -  <5)2 1  +  3 ^ / 4i4,
i=i j=i 3=i

For 1 < k < T, supfc T 1 Ylj=i Izz,j < 2T 1 x\ =  0 P (1) by Conditions 
1.1 and 3.2, and s u p ^ x j^ !  IazAzj =  ^ p (^ _1) by (3.17). By Lemma 1.7, 

(ft — fi'j =  Op (T_1) and ^6 — fi'j = Op (T-1). This means that

1 r_1
m y  — ~  Op {T  ) (3.54)

j=i

and that the third term of (3.51) is op (1).
Finally, combining results (3.53) and (3.54), we can see that the fourth 

term of (3.51) is op (1). ■

Lem m a 3.15 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 are satisfied. Let 

* 2 = * ^  E L  Then

Proof. Write

— 7p  ^  ~  £ t ) 2 +  7 p  &  ~  ^ t )  S t  +  Tp £ t -
t=1 t=l t = l

The first term is op (1) by Lemma 3.14. The third term converges in probability 
to o\ by Conditions 1.1 and 3.2. By the Cauchy-Schwarz inequality, the second 
term is op (1). ■
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Lemma 3.16 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.4 hold. Then

Proof. Denote by d  ̂(•, •) the Mallows metric as defined for example by 
Bickel and Freedman (1981). Let FT (x) — T -1 I (et < x), FT (x) — 
T ~1 J2t=i  ̂(£ t — x ) and F(x)  =  P  (et < x). Then

c?2 |'Ft , F^j < c?2 ^Fr, Fj^j ■+■ ^2 (Ft , F ) . (3.55)

Let U be a random variable distributed uniformly on {1 ,2,. . . ,T}.  We have

1 T
d2 Fj^j < Eu (eu — £u)2 = 7p (h  — £t)2 •

By Lemma 3.14, the last expression converges to zero in probability. The 
second term of (3.55) converges to zero almost surely by Lemma 8.4 of Bickel 
and Freedman (1981). Therefore d2 (F ti F ĵ = op (1) and the lemma holds. 
■

For integers 0 <  I < T, let {wa(k)j, 1 < j  < T }  be the discrete Fourier 
transform of the sequence {atI (t < I) ,1 < t  < T } .

Lem m a 3.17 Let r  A cr =  min{r, a}. Under Conditions 1.1-1.5, 2.1 and 
3.1-3.4,

■f £  \Ai Bi \2 ®4([tI1)Ju,{([»i1)j = ^ ^ TAcr^ J _ J A  (e<*) B  I2 dX

(3.56)
on ( r , c r )  e  [ 0 ,  l ] 2 .

Proof. We first prove that

T —l  2

^ £ l W k ( [ r m i | 2 ^ g  j _ j A ( e » ) B ( e » ) \ 2d \  (3.57)

193



on t  € [0,1]. By Lemma 1.1, the expectation of the the left-hand side of
(3.57) is

\tT\ a
T  T

2 T - 1 2 r iT
£

and its second moment is

1 T_1 2 .  m2 X I  l ^ 5 j^ fc ^ |2CUm (% [tT ])J , ^([r7l),j, ^([rT]),fc, ^([r^),fc) 
j,fc=l

1 T_1
+^2 X  ^  ^  l^d-rrD.fcl2

j , k =1 

1 T_1
+^2 X  |Ewi([TT])}jW^[TT]),k\2

j , k = l  

1 T_1
+  T2 X  \AJB3A kBk\2 \B^([TT]),jW^[rT\),k\2 • (3.59)7̂ 2

j,fc=l

We have

/ -  -  \  [tT\ Ccnm{w^[TT\)j,w [̂Tri)j,w^[TT\),k,ŵ [TT]),k) -  < f

uniformly over r  6 [0,1], where =  cum (£f, £*, £f). The first term of
(3.59) is bounded by C T ~3 J2j,k=i \AjBjAkB k\2 which is 0 (T ~ l) by Lemma 
1.1. The second term on the right of (3.59) is equal to

( ^ E l W )  - , r 2 ( g £ | X ( e * ) B ( e “ ) |2dA
3

by Lemma 1.1. Since

' r2 ItT\
rs
T

t=1
<

\ j ~ k  1+ ’
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the third term on the right of (3.59) is bounded by

T —l T - 1

C T ~2 Y  \^}B jA hBk\2 <  C T ~2 Y  l ^ ^ ' l 4 =  0 (!)
\ J -  k\.j , k =1 1+  j —1

due to the Cauchy-Schwarz inequality and Lemma 1.6. Similarly, the fourth 
term on the right of (3.59) is o(l). It follows that

E f  E ivy* K(w)jI2 -»r2 (3 £  l̂1 (eiA) B  (eiA)fdX)  • (3-6°)
2 92 /*7r

Convergence of the expectation and the second moment in (3.58) and (3.60) 
together with the Markov inequality implies that for each r  and cr from [0,1],

1 Y karri)/ * £  \A (eiA) B (eiA) r dX-

Since T - l Z U \ Ai Bj \2w Z ([tT\)  j  ^  i n c r e a s i n S  hi t  and the limiting function 
is continuous, the convergence is uniform over r  G [0,1] by the arguments in 
the proof of Lemma A. 10 of Hansen (2000). This proves (3.57).

Next, (3.57) and stationaxity of imply that also

Tp E \Ai Bi\2 -  = >  \T -  c \ oT [  \A  (e‘A) B  (e‘A) |2 dX
j = l  J ~ n

(3.61)
on ( r , c r )  G [0, l ] 2 .  Consider t  > c r .  Writing

|2 =  \w Z([<rT\),j\2 +  |^ ( [r T ]) ,j  “  w Z ({a T ] ) , j \2

+ 2  R e  (% ([rT]),j -  % [a T ] ) j )  Wt([°T})j

and noting that \ A j B j \ 2 ( % [ t T ] ) j  -  % ([^ r ]),j)  w t ( [ o T \ ) j  is a real number
due to the fact that %([t t])j =  wt([TT\),T-j for all r  G [0,1] and j  = 1 ,... T —1,
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we obtain

T —l

7p ^ 2  \A3Bj \2 (Wt([rT\)j ~  WZ([oT\)j) W Z(W T\),j
3 =1 
T —l

=  \A i B i \ 2 ( l ^ ( [ r n ) j | 2 -  \W ttl<rT]), j\2 -  K ( [ T T ] ) , j  “  ^ ( [ a T ] ) j | 2 )
j = 1

=>. (r _  _  |T _  *1) f t  j T  |A (e“ ) B  (e‘A) |2 dX =  0

by (3.57) and (3.61). This means that the left-hand side of (3.56) is equal to

 ̂ T —l  ^ T —l

f  Y 2 \ A 3 B j \2 ( n ( [ r T ] ) , i  -  % [<rT]),;/) ^ ( [< tT ]) j  +  J ,  ^  l A / 5 /  | ^ ( [ ^ ) , j |
j = l  j = l

=► / V ( e a W A) |2^ -

Noting that cr = r A a  for r > a  and that symmetrical arguments hold for the 
case t  < a ,  we arrive at (3.56). ■

Lem m a 3.18 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.5 hold. Let Bj = 
52iiobiellXj. Then
(a)

and

(b)
Bj
Bj

< C  i j  = [T/2].
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Proof, (a) When 0 < d < 1/2, we have

Bj Bj E v
l = M + 1 

oo

t/Ai
l = M + l

eipXj
p = M + 1

2tt ^ ..................... C °°< = E h.-m <̂  E ^ s f  E'
3 l = M + 1 J Z=M+1 J i= M + l

d -2

d - V

m

where the first inequality follows from the summation by parts, the second
inequality is due to the fact that ELp = M +1

,ipA < 7r/ A for 0 < A < 7r, and the
remaining two inequalities axe due to Condition 3.5.

WTien d = 0, the function B  is piecewise twice continuously differentiable 
on [0,7r] and by Lemma 3.8, fy = O (l~2). In this case,

B i - B U  £  n=°( E r2)=°(M_1)=o(V(J)
l = M + 1 \ l = M + l  J \

(b) WHien 0 < d <  1/2, Conditions 1.4 and 3.5 imply that

- i '

Bj
B,

= B]-1
M
E b‘e'lx’
i—i

When d = 0, \Bj\  1 < C  by Condition 1.4, and (3.62) imply that Bj /Bj

M M

1 = 1 1 = 1

(3.62)
< C .

Lem m a 3.19 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.5 hold. Then

1 T_1 
r E ^ I

3 = 1

Bj -  Bj =  o ( l ) .

Proof. By Condition 1.4, there exists a constant D  such that \A (e*A) 
DX~dx and | B  (e*A) | < D \~ d for 0 < A < 7r. By Lemma 3.18 part (b), Bj

C \Bj\ for j  =  1 , . . . ,  m, therefore Bj — Bj  < 2  Bj  +  2 \Bj\2 < C \Bj
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when 1 < j  < m. By Lemma 3.18 part (a),

PV2] o ri 771 1 ll l “J
< £ x > / i b/ + =  e  î i

.  IT/2J

T E W
i = i

Bj -  Bj
[T/2]

J=1
m

j = m + l  

[T/2]

#7 “  Bj

r< m l / j /

< f E A72(d' +<i)+ ^  E  v * - a (
j = 1 j = m + l  '

- »((?)

, \  2d—2

£m /

772\  l ~ 2(dx+d)
=  0 (1)

because dx +  d < 1 Therefore

1 T_1 
t E w

J=1
Bj — Bj

2 O (T/2]
=  | E î i2

j=i
B , - B ,  + 0  -  = o ( l ) .

Lem m a 3.20 Under Conditions 1.1-1.5, 2.1 and 3.1-3.5,

T - 1

Proof. Denote Y f  ( t )  =  T '1/2 Y%=i Ai Bi™t(lTTi)jwe',j- To show that Y f  (r) == 
0,1 W  (t), we need to show that the finite dimensional distributions of the 
process Y f  converge in probability to the finite dimensional distributions of 
the process Q1//2VF, and that the process Y f  is tight. First, E*Yf (r) =  0 and

/v 2 T - 1

cov* (Y f ( r ) , Y f  (o)) =  ^ E \Ai Bi\2wiVrn).iwi(m ),r
3=1

By Lemmas 3.15 and 3.17,

r* Off ( r ) , Y f  (a)) 4  (r A \A (e») S  (elA) |2 dA =  (r  A a) DCOV

for any (r,a) E [0, l]2. The covariance structure of Yf therefore converges 
in probability to the covariance structure of the Gaussian process 0*W , and
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the convergence of the finite dimensional distribution occurs as long as the 
Lindeberg condition is satisfied, that is,

The expectation of T~l J2j=i \AjBj\21 ^  1S bounded because E l^ j =  a2 and 
T~l \A jB j\2 = O (1) by Lemma 1.1 and Condition 1.4. The conditional 
expectation in (3.64) converges to zero in probability because w£*j has finite 
fourth moment. This means that the Lindeberg condition (3.63) holds and 
therefore that the finite dimensional distributions of Y f  converge to those of

In order to show that Y f  is tight, it is sufficient to verify the moment 
condition (13.14) for Theorem 13.5 of Billingsley (1999). This condition is 
valid if for 0 < p < a < t  <  1 ,

E* |Y f (p) -  Y f  (cr)|2 |Y f (r) -  Y f (p)|2 =  Op (1) (r -  a )2 , (3.65)

_1
T

(3.63)
An et al. (1983) showed that

a.s.

This implies that

< CT2{dx+d)~l \ogT.

The left of (3.63) is therefore bounded by

n i w .
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where Op (1) is uniform over p, a and r. With the purpose of proving (3.65), we 
examine E* \Y£ (r) — (cr)|4. Let aj, j  =  1 , . . . ,  T  — 1, be complex constant
such that OLr-j — otj- Then

E*
T - 1

7 =  1
T - l

— 'J -'2 ^  > OLjOLkOLiOLjnE W £*tj W £*tk '^ £ * , l '^ e* ,m
j ,k , l ,m =1 

T - l

=  7^3 S  aj^kOiioimI ( j - k  + l -  m  = 0 modT)
j , k , l , m = l  

oi.4 T—1
+ -= f L) (3.66)

j , k =1

because

E  W £* j W £*tk W £* j W £*)T

f t .=  (j — k + 1 — m  =  0 modT) +  cr\I  (j = k, l  = m  modT)

+<t4E(I = T  — j , m  = T  — k modT) +  <j4E(j = m, k  = I m odT ) .

By the Cauchy-Schwarz inequality, the first term on the right of (3.66) is 
bounded by

T - l

^  ^ 2  \<Xj<Xk\2l ( j - k  + l - m  = 0 modT) = ^  l«J'Z
j , k , l ,m =1

and therefore

. T - l  , j
jO ik \  j

ET
T - l  4 f \ T~l V

- J =  a i w ^ j  < { k  +  3 °-}) I f  Y Ia i \ 2)
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Taking o t j  =  A j B j W j  where W j  =  ^ ( [ t T ] ) j  —  w i { [ o T ) ) j  a n d  where 0 <  t ,  a  <  1, 
we obtain

E - 1J? (t) -  Kr* (<t)|4 < (A +  3a4) ^  g  | A ^ | 2 |Wi|2j  . (3.67)

The expression in the second round bracket on the right of (3.67) converges 
weakly to \t — cr\Q by Lemma 3.17. Since k  +  3<7* =  Op (1), the Markov 
inequality implies that

E' IY i (t) -  J ?  (a)|4 = Op (1) ( t  -  a)2 ,

where Op (1) is uniform over (r,cr) G [0, l]2. By the Cauchy-Schwarz inequal
ity, for any a < p < r,

E* \Yf (P) ~ yt W l2 \Yf M  -  yt (P)\2 =  Op (1) ((p — a)2 (r — p)2) *
=  Op {1) ( t - c t )2 ,

where Op (1) is uniform over (t, a) G [0, l]2. We conclude that (3.65) holds 
and that the process Yj, is tight. The lemma is established. ■

Lem m a 3.21 Under Conditions 1.1-1.5, 2.1 and 3.1-3.5,

=£*■ n l w  (t ) .

Proof. Lemma 3.20 implies that it is sufficient to prove that

1 1 r-1 - 
- j = Z y TT] M Lu  — —j =  A jB ju j £ ([tt]),jw £* j  = >  0.

We prove (3.68) in three steps. In the first step, we prove that

(3.68)

-L zfoJIC tt*  _  -±=Z'[TT]Mtu' =£* 0, (3.69)
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where u* = ( u l , , v^)' and

M T
U t= '% 2bi '^ 2 £*ŝ (s = t - 1 modT), t =  l , . . . ,T .

/=0 3 = 1

Denote Y*T (r) =  T ~1/2 Z{tT^Ml (u* — u*). To prove that Y*T 0, we need
p*to show that Y^T (r) —> 0 for every r  G [0,1] and that the process Y*T is tight. 

To this end, we examine E* \Y{T (r) — Y*T (cr)|4 for (r, a) G [0,1]. For a < r, 
write

ri*r ( r ) - y ; T (a) =  a - 6 ,

where

[rT] M

° = "7r E  x‘E ( s' - 6' ) ^ £;i(r = t_ i  modT)
* t=[crT]+l /=0 r = l

!  [rll M

6 = E  *»£(&-*)*•
V'1 t=r ' ‘ ■=[(tT]+1 i=0

and where e* =  T_1 • We have

« t = s = r = v,
d4 t = s ^ r  = vc>Tt = r ^ s  = v o T t  = v ^ s  = r, 
0 otherwise

and therefore

1 [tT\ M
E*aA =  —  ^ 2  x tx ax t>x3l ^ 2  (j>i ~  bi)  (j>p ~  bp)

t , 8 , t ' , s '= [a T \+ l  l,p,l',p'=0

x (b\t (bp bp^

x {k l (t — I =  s — p =  t' — V =  s' — p' mod T)

+  3d4I {t — I = s — p ,t' — I' = s' — p' modT)} . (3.70)

The factor in the curly bracket on the right of (3.70) is bounded by

(k +  3d4) I ( t  — l = s — p mod T) I (t' — l' = s ' —p' mod T)
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and therefore (3.70) is bounded by

( 1 [t T] M  \

-  ^ 2  x txs ^ 2  (}i ~ bi) (bp - bp) I(i _ 1 = s ~ p modT) I
t , s = [ a T ]+ 1 l,p= 0 /

[tT\ M  „ [tT\ M  \ 2

-  J 2  J 2 xt \ bl~ bl) X )  ^ 2 ^ { t ~ s  = l ~ P  modT) 
t=[<rT]+l (=0 s=[<tT]+1 p —0 J

< (« +  3 ^ ) ( l  g  x?)  L ^ k - k f ) 2,
\  t = [ a T \+ 1 /  V «=0 /

where the first inequality is due to the Cauchy-Schwarz inequality. Further,

£* (e*)4 =  £  +  

and so by the Cauchy-Schwarz inequality,

,^4\ / i  [tT1 \ 2 /  m

E  *M MI
t=[aT]+l j  \  1=0

Since (a — b)4 < 8 (a4 +  64), we obtain 

E*\Y?t { t ) - Y ? t {o)\a < E*aA +  E*bA

2 . . 2

= 0 , (1) ( l  g  X?)
\  t= [CTr ] + i  J  \  i=o J

because k  and <r4 are Op (1). By Conditions 1.1 and 3.1, T  1 J2t^[(rT\+i x t = ’y 
( t  — a) o \ and by Lemma 3.13 and Condition 3.4,

M  2
M ^ 2 ( b , - b , j  = Op (Mm~2T \ogT )  =  op (1).

1=0

Therefore
£" |Vir (r) -  Y5- (<r)|4 =  (r -  o f  o„ (1). (3.71)

203



Since Y*T (0) =  0, the Markov inequality and (3.71) imply that Y*T (r) con
verges to zero in probability for every r  G [0,1]. Further, by the Cauchy- 
Schwarz inequality, for any a < p < t ,

E -\Y tT { p ) -Y ; T {c)\2 \Y{T {T )-Y ? T {p)\2 = op { l ) ( ( p - < j ? { T - p f y

=  .

By Theorem 13.5 and Condition (13.14) of Billingsley (1999), the process Y{T 
is tight. We conclude that Y*T =$> 0.

In the second step, we write T  1/2Z'[tT]M1u* = T  1/2 Y^=i B jwx{[TT\),jWe*,j, 
where Bj is defined in Lemma 3.18, and show that

 ̂ T - l   ̂ T - l

~^= BjWx([TT])jW£*j — —j=  ^  Aj Bj W£([tT\) ,j We * ,j  ̂0. (3.72)

Denoting

r p  j

Y%r (?) = -  ®£([rn)j) W fj

and proceeding as with expression (3.67), we obtain

where Vj = ( w x ({t t ))j  ~  ^ x([rT ]),j) /A j -  (^ ( [r T ] ) ,j  -  w ^ [<rT\ ) j ) -  In the proof of 
Lemma 1.7, it has been shown that

£ | V ^ | 2 < C ( r - < r ) 2^

uniformly over (t, cr) G [0, l]2 and 1 < j , k  < [T/2]. This means that
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By the Cauchy-Schwarz inequality,

T - l  n n  T - l T - l1 y > 1 I . ~ 2 ^ 2  r —r 1 - |9 2 v—\ . .
AjBj  < — ^ -  \AjBj\ +  j ,  ^  1A?1 

i=i j --I J
Bj -  Bj (3.73)

j=i - j=i  ̂ j=i

By Condition 1.4, the first term on the right of (3.73) is bounded by

r  T - l  T - l
_  y - 2 ( d x + d )  j - 1  ^  Q r j t - l + 2 ( d x + d )  ^ ^  j - l - 2 ( d x + d )  <  ^ j i - l + 2 ( d x + c 0  _  Q ^

3 =1 j=l

because +  d < 1/2. By Lemma 3.19, the second term on the right of (3.73) 
is o(l) . It follows that

= { r - c r f o {  1)

and therefore by the Markov inequality that

E T  IY Z .  (r )  -  Y % .  (<r)|4 =  ( r  -  a ) 2 o p  ( 1 ) .

Proceeding as with the process Y*T, we conclude that Y2*T 0.
The third and final step is to prove that

/ji ^  Aj Bj u)£ ([rr]),j w£*) j /— 4̂j Bj W£ ( [t t] ) j  u;e*)j — ,
j=i * j=i

where Bj =  h^llXj • We define

1 T_1
>sr =  Ai {Bi ~ Bi ) ®«[*n)j«W

and note as before that E* \Y^T (r) — Y£T (<r)| is bounded by

0, (3.74)

(ic +  3d4)
\  J = 1

Bj -  Bj \W i { \ r T \ ) , j  ~  w $([<rT]),j\
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Prom the proof of Lemma 1.7 we know that

E  ( l % ( [ r m j  ~ l % [ T T ] ) , f c  -  % [a r ] ) ,fc |2 )  < c { t - a y  

uniformly in ( r ,a) G [0, l]2 and 1 < j ,k  < [T/2], therefore

V j=i

< C ( r - a f  Bj  -  Bj
J=1

by Lemma 3.19. In the same way as in the previous steps, we conclude that
r 3*r = ^ o .  ■

Lem m a 3.22 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.5 hold. Then
(a) T~% Z'kMLu* =  Op* (1) uniformly over 1 < k < T,
(b) Z'a Mlu* = Op* (1) uniformly over N  (K).

Proof, (a) This bound follows from Lemma 3.21.
(b) We have

M  T

ut =='52i>l '^2£*sI(s  = t - l  modT)
1=0 s = 1

and

Since

it is

k,k

Z'AMLu* =  ^ 2  x* ('ut - u * ) .

M

E*ulu* — a\ ^  bibpI (t — s = I — p mod T ) ,
l,p=o

k tk k ,k  M

var* xtu*t =  a\ x tx3 bibpI (t — s =  I —p mod T ) .
t i,s l,p=0
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By the Cauchy-Schwarz inequality, the last display is bounded by

k+ K M  k+ K M  k+ K M

£  * * £ & !  ^  ' £ l ( t - S =  l - p m o d T ) < C K a i  ^
t= k~ K  1=0 s= k -K  P=° t= k -K  1=0

By Lemma 3.15, a2 — Op (1). Further, Ylt=k-Kx t ~  ^ O p (1) =  Op (1) and

M  M  M  2

^ 6 ? < 2 ^ 6 ?  + 2 ^ ( S i -6,)  = Op (1) + op (1)
Z=0 i=0 1=0

by the square summability of bi and by Lemma 3.13, and so var* Ylt'* x tut 1S 
0 P( 1).

Next,
k,k k,k

var* ^  x tu* = ^ ^ x txaE*u*2 = op* (1)
t ,s

because Y lt*  x * ~  Op* M  uniformly on N  (K) and because

' 2 - 2
1 /  M  \ *  , ,  M

\  1=0 )  1=0 
9 -2  /  M  M  \

* 5  £ ^ + £ ( M  = ° ^ -
. 1=0 1=0

These results imply that Z'AMLu* = Op* (1) uniformly on N  (K). m 

Lem m a 3.23 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.5 hold. Let ~u =
1 -» rr*

T~l 22t=j u*. Then for any a,e,r) > 0, there exists K  and T0 such that for all 
T  > Tq,

P  P* sup -
\ V K < k < T  K

> a  >77 < e.] T x ,  (u’t - u )
K—1 t = 1

Proof. Let Sk =  Ylt=i x t fat ~  &*) and ^  an event A*k be defined as 

A*k =  \Sl\ > a, j  |3J| < a  for m < j  < k\ xt,utj .

(3.75)
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Proceeding as in the proof of Theorem 1 of Kounias and Weng (1969) and in 
the proof of a version of the maximal inequality of Kuan and Hsu (1998), the 
conditional probability inside the outer bracket in (3.75) can be bounded by

\  t= K + l  J

- O r
(3.76)

where

2 _  E 'S $u,UK =
K 2

i  (e*x(2 (fi* -  S*)2 + 2 (E 'x\  («; -  5*)2) 1 (ETSZJ
t= K + 1

We have

M

E* (fit — U*) (u* — f f )  =  b\ bibpl (t — s = l —p modT) — T b2b2,
l ,p =  o

where b =  T _1 X)z=o and so

/  m  \  M

E *xt (*t -  w*)2 =  I t f  -  Tb2 1 < ^  tf
\  i=o J 1=0

by the Cauchy-Schwarz inequality. The square summability of bi implies that

E <7E 2E 'xlt (u’t -  u f < C ,

where the constant C  does not depend on t. Further,

k M  k

E*St2 = b2 x t x s ^2/ (t — 3 = I —p  modT) — T b2b2 x t x s ,
t ,8=1 l,p=0 t ,3 = l
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k oo M  , 2

— C |aj-»-|t—s| | \bl\ |6/+|t_s|| +  C ~ -
t , 3 = 1 j = 0 1=0

Arguing as in the proof of Lemma 2.5, it can be shown that

k oo M

EEEi
t , 3 = 1 j = 0 1=0

where the constant C does not depend on k , and therefore that

E o f\E * S ? \  < c ( f c  +  ^ )  .

There results imply that

X*
i _  i „ K  +  771 v—'  1 /  l _ i  A

e \d k \ < c — — --------h c  2 2  ~ p \}  + t 2 + m  2t)
t = K~1-1

< C |  K~^ +  m~ 2 log .

By the Markov inequality, the left-hand side of (3.75) is bounded by

- ^ E \ D K\ + P { a ] > 2 a ] ) .
77 c r  v y

By Lemma 3.15, the second term of the last displayed sum is smaller than e/2 
for large T.  It follows that for large T  and K , the left-hand side of (3.75) is 
smaller than e. ■

Lem m a 3.24 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.5 hold. Then
(a) supkeT.Au*'(MLtwk -  MlyWk)u* =  Or  (1),
(b) supN{K)u*'{MhWk -  MhWk)u* =  Op* (T -1/2).



Proof. Define

Wa =  {Wk -  W-k) sgn (k  -  fc) =  (o, ZA) •

Proceeding as in the proof of Lemma 2.9, write

u*'(^t,wk ~ MLyWk)u*

= u*'M1U'a (W tM W i) _1 +  u^M.Wk (WjM, Wj) _1 W^Af.u*

+ u*'JW1Wa

-u"M LWk (W lM W kT1 (h ^ M ^ a + +  W ^M JvA

By Lemma 3.22, WkMLu* and W'AMLu* are 0 P* (T1/2) uniformly over 1 < 
k < T .  In addition, W&MLu* is 0 P* (1) uniformly on N  (K ). By Lemma 2.8, 

W ’̂ M.Wa  and W'AMtWA are 0 P (1) uniformly on N  (K ) and (w^M .W -^ =
0 P (T-1). By Lemma 2.2, W'kMfWk =  0 P (T ) uniformly over 1 < k < T  and 
(WfeMtWk)~1 = 0 P (T-1) uniformly on T  • A and therefore also W^MlWa and 
W ^M lWa are 0 P (1) uniformly over 1 < k < T. Stochastic magnitude of the 
individual factors give the stochastic magnitude of u*'(MLiwk — Mhwk)u* for 
k 6 T  • A and for k e  N  (K ) in part (a) and (b) of the lemma, respectively. ■

Lem m a 3.25 Assume Conditions 1.1-1.5, 2.1 and 3.1-3.5 are satisfied. Then 
for any finite K  > 0,

S*T (k) = S' (Zk -  Zky  (Zk - Z k) S -  2S' (Zk -  Zky  u* +  <y (1)

uniformly on N  (K ).

Proof. From the proof of Proposition 3.3, we have

S} (k) = SfZ'kMl,WkZkS +  25'Z tM ^ u *  +  u*\M hWk -  MhWi)u \

Write

Z 't M ^ Z t  = Z'AM,ZA -  Z'AM,Wk (W I'M M ) - 1 W ^ Z A. (3.77)
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By the arguments employed earlier, the second term on the right of (3.77) can 
be shown to be Op (T-1). The first term on the right of (3.77) is equal to

Z'AZA -  =  Z'AZA + Op (T -1)
t,8

uniformly on N  (K) because x t = Op (1) on N  (K).
In a similar way, write

Z'kML,Wku* = (Zk -  Zk)'M Lu* -  (Zk -  Zk)'M ,W k {W'kM,Wkr
(3.78)

The second term on the right of (3.78) is Op (1) Op (T-1) Op* (T1/2) =  Op* (T-1/2) , 
The first term on the right of (3.78) is equal to

k,k
(Z-k -  Zk)'u* + ] T x tu* =  (Zk -  Zk)'u * +  O p.  (1)

by the arguments employed in the proof of Lemma 3.22.
The third term of SJ  is Op* (T-1/2) uniformly on N  (K) by Lemma 3.24 

and therefore

SJ (A;) =  $  (Zk -  Zky  (Zfc - Z h) 5 -  $  (Zk -  Zk)' u* +  op. (1).

Since 5 = 5 +  Op (T-1/2) by Proposition 2.2, s u p ^ ^  \\Zk — Zk\\ = Op (1) and

SUP N ( K ) (Zk — Zk)' 8 — Op (1), the lemma is established.
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