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Abstract

We discuss the estimation of the order of integration of a fractional process
fhat may be contaminated by a time-varying deterministic component, or sub-
ject to a break in the dynamics of the zero-mean stochastic component, and
the estimation of the cointegrating parameter in a bivariate system generated
by fractionally integrated processes and by additive polynomial trends. In
Chapter 1 we review the theoretical literature on fractional integration and |
cointegration, and we analyse a situation in which a fractional model recon-
ciles two apparently conflicting economic theories. In Chapter 2 we consider
local Whittle estimation of the order of integration when the process is con-
taminated by a deterministic trend or by a break in the mean. We propose a
simple condition to assess whether the asymptotic properties of the estimate
are unaffected by the time-varying mean, and a test, with asymptotically nor-
mal test statistic under the null, to detect if that condition is met. In Chapter
3 we discuss local Whittle estimation when the zero-mean stochastic compo-
nent is subject to a break: we éhow that the estimate is robust to instability
in the short term dynamics, while in presence of a break in the long term
dynamics only the highest order of integration is consistently estimated. We
propose a test to detect that break: the limit distribution of the test statistic
under the null is not standard, but it is well known in the literature. We also
propose a procedure to estimate the location of a break when it is present.
In Chapter 4 we consider a cointegrating relation in which a nonstationary,
bivariate process is augmented by a deterministic trend. We derive the limit
properties of the Ordinary Least Squares and Generalised Least Squares es-
timates: these depend on the comparison between the deterministic and the

stochastic components.
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Chapter 1

Overview

1.1 Introduction

Fractional integration is a very popular way to model strong autocorrelation.
It is a parsimonious model, because dependence at long lags can be summarised
by a single parameter, often referred to as "order of integration" or "memory
parameter", and a satisfactory one, because the dependence it prescribes for
the data in the long term often matches the one observed in reality: indeed, the
low frequency spectral shape that can be associated with the autocorrelation
at long lags was acknowledged by Granger (1966) as "typical" for economic
variables.

Cointegration is a non-trivial extension of the concept of integration to
multivariate processes. In that case the long term dynamics of two or more
integrated processes are driven by the same stochastic trends, and there is
at least one linear combination of the variables which has a lower order of
integration. Each group of weights that combines the variables so that the
order of integration is reduced is known as "cointegrating vector", and the

combination itself is often regarded as a long run equilibrium.
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However in many applications the assumption that the observations are
generated by a fractionally integrated process may be too restrictive, and we
then propose to extend it by either considering a time-varying mean, such as a
deterministic trend or a sudden shift in the mean, or a break in the (zero-mean)
fractionally integrated process.

In order to address these issues, we first review the current relevant litera-
ture.

In Section 1.2 we introduce the concepts of fractional integration and coin-
tegration and in Section 1.3 we describe several techniques to estimate the
memory parameter and the cointegrating vectors.

In Section 1.4 we present an application of some of these techniques: the
éxa,mple we have chosen, a dynamic model for the term structure of interest
rates, is motivated by the fact that alternative groups of economic theories
prescribe conflicting orders of integration if only integers are considered,vbut
this incompatibility may be resolved by introducing intermediate, "fractional"
orders.

In Section 1.5 we introduce the topics that we intend to analyse in the

thesis and we discuss how they are related to the current literature.

In this thesis we will use the following notation: the operator ~ indi-
cates that the ratio between left- and right-sides tends to 1 (when applied
to matrices, it refers to each element of the matrix), and = indicates weak
convergence of the associated probability measure. The "prime", ('), operator
denotes transpose of a matrix or of a vector, the "staf", (*), the complex con-
jugate. The lag operator L is such that Lz; = x;_1, and A = (1 — L) is the
(first) difference operator. We use the operator ||.|| to refer to the (spectral)
norm of a vector or of a matrix, |.| to refer to the absolute value of a number

or to the determinant of a matrix, [.] to refer to the integer part of a number,

13



and Re(.) to the real part of a number or of a matrix. The function 1(.) is
the indicator function, while 1, is the p x 1 vector (1, ..., 1)'. For a group of
observations zi, ..., Z,, we indicate the sample mean as T. We introduce C
and K, such that each one of them may be a positive, finite constant or a
positive definite matrix with finite norm, not necessarily always the same: the
difference between the two is that C is used to set upper bounds in identi-
ties, equations or limit approximations, and K is introduced when we intend
that the identities, équations or limit approXimations hold exactly. By O, we
indicate a stochastic order of magnitude: for a stochastic sequence S, and
a deterministic one b, this is defined by saying that S, = O, (b,) if for any
e > 0 there is C and ng such that P (|S,/b,| > C) < ¢ for any n > ng; if
Sn/bn —p 0 then we say that S, = 0, (b,). By O. we indicate an exact order
of magnitude: for deterministic sequences d,,, b, this is defined by saying that
d, = O (by,) if |d,/b,| — K as n — oo, while for stochastic sequences S, it
is defined by saying that S, = O, (b,) if S,/b, converges (in distribution) to
a random variable with positive and finite variance or to a non-zero constant.
The sets Z = {0, %1, ...} and R are composed of the integer and real numbers
respectively. We also introduce the following abbreviations: for a process that
is independent and identically distributed with mean u, variance 0%, we say

that it is 4.2.d.(u, 0%), if X tends to zero from above, we say A — 0F.
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1.2 Long fnemory, fractional integration and
cointegration

1.2.1 Long memory and fractional integration

For a generic column vector stochastic process &,, t € Z, such that &, is zero-

mean, weakly stationary and invertible, we introduce the autocovariance v,

E(§t€;+j) =Ye (4) v (1.1)

where j € Z, and we assume that &, has spectral density fe (A) such that

w6 l)= [ R ()eNar (1.2)

Definition 1.1. Strong autocorrelation, weak autocorrelation and
antipersistence. Let the scalar &,, t € Z, be a zero-mean, weakly stationary

and invertible stochastic process with spectral density fe (A). Then

(1) &, is strongly autocorrelated (has long memory, has long range depen-
dence) if
fg (0) = 0OQ; (13)

(ii) &, is weakly autocorrelated (has short memory, has short range depen-
dence) if
0 < fe (0) < o0y (1.4)

(iii) &, s antipersistent if

fe(0)=0. : (1.5)

15



For any non-integer d, we introduce the binomial expansion,

I'(j + d)

T@T( + 1) (1.6)

(1-L) = w;(d) L7, where ¢, (d) =
=0
and I'(.) is the Gamma function. Using the Stirling approximation for the

Gamma function; 1¥; (d) in (1.6) can be approximated as

41
~¢j(d)~fj‘masj—>oo.' » (1.7)

Definition 1.2. "Type I" (scalar) fractionally integrated process.
For a scalar process uy, t € Z, with positive and finite spectral density f, ()\)
for any X € [0,2x), for an integer k and any real number & so that —1/2 <
60—k <1/2, let

= A0y, (1.8)

Then the process

A‘knt , k<0
¢t = (1'9)
AN {th (t> 0)}, k>0

is a "Type I" integrated of order & process, and we write as ¢, € I (9).

Definition 1.3. "Type II" (scalar) fractionally integrated process.
For a scalar process uy, t € Z, with positive and finite spectral density f, ()

for any A € [0,27), for any real number 8, then the process
@, = A7 {u;1(t > 0)}, (1.10)

is a "Type II" integrated of order & process, and we write as @, € I (9).

Both Type I and Type II are fractionally integrated processes, and for both

16



of them the notation I () is used in the literature: in the rest of the thesis
however we will only use I (6) as an abbreviation for I, (§). The parameter
0 is also known as the memory parameter or as the order of integration. It
is particularly important, because, as we are going to show, under regularity -
conditions it summarises properties of the long term dynamics and it charac-
terises the rate of convergence and the limit distribution of estimates such as

the sample mean or the OLS regression coefficient.

We presented the three definitions at the same time in order to discuss
their differences and similarities.

In order to compare them, we first remark that due to the truncation in
(1.10) and, when k > 0, in (1.9), only Type I fractionally integrated processes
with 6 < 1/2 may be stationary, and that invertibility requires 6 > —1/2. For
Type II processes, notice that even ¢, € I (0) is nonstationary: we prefer this
notation to keep it consistent with Robinson and Hualde (2003) and related
works, but for practical purposes the difference seems to be negligible.

Following Velasco (1999a) we generalise the spectral density for the cases in

which it is not defined, and introduce the "pseudo-spectrum”, for ¢, € I (9),

fo) = 1= £, () (1.11)

(clearly, when 6 < 1/2 this is actually a spectrum). The pseudo-spectrum still
maintains several properties that were defined for the proper spectral density,
as we also discuss in Section 1.3.

For ¢, € I(§) Robinson and Marinucci (2001) defined a "time-varying

spectral density"

F ) = [, (N0 fu (M) (1.12)
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where
t-1

P (N8) =) ¢, (5) e (1.13)

s=0
and 9, (9) is defined as in (1.6). Since ¢ is finite, f‘f,t) (A) has no pole at A =0
even when 6 > 0, but for ¢, € I (8), ¢, € I (9), X € (0, 27),

F ) = FEY(X) = f5(N) as n — oo. (1.14)

In order to simplify the notation, we will, in the rest of the thesis, drop (co)
and simply write f, () for f‘f,°°) () for ¢, € I(0). For &, € I (6) or &, € I(d),

making use of the approximation |1 —e™*| ~ [A] as A — 0,
fe) ~ G\ as A — 0 (1.15)

where 0 < G¢ < oo.

Type I fractionally integrated processes with é € (0,1/2) are strongly auto-
correlated according to Definition 1.1, but Type I processes with § > 1/2 and
Type 1I processes are not stationary and then cannot be classified according
to that definition. Indeed, even the popular "unit root" model, which cor-
responds to 6 = 1, is not included in Deﬁnitionv 1.1, although it is generally
acknowledged that the autocorrelation is particularly strong in that case. It
seems fair then to generalise Definition 1.1 at least to allow for nonstation-
ary processes by also considering the pseudo-spectrum and the limit of the
time-varying spectral densities.

On the other hand, Definition 1.1 is very general because, at least if we
restrict our attention to stationary processes, the three cases cover all the
possible outcomes for f¢ (0); fractional integration imposes on the spectral
density a parametric structure at low frequencies, which may be considered

a restriction on long memory because (1.3) and (1.5) may also be generated
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by functions that do not meet (1.15); the same remark applies of course if we
extend Definition 1.1 to nonstationary fractionally integrated processes.

Unfortunately though, the fact that Definition 1.1 is very general is also
the reason why it is of little practical use: additional assumptions are neces-
sary in order to derive the limit dynamics and the asyfnptotic distributions of
transformations of long memory processes.

One reason for this interest in fractional integration is precisely in the
fact thét, given little furthér regularity conditions, this model indudes enough
information to make the derivation of those limit dynamics and asymptotic
properties possible. For example, for ¢, € I(6), § > 0, following Marinucci

and Robinson (2000) (and regularity conditions therein):

1 T
@ 2 = B e (1.16)
where 5 |
B(r;6) = /0 sy 1:(”?) dB (s) (1.17)

and B (s) is a standardised Brownian motion (that is to say, B (s) is such that
E(B(s)*) = s when s > 0). The functional B (r;4) in (1.17) is a Type II
fractional Brownian motion: this is described by Mandelbrot and Van Ness
(1968) and by Marinucci and Robinson (1999, 2000). The same authors also
discuss an alternative form of Brownian motion, that Marinucci and Robinson
(1999) called "Type I fractional Brownian motion": this is obtained by sum-
ming Type I fractionally integrated observations instead. We do not present
the two fractional Brownian motions in greater detail because we only use the
Type II in Chapter 4 and even then only following Robinson and Hualde’s
(2003) approach, and we refer to Marinucci and Robinson (1999) instead. We

point out, however, that the two Brownian motions are different, being associ-
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ated with different autocovariance structures, although these autocovariances
become equal at least at long lags. It is also worth noticing that the Type I
process is only defined for a limited range of values for 6.

The two types of processes are, anyway, very similar in many other respects:
Marinucci and Robinson (2001) showed that, when § < 1/2, ¢, € I (§), ¢, €
1(6),

E (¢011;) — E (0ppr4;) = O (£717?) ast — o0 (1.18)

uniformly for any j > 0, while Robinson (2005b) showed that the asymptotic
distribution of the Whittle estimate of é does not change according to whether
¢, or v, is used (we discuss Whittle estimation in Section 1.3), and on the basis
of his work, it is also fair to conjecture that the same irrelevance holds for other
estimation techniques as well. This is an important result because it means
that althqugh 1t is not possible to distinguish between the two Types in the
empiriqal analysis, this difference has no asymptotic impact on the estimate.

We refer to Robinson and Marinucci (2001) and to Robinsc;n (2005b) for a
more detailed comparison of Type I and II processes.

Fractionally integrated processes are also characterised by two other prop-
erties: that

Ye () ~ e as j — o0 (1.19)

for a non-zero ¢, and

Var (§) = O, (n*7) (1.20)

(notice that (1.19) is restricted by (1.1) to stationarity, that is, to Type I
processes; (1.18) however provides a clear indication of the applicability of the
same concept to Type II processes as well). From (1.19) we then see that
the dependence at long range can be satisfactorily summarised by the order

of integration only, c¢¢ being just a scaling factor, and that the dependence is
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stronger the higher 0. The power law approximation for the spectrum conveys
the same piece of information in the frequency domain.

Semiparametric techniques to estimate § have been realised using any of
(1.15), (1.19) and (1.20). Notice anyway that (1.19) and (1.20) can be observed
also for processes that are not fractionally integrated, and for which (1.16)
does not hold (either for the Type I or for the Type II fractional Brownian
motion): Diebold and Inoue (2001) for example showed several models that
are not, fractionélly integrated and nevertheless have sample mean of order
n®1/% a5 in (1.20). Their examples were mainly particular types of Markov-

$-1/2 may also be generated

switching models, but a sample mean of order n
by a neglected deterministic component, as we actually consider in Chapter 2
and in Chapter 4: when

T, =& + pt*12, (1.21)

with £, € I (0), 6 > 0 and for some nonzero p, then
T =0, (n"?). (1.22)

In other cases, only some of the properties (1.15), (1.19) and (1.20) are
present. Some cyclical models, for example, may generate slowly decaying
autocovariances as in (1.19) (but with a further cosine factor that induces
a cyclical path in the autocorrelation function in the long run), and yet have
spectral density bounded at zero and.possibly with a pole at another frequency:
we refer to Bailiie (1999) or Robinson (2003) for a discussion of one of these
examples, the Gegenbauer process, and to Yong (1974) for a discussion of the
conditions under which (1.19) and (1.15) are equivalent.

We also mention that our definitions of fractional integration may be gen-

eralised replacing A~®~% in (1.8) and A~ in (1.10) by any weighting struc-
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ture Y274, (8 — k) L7 or Y 22 ; () L7 provided that (1.7) and that |4, (5)
— Y11 (8)] = O(|¥;(8)|57*) are met, as indeed Robinson and Marinucci
(2001) did for the Type II fractionally integrated process. This may be a
sensible generalisation, because the relevant properties, in terms of low fre-
quencies approximation of the spectral density, high lags approximation of the
autocorrelation function, order of magnitude of the sample variance and weak
convergence of partial sums of the observables to the appropriate (Type I or
Type II) fractional Brownian motion, are still met. Definitions 1.2 and 1.3 are
actually so restrictive that they do not even include the fractional noise, the

process having autocovariance structure

(|] + 1|25+l -9 ljl25+l + IJ _ 1I25+1) (123)

N[ =

rYfgn (.7) =

for 6 € (—1/2,1/2), introduced by Mandelbrot and Van Ness (1968).

We then prefer Definitions 1.2 and 1.3 because they are more intuitive and
because they are more familiar to many readers, especially when ¢ is restricted
to integers. However, we acknowledge that the results we are presenting apply

to a broader class of processes.

We conclude the subsection with a discussion of a parametric model that
generates a fractionally integrated process: the ARFIMA (p, 8, ¢) model.

ARFIMA is an acronym for AutoRegressive Fractionally Integrated Moving
Average; p and ¢ indicate the number of lags in the AR and MA components
respectively, and ¢ the order of fractional integration. This model was intro-
duced by Adenstedt (1974), who set k£ = 0 in a Type I integrated process and

considered

oo

ar =Y v; () wy, | (1.24)

Jj=0

further assuming that the innovations u; were 4.1.d.(0,0%). This model was
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later referred to as ARFIMA(O, 4, 0) by Granger and Joyeux (1980) and Hosk-
ing (1981). |

In the ARFIMA(0, 6,0), the weights (1.7) describe the responses to past
impulses, which then vanish only at hyperbolic rate when § > 0, much more
slowly than the exponential decay of the innovation of any stationary and
invertible ARMA(p, q). Notice, also, that the weights with which the past

innovations still affect the current observation increase the larger 6. The au-

2 (-1)Ir(1-26)
TG—6+1)[(1—5—38)’

tocovariance function is vy, (j) = o and the spectral density
fa (/\) - % |1 - e—i,\l—%.

The ARFIMA(0, §,0) model provides some flexibility in the description of
the long term properties of a process, but the short term dynamics are con-
strained because the structure of the covariances is already set. To satisfacto-
rily model the short term dynamics as well, Granger and Joyeux (1980) and
Hosking (1981) suggested treating the ARFIMA(0, 4, 0) as the building block
of a more general structure, and introduced the ARFIMA(p,d,q). This is
obtained by passing an ARFIMA (0, §, 0) process through a (stationary and in-
vertible) ARMA(p, q) filter. Hosking (1981) discussed several ARFIMA(p, 9, q)
structures, showing that the long range dependence is still dictated by (1.19),
and that (1.15) and (1.20) still hold too (thus justifying why ¢ is often the main
parameter of interest), but more flexible short run dynamics are possible.

Of course, Type I ARFIMA(p, 6, q) for 6 > 1/2 or Type Il ARFIMA(p, 9, q)

may be easily defined following the lines set out in Definitions 1.2 and 1.3.

1.2.2 Fractional cointegration

When all the elements of a vector are integrated processes, we say that the
whole vector is a multivariate integrated process.

For a p x 1 vector z; = {zlyt,...,zpyt}' such that 21, € 1(d1), ... , 2pt €

23



I(6,), we write 2, € I(d1,...,0p). In most of the literature, especially when
01 = ... = dp, as it is typically when the order of integration is either 0 or 1,
the notation z;, € I (6), for a scalar 4, is used instead. We on the other hand
set 6, = {01, ...,0,} and then use z € I (§,).

In the same way, we define a Type I multivariate integrated process, and

we introduce the notation z; € I (61, ...,d,) and the abbreviation 2, € I (05).

When 2z is stationary, let f,(A) be the spectral density matrix, as from

(1.1) and (1.2): the approximation (1.15) can be generalised to
fe)~AN)GA(N) as A —0F (1.25)
where
A (X) = diag{e™/2\% .. e™or/2)\ 70} (1.26)

and G, is positive semidefinite.
In order to define cointegration, we follow Robinson and Ya jima (2002) and

assume that the elements of z; are all ordered so that

01 = .. =0y > Opyq1 = oo = Oky > .. > O,y 41 = -0k, - (1.27)
We then partition 2, following (1.27)
2= (zt(l)', . zt(s)')/ | (1.28)
) zgl) = (2k,_y 41,65 -»-Zk,,t)/ for 1 < < s,and introduce a p-dimensional vector
a, which is also partitioned in the same way:
a=(a@),a(2),..,a(s)) . (1.29)
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Definition 1.4. Cointegration and cointegrating rank (Robin-
son and Yajima (2002)). If there exists a non-null vector a(l), such that
a (l)'zt(l) € I (vy,) with v, < b, then we say z is cointegrated with cointegrat-
ing vector a = (0, ...,0,a(l)', 0, ..,0)'. The number of such linearly independent
a(l) is 1, and the cointegrating rank of z is =3, 7.

The processes o'z; are referred to as cointegrating errors.

Notice that different combinations of different subsets of zt(l) may generate
cointegrating errors with different orders of integration.

We arrange the orders of integration of the cointegrating errors in the vector
Y+ = {7117}

Robinson and Yajima (2002) proposed the Definition 1.4 to generalise the
original definition of Engle and Granger (1987) by allowing for alternative
levels of integration (although not for linear combinations involving variables
and cointegrating errors).

Intuitively, cointegration means that there is at least one non trivial linear
combination of the elements of a multivariate vector having order of integration
lower than the order of the components of the given vector: this definition
applies this principle to groups of variables in z; that have the same order
of integration. Robinson and Yajima (2002) also compared this definition to
several others already present in the literature, and showed with some examples
that it is closer to the intuitive concept of cointegration.

The time domain description has a correspondence in the frequency domain
and, as we have already seen for integration, cointegration too is a phenomenon
that may be better observed at low frequencies: the matrix GG, in (1.25) in fact
is positive semidefinite with rank p — r (which also implies that G, has full

rank when the process is not cointegrated).

For a given vector 2" and for a given o (1) such that « (l)'zt(l) € I(v)
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with v, < 4k, as in Definition 1.4, we also introduce 3, = &, — v, and
By = {B1,---,B,}. For a p-dimensional z, € I(d;) with cointegrating rank
r and cointegrating errors of order <y then we introduce the notation z; €
CI (81, 0p, By, ..., B,) that we also abbreviate to z, € CT (64+,B,). When in
particular only unit root observables and short memory cointegrating errors
are considered, we should then write 2, € CI (1,,1,): since anyway this case
is known in the literature as C1I (1,1), we prefer to drop the references to the

dimensions p and r and use the notation that is more familiar to the reader.

Letting v; = {v14, .., Vrt}, Tt = {T14, -, Tp_rs} , Definition 1.4 means that

there is a non-trivial r x (p — r) matrix v such that
Y — | 2442 + (N (130)

The elements in the vector (y,, )" are the same as those in z;, but they
may be ordered in a different way, because the elements in z; are arranged
according to (1.27) and (1.28).

Foreachrow h, 1 < h<r
Ynt = VpTe + Ung, (1.31)

where v/}, is the h*" row of v; we can introduce &y} as the order of integration of
Ynt, SO Ynt € I (84ny), and 7y, as the order of integration of vy, s0 Upy € I (77):
Definition 1.4 then also means that d(s > 7, > 0. It is also worth noticing
that for each k, 1 < k < p — r, then vy # 0 implies that z; € I (6{n)) as
well: this means that the elements of x; that actually appear with a nonzero

coefficient in the A" equation share the same order of integration.

In many theoretical and applied papers, each equation (1.31) is considered

to describe an equilibrium relation between y; and z;: deviations from it,
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represented by the cointegrating error v, are temporary and, upon taking a
long enough time span, the variables y;; and z; move together. This actually
imposes the additional requirement that the cointegrating error vp; is mean-
reverting, which corresponds to vy, < 1: although we agree that this is usually
the most interesting case due to the importance that the concept of equilibrium.
often has in economic theory, we notice that this is not necessarily imposed
from the definition of cointegration.

Fractional integration adds a lot to the CI(1,1) design because Y > 0
allows a much slower return to the equilibrium; it also makes mean reversion
(or trend reversion) possible for y; and z; as well, a property that in many
practical applications may be required by the economic theory. Finally, it also
provides the researcher with another measure, 3, that indicates how strong

the cointegration itself is.

1.3 Estimation and testing

1.3.1 Estimation of the memory parameter

The memory parameter may be estimated either individually, typically using
the limited information in (1.15), (1.19) or (1.20), or jointly with other para-
meters, when a complete model, such as an ARFIMA(p, d, q) for example, is
assumed. The first approach is called "semiparametric", because it does not
require the specification of a whole model but only of some of its properties,
while the other one is "parametric".

There is a large number of estimates in the literature: however, we only
discuss those that we are going to use in our applications, or that are of

relevance to the models we discuss in Chapters 2 to 4.

We begin by discussing the case in which &, is a scalar.
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An early estimation procedure was based on the "rescaled range" R/S
statistic proposed by Hurst (1951). Given the observations &, ...,&,, the R/S

statistic 1s

k _ k -
maxi<k<n (ft - f) — minjck<n ) (gt - 6)
RS = =1 =1 . (1.32)

(o)

t=1

The ratio In (RS) /Inn converges to 1/2 when ¢, is a short memory process,
and to § 4+ 1/2 when it is fractionally integrated of order §. Regularity con-
ditions are very mild: consistent estimation of ¢ is obtained even when the
second moment is not finite, which may occur for example for distributions
with very heavy tails, as sometimes is the case for a financial time series.
The R/S statistic can also be used to test for the presence of fractional
integration. Under the null of short memory and regularity conditions (these,

however, included the existence of finite second moments), by setting

o fe(0)

L= 50/ @) (1:33)
then

¢rlch RS =V, (1.34)

where V is the range of a Brownian bridge. We refer to Lo (1991) for further
details on V, including critical values, and for a discussion about nonparametric

estimation of ¢j.

When the second moments of the process are defined, consistent estimation
of 4 may also be based on the low frequency approximation of the spectral den-
sity by the power law (1.15). The estimates we describe are appealing because

they are intuitive and, given regularity conditions, they are also characterised
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by limit normal distribution, a distinct advantage over the nonstandard as-
ymptotics in (1.34).
The building block for these estimates is the periodogram. We define it by

introducing, for the observations &,, ..., €,,, the discrete Fourier transform

e (A e, 1.35
The periodogram is then
Ie () = Fe(N) Fe (<X). (1.36)
Although (1.35) and (1.36) can be computed for any A, the frequencies
2mj _
Aj = = for j € Z, (1.37)
where
Zn=A{ZNn[0,n—1]} (1.38)

are particularly important and are referred to as Fourier frequencies: in the
rest of the thesis then when we use the notation \; we also assume that j € Z,.
Notice that with this definition j cannot take the value n, nor any multiple of
it.

At the Fourier frequencies the periodogram provides a decomposition of

the sum of squares of &,

n n—1
Y=y I(\) (1.39)
t=1 =0

and

I (0) = — (8)°. (1.40)



Since

Z e' = 0 when j # 0 (1.41)
t=1

it can also be noticed that the presence of a constant, non-zero mean does not
affect the periodogram for A\; # 0.

At Fourier frequencies different from \; = 0, the definition (1.36) is equiv-

alent to
n—1
) =5 3 Aels)cos(hys), (1.42)
s=—n+1
where ,
B () == > (6~ 8) (€~ ) (1.43)

t=1

Il

(the mean-correction is irrelevant for the definition of the periodogram, but
we retained it because it is included in the definition of the sample autocovari-
ance). The periodogram is then an estimate of the spectral density.

If £, is a zero-mean, weakly autocorrelated process with 0 < f¢ (A) < oo
at any A (and given other mild regularity conditions, including continuity of

fe (X)), the periodogram is asymptotically unbiased,

.

E(Ig(M\)=fe(A) +0(1), (1.44)
and for any two Fourier frequencies A; and A, with j # k, and 5 # 0, k # 0,
Cov (I¢ (), I (Ae)) = o (1), (1.45)

and

Var (It (X)) = f£ () +0(1). (1.46)

The periodograms at different Fourier frequencies are then asymptotically un-

correlated, and the potential weak temporal dependence of &, is transformed
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into heteroscedasticity of I¢ (A;). We refer to Brockwell and Davies (1987) for
more details on the properties of the periodogram of a weakly autocorrelated
process. |

Asymptotic unbiasedness and absence of correlation between different Fourier
frequencies cannot be extended to long memory time series: for given );, Kiin-
sch (1986) noticed this for a process &, having spectral density that can be
approximated around 0 by the power law (1.15) and ¢ € (0,1/2), and Robin-
son (1995a) extended the result to 6 € (—1/2,0).

But Robinson (1995a) also showed that the bias of the periodogram and
the correlation of the discrete Fourier transforms at different frequencies can
be bounded, and that the bound decreases with the distance from the origin,
so for some sequences j (n) the asymptotic unbiasedness and uncorrelation still
hold: when é € (—1/2,1/2), for any positive integer j such that j/n — 0 as

n — oo, then

E(f' () I (M) =140 (mT]) : (1.47)

and for any positive integer k < j (and j defined as before)

E(XNF (\)MF:(=X)) =0 (%) : (1.48)

The assumptions of Robinson (1995a) were very general, requiring only sta-
tionarity and a certain degree of smoothness of f¢ (A) as A — 0.

If £, is observable, the low frequency approximation (1.15) may be re-
arranged as

In (I{ ()\J» ~c—20In )\j + U; as )\j — 0+, (149)

where u; = In (I¢ (A;) /fe (A\;)): due to the logarithmic transformation, (1.49)
is usually known as a "log-periodogram regression" model.

The condition A; — 0% is met by running the regression only for the Fourier

31



frequencies 0 < j < m, where m is such that m/n — 0 as n — co. When
the process &, is stationary and invertible, the OLS regression estimate of ¢
“in (1.49),3Lp, is consistent if m — oo; under the additional condition that
m = o (n*®) (when ¢, is an ARFIMA, this rate depends on the smoothness of
f¢ (M) as A — Oand may be smaller for other processes), the estimate is also

asymptotically normal, with limit distribution

2

Vi (3ip =) 4 N (o T

) 24) as n — oo. (1.50)

The idea to treat (1.49) as a regression model can be traced to a com-
ment by Granger and Joyeux (1980), but the estimate was first addressed by
Geweke and Porter-Hudak (1983). However, a rigorous proof was only supplied
by Robinson (1995a). He discussed the regression over the Fourier frequencies
associated to j = [,...,m with 1/l — 0 as n — oo, and under the additional
assumption of Gaussianity, but later Hurvich, Deo and Brodsky (1998) ob-
tained (1.50) under alternative conditions that would also allow for [ = 1,
while Velasco (2000) proved (1.50) for non-Gaussian £, as well.

Another estimate of § was discussed by Robinson (1995b) following a re-
mark by Kiinsch (1987): he suggested using the Whittle approximation of the
Gaussian likelihood in the frequency domain, but to estimate § on a band that

degenerates to zero asymptotically. This means computing

m

~ 4 1 . _
{5LW, G} =arg L, — > (TN (V) + nGX™) (1.51)

where © and Sg are compact sets such that © C (—1/2,1/2), Sg C (0,0).

After concentrating

G(d) = % f: NI (), (1.52)
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the local Whittle estimate of 9, ELW, is
Suw = argmi 1@(d)—2d§:1 by (1.53)
LW—argl"iIélg n mj_l L A;- .

Robinson (1995b) established consistency as m — oo, m/n — 0, and
limit normality when m = o (n*/5) (as for 3;p, slower rates may be necessary
according to the smoothness of f¢ (A) as A — 0). The asymptotic distribution
is

Jm (SLW — 5) —u N (0, %) as n — oo. (1.54)

Both ELW and SL p are subject to a lower order bias which increases in m,
so the choice of the bandwidth is very important because, on the other hand,
the larger m is the smaller the dispersion is. Optimal (in Mean Squared Error
sense) bandwidths are discussed by Henry and Robinson (1996) for 8w and
by Hurvich, Deo and Brodsky (1998) for 8.p: in both cases the choice depends
on the precision of the approximation (1.15) and on the smoothness and on
the steepness of \* f; (\) as A — 0*. The most favourable situation is when
fe (A) is sufficiently smooth, as it actually occurs for many parametric models,
including the stationary and invertible ARFIMA(p,d,q)-

Nonstationarity (6 > 1/2) can be addressed by differencing the data, but
this requires a certain preliminary knowledge at least of the range in which
d lies. Velasco (1999a, 1999b) showed that (1.50) and (1.54) also hold for
1/2 < § < 3/4, and consistency even for 6 < 1. Key to this result is the
computation of the bound for the expected periodogram when 1/2 < § < 1:

for positive integer j such that j/n — 0 as n — oo,

E(ff' ) 1e(A\) =1+ 0 (P In(j +1)) (1.55)
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and, for positive integer k < 7,
B (MF (\) MFe (-M) =0 (G m(k+1)) . (1.56)

Velasco‘ (1999a) also showed that when the data is weighted by a suitable
filter ("tapering"), the bias of the expectation of the tapered periodogram can
still be bounded, and in a way such that the bound may be made negligible
for some sequences j (n) such that j/n — 0 as n — oo, even for larger § or
for 6 < —1/2. We refer to Velasco (1999a) for a discussion of the properties
required for the taper; we only mention that the tapers may be classified
according to the maximum ¢ for which they can successfully eliminate, at least
for some sequences j (n), the bias, and that the requirements get stronger the
larger 6 (or, the smaller 6 when § < —1/2).

This however is acquired at the cost of higher correlation across neighbour-
ing frequencies (and the higher the order of the taper, the higher the correlation
induced), so Velasco (1999a, 1999b) modified the definitions of log-periodogram
regression and of local Whittle estimates, and imposed more distance between
the points used in the estimation by skipping frequencies. Since less points are
used in the optimisation for any given m, the variances are comparatively big-
ger than in (1.50) and (1.54): tapering then is only advisable if no preliminary

information on the range in which ¢ lies is available.

Semiparametric estimates have the advantage of not requiring any specifi-
cation of the spectral density for the remaining frequencies. Yet if the whole
parametric model is known, even if only up to a known function of a vector
of unknown parameters, 6 may be estimated more efficiently by using all the
Fourier frequencies, rather than just a degenerating narrow band.

Suppose that the spectral density of &, is a known function of the parame-

ters 02, 0, 4, and indicate this as f; (\;02,0,6), and that there is g¢ (\; h, d)

34



such that f¢ (\; 8%, h,d) = s*/(27) g¢ (A\; h,d) for all the admissible values of
(s®,1,d). Then, if s* varies freely from h,d and [" Ing (\;h,d)dX = 0, the
parametrisation is refereed to as "standard", for example, by Robinson (2003).

Then the Whittle estimation of (¢’,6)' can be obtained by minimising

n—1

3 e O d) E O) (1.57)

with respect to (h’, d)’ over a compact set.

Consistency of the Whittle estimates for stationary and invertible &, fol-
lows already from the argument of Hannan (1973), but his proof could not be
directly extended to establish the limit distribution; this was treated by Fox
and Taqqu (1986) for Gaussian processes, and by Giraitis and Surgalis (1990)
for possibly non-normal ones too. Both Fox and Tagqu (1986) and Giraitis and
Surgalis (1990) had a slightly different loss function, the summation being re-
placed by an integral (Hannan considered this case too). Velasco and Robinson
(2000) on the other hand used (1.57): they extended the results to nonstation-
ary processes, proving consistency for 4 < 1 and root-n limit normality for
d < 3/4. Velasco and Robinson (2000) also replaced the raw periodogram in
(1.57) with a tapered one, but as in Velasco (1999b) the loss function had to be
modified by discarding neighbouring frequencies: with these modifications to
(1.57) they established consistency and root-n limit normality for even higher
0. In all these cases, additional regularity conditions were required: we do not
discuss this in details but mention that they include a certain smoothness of
the spectrum (or of the pseudo-spectrum).

Knowledge of the parametric model (possibly up to a vector of unknown pa-
rameters) can also be exploited in the time domain, to design a procedure that
delivers a consistent and root-n asymptotically normal estimate by minimising

a conditional sum of squares.
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Variations on this procedure are fairly common, and they can all be treated
as a special case of "Whittle" in the sense that the limit distribution of the
estimates is the same.

Introduce the notation

&(d) =%t el =61(t>0), (1.58)
and .
2(0@)=6@-Y 5 (0(d) &, (1.59)

where § (d) is an estimate of the parameters characterising the autoregressive
structure B; for a given d (for example, B; (5 (d)) could be estimated with a
finite order autoregression of &, (d) on some lagged values). The parameters

(¢',6)" can then be estimated by minimising

> (@ (5@)) (1.60)

with respect to some values of d defined in a certain compact set. A time
domain procedure based on a (slightly different) conditional sum of squares
approach was advocated by Beran (1995), although the proof was not complete.

Sowell (1992) claimed that exact maximum likelihood should be preferred,
arguing that it would be mdre precise in finite samples.

In all these cases (exact maximum likelihood, conditional sum of square
in the time domain and Whittle approximation without tapering in the fre-
quency domain), the estimates are root-n consistent and have the same limit
distribution.

It may be worth noticing that the proofs of Robinson (1995a, 1995b), Ve-
lasco (1999a, 1999b) and Velasco and Robinson (2000) were formulated for

Type I processes only, and they do not immediately accommodate Type II
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processes. Robinson (2005b) addressed the issue by discussing the difference
between the Fourier transforms at Fourier frequencies of two processes of the
different types, and showed that the difference can be bounded, although he
also found that it gets larger with 4; for 6 > 1/2 he compared the tapered
Fourier transforms instead. He then showed that the Whittle estimate is robust
to the type of process used in the estimation, and that the limit distribution

does not change.

When a vector process is analysed, simultaneous estimation may be pre-
ferred, because the correlation between the different elements composing the
vector can be taken into account and the efficiency of the estimates is improved
with respect to the case in which the parameters are estimated separately.

For the p-dimensional z; = (214, ..., zp,t)', introduce the p x p periodogram
LX) = F, () F, (=), with F, (\) = (F, (), ., F2, (V)"

A multivariate generalisation of the local Whittle loss function in (1.53)

can be presented following Lobato (1999). Letting d; = (dy, ..., d,)’, introduce

A\ dy) = diag\™®, .., A7%), (1.61)
Co(d) = — 3 Re(AQd) ' LOACGd) ™), (162)

L(dy) = {‘m

G, (d+)' - %(d1 +otdy) Zln(,\j)} ,~
. =1

(1.63)
the local Whittle estimates are
3+,LW = arg;niréL (dy), where 1/m+m/n — 0 asn — oo (1.64)
+€

where 6, = {51,...,3p} and O is a compact subset of (—1/2,1/2) x ... x
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(—1/2,1/2) (Lobato (1999) actually went further, because he showed that the
minimisation of (1.63) can be replaced by a two-step procedure that generates
the same asymptotic properties).

If each element of z; is fractionally integrated with spectral density as
in (1.26), (1.25), and the matrix G, in (1.25) is positive definite, then the
local Whittle estimates are root—m consistent (the usual m = o (n¥/ 5) or less
applies, for the limit normality of the estimates, according to the smoothness
of the spectrum) and more efficient than in the univariate case: in the bivariate
case for example the increase of efficiency is ¢ /8, where ¢ = G2,/ (G1:G22)
and G, is the element in the position (a, b) in the matrix G,.

Multivariate parametric estimation can also be considered, again resulting
in more efficient estimates provided that G, is not singular. Since the general-
isations of the procedures for univariate series are rather straightforward, we

omit them.

1.3.2 Estimation of the cointegrating vectors

In this subsection and in the following one we discuss the estimation of the
cointegrating vectors v and of the cointegration rank r in the cointegrated
model (1.30) for a p-dimensional process z;.

We assume the model

Y = VT uy(—75) (1.65)
Iy = ux,t(—(5+), (166)
where uy(—7,) = (u1(—71), - Ure(—7,)) is a7 x 1 process, uz(—04) =
(Ur1,4(=81); ooy Upt(—0p—r)) is (p—7) x 1, and uy = (Uy 4, .-, Upy) IS 2P X 1,

I, (0) process with spectral density f, (}).
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The scalar processes uy ¢(—71), ---, Upt(—0p—r) may of course be fractionally
integrated, and, since they are generated by using the notation (1.10), they
are of Type II. This has the advantage of not limiting the order of integration
only to the range for which the Type I fractional Brownian motion is defined.

We further assume that the process u; is a linear transformation u; =

o0

ZAjst_j of an ii.d. vector &; with covariance matrix F (g,6}) = 2. Reg-
fliaority conditions for the weights A; include the normalisation Ay = I, and
Zj l4;] < oo, Zj ||AJ-||2 < oo: this is a fairly general speciﬁéation, and
(J):ﬁer details on t;}fe= tlesign are in Chapter 4.

This structure is sufficient to derive the limit behaviour of some semi-
parametric estimates like OLS (and narrow band least squares, introduced
later in this subsection); when we specify a fully parametric model we also
assume that F (ge;) = Q(6) and that u; admits an autoregressive represen-

tation B (L;6)u; = &;, and both Q(8) and B (L;8) are known up to a set of

parameters 6.

We introduced a p-dimensional system because in that case the determi-
nation of the cointegration rank is not trivial, and we can then present the
techniques we use to address that problem in the application that we discuss
in the next section, where we have p = 4. However, in the remaining part
of this subsection and in Chapter 4 we only intend to describe and discuss
some techniques for the estimation of v, and in these parts we focus on p = 2,
r = 1, thereby avoiding the discussion of identifiability of some parameters
in presence of differing orders of integration in the explanatory vafiables, as
Robinson and Hualde (2003) also noticed; moreover, in (1.30), y, € I (6) and
zy € I(8), vy € I(7y) and B = § — v, and we can then describe the theoretical
literature and, in Chapter 4, our results, with a simpler notation.

Engle and Granger (1987) estimated v via OLS (we refer to this estimate
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as Uors in the rest of the Chapter, in order to keep the notation consistent
with 7 in Chapter 4). Engle and Granger (1987) assumed § = 1and y = 0:
in that case the OLS estimate is consistent and converges to the true value
with the rate Uors = v + O, (n™!), which is faster than in a regression model
with I (0) regressors. That result holds for a rather general specification of
the cointegrating errors, including forms of (short memory) autocorrelation
or even heteroscedasticity; potential correlation between u;; and us:, which
would make OLS inconsistent if § = 0, only generates a lower order bias when
0=1.

When ¢ and «y are no longer restricted to integers, though, in general rates
depend on both v and é: Robinson (1994b) showed that when § < 1/2 OLS
is inconsistent if the regressor z; is correlated with the cointegrating error vy,
and Robinson and Marinucci (2001) discussed the case é > 1/2, finding that
Vors = v + 0, (n'™?) when 6 + v < 1, Dors = v + O, (n*"*Inn) when
§+v=1and §d <1, and Uors = v + O, (n?~%) when § + vy > 1 (notice the
use of an upper bound for the orders of magnitude, rather than the exact rate,
when § + v < 1: this is because the rate of convergence may be faster, when
z; and v; are not correlated at any lag).

Since the inconsistency of OLS when é < 1/2 and the suboptimal rate of
convergence when 6 < 1 are caused by the correlation between z; and the
cointegrating errors v; in (1.30), Robinson (1994b) suggested to focus on the
lowest frequencies, where the "noise" due to the correlation with v; should be
of a lower order when compared to the "signal" in ;. The idea of a regression
on selected frequencies with the purpose to minimise the bias induced by the
noise in the extraction of a signal is due to Hannan (1963), who discussed
time series with continuous spectra. Robinson (1994b) exploited the power law
approximation (1.15) to reduce the bias: he suggested to run the regression

on low frequencies only, and he introduced the crucial assumption that the
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band (the set {Ag,..., Am} or {A1,..., A}, where m < n is the bandwidth)
degenerates towards zero as in the log-periodogram regression or in the local
Whittle estimation.

The narrow band least square estimate (NBLS), ypLs, is defined as

— _ ZT:l Re (Ioy (A)))
VNBLS = ZT:I T ( /\j) )

(1.67)

where

Iy %) = Fx () F, (<)) (1.68)

is the cross periodogram of z; and y;, and m is such that % +2 — 0asn — oo;
the choice of I depends on the presence of an intercept in (1.65): [ is set to 1
if an unknown intercept is included in the model, and to 0 otherwise.

Robinson and Marinucci (2003) showed that the NBLS estimate is consis-
tent even when 6 < 1/2, in which case Uyprs = v + O, ((n/m)“’_é) (and
they conjectured that the rate is sharp), while when 6 > 1/2, Unprs =
v+ O, (n"°m!™%) when v + 6 < 1, Unprs = v + O (n""*Inm) when
v+d=1and § <1, and Unprs = v + O, (n"~°) when v =0, § = 1 or when
v+ > 1. The rates of convergence are then improved with respect to OLS
when the joint memory is relatively small, i.e. 7+ 6 < 1: the only exception
is for 6 = 1 and v = 0, but even in that situation NBLS can be preferred,
because it succeeds in eliminating the lower order bias.

An even faster rate of convergence was attained by Chen and Hurvich
(2003) for some combinations of § and v: they kept m fixed and used a com-

bination of tapering and differencing of the data.

The OLS and NBLS estimates have the advantages of being very simple to
compute, and of not requiring any preliminary knowledge of the distribution

of the cointegrating errors (in this sense, they can both be considered semi-
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parametric). On the other hand the limit distribution is not standard, and
Wald type statistics are not asymptotically x?2, so a test on v based on Dors
or Unprs is not really practical because it requires critical values that depend
on the model of u;,; and uz,t;

Maximum likelihood, or pseudo-maximum likelihood if Gaussianity is not
assumed, may overcome these shortcomings.

Given the model B (L; 0) u; = &, E (g:e,) = € (0), when the parameters 7,

6 and @ are known a closed form estimate based in the time domain is

Yoy (0(L;0) 2 (7)) ©(8) 7 (B (L3 6) (e (), 2: (8)))

v(y,6,0) = - ; —
D1 (0(L50) 4 (7)) () (b(L;0) 7 (7))

(1.69)

where b (L; 0) is the first column of B (L; 6). In the same set-up, a closed form

estimate based in the frequency domain is

"0 (A3 0) Fagy () (Fyeny (=25)  Fasy (—A3))
Z?:l q (Aj; 0) Iz(’Y) ()‘J)

7 (v,6,0) = (1.70)

where p (X;0) = (1,0) £ (A;0) and ¢ (X;6) = (1,0) £ (X;6) (1,0)".

Since they both have the same asymptotic properties at least when 8 > 1/2,
as Robinson and Hualde (2003) showed, in the rest of the subsection we will
comment on v (v, d, ) only.

Phillips (1991) showed that when 6 = 1, v = 0, and @ is known, under reg-
ularity conditions ¥ (0, 1, 6) is asymptotically mixed normal, with 7(0,1,8) =
v+ O (n™'), and the Wald test on v has limit x§ distribution, where g is the
number of restrictions tested.

When any of 6, v or 4 are unknown, maximum likelihood requires joint
estimation with v.

When 7 and ¢ are known, efficient estimation of v and 6 can be realised

with one single regression, even though possibly a non-linear one. By rewriting
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(1.65) as
Ay, = vA 2y + (w12/was) Az, + €14 — (wi2/we) €2y, (1.71)

v can be estimated by maximum likelihood as the coefficient of A7z, in the
regression of A"y, on A”z; and A’z;: Phillips (1991) anticipated it for § = 1,
= 0 and under the assumption of independence for u;, and Robinson and
Hualde (2003) generalised it to fractional orders (provided that 8 > 1/2);
Phillips and Loretan (1991) discussed the extension to an autoregressive struc-
ture in u,, augmenting the model (1.71) by leads and lags of Az, and by lags
of A"v;. Phillips and Loretan (1991) only considered § = 1, v = 0, and even
in that case the regression imposes non-linear constraints, so a two-step pro-
cedure may actually be faster. For that case, Phillips (1991) showed that the
limit distribution of 7 (0, 1,6) does not change if 8 is replaced by a consistent
estimate .
On the other hand, the assumption of preliminary knowledge of the unit

root was essential: indeed, if p was estimated rather than imposed as p =1 in
Ty = PTi-1 + Uy (1.72)

(notice that when p = 1 then § = 1 so this is another way of formulating
(1.66)), then Phillips (1991) showed that the limit distribution of the estimate
of v is in general contaminated by the unit root distribution of the estimate of
p.

Robinson and Hualde (2003) showed that this difference in the limit dis-
tribution of v depended on the restriction to integer orders only for § and 7,
and on the estimation of ¢ via the regression of z; on z;_;. They compared

v(y,6,0), v (7, 0, @) and v (7)7, 3, 5), where ’f?,g,/é are consistent estimates of
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v, 6,0, and found that the three estimates of v all have the same limit distribu-
tion (regularity conditions included 8 > 1/2 and minimal rates of convergence
for 7?,3, 5) They also derived the limit distribution of these estimates of v,
finding that 7 (v, 6, 8) = v+0O, (n"~°) with mixed normal asymptotics and that
a Wald test on v has limit x? distribution (x? because they only considered a
scalar v).

The situation v = 0, 6 = 1 did not require a particular treatment or
discussion, except possibly the remark that then the results were the same as
those of Phillips (1991) when 6 = 1, v = 0 are known in advance. The fact that
preliminary estimation of & (or of , for that matter) does not affect the limit
distribution of the estimate of the cointegrating parameter, is a remarkable
difference with respect to the result of Phillips (1991), and it seems to confirm
that estimating a possibly fractional memory parameter rather than imposing
the alternative between short range dependence or unit root is a more natural

approach.

The case in which 8 < 1/2 was called by Hualde and Robinson (2002)
"weak cointegration".

It is fair to conjecture that under regularity conditions the maximum likeli-
hood estimates are root-n consistent and Gauss-Markov efficient. The regres-
sion estimate, on the other hand, may generate nonstandard asymptotics, and
possibly a lower rate of convergence as well, as discussed by Robinson (1994a),
or even inconsistency.

Assuming no correlation between z; and v;, Hidalgo and Robinson (2002)
proposed adaptive GLS estimation, showing that the resulting estimate is root-
n consistent and Gauss-Markov efficient. Allowing for. potential correlation,
Robinson and Marinucci (2003) discussed NBLS under stationarity: the esti-

mate is consistent but (they conjectured) converges at a slower rate. Hualde
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and Robinson (2002) on the other hand proposed a simple two-step procedure
that delivers root-n consistent estimation of the cointegrating parameter even
when x; and v, are correlated, although the estimate may be less efficient than

the maximum likelihood one.

1.3.3 Testing for cointegration

Engle and Granger (1987) also considered the problem of testing for a cointe-
grating relation. They proposed to run an OLS regreséion and then to test for
a unit root in the residuals with the augmented version of the Dickey-Fuller
test. This approach was further discussed by Hansen (1992), who noticed that
in that case the critical values of Said and Dickey-(1984) for that unit root
test are not valid, and that the correct ones depend on the number and on the
nature (deterministic or stochastic) of the regressors.

Yet if the cointegration rank is unknown, detecting the cointegrating rela-
tions through testing the order of the residuals may be problematic, because
all possible combinations should be considered. Several different procedures

then have been developed to estimate the cointegration rank.

Phillips and Ouliaris (1988) proposed to estimate the cointegration rank by
looking at the rank of G, in (1.25). Since that matrix is unknown, they con-
sidered a nonparametric estimate of fa, (0) (they assumed a CI (1, 1) model):
the rank of .Gz is then estimated by testing how many eigenvalues of that esti-
mate are significantly different than zero. Unfortunately, the limit distribution
theory only covers the case in which the eigenvalues are not zero, but Phillips
and Ouliaris (1988) proposed to use thié procedure and that limit distribution
anyway, arguing that it would help at least to spot the situations in which the
eigenvalues are far away from 0.

A third procedure to estimate the cointegration rank, still under the CI (1,1)
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assumption, was proposed by Johansen (1991) in a maximum likelihood frame-
work. Johansen (1991) derived the limit distribution of the likelihood ratio test
of the hypothesis that the cointegration rank is r against 7+ 1: it is not a stan-
dard x?, but he showed that it only depends on r and p and on the type of

deterministic component in the model, and it can be tabulated.

Testing for cointegration by looking at the order of integration of the resid-
uals of a regression is also popular when fractional cointegration is analysed.
In many applied works ﬁhis had been done by a semiparametric estimate, a
procedure that actually seems more appropriate, given that the residuals also
had been estimated semiparametrically (usually by OLS or NBLS).

An early example was provided by Cheung and Lai (1993), who used log-
periodogram regression on OLS residuals to investigate a potential Purchasing
Power Parity (PPP) relation in the long run. Cheung and Lai (1993) also
argued that when the estimate of -y is based on estimated residuals then its limit
distribution is not necessarily normal, supporting their claim with a Monte
Carlo exercise. Indeed Hassler, Marmol and Velasco (2006) found that the
necessary conditions for limit norrhality are rather strong if OLS residuals are
used: B > 1/2 is required and the lowest frequencies have to be trimmed and
excluded from the regression, and an even larger 3 is necessary if § + v < 1.

Robinson (2005b) obtained a root-n consistent estimate of v under the
milder condition that § > 7 + 1/2 and no trimming: he obtained this much

stronger result by using more information, because he discussed Whittle esti-

mation, which is parametric and uses the whole range {27”, . 2”(2_1) }, and by

employing a better estimate of the cointegrating parameter in the first step,
because he considered the residuals of a NBLS regression (OLS residuals can
also be used if § +y > 1).

However, in the fractional setting, the simple estimation of the order -y
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only gives a heuristic piece of evidence rather than to provide a proper test of
cointegration, because the order 4 is unknown as well.

Marinucci and Robinson (2001) thus proposed an alternative test, based
on the'remark that the rank of the matrix G, in (1.25) is reduced under coin-
tegration. They considered a variation of (1.63), augmented by the additional
assumption that the order of integration is the same for all the cointegrated
processes:

~ .

0. Lw = arg dmin Lb(d*lp) (1.73)

* Get

where d.1, is a p-dimensional vector in which each element is d, (scalar),
and O, is a compact subset in (—1/2,1/2).

When p = 2 and the rank of G, is full, under m = o(n*?) (or less,
depending as usual on the smoothness of f, (A) as A — 0) and other regularity

conditions

V8m (&,LW - 6*) —a N (0,1) as n — oo (1.74)

When the restriction to a common order of integration is correct, estimating the
memory parameter using two processes jointly is more efficient than estimating

it using just one of the series: indeed Marinucci and Robinson (2001) considered

Hk = 8m(5*,LW _gk,LW)2 (1.75)

where &, Lw, the local Whittle estimate of the memory parameter of the kth
element of bivariate vector z;, is computed by minimising the loss function for

a scalar process as in (1.53), and showed that
Hy —4 X3 s n — oo. (1.76)

If on the other hand G, is singular, Marinucci and Robinson (2001) argued
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that g*,LW is inconsistent and the statistic in (1.75) diverges. Marinucci and
Robinson (2001) then suggested to test for cointegration by comparing 3*, Lw
and Sk, Lw, rejecting cointegration if (1.75) is below a critical value (given the
similarity with the Hausman test, Marinucci and Robinson referred to this as

a "Hausman-type" test).

Robinson and Yajima (2002) proposed a variation of the test of Phillips
and Ouliaris (1988) in which the 4, difference is taken by applying the fil-
ter A(X;0.1,) as in (1.61) to the periodogram I, ()), thus estimating G, as
G, (041p) in (1.62), provided that 6, € (0,1/2). Since 4, is unknown, and
cannot be estimated using the multivariate approach (1.73) because G, is not

of full rank under cointegration, they proposed

(—S*,LW = (EI,LW + ...+ Ep,LW)/p- (177)

Robinson and Yajima (2002) also observed that if the same bandwidth is used
for 3*,Lw and @z(g*,Lwlp), then these are perfectly correlated, so they sug-
gested to compute 6, 1w using another bandwidth m; that increases sufficiently
fast to remove that effect. Let A1(6.1,), ..., Ap(041,) be the ordered eigenval-
ues of G,(6.1,) and let Xl (Curwlp), -ony Xp(g*,bwlp) be the ordered eigenvalues
of @Z(E*,Lwlp), and drop (8,1,) and (. wl,) in order to make the notation

lighter: Robinson and Yajima (2002) defined

l |
ol =300 =34, (1.78)

a=k a=k

oy j+1 o j+1
= %1)”’, ;= p/\fl) 2forj=1,..,p—1 (1.79)
o1, 01,

48



1/2
A2 A2 A(1)2 ~(2)2

(ap—j+1,p01,p—j + Ul,p—jap—j+l,p)

Sj = ~(1)2 (180)
01,
and showed that when the rank of G, is full

m(@; — m;)/s; —a N(0,1) as n — oo. (1.81)

To test for the cointegration rank r they considered
tr =Ty + Va5, /m? (1.82)

(where cv, is the critical value for the size a): evidence of cointegration is
found if the computed value of the expression in (1.82) is below a pre-specified
threshold (they suggested 0.1/p). They also proposed, as an alternative, to

confront 7, with another pre-specified threshold (they suggested 0.01/p).

The last test we present was proposed by Breitung and Hassler (2002) and
is based on the extension to the fractional case of the maximum likelihood
approach. They considered (1.65) and (1.66) with the additioﬁal assumptions
that a representation B (L;0)u; = €, is feasible, and in particular that u,; =
(Urs1ty ooy up,;)’ has VAR(k) structure, that the orders of the observations and
of the cointegrating errors are always the same, so 6; = ... = J, = 4, and
Y1 = -7, = 7, (although they stated that this restriction was only introduced
to ease the notation) and that there are no parametric restrictions across the
elements of Q and v, 4., v,, 6. Finally, they assumed that 8, = 6. — v, > 1/2.

Introducing

€ = A‘s‘zt, :‘S\I =2zt — B] (9) €1 — ... — Bk (0) Ci—k (183)
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where B, ..., By, are the first k£ elements of the VAR representation for u;, and

t—k—1

k—
/E\* Z ]P—]EI 1 t—l = (/gtk-,-lae;—h ---:e:‘,—k), (184)

Jj=1

— 1/nZat (st) Sio = Zet 1 (st) Sy = S GG (1.85)

following Johansen (1991), Breitung and Hassler (2002) tested the hypothesis
of r cointegrating vectors by computing Xl, . X,,, the solutions of the equation
in A

~ ~, ~ -1
')\Q -3, (Su) Sio| = 0. (1.86)

~

Ordering these eigenvalues as Xl < ... < ), Breitung and Hassler then showed
that the trace statistic 37" X, is asymptotically X?p_r)Q. Since in practice 4,
and B (0), ..., Bi (0) are unknown, Breitung and Hassler suggested to replace

them by consistent estimates.

Cointegration requires that the order of integration of the processes y; and
x4 is the same. In the CTI (1,1) case this is usually verified by testing for a unit
root, for both the series. In the fractional model though there is no reason to
expect any particular value for 4., so the test has to be different.

Robinson and Yajima (2002) proposed to test the hypothesis
‘ H() . {5k = (51} (187)

where [ and k refer to the position in the p-dimensional vector z;, against the

alternative that the two parameters are different, by using the statistic

~ V2(§ pwr — 0,
Ty = T Ow — Otiw) (1.88)

(30 GL/(CuCy
where G; and Gy are the elements in the main diagonal of the p X p matrix
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G., and Gy, are the elements in the position (k,!), and @z is estimated as in

(1.62). When the process is not cointegrated,
Tis —a N(0,1) as n — oo, | (1.89)

but otherwise the test statistic is not well defined. Robinson and Yajima (2002)

then also suggested the alternative statistic
= m!/? (gk,LW - EZ,LW)

Ty = = , (1.90)
{31 = G2/ (GxG)}2 + h (n)

where h(n) is a sequence that tends to zero at an appropriate speed, because
under cointegration

fk,z —, 0 as n — oo, (1.91)

while otherwise the same limit distribution of Tk,l holds. They remarked that
Ifk’l‘ < ‘Tk,g| so a non rejection of the hypothesis from T’kJ would be made
with even greater confidence from Tk,b Robinson and Yajima also generalised

the statistic fk,l to test several hypotheses simultaneously by a x? test.

1.4 An applied example: a fractional cointe-
gration analysis of the term structure of
interest rates

1.4.1 Introduction

We apply the techniques described in Section 1.3 to estimate the memory
parameter, to determine the cointegrating rank of a vector, and to estimate a
cointegrating matrix, for a vector of four interest rates.

The application of the fractional model to a vector of interest rates is of

51



particular importance because it helps to reconcile two apparently conflicting
groups of theories about the order of integration of the interest rates.

By plotting together two comparable interest rates with different maturi-
ties, it is fair to conjecture that the long term dynamics of the two series is
largely driven by a highly persistent common factor, while the persistence of
the difference between those two rates (the "spread") is much less. This of
course matches the intuitive description of the concept of cointegration, and it
is not sﬁrprising then that an application for two rates with différent maturities
had been proposed already by Engle and Granger (1987).

Campbell and Shiller (1987) provided a theoretical model linking rates with
different maturities: they showed that if two different rates are I (1), then un-
der rational expectations they are cointegrated with v = 1; if a vector of p
rates is considered, then the cointegration rank is 7 = p — 1. Campbell and
Shiller (1987) proposed a CT(1,1) model, but fractional integration can be
introduced in their design without any modification: applying rational expec-
tations (and then adding an I (0), 4.i.d. disturbance term) to their equation
(4), the cointegrating errors should be of order max {6 — 1, 0}.

If indeed the interest rates are integrated, then a cointegrated model is
also necessary for a successful transmission of monetary policy. The central
bank operates by supplying liquidity on the interbank market by open market
operations and discount window loans, so that the short term rate is tightly
managed by the monetary authority. Yet the relevant macroeconomic indica-
tors are only affected by the rates of contracts with much longer maturities:
the demand of money from the individual agents depends on the return of
the alternative asset, which is more likely to be the Treasury bills or Trea-
sury bonds rate, while the economic activity depends on other rates, like the
bank loan rate or the commercial paper rate. The transmission of monetary

policy then requires that an impulse originated in a market for a very short
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term contract is transmitted to contracts with much longer maturity, and for a
successful policy it is also necessary that the transmission is fast and reliable.

If we are restricted to integer orders only, the evidence seems to be in favour
of a CI(1,1) model, and it is quite robust with respect to changes in the pairs
of rates used (Treasury bills and bonds, eurodeposits, synthetic rates generated
by fitting splines...) and to the sample period. When more than two rates were
analysed jointly, though, the hypothesis of p — 1 independent cointegrating
vectors was not always met: Hall, Anderson and Grahger (1992), Engsted and
Tangaard (1994) and Lanne (2000) found more than one stochastic trend, but
explained the result allowing for a structural break in 1979 (Hall et al. also
introduced a break in 1982); Domingues and Novales (2000) too found that
the results were sensitive to whether the sample started in 1979 or a few years
later. The potential breaks were explicitly testéd by Hansen (2003), who found
that the two changes in monetary policy in 1979 and in 1982 altered the short
run dynamics of the rates.

Most researchers assumed integer orders only, and in many cases applied
the maximum likelihood approach introduced by Johansen (1991). Arguing
that the I(1) representation contrasts the experience that rates do not take
negative values, Lanne (2000) proposed near unit roots instead.

An I (1) interest rate is also difficult to motivate because it is likely to im-
ply an I (1) model for inflation also: 1;his is the case, for example, if the Fisher
equation holds, or if the central bank sets the interest rate using a linear reac-
tion function like the ones described by Taylor (1993) or by Svensson (1997).
Such a strong persistence in inflation is hardly acceptable in monetary theory,
because it implies that the central bank does not stabilise inflation around a
constant value, as the inflation targeting commitment requires. Indeed, Clar-
ida, Gali and Gertler (2000), for example, adopted the I(0) representation

instead, and dismissed the results of the Dickey-Fuller test arguing that they
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were due to the low power rather than to a unit root.

1.4.2 Empirical analysis

We applied the fractional model (1.65) and (1.66) to the US interest rates with
maturities of 1, 3, 6 and 12 months. We augmented the equations by non-zero
constant means, but imposed no trends because they would imply explosive
rates. By indicating the four rates as i1, i3;, 16, 12; respectively, and under

the assumption that » = 3, the model prescribed by the theory is

i1y = py +uge (—9.)

3¢ = pg + v3il, + usy (—73) (1.92)

16 = pg + veils + ugt (—76)

\ 12y = pyp + V12ils + w12 (—712) -

Notice that we do not assume r = 3, but test for it instead; for each rate we

assume the univariate model
it = W+ Ujy (—6;),7€{1,3,6,12}. (1.93)

The contract is the London interbank deposit in US$ (monthly averages of
the offer rate) over the period 10/1979 to 01/2002 (inclusive), corresponding
to the DataStream identification codes USIGOLDC, USI60LDD, USI6OLDE,
USI60LDF. The period was selected because Clarida Gali and Gertler (2000)
suggested that, with the appointment of Volker as chairman, the Fed took a
more aggressive attitude towards inflation, and indeed a break at that point
was suspected in many applied analyses. The London InterBank Offer Rate
(LIBOR) is a typical measure of the cost of funds in the US, because it is not

affected by any regulation imposed by the central bank; in fact for the same
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argument the LIBOR had been in the past a good measure of the effective cost
of funds for several European countries too.

In the rest of the section we only use some of tfle procedures described in
the previous part, so we can shorten the notation by using 5, ~ for ELW, YLw as
in (1.53) and ¥ for Ty ps as in (1.67); we also drop the subscripts LW in 6, pw
(1.77) and OLS in Tpps; finally we use S, 5, U for the maximum likelihood
estimates of the corresponding parameters (we compute these by minimising
a conditional sum of Squafe like in (1.60) but applying the approach to a
multivariate cointegrated process; more details are to be found further on in
this subsection, see (1.100)). In all the tests, the size is 5% unless specified

otherwise.

We run the analysis in two parts: a preliminary, semiparametric treatment
of the data, and then a fully parametric one. We begin with the semiparamet-
ric analysis in ordér to obtain robust evidence. For this reason, we prefer a
conservative approach in the choice of the bandwidths: for the local Whittle
procedure and similar ones, we set m = 25 (unless the theory required other-
wise, as in the computation of , in the test of Robinson and Yajima (2002)):
this is optimal for an AR(1) structure with autoregressive coefficient of 0.4 for
the short memory component, but of course we did not assume such a struc-
ture. Following Marinucci and Robinson (2001), we also set a much smaller m

to estimate the cointegration parameter.

The plot of 71 and {12 is in Figure 1.1.

A naive inspection of the plot suggested that if the data are reverting to a
potential mean, they are only doing it very slowly. The downward trends in the
first part of the period could be a movement towards the long run equilibrium
after a particularly large perturbation, if §; < 1, but we did not rule but the

possibility that 6; = 1, as in the mainstream cointegration literature. The
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Figure 1.1: 1 month and 12 months rates
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plot is also informative of a potential common stochastic trend: indeed the two

rates seem to move together, the differences vanishing rather quickly.

Since it is widely accepted that 6; < 1, we estimated the memory parame-
ters both for the levels and for the first differences. We estimated ¢; by the
local Whittle procedure (we initialised the optimis.ation by the log-periodogram
regression estimate). The results are presented in Table 1.1: the label §; refers
to the memory parameters for data in levels, da; to the first differences; a.s.e.

indicates the asymptotic standard errors as per (1.54).

Table 1.1: local Whittle estimates of the memory parameters
il 13 16 112
d; 0.75 0.76 0.78 0.81

S s -0.14 -0.11 -0.08 -0.05
a.s.e. 0.1 0.1 0.1 0.1

The estimates of §; were indeed below 1, but we never rejected the null

hypothesis in the four tests

H,: {5Ai;j = 0} v.s. Hy: {5Ai,j < 0} (194)
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on the basis of a ¢ test.

The estimates were, in any case, very distant from 0, and tesfing
Ho : {5i,j = O} v.s. Hy: {(Si,j > 0} (195)

the null hypothesis was always rejected on the basis of a t test.

In order to justify the I(0) structure despite the extensive evidence in
the literature against it based on the Dickey and Fuller test, it was often
argued that the power of the test is very low. Having estimated the orders
of integratioﬁ directly, we treated both the 7(0) and I(1) specifications in
the same way, and the evidence against the I(0) model was then far more
convincing. Indeed, considering our estimated orders of integration, it is not
surprising that the conventional unit root tests were in favour of the I(1)
- model: even assuming that the data were neither I(0) nor I(1), they appeared
to be far closer to being I(1), and the Dickey and Fuller test just reflected this

fact.

We next tested the hypothesis that the memory was the same for all the
series: the squares of the pairwise statistics Tk,l (1.88) are in Table 1.2. In
accordance with our previous findings, we run the tests on first differences
of the data. We never rejected the null hypothesis of a common order of
integration.

This result was confirmed by the joint test that the four rates are the same;
the realisation of test statistics was 2.74, well below 7.81, the 5% critical value

of a x3 distribution.

Table 1.2: Semiparametric tests for the equality of the orders

pairs: Ail,Ai3 Ail,Ai6 Adl,Ail2 A3, A6 A3, Ail2 A6, Ail2

T2, 2.31 1.99 2.18 1.44 1.76 1.67
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To estimate the memory of the data more efficiently we then pooled the

four individual estimates, and we computed 3*,& +1=0.91.

Having obtained evidence in favour of a common order of integration, we
tested for cointegration. The obvious candidate cointegration rank was p — 1
(3 then in our case), since this was the one required under the expectations
theory and it was also used in a wide number of empirical analyses. We begun
by testing if pairs of interest rates were cointegrated by the Hausman-type of
test (1.75) proposed by Marinucci and Robinson (2001). The results of the
tests are presented in Table 1.3: H, refers to the test statistic (1.75) computed
using the interest rate with shorter maturity, ﬁy to the other one. We rejected
the null of no cointegration in 9 combinations out of 12. Moreover, in all the
combinations we always found that &, from (1.73) was lower than both the
individual estimates of the orders of the two series, so we suspect that the

failure to reject in the remaining cases may be due to a type II error.

Table 1.3: Marinucci and Robinson (2001) test for (no) cointegration

pairs:  Ail,Ai3 A1, Ai6 Ail, Ail2 A3, Ai6  Ai3, Ail2 A6, Ail2

Ou,Ai -0.32 -0.31 -0.26 -0.31 -0.24 -0.20
H, 6.64 6.21 2.87 8.19 3.29 2.51
H, 8.78 10.57 8.69 10.46 7.20 4.32

We also analysed the data using the test proposed by Robinson and Yajima
(2002) (of course we intend the definition to be valid for Type II fractionally
integrated processes as well, and we used the vector of the four rates instead
of 2;). Notice that Robinson and Yajima (2002) only formulated the test for
variables having é, < 0.5: on the basis of Velasco (1999b) we may conjecture
that the same procedure holds for 4, < 0.75 but this is unlikely to be the
case anyway, so we considered two alternatives. In the first procedure we

took d, differences of the data in the time domain, setting all the observations
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before the first one to zero, as is common practice. We then estimated G, in
(1.25) simply by averaging the periodograms over the first m.frequencies, as if
computing G as;(0 X 1,) as in (1.62): this is exactly the procedure of Phillips
and Ouliaris (1988) allowing for fractional integration as well. In the second
procedure we computed the first differences for the data and then estimated
G, by Gai (6, — 1)1,) as in (1.62). We refer to these two approaches as
"time domain" based and "frequency domain" based respectively. In both the
procedures, d, was actually unknown, so wé estimated it by cbmputing 0u i
and then by adding 1 back; notice that we used 27 rather than 25 frequencies

as suggested by Robinson and Yajima (2002).

In Table 1.4 we present the test statistics 7, t, for the joint four dimen-
sional vector. The hypothesis of interest in that case was r = 3, as prescribed
by the economic theory. With the time domain approach, the maximum of
the rescaled sum of the eigenvalues, 73, was about 0.009, larger than the sug-
gested threshold 0.01/p=0.0025; the statistic t3 on the other hand was well
within the threshold 0.1/p=0.025. With the frequency domain approach, on

the other hand, both these indicators rejected the null hypothesis.

Table 1.4: Robinson and Yajima (2002) cointegration tests: joint test

rank tested: r =3 r=2 r=1
time domain

7, 0.00888 0.00034 0.00005
t, ~0.01178 0.00046 0.00007
frequency domain
7 0.02749 0.00110 0.00017
t, 0.03628 0.00145 0.00023

We also considered testing only pairs of rates: in that case the null hypothe-

sis was r = 1. These results are in Table 1.5. With the time domain approach,
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the evidence was mixed for the 7; statistics, cointegration not having been
rejected for rates that were "contiguous" in terms of maturities (¢1; and 3,,
13; and i6;, i6; and ¢12;) but not otherwise; no rejections took place when t
was used. Once again, the frequency domain approach yielded less rejections

of the null hypothesis: 1 out of 6 for the 7; statistics and 5 out of 6 for 1.

Table 1.5: Robinson and Yajima (2002) cointegration tests: pairwise tests

pairs:  Ail, Ai3 Ail, A6 Ail, Ail2 Az3,Ai6 A3, Ail2 A6, Ail2
o - time domain

T 0.00140 0.00616  0.01599  0.00195  0.00700 0.00286

t 0.00187  0.00818 0.02064  0.00259  0.00950 0.00382

' frequency domain

e 0.00141 0.01813  0.04717 0.00616  0.02784 0.00912

t 0.00187  0.02398 0.06195 0.00817  0.03674 0.01210

The group of tests of the rank of G, gave then a less clear indication of
three independent‘ cointegrating vectors, especially when the frequency domain
approach was considered.

In order to obtain additional evidence, we set 7 = 3 and proceeded to the
semiparametric estimation of the cointegrating parameters vs, vg, V12, and
then of the orders of integration of the cointegrating errors <vs, vg, 712, a8
defined in (1.92). We already noticed that this does not constitute a formal
test but it still provides a further piece of information about the cointegration
rank, because if r = 3 we should observe in the residuals a sensible reduction
in the order of integration.

Since we assumed d, < 1, OLS may be subject to a rather large bias in small
samples, which can be reduced by using NBLS. Marinucci and Robinson (2001)
showed by a Monte Carlo exercise that only a very small number of frequencies

should be used. Since in our data approximately 80% of the total variation was
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concentrated in the first five frequencies, we set m = 5 for the computation
of the NBLS estimate. We report both groups of estimates in Table 1.6: the
correction of NBLS on OLS was very small, as if either § was rather close to
1 or the correlation between innovations and explanatory variables was small.
The estimates were very close to 1, as predicted by the expectations theory,
and decreased slightly with the increase of the difference in the maturities, the

minimum of 0.945 corresponding to the relation between i1; and 712;.

Table 1.6: NBLS and OLS estimates of the cointegrating parameters
series: ¢1,@3 11,16 41,712
NBLS: v 1.008 0.998 0.945
OLS: v 1.006 0.990 0.931

We then moved on to estimate the memory parameters of the three series
of residuals: this is often of interest in its own right, but in our case it was also
important because it could provide yet another piece of evidence that indeed
the order of integration was three, as prescribed by the expectations theory
and acknowledged in most of the applied analyses on similar data under the
restriction of integer integration.

We intended to discuss primarily the NBLS residuals, because the rate of
convergence is likely to be faster than for OLS, but in practice the results were

extremely similar.

The local Whittle estimates of the orders of integration of the residuals
are in Table 1.7. The estimates based on the residuals of the NBLS regression
ranged between 0.22 and 0.44, the reduction of the order of integration being
larger for the pair i1;, i3;, and smaller for the pair il;, 112;: if we interpret
this result as an indication of a potentially stronger cointegrating relationship
between the rates with closer maturities, it may be important to notice that it

mirrored the outcome of the cointegration tests. We do not show the estimates
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for the OLS-based residuals because the potential rate of convergence should

be smaller; the estimates anyway were extremely similar to the other ones.

In the second pakr‘t of Table 1.7 we present the estimates for the memory
parameters of the spreads (i112—11), (i6—:1), (¢3—%1), because according to the
expectations theory each pair of interest rates is cointegrated with long term
coefficient ; = 1 and the series of the spreads should be weakly autocorrelated.
The outcome was essentially the same as if NBLS residuals were used instead,
therefore supporting the hypothesis that indeed the cointegration rank was
p—1 and also that v3 = 1, vg = 1 and v;3 = 1. But the order of integration of
the spreads was always larger than that prescribed for it by the expectations

theory, and testing

Ho: {v,; =0} vs. Hy:{v;>0} (1.96)

the null hypothesis was always rejected.

Table 1.7: LW estimates of the memory parameters of the cointegrating errors
pa.iI'S: igt, th 7:6,5, 'l].t i12h 'l,].t
residuals of NBLS regression

vy 0.22 0.30 0.44
spreads (structural assumption)
v 0.25 0.30 0.42

The high persistence signalled by the larger than zero y; may be interpreted
as too slow an adjustment of the long rates to current and expected future
shocks in the short term rate.

Evidence of failure of the expectations theory is common in the literature,
but it was mainly observed through particular reparameterisations of the short
run dynamics: the CI(1,1) model with v; = 1 was either taken for granted
or found to be broadly compatible with the data. We on the contrary found

that the expectations theory failed in describing even the long run dynamics,
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because according to our estimates the reaction to shocks and the approach to

the long term equilibrium is much slower than predicted by the theory.

The rejection of the expectations theory means that long term rates do not
anticipate future short term rates precisely.

As Campbell and Shiller (1987) pointed out, the failure to observe some
strong implications of the expectations theory does not necessarily mean that
the long term maturities a,ré not informative at all, about future short term
rates dynamics: a sudden increase in the long term rates for example may be
a prelude to a tightening of the monetary policy even if we cannot rely on the
expectations theory to quantify the exact extent of the future intervention. We
addressed this issue by estimating the complete parametric model and then by

analysing the impulse response function.

We first tested for cointegration again, by using the parametric approach
proposed by Breitung and Hassler (2002).

Preliminary knowledge of §, and of the order £ of the VAR representation
of A% z¥ are necessary. Breitung and Hassler (2002) remarked that it can be
replaced by a consistent estimate, so we could simply use the semiparametric
estimate 5-,,,& + 1 we computed before, but, in line with the spirit of the
parametric model, we fitted an ARFIMA(2,d,0) to the first differences of each
rate, averaged the estimates of each memory parameter and added back 1 (we
obtained 0.86, very close to 0, a; + 1, which is what we should expect).

Once again we found rank 2 using the whole vector and the 5% test, but
notice that the realisation of the test statistic was very close to the critical
value, and rank 3 would have followed had we taken a size of 10%. On the
other hand, when testing only pairs of rates, we always found evidence of
cointegration, thus pointing at rank 3 in the whole vector. These results are

shown in Tables 1.8 and 1.9.
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Table 1.8: Breitung and Hassler (2002) cointegration tests: joint test
rank tested: r=3 r=2 r=1 r=0

M 0.0l 884 2991 49.39
Yo 0.01 885 38.05 87.45

X; 05, (n—ro)? 384 949 1692 26.30

Table 1.9: Breitung and Hassler (2002) cointegration tests: pairwise tests

pairs:  Ail,Ai3  Ail,Ai6 Ail, Ail2 Ai3,Ai6 A3, Ail2 A6, Ail2

A1 0.02 0.03 0.00 0.19 0.02 0.00
A2 22.82 28.61 - 22.36 22.64 17.67 14.61

We imposed a cointegration rank r = 3, and moved on to formulate and
estimate a VAR(k) for (uy¢, use, uet, Ur2:) -

Introduce the notation

g = (d*,Cg,Cﬁ,Clg,bg,be,blg)l (197)
A% [(i1, —31) 1 (¢ > 0)]
A% (i3, — 1 b3(il, —
&(9) = L8 =33 = bo(il )1 (¢> 0) (1.98)

A°e [(i6, — 16 — bg(il, — i1))1 (¢ > 0)]

| A% [(312, — 712 — bia(i1, — 71))1 (¢t > 0)]

and

2 (09) =&(0) - i B (009)) € (9) (1.99)

where B; (@ (g)) are estimated by regressing &, (g) for k lags.

Letting § = (8.ai + 1,%,%,%’12,53,36,1712),, then &, (g) and & (5 (Z}))
are semiparametric estimates of the series of original innovations u; and &,
respectively. To determine the order of the VAR, we first discarded the first
three &, (g) (because only a few observations were available to compute the

fractional difference of the data, and the effect of the truncation can be very
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strong in those situations), and then applied the Schwartz and Hannan and
Quinn information criteria to the remaining observations. In both cases a
VAR(2) was selected.

This two-step approach can élso be used to show that the likelihood is a
function of g, so the maximum likelihood estimation of the whole parametric

model follows as

32 (00) & (060)

t=l

(1.100)

g = arg,cominin

on a compact set ©.

The maximum likelihood estimates of the elements of B (L) and of Q are
Bi-5(00).2- 4Lz (@) (0@)-

We presented the maximum likelihood estimates of the long run parameters

¢ in Table 1.10, those of B (L) in Table 1.11 and those of {2 in Table 1.12.

Table 1.10: ML estimates of the long run parameters
Vs Ve Viz Y3 Vs Y12 O«
1.001 1.01 098 0.19 0.21 0.25 0.86

Table 1.11: ML estimate of the autoregressive parameters
B, B, '

0.52 1.08 -0.57 0.41 -0.17 0.15 -0.95 045
0.00 -0.72 0.36 0.26 0.02 -0.58 0.73 -0.38
-0.06 -1.35 0.51 0.64 0.06 -0.19 045 -0.40
-0.09 -1.51 0.18 1.10 0.06 0.07 0.18 -0.30

Table 1.12: ML estimate of the covariance matrix of the innovations
1000052 Correlation structure
0.025 0.03 004 -0.04 1 090 0.78 -0.34
0.03 0.06 0.08 -0.07 0.90 1 0.93 -042
004 008 011 -0.11 0.78 0.93 1 -0.50
-0.04 -0.07 -0.11 0.44 -0.34 -0.42 -0.50 1

65



The estimates of the long run parameters resembled those from the semi-
parametric analysis: Vi; and 74 were slightly closer to the parameters pre-
scribed from the expectations theory, and a larger correction took place for
712- The estimated cointegrating parameters were very close to 1, indeed even
closer than the NBLS estimates, and the effect of cointegration was quite rel-
evant, the gaps 8y — gy woey 5, — 7,5 ranging between 0.61 and 0.67. Since
Robinson and Hualde (2003) showed that when 4, — 7, > 1/2 a simple two-

step GLS estimate would be as efficient as maximum likelihood, we first tested

Hy : {6. — 73 =0.49} v.s. Hy: {0, — 75 # 0.49},
Hy : {6, — v = 0.49} v.s. Hy : {6, — v # 0.49}, (1.101)
.HO . {6* - 712 = 0.49} V.S. H] . {5* - 712 % 049}

with three likelihood ratio tests. Each test statistic has a x? distribution (under
the null), and the realisations were 0.93, 0.68 and 0.38 respectively: despite the
fact that the point estimates yielded gaps d. — s, ..., 0. — 7, larger than 1/2,
the differences were then not statistically significant, so with these data the
simultaneous estimation might be safer.

We next tested the structural hypothesis that all the cointegrating para-

meters were 1, as it is assumed in the expectations theory:

Hy:{va=1,v6=1,vi9=1} vss. Hy: {v3# 1 &Jor vg =1 &Jor vy, = 1},
(1.102)
The corresponding test statistic took the value 7.5, just below the critical value

7.8, so the hypothesis was not rejected. The two other relevant hypothesis
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concerned the order of integration of the data: the expectations theory required

Ho:{y3=0,7 =0, 112 =0}, v.s. Hy:{y3# 0 &/or 75 =0 &/or v,, = 0},

(1.103)
but the hypothesis was rejected (the test statistic took the value 8.3); on
the other hand, we again failed to provide any convincing statistical evidence

against the hypothesis of a unit root:
Hy: {0, =1} vis. Hy: {0, # 1} (1.104)

had a realised test statistic of 1.7.
As in the semiparametric analysis, the estimates of the orders of the resid-
uals maintained the property that the closer the maturities were, the faster

was the adjustment, but this feature was not statistically significant: testing

Ho: {v3 =75 =712} v.s. Hy:{y3# 76 &/or 75 # 712} (1.105)

the computed statistic was 1.3, far below the critical value of 6.0: the estimate
of the memory parameter of the residuals under this restriction was 0.2.

We analysed the short term dynamics via a structuralised impulse response
function.

For the structural identification of contemporaneous shocks, we assumed
that the contemporaneous correlation moved from the shortest td the longest
maturity. We already noticed that the central bank operates by supplying
liquidity on the interbank market, with the aim of controlling a very short term
rate (indeed, the overnight has maturity of only one day): with our assumption,
an innovation to the rate with the shortest maturity is interpreted as driven by

monetary policy decisions, whereas innovations to rates with longer maturities
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may depend on other factors as well, there including the possibility that long
term rates do still roughly anticipate the movements of future short term ones

even if with less precision than the expectations theory hypothesis prescribes.

We plotted in Figure 1.2 the estimated reaction of the three rates with
respect to an innovation to the short term rate. The estimated effect of a 100
basis points (b.p.) innovation was temporary: the peak was reached after two
periods and then the plot reverted to 0, yet after 24 periods the one month
rate was still estimated to be 69 b.p. above the starting value, so the reversion

to 0 was indeed very slow.

Figure 1.2: Reaction of the rates to a 100 b.p. increase in the 1 month rate
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The estimated contemporaneous reaction of the longer rates was very strong
and indeed nearly one to one: a 100 b.p. increase in the short rate was met by
a 93, 86 and 72 b.p. increase in the 3, 6, 12 months rates respectively. They
also followed the 1 month rate in the subsequent periods, maintaining the
characteristic that the 3 months rate was the closest one to the 1 month, the
12 month the furthest away. Overall though these differences among the plots

were very little: the whole term structure drifted, peaked and then reverted to
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the mean in quite the same way.

Figure 1.3: Reaction of 1 month rate to a 100 b.p. increase in the longer rates
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In Figure 1.3 we plotted the reaction of the 1 month rates to a 100 b.p.
innovation in the other three rates: the three months rate anticipated the
future dynamics better in the short run, but in the medium and long run the

informative content of the long term rate was clearly superior.

1.4.3 Conclusions

Fractional integration and cointegration allow a more flexible description of the
characteristics of an economic time series. We considered an example in which
by restricting the attention to I(1) and I(0) models only we would implicitly
exclude some properties that are required by the economic theory. Fractional
models made it possible to reconcile the apparently alternative theories. We
presented a multivariate model for the US interest rates for different maturities,
to study the implications of fractional integration and cointegration on the
expectations theory for interest rates and on the transmission mechanism of

monetary policy.
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The first, semiparametric, analysis was sufficient to rule out the expecta-
tion theory, because the high persistence of the residuals implies a reaction
much slower than what the theory predicted. But it still provided evidence
in favour of the existence of a long run relation as required for the transmis-
sion of monetary policy, possibly taking the form of the interest rate spread.
The fully parametric analysis confirmed this conclusion, and indicated that the
spreads were informative with respect to the future rates. Evidence of frac-
tional integration of the data, obtained in the semiparametric analysis, was
confirmed by the parametric specification: point estimates indicated a slow
mean-reverting dynamic for the interest rates, although we were not able to

reject the hypothesis of an I(1) process.

1.5 Estimation when the process is contam-
inated by unobserved deterministic com-
ponents or subject to breaks in the sto-
chastic ones.

1.5.1 Memory estimation in the presence of determin-
istic components of various kinds

We now consider a time series x;, observed at times t = 1,...,n, which is
composed of two unobservable parts: a deterministic sequence s; and a zero-
mean stochastic process £,

Iy = é't + . (1106)

In many economic time series it seems that the deterministic component
changes over time: it could include a time trend, for example, or a mean
subject to a break. Modelling these terms may sometimes be difficult: in some

applications a linear time trend can be confused with a shift in the mean, or
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the location of a certain break can be disputed; more often some features may
be neglected altogether.

The practical consequences of incorrectly modelling the deterministic com-
ponent were greatly exemplified by Perron (1991). He considered the same
thirteen time series for which Nelson and Plosser (1982) did not reject the
hypothesis of a unit root using a Dickey-Fuller test, and showed that the con-
clusion could be reversed in ten of them if a break in the intercept or in the
slope was allowed for in 1929 (in terms of (1.106), Perron considered for z; the
residuals of a regression of the data on a linear trend).

He also showed that the estimate of the autoregressive coefficient in a
Dickey-Fuller type of regression with I (0) observables can be inconsistent if
the deterministic component is not correctly specified. When a shift in the
intercept is not accounted for, the true value of the autoregressive coefficient
is overestimated and the limit distribution of the Dickey-Fuller test statistic
is different from the one specified by the asymptotic theory; when the trend
is modelled in an incorrect way, ‘lche estimate of the autoregressive coeflicient
converges to 1, then giving spurious evidence of a unit root.

- This can lead to the application of inappropriate limit theory, and it can
also have important implications for economic interpretation of'the results, for
example because the spurious strong autocorrelation could be regarded as a
slow response to shocks by the policymaker or by the agents.

The two deterministic components discussed by Perron (1991) may be asso-
ciated with a dimension based on the Euclidean norm, and the different results
may be classified according to that dimension. It is of course a rather coarse
classification, because only two deterministic components and two orders of
integration are considered, but it is worth noticing that the spurious evidence
of a unit root occurs when the order of magnitude of s; is bigger than the order

of &, and that only the limit distribution is affected otherwise.
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Perron’s empirical findings were mitigated by several authors, who argued
that the choice of the point of the break was driven by the data, and the critical
value should have been modified to take that endogeneity into account.

Allowing for a potential random break in the intercept, Zivot and Andrews
(1992) reversed Perron’s results (so again they failed to reject the hypothesis
of a unit root) in five cases even with critical values computed without breaks
under the null, aﬁd argued that even more reversions would occur with a
critical value generated by introducing a break under the null. But this does
not make the example of Perron less important: Zivot and Andrews’ remark
simply means that Perron was exposed to the same criticism he raised, because
the way in which he proposed the evidence depended on the model as well, the

Dickey-Fuller test requiring a specification of the deterministic component.

We referred to the examples of Perron (1991) because of their popularity,

but we generalise the integer powers and the unit root to a fractional set-up,
& el(0), 6e(-1/2,1/2), (1.107)

se =t V2 0 < p<1/2, (1.108)

for some finite, nonzero x. Undoubtedly the trends of interest in practical
applications have integer powers, but these are only special cases of (1.108)
if ¢ =1/2, ¢ = 3/2,... (these are not in (1.108) but we nonetheless refer to
them in Chapter 2). By using fractional powers on the other hand we can
provide a much more refined classification. Moreover, trends with non-integer
powers are not necessarily unrealistic: if for example d (fractional) differences
are taken from a time series with a linear trend, the resulting time series has
a time trend with fractional power 1 — d.

Bhattacharya, Gupta and Waymire (1983) showed that, assuming (1.106)
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- (1.108), the R/S statistic computed using z; indicates the presence of the
Hurst effect even when 0 = 0, the determinist trend being then mistaken for
a stochastic one of order § = ¢. Teverovsky and Taqqu (1997) considered not
only the fractional trend (1.108) but also the break in the mean: they found
that both the deterministic components induce spurious evidence of fractional
integration in a variance-type estimate as well, although they showed that the
effect can be removed by differencing the variance (they also acknowledged
that the original estimate is rather imprécise, though, and that the-robust one
is even worse). Giraitis, Kokoszka and Leipus (2001) generalised the class of
deterministic components for which the R/S and the V/S statistics do not

detect spurious evidence of the Hurst effect to

n 1/2
lim sup (Z(S‘)2) < C < o0. (1.109)

t=1,...n =1

This spurious evidence depended partially on the adoption of R/S-type sta-
tistics: with |s;| < Ct*~1/2 Heyde and Dai (1996) claimed that the asymptotic
distribution of the _Whittle estimate in a parametric model for data having
0 = 0 is not affected by the time trend if ¢ < 1/4, which means that the Whit-
tle estimation can distinguish better between a stochastic and a deterministic

component. For a larger §, they suggested the condition
¢ < min(1/4,1/2 — ¢). (1.110)

Setting s; to be a break in the mean, several Monte Carlo exercises were
proposed to illustrate the conjecture that it too may induce spurious evidence
of long memory even though § = 0. Indeed, as Lobato and Savin (1988)
showed, the autocorrelation function of a time series subject to a neglected

shift in the mean does not approach 0 at all, so it is certainly not summable.
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Breaks in the mean were also discussed by Granger and Hyung (2004) and
Diebold and Inoue (2001), and an introductory discussion of the corresponding
periodogram is in Mikosch and St&rici (1999).

Having seen that often a deterministic component cannot be neglected
without consequences, detecting its presence is very important. The difference

between the two estimates of Teverovsky and Taqqu (1997) can at most be a
preliminary indication, and actually they did not even provide a limit distrib-
ution for it. Hidano and Robinson (1996) addressed the detection of the shift
in the mean at least when the location of the break is known. They proposed
a version of the Chow test that is robust to strong autocorrelation: the test is
semiparametric in the sense that it does not require specification of the short
memory dynamics of the disturbance process, but it is very model-specific be-
cause it is only designed for one particular type of deterministic component,
and it even requires knowledge of the location of the break.

In Chapter 2 we investigate the consequences of applying the local Whittle
estimation procedure to a stochastic process which is contaminated by de-
terministic terms of various kinds. We also show that, by modifying the loss
function, the estimate can be made robust to the presence of a much wider class
of deterministic components. We then propose a test to detect the presence of

deterministic components that may affect the properties of the estimates.

1.5.2 Memory estimation in the presence of a structural

break in the stochastic component

As Lucas (1976) remarked, the assumption.that the data generating process
remains stable over time is often questionable: the economy is subject to
structural shifts and to changes in policy regimes that may alter the dynamics

of the target variable or the structure of a macroeconomic relationship.
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In Chapter 2 we discuss the effects of changes over time of the deterministic
component s; in a univariate process (1.106); in Chapter 3 we consider insta-
bility in the zero-mean, stochastic part of (1.106), £,. We then consider the
model &, = &,,1(t < mn) +&,,1(t > 7n), T € [0,1]: because of the break, ¢, is
no longer stationary, but both ¢, , and £, , may be so, and indeed in Chapter 3
we assume that they are stationary and fractionally integrated. We distinguish
between changes in the long term dynamics, that we associate with the lowest
frequencies and summarise with the order of integration &, and changes in the
short term dynamics, that we associate with the remaining frequencies.

Changes in 0 are often important in policy evaluation because ceteris
paribus they indicate a tighter (when é decreases, provided that § < 1 af-
ter the change) or weaker (otherwise) control of the variable of interest, the

return to the targeted mean being faster the lower §.

Potential changes in persistence and in long term dynamics had often been
considered in the applied literature, but the evidence is largely anecdotal and
restricted to integer § only.

A formal approach was proposed by Kim (2000) who introduced a ratio-
based statistic to test the null that 6 = 0 in the whole process against the
alternative that a shift between 6 = 0 and 0 = 1 took place. Kim, Belaire-
Franch and Badilli-Amador (2002) and Busetti and Taylor (2004) proposed
some corrections and further developments, but they did not alter the original
structure. Harvey, Leybourne and Taylor (2004) remarked that with that de-
sign the case § = 1 and no breaks can be confused with the presence of a break,
so those tests are not very informative. Harvey et al. (2004) then proposed a
modification of the test statistic to make it such that the critical values would
be the same (although the limit distribution would still be different) regardless
of whether ) =0or § = 1.
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We have already argued that the restriction to integer é seems too strong
because it leaves no alternative between fast reversion to the mean and no
reversion at all: this is much more the case when a potential change in integer
0 is discussed, because with that restriction it is implicitly assumed that the
process jumps between the two extreme situations avoiding all the intermediate
ones, while important variations in the long term dynamics may be represented
with relatively small changes in (fractional) 4.

A second drawback, more specifically related to the approach introduced
by Kim (2000), is the sensitivity of the test to instability in the short term
dynamics of the process: even simple changes like the shift of the variance
in an independent sequence can be detected by the test and confused with a
change in 4. This seems quite unappealing, because it requires an assumption,
the stability of the short term dynamics, that is not directly related to the
object of the analysis, and it is particularly unfortunate in this case because in
practice it is at least doubtful that such an assumption can be imposed when
the long term stability is being tested. Indeed, in applied work the reverse is
more often assumed: Kim and Nelson (1999) for example discussed the change
in volatility of the GDP, while Hansen (2003) found instability in the short
term dynamics of the interest rates. Neither the Dickey-Fuller nor similar
tests can provide a reliable indication in this situation because, as Hamori and
Tokihisa (1997) showed in the particular case of a volatility shift, it may be

sensitive to short term instability.

In Chapter 3 we propose to address these two issues simultaneously, using
the local Whittle estimation procedure. This removes the constraint to integer
0 by allowing for a fractional model for the order of integration, and it also
avoids the sensitivity to the short term dynamics because it only uses a band

of frequencies degenerating towards 0.
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1.5.3 Cointegration in presence of deterministic trends

In Section 1.2 we introduced fractional cointegration as the application of the
concept of cointegration to fractionally integrated processes as well. Yet, as we
already noticed, economic time series are rarely zero-mean (or constant-mean)
stochastic processes, and they are more often characterised by a time-varying
deterministic component as well.

The large 1(1)/1(0) literature focuses on many features of economic time
series, in particular recognising empirical evidence that the stochastic unit root
trend frequently needs to be supplemented by a deterministic trend, such as
one increasing linearly with time (see e.g. West (1988), Stock and Watson
(1988), Park and Phillips (1988), Johansen (1991), Hansen (1992), Perron and
Campbell (1993), Campos, Ericsson and Hendry (1996)). For empirical appli-
cations on the analysis of demand for money, see Hoffman and Rasche (1991),
Stock and Watson (1993), and on the PPP/UIP relations see Johansen and
Juselius (1992). A review of applications of cointegrated models with a back-
ground in economic theory is in Séderlind and Vredin (1996), and a particular
treatment of cotrending, deterministic and stochastic cointegration is in Ogaki
and Park (1997), who modelled the allocation of income in consumption of
durable and non-durable goods.

On the other hand, the fractional cointegration literature has mostly not al-
lowed for deterministic trends. An exception is the discussion in Robinson and
Marinucci (2000) of the properties of OLS and NBLS, but they only considered
a particular combination of deterministic and stochastic trends.

In Chapter 4 we develop properties of the OLS and GLS estimates of the
cointegrating coefficient in a bivariate model that either ignores or takes ac-
count of additive deterministic trends.

A model of fractional integration and cointegration with fractional deter-
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ministic trends is an important extension of the standard 7 (0) /I (1) and linear
trend case that is more often discussed: we can give a much more precise clas-
sification of the conditions under which the stochastic or the deterministic
component define the properties of the estimate.

A cointegration model is quite a change of perspective with respect to the
analysis we run in Chapter 2. In the estimation of the memory parameter we
treat the deterministic component as a nuisance that may obscure the signal
originating from the zero-mean stochastic term, so we only deal with it because
we suspect we are unable to model it properly, in order to filter it and remove it
from the data. In the cointegration framework, the deterministic component is
part of the model: it may contribute, for example, to determinate the long term
dynamics of the explanatory or of the dependent variables, and it may even
increase the rate of convergence of the estimate of the cointegrating parameter,
so it should not be removed from the data, even if we have precise knowledge

of its structure.
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Chapter 2

Local Whittle estimation of the
memory parameter in presence

of a deterministic component

2.1 Introduction

In Chapter 1 we presented several methods for the estimation of the mem-
ory parameter of a (constant-mean) fractionally integrated process when the
process itself is observable.

We also noticed though that often the economic time series cannot be
modelled as a process with constant mean. Since in several empirical cases
there is little agreement on the nature of the deterministic component, we
motivated our interest in the problem with the conjecture, rather widespread
in the applied literature, that neglecting it or modelling it in an incorrect
way may compromise the limit distribution of the estimate of the memory
parameter, or even its consistency. |

In this chapter we define the class of deterministic components which can

be safely neglected or misspecified for the local Whittle estimate, and propose
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a test to detect the presence of relevant deterministic terms: although these
two purposes have already been addressed before (but for different estimates),
we propose to do it simultaneously. Key to our approach is the computation
of the periodogram of the deterministic component of interest at the relevant
Fourier frequencies, which gives us the possibility to exploit the differences
between that periodogram and the spectral density of a stochastic process.
Frequency domain estimates can then be made robust to even more potential
deterministic terms: we show, for example, that the estimate may be robust
even to a break in the mean.

We also generalise the previous studies in two other ways: we explicitly
discuss the break in the mean by computing its periodogram and showing that
it can be treated as a particular fractional trend, and we allow for a wider
range of deterministic trends.

Since we intend to propose an automatic testing procedure that could be
considered as part of the preliminary analysis of the data, a semiparamet-
ric estimate has the advantage of not requiring the specification of the short
term dynamics: this makes the test robust and fast to implement. Although
some theoretical work has already been done for R/S-type statistics, we pre-
fer to consider a different class of estimates: R/S-type procedures are rather
ad hoc and the estimates are characterised by a nonstandard limit distribu-
tion, whereas other estimates, like the log-periodogram regression or the local
Whittle ones, are very intuitive and their limit distributions are asymptoti-
cally normal and parameter free, a great advantage if we are also interested
in designing a test that is fast and easy to implement. Moreover, on the basis
of other published works, we anticipate that these frequency domain based
estimates are less prone than R/S-type statistics to be affected by neglected
deterministic components. We choose the local Whittle estimate for its smaller

variance, but we think that the results derived here are also of interest because
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they are a reliable anticipation of the properties of the log-periodogram regres-
sion estimate, and indeed also for the full spectrum Whittle estimate in the
same situation.

In Section 2.2 we present the asymptotic theory, in Section 2.3 we analyse
the small sample properties with a Monte Carlo exercise and in Section 2.4
we propose two empirical studies: the S&P500 and three inflation rates. We
conclude in Section 2.5, summarizing the results and discussing some potential

extensions. The proofs of the theorems are in the Appendix.

2.2 Local Whittle estimation with neglected
deterministic terms

We consider a process z; observed at times ¢t = 1, ..., n such that
xy = &, + 84, (2.1)

where s; is a deterministic sequence and &, is a stochastic process, that we as-
sume to be zero-mean, weakly stationary and invertible, with spectral density
fe (A) such that

fe) ~G N as A — 0, (2.2)

where G > 0. Notice that stationarity requires 6 < 1/2 and invertibility
6> —1/2.

We indicate by F;()), Fe(M), Fs()) the discrete Fourier transforms of ;, &,
and s; respectively, and by I, (X), Ic()), I (A) the corresponding periodograms,

and by I (A) the crossperiodogram between s, and &,.
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2.2.1 The periodograms of the stochastic and of the de-

terministic components

7

Since the local Whittle loss function is a weighted average of periodograms,
the asymptotic properties of the estimate depend on whether enough elements
in the summation are dominated by the stochastic rather than by the deter-
ministic component. |

To appreciate the different contributions, we analyse the order of magnitude
of the periodograms I, and I, at the Fourier frequencies used in the local
Whittle estimation.

We consider three models for the deterministic component: the shift in the
mean, the deterministic trend and the single impulse (we also refer to them as
s(k), s (t#71/%) and As(p) respectively in the rest of the thesis). These are
defined as:

shift in the mean:

Sy = p, for t < [rn)
s(u) = (2.3)
S¢ = pig for t > [n]

where 7 € (0,1), || < 00, |us| < 0o and py # po;

deterministic trend:
s (t¢_1/2) ~ pst* V% as t — oo, (2.4)

where 0 < |3 < 00, 0 < ¢ < 00;
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single impulse:

st = py for t = [n]
As (u) = (2.5)
st = 0 for t # [n]

where 0 < |p,] < 0.

Shifts in the mean as in (2.3) are often considered in applied analysis, while
deterministic trends as in (2.4) are important to provide a general classification
and to compare our results with the rest of the literature (notice that the
trends may well have non-integer powers); single impulses as in (2.5) have
had less theoretical and empirical importance, but we consider them explicitly
nevertheless because this structure emerges when first differences of a shift in

the mean are taken, a procedure that is very common when 6 > 1/2.

* The periodogram of a deterministic fractional trend was first discussed by
Kiinsch (1986), who also advocated trimming to remove the potential effects of
that term on the estimate; a moré general discussion is in Robinson and Mar-
inucci (2000). A reference to the exact order of magnitude of the periodogram
of the shift in the mean is in Mikosch and Staricd (1999) eq. (3.4) - (3.6), al-
though they did not provide a proof and required the condition n)\g — 0, which
at the Fourier frequencies corresponds to j?/n — 0. Notice that this condi-
tion, if necessary, would reduce the frequencies available for the computation
of the loss function: Robinson (1995b) showed that, when the other regularity
conditions are met, the local Whittle estimate is consistent when m/n — 0,
where m is the largest frequency used in the loss function, but j2/n — Q for
all j < m only holds for the stronger condition m?/n — 0.

We summarise these results and fill in a few gaps for the three models of
interest (we recall that K is a positive, finite constant, not necessarily the

same).
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Theorem 2.1. (i) Shift in the mean. If s, € s(u), then

Zei’\tst <SCIN! forv>1, 0< |\ <7 (2.6)
t=1
and, for 7 > 0,
L) S Cx 757 (2.7)
and
n~'(\;) ~ Kj~?sin® 77j as j/n — 0; (2.8)

(ii) Fractional trend. If s, € s (t*71/2), ¢ € (—1/2,1/2) then, for j > 0,

L) <CN 57! (2.9)
and
n"2L,(\;) ~ K57 as j/n — 0; (2.10)
if =1/2 then, for j >0,
IL(A) =0, (2.11)

if ¢ €(1/2,3/2) then, for j >0,
L) S C 7272079 . (2.12)

and

n~2I,(\;) ~ K572 as j/n — 0. (2.13)

(iii) Single impulse. If s, € As(u), then
nls (\) = K. (2.14)

The periodograms of these deterministic components can then be indexed
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by ¢, breaks in the mean and single impulses having ¢ = 1/2 and ¢ = —1/2
respectively. |

More general situations are implicitly dealt with in Theorem 2.1: polyno-
mial trends with different orders, for example, or mixed situations with trends
and breaks. In general, the order of magnitude is only determined by the
largest ¢, and trends of lower orders can be ignored in the analysis.

The periodograms of the deterministic components are similar to the spec-
tral density of a long memory stochastic process since they too have a pole

at frequency 0. Notice, however, that because of the damping factor 5!

(or
7219 if ¢ > 1/2), they do not meet the condition (2.2) for any § so they
cannot be confused with the spectrum of a fractionally integrated time series.

In order to compare these periodograms with that of &,, we recall that, as
we already mentioned in Chapter 1, Robinson (1995a) showed that although
I ();) is asymptotically a biased estimate of the spectral density, the bias can
be bounded and it becomes less and less relevant the more distant A; is from
A = 0, and the average of the upper bound of the bias becomes negligible when
enough Fourier frequencies are used.

Loosely speaking, then, the comparison of the (possibly stoéhastic) orders
of magnitude of the two periodograms is a comparison between (j/ n)—25 for &,
and (j/n)"** j~1 for s, (or (j/n) >% 242 for ¢ > 1/2).

When ¢ < § the order of magnitude of the periodogram of the deterministic
component is clearly smaller. Yet even for some ¢ > § consistent and root-m,
zero-mean, asymptotically normal estimation of ¢ is still possible, because the

damping factor 5!

may be enough to make the periodogram I,(};) irrelevant:
for ¢ such that 2(¢ —6) / [2(¢ — 9) + 1] < ¢ < 1, the spectral density (2.2)
still dominates for the frequencies having j > c,n¥ for some positive, finite c,

(if ¢ < 1/2, the condition is slightly different otherwise; notice that ¢, can be

arbitrarily close to 0, and of course it cannot be too large because j < n/2
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must still hold).

In comparing the orders of magnitude it is also possible to see that trimming
may improve the quality of the estimate, because most of the power of the
~ periodograms of the giyen deterministic components is concentrated in the
few lowest frequencies, exactly those that are going to be removed.

To summarise, if we regard the local Whittle estimation of § as the extrac-
tion of the signal from a "dirty" time series, as indeed (2.1) might suggest,
it is clear thaf s¢ 18 a very peculiar type of conta.minatibn, different from a
weakly dependent and indeed even from a fractionally integrated "noise". The
treatment is then different as well, because in case of a stochastic contami-
nation the highest frequencies should be trimmed, while with an unobserved

time-varying deterministic component the strategy is reversed.

2.2.2 Robust estimation of the memory parameter

The local Whittle estimate ¢ is obtained by minimising, with respect to d €
[A1, Ag) C (—1/2,1/2), the expression

m

R(d) = In {ﬁi 3o Ix(,\,-)} - 2dm~;l+1 >omn(y).  (219)

i=l

This is a slight generalisation of the function originally considered by Robin-
son (1995b), who set I = 1: when [ > 1, one or more of the lowest frequencies
are trimmed.

The loss function (2.15) was considered also by Giraitis and Robinson
(2003), although for a different purpose, because they were interested in deriv-
ing an Edgeworth expansion for 3§ and trimming was only required when the
tapered, rather than the raw, periodograms were used. Giraitis and Robin-

son, though, were only interested in the bias generated by the low frequency

86



approximation of the spectral density fe (\) ~ GA™*(1 4+ O()?)) for some
Be € (0,2]. That bias is generated at the highest available frequencies, where
AP¢ is larger: indeed, while 1/m + m/n — 0 was sufficient for Robinson (1995b)
to éhow consistency of the local Whittle estimate of §, the stronger 1/m +
m'+%¢ In? m /n%¢ — 0 was required to make the bias due to A% small enough
to obtain root-m consistency as well.

We discuss consistency of 5 in Theorem 2.2 and limit distribution in The-
orem 2.3 for some cases in which the deterministic component is not a simple
constant.

To prove consistency, we introduce the following assumptions.

Assumption A.1. Let m = ¢.n", where ¢, € (0,00).
Assumption A.2. Let | = ¢,n", where ¢, € (0,00).

Assumption A.3. The deterministic component s, is such that, for j > 0,
-1
(|,\j|‘24’j—1) L()\;) ~ ¢1 + casin® 7mj as j/n — 0 (2.16)

where 0 < ¢; < 00,0< ¢y <00,¢1+¢c2>0,7€(0,1).

Assumption 2.1. As A\ — 0F,
fe(N) ~GX7% (2.17)

where G € (0,00) and § € [A,As] C (—1/2,1/2).
Assumption 2.2. In a neighbourhood (0,t) of the origin, fe()\) is differ-
entiable and
d

10 fe(3) =0 as A — 0™ (2.18)
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Assumption 2.3. The sequence &, ts such that

§ = Zajet—ja Za§ < o0 (2.19)
=0 =0 _
where
E(ei|Fe1) =0, E(e}|Fi1) =1, a.s., t =0,%£1, ... (2.20)

in which F; is the o—field generated by e,, s < t, and there exists a random
variable € such that E(e) < oo and for all 7 > 0 and some C > 0, P(|e;| >
n) < CP(le] > n).

Assumption 2.4. Assumptions A.1 and A.2 hold and
0<v<kr<l (2.21)

Assumption 2.5. Assumptions A.3, 2.1 and 2.4 hold and

1
<o+ - .
¢ +21—v

(2.22)

We use a different notation to distinguish between Assumptions A.1 to
A.3 and Assumptions 2.1 to 2.5 because those in the first group define some
characteristics of the model (A.3) or of the loss function (A.1 and A.2), and
are to remain unchanged both in the proof of consistency of 5, and in the
derivation of its limit distribution or of its lower order bias, whereas those in
the second group are modified according to the problem. Assumption A.1 and
A.2 define the bandwidth m and the trimming point | as proportional to n*
and to n" respectively: notice that both ¢, and ¢, may be arbitrarily close to
0 but in practice a relatively large ¢, may be preferred in order to minimise
the MSE of the estimate (see Henry and Robinson (1996) for a more detailed

discussion on the choice of ¢,).
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Assumptions 2.1, 2.2 and 2.3 were introduced by Robinson (1995b) to
characterise the stochastic component in his original work and are discussed
therein. These are semiparametric in the sense that Assumptions 2.1 and 2.2
are only defined for A — 0%. Assumption 2.3 is a very general specification for
the stochastic component: the linear structure is ensured by the Wold repre-
sentation theorem so the assumption is only about the second moment of the
martingale difference sequence of innovations &;.

We have modified Assumption 2.4 of Robinson (1995b) slightly: consistency |

would follow for any [, m with
l/m+m/n—0, (2.23)

but with Assumptions A.1 and A.2 we restricted m and [ to be proportional
to n” and n" respectively, because it allows a simple computation of the orders
of magnitude of the weighted averages of I, ()\;) and of I (A;). We think that
this is only a very mild restriction, because it still leaves a wide range of rates
of divergence for m and [, and we also justify it by noticing that in applied
works the bandwidth is often chosen according to this practice anyway.

We ¢haracterise the deterministic component in Assumption A.3 and 2.5.
It is based on the approximations computed in Theorem 2.1, although it does
not actually require knowledge of s;, but only of the order of magnitude of
its periodogram. As we saw, this is more general because it can be generated
also by other deterministic components not considered in Theorem 2.1; it is
also "semiparametric". in the sense that it does not require knowledge of the
location of the break, if we included that case in s;. On the other hand,
Assumption 2.5 is apparently rather restrictive in that it requires the presence
of that type of deterministic component, so for instance even the case s; = 0

is not included. This is due to the structure of the proof, which requires the
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calculation of the loss function over the whole parameter space: indeed, notice
that Heyde and Day (1996), discussing a similar problem (they considered the
full spectrum Whittle estimate, rather than focusing on thé lowest frequencies),
proposed the more general |s;| < Ct*~'/2, but they did not actually prove the
consistency of the estimate, and rather assumed it and went to discuss the
potential lower order bias in the limit distribution. Assumption A.3 could be
relaxed, for example to |s;| < Ct*~'/2 when ¢ < §, but other details should be
given to deal with the case in which ¢ < § does not hold but Assumption 2.5 is
still met, if we want to follow the proof of Robinson (1995b). In any case, for
practical purposes we conjecture that the order of magnitude in Assumption
A.3 could be treated as an upper bound instead.

The condition (2.22) indicates which deterministic components are irrel-
evant. Higher trends can be ignored the stronger the autocorrelation is, as
we already conjectured when comparing the periodograms of the deterministic
and of the stochastic terms. Higher trends can also be neglected the larger
k and v are, because high x means including more frequencies in which the
stochastic rather than the deterministic component dominates the order of
magnitude of the periodogram of z; (due to the damping factor 771); higher v
is similar, because it means that less periodograms in which the deterministic
component may be relevant are used in the estimation. It also indicates that
trimming is not necessary when ¢ < §, because 1= can only be positive.

Since in practice ¢ and § are unknown, we suggest using (2.22) to choose
v if at least we have some preliminary information on ¢ — §: rewriting that
condition as

2(0—90) — k

v > W, (224)

if, for example, we expect ¢ = 1/2 and § > 0, and we set k = 0.79, the

minimal trimming has v > 0.21.
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Theorem 2.2. Under Assumptions 2.2, 2.8, and 2.5,

d —p 6 asn— oo.

(2.25)

Notice that we do not mention Assumptions 2.1 and 2.4 explicitly because

they are already included in Assumption 2.5.

Under a stronger set of conditions, Robinson (1995b) also derived the limit

distribution of the estimate 3. We repeat these below, updating them in order

to take the deterministic component into account as well.

Assumption 2.1’. For some 8, € (0,2]
fe(A\) ~ GA™2(1 4+ 0(WP)) as A — 0F,

where G € (0,00) and § € [A1,A] C (—1/2,1/2).

Assumption 2.2°. In a neighbourhood (0,t) of the origin,

a(r) = Z o e
s=0
is differentiable and

;—/\a()\) ~0 (I—O‘(A—A)') as A — 0%,

Assumption 2.3°. Assumption 2.3 holds and also

E(e}|Fi-1) = c3, E(e}|Fi-1) = cu, a.5., t =0,%1, ...

for some finite constants cs and cy.
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Assumption 2.4°. Assumptions A.1 and A.2 hold and
0<v<r<2B/(1+26). (2.30)

Assumption 2.5’. Assumptions A.3, 2.1’ and 2.4’ hold and

1 kK
<0+ -
¢ +41—v’

(2.31)

Assumptions 2.1’ to 2.3’ are those originally proposed for the stochastic
component. The information on the shape in (2.26), that was not already
provided in Assumption 2.1, is necessary to define whether the approximation
of the density with GA™2° may generate a lower order bias: since that approx-
imation is less precise at high frequencies, the highest ones must be removed,
as the assumption on k < 28,/ (1 + 2,85) also indicates. The weakest upper
bound is for 8, = 2, a class that also includes the case in which §; is an
ARFIMA process.

Assumption 2.5 replicates Assumption 2.5 but the condition (2.31) on ¢ is
stronger than the one in (2.22): in fact in this case consistency is not enough,
and it is also necessary that the bias is of order smaller than 1/y/m. Intu-
itively, when ¢ > ¢ consistency is still possible (given the regularity conditions
of Theorem 2.2) because the stochastic component dominates the periodogram
of the deterministic term on enough frequencies. But the fact that the deter-
ministic term prevails in some frequencies may induce a positive lower order
bias, because on the lowest frequencies I; (A;) is markedly steeper than f; (A;)
in that case. The condition (2.31) then ensures that the contribution from
the deterministic component dominates in I, (A;) on such a little range of fre-

quencies that this effect is negligible. As we did for (2.22), we suggest reading
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(2.31) as a condition on the trimming as well, in this case being

1 G it 7] (2.32)

2(¢—9)

In the example above, ¢ = 1/2, § > 0 and k = 0.79, the minimal trimming
has v > 0.605.

Since these assumptions are sufficient to confirm the limit distribution given
by Robinson (1995b) for the case of no deterministic component, as we discuss
in Theorem 2.3 below, we think that this is a very strong result, because it
means that even a break in the mean can be dealt with.

Theorem 2.3. Under Assumptions 2.2°, 2.8’, and 2.5,

o~

vm(é —8) —4 N(O, %) as n — oo. (2.33)

Theorem 2.3 seems to offer a free lunch: trimming may help to reduce the
distortionary effect of the deterministic component without even inflating the

variance.

When Assumption 2.4 is met but 2.4’ is not, then the lower order bias
prevents reaching the limit distribution of Theorem 2.3. We show the nature
of the lower order bias in the following theorem.

Theorem 2.4. Under Assumptions 2.1°, 2.2°, 2.3°, 2.5, and
0<2(¢—08)(1-v) <k <min{d(p—6)(1-v),28./(1+28;)}, (2.349)

then

mn2(5—¢)l2(¢—6) In"'m (3 — 6) —, K as n — oo. (2.35)

The limit (2.35) gives the lower order bias under the given assumptions

and (2.34). Notice, first, that the estimate is indeed consistent, because the
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conditions of Theorem 2.2 are met, so this is really only a lower order bias.

We need Assumption 2.1’ and k < 24,/ (1 + 25‘5) to deal with another
potential lower order bias, due to the approximation of the spectral density at
intermediate frequencies: these two assumptions ensure that it is o (1//m).

The rest of condition (2.34) specifies when the lower order bias due to the
neglected deterministic component can be relevant: we already argued that the
problem should only emerge when ¢ > §, and indeed in (2.34) this appears
in 0 < 2(¢—0)(1 —v). The condition K < 4(¢ — &) (1 —v) ensures that
Assumption 2.5 is not met, because m~1n2(#=9[2(6-9) would be of order smaller
than m~Y2if —k+2(¢p — ) — 20 (¢ — 6) < —k/2, 0 if K > 4 (¢ — 8) (1 — ),
as we can see simply replacing m with ¢,n”, [ with ¢,n" and then comparing
the exponents.

Finally, Theorem 2.4 also confirms two other conjectures we stated before:
that the bias, when it exists, is positive, and that it is smaller the larger the
trim (notice there that the order of magnitude depends on [2(®~9), so it is
smaller the larger v is, because ¢ > §), while it is bigger the larger ¢ — § is for
given m, [. We will take these results into account in the design of a test to

detect relevant deterministic components.

2.2.3 A test to detect deterministic components

Theorems 2.2 and 2.3 gave the combinations of §, ¢ that are sufficient for
consistency and /m, zero-mean limit normality of the estimate.

This requires knowledge of 6 — ¢, a piece of information that is not usually
available. There are, however, cases in which the researcher has preliminary
information on the highest possible ¢, and this, combined with the results of
the estimation, can be enough: if for example we are only concerned about a

shift in the mean (¢ = 1/2), and we intend to estimate § with k = 0.80 — ¢
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(for a very little positive ¢), [ = 1, we then know that consistency requires
9 > 0.1 and the limit distribution (2.33) also requires § > 0.3. If we estimated
5= 0.4, we could conclude that ﬁhe potential shift of the mean is not a relevant
problem.

Yet most of the cases are less simple to handle: 3 = 0.21in the example above
could be evidence of the lower order bias of Theorem 2.4, or simply indicate the
proper order of integration because in fact the feared deterministic component
is not present. Of course when there is no preliminary information about
the deterministic component at all, it is not possible to conclude whether our
estimate is consistent simply by looking at it.

We then propose a simple test to detect the presence of a relevant deter-
ministic component. For this purpose, we introduce the notation 3(1) to refer
to the local Whittle estimate when trimming is actively used (that is, [ — c0),

3

argde[A]’A;iﬂcl( 1/2 1/2) (d) we /l - O wnen /n —> 0, ( 36)

and the new estimate

m/2—1 m/2—1
~t 1
= ] *"2 —_ = l 1
0 argde[Al,A;}ncl(n—l/zl/z) m/2 Z Nofiile(Aaj1) . dm/2 ; n(Agj11)
(2.37)

for some even m. The estimate ?51 is still of local Whittle type, so we anticipate
that the results stated for 8 hold for ?54 too, the only difference being that
the variance is doubled because only half of the frequencies are used in the
estimation. Since we used 2j rather than j, the optimization is still done on
the Fourier frequencies spanning the same subset of (0, 27) used for ;5\, so the
approximation of the spectral density in (2.2) is roughly the same for both the
estimates: any relevant difference between ;54 and 3{1) should then depend on

the deterministic component.
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In order to derive the asymptotic properties of ?, we modify Assumptions
2.4 and 2.5 (and then 2.4’ and 2.5’ as well) to take into account the fact there is
no trimming: these are replaced by Assumption 2.6 and 2.6’, that we introduce
below.

Assumption 2.6. Assumptions A.1, A.3 and 2.1 hold and

0<k<l (2.38)
and
6 <5+ g (2.39)

Assumption 2.6°. Assumptions A.1, A.3 and 2.1’ hold and

-

0< k<28 (1+28) (2.40)
and
K
¢ <o+ (2.41)

The asymptotic properties of ?54 are then summarised in the theorem below.

Theorem 2.5. (i) under Assumptions 2.2, 2.3, 2.6,
5 —p, 0 as n — 00; (2.42)
(i1) under Assumptions 2.2°, 2.3°, 2.6,
\/ﬁ(?ft —8) —q N(0, %) as n — oo; (2.43)
(#41) under Assumptions 2.1°, 2.2°, 2.8°, 2.6, and
0<2(¢p—0) <k <min{4(p—10),28,/ (1+28,)}, (2.44)
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then

mn2= 1n1m (?S)r - 6) —p K as n — oo. (2.45)

The test is based on the following result:

Theorem 2.6. (i) under Assumptions 2.2°, 2.3°, 2.5°, 2.6,
1
\/r_n(gr —g(l)) —g N (0, Z) as n — oo, (2.46)
and (i) under Assumptiohs 2.1, 2.2°, 2.8°, 2.5, 2.6, and

0<2(¢—0) <k<min{d(s—96),28./ (1+28)}, (2.47)

then

vm (54 —?l)) — 00 as m — 0. (2.48)

The test we propose is then based on a comparison of the estimate with
trimming, :5{1), and without trimming, ’(\S’t: under the given assumptions, a large
value (when compared to a critical value) of the test statistic y/m (?5/f — g(l)) is
evidence of the presence of a bias of order bigger than m~/2 in Ef. Notice that
the test does not require root-m consistent estimation of 3(1): from Theorem
2.4, even if fhe latter too is subject to a lower order bias, the dimension of that
bias is smaller than the one of the bias of ;S/f, so the test statistic still detects
the presence of the deterministic component,.

Since the bias, if it exists, can only be positive, we suggest. taking the

critical value for a test for a one sided alternative.

For a formal definition, we introduce

Ky = Plim (min {ml/Q, mn2(6_¢)} Inm™* (:5/t — 8{1))) (2.49)
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under Assumptions 2.1°, 2.2°, 2.8’, 2.4’, 2.6, v > 0: we suggest then testing
Hy: {KQ = 0} vs Hy: {KD > 0} (250)

by comparing the realisation of the test statistic \/m (gf — ,5([)) with a critical
value from a standard normal.

If the null hypothesis is not rejected, we can presume that the estimate f}
is consistent and the limit distribution of Theorem 2.3 holds. When the null
hypothesis is rejected, though, we can only conclude that ZSJF is at least subject
to a lower order bias.

It should be noticed that thbse deterministic components for which con-
sistency is not proved are not included in the assumptions above: our object
of interest is the root-m consistent estimation of d rather than the discussion,
for example, of the cases having ¢ > § +«/ (2 (1 — v)). We anyway conjecture
that the deterministic trend always has a stronger impact on ;54 than on 3(1)
due to the trimming, so these cases too should be detected by the test.

We conclude by explaining why only a fraction of the available frequencies
are used in ?S/t It may indeed seem more obvious to use

3

= ar

1 R{d hen |l =1, 2.51
8 i, alHR 1y 1 T2 (@) when (2.51)

which is the original local Whittle estimate and has smaller asymptotic vari-
ance than ET.

Theorem 2.7. Under Assumptions 2.1°, 2.2°, 2.3°, 2.4’ with v > 0, s, = 0,
1
(m/\/Z) (Eﬂ) —/5{1)> —g N (0, Z) as n — 0o. (2.52)

1 !
Unfortunately then 3( ) and 3{ ) are asymptotically too similar when the deter-
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ministic term is irrelevant, so their difference is of a smaller order of magnitude:

~1)

!
a test statistic based on (m/ \ﬁ) (;5\() -0 ) would also detect deterministic

components which do not affect the limit distribution stated in Theorem 2.3.

2.3 Monte Carlo evidence

In order to investigate how reliable a guide the asymptotic theory is in moderate-
sized samples, a small Monte Carlo study was carried out.
We considered three deterministic structures and two stochastic compo-
nents; in each situation we compared the estimate with and without trimming.
The case of no deterministic structure, s; = 0, was our benchmark. Follow-
ing Bhattacharya et al. (1983) and other works in the literature, we allowed

for a fractional trend and set s, = 2t~1/4

, corresponding to ¢ = 1/4. The last
deterministic structure we considered is the shift in the mean, posing it in the
middle of the sample, so s; =0 fort <n/2and s; = 1fort > n/ 2A: the possible
bias induced by this component is a serious concern in the applied literature
so we think it was important to observe the performance of the estimate with
trimming in this case.

For the stochastic component, we set 6 = 0 and 6 = 0.4: since it is the
difference § — ¢ that really matters, we considered in this way quite a wide
range of situations. A large § was also important to analyse a case in which
the condition stated by Heyde and Dai (1996) is not met.

The data were generated as a sequence of independent standard normals
for § = 0, and using the Davies and Harte (1987) simulator for § = 0.4.

We set the bandwidth and the trimming parameter as m = 0.8n%™, [ =
0.2n%%2 and employed n = 64, 128, 256, 512, 1024, with 1000 replications.

For each combination we computed the local Whittle estimates with and

!
without trimming the lowest frequencies, and the statistic :51 — 3( ). Since
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the local Whittle estimate does not have a close;i form formulation, we used
the log-periodogram regression estimate, trimming the lowest frequencies, as
a starting value in the numerical optimization.

In the rest of the section and in the Tables, we refer to the three determin-
istic models as s(—o0), s(1/4) and s (1/2) respectively, while for the stochastic
model we use d(0) and d(0.4); [ and 1 distinguish the case in which trimming
was applied or not.

Making use of Theorems 2.2, 2.3 and 2.4, all the combinations yield consis-
tent and asymptotically normal estimates under that rather aggressive trim-
ming; without it, root-m convergence fails for (1, d(0), s(1/4)), and consis-
tency could fail altogether for (1, d(0), s(1/2)).

In Tables 2.3 and 2.4 we report for 3(1) and 3{1) the average of the devia-
tions of the estimates from § (bias), the sample standard deviation (s.d.) of
the estimates and the one prescribed by the asymptotic theory (a.s.d.). No-
tice that two measures are presented there: under the column 3{1) we report

1
1/v/4m, while under the column ;5\() we propose as an alternative reference

1/y/4(m — 1+ 1) k1, where

1

m 1
2 R T E 1
kim = p— J§=l v; where v; = Inj 1T 1 2 Inj. (2.53)

The choice of this factor depénds on its presence in the calculation of the
limit normality and of the variance in Theorem 2.3: of course, the statement
in the theorem is only asymptotic, in which case the correction is irrelevant;
moreover, many other terms are involved in the approximation, so we do not
attempt to propose this as a rigorous correction for the small samples, but we
mention it because it worked well at least in our Monte Carlo exercise.

We summarise the results looking at the root of the sample mean squared

error (rMSE): these are in the first two columns of Tables 2.5 and 2.6. In the
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rest of the two tables we present the empirical sizes of some tests of interest:
in the columns t) and to we reported 100 times the percentage in which
the standardized ¢ statistic 2\/73(3 — &) to test Ho:{6 = 8o} vs Hy:{6 > do},
where d¢ is 0 or 0.4 according to the situation, exceeded the critical value of

a 5% significance test; in the last column, Ly _st, We analyse the reliability

-3
of the test to detect the deterministic component by looking at 100 times the
percentage in which 2v/m (:5{1) —ET) exceeded the 5% threshold with a one
sided alternative.l | | | | |

Despite the smallness of the samples, the results wére broadly in line wit'h
the theory, at least if we only consider the main features. We found that
the bias was always quite small but for the case (1, d(0), s(1/2)), the only
one not covered by the theory, where it was about 0.25. Not surprisingly,
(1, d(0), s(1/4)) was the only other one exhibiting a certain systematic devi-
ation from the true value (approximately 0.06; it did not decrease much, if at
all, with the increase of the dimension of the sample).

Given that the periodogram of the deterministic component may still domi-
nate in the frequencies closer to 0, a minimal residual bias, which should vanish
at a rate faster than root-m, can still appear in small samples even when the
conditions for Theorem 2.3 are met. This was the case in a few combinations:
since the bias depends on the gap § — ¢ and on the trimming, it was larger in
the case (1,d(0.4), s (1/2)), where it was 0.04 for n = 64 and 0.02 for n = 1024.
On the other hand the reduction of the bias realised trimming was complete:
even in the most unfavourable situation, (1, d(0), s(1/2)), it quickly dropped
below 0.02.

The bias generated by the deterministic component did not affect the dis-
persion at least if the hypotheses for Theorem 2.2 are met.

Trimming-on the other hand had a strong effect on the dispersion, despite

the fact that it should not, according to the asymptotic theory: the standard
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deviation of the estimates with trimming was in some cases nearly 60% more,
and the approximation 2,/m did not seem very close to it even in the largest
sample. We said before that Theorem 2.3 seemed to offer a free lunch, but we
saw here that in practice this is not the case. This was not a surprise: com-
menting on trimming for the log-periodogram regression estimate, Hurvich,
Deo and Brodsky (1998) noticed that the removal of the few lowest frequen-
cies resulted in a marked increase in the dispersion of the estimates in the
simulation, and a poorer approximation‘of the variahcé indicétéd by the as-
ymptotic theory. Notice however that the correction by the factor (2.53) would
greatly improve the precision of the approximation.

Despite the potential lower order bias, the dispersion clearly dominated
the rMSE: as a consequence, ;5\(1) was always superior in the cases in which
the conditions for Theorem 2.3 were met, and it was roughly equivalent to 3{”
when at least consistency was achieved, thus trimming was only superior in a
rMSE sense when the gap ¢ — é was very large.

Turning to the approximation stated in Theorem 2.3, first notice that in
the case with no trend and no trim, the test statistic replicated the theoretical
size of the ¢ test for Hy : {0 = 8¢} vs. Hy: {0 > 0o} very effectively.

The lower order bias had a certain impact on the distribution as a whole:
the sizes ) and ts) increased with the gap ¢ — 6 even when Theorem 2.3
still held, if the gap was relatively large. In general, the discrepancy in size
with respect to the case having the same ¢ and the same [, and no trend, was
smaller the larger the sample. The sizes t.a) computed for (1,d(0),s(1/4))
and (1, d(0),s(1/2)) were on the other hand quite large, confirming that the
limit distribution stated in Theorem 2.3 did not follow when the deterministic
component was too strong.

Trimming shifted the size above 5% as well, although here too the approx-

imation improved with the dimension of the sample.

102



If trimming is not necessary, it is advisable to set [ = 1, especially when
the sample is small. The test that we proposed to detect a deterministic com-
ponent can also help choosing whether to trim the lowest frequencies. We

!
analysed it looking at the 5% size for the test statistic v/ 4771(;5)r — 3{)

). This
was a little too large: about 20% already in the case without deterministic
component, and it only improved slowly as the sample increased. The situ-
ation was even worse at least in one case with a mildly strong deterministic
component: for d(0.4), s(1/2) the combination of the residual bias in 6 and
of the excessive dispersion of 3(1) caused the rejection of the hypothesis of no
relevant deterministic component in 30% to 40% of the cases.

We would like to conclude by saying that when there is no additional in-
formation on ¢ and the null hypothesis of the test is rejected, then trimming
is a safer strategy: even if we ignore if the estimate is consistent, we may at
least expect that the bias is sensibly reduced. If additional information on ¢

is available, we suggest not to follow the result of the test blindly, but rather

to decide on a case by case approach.

2.4 'Two empirical applications

We illustrate these results by means of two empirical examples.

First, we discuss the daily S&P500 Index.

Lobato and Savin (1998) analysed the returns, 7, their absolute values |ry|
and their squares r? for each day over the period July 1962 - December 1994.
Since they suspected that the oil shock in 1973 and the stock market crash in
1987 caused shifts in the mean of r? in the second part of the sample, thus
induciﬁg spurious evidence of fractional integration, they split the sample in
1973. We then analysed the subset 1973 - 1994, to assess the presence of the

instability that Lobato and Savin expected.
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This period was also analysed by Granger and Hyung (2004). Using log-
periodogram regression, they compared a fractional model with no break with
the case in which the number of breaks is unknown and endogenously esti-
mated. They took subsamples of the period 1928 - 2002 and concluded that
both the models describe |rz| equally well. Yet notice that their estimate when
no breaks are allowed for was remarkably higher in the period 1973 - 1979:
this seems to indirectly provide evidence in favour of one or more breaks in
those years.

Our data were collected from Datastream and have code S&PCOMP(PI):
this is a price index, and the returns were computed by taking first differences
of the logarithms. The plots of rt, |rt| and | are presented in Figure 2.1 to

2.3 respectively.

Figure 2.1: S&P500 index returns

0.05
0.04
0.03
0.02
0.01

Returns

-0.01
-0.02
-0.03
-0.04
-0.05

) g oF et ARt @t 4t o Ayt Ayt

The period following the 1973 oil shock and the one following the 1987
stock market crash seem to be characterised by higher volatility, as Lobato
and Savin (1998) warned, so a break in the mean can be anticipated both for
\rt\ and r\. The raw returns r¢ on the other hand do not seem to exhibit any

deterministic component.
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Figure 2.2: S&P500 index absolute returns
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There are 5740 observations, but one is lost to first differencing, so n =
5739. Lobato and Savin (1998) considered bandwidths ranging between 30
and 100: assuming m = ckn® 79 their approach was extremely conservative,
and would not leave many periodograms for the optimization when the lowest
frequencies are trimmed in the loss function. We kept m = 100 for comparison,
but also took m = 0.2u° D= 186 and m —0.25n079 = 233, which are still very
conservative but left a reasonable number of periodograms in the optimization
even allowing for trimming; we set / = 40 in the case m = 100, but otherwise
considered / = 0.2n° & = 42 and /= 0.25n0& = 53.

The results are summarised in Table 2.1.

The estimates _gli) for m — 100 were very close to those in Lobato and Savin
(1998), who found that the returns r¢ did not exhibit strong autocorrelation,
while the absolute |r*| and the squared returns »f appeared to do so. Increasing
the bandwidth resulted in slightly smaller estimates for r*| and for rf and had
no effects for r#: summarising, the estimated value of the memory parameter
of |n | was approximately 0.4 while the one of 7/ was smaller, it being less than

0.15.
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Figure 2.3: S&P500 index squared returns
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Yet, we found that when trimming the lowest frequencies, the instability
that Lobato and Savin suspected may have really increased the estimated
values for the memory parameters of rf and [r*|. In all the cases with trimming,
the squared returns appeared to have short memory; the evidence of short
memory is less clear for the absolute returns, but there too we found a strong
reduction in the estimated values; in all the cases the test to detect relevant
deterministic components rejected the null hypothesis so trimming should be
preferred.

For the second example, we discuss the first difference in the logged quar-
terly price indices of Boston, New York and Philadelphia from 1950 (first
quarter) through 2003 (third quarter), so n = 214 (again, one observation is
lost because we used first differences of the logarithm of the price index). The
data were collected from Datastream and have codes USCPBOMAF, USCP-
NYMAF, USCPPHMAF,; the sampling frequency was intended to be monthly,
but for several years the data were only collected every second or third month
both for Boston and Philadelphia: for each city we produced quarterly data

by averaging.



Table 2.1: Estimates of the memory parameter S&P500 index

T lrtl (Tt)2
m = 100, [ = 40 iR 0.002 0.440 0.131
l

3¢ 0.168 0270 -0.061

Jam (?5" —E‘”) 3324 4949 4511

m = 186, [ = 42 5 -0.016 0.358 0.108

(m = 0.2n97, | = 0.2n062) 5 0019 0.113 0.014
“ )

Vam (5 Y ) 0.141 7.010 3.003

m = 186, | = 53 5 0016 0358 0.108

(m = 0.2n97°, I = 0.25n062) 3Y 0.053 -0.017 0.002
~ Q)

Jam (5 _3 ) 1.082 10.543 3.314

m =233, [ = 53 3V _0.003 0.342 0.106

(m = 0.25007, | = 0.25n°62) 5 -0.026 0.034 0.040
— )

Jam (5 -3 ) 1154 9.424 2.339

Interest in inflation is justified by the fact that central banks are committed
to some forms of inflation stabilisation, thus a mean-reverting dynamics should
be anticipated and the memory parameter can be treated as an indicator of
how quickly inflation shocks are absorbed by the economic system, under the
action of the monetary authority. Sudden phases of high inflation, such as those
taking place after the oil shocks, may be regarded as temporary shifts in the
mean due to external, exogenous phenomena, rather than periods of careless
or inappropriate monetary management. With our analysis, we can identify if
they affected the estimation of the memory parameter, and eventually remove
their effect.

The data are plotted in Figure 2.4.

Commentators often identify at least two phases for inflation: an initial
period of relatively low inflation, then a sudden increase associated to the two
oil shocks, and then a slow return to the original lower level. The intermediate

"high" inflation could then be grossly associated with a shift in the mean,
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although in this case even some polynomial trends may help to describe the

relatively slow transition.

Figure 2.4: Annualised quarterly inflation: BY, Bo, Ph
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We considered here the two pairs m = 16, I = 3 and m = 50, / = 6. The
bandwidth m = 16 is the MSE - optimal when the process is a ARFIMA(1,<5,0)
with autoregressive coefficient 0.5 (see Henry and Robinson (1996); we did not
assume that model, we merely referred to it since it is intermediate in a range
of possible short term autoregressive structures); m = 50 is quite a large
bandwidth, corresponding to m = 0.72n07, but it still does not include the
frequencies involved in a potential seasonal cycle, the peak of seasonality being
around m = 53. The lowest frequency / was decided considering / = 0.2n° & =
5 as a reference, but allowing for a certain flexibility around it.

The estimated values are presented in Table 2.2.

The estimates were mainly in the range 0.4 - 0.5, albeit on a few points
they passed that threshold: we think that the estimates were reliable anyway,
though, because Velasco (1999b) showed that the limit distribution of Theorem

2.3 holds even for stochastic processes having 6 G [0.5, 0.75). Admittedly he did
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Table 2.2: Estimates of the memory parameter for quarterly growth of prices
NY  Bo Ph

m =16, 1 =3 s 0.530 0.454 0.397
~0)
3 0.422 0321 0.101
l
\/4m(?5"—3”) 0.783 0.319 2.464
m=50,1=6 R 0.511 0.439 0.459
i 0.509 0449 0.488

Vam (?S"’—?S*”) 0.586 0.924 0.915

not consider trimming and excluded the generic deterministic component (at
least in the case with no taper), but it is fair to conjecture that the extension of
‘the arguments of Velasco can be done on the same lines we gave for Robinson
(1995b), so we conclude that if indeed 6 > 0.5 then a potential shift in the
mean is irrelevant. Yet even if § < 0.5 we found that the estimates were so
large that the signal of a shift in the mean should be covered by the stochastic
component in the periodogram. The only potential exception was Philadelphia
for m = 16, [ = 3, which had 3" = 0.10, but notice that when m = 50, [ = 6
then the estimated value was again 0.49, so we concluded that a break in the
mean, if present, did not affect the estimate of the persistence.

!
Finally, we looked at the test statistics v/4m (?51 — ?5\'()

). Since we already
ruled out shifts in the mean and indeed any deterministic component having
¢ < 1/2, a strict interpretation of the result of this test may only reveal the
presence of a trend with ¢ > 1/2: we did not treat this case explicitly, but this
can be conjectured on the basis of Theorems 2.1 and 2.4. Even in that case we

found that the estimation was not affected by any deterministic component,

since we did not reject that hypothesis in 5 cases out of 6.
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2.5 Discussion

We have studied the local Whittle estimate of the memory parameter in pres-
ence of a time-varying deterministic component.

We have found that the local Whittle estimate is less prone than the R/S
and related statistics to be fooled into confounding long memory and determin-
istic components. By studying the periodograms of the deterministic trends
and of the shift in the mean, we have also found that they concentrate ﬁuch
more power in the lowest frequencies, and their effect can then be easily re-
moved by trimming those. We have shown that whether the deterministic or
the stochastic component prevails, depends on the difference ¢ — 6, and that
high ¢ can be neglected if the order of integration of the data is high (thus
reversing the finding of Heyde and Dai (1996)). Finally, we have proposed a
test to detect relevant deterministic components.

We conclude by discussing some conjectures which we also derived from

our results and some potential extensions.

1. We only discussed the local Whittle estimate, but we think that the same
results apply for the log-periodogram regression estimate and, setting

Kk = 1, for the Whittle estimate.

2. We discussed a Type I integrated process only, but we expect that all the
results carry through if a Type II is considered instead. Also, we focused
on the range of ¢ that is more often considered in the literature, but we
think that a wider range for ¢ could be treated, following Velasco (1999b);

" notice anyway that, at least in the univariate analysis, restricting to § €
(—-1/2, 1 /2) is a very common practice, because if the order of integration
is higher it is still possible to recover a stationary and invertible process

differencing the original observations enough times.
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3. It would be of interest to characterise the deterministic component in
Theorem 2.2 and 2.3 in the most general way. We think that a condition

of practical use is

1 LA
e D IR ACHELIC) (2.54)
j=l
for consistency and
vm—1+1 T
e mm Y NPL () =o() - (255)
j=l

for root-m, zero-mean limit normality.

4. We considered a relatively small range of ¢ (except in Theorem 2.1),
mainly in order to keep the proofs simple. For ¢ > 1/2, by using the
order of magnitude in Theorem 2.1 and (2.54) and (2.55), the condition

for consistency would be

2(0—90) — &
v > ——1—_—26—', . (256)

while for the limit distribution of Theorem 2.3,

v 2 (¢2z15z;)”/ 2 (2.57)

5. We argued that when (2.22) in Assumption 2.5 is not met, then the
estimate is inconsistent but we did not formally prove it. We did not
pursue this because our object of interest was the consistent estimation
of & rather than the test, but we nonetheless think the discussion of the
case in which consistency fails might be an interesting topic for future

research.
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6. When the hypothesis of no relevant deterministic component is rejected,
no conclusion can be made for 3 unless we have some preliminary infor-
mation on ¢ — §. Of course, by introducing trimming in the definition
of ;54 it would also be possible to test if a certain trim is sufficient to

eliminate the effect of the unobserved deterministic component.

7. Our Monte Carlo exercise confirmed the remark of Hurvich et al. (1998)
that trimming increases the variance above the measure indicated by
the asymptotic theory. This in turn inflates the size of the tests, in
some cases quite above the level desired by the researcher. It could be
interesting to see if bootstrapping the critical value improves the small

sample performance.

8. We did not consider tapering, despite its explicit treatment given by
Velasco (1999b). Unfortunately, the tapers he considered only remove
particular trends such as t, t2, ... so they would not be very interesting in
the more general framework that we intend to discuss. A combination of
trimming and tapering may nonetheless be helpful: consider for example

the cosine bell taper

2
hy = -;-(1 — 2cos —Zf), (2.58)

with Y7  h? = (3/8)n: in this case the tapered Fourier transform can

be written as

FT(\) = %(—st_l) F2R0) - By (259)

and, using the mean value theorem twice, the tapered periodogram of
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s(t*=Y/%), IT ();), can be approximated, for j > 0, as j/n — oo, as
IT (Aj) ~ KX] 24’ =5 (2.60)
when ¢ < 1/2 and as
IT (Aj) ~ KX;20576+2 | (2.61)

for larger ¢, so much less trimming should be required.

2.6 Appendix to Chapter 2

We present the proofs of the theorems in the first subsection; some technical

lemmas which we used in the arguments are discussed in the second subsection.

2.6.1 Proofs of the theorems

Proof of Theorem 2.1. Part (i), shifts in the mean.

To prove (2.6) rewrite > ;. s;e**" when |A| € (0,7) as

[rn] [rn]
INCTIS YERTAD DR ) DR DRl
s=1 s—[Tn]+1 s=1
(2.62)
AT C(t—s
wherVhere we used 371 e < %_s%
The periodogram on |/\| € (0,7) is then bounded as L(A) <& ~2 and

Bl e N e e S I P ) OAN VALIULL vuaLaUG wes 4 g

/—‘nll

(2.7) follows replacing A\ with 275 /n.

Next, we approximate, for 7 > 0,

[rn]
<2W> Zcos (Ajt) — / cos jxdx (2.63)
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as j/n — 0, and similarly (2%) S sin(Ast) — foﬂw sin jzdz. Then, as n —

o0

5 (2m)°n7U ()
(g — p1)” ul

T2 27 727
— ( cos jrdxr — 1 / sin jxda:) ( / cos jxdr + 1 / sin j:z:dx)
0 0 0 0
2 T2 2
( / cos ]:L'dl‘) + ( / sin jxdx)
0 0
J

2 - .1 . 172w 2
~!sin jz] | ) + ([~]" cos jz|, )
[sm jm2mw + (1 — cos j727) ]

= j72(2—2cosj727) = j 24sin® jrm. (2.64)

Part (i), fractional trend.
Consider the case ¢ € (—1/2,1/2) first.
The bound (2.9) follows replacing 27j/n (with j > 0) in X in I, (A) <
C/n|A|**7! in theorem 1 of Robinson and Marinucci (2000).
To prove (2.10) we use
lim Zt¢ 172 cos(At) ~ T' (¢ + 1/2) sin £(ﬁ%ﬂ)w)\_("’“/z) as A — 0
(2.65)

and similarly

lim Zt¢_1/2 sin(At) -~ I' (¢ + 1/2) cos M)\—(Mlﬂ) as A — 0%
(2.66)
(see for example Zygmund, 1988, p. 70). Combining the two, and computing

the periodogram at A;, for j > 0,

2L (A;) — pg (T (¢ +1/2))° (2m)' 225721 as j/n — 0. (2.67)
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Next, ¢ = 1/2, for which it is very well known that Y e ** = 0 for
j#0,n.
Next, ¢ € (1/2,3/2). The bound (2.12) follows using the same remark we

made for (2.9). For the remaining bound, using summation by parts,

n n—1 t -
> t0 2 cos(t) = 30 {472 (t4+ 1)L S cos(Ays) 4?2 D cos(t).
t=1 =1 *=1 =

(2.68)
Since |

2 n 27 » .
(%) Zcos()\jt) — / cos jrdr = |j7 sinjx|§ =0asn— oo, (2.69)
t=1 0
then n?=1/2 371 cos(A\;t) = o (n#+1/2), while

(21) > cos(A;s) =7 Sm]?ﬂ +0o(1) (2.70)

n
s=1

using integral approximation; also, using a second order expansion,
n—1 £\ $1/2 Fa1\ P12 nl g g\ 832 1\2 t, ¢—3/2
SHE) ()TN () (e
n n n\n n/ . \n
t=1 4 t=1
(2.71)

where t,,, € [t,t+ 1] follows from the application of the mean value theorem

and it may be different for each ¢. Then,

$-3/2 t

n—1
n"’"l/QZ% (%) Zcos(/\js)
- —Zt¢ 32 (j sm(A 1) +0(1) = O, (n**1/2-#1/2)  (2.72)

making use of (2.65). Finally, for the remainder,

6-5/2 t

n—1 2
n¢—1/2z (%) (t’:) Zcos (A;8) < C’Zt¢ 2t =0(1), (2.73)
=1
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so the order is lower.

For the complex part,

n—1

n ¢ -
D ot sin(At) =) {t¢‘1/2 —(t+ 1)‘”_1/2} > _sin(A;s)+n? 2y Tsin(Ajt)

t=1 t=1 s=1 t=1

(2.74)
and n?~ /23" sin(\jt) = o (n®*/2) using the same argument as in (2.69).

For the first terin

N t
2 2
(7?) E sin(\;s) = —j7* cosj%t +i 1 +0o(1), (2.75)

s=1

and

n—1
n# Y (1072 (4 1)) (=57 eos(\)) = O (n#1/2742)
t=1
(2.76)
as (2.72), but the other term has a different order: using the expansion (2.71)

again,
n—1 ¢-1/2 ¢—-1/2\ t
t t+1

$—1/2 > R -1
s ()7 () )

t=1 s=1
$—1/2 =1 /t\*" 1 1 1, ¢+1/2
- _ — '_t O y =Oe | + . 2.77
n;n(n)y+(a) (i n*1%) . (2.77)

The result then follows directly from applying (2.77) in the formula of the
periodogram.

Next, ¢ = 3/2: using integral approximation again,

(%”)2 tzz;tcos(/\jt) —o(1) (2.78)
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and, for 7 > 0,as n — o0,

2r\ 2 & m
(—n—> Ztsm)\t —>/ z sin jxdx
t=1

2w
= — Ij"lcccoszlf)7r —j_I/ cos jzdr = 5 (2.79)
0

so again the result follows from the application of the formula of the peri-
odogram.

Part (iii), single impulses. In that case the results follows from
Z As; (1) cos(At) = p, cos (A[Tn]) (2.80)

and

Z Asy (p) sin(At) = p,sin (A[rn]), (2.81)

t=1

(M4)

so the periodogram is at all the frequencies.

Proof of Theorem 2.2. In this and in the following proofs of this chapter
we replace the scaling factor m—I+1 in the loss function with m: since =7 —
1 as n — o0, this replacement does not affect the asymptotic properties but it
saves space in the presentation. Also notice that, because [/m — 0, drbpping
the frequencies Aq,...,A;_1 does not affect the proofs of Robinson, so we can
refer to them even if in the original paper only [ = 1 was considered.

We follow the same argument of Robinson (1995b), replacing H = d+1/2,
Hy=6+1/2. Let ©;, = {d: A <d < A,} where A = A; when 6 < 1/2+ A,
and § > A > §—1/2 otherwise; when A > Aj, define O, = {d: A; <d < A},

and otherwise take O, to be empty. Robinson showed that
P(‘S—a‘ > 1) SP( inf S (d) 50) +P(inf5(d)§0) (2.82)
N,,ﬂel (SP
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where N, = (—00,00)—N,and N, = (d : |d — 6| < ¢), and S (d) = R (d)—R (6),

A72FET ();) = 0 (1) (notice that this exists,

choosing ¢ so that sup,c (o) & 2 7oy A

as we show in Lemma 2.B.2 (3)).

Next rewrite

L [C@GW@ G\ _ .
S(d) =1 (G(d) - @(5)) 2(d—6) — Zu (2.83)

where

G(d ZA” () with g(A;) = GAT% + I, () (2.84)

(notice the difference in the definition of g ();) with respect to Robinson, in
order to take the deterministic component into account too).

Following Robinson, for d € N,

LE:’” A2g()) m
(e e M BTN _
In ( = 2(d—08)— ;:lj In )\

= 2(d—8)—In(2(d—8) + 1)+ o), (2.85)

where we used Lemma 2.B.2 (i) again; since

)\2d % m A?dGAfZ(S
( Z )2111( ZF’G’ ! (2.86)

it also follows that, in general,

LS Ndg (),
In ("‘ZF’G’Q( )) 2(d - 5)—2111)\

> 2(d—06)—1In(2(d—68)+1) +o(1), (2.87)

and

2(d—68)—In(2(d—48)+1)>0forde N,. (2.88)
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Consistency then follows from showing

G (d) — G (d)
_— | = ]_ 2.
S\ G ) o (1) (2.89)
and
GO =G| _ 0, (1). (2.90)
The limit (2.89) follows from
G (d) - G(d)
wo,| G@)
< sup " ZF‘ A e () — G0 + 2 sup . Zj:z A3 Re (Le (1))
- de©, G (d) dee, G (d)

(2.91)

where we used I;(A;) = Ie(A;) + Ies(A;) + Le(Aj) + Is(A;). For the first term
in the upper bound (2.91),

%Zm A2 (I (Ay) — GA;%)
Z )\QdG)\ 26
m j=1 J

1 m .\ 2d —25
wup =2 A0 (T () = GX™)
deO, ' G(d)

< sup
deB;

(2.92)
which is o, (1) following the same argument of Robinson. The second term in
the upper bound (2.91) is 0, (1) from Lemma 2.B.2 ().

To show (2.90),

5 i A2 Re (e (A)))
e :

(2.93)

Following Robinson, it is immediate to show that the first term is o, (1). The
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second term is o (1) too from Lemma 2.B.2 (%), while the third one is o, (1)
from Lemma 2.B.2 (ii).

To discuss the set © in case A > A;, we rearrange (3.21) of Robinson as

P (i&fs (d) s 0) <P (% i(aj ~ DG L)) < 0) (2.94)

with
N\ 2(A-5)
(,%) I<j<p
a; = '\ 2(A1—5) (2.95)
(l) p<j<m
P
and
(L 3" 1n ) so0 that p~ m/e as m — oo (2.96)
= —_— ~ e d . .
p=exp(— nj p~mjeasm

i=l

Following Robinson, Z a; ~ as m — oo (the fact that the sum-

2(A 6)+1
mation starts in [ rather than in 1 does not matter as long as [/p — 0, and

this is indeed the case because p/m ~ 1/e as m — 00), so

1 & 1
EZ:: EE NI —1>1 (2.97)

choosing A < 6 — 1/2 + 1/ (4e), there is ¢ > 0 such that

1 m
— i—1)>1 2.98
— @ -1 21+, (298)

j=l

thus strengthening slightly the original result.

We then rewrite the bound in (2.94) as

P (— Z(aj - 1)G_1/\§61x(>\j) <0,

j=l

LS (e = DG (1,(3) + 2Re (T () < —L) (2.99)
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_|._

> (a; - DGTINL()) <0,

P (
3=l

SRl

m

—% (aj - I)G—l)\?s (Is()\:,) + 2Re (135 (A]))) > —-L) . (2100)

i=l

Clearly, (2.99) can be bounded by

P (% 3 (a5 = DG (1, () + 2Re (I (1) < —L) . (2101)

i=t
and, taking € < ¢, this is

m

P (;}; > (a5 = DG (I(A) + 2Re (L (1)) < =4,

5=

L3602 )

< e) (2.102)

+P (-Tln i(aj - l)G_l)\‘?é (IS(AJ) + 2Re (Isé (AJ))) < =i,

1 m

N Z G7INE (I,(M;) + 2Re (g (A1)

> E) (2.103)

< P (% Zm:(ajG_lA?‘s (Is()\J) + 2Re (Isg ()\J))) <€E-— L) (2104)

j=l

. f: G™IAZ (I,(A;) + 2Re (Isg (A7)

+p(
m

> a) (2.105)

i=l
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where (2.105) goes to zero because

——ZG I (I(A) + 2Re (Ie (A )))‘

IA

“TIAPRe (Le (A)|. (2.106)

EZG—I)\?‘SIS(AJ) +|=
j=l

and each term in (2.106) is smaller than /2 for n large enough applying Lemma

2.B.2 (i) and (7). We discuss (2.104) rearranging the argument as
1 o~ 1~
- ; a;G T AP2Re L (\;) <e—1— — Z a;GTAPL(N)  (2.107)
and then as
L3 ;G IP2Re L (V) e—1— 1 Z ;GNP LA

- < : (2.108)
1+ 13 " a,G-1P () 1+1 Z a; GNP I, (A
j=l

Since X Z a;G 1A2‘SI A;j) > 0, (2.104) can then be bounded as

LY " a;GIAP2Re I (V)
o <e—1 (2.109)
1 + % Z ajG‘l)\?Is()\j)
j=l

which goes to zero using Lemma 2.B.2 (%ii).

We characterise (2.100) noticing that

1 _
— Zl(aj —1)GTAPL(X) <0 (2.110)
]:
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is equivalent to

-% i( — 1GNP I (A —% Zm: 1)G~i)\§‘5 (I,(\)) +2Re (I (\)))

j=L

(2.111)

0 (2.100) can be bounded by

P (% Em:(a,- —DGTINPL(N) < L) . (2.112)

Rearranging the original argument of Robinson:

(53
=(j
o

Proof of Theorem 2.3. As for Theorem 2.2, the proof follows the one in

a; — 1) (GTIA¥I ()\~)—1+1)§L)

3~

Ms EMS

— 1) (GTIPL () - 1) + %i(aj -1)< L)

l 3=l

3=

LS -1 (€ R - 1) 2

j=l

Robinson (1995b). Using the mean value theorem,

dR(d)
dd

_ dR(d)| , &’R(d)

+
s dd |, da&

0=

(3 - 5) (2.114)

Sm

where 4,, is such that |0,, — | < lg — 6|. The proof that =3~ i R(d) , T 4 follows

™m

the same argument of Robinson, once again replacing g (A;) = GA™% + I, ();)
as in (2.84). The proof proceeds as in the original paper: equation (4.6) of

Robinson requires

G (d) - G(d)

10 = 0, (Inm™°) (2.115)

sup
©1NN,
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and

=0, (Inm™°). (2.116)

Using the same arguments as in Theorem 2.2, (2.115) is bounded by

LT (O A2 Re (I (N
sup Z inJ 22(_; 1| +2 sup Z l"f 2d( ¢ () : (2.117)
1NN, GZ—[ SN 81NN, it i g (Aj)

Robinson already showed that the first element of (2.117) is 0, (Inm™°), while
the second one is o, (Inm™®) according to Lemma 2.B.3 (i). To show (2.116)
use the upper bound of the expression (2.93) again: the first element of the
bound is o, (Inm~%) following Robinson; the second bound is o (Inm~6) using
Lemma 2.B.3 (i) while the last one is o, (Inm~%) noticing that noticing that
S AP, (A;) = o(1) and then applying Lemma 2.B.3 (): this holds for the
supremum for € € (—¢,¢), so it also holds for ¢ = 0 in particular.

Finally, using 2 3" A7%I, ()\;) —, G, we consider a normalization of

j=l"j
dR(d)
dd 6’
o AR()| -mi AL ()
dd |, JG’—}-o (1)
m )\25]
— om~1/2 e 2.118
m Z JG+0 ( )

™. A*Re (1 (A))
~1/2 N s§€ \ 1\
+4m ; vi— @ T oy (1)

m )\25] A
+om 2 Z Vi T o( (1 ))

NI (0)

Robinson showed that 2m /2 Z, 1V G+o @)

—4 N (0,4); Lemma 2.B.3
(i1i) and Lemma 2.B.3 (7v) are sufficient to prove that the remainder is negli-
gible.

Proof of Theorem 2.4. The result follows from computing the first order
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expansion for 5 — 6 based on the mean value theorem as in Theorem 2.3. Recall

that £ R(d) —, 4; to find out the term with largest order of magnitude, we
discuss —d%(gl 6: assume for simplicity that ¢; > 0, c; = 0 in Assumption A.3:
as n — oo,

m )\26[ )

-1
—2m Z Vi G + 0,
2¢; (2m)%C~ m
_“a ( 2 m—1n2(¢-5) (ZI Inj j2(5—¢)—1 —(lnm — 1)j2(5—¢)f'1)

2(6—
2c (2m) (6=9) —1.204-8) _* [20-9)

e m - 5= 5) (2.119)

which is positive recalling that 6 — ¢ < 0. The term m is replaced by
> §#6=¢)-1 when [ = 1. The bias for the other combinations of ¢, ¢ can

be treated in the same way.

Proof of Theorem 2.5. All the results follows as in Theorems 2.2 to

2.4. Just notice, for the limit distribution, that m/2 frequencies are used, so

vm/2 (?51 - 6) —4 N (0,1/4) and then /m (51 — 6) —4 N (0,1/2).

Proof of Theorem 2.6. The limit normality follows from the fact both

/5(1) and ?51 are asymptotically normally distributed. We also already have
lim m Var(;S\(l)) =1/4, lim m Var(gt) =1/2. (2.120)
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For the asymptotic covariance, notice that

n(-9) (-9

) ) ——2(51’£()\)
= (4+o,,(1) \/—Z ’m)
. m/2—-1 )\2—j+115 (A2jt1) 1

_ (1 22T () vz " Afeide (Maj) 1
B (2\/_\/_2 YiG 1+ 0p( )(\/_—Z 2’+1GELI+0,,(1))§)'

(2.121)
Rewriting (for ! even)
-25
It (X))
J £
—_— 2.122
,/ Z JG (14 0,(1)) ( )
m/2 26
Ao g (M)
- B L (2.123)
1/ 21;2 "G (1+0,(1))
mf2—1
/Z 2+1)\2JHI§ (aj1) (2.124)
1/ ary TG (1+0,(1))
(2.121) is
m/2 m
1 Z/ Vo )‘292515 A2J) f Vi A2_72(SI§ )‘2.7)1 (2 125)
21/“ iy "G (1+0,(1)) <, "G(1+40,(1))2
m/il 2+1 _7+II§ ()‘234-1 mzﬂ Vs 2 515 )‘2_7) 1
far TG (1+0,(1)) ary? "G(1+0,(1))2
(2.126)
and since
m/2—1
Nornle Dajin)
Vo —4 N(0,1) (2.127)
1/ ;2 "G (1+0, (1))
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the product of the two summations in (2.126) converges in distribution to ixf,
which is a random variable with variance 1 /4.

On the other hand the two summations in (2.125) converge to two indepen-
dent normals. We can see this noticing that the expression in (2.122) converges
to a N (0,2), and since both (2.123) and (2.124) have asymptotically variance

1, then they are asymptotically uncorrelated. Therefore,

lim m Var(d —8) = 1/4+1/2 — 2(1/4) = 1/4. (2.128)

. M—00

Proof of Theorem 2.7. Consider the second order expansion

,_ 4R@
T Tdd

_ dR(d)
s dd

d*R(d)
s dd

(3 - 6) + % °R(d) (3 - 5)2 (2.129)

é Om

where 6, is such that |0,, — 0] < .3 - 6‘. Taking another derivative in equation

(4.3) of Robinson,

SR 4 |[P@F (@) - 3F: (@) Fi (d) B} (d) + 25 (d) B} (d)

5 = P (2.130)
where
~ 1 &
Fy (d) = — g (In5)* A2 (M) (2.131)
and noticing that
‘F‘k (d); < (Inm)* % zm; AT, (A;) = (Inm)* By (d) (2.132)
=
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then

SR 4B @ F (@ +3F(0) i (d) F} () + 25 () F ()]
dd | 7 Fi (d)
4 [m mE4 (d) + 31n®m B4 (d) + 21n® mE2 (d)]
: R (@
< 24In’m =0, (In®m). (2.133)

Notice then that this holds for any d: actually, using the fact that 6,, —, ¢

d3R(d)

a sharper bound could be obtained for ~——5

, but the one in (2.133) is

m

sufficient for our purpose so we do not discuss the case in more details. The

remainder in (2.129) is bounded as

#R(d) (5~ 5)2 _o, (1n3m) , (2.134)

dd3

m

Om

Introducing then the notation

RY(d) for R (d) when 1/1 — 0, R®(d) for R(d) when [ = 1, (2.135)

then

S0 50 341)_5 PI-C
B PRO(d)\ 7 dRV(d)| 1 (dRO)\ | #RY(d) (g(n_&)?
- d & dd |, 2\ da& T

dR(’) d) d*RY(d)

2 p() -1 2
l d*R%)(d) (5 B g(l))
Ta\Taa dd® |0
6 m
(d2R(‘)(d) ) 1 dRO(4) (1113 m)
+0,
8 s m

d & dd
(2.136)

+

i
(577
( RO (d ) de)

d d?

1 l
where the expansion for ;SN( ) 0 and the one for § — 3( ) are computed in two
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different points ') and 6 such that
5

'25*1’ - 5| and ‘55}3 - 5’ <

-5 ’ , but in both the cases (2.134) holds; using the fact that (dQR(l.)(d)) l5 -

5533-5} <

d d?

4, (%@) l,s —, 4, the remainder is of the order stated in (2.136). Adding

and subtracting (dzR(l)(d)) dR;ii(d) Ia’ (2.136) is

2 R(1) 1 dRW 2 R(1) 1 4RO
_ (RO dRY(d) L (¥R (d)\~ dRO(d) (2.137)
d d? dd |, d d? dd |,
2RO () ! dR® 2RO\ ! 4RO
_ (#RO(d)\ ™ dRY(d) L (ER (d)\~ dRO(d) (2.138)
d d? dd |, d d? dd |
In®m
+0p( — ) (2.139)
The term in (2.137) is
l —26
1 1 A; e (A)
_— = R M RS LA 2.140
2+op(1)m;”fc(1+op(1))’ (2.140)
S0,
2RO\ (dRO(d) dRM(d) 1
— = ~ N{o0,=}. 2.141
7)) (Fa -t e () e
To discuss (2.138), we introduce the following notation:
=%Z (In7)* X2 I¢ (A;) (2.142)

J=l

(this is the same as (2.131), but it is formulated for one given d only, and it is

a function of 7). The factor

(fg%ll) o (%@) - (2.143)
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is then

1(A me  m ) (2.144)'
I\BW) H () - B2(0)  By(1) Ay (1) — A2 (1)

Robinson already showed, in equations (4.3) to (4.10), that HQ(l)HH"gg)_H i
0

() o () - 2Q)
HE()

H2(1) =G2(1+o0,(1)), H2(I) = G2 (1 + 0, (1)), then Hy (1) Hy (1)—HZ (1) =
G?(1+o0,(1)) and H, (z)ﬁo (1) — H2(I) = G*(1+ 0, (1)). Summing the two

1+ 0, (1), and in the same way, it holds that =140, (1). Since

terms in (2.144), the denominator converges to G, so the order of magnitude

depends on the numerator. This is

Introducing ﬁk such that

he = Hy (1) — Hp (1), (2.146)
notice that
= 71
-~ Nk \—26 17 k
hy = E; (Inj) }‘j2 I =0, (;n—lnk l) and Hy (1) = Op (ln m) - (2.147)

Replacing Hy, (1) with i + Hy (1) in (2.145) and simplifying terms, (2.143) can
be bounded by O, (£ In®m), so, since 1}%9 ;= O (m~Y/?), the term (2.138)

is Op (=472 In’ m).
Taking m = ¢,n* and | = ¢,n” with v < k then both (2.138) and (2.139)

have a smaller order of magnitude than (2.137).
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2.6.2 Technical lemmas

Lemma 2.B.1.
(i) under Assumptions 2.1, 2.2 and 2.3, for d € [A, As], where A is defined

as in Theorem 2.2, for | > 0,
1 — B 7\ 2(d—9) '
- Z A?dG/\j % -0, ((;) ) as l/r — 0; (2.148)
=1
(i1) under Assumption A.3 and | > 0,

[0 (1)) i<y

%Zx\?"—’s(/\j)=< O.(2r) if d=¢ (2.149)

r
=

L 0. (L)) ifd> ¢

as l/r — 0;
(ii) under Assumptions A.3, 2.1, 2.2 and 2.5, for d € [A, A, where A is

defined as in Theorem 2.2, j > 0,

N\ —p—8
[Lse ()] = Oy ((l> j_1/2> as j/n — 0, (2.150)
and, for 1 > 0,

=0, (r"Y%Inr) asl/r — 0. (2.151
P

1 — _
- D O (N)
=l

Proof. The orders of ma,gnitude in (2.148) and in (2.149) can be com-
puted directly; a little remark is only needed in (2.149) when the deterministic
components includes a relevant the shift in the mean. Since sin® 775 < 1, it is
clear that the quantity in (2.149) is an upper bound. To see that the bound

is exact, notice that sin? 7wj > 0 unless 75 is an integer, but can only be an
g
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integer at most every second j (when 7 = 1/2), leaving still m/2 non-zero
elements in summation.

To show (2.150), just notice that

1L )| = 0y (B 1L O)2)"*) = 0y ((Fs () B (Fe (=3g) Fe (0)) s (=3,)?)
(2.152)

and the conclusion follows using Assumption A.3 and Theorem 2 of Robinson

(1995a). Although the bound in‘ (2.150) is sometimes enough for our proofs,

the sharper bound in (2.151) can be derived.

o, [E

Since

01 1/2
} (2.153)

1< ,
22 A e ()
=l

1 « ,
=D AT (V)
=l

we start considering

r 2
E|Y X5 ()| = (2.154)
j=l
=F (Z A§(5+¢)st(/\j)F§(—)\j)Fg()\j)Fs(—)\j)) (2.155)
=1

r k-1
+2FE (Z Z)\;?+¢j1/2)\i+¢k1/21:’3()\,v)Fg(—Aj)FE(Ak)FS(_)\k)) . (2.156)

k=l <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>