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Abstract

We discuss the estimation of the order of integration of a fractional process 

that may be contaminated by a time-varying deterministic component, or sub

ject to a break in the dynamics of the zero-mean stochastic component, and 

the estimation of the cointegrating parameter in a bivariate system generated 

by fractionally integrated processes and by additive polynomial trends. In 

Chapter 1 we review the theoretical literature on fractional integration and 

cointegration, and we analyse a situation in which a fractional model recon

ciles two apparently conflicting economic theories. In Chapter 2 we consider 

local Whittle estimation of the order of integration when the process is con

taminated by a deterministic trend or by a break in the mean. We propose a 

simple condition to assess whether the asymptotic properties of the estimate 

are unaffected by the time-varying mean, and a test, with asymptotically nor

mal test statistic under the null, to detect if that condition is met. In Chapter 

3 we discuss local W hittle estimation when the zero-mean stochastic compo

nent is subject to a break: we show that the estimate is robust to instability 

in the short term dynamics, while in presence of a break in the long term 

dynamics only the highest order of integration is consistently estimated. We 

propose a test to detect that break: the limit distribution of the test statistic 

under the null is not standard, but it is well known in the literature. We also 

propose a procedure to estimate the location of a break when it is present. 

In Chapter 4 we consider a cointegrating relation in which a nonstationary, 

bivariate process is augmented by a deterministic trend. We derive the limit 

properties of the Ordinary Least Squares and Generalised Least Squares es

timates: these depend on the comparison between the deterministic and the 

stochastic components.
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Chapter 1

Overview

1.1 Introduction

Fractional integration is a very popular way to model strong autocorrelation. 

It is a parsimonious model, because dependence at long lags can be summarised 

by a single parameter, often referred to as "order of integration" or "memory 

parameter", and a satisfactory one, because the dependence it prescribes for 

the data in the long term often matches the one observed in reality: indeed, the 

low frequency spectral shape that can be associated with the autocorrelation 

at long lags was acknowledged by Granger (1966) as "typical" for economic 

variables.

Cointegration is a non-trivial extension of the concept of integration to 

multivariate processes. In that case the long term dynamics of two or more 

integrated processes are driven by the same stochastic trends, and there is 

at least one linear combination of the variables which has a lower order of 

integration. Each group of weights that combines the variables so that the 

order of integration is reduced is known as "cointegrating vector", and the 

combination itself is often regarded as a long run equilibrium.
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However in many applications the assumption that the observations are 

generated by a fractionally integrated process may be too restrictive, and we 

then propose to extend it by either considering a time-varying mean, such as a 

deterministic trend or a sudden shift in the mean, or a break in the (zero-mean) 

fractionally integrated process.

In order to address these issues, we first review the current relevant litera

ture.

In Section 1.2 we introduce the concepts of fractional integration and coin

tegration and in Section 1.3 we describe several techniques to estimate the 

memory parameter and the cointegrating vectors.

In Section 1.4 we present an application of some of these techniques: the 

example we have chosen, a dynamic model for the term structure of interest 

rates, is motivated by the fact that alternative groups of economic theories 

prescribe conflicting orders of integration if only integers are considered, but 

this incompatibility may be resolved by introducing intermediate, "fractional" 

orders.

In Section 1.5 we introduce the topics that we intend to analyse in the 

thesis and we discuss how they are related to the current literature.

In this thesis we will use the following notation: the operator ~  indi

cates that the ratio between left- and right-sides tends to 1 (when applied 

to matrices, it refers to each element of the matrix), and = >  indicates weak 

convergence of the associated probability measure. The "prime", ('), operator 

denotes transpose of a matrix or of a vector, the "star", (*), the complex con

jugate. The lag operator L is such that L xt =  x t- \ , and A =  (1 — L) is the 

(first) difference operator. We use the operator ||.|| to refer to the (spectral) 

norm of a vector or of a matrix, |.| to refer to the absolute value of a number 

or to the determinant of a matrix, [.] to refer to the integer part of a number,
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and Re (.) to the real part of a number or of a matrix. The function 1 (.) is 

the indicator function, while lp is the p x 1 vector ( 1 , 1);. For a group of 

observations x i , . . . ,x n, we indicate the sample mean as x. We introduce C 

and K , such that each one of them may be a positive, finite constant or a 

positive definite matrix with finite norm, not necessarily always the same: the 

difference between the two is that C  is used to set upper bounds in identi

ties, equations or limit approximations, and K  is introduced when we intend 

that the identities, equations or limit approximations hold exactly. By Op we 

indicate a stochastic order of magnitude: for a stochastic sequence Sn and 

a deterministic one bn this is defined by saying that Sn = Op (bn) if for any 

e > 0 there is C  and uq such that P ( \S n/bn\ > C) < e for any n > no; if 

Sn/bn — 0 then we say that Sn = op (bn). By Oe we indicate an exact order 

of magnitude: for deterministic sequences dn, bn this is defined by saying that 

dn = Oe {bn) if \dn/bn\ — > K  as n — > oo, while for stochastic sequences Sn it 

is defined by saying that Sn =  Oe (bn) if Sn/bn converges (in distribution) to 

a random variable with positive and finite variance or to a non-zero constant. 

The sets Z  = {0, ±1,...} and R are composed of the integer and real numbers 

respectively. We also introduce the following abbreviations: for a process that 

is independent and identically distributed with mean /i, variance cr2, we say 

that it is i.i.d.(jj,j a2), if A tends to zero from above, we say A —> 0+.
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1.2 Long m em ory, fractional in tegration  and  

coin tegration

1.2.1 L ong m em ory  and fractional in tegra tion

For a generic column vector stochastic process £tJ t E Z, such that £t is zero- 

mean, weakly stationary and invertible, we introduce the autocovariance 7 ^

m t & j )  =  7« u )  (i-i)

where j  E Z, and we assume that has spectral density A) such that

7< 0) =  r  f ( W e ixjd \ .  (1.2)
J  —7T

D efinition 1.1. Strong autocorrelation, weak autocorrelation and 

antipersistence. Let the scalar £t, t E Z, be a zero-mean, weakly stationary 

and invertible stochastic process with spectral density /c (A). Then

(i) is strongly autocorrelated (has long memory, has long range depen

dence) if

f t  (0) =  00 ; (1.3)

(ii) is weakly autocorrelated (has short memory, has short range depen

dence) if

0 < /<£ (0) < 00 ; (1.4)

(iii) £t is antipersistent if

f t  (°) = °- (1-5)
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For any non-integer d , we introduce the binomial expansion,

(1 -  L ) -d = (d) V ,  where ^  (d) =  t 1-6)

and T (.) is the Gamma function. Using the Stirling approximation for the 

Gamma function, 'ipj (d) in (1.6) can be approximated as

j d —l

(d) ~  as j  -► oo. (1.7)

D efin ition  1.2. "Type I" (scalar) fractionally  in tegrated  process.

For a scalar process ut, t G Z, with positive and finite spectral density f u (A) 

for any A G [0,27r), for an integer k and any real number 6 so that —1/2 < 

6 — k < 1/ 2 , let

Vt =  A - ^ V  (1.8)

Then the process

A knt , /c < 0
*  = < (1-9)

A * {)},! (1 > 0)} , k > 0

zs a  "Tz/pe I" integrated of order 6 process, and we write as (f)t G h  (6).

Definition 1.3. "Type II" (scalcir) fractionally integrated process.

For a scalar process ut, t G Z, with positive and finite spectral density f u (A) 

for any A G [0, 2tc), for any real number 5, then the process

<pt = A - l {ut l ( t > 0 ) } ,  (1.10)

is a "Type H" integrated of order 5 process, and we write as (pt G h  (£)•

Both Type I and Type II are fractionally integrated processes, and for both
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of them the notation I  (£) is used in the literature: in the rest of the thesis 

however we will only use I  (8) as an abbreviation for / 2 (5). The parameter 

5 is also known as the memory parameter or as the order of integration. It 

is particularly important, because, as we are going to show, under regularity 

conditions it summarises properties of the long term dynamics and it charac

terises the rate of convergence and the limit distribution of estimates such as 

the sample mean or the OLS regression coefficient.

We presented the three definitions at the same time in order to discuss 

their differences and similarities.

In order to compare them, we first remark that due to the truncation in 

(1.10) and, when k > 0, in (1.9), only Type I fractionally integrated processes 

with S < 1/2  may be stationary, and that invertibility requires 6 > —1/2. For 

Type II processes, notice that even <pt G /  (0) is nonstationary: we prefer this 

notation to keep it consistent with Robinson and Hualde (2003) and related 

works, but for practical purposes the difference seems to be negligible.

Following Velasco (1999a) we generalise the spectral density for the cases in 

which it is not defined, and introduce the "pseudo-spectrum", for (j>t G I \  (£),

/*(A) =  | l - e - T ” /„(A) (1.11)

(clearly, when S < 1/2  this is actually a spectrum). The pseudo-spectrum still 

maintains several properties that were defined for the proper spectral density, 

as we also discuss in Section 1.3.

For <pt G /  (<5) Robinson and Marinucci (2001) defined a "time-varying 

spectral density"

4") (A) = IV'„(A;5)|2/.(A) (1.12)
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where

^ (A ;5 )  =  £ > s (<5)eiAs (1.13)(1.13)

and (5) is defined as in (1.6). Since t  is finite, /J, (A) has no pole at A =  0

even when 5 > 0, but for (f)t G I\ (<5), (pt £ I  (5), A G (0, 27r),

f t *  (A) -  f t *  (A) =  /*  (A) as n  -  oo. (1.14)

In order to simplify the notation, we will, in the rest of the thesis, drop (oo) 

and simply write (A) for (A) for <pt G I  (6). For £t G i i  (5) or £* G /  ((5), 

making use of the approximation |l  — e~lX\ ~  |A| as A —> 0,

where 0 < < oo.

Type I fractionally integrated processes with (5 G (0,1/2) are strongly auto

correlated according to Definition 1.1, but Type I processes with 5 > 1/2  and 

Type II processes are not stationary and then cannot be classified according 

to that definition. Indeed, even the popular "unit root" model, which cor

responds to S = 1, is not included in Definition 1.1, although it is generally 

acknowledged that the autocorrelation is particularly strong in that case. It 

seems fair then to generalise Definition 1.1 at least to allow for nonstation- 

ary processes by also considering the pseudo-spectrum and the limit of the 

time-varying spectral densities.

On the other hand, Definition 1.1 is very general because, at least if we 

restrict our attention to stationary processes, the three cases cover all the 

possible outcomes for /c (0); fractional integration imposes on the spectral 

density a parametric structure at low frequencies, which may be considered 

a restriction on long memory because (1.3) and (1.5) may also be generated

f t  (A) ~  G( |A|~2i as A —> 0 (1.15)
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by functions that do not meet (1.15); the same remark applies of course if we 

extend Definition 1.1 to nonstationary fractionally integrated processes.

Unfortunately though, the fact that Definition 1.1 is very general is also 

the reason why it is of little practical use: additional assumptions are neces

sary in order to derive the limit dynamics and the asymptotic distributions of 

transformations of long memory processes.

One reason for this interest in fractional integration is precisely in the 

fact that, given little further regularity conditions, this model includes enough 

information to make the derivation of those limit dynamics and asymptotic 

properties possible. For example, for (pt E I  (S), S > 0, following Marinucci 

and Robinson (2000) (and regularity conditions therein):

E (B  (s )2) =  s when s > 0). The functional B  (r;<5) in (1.17) is a Type II 

fractional Brownian motion: this is described by Mandelbrot and Van Ness 

(1968) and by Marinucci and Robinson (1999, 2000). The same authors also 

discuss an alternative form of Brownian motion, that Marinucci and Robinson 

(1999) called "Type I fractional Brownian motion": this is obtained by sum

ming Type I fractionally integrated observations instead. We do not present 

the two fractional Brownian motions in greater detail because we only use the 

Type II in Chapter 4 and even then only following Robinson and Hualde’s 

(2003) approach, and we refer to Marinucci and Robinson (1999) instead. We 

point out, however, that the two Brownian motions are different, being associ

n s+1/2y/2%fu (0)
(1.16)

where

(1.17)

and B  (s) is a standardised Brownian motion (that is to say, B  (s) is such that
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ated with different autocovariance structures, although these autocovariances 

become equal at least at long lags. It is also worth noticing that the Type I 

process is only defined for a limited range of values for 5.

The two types of processes are, anyway, very similar in many other respects: 

Marinucci and Robinson (2001) showed that, when S 1/ 2 , 4>t £ h  (5), e

1(5),

E (4>t4>t+j) -  E  (vW(+j) = O (ts~1/2) as t -> oo (1.18)

uniformly for any j  > 0 , while Robinson (2005b) showed that the asymptotic 

distribution of the Whittle estimate of <5 does not change according to whether 

4>t or (ft is used (we discuss W hittle estimation in Section 1.3), and on the basis 

of his work, it is also fair to conjecture that the same irrelevance holds for other 

estimation techniques as well. This is an important result because it means 

that although it is not possible to distinguish between the two Types in the 

empirical analysis, this difference has no asymptotic impact on the estimate.

We refer to Robinson and Marinucci (2001) and to Robinson (2005b) for a 

more detailed comparison of Type I and II processes.

Fractionally integrated processes are also characterised by two other prop

erties: that

7  ̂(j) ~  as j  -> oo (1.19)

for a non-zero c ,̂ and

Var  (I) =  Oe (ra2*-1) (1.20)

(notice that (1.19) is restricted by (1.1) to stationarity, that is, to Type I 

processes; (1.18) however provides a clear indication of the applicability of the 

same concept to Type II processes as well). From (1.19) we then see that 

the dependence at long range can be satisfactorily summarised by the order 

of integration only, being just a scaling factor, and that the dependence is
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stronger the higher 5. The power law approximation for the spectrum conveys 

the same piece of information in the frequency domain.

Semiparametric techniques to estimate 5 have been realised using any of 

(1.15), (1.19) and (1.20). Notice anyway that (1.19) and (1.20) can be observed

also for processes that are not fractionally integrated, and for which (1.16)

does not hold (either for the Type I or for the Type II fractional Brownian 

motion): Diebold and Inoue (2001) for example showed several models that 

are not fractionally integrated and nevertheless have sample mean of order 

n '*-1/2 as in (1.20). Their examples were mainly particular types of Markov- 

switching models, but a sample mean of order ns~*/2 may also be generated 

by a neglected deterministic component, as we actually consider in Chapter 2 

and in Chapter 4: when

=  +  ( 1.21)

with ft £ I\ (0), S > 0 and for some nonzero fi, then

x  = Oe (ns~1/2) . (1.22)

In other cases, only some of the properties (1.15), (1.19) and (1.20) are 

present. Some cyclical models, for example, may generate slowly decaying 

autocovariances as in (1.19) (but with a further cosine factor that induces 

a cyclical path in the autocorrelation function in the long run), and yet have 

spectral density bounded at zero and possibly with a pole at another frequency: 

we refer to Baillie (1999) or Robinson (2003) for a discussion of one of these 

examples, the Gegenbauer process, and to Yong (1974) for a discussion of the 

conditions under which (1.19) and (1.15) are equivalent.

We also mention that our definitions of fractional integration may be gen

eralised replacing in (1.8) and A ~s in (1.10) by any weighting struc
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ture YIJLo tpj — &) &  or S J lo  ^ j  W  provided that (1.7) and that (6) 

— ipj+i{&)\ — O (1 ^  ($)\ j -1) are met, as indeed Robinson and Marinucci 

(2001) did for the Type II fractionally integrated process. This may be a 

sensible generalisation, because the relevant properties, in terms of low fre

quencies approximation of the spectral density, high lags approximation of the 

autocorrelation function, order of magnitude of the sample variance and weak 

convergence of partial sums of the observables to the appropriate (Type I or 

Type II) fractional Brownian motion, axe still met. Definitions 1.2 and 1.3 are 

actually so restrictive that they do not even include the fractional noise, the 

process having autocovariance structure

for S 6  (—1/ 2, 1/ 2), introduced by Mandelbrot and Van Ness (1968).

We then prefer Definitions 1.2 and 1.3 because they are more intuitive and 

because they are more familiar to many readers, especially when 5 is restricted 

to integers. However, we acknowledge that the results we are presenting apply 

to a broader class of processes.

We conclude the subsection with a discussion of a parametric model that 

generates a fractionally integrated process: the ARFIMA(p, 5, q) model.

ARFIMA is an acronym for AutoRegressive Fractionally Integrated Moving 

Average; p and q indicate the number of lags in the AR and MA components 

respectively, and S the order of fractional integration. This model was intro

duced by Adenstedt (1974), who set k =  0 in a Type I integrated process and 

considered

further assuming that the innovations ut were a2). This model was

7/sn U)=I (b+ir+l - 2 ur+i+y - iri+i) (i.23)

o o

(1.24)
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later referred to as ARFIM A(0,J,0) by Granger and Joyeux (1980) and Hosk- 

ing (1981).

In the A R F IM A (0 ,0), the weights (1.7) describe the responses to past 

impulses, which then vanish only at hyperbolic rate when 5 > 0, much more 

slowly than the exponential decay of the innovation of any stationary and 

invertible ARMA(p,q). Notice, also, that the weights with which the past 

innovations still affect the current observation increase the larger 8. The au

tocovariance function is rya (j) = a 2 » an<̂  the sPect ral density

/.(A) = s | l - e - T “
The ARFIMA(0, J, 0) model provides some flexibility in the description of 

the long term properties of a process, but the short term dynamics are con

strained because the structure of the covariances is already set. To satisfacto

rily model the short term dynamics as well, Granger and Joyeux (1980) and 

Hosking (1981) suggested treating the ARFIMA(0, 8, 0) as the building block 

of a more general structure, and introduced the ARFIMA(p,8,q). This is 

obtained by passing an ARFIMA(0, J, 0) process through a (stationary and in

vertible) ARMA(p, q) filter. Hosking (1981) discussed several ARFIMA (p, 8, q) 

structures, showing that the long range dependence is still dictated by (1.19), 

and that (1.15) and (1.20) still hold too (thus justifying why J is often the main 

parameter of interest), but more flexible short run dynamics are possible.

Of course, Type I ARFIMA(p, 8, q) for 8 > 1/2  or Type II ARFIMA(p, 8, q) 

may be easily defined following the lines set out in Definitions 1.2 and 1.3.

1.2 .2  F ractional co in tegration

When all the elements of a vector are integrated processes, we say that the 

whole vector is a multivariate integrated process.

For a p x 1 vector zt = •••, zPit}' such that zitt E 7(^i), ••• , zP,t €
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I  {Sp), we write zt G /  (<5i, 5P). In most of the literature, especially when 

£1 =  ... =  Sp, as it is typically when the order of integration is either 0 or 1, 

the notation z t G /  (£), for a scalar 8, is used instead. We on the other hand 

set 8+ =  {<$i,..., 8p}' and then use zt G I  (<$+).

In the same way, we define a Type I multivariate integrated process, and 

we introduce the notation zt G I\ ($ i,..., 8P) and the abbreviation zt G I\ (£+).

When zt is stationary, let f z (A) be the spectral density matrix, as from 

(1.1) and (1.2): the approximation (1.15) can be generalised to

f z (A) -  A (A) GzA (A)* as A —> 0+ (1.25)

where

A (A) = d ia 9 {e<’ Sl/2A“'5l ,....,e i,"5»/2A“'5'’} (1.26)

and Gz is positive semidefinite.

In order to define cointegration, we follow Robinson and Yajima (2002) and 

assume that the elements of zt are all ordered so that

<$i =  ... =  8kx >  ^ + 1  =  ••• — 8k2 >  ••• >  <5fcs_ i + i  =  . . .8ks • (1*27)

We then partition zt following (1.27)

zt = (zt(1)/,...,z t(s)/)  (i.28)

so zf*  =  (zkL_x+i,t, •••Zkht)' for 1 < I < s, and introduce a p-dimensional vector 

a , which is also partitioned in the same way:

a =  ( a ( l ) , , a (2), , . . . , a ( 5) ') '.  (1.29)
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D efin ition  1.4. C o in teg ra tio n  an d  co in teg ra tin g  ra n k  (R ob in 

son an d  Y ajim a (2 0 0 2 )). I f  there exists a non-null vector a{l), such that 

a if)' zf* G I  (7 ^) with 7  ̂ < 5 then we say zt is cointegrated with cointegrat

ing vector a  = ( 0 , 0 ,  a(Z)', 0 , 0 ) ' .  The number of such linearly independent 

a(l) is ri, and the cointegrating rank of zt is r =

The processes a'zt are referred to as cointegrating errors.

Notice that different combinations of different subsets of z® may generate 

cointegrating errors with different orders of integration.

We arrange the orders of integration of the cointegrating errors in the vector 

7+ =  { 7 l.- .7 r} '-

Robinson and Yajima (2002) proposed the Definition 1.4 to generalise the 

original definition of Engle and Granger (1987) by allowing for alternative 

levels of integration (although not for linear combinations involving variables 

and cointegrating errors).

Intuitively, cointegration means that there is at least one non trivial linear 

combination of the elements of a multivariate vector having order ofintegration 

lower than the order of the components of the given vector: this definition 

applies this principle to groups of variables in zt that have the same order 

of integration. Robinson and Yajima (2002) also compared this definition to 

several others already present in the literature, and showed with some examples 

that it is closer to the intuitive concept of cointegration.

The time domain description has a correspondence in the frequency domain 

and, as we have already seen for integration, cointegration too is a phenomenon 

that may be better observed at low frequencies: the matrix Gz in (1.25) in fact 

is positive semidefinite with rank p — r (which also implies that Gz has full 

rank when the process is not cointegrated).

For a given vector zf^ and for a given a (I) such that a  (I)' zf* G I  (yh)
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with 7 h < 5kt as in Definition 1.4, we also introduce (3h = Skt — 7 h and 

/3+ =  {(31, i 3 r}'. For a p-dimensional zt E I  (S+) with cointegrating rank 

r and cointegrating errors of order 7  then we introduce the notation zt E 

C l  (£1, Sp, j3l , that we also abbreviate to zt E C l  (5+, {3+). When in 

particular only unit root observables and short memory cointegrating errors 

are considered, we should then write zt E C l  ( lp, l r): since anyway this case 

is known in the literature as C l  (1,1), we prefer to drop the references to the 

dimensions p and r and use the notation that is more familiar to the reader.

Letting v t = ■ , v r,t}', %t — {x i,t, •••> xP-r,t}\ Definition 1.4 means that

there is a non-trivial r  x (p — r) matrix v such that

yt = vx t +  v t . (1.30)

The elements in the vector (y't,x't)' are the same as those in zt , but they 

may be ordered in a different way, because the elements in zt are arranged 

according to (1.27) and (1.28).

For each row h, 1 < h < r

yh,t = v’hx t +  v h,u (1*31)

where v'h is the hth row of v; we can introduce as the order of integration of 

yh,t, so yKt E I  (6{h}), and 7  ̂as the order of integration of v htU so v hyt E I  ( j h): 

Definition 1.4 then also means that £{h} > j h > 0. It is also worth noticing 

that for each k, 1 < k < p — r, then ishk 7̂  0 implies that Xk,t E I  (^{/i}) as 

well: this means that the elements of x t that actually appear with a nonzero 

coefficient in the hth equation share the same order of integration.

In many theoretical and applied papers, each equation (1.31) is considered

to describe an equilibrium relation between y^t and x t: deviations from it,
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represented by the cointegrating error Vh,ti are temporary and, upon taking a 

long enough time span, the variables y^t and x t move together. This actually 

imposes the additional requirement that the cointegrating error Vh,t is mean- 

reverting, which corresponds to < 1: although we agree that this is usually 

the most interesting case due to the importance that the concept of equilibrium 

often has in economic theory, we notice that this is not necessarily imposed 

from the definition of cointegration.

Fractional integration adds a lot to the C l  (1,1) design because 'yh > 0 

allows a much slower return to the equilibrium; it also makes mean reversion 

(or trend reversion) possible for yt and x t as well, a property that in many 

practical applications may be required by the economic theory. Finally, it also 

provides the researcher with another measure, /3h, that indicates how strong 

the cointegration itself is.

1.3 E stim ation  and testin g

1.3.1 E stim a tio n  o f  th e  m em ory  p aram eter

The memory parameter may be estimated either individually, typically using 

the limited information in (1.15), (1.19) or (1.20), or jointly with other para

meters, when a complete model, such as an ARFIMA(p, 5, q) for example, is 

assumed. The first approach is called "semiparametric", because it does not 

require the specification of a whole model but only of some of its properties, 

while the other one is "parametric".

There is a large number of estimates in the literature: however, we only 

discuss those that we are going to use in our applications, or that are* of 

relevance to the models we discuss in Chapters 2 to 4.

We begin by discussing the case in which ( t is a scalar.
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An early estimation procedure was based on the "rescaled range" R /S 

statistic proposed by Hurst (1951). Given the observations £2, ...,£n, the R/S 

statistic is

k _ k _
maxj<fc<n (ft -  C) -  mini<fc<n £  f c  “  ?)

AS = ------------- ^ --------------  1/2 ‘=1----------- ■ (1-32)

The ratio In (R S ) /  In n  converges to 1/2  when is a short memory process, 

and to S +  1/2 when it is fractionally integrated of order 8. Regularity con

ditions are very mild: consistent estimation of 8 is obtained even when the 

second moment is not finite, which may occur for example for distributions 

with very heavy tails, as sometimes is the case for a financial time series.

The R /S statistic can also be used to test for the presence of fractional 

integration. Under the null of short memory and regularity conditions (these, 

however, included the existence of finite second moments), by setting

2 _  h  (0) ggx
C i- 7 , ( 0) / ( 2x ) ’ ( 1 ' 3 3 )

then
1

R S  = >  V,  (1.34)
y/ncL

where V  is the range of a Brownian bridge. We refer to Lo (1991) for further 

details on V,  including critical values, and for a discussion about nonparametric 

estimation of c^.

When the second moments of the process are defined, consistent estimation 

of 8 may also be based on the low frequency approximation of the spectral den

sity by the power law (1.15). The estimates we describe are appealing because 

they are intuitive and, given regularity conditions, they are also characterised
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by limit normal distribution, a distinct advantage over the nonstandard as

ymptotics in (1.34).

The building block for these estimates is the periodogram. We define it by 

introducing, for the observations £1? the discrete Fourier transform

F( (X) = ^ (1.35)
V  2 7 t n

The periodogram is then

k  (A) =  Ff  (A) F( (—A). (1.36)

Although (1.35) and (1.36) can be computed for any A, the frequencies

\  for 3 G z n (L37)

where

Zn = { Z n [ 0 , n - l } }  (1.38)

are particularly important and are referred to as Fourier frequencies: in the 

rest of the thesis then when we use the notation Aj we also assume that j  E Zn. 

Notice that with this definition j  cannot take the value n, nor any multiple of 

it.

At the Fourier frequencies the periodogram provides a decomposition of 

the sum of squares of

n T i — l

£ { ?  =  2 j r ] £ / 4 (Ai ) (1.39)
t=l j=0

and

A (0) =  ^ ( ? ) 2 - (1-40)
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Since
n

^ 2  ea j ‘ =  0 when j  ±  0 (1.41)
t = 1

it can also be noticed that the presence of a constant, non-zero mean does not 

affect the periodogram for Aj 0 .

At Fourier frequencies different from Xj = 0, the definition (1.36) is equiv

alent to
1 71—1

h  (+ )  =  ^  cos (V ) 1 (L42)
s  = — 7 1 + 1

where

=  (L43)
t=i

(the mean-correction is irrelevant for the definition of the periodogram, but 

we retained it because it is included in the definition of the sample autocovari

ance). The periodogram is then an estimate of the spectral density.

If is a zero-mean, weakly autocorrelated process with 0 <c f t W  < oo 

at any A (and given other mild regularity conditions, including continuity of 

f t  M)» the periodogram is asymptotically unbiased,

E { I ( \ x) )  =  f t (X) +  o( l ) ,  (1.44)

and for any two Fourier frequencies A j and A*, with j  ^  k, and j  ^  0, k  ^  0,

Cot; (/*(*,•)+? (A*)) =  o ( l ) ,  (1.45)

and

V a r ( I i ( \ j )) = f l ( \ j ) + o { \ ) .  (1.46)

The periodograms at different Fourier frequencies are then asymptotically un

correlated, and the potential weak temporal dependence of £t is transformed
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into heteroscedasticity of I$ (X3). We refer to Brockwell and Davies (1987) for 

more details on the properties of the periodogram of a weakly autocorrelated 

process.

Asymptotic unbiasedness and absence of correlation between different Fourier 

frequencies cannot be extended to long memory time series: for given A j , Ktin- 

sch (1986) noticed this for a process having spectral density that can be 

approximated around 0 by the power law (1.15) and 5 £ (0,1/2), and Robin

son (1995a) extended the result to S £ (—1/2,0).

But Robinson (1995a) also showed that the bias of the periodogram and 

the correlation of the discrete Fourier transforms at different frequencies can 

be bounded, and tha t the bound decreases with the distance from the origin, 

so for some sequences j  (n) the asymptotic unbiasedness and uncorrelation still 

hold: when S £ (—1/ 2, 1/ 2), for any positive integer j  such that j / n  —> 0 as 

n —> oo, then

^ ( / f 1 (Aj ) / « ^ ) )  =  l  +  o ( ^ ) ,  (1-47)

and for any positive integer k < j  (and j  defined as before)

E  t f F ( (A,-) AskF( ( -A * ) )  =  O  . (1.48)

The assumptions of Robinson (1995a) were very general, requiring only sta-

tionarity and a certain degree of smoothness of (A) as A —> 0.

If is observable, the low frequency approximation (1.15) may be re

arranged as

In (/^ ( A j ) )  ~  c — 25 In Xj +  Uj as A j —> 0+, (1-49)

where Uj = In (1% (Aj) / fa (Xj)): due to the logarithmic transformation, (1.49) 

is usually known as a "log-periodogram regression" model.

The condition Xj —> 0+ is met by running the regression only for the Fourier
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frequencies 0 < j  < ra, where m  is such that m / n  —> 0 as n —> oo. When 

the process £t is stationary and invertible, the OLS regression estimate of <5 

in (1.49), S l p , is consistent if m  —» 0 0 ;  under the additional condition that 

m  = o (n4/5) (when is an ARFIMA, this rate depends on the smoothness of 

/$ (A) as A —> Oand may be smaller for other processes), the estimate is also 

asymptotically normal, with limit distribution

\[rn ( s LP -  N  ( 0 , as n -> 0 0 .  (1.50)

The idea to treat (1.49) as a regression model can be traced to a com

ment by Granger and Joyeux (1980), but the estimate was first addressed by 

Geweke and Porter-Hudak (1983). However, a rigorous proof was only supplied 

by Robinson (1995a). He discussed the regression over the Fourier frequencies 

associated to j  = with l / l  —> 0 as n 0 0 ,  and under the additional

assumption of Gaussianity, but later Hurvich, Deo and Brodsky (1998) ob

tained (1.50) under alternative conditions that would also allow for I = 1, 

while Velasco (2000) proved (1.50) for non-Gaussian as well.

Another estimate of 6 was discussed by Robinson (1995b) following a re

mark by Ktinsch (1987): he suggested using the W hittle approximation of the 

Gaussian likelihood in the frequency domain, but to estimate S on a band that 

degenerates to zero asymptotically. This means computing

.. m
\&LW, =  arg nun -  ^  (CT1 \ f  I ( (Xj) + In G \ f d) (1.51)

°  3 = 1

where 0  and Sq are compact sets such that 0  C (—1 /2 ,1 /2 ), So  C (0, oo). 

After concentrating
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the local Whittle estimate of 5, Sl w , is

Sl w  = arg ] InAj. (1.53)

Robinson (1995b) established consistency as m  —> oo, m / n  —► 0, and

limit normality when m  = o (n4/5) (as for Sl p , slower rates may be necessary

Both Slw and 8lp are subject to a lower order bias which increases in ra, 

so the choice of the bandwidth is very important because, on the other hand, 

the larger m  is the smaller the dispersion is. Optimal (in Mean Squared Error 

sense) bandwidths are discussed by Henry and Robinson (1996) for 5lw and 

by Hurvich, Deo and Brodsky (1998) for Sl p '- in both cases the choice depends 

on the precision of the approximation (1.15) and on the smoothness and on 

the steepness of A26 (A) as A —> 0+. The most favourable situation is when

f t  (A) is sufficiently smooth, as it actually occurs for many parametric models, 

including the stationary and invertible ARFIMA(p,5,g).

Nonstationarity (S >  1/2) can be addressed by differencing the data, but 

this requires a certain preliminary knowledge at least of the range in which 

S lies. Velasco (1999a, 1999b) showed that (1.50) and (1.54) also hold for 

1/2 < S < 3/4, and consistency even for S < 1. Key to this result is the 

computation of the bound for the expected periodogram when 1/2  <  S < 1: 

for positive integer j  such that j / n  —> 0 as n —>oo,

according to the smoothness of (A) as A —> 0). The asymptotic distribution

is

as n  —► oo. (1.54)

E  { f t  (Aj) If (A,)) =  1 +  0  ( / « - » In (j + 1)) (1.55)
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and, for positive integer k <  j ,

E  ( A ( A j )  A ( Afc)) =  O ((j k J4" 1 In (fc +  1)) . (1.56)

Velasco (1999a) also showed that when the data is weighted by a suitable 

filter ("tapering"), the bias of the expectation of the tapered periodogram can 

still be bounded, and in a way such that the bound may be made negligible 

for some sequences j  (n) such that j / n  —> 0 as n —► oo, even for larger 8 or 

for 8 < —1/2. We refer to Velasco (1999a) for a discussion of the properties 

required for the taper; we only mention that the tapers may be classified 

according to the maximum 8 for which they can successfully eliminate, at least 

for some sequences j  (n), the bias, and that the requirements get stronger the 

larger 8 (or, the smaller 8 when 8 < —1/ 2).

This however is acquired at the cost of higher correlation across neighbour

ing frequencies (and the higher the order of the taper, the higher the correlation 

induced), so Velasco (1999a, 1999b) modified the definitions of log-periodogram 

regression and of local W hittle estimates, and imposed more distance between 

the points used in the estimation by skipping frequencies. Since less points are 

used in the optimisation for any given m, the variances are comparatively big

ger than in (1.50) and (1.54): tapering then is only advisable if no preliminary 

information on the range in which 8 lies is available.

Semiparametric estimates have the advantage of not requiring any specifi

cation of the spectral density for the remaining frequencies. Yet if the whole 

parametric model is known, even if only up to a known function of a vector 

of unknown parameters, 8 may be estimated more efficiently by using all the 

Fourier frequencies, rather than just a degenerating narrow band.

Suppose that the spectral density of f  t is a known function of the parame

ters cr2, 6, 8, and indicate this as (A;cr2,0,8), and that there is (X]h,d)
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such that (A\s2,h,d) = s2/  (2tt) (A;h, d) for all the admissible values of 

(s2, h', d)'. Then, if s2 varies freely from h, d and f * n In g  ̂ (A; h, d) d \  = 0, the 

parametrisation is refereed to as "standard", for example, by Robinson (2003). 

Then the W hittle estimation of {&, 6)' can be obtained by minimising

with respect to (h',d)' over a compact set.

Consistency of the W hittle estimates for stationary and invertible fol

lows already from the argument of Hannan (1973), but his proof could not be 

directly extended to establish the limit distribution; this was treated by Fox 

and Taqqu (1986) for Gaussian processes, and by Giraitis and Surgalis (1990) 

for possibly non-normal ones too. Both Fox and Taqqu (1986) and Giraitis and 

Surgalis (1990) had a slightly different loss function, the summation being re

placed by an integral (Hannan considered this case too). Velasco and Robinson 

(2000) on the other hand used (1.57): they extended the results to nonstation- 

ary processes, proving consistency for 8 < 1 and root-n limit normality for 

S < 3/4. Velasco and Robinson (2000) also replaced the raw periodogram in

(1.57) with a tapered one, but as in Velasco (1999b) the loss function had to be 

modified by discarding neighbouring frequencies: with these modifications to

(1.57) they established consistency and root-n limit normality for even higher 

5. In all these cases, additional regularity conditions were required: we do not 

discuss this in details but mention that they include a certain smoothness of 

the spectrum (or of the pseudo-spectrum).

Knowledge of the parametric model (possibly up to a vector of unknown pa

rameters) can also be exploited in the time domain, to design a procedure that 

delivers a consistent and root-n asymptotically normal estimate by minimising 

a conditional sum of squares.

n — 1

(1.57)
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Variations on this procedure are fairly common, and they can all be treated 

as a special case of "Whittle" in the sense that the limit distribution of the 

estimates is the same.

Introduce the notation

& (d) =  A■*£#, i *  =  £«1 (t >  0 ) , (1.58)

and
k

et (e (d)) = ( t (d) -  Bi  (?  (<*)) f t- i  (rf) (L59)
3 = 1

where 6 (d) is an estimate of the parameters characterising the autoregressive 

structure Bj  for a given d (for example, B0 (o (d)^ could be estimated with a 

finite order autoregression of (d) on some lagged values). The parameters 

(0', 5)' can then be estimated by minimising

^  £ ( ? , ( ? ( < * ) ) )  2 (1.60)
t = l

with respect to some values of d defined in a certain compact set. A time 

domain procedure based on a (slightly different) conditional sum of squares 

approach was advocated by Beran (1995), although the proof was not complete.

Sowell (1992) claimed that exact maximum likelihood should be preferred, 

arguing that it would be more precise in finite samples.

In all these cases (exact maximum likelihood, conditional sum of square 

in the time domain and W hittle approximation without tapering in the fre

quency domain), the estimates are root-n consistent and have the same limit 

distribution.

It may be worth noticing that the proofs of Robinson (1995a, 1995b), Ve

lasco (1999a, 1999b) and Velasco and Robinson (2000) were formulated for 

Type I processes only, and they do not immediately accommodate Type II
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processes. Robinson (2005b) addressed the issue by discussing the difference 

between the Fourier transforms at Fourier frequencies of two processes of the 

different types, and showed that the difference can be bounded, although he 

also found that it gets larger with 6; for S > 1/2  he compared the tapered 

Fourier transforms instead. He then showed that the W hittle estimate is robust 

to the type of process used in the estimation, and that the limit distribution 

does not change.

When a vector process is analysed, simultaneous estimation may be pre

ferred, because the correlation between the different elements composing the 

vector can be taken into account and the efficiency of the estimates is improved 

with respect to the case in which the parameters are estimated separately.

For the p-dimensional zt =  ( z i j , ..., zp^) \  introduce the p x p  periodogram 

h  (A) =  Fz (A) Fz (—A)', with Fz (A) =  {FZJ (A), FZp (A))'.

A multivariate generalisation of the local W hittle loss function in (1.53) 

can be presented following Lobato (1999). Letting d+ = (d i,..., dp introduce

A(A; d+) =  diag(A- * , A " ^ ) ,  (1.61)
1 m

S z (d+) =  — Re(A(Aj;d+)_1/ 2(Aj)(A(Aj;d+)~1)), (1.62)
TOl=i

L (d +) =  | l n | G , ( d +) | - ^ ( d 1 +  ... +  dp) y j l n ( A j ) | ,

(1.63)

the local Whittle estimates are

$+,Lw = arg min L (d+) , where 1/m  +  m / n  —> 0 as n —> oo (L64)
d+e©

where 5+ =  |d i , . . . ,dp|  and 0  is a compact subset of (—1/ 2 , 1/ 2) x ... x
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(—1/ 2 , 1/ 2) (Lobato (1999) actually went further, because he showed that the 

minimisation of (1.63) can be replaced by a two-step procedure that generates 

the same asymptotic properties).

If each element of zt is fractionally integrated with spectral density as 

in (1.26), (1.25), and the matrix Gz in (1.25) is positive definite, then the 

local W hittle estimates are root—m  consistent (the usual m  = o (n4/5) or less 

applies, for the limit normality of the estimates, according to the smoothness 

of the spectrum) and more efficient than in the univariate case: in the bivariate 

case for example the increase of efficiency is Cy/8, where Cy = G\2/  (G11G22) 

and Gab is the element in the position (a, b) in the matrix Gz.

Multivariate parametric estimation can also be considered, again resulting 

in more efficient estimates provided that Gz is not singular. Since the general

isations of the procedures for univariate series are rather straightforward, we 

omit them.

1.3.2 E stim a tio n  o f  th e  co in tegra tin g  vectors

In this subsection and in the following one we discuss the estimation of the 

cointegrating vectors v and of the cointegration rank r  in the cointegrated 

model (1.30) for a p-dimensional process zt .

We assume the model

yt = vx t +  rxy,t(-7+)

Xt Ux,t( ^+)j

where Uyjt( - 7+) =  (ui,t(~7i),  —» ur,t(~7r)Y is a r  x 1 process, uXit(-6+) =

(ur+i>t(-£ i) , ..., uPft( -Sp-r)y  is (p — r) x 1, and ut =  (uh u ...,uPtt)' i s a p x l ,

Ii (0) process with spectral density f u (A).

(1.65)

(1.66)
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The scalar processes iti,*(—7 i ) ,  Up,t(~$p-r) may °f course be fractionally 

integrated, and, since they are generated by using the notation (1.10), they 

are of Type II. This has the advantage of not limiting the order of integration 

only to the range for which the Type I fractional Brownian motion is defined. 

We further assume that the process ut is a linear transformation ut =
OO

5 3  AjSt- j of an i.i.d. vector et with covariance matrix E  (£t£rt) = fh Reg-
j=o
ularity conditions for the weights Aj  include the normalisation A 0 = Ip and
oo oo

E J \ \ A 3\\ < OO, > J j | |A j | |  <  oo: this is a fairly general specification, and
j=0 j=o
other details on the design are in Chapter 4.

This structure is sufficient to derive the limit behaviour of some semi- 

parametric estimates like OLS (and narrow band least squares, introduced 

later in this subsection); when we specify a fully parametric model we also 

assume that E  (£te't) =  O (9) and that ut admits an autoregressive represen

tation B  (L; 9) ut =  £*, and both Q (9) and B  (L; 9) are known up to a set of 

parameters 9.

We introduced a p-dimensional system because in that case the determi

nation of the cointegration rank is not trivial, and we can then present the 

techniques we use to address that problem in the application that we discuss 

in the next section, where we have p = 4. However, in the remaining part 

of this subsection and in Chapter 4 we only intend to describe and discuss 

some techniques for the estimation of v, and in these parts we focus o n p =  2 , 

r = 1, thereby avoiding the discussion of identifiability of some parameters 

in presence of differing orders of integration in the explanatory variables, as 

Robinson and Hualde (2003) also noticed; moreover, in (1.30), yt € I  fy) and 

x t e  I  (5), v t £ I  ( 7 )  and (3 = 5 — 7 ,  and we can then describe the theoretical 

literature and, in Chapter 4, our results, with a simpler notation.

Engle and Granger (1987) estimated v  via OLS (we refer to this estimate
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as V o l s  in the rest of the Chapter, in order to keep the notation consistent 

with V  in Chapter 4). Engle and Granger (1987) assumed <5=1 and 7  =  0: 

in that case the OLS estimate is consistent and converges to the true value 

with the rate Vols  — v +  Oe (n_1), which is faster than in a regression model 

with I  (0) regressors. That result holds for a rather general specification of 

the cointegrating errors, including forms of (short memory) autocorrelation 

or even heteroscedasticity; potential correlation between u\^ and which 

would make OLS inconsistent if <5 =  0, only generates a lower order bias when 

<5=1.

When <5 and 7  are no longer restricted to integers, though, in general rates 

depend on both 7  and 5: Robinson (1994b) showed that when 8 < 1/2  OLS 

is inconsistent if the regressor x t is correlated with the cointegrating error v t, 

and Robinson and Marinucci (2001) discussed the case 8 > 1/2, finding that 

V o l s  =  v + Op (nl~25) when <5 +  7  <  1, V o l s  =  v  + Op (n1- 2(5lnn) when 

<5 +  7 = 1  and 8 < 1, and V o l s  — ^ +  Oe (ft7-5) when <5 +  7  > 1 (notice the 

use of an upper bound for the orders of magnitude, rather than the exact rate, 

when <5 +  7  < 1: this is because the rate of convergence may be faster, when 

x t and v t are not correlated at any lag).

Since the inconsistency of OLS when <5 < 1 /2  and the suboptimal rate of 

convergence when <5 <  1 are caused by the correlation between x t and the 

cointegrating errors v t in (1.30), Robinson (1994b) suggested to focus on the 

lowest frequencies, where the "noise” due to the correlation with v t should be 

of a lower order when compared to the "signal" in x t . The idea of a regression 

on selected frequencies with the purpose to minimise the bias induced by the 

noise in the extraction of a signal is due to Hannan (1963), who discussed 

time series with continuous spectra. Robinson (1994b) exploited the power law 

approximation (1.15) to reduce the bias: he suggested to run the regression 

on low frequencies only, and he introduced the crucial assumption that the
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band (the set { A o , . . . , A m }  or { A i , . . . ,  Am } ,  where m  <  n is the bandwidth) 

degenerates towards zero as in the log-periodogram regression or in the local 

W hittle estimation.

The narrow band least square estimate (NBLS), Vn b l s> is defined as

the choice of I depends on the presence of an intercept in (1.65): I is set to 1 

if an unknown intercept is included in the model, and to 0 otherwise.

Robinson and Marinucci (2003) showed that the NBLS estimate is consis-

they conjectured that the rate is sharp), while when 5 > 1/ 2 , V n b l s  —  

v +  Oe (n7- 5m 1-7-(5) when 7  +  5 < 1, V N B l s  = v + Oe (n1-M lnm) when 

7  +  5 = 1  and 5 < 1, and Vnbls  = v + Oe (n y~s) when 7  =  0 , 5 = 1 or when 

7  +  5  > 1. The rates of convergence are then improved with respect to OLS 

when the joint memory is relatively small, i.e. 7  +  5 <  1: the only exception 

is for 5 =  1 and 7  =  0 , but even in that situation NBLS can be preferred, 

because it succeeds in eliminating the lower order bias.

An even faster rate of convergence was attained by Chen and Hurvich 

(2003) for some combinations of 5 and 7 : they kept m  fixed and used a com

bination of tapering and differencing of the data.

The OLS and NBLS estimates have the advantages of being very simple to 

compute, and of not requiring any preliminary knowledge of the distribution 

of the cointegrating errors (in this sense, they can both be considered semi-

v n b l s —
£ r =1R . e ( M + )  

£ 7 = , / * + )  ’
(1.67)

where

I x y  ( X j )  =  F x  (A)  F y  ( - A ) (1.68)

is the cross periodogram of x t and yt, and m  is such that ^  +  ̂  —> 0 as n —>00 ;

tent even when 5 < 1/ 2, in which case vnbls
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parametric). On the other hand the limit distribution is not standard, and 

Wald type statistics are not asymptotically x2, so a test on v  based on V o l s  

or Vnbls  is not really practical because it requires critical values that depend 

on the model of U\yt and U2,t.

Maximum likelihood, or pseudo-maximum likelihood if Gaussianity is not 

assumed, may overcome these shortcomings.

Given the model B  (L; 9) ut = s t , E  (e*ej) =  0  (9), when the parameters 7 , 

8 and 9 are known a closed form estimate based in the time domain is

where b (L; 9) is the first column of B  (L; 9). In the same set-up, a closed form 

estimate based in the frequency domain is

Since they both have the same asymptotic properties at least when /3 1/ 2 ,

as Robinson and Hualde (2003) showed, in the rest of the subsection we will 

comment on P  ( 7 ,  S, 9) only.

Phillips (1991) showed tha t when 8 = 1 ,7  =  0, and 9 is known, under reg

ularity conditions P (0 , 1, 9) is asymptotically mixed normal, with P (0 , 1, 9) = 

v + Oe (n-1), and the Wald test on v has limit distribution, where q is the 

number of restrictions tested.

When any of 9, 7  or 8 are unknown, maximum likelihood requires joint 

estimation with v .

When 7  and 8 are known, efficient estimation of v  and 9 can be realised 

with one single regression, even though possibly a non-linear one. By rewriting

E fa l (ft ( L  0) x t (7 ))' 0  (fl) 1 {B (L; 6) (yt (7 ), x t (<?))') 

£7=1 (& (£; #) x t (7 ))' ft (ft1)-1 (ft (£; 6) x t (7 ))

V  ( 7 , 5 , 6)
E"=1 P  (Ai; 9 )  F x h )  ( X j )  (F y(7) ( - X j ) , F x(5) ( - X j ) ) '  

E j = i  Q (Ail 6 )  4 (1 ) (Ai)
(1.70)

where p  (A; 9 )  = (1 ,0 )/„  1 (A; 9 )  and q ( X \ 0 )  = (1,0) /„  1 (A; 6 )  (1,0)'.
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(1.65) as

A7yt — v A  1x t -f (^ 12/ ^ 22) A 5x t +  £i,t — (^ 12/ ^ 22) £2,*5 (1-^1)

v can be estimated by maximum likelihood as the coefficient of A 1x t in the 

regression of A 1yt on A 1x t and A 6x t : Phillips (1991) anticipated it for 5 =  1, 

7  =  0 and under the assumption of independence for ut , and Robinson and 

Hualde (2003) generalised it to fractional orders (provided that /3 > 1/ 2); 

Phillips and Loretan (1991) discussed the extension to an autoregressive struc

ture in ut , augmenting the model (1.71) by leads and lags of A 6x t and by lags 

of A^Vt. Phillips and Loretan (1991) only considered S =  1 ,7  =  0, and even 

in that case the regression imposes non-linear constraints, so a two-step pro

cedure may actually be faster. For that case, Phillips (1991) showed that the 

limit distribution of P (0,1,9) does not change if 9 is replaced by a consistent 

estimate 9.

On the other hand, the assumption of preliminary knowledge of the unit 

root was essential: indeed, if p was estimated rather than imposed as p =  1 in

Xt = pxt- 1 + u 2,t (1-72)

(notice that when p =  1 then S =  1 so this is another way of formulating

(1.66)), then Phillips (1991) showed that the limit distribution of the estimate 

of v is in general contaminated by the unit root distribution of the estimate of 

P-

Robinson and Hualde (2003) showed that this difference in the limit dis

tribution of v depended on the restriction to integer orders only for S and 7 , 

and on the estimation of 5 via the regression of x t on x t- \ .  They compared 

D (7 ,5 ,6), v ( 7 , 8,9 j and P ( 7 , 8 ,9 ), where 7 , 5,9 axe consistent estimates of
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7  ,$,0,  and found that the three estimates of v all have the same limit distribu

tion (regularity conditions included (3 > 1/2  and minimal rates of convergence 

for 7 ,6,6). They also derived the limit distribution of these estimates of v, 

finding that v (7 , £, 0) =  v+Oe (ft7-<5) with mixed normal asymptotics and that 

a Wald test on 1/  has limit x l  distribution (x? because they only considered a 

scalar v ) .

The situation 7  =  0, <5 =  1 did not require a particular treatment or 

discussion, except possibly the remark that then the results were the same as 

those of Phillips (1991) when £ =  1 ,7  =  0 are known in advance. The fact that 

preliminary estimation of 6 (or of 7 , for that matter) does not affect the limit 

distribution of the estimate of the cointegrating parameter, is a remarkable 

difference with respect to the result of Phillips (1991), and it seems to confirm 

that estimating a possibly fractional memory parameter rather than imposing 

the alternative between short range dependence or unit root is a more natural 

approach.

The case in which < 1/2 was called by Hualde and Robinson (2002) 

"weak cointegration".

It is fair to conjecture that under regularity conditions the maximum likeli

hood estimates are root-n consistent and Gauss-Markov efficient. The regres

sion estimate, on the other hand, may generate nonstandard asymptotics, and 

possibly a lower rate of convergence as well, as discussed by Robinson (1994a), 

or even inconsistency.

Assuming no correlation between x t and v t, Hidalgo and Robinson (2002) 

proposed adaptive GLS estimation, showing that the resulting estimate is root- 

n  consistent and Gauss-Markov efficient. Allowing for potential correlation, 

Robinson and Marinucci (2003) discussed NBLS under stationarity: the esti

mate is consistent but (they conjectured) converges at a slower rate. Hualde
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and Robinson (2002) on the other hand proposed a simple two-step procedure 

that delivers root-n consistent estimation of the cointegrating parameter even 

when x t and v t are correlated, although the estimate may be less efficient than 

the maximum likelihood one.

1 .3 .3  T estin g  for co in tegra tion

Engle and Granger (1987) also considered the problem of testing for a cointe

grating relation. They proposed to run an OLS regression and then to test for 

a unit root in the residuals with the augmented version of the Dickey-Fuller 

test. This approach was further discussed by Hansen (1992), who noticed that 

in that case the critical values of Said and Dickey (1984) for that unit root 

test are not valid, and that the correct ones depend on the number and on the 

nature (deterministic or stochastic) of the regressors.

Yet if the cointegration rank is unknown, detecting the cointegrating rela

tions through testing the order of the residuals may be problematic, because 

all possible combinations should be considered. Several different procedures 

then have been developed to estimate the cointegration rank.

Phillips and Ouliaris (1988) proposed to estimate the cointegration rank by 

looking at the rank of Gz in (1.25). Since that matrix is unknown, they con

sidered a nonparametric estimate of /a* (0) (they assumed a C l  (1,1) model): 

the rank of Gz is then estimated by testing how many eigenvalues of that esti

mate are significantly different than zero. Unfortunately, the limit distribution 

theory only covers the case in which the eigenvalues are not zero, but Phillips 

and Ouliaris (1988) proposed to use this procedure and that limit distribution 

anyway, arguing that it would help at least to spot the situations in which the 

eigenvalues are far away from 0 .

A third procedure to estimate the cointegration rank, still under the C l  (1,1)

45



assumption, was proposed by Johansen (1991) in a maximum likelihood frame

work. Johansen (1991) derived the limit distribution of the likelihood ratio test 

of the hypothesis that the cointegration rank is r against r-1- 1: it is not a stan

dard x 2) but he showed that it only depends on r  and p and on the type of 

deterministic component in the model, and it can be tabulated.

Testing for cointegration by looking at the order of integration of the resid

uals of a regression is also popular when fractional cointegration is analysed. 

In many applied works this had been done by a semiparametric estimate, a 

procedure that actually seems more appropriate, given that the residuals also 

had been estimated semiparametrically (usually by OLS or NBLS).

An early example was provided by Cheung and Lai (1993), who used log- 

periodogram regression on OLS residuals to investigate a potential Purchasing 

Power Parity (PPP) relation in the long run. Cheung and Lai (1993) also 

argued that when the estimate of 7  is based on estimated residuals then its limit 

distribution is not necessarily normal, supporting their claim with a Monte 

Carlo exercise. Indeed Hassler, Marmol and Velasco (2006) found that the 

necessary conditions for limit normality are rather strong if OLS residuals are 

used: /3 > 1/2  is required and the lowest frequencies have to be trimmed and 

excluded from the regression, and an even larger (3 is necessary if S +  7  < 1.

Robinson (2005b) obtained a root-n consistent estimate of 7  under the 

milder condition that S > 7  +  1/2  and no trimming: he obtained this much 

stronger result by using more information, because he discussed W hittle esti

mation, which is parametric and uses the whole range j ^ , 27r̂ ~ 0 an(j by 

employing a better estimate of the cointegrating parameter in the first step, 

because he considered the residuals of a NBLS regression (OLS residuals can 

also be used if <5 +  7  >  1).

However, in the fractional setting, the simple estimation of the order 7
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only gives a heuristic piece of evidence rather than to provide a proper test of 

cointegration, because the order <5 is unknown as well.

Marinucci and Robinson (2001) thus proposed an alternative test, based 

on the remark that the rank of the matrix Gz in (1.25) is reduced under coin

tegration. They considered a variation of (1.63), augmented by the additional 

assumption that the order of integration is the same for all the cointegrated 

processes:

8*,lw = arg min L(d*lp) (1-73)
d * G 0 *

where d*lp is a p-dimensional vector in which each element is d* (scalar), 

and 0 * is a compact subset in (—1/ 2 , 1/ 2).

When p = 2 and the rank of Gz is full, under m  = o (n4/5) (or less,

depending as usual on the smoothness of (A) as A —>0) and other regularity

conditions

V/8m (d*,LW — —>d N ( 0,1) as n —► oo. (1-74)

When the restriction to a common order of integration is correct, estimating the 

memory parameter using two processes jointly is more efficient than estimating 

it using just one of the series: indeed Marinucci and Robinson (2001) considered

Hk =  %rn{d*,Lw ~  $k,Lw)2 (1-75)

where 5k,LWi the local W hittle estimate of the memory parameter of the kth 

element of bivariate vector zt , is computed by minimising the loss function for 

a scalar process as in (1.53), and showed that

Hk — Xi as n —> oo. (1*76)

If on the other hand Gz is singular, Marinucci and Robinson (2001) argued
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that 8*,lw  is inconsistent and the statistic in (1.75) diverges. Marinucci and 

Robinson (2001) then suggested to test for cointegration by comparing 

and Sk,LWj rejecting cointegration if (1.75) is below a critical value (given the 

similarity with the Hausman test, Marinucci and Robinson referred to this as 

a "Hausman-type" test).

Robinson and Yajima (2002) proposed a variation of the test of Phillips 

and Ouliaris (1988) in which the 8* difference is taken by applying the fil

ter A(A;£*lp) as in (1.61) to the periodogram Iz (A), thus estimating Gz as 

Gz (8*lp) in (1.62), provided that 8* G (0,1/2). Since 5* is unknown, and 

cannot be estimated using the multivariate approach (1.73) because Gz is not 

of full rank under cointegration, they proposed

Robinson and Yajima (2002) also observed that if the same bandwidth is used 

for 8*yL\v and Gz{8+tLwlj>), th en these are perfectly correlated, so they sug

gested to compute 8^lw using another bandwidth m i that increases sufficiently 

fast to remove that effect. Let Ai(£*lp), — > ^p(W p) be the ordered eigenval

ues of Gz(6+lp) and let Ai(5*tivvlp)» •••> \{8*,l w -̂p) be the ordered eigenvalues 

of (7z(£*,wlP), and drop (<5*1P) and (J*,lw 1p) in order to make the notation 

lighter: Robinson and Yajima (2002) defined

8*,l w  —  { 8 i ,l w  +  ••• +  8PfL w ) / p - (1.77)

(1.78)
a —k a = k

(1.79)
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+  < 7 1>P—3 p—j+^,P
( 1)2 - ( 2)2  
1

(1.80)

and showed that when the rank of Gz is full

~  7Tj ) / sj ~^d N ( 0 ,1) as n —> oo. (1.81)

To test for the cointegration rank r they considered

t r = nr +  cvasr/ m 1//2 (1.82)

(where cva is the critical value for the size a): evidence of cointegration is

threshold (they suggested 0.1 /p). They also proposed, as an alternative, to 

confront ttt with another pre-specified threshold (they suggested 0 .01/p).

The last test we present was proposed by Breitung and Hassler (2002) and 

is based on the extension to the fractional case of the maximum likelihood 

approach. They considered (1.65) and (1.66) with the additional assumptions 

that a representation B  (L; 6) ut = et is feasible, and in particular that uXtt = 

(wr+i,tj •••, Upj)' has VAR(A;) structure, that the orders of the observations and 

of the cointegrating errors are always the same, so Si = ... =  Sp = 8* and 

7 j =  ...7 r =  7 * (although they stated that this restriction was only introduced 

to ease the notation) and that there are no parametric restrictions across the 

elements of Q and i/, 5*, 7 *, 0. Finally, they assumed that /3* = 6* — 7 * > 1/2. 

Introducing

found if the computed value of the expression in (1.82) is below a pre-specified

et = As*zu e\ = z t -  B l (6) et_i -  ... -  B k (6) e*_fc (1.83)
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where B i , ..., Bk are the first k elements of the VAR representation for ut , and

'K-i = Y  r ’e j-i, (1-84)
i = i

following Johansen (1991), Breitung and Hassler (2002) tested the hypothesis 

of r cointegrating vectors by computing Ai , ,  Ap, the solutions of the equation 

in A

Ordering these eigenvalues as Ai <  ... < Xp, Breitung and Hassler then showed

and B\  (6), ..., Bk (0) are unknown, Breitung and Hassler suggested to replace 

them by consistent estimates.

Cointegration requires that the order of integration of the processes yt and 

x t is the same. In the C l  (1,1) case this is usually verified by testing for a unit 

root for both the series. In the fractional model though there is no reason to 

expect any particular value for 5*, so the test has to be different.

Robinson and Yajima (2002) proposed to test the hypothesis

where I and k refer to the position in the p-dimensional vector zt , against the 

alternative that the two parameters are different, by using the statistic

(1.85)

(1.86)

that the trace statistic X)o=i *s asymptotically X̂ p_ra ■ Since in practice 5,

H0 : {5* =  5,} (1.87)

™ 1 2̂ (5k ,L W  ~  &l ,L w) (1.88)

where Gi and Gk are the elements in the main diagonal of the p x p  matrix



Gz, and Gu are the elements in the position (A;,/), and Gz is estimated as in 

(1.62). When the process is not cointegrated,

Tk,i ->d N ( 0 ,1) as n —> 00 , (1.89)

but otherwise the test statistic is not well defined. Robinson and Yajima (2002) 

then also suggested the alternative statistic

f  =  m 1 / 2 ( 6 k , L w  ~ \ l w ) q n x

M u a - e y M j p / ’ + M " ) ’

where h(n) is a sequence that tends to zero at an appropriate speed, because 

under cointegration

Tk,i -*p 0 as n -> oo, (1-91)

while otherwise the same limit distribution of Tk:i holds. They remarked that

Tik,i < Tk,i so a non rejection of the hypothesis from T^i would be made 

with even greater confidence from TJt /. Robinson and Yajima also generalised 

the statistic T^i to test several hypotheses simultaneously by a y 2 test.

1.4 A n applied  exam ple: a fractional co in te
gration analysis o f th e  term  structure o f  
in terest rates

1.4.1 In trod u ction

We apply the techniques described in Section 1.3 to estimate the memory 

parameter, to determine the cointegrating rank of a vector, and to estimate a 

cointegrating matrix, for a vector of four interest rates.

The application of the fractional model to a vector of interest rates is of
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particular importance because it helps to reconcile two apparently conflicting 

groups of theories about the order of integration of the interest rates.

By plotting together two comparable interest rates with different maturi

ties, it is fair to conjecture that the long term dynamics of the two series is 

largely driven by a highly persistent common factor, while the persistence of 

the difference between those two rates (the "spread") is much less. This of 

course matches the intuitive description of the concept of cointegration, and it 

is not surprising then that an application for two rates with different maturities 

had been proposed already by Engle and Granger (1987).

Campbell and Shiller (1987) provided a theoretical model linking rates with 

different maturities: they showed that if two different rates are I  (1), then un

der rational expectations they are cointegrated with v = 1; if a vector of p 

rates is considered, then the cointegration rank is r = p — 1. Campbell and 

Shiller (1987) proposed a C l  (1,1) model, but fractional integration can be 

introduced in their design without any modification: applying rational expec

tations (and then adding an I  (0), i.i.d. disturbance term) to their equation 

(4), the cointegrating errors should be of order max {£ — 1,0}.

If indeed the interest rates are integrated, then a cointegrated model is 

also necessary for a successful transmission of monetary policy. The central 

bank operates by supplying liquidity on the interbank market by open market 

operations and discount window loans, so that the short term rate is tightly 

managed by the monetary authority. Yet the relevant macroeconomic indica

tors are only affected by the rates of contracts with much longer maturities: 

the demand of money from the individual agents depends on the return of 

the alternative asset, which is more likely to be the Treasury bills or Trea

sury bonds rate, while the economic activity depends on other rates, like the 

bank loan rate or the commercial paper rate. The transmission of monetary 

policy then requires that an impulse originated in a market for a very short
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term contract is transmitted to contracts with much longer maturity, and for a 

successful policy it is also necessary that the transmission is fast and reliable.

If we are restricted to integer orders only, the evidence seems to be in favour 

of a C l  (1,1) model, and it is quite robust with respect to changes in the pairs 

of rates used (Treasury bills and bonds, eurodeposits, synthetic rates generated 

by fitting splines...) and to the sample period. When more than two rates were 

analysed jointly, though, the hypothesis of p — 1 independent cointegrating 

vectors was not always met: Hall, Anderson and Granger (1992), Engsted and 

Tangaard (1994) and Lanne (2000) found more than one stochastic trend, but 

explained the result allowing for a structural break in 1979 (Hall et ai  also 

introduced a break in 1982); Domingues and Novales (2000) too found that 

the results were sensitive to whether the sample started in 1979 or a few years 

later. The potential breaks were explicitly tested by Hansen (2003), who found 

that the two changes in monetary policy in 1979 and in 1982 altered the short 

run dynamics of the rates.

Most researchers assumed integer orders only, and in many cases applied 

the maximum likelihood approach introduced by Johansen (1991). Arguing 

that the 7(1) representation contrasts the experience that rates do not take 

negative values, Lanne (2000) proposed near unit roots instead.

An 7(1) interest rate is also difficult to motivate because it is likely to im

ply an 7 (1) model for inflation also: this is the case, for example, if the Fisher 

equation holds, or if the central bank sets the interest rate using a linear reac

tion function like the ones described by Taylor (1993) or by Svensson (1997). 

Such a strong persistence in inflation is hardly acceptable in monetary theory, 

because it implies that the central bank does not stabilise inflation around a 

constant value, as the inflation targeting commitment requires. Indeed, Clar- 

ida, Gali and Gertler (2000), for example, adopted the 7(0) representation 

instead, and dismissed the results of the Dickey-Fuller test arguing that they

53



were due to the low power rather than to a unit root.

1 .4 .2  E m p irica l an alysis

We applied the fractional model (1.65) and (1.66) to the US interest rates with 

maturities of 1, 3, 6 and 12 months. We augmented the equations by non-zero 

constant means, but imposed no trends because they would imply explosive 

rates. By indicating the four rates as zl*, z3*, z6*, 12* respectively, and under 

the assumption that r — 3, the model prescribed by the theory is

f

zl* — Hi +  U\j {~&*)

z3* = n3 + v3i \ t +  u3,* (-7 s )
< (1.92)

26* =  /z6 +  z/6zl* +  u6i* (—7 6)

 ̂ 212* =  H12 +  2/i22l* +  U\2,t ( - 712) •

Notice that we do not assume r = 3, but test for it instead; for each rate we 

assume the univariate model

27* =  [Lj +  1ijtt ( S j ) , j  e  (1,3,6,12} . (1.93)

The contract is the London interbank deposit in US$ (monthly averages of 

the offer rate) over the period 10/1979 to 01/2002 (inclusive), corresponding 

to the DataStream identification codes USI60LDC, USI60LDD, USI60LDE, 

USI60LDF. The period was selected because Clarida Gali and Gertler (2000) 

suggested that, with the appointment of Volker as chairman, the Fed took a 

more aggressive attitude towards inflation, and indeed a break at that point 

was suspected in many applied analyses. The London InterBank Offer Rate 

(LIBOR) is a typical measure of the cost of funds in the US, because it is not 

affected by any regulation imposed by the central bank; in fact for the same
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argument the LIBOR had been in the past a good measure of the effective cost 

of funds for several European countries too.

In the rest of the section we only use some of the procedures described in 

the previous part, so we can shorten the notation by using £, 7 for Slw , I lw  33 

in (1.53) and v  for V N B L s  as in (1.67); we also drop the subscripts L W  in S*yL \ v  

(1.77) and OLS  in Vols ; finally we use 5, 7 , P for the maximum likelihood 

estimates of the corresponding parameters (we compute these by minimising 

a conditional sum of square like in (1.60) but applying the approach to a 

multivariate cointegrated process; more details are to be found further on in 

this subsection, see (1.100)). In all the tests, the size is 5% unless specified 

otherwise.

We run the analysis in two parts: a preliminary, semiparametric treatment 

of the data, and then a fully parametric one. We begin with the semiparamet

ric analysis in order to obtain robust evidence. For this reason, we prefer a 

conservative approach in the choice of the bandwidths: for the local W hittle 

procedure and similar ones, we set m  = 25 (unless the theory required other

wise, as in the computation of 5* in the test of Robinson and Yajima (2002)): 

this is optimal for an AR(1) structure with autoregressive coefficient of 0.4 for 

the short memory component, but of course we did not assume such a struc

ture. Following Marinucci and Robinson (2001), we also set a much smaller m  

to estimate the cointegration parameter.

The plot of i l  and zl2 is in Figure 1.1.

A naive inspection of the plot suggested that if the data are reverting to a 

potential mean, they are only doing it very slowly. The downward trends in the 

first part of the period could be a movement towards the long run equilibrium 

after a particularly large perturbation, if Sj < 1, but we did not rule out the 

possibility that 5j = 1, as in the mainstream cointegration literature. The
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Figure 1.1: 1 month and 12 months rates
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plot is also informative of a potential common stochastic trend: indeed the two 

rates seem to move together, the differences vanishing rather quickly.

Since it is widely accepted that Sj < 1, we estimated the memory parame

ters both for the levels and for the first differences. We estimated Sj by the 

local W hittle procedure (we initialised the optimisation by the log-periodogram 

regression estimate). The results are presented in Table 1.1: the label Si refers 

to the memory parameters for data in levels, SAi to the first differences; a.s.e. 

indicates the asymptotic standard errors as per (1.54).

Table 1.1: local W hittle estimates of the memory parameters
i l i3 i6 *12

Si 0.75 0.76 0.78 0.81
8a  i -0.14 -0.11 -0.08 -0.05

a.s.e. 0.1 0.1 0.1 0.1

The estimates of Sj were indeed below 1, but we never rejected the null 

hypothesis in the four tests

H0 : {SAij  =  0} v.s. H 1 : {<5AiJ < 0} (1.94)
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on the basis of a t test.

The estimates were, in any case, very distant from 0, and testing

Ho : {Sij =  0} v.s. 77j : {5id > 0} (1.95)

the null hypothesis was always rejected on the basis of a t test.

In order to justify the 7(0) structure despite the extensive evidence in 

the literature against it based on the Dickey and Fuller test, it was often 

argued that the power of the test is very low. Having estimated the orders 

of integration directly, we treated both the 7(0) and 7(1) specifications in 

the same way, and the evidence against the 7(0) model was then far more 

convincing. Indeed, considering our estimated orders of integration, it is not 

surprising that the conventional unit root tests were in favour of the 7(1) 

model: even assuming that the data were neither 7(0) nor 7(1), they appeared 

to be far closer to being 7(1), and the Dickey and Fuller test just reflected this 

fact.

We next tested the hypothesis that the memory was the same for all the 

series: the squares of the pairwise statistics Tkti (1.88) are in Table 1.2. In 

accordance with our previous findings, we run the tests on first differences 

of the data. We never rejected the null hypothesis of a common order of 

integration.

This result was confirmed by the joint test that the four rates are the same: 

the realisation of test statistics was 2.74, well below 7.81, the 5% critical value 

of a x i  distribution.

Table 1.2 : Semiparametric tests for the equality of the orders
pairs: A il, Ai3 A il, Ai6 A il, A il2 Ai3, Ai6 Ai3, A il2 Ai6, Ail2

2.31 1.99 2.18 1.44 1.76 1.67
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To estimate the memory of the data more efficiently we then pooled the 

four individual estimates, and we computed + 1  =  0.91.

Having obtained evidence in favour of a common order of integration, we 

tested for cointegration. The obvious candidate cointegration rank was p  — 1 

(3 then in our case), since this was the one required under the expectations 

theory and it was also used in a wide number of empirical analyses. We begun 

by testing if pairs of interest rates were cointegrated by the Hausman-type of 

test (1.75) proposed by Marinucci and Robinson (2001). The results of the 

tests are presented in Table 1.3: Hx refers to the test statistic (1.75) computed 

using the interest rate with shorter maturity, Hy to the other one. We rejected 

the null of no cointegration in 9 combinations out of 12. Moreover, in all the 

combinations we always found that 5* from (1.73) was lower than both the 

individual estimates of the orders of the two series, so we suspect that the 

failure to reject in the remaining cases may be due to a type II error.

Table 1.3: Marinucci and Robinson (2001) test for (no) cointegration
pairs: Azl,Az3 Azl, Az'6 A il, A zl2 Az3, Az6 Az'3, A zl2 Az6 , A zl2
i -0.32 -0.31 -0.26 -0.31 -0.24 -0.20

Hx 6.64 6.21 2.87 8.19 3.29 2.51
Hy 8.78 10.57 8.69 10.46 7.20 4.32

We also analysed the data using the test proposed by Robinson and Yajima 

- (2002) (of course we intend the definition to be valid for Type II fractionally 

integrated processes as well, and we used the vector of the four rates instead 

of zt)• Notice that Robinson and Yajima (2002) only formulated the test for 

variables having S* < 0.5: on the basis of Velasco (1999b) we may conjecture 

that the same procedure holds for 5* < 0.75 but this is unlikely to be the 

case anyway, so we considered two alternatives. In the first procedure we 

took 5* differences of the data in the time domain, setting all the observations
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before the first one to zero, as is common practice. We then estimated Gz in 

(1.25) simply by averaging the periodograms over the first m  frequencies, as if 

computing G^s^ (0 x l p) as in (1.62): this is exactly the procedure of Phillips 

and Ouliaris (1988) allowing for fractional integration as well. In the second 

procedure we computed the first differences for the data and then estimated 

Gz by G&i ((5* — l ) l p) as in (1.62). We refer to these two approaches as 

"time domain" based and "frequency domain" based respectively. In both the 

procedures, 5* was actually unknown, so we estimated it by computing 5 * ^  

and then by adding 1 back; notice that we used 27 rather than 25 frequencies 

as suggested by Robinson and Yajima (2002).

In Table 1.4 we present the test statistics n r, t r for the joint four dimen

sional vector. The hypothesis of interest in that case was r = 3, as prescribed 

by the economic theory. W ith the time domain approach, the maximum of 

the rescaled sum of the eigenvalues, 7?3, was about 0.009, larger than the sug

gested threshold 0.01/p=0.0025; the statistic ts on the other hand was well 

within the threshold 0.1/p=0.025. With the frequency domain approach, on 

the other hand, both these indicators rejected the null hypothesis.

Table 1.4: Robinson and Yajima (2002) cointegration tests: joint test
rank tested: r = 3 r  — 2 r = 1

time domain
7r y 0.00888 0.00034 0.00005
tr 0.01178 0.00046 0.00007

frequency domain
7Tr 0.02749 0.00110 0.00017
tr 0.03628 0.00145 0.00023

We also considered testing only pairs of rates: in that case the null hypothe

sis was r — 1. These results are in Table 1.5. W ith the time domain approach,
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the evidence was mixed for the 7Ti statistics, cointegration not having been 

rejected for rates that were "contiguous" in terms of maturities (i l t and i3f, 

i3t and i6t , i6* and H2t) but not otherwise; no rejections took place when t\ 

was used. Once again, the frequency domain approach yielded less rejections 

of the null hypothesis: 1 out of 6 for the n 1 statistics and 5 out of 6 for t\.

Table 1.5: Robinson and Yajima (2002) cointegration tests: pairwise tests
pairs: A i l , Ai3 A il, A i6 A il ,A il2 Ai3, A i6 Ai3, A il 2 A i6 , A il 2

time domain
TTl 0.00140 0.00616 0.01599 0.00195 0.00700 0.00286
1̂ 0.00187 0.00818 0.02064 0.00259 0.00950 0.00382

frequency domain
TTl 0.00141 0.01813 0.04717 0.00616 0.02784 0.00912
tl 0.00187 0.02398 0.06195 0.00817 0.03674 0.01210

The group of tests of the rank of Gz gave then a less clear indication of 

three independent cointegrating vectors, especially when the frequency domain 

approach was considered.

In order to obtain additional evidence, we set r = 3 and proceeded to the 

semiparametric estimation of the cointegrating parameters v3, z^, ^ 12, and 

then of the orders of integration of the cointegrating errors 73 , 7 6, 7 12, as 

defined in (1.92). We already noticed that this does not constitute a formal 

test but it still provides a further piece of information about the cointegration 

rank,' because if r = 3 we should observe in the residuals a sensible reduction 

in the order of integration.

Since we assumed 8* < 1, OLS may be subject to a rather large bias in small 

samples, which can be reduced by using NBLS. Marinucci and Robinson (2001) 

showed by a Monte Carlo exercise that only a very small number of frequencies 

should be used. Since in our data approximately 80% of the total variation was
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concentrated in the first five frequencies, we set m  = 5 for the computation 

of the NBLS estimate. We report both groups of estimates in Table 1.6: the 

correction of NBLS on OLS was very small, as if either S was rather close to 

1 or the correlation between innovations and explanatory variables was small. 

The estimates were very close to 1, as predicted by the expectations theory, 

and decreased slightly with the increase of the difference in the maturities, the 

minimum of 0.945 corresponding to the relation between i l t and H2t.

Table 1.6: NBLS and OLS estimates of the cointegrating parameters
series: zl,z3 i l ,  z6 i l , i l 2

N B L S : v  1.008 0.998 0.945
O L S : V  1.005 0.990 0.931

We then moved on to estimate the memory parameters of the three series 

of residuals: this is often of interest in its own right, but in our case it was also 

important because it could provide yet another piece of evidence that indeed 

the order of integration was three, as prescribed by the expectations theory 

and acknowledged in most of the applied analyses on similar data under the 

restriction of integer integration.

We intended to discuss primarily the NBLS residuals, because the rate of 

convergence is likely to be faster than for OLS, but in practice the results were 

extremely similar.

The local W hittle estimates of the orders of integration of the residuals 

are in Table 1.7. The estimates based on the residuals of the NBLS regression 

ranged between 0.22 and 0.44, the reduction of the order of integration being 

larger for the pair i l t , i3t , and smaller for the pair i l t , H2t: if we interpret 

this result as an indication of a potentially stronger cointegrating relationship 

between the rates with closer maturities, it may be important to notice that it 

mirrored the outcome of the cointegration tests. We do not show the estimates
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for the OLS-based residuals because the potential rate of convergence should 

be smaller; the estimates anyway were extremely similar to the other ones.

In the second part of Table 1.7 we present the estimates for the memory 

parameters of the spreads (zl2 —?1), (i6 —zl), because according to the

expectations theory each pair of interest rates is cointegrated with long term 

coefficient Vj =  1 and the series of the spreads should be weakly autocorrelated. 

The outcome was essentially the same as if NBLS residuals were used instead, 

therefore supporting the hypothesis that indeed the cointegration rank was 

p — 1 and also that i/3 =  1, i/g =  1 and ^12 =  1- But the order of integration of 

the spreads was always larger than that prescribed for it by the expectations 

theory, and testing

H° ■ b i , j  =  0} v-s- #1 : K ,  > 0} (1.96)

the null hypothesis was always rejected.

Table 1.7: LW estimates of the memory parameters of the cointegrating errors
pairs: i3t, i l t 

residuals of NBLS regression 
7  0.22 0.30 0.44
spreads (structural assumption)
7  0.25 0.30 0.42

The high persistence signalled by the larger than zero 7  • may be interpreted 

as too slow an adjustment of the long rates to current and expected future 

shocks in the short term rate.

Evidence of failure of the expectations theory is common in the literature, 

but it was mainly observed through particular reparameterisations of the short 

run dynamics: the (7 /(1 ,1) model with vj = 1 was either taken for granted 

or found to be broadly compatible with the data. We on the contrary found 

that the expectations theory failed in describing even the long run dynamics,
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because according to our estimates the reaction to shocks and the approach to 

the long term equilibrium is much slower than predicted by the theory.

The rejection of the expectations theory means that long term rates do not 

anticipate future short term rates precisely.

As Campbell and Shiller (1987) pointed out, the failure to observe some 

strong implications of the expectations theory does not necessarily mean that 

the long term maturities are not informative at all, about future short term 

rates dynamics: a sudden increase in the long term rates for example may be 

a prelude to a tightening of the monetary policy even if we cannot rely on the 

expectations theory to quantify the exact extent of the future intervention. We 

addressed this issue by estimating the complete parametric model and then by 

analysing the impulse response function.

We first tested for cointegration again, by using the parametric approach 

proposed by Breitung and Hassler (2002).

Preliminary knowledge of S* and of the order k of the VAR representation 

of A&* zf  are necessary. Breitung and Hassler (2002) remarked that it can be 

replaced by a consistent estimate, so we could simply use the semiparametric 

estimate 6*, At +  1 we computed before, but, in line with the spirit of the 

parametric model, we fitted an ARFIMA(2,d,0) to the first differences of each 

rate, averaged the estimates of each memory parameter and added back 1 (we 

obtained 0 .86 , very close to 5*tAi +  1, which is what we should expect).

Once again we found rank 2 using the whole vector and the 5% test, but 

notice that the realisation of the test statistic was very close to the critical 

value, and rank 3 would have followed had we taken a size of 10%. On the 

other hand, when testing only pairs of rates, we always found evidence of 

cointegration, thus pointing at rank 3 in the whole vector. These results are 

shown in Tables 1.8 and 1.9.
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Table 1.8: Breitung and Hassler (2002) cointegration tests: joint test
rank tested: r = 3 r  =  2 r =  1 r = 0

^1 0.01 8.84 29.91 49.39
r o

^ 0 . 9 5 , ( n — t * o ) 2

0.01
3.84

8.85
9.49

38.05
16.92

87.45
26.30

Table 1.9: Breitung and Hassler (2002) cointegration tests: pairwise tests 
pairs: Azl,Az3 Azl,A z6 A i l ,A il2 Ai3, Az6 A?3, A il2 A i6 , A il2 

Xl 0 0 2  003 000 019 002 000
A2 22.82 28.61 22.36 22.64 17.67 14.61

We imposed a cointegration rank r — 3, and moved on to formulate and 

estimate a VAR(/c) for (uu , ust , u§t, U\2t)'■

Introduce the notation

and

9 =

& (a) =

(d,, C3, eg, c 12, 63, bg, bi2 )'

Ad- [(Ot - O ) l ( t > 0 ) ]

A®> [(i3« -1 3  -  6s(Ot -  *1))1 (t > 0)] 

A C6 [(i6( — i6 -  be(ilt -  0 ))1  (f >  0)] 

A Cl2 [(*12* -  0 2  -  612(1!* -  *T))1 (t >  0)]

(1.97)

(1.98)

£< (# (ff)) =  (ff) -  £ *= i Bj (0 (gjj (g) (1.99)

where Bj \ 0 (g)j are estimated by regressing £, (gj for k lags.

Letting g = (5,jAj +  1, 7 3, 7 6, 712.^ 3, v6,? 12)', then £t (g) and e, \ 0(g))  

are semiparametric estimates of the series of original innovations ut and et 

respectively. To determine the order of the VAR, we first discarded the first 

three f  t (g) (because only a few observations were available to compute the 

fractional difference of the data, and the effect of the truncation can be very
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strong in those situations), and then applied the Schwartz and Hannan and 

Quinn information criteria to the remaining observations. In both cases a 

VAR(2) was selected.

This two-step approach can also be used to show that the likelihood is a 

function of g, so the maximum likelihood estimation of the whole parametric 

model follows as

9 = argpG0 min In f i t s ) )
n  - t=i

( 1.100)

on a compact set ©.

The maximum likelihood estimates of the elements of B  (L ) and of ft are

= Bj (?©)), n = ^. Y^,?t (e(?)) e, (?(?))'.
We presented the maximum likelihood estimates of the long run parameters 

g in Table 1.10, those of B  (L ) in Table 1.11 and those of in Table 1.12.

Table 1.10: ML estimates of the long run parameters
_

^3 z'e ^12 7s 7e 712 0  #
1.01 1.01 0.98 0.19 0.21 0.25 0.86

Table 1.11: ML estimate of the autoregressive parameters
Bi b 2

0.52 1.08 -0.57 0.41 -0.17 0.15 -0.95 0.45
0.00 -0.72 0.36 0.26 0.02 -0.58 0.73 -0.38
-0.06 -1.35 0.51 0.64 0.06 -0.19 0.45 -0.40
-0.09 -1.51 0.18 1.10 0.06 0.07 0.18 -0.30

le 1.12: ML estimate of the covariance matrix of the innovat
10000Q Correlation structure

0.025 0.03 0.04 -0.04 1 0.90 0.78 -0.34
0.03 0.06 0.08 -0.07 0.90 1 0.93 -0.42
0.04 0.08 0.11 -0.11 0.78 0.93 1 -0.50
-0.04 -0.07 -0.11 0.44 -0.34 -0.42 -0.50 1
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The estimates of the long run parameters resembled those from the semi- 

parametric analysis: *72 and 7 6 were slightly closer to the parameters pre

scribed from the expectations theory, and a larger correction took place for 

7 12. The estimated cointegrating parameters were very close to 1, indeed even 

closer than the NBLS estimates, and the effect of cointegration was quite rel

evant, the gaps — 73, ..., S* — 7 12 ranging between 0.61 and 0.67. Since 

Robinson and Hualde (2003) showed that when 1/2  a simple two-

step GLS estimate would be as efficient as maximum likelihood, we first tested

H q : {£* -  73 =  0-49} v.s. Hi : {£* -  7 3 ^  0.49},

Ho : {S* -  7e =  0-49} v.s. H x : {<&. -  7e ±  0.49}, (1.101)

Ho : {(5* -  7 12 =  0.49} v.s. H i : {£* -  7 12 ^  0.49}

with three likelihood ratio tests. Each test statistic has a x l  distribution (under 

the null), and the realisations were 0.93, 0.68 and 0.38 respectively: despite the 

fact that the point estimates yielded gaps S* — 7 3, ..., 5* — 7 12 larger than 1/ 2 , 

the differences were then not statistically significant, so with these data the 

simultaneous estimation might be safer.

We next tested the structural hypothesis that all the cointegrating para

meters were 1, as it is assumed in the expectations theory:

H0 : {v3 = 1, Vo =  1, *72 =  1} v-s- Hi : {v3 ±  1 &/or */6 =  1 & /or 172 =  1},

( 1.102)

The corresponding test statistic took the value 7.5, just below the critical value 

7.8, so the hypothesis was not rejected. The two other relevant hypothesis
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concerned the order of integration of the data: the expectations theory required

Ho : {73 =  0, 7 e =  0, 712 =  0}, v.s. Hi : {73 ^  0 & /or 7 6 =  0 & /or 7 12 =  0},

(1.103)

but the hypothesis was rejected (the test statistic took the value 8.3); on 

the other hand, we again failed to provide any convincing statistical evidence 

against the hypothesis of a unit root:

H0 : {<5* -  1} v.s. H\ : {6. + 1} (1.104)

had a realised test statistic of 1.7.

As in the semiparametric analysis, the estimates of the orders of the resid

uals maintained the property that the closer the maturities were, the faster 

was the adjustment, but this feature was not statistically significant: testing

Ho : {73 =  7e =  7 i2} v*s. Hi : {73 ^  7 6 &/or 7 6 ^  T12}, (1.105)

the computed statistic was 1.3, far below the critical value of 6.0: the estimate 

of the memory parameter of the residuals under this restriction was 0.2.

We analysed the short term dynamics via a structuralised impulse response 

function.

For the structural identification of contemporaneous shocks, we assumed 

that the contemporaneous correlation moved from the shortest to the longest 

maturity. We already noticed that the central bank operates by supplying 

liquidity on the interbank market, with the aim of controlling a very short term 

rate (indeed, the overnight has maturity of only one day): with our assumption, 

an innovation to the rate with the shortest maturity is interpreted as driven by 

monetary policy decisions, whereas innovations to rates with longer maturities
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may depend on other factors as well, there including the possibility that long 

term rates do still roughly anticipate the movements of future short term ones 

even if with less precision than the expectations theory hypothesis prescribes.

We plotted in Figure 1.2 the estimated reaction of the three rates with 

respect to an innovation to the short term rate. The estimated effect of a 100 

basis points (b.p.) innovation was temporary: the peak was reached after two 

periods and then the plot reverted to 0, yet after 24 periods the one month 

rate was still estimated to be 69 b.p. above the starting value, so the reversion 

to 0 was indeed very slow.

Figure 1.2: Reaction of the rates to a 100 b.p. increase in the 1 month rate 
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The estimated contemporaneous reaction of the longer rates was very strong 

and indeed nearly one to one: a 100 b.p. increase in the short rate was met by 

a 93, 86 and 72 b.p. increase in the 3, 6 , 12 months rates respectively. They 

also followed the 1 month rate in the subsequent periods, maintaining the 

characteristic that the 3 months rate was the closest one to the 1 month, the 

12 month the furthest away. Overall though these differences among the plots 

were very little: the whole term structure drifted, peaked and then reverted to

1---------1 month

 3 months

 6 months

 12 months
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the mean in quite the same way.

Figure 1.3: Reaction of 1 month rate to a 100 b.p. increase in the longer rates
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In Figure 1.3 we plotted the reaction of the 1 month rates to a 100 b.p. 

innovation in the other three rates: the three months rate anticipated the 

future dynamics better in the short run, but in the medium and long run the 

informative content of the long term rate was clearly superior.

1.4 .3  C onclu sion s

Fractional integration and cointegration allow a more flexible description of the 

characteristics of an economic time series. We considered an example in which 

by restricting the attention to 1(1) and 1(0) models only we would implicitly 

exclude some properties that are required by the economic theory. Fractional 

models made it possible to reconcile the apparently alternative theories. We 

presented a multivariate model for the US interest rates for different maturities, 

to study the implications of fractional integration and cointegration on the 

expectations theory for interest rates and on the transmission mechanism of 

monetary policy.

69



The first, semiparametric, analysis was sufficient to rule out the expecta

tion theory, because the high persistence of the residuals implies a reaction 

much slower than what the theory predicted. But it still provided evidence 

in favour of the existence of a long run relation as required for the transmis

sion of monetary policy, possibly taking the form of the interest rate spread. 

The fully parametric analysis confirmed this conclusion, and indicated that the 

spreads were informative with respect to the future rates. Evidence of frac

tional integration of the data, obtained in the semiparametric analysis, was 

confirmed by the parametric specification: point estimates indicated a slow 

mean-reverting dynamic for the interest rates, although we were not able to 

reject the hypothesis of an 7(1) process.

1.5 E stim ation  w hen  th e  process is contam 
in ated  by unobserved determ in istic  com 
p on en ts or subject to  breaks in th e  sto 
chastic  ones.

1.5.1 M em ory  e s tim a tio n  in th e  p resen ce  o f  d eterm in 
istic  co m p o n en ts  o f  various k inds

We now consider a time series x t, observed at times t = 1, ...,n , which is 

composed of two unobservable parts: a deterministic sequence st and a zero- 

mean stochastic process

= ft +  st. (1.106)

In many economic time series it seems that the deterministic component 

changes over time: it could include a time trend, for example, or a mean 

subject to a break. Modelling these terms may sometimes be difficult: in some 

applications a linear time trend can be confused with a shift in the mean, or
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the location of a certain break can be disputed; more often some features may 

be neglected altogether.

The practical consequences of incorrectly modelling the deterministic com

ponent were greatly exemplified by Perron (1991). He considered the same 

thirteen time series for which Nelson and Plosser (1982) did not reject the 

hypothesis of a unit root using a Dickey-Fuller test, and showed that the con

clusion could be reversed in ten of them if a break in the intercept or in the 

slope was allowed for in 1929 (in terms of (1.106), Perron considered for x t the 

residuals of a regression of the data on a linear trend).

He also showed that the estimate of the autoregressive coefficient in a 

Dickey-Fuller type of regression with I  (0) observables can be inconsistent if 

the deterministic component is not correctly specified. When a shift in the 

intercept is not accounted for, the true value of the autoregressive coefficient 

is overestimated and the limit distribution of the Dickey-Fuller test statistic 

is different from the one specified by the asymptotic theory; when the trend 

is modelled in an incorrect way, the estimate of the autoregressive coefficient 

converges to 1, then giving spurious evidence of a unit root.

This can lead to the application of inappropriate limit theory, and it can 

also have important implications for economic interpretation of the results, for 

example because the spurious strong autocorrelation could be regarded as a 

slow response to shocks by the policymaker or by the agents.

The two deterministic components discussed by Perron (1991) may be asso

ciated with a dimension based on the Euclidean norm, and the different results 

may be classified according to that dimension. It is of course a rather coarse 

classification, because only two deterministic components and two orders of 

integration are considered, but it is worth noticing that the spurious evidence 

of a unit root occurs when the order of magnitude of St is bigger than the order 

of f t , and that only the limit distribution is affected otherwise.
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Perron’s empirical findings were mitigated by several authors, who argued 

that the choice of the point of the break was driven by the data, and the critical 

value should have been modified to take that endogeneity into account.

Allowing for a potential random break in the intercept, Zivot and Andrews 

(1992) reversed Perron’s results (so again they failed to reject the hypothesis 

of a unit root) in five cases even with critical values computed without breaks 

under the null, and argued that even more reversions would occur with a

critical value generated by introducing a break under the null. But this does

not make the example of Perron less important: Zivot and Andrews’ remark 

simply means that Perron was exposed to the same criticism he raised, because 

the way in which he proposed the evidence depended on the model as well, the 

Dickey-Fuller test requiring a specification of the deterministic component.

We referred to the examples of Perron (1991) because of their popularity, 

but we generalise the integer powers and the unit root to a fractional set-up,

C ,€ / ( 5 ) ,  <5 € ( -1 /2 ,1 /2 ) ,  (1.107)

st = [it'1’- 1' 2, 0 <  <j> < 1/ 2 , (1.108)

for some finite, nonzero fi. Undoubtedly the trends of interest in practical 

applications have integer powers, but these are only special cases of (1.108) 

if (p — 1/2, (f> = 3/2,... (these are not in (1.108) but we nonetheless refer to 

them in Chapter 2). By using fractional powers on the other hand we can 

provide a much more refined classification. Moreover, trends with non-integer 

powers are not necessarily unrealistic: if for example d (fractional) differences 

are taken from a time series with a linear trend, the resulting time series has 

a time trend with fractional power 1 — d.

Bhattacharya, Gupta and Waymire (1983) showed that, assuming (1.106)
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- (1.108), the R /S  statistic computed using x t indicates the presence of the 

Hurst effect even when 5 =  0, the determinist trend being then mistaken for 

a stochastic one of order 5 =  0. Teverovsky and Taqqu (1997) considered not 

only the fractional trend (1.108) but also the break in the mean: they found 

that both the deterministic components induce spurious evidence of fractional 

integration in a variance-type estimate as well, although they showed that the 

effect can be removed by differencing the variance (they also acknowledged 

tha t the original estimate is rather imprecise, though, and that the-robust one 

is even worse). Giraitis, Kokoszka and Leipus (2001) generalised the class of 

deterministic components for which the R/S and the V /S statistics do not 

detect spurious evidence of the Hurst effect to

/  n \  ! /2

lim sup I ^ ^ ( s t )2 I < C < oo. (1.109)
t=l, ... ,n \  t=1 )

This spurious evidence depended partially on the adoption of R/S-type sta

tistics: with |st | <  C t ^ 2 Heyde and Dai (1996) claimed that the asymptotic 

distribution of the W hittle estimate in a parametric model for data having 

5 =  0 is not affected by the time trend if 0 < 1/4, which means that the W hit

tle estimation can distinguish better between a stochastic and a deterministic 

component. For a larger 5, they suggested the condition

0 < m in (l/4 ,1/2  — 5). (1.110)

Setting st to be a break in the mean, several Monte Carlo exercises were 

proposed to illustrate the conjecture that it too may induce spurious evidence 

of long memory even though 5 =  0. Indeed, as Lobato and Savin (1988) 

showed, the autocorrelation function of a time series subject to a neglected 

shift in the mean does not approach 0 at all, so it is certainly not summable.
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Breaks in the mean were also discussed by Granger and Hyung (2004) and 

Diebold and Inoue (2001), and an introductory discussion of the corresponding 

periodogram is in Mikosch and Starica (1999).

Having seen that often a deterministic component cannot be neglected 

without consequences, detecting its presence is very important. The difference 

between the two estimates of Teverovsky and Taqqu (1997) can at most be a 

preliminary indication, and actually they did not even provide a limit distrib

ution for it. Hidalgo and Robinson (1996) addressed the detection of the shift 

in the mean at least when the location of the break is known. They proposed 

a version of the Chow test that is robust to strong autocorrelation: the test is 

semiparametric in the sense that it does not require specification of the short 

memory dynamics of the disturbance process, but it is very model-specific be

cause it is only designed for one particular type of deterministic component, 

and it even requires knowledge of the location of the break.

In Chapter 2 we investigate the consequences of applying the local W hittle 

estimation procedure to a stochastic process which is contaminated by de

terministic terms of various kinds. We also show that, by modifying the loss 

function, the estimate can be made robust to the presence of a much wider class 

of deterministic components. We then propose a test to detect the presence of 

deterministic components that may affect the properties of the estimates.

1.5 .2  M em ory estim a tio n  in th e  p resen ce o f  a stru ctu ra l 

break in th e  sto ch a stic  com p on en t

As Lucas (1976) remarked, the assumption .that the data generating process 

remains stable over time is often questionable: the economy is subject to 

structural shifts and to changes in policy regimes that may alter the dynamics 

of the target variable or the structure of a macroeconomic relationship.
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In Chapter 2 we discuss the effects of changes over time of the deterministic 

component st in a univariate process (1.106); in Chapter 3 we consider insta

bility in the zero-mean, stochastic part of (1.106), We then consider the 

model f ! t l  (t < rn)  +  £2 t l {t > r n ), t  E [0 , 1]: because of the break, is

no longer stationary, but both £l t and %2,t may so> an(  ̂indeed in Chapter 3 

we assume that they are stationary and fractionally integrated. We distinguish 

between changes in the long term dynamics, that we associate with the lowest 

frequencies and summarise with the order of integration 8, and changes in the 

short term dynamics, that we associate with the remaining frequencies.

Changes in 8 are often important in policy evaluation because ceteris 

paribus they indicate a tighter (when 6 decreases, provided that 6 < 1 af

ter the change) or weaker (otherwise) control of the variable of interest, the 

return to the targeted mean being faster the lower S.

Potential changes in persistence and in long term dynamics had often been 

considered in the applied literature, but the evidence is largely anecdotal and 

restricted to integer S only.

A formal approach was proposed by Kim (2000) who introduced a ratio- 

based statistic to test the null that <5 =  0 in the whole process against the 

alternative that a shift between 8 = 0 and 8 = 1 took place. Kim, Belaire- 

Franch and Badilli-Amador (2002) and Busetti and Taylor (2004) proposed 

some corrections and further developments, but they did not alter the original 

structure. Harvey, Leybourne and Taylor (2004) remarked that with that de

sign the case 5 = 1  and no breaks can be confused with the presence of a break, 

so those tests are not very informative. Harvey et al. (2004) then proposed a 

modification of the test statistic to make it such that the critical values would 

be the same (although the limit distribution would still be different) regardless 

of whether 8 = 0 or 8 = 1.
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We have already argued that the restriction to integer 8 seems too strong 

because it leaves no alternative between fast reversion to the mean and no 

reversion at all: this is much more the case when a potential change in integer 

8 is discussed, because with that restriction it is implicitly assumed that the 

process jumps between the two extreme situations avoiding all the intermediate 

ones, while important variations in the long term dynamics may be represented 

with relatively small changes in (fractional) 8.

A second drawback, more specifically related to the approach introduced 

by Kim (2000), is the sensitivity of the test to instability in the short term 

dynamics of the process: even simple changes like the shift of the variance 

in an independent sequence can be detected by the test and confused with a 

change in 8. This seems quite unappealing, because it requires an assumption, 

the stability of the short term dynamics, that is not directly related to the 

object of the analysis, and it is particularly unfortunate in this case because in 

practice it is at least doubtful that such an assumption can be imposed when 

the long term stability is being tested. Indeed, in applied work the reverse is 

more often assumed: Kim and Nelson (1999) for example discussed the change 

in volatility of the GDP, while Hansen (2003) found instability in the short 

term dynamics of the interest rates. Neither the Dickey-Fuller nor similar 

tests can provide a reliable indication in this situation because, as Hamori and 

Tokihisa (1997) showed in the particular case of a volatility shift, it may be 

sensitive to short term instability.

In Chapter 3 we propose to address these two issues simultaneously, using 

the local W hittle estimation procedure. This removes the constraint to integer 

8 by allowing for a fractional model for the order of integration, and it also 

avoids the sensitivity to the short term dynamics because it only uses a band 

of frequencies degenerating towards 0 .
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1.5 .3  C o in tegration  in  p resen ce o f  d eterm in istic  tren d s

In Section 1.2 we introduced fractional cointegration as the application of the 

concept of cointegration to fractionally integrated processes as well. Yet, as we 

already noticed, economic time series are rarely zero-mean (or constant-mean) 

stochastic processes, and they are more often characterised by a time-varying 

deterministic component as well.

The large 1(1)/1(0) literature focuses on many features of economic time 

series, in particular recognising empirical evidence that the stochastic unit root 

trend frequently needs to be supplemented by a deterministic trend, such as 

one increasing linearly with time (see e.g. West (1988), Stock and Watson 

(1988), Park and Phillips (1988), Johansen (1991), Hansen (1992), Perron and 

Campbell (1993), Campos, Ericsson and Hendry (1996)). For empirical appli

cations on the analysis of demand for money, see Hoffman and Rasche (1991), 

Stock and Watson (1993), and on the P P P /U IP  relations see Johansen and 

Juselius (1992). A review of applications of cointegrated models with a back

ground in economic theory is in Soderlind and Vredin (1996), and a particular 

treatment of cotrending, deterministic and stochastic cointegration is in Ogaki 

and Park (1997), who modelled the allocation of income in consumption of 

durable and non-durable goods.

On the other hand, the fractional cointegration literature has mostly not al

lowed for deterministic trends. An exception is the discussion in Robinson and 

Marinucci (2000) of the properties of OLS and NBLS, but they only considered 

a particular combination of deterministic and stochastic trends.

In Chapter 4 we develop properties of the OLS and GLS estimates of the 

cointegrating coefficient in a bivariate model that either ignores or takes ac

count of additive deterministic trends.

A model of fractional integration and cointegration with fractional deter
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ministic trends is an important extension of the standard I  (0) / I  (1) and linear 

trend case that is more often discussed: we can give a much more precise clas

sification of the conditions under which the stochastic or the deterministic 

component define the properties of the estimate.

A cointegration model is quite a change of perspective with respect to the 

analysis we run in Chapter 2. In the estimation of the memory parameter we 

treat the deterministic component as a nuisance that may obscure the signal 

originating from the zero-mean stochastic term, so we only deal with it because 

we suspect we are unable to model it properly, in order to filter it and remove it 

from the data. In the cointegration framework, the deterministic component is 

part of the model: it may contribute, for example, to determinate the long term 

dynamics of the explanatory or of the dependent variables, and it may even 

increase the rate of convergence of the estimate of the cointegrating parameter, 

so it should not be removed from the data, even if we have precise knowledge 

of its structure.
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Chapter 2 

Local W hittle estim ation o f the  

m em ory parameter in presence 

of a determ inistic com ponent

2.1 In trod uction

In Chapter 1 we presented several methods for the estimation of the mem

ory parameter of a (constant-mean) fractionally integrated process when the 

process itself is observable.

We also noticed though that often the economic time series cannot be 

modelled as a process with constant mean. Since in several empirical cases 

there is little agreement on the nature of the deterministic component, we 

motivated our interest in the problem with the conjecture, rather widespread 

in the applied literature, that neglecting it or modelling it in an incorrect 

way may compromise the limit distribution of the estimate of the memory 

parameter, or even its consistency.

In this chapter we define the class of deterministic components which can 

be safely neglected or misspecified for the local W hittle estimate, and propose

79



a test to detect the presence of relevant deterministic terms: although these 

two purposes have already been addressed before (but for different estimates), 

we propose to do it simultaneously. Key to our approach is the computation 

of the periodogram of the deterministic component of interest at the relevant 

Fourier frequencies, which gives us the possibility to exploit the differences 

between that periodogram and the spectral density of a stochastic process. 

Frequency domain estimates can then be made robust to even more potential 

deterministic terms: we show, for example, that the estimate may be robust 

even to a break in the mean.

We also generalise the previous studies in two other ways: we explicitly 

discuss the break in the mean by computing its periodogram and showing that 

it can be treated as a particular fractional trend, and we allow for a wider 

range of deterministic trends.

Since we intend to propose an automatic testing procedure that could be 

considered as part of the preliminary analysis of the data, a semiparamet- 

ric estimate has the advantage of not requiring the specification of the short 

term dynamics: this makes the test robust and fast to implement. Although 

some theoretical work has already been done for R/S-type statistics, we pre

fer to consider a different class of estimates: R/S-type procedures are rather 

ad hoc and the estimates are characterised by a nonstandard limit distribu

tion, whereas other estimates, like the log-periodogram regression or the local 

W hittle ones, axe very intuitive and their limit distributions are asymptoti

cally normal and parameter free, a great advantage if we are also interested 

in designing a test that is fast and easy to implement. Moreover, on the basis 

of other published works, we anticipate that these frequency domain based 

estimates are less prone than R/S-type statistics to be affected by neglected 

deterministic components. We choose the local W hittle estimate for its smaller 

variance, but we think that the results derived here are also of interest because
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they are a reliable anticipation of the properties of the log-periodogram regres

sion estimate, and indeed also for the full spectrum W hittle estimate in the 

same situation.

In Section 2.2 we present the asymptotic theory, in Section 2.3 we analyse 

the small sample properties with a Monte Carlo exercise and in Section 2.4 

we propose two empirical studies: the S&P500 and three inflation rates. We 

conclude in Section 2.5, summarizing the results and discussing some potential 

extensions. The proofs of the theorems are in the Appendix.

2.2 Local W h ittle  estim ation  w ith  n eg lected  

d eterm in istic  term s

We consider a process x t observed at times t = 1,..., n such that

+  st, (2.1)

where st is a deterministic sequence and is a stochastic process, that we as

sume to be zero-mean, weakly stationary and invertible, with spectral density 

f t  {A) such that

f ( (A) ~  G [A|—2<s as A —» 0, (2.2)

where G > 0. Notice that stationarity requires S < 1/2  and invertibility 

S > - 1/ 2.

We indicate by Fx(X), F^(A), Fs(A) the discrete Fourier transforms of xt , 

and st respectively, and by Ix (A), /^(A), I s (A) the corresponding periodograms, 

and by Is( (A) the crossperiodogram between st and f t.
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2 .2 .1  T h e  p eriod ogram s o f  th e  s to ch a stic  an d  o f  th e  de

term in istic  co m p o n en ts

Since the local W hittle loss function is a weighted average of periodograms, 

the asymptotic properties of the estimate depend on whether enough elements 

in the summation are dominated by the stochastic rather than by the deter

ministic component.

To appreciate the different contributions, we analyse the order of magnitude 

of the periodograms 1$ and I s at the Fourier frequencies used in the local 

W hittle estimation.

We consider three models for the deterministic component: the shift in the 

mean, the deterministic trend and the single impulse (we also refer to them as 

s(/i), s and As(/z) respectively in the rest of the thesis). These are

defined as:

shift in the mean:

s{/a)= <
st =  Hi for t < [rn] 

st =  /i2 f°r t > [rn]

(2.3)

where r  E (0, 1), |/xx| < oo, |//2| < oo and Hi ^  

deterministic trend:

s (t^-1/2) ~  as t —> oo, (2-4)

where 0 < |//3| < oo, 0 < 0  < oo;
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single impulse:

I st - p,A for t = [rn]
(2.5)

st = 0 for t 7̂  [rn]

where 0 < \pA\ < oo.

Shifts in the mean as in (2.3) are often considered in applied analysis, while 

deterministic trends as in (2.4) are important to provide a general classification 

and to compare our results with the rest of the literature (notice that the 

trends may well have non-integer powers); single impulses as in (2.5) have 

had less theoretical and empirical importance, but we consider them explicitly 

nevertheless because this structure emerges when first differences of a shift in 

the mean are taken, a procedure that is very common when 8 > 1/ 2.

’ The periodogram of a deterministic fractional trend was first discussed by 

Kiinsch (1986), who also advocated trimming to remove the potential effects of 

that term on the estimate; a more general discussion is in Robinson and Mar- 

inucci (2000). A reference to the exact order of magnitude of the periodogram 

of the shift in the mean is in Mikosch and Starica (1999) eq. (3.4) - (3.6), al

though they did not provide a proof and required the condition nX2 —► 0 , which 

at the Fourier frequencies corresponds to j 2/ n  —» 0. Notice that this condi

tion, if necessary, would reduce the frequencies available for the computation 

of the loss function: Robinson (1995b) showed that, when the other regularity 

conditions are met, the local W hittle estimate is consistent when m /n  —> 0, 

where m  is the largest frequency used in the loss function, but j 2/n  —> Q for 

all j  < m  only holds for the stronger condition m 2/n  —* 0 .

We summarise these results and fill in a few gaps for the three models of 

interest (we recall that A  is a positive, finite constant, not necessarily the 

same).
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Theorem  2.1. (i) Shift in the mean. If st G 5 (//), then

E eiA,s« < C |A| 1 for v >  1, 0 < |A| < 7r (2 .6)

and, for j  > 0 ,

1 .— 1 (2.7)

and

n 1I s ( X j )  ~  7T/ 2 sin2 r 7rj as / / n  —> 0; (2 .8)

/?z) Fractional trend. I f  st G s ( ^  */2), (ft G (—1 /2 ,1/ 2) then, for j  > 0,

(2.9)

and

n -2*I3 (A,-) ~  t f T 2* -1 as j / n  -> 0; (2.10)

if  (ft =  1/2  f/ien; /o r j  > 0,

I . (Aj) =  0; (2 .11)

i f  <j> £ (1/ 2, 3/ 2) then, for j  > 0 ,

<c|Ajr2*r2<1_*) (2.12)

and

n '2*/» (Aj) ~  K j  2 as j / n  -» 0. (2.13)

/Hi) Single impulse. I f  st €  As (/i), then

n l .  (A) =  K. (2.14)

The periodograms of these deterministic components can then be indexed
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by 0 , breaks in the mean and single impulses having 0 = 1/2  and 0  =  —1/2  

respectively.

More general situations are implicitly dealt with in Theorem 2.1: polyno

mial trends with different orders, for example, or mixed situations with trends 

and breaks. In general, the order of magnitude is only determined by the 

largest 0 , and trends of lower orders can be ignored in the analysis.

The periodograms of the deterministic components are similar to the spec

tral density of a long memory stochastic process since they too have a pole 

at frequency 0. Notice, however, that because of the damping factor j ~ l (or 

j - 2(i-<t>) -f 0  > i / 2), they do not meet the condition (2 .2) for any 8 so they 

cannot be confused with the spectrum of a fractionally integrated time series.

In order to compare these periodograms with that of we recall that, as 

we already mentioned in Chapter 1, Robinson (1995a) showed that although 

(Aj) is asymptotically a biased estimate of the spectral density, the bias can 

be bounded and it becomes less and less relevant the more distant A j is from 

A =  0, and the average of the upper bound of the bias becomes negligible when 

enough Fourier frequencies are used.

Loosely speaking, then, the comparison of the (possibly stochastic) orders
2  j

of magnitude of the two periodograms is a comparison between ( j/n )  for 

and ( j/n )~2<i> j~ l for st (or ( j/n )~ 2<t> j 2<t>~2 for 0  > 1/ 2).

When (j) < 8 the order of magnitude of the periodogram of the deterministic 

component is clearly smaller. Yet even for some 0  > 8 consistent and root-m, 

zero-mean, asymptotically normal estimation of 8 is still possible, because the 

damping factor j -1 may be enough to make the periodogram I s(Xj) irrelevant: 

for ip such that 2 (0  — 8) /  [2 (0  — 5) +  1] < p  < 1, the spectral density (2 .2) 

still dominates for the frequencies having j  > for some positive, finite 

(if 0  < 1/ 2 , the condition is slightly different otherwise; notice that can be 

arbitrarily close to 0 , and of course it cannot be too large because j  < n/2
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must still hold).

In comparing the orders of magnitude it is also possible to see that trimming 

may improve the quality of the estimate, because most of the power of the 

periodograms of the given deterministic components is concentrated in the 

few lowest frequencies, exactly those that are going to be removed.

To summarise, if we regard the local W hittle estimation of S as the extrac

tion of the signal from a "dirty" time series, as indeed (2 .1) might suggest, 

it is clear that st is a very peculiar type of contamination, different from a 

weakly dependent and indeed even from a fractionally integrated "noise". The 

treatment is then different as well, because in case of a stochastic contami

nation the highest frequencies should be trimmed, while with an unobserved 

time-varying deterministic component the strategy is reversed.

2.2 .2  R o b u st e s tim a tio n  o f  th e  m em ory  p aram eter

The local Whittle estimate 5 is obtained by minimising, with respect to d G 

[Ai, A2] C (—1/2,1/2), the expression

{ 1 171 \ m

£  ln(Â  ( 2 - 1 5 )

j=i ) j=i

This is a slight generalisation of the function originally considered by Robin

son (1995b), who set / =  1: when / > 1, one or more of the lowest frequencies 

are trimmed.

The loss function (2.15) was considered also by Giraitis and Robinson 

(2003), although for a different purpose, because they were interested in deriv

ing an Edgeworth expansion for S and trimming was only required when the 

tapered, rather than the raw, periodograms were used. Giraitis and Robin

son, though, were only interested in the bias generated by the low frequency
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approximation of the spectral density (A) ~  G'A_25(1 +  O(A^)) for some 

13£  G (0,2]. That bias is generated at the highest available frequencies, where 

A^? is larger: indeed, while 1/m  +  m /n  —> 0 was sufficient for Robinson (1995b) 

to show consistency of the local Whittle estimate of 5, the stronger 1/m  +  

m,i+2/3c In2 m /n 2/3£ —> 0 was required to make the bias due to A^ small enough 

to obtain root-m consistency as well.

We discuss consistency of S in Theorem 2.2 and limit distribution in The

orem 2.3 for some cases in which the deterministic component is not a simple 

constant.

To prove consistency, we introduce the following assumptions.

A ssum ption A .I . Let m  — cKn K, where cK G (0, oo).

A ssum ption A .2. Let I = cvnv, where cv G (0, oo).

A ssum ption A .3. The deterministic component st is such that, for j  > 0,

( lA .r 2̂ - 1) / s(Aj) ~  Cl +  c2 sin2 rirj as j / n  —► 0 (2.16)

where 0 < C\ < oo, 0 < C2 < oo, C\ +  c<i >  0, r  G (0,1).

A ssum ption 2 .1 . As A —» 0+,

/ { (A) ~  G \~ u  (2.17)

where G G (0,oo) and 5 G [A1?A 2] C (—1/2 ,1 /2 ).

A ssum ption 2.2. In a neighbourhood (0, i) of the origin, A) is differ

entiable and
i

—  In/{(A) =  0(A-1) as A —► 0+. (2.18)
(LA
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A ssum ption 2.3. The sequence £t is such that

OO OO

= T ,  q2j < 00 (2-19)
j = 0 j=o

where

E(£,\Ft- i )  =  0, E(£2t \Ft- i)  =  1, a . s . ,  t  = 0 ,± 1 , . . .  (2.20)

in which Ft is the a —field generated by es, s < t ,  and there exists a random 

variable e such that E(e) < oo and for all 77 > 0 and some C > 0, P (|e ,| > 

v) < CP{\eI > 77).

Assum ption 2.4. Assumptions A .l  and A .2 hold and

0 <  v  <  k <  1. (2 .21)

A ssum ption 2.5. Assumptions A .3, 2.1 and 2.4 hold and

J x S + l F — - (2.22)
2 1 — v

We use a different notation to distinguish between Assumptions A .l to 

A.3 and Assumptions 2.1 to 2.5 because those in the first group define some 

characteristics of the model (A.3) or of the loss function (A.l and A.2), and 

are to remain unchanged both in the proof of consistency of 5, and in the 

derivation of its limit distribution or of its lower order bias, whereas those in 

the second group are modified according to the problem. Assumption A .l and 

A .2 define the bandwidth m  and the trimming point I as proportional to n K 

and to nv respectively: notice that both cK and cv may be arbitrarily close to 

0 but in practice a relatively large cK may be preferred in order to minimise

the MSE of the estimate (see Henry and Robinson (1996) for a more detailed

discussion on the choice of cK).



Assumptions 2.1, 2.2 and 2.3 were introduced by Robinson (1995b) to 

characterise the stochastic component in his original work and are discussed 

therein. These are semiparametric in the sense that Assumptions 2.1 and 2.2 

are only defined for A —> 0+. Assumption 2.3 is a very general specification for 

the stochastic component: the linear structure is ensured by the Wold repre

sentation theorem so the assumption is only about the second moment of the 

martingale difference sequence of innovations et.

We have modified Assumption 2.4 of Robinson (1995b) slightly: consistency 

would follow for any /, m  with

Z/ra +  m / n —> 0, (2.23)

but with Assumptions A .l and A.2 we restricted m  and Z to be proportional 

to nK and nv respectively, because it allows a simple computation of the orders 

of magnitude of the weighted averages of I s (Aj) and of (Aj). We think that 

this is only a very mild restriction, because it still leaves a wide range of rates 

of divergence for m  and Z, and we also justify it by noticing that in applied 

works the bandwidth is often chosen according to this practice anyway.

We characterise the deterministic component in Assumption A.3 and 2.5. 

It is based on the approximations computed in Theorem 2.1, although it does 

not actually require knowledge of st , but only of the order of magnitude of 

its periodogram. As we saw, this is more general because it can be generated 

also by other deterministic components not considered in Theorem 2.1; it is 

also "semiparametric" in the sense that it does not require knowledge of the 

location of the break, if we included that case in st . On the other hand, 

Assumption 2.5 is apparently rather restrictive in that it requires the presence 

of that type of deterministic component, so for instance even the case st = 0 

is not included. This is due to the structure of the proof, which requires the
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calculation of the loss function over the whole parameter space: indeed, notice 

that Heyde and Day (1996), discussing a similar problem (they considered the 

full spectrum W hittle estimate, rather than focusing on the lowest frequencies), 

proposed the more general \st \ < C t but they did not actually prove the 

consistency of the estimate, and rather assumed it and went to discuss the 

potential lower order bias in the limit distribution. Assumption A.3 could be 

relaxed, for example to \st \ < C t^-1/2 when (f) < 5, but other details should be 

given to deal with the case in which (f) < 5 does not hold but Assumption 2.5 is 

still met, if we want to follow the proof of Robinson (1995b). In any case, for 

practical purposes we conjecture that the order of magnitude in Assumption 

A.3 could be treated as an upper bound instead.

The condition (2.22) indicates which deterministic components are irrel

evant. Higher trends can be ignored the stronger the autocorrelation is, as 

we already conjectured when comparing the periodograms of the deterministic 

and of the stochastic terms. Higher trends can also be neglected the larger 

k and v  are, because high n means including more frequencies in which the 

stochastic rather than the deterministic component dominates the order of 

magnitude of the periodogram of x t (due to the damping factor j -1); higher v 

is similar, because it means that less periodograms in which the deterministic 

component may be relevant are used in the estimation. It also indicates that 

trimming is not necessary when <j) < S, because can only be positive.

Since in practice <ft and <5 are unknown, we suggest using (2.22) to choose 

v  if at least we have some preliminary information on 4> — 5: rewriting that 

condition as
2 U - S ) - kv > ——----- ------

2 ( <f i - 5 )

if, for example, we expect (j> = 1/2 and S >  0, and we set k = 0.79, the 

minimal trimming has v > 0.21.
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Theorem  2.2. Under Assumptions 2.2, 2.3, and 2.5,

5 p 6 as n oo. (2.25)

Notice that we do not mention Assumptions 2.1 and 2.4 explicitly because 

they are already included in Assumption 2.5.

Under a stronger set of conditions, Robinson (1995b) also derived the limit 

distribution of the estimate 5. We repeat these below, updating them in order 

to take the deterministic component into account as well.

Assum ption 2 .1 ’. For some (3̂  G (0,2]

+ as A —> 0+, (2.26)

where G G (0, oo) and 5 G [A1? A2] C (—1/2 ,1 /2 ).

Assum ption 2 .2’. In a neighbourhood (0 ,1) of the origin,

OO
(2.27)

is differentiable and

(2.28)

A ssum ption 2 .3’. Assumption 2.3 holds and also

E (e\\F t- i)  =  c3, E (e \\F t-i)  =  Q, a.s., t =  0 , ± 1,... (2.29)

for some finite constants c3 and C4.
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A ssu m p tio n  2 .4 ’. Assumptions A .l  and A.2 hold and

0 < v < k <  2 P ( /  (1 +  20{) . (2.30)

A ssu m p tio n  2 .5 ’. Assumptions A.3, 2 .1 ; and 2.4 ’ hold and

$ < 5 +  ------ , (2.31)
4 1 — ?;

Assumptions 2.1’ to 2.3’ are those originally proposed for the stochastic 

component. The information on the shape in (2.26), that was not already 

provided in Assumption 2.1, is necessary to define whether the approximation 

of the density with G \~ 26 may generate a lower order bias: since that approx

imation is less precise at high frequencies, the highest ones must be removed, 

as the assumption on n < 2fd j  ( l +  2(3^) also indicates. The weakest upper 

bound is for (3̂  = 2, a class that also includes the case in which £t is an 

ARFIMA process.

Assumption 2.5’ replicates Assumption 2.5 but the condition (2.31) on (j) is 

stronger than the one in (2.22): in fact in this case consistency is not enough, 

and it is also necessary that the bias is of order smaller than 1/y/m . Intu

itively, when (p > 6 consistency is still possible (given the regularity conditions 

of Theorem 2.2) because the stochastic component dominates the periodogram 

of the deterministic term on enough frequencies. But the fact tha t the deter

ministic term prevails in some frequencies may induce a positive lower order 

bias, because on the lowest frequencies I s (Aj) is markedly steeper than fa (Aj) 

in that case. The condition (2.31) then ensures that the contribution from 

the deterministic component dominates in Ix (A j )  on such a little range of fre

quencies that this effect is negligible. As we did for (2.22), we suggest reading
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(2.31) as a condition on the trimming as well, in this case being

In the example above, 0 = 1 / 2 ,  £ > 0  and n = 0.79, the minimal trimming 

has v  > 0.605.

Since these assumptions are sufficient to confirm the limit distribution given 

by Robinson (1995b) for the case of no deterministic component, as we discuss 

in Theorem 2.3 below, we think that this is a very strong result, because it 

means that even a break in the mean can be dealt with.

T h e o re m  2.3. Under Assumptions 2 .2’, 2 .3’, and 2 .5’,

Theorem 2.3 seems to offer a free lunch: trimming may help to reduce the 

distortionary effect of the deterministic component without even inflating the 

variance.

When Assumption 2.4 is met but 2.4’ is not, then the lower order bias 

prevents reaching the limit distribution of Theorem 2.3. We show the nature 

of the lower order bias in the following theorem.

T h e o re m  2.4. Under Assumptions 2 .1’, 2 .2’, 2 .3’, 2.5, and

0 < 2 (0 — 5) (1 — v) < n < min {4 (0 — 5) (1 — v ) , 2 /^ / ( l +  2{3^)} , (2.34)

The limit (2.35) gives the lower order bias under the given assumptions 

and (2.34). Notice, first, that the estimate is indeed consistent, because the

(2.33)

then

(2.35)
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conditions of Theorem 2.2 are met, so this is really only a lower order bias.

We need Assumption 2.1’ and n < 2f$J ( l  +  2(3^) to deal with another 

potential lower order bias, due to the approximation of the spectral density at 

intermediate frequencies: these two assumptions ensure that it is o(l/y/rri).

The rest of condition (2.34) specifies when the lower order bias due to the 

neglected deterministic component can be relevant: we already argued that the 

problem should only emerge when </>>£,  and indeed in (2.34) this appears 

in 0 < 2 ( ( f )  — 5) (1 — v). The condition n  <  4 { ( f )  — 5) (1 — v) ensures that 

Assumption 2.5’ is not met, because m ~ln 2̂ ~ 5̂ l2̂ 5~ ^  would be of order smaller 

than m -1/ 2 if —« +  2 { ( f )  —  5) —  2v { 4 >  —  5) <  —k/2 , so if k  >  4 (< f> — £) (1 — v ), 

as we can see simply replacing m  with cKn KJ I with cvnv and then comparing 

the exponents.

Finally, Theorem 2.4 also confirms two other conjectures we stated before: 

that the bias, when it exists, is positive, and that it is smaller the larger the 

trim (notice there that the order of magnitude depends on l2(s~<t>)j so it is 

smaller the larger v  is, because ( f ) > <5), while it is bigger the larger <p — S is for 

given m, L We will take these results into account in the design of a test to 

detect relevant deterministic components.

2 .2 .3  A  te s t  to  d e te c t  d eterm in istic  co m p o n en ts

Theorems 2.2 and 2.3 gave the combinations of 6 ,  ( f ) that are sufficient for 

consistency and y/m , zero-mean limit normality of the estimate.

This requires knowledge of 6 — ( j ) ,  a piece of information that is not usually 

available. There are, however, cases in which the researcher has preliminary 

information on the highest possible </>, and this, combined with the results of 

the estimation, can be enough: if for example we are only concerned about a 

shift in the mean (0 =  1/2), and we intend to estimate 6 with k, =  0.80 — e

94



(for a very little positive e), I = 1, we then know that consistency requires 

£ > 0.1 and the limit distribution (2.33) also requires 5 > 0.3. If we estimated 

8 = 0.4, we could conclude that the potential shift of the mean is not a relevant 

problem.

Yet most of the cases are less simple to handle: 8 = 0.2 in the example above 

could be evidence of the lower order bias of Theorem 2.4, or simply indicate the 

proper order of integration because in fact the feared deterministic component 

is not present. Of course when there is no preliminary information about 

the deterministic component at all, it is not possible to conclude whether our 

estimate is consistent simply by looking at it.

We then propose a simple test to detect the presence of a relevant deter-
Hi)ministic component. For this purpose, we introduce the notation 8 to refer 

to the local W hittle estimate when trimming is actively used (that is, I —► oo),

w i)
8 = arg min R(d) with l / l  —> 0 when 1/n  —» 0, (2.36)

d € [A j ,A 2] c ( - l / 2 , l / 2 )

and the new estimate

f  m / 2 —l  ^ m /2 —1

<5* =  arg min In < — r- V '  A?£4.1Jx(A2J-+i) / — 2d— j-  ln(A2j+i)6 *=[*!,A*lc(-i/2,1/2) I m /2  23+1 xV 23+1' j  m /2  y 2j+1'

(2.37)
—tfor some even m. The estimate S is still of local W hittle type, so we anticipate

^  ~j-
that the results stated for 5 hold for S too, the only difference being that 

the variance is doubled because only half of the frequencies are used in the 

estimation. Since we used 2j rather than j ,  the optimization is still done on 

the Fourier frequencies spanning the same subset of (0, 27r) used for S, so the

approximation of the spectral density in (2.2) is roughly the same for both the
~t ^(0estimates: any relevant difference between S and 8 should then depend on 

the deterministic component.

95



In order to derive the asymptotic properties of 8 , we modify Assumptions 

2.4 and 2.5 (and then 2.4’ and 2.5’ as well) to take into account the fact there is 

no trimming: these are replaced by Assumption 2.6 and 2.6’, that we introduce 

below.

A ssu m p tio n  2.6. Assumptions A . l , A .3 and 2.1 hold and

0 < k < 1 (2.38)

and

<f> < 5 + ~ . (2.39)
Z

A ssu m p tio n  2 .6 ’. Assumptions A .l, A .3 and 2 .1’ hold and

0 < k < 2 / y  (1 +  2/3{) (2.40)

and

4><S + ^ .  (2.41)

"""tThe asymptotic properties of S are then summarised in the theorem below. 

T h e o rem  2.5. (i) under Assumptions 2.2, 2.3, 2.6,

—tS —>p S as n  —> oo; (2.42)

(ii) under Assumptions 2.2’, 2.3’, 2 .6’,

y/m(f) — <5) N (0, i )  as n  —► oo; (2.43)

(Hi) under Assumptions 2.1’, 2 .2’, 2 .3’, 2.6, and

0 < 2  ((f) — 8) < k < min {4 ((f) — 8), 2&J ( l  +  2/^) } , (2.44)
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then

m n2(s in 1 m  (l? — d'j —>p K  as n  —> oo. (2.45)

The test is based on the following result:

T h eo rem  2.6. (i) under Assumptions 2 .2 ’, 2 .3’, 2 .5’, 2 .6’,

jv as n oo, (2.46)

and (ii) under Assumptions 2 .1’, 2.2’, 2.3’, 2.5, 2.6, and

0 < 2 {(f) -  6) < k < min {4 (cf> -  5) , 2(3 J  ( l +  20c) } , (2.47)

then

oo as n  —> oo. (2.48)

The test we propose is then based on a comparison of the estimate with
^(0 ~ttrimming, 5 , and without trimming, S : under the given assumptions, a large

the test does not require root-m consistent estimation of 6 : from Theorem

2.4, even if the latter too is subject to a lower order bias, the dimension of that
—tbias is smaller than the one of the bias of S , so the test statistic still detects 

the presence of the deterministic component.

Since the bias, if it exists, can only be positive, we suggest taking the 

critical value for a test for a one sided alternative.

For a formal definition, we introduce

value (when compared to a critical value) of the test statistic yfm \ 5 — S j  is 

evidence of the presence of a bias of order bigger than in s \  Notice that

''A 'pi0\ .

K q = Plim  ( min {m lf \ m n 2̂ } ln m  (2.49)
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under Assumptions 2.1’, 2 .2’, 2.3’, 2-4’, 2.6, v  > 0: we suggest then testing

H0 : {K 0 =  0} vs Hi : {K 0 > 0} (2.50)

8 —8 j with a critical

value from a standard normal.

If the null hypothesis is not rejected, we can presume that the estimate 8

is consistent and the limit distribution of Theorem 2.3 holds. When the null
—thypothesis is rejected, though, we can only conclude that 8 is at least subject 

to a lower order bias.

It should be noticed that those deterministic components for which con

sistency is not proved are not included in the assumptions above: our object 

of interest is the root-m consistent estimation of 8 rather than the discussion,

for example, of the cases having (j) > 8 n / (2(1 — v)). We anyway conjecture
—t ^(0that the deterministic trend always has a stronger impact on 8 than on 8

due to the trimming, so these cases too should be detected by the test.

We conclude by explaining why only a fraction of the available frequencies 
—tare used in J . It may indeed seem more obvious to use

^<i)
8 =  arg min R id ) when I = 1, (2.51)

° d G [ A 1,A 2] C ( - l / 2 )l / 2 )

which is the original local Whittle estimate and has smaller asymptotic vari

ance than

T h e o rem  2.7. Under Assumptions 2.1’, 2.2*, 2.3*, 2.4* with v  > 0, st = 0, 

(m /\T l  ̂ ^   ̂ ^  —>d N  ^0, as n  —> oo. (2.52)

-(i) -(/)
Unfortunately then 8 and 8 are asymptotically too similar when the deter-
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ministic term is irrelevant, so their difference is of a smaller order of magnitude: 

a test statistic based on ^  would also detect deterministic

components which do not affect the limit distribution stated in Theorem 2.3.

2.3 M onte Carlo evidence

In order to  investigate how reliable a guide the asymptotic theory is in moderate

sized samples, a small Monte Carlo study was carried out.

We considered three deterministic structures and two stochastic compo

nents; in each situation we compared the estimate with and without trimming.

The case of no deterministic structure, st = 0, was our benchmark. Follow

ing Bhattacharya et al. (1983) and other works in the literature, we allowed 

for a fractional trend and set st =  2£-1/4, corresponding to (p = 1/4. The last 

deterministic structure we considered is the shift in the mean, posing it in the 

middle of the sample, so st =  0 for t < n /2  and st = 1 for t > n/2: the possible 

bias induced by this component is a serious concern in the applied literature 

so we think it was important to observe the performance of the estimate with 

trimming in this case.

For the stochastic component, we set <5 =  0 and 8 =  0.4: since it is the 

difference 8 — (j> that really matters, we considered in this way quite a wide 

range of situations. A large 8 was also important to analyse a case in which 

the condition stated by Heyde and Dai (1996) is not met.

The data were generated as a sequence of independent standard normals 

for 5 =  0, and using the Davies and Harte (1987) simulator for 8 = 0.4.

We set the bandwidth and the trimming parameter as m  =  0.8n° 79, I = 

0.2n0-62, and employed n  =  64, 128, 256, 512, 1024, with 1000 replications.

For each combination we computed the local Whittle estimates with and
Hl)without trimming the lowest frequencies, and the statistic 8 — 8 . Since
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the local W hittle estimate does not have a closed form formulation, we used 

the log-periodogram regression estimate, trimming the lowest frequencies, as 

a starting value in the numerical optimization.

In the rest of the section and in the Tables, we refer to the three determin

istic models as s (—oo), s (1/4) and s (1/2) respectively, while for the stochastic 

model we use d(0) and d(0.4); I and 1 distinguish the case in which trimming 

was applied or not.

Making use of Theorems 2.2, 2.3 and 2.4, all the combinations yield consis

tent and asymptotically normal estimates under that rather aggressive trim

ming; without it, root-m convergence fails for (1, d (0), s ( l /4 ) ) ,  and consis

tency could fail altogether for (1, d (0), s (1/2)).
—(i) ■'"■(OIn Tables 2.3 and 2.4 we report for 5 and 5 the average of the devia

tions of the estimates from S (bias), the sample standard deviation (s.d.) of 

the estimates and the one prescribed by the asymptotic theory (a.s.d.). No- 

tice that two measures are presented there: under the column o we report
 __  i)

l / \ /4 m , while under the column 6 we propose as an alternative reference 

1 /^ 4  ( m - l  + 1) kiiTn where

^  m m
kitm =  r —7  where vo =  ln i ----------- j~rT ln -?* (2'53)m —Z +  1 ' J m — I + 1 'j=i j=i

The choice of this factor depends on its presence in the calculation of the 

limit normality and of the variance in Theorem 2.3: of course, the statement 

in the theorem is only asymptotic, in which case the correction is irrelevant; 

moreover, many other terms are involved in the approximation, so we do not 

attem pt to propose this as a rigorous correction for the small samples, but we 

mention it because it worked well at least in our Monte Carlo exercise.

We summarise the results looking at the root of the sample mean squared 

error (r M S E ): these are in the first two columns of Tables 2.5 and 2.6. In the
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rest of the two tables we present the empirical sizes of some tests of interest: 

in the columns £~o) and Uw we reported 100 times the percentage in whicho o
the standardized t statistic 2y/m{5 — £o) to test H0:{8 = £0} vs Hi-{8 > 

where 50 is 0 or 0.4 according to the situation, exceeded the critical value of 

a 5% significance test; in the last column, ~t, we analyse the reliability
6 —5

of the test to detect the deterministic component by looking at 100 times the 

percentage in which 2y/m ( if  ̂ — <5̂  exceeded the 5% threshold with a one 

sided alternative.

Despite the smallness of the samples, the results were broadly in line with 

the theory, at least if we only consider the main features. We found that 

the bias was always quite small but for the case (1, d (0 ) , s (1/2)), the only 

one not covered by the theory, where it was about 0.25. Not surprisingly, 

(1, d (0), s (1/4)) was the only other one exhibiting a certain systematic devi

ation from the true value (approximately 0.06; it did not decrease much, if at 

all, with the increase of the dimension of the sample).

Given that the periodogram of the deterministic component may still domi

nate in the frequencies closer to 0, a minimal residual bias, which should vanish 

at a rate faster than root-m, can still appear in small samples even when the 

conditions for Theorem 2.3 are met. This was the case in a few combinations: 

since the bias depends on the gap 5 — (f> and on the trimming, it was larger in 

the case (1, d (0.4), s (1/2)), where it was 0.04 for n = 64 and 0.02 for n = 1024. 

On the other hand the reduction of the bias realised trimming was complete: 

even in the most unfavourable situation, (1, d (0), s (1/2)), it quickly dropped 

below 0.02.

The bias generated by the deterministic component did not affect the dis

persion at least if the hypotheses for Theorem 2.2 are met.

Trimming on the other hand had a strong effect on the dispersion, despite 

the fact that it should not, according to the asymptotic theory: the standard
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deviation of the estimates with trimming was in some cases nearly 60% more, 

and the approximation 2y/m  did not seem very close to it even in the largest 

sample. We said before that Theorem 2.3 seemed to offer a free lunch, but we 

saw here that in practice this is not the case. This was not a surprise: com

menting on trimming for the log-periodogram regression estimate, Hurvich, 

Deo and Brodsky (1998) noticed that the removal of the few lowest frequen

cies resulted in a marked increase in the dispersion of the estimates in the 

simulation, and a poorer approximation of the variance indicated by the as

ymptotic theory. Notice however that the correction by the factor (2.53) would 

greatly improve the precision of the approximation.

Despite the potential lower order bias, the dispersion clearly dominated
—(i)

the rMSE: as a consequence, 5 was always superior in the cases in which
*2(0the conditions for Theorem 2.3 were met, and it was roughly equivalent to 5 

when at least consistency was achieved, thus trimming was only superior in a 

rMSE sense when the gap (f> — 8 was very large.

Turning to the approximation stated in Theorem 2.3, first notice that in 

the case with no trend and no trim, the test statistic replicated the theoretical 

size of the t test for H0 : {8 = £0} vs. Hi : {5 > £0} very effectively.

The lower order bias had a certain impact on the distribution as a whole:

the sizes U(i) and Hi) increased with the gap (j) — 8 even when Theorem 2.38 8
still held, if the gap was relatively large. In general, the discrepancy in size 

with respect to the case having the same 5 and the same Z, and no trend, was 

smaller the larger the sample. The sizes i) computed for (1, d(0), s (1/4)) 

and (1, d(0), s (1/2)) were on the other hand quite large, confirming that the 

limit distribution stated in Theorem 2.3 did not follow when the deterministic 

component was too strong.

Trimming shifted the size above 5% as well, although here too the approx

imation improved with the dimension of the sample.
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If trimming is not necessary, it is advisable to set / =  1, especially when 

the sample is small. The test that we proposed to detect a deterministic com

ponent can also help choosing whether to trim the lowest frequencies. We
/ H  Hi)analysed it looking at the 5% size for the test statistic v 4 m(S — S ). This 

was a little too large: about 20% already in the case without deterministic 

component, and it only improved slowly as the sample increased. The situ

ation was even worse at least in one case with a mildly strong deterministic

component: for d(0.4), s (1/2) the combination of the residual bias in 5 and
Hi)of the excessive dispersion of S caused the rejection of the hypothesis of no 

relevant deterministic component in 30% to 40% of the cases.

We would like to conclude by saying that when there is no additional in

formation on <fi and the null hypothesis of the test is rejected, then trimming 

is a safer strategy: even if we ignore if the estimate is consistent, we may at 

least expect that the bias is sensibly reduced. If additional information on 0 

is available, we suggest not to follow the result of the test blindly, but rather 

to decide on a case by case approach.

2.4 T w o em pirical applications

We illustrate these results by means of two empirical examples.

First, we discuss the daily S&P500 Index.

Lobato and Savin (1998) analysed the returns, rt , their absolute values \rt \ 

and their squares rf for each day over the period July 1962 - December 1994. 

Since they suspected that the oil shock in 1973 and the stock market crash in 

1987 caused shifts in the mean of rf in the second part of the sample, thus 

inducing spurious evidence of fractional integration, they split the sample in 

1973. We then analysed the subset 1973 - 1994, to assess the presence of the 

instability that Lobato and Savin expected.
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This period was also analysed by Granger and Hyung (2004). Using log- 

periodogram regression, they compared a fractional model with no break with 

the case in which the number of breaks is unknown and endogenously esti

mated. They took subsamples of the period 1928 - 2002 and concluded that 

both the models describe \rt \ equally well. Yet notice that their estimate when 

no breaks are allowed for was remarkably higher in the period 1973 - 1979: 

this seems to indirectly provide evidence in favour of one or more breaks in 

those years.

Our data were collected from Datastream and have code S&PCOMP(PI): 

this is a price index, and the returns were computed by taking first differences 

of the logarithms. The plots of rt, |r t | and r\ are presented in Figure 2.1 to

2.3 respectively.

Returns

Figure 2.1: S&P500 index returns
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The period following the 1973 oil shock and the one following the 1987 

stock market crash seem to be characterised by higher volatility, as Lobato 

and Savin (1998) warned, so a break in the mean can be anticipated both for 

\rt \ and r\. The raw returns rt on the other hand do not seem to exhibit any 

deterministic component.
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Figure 2.2: S&P500 index absolute returns 
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There are 5740 observations, but one is lost to first differencing, so n = 

5739. Lobato and Savin (1998) considered bandwidths ranging between 30 

and 100: assuming m = cKn° 79, their approach was extremely conservative, 

and would not leave many periodograms for the optimization when the lowest 

frequencies are trimmed in the loss function. We kept m = 100 for comparison, 

but also took m = 0.2u° 79 = 186 and m — 0.25n0 79 =  233, which are still very 

conservative but left a reasonable number of periodograms in the optimization 

even allowing for trimming; we set I = 40 in the case m  =  100, but otherwise 

considered I = 0.2n° 62 =  42 and I = 0.25n0 62 =  53.

The results are summarised in Table 2.1.
-qi)

The estimates 6 for m — 100 were very close to those in Lobato and Savin 

(1998), who found that the returns rt did not exhibit strong autocorrelation, 

while the absolute |r*| and the squared returns rf appeared to do so. Increasing 

the bandwidth resulted in slightly smaller estimates for |r*| and for r f  and had 

no effects for rt : summarising, the estimated value of the memory parameter 

of |n  | was approximately 0.4 while the one of rf was smaller, it being less than

0.15.
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Figure 2.3: S&P500 index squared returns 
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Yet, we found that when trimming the lowest frequencies, the instability 

that Lobato and Savin suspected may have really increased the estimated 

values for the memory parameters of rf and |r*|. In all the cases with trimming, 

the squared returns appeared to have short memory; the evidence of short 

memory is less clear for the absolute returns, but there too we found a strong 

reduction in the estimated values; in all the cases the test to detect relevant 

deterministic components rejected the null hypothesis so trimming should be 

preferred.

For the second example, we discuss the first difference in the logged quar

terly price indices of Boston, New York and Philadelphia from 1950 (first 

quarter) through 2003 (third quarter), so n = 214 (again, one observation is 

lost because we used first differences of the logarithm of the price index). The 

data were collected from Datastream and have codes USCPBOMAF, USCP- 

NYMAF, USCPPHMAF; the sampling frequency was intended to be monthly, 

but for several years the data were only collected every second or third month 

both for Boston and Philadelphia: for each city we produced quarterly data 

by averaging.



Table 2.1: Estimates of the memory parameter S&P500 index
n r t| (n )2

m  = 100, I = 40 ^0)0 0.002 0.440 0.131
7(0
0 0.168 0.270 -0.061

-3.324 4.949 4.511

m  = 186, I = 42 ?> -0.016 0.358 0.108

(m =  0.2n°-79, I = 0.2rc°-62) £ 0 -0.019 0.113 0.014

0.141 7.010 3.003

m  = 186, I = 53 0 -0.016 0.358 0.108

(m =  0.2n0 79, I = 0.25nom) -0.053 -0.017 0.002

1.082 10.543 3.314

m  = 233, I = 53 0 -0.003 0.342 0.106

(m = 0.25n0-79, I = 0.25n°-62) ^ il)
0 -0.026 0.034 0.040

-1.154 9.424 2.339

Interest in inflation is justified by the fact that central banks are committed 

to some forms of inflation stabilisation, thus a mean-reverting dynamics should 

be anticipated and the memory parameter can be treated as an indicator of 

how quickly inflation shocks are absorbed by the economic system, under the 

action of the monetary authority. Sudden phases of high inflation, such as those 

taking place after the oil shocks, may be regarded as temporary shifts in the 

mean due to external, exogenous phenomena, rather than periods of careless 

or inappropriate monetary management. With our analysis, we can identify if 

they affected the estimation of the memory parameter, and eventually remove 

their effect.

The data are plotted in Figure 2.4.

Commentators often identify at least two phases for inflation: an initial 

period of relatively low inflation, then a sudden increase associated to the two 

oil shocks, and then a slow return to the original lower level. The intermediate 

"high” inflation could then be grossly associated with a shift in the mean,
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although in this case even some polynomial trends may help to describe the 

relatively slow transition.

Figure 2.4: Annualised quarterly inflation: BY, Bo, Ph
----------------N e w  Y o r k  B o s t o n  -  -  -  - P h i l a d e lp h i a
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We considered here the two pairs m  = 16, I = 3 and m  = 50, / = 6. The 

bandwidth m = 16 is the MSE - optimal when the process is a ARFIMA(1,<5,0) 

with autoregressive coefficient 0.5 (see Henry and Robinson (1996); we did not 

assume that model, we merely referred to it since it is intermediate in a range 

of possible short term autoregressive structures); m  =  50 is quite a large 

bandwidth, corresponding to m = 0.72n0 79, but it still does not include the 

frequencies involved in a potential seasonal cycle, the peak of seasonality being 

around m = 53. The lowest frequency I was decided considering I = 0.2n° 62 = 

5 as a reference, but allowing for a certain flexibility around it.

The estimated values are presented in Table 2.2.

The estimates were mainly in the range 0.4 - 0.5, albeit on a few points 

they passed that threshold: we think that the estimates were reliable anyway, 

though, because Velasco (1999b) showed that the limit distribution of Theorem

2.3 holds even for stochastic processes having 6 G [0.5, 0.75). Admittedly he did
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Table 2.2: Estimates of the memory parameter for quarterly growth of prices
N Y  Bo Ph

m =  16, / =  3 ? u }

f l)
0.530 0.454 0.397 

0.422 0.321 0.101 

0.783 0.319 2.464

m =  50, / =  6 0
f l)

V4m f i - f 1)

0.511 0.439 0.459 

0.509 0.449 0.488 

0.586 0.924 0.915

not consider trimming and excluded the generic deterministic component (at 

least in the case with no taper), but it is fair to conjecture that the extension of 

the arguments of Velasco can be done on the same lines we gave for Robinson 

(1995b), so we conclude that if indeed S > 0.5 then a potential shift in the 

mean is irrelevant. Yet even if 8 < 0.5 we found that the estimates were so 

large that the signal of a shift in the mean should be covered by the stochastic 

component in the periodogram. The only potential exception was Philadelphia
^i)

for m  = 16, I = 3, which had 5 = 0.10, but notice that when m  — 50, I = 6

then the estimated value was again 0.49, so we concluded that a break in the 

mean, if present, did not affect the estimate of the persistence.

Finally, we looked at the test statistics \/4 m  ^ . Since we already

ruled out shifts in the mean and indeed any deterministic component having 

4> < 1/2, a strict interpretation of the result of this test may only reveal the 

presence of a trend with </> > 1/2: we did not treat this case explicitly, but this 

can be conjectured on the basis of Theorems 2.1 and 2.4. Even in that case we 

found that the estimation was not affected by any deterministic component, 

since we did not reject that hypothesis in 5 cases out of 6.
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2.5 D iscussion

We have studied the local Whittle estimate of the memory parameter in pres

ence of a time-varying deterministic component.

We have found that the local W hittle estimate is less prone than the R /S 

and related statistics to be fooled into confounding long memory and determin

istic components. By studying the periodograms of the deterministic trends 

and of the shift in the mean, we have also found that they concentrate much 

more power in the lowest frequencies, and their effect can then be easily re

moved by trimming those. We have shown that whether the deterministic or 

the stochastic component prevails, depends on the difference (f) — 8, and that 

high (f) can be neglected if the order of integration of the data is high (thus 

reversing the finding of Heyde and Dai (1996)). Finally, we have proposed a 

test to detect relevant deterministic components.

We conclude by discussing some conjectures which we also derived from 

our results and some potential extensions.

1. We only discussed the local W hittle estimate, but we think that the same 

results apply for the log-periodogram regression estimate and, setting 

k = 1, for the Whittle estimate.

2. We discussed a Type I integrated process only, but we expect that all the 

results carry through if a Type II is considered instead. Also, we focused 

on the range of 8 that is more often considered in the literature, but we 

think that a wider range for 8 could be treated, following Velasco (1999b); 

notice anyway that, at least in the univariate analysis, restricting to 8 G 

(—1/2,1/2) is a very common practice, because if the order of integration 

is higher it is still possible to recover a stationary and invertible process 

differencing the original observations enough times.
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3. It would be of interest to characterise the deterministic component in 

Theorem 2.2 and 2.3 in the most general way. We think that a condition 

of practical use is

1 m
- 7 T I 5 ] A tw/ 5(Aj ) =  0 (1) (2.54)

m  .  . _ j=i

for consistency and

l+ i  lnm i t ,  Xf S/‘ (Aj)  =  ° ( 1) (2 -55)
j=l

for root-m, zero-mean limit normality.

4. We considered a relatively small range of (f> (except in Theorem 2.1), 

mainly in order to keep the proofs simple. For <fi > 1/2, by using the 

order of magnitude in Theorem 2.1 and (2.54) and (2.55), the condition 

for consistency would be

while for the limit distribution of Theorem 2.3,

5. We argued that when (2.22) in Assumption 2.5 is not met, then the 

estimate is inconsistent but we did not formally prove it. We did not 

pursue this because our object of interest was the consistent estimation 

of S rather than the test, but we nonetheless think the discussion of the 

case in which consistency fails might be an interesting topic for future 

research.
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6. When the hypothesis of no relevant deterministic component is rejected, 

no conclusion can be made for 8 unless we have some preliminary infor

mation on (j) — 8. Of course, by introducing trimming in the definition 

of 8 it would also be possible to test if a certain trim is sufficient to 

eliminate the effect of the unobserved deterministic component.

7. Our Monte Carlo exercise confirmed the remark of Hurvich et al. (1998) 

tha t trimming increases the variance above the measure indicated by 

the asymptotic theory. This in turn inflates the size of the tests, in 

some cases quite above the level desired by the researcher. It could be 

interesting to see if bootstrapping the critical value improves the small 

sample performance.

8. We did not consider tapering, despite its explicit treatment given by 

Velasco (1999b). Unfortunately, the tapers he considered only remove 

particular trends such as t, t2, ... so they would not be very interesting in 

the more general framework that we intend to discuss. A combination of 

trimming and tapering may nonetheless be helpful: consider for example 

the cosine bell taper

(2.58)

with Y^t=\ ht = (3/8)n: in this case the tapered Fourier transform can 

be written as

F J (*i) =  V O  +  2Ft ( \j)  -  Fs(Xj+1)) (2.59)

and, using the mean value theorem twice, the tapered periodogram of

j 1/-, 27rTtit = -(1  — 2 cos ),
2 k n h
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s ( t* ~ ^ ) , IJ(Aj ) ,  can be approximated, for j  > 0 , as j / n  —> oo, as

(2.60)

when (p < 1/2 and as

i j  ( \ j )  ~  K \ ~ ^ r w * (2.61)

for larger <fi, so much less trimming should be required.

2.6 A p p en d ix  to  C hapter 2

We present the proofs of the theorems in the first subsection; some technical 

lemmas which we used in the arguments are discussed in the second subsection.

2 .6 .1  P ro o fs  o f  th e  th eorem s

P ro o f  of T h e o rem  2.1. Part (i), shifts in the mean.

To prove (2.6) rewrite Yst= 1 stelXt when |A| G (0,7r) as

n [rn] n [ r n ]  n

steM = Ih J2 eiXS+^ E eiAS = (A*i-A*a) E 'P’+lh E ̂  = °(A_1)
(2.62)

where we used YV e'Xr < . ; s( . .Z-^r=s  —  l+ ( t —s)X

The periodogram on |A| G (0,7r) is then bounded as I s (A) <  £ |A|~2, and

(2.7) follows replacing A with 2tt j/ n .  

Next, we approximate, for j  > 0,



as j / n  —> 0, and similarly ( ^ )  l sin(Ajt) _H" f j 2n sin jxd x . Then, as n

oo

(27r)3n 1/ ,(A j )
(^2 -  Mi)‘

a
r 27r /»t27t \  /  /»r 27T /»t27T \

cos jx d x  — i / sin jxdx  I I / cosjxdx +  i / sin jxdx J

ar27r \  2 / \  2
cos jx d x  ) +  I /  sin jxdx  J

= ( [ j ^ s i n j x ] ^ )  +  ( [ - j ^ c o s j x ] ^ )

=  j -2 [sin2 jr27r +  (1 — cos jr27r)2]

=  j -2 (2 — 2cosjr27r) =  j -24sin2 jr7r. (2.64)

Part (jzj, fractional trend.

Consider the case 4> G (—1/2,1/2) first.

The bound (2.9) follows replacing 2irj /n (with j  > 0) in A in I s (A) < 

C/ n  |A|~2<̂—1 in theorem 1 of Robinson and Marinucci (2000).

To prove (2.10) we use

lim V ' t * - 1' 2 cos(Af) ~  T (</ +  1/2) sin (^ +  y 2) 7rA-(^+i/2) ag A _> o+
n —* o o  ^  ^  2

i = l
(2.65)

and similarly

lim ^ _1/2 sin(At) ~  r(</> +  1/2) cos ^  7r/\ - ( <̂>+1/2) as A —> 0+
n—>oo * ^ 2

(2.66)

(see for example Zygmund, 1988, p. 70). Combining the two, and computing 

the periodogram at A j, for j  > 0,

n - 2*Is (A,) -» fi3 ( r  {<j> +  1/2))2 (27r)1- 2̂ i - 2̂ 1 as j / n  -► 0. (2.67)
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Next, (j) =  1/2, for which it is very well known that Y^t=\ e lXjt =  0 f°r 

j  j- 0, n.

Next, 4> G (1/2,3/2). The bound (2.12) follows using the same remark we 

made for (2.9). For the remaining bound, using summation by parts,

£<£-i/2  | ^ -1 / 2 — (£ +  i)^ _1/ 2|  cos(A js)+n^ -1 / 2 ^  c o s ( X j t ) .

t = 1 t = l  s = 1 f = l

(2.68)

Since

/* 27r \  n r 2* 2
( —  ) y^cos(A  j t )  —> / cos j x d x  = \ j ~ l s in jx l^  =  0 as n —> oo, (2.69)
'  n '  t=i *'°

then n ^_1//2 cos(Aj£) =  o (n^-1"1/2), while

( v )  5 Z cos(A/s) = + 0 (1) (2*70)
'  7  S =  1

using integral approximation; also, using a second order expansion,

g f r r  /t+iy-1/2) fgi / t y ~3/2, ( i \2
. . , +  -, vny  \  n / *—' n \ n  j  \ n j \ nt=i t v 7 v 7 J u = i  v 7 \  \

(2.71)

where tmt G [t, t +  1] follows from the application of the mean value theorem 

and it may be different for each t. Then,

7 i - l  1 /  . \  0 - 3 / 2  t
n 0 - l / 2  1  < *  > V

n - 1  1 /  x <7>-.5/Z

E ^ (J  E cos(v) 
+ —1 \  /  0—1t = 1  X  X  S = 1

E ̂ _3/2 O'-1 sin(Â )  + o ( \ ) ) = ° e  {n t+ W j-* -1/2) (2.72)
t = l

making use of (2.65). Finally, for the remainder,



so the order is lower.

For the complex part,

1/2 sin(A^) =  ] T {<0 1/2- ( t  +  1)* 1/2} ^ s in (A ,-s )+ n *  1/2 ^ s in (A j« )
t = 1 t = 1 S = 1  f = l

(2.74)

and sin(Ajt) =  o (n^+1/2) using the same argument as in (2.69).

For the first term

( v )  sin(AJs ) =  ~ i -1 c o s i ~ ~  +  3 ~ l  +  0 (*)» (2*75)
'  '  S = 1

and

j r  -  (t +  1)*-1/2) ( - J - 1 cos(A^)) =  O („*M/2r *-i/2)
*=1

(2.76)

as (2.72), but the other term has a different order: using the expansion (2.71) 

again,

nLL1 / / -A \ ^ -1/2 /+ l 1 \  0- ! /2\  1,0- 1/2

=  n ^ 2
n~1 i /  i \  0-3/2

Z U D  i_lt+0 (rl>=0e (r v+1/2>' ( 2 ' 7 7 )t = l  A /

The result then follows directly from applying (2.77) in the formula of the 

periodogram.

Next, 0 =  3/2: using integral approximation again,

( ^ ~ )  X ^icos(A jt) =  o (l)  (2.78)
^  /  t = 1
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so again the result follows from the application of the formula of the peri- 

odogram.

Part (Hi), single impulses. In that case the results follows from

n

y ]  Ast ((J.;) cos(At) =  cos (A[rn]) (2.80)
t=1

and
n

y  Ast (/i) sin(At) =  //4 sin (A[rn]), (2-81)
t=i

so the periodogram is at all the frequencies.

P r o o f o f  T h eorem  2.2. In this and in the following proofs of this chapter 

we replace the scaling factor m —l+1 in the loss function with m: since m ™l+1 —> 

1 as n —► oo, this replacement does not affect the asymptotic properties but it 

saves space in the presentation. Also notice that, because l /m  —> 0, dropping 

the frequencies Ai,...,A/_i does not affect the proofs of Robinson, so we can 

refer to them even if in the original paper only I = 1 was considered.

We follow the same argument of Robinson (1995b), replacing H  = d + 1/2, 

Hq = 5 + 1/ 2 . Let ©i =  {d : A < d < A2 } where A =  Ai when S < 1/2  +  A4

and 5 > A  > 5 —1/2  otherwise; when A > Ai, define © 2  =  {d : A4 < d < A},

and otherwise take © 2  to be empty. Robinson showed that



where N L =  ( — 0 0 , og)—N l and Nt = (d : \d — 5\ < l), and S  (d) =  R  (d)—R (S), 

choosing 1 so that supeG(0>t) ^  A~2(5+e/ s (Aj) =  o (1) (notice that this exists,

as we show in Lemma 2.B .2 (i)).

Next rewrite

S (d) =  l n ( ^ ^ ^ ) - 2 ( d - 5 ) A f > A j  (2.83)
w  \ G  (d) G G{5))

where
1 771

G(d) = - J 2  Af  9 (Aj) with g ( \ j )  = GXJ2S + I, (Aj) (2.84)
777

3=1

(notice the difference in the definition of g ( X j )  with respect to Robinson, in 

order to take the deterministic component into account too).

Following Robinson, for d G NLt

— ^
=  2 (d — 5) — In (2 (d — 5) +  1) +  o(l), (2.85)

where we used Lemma 2 .B.2 (i) again; since

. s E j - . W A  / i E j n W .  , ,In | ------- !=L----------  >  In  2= ^ ----------- | (2.86)

it also follows that, in general,

\  1  771

] - 2 (d - 5) - E lnA;G

> 2 ( d -< J ) - ln ( 2 ( d -< J )  +  l) +  o(l), (2.87)

and

2 {d -  5) -  In (2 (d -  S) +  1) > 0 for d G N t. (2.88)
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Consistency then follows from showing

sup
d€©  i

G ( d ) - G ( d )
G(d) =  oP ( 1) (2.89)

and
G(5) -  G

G
=  Op ( 1) . (2.90)

The limit (2.89) follows from 

G (d) — G (d)
sup
d€© i

< sup 
d€© 1

G(d)

s E j =iAf  ( h ^ ) - G X ~ 2S)

G (d )
+  2 sup

dG©i G (d )

(2.91)

where we used Ix(^j) — h ( ^ j )  +  +  (Aj) +  / s(Aj). For the first term

in the upper bound (2.91),

sup
de©i

t e ( A ,) - G A J 24)

G (d )
< sup

dG©i A- V  A f GATTti /  j  j   ̂ 3 3
25

(2.92)

which is (1) following the same argument of Robinson. The second term in 

the upper bound (2.91) is op (1) from Lemma 2.B.2 (ii).

To show (2.90),

G(S) —G <
G G

+ +  2
G G

(2.93)

Following Robinson, it is immediate to show that the first term is op (1). The
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second term is o ( l)  too from Lemma 2.B .2 (i), while the third one is op { 1) 

from Lemma 2 .B.2 (a).

To discuss the set ©2 in case A > Ai, we rearrange (3.21) of Robinson as

P  ( in f  S  (d) <  0)  <  P  ^  Y f f i j  -  l ) G ~ ' \ f l x{\j)  <  0 j  (2.94)

with

a a = < o)
[(;)

2(A -5 )

2(A i-<5)
I < j  < P  

p < j  < m
(2.95)

and
 ̂ m

p =  exp(— In j)  so that p  ~  m /e  as m  —► 00 .
j=i

(2.96)

Following Robinson, ^  ^  aj ~  2(K~^)+i 85 m  00 ( ^ e that the sum-
3= 1

mation starts in / rather than in 1 does not m atter as long as l /p  —> 0 , and

this is indeed the case because p / m  ~  1/e  a s m - ► 00), so

1 m

-  y v -  - 1) >
j=i e (2 (A -  5) +  1)

1 > 1 (2.97)

choosing A  < S — 1/2  +  1/  (4e), there is 1 > 0 such that

^  m
—  -  !)  >  1 +  <■>

3=1
(2.98)

thus strengthening slightly the original result. 

We then rewrite the bound in (2.94) as

( 1 171
-  5 > ,  -  V G - ' x f w  <  0 ,

i=i
1 771 \

-  £ ( « *  -  lJ G -'A f  (/.(A,-) +  2 Re (J* (A,-))) < - t  (2.99)
jM /
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/  m
+ P  - £ > ;  -  l )G - ‘A f /.(A ,) <  0,

Vm i=i
1 m

-  5 > , -  -  l ) G - ‘A f  (/.(Aj) +  2 Re ( /*  (A,))) >  - i
J=‘

Clearly, (2.99) can be bounded by

P £ ( “» “  l ^ A f  (/.(A^ +  2 Re ( /*  (A,-))) <  - t j  ,

and, taking e < t, this is

( m
-  -  lJGT1 A f (/.(Ai) +  2 Re ( /*  (A,))) < - t ,

”* j=!
-  m

-  £  G - 'A f  (/.(Ai) +  2 Re ( /*  (A,)))
m  r  ^  ^3=1

(1 ™
-  V(«i -  1)G -'A f (/.(Ai) +  2 Re ( /*  (Ai))) <

m z — '
3=1

m

-  E G_lAf (W +2 Re (A*»)J=*

< P  ^  ^ ( o j G - U f  (/.(Ai) +  2 Re ( /*  (A,-))) <  e -  t j

-j 771

-  E G_lAf (J*(Ai) + 2 Re (7*e (A/»)
j=l

(2.100)

(2 .101)

(2.102)

(2.103)

(2.104)

(2.105)
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where (2.105) goes to zero because

1 m

-  E G_1 A? +2 Re ('< (Ai)))lit

<

3=l
m

3 = l

+
j=l

. (2.106)

and eaeh term in (2.106) is smaller than e/2  for n  large enough applying Lemma 

2.B.2 (%) and (%%). We discuss (2.104) rearranging the argument as

1 771 1 771

— J 2  a jG - 'X?  2 Re IS£ { \ j ) < £ - i  a jG ^ X f l s iX j )  (2.107)
3=1 j=i

and then as

S E % G_lAf 2 R « ^  (Ai) £ - ‘ 4 E a ^ G - 1 A f/.(A j)
3=1 _ 3=1<

1 + AE  %G-'Af 7S(A,) 1 + i  E  “iG-'A”  ̂ (Ai)
3=13=1

(2.108)

Since ^  a^G 1A|(5/ s(Aj ) > 0, (2.104) can then be bounded as
j=i

/ 771

£ E ^ G" 1Af 2 R eM A;)
\

3=1 < £  ~  i

which goes to zero using Lemma 2.B.2 (Hi). 

We characterise (2.100) noticing that

(2.109)

1 771

-  -  lJG - 'A f  /.(A ,) <  0
3=1

(2.110)

122



is equivalent to

1 771 1 771

-  £ ( < *  -  < - -  E ( « i  -  1)G- 'A f  ( / ,(A,) +  2 Re (J* (A,)))fit libj=l j=l
(2 .111)

so (2.100) can be bounded by

Rearranging the original argument of Robinson:

(2.112)

P  X >  -  !) (G-'Af/f(A,) -  1 + 1) < tj

/  m  m  \

=  P  I >  -  !) ( G - ^ f k ^ j )  -  1) +  -  £ > 1  -  1) <  j  

^ P (  i  -  ! )  (G-^fk^i) -  1) >  1J  -  o. (2.113)

P ro o f  o f T h eo rem  2.3. As for Theorem 2.2, the proof follows the one in 

Robinson (1995b). Using the mean value theorem,

0 =
dR{d)

d d
dR(d)

d d
+

d2R{d)
d d 2

(7-j)

where Sm is such that |£m — <5| <  5 — S . The proof that

(2.114)

4 follows

the same argument of Robinson, once again replacing g (Aj) = GX~26 +  I s (Aj) 

as in (2.84). The proof proceeds as in the original paper: equation (4.6) of 

Robinson requires

sup
0 irwt

G ( d ) - G ( d )
G(d)

= op (in rn j (2.115)
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and
G(8) — G 

G
=  op (in m  6) (2.116)

Using the same arguments as in Theorem 2.2, (2.115) is bounded by

sup
© i dnl

Z7=i ^ % ( W
2d \ —25G E 7= iAfA-

-  1 +  2 sup 
©iruvt

E r =1A fR e ( /s{(A,))
(2.117)

Robinson already showed that the first element of (2.117) is op (lnm -6), while 

the second one is op (lnm -6) according to Lemma 2.B.3 (i). To show (2.116) 

use the upper bound of the expression (2.93) again: the first element of the 

bound is op (lnm -6) following Robinson; the second bound is o (lnm -6) using 

Lemma 2.B.3 (a) while the last one is op (In m 6) noticing that noticing that 

X]j=/ 1 a (A?) =  an<̂  fhen applying Lemma 2.B.3 (i): this holds for the

supremum for e G (—t, t), so it also holds for e = 0 in particular.

Finally, using ^  J2jLi ^ j 26̂  (Aj) —>p G, we consider a normalization of
dR(d) 
d d

m - 1 /2 dR(d)
d d 3G + op ( 1)

G f  3g  + op ( i)

A?s Re (Is( (A,-))
+4

3=1
G 4- op (1)

| 2 m - i / i L , . A f J . ( A j )  
+  h  3G + op ( 1)

(2.118)

Robinson showed that 2ro~~1/2 ZJLi â+o î) ^ (0 ,4 ) ;  Lemma 2.B.3

(Hi) and Lemma 2.B.3 (iv) are sufficient to prove that the remainder is negli

gible.

P ro o f  of T h eo rem  2.4. The result follows from computing the first order
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expansion for 8 — 8 based on the mean value theorem as in Theorem 2.3. Recall 

>p 4; to find out the term with largest order of magnitude, wethat d cP

discuss —

as n —► oo,

: assume for simplicity that C\ > 0, =  0 in Assumption A.3:

- 2m - 1
m  \  25 

'j
j = l  ^  (!)

9 /0 n2(5-0) /  m
 ^ I n j  jW -* )"1 -  (lnm  -  1) j 2̂ - 1

 a — m ~ w ^ S)n ^ s ) l n m ' {2-119)

which is positive recalling that 5 — <j> < 0. The term replaced by

S J l i  J 2̂ 6 when I = 1. The bias for the other combinations of ci, C2 can 

be treated in the same way.

P ro o f  o f T h eo rem  2.5. All the results follows as in Theorems 2.2 to 

2.4. Just notice, for the limit distribution, that m /2  frequencies are used, so 

yJm/2  ^  —>d N  (0,1/4) and then yfm ^  — s'j —*d N  (0,1/2).

P ro o f  o f T h eo rem  2.6. The limit normality follows from the fact both 

8 and 8 are asymptotically normally distributed. We also already have

^Jl) —4
lim m  Var(8 ) =  1/4, lim m Var(8 ) =  1/2. (2.120)
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For the asymptotic covariance, notice that

m ( ^ 0 -  a) -  5)

4 +  Op (1) y/rn J'Cr (1 +  Op (1))j—*
m / 2 - 1

^ + 1y / m / 2  “  G (1 +  Op (1)) 4 +  Op (1)

f l  1 a ; 2* / ^ )  \ j  V 2 a2- ^ / , ( a 2j+1) i \
y2 y/2y/m/2  “  J G ( l+ O p ( l) )y  ^  ^ /ra /2  “  2j+1 G (1 +  op (1)) 2^

(2.121)

Rewriting (for I even)

1 ™ K 2Sk { ^ i )y V i - ^ 7  (2.122)
Z_^ ^  n  4- n  V '

1 ^  A ^ ( A 23)
2 ^  m i (2-123)g  (1  +  °p  (1))

m / 2 - 1  \  —2 5
A2j+iA (A2J+1) .  .

2 ^  " 2.7+1 ^ ,, (2.124)
G ^  + ° r W )

(2.121) is

J _  A ^ J ftA ^ )  U  1 ^  ^ij5h (A2j) l \ , „ iOE,
2 y^m/2 j“ 2 2jG (1 +  op (1))y  ( t/mj2 2jG (1 +  op (1)) 2 )

V -  (A2j+ i ) )  /  1 ^  X t f h Q * )  1
Z .  " « + i« 7 T T 7 r 7 n r  2 ^

m / 2 - 1  > -2 5  r / \  \ \  /  -i m / 2 \ - 2 5

E ^ j ' + l  £ VA2 j+ lJ  1 I 1 A 2j

2 2j +1 G  ( !  +  ° p  W )  /  I  \ / r a / 2  i —i / 2  2 j G { l  +  O p  ( 1 ) )  2j = Z / 2  v ^ v / / y  y  V  " » / “  j = i / 2

(2.126)

and since

1 V A 2/ + 1/ ^ ( A 2 i+ i )  N ( Q D  I 0 ?')

V W ?  ^  J+1 G ( l  +  Op(l)) ^  *  (° ’ 1} (2'127)
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the product of the two summations in (2.126) converges in distribution to ^Xi> 

which is a random variable with variance 1/4.

On the other hand the two summations in (2.125) converge to two indepen

dent normals. We can see this noticing that the expression in (2.122) converges 

to a N  (0,2), and since both (2.123) and (2.124) have asymptotically variance 

1, then they are asymptotically uncorrelated. Therefore,

''"t "+0
lim m  Var(S -  <S ) =  1/4 + 1/ 2 - 2  (1/4) =  1/4. (2.128)

P ro o f  of T h eo rem  2.7. Consider the second order expansion

0 =
dR(d)

d d
dR(d)

d d
1 d3R{d)

where 5m is such that |5m — <

(4.3) of Robinson,

5 - 5 . Taking another derivative in equation

d3R(d) 
d d3

%  (d) F* (d) -  3F2 (d) F, (d) F02 (d) +  2F0 (d) F? (d)

F$(d)
(2.130)

where
1 m

h ( d )  = - Y , ( ^ j ) k
3=1

(2.131)

and noticing that

1 m
Fk (d)| < (In m f  -  ^  >$dh  (d) (2.132)

m  j=i
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then

d3R{d)
d d 3

<

<

F3 (d) Fq (d) +  3F2 (d) A  (d) Fq (d) +  2Fo (d) F 3 (d)

fo4 (<*)
In3 mF(j (d) +  3 In3 m  F04 (d) +  2 In3 m F04 (d)

< 24 In3 m  = Op (in3 m ) . (2.133)

Notice then that this holds for any d: actually, using the fact tha t 6m —
d3R(d) 'a sharper bound could be obtained for - j ^ r  » but the one in (2.133) is

Sm
sufficient for our purpose so we do not discuss the case in more details. The 

remainder in (2.129) is bounded as

d3R(d) 
d d 3

(5 —<5) 2 =  Op (
In3 m

m
(2.134)

Introducing then the notation

R®(d) for R(d)  when l / l  —> 0, R ^ \ d )  for R(d)  when I =  1, (2.135)

then

1 dfl<4>(d) 1 ( d?R,W(d)\ 1 d3F « (d )
d d * 2 i, d d 2 j d d 3s

( + - sy

f c P ^ ( d ) \  1 dF®(d) 
+  V dtP  ) d d

/ d 2F<4>(d)\ 1 dRW(d)  
d d 2 /  d d

1 /  d2F ® (d )\ 1 d3F (i)(d)
+  2 I d d 2 J  d d 3

/  d2F (̂ (d) \ _1 dfl(')(d)
, +  V d d2 J  d d

t(0

4" O r
In3 m

771

(2.136)

-<i) -(0
where the expansion for 5 — 5 and the one for 5 5 are computed in two
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different points ^  and 6$  such that 5 ^  — 5 < S*  ̂ — d| and — d| < 

|<̂   ̂ — d |, but in both the cases (2.134) holds; using the fact that  ̂| —>3

4, ( d )  I ~^p ^he remainder is of the order stated in (2.136). Adding

and subtracting ^ d ^ ^  , (2.136) is

+  Ot

/ d 2# ^ )
v d d 2

d2i?(b(d) 
d d 2 

In3 m  
m

- l

- l

d itf^ d )
d d

d & \ d )

+

d d

/ d2i? ^ (d ) \  diff>(d) 
\  d d2 /  d d

+  V d d 2 J  d d

(2.137)

(2.138)

(2.139)

The term in (2.137) is

1 1 ^  A - 2S/ ? ( A ,)

2 +  op (1) m J G (1 +  Op (1))
(2.140)

so,

m /  d2R^l\d )  
y/l \  d d2

1 / djR^(d) _  dflW (d)\  
\  d d d d )

>d N [  0 , - (2.141)

To discuss (2.138), we introduce the following notation:

771

5 * (o  =  - £ ( M ^ f m - )
3=1

(2.142)

(this is the same as (2.131), but it is formulated for one given d only, and it is 

a function of I). The factor

d2iJ<')(d)\ 1 / # R < V ( d ) \  1
d <P )  \ d c P ~ )

(2.143)
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is then

%«> . ______ .  I. (2.144)

Robinson already showed, in equations (4.3) to (4.10), that ^2(1) ^ 0 )~^d1) _  

1 +  op (1), and in the same way, it holds that 0 )^ (0 -^  (0 _  i _|_ 0p (i). Since 

H 2 (1) =  G2 (1 +  op (1)), H i  (0 = G2 { 1 +  (1)), then H2 (1) H0 (1 ) - H 2 (1) =

G2 (1 +  op (1)) and H2 (I) H0 (I) — H* (I) = G2 (1 +  op (1)). Summing the two 

terms in (2.144), the denominator converges to G2, so the order of magnitude 

depends on the numerator. This is

( f f 3 (l) H0 (I) -  H i (/)) H i (1) -  H i (I) ( f i 2 (1) H0 (1) -  H i (1)) . (2.145)

Introducing hk such that

hk =  Hk (1) -  Hk (0 , (2.146)

notice that

hk =  — (In J')* xf Sl( =  ° p ( — ln* l)  and Hk {I) =  Op (In* m)  . (2.147)
171 j = l  '

Replacing Hk (1) with hk + Hk (I) in (2.145) and simplifying terms, (2.143) can

be bounded by O p  ( ^  In2 m ) , so, since dRd ^  = O  (ra-1/2) , the term (2.138)
s

is O p  ( ^  In2m).

Taking m  = cKn K and I = cvnv with v < n then both (2.138) and (2.139) 

have a smaller order of magnitude than (2.137).
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2 .6 .2  T echnical lem m as

L em m a 2 .B .I.

(i) under Assumptions 2.1, 2.2 and 2.3, for d G [A, A2], where A is defined 

as in Theorem 2.2, for I > 0,

J E  X? GXi 2S ^  ° 4 & (d S))  “ i / r - 0 ;  (2.148)
j=l

(ii) under Assumption A .3 and I > 0,

/.(* ,)  =
3=1

' Oe (J i fd<<t>

< Oe ( i f )  i j d = 4 >  

k ^  ( i  G ) * ^ )  i f  d  > *

(2.149)

as l / r  —> 0 ;

(Hi) under Assumptions A .3, 2.1, 2.2 and 2.3, for d G [A, A2], where A is 

defined as in Theorem 2.2, j  > 0,

|Ae (Aj)| = O p ( ( j f )  3  1/2 J a s  j / n  —> 0, (2.150)

and, for I > 0 ,

3=1

= Op {r 1>/2 In r) as l / r  —> 0. (2.151)

P ro o f. The orders of magnitude in (2.148) and in (2.149) can be com

puted directly; a little remark is only needed in (2.149) when the deterministic 

components includes a relevant the shift in the mean. Since sin2 r n j  <  1, it is 

clear that the quantity in (2.149) is an upper bound. To see tha t the bound 

is exact, notice that sin2 rirj > 0 unless r j  is an integer, but can only be an
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integer at most every second j  (when r  — 1/ 2), leaving still m /2  non-zero 

elements in summation.

To show (2.150), just notice that

11 *  (Ai)| =  O v  ( ( E \ I S( (A j)|2) 1/2)  =  O p  ( (F s ( X j )  E  ( F (  ( - X j )  F (  (A,)) F s ( - A 3-))1/2)

(2.152)

and the conclusion follows using Assumption A.3 and Theorem 2 of Robinson 

(1995a). Although the bound in (2.150) is sometimes enough for our proofs, 

the sharper bound in (2.151) can be derived.

Since

3=1

( -

=  Op E

\ -
3=1

1/ 2 '

(2.153)

we start considering

E
3=1

(2.154)

=  E  [ ^ x f ^ j F d X d F i i - ^ F d ^ F s i - X i )
3=1

r  k —1

+2 E  E E  ̂ 3 V^ i +<W ' F s i X d F ;  ( - X J F t  (Xk)Fs( - X k)
\ k = i  j = i

The expectation in (2.155) is

(2.155)

(2.156)

E (F((-Xj)F(frj)) Fsi-Xj)
.3=1

r /  n \  2̂ S+̂  /  n \  ~25~2(t>

= olS t )  jw  r li=°(r)’ (2.157)

while, using Assumption A.3 to  derive the bound F s ( X j )  =  O  ( ^ X j ^ j  and 

Theorem 2 of Robinson (1995a) for E  [XjF^(—Xj)F^(Xk)X5k), the expectation
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in (2.156) has order of magnitude

, _L _ /  a \  S+<̂  /  k \ 5+(̂  f  ' i \ ~ ( 5+<t>) / k \ ~ ( 6+^  In  b

° I E E ( ; )  >’'■(;) tV" (;j  *"'•
k^l j=l ^ U'  

= O (r In2 r) .

n 3

(2.158)

The orders of magnitude in (2.150) and (2.151) also holds for shifts in the 

mean, since sin2 (rn j)  < 1.

L em m a 2.B .2. Under Assumptions 2.2, 2.3, and 2.5, as n —> oo,

(i) there is l > 0 such that

SUPe£(-L,L)
1 m 

3=1

=  0 (1); (2.159)

Let A =  Ai i f  5— Ai < 1/ 2 , and A such that S—1/2  < A < 5—1/ 2+ 1/  (4e) 

i f S — Ai > 1/ 2 . Then 

(a)

sup 
d e [ A ,  a 2 ]

E Af (GA7“+ (Ai)) E Af (A>)
3=1 3 = 1

=  op ( l) ;  (2.160)

if 5 -  A 1 > 1/ 2, a/so define

a« —

a, =

2 (A —5)

2(A] —S)

sP.

where p =

when I < j  < p, 

when p < j  < m, 

exP(— X ] ln /)-m  r ^

(2.161)

(2.162)

(2.163)
3 = l

Then,
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(in)

=  ° p  (!) (2.164)

P roof. Since j / n  <  1,

SU P e e ( - L , i )

From (2.149),

m 1 m
- £ a? “ *>/.CA,-) =  l y >

j=i j=i

2 (5-0
J. (A,-) (2.165)

-I m

j=i
(2.166)

The result then follows from ra /n  —> 0 when <5 > (f) +  i\ the condition

/c \ I n  (f> < (5 — t) +  —-
2 1 - v

(2.167)

is sufficient when 8 — i < 4>, and it can be derived from (2 .22) choosing l small 

enough for given k, v .

For 2 .B.2 (ii) we first find the order of magnitude of the numerator:

=  O

1 m
- £ Af ^ )

-I
1 m

-  £  A f A7 (w ) r 1/2A f  ̂ '^ ^ ( A , )
3=1

(2.168)

771 — 1

Op ( Y ,  Ij 2d- {5+(t>)- 1/2 -  (j +  1)
3=1

2d-(6+</>)-l/2\
J-l

r —l

(2.169)
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+0„
r=l

(2.170)

applying summation by parts.

Using an argument based on the mean value theorem, the order of magni

tude in (2.169) is at most

771 — 1

op ( n ( « - v  Y,  j 2d- ( ^ ) - 3/ 2
3=1 r=l

(2.171)

Op (n (*+*)-Mm -if 2d-(*+*) ln q if 2d -  (5 +  0 ) < 0 

=  < Op (m _1 In2 m) if 2d — (5 +  (j>) — 0 (2.172)

Op ( n < ^ - Mm -1mM-<tf+*> lnm ) if 2d -  (d +  0 ) > 0 

while (2.170) is

Op In m) . (2.173)

The two orders of magnitude are then the same when 2d — (6 +  <j>) > 0, but 

(2.169) prevails in the other two cases: when 2d — {8 +  0) < 0  the ratio of the 

orders of magnitude of the two expressions is (m/l)2d~̂ 6+̂  ( ln m /In /)  which 

is o (1) in that situation, while when 2d — (d +  </>) =  0 the same ratio is 1/  ln m. 

We then consider (2.169) only in the rest of the proof.

Next, we discuss the ratio

i V "  XfX ~2SGm  /  - j j —i 3 3

(2.174)
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which has order of magnitude

' n2( ^ ) m2(«-d)-lZ2(d-*) if d<(j)

< n 2̂ “^m 2̂ _1lnm  if d =  <f) (2.175)

n2(<t>-6)m 2{8-4>)-1 if d >  (j).
\  1

The assumption on v  and n is sufficient to show that

n 2&-5)m W-l>)-i =  0 ( l ) . (2.176)

This is immediate when S > 0 , while if S <<j>

< (2.177)

which is o ( l)  using (2.22).

The ratio (2.174) is then o (1) when d >  0. If 0 > of, it is still o (1) if

n2(<̂,_(5)m2(5_d)_1f2(d_^) =  o (1), (2.178)

which corresponds to d > A («, v), where

A («,«) =  <5+ —  ( * _ * ) _ _ £ _  (2.179)
AC — i; 2 ( k  — V )

Otherwise, if d = A (ac, v ) the ratio in (2.174) converges to a constant, and

if d < A («, u), it diverges to oo. Notice that for any eligible combination

we have that

S > A ( ac, t;) and 0 > A («, v ) . (2.180)
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We then introduce the bound

sup
rfelA’A2>

(2.181)

<  max 1 ^—>771 0 , J
d€ [A ,A 2], de[A(K >w),A 2] ^  2 ^  _  Af g  ( X j )

j—̂

sup
d e [A ,A 2], d e [A ,A (« ,v )| i  V  A“ s  (A,-)

and (2.183) is set to 0 when A ( k ,  v ) < A. Letting

(2.182)

(2.183)

A„ =  max {A, A ( k, ti)} (2.184)

(2.182) can be bounded as

isEr-,\2%(A7)
sup < sup

<*e (A 0 ,A 2 ] i€ |A „ ,A 2] £ £  A“ GA-«

< sup 
dG[Aa,A 2] 2(d—£)+!

771

<

e ; ^ ) 2̂

- P , e[A0,A2, C n2« « > M ±  ( i ) 2(<i- S) | E ; =!
. r 2 ( d - 6 ) + l  S j \ 2(d~s)mfiie|A,A2] - h s 2-  2 ^ j=; (£ )

(2.185)

(2.186)

(2.187)

Robinson showed that inf(j€|a  A2]  ̂ (^ )  >  1/2 for m  large

enough, so we only have to discuss the numerator of (2.187). Using (2.169)-
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(2.172), this is

Op (n+-*m 2(*-Aa) - i /2Aa-(s+0) In I) if 2Aa -  (S +  0) < 0 

=  < Op ( n ^ r a 2^ - ^ - 1 In2 m)  if 2Aa -  (8 +  <p) = 0 

Op lnm ) if 2Aa — (8 +  0) > 0.

(2.188)

When 2Aa — (£ +  0) < 0, we rewrite the bound as

(n*-sm s- Aa- 1/2lAa- <p) (md- Aa~1/2\nl) (lAa~5) (2.189)

and notice that, while the first factor is O (1) because Aa >  A (ft, v ), and the 

third one is O (1) because 8 > Aa, the second factor is o ( l)  and so the whole 

sequence converges to zero. For the remaining terms, 2Aa — (8 +  (j)) = 0 is 

only possible if Aa >  ( f ) (when Aa =  A), because 8 > Aa, so 8 > 0. Rewriting 

then the bound as

(n*_tfm*“*) (m -1 In2 m)  (2.190)

the first factor is 0 (1 )  while the second one is o (1); with a similar argument 

2Aa — (5 +  0) > 0 implies Aa > (j) and then 5 > </>, so both the factors in the 

bound

(n^~5m 5~^) (rri~l \n.m) (2.191)

are o (1).

When A («, v) >  A, (2.183) has to be taken into account explicitly: we 

bound it as

sup
* [^ M 1 3—̂

(2.192)
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<

d € [ A A M ]  (n //)2(d" 0) n 2(0- d)i- j 2 { d - 4 > ) - \

suP«te|A^<*.«)l | £ ”  X f l ^ )I J—*

infdeiA.AK^)] l2{(/>~d) Y ] ^  

Since <j> > A ( k , v ) > A, then

(2.193)

(2.194)

m  m  1
i n f  ^ 2 (^ -4 ) - 2 ( d - 0 ) - l  =  j2(4>—A )  y ^  - 2 ( A - * ) - l  1 >  0

dG[A,A(K,t;)] •A"' A—/ 2 (0 — A)j=l j=l
(2.195)

and we only have to discuss the numerator of (2.194). 

Using (2.169)-(2.172), this is

Op {n6- ^ - 6 ln I) if 2 A (re, v) -  (5 +  4>) <  0 (2.196)

(and notice tha t this is the only possible outcome, given (2.180)).

Reversing the argument used to show (2.178),

for d e  [A, A («, t-)], = 0 ( 1 ) .  (2.197)

We then rewrite

n5- ^ - 5 ln I =  (n5- (t>m d- 5+l/2l<t>- d) (m^ " 1/ 2 In /) (/<*"*) (2.198)

for d G [A, A («, u)]: while the first and third factors are 0 (1 ) (recall (2.180) 

for the last term), the second one is o (1).

This proves Lemma 2.B.2 (ii).

Finally, we prove Lemma 2.B.2 (Hi) considering the sets I < j  < p  and p < 

j  < m  separately (notice that, for m  large enough, I < p because p — Oe (m)).

139



For I < j  <p ,  using (2.151),

^ E (j/P)2<A"'5> U/n)2S
3=1

^ E U/pf(A~S) {j/nf6 ( j /n)~s ( j / n y ^ j - V 2 ( j /n ) s ( j / n f  j 1121si{\j)
3=1

Op (m 2(*-A)-in*-«f2A-(i+*) in /) if 2A -  (<5 +  0) <  0

=  < Op (ms~^~1n<l>~5 In2 m) if 2A — (<5 +  0 ) =  0 (2.199)

Op (m5- ^- 1̂ - 5 lnm ) if 2A — (6 +  0) > 0.

Clearly the third bound is (m5_<̂ - 1/2n^-5) (m_1//2 lnm ), which is o (l) , using 

(2.176) for the first factor; the second bound can be dealt with in a similar 

way.

Rewriting the first bound in (2.199) as

(m2(5" A)_1 In/) (n*"4) (/2A-(*+*)) , (2 .200)

when (j) < S then this too is o (1) because the first factor is, and the other

two are O (1). If (j) > 5, we look at

— E ( i/p )2<A_,S) ( j /n ) 2S / , ( Xj) = Oe (m 2(<-A)-in 2(«-«)j2(A-*)J (2.201)
m  3=‘

instead (notice that (f) > 5 implies (f> > A). The ratio that we have to consider 

is
2 ( 5 —A ) — 1 <f>-Sj2A-(5+4>)

  =  in I = o (1) . (2.202)
m 2 ( 6 - A ) - l n 2(<p-6)l2(A-<t>)  v v '

For p  +  1 < j  < m,  using (2.150),

-  m
-  E (iA>)2<Al-4) O '/")2'  **(>») = 0 P ( n ^ m * - * - 1' 2) (2.203)m

j = p+  i
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which is op (1) for any eligible k.

This concludes the proof of Lemma 2.B.2.

L em m a 2.B .3. Under Assumptions 2.2’, 2.3’, and 2.5’, as n  —> oo, 

(i) there is i > 0 such that

sup
e€(—l,l)

( a )

(Hi)

(
m

y j A f +£) (g \ ~ 2s + i s ( \ j ) )
- l

3=1

(Inm)6 ] T > f / s (A,-) =  op (l) ;

Op (1);

(2.204)

(2.205)
3=1

m
3=1

 ̂ m
= op (1) , where Vj = ln j  ln j;  (2.206)

m  3=1

(iv)

3=1
=  0 (1) . (2.207)

P ro o f. Parts (i) and (a) follow from the same proofs for Lemma 2.B.2 (ii) 

and (i) respectively, since the extra factor lnm 6 is irrelevant when m, I are 

chosen as required in Assumptions A .l and A.2 .
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To show part (in ) and (iv), we bound

m

y/rh
m

y/rn

j=i

£ ”1, Af T«  (A>) -  £ ”1, ( i £ ln x >Sl*  w

+ y/rn
m £ ; =iU X > d Af ^ )

3=1

(2.208)

so
Op (m  1/2n (̂> 5l5 * In /ln m ) if 3 — 4> < 0

— < Op (m -1/ 2 In3 m) if <5 — 0 =  0 (2.209)

Op (n*-6™,6- * - 1/2 In2 m) if 3 -  0  > 0 .

when cf> > 3 the bound is (m_1//4) ( n ^ m -1/4/5-  ̂ln I ln m ), the second factor 

being o ( l)  using (2.32); clearly, for 4> = 3, m _1//2 ln3m =  o (l); when 3 > <J), 

the bound is (n/m)^~5 (m - 1/2 ln2m) =  o (l) .

Finally, for part (iv), using

\v~ \ < 2 lnm , (2.210)

^ L y " 7' V j X f i ^ x A  < 2 ^ 1 n m £  \ f l ,  (A ,). (2.211)
m  ^ 3=1 3 3  3 ~  m  ^ 3=1 3 3

\

Replacing d with 3 in (2.149), clearly this is o ( l)  if 3 > </>; if 3 < (j), (2.211) is 

=  O (n 2̂ _^ /2^ “^ m _1//2 lnm ), which is o ( l)  using (2.32).
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Table 2.3: Monte Carlo bias and standard deviation, J =  0
5(0)

n

bias 

0 0

s.d.
^ i)  ^(0 0 0

a.
^ 0 )
0

s.d
0

s (—00 ) 64 -0.020 -0.020 0.144 0.225 0.109 0.172
128 -0.015 -0.020 0.101 0.171 0.083 0.146
256 -0.011 -0.014 0.073 0.118 0.063 0.107
512 -0.007 -0.012 0.053 0.083 0.048 0.078
1028 -0.005 -0.006 0.038 0.060 0.036 0.057

*(1/4) 64 0.056 0.015 0.141 0.225 0.109 0.172
128 0.062 0.008 0.095 0.173 0.083 0.146
256 0.065 0.008 0.066 0.118 0.063 0.107
512 0.065 0.005 0.047 0.083 0.048 0.078
1028 0.062 0.008 0.035 0.060 0.036 0.057

s (  1/ 2) 64 0.234 0.063 0.106 0.216 0.109 0.172
128 0.246 0.031 0.067 0.164 0.083 0.146
256 0.247 0.027 0.043 0.118 0.063 0.107
512 0.249 0.014 0.028 0.082 0.048 0.078
1028 0.252 0.017 0.019 0.060 0.036 0.057
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Table 2.4: Monte Carlo bias and standard deviation, 8 =  0.4
<5(0.4)

n
bias s.d.

0  0

a.s.d. 
0  0

s (—oo) 64 -0.029 -0.042 0.148 0.143 0.109 0.172
128 -0.019 -0.034 0.108 0.172 0.083 0.146
256 -0.012 -0.022 0.074 0.140 0.063 0.107
512 -0.007 -0.015 0.053 0.118 0.048 0.078
1028 -0.004 -0.011 0.040 0.109 0.036 0.027

s (1/4) 64 -0.016 -0.029 0.143 0.160 0.109 0.172
128 -0.011 -0.028 0.107 0.184 0.083 0.146
256 -0.006 -0.016 0.075 0.156 0.063 0.107
512 -0.002 -0.012 0.054 0.136 0.048 0.078
1028 0.000 -0.009 0.041 0.116 0.036 0.057

* (1/ 2) 64 0.039 -0.014 0.147 0.191 0.109 0.172
128 0.036 -0.016 0.107 0.202 0.083 0.146
256 0.029 -0.014 0.075 0.163 0.063 0.107
512 0.024 -0.010 0.054 0.126 0.048 0.078
1028 0.022 -0.006 0.039 0.120 0.036 0.057
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Table 2.5: Monte Carlo root-MSE and size of 5% t  tests, S =  0
5(0)

n
rM S E

7<i) <s(0 0 0

s (—oo) 64 0.145 0.226 0.071 0.182 0.199
128 0.102 0.172 0.056 0.171 0.192
256 0.074 0.119 0.049 0.165 0.177
512 0.053 0.084 0.047 0.143 0.172
1028 0.038 0.061 0.043 0.141 0.154

*(1/4) 64 0.152 0.226 0.182 0.226 0.277
128 0.114 0.173 0.209 0.219 0.333
256 0.092 0.118 0.294 0.210 0.362
512 0.080 0.083 0.390 0.184 0.457
1028 0.072 0.060 0.532 0.193 0.506

« (1/ 2) 64 0.257 0.225 0.689 0.315 0.641
128 0.255 0.167 0.943 0.256 0.863
256 0.251 0.121 1.000 0.259 0.975
512 0.251 0.083 1.000 0.233 0.998
1028 0.252 0.062 1.000 0.240 1.000

Table 2.6: Monte Carlo root-MSE and size of 5% t tests, 5 — 0.4
<5(0.4)

n
r M S E  

0  0

s (—oo) 64 0.151 0.223 0.062 0.130 0.206
128 0.109 0.176 0.069 0.162 0.233
256 0.075 0.121 0.056 0.129 0.211
512 0.054 0.084 0.052 0.115 0.198
1028 0.040 0.058 0.046 Q. 103 0.190

*(1/4) 64 0.144 0.212 0.079 0.150 0.217
128 0.108 0.176 0.076 0.172 0.253
256 0.075 0.120 0.068 0.142 0.202
512 0.054 0.084 0.076 0.130 0.202
1028 0.041 0.058 0.058 0.108 0.189

s (1/2) 64 0.153 0.221 0.158 0.181 0.313
128 0.113 0.173 0.177 0.190 0370
256 0.080 0.122 0.149 0.148 0.376
512 0.059 0.082 0.146 0.120 0.374
1028 0.045 0.057 0.160 0.113 0.408
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Chapter 3 

Local W hittle  estim ation o f the  

memory param eter for processes 

subject to  a break

3.1 In troduction

We discussed in Chapter 2 the estimation of the memory parameter when the 

process is characterised by an unstable mean. We consider here a comple

mentary form of instability: the one related to the (mean-corrected) stochastic 

component itself, either in the order of integration or in the short term dy

namics.

We have already motivated our interest in the memory parameter inter

preting it as an indicator of persistence over time and, for a policy variable, 

of the attitude towards stabilisation from the authority that is controlling or 

targeting it (assuming of course a stable framework in the rest of the econ

omy). More in general, the stability of the memory parameter may also be 

important when the focus is on long term dynamics, including cointegrating 

relationships.
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As we did in Chapter 2 , we complement the analysis with a test that may 

be applied to detect evidence of such a shift, and also with a procedure to 

estimate its location.

As before, we discuss the local W hittle estimate for its small variance and 

because the theoretical treatment is simpler than that for the log-periodogram 

regression, but we conjecture that these results also provide reliable guidelines 

for the other case.

In Section 3.2 we present the asymptotic theory, in Section 3.3 we analyse 

the small sample properties with a Monte Carlo exercise and in Section 3.4 we 

analyse inflation in the euro-area. We conclude in Section 3.5; the proofs of 

the theorems are to be found in the Appendix.

3.2 Local W h ittle  estim ation  in presence o f  a 

p oten tia l break

We formalise our model by introducing the process x t , observed at t = 1 , n,  

which we describe as the sum of two unobservable processes x \t and x 2t,

x t = xu  +  x 2t (3.1)

such that

Xu  =  <
f11 if * < [ro™] f2t if t > iTon\

, x 2 * =  < (3.2)

0 otherwise 0 otherwise

for a constant tq G (0,1). The process £lt is stationary and invertible and 

has autocovariance 7 ^  (s) and spectral density (A); in a similar way £2*
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has autocovariance 7^  ( 5 ) and spectral density f ^ 2 (A) and, introducing the 

covariance 7 ^12 ( 5 ) =  F ( £ l f £ 2 t+ S ) ,  w e  indicate the cross-spectrum with (A). 

The processes £lt, ^2t are characterised by spectral densities having

/ {1 (A) ~  G(1  \~ 2S' , f a  (A) ~  G£2\~ 2H when A — > 0+ , (3.3)

so they can be fractionally integrated.

We do not make any other assumption on £lt and on £2t, thus encompassing 

several cases: for example they may be independently distributed, but they may 

also be actually the same process (in which case there is no break).

We indicate with Fx (A), Fxl (A) and Fx2  (A) the discrete Fourier transform 

of x t , X\t and x 2t respectively, and with Ix (A), Ixi (A) and I x2 (A) the corre

sponding periodograms; finally, for the crossperiodogram between x l  and x 2 , 

we use Ix 12 (A).

3.2 .1  T h e p eriod ogram  o f  a p rocess p o te n tia lly  su b jec t  

to  a break

The processes x 2t are not stationary, and the bound for the expectation 

of the periodogram provided by Robinson (1995a) cannot be directly applied. 

Yet we find that the same result can be quickly derived: introduce

ta =  [rn]/n, (3.4)

and the following assumptions

A ssu m p tion  B . l .  For a G {1,2} there exists G ^ a  £  (0, oo), 6a G 

(—1/2 ,1 /2), and a  G (0,2] such that

f a  (A) =  G£„A-m“ +  O (Aa-2i“) as A —> 0+. (3.5)
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A ssu m p tio n  B .2. For a G {1. 2}, in a neighbourhood (0, e) of the origin 

f^a (A), / f i2 (A) are differentiable and

dha  (A)
dX

= O (A1 “) , d ft  12 (A)
dX

= 0 ( X 1- 6' - 6*) as A ^ 0+. (3.6)

A ssu m p tio n  B .3. Letting R \2  (A) =  12 (A) / y / fa  (A) f a  (A), then for

some p g G (0,2],

\Ru  (A) -  R u  (0)| = 0  (A^) as A —> 0+ (3.7)

Assumptions B .l to B.3 were introduced by Robinson (1995a) and are also 

discussed therein. In accordance with the semiparametric approach to the 

problem, all the assumptions are local to 0. Assumption B .l imposes a rate 

of convergence to the approximation of f a  (A) /G^aX~26a to 1 and it was in

troduced because Robinson formulated his result for fa  (Aj) /G^aX~25a so the 

additional approximation of f a  (A) by G^aX~26a had to be taken into account; 

it also imposes stationarity, the extension to the nonstationary process having 

been discussed by Velasco (1999a). Assumption B .2 is a common smooth

ness condition and it is also present, for example, in the W hittle estimation 

of'a fully parametric model; Assumption B.3 is automatically met when £lt 

and fa  3X6 observed from the same process, while the situation in which the 

spectral density matrix for (fjufa ) ' is not singular is discussed by Robinson 

(1995a), where he also mentions that these conditions are met, for example, 

from standard ARFIMA processes.

We then have the following
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Theorem  3.1. Let Assumptions B .l, B .2 and B.3 hold and introduce

Vxi  (A) =  Fxl (A) - , t»i2 (A) =  (A) =  (3 .8)

^ ( l  -  r 0A)  G {2 A -2̂

For a, b 6  {1, 2}7 for any positive integer sequence j  (n ) with j / n  —> 0 ,

E  (va (Xj) vb ( - A j ) )  =  1 («  =  6) +  O + ( f )  )  - (3-9)

and, with j  > k, k positive integer,

E ( v a (Xj )vb( - X k)) = o ( ^ -

Since

4  (A) =  Ixl (A) +  2 Re Ixi2 (A) +  I x2 (A), (3.11)

it follows from Theorem 3.1 that, for j  > 0,

E ( I X( Xj))

=  T o h i  (Aj )  +  ( l  -  f c2 (Aj) +  O  ( ( / , !  (Aj) +  R e/c i2  { X j )  +  (Aj)) ( j  1 ^ i j ) )

(3.12)

as j / n  —► 0. When the process x t is not subject to any break, then, clearly, 

f t i (A) — 4 2 (A) =  f t  12 (A), and the orders of magnitude in (3.12) are the same 

as those given in Robinson (1995a).

If a break in S took place, so that, for example,

Si > S2 (3.13)

(which we can assume without loss of generality), the process x t behaves like

(3.10)
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a long memory process with parameter Si, but subject to an unobservable 

disturbance with memory of order <$2, and the stochastic order of magnitude 

of the periodogram, for j  > 0 , is

E  ( 4  (Aj)) =  i f  Gfl Aj2Sl +  O f \ f h + \ f 5' { 0  +  X f sA  (3.14)

as j / n  —> 0 .

The term A J 262 in the bound in (3.14) is not necessarily negligible: indeed, 

considering j  proportional to n* for a certain p ,  it is of order bigger than 

for p  large enough (p  > (1 +  2 (61 — 2 (61 -  52) ).

It is interesting to compare (3.14) to the expected value of the periodogram 

of a process in which the stochastic component is corrupted by a deterministic 

component that acts as a noise and obscures the signal, as discussed in Chapter 

2. The situation is clearly reversed: while with a time-varying deterministic 

component the signal is mainly obscured at the lowest frequencies, from (3.14) 

we see that here those are the frequencies in which the signal is more clear. 

Breaks in the mean and in the memory parameter have then the opposite effect 

when analysed in the frequency domain.

The expectation in (3.12) is also useful to observe the effect of a break in 

the short term dynamics. In that case,

51 = S2 = 5, (3.15)

so the expectation becomes, for j  > 0 ,

i^j)) = +  ( l  -  t ^ )  Xj 25 ^1 +  -p -  +  ^ (3.16)

as j / n  —> 0, and there is then no effect on the slope of the expectation of the
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periodogram at low frequencies. Since the term ( G^  +  (1 — J G 2̂) is

only a scaling factor, we can already anticipate that the local W hittle estimate 

is robust to changes in the short term dynamics. This is hardly a surprising 

result, given that the local W hittle estimate does not actually require any 

specification of the short term dynamics at all, but it is important to state it 

explicitly because it provides a strong argument in favour of semiparametric 

estimates, such as the local W hittle or the log-periodogram regression ones, 

when these are compared to other estimates that may even be more efficient 

(in the sense of having a faster rate of convergence, as for example is the case 

of the fully parametric W hittle estimate), but are sensitive to other breaks as 

well.

We conclude the subsection by discussing

In Zu the second block of observations is supplemented with zeros, while in z 2t 

the design is reversed: Z\t and z 2t are the processes that are going to be used 

in the recursive Chow test.

Prom Theorem 3.1 we already have a bound for E  ( I z ( \ j ) ) \  for E  (/2l (Aj))

same arguments it is also immediate to show that, under (3.13) and under the

0 otherwise 0 otherwise.

(3.17)

and E  ( I z2 (Aj)) however, we only have it when r A =  r ^ .  Yet using the
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assumptions stated for Theorem 3.1, j  >  0,

i f  r A < r A,

E { h i (Aj)) =  r AG£1A"Ml +  O  ( a "2*1 +

E  { h i  (Aj)) =  ( t 0a  -  r A) Gt l Aj“ > +  ( l  -  r 0A)  G ^A -2̂  +  O  ( a t 24* ^  +

and i f  r A > r A,

as j / n  —» 0 .

When > <̂2, the order of magnitude of the expectation of the peri

odogram of Zu always depends on for the periodogram of Z2t on the other 

hand, the conclusion depends on the position of r  with respect to the break 

r 0: when all the observations with the highest memory are removed, the dom

inating term depends on 52, otherwise on 5i. Intuitively then, the slopes of 

two periodograms are very different when r  is set large enough, and a test can 

be realised simply by comparing them.

3.2 .2  T h e e s tim a te  w h en  a break  in  th e  m em ory  para

m eter  is presen t

We analyse the effects of the break using the Local W hittle estimate as in 

Robinson (1995b): this is computed by minimising the loss function



This is also described in Chapter 1 and it is repeated here because we intro

duced the notation R (d]m ,I): this explicitly states that the result depends 

on the dataset, of which I  ( X j )  is the periodogram, and on m, a user chosen 

bandwidth parameter. We introduce

8  =  arg min R (d ;m ,Iz) (3.23)
d e © C ( - l / 2 , l / 2 )

S i ( t ) = arg min R (d :m ,Iz i) (3.24)
d G © C ( - l / 2 , l / 2 )

? 2 (r) =  arg min R (d ;m ,It2): (3.25)
d e © C ( - l / 2 , l / 2 )

8  is the estimate when the whole dataset is used, and we are interested in it 

because we can then see what happens when the data are subject to a break 

in the memory parameter; Si (r)  and 82 ( t )  are the estimates computed using 

only the first or the second part of the sample for given r ,  and are used to 

detect a change in <5 with the Chow test.

In order to get their limits in probability we introduce a set of assumptions 

A ssu m p tio n  3.1. For a G {1,2}, as A —> 0+,

f (a (A) ~  G(a\ - 26‘ (3.26)

where G^a G (0 ,00) and 8 a G [Ai, A2], where —1/2  < A i  < A2 < 1/2.

A ssum ption  3.2. For a G {1, 2}, in a neighbourhood (0 ,1) of the origin, 

h a W , f i  12 (A) are differentiable and

^  ln/c„(A) =  0 ( A"1), ^  In /0 2 (A) =  0 (A -J) as A -  0+ (3.27)

A ssu m p tio n  3.3. For a G {1. 2}, the sequence ^a t is such that

OO OO

L,t = X I  X  aij  <  00 (3-28)
j = 0 j = 0
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where

in which F a,t is the a —field generated by ea,s, s < t ,  and there exists a random 

variable e such that E(e) < oo and for all rj > 0  and some C > 0, P ( |s0)t| >

A ssu m p tio n  3.4. As n —> oo,

These are the same assumptions as those of Robinson (1995b), augmented 

to take 12 (A) into account as well. Assumptions 3.1 to 3.3 have appeared in 

Chapter 2, to which we refer for a detailed discussion. Notice that we do not 

require =  6 2 , so we can discuss the consequences of a break in 5.

Following Robinson (1995b) we can then show:

T h eo rem  3.2. Under (3.13) and Assumptions 3.1, 3.2, 3.3, 3.4, then, as

v )  <  C P ( | e |  >  r j ) .

(3.31)

and

i f  t  < t 0: <$i ( t)  Su S2 (r) —

i f  r  = r 0: £ i(r )  ->p£i, S2 (t)  ->P S2;

i f  t  > t 0: 5 i( t)  ->p 5i, 8 2 {t) ~^p 52.

(3.32)

(3.33)

(3.34)

Notice that here and after we formulate the theorem for r  because r A/ r

1 as n —>0 0 .

The Local W hittle estimate S then converges in probability to the largest of
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the two memory parameters, confirming the intuition from Theorem 3.1 that 

the process with lower order of integration acts like a disturbance: neither the 

value of the lower order of integration, nor the fraction of observations with 

lower memory as opposed to those with higher memory, matter. This result 

depends on the fact that the estimate is semiparametric and it only uses the 

frequencies where the features of the spectral density are dominated by the long 

term component: had all the frequencies been used, as in the W hittle estimate, 

it would converge to a point intermediate between £1 and 52, the exact location 

depending also on the fraction of observations with lower memory.

The same considerations apply to £1 (r) and 82  (r), but for some r  it may 

happen that only observations with lower memory are used, and in that case 

the estimate converges to that (lower) level instead.

Robinson (1995b) also showed that the Local Whittle estimate is root-m 

consistent and the limit distribution is zero-mean, asymptotically normal. In 

case of a break, root-m consistent estimation of the largest memory parameter 

depends on how large the gap

0 = |  Sx -  82

is. Introduce the following assumptions:

A ssu m p tio n  3 .1 ’. For a £ {1,2} and some (3̂  £ (0,2]

f(a (A) ~  GfaA_2lS“(l +  0 (A ^)) as A —> 0+, (3.36)

where G^a £ (0, oo) and 8 a £ [Ai, A 2], where —1/2 < Ai < A2 < 1/2.

A ssu m p tio n  3 .2 ’. For a £ {1, 2}, in a neighbourhood (0 , l) of the origin,

(3.35)
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G!a(A) is differentiable and

A a a(X) =  O ( J ^ P  ) as A —► 0+ (3.37)

where a a(A) =  YIZo a a,ielXl.

A ssu m p tio n  3 .3 ’. Assumption 3.3 holds and also

E (el,t\Ea,t—1) =  Ca,u a,t-1) =  ca>2, a.5., t = 0, ±1, ... (3.38)

for some finite constants ca,i and cG)2.

A ssu m p tio n  3 .4 ’. vis 77 —► 00 ,

1 m 1+2/3£ In2 m
 1--------- 90----------> 0. (3.39)
771 77 £

A ssu m p tio n  3 .5 ’. As n  —► 00 , if  8 2  7̂  8 1 , letting $ =  |<$i — J2|,

m 2ti+l /2

n 2l?
0. (3.40)

Assumptions 3.1’ to 3.4’ replicate those in Robinson (1995b) and are dis

cussed in Chapter 2 as well.

Assumption 3.5’ on the other hand has been introduced precisely to treat 

the case in which a change in 8  took place. We postpone the discussion to 

after Theorem 3.4, where the consequences of not meeting it are presented. It 

is sufficient here to notice that it removes the highest frequencies, and that 

it is stronger the smaller d  is. Whether it is more or less restrictive than 

Assumption 3.4’ depends on d and on (3̂ : for the popular case (3̂  =  2 , and 

indeed for any (3̂  > 1, Assumption 3.5’ is stronger than 3.4’, the reverse 

happening when (3̂  is very close to 0 .
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Theorem  3.3. (i) Under Assumptions 3.U, 3 .2 ’, 3 .3 ’, 3 .4 ’, as n —► oo,

i f  r  < t 0: 2y/mr(5i (r) -  <$i) —>d N (0,1) (3-41)

i f  r  > r 0: 2yJm  (1 - r )(?2 ( t)  -  tf2) N (0 ,1); (3.42)

(ii) Under (3.13) and Assumptions 3.1’, 3 .2’, 3.3’, 3.4’, 3 .5’, as n —> oo,

2 ^ F i ( 6 - 6 1 )-+ d N (0 ,l)  (3.43)

i f  t  > r 0: 2^/m r0 (61 (r) -  ^ )  —>d N (0 ,1) (3.44)

i f  r  < r 0: 2 \Jm  (r  -  t 0 ) (< 5 2 ( t )  -  <Ji) —̂  7V(0,1). (3.45)

This is the same result as the original paper of Robinson (1995b): we simply

have to replace m  by ra r  (or by m  (1 — r ) ,  m r0, m (r  — r 0) according to the

situation), to take into account that only a fraction of observations has a higher 

memory (this may well be 6 2 , when no observations with are present, as in 

(3.42)).

The statement of the theorem is divided into two parts according to whether 

the break in the memory parameter is included in the sample or not. In the first 

part it is not: the two time series are both composed of a stationary process 

padded with 0, and we verified that in such a case the results of Robinson 

(1995b) did not change.

In the second part of the Theorem on the other hand the data have been 

subject to the shock, and we need Assumption 3.5’ as well, to make its effect 

negligible.

When Assumption 3.5’ is not met, consider instead
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A ssum ption 3 .6’. As n —► oo, if  82 ^  8\, letting d =  |5i — 821,

m 2M/2
n 2-d 00 . (3.46)

Theorem  3.4. Under (3.13), Assumptions 3.1’, 3 .2’, 3 . 3 3 . 4 ’ and 3.6’, 

as n  —> 00,

(  2i9 — 2 i9 \ (3 :  r \   ̂  ̂ G ^ 2  /<-. \2i9 2l? /o  /I'yN(n m  ) d — Oi —>p —7;-------------- (27r) ---- :------ « (3.47)
V ' V  J P 2 r 0 G a K J (1 +  2 d) V )

and

i f  r  < r 0: (n2l9m 2l9) (<52 (r) -  £1) 1 1 — T 0 / 0  \2 t9 2 $(2tt)‘
2 r o - r ^ r  # (1 +  2i?)2 » 

(3.48)

i f  r  > r 0: (nMm 2l?) (r) - 61) 1 T  ~  T0 Ĝ 2 / 0  \ 2 i9 27?
2 Tq G\

(27T)-
(1 +  2t?)2 ' 

(3.49)

When Assumption 3.5’ is not met but it is replaced by Assumption 3.6’, the 

estimate is subject to a lower order bias. Intuitively this happens because the 

term A2d in the loss function has to accommodate both Ix 1 (Af) and I X2 (Aj): 

at the lowest frequencies the latter is irrelevant, but for higher frequencies 

the stochastic orders of magnitude of the two periodograms get closer and the 

estimate is then contaminated by 8 2 .

In Theorem 3.2 then, Assumption 3.4 ensures that such a contamination 

is always of a lower order, and in Theorem 3.3, Assumption 3.5’ is sufficient 

to have that order smaller than m -1//2, so root-m consistent estimation of £1 

still follows, but here we see that when Assumption 3.5’ is not met then the 

root-m consistency fails.

Notice that Theorem 3.4, by requiring Assumption 3.6’, implicitly sets a

159



limit on (3̂  in Assumption 3.1’: indeed if Assumption 3.4’ is more restrictive 

than 3.5’ (as it happens for very small (3̂ ) then the assumptions of Theorem 

3.4 cannot be met.

The "jump" d affects the limit in two ways: the value of the potential bias 

increases with $, but its order of magnitude gets smaller the larger d. Larger 

3) should overall deliver smaller bias because the order of magnitude should 

prevail, but it is still possible that in small samples the reverse happens.

The fact that the bias from gets smaller the more distant 8 2  is, may seem 

counter-intuitive: if, for example, we used fully parametric Whittle estimation, 

we would expect that the estimate converges to a point intermediate between 

£1 and 8 2 , and that it would be further away from £1 the bigger i9. The result we 

obtained here depends crucially on m /n  —► 0, so / x2 (A )̂ is always dominated 

by Ix 1 (Aj), and the gap in the stochastic orders is bigger the bigger rd. Indeed, 

setting m  proportional to n, the bias induced by the break (disregarding then 

the bias due to the approximation of the spectral density as in Assumption 

3.1’), would then be bigger the larger 3), as we conjectured before for the fully 

parametric W hittle estimate.

When m  is set as

of £1, 82 in a closed subset of (—1/2,1/2) is available to eliminate the bias, 

confirming that when f3̂  = 2 in Assumption 3.1’ then Assumption 3.5’ requires 

the elimination of more of the intermediate frequencies.

m  = cKn (3.50)

for some n E (0,4/5) and Ck > 0, Assumption 3.5’ requires

(3.51)

we can see then that if k =  0.8 — e (for some e > 0) is set, then no combination
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3 .2 .3  T ests for p aram eter in sta b ility  and  estim a tio n  o f  

th e  breakpoint

Theorem 3.4 is also very interesting for its potential application to detect the

presence of a break. Since the bias increases with the bandwidth m, a test

can be realised by comparing two estimates for two different bandwidths, if 

these are properly chosen, because the estimate computed with the smaller 

bandwidth should be less subject to the lower order bias. More formally, 

defining

<5(i) =  argm ini? (d;mi; (Aj)) (3.52)

5{2) = argmm R( d; m2; Iz (^j)) (3.53)
©

with

777,2/ 777,1 —> 0 as n —> 00 , (3.54)

and introducing

t = y/4m2 (<5(2) -  ?(i)) , (3.55)

we have the following theorem.

T h eo rem  3.5. Let m  = m \ in Assumptions 3.1’, 3 .2’, 3.3’, 3.4’, 3 .6’ and 

1/ 777,2 +  777,2/7711 —> 0 as n —> 00 . Then as n —> 00 ,

!t - > d N ( 0,1) if  6  = 0
(3.56)

t —> 00 i f  6  > 0.

The statistic t can then detect the presence of a break even when 6  is so 

small that both 5 (2) and £(1) are subject to the lower order bias, because the 

bias is smaller in the first case.
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Since if there is a break then t should be positive, a one sided alternative 

should be preferred in order to have more power. We then suggest to compute 

t and then to reject Hq : {tf =  0} if the realisation of the test statistic exceeds 

the critical value 1.65 (assuming of course a 5% size).

Notice that this test requires Assumption 3.6’, that is, a certain smoothness 

on /?£ in Assumption 3.1’ as we saw when discussing Theorem 3.4: the test 

then cannot be used for very small /^ , but it is still valid for the associated 

to the more popular models (including the ARFIMA).

A more important comment has to do with the power of the test. This may 

be very small, for two reasons: because the slower rate of convergence m ^ 2 has 

to be used, and because the test is only consistent because of the lower order 

bias. Therefore the performance of the test in small samples may be less than 

satisfactory.

For a more powerful test, we introduce

t ( t)  =  \A t ( 1  -  r ) m  [di (r) -  S2 {r)^j . (3.57)

T h eo rem  3.6. (i) Under Assumptions 3.1’, 3.2’, 3.3’, 3.4’, =  S2, as

n —*■ oo,

2 ^ / iri+(1r ~ _ ^ m (n )  -  S2 ( t 2)) ~^d N  (0 ,1), t 2 > n  (3.58)

and

(3.59)

fo r given r;

(ii) under Assumptions 3.1’, 3.2’, 3.3’, 3.4’, &i > '̂ 2 and r  >  tq, as

t ( rY >d X i
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n —» oo,

t ( t ) 2 —> oo; (3.60)

(iii) under Assumptions 3.1’, 3 .2’, 3.3’, 3.4 \ 3.6’, (5i > S2 and t  < Tq, as 

n —> oo7

t ( r ) 2 —> oo. (3.61)

Of course the same result holds, replacing > £2 and r  > t q  with < S2 

and t  < To in (ii) and replacing £1 > S2 and r  < To with £1 < S2 and r  

in (iii), so t ( r)2 can be used to detect any break.

In part (i) of Theorem 3.6 we derive the limit distribution under the null: 

the estimates £1 ( ti)  and S2 (r2) when r 2 > t \  are asymptotically independent.

In parts (ii) and (iii) we verify that the test statistic diverges under the
-—. o

break. We then suggest to compute t (r) and eventually to reject H0 : {d = 0} 

if the realisation of the test statistic exceeds the critical value 3.84 (assuming 

of course a 5% size). This is a simple Wald test, and it only requires the 

estimation of £1 (r) and 52 (r).

Notice that if Assumption 3.6’ is met then the test is consistent even if we 

compute t ( t ) 2 in points different than To; otherwise, it requires knowledge of 

the location of To- Yet in (iii) the test is only consistent because of the lower 

order bias, so the power may be rather low when computed for r  < To, and in 

(ii) with t  ^  To Si (t)  is still subject to a lower order bias, so the power should 

be higher in t  =  To-

Given the potential sensitivity of the power to the distance from t 0 , t  ( t ) 2 

seems to be particularly useful when preliminary knowledge of To is given, as it 

happens when analysing a shift in persistence originated by a change of policy.

If the location of the break is unknown, the test statistic should be analysed
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in any potential r  in a closed subset of (0,1):

?  =  sup t ( r)2 . (3.62)

Recalling the notation B  (r), r  G [0,1], for a standardised Brownian motion 

on [0,1], then

T h eo rem  3.7. Under Assumptions 3.1’, 3.2’, 3 .3’, 3.4’, 3.6’, as n  —► oo,

t 2  ^  m m  (B(t ) - t B ( i ) ) 2  . f  9  _  nt => supTG|Tj>Th]C(0jl) 4r(1—T) II 1/ — u
(3.63)

P  —► oo if $ > 0.

The limit process supTG[TirhjC(0 is the supremum on [tj, t/J  C 

(0,1) of the square of a standardised tied down Bessel process and references 

for that are already in Andrews’ (1993) work, where he also discussed what 

happens when [t/jT/J =  [0,1]. Critical values can be tabulated, and indeed 

Andrews (1993) provided them: the critical value for the 5% test is 8.85 when 

[t/jT/J — [0.15,0.85], and 9.31 when [t/,t/J  =  [0.1,0.9]; we used 9.01 when 

b'it Th] — [1/8,7/8], interpolating as described in the original paper.

We conclude by proposing an estimate of the location of the break when 

there is one: letting

t  = arg min Qn (r) =  t5 x ( t)  +  (1 — r)  S2 (r) (3.64)
relrj.ThlcfO,!)

T h eo rem  3.8. Under Assumptions 3.1, 3.2, 3.3, 3.4 with S\ /  8 2 , tq  G



3.3 A  M onte Carlo exercise

We investigate the validity in small samples of the theoretical results with a 

little Monte Carlo exercise. We considered the models:

Model 1 (Ml): no break in 5, x t G I  (0.4);

Model 2 (M2): no break in 8 , the variance doubles in the second part of 

the sample, x t G I  (0.4);

Model 3 (M3): break r 0 =  1/2: X\t G I  (0.4), x 21 £ I  (0);

Model 4 (M4): break r 0 =  1/3: X \ t  G I  (0.4) , x 2t G I  (0);

Model 5 (M5): break r 0 =  1/2: X \ t G /  (0.2), x 2t £ I  (0).

Model 1 is the standard design, and we use it as a benchmark. It also

provides us with a reference for (r) and 8 2 (r), which are not discussed in 

Robinson’s original paper, and for the statistics based on them, including the 

ones used to test for the presence of the break.

Model 2 is included to verify that changes in the short term component do 

not affect the quality of the estimation in small samples either. We decided 

to model the break in the short term dynamics with a change in the variance 

because, as we reviewed in the introduction, the problem received some ap

plied and theoretical attention. We can then observe here how sensitive our 

techniques are to that change.

Models 3 to 5 are the ones with a break. We intend to evaluate the pre

cision of the estimates 8  and 8 (2) (we set m  1 =  m, so $(1) =  8  in our design) 

thus appreciating the sensitivity of the bias to the bandwidths m  and m2, to 

the location of the break To and to the difference $. We also compare the 

performance of the tests to detect the presence of a shift in 8 , t and ? ,  when 

To is unknown, and discuss the reliability of r  as an estimate of the location 

of the break.
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We generated 64, 128, 256, 512 and 1024 observations, using the Davies 

and Harte (1987) algorithm; for each cell we simulated 1000 runs. We set 

m  = 0.75n0 79 and m 2 = 0.75n049 and estimated 5 (2), 5, 51 (1/4), <̂2 (1/4), 

£1 (3/4), 62  (3/4). According to the design, three outcomes are possible: root- 

771 consistent, asymptotically normal estimation of 5i, root-771 consistent, as

ymptotically normal estimation of 8 2 , consistent estimation of 5i with lower 

order bias. These are summarised in Table 3.1.

Table 3.1: Limit properties of the estimates used in the Monte Carlo exercise

<*(2) 5 S1 (1/4) 6 2 (1/4) *1 (3/4) 8 2  (3/4)
M l A A A A A A
M2 A A A A A A
M3 A X A X X B
M4 A X A X X B
M5 X X A X X B

A: root-m consistent and asymptotically normal estimation of <5i; 
B: root-m consistent and asymptotically normal estimation of £2; 

X: consistent estimation of £1, lower order bias.

For each estimate we computed the average of the difference between the 

estimates and the theoretical limit value, indicating it as "bias" in Table 3.4. 

We also computed the sample standard deviation as a measure of the disper

sion, presenting it in Table 3.5: for comparison, in Table 3.6 we report the 

standard deviation prescribed by the asymptotic theory as from Theorem 3.3.

Comparing the bias and the standard deviation gives a preliminary indica

tion of the reliability of the limit normal approximation, but we also analyse 

it by counting the number of occurrences in which the standardised t statistic 

exceeded the critical value of a two sided 5% test: these are in Table 3.7. These 

t statistics are infeasible in the case of a break, because its location is actually 

unknown, but here we are only interested in appreciating the precision of the
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approximation as stated in Theorem 3.3, to see when the effect of a change in <5 

is really negligible. In the same way, in Table 3.8 we analyse the limit normal 

approximation of <$i (1/4) — 82  (1/4), 8 i (1/4) — 8 2  (3/4), 8 \ (3/4) — 8 2  (3/4): 

when there is no break, root-m consistency and limit normality follow from 

Theorem 3.6 part (i).

Under a break, however, the same test statistics should diverge, as from 

Theorem 3.6 part (ii). We observe this effect in the second part of Table 3.8. 

We also discuss the detection of a shift in 8  using the test statistics t (this one 

using a one sided alternative) and t 2 (for which we considered r  G [1/8, 7/8]): 

the size and power of the tests are in Table 3.9. Finally, in the last two columns 

of that table we present bias, dispersion and selected quantiles of the estimate 

of the break r .

In the two models without breaks in 5, the standard local W hittle estimate 

8  was more precise than the other estimates, having similar bias and smaller 

sample standard deviation. This is consistent with the asymptotic theory, 

because more information (either in terms of more frequencies or of more 

observations) is used.

In all the cases without breaks in 8  the bias was negligible; the dispersion 

broadly accorded with the asymptotic one, with a couple of exceptions: (1/4)

and 82 (3/4) and, even more, £(2), especially when n  was very little. It is 

possible that in these cases the samples or the number of frequencies used 

were so small that the asymptotic approximation was very poor: indeed with 

n = 64, 81 (1/4) and <$2 (3/4) used only 16 observations, while for <5(2) the 

bandwidth was m 2 =  3. In all the cases, the dispersion got closer to the 

theoretical value in larger samples. The empirical size of the 5% test, which 

we regard as the best indicator to summarize the properties of the estimates, 

was often slightly higher than predicted by the theory, but the only case in
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which the limit approximation was too poor was for 5(2) with few observations 

(n = 64 and n =  128), where it was above 20%. We conclude this part of the 

discussion by commenting on the fact that the performances were very similar 

both in Model 1 and in Model 2, and any difference appeared to be randomly 

generated: this is very important because it confirmed that the semiparametric 

procedure is robust to short term dynamics instability, which is often thought 

to be more frequent in real cases.

In Models 3 to 5, only 5i (1/4) and 82  (3/4) are unaffected by the break, 

the former estimating 5i =  0.4 or 8 1 =  0.2, the latter always 8 2 =  0. Not 

surprisingly then their performances were in every respect comparable to their 

counterparts under Models 1 and 2.

In the other cases, Assumption 3.5’ is only met by 5(2), and only when 

5i =  0.4. The asymptotic theory (eq. (3.43)) prescribes a bigger dispersion 

for 5(2) under Model 4, but the same rate of convergence: we indeed found a 

slightly bigger variance in the second case, but we also found a certain bias, at 

least for tq =  1/3 in the smallest samples. Although not accounted for in the 

asymptotic theory, we can hardly consider it as unexpected: the result stated 

in Theorem 3.3 rests on the presence of some observations with higher memory, 

but it is possible that in the smallest sample their number was just negligible, 

To being so small. Notice anyway that this bias disappeared in moderately 

sized samples, like those where n = 512 or above.

In any case, the approximation of the limit distribution was not hampered 

by the break, as indeed predicted by Theorem 3.3: the size was still slightly too 

large, but not more than under Models 1 and 2, and actually, possibly thanks 

to a more precise approximation of the variance, it was even marginally better.

When on the other hand Assumption 3.5’ was not met, the lower order bias 

was a dominant feature. Consider, in particular, 5(2) under Models 3 and 5:
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the two cases only differ for $, but have the same r 0 and m 2, and we found 

a much bigger bias when Assumption 3.5’ was not met, regardless of the fact 

that £1 was much closer to <$2 in Model 5 than in Model 3.

The effect of a change in $ was less clear when Assumption 3.5’ was not 

met anyway: for 5, 6 2  (1/4) and £1 (3/4) the bias happened in our exercise to 

be roughly the same both in Model 3 and in Model 5.

Contrary to the case of 6 (2), the different to between Models 3 and 4 should 

give a bigger bias in the second case, as from Theorem 3.4, and this proved 

indeed to be the case.

One can also appreciate this effect within each model, by comparing 62  (1/4), 

6  and <5i (3/4): the lowest proportion of observations with high 6  was in the 

first estimate, the biggest in the last one, and the bias is ranked accordingly.

It is worth noticing that when Assumption 3.5’ was not met, then the lower 

order bias still had a strong effect even with 1024 observations, its reduction 

proceeding only rather slowly as n increased.

Finally, we compare the bias between <5(2) and 6 : according to the theory, 

given that Assumption 3.5’ is not met for 6 , it should always have a bigger 

bias. This, anyway, only appeared in Models 3 and 4, while no clear ranking 

emerged for Model 5.

Overall, the lower order bias was more important the smaller the sample 

and the larger the percentage of frequencies with 62  compared to <$1; in most 

of the cases it was also larger the bigger the bandwidth, while only in a few 

cases the difference$ mattered.

In all these cases it was also sufficient to cause a clear failure of the normal 

approximation of the t statistic, the effective size depending on the comparison 

between the bias and the dispersion; this was more clear for 6 , where the bias 

was very large with respect to the standard deviation, and much less for 6 (2) 

when 6  = 0.2, where the variance was so large anyway that no size distortion
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at all could be appreciated.

In the last block of results we deal with detecting and estimating a break 

in 5.

We begin again discussing the case in which there is no break in S. The limit 

distribution of £1 ( ti)  — 8 2  f a )  should then be normal, as per Theorem 3.6 (i), 

and indeed in all the three combinations it resulted in being compatible with 

the theory. The empirical size only exceeded 5% slightly, if at all: it reached a 

maximum of 11%, and the approximation improved quickly with the dimension 

of the sample. A similar pattern emerged for the approximation of the limit 

distributions of the two statistics t, t2: the latter anyway was more precise, the 

empirical size being closer to the theoretical 5%. The worse performance in 

terms of size of t probably depended on the poor approximation of the variance 

of $(2), which had too big a dispersion. Notice, again, that neither of these 

statistics was sensitive to breaks in the short memory component.

Under the break in 8 , all the test statistics diverged, albeit the performances 

were rather different.

All the three differences 8 \ (iq) — 82 f a )  detected the presence of the break 

satisfactorily or well. One can view the case t \  =  T2 7̂  tq as the case in 

which the researcher has some information about the breakpoint, but tha t is 

not exact: as we saw when discussing Theorem 3.6, the test statistic may then 

diverge either because £1 (r  1) estimates the higher <5i while 6 2  f a )  estimates the 

lower 8 2  (Theorem 3.6, (ii)), or because although both the estimates converge 

to 8 1 , one of them is subject to the lower order bias (Theorem 3.6, (iii)), and in 

our result this difference was relevant, as can be seen by comparing the cases 

r  =  1/4 and r  = 3/4. Also notice that when the guess about the location of 

the break was more precise, as in Model 4 compared to Model 3, the power 

was higher.
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It is better to try to choose r  in such a way that the two estimates converge 

to different limits, as in Theorem 3.6, (ii): one way of doing it is by setting 

t i ^  T2 and by keeping them very distant (we put t \  = 1/4, T2 =  3/4, but 

one could consider 1/8 and 7/8 instead). Yet of course the researcher has to 

trade off this with the larger variance associated with the fact that many fewer 

observations are used: notice that even with the rather moderate 1/4, 3/4 

split, the power is less than if t2 is used.

The test based on t performed badly, the power being at most 35% even in 

the largest sample. This is far from surprising: even for Models 3 and 4, where 

we did actually observe a certain difference between 6 (2) and 6 , the difference 

was still relatively small, and always well within one standard deviation (this 

can be found in Table 3.6 in the case Model 1). That test fared even worse 

when 6 1 was so small that 6 (2) too was subject to the lower order bias: in that 

case the test had nearly no power at all. As a result we then think that a test 

based on t should only be preferred in very large samples, when the power can 

be reliable and the burden to compute the test based on t may be excessive. In 

samples of dimension comparable to the ones we used, a rejection of the null 

of no break in 6  based on t could depend on a particularly poor estimate 6 (2) 

(recall how much the sample variance exceeded the theoretical one) as easily 

as on an effective break in 6 .

Finally, the test based on P ,  of which the elements <$i (ri)  — 62  ( r2) axe the 

building blocks. The power of the P  test was higher the larger the gap and 

it increased with the sample size. Not surprisingly, given that the test statistic 

is computed for each r ,  the test was not sensitive to the location of To. As 

we already conjectured in the discussion of Theorems 3.6 and 3.7, the P  test 

proved to be the most powerful when the location of the break is unknown, 

especially when the sample was small or the g a p 'd little.
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When evidence of a break has been established, its location may be esti

mated by r .  We report, as usual, the bias and the sample standard deviation 

of r.  Anyway, since we did not derive the limit distribution of r ,  nor we estab

lished existence of the second moment, we supplement this information with 

three nonparametric measures: the first and last 5% quantile and the median.

The median was always centred on the correct location of the breakpoint, 

and the distribution collapsed on it rather quickly. It can be suspected that 

the estimation of the location of the break is more difficult when $ is relatively 

small, and indeed the range between the top and last 5% quantile was bigger 

in our experiment when #1 =  0.2 than when =  0.4; the position of To on the 

other hand did not affect the estimates.

This information is mirrored in the bias and standard deviation. Indeed, if 

we were to compute the first and last 5% quantile using the sample averages 

and standard deviations as if under normality we would get approximately the 

same intervals.

Overall, r  seemed satisfactory unless the sample was very small or the gap 

very little (although in this last case it does not seem to be a big loss, because 

the mistake made using the wrong 5 is relatively small).

3.4 Inflation p ersisten ce in th e  euro-area

In this section we study the persistency in inflation over the years 1972-2004 

for the countries that constitute the European Monetary Union (EMU).

A number of events that could have potentially caused a structural change 

in the long term dynamics of inflation took place during these years.

Some of these are indeed changes of policy regimes. The first European 

Exchange Rate Mechanism (ERM) was established in March 1979, and the
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central parities had often been revised over time; the whole ERM actually 

changed, increasing the number of countries participating in it: some of the 

current members of the euro-area were not even members of the European 

Union in 1979, let alone of the ERM. Moreover, monetary policy was managed 

locally by the national central banks, so other potential breakpoints could be 

considered, each one different for each country.

Other potential structural changes did not originate from monetary policy 

decisions: the two oil shocks, or the major exchange rate crisis in 1992, might 

have affected the persistence of the long term dynamics of inflation; again, 

local, country specific shocks, intervened as well.

Undoubtedly also other countries experienced potential shocks in the past, 

so we motivate our preference for this particular example with the peculiarity 

of the Eurosystem itself: its whole existence depends on the assumption that 

it can do a better job at controlling inflation than the banks that conferred 

their powers to it. Several arguments could be proposed to explain it: first, 

by fostering the integration of the markets, the monetary union should favour 

the transmission of policy impulses; second, the institution of a single author

ity implicitly removes the possibility of conflicting policies between different 

countries (and the incentive to do so); third, it is often argued that some of 

the monetary authorities that the Eurosystem replaced lacked the credibility 

(or the appetite) for strong control of inflation.

The Eurosystem seems to be well aware of the importance of studying 

inflation persistence in the euro-area, and it stimulated applied research on 

the topic. The results, however, are apparently inconclusive: Angeloni, Au- 

cremanne, Ehrmann, Gali, Levin and Smets (2004) associated inflation persis

tence with unstable monetary regimes (in which case less persistence should 

be found in the last part of the sample, especially after 1999), but O’Reilly 

and Whelan (2004) argued that persistence remained fairly stable and the
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institution of the Eurosystem did not per se reduce it.

We then analysed the inflation figures for these years considering the po

tential breakpoints as unknown, but allowing for a major change in policy in 

1999, when the authority to decide monetary policy was transferred from the 

local central bank to the Eurosystem. We used January 1999 for Greece as 

well, although it only joined the EMU the following year: it can be argued 

tha t Greece already benefited from increased stability at that point, because 

in 1999 it was clear it was about to join the EMU soon anyway; besides, as 

we saw when discussing Theorem 3.6, the test detects the presence of a break 

consistently even computed at r  ^  To.

We analysed monthly inflation in eleven of the countries constituting the 

EMU: these are Portugal (PT), Spain (ES), France (FR), Ireland (IR), Italy 

(IT), Belgium (BE), Netherlands (NL), Germany (BD), Finland (FN), Greece 

(GR) and Austria (OE) (within brackets we indicated the way we shortened 

the names in the figures and in the tables). The data were computed from 

price indices collected from Datastream: these have codes PTCONPRCF, 

ESCONPRCF, FRCP....F, IRCONPRCF, ITCONPRCF, BGCONPRCF, NL- 

CONPRCF, BDCONPRCF, FNCONP95F, GRCONPRCF, OECP..96F. We 

did not include Luxembourg because not enough data were available.

The dataset covers the years 1972-2004 (inclusive), so n — 395 when levels 

of inflation were considered, and n = 394 when first differences were computed. 

The starting date depended on the availability of data for France on Datas

tream: we preferred to have all the samples covering the same period to make 

comparison easier.

The plots of inflation are in Figures 3.1 to 3.3.

These figures have been obtained by transforming the frequency to quar

terly, where for each quarter the price index was obtained by averaging the
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Figure 3.1: Inflation: BD, NL, OE, BG
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monthly index for each country: we then computed the growth rate by taking 

first differences of the logarithms, and then multiplied the result by 400 in 

order to get a measure of the inflation at annual rate. This was only done in 

order to remove from the figures some short term volatility, thus making it 

simpler to observe the long run dynamics: we used monthly data in the empir

ical analysis, inflation being computed as the first difference of the logarithm 

of the price index.

We analysed the data by estimating J(2) and J, by computing the test 

statistics t and t2 to detect a break and eventually by estimating r. We kept 

r  6 [1/8, 7/8], so we searched for a break approximately between 1976 and 

2000.

We also estimated ( r 9 9 ) ,  <52  ( r g g )  and then computed t ( r g g ) 2 , where T 9 9  

is the r  to test for a break in January 1999. This point was already in the set 

in which we considered a potential break, but by using t (rgg)2 we treated it 

differently because we then assumed that the potential breakpoint was known: 

the limit distribution of t ( r g g ) 2  is a simple \ i  > with a much smaller critical 

value.
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Figure 3.2: Inflation: FR, FN, IR
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Contrary to the Monte Carlo exercise, we set a rather conservative band

width, m  =  0.28n° 79 = 31 and m2 =  0.28n° 49 = 5, in order avoid the influence 

of short term dynamics, especially considering the strong seasonal component 

between m = 32 and m = 33. Since the estimated order of integration was in 

some cases potentially high, we also analysed the first differences of the data.

All the results are presented in Table 3.2.

Notice that if inflation has a non-zero mean, the estimation of 5 (r) from 

data in levels may be subject to a lower order bias because, by truncating the 

sample and padding it with zeros, we induced a change in the mean. This could 

have been corrected by taking mean-differences before truncating the sample, 

but we think it was not necessary in our example: as we saw in Chapter 2, the 

potential lower order bias is going to be a problem only when 6 is relatively 

small, a case that, judging on the full sample estimates S, we can safely exclude.

The estimates 5 of the orders of integration ranged between 0.48 for Ger

many and 0.83 for Italy and Finland. Germany was also the only country with

176



Figure 3.3: Inflation: IT, PT, ES, GR 
—■*—  IT —4—  P T  ES GR

all the estimates ($, £(2), <$1 (r99) and S2 ( t 9 9 ) )  below 0.5, thus not requiring 

first differences to be considered. In general, we used level or first differences 

according to whether the estimated value was in the interval (-0.5,0.75) or 

not, because this is the range for which Robinson (1995b) and Velasco (1999b) 

established root-m consistency and limit normal distribution; in the cases in 

which we had to confront estimates, as in the tests t2, t ( t99)2 and t , the de

cision to refer to either levels or first differences also depended on the other 

estimates, and we then considered levels only for Greece and Austria, besides 

the aforementioned Germany.

Overall, it seems that inflation persistence remained stable over time, rather 

than showing the decay that the Eurosystem might have expected. Indeed, 

the only country for which the hypothesis of stability was rejected with the 

Andrews-type test t2 at the 5% size was Italy, although for France too the test 

statistic was very high, and actually significant at 10% size (we used 7.33 as 

the critical value, interpolating it from the tables in Andrews (1993)). Notice 

that neither for Italy nor France did we consider the test statistic computed
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Table 3.2: Estimates of persistence and stability tests for EMU countries

*(2) 5 <*i (T99) ^2 (^99) t 2 {r99) ? t rn
BD levels 0.26 0.48 0.47 0.46 0.00 2.09 -0.95 342

first diff. -0.37 -0.34 -0.70 -0.20 4.27 9.79 -0.11 345
IT levels 0.93 0.83 0.87 0.71 0.39 2.47 0.44 124

first diff. -0.04 -0.12 -0.13 -0.59 3.56 13.60 0.39 122
FR levels 0.96 0.80 0.84 0.66 0.53 5.51 0.73 154

first diff. -0.10 -0.26 -0.27 -0.76 4.09 7.87 0.74 153
PT levels 0.99 0.53 0.55 0.86 1.64 3.91 2.07 258

first diff. -0.76 -0.48 -0.50 -0.10 2.66 6.58 -1.25 49
ES levels 1.47 0.62 0.66 0.72 0.05 1.35 3.80 170

first diff. 0.45 -0.39 -0.32 -0.29 0.01 5.03 3.75 60
NL levels 0.53 0.79 0.84 0.51 1.92 6.74 -1.17 118

first diff. 0.05 -0.29 -0.32 -0.17 0.35 3.17 1.52 341
FN levels 0.59 0.83 0.80 0.53 1.27 7.26 -1.04 221

first diff. -0.64 -0.30 -0.30 -0.53 0.84 7.07 -1.55 72
IR levels 0.61 0.57 0.61 0.70 0.16 4.25 0.16 117

first diff. -0.37 -0.42 -0.36 -0.40 0.02 8.43 0.23 142
GR levels 0.84 0.47 0.49 0.43 0.05 0.93 1.62 340

first diff. -0.15 -0.48 -0.52 -0.64 0.28 6.86 1.47 67
OE levels 0.52 0.54 0.60 0.71 0.20 2.92 -0.09 139

first diff. -0.59 -0.54 -0.66 -0.23 3.13 7.12 -0.25 237
BG levels 0.44 0.67 0.75 0.43 1.76 8.81 -1.03 153

first diff. -1.04 -0.52 -0.41 -0.27 0.32 1.28 -2.33 83

for the levels of inflation, because the point estimates S were quite above 0.75. 

The interpretation of the estimates was less straightforward for Ireland and 

Belgium, because on the basis of the estimated values 5 one could conjecture 

5 6 (1/2,3/4) if there is no break, so the results should have been similar 

whether levels or first differences are applied, but in the case of the t 2 test they 

were conflicting. We decided to consider the possibility of a break anyway, and 

we estimated the location of the potential breakpoint for these two countries 

too.

The point estimates of the breaks, rn,  were all concentrated in the first 

part of the sample: mid 1982 for Italy, late 1983 for Ireland and late 1984 for 

France and Belgium. Notice these were not actually discussed in Section 3.2,
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where we only derived consistency of r  but not the rate of convergence to r . 

Yet we think that the estimation and comparison of the estimates before and 

after the potential break may still be of interest on occasions, especially when, 

as in this case, additional information is available. It is generally agreed that 

if a change in 8  took place, this was for a reduction of persistence: even if 

the location of the break was not correctly estimated, then, one should have 

expected Si ( r )  > 8 2  ( t ) .  We present the results in Table 3.3: in all the cases 

the break was indeed associated with a reduction in the order of integration 

and, especially for France and Italy, with a rather large one.

The test for a break in 1999 was only significant for Italy (at 10%) and 

France (at 5%), but whether it really reflected a change in 6  at that point or 

responded to the same break detected by the t 2 statistic cannot be concluded 

on the basis of Table 3.2 alone. Table 3.3 however provided an additional piece 

of relevant information: the estimated persistence after the 1982/1984 break 

was approximately the same as that in the sample for 1999 onwards only, so 

one should not expect another break in 1999.

Regardless of this we proceeded to repeat the analysis for France and Italy, 

solely on the sample 1985-2004 and still testing for a break in January 1999: 

again the reliability of the test depends on the precision of the estimation of the 

month of the break, but notice that given the assumption of a non increasing 

8 , if the actual break took place before 1985 then (rgg) still estimated 8  cor

rectly, while if the break took place after that date then <5i ( r g g )  overestimated 

82 and then yielded a larger t ( r g g ) 2 , thus making the rejection of the null of 

no change in persistence more likely. Setting m  = 19 (slightly stronger than 

m  =  0.28n°-79, but necessary to exclude the peak of seasonality), the realised 

t ( r g g ) 2 statistics were 0.01 and 0.12 for levels and first differences for Italy, 

and 0.31 and 0.42 for levels and first differences for France, so the hypothesis
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of a break in 1999 was clearly rejected.

Table 3.3: Estimates of persistence on selected periods
Si ( rb) S2 ( r6)

IT first diff. 0.91 0.65
first diff -0.14 -0.48

FR level 0.91 0.49
first diff -0.22 -0.69

IR level 0.63 0.57
first diff. -0.39 -0.53

BG level 0.91 0.36
first diff. -0.23 -0.44

The breakpoint r^n is 122 for Italy,
153 for France and Belgium, 142 for Ireland.

Turning to t (see again Table 3.2), given the very small bandwidth (m2 =  5 

only) and the small power in the Monte Carlo exercise, we did not expect 

the test statistic to be significant for any country. It was on the contrary 

significant at 5% for Portugal and Spain, and it was just below the critical 

value for Greece (although well above the 10% critical value). This is even 

more surprising considering that the more powerful test t 1 failed to detect 

any change in persistence in these cases. We then interpreted the results in 

a different way. Greece Portugal and Spain were the countries characterised 

by the highest volatility and average inflation, within the sample: the plot of 

their inflation shows a remarkably strong drop in the levels, from about 20% 

or more to 4% or less. Taking into account the analysis we run in Chapter 2 

about the effect on low frequencies of a time-varying deterministic component, 

then, we think that t detected that drop in the mean rather than a change in 

S.

Summarising, according to our results there has been a certain reduction 

in the persistence of the shocks to inflation after 1972, but this seems to be



more related to the initial inflation stabilisation than to the centralisation of 

the monetary policy under the Eurosystem.

3.5 D iscussion

We have studied the local W hittle estimate of the memory parameter in the 

presence of a structural break in the stochastic component.

We have found that the semiparametric design has the advantage of being 

robust to any form of instability in the short memory component. When the 

order of integration itself changes, the highest one is estimated; the lower order 

of integration may at most induce a lower order bias, which can be avoided 

by removing the highest frequencies. We have proposed two tests to detect 

a change in the long term dynamics, but the Monte Carlo exercise and the 

empirical application both showed that only the Chow-type test with unknown 

breakpoint is really reliable, the one based on the comparison of estimates with 

different bandwidths having low power and being too sensitive to time-varying 

deterministic components. Upon having knowledge of a break in 8 , we have 

also proposed a consistent estimate of the breakpoint.

1. Some of the comments, conjectures and potential extensions that we 

discussed in Chapter 2 are valid here as well. We only considered a Type 

I integrated process, but we expect that all the results carry through 

for a Type II as well. Also, we focused on the range of 8  more often 

considered in the literature, but we think that a wider range for 8  could 

be treated, following Velasco (1999b): indeed we assumed this result when 

discussing the empirical example. Finally, we discussed the local W hittle 

estimate, but we also think that the same results apply for the log- 

periodogram regression estimate. Contrary to the case of a time-varying
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mean, though, we do not expect that the results discussed in this chapter 

apply to fully parametric estimates: we think that this difference may 

really motivate a preference for the semiparametric approach in some 

cases.

2 . The theoretical literature seems to treat the two problems of detect

ing a break and of estimating its location as distinct: Andrews (1993) 

for example discussed the former but not the latter. We have followed 

the same approach: we have only proposed a consistent estimate of the 

breakpoint r . It would be interesting to provide a rate of convergence 

for t , and possibly to compare it to the maximum likelihood estimate of 

the breakpoint discussed by Bai and Perron (1998).

3.6  A p p en d ix  to  C hapter 3

P ro o f  of T h eo rem  3.1. Consider E  (I^i (Aj)) first. The expectation is

hon]
—  Y t

\/2nn

bon]

AX it
,  bon]

s== Ea/27m ^5—1

i Xj ( t —s) (3.66)
t,S =  1

where 7 ^  (k ) is the autocovariance. Since 7 ^  (k ) = f *  f a  (A) e tXkd\ ,

1 [Ton] / r  \
E  { I ( 1  {Xj)) = 2 ^  E  ( J  J v -  (A) e -a(t- s>dAj eiAA‘->  (3.67)

182



which we rewrite as

pTY 1 [T0̂ ] \
J  " ( fa  (A) -  / ( 1 (\j))  2^  E  1 (3.68)

/»7T 1 t̂ ori] \

+  1 J  1 ( 1  {Xj) 2 wn ^  e - i(X~Xi)(,- 3)̂  I • (3-69)

The term in (3.69) is

• f e M i f  E  ([r°n ] - |r|)e~i(x~Xs)TdX
J ~ 7r |r |< [r0n]

=  E  / > — -  E  £ \ r \ e - ^ x~ ^ d X
\  k|<[ron) ” M<[toti] 17 /

(3.70)

=  h i  (aj) 2“  [r °nl 2?r =  To"h i  ( x j ) (i3*71)

where we used f ^ e ~ ^ x~Xj r̂dX = 0 for any r  ^  0. To show that (3.68) is 

O (,j ~ l In j X j 2d) we notice that, since the absolute value of the Dirichlet kernel 

is bounded by O (|A|_1) at any non-zero frequency, we can still follow the proof 

of Robinson (1995a).

The same argument can be applied for E  ( /^  (A?)).

Finally, for E  (Aj)), this is

E ( h  12 (A,)) =  E ( v t g
1 [ran] n

= ^ E  E ^ 2  { t ~ s ) e ^  (3.72)
t= 1 S = [ t 0 7i] + 1
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t —1 s= [r o n ]+ l

t = 1 s= ro n + l

(3.74)

and notice that (3 .74) is 0 because (Aj) S ”= f ir e%(Xj ŝ dA =J —7T

0 since t > s. The result then follows using 1 e zsA| =  O ( |A |_1) as for 

example in Robinson and Marinucci (2001), Lemma 3.2, and following again 

the proof in Robinson (1995a).

P ro o f  o f T h eo rem  3.2. We consider Plim 82  ( t)  when r  < To, the other 

cases can be treated in the same way. We follow the proof in Robinson (1995b), 

Theorem 1, replacing H  — 1/2, Hq — \ /2  and Go by d , and — r A^ 1 

respectively; we refer to the original article for a definition of Oi and 02  and 

of S  (d). Introduce

and consider the set 0 i  first. We can follow the proof in the original paper

0 otherwise

(3.75)

and

(3 .76)

up to Robinson’s equation (3.13): when 0  =  0 j  then 82 (r) —>p £1 as n —> 00



is op ( 1). We then Rewrite (3.14) of Robinson as

h 2 (A;)
-  1

9& (Aj)
=  _  PC2 (Aj)\  /z2 (Aj)

\  /c2 (A j) /  Ĉ2 (Aj)

/C2 (A,)
(722 (Aj) — |Q!lj|2 7e (Aj))

+
2 ir

( Toi -  rA )
/ £ (Aj) -  1 (3.78)

where

«ij =  E £ o  /C2 M  = (rf -  t A)  /fi (A) and Ic (A) =  |F£ (A)|2 ,

(3.79)

£U if [rn] +  1 < t < [r0n]
(3.80)£t —

0 otherwise.

Notice that f a  (A) is not actually a spectral density because ( 2 t is not station

ary. The result

E h 2 (Aj) < C  j  =  1,..., ra
PC2 (Aj)

for a generic, positive finite constant C  still follows using (3.19), so

(3.81)

771 — 1

•E ( ;)
r = 1

r  \  2 (A —5 i ) + l  J Y ^ ( \  _  #C2 (Aj)\  ^2 (Aj) 
/c2 (A j) /  Ĉ2 (Aj)

<
2 (A — $i) +  1

(3.82)

for any r] > 0. Next rewrite

S l / ^ - K I 2^ ) !  <  E  |/^2 (A,j — |a y |2 (Aj)| (3.83)

-\-2 E  |Re 7 2̂x2 (Aj)| +  E  \IX2 (A j)| (3.84)

where 7 2̂ (A) is the periodogram of £2t and ^ 2x2 (A) =  (A) Fx2 ( —A).
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The contribution of (Xj) — \aij\2 1£ (Aj) can be discussed as in equation 

(3.17) from Robinson, using the same argument as in Theorem 3.1 to show 

that \lC2 {Xj) - \ a i j \2 I£(Xj)\ = Op ( / C2 (Aj) (In (j + 1 )/ j ) 1/2)  and

771— 1 r \  2 (A —$ i ) + i  \

r=1

following the same steps of Robinson. We are then left with

771—1

IE )r = l

y \ 2 ( A —<5i)+l \
Y  (*j) (2 R ek 2x2 ( \j )  + h 2 (A,))
3=1

which we bound using

“  , r  n 2 ( A - « , ) + 1  1

( — ) -2
z — '  \ m /  r 2
r = l

„ v 1 '1 / r \ 2 ( A - i . ) + i  1
+6 ^  (   ] —2

t—* \ m /  r l
T— 1

y: /c2j (̂ j) 2 Re ̂ 2*2 (Aj)
j=i

j = l

The order of magnitude of (3.87) is

^771 — 1

r=1 J=l

2<Ji /  • \  — 5i— 62
3 \ I 3

n j  2ln j

=  <

O {tiY'~62 ( ^ ) 2(A"'1>+1)  if 2A -  -  «2 <  0

0  ( ( f ) ' 1-' 2 ^ )  if 2A -  <5i -  h  = 0 

t 0  ( ( ^ Y l~S2 i f ) if 2A -  5a -  52 > 0

and all the elements in (3.90) are op (l) using 6 2  < $i and m / n  -  

notice that 5 i < A  +  l/2 ). In a similar way

6 E © 2<A",)+1 ̂  E #  ̂  E (̂ )l = 0 {(rn/nr^)
r=l 3=1

0(1)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90) 

0 (also

(3.91)
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To deal with the final contribution, we notice that

27F (3.92)
( To -  tA)

[ T o n ]  [ r o n ]

= /  a  a \  E  ~ + / A  a \  E  1C0S (s “ 4) £ls£l(’
^ r 0 -  r A J  n  t=[rn] (^ t0 -  r A J  n  [rn]

(3.93)

where with 1 we indicated that summation is done both for s and for
IT 7 lJ

t, provided that t ^  s. A  law of large number argument delivers

1 fion]

77---T\ E  (4 - 1) o (3.94)
(^Tq — T A J  n  t=[Tn]

while for the second term

(r  fion] \  2 [r0n] /  r  \  2

E  E  [c°s(s—t) Aj] £i»£it I =2 e  (E  icos _ )
J=1 s^t [rn] y [rn] V j  J

(3.95)
n /  r \  2

< 2 e  (E  icos _ *) I (3-96)
s^f 1 \ j = l  /

which is exactly the term in the proof of Robinson so the rest of his argument 

applies without modifications.

If @2 is empty, this implies that 82 ( t)  —>p Si. If ©2 is not empty, we have 

also to show that

P  (in f S  (d) <  0)  -> 0. (3.97)

Following the proof in Robinson,

P  (in f 5  (d) <  0)  <  P  <  0 j  (3.98)
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with
2(A-&!)

Cln =

/ S ^ -O i )
( 0  1 < j < P

3 1 / - \ 2 ( A i —5i)
I ( p j  P < j < m

and,
 ̂ m

p = exp(— In j )  so that p ~  m /e  when m  —> oo.
m  

3 = 1

Since
.. m

m e (2 (A — <Ji) +  1)
- 1 > 1,

choosing A < £ i  — 1 /2 + 1 /  (4e) there is i > 0 such that

1 m
— N (ttj — l) >  l +  l. 
m  ^  J ~  j =i

We then rewrite the bound in (3.98) as

/  m

p  - £ K - i ) A f - . U A j ) < o ,
\ m + +  J
\  3= 1

m
i  Y j l p ,  -  l ) A f  (7£2(Aj) +  2 Re (7£2<2 (A,))) <  - t
m  

3 = 1

(  1 m

\  3= 1
1 m

-  J > j  -  l)A f ■ (7£2(Aj) +  2 Re (7£2£2 (Aj))) >  - t
m .

3= 1

Clearly, the probability in (3.103) can be bounded by

P -  ^ f 1 ^ i )  +  2 R e (7«2C2 (Aj))) < - i j

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)
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(3.106)

which goes to zero because the argument of (3.106) converges in probability 

to  0. We show this discussing each term separately: first,

- E Af  Refe2(̂ ))
3 =1

=  o r
lnra

m V n /

)  =  op (1), (3.107)

=  o „ ( l) , (3.108)

while for the two remaining terms,

1 m
- E « , Af  (2 R e/<2{2(A,)) =

i=i

= <MA E ( *
j= 1

=  <

+-E -^  \ P J  \ n  j  \ n  1 j3 = P  \  /  \  /

Or ( ( A)5l_i2 (^ )2(Â 1)+1 + ( f ) Sl~S2 * ? )  if 2A -  5, -  5a < 0 

° P  ( ( f ) il_i2 !5s f )  if 2A — S i  — S 2 =  0 (3.109)

k O, ((® )4‘"* * ? )  if 2A — 5] — (52 > 0

and

1 m
- E  a3Af‘/{2(Aj) =

J = 1
1 P /  * \  2(A—5i) /  - \  26i /  - \  —2^2
1 ^ / 7 1  1 3 \  I J

° d ^ E ( £m 3=1

+-Em z—■' \ p
3= p

Op ((m /n )2(5l_<52)) =  op (1). (3.110)
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The probability in (3.106) then goes to 0. The probability in (3.104) can 

be bounded by
/  i m  \

~  ' (3.111)

which Robinson showed to tend to 0.

P ro o f  of T h eo rem  3.3. As before, we discuss 8 2  ( t ) when t  < tq. Robin

son (1995b), Theorem 2, considered the expansion based on the mean value 

theorem

-1 d R 2 (r)

d=ST
dd

(3.112)
d=S 1

with 18m — <5i| < 82 (r) — £1 : following the same argument of the original 

proof,

■ 4 (3.113)
dd2 d-St

and

m 1/2 d R z  (T)
dd

=  2TO 1 /2  ^  U j ( I- ~ 7 ^ Y  -  1)  (1 +  Op (1)) (3.114)
d=8i  j =1  V 9 \ * j )  J

where
_. m

= ln j -----
3=1

(3.115)

Decomposing l a  (Ai) =  let (A,-) +  2 |R e /(2{2 (A ,)| +  / {2 (Aj) as before, we can
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rewrite (3.98) as

2m-1/2 Vj ( ~TT^T — l )  (1 +  Op (1)) (3.116)

2 m - ' * ± Vi ( l  +  Op(l)) (3.117)
“Z  ̂ V 9 C 2  (AjJ j

2m~1/2 E  " i (1 +  (1)) (3-118)

Making use of (3.78) and of the decomposition following (4.11) in Robinson, 

(3.116) is

m -1/2 [T°n]

( To -  rA ) t=
T .  Qt + op ( 1) I (l +  op (l)) (3.119)

where qt = £\t 5Zs=[rn] sct-s replaces zt in the original proof of Robinson but 

the rest follows in the same way, so m -1/2 X][l°[rn] Qt converges in distribution 

to a normal N  (0, ( t o  — t ) ) .

The result then holds if the two remaining terms are negligible: using 

Theorem 3.1 the term in (3.117) is Op ^ ( m /n / ln m /m 1̂  =  op (1), while the 

other one is Op (<[m/n)2d m 1//2̂ , which is only negligible under Assumption 

3.5’.

P ro o f  o f T h eo rem  3.6 (i). Clearly <$i ( t ) — S2 ( t ) is asymptotically normal, 

being it the sum of two normally distributed random variables; the variance is

Var  (t) -  52 ( t )) .

=  Var  ^  ( t  1 )^ +  Var  (?2 ( t 2)) -  2Cov (ri)  ,S2 ( t 2)^ (3.120)

To compute the last element, we use the same decomposition as in Theorem
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2.3,

[rin]

m 1 / 2  ( ? ,  ( r j )  -  ( 5 )  =  Q  +  O p  ( 1 ) ^  f  2 - ^ a -  X J  I t  +  Op ( 1 )  j  ( 1  +  op  ( 1 ) )

(3.121)

m1/2 (s2 (t2) -  Sj =  ( j  +  M 1) )  f 2 'p ~ A  X j  9i +  op ( l) J  ( l + O p ( l ) ) ,

(3.122)

where here 8 j = S2 = 8  because we assumed no break. The qt in (3.121) 

and (3.122) are martingale differences so Cov ^  (ri) ,8 2 ( t 2)^ =  0 because 

t 2 > Tj. Therefore, as n —> oo,

m Var  ( 8  (ti,T 2)) —> -p— h —  r =  T. 1 — - r .  (3.123)V v u  L))  4t \  4 ( 1  —  r 2 )  4 n ( l - r 2 )  v '

P roof of Theorem  3.8. As before we only discuss the case <5i > 52.

The proof follows from the standard argument for implicitly defined ex

tremum estimates as for example in Newey and McFadden (1994), Theorem 

2.1. Let

Qo ( t)  =  t 5 i  +  ( 1 - t )  (<Jil (r  < r 0) +  S2 1 (r > r 0) ) , (3.124)

clearly To = argminQo (r) and [tj,t/J  is a compact set. Sufficient conditions 

for consistency are (i) upper semicontinuity of (—Qo ( t ) ) ,  (iia) pointwise con

vergence of the loss function in To, i.e.

Qn ( t 0 )  Q o ( t 0 )  , (3.125)
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and, (iib), that as n  —> oo, for e > 0,

P  (( Qn ( t ) )  < (—Qo (r)) +  -> 1 for all r  G . (3.126)

Upper semicontinuity can be easily checked, and pointwise convergence (3.125) 

is also immediate. To prove (3.126), we show the equivalent statement that

P  ((-< ?»  (r)) > (-Q o (r)) +  e) -  0. (3.127)

We bound the expression (3.127) as

P ( ( - Q n ( r ) )  >  ( - Q o ( t ) )  +  £ ,  r  G [ t u T h ] }

< P  (Qo (r) -  Qn (r) > £ , r E  [rz, r 0)) (3.128)

+ P  (Qo (r) -  Qn (r) > £, r  G [r0, r j )  . (3.129)

Notice that, for t  G [ t^ tq ),

Qo ( t )  -  Q n  ( r)  =  S i  -  t S i (t ) +  ( 1  -  t ) S 2 ( t )  . (3.130)

The probability in (3.128) can be bounded by

P  (<5i -  t S 1 ( t )  +  (1 -  r ) ? 2 M  >  £ ,

|^i (-r) — < e/2, ? 2 ( t ) - < 5 i  < e/2, r  6 [ t ( , t 0 ) )  (3.131)

+ P  ( | ? !  (r) -  J j | > e/2, t  e [r(, r 0)) (3.132)

+ P  ( | ? 2  ( r )  - t f J  > e/2, r  €  [ t , , t 0 ) )  (3.133)

and (3.132) and (3.133) go to 0 from Theorem 3.2, while (3.131) is bounded

193



by

p ( t \ 6 i ( t )  -  +  ( 1  -  r )  8 2 ( t )  -  £1 > e,

61 ( t)  -  8 1 < e/2, ? 2 (t) -  <$i < e/2, r  € [rh r 0

=  0 .

W ith a similar argument (3.129) goes to 0 too.

(3.134)
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N otes on Tables 3.4 - 3.9 below

Notes on Tables 3.4 - 3.7:

|  : Consistent for =  0.4 or 0.2 but subject to a lower order bias; 

t  : True value 8 2 =  0.

Notes on Tables 3.7 and 3.8:

the columns represent t tests, so each estimate actually refers to the number 

of occurrences in which the standardised t test exceeded the critical value:

Also, notice the difference between Table 3.7 and 3.8: in Table 3.7 we 

assumed knowledge of the probability limit of the estimate, while in Table 3.8 

we assumed that £1 ( t i)  and S2 (r  1) had the same probability limit, which was 

incorrect under the break in 8 .

Note on Table 3.9:

the columns represent t tests, so each estimate actually refers to the number 

of occurrences in which the standardised t test exceeded the critical value:

?i (1/4): |2 V ^ (l7 4 ) (? , (1/4) -  <5,) | >  1.96,

?2 (1/4): [ 2 ^  ( r0 - 1 /4 )  (?2 (1/4) -  <*i) | >  1-96,

?! (3/4): \2^/mr0 (?! (3/4) -  i j )  | >  1.96,

?2 (3/4): (1/4) (?2 (3/4) -  <S2)  | >  1-96,



Table 3.4: Monte Carlo bias: estimates on the whole sample and on selected
sections only (r =  1/4 and r  =  3/4)

Model n S(2) S (1/4) £2 (1/4) (3/4) 8 2  (3/4)
64 -0.0517 -0.0283 0.0243 0.0177 0.0143 0.0250
128 -0.0239 -0.0166 0.0351 0.0148 0.0171 0.0218

1 256 -0.0210 -0.0116 0.0351 0.0120 0.0139 0.0225
512 -0.0071 -0.0053 0.0305 0.0099 0.0121 0.0213
1024 0.0021 -0.0026 0.0231 0.0104 0.0091 0.0249
64 -0.0340 -0.0208 0.0243 0.0183 0.0171 0.0250
128 -0.0217 -0.0145 0.0351 0.0136 0.0183 0.0218

2 256 -0.0208 -0.0100 0.0351 0.0115 0.0153 0.0225
512 -0.0032 -0.0040 0.0305 0.0096 0.0136 0.0213
1024 0.0082 -0.0008 0.0231 0.0107 0.0107 0.0249
64 -0.0058 -0.1177| 0.0270 -0.1767| -0.06211 -0.0307f
128 0.0036 -0.1014| 0.0358 -0.1595$ -0.0501| -0.0286f

3 256 0.0077 -0.09011 0.0372 -0.1490$ -0.04511 -0.0196f
512 0.0337 -0.0795^ 0.0321 -0.12881 -0.0388| -0.0119$
1024 0.0161 -0.0782t 0.0205 -0.12401 -0.0400| -0.0106f
64 -0.0786 -0.1774$ 0.0270 -0.3234$ -0.13331 -0.0307f
128 -0.0476 -0.15781 0.0358 -0.3035| -0.1142| -0.0286f

4 256 -0.0355 -0.1423J 0.0372 -0.2792| -0.1024| -0.0196f
512 -0.0008 -0.1308| 0.0321 -0.2605| -0.09371 -0.0119$
1024 -0.0063 -0.12551 0.0205 -0.2459$ -0.08971 -0.0107$
64 -0.1146| -0.1059^ -0.0419 -0.1410$ -0.0773$ -0.0307$
128 -0.0937| -0.0958$ -0.0277 -0.1316$ -0.06541 -0.0286$

5 256 -0.0730J -0.0801$ -0.0090 -0.1196| -0.0526$ -0.0196f
512 -0.0546J -0.0737| -0.0055 -0.1092$ -0.0466| -0.0119$
1024 -0.0547t -0.0714$ -0.0055 -0.1054$ -0.0444$ -0.0107f
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Table 3.5: Monte Carlo standard deviation: estimates on the whole sample
and on selected sections only (r =  1/4 and r =  3/4)

---- ---------------- 7̂ ------—̂ ----------- —̂ ----------- — ----------- -7̂ ----------- 1
Model n *(2) s (1/4) S2 (1/4) S i (3/4) S2 (3/4)

64 0.4643 0.1533 0.2817 0.1604 0.1673 0.2885
128 0.3000 0.1115 0.2156 0.1199 0.1178 0.2222

1 256 0.2346 0.0762 0.1616 0.0863 0.0855 0.1625
512 0.1826 0.0552 0.1096 0.0638 0.0627 0.1172
1024 0.1415 0.0409 0.0894 0.0465 0.0468 0.0858
64 0.4803 0.1535 0.2817 0.1643 0.1767 0.2885
128 0.3080 0.1168 0.2156 0.1253 0.1254 0.2222

2 256 0.2442 0.0801 0.1616 0.0890 0.0901 0.1625
512 0.1880 0.0571 0.1096 0.0649 0.0662 0.1172
1024 0.1448 0.0424 0.0894 0.0477 0.0496 0.0858
64 0.4702 0.1726! 0.2922 0.1991! 0.1839! 0.2667!
128 0.3363 0.1350| 0.2215 0.1684| 0.1402! 0.2009f

3 256 0.2873 0.1015| 0.1589 0.1289! 0.1053! 0.1504!
512 0.2277 0.0708| 0.1099 0.0962! 0.0738! 0.1102!
1024 0.1800 0.0539| 0.0838 0.0746! 0.0559! 0.0799!
64 0.4907 0.1849$ 0.2922 0.1768! 0.2004! 0.2667!
128 0.3680 0.1470| 0.2215 0.1586! 0.1561! 0.2009!

4 256 0.3138 0.1120| 0.1589 0.1312! 0.1171! 0.1504!
512 0.2584 0.0815| 0.1099 0.1097! 0.0852! 0.1102!
1024 0.2100 0.0618| 0.0838 0.0922! 0.0637! 0.0799!
64 0.4479| 0.1531$ 0.2816 0.1697! 0.1687! 0.2667!
128 0.3151$ 0.1141$ 0.2168 0.1317! 0.1226! 0.2009!

5 256 0.2634| 0.0857| 0.1518 0.0971! 0.0941! 0.1504!
512 0.2080| 0.0574| 0.1003 0.0699! 0.0640! 0.1102!
1024 0.1567| 0.0442| 0.0794 0.0529! 0.0496! 0.0799!
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Table 3.6: St. dev. from asymptotic theory: estimates on the whole sample
and on selected sections only (r =  1/4 and r =  3/4)

Model n £(2) 5 (1/4) S2 (1/4) (3/4) ^2(3/4)
64 0.2236 0.1118 0.2236 0.1291 0.1291 0.2236
128 0.1768 0.0857 0.1715 0.0990 0.0990 0.1715

1 256 0.1508 0.0651 0.1302 0.0752 0.0752 0.1302
512 0.1291 0.0493 0.0985 0.0569 0.0569 0.0985
1024 0.1066 0.0374 0.0747 0.0432 0.0432 0.0747
64 0.2236 0.1118 0.2236 0.1291 0.1291 0.2236
128 0.1768 0.0857 0.1715 0.0990 0.0990 0.1715

2 256 0.1508 0.0651 0.1302 0.0752 0.0752 0.1302
512 0.1291 0.0493 0.0985 0.0569 0.0569 0.0985
1024 0.1066 0.0374 0.0747 0.0432 0.0432 0.0747
64 0.3162 0.1581| 0.2236 0.2236$ 0.1581$ 0.2236$
128 0.2500 0.1213| 0.1715 0.1715| 0.1213| 0.1715$

3 256 0.2132 0.0921| 0.1302 0.1302$ 0.0921| 0.1302$
512 0.1826 0.0697| 0.0985 0.0985| 0.0697$ 0.0985$.
1024 0.1508 0.05291 0.0747 0.0747| 0.0529$ 0.0747$
64 0.3873 0.1936$ 0.2236 0.3873| 0.1936$ 0.2236$
128 0.3062 0.1485| 0.1715 0.2970| 0.1485$ 0.1715$

4 256 0.2611 0.11271 0.1302 0.2255| 0.1127$ 0.1302$
512 0.2236 0.0853$ 0.0985 0.1707| 0.0853$ 0.0985$
1024 0.1846 0.0647$ 0.0747 0.1295| 0.0647$ 0.0747$
64 0.3162| 0.1581$ 0.2236 0.2236| 0.1581$ 0.2236$
128 0.2500| 0.1213| 0.1715 0.1715| 0.1213$ 0.1715$

5 256 0.2132$ 0.0921| 0.1302 0.1302| 0.0921$ 0.1302$
512 0.1826| 0.0697$ 0.0985 0.0985| 0.0697$ 0.0985$
1024 0.1508| 0.0529$ 0.0747 0.0747J: 0.0529$ 0.0747$
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Table 3.7: Empirical sizes of 5% t  tests: estimates on the whole sample and
on selected sections only (r — 1/4 and r =  3/4)

-  ■■ -------------------- ------ —̂----------1
Model n <̂(2) 5 f t (1/4) f t  (1/4) f t (3/4) f t (3/4)

64 31.4 14.6 12.1 12.0 13.1 12.2
128 22.8 13.4 12.0 11.0 8.7 13.2

1 256 18.9 9.6 11.3 8.9 8.6 12.0
512 16.4 8.0 8.6 8.3 8.2 10.3
1024 13.8 7.4 11.1 7.1 7.4 9.7
64 32.0 16.6 12.1 11.7 15.1 12.2
128 24.3 14.1 12.0 12.5 11.7 13.2

2 256 21.2 11.0 11.3 9.4 10.4 12.0
512 17.5 10.0 8.6 9.0 10.3 10.3
1024 15.3 9.0 11.1 9.2 11.0 9.7
64 15.8 13.9t 13.6 10.2t 10.8t 11.2f
128 13.9 15.5t 14.3 15.lt 11.4t 9.5f

3 256 14.3 19.2t 11.4 20.9t 11.9t 9.2f
512 11.6 21.4t 8.8 23.7t 10.9t 8.5f
1024 9.4 32.3t 9.3 37.5t 13.5t 7.6f
64 12.2 13.7t 13.6 0.9t 11.6t 11.2f
128 11.1 17.6t 14.3 3.6t 13.4t 9.5f

4 256 10.2 23.9t 11.4 9.4t 15.0t 9.2f
512 8.6 33.4t 8.8 26.7t 20.5t 8.5f
1024 8.9 48.21 9.3 47.3t 28.0t 7.6f
64 15.5$ 10.4t 11.4 3.4t 8.9t 11.2f
128 12.3 | 11.7t 12.1 7.3t 9.6t 9.5f

5 256 12.lt 12.3t 9.2 7.8t 9.7t 9.2f
512 10.lt 13.4t 6.5 11.4t 8.6t 8.5f
1024 6.8t 23 .lt 6.9 21.6t l l . l t 7.6f

199



Table 3.8: Empirical sizes of 5% t tests: differences of estimates on selected 
sections (r  =  1/4 and r  =  3/4)

Model n Si (1/4) - S 2 (1/4) 51 (1/4) - 6 2 (3/4) 5X (3/4) - S 2 (3/4)
64
128

1 256 
512 
1024

8.9 10.4 11.0 
8.7 9.2 10.3
8.9 9.3 8.7 
6.3 8.1 8.0 
7.1 8.0 6.3

64
128

2 256 
512 
1024

9.4 10.4 11.0
8.5 9.2 10.1 
9.2 9.3 8.4 
6.9 8.1 7.4 
6.8 ■ 8.0 6.0

64
128

3 256 
512 
1024

19.1 35.0 32.4
22.1 49.8 46.1
27.6 63.2 66.1 
31.4 85.3 86.6
40.7 96.7 98.3

64
128

4 256 
512 
1024

32.7 35.0 . 27.7 
42.2 49.8 38.9 
55.1 63.2 52.3
69.6 85.3 74.4
78.6 96.7 93.7

64
128

5 256 
512 
1024

12.7 15.9 16.1 
14.0 15.8 15.6
14.2 25.0 23.0
16.7 33.4 32.3
24.3 49.6 48.7
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Table 3.9: Empirical sizes of 5% tests to detect a break and sample statistics 
for r

Model n P t r , bias r , st. dev. r , low 5% r, median r , up 5%
64 14.1 16.9
128 13.9 13.0

1 256 10.4 10.1
512 7.6 10.9
1024 7.7 10.4
64 13.8 18.4
128 14.7 13.7

2 256 11.9 11.1
512 8.8 11.2
1024 8.7 10.5
64 45.3 25.2 -0.0259 0.1908 0.1406 0.4688 0.8438
128 58.0 24.9 -0.0294 0.1548 0.1875 0.4844 0.7813

3 256 78.7 26.4 -0.0283 0.1173 0.2461 0.4844 0.6875
512 94.7 30.6 -0.0186 0.0721 0.3438 0.4941 0.5703
1024 99.7 31.5 -0.0145 0.0445 0.4150 0.4951 0.5293
64 42.4 23.5 0.0733 0.2107 0.1406 0.3281 0.8438
128 58.0 25.2 0.0354 0.1725 0.1484 0.3203 0.7969

4 256 74.6 30.4 -0.0008 0.1238 0.1641 0.3203 0.6016
512 93.0 33.9 -0.0155 0.0629 0.2207 0.3242 0.4180
1024 99.8 41.2 -0.0103 0.0420 0.2607 0.3291 0.3682
64 23.1 17.5 -0.0209 0.2318 0.1250 0.4688 0.8594
128 25.2 14.0 -0.0320 0.2138 0.1406 0.4531 0.8438

5 256 32.0 15.0 -0.0403 0.2080 0.1484 0.4531 0.8398
512 41.1 15.7 -0.0356 0.1722 0.1641 0.4688 0.8145
1024 61.4 12.4 -0.0319 0.1316 0.2246 0.4746 0.7314
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Chapter 4

Cointegration in fractional 

system s w ith  determ inistic 

trends

4.1 In troduction

We noticed earlier that economic time series are very often characterised by 

a time-varying mean. In this chapter we discuss a model of fractional cointe

gration for data that are contaminated by one or more fractional deterministic 

trends.

We consider OLS and GLS estimation, in the first case also taking into 

account the situation in which the deterministic component is neglected by 

the researcher. We choose OLS because it is very fast to compute, not requir

ing detailed modelling of the structure of the cointegrated variables and of the 

error term, nor the preliminary estimation of parameters or any other transfor

mation of the data, so it is often used in applied analysis to provide an initial 

indication about the true value of the cointegrating parameter, albeit possibly 

a rather inefficient one. It is then important to assess if the OLS estimate is

202



consistent when the trends are neglected, and to see when the specification of 

the deterministic structure as an additional vector of regressors improves the 

rate of convergence. And of course we discuss a GLS type estimate because it 

is more efficient, and indeed optimal under Gaussianity.

In this chapter we consider fractional integration according to the Type II 

definition. This is because, as we saw in Chapter 1, Type I fractional Brownian 

motion is only defined for a certain range of orders of integration, while we 

want to allow for a potentially larger range. Moreover, this is also the definition 

considered by Robinson and Marinucci (2001) (which we refer to as RM in the 

rest of the chapter) and by Robinson and Hualde (2003) (which we refer to as 

RH in the rest of the chapter) in two very important works in which NBLS 

and GLS estimations of a fractionally cointegrated model are described: by 

keeping the same structure we also make comparison with those works easier.

For the fractional trend, we say wt is a J(d) (deterministic) sequence if

td~ I/ 2
wt ~  ci +  , as t > oo, \wt - w t+i\ < C w t/ t , t >  1, (4.1)

for some finite, non-zero c\. The definitions of 1(d) and J(d) match in the 

sense that:

(i) If wt is 1(d) then A°w f  is I(d  — c); if wt is J(d) then Acw f  is J(d — c).

(ii) If d > 0, then: if wt is 1(d) , E w 2 ~  C t2d~l as t —» oo; if wt is J(d), 

w 2 rsj C t2d~l as t —> oo.

We expect then, in a system containing 1(d) and J(e) sequences, that 

(fractional) differencing has a similar effect on both and that therie will be a 

tendency for an 1(d) component to dominate a J(e) one for d > e, and vice 

versa when d < e. This is most simply seen in an additive model. We consider
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a bivariate observable sequence {xt:yt) given by the components model

x t = 9it{(l>i) +  h i t (5 i) ,  t >  1,

V t  — 9 2 t { 4 >2 )  +  ^2t (^ 2)? t > 1 ,

(4.2)

(4.3)

0 it(0 !) =  M ^ i )  =  P2i(02) =  h2t(S2) =  0, t <  0 , (4.4)

where <fo(d) is J(d) and hit(d) is 1(d), i = 1,2 and the (fa (</>*), hu(6 i) are un

observable sequences. Robinson and Marinucci (2000) discussed a fractional 

model of form (4.2)-(4.4). In particular they considered the asymptotic be

haviour of the sample covariance matrix of (xt,y t), based on observations at 

t = 1, 2 , n, and of the averaged periodogram of (xt , yt), being the normalized 

sum of the periodogram matrix of (xt,yt) over m  Fourier frequencies close to 

the origin, where 1/m  +  m /n  —> 0 as n —> 00; their stress is on cases where 

^  > 0 , Si > 1/ 2 , i = 1, 2 , when the sample covariance matrix and the aver

aged periodogram have the same asymptotic behaviour (since they are equal 

when m  = n, and low frequency components dominate the sample covariance 

matrix). Robinson and Marinucci (2000) described how stochastic or deter

ministic components dominate, depending on the values of the <̂ , Si. They 

also considered estimating the cointegration parameter by a frequency domain 

regression of yt on x t , over a possibly narrow band of frequencies, in case the 

deterministic trend of x t dominates the stochastic one, the reverse takes place 

in the error, and this term is I  (d) with d > 1/ 2 .

Regression relations also arise in case of cointegration. Consistency in coin

tegrated systems involving no deterministic components is due to the domi

nation of the stochastic component of the cointegrating error by that of the 

regressor, while in the case of Robinson and Marinucci (2000) the estimate of 

the regression coefficient is consistent and asymptotically normal due to the 

dominating effect of the deterministic component of x t.

204



Here we look at implications of more general combinations of deterministic 

and stochastic trends as well. On the basis of (4.2)-(4.4), it is supposed that 

Si = 82  = & and there exists v ^  0 such that h,2t(S) — vhit(5) is 7(7 ), 7  < S.

Irrespective of whether or not we commence from the component model

(4.2)-(4.4), we assume the following cointegrated system as data generating

mechanism,

yt = v x t +  j t ^ ~ 1/2 +  Wi«(-7 ), (4.5)
3 =1

P2

x t = J2fj’2jt4>2j~ 1/2 +  u 2i( -^ ) , (4.6)
3 = 1

where in (4.5), (4.6), ut = (uit,U2t)' is a jointly covariance stationary process 

with zero-mean and spectral density matrix f u(A) that is nonsingular and 

continuous at all frequencies;

V ±  0, (4.7)

8  > max(7 , i ) .  (4.8)

This is then the same cointegration set-up of RH, augmented for the two 

groups of deterministic trends.

The truncations in (4.5), (4.6) imply that x t = yt = 0, t  < 0, and that x t , yt 

t > 1, have finite variance. W ithout truncation they would not be well-defined 

in mean square, since 5 > 1/ 2 , while A -7^  is not well-defined in mean square 

when 7  >  1/2. In particular, x t , and thus yt, have variance that increases with 

t (like Note that the elements of u f  are 7(0) processes, while ttit(—7 )

is an 7 ( 7 )  process and U2t(—S) is an I(S) process.

For the deterministic components, we assume that the (f)̂  are real numbers
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satisfying

<̂ n > ... >  ( f ) l p i  >  0 ,

(f)21 >  ... >  ( j ) 2 P 2  ^

(4.9)

(4.10)

and also, for 0 < p n  < P i ,  0 <  P 2 1  < P2,

$ l p n  ^  OS ^IjPu+1 ^  OS

^ 2p2i >  ^  ^ 2,p2i+l <

(4.11)

(4.12)

for Pn =  Pi (P21 = £>2)5 the quantities pn  +  1 (P21 +  1) are not defined, 

so the second inequality of (4.11) ((4.12)) is irrelevant, while for pn  = 0 

(P 21 = 0) all 0j - (4>2j )  are less than 7  (5 ), so the first inequality of (4.11) 

((4.12)) is irrelevant. In (4.5), (4.6) an intercept term appears when 4>\j — 1/2, 

(p2j = 1/ 2 , respectively, while integer powers are also possible, but we allow 

for the <t>̂ to be any real values satisfying (4.9)-(4.12).

The convention that powers of t be denoted (p  ̂ — 1/2  rather than (p  ̂ is 

to enable convenient comparison with integration orders, as indicated by our 

definitions of 1(d) and J(d) sequences. It is possible that one or more of the 

H- are actually zero, though we do not know this, and we define

We allow for this possibility because we wish (4.5), (4.6) to nest the working 

model used in estimation,- and it is possible that one or more regressors 

will be included in the latter whose coefficient is zero. For brevity write (p^ = 

^ijtj ^ 2% = Pit =  P ip ’ P2j = P2p-

We could replace the deterministic terms in (4.5), (4.6) by more general

j + =  min { j  : /zy + 0} , j x =  min { j  : p2j ^  0} . (4.13)
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ones, and in particular could specify su and S2t in terms of bounds, rather 

than precise quantities, or model other particular deterministic components 

like trends with breaks. Yet the current specification allows a very simple way 

to present the results, and it is very often a useful mean of practical guidance 

in case of the existence of other deterministic components (including breaks) 

as well, whereas the explicit formal treatment of a more general model may 

have to come at the cost of a much more obscure statement of the results.

While we allow for non-integer powers ^  ■ — 1/ 2 , this is not on the basis 

of arguing that these are likely to be of great practical value (though they 

may turn out to provide improved approximations to some data), but rather 

because it affords a precise treatment of the competition between stochastic 

and deterministic trends. Indeed, though we mostly regard 7  and 5 as un

known, the </>ij are assumed known; there are difficulties with asymptotic 

theory for, say, OLS estimation of the (f)̂  due to lack of uniform convergence 

of the objective function.

Define, for i = 1,2, the pn x 1 vector sequences

gi(t) =  t > 1, (4.14)

=  (0, t  <  0, (4.15)

and denote by /ii5 i = 1, 2, the pn  x 1 vectors whose j t h  elements are respec

tively pL{j, i = 1,2. In view of (4.13), (4.14) note that y[gi(t) is a J(q^ )  

sequence and p'2g2 {t) is a J ( 4>2\) sequence.

The working models that are estimated are as follows.

W orking  M odel I  This is

yt = vx t + vu (4.16)
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where v is estimated by non-intercept OLS, as if the errors vt were serially 

uncorrelated random variables orthogonal to x t. The main issues here are 

the effect of the misspecification error caused by neglecting the deterministic 

component in (4.5) and simultaneous equation bias due to (4.6); also, notice 

that the error may have a stochastic component subject to autocorrelation due 

to (4.5).

W ork ing  M odel I I  This is

where v and yq are simultaneously estimated by multiple OLS, again as if 

the errors vt were serially uncorrelated random variables orthogonal to x t . 

Here, one issue is the robustness to possible omission of the component Su = 

X q iPll+i . Indeed the /ilj5 pn  +  1 < j  < pi, are not consistently

estimable. Another is the simultaneous equations bias due to (4.6) and error 

autocorrelation due to (4.5).

W ork ing  M odel I I I  This is

where v , /q  and /i2 are simultaneously estimated by a form of generalized least 

squares (GLS) as if vu =  u\t (—7 ), v2t =  u2t{—S), properly accounting for both 

autocorrelation and simultaneity, and with either 7  and/or S assumed known 

or suitably estimated in a side calculation. For our discussion of GLS we 

assume also that

(4.17)

III =  vxt +  n[g-i (t) + »;u , 

x t = /i'2f/2(<) +  v2t,

(4.18)

(4.19)

(4.20)
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where /3 = 5 — 7 . The requirement (4.20) includes the usual case of 1(0) cointe- 

grating errors and 1(1) x t ; the case < \  leads to quite different asymptotics, 

see e.g. Jeganathan (1999), Hualde and Robinson (2002).

The Models I and II extend the set-up of Robinson and Marinucci (2000), 

who considered only a constant in the estimated model; it is also an extension 

because they focused on 7  > max { < ^ ,1/ 2}, 0 2* > 5 only.

The GLS method used to treat Model III is an extension of tha t of RH, 

in which =  0, p 2 =  0 was correctly assumed a priori. Comparison with 

(4.5), (4.6) indicates that in fact vu = Sit + Uu(—7 ), v<it = S2t + U2t(—8), where 

$2 1 — X q lP2i+i/^2 so that we have to show th a t ignoring Si*,S2* has 

no asymptotic effect; in fact none of the (ii3 in s u , s2t is consistently estimable. 

Thus, robustness of RH’s estimates to omission of such will be implied.

In the next section we discuss rates of convergence (if any) and asymptotic 

distributional properties of the estimates of working models I, II and III re

spectively. Proof details are left to the appendices. Section 4.3 contains a small 

Monte Carlo study of finite sample performance, and Section 4.4 an empirical 

application to testing the PPP hypothesis on the basis of data for three US 

cities. In Section 4.5 we discuss our results and some related topics.

4.2 E stim ation  o f th e  co in tegrating  vector

4.2 .1  L east squares estim a tes o f  M od el I

The OLS estimate of v in Model I is

v =  Mxy/M xx, (4.21)



where for any column vector or scalar sequences at, bt , M ab =  Ym =i atK- The 

estimate V has the advantage of not requiring knowledge of 5, (3 and of g\ (t ) . 

Under (4.5), (4.6) with /z^ =  0 for all z, j, RM showed under mild additional 

conditions that V is nmm(2(5-1,/3)-consistent (except when both 5 > (3 and 25 — 

(3 =  1 hold, in which case it is ( n ^ / logn )— consistent).

We introduce

A ssum ption 4.1. The process ut, t — 0 , ± 1 , ..., has representation

ut = A { L ) e u (4.22)

where
OO

A (s)  = h  + Y ^ A j s i ,  (4.23)
3 =1

and the A j are 2 x 2 matrices such that :

(i)

det{j4 (s)} ^  0, |s| =  1; (4.24)

(ii) A(ezX) is differentiable in A with derivative in Lip{rf) , 77 > | ;

(Hi) the et are independent and identically distributed vectors with mean zero, 

positive definite covariance matrix Q, and 2?||£t||9 < 00, q > 4, q > 

2 / (2 5 -  1 ).

This is a fairly general short memory specification for ut , and it includes,

among others, the very popular autoregressive moving average (ARMA) mod-
OO

els. It was introduced by RH, who explained that (ii) implies ^  j ll^ ll <
3 =1

OO 2
and 3 II A? II < with (Hi) it is then sufficient for the weak convergence

3 = 1

of fractional transforms, or central limit theorems, as discussed by Marinucci 

and Robinson (2000). In connection with this, denote by W  (r) the 2 x 1
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vector Brownian motion with covariance matrix and define, for d > 0, the 

Type II fractional Brownian motion

W  (r; d) =  j  T(d) dW  {S) ’ (4’25)
0

and then define W  (r; d) and W  (r;d ) to respectively be the first and second 

elements of the vector A  (1) W  (r; d ) .

Define

i

=  j  W  (r',5)2 dr, (4.26)
0

1

$ 2  =  H2t J  r ^ t - ^ W  (r-,S)dr, (4.27)
0

*3 =  ^ ( 2 ^ ) - * ,  (4-28)

and

=  r  (1 -  e**)-T(l -  e - iA) - 4/ i 2(A)dA, (4.29)
J — I T

^2  =  fi2 (0) sin Sir, (4.30)

where / 12(A) is the (1 ,2 )th element of f u(A), 4/3 is such tha t for 7 > 1/2

1

$3  =  j  W  (r; 7) W  (r; <5) dr, (4.31)
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and for 7  < 1 / 2  >P3 is an 0 P( 1 ) random variable and

I
fi2f J  (r; 7 ) dr if 7  >  0 ,

0 1 _
f  r+t 1/2d W  (r) if 7  =  0 ,
0

1

4*5 =  /'if j  r'l’1'~1/2W(r;6)dr,
0

<̂ it +  4>i%

Also define

4>" =  < M 5 > <fet),

$** =  $ jl(5  =  ̂ t ),

$ 3 *  =  4>3 1 ( 5  <  <A2j ) ,

S'" =  \l>il(7 +  5 < 1, 7  +  ^2t $  ‘/’it +  5 <  1, +  fax <

*5’ =  $21(7 +  5 =  1, 7 >  &), <t>it-5<  a)>

$ 5* =  * s l ( 7  +  5 >  1, 7  >  0 i t , 5 >  0 2 t ) ,

=  '4'41 (7  +  5 > 1, & t < 7, 5 <  <fet)

+ \ t 4l (7  +  5 = 1  and 7  > 0, <  7 , 5 < <£2f)

+ * 41(7  +  5 < 1, <  7, 1 <  ^2( +  7),

(4.32)

(4.33)

(4.34)

(4.35)

(4.36) 

• (4.37)

1),(4.38)

(4.39)

(4.40)

(4.41)
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\J>5* — ^ 51(7 +  (^>1 or 7 =  0 and 5 = 1 ,  0 ^  > 7 , 02* < 5)

+ ^ 51(7 +  5 = 1  and 7  > 0, 7  < 0 lf, 02j ^  <*)

+ 4+ 1(7 +  5 <  1, 02j —  ^  0 i *  +  ^ ) >  (4.42)

4>g* =  4+1(7 +  5 > l o r 7  =  0 and 5 = 1 ,  0 lt >  7 , 02j >  5)

+ 4+ 1(7 +  5 =  1 and 7  > 0 , 0lf >  7 , 02J >  5, </>lt +  02t >  1)

+ 4 + 1 ( 7  +  5  <  1 ,  (f>i|  >  7 ? 0 2 *  ^  ^5 0 i *  +  0 2 *  ^  ! ) •  ( 4 - 4 3 )

Introduce the sequences

kn =  nmax(5̂ \  (4.44)

4  =  n m ax(l ,7 + 5,7 + ^ 2t)<5+ ^ l t ^ l t + ^ )  +  n i o g n l ( 7  +  5  =  1 , 7  >  0 ) .  ( 4 . 4 5 )

T h eorem  4.1 . Let (4-5) - (4*8) and Assumption 4-1 hold. Then as n —*

oo,

( k l / i n) (V ~v)= >  {^;* +  V ?  +  +  «J*} /  {$”  +  2$;* +  $;*} ,

(4.46)

where by “=>” we mean convergence in the Skorohod J\ topology.

We can deduce from Theorem 4.1 exact rates of convergence, if any, of V 

to v. We have:

V =  v +  Oe (n1-2*5) , if S > 02* j 7  +  5 < 1 and 5 +  < 1 (4.47)

V =  v + Oe (n}~25 logn) , if 5 >  </>2j, 7  +  5 = 1  and 7  >  0xj (4.48)

V =  v +  Oe (^7_<5) , if 5 > 02|, 7  > and 7  +  5 > 1 (4.49)
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V =  v  +  Oe (n^1*-5) , if <5 > 02}, </>ij >  7  and 7  +  5 > 1 (4.50)

or 8 > 02j, 02} +  5 >  1 and 7  -+- <5 < 1

V  =  ^ +  Oe (n1-2^2* ), if 02} > S, 7  +  02} < 1 and t +  02} — 1(4-51)

V = v + Oe (n7-^2*) , if </>2} >  7  > 0if and 7  +  02} > 1 (4.52)

17 =  1/ +  Oe (n ^ t- ^ )  ? jf ^  ^  >  /y an(j ^  7- (j)  ̂ > f (4.53)

It follows that 17 is not even consistent when

0lf > max (6, 02t ) , (4.54)

(see cases (4.50) and (4.53)) so that the deterministic trend in the cointegrating 

equation (4.5) dominates both the stochastic and deterministic trends in x t . 

Otherwise, V  is consistent.

Notice that 02} > 0 2} means that although both yt and x t have a J  (02}) 

component, the cointegration residuals yt — vx t have only a J  (0q) term, a 

situation tha t Ogaki and Park (1997) referred to as deterministic cointegration.

The case max (5, 02}) > 0 lt is very common in applied works, where usually 

0!} =  1/2 and often 02} =  3/2 or at least S > 1/2. If, for instance, we consider 

the four popular examples discussed by Engle and Granger (1987), we always 

have 0 j} =  1/2  and S > 1/ 2 , and in three cases (consumption and income, 

wages and prices, money and income; the fourth case is long and short term 

interest rates) we can also conjecture 02} =  3/2. OLS could then provide a 

valid albeit inefficient first step indication of the value of the cointegrating 

vector in many applications.

It is also of interest to see in which other situations the deterministic com

ponent worsens the rates of convergence, and in which ones it improves them,
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with respect to those found by RM. In (4.50), with 7  < (p^ < 5, the deter

ministic trend in (4.5) worsens m atters relative to the rates in RM, whereas 

in (4.51) and (4.52), with (p2̂  > S, the dominating deterministic trend in x t 

improves rates; in (4.53) both deterministic trends dominate the corresponding 

stochastic ones, and the improvement on the situation of no trends depends 

on whether (p^ — 7  > (p2\ — 5 or the reverse. Finally, in cases (4.47)-(4.49) the 

same rates are achieved, stochastic trends dominating.

We can deduce from Theorem 4.1 more precise results. These are compli

cated in case of equalities <p2̂  =  <5 and/or <p̂  =  7 , so we look only at strict 

inequalities. With 7  > (p^, 5 > 02j the limit distributions corresponding to

(4.47), (4.48) and (4.49) are identical to those of RM Propositions 6.1, 6.2 and 

6.5. In (4.52), with 7  > <p̂  and <p2$ > S, stochastic trends dominate in (4.5) 

and deterministic ones in (4.6), and — converges to the normal vari-

ates 4>3 1^ 4, while in (4.53) with < p > 7 , cp2j > S, — v) converges to

the constant $3

The familiar case in which x t contains a unit root plus linear trend, and 

cointegrating errors that are 7(0) (7 =  0, S = 1, <p̂  = 0.5, (p2$ = 1.5) comes 

under (4.53).

The frequency domain regression by Robinson and Marinucci (2000) falls 

under (4.52) with 7  > 0 l t , (p2$ > 5: they assumed 7  > 1/2, £ +  7  > 1 

and in that case the simultaneous equation bias does not affect the rate of 

convergence of the estimate, irrespective of the fact that only a narrow band 

or all the frequencies are used.

RM though also showed that with no deterministic components and 7 + 5 < 

1 (or 7 > 0 , 7  +  5 = 1 )  the simultaneous equation bias does indeed result in a 

slower convergence of OLS when compared to a frequency domain regression 

on a shrinking subset of frequencies: that would apply to the situations (4.47),

(4.48) and (4.51).
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4 .2 .2  L east squares e s tim a tes  o f  M o d el II

The OLS estimate of u+ =  in Model II (4.17) is

v + — Mx+x+M x+y , (4.55)

where x +t =  (xt, g [ ( t ) ) ' .  Define the sequence

mu = {nmax̂ 1,7+<S’7+<̂ 2̂  +  n l o g n l (7 +  d = 1, 7  7  ̂ 0)} , 

and the matrix sequences

B n =

Din(d) =  diag {n^il+d, ..., n^ipii+d} , i =  1,2.

(4.56)

kn 0
, =

i
3 3 r o

. 
1

0 A»(o) 0
(4.57)

(4.58)

For i , j  = 1,2, define the pn x pji matrix Ey(c, d), having (k,l)th  element 

((fiik + <t>ji — c — d)-1, and th ep n  x 1 vector T, having kth  element ( îfc +  ̂ t ) -1- 

Also define

/ 9 \{r)W  (r \5 )dr , 
0

= 11(0 , 0);

(4.59)

(4.60)

(4.61)

* 7 =  [  w (r , \)dW{r) + £  Cav(u10,u 2j), 6 = 1 ,  (4.62)
J  0 j ——oo

= [  W (r;5)dW (r), S > 1; (4.63)
./o
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f  gi(r)W  (r;7 ) dr if 7 > 0 
*8  =  { 0 ! __ (4.64)

f  gi(r)dW  (r ) if 7 =  0.
0

Let

and

=  ^ l ( S  > 02t), (4.65)

(4-66)

$ * *  _ l_  < £ * *  7 .  < £ * *  <p**' _(_ $ * *

<f> =  [ | , (4.67)
4>J* +  $£* 4>6

and also

4 7 * =  1 'il(7  +  5 <  1, 7 +  ^ t  <  1). (4.68)

«;** =  4-2l (7  + 6 = 1 ,  <j>2 t< 8 < 1), (4.69)

« T  =  4-3l (7  +  5 > 1, 5 >  </-2t, 7  > 0), (4.70)

4-4** =  4-4l(7  +  5 > 1, 5 <  02()

+ 4-4l (7 +  5 =  1 and 7  >  0, 5 < 02()

+\I-41(7 +  5 < l o r 7  =  0 and 5 =  1, <f>2f + 7  >  1), (4.71)

4-)** =  4-71(7 =  0, 5 > m a x ^ ,  1)), (4.72)

and

1 2 3 4 1  (4.73)
y %

To avoid multicollinearity in case x t is dominated by an element of ^ ( 0  

we introduce

A ssu m p tio n  4.2. I f  S < then <f2% 7  ̂ 4>\k f or h £ {1, -
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This assumption is slightly different from (4.54) because it refers not only 

to <j>̂ but to the other (plk, k = 1 , ...,pn , as well, and because it replaces 

the inequality with a milder not equal. Assumption 4.2 should be met in 

many empirical applications: this is the case for all the examples discussed by 

Engle and Granger (1987), and indeed of the very general framework 6 > 1/ 2 , 

02t ~  3/2 or 1/2, =  1/ 2. It is also not uncommon in the theoretical

literature, albeit it is not often explicitly stated: Hansen (1992) and West 

(1988) implicitly had it, because they considered (//n , ..., fjLpl)' — 0 in (4.5), 

and so did Johansen (1991), because he discussed =  1/2, S = 1. Park and 

Phillips (1988) on the other hand considered several combinations of stochastic 

and deterministic trends, including the case < 5 = 1 ,  </>2j =  3/2 (j)^ =  3/2, 

in which this assumption is not met. Notice that in that case the fate of 

convergence of the regression estimate of the cointegrating parameter is lower 

than stated in Theorems 4.2 and 4.3 below: we refer to  the comments of those 

theorems and to Subsection 4.2.4 for a more detailed explanation of why this 

should be the case.

T h e o rem  4.2. Let (4-5) - (4-8) and Assumptions 4-1 and 4-2 hold. Then 

as n —> oo,

C ~ ^ B n (V+ -  «/+) => (4.74)

The cumbersome norming (where indeed 4> can be stochastic) is to enable 

a neat, general statement, Cn and Bn not commuting with the non-diagonal 

matrix <f>, but we can readily deduce more comprehensible conclusions. Due 

to the sufficient accounting for deterministic trends in (4.5), v is always con

sistent. We have the following cases, that we classify according to whether the
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stochastic or deterministic component of x t dominates:

S  : 5 >  (j) 2 j ; 

D : 5 < (j>2t.
(4.75)

S

D

v — v = Oe(n1-2<5), if 8 > 02p 7  +  5 < 1, (4.76)

v — v = Oe (n1- 2<5logn) , if 5 >  02p 7  +  <5 =  1, 7  > 0, (4.77)

v — v = Oe (™-1) , if 7  =  1 — ^ =  0, (f>2j <  1, (4-78)

v — v — Oe (n y~s) , if S > (f)2j, 7  +  £ > 1, (4.79)

1/ -  1/ =  O e  (n1 2<̂ t ) , if 5 < </>n , 7  +  <j>2 X  <  1 ,

V — V =  Oe ( ^ _ 1 )  , if 5 < <t>2\ — I j  7 =  0 ,  

v - v  = Oe (n7-02*) , if 5 <  </>2t, 7  +  <j)2X >  1.

(4.80)

(4.81)

(4.82)

When 5 > 02j the limit distributions corresponding to (4.76)-(4.79) are those 

of RM (see Propositions 6.1, 6.2, 6.3, 6.4 and 6.5). When </>2j > m ax(5,1 — 7 ) 

we deduce that

7 ^ - 7  0

0 £>in(-7)
(v+ -  i/+)

- - - 1 -

4>3 * 5 ^ 4

1--
---

---
-

m

1
to

1

00
1__

__

(4.83)

where the right side is a multivariate normal vector.

The case 7  =  0,_<5=1, =  1/2, <j>2̂  =  3/2 comes under (4.82), and the

vector V+ has the multivariate normal distribution (4.83).

Notice that once that gi (t) is taken into account, the deterministic compo

nent never worsens the rate of convergence with respect to RM, and it actually
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improves it when </>2j >.5. This result is hardly surprising: OLS (and GLS) 

can be intuitively described as an attempt to explain the dynamics of the de

pendent variable using the dynamics of the other ones, and this is easier the 

stronger is the signal in the explanatory variables as opposed to the noise in 

the residuals. The deterministic trend, when present in x t but not in the resid

ual yt — vxt, contributes to make the signal stronger. This also provides an 

intuitive explanation of why Assumption 4.2 is needed: otherwise the trend in 

x t would not necessarily provide an indication for the long term dynamics of

The presence of a deterministic trend is also important because, as RM 

showed, the rate of convergence of the OLS estimate may be effectively wors

ened by the simultaneous equation bias when 7  +  5 <  1 (except if 7  =  0 , 

5 = 1) and there is no trend: this though does not happen if there is a trend 

and (j)2j +  7  > 1.

4 .2 .3  G enera lised  least squares e s tim a te s  o f  M o d el III

The two OLS estimates are computationally convenient, especially as they both 

avoid the necessity of knowledge of memory parameters and do not require their 

estimation. However, even when they converge, their rates are not in general 

optimal, and their limit distributions are for the most part inconvenient for 

practical use.

To remedy these drawbacks we consider GLS estimation. For c, d >  0, 

define

zt(c,d) = (yt(c),xt (d))', (4.84)

wt(c,d) =
Acx t AVi(i) 0

(4.85)
 ̂ 0 0 Adg'2(t) J
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(4.86)

Thus (4.18), (4.19) can be written

zt( 7 , 6) = w't{ 7 , 5)i/++ +  vtl (4.87)

where now vt = ( ^ ( 7 ), v2t{5))'. In RH the right hand side was simplified

by the correct assumption that fa = 0, fa =  0 and vt =  {u\t,U2t)'• Here

we simultaneously estimate v  with fa, fa  and show that Sit,S2t, the trends 

which have orders ( f ) l k  < 7 , </>2j  < 5 and are not included in g\ (t), p2 (t), exert 

negligible effect.

As in RH we construct two kinds of estimate of GLS type that allow for 

flexible parametric modelling of / U(A), that is, the autocorrelation structure of 

ut , and that either depend on known 7 , S or allow substitution of estimates of 

these without affecting limiting distributional properties. One kind of estimate 

is ’time-domain’, the other is ’frequency-domain’, and the practitioner’s choice 

between them is based on computational considerations and taste.

The time-domain estimate involves autoregressive (AR) transformation. 

Prom Assumption 4.1, ut has an AR representation

B(L)ut = et, (4.88)

with B(s) = I 2 — X q li BjS3, such that the Bj are unknown 2 x 2  matrices. 

We know functions 0(h), Bj(h), where h G Mp, p > 1, such that 0  =  0(0), 

Bj =  Bj{6) for some 6 G R. Define B(s\ h) = / 2 — Bj(h)s3 and then

71
a(c, d, h) =  y^{S(L ;fe)tt);(c ,(i)} 'n(/j)-1 {B(I,;ft)zt (c>(i)}, (4.89)

t =  1 
n

b(c,d,h) = ^^{B (L ',h )w 't(c,d)y  0 (h ) -1 {B(L;h)w ft(c,d)} . (4.90)
t = 1
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Each of the AR transformations is truncated since wt(c,d) =  0, zt (c,d) — 0, 

t  < 0. Now write

v++(c, d, h) =  b(c, d, /i)- 1d(c, d, h) (4-91)

and consider

£++(7 , M ) ,  £ + + (7 ,M ), ^++(7 , M ) ,  £ + + (7 ,M ), £++(7,M )> (4-92)

for given estimates 7 , d, 0. These estimates of is++ respectively cover the 

cases in which 7 , d and 9 are all known, 7  and 6 are known but 6 is not, 

only 8 is known, only 7  is known, and 7 , 8 and 6 are all unknown. Thus 

£+ + (7 ,8,0) covers the familiar case where 7  =  0 , 8 = 1 is known, and ut is, 

say, white noise or AR(1); £++(7 , 8, 9) with 8 =  1 accepts the evidence of unit 

root behaviour suggested by a number of empirical studies of macroeconomic 

variables but allows for the possibility of long memory or mean-reversion in 

the cointegrating error; ^++(0, d, 9) insists only that the cointegrating error has 

short memory, possibly white noise; and £++(7 , d, 9) is completely agnostic.

When ut is a not a finite-degree AR process u++ can still be computed, 

but the following frequency-domain estimates may be preferable, making use 

of the neat form of the spectral density matrix f u(A) when u t is a finite-degree 

moving average (MA) sequence or a more general ARMA process, or in some 

other models. Let f u(X;h) be a known function of A G (—7r, 7t] and h G Mp, 

such that f u(X;9) = f u(A), so

/„ (A; h) = (2,ir)~1B(eiX] h ) -1n{h)B{e~iX', h)~v . (4.93)

Let Fw^d)(X) and Fz(c^){A) be the Fourier transforms of the vectors wt (c: d)
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and z t ( c , d ), and put

a(c, d, h) =  Fw{c4)(Xj ) fu(Xj ;h) 1Fz[c4){-Xj),  (4.94)
i

b(c,d,h) = E F w(Cid)(Xj )fu(Xj ;h ) -1F^(cd)( -X j ). (4.95)
j = i

Define

v++(c, d, h) =  6(c, d, /i)- 1a(c, d, d). (4.96)

Consider the frequency-domain variants of the five estimates (4.92),

£ + + (7 ,M ), P+ +(7 ,M )i £++C?,M ), £ + + (7 ,M ), £+ + (7 ,M )- (4 -97)

When vt = {v\t, v2t)' is a priori white noise, V(c, d, h) =  P(c, d, h).

To handle the last four estimates in (4.92) and (4.97) we introduce the 

following further assumptions. Denote by 0  the compact set of all admissible 

values of 9.

A ssum ption 4.3.

(i) f u (\-,6) = f u ( \ ) .

(ii) fu (A; /i) has determinant bounded away from zero on ([—7r, 7t] x  e).

(Hi) fu (X; h) is boundedly differentiable in h on ([—7r, 7r] x  ©), with derivative

that is continuous in h at h = 6 for all X.

(iv) f u (A; 6) is differentiable in A, with derivative satisfying a Lipschitz con

dition of order greater than 1/2 in X.

(v) (d/dh) f u (A; h) is differentiable in X at h = 0, with derivative satisfying 

a Lipschitz condition of order greater than 1/2  in A.
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A ssum ption 4.4.

(i) There exists C < oo such that

|7| +   ̂ < C, (4.98)

and p > max (0,1 — (3) such that

7  =  7  +  Op (n p) , S =  5 +  Op (n p) . (4.99)

(ii)

6 = 0 +  Op(n *), where 6 E 0 . (4.100)

As for Assumption 4.1 above, these too are identical to assumptions in RH.

Assumption 4.3 seems very mild, and it is satisfied by any stationary and 

invertible ARMA model.

As for Assumption 4.4, condition (4.98) is standard and it is met for ex

ample when 7  and S are assumed to lie in a compact set, as is the case when 

they are estimated by implicitly defined extremum estimates, but (4.99) and 

(4.100) need a comment. Considering the second part of (4.99) first, the esti

mation of 8 in RH can be based on the W hittle estimate discussed by Velasco 

and Robinson (2000) (indeed, given the assumption (3 > 1/2, even some semi- 

parametric procedures may satisfy the requirement for 8). If the data are 

contaminated by a known polynomial trend, it can be removed by a prelimi

nary regression of x t on g2 (t ), so that 8 is then estimated from the residuals. 

For this purpose we should first prove that the W hittle estimate discussed by 

Velasco and Robinson is root-n consistent even when computed using those 

residuals rather than a zero-mean, I  (8) stochastic process. This seems indeed 

to be the case but, as is often the case with justifying insertion of residuals
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in implicitly-defined estimation procedures, the proof is rather tedious so the 

details are not pursued.

Alternatively, if all (j)2j — \  in #2(£) are integers, the use of Velasco and 

Robinson’s (2000) procedure based on the raw xt , but using a Kolmogorov 

taper of sufficiently high order, will exactly remove such a polynomial trend. 

Strictly, this does not require knowledge of </>21, but rather of the largest value 

we might anticipate for </>21. On the other hand, we might carry out the initial 

OLS estimation by including such arbitrarily large powers of t, so there may 

not be a great deal to choose between the two approaches. The higher the 

taper order, the greater the imprecision in estimation of 8, while inclusion of 

unnecessary regressors in the OLS approach is liable to have similar effect. 

The OLS approach has the advantage over tapering that non-integer powers 

of t may be employed. Tapering seems to be needed anyway to estimate large 

enough values of 8 in the Velasco and Robinson (2000) approach, unless some 

preliminary information on the range in which 8 lies is available, and then 

large 8 can be estimated after differencing the data an appropriate number of 

times.

Velasco and Robinson’s (2000) approach can again be considered to esti

mate 7, with the use of residuals from the regression of yt on xt and g2(^) 

apparently necessary, while tapering is then unnecessary if 7  < \  is antici

pated. Notice though that discussing the same problem in a situation in which 

no trends were present, Robinson (2005b) showed root-n consistent estimation 

of 7 (and of 0) is possible when the residuals are computed using an estimate of 

the cointegrating parameter that converges to u fast enough, the required rate 

being n5~1~e for e > 0 and provided that 8 >  7 +  1/2. W ithout deterministic 

trends in the model, an OLS estimate only meets this criterion when 7 +  5 >  1, 

although the NBLS also meets it when 7 +  8 <  1; when deterministic trends 

are present and <fi2\ > 8, the milder </>2j +  7  > 1 may be required.
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An alternative approach to estimate 7  can be based on Chen and Hurvich 

(2003). They employed tapers in estimating the cointegrating coefficient in 

a fractional system with deterministic trends. The idea of tapering the data 

in a regression framework is not new: earlier, Robinson (1986) had employed 

tapering in reducing errors-in-variables bias in band-spectrum regression in 

which (contrary to Robinson (1994b)) bands do not degenerate asymptotically 

and the processes have short memory. Chen and Hurvich (2003), however, 

are concerned with estimating the relation between underlying (possibly non- 

stationary) stochastic components that are corrupted by deterministic trends. 

These (assumed to be polynomial in t with integer exponents) are handled by 

differencing, with tapering then employed in a modification of the narrow-band 

least squares regression estimate of Robinson (1994b). The estimate of v is 

not optimal but has the rate of convergence required by Robinson (2005b) to 

obtain root-n consistent estimates of 7 .

The estimation of 9 can be based on the same procedures: indeed the Whit

tle estimation that we proposed for 8 and 7  should also give root-n consistent 

estimates for those 6 parameters that axe in the pseudo spectral densities of 

u\t ( — 7 ) and of U2t (—8). This procedure does not include the elements of the 

pseudo cross-spectrum, because Velasco and Robinson (2000) only considered 

univariate processes, but it could be extended by considering the two resid

uals processes jointly, in the same way as Lobato (1999) did for the univari

ate Gaussian semiparametric estimate of the memory parameter of Robinson 

(1995b).

Define

/  r(<fe +  1/2) + 1/2) \  . , „ 1m,
i( ) { r (^ ! - d  + 1/ 2) ’ r ( ^  - d  + 1/ 2) /  ’ ll2> (4-101)
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Q(r) 
(

\

w  (r; 0 )1 (6 >  <t>n ) + < 4>n ) 0

^i(ry)9i{r)r~1 o

0 A2 {S)g2(r)r-5 /

(4.102)

and introduce the matrix sequence

Dn =

n max(<5,</>2t) - 7  q  q

0 A n (~ 7 ) 0

0 0 D2n( S )  )

(4.103)

T h eo rem  4.3. Let (4-5) - (4-8) and Assumptions 4-1 - 4-4 hold, with 

q > 1 /(2/3 — 1) in Assumption 4-1- Then, denoting by v++ any of the estimates 

in (4-92) or (4-97), we have as n —» oo,

- l

Dn ( P "+ -  J/++) =» |  J  Q(r)fn(0)-1Q'(r)dr j. 2tt J  Q(r)B  (1)' Q -'d W  ( r ) .

(4.104)

As in RH we find that we can estimate v, along with /q , /i2, as well without 

knowing 7  and/or <5 and/or 6 as knowing them, so that efficiency of estimation 

of 7 ,5  and 6 does not matter.

When 5 > we have precisely the same limit distribution and rate of 

convergence for v** as the estimate of RH, which ignores the possibility of 

trends, and the same limit distribution. The distribution is changed when 

5 = 02p but the rate of convergence is not. When 5 < <f2% the rate is faster 

than in RH. This confirms the finding we made discussing Model II that when 

the deterministic component is relevant (i.e. when 0 2f > 8), it does contribute
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to increase the precision and it should then not be removed (whether by dif

ferencing, tapering, or by filtering the data with a preliminary regression).

When 5 > </>2j there is mixed normal asymptotics as in RH, as there is 

also for £ =  2{, while when 5 < 02j the limit distribution is normal, as in

the classical case 7  =  0, £ =  1, (f>̂  = 1/ 2 , 02j =  3/2. Thus in all cases we 

can expect Wald tests on z/++, for example tests on v (such as v = 1 as in 

PPP  testing) or on pLx (e.g. =  0, to test whether deterministic trends affect

yt only through x t), to have standard, y 2, asymptotics. For this purpose, we 

introduce the null hypothesis:

Hq : E v ++ =  e, (4.105)

where E  is a given q x (1 +  p n  +  P21) matrix of rank q < 1 +  P11 +  P21 and e 

is a given q x  1 vector.

T h eo rem  4.4. Denoting by b** any of the quantities b(c,d,h), b(c,d,h), 

with c =  7  or 7 , d — 5 or S and h = 0 or 9, under (4-105) the Wald statistics

(EV*+*+ -  e)' (Eb**-1# ) - 1 (E  p ;v  -  e) * 2, as n -+ 00 . (4.106)

4 .2 .4  C o in tegration  w ith  com m on  d eterm in istic  tren d

When Assumption 4.2 is not met, the explanatory variables x t and t*ifc_1/ 2 are 

collinear in large samples for some k G {l...pn}, so PlimB~1 Mx+x+ B ~ 1 cannot 

be inverted.

We solve the problem by removing from x t those trends that are also present 

in gi (t ). Let be a p n  dimensional vector having kth  element

M23 if Mu ^  0 and <t>ik = <hj for a j  €  {l...p2i} l

0 otherwise,
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and introduce

P21

4  (t) = 92 (t) -  (t) = E  / 4 A “1/2
J=1

(4.108)

where the weights are

A . 0 ii for a A: £ {l...Pn} and such that / i 1 t  ^  0
=   ̂ ^  ™  r  (4.109)

fi2j otherwise,

so they are the original weights unless the trend is common both to gi (t) and 

to #2 (t ), in which case they are replaced by 0. We can then define

f  =  min { j  : j  e  { I - P 21} , l4, ^  0} (4.110)

and introduce the abbreviation <f>2̂  = (f>2j<>' this indicates the trend with 

higher exponent among those of x t that are not present in g\ (t). Introducing 

the (invertible) matrices

(4.111)
1

G+ =
0 A>11

1 0

G++ = 0 ^Pll 0

0 0 -̂ P21

(4.112)

we can then transform (4.17) and (4.87) in

Vt = x'+tv+ +  vt = x'+tG'+G~lfv+ +  vt = x%v% + vt (4.113) 

zt( 7 , 6) =  w[( 7 , 5)v++ + vt = w f (  7 , S)i/%+ +  vt (4.114)

where x%t =  G+x +t, v% = G+Vv+, w?(y,6) =  G++wf{7 , J), v%+ = G++V++.
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Theorems 4.2 and 4.3 can then be formulated for v \  and for and the

properties of these estimates can be derived. This essentially entails reformu

lating the elements in Cn, 4>, B n, \I>, Dn, Q(r)  in terms of 02<> rather than of 

$2\’

The statements axe then omitted because we prefer to keep the focus on 

the discussion rather than on the notation.

In order to comment on the effects of the transformations (4.113) and

(4.114), let and be the OLS and GLS estimates of i/°, the coefficient 

of x t — Ki'gi (t) in the transformed models. Since, in both the cases, v = v®, 

we can derive the properties of the estimates of the cointegrating parameter 

in the original models simply by looking at the estimates in the transformed 

models instead.

The main conclusion is that, since 02<> > 02* j the ra ê convergence of 

to v  is lower than what is stated in (4.80) - (4.82); in the same way, the rate of 

convergence of to v is lower than n^2*-7 . Also notice that the new rates 

may depend on 5 as well, because there may be cases in which 02j >  S but

^  >  020*

We illustrate these comments with an example. Consider

where £Ul e^t are I  (0) processes and ^  0, fi2 ^  0, so that 7  =  0, S = 1,

(4.115)
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0n =  021 =  3/2. Then

PlimBn lMx+x+B n 1

Plim
n - V 2 0 E L i  *tt n~3' 2 0

0 n -3 /2 e ?= i x t* E L i  *2 0 n -3/ 2
- -

/4  th 

^2  1

which, as we anticipated, cannot be inverted. By applying

G+ =
1 - i h .  

0 1

the new regression model is

(4.116)

(4.117)

y, = iZ-’xf + n^t  + su , (4.118)

where actually x f  =  Y ll= i £2s, v** =  v , =  f t  +  J'ft and x'(+ =  (£ ]‘=1 £2«, t )  ■ 

Since Assumption 4.2 holds in the transformed model, Theorem 4.2 can then 

be applied and vP — — Oe (n_1). Moreover, since =  z/, it also holds that

v — v =  Oe (n_1). The rate of convergence n is then less than the n3//2 we 

would have obtained if =  0.

A similar treatment of course allows the calculation of the rate of conver

gence and of the limit distribution of the GLS estimates P**0 and then of P**: 

in this example, P** — v = Oe (n-1).

These results have a fairly intuitive explanation, that complements the com

ment on the faster rate of convergence induced by some deterministic trends. 

We already noticed that, when <j>2̂  > S, the information about the long term 

dynamics in x t is mainly conveyed by the deterministic trend ^ j - 1/2, but when
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Assumption 4.2 is not met, the contribution of that component of x t cannot 

be distinguished by the term in gi (t), so other components of Xt, of a lower 

order, must be used to derive a pattern for yt that is common to x t only: in the 

example (4.115), the linear trend characterises both x t and g\ (£), so Yll=i £is 

has to be used instead.

4.3 M onte Carlo sim ulations

We have encountered convergence rates and limit distributions that can vary 

substantially across both types of estimate and memory characteristics of the 

data generating process. In order to investigate how reliable a guide the as

ymptotic theory is in moderate-sized samples, a small Monte Carlo study was 

carried out. We generated data  from (4.5) and (4.6) for several combinations 

of stochastic and deterministic trends. Two different specifications for each 

equation were employed. For the cointegrating equation (4.5) these were:

D T la  : pi = 1; fiu  =  1; 4>n  = 0.5.

D T lb  : pi =  1; /xn  =  p 12 =  1; </>12 =  0.5, 0U =  1.5.

For the x  equation (4.6) they were

DT2a : p2 = 1; /%  =  1; <j>2i =  1-5.

DT2b : p2 = 2; p,21 ~  ^22 ~  ^22 ~  ^21 =  2.5.

Thus D T la  consists only of an intercept, while D T lb  is a time trend; DT2a 

and DT2b include no constants, the former consisting only of a linear term, the 

latter a linear and a quadratic. We employed all four combinations, DTa = 

D T la  x DT2a, DTb = D T la  x  DT2b, DTc = D Tlb  x DT2a  and DTd  =  

D Tlb  x  DT2b. The stochastic component of the model was specified as follows. 

We took Aj = 0, j  > 1, in Assumption 1 where the covariance matrix 0  of
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Gaussian ut = £t was given by

i
r  o r 2

n  = i (4 .ii9)
PT2 1

for varying p , r . Our stochastic trends for the cointegrating equation and the 

x  equation were then determined by the following six choices of (7 ,5):

S T a : ( 7 , 5 ) - ( 0 , 0 .6)

STb:

cTcTII'<r

STc: (7,-5) =  (0 , 2)

STd: (7,5) =  (0.4, 0.6)

STe: (7,(5) =  (0.4, 1.2)

S T  f: (7,(5) =  (0.4, 2)

Notice that STd  is not covered by the theory for our GLS estimate. We 

considered each of the 24 combinations of the 4 T T ’s and 6 S T ’s. Finally we 

took v = 1.

Our design includes cases where the deterministic trends improve, leave un

changed, or reduce the rate for V,  or even make it inconsistent, and cases where 

rates for V and V are either unchanged or improved. Nevertheless, it would be 

possible to choose combinations that might seem more ’’interesting” in view 

of the various outcomes reported in Subsections 4.2.1-4.2.4. Our choice is mo

tivated by two factors. One is to enable comparison with the design of RH, 

who used precisely the same S T ’s, and values of p and r ,  with no D T ’s, and 

computed V  and the GLS estimate of Subsection 4.2.3 simplified by (correctly) 

assuming no deterministic trends. The other is that non-fractional powers of 

t in the T T ’s seem rather typical of current macroeconometric practice. How

ever, our simulations fall very far short indeed of providing a comprehensive

233



study, especially as behaviour will vary with the as well as the 5 not to 

mention being affected by the presence of short memory autocorrelation.

Tables 4.1-4.3 indicate rates of convergence of the various estimates of v. Z7, 

the OLS estimate in Subsection 4.2.1; P, the first element of the OLS estimate 

P+ in Subsection 4.2.2; P, the first element of the generic GLS estimate P++ in 

Subsection 4.2.3 (notice indeed that in our case of white noise AR, (4.92) and 

(4.97) are identical). For comparison we include also the rates when there are 

no deterministic trends in either (4.5) or (4.6).

Table 4.1: Convergence rates (powers of n) of v
STa STb STc S T d STe S T f

0+ 0.2 1.2 2 0 .2t 0.8 1.6
DTa 1 1 1.5 1 1 1.5
DTb 2 2 2 2 2 2
DTc X X 0.5 X X 0.5
DTd 1 1 1 1 1 1
+: Refers to the case of no trend, as in RM. 

*: The rate is actually n°-2/ ln n .
X: Inconsistent.

Table 4.2: Convergence rates (powers of n) of v
STa STb STc ST d STe S T f

DTa 1.5 1.5 2 1.1 1.1 1.6
DTb 2.5 2.5 2.5 2.1 2.1 2.1
DTc 0 .2* 1.2* 2 0 .2** 0 .8* 1.6
DTd 2.5 2.5 2.5 2.1 2.1 2.1

*: Assumption 4.2 not met. 
b The rate is actually n 0 2/ \ n n .

We computed the OLS estimates V  and P described above, as well as infeasi

ble and feasible GLS estimates of v, namely P/ =  P(7 , 6, 0) and vF = Pfy , 5 , 6) 

where P(c, d, h) is the first element of P++(c, d, h ) with 7 , 5 and 6 as follows.
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Table 4.3: Convergence rates (powers of n)  of v
STa STb STc S T d  STe S T f

DTa 1.5 1.5 2 1.1 1.6
DTb 2.5 2.5 2.5 2.1 2.1
DTc 1.2* 2 0 .8* 1.6
DTd 2.5 2.5 2.5 2.1 2.1

*: Assumption 4.2 not met.
Convergence rates not reported when Assumption 4.4 or /? > 0.5 is not met.

Having obtained =  (z/, 'g^)', we computed the V\t — yt —V+x +t and v2t — 

xt — p!2g2{t). For given (c, d) define ut(c, d) =  (v\t (c) ,v2t(d))'. Since ut is white 

noise, 0 parameterises only Q, for which we employed the estimates 0  =  f2(7,5) 

and Q =  where f2(c,d) =  n_1 XwiLi ut (c, d)u't (c, d), the former referring

to the case (7 , <5) known (i.e. z/j), the latter to the case (7 , £) is estimated by 

(7 , £) (i.e. vp). Here 7  was the Whittle pseudo-maximum likelihood estimate 

of Velasco and Robinson (2000) applied to the series V\t (without tapering the 

data). Likewise 6 was obtained by the same method, but applied to the first 

difference of v2t, then adding back 1 when 5 = 1.2 or 8 = 2 (as an alternative 

to tapering, again as in the simulations of RH).

For the null hypothesis (4.105), we took u = 1, and in the Wald statistic 

(4.106) we computed Wj  based on Vj and b(7 , <5,6) and Wp  based on Dp and 

6(7 , 6,0), 9 and 9 respectively denoting the vectors consisting of the three 

distinct elements of and fh We employed sample sizes n = 64, 125 and 256, 

with 1000 replications.

We present two groups of simulations: in the first we kept r  = 1 and p =

0.5 fixed, and considered the 24 combinations of deterministic and stochastic 

trends, while in the second group we focused on 5 =  0 .6 , 7  =  0 and studied 

the effect of alternative combinations of r  and p.

In Tables 4.7 and 4.8 we present the Monte Carlo bias (the difference be

tween the average of the estimates and z/), and in Tables 4.9 and 4.10 the
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Monte Carlo sample standard deviation for the first group of simulations.

Consistency of V fails altogether if <j>̂ >  max (</>2p 8), so under DTc  for 

STa,  STb, STd, S T e : in our example the estimate should converge to 2, thus 

having a bias of 1, and this is indeed what we observed. Notice also the much 

larger standard deviation when S = 1.2 than when 8 = 0 .6 : intuitively the 

properties of the estimates in the examples we considered depend on the fact 

that 4>2% dominated J, so the effect is stronger (the dispersion around the limit 

value 2 is smaller) the larger </>2j — 8.

In all the other situations the estimate is consistent: the correlation between 

the deterministic component omitted from the specification and the one in x t 

should generate a lower order bias, and given the values we considered for 

jj,n  and //2i this should always be positive. This was indeed the case, but 

notice that it was always very little when not negligible altogether: in the 

worst situation, that is under DTc  for STc  and S T f ,  it was still below 0.07 in 

the smallest sample and it was below 0.02 when 256 observations were used.

When gi (t) is correctly specified the OLS estimate v  is always consistent. 

The stochastic component dominates in x t in 4 of the 24 combinations consid

ered, namely when 8 = 2 and <f)2 1  =  1.5 (for any 7 , gi(t)), and in this situation 

V should have the same rate of convergence as in RM. Comparing our results to 

the ones in RH, who performed a similar exercise for the case with no trends, 

we found for these four cases that the biases were indeed very little and of 

approximately similar size both with and without deterministic trends in the 

model. The standard deviations on the other hand were of comparable dimen

sion or even smaller in our simulations but under DTc,  when they were rather 

larger: this may have been the effect of a certain correlation that remains be

tween x t and gi (t) at least in finite samples, due to the presence of t in both 

the terms.

In the remaining 20 situations the estimates are dominated by the deter
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ministic component in x t.

Under D Tc, Assumption 4.2 does not hold in these cases: the multi- 

collinearity between the deterministic trend in xt and in g\ (t ) meant that 

it was not possible to use that piece of information to make inference about 

v, so the rate of convergence is the same as that of RM. The lower order bias, 

due to the correlation between x t and vt, was still present, and indeed both the 

bias and the dispersion were even bigger than in the corresponding simulations 

of RH with the same combination of 8 and 7 .

Under DTa, DTb and D T d , on the other hand, the improvement on RH in 

terms of bias and dispersions was really remarkable: considering for example 

8 = 0.6, 7  =  0 (STa)  with n = 64, the bias then dropped from 0.194 to 0.0009 

and the standard deviation from 0.100 to 0.0069.

It is also interesting to compare the effect of a different value of 8 in all 

the cases in which Assumption 4.2 is met and 5 < </>2p RH found tha t the 

rate of convergence increased with 8, and in their simulation they found that 

it resulted in smaller bias and dispersion; we saw that in our case the' rate of 

convergence does not change, the stochastic part of x t acting as a noise (albeit 

a very persistent one, of course), and this was indeed the case in our Monte 

Carlo exercise.

Increasing 7  from 0 to 0.4 on the other hand had a visible, if rather small, 

effect. This can be checked comparing STa, STb  and STc  with STd, STe  and 

S T f .  The largest effect on the bias, indeed the only one that really could not 

be neglected, was for the increase of 7  when 8 = 0.6 under D T c . This may 

seem surprising because it is actually the only situation in which the rate of 

convergence should be nearly unaffected, the only change being the additional 

factor (Inn)-1, but it is similar to the results in RH. In most of the cases 

however 7  +  <fi2$ > 1 and Assumption 4.2 is met, so the change in 7  should 

primarily affect the rate of convergence: this was reflected in a slightly higher

237



dispersion of v when 7  =  0.4. Again, these effects were not affected by the 

size of 5, so long as the deterministic component dominated in x t.

Our theory for the GLS estimate does not cover the cases S T d , in which 

ft < 1/ 2 , nor the situation STa — D Tc , in which the OLS estimate V is less 

than root-n consistent, so that the estimates of 7 , 0 based on yt — v+x +t may 

fail to meet Assumption 4.4.

In all the remaining cases vp was more precise (it had a smaller dispersion) 

than v, and Dj was more precise than Dp. Notice anyway that in all the cases 

the order of magnitude did not change whether the OLS V or the GLS was 

used, so the changes in the dispersion, although visible, were never dramatic. A 

similar ranking of the estimates uj, vp, v, emerged for the biases, but this was 

weaker because in many situations the bias of V was so little that introducing 

the GLS could not have any effect anyway. Yet in both the cases in which 

OLS still presented a visible lower order bias, STb — DTc  and STe — D T c , 

the GLS correction took care of it: in the most averse situation, with 7  =  0.4 

and n — 64, the bias dropped from approximately 0.08 to 0.02; in all the other 

cases it was completely removed altogether.

Comparing the results of our simulations for vp  with vj  with RH, notice 

that the pattern is basically the same as for v: much more precise estimates 

when (f)2f > 5 and Assumption 4.2 is met, slightly less precise estimates other

wise.

Although our treatment of the GLS estimate required both Assumption 4.4 

and j3 > 1/2, it is interesting to see what happens when these conditions are 

not met. Assumption 4.4 is not met under STa — DTc  and S T d —DTc: in both 

the cases the GLS correction did not succeed in removing the bias completely, 

although it still provided a sensible improvement on the original OLS especially 

under STa.  Under S T d , on the other hand, ft > 1/2  is not met, but notice 

that, for DTa, DTb  and D T d , <$>2% — 7  > 1/2 is met, and indeed we still did
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not observe any relevant bias nor an unusually large standard deviation.

In Tables 4.11 and 4.12 we present empirical sizes, for nominal sizes a  =0.05 

and a  =0.10 respectively, of P/ and Pp. As in RH, those for Pj were fairly 

precise, but those for Pp tended to be too big, though the difference got smaller 

the larger the sample was. The difference in rates of convergence did not seem 

to affect the pattern, which was rather stable among all combinations.

When Assumption 4.4 is not met, the approximation of Theorem 4.4 does 

not hold for the GLS estimate, thus duplicating the same outcome of RH; on 

the other hand if only /3 > 1/2  is not met but </>2j - 7  > 1/2  is, then in our 

simulations the limit x 2 approximation still held.

In the second part of the simulation exercise, we considered the effects of 

alternative specifications of the matrix ft.

Since we had E (u 2t) = 1, altering r  affected the dispersion of Uity thus 

inverting the design of RH. In fact, due to the dominating deterministic com

ponent in x t , changing the variance of u^t would not affect the results in a 

relevant way: we already remarked that even increasing <5 from 0.6 to 1.2 (and 

to 2 under DTd)  for given 7  had no major effect on variability, and this would 

be much more the case if 5 was left unchanged.

We set 6 =  0.6, 7  =  0, and ran the simulations for p =  0, 0.5, 0.75, —0.5, 

r  =  0.5, 1 and 2 and all combinations of the deterministic components: the 

values of 5 and 7  are deliberately little, because we intended to investigate the 

effect of the lower order distortion induced by the simultaneous equation bias.

We present bias in Tables 4.13 and 4.14, standard deviation in Tables 4.15 

and 4.16 and empirical size in Tables 4.17 and 4.18.

To facilitate readability we excluded DTc  because Assumption 4.4 was not 

met and p = 0.5 because the results were not much different than for p =  0.75. 

In Tables 4.13, 4.14, 4.17 and 4.18 we also excluded results for r  =  2 and 

t  =  0.5 because, as RH also found in their simulation, they did not vary
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much, while in Tables 4.15 and 4.16 we excluded DTb and DTd  because the 

deterministic trend was so strong that the standard deviation was too small 

to indicate any effect.

The correlation p is a potential source of bias in OLS when p ^  0, but the 

effect, presented in Tables 4.13 and 4.14, was minimal, mainly visible in small 

samples, and almost only for D T a, which had the lowest rate of convergence. In 

the simulations of RH a small fraction of the bias of v passed to vp-, but here the 

preliminary estimate of v  was so precise, due to the faster rate of convergence, 

that basically no bias was incurred already at the first stage. Altering r  only 

affected dispersion: in Tables 4.15 and 4.16 the sample variance increased with 

r  for given p and DT.  The low impact of changes of p on precision was 

also important because it left the empirical size nearly unaffected: it is not 

surprising that on average the best approximation to the nominal size is for 

p = 0, but even with the rather extreme p = 0.75 the effect on empirical size 

was often much less than 0.01. We again notice, for comparison, that changes 

in p in the same situation in RH had a stronger effect, and we explain it by 

the larger lower order bias in that case.

4.4  Em pirical analysis o f  th e  P P P  hypothesis

We applied our methodology to analyse the Purchasing Power Parity (PPP) 

hypothesis in three US cities: New York, Boston and Philadelphia. The PPP  

hypothesis indicates that arbitrage should induce prices of the same items to 

be the same in different places, and to react together to shocks affecting one 

of the two: if yt is the local price and x t is the price of the same good else

where converted to the local currency (both prices being in logarithms), then 

Mu — 0, v — 1 and 7  < 1 in (4.5) and (4.6). Strictly speaking, cointegration 

is not prescribed, but in practice this is necessarily the case because it is gen-
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erally acknowledged that S > 1 (a lower level of S would imply antipersistence 

of inflation); empirical experience of positive inflation rates also suggests a 

deterministic component of order about <f>2̂  = 3/2, i.e. a linear trend.

The intuition behind P P P  is easy to grasp and in line with common sense. 

The implications for both economic theory and policy advice are important, 

because implicitly it can also be interpreted as indicating market integration, 

so it is not surprising that it has been widely analysed in the applied eco

nomic literature. The empirical failure of the PPP  hypothesis, at least as a 

short run phenomenon, is well documented: it can be due to the use of price 

indices, rather than effective prices, their differences reflecting the difference 

in preferences of economic agents. In addition, the arbitrage effect may be 

reduced and delayed by the cost of actively searching on the neighbour market 

and of eventually shipping the good to the home market. The latter argu

ment also suggests that some deviation should be allowed, at least in the 

short run, and the PPP  model then quickly became a classical case-study for 

cointegration. Corbae and Ouliaris (1988) and Johansen and Juselius (1992) 

assumed (7 ,5) =  (0,1). They followed two different approaches: Corbae and 

Ouliaris tested for a unit root with a Dickey-Fuller statistic on the difference 

yt — x t , while Johansen and Juselius first estimated the potential cointegrating 

vector and then tested the restriction. In both the cases the joint restrictions 

v — 1 ,7  =  0 were rejected. The PPP  hypothesis largely remains a puzzle in 

cointegration analysis, evidence being still dubious.

The restriction on 7  imposed by the (7 , J) =  (0 , 1) paradigm is stronger 

than economic theory implies, disregarding a wide class of mean- (or conditional- 

mean- ) reverting processes that are indexed by a different 7 . Allowing for 

0 < 7  < 1, semiparametric fractional cointegration analysis of PPP  was car

ried out by Cheung and Lai (1993), who estimated v by OLS and 7  by log- 

periodogram regression. They discussed the existence of a cointegrating rela-
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tion but did not test v = 1 . Tlie GLS methodology presented in the previous 

sections on the other hand allows for a more efficient estimation and testing 

of i/, but the trend must then be taken explicitly into account.

We employed the same data that we used in Chapter 2: logged quarterly 

price indexes of Boston, New York and Philadelphia for 1950 (1) through 2003 

(3). This time n = 215 in the (OLS or GLS) estimation of the cointegrat

ing parameter because we did not have to take first differences. Data were 

then normalised, dividing each series by the first observation, and logarithms 

were finally taken. The normalisation was introduced to make the series vi

sually comparable: as seen in Figure 4.1, they are dominated by a long-term 

deterministic component.

Figure 4.1: Level of prices (logs): BY, Bo, Ph 
 NewYork Boston - - - .Philadelphia

rnrmni TTTTTTTTTTTTT

Since the three paths cannot be clearly distinguished, we also present, in 

Figure 4.2, annualised first differences, corresponding to the inflation rate (this 

is the same as in Figure 2.4). First differencing transforms the linear time trend 

in a constant, so any long run co-movement in the data is due to a common 

stochastic trend: visual inspection of the three plots seems to suggest that such
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a common stochastic trend is indeed present and it is the main force driving 

the long term dynamics.

Figure 4.2: Annualised quarterly inflation: BY, Bo, Ph
20
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Our assumption is that long term inflation remained stable over the whole 

period: phases of high inflation, such as those observed after the two oil shocks, 

are still possible, but on adopting a very long perspective they seem to be 

temporary (albeit still persistent) phenomena rather than substantial, non

reverting breaks. As Diebold and Inoue (2001) showed, allowing for random, 

occasional breaks, and a long enough time perspective, long memory can be a 

convenient way to describe the data (notice, again, the difference with respect 

to the analysis we did in Chapter 2, in which the number of breaks is fixed).

Finally, notice that we analysed cointegration both parametrically and 

semiparametrically, in the latter case estimating V  using non-intercept OLS 

and 5, 7  using local Whittle estimation as in Robinson (1995b). Although 

in Section 4.2 we only used deterministic trends with constant coefficients, 

we mainly did it to keep the limit distributions simple. It is fair anyway to 

conjecture that the orders of magnitude would not change if a break in fi2\

----------------N e w  Y o r k B o s t o n  -  -  -  • P h i la d e lp h ia

*
!?'
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was introduced (nor indeed in fin  but the case is not relevant here). Since we 

already showed in Chapter 2 that for these data local Whittle estimation of 

<5 is robust to a change in the mean, we think that semiparametric analysis is 

also important because it provides results that are quite robust to changes in 

the long term growth rate of prices.

We analysed cointegration pairwise, denoting the three cases Bo-NY, Ph- 

NY and Ph-Bo for New York and Boston, New York and Philadelphia, and 

Boston and Philadelphia, respectively. Of course if two pairs are both cointe

grated the third one will be too and it is then redundant, but considering all 

three is sensible, especially in the preliminary phase of semiparametric analy

sis, where the estimates are robust to model misspecification but inefficient. 

The distinction between explanatory and dependent variables has no econo

metric implications in our framework, but we took New York as x t throughout, 

and Boston as x t in the Ph-Bo model. The nominal size for the tests is set at 

5%.

We first tested the usual 7  =  0, S = 1 framework. Though inflation is 

sometimes modelled as an 1(1) process, it is usually taken to be 1(0), implying

5 = 1, as this is consistent with a monetary policy model in which the central 

bank aims to stabilise the growth rate of prices in the medium-run, and as 

it is often supported by empirical tests. We tested £ =  1 by the augmented 

Dickey-Fuller test, allowing for a constant in the AR model in levels (thus 

a linear trend in (4.6)), with an AR(4) selected by sequential testing. We 

applied the same procedure (without an intercept) to the first differences with

6 = 2 in mind but overall our results supported £ =  1. The vector AR for 

the Johansen procedure was determined by inspecting the sequential likelihood 

ratio test (LR), the Schwarz (SC) and the Hannan and Quinn (HQ) statistics, 

these pointing in general to 5 lags. Using the procedure of Johansen (1991)
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cointegration was rejected in all the three models.

Evidence against P P P  is often interpreted as indication of a lack of integra

tion between markets, and cannot be explained by trade or cultural barriers, 

regulations or exchange rate instability in the present case. Since naive in

spection of the data is suggestive of cointegration we thus investigate whether 

this can emerge in a fractional framework. In particular, we first examine the 

existence of a cointegrating relationship, in such a way as to avoid the con

sequences of misspecification of high frequency behaviour. The robust, but 

inefficient, estimates of 7 , 8, v  that are involved will also provide a reference 

with the more efficient ones subsequently obtained. The results are presented 

in Table 4.4.

We estimated 8X and 8y, the orders of integration of x t and of yt, by means 

of the local W hittle estimates, 8X and 8y, as described in Robinson (1995b) 

and in (1.53) but, in view of the anticipated nonstationarity we applied the 

method to first differences, then adding back 1. Any deterministic linear trend 

was thereby removed too. The bandwidth was m  - 0.24n4//5 =  16, which is 

approximately MSE - optimal when the process is a ARFIMA(1,£,0) with AR 

coefficient 0.5 as we already discussed in Chapter 2. The estimates of 8 were 

1.53 (NY), 1.45 (Bo) and 1.40 (Ph). We then tested for the equality of the 

orders of integration using the statistics of Robinson and Yajima (2001) Tyx, 

as in (1.88). The hypothesis 8y = 8X was rejected at 5% for Ph-NY though the 

statistic depends on a trimming number, and if this is not large enough the 

rejection could be due to the presence of cointegration. In the other two cases 

equality of the orders was not rejected. We then computed the Hausman-type 

statistics Hy and Hx for no-cointegration of Marinucci and Robinson (2001), 

described here in (1.75): we rejected the hypothesis of no cointegration in case 

of Ph-NY and of Ph-Bo but not for Bo-NY. This seeming inconsistency could 

reflect a type two error: in Marinucci and Robinson’s Monte Carlo experiment
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the power of a comparable case was only about 50%. Note also that for Bo- 

NY the memory parameter estimate 8* used in the test did not lie between the 

individual estimates.

For each of the two pairs, V was computed and in each case found to be 

very close to 1. No-intercept OLS accords with economic theory, and the 

preliminary Johansen analysis suggested that the level of persistence 7 , even 

if less than J, may be between between 1/2 and 1. The possibility of such a 

high 7  would suggest estimating it from first difference of the OLS residuals 

Vit — Vt — vx t. On the basis of 7 , the local W hittle estimate of 7 , (4.20) 

is satisfied in each case but only barely for the combination Bo-NY; point 

estimates were also below 1 for Ph-NY and Ph-Bo, again in accordance with 

economic theory, while it was just above 1 for Bo-NY.

Table 4.4: PPP: semiparametric analysis of fractional cointegration

8y 8X J* ( h vY ( a ) ’ V 7
Ph-NY 1.40 1.53 1.35 4.83 0.26 4.00 0.99 0.82
Bo-NY 1.45 1.53 1.38 1.28 2.83 0.68 1.02 1.05
Ph-Bo 1.40 1.45 1.21 0.67 4.53 7.66 0.97 0.83

Note: critical values for x l : 3.84 (5%) and 6.63 (1%).

Our semiparametric analysis suggested that the P P P  model could be rea

sonable for the three cities in fractional context, the rejection of the (7 , 8) = 

(0 , 1) version being due to the high persistence of deviations from the long-run 

relation. We then proceeded to a parametric analysis along the lines described 

in Section 4.3 with the aim of ultimately testing v = 1.

We consider the Ph-NY and Bo-NY relations only, the results appearing 

in Table 4.5. In (4.18) and (4.19) we took gi(t) = 0, g2 (t) = t. Using the 

previously obtained estimates of 7 , 8 (pooled), v, and denoting by /t2i the
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estimate of obtained by OLS regression of x t on t, we formed the residuals 

vu = yt — x tV, v2t = x t — » 21t, and then took 7  and 8 fractional differences re

spectively, labelling them as U\t = ^ ( 7 ), u2t =  v2t(8). We then determined the 

structure B(L;h)  using the LR, SC and HQ procedures on the series uit,u2ty 

concluding in favour of a vector AR(4). Since the coefficients of the second 

and third lags were small, we took them to be zero, representing the short 

term dynamics by, in effect, an AR(1) combined with a quarterly effect.

Now define, for given c, d, ut{c, d) =  (un(c), v2t(d))' and?*(c, d) =  B ( L ; 6(c, d)) 

«t(c, d), where 0(c, d) indicates the OLS estimates of the AR coefficients for 

given c, d, dropping Ui(c, d) because this term is not differenced at all. We 

then took (7 , <S) =  argm in n " 1 | ^ ”=1?f(c, d)?J(c, d)|, and 6 = 6(^,5), Q =  

n - 1E r= i^ (7 ,? )£ i(7 ,? )-

Table 4.5: PPP: ML estimates of the long term parameters
8 7  v £ 21

Ph-NY
Bo-NY

1.42 0.66 0.98 0.0045
1.43 0.69 1.02 0.0041

Note: estimates from a mode with AR(4) structure for the lags but in which
the second and third lag are excluded.

Hypothesis on 7 , d, 6 can be tested with a likelihood ratio statistic. These, 

and the hypothesis on 17 are discussed below and summarised in Table 4.6. 

The parametric analysis confirmed the restrictions on the AR(4) model for ut , 

and 7  and 8 were similar to the semiparametric estimates. We strongly rejected 

the joint hypothesis that 8 = 1 ,7  =  0. On the other hand the hypothesis 7 = 1  

was rejected against the alternative 7  7  ̂ 1. We then applied the time domain 

GLS procedure to estimate v: the estimates P were in both cases close to 1, 

and the null hypothesis was not rejected.
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In Figures 4.3 and 4.4 we plotted the GLS residuals yt — vxt (where v  is 

the GLS estimate of z/) and the restricted residuals yt -  x t (assuming v =  1), 

respectively. In both cases the residual series only occasionally crossed 0 (the 

value that we assumed to be the mean the disturbances).

Figure 4.3: unconstrained GLS residuals 
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The patterns of GLS and restricted residuals are very similar, but autocor

relation appeared to be a little stronger for the latter: iterating the parametric 

procedure, the estimates 7  using GLS residuals yt — vx t were 0.65 for the pair 

Ph-NY and 0.69 for the pair Bo-NY, while using the restricted residuals they 

were both 0.73.

Table 4.6: PPP: LR tests
L R b LR{s=\,1=0} LR{7=1} LR{v=i}

Ph-NY
Bo-NY

9.69 [0.287] 21.50 [0.000] 9.83 [0.002] 3.74 [0.053] 
4.51 [0.808] 35.87 [0.000] 9.85 [0.002] 2.21 [0.137]

Note: L R b is t le likelihood ratio statistic for the hypothesis that the second
and third lag are excluded; LR{s=1,7=0}, LR{1=1}, L R ^  1} are the likelihood 

ratio statistics for the hypotheses Hq : {5 =  1 ,7  =  0}, H o  : { 7  =  1},
Ho •' {V =  1}; P-values are in brackets.
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Figure 4.4: residuals of the restricted model
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As a final small exercise we investigated the role of the deterministic trend 

in increasing precision in the estimation of is, bearing in mind the findings of 

the Monte Carlo exercise. We thus also computed the GLS estimate of RH, 

using detrended data.

The factors ((1,0)(6**)_1(1, 0) ') li/2 (see Theorem 4.4) were 0.0107 in case of 

Ph-NY, and 0.0151 in case of Bo-NY, whereas the (b**)-1/2 defined from RH 

for the detrended data were more than twice as big, being 0.0304 and 0.0415 

respectively.

4 .5  D is c u s s io n

We have studied the estimation of a cointegrating parameter in a bivariate 

process when the data may have been contaminated by a deterministic trend. 

We have discussed no-intercept OLS, finding that in some cases it may be 

subject to omitted-variable bias, while in others it may even be more efficient 

than if the data did not have deterministic components at all: although the 

final outcome then depends on the precise situation, we have noticed that in
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the most popular models the rate of convergence is improved by the presence 

of the deterministic trends. Afterwards, we discussed OLS and infeasible and 

feasible GLS when the deterministic trend is correctly taken into account, 

finding that the estimates are always consistent and in some cases the rate of 

convergence is better than in the situation without deterministic trends, while 

in the remaining ones it is just as good.

We conclude by discussing a few arguments that can be related to the 

problem and some potential extensions.

1. We focused our semiparametric analysis on OLS estimates motivating 

the approach on the ground of simplicity. Yet we also saw that in some 

cases the rate of convergence of the estimate may be too slow to allow for 

a root-n consistent estimation of the remaining parameters of the model 

(0) in the GLS procedure. RM showed for the model without trends that 

when 7  +  6 < 1 a faster rate of convergence may be achieved estimating 

the cointegrating parameter by a NBLS procedure: it may then be worth 

exploring this opportunity when the semiparametric analysis is prelimi

nary to a GLS estimation rather than a quick way to get a first glance 

at the relation between the two time series.

2. We only focused on (3 > 1/ 2 . Yet when deterministic components are 

present that may be too strong a condition, and the milder max {<5, 0 2<>} — 

7  > 1/2  should be discussed. Our Monte Carlo exercise seems to confirm 

that this extension is feasible.

3. We could generalise the results by allowing for a wider class of deter

ministic terms: the trends that we consider do anyway provide an inter

esting benchmark, and in many situations more complicated structures 

(like trends subject to breaks) would grossly generate the same type of

250



predictions while making the proofs and the statement of the theorems 

much less clear.

4. We only considered a scalar x t. Like RH, we did not consider a larger 

model because an interesting treatment of this case would entail, in our 

fractional setting, allowance for differing integration orders in the ele

ments of x t , and also two or more cointegrating relationships, possibly 

with different integration orders. Yet an additional comment should be 

still given when deterministic terms are present in a multivariate x t . 

Consider the model

Vt = v2x 2t + v3x 3t +  / / i ^ 1-1/2+  U n (-7 ), (4.120)

x 2t = + u2t{ -5 2), (4.121)

x3t = + (4.122)

with /q /  0, /i2 ^  0, n3 ±  0, </>! > 7 , 02 > S2, 03 > £3, £2 > S3. Here 

Assumption 4.2 is much more restrictive, because it requires not only

02 7̂  0i and 03 7̂  0i 5 (4.123)

but also

02 7̂  03? (4.124)

otherwise the problem of multicollinearity among regressors remains.

If, in fact, (4.123) is met but (4.124) is not, as it is when 02 — 03 — 0,
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then the regression model becomes

yt = v2 (x2t ±  fi2/ y 3x 3t) +  v3x3t +  fa t*1-112 +  vt, 

Vt = v2 (u2t { - S 2) -  y 2/ y 3u3t (- 5 3)) +  (v3 +  v2y 2/ n 3) x 3t +  /i^ 1-172 +  vt ,

(4.125)

so, letting 1/4 =  v3 +  v2fi2lfi3 and indicating by P2, v3 z/4 the GLS es

timates of i/2, v 3 and z/4, (and assuming proper generalisation of the 

regularity conditions, so that a multivariate version of Theorem 4.3 is 

possible) then v2 =  v2 +  Oe (n7- 2̂) but for the linear combination i/4 

we have z/4 =  i/4 +  Oe (n7-^ ) , which is then faster. Also notice that 

with a similar argument we may find that v3 = v3 +  Oe (n7_(*2), there

fore faster than the rate of convergence obtained when there is no trend 

at all. This still has an intuitive explanation, because ^ _1/2 conveys 

information about x 2t and x3t simultaneously and it cannot, then, be 

used to estimate v2 or v3 separately, but only for the linear combination 

(r/2/ i2 +  ^3/ i3).

Assumption 4.2 is then a condition that becomes stronger the larger the 

dimension of x t , and if we only consider linear trends it is not met when 

x t is not scalar.

252



4.6 A p p en d ix  to  C hapter 4

P roof of Theorem  4.1 D efineg(t)=  ( t^1 1?r '* ) , Dgn = diag {n^1, ...,n^r },

for 0 < </>! < ... < 4>r. For d > 0 we have

n p i  f

n ~ d ( ® g n  ®  ^ 2 )  ' ^ g { t ) < 8 > u t ( —d )  — /  p ( r ) ® d ^ ( r ; d + l ) , i y ( r ; d + l ) j  ,

1—1 0
(4.126)

where <8> denotes Kronecker product. For d > |  (4.126) follows from Theorem 1 

of Marinucci and Robinson (2000) (hereafter MR), and the continuous mapping 

theorem. For 0 <  d < \  (4.126) follows from a central limit theorem; note 

that the right side of (4.126) is in any case a 2 r—dimensional normal variate. 

We have

x t — u 2 1 ( ~ 3 )  +  s x t j (4.127)

where
P2

Sxt =  ' (4.128)

From (4.126)

n n

n- ^ - s J 2 s x tU 2 t ( S )  =  n - ^ t - V 2 t ^ ^ 2,_^2<(-5) +  op(l)

(4.129)

By Theorem 1 of MR and the continuous mapping theorem

n

(4.130)
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and by integral approximation

r 2*2, y % 2( =  +n
t=i t=1

-  $ 3. (4.131)

Thus

k~2Mxx ->d $;* +  2 $ r  +  $£*• (4.132)

Next, the numerator of v — v is

n

a = ^ 2  (Sxt +  w2t(-£ ))  (syt 4- wit(~7)) (4.133)
t=i

where

« y * = E / V * 1J' (4.134)
j=i

Integral approximation gives

J 2 s xtsyt =  n-*>t-̂ */iltp2ty]t*t+̂ »-1 + o(l)
f = l  t = l

-> (4.135)

and (4.126) gives

n

^  Slt« lt( _ 7) tf4. (4.136)
t = l

n

* 5, (4.137)n~s~(
t = l

To deal with b = J ^"=1 7 )'w2t (~<^)5 we make use of results of RM. From

Lemmas 4.1, 4.2 and 5.1 of RM (see also their Propositions 6.1 and 6.2) we
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have

n 1b —>p if 7  +  S < 1, (4.138)

n~l
  b —> ^ 2, if 7  +  ^ =  1, 7  > 0. (4.139)logn p

From Lemmas 4.3, 4.5 and 5.1 of RM, b = Op(ns) for 7  =  0, 8 >  1, but since 

4>̂  > 0 it follows that in this case a = op (ns+<l>1 *) so 4>5 will dominate. Finally

n~1~5b —>d ^ 3, 7  + J > 1, 7  > 0, (4.140)

where Theorem 1 of MR and the continuous mapping theorem covers the case 

7  > | ,  and Lemmas 4.5 and 5.1 of MR the case 7  < \  (RM discuss the problem 

of representation of ^3  in this case). It follows that

i~ la -+d +  V*3* +  +  %* +  %*, (4.141)

noting that in case 7  +  5 =  1, 7  > 0 , n lo g n  dominates n =  n7+(5, and 

dominates n7+<̂21, n 6+̂ , if and only if 8 > (f)2$, 7  >  <t>\̂  0 it +  ^  1

respectively.

P ro o f  of T h eo rem  4.2 The proof that

B ; l M x+x+B ^  4> (4.142)

straightforwardly uses results employed in showing (4.126), and is omitted. 

We are left to consider

n n

M x+V =  ^ 2  x +t { ^ i t (—7 ) +  sit} =  ^ 2  (w2t ( -£ )  +  sx t, { u u ( - 'r )  +  s l t } .
t=1 t=1

(4.143)
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By again employing results from the proof of Theorem 4.1,

n

A "n(7)5Z ffiW “ it( -7 )  -M *8 (4.144)
t =  1

while
n

D\n (7 ) ffi (Osu -» 0 (4.145)
t = 1

because, for j  > pu  and i +  l...pn

n

n -i-* u  =  o  ( n ^ “7) =  o(l) (4.146)
t = l

because 7  > ■ for j  > pn . Next,

n

=  O (n^2t+^1)Pn +1) =  o (n^2t+7) . (4.147)
t = i

Then from the proof of Theorem 4.1,

n

m-iYl{û -5'>+s^}M-'y) ->d ®r+*r+*r+*r+*r (4.14s)
t = i

with 4/y** coming from MR Theorem 1 and Kurtz and Protter (1991), see also 

MR Propositions 6.3 and 6.4 (unlike in Theorem 4.1, this contribution is not 

always dominated).

Further, we may obtain the joint result

C^1B~1MX+V 4-. (4.149)

From the commutativity properties of diagonal matrices

V+ - V =  B - 1 (B~1MX+X+B ~1)~1 Cn (C“ 1B “ lMx+„) (4.150)
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so the proof is completed by application of (4.142) and (4.150).

P r o o f  o f T heorem  4.3  Consider the case of white noise ut. Prom (4.5), 

(4.6), (4.87), (4.94) and (4.95) we can write

£++(7 , S , 0 ) - v  = b (7 , S, e y 1 {e(7 , <5,6) +  / ( 7 , 6, (9)}, (4.151)

where

n n

e(7 , 5,6) =  ^ 2  wt{7, 0)fi_1wt, /(7 , M )  =  ^  ^ 7 ’ (4.152)
i= l  i= l

where s* =  (si*, S2*)' = (A^Su, A sS2t)'- From Lemma 1 of Robinson (2005a), 

with vt =  tc,

VtW = T ( c - +d + l ) tC~d + °  ’ (4-153)

where m  is the integer such tha t d — 1 < m <  d. Then

(4.154)

(4.155)

(4.156)

and similarly E L i  =  q  ( ^ t + ^ + i - T - * ^  YZ=l A ^ g ^ t ) ^  =

O (n(̂>1J+(?l>2'P2i+i“7~<5) for j  = l...pn , XlSLi A5<72.7(£)$2f — O (n^2-J+ >̂2-p2i+1_2<5) for 

j  = 1- P 21-

^ A V 2(0 ^ S i t =  O (
t = 1 \ i = l

=  O  ( „ ^ 2 ,+ * llP11+ i - 2 7 )  j

n  /  n

X > 7Sy(t)3u =
t = l  \ t = l

= O (n</>1̂ +</>1-pn+1_27) , j  = 1, ...,Pn,
n  /  n '

t =  l  \ t = l

-  O (n^ +4>1̂ +1~'r~s) , i  =  1, ...,P21,
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On the other hand, much as in the proof of Theorem 4.1,

n n

y ^ J U 2 t { ' y - S ) s l t  =  O p  ( n s ~ 2j+<l>i ’P u + 1 + ^  , ^ 2 u 2 t ( 7 - S ) s 2 t  =  O p  ( n ^ ^ p 21+ 1+ 2 ^

t=i t=1
(4.157)

It straightforwardly follows that

D~l f h J , e ) ^  0. (4.158)

From (4.153) and routine arguments

^ D ir̂ ( - d ) A dgi([rn]) -> A i ( d ) ^ p ,  r G (0,1], d > 0, i =  1,2. (4.159)

From this and MR Theorem 1

n^T>~1^ [rn](7 ,(5) => <2(r), r e  (0,1]. (4.160)

Thus from the continuous mapping theorem and Kurtz and Protter (1991)

D ~1b('r ,S ,e)D^ ^  [  Q(r)Q'(r)dr, D ~le(b,8, e ) =► f  Q(r)dW(r)
Jo Jo

(4.161)

to complete the proof for £++(7 , S, 0). The application of Assumption 4.3 to 

prove the Theorem for the remaining quantities in (4.97), in the white noise 

ut case, is straightforward, and thus omitted.

A good deal of the proof detail in RH is concerned with justifying the 

general short memory autocorrelation in ut described in Subsection 4.2.3. It 

is clearly unnecessary to repeat this for our extended estimate, and it suffices 

merely to consider the implications for the deterministic components we have 

introduced. These are somewhat different from the treatment of stochastic
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trends. Consider the quantity

e (7 ,M )  =  E  Fw ( i ),
j=i

(4.162)

where

n 1 n

(̂7,«(A) = —rT E ">('1'. ̂  F“(A) = Yn E “‘eiU- (4-163)(27m) 2 ^  (27m) 2 ^

with wt(c,d) defined like wt{c,d) in (4.85) but with A cx t replaced by Acsxt. 

Denote by 'iPl(X) = E ^ L - l 'W I  — 1̂1 /L)e~lix the Cesaro sum, to L terms, of 

the Fourier series of f u(A)-1 . Define Dn like Dn but with n max(s^ 2t) replaced 

by 2t and

e(7 ,8,0) = E  (4.164)
j=i

Then D~1{e(7 , S, 0) — e(7 , 5,0)} has mean zero and covariance matrix

^  £  I d - 1 g  F ffi(7ii)(A ,-) {/.(A ,-)"1 -  ^ L ( A j ) }  E  e ^ - ^ j  /„ (A)

x  j  D - 1 E  ^ W ) ( - A . )  { / . ( - A , ) " 1 -  ^ ( - A , ) }  E e ‘(A“ Ai)s  ̂ <*A.

(4.165)

Using the properties of the complex exponential function, this has norm bounded 

by a constant times

E  ^ 1A5(7,i)(Ai){/(Aj ) - 1 - V ’i,(Aj )} <  e2 E  D ^ F ^ X j )
j — 1 7 =  1

(4.166)

for arbitrary £ > 0, on choosing L large enough and noting the continuity of
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f u(X) 1. For any sequence ct

n - 1 E
3= 1

E
t=i

(hei t \ j
=  E c*’

t=i
(4.167)

so applying again (4.161), it straightforwardly follows tha t (4.166) =  0 (e 2). 

Thus

e(7,6, 0) =
L

E Ei<t
l = - L

™ t ( 7 , < %  ( 1  -  U t - 1

L e (  t \+ E E wt{ii ( 1 -  7 ) ut-t,
e = i t = i  \  ^ J

+ E E ™t(7,5)il>e (1 + j )  ut-t.
e = - L t = n - e + i  \  ^  J

(4.168)

(4.169)

(4.170)

The sums over t in (4.169) and (4.170) include only i  terms, and, with L  fixed 

and n —> oo, will turn out to be dominated by (4.168). To deal with this, note 

from boundedness of /  that for c > 0, d > 0 and any jr,

r ( c + 1 ) *c * ]. h \  r(c-d + i)j u t - i (4.171)

has mean zero and variance bounded by a constant times

ro+i) ^ ' 2 c —771 — 1 ) (4.172)
t=i

where m is as described after (4.153). Then (4.172) is 0(1) for 2c — 2m < 1, 

0(log n) for 2c — 2m =  1 and O (n2c-2m+!) for 2c — 2m > 1. It follows that we 

may replace 0 “1e‘(7 , 5,6) by

(4.173)
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where

t5t(7,<5)=
U ^ - i  {A r W to i t ) } 'm 0

0 0 {A2(5)g2(t)Y t~ s J ’
(4.174)

the above arguments indicating that other contributions from the top left 

hand element of wt{7,5) can be neglected. The asymptotic normality, for 

fixed L, of (4.173) follows standardly (see e.g. Hannan, 1970, Chapter 7), 

whence Bernstein’s lemma, with L —> oo, completes the central limit theorem 

for D~le(^,8 ,9). The proof that we can neglect contributions from Sit and 

S2t follows much as above, as does, using also RH, the limiting behaviour of 

D~lb{7 , S, 6)D~1. The proof that we can replace 7 , S, 6 by 7 , 8, 6 is lengthy but 

relies basically on RH and standard arguments to cope with the deterministic 

components. As in RH, the proof for the ’time - domain’ estimates is similar 

but slightly simpler, and is omitted.
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Table 4.7: Monte Carlo bias for OLS, r  =  1, p =  0.5

S T D T
n = 

V
64

V
n = 
V

128
V

n = 
V

256
V

a .0235 .0009 .0117 .0003 .0059 .0001
a b .0004 .0000 .0001 .0000 .0000 .0000

c 1.0232 .2980 1.0112 .2515 1.0057 .2076
d .0194 .0000 .0097 .0000 .0049 .0000
a .0247 .0003 .0121 .0000 .0060 .0000

b b .0004 .0000 .0001 .0000 .0000 .0000
c 1.0912 .0176 1.0505 .0048 1.0347 .0006
d .0194 .0000 .0097 .0000 .0049 .0000
a .0016 -.0017 .0005 -.0005 .0001 -.0001

c b .0004 .0000 .0001 .0000 .0000 .0000
c .0668 -.0057 .0481 -.0016 .0193 -.0004
d .0195 .0000 .0097 .0000 .0049 .0000
a .0237 .0010 .0116 .0001 .0058 .0001

d b .0004 .0000 .0001 .0000 .0000 .0000
c 1.0233 .4212 1.0112 .3907 1.0056 .3598
d .0194 .0000 .0097 .0000 .0049 .0000
a .0238 .0005 .0116 .0000 .0057 .0001

e b .0004 .0000 .0001 .0000 .0000 .0000
c 1.0903 .0761 1.0501 .0416 1.0344 .0240
d .0194 .0000 .0097 .0000 .0049 .0000
a .0027 -.0021 .0006 -.0008 .0002 -.0002

f b .0004 .0000 .0001 .0000 .0000 .0000
c .0678 -.0078 .0482 -.0030 .0193 -.0009
d .0195 .0000 .0097 .0000 .0049 .0000
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Table 4.8: Monte Carlo bias for GLS, r  =  1, p  =  0.5

S T D T

II 64
V p

n = 
v i

128
V p

n =
V j

256
V p

a .0000 .0000 .0000 .0000 .0000 .0000
a b .0000 .0000 .0000 .0000 .0000 .0000

c .1549 .1634 .1145 .1201 .0804 .0841
d .0000 .0000 .0000 .0000 .0000 .0000
a .0001 .0000 .0000 .0000 .0000 .0000

b b .0000 .0000 .0000 .0000 .0000 .0000
c -.0002 -.0040 .0006 -.0007 .0004 .0002
d .0000 .0000 .0000 .0000 .0000 .0000
a -.0003 -.0006 .0000 -.0001 .0000 .0000

c b .0000 .0000 .0000 .0000 .0000 .0000
c -.0006 -.0020 .0000 -.0003 .0000 .0000
d .0000 .0000 .0000 .0000 .0000 .0000
a .0001 .0001 -.0002 -.0001 .0001 .0001

d b .0000 .0000 .0000 .0000 .0000 .0000
c .3969 .3911 .3657 .3622 .3344 .3319
d .0000 .0000 .0000 .0000 .0000 .0000
a -.0003 -.0004 -.0004 -.0003 .0000 .0000

e b .0000 .0000 .0000 .0000 .0000 .0000
c .0194 .0224 .0090 .0096 .0043 .0051
d .0000 .0000 .0000 .0000 .0000 .0000
a -.0001 -.0007 .0000 -.0001 .0001 .0000

f b .0000 .0000 .0000 .0000 .0000 .0000
c -.0003 -.0024 -.0001 -.0006 .0001 .0000
d .0000 .0000 .0000 .0000 .0000 .0000
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Table 4.9: Monte Carlo s.d. for OLS, r =  1, p  =  0.5

S T D T
n = 

V
64

V

n =  
V

128
V

n = 
V

256
V

a .0031 .0069 .0011 .0024 .0004 .0008
a b .0001 .0001 .0000 .0000 .0000 .0000

c .0298 .1120 .0160 .0778 .0091 .0547
d .0001 .0004 .0000 .0001 .0000 .0000
a .0080 .0080 .0029 .0025 .0012 .0009

b b .0001 .0001 .0000 .0000 .0000 .0000
c .3691 .0512 .2614 .0223 .2163 .0088
d .0001 .0004 .0000 .0001 .0000 .0000
a .0132 .0041 .0047 .0012 .0016 .0002

c b .0001 .0001 .0000 .0000 .0000 .0000
c .5489 .0100 .4008 .0025 .2748 .0007
d .0014 .0004 .0005 .0001 .0002 .0000
a .0137 .0189 .0067 .0087 .0031 .0040

d b .0003 .0003 .0001 .0001 .0000 .0000
c .0269 .1520 .0145 .1183 .0082 .0922
d .0003 .0009 .0001 .0002 .0000 .0000
a .0143 .0214 .0065 .0092 .0029 .0042

e b .0003 .0003 .0001 .0001 .0000 .0000
c .3629 .0951 .2589 .0550 .2148 .0307
d .0002 .0009 .0001 .0002 .0000 .0000
a .0153 .0087 .0052 .0034 .0017 .0009

f b .0003 .0003 .0001 .0001 .0000 .0000
c .5489 .0189 .4005 .0062 .2747 .0019
d .0014 .0009 . .0005 .0002 .0002 .0001
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Table 4.10: Monte Carlo s.d. for GLS, t  =  1, p =  0.5

S T D T

II£ 
^

64
Vp

n = 
vi

128
vf

n = 
vi

256
vf

a .0060 .0062 .0021 .0022 .0007 .0007
a b .0001 .0001 .0000 .0000 .0000 .0000

c .1171 .1197 .0780 .0793 .0492 .0502
d .0004 .0004 .0001 .0001 .0000 .0000
a .0071 .0071 .0022 .0023 .0008 .0008

b b .0001 .0001 .0000 .0000 .0000 .0000
c .0462 .0492 .0204 .0213 .0083 .0085
d .0004 .0004 .0001 .0001 .0000 .0000
a .0032 .0033 .0009 .0010 .0002 .0002

c b .0001 .0001 .0000 .0000 .0000 .0000
c .0084 .0088 .0020 .0020 .0005 .0005
d .0004 .0004 .0001 .0001 .0000 .0000
a .0168 .0171 .0076 .0077 .0035 .0035

d b .0003 .0003 .0001 .0001 .0000 .0000
c .1586 .1658 .1241 .1277 .0951 .0971
d .0008 .0008 .0002 .0002 .0000 .0000
a .0176 .0183 .0073 .0075 .0034 .0034

e b .0003 .0003 .0001 .0001 .0000 .0000
c .0855 .0910 .0476 .0500 .0250 .0269
d .0008 .0008 .0002 .0002 .0000 .0000
a .0075 .0076 .0026 .0027 .0008 .0008

f b .0002 .0002 .0001 .0001 .0000 .0000
c .0166 .0168 .0054 .0055 .0016 .0017
d .0008 .0008 .0002 .0002 .0000 .0000
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Table 4.11: Empirical sizes of Wald test, t  =  1, p =  0.5, a  =  0.05

S T D T

II

i

64
WF 3

s ii 128
WF

ii 256
WF

a .065 .186 .057 .134 .053 .095
a b .070 .182 .055 .129 .053 .102

c .412 .474 .472 .513 .520 .535
d .068 .227 .052 .130 .051 .109
a .062 .194 .058 .130 .057 .094

b b .068 .191 .052 .127 .054 .096
c .060 .169 .058 .139 .047 .082
d .071 .228 .050 .136 .058 .111
a .054 .199 .056 .151 .052 .101

c b .068 .198 .059 .137 .048 .087
c .077 .227 .044 .147 .052 .120
d .072 .229 .045 .139 .051 .111
a .071 .191 .061 .146 .053 .105

d b .066 .182 .064 .139 .051 .099
c .889 .887 .960 .958 .990 .991
d .060 .219 .049 .139 .047 .106
a .070 .192 .054 .135 .045 .101

e b .069 .196 .059 .132 .045 .102
c .094 .228 .082 .176 .076 .137
d .060 .221 .054 .136 .054 .106
a .071 .211 .058 .147 .043 .096

f b .072 .204 .068 .145 .055 .112
c .068 .235 .056 .144 .041 .103
d .057 .236 .054 .144 .051 .105
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Table 4.12: Empirical sizes of Wald tests, r =  1, p  — 0.5, a

S T D T

II 64
WF 5 

s ii 128
WF 3

s ii 256
WF

a .113 .255 .113 .191 .103 .148
a b .122 .252 .108 .189 .108 .169

c .497 .554 .572 .608 .633 .646
d .113 .304 .095 .201 .106 .171
a .112 .267 .114 .188 .102 .148

b b .119 .248 .113 .178 .100 .164
c .121 .263 .126 .199 .090 .153
d .116 .297 .100 .202 .106 .168
a .112 .272 .113 .215 .096 .168

c b .114 .260 .112 .201 .095 .158
c .120 .302 .101 .230 .102 .189
d .119 .308 .096 .205 .109 .168
a .117 .254 .116 .209 .108 .168

d b .124 .268 .105 .204 .107 .167
c .925 .921 .973 .972 .995 .993
d .102 .291 .105 .197 .099 .169
a .120 .259 .114 .199 .111 .161

e b .122 .265 .102 .194 .114 .175
c .175 .305 .160 .242 .122 .215
d .109 .295 .095 .195 .103 .161
a .127 .269 .105 .199 .096 .162

f b .126 .268 .120 .213 .105 .172
c .124 .306 .114 .216 .097 .165
d .113 .309 .101 .199 .104 .172
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Table 4.13: Monte Carlo bias for OLS, S T a , r — 1

p D T
n =

V
64

V
n = 

V
128

V

n  =  
V

256
V

a .0233 -.0001 .0116 .0000 .0058 .0000
0 b .0004 .0000 .0001 .0000 .0000 .0000

d .0194 .0000 .0097 .0000 .0049 .0000
a .0237 .0015 .0118 .0004 .0059 .0001

0.75 b .0004 .0000 .0001 .0000 .0000 .0000
d .0194 .0000 .0097 .0000 .0049 .0000
a .0230 -.0011 .0116 -.0003 .0058 -.0001

-0.5 b .0004 .0000 .0001 .0000 .0000 .0000
d .0194 .0000 .0097 .0000 .0049 .0000

Table 4.14: Monte Carlo bias for GLS, S T  a , r  =  1

p D T
n  ~

VI
64

v F
n — 

v i
128

v F
n = 

v i
256 

v F
a .0000 .0000 .0000 .0000 .0000 .0000

0 b .0000 .0000 .0000 .0000 .0000 .0000
d .0000 .0000 .0000 .0000 .0000 .0000
a .0000 .0000 .0000 .0000 .0000 .0000

0.75 b .0000 .0000 .0000 .0000 .0000 .0000
d .0000 .0000 .0000 .0000 .0000 .0000
a -.0001 .0000 .0000 .0000 .0000 .0000

-0.5 b .0000 .0000 .0000 .0000 .0000 .0000
d .0000 .0000 .0000 .0000 .0000 .0000
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Table 4.15: Monte Carlo s. d. for OLS, S T a , D T a

T 9
n — 

V
64

V
n  =  
V

128
V

n  =  
V

256
V

0 .0034 .0068 .0012 .0024 .0004 .0008
1 0.75 .0030 .0069 .0011 .0024 .0004 .0009

-0.5 .0036 .0067 .0013 .0023 .0005 .0008
0 .0047 .0096 .0017 .0034 .0006 .0012

2 0.75 .0043 .0097 .0016 .0033 .0006 .0012
-0.5 .0050 .0094 .0018 .0033 .0006 .0012

0 .0024 .0048 .0009 .0017 .0003 .0006
0.5 0.75 .0020 .0049 .0007 .0017 .0003 .0006

-0.5 .0027 .0047 .0009 .0016 .0003 .0006

Table 4.16: Monte Carlo s. d. for GLS, S T a , D Ta

T P
IIs 

s

64
Vf

n = 
v i

128
v F

- II 256
v f

0 .0068 .0068 .0024 .0024 .0008 .0008
1 0.75 .0048 .0052 .0017 .0018 .0006 .0006

-0.5 .0060 .0061 .0021 .0021 .0007 .0007
0 .0097 .0097 .0034 .0034 .0012 .0012

2 0.75 .0068 .0073 .0024 .0025 .0008 .0008
-0.5 .0085 .0086 .0030 .0030 .0010 .0011

0 .0048 .0048 .0017 .0017 .0006 .0006
0.5 0.75 .0034 .0037 .0012 .0012 .0004 .0004

-0.5 .0042 .0043 .0015 .0015 .0005 .0005
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Table 4.17: Empirical sizes of Wald tests for S T a , r =  1, a  =  0.05

p D T

II 64
WF 3

s ii tO
 ̂

oo ii 256
W F

a .062 .183 .061 .121 .058 .099
0 b .062 .190 .056 .121 .048 .091

d .067 .218 .052 .126 .057 .107
a .062 .192 .059 .144 .053 .111

0.75 b .064 .179 .056 .124 .055 .104
d .064 .225 .044 .136 .047 .111
a .060 .196 .058 .122 .055 .103

-0.5 b .055 .171 .046 .111 .046 .089
d .068 .245 .057 .143 .058 .114

Table 4.18: Empirical sizes of Wald tests for S T a , r  — 1, a  =  0.10

P D T
ii 64

WF 3
s ii 128

WF 5
3 ii 256

W F
a .115 .258 .110 .180 .105 .159

0 b .114 .248 .111 .172 .091 .148
d .119 .305 .100 .190 .107 .166
a .115 .259 .110 .207 .111 .163

0.75 b .121 .245 .106 .197 .117 .163
d .115 .310 .094 .204 .101 .181
a .100 .258 .109 .193 .097 .158

-0.5 b .101 .241 .089 .178 .088 .149
d .128 .312 .101 .196 .104 .167
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