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Basic research is what I  am doing when I  donft know what 
I  am doing. —Werhner von Braun

Certum ex incertis (Certainty out of uncertainty). —The

British Institute of Actuaries

Abstract

The devastating 1999 Marmara and Diizce earthquakes lead to a significant increase 

in the earthquake studies in Turkey in geological, engineering and financial aspects. 

The start of the Turkish Catastrophe Insurance Pool (TCIP) in September 2000 

brought the mandatory earthquake insurance scheme in Turkey. Since then, many 

claims have been made after the earthquakes. In this study, the earthquake in­

surance claims data of the TCIP is used to model the number of claims, JVj, and 
the total claim size (amount), Si, as response variables with time and other covari- 

ates considering earthquake risk zone 1 and zone 2 in Turkey. The special functions, 
which are the exponential and the power kernel functions, are used for the modelling 
purposes to represent the sudden jumps in the number of claims after a disaster. 
The methods to estimate the related model parameters are presented and the results 
are used in the modelling process. The total claim amount (or the aggregate claims) 

process, S(t), is a main tool to calculate the risk process and the expectation of the 

total claim amount, E(S(t)) = fiA{t), gives an idea to calculate the necessary aount 

of the TCIP reserves. Therefore, the estimates of the suggested N{ and Si models 

are used to predict the necessary reserves of the Turkish Catastrophe Insurance Pool 

for selected zones. Afterwards, some examples of existing disaster management pro­

grams in different countries are given and the features of the Turkish Catastrophe 

Insurance Pool are discussed. Then, a hypothetical financial vulnerability analysis 

for Turkey in 10-,50-, 100- and 500- years is presented with suggested solutions in 

case of a financial gap.
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Index of Notation

t , T : time.

N(t): The claim number process up to time t.
X(t): The claim amount (claim size) process up to time t.
N i’. The number of claims (bin count).

Xi. The claim amount in the corresponding bin (X{ = X ti).
Sf.  The aggregate claim (total claim amount) in the corresponding bin. 

fif. The mean of the aggregate claims 5*.

Tfi'. The mean of the raw claim amount X(.
Ti. The variance of the raw claim amount X{.
A(t): The intensity (rate) of N(t) process.

A(t): The mean function (the intensity) of the whole process of N(t) (aka the 
expected number of events by time t). This notation is used for non-bin case.

A*: The intensity function A for binning case (also used as Ai).
S(t): The aggregate claims or the total claim amount process.
R(t): The risk process of a company (aka surplus). 
d: The deductible amount.
/?: The non-linear parameter to represent the exponential decay (trend) in the 

earthquake risk zones in Turkey.

ay  The coefficients representing the effect of earthquakes. 

n: The number of observations (earthquake claims). 

i : The index for the number of observations, i = 1, . . . ,  n. 
k : The number of the knots to replace the kernel function for the empirical 

earthquakes.

j : The index for the knots to replace the kernel function for the empirical earth­

quakes, j  = 1, . . . ,  k.
0: Vector of the intensity function A’s, which is consisted of the a  and (3 param­

eters.

i.i.d: independent identically distributed, 

mgf: moment generating function.
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Chapter 1 

Introduction

The 1999 Marmara earthquake was a turn point in the earthquake research in many 

aspects (e.g building damage, socio-economic losses) in a highly earthquake-prone 

country like Turkey. The main question in people’s mind since then is ‘What hap­

pens if another earthquake strikes with a similar or bigger magnitude?’. Different 
scenarios are prepared to answer this question, especially for Istanbul and surround­
ings, which are situated in the earthquake risk zone 1 according to the classification 
of the Earthquake Region Map of Turkey (see the Appendix).

Most of the earthquake research are conducted by the civil engineers and geol­

ogists on fault structures, building structure and damage assessment, where psy­
chologists and sociologists study the social impacts of disasters. In this thesis, we 

wanted to contribute to all these vital studies with a financial and statistical point 

of view. In what way can statistics science be included in such research rather than 

just keeping the basic numbers like the number of the earthquakes, the number of 

life losses.

There is a mandatory earthquake insurance scheme, the Turkish Catastrophe 

Insurance Pool (TCIP), in application in Turkey since 2000. The idea of applying 

some detailed statistical analysis for the ongoing earthquake research led us to the 

use of the TCIP data. This will bring a new look to the consequences of earthquake 

problem by the statistician’s eye. Unfortunately, many people are waiting for a next 

big earthquake to see the efficiency of their estimates for different types of research. 

The work here will be a suggestion for the authorities to keep the TCIP reserves
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enough to be able to cope with the claims arriving after an earthquake.

This thesis studies the mandatory earthquake insurance claims data, which is 

collected in the Turkish Catastrophe Insurance Pool between December 2000 and 

July 2003. Chapter 2 gives information on the earthquakes, the hazard profile and 

earthquake history of Turkey and the most devastating earthquake of all times in the 

country, that is the 17/August/1999 Marmara (Kocaeli) earthquake. Chapter 3 is 

mainly the literature review of the distribution theory of the Poisson (homogeneous, 

inhomogeneous) process, the premium calculation, reinsurance, the moment gener­

ating and cumulant functions, the extreme value theory and its application to the 

data of this study. Chapter 4 introduces the likelihood function of the observations 

and time. The parameter estimates are given for Poisson likelihood of the number 

of claims model, iV*, and for Normal likelihood of the aggregate claims (total claim 

amount) S{ model since log Si ~  Normal with the use of the special functions, which 
are the exponential and the power kernel functions.

Chapter 5 starts with the basic analysis of the thesis data. The models with time 
covariate, the parameter estimates and the related confidence intervals are given by 
risk zone 1 and zone 2 classification. In Chapter 6, the same methodology is used, 

when the magnitude and the number of residential buildings are added to the exist­
ing models as linear covariates (aka explanatory or regressor variables). Chapter 7 
begins with an introduction to natural hazards, disaster insurance and application of 

disaster risk management programs in different countries. The detailed information 

about the insurance sector in Turkey and the features of the Turkish Catastrophe 

Insurance Pool (TCIP) are presented in this chapter. A major motivation for the 

thesis is to model in a straightforward way in order to be able to make conclusions re­

lating to future earthquakes and the adequacy of the existing TCIP reserves. Thus, 
Chapter 7, in which these conclusions are made (summarised in Chapter 8), can 

be seen as the culmination of the analysis and modelling of the previous Chapters. 

A financial vulnerability analysis is presented using the Economic Commission for 

Latin America (ECLAC) methodology and the CATSIM (Catastrophe Simulation 

Model) of International Institute of Applied System Analysis (IIASA) introduced in 

the Financial Strategies module of the World Bank Institute online distance learning
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Natural Disaster Risk Management Program. Moreover, some mitigation, response 

and recovery strategies are suggested for Turkey. The thesis ends with the Conclu­

sion, the Glossary, Appendix and the Bibliography.
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Chapter 2

Earthquakes

2.1 Historical view

Earthquakes are the results of the continuous reshaping of the Earth. In time, people 

tried to explain the shakings, which killed many of them and caused damage to their 

homes and lives. People did not have any knowledge of earthquakes scientifically, 
so they made up some legends, stories about monsters shaking the Earth. For 
instance, in ancient Japan, it was believed that Namazu, a big catfish, was living 
underground and when Namazu moved the ground was shaken. A God, Daimyojin, 
would control Namazu. When Daimyojin’s attention was not on the catfish, the 
fish moved and that caused earthquakes. There were no answers to the questions 

in people’s mind except such kind of legends, until Greek philosophers, like Strabo 
and Aristotle thought the earthquakes were caused by something going on physically 

underground [Bolt, 1988].

The earthquake catalogues, which consist of records about severe earthquakes, 

were created by the invention and spread of writing. The geological and seismolog- 

ical changes in our world are studied by these catalogues. The oldest one of these 

catalogues dates back to 3000 years, recorded by the Chinese. It includes moder­

ate and large earthquakes in central China from 780 BC to present. The earliest 

earthquake, for which there is descriptive information about, occurred in China in 

1177 BC [Bolt, 1988]. The Japanese also have an earthquake catalogue, which has 

records from 1600 AD onwards. It was not until mid-sixteenth century that there 

was some discrete information regarding the occurrence of earthquakes in Europe,
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although they are mentioned as early as 580 BC. The earliest known earthquakes in 

the American continent were in Mexico in the late fourteenth century and in Peru 

in 1471, but the records of them are not extensive. By the seventeenth century, 

descriptions of the effects of earthquakes started to be published around the world. 

In the recorded history of North America, there were a series of earthquakes, which 

occurred in 1811-1812 near New Madrid, Missouri. A big earthquake of magnitude 

8.0 occurred on 16/December/1811. Another one occurred on 23/January/1812, 

and a third one, on 07/February/1812. The aftershocks of these earthquakes lasted 

for months [Bolt, 1988].

In 1906, one of the most destructive earthquakes throughout the recorded history 

of North America occurred in San Francisco. The earthquake itself and the following 

fires caused approximately 700 life losses and left the city in ruins. Year 2006 is the 

100th anniversary of this earthquake. The Alaska earthquake of 27/March/1964 was 

greater than the San Francisco earthquake in magnitude, yet since the epicentre was 
fax from the densely populated area, only 114 people died.

It is also noticeable and interesting that earthquakes destroyed the three of the 
Seven Wonders of the World in ancient times: the Mausoleum of Halicarnassus, the 
Colossus of Rhodes and the Pharos of Alexandria.

W hat is an earthquake?
Earthquakes are generally defined as the shaking of the ground resulting from 

the reshaping of the Earth. Our planet is still geologically in cooling process. There 

occurs some energy, which creates pressure in the Earth’s surface during the cooling. 

The Earth’s surface is formed by tectonic plates, which move very slowly over and 

under each other. During the horizontal movement of the tectonic plates, some of 

them touch the neighbouring plates and this action causes physical and chemical 

changes in their structure. Sometimes they are locked together and the accumulated 

energy needs to be released. When this energy reaches a very high level, it needs to 

find a way to be released and so it breaks the plates. This is the main reason for the 

earthquake occurrence. Therefore, an earthquake can be defined as the vibration 

of the Earth’s surface due to the release of the accumulated energy in the Earth’s
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crust [Bolt, 1988, Coburn and Spence, 1992].

Scientists specify different types of earthquakes. The most well-known earthquake 

is a Hedonic earthquake’, which is defined above. Almost 90 % of the earthquakes 

are of that kind. The second one is a 1 volcanic earthquake’, which occurs as a result 

of volcanic eruptions with the same mechanism to change the surface structure of 

the Earth as in tectonic ones. Another type of an earthquake is the one, which 

occurs in the underground caverns and mines, where the roof of the cavern or mine 

collapses. It is called a ‘collapse earthquake’. Sometimes, landslides can produce 

earthquakes. The last type is an 1 explosion earthquake’. There are nuclear test sites 

around the world. When there is a detonation of nuclear and chemical devices in 

these sites, a big amount of nuclear energy is released and this may cause earth­

quakes [Bolt, 1988, Coburn and Spence, 1992].

How does an earthquake occur?
Vibrations occur during the breakdown of the plates due to the accumulated 

energy in the Earth’s crust. These vibrations are called ‘seismic waves’. Seismic 
waves travel outward from the source of the earthquake, a point from where the 
waves first flow out, along the surface and through the Earth at varying speeds 

depending on the material through which they move. The origin, or the source of 

the earthquake’s energy is called the ‘focus of the earthquake’. In natural earth­
quakes, the focus is located below the ground; whereas, in artificial ones, such as 

caused by nuclear explosions, the focus is near the Earth’s surface. Earthquakes 

with a depth of 70 kilometres (43.5 miles) from the surface are called lshallow- 
focus earthquakes’, the ones with that of from 70 to 300 kilometres (43.5 to 186 

miles) are called 1 intermediate-focus earthquakes’ and those deeper than 300 kilo­

metres are called £deep-focus earthquakes’. The depth may reach more than 700 

kilometres (435 miles) in deep-focus ones. The focuses of most earthquakes are 

concentrated in the crust and in the upper mantle. The point on the ground sur­

face just directly above the focus is called the 1 earthquake epicentre’. The location 

of the earthquake simply determined by its epicentre and the depth of its focus 

[Bolt, 1988, Coburn and Spence, 1992].
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There are three types of waves:

P-wave : The P-wave is generated in a body of the rock and is faster than the other 

waves. It can move in solid rock, like granite mountains, with a speed of 

6 km/sec and in liquid material, such as volcanic magma and oceans, with 

a speed of 2 km/sec. This characteristic of the P-wave is similar to normal 

sound waves. When P-waves occur, a fraction of them can be transmitted into 

the atmosphere like sound waves so that animals and humans can hear them. 

In most of the earthquakes, the P-waves are felt first.

S-wave : Being generated in a body rock like P-wave, the S-wave is slower than P- 

wave with a speed of 3 km/sec. It cuts the rock sideways at right angles to 

the direction of travel. They can not travel in the liquid areas of the Earth.

Surface wave : This is so-called since its movements are always near to the ground surface. It 

is like little waves, a light fretting of the surface of a liquid, as with movements 
on a lake. They move slower than the body (P and S) waves. There are two 
kinds of surface waves:

a- Love wave: The love wave moves the ground from side to side in a horizontal 
plane but at right angles to the direction of transmission. The horizontal 

movement of the love waves damages the foundations of structures. It affects 

only the surface water as the sides of lakes and oceans.

b- Rayleigh wave: The Rayleigh wave moves both horizontally and vertically in 

a vertical plane, in the direction of the transmitting waves. It moves slower 

than the love wave.

The types of the waves can be determined from their movements out of the 

earthquake source to the ground surface. The P and S waves have reflection and 

refractivity characteristics. Some of their energy can be changed into other waves 

after reflection. There is a key point about the waves. That is, their seismicity, the 

temporal statistics of earthquake occurrence and the geological distribution of the 

earthquakes, changes by the type of the soil and the topography of the area. It is
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much safer to make construction on solid surfaces rather than sand, water-saturated 

soil and alluvium.

The breaking in the Earth’s crust, which can be observed as discontinuities in rock 

structure, is called a 1 fault'. Some of the faults ended the displacements thousands 

of years ago. Therefore, they are called £inactive faults'. It is the active faults, which 

cause earthquakes with sudden ruptures as they move very slowly by the time. Their 

yearly movements can be measured in millimetres. They can be both on the surface 

of the earth or under the sea. There are three types of faults determined by their 

movements: Normal, strike and reverse faults. If the fault plane moves downward 

by the tension, it is a ‘normal fault'. When the fault planes pass horizontally 

through one another, it is a ‘strike fault'. The ‘reverse' fault is where the wall of 

the fault moves up from the dip of the fault plane by compression. The special 

case of reverse fault is a 1 thrust fault', when the dip of the fault is small. Vertical 

displacements occur in normal and strike faults, which are called ‘dip-slip faults', 
whereas the horizontal ones along the strike of the fault are called ‘strike-slips' 
[Bolt, 1988, Coburn and Spence, 1992].

There is no guarantee that whenever an earthquake occurs along a fault there 
will not be another one in the future. There can always be some energy, which was 

not released by the latest earthquake. By using the results of the geological surveys, 
it is safer to make construction away from the fault lines. This mitigation effort can 

reduce the damage after the earthquakes. Furthermore, dip-slip faults can cause 

more damage than the strike-slip ones. It is the responsibility of the city-planners, 

the engineers and the central and local administration to decide where and what to 

build in settlement areas.

How to measure earthquakes?
For the first time, Chang Heng, a Chinese scholar, invented the device ‘seisrao- 

scope' about 132 AD, which was used to record the earthquakes. By the use of 

a seismoscope, it is only possible to obtain information about the direction of the 

main impulse in the earthquake. Later on, other devices were developed for the 

investigation on the earthquakes. One of them was the ‘seismograph', which was
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developed at the beginning of the twentieth century. The seismograph gives us the 

detailed record of an earthquake from the beginning to the end. The zigzag line 

record is called a lseismogram\ It shows the motion of the earthquake on a mag­

netic tape either photographically or electromagnetically. The path of the P, S and 

surface waves can be followed by the seismograms.

Mainly two terms are used to describe the size of earthquakes. The first one is 

‘ intensity ’. Intensity measures the severity of the shaking of the ground at a specific 

location. By using the intensity scales developed through time, it can be guessed 

that how the earthquakes can affect the people and the environment. An Italian 

scientist, Michele Stefano de Rossi and Francois Forel of Switzerland developed 

the first modern intensity scale in the 1880s. Today, the Modified Mercalli (MM) 

Intensity Scale is one of the scales used to measure the intensity (see Table 2.2). 

Originally, Giuseppe Mercalli, the Italian seismologist and volcanologist constructed 

this scale in 1902. H. O. Wood and Frank Neumann had revised the scale in 1931. 
Later, in 1956, the American scientist, Charles F. Richter again revised it by using 
the masonry as indicator of intensity in a 12-point scale. The 12-point scale is 
commonly used in Unites States. The one generally used in Europe is the Medvedev- 
Sponheuer-Karnik (MSK) scale. In Japan, the Japanese Meteorological Agency 

(JMA) scale and 7-point scale in use. In China, they have their own scales related 
to their building types.

The other term, which many people heard of, is the ‘ magnitude of an earthquake’. 

The magnitude is a measure of the size of the earthquake. There are some scales to 

measure magnitude, like intensity scales. In 1931, K. Wadati originally prepared the 

most famous of them in Japan. Later, in 1935, Charles F. Richter developed one at 

the California Institute of Technology and it is named after him, the Richter Scale. 
The magnitude is a logarithmic scale, based on the amplitude of the maximum seis­

mic wave recorded on a standard seismograph at a distance of 100 kilometres from 

the epicentre of the earthquake. As the magnitude increases by 1-unit, the ampli­

tude of the waves increases by 10-units due to the logarithmic scale. For instance, 

an earthquake with magnitude 7.0 generates 10-times more ground motion than an 

earthquake of magnitude 6.0. Moreover, a 1-unit increase in magnitude results in
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32-times stronger energy, which is the destructive power of the earthquakes. The 

earthquakes with magnitude 5.0 or more are considered to cause damage. There is 

a power relation, which is used to explain the effect of earthquakes with different 

magnitudes. Here is an example:

How much bigger is an earthquake with magnitude 8.4 than the one 

with 5.2?
I Q 8 -4

—— = io8-4- 5-2 =  103'2 =  1585
10

Therefore, an earthquake with magnitude 8.4 has 1585 times destructive effect than 

the one with magnitude 5.2. The table below gives energy information about the ef­

fects of the earthquakes with different magnitudes [Coburn and Spence, 1992] (Page 
21 ).

Magnitude Effect

less than 4.5

An earthquake with magnitude less than 4.5 
generally does not cause damage. Approxi­
mately 108 kilojoules of energy (equivalent to 
10 tons of TNT exploded underground) is re­
leased in an earthquake of magnitude 4.5.

4.5-6.0

Damage generally occurs after an earthquake 
of magnitude 5.0. It is estimated that 109 
kilojoules of energy (equivalent to 1000 tons of 
TNT exploded underground) is released in an 
earthquake of magnitude 5.5.

6.0-7.0

With magnitude 6.0, 1010 kilojoules of energy 
(equivalent to 6000 tons of TNT exploded un­
derground) is released. This is 1012 kilojoules 
for an earthquake of 7.0 magnitude.

7.0-8.9

It is terrifying that an earthquake of magni­
tude 8.0 releases 1013 kilojoules energy that is 
equal to the explosion of 400 atomic bombs un­
derground.

Table 2.1: The magnitude effect of earthquakes.
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Modified Mercalli Scale Degree Description

I Generally not felt.

II
belt very slightly, especially on upper fioors of 

buildings.

III Felt indoors by few people, vibration is weak.

IV
Felt indoors by many people, outdoors by few. 

Windows, walls, floors creak. Furniture shakes.

V Felt by almost all. Animals are to be uneasy.

VI
People get frightened and run outdoors. 

Heavy furniture moves.

VII

Everybody runs outdoors. Driving people can 

feel it. Chimneys and poorly built structures 

crash.

VIII
Heavy furniture moves and some overturns. 

Monuments, columns etc. fall.

IX General panic. Underground pipes are broken.

X

Dams, bridges etc. show critical damage. 

Most masonry and well-built structures are de­

stroyed.

XI
Catastrophe. Few, if any, structures remain. 

Earth slumps. Rails bent greatly.

XII
The Eartffs surface changes. Objects thrown 

into air.

Table 2.2: The Modified Mercalli Scale Degree and corresponding effects. Source: 

[Bolt, 1988, Coburn and Spence, 1992]
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2.2 Introduction to Turkish Earthquakes

2.2.1 Hazard Profile o f Turkey

The country profile of Turkey is sourced from the CIA Country Factbook.

Total area: 780,580 sq km

Total population: 70,413,958 (July 2006 estimate)

GDP purchasing power parity: 572 USDb (2005 estimate)

GDP per capita: 8,200 USD (2005 estimate)

Unemployment rate: 10 % (plus underemployment of 4.0 %) (2005 estimate)

Table 2.3 summarises some social and economical indicators of Turkey. It is 

observed that the Gross National Product (GNP) growth rate drastically hits a 

negative value in 1999 (-6.1) due to the effect of the 1999 earthquakes.

Indicators 1995 1996 1997 1998 1999
GNP (USD b) 171.9 184.6 194.1 205.8 187.5
GNP per 
capita (USD)

2,841 3,005 3,110 3,247 2,914
GNP growth 
rate (%) 8 7.1 8.3 3.9 -6.1
U nemployment 
rate (%) 6.9 6.0 6.4 6.3 7.3
Population 
age structure 
(PAS/0-14)

32.3 31.7 31.2 30.7 30.5

PAS /  15-64 63 63.5 63.8 64.2 64
PAS /  65+ 4.7 4.8 5 5.1 5.5

Infant mortality 
(in thousand) 44.4 42.2 39.5 38.9 36.8
Average life
expectancy
(ALE)

67.9 68.2 68.6 68.8 68.9

ALE (Female) 70.3 70.5 70.9 71.2 71.3
ALE (Male) 65.7 65.9 66.3 66.5 66.6

Table 2.3: Basic Social and Economical Indicators of Turkey. Source: The State 
Planning Organisation, State Institute of Statistics, [JICA, 2004]
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The United Nations Development Programme (UNDP) announces Turkey as the 

third country after Iran and Yemen according to the number of deaths as a result of 

earthquakes. Earthquakes are the types of disasters, which occur with low frequency 

but high severity. The UNDP also ranks Turkey 35th among fifty five countries for 

the flood losses. In [Gurenko et al., 2006], the number of fatal earthquakes occurred 

in Turkey during the twentieth century is reported as 111 with total fatalities of 

99,391. Floods, rock-falls, landslides and avalanches are the other types of disasters 

that the country faces (see the Appendix), where floods and landslides are mainly 

experienced in the Black Sea Region and the coastal areas. Table 2.4 gives the 

figures of different types of natural disasters in Turkey since 1990.

Event Date Killed Injured Homeless Affected Loss in 
$ m

Earthquake
(Erzincan) 13/03/1992 653 3,850 95,000 250,000 750
Avalanches 
(S. Anatolia)

1992 (14 
events) 328 53 11,600 30,000 25

Avalanches (S.& 
E. Anatolia)

1993 (31 
events) 135 95 1,100 300 10

Mud flood
(Senirkent-
Isparta)

13/07/1995 74 46 2,000 10,000 65

Earthquake
(Dinar) 01/10/1995 94 240 40,000 120,000 100
Flood (Izmir) 04/11/1995 63 117 6,500 300,000 1,000
Earthquake
(Qorum-
Amasya)

14/08/1996 0 6 9,000 17,000 30

Flood (W. 
Black Sea) 21/05/1998 10 47 40,000 1,200,000 1,000
Earthquake
(Ceyhan) 27/06/1998 145 1,600 88,000 1,500,000 500
Earthquake
(Marmara) 17/08/1999 17,480 43,953 675,000 15,000,000 16,000
Earthquake
(Diizce) 12/11/1999 763 4,948 35,000 600,000 750
Earthquake
(Sultandagi) 03/02/2002 42 327 30,000 222,000 95
Earthquake
(Bingol) 01/05/2003 177 520 45,000 245,000 135
Total 19,964 ”55^802 l,07S;20t 19,494,300 20,460

Table 2.4: Natural Disasters in Turkey between 1990-2004. Source: [JICA, 2004], 
GDDA
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Table 2.5 is compiled from the data of the General Directorate of Disaster Affairs 

and the Project Implementation Unit of the Prime Ministry Turkey and gives the 

type of the disaster and the related building collapse since the beginning of the 

twentieth century.

The type of the disaster
1 he number ot 

collapsed buildings
Earthquake 612,000

Landslide 65,551

Flood 61,000

Rockfall 30,000

Avalanche 5,500

Total 774,051

Table 2.5: The types of the disasters in Turkey and resulting building collapse 

between 1900-2003. Source: GDDA, PIU

2.2.2 The H istory o f Earthquakes in Turkey

Turkey is a peninsula, which is a bridge between the continents of Europe and 

Asia. The country is one of the most earthquake-prone countries in the world 

with 96 % of the total land, 98 % of the total population, 90 % of the cities, 

755 industrial complexes and 40 % of the dams being situated in the active zones 
[Ozerdem and Barakat, 2000]. An Earthquake Region Map (see the Appendix), 

which divides Turkey into five risk zones, has been published in 1996 by the General 

Directorate of Disaster Affairs, Ministry of Public Works and Settlement. This map 

shows that 66 % of land area of Turkey is located in risk zones 1 and 2, where 70 

% of the total population live in and 69 % of the industrial facilities are located. 

After the 1999 earthquakes, the Earthquake Map of Turkey is being revised by the 

scientists since the fault structures changed significantly.

Anatolia, the main land of Turkey, contains many active fault lines. The North 

Anatolian fault line (NAF) and the East Anatolian fault line (EAF) are the most 

important ones to cause the devastating earthquakes. The NAF is the expansion
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of the Alpine-Himalayan fault line, which restricts the Arabian-Eurosian tectonic 

plates. Many studies have been carried out to understand the structure and the 

behaviour of the North Anatolian fault. The fault line starts in Karliova-Bingol 

in Eastern Turkey and continues to the west of the Marmara region with a length 

of 1000 kilometers. It separates North Anatolia from Middle Anatolia. The most 

important earthquakes in the history of the Anatolian Peninsula were due to the 

ruptures in the North Anatolian fault. The NAF has some similarities with the San 

Andreas fault, which is the cause of the 1994 Northridge earthquake, California, in 

movement (both from east to west), slip rate, age, length and straightness (see the 

Appendix) [KOERI, 1999, Bibbee et al., 2000, Erdik, 2000].

The 1939 Erzincan earthquake is the start of the chain of earthquakes along the 

North Anatolian fault. Between 1939-1944, the fault was ruptured 600 kilometers to 

the west. Afterwards, this movement slowed down and another rupture of 100 kilo­

meters was recorded between 1957-1967. The 1999 Marmara and Diizce earthquakes 
filled the 100-150 kilometers gap of the previous ruptures [Bibbee et al., 2000].

Magnitude 1900-1932 1933-1966 1967-2004
8.0-9.9 0 0 0
7.0-7.9 3 13 5
6.0-6.9 6 14 18
5.0-5.9 6 28 27
Total 15 55 50

Total number of 
estimated deaths 4,926 48,410 28,522

Table 2.6: The significant earthquakes in Turkey between 1900-2004. Source: The 
General Directorate of Disaster Affairs (GDDA)

The scientists prepared various earthquake scenarios for Istanbul following the 

1999 earthquake. These scenarios expect an earthquake of magnitude 7.6 along 

the main Marmara Fault of the North Anatolian Fault. The probability that this 

earthquake will occur in the next 10 and 30 years are 65 % and 20 %, respectively
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[Erdik, 2003]. It is estimated that there will be 70,000 life losses, 520,000 injuries 

(400,000 of which is heavy) and a direct economic loss of USD 30b [Erdik, 2003].

2.3 17 /A u gu st/1999  Marmara (Kocaeli) Earth­
quake

On 17/August/1999, at 03:01:37 a.m. local time, one of the most devastating earth­

quakes in the history of Turkey occurred as a result of the 120-kilometre rupture of 

the North Anatolian fault near Akyazi-Yalova region and lasted approximately 45 

seconds. The epicentre was in 18 kilometres (10.5 miles) depth near to Golciik, the 

town 11 kilometres (7 miles) to the southeast of the city of Izmit (Kocaeli) where 
the country’s main naval base is located. The magnitude of the earthquake was 7.4 

in Richter Scale and caused 2.7 metres (9 feet) right-lateral strike-slip movement on 
the fault. Preliminary field reports confirm this type of motion on the fault, and 
initial field observations indicate that the earthquake produced at least 60 kilome­
tres (37 miles) of surface rupture. The more specific magnitude measurements are 
given below:
Surface Wave Magnitude: 7.8 (U.S. Geological Survey-USGS)
Body Wave Magnitude: 6.3 (USGS)

Duration Magnitude: 6.7 (Bogazigi University Kandilli Observatory and Earthquake 

Research Institute)

Moment Magnitude: 7.4 (USGS, Kandilli Observatory and Earthquake Research 

Institute)

Epicentre: 40.702N, 29.987E (USGS)

Depth: 18 km. (USGS)

In [Bibbee et al., 2000, Ozerdem and Barakat, 2000], it is mentioned that since 

the 1906 San Francisco and 1923 Kwanto, Tokyo-Japan earthquakes, there was no 

earthquake to cause heavy damage to such an industrialised region like Marmara. 

The earthquake area is very densely populated, which consists of the 23 % of the 

entire population of Turkey. The mainly affected cities (Kocaeli, Sakarya, Bolu, 

Yalova) have a share for the 7 % of the Gross Domestic Product (GDP) and 13.5
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% of industrial value added. Together with the other affected, surrounding cities 

(Istanbul, Bursa, Eskisehir) in the region, those values increase to 34.7 % and 46.7 

%, respectively [Erdik, 2000]. The Marmara Region counts for the 5 % of export 

and 15 % of import trade of Turkey. The per capita income of the region is the 

double of the national average [SPO, 1999].

The earthquake caused almost 18,000 deaths and 45,000 injured that approxi­

mately 20,000 of the injured were left permanently disabled. Small coastal towns 

(e.g. Degirmendere, Golciik) were severely affected by the earthquake. Apart from 

the earthquake itself, tsunamis (tidal waves due to the sea floor earthquakes) hit the 

towns. Since it was summer time, the population of the coast towns was higher than 

that of in winter. Many were killed when they were asleep. There are no confirmed 

records on the losses caused by tsunamis.
Monetary losses:

Industrial facilities: USD 2b (most of them insured with an insured value of USD 
15b)
Buildings: USD 5b (about 8 % insurance penetration)
Railways'. USD lb 

Highways’. USD 0.2b 
Ports: USD 0.2b 
Telecommunication: USD 75m 

Energy transmission: USD 3m

Average total losses (physical and socio-economic): USD 16-20b (approximately 7-9 

% of the GDP).

The damage to industry was estimated at USD 1.1 - 4.5b by the public and private 

sectors. The added-value loss stemming from that is about USD 700m, which results 

in a 1.6 % decrease in the growth of the production sector. The payments of the 

claims are to be estimated around USD 600-800m since most of the industry losses 

were covered by insurance [Erdik, 2000, SPO, 1999].

There are many plants in the earthquake area owned either by state or interna­

tional firms (e.g. Good Year, Pirelli, Ford, Honda, Hyundai, Toyota, Isuzu, Renault, 

Fiat, Bridgestone, Pepsi Co, Castrol, Dow Chemical, BP, Du Pont, Phillips, La
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Farge). The State Planning Organisation (SPO) estimates a total loss of USD 880m 

for the state-owned ones (Tiipra§, Tuvasa§, Igsa§, Petkim, Seka and Asil Qelik).

It is also estimated by the State Planning Organisation that there is a burden 

of USD 6.2b on public finance caused by the earthquake. USD 3.5b of this amount 

is used for the reconstruction of houses after the disaster. The government enacted 

special earthquake taxes and allowed a paid military service for men between certain 

ages, which have not yet done their military service for various reasons. A year after 

the earthquake, USD 3b was obtained by these temporary solutions. International 

resources like the European Union and the World Bank supplied USD 2.5b for the 

reconstruction and recovery period. There was a 5 % decline in the GDP during 

1999, which was stopped in the first half of 2000. By the August 2000 report of the 

SPO, a 5 % increase in annual GDP was realised [Selguk and Yeldan, 2001].

Apart from all the economic losses briefly summarised above, there are some 
psychological effects of the earthquake which will take a long time to recover. People 
lost their families, homes and jobs. As a result, there has been a high increase in 
suicide, depression, alcohol consumption, problems in the families and the divorce 
rate. Most people do not want to get married on the 17th August and do not 
celebrate birthdays on that day.

The damage reports show that most of the collapsed and heavily damaged build­

ings were 6-8 storey, some were under construction and some were built within 
last few years before the earthquake. In Turkey, there is a current Building Code 

of 1998 with necessary regulations for sophisticated earthquake-resistant buildings. 

This code is an adaptation of the Californian Uniform Building Code to the stan­

dards of Turkey. Although those damaged and collapsed multistorey buildings are 

supposed to be earthquake-resistant, they were not due to the following factors 

[Giilkan, 2000]:

1. Inadequate vertical and horizontal reinforcing steel and the widespread use of 

smooth (as opposed to deformed) reinforcing steel,

2. No verification by the design and structural engineers, employee of the con­

tractor that the contractor has used the intent of the design drawings during
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the construction,

3. The use of poor and inappropriate materials in construction,

4. Poor workmanship,

5. Allowance to make construction on active faults and in areas of high liquefac­

tion potential,

6. The use of past experience instead of the engineering techniques to make 

buildings.

Building damage statistics after the Marmara earthquake are given in Table 2.7 

below.

Number of housing units
Number of 
business premises

Total collapse-destroyed 66,441 10,901
Moderate damage 67,242 9,927

Light damage 80,160 9,712

Total 213,843 30,540

Table 2.7: The building damage after 1999 Marmara earthquake. Source: Govern­
ment Crisis Centre, [Bibbee et al., 2000]

It is sad to observe that most of the collapsed buildings were the newest ones 

indicating the deterioration in the quality of design, construction and building con­

trol of modern structures. It is mainly the responsibility of the local authorities to 

check the application of the building code and regulations before and during the 

construction. Unfortunately, the control system does not work efficiently. On the 

other hand, many buildings in the most heavily damaged areas survived without 

significant damage because of the fact that they were designed with earthquake- 

resistant features with good quality materials and on firm ground or rock base.
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Earthquake Protection and Preparedness
Earthquake itself, following fires, landslides, mudslides, avalanches, tsunamis, se­

iches, floods from dams and soil liquefaction are the important factors, which cause 

casualties and damages and increase the total losses. It is possible to reduce the 

losses of earthquakes by some mitigation methods and effective disaster risk pre­

paredness and management plan. The following are some basic steps for individuals 

to do before, during and after an earthquake [Bolt, 1988]:

1. Before an earthquake:

i) Have a flash-light and a first-aid kit in your home. Each household should 

know where they are kept.

ii) Learn first-aid.

iii) Do not keep heavy objects on the shelves.

2. During an earthquake:

i) Keep calm. Stay wherever you are, indoors or outdoors. A large number of 
deaths are due to the heart attacks and jumping from balconies or windows 

due to panic.

ii) If near to an exit or can reach to exit easily, leave the building as soon as 

possible. Do not stay to collect belongings and valuables.

iii) If indoors (upstairs), stand against a wall near the centre of the building. 

Do not get close to the windows, balconies and outdoors. Do not try to run 

away through the elevators or stairs. If possible, stay close to heavy furniture 
like washing machine or dishwasher since they can provide a space for you to 

survive until the rescue teams reach.

iv) If outdoors, stay in the open. Keep away from overhead electric wires or 

anything that may fall.

v) Do not use candles, matches or any other kind of flames.
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vi) If you are in a moving car, stop away from the overpasses and bridges and 

remain inside the car until the shaking stops.

3. After an earthquake:

i) Check yourself and others nearby for injuries. Provide first-aid if needed.

ii) Check water, gas and electric lines. If damaged, close the valves.

iii) Check for gas leaks. If detected, open all the windows and outdoors, leave 

immediately and report it to the authorities.

iv) Turn on the radio for emergency instructions. Do not keep the telephone lines 

busy as there may be some urgent calls.

v) Stay out of damaged buildings.

vi) Do not use lifting machinery, bulldozers or mechanical diggers to move the 
rubble even if they are available. It is highly possible survivors could be killed 
under the rubble if you use them. Use manual labour.

vii) Think of where people could be trapped under the rubble. Listen for people 
inside the rubble replying or making noise for help.

viii) Do not expose yourself and your rescue team to unnecessary risks. A collapsed 

building is highly unstable and dangerous.

40



Chapter 3 

Distribution Theory

In this chapter, the available literature is revised on the claim number process, the 

claim arrival times, the total claim amount (the aggregate claims) process, the use 
of the aggregate claims in the actuarial context, the moment generating functions 

and the application of the extreme value theory with the use of extreme events data.

3.1 Poisson Process

3.1.1 H om ogeneous and Inhom ogeneous Poisson Process

The claim number process is a stochastic process, which has a very wide use in 
the insurance and actuarial studies in estimating the risk process of a company. 

Let N(t) be the process of the number of claims in the interval (0,t]. In classical 

risk theory, the claim number process is generally assumed to have independent 

increments. If the intensity A of claim frequency is independent of time t , then 

N(t) is a homogeneous Poisson process with intensity A > 0 [Biihlmann, 1970, 

Cox and Miller, 1965, Rolski et al., 1999]. Then the probability density function of 

the distribution of N(t) is Poisson

Pr{N{t) = n) = — ----  (n =  0 ,1 ,2 ...) ,

with the following properties

1. N(0) = 0,
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2. For any time points to =  0 < ti < < . . .  < tn, the process increments

N(t\)  — iV(to), -/V(t2) — N( t i ) , . . . ,  N(tn) — N( tn- 1) are independent Poisson 

random variables and stationary (i.e. all increments of intervals of the same 

length have the same distribution).

The moments of the claim number process N(t)  are given as follows by using the 

properties of the Poisson distribution (mean=variance)

E(N(t))  =  At,

and

Var(N(t)) = At.

The claim number process N(t)  is assumed to be a counting process with random 

time

tn =  IVi +  . . .  +  Wn {n > 1).

The differences tn =  Wn+1 — Wn are called event (claim) interoccurrence (inter- 
arrival) time. Any counting process generated by an independent identically dis­
tributed sum process tn is also called as a renewal counting process. Since a Poisson 
process restarts itself at any point in time, there is no memory of the past (renewal) 

and this differs the Poisson process from other renewal processes.

One can also define N(t) as a pure jump process with sample paths in Z)[0, oo) 

that increase to oo as t —► oo with jumps of height 1 at the random times tn. Since 

any process with independent, stationary increments and simple paths in D[0, oo) is 

a Levy process, N(t)  satisfies this definition and also entitled to be a Levy process. By 

all of the properties it has, the claim number process N(t) is [Embrechts et al., 1997]:

1. A homogenous Poisson process,

2. A renewal process,

3. A jump process,

4. A Levy process.
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The rate A in a Poisson process N(t)  is the proportionality constant in the prob­

ability of an event occurring during an arbitrarily small interval. It is relevant to 

consider the rate A as time varying, that is A =  A(t), in many applications. In that 

case, the process N(t ) is an inhomogeneous (non-homogeneous) or non-stationary 

with time. When N(t) is an inhomogeneous Poisson process with rate A(£) (gener­

alisation of a Poisson Process), then the increment N(t)  — N( 0), given the number 

of events in an interval (0, t], has a Poisson distribution with parameter F^A^t)] =  

A0(£) = fg X(r)dr and the increments over disjoint intervals are independent ran­

dom variables [Cox and Miller, 1965, Cinlar, 1975, Daley and Vere-Jones, 2003]. In 

other words, the intensity A is replaced by a mean value function (or the cumulative 

intensity function) A(t) and N(t)  is said to be an inhomogenous Poisson process 

with the mean value function A(t). This is called the Cox or doubly stochastic Pois­

son process, when A(t) is itself random [Biihlmann, 1970, Basu and Dassios, 2002, 
Ruggeri and Sivaganesan, 2002, Ruggeri et al., 2000, Ruggeri and Pievatolo, 2002, 

Rolski et al., 1999]. An inhomogeneous Poisson process allows some events to occur 
more likely at certain times than during other times [Ross, 2003, Cox and Lewis, 1966, 
Lewis, 1972].

When one uses the real data on the number of claims arriving in a certain time 
interval, it is not always suitable to use the Poisson assumption. In many cases, 

negative binomial distribution is preferred, which can be obtained by mixing the 

Poisson distribution with a gamma distribution (mixed Poisson process). In the 

claim arrival processes, more variability is expected. In a mixed Poisson process, 

this variability decreases as time goes by. By a similar argument above, to stop 

the decrease in the variability, Cox processes are used with the cumulative intensity 

measure A(a, 6] =  \(r)dr  (aka integrated rate function). One example of the 

mixed Poisson processes is the mixture of a Poisson process and Gamma distribution, 

which is also known as ‘Polya’ or ‘Pascal’ process.

Rem ark 1: For an inhomogeneous Poisson process, there exists a non-decreasing, 

right-continuous function A(t) and the number of events in an interval (a, b] has a 

Poisson distribution with parameter A(6) — A (a) [Vere-Jones, 1970].
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R em ark 2 : The time-dependent intensity A(t) of an inhomogeneous Poisson 

process N(t)  is approximated by A(t) as an expansion form by the integral over A(t) 
[Vere-Jones and Ozaki, 1982, Cox and Miller, 1965]. Therefore N(t) ~  Poisson(A(t)). 

This implies [Daykin et al., 1994b]:

1. E(N(t))  =  A(t),

2. Var(N(t)) = A(t) —► standard deviation =  \/A(£),

3. j (N(t))  = , where 7 stands for the skewness,

4. 72(Af(t)) =  where 72 stands for the kurtosis.

The use of the intensity A(t) in modelling chapters of this thesis will be based on 

the Poisson binning approach. That is, the rate A(t) is assumed to be a constant 
over each bin, which tells us that the Poisson count for the bin is equal to A(t) = 

$^\{r)dr, where A represents the expected number of events by time t.
R em ark 3: By Remark 1, if f*  X(r)dr = A(b) — A(a) holds, it implies that A(r) 

is the intensity function of A.

R em ark 4: An important property of an inhomogeneous Poisson process is 
the additivity property of the intensities of the two independent inhomogeneous 
Poisson processes. This applies and easily proved for the case of regular Poisson 
distribution. It states in [Rolski et al., 1999] that suppose Ni(t) and N2(t) are two 

independent inhomogeneous Poisson processes with intensity functions Xi(t) and 

A2(£), respectively. The superposition N(t),  where N(t) = Ni(t) +  N2(t) is an 

inhomogeneous Poisson process with intensity function A(t) =  Ai(t) +  X2(t).
Let Wo be the time of the first claim event to occur in (0, t] and N(t) be an 

inhomogeneous Poisson process with intensity A. Then

PriyV0 > t) — Pr(N(t)  =  0) =  Pr(no claim occurs in (0, t]) = p 

= Pr(no event in(0, ti))Pr(no event in(£i,£2))

. . .  Pr(no event in(£n_i, tn)),
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and
p «  (1 — X(r)dr)(l — X(r)dr) . . .  (1 — A(r)dr) «  1̂ — A(r)dr^j

t

t

t t
by using log(l — x) =  — x  +  o(x2), where o is a function of x,

logp «  — /  X(r)dr

p  «  e - S £ x(r)dr?

and the cumulative distribution function is

Fo(0  =  Pr(W 0 < t )  =  l -  Pr(W o > 0  =  1 -  e - l o A(r)*

As explained in [Biihlmann, 1970], Markov processes are the generalisation of the 
processes with independent increments. Since the process above is Markovian, the 

times W i,W 2 -.. form a renewal (inhomogeneous Poisson) process and we can, by a 
similar argument to the above, show that conditional on Wi, the distribution of the 
time to the next claim event, U =  Wi+i — has the following distribution function 
[Cox and Lewis, 1966]

and by differentiation, the probability density function is [Cox and Lewis, 1966]:

In the modelling chapters of this thesis, special kernel functions will be used: the 

exponential and the power kernel functions. It might be interesting to search for 

the type of the distribution of the first event occurrence time, fo(t), for these kernel 

choices before we continue with the total claim amount process. The exponential 

and the power kernel functions simply have the following forms, respectively:

where

(3.1)

log A(l) =  ae P*,
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and

log A(£) =  a t13.

If the exponential kernel is substituted in fo(t) with A(t) = eae Pt, we have

/„ ( * )  =  e a e - « e - / 0‘ e» '-'S‘dr

The question arises here is to find the recognisable distribution of this form. For 

(3 = 1, the exponential kernel takes the form log A(t) — and this implies 

A(t) = eae \  By the same argument above

f 0(t) = eae~‘e - t t ‘°'~'dT.

If the integral above is solved, we have e“e and this might suggest the dis- 
tribution of the first event occurrence time by the use of the exponential kernel 
function.

When (3 = 1, the use of the power kernel results in a familiar distributional form. 

That is, for /? =  1, logA(t) =  a t , which is log-linear case itself and A(t) = eat. 
Therefore

f 0(t) = eaie - t i eQtdr = eate~eaH = eate~teat.

Let y = e*, then logy =  t with the Jacobian | ^ |  =  |A|. Then, the distribution of

the occurrence of first event with the use of the power kernel is

f y ( y )  = \~\yay~ya i

which is a form of Weibull distribution. If Y  ~  Weibull then log Y  ~  logWeibull 

(aka the Fisher-Tippett distribution) appears as a distribution of the occurrence of 

first event with the use of the power kernel by log y = t transformation.

If we use the form log A(t) = at~P and substitute (3 — 1, then log \{t) = j .  If we

check the plot of the intensity A(t) for this case when t — 0, the result is infinity for 

both A(t) and A(t), where A(t) is the integral of A(t) over the given interval. Either 

the form t~P or —t& gives the decreasing power kernel function as we expect it to 

happen to represent the claim decay pattern. We will use the form of t~P for the rest 

of the analysis to keep consistency with the use of the exponential kernel function.
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This will not cause a big gap in the analysis, since we use the +  part of the ti — Sj 
difference (in notation (ti — Sj)|+), where we never have U = Sj case (please note 

the use of U for the actual event, Sj to represent the site of the kernel knot).

3.2 The total claim amount (aggregate claims) 
process

In the insurance context, the total claim amount process, S(t), has a very wide use. 

In this process, the claim amount X i , which corresponds to each policy, is summed up 

over a given time period. The calculation of S(t) depends on the claim size (amount) 

Xi  and the claim number process N(t)  in a given time period and that leads to the 

calculation of the net (pure) premium [Embrechts et al., 1997, Biihlmann, 1970]. A 

claim is called ‘large’, when it consumes a large portion of the total claim amount 
[Rolski et al., 1999].

When the claim amount distributions are independent but not necessarily iden­
tical, the total claim amount process is called as the ‘individual modeV. The aggre­
gate claims model, which is often used to approximate the individual claims model 
[Kaas et al., 2001], is called the ‘collective modeV [Rolski et al., 1999] and defined 
with the following equation, assuming that the claim size X j’s and the claim number 

process N(t) are independent and also X^s  are independently identically distributed 

(i-i-d)
JV(t)

s ( t )  =  j 2 X i (*̂ °)>
Z = 1

where S(t) = 0 if N(t) = 0.

In the collective risk model, the insurance portfolio is thought to be a process, 

which generates claims over time [Kaas et al., 2001]. In both the individual and 

collective models, the total claims on a portfolio of insurance contracts is the random 

variable of interest [Kaas et al., 2001]. The total claim amount S(t) is a random 

variable, when the claim number process N(t)  and the claim amount process X(t)  

are stochastic, time-dependent random variables. Here, both the claim number 

process (N(t)) and the claim amount process (X(t)) are assumed to be time-varying
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as given in their notation. If the number of claims in the portfolio is large and rare,

it is reasonable to approximate from individual model to collective model, because 

collective models are computationally more efficient to work with [Kaas et al., 2001]. 

In further computations, the aggregate claims are assumed to be exempted from

rate, interest rate, taxes) of the country and the management expenses (e.g. cost 

of office equipment, salaries of employees, commissions to agents, rental of offices) 

[Booth et al., 1999, Rolski et al., 1999, Hogg and Klugman, 1984].

The claim number process N(t)  can be chosen as Poisson, binomial, Pascal (neg­

ative binomial), geometric or other types of appropriate distributions. In actuarial 

analysis, mainly the three types (Poisson, Pascal and geometric) are of interest. 

When the claim number process N(t)  is an inhomogeneous Poisson process with the 

mean function A(£), the total claim amount process S(t) is a ‘Compound Poisson 
process’. Also, if N(t) is Negative Binomial, then S(t) has a compound negative 

binomial distribution [Kaas et al., 2001]. This compound case is a special interest 
in the actuarial context and the total claim amount has the following distribution 
function at time t [Rolski et al., 1999, Daykin et al., 1994b, Kaas et al., 2001]

It is almost impossible to derive an explicit formula for this distribution function. 

Therefore by using the law of total probability and under the assumption that 

N(t) and are independent where X{ are independent identically distributed, 

the distribution function F  of S(t) is written in the following (3.2) by using the 

convolution (see the Appendix) of X ’s

the effects of the micro/macro economical indicators (e.g. inflation, unemployment

N ( t )

Fs w (s) = Pr(S(t) <s )  = P r ( £ X i ) -
i = l

Gk(x) =  Pr ( X ! +  . . .  +  X k < s)

with

G°(x) = 1 for x  > 0 and 0 for x < 0.
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Then
Fs(t)(s) = Pr(S(t ) < a)

oo
= E , P r ( E , Xi -  s I =  k) P r (N(t) =  k)

k=0 i=l (3.2)
OO

A (t)ke~AW ,
=  E  fci g * w .

fc=0

where Gfc(s) is the kth fold convolution of the X  distribution.

Remark 5: The necessary condition to be a Levy process is to be infinitely 

divisible. The total claim amount S(t) is also a Levy process since the Poisson 

distribution satisfies this condition.

The expectation of the aggregate claims, E(S(t)),  is used as the net premium in 

actuarial calculations. With the assumption of independent identically distributed 
X{ s, let E(Xi) = T) and Var{Xi) = r. Then, the central moments (mean and 

variance) of S(t) can be obtained for an inhomogeneous process N(t)  with rate A(t) 
[Embrechts et al., 1997, Karlin and Taylor, 1994] by conditioning on the number of 

claims as
oo

E{S(t)) =  ^2 E { S (t)  | N(t)  =  k)Pr(N(t)  =  k)
k = 0 
oo

=  £ ) E ( X i  +  . . .  +  X m  | N(t) =  k)Pr(N(t)  =  fc)
k = l

OO

= N(t)Pr(N(t)  =  k)
k =  1

OO

= n 'E,N( t )Pr (N( t )  = k ) =  vE(N(t))  = r)A (t)

(3.3)

fc=l

=  E(X(t))E(N(t)).

Also
Var(S(t)) =  E ( ( S ( t ) - 7,A(t))2)

=  E ((S (t) -  N(t)V + N (t)V -  A(t)n)2)

= E((S( t )  -  N(t)r,)2)  +  E(ri2(.N(t) -  A(t))2) 

+  2E(r,(S(t) -  N(t)V)(N(t) -  A (t))),

(3.4)
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oo

E((S(t )  -  N(t)r,/)2) =  X > ( ( S W  -  N(t)V)2 I N(t) = k ) P r m (k)
k=0
oo

=  ^ > ( ( * 1  +  • • • +  xm  -  fa?)2 I N(t)  =  k j P r m (k)
k= 1

oo
=  T ^ 2 k P r N(t){k)

k= 1

= tA(£),

and

(3.5)

(3.6)
-  AW)2) =  V2E((N( t )  -  AW)2)

• = v 2m ,
while

oo

B(r)(5(0 -  N(t)v)(N(t)  -  A(t))) =  7 ? £ > ( (S ( t)  -  fa?)(fc -  A(t)) | N(t)  =  k ) P r m (k)
k=0
oo

=  r, £ ( k  -  A (t))£((S(t) -  fa?) | AT(*) =  fc)P rN(1)(*:)
Jfc=0

= 0

(since E^(S(t)  — £77) | N(t) = k'j =

E ( X  1 +  . . .  +  X^(t) — krj) = 0).
(3.7)

When (3.5), (3.6) and (3.7) are substituted in (3.4), the variance of the total claim 

amount process S(t) is (the famous variance decomposition rule)

Var(S(t)) = E (N  (t))Var(X (t)) +  Var(N(t))(E(X(t)))2 

= A (t)r +  7?2A(£) +  0 =  A (t)(r +  rj2).

We shall see a way of obtaining all moments in Section 3.3.1 below. A simple 

example of the use of the mean and the variance of the total claim amount is given 

next.

Numerical Example
1- i) For an aggregate claims model, which is based on 5000 claims, a claim fre­

quency (Ni) model has a Poisson distribution with 10 claims per month. Individual 

losses (Xi ) follow a lognormal distribution with mean 10 and variance 15. Then the
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mean and variance of the aggregate claims are found as

E(S(t)) = E(N)E(X)  = 10(10) =  100,

which means the expectation of the total claim amount is 100 YTL (Turkey New 

Lira) per month. And the variance is

Var(S(t)) =  E(N(t))Var(X(t))+Var(N(t))(E(X(t)))2 =  10(15) + 10(10)2 =  1150,

For instance, if Normal approximation is used to estimate the probability S  is greater 

than 150 YTL

= Pr{Z  > 1.47) =  1 -  0.9292 =  0.0708,

which says the probability that the aggregate claims will be more than 150 YTL 

per month is 7 %.

3.2.1 The Risk R eserve and Prem ium s

The early studies in the risk theory started with life insurance and individual risk 
units, that is the number of insured people. Later, the studies of Lundberg, Cramer 
and other Swedish researchers initiated a new period of development of risk theory.

This is called the ‘collective theory of risk’, which is mentioned previously. The 
claim occurrences are studied on the basis of collectivity, not on individual claims 

[Daykin et al., 1994b].

The collective model of the total claim amount process, S(t), in the classical 

model for the insurance risk i?(£)-(surplus, or free reserves)-is given as follows 

[Asmussen, 2000, Albrecher and Asmussen, 2005, Daykin et al., 1994b, Rolski et al., 1999]:

R(t) =  u +  II(£) — S'(t),

where u = initial surplus (capital), U(t) = ct (aggregate premiums), c is the loaded 

premium rate at time t.
The stability of an insurer is studied in the ruin models [Kaas et al., 2001]. The 

capital of the company is assumed to increase linearly in time by fixed annual

51



premiums starting with capital u at time t = 0, but whenever a claim occurs with 

the jump effect, the capital decreases [Kaas et al., 2001]. When R(t) is 0 or less, ruin 

occurs for an insurance company, which probably happens due to wrong investment. 

Some of the suggestions to stop ruin might be to buy more reinsurance, arrange the 

premium ratings or to increase the initial capital [Kaas et al., 2001]. The mean of 

the risk process is

E(R(t)) = u +  ct -  E(S(t)),  (3.8)

and if (3.3) is replaced in (3.8) we have

E(R(t)) = u + ct — (3.9)

Moreover, the probability of ruin is calculated as

\P(it) =  Pr(R(t)  < 0, for some time t > 0 | initial surplus =  u), (3.10)

which denotes the probability that the surplus will reach below zero given a level of

initial surplus (capital) u.
One special model commonly used in calculating the ruin probabilities in fi­

nancial/actuarial mathematics is the lSparre Andersen modeV. Consider the claim 

number process N(t)  as a renewal counting process and let the claim amount X^s  
be independent identically distributed (iid) with a distribution function F x • If 

Ui,i = 1, . . . ,  denote the iid interclaim time random variables with a common dis­

tribution Fu, then the Sparre Andersen model is also given by [Rolski et al., 1999, 

Gerber and Shiu, 2005]

R(t) = u +  II (t) — -S(t), 

where the initial surplus u > 0.

Premium
The existence and survival of the insurance industry depend on the willingness 

of people to pay a price for being insured [Kaas et al., 2001]. Basically, premium 

means an adequate price to insure risks. The U(t) is calculated by some methods 

to guarantee the solvability of the portfolio. The premiums can not be low because
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n(i) should provide enough money to the insurers to be able to cope with incoming 

claims. Also, the amount of II(t) should not be very high because it might result 

in losing the current clients to the rival insurance companies if the others keep 

the premiums lower to attract your customers. Some important properties of the 

premium II for risks X  and Y  are summarised below as [Rolski et al., 1999]

1. No unjustified safety loading if, for all constants c > 0, 11(c) =  c,

2. Proportionality if for all constants c > 0, n(c) = c,

3. Additivity if II (X +  Y) = n(X ) +  II(Y) (valid for independent risks and 

depends on the joint distribution of X  +  Y),

4. Subadditivity if n(AT +  Y)  < II(A’) +  II(Y) (policyholders can not gain ad­

vantage when the risk is split),

5. Consistency if, for all c > 0, II (JA -I- c) =  n (x )  +  c,

6. Preservation of stochastic order if X  <st Y  => n(V ) < II(Y).

A premium principle assigns a real number to the risk as a financial compensation 

for the risk taker. The most commonly used premium calculation is called the 

‘expected value principle’, that is [Rolski et al., 1999, Kaas et al., 2001]

n(s) = (i + c)£(S),

where E(S)  < oo.

If c = 0 above, 11(5) =  E(S)  and it is called the ‘net premium principle’. The 

difference of 11(5) — E(S)  is called the ‘safety loading’, which is supposed to be 

positive for the survival of a company.

As these two principles do not take the variability of the risk 5  into account, it 

is more risky to the insurers. Therefore, the following principles are also used in the 

premium calculations for some constant c [Kaas et al., 2001, Rolski et al., 1999]:

1. Variance Principle: 11(5) =  E(S)  -f- cVar(S),

2. Standard Deviation Principle: 11(5) =  E(S)  -I- cy/Var(S),
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3. Exponential Principle: II(S') =  £ \ogE(ecS).

Referring to the numerical example in Page 50:

ii) Using the Normal approximation, what is the minimum premium that should 

be charged to ensure that the probability of a loss (that is the aggregate losses are 

greater than the premium) is less than 10 %?
The expected value principle is used to solve this question and the premium rate 

c is obtained by

P r ( s  > (1 +c)E(S))  =0.10,

after standardisation

P r f z  > - E £ E L )  =  0.90, 
s / V M S ) )

and from the Standard Normal Table

Ĉ S) =  1.282 ^ C= ^ 28^  =  0.435,
y/Var(S) ’ 100

so the pure premium with no deductible is

Premium = cE(S) = 0.435(100) =  43.5.

In the actuarial context, the information of the average claim payment gives an idea 

to the insurer about how much the cost will be in case of a disaster. This has a very 

important use for the preparation of the insurance contracts [Hogg and Klugman, 1984]. 

For the data of this study (n=4297 and the total claim payment in thousand YTL 

is 7,329), the average payment per claim [Biihlmann, 1970] is

=  total dajm p a r e n ts. =  7,329 000.00 =  ^  ^
v ' total number of claims 4297

which is quite a significant amount.

The average payment per claim for the Turkish Catastrophe Insurance Pool data 

by the figures of 24/May/2006 (claims gathered in the Pool from December 2000- 

current) is

=  total claim payments =  15,943 264.89 =  m M  YTL. (3.12) 
v ' total number of claims 8263
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3.2.2 Insurance/R einsurance

It is better to remind the leading definitions of risk before giving the details of 

the idea of insurance/reinsurance. Risk is simply the uncertainty concerning the 

occurrence of a loss. In terms of disasters, risk is the probability of expected losses 

(deaths, injuries, environmental damage and economic activity disruptions) resulting 

from interaction between natural and man-made hazards and vulnerable conditions.

Insurance is a risk transfer mechanism. It is a way of spreading risk. The insur­

ance companies (insurers) mainly insure pure risk, which has a possibility of loss or 

no loss.

Basic Characteristics of Insurance
According to [Rejda, 2003]:

1. Pooling of losses: It means the sharing of the losses and constructs the heart 
of the insurance. By considering the few over the entire group of portfolio, the 
actual loss is substituted with the average loss.

2. Payment of fortuitous losses: It is a payment of the unexpected loss, which 

occurs by pure chance.

3. Risk transfer: The transfer of pure risk from the insured to the insurer, who 

is financially much stronger to cover the possible losses.

4. Indemnification: The repositioning of the financial situation of the insured 

prior to the occurrence of a loss.

Basic Parts of an Insurance Contract

1. Declarations: Information about the property or the activity to be insured.

2. Definitions: This section defines the meaning of the key words and phrases 

in the policy to ease the understanding of the coverage. For instance “you”, 

“your”, “we” and “us” are used in this part.
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3. Insurance agreement: Summarises the major promises of the insurer. It has 

two parts: ‘named-perils coverage’ and “all-risks” policy.

4. Exclusions: It provides the information on the exclusions of the policy like 

excluded perils, excluded losses and excluded property.

5. Conditions: These are the provisions in the policy to limit the promises of the 

insurer.

6. Miscellaneous provisions: This part includes some provisions like the cancel­

lation terms, reinstatement of lapsed policy, misstatement of age.

The ideal expectation of the insurers is to sell insurance for non-catastrophic 

losses. One way to cope with the catastrophic risks is to reinsure the risk that is on 

the insurers [Rejda, 2003].
Therefore, reinsurance is defined as the insurance of insurers against high risk. 

Reinsurance is needed by the insurers, when there occurs:

1. a very large individual claim (like TUPRA§ oil refinery losses of the Marmara 
earthquake),

2. an event like a flood, an earthquake, which results simultaneously in claims 
from a large number of separate policies.

An insurance company transfers its risk to another insurance company so that 

large risk is splitted into small portions and shared between different companies. 

The first company, who transfer that risk, is called a ‘cedant’. An insurance com­

pany seeks for reinsurance, when it wants to reduce the possible huge losses, which 

might be a threat for the survival of the company. These big losses may come from 

a large number of claims as a result of earthquakes, hurricanes etc., excessively large 

claims arriving after severe accidents etc. like an explosion in a nuclear plant, legal 

restrictions or changes in premium collections due to cases like a sudden change in 

inflation [Rolski et al., 1999]. When a reinsurer thinks the risk is too large for him 

as well, he insures himself, which is called a ‘retrocession’.
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Types of Reinsurance
The insurer keeps some portion of the aggregate claims, 5(t), for himself consid­

ering the capacity of its portfolio and reinsures the remaining part. The amount, 

which the insurer agrees to pay himself, is called the ‘deductible’ amount and is 

denoted as d(S(t)). The difference of S(t) — d(S(t)) is the ‘reinsured part’. The 

following are some kinds of reinsurance [Rolski et al., 1999]:

1. Proportional or quota-share reinsurance: This is a very popular type of rein­

surance especially with starting small companies, in which a certain amount 

a of the total portfolio is reinsured. In this case, as a special case d(s) = as,

N (t)  N ( t )

d(S(t)) = aS(t) =  a ^ X i  = J 2 d(Xi)-
1 = 1  1 = 1

Then, the distribution of d(S(t)) is

Pr(d(S{t)) <s) = Pr(S(t) < ^ )  = Fsm(^).

2. Excess-loss reinsurance: This type of reinsurance is determined by a positive 
number b, which is called the ‘retention level’. Then, the reinsured amount is

— b)+. Excess-loss reinsurance limits the liability of the cedant and 
has a wide use in motor-liability and windstorm reinsurance as it is especially 

used in small number of risks and when the individual claim sizes are heavy­

tailed.

3. Stop-loss reinsurance: It is defined as — &)+ =  (S(t) ~  &)+• Here, 
small claims have a lot of influence on the total claim amount. Stop-loss rein­

surance is simple to apply and does not require high administrative expenses. 

It is commonly used for windstorm and hail reinsurance and in some occasions 

for fire reinsurance.

4. Le Traite d’Excedent du Cout Moyen Relatif (ECOMOR): When the large 

claims are considered, it is suitable to look for the largest claim treaties in the 

portfolio. The French actuary Thepaut first introduced the idea of ECOMOR
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in 1950. If the order statistics of the claim size (ATi.. . Xw(t)) is denoted as 

(A"(i). . .  X(jv(t))), then we can define a nice form of the reinsurance treaty as

r N (t)

Z(t)  ^   ̂ i+1) ^'^(N(t)—r) ^  A/V(t)—r) + -
i= l i= l

The amount Z(t) covers only the r  largest claims that exceeds the random 

retention level Xjv(t)-r- If the counting process N(t) < r, then X N(t)-r = 0. 
ECOMOR is similar to the type excess-of-loss but with a random retention at 

a large claim.

3.3 The D istribution of the Aggregate Claims

The distribution of the aggregate claims is an interesting subject in the insurance 

context. There have been numerical problems in the direct calculation of such 
distribution by convolution. Therefore, some approximation methods are used to 

approach the distribution of the total claim amount for large t. Since this distri­
bution approximation is related to the moment generating and cumulant functions, 

these are explained next. The general form of the distribution of S{t) is already 
stated in (3.2).

3.3.1 M om ent G enerating Function (m gf)

In Statistics, two important characteristics are needed to determine a type of a

distribution: the mean and the variance. The mean is the first moment and the

variance is the second moment of a distribution, which can be obtained by using 

the moment generating function.

The moment generating function, except for a sign in $, is the Laplace transform 

of the distribution function. The mgf transform uniquely determines a distribution 

of probability, since it is one-to-one transform and so every cumulative distribution 

function (cdf) has exactly one mgf [Kaas et al., 2001]. As mentioned earlier, it is 

not easy to determine the distribution function of the aggregate claims. Therefore, 

the moment generating function is one way to help to find such distribution. The
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moment generating function of the Compound Poisson total claim amount S , when 

N(t) is Poisson (A(£)), has the following form by using (3.2)
poo  poo

Ms(ti) = E{e»‘) =  /  e*‘f ( s )d s=  /  e*‘dFs {s)
Jo Jo

M s W  = [ ” e * < £  A{t)h^ m  Gk(s))

=  f '  M t)ke~m  r e«.rf(G*W ) (3.13)
i. n ' 0k=0
oo

=  £  =  e-A“) J  M W * ) ) *
fc=0 ' /c= 0

=  e A(i)(M x ( i? ) - l ) j

which is true for any X  distribution.

The mean and the variance of the total claim amount S  can be derived using 

the moment generating function method. If interested, higher moments can also be 

derived. (3.13) states

Ms (tf) =  E(e°a) = e ^ X ^ W - 1).

So, if X  ~  N(77, t) , then the moment generating function of the total claim amount 

is

M s W  = e A W ^ '^ -D .

If we differentiate this moment generating function with respect to the parameter $

Ms(i9) =  +  t>r).

If = 0 is substituted in

M's (0) =  eA(t)(e0- 1)A(^7? -  vA(t),

which is the mean of the total claim amount (aka the aggregate mean) and if the 

moment generating function is differentiated twice with respect to the corresponding 

parameter

M's{d) =  eA(‘)(e’"’+IJ~-1)(A W e ^ + ^ ^  +  tfr ) )2

+  +  (t)(v  +  dr)  +  ew*+z%~ A (()r),
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and if = 0 is substituted

Mg( 0) =  A(t)2r)2 +  V2A(t) +  A (t)r.

Therefore, the variance of the total claim amount process, S(t), is obtained as before

Var(S(t)) = Mg(0) -  (M^O))2 -  A(t) V  +  r]2A(t) +  A(t)r -  (rjA(t))2 = A(t)(r)2 +  r).

The general form of the moment generating function of S  in terms of the mgf for 

any chosen X  distribution is

M2(0) = + eAM ^W -1) J?1(A (i)Mx(tf)).

Cumulant generating function:
The natural logarithm of the moment generating function is called the ‘cumulant 

generating function’. The cumulants of the probability distribution of a random 

variable S  for the aggregate claims is defined in [Seal, 1969] as

The cumulants help us to determine the central moments of a distribution or to 
characterise a random variable of that distribution (e.g say the first cumulant Ki = fi 
and the second cumulant «2 =  cr2). Basically, differentiating the cumulant function 
three times and setting i? =  0, the mean, the variance and the third moment of 

the random variable of the interest are obtained [Kaas et al., 2001]. Cumulants 

were first introduced in 1889 by the Danish astronomer, actuary, mathematician 

and statistician Thorvald N. Thiele and were called as ‘half-invariants’. The actual 

name ‘cumulants’ is first used in a 1931 paper ‘The derivation of the pattern formulae 

of two-way partitions from those of simpler patterns’, Proceedings of the London 

Mathematical Society, Series 2, Volume 33, pp. 195-208 by Sir Ronald Fisher and 

John Wishart.

By using (3.13), the cumulant function of the Compound Poisson total claim 

amount S(t) is

KsW  = A -  1).
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When this cumulant function is differentiated with respect to $,

4 W  = AW (M xW ).

and by substituting = 0, the mean of the total claim amount S(t) is 

E(S(t)) = 4 (0 ) = A(<)(M*(0)) = A (t)„,

where M'x {0) =  77 is the mean of the chosen raw claim amount X  distribution (the 

variance of X  is denoted with r).
The second derivative of the cumulant function with respect to d is

4 (0 )  =  A(f)(A4(0)),

and this gives the variance of the total claim amount process at t? =  0 as:

Var(S(t)) =  4 (0 )  =  A(t)(Mx (0)) =  A (t)(r + 4 ) ,

where Mx {0) =  E ( X 2) = Var(X)  +  (E ( X ))2. The mean and variance of the total 
claim amount are already computed in Pages 49 and 50 previously. The work above 
shows that the use of the cumulant generating function is a simple alternative to 
compute the mean and variance of the total claim amount.

One can show the moment-cumulant relation of the total claim amount Si = 

Yli^i Xi  by conditioning on the claim number N  [Daykin et al., 1994b, Ross, 2003]

Ms(0) = Em E [ e ^ - ‘)x‘ | N(t) = n].

By using the independency of N(t)  and X{ and i.i.d Ai’s, the moment generating 

function can be written as

Ms (0) = Em E{e°x 'e°x*.. ,e”x” | N(t) =n] = £W(i)[Mx(0)]w<!).

Exponentiating the inside of the expectation gives

Ms (0) = £ ( / “ " « )  = MN(lnMx m  = MN(Kx(ti)),

and

ks {$) = In (Mn (k x {$))) =  % (k x W ),
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where k,x  denotes the cumulant function of the claim amount distribution and k,n 

is the cumulant function of the claim number distribution. Details of the cumulant 

function is explained later in this section.

Next, some examples are given with the choice of Gamma, Normal and Poisson 

distributions for the claim amount X{ to show the calculation of the moment gen­

erating function of the total claim amount process S(t). The moment generating 

function of S(t) for some other distribution choices of the individual claim size are 

given in the Appendix. The relation between the moment generating functions, 

the cumulant functions and the use of the mean function A(t) of the claim number 

process by considering the use of the exponential and the power kernel functions, is 

explained in detail in Chapter 4, Section 4.5.

1. If the claim amount X{ is chosen to be distributed as Gamma with parameters 

ot.g and j3g and Xi is time-dependent itself (Xi(t)), then the moment generating 

function of X is

MXti($) = {i -  ( * < £ ) .

By using (3.13), the moment generating function of S{t) with the convolution 

of X  is
po o  poo

MSl(l>) =  B(e”s) =  /  e*‘f ( s )d s=  /  e*‘d(Gk(s))
Jo Jo

y ,  e-A«A(t )* r 

ft! Jok=0 
oo

e A<*>A(t)k [°° j , ,  f t , . 1 -,pa,id
r(<*9j

e a (*)a(£)* $  ._ Q k
=  E — (3-14)

fc=0

= e-A(!,E ( ^ ( i  - fk=0 Pgt,

= e-A«)eA(t)(1- ^ r °9“ =  eA(!) “0 ,

and if we take the natural logarithm of this moment generating function, the 

cumulant function is

KSl( t f ) = A W ( ( l - E ) - « « , _ 1) ) (3.15)

62



which is a special case of (3.13).

2. If Xi is distributed as Normal with parameters the moment generating

function of the total claim amount will be

=  (3 -16)

and the cumulant function is

Ks2{ ' S ) = m ( e m‘a+^ L - l ) -  (3-17)

3. If ^  follows a Poisson distribution with parameter (ap)

Msaid) =  (3-18)

the cumulant function is

Ks3(ti) = A (i)(e“p‘i^',_1* — l ) ,  (3.19)

which are other special cases of (3.13) when Normal and Poisson distributions are 

used.

N ote 1: For some random variables with heavy tail, like Cauchy, the moment 

generating function does not exist [Kaas et al., 2001]. Also, the mgf of the Pareto 

distribution does not exist [Biihlmann, 1970].

N ote 2: For lognormal and Beta distributions, the moment generating functions 

are not integrable in closed form [Biihlmann, 1970].

A pproxim ate D istribution  of th e  aggregate claims S(t)

As mentioned before, it is not always easy to define the distribution of the aggregate 

claims and some approximation techniques are suggested. One method is to use 

the moment generating functions or related transforms like characteristic functions, 

probability generating functions or cumulant generating functions. If the moment 

generating function or the cumulant function (since they are one-to-one functions) 

are in a recognisable form of a specific type of distribution, then this defines the
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required distribution [Kaas et al., 2001]. Moreover, if the aggregate claims S(t) is 

considered as the sum of a large number of variables (big claim sizes), by using 

the Central Limit Theorem, the approximate distribution of S(t) is assumed to be 

Normal.

By using the moment generating and cumulant function technique, (3.13) states 
A(t)f Mx(tf)—1 )

that Ms\&) =  e \ / . Then the corresponding cumulant function is k,s {'&) =
A(t) ^Mx('tf) — l)  and it can be expressed in words that:

cumulants of S  = A(t) x (non-central moments of individual claim distribution X)

The following diagram summarises the relation between the moment generating and 

the cumulant functions of the individual claim distribution X  and the aggregate 

claims S(t).

Moments of X Moments of S

Moments of X Cumulants of X

Moments of S Cumulants of S
Cumulants of S Moments of X

Moment-cumulant relationships are well-known and here are the first few of them

k0 = 0 

« l =  Mi 

«2 =  M2 -  Ml

Conversely

^3 — M3 3/ / 1/Z2 +  2/ i j .

Mo =  1

Mi =  Ki

M 2 =

Ms =

=  K 3

=  «3

64



By (3.13), the cumulant function is obtained as /c,s(i?) =  A(t)(Mx(fl) — 1). If we 
generalise the cumulant-moment relation above with the structure in (3.13) for the 

Compound Poisson case, for example, the non-central moments of S  and X  are

(s)
Mo -  1

Mis) = «i5) =  A(t)^i

/4S) = 4 °  + (4 5))2 = A(£)//2 + (A(t)//i)2 = A (t)fi2 + A (t)2i4 

4 S) = 4 a)+ 34s)4 5) + (4 S))3

= A (t)fi3 +  3A(t)fiiA(t)fj,2 +  (AWmi)3 

=  A +  3A(t)2//i//2 +  A (t)3nl

where the cumulants of a Compound Poisson S(t) is [Kaas et al., 2001]

k,[s) = A(t)fli 

4 5) =  A(t)n2 

4 S) =  A(0M3

These cumulants helps us to find the mean, variance, skewness, kurtosis (or higher 
moments) of the related distribution. For the Compound Poisson total claim amount 

S(t) [Kaas et al., 2001] states

E(S(t)) =  A ( t ) ^

Var(S(t)) =  A (t)fi2

7{5W) = * = = * ,
<T3 (A (t)fi2)i

where 7 is used for the skewness term.

T he Edgew orth approxim ation

A distribution with arbitrary given cumulants can be approximated by some se­

ries expansions, of one of which is the Edgeworth series. As mentioned earlier, it
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is difficult to obtain the exact distribution of the total claim amount S(t). The 

Edgeworth expansion is important for this thesis work in the following sense. If the 

mean intensity function A(t) can be modelled against time and covariates (magni­

tude, residential building number), and the assumption of independence of the N(t) 

process and the is justified, then the expansions provide a simple tool for the 

estimation and prediction of the distribution of the total loss process S(t).
One way to find an approximate distribution of S  by using an Edgeworth approx­

imation is to use the cumulants. The first step is simply to standardise the total 

claim amount S(t)

The probability density function of Z  can be obtained by using the Hermite polyno-

=  S(t) -  E(S(t))  =  S(t) -  ^  
y/Var(S(t)) y/Var(S(t) ) ’

where ji[3̂ = and Var(S(t)) = = A T h e n

=  S(t) -  A(«)Ml 
\/A(£)M2

Therefore
f  g(t)-A(«)/n i

Mz (0) = E(e‘*) = E (e \  > )

— g y / M f i n  M 5 ( —

1 _*  A(t)  ( — ) —1
g  y /  A(t)̂ 2 g  \  -y/A(t)/i2

so the corresponding cumulant function is

and by expansion

2!A (t)M2 3!(A(t)M2)§ ^ ^ A ^ )

H3 1)3 H4 #■
2! +  (A(t)n2)i  3! +  (A(<)/t2)2 4! + " '

2
mials. The polynomials orthogonal with respect to the normal distribution e~z are
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the Hermite polynomials [Andrews et al., 1999, Barndorff-Nielsen and Cox, 1989]. 

The first few Hermite polynomials are [Barndorff-Nielsen and Cox, 1989]

H0(z) =  1, Hi(z) = z , H 2( z ) = z2 -  1, H 3( z ) =  z 3 - 3 z , —

If cf)(z) is distributed N(0,1), the density function of the total claim amount S(t) by 

using the Edgeworth expansion is approximately Normal as [Asmussen, 2000] states

where Hr(z) is the r th Hermite polynomial. The basic definition of Hr(z) is given 

in [Barndorff-Nielsen and Cox, 1989] as

<f>(z)Hr(z) = (-1  )THr(z)<i>(z),
2

where (f)(z) = ). The derivation of the Edgeworth expansion uses the

important inverse property and so the Hermite polynomials can be associated with 
the moment generating function as

/ + O O  2

e*z<fi(z)Hr(z)dz = E(e°z Hr{Z)) =  tfreV.
■oo

The justification of the (N(t) ,X i ) independence assumption will be discussed in 

more detail in the Copula section and the estimation-prediction of the aggregate 
losses will be conducted by using the modelling chapters and later used in the 

chapter on the Turkish Catastrophe Insurance Pool.

3.4 Extrem e Value Theory

In the past decades, the effect of large claims due to the natural disasters became a 

much of an interest of the scientists. Extremal events are quantifiable in monetary 

units and this is an advantage for mathematical modelling of insurance and finance 

context. In insurance studies, heavy-tailed distributions are widely used as standard 

models for the claim amount Xi.
Extreme Value Theory (EVT) studies the pattern of the extreme events data like 

major insurance claims, flood levels of rivers, changes in the value of the stock mar­

ket, wind speed and wave height during a hurricane or storm [Embrechts et al., 1997].
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Basically, the characteristics and the behaviour of the tail of a distribution are stud­

ied in the extreme value theory. Since natural disasters are extreme events, EVT is 

a good way for the inference of the data, which is the earthquake insurance claims 

data for the case of Turkey in this study.

Let’s consider a sequence X i , . . . ,  X n of independent identically distributed (iid) 

random variables with unknown cumulative distribution function F(x) = Pr(X  < 

x). The upper tail of F is important here since the occurrence of the extreme 

observations are highly probable in the tails. The sequence of n random vari­

ables is considered to be independent and follows as in [Embrechts et al., 1997, 

Reiss and Thomas, 2001, Woo, 1999]

Since the extreme value distribution should be stable as n increases, the F n should 

asymptotically converge to some fixed distribution G and then it is said that F  is 
in the domain of attraction of G. There are three main extreme value distributions; 
Gumbel, Frechet and Weibull. The Generalised Extreme Value Distribution (GEV), 
G(x), provides a good representation of these distributions [Embrechts et al., 1997]

where // is the location parameter, a is the scale parameter and £ is the shape param­

eter, which is the main parameter used to characterise the tail of the distribution.

The classification of G(x) with the restrictions on the shape parameter £ concludes 

that

£ =  0 => G{x) is Gumbel distribution,

£ > 0 => G{x) is Frechet distribution,

£ < 0 => G(x) is Weibull distribution.

Medium-tailed distributions like Normal, gamma, exponential and lognormal are 

within the domain of attraction of Gumbel distribution; light-tailed distributions 

like beta and uniform are in that of Weibull and the heavy-tailed distributions like 

Pareto, log-gamma and Cauchy distributions are in that of Frechet distribution.

n

Pr(max(X i , . . . ,  X n) < x) = n  <  *) =  *"(*)•
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There is an alternative way to the use of GEV to approach extremal events. 

Instead using the annual maxima, the large events exceeding some threshold value 

are modelled. Let h be the threshold and X  be the exceedances of h during a given 

period, the distribution of excess values of X  over threshold h is [Gengay et al., 2001, 

Wallis and Hosking, 1987]

an amount y given that X  exceeds the threshold h. For sufficiently high threshold 
h, the given distribution function is approximated by the distribution function G, 

which is the standard generalised Pareto distribution (GPD). Then

when £ =  0, it is the Exponential distribution function with parameter Ae =  1, the 

shape parameter £ and £ > 0, £ > 0 ,  0 < £ < —
One can also define the location-scale family G ^ ev̂u by replacing x in the equa­

tions above with for vcR, (3ev > 0. G^pevjl/ is also the generalised Pareto distri­

bution and when v = 0, the following distribution function is used to estimate the 

parameters £ and (3ev of the GPD [Embrechts et al., 1997]

For £ > 0, the generalised Pareto distribution takes the form of ordinary Pareto 

distribution, which is heavy-tailed. £ =  0 indicates Exponential distribution as 

mentioned before and when £ < 0, it is Pareto II type distribution. As explained 

next, for the GPD, when £ > —0.5, the distribution can also be classified as heavy­

tailed.

In [Wallis and Hosking, 1987], the case £ > —0.5, where there occurs a heavy­

tailed distribution, it is shown that maximum likelihood regularity conditions are 

satisfied and the maximum likelihood estimators (MLEs) are asymptotically nor­

mally distributed. By that argument, the MLEs £ and (3ev of the generalised Pareto

Fh(y) = Pr(X  - h < y \ X > h )  =
F(y + h ) - F ( h )  

1 -  F{h)

which is the probability that the value of X  exceeds the threshold h by at most
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distribution can be obtained by using the following density and likelihood function 

[Embrechts et al., 1997]

where —oo < x < + 00.

H uh; {, A.) = n f if e )  = n  i r ^  + # ) ' Q+1)
• ,  Pev Pev

=  ^  +  t f r q + 1 ) ’P e v  i = i  P e v

and the following log-likelihood is used to the maximise the parameters [Embrechts et al., 1997]

log(£(£,; £,&*,)) =  -n\og(3ev -  (i  +  1) j S o g ( l  + £ ^ - ) .  (3.20)
* i= 1 Pev

It is possible to get the estimates of £ and (3ev by some numerical methods from this 

log-likelihood.
The tail estimator of the unknown cumulative distribution function F  is given in 

[Embrechts et al., 1997, Gengay et al., 2001] as
*. . „ Eh -x — h , - i

F i = l - r l + ^  s >

n  P e v

where h is the threshold, Eh is the number of exceedances over this threshold and 

n is the sample size. The quantile estimator xp, which also applies in Value-at-Risk 

(VAR) studies, for a given probability p > F(p) is

.. ,  , AX
€

There is another estimator for the shape parameter £, which is named after Hill 

(1975) [Gengay et al., 2001, Drees et al., 2000]
1 k—1

dH = j- ^ 2 ln Xi’B ~  ln Xk>B for k -  2’ (3-21)
i—1

where k is the upper order statistics (the number of exceedances), B  is the sample 

size and an — |  is the tail index.
One other commonly used method in the Extreme Value Theory to estimate 

the shape parameter of the EVT distributions is called the ‘Peaks Over Threshold 

(POT)’, which assumes [Embrechts et al., 1997]:
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i) the excesses of an independent identically distributed sequence over a high 

threshold, say /i, occur at the times of a Poisson process,

ii) the corresponding excesses over h  are independent and have a GPD,

iii) excesses and exceedance times are independent of each other.

It is also possible to fit GPD models with time-dependent parameters like £et,(£), 

P e v ( t )  by using the POT method [Embrechts et al., 1997], which can be suggested 

as part of a future work.

R em ark 6: The following interpretations can be made out of all given above:

1. Excesses over high thresholds can be modelled by the generalised Pareto dis­

tribution,

2. The number of exceedances of a high threshold follows a Poisson process,

3. An appropriate value of high threshold can be found by plotting the empirical 
mean excess function (the sum of the excesses over the threshold u divided by 
the number of data points that exceeds the threshold),

4. The distribution of the maximum of Poisson number of independent identically 
distributed excesses over a high threshold is the Generalised Extreme Value 

Distribution.

3.4.1 M om ent G enerating Function o f the E xtrem e Value 
D istributions

In this section, the moment generating functions of the extreme value distribu­

tions, Gumbel, Weibull and Frechet are derived. These distributions have many 

applications in insurance, finance and engineering studies and the derived moment 

generating functions might have a use in future studies.

G um bel d istribution:

One of the famous extreme value distributions is the Gumbel distribution. The 

Generalised Extreme Value distribution takes the form of the Gumbel distribution
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when the shape parameter £ =  0 (see Page 68). Therefore, the distribution function 

of the Gumbel is given as

F(x) = e~e~x, Vrr, 

and the corresponding density function is

f (x)  =  e~e Xe~x, Vz.

The moment generating function of the Gumbel distribution is obtained by using 

the definition of mgf as

M
poo

x (cj) = E(eXUJ) = /  eXUJe~e~x e~xdx. (3.22)
Jo

If we substitute e~x = u then —e~xdx = d u , where if £ =  0 —> u = 1 and if 

x  = oo —► u  = 0. This substitution gives us the suggested form of the Gumbel 

moment generating function

M x{w ) = f  e~uu~wdu, (3.23)
Jo

which is the Gamma function T(1 — w).

Weibull distribution:
Another widely used extreme value distribution is the Weibull distribution. It is 

often used in survival and reliability analysis and provides a close approximation for 

the distribution of lifetime. It occurs when the shape parameter £ is smaller than 

0 for the generalised extreme value distribution (see Page 68). The distribution 

function of the Weibull type with parameters (aw,/3w =  1) is

G(y)  - 1 -  e~y°w, 0 < y  < oo,

and the probability density function by differentiation will be in the form of

g(y) = otwy aw~l e~yaw \ aw > 0, 0 < y < oo.

In Page 45, the distribution of the occurrence of the first event with the use of the 

power kernel function and some transformation was also obtained in the form of
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Weibull distribution. Therefore, the Weibull distribution can be named as one of 

the possible distributions to explain the disaster (extreme) claims data including 

shock pattern. In terms of the moment generating function of this case, it only 

exists when aw > 1.

Frechet distribution:

The Frechet distribution is generated from the generalised extreme value distri­

bution, when £ is greater than 0. The distribution of the Frechet type is

H(z) = ,

for 0 < z < oo and the probability density function is

h(z) =  Q/(—z)_(1+q/M~2) f ; (z > 0).

The moment generating function of this density follows as
PCX)

Mh (v) = /  ezriotf(—z)~0+“/)c(-*) 1 dz. (3.24)
Jo

a . r  ]q (ln u)
Let z) = u and so z = — e af then the moment generating function has the 
form

/*! — r) ln(ln u )  i p  f  — 7) ln(ln u )  \  — 7)
MmM  = — e af dz = — (e af )|n — — (eQ/ — !)• (3.25)

Jo O L f \ J

Note 3: The moment generating function of the Weibull distribution exists only 

if the parameter a > 1, which is said to be not useful in [Biihlmann, 1970] and also 

for the moment generating function of the Gumbel case, it seems not to exist since 

there is ln(—1) term in the calculations.

3.4.2 Explanatory E V T D ata  A nalysis o f the Turkish C atas­
trophe Insurance P ool data betw een 2000-2003

In this section, a basic explanatory data analysis of the extreme value theory liter­

ature on the claim amount X { of the Turkish Catastrophe Insurance Pool (TCIP) 

data is presented. The analysis is conducted to suggest a possible distributional fit
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to the TCIP claims data. There are 712 = 4297 observations in total in the Turk­

ish Catastrophe Insurance Pool, which are recorded between 15/December/2000- 

31/July/2003. Since most of the claims arrive from risk zone 1, we will study with 

zone 1 earthquake claims data nzone l — 3602. The raw (without log transformation) 

data by week classification is used for more specific analysis.

The extreme movements due to extreme events cause a significant effect on the 

financial markets. The tail behaviour of the data is the main interest in the extreme 

value analysis. Since the total claim amount process S(t) and E(S(t)) has a wide 

use in the insurance and financial markets, the use of extreme value distributions 

for the claim amount distribution might suggest some new ideas for the portfolio of 

the insurance companies.

There are many studies on the application of the extreme value modelling for large 

claims data. The Danish fire insurance claims (ni=2167 observations in millions of 
Danish Kroner) data between 1980-1990 is used in many of these studies. Extreme 

Value Theory analysis is available in S-Plus package with EVIS (Extreme Value in 
S-Plus), in Matlab with EVIM (Extreme Value in Matlab) and in a software called 
the Extremes.

In this study, Extreme Value in S-Plus is used to derive some basic information of 
the Turkish earthquake insurance claims. EVIS is a library with built-in functions in 

S-Plus environment to run the Extreme Value analysis. It is developed by Alexander 

McNeil at ETH Zurich. It allows the users to check the fit of the extreme data like 

the large number of insurance claims to the extreme value distributions such as 

Pareto, Weibull. There are some estimates special to the Extreme Value analysis 

like the mean excess plot and the Hill plot. EVIS provides these diagnostic plots 

and the estimates, which ease the users to follow the heavy-tailed or not pattern of 

their data. The generalised Pareto distribution (GPD) is commonly used to model 

the exceedances over some threshold values. The comparison of the parameters of 

these models for the Danish fire and the Turkish earthquake claims are given in 

Table 3.1.

The estimate of the shape parameter, £, of the generalised Pareto distribution is 

calculated in EVIS by using (3.20). According to those calculations, in Table 3.1,
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it is observed that the parameter estimate of the Danish fire claims is £ =  0.638. 

Since this match with the classification in Pages 67 and 68, it indicates an ordinary 

type Pareto heavy-tailed distribution. Turkish zone 1 earthquake claims data gives 

a value of £ = —0.329 of the shape parameter, which less than 0. By using the 

condition in Page 68 about the value of £, it can considered to denote Pareto II type 

distribution. However by the MLE assumption in [Wallis and Hosking, 1987], if 

£ > —0.5, for zone 1 earthquake claim data, the idea of a heavy-tailed distribution 

still holds. It is also observed in Table 3.1 that the Turkish zone 1 earthquake 

insurance claims data has a lower variance than that of Danish fire insurance claims.

Danish Turkish
threshold value h 17.068 23.597
number of exceedances 50 51
parameter estimates 0000tooII £ =  -0.329
variance of estimates var(£) =  0.049 var(£) =  0.014

Table 3.1: The results of the GPD application to the Danish fire and the Turkish 
zone 1 earthquake insurance claims data for exceedances over sample size 50.

Graphical Analysis

In this section, some graphical analysis of the Danish fire insurance claims and 

the Turkish earthquake claims data are given in comparison in the Extreme Value 

Theory context. The mean excess, the Quantile-Quantile, the Hill and the shape 

parameter plots are presented in the given order.

The Mean Excess Plot:

In Extreme Value analysis, the mean excess function is a very useful tool to distin­
guish the type of the distribution in tail. It is calculated as . ^  jesses over the threshold h
°  J  ^  the number of observations exceedm

that is en = where I  = 1 if X{ > h and 0 otherwise and en are the mean2-11=1 X̂̂ >h
excess values [Gengay et al., 2001]. If the mean excess plot tends to infinity and 

has an upward slope, the distribution is said to be heavy-tailed. If the mean plot
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is close to a straight line with a positive slope, then the underlying distribution can 
be modelled as Pareto-like distributions. Sometimes, median excess plots are used 
instead of the mean excess plots for more robustness. Next, in Figure 3.1, both 
the Danish fire and Turkish zone 1 earthquake claims data, which has more dense 
observations in the upper tail, show an upward trend and indicates a heavy-tailed 
distribution fit as expected.

The m ean e x c e s s  plot of the Danish fire and Turkish earthquake insurance claim s

O

o 10 20 30 40 50 60 0  5000 10000 15000 20000 25000 30000

Threshold Threshold

Figure 3.1: The mean excess plot of 50 exceedances: left: Danish fire insurance 
claims, right: Turkish zone 1 earthquake insurance claims.

The Hill Plot

In the Extreme Value Analysis, the Hill plot is generated with the assumption 
that the data comes from a heavy-tailed distribution. It plots the Hill estimate of the 
tail index against the k upper order statistics and it is mainly used in determining 
the threshold of the data for further modelling and analysis [Gengay et al., 2001]. 
The calculation of the Hill estimate is given in (3.21)

fc-i
&h — ^ I n  — In Xk,B f°r k >2,

i=i
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where k is the upper order statistics (the number of exceedances), B  is the sample 

size and olh =  |  is the tail index.
A Hill plot is constructed such that the estimated £ is plotted as a function of 

either the k upper order statistics or the threshold h [Gengay et al., 2001]. In Figure 
3.2, the estimate is plotted against order statistics with a 95 % confidence. Both of 
the plots represent a stable structure.

s
a.

£

15 15

Order Statistics

Figure 3.2: The Hill plot of 50 exceedances: left: Danish fire insurance claims, right: 
Turkish zone 1 earthquake insurance claims.

In [Drees et al., 2000], it is mentioned that the traditional Hill plot is the most 
effective way, when the underlying distribution is exactly Pareto or close to Pareto. 
In fact, the Hill plot can be used as a good way to give information about the 
real data. One subplot of the Hill plot is called the altHill plot. It is suggested 
in [Drees et al., 2000] that it is better to plot both Hill and altHill graphs and 
compare them when analysing real data. The altHill plot can provide more precise 
information, when the traditional Hill plot is not enough itself to make interpretation 
of the data. The detailed explanation (e.g. mean, variance computations of the Hill 
plot) can be followed in [Adler et al., 1998] (pages 283-310).
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The Q uantile-Q uantile P lot

The Quantile-Quantile (QQ) plot, which is plotted against the standard expo­
nential quantiles, is another basic graphical tool to check the distribution of the 
data, whether it belongs to a specific distribution or not. In the context of the 
Extreme Value Theory, if a concave-shaped QQ-plot is observed, this indicates a 
heavy-tailed distribution; whereas a convex structure is considered to be a sign of 
light-tailed distribution.

In the following Figure 3.3, it can be concluded that both of the QQ-plots back 
up the heavy-tailedness of the distribution. There are some extreme observations to­
wards the edge of the distribution. Some statistical techniques are available to check 
of the fit of some other kind of distributions to the data, if some strange/extreme 
pattern is observed in the QQ-plots.

T h e  Q Q  p lot o f th e  D a n ish  fire a n d  T urkish  e a r th q u a k e  in s u r a n c e  c la im s

0 50 100 150 200 250 0 10000 20000 30000 40000

Ordered Data Ordered Data

Figure 3.3: The QQ-plot of 50 exceedances: left: Danish fire insurance claims, right: 
Turkish earthquake insurance claims.

The Shape Param eter £

When fitting the generalised Pareto distribution to the excesses over some thresh­

78



old value, the shape parameter £ is the defining element to check if the data follows 
a Generalised Pareto Distribution or not. Next, Figure 3.4 gives the plot of the 
maximum likelihood estimates of the shape parameter £, which is derived as the 
solution of (3.20) by some numerical methods in EVIS built-in function, with 95 % 
confidence interval at different level of exceedances. While the maximum likelihood 
parameter of the Turkish earthquake insurance claims data shows figures with deep 
jumps, the Danish fire insurance claims data follows a more consistent/stable path. 
The sudden and sharp jumps of the shape parameter in the Turkish earthquake 
claims data represent the extreme and large earthquake claim sizes due to the effect 
of the big earthquakes.

Threshold

3.13 3.46 3.98 4.49 5.32 6.59 10.70 21.00

§
a.g
"3 ̂

500 449 399 349 299 249 198 148 98 48

Exceedances

Figure 3.4: The plot of the maximum likelihood estimate of the shape parameter £ 
with 95 % confidence band for 50 exceedances: left: Danish fire insurance claims, 
right: Turkish zone 1 earthquake insurance claims.

The extreme value analysis in S-Plus by EVIS concludes that zone 1 mandatory 
earthquake insurance claims data of the Turkish Catastrophe Insurance Pool (TCIP) 
suggest a reasonable fit in terms of the common well-known specifications of the 
generalised Pareto distribution. The parameter estimates £ and the related extreme 
value plots support this suggestion. Previously, in another study, the similar analysis

3280 3900 5200 6180 7820 9840 12600 19600

9go
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9

9

500 449 399 349 299 249 198 148 98 48
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4

was conducted for the Marmara earthquake reinsurance claims of the industrial 

facilities and similar results were obtained in terms of graphical analysis.

It should be noted here that the Turkish Catastrophe Insurance Pool data only 

consists the earthquake insurance claims of the residential building. This residential- 

industrial claim separation might be a reason for the difference in the stability of 

the analysis. Time Series Analysis (e.g ARMA, ARCH-GARCH Processes), regular 
variation, other types of estimators for the shape parameter £ (e.g. Pickand’s Es­

timator, the Dekkers-Einmahl-de Haan Estimator), records and return period are 

some topics that the researchers can do research on in the Extreme Value context.

In the modelling process of this thesis, the claim amount is assumed to be lognor­

mal distributed. Lognormal distribution is in the family of medium-tailed distribu­

tions, which are in Gumbel distribution in the Extreme Value context as explained 

in Page 68. By using the results of the graphical tools and Table 3.1, we can still 

suggest that the earthquake claims data of zone 1 is in the family of heavy-tailed 
distribution as it is more likely to happen for the case of extreme events data. 
Generally, it is preferred to work with high quality data (easier to check the heavy- 
tailedness of the distribution) to obtain better results in the extreme value analysis. 
In the case of Turkish earthquake claims data, the future work will provide stronger 
analysis with the improvements in the data recording.
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Chapter 4 

Likelihoods

A likelihood function L(x] 9) is defined as the probability or the probability density 

for the occurrence of a sample of observed response values x \ . . . x n given the prob­

ability density function /(# ; 9) considered as a function of the unknown parameter 

vector 9, which is
n

L(x\ 9) = J J  f ( x i \6) = f ( x i; 9).. .  f ( x n; 9).
i= 1

In this chapter, the likelihood of the data (observations ir*), which consists of the 

earthquake insurance claims, event time, the likelihood of time for an inhomogeneous 
Poisson process of the counts, the generalised linear models, the likelihood and the 

Hessian of the Poisson count models and Normal distribution for the aggregate 

claims S  (note that logs' ~  Normal) are studied. The distribution of the claim 

size and the distribution of event times are needed to obtain the likelihood of the 

observations. The Normal, Weibull and Gamma distributions are chosen for the 

claim amount and three different methods are suggested for the likelihood of time.

The maximum likelihood estimation (MLE) technique is convenient to use as it 

provides an easy adaptation to the changes in model structure [Coles, 2001]. Some 

effort is spent on the estimation of the non-linear parameter (3 (exponential decay) 

for the choice of the exponential and the power kernel special functions in the time 

likelihood of an inhomogeneous Poisson process. The non-linear parameter {(3) gives 

us information about the behaviour of the earthquake claim arrivals in different risk 

zones in Turkey.
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4.1 Likelihood of Observations

Our main aim is to fit a point process model for the claims data of this thesis. The 

likelihood of the model data has two parts: the likelihood of the aggregate claims 

Si and the likelihood of the time for the claim arrivals. The assumption used here 

is the independency of the claim number process N(t) and the raw claim amount 

Xi, where the event times distribution is conditional given the number of Poisson 

counts. Then, the likelihood can be written as follows conditional on the number of 

claims N(t) = n

n

L(S , t- B) =  J ]  /(S ( | N(t) = n)f(U \ N(t) =  n)f(N(t)  =  n), (4.1)
i= l

where all the parameters of the distributions are given in the form of 6 parameter.

4.1.1 Likelihood of tim e

Here, three different types of likelihood for the event times of an inhomogeneous 
Poisson process are examined.

M ethod 1:
In Chapter 2, the distribution of the interarrival times is given with the proba­

bility density function A(U)e~Ai^ \  where Ai(t) = J ^ t+1 A(r)dr = A(Wi+i) — A(Wi). 
By differentiating (3.1), conditional on the likelihood is [Cox and Lewis, 1966]

n

i= 1
=  A(l1) e - A(tl)A(l2) e - (A<,2)- A(<1>) . . .  A (l„)e-<A(4’')- A(,' - l)) (4.2)

=  n A ( t <;0)e-AH
i= l

as the A terms in the power of the exponentials cancel. Since the claim number 

process N(t) = n is fixed, the likelihood takes the form n<Li f(U I ^)-
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M ethod 2:

The idea of this method is very similar to the censoring concept in the survival 

analysis. Suppose that N(t) = n claims arrive in a time interval of (0, £at)- If we 

condition on event time £jv+i> the interval of (tw+i — tn ) is the survival period until 

the arrival of the next claim. If there occurs another claim after the fixed time, that 

will cause censoring for the claim arrivals. The likelihood to forecast the next failure 

time is derived by using the likelihood in Method 1 and the part for the censoring, 

conditional on the number of claims. This is formulated as

L2(( 1 ,.. .,  t„; 0) =

= n  e)e~Mtri)e~(MtN+,>~MtN)> =  j j  A(t,; 0)e~A('" +l).
1=1 4 = 1

M ethod 3:
The third likelihood is built on the idea of using the bins (an interval into which 

a given data point does or does not fall) with independent Poisson counts. Lets 

assume the claims arrive in the time interval (0, t]. If we divide this interval of 
length t into m  equal subintervals, the length of each subinterval will be Then 
the intervals will be (0, ^], (^ , ^ ] , . . . ,  ( t]. The Poisson parameter for interval

i t

i is A* =  A(r)dr. Let iV* be the number of events in the ith interval, because it
m

is known that the claim number process N  has independent increments. Then the 

third likelihood of time is based on the independent Poisson counts (see Remark 

2, where it says N(t) ~  Pois(A(t)))

m . » jVj
L3(tu . . . , t n-,0) = H e- w^ .  (4.4)

i=1

When m  —» oo, Lz{6) behaves like L\{6). The simplest way to prove this behaviour 

is to use the log-likelihood of both cases as in (4.2) and (4.4). That is

n

lo g L i( t i , . . . , tn;0) =  —A(tn) +  ^  log X(U),
4 = 1

and m m  m
logL3( t i , . . . , t n;0) =  - ^ A ( t i )  +  ^ A T i logAi - ^ l o g ^ ! ) .

4=1 4=1 4=1
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First let (non-binning case)

m  ~ t

- ^ A (U)= /  X(r)dr = A(t). 
i = 1 J o

it
In the binning case, the Poisson parameter is assumed to be A* =  X(r)dr in

m

the interval (0, t) with a subinterval length of Then, for some di in the interval 

of [ , ^], by the integral mean value theorem

This implies
m m , m m ,

Y  Ni log \ i  = Y N> - )  = Y , N' los  W i ) + Y , N' i°s(—)•1 1 ^  -1 -1 ^1=1 t=l 1=1 t=l

As a next step, if Ni is fixed, as m  —► oo, there will be at least one event, so 

one U in each interval and this makes J^Iii Ni\ogX(di) approach to Y^iLi log A(f,). 

For fixed Ni, also, X 3ili-^l°s(m ) =  ^ ° s ( m )  an(  ̂ can writte11 35 (m)N when 
exponentiated and as m —► oo, {^ )N —> 0. For sufficiently large m, log(ATd) —>
0. Then it concludes that L3(6) —> Li{6) as m  —► oo.

4.2 The use of shock kernels

The big earthquakes are generally followed by some small earthquakes, which occur 

close to the original earthquake epicentre. In seismology, the big initial earthquake 

is called the ‘mainshock’ and the following small ones are called the ‘aftershocks’. 

Many scientists study the combination of both cases, which is the ‘mainshock- 

aftershock pattern’. It is important to understand and have some idea of this 

relation, because it might contribute to a successful disaster protection plan (e.g 

effective rescue operations, lessening the anxiety of the residents of the disaster 

area and minimising the possible damage to occur due to a future earthquake) 

[Chen et al., 2004, Ogata, 1988].

The aftershock occurrences are usually considered as an inhomogeneous process. 

There exists ‘Omori’s law’ that the aftershocks are believed to follow. It shows the
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empirical relation for the temporal decay of aftershock rates [Utsu, 1961]

where A* is an aftershock frequency (the number of earthquakes measured at certain 

time t), which is measured over a certain interval time. K  and c are constants, where 

parameter K  generally depends on the amount of the aftershock denoting the decay 

rate and c is the time offset parameter, which is less than 0.1 days.

[Utsu, 1961] suggested a modified version of the Omori’s law and it is called the 

‘Modified Omori’s Law (MO Formula)’

where p is a constant and it can be related to the frictional heat. When p = 1, the 

MO Formula is simple Omori’s law. The value of p changes in the interval of 0.7-1.5 

but it is normally 1 or slightly larger.

Gutenberg-Richter Formula:
The big earthquakes are low frequency, high severity events. As the magni­

tude of the aftershocks increase, the number of these aftershocks declines expo­

nentially. This is called the ‘Gutenberg-Richter Relation’ and can be expressed as 

[JERC, 1998, Vere-Jones, 1970]

where M  is the magnitude, A*(M) is the number of aftershocks bigger than magni­

tude M  and a,b are constants, which express the level of overall aftershock activity. 

The number of aftershocks for a shock in [M, M  +  5M] is denoted as A

For this frequency-magnitude relation, if A*(M) is denoted as the ‘total cumula­

tive number of aftershocks larger than M ’

logA*(M) — a — bM,

or exponentiating with the log 10-base

A *(M ) =  lO0- 6"
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where \*(x) = 10a~bx, then

/M  -j r\a—bM

e - ^ d x  = — ,

where (3 = b In 10 and In is the natural logarithm. If the logarithm of both sides is 

taken

logA*(M) = a — bM — log/?*,

and if A = a — log /?*

log A *{M) = A - b M .

Let Mm denote the magnitude of the mainshock and M  is the variable, which 

describes the magnitude of the aftershocks. Then, the aftershock sequence can be 

rewritten as [JERC, 1998, Reasenberg and Jones, 1989]

log A*(M) = A — b(M — Mm).

Generally the difference of the mainshock and aftershock magnitude is expected to 
be positive since the mainshock magnitude should be bigger than the aftershock 
magnitude. Therefore, the terms in the parentheses can be switched and it does not 
change the basic idea

log A*(M) = A + b(Mm - M ) .

Here, A  is thought to represent the ‘producing power’ of the aftershock sequence 

and it is dependent on the mainshock. If the value of A  is high, it can be interpreted 

that many aftershocks can be produced given the size of the mainshock. The b value 

is related to the magnitude distribution.

The analysis of an inhomogeneous Poisson process, a family of log-linear func­

tions, whose logarithms are linear in coefficients, are very useful. We will continue 

the analysis by using the binning case, where we count for the number of claims 

arriving to each bin in the given time period. The notation for the intensity function 

A(t) of non-binning case will change to A* in the binning case (the approximation 

of A(t) to A*), where i = 1, . . . ,  n.
Therefore, the exponential kernel function, which is used in the number of claims 

(Ni ~  Pois(Aj)) likelihood calculations and modelling sections of this thesis, has
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basically the following form

log Af =  a 0 + -  A, =  e«+Ej—
j=l

where S j , j  = 1. . .  k is the kernel knots (sites) that the earthquake takes place with 

ctj effect. If the knot positions are parameters to be estimated, then it is a non­

linear regression problem to solve (See Section 4.4.1). In the next page, Figure 4.1 

represents the jump behaviour of the exponential kernel function. The power kernel 

on the other hand has the form
k

log A* =  a0 +  ]Pa!j((£i -  Sj)l+)-/3 —► Ai = eQ0+£?=ia^ (ti-s^ l+) 0. 
j= i

The power kernel function can be named as a power-law shock kernel. Following 

the discussion about the form of the power kernel function in Page 46, if (3 = 1
k

log A* =  a0 +  -  Sj)|+)-1 —► Ai = eao+^?=iQA(ti-^)l+) \
j=l

This is a case where the model can be expressed as a piecewise pure log-linear 
Poisson case. The jumps occur at significant bins as a flexibility of using an in­
homogeneous Poisson process. For a single power kernel, the intensity function of 
the process is A* =  eQA(*i-adl+). in both the exponential and power kernel cases, 

olq corresponds to the producing power A  value as mentioned previously and it is 

used to represent the ordinary claims arriving in ordinary time period. The daily 

tremors and small earthquakes of magnitude less than 5 can also cause damage to 

the buildings, building contents and infrastructure. The claims arriving as a result 

of these events is represented by ao in the special kernel forms.

The +  sign of the (U — Sj), the difference between the actual event time and 

the kernel knot, denotes the heavy-side function to represent the shock effect of 

the earthquake occurrence. The a j  parameters have an additional effect to ao 

existence. They have a reasonable explanation that they represent the big claim 

size earthquakes, where big claims arrive as a result of big magnitude.

The (3 parameter represents the fix characteristic of each risk region and scientif­

ically it is the universal constant of the rate of the decay. Also, in our case, it will
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change with the magnitude of the earthquake and is used to indicate the exponential 

decay after the mainshock. The (3 value changes with the amount of the incoming 

claims from region to region in Turkey. One advantage of using a single (3 is that 

the different kernels can be added and the same value of (3 is obtained with different 

OLj weights. This means the rate log A is piecewise exponential or power (piecewise 

pure log-linear).

In this thesis, in time period (0, £], the ordinary claims follow a routine path. 

If there is a sudden event like an earthquake, flood or any other type of man- 

made or natural disaster, the number of claims arriving to the insurance companies 

increase very significantly. The insurance companies decide to give priority to some 

of these claims to be able to deal with huge amount of claims in a short period of 

time. One way to do so is to decide on a threshold value by the company’s own 

criteria (disaster area, the damage level of the property or the income level etc.) 
and they start processing the payments in order by giving priority to urgent and big 
claims. Then, things go to a normal period again until the next disaster strike or 

an extreme event occurrence. The plots showing the jump in the number of claims 
for the Turkish earthquake claims data are presented in Section 5.2. Considering 

the Modified Omori’s Law and the magnitude-frequency-time relations above, the 
exponential and power kernel functions seem to reflect the jump behaviour of the 

claim arrival process.
It is interesting to observe that the power kernel function seems to be a generalisa­

tion of the Gutenberg-Richter form, which was given in Page 85 as A*(M) =  10a-6M. 

The simplest case of the suggested power kernel function (say considering the one 
bin), that is A =  eao+a\tP ̂ can explain the reason to choose these kernels to show 

the decreasing structure of the claim arrivals after main shock. In some cases of the 

big earthquakes, when (3=1  and cni is negative (i.e A =  eao-ai<), the power kernel 

function match with the main/after shock relation expressed with the Gutenberg- 

Richter Formula. The following plots give the idea behind the construction and the 

use of these types of kernel function analysis.
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Figure 4.1: The plot of the exponential kernel
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Figure 4.2: The exponential kernel function representing the jump behaviour of the 
large number of claims due to a sudden extreme event in all risk zones in terms of 
months

In the next page, Figure 4.3 shows how the power kernel function represents 
the decay of the claim arrivals with negative ot\ and positive /3 estimates. Figure 
4.4 again denotes the decreasing shape of the power kernel function choice for the 
earthquake claim arrivals in the given time period (please refer to Page 45 for the
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use of the power kernel form). In this case, the ot.\ is positive and (3 is negative. 
These graphs support the idea of the choice of the exponential and the power kernel 
special forms to work with in expressing the decrease in the claim arrivals after an 
earthquake strike for a given time period. It is observed that the sign of the ao 
(denoting the ordinary/very small claim arrivals in an ordinary time period) does 
not affect the increasing or decreasing shape of the kernel functions.
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- 4

-5

Figure 4.3: The power kernel form to represent the decreasing claim arrival process 
if ai < 0, (3 > 0.

22

Figure 4.4: The power kernel form to represent the decreasing claim arrival process 
if ai > 0, (3 < 0.
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4.2.1 The use of the exponential kernel in the tim e likeli­
hood

In the next two sections, the likelihood of time is derived by using (4.2) of Method 

1 with the use of the exponential and the power kernel functions. The aim of this 

analysis is to show the procedure to use Method 1 (conditioning on time) in the 

likelihood of observations and parameter estimation. The detailed work will be 

explained for the bin case (see R em ark 2, Ni ~  Pois(A*)) by using Method 3 in the 

likelihood and parameter estimation, where the earthquake events are used as the 

counts in the modelling sections. Here, the way to estimate the non-linear parameter 

/3 in both the exponential and power kernel forms are given only without going into

much detail. The estimation method for the oij parameters are presented under the

Section 4.4 of non-linear models.

The first choice for the kernel function is the exponential form. The kernel func­

tion includes the non-linear parameter /?, whose values are estimated in the mod­
elling sections in Chapter 5 and 6. By using Method 1 for the time likelihood, which 
represents the pure non-binning case of the claim arrivals in time period (0, £], the 
intensity has the following suggested form

l o g  A ( i )  =  (  Q °  +  E j - 1  i{ *
6 w  \  0 if t < s.

where A(t) = eQo+̂ j=lQje a) with j  = 1 , . . . ,& knots, at which the kernels are 

replaced. When using the idea of binning as explained in Method 3 (Page 83), we 

have N{ ~  Poisson (Aj) and in this case

+ Ylj=i OLje~^u~â l+ if U > sj ;
0 if U < Sj.

where U is the beginning of the ith bin. In the ‘bin’ case of Method 3, each count 

is attached to the whole bin, i.e. it is assumed that A (t) is a constant over each bin 

and approximated by A* instead (see R em ark  2).

Next, we will present some initial steps for the estimation of (3, if Method 1 is used 

for the exponential kernel function with Gamma, Normal and Weibull distributions 

and later on for the power kernel function cases.

log A* =
-
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First, the value of Ai (as an approximation to A since we are binning) above is

replaced in the time likelihood of Method 1 in (4.2) as

(4.5)
i= 1

where 6 = (o;o, au, . . . ,  a*; /?) is the vector of the unknown parameters. Then, the 

log-likelihood is

logL i ( t i , . . . , tn;6,a,0)  =  log (  eao+s?=i “>e

=  g  (lo g  (46)

= E  (“ ° +  E  ~  A(*»)),
i = l  j = 1

where the mean rate function is A(tn) =  J0<n \{r)dr. The next step is to differentiate 

the log-likelihood function in (4.6) with respect to the non-linear parameter /?.

k

+ ! > - * - * - A i u )
1=1 j = 1

= E  Sa ( a ° +  E  <*je~l3it,~Si)'+ -  M Q )  (4-7)
i = 1 ^  .7=1

=  E  ( E ^ e"'J(“"*i,l+( - ^  +  si)l+ -  a a A(4"))-
i = l  j = l

Let’s find the derivative of the mean function A at the last time point t n.

A{tn) = [  X(r)dr = f  eao+ '̂7=1 aje 1 j)l+dr 
Jo Jo

+  *)!+*•
Vo J=1

/  e a o + ^ ' j = 1  Q j ’ e  ^  1 ,)l+e- ^ ti-*JVI+(_ti +  S j ) | + d r .

i=i ^
If (4.8) is replaced in (4.7), the following (4.9) is obtained. Numerical solution for 

this equation suggests the maximum likelihood estimate of the non-linear parameter

(4.8)
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/ 3  for the use of the exponential kernel in the likelihood of time in Method 1.

= E  f E  H i+*i)i+
*“  «, \  (49)

— ^^cxj J  eao+^ =1 aje 1 j)l+e- ^*i-s^ +(—ti + Sj)|+drJ .

4.2.2 The use o f the power kernel in the tim e likelihood

In the calculation of the time likelihood, the second choice of the kernel function is 

the power kernel. The same procedure with the use of exponential kernel function 

is applied in this section. For the binning case, the log-rate of the process is

ao +  E j= ia i ( f t “ sj)l+)_/3 if * > 8 3 ;
g {  0 if t{ < Sj.

which gives the value of the rate itself Ai =  eao+^ '= iay^t<-Si^+) P. The likelihood 
function is then

n n
Lx , tn, e, a,P) = Y [  A(i<; 0)e-A(("> =  J J  e°0+s‘=>

i=l i= l
(4.10)

and the log-likelihood function is

log i i ( t i , . . . ,  tn , e ,  a ,  f}) =  log (  n  \ { t i \ 0)e-A(‘">) = n  ^((*i-^)l+)-^e-A(t„)
i= l i=1

n
= £ > g  ^eao+'Ej=iai((ti -33)\+)~pe-A(tn)^

= E  (°°+!>«** - *>)i+r* -  A(4"))-
i = l  j = 1

If (4.11) is differentiated with respect to (3 

d log Li d

(4.11)



The next step is to find (tn)

A(tn) =  [  X(r)dr = f  e sj)I+) pdr, (4.13)
Jo jo

and

^ A (tn) = Jo eao+̂ aj(iti ^ )l+) />'5 2 - a j ( ( t i - s j )|+) ^log^i-Sj-JI+dr (4.14)

If (4.14) is replaced in (4.12) and solved for /?, the maximum likelihood estimator of 

the non-linear parameter (3 can be obtained by solving the following equation with 

some numerical methods

= £  f i - a ^ u  -  ai)i+)-/,k*ft -  *i)i+
*=i \  j=i

+  J  e“°+£Jfc=,a)(«.-s,)l+)-‘i Y 2  -  Sj)| + )_/S log(tj -  Sj)|+rfr)

(4.15)

If of an interest, the maximum likelihood estimates of the aj parameters can be 
derived for the time likelihood by using the similar estimation procedure above.

4.3 Generalised Linear M odels

In the model selection process, generally the first attempt is to check the plots of the 

data and make some assumptions to provide a good fit. Then, by using the selected 

model and the data itself, the unknown parameters of the model are estimated. As 

a final step, the model is assessed to see if the analysis is appropriate for the data. 

The model can always be calibrated with the change of information of the data or 

for further research interest. These basic steps of the model building process are 

summarised as

Model selection

Model validation

Model fitting
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Generalised linear model is an important tool to solve many actuarial statistics 

problems since the variable of the interest mostly does not fit the assumption of 

normally distributed data [Kaas et al., 2001]. The generalised linear model (glm) 

and the Cox proportional hazards model are two examples of the statistical mod­

els, which have a wide use in regression analysis, especially when the data is non- 

normally distributed. The generalised linear model is often used in applied statistics 

in demography, economics, geography, geology, history, medicine and other sub­

jects. Especially, the milestone in the development of count data regression meth­

ods is the development of the idea of the generalised linear models. The term is 

first introduced in 1972 by Nelder and Wedderburn [Nelder and Wedderburn, 1972]. 

The name ‘generalised linear models’ comes from the idea that the glm gener­

alises the classical linear models on the normal distribution with two methods 

[Lindsey, 1997, Montgomery et al., 2001a]:

1. These models involve a variety of distributions selected from a special fam­
ily, e.g. exponential family (which includes Poisson, normal, exponential and 
gamma distributions),

2. They involve transformations of the mean, through a ‘link function’, which 

links the regression part to the mean of one of these distributions.

The generalised linear model is a unification of linear and non-linear models. The 

response (dependent) variable strictly needs to be a member of exponential family. 

Transformation of a response variable is generally very effective to deal with non­

normality [Montgomery et al., 2001a]. The generalised linear model basically has 

three parts:

i) a random component: independent observations (responses Yi, . . . ,  Y*),

ii) a systematic component: the linear predictor, which is denoted by 77*,

iii) a link between the random and systematic components by the use of a link 

function g, that is g(fii) = rji, where //* is the expected response. A link 

function g explains how the expected response is linked to the explanatory 

variables.
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In statistics, linear models are the first choice to fit to the data for modelling 

purposes. But, recently, log-linear and logistic models started to be used in the 

modelling of discrete and categorical data. The inference and the emphasis on the 

likelihood function is a very important success of the use of the generalised linear 

models.

One way to describe the behaviour of a series of events like how and when these 

events occurred is ‘counting processes’. A counting process, N(t), is a random 

variable over time, which gives a simple count of the number of events occurring up 

to time t. In log-linear regression analysis, the response variable is explained with 

the suitable explanatory variables, which have some information on the dependence 

of an event on the past. The intensity of events, which is the rate A(t) in this study, 

may change over time and can show a dependence structure on the previous events 
[Andersen et al., 1993].

A Poisson distribution is considered to be a good choice to fit a model for the 

counts if the assumption of the Poisson Processes are valid [Kaas et al., 2001]. It is 
a special case of generalised linear models. The idea of Poisson distribution with the 
log-link as log-linear models is brought into statistical modelling in 1963 by Birch. 
As Poisson distribution is one of the most famous discrete distributions, which is a 
member of the exponential family, it also satisfies the condition of being in a family 

of distributions in the generalised linear model concept (see (4.38)).

4.3.1 N on-linear m odels

In statistical analysis, there are mainly two types of modelling, which are used to 

explain the behaviour of the data. The main aim is to estimate the parameters of 

the suggested models as much as possible so that the response variable is explained 

with maximum information. The first one of these models is linear models, which 

are often used when there is not enough theoretical model suggestions for the data. 

The general form of the linear models is [Faraway, 2005, Bierens and Gallant, 1997, 

Seber and Wild, 1989]

y ~  /?o +  PiXi +  . . .  +  finX n +  e,
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or

y ~  (3q +  (3\Xi +  (32X 1X 2 ,

where y is the response (dependent) variable, X :s are the explanatory (independent) 

variables, /3’s are the parameters to be estimated to explain the model and e is the 

error term.

Any model, which is not linear in the unknown parameters, is called a ‘non-linear 

regression modeV. Non-linear models have a range of different applications. They 

can be used to explain the problems even when the explanation is possible with the 

linear models. The non-linear behaviour of the data can be explained by non-linear 

modelling. In both cases, the choice of (3 is the consideration so that the systematic 

part of the model gives the maximum amount of information about the variables. 
For non-linear models, the change in the deviance is needed for a proper explanation 

and choice of the models. This argument is used during the modelling process and 

it is observed that when the covariates are used, the deviance of the models reduce.

4.3.2 E stim ation  of the non-linear param eter [3

The method of least squares is one way to estimate the model parameters in regres­
sion analysis. The necessary assumption on the error terms is that the errors have 

zero mean and a constant variance, that is, Efa) = 0 and Var{ei) = a2. Also, the er­

ror terms are uncorrelated regardless of the distribution. The normality assumption 

of the errors and so the response variable is needed to be able to conduct the hy­

pothesis testing and to construct the confidence intervals. In non-linear regression, 

it is difficult to solve the resulting normal equations of the least square estimation 

method. Under the assumption that the errors are normally and independently 

distributed (i.e. e* ~  NID(0, <r2)), the least square estimators are the same as the 

maximum likelihood estimators. The maximum likelihood estimators of the model 

parameters can be derived in linear regression [Montgomery et al., 2001a].

Even the assumption of e* ~  NID(0, o2) holds in non-linear regression, finding 

the exact tests and confidence interval is not the case. Statistical inference requires 

large sample or asymptotic results in non-linear regression, as the large n theory 

applies in both normal and non-normal error distributions.
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Poisson regression

An ‘event count’ means the number of times an event occurs. In the regres­

sion analysis, the response variable (dependent variable) is a non-negative integer­

valued random variable [Cameron and Trivedi, 1998]. The interarrival time of an 

event, that is the length of the period between events, is dual of the event count 

[Cameron and Trivedi, 1998]. When the response variable is a count, the most suit­

able probability model is often the Poisson distribution, which was derived from the 

Binomial distribution by Poisson. The classic study of Bortkiewicz on the number of 

deaths caused by the kick of the mules in the Prussian army is an example of the ap­

plications of the Poisson distribution [Cameron and Trivedi, 1998]. If the intensity 

parameter of the Poisson distribution is let to depend on the covariates, the related 
regression model is called the ‘Poisson regression model’ [Cameron and Trivedi, 1998] 

In log-linear regression analysis, suppose there is a canonical location parameter 
6, which is equal to the other parameters in the linear form as [Lindsey, 1997]

% )  =  xp ,

where  ̂is the mean of the Poisson distribution, (3 is a vector of unknown parameters 

(different than the non-linear parameter (3 of the models, which is used to represent 
the exponential decay of the claim arrivals due to some fix characteristic of the 

earthquake region) and A  is a set of unknown explanatory variables (aka ‘design’ or 

‘model’ matrix). Here, X(3 forms the linear structure. This model can be rewritten 

by using other functions of the mean, ry(.)

= A73,

which is the linear predictor. In this case, the model has linear and non-linear 

components together. If 0* =  7/<, the relationship between the mean of the ith 

observation (Yi ~  Poisson(q)) and its linear predictor is given by a ‘link function’, 

9i{)
Vi = Si(ft) =  xjp .

Therefore, the counts data is modelled as log-linear Poisson distribution with log- 

rate, g(q) = log(s), and with generalised linear models. Some simple hierarchy can
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be created here [Neter et al., 1996]:

generalised linear models — ► nonlinear regression model ■> Poisson regression

The parameter 0  here is linked with non-normality (being Poisson) and non- 

linearity. It might also be suitable to call such case as generalised non-linear model 

(GNLM).

As the claim number process N(t)  is assumed to be an inhomogeneous Poisson 

process with the rate A(t) (as an approximation of the mean function A(£)), log- 

linear Poisson regression is appropriate for our case to model the number of counts 

[Lindsey, 1995, Howard, 2002, Lawless, 1987]. In the general canonical form, the 

model can be shown as

log (ft) =
j

with a simple example

log (ft) =  0 0  + 0 1 X1,

where the mean q  refers to the rate A(£) of an inhomogeneous claim number pro­

cess N(t) and x{ simply refers to the counts (considering the calendar time in 
months/weeks) in our case.

The probability density function of Poisson distribution is
p - X \ x  Apx log  A log A—A

f (x) = - £ -  = ; * > 0. (4.16)
X I  X I  X I

The exponential family, which has the probability function as in the following Equa­

tion will next be linked to the Poisson case

/(„ )  =  e^ +^ \  (4.17)

where 6 is the canonical parameter as a natural estimator for the distribution.

Poisson regression represents the likelihood function for any type of distribu­

tion from the exponential family for frequency data. The method of maximum 

likelihood is used to estimate the parameters in Poisson regression [Ozaki, 1979, 

Vere-Jones and Ozaki, 1982].
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The logarithmic form of the Poisson density given in (4.16) is

log f (x )  = x  log A -  A -  log (ad),

and the terms match with the exponential family in (4.17) as log A =  6, c{6) =
—A =  — ee, (f> = 1 and d(y, <f>) = — log(ad).

Since we are using the idea of binning when modelling the number of claims as

Poisson counts, we denote the rate of the process as log A* and then the likelihood

of the Poisson distribution can be written as

^XilogAi-Ai f.E”=i(a:i logAi-Ad
« * • » > - I I —  E 5 T - .

where Xi (here and in Poisson likelihood computations X{ is used for the counts) 
denotes the counts in the ith bin given as Ni in Method 3 (4.4).

Then the log-likelihood is
n n n n

log L(x\ 6) = ^ (a^ lo g A j -  A*) -  log(JJa;i!) =  ^(a^logA * -  Af) -  y^ logfa!).
t=l i=l z=l i=l

(4.18)
Please note that the logarithms axe to base e (natural logarithm) in further calcu­

lations. As a next step, the exponential and power kernels are substituted in the 
intensity of the process and the estimation of the non-linear parameter /3 and the 

linear olj parameters are worked through. The aj parameters axe assumed to be 

non-normal (non-Gaussian) and the (3 parameter is non-normal (non-Gaussian) and 

also non-linear as stated earlier. The maximum likelihood estimate (3 is assumed 

to be distributed normal, that is j3 rsj n (P , ( I0 ) )  x)> where 1 is the observed 
information matrix.

4.4 Estim ation of the m odel parameters for Pois­
son likelihood

4.4.1 (3 derivatives

Exponential kernel: As stated earlier, in log-linear Poisson regression, rather 

than the rate itself, the log-rate is modelled to explain the number of claims N{.
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Therefore the estimation of the non-linear parameter /? uses the exponential kernel 

function form of the rate of bins, A*, in the modelling process. Here, it is assumed 

that ordinary claims occur from small tremors, wall cracks due to these tremors etc. 

and these claims are represented with a constant oto in the intensity. In the pure 

log-linear case
k

log A» = a 0 +  5 3  (4.19)
j - 1

and the intensity of the process will be Aj =  ea°+£j=iaie 1 j)l+.

In (4.18), the log-likelihood of the process is given as follows with the intensity 

function log A* [Ozaki, 1979, Vere-Jones and Ozaki, 1982]

log L(*; ft a) =  ^  ( x i (a0-\-'^2aje~^ti~3ĵ +) - e ao+̂ = iaje ^  *j)l+ j - ^ l o g f o ! ) .
2=1 \  j=l J  i=1

(4.20)
If this log-likelihood is differentiated with respect to non-linear parameter (3 

^  = | & l o g Ai - A i) - | E . o g W ),
2=1 i=l

the Fisher’s score function (also called ‘Fisher’s score vector’ if there is more than 

one parameter) U  (/?) is obtained as

=  u(p)  =  £  ( -  +«i)i+
^  2=1  \  j = 1

- + ,,)|+)) Y
3= 1  J

If the score function, C/(/?), is differentiated with respect to j3 again, the (3(3 entry of 

the Hessian (matrix of second derivatives of the log-likelihood function) is obtained

101



as

+^  =  ^ 7 r  =  E ( - +  * ) l+( - *  +  *,)\
i= l \  j= 1

_ (e°°+Z5=i <*,«-*“-*>'+ ̂  ̂  a i e-',(,‘- s>)l+ (-t, + ̂ 1+)
3

+  Sj)|+)
3 =  1

+  +  Sj)|+( - i i  +  *J)|+e « +£ ^ * _W*,_*,)l+) Y
J=1 /

(4.21)

if (4.21) is rewritten

t = dJ§ r = £ ( - * £  + 5j)i+)2
*=i \  j=i

_ +  s .)|+) 2
3=1

+ ( £ a ,.e- « i +((_ ti + s ,) |+)2) )  ) ,
3 = 1  J

and the estimated approximate variance of the non-linear parameter (3 is obtained 

via the observed information matrix I  (a o, a i , . . . ,  a*; /?), by using the expectation 
of the Hessian matrix

/ ( a 0, a u • • •, a*; /?)) =  £ ( - #  (ao, a i , . . . ,  a*; /?)))•

Since the expectation is sometimes hard to obtain in this form, —H  is called ‘the ob­

served information matrix T and we can use I (ao, a \ , . . . ,  o^; (3)) =  —H{ao, gu, . . . ,  a*,; /?)) 

instead. The inversion [H]-1 is used to get the confidence interval for the (3 and 

a.j parameters. In that case, the corresponding entry of the observed information
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matrix for the approximate p  variance is

m  = E  ( -  E aie-*“-',)l+((-t‘+4*>i+>!
i=1 V j=1

+  ^cao+E*=i^e ^  Sj)l+ ^ ^ aj.e-/3(‘i-«i)l+(_i . +  Sj)|+^ 2 (4.22)
3 = 1

_ e . * + E j . I « J . - « - - i ' ' +  ( j 2 aie~*u~’t) i + ( ( - ^ + ^ ) i + ) 2 ) ) )  •

j= l /

Power kernel: Instead of the exponential kernel, if the power kernel function is 

used in the calculations above to obtain the form for the estimates and the confidence 

interval of the model parameters, the log-rate of the bin case is

k

logAj =  o 0 + ^2otj(ti -  Sj)l+*, (4-23)
3 = 1

which implies Ai =  eQo+̂ j=lQ!:,̂ i - 'S;̂ +) 0.

The log-likelihood is the same as in (4.18) and if (4.23) is replaced in it, the new 
log-likelihood is

n k n

logL{x\P,ot) =  ^ 2  ( x i i a o ^ ^ a j ^ t i - S j ^ + y ^ - e 00̂ ^ 101̂ - 3̂ " ^ - ^ l o g a * ! .
i= l j=1 i= l

If we differentiate this log-likelihood with respect to the non-linear p parameter, the 

score function will be
n /  k

=  m  =  £  U f E - a j U t i  -  S j ) U ) - e )  l o g ( < i  -  8,)\+
*=i V j= i

+ êao+Ej=i«i((*i- )̂l+)-0 '^2 a j ((ti -  Si)|+)-01og(*i -  Sj)\2j\  •
3 =1 J
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Then, the second derivative of the log-likelihood with respect to (3 is

^  =  dJj r  =  £  U  £ « > ( ( *  -  *i)i+)-"0og(*« -  ^ ) i +)2
i= l V j=1

3 = 1
k

+  e O o + E j U 4 » l + » - '  ^  _  5j.)|+) -33(log(ti -  Si) |+)2) ,
j = l  J

(4.24)

and

/(/?) =  - # ( / ? )  =  5 Z  ( “  Xi S a i ( &  ~  5i)l+) ^(log(«i -  Sj) |+ )2
i=i V j=i

+  (e-o+ES-x«*«*.—4)1+)--( ^  -a^CC*. -  ^ " ' ( l o g f e  -  ^ ) | + ) ) 2
3 = 1

_  e«o+Ej=i^((ti-^)l+)^ ^ 2 a j ( ( t i  -  sJ)|+) - /3(log(ti -  5j)|+)2) V
3 = 1  )

(4.25)
This (k + 2, k + 2) entry of the inverse information matrix is the variance estimate of 

the j3 parameter and used to construct the confidence interval of (3 in the following 
form:

(3 ±  Critical value x standard error(/3).

The use of the non-linear parameter (3 is to explain some special characteristics (ge­

ographical structure like closeness to the fault line, population, earthquake history 

of the area etc.) of the earthquake risk area and the otj parameters denote the effect 

of the big, empirical earthquakes as later shown in Table 5.1 (the events with more 

than 100 claims, N{ > 100). The score function U(L({3; o:o5 • • •, <**:))> is denoted 
in the matrix notation for the (3 and a  parameters as follows:
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U(/?, Og, Oi, . . . , Ok)

r d l o g L ( / 3 ; a 0 . . . a k )  -] 

dao
d l o g L ( / 3 ; a o . . . a k )

dai
d \ o g L ( p - , a 0 . . . a k )  

da.2

d l o g L ( / 3 ; a o . . . a k )

d o t k
d l o g L ( p - , a 0 . . . a k )

d ( 3

and the Hessian matrix (the matrix of second derivatives) will be in the form:

d 2  log L ( / 3 ; a o , a i . . . a k) d 2  l o g L ( f 3 ; a o , a i . . . a k )  

daodao daodai

d 2  logL(^;Q0,ai...Qfc) d 2  \ o g L ( f 3 \ a o , a i . . . a k )  

d a j d a  o d o t  j  d a  i

a 2 iogL(/3;Q0,a i . . .a fc) d 2  log L ( P ; a o , a i . . . a k )  

d ( 3 d a o  d / 3 d a i

d 2  log L(/3;a0,ai...afc) 
d a o d ( 3

d 2  log L(/3;a0,Qi...Qfc) 
d a j d f 3  

d 2  l o g L ( / 3 { a o , a i . . . a k )

The diagonal entries of the inverted observed information matrix (variance-covariance 

matrix) are the variances of the corresponding parameters and will be used in con­
fidence interval construction.

4.4.2 a  derivatives

In the log-linear Poisson modelling, the estimation of the linear parameter o /s , 

which is used to represent the big earthquakes, is shown by using the exponential 

and power kernels with the same argument as in the estimation of the non-linear 

parameter /3.

Exponential kernel: If the exponential kernel function is used for modelling of 

the rate A* for the binning case, the log-likelihood in (4.18) changes to

log L(x; /?, a) = (<*0+ ^  OLje~p{ti~Sj)^ )  - e a°+£*=* aJe ^  ^ - ^ l o g f o l j Y
i = l  \  j = l  i = l  J

(4.26)

Then the general form of the first derivative of this likelihood, or the score function
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with respect to the parameter a,- will be

31° g L =  y '  ( x . Y  e-/9(«i-*i)l+ _  eao+E 
3aj \  ^J 1=1 \  J = 1

A \

j=l /
and the Hessian of the log-likelihood is

k

(4.27)

d2l°g L =  Y  {  -  eao+E*=Iaje-',"‘- i )l+ ^ e-/3(ti-
3 4=1 \  j = 1

^ e-^(«i-«i)|+J (4 28)
j = i  /

n /  k \
= ( e^O+E?=i«Je - ^ - ai ) l + ^ e-/3(fi- Sj)|+j2 j

i=l V j=1 /

and the QjOij (e.g or ...) entries of the information matrix is obtained

b y  k

I (a j ) =  +  ^  (4.29)
4=1 \  j = l  /

For the entries a jay  (e.g or • • •), the direct second partial derivative

for j  =  /  =  1, . . . ,  A; is

a2 log I± = ^ 2  (  -  e«o+ E ^i« ie-^-a7)i+e- /3(ti- v )|+e- /9(ti-3J)|+ j (4 30)
d a j d a r . tj j i=i

The score function with respect to ao by (4.26) is

log 
da0 =  £ ( * * -  e“°+E7‘- 1 ) ,  (4.31)

4 =  1

and the corresponding Hessian is

d2 log L =  (  _  pa0+Ei=iaiC-/,(t<"aj')l+
aa§ = E  - ea°+Ej=1 Qje J + J • (4.32)

By (4.31), the Hessian with parameters ao,aj is obtained as

d2l°g L =  _ Y  ( e <w+S*=i“ie' ' ,<‘i' ‘i)l+( ^ e- ',<‘,- ^ )l+)
0 J 4=1  \  j = 1 /

(4.33)
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Power kernel: If the power kernel function replaces the exponential kernel, the 

log-likelihood in (4.18) changes into

n /  k n

logL(x]/3,a) =  ^  I ^ ( a o + ^ a j( (^ _5j)l+)_/3) _eQo+E3fe=lQ:'((<i_Sj)l+)”^_ 5 Z los ( ^ !)
i = l  \  7=1 i = l

(4.34)

The general form of the first derivative of this likelihood with respect to aj is

^  = E  (*<£> - - e°0+Ê1 i = i  \  7=1

3= 1  /

(4.35)

and the Hessian is

= E  (  -  -  si ) l+ ) - ^)
j  i = 1 \  j = 1

( £ « *  -  ^)i+ )" '3) ) (4-36)
j = i  /

/  * '
- / 3 \2

= -  E  eGB+E<-‘0»«“ - " )l+> " '(E ( ( t‘ -  ai)l+)"<’)
*=1 \  3= 1

which gives

A«*i) =  +  E  e“»+^ . 1̂ «<.-^)l+)-'s( ^ ( ( t j -  Si) |+)- '3)2 . (4.37)
*=i V j=i /

Similar to the exponential kernel case, the second partial derivative is (j = j '  = 

1 , . . . , £ )

= g ( - -  ^ l + ^ E ^  -  «7)|+) - ^  .

(4.38)

By using (4.34), the score function with respect to cko is

Hog_ 
da0 = E  ( Xi -  e“°+l:5Ul “j((!i_sj)l+r‘’ J , (4-39)

4=1 \
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and the corresponding Hessian is

d2l°g L =  V  ( -  ). (4.40)
9 q : °  i = l  \  J

By (4.39), the Hessian of parameters ao, ctj with the use of power kernel is

^ 7  = - E  (4.4i)

The following gives the confidence interval for the aj parameters by using the OLjOtj 
entries of the Hessian matrix as the variance estimates of a /s :

dj ±  Critical value x standard error{dj).

4.4.3 a  P derivatives

The entries for aj/3 and /3aj of the Hessian matrix is the same by the symmetry. 
Next, the derivation of these entries are explained.

Exponential kernel: If the log-intensity is modelled with the exponential kernel 

of the form a 0 +  E jL i by using (4.39)

= £  (  -  + *;)!+
4=1 \  j — 1

_ r £ a j e - « * - > > H - t i  +  *i)l+) ) ) ,
3=1 J

and the second derivative with respect to olj is

4 = 1 \  j = 1
k k

j=1 j=1

+ + «i)|+e“0+E?-‘Qje“'!“i”Sj>l+ ) J.

j=i J
(4.42)
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If the log-likelihood is first differentiated with respect to aj and then with respect 

to /?

M & L  =  U{aj) =  £  (  -  XiC £ e - ^ - ^ )  -  e«*+Ei*
<=i V i=i

^  ^  e - / 3 ( * * - i ) l +  j 
i=i /

and
kd2 log L ^= E  + 8,)|+ -00^0/?J 1=1 \  3=1

k k
Y^<*je~m ~‘i)]+( - t { +  s ,- ) l+ (^ e _W<i_'<)l+) (4-43)
j=1 j = l

j=1

It is observed that (4.42) and (4.43) are the same.
For the entry of the score function and the Hessian, if the score of the

log-likelihood of (4.20) is used

| ! g  =  f : ( - + * ) l +) )

= - E  fe“o ^ 1«ie-«*.-)>l+{̂ a .e-(3(ll-Si)|+(_ti + s .)|+)y
i=l V  3=1 J

and by the symmetry the dg^°gp entry is the same value.

Power kernel: In this case, if the power kernel of the form «o +  E jL i aj((ti ~  
Sj)|+)_/? is used during the modelling process

= ^  loe(*i — «j)l+
P t = 1 \  3=1

+ êQ0+E?=iaj((ti-8j)\+)~p a j ( ( t i  -  5j)|+)_/3log(ii -  5i ) |+ )>] ,
j=i J
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and the second derivative of the log-likelihood with respect to a j  is

=  E  ^ E _ (f t  -  Sj)l+)“'5l°g(<i -S j ) l  +

_ _ aj)|+)-/>) £  _ a .{{ti _ a j ) |+ ) -fl

j = 1 j = l
k

\og(ti -  3j)|+ +  ^ 2  ~((ti ~  Sj) | + )_/3log(*j -  Sj) |+C“°+2:'̂ =1 OE>((t<_®j)l+)“/Ŝ
3= 1

(4.44)

and if the order of the parameter derivatives changes

=E  f*«(E(ft - - s,)i+)-'3)),
° a3 i= 1 V j=l j=l )

then the second derivative will be

= E  E  “(ft “ *i)l+)_/3log(<i - «j)l +
3 1=1 \  j = 1

_  ^ e " o + E j . i ^  -a j( ( t j  -  *j)|+)_/,log(ti -  s j ) \+

(4-45)

(£(ft - *i)l+)-'’) + E  “(ft - losft -
j= 1 j= l

>)■
(4.44) and (4.45) are the same as well for the second partial derivative of the pa­

rameter estimates for the likelihood in (4.18) when the power kernel is used. The 

entry of the Hessian with the use of the power kernel is

= E   ̂- eao+S‘=i“J«t‘-*i)l+)‘'’ ̂ 2 - “j(ft - «j)l+)“'3log(<i -  «j)|+j

=  E  [ +  e“0+l:j‘- 1“,(<<<_s>)l+)"'! E)"j(ft -  sj)I+)- ^ l°g ft -  ®j)l+') >
i=1 \  j=l J

and again by the symmetry of the variance-covariance matrix, d̂ °dp en r̂y has the 
same value.
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4.5 Estim ation of the m odel parameters for Nor­
mal likelihood

Normal distribution is a member of the exponential family like the Poisson dis­

tribution. Therefore, generalised linear models are applicable in the modelling of 

the total claim amount (aggregate claims) in the bin case as Si = Xi in this 

study. The argument that if log Si ~  Normal then Si ~  lognormal is used in the 

further calculations, since the natural logarithm of the aggregate claims data in the 

corresponding bin is used in the analysis. In general, if a random variable has a 

Normal distribution with parameters n and a2, where a2 is assumed to be known, 

the probability density function of say, X , is [Dobson, 1990]

f(x \ ti) = — oo < x < + 00.

This is written in the form of the exponential family as

f(x \n )  = e_^ +^ _^ ~ 5 log(2™2); _  00 < x < + 00.

Then for our case, the likelihood function of this density can be written as

i= 1

where here Xi represents the aggregate claims of each corresponding bin. The log- 

likelihood to derive the score function and second partial derivatives is

log = £  (  -  ^  + M  _  A .  _  1 log(27r<72) ) . (4.46)
i= l

4.5.1 j3 derivatives

Here, the exponential and the power kernel functions are substituted for the mean 

/ i ,  which is the parameter of the normal distributed aggregate claims.
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Exponential kernel:

For the exponential kernel representation, instead the Poisson parameter A* of 

the bins, the mean Hi of the aggregate claims Si is used as

k
Hi = a0 +

j=1

If this is replaced in (4.46), the log-likelihood is

■ t< \ V ' / '  x i , xi(a o + '£ kj=iai e~m ~‘i)h ) +log n) =  £ ( -  —  + ------------- ^ ---------------------------------- £ 5 --------------
1 = 1

-  ilog(27T<T2)).
(4.47)

If (4.47) is differentiated with respect to /?, the score function is

d log L _  /  1 /ariti J2j=i aj ePsj x i Y lj=i aj sj e0Sj aoU Ylj=i
d(3 1 2 \ a2e^ti 2cr2e^» cr2e^ti

^  E - =i < w ^  M E jU  q j-e^ )2
cr2e^ti cr2(e^ti)2 cr2(e^*)2 /

(4.48)
and the second partial derivative of the log-likelihood with respect to (3 is

d2 log L _  ^  1 ^atf? E jU  ^ ie/3Sj x iU J2kj=i &jSje0Sj +  ^  £ * =1 a ^ e 03*
-  f :  ( | ( -i=l \dp2 \ 2 V cr2e^ti 2cr2e^ti 2cr2e^ti

a0t? X)*=i a j e/3sj 2«o^i(Ej=i OLjSje^i) o0 ]T*=1 OLjS2̂
<j2(>0ti Q-2g(3ti q2 Q(3ti

2 t U Z U < * ^ Sj)2 +  ^ ( E - =i ^ ^ ) ( E - = i ^ ^ ^ )
cr2(e^i)2 <j2(e^i)2

(E*=i <W »Q2 (Ej=i o ^ ) d X i
<72(e^*)2 o,2{e^ti')2

Power kernel:
In this case, the power kernel function of the form

k
Vi = <*o +  “  Si)l+)_ î

J=1
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is substituted for mean fi in the log-likelihood of (4.46) for the binning case as 

log L{x; n) =  £ ( -  —  + ----------------- — ------------------

(“o + E j=i“j((*i-«j)l+) "U)2 1,--------------------- ^ -------------------------- - log(2ncr  )J.

(4.50)

Then the score function is obtained as

d log L  _  A  /  1 ( X i(E,-=i -  *i)l+) /’)log((t< -  «j)|+)
a/3 - s  ( -

1 = 1

“ o( E L  -  *j)l+)_', l+ 1°g((<i ~  «*)!+))

(E L  -«?((*< -  «>•)!+) '’l+HEL -  *j)l+) 'siog((*i -  «j)|+))o)l+))^

(4.51)
with the corresponding Hessian

d2 log L ^  (1  -  5j)l+)^)log((*i -  «j)l+)
a/?2 ■ E  F

i= l

Qo(S*=iQj((^ ~  ^ ) l+ ) /3l+ 1og(fe  ~  ^)1+)2)
cr2

(E*=i <*](& ~ «j)l+)gl+ l°g((*i -  aj)l+))2
a2

(Ell -  ^ ) | + n + )((Ell OL&U -  8j)\ + y )  \og((ti -  5,)|+)a)

(4.52)

4.5.2 a  derivatives

Here, the score and the Hessian functions are obtained by differentiating (4.47) with 

respect to parameter aj. These functions are presented below, respectively, for the 

exponential and the power kernel cases by using the idea of binning.

Exponential kernel:
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and the corresponding Hessian is

(4 54)
da] a2{ e ^ )2 y  { }

If we differentiate (4.53) with respect to ao, the second partial derivative of the 

parameters ao and aj is

d2 log L _  ^  _  J2j=i e/3sj \
dotjda0 g  (  <r2e ^  J ' *■ ^

If (4.47) is differentiated with respect to ao twice, the score and the Hessian function

are derived as

da

and

dlogL na0 ( / 1 x, Ej=i “i6'3*'\  , ,, r c ,
= - — + ( g ( 2 ^  j l .  (4-56)

d2 log L n
dal a2 ’

When j  = j '  =  1 , .. . ,  k

(4.57)

daidaf \  t t  a J
Power kernel:
In this case, (4.50) is differentiated with respect to aj and ao parameters to 

obtain the required score and Hessian functions, where the score function

a io g L  _  A  / 1 -  ^•)l+)-'3) «o(E -= i((* i  -  » i) l+ )- /,l+)
da, ,J t=l■ E  f

)
(4.59)

and the corresponding Hessian is

^  =  E ( - (E j t l ( ( \ 7 j)l+)" ' )2) .  (4.60)
J 1=1

If (4.59) is differentiated with respect to ao
yk

d2logL =  y ( _  S j= i(fe  sj) 1+) , 4

da«ao » -t2 *
Z =  1 \
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For the ao parameter, the score and the Hessian are, respectively:

dlogL nap ^  E j= iaj((tj ~  gj)l+) (4 62)

and

da» - \ «

d2 log L n
dal cr2 ’

(4.63)

When j  =  /  =  1 , .. . ,  k, the Hessian is

dHogL (  y  m  -  -  y  )| + )-g \
dotjda, \  ^  o-2 J '

4.5.3 a  (3 derivatives

Here, the entries of the Hessian matrix are presented in terms of a  and (3 parameters. 
Exponential kernel:

If (4.48) is differentiated with respect to a 0, the Hessian is 

d2 log L _  ^  (U E*=i a jePsj Ej=i &jSj el3sj
d/3da0 CT2e/jti a2eeu )• (4-65)

i= l

By the symmetry, 9q̂ °q̂  entry is the same. The derivative of the score function in

(4.48) with respect to aj gives

d2 log L _  /  1 rXiU Y^j=\ef3sj x i E j= i sJe(3sj a oU E k=i e(3sj
d/3daj \ 2 \ o^eP1* 2a2e^ti cr2e^ti

a o Z U 3̂  2ti(E -=i ^ e ^ ) ( E - =1e ^ )
a2e^ti cr2(e^*)2

(E L  °jsje*')(Z L  «i&) (E L  ^ 0 ( E L  ŝ Sj)
»■(72(e^»)2 tr2(e^ î)2
(4.66)

The aj/3 entry of the Hessian has the same value by the symmetry.

If (4.62) is differentiated with respect to /?, the corresponding Hessian is obtained

as
52logL V ( Ej=l aj((ti ~  5j)l + ) ^l°g((^i — 5j)l + ) >\ lA cn\
a M s “ £ ( --------------------^  )- (4-67)i=l
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and for the aj (3 parameters, (4.59) is differentiated with respect to (3 parameter, 

that is

a2 log l  = s t ' (  i /Si(EjU -((ft -  *j)l+)~/?iog((*i -  sj)I+) 
dctjdP S ' V 2  ̂ a2

_ <*o(S*=i -((*« ~ Sj)l+)~ l̂+ log((*« ~ *;)!+))
a2

(E*=i -«*((*• ~ »j)|+)-*l+iog(ft -  ^)l+)(g ;=1(fe -  *j)l+)-*)
a2

(Eu aA{u -  ^ l+ r'I+ K E i-i~((u -  sj)|+)-^iog(fe -  «,)|+)M

(4.68)

The relation between the estim ated model parameters and the moment 
generating function of the total claim amount

The expectation of the total claim amount process is given in (3.3) with E(S(t)) = 

fiA(t). This expectation is used as the reserve amount and in pure premium calcula­
tions in the insurance context. It helps to decide how much the insurance company 
should charge the insured to keep their reserve in positive value. The main aim of 
an insurance contract is to provide profit for both the insured and the insurer. The 
expected utility model is a good choice to explain the existence of the insurers. This 
model assumes that the insured is a risk averse, which means that the insured prefers 
a fixed loss against a random loss with the same expected value. The insurer is will­

ing to pay more than the expected value of his/her claims to be in a safe financial 

situation by using the Jensen’s inequality, that is E (f(Y ))  > f(E (Y ))  where f(x)  

is a convex function and Y  is a random variable [Kaas et al., 2001]. Let’s say, A: 

The amount the insurer agrees to pay in an insurance contract and B: The amount 

the insured agrees to pay, in case of a disaster, or any other event. The optimal 

situation where both parties will profit is

A < E(S(t)) < B.

Therefore the calculation of the E(S(t)) plays a crucial role for the insurance com­

panies. The regulations on the premiums, which flow into the Turkish Catastrophe 

Insurance Pool, are very important for the case of Turkey since the social, economic
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and geographical conditions vary a lot from place to place. The reserves and the 

capacity of the TCIP always should be kept enough to be able to cover a huge 

amount of claims if a big earthquake occurs again. The average payment per claim, 

E(S(t)) is given in (3.11) and (3.12) in Chapter 3.

After the use of the binning idea for the claim number process, the intensity of 

the process is expressed with Ai(t) = f ^ t+1 A(r)dr (see R em ark 2). Then the rate 

A is equal to Ai = eao+̂ =1 aje 1 j)l+ when the exponential kernel is used and 

Ai = eao+^'j=l 0 when the power kernel is used. If the exponential kernel

function is replaced in (3.3), the expected value of the total claim amount process 

S(t) will be
j - 1

E(S{t)) = r]Ai(t) = rj /  eQo + E j = i 1 j)]+dr, (4.69)
JlVi

where fi is the mean of the chosen claim amount distribution and for our case the 

exponential kernel function substitutes fi with the same significant earthquakes and 
same parameter notation

k
E(S(t)) = r]A(t) = (otp +  f  eQo+Ej=i«je 1 j)l+ dr. (4.70)

j= 1 Jvi

The similar argument for the use of the power kernel changes the equation above to
(  k N rm+i .
ao +  ^ ^ ^ - ^ l + r ^ )  /  +) dr. (4.71)

j= i ^Wi

The value of the E(S(t)) with the replacement of the parameter estimates will effect 

the risk process E(R(t)) in (3.8) as

E(R(t)) = u  + ct — E(S(t)) =  u + ct — (4-72)

and by first replacing the exponential kernel form in the rate A, the mean function

of the risk process is

)
(4.73)
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and then (4.73) is rewritten as follows with the use of the power kernel function 

E(R(t)) = u + ct — E(S(t)) = u + c t — ( 4- <Xj((U -  Sj)|+)-/3^

/
J  W

(4.74)
w i + 1 . \eao+Ej=iaj((ti-Sj)\+)-13 j _

The premium ratings, which give the loaded premium rate c and the choice of the 

claim amount distribution for the value of mean /z, should be revised very carefully. 

Also, the expected value of the total claim amount process S(t) and the risk process 

R(t) will increase or decrease with the effect of the value of the (3 and aj estimates.
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Chapter 5 

The D ata and M odelling

In the next two chapters, the modelling of the mandatory earthquake insurance 

claims data of the Turkish Catastrophe Insurance Pool is presented. Two variables 

are of interest in the analysis, the number of claims JVj and the aggregate claims 

(total claim amount) S'*. The binning approach is used, which means we model the 
number of claims and the aggregate claims corresponding to each bin. The number 
of claims has a Poisson distribution (iV* ~  Pois(Aj)) and modelled by using log- 
linear Poisson regression by generalised linear models (glm) in S-Plus. We know 

that the aggregate claims, Si in the binning case, is defined as Si = 1 Xi. Under
the assumption that if logS* ~  Normal then Si ~  lognormal and the i.i.d Xj’s with 
mean rji and variance 7* of the individual claim amount, we modelled the aggregate 

claims S{ as Gaussian in glm by S-Plus. The estimates of the non-linear parameter 

/3 and the linear parameter a ’s, which are used to represent the effect of the big 

earthquakes, are later used in Chapter 7 to suggest an estimation of the Turkish 

Catastrophe Insurance Pool reserves. Next, first some basic statistical information 

of the data and plots of the variables are presented and then the modelling process 

follows.

5.1 Turkish Earthquake Insurance Claims D ata

The data of this study, which comes from the Turkish Catastrophe Insurance Pool 

(TCIP), is obtained from the Milli Re Ltd. (National Reinsurance Company of 

Turkey). The collection of the claims data started after the introduction of the
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TCIP in September 2000. The data consists of the earthquake insurance claims, 

which the TCIP received from December 2000 until July 2003. Since we base the 

analysis on risk zone 1 and zone 2, according to the data, in risk zone 1, the first 

earthquake event occurred on the 15/December/2000 and the last event did on the 

26/July/2003. In risk zone 2, the first event happened on the 29/May/2001 and the 

last event did on the 01/May/2003.

The time of the event (earthquake), the time of the claim, the paid claim amount, 

the magnitude of the earthquake, the amount of loss-which the experts estimated, 

the final loss amount-which is calculated by the experts of the TCIP, the reason of 

loss (the earthquake itself, fire or landslide following the earthquake), the type of 

loss (light, medium or heavy), the earthquake risk zone (1 indicating the highest, 5 

indicating the lowest risk regions) and the deductible amount are the main variables 

of the data. According to this information, the total and residential building num­

bers of the earthquake town/city is obtained from the State Institute of Statistics 
(figures of 2000) and used as another regressor (explanatory variable).

Since the distribution of the aggregate claims Si is assumed to be lognormal, the 
transformed distribution of log S'* is assumed to be Normal. Figures 5.1 and 5.2 
shows that indeed the log Si values follow a bell-shaped structure, which represents 
Normal distribution, in both risk zones. Since we are using the aggregate claims 

data in each bin, the normality assumption is still valid to use with the total claim 

amount Si. By this argument, after initial graphical analysis, the natural logarithm 

of the claim amount is used in the modelling purposes of the total claim amount 

Si. The actual event time is assigned in S-Plus in terms of months by denoting the 

first event month as T2’, which is December 2000 and onwards. Also, the data is 

organised in terms of weeks, as ‘week 1’ for 15/December/2000 in zone 1 and for 

29/May/2001 in zone 2 and as ‘week 138’ for 31/July/2003 in zone 1 and ‘week 

101’ for 01/May/2003 in zone 2 in the given time period. The number of claims 

in each of these weeks/months is totalled and used as Ni variable [Lindsey, 1995, 

TCIP, 2006]. The average of the aggregate claims corresponding to the number of 

claims at these weeks/months is used as Si variable. The delays in the claim payment 

process assumed to be ignored and the actual event time is used. This is to prevent
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the effect of the intervening events like the inflation, unemployment rate on the 
behaviour of the claim distributions [Hogg and Klugman, 1984]. The magnitude of 
the earthquake and the number of residential buildings (as the TCIP only insures 
residential buildings) are also been averaged at the corresponding weeks/months 
and used as covariates during the modelling process.

J L
14 16 18 20 22 24 26

z one  1 claim s d a ta

Figure 5.1: The histogram of the log of aggregate claims in risk zone 1

14 16 18 20 22 

z one  2 claim s d a ta

24 26

Figure 5.2: The histogram of the log of aggregate claims in risk zone 2
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5.2 Explanatory Analysis of the TCIP Data

In this section, the relation between the number of the residential buildings in the 

earthquake effected area, the magnitude of an earthquake and the claim amount are 

presented in all risk zones (1-4) and separately for zone 1-zone 2 effect in terms of 

weeks and months data. The pairwise scatter plots in Figure 5.3 and Figure 5.4 are 

obtained by using the raw claims data (without any transformation) of zone 1 and 

zone 2 claims.

In earthquake studies, earthquakes of magnitude 5 or more are considered to 

cause serious damage. Figures 5.5, 5.6 and 5.7 give the relation between the average 

total claim amount, magnitude and the residential building number in all risk zones 
in terms of time in weeks and in terms of months. At weeks 60, 122, 123, 125 and at 

months 26, 37, 38, 40, the accumulation of the large number of claims is observed. 

These claims generally occur as a result of magnitude 5 or greater earthquakes.
It is a fact in Turkey that if there are many buildings in the earthquake affected 

area and the magnitude of an earthquake is small, the total losses can still be high 
due to the volume of the small claims arriving to the insurance companies. This 
is a serious problem in the country and unfortunately the towns/cities are settled 
very close to the fault lines in the past without any consideration and awareness 

of the possible losses due to possible earthquakes. It can also be stated that more 

claims might arrive from small settlement areas, where there are fewer buildings 

(up to 100,000). The most important point is, regardless of the building number, 

population, building type, risk zone etc., most of the losses depend on the application 

of the use of the valid building code (the Building Code of 1998 is currently use in 

Turkey) during the construction. It is known that there are minimum 506 and 

maximum 298,841 buildings in the earthquake affected areas and the magnitude of 

the recorded earthquakes range from 3.6 to 6.5 in the Richter Scale.
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Figure 5.3: The scatter matrix of the variables of zone 1 claim data
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The scatter plot of the claim amount versus time in all risk zones

«  8 ! 
c

E

Figure 5.5: The plot of the claim amount versus time (left: weeks, right: months) 
in all risk zones
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Figure 5.6: The plot of magnitude versus time (left: weeks, right: months) in all
risk zones
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The scatter plot of the residential building number versus time in all risk zones
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Figure 5.7: The plot of the residential building number versus time (left: weeks, 
right: months) in all risk zones

The main interest of the thesis work is to show and represent the jump behaviour 

of the earthquake claims when a big earthquake strikes the country. The claim 

number and the total claim amount change mainly with the size of the earthquake 

(measured with magnitude). Next, Figure 5.8 and Figure 5.9 show the relation be­

tween the claim number, Ni , and time in terms of weeks/months by classification of 

risk zones 1-2 and the jumps in the data, which are caused due to the big earthquake 

claims, can be observed in both plots. The ordinary claims arriving from different 

risk zones as a result of small tremors are followed by sudden jumps, when there 

occurs an earthquake shock as explained in Section 4.2. The special kernel func­

tions of the exponential and power kernel form are used in the modelling sections 

to represent the jump feature of these claims. The empirical selection of the knots 

(sites) with jumps occurring at big earthquakes are used in the model parameter 

(aj) estimation.
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Figure 5.8: The number of claims versus time in zone 1
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Figure 5.9: The number of claims versus time in zone 2
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In the following Table 5.1, the empirical list of the big earthquakes of the thesis 
data with more than 100 claims is given. It is observed that these earthquakes are 
realised (picked) by their big aj coefficients during the modelling.

Event date
Corresponding 
month (weeks) 
in S-Plns

Place Magnitude Risk
Zone

The number 
of claims

25/06/2001 18 (28-29) Osmaniye 5.5 1 130
03/02/2002 26 (36) Sultandagi 6 2 461
27/01/2003 37 (112) Puliimiir 6.5 1 120
10/04/2003 40 (122-123) Urla 5.6 1 1708
01/05/2003 41 (125) Bingol 6.4 1 423

Table 5.1: The significant earthquake claims data from the Turkish Catastrophe 
Insurance Pool

Zone 1 claims data  plots
Figures 5.10, 5.11 and 5.12 denote the relation between the claim amount, mag­

nitude and the number of the residential buildings in the earthquake effected area 
in risk zone 1, respectively and in terms of weeks and months data.

T he scatter plot of th e claim  am ount v er su s  tim e in risk zo n e  1

a
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8
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Figure 5.10: The plot of the claim amount versus time (left: weeks, right: months)
in risk zone 1
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The scatter plot of magnitude versus time in risk zone 1

Figure 5.11: The plot of magnitude versus time (left: weeks, right: months) in risk 
zone 1

The accumulation of the claims arriving at weeks 60, 122, 123, 125 is observed 
in zone 1 data. Some of the earthquakes, which cause these claims, occur in areas 
where there are 300000 residential buildings. The death toll can be very high in 
case of a significant earthquake strike in these areas.

The scatter plot of the residential building number versus time in risk zon e 1

140 15 20 25 30 35 40

time (in months)

Figure 5.12: The plot of the residential building number versus time (left: weeks,
right: months) in risk zone 1
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Zone 2 claim s data plots

Accordingly, Figures 5.13, 5.14 and 5.15 are plotted to show the relation between 
the claim amount, magnitude and the number of the residential buildings in the 
earthquake effected area in risk zone 2 in terms of weeks and months data. In this 
case, it is observed that at weeks 21, 36, 88, 89, 91 and 101 and at months 22, 26, 
37, 38 and 41 more claims arrived to the Pool.

The earthquakes of magnitude of more than 5 in Richter Scale cause significant 
damage, if the buildings were not constructed by using earthquake resistant mate­
rials as in months case more claims were observed as a result of big earthquakes in 
zone 2. Especially the claims at weeks 88-89 come from areas, where there are 50000 
or less residential buildings, indicate that different levels of damage (light/heavy) 
or total collapse were observed in most of the buildings in the earthquake area.

The scatter plot of the claim amount versus time in risk zone 2
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Figure 5.13: The plot of the claim amount versus time (left: weeks, right: months) 
in risk zone 2

129



The scatter plot of magnitude versus time in risk zone 2

Figure 5.14: The plot of magnitude versus time (left: weeks, right: months) in risk 
zone 2

The scatter plot of the residential building number versus time in risk zon e 2
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Figure 5.15: The plot of the residential building number versus time (left: weeks, 
right: months) in risk zone 2

As there are few observations (n < 30) in other risk zones (3-4-5), some of the 
plots and the models were not sufficient enough to represent the characteristics of 
those regions and are not presented in the thesis.
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5.3 M odelling over tim e

In this section, the number of claims Ni (Ni ~  Pois(Aj)) and the aggregate claims 

Si are modelled by using time as a covariate in generalised linear models. Method 3 

in Page 83 allows us to use time as a variable with an approximation from discrete 

calendar to continuous calendar time. The additive model is presented here and 

further research might investigate other types of modelling (like multiplicative, in­

tersection or quadratic). The data of this study is the earthquake insurance claims of 

the Turkish Catastrophe Insurance Pool (TCIP), which arrived to the pool between 

15/December/2000 and 31/July/2003. The significant earthquakes with large num­

ber of claims (> 30) arriving at months 18, 22, 25, 26, 37, 38, 40, 41 (weeks 29, 47, 

60, 112, 113, 122 and 125) in zone 1 and at months 22, 26, 37, 38, 41 (weeks 21, 36, 

88, 89, 138) in zone 2 are used as an empirical selection in some cases together with 

other ordinary event occurring times. The aggregate claims Si is modelled using the 
lognormal distribution (under the assumption that log Si ~  Normal) and the claim 
number Ni is modelled as ordinary Poisson counts with a log-link function. The 
Poisson regression is very appropriate to use with discrete and large rare response 
events. Here, the models are suggested for the different earthquake risk zones (Zone 

1 and Zone 2) of Turkey by using the binning approach (see also Method 3 in Page 

83).
Our main aim is to give some estimates for the non-linear parameter [3 and the 

linear parameters a ’s to represent the shock effects of the earthquakes with jumps 

of the process at the time of the earthquake event. The estimate of the non-linear 

parameter (3 represents some fixed characteristics of the earthquake region and gives 

an idea of the effect of an earthquake in these regions. The use of this estimate leads 

to the calculation of the necessary reserve amount (E(S(t))) to keep the insurance 

pool safe. otQ behaves like a nuisance parameter, which already exists at the ordi­

nary time period with the ordinary claim arrivals and o t j  parameters represent the 

big earthquakes, which result in big claims. The following algorithm is followed in 

S-Plus for the modelling purposes.
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Algorithm 1:

1. Choose on the empirical event times (where large earthquakes happen causing 

large claims) and the corresponding kernel knots (one-sided kernel to represent 

the jump effect ahead in the time period),

2. Use the exponential kernel to model claim number Ni with rate A* =  eao+£?=i aie 

and to model the total claim amount Si with rate ^  = ao +  2 jL i ocje~^ti~8̂  1+ 
and use the power kernel correspondingly with rates A* = eao+£j=i

and fa = a0 +  1 a^U -  5 j) |^ ,

3. Use additive generalised linear models,

4. Model the number of claims Ni with a Poisson log-link function as counts 

(Ni ~  Pois(Aj)) and model the total claim amount (aggregate claims), Si , as 

Gaussian by using the selected empirical kernel knots,

5. Use the non-linear parameter /? as a representative of the characteristics of 
earthquake risk zones 1 and 2 and use the aj parameters as the coefficients 
picking the significant earthquakes with big number of claims,

6. Set an initial value for (3 (random),

7. Run step-wise regression,

8. Choose the /? value, which corresponds to the minimum deviance since the non­

linear models are mainly based on deviance (see the Appendix for deviance). 

Note that, the formulae in Chapter 4 for the estimation of /? is used as a check 

as well,

9. Run the model again with the fixed /?,

10. Obtain the values of ctj estimates,

11. Construct the Hessian matrix H  by using the second partial derivatives of the 

log-likelihood, which are derived in Chapter 4 and the parameter estimates 

and invert the Hessian,
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12. Construct the confidence interval of (3 parameter by using the corresponding 

diagonal value of the inverse observed information matrix /,

13. If interested, by the similar argument in the previous step, construct the con­

fidence interval of c t j ,

14. By using the parameter estimates of the models, calculate the expected total 

claim amount E(S(t)) and other statistical measures.

In the tables of the modelling parts, we present the estimates values for the non­

linear parameter j3 and some examples of the empirically selected a j  coefficients, at 

which we observe the big earthquakes of big claims.

The claim number (Ni)  Models:
In this section, the results of the modelling process are presented by months 

and weeks classification and by using the exponential and power kernel function. 
The S-Plus analysis lead to the given tables, which present the selected models 
of the best possible fit to explain the claim number Ni  with the replacement of 

the empirical kernel knots at the significant earthquakes. Algorithm 1 is used in 
the whole process of the model selection. It is observed that as expected the a j  

parameters of the models pick the big earthquakes, where the kernel knots sit on 

the empirical sites.

Here, we model the number of claims Ni  as an ordinary log-link Poisson count 

regression with the use of the exponential and the power kernel functions with the 

unknown parameter vector 6 = (/?; ao, Qi , . . . ,  a*,) as

k
log Ai = ao +  +,

3 = 1

and in the form of power kernel function

k
log Ai =  ao +  -  Sj)l+)-/?,

j = i

where i = 1, . . . ,  n, j  =  1, . . . ,  &, ao is the coefficient for the ordinary claim arrivals 

in the given time period and a / s  represent the significant claims arriving after an
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earthquake strike. Basically, the suggested model in this case is

Ni ~  Pois(Aj).

The following table gives the number of claims considering all risk zones (zone 1 to 

zone 4) from 15/December/2000 to 31/July/2003. It is observed that at the specific 

months, ordinary claims due to small tremors etc. show a sudden increase and then 

goes back to normal routine. When modelling the categorical data by using log- 

linear models, the sampling zeros can be observed like in our case here and they 

are included in the data. The tables of the number of claims by different zones are 

given in the Appendix.

M onths Frequency M onths Frequency
12 6 28 3
13 1 29 22
14 0 30 19
15 0 31 1
16 0 32 6
17 2 33 3
18 130 34 0
19 11 35 1
20 6 36 0
21 1 37 161
22 179 38 94
23 3 39 8
24 6 40 1711
25 46 41 460
26 1384 42 1
27 2 43 30

The use of th e  exponential kernel:

By m onths data:

In Table 5.2, Model 1 suggests the estimates of the non-linear parameter f3 and 

the corresponding 95 % confidence interval in risk zone 1 and zone 2 with the use of 

the exponential kernel. These f3 estimates and the related aj estimates of the models 

are used to estimate the expected value of the total claim amount E(S(t)) and the 

corresponding risk value for a company given the premium loading coefficient. The 

amount of the reserve E(S(t)) to keep the Turkish Catastrophe Insurance Pool 

steady will change by the value of the (3 and dj. More money will be needed for
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risk zone 1 to cover the losses in case of a possible earthquake, which is already 
expected. Unfortunately, in risk zone 1, there are highly populated cities and a lot 
of buildings under the threat of earthquakes any time (e.g. Istanbul).

Model 1 P dj Residual
(Irvnmcr

95 % C l for p

Zone 1 0.370
Oi<2Q = 5.268 
afan =  7.622

187.905 (0.369,0.372)

Zone 2 0.325
®26 = 7.995 
CH41 =  4.135

176.069 (0.323,0.327)

Table 5.2: The estimate of the selected model parameters and 95 % /3 confidence 
interval for risk zones 1-2 in Turkey

The high values of the given aj coefficients correspond to month 26, month 40 
and 41 claim arrivals. They reflect the reasonable choice of the exponential kernel 
to represent the jump pattern of the claims after significant earthquakes. Figure 
5.16 shows how the estimate of the non-linear parameter (3 is realised for the claim 
number model for zone 1 claims data by using the exponential kernel in modelling 
process.

The beta estimate for the number of claims model in zone 1 exponential kernel

S
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Figure 5.16: The plot of {3 selection in zone 1 versus deviance values by the expo­
nential kernel use for the number of claims model

The selection criteria during whole modelling is based on the idea of the maximum
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likelihood estimation, where we make the normality assumption for the estimate (see 
Page 104). Same argument applies for zone 2 claims data. Next, the diagnostic plots 
are checked to see if the selected models actually provide a good fit of the data or 
not. In Figures 5.17 and 5.18, the consistency pattern between the actual claim 
numbers and fitted values of the claim number model can be observed.

The plot of the number of claim s versu s time
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Figure 5.17: The plot of the number of claims versus time (in months) in zone 1 by 
the exponential kernel use

The plot of the fitted va lu es  versu s time
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Figure 5.18: The plot of the fitted values versus time (in months) in zone 1 by the
exponential kernel use
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In Figure 5.19 (log tranformed residuals), the 45° pattern between the actual 
claim numbers and the fitted values supports the validity of the model. Residuals 
are the differences between the actual observations and the values predicted for these 
observations by the model. Generally, residuals are checked to decide if a model is 
good enough and where it can be improved [Kaas et al., 2001]. In Figure 5.20, the 
residual plot suggests that the chosen model is good enough to represent the claim 
number models in risk zone 1 with the use of the exponential kernel function.

Iic§«

Figure 5.19: The plot of log number of claims versus log fitted values in zone 1 by 
the exponential kernel use

The residual plot of the num ber of claims model in risk zone 1 (exponential kernel)

Figure 5.20: The plot of the residuals of the number of claim model in zone 1 by
the exponential kernel use
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The diagnostic plots of the zone 2 claims data are presented in Figures 5.21, 5.22, 

5.23 and 5.24. The plots indicate an adequate model, especially when we check the 

close match of Figures 5.21 and 5.22 for the actual and fitted observations.

T h e plot o f th e  n u m b er o f c la im s  v e r su s  tim e in risk z o n e  2
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Figure 5.21: The plot of the number of claims versus time (in months) in zone 2 by 
the exponential kernel use

T h e plot o f th e  fitted v e r su s  tim e in risk z o n e  2
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Figure 5.22: The plot of the fitted values versus time (in months) in zone 2 by the
exponential kernel use
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Figure 5.24: The plot of the residuals of the number of claim model in zone 2 by
the exponential kernel use
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By weeks data:

In weeks case, the same model is used, that is Ni ~  Pois(Aj), but the time 

covariate is based on weeks. Table 5.3 is suggested by using the weeks data. The 

value yd is smaller than the corresponding values in Table 5.2 in both zones. The 

deviance values are not very reasonable in weeks data compared to the months case. 

In the next chapter, it is observed that the models are calibrated by the addition of 

the covariates to the model. A narrow confidence interval is observed here in zone

1. On the other hand, a much wider confidence interval compared to the case in 

Table 5.2 is obtained for zone 2 data. This is probably due to the different effect of 

the significant earthquakes occurring at different times at these two risk zones.

M odel 2 b dj Residual
deviance

95 % Cl for yd

Zone 1 0.2
060 — 7.06 
a j22 =  13.29

1048.398 (0.19953,0.20057)

Zone 2 0.3
o36 =  5.75 
088 =  5.18

691.175 (0.2383,0.3617)

Table 5.3: The estimate of the selected model parameters and 95 % yd confidence 
interval for risk zones 1-2 in Turkey

yd values are not much different in Tables 5.2 and 5.3, when month-week compar­

ison is made. The only difference is that the estimate value for zone 1 is higher than 

the value of zone 2 in the months case, and it is the other way around in weeks data. 

This is again related to the occurrence of the big earthquakes in the corresponding 

bin. The main idea of the models is verified in both months and weeks cases, that 

is the big earthquakes are picked by their dj  coefficients. The big earthquake occur­

rence time can be realised by the dj  values and the different earthquake risk zones 

have slightly different (3 values. That is /3zone i =  0.37 and ydzone 2 =  0.325, where 

normally more claims are expected in zone 1. The positive values of yd parameter 

backs up the idea of the decreasing kernel function idea to represent the decay in 

the claim number following the jump due to an earthquake shock.

Figures 5.25 and 5.26 confirm the validity of the models with a nice presentation 

of the suggested zone 1 models, including the low number of claims.
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The plot of the number of claims versus time in risk zone 1
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Figure 5.25: The plot of the number of claims versus time (in weeks) in zone 1 by 
the exponential kernel use

Th e plot of the fitted va lu es  v ersu s tim e in risk z o n e  1
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Figure 5.26: The plot of the fitted values versus time (in weeks) in zone 1 by the 
exponential kernel use
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Figures 5.27 and 5.28 support the suggested model fit for zone 2 claims data and 
the exponential kernel use by weeks.

The number of claim s versu s time in risk zon e 2
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tim e (in w e e k s )

Figure 5.27: The plot of the number of claims versus time (in weeks) in zone 2 by 
the exponential kernel use

The plot of the fitted va lu es versu s time in risk zon e 2
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Figure 5.28: The plot of the fitted values versus time (in weeks) in zone 2 by the
exponential kernel use
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The use of the power kernel:
By m onths data:
Table 5.4 gives the estimate of the non-linear parameter (3 for risk zones 1 

( A o n e  l =  0.43) and 2 ( /3 z o n e  2 =  0.52) by the use of the power kernel function. 

In Model 3, both f3 estimates are higher than that of the values in Table 5.2 and 

Table 5.3, which are obtained by the use of the exponential kernel. In power ker­

nel case, the residual deviance for zone 1 does not indicate a very preferable model. 

However, as the /? values are closer to 1 than the exponential kernel models, the idea 

of pure log-linear modelling of the number of claims as Poisson counts is supported

more.

M odel 3 P dj Residual
d e v i a n c e

95 % Cl for 0

Zone 1 0.43
&26 =  6.1 
a 40 =  3.27

1237.05 (0.4169,0.4431)

Zone 2 0.52
026 =  10.73 
0 4 1  = 12.93

239.17 (0.519966,0.520033)

Table 5.4: The estimate of the selected model parameters and 95 % (3 confidence 
interval for risk zones 1-2 in Turkey

T he num ber of cla im s v er su s  tim e in risk z o n e  1

EI
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Figure 5.29: The plot of the number of claims versus time (in months) in zone 1 by
the power kernel use
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In Figure 5.29 and Figure 5.30, the plots of the actual observations and fitted 
model values of zone 2 claims data versus time (in months) with the use of the power 
kernel function are observed.

T he plot o f fitted v a lu e s  v er su s  tim e

o

15 20 25 30  35  40

tim e  (in m o n th s )

Figure 5.30: The plot of the fitted values versus time (in months) in zone 1 by the 
power kernel use

Figures 5.31 and 5.32 are presented to show the reasonability of the model fit in 
this case.

The plot of the number of claims versus the fitted model

O QGr'
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Fitted : ketOp + ker18p + ker22p + ker25p + ker26p + ker37p + ker38p + ker40p + ker41p

Figure 5.31: The plot of the number of claims versus fitted values in zone 1 by the
power kernel use
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The residual plot of the number of claims model in risk zone 1 (power kernel)

o
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index

Figure 5.32: The plot of the residuals of the number of claim model in zone 1 by 
the power kernel use

By weeks data:
In weeks based data, the estimates of Model 4 are obtained with a similar analysis 

of the modelling of the number of claims with the use of the exponential kernel 

function. The value j3 =  0.2 is the same in zone 1 exponential kernel weeks data 

case (see Table 5.3), yet the estimate for zone 2 is slightly higher. The residual 

deviance values do not suggest a very reasonable fit, especially with a large value 

for zone 1. The confidence intervals of the non-linear parameter /3 are very narrow 

for both zones, which increases the validity of the j3 values. Weeks data here suggests 

a stronger effect of the (3 (exponential decay) parameter, where it represents some 

fix characteristics of the earthquake area. For instance, /3 might represent the reason 

how the decay in the claims arrivals is linked with the effect of the distance to the 

fault line, or the age of the fault line, and then these factors play an important role 

to expect smaller or larger number of claims due to a disaster in that zone.

145



M odel 4 b d j
Residual
deviance 95 % Cl for

Zone 1 0.2
a6o =  11.3 
a-j 22 = 7.76

4518.727 (0.199129,0.2000871)

Zone 2 0.4
<*36 — 4.35 
<*88 = 1-74

1286.833 (0.3999914,0.400086)

Table 5.5: The estimate of the selected model parameters and 95 % (3 confidence 
interval for risk zones 1-2 in Turkey

The similar graphical back up applies here for the choice of these (3 values as in the 
previous cases, where we use minimum deviance as a selection criteria. The general 
observation of the number of claims models is that the effect of ao, which denotes the 
ordinary claim arrival period until the occurrence of a big earthquake, is found to be 
significant and ao has an obvious effect on the ctj estimates considering the arrival of 
the claims. The claims arrive in a routine period, then an earthquake happens and 
the number of claims increases suddenly. It is interesting to observe that the next 
day following the earthquake, people apply for the compulsory earthquake insurance. 
Our choice of the kernel let the models pick the jump behaviour of the claims at 
the significant earthquakes. The diagnostic check of the models also support the 
reasonability of the models.

The number of claims versus time

3C

§

O

0 20 40 60 80 100 120 140

time (in weeks)

Figure 5.33: The plot of the number of claims versus time (in weeks) in zone 1 by
the power kernel use
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Figure 5.33 and Figure 5.34 are presented to represent the actual jump behaviour 
of the claims data in zone 2 and the jump pattern of the fitted values in the suggested 
model, respectively.

The plot of the fitted values versus time
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Figure 5.34: The plot of the fitted values versus time (in weeks) in zone 1 by the 
power kernel use

Figures 5.35 and 5.36 are to check the fit of zone 2 claims data.

The plot of the number of claims versus time
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Figure 5.35: The plot of the number of claims versus time (in weeks) in zone 2 by
the power kernel use
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The fitted values versus time
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Figure 5.36: The plot of the fitted values versus time (in weeks) in zone 2 by the 
power kernel use

In the claim number JV* modelling, the exponential kernel function seems to have 
a better representation for the models of the zone 1 claims and leads to the idea 
that the effect of time is more significant in zone 1 regions in terms of earthquake 
claim arrivals. In zone 2 risk areas, the power kernel function takes the role of the 
exponential kernel of zone 1 and the time variable gains more importance for the 
claim related models.

The to tal claim am ount (Si)  Models:

Two ways can be suggested when modelling the claim amount data. One way is 
to model the raw claim amount whose distribution is not lognormal, with mean 
rji and variance 7*. The second way is to model the aggregate claims Si (total claim 
amount) with the assumption of the underlying AVs are i.i.d. In this way, we can 
check for the double effect of taking the aggregate claims Si with underlying raw 
claims are i.i.d. The idea of binning is used in the construction of kernel functions 
(exponential and power) in the modelling process.

Here we let the claims in bin i , X u , . . . ,  X ^ ,  which are the raw claims with mean 
T)i and variance and where Ni is the number of claims in this bin. We model the
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aggregate claims Si in the corresponding count JV* in that bin by using

Ni
Si = J 2 x a-

i = 1

We want to justify the use of the same kernel function form for the claim number 

Ni and the aggregate claims Si models by using the following computations to show 

the relation between those two. Under the assumption of i.i.d X ^ s  and with the 

argument of conditional on the bin counts Ni

Ni
E(Si\Nt) =  E f c X i i W )  = Nuu,

i= l

which gives = r\i is a constant and the variance of the total claim amount is

V a r s i t y )  =  Nin.

By using the second approach above,we assume to model the aggregate claims Si 
over each bin. If we use a new random variable Y  = log S'*,

Y  = log Si ~  N(fa, of).

The relation between the parameters fa, of and the claim number Ni, the parameters 

Tji and Ti of the aggregate claims can be constructed as follows by using the mean and 

variance of the lognormal distribution for the aggregate claims, where we condition 
on the claim number Ni

E(Si\Ni) = Nirh = e>“+i ,  (5.1)

and
Var(Si\Ni) = N^  =  e2̂ { e a" -  1). (5.2)

The variance is not affected by the number of claims since the number of claims is

constant and constant term has no effect on variance. If we take the log in (5.1),

the mean of the aggregate claims will be

fa = log (Ni) +  log(^) -  i(T?. (5.3)
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By substituting (5.3) in (5.2), conditional on the number of claims Ni

Var(Si\Ni) = = e2('°s(Nl)+losM- ^ )+'r‘ (e”< -  1)

N iTi =  e2los{Ni)+2iog(^)(e^  _  i y  5̂ '4 ^

If we log the both sides

log(A^) +  log(ri) =  2(log{Ni) +  log(rji)) + log(e^? -  1) 

log (Ni) +  log(ri) -  21og(A î) -  21og(^) = log(eff*? -  1) 

log ( ^ )  -  log ( Vi )  = log(eCT*? -  1)

) =  log(eCT,? “  !)'/i
Ti a? t= e * — 1n?Ni 

Ti +  1 =  e"?
r i N

^ ( 1  +  ^ ) .

(5.5)
Replacing the result of (5.5) in (5.3), we get

fa = log (Ni) +  log(^) -  i  log(l +  ~ ^ r ) .  (5.6)

If one is modelling the total claim amount with £ ’(log(S'i)) =  fa, the behaviour of 

the model will be as in (5.6).

The claim number Ni can be replaced by the intensity A< of the claim number 

process, when ^  is small and Ni is large. By the series expansion log(l +  x) «  x

tv . ri2
lo&(l +  Z21Tf )nWi rjl Ni

Thus (5.3) can be rewritten as

fa «  log(iVi) +  log(7/i) «  log(Ai) +  log(7/i).

By the similar argument

a.
Ti

r g N i ’
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and

N t f  w \
T

Therefore, the total claim amount Si is just the model for the claim number Ni, 
which is approximately shifted by log Ni instead.

The raw claim amount is totalled over each bin and logged. Then the log data is 

modelled with a Gaussian model under the assumption of log 5  ~  Normal (see 

Figure 5.1). The mean of the total claim amount is of interest here, which is 

E(\og(Si)) = [Li. We can represent the mean of the aggregate claims in the form 

of the special kernel functions, which are also used in the modelling of the claim 

number JV*. Then the suggested model can be shown as

log Si ~  N(fa, a?),

where fa = ao +  J^L i +log Ni for the use of the exponential kernel and

fa = H2j= 1 aj(.{ti ~ 5i)l+) ^ +  log Ni where the power kernel replaces the expo­
nential kernel and i = 1, . . . ,  n, j  = 1, . . . ,  k. The variance of the aggregate claims is 
approximated by of «  ^ ^ 7. Then basically the variance depends on the claim num­

ber Ni, the mean 77* and the variance 7* of the underlying claim amount XVs. Since 
we are conditioning on the claim number N{ as in (5.1) and (5.2), the Ni part of the 

variance is given. When modelling the aggregate claims, the ideal way is to iterate 

and weight to make a use of the variance Ti since it depends on the claim number Ni. 
However, we will assume that the Ti behaves like a constant under the conditioning 

on the claim number Ni and we did not do any reweighed variance analysis. The 

claim amount model is simply for the mean rji but we need to transfer the model 

to the parameter fa of the aggregate claims since our aim is to model the aggregate 

claims in the related bin and see the double effect of the raw and aggregate claims. 

In the modelling, we only correct for the claim number TV* part, see also (Chapter 7).
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The use of the exponential kernel:
By months data:
In terms of (3 values, Si model suggests a lower value for zone 1 and slightly larger 

value in zone 2 than the claim number Ni models for the use of the exponential 

kernel. The confidence intervals are obtained by the values of the Hessian, where 

the Hessian is constructed via the estimation of the model parameters by using the 

Normal likelihood for the claims data.

M odel 5 P dj
Residual
deviance

95 % Cl for j3

Zone 1 0.29
026 =  0.71 
O4o =  0.06

5.35 (0.2898,0.2902)

Zone 2 0.4
026 =  0.67 
041 =  0.74

0.05 (0.39998,0.4002)

Table 5.6: The estimate of the selected model parameters and 95 % /3 confidence 
interval for risk zones 1-2 in Turkey

The aggregate claims models result in lower deviance values compared to the 
claim number models. The big empirical earthquake selection is still observed by 

checking the values of aj values. The models here will have a use in financial 

estimation, it can be concluded that there needs to be enough money in the Turkish 
Catastrophe Insurance Pool during the normal claim arrival period so that the TCIP 

can respond to the high demand for the claim payments due to an earthquake strike, 

especially in zone 1. Figures 5.37, 5.38, 5.39 and 5.40 are presented to back up the 

adequacy of this suggested total claim amount model in zone 1. The diagnostic 

plots for zone 2 also support the same argument.
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The plot of the claim amount versus time in risk zone 1

tim e (in m on ths)

Figure 5.37: The plot of the claim amount versus time (in months) in zone 1 by the 
exponential kernel use

The plot of the fitted va lu es versu s time in risk zon e 1

tim e (in m on ths)

Figure 5.38: The plot of the fitted values versus time (in months) in zone 1 by the 
exponential kernel use

153



The plot of the claim amount versus fitted values in risk zone 1
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Figure 5.39: The plot of the claim amount versus fitted values in zone 1 by the 
exponential kernel use

The residual plot of the claim amount model in risk zon e 1 (exponential kernel)
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Index

Figure 5.40: The plot of the residuals in zone 1 by the exponential kernel use

By weeks data:
The estimate of the (3 parameter in zone 1 is the same as the value in Table 5.3 

of zone 1 (0.2) exponential kernel case and Table 5.5 of zone 1 (0.2) power kernel 
case in TV* models. This indicates the same fixed feature of the earthquake area, 
which affects the trend of the claim arrivals. This feature has the same effect on the
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number of claims and the paid claim amount in either kernel function use, in either 

time model in zone 1. On the other hand, for zone 2, the /? value (0.7) is the highest 

compared to the previous models. We have higher values of the parameter estimates 

for zone 2 claims data. This can be linked to the awareness of the community is an 

important factor. An example of this is the city of ‘Izmir’. Some surrounding towns 

of Izmir are risk zone 2 areas but a lot of claims, even for a light damage, arrive 

to the Turkish Catastrophe Insurance Pool if there occurs any tremor, earthquake 

mainly as a result of the fault movements in the Aegean Sea.

M odel 6 P dj Residual
deviance

95 % Cl for j3

Zone 1 0.2
o?6o — 0.21 
0̂ 22 =  0.18

10.489 (0.19995,0.20004)

Zone 2 0.7
036 — 1-33
Orr =  0.26

0.788 (0.6997,0.7003)

Table 5.7: The estimate of the selected model parameters and 95 % {3 confidence 
interval for risk zones 1-2 in Turkey

T he use of th e  power kernel:
By m onths data:

In Table 5.8, Model 7 suggests very close /? estimates for risk zones 1 and 2 for the 
total claim amount Si. This means that, regardless of the zone effect, with a strike 

of a big earthquake, there can be huge losses in either zones and a lot of money has 

to be compensated to the insurance holders by using the available reserves of the 

Turkish Catastrophe Insurance Pool.

M odel 7 P dj Residual
deviance

95 % Cl for j!)

Zone 1 0.64
026 =  11.58 
a}0 =  0.64

1.34 (0.610,0.669)

Zone 2 0.68
026 =  6.7 
041 =  1.7

0.591 (0.6792,0.6808)

Table 5.8: The estimate of the selected model parameters and 95 % j3 confidence 
interval for risk zones 1-2 in Turkey
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Higher j3 values back up the idea of the need for a large reserve pool in both risk 

zones 1 and 2, which also indicate that the big jumps in the claim arrivals are more 

likely to occur. The total money in the TCIP should be as high as possible to have 

a use when need arises. The significant earthquakes can still be followed by the aj 

coefficients. The deviance values are reasonable for this case.

By weeks data:

Table 5.9 suggests the highest $  estimate with the largest deviance for zone 1 

among the other models of this chapter for both the number of claims Ni and the 

total claim amount Si. For zone 2 claims data, a narrower width is observed, with 

a lower residual deviance value than that of zone 1.

M odel 8 P dj Residual
deviance

95 % Cl for 0

Zone 1 0.84
060 =  0.39
O j2 2  =  0.16

6.734 (0.83997,0.84002)

Zone 2 0.60
036 =  0.93 
O rs = 1.08

0.1345 (0.599907,0.600093)

Table 5.9: The estimate of the selected model parameters and 95 % j3 confidence 
interval for risk zones 1-2 in Turkey

By using all the models of this chapter, tt can be concluded that the claims sat­

isfy the shock kernel approach in earthquake risk zone 1 and risk zone 2 in Turkey. 

The confidence intervals for all cases do not cover the nice value of (5 = 1 and they 

are between [0,1] in interval.

M odel Sum m ary

The claim number and the aggregate claims (total claim amount) models of this 

chapter lead that the money to be paid to the insured by the Turkish Catastrophe 

Insurance Pool after an earthquake strike will be extremely high, since the number 

of claims arriving to the pool is expected to be high in zones 1 and 2. One reason 

for such large figure expectation is the wrong settlement very close to the fault lines. 

This is due to the unawareness/carelessness of the people and authorities throughout

156



the history.

Unfortunately, another factor is the misuse or even no use of the building stan­

dards in Turkey. They are not compatible with the existing earthquake-resistant 

Building Code of 1998 in Turkey. It is observed of the TCIP that an increasing 

number of residents (especially after if any tremor/earthquake is experienced in 

time) are buying the mandatory earthquake insurance in higher risk zones, which 

leads to more number of claims and more money to pay back to the insured after 

an earthquake strike.

The approach of modelling the number of claims and the claim amount by the 

approximation of the raw event time either in months or in weeks play a crucial role 

in determining the capacity of the TCIP, the reserves E(S( t )), to compensate the 

possible losses. It helps to understand that a lot of claims might arrive in a short 

period of time, which ends in huge amount of loss payment. Therefore, in the high 

risk earthquake zones of Turkey, there should be a back up financial mechanism in 
case of an earthquake strike. In practice, it is a fact that the more the number 
of claims (Ni increases) especially with big earthquake shocks, the more the total 
amount of money paid to the insurance holder (Si increases).

The aim of using an inhomogeneous Poisson process is to let the process to observe 
the significant earthquakes at any time point in a given interval. The models here, 

which are the claim number Ni and the aggregate claims Si models, allow the 
parameters to pick the jump occurring as a result of a big earthquake. It is an 

interesting point to notice the following pattern: When there are no earthquakes, 

no claims occur, and then with a small earthquake (e.g. magnitude < 5) few claims 

arrive to the pool and say in next two months a big earthquake strikes. The otj 
parameter, which is expected to pick the effect of this big earthquake, assigns a 

high importance of the few claim arrivals due to that small earthquakes that occur 

just before the big earthquake. The small claims absorb the effect of the large claim 

arrivals due to the significant earthquake. This structure best explains the use of 

the main shock-aftershock or initial shock aspects of the earthquake occurrence and 

shows the link between the geological and financial approach.
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5.3.1 Sim ulation

The method of empirically determining probabilities by means of experimentation 

is called ‘simulation’ [Ross, 2003]. The main cornerstone of stochastic simulation 

is random numbers, which is used to generate independent identically distributed 

Uniform(0,l) random variables [Ripley, 1987, Ross, 2002b]. Most computers have 

built-in routines to generate such uniform random numbers. The simplest way to 

define a univariate random variable is the cumulative distribution function (CDF) 

F. [Ross, 2003, Ross, 2002b] suggest the following proposition.

P roposition: Let U be a Uniform(0,l) random variable. For any continuous 

distribution function F , if the random variable X  is defined by

X =  F~\U) ,

then the random variable X  has distribution function F.
Proof:

Fx (x) = P ( X  < x)  = P(F~1(U) < x).

Since F(x) is monotone function, it is valid that F~l {U) < x if and only if U < F(x ) 

{FiF-' iU)) = U). Then:

Fx (x) = P ( U < F ( x ) ) = F ( x ) .

Therefore, the random variable X  can be simulated from the continuous distribution 

F, by simulating a random number U and setting X  = F~l (U). This is called the 

‘inverse transformation method’ and is one of the methods to simulate (generate) 

random variables from an arbitrary distribution [Ross, 2003, Ross, 2002b].

Another method is called the ‘rejection method’. Suppose there is a method 

available to simulate a random variable with density function g{x). This is used as 

basis to simulate from a continuous distribution with density f (x)  by simulating Y  

from g and accepting this simulated value with a probability proportional to 

[Ross, 2003, Ross, 2002b]. Let c be a constant such that

f ( Y )
g( Y)
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Then the following procedure is used for simulating a random variable of density /  

[Ross, 2003, Ross, 2002b].

1. Simulate Y  having density g and simulate a random number U.

2. If U < -■('Pp set X  = Y.  Otherwise go to 1.

Following the procedure above, the following proposition is given in [Ross, 2003, 

Ross, 2002b]:

Proposition:
The random variable X , which is generated by the rejection method, has density 

function / .

There are other methods for simulation like the hazard rate method and special 

techniques for simulating specific random variables. The procedure is generally ana­
log for discrete and continuous distributions.

Generating an inhomogeneous Poisson Process:
Counting events in a Poisson process gives a Poisson distributed random vari­

able. An inhomogeneous Poisson process N(t)  is an important process in modelling 
purposes, which allows the possibility that the arrival rate can vary with time effect 

unlike a homogeneous Poisson process with stationary increments [Ross, 2002b].

The claim interoccurrence times has a very convenient use in describing the claim 

number process N(t) [Biihlmann, 1970]. The most basic method to simulate an 

inhomogeneous Poisson process is to simulate the successive event times [Ross, 2003, 

Ross, 2002b]. Let Wi , . . . ,  Wn denote the successive event times of the process N(t)  

as given in Section 3.3.1. If an event occurs at time Wi,  independent of what 

has occurred before time Wi, the time until the occurrence of the next event has 

the distribution Fi(t) = 1 — e~Aî  given on Page 44 in Section 3.3.1. The event 

times Wi , . . . ,  Wn can be simulated starting with the simulation of W\  from F0, if 

W\ = W\ simulate by adding W\ to the value generated from FWl and so on. It 

is possible to find the inverse of the distribution function F~l {.) and generate the
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inter-arrival times with F~l {Ui) where Ui is a uniform random variable on (0,1) 

[Ross, 2003, Ross, 2002b, Lewis and Shedler, 1979, Martinez and Martinez, 2002].

Another method to simulate an inhomogeneous Poisson process is the ‘thinning’ 

approach. Suppose the first T  time units of an inhomogeneous Poisson process will 

be simulated. The thinning method starts by choosing a value A, which satisfies 

A(t) < A for al\ t < T  [Ross, 2002b]. By a random selection of the event times of 

a Poisson process of rate A, an inhomogeneous Poisson process can be generated. 

Basically, if an event of a Poisson process of intensity A occurs at time t is counted 

with probability then the process of counted events is an inhomogeneous Poisson 

process with intensity function A(t) for 0 < t < T. The intensity A of the process is 

simply estimated that is the nMm̂ ° f clalm8.

The simulation of a Poisson process and counting its events randomly leads to 

the generalisation of an inhomogeneous Poisson process [Ross, 2002b]. Then, the 
following steps are followed in the so-called thinning algorithm for simulating an 

inhomogeneous Poisson process [Lewis and Shedler, 1976, Lewis, 1972, Ross, 2003, 

Ross, 2002b, Kuhl and Bhairgond, 2000].

1. Set t = 0, I  = 0.

2. Generate a random number U (Uniform random variable).

3. Set t = t -  If t > T, stop.

4. While t < T, generate U.

5. If U < set /  =  1 +  1, W(I)  = t.

6. Go to step 2, generate U and set t  = t —

Here, A(t) is the intensity function and A is the rate of a homogeneous Poisson 

process such that A(t) < A. The final value of I  denotes the number of events time 

T  and R7(l), . . . ,  W(I)  are the event times.

Figure 5.41 is an example of the pattern of the simulated inhomogeneous Poisson 

process by using Model 1 of Table 5.2 parameter estimates of zone 1 with months
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based data, where as an approximation of A in the bin case

^  3601 the number of claims in zone 1
32 the number of months in given time period
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Figure 5.41: The fitted estimate of the event arrival rate A(£)

The modelling process of the thesis can be justified by using the following steps. 
Algorithm  2:

1. Fix the existing parameters ao? a i , . . . ,  a* and /?,

2. Generate (simulate) a new random data set for the number of claims Ni by 
using the thinning algorithm,

3. Use the simulated data in glm modelling,

4. Get the new estimates of the parameters ao, c*i,. • •, a* and (3,

5. Construct the confidence interval for (3,

6. Check how many times it covers the true value of /3, which is set in 1.
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Here we give an example on how to apply the simulation procedure explained 

above for the modelling purposes of this study. The simulated data for zone 1 Model 

1 of Table 5.2 is generated by using the corresponding parameter estimates, that is by 

using the maximum likelihood estimates of the parameters in the exponential kernel 

form of A* =  eQo+̂ 3=iQJe 0( 1 j)l+. Hence, the mean-value function of the whole 

process N(t) can be expressed as A; =  Jq eao+̂ j=1 a*'e- ^ ti-a^ +d£ [Lewis, 1972].

When the generalised linear models are run with the zone claims simulated data 

based on the exponential kernel and months as time covariate, the /? value is obtained 

close to the actual value of (3 =  0.37 and the otj parameters still pick the big 

earthquakes. The following table gives how many times the actual value of (3 is 

covered with 95 % confidence at the empirical knots.

5000 iterations
The number 
coverage

of
The % coverage

&=0.17 4740 94.8

#2=0.28 4742 94.84

ft=0.4 4748 94.96

Table 5.10: The simulated values of ft and 95 % coverage for Model 1 of Table 5.2 
Ni model

Table 5.10 indicates as (3 value increases, the coverage probability increases when 

5000 iterations are used. Higher value of /3 means, the size of the jump is large and 

it was a real shock event. This is typical as shown in the Table. As a part of future 

research, we intend to work on bias corrected intervals as well as updating the data 

and fitting different types of models.
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Chapter 6 

M odelling w ith Covariates

This chapter calibrates the existing models of Chapter 5 by adding magnitude and 

the number of residential buildings of the earthquake area as new covariates (aka 

regressors or independent variables) in the selected models. The binning idea of 
the Poisson counts in modelling the non-normal response variable for the number of 

claims Ni (Ni ~  Pois(Aj)) and similar argument for the modelling of the aggregate 
claims (total claim amount) Si is followed.

The mandatory earthquake insurance scheme in Turkey (the Turkish Catastrophe 
Insurance Pool) only insures the residential buildings. Therefore, it seemed to be an 
interesting approach to use the number of the residential buildings in the earthquake 
affected area as an independent variable for our models. The building number figures 

are obtained from the State Institute of Statistics.

6.1 Graphical analysis

The following plots are presented to show the relation between the covariates (of 

the raw data) and the log claim amount in all zones and in zone 1 and zone 2, 

respectively. Figures 6.1 and 6.2 represent the basic relation between the magnitude, 

the claim amount and the residential building number considering all risk zones. It 

seems that earthquakes of magnitude 5 or more are considered to cause serious 

damage. Here, it is observed from the plots that there occurs a lot of claims at 

smaller magnitudes as well as the magnitudes more than 5. Interestingly, when 

the magnitude is big (e.g 6.5), even though the number of the residential buildings 

is between 50000-100000, which means a small town/city, still a lot of claims are
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observed. This can be due to the distance of the earthquake area to the fault line or 
to the earthquake epicentre; or, if the building structure is poor in the earthquake 
region, when a big magnitude earthquake strikes heavy damage occurs.

The plot of the claim amount versus magnitude in all risk zones
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Figure 6.1: The plot of the claim amount versus magnitude in all risk zones (1-5)

The plot of the residential building number versus magnitude in all risk zon es
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Figure 6.2: The plot of the residential building number versus magnitude in all risk 
zones (1-5)

Figures 6.3 and 6.4 show a similar pattern with Figures 6.1 and 6.2 because most 
of the all zone claims arrive from zone 1. It is also observed that the strike of 

an earthquake of magnitude 5.6 can result in many claims, which is the same as
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the effect of an earthquake of 6 or 6.5. Quiet a lot of claims occur as a result of 
an earthquake of magnitude less than 5, which is probably due to the geological 
characteristics of the town/city and the quality of the building structure. Another 
possible reason for the arrival of many claims is the amount of the earthquake in­
surance policies in the earthquake affected area. Assume there is a small magnitude 
earthquake and there are few dwelling units (e.g. < 100000). The number of claims 
and so the total paid claim amount will increase, if many of the households own the 
mandatory earthquake insurance of the Turkish Catastrophe Insurance Pool.

Figures 6.5 and 6.6 represent the relation between the magnitude, the residential 
building number and the claim amount in zone 2. The similar interpretation for zone 
1 claims data can be made for zone 2 too. Ordinary small claims are also observed 
at earthquakes of magnitude less than 5, which probably occur due to light damage 
like wall cracks, sliding of walls or garden walls.

T he plot of th e claim  am ount v er su s  m agnitude in risk zo n e  1
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Figure 6.3: The plot of the claim amount versus magnitude in risk zone 1
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The plot of the residential building number versus magnitude in risk zone 1
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Figure 6.4: The plot of the residential building number versus magnitude in risk 
zone 1

T he plot of th e claim  am ount v e r su s  m agnitude in risk zo n e  2
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Figure 6.5: The plot of the claim amount versus magnitude in risk zone 2

166



The plot of the residential building number versus magnitude in risk zone 2
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Figure 6.6: The plot of the residential building number versus magnitude in risk 
zone 2

Figures 6.7 and 6.8 show the relation between the number of residential buildings 

(the second model covariate), the magnitude and the claim amount considering all 

risk zones. In the data, the minimum number of the residential buildings is 506 

(where many observations accumulate) and the maximum is 298841. It is observed 

that many claims arrive in the interval of 506 to 50000 residential buildings. This 

scale indicates a small to medium size town/city in Turkey. Additionally, these 

settlement areas are possibly very close to the fault line (either risk zone 1 or zone 

2) and by the awareness of the community that they live in high risk zones, many 

flats/houses might have been insured against earthquake risk.

Figures 6.9 and 6.10 are drawn for zone 1 of the same variables as in Figures 

6.7 and 6.8 and have a similar interpretation because most of the claims of all zone 

data is from risk zone L Figures 6.11 and 6.12 is plotted for zone 2 claims data. 

There are less observations in zone 2 (nzonel=3602, nzone2=676) than in zone 1. 

The intense pattern of the claims in Figures 6.11 and 6.12 is due to the 03/02/2002 

earthquake of magnitude 6.0 (see Table 5.1) in Afyon, Sultandagi, which is a small 

town in the Middle-Aegean province.
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The plot of the claim amount versus residential building number in all risk zones
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Figure 6.7: The plot of the claim amount versus residential building number in all 
risk zones (1-5)

The plot of the magnitude versus residential building number in all risk zon es
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Figure 6.8: The plot of magnitude versus residential building number in all risk 
zones (1-5)
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The plot of the claim amount versus residential building number in risk zone 1
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Figure 6.9: The plot of the claim amount versus residential building number in risk 
zone 1
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Figure 6.10: The plot of magnitude versus residential building number in risk zone 
1
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The plot of the claim amount versus residential building number in risk zone 2
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Figure 6.11: The plot of the claim amount versus residential building number in 
risk zone 2

The plot of the magnitude versus residential building number in risk zon e 2
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Figure 6.12: The plot of magnitude versus residential building number in risk zone 
2

The jump pattern of the claims at the significant earthquakes, which is mentioned 
in Chapter 5, can also be recognised in the following plots. Figures 6.13, 6.14, 6.15 
and 6.16 show the relation between the number of claims, the claim amount and 
magnitude in risk zones 1 and 2 by using weeks data.

1 7 0



Number of claims versus magnitude in zone 1
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Figure 6.13: The scatter plot of number of claims versus magnitude in risk zone 1 
by weeks data
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Figure 6.14: The scatter plot of claim amount versus magnitude in risk zone 1 by 
weeks data
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Claim number versus magnitude in risk zone 2
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Figure 6.15: The scatter plot of number of claims versus magnitude in risk zone 2 
by weeks data
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Figure 6.16: The scatter plot of claim amount versus magnitude in risk zone 2 by 
weeks data

The biggest earthquake in the data is of magnitude 6.5. However, the jump of 
the number of claims Ni and a large amount of claim payments might occur at lower 
magnitude earthquakes. This can be linked with the number of people owning the 
compulsory earthquake insurance, the income, education level and the awareness of 
the community in the earthquake area, or, the large number of claim payments is due 
to poor building construction in the earthquake town/city, where small magnitude

Claim amount versus magnitude in risk zone 2
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earthquakes end up in heavy building damage.

6.2 M odelling

In the modelling process, the similar analysis of Chapter 5 is followed with the ad­

dition of covariates to the existing models. It is observed that the magnitude is a 

significant variable, which reduces the deviance and calibrates the models. Here, the 

causality can be explained as, at a certain time point, there is a magnitude, which 

causes a lot of claims. When the magnitude and the residential building number are 
included together in the models, the best results in terms of the diagnostic plots of 

the suggested models and the residual deviance are observed. The following algo­

rithm is used to obtain the required models.

Algorithm 3:

1. Choose on the empirical event times (where large earthquakes occur result­

ing in large claims) and the corresponding kernel knots (one-sided kernel to 
represent the jump effect ahead in the time period),

2. Use the exponential kernel to model claim number TV* with rate A* =  eao+T,j=i «je 

and to model the total claim amount 5* with rate fa = ao + S jL i OLje~ l̂i~Si^+ 
and use the power kernel correspondingly with rates A* =  eao+^'j=lQ:ĵ i-S;,^+̂  

and fa = a0 +  £*=i aj{U -  Sj)\+P,

3. Use additive generalised linear models,

4. Model the number of claims Ni with a Poisson log-link function as counts 

(Ni ~  Pois(Aj)) and model the total claim amount, Si, as Gaussian by using 

the selected empirical kernel knots,

5. Add magnitude to the model as a linear explanatory variable,

6. Add residential building number to the existing model as the other linear 

explanatory variable,

i+
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7. Use the non-linear parameter (3 as a representative of the characteristics of 

earthquake risk zones 1 and 2 and use the clj parameters as the coefficients 

picking the significant earthquakes with big number of claims,

8. Set an initial value for (3 (random),

9. Run step-wise regression,

10. Choose the (3 value, which corresponds to the minimum deviance since the non­

linear models are mainly based on deviance (see the Appendix for deviance). 

Note that, the formulae in Chapter 4 for the estimation of /3 is used as a check 

as well,

11. Run the model again with the fixed (3,

12. Obtain the values of ctj estimates,

13. Construct the Hessian matrix H  by using the second partial derivatives of the 
log-likelihood, which are derived in Chapter 4 and the parameter estimates 
and invert the Hessian,

14. Construct the confidence interval of (3 parameter by using the corresponding 
diagonal value of the inverse observed information matrix /,

15. If interested, by the similar argument in the previous step, construct the con­

fidence interval of a^,

16. By using the parameter estimates of the models, calculate the expected total 

claim amount E(S(t)) and other statistical measures.

The claim number (Ni)  Models:
When the magnitude of an earthquake is added as a linear explanatory variable 

to the models, which are generated in Chapter 5, the new suggested models for the 

intensity of the claim number is

Ni ~  Pois(Aj),
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where the log-linear Poisson count rates is modelled with log Aj =  c*o+2j=i otje~f3(ti~Sĵ + 

for the exponential kernel choice and log A* =  a 0 +  E jL i aj((^i ~  sj) l+)_/3 f°r the 
power kernel choice with i = 1, . . . ,  n, j  = 1, . . . ,  k.

When the magnitude is added as a covariate, the models can be rewritten as

k

log Ai = a0 +  aie ~^ti~Sj^+ -f m/,
j=i

and
k

log Ai = a 0 + '^ 2 a j ((ti -  S j^+ y13 + m h
3 = 1

where j  =  1, . . . ,  k, I = 1 , . . . ,  k refer to the knots that the empirical kernels sit.

The addition of the residential building number of the earthquake are changes 

the models above into:
k

log A/ =  a 0 +  ^ 2  +  rnt +  r/,
j=i

and
k

log Aj = cto + ^ 2  “ 5j)I+)-/? + m i + n,
j= l

where m i stands for the magnitude and r/ denotes the number of residential build­

ings.

The S-Plus analysis suggests the following covariate models as suitable models to 

explain the claim number Ni with the replacement of the empirical kernel knots at 

the time of the significant earthquakes. The values of the non-linear parameter f3 is 
kept fixed since it is a universal constant, which denotes the exponential decay in the 

claim arrival process of the risk zone 1 and zone 2. The addition of the magnitude 

and the residential building number affect the value of the otj coefficients and this 

leads to a change in the deviance value and also slight variation in the confidence 

limits. The significance level to construct the confidence interval for f3 is used as

0.05 (95 % confidence).
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The use of the exponential kernel:
By m onths data:
Model 9 of Table 6.1 suggests the following figures by using the same estimate 

value of the non-linear parameter (3 in Table 5.2 (pzonei =  0.37, j3zone2 =  0.325), 

when the covariates are added to the models of previous Chapter. Then, we observe 

that the deviance values drop when compared to Model 1 of Table 5.2. The a  

coefficients to represent the big earthquakes still pick the significant earthquake 

event occurrence.

Model 9 $ dj
Residual
deviance

95 % C l for p

Zone 1 0.370
^26 =  8.99 
0:40 =  8-15

56.71 (0.26962,0.47328)

Zone 2 0.325
a 26 =  3.95 
Q!41 = 1.63

17.09 (0.31505,0.33495)

Table 6.1: The estimate of the selected model parameters and 95 % (3 confidence 
interval for risk zones 1-2 in Turkey

Figure 6.17 and Figure 6.18 show the efficiency of the model fit. Similar diagnostic 

plot analysis back up the same argument for zone 2 claims data.

The number of claims versus time in risk zone 1

s
i5
o

3c

I

o

15 20 25 30 35 40

Figure 6.17: The plot of the claim number versus time (in months) in risk zone 1
by the exponential kernel use
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The plot of fitted values versus time
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Figure 6.18: The plot of the fitted values versus time (in months) in risk zone 1 by 
the exponential kernel use

By weeks data:
Table 6.2 suggests a good model in terms of deviance values and diagnostic plots 

in both zones (see Figures 6.19 and 6.20 below for zone 1 data plots). When the 
model is run with covariates, the significant earthquakes are obviously picked among 

others by their corresponding aj  coefficients like Qwki22 =  4.93 with nweek 122 =  

1682 claims, dweek60 — 3.87 with nweek60 — 939 claims. More consistent confidence 
intervals are obtained, especially for zone 1 when compared to the values of Table 

5.3 (the same model without covariate case).

Model 10 P dj
Kesidual
deviance

95 % Cl for fr

Zone 1 0 .2
0 6 0  =  3.87 
0 1 2 9  =  4.93

156.403 (0.1264,0.2736)

Zone 2 0.3
' - . , 7  t n . t -

Qs r =  4.08
21.624 (0.2241,0.3759)

Table 6.2: The estimate of the selected model parameters and 95 % ft confidence 
interval for risk zones 1-2 in Turkey
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The claim number versus time in risk zone 1
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Figure 6.19: The plot of the claim number versus time (in weeks) in risk zone 1 by 
the exponential kernel use

T he plot of the fitted v a lu es  v er su s  tim e
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Figure 6.20: The plot of the fitted values versus time (in weeks) in risk zone 1 by 
the exponential kernel use

The use of the power kernel:
By months data:
Larger confidence limits for zone 1 claims data in Table 6.3 can be interpreted 

as the fix region characteristic of zone 1, there are more factors, like demographic,
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economical or geological indicators, to play a role on the earthquake occurrence and 
resulting analysis.

Model 11 P dj Residual
deviance

95 % Cl for p

Zone 1 0.43
Ct26 = 6.75 
oc40 ~ 1.85

174.805 (0.3865,0.4734)

Zone 2 0.52
Oi26 = 7.91 
«4i = 4.11

84.69 (0.51998,0.52001)

Table 6.3: The estimate of the selected model parameters and 95 % 0  confidence 
interval for risk zones 1-2 in Turkey

The selected presentation of the aj values for months 26, 40 and 41 are good 
examples to denote the big magnitude earthquake, more claims combination. The 
following plots give the diagnostic check of the zone 1 claims model suggested in 
Table 6.3 to show that our models provide consistent and sufficient results. Zone 2 
claims data also support the model consistency, when diagnostic plot check is done.
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Figure 6.21: The plot of the claim number versus time (in months) in risk zone 1 
by the power kernel use
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The plot of fitted values versus time
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Figure 6.22: The plot of the fitted values versus time (in months) in risk zone 1 by 
the power kernel use

By weeks data:
In Model 12, the variance of the non-linear (3 parameter is obtained to be very low 

in risk zone 2 with a narrower confidence interval than of zone 1. An interpretation 
of this can be the number of claims in zone 2 by the use of weeks data does not 
show a large variability. That is, the distance to a fault line, the population of the 
region or the density of the number of buildings in the area have more dominant 
effect on the number of claims arriving in zone 2.

Model 12 P dj Residual
deviance

95 % Cl for p

Zone 1 0.2
ctfeo = 1.50 
n n  1

434.36 (0.074,0.326)

Zone 2 0.4
O36 =  7.45 
o«8 =  6.34

95.531 (0.391,0.408)

Table 6.4: The estimate of the selected model parameters and 95 % (3 confidence 
interval for risk zones 1-2 in Turkey

Figures 6.23 and 6.24 are presented to show the jump in the actual earthquake 

claim events and the fitted values of the model.

180



The number of claims versus time in risk zone 1
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Figure 6.23: The plot of the claim number versus time (in weeks) in risk zone 1 by 
the power kernel use
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Figure 6.24: The plot of the fitted values versus time (in weeks) in risk zone 1 by 
the power kernel use

It is observed that the magnitude and the residential building number are crucial 
actors for the modelling of the number of claims by using the special kernel functions. 
These variables decrease the deviance significantly. In Turkey, if an earthquake of 

a big magnitude hits an area in risk zones 1 or 2, where there are many buildings,
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both the life and socio-economical losses are expected to be high due to the lack of 

organisation and coordination of the emergency response personnel, lack of building 

code applications and lack of community awareness.

In such scenario, the number of claims will increase and they will arrive in a short 

period of time depending how many households have an earthquake insurance. The 

collected premiums are the main source of the Turkish Catastrophe Insurance Pool. 

Therefore, during the TCIP premium calculations, the magnitude and the building 

number should be carefully considered. Currently, it is known that the premium 

tariffs of the TCIP (see Section 7.2.1, Table 7.1) are calculated by using the type of 
the building (e.g masonry, reinforced concrete) and the risk zone effect (in terms of 

magnitude). It might be more useful to improve the methodology of the tariff cal­

culations by adding the effects of the residential building number (as the TCIP only 

insures the residential buildings) and the age of the building, because our suggested 
models show the significance of the residential building number of the earthquake 
area, which reduces the residual deviance of the model.

The total claim amount (Si) Models:
In the covariate models, the total claim amount Si uses the same notation for 

non-linear parameter (3 as in Chapter 5. By using the same argument to use the 

same kernel function both for the claim number IVj and aggregate claims Si, the 

proposed model is again

log S- ~  N(/Xi, cr?),

where fa = ao +  +  log N{ +  mi +  r* for the use of the exponential

kernel and fa = ao +  J^jLi aj((U ~  5j)l+)_/? +  l°g-W* + mi +  r/, where the power
kernel replaces the exponential kernel. Here m/ stands for the magnitude, r/ denotes

the number of residential buildings, i = 1, . . . ,  n, j  = 1, . . . ,  k and I =  1 , . . . ,  k.

The use of the exponential kernel:
By months data:

The total claim amount to be paid by the insurer naturally increases if there are 

a lot of earthquake-damaged buildings in the earthquake area and if many of the
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households have an earthquake insurance. The level of the damage (slight-moderate- 

heavy or total collapse) is an important factor in the claim payment process. Table 

6.5 expresses the chosen models for the total claim amount Si in earthquake risk 

zones 1 and 2 by using the exponential kernel function.

M odel 13 P dj Residual
deviance

95 % Cl for fi

Zone 1 0.29
026 — 3.34 
Ofan =  5.97

1.35 (0.289994,0.29006)

Zone 2 0.40
a 26 =  3.15 
O41 =  1.24

0.06 (0.399963,0.400036)

Table 6.5: The estimate of the selected model parameters and 95 % (3 confidence 
interval for risk zones 1-2 in Turkey

For this case, the confidence intervals of the non-linear parameter (3 estimates in 
both zones are very narrow due to a very low variance estimates obtained from the 
computations. The deviance values are reasonable. The diagnostic plots (e.g. claim 
amount versus time, fitted values versus claim amount, residual plot) support the 
validity of the model.

By weeks data:

M odel 14 P dj Residual
deviance 95 % Cl for (3

Zone 1 0.2
060 — 1-61 
OJ22 =  1-99

8.609 (0.19941,0.20059)

Zone 2 0.7
o36 =  1.76 
088 =  2.14

0.143 (0.699951,0.700049)

Table 6.6: The estimate of the selected model parameters and 95 % (3 confidence 
interval for risk zones 1-2 in Turkey

The time dependency of the total claim amount Si observations is obvious re­

garding Model 6 of Table 5.7. The covariates lessen the effect of time, so the de­

viance values are much lower than that of Table 5.7 for weeks data. In this case, the
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reasonability of the model is also backed up with the corresponding diagnostic plots.

The use of the power kernel:
By m onths data:

In this case, the models in Table 5.8 of Chapter 5 are well calibrated with the 
addition of the magnitude and the residential building number. The new values 
are presented below in Table 6.7. The confidence intervals of the p parameter are 
consistent to explain the characteristics of the parameter in both zones.

Model 15 P dj Residual
deviance

95 % Cl for P

Zone 1 0.64
0(26 — 3.98 
040 =  1-38

0.46 (0.562,0.718)

Zone 2 0.68
026 = 1-15
o~4i =  1.22

0.165 (0.673,0.687)

Table 6.7: The estimate of the selected model parameters and 95 % (3 confidence 
interval for risk zones 1-2 in Turkey

Figure 6.25: The plot of the claim number versus time (in months) in risk zone 1 
by the power kernel use

Figures 6.26 and 6.27 are some examples of the diagnostic check plots to show 
the usage of the model in representing the behaviour of the claim amount in risk

The plot of the claim amount versus time
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zone 1, when the power kernel function is used.
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Figure 6.26: The plot of the claim amount versus time (in months) in risk zone 1 
by the power kernel use in covariate models
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Figure 6.27: The plot of the fitted values versus time (in months) in risk zone 1 by 
the power kernel use in covariate models

By weeks data:
When (3 =  1, the power kernel function approximates the pure log-linear case for 

the modelling of the counts. This idea is presented when explaining the Gutenberg-
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Richter and Omori’s Law in Section 4.2. In Table 6.8, the high 0 values indicates a 
good approximation of the Gutenberg-Richter formula as a result of the use of the 
power kernel function. The big earthquakes are obvious to observe by their high 
coefficient values.

Model 16 b dj Residual
deviance

95 % Cl for 0

Zone 1 0.84
c*6o = 2.48 
£*122 = 5-45

3.097 (0.8390,0.8416)

Zone 2 0.60
£*36 = 2.38 
£*88 = 3.50

0.03 (0.5995,0.6005)

Table 6.8: The estimate of the selected model parameters and 95 % (3 confidence 
interval for risk zones 1-2 in Turkey

When the number of claims increases, the number of payments for individual 
claims increases and so the total paid claim amount Si increases. This increase 
affects the value of the E(S(t)), which determines the necessary amount of reserves 
to keep the Turkish Catastrophe Insurance Pool safe.
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Figure 6.28: The plot of the claim amount versus time (in weeks) in risk zone 2 by 
the power kernel use in covariate models

Figures 6.28 and 6.29 are presented to show the diagnostic check of zone 2 claims 

data in this case. The corresponding plots for zone 1 claims data also support the
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same idea of the reasonability of the suggested models.

The plot of fitted values versus time
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Figure 6.29: The plot of the fitted values versus time (in weeks) in risk zone 2 by 
the power kernel use in covariate models

Model Summary
In non-linear regression, the residual deviance is the main criteria to check the 

reasonability of the suggested models. This argument seems to be enough to vali­
date the statistical applications in the non-linear and the generalised linear model 
analysis. The use of the penalised likelihood is suitable for more complex models 
and also depending on the interest of the research. Therefore, in the following tables, 
the residual deviance values, which are obtained from all of the models of Chapter 5 
and Chapter 6 is gathered together to give an idea on how the use of the exponential 
and the power kernel functions affect the claim number Ni and the aggregate claims 
Si models by risk zones and by time effect, either in months or weeks.

Ni Months Weeks

Exponential kernel 247.905 (Zl)-176.069 (Z2) 1048.398 (Zl)-691. 175 (Z2)

Power kernel 1237.057 (Zl)-239.165 (Z2) 4518.727 (Zl)-1286.833 (Z2)

Table 6.9: Comparison of the deviance values of C hapter 5 Ni models for zone 1 

(Zl) and zone 2 (Z2) and months and weeks based data
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Ni Months Weeks

Exponential kernel 56.70 (Zl)-17.092 (Z2) 156.403 (Zl)-21.624 (Z2)

Power kernel 174.81 (Zl)-84.69 (Z2) 434.36 (Zl)-95.531 (Z2)

Table 6.10: Comparison of the deviance values of C hap ter 6 Ni models for zone 1 

(Zl) and zone 2 (Z2) and months and weeks based data

Based on the deviance values, for the claim number (Ni) models, the power kernel 

function is especially effective for zone 2 analysis in both with and without covariate 

cases of Table 6.9 and Table 6.10. Although there are extreme event claims in zone 
2, generally less number of observations are expected from this zone and the power 

kernel function use fits well to represent the idea behind the models. This use of the 
power kernel function is a kind of generalisation of the Gutenberg-Richter model of 
Section 4.2.

The aggregate claims (Si) models express the aim of the modelling process well, 
when the exponential kernel is used in no- covariate case, Table 6.11. For the 
covariate case, it is indifferent to use the exponential or the power kernel functions 

in the required analysis.

Si Months Weeks

Exponential kernel 5.35 (Zl)- 0.05 (Z2) 10.489 (Zl)- 0.788 (Z2)

Power kernel 1.34 (Zl)- 0.591 (Z2) 6.734 (Zl)- 0.1345 (Z2)

Table 6.11: Comparison of the deviance values of C hap ter 5 Si models for zone 1 

(Zl) and zone 2 (Z2) and months and weeks based data
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S i Months Weeks
Exponential kernel 1.35 (Zl)- 0.06 (Z2) 8.609 (Zl)- 0.143 (Z2)
Power kernel 0.46 (Zl)- 0.165 (Z2) 3.097 (Zl)- 0.03 (Z2)

Table 6.12: Comparison of the deviance values of C hap ter 6 Si models for zone 1 
(Zl) and zone 2 (Z2) and months and weeks based data

The comparison of using months or weeks based data indicates more or less equal 

preference. It depends on the main interest of research. If there are many claims 

arriving one after each other in a short period of time, e.g one year, then, it might 

be suggested to use the weeks based data. For our analysis here, months data seems 

like a slightly better choice to work with. The similar pattern of the jumps in claim 

arrivals and other variables are observed in both months and weeks cases.

Parameters Zone 1 Zone 2 no. of claims 95 % Cl

P 0.37 0.325 Zl: 3602 /  Z2: 676
Zl
Z2

(0.369, 0.372) 
(0.323, 0.327)

<*18 7.85 NA Zl: 130 /  Z2: 0 Zl (7.821,7.939)

<*19 NA 5.79 Zl: 3 /  Z2: 8
Zl: NA
Z2: (5.73999,5.83001)

<*22 6.5 5.62 Zl: 132 /  Z2: 46
Zl
Z2

(6.5199,6.5311)
(5.609,5.631)

<*25 4.61 NA Zl: 45 /  Z2: 1 Zl
Z2

(4.599,4.6401)
NA

<*26 5.268 7.99 Zl: 912 /  Z2: 461
Zl
Z2

(5.2599,5.2701)
(7.9899,8.0019)

<*29 3.51 NA Zl: 19 /  Z2: 2 Zl
Z2

(3.483,3.533)
NA

<*37 8.01 7.47 Zl: 120 /  Z2: 41
Zl
Z2

(7.999,8.0311)
(7.4599,7.4901)

<*38 1.35 2.42 Zl: 32 /  Z2: 58
Zl: (1.3289,1.37001) 
Z2: (2.3991,2.43001)

<*40 7.62 0.55 Zl: 1708 /  Z2: 2
Zl
Z2

(7.58,7.6501)
(0.5309,0.5601)

<*41 2.01 4.13 Zl: 423 /  Z2: 37
Zl
Z2

(2.0099,2.0199)
(4.1299,4.1401)

Table 6.13: Parameter summary of the selected Model 1
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In Table 6.13, we present an example of the parameter values and corresponding 

confidence intervals for a selected model. Same procedure applies for all models. 

This table is compiled from the results of Model 1 in Table 5.2 for the claim number 

Ni. In Table 6.13, it is possible to follow the strike effect of the big earthquakes by 

aj coefficients as aimed, where more claims arrive in the given time period. Same 

argument apply for all the other models.

NA values in Table 6.13 are used for the very low and no claim cases either in 

zone 1 or zone 2. Since the variance-covariance matrix has low values, the confidence 

interval for the parameters are observed to be narrow. Some aj coefficients absorb 

the before and after event claims (or no claims), where one-sided kernel sits. For 

instance, if there are no claims until time 19 for zone 2 and then an earthquake 

occurs, the coefficient for time 19 is larger than the coefficient of time 22, although 

there occurs less claim at time 19 than time 22.

The magnitude Mi  models

In this part, the magnitude M  (in Richter Scale), is modelled with time as a covariate 
by using generalised linear models. The number of claims Ni is basically replaced 
with the magnitude just of an interest. Since the magnitude is already in logarithmic 
form by Gutenberg-Richter Law (See Section 4.2), the models can be expressed for 

the exponential and power kernel functions, respectively
k

Mij =  o;o +  ^   ̂otje +  €ij,

3=1

and k
Mij — Q!o "h ^   ̂OLj ( (t{ Sj) |.).) ^ -f- j ,

3=1

where M\j stands for the magnitude of observations in each corresponding bin and 

i = = 1, . . . ,  k. The error term has the same assumptions as in Page 183.

By months data:
The following table summarises the results of the magnitude models for zones 1 

and 2 and by using the exponential and the power kernel functions with the use of 

months data.
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Residual deviance Exponential kernel Power kernel

a- Zone 1 45.554 (df 21) 61.392 (df 21)

b- Zone 2 79.004 (df 23) 77.363 (df 24)

Table 6.14: The residual deviance values of the magnitude models for earthquake 

risk zones 1 and 2 in Turkey by months

By weeks data:

Table 6.15 shows the results of the analysis of similar argument of Table 6.14 for 

weeks based data.

Residual deviance Exponential kernel Power kernel

a- Zone 1 353.380 (df 124) 420.797 (df 123)

b- Zone 2 254.651 (df 91) 297.447 (df 92)

Table 6.15: The residual deviance values of the magnitude models for earthquake 

risk zones 1 and 2 in Turkey by weeks

The residual deviance values are lower for the months data in Table 6.14 than 

that of the weeks data in Table 6.15 when modelling the magnitude as a dependent 

variable on time. The pre-shock ordinary time period is observed to have some effect 

in the magnitude models and the models still pick the big earthquakes, which occur 

at the knots, in both cases. Generally, earthquakes of big magnitude are expected 

to occur in risk zone 1 classified areas. In Table 6.14, the lower deviance values 

are observed for zone 1 both with the use of the exponential and the power kernel 

functions. Conversely, in Table 6.15, in terms of weeks data, the higher deviance 

values come from zone 1. This might suggest that the choice of months is rather 

preferable time domain for the magnitude analysis. In a way, it can be interpreted as 

the magnitude overwrites the effect of time, when time itself is used as a covariate. 

At certain times, magnitude is the factor to cause a lot of claims. It is a well-known 

fact that magnitude is one of the key factors in most of the earthquake studies. 

The risk zoning map and the earthquake insurance premium calculations consider
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its effect in practice.

When the magnitude of the data is increased one degree, for instance magni­

tude of 5.4 is changed to magnitude 6.4 with 10 times more destructive effect 

(ioO- =  106-4-5-4 =  10), the following tables are observed for months and weeks 

data, respectively. The deviance values increase in both risk zones and for the use 

of the exponential and the power kernel functions. The significant earthquakes, 

which are parametrised by aj coefficients, are still selected with their slightly higher 

values than the actual data magnitude. The lower deviance values are still observed 

with the use of the exponential kernel by months-based time. The use of the ex­

ponential kernel for zone 2 claims gives the minimum deviance among the other 

cases.

Residual deviance Exponential kernel Power kernel

a- Zone 1 56.563 73.894

b- Zone 2 95.304 93.207

Table 6.16: The residual deviance values of the magnitude models for earthquake 

risk zones 1 and 2 in Turkey by months

Residual deviance Exponential kernel Power kernel

a- Zone 1 428.785 505.049

b- Zone 2 308.375 358.761

Table 6.17: The residual deviance values of the magnitude models for earthquake 

risk zones 1 and 2 in Turkey by weeks

As a general conclusion on the claims modelling, the most reasonable way to 

express the models for the claim number Ni and the aggregate claims (total claim 

amount) Si of the Turkish Catastrophe Insurance Pool data is to model the response 

variable by considering the effect of the magnitude and the number of residential 

buildings of the earthquake place. The suggested models of the thesis data are given
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below first with the use of the exponential kernel function

Ni ~  Pois(Ai),

where log A* =  o0 +  S jL i +  mi -f rj. For the aggregate claims Si

log Si ~  N(ni,af),

where fii = a0 + J2j=1 +  log JVj +  m/ +  ?7 for the use of the exponential
kernel. Here mi stands for the magnitude, rj denotes the number of residential 

buildings, i = 1, . . . ,  n, j  = 1, . . . ,  k and I = 1 , . . . ,  k. These formulas change into 

the following with the use of the power kernel function as
k

log Ai =  a 0 +  ^2otj((ti -  5j)|+)_/3 +  mi +  rz, 
j=i

and
log Si ~  N(//j,of),

where Hi = a0 + Ylj=i aj((U ~  5j)l+)-/3 +  loSN{ + mi + rz.
The following Tables 6.18 and 6.19 give the selection of the most reasonable 

models as a summary of the modelling chapters. Table 6.18 is for the number of 

claims Ni and Table 6.19 presents the total claim amount Si of the same data.

M odels
Chapter 5 

(without covariate)

Chapter 6 

(with covariate)
i) Exponential case-Zone 1 Model 1 - Table 5.2 Model 9 - Table 6.1
ii) Power case-Zone 2 Model 3 - Table 5.4 Model 11 - Table 6.3

Table 6.18: The final Ni models of the modelling process

M odels
Chapter 5 

(without covariate)

Chapter 6 

(with covariate)
i) Exponential case-Zone 1 Model 5 - Table 5.6 Model 13 - Table 6.5
ii) Power case-Zone 2 Model 7 - Table 5.8 Model 15 - Table 6.7

Table 6.19: The final S i  models of the modelling process
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It is a fact that the magnitude of an earthquake is the key factor to cause life 

losses and damage to the structures/infrastructures. However, if the building code 

applications (Turkish Building Code 1998) are strong enough, especially in disaster- 

prone countries, whatever the level of the magnitude is, the damage can be quite 

small. For instance, an earthquake of magnitude 7.0 causes few casualties and less 

damage in San Francisco; however, it ends up with thousands of deaths and a huge 

amount of monetary losses in any part of Turkey due to the lack of building code 

applications, unawareness of the public and authorities and lack of ex-ante and 

post-ante (mitigation/rescue/rehabilitation) facilities. Another point to notice is 

that the data of the Turkish Catastrophe Insurance Pool is just the claims of the 

residential buildings within the municipality borders. If the TCIP (the regulations 

are given in the next chapter) offers the mandatory earthquake insurance for the 

commercial facilities, the number of claims and the claim amount will change after 

an earthquake. The industrial plants buy insurance from the international sources. 
If the business premises buy earthquake insurance via the TCIP system, and since 
the pool reinsures itself, the reserves might increase by the profit. The suggested 
models can be calibrated with the updated data and the effect of the high number 
and high amount of the claims of industry can be observed on the parameters.
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Chapter 7 

D isaster Risk M anagement

An important instrument in the education of actuarial science is the ‘Risk Theory’ 

[Kaas et al., 2001]. Therefore, it is a good start to this chapter with some details of 

‘Risk’, which is simply defined as Risk =  Hazard x Vulnerability (see the Glossary). 

Risk management is a process of identifying and selecting the most appropriate 

techniques for treating loss exposures. The following are the basic steps of this 
process [Rejda, 2003]:

1. Identification of the potential losses,

2. Evaluation of the potential losses,

3. Selection of the appropriate techniques for treating loss exposures, 

a) Risk control

Avoidance (e.g. Not marrying for not getting divorce.) 

n) Loss prevention (e.g. Take safe-driving courses and drive defensively.) 

in) Loss control 

Risk financing

Retention (e.g. A risk manager can fail to identify all company assets, which 

could be damaged in an earthquake.)

ii) Noninsurance transfers (e.g. bonds, hedging)
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iii) Commercial insurance

4. Implementation and administration of the program.

The suggested risk management techniques according to the loss severity and 

loss frequency (see the Glossary) are given below. Since the earthquakes are low 

frequency and high severity events, the best way to deal with their consequences is 

re/insurance applications.

Type of loss Loss frequency Loss severity
Risk Management 
Technique

1 Low Low Retention

2 High Low
Loss prevention 
and retention

3 Low High Insurance
4 High High Avoidance

In terms of disaster risk management, the following chart can be suggested 
[Ibarra and Mechler, 2006]:

Risk transfer (e.g insurance, cat bonds, micro-insurance)

Risk identification (e.g. GIS systems, hazard maps)

Risk reduction (e.g. building code application, early warning systems)

7.1 Natural Hazard Insurance

The number of the catastrophic events has dramatically increased in the past decades. 

This increase can be named to result from the rise in world’s population (demo­

graphic changes), the unbalance of nature, the Greenhouse effect (changes in the 

level of Chlorofluorocarbon-CFC- in the atmosphere), the climate change, the widen­

ing hole in the ozone layer, the loss of rain forests and the nuclear tests conducted 

by developed countries.
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Countries suffer from different types of losses depending on the severity of the 

disaster. The loss figures can reach to huge amounts both in life and economical 

terms. The amount of the number of deaths is almost four times more in developing 

countries than that of the developed ones [Ibarra and Mechler, 2006]. The countries 

try to reduce the effect of disasters by some precautions. One of the suggested ways 

to deal with the possible economical losses due to natural disasters is to have a well- 

developed and effective insurance system (contingent credit, reserve funds, bonds are 

some other methods) within the context of the national disaster risk management 

program. Some devastating disasters made the countries pay more attention and 

develop disaster emergency plans for mainly by the help of insurance sector. For 

instance, the Great fire of London in 1666 made a significant improvement in the 

fire insurance sector of United Kingdom.

The economic impacts of disasters at the macro level are basically categorised as 

follows:

1. Direct effects (e.g. life losses, building damage, energy loss, communication 
lacks),

2. Indirect effects (e.g. wage losses due to life losses, tax changes),

3. Secondary (e.g. the change in GDP, export/import rates) effects.

Mitigation and risk financing are the main two mechanisms to reduce the net eco­

nomic losses caused by the disasters. Physical vulnerability can be reduced by using 

mitigation and financial vulnerability can be reduced by risk financing. If abundant 

amount of capital can be kept in the reserved by the government during the ex-ante 

period, most of the direct losses can be covered with it and this helps to lessen the in­

direct and secondary effects of the disasters [Linnerooth-Bayer and Mechler, 2005].

Micro-finance (e.g. savings, investment, credit, insurance) is another useful tool 

in the speed up process of the post-disaster recovery. It is one of the methods that 

began to be used in the recent years as a part of the whole disaster risk reduc­

tion/mitigation process of the countries. Micro-finance also helps to reduce vulner­

ability and increase the capacity to deal with the disaster socio-economic shocks.
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Micro insurance is a branch mechanism of micro-finance. Micro insurance does not 

need the involvement of the national governments and can be handled by the local 

governments and other institutions; whereas, macro insurance requires the step in 

of the national and local governments and sometimes the private insurers depending 

on the size of the damage.

EM-DAT
The Emergency Disaster Database (EM-DAT), which is directed by the Centre 

for Research on the Epidemiology of Disasters (CRED), is established in 1988 at the 

Catholic University of Louvain, Belgium. EM-DAT is the most complete publicly 

accessible international database with the core data on the occurrence and effects 

of 15,000 disasters, which occurred across the world from 1900 to present. The 

data is obtained from NGOs, UN agencies, insurance companies, media-press and 
research centres. It is possible to obtain the human and economic losses via EM- 

DAT [IFRC, 2005].
The following conditions are required to enter disaster data into EM-DAT system 

[IFRC, 2005]:

1. Ten or more people recorded killed (i.e. confirmed dead and missing people),

2. 100 people reported affected (i.e. homeless, people with urgent survival needs),

3. Declaration of a state of emergency,

4. Call for international assistance.

The following tables are prepared from the EM-DAT, CRED, University of Lou­

vain sources and give information on the number of natural disasters, the number of 

people killed and the estimated damage by continent and by year due to disasters 

[IFRC, 2005].
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2000 2001 2002 2003 2004 Total
Africa 196 186 201 163 161 907
Americas 147 128 153 119 131 678
Asia 289 295 301 264 313 1,462"
Europe 122 92 111 85 93 503
Oceania 13 18 18 20 21 90
Total 767 719 784 651 719 3,640

Table 7.1: Total number of reported disasters from 2000 until 2004. Source: EM- 
DAT, CRED, University of Louvain, Belgium.

The high figures in the following Tables 7.2 and 7.3 are due to the Indonesia 

tsunami disaster, which occurred in December 2004. Generally, most of the life 

(60 % of the world’s life losses) and economical losses (50 % of the world’s total 

economical disaster losses) happen in the Asia continent as a result of the densely 

populated (40 % of the world’s population), developing or undeveloped, disaster- 

prone countries of the region.

2000 ^ 0 0 1 2002 2003 2004 Total
Africa 5,756 4,462 8,272 5,810 4,308 28,608
Americas 1,82CT 3,460 2,285 2,026 8,269 17,860
Asia 11,608 29,255 13,358 37,860 236,102 328,183
Europe 1,627 2,196 1,699 31,046 1,182 37,750
Oceania 205 9 91 64 35 404
Total 21,016 39,382 25,705 76,806 249,896 413,572

Table 7.2: Total number of people killed due to disasters from 2000 until 2004. 
Source: EM-DAT, CRED, University of Louvain, Belgium.

2000 2001 2002 2003 2004 Total
Africa 164 339 144 5,684 1480 7,811
Americas 3,588 11,090 3,547 14;272' "27,89r..... 60,388
Asia 18,074 17,160 7,853 17,766 67,395 128,248
Europe 9,070 895 17,081 19,108 2,028 48,182
Oceania 553 364 410 617 516 2,460
Total 31,449 29,848 29,035 57,447 99,310 247,089

Table 7.3: Total amount of disaster estimated damage in millions of USD (2004 
prices) from 2000 until 2004. Source: EM-DAT, CRED, University of Louvain, 
Belgium.

Figure 7.1 shows the economical consequences of the different types of natural 

disasters between 1975-2005.
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Annual reported economic damages from natural disasters: 1975-2005

^  /  ** ** ** ^  ̂  ̂  ̂  ,*fe ̂  f  f  s,* / “ <pv ̂  v,* /  ^  ̂  ^  /  /
See d ed  disasters win iarjest economic roped

Figure 7.1: Annual reported economic damages from natural disasters: 1975-2005. 
Source: EM DAT

The effect of natural disasters on the whole economy and disaster insurance sector 

between 1950 and 2002 is given in Figure 7.2.

Great natural catastrophes 1950-2002
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Figure 7.2: Great natural catastrophes 1950-2002.
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The Application of Natural Disaster Management Programs in Some 

Countries

Sudden and widespread events like earthquakes, windstorms (hurricanes, cyclones 

and typhoons), floods, droughts, famines, fires, avalanche, chemical and nuclear ac­

cidents, epidemics, volcanic eruptions cause loss of human life and damage to the 

social and economical systems. Earthquakes capture the largest portion among 

those disasters by 19 %. The most disaster vulnerable countries in the world, con­

sidering the yearly total number of disasters are ranked as Colombia, China and the 

Philippines.

There are different disaster management programmes in application in some coun­

tries, which face different types of disasters. For instance [ulk, 2000]:

1. Japan is prone to earthquakes and reinsurance (Japanese Earthquake Reinsur­

ance Company - JER) is an important tool to response to the effects of quakes. 
JER was established in 1966 against earthquake, tsunami and volcanic damage 
risks [Gurenko et al., 2006],

2. California (California Earthquake Authority - CEA- established in 1996 /earth­
quake risk coverage only) and New Zealand (Earthquake and War Damage 

Commission - founded after 1944) also face with earthquakes frequently due 

to the active faults. After the 17/August/1999 Marmara earthquake, Turkey 
has developed a programme called the ‘Turkish Catastrophe Insurance Pool - 

TCIP’, in which the systems of the CEA and New Zealand Commission are 

combined as basis,

3. Hurricanes are the most frequent disasters in Hawaii (Hurricane Relief Fund) 

and Florida (Joint Underwriting Association - JUA, Hurricane Catastrophe 

Fund),

4. France has a system in use, Caisse Central de Reassurance, to mitigate the 

effects of the disasters, especially floods (It is estimated that there is a severe 

flood in Paris in every 100 years.). Also, there is Catastrophe Naturalles 

(CatNat) system established in 1982 to cover all disasters except windstorm, 

ice and snow [Gurenko et al., 2006],
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5. In Spain, there is Consorcio de Compensacion de Segures, which is established 

in 1954, to cope with the effects of earthquakes, tidal waves, floods, volcanic 

eruptions and cyclonic storms [Gurenko et al., 2006],

6. In Northern Ireland, governmental insurance is implied against terrorist acts,

7. There were two big explosions in London in 1993. After these, a program to 

cover terrorism attacks is in operation in England. This program is reinsured 

by the Pool Re, which can borrow from the Bank of England when it is out of 

its resources. Moreover, the ‘Thames Barrier’ in London is the world’s largest 

movable flood barrier that was designed to protect the capital from floods 

until at least year 2030,

8. Taiwan has an earthquake risk coverage system, which is established in 2002 

and called Taiwan Residential Earthquake Insurance Pool (TREIP).

7.1.1 Earthquake Insurance

The 1906 San Francisco earthquake initiated the important implications of earth­
quake insurance. Since the occurrence, frequency and damage of the earthquakes 
are not predictable, it is not in the same category with life, automobile or health 

insurance for the insurance companies. Some countries have direct earthquake in­

surance schemes, whereas some offers the earthquake coverage in addition to the fire 

insurance policies.

Today, it is possible to estimate losses of earthquakes up to a degree. The mag­

nitude of an earthquake, the depth of the epicentre, duration of the earthquake, 

the distance of the settlement area to the focus of the earthquake and some ground 

structure help scientists to calculate the loss ratio (the ratio of incurred claims to 

the earned premiums). Beside all of these factors, the earthquake zone maps, the 

location, the height and the age of the buildings, the historical earthquake records 

help insurance companies to determine the premium, the amount that the insured 

pays to the insurer for the earthquake risk it carries, of the earthquake insurance. 

The premium also changes whether the insured object is a household or commercial

2 0 2



building.

Applications of Earthquake Insurance in Some Countries
The United States of America

In U.S.A, private companies provide policies for earthquakes, tsunamis, land­

slides and other kinds of natural hazards. California is in a very active seismic 

zone. Therefore, in 1984, by a state law, it was required that insurance compa­

nies add earthquake coverage to the policies. However, by that time 80 % of the 

homeowners did not have such insurance probably due to the substantial deductible 

amount. Later in 1995, the California Earthquake Authority (CEA) was established 

to spread and operate earthquake insurance in California State. The CEA depends 

on the insurance market financially but it is managed by the public. It was launched 

in December 1996 under the partnership of thirteen Californian insurance compa­

nies. The revenue of CEA investment is exempted from taxes. It has a reserve of 
USD 7.2b. The insurance coverage is up to USD 100,000 for rebuilding and repair 
of a house, USD 5,000 for its contents and USD 1,500 for other living expenses 
[Bolt, 1988].

There is also a National Flood Insurance Program of the U.S.A. managed by 
Federal Emergency Management Agency (FEMA), Federal Insurance Administra­

tion and Mitigation Directorate. The program includes the standard flood insurance 

policy with buildings and contents on separate policies. It also covers the increased 

cost of compliance coverage and preferred risk policy premiums.
Japan
The insurance sector is highly developed in Japan and the country is ranked the 

first for life insurance applications all over the world. The seismic risk is also high 

in Japan, like in California. Earthquake insurance became very important after 

the 1966 Niigata earthquake and has been revised after the 1995 Kobe earthquake. 

The islands of Japan are divided into twelve zones according to the degree of the 

earthquake hazard. Zone 5, including Tokyo, Kanagawa, Chiba and Yokohama, is 

classified as one of the most risky areas.

Buildings and their contents are included in the earthquake insurance. The im-
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plications are divided into two groups: the personal and the industrial risks. The 

private insurance companies cover a big amount of the personal risks. The rest of 

those risks are under the responsibility of Japan Earthquake Reinsurance Company 

(JER). On the other hand, the private sector offers a full coverage of the indus­

trial risks by transferring some amount to the international reinsurance companies 

[Bolt, 1988].

New Zealand

Following the 1944 earthquake, the companies added the compulsory earthquake 

coverage to the fire policies in 1946. Later on, all insurance policies included this 

earthquake coverage. Today, there is a Natural Disaster Fund in New Zealand with 

a reserve of NZD 3.2b under the administration of Earthquake Commission. The 

policies cover up to the damage of NZD 100,000 for homes and NZD 20,000 for the 

contents [Bolt, 1988].
France
Caisse Centrale de Reassurance (CCR) is the main state-owned authority and 

reassurer. All of the natural disasters were included in policies by a law of 1982, 
after the flooding of the River Seine in Paris in 1981. The natural disasters only 
have a cover under the declaration of the Inter-Ministrial Commission. The coverage 
is available by the original fire policy.

Other Countries
United Kingdom experienced small earthquakes in some areas throughout its 

history (see the Appendix). The earthquake coverage is available under some policies 

within the overall rate. Spain and Switzerland have compulsory earthquake coverage 

in the policies. In Italy and Portugal, it is included in the fire policies, whereas in 

Greece it is separate from fire insurance. In the Philippines, there is a very wide and 

effective use of the Crop Insurance. The country is also in the process of developing a 

similar system to the Turkish Catastrophe Insurance Pool (TCIP), which is planned 

to be names as the Philippines Catastrophe Insurance Pool (PCIP).

Colombia, Ethiopia, India, Mexico, Sri-Lanka, Nepal, El Salvador and Honduras 

are some countries with applications of different types of mitigation/recovery fi­

nancial strategies (e.g. micro finance, weather derivatives, contingent credit, cat
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bonds, index-based weather insurance) for different types of disasters striking those. 

In Canada, people have earthquake insurance under the fire policies, which differs 

from zone to zone. Some regions of Canada are highly prone to earthquakes (West 

Coast), some have moderate risk (Eastern Canada), some have little risk (Southern 

Prairies) and some virtually none (Canadian Shield). In countries without seismic 

risk, like Belgium, Germany, the Netherlands, Denmark, Sweden and Norway, the 

earthquake coverage is not available [Bolt, 1988].

7.2 The Insurance System  in Turkey

The insurance business was managed by the international agencies, especially after 

the 1870 Beyoglu fire. The first national insurance company ‘Ottoman General 

Insurance Company’ was founded in 1916 during the Ottoman Empire and the 

foundation of the others followed. Tiirkiye I§ Bankasi was established in 1924. Then 
in 1925 Anadolu Sigorta A.§ (Anadolu Insurance), which is the insurance group 

of Tiirkiye I§ Bankasi, was launched. In the following years, there was a decline 
in the number of insurance companies, which caused a stop-period in the sector 
as a result of the implication of the development programmes of the government. 

Some improvements started in the insurance market by the law dated 1987. The 

life and non-life insurance separation of the policies started after 1991. Today, 
there are about sixty seven insurance and reinsurance companies in total in Turkey, 

most of which are privately owned. Those companies have to be a member of the 

‘Insurance and Reinsurance Companies’ Association’, which links the government 

and insurance industry for the development of insurance and solidarity between 

companies. Insurance Supervisory Office as a part of the State Ministry supervises 

insurance in Turkey. The Prime Ministry Undersecretariat of the Treasury has a 

general insurance directorate, which regulates insurance system of the country.

The legal system in Turkey for disasters consists of the Law of Disasters No.7269, 

the Development Law No.3194 and the Tender Law No.2886. The Law of Disas­

ters mainly deals with post-ante events and has a little part on disaster mitigation. 

The Development Law defines the plans to follow in disaster preparedness. The 

Tender Law states the conditions for the implementation of the public construction
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projects. These laws are being reviewed to establish a strong National Disaster 

Risk Management Program and to make the existing Building Code of 1998 ap­

plied more efficiently. Decree Law No.587 officialized the compulsory earthquake 

insurance on 27/December/1999. This law explains the roles of the General Direc­

torate of Insurance at the Treasury, the TCIP board and the operational manager 

[Gurenko et al., 2006].

The earthquake coverage was added to the fire policies with the demand of the 

insured between 1904 and 1929. After 1939 Erzincan earthquake, the earthquake 

risk was put out of that coverage and replaced back during 60’s. More than 50 

% (665,000) of the fire policies (1,240,000), which were sold in 1998, contained an 

earthquake coverage. This coverage requires the insured to pay 20 % of the loss and 

5 % deductible amount over the price of the insured-value, the insurer pays the 80 
% of the loss as coinsurance.

7.2.1 The Turkish C atastrophe Insurance P ool (TC IP)

As mentioned earlier, before the Marmara earthquake, fire insurance policies used 
to cover the earthquake risk in Turkey. The Prime Ministry Undersecretariat of the 
Treasury started the construction of the insurance pool titled the ‘Turkish Catas­

trophe Insurance Pool (TCIP)’, which is established with the basis of the systems of 
California (California Earthquake Authority - CEA) and New Zealand (Earthquake 

and War Damage Commission - founded after 1944), as a conclusion of studies for 

the necessity of an earthquake insurance. The Turkish Catastrophe Insurance Pool 

started operation on 27/September/2000.

The aim of the TCIP is to transfer the national risk to world-wide risk shar­

ing pools under the management of the international reinsurance companies. The 

substantial capital resources support the TCIP. The plan is to have an earthquake 

coverage of USD 30.000 per housing unit. In the TCIP contracts, the deductible 

amount is 2 % of the losses. The losses, which exceed this threshold, is covered by 

the TCIP.

As well as the idea of the importance of an earthquake insurance, the TCIP 

will also play a significant role in the control of the use of the necessary building
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codes during the construction, since it is required by the reinsurers [Erdik, 2000, 

Bibbee et al., 2000]. The use and the control of the current Building Code 1998 is 

one of the main problems in terms of disaster management in Turkey.

The damage and losses due to the following hazards are in the coverage of the 

Turkish Catastrophe Insurance Pool:

1. Earthquakes,

2. Fires due to an earthquake,

3. Explosions as a result of an earthquake,

4. Landslides following an earthquake.

There are five different earthquake risk zones in Turkey according to the classi­

fication by the General Directorate of the Disaster Affairs. The aim is to provide 
minimum amount standard insurance for residents living in those areas. The manda­

tory earthquake insurance only covers the losses of the residential buildings within 
the municipality borders. It does not offer any coverage for the rural areas or for the 
building contents. House-aimed built buildings can be used as offices afterwards and 
can be covered with the earthquake insurance but office-built buildings are excluded 

from the coverage. This urban coverage is one of the obstacles of the TCIP since 

the ideal prototype insurance should be able to reach all parts of the community, 

that is including the poor and the vulnerable areas.

The TCIP is directed by a board of members, who represent government, academia 

and insurance companies. The administrative power is the General Directorate of 

Insurance, Prime Ministry Undersecretariat of Turkey. The operational manage­

ment of the Pool is contracted out for five year period. The national reinsurance 

company ‘Milli Reassurance (Milli Re.Ltd.)’ was the Pool Manager from the estab­

lishment until August 2005 and since then Garanti Insurance took it over. There 

are 32 authorised insurance companies to sell TCIP policies by March 2005 fig­

ures [Gurenko et al., 2006]. The following chart shows the marketing process of the 

mandatory earthquake insurance scheme [Gurenko et al., 2006]:
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Homeowners

Insurance companies

Agents

There are fifteen tariffs in the TCIP, which are calculated according to five earth­

quake risk zones and three types of buildings. Table 7.4 gives the yearly premium 

rates decided by the Turkish Catastrophe Insurance Pool. These values are decided 

by international advisors during the foundation period of the TCIP. Then it is re­

vised by the administration of the TCIP according to the changes in the cost-value 

of the dwellings each year. The methodology to obtain these tariff prices in Table 

7.4 is not given by the data providers for confidential reasons.

Building type
Zone 1 
(%)

Zone 2 
(%)

Zone 3 
(%)

Zone 4
(%)

Zone 5 
(%)

Steel, reinforced 
concrete

2.20 1.55 0.83 0.55 0.44

Masonry 3.85 2.75 1.43 0.60 0.50
Other 5.50 3.53 1.76 0.78 0.98

Table 7.4: The yearly premium rates of the TCIP by earthquake risk zone and 
building type [TCIP, 2006].

The insured value of a property is decided every year by ^(cost per square meter x 

gross area of the house/flat) x tariff price^. This value changes every year according 

to the increase in the construction cost of a property. The maximum coverage of 

the TCIP is 100,000 YTL for each house/flat.
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Place Risk Zone Yearly premium 
(YTL)

Ankara-centre 4 20.90
Artvin-centre 3 31.54
Bingol-centre 1 83.60
Erzurum-centre 2 58.90
Karaman-centre 5 16.72

Table 7.5: The yearly premium rates of the compulsory earthquake insurance 
for a 100m2 reinforced concrete flat in Turkey in five risk zones obtained from 
[TCIP, 2006].

Table 7.5 gives an example of a yearly mandatory earthquake insurance premium 

amount to be paid by the insured for 100m2 reinforced concrete flat, which has 

an insured value of 38,000 YTL. These values in Table 7.5 are calculated by using 

the rates for reinforced concrete building type in Table 7.4 (e.g. for risk zone 1, 

Bingol-centre, the premium to be paid in 1-year is: 38,000(2.20%) =  83.60).
The TCIP aims to pay back the claims latest in one month time after the claim is 

made. The experts of the TCIP arrive to the earthquake area just after an occurrence 
of an earthquake and calculate the initial expected losses of the earthquake insurance 
holders. The experts pay the insurance holders some money in advance without any 
limitation (level of damage, type of the building etc.), so that the affected people 

can provide some of their urgent needs. The payouts to the policyholders in the 

TCIP scheme is given in the Marmara Earthquake Emergency Construction Project 
(MEER) as

/ Maximum sum insured Paid claims = (—----------   :------ — --------) x Losses.
Property Value at time of disaster

Next, Table 7.6 gives the number of the earthquake claims reported to the TCIP 

and the payments made for these claims in terms of years by the figures of 26/Oc- 

tober/2006.
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Year
The number of 
earthquakes

The number of 
claims

The total payment 
in YTL

2000 1 6 23,022

2001 17 338 127,497

2002 21 1558 2,284,835

2003 20 2504 5,203,990

2004 31 586 768,692

2005 39 3448 7,970,223

2006 13 368 1,089,633

Total 142 8808 17,467,892

Table 7.6: The claim and payment information of the TCIP [TCIP, 2006].

There are tremors (earthquake of magnitude < 4) everyday in different parts of 
Turkey. Even slight damages, which are caused by these tremors, are reported to the 

TCIP and the claim payment data is updated regularly. The TCIP reassured USD 
540m of its risk to A-level and above rated international reassurers in 2001, that of 
USD 840m in 2002 and USD 740m in 2003. In 2006, the reinsured amount of the 

pool is EUR 920m (~ USD 1.1b). By the 2005 Figures, the payment capacity of the 
TCIP is approximately EUR 1.1b (~  USD 1.33b). In case of a disaster strike, the 

payment sources of the TCIP are the collected premiums in the pool, the reinsurance 

back-up and a special fund from the World Bank. This fund will cover the 100 % 

of the claims, which the Pool and the international reinsurance will not be able to 

cover.

The culture of insurance is still far from many parts of the country. The author­

ities are trying to change this situation by education, seminars, use of media. It 

will be a continuous process for years until the importance of a disaster insurance 

settles down. It is interesting to observe that every car owner has the compulsory 

traffic insurance in Turkey. They care about their cars more than they care about 

their homes.

The contract period for the compulsory earthquake insurance is 1-year and many 

householders do not renew their contracts when it is terminated, if they did not
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experience an earthquake during the contract year. When they do not renew their 

contracts, although no earthquake occurred during the contract period, they can not 

get any money back as they have received the service by the TCIP. It is interesting 

to observe that if an earthquake occurs, the next day there is an increase in the 

number of applications to buy the mandatory earthquake insurance policies from 

the agencies.

Next, Table 7.7 gives the number of buildings and the number of policies in 2004, 

2005 and 2006 according to the administrative regions of Turkey by the figures of 

24/May/2006. Unfortunately, there is still not enough number of the compulsory 

earthquake insurance holders as originally planned at the beginning of the establish­

ment of the TCIP. The penetration rate in Turkey as of 01/February/2005 is 16.51 

%, where most of the policies are sold in the Marmara region [Gurenko et al., 2006]. 

By the figures of 24/May/2006:

Region
The no. of
residential
buildings

The no. of 
policies in 
2004

The no. of 
policies in 
2005

The no. of 
policies in 
2006

Marmara 4.143.469 1.085.630 1.074.603 1.146.142
Mid Anatolia 2.227.056 363.529 366.519 445.546
Aegean 2.318.262 347.676 362.134 460.823
Mediterranean 1.663.126 136.558 147.944 202.543
Black Sea 1.282.098 104.435 111.653 167.343
East Anatolia 611.788 42.105 47.181 59.320
South East 
Anatolia

742.866 29.329 31.596 50.317

Total 12.988.665 2.109.262 2.141.630 2.532.034

Table 7.7: The comparison of the number of buildings and the number of policies 
by 2004-2005-2006 according to the TCIP [TCIP, 2006].

The worst fear in the country is to experience the famous severe Istanbul earth­

quake, which is expected at any time in the future. It can hit in one hour, tomorrow, 

next week or next year. Some people neglect to buy the earthquake insurance al­
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though they are aware of the risk. The regulators of the TCIP is planning to start 

an automatic insurance system, where the premiums will be collected by adding 

some amount in the utility bills, as a solution suggestion for this negligence. More­

over, some residents of Istanbul can not afford even low premium rates and again 

the TCIP regulators are trying to improve the system by finding sources to provide 

insurance for the poor by the help of the government.

7.2.2 Financial estim ation

The calculation of the expected total claim amount (aggregate mean), E(S(t)), in 

the portfolio of risks (the Turkish Catastrophe Insurance Pool in our case) due to 

the catastrophic events is a high interest of the actuaries in the recent years. The 

aggregate mean, E(S(t)), is both used in determining the sufficient amount of the 

reserves to keep the surplus (free reserves) of the company in positive (see (3.8)) and 
in the calculation of the net premium (aka pure premium). The number of claims 
(aka claim frequency) N{ (N{ notation is used for binning case) and the claim amount 

(aka claim severity) X{ are the key elements in the computation of the aggregate 
claims (total claim amount) Si of the portfolio. The relation between the response 
variables, which are used in the modelling chapters, and the aggregate mean can be 
summarised with the following chart:

The number of claims (Ni) &; The claim amount (X i)

The total claim amount (S(t))

Net (Pure) premium (E(S(t)))

The results of the mathematical models of Chapter 4 and the parameter estimates 

of and a / s  from the claim models of Chapters 5 and 6 are used in the scenarios 

of this Chapter to estimate the aggregate mean E(S(t)), the aggregate variance 

Var(S(t)), the standard deviation, the skewness and the relative variance of the 

Turkish Catastrophe Insurance Pool claims data. Here one should be reminded of 

the notation difference between S(t) and Si, where S{ refers to the aggregate claims
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in the corresponding bin i of the bin case. Also, Xi refers to the raw claim amount 

of the bin case.

The rate of an inhomogeneous claim number process N(t) (see R em ark 2) is 

A(t) (in non-binning case) and the intensity of the aggregate claims Si is the mean 

Hi (binning case). The two main assumptions, which are used throughout the thesis 

work, are the independency of the claim number process N(t) and the raw claim 

amount Xi and that the raw X^s  being independent identically distributed (iid). 

The dependency of the claim number and the aggregate claims (or the individual 

claim amount) can be studied as a part of future work by using the idea of copula 

functions (see the Appendix for basic definition of copula).

After using the binning approach, the estimates of the two intensities ( A Hi) are 

needed to compute the aggregate mean E(S(t)), which is same as the necessary free 

reserve amount of the pool or the net (pure) premium to charge for the portfolio. 

It should be noted that the external effects like the inflation, interest rate, unem­
ployment rate, other economical factors (seasonal trends etc.) and the management 
expenses (office equipment, cost of personnel) are excluded for the calculations of 
the required premium amounts [Booth et al., 1999].

The special kernel functions are chosen as the exponential and the power kernel 

functions to represent the exponential decay of the claim arrivals following an earth­

quake strike in a given time period. The necessary A* and Hi values are estimated 

by using the maximum likelihood estimates (do, (3, dj) of the suggested generalised 

linear models. The substitution of the related estimates in the exponential kernel 

function suggests the following by using the fact in (5.3) and also (5.6)

A. =  g“o+Ej-l '

and k 
fii = do +  ^2®3e~^{ti~Sj)l+ +  loS W ),

3= 1

and the use of the power kernel function results in
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and k
fii = <*o + ^2oij(ti ~  Sj)\+P +  log(A^).

J=1
The choice of the exponential and the power kernel functions are compatible with 

the idea of the decreasing function since they are aimed to represent the claim decays 

as a result of the high jumps of the earthquake claims.

In Section 3.2, the total claim amount process (the aggregate claims) is given 

as S(t) = Xii which is also called the ‘collective risk model’ in the actuarial 

context since the process is the sum of the claim amount from each policy in a certain 

time period. The claim number process N(t) (an inhomogeneous Poisson process) 

and the claim amount process X  (t ) are stochastic variables changing over time. As 

mentioned earlier, the necessary assumptions for the aggregate claims model are 

the independency of the N(t ) and raw claim amount Xi  (mean is 77* and variance 
is Tj) and the independent identically distributed X^s.  Then, the aggregate mean 

E(S(t)) and the aggregate variance Var(S(t)) are obtained by using

E(S(t)) = E(N(t))E(X(t)) = A (t)Vi,

and

Var(S(t)) = E(N(t))Var(X(t))  +  Var(N{t))E(X{t)) = A (i)fa? +  r*),

where rji and t* are the parameters of the chosen X  distribution and the mean (Li of 

the aggregate claims is estimated by using the related maximum likelihood estimates 

of the modelling chapters as given in the equations above. The raw variance is used 

in the further calculations, which is obtained from the data itself.

The rate of the whole process is A* =  Ai (£) +  . . .  +  An because the claim 

number process N(t) is independently Poisson distributed over each bin so Ni ~  

Pois(Aj). The integrals should be evaluated over the fixed time interval of [0,43] 

when analysing the months case and [0,138] or [0,101] for the weeks case of zone 1 

and zone 2 claims data respectively according to the coding of the time variable in 

this study. The rough estimate of the mean intensity A(t) can be calculated as

. 5 , The total number of claims up to time 4297A®  ----------------------- —----------   =  — --------------   —  -  134,
total time 32 (in terms ot months)
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which can be interpreted that each month approximately 134 claims arrived to the 

Turkish Catastrophe Insurance Pool between December 2000 and July 2003. Or in 

terms of weeks

. ? x The total number of claims up to time 4297 « . . .A t  = ----------------------- — ----------   =  —— -----------   —  =  31.14.
total time 138 (in terms ot weeks)

The same estimation procedure above, except the exponentiation of the log-linear 

rate for the claim number counts, applies for the computation of the mean /z* of the 

aggregate claims Si with the use of the exponential kernel as

k
l2i = a0 + ^ 2  aje~^{ti~Sj)l+ +  log(iVi), (7.1)

j=i

and for the power kernel function

k
= ao +  atjfc -  Sj)\+P +  log(Ni). (7.2)

3 = 1

Since the distribution of the aggregate claims Si is chosen as lognormal in our case, 

the mean and the variance of the lognormal Si are as in (5.1) and (5.2), respectively

E{S) = e > (7.3)

and

Var(S) = e2fii+cri (eCT* -  1), (7.4)

where the value of the intensity ^  is estimated in (7.3) and (7.4) with the use of 

the exponential and the power kernel functions by the binning approach. The total 

claim amount model Si is based on log Si values, where log Si ~  Normal (see Figure 

5.1), and the size of the claim due to the intensity of the magnitude is a main factor 

to affect the claim amount modelling.

The claim number process N(t) and the claim amount process X(t)  are both 

stochastic processes along the given time interval (0, t]. If the observation time 

t is fixed, the state X(t)  of the claim amount process X(t)  is a random variable 

in the given time interval with a distribution function Ft(X). At each time point 

£, the stochastic process X  is uniquely determined with the distribution function
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F. The values of the states X(t),  meaning each claim amount corresponding to 

each time point, at different times t ( t i , . . . , t n) are time-dependent (correlated) 

[Daykin et ah, 1994b].

When N(t)  and X(t)  are both stochastic processes, the aggregate claim amount 

S(t) is considered as a doubly-stochastic (Cox) process. However, in our case, the 

rate A(t) (as an approximation of A(t)) is not random itself. That means the claims 

only occur as a result of one type of event, in this case an earthquake. If the claims 

would come from different types of disasters then the intensity A(t) would be random 

and the whole process would be doubly-stochastic [Albrecher and Asmussen, 2005]. 

With this argument, although each claim amount is time-dependent itself, the com­

putation of the Compound Poisson aggregate claim process S(t) uses the calculation 

of the fii(tys as if the X^s  are independent of the distribution of time.

The relation between the aggregate mean and variance of the total claim amount 

S(t) and its cumulant values are given in Section 3.3.1 in Chapter 3, which states 

that
E(S{t)) = k(js) =  A(t)fii = A{t)rj, (7.5)

Var(S(t)) = = A(t)fi2 = A(t)(r}2 +  r). (7.6)

In Statistics, the mean and the variance are the measures for central location and 

dispersion, respectively. There is another measure of the data, ‘skewness’, which is 

an indicator of deviation from a fully symmetric shape [Daykin et al., 1994b]. The 

skewness is calculated as

7 ( s ( ( ) )  =  4  =

a3 (A(fK>§

If the skewness of a random variable is greater than 0, large values of the difference 

of the random variable and its mean, say X  — fj,, are likely to occur, so the right 

tail of the distribution function is heavy. A negative skewness indicates a heavy left

tail and if the random variable X  is symmetric then skewness is 0, but 0 value of

skewness does not indicate symmetry [Kaas et al., 2001].

The lognormal distribution choice for the aggregate claims Si in our case has 

all moments in order [Asmussen, 2000]. As stated in (7.3), the first moment is the
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mean (here we drop the the sub-index i to express the binning case not to cause 

confusion, originally //* when binned)

E(S) = e ^ ,

and the second moment is [Asmussen, 2000]

E (S 2) = e2fi+2a\

Then the variance (see (7.4)) of the lognormal Si is

Var{S) = E (S2) -  (E (S ))2 =  e2fl+2a2 -  ( e ^ ) 2 =  -  1).

The a2 here is the raw variance of the log aggregate claims data and fi is obtained 

from the kernel functions, where the model estimates are substituted.

The use of the moment generating function of the Normal distribution is another 
way to obtain the mean and the variance of the lognormal distribution since it is 
known that if log S  ~  Normal then S  ~  lognormal. The moment generating function 
of the Normal distribution with parameters /jl and a 2 is given in Section 3.3.1 as

Cr2 1?2in the form of eM1?+—~ . By using this moment generating function, the mgf of the 
lognormal distribution is obtained as

Y  =  logs' -> =  E{eay) =

then by exponentiating

My(#) =  E(ee ln s) =  E(e,a,<>) = £(S^) =  e“*+^ .

Substituting 'd = 1 gives the mean of the lognormal distribution as

E { S ) = e ^ sr ,

and the second moment is equal to $ =  2, that is

E(S2) =  e2"-1-3̂ ,  

then the variance of the lognormal distribution is

Var(S) =  E (S 2) -  (E(S))2 = e2̂ ^  -  { e ^ f  =  e2̂ ^  -  1).
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Another measure of the data, the skewness of the lognormal distribution is given in 

[Biihlmann, 1970] as

E(S  -  MS])3 , ^  / -5 — -
7s = — = e + 2 V e*2 -  1.<ta

The third central moment of the lognormal distribution can be obtained by using 

the following skewness formula

E(S  -  £[S])3 _  E(S3) -  3f iE(S2)
v 3 cr3 (7.7)

=  {e°2 +  2 ) y / e a2 — 1,

7 s =

and previously given mean and variance values. If the necessary simplification is 

done in (7.7) and it is solved for E(S 3), the third central moment of the lognormal 

distribution is derived as

E(S3) = 3(e°2 +  2) v/e"2 -  1 +  (3^e2'‘+2̂ 2).

Then the skewness of the Compound Poisson S(t) is computed with

m  A(t) (3(e-2 + 2) V e ^ T  +  (3/ze2̂ 2))
7 (S(t)) =  V -̂---------------------- -5 ---------------------------(7.8)

(A(t)/ia)i (A(t)e2//+2<r )i V ;
The presentation of the first three moments of the total claim amount S(t) seems 
to be enough for the purposes of this study (See also Pages 60-61). As a further 
research interest, the kurtosis and higher moments of S(t) can be studied.

Another statistical measure is the relative variance (coefficient of variation) of 

the total claim amount process S(t), that is

= 4 H r • { 7 - 9 )

Generally, as the number of the policyholders increases, less variation is expected in 

the portfolio [Booth et al., 1999].

The following scenarios are prepared to give the reader the idea of how the sug­

gested models of the previous chapters can be used in actual life. The best reason­

able models of Chapters 5 and 6 are summarised in Tables 6.18 and 6.19 in terms of 

the residual deviance values of the claims data by months classification. However,

218



here we want to make the estimation of the expected total claim amount E(S(t)) 

by weeks based claims data to observe the effect of the even small earthquakes, 

although the residual deviance values are slightly higher in weeks case.

As mentioned before, the exponential kernel function seems to have a better use 

with the zone 1 claims data; whereas zone 2 claims data fits well with the use of 

the power kernel function. The following calculations are presented with the use of 

the exponential kernel because the chosen form of the power kernel function seems 

to behave like the exponential kernel so that it seems to be a better choice to use 

the exponential kernel. As an example, the covariate (magnitude and the residential 

building number) and non-covariate models are used to explore the required reserves 

of the Turkish Catastrophe Insurance Pool. The empirical selection of the signif­

icant earthquakes at selected kernel knots and corresponding parameter estimates 

of (3 and ck/s are used in the estimation process. The financial estimations (e.g. 
E(S(t)), premiums) are based on Turkey New Lira (YTL).

Scenario 1: No more earthquake occurs

Estim ation of the necessary TCIP reserves fo r  risk zone 1 by using 
the exponential kernel

Covariate Models

In this case, we would like to estimate the required reserves and calculate some 

statistical measures of the zone 1 claims data, when the exponential kernel function 

is used for the modelling purposes. The time is based on weeks and the models 

include the time, magnitude and the residential building number effects. The time 

covariate, which we use here for estimation, is the same as the thesis data period, 

that is from December 2000 (starting from week 1 for the first claim) until July 2003 

(ends in week 138). The aim is to estimate the losses of this period. Therefore, the 

estimates of the model parameters (3 and cn’s are used from the results of Model 10 

of Table 6.2 (A* model) and Model 14 of Table 6.6 (Si model) in Chapter 6. Figure

219



7.3 shows the pattern of the claims in earthquake risk zone 1.
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Figure 7.3: The bar plot of the number of claims in risk zone 1. Left: in terms of 
months, right: in terms of weeks.

By using the binning approach, Model 10 provides the parameter estimates for 
the number of claims model with intensity A* =  eao+Lb=i QJe 0{ 1 j)l+. The results of 
Model 10 of Table 6.2 suggests the parameter estimates for zone 1 claims as /3zone i =  

0.2, do — —0.09 and some aj estimates for big earthquakes like dweek 122 — 4.93 
(77,week 122 = 1682 claims), dWeek 60 =  3.87 (72week 60 =  939 claims). The diagnostic 
check of this model is presented in Figures 6.19 and 6.20 in Chapter 6 on the actual 
observations and fitted values.

Next, Figures 7.4 and 7.5, respectively, show the pattern of the intensity of the 
claim number process and the fitted A * in risk zone 1 when the exponential kernel is 
used for the number of claims Ni model for weeks data. We can observe the claim 
jumps, for instance at week 60 and week 122 of Figure 7.4 in the curves of Figure 
7.5. The jump pattern of these claims are also observed in Figure 5.7 and Figure 
5.8 in Chapter 5 both for months and weeks data.
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Figure 7.4: The plot of the exponential kernel function in risk zone 1. x-axis: time 
(in weeks), y-axis: the exponential kernel
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Figure 7.5: The plot of the fitted A; in risk zone 1 by exponential kernel, x-axis: 
time (in weeks), y-axis: Aj

By using (7.1) for our case, the mean intensity function A(t) is estimated for 
instance as

138
e - 0 .0 9 + 3 .9 1 e - ° - 2(t i - 29> + 4 .3 7 e -o -2(t i - 47> + .. .+ 1 .7 1 e - ° -2(t i - 137>cj r  _  5 2 9  

221



It should be noted that the claim number iV* ~  Pois(Aj), so the estimate here seems 

reasonable on this basis. By a similar argument to the computation of A<, the 

estimate of the mean 77* of the claims X  is calculated by the estimates of Model 14 

of Table 6 . 6  (/3 =  0 . 2  and the OLj coefficients from S  models in S-Plus). Also, the 

sample variance of the raw claim amount is used to compute the aggregate variance. 

Figure 7.6 shows the decreasing jump pattern of the exponential kernel function for 

some significant earthquake kernels in risk zone 1 .

0 . 8 -

0 .6 -

0 . 4-

0 . 2 -

Figure 7.6: The exponential kernel in risk zone 1 at weeks 29, 35, 59, 74, 81 and 112

We calculate the mean of the total claim amount S  by using the estimate of 

Ai =  529 for the claim number and the estimate of the mean rji for the claim 

amount as given in the basic theory in Sections 3.2 and 3.3, where we have the i.i.d 

claims X ’s. Then, the aggregate mean E(S( t ) ) ,  is obtained for this scenario as

E(S( t ) )  =/2i  =  529(0.17) =  1,563.77, 

and the corresponding aggregate variance is computed as

Var{S( t ) )  =  <7 ? =  529(258.89 +  0.172) =  28,677.06,

2 2 2



by using (7.5) and (7.6), respectively. The greater variance suggests the greater the 

dispersion (heterogeneity) of the data. This high variance value can be modified by 

computing the standard deviation (square root of the variance) as

sd(S(t ))  =  -vA M SW ) =  169.343.

The corresponding coefficient of variation is obtained by (7.11) and equals to 0.108. 

(7.8) suggests that the skewness of this case is 0.001. These results are based on the 

portfolio of the Turkish Catastrophe Insurance Pool in zone 1 risk areas. Similar 

methodology can be applied based on individual cities in the chosen risk zone as 

part of future research.
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Figure 7.7: The plot of the aggregate mean in risk zone 1 by the use of the expo­
nential kernel, x-axis: time (in weeks), y-axis: the aggregate mean E(S( t ) )

Figures 7.7 and 7.8 are the plots for the future prediction of the aggregate mean 

E(S( t ) )  and the aggregate variance Var(S( t ) ) .  The increasing trend is observed in 

both plots and one can conclude that the required reserves of the Turkish Catastro­

phe Pool is expected to increase in time.
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Figure 7.8: The plot of the aggregate variance in risk zone 1 by the use of the 
exponential kernel, x-axis: time (in weeks), y-axis: the aggregate variance Var{S( t ) )
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Figure 7.9: The plot of the A; deviation versus time, x-axis: time (in weeks), y-axis: 
the deviation of A*

Above, Figure 7.9 shows the combination of the estimates A*, A* +  Std(S) and 

A i — Std (S') in terms of weeks data, where the total claim amount S is lognormal.

Another use of the aggregate mean is to calculate the net premium amount as 

mentioned before. By using the Normal approximation (assuming a large number 

of claims will arrive) referring to the example in Page 50, and the Expected Value
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Principle (EVP), the minimum premium to charge the insured is obtained by the 

following security loading values, that is

1. the probability of a loss in the TCIP is less than 10 % is

Pr(S  < (1 +  c)E(S)) = 0.10,

after standardising

Pr(Z < °.E ^  ) =  0.90.
y/Var(S)'

The corresponding test-statistic value from the Standard Normal Table is 

1.282, so the security loading is

cE^  =  1.282 ^ q - 282) ^ 563-7^  0,138,
y/Var(S)  169.343

which means 0.138 % security in the portfolio. Then the minimum amount of 

premium with no deductible to charge to ensure that the probability of loss is 

less than 10 % is cE{S) = (0.138)(1,563.77) =  217.098.

2. the probability of a loss in the TCIP is less than 5 % gives a security loading 

of
cE(S)

—r  -  -  - =  1.645 -► c =  0.178,Vv îs)
with a required premium amount of cE(S) = (0.178) (1,563.77) =  278.569 

with no deductible.

3. the probability of a loss in the TCIP is less than 1 % concludes

—C =  2.33 -*c  = 0.252,
^ V a r(S )

which requires a premium amount of cE(S) = (0.252) (1,563.77) =  394.569 to 

be collected in the TCIP to be able to compensate the possible earthquake 

losses.

The premium requirements calculated above is much higher than the full pay­

ment of the TCIP to the earthquake affected policy holders in the past six years
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as mentioned in Table 7.6. Moreover, if the no-covariate models are used as in the 

next case, the values of E(S(t)), Var(S(t))  and the rest increase significantly.

The E(S(t)) and the premium values here one more time shows how indeed the 

current premium ratings of the TCIP is very low even in the highest risk zones if the 

figures in Table 7.5 is considered. One way to increase the amount of the reserves of 

the TCIP is to reinsure the risk to the international companies, as the TCIP does 

within its system. The reinsurance companies invest the collected premiums of dis­

aster free time in tax-free banks, or invest for the construction of shopping centres, 

hotels etc., where money can be earned. In case of a big disaster strike, the financial 

sources would be available to compensate the affected people. As given previously, 

the TCIP reassured USD 540m of its risk to A-level and above rated international 

reassurers in 2001, that of USD 840m in 2002 and USD 740m in 2003. In 2006, the 

reinsured amount is given as EUR 920m (~USD 1.1b) with a full payment capacity 
of EUR 1.1b (~  USD 1.33b 2005 estimate).

Scenario 2: A hypothetical earthquake of magnitude 7.6 hits Istanbul

In Turkey, most of the earthquake scenarios are based on the city of Istanbul. 
Therefore, in Scenario 2, lets assume that an earthquake of magnitude 7.6 in Richter 

Scale, as suggested in [Erdik, 2003], occurs in Istanbul, which is in the category of 

earthquake risk zone 1. Assume that 100000 claims arrive to the Turkish Catastro­

phe Insurance Pool as a result of this earthquake, where there are approximately 

500000 residential buildings in Istanbul (not every flat/apartment/house have a 

compulsory earthquake insurance). The magnitude is the first concept to come to 

people’s mind when an earthquake strikes. Therefore, in this scenario we will present 

the case of a covariate model and try to see what changes in the previous Scenario 

1, if a shock earthquake hits Istanbul.

In Figures 7.10 and 7.11, it is obvious that the ordinary and any other small, 

moderate or big earthquake claims are all absorbed with one big earthquake strike 

in Istanbul. The total claims arriving in risk zone 1 is more than 400000 in this 

scenario, which will probably be much higher if the real event occurs.
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Figure 7.10: The plot of the exponential kernel function in risk zone 1. x-axis: time 
(in weeks), y-axis: the exponential kernel
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Figure 7.11: The plot of the fitted A; in risk zone 1 by exponential kernel, x-axis: 
time (in weeks), y-axis: A*
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The aggregate mean and variance figures on Scenario 1 change as follows with 

the strike of a 7.6 magnitude earthquake in Istanbul

E(S(t)) = 1,275,417.99,

and the aggregate variance is

Var(S(t)) =23,389,190,

with a standard deviation of

sd(S(t)) = \/Var(S(t)) = 4,836.2.

The coefficient of variation is 0.0037. By (7.8), the skewness is computed as 0.000029. 

The similar argument of the earlier calculation suggests the security loadings as

0.0048, 0.0062 and 0.0088 with less than 10 %, 5 % and 1 % probability of loss, 
respectively. Then, the corresponding premium with no deductible for these security 

loading values are 6,200.06, 7,955.61 and 11,243.68.
The needed reserve estimate E(S(t)) is much higher than the value obtained in 

Scenario 1, where the covariate model estimates are used. The estimated TCIP 
reserve need s 1,275,417.99 YTL for a possible earthquake in Istanbul, which is 
more than the so far 2006 total payment of the TCIP (1,089,633 YTL). This is 

an optimistic approach because if there is an earthquake in Istanbul, the damage 

will be extremely high and the capacity of the TCIP itself will not be enough to 

cover the possible losses. Then the government will use the other financial possible 

coverage methods like contingent credit, external borrowing.

Our estimate here is still just shows a small portion of the ‘loss-cake’ since includ­

ing the losses of the industry, transportation (roads, the two big bridges connecting 

the continents), communication facilities, public/state buildings, the loss figures in 

Istanbul will hit the ceiling. Istanbul is the financial centre of the country and all 

micro/macro economical indicators will change significantly with the earthquake 

strike. One suggestion has been discussed to build another financial centre in some 

other part of the country, which is earthquake-safer.

This shows that the premium ratings of the mandatory earthquake insurance 

contracts should be revised so carefully for Istanbul and surrounding areas (this
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are is the heart of the industry in Turkey), because one big earthquake can open a 

gigantic hole in the economical structure of the country and it takes a long time to 

recover and go back to pre-disaster period.

The current mitigation strategies in Turkey

Before the 1999 Marmara earthquake, there was no valid disaster risk and miti­

gation plan in Turkey. This sad experience showed the vital importance of the need 

for such a plan. As mentioned before, scientists expect another severe earthquake 

to hit Istanbul area in near future. They forecast that the fault line in the base of 

the Marmara Sea is accumulating some energy now, which will be released as an 

earthquake in time. The Republic of Turkey Prime Ministry Project Implementa­

tion Unit is mainly completed the following projects: Disaster Rehabilitation and 

Reconstruction (DRR) Project, Turkey Emergency Flood and Earthquake Recovery 
(TEFER) Project and Marmara Emergency Earthquake Recovery (MEER) Project. 

What seems fearful is most of the earthquake studies are focused on the Marmara 
region especially in Istanbul area. The vital question is: ‘What happens if as a 
surprise, the fault line breaks in the opposite direction of Istanbul and a severe 
earthquake hits somewhere in any other part of the country?’

The main body in the case of a disaster strike is the central government in Turkey 

with top-down approach. If an earthquake occurs, the government immediately 

starts a crisis centre, which is run by chosen ministers of the cabinet. This crisis 

centre coordinates all the rescue and relief operations in cooperation with other 

government, military and voluntary organisations. Before the disaster, as a part of 

mitigation plan, some authority should be given to the local administration so that 

in case of need, no time will be lost to respond the disaster.

Financially, there were no spare reserves to respond to the direct, indirect and 

secondary effects of the disasters in Turkey before 1999. The ‘father government’ 

approach was the only way to cover the losses, that is the government was the only 

hope of the disaster-affected people. The Turkish Catastrophe Insurance Pool is 

an example of the first public-private insurance system in a developing country. 

However, there are many things to revise in the system to make it function more
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efficiently. One of the most important lacks of the TCIP is that it only insures the 

residential buildings within the municipality borders. There is no insurance offered 

in rural areas or business premises or for the contents of the buildings. The poorer 

part of the population has no insurance coverage, although they will be the first to 

be affected in case of a disaster. Currently, the TCIP is the only source to respond 

the financial effects of a disaster with a capacity of more than USD lb.

On the 26/May/2005, the World Bank’s (WB) Board of Executive Directors 

has approved a four year project titled ‘Istanbul Seismic Risk Mitigation and Emer­

gency Preparedness Project-ISMEP’ with a loan amount of USD 400m. The project 
aims to reduce life losses, social and economic losses in Istanbul in case of a severe 

earthquake. The key steps of the process are: Enhancing emergency preparedness, 
seismic risk mitigation for public facilities (retrofitting of hospitals, schools etc.), 

enforcement of building codes and land use plans, implementation of the project 

in the most efficient way and to build institutional capacity. The involvement of 
the community is one of the main aims of the Istanbul Seismic Risk Mitigation and 
Emergency Preparedness Project. It is a well-known fact that the elderly, the poor, 
the children and the women are the worst affected parts of the community in case 
of a disaster strike. The education program, which is supported by seminars, work­

shops, media advertisement, leaflets and brochures, is organised by the authorities 

to increase the public awareness. This will also help to remind the people, who easily 

forget about their disaster experience and go back to their routine lives. A National 

Mitigation Program can not work thoroughly without the community involvement.

There is also a microzonation pilot project in process in a province of Istanbul, 

which is called ‘Zeytinburnu’. A large database is under construction with the use 

of Geographical Information Systems (GIS-like Arcview, Hazus- and HazTurk is in 

process) for Turkey, which will give all the necessary information like building num­

ber, the age and the type of the buildings, Cresta zone codes (risk zones), disaster 

history and the number of earthquake insurance policies to be able to calculate pos­

sible losses of a future disaster. The use of the GIS will help to determine the vital 

resources after a disaster hit like the distance of the nearest hospitals to the earth­

quake epicentre, the bed capacity of these hospitals, the number of health personnel
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or the nearest fire stations with the number of the personnel and the fire equipment 

available.

The earthquakes are the main disasters in Turkey. However, because the country 

suffers from other types of natural disasters, the General Directorate of Disaster 

Affairs is in the process of the development of a multi hazard (including floods, 

landslides, earthquakes, avalanches etc.) map, which shows all the possible disasters 

in one map.

7.2.3 E stim ation  of losses and financial vulnerability o f Turkey 
in a hypothetical earthquake

In this section, different than the previous estimation depending on our suggested 

models of Chapters 5 and 6, the main aim of the study is to decide if the government 

should make insurance investment for its public infrastructure assets and other post­

disaster liabilities and if it needs additional funding in post-disaster recovery period.
In such case, what need to be measured to cover the potential financial gap are: 
the governments’s exposure to catastrophic risks, the government’s liabilities in 
case of a disaster strike and the post-disaster financial availability. The following 
earthquake scenario is submitted as a course project in February 2005 to the World 
Bank Institute Natural Disaster Risk Management Program: Financial Strategies 
module, to assess the financial gap situation for the case of Turkey. The calculations 
are based on the ECLAC (Economic Commission of Latin America) methodology 

and the IIASA CATSIM (CATastrophe Simulation Model) model, of which the 

computation details are confidential and so not provided to the participants.

Ex-ante mitigation measures are vital, especially in developing countries to reduce 

the social and financial losses of a disaster. It is also important to have a disaster re­

sponse plan in advance not to lose much time waiting for the international assistance 

by institutions and non govermental organisations (NGOs) to arrive.

An efficient National Disaster Mitigation and Recovery Program should include 

the possible catastrophe risks of country, the post-disaster government liabilities, 

the estimation of the possible losses due to a disaster, the level of preparedness of 

the government to be able to cope with its liabilities and the possible solutions to
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decrease the government’s financial vulnerability in such case. The main respon­

sibilities of the governments are to start a crisis centre immediately, to keep the 

coordination-cooperation of the bodies, to provide temporary accommodation for 

the disaster-affected area, to provide urgent assistance to the poor, elderly, women 

and children, and to reconstruct the public assets like roads, bridges, hospitals, 

communication.

Let’s assume the following figures are estimated by the World Bank and the State 

Planning Organisation of Turkey (SPO). The total capital stock of Turkey is USD

40b in 2005 and the value of public assets is USD 6b (15 % of the total capital stock).

The Turkish government’s post-disaster liabilities for reconstruction of infrastructure 

(railways, highways, telecommunication etc.) and disaster relief is decided to be 20 

% of total capital stock, which is USD 8b. This means in total, 35 % of the losses 

will be financed by the government, which is USD 14b. The following probability 

distribution is based on information from Swiss Re. They obtain this information 
by the analysis of their database on past events and losses and future catastrophe 
models [Freemand et al., 2002, Pollner et al., 2001]. By the IIASA CATSIM tool, 

the losses to be financed by the government given the probability and the amount 
of the capital stock destroyed in percentage is

Losses(lOyear) =  14 x =  0.014

3 8Losses(50year) =  14 x =  0.532

7.5Losses (lOOyear) =  14 x =  1.05

17.4
Losses(500year) =  14 x —— =  2.436
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Event
(Year)

Probability
(%)

Capital Stock 
Destroyed (%)

Losses to be 
financed by the 
government (35 
% of the losses) 
USDh

10 10 0.1 0.014
50 2 3.8 0.532
100 1 7.5 1.05
500 0.2 17.4 2.436

Table 7.8: The probability distribution of losses to infrastructures caused by the 
earthquakes in Turkey in 10 to 500 years time

Therefore, Table 7.8 indicates, for instance, in a 50-year event, a possible earth­

quake will cause losses of approximately 3.8 % of the total capital stock. In the 

national plan, the government should consider these values in their budget arrange­

ments and determine the alternative resources to cover a possible financial gap.
If the government can not provide the financial needs of reconstruction and relief 

after a disaster via domestic and international sources, this implies the financial 
vulnerability of the country. It is important to know the availability of the post­
disaster financing sources of the Turkish government to be able to make a more 

reliable analysis of the financial vulnerability for an earthquake scenario. Generally, 

the sources are the diversions from other expenditures of the budget, special disaster 
tax arrangements, borrowing from the domestic reserves (Central Bank, bonds, 

credits), international aid and external borrowing from international institutions 

like the World Bank, International Monetary Fund (IMF), European Bank. There 

is a need of experts in the key positions of the financial institutions, who can prepare 

the pre-disaster and post-disaster financial plans for the government with a good 

knowledge of disaster economy.

Table 7.9 denotes the financial needs and availability for the government in case 

of an earthquake risk in Turkey in 10-,50-, 100- and 500-year period. The direct loss 

ratio is the amount of the losses to be financed by the government. The diversion, 

international aid, domestic borrowing and foreign financing are the key sources in 

this analysis and it is assumed that the maximum available amounts are given as
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USD 0.400b from the diversion, USD 0.100b from domestic credit, USD 0.200b from 

foreign financing and 10 % of the total losses from international aid.

Since the total resources needed is USD 0.014b in 10-year period and the maxi­

mum amount of diversion is USD 0.400b, it can be covered by the current resources 

of the government that is within the capacity of the Turkish Catastrophe Insurance 

Pool (TCIP), which is currently more than USD lb. In 50-, 100- and 500- year 

period, the losses to be financed by the government is more than the maximum 

diversion available, so the rest will be covered by other sources like international aid 

or domestic credit. The calculations continue with the same argument, using the 

maximum amount available for domestic credit, foreign financing and the maximum 

coverage of the losses by the aid.

Earthquake risk 10 years 50 years 100 years 500 years

Direct loss ratio(%) 0.1 % 3.8 % 7.5 % 17.4 %
Losses Government

(USD b) (Total resources needed)
0.014 0.532 1.05 2.436

Diversion (USD b)

(Max. available USD 0.400b)
0.014 0.400 0.400 0.400

Aid (USD b)

(10 % of total losses)
0 0.053 0.105 0.244

Domestic credit (USD b) 

(Max. available USD 0.100b)
0 0.079 0.100 0.100

Foreign financing (USD b) 

(Max. available USD 0.200b)
0 0 0.200 0.200

Sum financing (USD b) 

(Total resources available)
0.014 0.532 0.805 0.944

Financing gap (USD b) 0 0 -0.245 -1.492

Table 7.9: Financial vulnerability analysis
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When the sum financing is obtained, according to Table 7.9, the losses caused 

by an earthquake, which is expected to occur every 10 or 50 years, can be covered 

by government liabilities and do not cause a gap in economy. However, the losses 

due to the 100- and 500-year events cause financial gap of USD 0.245b and 1.492b 

respectively

Financial gap(lOOyear) =  Total resources available — Total resources needed

=  0.805 -  1.05 =  -0.245,

and
Financial gap(500year) =  Total resources available — Total resources needed

=  0.944 — 2.436 = —1.492.

How can the Turkish government cover the financial gap?
The methodology and the earthquake scenario in this chapter can be linked to 

the studies on the total claim amount (the aggregate claims), S(t). The S(t) is 

used as an estimate of the reserves of the country to measure the risk level of the 
government in case of an occurrence of a disaster. The expectation of the aggregate 
claims, E(S(t)), will be a deterministic value for the improvements in government’s 
disaster finance strategy because it gives the approximate amount of the money to 

keep enough reserves in the Turkish Catastrophe Insurance Pool.
Financial disaster risk management is needed to prepare the country against huge 

financial losses, which government is not likely to cope with by its own sources. In 

pre-disaster time, the government should invest more in risk transfer mechanisms 

and disaster management projects as part of mitigation activities. The Turkish 

Catastrophe Insurance Pool (TCIP) is the only risk transfer mechanism in Turkey. 

The pool will be the first source to try to cover the possible losses of an earthquake. 

Therefore, the compulsory earthquake insurance payments is very important to de­

velop disaster economy strategies in Turkey. The capacity of the TCIP will add a 

large amount to the diversions from government in case of an earthquake. Then if 

there is still more money needed, next source should be the international aid. In 

Table 7.9, 10- and 50-year events seem like the losses could be covered by diversion 

and TCIP, international aid and some amount from domestic borrowing, probably 

the Central Bank reserves in Turkey.
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The 100- and 500-year events cause big amount of gaps in the budget (USD

0.245b and USD 1.492b). The country will definitely need a long-term, low-interest 

loans from international institutions, in which case, the government will be in debt 

to external sources. What looks like a possible solution is to increase the contri­

bution of diversion as much as possible. Since the Turkish Catastrophe Insurance 

Pool will be the backbone in terms of diversion, compulsory earthquake insurance 

should be spreaded in every part of the country including the business premises and 

rural/urban residential areas. The government should provide the same insurance 
for the poor with low premium rates. Also, the wealthy business associations might 

contribute a little more on behalf of the insurance provided to the poor by govern­

ment. Some special tax arrangements can be applied in pre-disaster period rather 
than increasing all the taxes in post-disaster time.

However, the government should not fully invest in the TCIP. Catastrophe bonds 

and other types of insurance might be other possible sources. The TCIP has some 
expenses on its education, advertisement and application period itself. The construc­
tion work (of highways, ports, commercial and residential buildings etc.) should be 
strictly under control that if it is done according to the valid Building Code 1998. 
This will help to reduce the possible losses with a big amount. The emergency 

services should be well-trained and be ready at any time to respond. This will help 

to save man-power, so to reduce the economic impact even with a little percent­
age. All the reserve funds and strategies should be revised very carefully during the 

preparation of a time and cost efficient financial disaster risk management plan in 

Turkey. The elements to affect the stability of the economy of the country should 

be avoided in such a plan as much as possible.

Figure 7.12 gives the impact of the 1999 Marmara earthquake on major macroe­

conomic indicators. The under base figures of the year 1999 is a good example of a 

financial gap of the economy due to a shock earthquake hit. 1999 figures will be a 

comparison base for a highly probable earthquake strike in Turkey.
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Figure. Earthquake impacts on major m acro variables

A GDP growthn ■ ■  A»«r Mrthquak* (2)

B Current account balance (as a percentage of GNP)

IT
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1 B a s e l in e  c a lc u la t e d  a s  A fter e a r th q u a k e  l e s s  e s t im a te d  e a r th q u a k e  im p a c t s .  G D P  g r o w th  a n d  c u r r e n t  
a c c o u n t  im p a c t s  ta k e n  f ro m  W o rld  B a n k  M a rm a r a  e a r th q u a k e  a s s e s m e n t  r e p o r t ,  w h ile  p u b lic  s e c to r  
p r im a ry  b a l a n c e  im p a c t  i s  t a k e n  fro m  S P O  officia l e s t im a te s

2  A fte r e a r th q u a k e  d e n o t e s  r e a l i s a t io n s  a n d  o ffic ia l t a r g e t s  fo r  th e  y e a r s  1 9 9 9  a n d  2 0 0 0  r e s p e c t iv e ly  
S o u r c e  W o rld  B a n k .  IMF a n d  S P O .

Figure 7.12: The effects of the Marmara earthquake on major macroeconomic vari­
ables [Bibbee et al., 2000].
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Chapter 8 

Conclusion

The Turkish Catastrophe Insurance Pool data is used for the first time in such 

statistical analysis in this thesis. The aim is to establish and present some links 

between the claim number N{, the claim amount Xi, and the aggregate claims 

(total claim amount) Si by using the binning approach, the available literature and 
the statistical concepts of likelihood, parameter estimation and modelling to obtain 

a nice interpretation for this claims data.
An inhomogeneous Poisson process allows a stochastic process to pick the time- 

varying events in the given time period. The log-linear rate function is a good choice 
to work with in analysing an inhomogeneous Poisson process. By the argument in 
R em ark 2, A* is used as an approximation of the process rate A*. Therefore, 
an inhomogeneous Poisson process, N(t) ~  Poisson(A(£)), is chosen to model the 

number of claims Ni ~  Pois(Aj) with the use of the special kernel functions, the ex­

ponential kernel and the power kernel representing the intensity of the process. The 

exponential and the power kernel functions are respectively given in the following 

forms
k

log A* = c*o + y^Q;je~/3(ti~3j,)l+,
3 = 1

and
k

log Ai = a 0 +  -  S j ) |+ ) _/?,

i=i
where a 0 is the effect of the claims in the ordinary time period, (3 (the universal 

constant) is the non-linear parameter to denote the exponential decay (trend) of the 

claim arrivals, otj are the coefficients for the effect of the big earthquakes, t{ is the
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start of the zth bin and Sj are the kernel knots at which the significant earthquake 

jumps occur.

The reasons why the log-linear rate is preferred to linear rate are given as 

[Cox and Lewis, 1966, Lewis and Shedler, 1979]:

1. The log-linear rate is positive for all values of a 0 and aj,

2. The log-linear model is suitable to use basic statistical procedures, like the use 

of the residual deviance criteria rather than the use of penalised likelihood, 

which need more complex models.

The extreme value analysis in Chapter 2 suggests that the mandatory earthquake 

insurance claims data of the TCIP can be modelled by using another type of distri­

bution rather than the widely used generalised Pareto distribution for claims in the 

extreme value context, because the generalised Pareto distribution does not seem 

to provide a very reasonable fit for this data with the idea of heavy-tailedness. The 
data rather behaves like a short-tailed distribution.

The non-linear parameter (3 (exponential decay or trend) is estimated in Chapter 
5 for the claim number Nt models and the total claim amount Si models to represent 
the different characteristics of earthquake risk zones 1 and 2 of Turkey. The (3 
parameter shows how steep the jump of the claims is, when an earthquake hits 

either risk zone 1 or risk zone 2. The value of the $ changes from zone to zone and 

also with the use of either the exponential or the power kernel function to represent 

the claim decay. The estimates of the model parameters, these are /3, do and dj, 
lead to the calculation of the reserves, E(S(t)) (aka the aggregate mean), of the 

Turkish Catastrophe Insurance Pool (TCIP).

The aim of the relatively new insurance scheme in Turkey is to keep the pool 

reserves as enough as possible to be able to cover the losses of a future disaster. 

This can be done by appropriate premium arrangements, which mainly requires 

a careful study of the underwriters. The TCIP reinsures its risk to worldwide 

reinsurance companies to keep the reserves capable of payment in case of a disaster 

strike. The government will then use first the TCIP resources, then the agreed 

World Bank loan will be transferred (it is an agreement between the TCIP and the
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WB authorities) and then reinsurance money will be used. Perhaps, even this will 

not be enough and budget diversions (e.g. tax changes), international aid and any 

other financial support will try to be provided. However, people believe that with 

a big earthquake hit, the system might not respond as efficient as it is expected to 

do so. It is unfortunate that scientists, economists and bureaucrats are waiting for 

the next significant earthquake, especially the soon Istanbul earthquake scenario, so 

that the insurance scheme/regulations of the TCIP can be improved.

In a developing country like Turkey, having such insurance system like the Turk­

ish Catastrophe Insurance Pool is a big step ahead in the process of developing a 

National Disaster Risk Management Program. One leg of this program will be the 

financial aspects of the disaster losses and will include the strategies to lessen the 

economical impacts of disasters.

In Chapter 6, magnitude variable is observed to be a very significant to affect the 

number of claims TV*, and the total claim amount S{. It is realised that magnitude 
reduces the residual deviance and calibrates the suggested models. It also plays 
a crucial role in the premium calculations when considering the earthquake risk 
zones. The premium rates in Table 7.4 already takes into account the effect of the 
magnitude so magnitude is an unchangeable actor in the mandatory earthquake 

insurance scheme in Turkey. The earthquake catalogue records, which include the 
level of magnitude as well as the location, epicentre, date etc., should be kept with 
maximum expertise to have an efficient use for the disaster studies of the country.

The addition of the number of residential building variable to the existing mod­

els even gives better results in terms of graphical explanatory analysis, the deviance 

and in observing the effect of the significant earthquakes. Therefore, when cal­

culating the premiums of the compulsory earthquake insurance for different risk 

zones of Turkey, the actuaries/the underwriters should definitely consider the num­

ber (density) of residential buildings in the related disaster town/city. Until now, 

the Turkish Catastrophe Insurance Pool only uses the type of the building (e.g. 

masonry, reinforced concrete) and the risk zone (includes the magnitude effect) in 

the tariff calculations. It is strongly recommended that the number of residential 

buildings of the earthquake area/town/city should be revised for the improvement
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of the regulations of the TCIP. The effect of the population of an earthquake area 

and if possible the age of the building will be studied to create more complex models 

for further research.

The following models are suggested for the number of claims when covariates 

(time, magnitude, building number) are added in a fixed time interval. The first 

two equations represent the case, when the exponential kernel function is used

Ni ~  Pois(Ai),

where k
log At = a 0 +  ai e + mi , 

j=i
and

Ni ~  Pois(Ai),

where k
log Aj =  a0 +  ^ 2  aje~P{ti~Sj)\+ +  mi +  rz, 

j=i
where m/ and n  are used for the magnitude and the residential building number 
with i = 1, . . . ,  n, j  = I =  1, . . . ,  k.

If the power kernel function replaces the exponential kernel function, the claim 

number model is presented as

Ni ~  Pois(Aj),

where k
log Ai = a 0 +  -  Sj)\+)~0 +  m h

j=i
and

Ni ~  Pois(Ai),

where k
log Ai =  a0 +  ^ a j d U  -  Sj)\+)~p + m i+  rh 

j=i
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The models above can be rewritten by the same argument of using the special 

kernel functions in the aggregate claims with mean function Hi

log Si ~  N(/Xi,<7?),

where /z* = ao+ S jL i +log +mi+ri stands for the exponential kernel

use. For the power kernel, the rate is /z* =  ao+ 2 jL i &j((U —sj)|+)-/3+l°g A^+mj+r/, 
where mi stands for the magnitude, rj denotes the number of residential buildings, 

i = 1, . . . ,  n, j  = 1, . . . ,  k and I = 1, . . . ,  k.
The methodology, which is developed in this research, can be summarised as:

1. The data of the Turkish Catastrophe Insurance Pool, which includes the earth­

quake claims that arrived to the pool between December 2000 and July 2003, 

is obtained from the TCIP authorities,

2. The time (months/weeks), the number of claims Ni, the corresponding to­

tal claim amount Si, magnitude and the residential building number of the 
earthquake place are organised,

3. The data is split into zones. The analysis are done on the basis of risk zone 1 
and risk zone 2 only due to the scarcity (< 30) of the data from risk zones 3, 

4 and 5,

4. The exponential and the power kernel functions are used to represent the 

ordinary claim (oo) arrival times of small earthquakes/tremors, big jumps 

(ctj, knots) with a significant earthquake occurrence in risk zones 1-2 and the 

non-linear parameter f3 of the exponential decay of the claims due to some 

fixed characteristics of the region,

5. The models are produced on the basis of with and without covariate cases,

6. The number of claims (Ni) are used as counts and modelled with generalised 

linear models of Poisson regression by using the suggested kernel functional 

forms in S-Plus,
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7. The total claim amount (in the binning case Si = Xi) modelled as 

lognormal (note that if Si ~  lognormal then log Si ~  Normal) by using the 

same form of the suggested kernel functions in generalised linear models,

8. In Chapter 5, only the time effect is used to model the response variables, 

which are mentioned before. The approximation of the event times by using 

the empirical kernel knots are used as a feature of an inhomogeneous Poisson 

process,

9. By using the mean of the claim amount in related zone and the estimates of 

the number of events in that zone, the required reserves, E(S(t)) = rjA(t) (the 

aggregate mean), the aggregate variance E(S(t)) and the skewness 7 (S(t)) are 

calculated for the selected models in Turkey. The result is used as an indication 

for the capacity of the reserves of the Turkish Catastrophe Insurance Pool and 
suggested that E(S(t)) is the minimum amount to be kept in the pool to cover 

possible losses of a future earthquake.

In summary:

Mathematical model — >Fit/test/verify the models — >Use the models

The statistical analysis of the thesis are mainly based on these three steps. The 

first big earthquake to hit Istanbul will affect all the country and will cause huge 

social and economical losses. Some mitigation effort is going on in Istanbul and 

surrounding cities like the retrofitting of the hospitals, schools, public buildings, 

roads, bridges and houses. The main aim of the current mitigation studies is to 

reduce the life losses initially. The findings in the financial estimation of Chapter 7 

are very scaring high figures and gives an idea of an approximate amount that the 

insurance holders in Istanbul will need from the TCIP reserves in case of a strike 

of an earthquake of magnitude 7.6. The losses are estimated only for the ordinary 

households, who own compulsory earthquake insurance offered by the TCIP agen­

cies. The industrial facilities have their own earthquake insurance via the private 

(re) insurers.
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Our estimate of losses for Istanbul is just a small portion of the ‘loss-cake’ as 

including the losses of the industry, transportation (roads, the two big bridges (The 

Bosphorus Bridge and Fatih Sultan Mehmet Bridge) connecting the continents), 

communication facilities, public/state buildings, the loss figures in Istanbul will hit 

the ceiling. The two main bridges are told to be earthquake resistant but the best 

way to see if it is true is experiencing the earthquake. The Turkish Catastrophe 

Insurance Pool should at least reach to its 10th year establishment anniversary to 

be able to cover possible losses of a future earthquake and even of regulations are 

improved, effects of any type of disaster.

Istanbul is the financial centre of the country and all micro/macro economical 

indicators will change significantly with an earthquake strike. One discussion among 

the scientists is to build another financial centre in some other part of the country, 

which is earthquake-safer. An interesting point is, although people are aware of the 

earthquake risk of Istanbul and the Marmara region, the migration to Istanbul and 
surrounding places with job hopes is still increasing.

The total losses due to a highly possible earthquake strike will affect the whole 
structure of the Turkish Catastrophe Insurance Pool. The authorities should strongly 
advertise the compulsory earthquake insurance and encourage public to buy insur­

ance. Although the advertisement procedure is continuing, because the insurance 
culture is not common among the Turkish people, there is still not enough number 

of policies all around the country compared to the population and the residential 

number of buildings of the regions (remember that the TCIP only insures the resi­

dential buildings). One other improvement the TCIP urgently needs is the update 

of the system for all other types of the disasters to occur in Turkey. The natural 

disaster policies should be valid for earthquakes, floods, landslides, avalanches and 

other types. The TCIP should also provide coverage for all types of buildings (like 

residential, commercial/business, public/state) and partly to their contents.

As mentioned before, the stochastic processes N(t)  and the total claim amount 

S(t), have a wide use in insurance and financial context. Credibility theory (see the 

Glossary), martingales (sub-martingale and super-martingale), arbitrage, famous 

Brownian Motion, the Black-Scholes model are some topics, where further research
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for the use of the exponential and power kernel functions in the claim number 

process rate A(£) (approximated by A(t) as in R em ark 2 in the non-binning case) 

is suggested.

The World Bank Institute is in the process of initialising a sustainable online 

Disaster Risk Management program for Turkey, in which there will be global and 

country-based (local) modules including readings, case studies, audios and power 

point presentations. The program consists of five core courses, which will train 

the participants (e.g local governments, health personnel, rescue operators, aca­

demics) in general framework of disasters, financial strategies (here the TCIP is 

one of the most important example), safe cities (implementation of the building 

codes, construction quality), damage assessment and the community-based disaster 

risk management. Some findings of this thesis are aimed to be partly used in the 

‘Financial Strategies’ module of the course.

This thesis one more time emphasis the need for an obligatory earthquake insur­
ance system in Turkey with its methodology, ideas and findings, and hopes for the 
success of a continuous National Disaster Mitigation Plan, where the involvement 
of the community is crucial.

Natural disasters are inevitable and it is mainly the developing countries, who 

suffer the most and the worst from the effects of these disaster. We hope that the 

findings of this thesis might lead to some useful solutions for the disaster-prone coun­
tries mainly in financial aspects and also suggest some general mitigation strategies 

against the disasters. The history should not let to repeat itself.
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Chapter 9 

Glossary

Some parts of the following glossary is prepared from the online Natural Disaster 

Risk Management Program, which is offered by the World Bank Institute. The on­

line courses of this program are: Comprehensive Disaster Risk Management Frame­

work, Financial Strategies for Managing the Economic Impacts of Natural Disasters, 
Safe Cities, Community-based Disaster Risk Management and Damage Assessment.

Adverse selection : The tendency of a person with a higher-than-average chance 
of loss to seek insurance at standard rates.

Aftershock:  An earthquake, which occurs after the main shock with a smaller 
magnitude. It normally originates close to the focus of the main earthquake.

Aggregate Claim Am ount:  Let n be the number of claims received by the 

insurance company in a certain period of time. The aggregate claim amount S  is 

defined as:

i=l

where Xi is the claim size of the ith claim in that time period.

Building Code: It is the regulations as a combination of technical and func­

tional standards, which controls the design, construction, materials, alteration and 

occupancy of any structure for human safety and welfare. Each country has a dif­

ferent building code depending on the risk type and amount of a natural disaster.

Capacity (in finance):  The largest amount of insurance/reinsurance available 

from a company.

Capacity-Capability : A threshold level of the physical, social, economical and 

institutional resources of a community, society or organisation to reduce the effects
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of a disaster.

Catastrophe Bonds: Securitization of disaster risk and its transfer via bond 

issue to capital markets.

Catastrophe Model: A risk-analytic technique, which uses simulation mod­

elling to supplement or replace historical data for the purposes of estimating prob­

abilities and outcomes.

Catastrophe Reinsurance: A form of excess of loss reinsurance, which, sub­

ject to a specific limit, indemnifies the ceding company in excess of a specified 

retention with respect to an accumulation of losses resulting from a catastrophic 

event or series of events arising from one occurrence.

Cede : To transfer all or part of the insurance or reinsurance risk, which is written 

by a ceding company, to a reinsurer.

Cession : The amount of insurance risk transferred to the reinsurer by the ceding 
company.

Civil Defense: It is normally a government body to response to disasters and 
emergencies and to protect and mitigate the civilians in both wartime and peacetime.

Claim: There are two types of claims, incurred and paid. Paid claims are the 
ones, which are compensated by the insurer on time. Incurred claims are defined as 
the total amount of claims in the accounting year t , arising from the events which 

have occurred in the year irrespective of when the final payment is made.

Claim Delay: The time difference between the claim payment after the event 

and the late payment of that claim.

Credibility Theory : It assumes that the risk quality is a drawing from a certain 

structure distribution, and that conditionally given the risk quality, the actual claims 

experience is a sample from a distribution having the risk quality as its mean value 

[Kaas et al., 2001].

Damage: Any economical loss or destruction, which is caused by earthquakes, 

windstorms, and other perils.

Damage ratio: The repair cost of a location represented as a percentage of the 

value at that location.

Deductible: The amount d, decided between the insurer and the insured that
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the insurer pays only the part of the claim which exceeds d. There are two reasons 

to determine a deductible amount. First, to reduce the claim handling costs by 

excluding coverage for the often numerous small claims; second, to provide some 

motivation to the insured to prevent claims.

Design Earthquake: Selected earthquake parameters to design earthquake 

resistant structures compiling with the building code requirements.

Direct damage: Negative consequences of disasters in terms of assets lost, 

damaged or affected. First perceived in physical terms, i.e. miles of roads, hectares 

affected either in agricultural land, forests or environmental reserves, production 

already completed but lost as tons of agricultural products, numbers of industrial 

production units; or infrastructure affected as number of health services facilities, 

number of hospital beds, schools or number of classrooms destroyed, etc. Part of 

the direct damage, although not quantified specifically in terms of monetary value, 
is life losses, injuries and the primary, secondary or tertiary affected population.

Disaster-. Natural or manmade disruption of the functioning society which 
causes human, material and environmental losses that the society can not cope 
with by its own resources. It is also a function of the risk process. It results from 
the combination of hazards, conditions of vulnerability and insufficient capacity or 

measures to reduce the consequences of risk.
D isaster Insurance: The insurance policies, which are provided by the gov­

ernment or private insurance companies to protect the insured from the economical 

losses caused by a disaster.

D isaster Risk M anagem ent-DRM : DRM is a combination of the adminis­

trative and operational strategies, policies and capacities of the society and com­

munities to reduce the impact of natural disasters including structural and non- 

structural measures.

Earthquake: Earthquakes are generally defined as the shaking of the ground 

resulting from the reshaping of the Earth. An earthquake occurs when the vibra­

tions, which are caused by the release of the accumulated energy as a result of the 

movements of the tectonic plates, reach to the Earth’s surface.

Economic Impacts o f Disasters: Damages to physical assets and losses in an
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economic activity. These can be classified into direct, indirect, and macroeconomic 

(also called secondary) effects. Direct losses occur from physical damage to assets 

or stocks, including public infrastructure, homes and commercial buildings, building 

contents and agricultural assets. Indirect losses consist of damages to in the flow 

of goods and services. Macroeconomic losses consist of changes to gross domestic 

product (GDP), consumption, inflation and employment and other macroeconomic 

indicators. These macroeconomic effects are due to the disaster as well as to the 

reallocation of government resources to relief and reconstruction.

Elements at R isk : Persons, building structures, machinery, infrastructure (e.g. 

water facilities, roads and bridges) or agricultural and other assets in harm’s way.

Epicentre: The point on the ground surface just directly above the focus.

Exposure: The total value or replacement cost of assets (such as structures), 

which is at risk from a loss-causing event such as a catastrophe.

Exposure data: Information describing the exposures, which is used as an input 
for risk modelling. For insured property exposure, this information includes: geo­
graphic location (e.g., state, county, postal code), physical characteristics (e.g., occu­
pancy type, construction class, year built, height of the structure, building/contents/time 

element contributions), replacement cost value (building/contents/time element), 
and financial structure (limits, deductibles, % insured, insurance-to-value).

Foreshock : It is an earthquake that is often part of a distinctive sequence, which 

precedes and originates close to the focus of a main shock.

Focus: The origin, or the source of the earthquake’s energy is called ‘the focus 

of the earthquake’. In natural earthquakes, the focus is located below the ground; 

whereas, in artificial ones, such as caused by nuclear explosions, it is near the earth’s 

surface. Earthquakes with a depth of 70 km (43.5 miles) from the surface are called 

‘shallow-focus earthquakes’, the ones with that of from 70 to 300 km (43.5 to 186 

miles) are called ‘intermediate-focus earthquakes’ and those deeper than 300 km 

are called ‘deep-focus earthquakes’. The depth may reach more than 700 km (435 

miles) in deep-focus ones.

Geographic Information Systems (GIS): Computer programs developed 

to capture, store, check and analyse the data about the Earth. These systems are
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mainly used for hazard and vulnerability mapping and analysis and for disaster risk 

management.

H azard: It is a phenomenon caused by nature or human, which causes social, 

economical and environmental losses as well as life losses and injuries. Each hazard 

is characterised by its location, probability, intensity and frequency.

IB N R : An important statistical problem for the practicing actuary is the fore­

casting of the total of the claims that are ‘Incurred But Not Reported (IBNR)’ or 

not fully settled (‘RBNS (Reported But Not Settled)’) [Kaas et al., 2001].

Indirect effects: Consequences, either positive or negative, for flows related 

to the production, provision, distribution or performance of goods and services, i.e. 

additional costs of transport, reduced income of enterprises, increased expenses of 

government, reduced tax revenues, insurance payments received, increased imports 

or reduced exports, etc.
Insurance: A way of spreading risk within a collective.
Insured loss: The portion of total economic loss from a catastrophe that is 

paid by insurance policies, including payments made by insurance carriers based on 
recoveries from reinsurance contracts or other financial guarantees. This excludes 

deductibles paid by the policy holder as well as losses that are not covered by 
insurance (such as losses above insurance limits or losses for perils that are not 

insured).
Intensity : Intensity is a scale number which is determined by the effects of an 

earthquake on people, structures and earth materials. The most commonly used 

scales are Modified Mercalli (MM) and Medvedev, Sponheuer and Karnik (MSK), 

both having twelve degrees indicating the maximum damage level of an earthquake.

The Law of Large Numbers: The greater the number of exposures, the more 

closer the actual result to the probable results, which are expected from an infinite 

number of exposures.

Lifelines: The public facilities and systems, which provide basic life support 

services such as water, energy, sanitation, communications and transportation.

Loss frequency: The probable number of losses, which may occur during some 

given time period.
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Loss severity: The probable size of losses, which may occur.

Magnitude: It is a measure of the size of an earthquake.

Man-made Disaster: Loss event caused by human actions.

Megacity : A type of urban region, containing more than 10 million inhabitants. 

It is a recent phenomenon that the average size of the world’s largest 100 cities 

increased from 2.1 million in 1950 to 5.1 million in 1990.

Mitigation: The precautions to reduce the impact of natural disasters.

Natural Disaster: Loss event, which is caused by nature that results in dam­

age, disruption and casualties mostly in vulnerable communities.

Natural Hazard: It is a geographical, atmospheric or hydrological event, which 

has potential for causing loss or harm.

Peril: The cause of loss.

Preparedness: Being ready to be able to response as quick as possible after a 
natural disaster occurs.

Prevention: All kinds of precautions, which are taken to reduce the amount of 
losses as a result of a natural disaster.

Reinsurance: The insurance of an insurer.
Relief/Response: To provide all the facilities (e.g food, energy) to the disaster- 

affected region until all the systems (transportation, communication etc.) are re­
built.

Recovery /Rehabilitation: The application of a suitable risk management sys­

tem in the disaster-prone area to reduce the amount of risk.

Reserve: An amount, which is set aside to provide for payment of a future 

obligation.

Retrocession: Insurance of the reinsurers.

Retrofitting: A complex parameter of mitigation, which involves reinforcement 

of the existing built environment in order to be more resistant to the forces of nat­

ural hazards. Retrofitting involves consideration of changes in the mass, stiffness, 

damping, load path and ductility of materials, as well as radical changes such as the 

introduction of energy absorbing dampers and base isolation systems. Examples of 

retrofitting includes the consideration of wind loading to strengthen and minimize
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the wind force, or in earthquake prone areas, the strengthening of structures. Typi­

cally, retrofit starts with essential and critical facilities such as health care facilities, 

emergency shelters, and emergency response facilities. It also includes critical in­

frastructure that is needed for post-emergency operations. Retrofitting is costly, 

disturbing and often poses legal, operational and financial constraints.

Richter Scale: The Richter Scale is an index of the seismic energy, which is 

released by an earthquake. It is developed by the scientist C.F. Richter in 1935.

R isk : The probability of expected losses (deaths, injuries, property, livelihoods, 

economical activity disruption or environmental damage) resulting from interactions 

between natural or human caused hazards and vulnerable conditions. Mathemati­

cally: Risk =  Hazards x Vulnerability.

Risk Transfer: An arrangement, where the liability for the costs of a risk is 

transferred from one party to the other.

Shock Model: The model, which explains the effects of a disaster in terms of 
mathematical and statistical analysis.

The maximum possible loss: The worst loss that could possibly happen to 
the firm during its lifetime.

The maximum probable loss: The worst loss that is likely to happen.
Uncertainty: A situation in which there is insufficient data to estimate ‘risk’ 

in terms of mathematical probability.
Underwriting: The process of selection and classification of the applicants for 

insurance.

Vulnerability: Susceptibility of a community to be severely affected by the 

consequences of a natural disaster. This includes social, economical, environmental 

and physical aspects.
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Chapter 10 

A ppendix

Figures 10.1 to 10.4 are sourced from the EM-DAT and gives some information on 
the number of disasters, corresponding life losses and economical losses in 2004.

Total Number of  Natural Disaster Events by Country : 
1974-2003

f

Figure 10.1: The total number of natural disaster events by country: 1974-2003
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Natural disaster occurrence in 2004

Figure 10.2: Natural disaster occurrence in 2004

N um ber o f  people reported killed by natural disasters in 2004

Figure 10.3: Number of people reported killed by natural disasters in 2004
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Economic damages from natural disasters reported for 2004

Figure 10.4: Economic damage from natural disasters reported for 2004

Figures 10.5 to 10.10 are obtained from the Kandilli Observatory and Earthquake 
Research Centre in Istanbul, the MEER Project by the Project Implementation Unit 
of the Prime Ministry of Turkey and the General Directorate of the Disaster Affairs 
(GDDA).

Figure 10.5: The earthquake zone map of Turkey. Source: GDDA
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Figure 10.6: The fault map of Turkey
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Figure 10.7: Comparison of the North Anatolian Fault and San Andreas Fault
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Figure 10.8: The ruptures in the NAF by years

Figure 10.9: Some images after the Marmara earthquake
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Figure 10.10: Some images of the house damage after the Marmara earthquake

Human impact by disaster types: 
comparison 2004-2005

Total affected

OT4-2005
Total Killed

Wave I Sixge243107 |

r tc a  o

Erfreme
Temperature2i»aw H

a

22 71200 f

■ 2004 1 2005

Figure 10.11: Human impact by disaster types: comparison 2004-2005. Source: 
EMDAT
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Natural disaster occurrence by disaster type: 
comparison 2004-2005*
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Figure 10.12: Natural disaster occurrence by disaster type: comparison 2004-2005. 
Source: EMDAT
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Take your Compulsory Earthquake Insurance wrthout 
loosing time and. renew your expired policies.

0  Pnor to  taking insurance, calculate the premium 
to be paid by errtenng th* Information about your 
residence, access th* addresses and telephone 
num bers of th* agencies w ho can provide 
Insurance on town basis.
3  After the purchasing of an insurance policy; 
display th* records of th* purchased polky and 
loam the expiry data of your polky by entering 
the policy number and your name.
3  Make damage declaration

All kinds of appfkeboni ane inquires:

TURKISH CATASTROPHE 
INSURANCE POOL

(TCIP)
COMPULSORY EARTHQUAKE 

INSURANCE

A G u a ra n te e  for your 
happy home (gainst 

earthquake 
damages

Figure 10.13: The Turkish Catastrophe Insurance Pool

Tables on different natural disaster types in Turkey
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Rank Province Annual frequency Population 
at risk

1 Izmir 3.484 450,000
2 Rize 1.841 55,000
3 Kahramanmara§ 1.608 35,000
4 Denizli 0.596 20,000
5 Trabzon 0.508 32,000
6 Antalya 0.408 400,0000
7 Kirikkale 0.396 10,000
8 Balikesir 0.172 15,000
9 Bartin 0.132 60,000
10 Bitlis 0.132 10,000
11 Sivas 0.132 10,000
12 Van 0.132 70,000
13 Batman 0.044 5,000
14 Zonguldak 0.024 25,000
15 Ankara 0.024 100,000
Total 1,297,000

Table 10.1: Most Vulnerable Provinces for Flood Risk in Turkey according to the 
data between 1955 and 2002. Source: The General Directorate of State Hydrolic 
Works, [JICA, 2004]

Rank Province Number of 
events

Population
at  risk ."I " Trabzon 272 lô oOO

2 Kastamonu 229 13,800
3 Zonguldak 204 12,250
4 Kahramanmara§ 201 12,100
5 Erzurum 155 9,’300
6 Rize 151 9,100
7 Malatya 141 8,500
8 Sivas 137 8,200
9 Ankara 131 7,900
10 Erzincan 125 7,500
11 Sinop 120 7,300
12 (Jorum 117 7,200
13 Bingol 115 6,900
14 Artvin 114 6,850
15 Icel 108 6,500
Total 2,320 139,900

Table 10.2: Most Vulnerable Provinces for Landslide Risk in Turkey according to the 
data between 1958 and 2003. Source: The General Directorate of Disaster Affairs 
(GDDA), [JICA, 2004]
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Rank Province Number of 
events

Population 
at risk

1 Kayseri 34 10,0iQ0
2 Nigde 28 8,400
3 Erzincan 20 6,000
4 Aksaray 18 5,400
5 Karaman 17 5,100
6 Kahramanmara§ 16 4^00 .......
7 Adiyaman 16 4,800
8 Sivas 14 4,200
9 Bitlis 13 3,900
10 Diyarbakir 12 3,600
11 Nev§ehir 12 3,600
12 Mardin 10 3,000
13 Malatya 9 2,700
14 Hakkari 9 2,700
15 Kars 7 2,100
Total 235 70,300

Table 10.3: Most Vulnerable Provinces for Rock-fall Risk in Turkey according to 
the data since 1955. Source: GDDA, [JICA, 2004]

Year Number of 
events Deaths Injuries Households

relocated
1981 2 14 - 52
1982 10 15 - 117
1983 14 6 - 400
1984 6 - - 94
1985 2 7 - 29
1986 2 1 4 16
1987 10 18 - 146
1988....... 13 27 8 365
1989 7 4 - 77
1990 4 4 1 47

"1991 ' 12 7 - 267
1992 112 328 53 1,656
1993 31 135 95 146
1994 6 26 7 -

1995 3 7 2 68
1996 5 8 1 67
1997 8 16 3 88

'1998 13 6 5 178
1999 5 10 3 31
2000 " 9 12 14 -

Total 344 974 258 5,154

Table 10.4: Avalanches in Turkey between 1980-2000. Source: GDDA, [JICA, 2004]
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Convolution

Lets assume there are two independent random variables, X  and Y. The opera­

tion ‘convolution’ calculates the distribution of X  +  Y  as [Kaas et ah, 2001]
'+00/ +00

Pr[X  +  Y  < s | X  = x]dFx (x)
■OO

/+OO P+OO
Pr[Y < s -  x  | X  = x]dFx (x) = /  Pr[Y < s -  x\dFx {x)

■OO J — OO

' —OO

/+OO
F y ( s  -  x)dFx {x) = Fx  * F y (s ) .

■ 0 0

The cumulative distribution function (cdf) Fx  * Fy (.) is called the ‘convolution’ of 

the cdf’s Fx (.) and FY(.). The same notation is used for the density function. If X  

and Y  are discrete random variables [Kaas et ah, 2001]

Fx  * FY(s) = J 2 F Y( s -  x ) fx (x),
X

and

f x  * fy{s) = ^ 2  f y ( s ~
X

where the sum is over x  with f x (x) > 0 . If X  and Y  are continuous random variables

/+00
F y ( s  -  x ) fx (x)dx,

■OO

and by derivation under the integral sign
• + o o/ +00

fy (s  -  x ) fX (x)dx.
•OO

The convolution operation can be applied for more than two random variables. For 

instance, if there are three random variables, X , y , Z , then

(.Fx  * Fy ) * Fz = Fx  * (Fy  * Fz) =  Fx  * Fy  * Fz-

Generally, for the sum of n independent and identically distributed random variables 

with marginal cdf F, the cdf is called the n-fold convolution power of F, that is 

[Kaas et al., 2001]

F  * F  * ...  * F  =  F*n.
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The moment generating functions of some distributions

1- If the claim amount X{ is Exponential (/3e), the moment generating function 

for the special case of Gamma, where ag =  1, is

m s(0) = y  f'" A!l!A(<)\ - —  )* =  e-A«> y
( )  h  k '- h  fc!

=  g -A W gA W C ^) =  eA(‘>((l=fc5) - 1) j 

and the corresponding cumulant function is

«s W  =  AW ((r = ^ ) - 1) .
0 e

If the exponential kernel function is replaced in the intensity A(t) for the moment 

generating and cumulant functions, the mgf and the cumulant functions are respec­
tively

r t + wi e a o + E j = i  a j e - /3(ti ~ aj ) '+ d  (  ( _ j \  \
Ms(0 )= e J”‘ V,

and

Ks(e) = L  ’ e“0+E?- 1“i' " ,<li“ i,+rfr( (r ^ ) -  0 -
If the power kernel replaces the exponential kernel above

rt+ wi e Qo + £ j f = i  \+^dr (  ( ___1___ )  —1 ^

Ms (0) = eL < V,

and the cumulant function is

/

t+Wi , _ a / 1 >.

2- If X  is distributed as Logarithmic (p)

\ f  (f>\ V  erHt)W '  ^1°s (1 _ p ^ ) \ k 
( ) = h  kl v lo g ( i-p )  J

(  A(t) l o g ( l - p e e ) \ k 
 ̂ log(l-p) J= e~AM E k\

k = 0



k=0 -  lo g ( l-p )

_  e-A(<) y '  V M i-p ) )

and

KsW =  eA<‘> ( « - l ) .

Here, the use of the exponential kernel will give the following

m  v ' e' A(!)Aw V log(1 “ pe<V  
=  L ,  — Si— { iog(i -  P) )

f  A( t)  1 o g ( l - p e ° ) X k

k\

i (- 0* rt+u/j  i Qi e ^  ^  log(l— pe^) 1 ^
= J ^  e H  V

and
ns«D =  f +Wi eao+^ e , ie-W‘- ‘i>'+d r ( fog(l -  pe") _  A

J m  V log(l — p) I

The use of the power kernel will change those above into 

M (f)\ V '  e~Mt)A(t)k / lo g ( l - p e ‘h *
M* w  = 2 s  — si—  { w i i  _  p1 J

fc=0

= e -A(t)e

k = 0

=  e
k = 0

=  e- A®em

/  A(t)  l o g ( l - p e e ) X k
1 - .  '

A:!

i°g(i-pee) jH-«ie“o+s:*=i«*(ti »j)i/drfi2sOr£|!i_i)
log (l-p ) — g  1 \  V! J

and the cumulant function is
* t+w

Ks(0)=  [  m - p e  ) _  A
a,* i io g (! -p )  >

3- If X is Uniform (a, 6), the moment generating and the cumulant functions are, 

respectively
0 0  „ —A(t)  „b9 „a9M W\ V e re”  - e -  *

«  -  z .  — Si— {" ( 6 ^ ) F
bd 0aB

i A i /; 1-  “
- m= e

k= 0

00 m ) % E § r ) k
k\E

=  p-A(t) =  *)
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and
-.60 „ad

The moment generating and cumulant functions take the following forms, if the 
exponential kernel is used

=  e-A(t)^ ( A W w ) fc
lb!E

k=0
/i+”< «"»«*-* dJ  AAW (b—a)0 =  (6-a)fl ^=  e Â e " '' ' =  e

and the cumulant function is
rt+wi l /o b0 aa0 v

and the power kernel will change these to

M sW  =  E — ^ ( ( ^ J

= C- AW
lb!£

fc=0

f*+v,i ea0+E$=l - l)Aw (b_i)e _  eJwi v (b_a)e /=  e -A(')e 

and the cumulant function is
/•t+Wi /PM _ pa0 v

KS(0)=  /  e«+Ej.i«<(‘<-»i)i;'’(ir (® — — l) .
(A fljv /

4- If X is distributed with Logistic (//, $ )

Ms(0) =  £ e A<̂ f (t)*(e ^ r ( i  -  m r ( i  +  /?,<?))* 

( A ( t ) e ^ r ( i - f l« ) r ( i  +  w ) ) ‘

k=0

— e
OO

-A(t) E
k=0

=  e -A(Oe A (f)e^r(l-A 0)r(l+/3,0) =  gA(t) ( ( e ^ 1 ^ r a w ) ) - ^
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and the cumulant function is

ks (0) = A(t)((e',er(1- fts)r(1+fls)) -  lV

The moment generating and the cumulant functions for this distribution will be as 

follows with the use of the exponential kernel

m s{9) = Y e A<? f (t)*(e^r(i -  A«)r(i + m t
k=0

Y k\k=0

_ e “ V / g - v / -  ‘ V* _  g

and the cumulant function is
•t+iOi

ks (0) = f  e“°+£  ?-.°^"'!“‘“ i,l+(ir((e''9r(1- ft9)r<1+« e> ) - l ) ,
«/lUi

and when A(t) is replaced with the power kernel

Ms{0) = Y e r(i -  Af)r(i + r n ) k

(A(t)e"er (i -  A?)r(i +  a ^))*

Jfc=0

OO

-A (0 E k\k=0

=  e -A (()e A(()e<,‘’r (l-A 9 )r (l+ ft9 )  =  

and the cumulant function is

k s (0) =  j  e ao + Y j = i ai( ti -sj) \+0(i r {^e iJ,9r(i-/3le ) r ( i + P i 0 ) ' j _ i \
JWi

Remark 7:
If a random variable X  ~  lognormal, then the probability density function of X

is
-I ( -(logrr-M)2 |

/(* ) =  _ *  e V ^ V ,
xay/ Z7T

where — oo < x < oo, with mean

E(X) = etx+£ ,
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and variance

Var(X) =  (e<T2_1)e2'‘+"2.

C opula

In the actuarial context, a copula is a mathematical function, which is used 

to estimate the dependence structure of the claims in the form of the total claim 

amount (aggregate claims). The name ‘copula’ is first introduced by Abe Skier in 

1959 as a function, which couples (connects) a joint distribution function with its 

marginal distributions [Pfeifer and Neslehova, 2003, Walhin, 2002, Emanuele, 2004, 

Cebrian et ah, 2003]. Copulas provide a means to construct random vectors with a 

wide range of possible joint distributions [Kaas et al., 2001].
Let us assume the random variable X  = (X \ , . . . ,  X n) has the following distribu­

tion function

F(x i, . . . , x n) = P r(X  i < x 1:. . . , X n < xn).

The copula is based on the transformation using the marginal distribution of the 

random variable X  and can be denoted as

F(x i , . . . ,  xn) =  C[F\{x\)i. . . ,  Fn(:rn)),

or

C(ci, . . .  ,c„) =  F (F r '(* ,) ,. .  . , F - l (xn)),

where the F ^ 1(x i) , . . . ,  F~1(xn) denotes the quantiles of the univariate marginal 

F i , . . . ,  Fn. In practice, marginal distribution is usually provided.

The uniform continuity and the existence of all partial derivatives provide an easy 

and wide use of copulas in financial and actuarial analysis in the past decade. In 

[Pfeifer and Neslehova, 2003], some basic and useful properties of copulas are given 

as:

1. The range of a copula C is the [0,1] unit interval,

2. C(c) is zero for all c in [0, l]n for which at least one coordinate is zero,

3. C{c) = Ck if all coordinates of c are 1 except the kth one,
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4. C is n-increasing in the sense that every a < b in [0, l]n the value assigned by 

C to the n-box [a, b] = [ai, bi] x . . .  x [an, bn],

5. If all the margins are continuous, then the copula is unique.

Regression Methods
Various methods have been developed to build regression models by either adding 

or deleting regressors (explanatory variables) of the model one at a time. There are 

three main categories of the selection procedure [Montgomery et al., 2001b]:

1. Forward selection

The method starts with the assumption that there are no regressors in the 

model except the intercept term. The regressors are inserted to model one by 
one, generally starting with the one, which has the highest simple correlation 
with the response variable y.

2. Backward elimination

This works in the opposite direction of the forward selection. All the possible 
variables are used in the model and the ones with smaller correlation and 

F-values are eliminated until a suitable model is obtained.

3. Stepwise regression

Stepwise regression is a modification of the forward and backward selection 

methods. This type of selection is generally preferred as it is fast, available 

in almost all computer packages and easy to implement. The analyst should 

consider all possible subset models before deciding on the optimal model.

Basic properties of a kernel function
A kernel function K(t) mainly have the following properties:

1. K(t) > 0 for all t,

2. f+ ~ K ( t ) d t= l ,

3. K ( - t )  = K(t).
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Deviance and Akaike Criterion Information (AIC)

Deviance

The statistical softwares generally calculates deviance values for the generalised 

linear models based on twice the difference of the log-likelihood from that for a 

saturated model [Lindsey, 1997]. That is

D = 2 (saturated) — L(the model under consideration with the parameter)^, 

and the deviance is distributed as Xp, where p is the number of parameters

D ~ X 2P-

The use of deviance is convenient in modelling since it provides the comparison of 

the models additively instead more complex models (e.g. multiplicative, interaction 

models) [Lindsey, 1997].
In this thesis, since we are using the additive models to explain our research, the 

minimum deviance is used as a criteria to pick the required non-linear parameter 
0  estimate. The automatically generated deviance for our choices of the models is 
given with:

D = 2^L(saturated) — L(the model under consideration with the parameter 0)^

AIC
During the model selection process, AIC is used as one of the main tools to help 

the researchers to decide on a better fit model. The larger models provide a better fit 

with smaller residual sum of squares but use more parameters. A preferable model 

is the one, which explains a lot of the response variable with a good model size, not 

too many parameters [Faraway, 2005]. Akaike Criterion Information is calculated 

as

AIC =  — 2max log-likelihood +  2p,

where p is the number of parameters used in the model. An alternative to the AIC 

is the Bayesian Information Criterion (BIC), which is

BIC =  — 2max log-likelihood -l-plogn,
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where n is the number of observations.

Both the AIC and BIC are used to provide a ‘penalty’ for the likelihood, which 

is called the ‘penalised likelihood’, of more complex models rather than the additive 

case [Lindsey, 1997]. The BIC penalises larger models more heavily than the AIC. 

This causes a tendency to prefer smaller models compared to the AIC. The models 

of this thesis are not based on the idea of the penalised likelihood as the additive 

models with the deviance criteria seems to be enough to explain the research con­

ducted here.

Exam ple: A 2 x 2 Contingency Table

In this example, we wanted to check the independency of the number of claims 

and the risk zone effect in Turkey. There are 4297 claims in the data of this study. 

The number of claims are divided by zones as: Zone 1=3602, Zone 2=676 and Zone 
3 & 4=19. The following table is prepared from the data to check the independency 

of the number of claims more than 100 and less than 100 in zones 1 and 2. Also, the 
log-odds for the Poisson count data can be estimated and the confidence interval 
for this estimate can be constructed.

The number of claims N{ Ni < 100 Ni > 100 Total
Zone 1 177 3425 3602
Zone 2 215 461 676
Total 392 3886 4278

from the table above, the expected values of the corresponding observations are 

calculated as
3602 x 392 _  _

en  —---- 77^ —  — 330.0574278
3602 x 3886

ei2 —-----  _ ---- — 3271.943
4278

676 x 392 „
621 =  4278 =  61 943

676 x 3886 M 
622 “  4278 “ 6 057

The following expected values table is obtained by using the expected values above.
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The number of claims N{ Ni < 100 Ni > 100
Zone 1 330.057 3271.943
Zone 2 61.943 614.057

The following hypothesis is constructed to check the independency of the claim 

number and the zone effect. Let

H0 : Claims from different zones are independent 

Hi : Claims from different zones are not independent

In this case, the test-statistic is %2

, 2 ^ (Oi-ej )2 (177 — 330.057)2 , , (461 -  614.057)2
X ^  ti 330.057 +  • • ■+ 614.057

n

At a = 0.05 significance level, the table value of x 2 is X(2-i)(2-i)-oo5 =  3.841. Since 
the calculated x 2 is much greater than the table value, that is x 2 = 494.48 > 3.841, 
the null hypothesis Ho is rejected at this significance level. Also, at a  =  0.10 

significance level, the calculated x 2 = 494.48 > Xi;o.io =  2.706 so H0 is rejected 
again. This indicates that there is a significant relation in the number of claims 
received in earthquake risk zones 1 and 2 in Turkey. Moreover, the estimate of the 

odds-ratio is ~  9-023 which shows the probability of the claims occurring

to they are not occurring (the range of odds is (0, +oo)).

The proportion of the claims can be also tested, for the case when Ni is less than 

or greater than 100. The related hypothesis is constructed as

H0 : pi =  p2

Hi : pi ^  p2

where pi = | | | |  =  0.908 and the log-odds (logit) is

f t \ i /3886.I =  logit (pi) =  =  2.29.

The deviance for the estimate I is

sd(l) — A 4 9 7 o /_392_w 3886\ — 0.053.
V * ° \  4278' V 4278'
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The 95 % confidence interval for the logit will be in the form

I ±  z^sdil) = 2.29 ±  (1.96)(0.053) =  (2.186,2.394), 

and for 90 % confidence interval

l±z*ad(i)  = 2.29 ±  (1.645)(0.053) =  (2.203,2.377), 

which gives a narrower confidence interval for the estimate I for > 100 case.

T he tab les of th e  num ber of claims and th e  calendar tim e

There are 3602 earthquake insurance claims arriving from risk zone 1 with the 

following frequency table:

M onths Frequency M onths Frequency
12 6 28 3
13 1 29 19
14 0 30 17
15 0 31 1
16 0 32 0
17 0 33 0
18 130 34 0
19 3 35 0
20 6 36 0
21 1 37 120
22 132 38 32
23 0 39 8
24 3 40 1708
25 45 41 423
26 912 42 1
27 2 43 29

For zone 2676 claims have been received by the Turkish Catastrophe Insurance 

Pool.
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M onths Frequency M onths Frequency
12 0 28 0
13 0 29 2
14 0 30 2
15 0 31 0
16 0 32 6
17 2 33 3
18 0 34 0
19 8 35 1
20 0 36 0
21 0 37 41
22 46 38 58
23 3 39 0
24 3 40 2
25 1 41 37
26 461 42 0
27 0 43 0

There are 19 observations from zone 3 (9) and zone 4 (10), which are observed 

in the following tables, respectively.

M onths Frequency M onths Frequency
12 0 28 0
13 0 29 1
14 0 30 0
15 0 31 0
16 0 32 0
17 0 33 0
18 0 34 0
19 0 35 0
20 0 36 0
21 0 37 0
22 1 38 2
23 0 39 0
24 0 40 1
25 0 41 0
26 3 42 0
27 0 43 1
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M onths Frequency M onths Frequency

12 0 28 0

13 0 29 0

14 0 30 0

15 0 31 0

16 0 32 0

17 0 33 0

18 0 34 0

19 0 35 0

20 0 36 0

21 0 37 0

22 0 38 2

23 0 39 0

24 0 40 0

25 0 41 0

26 0 42 0

27 8 43 0

In the next page, the number of claims arriving to zone 1 is given in terms of 

weeks data:
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Weeks Frequency Weeks Frequency
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Table 10.6 gives the information on the significant British earthquakes of the 

twentieth century and compiled from the British Geological Survey

(BGS-http://www.earthquakes.bgs.ac.uk/earthquakes/historical/historical _search_date.htm).

Date Magnitude Location
18/09/1901 5.0 Inverness
24/03/1903 4.6 Derby
19/06/1903 4.9 Caernarvon
27/06/1906 5.2 Swansea
14/10/1916 4.6 Stafford
30/07/1926 5.5 Channel Islands
15/08/1926 4.8 Ludlow
24/01/1927 5.7 North Sea
17/02/1927 5.4 Channel Islands
19/11/1927 4.9 Normandy
07/06/1931 6.1 Dogger Bank
12/04/1933 5.2 Normandy
12/12/1940 4.7 North Wales
30/12/1944 4.8 Skipton
11/02/1957 5.3 Derby
12/02/1957 4.2 Derby
09/02/1958 5.1 North Sea
02/01/1959 5.4 Brittany
03/11/1976 4.5 Widnes
26/12/1979 4.7 Carlisle
19/07/1984 5.4 Lleyn Peninsula
02/04/1990 5.1 Bishop’s Castle
13/04/1992 5.9 Roermond

Table 10.5: Significant British earthquakes in the twentieth century.
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