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Abstract

This thesis investigates higher order asymptotic properties of a semiparametric averaged 

derivative estimator. Classical parametric models assume that we know the distribution 

function of random variables of interest up to finite dimensional parameters, while 

nonparametric models do not assume this knowledge. Parametric estimators typically 

enjoy y/n - consistency and asymptotic normality under certain conditions, while 

nonparametric estimators converge to the true functionals of interest slower than parametric 

ones. Semiparametric estimators, a compromise between the two, have been intensively 

studied since the 1970s. Some of them have been shown to have the same convergence rate 

as parametric estimators despite involving nonparametric functional estimates. Semiparametric 

methods often suit econometrics because economic theory typically does not provide the 

whole information on economic variables which parametric methods require, and a sample 

of very large size is rarely available in econometrics. This thesis treats a semiparametric 

averaged derivative estimator of single index models. Its first order asymptotic theory has 

been studied since late 1980s. It has been shown to be yfn- consistent and asymptotically 

normally distributed under certain regularity conditions despite involving a nonparametric 

density estimate. However its higher order properties could be affected by the property of 

nonparametric estimates. We obtain valid Edgeworth expansions for both normalized and 

studentized estimators, and moreover show the bootstrap distribution approximates the exact 

distribution of the estimator asymptotically as well as the Edgeworth expansion for the 

normalized statistics. We propose optimal bandwidth choices which minimize the normal 

approximation error using the expansion. We also examine the finite sample performance of 

the Edgeworth expansions by a Monte Carlo study.
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YOSHIHIKO NISHIYAMA
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Chapter 1.

Introduction

Single index models have been developed to analyze mainly limited dependent 

variables (LDV) models and some transformation models semiparametrically. The 

purpose of this thesis is to study higher order asymptotic properties of certain 

semiparametric estimator of a single index model. In the following section we review 

how parametric estimation fails'in case of model misspecification, then introduce a 

semiparametric single index model. Section 1.1 reviews an estimator of its parameters 

called density-weighted averaged derivatives. This estimator is shown to be J n -  

consistent and asymptotically normally distributed even though it involves a 

nonparametric estimate with slower convergence rate than n ~1/2 . This thesis 

investigates the higher order properties of the estimator focusing on the point if 

parametric rate of Edgeworth expansion is possible. Sections 1.2 and 1.3 respectively 

explain other semiparametric estimation methods and established higher order 

asymptotic theory related to the estimator of interest. Chapter 2 validates Edgeworth 

expansions for the density-weighted averaged derivatives suitably normalized, while 

Chapter 3 derives valid Edgeworth expansions for the studentized statistic. We further 

propose optimal bandwidth choices minimizing the normal approximation error based 

on the validated Edgeworth expansion. Chapter 4 compares the bootstrap distribution 

to the Edgeworth expansion derived in Chapter 2. Chapter 5 provides a Monte Carlo 

study based on a Tobit model.
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1.1 Parametric estimation and averaged derivative estimation for single index 

model

1.1.1 Parametric regression model and single index model

One of the main interest in econometrics is the mean response of certain 

economic random variables to others. Given two vectors of random variables X and 

Y, if we can consider that the value of Y  is determined depending on the value of X, 

we would like to make inference on the regression function,

E(Y\X) =g(X) almost surely (a.s.) 

where X  and Y are called the independent (or explanatory) variable and dependent (or 

explained) variable respectively. Let Ybe a scalar and X be a d* 1 vector. Suppose 

(i) we have independently and identically distributed (iid) observations 

(X^Y)), /=1,2,... of (XT,Y) , r  denoting transpose. Note that it implies

(i)’ (X/,€,0 are also iid where ei = Yi - g ( ^ i) , / =  1,2, ......

We have by the construction of e,

(ii) E(ex IX ^ O  a.s.

Assume also

(iii) Var(e1 \Xx) = o2 < oo a. s. 

and

(iv) Fflr(Xj) = Vx  is finite and positive definite. This implies \lx  = E(Xx) exists. 

Supposing

(v) g(x) is linear in x,

namely g(x) =fiTx  , classical statistical theory has considered inference on/3. Ordinary
n

least squares (OLS) method minY' (Yt - fPX)2 provides a very satisfactory point
P <=i

estimate of (3. If rank{X) = d , this problem has a nice closed form solution



p OLS = g t ' x r 'X 'Y  .

where X= (Xl9 X 2, — ,^T„)T and Y=(YV Y2,-~,Yn)T , and it is known to be the best

linear unbiased, consistent and asymptotically normally distributed under (i)-(v). The

proof is based on the equality

Pols = (XTX)~lX TY = (XTX)~lX T(XP + e)=P + {XTX)~lX Te (1.1)

where € = (tj, €2,—,€/I)T .W hen E \\POLS\\ < oo l, ||j| denoting Euclidian norm,

unbiasedness is straightforward by (i)’ and (ii) because

E $ ols) = P+E[E{(X*X)-'Xre\X}] =[3+E[(XrX)-'X'E(e\X)] = /3 .

(i), (iv) and Khintchine’s weak law of large numbers (WLLN) yield

plim—X TX  = Q (1.2)
n

where Q = Vx+\lx ^x  is finite and positive definite due to (iv). plim—X r€ = 0 by

(i)’, (ii)-(iv) and Khintchine’s WLLN. Therefore we have

plimf$ni + (p lim -X TX)-lp l im - X T€ =p (1.3)
n n

1 d
due to Slutsky’s theorem. Because of (1.2) and — X Te N(0,cr2Q) by (i)’, (ii)-(iv),

y/n
Lindeberg-Levy’s central limit theorem and Cramer-Wold device, we have

^ ( P a l s -/3) = (iAT’-J0'1̂ Te -^ ^ (O .ff2e - 1) • (1.4)
n y/n

If furthermore are normally distributed, (30LS coincides with the maximum 

likelihood (ML) estimator, so that it is efficient in the sense its variance attains 

Cramer-Rao lower bound.

As far as (i)-(v) are satisfied, the OLS estimate enjoys the above desirable 

properties. Some modified methods have been proposed when they are not satisfied. 

In case (ii) is violated, we can apply the instrumental variable (IV) method. If (iii)

1 A sufficient condition is £[Am1hl(XT2Q] < 00 where Amin(<4) is the minimum

eigenvalue of A.
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is violated, OLS still provides a consistent estimate, but it is no longer efficient, when 

generalized least squares (GLS) method can be used to derive an efficient estimate. 

The asymptotic distribution in case of heteroscedasticity is typically normal or some 

Gaussian functional depending on the data generating process (DGP). We also have 

enormous research on regression analysis of correlated variables.

When (v) is violated, however, we face difficult problems to resolve. Suppose 

g(x) is nonlinear in x in fact but we are ignorant of it, then OLS gives 

Pols = CX rX y lX rY = (XrX)'lX rG + (XrX)~lX r€ 

where G = (g0f1),...,g(Xn))T , so that roughly speaking we can think that fi0LS 

estimates quantities such as E[(XTX)~1X TG] or (plim-XrX)~lp l im -X TG but these
n n

would not be what we want to estimate in regression analysis.2 Thus OLS estimation 

will collapse under misspecification in regression function. In econometrics, we easily 

face this situation. Important examples include limited dependent variable (LDV) 

models such as:

1) censored regression model (type 1 Tobit model)

2 We can always calculate fi0LS formally as long as \XTX\ ^  0 even if it does not 
make much sense theoretically. We might think it gives a rough relation between Y and X  
as a kind of descriptive statistics.

(1.5)

2) Truncated regression model

Y; =firX i + u. , but are observable only when p rX i + ui > 0 . (1.6)

3) Probit model : Yi = I(pTX i + ui > 0) , ui \X ~iidN(0p2) . (1.7)

4) Logit model : Y- = I(J3TX i + ui > 0) , |X ^ i id  logistic . (1.8)

5) Transformation models such as
' logy;., a,=o

Box-Cox : h x(Yt) = p X { + «f, h x(Y^ = •! 7 /  -1 (1.9)



Here /(.) is the indicator function and ui are iid disturbance terms. Letting F(.) be 

the distribution function of ui conditionally on X t , the regression functions for the 

above models are

censored regression model

The functional form of the regression function is nonlinear in X i in each of the 

above cases so that the OLS does not work to estimate parameters in these models. 

Classical theory has developed two ways that may be able to handle nonlinear models. 

One is nonlinear least squares (NLS) estimation and the other is ML estimation. We 

explain them in terms of the Probit model (1.7). Exactly the same thinking is possible 

for the other models.

Since the disturbances are assumed to be independently and identically 

normally distributed with mean zero and variance d1 in (1.7), (1.12) gives

EfYi |Zj) = 1 -  r - ^ ' —t - e x p = 1 - O ( -^ i)  a.s. (1.14)

where $(.) is the distribution function of a standard normal variate. Only a=@/(T is 

identifiable here. The NLS estimator is the solution to

(1 . 10)

truncated regression model

( 1 . 11 )

Probit/Logit model : EQfi \Xi ) = 1 -F(-j8TX;) a.s. ( 1 . 12)

where F(.) is normal and logistic for Probit and Logit respectively,

Box-Cox model :
°°{1 + X(PTX i+u)llx}dF(u), X*0

a.s. (1.13)
-oo

n

a  ,= i
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It is known that the estimator is consistent and asymptotically normally distributed. 

However if ui are not normally distributed in fact, it means corresponding regression 

function (1.14) is incorrect. Thus the NLS estimator becomes inconsistent similarly 

to the OLS estimation with incorrect regression form.

We implement the ML estimation as follows. Under the assumption of normal 

disturbances conditionally on regressors, we construct the conditional probability 

function of Yt given X t

P(y;. =y\Xi;Pio2) =F?( 1 - F f - y , y = 0,1 

where F{ = P(Yi = 1 \Xi; /^o2) = <$(-— ) = Q?(-arX ^  . a. is identifiable again. The ML 

estimator for a  is defined by 

aML =  argmax LL (a)
a

where

LL(ct) = £  {Y.logF, + (1 -Y,)log(l -F,)} , (1.15)
1 - 1

is the log-likelihood function. The first order condition for the maximization is

s(aMi) = S  si(aMi) = ® (1*16)
i=i

where s(a) = ^ LL(a) .g ^  score function of the whole sample and 
d aps

st(a) =  {T/log Fi + (1-Y,.) log (l-F,)} is the score associated with observation i.
d a

ML method is known in general to provide consistent, asymptotically normal and 

efficient estimates under certain regularity conditions (see e.g. Amemiya (1985, 

p. 115-125)), so that it dominates the NLS in the current cases in terms of efficiency. 

We refer to Amemiya (1985, p.270-273) for the rigorous proof and conditions of 

consistency and asymptotic normality for the current Probit model. Here we would 

like to give only a heuristic explanation of the asymptotic properties. Letting a?0 be 

the true parameter value, mean value theorem gives

12



d s(a0)
s (a M i )  =  s (a o) +  r  ~ ( a M L ~ a c)  +  ^d aT

where R is a d x l  vector with kth element

Rk = (“ML- ao)T } (.aML- ao> . a' = ea0+(l-6)aML,0<9<l ,
d a 'd  a w

a(k) denoting the Mi element of a. Supposing a0 is bounded, aML is Op{ 1) and

1 &s(a)  l A  • n  • ,,----------= — > -------------------- is O (1) umformly m a, we have
n d a Td a ik) n £ f  d aT d a{k) p

d_sia0)
d CL

(1.16) and (1.17) give

*(«*&) =■*(«<>) + —T - ^ ( aML-a o) + ° p(” ) • (1-17)

— n , w  (L 1 8 )

if the inverse exists. Khintchine’s WLLN gives 

n n t f
and

-■s^o) = £{**iK)} = 0 (1-19)

i ds(a0) i " d-S;(tt0) ^ ^
- 1 — 1—  = - - E  — 1—  -  7K )  (1-20)

n a « T 3 a '

d2 LL (an)
where 7(a0) = -£ {  —} is the information matrix. The last equality in (1.19)

d a d aT
is because

= E =0

P
using (1.12) where <j>(z)=d$(z)/dz. Thus we have aML -* a0 by (1.18)-(1.20).3 We

next see the asymptotic normality. We now have R k = op(n) due to the consistency,

so that we can modify (1.18) times Jn to

f i d s{ac)  1 1 i
X “ml-« o)= - r +V 1} —  JK )  • (i-2i)[n  d a '  J f t

3 For the rigorous proof of consistency, we examine if n~lLL(a) converges
uniformly to a nonstochastic function of a taking maximum at a=a0 , and other technical
conditions on the objective function such as differentiability and measurability.
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Since s^aq) are iid with mean zero and variance I(aQ) ,

- p S W  = ^  W J ( a 0)) (1-22)
yjn y/n 1=1

by Lindeberg-Levi’s central limit theorem and Cramer-Wold device. Slutsky’s 

theorem and (1.20)-(1.22) give the asymptotic normality

v^(“ ML'a o) “*■ N ( 0 J - \ a a)) .

The above heuristic explanation suggests that (1.19) is vital for the consistency of ML 

estimators.

Similar calculation to (1.16)-(1.22) applies to the following log-likelihood 

functions corresponding to (1.5), (1.6), (1.8) and (1.9). The log-likelihood function 

of the transformation model under normal disturbances is

For the truncated regression model (1.6), assuming normality of u, the log-likelihood 

function is

log L(flio2) = - ^  (log27r+logcr2)
* n n

- . (1.24)
2 or m /=i

Tobin (1958) first proposes an estimation method of (1.5) to analyze household 

purchases of durable goods so that it is called a Tobit model. Assuming normal 

disturbances, the log-likelihood function is

logLQS.o-2) = Y ,  j  -^(log2ir+loga2) - - L y ,  - p ' X f l
r,>°l 2 2ct J

+ £ l o g { l - 4 > ( ^ ) )  . (1.25)
Yph °

The first term on the right corresponds to the likelihood of the observations with 

positive dependent variables and the second term is for the observations with 7=0. 

Amemiya (1973) proves that this estimator is strongly consistent, asymptotically

14



normally distributed and efficient. There is no closed form solution for the 

maximization of (1.15), (1.23), (1.24) and (1.25) so that we will need to maximize 

them numerically.

We briefly review related research to these. Heckman (1976) proposed a least 

squares type estimation for type 3 Tobit model mentioned later. The idea can be 

applied to estimate (1.5). Since

4>E(Yi |Y>0) = PTX i +E(ui \u>-fiTX ^  = +cr-^- a.s. (1.26)
/

where cr is the variance of the disturbance term, </>■ = </>(— -) and <$. = d>L-—0 ,
a <j

we have

E i Y J X ^ p X s o*. a.s.

Thus after getting some estimates of (pi and , we can perform OLS estimation. 

Robinson (1982) considers ML estimation of the Tobit model when independence 

assumption is violated. He proves it is consistent and asymptotically normally 

distributed. Maddala and Nelson (1974) show how consistency of ML estimator does 

not hold any more in the existence of heteroscedasticity. A modification to adjust for 

the heteroscedasticity is in Maddala (1983). Other types of Tobit model are also 

considered:

Type 2 Tobit model : Y  = tqX0 + e0) I(JSrX \ + €i ^  0) >

Type 3 Tobit model: Z  = (P\X1 + 6l)I(P]Xl +el > O)t Y=(pToX0+€0)I(P]Xl +€l > 0) . 

Gronau (1973) and Heckman (1974) estimate wage function of female workers based 

on type 2 Tobit model by ML method, where the latter takes into account the 

determination of hours worked, while the former does not. LS type estimator is 

considered in Heckman (1979). Regarding type 3 Tobit model, Heckman (1976) 

proposes a two-step least squares estimation based on the similar transformation as



(1.26), while Amemiya (1978, 1979) extends the method to estimate all types of Tobit

models based on their reduced forms by least squares or generalized least squares

method. Comprehensive survey on LDV models can be found in Amemiya (1981,

1984, 1985) and Maddala (1983) among others.

We now discuss when and how ML estimation can fail. As seen in the above,

(1.19) is crucial for the consistency of ML estimators. There are two sources of

violation of (1.19) in the above models. One is when the functional relationship is

misspecified in (1.5)-(1.9) and the other is when the conditional distribution of

disturbances is misspecified. If, for example, the model specification (1.7) is correct,

we have JE[y1(a0)]=0 as shown in the above. However, suppose it is incorrect but

the correct relation between Y and X  is in fact

=I(h(PTX i)+ui > 0) , h(x)*x  . (1.27)

Then —s(ar) does not converge to zero in probability since the expected score is 
n

non-zero because E(Yi |A!j) = 1 - *  1 - ^(-cYX;) , which means (1.18)

does not converge to zero in probability. Therefore ML method does not give a 

consistent estimate in the case of misspecified relation between variables. The same 

thing happens when the functional specification in (1.5), (1.6), (1.8) or (1.9) is 

incorrect. Similarly misspecification of disturbance distribution results in inconsistent 

estimate in general due to the violation of (1.19). For example, Robinson (1982) 

illustrates how misspecified underlying distribution leads the expectation of score to 

non-zero and yields inconsistent estimates for a Tobit model.4

Taking into account that economic theory typically does not provide us the

4 There are some exceptional cases like Gaussian pseudo maximum likelihood 
estimation for linear regression model, when misspecification of the disturbance distribution 
does not cause inconsistency under some conditions.
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whole information necessary to construct likelihood functions5, it is unlikely that we 

are sure of the specification like (1.5)-(1.9) with normal or some other specified 

disturbance distribution. Nonparametric and semiparametric methods have been 

developed to overcome these misspecification problems. There are many kinds of 

semiparametric regression models and their estimation procedures studied until now. 

Among them, semiparametric single index model is a useful alternative to some 

parametric models. It assumes Y depends on a d x l  vector X  only through its linear 

combination without specifying the disturbance distribution and functional relationship 

between Y  and fi7X  , namely

E(X\X)=g(X) = G(p7X ) a.s. (1.28)

where G: R-^R is assumed unknown. This is a rather general model including linear 

regression model, (1.10)-(1.13) as well as (1.27) as special cases. Since ML 

estimation is not robust to model misspecification, the estimation based only on (1.28) 

without specification of G(.) and the joint distribution of (Y,X) or conditional 

distribution of the error Y -E (Y \X )  given X  may be more favourable than ML 

method. We note that models like type 2 and 3 Tobit are not nested in (1.28), 

however these are special cases of a multiple index model, a generalized version of 

the single index model, reviewed in Section 1.2.

1.1.2 Density-weighted averaged derivative estimation

Several semiparametric estimation methods for (1.28) have been proposed 

since late 1980’s. One of them is the density-weighted averaged derivative (AD)

5 It is especially unlikely that economic theory provides the true disturbance
distribution.
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estimator by Powell, Stock and Stoker (1989), Robinson (1989) and Cheng and 

Robinson (1994),

t f = - E / W  d-29)
n  1=1

where
- /  \ n X  - X
/(AT.) = ------------ Y K f(—t-r-1) , (1.30)

1 {n-l)hd" U  h
h is a positive constant converging to zero as n -» oo and K'{x) = d K(x)/dx for 

a differentiable function K : R d ->R satisfying K(u)=-K(-u) and jK(u)du = 1 . This 

estimator has the following intuition. It is easily seen that /? in (1.28) is identifiable 

only up to scale since G(.) can be any function. For example P = P0, G(u)=u2 and 

P = 2P0i G(u)=u2J4 are equivalent with respect to (1.28). We could impose a 

normalization to make p  identifiable, such as ||/31| = 1 (Hardle, Hall and Ichimura

(1993)) or Px = l (Horowitz and Hardle(1996)) where is the leading element 

of p  . AD estimation does not employ these sorts of explicit normalization. 

Assuming g(x) differentiable, the AD is a nonparametric quantity defined 

by E  {g '(X )} which measures mean response of Y to marginal change in X. This is 

proportional to p  since

jijs  E {g ,QC)}=E{G '(PTX))P= c fi  (1.31)

where G /(w)= dG(u)fdu and c0=JE[G/(/3TZ)] is an unknown constant, so that 

estimation of AD means estimation of P up to a constant. Weighted averaged 

derivative

K = E{w (X)g '(X )}  (1.32)

is also proportional to /3 for any weight function w(.) since

E {w (X )g /(X)} = E {w (X )G /(prX)}P=clp  . (1.33)

Therefore estimates of weighted AD also estimate p  up to scale. Suppose X  is a

18



continuous random vector with unknown density/(x). When the density is used for 

the weight, ^  is called the density-weighted average derivatives. Under the

assumptions that fix)2g(x) diminishes on the boundary or more precisely 

lim | fix)2g(x) | = 0 and the integrals in the following equation exist, we have
|x |->oo

ty = E{f(X)g  'QC)} = Jf(x)2g '(x)dx = - J 2f'(x)f{x)g(x)dx

= -E (2 f/QC)g&)}=-2E{f'Q{)Y} (1.34)

using iterated expectation in the last equality. The third equality is because 

ff(x)2 d-̂ dx = j*{fixfgQc)]^ 11 ^ (_0 - 2  fg(x) <L&lfQc)dx
U O j'

=-2 fg(x) ̂ -&tf{x)dx

due to Fubini’s theorem, integration by parts and the above assumption on

f(pc)2g(x) , where d x ^  =dxl '"dxiAdxi+l —dxd . We are concerned with an estimator

of JI = -fy = 2E {f'(X) Y) in this thesis which is a weighted AD with w(x)=-fix) and

is also proportional to j3. Supposing we have iid observations (AT/",IQ, i = 1,2,... , we
2 n

may estimate jl by its sample analogue —S ^ f ,QCYYi . It however involves unknown
n U

f'(x) so that it is replaced by a consistent estimate /  (x) , then we obtain (1.29).
~/

We discuss the properties of /  (x) in 1.1.4. Plugging (1.30) into (1.29) and some 

algebra using K f(u) = -K'(-u) yield 

U =

This has a U-statistic form so that it is computationally less expensive than many 

other estimators involving nonlinear optimization such as ML estimators for LDV 

models in the above or semiparametric estimators seen in Section 1.2. There are some 

variants of AD type estimation depending on the choice of weight function in (1.32) 

and what estimate of f'(x) is plugged in instead of (1.30).

The above authors have studied the asymptotic properties of U under various

(no ) E  i  U,  ' u a=h -  y f) . (1.35)
z / i=l 7=1+1 n
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DGPs. Small sample theory is virtually impossible because of unspecified underlying 

distribution. Powell, Stock and Stoker (1989) and Robinson (1989) prove the 

yfn- consistency and asymptotic normality for iid and weakly dependent 

observations respectively under certain assumptions on g(.), /(.) and its derivatives 

and function K(.) including

for some positive integer L. K(.) used in (1.30) is called a kernel function and those 

satisfying (1.36) are called higher order kernels. L there is called the kernel order. 

Higher order kernels are originally developed to reduce asymptotic bias of kernel 

estimators of nonparametric functionals and first introduced to semiparametric 

framework by Robinson (1988b) for estimation of partially linear regression model. 

In the current estimation of jl , it is easy to show EU -  p = O (h L) (see (3.21) of 

Powell, Stock and Stoker), so that larger L  reduces the asymptotic bias of U more 

since h -> 0 as n -> «> . We see this also in a Monte Carlo study in Chapter 5. 

Some methods to construct higher order kernel function are found in e.g. Robinson 

(1988b) or Wand and Jones (1995, p.32). Applying the standard decomposition of U- 

statistics, we have

= 1, if  /1+-+/d=0 
f U\K” u/K(u)du * = 0, if  0< l^‘"+ld<L
R ^  0, if

(1.36)

(1.37)

where

£/,. ee E i U . ^ Y , )  = £  \ h -  Y,) \X„Y,

= h -d-1j K \ ^ - ^ ) { Y i -g(x)}f{x)dx

/(u){Yi - g(Xt - hu) }f(Xi - hu)du , by variable transformation
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= h jK'{u)f{Xi-hu)du -h ~ ljK \u)e{X i-hu)du

= YijK(u)f'(Xi-hu)du - jK(u)e /(Xi -hu)du , by integration by parts (1.38)

where e(x)=g(x)f(x). Powell, Stock and Stoker (1989) and Robinson (1989) prove 

both terms on the right of (1.37) converge to zero in probability, and the first term 

times y/n converges to a normal variate while the second term times y/n converges 

to zero in probability under certain conditions for iid and weakly dependent 

observations respectively, hence U is a yfn- consistent and asymptotically normally 

distributed estimator of p . For iid case, Theorem 3.1 of Powell, Stock and Stoker

(1989) shows the asymptotic covariance matrix of U is

E = 4Var[f(X)gXX)) + 4E[{Y - g(X)}2f /(X )f/(X)7] (1.39)

and they provide a consistent estimator of V, while Robinson (1989) also calculates 

the asymptotic covariance matrix and proposes its consistent estimator for dependent 

case (see equations (2.14)-(2.21) of Robinson (1989)). We compare (1.39) with the 

semiparametric efficiency bound in the following subsection. Cheng and Robinson

(1994) study the properties of (1.35) when the observations are long range dependent. 

They show the convergence rate is not necessarily of n _1/2 and the asymptotic 

distribution is not normal in general but it can be some Gaussian functional depending 

on the DGP.

We would like to give two remarks on the AD estimation. Firstly, (1.29)- 

(1.34) suggest the following possibility of generalization. Suppose we can consider 

E (Y \X iZ)=H(p7X ,Z )  

where H(.,.) and /? are unknown. This model nests type 2 and 3 Tobit models as well 

as the partially linear regression model (1.69) explained later in Section 1.2. Letting 

f(x,z) be the joint density of X , Z and f(xX) be its estimate, we might be able to
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2 ~estimate (3 up to scale by — V  Yi d / ( X ^ ^ J d x  since
n M

E[f(XZ)d g{X£)ld x} = pE[f{X,Z)d H(fiTXX>)ld Q3Tx)] = -2£[Y/(X,Z)] 

similarly to (1.34) under some regularity conditions. Secondly, even if the 

specification (1.28) is incorrect namely Y depends on X  not only through its linear 

combination, weighted AD estimates may still make sense in that it estimates the 

nonparametric quantity E{w{X)g'{X)} which is a kind of average gradient of g(x) 

with some weight, especially, when w(x) = l, this is obviously of direct interest.

1.1.3 Semiparametric efficiency bound for the density-weighted AD estimator

We can consider efficiency among semiparametric estimators in the manner 

like Cramer-Rao lower bounds. See Stein (1956), Koshevnik and Levit (1976), 

Pfanzagl and Wefelmeyer (1982), Begun, Hall, Huang and Wellner (1983) and 

Bickel, Klaassen, Ritov and Wellner (1993) among others. Semiparametric models 

formally assume the distribution of random variables Z is F(z)=F(z;a,J(z)) where a 

is a vector of unknown parameters, J(z) is an unknown function and F(.;.,.) may be 

assumed known or unknown. (1.28) is an example with Z=(XT,Y) , a=/3 and 

J(.) = G(.). Semiparametric efficiency bound is based on the following consideration. 

Suppose we know F(.;.,.) and also we can parametrize J(z)=J(z\Q) where the 

functional form of /(.;.) is known, then the ML principle gives an efficient estimate 

of y = • The basic idea of semiparametric efficiency bound comes from the fact

that semiparametric estimators should not be more efficient than its parametric ones, 

because the semiparametric model F(z\a,J(g)) is a wider class of models than the 

parametric F(z\ot,J(g\Q)) . Let l(y;Z) = log F(Z\olJ(Z\Q)) be the log-likelihood 

function and
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(1.40)

be the information matrix of the parametric model. Cramer-Rao lower bound for 

estimating a  is the upper left block of the inverse of /  , I aa = Uaa~Iâ eehoXX •

Since semiparametric estimators of a  cannot be more efficient than parametric ones, 

we define the semiparametric covariance bound as

where the supremum is taken over all finite dimensional parametrization of 

There is no guarantee that there exists a semiparametric estimator which attains this 

bound for a semiparametric model, but some estimators have been shown to attain 

this efficiency bound. (1.41) indicates that the nuisance function /(.;.)  causes 

efficiency loss compared with parametric estimation in general. In some cases, 

however, we can estimate the parameters of interest asymptotically equally well when 

the nuisance function is unknown to the case when it is known. This situation is 

studied in e.g. Stein (1956) and Bickel (1982) and referred to as adaptive.

Although the definition of semiparametric efficiency bounds does not directly 

lead to its calculation methods, Begun et.al. (1983), Bickel et.al. (1993) and Newey 

(1990b) provide methods to compute the bound. Using the method by Newey 

(1990b), Newey and Stoker (1993) derive the efficiency bound for the weighted

where u = Y-gQC) and l(X) = -w \X )  -w (X )f/(X)/f(X) . The first term of (1.42) 

comes from not knowing g(x), the second from not knowing/(x). Substituting the 

weight w(x)=-/(x), we derive the efficiency bound for density-weighted AD 

E[-f(X)g\X))  ,

(1.41)

AD K =E[wQC)g'{X)\ ,

Var[w(X) g '(X)] +E[u 2l(X)l(XY] (1.42)
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Var\f(X)gXX)] + 4 E [ { Y - g ( X ) m x m i  ■ (1.43)

Comparing (1.39) with (1.43), we see the density-weighted AD estimator U does not 

attain the semiparametric efficiency bound. We will see efficient semiparametric ' 

estimators for single index models in Section 1.2.

1.1.4 Estimation of density and its derivatives

(1.30) can be seen as an estimator of density derivatives f'(x) at x  =Xi . 

Density and density derivatives estimation has a long history. The most primitive 

estimation method for density is histogram. More sophisticated methods have been 

developed based on smoothing techniques. Supposing X i9 i= 1,2,... is an iid sample 

from a scalar variate X  with absolutely continuous density/(x), Rosenblatt (1956) first 

applies the kernel smoothing technique to estimate/(x) by

where h is a positive sequence satisfying /i-> 0 and w/i-> oo as n-+ oo and K(.) 

integrates kto unity. This is called kernel density estimator. First order asymptotic 

properties of this estimator such as asymptotic unbiasedness, L x or L 2 convergence, 

yfnJi - consistency and asymptotic normality have been studied under various 

conditions on K(.) and h (see e.g. Parzen (1962), Nadaraya (1965, 1974), 

Epanechnikov (1969), Sethuraman and Sibuya (1961)). Berry-Esseen bounds (see 

1.3.1) are obtained by Prakasa Rao (1977), while an Edgeworth expansion is 

validated by Hall (1991). A natural multivariate generalization

is proposed in Cacoullos (1966), where X  is d-dimensional and K: R d-» R  . (1.30) 

is based on its derivatives

(1.44)
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f  w  = - h r X K ' £ i r L) ■ (L 4 6 )nh d 1 pi h
This way of estimating density derivatives is originally proposed by Bhattacharya

(1967) when d= 1. He suggests to estimate the p-th order derivative of f(x) by
~(p) 1 n y  -  Y

f  W = - r - 7 T ^ —r 1 ) ’ <1-47)nhP*l M h
the /?-th order derivative of the kernel estimator (1.44) when d= 1. Bhattacharya

(1967) and Schuster (1969) show its asymptotic unbiasedness and strong consistency

respectively, while Silverman (1978) proves its weak and strong uniform consistency.

Singh (1976) generalizes this to multivariate density derivatives and proves the

asymptotic unbiasedness and strong consistency. Other estimation method is proposed

in Singh (1977, 1979).

Kernel methods include user-determined bandwidth h. The first order theory

requires only h -» 0 and nh -* <» for consistency or asymptotic normality so that

the practical choice of bandwidth is of interest for empirical use. One possibility of

determining h is to minimize the mean integrated squared error (MISE) with respect

to h. Asymptotic MISE of (1.45) is f c°E{f(x)-f(x)}2dx= 0(h2L+n~lh~d) under
J -00

(1.36) so that the optimal bandwidth is O (n_1/(2L+J)) and hence the asymptotic MISE

results in O (n~2LK2L+d)) (see e.g. Silverman (1986), p .85 for the case of L =2).

This indicates that larger d yields slower convergence of (1.45) which Bellman (1961)

calls curse of dimensionality. We could consider other criteria such as

f ME\ f(x)-f(x)\cbc instead of MISE (see e.g. Devroye and Gyorfi (1985)). 
J  -00

Typically, MISE involves unknown functionals of fix) (see e.g. Silverman (1986), 

P.39) and so does the bandwidth minimizing MISE, thus it is infeasible. Plug-in 

approach has been studied by many authors for feasible bandwidth choices, where the 

unknown functionals in MISE are replaced by their consistent estimates (see e.g.
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Woodroofe (1970), Nadaraya (1974), Sheather (1983, 1986), Park and Marron

(1990), Sheather and Jones (1991)). Cross validation methods have also been 

developed for feasible bandwidth choices. Suppose we consider the bandwidth choice 

in (1.44). Since minimization of MISE is equivalent to minimization of

J  f  (x)dx - 2J* f(x)f(x)dx and the second term can be estimated by

is a reasonable choice. This is called the least squares cross validation. The ML 

principle also can be used for cross validation. ML cross validation treats the 

bandwidth like parameters to be estimated and maximizes nonparametrically estimated 

likelihood function over h , namely,

Marron (1985) proves asymptotic optimality of this choice. Marron (1987) compares 

cross validation techniques, while Marron (1988) gives a brief introduction of these 

methods. Faraway and Jhun (1990) introduce bootstrap method of bandwidth selection 

where estimated MISE by bootstrapping is minimized with respect to h.

Optimal bandwidth selection h =0(n~ll{2L+d)) for density estimate (1.45) 

mentioned in the previous paragraph is different from that for density derivative 

estimation. Hardle, Marron and Wand (1990) provides an optimal bandwidth choice 

for (1.47) by least squares cross validation. The MISE of (1.46) is

■ h minimizing
'■y1 »=i j* i

m a x £  log f J X J ,  f J X J

-/ - /

-00  J  -00
" £ { / ( * ) -f'(x) }2dx= [ ”[V (f Qc)) + [Bias(f (x))}2]dx•00 j '00

= 0  (n xh d 2 + h 2L)
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under some conditions on/, its derivatives and K(.) including (1.36). The last equality 

uses

E { K \ i ^ l ) }  = f " K '(— )f(y)dv = hd[ c°K/(u)f(x-hu)du
h J -oo h J-oo

= h °°K(u)f'(x-hu)du J  “K(,u)f'(x)du + O (h L)j

=hd*1f /(x) + 0 ( h L*d*i) ,

E { K \ — 1)}2 = f ”{K ,( i ^ ) } 2f(v)dv=hd f “‘{Kl(u)}2f(x-hu)du=0(h d) .
h J  -oo h J -oo

This implies that the minimum MISE bandwidth for (1.46) is

h* = C n ~ ^  , (1.48)

where C is a positive constant. This is different from the optimal bandwidth for 

density estimation. We see in the following subsection the optimal choice of h for the 

AD estimation is different from these choices.

The kernel function is also user-determined. Additional to the condition that 

K{.) integrates to unity, we may like to impose K{u) > 0 which guarantees the 

resulting density estimate is nonnegative at all points. Then, K{.) is a density. Various 

alternatives have been suggested in the class of density, among which Epanechnikov 

kernel has an optimal property that it minimizes the MISE. Higher order kernel 

function (1.36) does not satisfy K(u)> 0 so that it can result negative estimate of 

density at some points, which may be inconvenient. But (1.36) can reduce the 

estimation bias so that there is a trade-off between f(x) > 0 and smaller bias 

of /(*) . In the current AD estimation, however, negative density estimate is not 

so problematic as when density itself is of interest. It rather seems to work quite well 

in view of the Monte Carlo study in Chapter 5.

There are other principles of nonparametric density estimation such as variable
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kernel estimation, k-nearest neighbour (k-NN) estimation, orthogonal series estimation 

and penalized maximum likelihood estimation. We refer to some monographs on 

density estimation, Tapia and Thompson (1978), Prakasa Rao (1983), Devroye and 

Gyorfi (1985), Silverman (1986), Devroye (1987), Scott (1992), and Wand and Jones

(1995) as well as review papers by Izenman (1991) and Andrews (1995).

1.1.5 Bandwidth selection for AD estimation

As in the density and its derivatives estimation, h in (1.35) is user-determined 

in AD estimation. Powell, Stock and Stoker (1989) show the rate of decay required 

for yjn -  consistency and asymptotic normality is n ~lh ~d~l + n ll2h L -> 0 as n -> 0 

under iid environment, while Robinson (1989), under weakly dependent environment, 

shows various rates could apply depending on the moment condition, mixing 

condition and the rate of smoothing parameter for nonparametric estimation of power 

spectrum involved. The above theory only supplies the rate of decay, but we need to 

use a specific value of h in empirical applications. A principle to select a desirable 

h is to take it such that the mean squared error (MSE) E (U -  JI)2 is minimized. 

Hardle and Tsybakov (1993) derive the following bandwidth choice which minimizes 

leading terms of the MSE for iid case,

where Ql and Q2 are constants depending on unknown functionals such as density 

of X  and conditional variances. It is interesting that optimal bandwidth selection for 

AD estimation (1.49) is different from that for density derivative estimation (1.48). 

More specifically, we require less smoothing than derivative estimation. (1.49) is 

optimal but infeasible because of unknown Ql and Q2 . Powell and Stoker (1996)

(1.49)
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propose plug-in bandwidth choices for more general statistics with the form of 

density-weighted averages including (1.35).

1.1.6 Estimation of the unknown function G(.) of the single index model

We have shown how we can estimate /? up to scale in (1.28) by the density- 

weighted averaged derivatives. The above asymptotic theory on U may be sufficient 

when our main interest is, for example, to test linear hypothesis such as /3t=0 or 

Pi=Pj where (3i is the ith element of /?. However, if we also would like to know 

E(Y\X=x) = G(J3Tx) , say, for prediction, we need to estimate the unknown function 

G(.) also. Since G(.) is not specified parametrically, we adopt a nonparametric 

regression method. U estimates \i = c2p  for some unknown constant c2 so that we 

rewrite G(.) correspondingly as G([¥x) = G(c2lliTx) =H(JiTx)  and consider 

estimation of H(.).

Nonparametric regression methods have been developed to consistently

estimate regression functions when we have no information on the functional form,

namely we would like to estimate E(Y\X=x)=g(x) without assuming any parametric

form. Let f(x,y) be the joint density of X  and 7, and f(pc)= f  °°f(xy)dy . Since
J -oo

f(*)g(x) = f*yf(xy)dy , (1.50)
J -00

we could consider the following estimator of the regression function g(x).

g(x) = { /to  i ' l f  “yf(xy)dy (1.51)
J  - 0 0

where f(x,y) and f(x) are suitable estimates of f(x,y) and f(x) respectively. 

However this estimator is inconvenient since integration in (1.51) may not be able 

to work out or even worse it might not exist depending on the estimate of the joint 

density. Nonparametric kernel regression estimator originally introduced by Nadaraya
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(1964) and Watson (1964) independently is

n h £ f  v h y|  n/ijf/ 

where h + n ~lh _1 -*> 0 as n-*oo  and Z(.) integrates to unity. This is called

Nadaraya-Watson (NW) estimator. Heuristically we can view this estimator as

follows. The inverse factor on the right of (1.52) is the nonparametric kernel estimate 

for/(x). The expectation of the second factor is, under iid environment and certain 

smoothness conditions on g(.), /(.) and K(.),

h E \YKC-f)] = h -lE\g(X)K{if)\ =h-lf j ( v )K (^ ) f ( y )d v

= f  °°g(x-hu)K(u)f(x-hu)du ~^g(x)f(x) f  °°K(u)du = g(x)f(x) (1.53) 
J -00  J -00

as /z-O, the third equality using variable transformation. Thus the right hand side of

(1.52) will converge to g(x). When X  is a scalar random variable, Nadaraya (1970) 

proves its uniform strong consistency, while Schuster (1972) shows the pointwise 

asymptotic normality when the estimator is normalized by Jnh . Since h is chosen 

such that h +n~lh~l-+Q as oo f convergence rate of the regression estimator 

is slower than n~l/2 of typical parametric estimators. Greblicki (1974) generalizes

(1.52) to multidimensional regressors and shows its strong consistency, while Mack 

and Silverman (1982) prove its weak and strong uniform consistency. Devroye and 

Wagner (1980a, b) prove E(Df)-> 0 and D {-> 0 where Dr=f Jg(x)-g(x)\rdx .
" R

Singh and Tracy (1977) study estimation of higher order conditional moments 

E (Y k \X) .

In the index model, we can apply this method to estimate G(.) or equivalently 

H(.). Since U estimate jl , we simply regress UTX  on Y nonparametrically using 

above method. Namely, we can estimate H(u) by
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The bandwidth a used here need not be the same as h used in U. We could consider 

choosing a and h simultaneously by minimizing MISE of H(UTX ) . This choice of 

h may be different from the minimum MSE choice (1.49). Which criteria should be 

used depends on the purpose of the analysis.

Other nonparametric estimators of regression functions such as k-NN, 

orthogonal series, spline smoothing and local polynomial estimators could be applied 

to estimation of H(.). We only refer to some good monographs on them, Prakasa Rao 

(1983), Hardle (1990) and Wand and Jones (1995).

1.1.7 Higher order asymptotic theory of AD estimation

We have seen the first order asymptotic properties of (1.35) is qualitatively 

identical to the parametric statistics for iid and weakly dependent observations in the 

sense that they are yfn - consistent and asymptotically normally distributed. This is 

a surprising result in the following sense. Since (1.29) involves a nonparametric 

kernel estimate of f'(x) and its convergence rate is of order («/z J+1)-1/2 , strictly 

slower than parametric order of n~112 , it is likely that the estimator (1.35) is 

affected by the slow convergence property of (1.46). However, as far as the first 

order properties are concerned, the nonparametric estimate does not affect the 

properties of the estimator. Then a question arises: are its higher order properties also 

analogous to parametric statistics? Robinson (1995a) investigates the Berry-Esseen 

bound of (1.35) for iid observations. The Berry-Esseen bound determines the order 

of normal approximation error and it is typically of n ~1/2 for parametric statistics. 

He establishes



sup sup |P[n l,1XT{U-\i) <z] - <£(z) | =0 (n “1/2 + n~lh 'd 2 + n 1/2h L)
A:AT2A = 1  *

where E is the asymptotic covariance matrix of U (see (1.39) for the definition of E). 

The bound is not of parametric order in general, however it can attain the bound of O (n_1/2) 

depending on the rate of decay of the bandwidth. He also calculates an optimal choice 

of bandwidth in terms of minimizing normal approximation error, which is

> (1 55) 

This is of smaller order than (1.48) and (1.49). The purpose of this thesis is to extend 

his study to derive Edgeworth expansions.of (1.35). We give a summary on higher 

order theory of parametric and semiparametric estimators in the last section of this 

chapter.

1.2 yfn- consistent semiparametric estimation

Section 1.1 shows when and how parametric methods can fail and the single 

index model is a good alternative to some parametric models such as (1.5)-(1.9) and 

others, then we have introduced the density-weighted AD estimation for it. We first 

review other estimation methods of single index models in 1.2.1. Subsection 1.2.2 

reviews other yfn - consistent semiparametric estimators related to (1.5)-(1.8) and 

other models, specifically,

(1) discrete choice models

(2) censored and truncated regression models

(3) partially linear regression models

(4) linear regression models with heteroscedasticity of unknown form

(5) semiparametric maximum likelihood estimation
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(6) other models such as simultaneous equation models.

(1) and (2) can be seen as special cases of index models, and some models seen in

(5) and (6) include certain cases of (1) and (2). Also, methods in (3) can be applied 

to estimate (2). Subsection 1.2.3 generally compares parametric, semiparametric and 

nonparametric methods in econometrics.

Some review papers on semiparametric econometrics include Robinson 

(1988a), Newey (1990b), Delgado and Robinson (1992), Powell (1994) and Linton 

(1995b), while monographs on this topic are Pfanzagl (1990), Bickel et.al. (1993), 

M.-J. Lee(1996) and Horowitz (1998).

1.2.1 Semiparametric estimation of index models

We introduce a more general single index model than (1.28) which allow the 

index to be nonlinear in X , namely

E (Y \X )= g(X )= G (v(X £))  a.s., (1.56)

where 7  is a scalar, X  is d dimensional, function v:R d~* R s (d> s) is known up to 

unknown parameter /3 , while function G(.) and distribution of the variables are 

assumed unknown. We can reduce the dimension of variables from d to s and thus 

face less curse of dimensionality, which is a strong advantage to nonparametric 

regression. (1.28) is a special case when 5=1 and v(Z;j3)=j8TX  where p  is a d x l  

vector.

We first review AD type estimation when v(X;P)=pTX  . Stoker’s (1986)

original work considers averaged derivatives without weight,

^ - E { l ^ l g ( X ) } = - E { V { X ) Y )  , /(x)= log/M  . (1.57)
/(a  )

Supposing we have iid observations (XJ XI), * = 1, 2 , ... , we can estimate it, similarly
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to the weighted averaged derivatives, by

iT1= - i £ 7 a r f)Y;. , 7 « =  lo g /w  (l.ss)
n  i=1

where f(x) is a suitable estimate of/(x). Assuming a parametric family f(x)=f(x;9) , 

Stoker (1986) uses f(x)=f(x;9) where 0 is a consistent estimate of 0 . He 

proves y/n - consistency and asymptotic normality of fij . This estimation 

parametrizes the density function, but it does not require any specific form of g(x) so 

that this is semiparametric. Hardle and Stoker (1989), without parametrizing /(x), 

plug (1.45) into (1.58) where K(.) is a higher-order kernel function. They show this 

estimator is yfn - consistent and asymptotically normally distributed and derive a 

consistent estimator for the asymptotic covariance matrix. Stoker (1991) shows this 

estimator is first order equivalent to other four estimators including the derivative of 

NW estimator. Chaudhuri, Doksum and Samarov (1991) consider average derivative 

quantile regression
0 0 (X)

Hi(a) = £ [— f — ], = inf[y :FYJy\x)  > a} ,
O X  y  r

where local polynomial regression estimator is used for 0a , and prove the estimator 

is y/n - consistent and asymptotically normally distributed under quite weak 

conditions. Hardle, Hart, Marron and Tsybakov (1992) propose an optimal bandwidth 

selection which minimizes leading terms of mean squared error (MSE) of Hardle and 

Stoker’s (1989) estimator. They show that the optimal bandwidth is of order 

n -2i(2L+d) where £  is ^  kernel order. Hardle, Hildenbrand, and Jerison (1991) 

apply this method to estimate households’ income effect from U.K. family 

expenditure data.

Andrews (1991) proposes a series estimator for AD and proves its y/n - 

consistency and asymptotic normality under a general setup including some other
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semiparametric estimations. In addition to deriving the efficiency bound for weighted 

AD (1.42), Newey and Stoker (1993) propose a method to construct an efficient 

estimator by combining different weighted AD estimators via minimum chi-square.

Ahn (1997) considers the following index model where a part of the regressors 

is nonparametrically generated,

E (Y\X) = G ( X ^ 0+X(m(X{))%)i m(Xl)=E(X2\Xl) . (1.59)

Here Y ,X QiX liX 2 are observables, parameters p 0, , G(.) and m(.) are

unknown, but X(.) is known. He proposes the following two step estimation. We 

perform nonparametric regression in the first step to estimate ra(.), then replacing the 

unknown m(.) by the first step estimate, we implement AD estimation for up

to scale in the second step. He proves its yjn - consistency and asymptotic normality.

Ichimura and Lee (1991) propose to extend the least squares principle to the 

estimation of (1.56), namely,

m in f :{ y ; .-G (v (^ ))} 2 . (1.60)
P m

They partly specify the function G(.) as multiple index form,

G(v(X-M=XM + f W ) , . W ) )  (1.61)

where X T= (X J^ -X m) » ft(.), i=0,...,M are known functions of basic parameters 

6 , and i|r(.) is an unknown function. (1.60) is infeasible since we do not know the 

true functional form of G(.) due to the unknown i|/(.) , so that they replace i|j(.) by 

its nonparametric (kernel) estimate and construct

E M W - -------------------  :--------    .

E 1tjt,  \A  1/ -a  1 k ) P  1 w  \

K {  A  A ]k*  i

thus the feasible minimization problem reduces to
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riling; l Y r X & t m - E J F M f i ) } 2 . (1.62)
e i=i

They prove this estimator is yfn - consistent and asymptotically normally distributed, 

and provide a consistent estimator for the asymptotic covariance matrix. Stem (1996) 

applies this method to estimate the supply and demand effects of disability on labour 

force participation. Ichimura (1993) applies the same principle to single index model 

(1.56) when s = 1. He allows some weight and proposes an estimator

m i n W (X^{Y--E(Yi |^;0)}2 . (1.63)
e I=i

where

T  W(X.)YK( v[y';8)~vtyi;6))
E Q T M f t ) ^ -------------------- --------  .

£  w q c j k C**—--**’)
k* i h

He proves the estimator is also y/n - consistent and asymptotically normally 

distributed, and provides a consistent estimator for the asymptotic covariance matrix. 

He further shows that it attains the semiparametric efficiency bound obtained by 

Newey (1990b) under the optimal choice of weight function W(x)= {V(Y\X=x)Y112 . 

Though this weight is infeasible, the same asymptotic properties may still hold when 

we replace it by its suitable consistent estimate. Hardle, Hall and Ichimura (1993) 

derive an optimal choice of bandwidth for Ichimura’s (1993) estimator under linear- 

in-variable index assumption, i.e. v(Xfi)=XTp . They show the asymptotically 

minimum MSE choice of bandwidth is of order n "1/5 . This order equals to that of 

optimal bandwidth choice for nonparametric regression with one regressor and so 

differs from the choice for AD estimation.

Samarov (1993) shows that y/n- consistent estimates of certain AD 

functionals such as and E[w(X)^  ̂ ] are useful to determine
dx dx  gx gx r
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a model out of some alternative non/semiparametric models.

1.2.2 Other f n - consistent semiparametric estimation

We have seen single index model (1.28) is a good alternative in terms of 

robustness to (1.5)-(1.9) and some other parametric models. There could be, 

however, a drawback of AD estimator caused by its too much generality. Suppose we 

know Y- = I(/3TX i + w(. > 0) is the correct specification but we do not know the 

distribution of u. Obviously AD estimation can be applied to this model. However 

(1.35) estimates (3 only up to an unknown constant so that it may be inconvenient 

when we want to know the level of (3 itself. Also if we would like predictions of Y, 

those based on the AD estimation and (1.54) may not be good due to the slow 

convergence of H(u) . Thus we may not want to estimate the model based on (1.28), 

but based on Yt = I{j3TX i + ui > 0) just without a specific distribution of u. There have 

been proposed various ways to estimate the parameters of (1.5)-(1.8) f n -  

consistently without specifying distribution of disturbances parametrically.

Semiparametric estimation of discrete choice models

For discrete choice models including (1.7) and (1.8), the pioneering work by 

Manski (1975) considers the following polychotomous choice setup. Supposing the 

utility function of an individual i under a choice j  is , i chooses an option

j  when f F X ^  pX fr  for all k *  j  . He proposes to estimate (3 by

maxl £  W{R(j\ifi)) 
fi n «=1

where W(.) is any monotone increasing function, and R(j\iJ3) is the rank function 

presenting the rank of choice j  for individual i given a parameter (3 . This estimate
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the parameter vector such that it maximizes the sum of the rank of the choice among 

alternatives each individual takes. He proves the estimator is consistent, while 

Cavanagh (1987) and Kim and Pollard (1990) study the convergence rate and 

asymptotic distribution and show this estimator is of slower convergence rate 

than yfn . Manski (1987) applies this principle to binary panel data. The objective 

function is discontinuous with respect to the unknown parameters so that Horowitz

(1992) modifies the objective function to be continuous using kernel method and 

Horowitz (1993) applies this method to the choice between automobile and transit for 

work trip. Ruud (1983) proposes to apply pseudo maximum likelihood estimation to 

the discrete choice models, while Cosslett (1983) proposes a distribution-free MLE 

for the following binary choice model. Suppose individual i faces a choice between 

two alternatives "1" and "0". Let U- be the utility of i from choosing y, y = 1, 0, and 

it has a parametric form £/.j.=v(Z/7;0)+e/7,;= 1,0 where X~ is a vector of some 

variables associated with option y, v(.;.) is known up to a parameter vector 9 

and e is a disturbance term with unknown distribution. Then his choice is 

characterized by

Yi =K.UU > *70i) = /( ) .

Putting VCZ^O) =v(Xu;0)-viX^O) , Z i = (Xu,X oi) and denoting the distribution

function of €oi-eu by F, the log-likelihood function is
n /  \

£  YlogF[V{Z{M  + tt-Y$og{\-F [V {Z{m  . (1.64)
i=\ ' /

Applying the algorithm by Ayer, Brunk, Ewing, Reid and Silverman (1955) to obtain 

an estimate of F  corresponding to each 6, we maximize the likelihood with respect 

to 6. He proves its strong consistency. The log-likelihood function is analogous to 

(1.15). Cosslett (1987) shows its efficiency. Since (1.64) is discontinuous with respect
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to 0 due to the discontinuity of the estimate of F(.) by Ayer et.al., Klein and Spady 

(1993) extend this idea to invent a continuous objective function and prove the 

estimator is f n  - consistent and asymptotically normally distributed. Matzkin (1991) 

proposes a semiparametric MLE of polychotomous choice models with nonparametric 

utility function and normal disturbances. There are some other related works by 

Manski (1991), Ahn and Manski (1993) and Lewbel (1997).

Semiparametric estimation of censored regression models

There are some studies for semiparametric version of censored and truncated 

models (1.5) and (1.6) where the disturbance distribution is not parametrized. It can 

be estimated by distribution-free ML method as Cosslett (1983), namely we replace 

$(.) in (1.24) and (1.25) by certain estimate of the disturbance distribution and 

maximize it over the unknown parameters. For (1.5), Powell (1984) proposes least 

absolute deviation (LAD) estimation by

and proves its f n  - consistency and asymptotic normality. Powell (1986b) extends 

this principle to estimation of censored regression quantiles, while Honore (1992) 

applies LAD to fixed effect panel data models. Horowitz (1986) proposes NLS type

where F Ju fi)  is a modified estimate of the disturbance distribution by Kaplain and 

Meier (1958). Powell (1986a) takes a different approach and proposes to use only 

observations satisfying E (Y -  p TX\X) = 0 . Assuming the symmetry of disturbance 

distribution,

m in -£ )  |y; -m ax(0^TX.)|
P

/ oo
{1 -F(u)}du , his estimator is

-fix

P = a r g m i n jy , - f  "  [1 -Fn(up)]du\ 
P n t \  [ J~?x ‘ )



E{Y* \X] =@TX  where Y*=YI(pTX+e>2j3TX) .

He trims the observations with Yi > 2(3TX i which are the symmetric equivalent of

observations with (3TX i < 0 . Based on this idea, the symmetrically trimmed least

squares estimator is defined as

P = argm in-Y  {Yi -m ax(y/2£T.X;.)}2 .
P

This estimator, however, obviously loses some efficiency because of the trimmed 

observations. Extending this idea, Newey (1991) proposes a method of moment type 

estimator for the Tobit model under conditional symmetry. When the sample is 

trimmed as in the above, we have E[m(Y-(3TX) \X] =0 for any odd function m(.) 

under the symmetry of e. He proposes an estimator including this information and 

proves it improves the efficiency of Powell’s estimator and attains the semiparametric 

efficiency bound. Honore and Powell (1994) propose a different way to estimate (3. 

Putting

e..=max(y;. - fT X ^-p X p =m a x i e ^ X ^ - p X p  , 

since conditional expectation of €» - €~ given X i ,X- is zero, they propose to estimate 

j3 by the following minimization of U process objective function.

min— ! —£  E  [maxfK, - max(y - p X p - F X t f  ■
p n{n 1)  J = i  j711

Horowitz (1988b) proposes M-estimation for (1.5) with an influence function 

ijsfyyKfiJF) satisfying E[ty(YXJ3J?)]=0 ■ His estimator is a solution to 

\S?(YlX ift-Fn('fi)) = 0

where is a smoothed version of Kaplan and Meier’s product limit estimate

of F. Hall and Horowitz (1990) discusses an asymptotically optimal bandwidth 

selection for this estimation. Horowitz and Neumann (1987) use this estimator for 

employment duration models.
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Ahn and Powell (1993) and Powell (1998) propose estimators for censored 

sample selection models

Y=(PTX + e)I(S >  0) , S=g(W) + u 

where 7, X, S and W are observables, function g(.) is unknown in Ahn and Powell

(1993), while Powell (1998) assumes a semiparametric g (W ) =l(STW ). The reduced 

form is

where \( .)  is unknown function depending on the disturbance distribution. g(.) is 

estimated nonparametrically by NW kernel regression in Ahn and Powell (1993) and 

semiparametrically in Powell (1998) in the first step. Letting the estimate g , the 

second step takes pairwise differences, collects the observations such that the nuisance 

function asymptotically disappears. Writing

if we can collect the pairs of observations ( i, j  ) with Xig^ - X(gj)=0 , we can 

perform standard regression analysis based on

When W is discrete, we can possibly find and pile up these pairs. If not, we 

regress Y^-Yj on X i -X. putting more weights on the observations with smaller 

X(gi)-X(gj) . The weights are produced by the standard kernel method. These two 

methods can be viewed as special cases of Ahn (1997) seen in the previous subsection 

(compare (1.59) and (1.65)).

Cosslett (1991) proposes a two step semiparametric estimation for type 2 Tobit

model,

Y=prX+ X(g(W)) + €, g(W )=E(S\W ) (1.65)

Yi-Yr ^ { X r X ^ X { g ^ X { g ^ € i-€j ,

Z=I(fi\Xi *e1 £  0) , Y=(0Z,X'o+eo)I(/3T1X'I+el > 0) , (1.66)
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where Z, Y ,X QiX 1 are observables. In the first step, distribution-free ML estimation 

by Cosslett (1983) is applied to estimate and least squares method is applied to 

derive an estimate of in the second step. Chen (1997) proposes a two-step 

semiparametric least squares estimator for the type 3 Tobit model,

Z  = (P]Xl +€l)I(P]Xl + €l > 0) , Y= (fi?0+ € j l0 8 ^ + 6 , > 0 ) , (1.67)

where Z fYtXQfX l are observables. Since

EOT 1* 0, 6! > 0 ,0 ^  > 0) =(3TX 0+a (1.68)

for a constant a , given consistent first step estimates of £j and p 1 , jQ0 can be

estimated by

0 ^ X  > 0)(Yr ^ i r a  f  .
aJ30 n i=1

The above estimators are all f n  - consistent and asymptotically normal.

Semiparametric estimation of truncated regression models

Tsui et.al. (1988), using (1.11), propose to estimate of truncated model 

(1.6) by

P=argmin—^ 2 \ Y r ^ X r ~ B ^
P 11 /=1 I

where

m x ) = j ^ u d F n( u - m i  - F n( - p x m

is an estimate of the bias EQf - fiTX\X)  . This estimator involves Kaplan and Meier’s

(1958) estimate of disturbance distribution Fn which is a step function, so that the 

objective function is discontinuous with respect to the parameter and thus the 

estimator is computationally inconvenient. Lee (1992) uses the same transformation 

as in Tsui et.al. (1988) and plugs in a kernel smoothed estimate of B{fiTX )  by 

Breiman et.al.(\9%l). The estimators by Tsui et.al. (1988) as well as Lee (1992)
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evaluate the "bias" E(Y-(3TX\X)  nonparametrically and plug its estimate into the 

objective function.

A more general truncated regression model allows the truncation criteria to 

include other variables as in Type 2 and 3 Tobit models. Namely,

/ m
1 j

Yi = p TX i + r]i , 7]i having density f v(x) = <
, x > -y TWi

0 , x < - y rWi

where samples with yTWi + > 0 are not observed. Chen and Lee (1998) propose

a two step semiparametric ML estimation for this sample selection model, where 

unknown density and distribution functions in the likelihood function are replaced by 

kernel estimates.

Semiparametric estimation of partially linear regression models 

Partially linear regression model

E (y \X » X l)= F X 0 + kQCl) a.s. (1.69)

where we assume k(.) is unknown is another semiparametric regression model 

intensively studied. This model includes standard linear regression model and sample 

selection model (1.65) as special cases. There have been developed two approaches 

to estimation of this model.

The first approach is the partial smoothing spline estimation and its variants 

proposed by Wahba (1984, 1986), Engle, Granger, Rice and Weiss (1986), Heckman 

(1986), Rice (1986), Shiau, Wahba and Johnson (1986), and Chen and Shiau (1991). 

Assuming X { is a deterministic design variable on [0,1], they consider the estimator 

defined by
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£  {Yr F X a ~k(Xh)}2+X j \ k ^ ( v ) } 2dv (1.70)

where k  (/n)(.) denotes m-th derivative of &(.). This is an extension of nonparametric 

spline smoothing estimation of regression function to the semiparametric regression 

model (1.69). Engle et.al. (1986) applies this method to investigate the electricity 

demand. Rice (1986) shows this estimator can achieve the standard parametric rate 

of convergence by suitably undersmoothing the nonparametric component k(.). 

Heckman (1986) proves yfn - consistency and asymptotic normality of the estimator 

when X x is a nonstochastic scalar variable on the unit interval. Chen and Shiau 

(1991) proposes a variant of (1.70) called two-stage spline smoothing where rough 

parametric component is also penalized. X raises the same practical problem as the 

bandwidth choice in nonparametric kernel estimation. Chen and Shiau (1994) propose 

data-driven choices of X for the estimator of their 1991 paper.

The second approach is the partial regression estimation by Robinson (1988b) 

and Speckman (1988). They are based on the regression of partial correlations. 

Putting €=Y-E(Y\X0,X 1) , we have

Assuming absolutely continuous X x , Robinson’s (1988b) estimator for /30 replaces 

the expectations by their sample analogue and the conditional expectations by their 

NW kernel estimates in (1.72). He uses a higher order kernel to avoid the bias 

problem for the first time in semiparametric estimation as mentioned in the previous 

section, which gets worse as d im ®  increases. He proves the estimator is yfn -

Y - E iY lX ^ P H X .- E iX . lX , ) } ^  .

This is free from the unknown (nuisance) function k(.) and it gives

(1.71)

/ V ( £  [ < JV £ (x0|x ,) r ]  )_1

£ [ { V £ ( y 0|2r1)H Y -£(r|A :1) r ]  •
(1.72)
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consistent and asymptotically normally distributed and provides a consistent estimator 

for the asymptotic covariance matrix. Delgado and Mora (1995) proposes an estimator 

which allows discrete regressors based on (1.72). Assuming X x is a scalar 

nonstochastic design variable and X 0 is a vector of nonstochastic variables, 

Speckman (1988) considers the same type of estimator of /30 as Robinson’s and 

derives asymptotic expressions of bias and variance of the estimator. The results 

imply asymptotic unbiasedness of the estimator. He also shows the estimator can 

coincide with partial smoothing spline estimator depending on the smoother and 

kernel function used in the two estimations. Li and Stengos (1996) apply this idea to 

panel data, employing the same transformation as (1.71) then multiply the density 

of X Ut to prevent the stochastic denominator in E(Y\Xx) . Ai and McFadden (1997) 

considers more general partly specified regression model

where Y0 and Yx are dependent variables, X QyX\ and X 2 are vectors of 

regressors, D is the 0-1 dummy variable, )3T=()8J,jS1) is a vector of unknown 

parameters, k x(.) is an unknown function, and g(.) and k2{.) are assumed to be 

known. Their estimator is based on the same transformation as (1.72) and plugs 

nonparametric estimates of unknown functions.

Linear regression with heteroscedasticity of unknown form.

We assume the following linear regression model.

g(£[Y0|X0,X1>X2>D=l])= /SJV/CjOTj) +/31fc2(E[Y1 |Z J) ,

Y=0'X+e , E(e\X)=Q, V{e\X)=o2(X) . 

If o^Q is known, the standard GLS estimator

(1.73)

n n

/ W < E  * x ; r  ' - W E (1-74)
i=1
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provides an efficient estimate for ft under certain regularity conditions. Even if we 

perform OLS neglecting the heteroscedastic structure, we still get a consistent 

estimate. The problem there is that the estimator is not efficient and it also produces 

invalid standard errors, and thus invalid test statistics. If we have a consistent 

estimate of cr2(.) , we can perform feasible GLS estimation and it gives an efficient 

estimate of ft with correct standard errors. There have been a lot of work on linear 

regression with heteroscedastic disturbance where the form of heteroscedasticity is 

parametrically specified (see e.g. Goldfeld and Quandt (1965), Rutemiller and Bowers 

(1968), Glesjer (1969), Box and Hill (1974), Harvey (1976) and Carroll and Ruppert 

(1982) among others). If the specification of the heteroscedasticity is correct, 

replacement of the true covariance function by its estimate in (1.74) will yield an 

asymptotically efficient estimate of (3, but if the specification is wrong, the efficiency 

does not hold any more. Without assuming a parametric form of o2(.) , Carroll 

(1982) proposes an asymptotically efficient estimator of ft using a kernel estimate 

of o2^) under independent disturbance assumptions, while Hidalgo (1992) allows 

weak dependence. Craig (1983) provides an efficient instrumental variable estimator. 

His approach is not like that of Carroll, but he proposes to choose a good instrument 

which can reduce the efficiency loss in the coefficient estimation. Though it depends 

on the choice of instruments, he does not provide an automatic method of instrument 

selection, so that it may not be practical. Robinson (1987) plugs a nonparametric k- 

NN estimate of cr2(.) in (1.74), extending Carroll’s estimation to the multivariate 

regression model, and proves its y/n - consistency, asymptotic normality and 

efficiency. Delgado (1992) considers multivariate nonlinear regression models in the 

presence of heteroscedasticity of unknown form. He also uses k-NN estimates and



shows all the desirable asymptotic properties in Robinson (1987) still hold.

Semiparametric maximum likelihood estimation

We have reviewed semiparametric ML estimation for discrete choice models. 

We can extend it to more general semiparametric models. Gallant and Nychka (1987) 

propose an estimation procedure for some nonlinear regression models without 

assuming specific distribution functions of random terms. They call their method 

"Semi-nonparametric" ML estimation. The main idea comes from Phillips (1983) who 

shows an ERA (extended rational approximants) 0 2(w|p,S)[P2(w)/(22(w)] can 

approximate any density function arbitrarily closely under certain conditions, where 

(f>(u |p,2) is the density of multivariate normal distribution with mean p and 

covariance matrix 2  , and P(.) and Q(.) are polynomials. They use this density 

approximation to construct the likelihood function. They are concerned with 

estimation of sample selection models and Stoker’s (1986) functional and prove the 

estimator of the parameters is strongly consistent under certain conditions. This 

method, modified suitably, can be applied to other semiparametric regression models. 

Ai (1997) analyzes a general regression model, where the conditional density of Y 

given X  involves two parts of parameters, a finite-dimensional component 6 and a 

infinite-dimensional (nonparametric) component X(.), and there exists a variable 

transformation (yX)-> (vl(y,xi6)iv2(x,0)) of known form satisfying

fv \x ( v M A )  =^O’̂ ,®)/k,|k2(v iO'^>0)|v2(*,0)>0) , 

where J  is the known Jacobian of transformation y-» v^ .x .0 ) . This class of models 

includes special cases such as limited dependent variable models, partially specified 

regression model, selection models, and simultaneous equation models. The ML

47



estimator maximizes

{l o ^ Y ^ O ) +l o / Ki v (v,{YtX;fi)\v2(X:m ] 

with respect to 9 , where / K) jK is the kernel estimate of f v ^  . He proves the 

estimator is y/n - consistent, asymptotically normally distributed and efficient in the 

sense that it attains the efficiency bound in Begun et.al.(1983) for multivariate 

nonlinear regression, simultaneous equations, partially linear regression, index 

regression, censored regression, switching regression, and disequilibrium models 

where the error density is unknown.

Other semiparametric estimation

There are some other yjn - consistent semiparametric estimation methods 

which are not classified in the above. Newey (1990a) proposes a y/n- consistent and 

asymptotically normal estimator of nonlinear simultaneous equation systems under iid 

environment. He replaces the infeasible optimal instruments of Amemiya (1974, 

1977) by their nonparametric estimates and proves this is an adaptive situation, and 

thus the feasible instrumental variable estimator is efficient.

Robinson (1991a) considers more general DGP than Newey (1990a) and 

derives an efficient three stage least squares estimator for nonlinear simultaneous 

equations model. Unlike iid observations of Newey (1990a), he considers three 

different settings; (1) independent error terms and strongly exogenous but possibly 

serially dependent explanatory variables, (2) independent error terms and explanatory 

variables which include lagged endogenous variables and (3) parametrically 

autocorrelated error terms and strongly exogenous but possibly serially dependent 

explanatory variables. Somewhat different type of estimators are proposed for
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different settings. Given first step yfn - consistent estimates of parameters, he 

propose an estimator by Gauss-Newton iteration replacing the infeasible instrument 

by its estimate. He proves the estimator is y/n - consistent, asymptotically normally 

distributed and efficient. He further derives a Berry-Esseen bound when the error 

terms are independent.

Robinson (1991b) proposes to estimate semiparametric time series models 

based on first stage nonparametric spectrum estimates. Assuming the variables are 

covariance stationary, spectrum estimator based on kernel weighted periodogram is 

proved to be weakly uniformly consistent. He further considers spectrum regression 

in general semiparametric framework including multivariate linear regression and 

proves asymptotic normality of the estimator. Automatic choice of minimum MISE 

bandwidth is also provided.

Lee (1998) proposes a minimum distance estimator for semiparametric

simultaneous equation microeconometric models with index restriction. The model is

E[g(Z-J3)\X]=E\g(Z£)\FX]

for vectors of random variables Z and X, vectors of unknown parameters f3 and 8 ,

and a vector of known functions g(.). The minimum distance estimator solves

m m £  {En\g (Z ^ ) \X i] -E J g & f l ) \FXJV  
P «=1

W&i){En\ g ( Z M X J - E J g & i & p X J }  

where En(. |.) is the NW kernel estimates of E(. |.) and W(.) is some matrix of 

weight functions. This class of estimator can be applied to models such as 

simultaneous equation sample selection models, multi-market disequilibrium models 

and the simultaneous equations Tobit model. He shows this estimator is Jn - 

consistent and asymptotically normally distributed. If the conditional variance
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V\g(Zj3) \X] depends on X  only through 8TX  , the optimal weight is 

WoptQ£) = V~l(g(Z$)\8TX )  . This weight is infeasible, but we can estimate it by 

the kernel method with the first step estimates of /3,S . He proves the estimator 

using the feasible optimal weight achieves the semiparametric efficiency bound by 

Chamberlain (1992).

Newey (1994) derives a general formula for the asymptotic variance of 

semiparametric estimators. He considers a general semiparametric estimator 

depending on a series estimator of unknown nonparametric functions and shows they 

are yfn - consistent and asymptotically normal under certain high-level assumptions. 

The estimator considered there includes e.g. polynomial estimators of averaged 

derivatives and semiparametric panel probit models.

1.2.3 Comparison of nonparametric, semiparametric and parametric methods

Section 1.1 and the previous subsections have shed light on some parametric, 

semiparametric and nonparametric methods in various regression framework. When 

we are interested in E (Y \X ) =g(X) , parametric method assumes certain functional 

form of g(.), for example linear regression g(x) = fiTx  , while nonparametric method 

does not parametrize g{.) at all. Semiparametric method is the intermediate between 

the two and it partly specifies the function, for example as in (1.28) or models in 

Subsection 1.2.2. Parametric estimation methods collapse in general when the 

functional specification and/or assumed underlying distribution is incorrect. In this 

sense nonparametric or semiparametric estimation based on a less specified model is 

more robust and reliable when we are not sure of the specification of the model. We 

discuss here which of the three methods suit econometrics most.
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Formally, we can say nonparametric methods aims to consistently estimate 

some functionals of the underlying joint distribution, such as joint density, conditional 

density and conditional expectations, without their parametric specification. 

Nonparametric models typically assume only certain smoothness of the functions so 

that they are very general in the sense that they include many parametric and 

semiparametric models as special cases. We, however, typically have to pay the cost 

of slower convergence rate than the parametric rate of yfn . Semiparametric 

methods parametrically specify certain aspects of the joint distribution and estimate 

the parameters often using nonparametric estimates of the unspecified functions like 

(1.29). Intuitively speaking, the rate of convergence should be somewhere between 

nonparametric and parametric convergence rates as discussed in 1.1.7 for (1.29). 

However, many theoretical works of semiparametric estimation have reported that the 

estimators of the parametric components attain the parametric convergence rate 

of yfn as reviewed in the previous subsections.

We can generally say that semiparametric methods suit best in many 

econometric applications among the three methods because of the following reasons. 

As far as the robustness is concerned, nonparametric method must be the best because 

of its generality, then semiparametric method follows and parametric method is the 

worst, while efficiency consideration yields the opposite order. Thus there is a trade­

off between the efficiency and robustness. When we have the true information on the 

DGP, parametric method is obviously the best choice because of its efficiency. On 

the other hand, when we do not know the DGP, nonparametric or semiparametric 

methods would be better than parametric ones because parametric estimation will 

yield an inconsistent estimate if the model is incorrectly specified. If we have a



sample of extremely large size so that we do not need to care the efficiency of 

estimation, nonparametric methods would be the best choice, while if the sample size 

is not so large, semiparametric method may outperform the nonparametric method. 

In view that many economic data are typically not of very large sample size6 because 

economists normally cannot get observations from experiments unlike in natural 

science and that it is often the case economic theory does not provide the whole 

information on the functional form of underlying density and/or regression function, 

but only some aspects of them, semiparametric methods may have the best balance 

of efficiency and robustness in econometrics.

1.3 Higher order asymptotic theory

We have seen that the density-weighted AD estimator of single index model 

is yfn - consistent and asymptotically normally distributed in 1.1.2. The purpose of 

this thesis is to study if the nonparametric density derivative estimate can affect the 

higher order property of the estimator and if so, how it does. We review related 

topics on higher order asymptotic theory in this section. 1.3.1 and 1.3.2 explain 

standard Edgeworth expansions of parametric statistics in econometrics and U- 

statistics respectively. Results reviewed in 1.3.2 are especially closely related to our 

work since the estimator of our interest (1.35) has a U-statistic form. We employ 

similar techniques to those used for U-statistics to validate Edgeworth expansions, 

however we can point out a significant difference between the AD estimator and the

6 There are some exceptions like datasets from population survey implemented by 
ovemments, when nonparametric methods may be the most suitable.
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standard U-statistics. It is that the variance of kernel of standard U-statistics is 

assumed to be bounded but it is not the case in (1.35). Therefore none of the 

established results for U-statistics directly apply to the estimator. The last subsection 

reviews higher order asymptotic theory of semiparametric statistics related to this 

work.

1.3.1 Edgeworth expansions of parametric statistics

Given an asymptotically normally distributed statistic, we may perform 

hypothesis testing or confidence interval estimation using the normal approximation. 

Suppose X i9 z=l,2,... are iid random variables with mean \ix and variance o2x , and
_ 1 » _

let X = —^ j X i and Sn=y/naxl( X - ^ )  . Since Lindeberg-Levi’s central limit theorem
n lRl

gives Sn -> 7V(0,1) , we implement confidence interval estimation for p* as 

follows. Because P(z0 05 < Sn < z095) ~  0.9 , za denoting the a% quantile of the 

standard normal distribution, we have a 90% confidence interval estimate

PQ C -^2*  < He< j f - ^ ) « o . 9  . (1.75)
s/n yfn

This estimation is infeasible because of the unknown ax . Given ax , a consistent
~  d

estimate of ax , we have Sn N(0,1) for the studentized statistic

Sn = V  (Xi - \^lox . Then we can construct a feasible 90% confidence interval
n 1/2/= i

estimate

^ Vx ^ X - 2 ^ - ) ^ 0 . 9  . (1.76)
Vn y/ii

The precision of the estimate depends on how well the normal distribution can 

approximate the exact distribution of Sn .

Edgeworth expansions aim to asymptotically improve the normal 

approximation to the exact distribution. Chebyshev (1890), and independently
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Edgeworth (1896, 1905), first provide a formal expansion of the distribution function

Of s n ,

P(Sn < x ) =&(x)+<j)(x){n~ll2p 1(pc)+n~lp 2(x) +...+n~il2Pj(x) + ...} (1.77)

for a sequence of functions p-(x) . There is, however, no guarantee that this series 

converges and it motivates us to investigate the behaviour of

sup Î PÔ  < x )  -&Qc)-<j>Qc){n "ll2p lQc)+n ~lp 2ty) + ...+«~j,2Pj(pc) +. . .} | .
X

Berry (1941) and Esseen (1945) analyze a special case when no correction term is

involved, namely the bound for simple normal approximation error, and verify the

following inequality under the existence of second moment

sup I PCS. £  x )  - $(*) I < ^ £ |f 1"|JJ 3 . (1.78)
* 4 a n

This kind of bound characterizing the normal approximation error is called the Berry- 

Esseen bound. The constant 33/4 has been improved, namely reduced, by various 

authors. Cramer (1928, 1946) rigorously derives an asymptotic expansion in powers 

of n ~1/2 under some strong conditions including limsup |E(eltX) \ < 1 , known as
|f|- 00

the Cramer condition. Usually we truncate the series (1.77) after including a certain 

number of terms then we investigate the order of the remainder. We say the 

expansion is valid when

sup |P(Sn < x )-O (x )-0  (x){n ~ipp lQc) + ...+«~J,2Pj(x)}  | =o (n ~jt2) (1.79)
X

for a fixed yas n-* °o . It is known that the Cramer condition and E \X \+1<& are

sufficient for the validity when pfa) are constructed from the Hermite polynomials,

2

= . P2W = - ^ ( * 3- 3 x ) - ^ ( * 5- l t a 3+15x) , ... (1.80)
o 24 72

where k3 and k4 are the third and fourth order cumulants of (X-\xx)lax respectively

(see e.g. Hall (1992), p.42-44 for the construction of p f t )  ). R.Rao (1961) first

generalizes the univariate results to the multivariate case under the Cramer condition,
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which is extended by von Bahr (1967), Bhattacharya (1968, 1971), Chambers (1967) 

and Bhattacharya and Rao (1976).

It is known Sn and Sn admit valid one term Edgeworth expansions
K0

sup |P(Sn < x) -  {<£ (x) -  -^-(.x 2 -1)0 (.x) | =o (n~1/2) (1.81)
* 6 y/n

and

sup \P(Sn< x )-{Q (x )+ -^ -(2x 2+ 1)0(x)| =o(n~112) (1.82)
* 6y/n

respectively (see e.g. Hall (1992), p.70-72). k3 in the above is typically unknown

so that we think of replacing it by a strongly consistent estimate k3 , then we have

sup |P(Sn < x) -  {<£ (x) -  - ^ - ( x 2-1)0 (x) | =o (n~1/2) a.s. (1.83)
* 6y/n

and

sup\P(Sn< x )-{$ (x )  + ——(2x2+ 1)0(jc)| =o(n~112) a.s. (1.84)
* 6yfn

We can modify (1.76), the 90% confidence interval estimation based on the normal 

approximation, using (1.84) as follows. Letting wa be the 100a% quantile of the 

sampling distribution P(Sn < x)  , (1.84) yields

a  = P{Sn < w„) = $ (Wa) + +1)0 (wa) + o(n -1'2) a.s. (1.85)
6y/n

Expanding the right hand side around wa =za , we have

a  «  & (zj + - ^ z(2z*+l)<f>(za) + [l—^-@z*-3za)]<l>(za)(wa - z a)+ o (n '1/2) as.
6s/n 6yfn

This yields, since 0(za) = a  ,

^  za-[l--^-(7z^-3za)Yl-^-(2z^ * 1) + o ( n '1/2)
6  yfn 6 0 *

=za - {  1 + 0 (n -i/2))-!^(2z l  + 1) +o(n ~1/2)
6y/n

- z a - -^-(2z*+1) +o(n"1/2) a.s. (1.86)
6y/n

This is called the Comish-Fisher expansion (see Hall (1992), p .88). Then putting

ic ow =z (2z +1) , we have a modified interval estimate 
a a 6y/n

P ( X - ^ w 095 <, < X - iv v 005) «  0.9 (1.87)
yjn \ fn
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Noting wa =za + 0 (n  ~l/1) and wa =wa + o(n ~1/2) , (1.87) is an asymptotically better 

estimate than (1.76). Similar consideration is theoretically possible using (1.81)- 

(1.83), but interval estimation based on them is obviously infeasible due to the 

unknown ax or k 3 like the infeasibility of (1.75). Similarly we can use (1.84) to 

determine critical region of a significance test on ^  . We call an Edgeworth 

expansion involving unknown quantities depending on the underlying distribution 

like k 3 in (1.81) or (1.82) a theoretical Edgeworth expansion, while we call the 

feasible version like (1.83) or (1.84) in which the unknown quantities are replaced by 

their estimates an empirical Edgeworth expansion. Obviously empirical Edgeworth 

expansions for studentized statistics are for practical use in interval estimation or 

hypothesis testing. We provide valid theoretical and empirical Edgeworth expansions 

for unstudentized averaged derivatives in Chapter 2, while we establish them for the 

studentized statistics in Chapter 3.

As Bhattacharya and Puri (1995) point out, there are roughly two methods 

of proving the validity of an Edgeworth expansion. One is the direct method, where 

we expand the characteristic function of the statistic of interest and rearrange it with 

respect to the sample size, then invert it. The other exploits the asymptotic expansion 

of the statistic. For example, Bhattacharya and Ghosh (1978) employ the former 

method to obtain the Edgeworth expansion of H{Sn) , based on the Taylor expansion 

of //(.), where Sn is the sample average of d-dimensional iid random vector and H{.) 

is a real valued Borel measurable function on R d . We employ the first approach 

to validate Edgeworth expansions in the following chapters.

A pioneering work of higher order asymptotic theory in econometrics is Nagar

(1959) who derives expansions for the bias and moment matrix of the £-class
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estimator in powers of n "1/2 . This sort of expansion of moments is called a Nagar 

expansion. Based on economic or econometric models, econometricians have 

developed various kinds of estimators suitable for the models. The estimators are not 

necessarily functions of a sum of iid random variables, which have been a main 

interest of statisticians, so that econometricians have developed higher order 

asymptotic theory for econometric estimators rather independently. Pioneering works 

on Edgeworth expansions for econometric statistics are Sargan and Mikhail (1971), 

Sargan (1974, 1975a, 1975b, 1976, 1980), Sargan and Satchell (1986), Phillips 

(1977, 1978). Sargan and Mikhail (1971) derive a Gram-Charlier type expansion for 

a single-equation instrumental variable estimator of a simultaneous equation model. 

Anderson and Sawa (1973) study Edgeworth and Gram-Charlier expansions of &-class 

estimators, while Mariano (1973a,b) derive Edgeworth expansions for the OLS, 2SLS 

and Theil’s &-class estimators. Sargan (1974) obtains valid Nagar expansions for 

rational functions of OLS estimators of the reduced form equation coefficients. 

Anderson (1974) obtains a valid Edgeworth expansion for the LIML estimator. 

Sargan (1975b) considers Gram-Charlier type expansion of /-ratio for of £-class 

estimators. Sargan (1976) proves the validity of Edgeworth expansions for 3SLS and 

FIML estimators, where he exploits the fact that the estimators can written as a 

function of the first and second sample moments, which is extended by Phillips 

(1977) to a more general statistic not necessarily written as a function of sample 

moments. Morimune (1981) obtains valid Edgeworth expansions for an improved (in 

terms of the first order efficiency) LIML estimator by Morimune (1978) written as 

a linear combination of the LIML and £-class estimators. Rothenberg (1984a) obtains 

a valid Edgeworth expansion for GLS estimator. Nonrandomness of exogenous



variables and normality of the disturbance terms were necessary for the Edgeworth 

expansions derived in the above authors except Phillips (1977) and Rothenberg 

(1984a). Phillips (1980) and Sargan and Satchell (1986) relax the first assumption and 

derive a valid Edgeworth expansion for a linear dynamic model. Taniguchi (1983, 

1991) derive expansions for estimators in Gaussian time series models. Some review 

papers include Rothenberg (1984b), Magdalinos (1992) and Bhattacharya and Puri 

(1995). There are a lot of research on higher order asymptotic properties of 

parametric estimation in econometrics, but only a few have been developed for 

semiparametric estimators. We review them in 1.3.3.

1.3.2 Asymptotic theory for U-statistics

(1.35), the statistic of interest of this work, has a U-statistic form. We will 

validate some Edgeworth expansions for this using some technique developed in U- 

statistic asymptotic theory. We briefly review some asymptotic results of U-statistics.

U-statistics are introduced in a fundamental paper by Hoeffding (1948) as a 

generalized class of statistics of sample mean. Given a sample X l9— X n , U- 

statistics of order m are defined as

U= E E -E  (L88)
<kix<i2< '-< im<. n

for a known permutation invariant function h(.) called kernel. This class of statistics 

includes a large number of statistics considered in statistical theory. For example, 

if h=h(jcl) , U is the sample mean, while if /i=/(x1< r) , U is the sample 

distribution function. If h = (xx -x2)2/2 , the corresponding U is the sample variance 

(see Serfling (1980), Chapter 5, for other statistics). Suppose X i9i=l2,... are iid 

observations with distribution function F(.). This statistic can be viewed as an
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estimator of

6(F)=E[h(XlX 2, -  X m)}

= / ' "  / ^ l ’V "  dF(~Xm) (1.89)

supposing it exists because it is straightforward that E(U)= 0(F) . It is also known 

that U is an efficient estimator of 0(F) in the sense Var(U) < Var(0) for any 0 

satisfying E(0) = 0(F) . Suppose m =2. Writing

we can prove the strong consistency of U for 0 under E \h(XiyXj) \ < oo (see e.g. 

Serfling (1980), p. 190). Hoeffding (1948) proves asymptotic normality of Jn(U- 0) . 

Heuristically, the second term on the right of (1.90) times <Jn converges to zero but 

the first term times yfn converges to a normal variate with mean zero and 

variance AVar{g(X^)} . Hoeffding (1961) and Berk (1966) prove the forward and 

reverse martingale structure of U respectively expressing it as in (1.90). These results 

are extended to m  > 3 .

Comparing (1.35) and (1.88) with m = 2, U-. in (1.35) corresponds to

hQCiJtp here. However, in view of Lemma 4 of Robinson (1995a) or (A.5) of 

Appendix A, we have E\U^\ =0 (h~l) which may diverge as n -* oo . Therefore 

though (1.35) has a U-statistic form, it even does not satisfy the condition for 

consistency of U-statistics so that we cannot appeal to the asymptotic results of U- 

statistics to investigate (1.35).

Higher order asymptotic theory for U-statistics has been developed, especially

£  £  MX,*;) (1.90)

where

9=6 (F) , ,

w(X,Xj) =h(X,X) ~g{X) -giXp - 0 ,
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for m=2. Various authors have investigated the Berry-Esseen bound. Let 

°l=Var{gQ{x)} , 0 y=Var(U) ,

— -— ±  i - V e  h (X . ^  -  >( n - l ) (« - 2 ) 2 M n - }

Dg=sup\Pyn(U-0)l2crg< z]-®(z)\ ,

P v =sup z] -$>(z) | ,
z

D ■ -sup \P lM U ~ 8 )lcu ̂  -z] -  $  (z) I •
U  Z

Note that both 2ajyfn and aj^fn  are valid normalizer for U , satisfying
p

o2v -+ 4crg and Id^-o^ | + |<7^-4o^| -> 0 (by Callaert and Veraverbeke (1981)). 

Grams and Serfling (1973) first provides a Berry-Esseen bound,

Dg = 0 (n  >+1) under E{/i2r(Z1̂ T2)} < oo 

for a positive integer r. Bickel (1974) validates a bound of order yfn for the 

restrictive case when X l9...J£n are iid over [0,1] and \h(xljc2)\<<x> . Chan and 

Wierman (1977) show

D u = 0 (n  2log3«) under E\h(XlyX^)\3<co

and

D u = 0 (n  2) under E {h A{XlX 2)} <°° •

Callaert and Janssen (1978) further weaken the moment condition and prove
_ 2

D =0 (n 2) under E\h{XX9X2) \ z<co .
5

Helmers and van Zwet (1982) slightly relax the moment condition of Callaert and 

Janssen (1978) to show

sup \P[yJn-l{U-0)/2ag < z] - <I>(z) \ = O (n 2)
z

under E  Igt^) |3 < oo and E  \h(XlX 2) |r < 00, r>5/3 . Callaert and Veraverbeke (1981) 

consider a studentized statistic and show

D ^ O Q i - 1!2) under E{g2QC1) } « »  and E | / i ( X 1 ^ 2 ) | 9 / 2 < o o  ,
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while Helmers (1985) slightly modifies the moment conditions to E {g 2(Zj)} < oo and 

E  |h(Xl9X2) |4+s < oo 9 8 >0 for the same bound of D ^  .

Callaert, Janssen and Veraverbeke (1980) (CJV hereafter) derive a valid 

Edgeworth expansion of degree two for U-statistics of the form 

sup |Piy/nauiU - 9) < z]~ E n(z) | = o (n _1)
z

where

£„(z)=$ (z) -<£ (z) [—^ -(z  2 -1 )+ - ^ - ( z 3 - 3z) '
"u  w  ^  6n1/2 , 24w

K
+ — (z5-1Qz3+15z)] , (1.91)

72n
K3=o-g3[£'{S'3(X-1)} + 3E[g(X])g(X2)w(XlyX2)}] , (1.92)

K4=ô 4[ P f g 4̂ ) )  - 3 ^  +

under certain moment and Cramer conditions as well as a complicated condition on
n

the characteristic function of h(XltXp conditional on (Xm+1,...^Tn) ,
j=m+1

m = [na])ae(0,1/8) . They prove the validity of expansion (1.91) by 

decomposing y/na'JiU -9 )  like (1.90), expanding its characteristic function, 

rearranging it with respect to the sample size, then inverting it. We prove Theorems 

1 and 3 in the following chapters in similar manners to these, especially CJV and 

Callaert and Veraverbeke. We will see in the following chapter an analogous 

correction term to that in (1.91) appears in the Edgeworth expansion of the AD 

estimate. Bickel, Gotze and van Zwet (1986) prove validity of the same Edgeworth 

expansion under milder conditions than CJV. They slightly relax the moment 

conditions of CJV, and replace the complicated condition on the conditional 

characteristic function by a condition on the eigenvalues of /*(.,.). While the above 

two articles consider scalar U-statistics, Gotze (1987) obtains a valid Edgeworth
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expansion of degree one for multivariate U-statistics. Helmers (1991) investigates into 

studentized U-statistics and validates the following Edgeworth expansion of degree 

one.

£ B(z)=<I><?) + - £ ^ [ ( 2 z M ) E { g 3(X1)}
6n ltlal

+3(z2+i)£{g(Ar1)g(Ar2)H'0r1̂ r2)] . (1 .93)

We will see the correction terms here are analogous to those appearing in the 

Edgeworth expansion of studentized averaged derivatives in Chapter 3. Bentkus, 

Gotze and van Zwet (1997) consider a more general asymptotically normal statistics 

than U-statistics which are symmetric function of n iid random variables. They 

validate an Edgeworth expansion of degree one with remainder of order n _1 based 

on an expansion of the statistics in a series of U-statistics of increasing order.

We refer to Serfling (1980, Chapter 5) and Lee (1990) for comprehensive 

treatments of U-statistics.

1.3.3 Higher order theory of semiparametric statistics

Consistency, asymptotic distribution and efficiency of semiparametric 

estimators have been intensively studied as seen in the previous section, however 

there have not been a lot of studies on their higher order asymptotic properties. 

Linton (1995a, 1996b) develop both Nagar expansions and asymptotic expansions for 

estimators of a partially linear model and of a linear regression model with

disturbance heteroscedasticity of unknown form. Linton (1996b) finds that the leading
_ 2

terms are of order greater than n 2 and shows how their contribution might be 

minimized by a plug-in type choice of bandwidth, attaining second order optimality. 

Robinson (1995a) studies a Berry-Esseen bound for (1.35) as mentioned in 1.1.7
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which is extended in this thesis to obtain Edgeworth expansions. Linton (1996a) is 

also closely related to this work in the sense that he establishes valid Edgeworth 

expansions for a wide class of semiparametric estimators. He is concerned with 

estimators obtained by minimizing the objective function

n U
where is a function satisfying certain regularity conditions, (X,Z) are vectors

of observables, /? is a vector of unknown parameters of interest and G(.) is a 

nonparametric estimate of unknown (nuisance) function G(.), having a U-statistic 

form

'T  E E E V jT O
»=1 j>i k>j>i

where p» and are deterministic weights, l/2<£<£ , both g2 and g3 are 

permutation invariant satisfying E \g2(XirXj)] =E \g3(Xi9X j^ k)] =0 . Making assumptions 

of a high-level type, including that the nonparametric estimate converges suitably fast, 

he shows that the estimator, suitably centred and normalized, possesses a valid

theoretical Edgeworth expansion
8,

F{z) = $(z)-4>(z) * m(2 1)+̂ r(z 3z)6n 1,2 24n
’ (z5-1 0 r3+15z)

72n
where <f>(.) and <f>(.) are cumulative distribution function and density function of a 

standard normal variate respectively, 8 i depends on the weights and moments of 

g fi^ )  > and 8 3 ^ shows that his assumptions can be

satisfied by a version of the partially linear model as well as in models where no 

smoothing is involved. Comparing this expansion with (1.91), we observe they have 

the same functional form with respect to z and /?, with different coefficients. So the 

nonparametric estimation has no effect on expansions to order n _1. We closely
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investigate the relations between Linton (1996b) and the results of this work and show 

how his results cannot be applied to our specified semiparametric averaged derivative 

estimation in Chapter 3.
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Chapter 2

Edgeworth Expansions for Averaged Derivatives - Normalized Case 1

This chapter validates Edgeworth expansions of (1.35) suitably normalized by 

its asymptotic covariance. Section 2.1 introduces some notations and assumptions. 

Section 2.2 and 2.3 establish valid theoretical and empirical Edgeworth expansions 

respectively. The expansions involve three correction terms. Two of them are related 

to the nonparametric density estimate and the rest is "parametric" whose analogue 

appears in the Edgeworth expansion of U-statistics (1.91). The expansion suggests 

that some correction term(s) can dominate other(s) asymptotically depending on the 

bandwidth choice, dimension of regressors and kernel order. We discuss it thoroughly 

in Section 3.3 in terms of studentized statistics.

2.1 Notations and assumptions

We have reviewed U estimates \x = -E{g ,( X ) f ( X ) } with first order 

asymptotic properties described in Section 1.1. Additional to the notations in 1.1.2, 

we introduce some more of them to describe assumptions for the Edgeworth 

expansions. For a function k: R d -* R t write

k = k ( X )  , k ' ^ d k f d x  , k u = d2 k/  dx dx T , h n'=dvec ( k ^ f d x 7 

and define

q = E ( Y 2\X) , r = E ( Y 3\X) , 

p = p (* ,Y )  = Y f /- e l , e = f g  , 

a = g f  , a '  = da! d x T ,

2  = 4£( p -  p) ( p - p ) T .

1 This chapter has been revised and written up as a joint paper with my supervisor
Professor Peter M. Robinson as Nishiyama and Robinson (2000). It is forthcoming in
Econometrica.
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We introduce the following assumptions to establish valid Edgeworth 

expansions.

(i) E |Y |3 < o c .

(i)’ £ |Y |6 <oo .

(i)lf E |Y |8+P < oo for some p > 0 .

(ii) 2  is finite and positive definite.

(iii) The underlying measure of ( X T, Y) can be written as Pj^Py , where \ix

and |iy are Lebesgue measure on R d and R  respectively. (X[,  Yi ) are iid

observations on ( X T, Y) .

(iv) f  is (L + l) times differentiable, and f  and its first (L + l) derivatives are

bounded for 2L >d+2.

(iv)* f  is (L+2) times differentiable, and f  and its first (L+2) derivatives are 

bounded, where 2L >d+2.

(v) g is (L + l) times differentiable, and e and its first (L + l) derivatives are 

bounded.

(v)’ g is (L+2) times differentiable, and e and its first (L+2) derivatives are

bounded.

(vi) q is twice differentiable and q q ", g 7, g ", g 1,1, E( |Y|3 \ X ) f ,

and q f  ' are bounded.

(vi)’ q is twice differentiable and q 7, q ", g g ", g /y/, E( Y4 \ X ) f t

and q f  1 are bounded.

(vi)" q is differentiable and qf  , q ' f  and q f  1 are bounded.
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(vii) / ,  g f , g 'f , and # /  vanish on the boundaries of their convex (possibly 

infinite) supports.

(vii)’ / ,  g f  and q f  vanish on the boundaries of their convex (possibly infinite) 

supports.

(viii) K ( u )  is even, differentiable,

L , U  1 + |K |t) l^ ( “ ) \+l K \ u )  II} d u  + sup  IIK \ u )  II < OC
J R  u e R d

and for the same L as in (iv) and (v),

f  u [ 1 — u lddK{ u) du <
J R d

= 1, if / +/ rf=0
= 0, if 0</ !+•••+/ d<L 

0, if I !+•••+/ d=L

(ix)  ̂ J1}  + n h 2L —>0 as n-*oo .
'  nh d+2

(ix)’  ̂^  + n h 2L —>0 as n ->oo .
n /irf+3

(ix)" J 1} = 0 (  1 ), n h 2L —>0 as «->oo .
d+2

(x) limsup |£exp [ { i t  2cr_1 vT( p - p ) } ] | < 1 for any vector v satisfying
11 |-00

VTV=1 .

(xi) Htu)  is even in all arguments u t , i = 1, —, d and (L + l) times 

differentiable,

j Rf l  u)du  =1

and

f  lAa ""'-l ‘')H /(u )  $du + sup ||Aci*• "'ld)H '(u)  I < oo 
JRd ueR*

for all integers / 19 •••, / d satisfying 0 < /  j + •••+/ d< L  , where

A( /1’ ",ld)h ( x )  = -------- -- h ( x )  for a function h : R d -*R .
0a:! ' — dx*4

(xii) b - 0  and = <K 1) as n .
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Assumptions (i)-(iv), (vi)", (vii)’, and (viii) are identical to corresponding ones 

of Robinson (1995a), which are discussed there. Assumptions (v)-(vii) and (ix) 

somewhat strengthen corresponding ones of Robinson (1995a), and assumption (x) is 

a Cramer condition (see e.g. Bhattacharya and Rao (1976)). Assumptions with primes 

somewhat strengthen or weaken those without primes used in Theorem 2, 3, 4 and 

5. Notice that H  needs only be a second-order kernel, whereas K  has to be a 

higher-order one unless d =1 . It is possible to choose H u )  =K(u) with 

assumptions (viii) and (xi) simultaneously satisfied. However, in comparing (xii) with

(ix) it seems that b should in general be chosen larger than h  .

2.2 A theoretical Edgeworth expansion

Define for d * l  vector v , a 2 = vTEv ,

Z  = n 1 / 2 o _ 1 v t (  U-  p) , F( z )  = P ( Z < z )  ,

F ( z )  = <t>(z)-'j>(z)^n'l2h LKl + - £ ^ z  + 4 ( (z 2 - ! ) j  > (2-D

where z  is real-valued, and (f> are respectively the distribution and density 

function of a standard normal variate, and
„ _ 2 ( - l ) V  

1 L\ X ' % < L h u i ’XLu)  . (2-2)

where

K 2  = 2a-2J{vrK '(u) }2du E { ( q - g 2) f ]  ,

K ,  = o ^E U r  - 3 ( q - g 2) g - g 2} ( v rf  )  i - ’i { q - g  2) ( v T/  0  2 (  v Ta )  - (  v Ta ) 3

f ( q ~ g 2) ( v rf  0 (  v Ta  ' v )  - / (  v T/  )  { v , ( q ' - 2 g g t) } ( v Ta)

- f( .q -g  2) ( v Tf l )  (  v T/  " v )  +/( v'g  0  ( v Ta ) 2

k 4  = a  3E

where f " = ? f S .X ±  and
d x d x T d x T
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THEOREM 1 : Under assumptions (i)-(x), as «>,

sup sup \ F ( z ) - F ( z ) \  = o ( n~ l/1 +n~lh ~d~2 +n l/2h L) .
VJ vTV=1

Theorem 1 establishes a valid Edgeworth expansion for a single linear combination 

of the vector averaged derivative statistics U. The development of full multivariate 

expansions would require further work (we cannot appeal to the Cramer-Rao device), 

however our present setup allows us higher-order inference on individual elements 

of jl , which would be of practical importance, as well as on its arbitrary single 

linear combination. The normalisation vT v = 1 employed here differs from that used 

by Robinson (1995a), namely vT£v = l , which is infeasible.

Kj and k 2  involve the kernel function K(.) and the corresponding 

correction terms depend on the bandwidth h , thus they are related to nonparametric 

estimate of f  f( x )  . Also k 2 and k 2 are respectively limits of 

o~vVT(E U - \x) f h L and h d+2E(J^2 ) (see Lemmas 11 and 12) so that Kj and 

k 2  are related to first and second moments of U. In standard parametric higher- 

order theory k 1 and k 2 do not arise since unbiased statistics with variance 

0 (  n _1) are typically considered, not, as here, 0 ( n ~ lh ~d~2) . k 3 and k 4  do 

not involve K(.) and the corresponding correction term is of parametric order and 

independent of h. We find the similarity of the last term in the wave bracket of (2.1)



to the first term in the square bracket of (1.91) in the following sense. Firstly the 

functional form with respect to z and n is the same, and secondly since we have 

k , + 3k4 =E( V h  + 3E( + o ( l )

due to Lemmas 13 and 14 (see below for the definition of Vi and Wx- ), we easily 

see this structure is analogous to (1.92). The difference of constants 1/6 and 4/3 

comes from the different choice of the normalizer. Therefore we can regard the terms 

involving k 2 and k 2  as nonparametric, while that involving k 3 and k 4 as 

parametric.

We follow a similar line to CJV (1980) to prove the theorem. We first 

decompose the statistic Z into (1.37) (or (1.90) for ordinary U-statistics) plus a bias 

term. We further decompose the first term of (1.37) into a term of exactly 

Op (n ~ 112) and the remainder. Then we expand the characteristic function of U, 

rearrange the decomposed terms with respect to the orders of n 112h L, n ~lh ~d~2 and 

n “1/2 . Then we invert it using Esseen’s smoothing lemma (see e.g. Bhattacharya 

and Rao, 1976, Chapter 3).

PROOF OF THEOREM 1

Let C denote a generic, finite, positive constant. The qualification "for n 

sufficiently large" will sometimes be omitted. Writing E{ • |z ) =E( • | Xt , YJ) and
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|1, “ , Y t ) ,  let

v, = t r V ( n f -i l)  , Vi ~ o'_1vT( Uj -EU)  , Ut =a->vT(Cf. - E U ) - V ^  

where Ut is defined in (1.38). Z can be decomposed as follows.

Wfj + n ll2o-'\>T{E U -v )
\ Z  I i =1 ;  =t +1

= v  + co + JF+ A.

Define

X (0  = E ( e ‘' z) = e ^ A£ [ e ir(v"+a+ff)] , (2.3)

x ( t )  = j e i ,zdF( z )

= e ~V |l  +1. »'»* *k,( / « )  + - j f a V  O  2 + ( i t )  j  .(2.4)

By Esseen’s smoothing Lemma,

~ fn l/2lom X( O  - X( O  / i >
jwp |F ( z ) - F ( z )  I < /  I ---------- 1dt + 0zeR J-nl,*lom t Kn ll2b g n

x(0-x(0 , vm
< f  \----------------- kft + f  I - & t ) I dtJ-Pl l t J  JPl<\t l<n'l2logn 1 t 1

r x ( r )+ / I—-— I dt + o( n~ l f l )

= a-D + (ii-i) + an-i) + ̂ (n-1/2) , (2 .5)
where p^m in  ( € t i1/2, log n) for 0 < e =1/E\2v 113 . Before estimating (2.5),

we mention an inequality frequently used hereafter:

\e ix_Y-ix - (**)  2 _... _ ( i x ) k | <  \x |* (2 6)
|e 1 lX 2! k  ! 1 — ( A: +1) ! (Z-0)

for real x  and integer k  .

To estimate (1-1), we represent x( t )  as %(t )  plus a remainder. Using

(2 .6),

e itA = 1 +i t  A + 0((* A)2) , (2.7)

£{e in?**#)} = E{e *■'(*+*)} + o ( E | r  g>|)
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= £ je ‘' ' v" |l+ / r  JF + - | ( i f  W2) 2} ' * 0 ( E \ t  W\ 3) + 0 (E \ t  tb|) .(2.8)

Writing w;-( t ) = e 2‘ ‘/2|,j and yv( O  =£|>; ( O  1 . 

£ ( e ' ' v' )  =YV( 0 "

E( e * *v WO = w 112yv( * )  "_2E[ * )  w2 ( * )  ]

■  u t r - \ ^ ^ E { w nV lv 2) +o(c M +

(2.9)

(2 .10)

by Lemma 8 , and

£ ( e " v'PF2 ) = n ( " H "

+ 6 «l '2‘ ] ( 3 |Y»( O  "‘3̂ I ^  O  w3( «) ]

+ 6 " ( 2 ) ( ,4 )V v(0 '," , [ £ { ^ 2m 'i(0 h'2( 0 } ] 2 

= Y,( O  n-2{£( % 2) +o(|f |n '*A **)}

+ Y v ( o n "3<5 ( k  i3/i 2A ‘ 2)

+ Vv( t ) n~40 ( t  4n~l+t 6n~2h~2+t *n~2h~2) , (2 .11)

by Lemmas 8-10 and 14-(a). By Feller (1971, p.534) and Lemma l-(a), for 

\t \< e n 112 and m =0,l,2,3,4,

Yv(Ort- '2 j l  + i O  3|  + o n ”1/2( |f |3+f 6)e  . (2 .12)

By (2.3), (2 .7)-(2 .12), (A.7) and Lemma 7,

X (0  = 1+/ * A+0(t  2A2)
<2 Y

e 2 t ) 3̂ +o n~ll2( \t \2+t 6)e  4

, (2.13)

where

4 , - 0

= o

t 6 ,8  t 10
. + - —  + — ------- + —  +(il+JL

knh n 3l2h 2 ft n 2h 2 n 3h 2 

* 0 (  \t |h L)

\t'\h J£i
( nh d*2) 312

t f-H 1° 'l
K * ‘ * ) ---------------  _ ( 2 ' 1 4 )

by (ix). Expanding the right hand side of (2.13) and using A2 =n{ vT(E U -  p) / a }2

= 0 ( n h  2L) due to (A. 1),
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X( t )  = e 4 l „ • ,  4« " ’> - i y  .*■> 1 , , ,> }

+ o
/  t 2 \  

l „ —T
1 / 2

+ o

e ~ ~  ( | f  |3+|r I11)

+ o

\n

t

n h 2Lt 2e ~2

{ _t± \ 
— e 4 ( 11 \3+t 4)

\ n h d*2

A n{e ~+e “ ) ( 1  +r 8)
/ ,2\ ( , 2 , 2  \

(2.15)

Since the first term on the right of (2.15) is

X (0  +o e 2 ( \ t  \n 112h L+t 2n ~lh ~d~2 + \t \3n "1/2)

by (2.4) and Lemmas 11, 12, 13-(a) and 14-(a), using (2.14),
y( t ) -y( t )

( 1 - 1 )  = f p ' \ ----------------- | dt = o (n ~ ll2+n~lh~d~2+nll2h L)
J-p i t

because f  \t |r ( e 2/2+e 2/4) dt < C for any positive constant r.J -0 0

Next, (IH-1) is

/ ,I' teP! I* I

<c

1 + n ll2h t + — 3-7 O’ O  2 +

f°°—e 2df + n ll2h L fJpi t Ji

nh d+2
> _il 
e 2 dt

3n 1/2
O 'O

— f1 d+2 J„

Pi

t e 2 dt +
— fn 1/2dp

t 2e 2 dt

p\
n h ^ “JP\ n x,"JP\

2 f 00 , - 2 ----------  1The first integral is smaller than p \ j t e  2 dt = P\ e 2 = o{n  1) becausejp j
p  j =min ( logn , en  1/2) . The other integrals are clearly <9 ( 1 ) as n -> 00. It 

follows that (HI-1) = o( n~ lf 2+n ~lh ~d~2+n 112h L)

To estimate (II-l), define, for m= 1 ,2 ,  — , n ,
f) m 1  m

v ( m) =—i n L v ' ■ _ v i> >n ll2fz1 n 1/2fz1
and, for m= 1 , 2 , -  , n -1  ,

. . 1 «
IF(m) = « 1/2 "  X ) X  ^  •/ =1 ; =1 +1

Note that v"(«) =v" , co(«) = co , W( n - l ) = W .  Using (2.6),

|X(1) | = \e itbkEe | <|Ee i f (vVu+̂  |

Ee 1 ( £ > ( m )  +jK(m) ) + i l l l i ( M ( m )  +W(m) ) 2 j

0(\t \3E( |w(m) \3+\W(m) |3))
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< |Ee *' *v"+< > +< wwim)) j|

+ 11 | | £ e ,/{v"+(̂ (m))+(^ (m))}{w(rn)+W:m)}|

+ L t  |Ee1 ' <v' +< ̂  m> >+(”^ (m) >} {cb( m) +T̂ ( m) }21 

+ 0 ( |f  |3£{ |cb(m)  |3+|W(m)  |3}) . (2.16)

By (iii) and Lemma 2, the first term in (2.16) is bounded by

i t v ( m ) £ e  i t  { ( i r - v ( m ) ) + ( ^ w ( m ) ) + ( ^ i F ( m ) )  } | <  | £ g  i t v ( m )  | _  | (  ^ )  |/w ( 2  J 7 )

Using (iii), Lemma l-(c), Lemma 2, Lemma 3, (A.5), and Holder’s inequality, the 

second term in (2.16) is bounded by \t | times

|£{e »rv(m)£)(m)}| + \E{eit<r̂ W { m ) } \

*  iYv(o + w o  r i m{r% l)

s C |Y F( 0 r , - ^ 5 * i  + C|Yr( 0 | " * - f e -  • (2-18)n 1 n ilzh
Similarly to the derivation of (2.18), using (iii), Lemmas 1-5, (A.5) and Holder’s

inequality, the third term in (2.16) is bounded by t 2/ 2 times

|Ee ,?v(m)n)( w) 21+2 |Ee ,/v(m) a>(w) W{m)  |+|Ee itv(‘™)W(m) 2 |

*  |Y„(0  lYv(0
fl n

* 2 1 Yv( t )  r 2 "< > ( ”  [~!2 £ |(  Kt - v ,) Wn  I

+ 2 1y„( O  | ~ * . - v , |£|W£,1

+ 1 yv( o  r 2( mn) M 2 ) 2̂ ( ^ 2)

+ |Yv( r ) { 2 n { n - l )  n+4{mrl) m n}n \^  J 2̂ |f ^ 2^ 3 1

+ 6 | y„ ( 0  ” < ” - 0  ( » - 2 )  ( w -3) w| b  |- 2£ |w f2  | £ |p ^  j

£  C l |yv( t ) + |Yv( t ) r 2/n2^  + |yv( *) r 2m2^ l
[ n n n
+ |Yv(0 r s ^ A i l  + |Yv(o  r  " *  + |Yv(o  r

n 1 n ih a 1 n 5h z

+ |Y ,(0 |**4 1n 3h
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S C | Y , ( 0  I
m- 4 l h v-,  1 , 1 m+ [ h i L l h L~yl i \

K n n 2h d*2 n h 2) ( « n 2 n 2h 2,

+ ^ „ m?+—J—-m 4l  ,
w 3/i

(2.19)

because |yv( 0  |^1 . Substituting (2.17)-(2.19) into (2.16), with |yv( 0  |^1 

yields

i x ( o  i s  iy„ ( o  r+ c ( iY v( o  r ' w h
n 1 /2 l Y v C O  I

m-2 W
ra 3/2/i

C | Y , ( 0  I
m- 4 j ( h 2L+_ J _ + 1

w «  2/i <i+2 n/i 2
m+ h 2L h L~l . 1

n n 2 n 2h 2

4 1  * 2

wr

w " w 3/ i 2 

0(|f |3£ { |« ( m )  |3+|IF[m) |3})

ClYvtOI m-4

n 1/2

1
[ « 312h 

h L~l

n n 2h d+2 w/z 2

> > , . U

t 2m3 +

n n 2 n 2h

t 2ra4
n n 3h

0{\t |3£{ |cb(m) |3+|PF(m) |3} ) . (2 .20)

Now we evaluate (II-1), partitioning its range of integration into two parts, 

namely P i^ \t  \< e n 112 and e n l,2<\t | < n 1/2log n .

(i) For P i^ \t  \<en 1/2 , since e = 1 / E\ 2v 1 |3 <{ 1/ E( 2 v j ) 2}3/2 = 1 due to 

Jensen’s inequality and so \t \ <n 1/2 , using (2.6) and Lemma l-(a),

|Y„(0  I = \Een ^ Vl\

a  i * { i  + , ,  + i m i ( | L l ) » }j  + P

so using (2.21), Lemma 7, and (A.7) in (2.20),

iv(f > | < c e x p l - (m~4 )  ̂ i + (w * ; i  "  |  3« J 1/ 2 1 1 1 « ra2/ ^ 2 a / , 2'

(2.21)

n 312h n n n 2h
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+ ^ . t 2m3 + * * 2ra4
n 3h 2n

+ o I' l3 ( " ) 3/2^ 3L + ( ^ ) 3/2 (2 .22)

We may take m= [ 9«log nj1 2] since 1 <m<w-l  holds for p j \<en 1/2 

and sufficiently large n. Because m > ( 9 « l o g w ) / £ 2- l  , 

exp } = exp ( - ^ g ^ J e x p  ( * 2 )

<Cexp ( -3 logn ) < —-
n

(2.23)

for |f |<€W 1/2 . Substituting (2.23) into (2.22) using m <( 9«log n) 11 2 , we

derive

+ o

i + U l L i ,  U( A ^ +_ i _ +_L_) t
\ r t 1/2 w n 2h d+1 n h 2 J f 2

4 )  1 if u ( 1 4  n 2± lom . )
\ n 3l2h ' ( n n 2 n 2/ i2'  j i 4

+ i n 3(logn ) 3 + _ J _  2 n 4(logn )
w 2 * 6 n  3/ i 2 f 8

(&gn ) 3i2h 3L* { ^ n  ) V i

<>c

+ /i 1 + l h 2L(logn ) 2 + h L~1(logn ) 2+(logn ) 21 1
n 5/2 N n n 3h 2 \ t 2

+ (foffli ) 2 1 +h L~l(logn ) 3 1 + ( logn ) 4 1
n 5/2/z |: n n 2h 2 t 6

Therefore, dropping the range of integration p ^ \ t  \<en 1/2 on the right hand side,

L
X(Q

P\£\t |^en t

<c

\dt

{ U h^logn  + ]Q£i ,  logn ,  {logn + (
n 4h d+2 n 3h n h d+2I t n

h Llogn r dt + \h 2L{logn ) 2 + h L1(logn ) 2+ (logn ] 
n 5/2 J t 2 I n 2 n 3 n 3h 2

dt

dt
\t i:

( logn ) 2 r dt +h L~l(logn ) 3 r
n 5/2h J t 4 n 2 J

dt + ( logn ) 
\t I5 n 2h 2 I dt

11 i7J
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= o ( n ~ 112 + n lh d 2 + n 112h L) (2.24)

by assumption (ix).

(ii) For en l/2<\t \<n 1/2log n , there exists a constant 77̂  (0 , 1) such that 

| y„( t )  | <1 -77! by (x). Choose m such that m= [ -3 logn / log (1 - t)x) ] since 

1 < m < n - 1 for sufficiently large n. Substituting in (2.20) and applying (A.7) and

Lemma 7 bounds |%( t )  | by
3 lo fft 3 logn

n 1/2 w n  2/ i d+2 n / i 2 log ( 1 - 77j)

1 Il « 3' 2/l

2

3 logn

t U- 3 logn

n n 2 n 2h

3

log ( 1 -7j{)

1

I' l:

log ( 1 - 77!) 

logn x3/2

n 3/i
- f  2 l -

3 logn
log ( 1 - 77!)

nlog ( 1  -771)
h 3L + /(9g7Z

so that
 ̂ n 2h d*2\og (1 -77 j)

Len*l2<\t \^nll2logn t

= p f log ( n 112logn ) 
{ » 3

+ logn |  ^  ( n 112logn )+( —— +- , 1 A , + ——̂;)n(logn  ) 2]
71 \ 7 l 1 / 2  6  »  71 / l  7 l / l 2  5  J

71 7 1 2  7 t 2 A 2

7 l ( / C ) g 7 l  )

+ U & U L h t l n l t o f f i  ) 2 + J h l n(logn ) 2
rt

= o ( n ~ 112 + n ll2h L + n~lh~d~2) 

by assumption (ix). Thus by (2.24) and (2.25), 

(II-1) = o ( n ~ 112 +n~lh~d~2 + n l,2h L) , 

which completes the proof.

(2.25)

□
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2.3 An empirical Edgeworth expansion

We derive an empirical Edgeworth expansion by replacing population Ki in 

(2.1) by strongly consistent estimates

*t = 2(~]jL&1 E"E lfn«' u) i I £  { a(/ >■ '•' x,) W. ,
^  o</lt 1=1 J wi=i t J

-  h "  r £  t  =
\ L  I R  ;  =i +1 n  i =1

*’ - v' i v  • * ■  s i s  -< '> '}

where for positive b and a function 77: R d^>R 

' « >  ■ ^  ■

■ o - W
n  1 j *i

Vx = v ' ( £ ? - lO  , = v ' ( ty  - U t - U j + U )  .

E is a jackknife estimate of E .

Define

F ( z )  = 4 K z ) -< ^ (z ) |n 1' 2ALk, + - ^ z  + 2 - 1} |  . (2.27)

THEOREM 2 : Under (i)’, (ii), (iii), (iv)’, (v)’, (vi)-(viii), (ix)’ and (x)-(xii),
tat

sup sup |F{z )  - F ( z ) | = o ( « _1/2 + n~lh ~d~2 + n ll2h L) completely.
v; vTV=l

By the statement Xn =a + o ( g n) completely, for a constant a and a 

positive decreasing sequence g n , we mean that for all e>0 ,
oo

J^.P( \Xn - a | > e g n) < oo , and if this holds for g n =1 we say that AJ, ->fl
n =1

completely (see e.g. Serfling, 1980, p. 10, Stout, 1974, p.221). We shall frequently 

use the fact that, by Markov’s inequality, Xn -*a completely if

E\Xn - a \ r =0 ( n ~ l( log n ) _1_c) for some r > 0, (  > 0 . By the Borel-Cantelli
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Lemma, complete convergence implies almost sure convergence. We shall omit the 

qualification "completely" when referring to this convergence.

Comparing assumptions above with those in Theorem 1, we strengthen (i)’,

(iv)’, (v)’ and (ix)’ here. We will prove this theorem by showing k (. - * K i , 

i =1, 2, 3, 4 . (i)’ is necessary for all four of them since a2 ->or2 entails it. (iv)’ 

and (v)’ are used in the proof of k 2 - > K j  , while k 3 - > k 3 requires (ix)’. Before 

proving Theorem 2 it is useful to establish the following

PROPOSITION 1: Under (i), (iv), (v), (vi), (vii), (viii), and (xi), U .

PROOF: Because EU  -»jl by (A.l) and v is arbitrary, it suffices to consider

a - W ( U - E U )  E  ^ ' = fli + «2  - Since the Vt are
n  \  z  I i =1 j  =» +1

independent with zero mean,

E\ ax \3 |3 < C n '3l 2(E \Y \3 + l)  = 0 ( n ~ 3>2) ,

so a { -»0 . From (A.6),

E ( n 2a 2) 2 < C £ £ (  £  W )  2 < C n 2h~d~2 = 0 { n 3(logn )~2)
j  =i +i

from (ix), so a 2 -»0 . □

PROOF OF THEOREM 2:

In view of Theorem 1, it suffices to show k4- ->Kt- , i =1, 2, 3, 4 . We

first prove k 3 - * k 3 . In view of Lemma 13 this is implied if

a3a '3 -*1 (2.28)

and

- » £ ( v ,3 )  . (2.29)

By Slutsky’s lemma, (2.28) is true if

a 2 ->a2 . (2.30)
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To prove (2.29), put A,=a_1v and write

= i i l V i U i - u , ) ) 3 + ^ - E ^ 3 -  i V ( U - E U ) } 1 n o  n f z i  n f r {

+ -  3XT<iUn' EU) ' j t { k * ( u i - u i ) } 2

+ f  g  U-Ui ) V ^ 3{ X' ( U~EU)  ^ j ^ X H U i - U ; )

-  6 'XT{ Un EU)  Y j X' (Ui ~Ui ) V i

3 \ * ( U - E U ) ' ~  v i ,  3 U T( t / - £ £ Q } 2A  , , 3 , ,

n  ■,f a  ' n  f a  '

We start with the second term on the right of (2.31), writing

ttE ^  = + ^ ( ^ 3-v ,3) .(2.32)
W / ^ l  Wi= l  n

By (iii) and E{ v f)  < oo due to (i)’ and Lemma l-(d), — J^v,-3 - > £ ( v 3) from
w * =i

Theorem 4.13 of Stout (1974). The third term on the right of (2.32) is 0( h L) since 

its modulus is bounded by

ce{ \vx- v , | \v?+v(2|) sCA^idyti+Ddyj + i)*],
and this is 0 ( h L) due to (i)\ Lemma l-(d), and (B.l). The second term on the 

right of (2.32) converges to zero because it has mean zero and variance bounded by

—r t E ^ f  - v f3 -E(V?) +E( v ,3) }2

* % { E \ V l - v l \ 2 + \E(Vl) - £ ( v , 3) | 2} , (2.33)

and because

E \ V t - v \ \ 2 <LCE\Vl - v i \1\V t+ v i \< C h 2LE( |2+1) ( |y,|4+l) ^ C h 2L , 
by (i)’, Lemma l-(d), and (B.l), (2.33) is 0 ( n ~ lh 2L) = 0 ( n ~ 2) by (ix)’. Thus

n
n - ^ V f  -+E(vl) . Substituting (2.26) into (2.31) and noting

AT( Uij -U{) =W[j +Vj , we have the following typical quantities for the first term 

on the right of (2.31) :

‘ V , ) 0 4 * > t ) ( l «  *V,) , (2.34)

^  , (2.35,

i d n ’ W ” 11 , r p ’ ■ < 2 3 6 )
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(2.34) has mean zero and variance which, by Lemma l-(b),(c), is bounded by 

Cn  -5 [ nE{ ( Wn  + V2) 2( Wa  + V3) \  Wu  + V4) 2}

+ n 2E{ ( Wn  + V3) ( Wl4 + K4) ( +  Ks) ( Wn  + Vs) ( Wu  + K4) ( +  Vs) }} . 

The first expectation is bounded by

C E [ E { m l \ \ ) E ( m l \ l ) E ^ l \ \ ) Y O { h - id-6) = 0 ( ^ 1  (logn ) 3) (2.37) 

by Lemma 4, (i)’, and (ix)’ because the terms involving Vi are of smaller orders,

e.g.
E{ w iw iw u  K4) = E{ Wff Wf?£( Wl4Vt \ l ) }

<,CE{( 1̂ ! | + 1)£:( WfllD^C Wf32| l ) } <Ch-™-*E( |7 , |5 + 1) = 0 ( h - 2d-*) 

where we use

W W u Vi \l) \< .\E {k 'U u V4 \l)  | + |E ( 7 2) I <C( 17,1 + 1) , (2.38)

due to |£( XT Ul4 VA | 1) | <C( \YX \ + 1) (see the proof of (A.4)) and E( V%) <C by 

(i)’ and Lemma l-(d). Applying Lemma 6 repeatedly and (ix)’, the second expectation

is

E fc w n Wn | 1 , 2 ) } : = 0 ( h "2d~6) =0{ ( n l  logn ) 2) , 

since terms involving Vi are of smaller orders again as in the above. Thus,

(2.34) —>0 . (2.35) has mean zero and variance

1
n \ n - \ y u

E
j  =2 i =1

1 n k -2
1  r rv  n  \  2

ik )n 2{ n - l ) 6f e
(2.39)

k - 1

writing +Vk) +LJ) 2 . Now since terms involving Vt are of
j  =< +i

smaller orders,

E ( P l )  <C[kE{Wi i tyi )  +k 2E ( W ^ W ^ ) ]  

because of (2.37) and, by Lemma 4 and (i)’,

EiWlWi) s£[J»J&(H&2|1)] z C h ^ E im ,4( | y , | M ) ]

<; C / t^ -2£ [ (  |y , |2+ l)£(H f34 ID ] < CA -ld^E(  | 7 , | 2+1)( |7 , |4+1) 

£  Ch -M'6 .
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while for I ,

\ E ( P M  I * C \ k E ( W u Wu Wn Wn ) + I zC kh-*-*  ,

since the first expectation is 0{  h ~d~4) by Lemma 6 and the second is zero by 

Lemma l-(c). Thus (2.39) is

0 (  V  ( k 2h~4d 6 + k 3 h 3d6))  = 0 ( 1 / n(logn ) 2) 
n

using (ix)’, so that (2.35) -*0 . Next (2.36) is 

  — t V  Y  KWi +Vl) i -E{(Wj +K)3I/ )]
7 J ( 7 J - I ) 3 , 4 f j ^ l  9 1 ,J 1 V

+ u  _1) W W + W ' V ] W* +VJ 31

1 £ ( ^ 2+F ,)3 . (2.40)
2 ( n - l ) 2

The last expression is 0 ( n ~ 2h ~2d~3) by (A.5) and Lemma l-(d) with (i)’ . The 

second term of (2.40) has mean zero and variance

n2 * n , £ g | . £  t ('Wj *vj) 3-£{<^  *vj) 3n ] p
n  \  n  l )  i = i  j  =i + i

£  - 4 ,T { b E (W £ ) + " 2£( wiwi) } £ C( n~6h -«-« + n ~sh ,
n 8 ra

by Lemma 4 and (A.5). The first term has mean zero and variance

_ - J _ £ y  -1 )* £ [£ { ( H f ^ ) 3 li } -E (W n +V{)'f  
n  \ n - i )  j  =2

c<; -^ -£ { £ ( (flf | 312) }2 ^  Crt "5/i ,
n 5

by Lemma 4 and (i)’. Thus by (ix)’, (2.36) converges to zero. The other terms in

(2.31) can be handled like (2.34)-(2.36) and are shown to converge to zero using the

Proposition, so that (2.29) is established. To prove (2.30), write

o 1 = o2 T  V? . Similarly to (2.29), we have
( n - 2 )  2o 2 f ^  1 j  \ /*

{ n o * ) - 'Y ,V f  ^ E { v t )  . (2.41)
i =1

Next we prove k4 - > k 4 . By (2.28) and Lemma 14, it suffices to show

- »  ■
Since 0 %  = K,+AT(t{  -Ut ) - ) J (U-EU)  ,

^  I I =1 j  =» +1
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= ( 2  J { £ £ x' u>iv ' vi + £ E ^  ^ * T( °j -  ui ) 

-  v ( u - E U ) Y ^ J 2 kruij v i +Y , Y , x ' uii x t(Qi <; / <j

+ E E M 9 x ( u i - U i ) W U j - y j )  
i <j

- V i U - E l D Z Z ^  *T< Q -Ut )
*<y

- V( U - E U ) J 2 Z  X7UH vi -  E E *T( *{■-*})
* <j i <j

+ { X ( U - E U ) } 2Y > Y , X uh 1 ■ (2-42)
* Ki  J

Writing

Q  =£( V ty  LJ *5 | / ) -£( X ^ K ,K 2) ,

S; -A 'tfr K, FJ- -Q  -Q +EK X U u V ^ )  ,
the first term on the right of (2.42) is

E( k ' U ^ V , )  + 1 1 I Q  + ( " ) _1E  t  Qj ■ (2.43)
rifZl \ x  / i =1 ; =i +1

Since {Q } is a stationary martingale difference sequence,

£ |  Q |3 £  |3 "  A  £ |£ (  ViV>]‘i )  I3 “  ^  ’

the last inequality using (2.38), Lemma l-(d) and (i)\ Since EQ- =0 and

EQij Qki =0 unless i = k  and / = / , the last term in (2.43) has mean zero and

variance

4 £  £  E( Q,1) <, C-E( flf)
n 2( n - l ) 2i={jtiii n£

< \ E \ ^ U n VxV2\2 <Cn~2h ~d~2 , 
n *

where the last inequality is due, in view of the proof of Lemma 5 of Robinson 

(1995a), to

E( XTUnVlV2)1 = £[F?£{( ATt/12)2pf |1)] <E[vlC( |7, |M)/t-<-2] 
*C h -* -2E[(  l ^ p  + l ) 2] , 

by Lemma l-(d). Since E{ V U n V;K2) = £ ( Wf2K,K2) = E( Wn v ,v 2) +o( 1) by (iii), 

Lemmas l-(b) and 14, it follows that the first term of (2.42) is 

E( W\2 v iv 2) +^( 1) • The proofs that the other terms in (2.42) converge to zero
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are omitted because of their similarity to the proofs for (2.34)-(2.36) and because of 

their straightforward use of the Proposition. Thus k 3 - » k 3  .

Since a"1 fig = 0g -XT( ££- t y )  -XT( Uj -U}) -  XT( U-EU) ,

-k2 = ^ h ^ H x r ( U - E U ) } 2 ♦

+ ' £ ' £ h d* l \ ' ( U i -Ul ) } 2 + ' £ , ' £ h d*2{X'(Uj -Uj ) } 2
i <j i <j

- 2 -  2E T h d ^ i  w Oj -Uj )
i <j i<j

-  2XT( U - E U ) J 2 J 2 hd+2jVj
i <j

+ 2 Y , j : h d^ ( U i -Ui ) X \ U r Uj )
i <j

+ 2XT( U - E U ) Y , Y , hd+2XT(<Ui ~ui)
-  1

+ 2X'r( u - E U ) Y f T fhd+2x^ uj ~ uj n '  (2-44)
' <j J

Because of (2.30), Lemma 12 and because E{ W^) = 0 ( h  ~3d~4) due to (A.5) under 

(i)\ it follows much as in the proof for (2.42) that the first term in the wave brackets 

on the right of (2.44) converges to k 2  . We omit the proof that the remaining terms 

converge to zero because it is similar to the proofs for (2.34)-(2.36) and 

straightforwardly uses the Proposition.

We finally show kj ->Kj .In  view of (2.2) and (2.30) it suffices to show

that
1 n _ /
— V  { A(/ !* ,ld) vT/  (X t ) } Y) convergesto E[ ( A(/ *’ ,ld) vTf  ') g] . Wehave

1  £  A< J -  ,/„> v r f ' { X . ) Y . . i n  j - > g  £  q  ( 2 .4 5 )
n i =1 \ z  / i =1 j =i +1

where

Hg = b~d~1~LA(‘ l’ ' ’ld>vrH ,( ~  , Xj ) ( Y, -Y ,) .

Since we may choose an even L, the kernel order, without loss of generality, 

A( /“ ,ld) \ TH'{ u) is an odd function by (xi) and thus (2.45) has a U-statistic

form. As is standard in U-statistic theory, define £( = E(H- \ i ) , then (iv)’, (vii),

(xi), and integration by parts give
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n  = E[E(Hjj \X , .Y „ 3 ^)  |25 ,y (]

= b ^ ~ LE[ a (' >• -  ■' <> v ^ '(  ^ 5 . )  {y, -g  ( ^ ) >|a; , y, ]

= * Ac / ~ ' ld)vTH \ u )  }{Y; -g(A ; - bu ) }/(A ;.-6u)d«

= y;. {A( /" - • ' ' V /  '(Xr bu) }du

- J n u )  {A( / '■'•‘) vre \ X i - b u )  }du

and

^ r E  E  4- -^ 1 2  - «3 + «4
\ z  I i =1 j  =i +1

where

fl3 = l E ( ^ - ^ 2 )  . «4 - (oF’E  E  -H-q+EHn) .
n i= 1 \ z  I i =1 ; =i +1

Noting that the H  -EH n  are iid with zero mean and bounded variance due to (i)\ 

(iv)’, (v)’ and (xi), and

E{H^)  <. b -2d-2~2LBE[  {A(/ ^ v*H'{ ) } 2(Y?+Y}) \XU YJ
v x  - X  '= b -u-2-iLEJ ^ O  vrH /( _ i  j ) 2[Y}+q(x)  } f ( x ) d x

= b d-2-2LE f ( A <l" ' ' h ) v-rH,(u)  }2[Y i+q(X1-bu) } f ( X x-bu)du  

< Cb -i -2-2LE( Yx + 1) = 0 (b  -*~2~2i-) , 

due to ( i) \ (iv)’, (vii) and (xi), a 3 -»0 and a4 ->0 under (i)*, (iii), (iv)’, (v)’, 

(xi), and (xii) similarly to the proof of the proposition. By (iv)’, (vii), (xi), and 

integration by parts

E(Hn ) = E{b ~d~'~LA( l " "'■ld)vrH ,( - x~,X2) Y x}

= b^- '- t-EfA0 " \ 'H'{  —r —) Yxf  ( x ) d x

= b - ULE \ Y f { A 0 l ‘ " ■‘d)v-’H'iu)  } f ( X - b u ) d u  

= •EfyJ.HCu) {A(il’ "■‘d)vTf  \ X -b u ) }du]

-~E[YA( l" '"'ld)vTf f] = £ [(  A( /" " Jd) vT/  0  g] 

so that Kj —►Kj . □
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Chapter 3

Edgeworth Expansions for Averaged Derivatives

And Bandwidth Selections - Studentized Case 1

Results in the previous chapter are theoretically interesting, however they do 

not suit for practical use because the statistics there are not studentized (see 1.3.1). 

We provide valid theoretical and empirical Edgeworth expansions for studentized U 

in Section 3.1 and 3.2 respectively. The former expansion is still infeasible due to the 

unknown quantities it involves, but the latter is feasible and so for practical use. It 

can be used for confidence interval estimation or hypthesis tests as described in (1.87) 

for the sum of i.i.d. random variables. Section 3.3 discusses the following points. 

Firstly, we show that a number of situations results depending on the dimension of 

the explanatory variables, the kernel order and the rate of decay of the bandwidth, 

and especially that an Edgeworth expansion of parametric order is possible. Secondly, 

we propose bandwidth selections which minimize the normal approximation error. 

Thirdly, we discuss differences between our results and those of Linton (1996a).

3.1 A theoretical Edgeworth expansion

Our studentized statistic is Z  = n l/2a~l vT ( U-  jl) and we are concerned with

approximating

F ( z ) = P ( Z < z )

by

1 This Chapter has been revised and written up as a joint paper with my supervisor 
Professor Peter M. Robinson as Nishiyama and Robinson (1998). A part of Section 3.3 is 
included in Nishiyama and Robinson (2000).

86



F \ z )  =  <J>(z) -<£(z) n ll2h LKl - - ^ i z  -  4 1 / 2 { ( 2 z  2 + 1 ) k 3 +  3 ( z  2+1)k4}

(3.1)

THEOREM 3 :  Under (i)’, (ii)-(x), as w— oo

sup sup |F (z )  - F +( z )  | = o{ n _1/2+n ~lh ~d~2+n 112h L) .
v* vTv=1 ^

The assumptions are the same as those of Theorem 1 except (i)’ strengthens 

the third moment assumption. The correction term in F*(z)  contains terms of the 

same orders as those in Theorem 1. Moreover, the "bias" component, of 

order n 1,2h L is identical to that of Theorem 1, while the "variance" component, 

of order n Ah ~d~2 is the negative of that in Theorem 1, though the remaining 

component, of order w"1/2 , differs from that of Theorem 1. The first two 

correction terms are related to nonparametric density estimate as the corresponding 

ones in (2.1) while the last term is also "parametric" as the last term of (2.1). We 

find a similarity between the last term of (3.1) and the correction term of studentized 

ordinary U-statistics (1.93) like the similarity of the last correction term in (2.1) and 

the first correction term of (1.91). We discuss this "parametric" case in Section 3.3.

We use the same bandwidth h to estimate a2 here, but it is not necessary. If 

we use a different bandwidth choice, we will have the same correction terms as in 

Theorem 1 and other correction terms related to the variance estimation.

We handle the studentization like Callaert and Veraverbeke (1981), namely we 

expand a ~ l around a 2 =  a 2  . Then, we have cross terms of the expansion and the 

decomposition of U. Based on this, we prove this theorem in a similar manner to 

Theorem 1 by investigating the characteristic function.

PROOF OF THEOREM 3

As is standard in U-statistic theory, we write

U-jT) = — TVi + n1/2(")X  E ^ +w1'W(£U-fI)
y/nt^l \ 2  I i =1 j =i +1
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V + W + A. (3.2)

Writing 5=4Pfcr ( ) ,  s 2 = a~2vrS  v , Taylor’s theorem gives
3 A

CT&-1 =  S  2 )  + 1 ( 5  2 + e ( < 7 - 2 £ r 2 - i  2 )  } 2 (  CT^CT2 - S  2 )  2
2  o

= j  1 + R  + 5  (3.3)

for some Oe [0 , 1] . Similarly to Callaert and Veraverbeke( 1981), we expand R  

as follows. With Vt = E (  Vj |i ) , Wjk =E ( W- Wlk \j , k) , we have

R  = T+Q + R  , T= T l + T2 + T3 , 2 =Gl+f?2 » ^ = ^ i+ ^ 2 +^3+^4+^5

where

r ,  = r2 = f g { ( 4^ 2>+8^}> r 3 -  4 s ( n2 1 p £ j f  ,

o c  I 1 I i n n (.i)

a - - ” ( V ) S £  ^
71 rt ( O

*  ■ - * " g ) i  ■ *• ■ - iS^ - { { n2 ) ' % w< F  •
7* ( O

where S = -s ~3f 2 and V} denotes summation with respect to k  and m for
k<m

1 <k <m<n  excluding k —i and m=i. Lemmas 24-33 show moment bounds of 

r ,  Q and R, and E\T\r <E\Q\r <E\R\r asymptotically for such r that the 

expectations exist. Because

Z  = (s  ~l +R+R) ( V+W-A) , 

by a standard inequality

sup |F{z)  - F \ z )  | <sup |P((j ' ^T+ Q  (V+W) +s _1A < z ) - F \ z )  \
z  z

+ P |  \(R+R) ( V+W+A) + (r + 0  A| z a n) + 0 (a „ )  (3.4)

for a„> 0  , where here and subsequently we drop reference to sup . Taking
v:  vTv - l

a„ = -j——̂ max( n _1/2, n _1/i n 112h L) , we bound the second term on the
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right of (3.4) by

|(P + P )(K +  W+ A) |
2 /

+ P \ [T * Q  A |a n ll2h- 
2 logn ,

<ZP |P+P| > a
21og

+ P ( |K + ^ + A |> log n) + P \ \ ( T + Q ) A \ ^  ^n 112h L>

The first term in (3.5) is, by elementary inequalities, bounded by

P( \R\ * a
4 log n

—->C  -2 -^0  
R

+ p (  R > a
4C0log n ;

(3.5)

(3.6)

for a constant C0 determined later. The third term of (3.6) is bounded by

p [  To > — ^ ) + p /|T , +7\ I2 > — ^ — \ + Pl\Q+R\2 > — ^ — \
* \ * 2 12q)log nj  \l  1 31 12q,log « /  12q)log nj

(a)  + (6 ) + (c )  .

Lemmas 24-33 and Markov’s inequality give, for C > 0 ,

E\To\2{U°  C n-(1+° r io s  n ) 2(1+C) -I( a )  <  1 *'   . o ( B  . )  ,

( 12Q)log n )
4d+o

<• '  -  I «. '!.{ { n -lh -d-l)Ut
\l2 Q lo g  n j

( c )  < C » - ^ ^ ( l o g  n ) 2 = 0 ( b -ia ^-*} f

= o ( n ~ lh ~d 2) ,

12 CJ)log n

where C suffices in (b) under (ix), and £ arbitrarily small suffices in (a).

The first term of (3.6) is, using Markov’s inequality, (ix) and Lemmas 29-33, 

bounded by

<c (n~ l + n '2h ~2d~4) (log n ) 4 = o ( n _1/ 2 + n Ah ~d~2) .
a n 2

Now, in view of (3.3), R = ^-s ( 1-2QsR)~5/2R  so that because i5>0 and
2

0 <0  <1  ,

R

+ * Co
R

= P ■ |j(  1 - 29s R)~512 >C0
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/  ~
< p 1 * 1  - ( ^ r ) 2 / 5 ) l  • ( 3 . 7 )2 s 2C0

Taylor’s expansion of s r around s 2 = 1 , (ii) and (A.2) give for integer r,

s r = 1 + 0 ( a - V ( S - S )  v) = 1 + 0 (h  L) (3.8)
3

so that we can choose C0 such that C0 > —s for sufficiently large n. Then by (3.8) 

and Markov’s inequality, (3.7) is bounded by a constant times E\T+Q+R\3 

= 0 (  n~312 + n~3h ~3d~6) from Lemmas 24-33, so that the second term of (3.6) is 

0 (  n~312 +n~3h ~3d~6) . Therefore,

p ^  + JR| = o ( n ~ 2 + n - ^ - rf-2) . (3.9)

Writing F ( z ) =P[n 1/2a _1vT( 17- p) <z] as in Theorem 1, and noting (3.2), we 

have

P( \V+W+A\ £=log n ) = 1 -jP(log n) +F( -log n ) . (3.10)

Theorem 1 implies for any z

1 -F (z )  +F( -z)  = 1 -F (z) +F( -z) +o ( n "1/2 +n _1/i ~d~2+n ll2h L) . (3.11) 

Now by (2.1),

1 -F (z )+ F (-z )  = 1 -4 (z )+ < i{ -z )  + < £ ( z ) - ^ ^ z

= 2 -2<E<z) +4>(z) - ^ g _ z  . (3.12)

2ic

2  k .  

nh
Substituting (3.12) into (3.11) and putting z = log n , because 

l-3>(log «) =o(n~1/2) and $(log «)log n = o (n ~ 112) , we have

1 -F (lo g  n) + F( -log n) = o (n ~ ll2+n~lh~d~2+nl,2h L) . (3.13)

By (3.10) and (3.13),

P(|F+PF+A| ^log n) = <? ( w~1/2 +n -1/ z + n l/2h L) . (3.14)

Finally, Markov’s inequality, (ix), (A.l), and Lemmas 24-28 bound the last term of

(3.5) by

A E \T +Q\ (21og n ) ^  ( n -i + n - 2  ̂  -id-4)  ̂j0g n ) 2 = o (n~112 +n~1h ~d~2) . 
nh 2L

(3.15)

Substituting (3.9), (3.14) and (3.15) into (3.5),

p ||(i?+ ^)(K + l^+ A )+ (r+ j2 )A | a a „ | = 0  ( n - ll2+n-'h-d-2+nll2h L) . (3.16)
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To deal with the first term on the right of (3.4), write b 2 = s ~XV  , 

b 3 = s ~ 1W ,  B2 = ( T + Q ) V ,  S 3 = ( T + Q W ,  b l = b 2 +b3 ,

= 5 2 +B3 , B = b l +6l , and define 

XXO = j e i,zd F \ z )

= e

•2 / i * \ 2 4 (2 k 3 + 3k4)
n h d*2 3 n 1/2

Esseen’s smoothing lemma gives for N0 = log nmin ( e n ll2, n h d'2) with

i  ,

sup |P((s ~1+T+Q) ( V+W) + s _IA Sz) - F * (z )  |
z

+ o w , }  _

•'-Afa *

which, for p 2 =min ( log n t sn  112, w/irf+2) , is bounded by

r H . E e W - ' V - t f t )  {dt + f  , & "<•? " »  ldt
J-P2 t Jp2<\t\<N0' t '

+ f  I l S ± ) . |dt + o ( n _1/ 2 +n ~lh ~d~2) 
h\*pi  *

= (1-2) +  (II-2) + (in-2) +o ( n - 112 +n-lh - d~2) .

Here i  is bounded away from zero due to (3.8) and Lemma l-(d) for sufficiently

large n. (III-2) is o ( « _1/ 2 +n ~lh ~d~2 + n 1,2h L) as (III-l) in Theorem 1.

To estimate (1-2), we proceed by writing %(t )  as x+( t ) plus a remainder.

Since s _1A is nonstochastic,

E {e it{B+s-1 A)} s f (3.17)

where (2.6) and (3.8) yield

gi t s  -1a _ j + i t s _1 A + ( e * lA - 1 - / £ s _1 A)

= 1 + i t s _1 A + 0 (  t 2s _2A2)
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= 1 * i t  A + 0 ( f  2A2 + \t \hLE) . (3.18)

Writing B2 =Bl+B3 where Bl = T V  and B2 = QV  , and applying (2.6) 

repeatedly, we have

E ( e UB) = E(e  " i’1) + E(e “ B- e  i,b')

= E ( e i,b ') + {Ee in b <*c2*ei> - E e in b ' tS*)} + \ Ee“ ( b - E ( e i ,b' )}

= E { e i,b ') + 0 (  |t |£ |5 2" + 6 3|) + ^Se,n b '*si> - E ( e i,b') - i  t E(Bje ilb')}

+ i t E ( B l e i,b' - 6 ± e “ bi) + i t E ( B j e i,b*)

= E ( e i,b ') + i t E ( S i e i,b') * 0 { \ t  \E\B'!+ B3\+t \ E \ b ! t f  + E |5 £ S|)) .

(3.19)

Using (2.6), write

E(e ilb') = E e 'W l  + i t b 3 + ( , ^ )2 h32|

+ E  e i,b2 je “ b* -  1 - f r * 3 - i i i i l h j 2! 

e i,fc2|l +itb3+ {it2)2bi\= E

and put y( 0  = £ (e  ** v*&V>I) • As in (2.9)-(2.11),
i t b£ ( e “ "2) = y ( 0 "  .

0 (  |r |3£|i>3 |3) ,(3.20)

(3.21)

E ( b 3e “ b') = y ( t ) n -  2

n 1/2

+ o r 2/z
^ 1 / 2  ^  3 /  2  /2

(3.22)

E ( b h " ,bl ) = ^ Y ( 0 n-2 £( W )  + 0 (  - 4 J a  + l< l« ■I/i* 4 ,(' 2)nh

+ y( t ) n 3 0 (  |r |n _3/ 2/i 3<* 2)

+ y( O  n 4 0 (  t An _1 + £ 8n 3/i *d 2 + t 6n~2h ^  2) . (3.23)

Since for m =0,1,2,3,

Y( t )  n~m = e M 1 +
- i l l  , JEC2^)

6 n  112s  3

<2>\
( i t ) 3} +o  n "1/2( |* |3+r 6)e  " 4 ,(3.24)
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by (A.l), Appendix C-(a) and (3.17)-(3.24),

E{e i f (B+s ‘lA>} = {1 +i t A + 0 ( t  2nh 2L+ 11 \n 112h 2L)}

where

- i i i  . 4E{Vi)
1 + ( i t ) 3} + o

t2\
ti"1/2( \t 13 + t 6)e 4

3 n 112s 3

1 + 4 ( ' 1/ 2)3£ ( wn v iv i) + i l ^ E (  m i )  - 2 H 1 1 1 e ( m i )f i L!L n n

( i t ) 3 + ( i t )

n 1/2 {4 E(V?) *ZE(Wn V,Vz) } + 0 ( 4 5

( |f  \E\6'' + 6 3\+t H E \6 i \2 +E\6ib} \))\ (3.25)

4 ' <  c  + ( J L l l  + A - I"- 1 + _ L
i n 1' 2 n 3' 2 n  n 2h d*2 n 2h d*2 n y i h ¥ ' 2

2 t 2h L + ———— + JLl!

t 0 t+ - —  +
10

"  n 2h ^ 2 n 2h ^ 2 i nhit l ) V1
M + t 2h L + t 2 

n 2h d*2 t i 3̂ 2h d+2 ti/z ^+2 ^

+t,  \t |»+* 4 ,  K I3 ,  H 7 ,
ft t i 3 ' 2  n 3h d+2 n 2/zd+2 t i  2 / i ^+2

6 \t |5

f * 2 + * 10 
= o1  — ^ r -  +v 7 l / l rf+2 71 1/2

Expanding (3.25), we have

E{e i t (B+s _1A) l _} =e
1 + | A_ * W )  +%E(Wn VlV1) I E( m i )

n 1/2 n ( i t )

4{2E( Vf )  *3E(Wn y iV1) 1 
3n 1,2

( i f )

= x*( t )  + e
4  { k ,  -E( V { ) } + 8  { k 4  -E( Wn VtV2) }

71 1/2 ( i t )

~ ( n l,2h -  A) ( i  t )  +
K2- h d+2E ( m i )

nh d+l ( i t )

, 4 [ { k 3 - 2 £ ( K 13 ) ) + 3 { k 4 - £ ( ^ 2 K i K 2 ) } ]

3 k  1 / 2  1 '

= X X O  * c n( t )  +D„(t) ,

+ Dn( t )

(3.26)
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using Lemmas 11, 12, 13-(b), 14-(b), where

cn{t) =o

Dn( t ) = 0

, ( .1* H *  I3 + |, j „ 1/2/, L  + _Li^)
n 1/2 11 /t/i4*2 .

L JLJi +0 („-1/2(, « + |( I*)e ^) }/-*!- + l« MM +4l]n i/ 2  <■ <■ I ' 2 In 2/!4*2 n 1' 2

+ e "“ ( |t |» ,/2Ai  + t 2A2i + |r |« u 2h 2L) ( L dt2 + ^ l i / l *  ^

+ ( |r |n ^ 2h L + t 2n/i 2i) je  ~~ ^I /2  + 0 (w~1/2(f 6+ |f |3)e  "r ) J
+ ( \t \n ll2h L + t 2n h 2L) \ e  *o  ( « _1/2(r  6+ \t |3)e  ~ )  i- ^ J t 13 

n
2

x( t 2 + l< I * I* I +^ )
n 2h d+2 n 112 

+ ( \t | +1 2n l,2h L + 11 \3nh 2L) E\B2 +B3 \

+ { t 2 + \ t \ in ' l 2h L + t * n h 2L) (E \B l \2 +E\5lb1\)\ . (3.27)

By Holder’s inequality, (A.7) and Lemmas 23-28,
_ _  _ d *2

£15/1 = E\Q V\  <  (£ |(2 |2£ |K |2) 1/2 = ~ )  (3.28)

£ |6 3| = £ |(  T+Q W\ <{E\T+Q\2E\W\2) " 2

- 0 ( ( n " 1/2+n ~lh ~d~2) ( n ~lh ~i ~2) 1/2) . (3.29)

Writing £ |5 2' | 2 s C (  |r ,  |2£ |K |2 +£|T2F |2 + £ |r 3K|2) , Lemmas 23 , 24, 26 and 

Holder’s inequality give

|r ,  |2£ |K |2 + £ |r 3K|2 < | r,  |2£ |K |2 + ( E \ T , |4£ |K |4) l' 2 = 0 ( n -2h -“ -4) ,

and (3.8), (i)’, (iii), Lemma l-(d) and (B.5) give 

£ |T 2F |2 < - % l  £  ( 4L? - J 2 + 8 ^ )  £  Vj |2
f l  i = i  j  =1

= - ^ |n £ | (  4 V * - s 2 + 8K,) Vl |2 + » ( » - l ) £ |( 4 L f  - s 2 + 8K,) V2 |2J 

- o d i - 1) .

Thus

£ |5 2T  = £ |T F |2 = 0 ( n - l +n~2h - 2d-A) . (3.30)

Holder’s inequality, (3.30) and (A.7) yield

E\B{b31 = (E\B{\2E\b312) 1/2 = 0 ( ( n  ~ll2+n Ah ~d~2) ( n ~lh ~d~2) 1/2) . (3.31)
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Using (3.26)-(3.31),

,* *  . E e “ U ~ - ' » - W ) {d(
V '  J-logn 1 t  1

a  [**” | <?„(*) *Dn( t )  = o i n . l , 2 + n -lh -d-l+ n l/2h L)
J -logn t

To estimate (II-2), put = T W  , 5$ = QW  , then noting that 

5 3 = 5 /  + 5 37/ and J? = b x + 5 2 + ( 5 /  + £ 3/7) , we have, using (2.6),

<1 \EeitB- E e it <bi+**+sb - i  t E6"e it(b' ̂ 2+fis) | + |£e |

+ |; | |JB53//e “ (fcl+5*+5s/) |

<£ 11 \2E\B^\2 + \Ee i'Ui+h+tb | + \t | \EB$e | . (3.32)

Writing E \b i '^  < C (  E \Q jV ^  + E\Q2W\2) , Holder’s inequality, (A.7) and 

Lemma 28 give

E\Q2W\2 < ( £ |e 2|6) 1/3(£|PF |3) 2' 3 = 0((n-*h-5d-6) li 3n - 1h - d~2) (3.33)

and

mm1 i2

s  ^ i e e j ^  t < * w  ^  - w  i2

+ ^ l E E p t ^ ) ^  I2

+ 4 £ i e e « 4 4 ) ^  i2 .n  i< j

s 4 E E E E £ K 4 - w i 2
n  i <j <k<i

+ - ^ E E « 2£K < 4 4 ^  I2

+ ■ 4 » 4£ | { ( K 1+K2)H{,-K1-l?l } ^ l j2 
n '

= 0 ( n - 3h - id-*) , (3.34)

where the third inequality uses the Theorem of DFJ, and the equality uses nested 

conditional expectation, Lemmas l-(d), 4, 16, and (A.5). Therefore by (3.33) and 

(3.34),

E \ 6 f  |2 = E\QW\2 = 0 ( n ~ 3h ~3d~4) . (3.35)

To investigate the second term of (3.32), let
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r f , = ( 4 7 ? - * 2 )  + 8 ^  ,  e i ^ V t + V j ) ^  , ( 3 . 3 6 )

then

5, = -

/I / 1 v 1 n  / , _ 1 ( ' )  " O ')  ]

-J (v i  s  s  £ ,  H p •
 ̂ "3 J

r2s . 1 , n - 1 n

6 '
n - 1 ti

Define
1 / v 1 m  n

*s» = *'‘»T 2 'E E ^ ■
\  z  /  i  - 1  ;  = / +1

2m
8 n 1/2 . 2;E( Wg) £  ^

n»*\ 2

8 /n -1  \_I 
n 3' 2\ 2

( n - 2 ) ‘ n

fn - 1 n m

3 / 2

m  ti

V  = 1  7 = 1

m  n  n

i  =1 s  = t t* 1

,E E Ee.yK*+E E E e u vs
\ i  =1 j  =i  +1 s  = 1  i  = 1  j  = / +1 s  = t t* 1

n  m  n  m  0 )  n  ( i )  n

E E a,E ^ ^ +EE E E W Z K
t  =1 Jc< T  J  =1 I = 1  £ = 1  l  = k + l  S = 77*1

77i T i - l  ( i )  n  ( i )  77

E E E EH"^.
i  = 1  k = r w - l  I  = k + 1 j  = m f l  /

3771 2

- 3

=1 5=t +1

1 I n 
■Jn\ 2

+ n * ' 2^

m  T i - l  7» n  m  n

EE I «  + E E E  «*,»*v =i r=i s =r+i i =/?*i r=i $ =7+i
m  71 71-1  77 7 7 -1  77 777 77

E E E E ^ + E E E E 4̂
= 1  k = j  +1 f = l  J  = / +1 =77*1 k = j  + 1  I  = 1  S = F + 1  ;

for ot=1,...,/i-1. Note that b {- b 3mi b 2-Blm and B ^ - B ^  are independent of 

( J f ,  Y j), -  , (Xn, Y J . Putting Bm=(br b 3n) +(B2-B2n) +(kBi~6{n) , and 

using (2.6) repeatedly, we have 

|&  | s  i - i £ |6 2m+5 / J 2 + |£fe I
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♦ I* 1 1 & " '*•*>■> ( 5 ^ + 5 0  |

+ ^E\b3mf + |& "*”{ 1 + i*63m+ |

+ [|r • (3.37)

By elementary inequalities, (ix), Appendix C-(d), (e) and (A.7), the first bracketed 

term is bounded by

which is verified as in equations (13)-(19) of Robinson (1995a), because s _1 is

bounded due to (3.8) and Bm is the sum of and
Vns j =i

( b 3~b i J  +( £ 3-£ 3m) > the latter being independent of (X[,  V,) ,

... , (Xln, Y J . Appendix C-(b), (c) bound the last term in (3.37) by

- % ! r i l  Y C O r 4 . (3.40)

Now, we investigate the third term on the right of (3.32). Using elementary

inequalities, (2.6), (3.35), (A.7), Appendix C-(d), (e), (f),

|EBl'e |

Ct  2{E|52mp +E |6 /m|2 + (E|63J 2)1/2(E|52m|2 +E |53'm|2)1/2}

( n 2h d+2) ^ 2\ ( n 3/ i 2̂ 44) 2 n ( n dh 3<*+6) 2

Kn 2h 2 n 2h 2 j 

The second bracketed term on the right of (3.37) is bounded by

m\t 1 + m\t | t 2nf  
n ll2h n 2h d+2 n h 2n 2h d+2

rt

91



11 \ E \ 5 i ' \  \ b 3 m + B 2 m + 6 Q  + \ E 5 " e/ / -  i t B »

< C \ t  |( E \6 "  
*  c \ t \ h

( nh d+2) 31 2

2) 1/2[(^|*3m|2) 1/2 + (^ l« ?2m|2) 1/2 + (-E|^3m|2) 17 *] + \E6"e
m

n 2h d+2 
C n 112

) ll2H m

h

n 3h 2d+A

IyCOI""5

m
n n  4h 3d+6

1/2

C \t |hm112 + C” 1/2 |Y (0  I'”'5
n ll2( n h d*2) 2 h 2 

Therefore, by (3.32), (3.35), (3.37)-(3.41),
1

(3.41)

\E e “ B\ <, C. t. 1 + Cmt 2'
n 3h 3 d + 4

n 2h
4+2

n 2h
3d +6

+ c

+ - ^ l U i r c o  r 4n ll2h*

+ C/tm1' 2? 2 + Cw1/2|f | | ( n
n l,2( n h d*2) 2 h 2

(3.42)

Now, divide (3.42) by 11 | and integrate over p 2< \t |<AT0 , where we 

partition the range of integration into two parts, p 2< \t \ <Nt and A/j < \t \ <N0 , 

for = min ( e n l/2i nh d+2) .

(i) p 2<\t

We can choose m=[9nlogn f t 2] to satisfy 1 < m < n-l  for large n. For 

this m , since E{ 2VJ  s ) =0 and Var ( 2VJ s ) =1 , as in (2.21),

|Y(* ) I"1-5 ^  exp ( ~ ^ - t  2) ^  Cexp ( -3 logn ) =3 n
By (3.42), (3.43), | Y( O  | < 1 and (ix), we obtain 

r i E e itB
Jp

n
(3.43)

)p2<k\ t \*Nx tc
| dt

In 3h 3d+A Jp2 \̂t \^nhd*2

+ c f nlog n n\og n >
d+2  ̂ 34+6

. n 2h 2 n 2h 2
3 / 2

11 | dt

I
dt

p2-Z\t \<~en1!2 11 |

+ q ( wlog n \ r dt_
\ n 2h d+2J l-®n 1/2 K I

7 .
1 + nlogn ^ ( nlogn ) 2K

n 3 Jp2*\t |<£n1/2[ \t | n ll2h t 2 n h 2\t\
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+ Cnlogn r dt_
n ll2h 3 \ ^ n '121 2

+ C h ( nlogn ) " 2 r d( + C r d[
n ll2( n h d+2) 2 Jp2z\t \^nhd*2 n 5f2h 2Jp2^ IM^«1/2

= o ( n ~1/2 + n~lh ~d~2) . (3.44)

(ii) iv;< |r |< i v 0

For sufficiently large w , there exists rj2€ (0 , 1) such that |y( t )  |< 1 -t72 

since |yv( t )  \ <7]: by assumption (x) and
2v i 2J") 2v j

|Y(<) -Y v (0  1= \E[e e ^  ^  - 1}] | s C £ |— I  - — 1|
y/ns Jn

< C £ | i i l - i ^ |  + C £ | - ^ . - ^ i | = 0 ( - l ^ )  = 0 ( A Llogn ) =o (1 )  ,
y/ns y/n y/n y/n yfn

using (2.6) in the first inequality, (3.8), Lemma l-(d) and (B. 1) in the second equality 

and (ix) in the last equality. We may take m=[-3logn /log  (1  —t|2) ] to 

satisfy l < m < n - l  for sufficiently large n. Since |y( t )  I"*-5 <Cn "3 ,

f \ ^ w
c<: f  \t Idt

ft \<nhd*2logn

f log n + log n y
d*2 ^ Ml

K n 2h 2 n 2h 2
f  . \t I d t\<£ti V2logn

+ C(  k g -”- ) 3/ 2 (  \ t \ 2d t
t l 2H d+2 < |/ |<en V 2logn

t  C f  . 1 „ j g g _  + (JPf f l J l  i, \ ] d t
n 3 J N ^ lt \<.enxl2bgn \t | n l f 2h  n h 2

+ CJog_n r dt
f l 2l 2h ^  \< en 1l 2logn

+ C/t(1og n ) 1,2 f  u
n ^ l 2{ l l h d*2) 2 *Nx<\t \<nhd*2logn

I n ,< I
fife

^  5/ 2 ^  2 |< g n 1/2iogfl

= o (n~112 + n~lh~d~2) (3.45)

by (ix). Therefore, by (3.44) and (3.45),

(II-2) = 0 (72‘1/2 + n - lh -d~2) . □
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3.2 An empirical Edgeworth expansion

The k ; are unknown, but as in Theorem 2, we can construct a feasible, 

empirical Edgeworth expansion

n 1/:1/1 %  - - £ h z -  3 ^ 1 7 2 (( 2z 2+:1) * 3 + 3( z 2+1) M

THEOREM 4 : Under (i)’, (ii), (iii), (iv)’, (v)’, (vi) - (viii), (ix)’ and (x)-(xii),

sup sup \ F ( z ) - F +( z ) \  = o ( n  "1/2 +n ~xh ~d~2 + n 112h L) completely.
V *  v T V =l  ^

PROOF OF THEOREM 4

Straightforward from Theorem 3 and k;- - > k - completely for

i =1, 2, 3, 4 (see the proof of Theorem 2). □

We have seen in Section 2.3 that (i)’, (iv)’, (v)’ and (ix)’ are necessary to

prove k- completely for / =1, 2, 3, 4 . It is obvious that we need these four

assumptions here additional to those assumed in Theorem 3. Eventually the same set 

of assumptions as that in Theorem 2 is sufficient here.

3.3 Discussion

This section discusses the followings regarding the Edgeworth expansions we 

have verified. 3.3.1 shows which correction term(s) is dominant in the expansion 

depending on the dimension of explanatory variables, kernel order and bandwidth 

choice. 3.3.2 proposes optimal bandwidth choices which minimizes the normal 

approximation error. 3.3.3 compares the results here with those in Linton (1996b).
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3.3.1 Comparison of the order of Edgeworth correction terms.

Theorem 3 covers a number of situations, depending on the choice of kernel 

order L, relative to dimension d, and on the rate of decay of the bandwidth h. We 

classify these according to L and then h. A similar classification was used by 

Robinson (1995b) in expansions for Nadaraya-Watson regression estimates allowing 

higher order kernels under heteroscedastic but conditionally normal errors, with 

similar interpretations. Let Ci , * =1, 2, 3, 4 , be finite positive constants.

I < £ < 2 (d+2) .

(a) If w 3/i 2(L**+2) —>0 ,

3

(b) If h ~  Cxn 2<L*+2> ,

F ( z ) = <E>(z) -(C ^K j
Cf

)4>(z)n >{1 + o( 1)} .

(c) If n 3h —► co f

F( z )  = <$(z) - Kt0 ( z ) « 1/2/i L{ 1 + o(  1)} .

II. L = 2(d+2) .

(a) If n ll2h d*2 —0 ,

1
(b) If h ~  Q n 2(d+2) ,

F( z )  = * ( z )  -
V2

{1 + 0 ( 1 ) }

F ( Z ) = O(Z) 1/2/l L{ 1 + 0(  1) } .
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III. L > 2 (d + 2 ) .

<a> If n h L + - ^ 7 T 2  - 0  -

F ( z ) = 3>( z )  + 4 { (  2z 2+ l )  k 3+ 3 ( z  2+ l )  k4 } <ft(*)
3« *'2 {1 + o ( l ) }  •

(b) If h ~  C3n L ,

F (z )  = 4>(z) -  C£k , -
4{( 2z 2+ l )  k 3+ 3 ( z  2+ l )  k 4} <frU)

1/2

(c) If h ~  CAn 2<rf+2> , 

F ( z )  = 0 ( z )  +
k 2z  4{( 2z 2+ l )  k 3+ 3 ( z  2+ l )  k 4 }
/~id +2C4 1/2

( 1 + 0 ( 1) }

( 1 + 0 ( 1 ) }  .

(d) If n ll2h d+2 -*0 ,

F ( z )  = ® (z )  + KlZ4>~ {1 + o ( l ) }  .
n/i

(e) If «/z L -►00 ,
A

F(Z)  = <$(Z) - K j ^ Z ) / !  1/2/l L{ 1 + 0 (  1) } .

In each of the seven cases I(a)-(c), 11(a), 11(c), 111(d), and 111(e), the correction 

term in the expansion is of larger order than n _1/ 2 . In the other four cases it is of 

exact order n ~x,z, but of these the cases 1(b), 11(b), 111(b), and III(c), which 

involve a knife-edge choice of bandwidth, include K j  or k 2  (which depend on the 

kernel K  ) or both in the correction term. It is case 111(a) which corresponds in detail 

to the "parametric” situation in the sense of discussion in Section 2.2. We can also 

derive analogous expressions based on Theorem 1. For example, for (L, d, h)

satisfying 111(a), we have 

F( z )  = <D(z) -
3n 111

(3.46)

3.3.2 Bandwidth selection

For U and related statistics, Hardle, Hart, Marron, and Tsybakov (1992),
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Hardle and Tsybakov (1993), and Powell and Stoker (1996) derived h that are 

optimal in the sense of asymptotically minimizing leading terms in the mean squared 

error (MSE). As seen in (1.49), these optimal h are of form,

h* = C*n~21 {2L+d+2) , 0 < C* < oo, (3.47)

where we are in one of the cases 1(c), 11(c) or 111(e), in each of which the leading

correction term is -Kj0( z  ) n 112h L, so that bias correction has the greatest impact 

in improving the quality of the normal approximation. However, the conventional 

approach of relating choice of h to MSE is not directed towards producing a version 

of the statistic which, in some sense, makes the normal approximation especially 

good, and in the present context the latter goal is relevant. Under (3.47)
2 L - d - 2

F( z )  =<£(z) -C*LKl</>(z)n «“ **>{ l +q( 1)} . (3.48)

Here, the order of the correction term can be as large as n -]/ 2(2̂ +5) when 

L  = (d+3) I 2 (see Assumption (iv)) and tends to n ~1/2 only as L / r f - > o o ,  so

(3.47) is certainly not optimal in the sense of minimizing the error in the normal

approximation. As shown in 1.1.4, the h which minimizes the integrated MSE of 

nonparametric derivative-of-density estimates is of form h + = c +« "1/(2L+rf+2) , for 

0 <  C + <  oo, but this is even larger than (3.47) and thus provides an even larger 

correction term than (3.48). Robinson (1995a) calculated the rate of decay of h that 

minimizes the order of the normal approximation error. This exceeds n -1/ 2 due to 

choosing L<2(d+2)  , and the more detailed information provided by our 

Edgeworth expansion allows us to discuss the choice of h itself. In particular, the 

optimal rate of h here is that in 1(b) as described by Robinson (1995a), but we 

would like to know how to choose C{ in

h = C l n~TÛ  . (3.49)

One possibility is to minimize the maximal deviation from the normal approximation, 

by

C* = aigmin m a x ^ C ^ - - ^ - ) < l > ( z )  \ .
C z e R  C

Because k2 > 0 this equals
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K  Z
argmin max(C L\K1 | + —|^ - )$ (z )

= argmin {C*|ki |+  }<KZ' ( C) )  ,

where

Z*(C) = C‘(+2{(C 2M  + 4K | /C 2‘ii4) 1/ 2 - C z-|K1|}/2K2 .

Using the envelope theorem, the first order condition of minimization with respect

to C is

{l C2- 1 |k , l - l ^ l ^ Z - ( C )  U ( Z * (  C ) ) =0 . (3.50)

Solving (3.50), we derive

* _  ( r f + 2 ) 2K̂  l ^ '
'1

q A  _  ( d + 2 )  2 y l \

L (  + 2 )  k  i

2 ( L hI+2)

(3.51)

The second order condition is easily verified using (3.50) and Z*\ C)  < 0 . Though 

(3.51) is infeasible since it involves unknown Kj and k 2  , we can replace Kj 

and k 2  by their estimates kj and k2 in Section 2.3 to give the feasible version

f ( d +2 ) 2k l  1 ^ '
Cl -

I  L{ L+d+2) Ki

2 ( L * d + 2 )

(3.52)

The estimates kj and k2 , introduced to provide empirical Edgeworth expansions 

(Theorems 2 and 4), are consistent under the conditions stated there, so that Q 4 is 

consistent for the optimal C\ .

One could consider variants of this idea for bandwidth choice, for example 

maximizing with respect to z over some desired proper subset of R , such as 

[z : \z \>a) for some a > 0, perhaps to stress one of the usual critical regions. 

However, the simple forms (3.51) and (3.52) seem appealing. Hall and Sheather 

(1988) (see also Hall, 1992, p.321) used an Edgeworth expansion for studentized 

sample quantiles, especially the median, to determine a choice of the bandwidth 

employed in the studentization. In their problem, the basic n 112 - consistent statistic 

of interest, the sample quantile, does not involve a bandwidth. In our case, on the 

other hand, though we also consider studentization involving a bandwidth, it is the
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bandwidth in the basic statistic of interest, the averaged derivative, that is to be 

chosen using the Edgeworth expansion. Moreover, unlike us, Hall and Sheather 

(1988) did not maximize over the argument z, but simply balanced the mean and 

variance terms of the expansion for given z, so that their data-dependent bandwidth 

is z-dependent (and thus a ’local’ bandwidth). It might be anticipated that the step of 

maximizing over z, which is incorporated in our procedure, would lead to a more 

complicated, perhaps only implicitly-defined, formula for the optimal C, and the 

emergence nevertheless of the simple closed form (3.51) is of some interest. We 

believe our ’global’ approach could be employed in choosing the bandwidth in other 

semiparametric and nonparametric problems involving smoothing.

3.3.3 Comparison of the results with Linton (1996b)

We now precisely compare Theorems 1-4 with the results in Linton (1996b). 

The statistics considered here and in Linton are quite similar in the sense that both 

estimators are written in the form of standard U statistics, of order two here and of 

order up to three in Linton, and both established valid Edgeworth expansions. 

However, the two are different in the regularity conditions as follows. In order for 

the comparison, we rewrite our problem in Linton’s setup. The objective function is

? , / ' ( * ) )  = jfl -  Y J ( X i ) }  {jl -  Y J { X i ) }  .

1. Linton did not handle the bias explicitly thinking of mean subtracted U statistics 

claiming that bias is deterministic and can be handled analytically. However, we show 

in the above that the bias term affects an optimal bandwidth selection which 

minimizes normal approximation error. Therefore we should incorporate the bias 

effect explicitly into the Edgeworth expansions in the current problem.

2. Linton’s regularity conditions require a better than n 1/4 - consistent
~/ ~/ t 

estimate /  ( x)  of f ' ( x )  . Since f  ( x )  is y/nh d+1 -consistentfor f  \ x )  ,
- — ! — +€

h =0( n 2(d*2) ) , where e>0,  is necessary, which corresponds to the cases 1(c),
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11(c) or 111(a), (b), (e) depending on the values of e, L  and d. The bias related term 

has the primary effect on the expansion in four cases out of the five so that this 

condition on the order of derivatives estimation entails explicit treatment of the bias 

in our problem.

3. Linton worked with a fixed design case unlike us. It could be extended to 

conditional arguments, but we would need additional conditions for conditional 

validity of the Edgeworth or asymptotic expansions.

4. Linton’s Assumption B4(2) assumes the orthogonality condition

where Y ( £ , / ' )  = { » - Y f  \ X )  V { £ - Y f  \ X ) } ,
I d M /  J

which ensures that there is no "information loss" resulting from estimation 

of  f  \ x )  , but this is not satisfied unless E{ Y)  =E{G((3TX ) } =0 in the current 

problem.

5. Linton’s Theorem 4.1 looks to validate Edgeworth expansion with 

error o ( n -1) , however as he addresses in the note 4, what he established was the 

validity of an order n _1/ 2 Edgeworth expansion. In view of the proof of Theorem

4.1 of Linton, we see that Assumption D4 is very crucial and high level. He follows 

the proof of Callaert, Janssen and Veraverbeke (1981) or Bickel, Gotze and van Zwet

(1986), where one of the main points is to find low level conditions under which D4
/

is satisfied. We actually even do not know D4 is consistent with the other 

assumptions in general. In this sense both Linton and this work are concerned with 

Edgeworth expansions of degree one.

6. Linton was more concerned with the situation where the U statistic type 

semiparametric estimators have qualitatively the same Edgeworth expansion as that 

of standard U statistics obtained in Callaert et. al. (1981) and Bickel et.al. (1986), 

namely the correction terms are of exactly order n ' 1/2 and n _1 . What we have 

established in the previous chapters are more concerned with how it can be different 

from standard U statistics due to the first stage nonparametric density estimates,
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namely how Edgeworth correction terms of larger-than- n _1/ 2 can appear.

7. Like Theorems 1 and 2 in the previous chapters, Linton only investigated the 

statistic normalized by its asymptotic variance in which sense it is infeasible, however 

we also validate Edgeworth expansions of a studentized statistic in Theorem 3 and 4, 

amongst the latter is fully feasible so that we can apply the result for higher order 

inference of empirical data.
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Chapter 4

Bootstrap Distribution for Averaged Derivatives

Bootstrapping is one of the resampling methods intensively studied lately. 

Given asymptotically normally distributed statistics, it has been shown in some cases 

that the bootstrap distribution can approximate the exact distribution as good as its 

Edgeworth expansion up to certain order and thus better than the normal distribution. 

We review established results on bootstrap distribution in Section 4.1. Section 4.2 

compares bootstrap distribution of the density-weighted AD with its exact distribution 

for normalized case, where we prove the former approximate the latter as good as the 

Edgeworth expansions in Theorems 1 and 2 and so better than the normal 

distribution. This property is useful to improve the approximation to the exact 

distribution of the estimator. This is however infeasible due to the unstudentization. 

We further conjecture the possibility of analogous property for studentized statistics.

4.1 Bootstrap Distribution

Quenouille (1949, 1956) and Tukey (1958) consider nonparametric methods 

to estimate bias and variance of estimators by resampling called jackknife method. 

Efron (1979) proposes a different resampling principle called the bootstrap method 

for the same purpose. Efron (1982), Efron and Tibshirani (1993) and Hall (1992, 

Chapter 1) gives good summary of the jackknife and bootstrap methods. We explain 

the principles of bootstrap method following Hall’s account. Suppose we have an iid 

sample X i , i =1, 2 , . . . , «  of a variate X  with distribution function F0 and would 

like to estimate a parameter 0o = O(Fo) . Let F : be the empirical distribution 

function of the sample, then 6 l =6(Fl) is a sensible estimator of 0O . We would 

like to know the properties of 0 2 , for example, the bias EF { 9 1- 0 o) where EF
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indicates expectation with respect to distribution function F. The core idea of 

bootstrap method is that we may infer some aspects of ( F 0, F {) from ( F x, F2) 

where F2 is the empirical distribution function of a sample drawn form F x . For 

instance, EFq[ 9 ( F 1) - 9 ( F0) ] , the true bias of 6 ( F{) , can be estimated by 

b =Ef [ 0 ( F2) - 9 ( F x)] . Then 9 { -b  is a bias reduced estimator of 90 and 

typically the first order bias of 0{ n _1) is removed. This principle can be used to 

estimate the confidence interval and other quantities related to the distribution 

of .

Suppose Q(FX) is asymptotically normally distributed. We can expect that 

H2( x ) =P(9(  F2) <x \XXi . . .  y Xn) , called the bootstrap distribution of 9 ( F {) , 

estimates Hx{x)  =P{ 9{ Fl) <x)  , the distribution function of 9 ( F l) . Its 

asymptotic properties have been studied and it is shown that H ( x )  not only 

converges to a normal distribution but also approximates Hx( x)  at least as well as 

Edgeworth expansions of 9{ Fl) in some cases. Bickel and Freedman (1981) 

consider the sample average. Supposing Xit i =1, 2, . . . is an iid sample of d 

dimensional random variate X  and { Xj  X^} is its bootstrap sample of size
1 * 1m, they prove the conditional distribution function of m1/2(

j  =1 n  i =1

given the original sample converges to a d dimensional normal distribution with mean 

zero as n and m tends to infinity. They also extends the result to von Mises 

functionals. Singh (1981) proves that the bootstrap distribution of the suitably 

normalized sample average is at least as good as its one term Edgeworth expansion 

uniformly when d=l.  Beran (1982) proves both the bootstrap distribution and one 

term Edgeworth expansion of asymptotically normally distributed real valued statistics 

constructed from an iid sample with unknown distribution function F  are optimal in 

an asymptotically minimax sense among possible estimates of its sampling distribution 

when d - 1. Beran (1984) shows the asymptotic optimality of the bootstrap distribution 

and the jackknife Edgeworth expansion estimate where the unknown quantities in the 

Edgeworth expansion are replaced by their jackknife estimates when d — 1. Babu and
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Singh (1984) show the bootstrap distribution and the Edgeworth expansion of 

functions of sample average of multivariate iid observations are asymptotically 

equivalent up to the term of order n~sf2+1 under the existence of s-th absolute 

moment. Bhattacharya and Qumsiyeh (1989) prove the bootstrap distribution of 

studentized statistics constructed from iid random vector can approximate even better 

than the two term empirical Edgeworth expansion under certain moment conditions. 

Helmers (1991) proves the asymptotic equivalence of bootstrap distribution and one 

term Edgeworth expansion of studentized £/-statistics.

4.2 Bootstrap distribution of U

Section 4.1 reviews that bootstrap distribution of some asymptotically normally 

distributed statistics attains the same precision of approximation to their exact 

distribution as their Edgeworth expansions of certain order. Since U is also 

asymptotically normally distributed, it naturally raises a question if the distribution 

of U also has the same property. We show in 4.2.1 that bootstrap distribution of U 

can uniformly approximate F(z) asymptotically as good as the Edgeworth expansions 

shown in Theorems 1 and 2 and thus it gives a better approximation than the normal. 

Theorem 5 below, the main result of this chapter, describes this situation. We also 

state a possibility of bootstrap distribution for the studentized statistics analogous to 

Theorem 5 in 4.2.2. We report Mote Carlo results on bootstrap and Edgeworth 

approximation for both unstudentized and studentized statistics based on a Tobit 

model in Chapter 5.

4.2.1 Unstudentized statistics

We first give some notations and definitions to describe the theorem. We 

consider bootstrapped U based on the bootstrap sample (X*T, Y *), i—1,... ,n,



where

vs  = Kij { Y ' -Y f )  h , g f  - K'{ .

Define bootstrap distribution of Z, F * ( z ) = P*(Z* < z ) ,

where for a d  * 1 vector v

z* = B 1/ W ( I / * - j I * )  ,

ct*2 =J5*[2vT( Ui - E ’U’) ] 2 ,

l f - E \ V S \ f )  = ± j t h - d-tK ' ( £ j H ) ( Y ; - Y j ) .

vTiI* = £*vTt/*-A V k .  = H ^ - v TU - h  V ic ,1 n 1

where /**(•) is the conditional probability measure given ( X f ,  Y j), — , 

(X^, Yn) , E*( •) is the conditional expectation given Yn)

and £*( -|| -  , i ;> = £*{ -|( AT, y ; ) , i = / 1# -  , i ,} . Note

= £  £ ‘( ^ )  - A f t #  (5 7 -5 7 )}
\ z  I i =1 j  =i +1

™ - v  -  * r u  ■

We will prove the following theorem.

THEOREM 5

Under (i)", (ii), (iii), (iv)’, (v )\ (vi)’, (vii), (viii), (ix)’ and (x)-(xii), 

as n-+ oo,

swp jwp |F (z) -F * (z )  | = o ( n ~ 112+n~lh~d~2 + n ll2h L) a.s.
v; vTv = 1 Z^R

In view of the theorem of Robinson (1995a) and Theorems 2 and 5, we easily 

see that F*(z) and F ( z )  approximate F(z) equally well and better than $(z). 

Therefore we could modify interval estimates or critical region of a test for the
so

parameters of interest based on normal approximation using F*(z) or F ( z )  . We
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have described how to do it using Edgeworth expansions in 1.3.1, where we have 

also mentioned the problem of studentization. When we would like to implement, say, 

a modified interval estimation based on the approximation to F(z) by F*(z) based on 

Theorem 5, we have two problems. Firstly, we are concerned with the unstudentized 

statistics Z so that interval estimate based on it involves the unknown variance. 

Secondly, F*(z) is unknown so that we need to estimate it. One way of the estimation 

is that we resample repeatedly from the original sample and calculate U* from each 

resample and construct an empirical distribution based on the accumulated U* (see

5.1.2 for detail). In order for empirical applications, we need to establish a theprem 

with respect to the studentized statistics Z  . We state a conjecture for bootstrap 

distribution of Z  in the next subsection. We are currently working on the bootstrap
A

distribution of Z  to analytically prove a studentized version of Theorem 5, where we 

have found Theorem 5 plays an important role as Theorem 1 does in the proof of 

Theorem 3. Therefore, Theorem 5 is still worth establishing despite its infeasibility, 

in addition that this itself is of theoretical interest.

We need somehow stronger assumptions than the previous theorems. (i),f is 

a moment condition which is required for a sufficiently fast convergence rate of 

a*2 (Lemma 34-(d)). (iv)’ and (v)’ are necessary for k 1 -* k 1 which are assumed 

in Theorem 2 and 4 also, (vi)’ and (ix)’ are necessary in the proof of Lemma 36 and 

Lemma 34-(e) respectively.

PROOF OF THEOREM 5 

It suffices to show

sup sup \P*(Z*<z) - F ( z )  | = o ( n  “1/2 +n ~lh ~d~2 + n l/2h L) a.s.
V; vTv=1 Ẑ R

■ 112



in view of Theorem 1.

The qualification "almost surely" or "almost surely for n sufficiently large" 

will be omitted. Let

V i  = o ' - W ( t f - E ' U ' )  , Wj" = -E'U') - V ; - V ‘ ,

A* = n 112h l k, .

Z* can be decomposed as follows.

2 * ■ + n ' ' t 2 r x  L  K  + A*n 1 i =1 \ * I i =1 j =,• +i
V* + W* + A* .

Define

X '( t )  = E ‘ { e i , z ’) = c " A’£ * [ c i,( f”+ŝ ]  . (4.1)

By Esseen’s smoothing lemma,

~ r n ll2logn X ( O  “X( O  /|i7'(z)-F(z) s f  **“ |----------   + O
z  J - n 11 lorn Ilo g n

,Pl x‘(0-x(0 , ,.(n
J-/>2 t J/>2S|f |</i1/2fc>g/i f

X(<)
I

I* 1^2
+ f I + o ( « “1/2)

= (1-3) + (H-3) + (III-3) +  o ( n ' 112) , (4.2)

where p 2=m*n 1/2> n ) • * can be chosen such that 

0< e£e*  = ( £ * |2 K |3) ‘‘ <{£*(2K!*2) } '3'M  

almost surely for sufficiently large n by Jensen’s inequality and Lemma 34-(a). It was 

shown in the proof of Theorem 1 that

(III-3) = o { n - ll2+n-lh~d-2+ nll2h L) . (4.3)

To evaluate (1-3), we proceed by representing %*( t ) as x( O  plus a

remainder. Since A *  - n  l,2h Lk l = n112h l k 1 + o  ( n 112h L )  due to a.s .
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(see the proof of Theorem 2), using (2.6),

= 1 + i f  A*+ («*■'A* - l  -  i t  A*) = 1  + i t  A* + 0{( t A*)2) 

= 1 +i t n ll2h LKl +o ( n ll2h L( \t \+t 2) ) ,

and

£ •  {e n = £ '  e ‘ ,p*/l +i t W'+ - | (  i t W ’) 2l

e i ,w ' - l  - i t  W*-  1

(4.4)

+ £ * i tV

= E'

i  a t w ’) A

+ 0 ( £ * |« ) f* |3) . (4.5)e ' ^ h + i t W ^ ^ i t W ' )  2l 

Writing w-( t ) = e r' ‘" and y '( «)=£*[ w/( t ) ] ,

£ . ( e i,K*) = y*(r)»

E ' i e ^ ^ W ' )  = w 1/2y*(t ) " ' 2̂ *[W 2V (O m '2*(0]

= M  i i )  +o (( M +_ ^ _ ) r ^ ) } ( 4 . 7 )

(4.6)

by Lemma 38, and

E ' (  e >■'V' W  2 ) = «(" )’2( 2 ){Y*(*) }"'2£‘I V (  0 *2( 0 ]

+ 6 "(2 )"*( 3 ){Y'( 1 ] }B"3£*[-W>2̂ 'VVl’( *) H'2(O»i*( O ]

+ 6 "(2 )"*( 4 ){Y‘( ' ) ^ W' ( t ) w^ t ) ] 2

=  -l-{Y *(r )}',‘2{/i-i -2K2+o(/i-i -2)+ o ( |t  |n ~^h ^d 2)\Hr 1

+ {y*(t)}“‘3o ( | /  I3n ~ h ~ l d~2)

+ {y’( t  )}"~4o ( t  4n~1+t 6n~2h ld 2+t >n~3h ld 2) (4.8) 

by Lemmas 39-41. Since e can be chosen arbitrarily small, for 11 \< e n 1/2 and 

/n=0,l,2,3,4,

- i l  f E*( 2V? )3 1 ( -i3 \
{Y*(t ) }n~m = e Ml + -------—— (i  t ) 3\+ o n~l/2( \t \3+t 6) e  4

6 n 112 V

- i l  l , E( 2 v j )3
= e 2 (1 +

6ti '12

t2 \
( 1 1) 3f + o n "1/2( \t \3+t 6) e 4 (4.9)
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The first equality is similarly proved as Theorem 1, Section 41 of Gnedenko and

Kolmogorov (1954) using Lemma 34-(a), (e), while the second equality is because

3 n
£ * ( 2 K ) 3 = - A j E ( t f E v ^  - h ± ^ 8 E ( v l )  

ncr 1=1 n p i n  n 4r  t^\

by Lemma 34-(d) and (2.29). By (4.1), (4.4)-(4.9), and Lemma 42,

X * ( t )  = 1 + i t  n  112h  l Kj + 0 {  t 2n h  2L)

e "r | l +- ^ 7 - ( z O  3| + <? w _1/2( M 3+r 6) e ~

I + * m . E ( W 12VlV2) 2 *Ai//I

where

(4.10)

AH = O Ll!
u i d*1 i d+2 n 2h d+2 4rf+2 \nh  3 n 2h 3 « 2/i 3

+ 1 L  t 10 ,  * 8 + M 3 )  + o i _ i i _ )

"  n %h *dt2 n 2h * dt2 ( nh dtl) ’ j nA‘'*2

f * 2+r 10 by (ix)’.
n h d+2

Expanding the right hand side of (4.10),

X * ( 0  = e  ~ 2 j l  + i t  n  1/2h  + t ) 2

+ o

, 4 £ (v 1V l2 E (W f2K1K2) , ^ 3  
3 n 1/2 C ; I

T7Te 4 ( lr !3 + lf !U) ) + ° [ ^ e ~ 4 ( I* !3+r 4)

+ O n h 2L\t \2e + O 4 +e 2 ) ( 1  +t *) . (4.11)

Lemmas 13 and 14(b) give £( v i ) + 3E( Wl2 Vl V2) = k 3 + 3 k 4+o (1 ) so that the first
~ t 2

term on the right of (4.11) is %(t )  + o  ( e 2 n _1/ 2 |f |3) . Thus
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a-3) = r  ij~p
X * ( 0 - X ( 0

|<f* = o ( n ' ll2+n lh d 2+nll2h L) . (4 .12)

and for m —1,

-  9
To estimate (II-3), define F*(m) = —77̂ -Y ' V? for m = 1, ... , n,

n 1' 2 r r f

I f  *( m) = n

Note that V \ n ) = F* and W \ n - 1) = IF*. Using (2.6),

\ X * ( t )  \ =  \ e i t ^ E * e i t ^ +^ \ < \ E * e i t ^ + ^

< k ' e  ! +i f f r .  + (S  E*e ' ' »Ji  + i t W '  ( 7») + m )2

+ 0(|* \* E * \ W * ( m )  |3)

S |E*e ir |( ,-*(«'--«'-(m))l| + |, | | £ . g |

+ t- l \ E , e i , ^ < w'-9 ' ^ ^ W \ m ) 2\ + 0 ( |*  |3 £ ‘ |» " (m )  |3) .(4.13) 

By (iii) and Lemma 35, the first term on the right of (4.13) can be bounded by

\E * e  i t V ' ( m )  E * e  / M ( ^ ( m ) ) +( ^ * ( m ) ) } |

Using (iii), Lemmas 35, 37-(a), and (A.5), the second term on the right of (4.13) can 

be bounded by 11 | times

Similarly to the derivation of (4.15), the third term on the right of (4.13) other 

than t 2I 2 can be bounded as follows using (iii), Lemmas 35, 37 and (A.5).

< |E * e itp '(m)iV*(m)2\

(4.14)

„  1/ 2In\E*{ei t9^ m)W \ m ) } \  < |y * (0  |

< e | Y* (0  I (4.15)

< |Y *(0 r 2( rn « » (2 )" 2£ m * a)

+ |Y*(r) \m'3{2nin-l)n+4(m-l) mn}n^ ) 22s*|Wf2*Wf3 1
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+ 6 |y*( f ) I” 4 ” * m-1) ( ^ 2) (m ~3) «/ ”  r 2£" |Wf21&* 1^41

s c | |Y * ( < )  r 2- ^  + |Y *(0 \ ^ M j L ± 2 p L + l r* ( r ) |m- 4 m4
n 3/z 2

m2 m4
S C | y - « ) r |  (4.1«)

because |y*( t )  | <1. Substituting (4.14)-(4.16) into (4.13), with |y*( t ) |<1 yields

ix * (o  i s  iv * (o  r + c [iY * (o  r - ^ U i *  i

+ C|Y*(0 Im-4< .+ •

k n 1h d*1 nh 2

+ 0( 11 |3£*|ii"("») |3)

m + _ " £ _  + _ '« ^  , 2 
n zh 2 n 3h 2 \

m -4
i + ( ^ t t ^ )  < 22« + ( - y - + 4 ^ - )  « * + ^n 2h d+2 nh 2 n 3/ 2/i n 2/ i 2 « 3h 2

+ 0(\t \ * E ' \W \m )  |3) . (4.17)

Now we evaluate (II-3), partitioning its range of integration into two parts,

namely p 2-l* |^e*w1/2 and e*nll2<\t |< n 1/2log n .

(i) For p 2<\t \<€*n*„ 1/2

i t -2-V?
|Y*(<) | = |E ' e  ^  |

\E'[e "  ^ -1  - i t  J L  ( i t  - 1 ^ ) 2
1 2 ! ^

+ |jb*{i + i < ^ - v { l = y \ - ) 2) |
y / Z  ^  * y / Z

l + l i l l
I n 6 n 3/2

e *|2*7|:

^  1 - , since If I <e *n112 = ” l/2
3 n  1 1  E*\2Vy |3

£ e x p  •
(4.18)

where the second inequality uses (2.6) and Lemma 34-(a). Substituting (4.18) in

(4.17) and applying Lemma 42,
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+ 0

1 + {( .1 . + —L) t Am +
I n 2h d+1 n h 2 I

I* 1 + _ L L W  + i J g £
n 3l2h n 2h 2 I n 3/ i2

(4.19)

We may take m=[9nlogn f t 2] since l < m < w - l  holds for p 2<\t \<e*n1/2 

and sufficiently large «. Because m >( 9nlogn / 1 2) -1 ,

exp [ - =  exp ( exp ( * 2 )

<Cexp ( -3logn ) < —-
n

(4.20)

for |< 6 *n 112 . Substituting (4.20) into (4.19) using m<9nlogn f t  2 , we

derive

I x * ( 0 | s 4n i
1+r 1 - 1 ) t 2 nl°Xn J J L L  + r 2 1 n 2(logn )

n 2h d+1 n h 2 t 2 \ n 3,2h n 2h 2\ t 4
f 2 n 4(logn ) 4

n 3h
+ O \  logn \ 3/ 2  ̂

k rf+2

< C [ \ ± logn  ̂ logn lom 3/  2I x (fofflt ) 2 1 
\  n 3 n 4h d+1 n 3h 2 n h d+2 ) n 3h 2 t 2

 ̂ ( logn ) 2 1  ̂ (/(9£tt ) 4 1
« 5/2/i \t |3 « 2/ i2 £ 6

i=cfrlo g n  ) 312 + ( lo g n  ) 2  1 + ( lo g n  ) 2 1 - ( lo g n  ) 4 1 }
\  n h d+2 n 3h 2 t 2 n 5l2h \t |3 n 2h 2 t 6J

Therefore, dropping the range of integration p 2-V  I —C n 1/2 on the right of the

second inequality,

f  I J i l l
it , —  \dt * [  p 2<\t \Ze*n ll 2 t

log n ]3, 2 j d t

I X( t )
p 2<\t \< C n ll 2 t

| dt

< CU  Aus '* > 3/2 j «*» + ( log a)  f ^
« /irf+2 J \t \ n 3h 2 J \t |3

(log n ) 2 r dt + (log n ) 4 r dt
n 5>2h  ̂ t 4 rt^-h^ J 1/ I2n  2h
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g C f (log n ) 5/2 + _J_
\  ( n/i^+2) 3/2 n 3/ i2 n 5,2h log n n 2h 2 ( log «) 2J

= o (n ~ 112 +n~lh ~d~2) (4.21)

by assumption (ix)*.

(ii) For €*n1/2<|f |< « 1/2log « ,  noting c7_1vT(£^ -E&) = +Vi +Vj ,

y*(0 -**(« %«) = l j >  M ^ K̂ nŶ - EV}
n Jil

e

fl 2> 1a i/ . n 2ito-  - g y  1 n 2i < a y  _ . . n

4 £ ' ~ '  ^

71 2> t a VL
+ l y e ^  k 

n f a

+*5> +̂ ‘vT(££/-£*tn }

4 ^ 7 +f y) ^ ' V (  ££/-£•£/*)}
n j=l

lit
Writing yv( t )  =E(e ^  l) as in the proof of Theorem 1, using (2.6) and 

\t | <n 17 2log n , we have
i " JtiiKv 1 *

z - .  *g  y/na

| Y * ( n - v , ( O l ^ | ^ E e ^  ') |
r\ i n n 2LL°-v.

/I

+ vT(EU-E*U*) I x i i ) ?

+ f  |  2° l° ^  E ( ^  +^ )  |  + vT(E/7-^*t/*) J2 . (4.22)

The first term on the right of (4.22) is bounded by
1 n h±2-Vk 2±Lvu 1 "  — Vu — v t| i | - ( e ^ -  _e v - * ) | + | i g (e V . * _ e V»*)|

+ I ^ E { e  ^  ^  ) ) l  • (4-23)

The first term of (4.23) is smaller than

- l K - V i y j  + l )  = o (  KJ -)  =o ( ( log n ) ’2)
■Jn a  ' »fc( ' * '  y^nflog n)

by (2.6), SLLN with (i)", and Lemmas l-(d), 34-(d) for \t \ <n 1/2log n . The

second term of (4.23) is smaller than
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£ ^ ^ £ ( 1 7 * 1  + 1) = o ( n  1,2/ i L) 
n fci V n  n  k=i

by (2.6), (B.l), SLLN with (i)", and Lemma l-(d) for 11 \ <n 1/2log n . Theorem 

2.6 of Feuerverger and Mureika (1977) applies to show the last term of (4.23) 

converges to zero for 11 \ <n 1/2log n , thus (4.23) converges to zero. The second 

term of (4.22) converges to zero because

£ | ^ - E E e +vj ) I2n k^l
= ( !°g » ) 2^ £ ( ( ^  +Vj)2H y k +y k)

+e «'<*W5>( +J/.) ( ^  +F*) +̂ )  ( +Vk) }

+ smaller order terms with k=j  

«-C( log2 n) 2£ | ^ 2 +t/2|2 < C(log n ) 2 = 0 ( n  -1(log w) -4} _
/I /I fl

where the first equality uses Lemma l-(c), the second inequality uses (A.5) and 

Lemma l-(d), while the last equality uses (ix)’. The third and last terms of (4.22) 

converge to zero because of Lemma 34-(c), (d) and
n 2 ito y  n 2/ to y

l - V e  | < J L y  \e 1 = 1 .

The fourth term of (4.22) converges to zero because of Lemma 34-(d) and

 ̂ J C |-i- C ) |  (see Pro°f °f Lemma 34-(d)).

Therefore

|Y*(0 - YvCO I ”*0 a.s. 

so that there exists a constant rj3e ( 0 , 1 )  such that

|Y* ( 0  I <1 -773 . (4.24)

since | yv( O  I < 1 ~ h  for some ( 0 , 1 )  (see the proof of Theorem 1). We can

choose m such that

3 lognm=
l0g ( l - , 3 )  ( 4 - 2 5 )

since 1 <m<n - 1 for sufficiently large n. Substituting (4.24) and (4.25) in (4.17)
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and applying Lemma 42 bounds |x*( t )  | by

3 logn
3  lo g n

n 2h d+2 nh 2 log ( 1  -773)

JL 3 logn 3  lo g n

n 3l2h n 2h 2\ ( l o g  ( 1  -773) j n 3/ i 2 [ log ( 1  - 773)

+ O logn 3 / 2

n 2h rf+2log ( 1  -773)
(4.26)

_  3 lo g n

Because (1 - t j3) 108 (1-7,3* -  n 3 , dividing (4.26) by 11 | and integrating over the

dt
i \ t  \ £ n l l 2 l o g n  t

range €*n112 <|t \ < n 112log n , we obtain

+ i  .fogL_) 4 —L —n (logn ) 2 + n v t (logn ) \ J % P — ) 3i 2 
n* n ih 2 n 2h d+2

= o (n ~ 112+n~lh~d~2) (4.27)

by assumption (ix)’. Thus by (4.21) and (4.27),

(II-3) = o (n ~ 112+n~lh~d~2 + n ll2h L) . (4.28)

Substituting (4.3), (4.12) and (4-28) into (4.2) gives the required result. □

4.2.2. Studentized statistics

Theorem 5 proves that the bootstrap distribution F*(z)  can approximate 

F ( z ) as good as the Edgeworth expansions in Theorems 1 and 2. It is theoretically 

an interesting result, however it does not suit for empirical use. We would like to 

obtain an equivalent result for studentized statistics Z  analyzed in Chapter 3 for the 

sake of practical application. In view of the above Theorems, we can naturally
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conjecture the following.

Let F \ z )  = P \ Z * < z )  , (4.29)

where for a d* 1 vector v

z *  = , y J = v’ S v  ,

CONJECTURE

Under certain conditions including assumptions in Theorem 5, we conjecture 

sup sup \F(z) -F * (z )  | = o (n ~ 112 +n~lh ~d~2 + n l,1h L) a.s. (4.30)
VI VT V= 1 2 € R

The proof for this is currently under way and it seems to entail existence of higher 

order moments than in Theorem 5. Theorem 5 seems to play an important role to 

establish (4.30) as Theorem 1 does in the proof of Theorem 3. We give Monte Carlo 

results based on (4.30) as well as Theorems 1-5 in the next chapter, which give an 

encouraging support to this conjecture. It is interesting that we found the bootstrap 

distribution seems to be even better than the Edgeworth expansions in approximating 

the exact distribution in the simulation study.

122



Chapter 5

A Monte Carlo Study 1

This chapter presents results from a Monte Carlo study for a Tobit model 

based on the Theorems shown in the previous chapters. The model and kernel choice 

of the estimator are described in Section 5.1. We compare empirical distributions of 

the density-weighted AD for various choices of sample size, bandwidth and kernel 

order with the normal distribution, the empirical and theoretical Edgeworth 

expansions in Section 5.2 as well as the bootstrap distributions in Section 5.3. We 

compare them for both unstudentized and studentized statistics based on Theorems 1-5 

and the Conjecture in Chapter 4. Roughly speaking, we find that the empirical 

Edgeworth expansion and bootstrap distribution approximate the empirical distribution 

quite well, and better than the normal in many cases. We also implement confidence 

interval estimation using Comish-Fisher expansion explained in 1.3.1 (see (1.86)), 

where we find naturally that the interval estimate is good when the corresponding 

Edgeworth expansion performs well.

5.1 Model and estimator

We report results from a Monte Carlo study for the Tobit model 

Yi = ( p TXi + e i ) I  ( fiTXi + €f >0) where Xt =(X u , X2i) T is bivariate. We took 

( Xf ,  6 t ) — N ( 0 , I 3) sothat g ( x ) = p Tx  {1 -<£( -pTx ) } +<£( ~PTx )  and jl = 

-pi  ( Sir) . We took p  =( 1, 1 ) There is no closed form formula for 

2 ,  k 2 ,  k 3 ,  k 4  , the first being needed in the expansions of Theorems 1 and 2,

and the last four in the expansions of Theorems 1 and 3, so they were calculated

1 Some figures in this chapter are included in Nishiyama and Robinson (2000) and 
discussed there.
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by simulation, with 100,000 replications, to be

2 = 10-5
'887 458 ' 
458 887 , , Kj =0. 397 , k 2 = 1. 724 , k 3 = -0. 144 , k 4 = -0. 266 ,

io5
for example 22 = 10"5E 4{\ i(X i9 Y{) -p} {p(AJ, Yj) - \ i }T where ( X [ , Y, ) ,

i  =1

i =1, .  . . , 105 are generated independently and identically following the above 

Tobit model. We employed three values of L, L = 4, 8 and 10 which respectively 

correspond to the cases I, II and III in Section 3,3 (and easily satisfy assumptions 

(iv), (iv)\ (v) and (v)’), using normal density-based multiplicative L-th order bivariate 

kernel functions proposed in Robinson (1988b), K ( u l , u 2) =KL( u {)KL( u 2) , 

where
(L-2)/2

Kd u '> = S  CjU2>${u) ,
j  =0

such that
( L - 2 ) / 2

E  c j m 2 ( i * j ) = s i 0 >  f =0, 1, -  , ( L - 2 ) / 2  , (5.1)
j  =0

m 2j = j u 2j<f>(u)du , 

and 8i0 is Kronecker’s delta. The values of c ■ calculated from these simultaneous 

equations are in Table 5.1. We chose H u l, u 2) = 4>( u {) $( u 2) in estimation 

of Kj in the empirical Edgeworth expansions. We considered inference on the two 

elements of jl individually, but since the results for these are very similar we 

report them for the first only.

TABLE 5.1 

L-th order kernel functions.

L Co Cl c 2 C 3 C4

4 1.5 -0.5 - -

8 2.185 -2.185 0.4375 -0.02083
10 1.924 -1.347 0.1230 0.00698 -0.000489
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5.2 Edgeworth approximation

Figures 1-21 compare approximations to the distribution of the unstudentized 

statistic ( ^ i ) - f i ( i ) ) / ^ » where Z7(1) and p (1) are the first elements 

of U, p , and a 2 =0.00887 . We used h = 1, 0.8, 0.6 and 0.4 for n = 100, 

and h —0.8, 0.6 and 0.4 for n=400, with 600 replications, and we set b=1.2h 

following the discussion in Section 2.1. U and kf involved in Figures 1-7, 8-14, and 

15-21 used respectively kernel functions of orders L —4, 8, and 10; see (5.1) and 

Table 5.1. The solid line is the empirical distribution function of Z , while the dotted, 

broken, and broken-and-dotted lines are the standard normal distribution function , 

the empirical Edgeworth expansion (Theorem 2), and the theoretical Edgeworth 

expansion (Theorem 1) respectively. The empirical Edgeworth correction results from 

averaging ky across 600 replications for each sample size, bandwidth choice and 

kernel order. The two empirical Edgeworth expansions in each Figure involve 

respectively all three correction terms (shorter broken line) and one correction term 

of order n _1/2 (longer broken line) in (2.27), which corresponds to the feasible 

version of (3.46). We examine the "one-term” case because this is the one we would 

hope to be able to recommend, since it involves just the "parametric" 

n ~1/2 correction and, depending only on k 3  and k 4  but not on k 2 and k 2  , is 

free of K.

We first compare the "three-term" empirical Edgeworth expansion (EE3) with 

the empirical distribution (ED) and the normal approximation (N), finding a range of 

n and h where EE3 well approximates ED, and better than N, for example, see 

Figures 1, 2, 3, and 4. It emerges that /z=1.0 (Figure 1) is too large in that neither 

N nor EE3 performs well, but when h —0.8 or 0.6 (Figures 2, 3) EE3 is satisfactory, 

and better than N, whereas when /*=0.4 (Figure 4), the opposite outcome is 

observed. It is not surprising that N sometimes outperforms EE3 since n is finite (see 

Hall (1992), p.45) and the k; are subject to sampling error. We also considered, but 

have not included, the case /z=0.1 with a?=100, where the variance in the empirical
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distribution is very large, and both N and EE3 performed poorly. Neither N nor EE3 

could be expected to work well for sufficiently large or small h. Comparing Figure 

6 with Figures 2, 3, say, EE3 appears to improve with increasing n. Making broad 

comparisons across the three groups of figures, 1-7,8-14, and 15-21, we find that bias 

tends to vary inversely with L, keeping n and h fixed. This is consistent with the 

theoretical (asymptotic) bias-reducing properties motivating higher-order kernels, but 

Monte Carlo studies of semiparametric estimates employing such kernels (see e.g. 

Robinson (1988b)) have found that these properties are not necessarily mirrored in 

finite samples, so these results of ours are rather pleasing.

It might then come as something as a surprise that in most cases the figures 

reveal that EE3 approximates ED better than the "three-term" theoretical Edgeworth 

expansion (TE3). A possible explanation is as follows. The proof of Theorem 1 (see

(2.15)) implies that an alternative theoretical Edgeworth approximation to (2.1) is

The expectations are untidy, depending on n so the proof goes on to obtain the 

simpler and more elegant F ( z )  , involving the /z-free k (- . However, in comparing

(5.2) with the k i EE3 might seem to most directly estimate (5.2), which might be 

a more accurate approximation to ED than TE3, (2.1).

Among the three cases in Section 3.3, L = 10, satisfying the condition 

L>2(d+2), corresponds to the case III there, when EE1 is valid if 

nh L+n~ll2h ~d~2 =o (1 ) . Comparing shorter broken and longer broken lines, the 

"one-term" empirical Edgeworth expansion (EE1) is better than EE3 when 

(n,/z,L)=(100,0.8,10) and (400,0.8,10) (Figures 16 and 19). It is interesting that for 

other values of L, EE1 is slightly better for some values of h depending on n than 

EE3 in particular when (n,h,L)=(100,0.6, 4) and (400,0.4,4) (Figures 3 and 7).

(5.2)
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These are the cases of relatively small h, so that the bias is small but n ~lh ~d~2 is 

relatively large, namely the kj correction is negligible but the k2 one tends to be 

too large, having the effect of pushing the curve up and down around -1 and 1 

respectively. It is clear from the discussion in Section 3.3 that one expects the choice 

of h to be especially crucial where "one-term” expansions are concerned.

Figures 22-45 compare approximations to the distribution of studentized 

statistics n 1/2( t/(1) - p ( i)) I b , where b2 is the leading element of 2 ,  based 

on Theorem 4. U , kf , and 2  involved in Figures 22-29, 30-37, and 38-45 used 

respectively kernel functions of orders L = 4, 8, and 10 and we took h =0.2, 0.4, 0.6, 

0.8 for each of /z=100, 400 with 600 replications. Because the theoretical Edgeworth 

expansions (Theorem 3) performed less well than in the unstudentized cases featured 

in Figures 1-21, and because they are in any case of less practical interest than 

empirical expansions, we exclude the former cases from Figures 22-45 for ease of 

reading.

Generally in Figures 22-29, we observe that EE3 approximates ED very well 

except for largish h (see e.g. Figure 26), where N also performs poorly. Comparing 

Figures 22-29 with Figures 1-7 for the unstudentized statistic (with L =4 throughout), 

EE3 is seen to work better for the studentized statistic. The reason may be similar to 

the one we offered for the apparent superiority of EE3 over TE3 in the unstudentized 

case, namely, Var ( )  can better normalize U than 2 ,  and 2 ,  in view of its 

construction, more directly estimate Var ( Ux) .

We proposed optimal bandwidth choices which minimize the error of the 

normal approximation in Section 3.3. (3.49), (3.51) with L = 4 and k , described 

above yield the optimal bandwidth as h= 0.485 and 0.374 for « = 100 and 400 

respectively. ED with these values of ht as well as /z=0.2 and 0.6, is compared in 

Figures 46 and 47 with N, which seems to best approximate ED with optimal h.

We next consider interval estimation. We have discussed in 1.3.1 that interval 

estimates based on normal approximation can be modified using Edgeworth
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expansions. A 100 (1  - a ) % confidence interval based on N is, like (1.76),

(5.3)U , , s  ——Z a K n  +  _ £ _ Z .<0 „ 1/2 T ’ (1) k 1/2 2
r 00where z y satisfies j  <f>(z)dz = y . We can correct this interval using Theorem 4. 

Inverting the empirical Edgeworth expansion there, we have the Comish-Fisher 

expansion (see (1.86)),

WY = z T + n V 2h %  - - j ^ z  Y - { ( 2z T2+l ) k3+3 (z Y2+1) k4)

+ o (n  l/2h L + n~xh ~d~2 + n ~1/2)

= wy + o (n ~ 112 + n ll2h L + n~1h~d~2) ,

where wy is the 100 y % quantile of the sampling distribution. Then the corrected

interval estimate is, similarly to (1.87),
A A ^

1 )  _ ------— Wt a ,  U/ 1 \  — ---i ' i  ^  *
C l )  ^ . 1 / 2  1 "2 C l )  1 / 2  2

(5.4)
« "  2 n 1' ‘ 2y

Note that _a/2^  ->va/2 in general so that (5.4) is not symmetric around the point

estimate £/( 1}, unlike (5.3). According to our interval estimation in the current

Tobit example, this correction is supported when the Edgeworth expansion

approximates well the empirical distribution function, which is mostly the case for the

studentized statistic. We report two typical cases where the correction appears

effective. One is when N fails to well approximate ED due to the large bias of U, and

the other is when Z  has variance significantly less than unity. Figures 48-51 show

the "true" 80% and 90% confidence intervals derived from ED (solid line), the

corresponding interval estimates obtained from N, see (5.3) (dotted line) and from

EE3, see (5.4) (broken line) for {n,h,L)-(100,0.6,4), (400,0.2,4). The vertical

closely-spaced dotted line indicates the true parameter value p( 1} =-1/ ( Stt) . The

"true" interval is derived like (5.3) or (5.4) as

^ i )  i (5.5)

where t y denotes the 100 y % quantile of ED. This is due to
A

P (t  a <Z < t , «) = 1 - a  . Both estimates (5.3) and (5.4) include the true value in
2 2
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all four figures. In Figures 48 and 50, we observe that they are of similar length, 

though (5.3) is typically biased to the right and it does not cover the left part of the 

"true" interval, while (5.4) covers almost the whole true interval. In Figures 49 and 

51, we observe that (5.3) clearly overestimates (5.5), while (5.4) performs 

satisfactorily. When (n, h, L)=(100, 0.6, 4), N is biased to the left (Figure 23) and 

when (n, h , L)=(400, 0.2, 4), it has larger variance than ED (Figure 29) so that (5.3) 

estimates the confidence interval as described. Our experiment demonstrates that the 

Comish-Fisher expansion can produce better interval estimates than N.

As discussed in Section 3.3, below (3.47), Theorems 1 and 3 also imply that 

bias correction should have the greatest influence in improving the second order 

properties of U when the minimum MSE bandwidth h * is used. In view of Theorem 

2 and Lemma 11, h*Lk l estimates the bias a ^ v T{E U -  jl) consistently and 

so a'vlvrU - h  *Lk l is a bias-corrected estimate of a~̂  vTjx = - I f  ( 877*7) . Table5.2 

shows the average estimates of U-\i) , h*Lk lt and a ^ \ T( U - \ i )  - h * L k 1

for each n from 600 replications when L —4 and the (infeasible) minimum MSE 

bandwidth choice of Powell and Stoker (1996) was used. The bandwidth was 

calculated by means of Monte Carlo simulation to be h * = 0.9048, 0.8061 and

0.7128 for Ti—100, 200, and 400 respectively. We used b = l .  2h* in estimating 

k j . Comparing the first and the third column of Table 5.2, the bias-corrected 

estimate is seen to perform much better than the uncorrected one, especially for 

72=400.

TABLE 5.2 

The effect of bias correction.

n

li1Ib h *1Icj o ' l(U{1) M-(i)) h*1̂  1

100 0.0664 0.0496 0.0168
200 0.0520 0.0427 0.0093
400 0.0342 0.0338 0.0004
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Powell and Stoker (1996) also proposed a feasible minimum-MSE bandwidth h * , 

which depends on two user-specified parameters h 0 and r  (see (4.35), (4.38), and 

(4.40) of Powell and Stoker (1996)), but we did not use it. It is because, on the basis 

of our calculations, though both absolute bias \E{h*-h*)\  and 

MSE E( h * - h *)2 were relatively insensitive to h 0 (while exhibiting some tendency 

to decrease in h 0) , they were highly sensitive to r  and the results depend on too 

much on its choice.

5.3 Bootstrap approximation

We compare the Edgeworth and bootstrap approximations to ED based on 

Theorems 2 and 5 for the same Tobit model. We also examine the bootstrap 

distribution for the studentized statistics Z  in (4.29) though we have not yet verified 

it. These Theorems and (4.30) imply that ED can be approximated by EE3 and 

bootstrap distribution (BD) equally well and better than N. Figures 52-72 and 73-96 

show ED (solid line), N (dotted line), BD (dotted-and-broken line) and EE3 (broken 

line) for unstudentized statistic Z and studentized statistics Z  respectively for each 

sample size, bandwidth and kernel order stated. We used the same combinations of 

(n,h,L) as we did in the previous subsection. ED and EE3 drawn there are exactly the 

same as those in the corresponding ones in Figures 1-45, for example, Figure 1 and 

Figure 52 are both for unstudentized statistics with (/i,/z,L)= (100,1.0,4) and they 

share the same ED and EE3. Bootstrap distribution is a random function so we 

simulated it as follows.

1. We generate a Tobit sample of size n as in Section 5.2.

2. We draw a random sample of size n from the original sample in step 1, 

then calculate the density-weighted AD from the subsample for each (h,L).

3. We repeat step 2 600 times and obtain the density-weighted AD for each 

subsample.

4. We construct an empirical distribution from the 600 bootstrap estimates in
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step 3.

The empirical distribution in step 4 is an estimate of bootstrap distribution.

Figures 52-58, 59-65, and 66-72, related to the unstudentized statistics, used 

kernel functions of orders 4, 8 and 10 respectively and we took h=1.0, 0.8, 0.6, and 

0.4 for «=100 and h=0.8, 0.6, and 0.4 for n —400, while Figures 73-80, 81-88, and 

89-96, related to the studentized statistics, used kernel functions of orders 4, 8 and 

10 respectively and we took h=0.8, 0.6, 0.4, and 0.2 for n = 100, 400. We first look 

at the unstudentized cases in Figures 52-72. BD should approximate ED 

asymptotically as good as EE3 by Theorems 2 and 5, however we find, generally, 

that BD and EE3 approximate ED equally well for medium values of h, but BD tends 

to outperform EE3 for smallish and largish h in the smaller sample ft=100. For 

smallish h, see Figures 55, 62, and 69. EE3 have decreasing parts because of the 

correction term of order n ~lh ^~2 , but BD is always non-decreasing since it is a 

distribution function, thus BD outperforms EE3. For largish /z, see Figures 52, 56, 

59, 63, 66, and 70. We may explain this by the difference of bias adjustment way 

between BD and EE3. To clarify the effect of bias in ED, BD, and EE3, let us 

consider the distribution of the bias removed statistic 

FJ.Z) = P [a"1 V ( U-EU) <sz] .

Bootstrap distribution and Edgeworth expansion corresponding to this are respectively 

F ^ z )  = P '[ a ' - lXr( i r - E ‘U ')  <z]

and

In view of the proofs of Theorems 2 and 5, it is easily seen that 

sup |F J^z ) -Fm(z) | =o{n~lh~d~z + n -1/2) a.s.

and

sup \FJ^z) -FJ^z)  | =o(n~lh ' d~2 + n~112) a.s.
a*

The above equations imply that F^{z)  and FJ^z)  approximate FJ^z)  

asymptotically equally well. Now we consider the effects of inclusion of the bias
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term E U -\ i  . From the definitions of F(z), F * ( z ) and F ( z ) , we have 

F ( z )  = FJ,z  -cr-lvT(EU-\i))  ,

F \ z )  = F & - o - ' l ' ( E ' i r - F ) )  ,

and

F ( z )  = F J z )  -<j>(z)nll2h LKi .

Since -o~lvT(EU-\i) -»0 a.s. (see Lemma 34-(d) and proof of

Theorem 2), it is likely that F*(z)  is close to F(z). Noting

n \l2h lk.1 -a~lvT(EU~ii) ->0 a.s. (see proof of Theorem 2), 

if we tried to approximate F(z) similarly to F*(z)  , by 

G(z )  = FJ.z - n i n h % )  ,
M

not by F ( z )  , then the approximation should have been as good as that by 

F*{z)  . However, bias adjustment in F ( z )  is a vertical shift of F j^ z )  by 

( f ) {z )nl,2h licj so that it may approximate F(z) worse than F * ( z ) .

Figures 73-96 present ED and its approximants for the studentized statistic 

Z  . Generally we have similar observations as for unstudentized cases other than 

that BD does not necessarily outperforms EE3 for smallish h. The reason is that EE3 

for studentized statistics do not have decreasing parts.

We found some cases when BD approximates ED amazingly well for both 

studentized and unstudentized cases (see e.g. Figures 57, 63, 78, 86), all of which 

are when w=400. However we also find some cases when BD shows poor 

approximation (see e.g. Figure 75, 76, 79, 83) compared with EE3. We found this 

occurs rather independently of h and L, but it occurs more when a =100 than when 

n=400. The reason seems to be that we sometimes obtain rather unbalanced samples 

in step 1 of generating the original sample especially when n is small so that bootstrap 

distributions estimated from these samples do not work well.
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FIGURE 21 , n = 400 , h=0.4 , L=10
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FIGURE 20  , n = 4 0 0  . h =  0 . 6  . L = 1 0
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FIGURE 22.  n =  100 . h = 0 .8  . L = 4 (S tuden t i zed  co s e )
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FIGURE 24. n=100 , h = 0.4 , L = 4 (Studentized cose)
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FIGURE 23 .  n =  100  , h =  0 . 6  . L =  4 ( S t u d e n t i z e d  c o s e )
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FIGURE 25. n =100  . h = 0.2 , L = 4 (Student ized cose)
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FIGURE 26.  n =  4 0 0  . h = 0 . 8  . L=4  (S tud en t i zed  c o s e )
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FIGURE 28. n = 400 . h=0.4 . L = 4 (Studentized cose)
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FIGURE. 27 .  n = 4 0 0  . h = 0 . 6  , L = 4  ( S t u d e n t i z e d  c o s e )
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FIGURE 29. n = 400 . h = 0.2 . L=4 (Student ized cose)
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FIGURE 30 .  n = 1 0 0  , h = 0 .8  , L = 8 (S tuden t i zed  c a se )
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FIGURE 32. n= 100 . h = 0.4 , L=8 (Studentized case)
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FIGURE 31.  n = 1 0 0  . h = 0 . 6  . L = 8 ( S t u d e n t i z e d  c o s e )
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FIGURE 33. n= 100 , h=0.2  . L=8 (Student ized cose)
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FIGURE 34.  n =  4 0 0  . h = 0 . 8  . L=8  (S tude n t i ze d  co s e )
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FIGURE 36. n = 400 . h=0.4 . L=8 (Studentized cose)
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FIGURE 35 .  n =  4 0 0  . h = 0 . 6  . L =  8 ( S t u d e n t i z e d  c a s e )
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FIGURE 37. n = 400 . h = 0.2 . L=8 (Student ized ca se )
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FIGURE 38.  n =  100 . h = 0 .8  . L= 10  (S tuden t ized co s e )
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FIGURE 40. n= 1 00 . h=0.4  . L= 10 (Studentized cose)
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FIGURE 39 .  n =  100 , h =  0 . 6  . L = 1 0  ( S t u d e n t i z e d  c o s e )
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FIGURE 41. n=100  , h = 0.2 . L= 10 (Studentized cose)
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FIGURE 42.  n =  4 0 0  . h = 0 . 8  . L = 1 0  (S tud en t i zed  c o s e )
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FIGURE 44. n = 400 . h = 0.4 , L=10 (Studentized cose)
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FIGURE 43.  n =  4 0 0  . h = 0 . 6  , L= 1 0 ( S t u d e n t i z e d  c o s e )
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FIGURE 45. n = 400 . h = 0.2 . L=10 (Student ized cose)
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FIGURE 46. Empirical distributions for n=100 . L 
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FIGURE 47. Empirical distributions for n = 400 , L = 4 
Optimal bondwidth = 0 .343

h = 0 .343

h = 0.6 
N(0,1)

od 2 30 1-3 - 2 - 1



FIGURE 48.  807: C.l. n = 1 0 0  . h = 0 .6 . L = 4
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FIGURE 50. 907. C.l. n=100 . h = 0.6 . L = 4
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FIGURE 49.  807. C.l. n = 4 0 0  . h =  0 . 2  . L =  4
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FIGURE 51. 907 C.l. n = 400 . h = 0.2 . L=4
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FIGURE 52.  n = 100  . h = 1 . 0  . L=4
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FIGURE 53.  n =  10 0  . h =  0 . 8  . L = 4
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FIGURE 55. n = 100 . h = 0.4 . L = 4
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FIGURE 56.  n = 4 0 0  . h = 0 .8  . L=4
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FIGURE 58. n = 400 . h = 0.4 . L=4
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FIGURE 57.  n =  4 0 0  . h = 0 . 6  . L = 4
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FIGURE 59.  n =  100  . h = 1 . 0  . L=8
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FIGURE 61. n= 100 . h=0.6 . L=8
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FIGURE 60.  n = 100  . h = 0 . 8  . L = 8
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FIGURE 62. n= 100 . h = 0.4 , L = 8
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FIGURE 63.  n =  4 0 0  . h = 0 . 8  . L=8
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FIGURE 65. n= 400 . h=0.4 . L=8

o

Emp. Distribution 
Boot.Distr ibution 
N ( 0 .1)

m
d

.//

o
d 0 4
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FIGURE 66.  n =  100 . h=  1.0 . L= 10
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FIGURE 70.  n = 4 0 0  . h = 0 . 8  . L=10
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FIGURE 72. n = 400 . h=0.4 , L=10
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FIGURE 73.  n =  100 . h = 0 . 8  . L=4 (S tu de n t i zed  c o s e )
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FIGURE 75. n= 100 . h = 0.4 . L=4 (Studentized cose)
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FIGURE 74 .  n =  100 . h = 0 . 6  . L = 4 ( S t u d e n t i z e d  c o s e )
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FIGURE 76. n= 100 . h = 0.2 . L = 4 (Student ized cose)
o

  Emp.Distr ibution
Boot. Distribution 

••• N ( 0 .1)
- •  Emp.E.E.

</•

mo

o
d 20 1- 3 - 2 - 1



FIGURE 77 .  n =  4 0 0  . h = 0 . 8  . L=4 (S t u de n t i z ed  c o s e )
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FIGURE 79. n = 400 . h=0.4 . L=4 (Studentized cose)
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FIGURE 78.  n =  4 0 0  . h = 0 . 6  . L = 4  ( S t u d e n t i z e d  c o s e )
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FIGURE 80. n = 400 . h = 0.2 . L = 4 (Student ized cose)
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FIGURE 81.  n =  100  . h = 0 . 8  . L = 8 (S tu de n t i zed  c o s e )
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FIGURE 83. n=100  , h=0.4 , L=8 (Studentized cose)
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FIGURE 82 .  n =  100  . h =  0 . 6  . L =  8  ( S t u d e n t i z e d  c o s e )
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FIGURE 85 .  n =  4 0 0  . h = 0 . 8  . L = 8 ( S tud en t i z ed  c o s e )
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FIGURE 86 .  n =  4 0 0  . h = 0 . 6  . L = 8 ( S t u d e n t i z e d  c o s e )
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FIGURE 8 8 .  n =  4 0 0  . h =  0 . 2  . L =  8  ( S t u d e n t i z e d  c o s e )
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FIGURE 89 .  n = 1 0 0  . h =  0 . 8  . L= 10  (S tud en t i zed  c a s e )
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FIGURE 91. n=10 0 . h = 0.4 . L=10 (Studentized case)
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FIGURE 90 .  n =  10 0  . h =  0 . 6  . L = 1 0  ( S t u d e n t i z e d  c a s e )
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FIGURE 92. n =100  . h = 0.2 . L= 10 (Student ized cose)
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FIGURE 93. n = 400 . h = 0.8 . L=10 (Studentized cose) 
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FIGURE 95. n = 400 , h = 0.4 , L=10 (Studentized cose)
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FIGURE 94 .  n =  4 0 0  . h =  0 . 6  . L = 1 0  ( S t u d e n t i z e d  c o s e )
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FIGURE 96. n = 400 . h=0.2  . L=10 (Studentized cose)
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Appendix A : Established results in Robinson (1995a)

We reproduce some established results proved in Robinson (1995a), which are 

frequently used in the main proofs of Theorems and also Lemmas in Appendix B. .

(A.l) 

(A. 2) 

(A.3) 

(A. 4) 

(A. 5)

(A. 6)

(A. 7)

(a), (b), (d), (e) and (f) correspond to Lemmas 1, 2, 3, 4 and 6 of Robinson 

(1995a) respectively, while (c) was shown in the proof of Lemma 3 and (g) 

corresponds to equation (14) noting b 3m in Robinson (1995a) is equivalent to 

W( m)  here.

(a) Under (i), (iv), (vii) and (viii),

E{U)  - p  = 0 ( h L) .

(b) Under (i), (iv), (v), (vii) and (viii),

S - H  = 0 { h L) .

(c) Under (i), (iv), (v), (vi), (vii) and (viii),

|E( V2Wl2 |1) | ^  |E{ V2)JUn  |1) | <C ( IYJ + 1) a.s.

(d) Under (i), (iv), (v), (vi), (vii) and (viii),

W V f c W n )  \ <C .

(e) Assuming E\Y\r < oo for integer r >1 , (iv) and (viii),

E\Wn \r .

(f) Under (i), (iii), (iv), (vi), (viii) and (ix),

E\Y ,Wxj\r =0 {{nh-*-2) r>) . 
j  = 2

(g) Under (i), (iii), (iv), (vi), (viii) and (ix),
— /  „  r \m

especially E\W\r =E\W(n- l  ) |r = 0 1( — -— ) 2 
nh d+2
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Appendix B : Technical Lemmas

LEMMA 1: Under (i), (ii), (iii), (iv), (v), (vii), and (viii),

(a) E ( v t ) =0, Var (2 v ,)  = 1 ,

(b) E( Fj) =E{Wa ) = 0 ,

(c) E{Wn \ \ )  =E(Wn \2)  =0 a.s.,

(d) |v , \r + \Vt |' s  C( |Y, T + 1) a.s. for r s=0 .

PROOF: The proof for (a)-(c) is straightforward from the definitions. To prove

(d) writing

v , = o - V { Y / ' ( X ,)  -« '(* ,)  -p} ,

P] = o ' 1 vT{Y jJ/ 7(X ,- hu)K(u)du  - j e  \ X l -hu )K(u )du  - EU\  , 

since a -1 < C due to (ii), we have

|v ,r  s; C{ |Y, |r I vT/  '(Xj) I' + |vTe '(X,) |r + |vTp |'} ,

\K  r s  c {  IY, I'/1 v y  ' (X^hu )  r |X( u) \'du

+f j v ' e  ' (Xj-hu) I' IK(u) \'du + |vr£ t / |r } .

Apply (iv), (v), (viii), and (A.l). □

LEMMA 2: Under (iii), v - v ( m ) , K- F( m ) , and W- W( m) are independent 

o f (Xf, Y i), — , (XL Y J  .

PROOF: Straightforward. □

LEMMA 3: Under E \Y l \r < co, (ii), (iv), (v), (vii), and (viii),

W \ ~ v i\r = 0 { h rL) .

PROOF: Writing |K ,-v , |'  < C{ |vT( f^-pj) \r + |vT(jE17-p) |'} dueto(ii),we 

have from (A.l) that the second term on the right is 0 ( h rL) . Writing 

vT( ^ r P i )  =T j/v T( /  /( X l -hu)  - f  '(Xj) }K(u)du

- f v T{e '(X, -hu)  -e \ X f )  )K(u)du  , 

both integrals on the right are 0 ( h  L) a.s. by Taylor expansion and (viii) (see the



proof of Lemma 2 of Robinson (1995a)) so that |vT( C^-pj) |r < 

C( \Yx\r + 1 )h rL . Therefore

LEMMA 4: Under (ii), (iii), (iv), (vi), and (viii),

E{\Wn \r ID ^ C (  a.s. for  1 < r  <3 .

PROOF: Using (ii) and an elementary inequality, write

E( \Wn \r |1) <C{E{  |vTU12|r |l )  + \v7EU\r + |F1|r +E\V2\r ) .

(A.l) and Lemma l-(d) give \vTEU\r + \V{ \r +E\V2\r <C ( |Yj |r + 1) . The 

remaining term is bounded by

where the first inequality uses (iv) and (vi) and the second inequality uses (viii). □

LEMMA 5: Under (i), (ii), (iii), (iv), (v), (vi), (vii), and (viii),

«f2 1 = 0 ( h L1) .

PROOF: Using (B.l), Lemma 4 and (i),

£ | (  V, - v ,) Wn  I =£{ \V, - v , |E( \Wn  111)} <Ch |Y, p +1) =£>( h i -1) . □

LEMMA 6: Under (i), (ii), (iii), (iv), (vi), (vii), and (viii),

E\E( Rf3i ^ | l , 2 )  |r = 0 ( h ~ (-r~vi ~lr) for  l < r £ 3  .

PROOF: E( WftW-n \ \ , 2 )  = ct‘2£ ( vTU13vTf/23 |1, 2) - a ' lE( V2vrUK |1)

-o- 'E{V%vTUn \2) -o~lvrEU(Vi rV2) - V ^ + E C V i )  - ( a l vrEU) 2 . 

(ii) and (A.3) gives

\VX - v j r < C (  |Y1|r+ l)A ,L a.s. 

Then apply E\YX \r < oc .

(B.l)

□

{ iy, r / K M  ^ )  y f ( x ) d x

*fE(  |7 a |'& -w ) |v 'tf '(  ^ i )  \ ' f ( x ) d x ]

£  I l ^ i r / \vrKXu)  I'dx  + J Iv 'KXu)  \ 'du]
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|<r-'£( VJ\ , Un  |1) r  + \o~lE{ VyV'Ua |2) \' s C (  |Y, \' + \Y2\' + 1) a.s., 

and (A.l), (ii) and Lemma l-(d) give

Io " V E t/( v1+y2) - vtv2\r £  a  |y , f + 1) ( |y2 |r + 1) a.s„
so that their expectations are bounded under (i) and (iii). By Lemma l-(d), (i), (ii) 

and (A.l), \E(Vi) - ( a ^ v ' E U ) 11 < «  . Finally, since

El  vt £/13 v tU2} 11, 2 ]

= E 1 3 , , r  y  i{ 2 3 r  1 o
~fad*r ( ~a- ) - p i r v A ( — } I1*2

= A-M-2£ [ £ { ( y 3-y ,) ( y ,- y 2) v^ ( £ £ )  ^ k \  * * )  | i ,  2 , y 3}]

= h - u -1E [ { q { x ) - ( Y 1*Y2) g ( x ) ^ Y lY2} v ' K ' ( ^ )  v ' K \ ^ )  |1, 2

= h -*-2f  iq(u-hx2) - ( y t+y2)g (  u-hxj +y,y2j

«vTX ' ( K - ^ )  vTAT'(u ) f  ( u-hX 2) du , 

using {#( u-hX2) + |£(m-/lXT2) | + IJ/Cw-ZiA^) a.s. due to (iv) and (vi), we

have

|£( ^ 3 ^ 1 1 , 2 )  i ' s  - p f e n  | y , r + D (  m r + i )

x f \\>TK'(u-^-) vrK\u) \rdu .
Taking expectation on both sides,

E |£ ( v '£ k V' £ y i .  2 ) r *  ^ f e £ [ (  ly i l ' + D fi£( ly2r  K - * )  + 1>

xf  |vTK'( u - i ^ i )  vTAT'( u) |'duf(x) dx 1

c  •=■[( |y , r  + 1 ) / / k a : ' ( u - l £ l )  |r | v ^ ( « )  |^ « d * ]

( |y, r  + 1) / / |vTA'( M-t ) |' |vTAr'( u) |'du<* 1

frr(d+2)
C h r

h r(d+2)

= 0 ( / i ) ,

where the first inequality uses E{ \Y2 |r \X2 =x) f  ( x ) <C for 1 < r  <3 due to (vi)

and the last inequality uses (i) and (viii). □
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LEMMA 7: Under assumptions (i), (ii), (iii), (iv), (v), (vii), and (viii),

E\Z)(m)  |3 = o |(  ™ ) 312h 3LJ for m=l, . . . ,n.

In particular, £|co| = E\Z*(n) \ = 0 ( h L) .

PROOF: Since ( Vt -  v t ) are iid by (iii) and E(Vi - v ;-) =0 by Lemma l-(a),(b), 

applying the Theorem of DFJ, we have

m \ i ) 1
i

by Lemma 3. Then Ejcoj = 0 ( h L) by Holder’s inequality. □

/ \ 3 I 1 I / v 3
E \ u > (m )  |3 \ V , - v ,  |4  = (™)T<?(AU) .

LEMMA 8: Under (i), (ii), (iii), (iv), (v), and (viii),

h V « w ' ;
PROOF: Writing C/ =2n "1/2v,. , by Lemma l-(c) and (2.6) the left side is

E[Wl2{wl( t ) - l } { w 2( t ) - l } ]

= £[Wf2{(e *■' c‘- l  -i t Ca) ( e ''' CM  -i / C2) +i r f , ( e "  CM  -i t C2)

+i * C2(e " {,- l  - i t  Ci)}] + £ [ Wf2(i  i C2) ( i t C2)]

= i l i n i £ ( ^ 2v ,v 2) + o f i-4 ^ (  W z l v M )  + ^ E (  |Wf2 |v,2 |v2 | ) )  . 
'• \ n n j

By an elementary inequality,

£ W 2Vi2v 2 | <<7"l£ '|vTt/12v 2v 221 +E\Vxv 2v 2 | +£:|F2v 2v2 | + a~lE \ v ' E U v \ v l \  . 

The second, third and fourth terms on the right are bounded due to Lemma l-(d) and

(A.l). Using (ii) and an elementary inequality, the remaining term is bounded by
C - r  x..Trr„ x,-x2hJ t iE { Iv 'K 'i  |( |Yi|+|y2|)(Yf+i)(y22+i)}

s J ^ e { |v*K'{ *&■) |( m |3♦ |y, |2|y21 ♦ m |)}

hd .2E f \ * K x * z - )  k m i 3+m i 2£(  i n  I &=•*) + i n i ) / ( * ) *

Ei m i3+m i2+in d /  w  ^  i&< c

< Ch .£( m M n  i2+in i) / W u )  i &h d*2

= 0 ( h - 1) , (B.2)
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where the third inequality uses the boundedness of / and E{ \Y\ \ X ) f  due to (iv) 

and (vi). Therefore

E\Wn v t v } \ = 0 ( h - 1) (B.3)

Similarly, E(  | v 2 |v2 |) ^  Ch~l . □

LEMMA 9: Under (i), (ii), (iii), (iv), (v), and (viii),

) w2( t ) ] = E{ HJ?) + .

PROOF: The left side is

E ( W i )  +E [ t y i t e l , a ' ^ - l } ]  = E { W l ) * 0 [ \ t \ E \ m l ^ \ )

= £(B{?) +o fJL L £ |H f22v 1|'

using (2.6), and by Lemmas l-(d) and 4 and (i),

E W lV ,  | =E[ |v, |£( \Wn  | * | 1 )} <Ch -d'2E( \Yt |3 + 1) =0(A *-*) . □

LEMMA 10: Under (i), (ii), (iii), (iv), (v), and (viii),
t 1/ |3 \

^ 2^ 13̂ 1( 0 ^ 2( 0 ^ 3 ( 0 = O
Kn 3,2h

PROOF: By Lemma l-(c) the left side is

E\wn Wl i { e i n ' - \ ) ( e i " il- \ ) ( e i n ' - \ )

= 0( |r |^(|W&||H&||C,||C2||Cs|))

\ n i,z 
using (2.6). Writing

£ ( | « & I I % I | v , | | v 2 | |v, | )  =£{|Wf2 | | v1| |v2 |£(|Hf3V3 | | 1 ) } , (B.4)

similarly to the proof of Lemma 8,
C e» [ i.j T Xi~x3

|  | V A \  X'~X'
C T,t i-.-rrl, Xt-X*

« l % v , | | i )  K P ' i M Y , | ) ( | Y , h o  | i} + c

< - C _ \ Y l \ E { \ ^ K X ^ ) \ ( . \ Y ^ l )  |1}

+ - ^ r£ { | v ^ ( ^ ) | ( y 32 + |y 3 |) | i }  + c

where the third inequality uses the same method as (B.2), so that (B.4) is smaller than

f s i W . I K I I v ^ l Y . I  + l ) }



and it is 0 (  h  ~2) as in (B.3). □

LEMMA 11: Under (i), (ii), (iii), (iv), (vii), and (viii),
C7- 1 VT( EU - u )  t t s- — v _ = k. +o{ 1) as n -*oo .

h L 1
PROOF: Writing

ff-> vTEU= h ~d~1o~lE{ vrK !( ( y , -y 2) } = 2h -d~la-'E{ vTK \  y , }

= 2A f v rK'( ? l ^ L ) f ( x ) d x  1

= 2 / i '1ff“I£ |g ( A r1) J~v7K'( u ) f ( X 1-hu) du \

= 2<r'£{g(.X',) J V /  ' ( X ^ h u ) K ( u ) d u ^  , 

where the second equality uses (iii) and that K  is even, and the fifth equality uses (vii) 

and (viii), Young’s form of Taylor’s Theorem (see e.g. Serfling, 1980, p45) gives 

o-l vr(EU-  f )  = b j i  + — + bL_lh L~l +bLh L + o ( h L)

where

b, -  2( {f 'At« ) } v'4{A(' -  "• ‘J f U ] ,
i xt+ idU

/=1,  — , L  . But b x = — = bL_l = 0 by (viii) and Z?L = Kj . □

LEMMA 12: Under (i), (ii), (iii), (iv), (v), (vi), (vii), and (viii),

h d+2E ( ^ 2 ) = k 2 + o ( 1 )  as n-+co .

PROOF: From Lemma l-(b),(c),

E{ Wf22) = E (a -V t/12) 2-2 £ (P f)  - ( t r V £ t / ) 2 .

By (i), Lemma l-(d), and (A.l), E{ V2) + \o~'vTEU\ <C  for sufficiently large 

n . Also

E( a '  Un ) 2 = El E{ ( o '1 v 't/I2) 211} ]

= h - u - ^ E  [ f  { vTK'( ^ - ) ) 2{ Yi -2Ylg(x)  *q{x) } f (x)dx  

= h ~d~2o~2E [J{ vTK ‘'(u )} 2f  (X- hu ) {q -2gg (X -h u ) +q{X-hu) du 

and the expectation converges, as «->«> (i.e. as /z-»0 ), to k2 by (iv) - (vi).D

LEMMA 13: Under (i), (ii), (iii), (iv), (v), (vii) and (viii),
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(a) E(v  3) = k, ,

(b) E ( V 2) = k 3 + o ( 1 )  as n -*oo .

PROOF: To prove (a), putting b = vT/  c = \ ' a ,  routine calculation gives 

£ (v ,3) = <r3[ £ { ( Y - g ) 3f>3) - 3 E { ( Y - g ) 2b 2c )  +3E { ( Y - g ) b c 2} - £ c 3]

= o~3E[ {r ~ 3 ( q - g2) g - g 3} b 3- 3 { q - g 2) b 2c -c  3]

= a~3E[ ( r -3 qg + 2 g 3)b  3-3 ( q -g  2) b 2c -c 3] 

because by straight forward calculation,

E [ ( Y - g ) 3* 3] = E[ { r - 3 ( q - g 2) g - g 3} b 3] ,

E ( ( Y - g ) 2b 2c \  = E { ( q - g 2) b 2c )  , E ( ( Y - g ) b c 2] = 0 .

To verify (b), it suffices to show E ( V 3 - v 3) =o ( 1 ) .  Lemma l-(d) and 

(B.l) give

J5|Fi3- v 3| s C ^ I ^ - V j K F f + v 22) < C h LE( 1^!|3 + 1) = 0 ( h L) . □

LEMMA 14: Under (i), (ii), (iii), (iv), (v), (vi), (vii), and (viii),

(a) E(Vf{2v iv 2) = k 4 + 0 (1)  as n-*cc ,

(b) E(Wn VlV.2) = k 4  + o( 1) as .

PROOF: Using Lemma l-(a), putting a , -  a (X t ) , fQj -K '( ) ,

E( Wi2v ,v2) = <7‘'£ [  vT( Un -EU) v ,v2] -E[ Vtv ,v2] ~E[ V2v tv 2]

= < t_ i £ (  v t U 1 2 v 1v 2 )

= fc^-,ff-3£ [v Tj ^ ( y 1-y 2) {( t ,  - g ,) /  [-a ,}vt {( y 2 -g 2) /  U  2}]

= h -*-'cr3E f v ^  vT{( y, -g ,)/ {-a ,}

*[y,v*{(Y2-g2) f l - a 2\ -Y2X \ ( Y 2-g2) f l - a 2}]\ .

Taking expectations with respect to Y2 given X UX2, Y{ , it equals 

h -*-lo-3E  XK;2X { ( Y l - g l) f l ~ a l} { ^ a 2- X { ( q r g 2) f ' - a 2g 2}}

= h -'o-3E ( v K X u )  v t { (  Y - g ) f  a}[-YvTa(X-hu)

-{q(X-hu )  - g ( X - h u ) 2} vT/  f(X-hu)  +vTa (X -hu)g (X-hu )  ] f  (X-hu)  du . 

Since g ’f  vanishes on the boundary of its support by assumption (vii), integration 

by parts gives the above quantity is equal to
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o-3e / k ( u) v '{ ( y - * ) / '- « }

«|[ - Y v Ta  ' (X-hu) v - \ T{q '(X-hu) -2 g (X -hu) g '(X-hu) ) f  '(X-hu)  T v  

- (q (X -h u )  - g (X -h u ) 2} vrf  "(X-hu)  v  

+vTa ' (X-hu) vg (X -hu)  +vra (X -h u )g  ' (X -h u )Tv ] f  (X-hu)  

- [ Y v Ta(X -hu)  [ q ( X h u )  - g ( X - h u ) 2} vT/  ' (X-hu) - v ra ( X -hu) g (X -hu) ] 

x M ' f  '(X -h u ) \du .

Using assumptions (iv),(v) and (vi), which imply the continuity of f , f  ' , f  " , g  , 

s ’> Q> 9 1 >a and « / > as n-*<x , i.e., /i- » 0  ,

£(Wf2v ,v 2)

~3E ( b ( Y - g )  -c}{ -[ ( v Ta  ' v )  ( Y - g )  +{v T ( q '-2gg  0 )b

+(q~g 2) ( vT/  "v) - c ( vrg  0 ] /  -  [ c ( Y - g )  +(q-g 2) b ] b]

= cr-3E \ { b ( Y - g ) - c } { - ( f v ra ' v + b c ) ( Y - g ) - f b  {vT( q ' -2 g g  )  )

- / ( q - g 2) ( v Tf  "v) + f b ( \ rg > ) - ( q - g 2) b 2}

= -a~2E ] f ( q - g  2) b( vTa 'v) - f b { v T(q  '-2 gg 0 }c

- /  ( q - g 2) c ( vT/  "v> + /  ( vTg  0 c 2 

To prove (b), it suffices to show E{ Wf2^ i^ 2) =^ ( ^ 2V iv 2) + °  (1 )  • Writing 

|^(Wf2Fi^2) -E(W l2v lv 2) \< \E {W l2( V l - v 1)V 2}\+\E{Wn v l(V2- v l) } \  , 

the first term on the right is equal to

|E{ ( K, - v ,) E( Wi2V211)} | <E{ |K, - v , 11£( H&K, 11) | } 

s C h LE( 1 ^ |2 + 1) ^ ( A 2) , 

by (B. 1),  (A.3) and (i). We can handle the second term similarly and show it is also 

0 ( h L) . □

LEMMA 15: Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii),

E ^ W a  T =E\V1Wn \r = 0 ( h < r-l)d-') for  l : S r<3  .

PROOF. Using Lemmas l-(d) and 4,

E \v,w n \' - s E d K . r ^ i H & r i D )

£CE{( \Y,\^\)2)h<'-^-'
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< Ch -(■r~l'>d~r for 1 <r <3 under (i)\ 

E\VxWx l\r = E\V2Wl2 |r is obvious by symmetry of Wn  and (iii). □

LEMMA 16: Under (i)\ (ii), (iii), (iv), (v), (vi), (vii) and (viii),

E\Vx\r = 0 (  1) for  1 <r < 6  . 

PROOF. By (A.3),

\Vxr  = \E(V2Wn \l) \' s C d Y J '  + l )  a.s. 

so (i)’ immediately produces the conclusion. 

(B.5)

□

LEMMA 17. Under (i)’, (ii), (iii), (iv), (v), (vi) and (viii),

(a) E\Wn \r = 0 ( h ~ r^ 2)) for  1 <r  <3 ,

(b) E\Wn \r = 0 ( h < r-»d-2r) for 1 <r <3 .

PROOF.

(a). Wn = E(Wii 11) ^  C( \Y{ |2 + 1) h ~d~2 a.s. by Lemma 4 so again application 

of (i)’ completes the proof.

(b). Apply Lemma 6 . □

LEMMA 18: Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii), for d x given in 

(3.36),

(a) E \d xV2\r = 0 ( 1 )  for 1 < r  <3 ,

(b) E \d xVx\r = 0 ( 1 )  for l < r < 2  .

PROOF.

(a) By (iii), E \d {V2 \r = E \dx \r E\V2 \r , where the second factor is bounded due 

to Lemma l-(d). From Lemma l-(d) and (B.5),

(B.6)

□then apply (i)\

(b) By an elementary inequality and (3.8),
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£|rf,K,r * C ( E \ V t V + E \ V xV J + E \ V t f )  .

By Lemma l-(d) and (B.5), E \ V \ \ r + £ |F 1|'' = 0 ( 1 )  for l < r < 2  , and

LEMMA 19: Under (i)\ (ii), (iii), (iv), (v), (vi), (vii) and (viii),

(a) E W t V W  =E\Wn V2V3\- = for l £ r £ 3  ,

(b) E\Wn V l\r - E \ W k V t r  = 0(h-<r-1)d-r) for l £ r s 2  .

PROOF.

(a). Using (iii), Lemma l-(d) and Lemma 15, for 1 <r ^3 ,

E\Wn VxV J  = E\Wn Vx\'E \V ,\' = 0 ( h < ' - " d-') .

E\Wn VxV$ |r = E |Wn V2V3 \r is straightforward by (iii) and symmetry of Wl2 .

(b). By Lemmas l-(d) and 4, the left side is

js| |F,|2r£( |Bf2 |r|l)} <£{c( Jl'i |3r + l)/i = 0 (/j-<'-I>‘'-'-) .

E\Wn V l\r ■= E\Wn V l\r is straightforward by (iii) and symmetry of Wn  . □

LEMMA 20: Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii), with e 12 given

in (3.36),

(a) E\e l2V3 |r = 0 ( h - (r-1>d~2r) for  1 <r <3 ,

(b) E \e l2V J  = E \e n V2\r = 0 ( h ~ (r~l)d'2r) for 1 <r <2 .

PROOF.

(a). By (iii) and Lemma l-(d), write

w ; r  ^ c E i p j  + D 2 = o ( d

for 1 <r  <3 by (i)’.

(B.7)

□

E\e 12 r  ^ r  ^  c { E \v xwn  r  + ̂  r  +e \w12 n

Then apply Lemmas 15, 16 and 17-(b).

(b). An elementary inequality gives
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£  c [E \V xV2Wn  r  +E\v?wn f  *E\VlVi \r + £ 1 ^ 1 '  *E\Wn V, | ')  . (B.8)
V

Writing due to (ii)

E\V,V2WX2\  < C {E \V {V2v'U n  r  + E\V{V2\+E\VlV?\ + E \ V y 2\ \^E U \)  , 

the last three terms on the right are bounded due to Lemma l-(d) and (A.l). Using
X  “Xsymmetry of vTK'( 2) , Lemma l-(d) and an elementary inequality, 

E \ V W U n \'

m r +n( m r + m  i n M n n  r}
- h ,™+2) *{( in r  in r+in r in r +in r +in d  i r } .

Expanding the right hand side, we can bound the first term by

f r j i n i 2'  |y2 n v ^ ' ( ^ ^ )  I'J

= £ | i y , i 2' / £ (  m r  &■*> i v ^ (  \rf { x ) d x \

<Ce I \Y 1\2'  j  |vTKv( — ) r  dx\< ,C h  dE { \ Y l \tr f \ v TK'(u)  \rdu}  

<Ch 4 ,

where the first inequality uses (vi) and the last inequality uses (i) and (viii). The other 

three terms are also 0 ( h  d) similarly. Thus, for 1 <>r <3 ,

£ |F iF 2Wf2 r  = 0 ( h ^ r-l)d-r) . (B.9)

The second term in (B.8) has the same order bound as (B.9) by Lemma 19-(b) 

for 1 <r  <2 . The third term in (B.8) is bounded due to (B.7), while the fourth 

term is bounded due to Lemma l-(d) and Lemma 16. We handle the last term in 

(B.8) similarly to Lemma 6 ,

= £ |£ (w f3* n i i . 2 ) n r  ^ c e { &  ^ u ^ u a \ i , 2 )  r ( | y , r + D i

= 0(h~<r~i)4~2r) . (B.10)

E\e n V1 |r = E\e I2V2 r is straightforward by (iii) and symmetry of e I2 . □

LEMMA 21: Under (i)\ (ii), (iii), (iv), (v), (vi), (vii) and (viii),

(a) ■E|</,H£) r' = 0 ( / i - (''-1)‘'-r ) for  l < r < 3  ,
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(b) E\dxwn r  =E\d2Wn \' = 0 ( h < r' " d~r) for  1 <r  <2 .

PROOF.

(a). Using (B.6) and (A.5),

E \d xW23\r = E\d , \r E\W2, \ r = 0(h~^r~1)d~r) 

for 1 < r  <3 under (i)\

(b). Using (B.6) and Lemma 4 the left side is

E ^ i d j E i  I l l ' l l ) }  < £ { (  |y , |2'  + n  C( |y , r  +

<CE( l Y ^  + 1 ) h - t r~v>d-t = 0 ( h - (r~1)d-r) 

for 1 <r  <2 under (i)\ E \dxWl2\r =E\d2W{2 \r is straightforward by (iii) and 

symmetry of Wx2 . □

LEMMA 22: Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii),

(a) E\Wn Wn \  = 0 ( h < 2r-»d-3r) for l < r < 3  ,

(b) E\WX2Wl3\r = 0 ( h - 2(r-»d-3r) for 1 <r <3 ,

(c) E\Wn Wlz |r = 0 { h - 2̂ - X)d-3r) for  1 <;r <£3 ,

(d) E\Wn Wu \r = 0 ( h - ^ r~^d-3r) for  1 <r < 6  .

PROOF.

(a). In view of the proof of Lemma 6 ,

The first term in parentheses is 0 ( h ~ (-r~l)d~r) by (A.5). From inspecting their 

proofs Lemma 15 and (B.9) still hold with V1 and V2 replaced by Yl and Y2 so 

that the other terms are 0 ( h ~ (r~l)d~r) for 1 <r <3 .

(b). Using Lemma 4, for 1 <r ^3  ,

e \w12w12 r  = e \w12 r  i wa  r

£  h -'«*> c e ( 1 + 1y, I' + 1y 2 r  + 1y , r  i n  I') |n& r  

s  c a  (£|wf2 r  + j s i n %  r  +E\Y2wn  r  + £ i n y 2^ 2 n  .
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ssjiwkl' c( |YIr + i)/*-<'"1>J-rJ

= Ch -<''-1>‘i-'|£|W f2Y1 \r +E\Wl2 |r ' .

We may replace Vl by Yx in (B.10), so that using also Lemma 17-(b), 

E\Wn Wn \r = 0 ( h - 2̂ - ^ d~3r) for 1 <r <3 .

(c). The proof is as in (b).

(d). Writing E\Wn ^ \ r =E\Wn \r E\Wn \r by (iii), the proof is straightforward by 

(A.5) and Lemma 17-(b). □

LEMMA 23: Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii),

E\V\r = 0 ( 1 )  for  2 < r  < 6  .

PROOF. Since Vt , i=l, . . . ,n  is an iid sequence, the result follows

straightforwardly by DFJ and Lemma l-(d). □

LEMMA 24: Under (i)*, (ii), (v), (vi), (vii) and (viii)

|7 1|r = 0 ( n ~ rh~r(d+2)) for r > 0  .

PROOF. Using (A.5) and \8 \< C  due to (3.8),

IT. Y |E( Wfi2) Y = 0 ( n - ' h  - ' W ) . □
n r

LEMMA 25: Under ( i) \ (ii), (iii), (iv), (v), (vi), (vii) and (viii),

E\T2 \r = 0 ( n ~ h  for 2 <r <3 .

PROOF. Using (3.8), write

e \t2y z - ^ - E y t ^ v f - s ^ Y  + -£-e \ £ sv,\' .
n i =1 _ n i=\

Since E { W f )  =s 2 and E(Vt ) = 0 , by (iii) both the 4 V f - s 2 and Vi are

martingale differences and thus the theorem of DFJ applies to yield

£ | f  ( 4 > f - * 2 )  Y  ^ C n ^ E \ A V i - s 1 Y  =  0 ( n h  
1̂ 1
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for 2 <r  <3 by (3.8) and Lemma l-(d) and 

E\Y^%V.t \r < C n TlE\Vx\r = 0 ( n h
i =1

by Lemma 16. □

LEMMA 26: Under (i)\ (ii), (iii), (iv), (v), (vi) and (viii)

E\T3\r = 0 { n - rh ^ rA)d~lr) for 2 <r <6 .

PROOF. Using (3.8), write

E\T*\' ^Cn-2'E\YZk r
n „  k=1

where Z* = V  B£n , f o r£=l ,  ... , n-1. Since
n£lc+1

£ ( ^ 2 |2 ) = £ ( ^ 2 |1 ) =£{E( 0 ^ 11, 2 ) | l } = £ ( ^ 3l ^ | l )  =0 ,

Z* , k  = n-1, ... ,1 is a martingale difference sequence. Thus we apply DFJ to 

bound (B .ll) by Cn~2r( n - 1) 2 _^ is |Z ;k|r . Since £ ( =0 for m=

k+l, . . . ,n ,  are martingale differences. We use DFJ again and get by Lemma 

17-(b),

E \ Z k \r ssC(n-fc) V  £ |H y r ^ C ( n - k )  2~ \ n - k )  h <'-»*■
rmlc* 1

2r

n -1
ISso that ( « - l )  2 ^ jE |Z ^ |r =0 ( / i  rh <f-i)d-2r^ Therefore (B. l l )  i 

0 { n - rh < r~l)d-lr) . □

LEMMA 27: t/Awfer (i)\ (ii), (iii), (iv), (v), (vi), (vii) and (viii),

^IGiT = 0 ( n ' rh < r~l)d-r) for 2 <r <3 .
__ _  n

PROOF. Write P ty = ( Vi + Vj) Wt- - V i - V- . Then P- is a martingale
i =i +i

difference sequence for / = n- l , ... , 1. We can proceed by replacing Wkm in Lemma 

26 by Py due to the property E{ P- [/) =0 for i * j  . Applying DFJ and (3.8),

E m  < c I " Y ' e
n -l n

E  E  pa
i =1 j =i +1

n - l
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Since P tj , j  = n ,  ... , i + l is a martingale difference for fixed i, we can apply the
n L l  n

theorem of DFJ again and obtain E\ P~ \r < C ( n - i ) 2 E\P-t- \r . By
j  = i +1 j  =i +1

Lemmas 15 and 16,

E\Pg r  <C[E\Vi \r +E\VW- |r ] = 0 ( h < r-»d~T) for l < r < 3  . □

LEMMA 28: Under (i)\ (ii), (iii), (iv), (v), (vi), (vii) and (viii),

E m  = 0 ( n - rh < r~l)d-r) for  2 <r  < 6  .

PROOF. By an elementary inequality and (3.8),

E m  s - t  ;  £ i £  £  £  y ^ r
n  \  ^  I  i  =1 t z 1 m zfr+ 1

n n~^U) n (<)

^  2 L w -

Vi , m=k+l, . . . ,n  is a martingale difference for fixed /, k, k * i  and
n (. )

/w^i , and V  , &=«-l , . . . , l  is also a martingale difference for fixed
m=k+\

i and k * i  so that we apply DFJ repeatedly as in the proof of the previous Lemma 

and get
Tl n -1 (i) ” (») » r , ” («)

£ £ |  £  £  y ,w j {  s c j ) ( * - 2 ) ^  £  £ l £
I  = 1  Jc =  l  ztfF + 1 ,  I = 1  f = l  /T p j c + l

i  = 1  k - 1 m = / c + l

< C n r+1h -(r-» d~r

for 2 < r  < 6  by (iii), Lemma l-(d) and (A.5). □

LEMMA 29: Under (i)\ (ii), (iii), (iv), (v), (vi), (vii) and (viii),

E IR J' = 0 ( n ~r ) for 2 <r < 6  .

PROOF. Writing E\Rt \r < d "  )’' £ | £  £  |r due to (3.8), as in Lemma
\  ^  I i = 1  ;  = i + 1

26 or 27, Vi V- , /=  1,..., j-1 is a martingale difference sequence for fixed j  as well
n

as ^2  K Vj * * = w-1, • ■ •, 1 • We use DFJ repeatedly again and (i) ’, (iii) and Lemma
; =i +1

l-(d) to obtain
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*I E E  V,Vjf <C(n-l)^'2£|5: V,VjY
i =1 j  =i +1 / =1 j  -i +1

£ C ( n - l ) H £ ( n - i ) H  E  £ 1 ^ 1 '  = 0 ( n ' )  . □
i  = 1  j  =i + 1

LEMMA 30: Under (i)*, (ii), (iii), (iv), (v), (vi) and (viii),

E\R2\r = 0 ( « - 3(r"1)/i-2(r-1)rf-2r) for 2 < r  <3 .

PROOF. Using (3.8), write

si**  ir = S {  v  r * i E  ? ’ E :’ ( %  k . -  " u  r  •n \ * I i =i M  1 

Since R2 ^as same martingale structure as Q2 , the same method of proof as in

Lemma 28 applies. The difference is in the moment bounds of the two summands,

i.e.

E\Vitycm\r = 0 ( h ~ ( r~1)d~r) for 1 < r < 6 , i

and

& K * Z . - y L l '  = 0 ( h - 2(r~1)d-2r) , i * k * m

by (i)’, Lemmas l-(d), 4 and Lemma 17-(b) for 1 < r  <3 . □

LEMMA 31: Under (i)’, (ii), (iii), (iv), (v), (vi) and (viii)

E\R3\r = 0 ( n ~ 2rh <2r~l)d'2r) for 2 <r <3 .

PROOF. Write E \R ,\' £  £  [W?-Wu -W. +£ ( B f f ) } f  using
n r \ *  I i= i j  =/ +i

(3.8). Since

E i r f - l i i  -Ws +E(U{1) I j  } = E { r f-W u -Ws  +£ ( 0 f |)  1 0 = 0  

for / > i  , R3 has the same martingale structure as T3 . Therefore, we apply DFJ 

to obtain
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£ |E  E  +£(w£)}|r
i  = 1  j  =j  + 1

< C ( n - l ) ^ £ | ^  {0 f - ^  - ^ £ ( % 2) ) r
i  = 1  j  = / + 1

£C(n-l)^1£ ( « - O i '1 E  -«5 +̂ (Wfl))r
t  = 1  j  =i + 1

= 0 ( n rh <2r~l)d-2r) 

by (A.5) and Lemma 17-(a). □

LEMMA 32: Under (i)’, (ii), (iv), (v), (vi) and (viii)

E|R4 |r = 0 ( n ~ l rh - r(d+V) for 1 <r ^3  .

PROOF. Write £|/?4 |r < - ^ r £ | E  ~E( ) \r using (3.8). Since
— n i = i

Wti -E{ Wil) is a martingale difference by (iii), DFJ and Lemma 17-(a) give

E \Y ,{W U -£(Rf22)}r z C n ^ ' Y ' E W  -£(Wf) I' ■ 0 ( n  h  -'«'*2>)
i  = 1  i = 1

□

LEMMA 33: Under (i)’, (ii), (iii), (iv), (v), (vi), (vii) and (viii),

E|i?5|r = 0 ( n - 2rh~r d̂+2)) for  1 <r <3 .

PROOF. Using (3.8), DFJ and (A.6),
-  2r

e w * - £ - e
n 4r

n - 1 »

E . E . 1̂i =1 ; =i +1 ^ - ^ ( « - i ) r -1E ^ I . E ^ I 2'iL i =1 j =i +1

LEMMA 34:

(a) £*( K ) = 0, £*( 2V{ ) 2 = 1 , £*( Bg) = 0.

(b) £*( Eg 1 1 *) =£*(Ef2*| 2 *) =0 .

(/nrfer (i), (iii), (iv), (v), (vii), (viii) and (ix),

(c) vT(£*t/* -EU)  =o(( log /I)'3) .
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U n d e r  (i)", (iii), (iv)’, (v)’, (vi)’, (vii) a n d  (viii),

(d) o*2 =o2+o (( log n ) ' 3) , = - E  +o ( ( log n)  ’3) , r= 1 , 2 , 3 .
a ar

(e) E ' ( V ? )  = 0 ( 1 )  .

PROOF. The proof for (a) and (b) is straightforward from the definitions. To prove

(c), write (log n ) 3vT(E*U*-EU) =(log n ) 3 vT(U -E U )  -  ̂ n  ̂ \ TU , thenn

the second term converges to zero a.s. because of Proposition 1. The first term is 

( log n ) 3 vT( U-EU)

= 2 ( log n)>£ Vi + 2 (log n ) ^ (Vj _ y<) +(k)g n ) ^ Y ^  £  ^
r i i = 1  i = 1  \  ^  I i = 1  j  = /  + 1

Since v • and FJ - v f- are iid sequences with means zero, DFJ, Lemmas l-(d), 3 and 

(i) give

p, (log » ) 3 y v .  • p < C(log n ) 9 
' « ,4f "  M3/ 2

P I  (log w) 3 A  F  |2 C(log n) 6h
1 « n

Therefore, Borel-Cantelli lemma and (ix)’ give

2 L

2 ( log 71)

2 ( log n )
n

X v ; - 0  a.s.
l-l

_VI> _ ’'0  a'S-I -1
Lemmas l-(b), (c) and (A.5) give

so that Borel-Cantelli lemma gives

( log n) 3(" r1 £  £  - 0  a.s., .
\ z I » =1 ; =/ +1

which completes the proof of (c). To prove (d), write

a ’2 =a2E ’[ 2<7->vt ( U '-E 'U " )  ] 2 = — E  -  E » _1vT( 6f.
^ / =1 \ = l

i E ( M S  *Vj) +cr~1v, (EU-E*U*)
y =i
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4a 2 A

n hi +vinfr{ lJ J
+ + vT(£ j y -£* t / * ) ] 2

i =1

^ e e < ^  i a '),{E^ E 'u ' ) i , i l w i +Vj)
n  i =1 j  = i  w  j = i  j  = i

+ %ovT(EU-E*U*) m (B.12)

The second term on the right of (B. 12) is a 2 + o ( ( log n) ' 3) since

A n

- T v ? ~«,4f
- ± E { ( 2 ^ ) 2 - ( 2 v , . ) 2} +  7 7 E  { ( 2 v , ) 2 - £ ( 2 v , ) 2 }

n  “  "  i  - 1

+ £ ( 2 v,)

o ( ( log n)  -3) o ( ( log n) ’3) + 1 ,

due to

g | ( 1° g / ) 3 | :  { (2 ^ . ) 2 - ( 2v;. ) 2H 3 < C ( 1°f i? )9 E{ \V, - v , |( \VX I ♦ |v, I) } 3

72 17

by Lemma l-(d) and (B. 1) for the first term,

I ( tog n ) 3 ^  { (2  ) 2. £ ( 2v ) 2} |3 <; C( »og n ) 9
' n fr( n 3/2

by (i)" and Lemma l-(d) for the second term, and Lemma l-(a) for the last term. The

third term on the right of (B.12), apart from the square, is o ( ( log n) ~3) due to

Lemma 34-(c). We shall show the other terms on the right of (B.12) are all

of o ( ( log n ) _3) so that we consider each of the quantities multiplied by

(log n ) 3, dropping the constants. As terms with i = j  are of smaller order and

negligible, typical terms of the first term on the right of (B.12) multiplied

by (log n ) 3 are constant times

• (B.13)
; n - 1 n

(log n ) _ Y  Y  rjy. + y \
- 3 k M  lJ 1n

and
;n-2 n - 1 n

(B.14)

Using (A.5) and Lemma l-(d), E{ Wn  + V2) 2 = 0 (  h ~d~2) so that (B. 13) is expressed 

as
; n - 1 n

( l o g 3n) E  E  [ ( ^  ^ V j ) 2 - E u W i  + ^ ) 2 i n ]
W  i  = 1  j  = /  + 1
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+ ( l o g n )  +P, . ) 2 n _ £ ( ^ 2 + F2) 2] + 0 (  ( ^ n 2 _)  .
n  j  = 2  n  n

The expectations of the first two terms above are zero. Since

E {[(W j  ^Vj ) 2 - E { ( ^ j +V;)2| / } ] [ ( 0 £ -^F/ ) 2 - JE { ( ^ +F/ ) 2 | / } ] )  = 0 

for i and any j  , /, and the summand of the second term is an independent 

sequence, their variances are bounded by

C(1°g ” ) 6  [ n 2E( Wf24+ Vi) ♦ n 3£( Wf|+ F |)  ( V \ ) ]
n 6

and

= o ( (log ” ) + n ° g ») >
n *h3d** n ' h 2**

C d o g  n ) 6 [w 3£ {£(W{| +)/ 2 | i ) ) 2] = 0 ( ( 1° g ” >46)
« 6 n 3h 2d+4

respectively due to (i)", an elementary inequality, (A.5) and Lemmas l-(d), 4. Thus, 

Borel-Cantelli lemma with assumption (ix)’ (which implies h ' 1 = 0 ( n 11 (-d+2)) ) 

gives (B.13) is o ( 1 ) .  (B.14) has mean zero and variance smaller than

C ( 1y ) 6g | £ < £  ( ^ +»$> ( ^ + vk) ) 2

s  C(log n ) 6[n E iW tW ib  + n 2E{Wu Wu W23Wu )} 
n 4

_ (log n ) 6 , (log « ) 6 1 
n 3h 2d+A n 2h d+2

similarly to the above argument so that (B.14) is o (1 ) by Borel-Cantelli lemma. 

Typical term of the fourth term on the right of (B.12) multiplied by ( log n ) 3 is
n - 1 n

C ( l o s . w )6  [n ZE{ ( W12 + V2) Vx} 2 ♦ n 3£{ ( Wn +V3) V,( W2} +V3) V2) ]
n *

C ( l o g n ) _ y ,  £  ^  ^
n 2 n i jH i i

which has mean zero by Lemma l-(b), (c) and variance bounded by 

n 4

due to E{ (Wtj +Vj) Vt ( +Vt ) Vk} = 0 for / ^  / . An elementary inequality and

Lemmas l-(d) and 4 give that the first expectation above is bounded by

CE( w£vt + v\vl) = CE{ F?£( Wf? 11) + V\vl\ = 0(h -d~2)
and Lemma l-(b), (c) and (A.3) give the second expectation above is equal to

E iW ^V ^) =E{E(WnVl\l)E{W23V2\i)}<CE{\Y3\2+\) <C .

Thus the variance of (B.15) is 0 (  0 ° g  ” ) + (log n ) ) so that (B.15) is
n h  n
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<?(1).  S i n c e  vT(EU-E*U*) i s  0 ( 1 ) by  L e m m a  3 4 - ( c )  a n d
. - v 3 n-\ n
v10g n ) y ' (W- +Vf ) has mean zero and variance smaller than

W ^  ( =1 j  =4 +1

C(1°g4 Wj~ S  E  > =°( (l02gr^)26-) ■
71 j =1 j  =i +i 71 71

the fifth term of (B.12) is o ( ( log n) ~3) , which completes the proof of the first 

equation of (d). The second one is straightforward from the first.

To prove (e), using Lemma 34-(d),

E ' ( V ? )  = ^ E  - E 'U ' )  |4
W  i  = 1  j  = 1

£ ^ | ^ { | ( n - l )  v ' ( E 'U ' - E U )  + vT£*f/*|4}

- I

the first term is o ( n "3) by Proposition 1, E*U* = (n  -1) Uj n and Lemma 34-(c). 

The second term is smaller than a constant times

+ <B16>
7* I =1 J  * 1  I =1

whose second term is bounded since

± i \ vi rs£E <iy ,r  + i ) < c  for r ~s+s tB,17)
due to Lemma l-(d) and SLLN under (i)". The first term of (B.16) is equal to

^  E  E  < + ^ ? E  E £  + ^ E E J

A E E E E ^ ^  + 4 E E E E E « «
71 i *1 71 i

and similar method of the proof to Theorem 2 (see the proof of convergence of 

(2.34)-(2.36) to zero) gives the second, fourth and fifth terms converge to zero. For 

the remaining terms, we show more general results than we need here, namely,

- t E E I ^  \'=E\Wn \ ' + o ( h  <'-»*-') for r =  1 ,2 ,  3, 4 (B.18)
W j T*j

and

4 E E E  M  %  r  =E\Wi2W1} r  + o ( * - » « ' for r  = 1 , ?B.19)
W j

(B.18) and (B.19) are used to prove Lemma 37 later. Write due to the symmetry 

of ,
1 n n -  n- 1 n

4 e e i ^  i' 4 e e  ^  r .
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then the right side is asymptotically equivalent to

( o f ' S . t  +a +9 >  + £ i ^ r2  i i =i j =, +i
« « , i»-i «2 v ^ a  . / « \_1

= E E ^ ‘ W  (B-20>
n  H i  \  L  I i =1 j  =i +1

where Q  =£( |flg |' I*) and Q, = |B£ |' -  Q - Q  ~E\Wn\r • Since

Q  is iid with E ( Q )  =0 and |Q  | <C( |Y;. |' + l ) h -«-»<*-' by Lemma 4, 

setting . and using DFJ,

E \ l2*E |A c-i>— Q | «
«  i  = 1  r t  ^  i  =1

W P E)r + D = 0 ( n < 2< » 2) ,

due to (i)" and SLLN so that the leading term on the right of (B.20)

is o (h  (r 1)d r) . Similarly, £ ( 612) =0 anc*

4 ' 1  f e  a  }’ ■ - e&>

C h 2lr~')dt2r E\Wn  12r = 0 ( n  -2h -a>
n 2

by (A.5) so that the second term on the right of (B.20) is o (h  <r~l'>d~r) . Thus 

(B.18) is true. To prove (B.19), we only show a bound of its typical term

- r E E E I ^ r -  Putting
W  i < j  < k

Rijk l^fy tyk  |r > Rij ~ E (R ijk  I1' » j  ) , Pjjk ~ R'ljk f y  Rik + ^123) »

" f E E J  l "5 ^  l'

(B.21)

The first term times h 2(r 1)d‘2r has mean zero and variance bounded by
n-2 n - 1 n

E £ ( . E  E p p )2
g fo  4(r-l)d+4r

n 6 i = 1  j  =i + 1  k=j +1

n n n -1 n »-l n

+ E  E  ^  E  E  ^ijk ) ( XI E  ^Ijk )
i  = 1  /  j  =i + 1  k=j + 1  j  ^ + 1  k=j + 1
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r 'U  4 ( r - l ) r f + 4 r  ,,

s - —g-------{nE{R^) + n 2E(Rm R1M) }
Yt

n  If 4 (r - l)d + 4 r
< ------------ {nE\Wl2Wl3 |2'  + n 2E\Wu Wu  |' T J

= O

n 6
f 4 (r  - 1 )  d+Ar fa A {r-\)d + A r  '

= 0 ( n ~ 4h ~2d)
^  n 5h 2 (2 r -l)+ 4 r  „  4 / j  2 ( 2 r - l ) + 4 r

due to Holder’s inequality and (A.5), so that it is o (h~2{r~l)d~2r) by (ix). 

Rewriting the second term of (B.21) as

[ D 1 £('*-* _1> E  I* +1> )
\  J  I i = 1 j  > i

E  W R i j  -£(-R.23>} .
\  0  I i = 1  j  >  i

the first term times /z 2(r_1)^+2r has mean zero and variance bounded by
r h  4 ( r - l ) < * + 4 r  0  2 ( r - l ) < Z + 2 ri* — — £(i?f2) < _— E{\wn|2'( |y,r + 1)}

11 C h  Z(.r-l)d+ 2r  W
=------— ------- E{ \YAAr + \ ) h < 2r- v d~2r = 0 (n ~ 2h - d)

n 2
using Lemma 4 repeatedly so that the first term is o (h  ■2(r_1) ~̂2r) by (ix)’. The 

second term is handled similarly to the first term of (B.20) using

E i h ^ ' - V ^ ' E i R i j  |j ) }2+5 < C E [h (r~l)d+rE{ |Wg |r ( \Yt \r + 1) |j } ] 2+* 

<CE{\Yj  p « '  + l} = 0 ( 1 )  , 

under (i)M and so it is o (h~2ir~l)d~2r) . The first and second inequalities above 

uses Lemma 4 and E( |Wf2̂ T T |2) =0{h~^r~l)d~r) shown similarly to Lemma 4.

□

LEMMA 35:

V*- V*(m) a n d W * - W * ( m ) are independent o f (ATT, Y [ ) , •••, 

(Xm , Y ^  conditional on (AT, Y{), -  , (AJ, Yn) .

PROOF.

The proof is straightforward. □

LEMMA 36: Under (i)", (iii), (iv)’, (v)’, (vi)’, (vii), and (viii),

\E*( B f a W )  | = |E( | + o ( l )  = 0 ( 1 )  .
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PROOF. The second equality is immediate by (A.4). Writing

E ’( W^V[Vl) - o ' lE '(  - 2E '( V,"2V2") - a ' - ' E ' v ^ U ' E ' i V ^ )  ,

the last two terms are zero by Lemma 34-(a), (e) and the first term is

-E £ 0 H v ' ( t f * - £ l / ) } { v ' ( £ £  - £ 1 0 1

“ +V,+Vj) (W*+V,+Vk) (Wf +^ +K()
plus smaller terms involving o*~3 -o~3 and vT(E*U*-EU) , which are 

o ( l ) .  Expanding the summand of the right hand side, the dominating terms are

(B.22)
n  i = 1  j  = 1  k = 1 I = 1

and

A E  E  ^  ^ W f 2K,K2) + ± £ i lW jV ivj -E( } . 0.23)
n  i =1 j  =1 f l  i =1 j  =1

The absolute value of the second term on the right of (B.23) was shown to converge 

to zero in the proof of Theorem 2 when the normalizer is n ( n - 1) instead 

of n 2, which however does not change the asymptotic result. Rewriting (B.22) as

we can easily show that the first term is o (1 )  by Borel-Cantelli Lemma since it has 

mean zero and variance bounded by Cn^E^W[1 W2 W3 ) = 0(n~4h~2d~4) by 

Lemmas l-(d), 4 and we can handle the second term similarly to (2.34)-(2.36) to 

show it converges to zero. □

LEMMA 37: Under (i)", (iii), (iv)’, (v)’, (vi)’, (vii), and (viii),

(a) E*\V&\r = E\Wn \r + o { h - ( r-l)d~r) for r= 1 , 2 , 3 , 4 .

(b) E*( IWiWsD < 0 { h - 2̂ - l^d-2r) for r= 1 , 2 .

PROOF. To prove (a), write using an elementary inequality and Lemma 34-(d), 

E ' m  -E ' \o '~ l vT( Uh-EU)  I' < q  IvT( E ‘U'-EU) \r *E '\V{\r +JS*\Vj\r 

+E‘ \vT(U n-E U )  \ ' - ' { \ v \ E ' i r - E U )  \+E'\V'l \+ E , \Vl\}'\ . 

\vr(E'U*-EU)  T +E'\V{\r *E'\VZ\r = 0 (  1 ) by Lemma 34-(c), (e).

We have a *"1 = <r_1 + o (1 ) and, using an elementary inequality,
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£ > ‘V (  £ & -£ !/) r = - ^ E E  |a-‘vT(£^ -EU)  |'
f t  i =1 j  =1

= ^ E E I Wj + ^ r
I* i = 1  j  = 1

- i i t t n  r +o ( - ^ E E i ^  r l \ y , * y j \ * ^ t \ y i n .ft i^l j  =1 f t  i =1 j  =1 n i =1

where we can show

- \ e e i ^  r ' M + V i i ^ E W u r ' w s v ^ o d i - ^ - w - * )
f t  i =1 j  =1

similarly to (B.18) and the expectation is 0 { h  -u-Dd-{r-\)^ Lemmas i_(d) ancj 

4 so that, using (B. 17), the last term in the above is o ( h <r- ^ d~r) . The first term 

is E\Wn \r + o ( h < r~l)d-r) by (B.18).

(b) Similar manipulation to the above gives

E* |Bf2*Wf3 |r ^  |W£ Wfc |r + smaller order terms.

Apply (B.19). □

LEMMA 38: Under (i)", (iv)’ and (viii),

= 4 ( ‘ < ) 2£(Wf2K1K2) + o ( ^ )  + •
ft ft \ n l n 5,i j

PROOF.

Write a — TTjK  ■ n 1' 1
£*[ W u w l(t) h>2*( t ) ] =£*[ Wf2 {h>i\ t ) -1} (w2( t )  -1} ] by Lemma 34-(b)

= £* [flf2*{( e ' '  c:- l ) (e '■' CM ) -(i t CD (i t Ci) }] +£*[ Wi( i t Cl) (i t CD ] 
= £ •  [wg{(e “c:- l -i t CI) (e  “ti-l-i t CD *i t Ct(e“c5- l -i t Cl) 

n t Ci( e "  c:- l  -i t CD}] + £*[ Wi( i t CD (i t CD 1 
= £*[ Rfe*( i t CD (it Ci)] * 0 {E* |Wf2 11! Cl I211 Ci I2 + £* |Wf2* | \t C I2 |f Ci I) 
=  ^ i l ^ E ' ( W ^ V l V i )  +  O  f  £ '  I W f 2- 1 1  k ;  12 1K 2- 1 2  +  £  •  I R f2* 1 1 K ,*  12 1 K 2- 1 '

7Z ( « z

+ o fi-J f i*  l»S 11*7 |2 |k2* |2+ J y i £ *  |Wf2* I K  I2 |K2 1'
V n 1 ft* '1

by Lemma 3. The fourth equality uses (2.6). By Holder’s inequality,
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£*|Rf2* | K | 2 |F2*|2 s { E ' |H f2' | 3}1/3{£:*|Kl3£ * | ^ | 3}2/3 sCh~>4~1 .
The last inequality is because of Lemma 34-(e) with (iii) and (i)" and 

E* |Wf2 \3^ C h  ~2d' 3 due to Lemma 37-(b). Similarly,

E'\Wn\\v;\2\v;\ < |B *|H f2*|3| I/3|E * |K |3£ * |^ 2 l3/2}2/3 ^Ch ^  1 . □

LEMMA 39: Under (i)", (iii), (iv)’, (v)’, (vi)’, (vii), and (viii),

V(Ow*z(Oj = h-d-2K2+o(h~d-2) + O n U2
PROOF.

£[H f2* V (  t ) w ; ( t ) ] =  E' (  Wf2* 2) + £*  [b £  2{e ' ' (c:*c5) -1}]

= £ • ( % *  2) + 0 (E ‘ | ^ 2* |2 |t CI |) by (2.6)

1/2
£*|Rf2‘ |2 |Fr|= £ * ( % * 2) + 0  

By Holder’s inequality, Lemma l-(d) and 4-(a),

E'\Vfe\2\V{\ s(E*|Rf2 |3)2/ 3(B * |K |3)1/3 s C / f 5 

Apply Lemma 37-(a) and Lemma 12.

d-2

□

LEMMA 40: Under (i)", (iii), (iv)’, (v)’, (iv)’, (vii), and (viii),
/  1^ 13 \

E' Bf£Wf3V ( t ) w2*(t ) w3*(r ) = O

PROOF. Using Lemma 34-(b) and (2.6),
Kn 3l2h 4rd+ 2

E* = E*

= O

Wf2*Wfj*( e "  c‘- l ) ( e “ c’- l ) ( e ‘ ' CM )

o [ E ' { \ m \ \ w » \ \ t  ci i i t  ciii* c ; d )

i y i£ * ( |F ? 2* | |Hf3 |K | |K2 | | K | ) '

By Holder’s inequality, Lemmas 34-(e), 37-(a) and (A.5), 

£*( |Wf2 ' | |Bf3 ' lKl l^ | |K3*|)

<  (e* |wf2 13)17 3(e* 1̂ 3* i3)1' 3(E*|K,* |3e * \v;  \ 3e * \v ■; i3)1' 3

S C A " ^ ' 2 □

LEMMA 41: Under (i)", (iii), (iv)’, (v)’, (vi)’, (vii), and (viii),

E* ) W2*( / ) W3( / ) W4*( t )

185



PROOF. By (iii) and Lemma 38,

) w2*( t ) w3*( t ) w j ( t )  = |e*[ Wf2‘w,*( r ) w2*( r )]  |

= m o l #  ♦ 0 ( I i )  + o ( (  £ i i )  /**
Apply (A.4). □

LEMMA 42: Under (i)", (iii), (iv)’, (v )\ (vi)’, (vii), (viii) and (ix)’,

E ' \ W ( . m ) |3 =0  (
n 2h d*2

inparticular E ' \ W ' \ 3 =E*| iP*(n- l )  |3 = o ( ( n -*/»' i ’2) ») .
n

PROOF. Writing a reverse martingale difference

W*(nty =W*(rri). Taylor’s expansion and W*(rri) -W*(m-1) =n 1/2| ” ) »

give

| l P * ( w $  |3 -  \ W \ m - l )  |3 = 3i«M ( W , ( m - l ) ) W \ m r l ) 2n l l l I ^ Y 1S i t „

+ 3 \ W*(m-l)  + 9n 1,2| ”  j ‘Sj 'nl fn 1/2| ” ) „ } 2 , (B.25)

for some 0€[O, 1] . Since W*(m-1) does not involve ( X \ Tf Yi)  , taking 

conditional expectation of (B.25) given ( X { , Yx) , ••• , (X^, Yn) using (B.24), we 

have

E*\W\rri) \ * - E * \ W \m - l )  |3

The last inequality uses Holder’s inequality. For i - 1, ... , n, Lemmas 34-(b), 37,

j =t +1
sequence, i.e.

E ' ( s ; , „ \ i + V ,  •••,»*) =0  

due to Lemma 34-(b).  Put  W*(rri) =n

(B.24) 

Sm-k+t,n » then

3£* \ W \ m - \ )  + 9n112\

E ' \ W ( m - l )  IS/,

E ' { W ' ( m - 1 )2) {£*(S;,1)}
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(A.5) and (ix)’ yield

e\ O .  = £  E'( v f 4) + 6 £  £  £*( K  2)
/ '  = i  + 1  j  =i +1 k=j + 1

C { n E ‘{ Wf2* 4) + n ZE \  Wfe* 2Wf3*2) } = 0 (  n 2A -2(<'*2)) (B.27)2 T i r *  2

so that Jensen’s inequality and (B.27) give 

E ' \ S i n \ ^ 0 ( { n h -d l ) 5' 2) ,

£*(5 , :„2) = 0 (n h  ~d~1) .-d -  2 >

The first wave bracketed term in (B.26) is equal to
f / .1^-1 12 . . o m

e ' W ' W !  S 5 " * +I-" “ " ( S )  £ £ , ( S '* ; )  = 0 (
m

(B.28) 

(B.29)

) . (B.30)
n  2/ i d+z

The first equality is due to E*{ S*tnS*tn) =0 for i **/ by (B.24) and the second 

equality uses (B.29). Substituting (B.27), (B.28), (B.30) into (B.26),

E * \W \n §  |3 -E*\W*(m-\)  |3

m
n n 2h d+2 ) 1/2(

n
h  2(d+2)

) 1/2 + 1 n  )  3 / 2  I
n  3 /  2 ^  </+2

=  0 m1/2

K ( n 2h d+2) 3/2

Solving the difference equation, we get W*( nfy =0  (
V

equation follows immediately from the first.

m 3 / 2

n 2h d+ 2
The second 

□

Appendix C

Here, we show how some of the terms appearing in the proof of Theorem 3 

can be expressed. For 1 < m < n - l  ,

(a) E ( B ' e ‘,b )̂

■ - 1 , ( . )  ) « { < .  1 *  »g )  • 0 ( ^  ^  ) )

[ « 1/2 n
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- { y( O  }n~2 

+ {YCO}"-3

{m  v?) * m  W u V M ) } + o ( 1 I3 + .l L )
n n

O i * M < k  t 1 1 1 4+ | 3 \

n n  3 /  2 h  d+2 n 3fod+2 ^ 5 / 2 ^ < i + 2  ^  2 ^  </+2 J

• f I CfTl  ̂ \ 177J-4
n 1/2/i 

Cm

Iy( 0  I'

(d) E \62X  < ,Cm ( + A )  ,

(e) E\B

n 3h l i *i' n 2 

C m
3ml "■ n 4A 3J+6 ’
/ 12

(f) |£S"en„ itB.ml  < C n 1/ 2
h 2 IyCO Im- 5

PROOF.

(a) Write 

E ( B ' e i,bl) = E ( T V e i,bl)

= E(Tl^z'£Vje“h>) +E(T2l ='EVjei,b>) + £ ( r , - M ^  K e "**) 
Vfly-i 0 if=f

= M ) +( £ ) + ( Q  • (c .i)

Thus

= " ^ 7 T ^ £ < ^  E ^ * " * 2) • (C.2)( / i - 2 ) zj *  / r f  '

Due to (iii), (2.6), y ( t ) = E(e ^  x) t 42i(F2) = j 2 , (3.8) and Lemma 1-

(d),

i t u  i t  -2 — V; i t -1— E  Vu
E ( V j e ,tb2) =E(Vje ^  J) E(e  )

it-l-V i 2 F  1 2 F 2
{Y( O  }«-l

' , Y < , ) I  i 2 i p " ‘ 0 ( i r *  J J r i 7 r ) }  < = ■ »

Substituting (C.3) into (C.2),
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" * > { 2 ^ * ° < T T * ■ £ & > }

 iLl  +  L l   O. V 1̂ L \ 1
n 2h d+2 n 3/ 2h d+1 nh d+1 J

(C.4)

= _ { ye f ) I ”-1 f l u f f y )  + o (

Now, we write ( B) = ( B ) 1 + ( B ) "  where

' £ ' E E ( 4 V r s*+8Vj )Vke(B) "   ------1 , ,v '  „ ! /2.»* *> j k^j

it-±-  2 K / «1

The summand of ( 5 ) '  is, using (2.6) and Lemma l-(d),
„ ~ / / JH it —=— S K;

2+8 F!)F ,e  ^ } £ ( e  )
2K,

= {y( i  ) }n~lE {(4V^-s  2 +8 F ,)K ,e "  ^  }

= {y( t )  }"-l(4£( P?) +8£( Wf2K,F2) + 0 ( -1 1 )
n

Substituting (C.7) into (C.5),

{Y( 0  }”"M4E( FO +8£(Wf2^ i^ 2) +^ (( B ) ; = -• 1
n ll2s 3

For j , the summand of (£ ) " is, due to (iii),
n 1/2

i t  2<y i*y2> i t —  S K,
£{(4F?-.y 2+8V1)V 2e }£(* )

2(K,+V2)
= {Y(O )"~2£{ ( 4 Kf-j 2) +8 K,) V2e ^  )

r2 - . 7 . u E X   it "»
= ( Y ( 0  V 2E {(4 V i - s  2) +8 Kj)e v*.}£(K2e v&)

K , 1
= {Y( O  }n- 2 £ < (4 P f - i  2 + 8 K,)(e  v ^ - i _ , - , _ L ) l

I V?w J
+i / £ ' _ l L ( 4 F f - i  2+8 K,)

y/ns

J 2V1 V  \ 1/2
K2( e  ^ - 1 - i f — 2

= { Y ( 0  }
n-2 i t E - ± - ( 4 V ? - s 1 + 8V1) + 0 ( H )  

y/ns n

i t ^ L  +
y/ns

o {  H )n

= { Y ( 0 }n-2 {£( 41?) +8£( Rf2K,K2) } + 0 ( M )
V7W w

i t s
y/n

O ( M )
n

(C.5)

(C.6)

(C.7)

) • (C.8)
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= { Y ( 0  } n-2 {£( 4 Fj5) + 8E( Wn V,V2) } + 0 (  j y i  + M )
n n ilL n l

(C.9)

by (2.6). Therefore, substituting (C.9) into (C.6) yields
( B ) // = n ( n - l )
V n 3/2s 3

{4£( f? )  + 8E( wl2v y 2) } + o( jy i 4 M )
w n *1 L

( Y ( 0  ) ” ' 2 .(C.10)

By (C.8) and (C.10),

f Y ( t ) } ' - 1 l 4 E ( r ? ) 4 8g(B f2K1F2)
3 |  n 1/2 «

(5 ) =
s

{ Y ( n }B-2 ( i t ) 2
s 3 t i " 2

1 2+ k I3 . * 4+ Q( * 1 1  + (C.11)n 723/ 2

Now, write

-  " 21 ,1: , «  ^  ^  “  '•>

= ( C ) / + ( C ) // + ( C ) ///.

Using (iii), Lemma l-(d), E( Vj) =0 and E( Wkn) =E( W ^ k )  =E{ ̂ |m )  =0 , the

summand of ( C ) / is
f _ i t _L .(k1+k2+k3)1 / , -A. s ^

£ W 2K3e ^  \E(e v*i #1.2.3 )

{
;, _JL(K,+K2+K))

Wf2F3e ^  Y ( 0  }”~3

= { ^ ^ ( e  "  4 * - l - i  t E ± ) ( e ‘' ^ - l - i t  E l )
[ y/ns y/ns

A ,  _  „ « L  2 F
4 ( i r ) 2^ £ (  Wf2F,F2) 4 ( i t )  - i - £ {  ^ 2Ft( e v*  -1  - i  t  ± 1 1 ) ,  

ns 2 yfcf
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0 _ itJtLL 2 y
+ ( /  O  - ± - E {  Wn V2( e v® _i

y/ns y/ns
iv ,

' ' - 7^  2 K  ? ,£{K(<? ^ - l - / f  1 > t i * \ l  T?/ t^2>
V^s

K { y( O  }"~3

= k i t ) ns
;E{Wl2VxV2) + 0 (

n 2/ i rf+2 n 3/ 2/ i rf+2 

rt-3

)

( i o - j - s c j f )  +o ( i i ) j { Y ( o }

The last equality uses (2.6) and

£ | ^ 2F f F | |  S { £ | ^ 2 I3} ‘^ ( E I F ,^ ! 3) 2/3 < C h  ^ 4 2 = 0 ( h  ^ ’2)

due to Holder’s inequality, Lemma 17-(b), (i), (iii) and Lemma l-(d). 

( C ) '  = i V ( Q }w~3 8w(w-1) (n -2 )
n 5 / 2

JLl;
n 3h d+2 n*t2h d+2 n 2h d*2)

_ {Y ( P  }
„  3

n -  3
[ o f  JL Ji + _ L 3 Y

72
(C.12)

v *- n 3h d+2 n 5' 2h d+2 n 2h d+2 

Here we use, due to (iii) and Lemma 16,

E(Wn V{V2) =E(Wl3W23VlV2)

=E[E{Wn Vx\3)E{W2ZV2\^)] =E( V,|2) < C  (C.13)

The summand of (C)" can be expressed as follows using (iii),
11

E{ WytY'fi '/™ ) =0 , Lemma 17-(b) and (2.6).

= {Y { t ) V - iE{Wa Vie
it _ f _ ( K 1+K2)

= {Y ( 0  }n~2E i

n -2 f 2i t

2V. 2V,
1 1 ----   i t 2V,Wn Vxe ^ ( e  v® -1  - i t  + i L L ^ y y

■/ns -/ns

= { Y( O  }
■/ns

E(Wn VxV2) + 0 ( It I2
n/ j1,42

Thus, using (3.8) and (C.13),

(C)"-//_  tY(<)} n - 2

. 2 ± L e (Wv2VjV2) + 0( H n )  
w [ n^ * 2

= {Y(Q I" 2 0 (  J H  + t 2 }
s 3 w n 3l 2h d+1

(C.14)

Similarly,
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(O /// = {y( 0 .10— o { + —-———) . (c.i5)
V ; 5 3 n n 312h d+2

By (C.12), (C.14) and (C.15),

(C ) = ( C ) '  + ( C ) "  + (C) ///

.  {Y ( t ) }3 o It l3 + It I + t 2 + t 6 + |t | 5 + r ^ + j t j 3 ''

w w312h rf+2 w **+2 w 2/ i rf+2 n 2h rf+2 J
(C.16)

Therefore, by (3.8), (C.l), (C.4), (C.l l)  and (C.16),

E(6lei,h>) = M ) +( B ) +(C )
. - m o  ) - { . • .  l a m f i  . o ( j i L ,  .  J L t f ,

[ k 1/2 n

- {Y(*) ) ” 2

+ { Y ( 0  J" 3

i i i j L  {4£( K3) ♦ 8£( Wf2K,K2) } + 0 ( 1 + J f I + - L _ )
w11 * ti n 1

0 r u is - 1* i . * 2 . < 6 . \t i5 . t 4 +i<i3^
n n 31 zh ^+2 n 3/z ^+2 n ^  2/i ^+2 w 2/i **+2 /j

(b) Writing, using (3.8) and (A.5),

~  \ n m m n

+ - m  E E  W d j v * ‘,Bl  l + E  E  I% d j V ke UB”) I
W [_/ =1 k = 1 j  =1 /c=m*-l ,

^  [ r t - 1  n m m n n
C  J r '  I 1 7 /  -  T /  .  I , T - 7  I 7 7 /  -  T 7 ~ i t B„+ -171 E  E E ^ / . ' l l ^  E  E  |£(<^e"*-)i

W [ /  =1 k=j +1 s =1 j  =1 k=j +1 s  =my\
r  n n  y ) m

E E  E l  E i V ^ K e
j=  1 k <  s =1

n  m (>) «  0 ) /i

+ E  E  E Ey =i £=i / =/c+i s=w-i

n 7' 2
l0 ) n U) n

, e " B")\

n - 1

(C.17)

• . p  i t  — - — V :  I t  (  — “—  U V u  + b ‘i  ~ b * m + t ) 2

\E(Vj e “ B*l) \  = \EKVje ‘)E{e  }|

s £|PJ.||y(0  r 1 (C.18)

for / =1, — , w, since b 3-b }m* £ 2 - 2m+5 2 - 6 3m is independent of F,, — , Km . 

For j < m  , fc < w and j *  k  ,
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£ I 1 — Z K. )  i I —  X V,
= \E[djVke J '■” > ] | | £ { e  } |

s £ | d yK * | | y ( 0  r 2 • (C.19)

For / =k ,

VS* *9#

£  £|rfy FJ. 11Y( t )  r 1 < E\dj Vj IIY( t )  r 2 . (C.20)

For j  and k 3 : m  1 ,

\E(dj Vke uS’) |

= ^  /wl ] | |E{e  v?r,/*

<E|dyvk\iY( o  r 1 ^ ^ m i y ( o  r 2 •
For / > m+1 and k < m  , similarly to (C.21),

\E(djVke “ B”) | < £ | d yFt | | Y( O r 2 

Therefore, by (C.19)-(C.22) and Lemma 18, for all j ,  k, 

\E(dj Vke u ^ \  <E\djVk \ | y ( O r 2 

Similarly to the derivation of (C.23), for any y, k, /, s,

|E ( e jk Vse “ S")\ * E \ e jkVs \ | y( f )  | -» .

\E(Vj WklV ,e i,S’”) | | y ( r )  |»< .

Substituting (C.18), (C.23)-(C.25) into (C.17), using | y ( 0  | ^  1

\ E ( 6 ^ uS”) | s C | y ( 0  I*4 *

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

5/2

m  n nn - l  n m

E  E  E ^ l ^ l + E  E  E £ le;*^l
V  =1  k=j +1 s =1 j  =1 k=j +1 s =m\

n 7/2

( ; )  m O') n
E  E  E £ W K*I+E  E  E  E EW V.\

J  =1  ic<I i = l  j  =1 £ = 1  l =k+l s =nv-1

(C.26)
n - l 0 ) «

+ E  E '  E  E ^ ^ m
j  =1 k=rr* 1 /  = F -1 j  = w l /J

The summations in the square brackets have the following bounds.
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m
^ E \ V j \  < C m  by Lemma 1-(d). (C.27)
; =i

n m m n m (j)

E g W * !  - g ^ lW  + g  g  *W I <c-28>
< C( m+ mn) by Lemma 18.

m n
£ |^ ;- ^  I ^ C m n  by Lemma 18-(a). (C.29)

j  =1 s =m-1
n-l « m n-l n m(j,k) m n

E E E £ k / . l  = E E  E  I + E  E  I
j  =1 k=j +1 j  =1 7 =1 k=j +1 j  =1 7 =1 *=; +1

m -1 m

+ E  E £ K*ni
y =1 *=y +i

< C { m n 2 + mn+n^)h~2 (C.30)

by Lemma 20, 01,12> ,,r) denoting summations excluding
5

s  - i  i 2 1 9 i  r ’

m n n m n n (j) m n

E E  E ^ / . ^ E E  E  £ ^ ^ l  + E E £ lej»ni
y =1 k=j +1 j  =mt-1 7 =1 k=j +1 j  =wl 7 =1 k=j +1

< C (m n 2 + mri)h ~2 by Lemma 20. (C.31)
n n (j) m

E  E  E £ I ^ F>I
7 "  F T  s  =1

/» n (;) m ( j*k , l )  m n (j)

= g  g  g  g  £l ^ l
n m (j) n "*(;)

+ g  g  * W ^ l +g  g  *1*5^1
< C { m n 3 + mn2 + n ^n )h~ l (C.32)

by (iii), Lemmas l-(d), 19 and (A.5).

« m0 ) n U) n

E  E  E  E ^ - ^ l
; = 1  F T  /  = F l  j=m t- l

« m O') n 0 ) n (7  . / )

= E  E  E E
7 =1 F l  /  = F l  i  =/n*-l

» mU) n O') » m 0 ') n O'>

+ E  E  E  £ | ^ I  + E  E  E
j  =ntf 1 FT  / =Fl 7 =1 /c=1 / =Fl

< C ( m n 3 + mn2)h~l (C.33)

by (iii), Lemmas l-(d), 19 and (A.5).
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m " (> ) n

E  E  E E\ W klK\
j  =1 mzk,<l s =m\

m n (>) n (k , l )= E  E  E  |E|u& p|K, i
7 =1 nrzk<l s =my 1

m » (; )+ E  E  iWjWuV^'E^WuV^)
j  =1 m<k<l

< C( mn3 + mn2) / i _1 (C.34)

by (iii), Lemmas l-(d), 19 and (A.5). Therefore, substituting (C.27)-(C.34) into 

(C.26), using l < m < n - l  ,

( m + mn mn2 mn3 ^
Kn 3l2hd+2 n 312 n 5,2h 2 n 1,2h ,

(7
s ^ 7 ^ I V ( O r ,  (C.35)

the third term in parentheses dominating the others for sufficiently large n by 

assumption (ix).

(c) Using (3.8) and (A.5), we start with writing 

S C  1 imxr? . HB,
1 1

1 f m n _ n m n

+ - y  E E  W dJw* e I+ E  E  E  e IW \ j  =1 / <j j =m+l I =1 j  =7+1
H ( m n n _ _ n m n __

| £ ( ^ e |+ E  E  E  l£( ^ ^ e I
nKj <k i =1 j  =/ +1 /

(C.36)

Similarly to (C.23)-(C.25), for all y, k, /, 5,

| <£|W£ | |Y (0  | - 2 , (C.37)

|E(djWb e "*■) | < E \ d ^  | |y( 0  r *  - (C.38)

\ E (% W b e i,S">)\ ^E\W^Wb | | Y ( O r  - (C.39)
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Substituting (C.37)-(C.39) into (C.36), we have, due to | Y( O  | < 1 ,

s C | y ( 0  |m-4
n 5l2h d+2n i  stri\

1 n  n m n

* (  m  n  n  „  n - l  n  m

‘  S w  ' I I

Applying (A.5), Lemmas 21 and 22, and (ix),

| E(5>j  " * )  I < C |Y( 0  I*4! , * mrr 1
n 2h d+3 n 512h n 2̂ 2

mn mn3 \

h d+3 h 3

= Cm | y ( 0  r 4 

^ Cm

1 1 1

n ll2h 3

(d) Write, using (3.8) and (A.5),

n 312h d+3 n ll2h n 512h d+3 n l,2h 3,

i Y ( o r  .

e \b2S  £  C
n  m

i =1 i  = w l

m u* m #* r r*  r /»

^ i2+^  £ i £  e  +* i e  e  ^ i2
1 . n - l  n  m

+ ̂ I£IE E E ^ I 2+*IE E E e >i K \2i =1 j  =i +1 s =1 i =1 j  =i +1 s =wl
n m ( i )  n ( O  n
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n - l ( «) («)  »

+£IE E  E  E ^ * W
i =1 /c= w -l /  =k+l s= m  1 /J

•f I r» rr» r» rr» \ r / f* \  /  r»

*^h5su,s^«K-|,*E|si; ,5, ,s,
(C.40)

We show bounds only of some typical terms. Since V{ is an iid sequence
m

with zero mean, due to Lemma l-(d), E V i |2= mE\Vx |2 < Cm. Writing
»=i

n  m

£ | £ E < W
m  m - 1 m  m n ^

~  ' ‘ -  (C.41)
J =1 J  =1

<c
m m - 1 m  m n

£ I E W +£IE E  W + s i E  £  <*,k.V *' =i . . . . .J  =1 i =s +1» =1 s =/ +1

the first term in parentheses is bounded by

mE\d̂ Vx |2 + ntm-1 )E\dlVl \E\d2V2\ ^ Crri2 (C.42)

due to (iii) and Lemma 18-(b). Since di and Vs are iid with zero mean,
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m-1 m m-1 m
£ |E  E  d' vs I2 = Y,E(d?)  £  £(*?) sCm2 (C.43)

i =1 5 =/ +1 1=1 J =i +1
by Lemma l-(d) and (B.6) under (i)\ Similarly, using Lemma 18-(a),

m n m n
E  IE  E  di K  I2 ^ E  E  E(df)E{Vf)  < Cmn . (C.44)

s =1 i =s +1 s =1 i =s +1
From (C.41)-(C.44),

n m
E \ Y , Y , d i VA 2 ^C{rr?+rmi) .

i =1 s =1
Similarly,

m n m n
£ |E  E  di VA '  = Y , E i d?) E  E(Vf) <Cmn.

i =1 j  =m\ i =1 s =mt-l

We next consider
n-l n m j m-1 n-l n m n
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Due to (iii), E{ e - \i)=E(eij \j ) =0 , E{VS) =0 and Lemma 20, the triple 

summation terms on the right of (C.45) is 0 ( (m 3+ nf,n+mn2) h ' d~4) . Using 

Lemma 20 and Holder’s inequality, the second term in (C.45) equals
m n m-1 m n

£  £  FJ)2 + 2 £  £  £  E (eI? Vj e kj Vk)
i =1 k=i +1 j  =ic+l
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Similarly, the fourth term of (C.45) is 0 (  m3h ~d~4) . Using Lemma 19, as above, 

the terms involving Vi WklVs in (C.40) are Of ( m4 + m3n + m2n 2 + mn3) h ~d~2), so 

by (ix)

n 3
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n 5
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Q

+ —  ( m4 + m3n + m2n 2 + mn3) h ~d~2 
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(e) The derivation is similar using (A.5), Lemmas 21 and 22. As in (d), we can 

show
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1 3ml n 5h q  n 5
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< C m
n 4h 3d+6

(f) Write

\E6?e " B"“| = \EQWei,B"\ <; \EQfte . (C.47) •

By (3.8),
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Using (i)’, (iii), Lemmas l-(d), 4, (B.5) and (A.5), the first expectation of (C.48) is 

bounded by

C E U l^ M ^ I  + l)  \Wn \)E\W„\<Ch^  .

Using (i) \ Lemmas l-(d), 4, (B.5) and (A.5), the second expectation of (C.48) is 

bounded by
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s C A - ^ d y j + l ^ l  + D C i y j  + DI H&l l  .

Similarly to Lemma 15 and (B.9), [+£-|Y f^2 1 +S|yr1Yr2Hf2 | = 0 ( /t  -1) so

that the above quantity is 0 (h  ~2) . The third expectation of (C.48) is bounded by 

C E \V M l\+E\VJVn \ < C (A ^ -2 + /i-‘) = 0 (A -rf-2)
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due to Lemmas l-(d), 4, (A.5) and Lemma 16. Therefore,

The second term of (C.47) is bounded by, using (3.8),
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by (i)’, (iii), Lemmas l-(d), 4, (A.5) and Lemma 15. Then apply (ix),
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