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Abstract

First, the time series analysis was widely introduced and used in the statistical world. 

Next, the analysis of spatio-temporal processes has followed, which is taking into account 

not only when, but also where the phenomenon under observation is taking place.

We mainly focus on stationary processes tha t are assumed to be taking place regularly 

over both time and space. We examine ways of estimating the parameters involved, 

without the risk of coming up with a very large bias for our estimators; the bias is the 

typical problem of estimation for the parameters of stationary processes on Zd, for any 

d > 2. We particularly study the cases of spatio-temporal ARM A processes and spatial 

auto-normal formulations on Zd. For both cases and any positive integer d, we propose 

estimators th a t are consistent, asymptotically unbiased and normal, if certain conditions 

are satisfied.

We do not only study the spatio-temporal processes th a t are observed regularly over 

space, but also those, for which we have recordings on a fixed number of locations 

anywhere. We might follow the route of a multivariate time series methodology then. 

Thus, the asymptotic behavior of the estimators proposed might be analyzed as the 

number of recordings over time only tends to infinity.
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Chapter 1

Introduction

Spatio-temporal statistics is related to taking observations of a phenomenon at different 

times and different locations. It generalizes the notion of time series, by talcing into 

account the space where the phenomenon takes place too. This implies that, in addition 

to the time axis, at least two more dimensions are added in the analysis, depending on 

whether the process takes place on the two or three-dimensional space. Thus, spatio- 

temporal processes are an application of the processes th a t take place on a d-dimensional 

space or processes with d-dimensional indices, where d is any positive integer. Nowadays, 

the statistical analysis of spatio-temporal processes has become very popular. It can be 

useful, for example, in geographical information systems, in meteorology, in seismology, 

in physics or for environmental applications over space and time.

It is very common for spatial statistics to record observations regularly over space, 

as it is for time series. As a result, it is meaningful to study in advance the theoretical 

spatial or spatio-temporal processes tha t take place on Zd, i.e. the regular d-dimensional 

lattice. Chapters 2 , 3 and 4 altogether study at length some processes tha t take place on 

Zd. Section 2.2 generalizes the concept of unilateral ordering of any two locations on Zd, 

as this was introduced first by W hittle (1954) for d =  2 and continued by Guyon (1982) 

for d > 2. The Wold decomposition and the definitions of weak and strict stationarity 

in Section 2.3 are extended to include processes defined on more than  one dimensions. 

In 2.3.2, a new definition of the so-called ‘reverse strictly stationary process’ is given; 

reverse strict stationarity allows for two (q x  1) random vectors from the process of 

interest to have the same distribution, if the relative placement of the q locations on Zd 

within each vector is the same but the direction of the vectors is opposite.
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Reverse strictly stationary processes are an example of a notion th a t has been in­

troduced particularly for spatial statistics. Like on the time axis there is the ‘past’ and 

‘future’, each dimension of space also occupies two different ends. Nevertheless, there 

can be no causal relationship to relate those two ends. For example, the ‘past’ and ‘fu­

tu re’ of the time axis are such that there is a natural order between the two, as anything 

tha t occurs in the ‘past’ could have an effect on the happenings of the ‘future’. The one­

dimensional spatial analogue of the time axis is the line transect, as this was described 

by W hittle (1954). For any two locations on the line transect, although those can be 

set in a unilateral order and they might be close enough to interact, there is usually no 

reason to assume th a t a causal relationship is taking place there.

In Chapters 3 and 4, we study the second-order properties of some (weakly) stationary 

processes th a t take place on the regular d-dimensional space. These processes might be 

spatial or spatio-temporal; this depends on whether all the dimensions involved axe 

spatial, or whether the time axis is there as well. Studying their second-order properties 

is totally unconnected to the interpretation given to the d dimensions. Nevertheless, 

we will often refer to the inclusion or not of the time axis as a dimension, in order to 

study spatio-temporal and spatial processes on Zd separately. For example, after we have 

defined the causal and invertible ARMA model on Zd in Section 2.4, we have proposed 

different ways for the estimation of its parameters in Chapter 3. W hatever the number 

of dimensions d, an ARMA process on Zd is a standard way to model data derived from 

a stationary process. Further as we axe going to see in Section 3.6, causal and invertible 

ARMA models, compared to all other ARMA models, provide more simplicity for the 

methods used. The assumption of causality and invertibility might be directly related to 

the presence of the time axis. Thus, spatio-temporal ARMA models can often be better 

justified and understood than spatial ARMA models, since when a directional preference 

must be assumed, it can be attributed to the unidirectional flow of the time axis only.

On the other hand, Besag (1974) refused to compromise tha t an ARMA process is the 

best way to model observations from spatial and stationary processes on Z2. Especially 

under the assumption of causality or invertibility, such a model would risk to be unnatural 

and unable to provide an instinctive tool for prediction. His invention of the stationary 

auto-normal schemes, was made especially for the needs of spatial statistics. Following 

this example, in Chapter 4 we deal with stationary processes on Zd, which have a specific 

form of second-order dependence. The second-order properties of the processes of interest

9



can be discovered in their spectral density, which has a finite, symmetric and linear filter 

in the denominator. Under the assumption of normality, Besag (1974) expressed the 

second-order properties of the processes via a finite and linear conditional expectation 

of the value of the process on any location based on the values on all other locations of 

the lattice. When we manage to mask the second-order properties of the process into a 

conditional expectation without assuming that the process is Gaussian, then the process 

forms an auto-linear scheme. We will refer to such schemes as spatial auto-linear schemes, 

as including the time axis then would not be wise. This is because this formulation does 

not distinguish between the information from the ‘past’ and the information from the 

‘fu ture’, which should happen since, naturally, the information from the ‘past’ always 

comes first.

At this point, it should be made clear that one of the purposes of this thesis is not 

to highlight the gap between the different methods of estimation used for stationary 

spatial and spatio-temporal processes but to bridge tha t gap instead. When it comes to 

estimation, we try  to establish in both Chapters 3 and 4, tha t any choice of parametriza- 

tion for the second-order properties of the process on Z d might be equally fruitful for 

the estimators of the parameters. In other words, the estimators we are proposing in 

the two chapters possess similar statistical properties. Thus, the reasons tha t make us 

consider Chapters 3 and 4 to be more related to spatio-temporal and spatial processes, 

respectively, is prediction and not estimation. For example, causal spatio-temporal auto- 

regressions, such as these analyzed in Section 3.7, could be very useful for prediction, 

since the assumed model is only using locations from past timings. On the other hand, 

models tha t use all the information around a location of interest, like the auto-linear 

schemes of Chapter 4, are more suitable for kriging (Cressie, 1993), which is the form 

of ‘spatial prediction’. Of course, it can be that we have the time axis in our analysis, 

th a t we are missing an observation from the centre of our dataset and th a t we need to 

approximate its value. In this case known as smoothing, the param etrization adopted by 

an auto-linear formulation might be useful for a time series or a spatio-temporal process 

too.

Using a set of observations to estimate the parameters of a causal and invertible 

ARMA process on Zd, is not an easy task when d >  2; we explain why next. For one­

dimensional ARMA models, the exact Gaussian likelihood estimators have all the desired 

statistical properties, as we can verify from Brockwell and Davis (1991). Unfortunately,
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as the number of dimensions increases, we cannot conclude yet th a t maximizing the 

exact Gaussian likelihood of observations can produce both asymptotically unbiased and 

normal estimators. This problem, which is reflected in the order of the bias of the 

estimators, is known as the edge-effect and it has been very well described by Guyon 

(1982). The source of the edge-effect is the different setting of asymptotics tha t is taking 

place when d > 2. Indeed, although a set of observations on a finite set of Zd is available, 

usually a hyper-rectangle or hyper-cube, we should allow th a t this set could grow towards 

all sides. All the second-order stationary processes studied in Chapters 3 and 4, use this 

setting to assess the quality of the estimators for the param eters of interest. Thus in 

both chapters, the estimators must be defined in such ways, which guarantee tha t their 

asymptotic normality can be established.

Defeating the edge-effect is one of the main challenges of this thesis. We have tried to 

tackle a very complex problem, for which the number of solutions proposed in the past has 

been limited. In Chapter 3, we have resorted to modifications of Gaussian likelihoods 

tha t may produce asymptotically unbiased and normal estim ators of the parameters. 

This is the same tactic as the one followed by Guyon (1982) and Yao and Brockwell 

(2006), who referred to the estimation of the parameters of any stationary process on Zd 

and the (p  +  q) param eters of two-dimensional causal and invertible ARMA processes, 

respectively. We have studied the cases of auto-regressions, moving-averages and ARMA 

processes on Zd, separately. Section 3.3 deals with causal auto-regressions and proposes 

a conditional Gaussian likelihood for maximization. By contrast, Section 3.4 is dedicated 

to invertible moving-averages only. There axe two new suggestions for estimation of the 

param eters and the second one is based on a modification of a Gaussian conditional 

likelihood. The way we have dealt with the moving-average there, is only a special case 

of the more general solution proposed next for the ARMA. Thus, Section 3.5 generalizes 

the results of 3.4.3 for the parameters of a causal and invertible ARMA(p, q) process. 

W ith a finite fourth moment of the error sequence of interest, the (p +  q) modified 

Gaussian likelihood estimators defined then are consistent, asymptotically unbiased and 

normal and they are efficient if the process under observation is Gaussian.

As a bilateral ARMA model might seem more meaningful than  a causal and invertible 

ARMA model, when it refers to a spatial process, we would have liked to be able to 

extend our results for the case of any ARMA model. Furthermore, there have not been 

any real solutions for bilateral ARMA models so far. According to Section 3.6, the
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modified Gaussian likelihood proposed for maximization in 3.5.3 is only a special case 

of the quantity tha t should have been maximized, in order to derive the estimators of 

the param eters of a bilateral ARMA(p, q) process. The path  we have followed there is 

due to W hittle (1954), who, for two-dimensional processes, achieved a transition from 

the Gaussian likelihood of the observations from a finite bilateral auto-regression to the 

same likelihood expressed in terms of the parameters of the AR(oo) representation of 

the process. For bilateral ARMA models on Zd, we generalize his suggestion with a 

correction on the Gaussian likelihood, which affects its deterministic part only. This 

correction fixes the bias tha t the estimators of the auto-regressive and moving-average 

param eters would have, unless the process was causal and invertible, respectively.

Under no circumstances should tha t bias be considered to have any relation to the 

edge-effect. While the bilaterality of an ARMA process might add to the bias of the 

estimators even when d =  1, the edge-effect is very well disguised then, and makes its 

unpleasant appearance when d > 2 , by causing the bias to move towards zero at equal 

(d = 2) or slower (d > 2) speed, compared to the speed of the standard error of the 

estimators. It might fairly be considered as the most difficult problem to tackle regard­

ing the estimation of the parameters of a stationary process on Zd. This is the problem 

for which Guyon (1982) and Yao and Brockwell (2006) proposed solutions. Guyon used 

the form of Gaussian likelihood, which, according to W hittle (1954), involves the peri- 

odogram or sample auto-covariances in its random part. He corrected the edge-effect 

by using the unbiased estimators of theoretical auto-covariances there. On the other 

hand, Yao and Brockwell (2006) focused on two-dimensional ARMA models. Before 

modifying the genuine Gaussian likelihood, they used the innovations algorithm and a 

conventional unilateral ordering of locations in the sample; next they factorized the de­

term inant involved into a product of prediction variances in the deterministic part, and 

they partitioned the random part into a sum of squares of prediction errors. Then, they 

put forward a selection of locations out of the ones available in the sample, and they 

used this information only in the product and sum of the deterministic and random part, 

respectively, of the proposed modified Gaussian likelihood.

In Section 3.5.3, we have suggested a new modification for a Gaussian likelihood, 

which is made especially for the ARMA on Zd. In other words, we have not restricted 

our number of dimensions d to be small, like Yao and Brockwell (2006). We have tried to 

justify tha t the quantity we have chosen to maximize is a modified Gaussian likelihood
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using classical time domain arguments, rather than follow the route of Guyon (1982). 

The special characteristics of the ARMA have been highlighted and taken into account. 

Yao and Brockwell (2006) resorted to the AR(oo) representation of the ARMA process 

of interest; as a result, they introduced an infinite order to their problem and missed 

the opportunity to generalize their results to higher dimensionalities. Similarly, Guyon’s 

(1982) suggestion would demand the computation of as many sample auto-covariances 

as possible, unless the ARMA was a finite auto-regression or a finite moving-average. 

We have tried to demonstrate that the ARMA deserves a solution, which takes into 

account its finite order. The finite order reflects both the finite auto-regressive and 

moving-average polynomials. Indeed, an Auto-Regressive Moving-Average can become 

a moving-average, if a finite linear transformation is applied to it. But what are these 

special advantages of these two characteristics, i.e. th a t the transform ation used is finite 

and th a t the transformed process is a moving-average?

On the one hand, the finite transformation implies that, for any set of random vari­

ables from the ARMA of large enough cardinality, we may create a set of smaller cardinal­

ity of random variables from the moving-average and ‘nothing is missing’, i.e. information 

on more locations from the ARMA process could only contribute by offering more lo­

cations available from the moving-average, but not by augmenting the information on 

the sites already available, as we have everything we needed to know there. As the 

original set grows, so does its subset at equal speed. T hat is our first victory over the 

edge-effect, which clearly reflects the auto-regressive nature of the ARMA. Indeed, finite 

transformations work for the auto-regression as they might produce a sequence of uncor­

related random variables or they might produce a moving-average. Section 3.3 deals with 

problems of estimation for auto-regressions via transformations to white noise sequences, 

while estimating the parameters of an auto-regression using the moving-average path is 

a special case of Section 3.5. Special reference to the auto-regression transformed to a 

moving-average will also be made in Section 4.5.2.

On the other hand, as we are going to see in Section 3.4, the moving-average has 

another nice property. For a set of random variables from a moving-average of large 

enough cardinality, we may create a set of smaller cardinality, with random variables, 

which have in the larger set only and not any further, all their neighbours, in the sense 

tha t they share with them non-zero auto-covariances. Again, ‘nothing is missing’ in terms 

of information available, expressed now via the auto-covariance between two random
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variables on two different sites, as more sites available cannot give any random variables 

tha t have non-zero auto-covariance with any member of the selected smaller set. Again, 

the cardinalities of the two sets move at the same speed and this signifies the second and 

final victory over the edge-effect, thanks to the moving-average nature of the ARMA.

To use correctly these two properties, we have proceeded with modifications on Gaus­

sian likelihoods, rather than use them in their genuine form. As a result, the exponential 

functions of the modified likelihoods do not necessarily involve negative powers, and we 

cannot be sure tha t they can reach a minimum zero. This is a similar problem to the 

one th a t Guyon’s (1982) proposed estimators had, as they were based on sample auto­

covariances th a t did not necessarily have a positive-definite sample variance-covariance 

m atrix or positive spectral estimates, as those last ones were to be computed for the 

likelihood version of W hittle (1954). Dahlhaus and Kiinsch (1987) dealt successfully 

with this problem by introducing ‘data tapers’, but paid the price of losing the efficiency 

of estimators for d > 4. Such corrections on our proposed estimators are beyond the in­

terests of this thesis. It is remarkable th a t this problem does not concern the estimators 

of Yao and Brockwell (2006), as they make sure th a t a positive quantity is always to be 

minimized, involving a sum of squares of prediction errors.

Since most of our attem pts to estimate the parameters of ARMA models are counted 

on Gaussian likelihoods and modifications made on them, we return to this subject again 

in Chapter 6 and examine it from a different scope. We focus there on two-dimensional 

ARMA processes only, although our results might be generalized when d > 2. First, for a 

special class of causal auto-regressions, which are linear-by-linear (Martin, 1979), we are 

able to write down explicitly the exact Gaussian likelihood of observations on a rectangle. 

In Chapter 3, we have only dealt with modifications on Gaussian likelihoods, but now 

the exact Gaussian likelihood version can be written down, if such an auto-regression 

provides a sensible representation of the second-order properties th a t are being studied. 

Then, for observations from an invertible moving-average, which uses two parameters 

only, since we cannot write the exact Gaussian likelihood then, we perform simulations 

to watch the performance of the exact Gaussian likelihood estimators and compare it to 

th a t of the modified estimators proposed by Yao and Brockwell (2006). We are trying 

to conclude if its worth to proceed with modifications when the dimensionality of the 

problem is still low.

Regarding the spatial auto-linear schemes of Chapter 4, we propose in 4.5.4 a new
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method of estimation for the unknown coefficients involved. It is a method based on 

the moments of a new series, which may be produced from the original series, if a finite 

and linear filter is applied. This property, i.e. th a t with a finite transformation we may 

produce a series with an auto-covariance function which cuts off to zero outside a finite 

set of vector lags, sounds like the property of an auto-regression that can be transformed 

into a moving-average. Indeed, in Section 4.4, we show that, especially in terms of 

second-order properties rather than conditional expectations, it is always possible for an 

auto-regression to have an auto-linear representation. This same property of the auto­

regression was used in Chapter 3 as a main tool against the edge-effect. Using that same 

tool, we have studied the spatial auto-linear schemes of any dimensionality d, as we can 

always produce the new series with a finite transformation.

The edge-effect has not been the real problem for the estimation of the parameters 

of a spatial auto-normal form, as this was introduced by Besag (1974) on Z2. On the 

contrary, the source of the confusion should be searched in the revolutionary work of 

Besag (1974) itself, which used a conditional moments representation of the process, 

rather than the auto-covariance function, in order to describe its characteristics, and that 

was difficult to interpret, though easy to comprehend. We have tried in Section 4.2 to 

demonstrate that, like the auto-covariance function can be found in the numerator of the 

spectral density, the denominator of the spectral density also generates the coefficients 

of the best linear predictors, which are the conditional expectations of the auto-normal 

formulations. In Section 4.5.2, we show that using a conditional likelihood, as this 

was proposed by Besag (1974), cannot guarantee any solution, unless we express our 

process as a unilateral or bilateral auto-regression first. In Section 4.5.3, we do prove 

the properties of the pseudo-likelihood estimators, also proposed by Besag (1974), which 

are consistent and asymptotically normal, if certain conditions are satisfied. For our 

method of moments estimators described in Section 4.5.4, we create the new series with 

a finite number of non-zero auto-correlations, for which each unknown coefficient of the 

auto-linear formulation of the original series, is equal to an auto-correlation between two 

locations. Since, we end up estimating our unknown coefficients as auto-correlations of a 

process, further to the consistency and asymptotic normality of the estimators, we also 

manage to come up with a variance m atrix of the estimators tha t resurrects.B artlett’s 

formula, as this was given by Brockwell and Davis (1991, p .221). In the past, we had not 

seen such a complete result for the estimation of the param eters of an auto-normal or
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auto-linear scheme. A complete result would involve both defining new estimators and 

discovering their statistical properties.

It should be made clear now that both Chapters 3 and 4 try  to  model the second-order 

properties of (weakly) stationary processes on Zd\ either this is for a unilateral spatio- 

temporal process or a spatial process on Zd, the same idea has been used repeatedly. In 

the end of Section 2.4.1, the subsection referring to the general Yule-Walker equations 

has given the answer to almost all our questions, regarding the estimation of parameters 

on Zd. The general Yule-Walker equations relate the second-order properties, i.e. the 

auto-covariance functions, of two processes. Moreover from a stationary process, it is 

always possible to apply a linear, ‘tim e’-, or otherwise, invariant filter, in order to come 

up with a new stationary process, tha t is such that the two processes share together the 

general Yule-Walker representations. The filter one has to apply is none other than the 

one with coefficients equal to the auto-covariances of the second process th a t is about 

to be produced. As a result, if one of the two processes has the advantage of a finite 

number of non-zero auto-covariances, then all one has to do is apply a finite linear filter 

on the other process to use this advantage. Either we are dealing with an auto-regression 

or an ARMA or even a stationary process tha t has an auto-linear representation, a finite 

transform ation will automatically make it a moving-average, or, in general, a process with 

similar second-order advantages. The question why these ideas were not th a t necessary 

and useful for processes tha t take place on Z, can only lead us to one answer. It is 

the edge-effect th a t has made us look for finite filters to apply on data  and finite auto­

covariance functions to assume for the processes of interest. It is the edge-effect that has 

made us resort to the general Yule-Walker equations, instead of the standard techniques 

used for time series.

Finally, in Chapter 5 we have changed the general setting followed so far, for the 

analysis of stationary processes on Zd, and we have switched to  spatio-temporal processes 

on Jld and Z, respectively. It is a very common problem th a t the locations where the 

phenomenon is taking place might be anywhere. In those cases the inclusion of the time 

axis in the analysis might have a worthless contribution. More specifically, we follow the 

statistical analysis of observations recorded on any N  locations of R d and regularly over 

time. This is because, unless we record observations regularly over space, we cannot use 

any of theoretical background tha t has been studied in Chapters 3 and 4. We consider an 

unknown covariance structure between the variables on the N  sites tha t does not change
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over time. Next, using a multivariate time series setting and allowing for the number of 

regular recordings over time to tend to infinity, we fit multivariate auto-regressions and 

use a conditional Gaussian likelihood, in order to estimate the unknown spatial and time 

parameters and to assess the quality of our estimators.

In conclusion, either we study the spatial or spatio-temporal processes, either we 

have a set of regular or irregular recordings available, either we decide to approach the 

problem using causal formulations or not, in this thesis we have tried to obtain a profound 

understanding of the existing problems, and then we have tried to discover or even invent 

new ways for the statistical analysis of processes, which take place on d dimensions. All 

Chapters 3, 4 and 5 deal with estimation, hypotheses testing and, finally, with real data 

analysis. We hope that, altogether, this thesis could be regarded as a contribution for 

the statistical inference on spatial and spatio-temporal processes.
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Chapter 2

Elem entary results for processes 

on a d-dimensional lattice

2.1 Introduction

Before we move to the next two chapters tha t deal with some problems of statistical 

inference for processes on the regular d-dimensional lattice and before we propose various 

ways to solve them, we will need to summarize some basic definitions and results that 

have been given before, as well as to add some new results th a t will be extremely useful 

next. In Section 2.2, we recall the notion of unilateral ordering between any two locations 

v T,v T +  j T e  Zd, which was given by W hittle (1954) when d = 2 and by Guyon (1982) 

when d > 2. Section 2.3 defines the weakly and strictly stationary processes and states 

the Wold decomposition, which provides a link between (weakly) stationary processes 

and linear processes. In tha t same section, we prove some properties of processes, which 

are linear functions of independent and identically distributed random variables. A new 

definition of the so-called reverse strict stationarity might also be found there, which is 

an attem pt to extend the definition of strict stationarity in a way tha t does not favor any 

direction of each one of the d dimensions. Later in Proposition 2.5 and, consequently, in 

Chapter 3 and Sections 4.4 and 4.5, we have used conditions, which are satisfied if the 

process of interest is reverse strictly stationary. Thus, when we establish in the end of 

Section 2.3.2 th a t reverse strictly stationary processes exist, a t the same time we allow 

for some of our conditions used in Chapters 3 and for 4 to be more realistic.

In Section 2.4, we define the causal and invertible ARMA processes on the
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d-dimensional lattice and study their second-order properties. We focus on the special 

case of auto-regressions and moving-averages that not only share the same polynomial, 

but also they are generated by the same sequences of uncorrelated random variables. 

W hat we call the general Yule-Walker equations follow next, which provide a link be­

tween the auto-covariance functions of an auto-regression and a moving-average with the 

same polynomial. These equations will be further used in Chapter 3, which will only 

deal with ARMA processes, but they will also be used in Chapter 4. This is because they 

refer to the second-order properties of two processes, rather than any causal formulation 

considered to be taking place there. Not only will these equations be used as the theo­

retical base for a method of moments suggested in Sections 3.4.1 and 3.4.2, but also they 

are the key used, in order to find the forms of inverse conditional variance matrices for 

a set of random variables either from the auto-regression or the moving-average process 

of interest and mainly for Gaussian processes. Later in Chapter 3, this will allow us 

to use these matrices in Gaussian conditional likelihoods. Again, since the derivation 

of these matrices is based on the general Yule-Walker equations, we will also use these 

results to write conditional likelihoods in Chapter 4, even though the random variables 

there, might not have been generated from an auto-regression or a moving-average. We 

conclude the chapter with Section 2.5, in order to come up with a central limit theorem 

for processes on the regular d-dimensional lattice.

2.2 U nilateral orderings

We consider (X (v ), v r  e  Zd} to be a real valued process, where d is a positive integer 

and v  =  [ui, • • • , Vd] is a d-dimensional vector index. We denote with > the lexicographic 

order on Zd; when d =  1 this is the same as the standard order on Z. When d =  2 , the 

notion of unilateral ordering was defined by W hittle (1954). For the general case of any 

positive integer d, we explain below the ordering due to Guyon (1982, p .96). We write

j  =  [ji, J2, • • • ,jd] > 0 =  [0 , 0 , • • • , 0]

on Zd, if

j i  > 0

or

j i  =  0 and [72, • • • , jd] > [0 , • • • , 0]
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on Z d~l .

W hen d > 1, writing j  >  0 may have different meanings. For example, for two- 

dimensional processes

\j1J 2] > [0 , 0]

if

h  >  0

or

j i  = 0 and j 2 > 0 ,

as described before. But we could also change the order of the indices and write

\j2 J 1] > [0 , 0]

if

32 > 0

or

j 2 =  0 and j i  > 0 .

One interesting question would be how many such representations exist for general 

number of dimensions d. To answer that, we first consider the d distinct dimensions 

with two different ends. For the time axis, these would be the ‘past’ and the ‘future’ 

and would have a natural order. It could also be the ‘west’ and ‘east’ or the ‘south’ and 

‘north’ for the dimensions of space. Next, we define an hierarchy between the dimensions 

indicated by the labels k = 1, • • • , d. The most im portant dimension is labelled as 1 and 

the least im portant one as d. Dimension fc =  1, • • • , d — 1, is considered more important 

than dimension k* = k - 1- 1, • • • , d, when moving its index towards any side has the same 

effect on the ordering of two locations, regardless of the way the other index has changed. 

For example, moving from time 1 and location labelled as 2 to either time 2 and location 

3 or time 2 and location 1, is considered as moving to the future since time is going 

forwards in both cases. In general, there are d\ ways to label the different dimensions 

and the time axis is usually considered the most im portant of all and it is labelled as 

dimension 1.

Once the dimensions have been labelled, one has to do the same for the two ends of 

each dimension. As a result, there are 2 ways to decide about the direction of jk > 0 for
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each dimension k = 1, • • • , d, and there are 2d ways altogether. For example, for d = 2 

we can define 22 =  4 different orderings. Say there is the dimension ‘west-east’ first 

and the dimension ‘south-north’; the 4 representations can be labelled as ‘west-south’ 

and ‘east-north’ or ‘west-north’ and ‘east-south’. Of these, 2d~1 choices can be seen as 

the counterparts of the remaining 2d~l representations. For example, ‘east-north’ is the 

counterpart of ‘west-south’, since it corresponds to the opposite quarter of Z2. Similarly, 

‘east-south’ is the counterpart of ‘west-north’.

2.3 Stationary processes

We extend the definitions of weak and strict stationarity for processes with d indices, 

where d is any positive integer.

D e fin itio n  2.1 (W eak  s ta t io n a r ity ) . (X (v ), v T € Zd} is a (weakly) stationary 

process if i?{X 2(v)} < oo, and

1. £?{X(v)} is a constant independent of v, and

2. Cov{X(v), X ( v  +  j)}  is independent of v for every j T € Z d.

W ithout loss of generality, we will consider

£ {X (v )}  =  0 (2.3.1)

unless stated otherwise. Then we will write the real-valued function

70) =  C o v { X (v ),X (v + j)}  =  £ { X (v )X (v + j)}  (2.3.2)

to be the auto-covariance function of the stationary process of interest defined for any 

lag j T £ Z d. This function is even in the sense tha t

70) =  7 ( - j ) ,  j T e

Under the condition tha t 7 (-) is an absolutely summable function, we define the spectral 

density of 7 (-) to be

9{W) =  ? 2 ^  S  ^ ( j ) ’ “ T e  I"* - <  (2-3.3)
5Te z d

for u> =  [cji , • • • , u ,i\ and i = \/^T .
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D efin ition  2.2 (S trict stationarity). The process (X (v ), v T E Z d} is said to be

strictly stationary if the joint distribution of [X (vi), • • • , J f(v g)]T and 

[X(v1 + j ) , - . .  ,X (v , +  j)]T are the same for all positive integers q and for all

v r . - - , v j ,  r  e z d.

2.3.1 Linear processes

We consider {u(v), v T E Z d} to be a white noise sequence of random variables when 

they are generated on the points of Zd and they are uncorrelated with each other. We 

may then state the Wold decomposition.

T heorem  2.1 (W old decom position). A zero-mean and (weakly) stationary process

{X (v), v T E £ d} with spectral density p(-), such that

I  log g(u)du) >  —oo, (2.3.4)
J [—

can be expressed in the form

I (v ) = w ( v )  +  ^ ^ j u ( v - j ) ,  (2.3.5)
j>0

where

1- Ej>oV’| < 0 0 ,

2. (u (v )}  ~  WiV(0, cr2).

Finally, a 2 =  exp{(27r)-d / [_7r 7r]d log/(u;)du>} is given by Kolmogorov’s formula, where

/(w ) =  (27r)d • 0 (w), u>T E [ - 7r, 7r]d.

For the proof of the theorem, see Rosanov (1967, p.64) for d, = 1 and Helson and 

Lowdenslager (1958) for d = 2, the proof being similar for d > 2 (Guyon, 1982, p.96).

The Wold decomposition provides the link between (weak) stationarity of a process 

and linearity, i.e. th a t it may be represented as a linear combination of uncorrelated 

random variables. The second-order properties of a stationary sequence of random vari­

ables (A (v ), v T E Zd} may be fully described by the auto-covariance function 7 (-) or 

the spectral density <?(•). As the Wold decomposition allows for X (v ) to be written as a 

linear combination of u(v — j), j  >  0 only, a unilateral representation is allowed.
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Now that the Wold decomposition has been established, it is useful to derive the 

asymptotic properties of linear processes for any d > 1 number of dimensions. Next, 

we prove two propositions that follow from Proposition 6.3.10 and Proposition 7.3.5 of 

Brockwell and Davis (1991).

P ro p o s it io n  2.1 (W eak  Law  o f L arge  N u m b e rs  for l in e a r  p rocesses). Let 

(L (v ), v r G Zd} be the linear process defined by

E l i j l c o o ,  { W ( v ) } ~ I I D { v . , a 2), 
j >0 j >0

and <S C Zd be a set of cardinality N.  Then as N  —> oo, it holds tha t

L n  = J j  E
vTe«s \j>o /

P ro o f. First note tha t

|£{L(v)}| < S|Z.(v)l = £ 7 |^ ij  H ^(v-j)| < T (̂y - j ) |}
j>0 j>0

= $^|i||£|W(v-j)| = S|W(v)| 53 1̂1 < °°’
j>0 j>0

and the series is well-defined in the sense of convergence in probability. For positive 

integer K , we define the set

M-K =  { \ j i j 2 , - "  ,jd]T : j i  =  1, ,K ,  jk =  ±1, - - -  , ± # ,  k = 2, ••• ,d }U

U {[o, J2, ■ • • ,jd]T • 32 = 1, • • * , K ,  jk = ±1, • • ■ , ± K ,  k =  3, • • • ,d} U • -  U

U { [0 ,0 ,- -• J d]T : j d = l , - -  , t f } U{ [ 0 , - - -  ,0]T}. (2.3.6)

Then for any fixed K,  as N  —> oo,

y ™  =  ^ E  E  E  E  h,
v Te«S j t €Mk Jt €Mk  v tG<S jTeÂ A-

since for fixed j T G M k ,  it holds tha t {W (v— j), v r  G <S} are independent and identically 

distributed random variables. We also define the constants

» l ( K ) = h h
j t &Mk

and

Ml =  M
j>o
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p
Then Y n k  — * ^ l { K )  as AT —> oo and h l { K )  —* VL as K  —» oo. We now only need to

show that

Note tha t

lim lim supP (|L /v  — Yn k \ > e) =  0 , for any e > 0 .
K - > o o  N —k x )

p (\l n - y n k \ > c) =  p ( | i  y ,  L M - j f  E  E
VT<ES v T€ S j T £ M K

=  E  ' j ^ ( v - j ) i > e )
v T€<Sj>0 v T€ S j T£ M K

=  p ( i ^ E  E  w - j ) i > < )
v r €«S i T£ M K , 

i>o

*  i ^ E  E  I ' j i s i ^ v - j ) !
vr e5

j> 0

= ; E  iy£F([l,---,l]-j)|,
6

J > 0

where the inequality is due to Chebychev. Then,

E  \ h \ =  E  i ' j i =  E  - liji — o,
JTj ^ * ' k̂ / j l 'ljk^ >K h + E L 2 bfcl>^

as K  —► oo.

P ro p o s it io n  2.2. If (C (v), v T 6  Zd}, {.D(v), v T E Zd} are two linear processes such 

that

c (y) = j ; ^ ( v - i ) , E N < c o .
i>0 i>0

D (v) =  ^ d , W ( v - i ) ,  ^ | d i | < o o ,  { W '(v )} -JJ£ > (0 ,<72), 
i>0 i>0

then for a set «S C Zd of cardinality N  and j  > 0, it holds tha t

j j  J 2  C '(v )C '(v + j) f ^ q c i + j  J a 2 =  Cov{C(v), C (v +  j)},
v T€«S \ i >0 J
5 Z C (v )£ > (v + j) ( S Cidi+ j )  =  C o v f C ^ ^ C v + j ) }

v r €«S \ i > 0  /

as N  —> oo.

P ro o f. We only prove the first statement since the second one can be shown in a similar 

way. We write
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j i  =  j j  J2 J 2 Ci ci*w(V + j - n
v T€<S v Te 5  i> 0  i* > 0

=  ^ E E ' i  q + j l V f v - i f  +  y j^ ,
VT€ 5  i> 0  

where

^  ^  S  S  Ci Ci* W(v-i)W(v+j-i*)
VT€<S •. i*> 0 , 

i* # i+ j

=  ^ 2  ci ci* f ^ " 1 E  w ( v - i ) w ( v + j - i * ) )
l, i*> 0 , \  v TG 5 /

For the first term  1Zvt g«S E i> o «  c>+j W (v  — ^  holds th a t (W (v )2, v T G Z} are

independent and identically distributed with mean cr2, and since ^  |q  C|+j| < oo, from
i> 0

the Weak Law of Large Numbers for the linear process Lj(v) =  c’\ ci+j W ( v  — i)2, it
i> 0

holds that

jj D (x> ci+j) sw v)!t = (Hci
v r G<S \ i > 0  /  \ i > 0

i c i+ j  I >

as N  —> oo.

It suffices to show that Yjjv — * 0. For i* ^  i +  j, it holds tha t {W (v — i)W (v +  j 

i*), v T G Zd} ~  WiV(0, cr4) and, hence,

Var f A T 1 ^  ^ ( v  -  i)W (v +  j  -  i*) J =  A r V  0
\  v T<ES /

as IV —> 00 . For M. k  as defined in (2.3.6), we may define for fixed K

Yi N K = Y  c>c>- f ^ " 1 E  ^ ( v - i W v + j - i * ) )  -£ + 0 ,
iT, i *Te m k , \  v t g 5  /

iVi+J

as TV —> 00 . So,

-  yjNJf I <  B|W"[X,'-- , 1]W[1, ■ - - ,2]| ■

Y  W M  + Y  lcl l l cH + Y  lCil lCl’ l I _>0’
r e M K ,i*T & M K , r # M K ,i*T e M K , r ,  i*r ( M K ,

1*>0, i> 0 , i* # i+ j  i, i* > 0 , i* # i+ j

as K  —> OO.
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2.3.2 R everse stationarity

As we have seen in Definition 2 .1, weak stationarity relates any two random variables 

of the process of interest and it ensures that their auto-covariance is a function of the 

d-dimensional vector difference of the two locations. Further, if the auto-covariance 

function depends on this vector through its norm only, the process is called isotropic. 

Isotropic processes allow for more specific considerations and they are beyond the scope 

of this thesis.

For the definition of strict stationarity, we refer to any two random vectors and their 

distributions. The random vectors might be of any positive length, say q. In time series, 

strict stationarity means intuitively tha t the graphs over two time intervals of length q 

of a realization of the process should exhibit similar statistical characteristics. But it 

does not mean th a t those are the same characteristics as the ones exhibited within the 

same intervals if they are observed from future to past. For a process evolving on a line 

transect, as this was described by W hittle (1954, p.434), time is replaced by a dimension 

of space and this might not make sense. We may observe the process starting from any 

of the two ends towards the other end. Thus, we wish to define a form of stationarity 

th a t means intuitively tha t the two graphs over the intervals of length q th a t start from 

the same location, one from left to right and the other from right to left, exhibit similar 

statistical characteristics.

On the other hand, when we deal with conditional probabilities in a time series, 

the natural order of the indexes plays an im portant role. For example, for the two 

random variables A( l )  and A ( 2), we will rarely introduce in our analysis the conditional 

probabilities of X( l )  given A (2), unless we are asked to. In this last case, we usually 

convert to these probabilities from the conditional probabilities of X(2)  given X( l ) ,  

using the Bayesian formula. The answer might come much faster if we know that the 

distribution of the random vector [X (l), X(2)]T is the same as the distribution of the 

random vector [X(2),  X (l)]r , as this will imply both tha t the marginal distributions of 

X ( l )  and X(2)  are the same and that

P (X (1) =  u\X{2) = v) = P { X (  2) =  u |X (l)  =  v). (2.3.7)

Equation (2.3.7) might make more sense when the indexes 1,2, refer to two locations on 

the line transect instead. The conditional probabilities of X( l )  given X(2)  might then 

be as meaningful as the conditional probabilities of A (2) given X( l ) .
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According to Definition 2.2, for the general case of strictly stationary processes 

on the d-dimensional lattice, it holds for any j r E Zd th a t the two random vectors 

[X (vi), • • • , X (vq)]T and [ X( v i+j ) ,  • • • , X ( v q+j ) ]T have the same distribution, because

Mthey refer to the same differences, i.e. v i — V2, • • • , v i — v q, • • • , v g_i — v q. As a
W

result, one can shift the random vector [A(vi),- • • ,A (v g)]T at any j T E Zd steps away, 

and the distributions of the new random vectors are still the same. But what if we 

are not interested in changing the location of the random vector but its direction? In 

other words, can we make sure tha t the random vector [A(—vi),  • • • , X ( —v q)]T has the 

same distribution as the random vector [X(vi) , --  - ,A (v q)]T, although it refers to the 

differences of opposite sign, i.e. —vi 4- V2, • • • , —v i 4- v 9, • • • , —v 9_i +  v g?

D efin itio n  2.3 (R ev e rse  s tr ic t  s ta t io n a r ity ) . The process (A (v ), v T E £ d} is said 

to be reverse strictly stationary if the joint distribution of [X(j 4- vi ) ,  • • • , X (j 4- v g)]T 

and [X(j — vi ) , - -  - ,X( j  — v g)]T are the same for all positive integers q and for all 

r ,  v j , - . - , V j e z * .

Now, it is clear that the differences between the locations of the second random 

vector are all of opposite sign from the ones of the first vector, bu t tha t has no effect 

on its distribution compared to the distribution of the first random vector. The two 

vectors this time, both have to originate on the same location v T E Zd without any 

shift. As a result, Definition 2.3 does not imply tha t for a reverse strictly stationary 

process (A (v ), v T E &d}, the two random variables X( v i )  and X ( v 2) have the same 

marginal distribution for any two locations v[ ,V2 E Zd. For example, if d = 1 the 

random variables X ( —1) and A( l )  have the same distribution since the two locations of 

interest are one step away from location 0. For the same reason, all the random variables 

X{2 j  4 -1), j  E Z, share the same distribution and all the random variables X (2 j ) , j  E Z , 

also share the same distribution, but the two distributions do not have to be the same. 

This is established in the next proposition, which relates the two forms of stationarity. 

We denote with O, £  the odd and even integer number spaces, respectively. We also 

denote with V  any of the 2d orderings O d, £  x C?d-1, • • • , £ d.

P ro p o s it io n  2.3. Let (A (v ), v T E Zd} be a reverse strictly stationary process and 

define

X p i y )  =  X (v), v T E V.
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Then the process {X p(v), v T E V }  is strictly stationary.

Proof. Since the process is reverse strictly stationary, it holds for any positive integer q 

and any v [ , • • • , v g E Zd th a t the random vectors [X (vi), • • • , X (v g)]T and 

[X(—v i), • • • , X ( —v g)]r have the same distribution. This stems from Definition 2.3 when 

we set v  =  0 .

Similarly, it holds for any v T E Zd th a t the vectors [X(j — v i) , • • • , X (j — v g)]T and 

[X (—j +  v i), • • • , X (— j + v g)]T share the same distribution. On the other hand and again 

from Definition 2.3, since the process is reverse strictly stationary the first of previous 

random vectors has the same distribution as [A(j +  v i) ,- -  - ,X ( j  +  v g)]r . The two 

arguments combined together imply tha t the random vectors [X (vi — j), • • • , X (vg — j)]T 

and X ( v i+ j ) ,- - -  , A '(vg+ j)]r , or [-X'(vi), ■ - • ,X (v g)]T and [X (vi +  2j), • • • ,X (v g +  2j)]r 

share the same distribution for any j T, v j ,  • • • , vg E Zd. We can see tha t for any j*T E S d 

there is a unique element j T € Zd such tha t 2j =  j* and, vice versa. The proof is completed 

when we also see th a t for a specific E V , there is a unique element +  j*T E V  for 

any j*T E S d and vice versa. ■

Proposition 2.3 shows tha t the way a reverse strictly stationary process has been 

defined does not allow us to necessarily conclude th a t it is strictly stationary as well. 

As a result, we first require tha t a process is strictly stationary and then look for its 

extra attributes. We may think of a simple example, where both  properties exist and 

can be combined to derive useful results. We consider the case of a strictly and reverse 

strictly stationary process {X (v), v r  E Zd}. Then the distribution of [X (vi), X { \ 2 ) Y  is 

the same as the distribution of [A(—v i), A (—V2)]r , because of reverse strict stationarity, 

and this is the same as the distribution of [X(—vi +  v i +  V2) ,X ( —V2 +  v i +  V2)]r or 

[X(v2), X (v i)]T, because of strict stationarity. In other words, we have reversed the 

order of the two locations v i and V2- It is fairly easy to show, for example, that this 

property holds for any pair of identically distributed (but not necessarily independent) 

Bernoulli random variables.

But is it possible to s ta rt from a strictly stationary process and show th a t it is reverse 

strictly stationary for any positive integer q? The following proposition gives a sufficient 

condition for a strictly stationary process to be reverse strictly stationary as well.

P rop osition  2.4. For a strictly stationary sequence of random variables {X(v), v T E
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27*}, if the joint probability function of [X (vi), ■ • ■ , X (v g)]T is an even function of all 

the differences v i — V2, • • • , v 9_i — v g, for any positive integer q and v [, • • • , v£ E Zd, 

then it is a reverse strictly stationary process.

P ro o f. Since the sequence is strictly stationary, we know th a t the joint probability 

function depends on the possible differences of locations only. If we consider it an 

even function, in the sense tha t changing the sign of all differences results in the same 

distribution of the random vector on the new locations, then the sequence is reverse 

strictly stationary. ■

The joint probability function of q random variables, say • • • , X q, is such that its 

logarithm can be written as

log{Pxw ~,xq(xi,  ■ • • , x q)} = K  • gi{xi) +  ^ X i  • xj  gi j(x i ,Xj)  +  • ■ •
i i<j

+  x i ' - - x q gi t...)q(xi , - - -  ,Xq)]. (2.3.8)

Besag (1974, p .197) claimed the existence of such functions gi(•),••• , <7i,...,g(-)> under 

some very mild conditions. He focused on the special cases where

\og{PX l ,...,xq(xi,  • • • ,* ,)}  =  K  • ( J^ X i g i fa )  +  ̂ X i  • xj  fiij)  (2.3.9)
i i<j

and called them  auto-models. He then showed that = (3jj. Two examples are the

auto-logistic and the auto-normal model. We will deal with the auto-models again in 

Chapter 4.

We let the strictly stationary sequence of random variables {X (v), v T E Zd} and 

any positive integer q. For fixed, v [, • • • , v£ E Zd, we write for convenience

X (vj) = X iy i =  1, • • • , <?,

and the joint probability function of the vector [X (vi), • • • , X (v g)]r denoted as 

P x i , -  ,xq{xi, • • • >£g)- Then it should hold in (2.3.8) that

K  = K { y i  -  v 2,--- ,v i  - v q, - "  ,v g_ i -  v 9),

and that

9 i(x) = g ^ \ x ) ,  « =  1, • • • , g,

and

gij (x ,  y) =  g{2\ v i  -  Vj, *, y), i, j  = 1, • • • , q, i <  j ,
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and

and

9 l , ~  , q ( x i ,  "  - , x q ) = g {q\ - V  1 -  V 2 , - - -  , V i  -  V „ - - -  , V ?_ i  -  Vg , X l , - - -  ,X g ),

for some functions K(-), g ^ \ - ) ,  • • • , g^( -)-  Reverse strict stationarity would require that 

these are even functions of the differences v i — V2, • • • , v i — v 9, • • • , v g_i — v q, as it is 

described in Proposition 2.4.

L em m a 2.1. A strictly stationary sequence of Gaussian random variables is reverse 

strictly stationary.

Proof. The proof comes immediately from the fact th a t the joint density of any q

( *identically distributed Gaussian random variables is a function of the ] auto-
\ 2

covariances, i.e. an even function of all the possible differences.

R e m a rk  2 .1 . Apart from the case of a Gaussian reverse strictly stationary process, as 

it was described in Lemma 2.1, are there any other reverse strictly stationary sequences? 

We explain here how reverse strictly stationary processes can be produced and repro­

duced. We know th a t when we have a strictly stationary process ( X ( v ) ,  v T E Zd} and 

we apply for all v T E Zd the same linear filter, say

5 (v ) =  S  h * ( v - j ) >
iTz z d jTezd

then the new process {S'(v), v T E Zd} is also strictly stationary. Similarly, if { X (v ), v T E 

Zd} is reverse strictly stationary and we apply the symmetric linear filter

R (v ) =  /0 X ( v )  + J 2 h  [ * ( v - j )  +  A ( v + j ) ] ,  ^ | Z j | < o o ,  (2.3.10)
j >0 j >0

then ( i? (v ) , v T E 2,d} is reverse strictly stationary as well. For example, we may start 

from any sequence of independent and identically distributed random variables, since this 

is a reverse strictly stationary process. Then we may use (2.3.10) to produce another 

reverse strictly stationary process. The filters we apply on strictly or reverse strictly 

stationary processes do not necessarily have to be linear.
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Consider the simple case of the reverse strictly stationary process {X (v), v r  G 2,d} 

and the new process defined by the equation

R ( v ) = X (v ) - M  [ X ( v - j )  +  X ( v + j) ]

for some j T G Zd and I G 01. Then for any v T, j j  G Zd, we may write the two-dimensional 

random vectors

X ( v )

X ( v - j L - j )

* ( v - j )

* ( v  -  j i)

* ( v - j l  +  j)

* ( v + j )

and
X ( v )

^ ( v + j i + j )

X ( v + j )

^ ( v + j l )

^ ■ ( v + j i - j )

We can see immediately th a t the two vectors [i?(v),i?(v — ji) ]T and [R(v) ,R(v  +  ji) ]T 

have the same distribution, since the random vectors [X (v ) , X  (v  — j  i — j ), X (v — j ), X (v — 

j i ) ,X ( v  -  j i  +  j ) ,X ( v + j ) ] T and [ X ( v ) ,X (v + j i  +  j ) ,X (v  +  j ) ,X (v  +  j i) ,  X (v  +  j i  -  

j), X (v  — j)]T have the same distribution too.

2.4 A R M A  m odels

D e fin itio n  2.4. We define an ARMA process {Z(v) ,  v T G Zd} as

Z (v ) = ^ ( v - j )  +  <r(v ) +  e ( v - j ) ,  (e(v)} ~  W N ( 0,cr2), (2.4.1)
j € lp  j € j q

where {6j, j  G Xp} and {aj, j  G J q} are the auto-regressive and moving-average coeffi­

cients and both index sets Xp and J q are contained in the set {j >  0}. Both the sets Xp 

and J q have finite cardinalities p and q, respectively.

R(v)

1
I—1 o o o __
_

1

_ R ( v  -f- j , )  _ 1
ooo

1

R(v) 1 0 I 0 0 I

_  H ( v -  Jl) _ 0 I 0 1 I 0
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For convenience, we introduce the vector back shift operator B =  [Bi, • • • , B d], such 

that

B-*Z(v) =  Z ( v - j ) ,  i r e z d.

This, of course, also implies that

B - 'Z (v )  =  Z ( v + j ) , j ' 6 Zi

For z =  [zi, • • • ,Zd], we write z} = Ylt=i zk ■ We can then define the polynomials

d d

&(z)= i  -  y i  b j z j = 1 -  5 3  h  n  ^  and ° (z) = 1 + s  ^ = 1 + s  n  zk -
j€lp j G2p fe=l jGkTq k =  1

(2.4.2)

Then model (2.4.1) can be written as

6(B )Z(v) =  a(B )e(v), {e(v)} ~  W N (0 ,  a2). (2.4.3)

For this, we have assumed that 6(z) and a(z) do not have common factors although they 

may still have common roots.

The process {Z(v) ,  v T e  Zd} defined in (2.4.1) is causal if it admits a purely MA 

representation

Z(v) =  e(v) +  ^ 2  £(v  “  j)  (2-4-4)
j >0

where E j >0 l^jl <  oo. A causal {Z(v) ,  v T E Z} is always (weakly) stationary with 

mean 0 and the auto-covariance function

° 2 {^j +  E i> o  V’iV’i+j} , j  >  0

+  J =  o (2A 5)

7 (-j)»  j  <  0

The lemma below presents a sufficient condition for the causality.

7(j) =  E { Z { v  + $)Z{v)}  =  <

L em m a 2 .2 . The process defined in (2.4.1) is causal if

6(0 , • • • , 0 , 0 , zd) ^  0 for all \zd\ < 1 and 6(0 , • • • , 0 , zd_i, zd) ^  0 for all \zd- i \  < 1 

and \zd\ =  1 and • • • and 6(z) ^  0 for all \z\\ < 1 and \zk\ =  1, k =  2, • • • , d,

(2.4.6)

where , z d E C, i.e. the complex number space. Furthermore, condition (2.4.6)

implies th a t the coefficients {^j} defined in (2.4.4) decay at an exponential rate, and in 

particular

|V>jl < C,or7'1+^ fc=2 for all j i  > 0 , (2.4.7)
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where a G ( 0 , l ) ,C l > 0  are constants.

For the proof of the lemma, see Anderson and Jury (1974). Otherwise, we follow

the same argument as Yao and Brockwell (2006) and the inequality (2.4.7) follows from

the simple argument as follows. Let ip(z) =  1 -f V’j z^  where the coefficients V’j are
j>o

given in (2.4.4). Then ip(z) =  a(z)/b(z).  Due to the continuity of &(•), b(z) 7̂  0 for all

z G Ss = {[zi, ■ • • , Zd] : 1 — S < \zk\ < 1 + J, k =  1, • • • , d} under the causality condition,

where 5 >  0 is a constant. Thus, ip(-) is bounded on Ss , i.e. | z l̂ <  oo for any
j>o

z G Ss and, so a -h-'Hk=2 \jk\ _* q as max {j i , \ jk \}  —► oo, where a  G (0,1) is a
k=2,- - ,d

constant.

Rem ark 2.2. (i) Inequality (2.4.7) also holds if we replace by its derivative with 

respect to 6j, j  e  J p, or aj, j  G J q, under the condition (2.4.6). This can be justified 

via taking derivative on both sides of equation ip(z) — a (z ) /6(z), followed by the same 

argument as above.

(ii) The same condition guarantees that the auto-covariance function 7 (-) decays at 

an exponential rate, i.e. 7 (j) =  0 (aJ1+^ = 2  lJfcl), where a  G (0,1) is a constant.

(iii) A partial derivative of 7 (-) with respect to any of the (p +  q) parameters also 

decays at an exponential rate. This may be seen through combining (i) and the argument 

in (ii) together.

(iv) Condition (2.4.6) is not necessary for the causality when d = 2,3, • • •.

The process (Z (v ), v T G £} is invertible if it admits a purely AR representation

Z(v)  =E(v)  + ^2<p5 Z ( v - } )  (2.4.8)
j>o

where E j>0 |<̂ j| < oo. Like in Lemma 2.2, one can write down a sufficient condition for 

the invertibility of an ARMA process.

Lem m a 2.3. The process defined in (2.4.1) is invertible if

a(0 , • • • , 0 , 0 , Zd) ^  0 for all \z&\ < 1 and a(0 , • • • , 0 , z j - i ,  Zd) 7̂  0 for all |zd_i| < 1 

and \zd\ =  1 and • • • and a(z) 7̂  0 for all \z\\ < 1 and \zk\ =  1, k = 2 , • • • , d,

(2.4.9)

where zi,  ■ • • , ^  G 6 . Under this condition the coefficients and their partial deriva­

tives (with respect to all parameters) decay at an exponential rate like before.
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The spectral density of {Z(v) ,  v T G Zd} as defined in (2.3.3) is of the form

r2

9 ( u ) =  *(27r)‘
a(eiw) 2

, u?T G [—7r ,7r] . (2.4.10)
b(eiM)

If (Z (v ), v T G £ d} is causal and invertible, the spectral density g(-) is bounded away 

from oo and 0, respectively (Guyon, 1982). Note that the condition tha t g(-) is bounded 

away from oo and 0 is equivalent to the condition tha t a(z) b(z) ^  0 for all ■ ■ • , zd G C 

with |z\ | =  1221 =  • • • =  12^| =  1. Under this condition (Z ’(v), v T G £ d} is a (weakly) 

stationary process.

R e m a rk  2.3. At this point, we may see how bounding the spectral density of any 

(weakly) stationary process away from oo and 0 may be very useful to make conclusions 

on the variance m atrix of a set of random variables from this process. We consider any 

set S  C Zd with N  different elements, where N  is a finite number, and the random 

variables { X (v ) ,  v r G 5 }  from a (weakly) stationary process with a bounded spectral 

density. Then for the (IV x 1) random vector X  with elements the random variables at 

any order, the variance matrix Var{X} has all its eigenvalues also bounded away from 

oo and 0. For the case th a t d =  1 and a set of consecutive observations, the proof has 

been given by Proposition 4.5.3 of Brockwell and Davis (1991). For the case tha t d =  2 

when the observations lie on a rectangle, we can find a similar proof in the paper by 

Yao and Brockwell (2006). For the general case of d number of dimensions and for any 

v T, v*T G Zd and j  =  v  — v* =  [71, • • • , j d], it holds tha t j k G Z for all k = 1, • • • ,d. Then 

it is

[  ei 'Zt=i“kjkdw1 ---dwd = f [  /  eiUkjk<Ljk = 0 (2.4.11)
J\-n,ir]d k=1 J - k

if and only if at least one k = 1, • • • , d, is such tha t j k 7  ̂ 0, or v  ^  v*. As a result, one

can follow the same sequel as Proposition 4.5.3 of Brockwell and Davis and prove that

all the eigenvalues are bounded, even though the set <S may not have a specific structure

on Zd.

2.4.1 A uto-R egressions and M oving-Averages

Two special cases of ARMA processes are studied here, the cases of the auto-regression 

and the moving-average. Later, in Chapter 3 we will be dealing again with ARMA pro­

cesses. We will attem pt then to describe the problems of estimation for the parameters 

of an ARMA model and to solve them. For this, we will need a profound understanding
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of the much simpler world of the auto-regression and the moving-average, as they both 

have desirable properties tha t can be used to solve these problems. Thus, we will need 

to look for auto-regressions and moving-averages in the ARMA, rather than attack it 

directly.

Moreover in this section, we are interested in demonstrating various ways in which 

an auto-regression and a moving-average might be linked. Apart from the obvious con­

nection th a t they may refer to the same polynomial, we are also interested in relating 

two such processes via the same white noise sequence of random variables. We then 

come up with results such as the general Yule-Walker equations, derived in the last part 

of this section, which involve the auto-covariance functions of an auto-regression and 

a moving-average with the same polynomial. Those equations have been used as the 

theoretical prototypes th a t should be imitated by data quantities to provide method of 

moments estimators in the next chapter.

For z =  [z\, ■ • • , Zd] and 0 < j i  <  j 2 < • • • < jq, we define the polynomial

0(z) =  1 +  0h  zjl +  • • • +  0U (2.4.12)

where the coefficients are such tha t we can write

0(z) -1  =  1 +  ^  0 j  z-i, ^ 2  |0 j | <  oo. (2.4.13)
j>0 j>0

We first consider a white noise sequence (e(v)} ~  W N ( 0,1) which generates the moving- 

average (Y (v), v T € Zd}, such that

Y(v) =  0(B)e(v) (2.4.14)

and the auto-regression (A (v ), v T £ Zd}, such that

0(B - 1)X (v) =  e(v). (2.4.15)

If we define the polynomial

7 (z) =  0(z) 0(z~1) = J 2  7(j) zJ> (2.4.16)
p e r

then from (2.4.14),(2.4.15) and (2.4.16), we can see immediately tha t

Y(v) =  7 (B )A (v). (2.4.17)
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The set T  C Zd in (2.4.16) has finite cardinality and is such th a t 0 T E T  and that if 

j T E T  then —j T E T ,  as well. More specifically, we can write here

 ̂= { jT : j = jn, -jn, jn -jm , ra,m = l,--- ,9}.

Later in Chapters 3 and 4, we will denote by T  other finite sets of lags tha t include the 

zero lag and they axe symmetric, but we will not know their exact elements then.

If we define the polynomial

c(z) =  7 (z)-1  =  0(z)-1  ^(z - 1) - 1 =  c0) z j> S  < °°> (2.4.18)
jTezd j r ezd

we can re-write (2.4.17) as

X (v) =  c(B )T (v). (2.4.19)

As a counterpart to the process defined by

e(v ) =  X (v) +  0ji X ( v  + ji)  + • • • +  6iqX ( y  +  j 9),

we define

li(v) =  X (v ) +  eh * ( v  -  ji)  +  . . .  +  eiqX ( v  -  j9) =  0(B )X (v). (2.4.20)

Then

{ u (v )} ~  W iV (0,l),

since it has exactly the same second-order properties as {e(v), v T E 27*}. Indeed for any
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j T E £ rf, it holds that

£ {u (v )k (v  -  j)}  =  E { ( X (v) +  ] P  6inX (v -  j n))(X (v  -  j)  +  OimX ( v  -  j  -  j m))}
71=1 771=1

=  E { X ( V) X (V -  j)}  +  J 2  <>j„E{X{V -  j„ )X (v  -  j)}
71=1

771=1
q q

71=1 771=1
9

=  E { X ( V) X (V + j)}  +  ^ W ( y  +  J . ) X ( y + j ) }
71=1

+  E ^ w ^ - ^ + j + w }
771=1

+  y"! T ,  +  Jn )^ (v  +  j  +  jin)}
71=1 771=1

=  £ { (X (v ) +  E  Oj„X(V + j„ ))(X (v  +  j)  +  E  +  j  +  jm))}
71=1 771=1

=  E{e(v)e(v  +  j)}.

From (2.4.16), (2.4.17) and (2.4.20), we can see that

y (v )  =  0(B _1)u(v). (2.4.21)

The equations (2.4.14), (2.4.15), (2.4.20) and (2.4.21) show that

£ { X (v  +  j)y (v )}  =  |  J =  °  . (2.4.22)
{ 0 , j  ?  0

and K(v) and X (v  +  j)  are uncorrelated for any j  /  0 .

On the other hand, if we write

X (v) =  u(v) +  0 J u (v  “  j ) ’ 
j > 0

we can see immediately that

0 j  =  E {X (v)« (v  -  j)} , j  >  0. (2.4.23)

If we multiply (2.4.20) by u(v  — j), j  >  0, and then take expected values, using (2.4.23) 

we can derive

0 j ^ji0 j - j i  +  • • • +  =  0, (2.4.24)
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where we consider 0 o  =  1 and 0 j  =  0 , j  < 0 , where necessary.

So far, we have seen how

( e(v )} ~  W N ( 0 , 1)

also implies tha t

{ u { v ) } ~ W N ( 0 , l ) .

Moreover, if we can assume that the original sequence is Gaussian

(e(v)} ~  iV(0,l),

then all the linear filters applied to it afterwards generate Gaussian sequences of random 

variables and

{u(v)} ~  N ( 0 , 1).

An interesting question would be what happens in the case that

{ e (v )} ~  JTD(0,1). (2.4.25)

W hen (2.4.25) holds, all the sequences of random variables defined afterwards are strictly 

stationary. As a result, (u (v), v T G Zd}, defined in (2.4.20), is a strictly stationary and 

white noise process.

P ro p o s it io n  2.5. For {e(v)} ~  W iV(0,1), we consider the reverse strictly stationary 

process {X (v), v T G Zd} defined by (2.4.15). We also define {u(v), v T G Zd} by (2.4.20).

(i) Then for any v T G Zd, the distribution of u(v) is the same as the distribution of 

e(v).

(ii) Further, if {e(v), v T G Zd} are identically distributed, so are {u(v), v T G Zd}.

(iii) For any v T, j T G Zd and j  ^  0, if it holds th a t e(v) and e(v +  j) are two 

independent random variables, then u(v)  and u(v  — j) are also two independent random 

variables.

(iv) If {e(v)} ~  I I D { 0,1), then it holds that

{ u ( v ) } ~ //£>(0,1). (2.4.26)

P ro o f. For (i), since {X (v), v T G Zd} is reverse strictly stationary, the distribution 

of [X (v ),X (v  +  j i ) ,  • •• , A (v  +  j 9)]r is the same as the distribution of [X (v ),A (v  — 

j i) ,  • • • , X (v  — j g)]T. We can conclude then tha t the distribution of u{v)  is the same as

the distribution of e(v). The proof for (ii) follows directly.
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For (iii) and without loss of generality, we will consider continuous random variables 

and will denote by /  a generic probability density function. It holds for any j  ^  0 that 

e(v) and e(v +  j)  are two independent random variables. As a result,

f e (v ) , e (v +j ) { ' w l i ' w 2)  =  / e ( v ) ( ^ l )  ’ / e ( v + j ) ( ^ 2 ) >

where f e^ ( w )  and / e(v+j)(u;) might not be the same probability functions, since we have 

not assumed th a t e(v) and e(v +  j) are identically distributed here. We may re-write

I fx(v) ,— ,X (v + jq ) ,A '(v + j) ," - ,X (v + j+ jq )( ‘C’ x l> iXq^X , ’ j %q) dx\  • • • dxq
J r?v

=  I fx(v),---,X(v+iq)(x i ' ' ' i x q ) d X i ' - ' d x q '
J R I

I  f x ( v + j ) , — , x ( v + j + j q) { x  » ’ ’ ■ 5x q ) d x i  ■ ■ • d Xg ,  ( 2 .4 .2 7 )
J R i

where the integrations take place under the restrictions

X +  Q\ X \ - \ -------- 1- 6 q Xq =  W i

and

X* +  0 \  x\- \ -------- 1- Oq  x * =  W2,

according to (2.4.15). We may also write

/u ( v ) ,u ( v —j ) ( ^ l j  ^ 2)

I f x ( v ) , - , X ( v - j q) , X ( v - j ) , - , X ( v ~ j - j q) { x , x l> ’ • • j X q , X  , Xg)  d x \ - - ' d X q
J R 2 q

=  I f x ( ' v ) , - - , X ( v + j q) , X ( v + j ) , — , X ( v + i + j q) ( x i x l '> ' ' '  > x q i x  I x q)  dx\  • • • dxq
J R 21

=  I fX{y),- -,X(y+iq)ix i ' ' ' i x q) dx\  • • ' dXq •
J R I

/  /x (v - l- j) ,-"  ,X (v 4 -j+ jg) ( a' i x q) dXi ’ ’ ’ dxq
J R i

I f x ( v ) , -  - , X ( y —jq) {x i ’ ’ * > x q) dx\  • • • dxq 
J R i

I f x ( v - j ) , - - , X { v —j - j q) i x  j ’ ’ ’ i x q )  d X i  • • • d x q
J r «

=  / u ( v ) ( ^ i )  ‘ / u ( v —j ) ( ^ 2 ) j  ( 2 .4 .2 8 )

which implies th a t u (v ),u (v  — j) are independent as well. Finally, (iv) follows directly 

from (ii) and (iii). ■

The following lemma generalizes (2.4.22) and turns the notion of uncorrelated random 

variables F (v )  and X ( v  — j), j  ^  0, to one of independent random variables.
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L em m a 2.4. If (e(v)} ~  I I D ( 0 ,1) and {w(v)} ~  I I D ( 0,1), then it holds tha t X ( v —j) 

and Y (v) are two independent random variables for any j  ^  0 .

P ro o f. If it holds th a t {e(v)} ~  I I D ( 0 , 1), then the random variables X ( v + j )  and 

Y(v) axe independent for any j  >  0, since X (v) is a linear function of e(v +  j) ,j  >  0 , 

and Y(v) is a linear function of e(v — j), j  > 0 .

On the other hand, if it holds that (u(v)} ~  I I D ( 0,1) too, then the random variables 

-^(v  — j) and Y ( v )  are independent for any j  > 0 . This comes from the fact that X (v) 

is now a linear function of u (v — j), j  >  0 , and Y(v) is a linear function of u ( v + j ) , j  >  0 .

P ro p o s it io n  2.6. We consider the zero-mean and strictly stationary process { Y (v), v r 6 

Zd} with absolutely summable auto-covariance function

7 *(j) =  E { Y ( v ) Y ( v  — j)}  =  <r2 7 0 ), X  € (2.4.29)

where a 2 is given from Kolmogorov’s formula. Then we define the polynomials

7(z ) =  ^CD zi> 1^)1  < °°> (2.4.30)
jTezd jTe zd

7*(z) =  2  zJ’ S  < °°> (2.4.31)
jT£Zd y e z d

and consider

such tha t

7 (z) =  9(z) e fz - 1), (2.4.32)

and

For the polynomial

0(z) =  i  +  z j> < ° ° ’ (2.4.33)
j>o j>o

0(z)_1 =  1 +  0 j zJ, 2  I@j| < OO. (2.4.34)
j>0 j>0

c*(z) =  7 *(z)"1, (2.4.35)

we define the new process

JT  (v) =  c*(z)Y(v). (2.4.36)

If |i£{Y(v)3}| <  oo, 1 +  ^  0, and X*(v — j) and Y(v) are two independent

random variables for any j  ^  0, then for any v r 6 Zd, any i > 0 and any two locations
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vi <  V2, it holds that

C o v { r(v )y (v  +  i), X *(v!)X *(v2)} =  <

0, i >  0 , v i 7  ̂ v  or V2 7̂  v  +  i

1, i >  0, v i =  v, V2 =  v  +  i • (2.4.37)

0, i =  0 , v i or V2 7̂  v

P ro o f. We first define the polynomial

c ( z ) ^ 7 (z r 1 =  , (z) (2.4.38)

and then the process

X (v) =  c(B )y (v ) =  cr2 X *(v). (2.4.39)

We also define the strictly stationary processes

e(v) =  0(B )_1y (v )  =  0(B _1)X (v) (2.4.40)

and

u(v) =  0(B -1 )-1 y (v )  =  0(B )X (v). (2.4.41)

It holds th a t e(v) is independent of e(v +  j) for any j >  0, since the former is a linear 

combination o f y ( v — j*),j* > 0 , and the latter a linear combination of 

* ( v + j + j * ) , j *  > 0 . A similar argument can be used for the two random variables u(v) 

and u(v  — j) for any j > 0 . Of course, the two processes {e(v), v T £ Zd} and 

(u (v ), v r  £ Zd} are sequences of independent and identically distributed random vari­

ables, since we originated the proposition with a strictly stationary sequence {Y  (v), v T £ 

Zd}. It also holds tha t

E { s { \ ) 2} =  E { u ( v ) 2} =  a 2, v T £ Zd. (2.4.42)

We can also write th a t

£ { Y (v )3} =  [l +  ^ ^ | f ; { £(v)3} +  3 '£ { £ (v ) ! }£ {£(v)}
j>0 j>0

+  3 - £ { £(v )}£{£(v)2} 5 ^ 0 ?
j>0

+  3 -E {e (y ) }3 £  +  3 • E {£(v)2}£ {£(v)} £  02 0,2
j l J 2 > ° .  j lJ 2 > ° *

+ 3 - E W v )}3 £  V i A
JlJ2>J3->0>

Jl#J2> jl#J3> J2^J3

=  [1 +  ^ 9 | ] B { £ (v ) 3 } .

j>0
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As a result, if | i ? { y ( v ) 3}| <  oo and 1 +  X)j>o^j ^  ^hen ^  holds that

|£{e(v )3}| < 00

and, similarly, it holds that

| £ M v ) 3}| <  00.

T he finite third m om ents of the noise sequences will be useful next. To prove (2.4.37), 

we will start w ith  the cases when i >  0. We separate into the following cases:

(i) If v i  <  V2 <  v  <  v  +  i, then it holds that the random variables X ( v i ) A ( v 2) and 

Y ( v ) y ( v  +  i) are independent.

(ii) If v i  <  v  =  V2 <  v  +  i, then we may write

£ { A ( v i ) X ( v ) y ( v ) y ( v  +  i)}  =  £ ,{ J 5 { A ( v i ) X ( v ) y ( v ) y ( v 4 -  i) |u (v i — j ) , j  >  0 } }

=  £ { { X ( v i ) [ u ( v ) +  0 j u ( v - j )
0<j<v—vi

+  S  e J w(v - j ) ] y ( v ) y ( v  +  i) |u (v i — j ) , j  >  ° } }
j>V-Vl

=  £ W v i ) [  x ;  e j U ( v - j ) ] } £ { y ( v ) y ( v  +  i)}
j>V-Vl

+  £ { X ( v i ) }  £?{[«(v) +  0 j  u ( v - j ) ] y ( v ) y ( v - t - i ) }
0<j<v-vi

=  £ { A ( V l) x ( v ) } £ { y ( v ) y ( v  +  i)} ,

and we have used th e fact that |£ '{u (v )3}| <  00 for the second term.

(iii) If v i  <  v  <  V2 <  v  +  i, then we may use the sam e argum ent as in (i).

(iv) If v i  <  v  <  V2 =  v  +  i, then we may write

£ { X ( v i ) X ( v  +  i ) y ( v ) y ( v  +  i)}

=  ^ { £ ; { X ( v i ) A ( v  +  i ) y ( v ) y ( v  +  i) |u (v  +  i +  j ) , j  >  0 } }

=  E { X ( v i ) [ ^  0 j  u (v  +  i — j)]}  E i l ^ O )  u (v  +  j ) ] y ( v  +  i)}  
j>0 j>i

+  £ ? { X ( v i) [ 5 ^ 0 j  u (v  +  i - j ) ] [ u ( v ) +  w(v + j ) ] } £ { ^ ( v  +  i)}
j>0 0<j<i

+  £ { X ( v i ) }  £7{u(v +  i ) [ ^ 0 j  u ( v + j ) ] y ( v  +  i)}
j>i

+  £ ? {X (v i)[u (v ) +  ^ 2  u (v  +  j)]}  £ { « ( v  +  i ) 7 ( v  +  i)}
0<j<i

=  £ { x ( V l) x ( v  +  i)}  £ ; { y ( v ) y ( v  +  i)} ,  

and the finite third m om ent has been used for the two middle term s.
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(v) If vi < v < v + i < V2 , then we may use the same argument as in (i).

(vi) If vi = V2  = v < v + i, then we may write

£{X(v)2Y(v)Y(v + i)} = E { E { X (v)2Y(v)Y(v + i)|u(v + i + j ) ,j > 0}}

= £{X(v)2[u(v)+ ^  u(v+j)]} £{Y(v + i)}
0<j<i

+ £{X(v)2} u(v+j)] y(v + i)}
j>i

=  s { x ( v ) 2} £ ;{ y (v )y (v  +  i)},

and the finite third moment has been used for the first term.

(vii) If vi = v < V2 < v + i, then we may write

£{X(v)X(v2)r(v)K(v + i)} = E { E { X ( v ) X ( v 2) Y ( v ) Y ( v  + i)|ti(v -  j), j > 0}} 

=  E {X ( v ) [  0j w(v2-j)]} u(v+j)]F(v + i)}
j>v2-v j>0

+ £{X(v)[ 0j u(v2-j)]u(v)} E{y(v + i)}
j>V2~V

+ E { X ( v ) }  E{[u{v2) + 0j U(V2 u(v +j)]y (v + i)}
0<j<V2—V j>0

+ £{X(v)u(v)} £{[u(v2) + ^2 0j u(v2 -  j)] (̂v + i)}
0<j<V2—V

=  £{A-(v )X (v2)} £ { Y (v )y (v  +  i)},

and the finite third moment has been used for the two middle terms.

(viii) If vj = v < v2 = v + i, then we may write

E { X ( v ) X ( v  + i)Y(v)Y(v + i)}

= £{{X(v)X(v + i)Y(v)y(v + i)|u(v- j), j > 0}} -

= £{X(v)[^0j u(v + i — j)]} E{[J20j w(v+j)]y(v + i)}
j>» j>o

+ £{X(v)} £{[u(v + i) + 0j (̂v + i-j)][^^j w(v+j)]y(v + i)}
0<j<i j>0

+ J5{X(v)[^0j u(v + i-j)]u(v)} E{Y(v + i)} 
j>i

+ £{X(v)u(v)} £{[u(v + i)+ ^2 + +
0<j<i

= £{X(v)X(v + i)} i?{Y(v)Y(v + i)} + £'{u(v)2} E{u(v + i)2}

= E { X ( v ) X { v  + i)} £{Y(v)Y(v + i)} + <r4,
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and the finite third moment has been used for the two middle terms. Similarly, if we use 

(2.4.39) we may write

£{X *(v)X *(v  +  i)Y (v)Y (v +  i)} =  1 +  E {X * {v )X * (v  +  i)} £{Y (v)Y (v  +  i)}.

W ith exactly the same arguments and the change of roles of the two sequences 

(X (v ), v T G Zd} and (Y (v), v r G Zd} and the two sequences (u(v), v T G Zd} and 

(s(v ), v T G Zd}, we may proceed as follows:

(ix) If v i =  v  < v  +  i <  V2, then we may use the same argument as in (vii).

(x) If v  < v i <  V2 <  v  +  i, then we may use the same argument as in (i).

(xi) If v  < v i < V2 =  v  +  i, then we may use the same argument as in (iv).

(xii) If v  < v i < v  -f i < V2, then we may use the same argument as in (i).

(xiii) If v  < v i =  V2 =  v  +  i, then we may use the same argument as in (vi).

(xiv) If v  < v i =  v  +  i <  V2, then we may use the same argument as in (ii).

(xv) If v  < v  +  i < v i < V2, then we may use the same argument as in (i).

Finally, for the case of i =  0, we want to verify that

£ { X (v !)X (v 2)y (v )2} =  B{X(V!)X(V2)} £ { y ( v ) 2},

when either v j ^  v  or V2 ^  v. If v i, V2 /  v, then we may use the same argument as 

in (i). If either v j =  v  or V2 =  v  (but not both), then a similar argument like in (vi) 

might be used. ■

G e n e ra l Y u le-W alker eq u a tio n s

For a given polynomial

0( z) =  1 +  9h zn  +  • • • +  0jqz?q,

we derive in this section the general Yule-Walker equations. These equations refer to 

the coefficients of the polynomial 0(z) rather than  the auto-regression with

polynomial 0{z), like the original Yule-Walker equations. For a more detailed description 

of the original Yule-Walker equations, one may refer to Section 3.3.1. Here, the auto­

covariance functions of both the two processes, the auto-regression and the moving- 

average tha t use 9(z), are involved, in contrast to the original Yule-Walker equations 

that use the auto-covariance function of the auto-regression only.

44



If we define the spectral density of the auto-regression ( X ( v ) ,  v T E Zd} defined in 

(2.4.15) as

9x(w) = • 0 (eiu,)0 (e-i« ) -  (27r)d ' 7 ( e ^ ) ’ U G [_7rj7rl (2.4.43)

then it is clear th a t the polynomial c(z) defined in (2.4.18) generates the auto-covariances 

of the auto-regression

c (j) =  C o v { X (v ) ,X (v  + j ) }  =  E { X ( v ) X ( v  + j ) } ,  j T €  z d. (2.4.44)

Similarly, if the spectral density of the moving-average {Y (v ) , v T E Zd] defined in

(2.4.14) is

3Y M  = ^ 3  =  (2^)3 " T 6  ^  (2-4-45)

then combining this with (2.3.3) implies that the polynomial

7(z) =  7 0 ) ^  (2.4.46)

generates the auto-covariances

7 (j) =  C o v { y ( v ) , y ( v + j ) }  =  £ { K ( v ) K ( v + j ) } ,  f g Z 11. (2.4.47)

From (2.4.17) and (2.4.22), we can derive

^  f 1, j = 0
5 3  7 (i)  c(i -  j)  =  < . (2.4.48)
r e *  1  0 , j ^ O

We will refer to equations (2.4.48) as the general Yule-Walker equations.

As we are going to see later in Chapter 4, the invention of the general Yule-Walker 

equations does not only concern the ARMA processes. Looking at (2.4.48), one might 

see th a t the auto-covariance functions of two processes are involved and there are two 

fundamental elements needed, in order to build these equations. The first is that the 

set of lags T ,  where the auto-covariance function of one of the processes is non-zero, is 

of finite cardinality. The second is tha t the two processes must be linked via a specific 

transformation to achieve such a relation between their auto-covariance functions. In the 

specific case of the auto-regression { X  (v ), v T E Zd} and the moving-average { Y (v ), v T E 

£ d}, this transform ation was expressed in

Y (v ) =  7 ( B ) X ( v )
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or

X (v) =  c(B )F (v).

Thus, the two processes are connected via transformations tha t use their auto-covariance 

functions. If T  is not of finite cardinality, then the equations still hold but the sum­

mations extend over infinity; this is of little use when we observe processes on many 

dimensions d >  2 , due to a problem called the edge-effect, which will be further analyzed 

in Chapters 3 and 6 . In other words, processes tha t have a non-zero auto-covariance 

function over a finite set of lags may have a worthless contribution in the solution of 

the problems of estimation for the parameters of processes on the d-dimensional regular 

lattice. Further, for a given polynomial j ( z ) ,  a finite set T  allows us to create a set of ran­

dom variables {Y(v), v r E <S*} from another set of random variables {X (v), v T E «S}, 

where S* C «S, if we apply the finite transformation involved.

We do not worry about observing any process yet, this will be im portant in the 

next chapters of estimation, so we refer to sets of random variables rather than sets of 

observations. The general Yule-Walker equations will next be used to demonstrate that 

both the inverse theoretical variance m atrix of a vector of random variables from an auto­

regression and the inverse theoretical variance m atrix of a vector of random variables from 

a moving-average are conditional variance matrices. Gaussian likelihoods, which will be 

used later for estimation, involve the inverse variance matrices and their determinants 

and now we know their form. Moreover, since the inverse conditional variance matrices 

involve the auto-covariance functions of the auto-regression and the moving-average, it 

might be useful to refer to conditional Gaussian likelihoods. Indeed, the inverse variance 

m atrix of a set of random variables from the auto-regression is a conditional variance 

m atrix referring to  the same set of random variables from the moving-average and vice 

versa. The property we are showing is dual but we are only using later one of its two 

sides. In Chapters 3 and 4 we will refer to  conditional likelihoods and we will come up 

with inverse conditional variance matrices, i.e. variance matrices with elements the auto­

covariance functions of simple processes such as an auto-regression or a moving-average.

C o n d itio n a l v a ria n ce  m a tr ix  for th e  a u to -reg re ss io n

For any set S  C Zd of finite cardinality N ,  and the set T  C Zd as defined in Section 2.4.1, 

we consider S* to be the maximal set such th a t for every v r E <S*, it holds tha t v T— j T E S  

for all j T E T . We write then N* for the cardinality of S*. Of course, we may also
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write th a t <S* C S  and N* < N.  We let X*,Y* to be the (N* x 1) random vectors 

from processes (2.4.15) and (2.4.14), respectively, of the elements of S* in any order. 

Similarly, we consider the random vector Xo with members from the process (2.4.15) on 

the locations of the set S  — S*. The polynomial 9{z) we are using is such tha t the two 

processes are causal and invertible, respectively. It is then clear from (2.4.17) that we 

can write

Y* =  r  • X* +  r 0 • Xo, (2.4.49)

for an (N* x N*)  matrix T  and an (N* x (N  — N *)) m atrix IV  It holds according to 

(2.4.22) that

Cov{X*, Y*} =  I tv*, (2.4.50)

i.e. it is the identity matrix. Again from (2.4.17), it holds tha t

T =  Var{Y*}, (2.4.51)

since the vectors X*, Y* refer to all the locations v T G S* set in the same order.

Thanks to  Remark 2.3, the eigenvalues of Var{Y*} are positive and its inverse exists. 

We can now write

X* =  Var{Y*}- 1Y* -  Var{Y*}- 1r 0 X 0. (2.4.52)

Equation (2.4.52) reveals that X* can be written as a linear combination of the two 

random vectors Y* and Xo, which are uncorrelated using (2.4.22). As a result and using 

(2.4.50), it should hold that

X* =  Var{Y*}- 1Y* +  Cov{X*,X0} Var{X0}_ 1Xo, (2.4.53)

from which we can write

Var{Y*}-1  =  Var{X*} -  Cov{X*, X 0} Var{X0}_ 1Cov{X0, X*}- (2.4.54)

Moreover, if we can assume that (e(v)} ~  I I D { 0,1) and tha t {u(v)} ~  I I D ( 0 , 1) too, 

then the random vectors Y* and Xo are independent, according to Lemma 2.4. It holds 

from (2.4.53) th a t

Var{X*|X0} =  Var{Y*}_1 (2.4.55)

and also

£{X * |X 0 =  x 0} =  Cov{X*,X0} Var{X0}- 1x 0. (2.4.56)
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C onditional variance m atrix  for th e  m oving average

For the same sets <S, <S*, and cardinalities N : N* as defined before, we now consider the 

(N  x 1) random vectors X  and Y  from processes (2.4.15) and (2.4.14), respectively, of 

the elements of S  in any order. We write

X  =  C • Y  +  Y 0, (2.4.57)

where

C =  Var{X} (2.4.58)

and Yo is the (N  x 1) random vector with element corresponding to the specific location 

v T G S  equal to

£  c ( i ) r ( v - j ) .  (2.4.59)
v T—j r ^ 5

Thanks to Remark 2.3, the inverse Var{X}_1 exists. We can write

Y  =  Var{X}_1X  -  Var{X}~1Y 0. (2.4.60)

Since X  and Yo are two uncorrelated random vectors, we can write

Var{X}-1 =  Var{Y} -  Cov{Y, Y 0}Var{Yo}- 1Cov{Yo, Y}, (2.4.61)

which, if both  {e(v)} ~  I I D ( 0,1) and (u(v)} ~  I I D ( 0 , 1), can be expressed in terms 

of a conditional variance tha t is later given in (2.4.65). But th a t would imply that we 

know the value yo of the random vector Yo which depends on all values y(v), v T ^ S.  

We define

w =  - [ Y  -  Var{X}_ 1X] =  V a ^ X } " 1^  -  Var{X} Y] =  V ar{X }-1Y 0. (2.4.62)

and re-express (2.4.60) as

Y  =  Var{X}-1X  -  w. (2.4.63)

The general Yule-Walker equations guarantee tha t the elements of the symmetric m atrix 

Var{X}-1  =  [lk,i\k;,i=i are

7k,l =  7(vfc -  v;) (2.4.64)

if at least one v^ e  S* or v/ G S* for all the elements of S  labeled as k, I = 1, • • • , N.  As 

a result, the random vector

Var{X}-1X
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gives the random variables Y (v ),v T E S*. Similarly, the random vector w  has zero 

elements for v T G S*. The remaining elements of the vector w  on locations v T E 

S  — S* can be seen as functions of the values Y(v), v T ^  S,  or functions of the errors

e (v ) +  £ n = l  &jn e (v  -  jn), or u(v) +  $3n=l w(v  +  Jn), n =  1, • ■ • ,q, for all v T i  S.

Thus, a reasonable assumption is tha t w  =  0, which when w  is independent of X  can 

result in

V ar{Y |w =  0} =  Var{Y|w} =  Var{X }_1 (2.4.65)

and

£ { Y |w  =  0} =  0. (2.4.66)

It should be made clear now that, although the variance matrices and their inverses 

only involve the second-order properties of the processes of interest and they are totally 

unconnected to any causal formulations assumed to be taking place there, before tha t we 

have made a fundamental assumption for the polynomial 0{z), without which we cannot 

proceed in tha t way. We have assumed that

0{z )-1 = 1 +  ^  0 j 5=i , J 2  l0 jl <  oo-
j>0 j>0

It is only then th a t we may move smoothly between an auto-regression {X (v), v T e Z d} 

and a moving-average (Y (v), v T G Zd}, such that

C ov{X (v+  j), Y(v)} =  0, j  ^  0 .

As it will be made clear in Section 3.6, this is extremely im portant in estimation if we 

are interested in estimating the parameters of a bilateral rather than  a unilateral ARMA 

process. More details about how we define unilateral and bilateral ARMA models will 

be provided in Section 3.2.1.

2.5 /("-dependent processes

First we write the following condition.

(C l) (i) For a set S  = S n  C Zd of cardinality N ,  we write N  —> oo if the 

length M  of the minimal hypercube including *S, say S  C Cm , and the 

length m  of the maximal hypercube included in <S, say Cm C «S, are such 

tha t M, m —► oo.

(ii) As M, m  —> oo, it holds th a t M / m  is bounded away from oo.
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A typical example for (C l)(i) is when our observations lie on a hyper-rectangle <5 =  

{1, ••• , N \ }  x ••• x { l,---  ,Nd}  and min d=1{N k} —> oo. We will often refer to this

example for simplicity, although the results hold for all increasing sets satisfying (Cl).

For (C l)(ii), the minimum and maximum number of recordings in <S per dimension 

k = 1, • • • , d, increase at the same speed. In the case of the rectangle, we may write

Nu
0 < a  <  —  < (3 < oo, k , j  = 1, • • • , d. (2.5.1)

Aj

Condition (C l) was used by Guyon (1982, p .95). Part (ii) also implies tha t we can write

N  = 0 ( M d) = 0 ( m d). (2.5.2)

Next we give the following definition.

D efin ition  2.5. For the minimum non-negative integer K , a strictly stationary sequence 

of random variables {U(v),  v T E Zd} is said to be A”-dependent if for every E

Z, k = 1, • • • , d, the two sets of random variables {U (iq, • • • , Vk-i, jjfc, Vk+i, • • • , Vd), jk < 

Vk} and

{U(vl,  • • • , v l _ v j k, v j+1, • • • , uj), j k > vk +  K  +  1} are independent.

For any positive integer K , we define the set

Bk  = M k - { [ 0 , • • • , 0]T}, (2.5.3)

where M k  was defined in (2.3.6). We also define the set

T k  = ( jT : J" € M K , - j r € M k Y  (2-5.4)

T heorem  2.2 (C entral Lim it T heorem  for str ic tly  stationary AT-dependent 

sequences). Let { C /(v ) , v T E Zd} be a strictly stationary AT-dependent sequence of 

random variables with zero mean and auto-covaxiance function 7 (-), and let S  C Zd be 

a set of cardinality N.  Write

vk  =  ^ 2  (2.5.5)
j tZTk

and

Vn = Y .  U(y)/N. (2.5.6)
v T€«S

Then under condition (C l), it holds that

(i) N  Var-ft/jv} —► vk  and
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(ii) N ' V U n - ^  N ( 0 , vk ) 

as N  —> oo.

P ro o f. For simplicity and without loss of generality, we will consider the case of the 

hyper-rectangle.

(i) We may write

iV Var{J/w} =  i  £  7 ( v - v * ) =  £  &  y(j)  (2.5.7)
v T,v*TG<S

where / j  is the number of times we may find the lag j T E Zd from the difference of 

locations v  — v* when both  v T, v*T E «S. For example, it always holds tha t /o  =  N.  For 

the case of the rectangle, Proposition 3.1 tha t appears in the next chapter shows that

h = n w  -  i » d = n  ■ n  (*  -  -  n > (2-5-g)

as minj*=1{iVfc} —> oo, which proves the first part of the theorem.

(ii) For each fixed integer m  > 2K,  we define the sets Splt:..,Pd C <S, such that

Sp?)-,Pd = ( vT =  [v i, —  ,v d] : vk = (pk ~  l )m - l- l ,  • • • , pk - m - K ,  fc =  1, • • • ,d }  (2.5.9) 

for pk = 1, • • • , r, for all k  =  1, • • • , d, and r  =  [min^=1{iV fc}/m ] . We also define the set

=  Uj1=1 ■ • • u ;J=1 sg}.. (2.5.10)

and the random variable

VN m s N - 1!2 (2.5.H )
v TG^(m)

Then the random variable Arl/ 2V}vm is a sum of rd independent and identically dis­

tributed random variables each with zero mean and variance equal to

R m -K  = Var{[/(1, • • • , 1) + -----[-U(m — K,  - - • , m  — K )}
d

S  b'fcl) 7(j)
jTESFm-K k=l

= (m — K ) d £  (2-5.12)
i T̂ m - K  k=l

In (2.5.12), we are using (2.5.8) for the case of the hyper-cube. For fixed m, as 

min^=1{Â fc} —» 00, it holds that r  —» 00 and we can apply the central limit theorem and
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write that

[rd] - 1 / 2 (  y (v ) |  =  [r‘i] - 1/2 (jV1/2W m) JV(0,.Rm-fr). (2.5.13)
\v r €7?.(m) /

Under (C l)(ii), it holds tha t

d

rd \  r J
m  .

As a result, we may re-write (2.5.13) as

{rnd) ^ 2VN m - ^ N ( 0 , R m. K )

or

rrv

where it holds tha t

d

0 ,% = ^ V  (2.5.14)

Rm—K (  Tfl K
m d \  m E  n  f 1 -  ^ T k )  T'O) -* E l f f l  =  »K , (2.5.15)

yZ.Fm.-K fc=l yZ^K

as m  —* oo. Finally, it holds that

N 1/2Un  = N ~ 1/2 ^ 2  t/(v )
vT€S

and we may look at the variance of the random variable

n ~i/2 ^ 2 u ( v ) - n ~i/2 ^ 2  u (v )'
v Te«s v Te ^ ( m)

In a similar way like Theorem 6.4.2 of Brockwell and Davis (1991), we may find tha t

limsup N -1V.ar{ Y '' ^ ( v )} =  ~~r (2.5.16)
m infJVi,” - ,Nd}—Hx> vTes, 171

which tends to 0 as m  —► oo. ■

52



Chapter 3

Estim ation for ARM A m odels on 

a c?-dimensional lattice

3.1 Introduction

In this chapter, we are concerned with the estimation of the parameters of ARMA 

models on the d-dimensional lattice. We take one step at a time, as we first consider 

the case of observations from a causal auto-regression and then the cases of the moving- 

average and ARMA processes. Due to a problem known as the edge-effect, which is 

described in Section 3.2.2, the standard methods used for time series cannot be applied 

when d >  2 ; the exact Gaussian likelihood estimators computed from N  observations on 

the d-dimensional lattice have an absolute bias of order AT-1/d, as Guyon (1982, p.95) 

has explained. Thus, we have looked for modified versions of Gaussian likelihoods that 

can generate consistent and asymptotically unbiased and normal estimators. A similar 

methodology was used by Yao and Brockwell (2006) for the case when d =  2. Before 

that, Guyon (1982) had proposed a modification on the quantity, for which W hittle 

(1954, p.440) proved th a t it is a modified version of Gaussian likelihood when d =  2.

We start in Section 3.3 with the case of observations from a causal auto-regression, 

and we consider the Yule-Walker estimators of the parameters. These estimators are 

conditional likelihood estimators, as we explain later in Section 3.3.3. Moreover, they 

are the least squares estimators tha t Guyon (1982, p. 103) was suggesting for the case of 

a unilateral auto-regression. We prove that they have the properties tha t we mentioned 

before and also th a t they are efficient for Gaussian random variables.
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In Section 3.4 we study the case of a moving-average. Though invertible moving- 

averages are considered there, our results can be generalized, as we explain later in 

Section 3.6. We propose a Yule-Walker method of estimation tha t imitates the general 

Yule-Walker equations from the previous chapter for the moving-average. The estimators 

are consistent, asymptotically unbiased and normal, though we have managed to write 

their variance m atrix under a condition, which is definitely satisfied for Gaussian random 

variables. Even if the original process is Gaussian, the estimators are still not efficient. 

Thus following the Yule-Walker method, we maximize a modification of a conditional 

Gaussian likelihood tha t improves our results and gives efficient estimators under exactly 

the same conditions.

The good results achieved for the moving-average are still not surprising. As Guyon 

(1982, p. 100) noted, when the range of summation in the numerator or the denominator 

of the spectral density of the process of interest is finite, we should expect to find ways to 

deal with the edge-effect. An ARMA process though, does not have an auto-covariance 

function th a t cuts off to zero outside a finite set of lags like a  moving-average, nor is 

it possible to  apply a finite filter on the ARMA process and come up with a sequence 

of uncorrelated random variables, like it is for an auto-regression. Nevertheless, a finite 

transformation applied on the ARMA process does produce a moving-average and these 

two features, i.e. the finite transformation applied on the ARMA and the finite auto­

covariance function of the moving-average tha t is produced then, are the special features 

of an ARMA process th a t we will take advantage of. As we will show later, three different 

finite filters can produce three moving-averages in this way, but only one of them is 

appropriate for use and capable of defeating the edge-effect. The case of the causal and 

invertible ARMA is studied in Section 3.5 and generalizes the results of Section 3.4, 

rather than 3.3. Thus, we propose a modified version of Gaussian likelihood estimators 

tha t are consistent, asymptotically unbiased and normal. The variance matrix of the 

estimators is known under an extra assumption, and in the Gaussian case the estimators 

are guaranteed to be efficient. Even if the ARMA process is not causal and invertible, we 

may define estimators with same properties, according to Section 3.6, after we correct 

the deterministic part of the modified likelihood properly.

This also applies to the conditional likelihood proposed in Section 3.3, which is ap­

propriate for causal auto-regressions only. It is an obvious generalization of W hittle’s 

(1954) contribution for the estimation of parameters of bilateral auto-regressions on Z2,
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as W hittle originally approached the random part of the Gaussian likelihood as a sum 

of squares of uncorrelated random variables. Since the likelihood proposed in 3.3 is not 

clearly a special case of the likelihood proposed in Section 3.5, we might find a link 

later in Section 4.5.2, when it will be possible to estimate the parameters of a unilateral 

or bilateral auto-regression using a modification on a Gaussian conditional likelihood,

i.e. the special case of the likelihood of 3.5. The results of Section 3.3 demand that 

the auto-regression of interest is causal but they also provide the form of the variance 

m atrix of the estimators, even though the random variables might not be Gaussian. In 

Section 3.5, apart from the assumption of causality which is also necessary, we have 

shown that the form of variance m atrix is known under an extra condition, which is 

automatically satisfied for Gaussian processes. Thus, in Section 3.7, we establish the 

usefulness of causal auto-regressions when one of the dimensions is the time axis and 

we use further the results of Section 3.3, without making any specific assumption on 

the distribution of the process of interest. Tests for the unknown coefficients might be 

performed and all the results are applied on a spatio-temporal dataset.

3.2 T he problem s o f th e  A R M A

The multi-dimensional ARMA process was defined in the previous chapter in a similar 

way to the one-dimensional ARMA used for time series. In this section, we present 

two main problems tha t arise when we deal with the ARMA defined on the regular 

d-dimensional lattice.

3.2.1 Unilaterality, causality and invertibility

For any location v T € Zd on which the process takes place, any other location belongs 

either to its ‘past’ {v — i, i >  0}, or ‘future’ {v +  i,i > 0}. We call ‘past’ and ‘future’ 

for convenience, when we refer to the two opposite orderings of interest, as described in 

Section 2.2. After we have decided which orderings represent the ‘past’ and ‘future’, we 

may define a causal and invertible ARMA process as in Section 2.4. In this section, we 

will attem pt to explain the idea of unilaterality for the case of ARMA processes. For the 

simple case of an auto-regression first; a causal auto-regression is always unilateral, in 

the sense th a t the process on any point v T e  Zd can be expressed as a linear combination
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of e(v — i), i > 0, with absolutely summable coefficients, and

{ e (v )} ~ lfiV (0 ,f f2)

is the related sequence of random errors. Then for the simple case of a moving-average; 

an invertible moving-average is always unilateral, in the sense th a t for any v T E Zd we 

may express the related random error as a linear combination of the ‘present’ and ‘past’ 

values of the process itself, with absolutely summable coefficients.

For the case of an ARMA process, the relation between causality, invertibility and 

unilaterality may be extended in an obvious way. We give the following definition.

D efin ition  3.1. A finite ARMA process (Z (v), v T E Zd}, which has been expressed in 

terms of the random sequence

{e (v )} ~  WiV(0,<T2),

is unilateral if

1. Z(v )  is a linear function of s(v  — i), i > 0, and s(v) is a linear function of

Z(v — i), i > 0, both with absolutely summable coefficients, or

2. Z(v )  is a linear function of e(v  +  i), i > 0, and £(v) is a linear function of

Z ( v  +  i), i >  0, both with absolutely summable coefficients.

According to the definition, a causal and invertible ARMA process is always unilat­

eral. Moreover, if we have an ARMA process that is not causal and invertible but the 

value of the process on v T E Zd is a function of ‘present’ and ‘future’ random errors, 

from the related error sequence, and the value of the random error on v T E Zd is a 

function of ‘present’ and ‘future’ values of the process, both with absolutely summable 

coefficients, then this is a unilateral ARMA process too. An interesting question is what 

happens when the two polynomials are oriented in an opposite way but do generate 

absolutely summable coefficients. For the sake of example, we write the one-dimensional 

ARM A (1,1) process {Z t , t E Z} defined by the equation

Z t -  0.5 Zt- 1 =  ut +  0.2 ut+1, {u*} ~  WAT(0, o2 ).

According to Definition 3.1, we will not consider tha t {Z t , t  E Z}  form a unilateral 

ARMA process, although in terms of parametrization nothing would really change when
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writing it down as a causal and invertible ARMA process. In other words, there is 

a sequence of uncorrelated random variables {£*, t E Z}, which we can define by the 

equation

Zt -  0.5 Zt-! = £, + 0.2 £t—l, {Et} ~  VKAT(0,cr2)

and which now allows to our ARMA process to be considered causal and invertible. The 

problem of bilaterality of an ARMA process is far more complex than this. In order to 

describe it better, in order to understand Definition 3.1 and to  follow the example of 

W hittle (1954), we will focus next on the cases of causal or unilateral auto-regressions 

and we will try  to demonstrate how these two forms are connected.

Although a causal auto-regression is unilateral, a  unilateral auto-regression is not 

necessarily causal. Similarly, an auto-regression tha t is not causal does not have to be 

bilateral. There are causal auto-regressions, there are unilateral and not causal auto­

regressions and there are bilateral auto-regressions. We may give a simple example of 

a two-dimensional bilateral auto-regression, say v), u , v  E Z}, defined by the

equation

X (1)(u, v) =  5.1 X (1)(u -  1, v) -  0.5 X (1)(u -  2, v) +  0.3 X (1)(u, v -  1)

-  1.53 X (1)(u -  1, v -  1) +  0.15 X (1)(u -  2, v -  1) 4- w {1)(u, v), (3.2.1)

where

{iu^ u, v)} ~  WiV(0,(72 ).

We may re-write

(1 -  0.1 R i) (1 — 5 J5i) • (1 — 0.3 B 2) X (1) (k,v) =  w(1)(u,u) (3.2.2)

and it holds tha t

(1 -  0.1 zi)  • (1 -  5 zi)  • (1 -  0.3 z2) = (1 -  5.1 zi  +  0.5 z\ )  • (1 -  0.3 z2)

=  1 — 5.1 z\  +  0.5 z \  — 0.3 z2 +  1.53 z \ z 2 — 0.15 z \ z 2. (3.2.3)

Moreover, since

(1 -  5 *i) • (1 -  5 z ^ 1) = 25 (1 -  0.2 z f 1)(l -  0.2 zi), (3.2.4)

the auto-regression defined in (3.2.1) shares exactly the same second-order properties as 

the causal auto-regression {X^2\ u , v ) ,  u ,v  E Z]  defined by the equation

(1-0 .1  J5i)-(1—0.2 S i) - ( l-0 .3  B 2) x W ( u, v ) =  w(2)(u, v), {w(2)(u, v)} ~  WAT(0, <r2 /25).

(3.2.5)
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Both the auto-regressions defined by (3.2.1) and (3.2.5) are linear-by-linear, in the sense 

th a t the auto-regressive polynomials have been factorized into two parts, one referring 

to the dimension u  G Z only and the other to the other dimension v € Z, while this is 

not always possible. Linear-by-linear processes will be defined properly in Chapter 6. 

Here, they have been used as examples for mathematical convenience only.

But what if we are interested in an auto-regression th a t is not causal but it is uni­

lateral? A simple example of a linear-by-linear unilateral auto-regression, which is not 

causal, is the auto-regression { ./^ ( t i ,  v), u,v  E Z} defined by the equation

(1 -  0.2 B ^ 1) • (1 -  0.3 B 2) A ^ (u ,u )  =  e(1)(u,u), {e(1)(u,u)} -  WN(0,<t*). (3.2.6)

Now, (3.2.6) shares exactly the same second-order properties as the causal auto-regression 

{A(2\ u ,  v ),  u, v € Z}  defined by

(1 -  0.2 £ i )  • (1 -  0.3 B 2) A {2\ u , v ) = e(2)(u,u), { e ^ ( u , v ) }  ~  WiV(0,<r2). (3.2.7)

The auto-regression defined in (3.2.6) is unilateral and a simple justification for this is 

th a t it would be causal if a different selection of unilateral orderings had been made to 

represent the ‘past’ and ‘future’. Thus in our first example, what actually makes (3.2.2) 

a bilateral auto-regression is not tha t the root 0.2 is less than 1 in (1 — 5 z\)  =  0, as this 

is only the reason why the auto-regression is not causal. The process defined in (3.2.2) is 

bilateral because, for the first dimension u G Z, there is a root 10 and a root 0.2, outside 

and inside the unit circle, respectively, in (1 — 0.1 z\)  • (1 — 5 z\)  =  0. This means that 

the process runs over both sides of the axis, and since this is the primary axis, we may 

rest immediately tha t the auto-regression is bilateral. Following the same argument as 

W hittle (1954, p.436) for time series, we may safely say tha t there are 22 =  4 unilateral 

processes th a t share exactly the same second-order properties as (3.2.2), as they occupy 

the four different quarters. One of them is the causal auto-regression defined in (3.2.5). 

Let {X(3)(u, u), X (4)(u, v ) ,  X ^ ( u ,  v), u, v  £ Z} be the other three defined by

( l - O . l B i H l - O ^ B i H l - O . S ^ -1 ) X (3)(u,u) =  t i/3>(u,v), (3.2.8)

( 1 - 0 .1  x) • (1 -  0.2 S f 1) - ^ - 0.3 B2) X (4)(u,v) =  w ^ ( u , v ) ,  (3.2.9)

(1 — 0.1 -Bj-1) • (1 — 0.2 B ^ 1) • (1 — 0.3 B ^ 1) X ^ \ u , v )  =  w ^ (u ,v ) ,  (3.2.10)

where

{ u /3)(u, u)}, { w ^ (u ,  v )j, { w ^ (u ,  v)} ~  WiV(0, cr2 /25).
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While we can see immediately th a t the processes defined in (3.2.9) and (3.2.10) are not 

causal, since they both  run over the ‘future’ side of the primary axis, it is harder to 

figure out whether the process defined in (3.2.8) is causal or not, as this depends on 

the secondary rather than  primary axis. For any u, v G Z, it holds tha t X^3\ u , v )  is a 

linear function of w^3\ u  — k ,v  + l ) ,k , l  > 0. While w^3\ u  — k , v  + I), k > 0,1 G Z, are 

allowed in a causal representation, the same cannot be said for w^3\ u ,  v +  I), I > 0, and 

the auto-regression is not causal. This verifies tha t {X^2)(u,u), u ,v  E Z} is the unique 

causal auto-regression corresponding to the spectral density of interest.

The two examples that we have used to understand the notion of causal versus 

unilateral auto-regressions suggest two different ways of finding out whether the process 

of interest has any of these properties. The first example writes the auto-regressive 

polynomial as

1 -  £  <b>, (3.2.11)
jeZp

with the restriction th a t Tp C {j > 0} exactly like in Section 2.4. Then it checks 

whether the process is causal according to Lemma 2.2. The second example allows the 

auto-regressive polynomial to be written as

$p(z) S f i z - 1), (3.2.12)

where

$p(z) = 1 -  £  0,00 z>, (3-2-13)
j€Wp

9,(z)  =  (3.2.14)
j EUj

but puts the restrictions tha t Up,Uf  C {j > 0} and tha t the polynomials 9p(z) ,6f(z)

could be used to define causal auto-regressions. The process is causal then if and only

if Of(z) = 1. Of course, when is it th a t the auto-regressive polynomial can be factorized 

in the form (3.2.12) remains a question of interest.

If it is so, it would be interesting to find a way to re-express an auto-regression with 

polynomial of the form (3.2.12) as an auto-regression with a polynomial of the form 

(3.2.11). For example, we have defined the auto-regression v), u, v G £} from

(3.2.6). We may re-write it as

—0.2 A^l\ u  +  1, v) +  0.06 A ^ ( u  +  1, v — 1) +  A ^ ( u ,  v ) — 0.3 A^^(u, v — 1) =  e^l \ u ,  v)

(3.2.15)
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or

A ^ ( u  +  1 ,v) — 0.3 +  1, v — 1) — 5 A ^ ( u ,v) +  1.5 — 1) =  —5 e ^ (u ,u ) ,

(3.2.16)

which makes sure tha t since the location [u +  l,u] is in the future of all other locations 

[u +  l,i> — 1], [u,v] and [u, v — 1], then the coefficient multiplied by A ^ i t  +  l, v) is unity. 

Next, we redefine the e sequence by translation, according to W hittle (1954, p.436). 

Thus,

(u +  l ,u )  =  — 5 e ^ (u ,u ) ,  u , v e Z ,  (3.2.17)

which implies tha t

{e(1)*(u, u)} ~  W N ( 0 , 25 (3.2.18)

and that

A ^ ( u ,  u )—0.3 v — 1)—5 A ^ \ u —1, u)+1.5 A ^ \ u —1, v —1) =  (w, u). (3.2.19)

As a result, the polynomial

1 -  0.3 z2 -  5 zx + 1.5 z lZ2 = (1 -  5 zi)  • (1 -  0.3 z2) (3.2.20)

has the roots z\ — 0.2 and z2 =  10/3 and the first one is inside the unit circle, which

implies th a t the auto-regression is not causal. Still, it is a unilateral auto-regression as

for every dimension there is only one root available. This is the same argument that 

could be used to justify tha t any AR(1) in the standard time series is unilateral. We 

need at least two roots to decide whether they force the process to run over just one or 

both sides of the time axis.

The difficulty th a t appears when we generalize the concept of unilateral and bilateral 

processes, from the case tha t d = 1 to the cases d > 2, has its source on the fact tha t every 

dimension introduces two ends. For example, when there are two dimensions, there exist 

four quarters rather than two sides. Instead of defining multilateral processes, W hittle 

(1954, p.438) preferred to simplify this problem and, for any [u,v]T G Z2, to separate 

all the other points of the regular lattice Z2 into two equal parts. This has allowed 

the definition of unilateral and bilateral processes. Moreover, with a distinction made 

between these two parts, it is possible to define causal processes.

It can be easily understood tha t the transition from the concept of a unilateral auto­

regression to th a t of a causal auto-regression is closely related to the interpretation
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given to the dimensions. If those are the dimensions of space, we would not have any 

particular reason to expect tha t the dependence structure follows a direction. Indeed, 

it is not the high dimensionality tha t might be a problem when defining a causal auto­

regression but the natural meaning tha t the dimensions have. Later in Section 3.7, we 

will see how meaningful causal auto-regressions can be defined when one dimension only 

is the time axis, though there might be spatial dimensions also involved. On the other 

hand, comparing a time series versus a process taking place on the line transect, makes 

apparent th a t defining a causal auto-regression might be problematic even if there is 

only one dimension. A fundamental assumption used to prove the results of this chapter 

is tha t all ARMA models of interest must be causal and invertible. Thus, this method 

has been severely criticized and has made many analysts of spatial statistics to resort 

to other methods, such as those described in the next chapter. Nevertheless, as we are 

going to see in Section 3.6, we may consider that the results hold even if the ARMA of 

interest is bilateral and we may find the elements th a t link Chapters 3 and 4.

3.2.2 Two sides of th e edge-effect

We collect N  observations from a causal and invertible ARMA process taking place 

on the d-dimensional lattice and we wish to estimate the unknown auto-regressive and 

moving-average parameters. In order to assess the asymptotic behavior of our estimators, 

we need to imagine ways tha t could have generated more observations for the statistical 

analysis. The most reasonable assumption is tha t all dimensions can give more and more 

locations and we usually assume that we obtain an increasing sequence of sampling sets 

<S/v, which satisfy (C l). A good asymptotic behavior would be achieved by the estimators 

if the square of their bias reduces to zero at a faster speed than  their variance, as the 

number of observations increases.

When we deal with d > 2 indices, this relation between the order of the bias and 

variance does not seem to take place for the classical maximum Gaussian likelihood esti­

mators of the parameters. In general, bias of order N ~ lfd occurs, unim portant if d = 1, 

but of the same order as the standard error if d =  2, and of greater order if d > 3 (Guyon, 

1982, p .95). This problem that becomes existent for d > 2, is known as the edge-effect. 

The edge-effect is an obstacle for good estimation, either the Gaussian likelihood has 

been expressed in terms of the time domain or the spectral domain quantities. The tran­

sition of the Gaussian likelihood from one form to the other was first achieved by W hittle
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(1954). A paper by Yao and Brockwell (2006) for the case d = 2, has chosen the original 

form of the likelihood and has used the innovations algorithm to unfold its quadratic 

part and compute the likelihood. The innovations algorithm imitates the AR(oo) rep­

resentation of the process of interest for each observation available in the sample, based 

on all observations in the sample from its ‘past’. In the paper, a modification of the 

likelihood is proposed, which follows an adequate selection of observations, confines the 

edge-effect and ensures tha t the absolute bias of the estimators is of smaller order than 

N ~ 1/2.

On the other hand and long before that, Guyon (1982) revealed the presence of the 

edge-effect for the general case d > 2, using the periodogram to access the random part 

of the likelihood. We consider the Gaussian likelihood to be a product of the random 

part, i.e. a function of the parameters and the data, and the deterministic part, which 

does not depend on the data. Guyon (1982, pp.96-7) also referred to the quadratic 

and deterministic parts of an approximation of the likelihood. Since the sample auto­

covariances are the only random variables involved in the periodogram, plugging-in their 

unbiased estimators has cancelled the edge-effect there. Next, we examine closer how 

the edge-effect dominates against asymptotic unbiasedness of the estimators, either we 

approximate the likelihood in terms of the innovations algorithm and follow the time 

domain methodology or in terms of the sample auto-covariances, the periodogram and 

the spectral domain representations.

First, suppose tha t we are using the innovations algorithm. For each observation in 

the sample, the algorithm creates the best linear predictor based on all the observations 

from its ‘past’ in the sample and the prediction variance. This strongly resembles the 

AR(oo) representation of the process, as the information from the ‘past’ becomes more 

and more. In time series, every observation in the sample used for the estimation of the 

param eters plays two roles; it increases the sample size to reduce the variance and it also 

serves as past of other observations generated after it. For example, if T  observations have 

been collected, the observation labelled as t = 1, • • • , T, has (£ — 1) observations available 

giving information about its recent past. As a result, every new observation generated 

has more observations available from its past than the previous one. Therefore, the 

absolute bias of the estimators would be reduced quite fast, as the number of observations 

increases.

Unfortunately, the same cannot be said for processes with more than one indices. A
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new observation may lie close to an edge of the hyper-rectangle. It always serves its first 

role with success and contributes to reducing the variances of the estimators, but fails 

to succeed in the second task, that of reducing the absolute bias fast enough. The ‘past’ 

now has a different meaning and involves more than one dimensions. It cannot be made 

sure that increasing the number of observations decreases the absolute value of the bias 

with any order smaller than  N ~ l/d\ a new observation does not always have more ‘past’ 

information available.

Even if we do not follow a causal formulation th a t mimics the AR(oo) representation 

of the process, but we approximate the likelihood in terms of the sample auto-covariances 

only, the problems remain. For observations {X t , t  =  1, ■ • • , T}  from a (weakly) station­

ary time series, the theoretical variance m atrix of the observations consists of exactly 

( T —1) different elements apart from the element of the main diagonal, Var{X*}. In other 

words, any T  consecutive observations introduce (T — 1) lags and every new observation 

introduces one new lag and one new element in the variance m atrix only. Moreover, by 

the time a new lag, say i > 0, is introduced, it holds th a t there are (T — i) pairs of 

observations in the sample tha t can give information about it. On the other hand and 

as T  —> oo, for a given lag i > 0, there is always a constant number of i observations 

X t , t  =  1, • • • , i th a t cannot be paired with X t - i , since the latter does not exist in the 

sample.

Let us now consider the simplest case of a two-dimensional process and observations 

on a square lattice {X(u ,v ) ,  u, v =  I ,--  - ,n}. If we consider the fixed lag [i,0] for an 

i > 0 tha t has been introduced by the observations in the sample and large enough n, 

then there are n(n — i) pairs in the sample to give information about it, but there are also 

n • i observations th a t cannot be paired, i.e. X ( u , v ) , u  =  1, • • • , i , v  = 1, • • • , n. These 

observations lie on one edge of the square and they become infinitely many as the edge of 

the square goes to infinity, which was not the case in time series. Moreover, after putting 

the observations in a unilateral order, the first n  observations X ( l , 1), • • • , X (1, n), move 

on a straight line and they have introduced (n — 1) different auto-covariances, apart from 

the variance of the process. By the time the next observation X (2,1) is set in order, there 

are n  new lags introduced with all the previous observations. As a result, if we increase 

the surface th a t the square occupies on the lattice, the number of new lags introduced 

by some observations also increases. The number of sample auto-covariances involved 

in the periodogram this time is significantly different from n 2 — 1, i.e. the number of
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V

observations minus one element corresponding to the variance; for the answer to that 

see Remark 3.1(h) when d =  2. Before that, the following proposition indicates how this 

number of elements changes as the dimensionality d increases.

P ro p o s it io n  3.1 (Inc lu sion -E xclu sion  fo rm ula). For <S =  {1,••• ,-Ni} x ••• x 

{ l,- - , N d } ,  let observations (X (v ), v T G 5} from a (weakly) stationary process on 

the regular d-dimensional lattice and let X  be a column vector consisting of the obser­

vations in any order. Then, the variance matrix V ar(X ) consists of exactly

(d) J 2d- 1S(d) - 2 d" 2S(d- 1) +  --- +  (—l ) d_12°S(1)- l ,  if d is odd

®Nl"'Nd |  2d-1S(d) -  2d-2S'(d-1) +  • • • +  ( -1  )d- 12°5(1), if d is even

(3.2.21)

different auto-covariances apart from the element of the main diagonal, where S ^  =

TTd Nu and <?(d-fc) — V* p (d~k) with p(d~k) — Nl l f e = i ^ f c  an<1 a  -  2 ^ i < p 1<p2< ...<pk< d ^ ( p i ,p2,...,pky  Wltn U P1,p2, - ,Pk)  ~  NP1NP2- N Pk

for k =  1,2, • • • , d — 1, and the positive integers p i,P 2, • • • ,Pfc-

P ro o f. We want to find the number of different lags generated by the observations of a 

stationary process {X (v), v T G «S}, without forgetting the property 7 (i) =  7 (—i). We 

construct Table 3.1.

Table 3.1: Form and number of different elements in Var(X).
Form of  lag i Number of different lags N um ber of appearances

o o o. 1 N ^ ' - N d ^ N a

[0, • • • ,0, id], id > 0 Q{il  =  N d - 1 J V i - J V i - i M - M )

[0, • • • ,0, id], id <  0 repeated lags JVi ■ ■ ■ Nd-i{Nd — | * d l )

[0, , id—i,id ] ,  id—l ^  0 n ( 2) _  n ^  —i« N d- l Nd {*N d ~

(iVd_i -  l)(2Nd -  1)

N1---Nd. 2Y l L d- 1( N k - \ h \ )

[0, • • • , id - i ,*d ] ,  id-1 < 0 repeated lags J V i-J V d -a n 2 = r f -x (J V fc -  1**1)

[i i,  • • ■ , id - i , id ] ,  i i  > 0 ^N i -N d ~ ~
(^ 1  -  1) n2=a(2JVfc - 1)

[ i i , , id— l , ®d], i i  < 0 repeated lags I l L i i N k  -  |i*l)

The first column demonstrates all the different types of lags in the covariance matrix. 

For each one of these types, we may find in the second column the number of different 

auto-covariances. Thus, the sum of the elements of the second column is exactly what 

we are looking for. For example, in the variance m atrix we can find the auto-covariance
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at lag [0, • • • ,0]. According to the third column, the variance of the process appears in 

the main diagonal of the m atrix (N\  • • • Nd-iNd)  times. Now, if we want to find how 

many lags of the form [0, • • • , 0, id], id > 0 can be generated by the data, th a t means we 

can only select (Nd — 1) lags, i.e. id =  1, ■ • • , Nd — 1. On the other hand, when the lag 

id is unrestricted, like in the next case where its previous lag id -1 is restricted, we may 

have id =  0, ±1, • • • , ±(ATd — 1) and, so, 2(Nd — 1) +  1 =  2Nd — 1 different lags for each 

fixed id-1- We may write

d
Qn I -N i  =  (N d -  1) +  ( % - i  -  l)(2Wd -  X) +  • • • +  (JVi -  1) n  (2Nk -  !)• (3-2.22)

k—2

Although finding Q ^  seems complicated, all someone needs to know is tha t the formula 

treats all Nk, k = 1,2, • • • , d, equally. As a result, we may look at the last term that is 

the only one involving N\  and derive (3.2.21). ■

R e m a rk  3.1. (i) We may see what happens when at least one of the N k , k = 1,2, • • • , d, 

is equal to one. W ithout loss of generality, we may consider N\  =  1. Then the last term

of (3.2.22) is equal to zero and the rest of the formula remains unaffected and equal to
n (d-1)
^ N 2- N d-

(ii) In the special case where the observations lie on a hyper-cube and Ni  =  • • • =  

Nd = n  the formula simplifies to

Q(d) =  (3.2.23)

either if d is odd or even. Indeed, (2n — 1) is an odd number and so is (2n — l ) 2 =  

4n2 — 4n +  1, and, by induction, the numbers (2n — l ) d, d = 1,2, • • •, are odd in general.

3.3 E stim ation  for A R  processes

3.3.1 Original Yule-W alker equations for the auto-regression

For 0 < ii <  • • • < ip, we consider the causal auto-regression {X (v), v T e  Zd}, such 

th a t it satisfies

p

X (v ) =  in) +  £(v )> W v ) } ~ ^ ( 0 , a 2). (3.3.1)
71=1
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If we multiply by X (v  — im), m =  1, • • • ,p, and find the expected values, then due to 

the assumption of causality, it holds for 7 (i) =  F{X (v).X  (v +  i )} ,  that

p

n= 1

or, similarly,

where

7 p =  Tp ■ v?,

7 P =  [ 7 ( i i ) , ' •' , 7 ( iP)]r

(3.3.2)

(3.3.3)

(3.3.4)

and

t p  =

7 (0 ) 7 (ii -  i2) • • • 7 (ii -  ip) 

7(i2 — i i )  7 (0 )  ••• 7 ( i 2 - i p )

and, finally,

. 7 ( iP ~  i i )  7(iP -  i2 )

v  =  fa i l ,- ”

7 (0 )

(3.3.5)

(3.3.6)

Finally, if we multiply (3.3.1) by X (v) and find the expected value, we write the equation

7 (0 ) = a  • ^ (3.3.7)

The equations (3.3.2) are the theoretical Yule-Walker equations for a causal auto­

regression on the d-dimensional lattice. In the next section and for a given set of obser­

vations from (3.3.1), we use these equations to estimate the param eters <Pin,n  = 1, • • • ,p. 

Since the Yule-Walker equations involve the moments 7 (in — im),n , m  = 1, • • • ,p, the 

Yule-Walker estimators are method of moments estimators.

3.3.2 M ethod o f m om ents estim ators

We observe ( X ( v ) ,  v T e  5 } ,  where S  C Zd is a set of finite cardinality. We wish to 

estimate the unknown parameters <p0 =  • • • , ^ ip,o]T- We consider the maximal set

S *, such th a t v r e  S* if v T G S  and v r — G S  for all n = 1, • • • ,p. We assume 

that S  is large enough, so that S* is not the empty set. Also, we consider N  and N* 

the cardinalities of the sets S  and <5*, respectively. We assume th a t @1 C  Rp is the 

parameter space and tha t the following condition holds.
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(C2) The param eter space 0 i  is a compact set containing the true value cp0 

as an inner point. Further, for any <p G ©i, the auto-regression (3.3.1) 

is causal.

For the elements of <S* in the ascending order, say v{ < • • • < vj^*, we define the 

Yule-Walker estimators <p* =  [fp\x, • • • , to be such tha t

^  =  (X*r X*)_1(X*TY*), (3.3.8)

where

X* =

X ( v i - i i )  X ( v i - i 2) 

X (v 2 - i i )  X (v 2 - i 2)

X  (vi -  ip) 

X  (v2 -  ip)

_ X ( v jv * - i i )  .Y(v7v . - i 2) ••• X{wN* - \ p) _

(3.3.9)

and

V E l X t v , ) , . - J ( v « . ) ] T (3.3.10)

We can see immediately tha t (3.3.8) are least squares estimators as well. This shows

when we consider the linear equations
p

* ( v ) =  ^ V i n X i v  -  i„) +  e(v), v T e*S*. (3.3.11)
n = l

R e m a rk  3.2 (C o n sis ten cy ). We can re-write (3.3.8) as

/X * TX * \ -1 / X*TY * \
¥> =  ^ 7—  — 77“  • ( 3 -3 -1 2 )\  N  J  V N  )

This representation justifies why we call (3.3.8) the Yule-Walker estimators, as .

X*TX*
N *

imitates the theoretical matrix r p, and so does the vector

X*t y *

N*

for the vector 7 p 0. We use the zero sub-index for the quantities corresponding to the 

true param eter vector ip0, except for the case of the variance m atrix Tp, which will also 

correspond to  the true parameter vector.

If (s(v)} r\j I ID(0,cr2), then as we increase the number of observations N  —► 00, it 

holds tha t N * / N  —► 1, which implies that

S  X ( v  in)X (v) ———> 7o(in)j
v T e 5 *
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according to Proposition 2.2, and so 

^  _  X*r Y* P
7 p = jy * 7p,0-

For the same reasons,
X*TX* P 

~N

so that
p 

^  ^p 7p * *̂p 7p,o ^ o -

Finally, we define

=  7 (0 ) -  %  ip* - U  7 0 (0 ) -  7j,o 

where 7 (0 ) =  Ev^eS* ^ { \ ) 2/ N  70 (0 ).

A sy m p to tic  n o rm a lity  

T h e o re m  3.1. Let the variance matrix

W p = ^2 Tp.

n*j I I D { 0, <r2), then under conditions (C l) and (C2), it holds that 

j \ r i / V _ Vo] _ D . t f ( o , w - 1)

as iV —► 00.

P ro o f. First we define

e* =  [ e ( v i ) , - - -  , e ( v iV*)]T5 

so tha t we can write the linear model

Y* = XV0 + e*.

It holds tha t

N V 2[<p* -  tpQ] =  iV1/ 2{(X*TX *)-1 X*TY* — <̂ 0}

= A'1/2{(X*t X *)-1X*t (XVo + O  -  Vo)

=  iV1/2{(X*TX *)-1 X *r £*} =  { ^ ( X ^ X * ) " 1} ^ - 1/ ^ "

(3.3.13)

(3.3.14)

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)

£*}■

(3.3.19)
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For the first part, we know from Remark 3.2 that

jV(x*Tx * )_1 - A  r - 1 (3.3.20)

as N  —► oo. For the second, part, we will show that for any fixed vector A G Rp as 

N  —> oo and (C l) holds, then

iV~1/2ATX*Te* iV(0,<72ATr pA),

which will imply the tru th  of the theorem from the Cramer-Wold device. 

We write

iV—i/2X *T£* =  N 1/2 • ^  ^  U (v),

(3.3.21)

(3.3.22)
vTG5*

where

U (v) =

X (v  -  ii) 

X (v  -  i2)
e(v), v T G Z d. (3.3.23)

X ( v - ip )  j

We can see immediately that £{U (v)}  =  0 and tha t 

C ov{U (v),U (v  + j)}  =  £ { U (v )U T(v +  j)}  =
a 2 • r p, j  =  0

Opxp, otherwise

We may then write {ATU (v)} ~  W N(0 ,  cr2ATr p A). We recall the MA(oo) representa­

tion of the auto-regression,

X (v) =  e(v) +  ^ 2  $j,o e(v -  j) 
j>o

and, for fixed positive integer K , we define a new process (A T ^ (v ), v r G Zd} by the 

equation

X (Ar)(v) = e ( v ) +  ^ 2  ^ o e ( v - j ) ,  

where the set Bk  was defined back in (2.5.3). We also define

U w (v) =

X ^ ( v - i i )  

X ^K\ v  — i2)

_ ^ ( v - i p )  _

e(v), v T G Zd, (3.3.24)
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where we can write again {ATU ^ ( v ) }  ~  W N(0 ,  <72ATr pft̂ A), with the variance matrix

=  - iv a r { U ^ ( v ) } .
<7

Moreover {ATU ^ ( v ) ,  v T E Zd} is a strictly stationary in d e p e n d e n t process for some 

finite and positive integer K * . Then as N  —> oo and (C l) holds, according to Theo­

rem 2.2, we can write

N ~1/2 5 Z  ATu W ( v )  ATV ^  ~  iV (0,a2ATr f ) A ) .  (3.3.25) 
vTe«s*

Also as K  —► oo

ATr ^ A  -► ATr p a ,

which implies tha t
Ar V (/f) _D̂  Ar v  ^  CT2ATFp A) (3.3.26)

We may conclude using Chebychev’s inequality, which guarantees tha t

p ( \ N ~ 1/2 ATU (v) -  A " 1/2 ATU ^ ( v ) | > e j
\  v TG5* v t G«S* /

< (1/e2) • (N*/N)  Ar Var{U(v) -  U ^ ( v ) } A  -> 0, 

as K  —> oo, since the (n, m )-th element of the m atrix

E{{U (v) -  U w (v))(U (v) -  U ^ ( v ) ) T}

is such tha t

* 4 E  ®j,o * r . o ->  o,
jj*>o, r j * t <£b k ,

j+jn=j* +jm
as K  —> oo.

3.3.3 Conditional likelihood estim ation

For observations {X (v), v T E «S} from the causal auto-regression defined in (3.3.1), we 

may write the conditional Gaussian likelihood

L*(v?,<t2) oc -r-2 \N*/i  exp^ ~ 2^2 2  [X (v ) ~ S ^ j n  X (v “ jn)]2}, V> <E 0 1 , a 2 >  0,
'  v Te5 *  n = l

(3.3.27)
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where the notation was introduced back in Sections 3.3.1 and 3.3.2. If we consider the 

maximum likelihood estimators p  and a2 th a t maximize it, we can see immediately that

^  * "~o 2*p  = p  , =  <7

and these are exactly the same as the Yule-Walker estimators defined by (3.3.8) and

(3.3.16). Thus, we know all about their asymptotic behavior from the previous section.

3.4 E stim ation  for M A  processes

3.4.1 G eneral Yule-W alker equations for th e m oving-average

For 0 < j i  < • • • < j g, we consider the invertible moving-average {Y(v), v T £ Zd}, such 

th a t it satisfies

Y (v) =  e(v) +  Y2 95m£(v ~  jm), (e(v)} ~  W N ( Q ,a 2). (3.4.1)
771=1

For 7(j) =  £ '{Y (v)Y (v +  j)}, the general Yule-Walker equations are given in (2.4.48). 

We can re-write them  as

C(J ~  Jm) =  0, m =  1, • • • , q, (3.4.2)
rem ­

and

7 (j) c(j) =  a2' (3A 3)
re-F

The notation for the set T  C  Zd and the polynomial c(z) was introduced back in Sec­

tion 2.4.1. We have considered T  the set of all vector lags, for which the auto-covariance

function of (Y (v), v r £ Zd} is non-zero. Also, from the polynomial

0(z) = 1 + (3-4.4)
771=1

we have defined

c(z) =  0(z)-1 0(z-1 )-1 . (3.4.5)

The equations (3.4.2) are the theoretical Yule-Walker equations, which are used here 

for an invertible moving-average on the d-dimensional lattice. In the next section and for

a given set of observations from (3.4.1), we use these equations to estimate the parameters

0jm,m  =  1, • • • ,q. Since the Yule-Walker equations involve the moments 7 (j),jr G J 

the Yule-Walker estimators are method of moments estimators.
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3.4.2 M ethod o f m om ents estim ators

We observe { Y (v), v T E «S} and wish to estimate the unknown parameters Qq = 

K m . " - A .  o]T. We consider the maximal set <S*, such th a t for every v T E <S*, it 

holds th a t v T — j T E S  for all j r  G T .  We assume th a t S  is large enough, so tha t S* 

is not the empty set. Also, we consider N  and N*  the cardinalities of the sets S  and 

<S*, respectively. For any v T E Zd, we define the set C Z to be such tha t j T G T w if 

v T — j T G S.  We assume th a t 02 C Jiq is the param eter space and that the following 

condition holds.

(C3) The param eter space 02  is a compact set containing the true value Qq 

as an inner point. Further, for any 6 E ©2, the moving-average (3.4.1) 

is invertible.

We define the estimators 0* =  [#£,•• • , 0j j r to be the solutions of the equations

X  ( X  c*(j) y (v - j™ - j)}y (v ) =  °, m== I , ’ ”  ,^, (3.4.6)
vTe«s* jT+ j^ e^ v

where we consider

c*(z) =  0*(z)_10* ( z ' 1) " 1

and

m=1
Also, we set the estimator of the variance

<r2* =  c*(j) E Y (V)Y (V - i W -  (3-4-7)
3t £ F  VTG s*

R em ark 3.3 (C onsistency). In general, we will denote with zero sub-index the quan­

tities corresponding to the true parameter vector Q q .  We can re-write (3.4.6) as

E E c*Ci)y(v-jm-j)y(v)/jv =
v ’-€ S * r + fc € ^ 'v

E c*0 ) E n v - j m - j) y ( v ) /A r
j r+jm €Z‘i

“ E E  < = * (l)y (v - jm -j)y (v ) /A T  =  0. (3.4.8)

As we increase the number of observations N  —> 00, then it holds tha t N * / N  —> 1, which 

combined with the fact tha t {e(v)} ~  I ID(0,cr2) implies that

X  y (v “  Jm -  i ) Y ( v ) / N  70(j + jm ), (3.4.9)
v TG<S*
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according to Proposition 2.2. Then the first term  of the left hand-side of (3.4.8) converges 

to

2  7o(j +  jm) C*(j) = 7o(j+jm) C*(j).
jT+j Tn£Zd jr+j

For the second term  of the left hand-side in (3.4.8), it holds tha t

e \ £  £  c * a m v - j m - j ) r ( v ) / w i

^ j? Y, £  s | c * ( j ) y ( v - j ro- j ) y ( v ) |
VT€5*r+jri^ v

^  j f  £  £  £ K (3 )2>1/2B { y ( v - j m - j ) 2y ( v ) 2}1/2
vTe«s* jT+ j ^ ^ v

= -BR(v)2} j f  Y , £  SKO)2}1/2,
vre5* r + j^ ^ v

due to the Cauchy-Schwartz inequality and the independence of Y(v), Y ( v —j), j r  ^ T . 

Now for any vector 0 G 02, it holds that c(-) is the auto-covariance function of a causal 

auto-regression. According to Remark 2.2(ii), we can always find constants C{0) >  0 

and a(0)  G (0,1), such that

c(j)2 < C{0) a (0 )E *=ilifcl. (3.4.10)

Similarly, for the estimator 0* G 02, we can write

c*(j)2 < C(0*)a(0*) '^k=1^  <  sup C(0)a(0)^-'fc=:1 ^  <  sup C (0 ){sup  a;(0)}^-'fc=1
0G©2 #£©2 <?£©2

(3.4.11)

with probability 1 and

i?{c*(j)2} < sup (7(0){sup a (0 ) } ^ fc=1 (3.4.12)
#£02 0£0 2

For the case of observations on a hyper-rectangle when (Cl)(ii) holds, one can easily 

verify that

£  £ {c*(j)2} = 0 ( N ^ ~ » / d). (3.4.13)
vr€5*r+jr

For example, we can see the arguments of Yao and Brockwell (2006) for the case d =  2. 

In general, we can write that

i  £  £  ^{c*(j)2}V2 ^  0 (3.4.14)
Vr€ 5 * r + j^ ^ v
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and that

£  £  c*(j) y ( v  — jm — j)V (v)/A f - £ *  0, (3.4.15)
vT€ 5 * r+j?n^ v

as (C l)(i) holds.

After combining the two results for the terms of (3.4.8), we may write

0 =  5 3  ^ 2  c*(j) Y { v - 3m - j ) Y { v ) / N  i  7o(j+jrn) C*(j) (3.4.16)
vTe5* jr+j^e^'v r+j^eJF

exactly like the theoretical equivalent (3.4.2) dictates. Thus

O' -£♦ e 0, (3.4.17)

as N  —► oo and (C l)(i) holds. Finally, from (3.4.7) we can see immediately that

° 2* S  00Ci) =  a2’ (3.4.18)
p e r

since

£  y (v )y (v  -  j)/jv  -£♦ 7o(j).
vTG5*

A sym p totic  norm ality

For mathematical convenience, we define the new variable

f y (v ), v T e 5  
ffy (v ) =  { W  (3.4.19)

I 0, otherwise

and we re-write (3.4.6) as

Y 2  { S  c*(j) “  Jm -  j ) R ( v )  = 0 ,  771 =  1, • • • ,5, (3.4.20)
vT€«S* jTGZd

or

S  { S  ^ ( v - j m  - j ) } y ( v )  -  J m[0* -  0O] =  0, m =  1, • • • , g, (3.4.21) 
vTG«S* jT€Z.d

where we define

J m — * ' ' j 771 =  1, • • • , <7, (3.4.22)

with elements 771, n  =  1, • • • , q, equal to

Jm,n = £  {c0(B)[e0( B ) -11 7 y ( v - jm - j n) +  eo (B -1) - 1f f y ( v - j m + j n)]}y(v)
v Tes*

+  O p ( N \ \ 0 * - 0 o\\). (3.4.23)
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Equations (3.4.21) may also be re-written as

{ c o (B ) f fy (v - jm) } F ( v ) - J m[ 0 * - 0 o] =  O, m =  l, ■■■,«.
VTG«S*

If we stack all the q equations together, we can write

n V 2[ 0 * - 0 0] = { J / N } - 1{ N - 1/2 ^ 2  H y ( v ) } ,
v T€<S*

where

and also for any v T € Zd,

H y  (v) =

c0(B)HY( v - h )
co(B)HY (y -  j 2)

(3.4.24)

(3.4.25)

(3.4.26)

Y ( v ) . (3.4.27)

_ cq( B ) H y (v  -  j q) _

P ro p o s it io n  3.2. Let the polynomial

0o(z)-1 =  1 +  5 Z 0 j.° zJ- 
j>o

If (e(v)} r\j I I D { 0, cr2), then under conditions (Cl)(i) and (C3), it holds that

3 / N  a 2 • ©o =  a 2

0 ••• 0

0 ••• 0
(3.4.28)

as N  —► oo.

P ro o f. Looking back at the (m ,n)-th  element of J/iV , m ,n  =  1, • • • ,g, from (3.4.23) 

and due to the consistency of the estimators, it suffices to look at

l / N  {^ (B )[9o (B )-1H y ( v - j m - j n) +  eo (B -1) - 1f f y ( v - j m + j„ )]} y (v )  
v T€«S*

=  l/jV  ^  { M B ) - % ( B ) y ( v - j m - j „ )  +  0o(B -1r 1c o ( B ) y ( v - j m + j„ )} y (v )  
v TG<S*

+  oP (l) (3.4.29)

If we consider the polynomial

d0(z) =  0o(z)_1co(z) =  ^ 2  di,o z \  
ire z d
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then the last part of (3.4.29) follows from the fact tha t

e \i / n  Y  { y  di,0 y ( v - i ) } y ( v ) i
vTes*

^  1/ N E  E Komnv-yywi
vT£S* iT<£rv

= { £ |y (v ) |} 2 l / N  Y  E  ld>.ol -> 0
vtg5* r ^ v

as N  —► oo and (C l)(i) holds. The last limit comes from the same argument as before. 

For example; if (Cl)(ii) is true, we can write Y v reS* H iT£Fv Mi.ol =  0(iV(d-1)/d), since 

for any iT G Zd it holds tha t Ic^ol < C a ^ = i  M  for constants C  >  0 and a  G (0,1) as 

well. We may take similar action for the polynomial 0o(z_1)- l c o(z)*

Next, we proceed by defining some new processes, like in Section 2.4.1. From {e(v)} ~  

IID(Q,cr2), we have generated the moving-average process

y (v )  =  0o(B)e(v), (3.4.30)

but also the auto-regressive process

=  e(v) (3.4.31)

and it holds th a t

X (v) =  ffo(B)~1ff0(B~1)~1Y(v) =  c0(B )Y (v), (3.4.32)

and X (v  +  j)  is uncorrelated with Y(v) for any j  ^  0 according to (2.4.22). Therefore,

we can re-write the (m, n)-th  element referred in (3.4.29) as

l / N  Y  {9o(B)-1X ( v - j ro-j„) +  eo(B-1)-1X ( v - j m+jn)}y(v) +  oJ»(l). (3.4.33)
v r G S*

According to (3.4.30) and (3.4.31), the processes { ^ (v ), v T G Zd} and {X (v), v T G Zd} 

can be written as linear combinations of independent and identically distributed random 

variables, and it holds, according to Proposition 2.2, that

1  E  X ( v - j ) y ( v ) - ^ B { X ( v - j ) y ( v ) } = |  ff2’ J =  °  (3.4.34)
N  { 0, j /  0

as N  —► oo. As a result,

£ { 9 0( B ) - 1A:(v  -  j m -  j„) y (v )}  = 0 (3.4.35)
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and

E{0o(B-1 )_1X (v  — j m + j„ )  y (v )}  =  <72 • e Jm-j„,o, j m > j„- (3.4.36)

Since we consider j i  < j 2 < • • • < j g, the proposition has been proven. ■

Before we move on to the next theorem, we define the process

u(v) =  0o(B )X (v), (3.4.37)

for which it holds tha t

{ u { v ) } ~ W N ( 0 , a 2).

This was justified properly in Section 2.4.1.

T h e o re m  3.2. Let the processes {W (v)} ~  I I D ( 0,1) and

0o(B)77(v ) =  W  ( v ) .

Also let the vector £ =  [77(—j 1), • • • , r)(—j q)]T and the variance matrix

W J =  Var{£ | W ( ~ h  -  j), j  >  0, j  #  j 2 -  j 1? • • • , j g -  ji} .

If { s ( v ) }  r\j IID(0,<t2) and - E { e ( v ) 4 } < 00, then under conditions (C l) and (C3), it 

holds tha t

N l/2[Q* -  e 0] N { 0, A ) (3.4.38)

as N  —► 00 . Otherwise, if ( e ( v ) } ,  { u ( v ) }  ~  77.0(0, cr2) and | 0 { e ( v ) 3 } |  < 00, then under 

conditions (C l) and (C3), it holds that

N l/2[0* -  0O] N { 0, W J " 1) (3.4.39)

as N  —> 00.

P ro o f. First, we write for m  =  1, • • • , q,

N ~1/2 H  S  co(j)flrr ( v - j m - j ) r ( v )  
vt g«s* y e z d

= AT'1/2 E  E  co(J)y (v - i m - j ) y ( v ) +  ° H l ) .  (3.4.40)
v TzS* y e z d

which might be justified first by the simple argument th a t E { Y ( v ) Y ( v  — j m — j ) }  =  0 

for any v T 6 S* and +  j T ^ Then, we may look at the variance

Var{iV-1/ 2 Y l  c o O ^ v - j m - j ^ v ) }  = -^Vax{ um(v)}, (3.4.41)
vr e 5 * j^ + j^ ^ v vTeS*
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where we define for v T G «S* the random variables

M  = ^ 2  C o C iW v - jm - j W v ) .
jT+j

(3.4.42)

Since (C l)(ii) holds, we can write that

^ 2  Var{um(v)} =  ^ 2  E { u m{v)2} = 0 ( N ^ d 1)/d) 
v T€«S* v T€<S*

(3.4.43)

and a similar argument can be written for the cross-terms due to the Cauchy-Schwartz 

inequality. For the case d = 2 and observations on a rectangle, we may find a justification 

for that in the paper of Yao and Brockwell (2006). We can then write

Vax{N-1/2 £  Y 1  
vTe 5 * r+ j^ ^ v

as N  —» oo and (C l) holds, which results in the convergence in probability to 0.

Since X ( v )  =  cq( B )Y ( v ), we may re-write (3.4.40) as

N  V2 2  E  co(j)tfW v - j m - j ) Y ( v )  
vTe«s* y e zd

= K ~ 1/2 E  *(v-jmmv) + °p(l)- (3.4.44)
v t € 5*

As a result, equation (3.4.25) can also be re-expressed as

Nl/2[0’-eo} = { i / N } - 1{ N - 1/2 E  U M  +  M 1)}.
vTe5*

(3.4.45)

where

U ( v )  =

X ( v - j i )

A ' ( v - j 2)
Y (v ) . (3.4.46)

_ * ( v - j g)

For any positive integer K , we defined back in (2.5.4) the set T k - We also define the 

vector
£r+jco(J)v(v - ji - j)
£ j T+j|€.FK (v  -  J2 - j)

U TO(v) = Y (v ) . (3.4.47)
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For any n , m  = 1, • • • ,q, the (n, m )-th element of J5 { U ^ )(v )U ^ ^ r (v — j)} is equal

to

Co(^*) E { Y { v  — jn — i)y (v )y (v  — j  — jm — i*)V(v — j)}
iT+j i*T+j rm ^ K

= E { X (v -  j n) Y (v )X (v  -  j  -  j m) Y (v -  j)}

^ 2  co ( i )  ^ { ^ ( v - j n - i ) ^ ( v ) X ( v - j - j m ) y ( v - j ) }  

ir +&<£TK

S  C°(i+) E i X (V ~  j n ) ^ ( v ) y ( v - j  - j m - i * ) y ( v - j ) }  
i*T+j Tm $?K

+  ^ 2  co(i) C°(iHt)
ir+j M F k  i*T+j

= £ ? { x ( v - j n) y ( v ) x ( v - j - j m) y ( v - j ) }

-  E{r*n{ v ) X (v -  j  -  j m) y  (v -  j)}  -  £ { C ( v  -  j)X (v  -  j n) y  (v)}

+  ^ « ( v ) r ^ ( v -  j)},

(3.4.48)

where we have defined

rn ( v )  =  Y 1  y (v " j n - . i ) y ( v ) ,  n  =  I , - ’ - , g.
ir+ j ^ A r

We consider th a t K  is a positive integer. Then, for T  C it holds tha t y (v )  is 

independent of y ( v  — j ) , j T ^ T k , and

^ K ( v )2} =  ^ 2  Cô ) 2  co(i+) E { Y { v - ] n -  i )y (v  -  j n -  r ) y 2(v)}
iT+j M F k  i*r + 3 ^ K

= £ { y 2(v)} ^  co(i) CoCH ^ { ^ ( v - j n - i W v - j n - i * ) }
F +'& tF K  i*T+ & t f K  

< Cl • a f , (3.4.49)

for constants Ci >  0 and a\  E (0,1).

The first of four terms in (3.4.48) is the (n, m )-th element of l£{U (v)U T(v — j)}. For
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the other three terms, it holds, due to the Cauchy-Schwartz inequality and (3.4.49), that

|£K(vpf(v -  j -  jm)y(v -j)}| < [ £ K ( v ) 2}]1/2[£{x ( v  -  j -  jm)2r(v -  j)2}]1̂

< C2 • a f , (3.4.50)

|S{C(v-j)X(v-jn)F(v)}| < [£{r̂ ,(v — j)2}]1̂2[E{X(v — jn)2̂ (v)2}]1̂2

<  c 3 • o f ,  (3.4.51)

|S{<(v)C(v-j)}| < [eK(v)2}]1/2[B{r^(v-j)2}]1/2

< Ci  • o f , (3.4.52)

for some constants > 0 and <*2, <*3, £*4 E (0,1). For (3.4.50) and (3.4.51), we

have assumed th a t either -E{e(v)4} < 00 or that X (v  — j) and F (v ) are independent for 

any j ± 0.

For any A € CR9, it holds in general that

£{A TU (if)(v)} =  0 (3.4.53)

and tha t {ATU ^ ( v ) , v T e  Zd} is a strictly stationary and iir*-dependent process for 

some fixed finite integer number K*.  This implies tha t as N  —> 00 and (C l) holds,

where

with

Similarly, if we define

and

it holds that

N ~1/2 ^ 2  * TU (/° ( v ) - ^  ATV K ~ iV (0 ,A TM KA), 
vT£S*

M  k = Y 1  r « 0 ) '
jT£Zd

T k Q) = J { U » ( v ) U M '( v - j ) ) .  

r(j) =  B {U (v)U r ( v - j ) }

M  = J 2
y e z d

(3.4.54)

(3.4.55)

(3.4.56)

(3.4.57)

(3.4.58)

ATr *  (j)A -  ATr(j)A, jT 6 Zd, (3.4.59)

as K  —► 00 . This is thanks to (3.4.48), (3.4.50), (3.4.51) and (3.4.52). Then we may 

write
DAtV k  ATV ~  iV(0, ATM A) (3.4.60)
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as K  —> oo. We may conclude using the same argument as in Theorem 3.1, where thanks 

to the Chebychev inequality, all we need to show is that

ATVar{U(v) -  U ^ ( v ) } A  < C ■ a K -> 0, (3.4.61)

as K  —*• oo for some C  >  0 and a  E (0,1). From the Cramer-Wold device we then write

N ~1/2 U ( v ) - ^ iV ( 0 ,M ) , (3.4.62)
vre«s*

which combined with (3.4.45) and Proposition 3.2 gives

n V 2{8* _  e 0] -2+ n (o, ^ © ^ m © ; - 1)-<T

As a result, the first part of the theorem has been proven and

A  =  i f O o ^ M e r 1.<7

We now let the vector W  =  [W(—ji) ,  • • • , W { — j q)]r and then write

(3.4.63)

f?(-ji) W ( - h )  +  eja-ĵ oWf-ja) +  • ' +  ®J«—Ji.oW'’ ( —j«)
i  =

ri{-h) = W ( - h )  +  ■ ' +  J«)

W'H,) .
=  © 5W  +  R ,

+  R

(3.4.64)

where R  is a {q x 1) random vector tha t is independent of W  since it is a linear function 

of W ( - h  -  j) , j  >  0 , j  7̂  j 2 — j i ,  * J g - j i -  As a result,

W  * = Var{£ | W ( - j i  - j ) ,  j  >  0, j  ^  j 2 — j i ,  • - - , j q — ji}  

=  ©5 Var{W} ©o =  ©o l g ©o =  ©o©o (3.4.65)

Finally, for any j  > 0, we can write the (n, m )-th element of T(j) =  £ '{U (v)U T(v — j)} 

to be equal to

£ { * ( v  -  j n)X (v  -  j m -  j)y (v)y (v -  j)}

=  s { A ( v - j n) x ( v - j m - j ) } E { y ( v ) y ( v - j ) }

=  o2  C0 (jn -  jm  -  j ) 7 o ( j ) ,  (3.4.66)

for any n, m  =  1, • • • ,<7, where the first equality in (3.4.66) is due to Proposition 2.6, 

since {^(v)}, (u(v)}  ~  IID(0,cr2) and |f?{£:(v)3}| <  00. Then, from (3.4.58), we may
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re-write the variance matrix M  as

m  =  E  r ®  =  r (°) +  E  f o ) + r T ®i> <3-4-67)
jT£F JTe^,

j > 0

and find its (n, m )-th element for any n, m  =  1, • • • , g, to be equal to

0-2[co(jn -  jm bo(O ) +  (co(j» -  jm -  j)7o(j) +  C(>(jm ~  jn  “  j)7o(j))]
ir£F,

j> 0

=  0-2[co(jn -  jm )7 0 (O) +  ^  c0(jn -  jm “  j)70(j) +  ^  Co(Jm “  jn  +  j)7o (“ j)]
iTer, JTeJr,

j> 0  j< 0

=  -  jm)70(0) +  ^  Co(jn ~  jm “  j)7o(j) +  ^  “  jm “  j)7o(j)]
STer, iTer,

j> 0  j< 0

=  cr2 co(j„ -  j m -  j)7o(j) =  
j r£T

thanks to (3.4.66) and the general Yule-Walker equations. Thus

M  =  <t4 • Ig. (3.4.68)

After combining (3.4.63), (3.4.65) and (3.4.68), we conclude tha t

N V2[0* _  0Q] iV(0, W ; _1). (3.4.69)

3.4.3 M odified likelihood estim ation

The edge-effect is the source of the order of the bias in the exact likelihood estimators 

of the param eters of an ARMA process and it is the reason why modified'versions of 

the Gaussian likelihood have been used for estimation before. We particularly refer to 

the papers by Guyon (1982) and Yao and Brockwell (2006), in which the modifications 

proposed have produced asymptotically unbiased and normal estimators. Moreover, if 

the original process is Gaussian, the estimators are efficient. This is another nice property 

that we did not manage to achieve with the Yule-Walker estimators of the parameters 

of a moving-average process in the previous section. Thus, in this section we resort to 

a new modification of the Gaussian likelihood tha t produces asymptotically unbiased, 

normal and efficient estimators for the parameters of a moving-average process. This

c r, n =  77i

0, 71 7̂  771
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will equalize the results of the Yule-Walker or conditional likelihood estimators of the 

parameters of an auto-regression, that we managed to achieve before.

The paper by Guyon (1982) suggests a modification on th a t version of the likelihood, 

which uses the periodogram or the sample auto-covariances and which was introduced 

by W hittle (1954). The edge-effect disappears when the periodogram is computed based 

on the unbiased estimators of the theoretical auto-covariances at all possible lags. Since 

the paper refers to the estimation of the parameters of almost all (weakly) stationary 

processes, the case of a causal and invertible ARMA process is also included. Accord­

ing to Remark 2.2(ii), we know then that the auto-covariance function dies out at an 

exponential rate. T hat means that the number of sample auto-covariances to be com­

puted for the likelihood increases, as more observations are obtained. For example, if 

the observations lie on the hyper-rectangle, this number comes from Proposition 3.1. 

For the special case of a moving-average process, the auto-covariances are not zero for a 

finite set of vector lags only. Thus, increasing the number of observations in the sample 

only increases the amount of information on the auto-covariances for this fixed set of 

lags. We may conclude tha t the representation of the Gaussian likelihood in terms of the 

sample auto-covariances, which was achieved by W hittle (1954), clearly favors a moving- 

average process, since the computation is simple and fast then. Nevertheless, when the 

representation is used for the estimation of the parameters of an ARMA process on the 

regular d-lattice, and after the modification proposed by Guyon (1982) has taken place, 

the estimators are not deprived of any of the desired properties.

On the other hand, the paper by Yao and Brockwell (2006) uses the innovations 

algorithm to factorize the random part of the Gaussian likelihood. As the algorithm 

imitates the AR(oo) representation of the process of interest, it uses a classical time 

domain methodology to prove the properties of the Gaussian likelihood estimators. The 

modification of the likelihood is effective for the special case when d = 2 only. Otherwise, 

the edge-effect has not been confined and the estimators have a bias, which tends to zero 

more slowly than  their standard error; it seems like a hopeless case then.

The innovations algorithm is based on a conventional ordering between the obser­

vations in the sample; each observation offers information on every observation that is 

coming ‘next’. The algorithm computes a triangular m atrix of the coefficients of best 

linear predictors of each observation based on all the observations generated ‘before’ it 

in the sample. Then it composes this m atrix and its transpose to create the inverse
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theoretical variance m atrix that is needed in the quadratic form of the likelihood. One 

has to combine the matrices of coefficients and the observations, in order to write the 

random part of the likelihood, explicitly. In this case, it is not as straightforward as 

it was.before, tha t the sample auto-covariances were involved and using the unbiased 

estimators of their theoretical equivalents would defeat the edge-effect, but the decom­

position used by the innovations algorithm is easy to interpret and gives speedy results. 

Moreover, if the process of interest is an auto-regression, applying the innovations algo­

rithm  is preferred, as it takes a smaller number of steps to complete. The number of 

steps is not fixed for d >  2, but it is asymptotically negligible compared to the number 

of observations, i.e. the number of steps that the algorithm would take if the process was 

not an auto-regression of finite order.

In this section, we try  to conclude on a modification of the Gaussian likelihood that 

will produce asymptotically unbiased, normal and efficient estimators for the parameters 

of an invertible moving-average, which takes place on any positive integer d number 

of dimensions, by combining the two concepts in the two different papers. On the 

one hand, our suggestion for the likelihood is not related to W hittle’s (1954) suggestion 

involving the periodogram and, consequently, it is not directly related to the sample auto­

covariances. It is a suggestion tha t is only justified when the inverse of a conditional 

variance m atrix of the observations generated by the moving-average process takes a 

convenient form. As we very well know, discovering the form of an inverse variance matrix 

can be the key to computing a Gaussian likelihood, as its elements can be found in both 

the quadratic form and the determinant involved in the likelihood, i.e. the two sources 

of computational struggle. Thus, we suggest a conditional likelihood to be maximized, 

based on classical time domain arguments, similarly to the paper of Yao and Brockwell 

(2006). On the other hand, we do not forget that we are dealing with a moving-average 

and most advantageously use the fact that the auto-covariances are not equal to zero for a 

finite set of lags only. That strongly resembles the picture presented by W hittle’s (1954) 

likelihood, which immediately involves the sample auto-covariances. In the conditional 

likelihood suggested, we will draw the picture of how each observation in the sample is 

paired with every other observation in the sample and how some of these observations 

and their pairs will be rejected and left out of the quantity maximized. The rejection 

will take place only to ensure th a t these are the observations which lie on the edges, 

i.e. the ones th a t not only miss the pairs tha t are ‘fax away’, but also the pairs tha t axe
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close to them  and which correspond to the lags of non-zero auto-covariances, and might 

slowdown the bias and harm the results.

For observations {Y(v), v T 6 <S} from the invertible moving-average defined in 

(3.4.1), we write the modified version of the conditional Gaussian likelihood

L*(0,cr2) oc * /2 e x p { - ^  ^  y (v ) S  c( j ) y (v -j)} >  0 e 0 2. > °,
’ vT€«s* jTeJ7v

(3.4.70)

where the notation was introduced back in Sections 3.4.1 and 3.4.2. Again, we have 

considered

c(z) =  0(z)-10(z-1 )-1 (3.4.71)

with
Q

0(z) =  l + £ > jm z K  (3.4.72)
771=  1

A justification why (3.4.70) is a modified Gaussian likelihood comes from (2.4.65) and 

(2.4.66). According to them, a true conditional likelihood is

L ( 9 , ° 2) oc *V?r ^ / 2 ~ exP{~2~2 y (v ) S  c(j) y (v “ j)}> 6 G 0 2> ° 2 >  °>
^  '  wres  jTeJrv

(3.4.73)

where X  is the vector of random variables {X (v), v T e  <S} from the causal auto­

regression

+  =  (3-4.74)
771=1

Now, we explain why (3.4.73) is correct. First, we need to see th a t we have involved 

X  in the likelihood only via its variance matrix Var{X}. Indeed, the likelihood must 

be a function of the data  Y , which axe the observations from the moving-average of 

interest, and a function of the parameters 0jm, m  = 1, • • • , q. The determinant |Var{X}| 

clearly belongs to the second category and it is a piece of the deterministic, not the 

random part of the likelihood. Why have we chosen to write this determinant using 

the variance m atrix of random variables that we do not observe at all? Simply because 

the sampling set 5 , on which we have observed (Y (v), v T e <S}, also determines which 

exactly is this random vector X  that will contribute with its variance matrix. This is 

not very surprising, considering that the variance m atrix itself depends on the locations 

of observations and so does its inverse.

Secondly, one might notice that (a4)^ /2 is in the denominator of the likelihood 

L ( 0 ,a 2), while (a 2)N* I2 is in the denominator of the modification L*(9,cr2). This is
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because iVariX}!1/ 2 is also in the numerator of L(0,<r2) and we can re-write

IVarjX}!1/2 =  (cr2)7V/2|Var{X/o’}|1/ 2

and

(X(v)/<r) +  5 2  ^jm (^(v  +  jm )/^)  =  (e(v)/a), {£(v)/<r} ~  W A(0,1).
m= 1

Now that we have achieved a unit variance of the error sequence, we can use the results 

proven in Chapter 2.

Finally, we should recall from the same chapter which conditional likelihood is (3.4.73). 

Thanks to an argument mentioned in the end of Section 2.4.1, (3.4.73) is the conditional 

Gaussian likelihood of Y  given tha t w  =  0, where w  is a vector with fixed zero ele­

ments when v T £ <S*, while when v r £ S  — S*, the elements of the vector are random 

variables th a t are linear combinations of the unobserved values of the process of interest 

Y (v), v T £ S.  Those values might also be written as e(v) +  Ylm=i ĵm e (v  — Jm) for 

v T £ S.  Thus, L(0, cr2) is a conditional likelihood of Y  given th a t these values are equal 

to their mean value zero.

Nevertheless, we have proceeded with a selection of locations v T £ S*. It is true 

th a t if we attem pt to factorize the determinant |Var{X}| into the prediction variances 

produced from the innovations algorithm, say r(v , 0 ) ,v T £ «S, then for the standard 

ordering of locations, we would have come up with

r (v ,0 )  = a2, v T £ S*. (3.4.75)

This is because we axe using the vector X  and the nice properties of a causal auto­

regression. If it was necessary to perform the innovations algorithm to compute |Var{Y}|, 

we would not see th a t property there, and the prediction variances would keep changing, 

since a moving-average possesses an AR(oo) representation. We would need to observe 

the full ‘past’ of each observation to derive a prediction variance equal to cr2. As a 

result for the finite auto-regression, replacing the original set S  by a subset S*, results 

in replacing the determinant

|Var{X}| =  J I  r (v ,0 )  
vTe«s

by

I ]  r ( v , e )  =  (tr2)w*. 
v T€S*
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For a more detailed description of the innovations algorithm for the d-dimensional 

ARMA, one should see the paper by Yao and Brockwell (2006).

But the determinant involved in the likelihood is not the main reason why we have 

excluded some observations. Like for the Yule-Walker estimators, for any v r G <S*, it 

holds tha t T  C T w and so,

E {  di Y ( v ) Y ( v  -  i)} =  E{ J 2  di F ( v )y ( v  -  i)} (3.4.76)
iT£ Z d i T € . F

for any polynomial

d ( z )  =  ^ 2  d i  z 1 -

i T e Z d

Thus, lacking the infinite information from both the ‘past’ and ‘future’ of any observation 

in the sample, does not have any effect on the estimation regarding, the expected values 

of the random variables involved. In other words, the selection of observations v T G 

S* guarantees th a t both the Yule-Walker estimators defined in 3.4.2 and the modified 

likelihood estimators will have an unimportant bias, like we have seen in time series when 

d =  1.

As for the variance of the estimators, this is now related to the coefficients of the 

polynomial c(z) th a t we have used in the quadratic form of the likelihood (3.4.70), rather 

than  anything else. This is the main difference from the Yule-Walker estimators, which 

according to Theorem 3.2, did not achieve the inverse of the variance m atrix of the 

random vector £, but the inverse of a conditional variance m atrix of the same vector, 

i.e. something ‘bigger’ in terms of quadratic forms. Why we are using {c(j), j T G Zd} 

is justified by (2.4.65) and (2.4.66), as mentioned before. For more complicated models, 

though, such as the ARMA, we do not, in general, have results available for the variance 

matrices of the observations in the sample. In such cases, we may resort to the theoretical 

properties reflected in the spectral density and look at its denominator. For example, 

for the moving-average of interest tha t would be

S k M  =  * 2 0 ( e n e ( e - n  =  o r  6 [-7T, ,,)d. (3.4.77)

This is part of a general argument, which will be shown later in Chapters 4 and 5. The 

argument in Section 5.2.1 says th a t in the inverse of a variance matrix, one can find the 

coefficients of best linear predictors of each observation based on all other observations 

used from the sample. On the other hand, according to Proposition 4.1, the denomi­

nator of a spectral density of a (weakly) stationary process taking place on the regular
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lattice, generates the coefficients of best linear predictors of any observation based on all 

other information on the lattice. We expect, as we increase the number of observations 

available, tha t these two coefficients come closer. Of course, the auto-regr'ession defined 

in (3.4.74) enjoys the privilege of a finite representation in the denominator

* * ( " )  s  “ T 6 l~ n ' n]d- (3A78)

P r o p e r t ie s  o f e s tim a to rs

We define the quantity

QT(0)= Y  E  < = 0 ) r ( v - j ) =  Y  0 6 0 2 ,
vr e5* jTe^v vTe5*

(3.4.79)

where i7 y (v ) ,v r e  Zd, was defined back in (3.4.19). We consider 0  and <r2 to be the 

maximum likelihood estimators, such that

0 =  arg min Q*(0), (3.4.80)
0€02

and

a2 = Q*(0)/N*.  (3.4.81)

In general, we will denote with ‘hats’ the functions of the estimators and with zero sub­

indexes the quantities corresponding to the true param eter vector 0o € 02- We consider

the processes {X (v), v T € Zd} and (u(v), v T G Zd} as defined back in (3.4.31) and

(3.4.37), respectively.

T h e o re m  3.3 (C o n sis ten cy ). If {e(v)} ~  IID(0,cr2), then under conditions (Cl)(i) 

and (C3), it holds th a t

0 - ^ 0 0

and

as N  —> oo.

P ro o f. From (3.4.80), we can write immediately th a t

(3.4.82)
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where the last equality holds from the fact that

E y (v ) E c°(j) ^ (v - j ) / ^ =  E y(v) E coO) Y(v-3)/N + op(1),
v r e s*  j T€^v v T6«s* jTe z d

thanks to the same argument as the one used in (3.4.29) when (C l)(i) holds and the fact 

that

i  £  Y ( ? ) Y ( v ~  j )  £ { r (v )K (v  -  j)}  =  70(j), (3.4.83)
v T€«S*

since {e(v)} ~  I I D ( 0 , a 2). On the other hand, we can consider that for any 0 G 02, it 

holds that

c(j)2 < C{0) a { 0 ) Z L ilifcl, 

for C(0) >  0 and a{0) E (0,1), and we can write that

j j  5 3  y (v ) 5 3  c( j ) y (v “ j) =  ^  E  E  CU) y (v - j )  +  °p (1)- (3-4.84)
v r e s*  j r e^ v  v t g5* j Te z d

Then for any 0 E 02,

£  y (v > £  c( J ) =  X !  i '(v ) [« (B )-1« r 1r 1i'(v ) i/Jv
VTG5* }r e z d v t €5*

E { y (v ) [^ (B ) -10 ( B - 1) - 1r ( v ) ]}

=  E {y (v )[0 (B )-10 (B -1) - 10o(B )0q(B -1)X(v)]}

> J?{y(v)X (v)} =  a 2, (3.4.85)

since Y ( v ) and X ( v  — j)  are uncorrelated for any j  ^  0. The equality in (3.4.85) holds 

if and only if 0 =  0o. Finally, if we combine (3.4.82), (3.4.84) and (3.4.85), we can see 

immediately that

0 0O. (3.4.86)

Straight from (3.4.81)

? Q*(0o)/w* =  £  Y ( v )  £  co(j) r ( v - j ) / J V *
vtg5* j Te^v

£  y (v )  £  c o ( j ) y ( v - j ) / i v *
v TG«S* j T€&d

=  £  y (v )X (v )/iV *  £ { y (v ) X (v )}  =  a 2,
v Te<s*

(3.4.87)

for the same reasons as before. ■
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To find the minimum of Q*(0), we need to write the derivatives

- d & ( 8 ) / d 8 im = Y ,  y(v)W B )-M B -V r(v-j1„) + 0(B)-10(B-1)-2.Ery(v+jro)],
v r €«S*

(3.4.88)

for all m  =  1, • • • , q. We may then set equal to zero

Y  K (v)[«o(B )-20o(B -1) - 1J ? y ( v - j m) +  »o(B )-1«o (B -1) - 2ffy (v  +  j r„)] 
vTe«s*

-  J m [S -0 o ]  =  O, (3.4.89)

where we define

and elements

(3.4.90)

Jm,n = Y  n v ) [ 2  9o(B )-3«o(B -l ) H y ( v - j m - j „ )
v T€«S*

+  9o(B)-29o(B-, r Jf l ' y ( v - j ro+ j B)

+  0 o ( B r 20o(B -1r 2ffy (v  +  j m - j n)

+  2 9o(B-1 )_39o(B)-1 J /y (v  +  j m +  j„)] +  Op(N\ \8  — 90||), (3.4.91)

for all n, m =  1, • • • , q. If we stack all the q equations together, we can write

JV1/ 2 [5-6>o) =  { J /W } -1{ W 1/2 Y  h u (v )} ,
v T€«S*

(3.4.92)

where

=  (3.4.93)

and also for any v T E Zd,

9o( B ) - 26q( B - 1) - 1flrv (V -  j i)  +  0o(B )-10o(B -1) - 2Jfy (v  +  j j)

H f/(v) = V(v).

0o(B ) -20o( B - 1) - 1^ y ( v  -  j , )  +  0o( B ) -10o( B - 1) - 2ify (v  +  j , )
(3.4.94)

Before we go on to prove the asymptotic normality of the estimators, similarly 

to Theorem 3.2, for a process (W (v)} ~  W N ( 0 : 1), we define the auto-regression 

{7 7 (v ) , v T E Zd} by the equation

0o(B)77(v) =  W’(v), (3.4.95)
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and we let the vector £ =  [rj(— j i ) ,  • • • , r)(— j 9)]r  and the variance m atrix

W  q = Var{£}. (3.4.96)

P ro p o s it io n  3.3. If (e(v)} ~  I I D ( 0 , a 2), then under conditions (C l)(i) and (C3), it

holds tha t

J / N  — > 2 • cr2Wg (3.4.97)

as N  —► oo.

P ro o f. For any n, m  =  1, • • • , q, we can write

Jm,n/N = J 2  l'W [2«o(B )-39o(B-1) - 1r ( v - j ro- j „ )
v r es*

+ e o ( B r i 8o(B-1r 2Y ( v  + j m - i n )

+  2 » o (B -1) - 3«o(B )-1K ( v + j m + j n)]/Ar +  op (l), (3.4.98)

using the same argument again. Equation (3.4.98) may be re-written as

= Y1 K (v)[2e0(B )-2^ ( v - j m - j „ )
v r e s*

+  0o(B)-10o(B -1 )-1X (v  — j TO +  j n) +  90( B ) - 190( B - 1) - 1X (v  +  j m -  j n)

+  2 « o (B -1) - 2A '( v + jm + j„ )]/W  +  op (l). (3.4.99)

It holds tha t

J 2  > » [ 2  0o(B ) -2X (v  -  j ra -  j n)]/N  B {y(v)[2  0o(B ) -2X (v  -  j m -  j n)]} =  0
v T€S*

(3.4.100)

and, similarly,

£  y (v )[2 e0(B -1) - 2X (v + jra+ j„)]/^  £{F(v)[2 e o t B - ^ - ^ t v + ^ + W ] }  =  0,
v t € 5*

(3.4.101)

since F (v )  and X (v  — j) are uncorrelated for any j  ^  0. We now look at the polynomial 

c0(z) =  (1 +  ©j>0 zJ) • (1 +  ^ 2  ©j,o z _J), (3.4.102)
j> 0  j> 0

which generates

® jm -jn ,0  +  ® j,o Q jm -jn + j ,0
j> 0
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to be the coefficient of zJm Jn and zJn Jm when j m > j n . Looking back at (3.4.99), we 

can conclude tha t

Jm,n/N  ► 2 • Cr2(©jm_jn)o +  ^ 2  ®j,0®jm-jn+j,o)5 171 ^
j>0

and the same holds for Jn,m,/N, which proves the proposition.

n (3.4.103)

Before we state and prove the next theorem, we should note tha t like we did for the 

Yule-Walker estimators of the previous section, we are going to use again the sequence 

of uncorrelated random variables M v )> v T e  Zd}, for which it holds

q
Y (v) =  u(v) +  ^ 2  6im,o u (v  +  Jm), M v )} ~  W N { 0, a2),

m = 1

and

* ( v ) +  J 2  0jm,o x ( v - j m) = u(v),  {u(v)} ~  WiV(0,<r2).
771=1

T h e o re m  3.4. If (e(v)} ~  IID(0,cr2) and E{e(v)*} < oo, then under conditions (Cl) 

and (C3), it holds tha t

N ^ 2[6 -  00\ N ( 0, A ) (3.4.104)

as N  —> oo. Otherwise, if (e(v)}, M v )}  ~  I ID(0,cr2) and |J57{er(v)3}| < oo, then under 

conditions (C l) and (C3), it holds that

A /v ^ e - e o l  - ^ i v c o . w - 1) (3.4.105)

as N  —> oo.

P ro o f. First, we define

9o(B )-2»0( B - 1) - 1y ( v  — j , )  +  #o(B)-10o(B -1 ) - 2y ( v  +  j , )

U (v) =

e o C B j-^ o C B -^ - 'y fv  -  j , )  +  S o tB j- 'e o tB -1) - 2^ ^ + j , )

or

U (v) =

-  j i)  +  90(B -1 )-1Jf(v  +  j i )  

S o tB J- 'X fv  -  j , )  +  90(B _1)_1A '(v +  j , )

y (v ) .

y (v )

(3.4.106)

(3.4.107)
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Using the same argument as in (3.4.40), we may write for any m  =  1, • • • , q,

N - 1/2 E  [^o(B)-20o(B“1)“1i?y(v — jm)
Vr G«S*

+ 0o(B)-10o(B-1r 2ffy(v + jm)]y(v)

= N ~1'2 E  [^o(B)-2#o(B-1)-1y (v  — jm)
v TG«S*

+ ^ (B J -^o tB -'j^ y fv  + j ra)]F(v) +  op(  1)

= N ~l/2 E  W B r ^ - w + t f o C B - ' r ^ t y + w i y w + o p U ) .
v TG 5*

(3.4.108)

Then for any A e  %q, we can write

N ~1/2 S  ATH u(v)  = N ~ 1/2 Y  ATU (v) +  oP (l).
v T£<S* v TG«S*

(3.4.109)

For any positive integer K , we defined back in (2.5.4) the set T k - For convenience, we 

define the polynomial

/i0(z) =  0o(z){0o(z)0o(z *)} 1 =  Y  fy.o z j-
jTezd

We also define the vector

ĵ-o y (v “  Ji “  j) +  SjT gj* fy.o y (v  +  Ji +  J) 
u (Ar)(v) =  ;

. *j,0 y (v -  j ,  -  j) + EjrgpK fy.O y  (v + jq + j)

We define the random variables

(3.4.110)

F (v ).

(3.4.111)

rn{y) = Y h)’° y (V - jn - j) ^ ( v ) +  Y  ĵ.O y (v + jn + j)y (v), U = 1, • • • , g,
j T̂ K

(3.4.112)

such that

[90(B)-1 X(v -  j„)]y(v) + [90(B-1)-IX(v + j„)]y(v)

= E  '‘j , o i ' ( v - j « - j ) y ( v ) +  E  ftj .°y (v + j« + j)y (v )+ r „ (v ) ,
j j t& k
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for all n = 1, • • • , q. Then the (n, m )-th element of £ J{ U ^ ^ (v )U (^ T(v — i)} is equal to

^ { [ [ ^ ( B ) - 1̂ ^  -  j n)]y (v) +  + j„)]y (v )]

[[0o(B)- 1X (v  — j m -  i)]y (v  -  i) 4- [0o(B_ 1)~1X (v  4-j m -  i)]y (v  -  i)]}

-  E i r n W l d o i B ^ X i v  -  j m ~  i )y (v  -  i) +  0o(B- 1) - 1A’(v +  j m -  i)y (v  -  i)]}

-  E { r m(v  -  i)[0o(B )- 1X (v  — j n)y (v )  4- 0o( B - 1) - 1X (v  +  j„ )y (v )]}

4- E { r n (v)rm(v — i)}, (3.4.113)

for any n, m  = 1, • • • , q. It holds that

^ { ^ ( v ) 2} =  ^ { y ( v - j n - j ) y ( v - j n - j +)y (v )2}
JTJ * T£ 7 j f

+  E  fy,ofy*,0 ^ { y ( v + j n + j ) y ( v 4 - j n + j * ) y ( v ) 2}
j r J  *t<£Fk

+ E hl,ohr,o E{Y{v -  j n -  j ) y ( v  + j „ + }*)Y(v)2} . 2

< C  • a K , (3.4.114)

for constants C > 0 and a  E (0,1). Indeed, that comes immediately from the argument

th a t for large enough and fixed, positive integer K ,  due to the independence of Y (v) 

with y ( v  — j), j T ^ J7, we may write for any j T,j*r  ^ T k

E { Y ( v  -  j„  -  j)K (v  -  j„  -  j* )y  (v)2} =  B { Y (v)2} E { Y ( v  -  j„  -  j ) y ( v  -  j„  -  j*)},

and similarly for all the expected values involved in (3.4.114).

Back to (3.4.113) now, the first term  there, is the (n, m )-th  element of £^{U(v)UT(v — 

i)}. The absolute values of the other three terms tend to 0, as K  —► oo, thanks to the 

Cauchy-Schwartz inequality and (3.4.114). Of course, we are also using the fact that 

-E{e(v)4} <  oo or tha t y (v )  and X (v  — j) are independent for any j  7̂  0 .

It holds, in general, th a t {ATU ^ ) (v ) ,  v T £ Zd} is a zero-mean and strictly stationary 

/^-dependen t process, for some fixed positive and finite integer K *. This implies that 

as N  —» 00 and (C l) holds,

N ~1/2 E  ATU W (v) -2* \ TV K ~  N ( 0 , \ TM K \ ) ,  (3.4.115)
v T€<S*

where

M k  =  Y ,  T tfW . (3.4.116)
iTe z d
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with

r /r ( i )  =  B (U w ( v ) u W r (v -  i)}. (3.4.117)

Similarly, we may define

T(i) =  £ { U (v )U T(v -  i)} (3.4.118)

and

M =  r P)- (3.4.119)
iT£Zd

Thanks to  (3.4.113) and (3.4.114), it holds that

XtT k (i)A -> Ar T(i)A (3.4.120)

and

ATM *A  -+ ATMA, (3.4.121)

as K  —> oo. We can write that

Ar V  ATV  ~  N { 0, ATMA) (3.4.122)

as K  —> oo. Finally, after checking that

ATVar{U(v) -  U (Ar)(v)}A 0 (3.4.123)

as K  —> oo, we may combine (3.4.115), (3.4.122), (3.4.123) to write tha t

A r 1/2 Y s  ATU (v) iV(0,ATMA) (3.4.124)
v r G5*

as N  —► oo. Using (3.4.109) and the Cramer-Wold device we can convert (3.4.124) to

N ~ l/2 E «  u(v) N (0 ,M ). (3.4.125)
vr es*

Looking back at (3.4.92) and Proposition 3.3, we can see tha t the first part of the theorem 

has been proven and it holds that

A  =  j - L - W - 'M W - 1. (3.4.126)

Moreover, when

{u(v)} ~  H D (0, (j2) 

and |£^{f:(v)3}| < oo, we need to show that

M  =  4 • a AW q. (3.4.127)
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Indeed, it holds then th a t X (v  — j) and F (v ) are two independent random variables for 

any j  ^  0 and we may use Proposition 2.6.

We may write the (n, m )-th element of T(i) as

£{[[9o(B)_ 1X (v  -  j„)]Y (v) +  [ ^ (B -1 ) - 1̂ ( v  +  j„)]Y(v)]

[[®o(B)_1-^(v — jm -  i)]Y(v -  i) +  [9o(B_ 1)_ 1X (v  +  j m -  i)]Y(v -  i)]}

=  B{[flo(B)-1X ( v - j n)][0o(B)-1A - ( v - j m - i ) ] F ( v ) F ( v - i ) }  (3.4.128)

+  B{[9o(B)-1X (v - j„ ) ] [9 o (B - 1) - 1X (v  +  j 1B - l ) ] y ( v ) y ( v - i ) }  (3.4.129)

+  E { [ 0 o ( B - V * ( v  +  j „ ) P o ( B r 1X ( v - j m - i ) ] y ( v ) Y ( v - i ) }  (3.4.130)

+  S t f W B - 1) - 1* ^  +  jn JK S o tB -^ - 'X fv  +  j m -  i)]y (v )Y (v  -  i)}, (3.4.131)

for any n, m  = 1, • • • ,q. W ithout loss of generality, we will consider th a t m  > n. We

may recall the form of the variance matrix M  from (3.4.119) or re-write it as

m  =  r(o) +  £ { r ( i )  +  r T(i)} =  r(o) + £ { r ( i )  +  r r(i)}. (3.4.132)
i>0 i<0

For the first term  (3.4.128), we write for i >  0

0j,oej.,o  E { X ( v  -  j n - j ) X ( v - j m -  i - r ) Y ( v ) V ( v  -  i)}.
j j *>0

It holds then th a t v  — j n — j  < v  and v  — j m — i — j* < v , so we may re-write it as

£  ej,oej.,o  e { x (v  _  j„  _  j ) x ( v  -  j m -  i -  j * ) y ( v ) y ( v  -  i)} 
j j *>0

=  E  e j,o e j.,0 £ ;{ x (v - j „ - j ) x ( v - j m - i - j * ) } B { y ( v ) y ( v - i ) }
j j *>0

=  O'2 -7o(i) ^ 2  @j,oBj*)0 co(jm -  jn  +  i +  j* -  j)- (3.4.133)
j j *>0

We should remember here tha t for the coefficients of the polynomials 70 (z), co(z), it 

holds tha t

£ { r ( v ) y ( v -  j)} =  7o(j),

£ { X ( v ) X ( v - j ) }  =  cr2 -c0(j).

On the other hand, in the transpose TT(i) and still for i >  0 , we will have

^ 2 , 7o(i) J ]  0 j,O@j*,O C0( j n - j m  +  i + j *  -  j)  
j j *>0

=  cr2 • 70(i) 0 j.O0 j*,O c0(jm -  j„  -  i -  j* + j ) ,
j j *>0
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w h ic h , i f  w e  r e -w r ite  it  for i  <  0 , w o u ld  b e  eq u a l to

0-2 ' 7 o ( i)  E  0 j,o®j*,o c0 (jm - j n  +  i -  j*  + j )  
jj* > 0

=  a 2 -7 o ( i)  5 3  0 j.o0 j*,o co ( j m - j n  +  i +  j*  -  j ) -  (3 .4 .1 3 4 )
jj* > 0

T a k in g  th e  su m  over  a ll i T E Z d a cco rd in g  to  (3 .4 .1 3 2 ) , w o u ld  p r o d u c e  a cco rd in g  to  

(3 .4 .1 3 3 )  a n d  (3 .4 .1 3 4 )

5 3  a 2 , 7 o ( i)  5 3  0 j.O0 j*,O CoOm - j n  +  i + j *  “  j )
iTe2.d j j* > 0

=  cr2 5 3  0 j.O0 j*,O 5 3  7 o (i)  C0 ( j m - j n  +  i + j *  - j )
jj* > 0  iTe z d

=  * 2 5 3 0 j.O0 j+ j~ -jn ,O  E  7 0 ( i ) c 0 ( i)
j> 0  ir e z d

+  (J1 5 3  0 j.O0 j*,O 5 3  7 ° ®  co ( j m - j n  +  i + j * - j )
JJ*>o, ir e z d

J-JVJm-Jn

~  G [0 jm —jn,0 +  E 0 ^ - jn + j ,O 0 j,o], (3 .4 .1 3 5 )
j> o

th a n k s  to  th e  g en era l Y u le-W alk er  e q u a tio n s . T h e  la s t  te r m  (3 .4 .1 3 1 )  c a n  b e  sh o w n  in  

e x a c t ly  th e  sa m e  w a y  t o  p r o d u ce  th e  sa m e  re su lt .

F or th e  s e c o n d  te r m  (3 .4 .1 2 9 ) , w e  w r ite  for i <  0

5 3  0 j,o0 j*,o £ { X ( v - j n - j ) X ( v + j m - i + j * ) Y ( v ) Y ( v - i ) } .
jj* > o

It h o ld s  th a t  v  — j n — j  <  v  an d  v  — j n — j < v  — i, a n d  so  w e  c a n  w r ite

5 3  0 J.o0 j*,o £ { X ( v - j n - j ) X ( v + j m - i + j * ) Y ( v ) Y ( v - i ) }
jJ*> o

=  5 3  0 j.o0 j*,o E { X ( v  -  j n -  j ) X ( v  +  j TO -  i  +  j * ) } £ { Y ( v ) Y ( v  -  i ) }
jJ*> o

=  0-2 • 7 o ( i)  E  0 j ,° 0 j*,o c °(jm  +  jn  +  j  +  j*  ~  i)- (3 .4 .1 3 6 )
jj* > 0

O n  th e  o th e r  h a n d , from  th e  sa m e  te r m  w h e n  i >  0 ,  w e  w r ite

] T  © j,o© j.,o  £ { X ( v  -  j „  -  j ) X ( v  +  j m -  i  +  j * ) y ( v ) y ( v  -  i ) } .  
j j* > 0

N o w , it  c a n  b e  th a t  v  — i + j m +  j*  =  v  an d  v  — j n — j  =  v  — i, or e q u a lly  th a t  j*  =  i  — j m
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and j  =  i — jn- As a result, we can write for i >  j m, that

E  0 j.O0 j*.O ^ ( v - j n - W v + j n ,  -  i +  j* )y (v )y (v  -  i)}
jj*>0

=  a 4 • © i-jn,o©i-jm,o

+ E  0 j.o0 j*,o E { X ( v -  jn -  j)A(v + jm -  i + j* )}£{y(v )y (v  -  i)}
jj*>0

=  (j4 • 0 i_ jnio©i-jm,O +  cr2 • 7o(i) ^  ©j,0©j*,0 Co(jm +  jn +  j  +  j* — i))
jj*>0

(3.4.137)

while when 0 <  i <  j m, it is just

£  e J>0©j.,0 E { X ( V  -  j„ -  j ) x ( v + j„ -  i + j*)y(v)y(v -  i)} 
jj*>0

=  0-2 -7o(i) E  0 j,o©r,o c0( jm + jn + j+ j* - i ) -  (3.4.138)
jj*>0

Putting (3.4.136), (3.4.137) and (3.4.138) together for all iT G Zd, we may write

0-4 ' 0 i-jn,O©i-jTn,O
i^Jm

+  E O’2 • 7o(i) E 0 j,O0 j*,O Co(jm +  jn +  j  +  j* -  i)
iT€ Z d jj*>0

=  (J4 [Qjm—jn,Q 4- QjTn-jn+j,oQj,o]
j>0

+  a 2 0 j)O0 j*.O E 7o(i) c o ( j m + j n + j + j * - i )  
jj*>o iTe z d

=  (J4 [Qjm jn,0 +  ©jm-jn+j,Q©j,o]) (3.4.139)
j>0

since it cannot be th a t j m +  j n 4- j  +  j* =  0. The third term  (3.4.130) can be shown in a 

similar way.

As a result, for the (n, m )-th element of M  is according to (3.4.135) and (3.4.139) 

equal to

4 • cr4[0jm_jn)o +  ©jm-jn+j,o©j,o]> 
j>o

when m  > n. Then

M  =  4 • cr4Wg, (3.4.140)

which combined with (3.4.125) and Proposition 3.3 proves the theorem.
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3.5 M odified G aussian likelihood estim ation  for A R M A  

processes

3.5.1 Introduction

The edge-effect does not allow us to maximize the exact Gaussian likelihood with the 

hope to produce both asymptotically unbiased and normal estimators. Even when the 

observations have been derived from an auto-regression or a moving-average, we need 

to maximize a modified version of the Gaussian likelihood rather than  the exact like­

lihood itself, to rest tha t the estimators have both these properties. When it comes 

to the ARMA though, it seems that no modified version of the likelihood, which uses 

the special characteristics of the ARMA, has been proposed. Guyon’s (1982) modified 

likelihood might be maximized, but it is based on a quantity tha t uses all the possi­

ble auto-covariances in the sample and keeps growing as the number of observations 

increases, since the ARMA has non-zero auto-covariances at all possible lags. This is the 

quantity used in the case of any process with an auto-covariance function that does not 

necessarily cut off after a finite number of lags and, thus, it does not make any use of 

the special structure of the ARMA, as it does for a moving-average. Similarly, the mod­

ified likelihood proposed by Yao and Brockwell (2006) for the case of d =  2 dimensions, 

works for any process with an AR(oo) representation and not just the ARMA, as the 

innovations algorithm allows at each observation to be expressed as a linear function of 

all the other observations in the sample from its ‘past’ only, until it reaches the AR(oo) 

representation. Again, unless the original process is an auto-regression of finite order, 

th a t method does not distinguish between the ARMA and any other process with an 

AR(oo) representation.

For observations from an ARMA process, we minimize a quantity, which produces 

consistent, asymptotically unbiased and normal estimators. For Gaussian processes, the 

estimators are efficient too. Based on arguments from the previous section, this quantity 

is the quadratic form of a modified Gaussian likelihood, and, thus, we consider our 

estimators to be Gaussian likelihood estimators. This is the same idea as the quasi­

maximum likelihood estimators introduced by W hite (1982). Consequently, that same 

idea was also used by Guyon (1982), Yao and Brockwell (2006) and all our maximum 

likelihood suggestions for estimation so far, refer to Gaussian likelihoods too. Thus, our
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proposed m ethod for the ARMA generalizes the case of modified likelihood estimation 

for the param eters of a moving-average, which was presented in the previous section. 

The main idea is finding a finite filter, which, if applied on the ARMA process, produces 

a moving-average process. Moreover, as we axe going to see in Section 3.5.2, there can be 

three different moving-averages produced, but only one of them  is appropriate to be used 

in the quantity; this is, in order to avoid the edge-effect and not to come up with the 

original ARMA process and its auto-covariance function, after finding the derivatives 

of the quantity with respect to the parameters. Thus, we select this moving-average 

process, for which the derivatives with respect to all the param eters are moving-average 

processes. The auto-regression that corresponds to the moving-average of interest is 

again of great importance for the derivation of the results, though it is only possible to 

produce it after applying an infinite filter on the ARMA, and, so, not possible with a 

finite sample available.

3 .5 .2  D e f in i t io n s

For 0 < ii <  • • • <  ip and 0 < j i  < • • • < j g, we consider the causal and invertible ARMA 

process {Z(v ) ,  v T e  Zd}, such tha t it satisfies

Z (v ) -  b’̂ Z (v  -  in) =  £(v) +  aim£(v -  jm ), {e(v)} ~  WW(0, a 2). (3.5.1)
n=1 m = l

We define the polynomials

b(z ) =  1 -  6i- zln (3.5.2)
77=1

9
a ( z )  =  1 +  aim  (3 -5 -3 )

771=1

and the polynomial

d{z) =  (6(z)a(z) &(z-1 )a(z-1 )}-1 =  dj z-*. (3.5.4)
jTezd

Consequently from (3.5.1), (3.5.2) and (3.5.3), we may write the following equations

6(B)Z(v) =  a(B )e(v) =  a (B -1 )£*(v) (3.5.5)

and

6(B_1)Z(v) =  a (B -1 )u(v) =  a(B )u*(v), (3.5.6)
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where it holds that

(e(v)}, (e*(v)}, {u(v)}, (u*(v)} ~  W N ( 0, a2)

and, so, the processes (e*(v), v T G Zd}, {u(v), v T € Zd} and. {u*(v), v t  g Zd} are 

sequences of uncorrelated random variables with variance a 2, too. The process {u(v)} 

is the unilateral counterpart of {e(v)} in the AR(oo) representation of (Z(v)}. Then 

{£*(v)} and {u*(v)} are the unilateral counterparts of {e(v)} and {u(v)} for the moving- 

average processes {6(B )Z(v)} and {6(B _1)Z(v)}, respectively.

We define the new process (M (v), v T G Zd} by the equations

M (v) =  6(B )6(B ~1)Z(v) =  6(B - 1)a(B - 1)£:*(v), {£*(v)} ~  WiV(0, <72) (3.5.7)

=  6(B)a(B)u*(v), K ( v ) }  ~  WN{0,  a 2),(3.5.8)

which has been expressed in (3.5.8) as an invertible moving-average. Its spectral density 

can be written as

9M{U) = Wf  6(e<")a(ei“) Ke^Jate-^) = ^  e ,j< (3.5.9)

We also define the process {A(v), v T G Zd} by the equations

A(v) =  a (B ) - 1a (B “ 1)“ 1Z(v) =  6(B ) -1a (B )" 1£*(v) =  6( B - 1) - 1a ( B - 1) - 1u*(v),

(3.5.10)

such th a t

6(B)a(B )A (v) =  g*(v), (e*(v)} -  W N ( 0, a2) (3.5.11)

and

&(B- 1)a(B - 1)A(v) =  w*(v), K ( v ) }  ~  W N ( 0 , a 2). (3.5.12)

In (3.5.11), the process {A(v), v T G Zd} has been expressed as a causal auto-regression. 

We can see immediately from (3.5.7), (3.5.8) and (3.5.10) th a t M (v) and A (v  — j) are 

two uncorrelated random variables for any j  /  0 .

Apart from the process {M (v), v T G £ d}, we also define the moving-average pro­

cesses

y i(v ) =  6(B )Z(v) =  a(B )e(v), (e(v)} ~  W N (0 ,  a 2) (3.5.13)

=  a (B - 1)£*(v), {e*(v)} ~  WAT(0,cr2) (3.5.14)
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and

y2(v) = &(B- 1)Z(v) = a (B - 1)u(v), (w(v)} ~  W7V(0, a2), (3.5.15)

=  a(B )u*(v), (u(v)}  ~  WN{0 ,  a2). ' (3.5.16)

We consider T  to be the minimal set, such th a t for any j T ^  T ,  it holds that

s { y i ( v )  m (v + j)}  =  £ { y 2(v) M (v + j)}  =  e { m ( v ) y i(v + j)}  =  e { m { w ) y2(v + j)}  =  o

and tha t

£?{yi(v + in) M ( v + j ) }  =  0> E { y 2( v - i n) M ( v - f j ) }  =  0, (3.5.17)

E { M ( v ) Y 1(v + in + j ) }  =  0, E { M ( v )  y 2(v - i n + j ) }  =  0, (3.5.18)

for all n  = 1, • • • ,p. Since it holds that

p
M ( y )  = 6(B )y2(v) =  y2( v ) - ^ ^ ny2( v - i . , )  (3.5.19)

71=1
P

=  r ’ l w ^ i W - E w i ’ + u  (3-5-20)
n —1

we can see immediately tha t if j T ^ J7, then E { M ( v ) M ( v  +  j)}  =  0.

We consider T \  the maximal set of lags j T E T \ ,  such th a t

£?{yi(v) M ( v + j ) } ^ 0 ,

and T 2 the maximal set of lags j T E ^ 2, such tha t

E {Y2{v) M (v +  j ) } ^ 0 ,

and we go on the same way with the sets ^ 3, ^ 4, ^ 4+1, • • • , ^ 4+p, • • • ^ 4+4p -i, to finish 

with the maximal set T±+±p of lags j T E ^ 4 + 4p, such th a t

£ {M (v ) y2(v - i p + j ) } ^ 0 .

We can see immediately tha t all the sets T \ , • • • , F a+a# are of finite cardinality. This is 

because all processes (M (v), v T E 27*}, {yi(v), v T E 27*} and {y2(v), v T 6  27*} are 

moving-averages. Moreover, it holds tha t

T = T\ U • • • U ^ 4+4p- (3.5.21)

Thus, T  is a set of finite cardinality too. In general, we may consider T  to be the set of 

lags, where the process {M (v), v T E 27*} has non-zero auto-covariances.
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3 .5 .3  E s t im a to r s

We observe (Z (v ), v T E J }  and wish to estimate the unknown param eter vector

0o =  [&ilfo, • • • > h p,o, Oji,o, ■ • • , ajg)0]r =  [bj, a5]T. (3.5.22)

We assume the following condition holds.

(C4) The param eter space 0  =  0 i  x 02 C Rp+q is a compact set containing 

the true value 0 q as an inner point. Further, for any 0  =  [bT,a T]T E 0 , 

the ARMA process (3.5.1) is causal and invertible.

For a set I  c  Z d and for observations { Z (v ), v T E Z} we consider the maximal set «S, 

such th a t v r E 5  if v T +  i£, v T — i£, v T +  E J  for all n, m  = 1, • • • , p . Then we

consider the maximal set <S*, such tha t v r E <S* if v T — j T E <S for all j r E T .  We assume 

th a t J  is a large enough set, so that <S* is not the empty set. We denote with N j ,  N,  N* 

the cardinalities of X , S  and S*, respectively. Finally, for any v T E Zd, we define the set 

C 21d to be such tha t j T E ZV if v T — j T E «S. We can see immediately that for any 

v T E <S*, it holds th a t T  C ZV-

For a better understanding, we present the following example. We define the ARMA 

process {Zt , £ E 21} by the equation

— 0.6 Zt—i +  0.09 Zt - 2 =  +  0.1 £t_i, {£*} ~  W N ( 0 , a 2).

For the set X  =  {1, • • • , 20}, the new set «S =  {3, • • • , 18}, is such th a t for all £ E S,  

it holds tha t £ — 2, • • • ,£ +  2 E l  Before we define the set <S*, we will need to find T .  

Indeed, if we imagine the moving-average process {M t , £ E 21} defined by

=  \u*t + 0 .1  u f.i]  -  0.6 [uf-i + 0 .1  uj_2] +  0.09 [uf_2 +  0.1 uf_3]

=  u j -  0.5 itJLj +  0.03 u*t_2 +  0.009 < _ 3, {ut*} ~  WJV(0, a 2),

then it holds th a t E{M t  Mt+j} ^  0 when j  E T  =  {0, ±1, ±2, ±3}. Thus, we consider 

the set S* = {6, • • • , 15} with cardinality N* = 10, instead of the cardinality of the 

original set N j  = 20.

Back to our general case, for any v T E Zd and b  E 0 i ,  we define the random variables 

M (v ,b )  =  6(B)6(B~1)Z(v)
p  p

= ‘Z ( v ) - S 6in [ Z (V +  i " )  +  Z (V - - i ” ) ] +  M i m ^ V  +  i n - i m ) .
n =  1 n , m = l

(3.5.23)
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and

M (v ,b 0) =  M (v). (3.5.24)

For any v T G and b  G 0 i ,  we also define

V i(v ,b ) =  6(B)Z(v) =  Z W - ^ Z f v -  i„) (3.5.25)
n=l

P
y 2(v ,b )  =  i>(B-1)Z (v ) =  Z ( v ) - ^ i , u Z (v  +  in) (3.5.26)

n=l

and

y i ( v ,b 0) S  y i(v )  (3.5.27)

y2( v ,b 0) =  y2(v). (3.5.28)

We first define the quantity

Q ’ ( 0 ) =  J 2  M (v ’h ) E  d |M ( v - j , b ) ,  e 6 e  (3.5.29)
v r e5* jTe ^ v

and then the estimators

0  = argmin06eQ*(0). (3.5.30)

If

(e(v)} ~ N I D { 0 , a 2) 

and we had observed (M (v), v T G <S}, we saw in Section 3.4.3 why

L M (0,cr2) oc V̂!'r ^ / 2  exP { ~ o ~2 S  2  di M (v ~ j ) } >  6 e  0 > >  °>

(3.5.31)

is a conditional likelihood. These are the same reasons th a t make (3.4.73) a conditional 

likelihood. Again A  is the vector of random variables {A(v), v T G <S} from the auto­

regression {A(v), v T G Zd} as it was defined in (3.5.10). Following the same arguments

as to derive (3.4.70), we may also write the modified version of the Gaussian likelihood

L*m ( 0 , ( t 2) oc ■; - 2} n --/ 2 e x p ( ~ 2 ~ 2  S  M (v ) S  rfj M (v “ j) }> 0 G 0 ’ - 2 > 0 -  
^  ’ vT€S* jT€-Fv

(3.5.32)

If we now consider the random variables (Z (v ), v T G <S} and using (3.5.23), we can 

write

M  =  B • Z +  B 0 • Z0 (3.5.33)
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where M  =  [M (vi), • • • , M(v/v)]T, Z =  [Z(vi), • • • , Z ( v n )]t and v i < • • • < v/v are all 

the elements of S.  The vector Zo has elements the random variables {Z(v), v T G X —S}.  

If we write

b{z) b(z~1) = Y  Pi zj =  Y  Pi z j’ (3.5.34)
jT€^6

with /3j =  0, jT ^ T\>, and

B  =  [0*,]*,=1) (3.5.35)

it holds tha t

f in  =  (3Vr- Vl = ^ - v r, r, I =  1, • • • , JV. (3.5.36)

If we denote with / m |z0 an(  ̂ /z |Z0 conditional densities of the random vectors M

and Z, respectively, given the values of the random vector Zo, then it holds, according

to (3.5.33), tha t

/z |z 0 =  lB l • / m |Zo- (3.5.37)

Moreover, if we consider the moving-average process {Y#(v), v r  G Zd} defined by the 

equation

Yh (v ) = b(B )e(v), (e(v)} ~  W N ( 0,1), (3.5.38)

then it holds tha t

Var{Ytf} =  B (3.5.39)

for the random vector Y h  =  [T/f (vi), • • • , Yh (v n )]t - The innovations algorithm teaches 

us how to factorize the determinant of a variance m atrix

ib  i =  n  r f(v )> (3-5-40)
v Te«s

where

r6(v) =  E {Y h (v ) -  Yh (v )}2, v T g  5 ,  (3.5.41)

and Yj^(v) is the best linear predictor of Yjf (v) based on all random variables Y//(v —

i) ,i  >  0, v T -  ir  G S.

We may also see tha t since

Z(v)  = a (B )a (B "1)A(v),

it holds tha t

Cov{M (v -  j), Z(v)} =  Cov{M (v -  j), a(B )a(B _1)A(v)} oc ay, jT G Zd, (3.5.42)
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where we consider

a(z) a(z_1) =  J ]  a J ^  E  E  aJ zJ’ (3.5.43)
jTG^a r e z d

with a j =  0 for j T T a- Thus, for Gaussian random variables, the random variables

{ M (v ),v r  G <S*} are independent of the random vector Zo- Using this last argument 

and also (3.5.32), (3.5.37) and (3.5.40), we may come up with the modified conditional 

likelihood of the observations (Z (v ), v T G «S*} given the realization of the random vector 

Zo

L*z (0,<j2) oc exP{ ~ ^ 2  53 M (v >b ) 53 d jM ( v - j ,b ) } ,  0G  0 , a 2 > 0 ,
^  '  v T£S* r e ^ v

(3.5.44)

where M (v , b) was defined in (3.5.23) to be a function of the data  and the parameters. 

For convenience, we will ignore the factor

II r*>(v)
v r es*

and we will finally consider the modified version of conditional Gaussian likelihood to be

L*(fl,(j2) oc exP{~^~2  53 M (v >b ) 53 dj M ( v - j , b ) } ,  O e Q ,  (72 >0.

(3.5.45)

The factor

II rb(v)
v T€«S*

involves the param eters b  G 0 i  and not the data {Z(v), v T G X} and it is part of 

the deterministic, not the random  part of the likelihood. For more information on the 

properties of the prediction variances

r 6(v ,b ) =  rb{v), v T G <S,

we refer to Yao and Brockwell (2006). For example, for any b  G ©i, an invertible 

moving-average (Y //(v), v T G Zd} is defined from (3.5.38), and for any fixed element 

v T G <S, it holds th a t

n,(v, b) —► Var{e(v)} =  1, (3.5.46)

as N  —► oo and (C l)(i) holds. The assumption for the causality of the original ARMA 

process or invertibility of the moving-average process defined by (3.5.38) is essential for 

(3.5.46) to hold and for the factor IIv Te5* r fc(v ) be omitted. Otherwise, as we axe going
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to see in Section 3.6, a modification needs to be taken into account in the deterministic 

part of the likelihood.

Finally, if we re-write (3.5.45) as

L*{6,a2) oc ^ 2 )^ /2  exp{ ~ 2^2 6  G 0 > 0-2 >  °> (3.5.47)

we can see th a t 0, as it was defined in (3.5.30), and

= Q*(0)/N*  (3.5.48)

are maximum modified Gaussian likelihood estimators.

3.5.4 Properties o f estim ators

T h e o re m  3.5 (C o n sis ten cy ). If {e*(v)} ~  I I D ( 0 , a 2), then under conditions (Cl)(i) 

and (C4), it holds that

0 - ^ 0 o

and

as N  —> oo.

P ro o f. Similar arguments like the ones for Theorem 3.3 will be used. For any 0 £ 8 , 

we can write

1  5 3  [6(B)6(B-1)Z(v)] J 2  d, [6(B )6(B-1) Z ( v - i ) ]
v T £ S *  iT€^"v

=  j f  £  [MB)6o(B)-16 (B -‘)60( B - 1) - lA/(v)]
v TG«S*

5 3  (h [6(B)60(B )_1 ( .(B -^ M B - 1) - 1^ - ! ) ]
iTG ^v

j f  £  [f-(B)6o(B)-16 (B -1)6o(B -1) - 1M (v)] 
v t € 5*

5 3  d, [MBJfcotB)-1 6 (B -1)60( B - 1) - 1M ( v - i ) ]
\T£Zd

=  ^  £  W B)6o(B)-1 6(B ~1)60(B _1)_1Af(v)]
v T £ S *

[d(B)do(B)-16(B)60(B ) -16 (B -1)60( B - 1)-M (v )]

=  ^  £  [i>(B)6o(B)-'16 (B -1)60( B - 1) - 1M (v)]

[ o tB J - 'o o tB J a tB - 'j - ^ o tB - 1) ^ ^ ) ] ,  (3.5.49)
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where the convergence in probability holds since (C l)(i) holds. Moreover, since

{ £ * ( v ) } ~ / / D (  0 , a 2 ) ,

it holds th a t (3.5.49) tends in probability to

E U & f B M B r ^ B - ^ M B - 1) - 1. / ^ ) ]  M B J - 'a o fB M B -^ -^ a o C B - 'M v )]} ,

(3.5.50)

as N  —> oo. If we define, for any b  e  @1, the polynomial

6(z)60(z )_16(z“ 1)60(z_1) ' 1 =  ^ 2  z j ’ (3.5.51)
jTezd

and, for any a  G 0 2 , the polynomial

a (z )-1ao(z) a(z“ 1)“ 1ao(z"1) =  ^  « j(a) z-*, (3.5.52)
jTeZd

then (3.5.50) is equal to

<r2{ £  /? j(b ) -0 3 (a)}. (3.5.53)
jTeZd

On the other hand, the polynomial

<t2[&(z)&o(z)-1&(z-1 )&o(z- 1)-1] [a(z)-1a0(z) a (z -1 )-1 ao(z_1)]

=  a 2 J 2  ^ ( b J - a j ^ a ) ^ - ^  (3.5.54)

generates (3.5.53) to be the coefficient of z°. Thus, we may write

£;{[6(B)60(B ) - 16 (B -1)60( B - 1) - 1M (v)] [a (B )-1a0(B )a (B -1) - 1a0( B - 1)A(v)]} 

=  £{£*(v) [6(z)6o(z)_16(z_1)6o(z ' 1)_1 a(z)_1ao(z)a(z_1)~1ao(z_1) e*(v)]}

=  £{e*(v) [{6(z)a(z)-1 }{6o(z)ao(z)-1 }-1 {6(z-1 )a(z-1 )-1 } •

{60(z-1 )a0(z_1)~1}-1£:*(v)]} > £?{e*(v)2} =  cr2, (3.5.55)

and the equality holds if and only if b  =  bo and a  =  ao- At this final stage and for 

the inequality to hold, the assumptions of causality and invertibility are essential, so 

th a t all the polynomials 6(z)_1, &o(z)_1 and a(z)-1 ,ao(z)-1 , can generate unity to be 

the coefficient of z° and they can extend over one side only z1, i >  0 or z1, i < 0. The 

rest of the proof is identical to the one for Theorem 3.3. ■
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To prove the asymptotic normality, we will define the following variables. First, we 

might write for any n = 1, • ■ • ,p, and any v T G Zd,

r\
— M (v ,b )  =  y i(v  +  in,b )  +  y2( v - i n ,b ). (3.5.56)
in

Depending on the set S and, consequently, on the sampling set I ,  we define the random 

variables
f M (v ,b ) , v t g 5  

t f M(v ,b ) =  < , (3.5.57)
1 0, vT * S

and

# A f(v ,b 0) =  F m W ,  v t  g Zd. (3.5.58)

Equation (3.5.57) also implies tha t for any n = 1, • • • ,p,

d  f — ?£— A f(v ,b), v T G <S
- 7 w r J3r" (v>b) =  1 • (3-559)9i,‘» [ 0, v T<£S

As a result, we may define for any n =  1, • • • ,p, the variables

4 " > ( v , b ) = (  Kl(V’b ) ’ VT“ iT" 6 5  (3.5.60)
{ 0, v - - i U S

and

4 n)(v ,b )  =  (  F2(V’b ) ’ vT + i” e S  . (3.5.6!)
[ 0, v T +  iU S

If we combine (3.5.56), (3.5.59), (3.5.60) and (3.5.61), we may then write that

# M (v ,b )  =  /7 ^ )(v +  in,b )  +  i7 ^ )( v - i n,b ) , n =  l , - - - , p ,  v T G Zd. (3.5.62) 

We finally consider that

4 V ,  b 0) =  f f ^ ( v ) ,  (3.5.63)

4 ”>(v,b0) =  4 V ) >  f3-5-64)

for any v T G Zd and n =  1, • • • , p.

We may now re-write (3.5.29), as

Q'(B) =  Y ,  M(v,b)  (d(B) ffA /(v,b)l, e  € e. (3.5.65)
vTes*
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We write the derivatives of (3.5.65) with respect to the auto-regressive parameters n =  

1, •••,£>,

£»„(») = Q’ (fl) =  J 2  Yi(v +  i„ ,b) [d (B )H M(v,b)]
9bi» v ^ <

+  y2(v -  i„ ,b )  [d(B) b)]
v Te s*

v TG5*

£  M (v ,b )  [6(B-1 )-1d(B) H m {v  +  in,b)]
vT€S*

+ Y ,  M(v- b> ld(B) Hn ( v + *»> b>l
v TG<S*

+ £  M(v,b) (d(B) f f^ tv - in .b ) ] ,  (3.5.66)
v r G<S*

and the derivatives with respect to the moving-average param eters m  = 1, • • • , q,

ZVm(«) = Q '(0) =  E  M(v,b) m b )-M b ) i / M(v -  jm,b)]
v TG<S*

+  ^  M (v ,b )  [a(B_1)_1d(B) t f M( v + j m,b)].
v TG5*

(3.5.67)

For any n  =  1, • • • ,p, we re-write (3.5.66) as

£>n(0) =  £>n(0O) -  j ;( 0 ) [0  -  0o], (3.5.68)

where

with

J  1(0) = [Jn,l(0), • • • , JnlP+9(0)] (3.5.69)

= E Z (v +  in “ • ir) [do(B)tfM(v)]
v TG<S*

- E F i ( v  +  in) [6o(B)-1do(B) t f M(v -  ir)]
v r G«S*

- E * i(v  +  i„) [6o(B-1) - 1do(B) i f M(v +  ir)]
v r G«S*

+ E F i(v  +  in) (d0 ( B )  J ^ V  +  M ]
v TG«S*

+ E Fi (v +  in) W B i ^ t v - m

v TG<S*

-1- E
v TG«S*

£ ( v  -  in + ■ir) Mo( B ) / 7 m (v )]
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-  E  y 2(v  -  w  [i>o(B)-1d0(B ) Hm (v  -  i ,)]
vr G<S*

-  E  y 2(v  -  in ) [ M B - ' r ' d o t B )  h m {v + ir )] 
vTe«s*

+  E  y 2(V -  *") W 0 ) HY\(v  +  ir)]
v t € 5*

+  E  y 2(v  -  i" )  W B ) f f n ( v  -  ir)l
vr e5*

“  E  ^ i ( v  +  ir) [6o(B)- 1 rf0(B ) i ^ M ( v - i n ) ]
vTe5*

-  E  y 2(v  -  ir) [6 o (B )-1do(B ) H m { v  -  in)] 
wT£S*

+ 2 Y  M (v ) [i>o(B)-2do(B ) Hu {v -  i„  -  ir)] 
vr e«s*

+  E  M{y )  [<>o(B)-1i)o (B -1) - 1do (B ) f f M (v  -  i„  +  ir)]
vT€«S*

-  Y  [(’o fB J - 'd o fB )  H $ ( v  -  i„  +  ir)]
VTG5*

-  E  M (v ) [^o(B )_1do(B ) H $ ( v  -  in -  ir)]
vr es*

-  E  y i ( v  +  ir) lM B - 1 ) -1 do(B ) Hm (v + in )] 
v r es*

-  E  y 2(v  -  ir) [ M B - 1 ) - 1 d o (B ) Hm (v  + i„)]
v Tes*

+  E  M (v ) M B r W - ' r ' M B )  Hm (v  + in -  ir)]
vTG«S*

+  2 Y  M (y ) [i>o(B _ 1 ) “ 2do(B ) f f M (v  +  i„  +  ir)
v r es*

-  Y  M (v ) [i’o (B _1) - 1 d0(B ) f f£ > (v  +  in +  ir)] 
vTes*

-  E  M (v ) [&o(B_1) _1d0(B ) H $ { v  +  i„  -  ir)] 
vT€«S*

+  E  y i ( v  +  ir )  I^oCB) Hn ( v  +  i»)l
vT€«S*

+  E  y 2(V -  ir) [d° (B ) HY? (v  +  in)]
vTG«S*

-  e  M (v ) [ W B r W B )  h $ > (v+ u , ~  ir )i
VTG5*

-  E  M (v ) [i)o (B - 1 )~ 1d0(B ) W (v  +  i„  +  ir)]
vTG«S*
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+  M (v) di,0 z (v +  in -  ir -  j)
vres* jTe^v

+  E M (v ) E dj>° ^ ( v  “  in +  ir -  j)
vTe«s* jTeJv

+ E yi(v+w ^ B) - W]
vTG«S*

+  y2(v -  ir) [<i0(B) 4 ? ( v  -  i„)]
vt€5*

-  53 M ( v )  M B r ' d o i B )  h £ \ V - i n -  ir)]
vTeS*

-  53 M ( v )  [60( B - 1) - 1d0(B) h £ > ( v  - i „  +  ir)] +  Op(AT||fl -  Soil),
vTes*

(3.5.70)

for r =  1, • • • ,p , an d

J n , r { 0 )  =  J n , p + l ( 0 )  =  E  Y l  ^  +  M B ) _ 1 d o ( B )  # m ( v  -  j/)]
vr €S*

+ E  ^ i(v  + in) [ao(B *) 1do(B ) H m (v  + jz)]
VTGS*

+ E  y 2(v  -  in) [ao(B) 1do(B) Hm (v - ji)]
vTe<s*

+ E  r2(v - in )  M B - ' r ' d o i B )  Hm (v + 3i)]
v TG 5*

-  5 3  m (v
vT€S*

-  5 3  m (v
vTG5*

v Te«S*

-  E  M <v
v t € 5*

+ E  M(v
vr e5*

+ E  M (v
v TG«S*

+ E  M <v
v T€«S*

+ E  M<v
VT€ S *

+  o P (AT||e -  Soil),

[JofBJ-'aotBJ-'cJofB) HM(x -  i„ -  ji)] 

[ftotBJ-^ofB-^-'dotB) J?M(v -  in + ji)] 

M B r V B - 1) - 1* ^ )  ffM(v + in -  j;)] 

[o0(B-1 )~16o(B-1 )_1d0(B) H m ( x  + in + j,)] 

[aoCBJ-^otB) H£>(v + i„ -  j,)] 

[a0(B -1 ) - 1do(B) H $ \ v  + in + j,)] 

M B r ' d o W f f g V - i n - j , ) ]  

[o0(B -1 )_1(2o(B) ff£>(v -  in +  j,)]

(3.5.71)

for I =  r — p =  1,
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On the other hand, for any m  = 1, • • • , q, we re-write (3 .5.67) as

D p+m( e ) =  D p+m(Oo) -  r p+m(d)[0 -  0o], (3.5.72)

where

Jp+m (0) ~  [Jp+m,l{0)i ' ' ' 1 Jp+m,p-\-q(Q)\ (3.5.73)

with

J p + m A e ) =  S  +  ir) [ao(B)_1d0(B ) H m ( v  -  j m)]
VT€«S*

+  y 2 (v  -  ir) [ao (B )-1do(B) t f M(v  -  j m)]
vTe5*

-  1W(v) [00(B ) - 1 b o i B r ' d o i B )  H m ( v  -  j m -  ir)J
vTG5*

-  £  M (v )  [a o (B )-150( B - 1) - 1d0(B ) t f M(v -  j™ +  ir)] 
vTe«s*

+  £  Jtf(v) [aofB J-^oC B ) B ^ ( v  -  j m +  ir)]
vTe5*

+  ^  M (v )  [ o o t B J - ^ t B )  J f g V  -  j m -  ir)]
vTG5*

+  Y  y l ( v  +  ir) [o0( B - 1) - 1d0(B ) H m ( v  +  j m)] 
vTe«s*

+  X )  y *(v  -  ^  l“o ( B - 1) - 1d0(B ) JfM (v  +  j m)l

-  ] T  M (v )  [o o (B -1) - 16 o (B ) -1d0(B ) % ( v  +  j m -  ir)]
vT€«S*

-  £  M (v )  [o0( B - 1) - 1!)o(B -1) - 1<io(B) f f M(v  +  j ro +  ir)]. 
vr e«s*

+  ^  M (v )  [a0(B _1) _1(io(B) i / ^ ( v  +  j ro +  ir)]
vTG5*

+  ^  M ( v ) |a o( B - 1) - 1d0( B ) f f | )(v  +  j m - i , ) ]
vT€<S*

+  O p ( iV ||0 - 0 o||), (3-5.74)

for r = 1, • • • ,p, and

Jp + m A d ) =  Jp+m,p+l{6) =  2 ^  M (v ) [a0(B )_2d0(B )i7 M (v  -  j m -  j;)]
vTeS*

+  Y  ^ ( v )lao (B )-1“0(B -1 ) - 1<io(B) /?m (v  — j m +  ji)l
vr e5*

+  ^ 2  M (v )[a 0(B _1)_1a0( B ) _1do(B ) i f M ( v + j m -  j/)]
, vT€«S*

+  2 Y  [ao(B _ 1 r 2do(B) H m ( v +  j m + j i ) l
v T£S*

+  OP( N \ \ 0 - e 0\\), (3.5.75)
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for I = r — p = 1, • • • , q.

Finally, for any 6 £ 0 , we define the matrix

J  (9) =

and

We also define the random vector

j i (0)

L -W ® )  J

j (S )  =  j .

(3.5.76)

D  =  [D i (0 o) , - " , - E W 0 o)]t .

From (3.5.68) and (3.5.72), we can conclude that

J[0  — So) =  D

and

(3.5.77)

(3.5.78)

(3.5.79)

(3.5.80)

Before we move to the next proposition and theorem, for a process (W (v)} 

W N ( 0,1), we define the auto-regression {£(v), v T £ Zd} by the equation

&o(B)«v) = W(v)

and the auto-regression { t/ ( v ) ,  v t  £ Zd} b y  the equation

a0(B)?7(v) =  W (v).

We let the random vector

£ = K ( - i i ) .  • • • ,  £Hp)> v ( -h ) , ■ * • . 7l(-3q)V

and the variance matrix

W p+g =  Var{£}.

(3.5.81)

(3.5.82)

(3.5.83)

(3.5.84)

P ro p o s it io n  3.4. If (£*(v)} ~  I ID(0, (t2), then under conditions (C l)(i) and (C4), it 

holds that

(3.5.85)3 / N  2 • ct2W p+,

as N  —► oo.
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P ro o f. Since

K ( v ) }  ~ /L D (0 , a 2)

and (C l)(i) holds, we may use the same arguments as in Proposition 3.3. In (3.5.70), we 

can find 14 zero terms, i.e.

Y  y i(V +  i r O M B r 'd o tB ^ M f v  -  U-)]/N
v r e5*

£{[6o(B-1 )_1Af(v +  i ^ M B ) " 1̂  -  ir )]} =  0

Y  Kitv +  in J ld o C B JH ^ tv - i^ l/iV  
vres*
E U b o i B - ' r ' M i v  + i„)][6o(B)-1̂ ( v  -  ir )]} =  0

Y  y2<v  -  U J M B - ' r 'd o W H u tv  + i,)]/JV
v TG<S*

E l M B r ' M i v  -  in)][60( B - l ) -M ( v  +  ir )]} =  0

Y  ^ ( v -W ld o tB ^ 'tv  + i^l/iV
v r €«S*

£{[6o(B )-"M (v -  ^lUdoCB-1) - 1^ ^  +  i„)]} =  0

Y  Y1(v + ir ) [bo(Br1do(B)HM ( v - i n)] /N
vt€5*

£{[6o(B -1) - 1M (v  +  ir )][60( B ) - 1^ ( v - i n)]} =  0

Y  M(v){bo(B)-2d0( ' B W M ( v - i n - i r ) ] / N  
v r e5*

- A  £ { M (v )[60(B )-2>1(v -  i„ -  ir )]} =  0

Y  M W M B y ' d o W H g i v - i n - i r W N
v TG5*

- A  E { M (v)[60(B )-2/1(v -  i„ -  ir )]} =  0 (3.5.86)
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and

5 3  n ( v  -  ir)[60(B -1) - 1d0(B )ifM(v +  in)]/JV
v r G<S*

B{t6o(B)-!M (v -  ir)][60(B -1) - 1A(v +  i„)]} =  0 

5 3  +  i„ +  ir)] /N
v Te s *

£{A/(v)[60(B -1) - 2̂ (v  +  in + ir)]} =  0 

5 3  M W lfcotB-^-^otBJJJ^tv +  in +  ir)]/AT
VT€<S*

£{M (v)[50(B -1) - 2̂ (v  +  i„ + ir)]} =  0

53 Y2( v - i r)[io(B)H§>(Y + in)]/N
wres*

£ { [6 0( B ) - 2M (v  -  ir ) l[M B _1)- 1 j4(v  +  i„)]} =  0

5 3  A /W lto C B - 'j - 'd o tB J f f^ C v  +  i„  +  i,)]/JV  
vTes*

£{M (v)[60(B -1) - 2A(v +  in +  ir)]} =  0 

5 3  y1(v +  ir)[d0(B)H ^)(v-i„ )]/A r  
v r e 5 *

BdSoCB-1) - ^ ^  +  i,.)][6o(B)-l A(v -  i„)]} =  0

5 3  M W M B r'd o W H rt tv  -  in -  ir)]/N
VTG5*

E{M(v)[bo(B)~2A ( v  — in — ir)]} =  0. (3.5.87)
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In (3.5.70), there can be also obtained 10 positive and equal terms, i.e.

£  Z (v +  in - i r )[do(B)ffM(v)]/iV
v r €S*

B{[60( B ) -1i>o(B-1) - 1A/(v +  i„ -  ir)]A(v)} 

y 1(v +  in)[d0(B)ff<,’;) (v +  ir)]/Jv
v r G<S*

B d io tB - 'J - 'M f v  +  W I M B - 1) - 1^  +  xr )]}

J 2  Z ( v - i n + ir)[do(B)HM(V)}/N  
v Te5*

B{[60(B )-16o(B-1) - 1M (v -  i„ +  ir)]A(v)}

v r e5*

£{[60(B )_1M (v -  i„)][6o(B)-M (v -  ir)]}

M (v)[bo(B )-16o(B -1) - 1<io(B)BrM(v -  in +  ir )]/iV
v r G5*

BiM W ldofBJ-'ftoCB-1) - 1̂  -  i„ +  ir)]}

and

£  A f M lM B r V B - 'r 'd o W f f M C v  +  in -  ir)]/AT
VT€<S*

£{M(v)[&0(B )-1b0(B ~1)-1J4(v +  i„ -  ir)]} 

£  y1(v +  ir)[d0(B )ffW (v  +  i„)]/JV 
v TG<S*

E d io fB - 1) - ^ ^  +  i^ K d o C B -'j-U tv  +  in)]}

JW(v) ^  <ij,o-Z(v +  i„ -  ir -  j)/JV 
v T€S* j TG^V

^{A /tvJlftotBJ-^otB-1) - 1^ ^  +  i„ -  ir)]}

^  Af(v) ^  dji0Z ( v - i „  +  ir - j ) / iV  
v TG5* j TGJ7v

£;{M (v)[6o(B)_16o(B_1)_1yl(v -  in +  ir)]} 

5 3  y2( v - i r)[do(B)frg)( v - i n)]/iV’
v Te5*

£{[60(B )_1M (v -  ir)][60(B )_1^ (v  -  in)]}.

(3.5.88)

(3.5.89)
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Finally, in (3.5.70) there are also 8 terms of opposite sign, i.e.

X  y i(v  +  inM M B -'r'doW ffw C v +  i r)]/N
v T6«S*

£ { [6 0(B - 1 )- 1 M {v  +  in )][6 o (B -1) - 1A (v  +  ir )]}

X  y2(v  -  ~  ir)] /N
v TG<S*

S d io C B J -'A flv  -  U JJP otB J-U C v -  ir)]} 

X )  y 2(v  -  ir H W B r 'd o tB J ffM fv  -  in)]/JV 
vTe5* 

X  A /(v )[6 o (B )-1<io(B)H<r)(v  -  in +  ir)]/7V 
v r e5*

- i  ^ { M W I f c o f B J - 'f t o l B - 'r '^ v - in  +  ir)]}

X  y i ( v  +  W M B - ' r ' d o W H u t v  +  i»)]/JV
vT€«S*

£ { [6 0( B - 1) - 1A /(v  +  i„)][60( B - 1) - 1A (v  +  in)]}

X  A / W l f c o t B - ^ - ' d o t B J ^ t v  +  i„  -  ir)]/JV 
v r G5*

B {A /(v )[6 0( B ) - 16 o (B -1) - 1^ ( v  +  i „ - i r ) ] }  

X  M W I io t B J - 'd o lB J i f ^ f v  +  i„ -  ir)]/AT 
vr e5*

- i .  E { M ( v ) [ b o ( B ) - 1b o ( B - 1) - 1A ( v  +  i r , - i r ) ] }

X  -  in +  ir)]/JV
v TeS*

- A  B f M f v J l i o t B J - ^ o t B - ^ - ' A t v - i n  +  ir)]}. (3.5.90)

Thus, from the sum of all 32 terms, we may come up with 2 terms, i.e.

B { [6 o (B )-160( B - 1) - 1M ( v + i n - i r ) ] A ( v ) } + £ { [ 6 o ( B ) - 150( B - 1) - 1M ( v - i „ + i r P ( v ) } ,

and use similar arguments like in Proposition 3.3, to explain why, for any n, r = 1, • • • ,p, 

the (n, r)-th  element of J / N  tends in probability to the (n, r)-th  element of 2 • a 2’W p+q. 

Similarly, we can obtain all the other elements of J / N .  ■

T h e o re m  3.6. If (£*(v)} ~  I I D ( 0, cr2) and ^ { ^ ( v ) 4} < oo, then under conditions 

(C l) and (C4), it holds that



as N  —> oo. Otherwise, if (e*(v)}, {u*(v)} ~  I ID(0,cr2) and |S{e*(v)3}| < oo, then 

under conditions (C l) and (C4), it holds that

N 1/ ^  -  6 0] N ( 0 , W ^ )  (3.5.92)

as N  —> oo.

P ro o f. The proof will come immediately from (3.5.80) and Proposition 3.4, after we 

prove tha t

A T1/2D  -2* N ( 0 , M ) (3.5.93)

or tha t for any A € 0lp+q, it holds that

AT1

For n = 1, • • • ,p, it holds that

N - ^ 2Dn(0o) =  AT1

+ AT1

-  AT1

-  AT1 

+  N _1 

+ AT1 

=  AT" 1 

+ AT1

-  N

-  N  

+ AT1 

+  N - 1

- l

- l

2ATD  N ( 0, ATMA).

53 n ( v  + i„) [do(B)HM(v)]

53 y2<v - Mo(B)ffM(v)]
vTe5*

5 3  M (v )  [5o(B)- 1 d o (B )ifM (v  — in )] 
vres*

5 3  M (v )  ( M B - ^ - 'd o C B J f f M tv  +  in)]
vTe«s*
53 M(v) +

(3.5.94)

v T€«S*

vT€S-

53 yi(v + in) [do(B )M (v)]
vres*
53 r2(v - i„) (do(B)M(v)]

vT6S*

53 M(v) [b0( B r 1d0(B)M(v -  in)]
v r e 5 *

53 M(v) [d0(B)y1(v + i„)]

53 M(v) [d0(B)y2(v - i„)] +  oP( 1), (3.5.95)
v T€«S*

where the equality holds thanks to (3.5.17) and (3.5.18). Also, the condition i?{£*(v)4} < 

oo has been used there. This is because, when

{ £ * (v )} ~ JJD (0 ,<t2),
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we may consider th a t (M (v), v r G Zd} and {Yi(v), v T G Zd} are i f i  and ^ -d e p e n d e n t 

processes for positive and finite integers K \ ,  K 2 . Thus for any j r ^  J7, we can claim 

the independence between pairs of random variables, such as Yi(v +  in) ,M (v  +  j)  or 

M (v), M (v  +  j)  or M (v), Yi(v +  in + j). Unfortunately, the same cannot be said for the 

process {Y2(v), v T G Zd}, as

F2(v) =  6(B " 1)6(B ) - 1a ( B - 1)£*(v)

and an infinite linear filter needs to be applied on the one and only sequence of indepen-. 

dent and identically distributed random variables {£*(v), v T G Zd}.

Unless it holds that

{ « * (v )} ~ m > (  o,<72), 
we may proceed as follows to show that

N - 1/2 V2(v -  i„) [do(B)/rM(v)l =  N-1'2 Y ,  y2( v - i „ )  [do(B)M(v)] +  op(l) 
vT6«S* vT€«S*

and tha t

A T 1/2 Y M(v) [ d o (B )F W (v - in)] =  JV-1/ 2 Y  M (v) [do(B)y2( v - i n)] +  op(l).
vre<s* vTe5*

We demonstrate the first case only. It holds tha t

N-m  y2(v -  i„) (do(B)Af(v)] -  N~1/2 Y  i 2 ( v - i „ )  [do(B)i?M(v)|
vTG«S* vr €«S*

=  A T 1/ 2 Y  ^ ( v - i n) Y  r f j ,o A f(v - j)  
vt g<s* r ^ v

with expected value

£ { A rV 2 £  r 2( v - i „ )  Y  d j ,o M ( v - j ) }  =  0
VT€<S*

and variance

iV- 1Var{ Y2( v - i n) J ]  djj0 M ( v - j ) } ,  
vT<E«S* j r ^ v

which involves the sum of variances

AT1 Var{Y2( v - i n) ^  dji0 M ( v - j ) } ,

as well as a sum of cross-terms. We can see immediately th a t the sum of variances will 

involve

Var{e*(v)2} =  £{e*(v)4} -  <r4 
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and it will also involve

Var{£*(v)e*(v — j)} =  £{e*(v)2} £ { e * ( v -  j ) 2} =  <r4,

for j  ^  0. Thus, a condition on the fourth moment is required to move on. 

We may re-write (3.5.95) as

N~l/2Dn{Oo) = AT1

+ AT1

-  AT1

-  AT1 

+ AT1 

+  N ~ l 

= AT"1 

+ AT1

5 3  [60(B J) 1M ( v  + in)] A{v)
v T€«S*

5 3  [60(B) JM (v  -  in)] A(v)
v TG«S*

5 3  M (v ) [&o(B) M (v  -  in)]
v T€ S *

5 3  M (v ) [M B *) ^ ( v  +  in)]

5 3  M (v) [60(B *) ^ ( v  +  in)]
v TG«S*

5 3  M (v )  [60(B) 1^4(v -  in)] -1- op(l)
v T€«S*

5 3  [&o(B J) xM (v  +  in)] A(v)
v TG«S*

£  [i’o (B )-1M (v  -  i„)] 4 (v )  +  op(  1). (3.5.96)

•ldo(B )ffM( v - j m)] 

^ d o W Z M v + j m ) ]  

■‘dotBJM Cv-j™ )] 

l)- 1do(B)Af(v +  j m)] +  oP( 1)

‘j - M t v + W l  +  op fl), (3.5.97)

vtG5*

m =  1,- • • , g, it holds that

= N - 1 £  M (v) [00(B ) - 1
v T€<S*

+ AT"1 £  M (v) [oo fB -1)
v Te«s*

= A T 1 £  A^(v) [oo(B) - 1
v TG«S*

+ AT-1 £  m (v ) [o0(B _1)
v Te«S*

= AT-1 £  M (v) [00(B ) - 1
v TG«S*

+ AT"1 £  m (v ) [a0(B _1)
v T€<S*

using the same arguments. Thus, if we define, for any v r  e  Zd, the random variables

C/n(v) =  [60(B )_ 1M (v -  in)] A(v) +  [60(B - 1)_ 1M (v +  in)] A(v), n =  1, • • • ,p,

(3.5.98)

^p+m(v) =  [a0(B )_1j4(v -  j m)] M (v) +  [a0(B - 1)_ 1yl(v +  j m)] Af(v), m = l , ••• ,$ ,

(3.5.99)
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and the random vectors

U (v) =  [£/!(v ), ■ ■ • , y p+,(v )]T, (3.5.100)

then it holds tha t

iV- 1/ 2ATD =  iV- 1/ 2AT ^ 2  U (v) +  oF (l). (3.5.101)
v Tes*

For convenience, we may re-write for any v r e  Zd

Un(v) ■= y 2( v - i n )  [do(B)M(v)] +  y i(v  +  in) [do(B)M(v)]

=  [&o(B)- 1M (v -  in)] [do(B)M(v)] +  Yi(v -(- in) [d0(B)M (v)], n  =  1, • • • ,p,

(3.5.102)

Up+m(v) = [ho(B)M(v  — j m)] M (v) +  [/io(B_ 1)M (v  +  j m)] M (v) ,  m =  1, • • • , <7,

(3.5.103)

where

h0 (z) =  a0(z)_ 1d0(z) =  ^ 2  hi,o z<i- (3.5.104)
jTGZd

For any positive integer K,  we define

a W ( y ) =  J 2  4 o W ( v - j ) ,  (3.5.105)

where the set T k  was defined in (2.5.4). We define the polynomial

boiz) - 1 =  J 2  $j,o zj , $ 0.0 =  1. (3.5.106)
j>o

Then we define for any v T € Zd

(K) ( Y2(v), if (w(v)} ~  I ID(0 ,  a 2)
Y2(i° ( v )  =  I W  1 V "  , (3.5.107)

[  $j,o M (v -  j) , if £{£*(v)4} < oo

where the set M.k  was defined in (2.3.6). Then, we define for any v r  e  Zd the random

variables

C lW (v) =  [y2W (v -  in) ^ W ( y )  +  y )(v  +  i„) ^ W (v ) ] ,  (3.5.108)

for n =  1, • • • ,p, and

Up+L(v) = [ ^ 2  hw  M (v - j m - j ) ]  M (v) +  [ J 2  hl 0 ^ ( v + jm + j ) ]  M (v), (3.5.109) 
jTe^K iT£FK
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for m  =  1, • • • , q. For any v T G Zd, we also define the random vector

U<*>(v) =  [y,m (v), • • ■ , C /^ (v ) ] T. (3.5.110)

We can see immediately tha t when

{e*(v)} ~  I I D ( 0 , a 2)

the process {Ar U ^ ( v ) ,  v T G £ d} is a /f*-dependent process for some positive integer 

K*.  Then since (C l) holds, we may write

A T 1/2 ^  ATU (/C>(v) N ( 0 , \ t M k \ ) ,  (3 .5 .111)
vTe5*

■ as N  —► oo. Next and similarly to Theorem 3.4, we may show that

ATM XA -> ATM  A, (3.5.112)

where

M  =  r (i) (3.5.113)
ire z d

and

r ( i )  =  £ { U (v )U T(v -  i)}. (3.5.114)

Of course, we will need again the assumption

-E{e*(v)4} < oo,

unless it holds tha t

{u*(v)} ~  I I D ( 0 , a 2).

In both cases, we may conclude that, for any A G Jlp+q, (3.5.94) holds and M  comes 

from (3.5.113).

The next step will be to show that if

{u * (v )} ~ //Z > (0 ,<72),

then

M  =  4 • cr4Wp+g. (3.5.115)

In Theorem 3.4, we have shown why (3.5.115) holds for the elements (n, r) ,n ,  r =

1, • • • , p, and for the elements (p-h m ,p  + l ) ,m , l  = 1, • • • , q, of the two matrices.
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We may proceed the same way for the elements (n ,p+m) ,  n  = 1, • • • ,p, m =  1, • • • , q, 

of the two matrices. First, let us write the (n ,p  +  m )-th element of T(i) to be equal to

£ { [ [ &o( B ) - 1 M ( v  -  in ) ] ;4 (v )  +  [60 ( B - 1 ) _ 1 M ( v  +  i n ) ] A (v ) ]

[[a0(B )- 1,4(v -  j m -  i)]M (v -  i) +  [a0(B _ 1)_ 1A(v +  j m -  i)]M (v -  i)]}

=  £^{[&o(B)_ 1M (v — in)][a0(B )_ 1A(v — j m — i )]A(v)M (v  — i)} (3.5.116)

+  £'{[&o(B)_ 1M (v — in)][a0(B - 1)- 1.A(v +  j m — i)]A (v)M (v — i)} (3.5.117)

. +  JE{[6o(B_ 1)_1M (v +  in)][a0(B )_ 1> l ( v - j m - i ) ] A ( v ) M ( v - i ) }  (3.5.118)

+  £ { [6o(B_ 1)_1M (v +  in)][a0(B _ 1)_1,4(v +  j m -  i ) ]A(v)M (v  -  i)}. (3.5.119)

We define the polynomial

ao(z)-1 =  6j,o 0o,o =  1. (3,5.120)
j>0

From the first term  (3.5.116) and in the (n ,p  +  m )-th element of M , we will come up 

with

£  £  $ j>° ’ 0 j*-° E i M ('v  -  in -  j )4 (v  -  jm -  i -  ¥ ) A ( v ) M ( v  -  i)} 
iT£Zd jj*>0

=  £  £  *J ,0 • Bj‘,o E { M ( v  -  in -  j)M (v  -  i)} E { A ( v  -  j m -  i -  j*)A(v)}
iT€2.dj j *>0

+  $ j.o • 0J-.O. (3.5.121)

j + i n = J *  + J m

where the equality holds, according to Proposition 2.6, since for any j  > 0 and any

to =  1, • • • ,p, it cannot be that v  — in — j  =  v, but it can be tha t

v  — i =  v

when i =  0 and tha t

v  -  i„ -  j  =  v  -  j m -  i -  j* =  v  -  j m -  j*,

when in +  j  =  j m +  j*. Of course, it is then that it cannot be v  =  v  — in — j  to risk tha t

all four locations are the same. Thus, we may write

)  v fcj.0 ' ®j*,0 =  in)^(— jm)}* (3.5.122)

j + ^ n —j * + j m
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For the rest of (3.5.121), i.e. the sum 

E  E  4 w 8 H £ { M ( v - i „ - p ( v - i ) } £ { A ( y - j m - i - j * M W } ,  (3.5.123)
iTGZd jj* > 0

we write

£ { M (v )M (v  -  i)} =  a 2 • 7M(i) (3.5.124)

and

E { A ( v ) A ( v  — i)} =  a 2 • c ^ i ) .  (3.5.125)

Then we may re-write (3.5.123) as

0-4 53 53 7 M ( i - i n - j )  -t-i). (3.5.126)
jj*>o

From the general Yule-Walker equations, it holds that

53 7 m ( i - i n - j )  C A (jm +j*+  i) =  0. (3.5.127)
ir e z d

As a result, from the first term  (3.5.116) and in the (n ,p  +  m )-th  element of M , we will 

come up with

<r4 B { C (- i„ ) ij( - jra)}. (3.5.128)

Following the same way for the three terms (3.5.117), (3.5.118) and (3.5.119), we may

show that, for any n  =  1, • • • ,p, m  = 1, • • • , q, the (n ,p  +  m )-th  element of M  is equal

to

4 • a 4 E{€(-in)ri (-3m)}-

Similarly for the (p +  m ,n )-th  element of M . Thus, (3.5.115) holds and the proof of the 

theorem has been completed. ■

R e m a rk  3.4. (i) In Theorem 3.5, Proposition 3.4 and Theorem 3.6, we have used the 

condition

{s*(v)} ~ 0, a2). (3-5.129)

This is because both the moving-average {M (v), v r G Zd] and the auto-regression 

{A(v), v T G Zd} can be expressed as unilateral functions of this error sequence. Never­

theless, the condition

{e(v)} ~  I ID (0 ,  a2) (3.5.130)

would still imply th a t all the processes of interest are linear functions of independent 

and identically distributed random variables and, thus, it could replace (3.5.129) in
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Theorem 3.5 and Proposition 3.4. As for the first part of Theorem 3.6, which claims the 

asymptotic normality of the estimators, since we can write

AT(v) =  6(B “ 1)a(B )e(v) (3.5.131)

and

Yi(v) =  a(B )e(v), (3.5.132)

then two finite linear filters, though one is bilateral, can be applied on (e(v), v T G Zd} 

to derive {M (v), v T G Zd} and {Yi(v), v T G Zd}, and condition (3.5.130) can be used 

to consider those two as K \  and ^ -d e p e n d e n t processes, for some finite positive integers 

K \ , K 2 . Condition

£ {e(v )4} < oo

would then be used to fix the fact that {Y2(v), v T G Zd} is not a AT-dependent process.

(ii) For the second part of Theorem 3.6 that proves the form of the variance matrix 

A , we have used the extra assumption that

K ( v ) }  ~  I I D { 0, a 2), (3.5.133)

which together with (3.5.129) implies that for any v T G Zd, it holds th a t M (v) and 

A(v — j)  are two independent random variables for any j  ^  0. Then, Proposition 2.6 

might be used.

(iii) According to (ii), conditions (3.5.129) and (3.5.133) have been used for the proof 

of the second part of Theorem 3.6, while it is only the process

{ £ (v )}  ~  W iV(0, cr2),

which is such th a t the ARM A process {Z(v) ,  v T G Zd}, from which we have obtained 

the observations, might be written as a causal function of this process. Thus, it would 

be a question of interest if (3.5.130) could hold, in addition to (3.5.129) and (3.5.133) 

for non-Gaussian processes. Even if we only require (3.5.129) and (3.5.133) to hold, 

it is interesting to see if those conditions could be obtained for non-Gaussian random 

variables. This is also the special case of Theorem 3.4. For Gaussian processes though, 

the estimators 0  of either Theorem 3.4 or 3.6 are efficient anyway.
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3.6 B ilateral A R M  A m odels

For 0 <  ii <  • • • < ip and 0 < j i  < • • • < j q, we define the (weakly) stationary ARMA 

process (-Z'(v), v T G Zd} by the equation

6(B )Z(v) =  a(B) W (v), {W (v)} ~  W N{0 ,  a ^ ) .  (3.6.1)

We consider tha t

b( z) =  (3.6.2)
n=l

9
a(z) = ' l + ^ a jm, (3.6.3)

m =1

and (Z (v ), v T G Zd} has not necessarily been expressed as a causal and invertible 

ARMA process in (3.6.1). We then write

b(z) b(z-1 ) =  Cb <f>(z) 0(z_1), (3.6.4)

where

^ (z) =  i -  5 3  ^  z j’ 2  N  < °°> (3-6-5)
jG lp  j€Zp

with the set Xp C {j > 0} and with

$(z) =  </>(z)_1 =  1 +  ^ 2  zJ, 5 ^  l$ jl <  °°- (3.6.6)
j > 0  j> 0

Similarly, we write

a(z) a(z_1) =  ca 9(z) 6 (z_1), (3.6.7)

where

0 (z ) =  1 +  z?i’ 2  l^jl <  °°> (3-6-8)
j  £Jq j£jq

with the set J q C {j > 0} and with

0 ( z) =  Biz) ' 1 = 1 +  ^  0 j zj , |0 j | <  oo. (3.6.9)
j> 0  j> 0

We can write the spectral density of {Z (v ), v T G £ d} as

n =  n-2 ° ( e<W) Q(e" iu;) 0 ( 0  __2 *(e™) g ( e - to ) r  r_ ,d9z{ )- iv b(e-iu>) ~a 0 (ci«) 0(c-<«) 0 (e ^ ) 0 (e - iw) ’ ^
(3.6.10)
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where

Thus, there exist processes

such th a t we can write

and

a 2 =  Oyy —. (3.6.11)
Cb

{e(v)} -  W N {  0,<r2)

('u(v)} ~  W N (  0,<r2),

4>{B)Z{y) = 0(B)e(v) (3.6.12)

</>(B_ 1)Z (v) =  0(B_ 1)u(v), (3.6.13)

but and J q are not necessarily sets of finite cardinality when d > 2 and the process 

cannot necessarily be expressed as a causal and invertible ARMA process of finite order. 

A description of this problem has been attempted before by W hittle (1954, p.439) for 

the case of two-dimensional auto-regressions. We will also refer to it again in Section 4.4. 

We may now define for any v T G Zd the random variables

M (v) =  </>(B)0(B- 1)Z (v) (3.6.14)

and

M *(v) =  6(B )6(B - 1)Z(v) =  cb M (v). (3.6.15)

We also define for any v T G Zd

A(v) =  ^(B )- 10(B- 1) - 1Z(v) =  0 (B )© (B - 1)Z (v) (3.6.16)

and

A*(v) =  a (B )- 1a (B - 1)_1Z(v) =  — A(v). (3.6.17)
ca

We established in Section 3.5.2 why the two random variables M (v )  and A (v  — j) are 

uncorrelated for any v T G Zd and any j  ±  0. This is because, for the two sequences of 

uncorrelated random variables {e*(v), v T G 2,d} and {u *(v), v T G Zd} we could write

M (v ) =  0 ( B - 1 )0 (B _1)£:*(v )

=  0(B)0(B)u*(v)
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and

A(v) =  ^ ( B ) ^ ( B ) - 1e*(v) =  $ (B )0 (B )£ ’ (v)

=  </>(B- 1)- 10(B - 1)“ 1'u*(v) =  ^ ( B - ^ e C B - ^ u ^ v ) .

Consequently, the two random variables M*(v) and A*(v  — j) are uncorrelated for any 

v T G Zd and any j  ^  0.

Moreover, the original process {Z(v) ,  v r G Zd} and the two new processes of interest

(M *(v), v T G Z d} and {A*(v), v T G Zd} are all linear functions of (W (v), v T G Zd}.

Especially, for (M *(v), v T G Zd} it holds that

M *(v) =  ^ “ ^ ( B ^ v ) ,  (3.6.18)

and 6(z_ 1)a(z) is a finite filter. Thus, if

{W(v)}~JJ£>(0,<7^) (3.6.19)

then it holds th a t (M *(v), v T G Zd} is AT-dependent process for some positive and finite 

integer number K .

All these arguments axe mentioned here to convince for the equivalence of the two 

random quantities

Y  M(v,*>) J 2  d} M(y- i ,<p)  (3.6.20)
vT€«s* jTe^v

and

Y M*(v,b) <*j W ( v - j , b ) ,  (3.6.21)
vt€5* jTe^v

where </?, b  are the auto-regressive parameters of the two representations and we define 

the polynomials

d{z) =  {</?(z)v?(z_1) 0(z)0(z-1 )} -1  (3.6.22)

and

d* (z) =  {6(z)6(z_1) a(z)a(z - 1 )}-1  =  . (3.6.23)
Cb ca

The set <S* C  has been created exactly like before from an original set Z; it depends 

on the set T ,  which is related to the auto-covariance function of any of the two processes 

(Af(v), v T G Zd} or {Af*(v), v T G 2 d}, since both functions are equal to zero at exactly 

the same vector lags. Similarly for the sets J-w and any v T G Zd.

Equivalence of the two random quantities implies tha t the asymptotic normality of

the estimators can be achieved for bilateral ARMA processes. The variances of the
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Gaussian likelihood estimators are expected to be proportional to the variances achieved 

by efficient estimators. W hittle (1954) performed a similar transition from a sum of 

squares of errors of a bilateral and two-dimensional auto-regression to the sum of squares 

of errors of its unique causal second-order equivalent. This quantity closely resembled 

our conditional likelihood maximized in Section 3.3, for the case of an auto-regression. 

Thus, if one wishes to apply the results of Section 3.3 to bilateral auto-regressions, they 

will have to  follow W hittle (1954).

The equivalence of (3.6.21) and (3.6.20) follows immediately, since we have defined 

our quantities in a way th a t treats the two sides of the polynomials equally. In other 

words, we come up with processes, such as the moving-averages M  or M* or the auto­

regressions A  or A *, and we do not depend on causal formulations. In the contrary, it was 

not tha t obvious when W hittle (1954) transformed a function of the errors of a bilateral 

auto-regression to the same function of the errors of its unique causal representation. 

Let us also not forget tha t W hittle (1954, p .441), after ignoring the edge-effect and any 

candidate corrections required to proceed without it, he provided the Gaussian likelihood 

in four different forms, two of which only are those already mentioned to compute sum 

of squares of uncorrelated variables. The fourth form is not other than the spectral 

domain quantity, which Guyon (1982) used next to correct the edge-effect. The third 

quantity closely resembled our suggestion, as it involved the auto-covariance function of 

an auto-regression and a moving-average; one in terms of da ta  and the other in terms of 

parameters.

The deterministic part can have an effect on the bias of the estimators. Indeed, we 

demonstrate this next. If we consider again

then (17  (v), v T G Zd} and {Y2*(v), v T G Zd} have been expressed as finite moving- 

averages, though not necessarily invertible. Those two processes share non-zero auto­

covariances with the process {M*(v), v T G Zd}, for finite sets of vector lags. Thus, we

Y ^v) =  ^ (B )Z (v ) =  0(B)e(v), 

F2(v) =  ip(B~1)Z (v )  =  9(B _ 1)tx(v),

(3.6.24)

(3.6.25)

and if we define

Y{  (v) =  b(B)Z(v )  =  a(B )W (v) 

V2*(v) =

(3.6.26)

(3.6.27)
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m ay deal w ith the edge-effect and, after we take the derivatives of (3.6.21) w ith respect 

to  the param eters and set the true parameter vector, we m ay com e up (with opposite 

signs)

D'n = J 2  I ' i V  +  in) K(B)M *(v)] 
vT€«S*

+  E  i? ( v - i „ ) K ( B ) j r ( v ) ]
v r e s *

-  5 3  M*(v)
vT€«S*

-  53 M*(v) [M B -^ -'dJfB JjrC v + in)]
v T e 5 *

+  5 3  AT(v) [d5(B)>7(v +  in)]
vTG5*

+  5 3  AT(v) [d$(B)y2* ( v - i n)l, (3.6.28)
v r e 5 *

for n =  1, • • • , p, or

di = 53 [M B -'r ^ v + i.o M 'V )
vTe5*

+  53 M B J ^ M V - i , , ) ]  A*(v)
vT€«S*

5 3  M *(v ) [ M n r ^ v - i n ) ]
vT€«S*

-  53 m*(v) M B - y ^ v + u
vr€«S*

+ 53 M*(v) M B - ^ A V  +  U
vT€«S*

+ 5 3  M »  [i)o(B)-‘A * (v -i„ )]  (3.6.29)
vT€«S*

=  5 3  (60(B -1) - 1M*(v +  in)] A*(v)
vTes*

+  5 3  (60(B)-1 A f*(v-i„ )j A*(v). (3.6.30)
vTG5*

Similarly, for m  =  1, • • • , g, we will com e up (with opposite signs)

D'p+m = 5 3  AT(v) [ao(B)-l< i5(B)M *(v-jm)]

+ 5 3  JiT(v) [ooC B -^^dotB JM ^v+W ] (3.6.31)
vTG«S*

= ^  Af*(v) [a0(B)_1A * ( v - j m)]
vT€<S*

+ 5 3  M*(v) (aofB -^-M ^v+j™ )]. (3.6.32)
vTG«S*
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Now, both  filters &o(z) and ao(z) in (3.6.30) and (3.6.32) might not be used to define

Since M *(v) and A*(v +  j)  are two uncorrelated random variables for any j  7̂  0 , in 

(3.6.30), we will come up with the expectations

£ '{ |M B -1) - 1.M*(v +  in)] A*(v)} =  £{[&o(B)_1A/*(v -  i„)] A*(v)} =  a2w •

for m =  1, • • • , q. According (3.6.35) and (3.6.36), unless the ARMA defined by (3.6.1) 

is causal and invertible, our estimators will be biased. In the end of the proof of Theo­

rem 3.5, we have seen why the estimators we have defined, also risk not to be consistent 

when the ARMA is not causal or invertible.

Following the same sequel as W hittle (1954), the next step is to find the modified 

Gaussian likelihood which, if maximized, produces asymptotically unbiased and normal 

estimators for the parameters of a bilateral ARMA process. For this, we will have to 

compute the constants Cb and ca. From (3.6.4), we may write for any ljt G [—7r ,7r]d

Then, according to W hittle (1954), for a causal polynomial like </?(z), it holds that

a causal and invertible process. Similarly, the filters &o(z ) 1 and ao(z ) 1 might extend 

over both sides, and we may define

(3.6.33)
jT€Zd jT€Zd

(3.6.34)
jT£Zd jT£Zd

(3.6.35)

for n  =  1, • • • ,p  and, in (3.6.32), we will come up with

£{A T (v ) [a0(B )- 'A * (v  -  j m)]} =  E { M ' ( v )  [ao tB -1) - 1^ * ^  + j m)]} =  • r ^ i0,

(3.6.36)

b(ew ) b(e~lu}) = cb <p{et0J) (3.6.37)

or

log{&(e*“ ) b(e-'“ )} =  logc6 +  l o g M O  ip(e~lu})} (3.6.38)

and, consequently,

(3.6.40)
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and, so,

loS c*>= ^ T w  /  ^  {b{e%U3)b{e~tu,)}du}. (3.6.41)(2 7T)a

In exactly the same way, we may derive that

loS Ca =  7T^d /  log{a(el<A}) a(e~tu,)}du). (3.6.42)
(2 7r) J[—Tr,Tr]d

Using (3.6.11), (3.6.15) and (3.6.23), we find our estimators by maximizing the mod­

ified Gaussian likelihood

N * / 2  ,

e x p { -— 3-  Y .  M *(v,b) Y  d j* M * (v - j ,b )}  (3.6.43)
v-6S- j-ejFv

or minimizing the natural logarithm

r  =  log a w  +  log{ca/c 6} +  2 , (3.6.44)
iV a w

for all the values [bT, a r ]T € 0  and crjy >  0, where © C 0lp+q is the param eter space and 

Q ' s  Y  W*(v,b) £  <5 A f ( v - j . b ) .  (3.6.45)
vt€5* j r€^v

Regarding the param eter space 0 , the assumption th a t the ARMA process of interest 

is causal and invertible is not only necessary for the derivation of results in Sections 3.4 

and 3.5, as well as in Section 3.3, but also it guarantees the uniqueness of the coeffi­

cients th a t correspond to the second-order properties of the process of interest. In other 

words, while every ARMA process has a unique auto-covariance function, the same 

auto-covariance function might be computed from more than  one processes. Only for 

the simplest case of an one-dimensional ARMA(p,q), there are 2p+q ARMA processes 

th a t might share exactly the same second-order properties. One of them only is causal 

and invertible. W hen d > 2, the equivalence of different ARMA processes, in terms of 

their second-order properties, becomes much more complicated as, not only the variety 

of bilateral representations is huge, but also it is doubtful whether there can be found a 

finite number of coefficients to express each representation. Thus, our param eter space 

must make sure th a t there cannot be two different elements [ b i , a i r ,  m . a s r e  e - 

which generate exactly the same auto-covariance function.

The log-likelihood (3.6.44) closely resembles the quantity suggested by W hittle (1954, 

p .441) for the case of two-dimensional auto-regressions. We generalize this result for 

the case of any ARMA(p,q) process on Zd. Of course, as we have explained before,
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the random part Q* of the likelihood has not been computed via a sum of squares 

of uncorrelated random variables. This is because, unless the process of interest is a 

unilateral or bilateral auto-regression of finite order, one has to prewhiten the data in 

terms of the innovations algorithm, like Yao and Brockwell (2006).

The changes in the proposed Gaussian likelihood, because of the lack of causality 

or invertibility, might be attributed to the following two reasons. On the one hand, 

for the moving-average polynomial a(z), we noted in the end of Section 2.4.1 that, 

although conditional variance matrices of zero-mean Gaussian random variables involve 

their second-order properties only, still we could only derive the conditional variance 

m atrix like this, if the polynomial a(z) was expressing the process as an invertible moving- 

average process. For example, for the bilateral moving-average (Yw(v), v T G Z } ,  defined 

by

Y w rM s a fB J W iM , { W i(v )} ~ W W (0, l ) ,

the error sequence {VFi(v), v T G Zd} would not express the process as a unilateral MA, 

but we would have to find another MA representation of the process, possibly of infinite 

order. In Section 3.4.3, instead of factorizing the determinant of this conditional variance 

matrix, we factorized the determinant of its inverse, i.e. a quantity proportional to the 

determinant of the variance m atrix of random variables from the bilateral auto-regression

9
a ( B ) X w (-v) = X W {V) -  £  ajm X w (v  -  j m) =  W2(v), {W2(v)} ~  W N ( 0,1).

m =  1

Since the auto-regression {AV (v), v T G Zd} is bilateral, under no means, would the 

random variable 9

771=1

be the best linear predictor of A V (v) based on A V (v  — j), j  >  0 , and would

9
1 =  E { X w {v) -  ^ 2  aimX w { v  -  jm )}2

771=1

be the prediction variance. In the contrary, the prediction variance would be equal to the 

variance of the error sequence of the unilateral representations. Moreover, since the bilat­

eral auto-regression cannot necessarily be expressed as a finite unilateral auto-regression, 

the selection of prediction variances on locations v r G <S*, would not necessarily be com­

puted as a product of the same N'* prediction variances, but we could rest tha t the limit 

of this product would be equal to this number under (C l)(i).

134



On the other hand, this last argument is the same as the one used in Section 3.5.3 for 

the auto-regressive polynomial b(z) and the causality of the ARMA. Indeed, we referred 

there to a moving-average process {Y#(v), v r e  Zd}, which, if bilateral, is defined now 

by the equation

Yh {v ) = 6(B)W3(v), (W 3(v)} ~  W N ( 0,1).

We wrote |B | to be the Jacobian of transformation between two conditional Gaussian 

densities, where B is a variance matrix of random variables from the bilateral moving- 

average. Since a moving-average always has an AR(oo) representation, using the same 

arguments as for the polynomial a(z) and the invertibility of the ARMA process, we 

may claim th a t writing |B | as a product of N  or N* prediction variances, on the original 

or selected locations, respectively, does not guarantee th a t the determinant will tend to 

unity, but the limit will be a different number then.

Regarding the bias of the estimators, we may see, for example, from the moving- 

average equations m  = 1, • • • , q, that

E { D ; +m} = 2 N * c 2w -r^]mfi, (3.6.46)

thanks to  (3.6.32) and (3.6.36). This implies that

E {  } =  2 r!$> o, m  =  1, • • • , q. (3.6.47)
°«Jm b= bo,a=ao

Equation (3.6.47) would reveal the bias of the moving-average estimators, unless the 

quantity (logca) had been included in the log-likelihood I*. Indeed, it holds for m  =  

1, • • • , q, th a t

d lo g ca/daSm =  — ^  f  <91og{a(ew ) a(e~tuJ)} / daimdiv
(271-)“ J [ - n}7r]d

= [  d\og{a{eiu})} /daimd u
(27r)

+  j  d \og{a{e- lu3)} /da]mdw
(27r)“ J[-V^]d

1 - r i  r
{2n)d J i - n r f d  a{eiu>) ^  +  (27r)d J ^ ^ d  a(e- iu>) ^

135



and

d
log ca

a=ao

1 f  eiuJiT™ 1 f  e~iu,i™
(27r)d aoie™) W +  (27r)d J ^ ^ d  a0(e - iw) W

=   I  V " r (a) f  eiu,(jm+jT) du)
(2-)dr^  J’°

_|_ _  1 _  r (°) f  e-^(jm + jT) du>
( ^ 4 j' w

=  2 r ! t , 0. (3-6.48)

where the last equality follows from the same argument as in Remark 2.3 and proves the 

asymptotic unbiasedness of the estimators. We trust tha t we may use similar arguments 

to Theorem 3.6 to find the asymptotic covariance matrix of the estimators, which is 

expected to generalize formula (42) of W hittle (1954, p.441).

3.7 Spatio-tem poral auto-regressions

Including time as one of the d dimensions in the analysis is a privilege that usually 

gives meaningful interpretations to causal formulations, as we are going to explain next. 

Either we choose a parametrization in terms of the second-order properties of the pro­

cess of interest or we assume that a causal relationship is taking place there, we can 

always find ways to come up with estimators of the parameters, which have the desired 

properties. We have tried to establish this so far in Chapter 3, and we will also do 

it in Chapter 4. When we have observations available from a stationary process with 

a d-dimensional index, but we do not know what these dimensions represent, the first 

thing we do is to compute the sample auto-covariances, in order to have some knowl­

edge on the second-order properties of the process. Moreover, if we know that these are 

spatial dimensions, we still like to proceed the same way, so th a t we can avoid ordering 

the dimensions and the locations of each dimension in a nonsensical way. On the other 

hand, if we do have the time axis in our analysis, we prefer to think th a t there is a causal 

formulation, one th a t is taking place over time. This is a generalization of causality from 

the one-dimensional time series to the spatio-temporal processes, which use at least two 

dimensions. Previously, in Sections 3.3-3.5, we discussed different ways of estimating the 

param eters of auto-regressions, moving-averages and ARMA processes. All the results 

there referred to causal and invertible ARMA processes. In this section we will use the 

results of Section 3.3 further for two reasons; the first reason is tha t it is allowed or it is

136



even m andatory to resort to causal schemes when a spatio-temporal process is studied, 

and the second reason is tha t it is only for causal auto-regressions tha t Section 3.3 is 

accurate. Of course, we should not forget that there are also time series, for which con­

temporaneous associations are very important, such as some weather series; and there 

are spatial processes th a t require the assumption of a causal relationship, such as the 

example given by W hittle (1954, p.434).

We study the specific form of spatio-temporal auto-regression 

p
X t (u,v) = X t- i (u  + l , v )  +  (pi,2 X t- i{u ,v  + 1) +  ^ i)3 X t-i (u ,v)

i=l
+  (Pi,4 X t-i(u, V - l ) +  (pi)5 X t- i{u  -  1 , v)] +  £t (u, V),

{et {u,v)} ~  I I D ( 0 , a 2), (3.7.1)

where t E Z  is a time index and [u,v]T E Z2 are space indexes. In (3.7.1), we are writing 

X t ( u , v ) as a linear function of the values of the same process, which come from up to p 

lags from the past, i.e. t — 1, • • • , t  — p. From each one of this p points on the time axis, 

we are using the values of the process on five different locations. Thus, we may refer to 

models such as (3.7.1) as five-nearest neighbours models.

We let ip to be the vector of autoregressive parameters. We consider the parameter 

space © C 0l5p, such tha t for every (p E 0  a causal auto-regression is defined. Indeed, 

the concept of a causal formulation for (3.7.1) closely resembles now the notion of a 

causal time series. Looking at (3.7.1), one can see tha t its MA(oo) representation runs 

everywhere over the Z2 space and backwards in time only.

We collect N  observations {Xt{u,  u), t =  1 —p, • ■ • , T, u  =  1, • • • , Ni ,  v = 1, • • • , N 2}, 

based on which we wish to make inference on the true param eter vector cp0 € 0 . We 

select the N*  observations {X t (u , u), t  =  1, • • • , T, u = 2, • • • , N\  — 1, v =  2, • • • , N 3 — 1} 

and consider the vector Y* of the selected observations with locations in the ascending 

order and the vector, say, e* of the errors in the same order, as described in Section 3.3.2. 

We write the linear model

Y *  =  X V o  +  e * ,  (3 -7 .2 )

where X* is a N*  x 5p matrix of available observations from the sample as it has also 

been described in Section 3.3.2. For the least squares estimator

ip* =  (X*TX *)-1  (X*TY*)
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of the parameter vector <p0 and for the variance matrix

W (v 0) =  - jV a r f lX - ^ lj O ) ,  • ■ ■ ,X _ P(—1 , 0 )]T},
<7

it holds that

J T ' / V  -  Vo] AT(0, W C ^ o)-1) (3.7.3)

and

JV* [V* -  Vo]TW(Vo)[V* -  Vol *5p. (3.7.4)

as mm{T,  Ni ,  N 2 } —► 00 and (Cl) holds, according to Theorem 3.1.

3.7.1 Order selection

For pure autoregressive models of the form (3.7.1), we may use similar results to the ones 

for time series to select the unique number p , which specifies the order for our model. 

We select the model of the form (3.7.1) with this order p, such th a t the Final Prediction 

Error (FPE) is minimized.

First for fixed p, we record the realization 

{X t ( u , v ), t  = 1 — p, • • • , T, u  =  1, • • • , iVi, v =  1, • • • , N 2 } of the process (3.7.1), with 

T  > 0, Ni ,  N 2 > 2, from which we obtain our estimators <p*. For any [t,u,v]T E Z, we 

also record independently the realization {Yt-i(u — k , v  — I), i =  1, • • • ,p, k, l  = 0, ± 1} 

from the same process. We define the linear predictor of Yt(u,v)  based on the available 

observations as

~ p
Yt {u, v ) =  Y l & h  Yt- i (u +  v ) +  Pi,2  Y t-iiu , v +  1) +  <p-(3 Yt-i(u , v )

i= 1
+  Pi,4  Y t-iiu , v - l )  + <p-(5 Yt-i{u  -  1, v)].

The one step prediction mean squared error is

2

F P E  =  E{(Y t (u,v) -  Yt(u,v))2} = a 2 + ^  £{AT*[V* -  -  Vo]}

2 /1  , 5p
=  °  { 1 + w ) ’ (3-7'5>

since the two realizations used for prediction and for estimation are independent. Using 

standard results of the general linear model, we may also show th a t if model (3.7.1) is 

correct, then
( Y * - X V ) ' ( Y ' - X V )  D „ 2

~ 2  ^-N*-5p- {3.1.0)
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The random vector Y* still refers to the original observations used for estimation, but 

on the selected locations {t = 1, • • • , T, u =  2, • • • , iVi — 1, v = 2, • • • , N 2 — 1}, as this

was described in the end of Section 3.7. We may estimate the Final Prediction Error as

? ? g = ^ ( 1 +  ^ ) .  (3 .7 .7 )

by plugging-in the unbiased estimator of the error variance, a 2 = (Y* — X*v?*)T(Y* — 

— 5p). We often call a 2 the Mean Square Error (MSE) of the model of

interest.

3.7.2 Tests for linear m odels

Suppose th a t we have a set of competing spatio-temporal auto-regressions of the form 

(3.7.1) and we want to determine which one is more appropriate to fit our data, taking 

into account the two main statistical requirements, parsimony and goodness of fit. The 

goodness of fit of any linear model to the observed data is encapsulated by its deviance. 

We want to test

Ho : v? e  0 o

Hi : ip G 0 i ,

where ©0, ©1 C © and ©o fl ©1 =  0. The model under H q assumes tha t

Y* =  X*Q<p +  e*

with dfo unknown parameters and it is, of course, nested in the model for which <p €

©o U ©1, which can be written in the form

Y* =  XJ ip +  e*

and allows for dfi parameters. We define the deviances

Do =  (Y* -  XJ v>o)T(Y* -  XJ v 5)

D l =  (Y* -  x ;  V>;)T(Y* -  XJ v l) ,

where Y* is the maximal selection of random variables on N * locations both for Hq and



and, similarly,

V>; =  arg min [(Y* -  XJ V )T(Y* -  XJ *>)].
V5€0qU0i

Under H q, it holds for both deviances that

D o D V2
- y  > XN*-df0

° 1  D 2

and the random variables D q — D\, D\  are asymptotically independent. Thus,

F  =  —^75----- Fdfi-df0,N*-dfi- (3.7.8)

For the model (3.7.1) with fixed order p, some examples of null hypotheses of interest 

are now in order. In all these examples, we consider that 0 j  =  © — 0q.

T es ts  fo r w h ite  no ise

We test

H 0 : tp =  0,

with D q =  Y*t Y* and the statistic (3.7.8) is F  F5P)tv*_5P.

T ests  fo r eq u a l coeffic ien ts over t im e

We test

Ho : <p(ij) = <p(2j)  =  • • • =  (p(pj)  = <pj, j  =  1, • • • ,5, 

where the assumed model, under Hq, is

X t (u,v) = i p i ' ^ 2 X t - i { u + l , v )  + w2 ' ^ X t - i { u , v  + l) + (p3 ' ^ X t { u , v )
2=1 i=l 2=1
P P

+  tfi4 ^  X t - i (u i V ~  1) +  ¥>5 X t~i(U ~  V) +  £t(U> V)»
2 = 1  2 = 1

where {et{u, t>)} ~  7/D (0, cr2) and the statistic (3.7.8) is F  — > F ^ p_

T ests  fo r s y m m e try  in  space

We test

H q : v>(i,i) =  <̂ (2,5)> ¥>(i,2) =  ¥>(*,4). * =  1> • • • »P>
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where the assumed model under H q is

p

X t (u,v)  =  5^[y>(ttl) {Xt- i{u + l ,u )  +  X t_j(u -  l ,v ))
i=i

+ y>(ij2) (X t-i(u,  v + l) + X t- i(u,  v -  1))

+  y»(i>3) X t-i(u,  v)] +  £t(u, v), {et (u, u)} ~  I I D { 0, <r2)

and the statistic (3.7.8) is F  — > F2P,N*-5p-

3.7.3 A n application on data recorded regularly in tim e and space

The data we are using in this section, have been provided by the National Centers for 

Environmental Prediction- National Center for Atmospheric Research (NCEP - NCAR). 

A small area of sea level pressure, measured in units of Pascal, in the North Sea has been 

chosen. The longitudes are from 20 degrees West to 20 degrees East and the latitudes 

are from 50 to 60 degrees North. The grid points are of size 2.5 x 2.5 degrees2 with total 

number of 17 x 5 =  85 spatial locations. The time period is winter 2001-2002 with 100 

daily observations starting from December 1st 2001.

First, we write our observations {Xt(u,  v), t = l , - - -  ,100, u = 1, - • • ,5, v = 

1, • • • ,17}. The 5 labels refer to the dimension ‘South-North’, starting from 50 de­

grees North for the first label, 52.5 degrees for the second label, up to 60 degrees North 

for the last label. On the other hand, for the dimension ‘W est-East’, we start with the 

first label for 20 degrees West, the second label for 17.5 degrees West and we go on the 

line transect up to the last label, i.e. —20 degrees West. We are interested in fitting an 

auto-regression of the type (3.7.1) in the centralized series; the mean has been estimated 

from the data  as X  = 101,131.9. We try  the values p  =  1, • • • , 10. While we have started 

the analysis with N  =  100 x 5 x 17 =  8,500 observations available, we come up with 

N* =  90 x 3 x 15 =  4,050 observations, instead. The first 10 recordings in time as well 

as the extreme locations 50 and 60 degrees North and 20 and —20 degrees West have 

been omitted.

The fact th a t we have to reduce our sample size from N  = 8,500 to N* = 4,050, 

reveals a great weakness of all the methods proposed in this chapter. We have used 

the locations on a selected set S* of cardinality N *, rather than  the original set S  of 

cardinality N .  We know that as N  —> oo, it holds tha t N * / N  —► 1. Though our 

original sample size is very big, we can see that more than half of the locations have
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been rejected, which brings to mind the following question. How large does the sample 

size have to be in practise, in order to exclude a relatively small number of locations? 

The answer is closely related to the number of dimensions d. The more the dimensions 

we have available, the slower we obtain this small percentage of excluded locations. In 

our example, we have d = 3 dimensions, and this should be seen as a reason why the 

percentage is close to 50%.

W hat is it possible to do, in order to make the most of our observations? To answer 

this question, we need to make a choice. Either we prefer to  use estimators, for which 

there are not any theoretical results available and we use all the observations available, 

or we stick to our established results and we pay the price of excluding many locations. 

As an example, we may imagine the classical case of time series and a causal AR(10), 

which has produced 100 consecutive observations. If we find the least squares estimators 

or conditional Gaussian likelihood estimators of the parameters, we need to exclude 10 

timings and fully use 90 observations. Alternatively, we may find the exact Gaussian 

likelihood estimators using all the 100 observations. T hat would usually imply computing 

the best linear predictor coefficients of a random variable from the process, based on the 

random variables from its previous 1,2, ••• ,9 lags; the innovations algorithm or the 

Kalman filter could easily derive those coefficients. Nevertheless, for the simple case 

tha t d = 1, we know that both conditional and exact Gaussian likelihood estimators 

possess similar statistical properties, as the edge-effect is hidden then. When d > 2, 

the edge-effect causes a dilemma. We have chosen to follow the route of the estimators 

with the established statistical properties, which are going to be necessary, in order to 

perform statistical tests and make decisions.

Since we have tried to fit an auto-regression to the centralized process, it means that 

we expect our process {Xt{u, v), t , u , v  G £} to be stationary on Z3. For example, that 

would also imply th a t if we fix any £, u, v G Z , then the processes on [u , v]T, [£, u]r , [£, u]T G 

Z2, respectively, axe also stationary. Similarly, if we fix any [u, v]T, [£, u]T, [£,u]T G Z2, 

then the processes on t , u , v  G Z, respectively, must be stationary. In Figure 3.1, we can 

see a realization of 100 consecutive observations of the process, which takes place over 

f G Z, when we have fixed the location to be 60 degrees North and 0 degrees West. It 

does not look th a t there is a systematic trend there. Maybe if the observations covered 

the whole of the year, we would see clearly bigger values of sea pressure during the winter 

compared to these of the summer. The observations axe moving upside down, but.it does

142



3000 -

s  y
V  •

1000  -

• •
U -1000  -

-3000 -

-5000

01/12/2001 16/12/2001 31/12/2001 15/01/2002 30/01/2002 14/02/2002 29/02/2002

Day

Figure 3.1: The daily centralized series on the location 60 degrees North and 0 degrees 

West over the period 01/12/2001 - 08/03/2002.

not look that there are cycles, for which it takes a specific number of days to complete 

them. A more analytical study is required here, in order to make sure that the trend 

and periodical components, if any, have been extracted from the original series and the 

remaining series is stationary indeed. We have treated the series {Xt{u, v), t , u , v  e  Z} 

as a stationary series, as it has not been a purpose of this chapter to deal with non- 

stationary processes on Zd.

We have selected the order of the model according to the FPE and the BIC. As we
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Table 3.2: Estim ated Final Prediction Error for the five-nearest 

neighbours model of order p.________________________________

Order p Mean Square Error 

(MSE)

Estimated FPE =  

MSE ( l  +  j fr )

% change in the FPE

1 686,608.917 687,456.582

2 596,084.673 597,556.487 -13.077%

3 584,426.819 586,591.363 -1.835%

4 577,933.248 580,787.239 -0.989%

5 567,124.639 570,625.408 -1.750%

6 561,137.809 565,294.385 -0.934%

7 541,642.671 546,323.534 -3.356%

8 539,802.990 545,134.378 -0.218%

9 531.354.104 537,258.038 -1.445%

10 524,440.621 530,915.197 -1.181%

explained in Section 3.7.1, the FPE can be used for pure auto-regressive models like the 

ones of interest. We have also extended the definition of BIC for the case of our models. 

Nevertheless, we have not searched for the properties of the estimated FPE  or BIC, 

as the number of observations increases towards at least one of the three directions. 

We do trust, though, that since we deal with finite auto-regressions, even when the 

dimensionality reaches the number d =  3, there should not be many differences from the 

simple case when d = 1. W hat would be interesting to be investigated further, would be 

what happens to the FPE  or BIC as a function of p  and as one of the spatial dimensions 

only increases to infinity. We do not have such results available from time series.

In Table 3.2, we can see tha t as we increase the order p  of the model, the estimated 

Final Prediction Error keeps becoming smaller and smaller. This is because of the large 

sample size N* = 4,050, which makes the effect of adding 5 param eters in the model 

every time unim portant. Still, if we look at the relative decrease in the Final Prediction 

Error, it looks like this is not bigger than 2% for p > 8 . This means tha t all orders p > 7  

give estimated prediction errors that are really close.

For the selection of order p, we may also compute the BIC, as this is given by the 

formula (9.3.5) of Brockwell and Davis (1991, p .304) for the case of causal, invertible
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and one-dimensional ARMA(p, q) models. There, we replace (p  +  q) by the number of 

param eters of our model, i.e. 5p and write

B I C  = 5p ln[N*MSE/{N* -  5p)) + N*(  1 +  In y f a )

+  5p ln[( Y l  X t (u,v ) 2 -  N*MSE)/5p].
[ t ,u ,v ] T £ S *

(3.7.9)

We summarize the results in the next table. Similar conclusions might be made from

Table 3.3: BIC for t re five-nearest neighbours model of order p.

Order p BIC Order p BIC Order p BIC Order p BIC

1 6.22 • 104 2 6 .1 7 -104 3 6 .1 7 -104 4 6 .1 7 -104

5 6.16 • 104 6 6 .1 6 -104 7 6.15 • 104 8 6.15 • 104

9 6.15 • 104 10 6.15 • 104

Tables 3.2 and 3.3, as it seems that the BIC has been computed the same for all orders 

p > 7 .  Thus, we select the model of order p = 7 and we write

7

X t{u, v ) - X  = [Xt- i(u,  v) -  X]
i=l

+ <pits  [Xt~i(u — 1, v) — X]  +  tpifN [Xt- i ( u  +  1, v) — X]

+  (pi}W [Xt- i(u,  v -  1) -  X]  +  <pi,E [■X t- i ( u , V +  1) — X]

+  £t(u,v), {et (u,v)} ~  IID(0,(T2), (3.7.10)

where we use ‘S’,‘NVW ’,‘E ’ for the dependence from the north, south, west and east, 

respectively.

W hen p = 7, we estimate 35 parameters altogether and come up with a significant 

F-statistic, where F  ~  ^ 35^015 tests the goodness of fit of the model. We have estimated 

the parameters, according to Table 3.4. We can see immediately th a t for i = 2,5,6, 

there seems to be one estimate that is very small, and it would not be a surprise if this 

was insignificant. For i = 2 and i = 6 , this expresses the dependence from the north 

neighbour, while for i = 5 it expresses the dependence from the south neighbour. Both 

these neighbours refer to the same dimension of space. Indeed, it is not surprising that 

these estimates give insignificant results for the corresponding parameters, as shown in 

Table 3.5.

Table 3.5 reveals that a new model should be considered. The usual tactic is to 

exclude the independent variables th a t relate to the insignificant coefficients, but we
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Table 3.4: Estimates of the parameters ipi,  <Pi ,w> <Pi,E,

i =  1, • • • , 7, for the five-nearest neighbours model of order 7.

i <Pi v i s Vi,N Vi,W Vi,E

1 -5 .959 0.212 0.750 2.023 4.003

2 4.928 0.491 1.216 • 10~2 -2.176 -3.287

3 -1.321 -0.140 0.109 0.843 0.529

4 2.478 0.271 0.371 -1.265 -1.771

5 -0.692 - 1 . 5 - 10“ 2 -0352 0.700 0.340

6 0.895 0.118 3.061 • 10~2 -0.676 -0.456

7 -1.123 -0.734 -0.589 0.913 1.471

Table 3.5: Insignificant results for the five-nearest neighbours model of order 7.

Estim ated param eter Observed significance level (p-value)

=  1.216 • 10~2 86.6%

<pls = -0 .140 10.3%

Vz,N =  0-109 12.8%

<p$ = -0 .692 17.5%

V’S.s =  -1-50 • 10- 2 86.2%

V5 ,e =  0.340 19.3%

tpl = 0.895 7.5%

V&,s = 0-118 16.6%

<pZiN = 3.061 • 10-2 67.2%

prefer to take into account that we are analyzing a spatio-temporal dataset. Thus, we
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write the model
4

X t (u, v ) - X  =  ] T > i  I » ) - * ] }  +  9>7 [* t- 7(u, ») -  X]
1 =  1

+  E  W-<(“ “  M )  “  X] +  <Pi,N [Xt-i{u +  1, v) -  X]}
*=1,4,7

i=2,5
7

+  E ^ - ^  [X t_ i ( u ,  V -  1 ) -  X ]  +  </?i,£ [ X t _ i ( u ,  v  +  1 ) -  X ] }
1= 1 ,
*#5

+  ( [ X f _ 5 ( l t ,  V — 1) — X]  +  [X * _ 5 (u , U +  1) — X])

+  Et(u,v), {et (u,v)} ~  IID(0,cr2), (3.7.11)

which, for the insignificant results as indicated by Table 3.5 and for each i =  1, • • • ,7, 

either excludes both the parameters that refer to the two sides of the same spatial 

dimension or uses one param eter for both the sides together. This time, the results for 

only two param eters were insignificant, i.e. Vq w  = — 2.90 • 10 -2, <pi E =  1.849 • 10"2, 

with observed significance levels equal to 53.2% and 70.9%, respectively. Indeed, for the 

updated model

4

X t (ut v ) - X  =  E ^ *  [Xt- i{u,v)  -  X]} + <pj [Xt- 7 {u,v) -  X)
1 = 1

+  E  -  1, v) -  X] +  ipi)N [Xt- i{u  +  1, v) -  X]}
i = l , 4,7

+  E  ([Xt-i(ti -  1, v) -  X] +  lXt- i (u  +  1, v) -  X])}
i=2 ,5

7
+  E  f e w  tX t - i ( u , V -  1) -  X ]  +  tpi tE  [X t - i ( u , V +  1 ) -  X ] }

i=i,
i#5,6

+  ^ 5 ,W E  ( [ X t _ 5 ( l l ,  V -  1 ) -  X] +  [ X * _ s ( u ,  V +  1 ) -  X ] )

+  £t(u,v), (e t (u,u)} ~  //£>((), CT2), (3.7.12)

all the coefficients were estimated to be significant. The estimates of all the parameters 

tha t could be taken as different than 0 are given in Table 3.6. It is interesting to see 

there the coordination of the estimated coefficients for the two sides of the same spatial 

dimension, in term s of both the absolute values and the signs. For i = 1 and i = 4, 

it is true th a t tp*>s and <p* N are both positive and very close to each other, while ipj s  

and <£>7 jy are negative and close to each other. The same conclusion can be made for

the West and South neighbours. This might imply that the model distributes equally
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Table 3.6: Estimates of parameters for the model (3.7.12).

= - 5 .7 2 tpltS = 0.481, <p*hN  =  0.761 ip*ltW = 1.757, v l E = 3.695

tp$ = 5.441 ^2,s n  =  0-127 y>2,w =  —2-352, <P2,e  = —3.440

Wl = -1 .7 8 8 (pltW = 1.232, ip*̂ E = 0.682

<pl = 2.484 =  0.426, p̂X,n  =  0.340 =  —1-405, <pX,e  =  —1-832

^5 ,s n  = —0-243 ^5,w e  = 0-207

y?7 =  -1 .0 6 8 <PjfS = —0.636, <p̂ N =  —0.660 <p*7jW = 0.879, =  1.395

the dependence within each spatial dimension to its two sides and this makes sense. If 

a reduction of the number of parameters of the model should be achieved, we could put 

these coefficients together.

But before we consider to reduce the parameters of the model even more, we should

see whether it is really worth it to move from the original nearest five-neighbours model

of order 7 to (3.7.12). For the first model, we have computed the sum of squares of the 

error as

S S E 0 =  2.17 • 109 (3.7.13)

and the degrees of freedom of the error are

df0 = 4015. (3.7.14)

Similarly, for the model (3.7.12)

S S E f  =  2.26 • 109 (3.7.15)

and

dff = 4026. (3.7.16)

Then for the value

(2.26 ■ 109 -  2.17 • 109)/(4026 -  4015) , e , oooc
--------------- 2.17 ■ 109/4015 =  15 13825’

it holds tha t

P ( F  > 15.13825) < 0.05%,

where F  ~  Fii,40i5- This means that, although we proceeded by eliminating the vari­

ables with insignificant coefficients only, still those variables altogether were significantly
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contributing in interpreting the variability of the data. The original model is preferred 

than model (3.7.12), which has 11 parameters less.

The result is mainly because of the big dfo and the huge number of observations we 

are dealing with here. This should allow for a model with many parameters, otherwise 

most of the degrees freedom will be left to estimate the variance of the model. If more 

parameters are to be included in the model, more neighbouring values could be used to 

offer information on the value of interest. Thus, we may extend our results to spatio- 

temporal auto-regressions with more than five-neighbours.

Finally, the elimination of coefficients from the original model (3.7.10), mostly con­

cerned the param eters of the dimension ‘South-North’. This was very apparent in the 

first elimination, according to Table 3.5. Even though the original model was. tested 

to be overall more significant than the other model and the coefficients did not have 

to be excluded, we could see that the sea level pressure in the North Sea is probably 

moving in the ‘W est-East’ dimension, rather than in the ‘South-North’ dimension. Later 

in Section 4.7, we will have the opportunity to analyze a part of the same dataset and 

to  verify how the dimension ‘W est-East’ dominates over the dimension ‘South-North’, 

indeed, regarding the sea level pressure.
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Chapter 4

Statistical inference for spatial 

auto-linear schemes

4.1 Introduction

In Chapter 3, we were concerned with the simultaneous equation ARMA models defined 

on any positive integer d number of dimensions. The use of causal models was of primary 

importance and naturally justified when including the time axis as one of the dimen­

sions. Therefore, when applying these methods to spatial processes, one would have to 

artificially introduce a unilateral order which, typically, lacks of any practical meaning. 

To avoid this, an alternative broad strategy for the analysis of spatial models was intro­

duced by Besag (1974). The model is now defined in terms of a conditional distribution 

of the observation on one location given the values on all other locations. Thus, the 

way we approach the problem of estimation of the param eters of a (weakly) stationary 

process on Zd in this chapter, is based on a param etrization used, different than the 

one of Chapter 3; the motivation for tha t stems from the next step after estimation,

i.e. prediction. In problems of spatial prediction, we usually have available information 

about locations all around the location of interest. Similarly, in time series we often have 

to deal with the problem of missing a value in a set of data from a (weakly) stationary 

process, for which we have available values not only from its past, but also from its 

future. The suggestions of this chapter might also be seen as the basic ingredient that 

can be used for the remedy of this problem, which is known as smoothing.

We consider a (weakly) stationary process (A (s), sT E Zd} and without loss of
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generality, we denote by sr E Zd the spatial index vector of dimensions d. Below we 

consider some models, for which the conditional distribution on each site is a function of 

its finite number of neighbour sites and we call them spatial auto-schemes. We examine 

the cases where the dependence structure is reflected in the conditional expectation, 

which has a linear form. The conditional variance is assumed to be a constant. When 

the random variables are Gaussian, Besag (1974) referred to these as spatial auto-normal 

schemes. We will use the term auto-linear schemes, as we will not be dealing with 

Gaussian random variables only.

For observations from an auto-scheme, two methods of estimation have been proposed 

by Besag (1974); the coding and the pseudo-likelihood techniques. The coding technique 

produces estimators of reduced efficiency, as they do not make direct use of all the 

observations at the same time. As a result, there is an issue of finding an optimal.coding 

for the specific scheme of interest. Examples of this for auto-normal schemes can be found 

in Besag and Moran (1975), Besag (1977) and Besag (1974) followed by a comment by 

Clifford. The pseudo-likelihood method, on the other hand, simplifies, for auto-linear 

schemes, to minimizing a sum of squares of random variables th a t are correlated and 

ignores their dependence. This has an effect on the variance matrices of the estimators. 

Minimizing a sum of squares of random variables is usually preferred for the estimation 

of the param eters of a simultaneous auto-regression rather than an auto-linear scheme, 

as we are going to see in Section 4.5.3. The im portant contribution to the study of 

bilateral auto-regressions made by W hittle (1954), though, has shown how important 

the existence of a causal representation is, as minimizing the sum of squares of errors for 

a bilateral auto-regression cannot produce consistent estimators.

For observations from an auto-linear scheme, we propose a method of moments esti­

mation after we point out the difficulties of reaching the estimators derived by maximizing 

a conditional likelihood, a modified form of which has been proposed by Besag (1974). 

Besag suggested the specific form of the conditional likelihood but did not manage to 

obtain the properties of the estimators because of two obstacles; the computation of 

the determinant involved and the fact tha t the quadratic form is a linear function of 

the parameters. We show that the proposed method of moments estimators are consis­

tent and asymptotically normal, with a variance m atrix of an easy form and we derive 

tests for the unknown coefficients of interest. For observations lying on a rectangle of a 

two-dimensional spatial process, we conclude and apply our results, by estimating the
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coefficients and fitting the first-order model.

4.2 B est linear predictors

For a (weakly) stationary process {X (s), sT G £ d} with an absolutely summable auto­

covariance function, if we manage to write its spectral density in the form

9X(U)  =  ( 5 F  “ T £ (4 2 ’1)

with polynomial

$(z) =  1 -  Y ,  »i E  W  <  0°. (4-2.2)
j> 0  j> 0

and if we define the random variables

e(s) = 0(B)X(s) = X(s )  * ( s “  j)> sT G ^  (42 '3)
j > 0

then it holds for the (weakly) stationary process (e(s), sT G Zd] th a t

{ e (s)} ~  JF N (0 ,a 2). (4.2.4)

This is because we have applied a linear filter and, according to Theorem 4.4.1 of Brock- 

well and Davis (1991, p .122), we can immediately write its spectral density as
2

9e(w) =  V T G [-7T,7T]d. (4.2.5)

Similarly, for

u(s) =  9(B->)A-(8) =  X(s )  -  X (s  +  j) , (4.2.6)
j> 0

it holds that

(u(s)} ~ W N { 0 , a 2). (4.2.7)

The representation (4.2.3) with (4.2.4) does not directly answer the question which 

one is the best linear predictor of X (s) based on the values X (s — j ) , j  >  0, or what we 

would call its ‘past’ values. Since the process is stationary, it holds that

{0(z)0(z_1)}_1 a  [1 +  ^ 2  0 J 0 J Z_J1 (4 2 -8)
j T€Z d—{0 T} j TGZd- { 0 T}

with squared summable coefficients

Of < oo, (4.2.9)
jrGZd—{0T}
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according to the Wold decomposition. Moreover, if it holds

f l(z )-1 =  1 +  £ © j  zJ, £  16,1 <  00, (4.2.10)
j> 0  j> 0

we may write

X (s) =  e(s) +  ^ 0 j  e ( s - j ) ,  (4.2.11)
j> o

which implies th a t X (s) is a linear function of e(s — j), j  > 0, and it is uncorrelated with 

any ‘future’ value e(s +  j) J > 0. As a result,

E{e{s) X(s -  i)} =  0, i >  0, (4.2.12)

or

£ { [ X ( s ) - £ ; 0 j X ( S - j ) ] X ( s - i ) } = O ,  i >  0, (4.2.13)
j > 0

which guarantees that

^ ( s J ^ X ^ j X t s - j )  (4.2.14)
j>0

is the best linear predictor of A (s) based on all its ‘past’ values. The fact that this 

predictor is unique comes immediately from Theorem 2.3.1 of Brockwell and Davis (1991, 

p .51). The fact th a t the decomposition

X (s) =  X (s) +  e(s) (4.2.15)

and the coefficients {0j, j  > 0 } are unique comes from Guyon (1982, p.96), since the

spectral density is bounded away from 0 and oo.

Next, we try  to extend this concept to the more general case of best linear predictors

based on all other locations and not just the ones tha t refer to the ‘past’ or ‘future’. 

This can be more meaningful and useful for spatial statistics, when there is no particular 

reason to assume th a t one side of a spatial dimension offers more information or should 

be preferred over the other side. It becomes more obvious in prediction rather than in 

estimation. Given th a t the parameters of a process have been somehow estimated, in 

time series it is usually necessary to predict the value of the process in the future, given 

what has happened in the present and past, while in spatial statistics all the values of 

the process around the value tha t should be predicted are usually known and used for 

this.
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For a real-valued zero-mean process {A'(s), sT G Zd} with i? { X (s )2} < oo on any 

gT ^  2,d? we consider X (s )  to be the best linear predictor of A (s) based on all X (s — 

j)» j T £ %>d-> j  7̂  and we write for any sT G Zd

X (s )  = J 2  (4.2.16)
iTezd,J*o

in the sense that

E { X ( s )  -  X ( s ) } 2 = min £ { X ( s ) -  ^  V-sj ^ ( s  -  j)}2. (4.2.17)
W' j} Ĵ O

Due to the least squares property, it holds that

E { ( X ( s) -  X (s))X (s -  i)} =  0, sr , iT i 7̂  0. (4.2.18)

Equation (4.2.18) can be re-written as

E { X ( s ) X ( s  -  i)} -  J 2  f t j  £ { X (s  -  j)X (s  -  1)} =  0, sT, iT e  Z", i ^  0. (4.2.19)
iTezd,Ĵ O

Similarly, for any sT G Zd, we may define the prediction variances

=  £ { A -(s ) -X (s )} 2 =  £ { X (s ) (X (s ) -X (s ) )}

=  £{A-(s)(A-(s) -  5 2  & J * ( s - j ) ) }
iTezd,

i*o

=  £{A-(s)2} -  5 2  /3s J £ { X ( s - j ) X ( s ) } < o o ,  (4.2.20)
jr e z d,

j*o

where the inequality holds since £ ,{X(s) — X (s)}2 < E {X (s)2} < oo, for any sT G Zd.

If {X (s), sr G Zd} is a (weakly) stationary process, then 7x (j) =  £ '{^f(s)X (s — j)} 

and for any sT G Zd, we can simplify /?sj  =  and us = u, in (4.2.19) and (4.2.20). The 

two equations can then be summarized as

7x(i) — £  =  0. M O , (4.2.21)
iT€Zd,

j / 0

7 x ( 0 ) -  # 7 x 0 )  =  v e (0 ,o o ) .  (4.2.22)
ir€Zd,

j#0

Although the uniqueness of the predictor X (s )  is guaranteed by Theorem 2.3.1 of Brock- 

well and Davis (1991, p .51), so far we cannot say that the equations (4.2.21) generate



unique coefficients {/3j, j r G Zd — {0T}}. Moreover, for a simple example such as that of 

the following auto-regression {X t , t G Z}, which satisfies the equation

X t  -  6 X t - t  = et,  |0| <  1, {£«} ~  W N ( 0,<T2), (4.2.23)

we would like to be able to find these coefficients {Pi, i G Z, i ^  0}. From (4.2.23), we 

may derive

- 6  X t+1 + e2 X t  = - 6  et+1. (4.2.24)

If we add (4.2.23) and (4.2.24), we may define

Yt = - e  x t- i  +  (i +  e2) x t - e  x t+i = £t - e  a+i- (4.2.25)

We can see immediately tha t {Yt, t G Z} is an invertible moving-average th a t corresponds 

to the same polynomial as the causal auto-regression {Xt ,  t  G £}, i.e. they are both 

generated by {et, t  G £}, one from its past and the other from its future and present 

values. Thanks to the same arguments as the ones used in Section 2.4.1, it holds tha t Yt 

is uncorrelated with X t - i ,  for any i ^  0. We may re-write (4.2.25) as

X t -

from which we may see tha t

°  ( X t- i + X t+1) =  1
1 + 02

X t  =

1 + 02 Yt ,

0
( X t - 1 + X ^ )

(4.2.26)

(4.2.27)
L* ”  1 +  02

is the unique best linear predictor of X t  based on all other X t - i ,  i 7̂  0 , since Xt  — X t  is 

proportional to Yt and, thus, uncorrelated with these random variables. Also, it holds 

tha t

E { X t -  X t } 2 = ^ - L ^ V a r W  =  ^  (4.2.28)

is the variance of the prediction error. In (4.2.27), we can see tha t for any i > 0, the 

coefficient of X t - i  is the same as the coefficients of Xt+i. Indeed, it holds tha t

A  =  <

0/1  +  02, i = 1 

0 , i > 1 

P-i, i < 0

(4.2.29)

In (4.2.29), we can see tha t
0

1 +  02
1*1

1 +  02 < 1 .

155



In general, the fact tha t the coefficients {/?j, j T G Zd — {0T}} are symmetric and that 

their absolute value is not greater than one, as well as a condition for their uniqueness 

are established in the next proposition.

P ro p o s it io n  4.1. If {X(s), sT E Zd} is a (weakly) stationary process with absolutely 

summable auto-covariance function 7 x0 ) and there are coefficients {/3j, j r E Zd — {0T}} 

satisfying (4.2.21),(4.2.22) and such that Iftl <  °°> then
j # o  ’

1. /3j =  /3_j, for all j T € — {0T},

2. | / ? j |< l ,  fora l l jT e Z , i - { 0 T},

3. The coefficients are the unique solutions of (4.2.21).

P ro o f. For the polynomial

0(z)  s i -  J 2  Pi ^  (4.2.3°)
j Te z d,J/o

we define the new process

F (s )  s /3 (B )J¥ (s) =  X (s) -  Y  P i X ( a - i ) ,  (4.2.31)
j T€Z d ,

J#0

which is also (weakly) stationary. Its auto-covariance function is equal to

C o v { y (s ) ,K (s - i)}  =  C o v { X (s)-  Y  P } X ( s - i ) , X ( a - i ) -  Y  f t-  - i - j * ) }
j Te z d, j* T€ Z d,

j^o J V o

= 7 x ( i )— 53 # j 7 x ( j - i ) -  53 ft*[7Jf(i +  j * ) -  53 ft 7 x ( j - i - j * ) ]
Jr €Z d , j* T€ Z d, j Te z d ,

j # 0  j * # 0  j* 0

By equations (4.2.21) and (4.2.22), we can write

7v(i) =  C o v { y (s),y (s  — i)} =  { ’ , (4.2.32)
-/?_ i • v, i 7̂  0

which verifies the first two statements of the proposition, since (3j are auto-correlations 

at lag j.

For the th ird  statem ent of the proposition, we define the polynomial

7A-(z) =  5 3  7a (J) zj > (4.2.33)
jT€2.d

and we can see immediately from (4.2.21) and (4.2.22) tha t

7x(z) • =  1- (4.2.34)
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The spectral density of the original process can be expressed as

9X(U) = ( 2 ^  7x(ei“ } =  ( 2 ^ « P = ) ’ “ T 6 (4 2 '35)

and it is bounded away from 0 and oo, since 17*0)1 < 00 and X)j>ol^jl <

oo. According to Guyon (1982, p.96), (A (j), j T G £ d} is a basis of the Hilbert space

generated by {X (j), j T G Zd}. A direct consequence of th a t is tha t for any sr  G £ d, it 

holds th a t {X (s — j)  +  X (s -f j), j  >  0} is also a basis of the Hilbert space generated by 

{X (s — j)  +  X ( s  +  j) , j r  G Zd — {0T}}. Then the decomposition

x (s) = E# tx(s - j) + x(s + j)] + y(s)’ (4-2-36)
j>o

with £J{y'(s)AT(s — j)} =  0, j  ^  0, is unique. This verifies the final statement of the 

proposition.

We can see that, since S j > o  |/?j| < oo, then the spectral density of {T(s), sr G Zd} 

exists and is equal to

flv(w) =  0 ( O >  “ T e  - (4.2.37)

■

R e m a rk  4.1. An interesting question would be to find a necessary condition for

^ 2  lT*(j)l <  00 (4.2.38)
j re z d

in terms of the prediction coefficients A sufficient condition for (4.2.38) is that

53 ijSji < i e  î ji < v 2- (4-2-39)
j TeZd- { 0 T} j> 0

This has been mentioned, by Besag (1974, p.232) and Besag (1977, p .74), by Besag and 

Moran (1975, p .558) and by Moran (1973, p .58) for the case when d =  2. Indeed, it 

holds for any u>T G [—7r, 7r]d that

Y 2  cos{wjT} < | ^ 2  & c°s{wjT}|
j T€Z.d—{ot } j r ez,d-{ o T}

<  5 3  IjSj I |c o s {w jT}| <  5 3  |j9j|.
j r €Zd- { ( r }  j r e zd- { o i-}

Thus, if condition (4.2.39) holds, we can write

/3(e” ) =  1 -  53 /3j cos{ujT} >  0, (4.2.40)
j TGZd-{ (T }

for any u>T G [—7r, 7r]d.
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4.3 Spatial auto-linear schem es

Definition 4.1. For a set of finite cardinality Fq C Zd, such th a t 0T ^ .7-b, we consider 

the (weakly) stationary zero-mean process (A (s), sT G Zd} to form a spatial auto-linear 

scheme if it has an absolutely summable auto-covariance function and for every sT G Zd, 

it holds tha t

£ { X ( s ) |X ( s - j )  =  : r ( s - j ) ,  j T G 5  3  fo , j  ^  0} =

E { X ( s ) \ X ( s - j )  = x(s  — j), j T G Tq} =  ^ 2  Pj *(s -  j) (4.3.1)
jTe^o

and

V ar{X (s)|A (s -  j) =  x ( s - j ) ,  j T G S  D 7b, j  ¥= 0} =

V ar{X (s)|A (s -  j)  =  x(s -  j), j T G Tq] = v  G (0,oo). (4.3.2)

According to Proposition 4.1, now that the best linear predictors take the form

of conditional expectations, the former scheme is valid only when two conditions are

imposed. The first is a symmetry condition, that

Pi = 0 - h  j r 6 F 0- (4-3.3)

For the finite set Fq this also means that j T G Fo implies th a t — j T G The second 

condition is th a t

|/3j| <  1, r  e  JF„. (4.3.4)

If we define the polynomial

0{z) =  1 -  Y, 03 (4-3-5)
jTe^o

and the spectral density exists, it can be expressed as

9x{u )  =  (2 ^ p  • « 5 = )  • “ T e  ^  (4-3'6)

The definition of an auto-linear scheme is, for the special case where d = 2, equivalent 

to the definition of an auto-normal scheme given by Besag and Moran (1975, p .555), with 

the main exception th a t we have not made any specific assumptions on the distribution 

of the process. Of course, for stationary Gaussian processes, the best linear predictors 

are conditional expectations and the prediction variances are conditional variances.
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In the general case tha t we do not study Gaussian random variables only, the con­

struction of a stationary auto-scheme is the same as the construction of a valid conditional

from the auto-normal scheme, Besag (1974) also introduced the auto-logistic scheme

Like the auto-normal scheme, Besag showed that the former representation is valid when 

there is a symmetry in- the neighbourhood structure and the coefficients, i.e. if j T E P q 

implies tha t — j r E P q and if it holds that /5j =  /?_j.

4.4 U nilateral and som e bilateral auto-regressions

For any unilateral or bilateral (weakly) stationary auto-regression of finite order 

{X(s), sT E Zd}, only a look at its spectral density together with Proposition 4.1 shows 

tha t the best linear predictor of X (s) based on all X (s — j), j  ^  0, is equal to a finite 

sum of random variables. This, of course, does not imply th a t the auto-regression is an 

auto-linear scheme as the predictors are not necessarily conditional expectations. In this 

section, we examine under which conditions is it possible to form an auto-regression that 

is an auto-linear scheme, even though it might not be an auto-normal scheme.

From the sequence of uncorrelated random variables

distribution on one location given the values on all other locations. For example, apart

which for a stationary process (X (s), sT E Zd} takes the form

P { X ( s) =  fc|X(s -  j) =  x(s  -  j) , f  E 5  D P 0, J ±  0} 

P { X { s) =  k \X(s  -  j) =  *(s -  j), j T E Po}
exp{a+Ejr€jrn/3j x(s-j)} _

< l+expfa+^jTe^ /9j x(s-j)} ’ — (4.3.7)

(4.4.1)

we may define the auto-regression (X (s), sT € Z }, such tha t

0„(B) 9 /(B _1)X (s) =  W ( s), (4.4.2)

where



and U p , U f  C {j >  0 }  are two sets of finite cardinalities. Also, we assume we can write

0p(z)-1 =  1 +  J ^ P j  zj , <  oo, (4.4.5)
j > 0  j> 0

W 1 =  1 +  S / i  z j’ H l / j l  < °°- (4.4.6)
j> 0  j > 0

Since we have assumed that {A(s), sT G £ d} is an auto-regression, we consider tha t it

cannot be 9 ^  = 0 ,  j G Up and 9 ^  = 0, j G Uf  a t the same time, as this would imply

that

{ A (s )} ~  W N { 0 }a 2).

If =  0, j  G Up or =  0, j  G Uf, then the auto-regression is unilateral. Otherwise, 

it is a bilateral auto-regression. Not all bilateral auto-regressions can be written in the 

form (4.4.2) when d > 2. In (4.4.2), the auto-regressive polynomial can be factorized 

into two distinct polynomials, one expressing the dependence from the ‘past’ and the 

other from the ‘future’.

The spectral density of {X(s), sT G Zd} can be expressed as

9X^  ~  (27r)d ’ 9p(eiuJ) 9f (eiuJ) 9p(e~i“ ) 9f (e~iui) '  W G [_7r’7r] • (4-4-7)

If 9P(z) ^  1 and 0/(z) 1 and the auto-regression is bilateral, then from the spectral

density we can see immediately that there is another process {u(s)} ~  W N(0 ,  a 2), such 

th a t we can write

9P(B) 0 /(B )A (s) =  u{s) (4.4.8)

and express the same process {A(s), sT G Zd} as a unilateral auto-regression. We can 

write then

X{s)  = u(s) + ^ 2 ^ u ( s - j ) i (4.4.9)
j> o

where

1 +  7,3 = +  z j) ' +  zJ) ’ 5 Z  W  < °°- (4.4.10)
j > 0  j > 0  j> 0  j > 0

Next, we define the polynomial

=  6p W  ° f (z ) 6p(z ~1) +  z j ) _ 1 - ( 1 +  S ^ - J  z j ) ~ 1’ (4 -4 -n )
j Te .F  j> o  j < o

where T  is a set of finite cardinality, such that
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1. 0T G T ,

2. j r G T  if and only if —j T G T ,  

and the coefficients 6j, are such that

!• bj = b- b  JT E

2. |6j| <  b0, j T G T .

While the first three parts derive immediately from the way the new polynomial has 

been defined, the fourth part might be justified by saying th a t the spectral density

1 1
(2tt)« (1 +  £ j> o ^ j  e*"iT) • (1 +  £ j<0 V-j e<"JT)

(27t) ^V '  jTG^

generates the auto-covariance function {6j, j T G ^ } .

From the unilateral representation (4.4.8), we can define the polynomial

0(z) =  0p(z) 0/(z) =  1 +  ] T  0j z^ (4.4.12)
jew

where again W is a set of finite cardinality and lAp \J lAf C U C {j > 0}. Then it holds 

tha t

bo = l + '529i- (4 -4 1 3 )
jew

If we define the set

the coefficients

the polynomial

and the constant

To = T — {0T}, (4.4.14)

f t  =  -6 j/6 0, j T € ^o, (4.4.15)

P(z ) = 1 ~  2  f t  ^  (4.4.16)
jTe^0

v  =  cr2/60, (4.4.17)

then we can re-write the spectral density of {-X'(s), sT G £ d} as

9X(U)  =  ( 2 ^  ' 0 ^ ) ’ “ T S (4-4-18) 
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The former representation concerns the second-order properties of (A (s), sT E &d} 

and does not imply yet th a t they form an auto-linear scheme. To make such a conclusion, 

we need further assumptions. If we know that for any j  ^  0 the random variable u(s) is 

independent of u(s  — j), then from (4.4.8) and (4.4.12), we can write

0(B _1) 0(B)X(s )  = 0(B -1 )u(s) (4.4.19)

or

or

b0 X(s )  + X ( s - j )  =  u(s) +  ^ 0 j  u ( s + j )

x (s ) =  f t  X (s ~ j )  + £- lu (s ) + 2 2 0j u (s + j)]- (4.4.20)
jTĜ o 0 jew

It holds th a t X (s  — j ) ,  j  >  0 are independent of u (s),u (s  +  j) , j  E U. Now for the other 

error sequence

{ e(s)} ~  WiV(0,<r2), (4.4.21)

for which we can write

0 ( B '1)X (s) =  e(s), (4.4.22)

we need to assume th a t for any j  7  ̂0 , the random variable e(s) is independent of e (s—j). 

We can then reverse and write

6(B)  0(B~1)X(s) =  0(B)e(s) (4.4.23)

and now X ( s  +  j) , j  >  0 are independent of e(s),e(s — j), j  G U. We may then combine 

the two and conclude that X ( s —j) for any j  7  ̂0 are independent of the random quantity 

0( B - J )u(s) =  0 (B )£ (s ). A s a result, from (4.4.20), we can write

E { X { s)|X (s  -  j)  =  z(s -  j) , j T G 5  3  f 0, j ^  0} =  ^ 2  Pi x (s ~ i )  (4.4.24)
y e f o

and

V ar{X (s)|X (s -  j)  =  x ( s -  j) , j T G S  D Fq, j  7̂  0 } =  i  • Var{u(s) +  ^  0} u{s +  j)}
° °  jew

0 jew
1 . 2

=  To • ° 0  1 a  
^0

=  a 2/bo =  v. (4.4.25)
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Thus, it takes the two error sequences of the auto-regressive unilateral representations, to 

be sequences of independent random variables, in order to come up with an auto-linear 

scheme.

According to Proposition 2.5, we have seen how {e(s)} ~  I I D ( 0 , a2) implies that 

M s )}  I ID (0 ,  a 2), if meanwhile it has produced a reverse strictly stationary process 

(A (s), sT G £ d}. If, for example, we consider

6P( z) =  9f(  z) (4.4.26)

in the original representation (4.4.2), then according to Remark 2.1, the symmetric filter

ep(B) dPiB ' 1)A(s) =  W i s) (4.4.27)

could generate a reverse strictly stationary process, if {W (s)} ~  7 /D (0 ,a 2). But again, 

th a t would be no use, unless we could assume that either {e(s)} ~  I I D i 0, <r2) or {u(s)} ~  

//Z )(0 ,cr2), in order to come up with an auto-linear scheme. Thus, there does not seem 

to exist a safe way to consider tha t a process {X(s), sr  6 Zd} satisfying (4.4.2) can also 

satisfy (4.3.1) and (4.3.2), if one sequence only of independent and identically distributed 

random errors can be assumed. Of course, for Gaussian random variables, one sequence 

of Gaussian random errors immediately implies the auto-normal formulation.

The conditional moments of an auto-linear scheme relate to the assumptions on the 

dependence between the random variables, rather than the second-order properties only. 

Regarding the second-order properties, we have seen in this section how from a unilateral 

or bilateral auto-regression of the form (4.4.2) we may recover the coefficients of the 

best linear predictors. But what if we are trying to recover the causal auto-regressive 

representation of an auto-linear scheme? Looking a t the spectral densities, this might 

be viewed as a problem similar to th a t of matching a (weakly) stationary sequence of 

random variables th a t have non-zero auto-covariances at a finite number of lags only, to 

an invertible moving-average sharing the same second-order properties. For <2=1, one 

can always find an invertible moving-average of finite order, equal to the number of non­

zero auto-covariances at the positive lags. This has been established by Proposition 3.2.1 

of Brockwell and Davis (1991, p.89). For <2 > 2, this might not be possible though. For 

example, for the simple case <2 =  2, one might have the best linear predictor

X i u , v )  =  Pi [ X i u -  l ,v )  +  X ( u +  1, v)] + 02 [Xiu ,v  -  1) +  X i u , v  + 1)], (4.4.28)
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with |/3i |, |/?21 < 1- Then.we need to write the polynomial

b{z1, z 2) oc 1 -  (3i [zx + z ^ 1) -  (32 {z2 +  Z2 1) (4.4.29)

as a product of, say,

b(zi ,z2) oc (1 +  Q\ z\  +  02 z2) • (1 +  0i z f 1 +  02 Z2 1)

= (1 +  0J+ 02) +  6\ (zi +  z-̂  *) +  02 (z2 +  Z2 *) +  0\ • 02 (Z\Z2  ̂ ẑ2).

It should be

Qi oc —fa 7̂  0 , £ =  1, 2 ,

and

0 i  ■ 0 2 =  0 ,

which cannot happen at the same time and we will have to look harder than  that. A 

problem of a similar nature occurs when we try  to match a bilateral auto-regression 

to a unilateral auto-regression sharing the same second-order properties, according to 

W hittle (1954, p.439).

In conclusion, in this section we have seen how any auto-regression tha t shares the 

same second-order properties as a finite unilateral auto-regression can be expressed as 

an auto-linear scheme, if the error sequences of the two finite unilateral auto-regressive 

representations are sequences of independent random variables. Moreover, we have seen 

how to perform the re-parametrization from the coefficients of unilateral representation 

to the coefficients of the auto-linear scheme. T hat is a generalization of the example of 

the causal A R(1), which was presented in Section 4.2. Bilateral auto-regressions can also 

be auto-linear schemes. We have selected a convenient class of bilateral auto-regressions 

to demonstrate that. As a result, the results achieved next in this chapter, regarding the 

estimators of the coefficients of an auto-lineax scheme and their properties, are totally 

unconnected to any assumption of a causal representation of the process of interest.

4.5 E stim ation

We collect observations { X  (s), sT £ <S} from a spatial auto-linear scheme. We consider 

S* to be the maximal set such tha t for every sT £ «S*, it holds th a t sT — j r  £ S  for all 

j T £ T .  Then we may define the maximal set £**, such tha t for every sr £ <S**, it holds
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th a t sT — j T G S* for all j T G T  D {jr  : j  >  0}. We assume th a t S** is not the empty set. 

We write N, N *, N** for the cardinalities of «S, S* and <S**, respectively.

We will consider j i  <  • • • < jp the elements of the set Tq n  {j T : j > 0 }, the vector

=  (4-5.1)

and the param eter space B cO lp. We will use the following condition.

(C5) The param eter space B is a compact set containing the true value 

/30 as an inner point. Further, for any (3 G B, it holds th a t |/3jJ <

1, n  =  1, • • • ,p, and that the polynomial [1 — YX.=\ Pjn(z*n +  z~jn)]-1 

has absolutely summable coefficients.

4 .5 .1  C o n d it io n s

In order to prove the properties of the different estimators of the parameters, we will 

use some extra conditions apart from (C5). These conditions involve the new (weakly) 

stationary process { Y (s ) ,  sT G Zd}. Like in Proposition 4.1, we may define, for any 

sT G Zd, the error of best linear prediction as

y (s )  =  0(B)X(s) = X ( s ) -  Y ,  / 3 j * ( s - j )  (4.5.2)
jTe.Fo

=  X ( s ) - E { X ( s ) \ X ( s - j )  = x ( s - j ) ,  f e f o } .

The second equality holds only when the best linear predictors are also best predictors. 

According to (4.2.32), it holds that

Cov{Y(s), Y(s -  i)} =  £{Y (s)Y (s -  i)} = <
v, i =  0

- A  - I/, iT € f o  (4-5.3)

0, iT i  T

and the spectral density function of (Y (s), sT G Zd} is defined as in (4.2.37). For the 

set of finite cardinality as considered before, equations (4.2.21) and (4.2.22) can be 

re-written as

7 x ( i)  -  A  TJcC i-i) =  0, i ^ O ,  (4.5.4)
j T6 f o

7 x (0 )  ~ ^2 Pj 7 x (j )  =  (4.5.5)
j TeJ=b
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and they are general Yule-Walker equations. Thus for i ^  0,

B { y ( s ) X ( s - i ) }  =  £ ;{ (X (s )-  Y ,  P i X( s - i ) ) X ( s - i ) }  =  yx ( i ) -  Y  ft 7x ( i - j )  =  0
jTG^o jT€Jro

(4.5.6)

and the random variables Y(s), A (s — i) are uncorrelated. This is not surprising, since 

Y (s) was defined as a prediction error. Also,

£ { y (s)X (s)}  =  £ { ( X ( s ) -  Y  Pi X ( s - i ) ) X ( a ) }  =  7x (0 ) -  Y  Pi ^ 0 )  =  «■ (4-5.7)
jTGJro jTGJro

We write the following conditions:

(C6) For any sT G Zd, the conditional distribution of Y(s) given all A (s — 

j ) J  7̂  0 , is the same as the distribution of Y (s).

(C7) It holds th a t (A (s), sT G Zd} is a strictly stationary sequence of 

random variables.

Condition (C6) generalizes the two properties that

E { Y ( s ) |A ( s - j )  =  x ( s - j ) ,  j ^ O }

=  £ { * ( s ) |X ( s - j )  =  : r ( s - j ) ,  j ^ O } -  £  / ? j * ( s - j )  =  0 (4.5.8)
jTG^0

and

V ar{Y (s)|X (s-j)  =  x ( s - j ) ,  j  ^  0 }  =  V ar{X (s) |X (s-j)  =  a r(s-j) , j  ^  0 }  =  v, (4.5.9)

i.e. that the conditional expectation and variance of Y(s) given X (s — j), j  ^  0 , do not 

depend on the values x(s — j), j  ^  0 . We may separate (C6) into two different parts, as 

we will often be needing only one of them:

(C6)(i) For any s T G Zd, j > 0, the random variables Y (s) and X ( s + j )  are 

independent.

(C6)(ii) For any sT G Zd, j  >  0, the random variables Y(s) and X (s  — j) 

are independent.

In other words, (C6) says that, for any sT G Zd, the two random variables X (s) and 

V(s — j) , j  7̂  0, are independent. As a result, for

y ( 8) =  x ( s ) -  Y  P i x ia - i )
jTG^o
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it holds that

0 = E { Y( s ) }  =  £ { y (s ) |X (s - j )  = * ( s - j ) ,  j ^ O }  

=  E { X ( a ) -  Y ,  P } X ( a - j ) \ X ( a - j )  =  x { a - i ) ,  J^O}
jTGJ7o

=  E { X { s ) |X ( s - j )  =  x ( s - j ) ,  j  7̂  0} -  ^  /?j x ( s - j ) ,
jTG^0

from which we may immediately derive (4.3.1). From (C6), it also holds that

v  =  Var{y(s)} =  V ar{y(s)|X (s -  j)  =  z(s -  j) , j  ^  0},

according to (4.5.3), which implies (4.3.2). We may conclude tha t condition (C6) also 

implies th a t the (weakly) stationary process ( X ( s ) ,  sT G Zd} form an auto-linear scheme.

If we combine the conditions (C6) and (C7) with (4.5.2), then it holds th a t {Y (s), sT G 

Zd} is a strictly stationary but also If-dependent process, for some positive and finite 

integer K .  Actually, if we keep (C6)(i) or (C6)(ii) only and combine it with (C7), then 

we may come up with the same conclusion, as we are going to see later in the proofs of 

the theorems for the properties of estimators.

W hether it is possible to satisfy condition (C7) for an auto-linear scheme is a question 

of interest, as (C7) is very strong given that we have first required for (4.3.1) and (4.3.2) to 

hold. Since (C6) implies the auto-linear formulation, we may understand tha t imposing 

both (C6) and (C7) is a very strong requirement, indeed. When ( A ( s ) ,  sT G Zd} 

form a (weakly) stationary auto-normal scheme, by definition, the equations (4.3.1) and

(4.3.2) and, by consequence, conditions (C6) and (C7) are satisfied. Conditions (C6) and 

(C7) were hinted when Besag (1975, p .192) proved the consistency of the least squares 

estimators for the parameters of an auto-normal scheme.

From now on, we will consider tha t our observations {A (s), sT G «S} have been 

collected from the (weakly) stationary process (A (s), sT G Zd}, such that, for any 

sT G Zd, the best linear predictor of X (s) based on all other X ( s  — j), j  ^ 0 ,  is equal to 

a finite sum

x ( B) =  £
jTe^o

and it is not necessarily the best predictor of X (s) based on X ( s  — j), j  ^  0. The linear 

prediction error is defined by

Y(s) = X ( s )  -  X(s ) ,  sT G Zd.
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Thus, we will propose estimators for the parameters of a class of (weakly) stationary 

processes, which includes all the processes with an auto-linear formulation. For example, 

any unilateral or bilateral auto-regression is included in' th a t class, while we saw in 

Section 4.4 how hard it is to find an auto-regression tha t is an auto-linear scheme, unless 

it is a Gaussian process.

4 .5 .2  C o n d it io n a l lik e lih o o d  e s tim a to r s

We write a conditional Gaussian likelihood, i.e. a likelihood of the observations, as if 

they have been generated from a Gaussian process. Since the likelihood is conditional, it 

uses conditional moments, and since it is Gaussian, for the second-order properties this 

simplifies to the auto-covariance function of the process. If (C6) holds, then these axe 

the conditional expectation and conditional variance m atrix of the vector of observations 

indeed, though the process might not be Gaussian.

A very similar form of the likelihood was proposed by Besag (1974) for the estimation 

of the param eters of an auto-normal scheme, but the properties of the estimators were 

not found, as the likelihood included a determinant th a t was not easy to compute. 

Here, we propose a computational solution for th a t determinant using the innovations 

algorithm. Moreover, in Besag’s likelihood, the quadratic form was a linear function of 

the param eters of interest. We show that this likelihood could be useful, if a different 

param etrization has been achieved and the process has been expressed as a finite auto­

regression.

First from the processes (X (s), sT E Zd} and (Y (s), sT E Zd} as defined in this 

chapter, and the sets of locations S,  S* of Section 4.5, we define the random vectors 

Y*,X* and Xo on the same locations like in Section 2.4.1 and the subsection on the 

conditional variance matrix of random variables from an auto-regression. When condition 

(C6) holds, we may directly from (2.4.55) and (2.4.56), write the conditional Gaussian 

likelihood of X* given the realization xq of the random vector Xq as



for any (3 E B and v E (0,oo). We use v and v2 in (4.5.10), as it holds that

Var{X*|X0 =  x 0}_1 =  v~2 • Var{Y*}.

We may see that, using the same sequel as in Section 2.4.1. The general Yule-Walker 

equations have allowed us to use the results of this subsection, though the second-order 

properties of the process might not necessarily be described by a finite auto-regression. 

Besag (1974, p .213) claimed tha t the right form for the conditional likelihood is

L*G3,k) oc |Vaj{J * } |1 /2  exP { - ^ j [ x *TVar{Y*} X*]}, (4.5.11)

instead, and om itted the term  £'{X*|Xo =  xo} =  Cov{X*,Xo} Var{Xo}-1xo. As a 

result, the quadratic form in (4.5.11) has been expressed as a linear function of the un­

known param eters and all the derivatives of first order are not functions of the parameters 

any more. One has to resort to the determinant |Var{Y*}|, for which the innovations 

algorithm might be used. This is because the inverse of the original conditional variance 

matrix is a variance matrix of random variables from a process, for which we know its 

second-order properties, according to (4.5.3). When we write the spectral density of 

{Y(s), sT G Zd} as

— -, J ' \ a (3{elu}) = 777-T j , ■ J 7 ,— r, u>T G [—7r ,7r]d, (4.5.12)y K } (2n)d ’ (27r)d y(e lUi) • ip{e~%u)) 1 J v '

where

z) =  1 -  ^ 2  v?i z1, ^ 2  l^il <  (4.5.13)
i> 0 i>0

then according to the innovations algorithm, it holds tha t

|Var{Y*}| =  J ]  r(s , 0 , v ) ,  (4.5.14)
sTes*

where r(s,/3 ,i/) is the variance of Y(s) — Y(s) and Y(s) is the best linear predictor of

Y (s) based on the random variables Y(s — i), i >  0, sT — ir G <S*, only. If

</?(z)-1 =  1 +  $ j zj, ] T  | $ j |  < oo, 
j> 0  j> 0

then using the same arguments as Yao and Brockwell (2006) for the case d  = 2, it holds 

for a fixed element sT G <S* that

r(s, /3, v) —> cr2 (4.5.15)

as N  —> oo and (C l)(i) holds.
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Let us now consider the special case when we have observations from a bilateral 

auto-regression {X(s), s r  G Zd} defined by

9
X (s )  + X ( s  -  i„) =  W ( S), {W(s)} ~  W N ( 0 ,o & )  (4.5.16)

71=1

with 0 < ii <  • • • < ig, and the process also has a causal AR(oo) representation. We 

may define the polynomial

«(z) =  1 +  ! > , .  z‘" (4-5.17)
71=1

and the bilateral moving-average process { Y (s), sT G £ d} by the equation

Y(s) =  0 (B )0 (B "1)A (s) =  ^(B -^W C s), {W (s)} ~  W N { 0 ,a ^ ) .  (4.5.18)

Prom observations (X (s), sT G «S}, we will find our modified likelihood estimators for 

00 =  • • • , 0i„o] G 0 ,  by minimizing the quantity

l*x  =  log crjy — logce +  > 0 E S ,  a%/ >  0, (4.5.19)
iV aw

where

logcq = t t - t j  [  log{0{eiu3) 0{e~lu,)}dw  (4.5.20)
(27r)

and

Q'x  =  £  [#(B )«(B -1)X(s)] X (s) (4.5.21)
s  res*

or

Q'x  =  ^ [ 9 ( B ) » ( B - 1)A-(s)] [ J 2  «(») (O tB J ^ B -^ J f  (s -  i))], (4.5.22)

for the polynomial

c(z ) =  S  CW z* =  (4.5.23)
iT€Z d

and the set as it was defined in Section 3.5.3, for any sr G Zd. The form (4.5.21) 

refers to the quadratic form

X*T [Var{ Y* }X*] 

in (4.5.11). If we re-write the quadratic form as

[Var{Y*}X*]TVar{Y*}~1[Var{Y*}X*],

then we may see the relevance with (4.5.22).
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Quantities (4.5.19) and (4.5.21) or (4.5.22) closely resemble

ly = log <7^ +  log ce +  ®y 2 , 0  G 0 , crw > (4.5.24)
iV

and

= £  y(s) [ Y ,  c(i) y (s  -  i)], (4.5.25)
S T£S* \T£Fa

respectively. The negative log-likelihood (4.5.24) will be appropriate to minimize, in 

order to derive the estimators for the same parameters, if we have observed (T (s ) ,  s T G 

<S} instead. If 6(z) is a causal polynomial and the moving-average of interest is invertible, 

then

log c0 =  0

and we would generate the same estimators 0, which are also obtained by maximizing 

the Gaussian likelihood (3.4.70). As a result, (4.5.19) is the quantity to be minimized 

in the case of observations from a unilateral or bilateral auto-regression and is a special 

case of the results presented in Sections 3.5 and 3.6, if (4.5.22) has been used instead of 

(4.5.21).

4.5.3 Pseudo-likelihood and least squares estim ators

The Gaussian pseudo-likelihood was introduced by Besag (1975, p. 190) as an alternative 

technique for the statistical analysis of sets of random variables, for which the Gaussian 

likelihood was intractable. The pseudo-likelihood estimators are very easy to compute; 

in this section, we also discover some of their statistical properties for the case when 

they are used to estimate the parameters of an auto-linear formulation.

The representation (4.5.2) often becomes a source of confusion as it strongly resembles 

with the standard linear model. The fact that {/?j, jT G ^o} in the model are set to 

be the coefficients of the best linear predictor and that is not a subset of {jT : j > 

0 } , should be taken together as the only two reasons why (T ( s ) ,  s r G Zd} is not a 

sequence of uncorrelated random variables. Treating {F(s), sT G Zd} as a sequence of 

uncorrelated random variables is mistaken and can mislead the analysis as, for example, 

when the pseudo-likelihood replaces the likelihood of the observations. Maximizing the 

Gaussian pseudo-likelihood is the same as minimizing the sum of squares X)s ^ ( s )2> but 

the random variables are not uncorrelated with each other. Equation (4.5.3) has been 

derived instead. On the other hand, the bilateral auto-regression {X*(s), sT G Zd}
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defined by the equation

/?(B)X*(s) =  W(s), {W(s)} ~  W N ( 0 ,<$?), (4.5.26)

does not share the same second-order properties as { X (s), sT e  Z }, for which we can 

write

/3(B)X(s) =  Y{  s),

i.e. it does not have the same best linear predictor coefficients. Regarding the finite 

bilateral auto-regressions, such as the one defined in (4.5.26), W hittle (1954) studied 

whether the least squares estimators of the parameters of interest are consistent. For 

(4.5.26), those estimators would be obtained after minimizing ^ s W (s)2. More specif­

ically, exactly as we described in Section 3.2.1, W hittle (1954) would re-write (4.5.26) 

as

**(<0+E IT  x *(s+j»-W -7T  **(s“W + £  i t  = W'W. (4-5-27)
n = 1 p jp  p jp  n = l  p jp

with

and

W , ( s ) s ~ W ( 8 - i T) (4.5.28)
PJp

a
{ W ( s ) } ~ W J \ r ( 0 ,^ ) .  (4.5.29)

Then he would prove tha t the estimators of the auto-regressive param eters derived by 

minimizing X)8^ * ( s )2 are no  ̂consistent. Although (W (s), sT E Zd} and {W*(s), sr E 

Zd} form sequences of uncorrelated random variables now, it is the property that W (s) 

is, in general, correlated to A"*(s — i), i ^  0 tha t is the problem for the estimation, since 

the auto-regression is not unilateral.

While (4.5.2) and (4.5.6) make it clear tha t {/3j, j T G F q] are the best linear predictor 

coefficients for the original process (A (s), sT G 2/*}, one has to write down the spectral 

density

9X' (W) =  ( 2 ^  6 *]d' (4 5 -30) 

to discover there the best linear predictor coefficients of the auto-regression (4.5.26), 

according to Proposition 4.1. In other words, it is the bilateral moving-average defined 

as

y  (s) =  /8(B-l )/?(B)X-(s) =  0 ( B ) 2X(s )  =  /J(B)W(s), (4.5.31)
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th a t it is such th a t y*(s) and X*(s  — i) are two uncorrelated random variables for any 

i # 0 .

R e m a rk  4.2. When the process of interest has an absolutely summable auto-covariance 

function, the solution of the equations (4.5.6) is unique, according to Proposition 4.1, 

since T q is now a set of finite cardinality. This is equivalent to Remark 2.3 for a (weakly) 

stationary auto-regression of finite order. As a result, we may rest tha t the variance 

matrix

r ;  =  [Cov{x(s -  j) +  x { s + j), x { s -  i) +  x ( s  +  i)}]r , ,r6, 0i (4 .5 .32)
j , l> 0

defined for any sT e  Zd, is non-singular.

P r o p e r t ie s  o f  th e  p seu d o -lik e lih o o d  e s tim a to rs

For any f3 G B, we define

p

Y ( s , 0 )  = X { a ) -  J 2  f t  X (s ~  J) =  * ( s ) -  E  f t -  1X (S -  W  +  X (s +  J")! (4'5'33) 
jTe^o n=i

and we write

y (s , /3 0) =  y (s ) .  (4.5.34)

For

X (s) =  [X(s -  j! )  +  X (a  +  j i ) ,  • • • , X (s -  j„) +  X (s  +  j p)]T (4.5.35)

and any /3 G B, it holds that

Y ( s , 0 )  =  y ( s )  -  X » [ / 3  -  0q\. (4.5.36)

We define the Gaussian pseudo-likelihood estimators

P* = a rg m in ^e  ] T  Y (s, /3)2 (4.5.37)
s r eS*

and we can see immediately tha t it holds that

Y (s, /3*) [X(s - j n) - h X ( s +  j n)] =  0, n =  1, • • • , p. (4.5.38)
s  r <=S*

Indeed, one can write the solution

/** =  { £  X (s)X T(s)}-1 £  X ( s )X ( s ) ,  (4.5.39)
8 r €S* ST€S*
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which imitates the equation

r;-/30 =  £ { * (s )X (s )} , (4.5.40)

for the true param eter vector /30 =  [/?ji,(b • •' i@jP,o]T £ Indeed, (4.5.40) holds, since 

from the equation

p

E & . .0  [^ (s -J n )  +  X (s + j„ )]  =  X ( s ) - y ( 8 )  (4.5.41)
71=1

we can multiply by X (s — j m) +  X  (s +  j m), m  =  1, • • • ,p, and find the expected values.

As we are going to justify later in Theorem 4.2, if (C6)(i) (or (C6)(ii)) and (C7) hold, 

then for any iT E Zd, we can write

E  * ( s ) * ( s  -  i) /N  £ {X (s )X (s  -  i)}
s T £ S *

as N  —► oo. The consistency of the estimators comes as an immediate consequence of 

that.

Moreover, we can come up with 

/  JV \ 1
n V 2 \ 0 - - 0 o } =  (  —  )  { —  E  X (s)X T(s ) } -1{ W - 1/2 E  X (s)i-(s)>. (4.5.42)

'  '  sTG<S* sTeS*

Again if (C6)(i) (or (C6)(ii)) and (C7) hold, we can write tha t

E  Y ,  X (s)X T(s) - A  r ; , (4.5.43)
s r e S m

as N  —► oo. On the other hand, provided that |£ ,{A (s)3}| < oo, as N  —> oo and 

(C1),(C5)-(C7) hold

N *—i / 2 ^ 2  X (s)y(s) N ( 0,4i^2 • Ip), (4.5.44)
sTe«s*

with similar arguments like in Theorem 3.2. In (4.5.44) we come up with 4, since in the
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(n, m)-th element of the variance matrix, for n, m  =  1, • • • ,p, there are four terms

^ 2  Cov{[X(s -  j n) +  X (s +  i n ) } Y (s), [X(s -  j m +  i) +  X (s +  j m +  i)]V(s +  i)} 
i T G 2 , d

=  ] T  Cov{X(s -  j„ )y (s ) , X(s -  j m +  i)K(s +  i)}
i T G Z . d

+  C o v { X (s - jn) y ( s ) ,X ( s + j m +  i)y (s  +  i)}
iTe z d

+  ^ 2  C o v { X (s+ jn) y ( s ) , X ( s - j m +  i)y (s  +  i)}
iT£Zd

+ Y ,  Cov{X(s +  j „ ) y ( s ) ,X ( s + j m +  i)F (s  +  i)}
ire zd

= 2 ^ 2  Cov{A’( s - j n)y (s ) ,A ’( s - j m +  i)y (s  +  i)}
i T G Z . d

+  2 ^  C o v { X (s - jn) y ( s ) ,X ( s + j m +  i)y (s  +  i)}
i T € Z , d

and the proof for the identity matrix Ip in (4.5.44) is similar to  the one in Theorem 3.2. 

Combining everything together, we can conclude

W1/2[/V -  P 0] N { 0,4i/2 r ; -2 ). (4.5.45)

Thus, we can state the next theorem.

T h e o re m  4.1 (A sy m p to tic  n o rm a lity ). Let the Gaussian and stationary process 

(£(s), sr  e  Zd}, such that

p
J57«(s)K (s-j) ,  j  ^  0} =  - J » )  +  « s + j n ) ]

n =  1

and

V a r{ £ (s ) |£ (s - j) , j  ^  0} =  1

and let the variance m atrix

W J =  V a r{ [ f ( s - j i )  +  f ( s + j i ) , - - -  ,£(s -  j p) +  £(s +  j p)]T}. (4.5.46)

Then if j£{X (s)4} < oo, under conditions (C1),(C5), (C6)(i) and (C7), it holds that

N l /2\j3* -  (30] N {0, A ) (4.5.47)

as N  —► oo. Otherwise if |£'{A'(s)3}| <  oo, under conditions (Cl),(C5),(C6) and (C7), 

it holds th a t

JV1/2[/3* -  j80] N (0 ,4  W ; -2 ). (4.5.48)
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We are not going to prove this theorem, as the parts which are not obvious due to 

the previous derivations are similar to Theorem 4.3, which is proven in the next section. 

Since, it holds for n, m  =  1, • • ■ ,p, that

Cov{£(s -  j n) +  £(s +  j n), f  (s -  j m) +  £(s +  j m)}

=  Cov{£(s -  j„), f  (s -  jm )} +  Cov{£(s -  j„ ), f  (s +  j m)}

+  C o v { £ (s+ jn) , f ( s - j m) } +  C o v { f (s+ jn) ,£ ( s + j m)}

=  2 C o v { £ (s - jn) ,£ ( s -  j m)} +  2 C o v { £ (s+ jn),£(s -  j m)}

= 2 Cov{f(s-jn) + £ ( s + j n) ,£ ( s - j m)},

then if we write

C* = Cov{[£(s—ji)+ £ (s + ji) ,  • • • , £ ( s - jp)+ £ (s+ jp)]T, K (s - j i ) ,  • • • , C(s-jp)]}, (4.5.49) 

it holds tha t

w ;  =  2 c ;  (4.5.50)

and that

A  =  C ; - 2. (4.5.51)

4.5.4 M ethod o f m om ents estim ators

We write the method of moments estimators

3 = [ 4 . - " > 4 r  <4-5-52)

and define them  such tha t

=  ^  2  ^ ( s - jn,3)^(s,3), n = l , . - - , p .  (4.5.53)
sTG5**

The equations above are used when we know the variance v. If v  is also unknown, then 

from the polynomial

&(z) =  ^  (4.5.54)
r e ^

we may define the process

Yb( s) =  b( B )X (s) (4.5.55)

and proceed exactly like before to derive the estimators ri =  1, - • - , p, from the

equations
1



and

bjn = j ^ ;  2  Yb(s ~  jn ,b )y 6(s ,b ), n = l , - - - ,p. (4.5.57)
sres**

From (4.5.54), we may then define the estimators of the coefficients

^  =  (4-5.58)

where the estimated variance is

(4.5.59)
bo

Next, we will prove the properties of the method of moments estimators when we do 

know in advance the variance v. Otherwise, one may read Remark 4.3(ii).

T h e o re m  4.2 (C o n sis ten cy ). Under conditions (C5),(C6)(i) (or (C6)(ii)) and (C7), 

it holds tha t

as N  —> oo.

P ro o f. For any (3 E B and any n  =  1, • • • ,p, we define the quantity

QM3) = /3jn.„ + - L  J2  Y(s-U,P)Y(*,P)
sT6 S**

s Te«s**

" jvF E ly <s -  j»)XT(s) + y  (s)XT(s -  On)] t/3 -  /30] 
s Tes* *

+  f t - ? on - ^  £  X ( s - j n)X T(s)] L 9 - ^ 0]+/3 j n -K
sTG S**

(4.5.60)

The estimators we have defined set

Qn(P) =  0, n = l , - - -  ,p. (4.5.61)

Thanks to  the same argument used back in Proposition 2.6, the assumption of indepen­

dence of F (s )  with X ( s  +  j ) , j  >  0 under (C6)(i) together with (C7), allows us to write 

both {-X’(s), s T E Z d} and { ^ (s ) ,  sT G Z d} as linear combinations of the same process, 

say

{£(S)}~/HJ(0,<72).
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Then as N  —> oo, it holds that

^  E  y ( s ) y ( s - j n) -£-* £ { y ( s ) F ( s - j „ ) }  =  -0 jn,o-«', (4.5.62)
s r e5**

for any n = 1, • • • ,p. Prom (4.5.60), we can write immediately tha t

Q n ( P o )  =  E  W - W  +  t o ' ^ O ,  (4.5.63)N*
sT€<S**

according to (4.5.62). Since Qn{fl), n  = 1, •••,]?, are smooth functions of /3, equations 

(4.5.61) and (4.5.63) imply that

P - ^ P o  (4.5.64)

as N  —> oo.

T h e o re m  4.3 (A sy m p to tic  n o rm a lity ). Under conditions (Cl),(C5),(C6)(i) and 

(C7), it holds tha t

N ^ l P - P v l - ^ N i O ' A )

as N  —> oo. Moreover if (C6)(ii) holds and |£ '{X (s)3}| <  oo, the variance matrix

*  =  l6n,m]Pn,m=1, is such tha t 8n m̂ is equal to

0}  ~  2  ^2j„ +  £ j ^ ± j n  ^ j+ jn  ' jn > 71 =  171

^ j+ jn  ’ ^ j~ jm  “  2(/5 jn _ j m +  /?jn+ jm ) +  X )j^ O jm- j n f t  ' f t+ jn - jm J  71 7  ̂ 771

P ro o f. Prom (4.5.60) and (4.5.61), we can write for n =  1, ■ • • ,p,

- [ f t»  -f t» ,o ]  ' V -  ^  , d „ [ 3 - / 3 0] =  2  [ y ( s - j n)y (s )  +  /?jnio -H , (4.5.65)
sres**

where

D n =  [Dn,i. • • * 1 D n ,p] (4.5.66)

and for any n, m  =  1, • • • , p, we define

Dn,m — ^   ̂ {P^(® Jn jm) “I" A"(s Jn “I" Jm )]^(s)
s T€«S**

+  [X(s — j m) +  A”(s +  j m)]y (s  — j n)} +  Op(iV||/3 —/30||). (4.5.67)

Using the same argument as in Theorem 4.2, we can write as N  —> oo

Ai,m P I “ 2 ’ ^  n =  m

^  1 0, n / m
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and, so,

J f  ' D  - 2  - v-  lp,

where Ip is the identity matrix and

Stacking ah the equations together, we can write them as

1/2

(4.5.69)

(4.5.70)

1 /  N** \  '
JVV2[ 3 - / 3 0] =  — D } - 1 ( - ^ - )  J V - 1/2 Yl, M (s)> (4-5-71)

'  '  s T€«S**

where we define

M (s) =
Y ( s - h )

Y(b) - P 0 -v.

It holds tha t

(4.5.72)

(4.5.73)£{M (s)}  =  0.

Since (F (s ) , sT G Zd} is strictly stationary and AT-dependent process, for any A G 0 l p , 

the process (ATM (s), sT G Zd} is also a zero mean, strictly stationary and if*-dependent 

process for some finite positive integer K*. As a result, we can write as N  —*• oo and 

(C l) holds

n **-i /2 At M (s) N ( 0 ,u 2 • ATA  A), (4.5.74)
s Tes**

where the exact form of the variance m atrix A  is given later.

Finally, from the Cramer-Wold device and (4.5.74), it holds tha t

AT*—I/2 M (s ) ^ ( 0 ,  v2 • A )
sres**

From (4.5.69), we can also write as N  —> oo

-z/1 Ip ~  b  ’ D V ' Ip'

Combining (4.5.71), (4.5.75),(4.5.76) and under (C l), it holds that

w 1/2[ 3 - A ) ] - ^ w (o, a )

(4.5.75)

(4.5.76)

(4.5.77)

as N  —► oo.
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T he variance m a tr ix  of th e  estim ato rs

First, we define the new processes

and

M *(s) = Y * { s ) - P 0.

(4.5.78)

(4.5.79)

(4.5.80)

Y ' (  8 - j p)

Then, we consider the minimal set of finite cardinality, say T* % such th a t T  C c  

and we can write

Cov{M *(s),M *(s +  j)} =  Opxp, j r £ JF*.

It holds th a t

A  =  Y  C ov{M *(s),M *(s+ j)} . 
jTe.F*

(4.5.81)

(4.5.82)

Similarly, we can define

M *(s) =

Y ' ( s -  j„)

y » (4.5.83)

and

A  =  Var{M*(s)} +  £ [C o v { M * (s ) ,M ;(s  + j)}  +  CovT{ M ;(s),M J(s  +  j)}]. (4.5.84) 
j>0

For convenience, we consider

th =
0b  j r  e  ^0

o, Y i ?

When j =  0, the (n, m )-th element of Var{M*(s)} is equal to

cov{y* (s-j„ )  r * ( s ) , y ( s - j m) y*(s)} 

=  Cov{y*(s-j„) y*(g ) ,jf* (s-jm) x*(s)}

-  Y & Cov{y*(s - j „ ) y ( s ) , x * ( s - j m) w * ( s - i ) }  
i/o

-  Y  A* Cov{y*(s - j „ )  y*(s),x*(s -  jm -  i*) x*(s)}
i*#0

+  Y  f t  ■ a* C ov{y*(s-jn) y*(s),x*(s -  jm -  i*) X ’ (s - 1)>.

(4.5.85)
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Now, since both (C6) and (C7) hold and thanks to Proposition 2.6, we can write, in 

general, that

Cov{y*(s - j n) y * ( s ) ,x * ( s - j m) x * (s)}  =  I lj
I 0 , n  7̂  m

that

C o v { y * (s -j„ )  y*(s ) ,j f* (s -jm) x * (s  -  i)} =  o,
¥ 0

that

Y  A- C o v { y * (s -j„ )  y* (s ) , j v * ( s - j m -  i*) x * (s)}  =  J ° ’ n  =  m  t
i'^ O   ̂ A n -jm ) U ^  Til

and finally that

Y  A ■ A- Cov{y*(s -  jn) y*(s),x*(s -  jm -  i*) x ' ( s  -  i ) }  =  /?,„ ■ A-j„ =  A . • A™-
i . i V o

The same pattern can be used for the lags j > 0, when we need look at the (n, m)-th 

element of the covariance matrix Cov{M*(s), M*(s +  j)} . This is equal to

Cov{y*(s -  j n) y * (s ), r * (s  +  j -  j m) y * ( s + j)}

=  Cov{y^(s -  j n) y* (s ), x * ( s + j -  j m) x * ( s  +  j)}

-  Y &  Cov{ y * ( s - j n )  y*(s),A-*(S + j  - j ra) j f ( s + j  - i ) }
i# 0

-  Y  A* Cov{y*(s-j„) y*(s),x*(s + j - j m-i* )  x * (s+ j )}
i*^ 0

+ Y  A -A -C o v {y * (s -jn) y * ( s ) , x * ( s + j - j m- i * ) x * ( s + j - i ) } .
i)i*7^0

Again, it holds for j > 0, that

that

that

Cov{y*(s -  j„) y*(s),x ’( s+ j -  jm) x ' ( s + j)} = o,

Y U  & Cov{y*(s-j„) y * ( s ) ,x * ( s + j - j ro) x * ( s + j - i ) }
j> 0  i^O

Pjn+3 n > m
5

A . + j m + A m - J » .  n < m

Y  A* Cov{y*(s-jn) y * ( s ) ,x * ( s + j - jm-i*) x*(s+ j)}  = 0,
i*7̂ 0
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and finally that

Y1  A -A *  C ov{K *(s-j„ ) F *(s),X *(s +  j - j m - i* ) X * ( s  +  j - i ) }  
j > 0  i , i * ^ 0

S j > 0  f t  ' f t + j n - j m  +  J>°> f t + j n  ’ f t - j m >  71 — m

E j > 0 ,  f t  '  f t + j n - j m  +  f t + j n  ' f t ~ j m  7 71 <  771jrJm”jn J ĵm

As a result, if we write £n>m for the (n, m )-th element of A , then it holds th a t it is equal 

to

1 Pf ~  2 p2jn +  ft+jn • f t “jn> 72 =  771

^ j^ -jn  jm ft+jn * ft'jm  _  2 (ftn- jm +  f t n+jm) +  X j#O jm- j n f t  ‘ ft+jn-jm> n ^  HU
(4.5.86),

R e m a rk  4.3. (i) After (4.5.85), we may define

Pi = \ ~ 0i ' 3 *  °  . (4.5.87)
[ 1 , j =  °

and then re-write

7̂1,771 =  Pj ‘ Pj+jn-jm "1" Pj+jn ’ Pj-jm > (4.5.88)
jTGZd jTGZd

for all n,772 =  1, • • • ,p.  This formula has been obtained under the condition that T (s)

and A ( s  — j)  are independent for any j  7̂  0. The formula (4.5.88) strongly resembles

formula (7.3.13) of Proposition 7.3.4 of Brockwell and Davis (1991, p.230) which gives

the (72, 77i)-th element of a variance m atrix equal to

-  3)pjn • Pjm +  Pj ■ Pj+jn-jm +  5 3  £>+•>" ’ PMm (4.5.89)
jTezd jTezd

and 77 is such tha t

£'{6:(s)4} =  77 • a4 < 0 0 . (4.5.90)

The variance m atrix there refers to the estimators of the theoretical auto-covariances of 

an invertible, one-dimensional moving-average process. The moving-average might have 

a finite or infinite order and {e (s), s T G Zd} is the sequence of uncorrelated random 

variables of interest.

The same proposition requires (4.5.90) as a condition, i.e. th a t the fourth moment of 

the sequence {e (s ) , s T G Zd} is finite, but it does not require condition (C6) like we did,
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i.e. th a t the other error sequence, say, {w(s), s T G Zd} is also a sequence of independent 

random variables. Of course, for Gaussian random variables we know that 77 =  3 and the 

two formulas give the same result. If the sequences are not Gaussian, one may always 

estimate the coefficients of best linear predictor and derive consistent and asymptotically 

normal estimators if (4.5.90) holds.

(ii) W hen we do not know the variance u, we will need to proceed as follows. First, 

we will estimate (p+1) unknown parameters according to (4.5.56) and (4.5.57). Then we 

will follow the same sequel as Brockwell and Davis (1991, p.221) for the Theorem 7.2.1. 

A condition on a finite fourth rather than third moment would be necessary this time, 

and we would expect to come up with B artlett’s formula for the elements of the variance 

m atrix of the estimators.

4.6 Tests for spatial auto-linear schem es

4 .6 .1  G o o d n e ss  o f  fit t e s t

For a stationary Gaussian process (A"(s), s r G Zd} and a given set To, 

the restrictions mentioned before, we want to test whether we can write

J57{X (s)|X (s-j) =  z ( s - j ) ,  j T G ^o} =  X  $  x (s - j)
j TG^0

and

V ar{X (s)|X (s -  j)  =  m(s — j), j T G ^ 0} =  v,

where u is a known constant and {/3j, j T G J^o} are non-zero coefficients.

We write

Ho : /5j,o =  0, j T G To 

Hi : otherwise

(4.6.3)

(4.6.4)

Under the null hypothesis, it holds th a t J-*o = 0 and we can write under (C l),

N 1' 2?  JV(0,Ip)

and

N . P TP ^ X 2

as N  —► oo.

which satisfies

(4.6.1)

(4.6.2)
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The test presented above is usually known as the Portm anteau test as it tests whether 

the auto-correlations of the transformed sequence { Y (s), sT G Zd} are all zero. If /3j;o =  0

for all j T G Zd, then {A (s), sT G £ d} is a sequence of independent random variables.

We expect our estimators /?j, j T G To, to be close enough to 0 and the value

y (s , 3 )  =  X[a)  -  £  3j X ( s  -  j)  (4.6.5)
jT€Jro

to be close enough to X  (s). Under the null hypothesis, the original and transformed 

series are the same and they share the same auto-correlation function.

4.6.2 Test for zero coefficients

We consider the set T \  C {!Fq fl {jT : j  >  0} with cardinality pi  and we are interested 

in testing

Ho : Pj,o =  0, j T G T \

H  i : otherwise

* .̂ .7-
We may write the estimators /3 =  [/3i, /32]T, where refer to the lags j T G T \  and

(32 to the remaining lags. Under the null hypothesis and as N  —► oo, it holds that

N V % - ^ N (  0 ,A 0 ,  (4.6.6)

where

=  [ I p ,  o pix(p-pi) • A -
Ipi

0(p_Pi)Xpi
(4.6.7)

and A  is the covariance matrix of the estimators as defined before. And, of course, 

(4.6.6) can be turned to

(4.6.8)

Since the variance m atrix A i involves the true but unknown coefficients /?j, we may 

replace it by its consistent estimator A i by setting /?j, instead. As a result, under (Cl)

(4.6.9)

as N  —► oo.
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4.7 A pplication  on th e  clim ate data

We have the observations {X(u, v), u = 1, - - • ,5, v = I , --  - ,17} used back in Sec­

tion 3.7.3 for the last time recording t = 100 only. In other words, for the 8th of March 

2002, we have available the measurements of sea level pressure on 85 regular spatial 

locations. Again, the longitudes are from 20 degrees West to 20 degrees East and the 

latitudes are from 50 to 60 degrees North.

Originally, we consider a stationary spatial process {X(u ,  v), u, v, G Z}. The fact 

tha t we have used the same dataset as in the previous chapter should not be confused 

with the fact th a t we are using two instead of three dimensions. In other words, we do 

not analyze the observations at a single time point, thinking tha t there are other time 

points as well. T hat would imply tha t we are using three dimensions and we need an 

appropriate setting for a stationary process on Z3. Instead, we are using two dimensions 

and the process of interest now takes place on Z2.

Figure 4.1 presents all the 85 realizations of X  (u , u), from which the overall mean has 

been subtracted. Although we have treated our series as a stationary process over Z2, the 

figure reveals th a t there are serious reasons to consider tha t this is not true. An additive 

main effect seems to be taking place over the dimension ‘North-South’ and it is probably 

affecting the expected values of the process. Similarly, a periodical component seems to 

be related to the first-order properties of the process with respect to the dimension ‘East- 

W est’. In such cases, a more analytical study is required to come up with a stationary 

process from the original one, and then to apply the methods introduced.

There are N  =  5 x 17 =  85 observations in <S which are reduced to N* =  3 x 15 =  45 

elements of the set S*, when we exclude the extreme cases 60 and 50 degrees ‘North’ 

from the latitude vector and —20 and 20 degrees ‘W est’ from the longitude vector. This 

is because we will fit the first-order scheme, as it will be described next. We consider 

the prim ary dimension to be the y-axis, i.e. the- ‘North-South’ axis and the secondary 

dimension the ‘East-W est’. The directions ‘South’ and ‘W est’ axe considered as the ‘past’ 

of each dimension, respectively. This choice is not essential as the auto-linear scheme 

formulation is not dependent on any ordering on Z2. Still, we have mentioned this, as 

the final set of selected indexes S** is comprised of N** = 2 x 14 =  28 elements excluding 

one more location from the ‘past’ of each dimension, i.e. the 52.5 degrees ‘North’ and 

17.5 degrees ‘W est’.

185



60 degrees North
57.5 degrees North 
55 degrees North
52.5 degrees North 
50 degrees North

-1000
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20 degrees West 17.5 degrees West 15 degrees West 12.5 degrees West 
West

Figure 4.1: The centralized series on the 8th of March 2002 versus the ‘East-West’ axis 

for the different latitudes of the ‘North-South’ axis.

The 85 original observations had a sample mean X  = 99,892 and a sample variance 

a \  — 1,352,616. We created the centered version

v , x X ( u , v ) - X

We would like to see whether the first-order filter fits the data and whether we can 

write

X c(u, v ) = Pi [.X c(u , v — 1) +  X c(u, v +  1)] +  p2 [Xc{u -  1, v) +  X c(u +  1, v)], (4.7.1)
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where X c(u , v) is the best linear predictor of X c(u, v ) based on all X c(u — k ,v  — l), k , l  ^  0 

and the prediction variance of the original series is

v = 10,000 • Var{ X c(u, v) — X c(u , u)}. (4.7.2)

We also require th a t the following condition is true

|/?i I +  \Pi\ < 0.5. (4.7.3)

We saw back in Section 4.5.4, tha t when we do not know the conditional variance u, 

we define our estimators according to (4.5.54) to (4.5.59). In order to find our estimators 

Pi, P2 and u, for every Pi,P2 =  —0.49, • • • ,0.49, such th a t \Pi\ +  \p2\ <  0.5 and every

v* = v /1 0 ,000 =  1,2, • • • , 200, (4.7.4)

we follow the steps numbered next. The upper bound 200 for the conditional variance

that we set in the param eter space, might be justified by the argument that v  is smaller

than the actual variance which was estimated by the sample as 1,352,616.

1. We set bQ = l /v*  and bj = ~ P j / i j  =  1,2.

2. We compute Yb(u , v) = bo X c(u, v) +  &i [X c(u , v — 1) +  X c(u , v +  1)] 4- 62 [X c(u — 

1, v) +  X c(u +  1, v)] for all [u, v]T € S*.

3. We compute the sample auto-covariances

acof0 =  £  Y£(u, v) / N "
[u,u]T(E<S**

and

acvfi  = ^  Yb(u,v)Yb(u,v  -  1)/N**
[u ,v]T € S * *

a c v h  = Y ,  Yb{u,v)Yb( u - l , v ) / N " .
[ u ,v ] T £ S * *

4. We compute the quantity

S { v ,p i , p 2) =  |acu/ 0 -  601 +  \acvfi -  bi\ +  \acvf2 -  b2\. (4.7.5)

Now, if we would select our estimators by finding the values th a t would minimize (4.7.5)

over all the candidate values, we would be more likely to estimate u as big as possible,
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as the distances \acvfj — bj |, j  = 0 ,1 ,2 , depend on the variances of the original and 

transformed processes. T hat would distort the results. Indeed, for the transformed series 

{Yb(u} v), u, v e  £}, the bigger the u the smaller the actual variance of the process. As 

a result, we may replace (4.7.5) in Step 4 by

S*(u,pu p2) =
acvfo

bo
-  1 +

acvfi
h

-  1 + acvf2
-  1 (4.7.6)

and select our estimators P ,/?i,/?2 that minimize (4.7.6).

We estim ated the prediction variance as u =  1,220,000. The estimates for the 

coefficients /?i,#2  might be found in Table 4.1. Table 4.1 demonstrates that there is no

Table 4.1: Estimated Prediction Coefficients and goodness of fit test.

Estim ated coefficient P N**1/2 P Significance at 5% level

Pi = 0.48 281/2 • 0.48 =  2.54 >  1.96

p2 = - 0.01 281/2 • (-0 .01) =  -0.053 >  -1 .96

need to move to the second-order model by including interaction terms and assuming 

th a t

X c(u,v)  =  /?i [Xc(u,v  -  1) + X c(u, v +  1)] +  /?2 [Xc{u -  1, v) +  X c(u +  1, v)]

+  71 [Xc{u -  1, v -  1) +  X c(u +  1, v 4-1)]

+  72 [X c(u +  1, v — 1) +  X c{u — 1, v +  1)].

In the contrary, one might exclude the parameter P2 from the model and ignore the

influence of the neighbours tha t are located in the dimension ‘South-North’. Still, the

goodness of fit test generates

X 2 =  2.542 +  (—0.053)2 =  6.454409

with observed significance level 3.97% using 2 degrees of freedom, which allows us to 

stop here and consider representation (4.7.1) appropriate. Let us not forget that under 

condition \fi\ \ +  |/?21 < 0.5, it is not surprising that one of the two parameters will have 

to absorb and reflect all the discrepancies from the independence assumption, if we are 

expecting any significant results at all.

In conclusion, it seems that the sea level pressure follows a dependence over both 

the two dimensions of space. It is mainly for the dimension ‘East-W est’ tha t the values 

of the process are associated; it could be considered tha t any dependence tha t is taking 

place over the ‘South-North’ axis is so weak, that it could be omitted.
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Chapter 5

M odeling data observed  

irregularly over space and 

regularly in tim e

5.1 Introduction

When the data  has been collected regularly over time and irregularly over space, it is 

difficult to impose an explicit auto-regressive structure over the space. In this chapter, 

we assume th a t we study a phenomenon on a number of fixed locations, and for each 

location the process forms an auto-regressive time series. The dependence over space is 

reflected by the covariance m atrix of the noise process, which is ‘white’ in time but not 

over the space. We consider the asymptotic properties of our inference methods when 

the number of observations in time only tends to infinity.

We observe over time a multi-dimensional process {Yi(sj), j  = 1, • • • , iV, t  G 2.}, 

which takes place on any locations s j  G j  = 1, • • • , iV, for a positive integer number 

d. In order to model the serial dependence, for each fixed location j  =  1, • • • , N,  we 

consider th a t {yi(sj), t G Z}  is an auto-regression caused by a white noise sequence 

{£Tt(sj), t  G Z}. The N  auto-regressions take place simultaneously on the different 

sites. For each fixed t G Z, we parameterize the spatial interdependence between the 

N  sites, via the variance m atrix of the random variables £t(sj), j  = 1 , ••• ,iV , which 

is not a function of t. In Section 5.3.3, we use a Gaussian likelihood to estimate both 

the auto-regressive coefficients and the elements of the inverse covariance matrix. When
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{[et(si), • • • , £f(sjv)]T, t  e  Z} form an iV-variate sequence of independent and identically 

distributed random vectors, we may prove the consistency and asymptotic normality of 

estimators, as the number of observations increases over time.

The estimate of the inverse covariance m atrix provides estimates for the coefficients of 

best linear predictors for a location j  =  1, • • • , N,  based on all other locations k ^  j,  k = 

1, • • • , N,  and estimates for the prediction "variances. As a result, the parametrization in 

terms of the inverse variance matrix is not only useful when writing down the Gaussian 

likelihood of observations, but also a meaningful interpretation regarding the dependence 

between the different sites, since it does not imply any unnatural ordering of the sites, 

as we are going to see in detail in Section 5.2.1. This is a similar idea to this used in 

Chapter 4, which allowed for naturally justified statistical analysis over space. While in 

Chapter 4 stationary spatial processes on the d-dimensional lattice Zd were considered, 

here we only deal with random variables on N  fixed sites on 0id, which do not have to 

follow any pattern  in their second-order properties. Finally, in Section 5.4 we proceed 

with hypotheses testing for the auto-regressive parameters, as well as for the coefficients 

of best linear predictors and for the prediction variances.

Other statistical analysis for data distributed regularly in time only, has been pro­

posed before. Hjellvik and Tjpstheim (1999) also assumed n different auto-regressions 

to be taking place over time. Nevertheless, they embedded the interaction between the 

n sites, only into the first-order properties of the processes and, thus, they used additive 

models with n  nuisance parameters, expressing the spatial dependence, and with se­

quences of uncorrelated random variables over space. As they focused on the estimation 

of the auto-regressive coefficients only, they studied the asymptotic properties of the es­

tim ators, as both the number of observations in time tends to infinity and the number of 

sites under observation n —> oo. W ith their work, Zhang, Yao, Tong and Stenseth (2003) 

have escaped the auto-regressive structure at each post over time and they have assumed 

models, which are not necessarily linear. They have also clothed the temporal models at 

each post with spatially dependent noise, similarly to our approach. A non-parametric 

method of spatial smoothing, based on kernel functions, has been proposed there, and 

the results have been applied on the mink and muskrat Canadian fur sales. We have 

used the same dataset in Section 5.6, in order to apply our methods. There are two time 

series at each of 82 locations over a period of 25 years; via a bivariate time series at each 

post we have considered both of them to be dependent series with independent variables
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some of their lagged values.

5.2 Spatial m odeling

Before including tim e in our analysis, it would be interesting to focus on the form of 

spatial interdependence. For a given set of N  different locations, say {sj G 0ld, j  = 

1, • • • , N } ,  we consider the zero-mean random vector

Y = [y(si),--- , Y { s n ) ] t . (5.2.1)

We let

=  E { Y ( Sj) Y ( s k)} (5.2.2)

and assume th a t 7j j  <  00, j  =  1, • • • , iV, and that the m atrix V  =  Var{Y} is positive- 

definite. We do not make any other assumption on the form of dependence between the 

different sites. In the general case tha t the sites are not scattered on the d-dimensional 

lattice, we would expect the variance matrix to include up to q = N ( N  + l ) /2  different 

elements. We write down the inverse variance matrix

V 1 =

O l.l - a  1,2 • • • —Ol ,N

-<*1,2 0,2,2 ’ ' • —  02 ,N

~O l  ,JV - 0 2  ,N Ojtf,N

and let the two (q x  1) param eter vectors

(5.2.3)

a  =  [ait2 , • • * , Gl.JV, 02,3, ' * ’ , 0 2 ,N ,  • • • , O N - l , N , 0 1 ,1 , • • • , On ,n ]T (5.2.4)

and

7  =  [7 i,2 , • • • , 7 i ,iv , 72,3, • • • , 72,1V, • • • , 7 iv - i , iv ,  7 i , i ,  ■ • ■ > 7iv,iv]T- (5.2.5)

We consider A  C TZq, such th a t the following condition is true:

(C8) For any a  G A,  it holds tha t all the eigenvalues of the symmetric m atrix 

V  are positive and finite.

For observations { Y ( s j ) ,  j  =  1, • • • , N},  we may write down the Gaussian likelihood 

as a function of the param eters

1 1 N N 
L (a ) =  7 ^ y v l V  1|1/ 2exP{—g “  2 S  ai>k y (sj ) y '(sfc)]}’ a  G A

' ' 7=1 j , k - 1,3<k
(5.2.6)
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If the random variables {Y(sj), j  =  1, • • • , N }  are Gaussian, then we may find the 

sufficient statistic

S =  [y (s i)Y (s2), • • • , Y(si)Y(sjv), Y(S2)Y(S3), • • • , Y (s2)Y (s*), ■ • ■ , Y ^ - i J Y ^ ) ,  

V (si)2,-- - ,K (sN)2f ,  (5.2.7)

which gives the mean-value parametrization

E {  S} =  7 . (5.2.8)

This implies th a t

/ ( 7 ) =  Var{S}-1  (5.2.9)

is the Fisher information m atrix for 7 . The Fisher information m atrix for the natural 

param eter vector a  is then equal to

/ (a )  =  J - / ( 7 ) - J r , (5.2.10)

where

J  =  d7 T/d a . (5.2.11)

5 .2 .1  In te r p r e ta t io n  o f  th e  in v erse  covarian ce  m a tr ix  a n d  b e s t  lin ear  

p r e d ic to r s

Besag (1975) tried to find a natural interpretation for the elements j , k  — 1, • • • , N,  

of the inverse dispersion m atrix V -1 , rather than trea t them  as abstract quantities. The 

following proposition reveals how these elements can often be interpreted in terms of 

conditional expectations and variances. Of course, in this chapter we have considered 

the indexes j  =  1, • • • , N,  to refer to specific locations of once more we should not 

forget the case where the index j  might refer to the points of a time series on Z , and the 

next proposition could then be related to the classical smoothing for time series.

P ro p o s it io n  5.1. Let Y  =  [Y(si), • • • ,Y(sjv)]r be a N  x 1 real-valued random vector 

such th a t J5{Y} =  0 and V  =  Var{Y} is a positive definite m atrix with elements 

E { Y (sj ) Y (s/fc)} =  7 ^ ,  j,  k = 1, • • • , N,  such tha t 7j j  < 00, j  = 1, • • • , N.  Then, if

N
E { Y ( s j ) \ Y ( s k) = y( Sfc), k = 1, • • • , N, k ±  j }  = (3jyk y{ sfc), j  = I ,--  - ,iV, (5.2.12)

fc=i,
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and

V a r{ y (s j) |y (s fc) =  y(sfc), k =  1, • • • ,JV, k ^  j }  = vj e  (0,oo), j  =  1, • • • , N,  (5.2.13) 

it holds tha t

V " 1 =  A -1B, (5.2.14)

where A =  diagfz^-]^ and B is the N  x N  m atrix with diagonal elements 1 and elements

~Pj,k a t the j - th  row and fc-th column, j,  k =  1, • • • , N, j  ^  k.

P ro o f. For any j ,  k =  1, • • • , N,  and j  ^  k, it holds that

=  ^ { y f o j y  (sfc)} =  £ { E { y ( s j)y (Sfe) |y (s m) =  y (sm), m  = 1, • • • ,  n ,  m  ±  j } }  

= E { Y ( s k) E { Y ( s j ) \Y ( s m) = y(sm), m =  l , - - - , iV ,  m  ^  j } }
N  N  N

=  E { Y ( Sfc) Y ,  ft,™ =  E ft.™ £ { y (s* )y (s m)} =  E  ft.m • 7m,k
m=1, m=l, m=l,mjij m^j

or
N

lj,k ^   ̂ Pj,m ’ ~Ym,k — 0 (5.2.15)
m=l,
mjtj

On the other hand, we can write for j  =  1, • • • , N,

Uj =  £ { y ( Sj)2|y ( s fc) =  y(st ), fc =  l , . . . , i V ,  k ± j }  

-  E { Y ( Sj) \Y{Sk) = y(Sk), fc =  l , . . .  ,N ,  k ^ j } 2 

=  £ { y ( s j ) 2|y ( sj;) =  yCst), k  =  1, • • • , N, k  #  j }
N  N

~  [ ^ 3  Z/(sm )][^3 Pjfc 2/(s fc)]
m= 1, fc=l,
m?ij k ĵ

or
N  N

E{vj} = £{y(s,)2} - E  ft,m E ft.* s{y(sm)y(st)}
m=l, fc=l,

kjij
N  N

= 'Yjj ~ )   ̂ Pj,m Pj,k • lk,m
m=l, fc=l,
m9ij

Since Vj E (0,oo) and, according to (5.2.15), for m  ±  j ,  it holds tha t 

Ysk=\,k±j Pj,k • 7fc,m =  1j,m* we can conclude

N

vj — 7j,j ’ 7m>j
m= 1, 
m^j
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or
N

— y i  7m ,j • /3 j ,m { l / l/j }  =  1.
m=l,

Re-writing (5.2.15) we get 

N

~  7m-fc ' =  °> h k = l , - - -  ,N ,  3
m — l ,

Now, if we write the m atrix

1M - P i , 2 / v i ••• P i , n / v \

. i ~P2,l/v2 1/^2 ••• ~ P 2 , n / v 2
A B  =

_ —P n , i / v n  ~ P n , 2 / v n  1/^iV

and multiply with V  from the right side, we find the unit m atrix I#  due to equations 

(5.2.16) and (5.2.17). ■

R e m a rk  5.1. (i) Some consistency conditions must be imposed to make the scheme 

valid. The symmetry condition implies that

Pj,k/vj = P k j / v k , j ,  k = 1, • • • , N, j ^ k ,  (5.2.19)

whilst positive-definiteness can, in general, only be checked once the coefficients are 

known numerically (Besag, 1975).

(ii) Every positive-definite dispersion m atrix V, with finite elements in the diagonal, 

determines unique values for B  and A. Indeed, those elements might be found imme­

diately if we write the unique inverse matrix V -1 as a product of two matrices A -1B, 

where A is a diagonal matrix and B has elements unity in the main diagonal. Then the 

matrices A and B  are unique, too. Still, that does not imply th a t the elements of B and 

A are necessarily coefficients of linear conditional expectations and conditional variances, 

respectively. After Remark 5.1, we will see exactly what those elements represent, in 

general, and how Proposition 5.1 is a special case of that.

(iii) In the Gaussian case, the class of all valid conditional schemes is, in fact, equiv­

alent to  th a t of all multivariate normal schemes and one can always find the conditional 

expectations (5.2.12) and conditional variances (5.2.13) from the unique decomposition 

A -1B  of the inverse variance matrix. Thus, the conditional formulation does not imply 

any inherent simplification of the parameter space (Besag, 1975).
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(iv) According to Besag (1975, pp.182-183), the equations (5.2.12) and (5.2.13) allow 

us to use the term  auto-normal scheme for {Y(sj), j  =  1, • • • ,iV}, as they can be 

obtained by Gaussian random variables. This should be, by no means, confused with the 

(weakly) stationary auto-normal formulation, as defined in the previous chapter, where 

the conditional expectations and variances are the same for all sites sr  € Zd, given the 

values of all other points on the lattice. In other words, for any N  Gaussian random 

variables (Y (sj), j  =  1, • • • ,iV} with second-order properties, which are reflected in 

the covariances 7 ^ ,  j,  k = 1, • • • , N,  and in the variance m atrix V , the inverse variance 

m atrix comes from Proposition 5.1, while Chapter 4 refers to the second-order properties 

of some (weakly) stationary processes, which might also be Gaussian.

Proposition 5.1 shows how the representations (5.2.12) and (5.2.13) result in the 

decomposition (5.2.14). Of course, even when (5.2.12) and (5.2.13) do not hold, the 

unique inverse variance m atrix V -1  can be uniquely decomposed as

V -1  =  A - 1B, (5.2.20)

where A is diagonal and B  has 1 on the main diagonal, as we explained in Remark 5.1(ii). 

Next, we answer the question what do the elements of the matrices B  and A represent 

in general.

For any location j  =  1, • • • , iV, we define

N

? ( Sj)  =  £  0},k Y ( s k), (5.2.21)
fc=l,fc/j

to be the best linear predictor of Y (sj), based on all other sites available k = 1, • • • , N, k ^  

j ,  in the sense tha t

N

E { Y ( SJ) -  ? ( s , ) } 2 =  min £ { y ( s 3-) -  ^  y (s *)}2- (5-2-22)

Then it holds tha t

Cov{K (s3) -  Y { Sj), Y ( Sfc)} =  0, k  =  1, • • • , N,  k  /  j ,  (5.2.23)

or, similarly,
N

'Yj,k ~  ^  3 Pj,m " 7m,k =  0? k =  1, • • , N , k  ^  j.  (5.2.24)
•m— 1,
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On the other hand, we can define the prediction variances as

N

Vj = V ai{y (sj) - y (s ,)}  =  C ov{y(Sj) - y ( s j ) ,y ( s , ) }  =  l j d -  Y ,  (5.2.25)
771= 1,
mjij

for j  = 1, • • • , N.  Now, we may re-write (5.2.24) and (5.2.25) as .

N

7m>fc ’ A>»{1/ l/i}  =  0, j ,  fc =  1, • • • , iV, A: ̂  j ,  (5.2.26)
m=l,m^j

N

7j , j{ l /v j }  ~  5 3  7m,j ■ — 1) j  =  ' ■' > N.  (5.2.27)
m=l,
m=£j

Equations (5.2.26) and (5.2.27) do imply the decomposition (5.2.20), as when we multiply 

A -1 B by V  from the right side, we will come up with the identity m atrix I jv- Indeed,

we may verify the symmetry condition, as follows. For any j ,  k =  1, • • • , N ,  and j  ^  fc,

it holds tha t

C ov{y(sj) -  ? ( Sj), Y(Sfc) -  y ( s fc)} =  C o v { y (s j) ,y (s fc) -  y ( Sjfc)}

-  Cov{Y(Sj),Y(Sfc)-Y(sjt)}

=  - c o v { y ( Sj),y(sib) -  y(sfc)}

= - p jjk Cov{y(Sjfc), y(sfc) -  y(sfc)}

=  -Pj,k  Var{y(sjfc) -  y(sfc)} =  - P j tk • vki

due to the fact th a t Y(sfc) — Y(sfc) is uncorrelated to Y (sj) and tha t Y ( s k) is a linear 

function of Y (sm), m  = 1, • • • ,N ,  m  ^  k, and so, uncorrelated to Y(sfc) — Y ( s k) too. 

In the same way, we can write that

Cov{Y(Sj) -  y(sj-), y(8fc) -  f(sfc)} =  - 0 kJ ■ Vj,

and combine both to derive th a t

Pj,k ' Vk = Pk,j ' Vj. (5.2.28)

Equations (5.2.26) and (5.2.27) together with (5.2.28) perform the decomposition of the 

inverse dispersion m atrix (V -1 ) now in terms of coefficients of the best linear predictors 

of each random variable based on all other variables (B) and the prediction variances 

(A).
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5 .2 .2  C o m p u ta t io n  o f  th e  in verse  covar ian ce  m a tr ix  a n d  th e  in n ova­

t io n s  a lg o r ith m

Suppose th a t for a set of observations { Y (sj), j  =  1, • • • , N} ,  we want to write down the 

exact Gaussian likelihood (5.2.6), when we know the covariances between the random 

variables of interest, expressed in the parameter vector 7 . This involves the computation 

of the inverse variance matrix V -1 and its determinant.

We have seen before how the unique decomposition (5.2.20) generates the equations

(5.2.24) and (5.2.25). One has to take three steps. The first step is to find the coefficients 

Pj,m, j , m  = 1, • • • ,N ,  j  7̂  m,  by solving the equations in (5.2.24). Next, from (5.2.25) 

to give the solutions for Uj immediately. The third step gives the elements of the inverse 

dispersion m atrix

1 fv j ,  j  = k

= Pkj /vki j

Looking back at the first step, one has to find the N ( N  — 1) different coefficients 

from the same number of equations. Actually, this can be simplified to N  independent 

linear systems, j  =  1, • • • , iV, with N  — 1 unknowns each. For example, for j  =  1 the 

first system is

aj,k — (5.2.29)

72.2 73,2

72.3 73,3

lN ,2

lN ,3

72 ,N  73 ,N • * • l N , N  _

and then 1

i-H

1

72,2 73,2

Pi,3
=

72,3 73,3

. 72 ,N 13,N

Pi , 2  

Pi, 3

. Pi,N

I N ,2 

I N ,3

71,2

=
71,3

- 11,N  _

-1
71,2

71,3

.  T1.JV .

(5.2.30)

(5.2.31)

which involves the inverse of a (N  — 1) x (N  — 1) covariance m atrix this time. One may 

proceed the same way by eliminating one row and one column each time until the matrix 

is partitioned into l x l  elements. This method for the computation of the inverse of a 

non-singular m atrix is mainly known from mathematics and, here, it enjoys the privilege 

of a statistical interpretation too.
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Instead, for the computation of the inverse V -1 and its determinant, we may resort 

to prewhitening the data, i.e. creating N  uncorrelated random variables from the orig­

inal set of correlated random variables {Y(sj), j  = 1, • • • ,N } .  A detailed accbunt on 

prewhitening is available in Section 3.2 of Fan and Yao (2003).

We consider each location j  =  1, • • • , N,  and we define

Y (si) =  0 (5.2.32)

and for any j  = 2, • • • , IV,
j - 1

? ( s , )  =  K fo ) , (5.2.33)
k=1

to be the best linear predictor of Y(sj)  based on all the sites th a t have a smaller label 

k < j ,  k =  1, • • • , N  — 1, in the sense that

j -1
E{Y(S j )  -  Y ( s j ) } 2 = min E { Y (Sj) -  £  ^  Y ( s k)}2, j  =  2, • ■ • , jV. (5.2.34)

Then it holds tha t

C o v { Y ( s j ) - Y ( s j ) , Y ( s k)} = 0, j  = 2, - ■ ■ ,N ,  k = 1, • ■ ■ , j  — 1, (5.2.35)

or, similarly,

j -1
— 'y y fijfTn ' 7m,k = 0, j  =  2, • • • , AT, k = 1, • • • , j ’ — 1. (5.2.36)

m=l

On the other hand, we can define the prediction variances as

rj = V ar{y(s.) -  ? (s j)}  =  1 71,1 ’ j  ~  1 . (5.2.37)
I 7 *  -  •- ta j .  7 = 2 , - , N

If we stack together the predictors in a vector

Y  =  [Y(Sl) , - . .  ,Y (SiV)]T, (5.2.38)

then it holds tha t

where

But we have defined

Var{Y -  Y} =  R , (5.2.39)

R  =  d iagfrj]^ !. (5.2.40)

Y  =  $  Y , (5.2.41)
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where

$  =

0 

0 2,1
(5.2.42)

. 0AM 0ZV,2 0 _

We can re-write (5.2.41) as

Y  -  Y =  (I* -  * )  • Y, 

which combined with (5.2.39) gives

(I* -  * )  • V • (IN -  $ ) T =  R

or
T  — 1

or, finally,

V - 1 =  (Iw -  $ ) T • R - 1 ■ (IN -  * )r 1

(5.2.43)

(5.2.44)

(5.2.45)

(5.2.46)

When V  is non-singular, the decomposition (5.2.46) of the inverse dispersion m atrix is 

unique and the elements of the matrices and R  can be computed via the innovations 

algorithm, or further the Durbin-Levinson recursions (Brockwell and Davis, pp.172-173). 

More specifically, the algorithm dictates that we first write

n  ~  7 !^

02 ,1  =  7 2 ,1 / n  

r 2 =  72,2 -  02,1 ' n

and

0j,i =  7j ,l/n i, j  =  3,--- ,N .

Next, for fixed j  =  3, • • • , N ,  we may write

k - 1

0i,fc =  (7j,Jfc ~  5 3  h*1 ’ ' r i ) / rki k =  2, ' ■ ’ > J ~  1,
z = i

j - i
-  5 ]  th • r * ’

z = i
from which we compute 03)2, r3, 04|2, 04,3, r4, 0at,2>--- , 0a m v - i ,

and
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R e m a rk  5.2. A lot of speculation has involved the computation of the determinant 

|B | (Besag, 1975, p .193). Writing down the two decompositions of the inverse variance 

m atrix

In general, if there is at least one pair j ,  k = 1, • • • , N, j  ^  fc, such th a t it holds

then we may see, using a conventional ordering of locations, th a t there is a t least one 

Z =  1,• • • , N  — 1, such that

since the eigenvalues of V  are away from zero.

Equations (5.2.51) and (5.2.52) relate the best linear predictor coefficients and pre­

diction variances coming from the two decompositions for the last site j  =  N.  If we wish 

to move from one decomposition to the other for all sites j  = 1, • • • , N ,  then directly 

from (5.2.47) and after we have the coefficients <fk,j, j  = 1, • * - , iV — 1, k =  j  + 1 , • • • , N,  

and the variances rj, j  = 1, • • • , N  computed, we may proceed as follows.

a - !b  =  (iN -  • r - 1 • ( iw -  * ) , (5.2.47)

implies tha t

(5.2.48)

or
N

(5.2.49)

Cov{y(Sj) ,y ( s fc) } ^ 0 ,

vi < ri. (5.2.50)

It also holds th a t

vn  =  rN) (5.2.51)

since

? ( s N) =  Y ( sn ). (5.2.52)

We may, in general, write
TV—1

(5.2.53)

where the equality holds if and only if

Cov{Y(s,), Y(sfc)} =  0, j ,  k =  1, • • • , N,  j  ?  k,
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Step 1 : We set

vn  =  rN

and

Step 2 : For j  =  1,

0 N , j  =  V N j ,  ;  =  ! ) • • •  , N  -  1.  

, N  — 1, we write

(5.2.54)

(5.2.55)

' "IJ i=i+i

AT 2
'AL
n

and

Pj,N = 7 T 'Z'AT
Step 3 : For j  =  1, • • • , N  — 2, and A; =  j  +  1, • • • , JV — 1, we write

Pk,j = Vk
<Pkj

N

- E
’ W.fc

Tk TlZ=fc+1 1

and

#7\fc =  — • Pkj- vk

(5.2.56)

(5.2.57)

(5.2.58)

(5.2.59)

5.3 Spatio-tem poral m odeling

5.3.1 M odels

We propose a spatio-temporal model for fitting data which is recorded regularly in time 

and irregularly over space. We aim for modeling both the spatial interdependence and 

the serial dependence structure.

Let {Yi(sj), t e  Z, Sj € R d, j  — 1,- • • , N }  be a real-valued process observed over 

time and on N  fixed locations. We consider for every location j  =  1, • • • , N ,  a causal 

auto-regression model:

^ t { s j ) — F i _ i ( s j )  +  • • • +  bpj Y t - P ( s j )  +  £ t { s j ) ,

where

e* = [£*(81), • • • ,et (sN))T ~  W N ( 0 ,  V ),

and V  is a positive-definite dispersion m atrix with finite eigenvalues. 

For convenience, we stack the param eter vectors

bj  = [&ij, ■ • • , bpj]T

(5.3.1)

(5.3.2)

(5.3.3)
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and

b  =  [ b l , - - -  , b J r ] T .

We also consider the parameter vector

a  =  [a i,2 , • • • > 0,1,N ,  ^2,3, • • • , 02,N ,  • • • , ON - 1  ,N ,  <*1,1 > * ’ ' > O n , n Y  

with the elements of the inverse dispersion m atrix

01,1 —oit2 • • • —o\tN

y _ l  _  ~al,2 02,2 -02 ,N

(5.3.4)

(5.3.5)

■0\ ,N - 0 2 , N ON,N _

(5.3.6)

similar to th a t given in Section 5.2.

5 .3 .2  M u ltiv a r ia te  T im e  S er ies  c o n te x t

For any t  G Z, we let the vector

Y ( =  [y,(s1),---,yt(sJV)]r 

Y , -  Y (_ ! ---------------- Y , - ,  =  e«, {£,} ~  W N ( 0 ,  V ),

=  d ia g ^ i j)^ ! ,  i =  1, • • • ,p.

and write

where

(5.3.7)

(5.3.8)

(5.3.9)

In (5.3.8), we have w ritten (5.3.1) as a multivariate auto-regression. In fact, this is 

a seemingly unrelated auto-regression, according to  Harvey (1989). This is because 

all the matrices (5.3.9) are diagonal and all their elements b{,j, i = 1 , ••• ,p, refer 

to one location j  = 1 , ,iV, only. In other words, any relation between two loca­

tions j, k = 1, • • • , N, j  ^  k, has only been expressed via the variance matrix V . We 

could also see th a t from the univariate versions (5.3.1), where all the lagged values 

Yt- i ( s j ) ,  • • • , Yt-P(sj) of Yt (Sj), also referred to the same location j .

We consider the polynomial

or

$ ( 2) =  Ijv -  $1  z  4>p

$ (z )  =  diag[l z l]f=1.
i=l

(5.3.10)

(5.3.11)
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It holds th a t {Y*, t G £} is a causal auto-regression if and only if

N  p

det{*(z)}  £  0 «  J ] ( l  **) #  0 (5-3.12)
j =1 i=l

for all complex numbers 0 such that \z\ < 1. Now, it is clear th a t (5.3.12) implies that 

b G BN , which is exactly the same condition for causality as the one imposed before, 

i.e. th a t all the N  auto-regressions are causal, and so bj  G B for all j  =  1, • • • , N .

For j  = 1, • • • , N ,  we define the polynomials
p  00 00

^ j ( z )  = (! -  j ]  K j  z%)~1 = 1 +  Y l  f e  z '> < 00• (5.3.13)
i= 1 i=l i= 1

Then for any i = 1, 2, • • •, we define the matrices

=  diag[V>ij]£Li, (5.3.14)

such tha t we can write
00

Y* =  £t +  St-i
i=1

and
p

Var{Yt} =  V  +  ^
i=i

On the one hand, it holds th a t for any A G R N

Ar V  A > 0, . (5.3.17)

since V  is positive-definite. Also, it holds that V ar{^i£t} is positive definite and

N

l * iV » , | =  { I]V & }  | V | > 0 ,  » =  1, 2 , - . - .  (5.3.18)
j = l

Thus, for any A G 3lN

ATV ar{Y J A =  AT[V +  ] T  * i V * i ]  A > 0 (5.3.19)
i=l

and Var{Yf} is positive-definite with eigenvalues greater than  0.

On the other hand, if we write Var{Yf} =  [vjik\jfk=v then it holds that

00

Vj,k =  [1 "I-  ̂ aj,ki j> k = 1> * ■ ■ 5 AT, (5.3.20)
i= 1

and the trace of Var{Yt} and sum of its eigenvalues is equal to

N  N  00

= S t 1 +  S  < °°>
j = 1 j = 1 i=l

(5.3.15)

(5.3.16)

203



where the inequality holds for fixed N.  As a result, all the eigenvalues of the m atrix are 

away from oo.

Moreover since the multivariate auto-regression is causal, the variance m atrix

V a r{[Y i,---,Y Tn

has all its eigenvalues bounded away from 0 and oo for any positive integer T.  This is a 

multivariate analogue of Remark 2.3.

5 .3 .3  G a u ss ia n  lik e lih o o d  e s tim a to r s

We observe {Yt(sj), t =  1 — p, • • ■ , T, j  = 1, • • • , N }  and we want to estimate the true 

param eter vector tha t has generated these observations. We assume th a t the following 

condition holds.

(C9) The parameter space A  x BN C RQ+n p is a compact set containing 

the true value [ag,bg]T as an inner point. Further, for any a  G A  all 

the eigenvalues of V -1 are positive and finite and for any b j  G B, j  =

1, • • • , iV, a causal auto-regression (5.3.1) is defined.

For any a  G A  and b  G BN, we write the Gaussian likelihood function

T  N

L (a >b ) =  ( 7 ^ ) ^ lv ~1lT/2 exp{ ~  \  ajJ £t(Sj' bj^ 2

N

- 2 ^ 2  ajtk Et(sj ,bj)£t {sk, b k)]}, (5.3.21)
j1k=lt
3<k

where we define

£t(s j ,bj)  = Yt (sj) -  X [(s j)  • b j  =  et (sj) -  XJ(sj )  ■ [bj -  b i|0], t e  Z, j  = 1, • • • , N,

(5.3.22)

with

x ; ( s j )  =  [Y t-ite ) , ■ • • , n -p (s j)] , t g  Z, j  =  1, • ■ • , N  (5.3.23)

and

et (sj, bj,0) =  £t (8j), t e Z ,  j  = 1, • • • , N.  (5.3.24)

Like in the previous chapter, we have not assumed th a t our observations have been

generated by Gaussian random variables, but we have chosen to write down, and later
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to maximize, a Gaussian likelihood. Again we refer to W hite (1982) and to the quasi­

maximum likelihood estimators defined then, in order to highlight the relevance with 

our method. To set our estimators tha t maximize the likelihood (5.3.21), we may first 

write down the natural logarithm of the likelihood

T  T  N  N

i(a ,b )  =  - l o g { |V - 1| } - - 5 : E aj,j ^ ^   ̂ cLj,k £t(sj jbj)et(sfc,bj-)],
t=l j =l j,fc=i.j<k

(5.3.25)

for all a  E A,  b  E BN , and maximize this instead. For the differentiation of the 

deterministic part of the likelihood, we will need the following proposition.

P ro p o s it io n  5.2. For the symmetric, non-singulax N  x N  matrices V  =  ['7j,/c]̂ Sfe=i an(  ̂

V -1 as defined in (5.3.6), it holds that

• dlog I V 1!/da jd = t j j , j  = 1, • • • , AT,

•  dlog IV "11/da j>k = -2 7 J)fc, j, k =  1, • • • , IV, j  ±  k.

P ro o f. We know that

V  =
IV-II

^1,1

-Ai ,2

- A i ,2 ( - l ) ^ +1Ai,iv

^2,2 ( — 1)N+2A2 ,N

( - i J ^ + M i .jv ( - l ) ^ 2^ A n ,n  _

(5.3.26)

where A j j ,  k = 1, • • • , N,  is the determinant of the ( N — 1) x ( N — 1) m atrix that 

remains when we exclude the j- th  row and the A:-th column from the m atrix V -1 . We 

also know that
71.1 71,2 • • • 7i.iv

71.2 72,2 72, AT
V  =

Since

_ 7l,7V 72,7V 77V,TV _

1

(5.3.27)

dlog |V  ^ /da j 'k  = jy Z f |5 |V  \/dajtk, j,  k =  1, • • • , N,  (5.3.28)

all we need to show is th a t

d \ V  l \ /ddj j  =  A j j , j  =  1, • • • , N, (5.3.29)
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and that

d\V-'\/dajtk = (-2)(-lY+kA},k = 2(-\y+k- lAj'k, j, k =  1, ■ ■ ■ ,N, j ?  k. (5.3.30) 

The proof of (5.3.29) is very simple. For any j  = 1, • • • , N ,  we may write

N

|V  *| =  a j j A j j  — a j , k ( — (5.3.31)
fc=i ,

from which we can see immediately that (5.3.29) is true since all A j tk,  k — 1, • • • , iV, 

do not depend on a j j .  To show (5.3.30) and without loss of generality, we consider the 

derivatives with respect to a i,2- Then all we need to show is tha t

a | v - 1|/a o 1,2 =  2J4li2. (5.3.32)

It holds tha t

|v  *| =  01,1^ 1,1 -  ( - a i , 2 ) j 4 i , 2  +  ( - a i , 3 ) ^ 4 i , 3 -------- 1- ( - l ) 7V+1( - a i , 7 v ) > l i ,n  (5.3.33)N + l ,

or

|v  | =  ai,iA i,i +  01,2^ 1,2 — oi,3-4i,3 4--------- (—1) oi,a^4i,at, (5.3.34)

so tha t we can write

d \ V ~ l \ /da \ 2  =  j4 i,2+ a i ,2 <L4i,2/ ^ 01,2—01,3 &4i,3/ ^ 01,24------- (—l ) 7V+1oi,iv & 4 i,iv/0 oi,2

(5.3.35)

since both a i,i, Ai,i do not depend on 01,2- Looking at (5.3.33) and (5.3.35), the next 

step is to show that

^ 1,2 =  01,2 d A i p / d a i #  — 01,3 d A \ ^ / d a \ ^  H { —l ) N + 1 a i , N  d A i ^ / d a \ ^ , -  (5.3.36)

Since

^-1,2 =

- 01,2 —02,3 ’ • • —02,n

- O l ,3  0 3 ,3  - 0 3 ,AT

—Ol,JV -0 3  ,AT 0>N,N

(5.3.37)

we may write

Al,2 = (—Oi,2)Mi,2 — (—Oi,3)Mi,3 4---------b ( — 1)N (—Oi,iv)Ml,iV (5.3.38)

or

4̂ i ,2 =  oi,2(—M i,2) — a i,3(—M i,3) 4-------- (—l) iV+1ai,jv(—Mi,at), (5.3.39)
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where Mi,*, k  =  2, • • • , AT, is the determinant of the (N  — 2) x ( N  — 2) m atrix that

remains if we exclude the first column and the (k — 1) row from the m atrix form of Ai,2.

And, of course,

d A i t2/dQ>if2 =  —Mi,2. (5.3.40)

We may also see th a t

d A i >k/da i2  =  -M i,* , k =  3, • • • , iV, (5.3.41)

which proves (5.3.36) and the required result. ■

For any i = 1, • • • ,p, j  =  1, • • • , AT, we write the derivatives 
T JV

0 i(a ,b ) /3 6 ij  =  et(sj,bj-) -  ^  ajtk £ t(s* ,b*)]yt_i(sj-)}.
t=i fc=i,

(5.3.42)

Using Proposition 5.2, we write for j  =  1, • • • , AT,

T  1
d l{a ,b ) /da j j  = -  ljtj -  - ^ e t ( sj , b j ) 2

t=l
and for j ,  k  =  1, • • • , AT, j  < k,

T

dl(a., b ) /d a J|fc =  - T  7 ,,* +  ^  et (aj, b j )e t (s fc, b fc).
t=i

We set the Gaussian likelihood estimators a  and b  and write

et(sj) = Yt(sj) -  X [(s j) • b j,

such that
T  N

% (8j ) ~  ^ ( s fc)]y * - i ( s j ) }  =  0> * =  ! , • • •  i  =  1) • • • > AT,
t=l fc=l,

and

(5.3.43)

(5.3.44)

(5.3.45)

(5.3.46)

(5.3.47)
t= 1

{ V } -1 =

i-HII we define

01,1 —0 1 ,2  • • • —0 1  ,JV

— Ol,2 02,2 -0 -2 ,N

_ -Ol,7V “ 02, N On ,N

of the estimators set in (5.3.

(5.3.48)

that the next condition is true.
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(CIO) It holds th a t {e*, t € Z} is a sequence of independent and identically- 

distributed zero mean random vectors with variance m atrix 

Var{e*} =  V.

C o n s is ten cy

T h e o re m  5.1. Under conditions (C8)-(C10) and as T  —> oo (N fixed), it holds that

b p bo

a
.  a° .

(5.3.49)

P ro o f. First we will show th a t b  — > bo- It holds that

1 a  T  N  N1 a
dl(a, b ) /db itj  = et ( s j ,b j)2 ~  2 ^  ajtk ei(sJ-,b i )et(sfe>b fc)]}J

l’J t=l j =l j,k= 1, 
j<k

(5.3.50)

for a l i i  =  1, • • • , p, and j  =  1, • • • , N.  Then

j  T  N  N

l im s u p -  £t(sj )2 2 ^  H k  £t(sj)et (sk)}
T —*oo t=1 j =1 

T TV

j,k=l,
3<k

N

~  r2So h  £t(si ) 2 -  2 5 Z  H k  et(sj)et(sk)}

N

t=1 j= l j<k
N

j =i 

iV

t=l j,fe=l,j<k
T —oo T f=l

i= i
(5.3.51)

i,fc=i,j<k

where the last equality holds under (CIO), since then we can write

T

Tf  ^ 2  £i(sj )£t(sk) 7j-.fc, j , A; =  1, • • • , IV.
t= i

On the other hand, for any by e  # , j  =  1, • • • , N , since it holds tha t

£ t(s j,b j)  =  st(sj) — X ^(sj)[bj — b j(o],

(5.3.52)

(5.3.53)
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we may write

1 T  N  N

^T—*oô  T £ { £  aj,j £t (s j ,bj)  2 y ]  ajtk bj)et(sfc, bfc)}
_>0° 4=1 j= i j,fc=i,j<k

N  T  N  J T
=  ^ S ^ ( s j ) X [ ( Sj)} [bj — b j)0]

j=l ~>°° 4=1 j=l _>°° 4=1
iV 1 T

+  S ^ 3  [bi  -  bj,o]r {^im^ -  ] T  X t(sj)X [(sj)} [bj -  b i|0]
j—l 4=1

TV T

-  2 J 2  %fc L limT —>oo T  3,k=1, 4=1j<k
N  T

+ 2 S  U im [hfc-hfc.o]T —+00 T  J,k=1, 4=1j<k
N  T

+  2 S  H k  { lim - ^ Q ( s fc)X [(S:;)} [b j-b j-o ]
r-» o o  T  , J,*==l, 4=13<k

N  T
~  2 ^  ajik [bj -  bJi0]T { lim  -  ^ x ,(sJ )X [(s fc)}(bfc -  b M ], (5.3.54)

T  «_i3<k

And, of course, like for (5.3.52) and under (CIO), it holds th a t

1 T
-  X t(8j)xr(s*) E i X t ^ X K s k ) } ,  j , k  = l , - - - , N .  (5.3.55)
T 4=1

It also holds for any i >  0 and j,  k =  1, • • • , iV, that 

1 T
-  ^ 2  £t(sj)Yt- i{sk) £{£ t ( s j ) r t_ i(sfc)} =  0, (5.3.56)
T 4=1

thanks to the assumption of causality. As a result, we can re-write from (5.3.54) that 

for any b  € BN

 ̂ T  N  N

£ < £  aj,j £t(sj,hj) 2 ^  a,jtk Et(sj, hj)et(sk, b^)}
T —*oo T 4=1 j—l j,k=l,j<k
N  N

=  )   ̂Qj,j  • 7 j , j  ~  2  y  > a j ,k  ' l j , k  +  ^(b), (5.3.57)
j =1 j,k=1,3<k
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where

N

<S(b) =  £ a j j  l b j - b j , o } TE { X t ( s j ) X l ( s j ) } l b j - b j , 0]
j= 1

N

-  2 £  HK [bj -  M T.E{X((s.,)X[(s*)}[b* -  b*,0],
j,k= 1, 
j<k

=  [b -  b 0]r  M (a) [b -  b 0] > Amin{M (a)} ||b  -  b 0||2, (5.3.58)

with the random m atrix M (a), set to be equal to

ai,itf{Xt(si)X nsi)} -a i,2 ^{X t(si)X[(8 2)} ••• - a ljNE { X t (Sl) X l ( s N )} '

- a i l2 S{X t(s2 )X[(si)} a2 ,2 £{Xt(s2 )X[(s2)} -aa^ X tfsaJX H sjv)}

-ai,iV-E{Xt (sjv)X [(si)} - a 2)7v-E{Xt(siv)X [(s2)} ajv,iv-S{Xt(sjv)X[(s7v)} _
(5.3.59)

and its minimum eigenvalue Amin{M (a)}. Next, we will show th a t the eigenvalue is away 

from 0 and oo.

Similarly to (5.3.59), we may consider for any a  G A  the m atrix M (a). For conve­

nience and without loss of generality, let us try  to construct the variance matrix

M  =  M (a0). (5.3.60)

For t € Z, we define the random variables

N

Zt (sj) = a{jJ))o et {sj) -  aUtfc)0 et (sk), j  =  1, • • • , N,  (5.3.61)
fc=i,
k ĵ

and the random vector

Zt = [Zt (Sl), --- , Z t (sN)]T. (5.3.62)

It holds tha t

Z, =  V -1 ef (5.3.63)

arid

Var{Z*} =  V " 1. (5.3.64)
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It also holds for f , I > 0

C o v ^ s O V i - i t e ) ,  Z t (sk)Yt. , ( s k)} =  £ { Z t (sJ )yt_4(sj ) ^ t (slb)yt_,(slk)}

-  E l Z t i a J Y t - f a ) }  E { Z t (sk)Yt- , ( s k)}

=  E { Z t (sj )Yt- i (sj )Z t (Sk)Yt. l(sk)}

=  £ { z ,(s j)z ,(s* )}  £ { y i_ i (sj )y(_i(sjt)}1

(5.3.65)

thanks to  the assumption of causality. As a result, we can write

M  =  Var{[Zt (s i)X n s i) , • ■ • , ^ ( s ^ X ^ s * ) ] ^ .  (5.3.66)

Now suppose th a t we were interested in the variance m atrix

Var{[Zt (Sl)X ^(si),---  .^ (sO X ^ S jy ) , • ■ ■ , Xt (s jv )X f(s i),• • ■ , ^ ( s ^ X ^ s ^ D  

=  Var{[Z((Sl) , - - - ,Z ((sjv)]T} ® V ar{ [X n si) ,---  ,X [(s w)]T}, (5.3.67)

whose eigenvalues axe equal to  all possible products of eigenvalues of the two variance 

matrices. Indeed, it holds tha t

V ar{[Z*(si), • • • , Zf(sjv)]7"} =  V

has all its eigenvalues positive. Similarly, if we put in a different order the N p  random 

variables of the second matrix, we might write the variance m atrix

Var{pq-_1, - - . , Y (’-_JT

which also has all its eigenvalues positive under the assumption of causality and the 

fact tha t N  is fixed. Thus, the Kronecker product variance m atrix (5.3.67) has positive 

eigenvalues and positive determinant.

On the other hand, the determinant of a variance m atrix can be seen as a prod­

uct of the prediction variances, computed via the innovations algorithm. The positive 

determinant of (5.3.67) means that all the prediction variances are positive. Still, the 

innovations algorithm can be applied for any desired ordering of the variables. Thus, the 

N p  variables

^ t(s i)T rf_ i(s i) , • • • , Z t (si)Yt- p(s i ), • • • , Zf(sAr)^t-i(s7v), • • • , Zt(sjv)Yt_p(sjv)

211



might be ordered first and generate the same prediction variances as for the variance 

matrix M . But if the determinant of (5.3.67) is positive, so are all the prediction variances 

of M . As a result,

|M | > 0 (5.3.68)

and the minimum eigenvalue of M  must be a positive number. An identical argument 

might be applied for a  since a  £ A.

Looking back at (5.3.58), we may write

6(b) > 0 (5.3.69)

and the equality holds if and only if b  =  bo. We define C = {liminfr-^oo ||b  — bo|| >  0}.

For any u; £ C, there exists a subsequence of {T}, which we will still denote as {T}, for

which b(cj) —> b  £ BN and b  ^  bo. Combining (5.3.51), (5.3.57) and (5.3.69), we can 

write P(C) = 0. As a result,

b  b 0. (5.3.70)

Then it holds for j  =  1, • • • , N,  that

et(sj) <re(s.) (5.3.71)

and directly from (5.3.47) and (5.3.48)

and

respectively. Thus,

lfj,k * ~  1) ’ * ’ j N,  (5.3.72)

^  P
cij k̂ * ®j,ki ji k =  ■ ■ ’ > (5.3.73)

a  ao- (5.3.74)

A sy m p to tic  N o rm a lity

For any fixed t £ Z  and any b  £ BN and a  £ A,  we define the random variables

N

Zt{sj ,b ,  a.) = a,jj £ i (s j ,bj)  — ^  £t(sfc,bfc), j  =  1, • • • ,iV, (5.3.75)
fc=i,k^j
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and the ({Np)  x 1) random vector R*(b, a)

R t(b ,a) =  [Zt(s i ,b ,a )X [(s i) ,Z t(s2,b ,a )X [(s2) , - • • , Z*(s;v,b,a)X[(s;v)]T. (5.3.76)

For the true param eter vector ao, we may replace a,jtk by a,(j,k),o and write Zt(sj,  b, ao) = 

Zt(s j ,b )  and R*(b,ao) =  Rt(b). We then define the variance m atrix

We let

and

/(b ) =  Var{Rf(b)}.

^ ( s j .b o )  =  Zt (sj), t e Z ,  j  = 1, • • • , IV,

(5.3.77)

(5.3.78)

Rt(bo) t e  Z. (5.3.79)

We can see th a t {Zt (s j ), j  = l ,- - -  , N }  and {ef(sfc), k =  I ,- -  - , N }  are two sets of 

uncorrelated random variables for any j  ^  k. Moreover, according to (5.3.65), it holds 

for integers z, I > 0 tha t

Cov{Zt (8j)Yt-i(8j),  Zt (sk)Yt_i(sk)} =  £?{Zt (sj)^t(sfc)}£7{yt-i(sj)l«-/(sfc)}, (5.3.80)

where

°(jj).o> J =  kE { Z t (s j )Zt (sk)} =  Cov{Zt (s j) ,Z f(sfc)} = (5.3.81)

As a result, we may write /(bo) to be equal to

o(1|1)f0E {X *(si)xr(si)} - a (li2),0£;{Xt(si)XRs2)}

- o (ll2)i0^ {X t(s2)Xr(8 0 } a(2,2),0£;{Xt(s2)Xr(s2)}

—O(i,N),0^{Xt(si)Xf (sN)} 
—a(2,N),o^{Xt(s2)Xf (s^)}

. —a(i,Ar),o-E'{Xt(s.N)Xf(si)} —a(2|^ ) i0^{ X t(s jv )X f(s2)} a(N,N),oE{X-t(sN)X-l (sjv)}

Finally, we define

W (b , a) =
/(b ) O (N p)xq

(5.3.82)

(5.3.83)
Qqx(Np) -̂ (a ) 

where /(a )  was defined back in Section 5.2.

T h e o re m  5.2. Under conditions (C8)-(C10) and as T  —> oo (N fixed), it holds that

j.l/2 b - b 0 

a -  a0

D
N (  0 , W - 1(b0,a 0)). (5.3.84)
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Proof. For any j ,  k =  1, • • • , N,  we can write immediately from (5.3.47)

1 T T

7j,fc -  l ( j , k ) ,o  =  r ( 5 2 [ £ t { s j ) £ t { s k )  -  7(j,jfc),o] -  ] C M sfc)x t ( s j ) ]  [bj -  bj,o]T t=l *=l

-  [bfc -  b fcto]
t=i

T

+  I b i - b t D f E W ^ K ^ r M }  (5-3.85)
t=1

and then we can stack all the q equations (5.3.85) in a vector as

T

7 —7o = ^ E s « — [£ - b°] (5-3-86)

where

SJ =  S, -  7o (5-3.87)

and

S t = M s i ) e t (s2), • • • , £t {sN- i ) e t {sn ), £t(s i)2, • • • , £t(s;v)2]T- (5.3.88)

The m atrix H i(T ) is such tha t its row vector corresponding to (j, k), j, k =  1, • • • , N,

has as its element
T

Y , £ t ( s k ) Y t - i ( s j )  +  O p ( T | | b  -  b o | | )

t=l

if multiplied by (bij — b ^ j ^ 0), it has element

T

+  0 P ( T | | b  -  b o | | )

t= 1

if multiplied by (b^  — b^tk),o)> and it has zero elements anywhere else. Since 

1 T
- [ E ^ t f o W - i t S i J  +  O H T H b - b o lD l- ^ O , (5.3.89)

t= 1

for any j , k  = 1, • • • , N  and i > 0, we may conclude tha t

i  H j(T ) -£> 0 , x(Np). (5.3.90)

On the other hand, we may write a Taylor’s expansion

7  =  7o +  (J T|a=S +  H 2(a)) [a -  a 0], (5.3.91)

where J  was defined in (5.2.11) for any a  6 A  and H 2(a) is a matrix, such that as T  —> oo



since a — > ao. It also holds that

*I|a=a J , (5.3.93)

because of the consistency of a  and the fact tha t the derivatives are smooth functions of 

a, where we have considered for simplicity

J |a = a o  =  J*

If we combine (5.3.86) and (5.3.91), we may write 

( H ,( T ) /T  J T|_ s  +  H 2(a) ]•
b  — b 0
a  -  ao =  ? E S! ' (5.3.94)

t=l

We have also defined our estimators according to  (5.3.46), which we may re-write for 

any i = 1, • • • , p and j  = 1, • • • , N  as 

T  N

t=1 

T

k-1, 
k*j

N

+  ^  ] { g t ( s j')-frt—t ( s j ) }  (a j , j  o) y  ] { £ t ( s A : ) ^ - i ( s j ) }  ( a j ,k  a (j ,k),o) ~  0-

(5.3.95)

t=l fc=i ,kjij

It holds for any i =  1, • • • ,p, and j , k  = 1, • • • ,N ,  th a t 

1 T 1 T
7 f ; J 2M sk )y t - i ( s j )  0, (5.3.96)i= l

as T  —» oo. It also holds that

T  N

t - i

t=l fc=i , t=l

t=l
TV

E  a (i.fc).o [bfc -  b fc)o]}. (5.3.97)
fc=i, t= l
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As a result, we can re-write (5.3.95) as

T

a(j,j),o (sj)] [bj  — b^o]
t= 1

N  T

fc=i, t=1

T  AT T

-  £ { * « ( *  j ) ^ - i ( Sj)}  (ajJ a (jj),o) +
i=l fc=i, *=1  k^j

— y ]  ^  (s j) i t  _i (s j ) .

t=i

Stacking all the (.A/p) equations together, we may write

T

r(T) [b -  bo] +  H3(T) [S -  ao] =  £  B 

where r(jT) is set to be equal to

t=l

T

£
t=i

a (i,i),o X t(si)X J‘(si) - a ( i ,2),o X t (s i)X [(s2)

_ a (l,2),0 X t(s2)X [(s i) a (2,2),0 X f(s2)X j(s2)

. - ° ( i ,A r) ,o  X t (s7v)Xt'(si) - a (2iJV)i0 X*(SAr)X [(s2)

and the m atrix H 3(T) is such that

— H 3(T) 0 ( ^ p)xg

as T  —> oo. We can see immediately that

I  r(T) /(b 0).

When we put (5.3.94) and (5.3.99) together, we may write

- l

where

j.l/2 b - b 0 r(T )/T  H 3(T )/r

a  -  a 0 H 1( r ) /7 ’ J T|a=s +  H 2(a)

u i  =  p T , s n T.

-i(sj)}  iaj,k a{j,k),o)

(5.3.98)

4, (5.3.99)

~ a (l ,N),0 X f ( s i ) X [ ( s j v )  

—a (2,N),0 X * (S 2)X [ ( s j v )

a (N,N),0 X f (s jv )X [(S 7 v )
(5.3.100)

(5.3.101)

(5.3.102)

T

1/2 (5.3.103)
t=i

(5.3.104)
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Recalling (5.3.90), (5.3.92), (5.3.93), (5.3.101) and (5.3.102), we can write that asT  —* oo

- l
T ( T ) / T  H  3{T ) /T p /(bo) O

H i (T )/T  J T|a=s +  H 2(S) _ _ ®qx (Np ) J T

' /(b o )” 1 O

Ogx(JVp) J T
. (5.3.105)

Next, we will show th a t for any A £ H Np+q, it holds tha t 

T

T -1/2 J 2  * TU t N  0, AT
t=i

A , (5.3.106)
/(bo) ®(Np)xq 

Qqx(Np)

where / ( ^ )  was defined back in Section 5.2. We can see tha t E { S£} =  0 and that 

Var{S£} =  Var{St} =  / ( 7 0)-1 . Similarly, E{H t}  =  0 and Var{R*} =  /(bo). We write 

for any * =  1, • • • ,p, and any j,  k, m  — 1, • • • , N,

C o v { e t ( s j )£ t ( sk), Z t (sm )Yt- i ( s m )} =  £7{et (sj)et(sjfe)Zt(sm)Yt_ i(s m)} -  j i j  • 0

=  E{et{sj)et(ak)Zt(8m)}E{Yt-i{sm)}  =  0,

(5.3.107)

due to independence and causality. We may write

£ { U f} =  0

and

Var{Ut} =

(5.3.108)

(5.3.109)
/(bo) O (Np)xq

Qqx(Np) /(7o )

We recall the MA(oo) representations of (5.3.15) and define for fixed K  =  1,2, • • •, the 

random variables
K

Yt K\ ai)  =  i,j £t-i(8j), j  = 1, • • • , N, (5.3.110)
i=1

and

x \ K)(Sj) =  • ■ • , j  =  1, ■ • ■ , N.  (5.3.111)

As a result, we let

R<K) =  [ ^ ( s O X ^ ^ S ! ) ,  ■ • • , Zf(sw) x f  )T(SJV)]T (5.3.112)

and

(5.3.113)
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We can write th a t {ATU ^ ,  t  e  Z} is a if-dependent white noise sequence and it holds 

as T  —> oo

T -1/2 ^ 2  ATU ^ ) At V (k) ~ N  ( 0, At
t=i

since again

V ar{R W } 0 (Np)xg

^qx(Np) I { lo )

Cov{£f(sj )£t(sA:),Z t(sm) y /4 )(Sm)} =  0, 

for any i = \ r  • • ,p, and any j , k, m  = 1, • • • , iV. Since

V a r{ R ^ )} -»• Var{Rt}

as K  —> oo, we have that

-ZU ATV  ~  AT I 0, AT

A , (5.3.114)

(5.3.115)

(5.3.116)

V ar{R J 0 ( Np)xq 

Qqx(Np) I(.7o)
(5.3.117)

T _1Var{AT ^ ( 1 # °  -  U*)} =  AT£ { (U ^ °  -  U f)(U tW  -  U*)T}A -♦ 0 (5.3.118)

Also, it is easy to  check that

^ r ( ^ )  _  T T . M  _  \ T  Z T-JYTtW  _  TT. V T t W  

t=1

as K  —► oo. As a result, we may conclude from the Cramer-Wold device tha t

T

T ~ 1/2 ] T  U * AT 0,
t=l

-f(t>o) ®(Np)xq 

Oqx(Np) I(.7 o)
(5.3.119)

From (5.3.103), (5.3.105) and (5.3.119), we may conclude th a t

b  -  b 0J.1/2
a  -  a 0

D
N (  0 , W - 1(b0,a 0)), (5.3.120)

where

W (b 0,ao) =
/(bo) 0 ( Np)xq 

^qx(Np) - (̂a o)

and / ( a 0) =  J / ( 7 0) J r .

R e m a rk  5.3. If we consider the (q x 1) vector

P  =  [Pi,2, ' ' • j Pl,N■> /̂ 2,3> ' • • ,p2,N, ' • ’ ) P n —1,Ni ^1, ‘ ■ * , "n Y  

then we may recall that

Pj,k = — , j ,  k = 1, • • • , IV, 
aj,j

(5.3.121)
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and

ijj =  — , j  =  1, • • • ,N ,
CL'i3,3

j . l / 2 b - b 0
- 2 + n (  0 ,

’ / ( b o ) - 1 ® ( N p ) x q

1
0

 
<0.1

i V O q x  (Np) D r / ( a 0)_1D  _

where D T =  5/3/<9aT|a=ao- It holds that

in order to write /3 as a function of the original param eter vector a. According to 

Proposition 6.4.3 of Brockwell and Davis (1991, p .211), we may then write as T  —► oo 

that
u  _  _ /  r n ^ - i  r v „  , \

(5.3.122)

(5.3.123)

(5.3.124)

(5.3.125)

dPj,k/daj,k = —  = v3
a 3,3

and

It also holds tha t
3,3

dVj/dOjj  =  - - J -  =  - i j .
3,3

5.4 H yp oth esis testin g

5.4.1 Tests for th e  serial dependence  

T est for th e  sign ificance  o f th e  t im e  fac to r

We want to test

t f o :{ Y t} ~ J /D ( 0 ,V )

H\  : otherwise. ’

In other words, the null hypothesis assumes tha t =  • • • =  =  O n .xN-

We observe {Y*, t =  1 — p, • • • , T }  and we estimate the auto-covariance matrices as

1 r
=  t  ^  1 =  ° ’ ’ ' '  ’'T  _  L (5-4:1)

t = l —p + i

According to Reinsel (1997, p .151), under H q and as T  —► oo

m

= vec{E(i)} i N ( 0 , V « V ) , (5.4.2)

for i  = 1, • • • , T  — 1. Suggestion (5.4.2) can be slightly changed if we ignore the factor 

T / ( T  — i )  which is asymptotically equal to 1 for fixed i .  Moreover, under H q and as
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T  —► oo, the random vectors vec{S(i)} and vec{S(l)} are asymptotically independent

for i 7̂  I and i, I =  1, • • • , T  — 1. Thus,

 ̂ 1 ŝ. ^
T2 E  [vec{S(i)}T(V -1 ® V - 1)vec{S(i)}]

i = l

=  t 2  E  j T -  t r{ V -1S(»)TV - l S (i)}  (5.4.3)
1=1

where d can be any integer between 1 and T  — 1. This asymptotic result, known as a 

multivariate portm anteau test, is not affected by the replacement of the unknown matrix 

V  by its consistent estimator S(0) =  V: 

d

d =  1,• • • ,T  — 1. (5.4.4)
i = l

Test for equal coefficients on different locations

We want to test

H0 : = bi • I N , i =  1, • • • ,p

Hi  : otherwise.

In other words, the null hypothesis assumes tha t we can write

oo

=  £t(sj) + £t-i(Sj) (5.4.5)
1=1

for every j  = 1, • • • , N .  If we put them all together, that would be

Y t =  b\ Y$_i +  • • • +  bp Y t—p +  £t (5.4.6)

and
oo

Y t = et + ^ T p i  e t-i.  (5.4.7)
i=1

We may write under the null hypothesis

b ,=  b, j  =  1, ■ • • ,N. (5.4.8)

As a  result,

Cov{Yt (sj), Yt-i(sj)} =  Cov{Y*(sfc), Yf_i(sfc)}, i e Z ,  j , k  = 1, • • • , N,  (5.4.9)

which implies th a t we meet some form of stationarity over space.
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Thanks to Theorem 5.2, for observations {Yt(sj), t = 1 — p, • • • ,T  j  = 1, • • • , N }  

and when {e*} ~  I ID (0 ,  V ), we might make a decision using the ratio of conditional 

Gaussian likelihoods, which is based on the statistic

Al r  =  2(Z(b,a) -  Zo(b0,ao)) XfN_ l)p (5.4.10)

as T  —> oo. In (5.4.10), the logarithm of the Gaussian likelihood Z(b, a) was defined 

back in (5.3.25) and the logarithm of the Gaussian likelihood Zo(b, a) under the null 

hypothesis is

T  N  N

Zo(b,a) =  T/21og |V -1 | -  1/2 dj j  £t ( s j ,b )2 -  2 H k  ^ ( s j ,b )£ t (sfc,b)],
t=1 j=l 3<k

(5.4.11)

where b  G B, a  e  A  The arguments b  £ a  £ A  and bo G 5 , ao G A

maximize Z(b, a) and Zo(b, a), respectively. We may then write under the restriction 

=  ak,ji j ,  k = 1, • • • , TV, j  ±  k, that

N  T
l(b ,a )  =  T ^ l o g l V I - 1} - ^ ^

j  = 1 *=1
JV T

-  £ % *  1 / T ^  ̂ (sjibjOe^Sfc.bjfc)]}
fc=i, t=i
k*i

N  N

= T /2 {—log{|V|} — [Qjj7 j ,j  ~  aj,fc7j,fc]}
j= i *=i.k*j

= T / 2 { — log{|V|} — tr{ V V -1 }}

=  -T /2 1 o g |V | -  N T / 2  . (5.4.12)

We recall th a t V  =  with % k = ^  'Zd=i^t{s j ,bj)£t {sk , b k) and {bj £ B, j  =

1, • • • , N } are such that

T  N

£t(s j ,bj)  -  J ^ H k  e t i s k M ^ Y t - i i s j ) }  =  0
t=l fc=i,kjtj

for all i =  1, • • • ,p, j  = 1, • • • , N.  In a similar way, we can show that

*o(b0, a 0) =  —T /2log  |V 0| -  N T /2 ,  (5.4.13)

where
1 T

Vo =  ^ l E ( y‘(sl)  -  X [(Sj')b0)(yt (sfc) -  X r(s* )b o )]£ U  (5.4.14)T^
t= i
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and bo is such that

T  N

j,j),o bo)Ft—t(sj)
t= 1 j= i 

N

~  5 Z  %fc),o M sj> b 0)yt_i(sfc) +  £t (sjb, b 0)yt_i(sj-)]} =  0, (5.4.15)
* = 1 ,k^j

for all i =  1, • • • ,p. As a result,

Al r  =  T log{|V 0 |/ |V |}  X *N_ 1)p (5.4.16)

as T  —> oo and i?o holds.

5 .4 .2  T e s ts  fo r  t h e  s p a t i a l  in te r d e p e n d e n c e  

T est fo r sm a lle r  cliques

We take this opportunity to refer to the terms ‘clique’ and ‘neighbour’. For Gaussian 

random variables, the sites {sj ,  j  =  1, • • • , N }  form a clique if and only if ^  0 for all 

j  ±  k, j ,  k = 1, • • • , N.  Moreover the site sj  is a neighbour of Sfc, where k ^  j ,  if and only 

if 7̂  0, according to Besag (1975, pp. 180-181). In general when we do not deal with 

Gaussian random variables, two sites sj  and s*, with j ,  k = 1, • • ■ , N, j  ^  k, are called 

neighbours if the conditional distribution of site sj  given the values of all other sites, does 

depend on site s o r  vice versa. This is the essence of local or Markov independence. A 

clique then is consisted of sites that are all neighbours with each other.

We would like to test

H 0 : ajjk = 0, k = 1, • • • , AT, k ^  j  

H\  : otherwise,

i.e. whether the site sj  belongs in the clique of all other sites. If we denote with 

the ((N  — 1) x ( N  — 1)) inverse of the variance m atrix th a t remains if we exclude the 

covariances on the ji-th row and column, then we may write the logarithm of the likelihood 

under Ho, as

T

fo(bo, ao) =  T /2  log J  — 1/2 ^   ̂ 0'Tn,m
t= 1 m=l, 

mjtj
N

2 ^   ̂ a m,k ^t(Smi b m)£t(Sfc, bfc)], (5.4.17)
m,fc=l, 

m<k, k̂ Lj
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with parameter vectors

a o =  [ a i , 2 , • • • > o - i j - i t  a i j + i ,  ■ • • , a i . j v ,  a2,3> • • ■ > a 2 j - i ,  0 2 j + i i  • • • > a 2,7V, • • ■

a i , i? ’ • * > ai - i j - i i  flj+ij+i> • ’ • > a iV,AT ]T (5.4.18)

and

b 0 =  [b[, • • • , b j_ 1? b j+1, • • • , b]v]T. (5.4.19)

If we then consider

bo =  [bj o, ■ • ■ , b j+1)0, • • • , b ^  0]T

and

a 0 =  [ a (l,2),0> • * • > a ( l , j —1),0» ^ ( 1,J-|-1),0) ■ • • >O(iJjv),0»O(2,3),0> • • • j a ( 2 J - l ) , 0 > ® ( 2 j + l ) , 0 i

• • ’ » O(2,JV),0> • • • j 0(1,1),0> * ' ' j 0 ( j _ l j - l ) , 0 >  O ( j + l j + l ) ,0 >  • • • ,U(N,N),0 V

the arguments th a t maximize it, it holds in a similar way to (5.4.12), that

i0(b0,ao) =  - T ^ l o g l V ^ - u l  -  (N -  l)T /2 , (5.4.20)

where V(jv—1) =  [T(m,fc),o]m,fc=i, with ‘7(m,fc),o =  j* 5Zf=i^i(smjb77l>o)£t(s/i;,bfc)o) and it

holds tha t

T

^  y{[O(m,m),0 ^t(s m  ? b m> o ) “  ^  a ( m ,k ) ,0  £t(sA:j bfc^)]!^—i(sm)} — 0, (5.4.21)
t=1 fc=i,fc/j.m

for all i = 1, • • • , p  and m  = 1, • • • — l , j  +  1, • • • , IV. If we combine (5.4.20) and

(5.4.12), we may write the likelihood ratio statistic as

Al r  = r io g { |V (Ar_ 1)|/ |V |}  (5.4.22)

as T  —> oo and H q holds. The degrees of freedom are

dfi = [Np +  N ( N  +  l)/2] -  [(N -  1 )p + ( N -  l)N/2] = p + N.

T est for e q u a lity  o f c o n d itio n a l v ariances

We want to test

Ho : uj = v, j  = 1, • • • , N  

H\  : otherwise



and under the null hypothesis, it holds that

V - 1 =  -  B.
v

(5.4.23)

We then write the log-likelihood as

T  N

io(b, /8, v) =  -  N T / 2  log v +  T /2  log |B | -  D £ e*fo -b i)
t = 1  j =  1

N

~  2  S  @j>k £ t ( s j ^ j ) £ t { s k , b k )] (5.4.24)
j,k= 1, j<k

and consider the arguments tha t maximize it bo, /3q  and V. We can see immediately that 

j  T  JV N

^ (s jjb ^ o ) 2 y ]  (̂j,A:)(o t >j,o)^i(sfc, b/-^)]- (5.4.25)N T t=l j= i 

Then it holds tha t

j ,k= 1 ,

Z0(b0,^ o ^ )  =  - ^ r / 2  logP +  T /2  log |B 0| -  iVT/2 (5.4.26)

where

Bn EE

1 P(l,2),0 ’ ’ ' P(1,N),0

P{ 1,2),0 1 P(2,N),0
(5.4.27)

P(l,N),0 P(2,N),0 1

Again, if we combine (5.4.26) with (5.4.12), we may write the statistic as

A lr  =  —T  log |V | +  N T  log v — T  log |B 0| =  T  M R B o J - 'l / I V I }  X f c  (5.4.28)

as T  —► oo and H q holds. For the degrees of freedom it holds th a t

df2 = N p +  ( N ( N  +  l) ) /2  -  [Np +  N ( N  -  l ) /2  + 1] = N - 1 .

5.5 Forms o f prediction and kriging

If the causal multivariate auto-regression defined back in (5.3.8) is the model of interest, 

then we know th a t the best linear predictor of Y* based on at least p lags from its recent 

past Y*_i, • • • , Y t - p, is equal to

p

Y ,  =  J 2 * i  Y t - i. (5.5.1)
i= l
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Moreover, if it holds tha t {e*} ~  I I D { 0, V ), then (5.5.1) takes the form of a conditional 

expectation and becomes the optimal predictor. We always use the words ‘best’ or 

‘optim al’ for the case of minimum squared error loss. In other words, for any other 

predictor

Yt* = /(Yt_1,Yt_a,...),

and any A E 0lN , it holds that

XT[E{(Y t -  Y t*)(Yt -  Y ?)r } -  V]A >  0, (5.5.2)

where we may write

v  p  _  _
V  =  £ { (Y t Y «-i)T} =  £ { (Y , -  Y t)(Y , -  Y ()r }.

i=l i=1

Although the form of interdependence expressed in the covariance matrix V  is of a 

spatial nature, we have not derived our predictors in any different way than for any other 

time series. The word ‘kriging’ is synonymous with ‘optimal prediction’ (Cressie, 1993, 

p .119) but is mostly used when we are interested in the value of a random variable Y (s)  

at a fixed location s T E 3ld, based on available observations y(s^), k  =  1, • • • , N .  When

there are lineax relationships between the random variables and we use linear predictors,

we call this ordinary kriging (Cressie, 1993, p. 120).

We assume th a t we can write

v

Y t = J 2 b i  Y t - i  + €U {£«} ~  W N ( 0 , V ) ,  (5.5.3)
i=l

which means th a t all the N  auto-regressions taking place on the different locations use 

the same p parameters. Then, according to (5.3.16) we can write

oo
Var{Yi} =  [l +  ^ V ', ?] - V  (5.5.4)

i=1

where
oo p

*l>(z ) = 1 +  5 3  ^  ' Z% = t1 “  S  hi ' ^ T 1-

For the decomposition

V " 1 =  A -1B,

as it was expressed before, we can also write after (5.5.4)

Var{Yt}-1 =  A*-1 B, (5.5.5)
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where
oo

A ' =  [1+  £ > ? ] •  A. (5.5.6)
1=1

According to Section 5.2.1, the representation (5.5.6) implies that

' N

Yt (Sj )  =  J 2  ft,* Yt ( sk) (5.5.7)
fc=l,k^j

is the best linear predictor of Y t ( s j )  at time t  and location j  based on the observations

Yt (Sfc), k =  1, • • • , iV, j  ±  k,  at the same time and all other locations. The prediction

variance is due to (5.5.6), equal to

oo

E { Y t (S j ) -  y t(Sj)}2 =  [1 +  E  V?] • Vj. (5.5.8)
i= 1

Finally, we may be interested in predicting the value of Y t ( s j )  from both the obser­

vations from its recent past Y*_i, • • • , Y *_p, and the observations that have occurred at

the same time but on the other locations sjfc, k  =  1, • • • ,iV, k ^  j .  For this, we may

take advantage of the fact that

Var{e*} =  V. (5.5.9)

If we were observing { £ t ( s k), k  =  1, • • • , N ,  k  ^  j } ,  and were interested in predicting

the value of £ t ( s j ), then straight from (5.2.21) and (5.5.9), we would write

N

£ t ( s j )  =  ^ 2  f a *  £ t (5.5.10)
*;=i,

the best linear predictor and the prediction variance

E { £ t { s j )  -  £t ( s j ) } 2 =  i'j. (5.5.11)

We may transform (5.5.10) into

p N  p

-  E  h i Y , - i ( S j ) = E ;  ft,* [n (sfc) - E  Kk Vi-<(sfc)] (5.5.12)
7 =1  fc=l, 7=1

or
p  N  p

Yt' { S j ) =  E  K i  Y , - i ( S j ) +  E  f t . i t  m(sfc) -  E  (5.5.13)
7=1  fc=l, 7=1

which is the best linear predictor. Indeed, it holds that

N

Yt(Bj) -  Y t* {s j )  =  £t { s j )  -  ] T  p j)k e t ( s fc), (5.5.14)
fc=i,k̂ tj
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which is uncorrelated with Yt~i{sk), i > 0, because of the causality of the auto-regressions, 

and it is also uncorrelated with £t{sk), k = 1, • • • , N } k ^  j ,  because of (5.5.10). As a 

result, it is uncorrelated with any Yt{sjt), k = 1, • • • , N, k  ^  j ,  since

oo

Yt{Sjfc) =  £t(Sk) +  ^2^Pi,k ^t-i(sfc).
i—1

As for the prediction variance, it holds due to (5.5.14), (5.5.10) and (5.5.11) that

-  y t*(Sj)}2 =  Vj.  (5.5.15)

5.6 M ink and M uskrat spatio-tem poral data

Following the example of Zhang, Yao, Tong and Stenseth (2003), in this section we try 

to model the food-chain interaction between mink and muskrat in Canada. We have 

available the annual numbers of mink and muskrat fur sales on 82 different locations and 

for 25 consecutive years, i.e. from 1925 to 1949. W ith our model and using the methods 

described in this chapter, we axe interested in showing th a t there is indeed a food-chain 

interaction between the mink and muskrat as predator and prey, respectively. For a more 

detailed statistical analysis, which takes into account the special nature of the data, we 

refer again to the work of Zhang, Yao, Tong and Stenseth (2003).

We write N  =  82 for the number of posts available in the sample and T  =  25 — 1 =  

24 years. We also write Yt (s j) and X t  (sj) for the mink observation and the muskrat 

observation, respectively, on a natural logarithmic scale for any location j  = 1, • • • , iV, 

and any year t =  0,1, • • • , T, in the dataset. Then, for each fixed post j  = 1, • • • , N ,  we 

find the sample means

1 T
= t t t  t5-6-1)

i = 0 

1 T
* }  = t T T  (5-6-2)t=0

and the sample variances

sh = b (5.6.3)
t=0

9h  = h  [ £ * ? ( » * ) ( 5 . 6 . 4 )
t=0
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We define the standardized values

a Y,j

X (C)( ) s  X j
a X J

(5.6.5)

(5.6.6)

for all j  = 1, • • • , N ,  and t = 0, • • • , T.

Next, we will need to assume that a time series is taking place over t G Z. Since 

we are dealing with two time series {Y*, t  G £} and {X t , t G Z}, we need to decide 

which one should play the role of dependent and which of independent set of variables. 

The interaction between the two sets, though, does not have an obvious direction; the 

mink counts on the presence of the muskrat to survive and, so does the muskrat count 

on the absence of the mink to survive. In order to avoid the inevitable cause-and-effect 

formulation implied by a univariate time series, we preferred to assume that the following 

bivariate time series is taking place instead. We write for every j  =  1, • • • , N,  the causal 

first-order auto-regression

1*

b j  Cj
+

4 y ) ( s j )

i

''o'

_____
i —Cj b j .  e p ° ( sj ) .

t G Z, (5.6.7)

where

-  k ^ k i ) .

,£,<r)0w)]T ~  W W (0,Vy), 

, 4 X)(sW) r ~ ^ A T ( 0 ,V x ),

and
AY)
■t
AX) W N {  0 ,V ),

(5.6.8)

(5.6.9)

(5.6.10)

for any t G Z.

In (5.6.7) we have used the matrix

C-!

■Cj b j
j  = I ,--  - ,N ,

instead of a m atrix th a t uses four different elements. This is in order to reduce the 

number of param eters of the model. We take advantage of the fact th a t both series have 

been standardized. For the two elements ±Cj that have different signs, we expect that 

the more the muskrats of the region the more the minks, while the fewer the minks of 

the area the more the muskrats there.
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V = (5.6.11)

We keep aiming at reducing the number of parameters in (5.6.7). Thus, we assume 

that
V y  O  n x N  

O  n x N  V x

and any interaction between mink and muskrat is now clearly expressed only via the

parameters Cj, j  =  1, • • • , N.
Finally, we put the N  posts in the same three categories, namely ‘west’ (N west = 

29 posts), ‘east’ (N east =  9 posts) and ‘centre’ (Ncentre =  44 posts), as it has been 
explained in the (2003) paper, and we proceed further with a param eter reduction. The 
N  parameters bj, j  — 1, • • • , N ,  are reduced to only three param eters bwest, beast, bcentre 
and so are Cj, j  =  1, • • • , N ,  replaced by c^esf, ceast and ccentre. We do the same for the 
inverse variance matrices V y 1 and V ^ 1. We set the m atrix V y 1 equal to

o o  i (y) i o o  t
v e s t  * -Wiwejt u c s t tcaa t  * u e * t X N Caat v c a t tc e n t r c  * X N c c n tr e

( Y)  i  (Y)  i (Y ) i
* ^ e o j t  *  ^ w e a t  ^ c a a t  * X ^ e o i t  ^ 'e .a a t^c c n tre .  * - ^ e a a t X ^ c e n t r e

00 -i (y ) 1 (r)  -
^ tl7eat,ccn ftrc  * ^ ^ c e n ir e  X ^ « jCat ^CCTlirCjCaat * ^ - ^ c e n t r e ^ ^ e a i t  ® c e n tr e  * ^ ^ c e n e r e x ^ c e n tr e

(5.6.12)

where l nXm is the m atrix with all (n • m) elements equal to 1. Similarly, we define 

V ^ 1 with variance-covariance parameters a ^ t , a ^ tre, and covariance parameters

aiwelt,easti ^wlt,centre and aiast,centre- Overall, our model is using 18 parameters. On the 

other hand, the likelihood is using 2 • (N T )  =  3,936 observations. We write

+ <&L e V W P V )
j,k

-  a (y) V £ (y)r s k (y)( s ^ - a (y) V £ (y)f s k (yW lawest,east Z_^ \s3)s t \sk) awest,centre Z~i t \SJ)Et \sk)
j,k j,kjjik j^k

-  O.Z!t,centre + « &  E ^ r f O * )
j  k

+ 4 2  E ^ r f W

7,fc j#fc

m  y V X ) f s k ( X ) f s ^  -  a ( X )  V s ( X ) f s  k ( X ) f s ^ la w e s t , c e n t r e  Z - s  * \ s J J £ t  \ s k )  a e a s t , c e n t r e  2 -* / * { S j ) £ t  \ s k )J
j'.fc i.fcjjik j^k

T p o g lV y 'l +  loglV ^I], (5.6.13)
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/y\
for the quantity we will minimize, where we consider e). (sj), e). (sy), j  = 1, • • • , N,  to

be functions of the six parameters bwest , • ■ • , ccentre, and the data.

For the computation of IVy1! ( or |V ^ 11), we keep in mind tha t

V arfV y1 ■ £'y )} =  V p 1,

which is also a variance matrix. Thus, we can place the six elements a^e' t , 

in the inverse, and perform the innovations algorithm to find the prediction variances,

for their product is equal to the determinant of interest. The next subsection examines 

which are these values of the parameters that we are allowed to try, in order to compute

(5.6.13).

(5.6.14)

a (y)» east, centre’

5 .6 .1  R e s tr ic t io n s  o n  th e  p a ra m eters  

R e s tr ic tio n s  o n  th e  te m p o ra l  p a ra m e te rs

First, we find the restrictions for the parameters bwest , • • • , ccentre- For any j  

the auto-regression defined by (5.6.7) is causal if

det

=  1 ,JV,

1

1o
bj Cj

z \  — det <
1 — b j  z  —Cj z

1 o 1 1
1

i J I Cj z  1 — b j  z

=  (1 -  bj z)1 +  cj z 2 = 1 -  2 bj z + (bj + Cj) z z ±  0,

for all \z\ <  1, where z  is a complex number.

Indeed, we may define

,2\ Ji (5.6.15)

A =  4 b] -  4 (6  ̂+  ej) =  - 4  cj, (5.6.16)

and find the roots
2 bj ±  2 Cj ■ i bj . . Cj J ± i  J

2 ( ^  +  c |) bj + c] bj + cf  

where i — y/^1.  Thus, we want that

z =
b? + c?

> 1,

or that

(5.6.17)

M +  d  < 1, (5.6.18)
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for the three areas ‘west’, ‘east’ and ‘centre’. As a result, we computed the quadratic 

form of the likelihood for all the values

bj, Cj = 0, ±0.1, • • • , ±0.9,

under the restriction (5.6.18).

R e s tr ic tio n s  o n  th e  sp a tia l  p a ra m e te rs

We discuss the case of V y 1, as we may work out the case of V ^ 1 identically. According 

to the decomposition

V ” 1 =  A y1 - B y , (5.6.19)

as this was described before, we may count that the elements

» P  = l / a Z \ j  = l , - , N ,

are such th a t

< Var{<rJy )(sj )}.  (5.6.20)

In the case of Gaussian random variables, u are conditional variances; otherwise they

are just prediction variances. We follow (5.6.20) and write

=  (1 +  b]) Var{yt(c)(Si)} +  cj Var{X<c)(s,)}  -  2 bj C o r r ^ / ^ ) , ^ ( s , - ) }

-  2 Cj Corr{y,(c)(sj), +  2 b j  ■ c,  Corr{Y^ \ (s,-) , ( sj )}

<  1 +  (b j  +  c j )  +  2 |&j| +  2 |Cj-1 +  2 |6j - C j |,

since

Var{yt<c>(s,)} =  Var{A-<c)(sJ)} =  1.

Finally, since (5.6.18) holds and \bj\, \cj\ < 1, we may write that

v f ] < 1 ±  1 +  2 +  2 +  2 =  8. (5.6.21)

We tried the values

i/jy) =  l ,2 ,- . -  ,8, 

for the three areas ‘west’, ‘east’ and ‘centre’. Since it holds that



we tried the values

a<y) = 0 ,± 0 .1 ,- - -  ,± 1 ,

for the three covariance parameters ‘west-east’, ‘west-centre’ and ‘east-centre’.

5 .6 .2  T e s t in g  th e  in te r a c tio n  o f  m in k  an d  m u sk ra t

If we consider the indexes j  =  1, • • • ,29, corresponding to the locations of the western 

sites, and also the indexes j  =  30, • • • , 38, and j  = 39, • • • , 82, corresponding to the 

locations of eastern and central locations, respectively, we may then summarize our full 

model, for any t G Z, by the equations

1i

i— U
T

ii

CO
'u'S

r
»

i

CO
''3s

1 1"3s

i

i

___
1

bwest Cwest 

vest bwest

beast  Ceast 

~C east  beast

bcentre Ccentre 

Ccentre bceni r e

Y , - M ) + ---
--

1

"3 'k
'

X t - X s j )  . _ 4 x )(sj )

Y ' - i M  " + 4 y )m —
i 

V?
*

to

5 3

+
XY)
■t
XX)

(s j) 

(s j)

3 = l r - -  ,29,

j  — 30, • • • , 38,

, j  =  39, - - - ,82,

under the restrictions

l2 I 2 i 2 _i_ 2 l2 i 2 /  -j
°w es t  •" cw e s t» °east ' c eas t , 0centre  ‘ Ccentre x •

Moreover, we write

XY) _  
H =
XX) _
■t =

(4y )(si), • ■ ■ , eSy )(s82)]T ~  I I D(0 , Vy), 

(4X)(si), ■ ■ ■ , 4 X )(S82)]T ~  I I D( 0 , Vx ),

and

et =
XY)
•t
XX) 7/0(0,  V),

for any t G Z, with

V = Vy 082x82 

 ̂ 082x82 V x

Both the matrices V ^ 1 and V y 1 involve six parameters, as it was described in (5.6.12), 

and they are restricted to be covariance matrices.
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We have tested

H q '. Cwesi — Ceast — Ccentre — 0 

Hi  : otherwise

and have found the minimum under the null hypothesis equal to

- 2  l0 =  (24) * (321.037),

and the minimum under the null or alternative hypothesis equal to

- 2  I = (24) * (302.096). (5.6.24)

Thus, we may verify tha t their difference is a very extreme point of the chi-square 

distribution with 3 degrees of freedom and tha t there is a food-chain interaction between 

the mink and muskrat in Canada.

(5.6.23)
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Chapter 6

Exact Gaussian likelihoods for 

observations from spatial quarter 

ARM  A m odels

6.1 Introduction

Generalizing the theory of the one-dimensional time series to include the two-dimensional 

spatial processes is often a very difficult task. We saw back in Chapter 3 the obstacles 

one has to overcome when attem pting to prove the properties of the maximum Gaussian 

likelihood estimators for the parameters of an ARM A model because of the edge-effect. 

While the estimators for the parameters of the one-dimensional ARMA obtain all desir­

able properties for large sample sizes, one cannot say the same for the case of the spatial 

parameters. Up to these days, it looks like a large number of locations available in the 

sample cannot guarantee th a t the absolute bias of estimators moves fast enough to zero. 

In order to prove the asymptotic unbiasedness and normality of the estimators, corrected 

versions of the likelihood have been maximized rather than  the likelihood in its genuine 

form.

In this chapter, we first find and write down the theoretical form of the exact Gaus­

sian likelihood function for a specific class of two-dimensional auto-regressions, which axe 

both simple and flexible enough to provide a reasonable representation of planar auto­

correlation, i.e. auto-correlation on Z2. The main advantage of these processes is that 

they can easily factorize their deterministic parts, such as the auto-correlation function
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and the spectral density, into two distinct parts arising from one-dimensional processes. 

Special attention to these processes has been paid by M artin (1979). The doubly geo­

metric process (Martin, 1979, p.211) may be seen as an example. As it has been very 

well described by M artin (1979, p.212), under certain conditions, such processes can be 

considered as auto-linear formulations and they can be very useful for spatial predic­

tion. The way they are defined originally, does not make this very clear and it can be 

misleading.

Next, we simulate observations from a two-dimensional moving-average process, which 

uses the first-order filter with two spatial parameters, in order to verify that the exact 

Gaussian likelihood estimators have a bias of order greater than  the one desired. The 

observations lie on a rectangle and we maximize the exact likelihood using the innova­

tions algorithm. We compare our results with simulated results from some corrected 

estimators, for which we may rest tha t they have the desired properties; we showed back 

in Chapter 3 th a t for a moving-average, one can cut a finite number of observations from 

each dimension; in Section 6.3.2 we also refer to the modification of Yao and Brockwell 

(2006), who suggested a more general correction to include all the two-dimensional pro­

cesses th a t possess an AR(oo) representation via the innovations algorithm. Questions to 

be answered are which estimators dominate in terms of the mean square error, whether 

the selection of observations to reduce the absolute bias compensates for the inflation of 

the variance and, whether the bias moves more slowly to zero indeed when no selection 

takes place.

6.2 Linear-by-linear auto-regressions

We give the definition of a linear-by-linear process as given by M artin (1979, p.210).

D efin itio n  6.1. A linear-by-linear process {X{u, v), u , v  £ Z}  is defined as a (weakly) 

stationary planar lattice process for which the spectral density function exists and is 

proportional to the product of two spectral density functions corresponding to two one­

dimensional processes.

We can now define a linear-by-linear and causal auto-regression {X(u ,  v), u ,v  £ Z}  

satisfying the following equation

• 6 2 (8 2 ) X ( u , v )  = e ^ (u ,  v), (e^^(u,u)} ~  W N ( 0 , 1). (6.2.1)
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We summarize the auto-regressive polynomial as

0(*i, z2) = Qi{zi) ■ 0 2 {z2) =  9k,i z \  • 4 ,  (6.2.2)
[fc,/]€jQ

w h ere

91
)(1) Jze ^ z )  =  i  +  X ) e r ^ .  (6-2.3)

fc=l
92

02 (z) = l  +  5 > } 2) z ‘. (6.2.4)
1=1

Thus, the auto-regressions defined by (6.2.1) are a special case of the causal auto­

regressions defined on Z2. For the index set

J q = {[£, I) : k = 0, • • • , qi, I = 0, • • • , q2) (6.2.5)

it holds th a t

=  [ k , i ] e j Q, (6.2.6)

where

=  4 2) =  1. (6.2.7)

The spectral density of {X{u,  u), £  Z} as defined in (6.2.1) can be summarized

by

9x ( u i,u>2) -  - ^ 2  ' i ) . (ei»W2). ^ (e - iw i) . 02(e-*w2)’ _?r “  Wl’ “  7r’ (6’2'8)

which verifies th a t we have defined a linear-by-linear process. Also, it holds that
oo oo

e ^ z ) - 1 = i  +  £  e<» £  I©!11! < (6-2.9)
fc=l fe=l
oo oo

^ ( z ) - 1 =  1 +  5 ]  e<2) z ‘, Y ,  l©‘2)l < 0°. (6.2.10)
1=1 1=1

since we want the auto-regression to be causal. We may write
oo oo oo

0{zu  Z2)_1 =  ^ 2  0fc>* zl '  Z2 = J 2 ^ 2  ^  e i2) z l • 4 .  (6.2.11)
k , l = 0  . Jfc=0 Z=0

where

e 0,o =  e?> =  e£2) =  i. (6.2.12)

Thanks to (2.4.24), it holds that

©I1’ +  +  • • ■ +  ^ © L - , ,  =  0, k > 0, (6.2.13)

© f ’ +  ^ e S  +  . - .  +  ^ e ' 2^  =  0, / > o .  (6.2.14)
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There are also three more sequences of uncorrelated, random variables, such th a t we 

can write the auto-regression as their unilateral representation. It holds that

respectively.

Looking back a t the set J7q, all the representations (6.2.1), (6.2.15), (6.2.16) and 

(6.2.17) express {X (u,u), u, v € Z} as a quarter process, i.e. possessing an MA(oo) 

representation from one of the four quarters only. In general, a unilateral representation 

on two dimensions involves two quarters.

T h e o re m  6.1. From the process defined by (6.2.1) and for positive integers iVi, jV2, we 

let the random vector

Oi{Bi) • 02{B2 1) X {u ,v )  = e{2\ u , v ) ,  {e(2)(u,u)} ~  W N ( 0,1), (6.2.15)

is a  representation th a t expresses the auto-regression as a function of (u — k ,v  + 

/), k, I > 0 only, and the unilateral counterparts of (6.2.1) and (6.2.15) are

S l tS f 1) ■e2 ( B ^ 1) X ( u , v )  =  uW(u,v) ,  {u<V(u,v)} ~ W N ( 0 , 1 ) ,  (6.2.16) 

O i i B i 1) ■ e2 (B2) X ( u , v )  =  uW (ti,ti), {u(2) (u ,» ) } ~ f f iV ( 0 ,l ) ,  (6.2.17)

X  =

[ * ( 1, 1), * ( 1, 2), * ( 1, ^ ) ,

X (2 ,l) ,  * (2 ,2 ) , * ( 2  , N 2),
(6.2.18)

*(JV !,1), X ( N l t 2), X ( N i , N 2) f .

If Nk > 2qk, k = 1,2, then it holds that

Var{X}-1 =  E f 1 ® E, (6.2.19)

where we set the m atrix E fc 1, to be equal to

1 0[fc) 
e[k) i + 0Sfc)2

0
0

0
0
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for fc =  1,2.

P ro o f. We let the set

S  = {[u,u] : w =  1, • • • , iVi, v = l , - -  - ,AT2}. 

For the first location [1,1], it holds that

01 ( B f 1) • 02 { B ? )  X ( l ,  1) =  ^ ( 1 , 1 )

(6.2.20)

(6 .2 .21 )

or
91 92 91 92

X(1, i)+x; <£’ X(\+K i)+£ ef> X(1, i+i)+E E  eklel2) x(1+k’1+!) = “(l)(1> !)•
fc=l Z=1 /c—1 Z=1

(6 .2 .22)

It holds because of the causality assumption that

11 [U’V1 =  [1’ 11 (6.2.23)
o, [u,v] e  S -  {[1, 1]}

and according to  (6.2.22), it holds tha t u ^ ( l ,  1) can be written as a linear combination 

of X ( u , v ), [u, v] G S  since N\  > 2q\ and N 2 > 2q2.

For convenience, we write for any [u, u], [u + k , v  + I] G S

[̂u,u],[fc,Z] ^[tt+fc.u+Z],!—A;,—z] (6 .2 .2 4 )

for the element of the m atrix Var{X}-1 tha t is in the same row and column as the

covariance of the random variables X (u , v) and X ( u  +  k, v + 1), in Var{X}. It holds that

1, M  =  [o,o]

[k,l\ =  [fc,0], A: =  1, • • • ,qi

*[1,1 ],[fc,Z] [k,l] =  [0, Z], Z =  1, • • • , q2 

fe =  1 ,  ■ • • , 9 i ,  I =  l , - - -  , 9 2  

0, fc =  gi +  l , ---  ,iVi, or Z =  +  ! , -••  ,N2

Similarly, for the second location [1,2], it holds that

flits ,-1) • e2( B ^ )  [X (l,2) +  fl<2)X (l, 1)] =  2) +  f lf  V ^ l ,  1)

(6.2.25)

(6.2.26)

and

E { X ( « , v )  ■ [«W(1,2) +  fl<2)u<1)(l ,l) ]}  =

0, [u,v] =  [ l,l]

1, [u,u] =  [l,2]

0, [ u , t ; ] e 5 - { [ l , l ] , [ l ,2 ] }

(6.2.27)
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where the first part of (6.2.27) holds since
oo oo

X (l, 1) =  u (1)(l, 1) +  0<2)u (1)(l, 2) +  ©z2)u (1)( 1,1 +  Z) +  £  +  k, 1)
1=2 k= 1

oo oo

+  E E e *1)0i(2)“ (1) ( i + M + / )  (6 -2 -28 )
k = l  1=1

and

£ { X (1 ,1) • [u(1)( l,2 )  +  0j2)u (1)(l, 1)]} =  0 (!2) +  0$2) =  0, ■ (6.2.29)

according to  (6.2.14). Again, in the left hand side of (6.2.26), we have expressed the 

random quantity k^^(1,2) +  1) as a linear function of X (u ,v ) ,  [u,v] G S.

As  a result, thanks to (6.2.27), we may consider as cr[lj2],[fc,i] =  ^[l+fc^+J^-fc.-zb with 

[1 +  Jc, 2 +  I] G «S, the coefficient of X{1  +  k, 2 +  I) in this linear representation (6.2.26). 

We may keep going the same way by writing

Oi(B^) ■ 92(Bi1) [X (l, 3) +  9(? )X ( 1 , 2) +  9$) X {  1,1)]

=  u (1)( l, 3) +  ^ 2)u(1)(1,2) +  ^ 2)u (1)(l, 1)

=  <T[i.3],[fe,i] X (1  + k ,3  + 1) (6.2.30)
[l+fc,3+Z]G«S

for the location [1,3], and for the locations [1, v], v =  1, • • • , q2, in general, we can write

V  — 1

^ ( S f 1) ■ e2(B2 l) [X (1 , v ) +  -  0 ]
1=1

=  U ^ ( l ,  v) +  ^ 0 p ^ U ^ ^ (l,U  — I)
1=1

=  ^  A"(l +  k, v + 1). (6.2.31)
[l+fc,u+Z]£iS

For all locations [1, v], v = q2 + 1, , N 2 — q2, we may write

^ ( S f 1) . 92(B^) ■ 92(B2) X(l,v)  = 92(B2) «W(1,#) = 92(B^) vP\ l , v )

, =  E  <7M .IM  ”*■ ^ ' v + (6.2.32)
[ 1 H“ Aj,v I  ] £  «S

We may sta rt going backwards for the locations [1, v], v =  N 2 — <72 +  1, • • • , N 2 — 1, by 

writing

N 2 —V N 2 —V

91(B?)  ■ 92{B2) [X ( l ,« )+  E  «,(2)J f ( l ,v  +  0 ] =  u (2)( l .« ) +  E  9|(2)« (2)( l .«  +  0
1=1 1=1

-  S  +  M  +  0- (6.2.33)
[H-fc,v+Z]£*S
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Finally, for the location [1, iV̂ ], we can write

el (B^) -62(B2) X ( l , N 2) =  J2  a[hN2m]X( l  + k,N2 + l) = ul-2Hl,N2).
[ l+k , N2+l ] £S

(6.2.34)

Following the same sequel, we may define for all [u, v] € S

^  X ( u  +  kj v +  I)
[u+k,v+l ]£S

u—1 N \ —u v —1 N 2—v

=  E ^  E  ek' E fll<2> E  ffl-} X ( u - k  + k \ v - l  + n  (6.2.35)
k= o  k *=o i=o i *=  o

where, of course,

0 ^  =  0, k = gi +  1,91 +  2, ■ • • (6.2.36)

and

0j2) =  0, i =  92 +  1,92 +  2, • • • . (6.2.37)

Equation (6.2.35) might be expressed as

k=0 1=0

for u =  1, • • • ,<71, u =  l , - - -  ,g2,

u —1 N 2 —v

E 9*1’ E  u(2H u -k ,v + n ,
k= 0 l*=0

for u  =  1, • • • , qu  v = N 2 -  qz +  1, • • • , N 2,

N i —u v —1

E ^ E ^  eW(u  + k ' , v - l ) ,  
k*=0 1=0

for u = ATi -  qx +  1, • • • , Ni,  v = 1, • • • , q2,

N \  —u N 2 —v

E  ^  E  e<? ^ \ u + k \ v + n ,
k*=o i*=o

for u = iVi -  q± +  1, • • • ,N i ,  v = N 2 -  qz +  1, • • • , N 2,

u —l u —1

^ 0 ^  02(B2) u ^ \ u -  k ,v )  =  5 3 0 ^  02(B2 1) U(2)(u-fc,u),
fc=0 fc=0

for u  =  1, • • • , qi, v = q2 +  1, • • • , N 2 -  q2,
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N 2 —v N2 —v53 e\? $!(bo u<2>(u,v + r) = 53 ej? 0i(b ^) e<l>(u,» + n,
l*= 0 l*=0

for u = qi +  1, • • • , Ni -  qi, v = N 2 - q 2 + 1, • • • , N 2,

N i —u Ni —u

5 3  0k - 0 2 (B2 l ) e(‘)(« +  ib*,w) =  5 3  e $ e 2 (B2) e<2>(u +  f c » ,  
fc*=0 fc*=0

for u = N i  -  qi +  1, • • • , iVi, v = q2 +  1, • • • , N 2 -  q2,

v —1 v—1

5 3 ff,(2) 01 ( B f 1) e W ( u , v - l )  = J 2 ei2) 9 i ( B i)
z=o z=o

for u =  qi +  1, • • • , Ni -  qi, v = 1, • • • , q2.

■ B2 (B2) • 9x( B f x) • 8 2 (BJ 1) X ( u ,  v )

=  ■ «2(B2-*) e<‘>(u,t») =  01 (BO • 02 (B2) «< ')(«,o)

=  «l(B j-x) • 02(B2) e<2>(u,u) =  » i(B i) ■ ^ ( B ,- 1) u<2>(«,t>),

for u = qi +  1, • ■ • , Ni  -  qi, v = q2 +  1, • • ■ , N 2 -  q2.

The proof of the theorem follows after comparing (6.2.35) to (6.2.19). ■

R e m a rk  6.1. (i) The form (6.2.19) verifies M artin (1979, p .211) who suggests th a t both 

the variance m atrix for the observations {X(u ,  v), [u, t>] G <S} and its inverse should be 

written as Kronecker products of two variance matrices and their inverses, respectively; 

two processes taking place on the line transect might have produced such variance ma­

trices. Similarly, it holds for the determinant

|Var{X}_1| =  \ ^ \ N2 • (6.2.38)

(ii) According to Remark 2.3, since we have assumed th a t (6.2.1) is a causal auto­

regression, the variance m atrix Var{X} is non-singular and so are the variance matrices 

S i ,  S 2. The elements of Var{X}-1 are the unique coefficients of the best linear predic­

tors for each observation based on all other observations in <S.

(iii) Definition 6.1 and Theorem 6.1 can also be applied for the general case of any

dimensionality d. Also, for the special case where d = 1, the theorem gives the form of
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the inverse variance m atrix of N  consecutive observations from a causal auto-regression, 

when N  is greater than twice the order of the auto-regression. Examples of similar work 

for the general case of an ARMA(p, q) on Z , may be found in Ansley (1979) or Penzer 

and Shea (1997).

(iv) For

{e(1)(u,v)} -  WN{0,1)

the process

X (u, v ) =  AX ( u  — 1, v) +  uX(u ,  v — 1) — Au X (u  — 1, v — 1) +  e ^ \ u ,  u), (6.2.39)

or an equivalent having the same second-order properties is called the doubly-geometric 

process (Martin, 1979, p. 211). This process is linear-by-linear and the two corresponding 

one-dimensional processes are AR(1) on the line transect.

(v) Theorem 6.1 is an example of Section 2.4.1 and, more specifically, of the subsection 

on the conditional variance matrix of a random vector from a moving-average. Indeed, 

we saw there th a t some conditional variance matrices of this type are equal to  variance 

matrices of random variables from auto-regressions. The elements of our inverse variance 

m atrix Var{X}-1 in the theorem, closely resemble the auto-covariances of the invertible 

moving-average process defined by the equation

Y{u,  v ) =  0 i(B f1) • 0 (B f1) eM (u, v), { c ^ (u , v)}  ~  W N ( 0 , 1). (6.2.40)

Indeed, we saw in the end of the proof of the theorem th a t if u — q\ + 1, • • • ,N \  — q\ 

and v =  q2 +  1, • • • , N 2 — q2 , then the random variable

(B i) • 02(B2 ) ■ 01 ( B f 1) • 02( B f 1) X ( u , v )
91 92

=  E  E  0ix) ■ 0^  • 0,(2) • 0,(.2) x ( u —k + * * , t , —1 + n
k,k*=0l , l*=0

is uncorrelated with all random variables on the locations of the set «S, apart from the 

random variable X (u ,  v) itself. As a result, elements of the inverse Var{X}-1 there 

would be of the form

k—k* I—I*

which are also auto-covariances from model (6.2.40). Why we cannot say the same for the 

locations on the edges of the rectangle, when u = 1, • • • , <71, or u — N \  — q\ +  1, • • • , Ni,  

or v = 1, • • • , <72> or v = N 2 — <72 +  15 ■ ■ • , A2, can be related to the fact tha t we only
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expect a conditional variance matrix of random variables from (6.2.40) on the locations 

of <S and not the exact variance matrix.

6 .2.1 G aussian likelihoods

For the param eter vectors

(6.2.41)

and

6>2 =  - - - ,#W]T (6.2.42)

and for the observations {X(u ,  v), [u,v] G <S} from (6.2.1), where S  is given in (6.2.20), 

we may write the Gaussian likelihood

f 1 1 1 1/2
£(01,02) OC { [ n 91= ir (l)(u)]JV2 • [H« , r(2) („)]*! }  “ P f-V Z  X t[S i 1 ® E 2 1]X},

(6.2.43)

where 0 i G 0 i ,  62 £  02 and 0 i  C D£91 and ©2 C CR92 are param eter spaces, such tha t 

the process {X^^(u), « G Z }

9\{B)  X (1)(u) =  e(1)(u), {e(1)(u)> ~  W W (0,1), (6.2.44)

and the process {X(2)(u), v E Z}

6 2 (B) X & ( v )  = e(2)(u), {e(2)(u)} ~  W N ( 0 , 1) (6.2.45)

are defined as causal auto-regressions taking place on line transects.

If we consider q\ consecutive observations from (6.2.44), say X ^ ( l ) ,  ••• ,X ^^(gi), 

then we may define

X (1)(1) =  0 (6.2.46)

and
u—1

X ^ u )  =  £ > $  X m ( u - k ) ,  u =  2, • • • , « ,  (6.2.47)
ifc=l

to  be the best linear predictor of X ^^(u) based on previous observations 

X ^ ^ (l) , • • • ,X ^^(u  — 1). We may also define the prediction variances

r ^ ( u )  =  E { X ^ \ u )  -  X ^ ( u ) } 2, u =  1, • • • , q\, (6.2.48)

and compute them  from the innovations algorithm.
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Similarly, for the observations X^2̂ (l), • • • ,X ^2\ q 2 ), from (6.2.45), we define

X (2)(l) =  0 (6.2.49)

and
v —1

i (!)W = 53 xi2){*v -  0> « = 2, • • • , 9 2 , (6.2.50)
l=i

to be the best linear predictor of X^2\ v )  based on * ( 2)(1),--- ,X ( 2) ( v - l ) .  The predic­

tion variances can be defined as

rM(v)  = E { X ( 2\ v )  -  X (2)(v)}2, v = 1, • • • , ©, (6.2.51)

and can be computed via the innovations algorithm.

6.3 Q uarter m oving-averages

6.3.1 First-order filters

We consider the process {y(u , u), u ,v  E Z }  to satisfy

Y (u,u) =  e(u, v) +  a e(u — 1, v) +  b e(u, v — 1), {e(u,u)} ~  I I D ( 0,1), (6.3.1)

where

|a| +  \b\ < 1. (6.3.2)

Due to the last condition the process is invertible. Condition (6.3.2) is not just sufficient 

for the stability of the filter 1 +  a z\ +  b Z2 , \zi\, \z2 \ < 1 (Guyon, 1982, p .102) but also 

necessary according to Huang (1972, p .162). The auto-covariance function of the process 

is

1 +  a2 +  62, [kyl] = [0,0]

a, [&, 1] =  [fc, 0], k = ±  1

b, [fc, I] = [0, Z], I = ±1 •

ab, [k , Z] =  [1, —1] or [k , Z] =  [—1,1]

0, otherwise
(6.3.3)

For N  = N 1N 2 observations on the locations

7  (k,l) = E { X ( u , v ) X ( u  — k ,v  — l)} = <

S  = {[u,v] : u = 1,- • • , N u v = 1, • • • , N 2},
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from the process (6.3.1) with unknown values for the param eters a and 6, the maximum 

likelihood estimators, say a and 6, may be searched over all the possible values |a |+ |6 | <  1. 

The absolute value of the bias of both the maximum likelihood estimators a and b 

is of order iV-1/2 (Guyon, 1982). This means that, if multiplied by iV1/2, it can be 

bounded away from oo but cannot be guaranteed to reach 0 for large sample sizes. Since 

the standard error of the estimators is also of order iV-1 /2, we cannot derive both the 

asymptotic unbiasedness and asymptotic normality of the estimators. This, of course, 

is a special case of a general problem that affects the processes of any dimensionality d 

and is a direct consequence of the edge-effect. When d > 2, the bias multiplied by iV1/2 

cannot be guaranteed to be bounded away from oo either, as it is, in general, of order 

No wonder why the problem does not become apparent when d = 1.

For the special case when d = 2, Yao and Brockwell (2006) gave a solution to the 

problem of estimating the parameters of any process th a t can possess an AR(oo) repre­

sentation. Suppose then th a t we can write

Y { u , v ) =  (p[k̂ Y ( u - k , v - l )  + e(u,v),  {e(u,v)} ^  I I D {  0,1), \V[k,i}\ < °°.
[k,l]>0 [k,l]>0

(6.3.4)

In (6.3.4) we may find the unique coefficients that give the best linear predictor of an 

observation based on all other observations from its ‘past’. In a sample set like S  though, 

one can never have all the observations needed from the ‘past’, unless the auto-regression

(6.3.4) is of finite order in its causal representation. The Cholesky decomposition for the 

( N  x N ) variance matrix uses for every location [u, u] E <S, the best linear predictors

Y  (u, v) = J ]  v\k’J]Y  ( u - k , v - l )  (6.3.5)
[k,l]>0 ,

[u—k,v — l]£S

and the prediction variances

r(u , v ) = E { Y  (u , v) — Y  (u , v ) } 2 (6.3.6)

instead. It has been proven tha t is closer to <f[k,i] as the location [u, u] moves away

from the edges of the rectangle and there is more and more information about its ‘past’. 

The primary index u must be as close to N\  as possible while the index v must be away 

from both sides of length N\  of the rectangle (Yao and Brockwell, 2006). In other words

*>!m  - V [ M  (6-3-7)
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as min{u, v, N 2 — v} —* oo for the sampling set <S.

For one-dimensional processes we may rest that, as we obtain more and more ob­

servations, we also have more and more information available from the ‘past’ of every 

new observation generated. The same cannot be said for d > 2 as it was described in 

Section 3.2.2. Like for the coefficients (6.3.7) holds, an inequality with similar

meaning can be obtained, i.e.

E\[Y (n, v) — Y (u, u)] — e(u, v) \ < C  [au +  a v +  a N2~v], (6.3.8)

for constants C > 0 and a  G (0,1).

To remedy (6.3.7) and (6.3.8), Yao and Brockwell (2006) proceeded with a selection 

of N* observations

S* =  {[u, v] : u =  ni  +  1, • * * , N i t v = ri2 +  1, • • • , N 2 — 712}, (6.3.9)

where 711,712 —> 00 but also n \ / N \  —> 0 and 712/Y 2 —* 0, as the selection takes place over 

an increasing number of locations available in the sample S.  Then, they proved that 

maximizing the modified Gaussian likelihood

L * a  n   TTra e x p { -l/2 [  V  ly (u ' t') ~  (6.3.10)
IIM e 5 . - - K , ) 1/2 \ u^ s . r ( u , v )

generates consistent and asymptotically unbiased and normal estimators for the unknown 

parameters of (6.3.1).

6.3.2 Sim ulations

We have produced N  =  N 1N 2 observations {Y(u,  v), u =  1,2, • • • , v =  1, • • • , ^ 2} 

from the process satisfying

Y (u ,v )  = e(u,v)  +  0.1 e(u — l ,u)  +  0.2 e(u,v  — 1), (e(u,i;)} ~  N I D ( 0,1), (6.3.11)

for iVi =  5,10, • • • , 30, and N 2 = 10. As a result, we have used the true parameters

a =  0.1, 6 =  0.2, (6.3.12)

and a normally distributed error sequence in the process defined by (6.3.1).

Next we consider tha t the observations available have been generated by a process 

satisfying (6.3.1), but with unknown parameters a and b. Using the innovations al­

gorithm, we have computed the exact Gaussian likelihood as a function of the values
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a,b = 0, ±0.01,-•• ,±0.99, such that |a| +  |6| <  1. First, we have considered the pair 

a, 6, such tha t the likelihood there, is greater than all the other computed values. The 

estimators a, b will be called estimators without selection.

On the other hand, we have considered the estimators a, 6, after selecting locations 

according to (6.3.9). We have then found the maximum of the modified Gaussian like­

lihood (6.3.10) for the pair of values, say a and b. We have considered two cases of 

estimators a, 6, with selection. The first one is a fixed selection, for which we always use

m  =  n 2 =  1 (6.3.13)

for any N i , N 2 - We call the second type of selection a square root selection, as

m  =  [V^vi], n2 =  [ s / W i ]  (6-3.14)

then.

While the square root selection does obey to the rule proposed by Yao and Brockwell 

(2006), i.e. th a t n i , r i2 —► oo and rii/W i, 712/./V2 —► 0 as min{Ni ,  N 2 } —> 00, the fixed 

selection does not. We should remember here th a t it holds

E { Y ( u , v )Y (u  - k , v - l ) }  = 0, k , l  = ±2, ±3, • • • , (6.3.15)

according to  (6.3.3). This argument could be used as in Chapter 3, in order to guarantee 

tha t maximizing certain quantities gives unbiased estimators. Unfortunately, (6.3.10) is 

not one of these quantities; the selection (6.3.13) would work if the original process was 

using an auto-regressive rather than a moving-average polynomial

9{zi>22) =  1 +  a zi +  6 22-

Still, if we use (6.3.7), (6.3.8) and mathematical arguments like the ones provided by 

Yao and Brockwell (2006), we should expect the absolute bias of the fixed selection 

estimators to be smaller than tha t of the original estimators. The observations used for 

the computation of the fixed selection estimators all miss information from more than 

one step away from their ‘past’. For large sample sizes, such as N  =  (30 * 10) =  300, 

when we may rely on computing the bias of the fixed estimators from (29 * 8) locations,

it would be interesting to see whether there seem to be a big difference between those

estimators and the original ones. If not, th a t would mean th a t excluding one step only 

from the past has a minimal effect, as we increase the number of observations, and more 

observations need to be excluded.
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We are interested in comparing the performance of the original estimators without 

selection and their converted versions, in order to see whether the modification proposed 

for the Gaussian likelihood is essential to the analysis and beneficial regarding the edge- 

effect. Thus, we have repeated the same steps 100 times. We write a[i] for the estimator 

without selection of the param eter a = 0.1 from the z-th replication, where i =  1, • • • , 100. 

Similarly, we write a[i] and b[i], b[i] for the parameter b =  0.2. We have computed the 

mean
100

( 6 ' 3 1 6 )
i =  1

and the quantity

Bias(a) = E(a ) — a = E(a)  — 0.1, (6.3.17)

which we expect to be close enough to the bias of the estim ator a. Moreover, we have 

computed
  1 100

Var{a} =  -  100 {£ (a)}2] (6.3.18)
i = l

to be close enough to the true variance of a. Thus, we write

M S E (a )  = Var{a} +  (5zas(a)}2 (6.3.19)

to approximate the mean square error of the estimator a. We also approximate the 

expected value, the bias, the variance and the mean square error (MSE) of the other 

estimators of interest in exactly the same way from the 100 replications.

We have chosen to fix N 2 =  10 and let N\  only take several values. Later on, we 

will also discuss some cases when N\  = N 2 = n  and n =  10,15,20. When Ni  —> 00 

only, the number of observations N  =  50,100, • • • , 300 increases to infinity, though at 

the speed of N\  only. Since the model (6.3.1) treats both its param eters a and b equally, 

it would be interesting to see how the estimation of its param eters is affected when the 

number of recordings on one dimension only is changing. Especially for the estimators 

computed with fixed selection, it is a question of interest whether they can compete with 

the standard estimators then. In the contrary, the square root selection estimators have 

been proven by Yao and Brockwell (2006) to become asymptotically unbiased and normal

as both N i , N 2 —» 00. Here, we will see whether they manage to equalize the performance

of the standard estimators, in terms of the Mean Square Error, when N\  —> 00 only.

In Figure 6.1, we look at the absolute value of the bias of the three different esti­

mators of the param eter a = 0.1. We can see immediately th a t the estim ator without
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Figure 6.1: Absolute value of the bias of the estimators a, a versus the number of 

observations from 100 replications.

selection and the fixed selection estimator exhibit a similar performance regarding their 

bias. Except from the case when we have generated N  = 200 observations, where the 

square root selection estimator of a has the smallest absolute bias, in all other cases 

the absolute bias of the two estimators are smaller and close enough; for the case of 

N  =  300 observations, the genuine estimator has an absolute bias 0.0067, while the fixed 

selection one has an absolute bias equal to 0.0082. Especially the square root selection 

estimator shows a dram atic trend downwards from N\  =  5 to N\  = 200, but this seems
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to stop when it reaches the performance of the other two estimators. The two other 

estimators do not exhibit the same trend, but they are not outperformed by the square 

root selection estimator either, especially when N  =  300.
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Figure 6.2: Mean Square Error of the estimators a, a versus the number of observations 

from 100 replications.

Looking a t the mean square error of the estimators in Figure 6.2 is expected to be 

a combination of the picture we saw in Figure 6.1 and the variance of the estimators, 
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used to reduce the absolute bias but not the variance. Thus, we know in advance that 

the standard estimator has a smaller variance than the fixed selection estimator, and 

the fixed selection estimator has a smaller variance than any estimator tha t chooses to 

leave out more and more locations from the edges. The question is whether the standard 

estimator will manage to dominate in terms of the mean square error, or whether the 

estimators th a t have omitted some locations will manage to compete with it successfully.

The answer to tha t comes straight from Figure 6.2, which reveals tha t all the three 

estimators have asymptotically almost the same mean square error. Especially the fixed 

selection estim ator seems to have an equal performance as the estimator without se­

lection; this might be attributed first to the fact tha t the estimator with selection had 

often a smaller absolute bias according to Figure 6.1, as well as to the fact tha t only 

one location per dimension, which is left out of use for the reduction of the variance, is 

asymptotically negligible as N  —► oo. Of course, since

ni  _  \/jVT _ __1___ ^
Ni  Ni  y /N l

as N \  —> oo, it holds th a t omitting y/Ni  locations is also asymptotically negligible, 

which is the reason why the square root selection estimator is so close to the other two 

estimators when Ni  =  30.

As we have explained before, the model (6.3.1) treats its two parameters a and b in 

exactly the same way. As a result, any differences detected in the performance of the 

two original estimators a and 6, should clearly be attributed to the fact tha t N\  —> oo 

but N 2 =  10 is fixed. On the other hand, the way Yao and Brockwell (2006) proceeded 

with a selection of observations favors the dimension u  e  Z, as the primary dimension, 

and leaves v € Z  to be the secondary dimension. Consequently, both the fixed and 

square root selection estimators will also reflect this hierarchy between the two axes as 

a difference in the performances of a and b.

Indeed, the picture we get from Figure 6.3 is tha t the points are scattered without 

any specific structure compared to Figure 6.1. That must be the effect of the fact that 

N 2 =  10 is fixed. Nevertheless, when N  = 300 observations are generated, all the 

three estimators manage to reduce their absolute bias effectively. The absolute value 

of the bias of the estimator without selection b and the fixed and square root selection 

estimators b are 0.0016,0.0010 and 0.0054, respectively. These are smaller numbers 

than the ones written down for the absolute value of a and a. The value 0.0054 of
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Figure 6.3: Absolute value of the bias of the estimators 6, b versus the number of 

observations from 100 replications.

the square root selection estimator is bigger than the values for the absolute bias for 

the remaining two estimators, which make us wonder whether it is worth proceeding 

with such a selection of observations. Let us not forget that, given tha t making a 

selection of locations automatically implies tha t smaller variances of the estimators will 

be derived, we should a t least demand to balance tha t with a smaller absolute bias. 

Further comments on this will be made when we will allow for N  =  n 2 and n  —> 00 later. 

Finally, Figure 6.4 gives a similar impression to  Figure 6.2, as they both express
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Figure 6.4: Mean Square Error of the estimators 6, b versus the number of observations 

from 100 replications.

how the mean square error of the estimators is reducing as N  = 50,100, ■ • • , 300. 

Moreover and when N  =  300, the MSE of the three estimators a and a are equal to 

0.00407530,0.00490841 and 0.00772686, while for the estimators b and 6, we have the 

values 0.00377371,0.00490302 and 0.00699162, which are all slightly smaller. This must 

be due to the small differences in the absolute bias. Similar conclusions might be made 

from Figure 6.4 and for N  =  300, as all the three estimators exhibit a similar performance 

in terms of the mean square error.
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The estimators proposed by Yao and Brockwell (2006) have been proven to be asymp­

totically normal as both N \ , N 2 —> oo. We would like to see next, whether our decision 

to set N 2 =  10 has really deprived the square root selection estimators of a much faster 

reduction of the absolute bias than that of the exact likelihood estimators. Thus, we have 

generated N  = n 2 observations from (6.3.11) and have found the exact likelihood and 

square root selection estimators a, b and a, 6, respectively. We have chosen n  =  10,15,20, 

and we have repeated the same procedure 30 times.

Table 6.1: Bias of estimators a, a, b, b, from n 2 observations and 30 replications.

W ithout selection 

a

W ith selection 

a

W ithout selection 

b

W ith selection 

b

n = 10 -0.0065 -0.0293 0.0122 0.0347

n  =  15 -0.0084 -0.0009 -0.0124 -0.0077

n — 20 0.000666667 -0.00966667 -0.015 -0.018

Considering the estimators of the parameter a first, it seems th a t when n =  15 

and [\/l5] =  3 locations have been excluded from the prim ary dimension, the selection 

estimator gives a smaller absolute bias than the genuine estimator. W hen n =  20 though, 

not only does a have a smaller bias in absolute value, but also its bias and the bias of a 

have a different sign; since [y/20] = 4, this might mean th a t we have excluded now too 

many locations, which gives a completely different impression than  excluding 3 only. As 

a result, there is the question which one is the best selection we should trust. Maybe 

the square root selection excludes locations too fast and there is no need for that, as 

the exact likelihood estimator performs well too. Especially when there are n 2 =  400 

observations available, the expected value of the estimator a seems very close to a =  0.1. 

Thus, the mean of a does not look to have reached 0.1 slower than  the mean of a there.

The conclusions can be similar for the two estimators of 6, though not that exagger­

ated. When n = 15 only, the absolute bias of b is smaller than th a t of b. In general, the 

biases of the two estimators are really close when n = 10,15,20, and they always have 

the same sign. Jumping from n — 10 to n  =  20 does not really allow to b to reduce its 

absolute bias, while b has reduced its absolute bias from 0.0347 to 0.018, i.e. there is a 

48.127% decrease. T hat could be seen as a sign of a faster recovery of the absolute bias 

of b to zero. Still, the absolute bias of b and tha t of b are really close even when n =  20.

254



We do not give the mean square error of the estimators and how it was approximated for 

the four estimators, as it was always smaller for the exact likelihood estimators a and b.

As a result, we should wonder if a selection of locations is of any practical use. If 

a modified estimator cannot compete with the standard estimator by giving a much 

smaller absolute bias, how could we possibly single it out as the best estimator, in terms 

of the mean square error? Further investigation is required for even larger sample sizes 

and n  —> oo. Nevertheless, if the number of observations recorded is not that big, our 

investigation so far reveals that the exact Gaussian likelihood estimators have a good 

behavior, th a t is not likely to be improved if some locations are excluded. Furthermore, 

the type of selection followed to exclude locations is a question of interest. The solution 

proposed by Yao and Brockwell (2006) provides the mathematical convenience required 

for the proofs, but it is also very general and abstract. It is only preferred, given that 

we believe our exact likelihood estimators are worse, in terms of the order of the bias; 

we have not always seen th a t here.

In conclusion, we would like to urge the reader to remember all the estimators we 

proposed back in Chapter 3. If the process of interest is an ARMA(p, q) on Zd, then 

we could use the modified Gaussian likelihood estimators proposed there. They are 

computed in a simple way, guaranteed to be asymptotically unbiased and normal and 

they use a very specific and finite exclusion of locations, based on the order of the 

process of interest. We do hope that these estimators could perform at least equally 

to the standard Gaussian likelihood estimators in terms of the Mean Square Error, and 

they could be a satisfying remedy to the problem of estimation for the parameters of 

any ARMA process on Zd with any positive integer d.
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Chapter 7

Conclusion

A large part of this thesis referred to (weakly) stationary processes, which take place 

on Z d. Chapter 2 introduced ideas, which were essential later for the two chapters of 

the estimation and statistical testing, i.e. Chapters 3 and 4. The general Yule-Walker 

equations were introduced in Chapter 2 and they could be considered as a fundamental 

idea used repeatedly in the next two chapters. The general Yule-Walker equations relate 

the auto-covariance functions of two different processes, or they relate the numerator and 

denominator of the spectral density of the same process, or alternatively, they relate the 

auto-covaxiance function and the best linear predictor coefficients of the same process. 

For the cases of auto-regressions and moving-averages in particular, it is thanks to the 

general Yule-Walker equations tha t we have managed to discover the form of inverse 

variance matrices of random vectors from those processes. As a result, in Chapters 3 

and 4 we have written down conditional Gaussian likelihoods explicitly.

Chapter 3 was dealing with the estimation of the param eters of an ARMA process. 

For the case of invertible moving-averages, the general Yule-Walker equations have also 

motivated a method of moments estimation that replaces the theoretical auto-covariances 

of the moving-average by their sample estimates. This is another contribution of the Yule- 

Walker equations. In general in Chapter 3, it was attem pted to estimate the parameters 

of interest by maximizing modified versions of Gaussian likelihoods. The order of the 

bias of the estimators defined, was of great importance when d > 2, because of the 

edge-effect. All our estimators, which were computed from N  observations and defined 

for any positive integer number d , achieved a bias of order iV-1 and defeated the edge- 

effect. In th a t sense, we have managed similar results to Guyon (1982). Moreover,
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all our steps followed the time domain, thanks to the explicit results of the previous 

chapter, regarding inverse conditional variance matrices. Guyon (1982) had served the 

spectral domain and he had used the Gaussian likelihood proposed by W hittle (1954). 

Furthermore in Chapter 3, we suggested a modification of the Gaussian likelihood, which 

is appropriate for ARMA processes only. This was because it was based on the finite 

cardinality of the set of lags, for which the auto-covariance function of a moving-average 

was not equal to zero. The moving-average would be created from the original ARMA 

with a finite transformation. Guyon’s (1982) suggestion was using the estimates of auto­

covariance function of the process of interest; as a result for an ARMA process, that 

would imply th a t the more the observations recorded, the more the lags tha t would need 

to be taken into account for the computation of the likelihood.

Our suggested modification on the Gaussian likelihood of observations from an ARMA 

process can apply to both the cases when the ARMA is unilateral or bilateral. W hittle 

(1954) had dealt with bilateral auto-regressions, but never before did we have a solution 

for the bilateral ARMA in its original form, rather than  in its AR(oo) representation. 

The param etrization of the bilateral ARMA should be done with care, as the theoret­

ical model should include positive or negative lags only; this is often unnatural for a 

bilateral process. The modified Gaussian likelihood estimators, which we defined, axe 

asymptotically normal under the assumption of a finite fourth moment of the sequence of 

independent and identically distributed random variables of interest. This could be seen 

as a similar condition to tha t of Guyon (1982, p .100), i.e. th a t the fourth cumulant of 

the error sequence exists. Nevertheless, while we established the asymptotic normality, 

we did not manage to discover the elements of the variance m atrix of the estimators, 

unless the process satisfies an extra condition. In the case of Gaussian processes, the 

conditions are satisfied and the estimators are asymptotically efficient. In the future, we 

do hope to improve the conditions of Proposition 2.6, which was the main tool tha t we 

used to find the elements of all variance matrices in Chapters 3 and 4.

The strong conditions of the theorems in Chapters 3 and 4 were not the only difficulty 

we confronted. In general, the nature of the problems of estimation when d > 2 are 

reflected in the edge-effect. Thus, in order to make sure th a t the edge-effect would not 

interfere with our methods, we often left out some of the observations, in the sense that 

we did not make full use of them. We saw this very clearly with our application in 

Section 3.7.3, where we had to reduce our sample size from N  =  8,500 to N* = 4,050.
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When d =  1, the number of observations we may leave out is the same, no m atter how 

large the sample size might be. As a result in time series, maximizing the exact Gaussian 

likelihood of all the N  observations guarantees tha t the same results can be achieved as 

when a conditional version has been preferred. Unfortunately for d > 2, as N  increases 

to infinity, it is only the number of indexes that should be left out per dimension that 

remains fixed; the number of rejected observations tends to infinity. Exact Gaussian 

likelihoods should not be used and we should be very careful if we are to involve the 

observations of the edges. We have not managed to prove in theory tha t there is any 

way to include these observations and, consequently, we have not managed to derive 

the asymptotic unbiasedness and normality of the estimators then. In Chapter 6 and 

for the special case when d = 2 only, we did use simulations to verify tha t maximizing 

the exact Gaussian likelihood might have a minimal difference from maximizing the 

modified version of Yao and Brockwell (2006), regarding the bias and, consequently, the 

mean square error of the estimators. When and how all the observations could be used 

in practice, what happens when our final sets of cardinality N*  are empty and how can 

we make the most of our observations without reviving the edge-effect, are all questions 

tha t have not yet been answered.

Special reference was made for the case of finite auto-regressions. The conditions 

of the theorems were relaxed then, as only a finite second moment was required from 

the sequence of independent and identically distributed random variables. That is the 

same condition also used by Yao and Brockwell (2006), since they had followed the 

infinite auto-regressive path  of the process of interest, in order to approach the problem 

of estimation of the parameters. A finite auto-regression is a linear model and we could 

easily generalize or use all the established results for linear models. The conditional 

Gaussian likelihood estimators are also least squares estimators and, consequently, they 

are very easy to compute. In Section 3.7, we saw how a finite auto-regression may be 

used to model observations recorded regularly over the space Z 2 and the time axis Z. The 

statistical tests we proposed, were tests for nested linear models; in order to discover how 

powerful those tests can be for our special case, we may use the result for the asymptotic 

normality of our estimators. Even when the inverse variance m atrix of the estimators is 

hard to find or when the original distribution of the errors is unlikely to have produced 

asymptotically normal estimators, combined together with a small sample size, we may 

resort to bootstrap techniques. Of course to apply bootstrap, the original N  dependent
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observations will be transformed to N* realizations from independent random variables, 

in order to take random samples with replacement repeatedly; th a t is possible when a 

linear model has been assumed.

In Chapter 4, we dealt with a more general version of the auto-normal formula­

tions, i.e. the auto-linear formulations on Zd. The auto-normal schemes on Z2 had been 

introduced by Besag (1974), who presented the second-order properties of stationary 

processes in term s of a new parametrization. Those param eters could not be related 

to the auto-covariance function of the process directly. As a result, it was difficult to 

find their sample analogues. The two methods of estimation th a t were proposed by Be­

sag (1974), i.e. the pseudo-likelihood and coding techniques, had failed to capture the 

complexity of the problem and to provide estimators with known properties. For the 

first time, we have proven some of the properties of the Gaussian pseudo-likelihood es­

timators, but he have not stopped there. Thanks to the general Yule-Walker equations, 

we managed to relate the parameters of interest with the auto-covariance function of 

another (weakly) stationary process, which can be created from the original one with a 

finite linear transformation. As a result, we invented a new method of moments esti­

mation for our unknown parameters, for which we managed to establish the consistency 

and asymptotic normality of the estimators, under certain conditions. Moreover, we 

expressed the elements of the variance m atrix of the estimators defined, in terms of the 

unknown parameters. Statistical tests could be performed.

As in Chapter 3, the strong conditions required for the proof of the theorems, remain 

a weakness. The edge-effect also remains a menace, since we have dealt with processes 

on Zd\ all the selections of observations we have made are m andatory for our results to 

hold, and this often implies tha t we have left a lot of information unused. Moreover, 

the method of moments we proposed, generates estimators th a t are solutions of the 

same number of equations. As we saw with our application in Section 4.7, it might be 

difficult to solve these equations in practice. In that same section, we found our estimates 

by minimizing a random quantity, rather than by solving the equations. W hether the 

estimators used are close enough to the estimators we studied before, is a question of 

interest. Furthermore when the variance of the process is also unknown, the quantity 

we should choose to minimize should not be dependent on the variance of the process. 

We proceeded with a very subjective selection of the quantity th a t we would minimize. 

Did tha t give the same solutions as we had studied theoretically? Did th a t allow us to

259



perform the statistical tests we established in Section 4.6? Our investigation so far has 

not answered these questions.

Next in Chapter 5 we changed the setting, in order to allow for our locations to 

be scattered anywhere on 0ld. We studied multivariate auto-regressions tha t could take 

place on these locations and on the time axis Z. The price we paid for generalizing our 

methods from the spatial regular space Zd to 0ld, would be to  have to fix our locations; 

only the number of timings observed could increase to infinity. In order to model our 

observations over time, we considered a finite multivariate auto-regression, which, of 

course, also involved a multivariate sequence of uncorrelated random vectors. We used 

the elements of the inverse variance matrix of these vectors as our spatial parameters. 

Using a conditional Gaussian likelihood to define our estimators, we proved tha t those 

are consistent and asymptotically normal, under very weak conditions. We used the 

likelihood ratio to  test statistical hypotheses and we applied our results on the mink 

and muskrat spatio-temporal data. It was then th a t we could see clearly tha t when 

the number of locations, say N , is large, we have an even larger number of spatial 

parameters, i.e. a number bounded by N 2. A possible grouping of the spatial sites could 

then be fruitful, as it could save a lot of computational time. Nevertheless, the grouping 

of the sites should not cause a simplistic but a meaningful reduction of parameters.

In the last chapter, we attem pted to study a special case of two-dimensional auto­

regressions, which are called linear-by-linear. The results of this section could project to 

higher dimensionalities, but mainly they reflect the properties of one-dimensional auto­

regressions. We managed to write explicitly the inverse variance m atrix of observations 

on a rectangle from such processes. This result came straight from an identical deriva­

tion for one-dimensional processes, i.e. writing explicitly the inverse variance matrix of 

consecutive observations from a finite auto-regression on Z . Future work will include 

writing down an algorithm for the case of the inverse variance m atrix of observations 

from an ARMA process; one-dimensional and then linear-by-linear.

We concluded the thesis with simulations, which aimed at comparing the performance 

of the exact Gaussian likelihood estimators versus the modified Gaussian likelihood es­

timators, where the modification was according to Yao and Brockwell (2006) and the 

model of interest was a first-order, two-dimensional moving-average. The performance of 

the estimators was evaluated in terms of their absolute bias, variance and mean square 

error. The same pattern  should be followed for all the new estimators we proposed back
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in Chapter 3, in order to confirm that they do perform well, compared to the genuine or 

other modified likelihood estimators. In the future, we hope to have not only theoret­

ical but also practical evidence, in order to convince the reader tha t our modifications 

on Gaussian likelihoods are both necessary and reliable, especially when the problem 

becomes complex with more than two dimensions.
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