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Abstract

First, the time series analysis was widely introduced and used in the statistical world.
Next, the analysis of spatio-temporal processes has followed, which is taking into account
not only when, but also where the phenomenon under observation is taking place.

We mainly focus on stationary processes that are assumed to be taking place regularly
over both time and space. We examine ways of estimating the parameters involved,
without the risk of coming up with a very large bias for our estimators; the bias is the
typical problem of estimation for the parameters of stationary processes on Z¢, for any
d > 2. We particularly study the cases of spatio-temporal ARMA processes and spatial
auto-normal formulations on Z¢. For both cases and any positive integer d, we propose
estimators that are consistent, asymptotically unbiased and normal, if certain conditions
are satisfied.

We do not only study the spatio-temporal processes that are observed regularly over
space, but also those, for which we have recordings on a fixed number of locations
anywhere. We might follow the route of a multivariate time series methodology then.
Thus, the asymptotic behavior of the estimators proposed might be analyzed as the

number of recordings over time only tends to infinity.
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Chapter 1

Introduction

Spatio-temporal statistics is related to taking observations of a phenomenon at different
times and different locations. It generalizes the notion of time series, by taking into
account the space where the phenomenon takes place too. This implies that, in addition
to the time axis, at least two more dimensions are added in the analysis, depending on
whether the process takes place on the two or three-dimensional space. Thus, spatio-
temporal processes are an application of the processes that take place on a d-dimensional
space or processes with d-dimensional indices, where d is any positive integer. Nowadays,
the statistical analysis of spatio-temporal processes has become very popular. It can be
useful, for example, in geographical information systems, in meteorology, in seismology,
in physics or for environmental applications over space and time.

It is very common for spatial statistics to record observations regularly over space,
as it is for time series. As a result, it is meaningful to study in advance the theoretical
spatial or spatio-temporal processes that take place on Z¢, i.e. the regular d-dimensional
lattice. Chapters 2, 3 and 4 altogether study at length some processes that take place on
29, Section 2.2 generalizes the concept of unilateral ordering of any two locations on 29,
as this was introduced first by Whittle (1954) for d = 2 and continued by Guyon' (1982)
for d > 2. The Wold decomposition and the definitions of weak and strict stationarity
in Section 2.3 are extended to include processes defined on more than one dimensions.
In 2.3.2, a new definition of the so-called ‘reverse strictly stationary process’ is giveh;
reverse strict stationarity allows for two (¢ x 1) random vectors from the process of
interest to have the same distribution, if the relative placement of the g locations on Z4

within each vector is the same but the direction of the vectors is opposite.



Reverse strictly stationary processes are an example of a notion that has been in-
troduced particularly for spatial statistics. Like on the time axis there is the ‘past’ and
‘future’, each dimension of space also occupies two different ends. Nevertheless, there
can be no causal relationship to relate those two ends. For example, the ‘past’ and ‘fu-
ture’ of the time axis are such that there is a natural order between the two, as anything
that occurs in the ‘past’ could have an effect on the happenings of the ‘future’. The one-
dimensional spatial analogue of the time axis is the line transect, as this was described
by Whittle (1954). For any two locations on the line transect, although those can be
set in a unilateral order and they might be close enough to interact, there is usually no
reason to assume that a causal relationship is taking place there.

In Chapters 3 and 4, we study the second-order properties of some (weakly) stationary
processes that take place on the regular d-dimensional space. These processes might be
spatial or spatio-temporal; this depends on whether all the dimensions involved are
spatial, or whether the time axis is there as well. Studying their second-order properties
is totally unconnected to the interpretation given to the d dimensions. Nevertheless,
we will often refer to the inclusion or not of the time axis as a dimension, in order to
study spatio-temporal and spatial processes on Z% separately. For example, after we have
defined the causal and invertible ARMA model on 2% in Section 2.4, we have proposed
different ways for the estimation of its parameters in Chapter 3. Whatever .the ﬁumber
of dimensions d, an ARMA process on Z¢ is a standard way to model data derived from
a stationary process. Further as we are going to see in Section 3.6, causal and invertible
ARMA models, compared to all other ARMA models, provide more simplicity for the
methods used. The assumption of causality and invertibility might be directly related to
the presence of the time axis. Thus, spatio-temporal ARMA models can often be better
justified and understood than spatial ARMA models, since when a directional preference
must be assumed, it can be attributed to the unidirectional flow of the time axis only.

On the other hand, Besag (1974) refused to compromise that an ARMA process is the
best way to model observations from spatial and stationary processes on Z2. Especially
under the assumption of causality or invertibility, such a model would risk to be unnatural
and unable to provide an instinctive tool for prediction. His invention of the stationary
auto-normal schemes, was made especially for the needs of spatial statistics. Following
this example, in Chapter 4 we deal with stationary processes on 2%, which have a specific

form of second-order dependence. The second-order properties of the processes of interest



can be discovered in their spectral density, which has a finite, symmetric and linear filter
in the denominator. Under the assumption of normality, Besag (1974) expressed the
second-order properties of the processes via a finite and linear conditional expectation
of the value of the process on any location based on the values on all other locations of
the lattice. When we manage to mask the second-order properties of the process into a
conditional expectation without assuming that the process is Gaussian, then the process
forms an auto-linear scheme. We will refer to such schemes as spatial auto-linear schemes,
as including the time axis then would not be wise. This is because this formulation doés
not distinguish between the information from the ‘past’ and the information from the
‘future’, which. should happen since, naturally, the information from the ‘past’ always
comes first.

At this point, it should be made clear that one of the purposes of this thesis is not
to highlight the gap between the different methods of estimation used for stationary
spatial and spatio-temporal processes but to bridge that gap instead. When it comes to
estimation, we try to establish in both Chapters 3 and 4, that any choice of parametriza-
tion for the second-order properties of the process on Z¢ might be equally fruitful for
the estimators of the parameters. In other words, the estimators we are proposing in
the two chapters possess similar statistical properties. Thus, the reasons that make us
consider Chapters 3 and 4 to be more related to spatio-temporal and spatial processes,
respectively, is prediction and not estimation. For example, causal spatio-temporal auto-
regressions, such as these analyzed in Section 3.7, could be very useful for prediction,
since the assumed model is only using locations from past timings. On the other hand,
models that use all the information around a location of interest, like the auto-linear
schemes of Chapter 4, are more suitable for kriging (Cressie, 1993), which is the form
of ‘spatial prediction’. Of course, it can be that we have the time axis in our analysié,
that we are missing an observation from the centre of our dataset and that we need to
approximate its value. In this case known as smoothing, the parametrization adopted by
an auto-linear formulation might be useful for a time series or a spatio-temporal brocess
too.

Using a set of observations to estimate the parameters of a causal and invertible
ARMA process on Z¢, is not an easy task when d > 2; we explain why next. For one-
dimensional ARMA models, the exact Gaussian likelihood estimators have all the desired

statistical properties, as we can verify from Brockwell and Davis (1991). Unfortunately,
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as the number of dimensions increases, we cannot conclude yet that maximizing the
exact Gaussian likelihood of observations can produce both asymptotically unbiased and
normal estimators. This problem, which is reflected in the order of the bias of the
estimators, is known as the edge-effect and it has been very well described by Guyon
(1982). The source of the edge-effect is the different setting of asymptotics that is taking
place when d > 2. Indeed, although a set of observations on a finite set of 2% is available,
usually a hyper-rectangle or hyper-cube, we should allow that this set could grow towards
all sides. All the second-order stationary processes studied in Chapters 3 and 4, use this
setting to assess the quality of the estimators for the parameters of interest. Thus in
both chapters, the estimators must be defined in such ways, which guarantee that their
asymptotic normality can be established.

Defeating the edge-effect is one of the main challenges of this thesis. We have tried to
tackle a very complex problem, for which the number of solutions proposed in the past has
been limited. In Chapter 3, we have resorted to modifications of Gaussian likelihoods
that may produce asymptotically unbiased and normal estimators of the parameters.
This is the same tactic as the one followed by Guyon (1982) and Yao and Brockwell
(2006), who referred to the estimation of the parameters of any stationary process on 2%
and the (p + ¢) parameters of two-dimensional causal and invertible ARMA processes,
respectively. We have studied the cases of auto-regressions, moving-averages and ARMA
processes on 2%, separately. Section 3.3 deals with causal auto-regressions and proposes
a conditional Gaussian likelihood for maximization. By contrast, Section 3.4 is dedicated
to invertible moving-averages only. There are two new suggestions for estimation of the
parameters and the second one is based on a modification of a Gaussian conditional
likelihood. The way we have dealt with the moving-average there, is only a special case
of the more general solution proposed next for the ARMA. Thus, Section 3.5 generalizes
the results of 3.4.3 for the parameters of a causal and invertible ARMA(p, q) process.
With a finite fourth moment of the error sequence of interest, the (p + ¢) modified
Gaussian likelihood estimators defined then are consistent, asymptotically unbiased and
noﬁnal and they are efficient if the process under observation is Gaussian.

As a bilateral ARMA model might seem more meaningful than a causal and invertible
ARMA model, when it refers to a spatial process, we would have liked to be able to
extend our results for the case of any ARMA model. Furthermore, there have not been

any real solutions for bilateral ARMA models so far. According to Section 3.6, the
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modified Gaussian likelihood proposed for maximization in 3.5.3 is only a special case
of the quantity that should have been maximized, in order to derive the estimators of
the parameters of a bilateral ARMA(p, ) process. The path we have followed there is
due to Whittle (1954), who, for two-dimensional processes, achieved a transition from
the Gaussian likelihood of the observations from a finite bilateral auto-regression to the
same likelihood expressed in terms of the parameters of the AR(cc) representation of
the process. For bilateral ARMA models on 2%, we generalize his suggestion with a
correction on the Gaussian likelihood, which affects its deterministic part only. This
correction fixes the bias that the estimators of the auto-regressive and moving-average
parameters would have, unless the p;ocess was causal and invertible, respectively.

Under no circumstances should that bias be considered to have any relation to the
edge-effect. While the bilaterality of an ARMA process might add to the bias of the
-estimators even when d = 1, the edge-effect is very well disguised then, and makes its
unpleasant appearance when d > 2, by causing the bias to move towards zero at equal
(d = 2) or slower (d > 2) speed, compared to the speed of the standard error of the
estimators. It might fairly be considered as the most difficult problem to tackle regard-
ing the estimation of the parameters of a stationary process on Z%. This is the problem
for which Guyon (1982) and Yao and Brockwell (2006) proposed solutions. Guyon used
the form of Gaussian likelihood, which, according to Whittle (1954), involves the peri-
odogram or sample auto-covariances in its random part. He corrected the edge~effect
by using the unbiased estimators of theoretical auto-covariances there. On the othér
hand, Yao and Brockwell (2006) focused on two-dimensional ARMA models. Before
modifying the genuine Gaussian likelihood, they used the innovations algorithm and a
conventional unilateral ordering of locations in the sample; next they factorized the de-
terminant involved into a product of prediction variances in the deterministic part, and
they partitioned the random part into a sum of squares of prediction errors. Then, they
put forward a selection of locations out of the ones available in the sample, and they
used this information only in the product and sum of the deterministic and random part,
respectively, of the proposed modified Gaussian likelihood.

In Section 3.5.3, we have suggested a new modification for a Gaussian likelihood,
which is made especially for the ARMA on Z%. In other words, we have not restricted
our number of dimensions d to be small, like Yao and Brockwell (2006). We have tried to

justify that the quantity we have chosen to maximize is a modified Gaussian likelihood
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using classical time domain arguments, rather than follow the route of Guyon (1982).
The special characteristics of the ARMA have been highlighted and taken into account.
Yao and Brockwell (2006) resorted to the AR(oco) representation of the ARMA process
of interest; as a result, they introduced an infinite order to their problem and missed
the opportunity to generalize their results to higher dimensionalities. Similarly, Guyon’s
(1982) suggestion would demand the computation of as many sample auto-covariances
as possible, unless the ARMA was a finite auto-regression or a finite moving-average.
We have tried to demonstrate that the ARMA deserves a solution, which takes into
account its finite order. The finite order reflects both the finite auto-regressive and
moving-average polynomials. Indeed, an Auto-Regressive Moving-Average can become
a moving-average, if a finite linear transformation is applied to it. But what are these
special advantages of these two characteristics, i.e. that the transformation used is finite
and that the transformed process is a moving-average?

On the one hand, the finite transformation implies that, for any set of random vari-
ables from the ARMA of large enough cardinality, we may create a set of smaller cardinal-
ity of random variables from the moving-average and ‘nothing is missing’, i.e. information
on more locations from the ARMA process could only contribute by offering more lo-
cations available from the moving-average, but not by augmenting the information on
the sites already available, as we have everything we needed to know there. As the
original set grows, so does its subset at equal speed. That is our first victory over the
edge-effect, which clearly reflects the auto-regressive nature of the ARMA. Indeed, finite
transformations work for the auto-regression as they might produce a sequence of uncor-
related random variables or they might produce a moving-average. Section 3.3 deals with
problems of estimation for auto-regressions via transformations to white noise sequences,
while estimating the parameters of an auto-regression using the moving-average path is
a special case of Section 3.5. Special reference to the auto-regression transformed to a
moving-average will also be made in Section 4.5.2.

On the other hand, as we are going to see in Section 3.4, the moving-average has
another nice property. For a set of random variables from a moving-average of large
enough cardinality, we may create a set of smaller cardinality, with random variableé,
which have in the larger set only and not any further, all their neighbours, in the sense
that they share with them non-zero auto-covariances. Again, ‘nothing is missing’ in terms

of information available, expressed now via the auto-covariance between two random
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variables on two different sites, as more sites available cannot give any random variables
that have non-zero auto-covariance with any member of the selected smaller set. Again,
the cardinalities of the two sets move at the same speed and this signifies the second and
final victory over the edge-effect, thanks to the moving-average nature of the ARMA.

To use correctly these two properties, we have proceeded with modifications on Gaus-
sian likelihoods, rather than use them in their genuine form. As a result, the exponential
functions of the modified likelihoods do not necessarily involve negative powers, and we
cannot be sure that they can reach a minimum zero. This is a similar problem to the
one that Guyon’s (1982) proposed estimators had, as they were based on sample auto-
covariances that did not necessarily have a positive-definite sample variance-covariance
matrix or positive spectral estimates, as those last ones were to be computed for the
likelihood version of Whittle (1954). Dahlhaus and Kiinsch (1987) dealt successfully
with this problem by introducing ‘data tapers’, but paid the price of losing the efﬁciency
of estimators for d > 4. Such corrections on our proposed estimators are beyond the in-
terests of this thesis. It is remarkable that this problem does not concern the estimators
of Yao and Brockwell (2006), as they make sure that a positive quantity is always to be
minimized, involving a sum of squares of prediction errors.

Since most of our attempts to estimate the parameters of ARMA models are counted
on Gaussian likelihoods and modifications made on them, we return to this subject again
in Chapter 6 and examine it from a different scope. We focus there on two-dimensional
ARMA processes only, although our results might be generalized when d > 2. First, for a
special class of causal auto-regressions, which are linear-by-linear (Martin, 1979), we are
able to write down explicitly the exact Gaussian likelihood of observations on a rectangle.
In Chapter 3, we have only dealt with modifications on Gaussian likelihoods, but now
the exact Gaussian likelihood version can be written down, if such an auto—reéression
provides a sensible representation of the second-order properties that are being studied.
Then, for observations from an invertible moving-average, which uses two parameters
only, since we cannot write the exact Gaussian likelihood then, we perform simulations
to watch the performance of the exact Gaussian likelihood estimators and compare it to
that of the modified estimators proposed by Yao and Brockwell (2006). We are trying
to conclude if its worth to proceed with modifications when the dimensionality of the
problem is still low.

Regarding the spatial auto-linear schemes of Chapter 4, we propose in 4.5.4 a new

14



method of estimation for the unknown coefficients involved. It is a method based on
the moments of a new series, which may be produced from the original series, if a finite
and linear filter is applied. This property, i.e. that with a finite transformation we may
produce a series with an auto-covariance function which cuts off to zero outside a finite
set of vector lags, sounds like the property of an auto-regression that can be transformed
into a moving-average. Indeed, in Section 4.4, we show that, especially in térms of
second-order properties rather than conditional expectations, it is always possible for an
auto-regression to have an auto-linear representation. This same property of the auto-
regression was used in Chapter 3 as a main tool against the edge-effect. Using that same
tool, we have studied the spatial auto-linear schemes of any dimensionality d, as we can
always produce the new series with a finite transformation.

The edge-effect has not been the real problem for the estimation of the parameters
of a spatial auto-normal form, as this was introduced by Besag (1974) on Z2. On the
contrary, the source of the confusion should be searched in the revolutionary work of
Besag (1974) itself, which used a conditional moments representation of the process,
rather than the auto-covariance function, in order to describe its characteristics, and that
was difficult to interpret, though easy to comprehend. We have tried in Section 4.2 to
demonstrate that, like the auto-covariance function can be found in the numerator of the
spectral density, the denominator of the spectral density also generates the coefficients
of the best linear predictors, which are the conditional expectations of the auto-normal
formulations. In Section 4.5.2, we show that using a conditional likelihood, as this
was proposed by Besag (1974), cannot guarantee any solution, unless we express our
process as a unilateral or bilateral auto-regression first. In Section 4.5.3, we do prove
the properties of the pseudo-likelihood estimators, also proposed by Besag (1974), which
are consistent and asymptotically normal, if certain conditions are satisfied. For our
method of moments estimators described in Section 4.5.4, we create the new series with
a finite number of non-zero auto-correlations, for which each unknown coefficient of the
auto-linear formulation of the original series, is equal to an auto-correlation betwéen two
locations. Since, we end up estimating our unknown coefficients as auto-correlations of a
process, further to the consistency and asymptotic normality of the estimators, we also
manage to come up with a variance matrix of the estimators that resurrects.Bartlett;s
formula, as this was given by Brockwell and Davis (1991, p.221). In the past, we had not

seen such a complete result for the estimation of the parameters of an auto-normal or
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auto-linear scheme. A complete result would involve both defining new estimators and
discovering their statistical properties.

"It should be made clear now that both Chapters 3 and 4 try to model the second-order
properties of (weakly) stationary processes on Z%; either this is for a unilateral spatio-
temporal process or a spatial process on Z%, the same idea has been used repeatedly. In
the end of Section 2.4.1, the subsection referring to the general Yule-Walker equations
has given the answer to almost all our questions, regarding the estimation of parameters
on Z% The general Yule-Walker equations relate the second-order properties, i.e. the
auto-covariance functions, of two processes. Moreover from a stationary process, it is
always possible to apply a linear, ‘time’-, or otherwise, invariant filter, in order to come
up with a new stationary process, that is such that the two processes share together the
general Yule-Walker representations. The filter one has to apply is none other than the
one with coefficients equal to the auto-covariances of the second process that is about
to be produced. As a result, if one of the two processes has the advantage of a finite
number of non-zero auto-covariances, then all one has to do is apply a finite linear filter
on the other process to use this advantage. Either we are dealing with an auto-regression
or an ARMA or even a stationary process that has an auto-linear representation, a finite
transformation will automatically make it a moving-average, or, in general, a process with
similar second-order advantages. The question why these ideas were not that necessary
and useful for processes that take place on Z, can only lead us to one answer. It is
the edge-effect that has made us look for finite filters to apply on data and finite auto-
covarignce functions to assume for the processes of interest. It is the edge-effect that has
made us resort to the general Yule-Walker equations, instead of the standard techniques
used for time series.

Finally, in Chapter 5 we have changed the general setting followed so far, for the
analysis of stationary processes on Z¢, and we have switched to spatio-temporal pr'ocesses
on R% and Z, respectively. It is a very common problem that the locations where the
phenomenon is taking place might be anywhere. In those cases the inclusion of the time
axis in the analysis might have a worthless contribution. More specifically, we follow the
statistical analysis of observations recorded on any N locations of R% and regularly over
time. This is because, unless we record observations regularly over space, we cannot use
any of theoretical background that has been studied in Chapters 3 and 4. We consider an

unknown covariance structure between the variables on the N sites that does not change
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over time. Next, using a multivariate time series setting and allowing for the number of
regular recordings over time to tend to infinity, we fit multivariate auto-regressions and
use a conditional Gaussian likelihood, in order to estimate the unknown spatial and time
parameters and to assess the quality of our estimators.

In conclusion, either we study the spatial or spatio-temporal processes, either we
have a set of regular or irregular recordings available, either we decide to approach the
problem using causal formulations or not, in this thesis we have tried to obtain a profound
understanding of the existing problems, and then we have tried to discover or even invent
new ways for the statistical analysis of processes, which take place on d dimensions. All
Chapters 3, 4 and 5 deal with estimation, hypotheses testing and, finally, with real data
analysis. We hope that, altogether, this thesis could be regarded as a contribution for

the statistical inference on spatial and spatio-temporal processes.
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Chapter 2

Elementary results for processes

on a d-dimensional lattice

2.1 Introduction

Before we move to the next two chapters that deal with some problems of statistical
inference for processes on the regular d-dimensional lattice and before we propose various
ways to solve them, we will need to summarize some basic definitions and results that
have been given before, as well as to add some new results that will be extremely useful
next. In Section 2.2, we recall the notion of unilateral ordering between any two locations
vT,v" 4+ j7 € 2%, which was given by Whittle (1954) when d = 2 and by Guyon (1982)
when d > 2. Section 2.3 defines the weakly and strictly stationary processes and states
the Wold decomposition, which provides a link between (weakly) stationary processes
and linear processes. In that same section, we prove some properties of processes, which
are linear functions of independent and identically distributed random variables. A new
definition of the so-called reverse strict stationarity might also be found there, which is
an attempt to extend the definition of strict stationarity in a way that does not favor any
direction of each one of the d dimensions. Later in Proposition 2.5 and, consequently, in
Chapter 3 and Sections 4.4 and 4.5, we have used conditions, which are satisfied if the
process of interest is reverse strictly stationary. Thus, when we establish in the end of
Section 2.3.2 that reverse strictly stationary processes exist, at the same time we allow
for some of our conditions used in Chapters 3 and for 4 to be more realistic.

In Section 2.4, we define the causal and invertible ARMA processes on the
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d-dimensional lattice and study their second-order properties. We focus on the special
case of auto-regressions and moving-averages that not only share the same polynomial,
but also they are generated by the same sequences of uncorrelated random variables.
What we call the general Yule-Walker equations follow next, which provide a link be-
tween the auto-covariance functions of an auto-regression and a moving-average with the
same polynomial. These equations will be further used in Chapter 3, which will only
deal with ARMA processes, but they will also be used in Chapter 4. This is because they
refer to the second-order properties of two processes, rather than any causal formulation
considered to be taking place there. Not only will these equations be used as the theo-
retical base for a method of moments suggested in Sections 3.4.1 and 3.4.2, but also they
are the key used, in order to find the forms of inverse conditional variance matrices for
a set of random variables either from the auto-regression or the moving-average process
of interest and mainly for Gaussian processes. Later in Chapter 3, this will allow us
to use these matrices in Gaussian conditional likelihoods. Again, since the derivation
of these matrices is based on the general Yule-Walker equations, we will also use these
results to write conditional likelihoods in Chapter 4, even though the random variables
there, might not have been generated from an auto-regression or a moving-average. We
conclude the chapter with Section 2.5, in order to come up with a central limit theorem

for processes on the regular d-dimensional lattice.

2.2 Unilateral orderings

We consider {X(v), v™ € 29} to be a real valued process, where d is a positive integer
and v = [v1,- - ,vg] is a d-dimensional vector index. We denote with > the lexicographic
order on Z%; when d = 1 this is the same as the standard order on Z. When d = 2, the
notion of unilateral ordering was defined by Whittle (1954). For the general case of any
positive integer d, we explain below the ordering due to Guyon (1982, p.96). We write

i=1n,72,-,3a) > 0=1[0,0,---,0]

on 2¢, if
j1>0
or

Jj1=0 and [j2, - ,j4] >[0,---,0]
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on Z4-1,
When d > 1, writing j > 0 may have different meanings; For example, for two-

dimensional processes
[j1, 2] > [0, 0]
if
1>0
or

j1=0 and j3 >0,

as described before. But we could also change the order of the indices and write

[72,51] > [0,0]
if
j2>0
or

j2=0 and j1>0.

One interesting question would be how many such representations exist for general
number of dimensions d. To answer that, we first consider the d distinct dimensions
with two different ends. For the time axis, these would be the ‘past’ and the ‘future’
and would have a natural order. It could also be the ‘west’ and ‘east’ or the ‘south’ and
‘north’ for the dimensions of space. Next, we define an hierarchy between the dimensions
indicated by the labels k = 1,--- ,d. The most important dimension is labelled as 1 and
the least important one as d. Dimension £k = 1,--- ,d — 1, is considered more important
than dimension k* = k +1,.--,d, when moving its index towards any side has the same
effect on the ordering of two locations, regardless of the way the other index has changed.
For example, moving from time 1 and location labelled as 2 to either time 2 and location
3 or time 2 and location 1, is considered as moving to the future since time is going
forwards in both cases. In general, there are d! ways to label the different dimensions
and the time axis is usually considered the most important of all and it is labelled as
dimension 1.

Once the dimensions have been labelled, one has to do the same for the two ends of
each dimension. As a result, there are 2 ways to decide about the direction of ji > 0 for

S
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each dimension k = 1,--- ,d, and there are 2¢ ways altogether. For example, for d = 2
we can define 22 = 4 different orderings. Say there is the dimension ‘west-east’ first
and the dimension ‘south-north’; the 4 representations can be labelled as ‘west-south’
and ‘east-north’ or ‘west-north’ and ‘east-south’. Of these, 2¢~1 choices can be seen as
the counterparts of the remaining 2¢~! representations. For example, ‘east-north’ is the
counterpart of ‘west-south’, since it corresponds to the opposite quarter of Z2. Similarly,

‘east-south’ is the counterpart of ‘west-north’.

2.3 Stationary processes

We extend the definitions of weak and strict stationarity for processes with d indices,

where d is any positive integer.

Definition 2.1 (Weak stationarity). {X(v), v* € 2%} is a (weakly) stationary
process if E{X?(v)} < oo, and

1. E{X(v)} is a constant independent of v, and

2. Cov{X(v), X(v +j)} is independent of v for every j~ € 2¢.

Withoutiloss of generality, we will consider
E{X(v)}=0 ‘ (2.3.1)
unless stated otherwise. Then we will write the real-valued function
7() = Cov{X(v), X (v +j)} = E{X(v)X (v +j)} (2.32)

to be the auto-covariance function of the stationary process of interest defined for any

lag j € Z%. This function is even in the sense that
v() = 7(-i), i e 2%

Under the condition that ~(-) is an absolutely summable function, we define the 'spectral

density of () to be

g(w) = # D ey(j), W e [-m, 74, (2.3.3)
j"'EZd

for w = w1, - ,wg] and i = /—1.
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Definition 2.2 (Strict stationarity). The process {X(v), v7 € 2%} is said to be
strictly stationary if the joint distribution of [X(vi), -, X(vg)]” and
[X(v1i+3]), -, X(vg+J)]" are the same for all positive integers q and for all

Vi, Vg, jT e 24,

2.3.1 Linear processes

We consider {u(v), v7 € 2%} to be a white noise sequence of random variables when
they are generated on the points of Z¢ and they are uncorrelated with each other. We

may then state the Wold decomposition.

Theorem 2.1 (Wold decomposition). A zero-mean and (weakly) stationary process

{X(v), v" € 2%} with spectral density g(-), such that

/ log g(w)dw > —o0, (2.3.4)
[“”»‘”]d
can be expressed in the form
X(v) =u(v)+ > 9 ulv —J), (2.3.5)
j>0

where
1. Ej>0 1/)j2 < 00,
2. {u(v)} ~WN(0,02).
Finally, 02 = exp{(2r)~¢ f[—m a4 log f(w)dw} is given by Kolmogorov’s formula, where

fw) = (2m)?- g(w), W € [-m, 7"

For the proof of the theorem, see Rosanov (1967, p.64) for d = 1 and Helson and
Lowdenslager (1958) for d = 2, the proof being similar for d > 2 (Guyon, 1982, p.96).

The Wold decomposition provides the link between (weak) stationarity of a process
and linearity, i.e. that it may be represented as a linear combination of uncorrelated
random variables. The second-order properties of a stationary sequence of random vari-
ables {X(v), v" € 2%} may be fully described by the auto-covariance function ~(-) or
the spectral density g(-). As the Wold decomposition allows for X (v) to be written as a

linear combination of u(v — j), j > 0 only, a unilateral representation is allowed.
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Now that the Wold decomposition has been established, it is useful to derive the
asymptotic properties of linear processes for any d > 1 number of dimensions. Next,
we prove two propositions that follow from Proposition 6.3.10 and Proposition 7.3.5 of

Brockwell and Davis (1991).

Proposition 2.1 (Weak Law of Large Numbers for linear processes). Let
{L(v), v € 2%} be the linear process defined by
L(v)=) 4 W(v=J), XI5l < oo, {W(V)}~ IID(u,0%),
j20 B -

and S C 2% be a set of cardinality N. Then as N — oo, it holds that

LNELZL(V)L le L.
NVTES

j>0
Proof. First note that

IB{LM)} < EILM|=E|Y LW - <E{ I W =i}

i20 j=0

S IHIEW (v - §) =EW®)] Y1kl < oo,

J20 j=0

and the series is well-defined in the sense of convergence in probability. For positive

integer K, we define the set

MK = {[jl,jZ;"' !jd]‘r;jlzla"’ aK) jk=0ai1,"' 1:tK’ k=2;"' ,d}U

C

{[O,jz,"',jd]T2j2=1,"',K, Je=0,%1,--- =K, k=3)"'ad}U""U

C

{[O,O: ’jd]T :jd = 1, ,K}U{[O’ ,O]T}' (236)

Then for any fixed K, as N — oo,
1 . 1 N P
Ywk=g5 2 X bWE-i= X by X W-)—u ) b4
vTES jTEMK JTeMgk vTES JTEMK.
since for fixed j” € Mk, it holds that {W(v—j), v" € S} are independent and identically
distributed random variables. We also define the constants
pr(K)=p Y
JTeMk
~and

pL=p Yl

j20
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Then Yyg P, pr(K) as N — oo and ur(K) — pr as K — oo. We now only need to
show that

hm limsup P (|Ly — YNk| > €) =0, for any e > 0.

—00 Nooo

Note that

P(|Ly — Ynk| > €)

P(I— > L) E Y. LW =il>e)

v"eS vTESjTEMK
- |—ZZlW (v—j)— ZZlWVJI>e)
vTeS j>0 V"'GSJ"GMK
= P(I—Z D EWv=j)>e
vTES JTéMk,
j>0
< —Z > BIEIW (v - §)]
VTESJ"'¢MK
1 .
= - X IEW(L- 1= ),
JTEMpe,
J20

where the inequality is due to Chebychev. Then,

o Iyl= > = > -0,

r , s . d s
J fg’;f( k=’g§?§,d{h,|1k|}>K N+ likI>K

as K — oo. |

Proposition 2.2. If {C(v), v™ € 29}, {D(v), v™ € 2%} are two linear processes such

that
Cv) = Y aWv—i), Y la| < oo,
i>0 i>0
D(v) = ) d W(v—1i), > ldi| < 00, {W(v)} ~ IID(O o?),
i>0 i>0

then for a set § € Z¢ of cardinality N and j > 0, it holds that

= Y owew+y) L (Z ¢ ciﬂ-) 0 = Cov{C(v), C(v +J)},

v"'€5 i>0

=Y owpv+i) L (Z ¢ di+,-) 0* = Cov{C(v), D(v +3)}

v"'ES i>0

as N — oo.

Proof. We only prove the first statement since the second one can be shown in a similar

way. We write
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% S CW)Cv+)) = % S S aWm-i) Y eWv+i-i)

vTES vTES i>0 i*>0

1 .
N > D aiar Wv—i)? +Yiw,
vTES i>0

where

1 s .
Yin = N Z Z cicpr W(v—-i)W(v+j—1i"
vTES 1, 1*20,
i*#i+)
= Z Ci Ci* (N‘l z Wv—-i)W(v+j-— i*))
i, i*>0, vTES
i1+

For the first term 3 -cs > 50 €i City W(V — i)2/N, it holds that {W(v)?, v™ € 2} are
independent and identically distributed with mean o2, and since Z ei ciys| < o0, from
the Weak Law of Large Numbers for the linear process L;j(v) = .fzi civj W(v —1)?, it
holds that =0
J—t’:vgs Ly(v) = (g ¢ Ci+j) E{W(v)’} = (izzo G Ci+j) a?,

as N — oo. '

It suffices to show that Yjy %, 0. For i* # i+ j, it holds that {W(v - i)W (v +j—
i*), v7 € 24} ~ WN(0,0?) and, hence,

Var (N-l YN WE-)W(v+ji- i*)) =N"1et 50
vTES

as N — oo. For Mg as defined in (2.3.6), we may define for fixed K

Yink= >, G (N-l S WV -D)W(v+j —i*)) L0,
iT, i*TeMy, vTeES
1 #i4)

as N — oo. So,

ElYjn — Yink| < E|W[L,--- , 1)W[L,---, 2] -

> les Jeis| + > leil el + Y. lail le=| | =0,

ITeEMp *TgMe, ITEMp 1*TeM, T, *TE M,
1*>0, i*#£i+j 120, 1*#i+) i, 1*20, i*#i+j

as K — oo. ' [ ]
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2.3.2 Reverse stationarity

As we have seen in Definition 2.1, weak stationarity relates any two random variables
of the process of interest and it ensures that their auto-covariance is a function of the
d-dimensional vector difference of the two locations. Further, if the auto-covariance
function depends on this vector through its norm only, the process is called isotropic.
Isotropic processes allow for more specific considerations and they are beyond the scope
of this thesis.

For the definition of strict stationarity, we refer to any two random vectors and their
distributions. The random vectors might be of any positive length, say g. In time series,
strict stationarity means intuitively that the graphs over two time intervals of length ¢
of a realization of the process should exhibit similar statistical characteristics. But it
does not mean that those are the same characteristics as the ones exhibited within the
same intervals if they are observed from future to past. For a process evolving on a line
transect, as this was described by Whittle (1954, p.434), time is replaced by a dimension
of space and this might not make sense. We may observe the process starting from any
of the two ends towards the other end. Thus, we wish to define a form of stationarity
that means intuitively that the two graphs over the intervals of length ¢ that start from
the same location, one from left to right and the other from right to left, exhibit similar
statistical charac;ceristics.

On the other hand, when we deal with conditional probabilities in a time series,
the natural order of the indexes plays an important role. For example, for the two
random variables X (1) and X (2), we will rarely introduce in our analysis the conditional
probabilities of X (1) given X (2), unless we are asked to. In this last case, we usually
convert to these probabilities from the conditional probabilities of X (2) given X (1),
using the Bayesian formula. The answer might come much faster if we know that the
distribution of the random vector [X (1), X(2)]” is- the same as the distribution of the
random vector [X(2), X (1)]", as this will imply both that the marginal distributions of
X (1) and X (2) are the same and that

P(X(1) = uX(2) = v) = P(X(2) = ulX(1) = v). (2.3.7)

Equation (2.3.7) might make more sense when the indexes 1, 2, refer to two locations on
the line transect instead. The conditional probabilities of X (1) given X (2) might then
be as meaningful as the conditional probabilities of X (2) given X (1).
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According to Definition 2.2, for the general case of strictly stationary processes
on the d-dimensional lattice, it holds for any j™ € 2% that the two random vectors

[X(v1), -, X(vg)]” and [X (v1+]), -+, X(vq+Jj)]” have the same distribution, because

q . . .

they refer to the same differences, ie. vi —va,- - ,Vi —Vg,- -+ , Vg1 — V4. Asa
2

result, one can shift the random vector [X(vy),---, X (vq)]” at any j™ € 2% steps away,

and the distributions of the new random vectors are still the same. But what if we
are not interested in changing the location of the random vector but its direction? In
other words, can we make sure that the random vector [X(—vy1), -+, X (—Vg)]” has the
same Idistribution as the random vector [X(vi),---,X(vq)]", although it refers to the

differences of opposite sign, i.e. —vi +va, -+, =V + Vg, -, =Ve_1 + V47

Definition 2.3 (Reverse strict stationarity). The process {X(v), v™ € 2%} is said
to be reverse strictly stationary if the joint distribution of [X(j + v1), -+, X (§ + vq)]”
and [X(j — v1), -+ ,X(J — vq)]” are the same for all positive integers ¢ and for all

i, v, vZGZd.

Now, it is clear that the differenpes between the locations of the second random
vector are all of opposite sign from the ones of the first vector, but that has no effect
on its distribution compared to the distribution of the first random vector. The two
vectors this time, both have to originate on the same location v7 € 2% without any
shift. As a result, Definition 2.3 does not imply that for a reverse strictly stationary
process {X(v), v7 € 2%}, the two random variables X (v;) and X (v2) have the same
marginal distribution for any two locations v],vj € 2%. For example, if d = 1 the
random variables X (—1) and X (1) have the same distribution since the two locations of
interest are one step away from location 0. For the same reason, all the random variables
X(2j+1),j € Z, share the same distribution and all the random variables X (2j),j € Z,
also share the same distribution, but the two distributions do not have to be the same.
This is established in the next proposition, which relates the two forms of stationarity.
We denote with O, £ the odd and even integer number spaces, respectively. We also

denote with P any of the 2% orderings 0%, £ x ©%-1,... g4,

Proposition 2.3. Let {X(v), v7 € Zd} be a reverse strictly stationary process and
define '
Xp(v)=X(v), v € P.
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Then the process {Xp(v), v7 € P} is strictly stationary.

Proof. Since the process is reverse strictly stationary, it holds for any positive integer ¢
and any v{,---,vy € 2% that the random vectors [X(v1), -+, X (v4)]” and

[X(=v1), -, X(—Vq)]" have the same distribution. This stems from Definition 2.3 when
we set v = 0.

Similarly, it holds for any v" € 2% that the vectors [X (j — v1), -, X(j — v4)]” and
[X(=j+v1), -, X(=j+vg)] share the same distribution. On the other hand and again
from Definition 2.3, since the process is reverse strictly stationary the first of previous
random vectors has the same distribution as [X(G + vi), -+, X(§ + vg)]". The two
arguments combined together imply that the random vectors [X (v —j), -+ , X (vq -
and X (vi-+i), -+, X(vg+i)]7, or [X(va), -, X (vq)|" and [X (v1+2),- - , X (vg+23)]"
share the same distribution for any j7,v],---,v7 € Z%. We can see that for any j*™ € £4
there is a unique element j7 € 2% such that 2j = j* and, vice versa. The proof is completed
when we also see that for a specific v] € P, there is a unique element v + j*” € P for

any j** € £% and vice versa. , [ |

Proposition 2.3 shows that the way a reverse strictly stationary process has been
defined does not allow us to necessarily conclude that it is strictly stationary as well.
As a result, we first require that a process is strictly stationary and then look for its
extra attributes. We may think of a simple example, where both properties exist and
can be combined to derive useful results. We consider the case of a strictly and reverse
strictly stationary process {X(v), v" € Z%¢}. Then the distribution of [X (v1), X (v2)]” is
the same as the distribution of [X (—v1), X (—v2)]”, because of reverse strict stationarity,
and this is the same as the distribution of [X(—vi + v1 + v2), X(—=va + vi + v2)]” or
[X (v2), X(v1)]7, because of strict stationarity. In other words, we have reversed the
order of the two locations vi and va. It is fairly easy to show, for example, that this
property holds for any pair of identically distributed (but not necessarily independent)
Bernoulli random variables.

But is it possible to start from a strictly stationary process and show that it is reverse
strictly stationary for any positive integer g? The following proposition gives a sufficient

condition for a strictly stationary process to be reverse strictly stationary as well.

Proposition 2.4. For a strictly stationary sequence of random variables {X(v), v™ €
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24}, if the joint probability function of [X(v1),---,X(v4)]” is an even function of all
the differences vi — vg,---,v4-1 — Vg, for any positive integer ¢ and v],---,vy € 24,

then it is a reverse strictly stationary process.

Proof. Since the sequence is strictly stationary, we know that the joint probability
function depends on the possible differences of locations only. If we consider it an
even function, in the sense that changing the sign of all differences results in the same
distribution of the random vector on the new locations, then the sequence is reverse

strictly stationary. .

The joint probability function of ¢ random variables, say X3, -, Xy, is such that its

logarithm can be written as

log{le,...,Xq(ml, ce ,:Eq)} = K. [Z z; gi(ﬁi) + z.’L',; “Lj gi,j(l'i,il?j) +-
i i<j
+ ry--- mq gl, ’q(ml, . ,:L'q)]. (2.3-8)

Besag (1974, p.197) claimed the existence of such functions g;(-),--- ,91,.. 4(:), under
some very mild conditions. He focused on the special cases where
log{Px,,. x, (1, »xg)} = K - (O _ zi gi(zs) + D _ i - 75 Bij) (2.3.9)
i i<j
and called them auto-models. He then showed that 3;; = (;;. Two examples are the
auto-logistic and the auto-normal model. We wil} deal with the auto-models again in
Chapter 4.
We let the strictly stationary sequence of random variables {X(v), v™ € 29} and

any positive integer g. For fixed, v{,---,vg € 2%, we write for convenience
X(V,;) EX@, 1= 1,--- yq,

and the joint probability function of the vector [X(v1), -+, X (vq)]” denoted as
Px,,.. . x,(z1,- -+ ,x4). Then it should hold in (2.3.8) that

K=K(vi—vVvg, - ,V1— Vg ,Vg_1 — Vg),

and that
gz(.’B) = g(l)(m)’ i= 1a g,
and

g‘i,j(may) = 9(2)(Vi - vjzwvy)a ’L;J = 11 g, 1< ja
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and

and

91,---,q(371, e ,xq) = g(q)(vl — V2, , VI — Vg, ,Vg—1— Vg, T1," " axq)a
for some functions K (-), g (), -+, g(@(-). Reverse strict stationarity would require that
these are even functions of the differences vi — va, -+ ,vi — vg,--+ , V41 —vg, as it is

described in Proposition 2.4.

Lemma 2.1. A strictly stationary sequence of Gaussian random variables is reverse

strictly stationary.
Proof. The proof comes immediately from the fact that the joint density of any ¢
identically distributed Gaussian random variables is a function of the 1 auto-

covariances, i.e. an even function of all the possible differences. ' |

Remark 2.1. Apart from the case of a Gaussian reverse strictly stationary process, as
it was described in Lemma 2.1, are there any other reverse strictly stationary sequences?
We explain here how reverse strictly stationary processes can be produced and repro-
duced. We know that when we have a strictly stationary process {X(v), v” € 2%} and
we apply for all v7 € 2% the same linear filter, say
SW)= > L X(v=j), D Il <oo,
jrezd jrezd

then the new process {S(v), v™ € 2%} is also strictly stationary. Similarly, if {X (v), v7 €
Zd} is reverse strictly stationary and we apply the symmetric linear filter

RV)=lo X(V) + D 4 [X(v =) + X(v+3)], 151 < oo, (2.3.10)

>0 j=0

then {R(v), v7 € 2%} is reverse strictly stationary as well. For example, we may start
from any sequence of independent and identically distributed random variables, since this
is a reverse strictly stationary process. Then we may use (2.3.10) to produce another
reverse strictly stationary process. The filters we apply on strictly or reverse strictly

stationary processes do not necessarily have to be linear.
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Consider the simple case of the reverse strictly stationary process {X(v), v™ € 29}

and the new process defined by the equation
R(v) = X(v) +1 [X(v—])+ X (v +])]
for some j7 € Z%¢ and | € R. Then for any v7, i€ 2%, we may write the two-dimensional

random vectors

[ X()
X(v—jL—1J)
R(v) {10100 X(v—-j)
[RW—h)}_[Ol 01 zo}' X(v —j1)
X(v—j1+]J)
| X(v+3J)

and 3
X(v)

X(v+ij1+))
R(v) froroo0u X(v+3j)
[R(v+j1)]'—|:0 ! 011 0]' X(v+i1)
‘ X(v+ij—1)
| X(v—-1J)

We can see immediately that the two vectors [R(v), R(v — j1)]” and [R(V), R(v + j1)]”
have the same distribution, since the random vectors [X (v), X (v—j1—j), X (v=j), X (v—
510, X = 1 + ), X (v + )7 and [X(¥), X (v + 31 +5), X (v +3), X(¥ +3), X (v + 51 -
J), X (v = j)]” have the same distribution too.

2.4 ARMA models

Definition 2.4. We define an ARMA process {Z(v), v™ € 2%} as
Z(v)=) b Z(v—j)+e™) + Y aje(v—3j), {eV)} ~WN(0,0%),  (241)
J€Ip jedy :
where {b;, j € Z,} and {aj, j € J;} are the auto-regressive and moving-average coeffi-

cients and both index sets Z, and J; are contained in the set {j > 0}. Both the sets Z,

and J; have finite cardinalities p and g, respectively.
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For convenience, we introduce the vector back shift operator B = [By,- - - , Bg], such
that
BiZ(v)=Z(v-j), j7 e 2%

This, of course, also implies that

BHZ(v)=Z(v+]j), j e 2%

For z = [z, , 24], we write z} = HL] zi“. We can then define the polynomials
d d
b(z)El—ijzjzl—Eijz{c“ and a(z)El+Zajzj=1+Zaszi’°.
(2.4.2)

Then model (2.4.1) can be written as
b(B)Z(v) = a(B)e(v), {e(v)} ~ WN(0,0?). (2.4.3)

For this, we have assumed that b(z) and a(z) do not have common factors although they
may still have common roots.
The process {Z(v), v7 € 29} defined in (2.4.1) is causal if it admits a purely MA

representation
Z(v)=e(v)+ D v (v —)) (2.4.4)
>0
where 37: 0 |¥5] < co. A causal {Z(v), v7 € 2} is always (weakly) stationary with
mean 0 and the auto-covariance function
o? {4+ Yiso ViYiti}, §>0
() = E{Z(v+))Z(v)} = 2 {1+ Y0¥}, =0 (2.4.5)
7(_j)1 j <0
The lemma below presents a sufficient condition for the causality.

Lemma 2.2. The process defined in (2.4.1) is causal if

b(O;--- ,0,0,24) # 0 for all |z4] < 1and b(0,---,0,24-1,24) # 0 forall [zg3_1| <1

and |zg) =1and --- and b(z) # 0 for all |z;| < land |z| =1, k=2,---,d, |
(2.4.6)
where 21,---,2z4 € C, i.e. the complex number space. Furthermore, condition (2.4.6)
implies that the coefficients {1);} defined in (2.4.4) decay at an exponential rate, and in

particular

5] < Cait+Zk=a Ul for all jy > 0, (2.4.7)
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where a € (0,1), C > 0 are constants.

For the proof of the lemma, see Anderson and Jury (1974). Otherwise, we follow
the same argument as Yao and Brockwell (2006) and the inequality (2.4.7) follows from
the simple argument as follows. Let ¢(z) = 1 + Z Pj zd, where the coefficients 3; are
- given in (2.4.4). Then ¥(z) = a(z)/b(z). Due tonl(l)e continﬁity of b(-), b(z) # 0 for all
z€Ss={[z1,""-,24] : 1-0 <|z| <1494, k=1, - ,d} under the causality condition,
where § > 0 is a constant. Thus, 9(:) is bounded on Ss, i.e. | Zozpj 7| < oo for any

i>
z € S5 and, so ;5 a——Zi=2likl 5 ( as kﬁ?‘.}.{,;{jl’ l7k]} — ooJ, where a € (0,1) is va

constant.

Remark 2.2. (i) Inequality (2.4.7) also holds if we replace 15 by its derivative with
respect to b5, j € I, or aj, j € J,, under the condition (2.4.6). This can be justified
via taking derivative on both sides of equation ¥%(z) = a(z)/b(z), followed by the same
argument as above.

(ii) The same condition guarantees that the auto-covariance function «(-) decays at
an exponential rate, i.e. ¥(j) = O(a51+zz=2 li1), where o € (0,1) is a constant.

(iii) A partial derivative of (-) with respect to any of the (p + ¢q) parametérs also
decays at an exponential rate. This may be seen through combining (i) and the argument
in (ii) together.

(iv) Condition (2.4.6) is not necessary for the causality when d = 2,3,---.

The process {Z(v), v € Z} is invertible if it admits a purely AR representation

Z(v)=e(v)+ Y ¢; Z(v—J) (24.8)
>0
where } ;.4 |¢5] < co. Like in Lemma 2.2, one can write down a sufficient condition for

the invertibility of an ARMA process.
Lemma 2.3. The process defined in (2.4.1) is invertible if
a(0,---,0,0,zq) # 0 for all |z4| < 1and a(0,--- ,0,24-1,24) # 0 for all [24_4| <1

and |24/ =1and --- and a(z) #0forall |z1| < 1land |z%| =1, k=2,---,d,

(2.4.9)

where 21, -+, 24 € €. Under this condition the coefficients {¢;} and their partial deriva-

tives (with respect to all parameters) decay at an exponential rate like before.
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The spectral density of {Z(v), v™ € 29} as defined in (2.3.3) is of the form

2
, W € [-m, 7% (2.4.10)

o2

B a(ei"")
g(w) = @)

b(eiw)

If {Z(v), v" € 29} is causal and invertible, the spectral density g(-) is bounded away
from oo and 0, respectively (Guyon, 1982). Note that the condition that g(-) is bounded
away from oo and 0 is equivalent to the condition that a(z) b(z) # 0 for all z1,--- ,z4 € C
with |2;] = |2a| = --+ = |24| = 1. Under this condition {Z(v), v™ € 2%} is a (weakly)

stationary process.

Remark 2.3. At this point, we may see how bounding the spectral density of any
(weakly) stationary process away from oo and 0 may be very useful to make conclusions
on the variance matrix of a set of random variables from this process. We consider any
set & C 2% with N different elements, where N is a finite number, and the random
variables {X(v), v € S} from a (weakly) stationary process with a bounded spectral
density. Then for the (N x 1) random vector X with elements the random variables at
any order, the variance matrix Var{X} has all its eigenvalues also bounded away from
oo and 0. For the case that d = 1 and a set of consecutive observations, the proof has
been given by Proposition 4.5.3 of Brockwell and Davis (1991). For the case that d = 2
when the observations lie on a rectangle, we can find a similar proof in the paper by
Yao and Brockwell (2006). For the general case of d number of dimensions and for any
vi,v)"e€2%andj=v—v* = [j1, -, Jal, it holds that jr€Zforallk=1,--- ,J. Then
it is

d  .r
/ eiZ:::l wkjkdwl e d(‘-}d = H / ei‘dkjkdwk = O (2411)
[~ m]? k=1Y"T

if and only if at least one k = 1,--- ,d, is such that ji # 0, or v # v*. As a result, one
can follow the same sequel as Proposition 4.5.3 of Brockwell and Davis and prove that
all the eigenvalues are bounded, even though the set S may not have a specific structure

on Z¢.

2.4.1 Auto-Regressions and Moving-Averages

Two special cases of ARMA processes are studied here, the cases of the auto-regression
and the moving-average. Later, in Chapter 3 we will be dealing again with ARMA pro-
cesses. We will attempt then to describe the problems of estimation for the parameters

of an ARMA model and to solve them. For this, we will need a profound understanding

34



of the much simpler world of the auto-regression and the moving-average, as they both
have desirable properties that can be used to solve these problems. Thus, we will need
to look for auto-regressions and moving-averages in the ARMA, rather than attack it
directly.

Moreover in this section, we are interested in demonstrating various ways in which
an auto-regression and a moving-average might be linked. Apart from the obvious con-
nection that they may refer to the same polynomial, we are also interested in relating
two such processes via the same white noise sequence of random variables. We then
come up with results such as the general Yule-Walker equations, derived in the last part
of this section, which involve the auto-covariance functions of an auto-regression and
a moving-average with the same polynomial. Those equations have been used as the
theoretical prototypes that should be imitated by data quantities to provide method of

moments estimators in the next chapter.

For z = [z1,--- ,24) and 0 < j; < j2 < --- < jq, we define the polynomial
0(z) =1+ 6; 2 + - +6;, 27, (2.4.12)
where the coefficients 6;,,- -, 6;,, are such that we can write
0z)"'=1+) 6;2, ) |6 < 0. (2.4.13)
j>0 >0

We first consider a white noise sequence {e(v)} ~ WN(0, 1) which generates the moving-

average {Y(v), v7 € 29}, such that
Y (v) = 6(B)e(v) (2.4.14)

and the auto—reéression {X(v), v7 € 29}, such that

(B HX(v) = e(v). (2.4.15)
If we define the polynomial
v(z) =6(z) 6" = Y 20) 2, (2.4.16)
=

then from (2.4.14),(2.4.15) and (2.4.16), we can see immediately that

Y(v) = v(B)X(v). (2.4.17)
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The set F C 2% in (2.4.16) has finite cardinality and is such that 07 € F and that if

j” € F then —j™ € F, as well. More specifically, we can write here
F = {jT :j =jm _jTH jn _jmv n,m= 11 aq}

Later in Chapters 3 and 4, we will denote by F other finite sets of lags that include the
zero lag and they are symmetric, but we will not know their exact elements then.

If we define the polynomial

c(z)=4(2)" =027 0T = Y ) P, D |e(i) < oo, (2.4.18)

j"'EZd j"'GZ‘i

we can re-write (2.4.17) as

X(v) = e(B)Y (v). (2.4.19)

As a counterpart to the process defined by
e(v) = X(v) + 05, X (v +j1) + - + 65, X (v + ig),
we define
u(v) = X(v)+6;, X(v—=j1) + -+ 6, X(v—Jg) = 0(B)X(v). (2.4.20)

Then
{u(v)} ~WN(0,1),

since it has exactly the same second-order properties as {e(v), v™ € Z%}. Indeed for any
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j7 € 24, it holds that

q q
E{u(v)u(v-3)} = E{X®)+)_ 6. X" -in))X@ =3+ D 5. X —j—im))}

n=1 m=1

= E{XWX -+ D 0. B{X(v—3j)X(v-j)}

n=1
q

+ Z 05, E{X(V)X(v—j—Jim))}

m=1
q q

+ 3 05,05 E{X (v — jn) X(v = § = jm)}

n=1m=1

q
= E{XW)X +i)}+ D 0, E{X(V+j)X(v+])}

n=1

q
+ Y 05, E{X(V)X(V+]j+im)}
m=1

q q
+ 338,05, E{X(v + )X (v +j +m)}

n=1m=1
q q
= E{(X(v)+ ) 0, X(V+ia)(X(V+i)+ D 6, X(v+i+in)}
n=1 m=1
= E{e(v)e(v+ij)}

From (2.4.16), (2.4.17) and (2.4.20), we can see that
Y(v) = (B u(v). (2.4.21)
The equations (2.4.14), (2.4.15), (2.4.20) and (2.4.21) show that

1, j=0
E{X(v+j)Y(v)} = { . (2.4.22)
0, j#0

and Y (v) and X (v + j) are uncorrelated for any j # 0.
On the other hand, if we write
X(v) =u(v)+ )65 u(v-J),
j>0

we can see immediately that
8; = E{X(v)u(v-j)}, j>0. (2.4.23)

If we multiply (2.4.20) by u(v — j),j > 0, and then take expected values, using (2.4.23)
we can derive

©; + 05,053, + - - + 65,055, = 0, (2.4.24)
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where we consider ©g = 1 and ©5 =0, j < 0, where necessary.

So far, we have seen how

{e(v)} ~WN(0,1)

also implies that

{u(v)} ~WN(0,1).
Moreover, if we can assume that the original sequence is Gaussian
{e(v)} ~ N(0,1),

then all the linear filters applied to it afterwards generate Gaussian sequences of random

variables and

{u(v)} ~ N(0,1).
An interesting question would be what happens in the case that
{e(v)} ~ IID(0,1). (2.4.25)

When (2.4.25) holds, all the sequences of random variables defined afterwards are strictly
stationary. As a result, {u(v), v" € 2%}, defined in (2.4.20), is a strictly stationary and

white noise process.

Proposition 2.5. For {e(v)} ~ WN(0,1), we consider the reverse strictly stationary
process {X (v), v™ € 2%} defined by (2.4.15). We also define {u(v), v" € 2%} by (2.4.20).
(i) Then for any v™ € Z¢, the distribution of u(v) is the same as the distribution of
e(v). '
(ii) Further, if {e(v), v™ € 29} are identically distributed, so are {u(v), v" € 2%}.
(iii) For any v™,j” € 2% and j # 0, if it holds that e(v) and e(v + j) are two
independent random variables, then u(v) and u(v — j) are also two independent random

variables.

(iv) If {e(v)} ~ IID(0,1), then it holds that
{u(v)} ~ IID(0,1). (2.4.26)
Proof. For (i), since {X(v), v7 € 2%} is reverse strictly stationary, the distribution
of [X(v),X (v +j1), -+, X(v + jg)|” is the same as the distribution of [X(v), X (v —

J1),--+ , X (v — jg)]”. We can conclude then that the distribution of u(v) is the same as

the distribution of e(v). The proof for (ii) follows directly.
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For (iii) and without loss of generality, we will consider continuous random variables
and will denote by f a generic probability density function. It holds for any j # 0 that

e(v) and e(v + j) are two independent random variables. As a result,

fe(v),e(v+j) (wly wg) = fe(v) (wl) ) fe(v+j) (w2)’

where f(v)(w) and fe(vj)(w) might not be the same probability functions, since we have

not assumed that e(v) and e(v + j) are identically distributed here. We may re-write
./1;211 XY X (Vi) X (V) X (vHiHig) (B2 1, T, T, @, -, Tg) dy -+ - day
= /Rq fx(v),...,x(vﬁq)(x,--- yZq) dzy---dzg-
4 /R XD X i) (@5 @) dad - dag, ' (2.4.27)
where the integrations take place under the restrictions
a;+91 Ty + -+ 0 Ty =wy

and

'+ 01 2]+ + 0 T = we,

according to (2.4.15). We may also write

Juv) u(v-j) (w1, w2)

= /qu FX() o X (Vi) X =)y X (v—imig) ® TLy -+, gy T TY, - -+, ) dy - - - Ay
= /qu XY X (v4ig) X (vHi)y X (vtitig) (& 1y - -+ Ty ¥, 25, -+ -, ) dzy - - - d
= /Rq FX)r X (vtig) (@ 5 Tg) diy -+ - dzg -

/Rq FXr+0) e X (v4ii) (270 5 ) da - dag
= /m Xy, X(v=ig) (@ "+ 1 Zq) dafl - dag -

/Rq Fxv=j)y X (v=j=ig) (&, -, g) da} - - dag
Suy(w1) -+ Fuiv—j)(w2), (2.4.28)
which implies that u(v),u(v — j) are independent as well. Finally, (iv) follows directiy

from (ii) and (iii). [ |

The following lemma generalizes (2.4.22) and turns the notion of uncorrelated random

variables Y (v) and X (v — j), j # 0, to one of independent random variables.
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Lemma 2.4. If {e(v)} ~ IID(0,1) and {u(v)} ~ IID(0,1), then it holds that X (v —j)

and Y (v) are two independent random variables for any j # 0.

‘Proof. If it holds that {e(v)} ~ IID(O, 1), then the random variables X (v + j) and
Y (v) are independent for any j > 0, since X (v) is a linear function of e(v + j),j > 0,
and Y (v) is a linear function of e(v — j),j > 0.

On the other hand, if it holds that {u(v)} ~ IID(0,1) too, then the random variables
X (v —j) and Y(v) are independent for any j > 0. This comes from the fact that X (v)
is now a linear function of u(v—j),j > 0, and Y (v) is a linear function of u(v+j),j > 0.

'Proposition 2.6. We consider the zero-mean and strictly stationary process {Y (v), v™ €

29} with absolutely summable auto-covariance function
7'() = E{Y (WY (v -j)} =0 7(3), " € Z°, (2.4.29)

where o2 is given from Kolmogorov’s formula. Then we define the polynomials

vz = Y @), D hG)l < oo, (2.4.30)
J"'GZ" j"GZd
Y@ = > v, D @)l <o, (2.4.31)
j"'GZ‘i jTezd .
and consider
7(z) = 6(z) 6(z™"), (2.4.32)
such that . .
0(z) =1+ 62, Y |65 < oo, (2.4.33)
>0 j>0 :
. and
0z) ' =1+) 657, ) |6 <oo. (2.4.34)
>0 j>o
For the polynomial
c*(z) =7"(2) "}, (2.4.35)

we define the new process

X*(v) =c*(2)Y(v). (2.4.36)

If |E{Y(v)3}] < o0, 1+ 2550 0;’ # 0, and X*(v — j) and Y (v) are two independent

random variables for any j # 0, then for any v7 € 24, any i > 0 and any two locations
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vi < vo, it holds that

0, i>0, vi#vorvea#v+i

Cov{Y (V)Y (v +1i), X*(vi)X*(v2)}=¢ 1, i>0, vi=v, vo=v+i . (2437

0, i=0,viorve#v

Proof. We first define the polynomial

o(z) = 1(z)) = W_—l—) = 02 (2) (2.4.38)

and then the process

X(v) = ¢(B)Y(v) = o? X*(v). (2.4.39)

We also define the strictly stationary processes

and

e(v) = 6(B)7Y (v) = (B HX(v) (2.4.40)

u(v) = 6(B~H)7Y (v) = 6(B) X (v). (2.4.41)

It holds that £(v) is independent of .s(v + j) for any j > 0, since the former is a linear

combination of Y (v — j*),j* > 0, and the latter a linear combination of

X(v+j+j*),j* = 0. A similar argument can be used for the two random variables u(v)

and u(v — j) for any j > 0. Of course, the two processes {e(v), v" € Z%} and

{u(v), v™ € 2%} are sequences of independent and identically distributed random vari-

ables, since we originated the proposition with a strictly stationary sequence {Y (v), v™ €

24}. Tt also holds that

E{e(v)?} = E{u(v)?} = 02, v" € 24 (2.4.42)

We can also write that

E{Y (v)*}

[1+4)_6}] E{e(v)®} +3- E{e(v)*}E{e(v)} ) _6;

j>0 j>0
+ 3. E{e(v)}E{e(v)’} ) _ 67
>0
+ 3 BE@P Y 6,6, +3 BeWIEEW) Y 66,
J1.2>0, J1.d2>0,
J1#i2 h#i2
+ 3. E{e(v)}? > 85,65,6;
J1.d2.43>0,
J1#32, h1#i3, Jo#i3
= [1+)_ 6] E{e(v)%}.
j>0
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As a result, if |[E{Y(v)3}| < 0o and 1+ 2550 9:;‘ # 0, then it holds that
|E{e(v)*}| < o0

and, similarly, it holds that
|E{u(v)*}] < oo.

The finite third moments of the noise sequences will be useful next. To prove (2.4.37),
we will start with the cases when i > 0. We separate into the following cases:
(i) If vi < vy < v < v +1i, then it holds that the random variables X (v1)X(v2) and
Y (v)Y (v + i) are independent.
(ii) If v < v = vg < v + i, then we may write
E{X(vi)X(V)Y(V)Y (v +1)} = E{E{X(vi)X (V)Y (V)Y (v + D)|u(v1—]),j = 0}
= E{{X(v)RM™+ > 6ju(v-j)

0<j<v-v)
+ ) G u(v =YWV (v +i)u(vi —j),j > 0}}

j2v—-vi

= E{X(v)[ ) 6ju(v-IE{Y(MY(v+i)}

j2v-v1

+ E{(X(v)} E{u(M) + Y €5 u(v-ilY(VY(v+i)}
0<j<v—vy
= E{X(vi)X(v)} E{¥ V)Y (v+i)},
and we have used the fact that |E{u(v)3}| < oo for the second term.
(iii) If vi < v < vg < v + i, then we may use the same argument as in (i).

(iv) If vi < v < vg = v + i, then we may write

E{X(v))X(v+1)Y(v)Y(v+i)}
= E{E{X(vi)X(v+1)YV)Y(v+i)u(v+i+]j),j>0}}
= E{X(v1)[D_ 6 uv+i-i} E{D_ 8 u(v+)Y(v+i)}

+ E{X(vl)[g Oy u(v +1i- j)]u(v) i;z_'oj u(v +J)}E{Y (v +1)}
+ E{X(vl)}J E{u(v + i)lg 65 u(v +j>1;J<<vl+ i)}

+ E{X(v)[u(v)+ Z ' ;j_;(v + )]} E{u(v +1)Y (v +1i)}

= B{X(vi)X(v+ ())}q 3{Y(v)¥<v +1i)},

and the finite third moment has been used for the two middle terms.
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(v) If vi < v < v +1i < vy, then we may use the same argument as in (i).

(vi) If vi = vg = v < v +1i, then we may write

E{X())Y (V)Y (v +i)} = E{E{X(V)]Y (W)Y (v + i)|u(v + i +j),j > 0}}
= E{X()’[u(v)+ Y 6 u(v+j)} E{Y(v+i)}
0<j<i
+ E{X(¥)*} E{D_6 u(v+j)] Y(v+i)}
j=i
= E{X(v)’} E{Y(v)Y (v +i)},

and the finite third moment has been used for the first term.

(vil) If vi = v < v < v +1i, then we may write

B{X(V)X(va)Y (V)Y (v +1)} = E{E{X()X(v2)Y (V)Y (v + Dlu(v = §),5 > 0}
= E{XM Y ©julvz—i)} B{D_6 u(v+iY(v+i)}
j>ve—v >0

+ E{XM[ Y 65u(va-iu)} B{Y(v+i)}
j2ve-v
+ E{XW)}E{uva)+ Y. 6uv2—iD 6 ulv+iY(v+i)}

0<j<va—Vv j>0

+ B{X(V)u()} E{[u(vs)+ DY ©julva—j)Y(v+i)}
0<j<ve—v
= E{X(v)X(v2)} E{Y (V)Y (v +1i)},

and the finite third moment has been used for the two middle terms.

(viii) If vi = v < vo = v + i, then we may write

E{XV)X(v+1)Y(V)Y(v+i)}
= E{X(W)XF+)YV)Y(v+i)|u(v—j),j=>0}}-
= E{X()D_6;5u(v+i-j} E{D_ b u(v+IIY(v+i)}
j=>i j>o0
+ E{XW)} E{lu(v+i)+ D Oy u(v+i-HID_ 6 u(v+i)Y(v+i)}
o<j<i j>0
+ E{X(")]D_ 65 u(v+i-juv)} E{Y(v+i)}
Jj=>i
+ E{X)u@)} E{u(v+i)+ ) 6ju(v+i—jY(v+i)}
0<j<i
= E{X(V)X(v+i)} E{Y V)Y (v +1)} + E{u(v)?} E{u(v +i)?}

= E{X(V)X(v+1)} E{Y(W)Y(v+1i)}+0o?
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and the finite third moment has been used for the two middle terms. Similarly, if we use

(2.4.39) we may write
E{X*(v)X*(v+1)Y(V)Y(v+i)} =1+ E{X"(v)X*(v +1)} E{Y (V)Y (v +i)}.

With exactly the same arguments and the change of roles of the two sequences
{X(v), v7 € 2%} and {Y(v), v" € 2%} and the two sequences {u(v), v" € 2%} and
{e(v), v™ € 29}, we may proceed as follows:

(ix) If vi = v < v +1 < vg, then we may use the same argument as in (vii).

(x) If v < v; £ vy < v +1i, then we may use the same argument as in (i).

(xi) If v < vi < vg = v +1i, then we may use the same argument as in (iv).

(xii) If v < vi < v +1i < vy, then we may use the same argument as in (i).

(xiii) If v < v; = v = v + i, then we may use the same argument as in (vi).

(xiv) If v < v; = v +1i < vy, then we may use the same argument as in (ii).

(xv) If v < v + i < v; < v, then we may use the same argument as in (i).

Finally, for the case of i = 0, we want to verify that
E{X(v1)X(v2)Y (v)’} = E{X(v1)X (v2)} E{Y(v)*},

when either vi # v or v # v. If v;, va # v, then we may use the same argument as
in (i). If either v = v or v = v (but not both), then a similar argument like in (vi)

might be used. u

General Yule-Walker equations

For a given polynomial

6(z) = 1+ 05,25 + -+ + 63,27,

we derive in this section the general Yule-Walker equations. These equations refer to
the coefficients 6j,, - - - , 6j,, of the polynomial 6(z) rather than the auto-regression with
polynomial 6(z), like the original Yule-Walker equations. For a more detailed description
of the original Yule-Walker equations, one may refer to Section 3.3.1. Here, the auto-
covariance functions of both the two processes, the auto-regression and the moving-
average that use 6(z), are involved, in contrast to the original Yule-Walker equations

that use the auto-covariance function of the auto-regression only.
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If we define the spectral density of the auto-regression {X(v), v € 29} defined in
(2.4.15) as

1 1 1 1

w) = . - - = . . w'r e 7'rd . 4
gX( ) (2.”):1 9(6“")0(6_7"") (27r)d ry(e‘lu)’ E[ ) ] (2.4.43)

then it is clear that the polynomial ¢(z) defined in (2.4.18) generates the auto-covariances

of the auto-regression
o(i) = Cov{X(v), X(v +J)} = E{X(v)X (v +))}, §” € 2% (2.4.44)

Similarly, if the spectral density of the moving-average {Y(v), v" € 2%} defined in
(2.4.14) is

v() = 3z 0(e) B(e™) = 7oy o(e™), w7 € [-m (2.4.45)

then combining this with (2.3.3) implies that the polynomial

v(z) = Y () 7 (2.4.46)
jTeF
generates the auto-covariances
() = Cov{Y(v), Y(v +§)} = E{Y W)Y (v +§)}, §” € 2% (2.4.47)

From (2.4.17) and (2.4.22), we can derive

1, j=0
> ) eli-j) = ) J_#O . ' (2.4.48)
iTeF . y J

We will refer to equations (2.4.48) as the general Yule-Walker equations.

As we are going to see later in Chapter 4, the invention of the general Yule-Walker
equations does not only concern the ARMA processes. Looking at (2.4.48), one might
see that the auto-covariance functions of two processes are involved and there are two
fundamental elements needed, in order to build these equations. The first is that the
set of lags F, where the auto-covariance function of one of the processes is non-zero, is
of finite cardinality. The second is that the two processes must be linked via a specific
transformation to achieve such a relation between their auto-covariance functions. In the
specific case of the auto-regression { X (v), v™ € 2%} and the moving-average {Y (v), v™ €

24}, this transformation was expressed in
Y(v) =v(B)X(v)
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or
X(v) =c(B)Y(v).

Thus, the two processes are connected via transformations that use their auto-covariance
functions. If F is not of finite cardinality, then the equations still hold but the sum-
mations extend over infinity; this is of little use when we observe processes on many
dimensions d > 2, due to a problem called the edge-effect, which will be further analyzed
in Chapters 3 and 6. In other words, processes that have a non-zero auto-covariance
function over a finite set of lags may have a worthless contribution in the solution of
the problems of estimation for the parameters of processes on the d-dimensional regular
lattice. Further, for a given polynomial v(z), a finite set F allows us to create a set of ran-
dom variables {Y'(v), v € §*} from another set of random variables {X(v), v € S},
where §* C S, if we apply the finite transformation involved.

We do not worry about observing any process yet, this will be important in the
next chapters of estimation, so we refer to sets of random variables rather than sets of
observations. The general Yule-Walker equations will next be used to demonstrate that
both the inverse theoretical variance matrix of a vector of random variables from an auto-
regression and the inverse theoretical variance matrix of a vector of random variables from
a moving-average are conditional variance matrices. Gaussian likelihoods, which will be
used later for estimation, involve the inverse variance matrices and their determinants
and now we know their form. Moreover, since the inverse conditional variance matrices
involve the auto-covariance functions of the auto-regression and the moving-average, it
might be useful to refer to conditional Gaussian likelihoods. Indeed, the inverse variance
matrix of a set of random variables from the auto-regression is a conditional variance
matrix referring to the same set of random variables from the moving-average and vice
versa. The property we are showing is dual but we are only using later one of its two
sides. In Chapters 3 and 4 we will refer to conditional likelihoods and we will come up
with inverse conditional variance matrices, i.e. variance matrices with elements the auto-

covariance functions of simple processes such as an auto-regression or a moving-average.

Conditional variance matrix for the auto-regression

For any set S C 2¢ of finite cardinality N, and the set F C 2% as defined in Section 2.4.1,
we consider §* to be the maximal set such that for every v7 € §*, it holds that vi—j" € S

for all j7 € F. We write then N* for the cardinality of S*. Of course, we may also
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write that $* C S and N*v < N. We let X*, Y* to be the (N* x 1) random vectofs
from processes (2.4.15) and (2.4.14), respectively, of the elements of $* in any order.
Similarly, we consider the random vector Xo with members from the process (2.4.15) on
the locations of the set & — §*. The polynomial §(z) we are using is such that the two
processes are causal and invertible, respectively. It is then clear from (2.4.17) that we

can write

Y =T -X*+Ty- X, (2.4.49)

for an (N* x N*) matrix I" and an (N* x (N — N*)) matrix I'g. It holds according to
(2.4.22) that
Cov{X*, Y*} = Iy, (2.4.50)

i.e. it is the identity matrix. Again from (2.4.17), it holds that
I’ = Var{Y"}, (2.4.51)

since the vectors X*, Y* refer to all the locations v™ € S* set in the same order.
Thanks to Remark 2.3, the eigenvalues of Var{Y*} are positive and its inverse exists.
We can now write
X* = Var{Y*}}Y* — Var{Y*}~II'y X,. (2.4.52)
Equation (2.4.52) reveals that X* can be written as a linear combination of the two

random vectors Y* and X, which are uncorrelated using (2.4.22). As a result and using

(2.4.50), it should hold that
X* = Var{Y*}71Y"* + Cov{X*, X0} Var{Xo} X, (2.4.53)
from which we can write
Var{Y*}~! = Var{X*} — Cov{X"*, X} Var{Xo} *Cov{Xo, X*}. (2.4.54)

Moreover, if we can assume that {e(v)} ~ IID(0,1) and that {u(v)} ~ II1D(0,1) too,
then the random vectors Y* and Xg are independent, according to Lemma 2.4. It holds
from (2.4.53) that

Var{X*|Xo} = Var{Y*}"! (2.4.55)

and also

E{X“lXo = X()} = COV{XT,XU} Var{X()}—le. (2.4.56)
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Conditional variance matrix for the moving average

For the same sets S, §*, and cardinalities NV, N* as defined before, we now consider the
(N x 1) random vectors X and Y from processes (2.4.15) and (2.4.14), respectively, of

the elements of § in any order. We write
X=C-Y+Yy, (2.4.57)
where
C = Var{X} (2.4.58)

and Y is the (N x 1) random vector with element corresponding to the specific location

v” € § equal to

Yo i) Y(v-3) (2.459)

vT—jT¢S

Thanks to Remark 2.3, the inverse Var{X}~! exists. We can write
Y = Var{X} !X — Var{X}1Y,. (2.4.60)
Since X and Yy are two uncorrelated random vectors, we can write
Var{X}~! = Var{Y} — Cov{Y, Yo} Var{Yo} Cov{Yo, Y}, (2.4.61)

which, if both {e(v)} ~ IID(0,1) and {u(v)} ~ IID(0,1), can be expressed in terms
of a conditional variance that is later given in (2.4.65). But that would imply that we
know the value yg of the random vector Y which depends on all values y(v), v7 ¢ S.

We define
w = —[Y — Var{X}'X] = Var{X}}[X - Var{X} Y] = Var{X}1Y,. (2.4.62)

and re-express (2.4.60) as
Y = Var{X} !X - w. (2.4.63)

The general Yule-Walker equations guarantee that the elements of the symmetric matrix

Var{X}! = [’y;’l]thl are

Ve = V(v = Vi) (2.4.64)
if at least one vi € 8* or v; € §* for all the elements of S labeled as k,l =1,--- ,N. As
a result, the random vector

Var{X} X
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gives the random variables Y (v),v” € S§*. Similarly, the random vector w has zero
elements for v € S* The remaining elements of the vector w on locations v 6
S — 8* can be seen as functions of the values Y (v), v™ ¢ S, or functions of the errors
e(v)+ 31 165, e(v—1in),or u(v) + X3 _ 605, u(v+jn), n=1,---,q, forall v ¢ S.
Thus, a reasonable assumption is that w = 0, which when w is independent of X can
result in

Var{Y|w = 0} = Var{Y|w} = Var{X}! (2.4.65)

and

E{Y|w =0} =0. (2.4.66)

It should be made clear now that, although the variance matrices and their inverses
only involve the second-order properties of the processes of interest and they are totally
unconnected to any causal formulations assumed to be taking place there, before that we
have made a fundamental assumption for the polynomial 6(z), without which we cannot
proceed in that way. We have assumed that

6(z) =1+ ZGJ- 7, Z |95] < oo.
j>0 i>0
It is only then that we may move smoothly between an auto-regression {X (v), v™ € 2%}

and a moving-average {Y (v), v7 € 2%}, such that
Cov{X(v+j),Y(v)}=0, j#0.

As it will be made clear in Section 3.6, this is extremely important in estimation if we
are interested in estimating the parameters of a bilateral rather than a unilateral ARMA
process. More details about how we define unilateral and bilateral ARMA models will

be provided in Section 3.2.1.

2.5 K-dependent processes

First we write the following condition.

(C1) (i) For a set S = Sy C 2% of cardinality N, we write N — oo if the
length M of the minimal hypercube including S, say & C Cyps, and the
length m of the maximal hypercube included in S, say C,, C S, are such

that M, m — oo.

(ii) As M, m — oo, it holds that M/m is bounded away from ooc.
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A typical example for (C1)(i) is when our observations lie on a hyper-rectangle S =
{1,-+- N1} x --- x {1,-++,Ng} and min{_ {Nx} — oco. We will often refer to this
example for simplicity, although the results hold for all increasing sets satisfying (C1).
For (C1)(ii), the minimum and maximum number of recordings in & per dimension
k=1,---,d, increase at the same speed. In the case of the rectangle, we may write
0<ag%sﬁ<oo, kj=1,--,d. (2.5.1)

Condition (C1) was used by Guyon (1982, p.95). Part (ii) also implies that we can write
N = O(M%) = O(m4). (2.5.2)
Next we give the following definition.

Definition 2.5. For the minimum non-negative integer K, a strictly stationary sequence

of random variables {U(v), v" € 2%} is said to be K-dependent if for every vk, v} €

Z, k=1,---,d, the two sets of random variables {U (v1,- - , Vk—1, Jks Vk+1, " * »Vd), Jk <
vk} and
{Ui, - ,vE_1,Jks YEg1r " »V3)s Jk = vk + K + 1} are independent.

For any positive integer K, we define the set

Bx = Mgk - {[0, v ’O]T}’ (253)

where Mg was defined in (2.3.6). We also define the set
Fr={j": j7 e Mg, —j" € Mk} (2.5.4)
Theorem 2.2 (Central Limit Theorem for strictly stationary K-dependent
sequences). Let {U(v), v" € 2%} be a strictly stationary K-dependent sequence of

random variables with zero mean and auto-covariance function 4(-), and let S C 2% be

a set of cardinality N. Write

vk =Y (), (2.5.5)
JTE€FK
and .
Uv= Y U(v)/N. ' (2.5.6)
vTES

Then under condition (C1), it holds that
(i) N Var{Un} — vk and
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(i) NY2Uy 2 N(0,vk)

as N — oo.

Proof. For simplicity and without loss of generality, we will consider the case of the
hyper-rectangle.

(i) We may write
N Var{Un} =% Z y(v—-v*)= Z -]J-:’-’—

v0) (2.5.7)
VT viTeS i"€Fk ,

where f; is the number of times we may find the lag j™ € 2% from the difference of
locations v — v* when both v7,v*”™ € 8. For example, it always holds that fo = N. For

the case of the rectangle, Proposition 3.1 that appears in the next chapter shows that

H(Nk—mn—N H( '“') N, (2.5.8)

as minf_, {Nx} — oo, which proves the first part of the theorem.

(ii) For each fixed integer m > 2K, we define the sets S,(,:’f.)..,pd C S, such that
8,(,;',’) e ={v =lv1,-,vg vk =(pg—1)m+1,--- ,pr-m—K, k=1,---,d} (2.5.9)

forpp,=1,---,r,forallk=1,--- ,d,and r = [minz=1{Nk}/m]. We also define the set

R™M = Pl =1 Upg=1 SZET) Pd (2.5.10)
and the random variable
VNm=N"172 3" Uv). (2.5.11)
vTeR(mM)

Then the random variable N/2Vy,, is a sum of r* independent and identically dis-

tributed random variables each with zero mean and variance equal to

Var{U(-l,u- AW +--+Um—-K,--- ,m—K)}

Ry =
d
= Y J[m-E& -5 ~G)
JTEFm—Kk k=1
= (m-K)? H( I”“' )7(j). (25.12)
JTE€Fm_K k=1

In (2.5.12), we are using (2.5.8) for the case of the hyper-cube. For fixed m, as

minz=1{Nk} — 00, it holds that 7 — oo and we can apply the central limit theorem and
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write that

[ 1/2( > U(v>) = 72 (N/2Vivm ) 2> N0, Brnr).

vTeR(m)

Under (C1)(ii), it holds that

. d
N (mmﬁ=1{Nk}) ~ md.

Td T

As a result, we may re-write (2.5.13) as
(m*)Y2Vym 25 N(0, Rm—x)

or

VNm_’Vm"’N( Rde)y
m

where it holds that

- (o25)) £ -0 5 0

JT€Fm—_k k=1 JTe€FK

as m — oo. Finally, it holds that
N2y = N712 3" U(v)
vTES
and we may look at the variance of the random variable

N~1/2 Z U(v)— N~1/2 Z U(v).

vTES vTER(M)

(2.5.13)

(2.5.14)

(2.5.15)

In a similar way like Theorem 6.4.2 of Brockwell and Davis (1991), we may find that |

R
lim sup N~1Var{ E U(v)} = K
min{Ny, ,Ng}—o0 vTes,
* v‘rgn(m)

which tends to 0 as m — oo.
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Chapter 3

Estimation for ARMA models on

a d-dimensional lattice

3.1 Introduction

In this chapter, we are concerned with the estimation of the parameters of ARMA
models on the d-dimensional lattice. We take one step at a time, as we first consider
the case of observations from a causal auto-regression and then the cases of the moving-
average and ARMA processes. Due to a problem known as the edge-effect, which is
described in Section 3.2.2, the standard methods used for time series cannot be applied
when d > 2; the exact Gaussian likelihood estimators computed from N observations on
the d-dimensional lattice have an absolute bias of order N~1/4, as Guyon (1982, p.95)
has explained. Thus, we have looked for modified versions of Gaussian likelihoods that
can generate consistent and asymptotically unbiased and normal estimators. A similar
methodology was used by Yao and Brockwell (2006) for the case when d = 2. Before
that, Guyon (1982) had proposed a modification on the quantity, for which Whittle
(1954, p.440) proved that it is a modified version of Gaussian likelihood when d = 2. |
We start in Section 3.3 with the case of observations from a causal auto-regression,
and we consider the Yule-Walker estimators of the parameters. These estimators are
conditional likelihood estimators, as we explain later in Section 3.3.3. Moreover, they
are the least squares estimators that Guyon (1982, p.103) was suggesting for the case of
a unilateral auto-regression. We prove that they have the properties that we mentioned

before and also that they are efficient for Gaussian random variables.
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In Section 3.4 we study the case of a moving-average. Though invertible moving-
averages are considered there, our results can be generalized, as we explain later in
Section 3.6. We propose a Yule-Walker method of estimation that imitates the general
Yule-Walker equations from the previous chapter for the moving-average. The estimators
are consistent, asymptotically unbiased and normal, though we have managed to write
their variance matrix under a condition, which is definitely satisfied for Gaussian random
variables. Even if the original process is Gaussian, the estimators are still not efficient.
Thus following the Yule-Walker method, we maximize a modification of a conditional
Gaussian likelihood that improves our results and gives efficient estimators under exactly
the same conditions.

The good results achieved for the moving-average are still not surprising. As Guyon
(1982, p.100) noted, when the range of summation in the numerator or the denominator
of the spectral density of the process of interest is finite, we should expect to find ways t;o
deal with the edge-effect. An ARMA process though, does not have an auto-covariance
function that cuts off to zero outside a finite set of lags like a moving-average, nor is
it possible to apply a finite filter on the ARMA process and come up with a sequence
of uncorrelated random variables, like it is for an auto-regression. Nevertheless, a finite
transformation applied on the ARMA process does produce a moving-average and these
two features, i.e. the finite transformation applied on the ARMA and the finite auto-
covariance function of the moving-average that is produced then, are the special features
of an ARMA process that we will take advantage of. As we will show later, three different
finite filters can produce three moving-averages in this way, but only one of them is
appropriate for use and capable of defeating the edge-effect. The case of the causal and
invertible ARMA is studied in Section 3.5 and generalizes the results of Section 3.4,
rather than 3.3. Thus, we propose a modified version of Gaussian likelihood estimators
that are consistent, asymptotically unbiased and normal. The variance matrix of the
estimators is known under an extra assumption, and in the Gaussian case the esti'mators
are guaranteed to be efficient. Even if the ARMA process is not causal and invertible, we
may define estimators with same properties, according to Section 3.6, after we correct
the deterministic part of the modified likelihood properly.

This also applies to the conditional likelihood proposed in Section 3.3, which is ap-
propriate for causal auto-regressions only. It is an obvious generalization of Whittle’s

(1954) contribution for the estimation of parameters of bilateral auto-regressions on 22,
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as Whittle originally approached the random part of the Gaussian likelihood as a sum
of squares of uncorrelated random variables. Since the likelihood proposed in 3.3 is not
clearly a special case of the likelihood proposed in Section 3.5, we might find a link
later in Section 4.5.2, when it will be possible to estimate the parameters of a unilateral
or bilateral auto-regression using a modification on a Gaussian conditional likelihood,
i.e. the special case of the likelihood of 3.5. The results of Section 3.3 demand that
the auto-regression of interest is causal but they also prbvide the form of the variance
matrix of the estimators, even though the random variables might not be Gaussian. In
Section 3.5, apart from the assumption of causality which is also necessary, we have
shown that the form of variance matrix is known under an extra condition, which is
automatically satisfied for Gaussian processes. Thus, in Section 3.7, we establish the
usefulness of causal auto-regressions when one of the dimensions is the time axis and
we use further the results of Section 3.3, without making any specific assumption on
the distribution of the process of interest. Tests for the unknown coefficients might be

performed and all the results are applied on a spatio-temporal dataset.

3.2 The problems of the ARMA

The multi-dimensional ARMA process was defined in the previous chapter in a similar
way to the one-dimensional ARMA used for time series. In this section, we present
two main problems that arise when we deal with the ARMA defined on the regular

d-dimensional lattice.

3.2.1 Unilaterality, causality and invertibility

For any location v7 € 2% on which the process takes place, any other location Belongs
either to its ‘past’ {v —1i,i > 0}, or ‘future’ {v +1i,i > 0}. We call ‘past’ and ‘future’
for convenience, when we refer to the two opposite orderings of interest, as described in
Section 2.2. After we have decided which orderings represent the ‘past’ and ‘future’, we
may define a caﬁsal and invertible ARMA process as in Section 2.4. In this section, we
will attempt to explain the idea of unilaterality for the case of ARMA processes. For the
simple case of an auto-regression first; a causal auto-regression is always unilateral, in

the sense that the process on any point v7 € 2% can be expressed as a linear combination
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of (v —1i),i > 0, with absolutely summable coefficients, and
{e()} ~ WN(0,0%)

is the related sequence of random errors. Then for the simple c#se of a moving-average;
an invertible moving-average is always unilateral, in the sense that for any v" € 24 we
may express the related random error as a linear combination of the ‘present’ and ‘past’
values of the process itself, with absolutely summable coefficients. |

For the case of an ARMA process, the relation between causality, invertibility and

unilaterality may be extended in an obvious way. We give the following definition.

Definition 3.1. A finite ARMA process {Z(v), v™ € Z%}, which has been expressed in

terms of the random sequence
{e(v)} ~ WN(0,0?),
is unilateral if

1. Z(v) is a linear function of e(v — i), i > 0, and (V) is a linear function of

Z(v —1i), 1> 0, both with absolutely summable coefficients, or

2. Z(v) is a linear function of (v + 1), i > 0, and €(v) is a linear function of

Z(v +1i), i > 0, both with absolutely summable coefficients.

According to the definition, a causal and invertible ARMA process is always unilat-
eral. Moreover, if we have an ARMA process that is not causal and invertible but the
value of the process on v € Z¢ is a function of ‘present’ and ‘future’ random errors,
from the related error sequence, and the value of the random error on v € 2% is a
function of ‘present’ and ‘future’ values of the process, both with absolutely summable
coefficients, then this is a unilateral ARMA process too. An interesting question is what
happens when the two polynomials are oriented in an opposite way but do generate
absolutely summable coefficients. For the sake of example, we write the one-dimensional

ARMA(1,1) process {Z;, t € Z} defined by the equation
Zy—05 Ze_y = up + 0.2 ugyq, {u} ~ WN(0,02).

According to Deﬁnifion 3.1, we will not consider that {Z;, t € Z} form a unilateral

ARMA process, although in terms of parametrization nothing would really change when
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writing it down as a causal and invertible ARMA process. In other words, there is
a sequence of uncorrelated random variables {e;, t € Z}, which we can define by the
equation '

Zi—052Zi_1=¢€+02¢_1, {e} ~WN(0,0?)
and which now allows to our ARMA process to be considered causal and invertible. The
problem of bilaterality of an ARMA process is far more complex than this. In order to
describe it better, in order to understand Definition 3.1 and to follow the example of
Whittle (1954), we will focus next on the cases of causal or unilateral auto-regressions
and we will try to demonstrate how these two forms are connected.

Although a causal auto-regression is unilateral, a unilateral auto-regression is not
necessarily causal. Similarly, an auto-regression that is not causal does not have to be
bilateral. There are causal auto-regressions, there are unilateral and not causal auto-
regressions and there are bilateral auto-regressions. We may give a simple example of
a two-dimensional bilateral auto-regression, say {X®)(u,v), u,v € 2}, defined .by the

equation
XD (u,v) =51 XD (w—1,v) — 0.5 XD (u—-2,0)+0.3 XD(u,v—1)
- 153 XD (u—-1,0-1)4+0.15 XD(u - 2,0 — 1) + w(u,v), (3.2.1)

where

{w(l)(u,v)} ~ WN(O,O‘,?U).

We may re-write
(1-—0.1By)-(1=5 By)-(1-0.3 By) XY (u,v) = wh(y,v) (3.2.2)

and it holds that

(1-012z) (1-52z) 1-032)=(01-512+052)-(1-0.3 2)
= 1-51240522-0.3 24153 2122 — 0.15 222,. (3.2.3)
Moreover, since

(1=52) (1-5271)=25(1-0221)(1-02 z), (3.2.4)

the auto-regression defined in (3.2.1) shares exactly the same second-order properties as

the causal auto-regression {X® (u,v), u,v € Z} defined by the equation

(1-0.1 By)-(1-0.2 By)-(1-0.3 By) X® (u, v) = v (u,v), {w?® (u,v)} ~ WN(0, 02 /25).
(3.2.5)
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Both the auto-regressions defined by (3.2.1) and (3.2.5) are linear-by-linear, in the sense
that the auto-regressive polynomials have been factorized into two parts, one referring
to the dimension v € Z only and the other to the other dimension v € Z, while this is
not always possible. Linear-by-linear processes will be defined properly in Chapter 6.
Here, they have been used as examples for mathematical convenience only.

But what if we are interested in an auto-regression that is not causal but it is uni-
lateral? A simple example of a linear-by-linear unilateral auto-regression, which is not

causal, is the auto-regression {A™(u,v), u,v € Z} defined by the equation
(1-0.2 B7Y) - (1-0.3 By) AW (u,v) = e (u,v), {eM(u,v)} ~ WN(0,02). (3.2.6)

Now, (3.2.6) shares exactly the same second-order properties as the causal auto-regression

{A@ (u,v), u,v € 2} defined by
(1-0.2 By)- (1= 0.3 By) AD(u,v) = e®(u,v), {eP(u,v)} ~WN(0,02). (3.2.7)

The auto-regression defined in (3.2.6) is unilateral and a simple justification for this is
that it would be causal if a different selection of unilateral orderings had been made to
represent the ‘past’ and ‘future’. Thus in our first example, what actually makes (3.2.2)
a bilateral auto-regression is not that the root 0.2 is less than 1 in (1 —5 21) = 0,.as this
is only the reason why the auto-regression is not causal. The process defined in (3.2.2) is
bilateral because, for the first dimension u € Z, there is a root 10 and a root 0.2, outside
and inside the unit circle, respectively, in (1 — 0.1 23) - (1 — 5 z;) = 0. This means that
the process runs over both sides of the axis, and since this is the primary axis, we may
rest immediately that the auto-regression is bilateral. Following the same argument as
Whittle (1954, p.436) for time series, we may safely say that there are 22 = 4 unilateral
processes that share exactly the same second-order properties as (3.2.2), as they occupy
the four different quarters. One of them is the causal auto-regression defined in (3.2.5).

Let {X©®) (u,v), X® (u,v), X®(u,v), u,v € Z} be the other three defined by

(1-01B;)-(1-02B;) - 1-03 B;Y) X¥(w,0) = w¥(u,v), (3.2.8)
(1-01B7Y) - (1-02B;Y)-(1-03By) XB(u,v) = wW(u,0), (3.2.9)
(1-01B7Y-(1-02B;1-(1-03B;Y) XO(u,v) = w®(y,v), (3.2.10)

where

{w® (u, v)}, {w® (u,v)}, {w®(y,v)} ~ WN(0,02/25).
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While we can see immediately that the processes defined in (3.2.9) and (3.2.10) are not
causal, since they both run over the ‘future’ side of the primary axis, it is harder to
figure out whether the process defined in (3.2.8) is causal or not, as this depends on
the secondary rather than primary axis. For any u,v € Z, it holds that X® (u,v) is a
linear function of w® (u — k,v +1),k,1 > 0. While w® (u — k,v +1),k > 0,l € Z, are
allowed in a causal representation, the same cannot be said for w® (u,v +1),! > 0, and
the auto-regression is not causal. This verifies that {X®)(u,v), u,v € 2} is the unique
causal auto-regression corresponding to the spectral density of interest.

The two examples that we have used to understand the notion of causal versus
unilateral auto-regressions suggest two different ways of finding out whether the process
of interest has any of these properties. The first example writes the auto-regressive

polynomial as

1-) 64, (3.2.11)

i€I,
with the restriction that Z, C {j > 0} exactly like in Section 2.4. Then it checks

whether the process is causal according to Lemma 2.2. The second example allows the

auto-regressive polynomial to be written as

0,(z) 0;(z™Y), (3.2.12)
where
bp(z) = 1- Y 6% 4, (3.2.13)
jEUp )
6rz) = 1- Y 60 4, (3.2.14)
jEUf

but puts the restrictions that Up, Uy C {j > 0} and that the polynomials 0,(z), 6y (z)
could be used to define causal auto-regressions. The process is causal then if and only
if 8¢(z) = 1. Of course, when is it that the auto-regressive polynomial can be factorized
in the form (3.2.12) remains a question of interest.

If it is so, it would be interesting to find a way to re-express an auto-regression with
polynomial of the form (3.2.12) as an auto-regression with a polynomial of the form
(3.2.11). For example, we have defined the auto-regression {A(l)(u, v), u,v € Z} from

(3.2.6). We may re-write it as

—02 A0 +1,v) +0.06 AN +1,0—1)+ AD(u,v) — 0.3 AD(u,v—1) = e(})(u,v)
(3.2.15)
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or

AM(u+1,0) — 0.3 AD(u+1,v-1) =5 AV (u,v) + 1.5 AW (u,v—1) = =5 eV (u, v),

(3.2.16)

which makes sure that since the location [u 4 1,v] is in the future of all other locations

[u+1,v—1], [u,v] and [u,v— 1], then the coefficient multiplied by A (u+ 1,v) is unity.

Next, we redefine the e sequence by translation, according to Whittle (1954, p.436).
Thus,

e(l)*(u_+ 1,v) = =5 eV (u,v), u,v € Z, (3.2.17)

which implies that
{e®(u,v)} ~ WN(0,25 02) (3.2.18)

and that
AD (4, v)=0.3 AD (4, v=1)—=5 AV (u—1,v)+1.5 AD(u—1,v-1) = eV (u, v). (3.2.19)
As a result, the polynomial
1-032—-5z+1522=>01-52) (1-032) (3.2.20)

has the roots z; = 0.2 and 2, = 10/3 and the first one is inside the unit circle, which
implies that the auto-regression is not causal. Still, it is a unilateral auto-regression as
for every dimension there is only one root available. This is the same argument that
could be used to justify that any AR(1) in the standard time series is unilateral. We
need at least two roots to decide whether they force the process to run over just one or
both sides of the time axis.

The difficulty that appears when we generalize the concept of unilateral and bilateral
processes, from the case.that d = 1to the cases d > 2, has its source on the fact that every
dimension introduces two ends. For example, when there are two dimensions, there exist
four quarters rather than two sides. Instead of defining multilateral processes, Whittle
(1954, p.438) preferred to simplify this problem and, for any [u,v]” € 22, to separate
all the other points of the regular lattice 22 into two equal parts. This has allowed
the definition of unilateral and bilateral processes. Moreover, with a distinction made
between these two parts, it is possible to define causal processes.

It can be easily understood that the transition from the concept of a unilateral auto-

regression to that of a causal auto-regression is closely related to the interpretation
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given to the dimensions. If those are the dimensions of space, we would not have any
particular reason to expect that the dependence structure follows a direction. Indeed,
it is not the high dimensionality that might be a problem when defining a causal auto-
regression but the natural meaning that the dimensions have. Later in Section 3.7, we
will see how meaningful causal auto-regressions can be defined when one dimension only
is the time axis, though there might be spatial dimensions also involved. On the other
hand, comparing a time series versus a process taking place on the line transect, makes
apparent that defining a causal auto—fegression might be problematic even if there is
only one dimension. A fundamental assumption used to prove the results of this chapter
is that all ARMA models of interest must be causal and invertible. Thus, this method
has been severely criticized and has made many analysts of spatial statistics to resort
to other methods, such as those described in the next chapter. Nevertheless, as we are
going to see in Section 3.6, we may consider that the results hold even if the ARMA of

interest is bilateral and we may find the elements that link Chapters 3 and 4.

3.2.2 Two sides of the edge-effect

We collect N observations from a causal and invertible ARMA process taking place
on the d-dimensional lattice and we wish to estimate the unknown auto-regressive and
moving-average parameters. In order to assess the asymptotic behavior of our estimators,
we need to imagine ways that could have generated more observations for the statisticél
analysis. The most reasonable assumption is that all dimensions can give more and more
locations and we usually assume that we obtain an increasing sequence of sampling sets
SN, which satisfy (C1). A good asymptotic behavior would be achieved by the estimators
if the square of their bias reduces to zeroc at a faster speed than their variance, as the
number of observations increases.

When we deal with d > 2 indices, this relation between the order of the bias and
variance does not seem to take place for the classical maximum Gaussian likelihood esti-
mators of the parameters. In general, bias of order N~1/4 occurs, unimportant if d = 1,
but of the same order as the standard error if d = 2, and of greater order if d > 3 (Guyon,
1982, p.95). This problem that becomes existent for d > 2, is known as the edge-effect.
The edge-effect is an obstacle for good estimation, either the Gaussian likelihood has
been expressed in terms of the time domain or the spectral domain quantities. The tran-

sition of the Gaussian likelihood from one form to the other was first achieved by Whittle
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(1954). A paper by Yao and Brockwell (2006) for the case d = 2, has chosen the original
form of the likelihood and has used the innovations algorithm to unfold its quadratic
part and compute the likelihood. The innovations algorithm imitates the AR(co0) rep-
resentation of the process of interest for each observation available in the sample, based
on all observations in the sample from its ‘past’. In the paper, a modification of the
likelihood is proposed, which follows an adequate selection of observations, confines the
edge-effect and ensures that the absolute bias of the estimators is of smaller order than
N2,

On the other hand and long before that, Guyon (1982) revealed the presence of the
edge-effect for the general case d > 2, using the periodogram to access the random part
of the likelihood. We consider the Gaussian likelihood to be a product of the random
part, i.e. a function of the parameters and the data, and the deterministic part, which
does not depend on the data. Guyon (1982, pp.96-7) also referred to the quadratic
and deterministic parts of an approximation of the likelihood. Since the sample auto-
covariances are the only random variables involved in the periodogram, plugging-in their
unbiased estimators has cancelled the edge-effect there. Next, we examine closer how
the edge-effect dominates against asymptotic unbiasedness of the estimators, either we
approximate the likelihood in terms of the innovations algorithm and follow the time
domain methodology or in terms of the sample auto-covariances, the periodogram and
the spectral domain representations.

First, suppose that we are using the innovations algorithm. For each observation in
the sample, the algorithm creates the best linear predictor based on all the observations
from its ‘past’ in the sample and the prediction variance. This strongly resembles the
AR(00) representation of the process, as the information from the ‘past’ becomes more
and more. In time series, every observation in the sample used for the estimation of the
parameters plays two roles; it increases the sample size to reduce the variance and it also
serves as past of other observations generated after it. For example, if T observations.have
been collected, the observation labelled ast = 1,--- , T, has (t— 1) observations available
giving information about its recent past. As a result, every new observation generated
has more observations available from its past than the previous one. Therefore, the
absolute bias of the estimators would be reduced quite fast, as the number of observations
increases.

Unfortunately, the same cannot be said for processes with more than one indices. A
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new observation may lie close to an edge of the hyper-rectangle. It always serves its first
role with success and contributes to reducing the variances of the estimators, but fails
to succeed in the second task, that of reducing the absolute bias fast enough. The ‘past’
now has a different meaning and involves more than one dimensions. It cannot be made
sure that increasing the number of observations decreases the absolute value of the bias
with any order smaller than N~1/¢; a new observation does not always have more ‘past’
information available.

Even if we do not follow a causal formulation that mimics the AR(oco) representation
of the process, but we approximate the likelihood in terms of the sample auto-covariances
only, the problems remain. For observations {X;, t =1,--- ,T} from a (weakly) station-
ary time series, the theoretical variance matrix of the observations consists of exactly
(T'—1) different elements apart from the element of the main diagonal, Var{X;}. In other
words, any T consecutive observations introduce (7' — 1) lags and every new observation
introduces one new lag and one new element in the variance matrix only. Moreover, by
the time a new lag, say ¢ > 0, is introduced, it holds that there are (T — i) pairs of
observations in the sample that can give information about it. On the other hand and
as T — oo, for a given lag i > 0, there is always a constant number of 7 observations
Xt = 1,-+-,4 that cannot be paired with X;_;, since the latter does not exist in the
sample.

Let us now consider the simplest case of a two-dimensional prbcess and observations
on a square lattice {X (u,v), u,v = 1,---,n}. If we consider the fixed lag [z,0] for an
¢ > 0 that has been introduced by the observations in the sample and large enough n,

_then there are n(n —1) pairs in the sample to give information é,bout it, but there are also
n - 1 observations that cannot be paired, i.e. X(u,v),u =1, .- ,5,v =1,--- ,n.. These
observations lie on one edge of the square and they become infinitely many as the edge of
the square goes to infinity, which was not the case in time series. Moreover, after putting
the observations in a unilateral order, the first n observations X (1,1),--- , X(1,n), move
on a straight line and they have introduced (n— 1) different auto-covariances, apart from
the variance 6f the process. By the time the next observation X (2,1) is set in order, there
are n new lags introduced with all the previous observations. As a result, if we increase
the surface that the square occupies on the lattice, the number of new lags introduced
by some observations also increases. The number of sample auto-covariances involved

in the periodogram this time is significantly different from n? — 1, i.e. the number of
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observations minus one element corresponding to the variance; for the answer to that
see Remark 3.1(ii) when d = 2. Before that, the following proposition indicates how this

number of elements changes as the dimensionality d increases.

Proposition 3.1 (Inclusion-Exclusion formula). For § = {1,--- ,Ni} x --- %
{1,---,Ng}, let observations {X(v), v7 € S} from a (weakly) stationary process on
the regular d-dimensional lattice and let X be a column vector consisting of the obser-

vations in any order. Then, the variance matrix Var(X) consists of exactly

20-15(d) _ 9d-26(d-1) 4 ... 4 (—1)4-1208(1) 1, ifd is odd
2d-15(d) _ 9d-2g(d-1) 4 ... 4 (—1)4-1208(1)  if d is even
(3.2.21)

Qgs? Ng =

different auto-covariances apart from the element of the main diagonal, where S(@ =

d (d—k) _ pla-Fk) (d—k) _ N
l—Ik=1 Ni and S - 21§I’1<P2<'"<Pk<d (p1,p2,+ »p&)’ with P(m,m. k) NpyNpyNp,

for k=1,2,---,d— 1, and the positive integers p1,p2,- - , Dk-

Proof. We want to find the number of different lags generated by the observations of a
stationary process {X(v), v™ € S8}, without forgetting the property (i) = y(-i). We
construct Table 3.1.

Table 3.1: Form and number of different elements in Var(X).

Form of lag i Number of different lags Number of appearances
[0,---,0,0] 1 Ny Ng_1Ng
[0, ,0,id], ia >0 Q“) Nyj—1 Ny -+ Ng_1(Ng — |id|)
[0,--+,0,ig), ia <O repeated lags Ny-++Ng_1(Ng — lid])
0, yiacssial, ia1>0 | QB =W = | Ny-or Naoo [T gy (N — lixl)
(Ng—1 —1)(2N4 — 1)
[0, ,id—1,id], ta-1 <O repeated lags Ny Na_a [Teca_y (Ve — lix])
fia, o yiaial, >0 | QR Q(d N, = ey (Ve = lix])
¥y~ D TEes 28~ 1) |
1, ,id-1,4], 41 <O repeated lags H:=1(Nk — |ik})

The first column demonstrates all the different types of lags in the covariance matrix.
For each one of these types, we may find in the second column the number of different
auto-covariances. Thus, the sum of the elements of the second column is exactly what

we are looking for. For example, in the variance matrix we can find the auto-covariance
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at lag [0,---,0]. According to the third column, the variance of the process appears in
the main diagonal of the matrix (N7 ---Ng_1Ny) times. Now, if we want to find how
many lags of the form [0,---,0,%4], g > 0 can be generated by the data, that means we
can only select (Ng — 1) lags, i.e.ig = 1,--- ,Ng — 1. On the other hand, when the lag
ig is unrestricted, like in the next case where its previous lag i4_1 is restricted, we may
have ig = 0,%1,--- ,+(Ng — 1) and, so, 2(Ng — 1) + 1 = 2N4 — 1 different lags for each

fixed ig_;. We may write

d
QW.ny = WNa=1)+ (Nam1 = 1)@Na— 1)+ + (M - 1) [T@Ne - 1), (3.2.22)
k=2

Although finding Q(? seems complicated, all someone needs to know is that the formula
treats all Ni, k=1,2,---,d, equally. As a result, we may look at the last term that is

the only one involving N; and derive (3.2.21). ]

Remark 3.1. (i) We may see what happens when at least one of the Ny, k= 1,2,--- ,d,
is equal to one. Without loss of generality, we may consider N7 = 1. Then the last term

of (3.2.22) is equal to zero and the rest of the formula remains unaffected and equal to

d-1
QN

(ii) In the special case where the observations lie on a hyper-cube and Ny = --- =

Ny = n the formula simplifies to
2n —1)4 -1
QY = [en-1)7-1] 2) | (3.2.23)

either if d is odd or even. Indeed, (2n — 1) is an odd number and so is (2n — 1)% =
4n? —4n + 1, and, by induction, the numbers (2n —1)¢, d = 1,2, -- -, are odd in general.
3.3 Estimation for AR processes

3.3.1 Original Yule-Walker equations for the auto-regression

For 0 < i; < -+ < ip, we consider the causal auto-regression {X(v), v" € 2%}, such

that it satisfies

» , .
X(V) =D i, X(v—in) +&(v), {e(v)} ~ WN(0,0?). (3.3.1)
n=1
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If we multiply by X(v —i,,), m = 1,---,p, and find the expected values, then. due to
the assumption of causality, it holds for y(i) = E{X(v)X (v +1i)}, that

P
n=1
or, similarly, .
Yo =Tp- ¥, (3.3.3)
where
¥p = [v(in), -, ()] (3.3.4)
and ) ]
¥(0) (i —i2) - y(in—ip)
ip—1i 0 ip —1i
r,= 7(2. 1) (0) '7(2. ) 335
i (p—i1) (p—i2) - v(0) ]
and, finally,
p= [‘Pily T Soip].r' (336)

Finally, if we multiply (3.3.1) by X (v) and find the expected value, we write the equation
7(0) =5 - + 2. (3.3.7)

The equations (3.3.2) are the theoretical Yule-Walker equations for a causal auto-
regression on the d-dimensional lattice. In the next section and for a given set of obser-
vations from (3.3.1), we use these equations to estimate the parameters ¢; ,n =1,--- ,p.
Since the Yule-Walker equations involve the moments (i, — i), n,m = 1,--- ,p, the

Yule-Walker estimators are method of moments estimators.

- 3.3.2 Method of moments estimators

We observe {X(v), v € S}, where S C 2% is a set of finite cardinality. We wish to
estimate the unknown parameters g = [¢i, 0, , ¥i,0]". We consider the maximal set
S*, such that v € S*if v € Sand vV —if € Sforalln =1,---,p. We assume
that S is large enough, so that S* is not the empty set. Also, we consider N and N*
the cardinalities of the sets & and &*, respectively. We assume that ©; C RP is the

parameter space and that the following condition holds.
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(C2) The parameter space ©; is a compact set containing the true value ¢
as an inner point. Further, for any ¢ € ©;, the auto-regression (3.3.1)

is causal.

For the elements of S* in the ascending order, say v] < -+ < V}., we define the

Yule-Walker estimators ¢ = [pf ,- - ,cp;‘p]"' to be such that

e = (XX THXTYY), : (3.3.8)
where _ _
X(Vl —il) X(Vl —i2) X(V1 —ip)
X* = X(Vz. - il) X(Vg - i2) <. X(Vz. - ip) ~(3'3'9)
| X(vns —i1) X(vns—1i2) -+ X(vne—1ip) |
and
Y*=[X(v1), -, X(vae)]". (3.3.10)

We can see immediately that (3.3.8) are least squares estimators as well. This shows

when we consider the linear equations

P .
X(v) =) 01, X(v—in) +e(v), vT € S". (3.3.11)
n=1
Remark 3.2 (Consistency). We can re-write (3.3.8) as
X*Tx* -1 x*TY*
= . 3.12
o =(5%) (55) (3:312)
This representation justifies why we call (3.3.8) the Yule-Walker estimators, as
X*TX*
N*

imitates the theoretical matrix I'p, and so does the vector

X*TY*
N*

for the vector «, 5. We use the zero sub-index for the quantities corresponding to the
true parameter vector o, except for the case of the variance matrix I'p, which will also
correspond to the true parameter vector.

If {e(v)} ~ IID(0,0?), then as we increase the number of observations N — oo, it
holds that N*/N — 1, which implies that

1 . .
5 ng X(v = in)X (v) =5 vo(in),
vTeS*
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according to Proposition 2.2, and so

N x*TY* P
Yp=—N " Tro (3.3.13)
For the same reasons,
- XH*TX* ]
T,= £, (3.3.14)
N
so that
x_pnls P o1 y
" =T, 9, =T, vp0 = o (3.3.15)
Finally, we define
2% _ o ~7 *« P o — 2
o® =5(0) =75 ¢* — 10(0) — vp0 ¥o = 0%, (3.3.16)
~ P
where 7(0) = Y5 X (V)?/N — 7(0).
Asymptotic normality
Theorem 3.1. Let the variance matrix
1
Wp = ; I‘p.
If {e(v)} ~ IID(0, 0?), then under conditions (C1) and (C2), it holds that
NY2[g* — 5] 2 N (0, W;)
as N — oo.
Proof. First we define
e = [e(va), -, e(va)]", (3.3.17)
so that we can write the linear model
Y* =Xy +€". (3.3.18)

It holds that
NI/Z[(P* _ ‘PO] — N1/2{(Xt‘rxt)—lx*TY* _ ‘PO}
= NYV2{(X*"X*)7'X*"(X*@y + €*) — ¢o}
- N1/2{(X*1’X*)-—1X*‘r€*} - {N(X*"X*)'l}{N‘I/ZX”e*}.
(3.3.19)
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For the first part, we know from Remark 3.2 that
Nx*x")t Erpt (3.3.20)

as N — oo. For the second part, we will show that for any fixed vector A € RP as

N — oo and (C1) holds, then
N=1227X*7e* 2, N(0,02A7T,A), (3.3.21)

which will imply the truth of the theorem from the Cramer-Wold device.

We write
1
—1/2~r*T % _ 1/2
N~/2X*7e* = N/ v > Uwv), (3.3.22)
vTES*
where ) i
X(V - i1)
X(v—1i
UWv) = ( _ 2) e(v), v € 2. (3.3.23)
| X(v—1ip)

We' can see immediately that E{U(v)} = 0 and that

Opxp, otherwise

. 02 : rpa j =0
Cov{U(v), U(v +§)} = E{UMUT(v +5)} = {

We may then write {A\"U(v)} ~ WN(0,02A7T;, A). We recall the MA(co) representa-
tion of the auto-regression,
X(v)=¢(v)+ Z ;50 (v —1J)
j>0
and, for fixed positive integer K, we define a new process {X®E)(v), v7 € 2%} by the

equation

XEvy=e(v)+ Y Bj0elv—3j),
J"€Bk

where the set Bx was defined back in (2.5.3). We also define

[ XB) (v i) |

X (v —iy)

U (v) = e(v), vT € 2, (33.29)

| X(K)(V_ip) J
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where we can write again {A"U®)(v)} ~ WN(0, azz\TI‘,(,K))\), with the variance matrix

1
I‘;,K) = ;EVar{U(K) W)}

Moreover {A"U)(v), v™ € 2%} is a strictly stationary K*-dependent process fdr some
finite and positive integer K*. Then as N — oo and (C1) holds, according to Theo-
rem 2.2, we can write
N2 57 Atu® (v) 2 v © N(0,02ATTEON). (3.3.25)
vTES*
Also as K — o0

ATEN - AT, A,

which implies that
ATVE) 2, ATV~ N(0,02A7T, A). (3.3.26)

We may conclude using Chebychev’s inequality, which guarantees that

P(u\r-l/2 > ATU() = N7V2 T AUy >e)

vTeS* vTeS*
< (1/€?) - (N*/N) A"Var{U(v) — U¥)(v)}A — 0,

as K — oo, since the (n, m)-th element of the matrix
E{(U(v) - UF)(v))(U(v) - U (v))7}
is such that
ot > ®;0 ®j 0 — 0,

J3*>0, T J*T¢Bg,
J+in=§*+ijm

as K — co. |

3.3.3 Conditional likelihood estimation

For observations {X(v), v” € §} from the causal auto-regression defined in (3.3.1), we

may write the conditional Gaussian likelihood

. 1 1 F :
L*(p,0%) We’q’{'ﬁﬁ Y X)) =) g X(v—3a)*h @ €61, 0% >0,
vTESH n=1 .
(3.3.27)
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where the notation was introduced back in Sections 3.3.1 and 3.3.2. If we consider the

maximum likelihood estimators % and ;;5 that maximize it, we can see immediately that

2%

P * >
p=¢, o2=o0

and these are exactly the same as the Yule-Walker estimators defined by (3.3.8) and

(3.3.16). Thus, we know all about their asymptotic behavior from the previous section.

3.4 Estimation for M A processes

3.4.1 General Yule-Walker equations for the moving-average

For 0 < ji < -+ < jq, we consider the invertible moving-average {Y (v), v" € 2}, such
that it satisfies
q
Y(v)=e(v)+ ) 05,.6(v —im), {e(v)} ~WN(0,0%). (3.4.1)
m=1
For v(j) = E{Y(v)Y (v +j)}, the general Yule-Walker equations are given in (2.4.48).

We can re-write them as

> AG) i~ Jm) =0, m=1,--- ,q, (3.4.2)
i"eF ,
and
> () () = o> (3.4.3)
i"eF

The notation for the set F C Z¢ and the polynomial c(z) was introduced back in Sec-
tion 2.4.1. We have considered F the set of all vector lags, for which the auto-covariance

function of {Y (v), v" € 2%} is non-zero. Also, from the polynomial

q
0(z) =1+ ) 6, 2, (3.4.4)
m=1
we have defined
c(z) = 0(z)10(z"1) . (3.4.5)

The equations (3.4.2) are the theoretical Yule-Walker equations, which are used here
for an invertible moving-average on the d-dimensional lattice. In the next section and for
a given set of observations from (3.4.1), we use these equations to estimate the parameters
6j,.,m = 1,--- ,q. Since the Yule-Walker equations involve the moments v(j),j” € F,

the Yule-Walker estimators are method of moments estimators.
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3.4.2 Method of moments estimators

We observe {Y(v), v7 € S} and wish to estimate the unknown parameters 6y =
[65,,05° "+ »05,,0]"- We consider the maximal set S*, such that for every v7 € S*, it
holds that v — j7 € S for all j7 € 7. We assume that S is large enough, so that &*
is not the empty set. Also, we consider N and N* the cardinalities of the sets S and
S*, respectively. For any v7 € 2%, we define the set Fy C Z to be such that j™ € F, if
vT —j7 € §. We assume that @, C R7 is the parameter space and that the following

condition holds.

(C3) The parameter space ©; is a compact set containing the true value 0
as an inner point. Further, for any 6 € ©9, the moving-average (3.4.1)

is invertible.

We define the estimators 6™ = [0, , 6} ]” to be the solutions of the equations

Y4 D COYEV-im-DIYWM=0m=1,,q  (346)
vTES* JTHILEFv
where we consider
c*(z) - 9*(2)_19*(2—1)—1
and

q
*(z) =1+ z Hfmzj"‘.

m=1
Also, we set the estimator of the variance
o =) ') Y. Y(V)Y(v—j)/N. (3.4.7)
JTeF vTES™

Remark 3.3 (Consistency). In general, we will denote with zero sub-index the quan-

tities corresponding to the true parameter vector 8p. We can re-write (3.4.6) as

Y S ) Y —im—)Y(v)/N =

vTES* T4, €Fy
Yo W) Y Y(v—im—i)Y(V)/N
iT+ine2¢ vTes*
- > D) O YV-im—JY(¥)/N=0. (3.4.8)
VTES* T+, ¢ Fy

As we increase the number of observations N — oo, then it holds that N*/N — 1, which

combined with the fact that {e(v)} ~ IID(0,0?) implies that

3 YV =im = )Y @)/N L 50 +m), (3.4.9)
vTES*
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according to Proposition 2.2. Then the first term of the left hand-side of (3.4.8) converges

to
Yo wG+im) @ = D 1G+im) @)
JT+inezd T+iner
For the second term of the left hand-side in (3.4.8), it holds that

Y Y )Y —in-)¥E)/N

VTGS"‘ JT+JT ¢}-v

< = Z Y. ElG) YV -in—)Y M)
v"'ES‘ TR
< < Z Y B EY (v —im - )Y (v)}?

VTES' T+Jm¢-7:v

= E{Y(v)}— > Y E{e()

VTGS‘ T+, ¢-7:v
due to the Cauchy-Schwartz inequality and the independence of Y (v), Y(v—j), j" ¢ F.
Now for any vector 8 € Og, it holds that ¢(-) is the auto-covariance function of a causal

auto-regression. According to Remark 2.2(ii), we can always find constants C(8) > 0

and a(@) € (0,1), such that
c(§)? < C(0) a(0)Xk=11], (3.4.10)
Similarly, for the estimator 8* € ©,, we can write

c*(§)? < C(6")a(6*) Zk=1 ikl < sup C(6)a(8)Zk=1 il < sup C(g){§§£ a(0)} k=1 il
2 2 2
(3.4.11)

with probability 1 and
*(1)2 Tie=1 ikl
E{c*(j)°} < sup C(0){sup a(8)}<k=11k, (3.4.12)
1= 6e6; '

For the case of observations on a hyper-rectangle when (C1)(ii) holds, one can easily

verify that
S Y E{e()?) = o@D/, (3.4.13)

VTES* T+ EFy
For example, we can see the arguments of Yao and Brockwell (2006) for the case d = 2.

In general, we can write that

= Z Y B’} -0 (3.4.14)

V’ES' ITHLEFY
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and that

Y fG) Yv-in—-)Y(v)/N S0, (3.4.15)

VTES* JT T EF
as (C1)(i) holds.
After combining the two results for the terms of (3.4.8), we may write
X [ . . P . . X/
0= > cOYF-im—IYO/N—= > l+im)c@) (3416)
VTES* JTHIL,€Fy ITHLEF

exactly like the theoretical equivalent (3.4.2) dictates. Thus
0* £, gy, (3.4.17)
as N — oo and (C1)(i) holds. Finally, from (3.4.7) we can see immediately that

* P . .
o> = " i) w() = %, (3.4.18)
jTeF

since

3 YWY (v=§)/N L x().
vTES*

Asymptotic normality

For mathematical convenience, we define the new variable

Y (v), vieS
Hy(v) = | (3.4.19)
0, otherwise
and we re-write (3.4.6) as
NoAD ) Hy(v—im - (¥) =0, m=1,--- ,q, (3.4.20)

vTES* jTezd
or
YD o) Hy(v—jm —§)}Y (V) = Im[0* — 60] =0, m=1,--- ,q, (34.21)
vTeS* jrezd

where we define

Im = [Jm,l,"' ,Jm,q], m=1,--- ,q, (3'4'22)
with elements m,n =1,--- ,q, equal to
Inn = Y {co(B)[6o(B) " Hy (v = jm — jn) + 0(B™) " Hy (v — jm + jn)]}Y (v)
VTGS"' v
+ Op(N||6* - 6y]])- (3.4.23)
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Equations (3.4.21) may also be re-written as

> {aB)Hy (v = jm)}Y (V) = Im[0" — 8] =0, m =1, ,q. (3.4.24)
vTeES*

If we stack all the q equations together, we can write

N2[9" — 6] = {J/N}H{N12 " Hy(v)}, (3.4.25)
vTES*

where

=037, 3] (3.4.26)

and also for any v™ € 2¢,

Co(B)Hy(V —jl) ]

co(B)Hy (v — j2)

Hy(v) = Y (v). (3.4.27)

| co(B)Hy (v —Jg) |
Proposition 3.2. Let the polynomial

fo(z) =1+ Oj07.

j>0

If {e(v)} ~ IID(0,0?), then under conditions (C1)(i) and (C3), it holds that

[ 1 0 0 - 0]
O, 1 0 - 0
INE o2 @p=g2. | O . (3.4.28)
| ©34=i10 ©jg—520 ©jp—js0 L]

as N — oo.

Proof. Looking back at the (m,n)-th element of J/N, m,n = 1,--- ,q, from (3.4.23)

and due to the consistency of the estimators, it suffices to look at

1/N Z {CO(B)[GO(B)—IHY(V = Jm —Jjn) + GO(B—I)_IHY(V —Jjm +ia)}Y (v)

VTES‘

= 1/N Y {60(B)o(B)Y (v = jm — Jn) + 60(B™) Lco(B)Y (v — jm + jn)}Y (¥)
vTESH

+ op(1) (3.4.29)

If we consider the polynomial

do(z) = 6o(z)'co(z) = ) dip 2,

i‘rezd
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then the last part of (3.4.29) follows from the fact that

ElY/N Y {3 dip Y(v-1)}Y ()|

VTES* iT¢F,
1N > ) ldiol EIY (v — )Y (V)]

VTES*iT¢F,

{EYMIP YN Y Y ldiol =

VTES* iT¢Fy,

IA

as N — oo and (C1)(i) holds. The last limit comes from the same argument as before.
For example; if (C1)(ii) is true, we can write 3, rcge Xoirgr, |diol = O(N@-1/d) since
for any i” € 2% it holds that |d;o| < CaXk=1li¥l for constants C > 0 and & € (0,1) as
well. We may take similar action for the polynomial fy(z~1)"1cy(z).

Next, we proceed by defining some new processes, like in Section 2.4.1. From {e(v)} ~

I11D(0,02), we have generated the moving-average process
Y (v) = 09(B)e(v), (3.4.30)
but also the auto-regressive process
6o(B~HX(v) = e(v) (3.4.31)
and it holds that
X(v) = 60(B)160(B™) 'Y (v) = co(B)Y (v), (3.4.32)

and X (v + j) is uncorrelated with Y (v) for any j # 0 according to (2.4.22). Therefore,

we can re-write the (m,n)-th element referred in (3.4.29) as
YN 3" {60(B) "X (v jm — jn) + 06(B™) ' X(v = jm +5n)}Y (v) + 0p(1). (3.4.33)
VTES*
According to (3.4.30) and (3.4.31), the processes {Y (v), v™ € 2%} and {X(v), v" € 2%}
can be written as linear combinations of independent and identically distributed random

variables, and it holds, according to Proposition 2.2, that

2 s
% Y X(v-3) Y(v) B B{X(v—j) Y(v)} = { o 0 (3.4.34)
vTES* 0 #

as N — o0o. As a result,
E{60(B)'X(V—jm —jn) Y(¥V)} =0 (3.4.35)
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and

E{6o(B™1) ' X (v — jm +3n) Y(V)} = 0% 65,50, Jm 2 Jn. (3.4.36)

Since we consider j; < j2 < -- < jq, the proposition has been proven. |
Before we move on to the next theorem, we define the process

~u(v) = 6p(B)X (v), (3.4.37)

for which it holds that
{u(v)} ~ WN(0,0?).

This was justified properly in Section 2.4.1.

Theorem 3.2. Let the processes {W(v)} ~ IID(0,1) and
fo(B)n(v) = W(v).
Also let the vector & = [n(—j1), -+ ,n(—Jq)]” and the variance matrix
Wy =Var{§ | W(-j1—j), >0, j#J2—J1, - ,Jg —Ir}-

If {e(v)} ~ IID(0,0?%) and E{e(v)*} < oo, then under conditions (C1) and (C3), it
holds that

N2[g* — 9] 2 N(0,A) (3.4.38)
as N — oo. Otherwise, if {e(v)}, {u(v)} ~ IID(0,02) and |E{e(v)®}| < oo, then under
conditions (C1) and (C3), it holds that

N'2[6* — 65) 2 N(0, W) (3.4.39)
as N — oo.

Proof. First, we write form=1,--- ,q,

N2 NS () Hy (v = jm — )Y (v)

vTES* jTe2d

N2 N3 oY (v —jm =Y (V) +0p(1), (3.4.40)
VTES* jTe2d

which might be justified first by the simple argument that E{Y (V)Y (v — jm —j)} =0

for any v™ € §* and j;, +j” ¢ Fv. Then, we may look at the variance

Var{N12 30 3 ()Y (v —jm — j)Y(v)}=%Var{ S Gn(v)}, (3441)

VTES* T EFy vTES*
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where we define for v7 € S§* the random variables

Im(v)= Y, @)Y (V—jn=)Y(v). (3.4.42)
JTHLEF

Since (C1)(ii) holds, we can write that

> Var{um(v)} = Y E{m(v)?} = O(N@-1/4) (3.4.43)

vTeS* ’ vTEeS*
and a similar argument can be written for the cross-terms due to the Cauchy-Schwartz
inequality. For the case d = 2 and observations on a rectangle, we may find a justification
for that in the paper of Yao and Brockwell (2006). We can then write
Var{N72 3" 3 )Y (v —jm — )Y (V)} =0,
VTES* T HLEFy

as N — oo and (C1) holds, which results in the convergence in probability to 0.
Since X (v) = ¢o(B)Y (v), we may re-write (3.4.40) as
N2 3 c@Hy (v —jm = )Y (V)

vTES* jrezd

N7YV2 3" X(v = jm)Y (v) + 0p(1). (3.4.44)
vTES*

As a result, equation (3.4.25) can also be re-expressed as

NY2[9* — 6o] = {J/N}H{N7V2 Y~ Uv) +op(1)}, (3.4.45)
vTES*
where _ ) E
X(v—-j1)
U(v) = X(V:_jz) Y (v). (3.4.46)
! X(v'— ia) |

For any positive integer K, we defined back in (2.5.4) the set Fx. We also define the

vector

Ej"’-}-j‘i'e}'K co(d)Y (v —Jj1—1J)

er.;.j;e}',( ()Y (v—-Jj2-1J)

UH(v) = Y (v). (3.4.47)

| zjf-hjgl'e_rk CO(j)Y(V _jq -J) i
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For any n,m = 1,--- ,q, the (n,m)-th element of E{U) (v)UE) (v — j)} is equal

to
Yol Y. ) B{Y(V =i DY@V (V—j—jm— i)Y (v-))}

i"+HjTeFK *THLEFK

= E{X(V-jn)Y VXV —j—im)Y(v-j)}

- Y ) B{Y(v—jn DY (WX = j = jm)Y (v - j)}
i"HiLéFk

- ) ol B{X(V-j)Y(WY(v—j—jm— i)Y (v—j)}
*THLEFK

+ Y a) DY el B{Y(V-jn— DY (VY (v —j—Jm — 1Y (v - i)}
THREFK  PTHREFK

= E{X(v-ja)Y(WXV-j—jn)Y(v-j)}
- E{r(MXV-j-in)Y(v -0} - E{rn(v-)X(-j)Y ()}
+ E{rp(v)rm(v -1},

(3.4.48)

where we have defined
(v) = Z co(i) Y(v—jp—1)Y(v), n=1,--- ,q.
I"+inéFx
We consider that K is a positive integer. Then, for F C Fg it holds that Y(v) is
independent of Y (v — j),j” ¢ Fk, and

E{rn(v)’} = ) o)) D, i) B{Y(v—jn— DY (v—j.—i)Y?(v)}
THREFK PTHREFK
= E{Y’)} > ) Y. cf) B{Y(v—in—)Y(v—j.—i"}
i"+jré¢Fk *THin¢Fr
< Cr-of, (3.4.49)

for constants C; > 0 and oy € (0,1).
The first of four terms in (3.4.48) is the (n, m)-th element of E{U(v)U" (v —j)}. For
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the other three terms, it holds, due to the Cauchy-Schwartz inequality and (3.4.49), that

|E{rs(V)X(v =i —im)Y (v =D} < [B{ri)NAE{X(v-j-in)Y(v-j)}/?
< Cp-of, (3.4.50)
|E{rm(v = DX (v =5a)Y (I < [E{rn(v— 3N B{X(v - §a)Y (v)}]/?
< C3-of, (3.4.51)
|E{ra(V)rm(v =Y < [B{rh(v)* N2 [E{rh(v — §)*}]*2
< Ci-af, (3.4.52)

for some constants Ca,C3,C4 > 0 and a9, a3,a4 € (0,1). For (3.4.50) and (3.4.51), we
have assumed that either E{e(v)*} < oo or that X (v —j) and Y (v) are independent for

any j # 0.
For any A € RY, it holds in general that

E{NUE ()} =0 (3.4.53)

and that {A"U®)(v),v™ € 29} is a strictly stationary and K*-dependent process for
some fixed finite integer number K*. This implies that as N — oo and (C1) holds,

N—1/2 Z ATU(K) (V) _2, ATVK ~ N(O, )\TMKA), (3454)
VYES‘
where
Mg = ) Tk(), (3.4.55)
jrezd
with
I'x(j) = (UM UH (v - j)}. (3.4.56)

Similarly, if we define

I(j) = E{UMW)U"(v-))} ©(3.4.57)
and
M= ) I(j), (3.4.58)
j"'EZd
it holds that ,
ATk (A = AT(G)A, §™ € 2%, (3.4.59)

as K — oco. This is thanks to (3.4.48), (3.4.50), (3.4.51) and (3.4.52). Then we may
write '

AVg 2 ATV ~ N(0,A™M ) (3.4.60)
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as K — oo. We may conclude using the same argument as in Theorem 3.1, where thanks

to the Chebychev inequality, all we need to show is that
AVar{U(v) - UK()IA< C-oX -0, (3.4.61)
as K — oo for some C > 0 and a € (0,1). From the Cramer-Wold device we then write

N2 3" U(v) -2 N(o,M), (3.4.62)
vTES* -

which combined with (3.4.45) and Proposition 3.2 gives
1
N'2[9* — 65] = N (o, F(aglM@g—l). (3.4.63)
As a result, the first part of the theorem has been proven and
1 -1 T—1
A= FGO MOe; ™.

We now let the vector W = [W(—j1),--- ,W(—jq)]” and then write

[ n(=i0) | [ W(=30) + Opgi oW (=i2) + + + 65,5, oW (~o) |
e = n(—_jz) _ W(=j2)+-- + ejq—jz,OW(—jq)' LR
B U(—jq) i L W(—jq) i .
= O]W +R, (3.4.64)

where R is a (¢ x 1) random vector that is independent of W since it is a linear function

of W(—=j1—3J), >0, j#j2—J1, - ,ig—Jj1. As a result,

Va‘r{E l W(_jl _j)a j > 0’ j #j2 _jla te >jq _jl}
©] Var{W) © = 7 I, ©, = ©}6. (3.4.65)

We

Finally, for ényj > 0, we can write the (n, m)-th element of I'(j) = E{U(v)U"(v—j)}
to be equal to
E{X(v —jn)X(v—jm =Y (V)Y (v —J)}
= E{X(v-in)X(v—im-i)} E{Y()Y (v -}

= 0% co(in — jm — §)10(), (3.4.66)

for any n,m = 1,---,q, where the first equality in (3.4.66) is due to Proposition 2.6,
since {e(v)}, {u(v)} ~ IID(0,0?) and |E{e(v)3}| < co. Then, from (3.4.58), we may
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re-write the variance matrix M as

M=) T({=T0)+ > [IG+I7G), (3.4.67)
jTeF iTeF,
>o
and find its (n,m)-th element for any n,m =1,--- g, to be equal to

02[00(jn — jm)70(0) + Z (colin — Jm — 3)v0() + co(im — jn — 3)10())]

JTeF,
= 0'2[00(jn _jm)'YO(O) + Z cO(jn "jm —j)'YO(j) + Z CO(jm _jn +j)'70(_j)]
JTeF, JjTeF,
>0 j<o
= 0*lcolGn — jm)0(0) + D colin —im —3)10G) + D colin — im — I)0()]
JTeF, JTeF,
>0 j<o
2 . . . . 04’ n=m
= 0% colin—Jm —3)0G) = o,
jTeF 01 .n 36 m

thanks to (3.4.66) and the general Yule-Walker equations. Thus
M=o 1, (3.4.68)
After combining (3.4.63), (3.4.65) and (3.4.68), we conclude that

N'2[6* — 9] 25 N(0, W3 h). (3.4.69)

3.4.3 Modified likelihood estimation

The edge-effect is the source of the order of the bias in the exact likelihood estimators
of the parameters of an ARMA process and it is the reason why modified ‘versions of
the Gaussian likelihood have been used for estimation before. We particularly refer to
the papers by Guyon (1982) and Yao and Brockwell (2006), in which the modifications
proposed have produced asymptotically unbiased and normal estimators. Morebver, if
the original process is Gaussian, the estimators are efficient. This is another nice property
that we did not manage to achieve with the Yule-Walker estimators of the parameters
of a moving-average process in the previous section. Thus, in this section we resort to
 a new modification of the Gaussian likelihood that produces asymptotically unbiased,

normal and efficient estimators for the parameters of a moving-average process. This
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will equalize the results of the Yule-Walker or conditional likelihood estimators of the
parameters of an auto-regression, that we managed to achieve before.

The paper by Guyon (1982) suggests a modification on that version of the likelihood,
which uses the periodogram or the sample auto-covariances and which was introduced
by Whittle (1954). The edge-effect disappears when the periodogram is computed based
on the unbiased estimators of the theoretical auto-covariances at all possible lags. Since
the paper refers to the estimation of the parameters of almost all (weakly) stationary
processes, the case of a causal and invertible ARMA process is also included. Accord-
ing to Remark 2.2(ii), we know then that the auto-covariance function dies out at an
exponential rate. That means that the number of sample auto-covariances to be com-
puted for the likelihood increases, as more observations are obtained. For example, if
the observations lie on the hyper-rectangle, this number comes from Proposition 3.1.
For the special case of a moving-average process, the auto-covariances are not zero for a
finite set of vector lags only. Thus, increasing the number of observations in the sample
only increases the amount of information on the auto-covariances for this fixed set of
lags. We may conclude that the representation of the Gaussian likelihood in terms of the
sample auto-covariances, which was achieved by Whittle (1954), clearly favors a moving-
average process, since the computation is simple and fast then. Nevertheless, when the
representation is used for the estimation of the parameters of an ARMA process on the
regular d-lattice, and after the modification proposed by Guyon (1982) has takeﬁ place,
the estimators are not deprived of any of the desired properties.

On the other hand, the paper by Yao and Brockwell (2006) uses the innovations
algorithm to factorize the random part of the Gaussian likelihood. As the algorithm
imitates the AR(oco) representation of the process of interest, it uses a classical time
domain methodology to prove the properties of the Gaussian likelihood estimators. The
modification of the likelihood is effective for the special case when d = 2 only. Otherwise,
the edge-effect has not been confined and the estimators have a bias, which tends to zero
more slowly than their standard error; it seems like a hopeless case then.

The innovations algorithm is based on a conventional ordering between the obser-
vations in the sample; each observation offers information on every observation that is
coming ‘next’. The algorithm computes a triangular matrix of the coefficients of best
linear predictors of each observation based on all the observations generated ‘before’ it

in the sample. Then it composes this matrix and its transpose to create the inverse
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theoretical variance matrix that is needed in the quadratic form of the likelihood. One
has to combine the matrices of coefficients and the observations, in order to write the
random part of the likelihood, explicitly. In this case, it is not as straightforward as
it was.before, that the sample auto-covariances were involved and using the unbiased
estimators of their theoretical equivalents would defea;c the edge-effect, but the decom-
positidn used by the innovations algorithm is easy to interpret and gives speedy results.
Moreover, if the process of interest is an auto-regression, applying the innovations algo-
rithm is preferred, as it takes a smaller number of steps to complete. The number of
steps is not fixed for d > 2, but it is asymptotically negligible compared to the number
of observations, i.e. the number of steps that the algorithm would take if the process was
not an auto-regression of finite order. _
In this section, we try to conclude on a modification of the Gaussian likelihood that
will produce asymptotically unbiased, normal and efficient estimators for the parameters
of an invertible moving-average, which takes place on any positive integer d number
of dimensions, by combining the two concepts in the two different papers. On the
one hand, our suggestion for the likelihood is not related to Whittle’s (1954) suggestion
involvingi the periodogram and, consequently, it is not directly related to the sample auto-
covariances. It is a suggestion that is only justified when the inverse of a conditional
variance matrix of the observations generated by the moving-average process takes a
convenient form. As we very well know, discovering the form of an inverse variance matrix
can be the key to computing a Gaussian likelihood, as its elements can be found in both
the quadratic form and the determinant involved in the likelihood, i.e. the two sources
of computational struggle. Thus, we suggest a conditional likelihood to be maximized,
based on classical time domain arguments, similarly to the paper of Yao and Brockwell
(2006). On the other hand, we do not forget that we are dealing with a moving-average
and most advantageously use the fact that the auto-covariances are not equal to zero for.a
finite set of lags only. That strongly resembles the picture presented by Whittle’s (1954)
likelihood, which immediately involves the sample auto-covariances. In the conditional
likelihood suggested, we will draw the picture of how each observation in the sample is
paired with every other observation in the sample and how some of these observations
and their pairs will be rejected and left out of the quantity maximized. The rejection
will take place only to ensure that these .are the observations which lie on the edges,

i.e. the ones that not only miss the pairs that are ‘far away’, but also the pairs that are

84



close to them and which correspond to the lags of non-zero auto-covariances, and might
slow down the bias and harm the results.
For observations {Y(v), v7 € S} from the invertible moving-average defined in

(3.4.1), we write the modified version of the conditional Gaussian likelihood

L*(6,0%) (72)%@@:;){—5}7E S YW) Y ) Y(v—i)} 6 €6, 02 >0,

vTeS* ey

(3.4.70)
where the notation was introduced back in Sections 3.4.1 and 3.4.2. Again, we ha\./e

considered _
c(z) = 0(z)"t0(z"1) ! (3.4.71)

with .
0(z) =1+ ) 6, 2. (3.4.72)

m=1

A justification why (3.4.70) is a modified Gaussian likelihood comes from (2.4.65) and
(2.4.66). According to them, a true conditional likelihood is
|Var{X}|}/2

1 . .
G (g0 2 Y(V) D i) Y(v-i)} 6€6z 0*>0,
vTES jTery

L(8,0%) «

(3.4.73)
where X is the vector of random variables {X(v), v7 € S} from the causal auto-
regression

q
X))+ D 05, X(V+im) =e(v), {e(v)} ~ WN(0,0?). (3.4.74)
m=1

Now, we explain why (3.4.73) is correct. First, we need to see that we have involved
X in the likelihood only via its variance matrix Var{X}. Indeed, the likelihood must
be a function of the data Y, which are the observations from the moving-average of
interest, and a function of the parameters 6;,,,m = 1,--- ,q. The determinant |Var{X}|
clearly belongs to the second category and it is a piece of the deterministic, not the
random part of the likelihood. Why have we chosen to write this determinant using -
the variance matrix of random variables that we do not observe at all? Simply because
the sampling set S, on which we have observed {Y(v), v™ € 8}, also determines which
exactly is this random vector X that will contribute with its variance matrix. This is
not very surprising, considering that the variance matrix itself depends on the locations
of observations and so does its inverse.

Secondly, one might notice that (04)N/ 2 is in the denominator of the likelihood

L(8,0?), while (¢2)N"/2 is in the denominator of the modification L*(@,0?). This is
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because |Var{X}|!/? is also in the numerator of L(@,c?) and we can re-write
[Var{X}[*/2 = (6®)¥/?|Var{X /o }|"/2

and

q
(X(V)/0) + D 65, (X (v +3m)/0) = (e(v)/a), {e(v)/c} ~ WN(0,1).

m=1

Now that we have achieved a unit variance of the error sequence, we can use the results
proven in Chapter 2.

Finally, we should recall from the same chapter which conditional likelihood is (3.4.73).
Thanks to an argument mentioned in the end of Section 2.4.1, (3.4.73) is the conditional
Gaussian likelihood of Y given that w = 0, where w is a vector with fixed zero ele-
ments when v7 € §*, while when v7 € § — 8%, the elements of the vector are random
variables that are linear combinations of the unobserved values of the process of interest
Y(v), v ¢ S. Those values might also be written as e(v) + >3 _; 6;,. (v — jm) for
v™ ¢ 8. Thus, L(8,0?) is a conditional likelihood of Y given that these values are equal
to their mean value zero.

Nevertheless, we have proceeded with a selection of locations v7 € S8*. It is true
that if we attempt to factorize the determinant |Var{X}| into the prediction variances
produced from the innovations algorithm, say r(v,8),v™ € S, then for the standard

ordering of locations, we would have come up with
r(v,8) = d%, vT € S (3.4.75)

This is because we are using the vector X and the nice properties of a causal auto-
regression. If it was necessary to perform the innovations algorithm to compute [Var{Y}|,
we would not see that property there, and the prediction variances would keep changing,
since a moving-average possesses an AR(oc) representation. We would need to observe
the full ‘past’ of each observation to derive a prediction variance equal to o2. As a
result for the finite auto-regression, replacing the original set S by a subset &*, results
in replacing the determinant

[Var{X}| = [] r(v,0)

vTeS

H r(v,0) = (c®)V".

vTES*
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For a more detailed description of the innovations algorithm for the d-dimensional
ARMA, one should see the paper by Yao and Brockwell (2006).

But the determinant involved in the likelihood is not the main reason why we have
excluded some observations. Like for the Yule-Walker estimators, for any v7 € &%, it
holds that 7 C F,, and so,

E{) dYWY(v-i)} =E{)_ dY©)Y(v-i)} (3.4.76)
irezd irer

for any polynomial

d(z)= Y diz"
irezd
Thus, lacking the infinite information from both the ‘past’ and ‘future’ of any observation

in the sample, does not have any effect on the estimation regarding, the expected values
of the random variables involved. In other words, the selection of observations v7 €
S* guarantees that both the Yule-Walker estimators defined in 3.4.2 and the modified
likelihood estimators will have an unimportant bias, like we have seen in time series when
d=1.

As for the variance of the estimators, this is now related to the coeflicients of the
polynomial ¢(z) that we have used in the quadratic form of the likelihood (3.4.70), rather
than anything else. This is the main difference from the Yule-Walker estimators, which
according to Theorem 3.2, did not achieve the inverse of the variance matrix of the
random vector £, but the inverse of a conditional variance matrix of the same vector,
i.e. something ‘bigger’ in terms of quadratic forms. Why we are using {c(j), j” € 2%}
is justified by (2.4.65) and (2.4.66), as mentioned before. For more complicated models,
though, such as the ARMA, we do not, in general, have results available for the variance
matrices of the observations in the sample. In such cases, we may resort to the theoretical
properties reflected in the spectral density and look at its denominator. For example,

for the moving-average of interest that would be

gy (w) = 02 6(e)f(e~™) = € [-m, 7] (3.4.77)

This is part of a general argument, which will be shown later in Chapters 4 and 5. The
argument in Section 5.2.1 says that in the inverse of a variance matrix, one can find the
coefficients of best linear predictors of each observation based on all other observations
used from the sample. On the other hand, according to Proposition 4.1, the denomi-

nator of a spectral density of a (weakly) stationary process taking place on the regular
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lattice, generates the coefficients of best linear predictors of any observation based on all
other information on the lattice. We expect, as we increase the number of observations
available, that these two coefficients come closer. Of course, the auto-regression defined
in (3.4.74) enjoys the privilege of a finite representation in the denominator

o2

9(61—“’)9(—6:7‘:’—)—, w’ € [—ﬂ', ‘Il']d. (3478)

gx(w) =

Properties of estimators

We define the quantity

QO=3 YV Y cY(v-i)= 3 YWIOB) 6B ) Hy(v)], 6 € Oy,
vTeS* jTeF, vTES®

: (3.4.79)

where Hy (v),v™ € 2%, was defined back in (3.4.19). We consider 6 and o2 to be the

maximum likelihood estimators, such that

6 = arg min Q(0), (3.4.80)
and
o2 = Q*(8)/N*. . (3.4.81)

In general, we will denote with ‘hats’ the functions of the estimators and with zero sub-
indexes the quantities corresponding to the true parameter vector 8y € ©4. We consider
the processes {X(v), v" € 2%} and {u(v), v" € 2%} as defined back in (3.4.31) and
(3.4.37), respectively.

Theorem 3.3 (Consistency). If {¢(v)} ~ IID(0,0?), then under conditions (C1)(i)
and (C3), it holds that

~ p

0 — 6
and

-~ P

02 = g2
as N — oo.

Proof. From (3.4.80), we can write immediately that

limsup > Y(v) D € Y(v-J)/N< lim D Y(V) D «l) Y(v-j)/N=0d%
N—ooo yrege JTEFY TP yress jTeFy
(3.4.82)
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where the last equality holds from the fact that
2 Y™ Yl Yv=3)/N= 3 ¥Y() 3 cl) Y(v=J)/N+op(),
vTES* JTeEFy vTES* jrezd
thanks to the same argument as the one used in (3.4.29) when (C1)(i) holds and the fact
that '

v Z YWY (v =j) == BY (Y (v =)} = 10), (3.4.83)
VTES‘

since {e(v)} ~ IID(0,02). On the other hand, we can consider that for any 8 € 8y, it
holds that
c(j)? < C(0) a(8)Zk=1 1],

for C(@) > 0 and a(@) € (0,1), and we can write that
¥ Z Y) 3 ) Yiv=i) =5 3 Y(¥) 3 e) Y(v—3)+op(1). (3.480)
VTESvu jTEF V"'GS* JTEZd
Then for any 0 € Oa,

YY) D G Y(v-)/N = > YWEB) BT Y(v)/N

vTEeS* jrezd vTeS*
£, By p®m) o3 Y)Yy (v)]}
=  E{Y(v)[6(B)18(B~1)16(B)8(B~) X (v)]}

v

E{Y (V)X (v)} = o2, (3.4.85)

since Y (v) and X (v — j) are uncorrelated for any j # 0. The equality in (3.4.85) holds
if and only if @ = 6. Finally, if we combine (3.4.82), (3.4.84) and (3.4.85), we can see

immediately that

-5 0, (3.4.86)
Straight from (3.4.81)
a2 5 Q@ @0)/N* = Y Y(v) D coli) Y(v—j)/N*
vTES* jTeFRy
i Y Y)Y col) Y(v—3)/N"
vTES* jrezd
= Y YWXE)/N* -5 E{Y(v)X(v)} =02,
vTES* ‘
(3.4.87)
for the same reasons as before. |
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To find the minimum of @*(8), we need to write the derivatives

—8Q*(0)/88;,, = > Y(V)[6(B)"*0(B~")Hy (v — jm) +0(B) 10(B™)*Hy (v +jm)],
VTES'
(3.4.88)

forallm =1, ..-,q. We may then set equal to zero

> Y (V)[80(B)266(B™Y) " Hy (V = jm) + 00(B) " 00(B™Y) 2 Hy (v + jm)]
VTGS'
— Jm[6—6g] =0, (3.4.89)

where we define

Jm:[']m,ly"' ,Jm,q], m=1,---,q, (3.4.90)

and elements

Jm,n = Z Y(V)[2 HO(B)_soo(B—l)HY(V _jm _jn)
VTES'
60(B)260(B™")"2Hy 