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Abstract

The property of being the realization of a computational structure has been argued 
to be observer-relative. After contrasting the problematic individuation of states in 
computational systems with the unproblematic individuation of states in dynamical 
systems, a general diagnosis of the problem is put forward. It is argued that the un­
wanted proliferation of models for the relation of implementation cannot be blocked 
unless the labelling scheme is restricted to semantically evaluated items. The instan­
tiation of mathematical dynamical systems, by contrast, is showed to be immune to 
analogous skeptical arguments due to the virtuous role of measurements in grounding 
the relevant abstractions. Naturalized semantic properties are proposed to serve as a 
surrogate for measurements in grounding the relevant abstractions from the physical 
to the computational level of description, thus making implementations objective. 
It is argued that a view of implementation that abandons the pervasive internalist 
view in favor of a view of implementation according to which inputs and outputs 
are individuated by their broad semantic properties allows us to accept the validity 
of observer-relativity arguments while preserving the satisfaction of the desiderata 
of a theory of implementation, as well as the explanatory power of computational­
ism as a theory of the mind. The general idea is that of incorporating teleological 
theories of intentionality within the foundational heart of the notion of computa­
tion. An important corollary is that computational properties must be understood as 
broadly instantiated by relational properties of the implementing system and of its 
environment. The proposed understanding of implementation is then tested against 
a number of recalcitrant problems of computationalism. It is argued to be immune 
to standard objections.
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Introduction

Before I set out to work on this thesis, I was surveying the literature on the virtues and 

shortcomings of computationalist models of the mind. The word computationalism 

stands for a broad range of theses about the nature of the mind that have for many 

years been our received view on the nature of thought. Under its umbrella one 

can find a spectrum of hypotheses characterized by various interpretations of the 

claim that to possess a mind is to implement a particular kind of computation. The 

thesis that mental states are computational states is crucial to the definition of the 

underlying understanding of the mind. The technical appeal of the thesis is that 

the causal structure of the implementing system can “mirror” the formal structure 

of a computation thus realizing it. The philosophical allure of the thesis lies in the 

meaning of the word “formal”.

In the 19th century, the discovery of consistent geometries that were not compat­

ible with Euclid’s parallel postulate prompted a severe crisis in our understanding of 

mathematics. Euclid’s postulates, in fact, are deeply rooted in our intuitions about 

the nature of space. The faith in the power of reason (rational thinking) had for long 

suggested that these intuitively true postulates could not be denied. The peculiar 

status of the fifth postulate, i.e. the fact that, in spite of its non elementary validity, 

it could not be deduced from the other four axioms, had troubled mathematicians for

1
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centuries. The idea that rational thinking should be rigidly conforming to rules for 

manipulating explicitly expressed axioms, and that all truth should consist of (or at 

least be deducible from) formal derivations from these axioms, was already lurking in 

the background. When consistent non-Euclidian geometries were discovered, this un­

derlying construal of rational thinking finally broke out and declared any non-formal 

procedures for assessing the truth of a mathematical statement defunct. At the end 

of the 19th century, prominent mathematicians like Gauss1, Peano, Frege and Hilbert 

all worked towards a construal of mathematical truths in terms of a “symbol game” 

that consisted in deriving all truths from non semantic manipulations of strings of 

symbols.2

This formalist understanding of geometry and logic was to become the received 

view of rational thinking. The fast spreading wave of formalizations led Whitehead 

and Russell to apply the strategy to arithmetics and other branches of mathematics. 

The spirit of the project was also at the base of logical behaviorism in psychology. 

The upshot of this response to the crisis in mathematical thinking was a glorification 

of syntax at the expense of semantics. Later developments notoriously lessened the 

impetus of this programme, but semantics was never completely resurrected from its 

disrepute.

Computation, in the sense of evaluation of the result of an operation in a finite 

number of “mechanical steps”, offers a perfect opportunity to construct a theory of 

the mind in compliance with formalist prescriptions.

1 Gauss’ ground breaking work, as a matter of fact, dates back to the first half of the nineteenth 
century.

2As a matter of fact neither Frege nor Russell thought that mathematics was only a “symbol 
game”. But what counts for our discussion is that they thought that mathematical truths could be 
derived as the result of a symbol game.
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The same number, number two, for instance, can have different names: 10 (in a 

binary representation) and 2 (in a decimal representation), etc. The crucial fact to 

be noticed is that an operation between numbers, say addition, can be performed by 

manipulating in a consistent way the names of numbers. After all, when we are first 

taught to do arithmetical operations, admittedly, we concentrate on conforming to 

the rules, rather than thinking about numbers. But these syntactic, mechanical rules 

are specific to the particular means of representation that we chose: the formal recipe 

for adding two numbers is different if they are represented (named) in a binary or 

in a decimal format. What counts, however, is that these “name-specific” recipes all 

allow us to “implement” the same operation.

Notice that semantics, in this picture, is reserved an ancillary role. The operation 

itself, in fact, as it is non name-specific, must be understood (type-identified) as 

essentially non name-dependent. Now, normally names are assumed to do a semantic 

job (i.e. to mean something), but the only property that the symbols that feature in 

the formal description of the task (addition, in this case) need be assumed to possess, 

is interpretability.

This picture of computation allows for a neat division of conceptual labor between 

the implementing machine and the abstract computation: the physical machine only 

serves the purpose of manipulating the (to it) meaningless names of numbers in 

compliance with the rules. Such division of labor is well expressed by the claim that 

the brain is a “syntactic engine driving a semantic engine”3.

Adding numbers isn’t but an example of what intelligent behavior is capable of.

The basic idea of computationalism is that the brain, or whatever the implementing

3Block [11].
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medium is, does the same mechanical job that the name-specific recipes do with re­

spect to addition, realizing it through isomorphic causal mechanisms. Name-specific 

recipes realize addition by operating mechanically on symbols that are systematically 

interpretable as meaning numbers. The causal structure of a physical system me­

chanically transforms the symbols in isomorphic compliance with that name-specific 

recipe, thus realizing physically that operation. That’s what the brain could be doing. 

What if all intelligent behavior, not only calculations, could be understood this way? 

“Calculemus!” , would happily confirm Leibniz, or Hobbes, if they could witness these 

developments.

When a man reasoneth, he does nothing else but conceive a sum total, 

from addition of parcels; or conceive a remainder, from subtraction of 

one sum from another; which, if  it be done by words, is conceiving of 

the consequence of the names of all the parts, to the name of the whole; 

or from the names of the whole and one part, to the name of the other 

part [...] These operations are not incident to numbers only, but to all 

manner of things that can be added together, and taken from one out of 

another. For as arithmeticians teach to add and subtract in numbers, so 

the geometricians teach the same in lines, figures, solid and superficial [...]; 

the logicians teach the same in consequences of words; adding together two 

names to make an affirmation, and two affirmations to make a syllogism; 

and many syllogisms to make a demonstration [.. .].A

One of the earliest successful attempts to artificially simulate human cognition

4T. Hobbes. Leviathan: Or the Matter, forme and Power of a Commonwealth Ecclesiastical or 
Civil 1651 ([49], p. 41).



5

was the 11 Logic Theorist”. In 1956 Allen Newell, Cliff Shaw and Herbert Simon5 

showed how their creation (the Logic Theorist), successfully proved 38 of the first 52 

theorems proved by Russell and Whitehead in their Principia Mathematica. In their 

work the authors deployed the following heuristic recipe. Use a language-like symbolic 

code to represent the world (the objects of the world and the workings that these 

objects exhibit). This constitutes the “knowledge base” of the machine. Use input 

devices to appropriately transduce the flux of environmental stimuli incoming from the 

environment into appropriate symbolic representations of them (these representations 

should deploy the same code as the one used to form the knowledge base). The 

machine is then to use both the knowledge base and the transduced input information 

to produce further symbol structures (according to algorithmic procedures). Some of 

these “newly formed” symbol structures should then be designated to serve as output. 

Finally, further transduction should “translate” these output symbol structures into 

the appropriate behavior.

The Symbol System Hypothesis (SSH), proposed by Newell and Simon in 19766, 

and since then held to be the hard core of the paradigmatic received view of cognition, 

can be thought as an answer to three fundamental questions about thought. 1) Can a 

machine think? 2) What is necessary for a machine to think? And, 3) what is sufficient 

for a machine to think? The answer to the first question, if the SSH is true, is yes: 

machines can think. The answer to the second question is that symbol manipulation 

is necessary for thought to take place. Finally, the sufficiency requirement is that a 

machine is built along the fines suggested by the above recipe.

Enthusiasm about the early successes of the programme set aside all concerns

5Newell, Shaw and Simon [1].
6Newell and Simon [63].
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about the truth of the hypothesis for a long time, let alone concerns over the mean­

ingfulness of the hypothesis. “Intuition, insight and learning” , said Newell and Si­

mon, “are no longer exclusive possessions of humans [...]. There are now in the world 

machines that can think, that learn, and that create”7.

Such enthusiasm proved to be far too optimistic. Even the most sophisticated 

computer today (more then fifty years after the programme was started) is but a toy 

compared to a machine that thinks, learns and creates.

As I said, before I defined the project that resulted in the present work, I was 

surveying the critical literature on the shortcomings of computationalism. By the 

time I began to learn about these issues, a few years ago, in fact, computationalism 

had been challenged on several grounds, for many years. I was particularly interested 

by a gradual erosion of orthodoxy in the computationalist camp. Responding to an 

increasing amount of pressure from rival understandings of cognition, and from some 

internal objections, in the 80’s, 90’s, and up to more recent years, the received view 

of computationalism seemed to me to make an increasing number of concessions to 

non-computationalist oriented philosophers.

Many of these objections appear, at first sight, to point at a difficulty of compu­

tationalism to account for what we may generically call the “semantic capacities of 

minds” . Searle’s famous Chinese-room argument, Harnad’s symbol grounding prob­

lem, or even the more technical problem of transduction, as we shall see, are all 

examples of this area of concern. At the time, I thought I would try to contribute to 

this debate. I say these objections appear to point at a difficulty of computational­

ism in treating semantic capacities, because now I think the problem lies somewhere

7Newell and Simon [63], p. 6.
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deeper: in the very notion of computation.

At first sight, the formalist spirit of the treatment of computation appears promis­

ing. It appears, for example, to be able to explain how our brain, or any other imple­

menting medium, performs computations. But we (putting it very naively) are also 

able to mean numbers, by the names we give them. How do we do that? Any theory 

of the mind must account for that. I thought, as many have before me, that this 

was the difficulty that was leading computationalist theories to amend the sufficiency 

hypothesis in various ways to meet specific objections.

It was then that I discovered a very unsettling feature of computational theories 

of the mind. I assumed that the original spirit of the computationalist paradigm was 

formalist, in the sense in which Hilbert’s project was. Fodor, for example, confirms 

this expectation:
I

If mental processes are formal, then they have access only to the for­

mal properties of such representations of the environment as the senses 

provide. Hence, they have no access to the semantic properties of such 

representations, including the property of being true, of having referents, 

or, indeed, the property of being representations of the environment.8

I was also reassured that things had not changed since, by my frequent encounters 

with recent writings that explicitly ruled out any doubt:

It will be noted that nothing in my account of computation and implemen­

tation invokes any semantic considerations, such as the representational

content of internal states. This is precisely as it should be: computations

8Smith [84], p. 231.
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are specified syntactically, not semantically. [...] If we build semantic 

considerations into the conditions for implementation, any role that com­

putation can play in providing a foundation for AI and cognitive science 

will be endangered [...].9

But one also hears just as frequently that computations must be defined “over” 

representations, that there is “no computation without representation” :

It is widely recognized that computation is in one way or another a 

symbolic or representational or information-based or semantical i.e., as 

philosophers would say, intentional phenomenon.10

How is one supposed to feel about that? When I looked back at the historical foun­

dations of the computationalist paradigm, hoping to reconstruct a coherent version 

of the facts, I was left even more wondering. Virtually all the fathers of computation­

alist Artificial Intelligence, in fact, made what, to me, sounded like ambiguous claims 

about the conceptual labor of semantic properties in computation. Fodor himself, for 

example, wrote that:

1. The only psychological models of cognitive processes that seem even 

remotely plausible represent such processes as computational.

2. Computation presupposes a medium of computation: a representa­

tional system.11

Pylyshyn, another of the fathers of the paradigm:

9Chalmers. A Computational Foundation for the Study of Cognition. Section 2.2. Unpublished, 
but section 2 was published as [15].

10Smith [84], p. 9.
n Fodor [33], p. 27.



9

The answer to the question what computation is being performed requires 

discussion of semantically interpreted computational states12

Should we conclude that the “neat division of labor” between syntactic- and 

semantic-driven processes, or the “syntactic engine driving a semantic engine” picture 

of the brain, is propaganda? What exactly have semantic properties been doing all 

these years? Has their job been tacitly exploited without being ever truly recognized? 

Who is driving: the syntactic engine, or the semantic one?

Well, this is how and where my work began.

To clear the ground for my investigation, I began by looking at where things appear 

to go smoothly: interpretability. Interpretability is a faint, hardly reminiscent, far 

relative of interpretation. Arguably, it does not belong to the number of “intentional 

properties”. At first sight, it is all that computations need for being realized.

A symbol system is a set of arbitrary “physical tokens” [...] that are ma­

nipulated on the basis of “explicit rules” that are likewise physical tokens 

and strings of tokens. The rule-governed symbol-token manipulation is 

based purely on the shape of the symbol tokens (not their “meaning”)[...].

There are primitive atomic symbol tokens and composite symbol-token 

strings. The entire system and all its parts - the atomic tokens, the com­

posite tokens, the syntactic manipulations both actual and possible and 

the rules - are all “semantically interpretable”: the syntax can be sys­

tematically assigned a meaning e.g., as standing for objects, as describing

states of affairs.13
12Pylyshyn [74], P. 58.
13This is how Stephen Harnad ([45], p. 337) reconstructs the definition from Newell [63].
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This weak requirement, interpretability, is the same that we use in model theory, 

to express the relationship that holds between a formal language and a structure that 

satisfies it.

A signature is a set of individual constants, predicate symbols and function sym­

bols. Each signature K  gives rise to a first-order language, by building up formulas 

from the symbols in the signature together with logical symbols (including —) and 

punctuation. These constants, predicate and function symbols, are to be conceived 

as meaningless, non-interpreted items. The rules for building up the formulas of a 

first-order language out of a signature, consequently, only operate on the base of non- 

semantic properties of these symbols, like the physical transformation of a physical 

symbol system operate on the base of the shape of the physical tokens described 

above. If AT is a signature, then a structure of signature A, say A, consists of the 

following items:

1. A set called the domain of A and written dom(A); it is usually assumed to be 

nonempty;

2. for each individual constant c in K , an element cA of dom(A);

3. for each predicate symbol P  of arity n, an n-ary relation P A on dom(A);

4. for each function symbol F  of arity n, an n-ary function F A from dom(A) to 

dom(A).

Notice that the existence of the elements of a structure is totally independent from 

the items of the signature and viceversa: whether the relevant correspondence exists 

or not solely supervenes on intrinsic (hence independent) properties of the signature
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and of the structure. Although sometimes model theorists are tempted to call the 

items of a signature the “names” of the items of the structure, it is misleading to 

think of them this way. A constant c in the signature, of course, could be used as a 

name for its correspondent element in the structure, but this doesn’t entail that it 

is a name. To assume that c is a name for cr4, would unnecessarily impose constraints 

on c that would “spoil” the formal essence of model theory.

A consequence of this is that the formal language does not have the resources, by 

itself, for individuating its “intended model” . All structures that are isomorphic to 

the intended one, are indistinguishable from the point of view of a syntactic machine 

(whether virtual, like a formal language, or physical, like a physical symbol system). 

Syntactic engines, we may say, are “blind” to semantic properties (which are required 

to individuate the intended model), like a color-blind person is blind to colors. This 

indistinguishability of isomorphic structures on the part of a syntactic engine, a fea­

ture that I have called the isomorphism catastrophe, has, we shall see, far reaching 

effects on our analysis of computation.

Now, if our physical symbol system (our physical signature) has a structure that 

corresponds to a certain algorithm (for example a recipe for adding numbers), then 

we can say that the system “implements” the algorithm. As, moreover, the formal 

algorithmic structure can be systematically interpreted as referring to numbers, we 

can say that the physical system computes additions of numbers. Our brain, for 

example, could be such a physical signature. Notice that semantic properties are 

totally out of this picture.

But if things were so smooth, there would be no need to say that there is no 

computation without representation. Perhaps there would be no minds as we know
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them, without representation, but computation should not be answerable to cognitive 

science: it cannot be held responsible for the failures of computationalist theories of 

the mind, more than calculus is responsible for the failure of classical physics. In fact, 

things are not so smooth.

When I looked at the literature about the foundations of computation, a plethora 

of arguments pointing at an alleged observer-relativity of the notion of computation 

convinced me that there might be something wrong with the formal picture described 

above. No one challenges the notion of computation from a mathematical point of 

view: the Church-Turing thesis appears to satisfy nearly everyone. But it is the 

“garden variety” of computation, i.e. the notion of real, implemented computations, 

that appears to make many philosophers unhappy.

The first chapter of this work presents some of these observer-relativity arguments. 

I call them vacuousness arguments, as they entail that computational constraints 

are vacuous constraints, at the physical level. Most of them have been counter­

argued, and there is nothing like an agreement about the issue. My first response to 

these arguments, however, has been to ask myself what job the observer was exactly 

allegedly suggested to be doing. It occurred to me that if I could individuate a precise 

task for this observer, and if I could subsequently naturalize this task (i.e. explain 

how a physical system could complete it), then computation could peacefully continue 

doing its excellent job at explaining the mind.

One of these arguments (Putnam’s vacuousness argument, discussed in section 

1.4), if sound, would inflict a fatal strike at the neat model-theoretic picture of imple­

mentation presented above. Its upshot is that every physical system implements every 

computation. In our words, it means that every physical system can be thought of
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as a signature for any possible algorithmic structure. Intuitively, the strategy behind 

this argument exploits the fact that real physical systems undergo change in a con­

tinuous (non-denumerable) way. Uncount ably many states are indeed a lot of states, 

so many that they can be grouped in uncountably many ways to form uncountably 

many signatures (systems of symbols). Some of these will match, the argument goes, 

the weak requirement of systematic “interpretability” that we hoped would suffice for 

computation.

It was while thinking about this that I began to suspect that what the observer 

might be needed for, could be to do a semantic job: the job left unfinished by mere 

interpretability. Only some of these uncountably many groupings of states, in fact, 

would possess real semantic properties. Adding the requirement that real semantics 

must be in place would block the arguments. In the back of my head I also vaguely 

suspected that resurrecting semantics from its disrepute could help computationalism 

to solve its “semantic troubles”. But this was a temptation to be refrained, for the 

moment, as the issue at stake was computation in its own right.

But how could one make sense of these intuitions? One way to expose the problem 

is by contrasting the allegedly troublesome case of computation with the relatively 

well-behaved case of dynamical systems in physics. Why, in other words, isn’t physics 

also in trouble? After all, the symbols that feature in a dynamical system (a set of dif­

ferential equations, for example), are not meaningful in themselves. But model theory 

seems to apply smoothly to the relationship that there is between a real dynamical 

system and the mathematical dynamical system that describes its change in time: 

no one argues that any real physical system instantiates any system of differential 

equations. W hat’s so good about dynamical systems?
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In section 2.2 I propose a contrastive analysis between the case of computations 

and that of dynamical systems. The result of my analysis is, unsurprisingly, that 

measurements do the grounding job in the case of physics. Any interpretation of the 

symbols in a mathematical dynamical system, in fact, must specify what measure­

ment procedures should be applied (without such specification, it does not make any 

sense to ask whether a physical system is instantiating a certain set of differential 

equations). This feature of dynamical models, indirectly, does a quasi-semantic job, 

in that it constrains the symbols (of the structure: the variables, for example) to 

“refer” to certain magnitudes (in the physical signature).

I then adopted, as a working hypothesis, the idea that the notion of implementa­

tion should be grounded on real semantic properties just like the notion of instanti­

ation is grounded on specific measurement procedures, for individuating its models. 

In particular, I hypothesized (section 2.5.1) that the candidate implementing input 

and output items be restricted to intentional items (i.e. to items that objectively, and 

not merely potentially, possess semantic properties). This would make sense of many 

ambiguous comments about the relationship between computation and representa­

tion: there would finally be a clear sense in which there is “no computation without 

representation”!

As the reader can imagine from the comments quoted above, however, the idea 

to build semantic properties into the notion of implementation sounds very unpalat­

able to many. Section 2.5.2 is therefore devoted to freeing my proposal from many 

potential a-priori objections. Apart from clearing the ground for my proposal, these 

considerations also set constraints on what restrictions are compatible with a the­

ory of implementation. Most importantly, I argue that the properties suggested as
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criteria for the restriction of the input architecture of computation (those on which 

semantic properties supervene), must be extrinsic, relational properties of the candi­

date label bearers, if the correspondent theory of implementation is to comply with 

the requirement of multiple realizability.

At this point I believed to have done most of the relevant work. It only remained 

to apply my strategy to as many theories of content as possible, to test whether at 

least one of them complied with the desiderata set forth in section 2.5.2. I illustrate 

some of these attempts in section 3.2.

In doing so, however, I realized that my work had not even began. What I found 

out, in fact, is that the application of various theories of semantics to my strategy, 

far from safely grounding computation in the realm of physics, left its pattern of 

failure unchanged. Theories of content, it appears, present us with a suspiciously 

symmetrical pattern of failure: either they surreptitiously deploy semantic capaci­

ties (thus circularly presupposing what they ought to explain), or they place vacuous 

constraints, thus falling victim to the same isomorphism catastrophe that haunted 

non-semantic theories of implementation. Is there some deep reason for these sym­

metrical patterns of failure? Intuitively, observing that theories of implementation 

and theories of semantics suffered from an analogous syndrome suggested to me that 

I might be on the right track.

So it was that I set out to directly address the isomorphism catastrophe as an 

independent problem (independent from its computational, theory-specific manifes­

tation). Where does the catastrophe come from? Fortunately, I was not the first one 

to wonder about it. The philosophical literature treats a number of relevant cases. 

In section 3.3 I consider two vacuousness arguments that approach the issue in a
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perspicuous way.

One is an objection to Bertrand Russell’s causal theory of perception (due to Max 

Newman, a colleague and friend of Turing’s). I treat this argument in section 3.3.1. 

In the late 1920’s, Russell was investigating what knowledge we could have of the 

external world, i.e. of the unperceived causes of our perceptions, given that we could 

not assume it to be “direct” knowledge. Russell thought that we could argue to have 

a “structural” knowledge of these unperceived events: the kind of knowledge a blind 

person has of a photo, when someone describes it to him. Newman’s objection consists 

in arguing that such alleged structural knowledge is no knowledge at all, as relational 

structures are compatible with any suitably numerous field. Russell conceded that 

Newman was right.

The other, more recent vacuousness argument I consider (section 3.3.2), is Put­

nam’s so called model-theoretic argument against metaphysical realism. This consists 

of an extension of Sk"hem’s paradox: the apparently paradoxical fact that there is 

a countable model of real number theory (it is a consequence of Sk'tem’s theorem). 

Putnam uses it to argue that metaphysical realism is not tenable. Put plainly, it 

allegedly shows that our theories, no matter how complete they may be, do not have 

the resources to individuate their intended models, if these are conceived as “real” , 

external and independent from them.

These arguments suggested to me that indeed the problem with our current theo­

ries of implementation and of semantics may lay somewhere deeper (i.e. non theory- 

specific) then what I had previously suspected.

It occurred to me that all the arguments that I had at hand (vacuousness argu­

ments against state-to-state theories of implementation, against internalist theories of
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semantics, against Russell’s theory of perception and against metaphysical realism), 

as well as the respective theories that they aim to criticize, all make an implicit as­

sumption: that syntactic properties supervene on intrinsic properties of their bearers. 

I call this pervasive construal of syntactic properties: syntactic intemalism. This 

entails that, granted (ex hypothesis) the validity of vacuousness arguments, we are 

faced with two options: either we accept their skeptical conclusions, or we drop the 

assumption that syntactic properties are intrinsic to their bearers.

In section 3.3.3 I argue that dropping this implicit assumption allows us to block 

the skeptical arguments. I then proceeded to investigate the tenability and the con­

sequences of this option.

Before I continue telling the story of this work, I would like to make a brief 

digression that I hope will help the reader to “digest” more intuitively the route that 

I decided to take.

Imagine a flag painted so as to reflect light of continuously increasing wavelengths, 

from left to right. The range of wavelengths is such as to encompass three adjacent 

colors of the spectrum: say yellow, green and blue. Looking at it, a normal human 

being would see a flag made of three differently colored sectors. Now, being a three- 

sector flag is a property our flag has in common with many other flags. Another flag, 

painted red, white and green, for example, is also a three-sector flag. What do these 

two flags have in common? The colors? No. They have in common the property 

of being sectioned into three differently colored parts. This is a syntactic, multiply 

realizable property of some colored flags.

In a first approximation, we may suppose (like many people do) that the colors of 

the spectrum must be correlated with intrinsic properties of objects. In this case we
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would say that all three-sector flags have in common the fact that they are painted 

with three substances that have three different properties. This is a view about 

three-sectorness that corresponds to what I have called syntactic internalism.

A syntactic internalist about colored flags, if asked to explain why someone (a 

color-blind person, for example) does not categorize flags in the same way as he does, 

would answer that the color-blind person cannot appreciate the fact that there are 

three different properties in the flag, because of his malfunctioning eyes: the problem 

is in the color-blind person’s eyes, not in the flag.

But if he was asked to check that indeed his hypothesis is correct, he would be 

surprised to find out that no rigid partition of wavelengths into bands does justice 

to his perception of colors. He would be looking in vain for three properties in the 

flag that reflect light of continuously increasing wavelengths. The number three, it 

appears, has been lost somewhere between his eyes and the flag. It cannot be in his 

eyes alone, for he shows to be able to systematically pick up the same objects, when 

asked to select three-sector flags. But it can neither be in the flags themselves, for 

when he analyzes the intrinsic properties of them, he does not always discover three 

things.

What happened to the number three? One can take an anti-realist stance, and 

argue that, as neither the eyes nor the flags can be showed to be three-sectored, three- 

sectorness is not a real property after all. This is the stance that skeptical arguments 

want us to take.

But, I argue, there is another option. We can hold onto our realist stance, at the 

price of abandoning the internalist description of three-sectorness. Colors, according
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to this view, are secondary, relational properties of objects, environments and cog­

nitive systems (including our eyes). If we were able to describe precisely how these 

interact with each other, somewhere in the physical description of the interaction we 

would find our lost number three.

Three-sectorness is a syntactic property, in that it does not depend on any par­

ticular color for its instantiations (implementations, in the analogous case of com­

putations). But this does not entail that three-sectorness inheres in the flag, in a 

color-independent way. In sum, three-sectorness is a property that depends on colors 

(albeit not on some particular set of three colors), and colors are relational properties 

of their bearers and of our brains. It follows that three-sectorness also is a secondary, 

relational property of flags and of our brains.

This realist view of three-sector flags is an example of what I call: syntactic 

externalism. We could say, reversing in a parody Block’s slogan, that this is a “color 

engine” driving a syntactic engine.

Before I began this digression, I was saying that we need not accept the anti-realist 

conclusions of skeptical arguments. We can maintain that they are valid, just like 

it is true to say that three-sectorness is vacuously compatible with various intrinsic 

property of the flag. But if we give up the internalist assumption, computations need 

not be construed as enjoying a second class ontological status.

Computation depends on semantic properties (albeit on no particular semantic 

properties), and semantic properties axe secondary, relational properties of their bear­

ers, like colors. It follows that computational properties are also secondary, relational 

properties of their implementing systems. I call this view of computation: computa­

tional externalism. Brains, according to the consequent picture of computationalism,



20

are semantic engines driving syntactic engines. I argue for the semantic view of 

syntactic properties in 3.3.3, 3.3.4, 3.3.5 and 3.3.6.

I began my journey from the safe requirement that the symbols input and output 

to a computational machine be interpretable, and things appear to have gone very far: 

interpretability is not sufficient, if vacuousness arguments are assumed to be sound, to 

rule out unwanted models. Interpretability, like satisfaction in model theory, in fact, 

is autonomously sufficient only in so far as among the models there are no unwanted 

models. If, like vacuousness arguments suggest, among the models of our symbol 

systems, there are unwanted ones, only real semantics, interpretation, can rule them 

out: symbol systems, in fact, do not have the resources in themselves to discriminate 

wanted from unwanted models (as it happens in the case of Sk"tern’s paradox). So 

much for my strategy.

Before I could apply this strategy, however, one final piece was missing that would 

complete the puzzle: a theory of content that complied with the desiderata of syntac­

tic externalism. Section 4.2 is devoted to arguing that teleological theories of content 

would do the job. As some would find an irreducible resort to historical, evolutionary 

properties in defining implementation unpalatable, I discuss both an etiological ver­

sion (section 4.2.3) and a non etiological version (section 4.2.4) of teleological theory 

of content.

Finally, to exemplify how my strategy works in a real scenario, I applied it to the 

computation of a logical gate (section 4.4.1), showing how externalist computations 

are immune to vacuousness arguments. In section 4.4.3 I formalize my proposal, 

providing a precise definition of the implementation of a finite state automaton (one 

of the equivalent ways to describe a computational machine).
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Before proceeding to test the applicability of the semantic picture of implemen­

tation proposed, however, two mutually related objections had to be addressed. The 

model theoretic approach adopted in this work appears to be at odds with the stan­

dard practise of application of computational concepts by the relevant community 

of experts. Is there another approach to implementation that is more “friendly” to 

standard practises and to the intuitions of computer scientists? And if yes, should we 

conclude that what v-arguments really show is that the methodological stance that 

stands behind them is inadequate? A second, related issue, is the applicability of my 

semantic picture of implementation to more complex computational structures, such 

as universal Turing machines. Both issues are treated in chapter 5. It is generally 

argued that the semantic picture is not as “unfriendly” to standard practices as it 

prima facie seems to. The adoption of a model theoretic approach is defended and 

an outline for the applicability of the semantic labelling scheme to universal Turing 

machines is provided.

With an objective notion of physical computation in place, I was now ready to in­

vestigate what consequences it would have in grounding a computational theory of the 

mind. I discuss applications of my theory of implementation to the symbol grounding 

problem (section 6.3), to combatting John Searle’s famous criticism (section 6.4), to 

the issue of syntactic constitutivity in connectionist models (section 6.5), and to the 

debate over cognitive architecture (section 6.7). I argue that the definition of physical 

computation provided in section 4.4.3 allows us to formulate a computational theory 

of the mind that is free from standard, recalcitrant shortcomings (I call this theory: 

Teleological Computationalism).



Chapter 1 

Computational realism and its 
discontents

1.1 Introduction

The objectivity of implementation, i.e. the possibility to specify the necessary and 

sufficient (physical) conditions a real dynamical system must satisfy for it to be an 

implementation of a given computational structure, has been questioned several times. 

Many of these concerns are now familiar to most philosophers of mind and of Artificial 

Intelligence. These doubts about the objectivity of implementation have been voiced 

for so long now, and from so many different standpoints, that, I believe, it is not 

senseless to explore the consequences of such arguments, if they are assumed to be 

sound. This is the purpose of this treatment.

The first chapter of my work, then, is dedicated to the introduction of some of 

these arguments. Far from doing justice to an increasingly large literature on the 

issue, the following pages introduce but a few examples of them.

Section 1.2 is dedicated to the contrast between the notion of satisfaction of a 

function, as it is understood by the physical sciences, and the stronger notion of com­

putation of a function. The challenge, on the part of computational realists, is that of

22
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providing necessary and sufficient physical constraints that allow us to discriminate 

the case of computation from that of mere satisfaction. Skeptical arguments, we shall 

see, all point at the alleged vacuity of the proposed constraints. If the additional 

constraints suggested for the realization of computation pose vacuous constraints at 

the physical level they fail to provide a viable principle of discrimination.

Section 1.3 deals with the intuition that to implement a computational system, 

its syntactic structure must be mirrored by the causal structure of the implementing 

object. I concentrate on the simple case of Finite State Automata.

Section 1.4, finally, explores some popular arguments to the effect that the notion 

of causal “mirroring” of an abstract formal structure cannot be grounded in physical- 

istic terms alone. Again, we shall see, syntactic constraints are argued to be vacuous 

constraints, when analyzed at the physical level.

1.2 Satisfaction and com putation o f a function

1.2.1 Com putation =  satisfaction +  ?

What (physical) properties of a real dynamical system (S ) are necessary and sufficient 

for it to be implementing a computational structure (A)? Indicate the predicate “S  

implements A” by Im p(S,A). Our question can be rephrased as follows: what are 

the truth conditions of Im p(S , A)?

We shall assume a formal theory (A/) that specifies an architecture and an al­

gorithm (virtually) implemented by it. Such algorithm takes the arguments of the 

function /  as inputs and produces its values as outputs. The relation between A/ 

and S  (the real dynamical system) will be described by a mapping from the terms of 

A f  to (real) parts of S. These parts of S  will have to be specifiable and identifiable
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by their spatio-temporal properties alone. Following a now common terminology1 we 

shall call such mapping from A f  to S  a labelling scheme.

[Labelling scheme] A labelling scheme (L) for a computational structure (A) 

consists of 1) the specification of which parts of a physical system (S) are to be the 

“label-bearers” (an interpretation function) and 2) an unproblematic way to individ­

uate the label bom by each part at any time.

Within this notation, Imp (S , Af)  is true iff there exists a labelling scheme L  such 

that the pair < L , S  > is a model of Af .  In other words, our (preliminary) notion of 

implementation can be expressed by: Imp{S,Af )  is true iff all sentences in A f  are 

true of S  under L.

In what follows, we shall contrast Im p(S , A) with the relation that holds between a 

mathematical dynamical system (M) and a Real Dynamical System (RDS henceforth) 

that instantiates it (S').2 We shall indicate the predicate “S instantiates M ” by 

Inst(M , S).

Suppose we have a function (f) and a physical system (S). We ask ourselves 

whether S computes f, that is, we ask whether I mp(S , A f )  is true. We have seen 

how this depends on whether there exists a labelling scheme (L) such that the pair 

<  L, S  > is a model of Af .

The most obvious requirement is that S instantiate the function f. In fact, if a

xIt can be found, for example, in Copeland [19].
2In the literature the expression “dynamical system” is used to denote both a (at least poten­

tially) real entity, one that undergoes change in space time, and the mathematical description of it. 
Borrowing the terminology from M. Giunti [41], I shall call the former a Real Dynamical System 
(RDS) and the latter a Mathematical Dynamical System (MDS).
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physical system S does not satisfy a function f, for sure neither it computes it (i.e. for 

any computational structure A f, and any RDS S: Imp(S,Af)  => Inst(S , /) ) . As all 

RDS’s can be described as instantiating some function, the opposite, however does 

not hold (or the notion of computation would be indistinguishable from that of in­

stantiation).

[Satisfaction] A physical system S  satisfies a function /  if and only if: 1) it 

causally associates the physical arguments of f (Wi) with its physical values (W0)3 

and 2) it can be seen as instantiating another function g whose arguments and values 

are outside (spatially) the system S.

It is easy to see that satisfaction of a function is essential for a system to compute. 

The first requirement expresses the thought that real computing systems are a kind 

of physical system, that is a kind of system that can be described by a mathematical 

dynamical system. The second requirement expresses the thought that computing 

systems are also a kind of information-processing systems: that there is no computa­

tion without representation4.

If these desiderata are necessary to capture our pre-analytic notion of computing 

system, they are certainly not sufficient: any physical system satisfies a function. In 

fact, any physical system can, in principle, be described by a mathematical dynamical 

system, and anything can be thought of as representing something else (the arbitrary

3The physical values and arguments are the values taken up by the relevant real magnitudes. 
These should not be confused with the real numbers that can be assigned to them by measurements 
and that are the values of the variables that feature in the mathematical structures instantiated.

4See section 2.6.1 for a discussion of the claim that “there is no computation without representa­
tion”.
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nature of symbols makes the fortune and the disgrace of computationalism). So, to 

capture the nature of a computing system we must further constrain either or both 

the requirements of satisfaction. We must either say that not all physical systems 

count as computing systems (by imposing constraints on the mathematical dynamical 

systems that describe them), or that not all interpretation functions are acceptable 

for a system to be computing. The chief computationalist strategy is to add the 

further requirements that: 3) The process mediating the arguments and the values of 

g  be algorithmic and 4) The function g  be recursive (Turing computable)

Our question (“Does S compute f?”), thus, boils down to asking whether condi­

tions 1), 2), 3) and 4) provide our formal theory (Af)  with a labelling scheme such 

that all sentences in A f  are true of S under L. Let us indicate the ’’translation” of a 

sentence a  in A f  by [a] l - We are then asking whether the (as yet abstract) conditions 

for S computing f allow us to define a labelling scheme L such that Va G A f  : [ o \ l  is 

true of S.

It is relatively easy to produce an interpretation for the sentences in A f  that 

correspond to the requirement that S satisfies f. It is in fact sufficient that for each 

abstract input term i and output o =  f ( i )  there exist magnitudes in S such that:

[i]L =  Wi be reliably, causally, associated to [o]l = WQ, where Wi and WQ are the 

values of the magnitudes.5

5 As I shall discuss later, the notion of satisfaction is less straightforward than this. For the sake 
of clarity, however, I decided to postpone a more detailed discussion the notion of satisfaction to 
chapter 2.
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On the contrary, it has been argued to be impossible to produce a (non observer- 

relative) labelling scheme6 for the requirement that the processes mediating the ar­

guments and values of [/]l be algorithmic.

All arguments to this effect (that the property of being ’’algorithmic” is not a 

property that appears to be ever ’’objectively” instantiated by a physical process) 

entail the claim that, at the physical level, the computation of a function is indis­

tinguishable from its instantiation. It entails, for example that the solar system 

computes the solutions to its equations of motions7. I shall call these arguments: 

’’indistinguishability arguments”, or ”i-arguments”.

The rest of this section will be devoted to the treatment of some i-arguments. I 

shall mention only a few.

1.2.2 ? =  Step Satisfaction

To capture the notion of algorithmic process some have argued that one must think 

of them as sequences of instantiated basic functions. These basic functions, although 

necessarily recursive (or the whole function wouldn’t be computable) must be “di­

rectly” satisfied. They are computable (in the sense that they are recursive), but 

they are not computed. Some have argued that this is the same as requiring that 

the causal structure implementing the function be analyzable into a series of causal 

steps.

Computing reduces to program execution, so our problem reduces to ex­

plaining what it is to execute a program. The obvious strategy to exploit

6One of the requirements of a labelling scheme, in fact, is that it be such that it allows computation 
to select (objectively) a class of Real Dynamical Systems.

rFodor discussed this claim in [33], p. 74.
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is the idea that program execution involves steps, and to treat each el­

ementary step as a function that the executing system simply satisfies... 

Program execution reduces to step satisfaction8

But this requirement is trivially satisfied by any physical system (which is the same 

as saying that it is no physical constraint). Given any physical system satisfying a 

certain dynamics, we can always analyze its behavior as a series of step satisfactions: 

any arbitrary choice of the time series would do just as well. Take for example a non 

elastic bouncing ball. Given a starting height hn, after one bounce the ball reaches 

a height /in+i • (1 — c), so the system (B) satisfies the function defined recursively by 

f n+i = f n • (1 — c). Does it also compute it? According to the proposed definition it 

does, for 1) B  satisfies / ,  2) B  satisfies an algorithmic function (in the sense of step 

satisfaction) and 3) B  satisfies a Turing computable function.

What makes B  a computing system (as opposed to a system that merely satisfies 

a function), according to this understanding of computation, is the fact that the 

process can be analyzed into steps (the individual bounces). With a trivial change 

of the interpretation function, however, B  can be seen as satisfying also the function 

g(h) = (1 — c) • h that assigns to the input h the output (1 — c) • h. This process 

comprises only one bounce (one step). Is B  computing the function g? If we follow 

the proposed criterion we should ask if the process can be analyzed into more than one 

step. If “step” means bounce, then the answer is no, and B  is not a computing system. 

But why should step mean bounce? We can group the states of B  when the ball is 

falling (call them F) and the states of B  when the ball is rising (R). Now, the fall of 

the ball reliably causes the ball to rise back. The process has been analyzed into two

8Cummins [20], pp. 91-92.
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steps (F  and R) so now the system is again computing the function g. Surely the very 

act of naming the states of a system cannot ground an absolute notion of physical 

computation. The idea of step satisfaction as necessary for physical computation 

was an attempt to provide a physical counterpart to the notion of algorithm: such 

an attempt, however, fails, for the proposed property proves to be observer relative 

(dependent on arbitrary descriptive choices of the modeler).

1.2.3 ? =  Digital

Acknowledging the difficulty in providing a suitable account of computation by mak­

ing reference to the continuous/discrete distinction, some authors prefer to use the 

notion of digital (as opposed to analog) systems. According to these proposals, a 

RDS (real dynamical system) computes, as opposed to merely instantiate, a function 

if and only if it is a digital system. The standard definition of a digital (analog) 

system is one that “ranges over discrete (continuous) sets”. However not all the 

arguments of the function satisfied are relevant for our definition of “digital” : only 

those that play a direct causal role in the satisfaction of the function. So an analog 

watch whose arms move in discrete steps doesn’t cease being analog, for the relevant 

arguments range over a continuous set. Similarly a digital computer doesn’t become 

analog if we make the inputs to it continuous. Most authors agree that Goodman’s 

notion of notational scheme captures the relevant notion of discreteness. According 

to Goodman’s treatment9, the requirements for being a symbol (digital) scheme are 

(a) syntactic disjointness (each token must be a token of at most one type) and (b) 

syntactic finite differentiation (tokens of different types must not be arbitrarily simi­

lar). The following is an example of digital scheme: two line segments X  and Y  are

9 Goodman [42].
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tokens of the same type iff:

n +  1/2 < Lx , LY < n + 1 for some n € N

Notice that two distinct types are never infinitely close to each other and that no 

token can belong to more than one type. An example of an analog scheme is:

n  <  L x  j Ly  < n  +  l

In this case tokens of (adjacent) types can be arbitrarily close to each other. 

Haugeland10 applied Goodman’s theory of notational scheme to physical systems. It 

turned out that, under Goodman’s understanding, digital computers could not be 

considered as digital. Pulse detectors in standard digital computers are in state +  if 

subject to a pulse greater than 2.5 volts and in state - for pulses smaller than 2.5 volts. 

This contradicts the requirement of syntactic finite differentiation. In fact there is no 

theoretically possible way to categorize a pulse of exactly 2.5 volts. As a matter of 

fact pulses are always either close to 5 volts or to 0 volts, so that there is never real 

ambiguity in sorting them. However, by Goodman’s definition, the scheme is analog.

Hagueland proposal is to adapt Goodman’s theory to the realm of physical systems 

by requiring that syntactic disjointness and syntactic finite differentiation be “relative 

to our current technology and scientific practices”, rather than to sheer theoretical 

possibility. What is relevant for our discussion is that the only account that seems to 

do justice to the digital/analog distinction turns out to give up the hope to ground the 

notion of digital physical systems on purely intrinsic properties: whether a physical 

system is or isn’t digital does not depend solely on what system it is (or on what

10 Haugeland [47].
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mathematical dynamical system describes its behavior) but also on other (external) 

factors.

An alternative account of digital systems which (if correct) would overcome the 

above difficulty is that proposed by Block and Fodor11. The intuition behind their 

proposal is that analog processes are “low-level processes” that can be (directly) 

subsumed under some physical law. In other words a process is analog if its types 

represent numbers that quantify some primitive (or quasi-primitive) magnitude. More 

precisely Block and Fodor suggested that a system is analog if its input-output be­

havior instantiates a physical law. The notion of a system directly instantiating a 

physical law is, however, very problematic.

The instantiation of basic physical laws is always subject to ceteris-paribus clauses. 

We are therefore faced with a dilemma. In one sense any system, at all times, is 

instantiating some basic physical laws (or else it would be violating them). However, 

whether it does so directly or indirectly depends on our means of observation, not on 

the nature of the system. In this sense, then, all systems would be analog.

On the other hand, outside a carefully controlled experimental set-up, no physical 

law is ever immediately instantiated. In this sense, no physical system would be 

analog. Finally, if we resort to counterfactual statements regarding ideal experimental 

set-up’s to mitigate the absurd conclusion that no system can be analog then, once 

again, we give up the hope to ground the notion of analog system on properties of 

the system alone. Hagueland’s proposal is consistent with the above considerations: 

any suitable notion of analog (digital) system must make reference to observer-relative 

factors.

11 Block and Fodor [12].
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Concerns about the alleged observer-relativity of the digital/analog distinction are 

widespread in the literature. As early as 1951 Pitts, for example, put it this way:

Actually, the notion of digital or analogical has to do with any variable 

in any physical system in relation to the rest of them, that is, whether or 

not it may be regarded for practical purposes as a discrete variable.12

1.3 Im plem entation of a computational structure

We might hope to resort to the notion of implementation (realization) of a compu­

tational system to render the notion of computation objective. A physical system 

would be really computing if it realizes a computational structure (a Turing machine, 

or an automaton, for example). The notion of realization of a computational system, 

however, has also been threatened by observer-relativity arguments. If one is partic­

ularly worried about these claims, then, he or she will not find this solution viable. 

Let us take a closer look at this potential solution to our problem.

1.3.1 States, state transitions and autom ata

I shall analyze the simple case of finite state automata. First, what is a state? Given 

a certain physical system whose behavior is known to be deterministic, is it reason­

able to expect that it will always respond to a certain type of input with the same 

type of output? Clearly not. If we print some command on our computer, for ex­

ample, we expect the output to depend on its internal state (e.g. things change if 

the computer is turned on or off). For such a deterministic system a state is defined as:

12Pitts [69], p.34.
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[State] A representation of the past activity of a dynamical system that is suffi­

ciently detailed to determine, together with the current input, what the next output 

and state will be.

There is an ambiguity in this definition that ought to be dissolved: given a certain 

state, what is exactly “the next state” ? Intuitively it is the state of the system in the 

next time step, but this notion ought to be clarified. Suppose that the evolution of 

an aspect of a real system is described by a set {gt} of functions that are solutions 

to certain differential equations. We can always consider the values of gl at discrete 

intervals of T  (natural numbers are real numbers after all). In this case a discrete 

series of time steps is embedded in the continuous series of real time steps. The 

expression “next state and output of the system” in this case means state and output 

of the system at time t +  1. Our ordered discrete set of times, in this case, inherits 

the metric from the real continuous time series, so that between time t +  1 and time 

t there is a definite amount of time, function of t and t  +  1 only.

This, however, is not the only way in which a system can be a discrete time 

system. In some cases the internal dynamics is so fast at reaching equilibria that one 

can describe the evolution of the system by restricting the set M  of states to states 

of equilibrium (possibly discrete). The transition function, this time, describes how 

the system evolves from one equilibrium to another, given certain conditions. In this 

case the real lengths of the intervals is irrelevant. There is a lower bound (dependent 

on how fast the dynamics is) but above this threshold the time series serves merely 

as an ordered set.
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That the observer is lurking in the background, is something that can be appre­

ciated even at this preliminary stage. Consider a head-or-tail game. Suppose that a 

player wins if she scores two consecutive heads. The real time lapsing between one flip 

and another is irrelevant. This is because when a coin reaches a flat surface it takes 

a negligible time to reach a stable equilibrium (head or tail). If coins took a hundred 

years to settle at a stable position, however, people wouldn’t use them to make up 

their minds. The point that I want to stress is that what is negligible depends on 

who (or what) is supposed to be negligent.

Setting aside, for the moment, these premature concerns, let us continue with our 

description of computational structures. Given any (non empty) state space Af, any 

function g : M  *-* M, and letting T  be the non negative integers, we can specify 

a cascade by constructing the state transition function in the following way: let 

g° be the identity function on M, and let gt+1(x) = g{gt{x)) for all x  G M.

Confining ourselves to discrete-time, time invariant systems with finite sets of in­

puts and outputs, we give a formal definition of finite state automaton (FSA):

[Automaton] An automaton is specified by three sets X,  T, and Q, and two 

functions a  and /?, where: 1) X  is a finite set, the set of inputs

2) Y  is a finite set, the set of outputs

3) Q is the set of states

4) S : Q x X  h-» Q, the next state function, is such that if at any time t the system

is in state q and it receives input x, then at time t +  1 the system will be in state

6{q,x).

5) (3: Q i ► Y , the output function is such that when the system is in state q it always
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yields output /3(q). The automaton is said to be finite if Q is finite.

The above definition must be taken as a timeless formal description of a real 

system. The purpose of this section is to understand what (physical) constraints we 

must impose on a system for it to implement a FSA. The conclusion, like that of the 

previous paragraph, is that no amount of physical constraints on the system alone 

can make of it an implementation of a FSA.

1.3.2 How to  implement a Finite State A utom aton

The notion of implementation rests on the notion of causal structure “mirroring” a 

formal structure. In mathematics, structural identity is expressed by a suitable bijec- 

tive mapping. According to Chalmers, for example, “a physical system implements a 

given computation when there exists a grouping of physical states of the system into 

state-types and a one-to-one mapping from formal states of the computation to phys­

ical state-types such that formal states related by an abstract state transition relation 

are mapped onto physical state-types related by a corresponding causal state transition 

relation”13.

So, given the above definition of FSA, a physical system (P ) implements a FSA 

(M) if there is a mapping (/) that maps the internal states of P (Qp)  to internal states 

of M (Q) such that for every state transition (S , I ) i—>• S(S,I)  = S'  »—>• (3(S') = O' , 

if P  is in internal state s  and receives input i where f ( i )  =  I  and f ( s )  = S  this 

causes it to enter state s' and to output o' such that f ( s ' )  =  S'  and f (o ' )  = O'.

13D. Chalmers, A Computational Foundation for the Study of Cognition: unpublished paper. 
URL: http://consc.net/papers/computation.html.

http://consc.net/papers/computation.html
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Notice that the mapping f allows us to group physical states into physical state- 

types (by grouping all physical states that are mapped to the same formal state 

together) in such a way that between physical state-types and computational states 

there is a relation of implementation that is one-to-one and onto. It is in fact pos­

sible to define a map /* from groups of physical states ( Q p / / ) 14 to computational 

states (Q). It is one-to-one because function /  was defined in such a way so as to 

group physical states into groups that match the formal states of the automaton. It 

is onto because of the clause “for every state transition” in the above definition. It 

is legitimate to ask whether /* is such that between Q p / f  and Q there is a relation 

of isomorphism. This is the case only if f* is such that the following holds:

[Iso-Left] For every computational state transition /*([si]) => /*([sj]) the follow­

ing causal state transition also holds: [s*] i—► [sj]15.

[Iso-Right] For every causal state transition [sj —► [sj] the following computa­

tional state transition also holds: /*([sj) —► /*([sj]).

Now, it is clear that [Iso-Left] holds (for that is how we defined our notion of

implementation). As to the reverse, things are more complicated. We could add [Iso- 

Right] to the requirement in our definition of implementation, but this would leave 

out all simpler computations and would reduce the number of automata implemented

14The set Q p / f  is the set of groups of physical states that can be constructed from the set Qp  
of states using the relation of equivalence induced on it by the mapping. Two physical states are 
equivalent iff they are mapped onto the same computational state.

15Here the notation [s] refers to the class of states that axe equivalent to s, i.e. the class of states
that axe mapped by f onto the same computational state f ( s )
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to exactly one. For the moment, however, I shall assume that we require that there 

be a relation of isomorphism between Q p / f  and Q. So, our tentative definition is 

the following:

[Implementation] Given the automaton A  specified by (X, Y, Q,6,  /?), and a 

physical system S  described by (Qs,T, {<7*}), S implements A  iff there is a function 

/* : Q sxX ^xlsr i—> Q x X x Y  such that: [Iso-Left] for every computational state tran­

sition /i, Si —> S(Ii, Si) = S2 •—> P{S2) = O2 there exists a causal state-type transition 

([*i]» M )  [0 2 ] such that f*([ii]) =  J, f*([s2]) =  S2, and f*([o2] =  0 2.

While X 5  and Ys are the set of physical inputs and physical outputs, [i], [s] and [o] are 

physical input-types, state-types and output-types defined as all those inputs, states 

and outputs that /  maps onto the same computational inputs, states and outputs.

And: [Iso-Right] for every causal state-type transition ([ii], [si]) —» [s2] *-*■ [0 2 ], A  

is such that I ^ S i  -> <5(/i,Si) =  S2 »-»> P(S2) = 0 2, where /*([si]) =  Si,/*([s2]) =  S2 

and f*([o2]) =  0 2.

Requirement [Iso-Right], as we have anticipated, is not as straightforward as [Iso- 

Left]. In fact, whereas the existence of a causal state-type transition of the kind 

([ii], [si]) —> M  [o2], required by [Iso-Left], is ensured if there exists an underlying 

causal state transition, [Iso-Right] amounts to the requirement of the existence of a 

computational state transition in M  that corresponds to every given physical state- 

type-transition. It is tempting to say that, as the elements of Q p / f  are “artificial” 

groupings of physical states, the causal nature of a transition of the kind ([ii], [si]) —» 

[5 2 ] *-J► [0 2 ] is inherited from the “natural” causal transitions occurring between the
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elements of Qp. Now, there is no safe way to make precise sense of the notion of 

natural (as opposed to artificial?) state-type transition. However when we quantify 

over “all state-type transitions” we must make precise sense of what we are saying. 

What counts as a state-type transition? Do all state-transitions count as tokens of 

state-type transitions? It is tempting to say yes, or else we would have to give a 

circular definition of what it is to be a state-type transition, rendering [Iso-Right] 

tautological. So, given a function / ,  and any state-transition, there corresponds a 

state-type transition (obtained through the mapping /) .  Requiring that not only 

should the physical system “reflect” the state transitions of M  ([Iso-Left]), but that 

M  should also mirror the causal structure of P  ([Iso-Right]), seams an unreasonably 

strong requirement. Chalmers for example, in his definition of implementation, only 

requires [Iso-Left]. So, we have seen that whether a physical system P  implements a 

FSA depends on the existence of an implementation function /  such that [Iso-Left] 

(and possibly [Iso-Right]). I am now going to ask whether this requirement can be 

grounded on physical terms only. In other words, the rest of this chapter will try 

to answer the question: given a generic physical system, what properties of it are 

necessary and sufficient for it to implement a given FSA M l

1.4 Vacuousness arguments and their consequences

1.4.1 V-argum ents

The notion of realization (implementation) of a computational structure has been 

subject to a variety of observer-relativity arguments. This other category of argu­

ments, let’s call them vacuousness arguments, aims at showing that if computations 

axe ever instantiated, they are always, vacuously instantiated. As we shall see, these
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arguments rest on the claim that any real physical system is causally rich enough to 

be described as implementing any computational structure. If v-arguments are taken 

seriously, they make computations devoid of any physical interest and (still worse for 

our concerns), make computational functionalism vacuous, or absurd. V-arguments 

all point at the (alleged) fact that the physical properties of a system S are insuffi­

cient to ascribe syntactic properties to it. “I f  computation is defined in terms of the 

assignment of syntax then everything would be a digital computer, because any object 

whatever could have syntactical ascriptions made to it”16. In our formalism, then, 

such arguments amount to the claim that:

[V-arguments] Given any formal (computational) theory A, and any physical 

system S, there always exists a labelling scheme L such that the pair < L ,S  > is a 

model of A.

Suggestions that go in this direction abound in the literature.

On the standard (Turing’s) definition of computation it is hard to see how 

to avoid the following results: 1. For any object there is some descrip­

tion of that object such that under that description the object is a digital 

computer. 2. For any program and for any sufficiently complex object, 

there is some description of the object under which it is implementing the 

program. Thus for example the wall behind my back is right now imple­

menting the Wordstar program, because there is some pattern of molecule 

movements that is isomorphic with the formal structure of Wordstar. [...]

16Searle [82], p. 207.
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I think it is possible to block the result of universal realizability by tight­

ening up our definition of computation. [A] more realistic definition of 

computation will emphasize such features as the causal relations among 

program states, programmability and controllability of the mechanism, 

and situatedness in the real world.17

A number of allegedly problematic cases have been proposed, all suggesting that 

Turing’s analysis should be amended, if the notion of computation is to be given any 

empirical content. In 1978, for example, Pinckfuss proposed what is now known as 

the case of Pinck’s pail:

Suppose a transparent plastic pail of spring water is sitting in the sun.

At the micro level, a vast seething complexity of things are going on: 

convection currents, frantic breeding of bacteria and other minuscule life 

forms, and so on. These things in turn require even more frantic activity 

at the molecular level to sustain them. Now is all this activity not complex 

enough that, simply by chance, it might realize a human program for a 

brief period (given suitable correlations between certain micro-events and 

the requisite input-, output-, and state-symbols of the program)? And if 

so, must the functionalist not conclude that the water in the pail briefly 

constitutes the body of a conscious being, and has thoughts and feelings 

and so on?18

A particularly precise v-argument (to be discussed in the following) has been

proposed by Putnam. Our diagnosis will concentrate on the contrast between the

17Searle [82], p.209.
18This is how Lycan puts it in [54], p. 39.
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“troublesome” individuation of (computational) states in a real computer (intended 

as a physical system that computes), and the apparently “safe” individuation of 

physical states in a RDS.

After having briefly outlined this argument, I shall propose a preliminary diagno­

sis. It will be argued that (chapter 2), unlike the case of instantiation of mathematical 

structures, where measurements allow us to individuate the states of a system at a 

given time independently of all other states, computational structures suffer from not 

being able to individuate their implementing states on an individual (non relational) 

basis.

I shall further argue that Turing’s analysis cannot be made safe unless the labelling 

scheme provided for it makes reference (maps) to items that possess (naturalized) 

semantic properties.

1.4.2 P utnam ’s v-argument

Does the above definition of implementation provide a labelling scheme that satisfies 

our desiderata? In the appendix to his book Representation and Reality19, Putnam 

proposed a now (in)famous argument to the effect that every open physical system 

implements, in the sense expressed above, every FSA. This, if true, would clash with 

our (pre-analytic) intuition that not any physical system computes. In particular 

it would endanger the computationalist hypothesis (and indeed the argument was 

thought of by Putnam as a reductio ad absurdum of computational functionalism). 

The conclusion Putnam draws from the result, in fact, is that computational func­

tionalism is not tenable (save accepting a ridiculous form of panpsychism).

The argument is given the form of a theorem, and is composed of two steps. In

19Putnam [73].
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the first one it is argued that:

[P u tnsm ’s theorem ] All physical open systems implement every imputless FSA 

(FSAs with no input or output)

The result is then extended to FSAs with input and output. Putnam granted that 

the specification of particular physical inputs and outputs prevents a straightforward 

extension of the result. However, Putnam argues, as the result remains valid for the 

internal description of any FSA, the claim that cognitive properties are coextensive 

with the implementation of particular FSA structures tantamount to say that they 

are coextensive with the implementation of the specified input-output functions, thus 

conflating computational cognitivism with behaviorism.

Thus we obtain that the assumption that something is a “realization” of 

a given automaton description (possesses a specified “functional organi­

zation”) is equivalent to the statement that it behaves as i f  it had that 

description. In short, “functionalism”, if it were correct, would imply be­

haviorism! If it is true that to possess mental states is simply to possess 

a certain “functional organization” , then it is also true that to possess 

mental states is simply to possess certain behavior dispositions!20

Putnam’s technical result, moreover, has been argued to be extendable to be­

come a v-argument: i.e. to argue that any open physical system implements any

automaton.21
20Putnam [73], pp. 124-125.
21 See the next section for a proof of such extension.
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Proof. The proof rests on two (physical) principles: 1) The Principle of Continuity, 
stating that the electromagnetic and gravitational fields are continuous except at most 
at denumerably many points (under the assumption that the only source of fields are 
point particles) and 2) The Principle of Noncyclical Behavior, stating that a physical 
system is at different maximal states at different times. The latter principle follows 
from the observation that no open system can be perfectly “shielded” from electro­
magnetic and gravitational signals coming from “natural clocks” (such as radioactive 
atoms). In other words, it is claimed that the electromagnetic and gravitational sig­
nals stemming from (for example) a piece of radioactive matter, being ever changing, 
induce every open system that is not shielded from them to enter ever changing max­
imal states. According to Putnam, the principle holds in its generality because there 
are natural clocks from which no open system can be shielded. Suppose an (inputless) 
automaton is described by a machine table that goes through the states A B A B A B A . 
The abstract machine goes through the above states as “machine time” goes by. We 
wish to prove that any open physical system implements the table in real time. We 
must then find a pair of state-types of the system such that, during a specified time 
interval (say from 12:00 to 12:07), the system will realize the above machine table. 
We must show that, given the sole laws of physics, an omniscient mind would predict 
that if (for example), the system has been in state A  from 12:02 to 12:03, it will 
be in state-type B  from 12:03 to 12:04. Indicating with 5^(5, t) the maximal state 
of S at time t, we can construct state intervals by grouping the maximal states the 
system goes trough in each interval of time U < t < U+1 , thus obtaining, in our 
example, seven state intervals 5i(i<i<7) =  {ST(5, t) : i < t < i +  1}. The principle 
of noncyclical behavior guarantees that all such state intervals are disjoint. Now, by 
letting A  =  S i V S3 V S5 V S7 and B  =  S2 V S4 V Sq it can be easily checked that 
in the time interval considered the system goes through the state table prescribed 
by the automaton. That the system reliably causes state A  to be followed by B  is 
ensured by having the groupings being collections of maximal states (thus maximally 
determining the state of the system at each following time). The generality of the 
result is finally ensured by the arbitrary choice of the machine table (ABABABA in 
our case).

□

1.4.3 Extensions of Putnam ’s result

The extension of the result to FSAs with input and output can be obtained by the 

following labelling scheme.22

22The proof of this result can be found in Scheutz [77].
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We must show that:

Proposition 1.4.1. For any open physical system S, for any Qi £ Q and for any I  
and Oi there always exists a labelling scheme L such that [(Qi, I)©8(Qi,  I) = Q2 •—3► 
/3{Q2) = 02 ] l  is true of S.23

Proof Consider again a sectioning of a (any) time interval (In t — [£,£']) into a se­
quence of consecutive sub-interval: Into, Inti... such that Into =  [t, *y-] and Intk =

Map the maximal state of S during interval Into onto formal state Qq £ Q (this 
is to be the initial state). Then for each interval state Qks , defined as the grouping 
of maximal states of the interior of S during interval Intk, define Ik as the interval 
state of the boundary of S during interval In tk • Let Ik label the input i after k 
computational steps. Now, designate the state interval of the interior of S during 
interval Intk+i as the “label bearer” of the successor state Q2. Finally, take [©]l to 
mean “causes”.

It only remains to group together all interval states of the interior and of the 
boundary of S that map to the same constant of I or Q. The definition of implemen­
tation given at the beginning of this paragraph ensures that the map thus constructed 
is 1-1 and onto. This, in its turn, ensures that each sentence [(Qi, I)©S(Qi , I) = Q2\l 
is true of S.

□

Note that if the above extension of Putnam’s argument were sound, it would 

prove that, given any formal computational theory A, and any physical system S, 

there always exists a labelling scheme L such that the pair < L, S  > is a model of A. 

These extensions, of course, limit the room for combatting manoeuvres24

Putnam’s own diagnosis of the problem points at the “arbitrary”, albeit legitimate, 

grouping of physical states, i.e. at the need for all states grouped together to form 

the label bearer for a computational state to have “something in common” .

23 The sentence is intended to mean that at receiving input I, a computational system in state Q 1 

transits to state Q2 and and finally outputs the symbol 0 2 ■ The symbol ©  stands for the abstract 
notion of causing, determining a transition.

24See Scheutz [77] for a number of similar labelling schemes.
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[We] must restrict the class of allowable realizers to disjunctions of basic 

physical states [...] which really do (in an intuitive sense) have ‘something 

in common’.

The problem is that there are constraints on what this “something in common” 

could be:

[...] this ‘something in common’ must itself be describable at a physical, 

or at worst at a computational level: if the disjuncts in a disjunction of 

maximal physical states have nothing in common that can be seen at the 

physical level and nothing that can be seen at the computational level, 

then to say they ‘have in common that they are all realizations of the 

propositional attitude A’, where A is the very propositional attitude that 

we wish to reduce, would just be to cheat.25

The dilemma has been recently expressed very clearly by Scheutz:

Physical states of an object are normally defined by the theory in which 

that object is described. As it happens with classical fields, there might 

be too many states that could potentially correspond to some abstract, in 

this case computational, state. In order to exclude certain unwanted can­

didates, one has to define an individuation criterion according to which 

physical states are singled out. This criterion, however, is not defined 

within the physical theory that is used to describe the object, but rather 

at a higher level of description. In the worst case, this will be exactly

the computational level, namely in the case that none of the potential

25Putnam [73], p. 100.
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“lower level” theories can define a property in their respective languages 

such that the set of states conforming to that property corresponds in 

a “natural” way to the computational state. The potential circularity is 

apparent: what it is to be a certain computational state, is to be a set 

of physical states which are grouped together because they are taken to 

correspond to that very computational state. Every state-to-state view of 

implementation must, therefore, avoid being 1) vacuously broad (because 

physical state type formations are too liberal), and 2) circular (because 

individuation criteria for physical states are not provided at a level lower 

than the computational one). In the case of physical fields, one is left with 

a very pessimistic prospect: there are more than count ably many differ­

ent possible physical states according to the state space of fields (for every 

interval of real-time). Which of those correspond to a physically possible 

object, and which correspond to a given object in a “natural way”? Since 

there are even more possible mappings from physical states onto abstract 

states, it seems totally implausible if not impossible to specify finite cri­

teria that single out the right mappings. The only way we could find 

such a mapping is either by pure chance or by using higher level prop­

erties that constrain possible objects significantly and hence the plethora 

of mappings. If we are lucky, then the number of mappings will be so 

constrained by these properties that we can actually write down the def­

inition of a (correspondence-)function. But again, this “will work” only 

by using properties defined at levels of description higher than physical 

fields, yet lower than the computational level of description (which must
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not be used in defining a mapping from physical states to computational 

states, if the task is to find out what kind of computation a given physical 

system implements).26

The solution that I shall propose here, I anticipate, will be to claim that the 

“something in common” be the (physical) properties on which semantic ones super­

vene.

In the present work the soundness of this (and similar) arguments shall not be 

discussed. As I said, other arguments to the same effect: “that computational prop­

erties are not intrinsic to physics, so that computational descriptions are observer- 

relative” can be found in the literature27. The soundness of such arguments has been 

challenged28, but most authors concede that they “point out the need for a better un­

derstanding of the bridge between the theory of computation and the theory of physical 

systems: implementation.”29. I shall argue that, instead, the consequences of such 

arguments (even if they were assumed to be sound) would not be as dramatic for the 

computationalist stance as they have been suggested to be.

This “salvage” of computationalism will be achieved at the price of abandoning 

the (at the moment pervasive) construal of computational properties as being intrinsic 

properties of a real dynamical system, in favor of an externalist notion of implemen­

tation that is consistent with these critical results while retaining the explanatory 

power of the computationalist hypothesis.

26Scheutz [77], p. 169.
27e.g. Seaxle [81].
28Chalmers [15], [16], and Scheutz [78].
29 Chalmers [15].



Chapter 2

The individuation of states in 
computational and dynamical 
systems

2.1 Introduction

Most of the arguments presented in the previous chapter have been counter-argued. 

The general realist strategy has been to argue that the skeptical conclusion follows 

from a mistaken inference, or from a false premise. The structure of skeptical argu­

ments (the doctrine that I have called: computational anti-realism) is the following:

1.a Mental properties are implemented computational properties (sufficiency hypoth­

esis).

2.a Being the implementation of a computational property is observer-relative (v-

argument).

3 .a Mental properties are not observer-relative. Hence:

4.a  Mental properties cannot be computational properties.

48
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The typical combatting manoeuvre denies that being the implementation of a 

computational property is observer-relative. This is a stance that I call: computational 

realism (2.a is argued to be false).

My strategy, instead, proceeds from the denial of an implicit premise that is com­

mon to both the proponents of observer-relativity arguments and to their opponents: 

the assumption that if syntactic or computational properties are real at all, they must 

be realized by some intrinsic physical property of the implementing system alone. I 

call this view: syntactic intemalism. More precisely, the computational anti-realist’s 

strategy, I argue, should be articulated in the following way:

1.b Mental properties are implemented computational properties.

2.b If computational properties supervene on some non-vacuous disjunction of phys­

ical properties, they supervene on a disjunction of intrinsic physical properties 

of the implementing system (syntactic internalism).

3.b Computational properties do not supervene on a non-vacuous disjunction of in­

trinsic physical properties of the implementing system (v-argument). Hence:

4.b Mental properties cannot be computational properties.

Computational realists, so far, have not questioned premise 2.b (syntactic inter­

nalism). Combatting manoeuvres, in fact, concentrated in the attempt to show that

3.b is false.
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In advocating computational realism I shall take, in this work, the opposite stance: 

I shall assume that v-arguments (hence proposition 3.b) are sound. But I shall argue 

that syntactic internalism is not the only viable option (i.e. I argue that 2.b is false). 

In other words, I shall argue that v-arguments, if assumed to be sound, do not entail 

the bankruptcy of computational realism tout court, but only of internalist versions 

of it.

This strategy is articulated in two steps. First, it is argued that, if v-arguments 

are taken to be sound, computational realism must endorse the claim that semantic 

properties are (really) instantiated by the implementing system. Second, it is argued 

that the necessary semantic properties cannot supervene on intrinsic properties of 

the implementing system alone. The two claims, together, imply that computational 

properties are naturalizable only if implementation is construed as supervening on 

relational physical properties of (1) the implementing system and (2) of its environ­

ment. These properties must be such sufficient for externalist semantic properties to 

be instantiated. I call this version of computational realism: computational extemal- 

ism.

This chapter is dedicated to arguing for the first claim: that computational prop­

erties can be conceived as being real (i.e. grounded on physical properties, under 

physicalistic assumptions), only if intentional properties are factually instantiated by 

the implementing system.

The argument will proceed from a contrastive analysis of the notion of instantia­

tion: contrasting the “safe” instantiation of a mathematical structure by a physical 

object, with the troublesome realization of computational properties by the imple­

menting object. The analysis (section 2.2) concludes that what makes mathematical
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models “safe” , i.e. free from observer-relativity objections, is the possibility to specify 

measurement procedures that ground the relevant mathematical abstractions. It is 

hypothesized that computational models, lacking this feature, cannot appropriately 

bridge the gap between the implementing physical system and its abstract, syntactic 

properties, unless the system is endowed with intentional properties (section 2.3).

A preliminary proposal is then put forward (section 2.4.1): it is to guide our 

exploration, as a working hypothesis, for the rest of this treatment. Finally some 

comments are made (section 2.4.2) in order to rid my proposal of possible a-priori 

objections.

2.2 The individuation of dynamical models
On the notion of instantiation

The ones mentioned in the previous chapter are but a few examples of i-arguments 

and v-arguments. Each of them can be, and has been, counter argued. What I wish 

to emphasize here, however, is that, if these arguments were to be taken seriously: (1) 

Turing’s analysis of computation would be insufficient to allow for an honest labelling 

scheme, i.e. it would be devoid of empirical content; and (2) all attempts to provide 

an honest labelling scheme on the base of Turing’s analysis must avail themselves 

(surreptitiously) of observer-relative properties.

One may wonder why the relation of instantiation of a function f by a physical 

system S (In st(S , / ) )  is not so haunted by similar arguments: why, in other words, are 

we so sure that there is a straightforward way to provide (in a non observer relative 

way) for the truth conditions of Inst(S, /)?

We said that a necessary condition for the obtaining of In s t(S ,f)  is that S



52

“causally associate the physical arguments of /  (W*) with its physical values (W0)” . 

But we have been too quick in assuming this notion to be unproblematic: what does 

it mean exactly, that a system “causally associates the physical arguments of /  (Wi) 

with its physical values (W0)” ?

Let us start by analyzing the case of classical kinematics as an example. Suppose, 

that is, that our function (f) is to represent the displacement of an object (S) as 

time goes by.1 What does it mean to say that the position of the object “really” 

instantiates a certain (say linear) function?

It is obvious that a mere change in the way we measure time and/or space, would 

change the function that is being instantiated. Moreover, measurements are not 

expected to be infinitely precise, so that a certain amount of error must be tolerated 

when measuring the value of a magnitude. So, at best, we can say that the conditions 

for the obtaining of In st(S , / )  are relative to a (arbitrary) selection of the units of 

measurements and of their errors. In principle, for example, the same magnitudes 

can be argued to instantiate any (linear, in our hypothesis) function.

In sum, the conditions for the obtaining of In st(S , / )  are relative to the choice of 

(1) a frame of reference (where it makes a difference) and (2) the units of measurement. 

The interpretation function for our formal structure will have to specify both of them. 

The relevant factor, however (relevant in deciding why the notion of instantiation is 

not itself subject to v-arguments), is that both the units of measurement, the choice 

of a frame of reference (where it applies), and the errors of the measurements can 

be specified in objective terms within a physicalistic language. Ideally, moreover, 

there is no lower bound to the extent of the errors: a perfect measurement, i.e. one

1Let us neglect, for the moment, the fact that a real object occupies a region of space only in a 
finitely approximate sense.
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that corresponds exactly with the values of the function instantiated, is by definition 

without error. The notion of instantiation of a function, therefore, is safely grounded 

in objective terms through an isomorphism that maps specific physical magnitudes 

onto abstract mathematical ones. This is why the objectivity of the abstractions that 

ground the notion of instantiation has not been questioned so often.2

The difficulty that v-arguments claim to have expressed is that the way in which 

computational states are individuated seems unsuitable for allowing a coherent notion 

of their realization. Note that the allure of computational descriptions is precisely that 

they allow for multiple realizations. In order to make any sense, however, computa­

tional structures must not allow for “universal realizations”: in distancing themselves 

from excessively chauvinistic physical identifications of computational state-types, or­

thodox understandings of implementation seem to go one step too far away from real 

dynamical systems.

To better appreciate the direction in which this step was taken, contrast the identi­

fication of computational states with that of physical ones (as provided by dynamical 

system theory). What properties must a real dynamical system have in order for it 

to be the instantiation of a mathematical dynamical system? Indicate the predicate 

“S instantiates M ”, where S' is a physical system and M  a mathematical dynamical 

system, by Inst(M , S). We are then wondering what interpretation function L would 

make the pair < L, S > a model for M. The case of dynamics is not different from 

that of kinematics mentioned above.

Let Mi(t) indicate the time evolution function of magnitude M*. Consider n such

2The exact nature of the relationship between the physical world and mathematics is, as a matter 
of fact, a very complex issue. But here we are not concerned with a precise metaphysical description 
of the physical world, but rather with the applicability of the notions that physics deploys.
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magnitudes Mi...Mn. Suppose that their time evolution functions can be expressed 

by a functional, parametric relation with their respective initial values x\...xn\ for 

each i such that 1 < i < n  the time evolution of Mi is Mi[xi...xn](t).

Let

P =< T, Mi x ... x Mn, {#*} >

be a dynamical system where T is the set of values of the magnitude time and the 

cartesian product the set of values of the magnitudes M \ For every t € T,

g^x^.-Xn) =< Mi[xi...xn\{t)...Mn[x1...xn](t) >

is the set of state transitions. M  is th e  system  generated  by th e  m agnitudes 

Mi...Mn

The structure defined above, to qualify as a dynamical system, moreover, must 

comply with the following constraints.

[Dynamical system] A system M generated by the magnitudes M\...Mn is a 

dynam ical system  iff the following holds:

1. Mi[xi...£n](0) =  Xi and

2. Mi[xi...xn](t + w) = Mi[Mi[x1...xn](t)...Mn[x1...xn](t)](w)

Under what conditions is a real dynamical system an instantiation of a dynamical 

system M  generated by magnitudes Mi...Mn? Suppose that we are given a (mathe­

matical) dynamical system M, without being told what the symbols that feature in 

it are meant to refer to, so that any semantic ascription (any interpretation scheme) 

is allowed that is coherent with the theory of dynamical systems. Could we say that
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any real dynamical system is a realization of M? In other words, does a mathematical 

dynamical system succeed in selecting a class of real dynamical systems?

To start with, the set T must refer to real time values, or M  wouldn’t be a math­

ematical dynamical system.3. Secondly, as we shall see, reference to measurement 

procedures must be made.

What feature of measurements makes Galilean models “objective”, when con­

trasted with computational ones? Intuitively, the role of measurements in the above 

account of mathematical modelling can be expressed by saying that they allow for an 

independent objective evaluation of time dependencies: measurements bridge the gap 

between the abstraction of the model and the concreteness of the real system, thus 

blocking the isomorphism catastrophe. The value of a magnitude can be evaluated 

both by a formal calculation and by a measurement (“the value of M* at any

time ? ’), and the match between the two grounds the notion of instantiation. The two 

evaluations are independent because it is possible for them to mismatch. The gluing 

factor (gluing formal calculations and direct measurements) appears to be time. The 

time involved in dynamical modelling is real time.4

So, it seems like the crucial instantiating mappings (the mirroring of our pro- 

theoretical talk) are: (1) that between the set T  of values the parameter t can take 

up and the set of values that real time takes up and (2) that between the values of 

the abstract magnitudes and the results of measurements. Computational models,

3T might well be a discrete set, provided that its elements represent time values.
4The crucial factor is that, unlike all other physical magnitudes, time is not time-dependent: all 

other magnitudes (including constant magnitudes), vary as time varies (constant magnitudes axe 
constant with respect to varying times). Time, by contrast, although it is associated with a set of 
values (like all other magnitudes), is not associated with an evolution function (unless we don’t want 
to think of its evolution function, trivially, as the identity function for all dynamical systems).
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instead, represent time in abstraction from its real properties, making time indistin­

guishable from any other ordered set.

Is this abstraction responsible for the impossibility, in computational models, to 

set the relevant constraints on the notion of implementation that would render it 

objective? That is, should we then conclude that the alleged non objectivity of the 

notion of implementation available to computational models is due to their excessively 

abstract representation of time? Some have argued, in other domains of enquiry (other 

than the concern with the objectivity of computation), that computational models of 

the mind are inadequate precisely for this reason.

Cognitive processes always unfold in real time. Now, computational mod­

els specify only a postulated sequence of states that a system passes 

through. Dynamical models, by contrast, specify in detail what states 

the system passes through, but also how those states unfold in real time.

[...] Since cognitive processes unfold in real time, any framework for the 

description of cognitive processes that hopes to be fully adequate [...] 

must be able to describe not merely what processes occur but how these 

processes unfold in time.5

What is it exactly that is missing when we represent time as an ordered set? What 

mathematical property of the set of the reals is lacking in a generic ordered set, that is 

responsible for the non objectivity of computational properties? Is it its cardinality?

The following thought experiment can help us here to expose the virtues of mea­

surements. Imagine that you were trying to measure a magnitude without using your

5van Gelder [92], p. 18.
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hands: simply by looking at it. For example, imagine that you were trying to mea­

sure the distance D between two objects A and B simply by looking at them and at 

other objects. How far can you go? At best, you would be able to build an ordered 

set of distances, by judging the relative magnitude of D with respect to other dis­

tances (although impaired by the impossibility to use your hands, in fact, your sight 

is sometimes enough to judge if a distance is greater or smaller than another). The 

resulting structure (the structure of such ordered set), however, would be compatible 

with any suitably numerous set of objects, hence the information that a set of objects 

is (order-)isomorphic to such structure cannot have any (non vacuous) empirical con­

tent. The very notion of measurement, instead, implies the possibility to select a unit 

of measurement (the meter in Paris, for example), and multiply it as many times as it 

takes to cover the whole distance. The “trick” is that the repetition (multiplication) 

of this operation allows us to define D as the sum of these units (the abstraction in 

this case consists in idealizing measurement procedures)6. I don’t think we would 

be going too far if we used the above thought experiment as a metaphor: trying to 

render the relation of implementation Im p(S , A) objective, that is, trying to specify 

a labelling scheme that would make the pair < L ,S  > a model for A, is like trying 

to measure a distance between two objects simply by looking at them.

As for the set of magnitudes Mi...Mn, any interpretation is allowed: in principle, 

in fact, the same dynamical system can model different sets of magnitudes of the same 

RDS. The choice of semantic values for the symbols Mi...Mn, however, is constrained 

in various ways. The following has been proposed7:

6A detailed analysis of the necessary role of measurement procedures in fixing the empirical 
content of abstract mathematical structures has been proposed by Trizio in [89].

7Definition proposed by Giunti in [41].
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Consider all the sets of n magnitudes of a RDS. Some of these sets of magnitudes 

will satisfy, with infinite precision, conditions (1) and (2) (see definition above). Each 

of these sets will thus generate a mathematical dynamical system P. Any MDS M  

thus generated by a finite number of magnitudes is a G alilean dynam ical m odel 

of th e  rea l dynam ical system .

The relation of instantiation, in the case of a Galilean dynamical model of a real 

dynamical system, can thus be unpacked in the following way:

1. The aspect of the RDS that the MDS models is the change of the magnitudes 

M\...Mn that generate it.

2. Such change is exactly modelled by the functions Mi(t)...Mn(t), and, most 

importantly for our analysis,

3. The model is adequate if and only if the value of M* at any time t is Mi(t).

So, not any real dynamical system can be said to realize a given dynamical system 

M: in fact not all (arbitrary) choices of magnitudes comply with the three conditions 

above.

The honest labelling scheme for Inst(M , S) should then be the following:

•  the expression: “the value of Mi at any time ? ’ should be interpreted as referring 

to the value of the magnitude relative to certain rules for measuring it

• the expression “Mj(£)”, by contrast, refers to the result of the calculation, in­

dependently of any real measurements.

An interpretation (L) of the formal theory (the MDS) succeeds (or fails) in pro­

ducing a model only if some of its terms (“the value of Mi at any time t”, in our case)
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are interpreted via the specification of idealized measurement procedures. However 

the case is virtuous because, given a RDS, there is no reason to think that there 

always exist measurement procedures that satisfy any MDS within arbitrarily small 

error factors. The specification of measurement procedures, in other words, binds the 

variables in mathematical dynamical systems to real magnitudes in real dynamical 

systems.

Can computational properties be naturalized in spite of their “silence” as to what 

surrogate for measurement procedures should be applied? In what follows I argue 

that, if we stick to a state-to-state correspondence view of the computationalist hy­

pothesis, that is, if we think that computational properties should be thought of 

as characterized by an isomorphism with the causal structure of a real system, the 

naturalization programme cannot succeed. I propose to utilize naturalized semantic 

properties to play, in computational theories, the same role that measurements play in 

physical theories: to bridge abstract modelling structures with concrete implementing 

ones.

2.3 The individuation of computational models

2.3.1 From physics to  computation: a practiced guide

Accepting the validity of skeptical arguments forces one to think of computation as 

an observer relative property. Computers would be computers for us, because we use 

them as such, and not because they belong to a type of physical systems. In principle, 

then, anything could be used as a computer. But what does it mean to use a physical 

system as a computer? And if our brains are computers, who is the observer? And, 

most importantly, is whether something is being used as a computer or not, a fact
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that can be characterized in objective physicalistic terms, or is it itself an irreducibly 

observer-relative property?

We shall answer these questions by first briefly commenting on the requirements 

a physical system must comply with, in order for it to be usable as a computer. We 

shall than put forward an hypothesis as to what are the objective matters of fact that 

must obtain for a physical system to be a computer. The contrastive analysis sketched 

above blamed the abstract representation of label bearers for the alleged impossibility 

to individuate an honest labelling scheme. To better appreciate the consequences of 

such abstractions, consider a simple example.

A delay circuit outputs the same incoming (input) signals after a certain delay d\. 

Very intuitively it can be thought of as realizing the identity function: f ( X )  = X.  

The label bearers for the input architecture are the values of the magnitude voltage 

measured at the input and at the output of the circuit. The abstract function f ( X )  = 

X  disregards completely real time. The MDS that models the circuit is in fact, say, 

f ( x, t )  =  gx(t — d) (where f {x, y)  is 0 for all y < d and gx(t) is the function that 

describes the value of x at time t)8. This is not an identity function (which no real 

system will ever instantiate, for d > 0 for all real systems). It seems reasonable, 

however, that some formalism should account for the fact that any two such circuits 

(consider another similar circuit with delay c/2 ), axe doing a similar job.

The point I wish to stress is that the difference between a system that implements 

the identity function and one that doesn’t is not qualitative, but vague and relative

8In general real time dependencies would be much more complex than this: for example the delay 
will depend on the magnitude of the input, thus reintroducing the problem of units of measurement 
discussed above. But this simplified example suffices to expose the issue. Notice how in this case 
the problem of units of measurement is bypassed by having the same magnitude measured both at 
the input and at the output of the circuit.
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to an observer.

Suppose the second circuit was such that it output the same voltage input with a 

delay of billions of years. We would not even be sure that the universe will still exist 

when d2 will have elapsed. Would that circuit be an implementation of the identity 

function?

Similar practical considerations9, marking the distance between concrete physical 

properties and abstract computations, should be made about the domain of applica­

bility of the magnitudes, and about the errors (in measuring real time, or the value of 

the input, and the value of the output) which should be tolerated before saying that 

the system is not implementing the given function, etc. Unlike the case of instantia­

tions, the errors can never (not even ideally) be eliminated: if the errors in measuring 

the output, for example, were reduced to zero, no real system would implement the 

identity function. If it was'too big, two different inputs would be undistinguishable.

The advantage of such abstractions, however, is quite obvious: they allow us to 

formalize talk of functionality. The two circuits in our example, although different, 

in a certain sense function in the same way. Moreover anything else, a neuron for 

example, could be argued to function that way: this leaves room for the multiple 

realizability principle that constitutes one of the chief allures of computational func­

tionalism. Abstracting from the specifics of a physical system allows us to build 

syntactic isomorphisms between various real dependencies and a timeless function 

from reals to reals (numerical values input and output)

In line with uncontroversial intuitions, moreover, to use a system as a computer, it

9In some cases the output also depends on previous inputs, so that a crude representation of time 
must be reintroduced in the model. Of course any information about real time by now has been 
lost. Time, in these more complex but typical cases, is measured in steps, not seconds. Steps, unlike 
seconds, only possess an ordered structure.



62

must be possible to describe its behavior by finite, discrete functions. A digital system 

in fact must realize a discrete function with finitely many inputs and outputs (digits) 

in order to realize, for example, a logical gate. A further step of abstraction must then 

be taken to account for this. Here again, we shall argue, semantic properties make 

an irreducible contribution10 to computation: in order to reduce sets of uncountable 

inputs and outputs to finite sets, in fact, the respective domains must be segmented, 

and to this end, I shall argue, arbitrary (semantically individuated) encodings must 

be introduced.

Consider for example a circuit that realizes (in the abstract observer-relative way) 

the logical function XOR, i.e. the function: f ( X , Y )  = 0 if X  =  Y, otherwise 

f ( X , Y )  = 1 (where ’0’ and ’1’ are the two “digits”). Suppose the (token-specific) 

domain and range of applicability are both [0,100] Volts. There must exist two 

isomorphisms (for the inputs and for the outputs) between disjoint intervals of [0,100] 

and the reals. For example, they can both map 0 onto the interval [3 — 0.1,3 +  0.1] 

and 1 onto [90 — 0.1,90 +  0.1]. Firstly, such arbitrary segmentations place further 

limits on what errors should be tolerated: if the input and output errors were equal to 

90 Volts, for example, the isomorphisms proposed would be unapplicable. Secondly, 

it should be obvious by now that the isomorphism catastrophe is again lurking in the 

background: provided that there are enough values (and uncountably many is more 

than enough) there always exist, in principle, such isomorphic mappings.

Reference to specific measurement procedures is by now totally abstracted away. 

So, we can concede that these desiderata set constraints to what properties a system

10Here the word irreducible should not be taken as entailing the claim that semantic properties 
enjoy an irreducible ontological status. It should, instead, be understood as referring to the claim 
that only the properties on which semantic ones supervene can ground the relevant computational 
abstractions.
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must have in order to be usable as a computer, but such constraints are relative to 

the user. Now, for a system to be objectively a computer, these constraints, and 

the (arbitrary) mappings, must be objectively implemented. And for constraints 

and arbitrary mappings like these to be objectively implemented, I shall argue, rep­

resentational properties must be deployed. I shall not here get into the technical 

details of such abstractions.11 It suffices to notice how they all place observer-relative 

constraints on a physical system. What range of delays should be accepted, what do­

mains and ranges of applicability, what errors should be tolerated, what isomorphic 

mappings must be in place, are all observer relative constraints: they depend on who 

wants to do what with these physical systems.

2.3.2 The quest for the honest model

The problem of finding an appropriate labelling scheme for computational structures 

(either by amending Turing’s analysis or by specifying the conditions of applicability 

of the notion of implementation) has been extensively addressed in the literature. 

Copeland, for example, granted that any physical system S may be a model for any 

computational structure A, but he conceived of these excessively liberal models as 

“deviant” , hence as irrelevant with respect to the issue of the empirical content of 

the computational hypothesis. Interestingly, he likened these “deviant” models to 

non-standard models in mathematical logic. His treatment is quite apt for grounding 

the intuition that semantic properties should be brought at the heart of the notion of 

implementation. Quite obviously, not all models of a formal theory are “about” the 

intended objects of the theory.

11 See Scheutz [77] for a detailed treatment of the practical constraints on a physical system for it 
to be usable as a computer.
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As an example of how non-intended models fail to be “honest” , consider the case 

of the so called Sk”tem’s paradox. According to the L"wenheim-Sk" hem’s theorem, 

any satisfiable formula in a theory is true in some countable model (a model whose 

universe is at most countable). When we apply the theorem to the theory of real 

numbers, it appears to produce a paradox. The theory of real numbers, in fact, 

contains as an axiom (or as a theorem: Cantor’s theorem) a sentence whose intended 

meaning is that the cardinality of the reals (Card R) is greater than that of the 

naturals (Card N). Yet the L"wenheim-Sk”tem theorem ensures that this axiom is 

true in a structure that countenances nothing but natural numbers and countable 

sets.12 How can a sentence referring to a set larger than any set of natural numbers 

be true in a universe where there are no sets other than sets of natural numbers?

In rebuking Searle’s polemical claim that his wall is implementing the Wordstar 

program, Copeland replies that “the wall so acted only if the referent of R in Sk"hem’s 

countable model is uncountable!”13. Copeland uses the notion of non-standard (dis­

honest) model of a theory in a looser sense than that of mathematical logic: it is 

not required that non-standard models be non isomorphic to standard ones. This 

apparently innocuous extension of the notion of non-standard model, I think, blocks 

a-priori any chance to ground a labelling scheme in physicalistic (non surreptitiously 

semantic) terms. All (isomorphic) standard models (in the sense of mathematical 

logic), are in fact indistinguishable from the point of view of the theory of which they 

are models. This is the source of a philosophical problem that I call: the isomorphism 

catastrophe.

12Putnam, as we shall see (section 3.3.2) uses this result to draw skeptical conclusions about 
metaphysical realism.

13Copeland [19], p.24.
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Consider a theory of European geography14, whose constants are the names of 

European cities, and whose only predicates are relational (binary) predicates: “is- 

north-of " . In the intended interpretation, a sentence of this theory is true iff in the 

real world it is true that the intended interpretation of the term that occupies the 

first place of the predicate is a city whose location is north of the city intended by the 

name that occupies the second place. So, for example, the (formal) sentence “Moscow 

is-north-of London" is true, because Moscow is north of London.

Now, it is obviously possible to interpret the formal theory otherwise. For example, 

we could take the term “Moscow" as referring to number 10 and the term 11 London" 

as referring to number 1. The predicate 11 is-north-of" can be interpreted as “is greater 

than". Under this (non-intended) interpretation, the sentence “Moscow is-north-of 

London" (10 > 1) is still true, but the sentence is no longer about European geogra­

phy. Copeland dubbed the “intended” labelling scheme for a computational structure: 

an “honest” labelling scheme. So, under this treatment all “dishonest” models of a 

computational structure (A) do not count as cases of “computers”. The solar system 

allegedly computing the solutions to its equations of motions, for example, would be 

“computing” under a dishonest interpretation of computation.

The example of the dishonest model of the theory of European geography is quite 

apt for exposing the problem. What are the grounds, we may ask, for the claim that 

the mapping from the formal theory onto numbers is a “non-intended interpretation” ? 

Well, it is quite easy: numbers are not cities, for they possess different properties, 

and these differences can be expressed in physicalistic terms alone. What a theory is 

intended to be a theory of is something that is decided (intended) before we propose

14This is Copeland’s example.
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it. Thus a “theory of real numbers” must be a theory of real numbers. If one of its 

models ascribes some properties to real numbers that we know to be false of them, 

this is enough ground to say that that model is not “honest”. Now, we know what a 

theory of European geography should be a theory of because we have a clear (extra 

theoretical) understanding of what geography is (in the real world), we just need 

a theory to tell us what sentences are true, under that pre-intended interpretation. 

Our preexistent knowledge of the meaning of the word “geography” or “Moscow”, 

or “real number” gives us positive means of identification and discrimination of the 

models. Such observer-relative “intentional means” allow us to tell whether a real 

entity E belongs to the intended model, independently of what relations E bears to 

other elements of the universe (I can tell whether an entity is the city of London or 

number 1, without knowing whether London is north of Moscow or not). Similarly, 

we know that the set of reals has a greater cardinality than that of the naturals even 

without knowing that Lovenheim-Sk’tem’s theorem holds.

But what Turing’s analysis is a theory of is precisely what we are trying to un­

derstand. Structural properties of the kind “intended” by Turing’s analysis are un­

suitable (if i- and v-arguments are assumed to be sound) to provide us with such 

positive means of identification as the one expressed above. A structure of relations 

such as that that identifies computational states in Turing’s analysis, like the struc­

ture of ordered unspecified measurements in our example, is totally uninformative as 

to what real physical structure would implement it, with the exception of the infor­

mation about the minimum amount of complexity that the system must possess (for 

example, the number of states of a candidate implementing system cannot be smaller 

than that of computational states to be implemented).
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The concerns expressed above can be summarized by the following claim.

Given a model < S ,L  > of a formal computational theory A, it is impossible 

(without the deployment of semantic capacities) to prove that < S ,L  > is the “in­

tended” one (i.e. to give a principled notion of “honest model”), unless at least one 

of the following conditions holds:

1. < S, L > is not isomorphic to all other models < Si, Li > and the cardinality 

of the intended model is known.

2. The truth of any sentence a  of A can be assessed in the model individually 

(independently of the truth of other sentences of A under that interpretation).

The first requirement states the trivial fact that the independent knowledge of the 

cardinality of the intended model (which is a relational property that can be deduced 

by deploying structural information alone) can be used to rule certain models out as 

non-intended, when these can be shown to be non isomorphic to the intended one 

(e.g. in the case of Sk"tem’s paradox).

The second requirement demands that the interpretation function be such that 

the truth of the predicates of the theory be assessable independently of the truth of 

other predicates of the theory.

Consider for example a theory T whose set of terms {a, b, c}15 is intended to refer

to any three different objects belonging to an ordered set, and whose only unary

15In what follows I shall use ordinary braces to refer to ordered sets.
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function (O : {a, b, c} >—> {1,2,3}) is intended to output the position of the element 

with respect to the other two (e.g. 0(a) =  1 iff a < b and a < c). The only unary 

predicates of our theory are: o(a) =  1, 0(b) = 2, O(c) =  3. The set {1,5,10}, for 

example, is a model for the theory. The set {Johns, Smith, Watson}, whose elements 

belong to a phone-book, is also a model. Which one is the intended model? Well, 

without any further specification there is no way to select a model of our theory as 

the “intended one” , from within the theory.

As the truth of 0(5) =  2 in our example cannot be assessed by some property of 

number 5 alone (independently of the holding of its relational properties with respect 

to the other two numbers in the set) this interpretation of the theory does not satisfy 

condition 2. Of course, we may interpret our theory in a “wild” way, as referring to 

entities that are not numbers (like the phone book example). We can do this because 

structural, relational properties (such as the relations that hold in an ordered set), do 

not (per se, i.e. without deploying our capacity to restrict semantically our intended 

interpretations) belong to any specific universe. This fact appears obvious when we 

restrict (by a semantic act) our universe to real numbers, and run the same argument 

over this restricted universe. It is impossible, under the above interpretation, to 

select any particular triplet of ordered numbers as the “intended” model. One way 

to do so (without changing the interpretation of the predicates) would be by adding 

the requirement that numbers a, b and c be interpreted as numbers 1, 5 and 10 

respectively. In other words, the only way to restrict our universe without restricting 

the defining properties so as to become definite descriptions of their bearers, is by 

deploying our extra-theoretical, semantic (intentional) capacities: i.e. to conceive of 

the interpretation function as a “baptism” of the terms in the theory. Any such move,
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however, would require that semantic properties be in place.

Consider, by contrast, the following “virtuous” example. If the interpretations 

of o(a) = 1, 0(6) =  2, 0(c) =  3 in our theory were, respectively, a1 =  1, 63 =  2 

and c5 =  3 (as these expressions are interpreted in standard number theory), then, 

whether a sentence in the theory (say 0(6) =  2) is true in the model, will depend 

solely on a property of b (on whether it is true that 63 =  2), independently of whether 

0 (a) =  1 or 0(c) =  3 are also true. This interpretation complies with condition 2, 

without any need to deploy semantic properties of the symbols.

The fact that the expression “the value of Mi at any time ? ’ can be interpreted 

as referring to the value of the magnitude at that time (relative to certain rules for 

measuring it), independently of the relation that holds between the value of Mi at 

time t and the value of Mi at any other time, is what satisfies condition 2 in the 

case of mathematical dynamical theories. The case of physics, it appears, evades the 

prohibitions of condition 2, because measurements do the “dirty baptizing job” in a 

mechanical way: without (apparently) deploying any semantic capacity.16

The theory of computation provided by Turing, if v-arguments were sound, would 

not satisfy condition 2, hence the quest for an “honest” model for a theory of com­

putation is argued to be hopeless.

160 f  course, semantic capacities must be deployed to select what kind of measurements should be 
tested (matched) against our calculations. However, the specification of measurement procedures 
does not itself require further semantic capacities to individuate its intended models: once we have 
made that decision, in fact, the intended model no longer depends on our intentions, but on mind- 
independent matters of fact. It could be argued that physics also appears to fail at capturing its 
intended models. Maxwell’s equations, for example, apply equally well if applied to the oscillation 
of molecules of ether, or to classical or relativistic fields. So it appears like physics also has its 
difficulties in fixing its models. This argument, however, would miss the point completely. If our 
measurements under-determine our theories, this is a problem for philosophers of science, but it 
does not entail that we cannot express what it takes to be a model of a theory in physicalistic terms 
alone.
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2.4 The individuation of dynamical and com puta­
tional models: a contrastive analysis

2.4.1 Rigid and liberal realizations o f m athem atical struc­
tures

Both the relation of instantiation of mathematical dynamical systems and that of im­

plementation of computational structures are cases of empirical realizations of math­

ematical structures. The latter, unlike the former, has been argued to fail to suitably 

fix its models. Regardless of what one thinks of v-arguments, it is interesting to ask 

what explains (a priori) the difference between the two cases. The analysis proposed 

above, I believe, allow us to address this issue.

The relations between mathematical structures and the empirical ones that realize 

them can be classified according to the extent to which the models fix some physical 

properties of the empirical relata (the realizations). Consider the simple case of 

concepts whose extensions contain nothing but physical objects. As an example, 

consider the concept (A) pair of objects whose mass is 5 kilos. For each pair of 

objects, it is a priori true that if the mass of one of them is not 5 kilos, the pair 

doesn’t satisfy the concept. Now contrast A with the concept (B) pair of objects that 

stand two meters away from one another. There is no physical property such that if 

an object does not possess it, then that object does not belong to a B-pair. Whether 

there actually are B-pairs one of whose elements does not weigh 5 kilos is an empirical 

matter of fact. Consider, finally, the concept (C) pair of red objects. Not only, like 

in case of B-pairs, there is no intrinsic physical property such that, if an object does 

not possess it, then it doesn’t belong to a C-pair, but there is no property of the pair 

of objects (relational or intrinsic) that is necessary and sufficient for two objects to
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be a C-pair.

Notice that the relations of instantiation of the three concepts are different under a 

relevant respect. Even if the world was such that A, B and C had the same extension 

(which would be the case if all and only the objects that stand two meters away from 

one another weighed 5 kilos and were red), in fact, the following two claims would 

still hold true:

1. If the mass of an object is not 5 kilos, then necessarily the object does not 

belong to an A-pair.

2. There is no physical property such that if an object does not possess it, then 

it is necessarily the case that the object does not belong to a B-pair or to a C-pair.

To mark the difference between these two kinds of concept, I will say that A 

is rigidly instantiated, while B and C are not. The case of satisfaction of concepts 

is rather trivial: as concept A makes explicit reference to an intrinsic property of 

its satisfiers17, it comes as no surprise that (a priori) its satisfiers share that prop­

erty. Concept B, by contrast, explicitly mentions only a relational (albeit grounded) 

property of its satisfiers. Concept C, finally, only mentions a relational ungrounded 

property shared by its satisfiers. It is then obvious that if all B- and C-satisfiers 

share some intrinsic properties, this is a contingent happenstance. We may say that 

the instantiation of relational ungrounded properties is more “liberal” than that of 

relational grounded properties, and that the latter is more liberal than that of the 

intrinsic properties which ground them: intrinsic properties are rigidly instantiated

17As I have discussed in the previous sections, the property of a magnitude taking up certain 
(particular) values should better be understood as a relational property. Weighing 5 kilos, for 
examples, is a relational property of an object with respect to another object that weighs 1 kilo. 
What is relevant in the present context, however, is that unlike the case of B-concepts and C- 
concepts, once a unit of measurement is arbitrarily picked up, the (classical, non relativistic) value 
of the magnitude mass is fixed by intrinsic properties of the object.
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by there instances.

The case that is been analyzed here is not different. Just like not all concepts 

restrict the properties of their satisfiers in the same way, different mathematical struc­

tures restrict in different ways the empirical properties of the structures that realize 

them. The instantiation of a mathematical dynamical system M is rigidly realized 

by certain real dynamical systems. In fact, if the result of the measurement of a 

magnitude of a RDS (S) (say Mi) at a given time t is not Mi(t) (as prescribed by the 

dynamical system M), then necessarily S does not instantiate the MDS M, whatever 

values the magnitude takes up at other times.

Thus, once the symbols in a MDS M have been interpreted as referring to certain 

magnitudes, and the relevant framework and units of measurement have been chosen, 

the information that a physical system S instantiates M suffices to infer the outcome of 

the relevant measurements. Consequently, the models of the relation of instantiation 

for a given MDS rigidly pick up (a priori) all and only the RDS’s that share the 

relevant physical properties. We may say that the concept of realizer of a MDS, for 

a given MDS, is rigidly satisfied by the elements of its extension.

Contrast this with the case of implementation. Consider a certain real dynamical 

system S. Each magnitude of S instantiates some mathematical dynamical system. 

We have seen that which MDS is being instantiated by each magnitude depends 

on the outcome of the relevant measurements (potential or actual). Suppose that 

we also have the information that S implements a certain computational structure 

A. Under a state-to-state correspondence picture, this entails that there exists a 

mapping from groups of states (hence from groups of values of magnitudes) of S 

onto the computational states of A. For each one of these values, it is in general not
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true that, had that magnitude taken up another value, the system S would have not 

implemented the given computational structure. Whether changing the value of a 

magnitude also changes the computational state implemented by it, in fact, never 

depends only on what values the magnitudes of the candidate implementing system 

take up: it always also depends on relational properties of these magnitudes. In 

particular it depends on whether taking up a different value also entails a change in 

the group of computational equivalence to which the value belongs. This is never 

a fact that can be established a priori on the base of the intrinsic properties of the 

implementing object, for, as we have seen, what group a value (or a state) belongs 

to, is a fact that is relative to factors that are external to the realizing system. We 

may then say that the concept of realizer of a computational system, for a given 

computational system, is not rigidly instantiated by its satisfiers.

It may be objected that, due to the finite precision of any measurement, the same 

is true for the instantiation of mathematical dynamical systems. Suppose that a 

RDS has been observed to instantiate a given MDS. In all real circumstances, it is 

strictly speaking not true that, had the relevant magnitudes taken up different values, 

the system would not have instantiated the same MDS. There is, in fact, a certain 

tolerance due to the non eliminable errors of the measurements. There are, moreover, 

cases of physical instantiation of mathematical structures that inherently allow for 

multiple realizations. Think for example of the instantiation of Boyle’s laws by a 

collection of molecules (even under ideal circumstances).

The way in which a mathematical structure under-determines its instantiations,
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however, remains conceptually different from the way in which computational struc­

tures under-determine their implementations. Even when a physical abstract struc­

ture (or property) is instantiated by a disjunction of real physical properties, it is 

instantiated rigidly by them.

In these cases, admittedly, it is not true that had the value of a relevant magnitude 

(such as the velocity of one particular molecule) been different, the system would have 

not instantiated the same mathematical structure. In the case of Boyle’s laws, for 

example, it is not true that, had the velocity of a certain molecule been different, the 

temperature of the system would have been different. Any change in the velocity of 

any molecule can be “compensated” by an opposite change in the velocity of some 

other molecule.18 So, within certain limits, the value of the velocity of a molecule 

is not, per se, relevant for instantiating Boyle’s laws. But in the system containing 

the ideal gas the magnitude corresponding to the average velocity of all molecules is 

singularly responsible for the temperature taking up certain values. In the case of 

implementation, instead, no magnitude has ever so much responsibility.

Similarly, the non eliminable errors in the measurements of real physical magni­

tudes do not make the instantiation od MDSs liberal: we say that a real magnitude 

instantiates a given variable when the results of measurements fall within a certain 

(preestablished) range of precise values.

2.4.2 The logical space of vacuousness arguments

Thus, while the realization of the relation of instantiation rigidly constrains the phys­

ical properties of the instantiating physical systems, the realization of the relation

18This is true within the boundaries imposed by the lower limit of total average velocity, which, 
ideally, is 0.
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of implementation doesn’t. It is this liberalism of the relation of implementation, I 

argue, that creates the logical space for vacuousness arguments. This should not be 

taken as a plausibility argument for the validity of these arguments. Rather, by this 

analysis I wish to stress the following points.

Mathematical dynamical systems can afford a state-to-state correspondence view 

of their instantiations thanks to the relation that obtains between physical properties 

(or states) of a RDS, and the real values that can be systematically assigned to the 

relevant magnitudes. Measurements are such as to reveal these systematic correspon­

dences: there is a systematic correspondence between a system being in a certain state 

and the relevant magnitudes (thereby the relevant measurements) taking up certain 

values. The mathematical states of a MDS, once they are interpreted, are such as to 

rigidly “describe” (or designate) the physical states that instantiate them. Thus, we 

can say that a RDS does not instantiate a given MDS when the relevant measure­

ments do not match with the correspondent calculated values. This guarantees that 

the notion of instantiation could not possibly be argued to be a priori vacuous. This, 

in fact, would require that all magnitudes always take up all real values, even when 

a unit of measurement and a frame of reference have been chosen. '

Secondly, because of the liberalism of implementations, instead, there isn’t (and 

there should not be) any systematic fixed relationship between the physical states 

of a RDS and the computational states or inputs or outputs that they implement. 

Computational states, even when interpreted, do not rigidly designate any specific 

physical properties (or states) of their realizers. In particular, they do not desig­

nate any particular value taken up by any magnitude. The concept realizer of a 

computational structure, we said, is not rigidly satisfied.
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If a symbol is realized in a memory cell by a certain voltage level, for example, it is 

never true that, had the voltage taken up a different value, then the physical system 

would have not realized a memory cell. This is the case not only because there is a 

certain tolerance for errors (an ordinary digital computer doesn’t behave differently 

if the voltage level is 4.999V instead of 5V), but also because the same symbol (or 

the same computational state) could have been realized by a voltage level of 10V (or 

any other level, for that matter). We could, in fact, build our digital computers in 

such a way that binary coding symbols were realized by voltage levels that take up 

values that are either close to 5V or to 1000V, instead of being close to either 0V or 

to 5V.

These considerations, I repeat, do not entail that “anything goes”, i.e. that under 

all circumstances, any physical state can realize any computational state. Not even if 

v-arguments successfully made their point, would this be the case. The considerations 

simply entail that, unlike what happens in the case of instantiation, the notion of 

implementation is not a priori immune to vacuousness arguments.

The proponents of v-arguments do not claim to have empirically shown that the 

notion of implementation is vacuous. This would require, at least, to show that any 

physical object can be used as a digital computer. The skeptical arguments, instead, 

claim to have shown that the state-to-state correspondence notion of implementation 

is structurally, a priori inadequate to combat vacuous realizations. The standard 

picture of implementation, we have seen, is not such as to be a priori immune to these 

arguments. For this reason, standard combatting manoeuvres consist in arguing that 

the skeptical claims are false. The strategy I propose to adopt, instead, is to retreat 

implementation to a safer position, whereby vacuousness arguments would be a priori
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blocked. The model for such a safe notion of implementation will be the virtuous 

notion of instantiation of a MDS.

Of course, as we want to maintain the principle of multiple realizability, we shall 

not be able to retain the same role that measurements play in that case: if we 

constrained computational states to correspond to specific physical properties, or 

equivalently to certain magnitudes taking up certain values, in fact, we would spoil 

their abstractness. We shall then have to provide for a surrogate of measurements 

for blocking the alleged unwanted models of the relation of implementation. The 

semantic properties of the realizers, I shall argue, can do the job.

The claim that semantic properties should play the same role of measurements 

should be understood as the claim that semantic properties, like measurements, allow 

us to block (a-priori) v-arguments: i.e. that they make the concept of implementation 

rigidly satisfied by the elements of its extension. Another way of understanding the 

analogy between measurements and semantic properties is to think that while mea­

surements ground the notion of physical instantiation of the mathematical concept 

of variable, semantic properties must provide for the realization of the mathematical 

concept of string of symbols, as it is used in computability theory. An example should 

help to clarify this point.

Suppose that the notion of instantiation of a MDS did not constrain the mag­

nitudes of the realizing system to take up certain values (or equivalently, to certain 

measurements yielding certain results). Suppose that all that was required for a 

system to instantiate a given MDS was that there be a one-to-one correspondence 

between physical states and the values taken up by the variables of the MDS. What 

could block the conclusion that any physical system instantiates any function? Under
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the assumption that real physical states undergo change in a continuous way, in fact, 

it will always be possible to establish such a one-to-one correspondence. The require­

ment that measurements yield certain results, in these cases, block the vacuousness 

of instantiation.

The state-to-state correspondence notion of implementation, if v-arguments are 

right, stands exactly in the same position as the absurd state-to-state correspondence 

view of instantiation imagined above. If my analysis is correct, the requirement that 

the label bearers of computational items possess representational properties allows us 

to block v-arguments like the requirement that measurements yield to certain results 

allows us to block the absurd conclusion that every physical system instantiates any 

MDS.

2.5 Towards an intentional theory of im plem enta­
tion

2.5.1 Intentional theories o f implementation: a necessary  
evil?

It is thanks to measurements that physics can afford a state-to-state correspondence 

view of its mathematical models. Short of a surrogate for measurements (that ground 

physics from the bottom up, from real to  mathematical systems), I argue, only a 

restriction of the implementations! basis to naturalized semantic items could block 

skeptical arguments.

Given the observer relative conditions under which a RDS can be said to be 

usable as a computer, under what further conditions can we say that it is being used 

as such? We are now in the position to express in an vague and informal way the
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strategy of my treatment. I shall argue that a system that is usable as a computer 

is in fact being used as such if and only if the label bearers of its input architecture 

are, objectively, representations: i.e. they possess naturalized semantic properties. 

Intentional properties, in this picture, ground the (otherwise vacuously obtaining) 

isomorphic mappings that are required to sustain the relevant abstractions, thus fixing 

(in an objective way, if intentionality can be naturalized) what specific constraints, 

what ranges of applicability, tolerance of errors, etc., should apply.

According to v-arguments, for example, any real system implements a XOR func­

tion, provided that we pick up the appropriate label bearers. If we require that the 

input-tokens and the output-tokens (X-tokens and Y-tokens), be instantiations of 

properties on which semantic ones supervene, we block v-arguments, while ground­

ing the progressive abstractions in an objective way. The delay of the implementing 

system, or the errors in measuring X and Y, for example, should be tolerated only 

so long as they do not disrupt the natural semantic properties of the label bearers 

(the properties of the label bearers on which semantic ones supervene). It might well 

be that, under a certain interpretation, the same system also implements, say, an 

AND gate (it suffices for this that the right AND-gate conditions for digitality ob­

tain). But if such an interpretation maps to tokens that do not, as a matter of fact, 

possess semantic properties, I argue, the system cannot be said to really implement 

the AND gate. Bearing this working hypothesis in mind, we proceed to investigate 

its plausibility as a solution to skeptical arguments.
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2.6 A priori objections to the semantic restriction  
of the implementational basis

2.6.1 N o com putation w ithout representation: either trivial 
or false

The proposal sketched above will strike some as trivial, and others as trivially im­

plausible. On one side, in fact, it is part of the received view of computation that 

representational items should be taken into account. Both Fodor and Pylyshyn19, for 

example, assume that there is “no computation without representation”. The idea be­

hind this claim stems from a number of relatively uncontroversial intuitions. One, for 

example, is the observation that computations are partly identified by the functions 

they compute. Functions, in their turn, are partly identified by the interpretations 

of their inputs and outputs. Interpretations, in their turn, are identified by repre­

sentations with semantic properties. Hence the claim that there is no computation 

without representation.20

Other intuitions corroborating this “semantic view of computation” are derived 

from the fact that computationalism is our best theory of the mind. Mental states 

can be individuated by their semantic properties. Hence computational states must 

be endowed with representational properties too, if the sufficiency hypothesis is to 

be upheld. To those who do not object to the claim, my thesis that representational 

items should be built into the notion of implementation could sound trivial.

The claim, however, has never been made explicit, or properly argued for. Many,

in fact, tend to conceive of this as a terminological issue. In particular, those who

19In their early seminal works [33] and [74].
20This claim is discussed below, in section 2.5.1.
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think that the notion of computation (and implementation) is not in danger21, tend to 

interpret the claim in a somewhat weak way. There is no computation without repre­

sentation, according to this weak interpretation, in the sense that, for most practical 

purposes, computations, and computational theory, are invoked in the explanation of 

interpreted symbol manipulation: it is not that computations need representations to 

be implemented. Rather, computations, without representations, would be of little 

practical use. In what follows I shall argue that, if one takes observer-relativity ar­

guments seriously, then one has to endorse a stronger version of the claim that there 

is no computation without representation: the view that, without representations, 

computations lack a principle of individuation.

This stronger claim, however, will strike many as extremely implausible. Partly 

because of an old, positivistic disgust for intentionality, and partly because of the 

firm conviction that the notion of computation stands in perfect good shape, many 

authors would object that the stronger claim doesn’t make any sense. Such potential 

bankruptcy of my thesis is expressed, for example, by Chalmers in a note to a paper 

on the foundations of computational theories of the mind:

It will be noted that nothing in my account of computation and implemen­

tation invokes any semantic considerations, such as the representational 

content of internal states. This is precisely as it should be: computations 

are specified syntactically, not semantically. Although it may very well 

be the case that any implementations of a given computation share some 

kind of semantic content, this should be a consequence of an account of

21 Although the number of concerns expressed about the notion of computation is rapidly increas­
ing, not only among the opponents of computationalism, I suppose that most theorists belong to 
this category. See chapter 5 for a critical discussion of alternative views of implementation.
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computation and implementation, rather than built into the definition.

If we build semantic considerations into the conditions for implementation, 

any role that computation can play in providing a foundation for AI and 

cognitive science will be endangered, as the notion of semantic content is 

so ill-understood that it desperately needs a foundation itself.22

My thesis must be understood as a strict contradiction of the above claim. As we 

shall see, views such as that expressed above follow from the adoption of a received 

picture of syntax, according to which syntactic properties supervene on the intrinsic 

properties of whatever it is that bears them. I shall criticize this view in the following 

pages, to argue that it unduly restricts our room for maneuver. It is certainly true that 

the notion of semantic content is poorly understood but, I shall argue, the inclusion 

of naturalistic theories of semantic content into our theories of computation might be 

eventually forced upon us.

Those who, like Chalmers, think that vacuousness arguments pose no threat to the 

notion of computation will find my proposal very unpalatable, if understandable at 

all. I agree with them that if observer-relativity arguments were all fallacious, having 

semantic properties built into the theory of implementation would constitute a useless, 

uncomfortable risk that is not worth taking. Moreover, many of the reasons that have 

been proposed for endorsing a semantic view of implementation, have been argued to 

be inconclusive. I shall briefly comment on some of these potential counterarguments, 

to explain that my reasons for endorsing a semantic view of implementation fall 

outside their scope.

22D. Chalmers. A Computational Foundation for the Study of Cognition. Section 2.2. Unpub­
lished, but section 2 was published as [15].
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2.6.2 Semantic properties lie on the wrong level o f analysis

There are constraints on what kind of restriction of the implementational basis of 

computation are compatible with a theory of computation and with a computational- 

ist theory of the mind. Before turning to my proposal, then, it is in order to get rid of 

some potential preliminary concerns. Most attempts to block v-arguments, we have 

seen, consist in various ways in which we might define an honest labelling scheme on 

the base of some state-to-state correspondence. Our contrastive analysis suggested 

that the lack of a surrogate for measurements explains the pattern of their failure. It 

is quite obvious, however, that if we positively restricted the set of candidate label 

bearers, this would block v-arguments.

One reason why this strategy has not been pursued is that it does not appear 

to comply with the chief desideratum of a solution: the individuation criterion for 

providing a labelling scheme must be defined at the same level of description as that 

of the theory that is used to describe the implementing object.

What is needed is a characterization of states at a level of description that is 

such as to naturally correspond to the computational states implemented. This level 

of description must not be the computational level itself (the potential circularity is 

obvious).

The solution I propose, however, escapes this concern. The proposed individu­

ation criterion, in fact, is defined at the physical level: if semantic properties can 

be naturalized, restricting the set of label bearers to entities that possess intentional 

properties is tantamount to restricting them to the physical properties proposed as a 

supervenience basis for intentional ones. Thus, the proposed individuation criterion 

is defined at the same (physical) level as that of the theory that describes the physical
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object that is candidate for implementing a given computational structure.

2.6.3 Com putation is not answerable to  cognitive science

It could be argued that the theory of computation stands in no need for being re­

stricted to the domain of cognitive systems, just like any other branch of mathematics 

doesn’t. The symbol string “2 +  2 =  4” (together with the entire Peano-arithmetic 

symbol system) would be semantically interpretable as meaning 2 +  2 =  4 whether 

or not anyone ever so interpreted it or even whether or not anyone with a mind ever 

existed. As “interpretability” is all computations need for their realization, the ob­

jection goes, the resort to intentional properties (which are mental properties) unduly 

restricts the scope of applicability of computational properties. If computation and 

the mind (including its intentional properties) have something in common, it is be­

cause mental properties can be argued to be computational properties. However, it 

is the mind that is explained by computation, not viceversa: computation, we may 

say, is not answerable to cognitive science.

This line of argument, obviously, presupposes that the notion of implementation of 

a computational structure is unproblematic (i.e. that v-arguments are all not sound). 

In this work, as we said, instead, v-arguments are assumed to be sound.

It is, alas, one of the scandals of cognitive science that after all these years 

the very idea of computation remains poorly understood.23

It is reassuring, for my proposal, that comments like the one quoted above are

increasingly common in the literature. It is yet more reassuring to observe how,

unlike many contemporary “fundamentalists of computationalism”, as we may call

23 Clark [18], P. 159.
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those who refuse to discuss the possibility that computation might be ill-founded, 

some of the fathers of computationalism, like Pylyshyn, for example, acknowledged 

that the realization of a computation must depend on the instantiation of intentional 

properties, thus coming very close to the suggestion put forward in this work:

The answer to the question what computation is being performed requires 

discussion of semantically interpreted computational states.24

Notice that Pylyshyn assumes that computational states must be interpret-ed, 

over and above being interpret-able, for the objectivity of their implementation. Who 

is doing the interpreting?

Apart from mentioning occasions in the literature that support my thesis, however, 

here it shall not be possible to give a comprehensive answer to this a-priori worry. 

I can only advise that the reader bear with me till the end of chapter 4, where I 

shall dispel the pervasive idea that syntactic properties (such as the ones that ground 

computational properties) are intrinsic to their bearers25. This will allow me to make 

a positive case for a semantic view of computation. For now, I am only concerned 

with rejecting a-priori objections.

The objection under consideration is this. If my case for a semantic view of 

implementation proceeded from some difficulties of a computationalist theory of the 

mind in attributing content to mental states, then there would be something wrong 

with it. If computationalism proves inadequate as a theory of the mind, so bad for 

computationalism: why blame computations? An example of such bad arguments

24Pylyshyn [74], P. 58.
25e.g. the idea that the symbol string “2 +  2 =  4” has, among its intrinsic properties, that of being 

semantically interpretable as meaning 2 +  2 =  4, “whether or not anyone ever so interpreted it or 
even whether or not anyone with a mind ever existed”.
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would be the following:26

• Computational states are hypothesized to realize mental states (computation­

alism)

• Mental states are individuated semantically (i.e. by their contents). Hence:

• Computational states must be individuated semantically.

I do not object to this: I think the argument is inconclusive. This, however, does 

not constitute a case against my semantic view of computation. In this treatment, in 

fact, the version of mental state computationalism that is afforded by my notion of 

implementation is only mentioned in the last chapter to illustrate one of its virtues, not 

as an argument for its plausibility. My case for a semantic view of implementation will 

only proceed from considering a number of shortcomings of the current understanding 

of implementation: primarily the need to combat the unwanted proliferation of the 

models.

2.6.4 Symbols would not be “interpretable” if they couldn’t 
be individuated non-semantically

Arguments in favor of a “semantic view of computation” sometimes proceed from 

the observation that computations are individuated by the functions computed, and 

these are individuated semantically. A schema for these arguments is the following:

1. Computations are individuated by the functions they compute

26Piccinini attributes variants of this line of argument to Pylyshyn ([74]), Burge ([13]), Peacocke 
([65]), Wilson ([96], p. 161). I do not commit to his interpretation of these authors. Here I am 
concerned with mentioning and combating the potential counter-argument, regardless of whether 
someone has ever advocated a semantic view of computation on the basis of the fact that mental 
states axe individuated by their contents, or not.
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2. Functions are individuated by the pairs < domain — item , range — item > that 

are denoted by the inputs and outputs of the computation. Hence:

3. Computations are individuated by the semantic properties of their inputs and 

outputs.

I believe these arguments are either vague or inconclusive. Piccinini argues (rightly, 

I believe) that these arguments fail to acknowledge that functions can also be indi­

viduated by the pairs < input — type, output — type >, and that it is this latter 

means of individuation of functions that bears on the individuation of computations. 

But he goes on to argue (wrongly, I think) that computations can be interpreted as 

calculating functions because the pairs < input — tipe, output — type > can be seen 

as denoting the pairs < domain — item, range — item >, while they are themselves 

individuated non-semantically. Thus, it is concluded, for computations to be inter­

pretable at all, states, inputs and outputs must be individuated independently of their 

semantic properties: because “functional (non-semantic) individuation of computa­

tional states is a prerequisite for talking about their content” . The argument rests, 

I believe, on a wrong interpretation of the claim that symbols are “independent” of 

their meanings.

It is certainly true that symbols are independent of their meanings, but the only 

reasonable interpretation of this claim, is that the intended meaning of a symbol 

cannot be deduced by its intrinsic properties alone. As a consequence of this truism, it 

is possible that the symbols be individuated independently of their intended meanings 

(for example, we can individuate words of our language even without knowing what 

they mean). However, the point here is not whether it is possible in principle to 

individuate particular symbols by descriptions that do not mention (literally) any
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semantic property, but whether symbols can be so individuated from the standpoint 

of the computing machine itself, for the purpose of computation. The following 

example should help showing that Piccinini’s objection begs the question against the 

semantic view of computation.

Suppose I had never heard of numbers and arithmetics. You might well teach me 

to perform calculations (by complying with the appropriate syntactic rules), without 

telling me what these symbols (1, 2, 3... +, etc.) mean. The argument I am criticizing 

thereby concludes that a semantic view of computation is not viable. As I am not 

told what the symbols mean at all (they are meaningless to me), it is concluded that 

computational items need not be semantically individuated. However, showing that I 

would perform arithmetical operations in a way that is Turing indistinguishable from 

the way you do it, does not suffice. The semantic view of computation that I shall 

advocate in this work, in fact, does not presuppose that the “intended” semantic 

properties must be in place, but that some (any) isomorphic set of semantically 

evaluated items must be in place. In our example, for instance, my thesis would 

require that the inputs and outputs to my brain instantiate semantic properties that 

naturally denote the symbols that I deploy (“1”, “2”, “3”... “+ ”, etc.).

So it does not suffice to show that I can pass the Turing test without knowing 

about numbers. It must be further proved that I can compute without having any 

semantic capacity at all. The fact that ordinary calculators appear to pass the Turing 

test does not prove me wrong. In fact, I can argue that they pass the Turing test 

only relative to our representational capacity.

These lines are not intended to support the case for a semantic view of com­

putation, but only to make logical room for it. My point, here, is that the fact
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that functions can be individuated independently of the meanings of their input- and 

out put-types does not falsify my view of computation.

I think that the intuition driving this kind of argument against the semantic view 

of computation rests on a too “anthropomorphic”, chauvinistic view of epistemic 

capacities. The idea behind these arguments, in fact, is that symbols can be indi­

viduated by their shape (not meaning). This is certainly true, but I argue that the 

ability to discriminate symbol-types on the basis of their form, without mentioning 

what representational capacities are also in place, is almost vacuously instantiated. 

Another example should help to clarify my view.

I am able to type identify one-pound coins. If you ask me to sort the coins in my 

pockets over and over again, I will show to be able to systematically select the class 

of 1-pound coins. If you ask me how I do it, I would mention, among various things, 

the fact that I know what “one-pound coin” means. You could object that, as even 

a cigarette machine is able to type-identify one-pound coins, my resort to intentional 

capacities is unnecessary.

Notice, however, that the mere fact that there are systematic factual correspon­

dences between one-pound coins and a certain physical object (whether my brain or 

the cigarette machine), does not suffice for a perspicuous explanation. It could be 

argued, in fact, that virtually anything is systematically causally affected by one- 

pound coins in a way that can be described as “type identification” . The patterns of 

reflected light of a moving one-pound coin, for example, establish factual correspon­

dences with the chemical makeup of a film plate. The gravitational force of a coin 

also establishes factual correspondences with virtually anything else, etc. Sure these 

absurd examples are practically irrelevant, but practically irrelevant to whom? The
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point I am making here is that this “factual correspondence view” of discriminatory 

and individuation capacities, makes them too widely instantiated to be used in the 

understanding of non specifically human computation or cognition.

2.6.5 N ot all com putations are interpretable

Another potential objection, related to the one discussed above, proceeds from the 

observation that there are computations that are not amenable to a straightforward 

semantic interpretation. One such computation is represented by the following Ma­

chine Table27:

1

Q i 1, ?2, R @ <74 L

Q 2 1, <73, L 1, q 4 , R

Q 3 1, q u L 1, 9 3 , L

Q 4 1 , h , R 1, <75, R

Q b 1, q i , R q i R

The input architecture of this machine only possesses two symbols: @ and 1. Its 

internal structure comprises only five states: qi,q2, <73, <7 4 ,(7 5• If started in state q\ 

on a blank tape, in spite of its simplicity, the machine has been proved to halt after 

23,554,764 steps. Considering how simple the machine is, this result is rather remark­

able! What interests us here, is that this machine computes a function that appears 

to have no straightforward interpretation. What could 1 and @ be systematically 

interpreted as referring to, in order for the computation to make any sense?

I shall not here question this point: I am going to assume that this computation

27The discovery of this algorithm is due to J. Buntrock and H. Marxen, as cited by A. Wells in 
[94]. See section 6.6.2 for further comments on the workings of this Turing machine.
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is not amenable to any straightforward interpretation. I am going to ask, instead, 

what consequences the existence of this (and similar) machines has with respect to 

the semantic view of computation. The potential objection to my thesis, it should be 

clear, is that there appears to be an incompatibility between the claim that compu­

tational input architectures should be individuated semantically and the observation 

that there are computations whose input architecture is not even interpretable. The 

potential reductio ad absurdum would run as follows:

1. My thesis requires that the input architecture of computational systems be 

individuated by the properties on which the semantic properties of its inputs 

and outputs supervene.

2. If a system of symbols possesses semantic properties it is a fortiori interpretable.

3. There are computations whose input architecture is not systematically inter­

pretable. Hence:.

4. My thesis is reduced ad absurdum.

Piccinini, for example, mentions the Turing Machine considered above as a counter 

example to semantic views of computation. He concludes that these examples show 

that:

Sometimes it is useful to describe TMs without assigning any interpre­

tation to their inputs and outputs. [...] The identity of individual TMs 

is determined by their instructions, not by the interpretations that may 

or may not be assigned to their inputs and outputs. The whole mathe­

matical theory of computation can be formulated without assigning any
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interpretation to the strings of symbols being computed.28

I think these arguments ignore the most relevant fact: i.e. that if you did not 

understand, if you did not “see” that the marks or “1” that you have just read 

above, “refer” to input- and output-types, the argument could not be run. If v- 

arguments are sound, the only way to fix an intended model for the realization of the 

above computation is, I argue, by deploying semantic properties that are identical (or 

isomorphic) to the ones you have just deployed to interpret the Machine Table as a 

Machine Table. It does not suffice that you are able to type-identify @’s and l ’s by 

their shape. In fact, you are also able to type identify entities according to categories 

that cut across the ones to which @’s and l ’s belong in the computation above. For 

example, both @’s and l ’s are equally tall marks. If the relevant discriminatory 

criterion were height, the computation above would reduce to an instance of the 

identity function.

If v-arguments are sound, real physical systems are in no better position than the 

inert Machine Table above, when it comes to realize the computation.

It is precisely because they are semantically individuated that symbols can be 

interpreted as meaning something else. In sum: (1) nothing can be semantically 

“interpreted”, I argue, if it has not previously been semantically individuated (inter­

pretation requires that both what “stands in for” and what is to be stood in for, be 

represented); but this does not entail that (2) if a system of symbols is (essentially) 

semantically individuated, then it must ’be systematically interpretable in an “inter­

esting way”. The arguments that I criticized in this section only show that (2) is false,

thus leaving the logical space for my thesis intact. It should not come as a surprise

8̂Piccinini [68] p. 6.
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that not all computations are amenable to perspicuous interpretations. Expecting 

this to be the case, in fact, would be like expecting a random selection of words from 

an English dictionary to mean something.

But the fact that some (most) random selections of words do not mean anything, 

does not entail that words are not individuated semantically through their represen­

tations (the strings of marks). In the worst case, such as that of the Turing machine 

mentioned in this section, the representations that individuate the input architecture 

of a computational system will denote nothing but the physical properties on which 

the symbols themselves, and their ruleful manipulation, supervene. A reason for this 

(although a conclusive argument to this effect will have to wait till the end of this 

treatment), I believe, follows from the contrastive analysis that I have proposed in 

this chapter. Only mathematical dynamical systems are amenable to objective, non- 

semantic instantiations, because time dependencies, in spite of the arbitrary choice of 

measurement procedures, succeed in leaving certain systems out from their models.

The models of Im p(S ,A ), instead, need semantics to “finish up” the individua­

tion job (i.e. to ground the relevant relations of isomorphism, escaping the vacuous 

proliferation of the models).

2.6.6 How can connectionist networks compute?

An apparently paradoxical consequence of my treatment regards computation in con- 

nectionist and neural networks. Notoriously, computations in these models are per­

formed by the collective activity of several units (nodes), each of which computes a 

non-linear function of the linearly summed inputs from other connected units. Rep­

resentation in these models occurs, or better emerges (if it does occur or emerge at 

all) at the higher level of the pattern of activity of these units. This picture appears
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to require that computation and representation be two independent phenomena, for 

computation is thought to occur locally, while representation can be distributed over 

several units.

A consequence of my treatment, then, appears to be that connectionist models 

could not be considered as computing, contradicting what most advocates of con­

nect ionism claim. More precisely, the class of transformations of the activity of a 

computing unit that leaves the computation performed intact, according to our view, 

should be such as to ensure the maintenance of the representations input and output.

But what is input and output to a unit, according to connectionist models, are not 

representations, but non-symbolic numerical values of magnitudes. Notice, however, 

that the (numerical) function computed by each unit is not given by the unit’s physical 

properties alone, but is relative to the specifics of the activity of all other units. If 

a neuron, for example, took a year to respond according to the function that it is 

allegedly computing, it would count as a non-firing unit. So, to decide whether a 

neuron is or isn’t implementing a certain timeless function, we must check what are 

the consequences of its activity with respect to the activity of other units. Ultimately, 

to judge whether a single neuron is implementing a function or not we must fix what 

the whole network is thought to be computing.

Now, at this level, representations may or may not be input and output, depending 

on objective matters of fact such as the ones discussed above. According to my 

intentional theory of implementation, if there are representations input and output 

to the network at this level, then we can check whether a certain computation is or 

isn’t being implemented, and relative to this we can judge where a neuron is or isn’t 

computing its function. If, instead, there are no representations input and output,
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or if there are representations whose maintenance does not match the constraints 

that support the computation, then the connectionist network is nothing but an 

approximation to the underlying dynamical system instantiated, and the architecture 

proposed is, in this case, strictly speaking, dynamicist.29

2.6.7 Im plem entation must make room for m ultiple realiz­
ability

Another potential a-priori objection to my proposal is the following: not only would a 

random restriction be arbitrary and uninformative, but it would also make computa- 

tionalism devoid of its explanatory capacity. Part of the allure of computationalism, 

in fact, is that it is compatible with functionalism: computational properties only 

require physical properties, but no particular physical property, to be instantiated 

(neurons, for example, couldn’t be argued to implement the same identity function of 

our example, if we restricted the set of candidate label bearers to voltages in copper 

wires).

If we restricted the set of candidate realizing tokens to a certain kind of physical 

states or variables (for example to certain voltages in metal wires), the generality of 

v-arguments would be blocked: maximal states, and their arbitrary groupings, for 

instance, would be a priori excluded from our candidate implementations of com­

putational states. But Turing’s analysis of computation was devised precisely to 

abstract away from non-essential features: the particular physical properties of the 

computer, Turing thought, are totally irrelevant in determining what operation is

29It should be noted that the theory of implementation that I shall develop in the course of this 
work, does not provide arguments in favor or against computationalism as such: it just provides the 
correct grounds on which to judge whether an architecture is computationalist or not. Whether our 
mind is or isn’t computational, and to what extent it is, if it is, then, is left to empirical findings to 
say.
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being computed. An arbitrary restriction of the candidate labelling schemes would 

contradict these desiderata. Isn’t then my proposal to restrict the input label bearers 

to intentional items a-priori inadequate?

Let us take a closer look at this alleged problem. The argument seems to be the 

following:

1. Computational properties must be (in principle) implementable by any kind of 

physical properties.

2. Any restriction of the set of candidate label bearers to a particular sub set 

(individuated semantically or otherwise) would leave some kinds of physical 

properties out as a-priori illegitimate.

3. It follows that no a priori restriction of the set of candidate label bearers can 

be built into the notion of implementation.

I argue that 2. is false, hence 3. doesn’t follow. Given a certain set of physical 

entities J5, in fact, a restriction of it to a subset Bi can be obtained in two ways: 

(1) by specifying the intrinsic properties of an entity that are necessary and sufficient 

to belong to f?i, or (2) by specifying the relational properties of an entity that are 

necessary and sufficient to belong to B\. For example the set B of all classical physical 

bodies can be restricted to B\ in the following two ways:

(a) A physical body belongs to B\ iff its mass is mo; or

(b) A physical body belongs to B\ iff its weight is mo (where the weight of a body

is the total gravitational force exerted on it from all other bodies in B).
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Notice that while restriction (a) a priori excludes all elements of B  whose mass is 

different from mo, restriction (b) doesn’t. Any element of B, in fact, can in principle 

be made to weigh mo kilograms, its weight depending on the spatial distribution of 

all other elements.

Accordingly, I shall call a restriction of a set of physical entities B  to a subset 

B\ an intrinsic (extrinsic) restriction if the necessary and sufficient conditions for an 

element of B  to belong to B\ are some intrinsic (relational) physical properties of it.

Point 2, in the pseudo argument above, is only true of intrinsic restrictions. All 

that the principle of multiple realizability requires, in fact, is that no particular kind 

of physical property is excluded a priori from implementation. This entails that if, 

as we have hypothesized, we are to render the notion of computation objective by 

restricting the set of candidate input label bearers (CILB henceforth) to represen­

tational items, the naturalized theory of representation adopted must be such as to 

induce an extrinsic restriction on the set. In other words, the properties suggested 

for an individuation criterion must be extrinsic, relational properties.

Having prepared the ground for our general strategy, and bearing in mind the 

relevant constraints, we shall now set out to discuss how it can be made explicit and 

how specific theories of semantics can be used to make of it a concrete proposal.



Chapter 3

Intentional theories of 
implementation and their pattern  
of failure

3.1 Introduction

The proposal put forward at the end of the last chapter, that the honest labelling 

scheme should restrict the set of candidate label bearers for the input architecture 

of computational structures to intentional items, is nothing more than a working 

hypothesis.

Firstly, in fact, I have provided no compelling reason why semantic properties 

(rather than some other class of properties) should play in the notion of implementa­

tion the role that measurements play in the notion of instantiation of mathematical 

dynamical systems.

Secondly, unless we specify what properties semantic ones supervene on, my pro­

posal would amount to explaining an ill-understood class of properties (real compu­

tations) on the basis of an even foggier one (intentional properties). Having defended 

my proposal from a priori objections, has only made logical space for it, but does not

98
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add anything to its plausibility.

The purpose of this chapter is to argue that the proposal is indeed very plausible. 

As there appears to be no agreement yet about what properties intentional ones 

supervene on, however, I had no option but to try my proposed on various theories of 

semantics. My heuristics, then, will be the following: try the proposal on a number of 

theories of intentionality and test it against the consequences of doing so for a theory 

of implementation. The result, then, will be a different theory of implementation for 

each theory of intentionality that is applied to my proposal. I call such potential 

theories of implementation: intentional theories of implementation.

The idea behind this heuristics is that, if some of these intentional theories proved 

to comply with the desiderata of a theory of implementation, this would provide 

a-posteriori grounds for the plausibility of my proposal.

Unfortunately, this will have to wait till the next chapter: the theories of inten­

tionality considered here (section 3.2), in fact, shall all prove to fail. As I think I 

already know what kind intentional theory of intentionality can be successfully ap­

plied to my proposal, one may wonder why I should lead the reader into a series of 

failed experiments.

The reason for doing so is two-fold. For one, the intentional theories of implemen­

tation discussed in section 3.2, as we shall see, present a pattern of failure (correspon­

dent to the pattern of failure of the respective theories of intentionality deployed) that 

is suspiciously similar to that of orthodox theories of implementation. This, for rea­

sons to be discussed, provides indirect ground for my proposal of building intentional 

properties into the notion of implementation.
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Secondly, and most importantly, this pattern of failure exposes the implicit com­

mitment of orthodox theories of implementation to syntactic intemalism: the thesis, 

I repeat, that syntactic-computational properties supervene on intrinsic properties of 

the candidate implementing object.

The pattern of failure is the following. Where a theory of implementation (or a 

theory of intentionality) characterizes its models on the basis of structural isomor­

phisms alone, it is argued to pose vacuous constraints, or to deploy surreptitiously 

semantic capacities: i.e. it appears to be unable to rule out unintended models (sec­

tions 3.2.1 and 3.2.3). On the other hand, where a theory of implementation (or a 

theory of intentionality) adds further requirements in the attempt to block unwanted 

models, it is argued to be too restrictive: i.e. to not comply with the desiderata of a 

theory of implementation (intentionality): section 3.2.2.

None of naturalization proposals currently on offer are successful. We 

have seen a pattern to their failure. Theories that are clearly naturalistic 

fail to account for essential features of semantic properties [...]. In at­

tempting to avoid counterexamples semantic naturalists place restrictions 

on the reference (or truth condition) constituting causes or information.

But in avoiding counter examples these accounts bring in, either obvi­

ously or surreptitiously, semantic and intentional notions and so fail to be 

naturalistic.1

Recall that I wish to argue that: first, (1) if v-arguments are taken to be sound,

1Loewer, [53], p. 121. For a treatment of this problem in Conceptual Role Theories of semantics, 
see Eliasmith ([29]), Block ([10]), Field ([32]), Lycan ([55]), and Fodor and Lepore ([38]). As 
for Causal Theories of Semantics: Stampe ([87]), Dretske ([26]), Millikan ([58]). For Teleological 
Theories see: Millikan ([58]), Millikan ([59]), and Bickhard ([8]).
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computational realism presupposes that semantic properties are (really) instantiated 

by the implementing system.

Second, (2) that the necessary semantic properties cannot supervene on intrinsic 

properties of the implementing system alone. The fact that the only potentially vi­

able theories of implementation (intentionality) are argued to make a surreptitious 

deployment of intentional capacities, provides ground for the first claim: my pro­

posal, in fact, can be thought of as a move to render the surreptitious deployment of 

intentional capacities explicit.

But why do isomorphism theories systematically fail to fix their intended models 

(I call this unwanted feature: the isomorphism catastrophe)?

The second part of this chapter (section 3.3), aims at providing an answer to this 

question. The analysis concludes that syntactic internalism is to be held responsible 

for the isomorphism catastrophe, thus providing ground for the second claim above, 

as promised. The conclusion is drawn from a critical analysis of two arguments that 

exploit the isomorphism catastrophe to reduce ad absurdum the respective isomor­

phism theories: Newman’s objection to Bertrand Russell’s causal theory of perception 

(section 3.3.1), and Putnam’s model theoretic argument against metaphysical realism 

(section 3.3.2). I show that both arguments are implicitly committed to an internalist 

view of syntactic properties (section 3.3.3).

I argue, consequently, that they should be thought of as a reductio ad absurdum 

of syntactic internalism.
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3.2 The failure of intentional theories of im ple­
mentation

3.2.1 Conceptual role theories o f im plem entation

It has always been natural to construe meaning (semantics) as some kind of rela­

tion between language (representations) and the world. However, concerns about 

“Fregean” cases (expressions referring to the same thing in the world while having 

different meanings), led some to argue that the content fixing conditions are to be 

looked for within language itself. What fixes the meaning of an expression, according 

to these internalist views, is not some actual relation between that expression and 

some fact of the world, but rather the role the same expression has with respect to 

other expressions in its language. Similarly, the candidate label bearers of compu­

tational states (within a state-to-state correspondence view of implementation), are 

determined by their reciprocal causal roles, rather than by some actual relation ob­

taining between each of them and their implementing counterparts. This approach, in 

the case of semantics, is sometimes called “conceptual role semantics”, and it comes 

in a variety of versions.

If one of these theories successfully naturalized intentional properties, then our 

solution to the problem of implementation (a “conceptual role theory of implementa­

tion” , in this case) would amount to requiring that the input labelling scheme mapped 

abstract inputs and outputs onto conceptual roles. The abstraction from the physical 

level to the computational one would be grounded by the requirement that variations 

within the required amount of tolerance do not disrupt the intentional status (or 

meaning) of the conceptual roles of the input label bearers: that is, we would require 

that the role of the implementing input or output with respect to other possible inputs
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and outputs be robust enough to be maintained under any physical transformation 

allowed by the computational abstractions.

Notice how this would allow us to preserve the internalism of state-to-state corre­

spondence theories of computation, as both computational states, and the intentional 

properties on which these must be grounded would supervene on intrinsic properties 

of the implementing system itself.

What I here call “conceptual role theory of implementation” should not be thought 

of only as a fantasy case invented to proceed with my argument. One of the first 

philosophers in the computationalist camp to systematically worry about mental con­

tent , Gilbert Harman, in fact, devised a theory of the mind that combined Computa­

tional Functionalism about mental states with a Functional Role theory of semantics2. 

In his account, unlike the fictitious theory of implementation under discussion here, 

there was a virtuous division of conceptual labor between the two theories: on the one 

side, computational roles implemented the functional roles that instantiated semantic 

properties. On the other side the mental states, individuated by the computational 

roles of their realizers, were provided with content by the very fact that they instan­

tiated the relevant functional roles.

Such division of labor presupposes that (1) functional and computational roles can

be individuated independently form each other and (2) each of them can be objectively

realized by the same properties of the implementing systems alone. Although we

have, and will further criticize these assumptions, Harman’s theory is doubtlessly

very elegant: it is internally consistent, and conceptually very economic. What is

relevant here, is that if either the thesis that functional role suffices for content, or the

2 Harman [44].
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thesis that computational roles can be individuated non-semantically wiere dropped, 

Harman’s elegant construction would become circular.

As I shall argue, both theses must be dropped, for very similar reasons. I have, 

and will further argue against the thesis that computational roles can be individuated 

non-semantically. Here I deal with the second thesis.

Among the difficulties that conceptual role theories of semantics (like all other 

internalist proposals) must face, the only one that need interest us here is that the 

conceptual role of a representation fails to fix the appropriate relations with facts of 

the world. The meaning of an expression, together with the appropriate knowledge 

about the world, in fact, must ensure that the reference of that expression is fixed. 

The fact that the conceptual role of a representation is independent from the world 

has led some to argue that such theories are a priori inadequate to foot the bill. The 

sole information that there exists an isomorphism between a conceptual structure 

(for example the inferential structure of a net of beliefs) and the relational structure 

of facts obtaining in the world, is insufficient to fix the truth conditions of each 

conceptual role. We are looking for the truth conditions (a model) for R e f  (P, Si): 

the intentional relation that obtains between a physical system in a certain state (Si) 

and a proposition (P).

The concern that is being voiced here can be expressed by saying that if the 

only condition that we postulate is that the state of S (I) can be mapped onto P by 

a function that establishes an isomorphism between the structure of S and that to 

which P belongs, then the sentence Ref (P , Si) has too many models. As we want 

our condition to fix content, this proliferation of models is fatal for the proposal. The 

case of European geography mentioned in the last chapter is a good example of how
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things could go astray in fixing the relevant model.

Many authors, moreover, consider inferential roles, and their semantic proper­

ties, as part of the explanandum, so they see conceptual role theories as circularly 

presupposing the existence of states endowed with intentional properties.

To be told that a state or structure has the semantic content that P if it 

plays the same inferential role as my belief that P plays in my cognitive 

economy is to leave one wondering what make my neural structures play 

an inferential role or participate in a cognitive economy.3

Notice how this problem (the proliferation of models) is the same that state- 

to-state theories of implementation have been argued to be subject to. The same 

isomorphism catastrophe that haunted state-to-state correspondence theories of com­

putation, now threatens to make conceptual role theories of intentionality vacuous. If 

this cannot be overcome, a conceptual role theory of implementation, or any purely 

internalist theory of implementation, would be infected by the isomorphism catas­

trophe of its label bearers, thus failing to block v-arguments. As we shall see, this 

reappearance of the isomorphism catastrophe, is no accident.

Many conceptual role theorists4 acknowledged the impossibility to fix truth condi­

tions on the base of conceptual roles, and conceived theories of meaning (dual-aspect 

semantics) according to which there must be a component that accounts for the re­

lations between representations and the world. Again, this requirement seems to 

demand a double bill that cannot be payed. Fodor and Lepore, in their critique of

Block’s two-factor theory of semantics, put it this way: “we now have to face the

3Dretske [25], p. 59.
4 See for example Block [10], Field [32] and Lycan [55].
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nasty question: What keeps the two factors stuck together? For example, what pre­

vents there being an expression that has the inferential role appropriate to the content 

4 is a prime number but the truth conditions appropriate to the content water is 

wet?"5. In short, the aspect that takes care of the inferential role is (and should be) 

totally irrelevant when it comes to fix the truth conditions of the externalist aspect 

(their independence is precisely the allure of dual-aspect theories). As a consequence, 

the fact that they are systematically matched in the right way stands, again, in the 

need for an explanation.

Things being so, the possibility to apply dual-aspect semantics to an intentional 

theory of computation entirely depends on what grounds the semantic properties 

of the externalist aspect. The dual-aspect semantics manoeuvre, without further 

specifications as to how the externalist aspect fixes content, and how the two aspects 

are kept together, is thus inapplicable for our purposes.

3.2.2 Causal theories of im plem entation

If abstract, formal properties (e.g. correspondence in an isomorphism relation) are 

unsuitable for fixing the models of our theories of semantics, why not looking at some 

more “mundane” constraint, such as at the physical causes of representations.

There is in fact another influential understanding of representations that concen­

trates on their causes. Can we indicate some physical condition that is sufficient 

to fix the content of representations? Attempts to explain the content of (mental) 

representations by referring to the external conditions that cause them are known as 

“causal theories of semantics”. They can be seen as the natural enemy of concep­

tual role theories of intentionality. If representation-tokens of type I are always and

5Fodor and Lepore [38], p. 170.
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only caused by events of type C, than the semantic properties of I, i.e. the fact that 

they represent C’s, supervene on the fact that C’s cause I’s. If one such theory of 

semantics succeeded, then our correspondent proposal would be an intentional theory 

of implementation that mapped the input architecture onto items that stand in the 

appropriate physical relations with their causes.

Natural signs are promising candidates for a non observer-relative, content-fixing 

causal condition. An expanding metal indicates (proto-) means that temperature is 

rising; it does so whether or not an external observer acknowledges the fact. A ringing 

door-bell (proto-) means that there is someone at the door; it means so even if there 

is no one at home to appreciate that.

Unfortunately, representations must be able to misrepresent: they must indicate 

their truth conditions independently of whether these obtain or not. The problem 

for a crude causal theory of semantics (a problem often called the problem of error), 

then, is this: if the necessary and sufficient condition for I’s to represent C’s is that 

C’s cause I’s, then if R mistakenly represent something (that is not in the intended 

extension of C’s) as a C, this something is also (by definition) a C. A way to express 

the problem is saying that the crude causal theory does not leave any logical space 

for error, for any candidate error is turned into a non-error by the very fact that it 

has occurred. This crude causal theory manoeuvre, then, avoids the isomorphism 

catastrophe at the price of failing to achieve sufficiency: again no one appears to foot 

the double bill.

Although no one has ever really advocated a crude causal theory of semantics, 

thinking of it serves the purpose of exposing clearly the problem of error, which all 

causal theories have been argued to be incapable to solve. It is instructive to think
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about what the failure to solve the problem of error would entail for a causal theory 

of implementation. According to a crude causal theory of semantics, we have seen, for 

an item I to represent something it is sufficient (and necessary) that that something 

causes I. As a consequence, the labelling scheme that is afforded by a causal theory 

that does not make room for error, would map inputs and outputs onto some intrinsic 

properties of the representations. There would be no way, in fact, to tell “right causes” 

apart from “wrong causes”, so that the constraints imposed by causal theories for an 

item to be representational R e f (Si, P)) would boil down to requiring that the system 

enters a particular physical state (I), independently of what relations hold between I 

and other similar items in S.

But we have seen (section 2.5.7) how a minimal requirement for our proposed 

solution to be applicable is that the restriction of the candidate input label bearers 

be based on non-intrinsic properties.6 As a consequence, causal theories of semantics 

as we know them do not appear to be suitable for our purpose.

3.2.3 Isomorphism theories o f im plem entation

In the first part of this treatment I discussed some difficulties in grounding the notion 

of implementation onto some suitable (non observer-relative) notion of structural 

isomorphism. The story that was told in the previous sections can be summarized as 

follows. The computationalist stance has been seen by some to suffer from a tradeoff: 

in order to avoid vacuousness (i.e. to fall victim of the isomorphism catastrophe), it 

must constrain its implementations so as to block arbitrary realizations; but theories

6Of course if a theory of semantics doesn’t make room for error, that theory is not a theory of 
semantics after all, so it would not even be a candidate for the labelling scheme of an intentional 
theory of implementation. But as there is not yet an agreement about where it is best to look for a 
naturalized theory of semantics, it is instructive to test our intentional theories of implementation 
on as many available naturalization proposals as possible.
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that appear to succeed at that can be argued to make a surreptitious deployment of 

semantic properties. On the other hand, in order to avoid a chauvinistic conflation 

of computational properties with physical properties of the implementing medium, it 

must not constrain its implementations too much; but theories that comply with this 

desideratum have been argued to place vacuous constraints. The alleged problem is: 

there doesn’t seem to be a notion of implementation that foots the double bill.

Interestingly, there are in the literature attempts to provide a theory of represen­

tational content on the base of structural isomorphisms. It can be argued, however, 

that, just like their counterpart state-to-state correspondence theories of implemen­

tation, such accounts either surreptitiously avail themselves of a non naturalized 

observer, or they are subject to the isomorphism catastrophe. Cummins’ account 

of misrepresentation ([21]), for example, explains the robustness of representational 

content (thus apparently solving the problem of error) by introducing the notion of 

target. Representations have a “target” (which is the element that is invariant un­

der misrepresentation), to which they apply. Misrepresentations are accounted for as 

cases in which a representation is applied to a target with respect to which they are 

false. True representations are accounted for by resorting to the notion of structural 

isomorphism.

The paradigmatic example is that of a toy car running in a maze. The turns of the 

car (its wheels) are regulated by a peg that slides in a card that is inserted into the 

car; such card is “read” by moving the card through the position of the peg. Different 

cards represent different mazes; the content of these representations is fixed by the 

slot pattern. Representation is successful when the slot pattern is isomorphic to the 

maze. In this case the card guides the toy car through the maze. Misrepresentation
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happens when such structural isomorphism does not hold. In these cases, although 

the content of the representation is robustly the same, the car doesn’t get through. 

It has been objected that

The normativity in this example [...] is carried under the assumption 

that the car is supposed to run through the maze, and that assumption 

is made by the observer, not by the car. If the goal were to hit the wall 

of the maze at a certain point, then the card that gets the car through 

the maze would no longer be correct. [...] Cummins assumes that the 

notion of structural isomorphism is relatively unproblematic, but it is in 

fact seriously problematic. There is no “fact of the matter” about what 

the relevant structure is in any material entity. Suppose that the card 

inserted into the car were not “read” by a peg in the slot, but rather, by 

a head responding to the pattern of magnetic domains along the edge of 

the slot. Now the slot pattern per se is irrelevant. 7

We have, once again, switched from a position that fails to achieve sufficiency (in 

that case by not being able to solve the problem of error) to one that is made hostage 

of the isomorphism catastrophe.

If this problem cannot be amended, an isomorphism theory of implementation 

would suffer, predictably, from the very same problem which our intentional theories 

of implementation were devised to solve: it would either be subject to the isomorphism 

catastrophe, or it would surreptitiously deploy non-naturalized semantic properties 

to achieve sufficiency.

7Bickhard [9], pp. 9-10.
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3.3 Preliminary diagnosis: the source of the iso­
morphism catastrophe

3.3.1 N ew m an’s argument

We have proposed to block the isomorphism catastrophe in theories of computation 

by imposing that the input label bearers possess naturalized intentional properties. 

Now we find ourselves again in troubles, for the catastrophe seems to have come in 

again from the back door: many proposals to naturalize semantics seem to be hostage 

to the very same dilemma. Where do isomorphism catastrophes originally stem from?

Concerns about the lack of informativity of structural isomorphisms are not new in 

the philosophical literature. A precursor of all arguments hinting at the isomorphism 

catastrophe, in fact, dates back to the beginning of last century, and can be considered 

the father of all v-arguments.8

In 1927 Bertrand Russell claimed that “wherever we infer from perception, it 

is only structure that we validly infer; and structure is what can be expressed by 

mathematical logic”9. To this, a friend and colleague of Turing’s, Max Newman, 

contested that: “no[] information about the aggregate A, except its cardinal number, 

is contained in the statement that there exists a system of relations, with A as field, 

whose structure is an assigned one. For given any aggregate A, a system of relations 

between its members can be found having any assigned structure compatible with the 

cardinal number of A”10. Russell later conceded that this is indeed the case.

It is worth taking a quick look at Newman’s argument. Having decided that it is

8A more recent, related line of argument is Putnam’s model-theoretic refutation of metaphysical 
realism, to be discussed in the following pages ([71]).

9Russell [75], p. 254.
10Newman [64], p. 140.
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rational to believe in an external world (at the expense of “solipsism” and “phenome­

nalism”), Russell was in the business of enquiring what knowledge, if any, we can have 

of it. The “external world”, as conceived of by Russell (in that work), consists of all 

and only unperceived causes of our perceptions (of all our actual as well as possible 

perceptions). Russell concluded that, if no direct (by acquaintance) knowledge can 

be achieved of such causes (on pain of contradiction), nevertheless we can achieve in­

direct (inferential) knowledge of them. The only kind of knowledge that we can have 

of the unperceived causes of perception is, according to Russell, “structural”: i.e. it is 

knowledge of the structure of relations that obtains between the unperceived causes. 

Of such relation, Newman claims, “nothing is known (or nothing need be assumed to 

be known), but its existence”. Russell takes, it is conceded, the generating relation 

to be “causal continuity”, i.e. the fact that events close to each other'in a spatial 

map of the structure of relations are to be taken as representing unperceived events 

that are “causally continuous” to each other. However, Newman continues, “if Mr. 

Russell’s principles are to be upheld this statement must be merely the definition of 

causally continuous: if  anything were directly known about its nature we should know 

something not structural about the external world”11

The form of our alleged knowledge of the external world, in Russell’s own words, 

is that we know that “[t]here is a relation R such that the structure of the external 

world with reference to R is W ”.

Newman’s objection is that:

Any collection of things can be organized so as to have the structure W,

provided that there are the right number of them. Hence the doctrine

11ibid. pp. 144-145.
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that only structure is known involves the doctrine that nothing can be 

known that is not logically deducible from the mere fact of existence, 

except ( “theoretically”) the number of constituting objects. 12

The argument rests on the claim that: 11 given an aggregate A, there exists a sys­

tem of relations, with any assigned structure compatible with the cardinal number of 

A, having A as its field”. Clearly, then, the universality of the argument rests on the 

assumption that no restriction (intrinsic or extrinsic) be placed on the potential gen­

erating relation. The relation, in other words, must be understood in its most general 

sense: a relation is the class of all sets (x i,x 2, ...xn) satisfying a given propositional 

function <j){xi,x2, ...xn).

For example, given any four objects (this is Newman’s example): a, a, (3 and 7 , 

a relation that holds between a and a, a and (3, a and 7 , but no other pairs, is the 

set of all couples x and y, satisfying the propositional function: x is a, and y is a, (3 

or 7 . As this propositional function is satisfiable by any set of four objects, the claim 

that four objects are the field of a structure of relations as the one assigned above is 

totally uninformative. As this is true for any aggregate of entities and any assigned 

structure of relations, Newman concludes that structural knowledge is no knowledge 

at all.

The argument can only be combatted by restricting the set of propositional func­

tions that count as “real” , or “relevant” relations (or “honest relations”, in our ter­

minology) : for example by restricting the domain of possible relations to “real” as 

opposed to “fictitious” relations, where a “fictitious” relation is one ilwhose only prop­

erty is that it holds between the objects that it does hold between” (such as the relation

12ibid. p. 144.
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of the example above). As Russell is describing what knowledge we can have of the 

external (real) world, restricting ourselves to real relations is a respectable move after 

all.

This restriction, however, succeeds in combating the argument only in so far as 

it cannot be argued that, given a structure W of real relations between the elements 

of a given aggregate A, there is a system of real relations between the objects of A 

having any assigned structure W\. In other words, the restriction to real relations 

blocks the argument only if the argument cannot be shown to apply to structures of 

real relations as well. But, Newman argues, things are precisely so.

Consider, in fact, an aggregate A and a structure of real relations between its 

elements (W) that is supposed to be known. The structure provides us with all 

necessary means to name the objects of the aggregate (each object can be given the 

same name as its correlate in the map corresponding to W).

Consider again, for example, the case of the four objects. The structure generated 

by the “fictitious” relation “x is a, and y is a, /? or 7 ” can be also generated by the real 

relation: “denoted by letters of different alphabets”. So, it appears, for any structure 

W generated by a fictitious relation R  there is a real relation Rr that generates the 

same structure. Hence the restriction to real relations does not suffice to block the 

argument. .

Other attempts to restrict the candidate implementing relations (for example one 

based on the distinction between “important” and “unimportant” relations, much 

alike to the notion of honest models in Copeland’s treatment) are argued by New­

man to be equally insufficient. The pattern to the failure of all such attempts is the 

following:
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1. We hope to block Newman’s argument by restricting the set of candidate rela­

tions from R (the set of all possible relations) to C, the set of “honest” relations.

2 . The “honesty” of C’s, however, ought to be judged using the only information 

we have about unperceived events.

3. But the sole information that an aggregate is the field of a structure of relation 

W is compatible with any allegedly honest further information about the nature 

of the generating relation. Hence:

4. No proposed restriction of R is suitable for blocking Newman’s argument.

Notice that Newman suggests that structural theories of perception all suffer from 

a double bind that is very similar to the one we have already discussed in the cases of 

the theories of implementation and intentionality. In his own words, the double bind 

can be expressed as follows:

The argument that has here been used [...] proceeds from a denial that 

there is a classification of relations [...] with these properties: a) the 

classification is applicable to relations between unperceived events; b) if 

C is the class to which the generating relation of the world-structure W is 

held to belong, it cannot be logically demonstrated that there is another 

relation of the class C that generates an assigned structure Wi. 13

We are now in the position to express an a-priori concern about such approaches

along the lines of Newman’s argument. The information that the represented is

13ibid. p. 147.
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“isomorphic” to the representation, in fact, provides us with no information about 

the represented, hence about what the world should be like for the representation to 

be “true” (or false). We have seen how, if no restriction is placed on the generating 

relations, the claim that a domain is isomorphic to the representing one is totally 

uninformative, hence unsuitable to ground semantic notions (such as “true” , “valid”, 

or “correct”).

The only way to make isomorphism informative would be to restrict the class of 

generating relations so as to leave all unwanted instantiations out. However, it can 

be argued, following Newman’s analysis, that this would be a solution only if we can 

give a principled way to distinguish “honest” from “dishonest” relations in such a 

way that:

1 . the classification is applicable to relations between non-representational events 

(i.e. between non semantic, natural properties) and

2 . if C is the class to which the generating relation of the represented domain- 

structure W is held to belong, it cannot be logically demonstrated that there is 

another relation of the class C that generates an assigned structure W\

Before concluding our digression, it is worth to notice that the double bill that 

v-arguments claim is impossible to pay can be rephrased as follows:

It is impossible to distinguish in a principled way “honest” from “dishonest” mod­

els of the implementation relation in such a way that:

1 . the classification is applicable to physical, non-computational structures and
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2 . if C is the class to which the generating relation of the real physical structure 

W is held to belong, it cannot be logically demonstrated that there is another 

relation of the class C that generates the same structure W having as field any 

assigned (sufficiently complex) aggregate A.

I argue that the difficulties that the theories of computation encounter in paying 

such double bill are inherited from the symmetric double bind that haunts many 

implicit understandings of intentionality (on which, we have argued, real computation 

must be grounded). This treatment of the isomorphism catastrophe is also apt for 

further justifying the proposed solution: semantics, like measurements in physics, 

provide us with a non-structural, direct fink between the abstract model and the 

represented domain.

3.3.2 Putnam ’s m odel-theoretic argument

There exists in the literature a contemporary, model-theoretic argument hinting at 

the isomorphism catastrophe. It is due, unsurprisingly, to Putnam, and goes under 

the name of model-theoretic argument against metaphysical realism. We have seen 

how, if Newman’s objection to Russell’s theory of perception were sound, knowledge 

of structure would be no knowledge at all. This is because the alleged object of such 

knowledge (the model of the theory, we would say today), is radically undetermined.

Putnam’s version of the argument entails, as one of its consequences, a denial that 

any descriptivist theory of reference could ever succeed in supplying content-fixing 

conditions. It goes without saying that accepting the conclusion Putnam draws from 

this argument would radically undermine my strategy for solving the problem of im­

plementation: an obvious consequence of the argument is, in fact, that no naturalistic
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theory of intentionality could ever succeed.

The similarity between this argument and the v-argument against the state-to- 

state theory of implementation which our treatment was devised to combat is strik­

ing, so the argument is particularly apt for further corroborating the overall claim 

that computation cannot be naturalized unless intentionality can be naturalized too. 

Recall that Putnam’s v-arguments to the effect that any object S' is a model for 

Im p(S,A ), for any automaton A, proceeds from the claim that, (1 ) given any au­

tomaton and any object, there always is an non-intended model and, (2 ) there is no 

principled way to tell which is which by adding suitable constraints to the theory.

Similarly, Putnam’s model-theoretic argument proceeds from the claim that, (1) 

any sufficiently complex theory (in the sense in which the term is used in mathematical 

logic) has non-intended models and (2 ) there is no principled way, no amount of 

additional information (not even physical information), to determine which one is 

the intended model. If such additional information is the physical information that 

would allegedly be necessary and sufficient to fix the content of representation (the 

information provided by a perfect naturalistic theory of intentionality), then the result 

leads to a reductio ad absurdum: the “supertheory” comprises all the information that 

is sufficient to determine the reference of its symbols (ex hypothesis), but it is still 

insufficient to fix its intended model (i.e. its content). We can conclude that the 

sufficient information added was not sufficient, contradicting the hypothesis. Hence 

no naturalized theory of intentionality can, in principle, achieve its own goals.

The argument consists of an extension of Sk"tern’s theorem . 14 Recall that Sk 'tem’s 

theorem leads to an apparent paradox (known as Sk"tern’s paradox). We would like

14What follows refers to the version proposed by Putnam in [72].
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any model of a theory of real numbers to map the expression “the set of real numbers” 

to the actual set of real numbers: naturally, we would like a theory of something to 

be about that something.

As we have seen, however, any satisfiable theory has a countable model which 

comprises, of course, nothing but countable sets. In this model, therefore, the ex­

pression “the set of real numbers” cannot refer to the set of real numbers (which, by 

Cantor’s theorem, is uncountable). Moreover, the presence in the theory of a sen­

tence like “Card(R) > Card(N)” (Cantor’s theorem) is of no help in identifying the 

intended model, for it holds true in all the models, whether countable or not.

The naturalist’s move, at this point, is to claim that if the natural conditions 

that instantiate the intentional relation (R e f(“R”,R), in our case) were added to the 

theory, this would suffice to determine that when the theory of real number mentions 

“real numbers” it refers to real numbers, and not to some other non-intended set.

Putnam’s model-theoretic argument aims at blocking (a priori) any such move. 

The “trick” is to show that also sentences that appear to be empirically decidable are 

bound to be under-determined as to what is the intended model that satisfies them, 

even if all the relevant physical information is provided.

The sentence used for the proof is about sets as understood from the perspective 

of set theory. There is an ongoing, old debate about the nature of sets. G’del proved 

that a model for set theory as we know it (axiomatized by ZF, for example) com­

prises nothing but “constructible sets”. These are all the sets that can be recursively 

constructed out of simpler sets, according to fixed rules. 15

15A more intuitive way to define constructible sets is as sets that can be outputted by a transfinite 
computation: this is an ordinary Turing machine computation but with a tape of arbitrary ordinal 
length and arbitrary ordinal time in which to operate on it.
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The question is whether the class of all such sets (L) exhausts the class of all sets 

(V), i.e. whether there exist sets that are not constructible.

It has been proved, moreover, that the question cannot be settled from within set 

theory itself, for the axioms of set theory are independent from L = V. Thus there 

are models of ZF set-theory in which L = V  is satisfied and others in which it is 

not. Now, either there actually are non-constructible sets, or there aren’t. Again, 

we would like set theory to be about real sets, so, if a theory has both a model that 

satisfies L = V  and a model that satisfies L  ^  V, then, depending on whether there 

actually are non-constructible sets or not, the intended model must be that which 

corresponds to the “truth” (like the intended model of real number theory is that in 

which the set R  is, really, uncountable).

There is, it appears, a way to discover the “truth”. Imagine a machine that 

constantly measures some physical magnitude (any magnitude would do) and outputs 

its results every second or so. Imagine, further, that such machine never stopped, 

for an infinite amount of time. The set thus produced, let us call it X , is clearly not 

constructible. Aha! So there are non constructible sets after all! Then it should be 

easy to tell an honest model from a non-intended one: if a model does not contain 

X  and all its unconstructible classmates (whose existence we have “proved”), then it 

cannot be an intended model. So it would appear that requiring that X  be in the 

models, as an additional constraint to standard set theory, should select the intended 

model.

However, Putnam thinks that it can be proven that even a theory of sets plus 

L  =  V  as an additional axiom has a model that contains X  (and its classmates).
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That is, he proposed a proof for the following theorem: ZF plus V  = L has an u- 

model which contains any given countable set of real numbers.16 Thus, being a model 

that contains X  (which is a set of countably many real numbers) is compatible with 

being a model that satisfies V = L. Therefore, no amount of additional constraints 

appears to rule out the unwanted indeterminacy or reference in the vocabulary of set 

theory: any additional constraint is “just more theory” .

The reason why such argument would be fatal for my proposal is quite simple. 

We can argue as follows17:

1. Suppose we have a perfect naturalised theory of intentionality, according to 

which for a model of set theory to be the intended one, a certain number of (relational, 

physical) facts (described by A,B,C) must obtain .

2. Then, a supertheory of sets, to which A,B,C are added as constraints, must 

guarantee that all unwanted models are ruled out.

3. But we have seen that any theory of sets whatsoever, regardless of any addi­

tional theoretical constraints, has unintended models.

4. Therefore 1 must be false.

Because of its generality (no particular theory of intentionality has been assumed), 

this would entail that the naturalization of intentionality cannot be carried out: truth 

(any truth, even the whole of truth) is not sufficient for reference. If all naturalistic 

theories of intentionality fall victim to the isomorphism catastrophe, then my maneu­

ver to save computation from it by grounding implementation on naturalized semantic

16Putnam’s proof of this theorem has been argued to be mistaken (see Bays [3]). Putnam himself 
acknowledged that we cannot claim to have shown that set theory is semantically indeterminate. 
His proof, however (Bays concedes this point) shows that semantic indeterminacy is possible. As the 
possibility of semantic indeterminacy suffices for the purposes of this chapter, I shall here assume, 
for the sake of the argument, that set theory is semantically indeterminate.

17Putnam does, for example.
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properties would be circular.

I could argue, in this case, that Putnam’s arguments further corroborate my hy­

pothesis that a proper analysis of computation must expose the implicit commitment 

to naturalized intentionality (the sameness of the symptoms speaks for the sameness 

of the cause), but my proposal would fail its optimistic purposes. Put plainly, if the 

possibility to naturalize computation is dependent on the possibility to naturalize 

intentionality, an enemy of naturalistic intentionality is also my enemy.

Indeed, a full-blown attack to metaphysical realism such as the one represented by 

Putnam’s model-theoretic argument undermines not only my proposal, but the very 

essence of most philosophical programmes on the board. In particular, it undermines 

not only computationalism as a theory of the mind, but also any other theory of the 

mind that purports to be physicalistic in some way or other. For these reasons a 

challenge to metaphysical realism falls entirely outside the scope of this treatment. 

Fortunately, the two arguments: the v-argument presented at the beginning of this 

work and the model-theoretic one mentioned above, need not be accepted or refuted 

together. We may well accept that computational theories as we know them are 

unsuitable for ruling out unwanted models, while denying that this is true of any 

imaginable theory.

We shall argue that the surreptitious assumption behind all v-arguments is that 

syntactic properties are intrinsic to their bearers. Newman’s objection to Russell, for 

example, was carried out under the assumption that acquaintance with (knowledge 

of) facts of the external world could not be but structural knowledge (i.e. it could 

not be knowledge by direct acquaintance). The idea is that the same structure is 

intrinsic to both (1 ) our representations (with which we have direct acquaintance)
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and (2) their unperceived causes. The sole additional knowledge of the sameness of 

these structures does the rest: this is how we would come to know something true 

about a world with which we have no direct acquaintance with.

Similarly, I have argued, Putnam’s objection to computationalism need be ac­

cepted (if at all) only under the assumption that computational (structural) properties 

be conceived as intrinsic to physical objects (as indeed most current understandings 

of computation do). In that case, the sameness of structure between the causal orga­

nization of the model and the formal organization of the computational structure, in 

the theory of implementation that we have criticized, hopes to guarantee the honesty 

of the models (the objectivity of implementation). We have seen that these pictures 

are exposed to the isomorphism catastrophe.

Putnam, however, digs the knife deeper, arguing that the same problem applies to 

the very idea that there is a world of objects and properties “waiting” for a theory to 

name them and to “speak” the very same truths that, anyway, already obtain among 

them: this is metaphysical realism. Objects and properties, instead, according to 

Putnam, are born with names to start with.

I argue that we can learn a less dramatic lesson from these arguments: structural 

properties are real only if coupled (grounded) with real intentional properties. So 

v-arguments can be accepted only if no real intentional properties are assumed to 

be in place. The model-theoretic argument, for example, is carried out under the as­

sumption that no one is there to interpret the symbols. But the unwanted model that 

Putnam proves to always exist, is only “unwanted” if there is one that is “wanted” . 

And nothing can be wanted or unwanted in itself: there must be someone there to do 

the wanting.
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More precisely, the unreasonable hope that Putnam proved to be unsatisfiable, is , 

that first-order logic, set theory and model theory, considered as mere uninterpreted 

systems of symbols, could individuate and eliminate “unwanted models” that are 

structurally indistinguishable from each other. Predictably, no uninterpreted system 

of symbols, not even one that could be interpreted as describing the facts that nat­

uralize intentionality, could do that. This should not come as a surprise. After all, 

if intentionality (as naturalists think) is a natural property, it is not reasonable to 

expect that a mathematical description of it would share the same causal properties 

with it.

I think that the temperature of a gas, for example, is a natural property that can 

be described by a dynamical system that represents the positions and velocities of a 

large number of atoms. Should I expect to be able to boil some water by throwing into 

it a written copy of this set of differential equations? And if not, should I conclude 

that temperature is not a natural property after all? Hoping to make a difference as 

to the indistinguishability of the models by throwing into the models of set theory an 

inert set of real numbers (X) that can be interpreted as referring to the conditions of 

instantiation of intentional properties, is, I argue, just as desperate.

3.3.3 The reductio ad absurdum of syntactic internalism

I argue that, far from providing an a priori argument against natural semantics, the 

model-theoretic argument can be thought of as a reductio ad absurdum of syntactic 

internalism.

Consider two tokens of the same theory, Xi and T2 (say two identical copies of ZF 

set theory +  “V =  L” +  Constraints). One can argue as follows:

1 . Semantic properties supervene on structural properties alone, therefore
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2 . Sameness of structure entails sameness of semantic properties.

3. By Putnam’s argument, sameness of structure is compatible with different 

semantic properties (L = V  and L ^  V, for example). It follows that:

4. The information that there is a structural isomorphism between T\ and T2 is 

compatible with T\ and T2 having different semantic properties, contradicting 1.

5. T\ and T2 can only differ as to: (1) their structural properties or (2) the physical 

make up and embedding of the tokens that instantiate them. Hence,

6 . If semantic properties supervene on some other class of properties, then

7. By 5. we must conclude that the semantic properties of Ti and T2 supervene 

on the physical makeup and embedding of their tokens.

Now, the efficacy of Putnam’s argument is dependent on its capacity to overcome 

objections like the one presented above. The general strategy is the following:

8 . The only way to impose constraints to the physical makeup and embedding of 

a token of system of symbols, is by introducing a description of these constraints.

The reason why conclusion 7. above seems to force the case for a naturalistic 

theory of semantics, is because of the occurrence of the expression: “supervene on 

their physical makeup and embedding”. Now, The occurrence of this expression does 

not, itself, add any physical constraint to the system of symbols. Hence the following 

holds:

9. The uninterpreted description of these constraints does not carry, in itself, any 

information as to what it is a description of (it is, itself, compatible with unwanted 

interpretations of the whole system of symbols that preserve its truth).
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It would then be of no use to point out that the description of the physical con­

straints must be placed at a higher semantic level than the symbol system that we 

wish to interpret. In fact, whatever semantic level or meta-level that description is 

placed at, what counts is that at that level the symbols are not themselves intrinsi­

cally interpreted, so that Putnam’s argument can be made to climb up to meet the 

challenge. This leads to the apparent counterintuitive consequence that it is impos­

sible (or meaningless) to impose physical constraints onto anything, if this means to 

impose physical constraints to the represented domain.

I think, however, that this further move is unwarranted, and that it descends 

from a hard-to-die familiar prejudice: the prejudice according to which syntactic 

properties axe intrinsic to the symbol systems that instantiate (implement) them. As 

I have argued, syntactic properties, such as the relational property of isomorphism 

between symbol structures, far from being capable to survive without “real” semantic 

properties, presuppose them. So Putnam’s argument can, at best, be considered as a 

reductio ad absurdum of an internalist conception of syntax.

Again, in fact, the skeptical conclusion is carried under the assumption that syn­

tactic properties, such as those that a structure must possess in order for it to be 

the model of a theory, supervene on intrinsic properties of the structure and of the 

theory (a view that I call syntactic intemalism). But theories, and structures, do not 

possess any syntactic property intrinsically, for syntactic properties, I have argued, 

presuppose semantic ones, and the latter are not intrinsic to either our theories, or 

to their models.

The skeptical conclusion of Putnam’s argument, is carried under the assumption 

that a system of symbols (a theory), when abstracted from its physical manifestations
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(as it should, if we are to identify it at the appropriate level of analysis), only possesses 

“syntactic properties” . These are assumed to be the only properties of a theory to 

“survive” through the steps of abstraction that it must undergo to climb the ladder 

from its physical manifestations (its tokens) all the way up to the Empireum where 

its individuation belongs. It is only natural, then, to presuppose that these syntactic 

properties would be intrinsic to whatever possesses them.

Having assumed syntactic intemalism, if Putnam can manage to show that syn­

tactic properties do not suffice for the determination of content, then he is right to 

conclude that no amount of theory could either, for any additional piece of theory 

would add nothing but more syntactic properties.

According to the view put forward in this work, instead, the relevant abstrac­

tions are grounded on externalist semantic properties. Thus, syntactic properties are 

only instantiated when certain cross-semantical properties (i.e. properties that are 

instantiated when facts obtain that appropriately relate representations with their 

representeds) are also instantiated . 18

So Putnam cannot argue that “no amount of theory would do the job”, for this 

presupposes (hence it cannot informatively entail), that no physical theory can be 

systematically interpreted (via the specification of relevant measurement procedures, 

as I have discussed), as referring to cross-semantical facts.

This analysis of Putnam’s argument is in keeping with a more general objection

18Notice that the claim that the abstractions that ground syntactic properties require that seman­
tic properties are in place, does not entail the (absurd) claim that syntactic properties supervene on 
some particular set of semantic properties. Using again our example, this is the same as pointing 
out that the fact that three-sectorness is not independent from the presence of the secondary prop­
erties (colors) that ground it, does not entail that three-sectorness is a property that depends, for 
its instantiation, on some particular set of colors.
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that has been raised against it :19

Only if the words that occur in the formulation of the L 'wenheim-Sk 'tem 

theorem [...] have the “intended” interpretation, could the latter be used 

to deduce what Putnam deduces. [...]. Obviously, we are not to deny 

the truth of the metatheorems that Putnam uses. But why should we 

assume that the metatheory is exhausted by them? In particular, why 

could we not see the move of the naturalist we considered in the previous 

section as a move at this level, namely as the proposal of supplementing 

the metatheory with the formula “x  refers to y if and only if R (x,y), or 

something similar? If we maintain that what our naturalist is doing is 

just adding more theory, we not only misunderstand, but also cheat him.

After all, the formula contains a variable that ranges over expressions of 

the language and a predicate as “referring to: it therefore seems to be an 

assertion about the theory, and not an assertion of the theory. If so, it 

should have the same status as the metatheorems that Putnam uses in 

his reasoning. 20

The following sections are dedicated to further specify the claim that syntactic 

properties cannot be intrinsic to what possesses them.

3.3.4 N otes on the sem iotic vocabulary

Let us start from the bottom of the semantic ladder: markers. Some identifiable 

patterns of energy are interpreted as markers. Take the following, for example:

19More general in that it is not committed to my externalist construal of syntactic properties.
20Bianchi, [5], pp. 12-14.
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P

It is recognizable as a letter of the alphabet. By virtue of what is it so? In other 

words, when we say that “the sign is type-identifiable as a token of letter P” , what 

do we mean, exactly? Is it an objective matter of fact? Suppose a Greek reader 

contested that it is not a token of letter P, but a token of letter Rho. Could we 

argue conclusively that he is wrong? Of course not. The following four different 

interpretations of the claim that P is a token of letter P have been argued to coexist 

ambiguously within standard type-identifications of markers:

1. “P” has been interpreted by someone as an instance of letter P

2. “P” was intended by someone as an instance of letter P

3. There exists a linguistic community for which any instance of a pattern of energy 

equivalent to “P” is a token of letter P

4. “P” is in principle interpretable as a token of letter P

One step higher up on the ladder are words. We shall ask again by virtue of what 

does a complex of markers such as

P A IN

get assigned to a particular semantic type. Again there doesn’t seem to be a 

non observer-relative way to assign PAIN to a particular type (A French speaker, for 

example, might contend that PAIN belongs to the same semantic type as BREAD).

Again, the following interpretations have been suggested:
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1. “PAIN” has been interpreted by someone as meaning pain

2. “PAIN” was intended by someone as meaning pain

3. There exist a linguistic community for which any instance of a pattern of energy 

equivalent to “PAIN” means pain

4. “PAIN” is in principle interpretable as meaning pain

Finally, syntax, as well, shares the ambiguities of its fellows markers and words. 

Take for example the expression

C AT

Is it an instance of the same syntactic type as the predicate C(A,T), or is it of the 

same syntactic type as the unary predicate C(AT)? Or is it a constant in a theory of 

animals (CAT). The situation is perfectly symmetric as that described above: there 

are four possible interpretations of the sentence “CAT is of syntactic type S” .

A first conclusion to be drawn from this analysis of the semiotic vocabulary is that 

marker-types, semantic-types and syntactic-types all require semantic capacities to be 

identified (any proper analysis of them must make irreducible use of mental-semantic 

vocabulary).

The above analysis is true of semiotic items, i.e. of symbols. Is it reasonable to 

suppose that it would not hold true also of internal, mental, symbols? A good deal of 

effort has been spent in trying to prove that mental, inner symbols, cannot be subject 

to an analogous observer-relativity.

The reason for this is that assuming that mental symbols and their structure 

and semantics are also observer-relative, would leave us wondering about what could
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explain the semantic and syntactic properties of the observer.

I, instead, argue that this apparent circularity can be bypassed by giving up 

syntactic and semantic intemalism. It does not come as a surprise to my view, then, 

if we have concluded that computational models (when identified by their syntactic 

properties alone) make surreptitious use of semantic capacities. It should also not 

come as a surprise, then, that the pattern of failure of natural computation resembles 

so closely that of natural semantics: any theory (of computation or of semantics) that 

implicitly presupposes that syntactic properties are intrinsic to their bearers, I argue, 

has to face the nasty choice between being circular (presupposing what it purports to 

explain) or falling victim of the isomorphism catastrophe. The vacuousness arguments 

discussed in this chapter, then, can be thought of as a reductio ad absurdum of 

syntactic intemalism.

Secondly, the fact that syntactic types, just as semantic types are observer-relative, 

provides further ground for the claim that the naturalization of computation must 

proceed from the naturalization of intentionality. It is in fact clear that if the “honest 

model” for a formal theory is not individuated by an overt deployment of semantic 

capacities (such as the preliminary assignment of cardinality or the artificial restric­

tion of the universe), it must be individuated by covert ones, This is exactly how 

we manage (ideally) to build our computers and softwares following purely syntactic 

recipes: by putting at the disposal of these systems our semantic capacities.

Finally, the analysis corroborates a claim anticipated at the end of the previous 

section: syntactic facts, such as the property of sharing the same structure or being 

the model of a theory (not necessarily the intended model), presuppose, for their intel­

ligibility, semantic properties, hence they cannot ground it. Without the deployment
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of semantic capacities, in fact, two systems of symbols are not only incomparable as 

to their structure, but are not even type-identifiable as systems of symbols.

Whether something is or isn’t the model of a given theory, therefore, is not a 

property of that theory, unless we understand the expression “that theory” as referring 

to an abstraction that presupposes, to be safely and systematically performed, that 

semantic properties are deployed and maintained constant.

So, strictly speaking, the model-theoretic argument, if assumed to be correct, 

would only show that semantic properties do not and could not supervene on struc­

tural properties alone, on pain of contradiction. This is not to say that Putnam’s 

model-theoretic argument should not be taken care of, for I think that it points at 

the need for a better understanding of the notions of truth, reference and reality.

For the purposes of this work, however, all that matters is that (1) Putnam ’s v- 

argument and his model-theoretic argument need not be accepted or refuted together, 

(2 ) that the argument can be used to object only to internalist theories of intention­

ality, and, most importantly, (3) the argument can be thought of as a reductio ad 

absurdum of syntactic intemalism.

3.3.5 The encodingist paradigm

It is interesting to ask what has obscured this simple fatal objection to intemalism. 

I believe that what has obscured the untenability of syntactic intemalism is an in­

ternalist preconception about the nature of semantic properties. In fact, if semantic 

properties supervened on syntactic ones, then syntactic intemalism would be viable: 

syntax would still presuppose semantics, but the latter would supervene on the for­

mer, thus making logical space for syntactic intemalism.

Most theories of semantics, like most theories of implementation (for example
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the state-to-state correspondence view that we have criticized) adopt what has been 

termed the encodingist paradigm: the view that cognition consists of encodings and 

of operations on them . 21 The adoption of this paradigm, I argue, is what obscured 

the circularity of most attempts to naturalize computation and intentionality.

By and large, we conceive of our epistemic contact with the world as being me­

diated by our senses. These are thought to “encode” information about the envi­

ronment that is thereby made available to the mind for processing and planning of 

further epistemic contacts.

This simple picture constitutes the basis for most of our current scientific under­

standing of cognition and semantics. What does it mean to “encode” information? 

Intuitively, it means to transform (transduce) information into a format that is prac­

tical to manipulate, while preserving the possibility to unpack, decode it whenever is 

needed. 22 One simple way to analyze what “encoding” means is to think of them as 

“stand-in”’s. For example “...” stands-in for “S”, in Morse code.

According to this notion, encodings are systematic transformations of representa­

tions. As such, they require that representations to be stood-in for (e.g. “S” in the 

Morse code) be already in place. Alternatively, factual, possibly nomic correspon­

dences, can be taken as defining encodings. So, for example, we often hear that some 

neural activity encodes some property of the light that hits the retina. Yet there is 

no one there to know that those properties are in factual correspondence with those 

neurons. To say that they “encode” those properties leads to an equivocation.

The same light that hit the retina might permanently impress a film in a camera,

21 The notion of encodingist paradigm and a detailed discussion of its shortcomings has been 
proposed by Bickhard ([6], [7],[8] and [9]).

22Familiar notions of encodings axe the Morse code, computer codes, stenographic codes, G’"del 
numbering, etc. See Bickhard [6], [7],[8] and [9] for an extensive treatment of the notion of encoding.
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establishing factual correspondences with the film just as it does with a population 

of neurons. In this case, though, we would not be ready to say that these properties 

are “encoded” in the film. For there to be an “encoding”, or anyway, for a factual 

correspondence to have any epistemic value, these correspondences must be known; 

and for them to be known we need to have a representation of both what is to be 

coded and of what is to stand-in for it. In other words, factual correspondences 

don’t carry any information about what these correspondences are with. Failure to 

appreciate this shortcoming left many causal theories of semantics wanting for an 

account of misrepresentation or, circularly, led them to deploy ready-made semantic 

properties.

The encodingist myth, moreover, prevented to appreciate the fact that isomor­

phisms, per se, are totally uninformative as to what they are isomorphisms with. 

Because of their pattern of failure, internalist (encodingist) theories of semantics can 

be thought of as a naturalized-intentionality counterpart to state-to-state correspon­

dence theories of implementation.

In both cases the surreptitious deployment of semantic properties consists in sup­

posing that our semantic capacities, that are totally transparent to us, and that serve 

the purpose of individuating the intended models of our theories, can be “transferred” 

to our symbol systems “for free” , i.e. without transferring also the physical states of 

affairs that ground our semantic capacities and, through them, the syntactic proper­

ties of the systems of symbols that we produce. It should be clear then, why with 

this treatment we are trying to make explicit the (semantic) job that was previously 

implicitly taken for granted.

The assumption that syntax is among the intrinsic properties of representations,
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a commitment that I have termed “syntactic intemalism”, forces one to implicitly 

buy an encodingist construal of semantics. To see how things are so, consider the 

following claim made by Fodor in his book “ The Mind doesn’t Work that way” :

Syntactic properties of mental representations are ipso facto essential (be­

cause the syntactic properties of any representation are ipso facto essen­

tial) . 23

This is a clear endorsement of syntactic intemalism. In a note to this claim, 

Fodor further argues that it is uncontroversial among those who advocate a syntactic 

theory of the mind. Those who contend that syntactic properties are not essential 

to representations (the connectionists, for example), Fodor observes, reject altogether 

the claim that mental properties supervene on syntactic ones, and fall thus outside 

the number of those who advocate a syntactic theory of the mind.

Now, my claim that syntactic properties are not intrinsic to representations is 

not meant to reject the claim that mental properties supervene on syntactic ones. 

The proposal put forward here, in fact, is committed to what we may call syntactic 

extemalism: a view that, if viable, would strictly contradict the claim mentioned 

above.

So, let us take a closer look at the reasons Fodor puts forward for his claim. In 

the same note, he continues with what he apparently takes to be a quasi-reductio ad 

absurdum of any view that rejects the claim that syntactic properties are essential to 

representation while retaining a syntactic theory of the mind. Consider a representa­

tion whose content is that “ John Loves Mary”. Imagine that someone, Fodor argues,

contended that the fact that it is a complex representation (i.e. that it is constituted

23Fodor [37], p. 25.
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by the simpler elements John, Loves and Mary) be not among its essential properties. 

He, or she, Fodor argues, might

prefer not to recognize that the “John” that appears in “John loves Mary” 

is the same word as the “John” that appears in “Mary Loves John” .

[...] You might then wish to embrace the view that English contains two 

different words “John” - as it were, “John-subject-of-a-verb” and “John- 

object-of-a-verb” - both of which are spelled “John” and both of which 

mean John. This analysis might reasonably be considered perverse; clearly 

it flouts plausible intuitions about the individuation of English words. 24

Clearly Fodor thinks that if one gives up the idea that syntactic properties (for 

example constitutivity) are intrinsic to the representations that bear them, then either 

(1 ) one also rejects the claim that mental properties supervene on syntactic ones, like 

connectionists do25, or (2 ) one is forced to accept the absurd proliferation of words 

described above.

This, I argue, reveals Fodor’s implicit commitment to the encodingist paradigm. 

The argument for the absurd proliferation of words, in fact, can only proceed from 

the assumption that the individuation of words supervenes on some intrinsic property 

of them, as encodings do. Otherwise, how could he conclude that “John-subject-of- 

a-verb” and “John-object-of-a-verb” would (absurdly, I agree) stand in the need for 

two different words?

Syntactic externalism (the view that I advocate), instead, has it that the claim that 

mental properties supervene on syntactic ones and the claim that syntactic properties

24Fodor [37], p. 108.
25See section 5.5 for a discussion of the constitutivity of representations in connectionist models.
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axe not among the essential properties of representations need not be contradictory. 

In order to naturalize the job done by the implicit observer in standard accounts of 

implementation, then, we shall have to look at theories of intentionality that abandon 

the encodingist view of semantics, on pain of circularity. This will allow us to make 

explicit the view that I have called: syntactic externalism.

3.3.6 Varieties o f syntactic externalism

The thesis that syntactic properties should be better understood as extrinsic, rela­

tional properties of their bearers stands in need for some further clarification. As 

a general statement, it would not sound new to the philosopher of mind. There 

are views in the literature, in fact, that bear some apparent resemblances with the 

doctrine that I have called syntactic externalism. The following is a typical example:

Mental state tokens are brain state tokens. But the properties by virtue 

of which mental state tokens are classified into syntactic categories are 

not intrinsic features of those brain states; they are not features which 

depend exclusively on the shape or form or “brute physical” properties of 

the states. Bather, the syntactic properties of mental states are relational 

or functional properties - they are properties that certain states of the 

brain have in virtue of the way in which they causally interact with various 

other states of the system .26

Stich calls this understanding of the syntactic properties which computationalism 

ascribes to mental states: fat syntax. This view of the syntactic properties of brain

26Stich [88], p. 310. Another example of such broad individuation of computational properties is 
Wells’ interactive approach (Wells [94]) discussed in section 6.6.2.
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states is clearly externalist. Notice, however, that it has nothing to do with what I 

have called syntactic externalism (apart from being compatible with it).

Firstly, it is not a view of syntax: it is a view of the syntactic properties attributed 

to brain states by a computationalist theory of the mind.

Secondly it does not question the assumption that isomorphism suffices for the 

instantiation of syntactic properties. It simply excludes that such isomorphisms exist 

that capture generalizations about the workings of the mind and those of the brain 

alone.

This is certainly in keeping with our analysis. But it is only the first step to be 

taken. I have argued, in fact, that isomorphisms, per se, are incapable in principle to 

ground the relevant abstractions, whether these are construed as pertaining to states 

of the brain alone (the “skinny standard of individuation”), or according to a “fat” 

standard of individuation.

The view of implementation that I am advocating here endorses, as a necessary 

further requirement, the claim that an externalist theory of content (a teleological 

theory) is needed to ground (broadly) syntactic properties.

My arguments in favor of external syntax, in fact, are not meant as a criticism 

to a particular theory of the mind, but to an internalist, syntactic construal of im­

plementation tout court (regardless of what properties are suggested as a basis of 

instantiation for syntactic ones). External syntax - this is how my semantic view 

sounds like in a slogan - meets broad content.

I am particularly fussy about marking the distance between my syntactic exter­

nalism and other, theory-specific versions of it, because I believe that failure to ap­

preciate the difference would endanger the plausibility of my proposal. This concern
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is warranted by comments like the following:

I will not defend an individualistic version of the functional view of com­

putation, however, because I endorse a wide (non-individualistic) con­

strual of functional explanation. For present purposes, it is important to 

distinguish between wide individuation and individuation based on wide 

content. Individuation based on wide content is one type of wide individ­

uation, but wide individuation is a broader notion. Wide individuation 

appeals to the relations between an entity and its environment regardless 

of whether those relations are of a kind that warrants content ascription 

to the organism. For my purposes, of course, what is needed is wide 

individuation that does not appeal to content. 27

Also Stich, we have seen, makes the case for a wide individuation of syntactic 

properties, but, like Piccinini, he argues for a brand of externalism that does not 

entail “wide individuation based on wide content”. I, instead, have made the case for 

wide individuation based on wide content. Failure to appreciate the difference, could 

lead to the following misconceiving objection.

The arguments proposed here could be thought of as successfully making the 

case for a broad individuation of syntactic properties in theories of the mind. But 

they could be argued to fail to make the more specific case for a broad semantic 

individuation of computational properties in real dynamical systems.

“Fine!” , someone could object to my proposal, “you showed us what we already

suspected: mental states are not narrowly individuated. Semantic properties, let us

27Piccinini [68], p. 13.



140

grant it for the argument’s sake, are a way to individuate them. But there is plenty 

of other ways to individuate broadly these properties: why semantics?” .

The arguments I have provided, I think, prove that there is no other appropri­

ate way to broadly individuate syntactic properties but by having them grounded 

on broad semantic ones. This is the view that I have called syntactic extemalism. 

In other words, the trouble with syntactic internalism that I have argued to be in­

tractable, does not depend on some specific application of it to a given domain. Given 

the generality of the problem, no simple (non-semantic) extension of the supervenience 

base of syntactic properties would save them from having unwanted models.

The reason for this, it should be clear, is that the extension that I think I have 

argued to be necessary, cuts across two different semantic levels: the level of represen­

tations, and the level of the represented domain. An extension of the supervenience 

base that comprises properties that are “external” to the implementing system, but 

that does not cut across the two semantic levels (Stich’s fat syntax, for example), 

would be just as hopeless as an internalist picture, as far as blocking the isomorphism 

catastrophe is concerned.28 That things are so, can be intuitively appreciated by 

considering again the example of colored flags and three-sectorness. If we conceded 

that three-sectorness must be understood as supervening on relational, external facts, 

but we did not require that these facts suffice for color perceptions to be instantiated, 

our externalist move would be useless: number three, would still be wanting in the 

picture.

28The arguments pointing at the incapacity of isomorphisms to rule out unwanted models, in fact, 
do not depend on the choice of some particular domain of instantiation: they hold valid, if they 
are valid, even if one urges that syntactic properties should be individuated broadly. A “long arm” 
supervenience basis, in other words, is compatible with unwanted instantiations just as much as a 
narrow one.



141

My arguments, as I have already mentioned, proceed from the assumption that 

v-arguments are sound. I have provided some reasons to suppose that things are so, 

but ultimately, if someone thinks that v-arguments are mistaken, he or she would 

find my conclusions unconvincing. But even if, parting from my personal convictions, 

we suspended the judgement on the validity of v-arguments, I could still claim that, 

given the total lack of agreement in the literature, assuming them to be sound, is no 

riskier than assuming them to be wrong.

Moreover, while I believe to have successfully argued that if v-arguments even­

tually prove to be sound, a semantic view of implementation will be forced on us, 

there is no convincing argument to the effect that, if v-arguments will prove to be 

all wrong, this would entail that my view would thereby be refuted (although I agree 

that it would lose much of its allure).



Chapter 4

Teleological theories of 
implementation: blocking the 
isomorphism catastrophe

4.1 Introduction

I have argued that syntactic internalism is to be held responsible for the isomorphism 

catastrophes of orthodox theories of computation (as well as of isomorphism theories 

of semantics).

I have also argued that the surreptitious deployment of intentional capacities has 

often obscured the unwanted proliferation of the models.

Without further specification, however, this analysis does not appear to be of any 

interest. Knowing that we axe to abandon the internalist view of syntax, in fact, 

does not help us to imagine what we should replace it with. Of course, for a mere 

terminological reason, we should expect to embrace an externalist view of syntax, 

and this is precisely what in this chapter I shall argue we should do. But what does 

that mean exactly? And how are we to proceed? Let me start with an analogy that 

I discussed in the general introduction to this work, and that I believe will help our
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intuitions on the issue.

Notoriously, colors axe properties that, contrary to popular belief, do not super­

vene on intrinsic properties of their bearers. A “red” apple does not reflect “red 

light” , and it is misleading to think of things that we see as objectively colored at all. 

Rather, the apple simply absorbs light of various wavelengths to different degrees, in 

such a way that the unabsorbed light which it reflects is perceived as red. An apple is 

perceived to be red only because normal human color vision perceives light with dif­

ferent mixes of wavelengths differently, and we have language (concepts) to describe 

that difference. One may formally define a color to be the whole class of spectra 

which give rise to the same color sensation, but any such definition would vary widely 

among different species and also to some extent among individuals intraspecifically 

(also depending on environmental factors).

To understand which particular color perception will arise from a particular phys­

ical spectrum requires knowledge of the physiology of the retina and of the brain.

This does not show, however, that colors enjoy a kind of second-class ontological 

status. Mental properties are trivially “not independent of us”, but are not thereby 

less qualified to be part of reality. Moreover, although the neurophysiology of color 

perception is not yet perfectly understood, it is compatible with the above consid­

erations that colors supervene on purely physical, albeit non-intrinsic (relational) 

properties.

Now, imagine a flag partitioned into three differently colored sectors. The three 

colors are yellow, green and blue: they are adjacent in the spectrum. Our language, 

and intuition, mislead us into saying that the flag is composed of three different 

sectors, rather than saying that it looks composed of three sectors. Following this
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intuition, under physicalistic assumptions, we would hypothesize that this syntactic 

property (that of being a three-element compound)1 supervenes on some isomorphic 

intrinsic property of the flag.

Suppose, then, that we decided to chose three wavelength bands as a model for 

the supervenience base of our internalist theory of “three-sectorness”. Someone, let 

us call him Hilary, could object that, whatever choice we have made, there will be 

unwanted models for the same property (i.e. other wavelength bands that satisfy the 

same property). As a matter of fact, even a perfect continuum of wavelengths would 

satisfy the property, for the flag would still appear segmented into a yellow, a green 

and a blue sector to a normal human being.

Is Hilary entitled to draw the conclusion that the properties of our perception of 

that flag do not, at least in part, supervene on some isomorphic physical property? 

Of course not. Hilary can only argue that the properties of our perception do not 

supervene on some intrinsic syntactic property of the flag.

But the number three that features in the proposition “the flag is composed of 

three sectors”, must be correlated (mapped) to some (relational) physical property 

of the light reflected and of our cognitive dynamical system. Number three, so to 

speak, must feature somewhere in the description of this relational property (or set 

of properties). Resorting to this number three is a legitimate explanation of the fact 

that we see three sectors. Thus we do not have to abandon the idea that the flag 

is syntactically structured in a certain way: we just have to give up the hope to 

explain such structure by resorting to an isomorphism with intrinsic properties of the

1In this introduction the expression “syntactic property” is to be understood in a broad sense, 
as meaning any property that holds true regardless of what particular semantic properties are 
instantiated.
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perceived object.

This account of the constitutivity of the flag is an example of syntactic exter- 

nalism. Neither must we give up the idea that syntactic properties are independent 

from their implementations. A different flag, say red, white and green, would share 

the syntactic property of being three-sectored with the previous one, by virtue of 

instantiating isomorphic relational properties. It remains true, however, that under 

a proper treatment of colors, the number of sectors of a flag is “observer-relative”. 

Such observer relativity, however, is safely implemented by physicalistic, externalist 

properties alone.

Let us now turn to our understanding of implementation. I have argued that we 

are to abandon the internalist view of implementation in favor of what I call: com­

putational extemalism. I have proposed that intentional properties should ground 

the notion of implementation. Similarly, colors ground the notion of instantiation of 

three-sectorness. I have also suggested that in order to uphold a syntactic theory of 

implementation, hence of the mind, we shall have to abandon internalist theories of 

semantics. Likewise, an internalist theory of colors (i.e. the false view that colors su­

pervene on intrinsic properties of their bearers), is not compatible with the externalist 

explanation of three-sectorness proposed above.

The first section of this chapter (sec. 4.2) discusses a class of theories of semantics 

that comply with the above desiderata: teleological theories of content. Some of these 

externalist proposals (those discussed in section 4.2) make irreducible reference to 

historical, evolutionary concepts. As this would have consequences for a theory of 

implementation that some might find unpalatable, I also discuss a non-etiological 

version of these theories (section 4.3). I do not wish to commit to the viability of
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these theories of content. It suffices, for my purposes, to argue that if one of these 

proposals would prove to be viable, then it could be used to uphold a realist stance 

about computation, hence to salvage computationalism from skeptical arguments.

Teleological theories of content are applied to a concrete example of intentional 

implementation (the implementation of a logical gate), thus providing a first informal 

application of computational externalism to a concrete example (section 4.4.1). The 

example shows that the notion of implementation has been successfully immunized 

from vacuousness arguments.

Finally I make a concrete, formal proposal of an externalist honest labelling scheme 

for the implementation of finite state automata (section 4.4.2). The general theory 

of implementation proposed is shown to successfully block unwanted models, while 

upholding the computational sufficiency hypothesis (notwithstanding the assumed 

validity of v-arguments).

4.2 Teleological theories of semantics

4.2.1 General concepts

When a proposed solution to the problem of naturalizing intentionality doesn’t avail 

itself surreptitiously of semantic concepts, it appears to be unable to rule out un­

wanted instantiations. In our terminology, this amounts to saying that the proposed 

physicalistic interpretations for the sentence R e f ( S , P) fall victim of the isomorphism 

catastrophe, or fail to achieve sufficiency. Of course, we could again say that not all 

models of our theory of semantics are “honest”, but this would be a solution only 

if we could specify (using physicalistic concepts alone) what counts as an “honest” 

model. Teleological theories of semantics, we shall see, pretend to have done so.
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The “trick” teleological theories of semantics adopt, is to make “honest” models 

depend on the notion of “proper functioning”.

These theories generally begin with some more basic theory of the relation 

between a true thought, taken as embodied in some kind of brain state, 

and what it represents, for example, with the theory that true mental 

representations co-vary with or are lawfully caused by what they represent, 

or that they are reliable indicators of what they represent, or that they 

“picture” or are abstractly isomorphic, in accordance with semantic rules 

of a certain kind, with what they represent. The teleological part of 

the theory then adds that the favored relation holds between the mental 

representation and the represented when the biological system harboring 

the mental representation is functioning properly, that is, functioning in 

accordance with biological design, or, perhaps, design through learning.2

Teleological theories, then, do not (qua teleological theories) propose a solution to 

the problem of intentionality that is in opposition with other, alternative solutions. 

They rest on specific theories of the relation that must obtain between a system S 

and a true proposition P for R e f ( S , P) to be the case, adding what conditions must 

obtain for Ref (S ,P)  to be the case when P is not true. The conditions added by a 

theory, to qualify it as a teleological theory, must make irreducible reference to some 

naturalized notion of purpose, or function.

Borrowing Millikan’s words to express this common feature of teleological theories, 

we would say that a model for Ref(S,  P) must determine what would have had to

2Millikan [60], p. 4.
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have been the case with the represented (P) or the world had the system (S) produced 

or harbored that same representation when functioning properly.

Before turning to specific proposals, it is worth spending a few words on the notion 

of “proper function” . Teleological concepts are concepts that make reference to some 

ends or goals, and these are intentional concepts, and as such don’t seem prima facie 

to be suitable for a naturalization of intentionality. The notion of function deployed 

in teleological theories, however, is not itself purposive. In most cases the notion 

of function deployed is “borrowed” from biology. When we say that the function 

of a heart is to pump blood, for example, we axe claiming that it is “adapted” to 

pump blood. When a heart is pumping blood we say that it is doing so because 

it was “designed” to do so, but we are not implying that such design is purposive, 

because we believe the process underlying such “design” to be driven by a mechanical, 

purposeless, non-intentional force: natural selection.

The concept of a biological function is defined in terms of natural selection 

(Wright [[97]], Neander [[61]]) along the following fines: it is the function 

of biological system S in members of species Sp to F iff S was selected 

by natural selection because it Fs. S was selected by natural selection 

because it Fs just in case S would not have been present (to the extent it 

is) among members of Sp had it not increased fitness (i.e. the capacity to 

produce progeny) in the ancestors of members of Sp.3

Although, as we shall see, not all teleological theories derive their notion of func­

tion from natural selection, whatever notion of purpose they deploy, they will have

3Loewer [52], p. 9.
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to make sure that such notion is not “literally” purposive (i.e. that it does not 

surreptitiously rest on intentional properties).

Teleological theories can be thought of as a general strategy to solve the problem 

of intentionality that consists of two steps: 1) the indication of what is the relation 

between a true representation (some item, state or feature (R) of a system (S)) and 

its represented (P), and 2) the claim that it is the proper function of S to produce 

such relation. In our formalism the teleological strategy consists of:

1. The specification of a model < S ,L  > for Ref(S,P), when P is true, and

2. The claim that it is the proper function of S to instantiate < 5, L >

Accordingly, teleological theories can be classified by the various proposed models 

for Ref(S,P), when P is true.

4.2.2 Indicator semantics

In 1981 Fred Dretske wrote a very influential book (Knowledge and the Flow of 

Information4) where he proposed a (non teleological) causal theory of content that he 

later rendered teleological5 on the fines of the above characterization of “teleological 

theory”.

His original idea was that an item R represents P if R “indicates” P, where R 

indicates P iff (if there is an R, then P).6

This understanding of intentionafity, we have seen, is not viable, for it entails that

if S represents P then P must be the case. If we want to make room for error, it

4 Dretske [24].
5 See Dretske [26] and [27].
6Note that it is not necessary that P directly causes R, for they could have a common cause. 

Moreover, says Dretske, neither is it necessary that if R then C be nomological (universal), for it is 
sufficient that it be true locally.
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must be possible that S represents P and P is not the case. Dretske then applied a 

teleological strategy requiring that S represents P iff its function is to indicate P. So 

the idea is:

1. If P is true, Ref(S,P) is true just in case there is an item (a state, for example)

R of S such that if P then R.

2. R has the function of indicating P.

The “infallible” notion of indication (if P then R) has been made compatible with

representational error by making it the function of the representation to indicate its 

represented. As items happen to not function properly, the teleological move has 

made room for error.

The fundamental idea is that a system, S, represents a property, F, if and 

only if S has the function of indicating (providing information about) the 

F of a certain domain of objects. The way S performs its function (when 

it performs it) is by occupying different states si, S2,...,sn corresponding 

to the different determinate values / i ,  / 2,...,/n, of F.7

A Problem for indicator semantics: functional indeterminacy

There is a species of marine bacteria that use internal magnets (magnetosomes) to

direct themselves. Magnetosomes align parallel to the earth’s magnetic field. As the

field lines in the northern hemisphere point downwards (towards the magnetic north)

the bacteria, in the northern hemisphere, direct themselves accordingly. Apparently

the ’’function” of this awkward means of orientation is that of keeping the bacteria

7Dretske [28], p.2.
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away from oxygen-rich surface water by directing them towards more oxygen-free 

(hence less toxic to them) waters. In other words, the function of magnetosomes is 

that of prompting the organism to engage in a surface avoiding behavior. If a magnet 

oriented in the opposite direction as that of the earth magnetic field is placed near the 

bacteria, or if northern bacteria are placed in southern waters, they direct themselves 

towards death.

If we were, as Dretske puts it, looking for “nature’s way of making a mistake”, we 

have found one. The marine bacteria, we said, can be “tricked” into lethal environ­

ments by using artificial magnetic fields.

It seems natural to say that the function of magnetosomes is to direct the system 

towards oxygen-free sediments, and that sometimes the magnetosomes are not in the 

conditions to perform their proper function. If magnetosomes have the function of 

indicating oxygen-free sediment (as opposed to lethal, oxygen-rich surface), then the 

magnetosome represents oxygen-free sediment, under our theory of representation. 

When the bacteria are fooled to their death, they misrepresent. However, we could 

as well say that the magnetosomes have the function of indicating the direction of 

geomagnetic north. Worse still, we would be legitimated to say that the function of 

magnetosomes is to indicate the local magnetic north, in which case we could not 

count as “error” the case of tricked bacteria.

More generally, the problem is that if an inner state of a system S has been 

selected for indicating a distal feature (P) of its environment, it will also have been 

selected for indicating the more proximal features that carry information about P. 

The indeterminacy of the proper indicating function of an item conflicts with the 

determinacy of representational content, thus threatening the informational version
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of teleosemantics. This is an instance of a class of problems that go under the name 

of: functional indeterminacy problems.

Dretske’s solution8 has been to amend his theory by adding that a system is 

capable of representing a distal feature of its environment only if it is also capable of 

learning any number of alternative epistemic routes to that same distal feature. As 

this is not true of all disjunctions of more proximal stimuli characteristic of a given 

epistemic route, it is argued, this blocks the indeterminacy argument. The solution 

has been criticized9, and partially abandoned by Dretske himself.

4.2.3 Benefit and Consumer-Based semantics

In 1984 both David Papineau and Ruth Millikan proposed teleological theories ac­

cording to which the content of a representation is determined by the uses to which it 

is put. It is therefore the “users” of representations and their proper functions, that 

will be relevant for determining their content. There are at least two a priori reasons 

for concentrating on the users of representation.

For one, teleological theories all rest on the notion of teleological functions, and 

these are selected effects. So if we are interested in the “effects” of representations we 

should look at the consumers of representations, for they are the ones most directly 

concerned by them.

Secondly, something qualifies as a representation only if it is used as such. In 

fact, if whatever fixes the content of a representation was not determined by its 

use, something could count as a representation without representing anything, which, 

according to Millikan, is nonsense.

8Dretske [26].
9Loewer [52].



153

Papineau’s theory

Papineau’s idea is to ground the normative properties of intentionality on the norma­

tive properties of “desires”. A representation can be true of the world or not like a 

desire can be satisfied or not. We are, as usual, trying to express the truth conditions 

of Ref(S,P). The general idea of teleological theories, we have seen, is to ground the 

intentional relation on some notion of (typically biological) function. According to 

Papineau, if a desire D, a belief B (a certain state of S, for example) and a proposition 

P (a state of affair) are such that the obtaining of P is sufficient for an action based 

on D and B to satisfy D, then the content of B is P.

This provides for naturalistic truth conditions of Ref(S,P) only if it is possible to 

naturalize the notion of satisfaction of a desire (which is, as it stands, a semantic 

notion). Papineau’s notion of “satisfaction of a desire” is, roughly as follows: if q is 

the minimal state of affairs such that it is the biological function of D to operate in 

concert with beliefs to bring about q then D is the desire that q.

Here “minimal states” are meant to avoid indeterminacy. In fact, suppose that 

the desire D is meant to be the desire of a frog to eat a fly. As “eating a fly” is 

co-instantiated with other states of affairs (such as “opening the mouth”), we could 

say that, by the same token, the content of the desire of the frog is opening its mouth. 

Papineau thinks that only the most specific of these possibly co-instantiated behaviors 

(i.e. eating a fly) counts as the content of the desire, for there have been occasions 

when D was selected for even if it did not cause the frog to open its mouth.
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Millikan’s theory

Millikan proposed, over the past two decades, a Consumer-Based theory of semantics 

according to which the content of a representation is determined by the performance of 

the proper functions of its consumers. Proper functions, as Millikan has it, are “effects 

which, in the past, have accounted for selection of its ancestors for reproduction, or 

accounted for selection of things from which it has been copied, or for selection of 

ancestors of the mechanism that produced it according to their own relational proper 

functions” .10

Millikan argues that if the (proper) function of a system is to produce representa­

tions, then these must function as such for the system itself. She then suggests that 

the system should be conceived as made of two parts: a part that produces representa­

tions and one that consumes them.11 The consumer part is thought to be responsible 

for a candidate representation actually acquiring the status of representation, and for 

fixing its content.

But how can we spell out what it is for a part of a system to act as a repre­

sentation consumer? Intuitively, a system uses an internal item as a representation 

if its proper response to it can be fully explicated only if certain conditions obtain 

in the environment. In other words, a system uses an item as a representation if 

the response to it that was naturally selected served its adaptive function depending 

on certain conditions obtaining in the environment. Secondly (this definition alone

10This is how Millikan defines the notion informally in [57], p. 3. A more detailed treatment of 
the notion of proper function can be found in the first two chapters of [58]. Like most teleological 
theories of intentionality, Millikan’s theory favors an etiological notion of function, according to 
which the function of an item is determined by the history of selection, or by the past selection of 
the items of that type.

11 The consumer and the producer of a representation can be different systems or different time 
slices of the same system (before and after the representation has been tokened). This allows us to 
treat inner and external representations as tokens of the same type.
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would be too liberal), these conditions must vary depending on the form of the repre­

sentation. That is, changes applied to the form of the representation (mathematical 

transformations applied to it) must correlate to changes in the represented conditions 

according to specifiable rules.12

The function of the producer part is, in this view, to produce signs that are true 

relative to the consumer reading of them. Any indication or information about the 

environment that these signs might carry is irrelevant if the consumer part does not 

read them as such.

First, unless the representation accords, so (by a certain rule), with a 

represented, the consumers normal use of, or response to, the representa­

tion will not be able to fulfill all of the consumers proper functions in so 

responding - not, at least, in accordance with a normal explanation. [...] 

Second, represented conditions are conditions that vary, depending on the 

form of the representation, in accordance with specifiable correspondence 

rules that give the semantics for the relevant system of representation.13

An example that illustrates what Millikan has in mind is that of honey bees. 

Honey bees, notoriously, perform dances to indicate to other bees the location of a 

source of nectar. This is how Millikan’s theory of representation would apply to the 

example. First, as we discussed, representing systems consist of a producer and of 

a consumer part. Interestingly, in the example the producer part and the consumer 

part are not confined within the same organism (unlike the case of bacteria). In fact,

12See section 6.5.8 for a discussion of this feature of intentional icons as applied to my treatment 
of implementation.

13Millikan [59], p. 224.
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the producer part is located in the dancing bee, while the consumer part is located 

in the other nectar-seeking bees.

Second, in order for the dance to count as a representation, it must satisfy the 

first condition above. Unless there is a factual correspondence between the particular 

features of the dance and the location of the nectar, the other bees will not find 

the nectar (thus failing to fulfill their function in responding to the dance). Sure, 

even if such correspondence was not in place, the bees might find some nectar on 

their way, by accident. This is why the condition has been made conditional on 

normal explanations. Third, varying tempos of the dance, and angles of its long axis, 

correlate with the distance and direction of the nectar. This satisfies the second 

condition above.

The central concept of Millikan’s theory is that of indicative intentional icon. 

These are (physical) structures that “stand midway” between producer and consumer 

mechanisms (specifiable in terms of biological function). Most semantically evaluated 

items, such as indicative sentences in natural languages, thoughts, bee dances or 

beaver splashes are thought to deploy intentional icons. The idea is that the consumer 

mechanisms modify their activities responding to the state of the icon in a way that 

only leads systematically to the performance of the consumers’ biological functions if 

a particular state of the world obtains. Such state is the content of the representation 

(of the icon in that state). The icon is supposed to map onto the world according to a 

rule or a function (we shall later discuss what kind of mathematical function). Given 

how the consumers respond to the icon the function is such that if the represented is 

in state si, then the icon is supposed to (in the biological sense) be in corresponding 

state i\.
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Notice that, as with all other teleological theories, Millikan’s does not claim that 

the intentionality of a representation is determined by the proper function of the 

consumer: that a given icon represent a fact “is not determined by their proper func­

tional...] It is a matter of HOW this fact-representation performs whatever function 

it happens to have”14.

The naturalization of the notion of “proper function” proposed above represents 

a significant departure from previous attempts. In fact, rather than grounding the 

intentional relation in a way that excludes the observer, it naturalizes the observer 

by naturalizing the consumer function of a representational system. “Teleological 

theories of content”, says Millikan, “thus separate “intentional” signs and represen­

tations, those capable of displaying Brentano’s relation, quite sharply from natural 

signs. Even when intentional representations are true, neither the fact that they rep­

resent nor what they represent is determined by any current relation they actually bear 

to their representeds. The representational status and the content of the intentional 

representation are both determined by reference to its natural purpose or the natural 

purpose of the biological mechanisms that produced it, and these purposes are deter­

mined, it is typically supposed, by history, by what these mechanisms were selected 

for doing, either during the evolution of the species or through earlier trial and error 

learning”.15

It is possible, I shall argue in the following pages, to adapt the above treatment 

(or any theory of intentionality that has the same consequences) to a framework for

computationalism that comprises the naturalized observer as an essential part.

14Millikan [57], p. 8.
15Millikan [60], p. 3.
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Teleological isomorphism theories

Millikan often claims that her theory is meant to be an isomorphism theory. For 

example, we have seen how her theory grounds intentionality on the notion of natural 

purpose. Natural purposes, however, are not a trademark for intentionality: body 

organs have natural purposes, behaviors copied by other’s behaviors can have proper 

functions, artifacts copied from earlier exemplars (because of the effects the latter 

had) can have natural purposes. Millikan clearly states that natural purposes be­

come associated with intentionality only when they are “explicitly” represented. The 

relevant notion of representation, says Millikan, is kin to the mathematical notion of 

representation.

According to the mathematical notion, a structure consisting of a set of 

abstract entities along with certain designated relations among them is 

said to represent another such structure if it can be mapped onto it one- 

to-one. Similarly, an intentional representation corresponds to the affair 

it represents as one member of a whole set of possible representations.

These bear certain relations to one another such that, ideally, the whole 

structure maps one-one onto the corresponding structure of possible rep­

resentations. [...] The forms of the representations in the system vary 

systematically according to the forms of the affairs it is their proper func­

tion to bring about.[...] The explicitness of these representations of nat­

ural purposes results from contrast with alternative purposes that could 

have been represented instead by contrasting representations in the same 

representational system.16

16Millikan [57], p. 5.
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Notice that this notion of isomorphism is more plausible than standard notions, in 

at least two respects. According to an isomorphism theory (any one), representation 

amounts to the preservation of similarities and differences such that the structure 

of relations in the represented domain is “mirrored” by the structure of relation in 

the representing domain. Remember for example how the notion of implementation 

(Imp(S,A))  was thought to be grounded on the notion of mirroring. The causal 

structure of S was (allegedly) mirrored by the formal structure of A. Moreover, the 

relations that formed the two isomorphic structures in that case, were first order 

relations, i.e. the causal structure of S was supposed to be identifiable by “intrinsic” 

properties of S alone: we have called this assumption the “internalist” theory of 

implementation. According to the present version of a “resemblance theory” , instead, 

the relevant resemblances are second order: they are themselves relational.

Secondly, it appears (and this will be crucial for our discussion) that teleological 

isomorphism theories have an advantage over crude isomorphism theories. It is in 

fact often argued that isomorphism theories are vacuous. The general objection is 

that “everything maps on to everything by some rule or other”. The advantage of 

teleological theories is that they allow for a natural distinction between “relevant” 

mappings and “irrelevant” mappings, the “relevant” (honest) mappings being those 

that the system was designed (in the non intentional sense specified above) to use (in 

the sense in which a user part of a system uses a representation).

An appeal to teleological functions can be combined with various ideas 

to form hybrid theories. [...] it’s worth mentioning that such an appeal 

can also be combined with isomorphism theories (e.g. Cummings 1996),
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If we combine the idea that representations are isomorphic with their rep- 

resenteds with the idea that psychosemantic norms depends on the norms 

of proper functioning, we can generate several proposals: for example, 

the proposal that the relevant mappings are those that the systems were 

designed to exploit.17

Notice that this, if true, would allow us to block the isomorphism catastrophe, for 

unwanted models would be ruled out as mappings that the system under study has 

not been designed to exploit.

4.2.4 Fodor on misrepresentation

The introduction of teleological concepts was an attempt to solve, among other diffi­

culties, the so called “disjunction problem”; this is exemplified by a red face (candidate 

representation) being caused by several, disjoint, factors, without any means to point 

at one as the intrinsically “intended”, “honest” content. If X is the intended content 

of a representation R, and a Y happens to cause R, how can we ground the notion 

that X is the “correct”, “intended” , “honest” content of R, while Y is misrepresented 

by R? That is, what prevents us from saying that the content of R is really “X  or 

Y ” , thus making error inconceivable? Fodor contends that teleological accounts are 

not a viable solution.

[...] The appeal to teleologically Normal conditions doesn’t provide for a 

univocal notion of intentional content. [...] I t’s just not true that Normally 

caused intentional states ipso facto mean whatever causes them. So we

need a non-teleological solution of the disjunction problem.18

17Neander [62], sec. 3.
18Fodor [36], p. 230.
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Fodor’s idea is to account for representational error by a resort to asymmetric 

dependencies. Incorrect representations (such as a horse being mistakenly seen as a 

cow) depend on correct instances (such as a cow being seen as a cow) in a asymmetric 

way: correct cases would occur even if incorrect cases didn’t, while incorrect cases are 

dependent on there being correct ones. Such asymmetric dependency is grounded on 

a (non-specified) asymmetric causal dependency. A large number of objections and 

alleged counterexamples has been suggested, many of which have been addressed by 

Fodor himself19. One that, to my knowledge, has not been addressed, and that, if 

correct, would be fatal for our purposes is the following.20.

Fodor’s solution to the disjunction problem might be internally consistent: it 

allows, from a theoretical point of view, to discriminate between “correct” and “mis­

taken” instances of representation. However, the point is not only to convince philoso­

phers (external observers) that there can be a principled way to distinguish between 

representations and misrepresentations, but to allow representational organisms to 

detect errors autonomously. An organism has no way to know what asymmetric 

dependencies hold between its representations. So there is no sense in which the 

organism can “know” what its representations are “intended” to be about. How can 

an organism, for example, having represented a horse as a cow, recognize its error 

once it has got close enough to the horse to see that it was not a cow, if it has no 

information about what the content of its representation was in the first place?

Moreover, one would like asymmetric dependencies to be explained by a theory

of content, rather then having them as the foundation of it. Fodor himself admitted

that
19Fodor [35].
20See Bickhard’s analysis of Fodor’s theory in [8].
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the treatment of error I have proposed is, in a certain sense, purely formal.

[...] It looks like any theory of error will have to provide for the asymmetric 

dependence of false tokenings on true ones.21

It has been suggested that the mere possibility to specify in a less formal way 

the nature of the asymmetric dependency is threatened by the risk of bringing in the 

observer.

In fact, it can be questioned whether the dependency relations that Fodor requires 

are naturalistic. Firstly, these are not themselves the subject of any known natural 

science so Fodor cannot claim, as the teleo-semanticist does, that he is explaining a 

semantic notion in terms of a scientifically respectable notion; i.e. biological function. 

Further, it is not obvious that the synchronic counterfactuals that Fodor appeals to 

when explaining asymmetric dependence have truth conditions that can be specified 

non-intentionally. Why is Fodor so certain that the counterfactual (synchronically 

construed) if cow i-> “Cow” were broken then cow-picture i—> “Cow” would also be 

broken is true? Perhaps if the first law were to fail “Cow” would change its reference 

to cow-picture and so the second law would still obtain. If so, then while “Cow” 

refers to cow ADT would say that it refers to cow-picture. Fodor cannot respond 

by saying that in understanding asymmetric dependence the counterfactual should 

be understood as holding the actual reference of “Cow” fixed since that would be

introducing a semantic concept into the explanation of asymmetric dependence.

21 Fodor [34] p. 110.



163

4.2.5 Are etiological theories of intentionality apt for induc­
ing extrinsic restriction?

At the end of chapter 2 (section 2.5.7) we concluded that if a restriction of candidate 

input label bearers (CILB) were to be compatible with a theory of implementation, 

the properties that determine the restriction should be extrinsic to the implementing 

system. Our proposal, we anticipate, will be to restrict CILB by requiring that its 

elements be “indicative intentional icons”. As anything, in principle, can be an inten­

tional icon (anything can instantiate the relevant relational properties), a restriction 

of CILB that consists in requiring that its elements be intentional icons is an extrinsic 

restriction. This, of course, does not mean that, given an organism, and a particular 

environment, anything in this environment could count as a candidate input label 

bearer. This is precisely as it should be: we want to rule out unwanted models, while 

allowing for multiple realizability.

Some have argued that, as etiological accounts of function cannot be cashed out in 

terms of the present state of the instantiating system they are causally epiphenomenal, 

i.e., causally inert. We are after real causal constraints on representations, of the 

kind exemplified by Galilean dynamical models; if this difficulty cannot be amended 

this fact could threaten our proposal. Some authors suggest that biological function 

could be cashed out in non-etiological and non-teleological terms. Here it suffices to 

say that, as teleological functions are often considered as selected effects, they can 

also be considered as selected dispositions: certain traits are selected because they 

produce certain effects in response to certain causes. This, of course, does not make 

teleological functions a set of current dispositions, but a set of selected dispositions. 

In the next section we consider a theory of intentionality that is non-etiological, but
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that, if sound, would be equally suitable for our purposes. I do not wish to commit 

to either of these treatments, or, still less, to the claim that either of them as they 

stand at the present date are free of objections. What I want to stress is that, if 

either of them proved to be correct, it could be used to salvage computationalism 

from v-arguments, and to construct a computational theory of the mind that is free 

from standard objection.

4.3 The interactivist picture of intentionality

4.3.1 Control, Functional Indication and Functional Goal Di- 
rectedness

According to the view of representation that I shall introduce in this section, Bick- 

hard’s interactivist theory, intentionality is grounded on the notions of function, con­

trol and goal directedness. As for all other teleological theories, then, it is in order 

to make sure that they are not, themselves, observer relative. The problem, we have 

seen, is that standard accounts of goal directedness make reference to the represen­

tation of the goal to be met. The following technical notions have been devised for 

this purpose.22

If a system A exerts an influence on another B, I shall call the effects that A has 

for B the functions of A relative to  B. This definition allows us to retain multiple 

realizability while avoiding any reference to representation.

If, in particular, the outcome of some specifiable process in A influences the course 

of the processes in B then A exerts control on B. In other words, a subsystem A 

exerts control on B if differences in the processes of A trigger differences in the

22If one already believes that it is possible to free goal directedness from representations without 
making reference to natural selectionist concepts, this section can be skipped.
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processes of B. A persistent complex of such control relationships among a number 

of subsystems constitute a control s truc tu re .

A particular instance of a control relationship (hence of a control structure) is a 

switching relationship: we say that a control relationship is a sw itching re la tion ­

ship if the influence A exerts on B consists in causing B processes to enter (or exit) 

a state of quiescence. Given a certain switching control structure, the flow of condi­

tions that switches on the components of the system is called a control flow. As 

only components (subsystems) that are “on” can cause other components to switch 

on, the control flow is the flow of activation of the system.

Finally: the notion of indication. Given three subsystems A, B and C, A is an 

ind icator of C for B if A exerts control on the switching processes in B such that it 

makes it possible (although not necessarily causes) that the control flow activates C. 

In other words, an indicator (A) is sufficient (not necessary) for the possibility that 

B switches to C.

The notion of control can be used to build a non observer relative notion of goal 

directedness. Consider a system (switch) A  that either switches control flow to B, or 

switches it away from the A — B  subsystem. If the internal conditions of A  that deter­

mine which of these possible routes the control flow takes are themselves controlled 

by the environment, then the A — B  subsystem is a goal d irec ted  subsystem. If 

the environmental controlling system leads away from the A — B  system, then it is a 

satisfier of the goal; if, instead, it leads to the activation of B,  then it is not a satisfier. 

Intuitively, the activation of B  corresponds to the message “goal not met: try again”; 

if, instead, the control flow switches away from the A — B  system, that corresponds 

to the message “goal met: go on”. This minimal notion of goal directedness makes



166

reference solely to internal, functional properties of the system, rather than to the 

external, semantic properties of the representation of the goal.

4.3.2 The origin of epistem ic properties

One of the problems that one has to face in trying to naturalize the intentional 

relation is that physical, factual, correspondences are either in place, or not there at 

all: they are never, themselves, wrong. Consider again a mathematical dynamical 

system and a real dynamical system. We have discussed under what conditions the 

MDS adequately describes the RDS. Suppose that it doesn’t: that is, suppose that our 

MDS, although qualifying as a dynamical system, doesn’t comply with the constraints 

that would make of it a Galilean dynamical system. What we say, in these cases, is 

that the MDS fails to describe the RDS. We don’t think that it is the RDS that is 

wrong about something: RDS’s are what they are, they can never be “wrong”, hence 

they can neither be “right”.

By contrast, if a representation misrepresents a horse as a cow, it is not the horse’s 

fault, or the cow’s, nor can misrepresentation be blamed on some causal path from 

the horse to our cognitive system. We might be able to explain how the cognitive 

system made a representational mistake, but ultimately, it is the cognitive system 

that misrepresents. Semantic properties require a degree of normativity that is hard 

to naturalize. Our cognitive systems, in fact, are real dynamical systems. As such, 

they can’t but comply with the laws of physics. How can they be wrong about 

something? In other words, where can we look, in the natural order of things, to find 

epistemic properties? When the universe was born, presumably, nothing was being 

right or wrong about something. To be sure, now we can be right or wrong about 

what was happening back then. But back then nothing had such epistemic properties.
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At some point, either gradually or abruptly, something must have come about that 

had epistemic properties. What?

A promising domain of physical properties that has been suggested as a candidate 

is that of far from thermodynamical equilibrium systems, Physical systems tend to 

reach states of equilibrium. This fact is described in dynamical system theory by the 

presence of attractors. Such attractors can be single points, (such as is the case for 

a marble rolling in a bowl), or a periodic orbit (a steady oscillating behavior such as 

that of the moon around the earth). However, this is not the only kind of stability that 

we observe in nature. Some systems, in fact, seem to have stabilized into a far from 

thermodynamical equilibrium state (FTE hence forth). If isolated from the rest of the 

world, these systems would naturally tend towards equilibrium, thus ceasing to exist 

(as systems, that is). Their stability is dependent on the presence of counteracting 

forces. Clearly, these systems are open systems: they have to be, or they would not 

exist. A fridge is an example of such a system: its far from equilibrium stability 

depends on us providing it with a continuous energy supply.

More interestingly, some FTE systems, although dependent on environmental 

counteracting forces for their existence, make their own contribution to their self 

maintenance. An example of such systems is a burning piece of wood. The heat 

created by it generates a convection dynamics that allows us to provide the system 

with more and more oxygen-rich air, which, in turn, reacts to create more heat. A 

burning piece of wood, if deprived of its environmental conditions for existence, how­

ever, ceases to exist (qua burning piece of wood) without reacting in any way: it 

is not provided with any means to respond to changing environmental conditions so 

as to maintain its far from equilibrium state. Other systems, on the contrary, are
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endowed with more or less efficacious means to respond to a changing environment so 

as to secure their self maintenance. This property is called recursive self-maintenance 

(RSM).

The typical example as to how this programme might be carried out is the case 

of marine bacteria that we have discussed. This, Dretske argues, is a perfect exam­

ple of natural misrepresentation. The direction of magnetosomes bears information 

about the direction of oxygen-free water, it is its function to convey this peace of 

information, so a magnetosome pointing downward means that oxygen-free water is 

downward. Notice that it continues to do so even if things are not so, allowing for 

misrepresentation. The idea is that the content of a representation is which ever fact 

about the world that the representation has the function of indicating. This function 

must be understood in terms of the internal information-gathering cognitive economy 

of the organism.

These marine bacteria, that we often encounter in the literature, are an example of 

RSM systems. They are FTE systems, like all biological systems (they cease to exist 

if severed from their environment) and they have means (magnetotaxis) to respond 

to changing environments so as to preserve their far from equilibrium state.

It should be clear, by now, where we are getting at. We wondered, some time ago, 

where in the natural order of things, we should look for physical systems that can be 

wrong about something. RSM systems seem to be the right place to look at.23

It has been suggested24 that a theory of semantics should be based on RSM 

systems.25

230 ur bacteria, for example, can be “tricked” into a lethal environment, that is, they can be wrong 
about things.

24Bickhard [8] and [7].
25 As, to our current knowledge, the extension of the concept of a RSM system is that of an organism
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4.3.3 Dynamical presuppositions

If a system is controlled by the environment, the final state it ends up in when it inter­

acts with it implicitly categorizes environments (it selects the class of equivalence of 

all those environments that would cause it to enter that same state). Thus, for exam­

ple, a metal bar implicitly categorizes environments that have the same temperature, 

i.e. it functions as a differentiator of environments. Now, consider an environmental 

differentiator that (for the sake of simplicity), can only end up in two final states, A 

or B. Suppose that a certain goal is active (in the sense specified above): the differen­

tiator controls the activity of a goal directed subsystem. Depending on what state the 

differentiator ends up in, the goal directed subsystem selects a different interactive 

strategy.

Suppose that in our case the goal directed subsystem only has two available in­

teractive strategies, Si and S2 . Each of these, when invoked, is iterated until when a 

certain internal outcome is induced (signalling that the control flow should continue 

elsewhere). Suppose, moreover, that when the differentiator ends up in state A the 

goal directed subsystem indicates (in the sense specified above) strategy Si, and when 

the differentiator ends up in state B then strategy S2  is indicated. The differentiator, 

we said, implicitly categorizes environments as A -type environments and B -type 

environments (through the factual correspondence of certain environments causing 

it to end up in state A or B). Similarly, the whole system that we are considering 

categorizes A -type (B-type) environments as S i-type (S2 -type) environments.

being alive and healthy, one might ask why not to use the latter concept instead of the former. 
This simplification, however, would bring with it some unwanted chauvinistic consequences: in the 
current use of the expression, “being alive” entails having particular physio-chemical properties. 
So, demanding that representation be be a prerogative of living creatures would be tantamount to 
excluding the possibility of artificial representation, hence of artificial intelligence.
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It is argued that such cases of elementary implicit predications (e.g. “B -type 

environments are S2-type environments”) constitute the basis for the emergence of 

representation. Implicitly, in fact, these propositions presuppose that certain facts 

obtain in the world: swimming in the direction indicated by the magnetosome, for 

example, contributes to the maintenance of the far from thermodynamical equilibrium 

of the bacterium only if the direction indicated is away from the surface. Following 

Bickhard I shall call the environmental conditions under which such predications are 

true: dynam ical presuppositions.

To better appreciate how the notion of dynamic presupposition might ground 

the naturalization of representation, consider the relationship between the implicit 

categorization of a differentiator (“This is an A -type environment”) and the envi­

ronments that it categorizes. Notice that it doesn’t make any sense to ask whether 

it is true or not that a certain environment, in isolation from the differentiator, is 

an A -type environment. Being an A -type environment is not an intrinsic property 

of environments. And, most importantly, it is not a property represented by the 

differentiator. We have seen how various theories of semantics (causal theories of se­

mantics in particular) failed their naturalizing job for their incapacity to account for 

representational error. We are now in the position to say that they fail because they 

are attempts to ground semantic properties on environmental differentiation alone.

Contrast this with the emergent semantic properties of the dynamic presupposi­

tions defined above. Does it make any sense to ask whether a dynamic presupposition 

is true? In our simple example: can we ask whether it is true that “B -type  envi­

ronments are S2-type environments”? It does. In fact, things can go wrong, and
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strategy S2  can fail to induce the internal outcome indicated by the goal directed sub­

system (just like the marine bacteria in Dretske’s example can mistakenly follow the 

magnetic field towards death). This possibility for an implicit predication (dynamical 

presupposition) to be wrong, opens the way for a naturalization of representation.

4.3.4 Interactivist theory o f semantics

We said that a viable research programme as for the naturalization of representation 

is one that seeks a natural notion of function. The semantic theories that adopted 

this strategy often tried to define in natural terms what it is for an internal item of 

a system to have a natural function. Once in possession of such a notion, they de­

fined what it is to serve a natural function in relation to what it is to have a natural 

function (to serve a function is to succeed in functioning). This time, instead, we will 

shall reverse the logical order of these concepts.

[N atural function] An internal item of a RSM system is said to serve a natural 

function if it makes a contribution to the system’s far from thermodynamical equi­

librium.

As we have seen, a RSM system detects features of the environment and responds 

accordingly (in the attempt) to secure its far from equilibrium state. These responses, 

depending on the complexity of the system, may be simple triggers (such as in the 

case of our bacteria) or they may set indications of multiple possible future inter­

actions. These responses (whether simple or complex) implicitly “assume” that the 

indicated behavior is appropriate (that is, that it contributes to the self-maintenance 

of the system). Clearly, these indicated interactions (or better, types of interactions)
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will actually be appropriate depending on certain conditions obtaining in the envi­

ronment. 26

We can then propose the following:

[Dynamical presuppositions] An indication of future action in a RSM dynam­

ically presupposes that the conditions for the appropriateness of that action obtain.

In other words, a process can be said to dynamically presuppose the conditions 

(these can be internal or external to the system itself) that must obtain for it to serve 

its proper function. It is in terms of these dynamical presuppositions that an item 

can be said to have a certain function.

The important thing to notice is that dynamical presuppositions can be true or 

false: if the dynamical presupposition of an indicated action is false, the indicated 

action will fail. This property of dynamical presupposition is then an elementary 

epistemic property. Bickhard suggests that it should be used to ground the notion of 

representational content:

[R epresentational content] The dynamical presuppositions of an indicated ac­

tion constitute its representational content.

If a RSM systems indications for action are ever to be appropriate, the system 

must make a number of relevant environmental distinctions. These environmental dis­

tinctions cannot but be a result of the contacts the system has with its environment.

26The appropriateness of the “swim in that direction” indication in our bacteria depends, for 
example, on that direction actually being that of decreasing oxygen-rich water.
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Isn’t this picture of epistemology equivalent to the simplistic picture that I claimed 

to be responsible for the recalcitrance of the problem of conflicting desiderata? Ac­

cording to that picture our epistemic contact with the world consists in encoding the 

relevant information so that it can be processed and used for selecting actions.

The problem with that picture was that encodings presuppose representations, 

hence they cannot explain how representations come about. The view that I am con­

sidering, now, distinguishes contact with the world from content The contact with 

the world provided by the senses, in this view, and the environmental distinctions 

that it provides to the system, have no content whatsoever. Environmental distinc­

tions don’t carry any information as to what they are distinctions of: they, and the 

processes that allow them, have no representational property. It is the dynamical 

presuppositions of the indications for action that have the relevant epistemic prop­

erties: these could be in place even if no contact with the world was taking place, 

except that in this case they would probably all be false. We may want to call this 

alternative picture, a two-factor epistemology.27

27The perspective that we are considering seems to have the counterintuitive consequence that 
only processes whose appropriateness can be assessed individually can count as representations. 
For example, my representation of a bull charging me, can quite understandably be put in some 
good use in maintaining my organism far from its thermodynamical equilibrium. But what of my 
representation of a peaceful cow? How can that serve its proper function? Our representational ap­
paratus is (presumably) to be understood within a complex arrangement of embedded goal-directed 
sub-systems. Fortunately, as we have seen above, the notion of goal that we want needs not be 
representational. All that we need a goal-directed system to do is to respond differently accord­
ing to the indications of the system’s error detecting devices. For example, it can respond with a 
“proceed to other interaction” indication if the current interaction is appropriate, and with “try 
again” indications if it is not appropriate. In other words, the goal-directed subsystem needs not 
represent the contents of its indications, just as the environmental-distinction making subsystem 
(the contact-making subsystem) needn’t.
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4.4 Teleological theories o f computation: an hon­
est proposal

This long incursion into the field of naturalized intentionality had the purpose of 

looking for naturalized semantic properties that complied with the desiderata put 

forward at the end of chapter 2. We are now in the position to draw a conclusion.

Teleological theories of intentionality, whether of the etiological variety or other, 

do not treat semantic properties as encodings, or as any sort of intrinsic property 

of the physical structures that instantiate them (we have seen how, for example, the 

dance of a bee is not, by it self, or in virtue of some intrinsic property, a representation 

of nectar location). As I shall argue, for this reason they are apt for grounding syn­

tactic properties (in particular computational properties) in a way that abandons the 

pervasive internalist picture of them. We shall call any such theory of computation: 

computational extemalism.

There are various theories of semantics that can be said to be “teleological", 

and they imply very different (possibly opposed) strategies of naturalization. For 

our purposes, however, what counts is that if any of them proves to be sound, it 

would allow us to induce in the set of CILB an extrinsic restriction, while bypassing 

the isomorphism catastrophe: they allow us to ground syntactic constraints to a 

representational labelling scheme in a way that complies with the desiderata of a 

theory of computation.

The supervenience base for an item being a teleological representation (whatever 

theory one prefers) will be a large disjunction of relational properties. Within each 

type of relational properties belonging to this disjunction, moreover, a certain degree 

of tolerance will be objectively introduced. Various instances of the same bee-dance,
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for example, will present slightly different lengths of the long axis. How much tol­

erance is acceptable, before the dance misrepresents the location of the food? The 

answer to this question depends on a number of complex states of affairs concerning 

the dance itself, the response of the food-seeking bee, and a lot of other environmen­

tal facts. What is important for us, however, is that such constraints are objective: 

whether an item ceases to be a representation, or changes its represented, is a matter 

of objective fact. 28

As I shall now discuss in more details, I  propose to ground the observer-relative 

constraints that sustain the computational abstraction on the objective conditions for 

the maintenance of the semantic properties of intentional icons.

4.4.1 Teleo-com putation of a logical gate: an intentional the­
ory of com putation at work

Before putting forward a precise proposal, an example should help to see how our 

strategy works in the case of logical gates. Suppose (this is a fictitious example) that 

the interactive strategies for the maintenance far from thermodynamical equilibrium 

of our marine bacteria were not simple triggers, as in fact they are. Our bacterium 

now has two options for its survival: either it swims in oxygen-free and cold waters, 

or, alternatively, it opts for oxygen-reach but warm waters.

Two magnitudes serve the relevant functions: the little magnetic bar will differ­

entiate environments according to the oxygen-free/oxygen rich axis, assigning value 

X  = 1 (X  = 0) to oxygen-free (oxygen-rich, respectively) directions. Another sub­

system will take care of the temperature of the water, assigning value Y  = 1 (Y  =  0,

28 Although it might be a matter of degrees.
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respectively) to warm (cold) environments. The response of the bacterium (the out­

put) will be simply: swim in that direction (f ( X , Y ) = 1) Or do something else 

( f ( X , Y ) =  0 ).

An orthodox (internalist) computationalist explanation of the behavior of the bac­

terium would describe it as implementing the XOR logical function: f ( X , Y)  =  0 if 

X  = Y,  otherwise f ( X , Y )  = 1 (where ’0’ and T ’ axe the two digits). But we have 

seen that between a galilean model of the system (the bacterium) and the abstract 

XOR function, there is a gap of abstraction that cannot be bridged unless a represen­

tational labelling scheme is given. For example, the sensor (subsystem) differentiating 

environments according to their temperatures, if described by a galilean model, will 

present a delay factor, and it will respond gradually to varying temperatures accord­

ing to some complex MDS. Moreover, it will not respond to the temperature of the 

water with infinite precision: there will not be an exact correspondence between the 

countably many values of temperature and the states of the differentiator subsystem. 

Hence an error must be allowed. The response of the real system, finally, will not be 

the same at all possible temperatures of the water. A MDS describing the behavior 

of such a system, will have to model all these constraints.

The abstract input function X, instead, neglects all such practical constraints. 

What delays and errors should be tolerated? If the bacterium responded differenti­

ating environments a couple of hours after having swam through them, would it still 

implement a XOR function? And what if the temperature-detecting subsystem only 

responded to waters of 1 0 0  degrees and above (we assume that at that temperature 

the bacterium would cease to exist as such)? These are all familiar concerns.

My proposal, in this case, is to require that the tokens that bear the labels for the



177

input architecture (X, Y and f { X , Y)  in our example) be teleological representational 

items: they provide for the honest representational labelling scheme. We have seen 

how teleological theories comply with the desiderata for such a scheme. This, then, 

is what our teleo-computationalist bacterium looks like.

[Teleo-Computation] A physical system S (the bacterium) implements a com­

putation A (i.e. I m p ( X O R ( X ,Y ), S')), if and only if:

1. The candidate label bearers for the input architecture of A (X, Y and /(X , Y))  

are teleo-representations (representations as naturalized by teleological theo­

ries), relative to the user (in this case the bacterium itself) and to its historical 

and current environments29. And

2. The system complies with the desiderata for a digitally supporting system, rel­

ative to the preservation of the intentional properties (point 1 ) that identify the 

honest labelling scheme.

So, for example, if we ask ourselves whether a candidate computation A is really 

being implemented by S, we should check that the practical conditions this implies 

for the system comply with the conditions for the maintenance of the representational 

status of its input architecture. There is in fact a certain amount of tolerance before a 

representation changes its status, or its represented. It is not necessary that the long

290 nly its current environment, under non-etiological treatments.



178

axis of the dance of a bee, I repeat, be exactly (100%) correlated with the direction 

of the nectar, or that the magnetosome be exactly aligned with the earth magnetic 

field, or that the temperature of the water instantly influences the internal state of 

the bacterium: the representing system will robustly tolerate, with respect to its 

maintenance, a certain amount of error. The extent of such tolerance is an objective 

fact (if some theory of intentionality proves to be adequate) and can thus be used to 

ground practical constraints in objective terms.

Our hypothesis is that the practical constraints that made computational schemas 

observer-relative in the previous sections (the conditions for the digitality of the sys­

tem) must be those inherited from the conditions for the maintenance of the repre­

sentational labelling scheme.

4.4.2 The honest labelling scheme for Finite State A utom ata

Let us see how the solution proposed above works in the case of finite state automata. 

What groupings of physical states are allowed? Recall that the state-to-state picture 

of implementation that we have criticized requires, for a physical system S to im­

plement a FSA A (Imp(S,A)), that there exists a mapping (/)  from the internal 

(physical) states of S  (Qs) to internal computational states of A (Q) such that, for 

every state transition (Qu I)©6(Qi, I) = Q2 ► P{Q2 ) =  O2 , if S  is in internal state 

si and receives input i (where f(i)  =  I  and f (s\ )  = Qi), this “causes it” to enter 

state s2 and to output o2 such that / ( s 2) =  Q 2  and /(o 2) =  0 2.

Now, to formalize my proposal, I shall need to define a number of equivalence 

relations.

For all physical inputs (i  G X 5 ), states (s G Q s )  and outputs (o  G F5 ) of S, let:
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ij =f  ik iff f(ij) = f { ik)

and

Oj =f  ok iff f(oj) = f (ok)

and

sj =f  sk iff f (sj)  = f ( s k)

The ones defined above are the relations of equivalence induced on physical items 

by the function that maps (groups) them onto computational ones. Now, the physical 

conditions discussed at the beginning of this chapter for an item to be an indicative 

icon (i.e. to possess naturalized semantic properties) allow us to define also the fol­

lowing relations of equivalence. Intuitively, the following equivalences group together 

all physical items that map onto the same intentional properties.

For all ij , ik € Xs  and Oj, ok G I 5  let:

ij = R e f  4  iff 3P  : Ref(P, i j )  &  Ref (P, i k)

and

Oj —R e f  0 k iff 3P : R e f  (P, Oj) Ref(P,  ok)

For all computational outputs, let:
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Oj =Ref Ok iff Oj =Ref Ok for all Oj and ok such that f(oj) = Oj and /(<?&) =  Ok

And for all physical states s G Qs let:

Sj = R e f  Sk iff P{f(Sj)) = R e f  P(f(sk)) 

where (3 is the output function. 30

The above two sets of relations of equivalence, = /  and =Ref  , group together 

physical items that are mapped, respectively, onto the same computational items and 

onto the same representational items.

The proposed solution to the problem of implementation requires that the label 

bearers for the input architecture be intentional icons. This, in our formulation, 

is tantamount to requiring that for each item the two relations of equivalence are 

matched. Formally, then, our proposed notion of implementation is the following:

[Im plem entation] Given the automaton A  specified by (X,Y,Q,6,  ft), and a 

physical system S  described by (Qs , T, {#*}), S implements A iff:

30Given the definition of representational equivalence of two computational outputs, the right- 
hand side of the last biconditional must be understood as compactly denoting the representational 
equivalence of each element of f*~1(P(f(sj))) (the class of all physical outputs that are mapped 
by /  onto the same computational output P(f(sj)))  with each element of the class f *~1(P(f(sk))- 
The fact that we have introduced the notion of representational equivalence of two computational 
outputs (Oj = R ef  Ok), thus, should not be taken to entail the claim that abstract entities, such 
as computational inputs and outputs, can have representational properties independently of the 
physical properties that implement them. The definition is just a convenient notation that denotes 
a large conjunction of representational equivalences between the respective implementing physical 
outputs.
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1. There is a function /  : Qs x X s x Ys ■-> Q x X  x T  such that: [Iso-Left] for 

every computational state transition31 I \ ,S \  —► 5(/i,5 i) =  5 2  *—>• /?(5 2 ) =  O2

Some considerations are in order. The above constraints are to be thought of 

as empirical constraints on the candidate implementing system, not as providing an 

alternative definition of automaton. They ought to tell us under what conditions a 

physical system, type-identified by the MDS that it instantiates, implements a finite 

state automaton.

The requirement that functional equivalences entail representational equivalence 

reflects the intuition that the realizers of a given computational property must have 

something in common, a part from being all realizers of that computational property. 

If v-arguments were sound, in fact, the mappings from physical to computational 

properties would be arbitrary (i.e. they would allow arbitrary disjunctions of phys­

ical properties to be mapped onto the same computational one). The requirement

31For the sake of clarity here, like in other similar occasions, I use particular indices for denoting 
different inputs, outputs and states. Of course these must be thought of as ranging over the whole 
sets of inputs, outputs and states.

there exists a causal state-type transition ([ii], [si]) —* [s2] ► [0 2 ] such that

/*([*i]) =  A f * ( M )  = £2 , and /•([<*] =  0 2. And 

2 . The physical inputs (i G Xs),  states (s G Qs) and outputs ( 0  G Ys) of S are 

such that:

Oj f  Ok ^  Oj Jief  Ok

Sj  —/  $k ^  Sj — Ref Sk

I j  /  1>k R e f  Ik (4.4.1)

(4.4.2)

(4.4.3)
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that there be a mapping, in general, is a syntactic constraint on the arguments to 

be mapped, and is therefore silent as to the homogeneity or heterogeneity of the ar­

guments. For example, the requirement that there be a one-to-one mapping from 

groups of words of a language to the natural numbers, doesn’t constrain the groups 

of words that are mapped to be meaningful (or even syntactically correct) sentences. 

G’ del numbering scheme, for example, can be used equally well to identify syntac­

tically incorrect arrangements of elementary symbols. Thus the mere information 

that an arrangement of symbols corresponds to a number does not guarantee that 

the arrangement is a well formed formula. The state-to-state correspondence pic­

ture of computation, if v-arguments are right, is equally incapable of ensuring that 

functionally equivalent states have something in common. In the case of MDSs, we 

have seen, the information that a magnitude takes up a given value (or a given set 

of values) instead, ensures that all possible realizers have something in common (a 

part from being all realizers): they all share the physical property that corresponds 

to that magnitude taking up that (or those) particular values.

In addition to the syntactic constraint provided by functional equivalence (by a 

state-to-state correspondence view of implementation), the schema proposed here also 

requires representational equivalence.

Secondly, it will be noticed that the schema constrains the requirement of func­

tional equivalence, but that it is itself not constrained by representational equivalence. 

This reflects the idea that if representational properties must be instantiated when­

ever computational ones are, the contrary does not hold. It is certainly possible that 

an item is a representation without being a computational item. Notice, moreover, 

that if requirements 4.4.1, 4.4.2 and 4.4.3 were bi-conditionals, this would have the
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absurd consequence that different computational states could not yield to the same 

computational output.

It is easy to test the proposal against Putnam’s skeptical result: the seven state 

intervals 5 i(i<i<7) in Putnam’s proof, for example, fail to meet requirement 4.4.3 

above. Similarly, the computational item /*,, defined as the (maximal) interval state 

of the boundary of S during interval In tk ,. in the proof of the extension of Putnam’s 

result to automata with inputs and outputs, fails to meet requirement 2 .

These skeptical arguments are blocked because the mere fact that the electro­

magnetic and gravitational signals (for example) induce every open system that is 

not shielded from them to enter ever changing maximal states, has now no relevance 

whatsoever in determining the computations implemented. These environmental dis­

tinctions, in fact, bear no information as to what they are distinctions of: very likely, 

they do not preserve the equivalence relations above. It is only the dynamical pre­

suppositions that individuate what physical processes or items do possess intentional 

properties (if, for example, we take the interactivist theory of intentionality to be our 

preferred one).

The above formalization is also apt for exposing the analogy with the case of 

physics. Recall that a result of our analysis was that physics escapes skeptical ar­

guments because measurements allow us to individuate states independently of their 

relational properties. It is the match between abstract calculations and concrete 

measurements, we said, that blocks unwanted instantiations in the case of physics. 

Similarly, in my proposal, it is the match between the abstract computational rela­

tion of equivalence (that can be formally “calculated”) and the concrete intentional 

relation of equivalence defined above, that blocks the unwanted models.



Chapter 5 

Other approaches to the problem  
of implementation

5.1 Introduction

In this work I have discussed several v-arguments, but very few counterarguments. 

This was justified because my intention was to explore the consequences of these 

arguments, if they are assumed to be valid. The opinions that one can find expressed 

in the literature, however, are not simply divided between those who think that v- 

arguments are correct and those who think that they are not. There is also a large 

number of authors (probably the majority among computer designers and cognitive 

scientists), who think that there is no such thing as a “problem of implementation”, 

and that v-arguments, just like the various failed counterarguments, are irrelevant 

because they address the issue in the wrong way.

Throughout this work I have adopted (without discussing it) a particular method­

ological approach. The general question that I set out to answer was: what does it 

take to implement a computational structure? Since the very first few words of this 

thesis, I rephrased this question as: what are the models of Imp(S , A )? The main 

v-arguments that I have discussed are model theoretic arguments. Let us call this

184
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general methodological stance the model-theoretic approach (MTA henceforth) to the 

problem of computational individuation. I have never discussed neither the virtues 

nor the shortcomings of this stance. It is now time to do so.

An assessment of the general validity of the MTA is of the uttermost importance 

for the tenability of my thesis. To realize this it suffices to notice that the v-argument's 

that my semantic picture was designed to block rest on a MTA to the problem of 

implementation. Although, as we have discussed, most responses to these arguments 

question their validity without undermining their methodological premises, it is cer­

tainly possible to argue that what v-arguments, if they were sound, would show is 

not that there is a “problem of implementation”, but that MTAs are inadequate to 

address the issue of computational individuation. As this intuition is probably shared 

by most of the relevant community of experts, it deserves special attention.

In section 5.21 consider whether MTAs bear with them some implicit metaphysical 

assumptions. It is argued that they do not, per se, commit us to any metaphysical 

claim about the nature of computation.

In section 5.3 I discuss the way in which the concept of implementation is used by 

the relevant community of experts. This appears to be at odds with the view that is 

affordable by an MTA to implementation. Some implications of this for the present 

thesis are discussed. The conceptual soundness of the alternative view (the functional 

view) of implementation is then challenged (section 5.4), and a partial justification 

for the adoption of a MTA is given.

Finally, a shortcoming of my treatment of implementation is that it appears to be 

applicable only to finite state automata (as opposed to some more complex computa­

tional structures, such as Turing machines). This difficulty is tackled in section 5.5,
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where I provide an outline of how the semantic view should be applied to universal 

Turing machines.

The thesis of this chapter is that there is no conceptually sound alternative under­

standing of implementation at the moment. This, however, does neither entail that 

we are forced to adopt a MTA to implementation, nor that standard computational 

explanations are not valid. Moreover, It is conceded that if a functional view could be 

provided, it would be preferable to the semantic one. The adoption of a MTA in this 

work is defended on methodological grounds. The semantic view, however, is argued 

to be less “unfriendly” to the intuitions of expert practitioners then it appears to 

be. The semantic picture, in fact, does not contradict the functional characterization 

of implementation: it adds semantic constraints to the functional ones in order to 

restrict in a multiply realizable way the implementing physical structures.

5.2 Some general issues concerning m odel theo­
retic approaches

A first question that ought to be addressed is whether the MTA bears some implicit 

metaphysical assumptions. On one side it appears not. To ask what is the model of 

a sentence in a formal language is the same as asking what are the truth conditions 

of that sentence once it is interpreted. In this sense, to ask what are the models 

of Imp(S,A)  is the same as asking what it takes for a physical system to imple­

ment a computation. In this sense, then, the MTA doesn’t entail any metaphysical 

commitment.

However, it is implicit in the approach (given some widely shared assumptions)
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that the truth conditions of the sentence Imp(S,A)  must be cashed out in physi- 

calistic terms. Computations (and thereby computational properties), in fact, are 

not typically construed as enjoying a peculiar metaphysical status: not only do they 

supervene on the physical properties of their realizers, but they are thought to be 

grounded in them. The principle of multiple realizability only entails that different 

physical objects can implement the same computational structure, just like objects 

made of different staff can share the same shape. The multiple satisfiability of, say, 

the concept of spherical object doesn’t force upon us a “platonic” assumption about 

the metaphysical status of sphericity.

Although the MTA, per se, doesn’t bear with it any particular metaphysical as­

sumption, it implicity commits us to the claim that it is possible to specify the 

relevant causal structures by using nothing but the language of fundamental physics. 

This is the methodological assumption behind the MTA as it is applied to the imple­

mentation of computational structures. This assumption amounts to the claim that 

the computational properties of an object must be deducible from its microscopic, 

complete physical description. Let us call this claim the deducibility assumption (DA 

henceforth). The fact that DA is virtually uncontroversial in the relevant philosoph­

ical literature has obscured a potential unwarranted use of it. DA, in fact, can be 

interpreted in two ways.

The metaphysical version of DA (the one that is relatively uncontroversial), is the 

claim that the computational properties of a physical system are in principle deducible 

from its physical properties. The methodological version of it, instead, is the much 

stronger claim that it must be possible to specify the deductive bridge from, say, the 

values of all fields in a region of spacetime to the computational properties of that
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region. This claim is unwarranted and it is probably false. Throughout this work, the 

failure to specify a model for Im p(S , A) within the standard picture of implementation 

has been assumed to be a reductio ad absurdum of the picture itself. One could argue 

that, in stead, these failures only show that the MTA is not appropriate to address 

the issue. Such a criticism to my thesis (and to any other work that adopts the MTA) 

is not necessarily committed to a denial of DA in its metaphysical interpretation: it 

only needs to deny its methodological version.

Suppose that, for some reason, a community of philosophers were investigating the 

relation between the structure of body organs and their physical realizations. Suppose 

that, endorsing a MTA, one of these philosophers asked what are the models of 

Imp(S , H),  i.e. of the sentence “the physical system S implements a heart". Suppose, 

moreover, that all the proposed models of Imp(S , H)  proved to be inadequate (either 

too strict or too liberal) to capture the concept of heart. Would anyone think that all 

explanations that make reference to hearts (such as: “the death of the old man was 

caused by a heart attack”) should be considered as unwarranted? Wouldn’t we rather 

think that these philosophers are simply approaching the issue in the wrong way? Isn’t 

it relevant that surgeons do not appear to face any problem at individuating hearts 

in their patients?

Notice that if one thinks in this case that it is the philosophers that are reduced 

ad absurdum (as anyone would) he or she needs not deny the claim that hearts do 

their jobs by virtue, and only by virtue of their physical properties.

Similarly, one could object that assuming that v-arguments are sound (like I have 

done) does not entail that there is a problem of implementation, but that there is 

a problem with the MTA to implementation. This chapter addresses this potential
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objection.

Before considering some other possible approaches to implementation I wish to 

make some preliminary remarks. As we shall discuss in what follows, a concern about 

MTAs is that very rarely they capture the relevant concepts in a familiar way. A 

prima facie implausible consequence of MTAs to implementation (of the standard 

variety or of the semantic variety defended here) is that they propose to individuate 

the realizers of computational structures in a way that is alien to that of the relevant 

community of experts. Computability theorists and computer designers, in fact, have 

very effective means to tell whether something is a computing system or not, or for 

individuating the realizers of computational structures, inputs, outputs, and states. 

Admittedly, these means are nothing like the ones afforded by any MTA. In particular, 

it is not clear whether a MTA could in principle ever yield an analysis that would 

be consistent with the practise of computer science or of computationalist cognitive 

science. Can this fact be used to object in principle to MTAs?

On one side it appears like this is a problem. The most competent users of tech­

nical concepts are certainly the relevant experts. It is also doubtless that the domain 

of concepts that pertains to computer theory has been used for several decades with 

most profitable results. Any analysis of these concepts that completely disregarded 

the way in which they are typically used would then be questionable a priori. On the 

other side, however, different communities of scholars use the same domain of con­

cepts in different ways and with different goals in mind. A concept may be perfectly 

usable for practical purposes and yet fail to meet the desiderata of a philosophical 

analysis. One of the most striking cases of this happening is the relatively “uncontro­

versial” use of the the concept of quantum state by the community of physicists vis a
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vis the difficulties encountered by philosophers of physics in providing a satisfactory 

analysis of it. In a sense, I argue, the unfamiliar flavor of the result of a conceptual 

analysis is no a priori argument against it. However, as we shall see, there are reasons 

to think that the use of a MTA should be well justified.

In what follows I briefly discuss how computer designers and cognitive scientists 

use some concepts of computability theory, considering whether their praxis could (or 

should) ground an alternative, philosophically satisfactory picture of implementation.

5.3 Vacuousness arguments: the view o f computer- 
designers

5.3.1 The ontology of computer science

Let us begin by considering how computer programmers and designers would describe 

(and thereby explain) how programs are executed by a machine. At the highest level 

of analysis is an instruction written in a certain programming language. This can be

something like UNTIL P TRUE DO ENDUNTIL. In the convention known by

the programmer, this (once appropriately input in the machine, and if the computer 

functions properly), should result in the computer doing whatever the programmer 

writes in the blank space, until the value of the variable P becomes TRUE. At any step 

in the response of the machine, then, the value of the variable P must be calculated, 

and the process should not stop until when this value is TRUE. Clearly the machine 

will also respond to the input doing other things, that are not described as part of 

the process. It will, for example, activate a fan to cool the central processor. What 

is relevant to the programmer, however, is that the computer produces the right 

output: anything that is not directly related to ensuring that or to explaining how
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that is achieved, should be considered as accessory.

The machine, of course, needs not “understand” what the instruction means, in 

order to execute it. Not only must the instruction be written according to known 

conventional rules, but it must be “encoded” as a (typically binary) string of bits. 

This is done by the computer as soon as the programmer prints on the keyboard the 

instruction. The effect of printing the instruction, in fact, is that the voltage in a 

number of memory cells (one for each bit of the instruction string) is set to certain 

levels according to the input information. These levels (i.e. the exact values of the 

voltage) are not relevant per se. Any level would do just as well, so long as the 

functional organization of the machine remains unaltered.

Normally the instructions, thus encoded, axe not immediately executable by the 

machine. There are, in fact, a number of operations that can be said to be primitive, 

in that they are not further analyzable into more elementary sub-operations. These 

can be a transfer of bits from one register to another, or an operation, logical or 

arithmetical, on those bits. The string of bits that encodes the instruction that 

the programmer has just entered, then, must be transformed into another one that 

encodes the same instruction by encoding a functionally equivalent large number of 

primitive sub-instructions. Typically this “translating” job is done by a compiler and 

the language apt to encode primitive instructions is called assembly language.

There are two things that I wish to comment on at this early stage of the ex­

planation. First, the string that is input to the compiler and that that is output in 

assembly language can be said to encode the same instruction only in a loose sense. 

An example can help us to appreciate the difference between them. Suppose that a 

friend told you to pass her the salt. To execute this instruction, of course, you will
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have to execute a number of steps, such as, for example, look around on the table 

until you see the white container, move the bottle of wine out of the way, reach for 

the white container, grab it and pass it. So, in that particular circumstance, your 

friend might as well have told you: “look around on the table until you see the white 

container, move the bottle of wine out of the way, reach for the white container, grab 

it and pass it to me”. Now, in a loose sense, she would have asked you to execute 

the same instruction, but literally, of course, they are very different. For example, if 

you didn’t understand well the language of your friend, you might know what “salt” 

means, but not what “white container” means, in which case you would react dif­

ferently to the two instructions. Similarly, different machines might be designed to 

execute different primitive operations.

The second thing that I wish to comment on regards the use of the word “trans­

lation” . Translations, in fact, axe literally meaning-preserving transformations of 

(meaningful) strings of symbols from one language to another. Here, instead, what 

is preserved is an input-output behavior. Moreover, neither the input nor the output 

literally refers to the respective instructions: they are simply interpretable as refer­

ring to those instructions by virtue of the fact that they are apt to prompt a chain 

of events in the machine that lead to the execution of those instructions.

So far, in our story, there is nothing that could help us understand what com­

puter designers think implementation is. So far, in fact, we have described no real 

happening. To say that a string of bits that encodes a given instruction has just been 

transformed into another string that encodes a set of primitive instructions, is not the 

description of a physical process. The description of a physical process sounds more 

like, for example: “the two billiard balls have collided at time t” . The description of
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the functioning of a compiler, instead, doesn’t mention any balls, collisions, or voltage 

levels.

The next mechanism in our story represents a step in the direction of physical 

implementation. Although the strings that encode instructions in assembly language 

“refer” to primitive operations, we have seen, they do not suggest what should happen 

physically to execute them. Assembly language strings, then, must be further trans­

formed into a suitable language, called machine language, that “refers” (in the sense 

specified above) to concrete physical happenings in the machine. The mechanism 

responsible for this second type of transformation of strings is called the assembler.

The insertion of a string that encodes a machine language instruction in a special 

register, finally, causes a series of physical events in the computer. These events 

can consist in the transfer of strings of bits from one register to another, in the 

creation of strings in a previously empty register, etc. Computers are built in such a 

way that, under ordinary circumstances, a chain of physical happenings that realize 

the instructions encoded in a binary string (m) of machine language implements the 

instructions encoded by the assembly language string (a) that was transformed into 

m by the assembler. In its turn, the string m implements the instructions originally 

entered by the programmer and that where transformed into m by the compiler. So, 

through a chain of implementations, the story goes, the computer implements the 

instructions that are input by the programmer, thus executing them.

In telling the story of an implementation I have only used the language that one 

can find in the relevant technical literature. We were wondering how the concept 

of implementation is used by computer scientists. This story, I think, is pretty clear 

about it. Notice that computer scientists don’t feel the need to use two different words
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when referring, on the one side, to (1 ) the relation that obtains between a string in 

assembly language and the string in machine language that implements it, and, on the 

other side, to (2 ) the relation that obtains between a string in machine language and 

the chain of physical happenings caused by its insertion in the appropriate register: 

it appears that the word “implementation” suffices for both uses. This intuition 

provides the basis for the alternative picture of implementation that I will discuss in 

the following pages. Let me spell in more detail what this intuition amounts to.

According to the view that I am considering, an object is a computer if and only if 

its physical structure can be functionally analyzed into predefined parts and relations 

between these parts. These parts and processes are the intended referents of the 

strings of machine language: memory cells, locations (addresses) of memory cells, 

input or output configurations of voltage levels, changes of configuration of voltage 

levels among memory cells, patterns of activation of units, etc.

We are trying to extrapolate a general theory of implementation from the intu­

itions and practices of computer designers. The first thing to notice, summarizing 
>

what we said so far, is that this idea of implementation is grounded on a specific 

ontology. Not everything is a candidate input, or output, or a candidate memory cell, 

or a candidate string of digits, or a candidate central processor. The following is a 

good example of how some items of this ontology are characterized:

Some systems manipulate inputs and outputs of a special sort, which may 

be called strings of digits. A digit is a particular or a discrete state of a 

particular, discrete in the sense that it belongs to one (and only one) of a 

finite number of types. Types of digits are individuated by their different 

effects on the system, that is, the system performs different functionally
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relevant operations in response to different types of digits. A string of 

digits is a concatenation of digits, namely, a structure that is individuated 

by the types of digits that compose it, their number, and their ordering 

(i.e. which digit token is first, which is its successor, and so on). [...] 

Strings of digits in this sense are, to a first approximation, a physical 

realization of the mathematical notion of string . 1

Of course the fact that competent scholars use a language that implicitly refers to a 

peculiar ontological domain doesn’t show, by itself, that such independent ontological 

domain exists in its own right. For now, however, I will set aside this issue, to further 

explore the alternative notion of implementation.

5.3.2 Com puter architecture

There is another aspect of MTAs to computation that is at odds with the practise of 

experts. In the relevant technical literature the concept of implementation is never 

divorced from a specific computer architecture. The relevant question is never: “does 

this object really compute something?” It is rather: “does the object compute this 

computation by implementing that architecture?”

For an object to implement a modern van Neumann architecture, for example, 

not only must the candidate computer contain a structure that is functionally equiv­

alent to a memory and one that is equivalent to a control unit, it must also contain 

structures that realize access to this memory in a specific way (the so called random 

access). There must be, for example, hard wired bidirectional links between each

memory unit and the control unit, and the control unit must contain a structure that

1Piccinini [66], section 5.
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implements a memory address register (MAR). Consider for example, the following 

description of how a random access to a memory is realized:

When the control needs to access a particular memory unit, the address 

is put in the MAR and sent out as a signal on the address lines. Each 

memory unit is equipped with decoding hardware which responds to the 

address signal . Every memory unit receives the address signal and the 

one that matches it prepares for action. [...] The action taken is either 

to send what is in the memory location to the control (a read operation 

by the control) or receive something from the control for storage in the 

memory location (a write operation) . 2

To argue that a wall implements a van Neumann machine, one would have to

argue that there is a structure within the wall that is functionally equivalent to a

MAR, or that some parts of it act as memory cells, or that another part acts as the

control unit, and that each memory cell can be accessed in roughly the same amount

of time (as a random access typically ensures). Moreover, when computer scientists or

computational cognitive scientists ask themselves if a physical structure implements

a given architecture, in most cases, they are debating over which architecture is

being implemented, and not, abstractly, whether an architecture (any one) is being

implemented at all. So, for example, if it is hypothesized that the cerebral cortex

implements a van Neumann architecture, the opponents of this view would argue

that, say, a Turing machine architecture is being implemented, instead. In Turing

architectures, for example, there are two distinct memories. One is the symbolic

memory of the tape, while the other takes care of determining which choices should be

2Wells [95], p. 171.
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made under certain external and internal conditions. In a van Neumann architecture, 

on the contrary, this distinction is practically irrelevant.

Thus, when one wonders whether the brain implements a certain computational 

structure, attention is payed to the details of that structure in contrast to those of 

other potential structures (e.g. to whether the encoding mechanisms in the brain 

distinguish data from instructions), rather than requiring that the brain comply to 

some abstract desiderata that result from a model theoretic approach to the issue.

5.3.3 Universal machines

Finally, I wish to mention a third aspect of computer science and cognitive science 

that is typically neglected by MTAs. A crucial aspect to explain the fortune of 

computers in our life, as well as in providing models to the sciences of the mind, is 

the fact they can be controllable. If all Turing machines, in a sense, function in the 

same way, there is a sense in which Universal Turing machines (Henceforth UMs) 

deserve a special place, both at a theoretical and at a practical level. Unlike ordinary 

Turing machines, universal Turing machines respond to a part of the tokens written 

on the tape by executing the instructions (computing the functions) that are encoded 

in those tokens.

A first point to notice is that postulating that an object is a UM adds constraints 

to its functional architecture. The ontology of computer science, in this case, in 

fact, is particularly restrictive. Standard universal Turing machines, for example, are 

made of a number of basic functional components, such as the leftmost and a right­

most symbol finders, a single symbol erasers and a symbol copier. As I have already 

mentioned, computer designers expect an implementing object to implement each 

basic component of the implemented architecture. Thus, to someone who claimed
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that a wall implements a universal Turing machine, a computer designer would ask, 

for example: “which part of the wall implements the leftmost symbol finder?”. In 

other words, the design of UMs adds constraints to the functional organization of 

its candidate implementations. These considerations, however, are substantially not 

different from the issues treated in the above two sections.

But there is yet another aspect of UMs that is particularly relevant for our dis­

cussion, and that deserves an independent treatment. Universal Turing machines are 

so called because they can “simulate” all other machines. This means that when the 

input to a UM contains, together with the usual data, also the standard description 

of a particular Turing machine encoded in the appropriate way, it behaves exactly 

as if it were that particular machine. This is why we can use the same computer 

to simulate the most various phenomena, such as a chess player, a calculator, or the 

motion of the ocean. This flexibility is also at the heart of the allure of computation- 

alist models of the mind. Also the mind, in fact, appears to be able to respond in 

very flexible and intelligent ways to various stimuli, always exploiting the same cere­

bral structures. The programmability of UMs is so important to computer designers 

that some have proposed to reserve the name “computer” for universal computers 

only: “computing mechanism that are not programmable deserve other names, such 

as calculators, arithmetic-logic units, etc . ” 3

What is relevant for our discussion is that such flexibility creates an asymmetry 

between UMs and the mechanisms that it can simulate. If we grant that any physical 

mechanism (provided that its workings are well understood) can be simulated (hence 

described) by a computational structure, then we must also grant that any physical

3Piccinini [67], p. 304.
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mechanism implements some computation: it implements at least the computational 

structure that simulates it. In this work, v-arguments have been used to make the 

case for a semantic picture of implementation. But another possible response is to say: 

“fine, it might be that a wall implements some computational structure under some 

interpretation (for example it implements a computational model of the motion of its 

atoms), but can we also use it to simulate other virtual machines?”. In other words, 

one could concede that under some interpretation or other, any object implements 

some computation, but deny that any object implements a UM.

The key idea that underpins the idea that everything is a computer de­

pends on the representational capacities of universal machines. It turns 

out, as we now understand, that the functioning of any machine whose 

elementary operations are clearly understood can be described in terms of 

a program and simulated on a universal computer. [...] Does this licence 

the conclusion that the brain is a universal machine and that psychology 

can be studied independently of hardware considerations? It does not, be­

cause the argument does not show that the brain is a universal computer.

[...] The argument may be strong enough to show that the brain is a 

computer of some kind but it does not show that it is a universal machine 

rather than a finite automaton or a fixed function Turing machine.4

5.3.4 The functional picture of im plem entation

In sum, if a theory of implementation is to respect the way in which computer de­

signers or computationalist cognitive scientists individuate computational states and

processes, it must comply with the following two desiderata:
4Wells [95] p. 193.
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1. It must specify how each item in the (functionalist) ontology of computer science 

is implemented, and

2. It must specify how different architectures are implemented.

To a large extent, these considerations are not made explicitly: these views must 

be inferred from the implicit use of computational concepts by the community of 

experts. As it often happens, the relevant concepts as they are used by competent 

practitioners of a science are not straightforwardly spendable in the domain of the 

foundations of that science. As a matter of fact, the domain of the foundations 

typically exists precisely because some concepts are believed to be ill founded. Of 

course, this by no means entails that anything goes. Even though often the analysis of 

a conceptual repertoire yields to some more or less radical modifications of the original 

notions, it goes without saying that its results should better not be completely at odds 

with the standard use of the unanalyzed repertoire.

This preference for an analysis that respects the standard use of a conceptual 

repertoire can also be given a more rigorous flavor. Program execution explanations, 

one could argue, are really explanatory. The reason why the same tokens that I’m 

typing on my computer now appear in the pdf document after the file has been 

processed, is that my computer implements the relevant program. If they fail to so 

appear, by contrast, it is because the computer has failed to implement the program. 

If I try to type the same tokens on the wall, the wall fails to output a pdf document. 

Any analysis that concludes that the concept of program execution is vacuous, then, 

must be flawed. Any analysis that fails to mention the entities that typically feature 

in a program execution explanation, must be flawed.
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This argument, without further explanations, is not generally valid. If it were 

valid as it is, if, that is, one could easily jump from explanatory power to conceptual 

soundness, no one would have spent years and years on any debate over scientific 

realism. By the same token, for example, one should argue that luminous ether exists 

because Maxwell’s equations are explanatory when applied to molecules of ether. 

Nevertheless, it must be admitted that it has some appeal and that it deserves some 

attention.

Moreover, and this, I think, is a more serious objection, one can find in the 

literature attempts to build a notion of implementation that fulfills these desiderata. 

In various works, for example, Piccinini has proposed a non model theoretic approach 

to implementation. The view that resulted from his analysis, the functional view of 

computation, complies with the above desiderata. I think that such a view, or any 

other that respected more closely the intuitions of the relevant experts, would be for 

this reason preferable to the one that I have advocated. I do not exclude that in the 

future some tenable non model theoretic approach to the problem of implementation 

will succeed. In this case, my work would loose much of its interest, and I would 

probably abandon the conclusions that resulted from it. At the present, however, as I 

shall argue in the next section, I don’t think there exists in the literature a satisfactory 

functional account of implementation. I therefore believe that we should suspend our 

judgment on the matter and wait to see how the various approaches manage to cope 

with the respective difficulties.
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5.4 A critique of the functional account of imple­
m entation

5.4.1 W here do M TAs to  im plem entation com e from?

A preliminary question that one needs to ask is why MTAs have been adopted in 

the first place. Why, that is, has anyone decided to take such an unnatural route to 

understanding what real computations are. I think it all started when the concept of 

computation was applied to domains that did not originally pertain to it.

As the possible uses of computers grew, old designs were adapted to complete 

the new tasks, often radically changing the mechanisms exploited for implementing 

certain functional parts, or even the entire architecture implemented: the design of 

computers, with their increasingly various architectures has evolved following the 

standard problem solving routes that one observes in any other engineering tradition. 

But for how innovative a new machine can be, it will always be similar to some 

previous one in some relevant respects.

The wheels of a modern car are the product of a long history of wheels that dates 

back from before the invention of engines. Their design has co-evolved with that of 

all other parts of terrestrial means of transport, and it is this history that keeps the 

functional organization of cars together: when the design or the material out of which 

a part of a machine is changed, while most other parts remain the same, we say that 

what is preserved is the part’s function. As this, in principle, can be done with all 

parts, we say that the car has a certain functional organization, i.e. that it can retain 

its architecture and workings while undergoing material changes in all its parts. This 

is all well, when our problem is building cars or computers.

The trouble begins when we suddenly abandon completely the history of a certain
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kind of engineered items, and hope to apply the same functional categories to a 

domain that is alien to the original one. The problem is relatively straightforward 

when this applies only to a part of the whole item. An alien object, even if it doesn’t 

belong to a history of wheels, is a wheel if it can be attached to a wheelless car in 

such a way that the result is similar enough, in the relevant respects, to a car. But 

how can we ask whether an alien object is a car, regardless of the uses one can make 

of it? What are the relevant similarities that should be taken into account?

Now, the notion of program execution has been applied as an explanatory tool 

outside of its original domain of application. Although in most cases the architectures 

proposed for modelling cognition were and are tested by using ordinary computers, 

where the concept applies in a smooth way, they were meant as genuine models for 

the cognitive sciences, and for the relation that obtains between the brain and the 

mind. It is therefore of the uttermost importance to check that the concepts and 

explanations that proved to be so successful when applied to the domain of computer 

design, i.e. the conceptual repertoire that I have called the ontology of computer 

science, can be safely applied in the wild.

One could object that there is no need to check whether the ontology of computer 

science can be applied in the wild, for, by its very nature, computational explanations 

never make any reference to the details of the implementing mediums: computational 

explanations abstract from the details of implementation. As there is no privileged 

domain of applicability, of course computational explanations can be applied also in 

the wild! But if the arguments that I have discussed in the first two chapters of 

this thesis are sound, this is simply a myth. What is controversial, of course, is not 

whether computational structures are abstract entities (which is certainly true), but
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whether the relevant abstractions can, themselves, be abstracted from their standard 

domain and practices of applicability (these, as we have seen, for example, have been 

argued to include human purposes).

The notion of clock, for instance, abstracts from any specific implementing medium 

or architecture, but no one would seriously apply the notion of clock in the wild 

physical world if not in a metaphorical sense: this is because the abstractions that 

are relevant for fixing the notion of clock do not abstract from human purposes.

Whatever one thinks about v-arguments, it is philosophically safe to say that the 

abstract nature (in the relevant sense) of computation is an hypothesis, not an a priori 

truth: let’s call it the abstractness hypothesis (AH henceforth). Those who believe 

that AH is true, while believing that no MTA to implementation has succeeded5, 

coherently, will believe that what explains the failure of MTAs is their methodological 

inadequacy.

Now, model theoretic approaches were introduced precisely to frame the debate 

over observer-relative arguments.6 So anyone who thinks that they are not method­

ologically adequate must show that there exists an alternative picture of implemen­

tation that allows to block these arguments, at least in their non model-theoretic 

versions. We have seen that the only alternative picture of implementation available 

at the moment is the functional picture. So the question becomes, does the functional 

picture allow to block v-arguments? I will address this issue in the next sections.

5We mentioned in the first chapter that some scholars, e.g. Chalmers, accept the methodological 
validity of MTA, while denying that v-arguments are correct. The view that I am discussing here, 
in stead, accepts that MTAs render the problem of implementation intractable, but deny that we 
should worry about it.

6In a sense, Putnam’s MTA allows to make observer-relativity objections more precise: it can be 
thought of as a technical version of Searle’s argument
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5.4.2 Do v-arguments entail that Turing’s analysis is wrong?

I have argued that MTAs to implementation entered the scene of the foundations of 

computer science and AI when the concept of implementation was applied to a domain 

that was not the original one. We said that the possibility to do so was taken for 

granted thanks to the firm belief in the truth of AH. One could argue that the truth of 

AH could not be questioned without also questioning the validity of uncontroversial 

analyses, such as Turing’s analysis of computation.7 Turing’s analysis,, in fact, was 

not meant as a study of the computational capacities of artificial machines8, but as 

an analysis of real human computing.

So, it appears, the abstractness of computation (AH) was exploited, and thus 

conceptually tested, since the very beginning of computational cognitive science. Or 

should we think that there is something wrong in Turing’s analysis? In other words, 

should those who doubt about the validity of AH also doubt about the foundations 

of computational functionalism? As a matter of fact, we have seen, many of those 

who question AH (whether adopting a MTA or not), do also question the tenability 

of computational functionalism (Searle and Putnam are good examples); but this is 

by no means forced upon them.

Turing machines, in fact, are not real machines, they are abstract mathematical 

(logical) entities. The states of a Turing machines are logical states, its inputs and 

outputs are logical inputs and outputs. Turing described the psychological states of 

a human computer by means of the logical states of his machine. This was an aston­

ishing achievement, and it would be so even if brains or computers did not exist. His

7Famously, the analysis was first published by Turing in 1936 ([90]), and was to become one of 
the most influential papers of the twentieth Century.

8 Artificial machines of that kind didn’t even exist at the time.
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analysis, in other words, is silent with respect to the relation between computational 

structures and their implementations: one could argue that even angels, when they 

compute an addition, instantiate a Turing machine. In a sense, what Turing did, 

was trading a psychological description for a structurally identical, more abstract 

description (one that could also be used to characterize effective procedures).

Moreover, it should be noticed that what Turing has modelled, i.e. a human 

computing an arithmetical calculation, is a behavior that we typically type-identify 

by using our representational apparatus. Under what conditions do we say that a 

human is executing a given arithmetical calculation on a sheet of paper? Surely we 

do not only require that what the human writes and reads on the sheet of paper 

be characterizable as belonging to a finite number of symbol types. We also require 

that the symbols written and read actually refer (with respect to our representational 

system) to natural numbers. We could express this by saying that it is essential to the 

concept of human executing a calculation, that he or she is capable of manipulating 

symbols that (to us) refer to numbers. Turing’s analysis suggests that the means of 

execution of humans do not require the use of this representational repertoire (because 

each step requires nothing but a simple formal symbol manipulation). These means 

for executing a calculation, therefore, can be simulated by a machine. The soundness 

of Turing’s analysis only depends on whether the behavior of the machine is or isn’t 

indistinguishable from that of a human computer, from the perspective of the human 

interrogator in the simulation game. As he succeeded at that, his analysis is untouched 

by any v-argument.

To argue that Turing was wrong, one would have to argue that when humans 

multiply two numbers using a pen and a sheet of paper, in spite of all appearances,
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they do not go through a number of simple stupid steps, but guess the final result by 

means of some complex intelligent capacity. We have seen that the concept of step is 

hard to characterize in physicalistic terms, but it is certainly not hard to characterize 

at the level of psychological explanation.

The validity of Turing’s analysis, in sum, does not entail that it is possible to 

deduce from it a coherent notion of implementation. The reason why Turing’s anal­

ysis appears to contain a notion of implementation is that its fundamental elements, 

although defined at a functional level, have a physical “flavor”. The notion of ma­

chine, that of state, or that of tape, or input or output are all functional notions 

that appear to possess a straightforward physical correlate. But Turing himself ac­

knowledged that the notion of implementation could not be made independent from 

an observer. In characterizing the realization of his machines, in a famous paper of 

1950, Turing described them as essentially belonging to the category of discrete state 

machines.

These are the machines which move by sudden jumps or clicks from one 

quite definite state to another. These states are sufficiently different for 

the possibility of confusion between them to be ignored. Strictly speaking 

there are no such machines. Everything really moves continuously. But 

there are many kinds of machines which can profitably be thought of as 

being discrete state machines.9

What does Turing mean by “profitable”? Does the fact that they can only be

thought of as being discrete state machines (DSM) entail that they are not really

DSM? In replying to a potential objection to his analysis, Turing makes it clear that

9Turing [48], p. 36.



208

what is relevant for the application of computational concepts in the wild, is indis- 

tinguishability of behavior. The objection in question proceeds from the observation 

that the physical processes in the brain must be continuous. How can Turing’s anal­

ysis, then, be applied to human cognition? To simplify his point of view, Turing 

contrasts the physics of a continuous machine (a differential analyzer), with that of 

an (ideal) discrete state machine (a digital computer). The objection, in this case, 

is that, if asked to perform a computation, the differential analyzer would come out 

with more precise answers than those of the digital computer. The interrogator in 

the game would therefore be able to tell which is the digital computer and which the 

analyzer. According to Turing the objection is blocked by the observation that:

It is true that a discrete machine must be different from a continuous 

machine. But if we adhere to the conditions of the imitation game, the 

interrogator will not be able to take any advantage of this difference.10

So, it appears, what grounds the notion of implementation, according to Tur­

ing, is behavioral indistinguishability. This is perfectly fine for defining a scientific 

programme, for whether the behaviors of two agents are distinguishable or not by a 

human interrogator is an empirical fact that needs no further specification. Moreover, 

it is consistent with the analysis put forward in this work. The notion of implementa­

tion of a machine that performs a computation, in fact, is thought to be relative to the 

judgement of the interrogator. The two behaviors must be semantically addressed, 

to be compared. Suppose, for example, that the machine competitor in the game 

output the results of its computations in some unknown, or unrecognizable symbolic

format. This machine would not pass the test, and could therefore not be said to

10Turing [48], p. 47.
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objectively implement the right machine table. But if the human competitor, as well 

as the interrogator, were taught the unknown symbolic code that the machine uses, 

then the machine would suddenly pass the test, and the human could be argued to 

implement that computational structure.

In sum, phycological states, per se, are just as abstract as Turing machine states. 

So the issue of implementation is logically totally uncorrelated with Turing’s analy­

sis (or, for that matter, with any other functional computational explanation). Of 

course the multiple realizability of computational structures is crucial for the allure 

of computationalism, but the latter, as I have argued throughout this thesis, dose not 

entail AH.

It should be mentioned that Putnam has indeed argued that his model theoretic 

v-argument could be applied just as well to any functionalist psychological explana­

tion. As functionalist psychological explanations are structurally identical to their 

computational correlates, Putnam’s argument can be applied, mutatis mutandis, also 

to them. If this was true, then, Putnam’s argument could be applied also to Tur­

ing’s analysis of computation. In this case, however, the unwanted models would not 

be unwanted implementing objects, but unwanted abstract psychological structures. 

Here, however, I am interested in exploring the consequences of v-arguments for the 

notion of implementation of computational structures. I am therefore not Concerned 

(still less committed) to the validity of Putnam’s v-argument .when it is applied to

generical functional psychological theories.11

11In fact, as I have argued in section 3.3.3,1 believe that Putnam’s argument cannot be so applied.
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5.4.3 The functional view  of im plem entation in the wild

Anyone who thinks that v-arguments fail to make a point, because they are not valid 

or (and this is the view that I am considering here), because they are irrelevant, 

must think that computers are a natural kind.12 I have discussed in the previous 

sections what characterizes this natural kind, according to the relevant experts. The 

thesis that the mind is a virtual machine running on a hardware (presumably the 

brain, or, as we shall see, the brain and its environment), must be tested according 

to these criteria. To observe the functional account of implementation at work, here 

I will briefly discuss how the hypothesis that the brain implements a van Neumann 

architecture is tested against the relevant neurophysiological data.

Recall that the first thing to be checked is that the appropriate ontological furni­

ture is in place. At the most basic level, we must check that memory cells exist that 

are apt for hosting information encoded in binary strings and that can be accessed 

in the way that was discussed in the previous sections. So, are there bistable devices 

in the brain? And if yes, is there a machine language that encodes instructions that 

can be executed upon them? If things were so smooth for the functional view as it 

is sometimes claimed, it should be relatively easy to answer this question, but, as it 

turns out:

A definitive answer to this question is surprisingly hard to come by.13

The most natural place to look at, to start with, are single neurons. The “all or 

none” nature of the action potential of neurons, in fact, makes them prima facie good

12This is true under the assumption that computationalists take a physicalistic metaphysical 
stance.

13Wells [95] p. 199.
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candidates to implement unit cells. The plausibility of this hypothesis seemed so 

uncontroversial that, in a ground braking work of 1943, McCulloch and Pitts claimed 

that:

The response of any neuron [can be treated] as factually equivalent to a 

proposition which proposed its adequate stimulus.14

Now, although it is certainly possible to type-identify neurons according to whether 

they are activated or not, there are considerations that make the hypothesis that neu­

rons (or collections of neurons) act as flip-flops implausible. To mention only a few:

1. It is the frequency of firings within a neuron and not the mere presence of action 

potentials, that is relevant in causally influencing the behavior of neighboring 

ones.

2. The effect of the same type of input to a neuron changes substantially depending 

on where in the receiving neuron the input is passed.

3. There are properties of neurons that must be arbitrarily disregarded in order 

to treat neurons as flip-flops (e.g. facilitation, extinction and learning).

These and other considerations are now believed to weaken the hypothesis that 

neurons could be used to host a binary symbolic code.

At the time when McCullch and Pitts were writing, much less was known about 

the physiology of neurons than it is now, but similar considerations as the ones made 

above could be made also then. That some properties of neurons do not fit with the

nice picture of them as potential memory cells is a fact that was well known also then.

14McCulloch and Pitts [56], p. 352, quoted in Wells [95] p. 199.
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What counts is whether these “deviant” properties can be neglected or disregarded 

for the purpose of computational analysis. McCulloch and Pitts, for example, were 

aware that there are properties that alter the response of neurons and that would 

disrupt, if taken into account, their treatment as bistable devices. Nevertheless, they 

thought that these properties need not disrupt the formal (computational) treatment 

of the activity of neurons:

[T]he alterations actually underlying facilitation, extinction and learning 

in no way affect the conclusion which follows from the formal treatment of 

the activity of nervous nets, and the relation of the corresponding propo­

sitions remain those of the logic of propositions.15

Nowadays, instead, the most accepted opinion is that the above mentioned “de­

viant” properties block a plausible treatment of neurons as binary memory cells:

The principles of computer memories can hardy be realized in biological 

organisms for the following reasons: i) All signals in computers are bi­

nary whereas the neural signals are usually trains of pulses with variable 

frequency, ii) Ideal bistable circuits which could act as reliable binary 

memory elements have not been found in the nervous systems.16

Now, on one side, these considerations appear to support The idea that the func­

tional conceptual repertoire of implementation is in no trouble. If we were wondering 

whether the brain implements a van Neumann architecture, the functional account 

gives us a reliable criterion:

15McCulloch and Pitts [56], p. 352, quoted in Wells [95], p. 199.
16Wells [95] p. 200.
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If the brain does not contain bi-stable circuits as its basic information stor­

age elements the fundamental idea that the brain is a universal computer 

becomes implausible. The primary reason for this is that if type identi­

fiable symbols do not exist in the brain, it lacks an independent code in 

which the equivalent of its standard descriptions can be expressed.17

Notice that this (and similar) arguments make no reference to the truth conditions 

of a formal sentence like Im p(S , A). So now we axe in the position to take a closer look 

at the general objection that this chapter ought to address. If there is a (functional) 

account of implementation that allows to apply the relevant concepts in the wild,

i.e. to a domain that is not a priori known to be “friendly” to implementation, 

why should we worry about v-arguments, and why should we waist time with model 

theoretic approaches to the issue?

The objection is sound and it should be taken as a plausibility argument against 

the standard conclusion drawn from v-arguments. Those who think that v-arguments 

show that the concept of implementation is vacuous should also explain where compu­

tational properties derive their explanatory power and why they appear to be safely 

applicable in most relevant domains. This, however needs only apply to some con­

clusions drawn from v-arguments. The general aim of this work, for example, was 

precisely that of providing a picture of implementation that would retain the explana­

tory power of computational explanations, while learning a lesson from v-arguments. 

The stance that I have taken, in fact, if valid, would only block unwanted implemen­

tations, not the wanted ones. Unwanted implementations are never seriously taken 

into account by the relevant community of experts. No one has ever tried to exploit

17Wells [95] p. 200.
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the computational powers of a wall.

I think, on the other side, that it is hard to deny that the ontology of computer 

science has a peculiar status among other scientific conceptual repertoires. It is 

standard in all empirical sciences that the models are never neatly, perfectly observed 

to apply in the wild. There are always some aspects that must be neglected to claim 

that a model succeeds at describing the workings of a system. But usually there are 

strict shared criteria for selecting the relevant properties. Scientists manage to agree 

on how to interpret even the most indirect and complex observations (think of how 

we individuate elementary particles). They agree on what should be neglected, or 

considered as noise.

Computer scientists, instead, sometimes encounter serious difficulties in agreeing 

as to how to apply their conceptual repertoire to non-artificial mechanisms. We have 

seen how the same data about the nature of neurons elicit discordant conclusions 

about their functional status.

The comments quoted above are an example of the kind of physical facts that 

are considered relevant in deciding which computational architecture the brain im­

plements. They are certainly part of a respectable scientific enterprize, but it is also 

clear that there is not (not even ideally) an experimentum crucis that could be devised 

to conclusively decide for one option or the other. As a matter of fact, the plausibility 

of one option over others is indirectly derived from the general adequacy of a model 

in explaining cognitive behavior. As the latter is the goal of cognitive science, no one 

could object that there is some methodological mistake in the way cognitive scientists 

apply their concepts.

However, it is also clear, to me, that cognitive science would greatly profit from a
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better understanding of implementation. In the early years of AI and computational 

cognitive science, not only were implementational details considered irrelevant, they 

were also thought to be trivially recognizable, once a given architecture was proved 

to be explanatory efficacious. We can now say that things are not so.

Consider the above argument against the idea that the brain implements a van 

Neumann architecture. The basic structure of it is:

1. van Neumann machines make use of type identifiable symbols to form the “code 

in which the equivalent of its standard descriptions can be expressed” .

2. Real van Neumann machines use bi-stable circuits as their basic information 

storage elements. Hence,

3. If the brain does not contain bi-stable circuits as its basic information storage 

elements, the brain does not implement a van Neumann machine.

This is a perfect example of how Piccinini’s functional account should be applied. 

Notice that what is required is not only that some (any) bistable device be found 

in the brain. Notoriously, in fact, bi-stable devices (at least in classical physics) are 

not natural kinds: whether something is or isn’t a bi-stable device depends on what 

properties we decide to neglect. This, by itself, is not a problem. Most concepts in 

the empirical sciences, in fact, are of this kind. For example, there certainly is no 

strict physical criterium for characterizing a biological cell. This, however, does not 

pose a problem for biology, for there are other, more mundane, criteria to tell whether 

something is or isn’t a cell.

The problem here is that the more mundane criteria, in the case of computational 

concepts, presuppose that abstract concepts such as “information storage element” ,



216

or “symbol”, can be safely applied in the wild. Notice, in fact, that what appears 

to be relevant for the argument is not whether there are elements whose states can 

be identified as belonging to two possible types, but whether these elements are used 

as basic information storage units. To conclude that an item is used as a basic 

storage unit, one must make sure that it contains a symbol or a string of symbols. 

So, unlike what is claimed by the functional account, it is not that certain physical 

items support, or implement a symbol code, by virtue of some specifiable monadic or 

relational physical properties. It is, I argue, the presence of the code and of its symbols 

that elicits the application of computational concepts. As at the moment there is no 

uncontroversial functional characterization of symbol, or of code, functional accounts 

of implementation are conceptually incomplete.

It is possible that one day some functional account will succeed. It will have to 

provide for a precise criterium of identification for the ontology of computer science. 

This may or may not require that a functional account of symbols is given. In any 

case, until such a functional picture is provided, it is interesting to explore other 

options.

5.5 Is it possible to apply the semantic implemen- 
tational schema to  universal Turing machines?

Another potential objection related to the adoption of a MTA to implementation 

is that my treatment appears to be applicable only to finite state automata. All 

the model theoretic v-arguments discussed in this thesis, in fact, are applied to the 

implementation of FSAs. Also the implementation schema that I have proposed at 

the end of the last chapter applies only to the implementation of FSAs. But most of
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the interesting applications of a computational conceptual repertoire, including the 

computationalist theory of the mind, make use of more complex architectures.

No one, for example, has ever suggested that the brain implements a FSA. The 

typical proposal is that the brain implements a finite universal Turing machine. It 

is easy to see how this could turn into a serious objection to my (and similar) treat­

ments. Even setting aside, for the sake of the argument, the issue of the validity of 

v-arguments, one could reasonably observe that no v-argument has ever been applied 

to Turing machines, or to any other more complex computational architecture. Are 

there good reasons to think that they could be so applied? Has anyone shown, or 

argued that anything could be treated as the tape of a universal Turing machine? 

Similarly, one could ask how my implementation schema could be applied to these 

architectures. If it turns out that it cannot, the whole treatment could be argued to 

be of no use for the foundations of computational cognitive science.

Now, there are two reasons for having applied my schema only to FSAs. The first 

one is that the schema was devised to block v-arguments, and these are applied in the 

literature mainly to FSAs. The second reason (which also explains why v-arguments 

generally confine themselves to FSAs) is that FSAs are by far the simplest computa­

tional structures. If we were to apply my schema to universal Turing machines, for 

example, we would have to provide for an exact functional characterization of their 

realizations. Such characterization exists, and it is rather complex. Given the time 

framework of this work, I have preferred to concentrate on the simplest case. Here I 

shall briefly outline how my schema should be applied to more complex architectures.

Some considerations are in order. The general objection raised in this chapter to 

functional accounts of implementation is that they ultimately rest on an encodingist
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picture of information. The tacit assumption is that just like there is a physical 

correlate for the mathematical notion of magnitude (we have discussed this in chapter 

2), there is a physical correlate for the mathematical notion of string of symbols, or 

for that of code. The inputs to a Turing machine (universal or not) must belong 

to an alphabet. The encodingist picture consists in assuming that the concept of 

alphabet can be safely applied in the wild. Of course real alphabets do exist, and 

the concept, therefore, has several realizations. There is no question that the Greek 

alphabet, for example, exists. What is questionable, however, is whether it is an 

instance of a natural kind. The point of view that I have defended in this work is 

that alphabets, and thereby strings of symbols, are indeed instances of a natural kind. 

What I have denied is that they would be instances of a natural kind even if there 

weren’t representational properties fixing what is or isn’t a string of symbols.

On the one hand, we have a very elegant set of mathematical results rang­

ing from Turings theorem to Churchs thesis to recursive function theory.

On the other hand, we have an impressive set of electronic devices that 

we use every day. Since we have such advanced mathematics and such 

good electronics, we assume that somehow somebody must have done the 

basic philosophical work of connecting the mathematics to the electronics.

But as far as I can tell, that is not the case. On the contrary, we are in 

a peculiar situation where there is little theoretical agreement among the 

practitioners on such absolutely fundamental questions as, What exactly 

is a digital computer? What exactly is a symbol? What exactly is an al­

gorithm? What exactly is a computational process? Under what physical
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conditions exactly are two systems implementing the same program?18

The labelling scheme that I have proposed ensures that the right conditions obtain 

for the presence of symbols. It dose not purport to replace or contradict the standard 

functional characterization of computational items altogether: on the contrary, it 

ensures that these functional characterizations can be applied in the wild in a non- 

vacuous way.

5.5.1 The requirements of a labelling scheme for universal 
computers

On the one side, we said, a universal Turing machine is just like any other Turing 

machine, in that it has a finite alphabet and finitely many functional states. On 

the other side, its peculiarity is that it can “simulate” any other machine. Although 

each machine has only a finite number of symbols, there are virtually infinitely many 

codes that could be deployed. The behavior of each machine to be simulated (target 

machine) is described in terms of its specific coding scheme. As it is impossible to 

provide our universal machine with infinitely many coding schemes, before a machine 

can be simulated its coding scheme will have to be “translated” into one that the 

universal machine can interact with.

Fortunately the names of the inputs, of the outputs and of the states of a machine

have no effect on the functional characterization of their bearers. This allows to

take a first step towards the wanted “translation”: we simply have to rename each

item in the target machine table into a conventionally chosen code. A blank, for

example, is conventionally called sO. The other input and output symbols are named

si, s2, etc. Similarly, the states are renamed as ql (in Turing’s works, by stipulation,

18Searle [82], p. 205.
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this is always the name of the starting state), q2, etc.. This allows to rewrite any 

machine table into a uniform coding format (the description of a target machine, once 

translated in to the universal format, is called its standard description).19

When the simulation begins, the tape of the universal machine contains only a 

string of symbols that encodes the standard description of the target machine. By 

convention, the target machine starts in state ^1 on a blank square (#). The UM, 

governed by its complete configurations, executes cycles of functional processes and 

actions each of which corresponds to a step executed by the target machine. Each 

cycle consists of executing a flow of processes that belong to nine functional types. 

The first function executed at the beginning of each cycle, for example, is b. It prints 

the starting configuration of the target machine (ql, # )  immediately on the right of 

the standard description. To do so, it uses a leftmost symbol finder to locate the 

symbol , which signals the end of the standard description.

Here I shall not get into the details of the cycle, as these are irrelevant for our 

discussion. What will be said of the b  functional component will be applicable to all 

the other eight ones.

So, for a physical system to implement a UM the following conditions must be 

met:

1. There must exist a (the equivalent of a) tape that is scanned one (equivalent of 

a) square at the time.

2. There must exist a set of items that belong to finitely many types and that can

19As a matter of fact, for practical reasons, the decimal notation for naming states and inputs 
should be replaced by one that uses unary numerals. State <&, for example, is usually written as a 
D  followed by A repeated i times. As this has no conceptual relevance, however, in our discussion 
we will maintain the decimal format.
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act as symbols.

3. The coding scheme provided by 2 must be suitable for encoding the standard 

description of any target Turing machine.

4. The functional organization of the physical structure must be such as to realize 

each of the nine functions described by Turing.

Let us start with the tape. What is the “equivalent of a tape”? That is, what 

is relevant (and what isn’t) in establishing the relation of equivalence among all the 

tokens of the type “tape” ? It appears that what makes the difference is the possibility 

to read (and write) symbols. A tape is anything where symbols can be read and 

written one at the time by a central processor. So the question “which is the tape” is 

meaningful (and has a definite answer) only if the question “where can the symbols 

be read and written?” has a definite answer. Of course the symbols need not be 

currently present on the tape (a tape whose squares are all currently blank is still a 

tape): what counts is the disposition to use a physical item as a tape.

5.5.2 W hat does it take to  implement a universal coding  
scheme

Let us turn to the presence of a coding scheme. When do some physical items imple­

ment a coding scheme? One sometimes reads that what is necessary and sufficient is 

that there are tokens that can be classified as belonging to finitely many types. This, 

however, is clearly not sufficient, if we want to rule out unwanted arbitrary instantia­

tions of “code”. What is necessary is that the elements of the candidate “code” (the 

tokens) bear certain relations with the finitely many states of the central processor.
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If the description of a machine is given, this requires that in the physical imple­

menting medium there are: 1) type-identifiable items that can be named by the names 

of the symbols used for the description of the input architecture, and 2) groupings 

of states that can be each named by the names of the states in the description. The 

names must be assignable to the physical items in such a way that every instruction 

in the description is reliably respected by the named items: each state transaction or 

action prescribed must be reliably caused by the state of affairs named by the relevant 

complete configuration.

These “states of affairs” cannot be individual physical states of affairs, like the ones 

that MDSs rigidly describe. The latter, in fact, would never fulfill the requirements 

of distinguishability and multiple realizability. Each of these states of affairs will 

instead be a large disjunction of precise states of affairs. Notice that it is precisely 

the liberalism which must be allowed in the construction of these disjunctions that 

allegedly makes room for vacuousness arguments. For example, the implementation 

of a b-function introduced above requires, to start with, that a set of items play 

the role of a string of symbols. These symbols must be the potential names of the 

symbols input and output, and of the states of another Turing machine (the target). 

The string of symbols, in fact, must be the standard description of a target machine. 

Whatever these symbols are physically, the physical structure which supports them 

is, by convention, the tape. The physical system, once started, must “find” the last 

symbol in the string and write two names right after it. These two names must be the 

potential names of the starting configuration of the target machine, i.e. they must be 

systematically interpretable as such.

Let us consider more closely what are the requirements that these symbols must
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satisfy. There are two categories of requirements. On one side, the symbols must 

be such as to comply with the formal constraints placed by the machine table of the 

UM. They must, for example, interact with the central processor in such a way that 

as the machine is started, a b-function is implemented. On the other side they must 

be the potential names of a description of another machine. Once the mappings from 

physical to computational items have been proposed, the first requirement places 

physical constraints on the system. It prescribes what should be physically caused 

by what. Once the candidate physical correlates of the symbols have been chosen, 

the second requirement, instead, places syntactic constraints: it must be possible to 

establish a one-to-one correspondence between the elements of the string of symbols 

written on the tape and those of the target machine table.

Notice that the cycles of a universal machine are not dedicated to simulating one 

particular target machine. Once a universal code has been introduced, the description 

of any Turing machine can be written on the tape. Each cycle will simulate one step 

of whatever target machine (table) that is input. Of course, the universal code is 

relative to the universal machine table. The particular universal code adopted by 

Turing, for example, is such only relative to the specific universal architecture that he 

designed. More precisely, it is not sufficient that every target machine table can be 

“translated” into the same (universal) code. The Code must further be readable by 

the universal processor. A code that is universal in the sense that every human can 

translate into it any machine table, but that is different from that that the universal 

machine uses, would be useless.

If we are to build a universal machine, these constraints are rather entangled. It 

would be rather odd if someone devised a universal code and then built a machine that
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used another one. The description of the workings of a universal machine, although 

complex, are perfectly suitable for building artificial devices. The code and the parts 

of the machine to be built, co-evolve from an engineering point of view. So, for 

example, if a bistable device does not allow to host the wanted binary encoding, it is 

replaced by another one. If, viceversa, the devices do properly encode the instructions 

that are to be executed, then, by definition, the code is a code, the tape is a tape, 

the processor is a processor, and the bi-stable device is a bi-stable device. Under 

these circumstances, we say that the object that was built implements the given 

computational structure.

The circumstances in which artificial devices are built are particularly apt to avoid 

vacuousness. The tasks, at each step of the construction of a machine, are rigidly 

constrained. The task that interests us most, in this context, is the task of ensuring 

that a given part of the real machine “encodes” the correct information. The high 

level code (i.e. the one that the programmer uses) in these circumstances, is given. 

Also the elementary parts are largely given. It is a question of putting everything 

together so that the right encodings are in place. If things don’t work, at one stage, 

then new parts might be introduced or some parts might get replaced with others, or 

the code might be adapted to some specific practical need. What is relevant, however, 

is that the final wanted result, i.e. the I/O  behavior of the machine, is determined 

in advance in a code specific way. It is predetermined what physical structure should 

(tentatively) implement the “tape”. It is predetermined what physical structures 

should tentatively implement the symbol strings that are input or output.

In short, computer designers are never faced with the task of building any universal 

computer, using any code and any physical item for realizing any functional part. But
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our task, here, is to evaluate the idea that computational explanation are naturalistic 

explanations, i.e. whether computing devices are natural kinds. In particular, in 

this section I am evaluating the idea that real universal machines are a natural kind. 

The philosophical constraints, given this task, are very different from the practical 

constraints faced by a computer designer.

Things are more complicated when the empirical question is whether a natural 

object (such as the brain, or worse still, any object) implements a universal Turing 

architecture.

We said before that there are two kinds of constraints, the implementational con­

straints due to the requirement that all the functional components of a UM be im­

plemented, and the syntactic constraint for the code, due to the requirement that 

the code adopted be “universal” . These two constraints are logically uncorrelated, 

as the functional characterization of each functional component is not dependent on 

the code adopted. Of course, if a random (non universal) code is input into a ma­

chine that implements all the functional components of UM, the result will not be 

a simulation of a target machine. The cycles, in fact, might not halt. If no “*” is 

input, for example, the b-function will never halt, and it will never proceed to the 

other steps in the cycle. In any case, the behavior of the machine will in general be 

unintelligible (i.e. uniterpretable). This, however, doesn’t make the two constraints 

logically correlated.

Now, the requirement that the code be a universal code, is perfectly intelligible 

from a mathematical point of view. But if, as we have argued, there is no physical 

counterpart to the mathematical notion of symbol string, or code, then there is not, 

a fortiori, a physical counterpart for the notion of universal code. Remind that
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under a functional account of implementation, symbols and codes need not be true 

representations: they only need to be systematically interpretable. The only viable 

option, for a functionalist account, appears to be the claim that a string of symbols, or 

a code, be such only relative to a machine that processes them. But this introduces a 

circularity in the functional notion of realization. The implementation of a functional 

component, in fact, is relative to a given input architecture. Would a b-function be 

implemented if no strings of symbols could be detected and type-identified? The 

implementation of a given input architecture, in its turn, is relative to the presence of 

a code. How can a given input architecture be identified if there are no symbols? Now, 

the circularity is apparent: the notion of code is dependent on that of implementation, 

and viceversa.

The difficulty in providing a natural counterpart for the notion of symbol (or 

code), is due to the fact that too many things can be type-identified as tokens of 

finitely many types, if any arbitrary grouping of physical states of affairs is allowed. 

Remind that, for example, the attempts to ground the notion of symbol by using the 

notion of digital scheme, have been argued to be unsuccessful. What is being said 

now, depends on the validity of these skeptical arguments. But these arguments are 

not dependent on a MTA to implementation. So, as this chapter is concerned with 

defending the general approach proposed in the thesis, it is reasonable to ask what 

conclusions we should expect to follow from the claim that the notion of symbol has 

no physical counterpart.

So, what is a physical universal code? One could require that the symbols used in 

building a universal code really refer to the Turing machine tables that the UM ought 

to simulate. This, provided that a suitable physicalistic account of representation
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is given, would be a sufficient physical constraint. No one could now argue that 

too many things could count as a universal code, for real representations are not 

ubiquitous. But this would be clearly an absurd constraint. It would violate the very 

idea that stands behind any computational explanation, i.e. that the symbols are 

meaningless physical tokens identified and manipulated solely on the base of their 

shape. It must be their “interpretability” (not their representational properties) that 

grounds computational explanations.

The labelling scheme proposed in this thesis concedes that the semantic properties 

of the symbol system need not really refer to their intended interpretations, but it 

denies that a coherent notion of realization of symbol system can be given without 

assuming that some structurally isomorphic semantic properties be instantiated by 

the symbols. Only then can a naturalized notion of “interpretability” be applied. I 

have argued, in fact, that something is “interpretable” as meaning something else 

only if it already means something. A morse code, for example, is a code only if 

one already knows what “S” is and what “...” is. Codes, in short, only establish 

connections between meaningful entities. A potential misunderstanding is that one 

could think that “meaningful” must mean interestingly meaningful. But this is clearly 

not the case. “S” means the same as “the 19th letter of the roman alphabet” . A 

physical item is an “S” only if it refers to the 19th letter of the roman alphabet. The 

same goes for “...”, which means the same as “three dots in a row”. Three pulses 

encode an “S” only if, together, they mean (to the telegrapher, in this case) the same 

as “three dots in a row” . Notice that the three pulses need not refer to an. “S” , this 

is why we need a code. But if three pulses did not refer to “three dots in a row”, if 

they did not refer to anything, they would not be tokens of a symbol. A single pulse,
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far example, might be arbitrarily sectioned into three stages. A careful telegrapher 

might systematically identify which single pulses are so sectioned. Does this make a 

single pulse interpretable as “three dots in a row” ? Only if it means “three dots in a 

row” to the telegrapher.

Similarly, the items that realize a universal Turing machine code, need not refer 

to machine tables (it is the code’s responsibility to ensure that this is the case) , but 

they must refer to something. With respect to the representational apparatus of the 

computer designer, for example, a physical item that realizes the symbol referring to 

the starting state of the target machine, must refer to (in our encoding) uqin, i.e. to 

a “q” followed by a small “1”. Of course, this is not sufficient, for if the UM does 

not treat a token of “gi” in the suitable functional way, the mere fact that the item 

means “gi” to the designer, doesn’t guarantee anything. However, if the physical 

item that is intended to refer to the starting state of the target machine doesn’t 

mean anything to the designer (for example because it is a microscopic state that the 

designer cannot even individuate), then, even if its functional relations with the other 

states of the machine can be interpreted as the “right functional relations”, the I/O  

behavior of the UM will not be the right one (to the designer): the real system will 

therefore not implement a universal machine. In sum, the representational apparatus 

of the designer must intentionally individuate a code that is appropriate to serve as 

a universal code. This, for example, can be Turing’s universal code.

5.5.3 Requirem ents for im plem enting a given sim ulation cy­
cle

Similar considerations apply to the functional constraints for the implementation of 

Turing’s universal architecture. For a physical structure to implement a b-function,
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for example, the representational apparatus of the designer must be such as to: 1) 

individuate what counts as the symbols, 2) recognize what counts as a string built 

out of these symbols, 3) recognize what counts as “after the end of a string” .

The simulation cycle as it was discussed by Turing comprises a flow of processes 

that is articulated into nine functional components (one of which is b). After the 

machine has processed the initial string of symbols through b, the information is 

passed to the second component, called anf. This function marks the configuration 

in the most recent complete configuration. A nf initiates a cycle through the other 

components (sometimes passing the activity back again to anf itself). A cycle termi­

nates when the last function (ov) clears the tape and makes a final transition to anf 

where a new cycle begins. The result of a single cycle corresponds to one step of the 

target machine.

None of these functional components corresponds to a primitive operation. Each 

of them, to be executed, must be further functionally decomposed in a way that is 

similar to that discussed in section 5.3.1, down to the execution of a set of machine 

language instructions. We shall not here get into the details of these components, or 

of their ultimate functional decompositions. This means that it will be impossible to 

provide a complete labelling scheme like we have done in chapter 4. The degree of 

complexity of such a labelling scheme would require a dissertation of its own to be 

spelled out. Here I am simply concerned with providing an outline of how this should 

be done. In particular, I wish to address (in principle) the additional difficulties of 

universal computers.

The syntactic constraints discussed in the previous section for the universality 

of the code are relative to the representational apparatus as well as to the presence
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of a machine that goes through a simulation cycle (of some kind or other). The 

constraints discussed here, instead, are the requirements for the particular architec­

ture that Turing suggested for implementing a UM. If the first set of constraints are 

met relative to the second set of constraints, then the physical system objectively 

implements Turing’s UM.

5.5.4 W hat would an intentional labelling scheme for a UM. 
look like?

There are two difficulties in applying my labelling scheme to universal computers. 

None of them, I believe, is insurmountable. One has to do with expanding the schema 

to Turing machines (of any kind). The second is the application of this extension to 

universal Turing machines. The crucial factor to notice, in addressing both difficulties, 

is that my labelling scheme does not propose a criterium of implementation that is 

entirely alternative to the standard functional one. The semantic picture is devised to 

conceptually ground the notion of functional realization, where this makes references 

to concepts that (in principle) can be instantiated too broadly. One such concept 

is the realization of a string of symbols. This feature of the semantic picture is 

illustrated by the labelling scheme proposed in chapter 4. Remind, in fact, that the 

notion of implementation, there, is grounded on the match between functional and 

semantic criteria of individuation. All standard computational explanations comply 

with those desiderata. The semantic picture, therefore, should be considered as an 

explanation of the efficacy of computational explanations, rather then as a criticism 

of them.

Having said this, the difficulties addressed in this section are of a technical nature.

What is conceptually relevant, if one is asking how the labelling scheme would look
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like, when applied to universal machines, is that there will have to be an additional set 

of functional/semantic constraints. As I said, in fact, the realization of a UM requires 

both that a specific architecture be implemented (e.g. Turing’s cyclic structure) and 

that the code used be a universal code (i.e. that it can be used to compose the 

standard descriptions of all possible Turing machines). Both sets of constraints will 

require that the relevant semantic relations of equivalence be deducible20 from the 

correspondent functional relation of equivalence. Thus, for example, two strings of 

physical tokens “representing” the same machine table will have to be semantically 

equivalent. Two tokens that are functionally equivalent in that they both functionally 

“represent” the same simulated input, will have to be also semantically equivalent 

with respect to the machine’s or to the designer’s representational apparatus. In the 

latter case, the physical system will not, by itself, be objectively the implementation 

of a UM.

The requirement that the code be universal, moreover, will set syntactic con­

straints on the representational schema. Consider, for example, two tokens of, re­

spectively, the type “s i” and “slO”, input to a UM. The constraints of the semantic 

picture would predictably impose that they belong to the same syntactic categories. 

This requires that all “s l ”s and “slO”s belong to two definite semantic types. The 

difficulty in applying the schema to universal machines, is that each of the two tokens 

belong to different syntactic types depending on whether one interprets the UM as a 

simulator of the target machine, or as a standard Turing machine (which it is). Both

20As I have already noted at the end of chapter 4, here the word “deduced” should not be in­
terpreted in its standard logical sense. The relevant semantic relations of equivalence must be 
empirically observed to be in place in correspondence with the correlate functional relation of equiv­
alence. The relations of implication between the two kinds of equivalence, in other words, must be 
understood as material implications.
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interpretations are always possible for UM’s. UM’s, like any other Taring machine, 

in fact, are governed by their configurations. Under this interpretation, then, “s i ” 

and “slO” are tokens of two strings of respectively 2 and 3 symbols. The machine, 

governed by its configurations, reads these symbols one at the time, and responds 

accordingly. Under this respect, therefore, the semantic picture would not require 

that “s i” and “slO” belong to the same semantic type. It would not even require 

that the compound symbols belong to any semantic type at all. No restriction should 

be placed on the aggregate semantic properties of the compound symbols “s i ” and 

“slO”, for the machine to be implemented. Only tokens of “s”s, “l ”s and “0”s, should 

be respectively so constrained to be semantically equivalent.

But if one interprets the same machine as a simulator of the machine whose table 

is described in standard format by the string of symbols initially input, then one ought 

to require that also the compound symbols possess individual semantic properties. 

In short, it appears that the semantic picture is committed to the claim that the 

representational apparatus of the implementing system (or user) be concatenative 

with respect to the elements of the candidate universal code.

Now, one could raise the following objection. The semantic picture is committed 

to the claim that the notion of implementation is grounded once the appropriate 

semantic labelling scheme is provided. The configuration-governed universal Turing 

machine is implemented, according to the semantic picture, if and only if the relevant 

functional/semantic constraints are in place. Therefore, there appears to be no room 

for the further constraint of compositionality. In other words, if a set of constraints 

is sufficient for implementing the configuration-governed universal Turing machine, 

and this is nothing but the same rule-governed simulator machine (just interpreted
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differently), what space is left for another set of constraints?

Notice that this is a conceptual issue and not a practical one. All real universal 

computers, such as the one that I use to write these words, in fact, have inputs and 

outputs whose symbol structure is compositional in exactly the sense envisaged above. 

Consider for example the case of program execution presented in section 5.3.1. At the 

highest level of analysis, the programmer inputs an instruction like: n =  0 UNTIL 

n = 10 TRUE DO n  +  1 ENDUNTIL PRINT n. Now, if the processing machine 

implemented a universal Turing machine (as opposed to, say, a van Neumann machine, 

which is usually the case with ordinary computers), it would process one symbol at 

the time. The programmer knows both what, for example, “U” is (it is a certain 

key on his or her keyboard and it is a letter of the alphabet) and what “UNTIL” is 

(it is a word and it means until). If the result of this input is not something that 

can be recognized as the symbol “10” , then one does not believe that she is in front 

of a UM. Of course, if one is independently told that the machine is a UM, then 

one can think that she doesn’t know the right code for it. But to learn the “right 

code” one would have to deploy a concatenative representational apparatus. This 

will be needed to compose words out of letters and instructions out of words. If, for 

example, the machine did print the symbol 10 after executing the input instruction, 

but did not print the symbol 11 after inputting the instruction n = 0 UNTIL n = 11 

TRUE DO n -f l  ENDUNTIL PRINT n, the programmer would think that she doesn’t 

know the ’’right code” for that instruction, or, alternatively, that the machine doesn’t 

implement a universal machine.

It might be objected that what is needed is not a representation of the symbols 

and of the words, but simply the capacity to type-identify them. This, however, as we
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have discussed, would beg the question of what counts as “type-identification” . Just 

like the concept of discrimination, the concept of identification is (potentially) vacuous 

outside of the domain of cognitive processes (does a rounded whole in a metal plate 

type-identifies spheres of a certain size?). But to require that the information-bearing 

physical structures must provide the input to a cognitive process would circularly 

presuppose what we are supposed to explain by the notion of computation, i.e. what 

counts as a cognitive process.

Thus, in all artificial cases of implementation it is the user that deploys the relevant 

representational capacities. When the concept of universal computer is applied in the 

wild, instead, we must assume that these capacities are instantiated by the same 

system that allegedly implements the Turing machine. In the case of humans this is 

the brain or, as we have seen, the brain and its environment.

In sum, assuming that a double set of semantic/functional constraints is in place 

does not contradict the standard practise of computational individuation. These 

two sets of constraints ensure, respectively, that a UM specific architecture is imple­

mented, and that the code used is a universal code. The relation between the two 

sets of semantic constraints, according to the semantic picture, will have to be such 

as to instantiate a concatenative representational system.21

5.6 Conclusions: model theoretic approaches and 
cognitive science

Should we take the above considerations about the tenability of the functional view 

to imply that the conceptual repertoire of computer science is in general inapplicable?

21This kind of representational system is discussed, for example, in Millikan [59], p. 224.
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Can we use the difficulties encountered in applying these concepts as an argument 

against the very idea that computational explanations can be really explanatory? 

Of course not. Had all scientists always waited until the conceptual, foundational 

issues of their scientific practices were secured, before applying their concepts, we 

would never have had any scientific explanation. As a matter of fact, the same 

considerations about the functional view that I have made about the application of 

computational concepts to the brain, can equally well be applied to the original do­

main of computer science, i.e. to artificial digital computers. Should we conclude that 

computer designers should not use computational concepts for building computers?

The explanatory apparatus of computer science, when applied to artificial com­

puters is exceptionally sound. There is no reason to think that future developments 

of computational neuroscience would not come by some criteria and standards of 

applicability that are equally unproblematic. Moreover, this needs not wait for the 

foundational difficulties to be eliminated. Even as things stand now, exploring what 

neural structures might implement what computational architectures, notwithstand­

ing all the difficulties encountered in doing so, is a most fruitful scientific practice. 

The functional view, no doubt, appears more promising in this respect. On the other 

hand, MTAs have not yet (to my knowledge) helped at all in solving the technical 

problems discussed above.

However, the difficulties in applying computational concepts to brain structures 

are smaller than the ones that worry the proponents of v-arguments. Cognitive sci­

entist testing the hypothesis that the brain implements a given computational archi­

tecture, in fact, have constraints in applying their conceptual repertoire. The field 

of neuro-computational cognitive science, in fact, has developed, and will continue to
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improve, a specific heuristics for applying the relevant concepts: there is some degree 

of agreement about “where to look for what”. But what worries the proponents of 

v-arguments, instead, is the hypothesis that the notion of implementation can be ren­

dered independent from specific physical domains. The claim that intelligence is the 

same as (any) implementation of a given computational structure, in fact, requires 

that total abstraction is made from any particular physical medium. This is not a 

problem for a scientist who is trying to test a computationalist hypothesis on some 

particular domain of application, such as the brain, or an artificial device. In these 

cases, in fact, we may assume that some heuristics will come to help to dissolve the 

ambiguities.

The philosopher of mind, in stead, would like to understand what metaphysical 

picture of the mind is entailed by the computationalist hypothesis. This requires that 

the notion of implementation in the wild be conceptually (and not only practically) 

sound. No empirical medium-specific heuristics can satisfy completely the philosopher 

under this respect.

In sum, I think that, although foundational issues sometimes help to clarify in 

what direction a scientific practice should evolve, philosophical and scientific prob­

lems usually remain substantially independent from one another. What computer 

scientists mean when they say that a concept is “applicable”, is not the same as 

“philosophically applicable”. Typically, the difference is that while scientists apply 

whatever best conceptual repertoire that is available, philosophers use (often in the 

same thoughtless way) their conceptual repertoire to argue that scientific concep­

tual repertoires are not perfect, hence that they are not applicable. In other words, 

philosophers, unlike scientists, are not trying to “save the phenomena”: they are
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trying to save the integrity of their conceptual repertoire.

Different goals, predictably, require different means. MTAs were devised to ren­

der the debate over vacuousness arguments more philosophically salient and precise. 

Consider the difference between Searle’s non model theoretic v-arguments and Put­

nam’s argument. Many philosophers with a technical inclination or background often 

treated Searl’s arguments as irrelevant, arguing that they are vague and hence incon­

clusive. The reaction of many cognitive scientists and computer designers to Putnam’s 

model theoretic argument, instead, has been to respond with specific proposals for a 

notion of implementation that would block it. The intellectual confrontation between 

expert practitioners and philosophers is in itself valuable and usually profitable, and 

should therefore speak in favor of the model theoretic methodological stance.

On the other hand, and for very similar reasons, so long as MTAs to implementa­

tion do not help us solving some scientific problem, cognitive scientists and computer 

designers have all the rights to regard them as irrelevant. This work aims at eval­

uating what positive conclusions should be drawn from MTAs approaches. In sum, 

these considerations should be taken as pointing at the need to better understand 

the notion of implementation, not as a criticism of how cognitive scientists use their 

concepts. Quite on the contrary, what motivated my work was precisely to explain 

how and why computational concepts can be applied so profitably as they appear to 

be.

Notice in fact that if my proposal for a semantic individuation of computational 

properties is valid, this does not entail -that computer designers or cognitive scien­

tists should apply their concepts in a different way. The consequence of my view is
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simply that the validity of a computational explanation cannot be explained with­

out taking into account the semantic properties of the modeler (in the cases where 

the implementing system does not possess its own semantic properties). Consider, 

for example, the case of a pocket calculator. A consequence of my view is that the 

calculator cannot in itself be claimed to belong to a natural kind. It is the semantic 

properties of the user that fix the relevant constraints, and only the coupled system 

comprising the user together with the calculator belongs to a natural computational 

kind. This, however, doesn’t entail that the components of a calculator should be 

individuated differently, or that the calculator should be used differently, or, finally, 

that the program execution explanation of its behavior is false or vacuous.



Chapter 6

Computational externalism: 
applications and potential 
objections

6.1 Introduction

So far, in this treatment, I have concentrated on the proper understanding of com­

putation (from the point of view of its physical realization). In this final chapter, 

instead, I intend to’ discuss what consequences my understanding of implementation 

has for a computationalist theory of the mind.

Because teleological theories proved to be the most suitable accounts of intention- 

ality for my purposes, I call a computational theory of the mind that endorses com­

putational externalism: Teleological Computationalism. The purpose of this chapter 

is then to test Teleological Computationalism against some recalcitrant shortcomings 

of orthodox computationalism, as well as against some apparent inconsistencies. As 

a consequence, the issues dealt with in the sections of this chapter will be relatively 

uncorrelated between each other.

239
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I shall argue that computationalism, as it is construed in my externalist under­

standing, is free from standard objections. This further corroborates the soundness 

of my analysis, in the sense that it provides evidence for its consistency with other, 

independent domains of applicability than computational theory. These applications 

of my theory of implementation, however, should not be considered as further argu­

ments for a semantic view of implementation (recall that a theory of computation, in 

fact, should not be answerable to cognitive science).

•  I shall start by treating an apparent counterintuitive consequence of computa­

tional externalism as a model for the mind. In a nutshell, I shall dissolve (section 

6.2) the worry that comes from the following paralogism: (1) computation is 

observer-relative (v-arguments), (2) mental properties are not observer-relative, 

hence (3) computation cannot explain mental phenomena. I argue that this ap­

parent inconsistency rests on a misleading understanding of observer-relativity.

• An alleged shortcoming that has been hotly debated in the past couple of 

decades is the “Symbol Grounding Problem”: the (alleged) incapacity of a 

computational system to ground the meaning of its symbols in a non derivative 

way. Teleological Computationalism is argued to be immune to it (section 6.3).

•  John Searle has raised a now famous series of objections to the computationalist 

stance. I discuss how Teleological Computationalism can be used to defy these 

criticisms (section 6.4).
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• A major attack to computationalism came from the proponents of an alterna­

tive paradigm for understanding the mind: connectionism. I provide a critical 

analysis of the fight for explanatory supremacy (section 6.5), with particular 

emphasis on the issue of syntactic constitutivity of thought. It is argued that 

part of this fight has been staged on the wrong battleground.

• Externalism as a theory of meaning has become increasingly popular over the 

past decades. Philosophers in the field of the foundations-of AI and cognitive 

science have not been immune to this fashion (this whole work itself can be 

thought of as an example of this tendency). According to several proposals 

(including some from the camp of orthodox computationalism itself, as we shall 

see), symbols and, consequently, symbol manipulation should be conceived as 

happening “outside” of the cognitive system: in the environment. I discuss 

(section 6.6) how Computational Externalism can be used to integrate and im­

prove on these proposals.

•  Throughout this work, (mathematical) dynamical systems have been used in 

two different contexts: (1) as describing the physical systems that implement 

computations, and (2) as a basis for the contrastive analysis put forward in 

chapter 2. Here (section 6.7), instead, I shall discuss the thesis that dynamical 

system theory can provide an alternative conceptual repertoire for modelling the 

mind. It is argued that dynamical system theory, rather than an alternative 

means of description of cognitive phenomena, should be used to provide a precise 

description of the relational physical properties that instantiate computational
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ones.

6.2 Computational externalism and the observer- 
relativity of mental properties

The treatment of computation proposed assumes that observer-relativity arguments 

are sound: it was an attempt (hopefully successful) to draw less than dramatic con­

clusions (for the computationalist stance) from these arguments. So, what came of 

observer-relativity? Are teleo-computations, or externalist computations in general, 

observer-relative? Consider again the fictitious example of the XOR bacterium. It 

might be that it is possible to segment the inputs, outputs, and state-space of the 

XOR bacterium in the example so as to argue that under that interpretation it is 

implementing the Wordstar program. However, if there are no teleo-representations 

input and output to support the very meaning of that claim, or if (in the case there 

were such representations) the abstractions required to reach the computational level 

were such as to disrupt the status or the meaning of these representations (for example 

because the former require a minimum tolerance of error that is greater than that of 

the latter), the computational model would not be honest under our understanding.

Notice how, as I promised, teleological theories allow us to make our proposal 

consistent with the principle of multiple realizability. A completely different system 

than our bacterium (perhaps an artificial device), made of different stuff, or living in 

a different environment, and obeying different physical laws, or simply differing as to 

the time factors and errors tolerated, could well implement the very same function 

(XOR). This is achieved by requiring that the properties on which intentional ones 

supervene (as specified by teleological theories, according to the definition proposed in
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section 4.4.2) be relational properties of the tokens and of the respective environments 

(as opposed to intrinsic, encodingist or internalist properties).

A consequence of the treatment proposed is that the same physical system imple­

ments (or doesn’t implement) a computational structure depending on the obtaining 

of certain external physical conditions: those conditions that must obtain for its in­

puts and outputs to be representations, and for these representations to be preserved 

under any variation of physical quantities that leaves the computational abstractions 

intact. This is in keeping with the intuitions behind v-arguments: being the im­

plementation of a computational structure is not an intrinsic property of a physical 

system. So, is the property of implementing a computation observer-relative?

In order to get rid of an apparent counterintuitive consequence of this understand­

ing we can devise the following thought experiment. Computers are paradigmatic 

cases of implementations of a computational structure. Imagine that the symbols 

input and output to and from a digital computer, although finite in number, were 

printed so small that no human being could read them. Or imagine that, although all 

the tokens of the symbols were large enough to be seen, we did not have the capacity 

to type identify them (recognize the tokens as belonging to a symbol-type). In either 

case, we wouldn’t call that (whether human or machine) a “computer” . Isn’t this, 

then, an essential requirement for something to be a computer: that someone is able 

to identify an input-output behavior by fixing what should count as a representational 

item?

In my view, it should be clear, the microscopic computer is not a computer, for it 

doesn’t interact like one with any representational system. Recall, in fact, that the 

digitality of a system has to do with the fact that there are “reliable” procedures for
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applying input and measuring output within the operating limits of the system and 

that there are finitely many distinct, discrete values given those limits. However, if 

something does interact like a computer with at least one representational system (the 

user) then not only would that something be a computer, but the finite automaton 

describing its behavior, relative to the representational labelling scheme, would be 

objectively realized by it. The behavior that the FSA would objectively describe, 

is not the “physical” behavior, whose description would require a complete set of 

magnitudes measurable with infinite precision, but the behavior that is observed 

using the observer’s representational apparatus and limited epistemic capacities.

One might object as follows. There is a microscopic computer. No one has ever 

been able to “appreciate” its computational powers (how the device came to be made 

needs not interest us, it could be a random miracle, for what we know). Suppose now 

that someone invents a microscope that is so powerful as to display and use publicly 

the computational powers of the machine. Aha! Then it did have computational 

powers, it is just that we couldn’t see them before! Isn’t it rational to think that 

it had these capacities all along, rather than thinking that it acquired them all of 

a sudden when we first observed it with the microscope? After all, the observation 

(unlike what happens in quantum physics) didn’t change the machine in the least: 

how can it have made any difference as to what determines its computational status?

It should be clear that a consequence of the proposed understanding of computa­

tional properties is that they (as well as semantic properties) are secondary properties. 

To say that the microscopic computer implemented the computational structure even 

before that someone interacted with it, is like saying that Mars was red even before 

someone looked at it. Sure, under physicalistic assumptions, we think that there are
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physical properties that ground the color of Mars, but we don’t believe them to be 

instantiated by Mars alone: we think that they are instantiated by triadic, relational 

properties of Mars, of the environment, and of the representational system that ob­

serves it. So the computer was not computing before the microscope was invented, 

but it did have objective features congenial to being used as a computer by beings 

with the right epistemic access.

Conversely, if one day Searle will be able to use his wall as one does the Wordstar 

program, using some (as yet unknown) sophisticated technique and representational 

capacities: good for him! Teleo-computationalism does not rule that out as absurd 

(for digitality is relative to the discriminatory and epistemic capacities of the user), 

but simply as very, very unlikely.

In sum, can the class of all real physical systems (B ) be partitioned into (1) the 

class of all systems that implement some computation (B i) and (2) the class of all the 

systems that do not implement any computation (# 2)? The answer to this question 

is yes, even under the assumption that observer-relativity arguments are sound. At 

the end of chapter 2, I proposed that we distinguish between intrinsic and extrinsic 

restrictions. Well, observer-relativity arguments, if assumed to be sound, only entail 

that Bi, the class of all RDS’s that implement some computation, cannot be an 

intrinsic restriction of B.

Recall that these arguments are usually suggested by their proponents as reduc- 

tiones ad absurdum of computationalism. My externalist understanding of computa­

tion, I believe, makes room for a “third way”: the property of being the implemen­

tation of a computation does allow us to restrict the class B  to a subclass (£?i), but 

the class B\ is an extrinsic restriction of B.
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Contrast this picture with Searle’s criticism:

The aim of natural science is to discover and characterize features that 

are intrinsic to the natural world. By its own definitions of computation 

and cognition, there is no way that computational cognitive science could 

ever be a natural science, because computation is not an intrinsic feature 

of the world. It is assigned relative to observers.1

Searle is right that computational properties are not intrinsic to their bearers, but 

from this he wrongly infers that they are not “intrinsic features of the world”. By 

the same token, from the observation that colors are not intrinsic properties of their 

bearers, one should infer that the science of color will never be a natural science, 

because colors are not “intrinsic features of the world” : which is certainly false, at 

least a-priori.

6.3 Teleological computationalism and the Symbol 
Grounding Problem

6.3.1 The Physical Symbol System  H ypothesis

In 1956 Allen Newell, Cliff Shaw and Herbert Simon2 showed how their creation (the 

Logic Theorist), successfully proved 38 of the first 52 theorems proved by Russell 

and Whitehead in their Principia Mathematica. In their work the authors deployed 

the following heuristic recipe. Use a language-like symbolic code to represent the 

world (the objects of the world and the workings that these objects exhibit). This

constitutes the “knowledge base” of the machine. Use input devices to appropriately

1 Searle [79], p. 843.
2[1]-
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transduce the flux of environmental stimuli incoming from the environment into ap­

propriate symbolic representations of them (these representations should deploy the 

same code as the one used to form the knowledge base). The machine is then to 

use both the knowledge base and the transduced input information to produce fur­

ther symbol structures (according to algorithmic procedures). Some of these “newly 

formed” symbol structures should then be designated to serve as output. Finally, 

further transduction should “translate” these output symbol structures into the ap­

propriate behavior.

The Symbol System Hypothesis (SSH), proposed by Newell and Simon in 19763, 

and since then held to be the hard core of the received view of cognition, can be 

thought as an answer to three fundamental questions about thought. 1) Can a ma­

chine think? 2) What is necessary for a machine to think? And 3) What is sufficient 

for a machine to think? The answer to the first question, if the SSH is true, is yes: 

machines can think. The answer to the second question is that symbol manipulation 

is necessary for thought to take place. Finally, the sufficiency requirement is that a 

machine is built along the lines suggested by the above recipe. The sufficiency hypoth­

esis presupposes that 1) implementing a symbolic machine is an intrinsic property of 

some physical systems and 2) that it is possible to suitably connect the appropriate 

machine to the environment.

I have discussed some concerns over the first assumption in the previous chapters, 

here I concentrate on the second one. The above outlined recipe prescribes that we 

use a language-like symbolic code to represent the world. This presupposes that we 

know what it means to do so. Surely, it would be argued, we know what it means

3[63].
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to do so: we do it all the time. We continuously use a language-like symbolic code 

to represent the world, we use our language (as well as artificial formal languages 

such as those of logic and mathematics) to represent the world. However, we know 

that the symbols we use, words, mathematical entities, are meaningful because we 

ascribe meanings to them. Sure once we have ascribed meaning to some of them, we 

can concatenate them to build “new meaningful” symbols, sentences, but if we don’t 

ascribe meaning to at least a reduced (atomic) set of symbols, then no amount of 

formal manipulation would produce meaning. Now, as I said, we ascribe meanings to 

the words we use.

Who ascribes meaning to the atomic symbols in a physical symbol system? The 

problem is that, as the machine is to think, we want the symbols it deploys to have 

meanings that are not parasitic on our arbitrary ascription: they must be intrinsically 

meaningful. To use an expression that has recently become part of the technical 

jargon, symbols must be grounded in the world. The recipe, moreover, prescribes 

that we use input devices to appropriately transduce the flux of environmental stimuli 

incoming from the environment into appropriate symbolic representations of them. 

This presupposes that we know what it takes for something to be a representation 

of environmental stimuli, and that we know what is an appropriate transduction of 

them. I mentioned how it is hard enough to explain what it is for something to be 

intrinsically meaningful. Another (related) problem, is to explain what counts as an 

appropriate transduction.

Acknowledging that it has proved extremely difficult to reproduce intelligent 

agent/environment interactions, many classically oriented authors have argued that 

what is missing, is “simply” knowledge about how computers should be connected
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to the environment. The lack of technical expertise as to how to engineer the ap­

propriate interface with the environment has often been invoked as an scape goat for 

the failures of artificial intelligence. So, when following the PSS recipe didn’t pro­

duce the expected results, instead of challenging its basic assumptions, it has often 

been suggested that all these problems will be washed away when we will be able to 

appropriately connect our computers to the environment. The job transduction is 

meant to do has thus grown over the years to become so hard that some started won­

dering whether it is reasonable to expect that a physical system could do it. These 

problems with the PSS hypothesis, and the solutions proposed, from our perspective, 

are as many manifestations of the criticized assumptions of syntactic internalism and 

semantic encodingism. The problems expressed above, from the perspective endorsed 

here, axe therefore ill-posed. To further corroborate my view, however, here I deal 

with how these discontents have been perceived and voiced within the received view 

itself.

6.3.2 W here does transduction end?

Turing analysis provided cognitive science with an exceptionally powerful conceptual 

repertoire. A most perspicuous heritage, and one that is most relevant for the present 

discussion, is the distinction between a cognitive process and a physical process. A 

computer, every computer, is a real physical dynamical system. As such its workings 

(in principle), are describable by means of the laws of physics or, more generally, by 

means of a physically projectible vocabulary. However, it is assumed (wrongly, we 

have argued) that computers can be grouped into classes of equivalence that don’t 

correspond to classes of equivalence of physical properties. The generating relation 

of equivalence is that of “functional equivalence”.
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A given functional architecture (a specific task architecture, for example) allegedly 

partitions the class of physical systems in those that implement it and those that 

don’t. Moreover, given a particular physical system that implements our architec­

ture, not all of its physical properties are “relevant” with respect to its being an 

implementation. A common digital computer is a complex physical system with vir­

tually infinitely many physical states and processes. Only very few of these, however, 

are “relevant” for it’s being a “computer”. Any physical process is (in principle) 

eligible to being considered as the implementation of a (not given) computational 

process. Given the particular functional architectures that we are considering, how­

ever, physical processes and events happening “outside” a computing machine are 

never thought of as computational events and processes.

A large amount of evidence, mainly pertaining to the domains of psychophysics 

and experimental psychology, suggests that there exists a strong correlation (hence 

a strong interaction) between the behavior (including verbal reports) of cognitive 

agents and their environment. It is therefore very important that a cognitive theory 

endorsing the TM hypothesis accurately accounts for the details of such interaction. 

The process responsible for ensuring a causal interaction between a computing system 

and its environment is usually termed “transduction” . In its most general meaning 

a transduction is any systematic transmission (possibly transformation) of incoming 

patterns of energy. However, if it is to be of any use to our case, transduction must be 

constrained in a number of ways. Otherwise the whole of cognition could be viewed 

as a transduction from sensory input to behavioral output.

Although transductive processes are very poorly understood, there is substantial 

agreement on what the general constraints should be. For example it is believed that
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transduction shouldn’t be a cognitive process. This is to say that it should be a non 

computational, physical process. I will not discuss here the reasons for postulating 

these constraints.

Another (and indeed trivially necessary) requirement vastly agreed upon, is that 

transduction “must preserve all distinctions that are relevant to the explanation of 

some behavioral regularity” .4 Our problem is to understand what job is transduction 

exactly doing. In the causal chain connecting the environment to the computing 

machine, where do physical processes cease being mere physical processes and begin 

to be also implementations of functional relations (symbol processing)? The first 

requirement, that transduction is substantially stimulus bound (data driven), suggests 

a late entrance of symbol processing.

The second one, that transductors be “aware” of all cognitively relevant differ­

ences, on the contrary, suggests an early entrance of “cognitive penetrability”. This 

is what is often called the “transduction problem”. This is a problem because of­

ten “cognitive relevant differences” aren’t (systematically) projectible onto physical 

differences. The above consideration might constitute an “evolutionary” difficulty, 

for the computing and the transductive process must be accurately co-designed so as 

to satisfy both constraints at the same time. But all attempts to “suitably” embed 

computing machines in the environment have consistently failed (to various extents), 

and this has led many to believe that the requirements cannot be met.

Among the constraints that transduction has been argued to be subject to, the 

following are the ones that most interest us in our discussion. They meet general

consensus.
4Pylyshyn [74], p. 158.
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a) The transducer output is an atomic symbol [...] Because the output is 

to serve as basis for the only contact the cognitive system ever has with 

the environment, it should provide all (and only) cognitively effective in­

formation. [...] The output of a set of transducers to an organism must 

preserve all distinctions present in the environmental stimulation that are 

also relevant to the explanation of some behavioral regularity.

b) No limit is placed on how “complex” a mapping from signal to symbol 

can be induced by a transducer [...], so long as the complexity is not of a 

certain kind, namely, a combinatorial complexity that makes “infinite use 

of finite means”. In other words, the mapping must be realized without 

use of recursive or iterative rules [...]. This basic requirement must be 

adhered to if we are to maintain a principled interface between processes 

to be explained in terms of rules and representations and those to be ex­

plained in terms of intrinsic [...] properties of the mechanism carrying 

out the rules or implementing the algorithm. Transducer inputs must be 

stated in the language of physics5

The problem with these constraints is that it is questionable whether they can be 

met:

Requiring that the output of transducers should respect some criterion of

cognitive relevance appears to be requiring something that is beyond their

5Pylyshyn [74], p. 158.
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capacity in principle. It seems analogous to requiring that a computer 

keyboard filter its input according to some criterion of relevance. Pylyshyn 

is correct, I believe, to state the constraints on transducers as he does. [...] 

Where he errs is in thinking that the transducer functions he describes 

are possible.6

A consequence of my externalist understanding of computation is that the trans­

duction problem, as it is expressed above, is certainly untractable. A solution to 

it, in fact, would confirm the claim that: (1) computational structures can be im­

plemented even before they are suitably connected to the environment (thus forcing 

us to endorse syntactic internalism) and (2), that the symbols can be subsequently 

endowed with intentional properties, thus making the machine to display publicly its 

preexisting cognitive capacities (thus implicitly endorsing an encodingist picture of 

intentionality).

6.3.3 The symbol grounding problem

The physical symbol system hypothesis, in all the various variants that have been 

proposed for it, states that a physical system is a cognitive system if an only if it 

implements a certain symbol system.

A symbol system is a set of arbitrary “physical tokens” [...] that are ma­

nipulated on the basis of “explicit rules” that are likewise physical tokens 

and strings of tokens. The rule-governed symbol-token manipulation is 

based purely on the shape of the symbol tokens (not their “meaning”),

6Wells [94], p. 279.
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i.e., it is purely syntactic, and consists of rulefully combining and recom­

bining symbol tokens. There are primitive atomic symbol tokens and 

composite symbol-token strings. The entire system and all its parts - the 

atomic tokens, the composite tokens, the syntactic manipulations both 

actual and possible and the rules - are all “semantically interpretable” : 

the syntax can be systematically assigned a meaning e.g., as standing for 

objects, as describing states of affairs.7

Thus, it is argued, for cognitive processes to take place there must exist a set of 

physical tokens (the symbols) that are manipulated by the use of explicit rules. These 

explicit rules are themselves physical tokens and operate on the symbols by rulefully 

combining and recombining them. The ruleful manipulation must be based on the 

shape of the symbols only (i.e. it is individuated independently of their meaning). 

Finally, and most importantly, the symbols and the syntax must be semantically 

interpretable: it must be possible to give a systematic interpretation of the syntax 

as “meaning” something that is external to the system itself. Not any assignment 

of meaning would do just as well, for there are constraints that have to do with the 

systematicity and consistency of the interpretation. These constraints, however, are 

external to the symbols themselves: they are met if it is possible to assign a system 

of meanings that meets them.

There are several arguments in the literature that suggest that this is actually a 

problem. I will mention only two: the Chinese-Chinese Dictionary argument and the 

Chinese Room argument.

7This is how Stephen Harnad ([45], p. 337) reconstructs the definition from Newell and Simon 
[63].
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6.3.4 The Chinese-Chinese dictionary argument

Another argument that claims to reveal a deficiency in the sufficiency hypothesis is 

due to Steven Harnad. Suppose we were to learn Chinese with the only help of a 

Chinese-Chinese dictionary. Although very difficult, this task could, in principle, be 

managed. After all, cryptologists of ancient languages or of secret codes do something 

very similar. It is possible, but at the condition that one already possesses a first 

language. If we were faced with the task of learning Chinese as a first language 

with the only help of a Chinese-Chinese dictionary, then the task would clearly be 

impossible. According to Harnad, this example provides a faithful picture of the 

problem. If the mind is a physical symbol system, how does it exit the symbol- 

symbol merry-go-round? It should be clear that, under our analysis, the symbol- 

symbol merry-go-round is yet another expression of the failure of internalist views 

to fix their intended models. The fact that most computationalists acknowledge the 

problem, moreover, further exposes their commitment to internalism, syntactic and 

semantic.

The standard reply is that the symbols are grounded by suitably connecting them to 

the environment This amounts to the hypothesis that, given the appropriate isolated 

symbol system, if we connect it to the environment in the right way it will see, talk 

and understand just how we do it. This response is, in the light of our analysis, 

either false or trivial. If it means that there exists a symbolic module that awaits to 

be attached (or interfaced) to the environment in a specified way, then the argument 

still applies to that module: in what way should that module await to be attached? 

What is the “right way”?

If the words “in the right way”, instead, just mean “in such a way as to make the
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system see, talk and understand” , then the statement is trivially true, but it then 

becomes an empirical question whether the requirement can be met. If our analysis 

is correct, the requirement cannot be met.

Turing Tests and Total Turing Tests

The line of criticism discussed in the previous paragraphs can be best appreciated 

if we consider its methodological premises. Turing Test (TT) indistinguishability 

constitutes the single most influential methodological criterion of classic artificial in­

telligence. The rationale behind it rests on a (pre-theoretical) relation of symmetry 

between the problem of what it is to have a mind and the problem of other minds 

(how do I know that other people also have a mind). If “pen-pal” indistinguishabil­

ity is a sufficient condition for inferring the presence of a human mind (other than 

mine), there is no reason why the same criterion shouldn’t apply also to machines. 

Considerations of biological make up don’t play a role in the former kind of inference, 

so, coherently, they shouldn’t play a role in the latter. The reason why Turing Test 

candidates are supposed to be out of sight is that the judge is thus sure to disregard 

irrelevant and biasing aspects of intelligence, concentrating on the appropriate level 

of analysis. There is little doubt that several features that we consistently observe in 

association with intelligent behavior axe not essential to it. Methodological concerns 

about how to best screen these biasing aspects off are therefore necessary for a proper 

treatment of intelligence.

What some authors (like Harnad) object, however, is that a criterion based on 

pure symbol manipulation (pen-pal indistinguishability) might be too strict. It is 

certainly the case that intelligent behavior comprises much more than mere word-in- 

word-out behavior. We do seem to possess what can be called “symbolic” capacities,
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that is our capacities to identify, describe and respond coherently to descriptions of 

objects and states of affairs in our world. On top of these, and possibly responsible 

for these, are our “robotic capacities”: the capacities to discriminate, identify and 

manipulate the objects and states of affairs of our world.

The most basic robotic capacity is the ability to discriminate pairs of stimuli: to 

tell whether two stimuli are different or the same, and in the case they are different, 

to tell how similar they are. This capacity can be (and most likely is) realized by 

analog mechanisms8.

An analog of the sensory projection of one stimulus is superimposed on that of 

another, and a measure of congruence between these analogs is then deployed to effect 

discriminations. These analogs of sensory projections apt for discriminating incoming 

stimuli can be called “iconic representations”. The capacity to identify objects and 

states of affairs, instead, is a matter of absolute judgements: a horse is a horse regard­

less of how different horses are from pigs or sheep. In a sense the capacity to identify 

stimuli is contrary to the ability to discriminate them: it is based on the capacity to 

selectively detect the invariant features of different proximal stimuli and react accord­

ingly. The representations that are apt for performing identifications (“categorical 

representations”) are thus selectively blind to within-category incongruencies and are 

oversensitive to incongruencies related to stimuli belonging to different categories.

Although the mere capacity to identify something doesn’t by itself entail the pres­

ence of an “inner name” for it, categorical representations seem to be a necessary 

feature of any autonomously functioning intelligent symbol system. In fact categor­

ical representations, as well as allowing to sort the world into categories, also allow

8As I have already mentioned, however, our capacity to discriminate and identify stimuli should 
not be conceived as coextensive with the presence of systematic factual correspondences.
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us to assign a unique arbitrary name to each of them. These arbitrary symbols, to­

gether with strings of them that “can be interpreted as propositions about category 

membership” , constitute “symbolic representations” .

Harnad argues (wrongly, I believe) that a symbol system, thus grounded into 

non arbitrary sensory (iconic and categorical) representations, would be immune 

to Searle-like arguments. In the Chinese-room argument (to be discussed in the 

following) the notion of functional identity is characterized as identical to Turing- 

indistinguishability.

According to the analysis outlined above, Turing-indistinguishability is unneces­

sarily restricted to the indistinguishability of symbolic (word-in-word-out) capacities. 

Because symbols are not intrinsically meaningful, symbolic capacities indistinguish­

able from those of a Chinese speaker may fail (Searle’s argument goes) to suffice for 

real understanding to take place. This failure would reveal a fatal shortcoming of com­

putationalism (functionalism in general). Harnad argues that requiring robotic indis­

tinguishability (indistinguishability of robotic capacities) as well as symbolic (Turing) 

indistinguishability would block the argument. If we replaced the standard Turing 

Test with a Total Turing Test we would be able to detect (and select away) unwanted 

unintelligent pen-pal simile-minds. The symbol system of the Chinese speaker, unlike 

that of Searle’s, would be grounded in her iconic and categorical representations, so 

Searle would fail to pass the Total Turing Test.

6.3.5 Teleological com putationalism  and the sym bol ground­
ing problem

Harnad summarizes the symbol grounding problem in the following way:

How can the semantic interpretation of a formal symbol system be made
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intrinsic to the system, rather than just parasitic on the meanings in 

our heads? How can the meanings of the meaningless symbol tokens, 

manipulated solely on the basis of their (arbitrary) shapes, be grounded 

in anything but other meaningless symbols? [...] Hence, if the meanings 

of symbols in a symbol system are extrinsic, rather than intrinsic like the 

meanings in our heads, then they are not a viable model for the meanings 

in our heads: cognition cannot be just symbol manipulation.9

The view of computationalism that has been put forward here, agrees with the 

above criticism, so far as it is applied against the orthodox, internalist treatment of 

computation (and symbol manipulation). Orthodox understandings, in fact, assume 

that whether a physical system manipulates symbols or not is a matter that can be 

assessed independently of how these symbols are interpret-ed or even from whether 

they are interpreted at all. Interpretation comes later, and separately, if ever: what 

counts is interpret-ability. This hope, I have argued, has been sustained by the 

encodingist preconception of the nature of intentionality. We have argued that such 

divorce of syntax from semantics is fatal, and not necessary (if not impossible, if we 

believe in the soundness of v-argument) to the computationalist stance.

Harnad, instead, assumes that such divorce is necessary, although he agrees that 

it is fatal to the computationalist stance as it stands. Coherently, he proposes to 

amend the computationalist hypothesis (rather than the notion of computation, as I 

have done) by requiring that cognition be not coextensive with symbol manipulation. 

The idea is to set constraints on the symbols that are being “manipulated” , requiring 

that they be symbolic representations. In his own words:

9Harnad [45], p. 335.
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Symbolic representations must be grounded bottom-up in nonsymbolic 

representations of two kinds: (1) “iconic representations” , which are 

analogs of the proximal sensory projections of distal objects and events, 

and (2) “categorical representations” , which are learned and innate feature- 

detectors that pick out the invariant features of object and event categories 

from their sensory projections. Elementary symbols are the names of these 

object and event categories, assigned on the basis of their (nonsymbolic) 

categorical representations.10

Harnad, then, requires that “symbol manipulation” be sensitive not only to the 

“arbitrary” shape of the symbols, but also to the “non-arbitrary shape of the iconic 

and categorical representations connected to the grounded elementary symbols out of 

which the higher-order symbols are composed”.

Here, the expression “sensitive to the non-arbitrary shape of the iconic and cat­

egorical representations” is meant to require that there be a factual correspondence 

between individuals in the external world, with the structure of differential features 

that they instantiate, and the responses of the system. I have argued that such factual 

correspondences do not carry any information as to what they are correspondences 

with, and that for this reason they are unsuitable, by themselves, for the task of en­

dowing something with intentional properties. Harnad’s proposal, in fact, is silent as 

to what feature of the system would allow it to “use” these factual correspondences 

in a semantically appropriate way.

The key difference between the view that is being promoted here and Harnad’s 

analysis, is this. Harnad thinks that there can be (and should be) two distinct sets

10Harnad [45], p. 335.
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of constraints on the symbol tokens: one “merely syntactic” and the other, we might 

say, “semantic” (grounded on the iconic and categorical representations). We, instead, 

have argued that the two sets of constraints are mutually, logically connected, as far 

as their supervenience on internal features of the system are concerned: there cannot 

be such a thing, according to computational externalism (or Teleo-computationalism, 

which is my preferred example of externalist theory of computation), as an indepen­

dent “merely syntactic” set of constraints. We have argued, in fact, that such an 

independent set of syntactic constraints would not even be able to model the notion 

of “same symbol token” , for the very notion of “sameness” , as applied to symbols, 

can be argued to be observer-relative. In sum, while Harnad proposes to amend the 

sufficiency hypothesis by adding to it non-symbolic constraints, I propose to maintain 

the hypothesis at the price of a redefinition of the notion of real computation.

6.4 Teleological computationalism and Searle’s crit­
icism

6.4.1 Teleological com putationalism  and the Chinese R oom

The necessity to tackle the difficulty exposed by the Chinese Room argument has been 

seen by some as nearly definitory of cognitive science. Refutations and strategies for 

combating it occupy thousands of pages, and I do not wish to add any. The aim here 

is simply to test the capacity of our treatment to address the issue.

The argument has some authoritative predecessors. Leibniz, for example, had to 

say:

Moreover, we must confess that the perception, and what depends on it, 

is inexplicable in terms of mechanical reasons, that is, through shapes and
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motions. If we imagine that there is a machine whose structure makes it 

think, sense, and have perceptions, we could conceive it enlarged, keeping 

the same proportions, so that we could enter into it, as one enters into 

a mill. Assuming that, when inspecting its interior, we will only find 

parts that push one another, and we will never find anything to explain 

a perception. And so, we should seek perception in the simple substance 

and not in the composite or in the machine. 11

The reductio ad absurdum, here, is' directed against the idea that we could “con­

struct” a machine that thinks and has perceptions. The contrast revealed by the 

thought experiment is between overt behavior (the apparently intelligent behavior) 

and the inner workings of the machine. Buying v-arguments, we might revive Leib­

niz thought experiment by saying that if we “constructed” an object following the 

“recipe” of the computational structure that allegedly explains intelligent behavior, 

and if we then looked into it, we would “find only parts which work one upon an­

other” , and never something that relates to the formal structure used to build the 

object. Thus, no room for explanatory efficacy is left to the recipe.

Notice that my treatment of computation, and the computational theory of the 

mind that follows from it, is sympathetic to the above thought experiment. The form 

of a causal structure is not something that can be “seen” by looking inside a physical 

object, as if it were a physical structure. The intentional properties of a structure, 

those that ground all syntactic properties, supervene on observable physical properties 

(if the naturalization programme can be carried out). But they cannot be expected 

to be “transferable” to the observer: the sole fact that we observe that a physical

11 Leibniz, Monadology (1714). Section 17. ([51], p. 216).
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structure possesses the relevant intentional properties does not entail that, by this 

reason alone, we share theses properties with it.

Indeed Chalmers once commented ironically that if Searle was to be taken seri­

ously, then the following syllogism should also have to be taken seriously. 1) Recipes 

are syntactic, 2) syntax is not sufficient for crumbliness, 3) cakes are crumbly, so 4) 

implementation of a recipe is not sufficient for making a cake.12

I would add, to reverse the parody in accordance with my view, that indeed recipes 

are not sufficient to make cakes if there isn’t someone who type-identifies the symbols 

and understands the language in which they are written in: but this is not very funny.

The direct historical origins of Searle’s argument he in the idea of a Turing Test. 

Remember that Turing suggested that if a computer could pass for human in a chat 

under cover, it should be counted as intelligent in all relevant respects. FoUowing 

such intuitions, computer scientist R. Schank proposed a schema for passing sim­

ple versions of the Turing Test called “conceptual representation”13. According to 

Schank’s schema, “scripts” should be used to represent relations between concepts. 

Originally, Searle’s argument was proposed as an objection against Schank’s concep­

tual representations: it was aimed at showing that Schank’s programmes could not be 

considered as literally understanding anything (even if they passed the Turing Test).

“The point of the argument”, says Searle, “is this: if the man in the room does 

not understand Chinese on the basis of implementing the appropriate program for 

understanding Chinese then neither does any other digital computer solely on that 

basis because no computer, qua computer, has anything the man does not have.”14

12Chalmers [16].
13 Schank [76].
14Searle [80].
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T he R obot Reply

Searle’s example of what kind of thing the human operator inside the room does not 

know, is the meaning of the (Chinese) word for hamburger. One of the strategies for 

combatting the argument, known as the “Robot Reply” is based on the observation 

that we know what “hamburger” means because we have seen, tasted, perhaps made 

one. Or because we have heard someone talking about it, in which case we know 

what it means by reference to something that has been seen, or tasted. The “Robot 

Reply”, in its many variants, consists in the claim that a digital computer, freed from 

the room and attached to a robot “in the appropriate way”, so as to be able to “see” 

through sensors and manipulate the world, would be able to learn the meanings of 

the symbols it manipulates and eventually speak and understand a natural language. 

Among others, Margaret Boden, Tim Crane, Daniel Dennett, Jerry Fodor, Stevan 

Harnad, Hans Moravec and Georges Rey have all proposed some variant of the “Robot 

Reply”.

The treatment developed in this work, I believe, has a lot in common with the 

robot reply. Let us start, however, with the most striking difference. All variants 

of the Robot Reply have in common one thing: they concede that the computer, 

confined in the room, implements the relevant computational structure. They also 

concede that the computer does not understand what “XZX” (a fictional Chinese word 

for hamburger) means. According to our view, instead, the thought experiment is ill- 

posed, for it assumes (coherently with the orthodox view that it aims to criticize), that 

a computational structure can be implemented without implementing (by definition, 

as we suggest) some intentional icons. Thus, according to our view, the argument 

would be blocked at its onset, when it supposes that the “right” program is being
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“implemented”. We would require, to accept the premise, a specification of the 

intentional icons with respect to which the program can be said to be implemented, 

before we even wonder if it is the “right” program.

Notice that my proposal does not deny that (real) computations operate on “sym­

bols” solely according to their shape, nor it denies that virtually anything (any stuff) 

could implement a computation: this much it has in common with the orthodox 

view. What it denies, I repeat, is that it make any sense to individuate a particular 

computation as the one that is being implemented without making reference to the 

intentional icons that realize its input architecture.

Having made this important distinction, what makes our proposal close to a Robot 

reply is, I think, that:

1) given my definition of implementation, even if the Chinese Room as a whole, 

or, through it, its human operator, implemented a computation, it could hardly be 

the right sort of computation, for it is highly unlikely that the external description of 

such computation is implemented by the right sort of intentional icons. In fact, the 

only symbols in the story, with respect to which alone the computation can be said 

to be implemented, would be intentional icons referring to patterns of ink (such as 

XZX). No other system in the story, in fact, can be reasonably assumed to instanti­

ate natural semantic properties. As hamburgers and XZX’s (the patterns of ink) are 

different sorts of entities, the computation implemented by the man inside the room 

is very unlikely to be the “right” one.

2) Moreover, the “right” computation will have to be one grounded on some
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appropriate causal relation with real hamburgers (we have seen what sort of causal 

relation). This is compatible with the intuition that the missing bit is the role played 

by robotic capacities.

6.4.2 Syntax is not intrinsic to  physics

Searle later divorced the Chinese Room argument from other versions of v-arguments 

which we set to combat. His reasons are articulated in various arguments that we 

now briefly comment on. The first one, and one we are familiar with, proceeds from 

a denial that syntax is a feature intrinsic to physics:

[...] “syntax” is not the name of a physical feature, like mass or gravity.

I think it is probably possible to block the result of universal realizability 

by tightening up our definition of computation. Certainly we ought to 

respect the fact that programmers and engineers regard it as a quirk of 

Turing’s original definitions and not as a real feature of computation. 

Unpublished works by Brian Smith , Vinod Goel, and John Batali all 

suggest that a more realistic definition of computation will emphasize such 

features as the causal relations among program states, programmability 

and controllability of the mechanism, and situatedness in the real world.

But these further restrictions on the definition of computation are no help 

in the present discussion because the really deep problem is that syntax 

is essentially an observer relative notion. The multiple realizability of 

computationally equivalent processes in different physical media was not 

just a sign that the processes were abstract, but that they were not intrinsic 

to the system at all. They depended on an interpretation from outside.



267

We were looking for some facts of the matter which would make brain 

processes computational; but given the way we have defined computation, 

there never could be any such facts of the matter. We can’t, on the one 

hand, say that anything is a digital computer if we can assign a syntax 

to it and then suppose there is a factual question intrinsic to its physical 

operation whether or not a natural system such as the brain is a digital 

computer. [My emphasis]}*

It is apparent from the long passage quoted above, that Searle excludes that a 

restriction of the notion of computation could be used to make the very notion of 

syntax objective. It has been argued, instead, that this is not the case, and this has 

been the purpose of this treatment: to restrict the notion of computation so as to 

make it objective in physical terms. Further passages should make this claim clearer.

There is no way you could discover that something is intrinsically a digital 

computer because the characterization of it as a digital computer is always 

relative to an observer who assigns a syntactical interpretation to the 

purely physical features of the system.16

We have seen how such observer-relativity should not be thought of as irreducible. 

On the contrary we suggested that the very same physical system that is said to 

implement the computation could play (and indeed should play), if the notion of 

implementation is to have any empirical content) the role of a naturalized observer.

The application of this criticism to the computationalist theory of the mind is 

straightforward:

15Searle [79], pp. 841-842. From Searle [81].
16Ibid., p. 842.
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As applied to the Language of Thought hypothesis, this [the fact that 

syntax is not intrinsic to physics] has the consequence that the thesis is 

incoherent. There is no way you could discover that there are, intrinsically, 

unknown sentences in your head because something is a sentence only 

relative to some agent or user who uses it as a sentence. As applied to 

the computational model generally, the characterization of a process as 

computational is a characterization of a physical system from outside; 

and the identification of the process as computational does not identify 

an intrinsic feature of the physics, it is essentially an observer relative 

characterization.17

According to my view, instead, the “characterization of a process as computa­

tional” is a matter of objective fact, and as such needs not be a “characterization 

from outside”, if by this it is meant that it is a characterization that makes reference 

to “external”, irreducible, semantic capacities. The characterization is, we have seen, 

irreducibly relational, but this by no means implies that it cannot be instantiated by 

a system alone in its environment.

6.4.3 Syntax has no causal power

Another, related line of argument proceeds from the claim that the programs that 

(allegedly) are being implemented do not exist if not in the eyes of the beholder; 

hence, per force, they cannot have any causal power, hence no explanatory role in a 

theory of the mind.

The thesis is that there are a whole lot of symbols being manipulated in

17Ibid., pp. 842-843.
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the brain, O’s and l ’s flashing through the brain at lightning speed and 

invisible not only to the naked eye but even to the most powerful electron 

microscope, and it is these which cause cognition. But the difficulty is 

that the O’s and l ’s as such have no causal powers at all because they do 

not even exist except in the eyes of the beholder. The implemented pro­

gram has no causal powers other than those of the implementing medium 

because the program has no real existence, no ontology, beyond that of 

the implementing medium.18

My claim is that the O’s and l ’s do exist in the implementing structure. More­

over, they “must” exist, for the physical structure to be an implementation. The 

difference between a physical token and the symbol “1” is mirrored, and explained, 

by the difference between an intentional icon and its content. It remains true, un­

der our analysis, that “[t]he implemented program has no causal powers other than 

those of the implementing medium because the program has no real existence, no 

ontology, beyond that of the implementing medium.” But this is not different, in the 

proposed understanding of computation, than the claim that a mathematical struc­

ture (say a system of differential equations), has no causal powers other than those 

of its instantiating real dynamical system.

6.4.4 The brain does not do information processing

To conclude with Searle’s criticism, we mention a last line of argument. It is argued 

that that there is no sense in which a brain can be significantly said to “process 

information”, for, again, information processing needs interpretation.

18Searle [81], pp. 30-31.
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The mistake is to suppose that in the sense in which computers are used to 

process information, brains also process information. To see that that is a 

mistake contrast what goes on in the computer with what goes on in the 

brain. In the case of the computer, an outside agent encodes some infor­

mation in a form that can be processed by the circuitry of the computer.

That is, he or she provides a syntactical realization of the information that 

the computer can implement in, for example, different voltage levels. The 

computer then goes through a series of electrical stages that the outside 

agent can interpret both syntactically and semantically even though, of 

course, the hardware has no intrinsic syntax or semantics: It is all in the 

eye of the beholder.19

Recall that our preliminary diagnosis for the failure of naturalization proposals 

blamed the “encodingist paradigm”. The above passage is an example of how such 

criticism can be applied to the computationalist stance. In sum, there is no intrinsic 

notion of encoding: it is an external agent that does the “encoding”. But who is 

the external agent, when the notion of encoding is being used to explain the agency 

of agents? In the case of the naturalization of intentionality, we have seen, the 

problem can be tackled by the deployment of teleological concepts. This entails an 

abandonment of the encodingist paradigm. We have applied the same strategy to the 

naturalization of implementation. The result is that we cannot determine whether a 

system is or isn’t an information processor unless we are told some further (physical, 

albeit relational) facts about the entities that “encode” the information.

19Searle [79], p. 844. Prom Seaxle [81].
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Thus, for example, voltage levels axe not sufficient to settle the matter, unless we 

are told something more as to how such voltage levels relate causally to the survival of 

the organism to which they pertain. Such information, we argue, would be sufficient 

to determine what syntactic and semantic properties they possess. So, I concede that 

“it is all in the eye of the beholder”, but the beholder is naturalizable and it is part 

of the story since the beginning. It is not called in later, to interpret the structure: 

it is part of the structure. In a slogan: for a thing to be an implementation of a 

computational structure, or for it to be an information processor, that thing must be 

a beholder. And for something to be a beholder, that something must produce and 

use intentional icons or, equivalently, it must induce dynamical presuppositions.

6.5 Computational externalism and the connec- 
tionist challenge

The following is a discussion of some of the issues raised by the connectionist challenge, 

judged from the perspective of teleological computationalism.

6.5.1 Principles o f Connectionist M odelling

In the middle 1980s the (re)introduction of cognitive models called “connectionist 

networks” set about (or coincided with) a major debate about how cognition should 

be construed. The conceptual import of the “new wave” of cognitive modelling has 

traditionally been understood in contrast with models constructed according to the 

Physical Symbols System recipe (see chapter IV). Classical computational architec­

tures, as discussed in the previous chapters, are conceived as performing algorithmic 

operations upon discrete strings of symbols. Syntactic rules operate upon strings of 

symbols each of which possesses semantic properties. Possessing semantic properties,
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being “about something” or, minimally, representing something, is held to be a nec­

essary condition for being computed. “No computation without representations” , is 

the slogan of classical computationalists. Connectionist networks, on the contrary, 

compute through continuous functions on multidimensional vectors of activation. At 

the fundamental level, that which is directly implemented, the objects of computation 

do not possess semantic properties. The operands are activation values that don’t 

correspond to anything in the world: they are not symbols. Nevertheless, they are in 

some views (Smolensky, for example) constituents of symbols, and are for this reason 

called subsymbols.

Entities that are typically represented in the symbolic paradigm by sym­

bols are typically represented in the subsymbolic paradigm by a large 

number of subsymbols. [...] they participate in numerical - not symbolic - 

computation. Operations in the symbolic paradigm that consist of a single 

discrete operation (e.g. a memory fetch) are often achieved in the sub- 

symbolic paradigm as a large number of much finer-grained (numerical) 

operations.20

This attempt to conceptualize the “new way” of modelling cognition issued in a 

lively (ongoing) debate where a group of authors, primarily Smolensky, responded 

to the criticism of classically oriented Fodor, Pylyshyn and others. Soon after its 

onset the debate drifted away from the conceptual foundations of the two paradigms 

and concentrated on their explanatory advantages and disadvantages. In particular, 

the debate focussed on the alleged difficulty of connectionist models to explain the

syntactic constitutivity that seems to characterize all higher cognitive phenomena.

20Smolensky [8 6 ], p.774.
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Basic assumptions and properties of connectionist models

Connectionist models are attempts to describe some formal aspect of cognition through 

the deployment of artificial neural networks. Their basic assumption is that cognitive 

capacities are built out of a set of primitive, brain-like processes. At the present time 

about 50 different kinds of connectionist models are under investigation.

At a formal level (regardless of how they come to be implemented), they are all 

networks of simple units. Inputs and outputs are not information-bearing messages, 

but simple values of activation. Each unit, in fact, can take up a value of activa­

tion. Values of activation are intrinsic properties of the units which must be reliably 

associated with some physical state of the instantiating unit. The activity of units 

influences that of others through a net of weighted connections. The activity of all 

input units is summed to yield a total, weighted net activity. The activity of each 

recipient unit is then calculated as a function of such net input value alone.21

Thus, the activation of input units is spread through to the other units. A set 

of units of the network is then designated to be the output pool: their pattern of 

activation constitutes the output of the network.

There are two main families of connectionist networks: feed-forward networks and 

recurrent networks. Feed-forward networks are built out of layers of units. Each unit 

of a layer may connect to any unit of that layer or to any unit in the next layer 

(downstream). It may not connect to any unit upstream. The activation of units can

21 Such function, termed the activation function is often taken to be the so called logistic function:

output =   ----------- 7---- ;------r
1 4 - exp — (netmput)

A function of this kind is called a quasi-linear function and manages to bound the output while 
avoiding unwanted discontinuities.
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thus spread only in one direction.

In recurrent networks, instead, any unit can connect to any other unit: therefore 

units need not be divided in layers.

The performance of a network is modified by changing the weights of the connec­

tions. This process is usually termed learning. Changes to the matrix of connection 

weights, in fact, are made dependent on some feature of the performance of the 

network. This kind of .learning is often termed supervised learning, for changes to 

the weights are made to comply to some constraint on the (desired) performance. 

This kind of learning should be contrasted to an unsupervised kind, where changes 

of weights result from intrinsic characteristics of the connections themselves. Some 

details of these,models will be discussed in the following paragraph.

6.5.2 T he problem of syntactic constitutivity: sym bolic v s /  
connectionist representations

One of the most discussed issues about connectionist networks has to do with how 

they manage to store information. Before getting into the details of this discussion it is 

worth pointing out that networks have two main ways of storing information: through 

the pattern of activation and through the pattern of weights, the former means of 

storage relies on a very transient feature of the network. Patterns of activation, in 

fact, appear and disappear as the network is input different sets of values. Patterns 

of weights, by contrast, are more lasting and best suited to analyze how information 

is encoded, stored and decoded. In either case, however, the means of storage and 

manipulation of information stand in clear contrast to the way in which information 

is stored and manipulated by a symbolic system, such as a language. As we will 

discuss later, in fact, the most startling difference is that the elementary units and



275

their processing properties are usually not singularly ascribed any particular meaning. 

Moreover, the performance of the network rarely depends heavily on the activity of 

a single unit.

This feature is responsible for a very much acclaimed feature of networks that is 

referred to as graceful degradation. Partial omission of input, or lesion of connections, 

or any kind of local damage to the network, doesn’t result in complete collapse of 

its performance: performance may be partially nonfunctional, but still interpretable. 

This is often claimed to be a factor in favor of connectionist models of cognition, as 

damages or lesions on real brains, unlike those on computers, don’t usually result 

in catastrophic bankruptcy of cognitive capacities. This same feature, however, has 

been argued to constitute a fatal shortcoming of connectionist models.

Classic account of syntactic constitutivity

There is a received view in cognitive science according to which there are two dis­

tinct categories of phenomena that call for explanation: on one side there is cognitive 

performance, on the other there is cognitive competence. Individuating the cerebral 

structures responsible for the production and understanding of language, for exam­

ple, is certainly relevant for understanding how we manage to speak or why we make 

certain linguistic mistakes, but understanding what language and thought really are, 

and what their structure is, is something completely different. The two domains of 

enquiry, it is claimed, are so distinct as to require two methodologies and concep­

tual apparatuses to be described. The classic symbolic paradigm, with its distinction 

between symbolic-functional architecture and physical implementation is a clear ex­

ample of this received view.
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Consider the sentence: “Mary and John Eat a Chicken” (I shall denote this sen­

tence with letter A). A expresses a thought that “contains” (in a way to be explained) 

the thoughts Mary, John, Eat and Chicken. Moreover, A expresses a thought that 

must also contain the separate thoughts that Mary Eats a Chicken and that John 

Eats a Chicken. In other words, if I understand the sentence A, the thought that it 

expresses must be compound. This property of some representation is called “consti­

tutivity” .

How must a representation be, in order for it to be complex? What do all complex 

representations have in common that makes them all complex? Is the property of 

being complex an intrinsic property of representations? The symbolic paradigm has 

an answer to these questions that, I have argued, pose unnecessary (and possibly 

unsatisfiable) constraints on representations.

There are symbols in the mind, the story goes, that refer to all terms in a propo­

sition. When you think that A your mind concatenates these symbols. A “contains” 

the thought that Mary Eats Chicken. Why doesn’t it also contain the thought that 

Chicken Eats Mary? In other words: once we claim that thoughts are complex when 

they are built out of simpler symbols, we must explain why the same simpler symbols 

can be concatenated to build different thoughts.

The symbolic paradigm claims to have a solution to this problem too. To concate­

nate symbols does not merely amount to put them together, in a bunch: it means to 

place them orderly into appropriate “boxes” . In your mind there is a “subject box”. 

a “verb box”, etc. The same symbol can end up in different boxes, thus building dif­

ferent thoughts. The received view then requires that this apparatus be implemented, 

by a brain for example.
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It is straightforward to see how this picture presupposes the kind of syntactic 

internalism that we have criticized. To be a “subject box”, for example, is a property 

that is characterizable in terms of syntactic properties alone, independently of what 

word will end up filling it.

Towards the end of the eighties an old research programme, the connectionist 

programme, re-emerged from disrepute. The successes achieved by neural networks, 

particularly at modelling lower cognition (like perception) convinced many authors 

that a “paradigm shift” was to take place. No more mental symbols or syntactic 

boxes: no more language of thought. There are a thousand pages written about the 

opportunity of this “Kuhnian revolution” and I shall not review them here (personally 

I believe that the concept of scientific revolution is very much abused in the literature). 

Instead, I shall discuss 1) what is the minimal notion of syntactic constitutivity 

that we can afford (short of the orthodox symbolic paradigm) and 2) what are the 

(interesting) shortcomings of the proposals to solve the problem of constitutivity in 

the sub-symbolic paradigm.

W hat constitutivity do we really need?

In a connectionist model intentional states are represented by activation vectors. The 

composition of representations is rendered by the (vector-) sum of the compounds. 

This feature of connectionist models is appealing in many respects (it accounts well 

for aspects of cognition such as categorical perception, discretization of a sensory 

continuum, emergence of prototypical representations, etc.) but it seems to fail to 

satisfy the fundamental desideratum of syntactic constitutivity: that it be an intrinsic 

property of complex representations. Given a vector, sum of two components, it is in 

fact impossible to unambiguously trace the components back. This shortcoming of
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connectionist models is often called the “superposition catastrophe”.

Very generally, one can distinguish two ways of composing entities: one, simi­

lar to the building of a house out of bricks, keeps “memory” of the elements that 

form the compound; the other, more similar to the way in which two raindrops that 

come together to from one, “forgets” about the components. I shall call the first 

kind of composition “architectonic”, the second “superpositional”. Well, according 

to orthodox computationalists, the constitutivity that we need to describe complex 

representations must be “architectonic”. Why is that? Let’s consider the desiderata 

of our theory of representation.

1. We want thought, like language, to be productive and generative. It seems that 

we are able to produce a (virtually) infinite number of thoughts out of a finite 

number of thoughts. It follows that there must be rules for generating these 

thoughts. Hence thoughts must have a recognizable internal structure.

2. We want thought, like language, to be systematic. The comprehension of cer­

tain thoughts implies the possibility to comprehend other (related) thoughts. 

Cognitive systems that understand the sentence “Mary Eats a Chicken” , are 

observed to be also able to understand the sentence “A Chicken Eats Mary” . 

It follows that there must be grammatical rules that determine appropriate 

relations of equivalence.

3. We want thought, like language, to be compositional. Given a (complex) 

thought, it is possible to individuate components that have semantic proper­

ties that are independent from the context. It is always possible to assign a 

syntactic-semantic structure to complex thoughts in a non-arbitrary fashion.
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In order to satisfy these desiderata, representations, whatever they are, must have 

a constitutive structure. This structure must be non-arbitrary and persistent.

6.5.3 The Variable Binding Problem

One easy way to touch the above mentioned problem with a concrete example is to 

consider the task of binding variables to their values. From Mary Gave John Bookl 

one can infer that John Ows Bookl. This inference can be formalized by use of first- 

order predicate calculus (a paradigmatic case of symbol system). Let us introduce 

the three-place predicate give(x,y,z) so that its three arguments correspond to the 

three semantic roles: giver, recipient and given object. Let moreover the two-place 

predicate own(x,y) stand for the fact that x owns y. We can now express the above 

inference by the following formula:

Vx, y , z[give(x, y, z) => own(y, z)]

The use of variables allows us to make the specific inference a special instance 

of the more general inference that tells us that, in the act of giving, whoever is the 

recipient must also be the owner. Notice that here, the words “recipient” and “owner” 

refer to variables, abstract “places” in a syntactic structure: they do not possess any 

specific meaning. Thus, for example, a token of a name does not satisfy the property 

of being the “recipient” by virtue of its meaning, but by virtue of the place it occupies 

in the overall structure. To apply the above general rule to the case of Mary and 

John one must solve the variable binding problem: the names must be assigned to 

the variables in the formula in a consistent way (for example the first occurrence of z 

must be bound to the same object as the second one, and that object must be bookl). 

The result of binding, in this case, produces the (correct) inference:
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give(Mary, Jo/m, Bookl) => own(John, Bookl)

In structured representations, such as the triplet < Mary, John, Bookl >, the 

problem of multiple binding for multiple variables is straightforward. Fodor and 

Pylyshyn argue that the mind must deploy structured representations in a system 

that is at least as powerful as predicate calculus if it is to perform such inferences.

6.5.4 First Connectionist Response: Dynam ical B inding

Functional and neurophysiological analysis of a brain processing a visual image shows 

that many distinct areas are simultaneously active and singularly responsible for the 

processing of various features of the image (shape, color, etc.). Lokendra Shastri 

and Verkat Ajjanagadde designed a connectionist model22 inspired by these empirical 

findings. The idea is that units in the network have activation values that oscillate 

creating patterns in time. The binding feature is then taken to be the synchronicity 

of such oscillations. A network that must assign to the variable owner the argument 

Mary, has the units relative to the role owner oscillating synchronously to those 

relative to the name Mary. The model, known as dynamical binding, was capable 

of significant logical work and became even more promising as evidence of the brain 

actually deploying synchronous activity to bind information emerged in the 1990’s.

The main concern raised by Fodor and Pylyshyn23, however, remains untouched: 

even if such a model adequately matched the performance of a symbolic machine, 

nothing would make of it more than an implementation of a computational structure. 

The relevant psychological evidence would be explained at the higher, computational

22Shastri and Ajjanagadde [83].
23Fodor and Pylyshyn [40].
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level, regardless of how the system is implemented. The attempts of connectionist 

theorist to meet the symbolic challenge obscured the fact that the notion of being the 

argument of a variable, in the case of symbolic structures, is far from trivial. We have 

seen, in fact, that in the case of dynamical systems measurements assign a number 

to variables, exploiting the fact that the variable is identified (independently of other 

variables) by one and only magnitude that is measured at different times.

The case, for symbolic structures, is not as simple. The abstraction from real 

time, and the identification of variables on internal relational properties alone, makes 

it impossible to say that an argument is the value of a certain variable. According to 

computational externalism, thus, the orthodox symbolic explanation of constitutivity 

is a pseudo-explanation, for it presupposes syntactic internalism. This is not to say 

that connectionist and symbolic systems are on a par at solving the binding problem, 

considered as a technical difficulty. Sure symbolic systems are more suitable to build 

physical systems that comply (once supplied with our intentional capacities) with the 

desired syntactic constraints. But this very fact, as we have seen, has obscured a 

grave deficiency in their fundamental conception.

It is interesting to consider how connectionist modelers attempted to meet the 

computationalist challenge. Where they appeared to have succeeded to some ex­

tent, their computational opponents argued that, to that extent, their models were 

nothing but “implementation” of standard computational systems. I shall apply my 

understanding of implementation to comment on some of these responses.
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6.5.5 Second Connectionist Responce: Tensor Products 
Smolensky’s Proposed

In 1990 Smolensky24 proposed a solution to the superposition catastrophe: the use of 

tensor products for describing complex representations. As we shall see, whether this 

is really a solution is questionable. I shall argue that, however, some of its detractors 

(notably Fodor), miss the point.

The solution proposed by Smolensky is this. There are three kinds of entities we 

wish to describe:

semantic roles r*

Contents fj

Relations binding contents to roles

Semantic roles and contents are respectively represented by two distinct neural

nets (R and F). The r<’s are vectors in a space V r  and the / / s are vectors in a space

Vp. Let up be the units of the net R and v# those of net V. To link the two nets we

use hebbian connections: wp̂  =  ^  r^pfi^ .

Now (this is Smolensky’s trick), we introduce new units bp>$ connected by unitary

weights to up and to v$ (the activity of bpj  is then wp̂  =  X!r i,p/v/> ).

As we have: Y * w p,4>K4> = r i,Pfi,<pUp (g) v# = the expedient

represents an implementation of the tensor product Vr QQVf - Consider the following

(elementary) example. Let the space of contents Vp (for the sake of simplicity I shall

only use localist representations) be 3-dimensional. The three vectors /o, / i ,  and / 2

represent respectively the contents “Mary”, “Eats” and “Chicken” .

24 Smolensky [85].
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The three vectors ro, rf  and ¥ 2  represent respectively the roles subject, verb and 

object

The net implementing the tensor product Vr  0  Vp describes complex represen­

tations (obtained by superimposing terms belonging to the 9-dimensional vector 

space). For example, the vector /o 0  n j+ /i 0  7T+ / 2  0 ^ 2 represents the proposition: 

M ary0Subject+Eats0Verb+Chicken0Object.

6.5.6 Problem s w ith the connectionist solution

Fodor and McLaughlin25 argue that: (1) The decomposition of a vector is arbitrary. 

(2) The constitutivity of a vector representation is therefore also arbitrary. But (3) we 

need the constitutivity of representations to be causally efficacious, so (4) Smolensky’s 

solution cannot account for the intrinsic constitutivity of mental representations.

The conclusion of their argument may well be correct (indeed, if our analysis is 

sound, nothing could account for intrinsic syntactic properties), but the argument 

itself is certainly wrong. In point (1) the authors (presumably) refer to the fact that 

there always is an infinite number of possible choices for the basis of a vector space. 

Given a vector space V, in fact, there is no canonical basis: there always exists a 

non trivial symmetry group (GL(V)) whose elements are the invertible linear trans­

formations. The plot thickens when we ask what is the relevance of this fact for the 

causal structure of the physical system that is being described. I argue that Fodor’s 

argument rests on a mistaken answer to this question. In order to make my point 

clear, I have dissected Fodor’s argument in the following chain of syllogisms (I have 

also included the necessary, although not expressed assumptions):

25 See Fodor and McLaughlin [39].
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1.1 In a mathematical model only canonical properties can have a factual value 

with respect to the physical system they describe.

1.2 The decomposition of a vector (i.e. the choice of a basis) is not canonical, 

hence:

1.3 The decomposition of vectors cannot have any factual value.

2.1 The choice of the basis of a vector space is not factual.

2.2 In Smolensky’s model the individuation of a syntactic structure depends on 

the choice of a basis, hence:

2.3 The structures individuated by the model cannot be factual.

3.1 The structures individuated by Smolensky’s model cannot be factual.

3.2 The constitutivity of mental representations must be such that syntactic struc­

tures are causally efficacious (cognitive processes are sensitive to syntax), hence:

3.3 Smolensky’s model is inadequate to explain the constitutivity of mental rep­

resentations.
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Criticism of the Argument

The argument, I think, rests on a false premise. Proposition 1.1 is false: it is only 

true if we assume that syntactic properties are intrinsic to their bearers. Once again, 

I shall argue, a reductio ad absurdum proceeds from the false premise that syntactic 

properties adhere to their bearers.

The following example shows, by contrast, what is needed to prove that a mathe­

matical structure is not factual with respect to the entity that it purports to describe. 

As we shall see, short of further information, the isomorphism between a mathemat­

ical description and the represented field is insufficient to fix an intended model.

In classical physics the positions and velocities of particles are described by vec­

tors and, as we have seen, the decomposition of these vectors is not canonical (it 

depends on the arbitrary choice of the frame of reference). Do decompositions have 

a factual value? In other words, assuming that our theory of motion is correct, can 

we “deduce” that the choice of a frame of reference has no factual (i.e. metaphysical) 

correlate? As a matter of fact, the answer to this question is yes: the choice of a 

frame of reference has no physical relevance. However, this conclusion is far from 

trivial and cannot be derived from the mere fact that decompositions are not canon­

ical. The correct argument is this:

4.1 Given the field equations of Newtonian Physics (defined, independently of 

co-ordinate systems, by abstract geometrical objects), and given the (metaphysical) 

hypothesis that the objects corresponding to the affine connection, time and space 

are absolute (galilean relativity), the symmetry (invariance) group is isomorphic to 

the covariance group of the standard formulation of the equations of motion.
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4.2 The covariance group of the standard formulation of the equations of motion 

is isomorphic to the group of linear transformation of co-ordinates. Hence:

4.3 The (mathematical)fact that there is no canonical basis for the space describ­

ing the positions of particles suitably describes the fact that the choice of a basis is 

not causally relevant.

The conclusion rests on the metaphysical choice of absolute objects, from the field 

equations and from the standard formulation of the equations of motion. Notice that, 

for example, if we follow Newton and add three-dimensional space among the absolute 

objects of the theory, in spite of the symmetry of the group of linear transformations, 

and of the isomorphism with the covariance group of the standard formulation of 

the equations of motions, the choice of a basis at rest with respect to absolute space 

would not be “causally irrelevant”. Once again, we are faced with the fact that 

isomorphism, short of further information, bears no factual relevance as to what it is 

an isomorphism with.

What lesson should we learn from this example? Mathematical structures are 

neither factual nor causally irrelevant, per se. The arbitrariety of the choice of a 

basis in Smolensky’s model, similarly, doesn’t entail anything (a priori). Notice, for 

example, that there is only one basis whose elements correspond to the activation 

values of the units of the net. Can a structure defined on this basis be causally 

efficacious? Again, no a-priori argument could settle this issue.

There is a sense, however, in which Smolensky’s proposal falls short of accounting
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for the causal role of syntactic structures. The semantic roles, in Smolensky’s model, 

axe “imposed” from above. How can we be sure, then, that the model is not (like 

Fodor thinks) the model of an implementation of a symbolic model? Structures do not 

emerge as a result of specified causal happenings in the net. Both proposals (Fodor’s 

and Smolensky’s) are silent on this issue. However, Fodor’s symbolic approach is at 

an advantage on this point. The symbolic paradigm, in fact, doesn’t claim to explain 

the nature of its implementations: the computationalist’s challenge is to guarantee 

the explanatory power of formal structures without dirtying his hands by making 

explicit the causal structures that implement them. The computationalist assumes a 

genuine under-determination of the causal mechanisms that implement the symbolic 

structure of cognition.

Understanding the mechanisms that, at the neural level, implement this structure 

(even if this were possible) wouldn’t explain cognition, as it would give us an idiosyn­

cratic picture of what cognition really is: it would prevent us from understanding 

cognition at the appropriate level of abstraction.

The connectionist proposals, on the contrary, aim at instantiating (not implement­

ing) cognitive principles through formal principles derived from the mathematics of 

dynamical systems. In this sense Smolensky’s proposal (the tensor product model) 

falls short of satisfying the desiderata of the connectionist hypothesis. In fact the 

proposal to deploy tensor products to mental representations only aimed at solving 

a hard problem of connectionist models: binding variables to their values. Does this 

solve the problem of rendering the constitutivity of representations? It depends on 

what we demand from constitutivity.
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I have argued that the constitutivity of mental representations presents the theo­

rist with the necessity to account for the causal status of syntactic structures. How­

ever, the entities realizing these syntactic structures need not be described, as isolated 

entities, by a mathematical apparatus that presents a canonical decomposition that 

can be mapped onto it. If my analysis is correct, in fact, we should expect no such 

thing. Even if there were a mathematical description of symbolic complexes that pre­

sented a canonical decomposition that mapped onto their alleged syntactic structure, 

this fact alone would not speak in favor of the model: for we would still further require 

that real semantic properties (that match such decompositions) be instantiated, in 

order to fix the wanted model.

6.5.7 Third Connectionist Response: Functional v s /  Con- 
catenative Com positionality

More in keeping with our analysis, is another line of response to Fodor’s criticism. 

This view grants that a cognitive system must operate on compositionally struc­

tured representations, but stresses that it is not necessary that such structures be 

explicit. Timothy van Gelder26 suggested that we distinguish between concatenative 

and functional compositionality. In the paradigmatic case of compositional struc­

ture, linguistic structures, the composition of elements to build a complex compound 

is performed by putting together and ordering tokens of the same elements, without 

altering them. Van Gelder calls this kind of composition concatenative.

As a matter of fact, however, we don’t need this kind of compositionality, for the 

minimal requirement is that structure be retrievable by some operation: this second,

less demanding, kind of composition is called functional. Smolensky’s tensor product

26 Van Gelder[91].
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networks and Poliak’s recursive autoassociative memory networks (RAAM) are exam­

ples of networks that exhibit functional, albeit non concatenative, compositionality. I 

have briefly discussed the tensor product strategy in the previous section. I will now 

introduce some relevant aspects of Poliak’s model of language structures.

Poliak’s RAAM  networks

In his 1990 study27, Poliak has proven two interesting results. By training a Recurrent 

Auto Associative Memory (RAAM) network on explicitly compositional structured 

inputs he showed that concatenative, compositional trees can be coded in a distributed 

non-symbolic representation and then decoded and recovered as output, unchanged. 

Moreover, he showed that such distributed representations could be used by another 

network to perform inferences that required sensitivity to compositional structures. 

This, in Van Gelder’s terminology, shows evidence of functional compositionality 

being in place.

The goal of Pollack’s simulation was to represent recursive structures of various 

lengths (linguistic trees) using representations of fixed length (patterns of activation 

of input units in a connectionist network). So, for example, a sentence like “Pat 

new John loved Mary” was to be recast in the nested proposition: (Knew Pat (Loved 

John Mary)). The components of this nested structures are the triplets P2 = <  

Loved, John, Mary > and Pi = <  Knew, Pat, P2 >. Pi is the whole tree and P2 is 

embedded in P i.

The input pattern of the network was distributed over 3 sets of 16 units. In each

set a distribution of activity represents a word (A noun or a verb). Although each

unit can take any value between 0 and 1, input units are always assigned either value

27Pollak [70].
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0 or value 1. Semantically similar words are represented by vectors of activation 

that are close to each other. A distribution of activity representing one of the four 

names presented to the network, for example, has value 1 on unit 5, and a different, 

individuating pair of values (various combinations of 0 and 1) on units 6 and 7; all 

other units of that set have value 0. When a sentence was composed of more than 

three words, recurrent connections were used to present it to the network (the same 

three 16-unit input sets were used to process all sentences, no matter how long).

The activity of the three input sets was passed on to a set of 16 hidden units 

through 3x16x16 weighted connections. The sentence presented to the network was 

therefore represented in a compressed way (encoded) by these connections.

The encoded representation activity of these hidden units was finally passed on to 

three 16-unit output sets, again through 3x16x16 weighted connections. The target 

was for these latter connections to decode the compressed information and reproduce 

as output the same sentence presented as input. In the case of embedded sentences 

it was necessary to go through successive recurrent encodings and decodings.

When the network was trained, it successfully processed (reproduced decoded out­

puts identical to the inputs) sentences up to four levels of embedding. When presented 

with sentences of higher levels of embedding, the network performance is expected 

do degrade (gracefully). As humans show a similar pattern of degradation in their 

performance, when presented with long, complex sentences, rather than constituting 

a shortcoming of the model, this feature is taken to be evidence of its soundness.
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This is a rather common reason for debating over the explanatory capacity of con- 

nectionist models. Classical, symbolic models, where explicit (concatenative) struc­

tured representations are used, don’t naturally perform this way. It is however pos­

sible to design a mechanism that operates on explicitly structured representations so 

as to mimic human performance. What does this tell us about the two ways of mod­

elling cognitive performances? As they can both achieve similar positive simulations, 

it is impossible to rule one of them out. However, connectionists usually argue that 

it is preferable that degradation of performance happens as a natural (unintended) 

result of the workings of the model, rather than being imposed on the system as an 

additional feature.

The two parts of the network, once it has been trained, can then be detached and 

used as encoder and decoder of structured information.

The analysis of the performance of Poliak’s RAAM networks showed some inter­

esting features. Cluster analysis of the activity of the hidden units28 showed that 

the network had attained relevant generalizations about semantic roles. Verb phrases 

and prepositional phrases, for example, gathered in separate clusters. But had the 

network achieved the right kind of productivity and systematicity? Poliak argues 

that the model was able to show some degree of productivity, as it was able to encode 

and decode patterns that were structurally similar to those used in the training. The 

capacity to correctly process new sentences, however, didn’t achieve full productivity.

Again it can be argued that humans also show limitations in their capacity to 

produce and understand new sentences when they become too complex. A preliminary 

study also showed some degree of systematicity in the performance of the network,

28 Cluster analysis displays the distribution of hidden unit vectors of activation after training, 
making it possible to observe what implicit knowledge the network has attained.
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as the model was able to generalize correctly over sentences that had not appeared 

in the training but that made use of the same words.

Again, however, the amount of systematicity that could be observed was limited. 

A more accurate analysis of what kind of productivity and systematicity the network 

had achieved could only be assessed by studying what could be done using the encoded 

information.

It is clear that Poliak’s analysis is carried out under the assumption that factual 

correspondences (between the syntactic structure of the input and the cluster distri­

bution in the activity of hidden units) is sufficient for encoding. We have criticized 

this encodingist understanding of cognition. Again, the distribution of vectors of ac­

tivation of hidden units after training does not bear any information as to what it 

is isomorphic with. Thus we may speak of encodings only in a loose, uninteresting 

way: i.e. from the intentional perspective of a cognitive system (the scientist’s cogni­

tive system) that provides both (1) the inputs with a syntactic structure and (2) the 

vectors of activation with the relevant semantics, so that, relatively to this semantic 

ascriptions, the two structures are isomorphic.

The relevant issue that would allow us to decide whether the model is or isn’t an 

implementation of a computational structure (i.e. what physical properties instantiate 

the intentional capacity of the theorist), is not addressed by the model.

Poliak’s proposal, however, is (potentially) suitable to describe the environmental 

differentiator that could explain higher cognition: the contact-making part of the 

system, as understood by teleological theories of intentionality. What is missing, 

therefore, is the content-making part of the system: the part with respect to which
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alone the system could be said to produce the relevant representations (for exam­

ple by inducing the relevant dynamical presuppositions). If these presuppositions 

(or intentional icons, depending on what teleological theory of semantics is adopted) 

systematically matched the supposed syntactic structure of the input, then the net­

work would be implementing a symbolic structure. If not, then the model proposed 

would not be computational, but it would be impossible, in this case, to claim that 

it instantiates any form of compositionality.

Operations on implicit representations

A number of studies issued from Poliak’s simulation, mainly trying to process infer­

ences or transformations over compressed representations that responded to Fodor 

and Pylyshyn desiderata. Poliak himself trained an additional 16-8-1629 feedforward 

network to perform inferences of the kind: Love X  Y  implies Loved Y  X. He then 

used the four names to built the 16 simple sentences, and the resulting 16 inferences. 

He succeeded in training the network to make the correct transformations over 12 of 

these sentences (compressed as discussed above). Moreover he showed that the model 

could correctly generalize over the 4 untrained sentences.

Other studies, like the ones of Blank, Meeden and Marshall30, or Chalmers31, 

managed to further improve on Poliak’s results, showing that indeed it was possible 

to operate (albeit to a limited extent) on non symbolic representations in a structure- 

sensitive way.32

29This notation indicates that the network was built of 16 input units, 8 hidden units and 16 
output units.

30Blank, Meeden and Marshall [22].
31 Chalmers [14].
32 Criticism of these results can be found in Hadley [43] or in Haselager and van Rappard [46].
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6.5.8 Compositionality and com putational externalism

I have argued that, even if we accept the validity of observer-relativity arguments, 

the notion of implementation can be seen as inheriting a “safe” observer dependence 

from its representational labelling scheme, i.e. one that can be projected onto a phys- 

icalistic language. So, I have argued, observer-relativity arguments do not necessarily 

jeopardize the explanatory power of computationalist theories of the mind. In com­

menting the nature of such observer relativity, I likened computational properties to 

secondary properties, such as colors.

The analogy is apt for expressing the advantage of externalist theories of im­

plementation in treating the problem of constitutivity. Colors, as I have already 

mentioned, have for centuries been thought of as properties that adhered to their 

bearers. Our languages are still fully reminiscent of this (quite natural) understand­

ing. We say that the sky is blue, just like when we say that the acceleration of a 

body towards the center of our planet is 9.8 m /s2. We know, however, that it would 

be more appropriate to say that the sky looks blue, for blueness does not belong to 

the sky.

Our internalist intuitions about colors are so rooted that we are surprised when a 

beautiful light blue lagoon turns out, at closer inspection, to be made of nothing but a 

lot of transparent water. Understandably, we tend to ascribe intrinsic compositional 

properties to multicolored objects. Now, syntactic properties of representations (such 

as “being made of three components”), are not grounded on intrinsic properties of 

them, just like being a flag made of three colors is not a property that is grounded 

on intrinsic properties of the flag itself. I argued, in fact, that syntactic properties 

are fixed only relative to semantic ones, and these are not intrinsic properties of
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representations.

I think there is no reason to think that the syntactic properties of our mental 

states (or of a physical system, for that matter) should be grounded in a different 

way. Requiring that representations display functional compositionality is a step 

in the right direction. Think of the example of the three-sector flag. Rather than 

claiming that the flag is, intrinsically, divided into three sectors, it is more appropriate 

to claim that it possesses functional compositionality, by which it is meant that our 

(human) cognitive systems are able to systematically ascribe to it (and to similar 

flags) the property of being three-sectored.

Teleo-computationalism requires that the label bearers of the input architectures 

of computations be intentional icons. When do these representation possess compo­

sitional structure?

According to Millikan’s teleological theory of intentionality:

represented conditions are conditions that vary [...], in accordance with 

specifiable correspondence rules that give the semantics for the relevant 

system of representations. More precisely, representations always admit 

of significant transformations [...], which accord with transformations of 

their correspondent representeds, thus displaying significant articulation 

into variant and invariant aspects. If an item considered as compounded 

of certain variant and invariant aspects can be said to be “composed” of 

these, than we can also say that every representation is, as such, a member 

of a representational system having a “compositional semantics.”33

Notice that, coherently with our analysis, this articulation of representations into

33Millikan [59], p. 224.
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parts, supervenes on relational, externalist properties of the system using these rep­

resentations. Consequently, being sensitive to such syntactic properties (which, we 

have seen, is definitory of symbol systems), cannot be a capacity that supervenes on 

intrinsic properties of their implementing system alone.

According to the teleological computational sufficiency hypothesis, the computa­

tional properties of a system partly supervene on the representational properties of 

the input label bearers. These, and their syntactic properties, in their turn, supervene 

on teleological properties as specified above. Mental states, i.e. teleo-computational 

states, according to this view, inherit the syntactic articulation of the input label 

bearers.

Applying my analysis to the debate over compositionality has, I believe, the ad­

vantage of highlighting a shortcoming of orthodox computational models that has so 

far been overlooked. The kind of complexity that a system of symbols must pos­

sess for it to be a model for cognition, we have seen, is a combinatorial complexity 

that makes infinite use of finite means. A result of my analysis is that no system can 

make infinite use of finite means, without being endowed with autonomous intentional 

properties.34

Let me turn back to the connectionist strategies for combatting Fodor-like ob­

jections. From the standpoint of computational externalism, connectionist models 

implement classical computational ones only if articulated representations of the kind 

mentioned above can be found (relative also to the environment) bearing the labels 

of the inputs and outputs to the implementing system. A consequence of my analysis

34Notice that Skolem’s theorem can be proved precisely because our theories only feature a finite 
number of symbols. The infinite use that can be made of these finite means, however, is insuffi­
cient to fix the intended model, unless these finite means are additionally endowed with intentional 
properties.
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is that no amount of a-priori reasoning can settle the issue of compositionality.

6.6 External symbols: varieties of externalist pro­
posals

6.6.1 Fourth Connectionist Response: External Sym bols 
Elman’s model: Learning Grammatical Categories

Another possible connectionist response is based on the observation that the process­

ing of sentences happens sequentially in time: we read, or hear, or write or utter 

sentences one word at the time (one sound or sign at the time, for that matter). In 

spite of this, we are able to be sensitive to long-distance dependencies: a noun may be 

in accordance with a verb that occurs very far from it (in the sequential occurrence 

of words). This implies that a cognitive system must withhold information about 

previous occurrences of words.

The RAAM model described above was capable (through the deployment of re­

current connections) to hold information about parts of a sentence previously input 

(but no longer present). As we shall see, Simple Recurrent Networks (SRN) have 

been used to process sentences one word at the time.

In 1990 Jeffery Elman, following a study by Micheal Jordan35, developed a model36 

that “memorized” previous occurrences of words. At any given time the activity of 

hidden units was copied back to some additional input units (called context units). 

So at every time the network’s input consisted of the novel pattern of activation plus 

the activity of hidden units at the previous time step. Such activity is of course itself 

the result of the input pattern at the previous time step plus that at the time before

35 Jordan [50].
36Elman [31].
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that. The system can thus retain (to a gradually degrading extent) information about 

various previous input patterns. The task of Elman’s study was to figure out if such a 

model could show sensitivity to grammatical structures without these being explicitly 

encoded anywhere.

The model had 31 regular input units, 150 context input units, 150 hidden units 

and 31 output units. Unlike Poliak’s RAAM model, words were represented in such 

a way that their activation vectors where all mutually orthogonal (this ensured that 

no semantic information was surreptitiously fed into the system). He used these 

representations to form a 29-word vocabulary, and these 29 words to form 10,000 

simple sentences. He finally concatenated these sentences to form a 27,354-word 

complex with no indication as to where a sentence begins or ends. Feeding the 

network one word at the time, he trained it to predict the next word. Obviously, not 

all words have the same chance of being the “next” word at a given time.

Grammatical constraints, as well as semantic constraints, in fact, forbid or elicit 

the use of one or another word. The network succeeded (predictably) in learning the 

correct statistical dependencies. Although this doesn’t seem like a very interesting 

result (and as far as performance is concerned, indeed, it is not), what was interesting 

was how the network achieved its results.

Elman applied cluster analysis to the hidden units of the trained network. Inter­

estingly, various grammatical and semantically correct generalizations had been made 

by the network. The analysis, for example, showed that verbs and nouns, in their 

hidden-unit implicit representations, gathered into two distinct clusters. Moreover, 

at a smaller scale, the vectors “representing” the words in hidden-unit space distin­

guished animate from inanimate nouns, and even domestic from aggressive animals.
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So not only did the network succeeded in detecting grammatical structures from 

a corpus of purely statistical information, but it also managed to infer some semantic 

information. Again, this analysis would at best individuate some smart way to dif­

ferentiate environments so as to support adaptive dynamical presuppositions. This 

would indeed be a relevant result. But, again, no model for cognition would be 

supplied.

In 1990 Elman37 developed a similar network that was able to process informa­

tion (similarly input one word at the time in an uninterrupted chain of sentences) 

that pertained to a rather more complex grammar. This time complex, embedded 

sentences (allowing for relative, subordinate clauses) were input and the network was 

again trained to predict the next word. Again, the network learned to make predic­

tions consistent with the statistics of the training set. It showed to be sensitive to 

long-distance relations: for example it correctly predicted a plural verb in accordance 

to plural nouns even when the two where distanced by complex subordinate clauses.

In 1994 Christiansen38 extended these results to even more complex grammars 

and he compared the errors made by his network with relevant human performances.

These studies, I argue, far from providing reasons to reject computationalism as a 

theory of the mind, I argue, constitute the basis for a teleo-computationalist or, more 

generically, for an externalist computationalist research programme.

External Symbols

What interests me in the above connectionist strategy to meet the challenge of con-

stitutivity, is that it hypothesizes that we learn to process structured information

37Elman [30].
38 Christiansen [17].
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without internalizing its compositionality. Classical interpretations have it that the 

semantic and syntactic features of languages are parasitic (derivative) on those of 

thought. The language of thought is then assumed to be the primal source of compo­

sitionality and meaning. So, for example, the analysis of the semiotic vocabulary that 

I presented in section 3.3.4 is thought not to apply to mental representations: whence 

the thesis that syntactic and semantic properties of mental states, unlike those of 

semiotic items, supervene on some internal property of the cognitive system. The 

kind of connectionist response sketched above, instead, assumes that the only real 

compositional and semantic structures are external symbol systems, such as natural 

languages.

While these proposals are considered by both their proponents and by computa- 

tionalist opponents as potential alternatives to the orthodox symbolic understanding 

of cognition, computational externalism allows us to consider them as (possible) im­

provements on a computational theory of the mind. Attempts to accommodate the 

difficulties encountered by classical computationalist models, led some to view symbol 

systems as being external to the computing system.39

In a book originally published in 1934, Vygotsky40 had suggested that problem 

solving could be characterized as the manipulation of external symbols at very early 

stages of development, by means of what he termed egocentric speech; at later stages 

of development, according to this view, these procedures can be internalized to some 

extent by the use of an inner speech. Similarly, Smolensky suggested41 that the 

capacity to manipulate symbols, originally formulated externally, is then internalized

39 See Wells’ proposal in the next section.
40Vygotsky [93].
41 In Rumelhart [23].
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and used by a conscious rule interpreter.

Most connectionist models of higher cognition try to implement a rule governed 

system. I have argued that, even where they are successful, these models leave the 

hardest foundational problem aside. It is very unlikely that a system that mimics the 

symbolic behavior of cognitive systems as described from the high level of the rules 

that it implements, would enlighten us as to what cognition really is, or on what 

computations it supervenes on. It is however well possible that when we will have 

a proper understanding of the physics of intentionality, cognition will turn out to 

supervene on computation. To this end, the last connectionist perspective envisaged 

above appears to be more promising.

Instead of trying to implement both the rules and the symbols by an isolated phys­

ical symbol system (a programme that I have argued to be not viable), it attempts to 

teach a connectionist network to manipulate external symbols. As William Bechtel 

and Adele Abrahamsen put it:

The suggestion we are developing here is rather different from the ap­

proach of directly designing networks to perform symbolic processing. 

Rather than trying to implement a rule system, we are proposing to teach 

a network to use a system (language) in which information, including 

rules, can be encoded symbolically. In encountering these symbols, how­

ever, the network behaves in the same basic manner as it always does: it 

recognizes patterns and responds to them as it has been trained.42

In their seminal work, Smolensky, Rumelhart and Hinton43 pictured a similar
42Bechtel [4], p. 191. For an attempt to apply this strategy see Allen [2].
43In [23].



302

circumstance (performing a multiplication) in the following way:

We are good at “perceiving” answers to problems... However... few (if 

any) of us can look at a three-digit multiplication problem (such as 343 

times 822) and see the answer. Solving such problems cannot be done by 

our pattern-matching apparatus, parallel processing alone will not do the 

trick; we need a kind of serial processing mechanism to solve such a prob­

lem. Here is where our ability to manipulate our environment becomes 

critical. We can, quite readily, write down the two number in a certain 

format when given such a problem

343
822

Moreover, we can learn to see the first step of such a multiplication prob­

lem. (Namely, we can see that we should enter a 6 below the 3 and 2.)

343
822

6

We can then use our ability to pattern match again to see what to do 

next. Each cycle of this operation involves first creating a representation 

through manipulation of the environment, then a processing of this (actual 

physical) representation by means of our well-tuned perceptual apparatus 

leading to a further modification of this representation [...] These dual 

skills of manipulating the environment and processing the environment
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we have created allow us to reduce very complex problems to a series of 

very simple ones. [...] This is real symbol processing and, we are beginning 

to think, the primary symbol processing that we are able to do.44

These proposals are intended as alternatives to computationalist models. I argue, 

instead, that they need not be considered as such. They should be viewed as part 

of a larger philosophical programme: the description of the workings of the contact- 

making part of a teleo-computational system. If the correct intentional items were 

proved to be in place, in fact, these systems would be implementations of external­

ist computational structures. Indeed, proposals that appear to go in this direction 

(i.e. suggesting that symbols must be expected to be found outside the cognitive sys­

tem) can be found even within the orthodox computationalist camp, as the following 

example shows.

6.6.2 A tribute to  Turing

Turing’s analysis of routine computation constitutes undoubtedly a major source of

inspiration, if not the foundation of contemporary computer and cognitive science.

Much of this tribute to Turing’s work is due to the development of the technology of

digital computers, and to the intensive application of it to the understanding of human

cognition. If the direct relevance of Turing’s analysis for the building of the first digital

computers is questionable, there is little doubt that when cognitive or computer

scientists think of a digital computer, they think of a particular implementation of a

universal Turing machine.

In fact, although digital computers are not (strictly speaking), implementations

of a universal machine as it was understood by Turing, the best way of understanding

^Rumelhart [23], p. 85.
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their functioning at an abstract level, is as universal machines subject, for practical 

reasons, to a number of constraints (such as a finite memory).

On the one hand mediating the conceptual import of Turing analysis via the 

architecture of digital computers has proved to be a most fruitful and powerful tool for 

understanding human cognition. On the other hand, Wells45 argues, such mediation 

has obscured some conceptually relevant differences. As a consequence, realizing that 

classical (symbolic) AI finds itself at an impasse (for reasons to be discussed), many 

authors conclude (through a false reductio ad absurdum) that the false premise is 

Turing’s understanding of cognition.

So, while the functioning of digital computers takes (justly) the credits for the 

outstanding successes of classical AI, the architecture of Turing machines takes (un­

justly) the blame for its alleged failures. At the most abstract level a TM is made 

of a finite control machine, a (infinite) tape and a read/write head connecting them. 

This is the “structural architecture”.

Each TM is characterized by the set of its states, by the symbol alphabet it

uses (together with the syntactic constraints on the strings it receives as inputs)

and by a specific systematic interaction between these two. Such characterization

constitutes the “task architecture”. The internal states of the TM constitute the

“control architecture” , while the system of symbols with the syntactic constraints

constitute the “input architecture”. If we call Q = {^|0 < i < m  +  1} the set of

internal states, the control architecture, S  — {sj|0 < j  < n +  1} the alphabet of

symbols, and D = {L, R, N } the set of possible movements, we can characterize the

interaction between control and input architecture with a function F  from Q x S  to

45 Wells [94].
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S  x Q x D. This constitutes the “machine table” for a specific task.

This architecture cuts across the distinction between universal and non-universal 

machines (this depends on whether what the machine takes as input can be interpreted 

as Turing-machine-tables or not). As described above, the structural architecture of 

a TM comprises a finite control machine, a (infinite) tape and a read/write head 

connecting them. In the von Neumann architecture the infinite tape is realized by a 

finite (although large) electronic memory. The control architecture is realized by the 

CPU.

In the abstract Turing architecture the read/write head moves about (according to 

the instructions output by the function F) “scanning” the tape for the next symbolic 

input (operand). In the von Neumann architecture the read/write head is realized 

by a “hard wired” connection between the CPU and the electronic memory. This 

means that each “location” in the electronic memory (whose position is symbolically 

represented by the use of address arithmetic) is physically connected to the CPU, and 

can be “addressed” by it when required by the current output instructions.

The only conceptually relevant difference between a physically realized von Neu­

mann architecture and an ideal implementation of a universal Turing machine is the 

finiteness of electronic memory. The fact that there is no read/write head scanning a 

tape bears no conceptual relevance whatsoever.

Before turning to the interactive approach it is worth remarking another difference 

(again of a practical and not conceptual kind) between universal Turing machines and 

von Neuman machines. Turing machines were designed to model ( “imitate”, as Turing 

would say) a real human computer facing the task of routine computation with the 

help of (infinitely many) sheets of paper and a (never ending) pen. Having said this it
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is not hard to imagine where the idea of an infinite tape (paper) and of a read/write 

head (pen) came from. This fact seems totally irrelevant to the Turing/von Neumann 

“trade off’. It sounds like more of a historical curiosity than a perspicuous aspect 

of the structural architecture of Turing machines. Although to a large extent it is a 

curiosity, Wells argues that there is a sense in which it isn’t.

For the moment it suffices to notice how in the von Neumann architecture the 

“pen/paper” analog is irremediably lost: as I mentioned, in a VN machine there is 

no external tape on which symbols are “read” and “written” . Admittedly the words 

“read” and “write”, especially after the cognitive revolution, don’t seem to be much 

more than a metaphor even in the case of a TM. They cease to have any descriptive 

efficacy when applied to a VN computer.

Before considering whether the read/write device of a TM bears any conceptual 

relevance with respect to cognition, one can observe that it certainly has a practical 

relevance. The VN machine as I described it, in fact, doesn’t have any practical use 

whatsoever: it is a closed box. Actual computers are always provided with peripheral 

devices, such as screens, keyboards and mouses that ensure that a user can interact 

with the machine. So reading and writing is done (non metaphorically) by a human 

user.

However, these (keyboards, screens and human users) are not part of the architec­

ture of a VN machine. Contemporary main stream theories of cognitive architecture 

pay a large tribute to Turing’s analysis of routine computation. The hypothesis that, 

in different forms, underlies most of the work done in the field is that the architecture 

of human brains implements the architecture of a universal TM.
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This hypothesis (TM hypothesis) can be understood in various ways. Wells ar­

gues that, because of the particular way in which TM’s have been implemented, the 

paradigmatic way of understanding the hypothesis owes a lot to the peculiarities of 

VN architectures. As we have seen, the architecture of digital computers has the full 

structural architecture of a TM encapsulated in one unit that is then embedded in 

the environment through peripheral devices. As a consequence, the TM hypothesis is 

commonly understood as saying that the brain implements the full structural (input 

and control) architecture of a TM. Sensory organs and motor outputs provide then 

the appropriate connection with the environment.

6.6.3 The interactive approach: Taring com putation w ith  
external symbols

The proposal is to amend the above outlined received understanding of the TM hy­

pothesis by restoring (or rather re-emphasizing) the original distinction between in­

finite tape +  symbol alphabet (input architecture) and finite state control (control 

architecture). In Wells’ understanding, if Turing’s analysis has anything to say about 

cognition, the TM hypothesis should be stated as: the architecture of the brain and 

that of its environment (together) implement the architecture of a TM.

The need for such an amendment stems from acknowledging a number of problems 

of the received view. Predictably, the class of problems we are looking at has to do 

with how we can appropriately embed the full structural architecture of a TM in the 

environment. Here “appropriately” means in such a way as to account for the large 

number of behavioral regularities that we observe in agent/environment interactions.

As a consequence of these problems (and others that I have not mentioned) many 

authors opted for a thorough reconsideration of the theoretical premises. They, as
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I said, blamed Turing. Wells, so to speak, blames von Neumann. The proposal is 

to restore Turing’s original analysis where, playing the imitation game in the shoes 

of the human computer, there was the finite state control, the role of the sheets of 

paper being played by the infinite tape. Turing’s example represents a rudimental 

example of interactive cognitive architecture. The following step is to emancipate the 

architecture from the particular input architecture Turing had in mind.

The tape, in fact, was only needed to ensure that the control architecture scanned 

a “square” at the time, detecting one out of a finite set of alphanumerical symbols. 

Emancipating from the alphabet of alphanumerical symbols is probably the easiest 

step. Turing machines do not “know” what they are detecting, any object or event 

would do just as well (provided it can be suitably type-identified). Non-symbolic pro­

cessing is certainly capable of type-identifying events and objects in the world (so long 

as this claim is not taken to simply mean that non-symbolic processes can establish 

factual correspondences with disjunctions of physical properties of the environment).

So let’s suppose that we have an “alphabet” of (primitive) symbols (in a sense 

to be defined). Attentive, emotional or affective processes might then be called into 

cause to compensate for the lack of a tape that is scanned one square at the time. The 

tape is the environment itself, and when the sensory ports, the “doors of perception” , 

are open, the tape/environment is constantly scanned. Non symbolic processing is 

then responsible for selecting and type-identifying the symbol (or symbols) that are 

being input at any given time. Only now does the computational machine (the real 

self) enter the game, producing the output (or the outputs) that the machine table 

prescribes (these can also involve a mere change of internal state, and don’t necessarily 

involve a physical action to take place).
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At the end of chapter 2 (section 2.6.5), I discussed a potential a-priori objection 

to my view of implementation, that consisted in pointing out that there are compu­

tations whose input architecture does not appear to be systematically interpretable 

in a meaningful way. As an example of such computations I mentioned Buntrock 

and Marxen’s algorithm: the simple five-state machine that is proved to halt af­

ter 23,554,764 steps. Piccinini, we have seen, uses the algorithm to argue against a 

semantic view of computation.46

Wells, instead, uses it to corroborate his interactivist view of computationalism: its 

surprisingly complex behavior, in fact, “is not predictable from an examination of the 

internal structure of the machine. It is an emergent property of the interaction between 

the machine and the sequence of symbols that it leaves on its tape. [...] Buntrock and 

Marxen’s machine”, Wells argues, “shows that behavior cannot be understood through 

an analysis of either the internal structure of the cognitive system or the structure of 

the environment alone. There can be no substitute for studying behavior interactively, 

as it unfolds.”47

The above outlined picture of computationalism is arguably a brand of computa­

tional externalism. It is interesting to investigate what this picture has in common 

with the view advocated in this thesis.

Computational externalism and the interactive approach

Does the expedient of having the symbols (re-)placed outside the implementing RDS 

allow us to block v-arguments? No. If we grant the validity of v-arguments (as I do ex 

hypothesis), Well’s understanding is also subject to the threat of observer-relativity.

46Piccinini [68] p. 6.
47Wells [94], p. 288.
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The “computational machine” , in fact, is assumed to implement the relevant compu­

tational structure on the basis of its physical properties alone.

Similar considerations apply to the external symbols, if no restriction is added to 

what could count as a symbol (other than the vacuously obtaining requirement that 

the symbols be “interpretable”). Put plainly, an interactivist, “long arm” individ­

uation of computational properties is equally arguable to be incapable to rule out 

unwanted instantiations (if v-arguments are sound).

This, however, is not forced upon the approach. Indeed, the interactivist approach 

is better suited for exposing the virtues of an externalist understanding of computa­

tion, and the shortcoming of an orthodox view. We have argued, in fact, that the 

internalist construal of computation has been sustained by ah implicit encodingist 

preconception of semantics. Keeping Well’s analysis in mind, we can further argue 

that the persistence of the encodingist paradigm, in its turn, has been allowed, if not 

determined, by the the peculiarities of VN architectures.

If the symbols, as well as the inner computational structure, are thought to be 

compactly implemented by the same system, it is tempting to adopt an internalist 

construal of implementation and semantics. The internal causal structure of the sys­

tem, in fact, would be responsible for both its states having the computational status 

they allegedly have, and for its symbols encoding the features of the environment that 

they allegedly encode.

It would then be “only” a matter of connecting this box to the environment in 

the appropriate way through peripheral devices. In ordinary digital computers, such 

connections are realized by the human users: the peripheral devices (keyboards and 

screens) do not do any transductive work by themselves. They do not, in other words,
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produce symbols from non-symbols: they simply encode already existing symbols (as, 

we have argued, must always be the case with encodings).

If we adopt the interactivist approach, the difficulties with this preconception 

become apparent. As the symbols lie outside, in the environment, it is no longer 

tempting to say that they possess meanings in themselves. I believe that this non­

sensical, overtly encodingist picture of intentionality has never been advocated by 

aneyone.

The only reasonable option, for someone who wants to hold onto the internalist 

picture of implementation48 while adopting an internalist theory of semantics, would 

be to claim that these symbols acquire their intentional status by virtue, and only 

by virtue, of the causal (conceptual) role of the states they induce in the computa­

tional machine: in fact, as the symbols may legitimately be assumed to be causally 

uncorrelated between each other, they cannot be assumed to have any causal role 

independently of the computing machine.

It should be clear that syntactic internalism, thus presented as an individual 

thesis (i.e. not accompanied by some encodingist thesis about intentionality), is not 

viable. It is in fact exposed, when applied to a theory of the mind, to the criticism 

of conceptual role theories of semantics that I have discussed in section 3.2.

The alternative route, for those who do not accept the validity of v-arguments,

48Notice that I use the expression internalist picture as meaning something different from Wells. In 
the cited work, the expression “internalist picture” refers to the orthodox construal of the sufficiency 
hypothesis as claiming that cognitive systems compactly implement both the control and the input 
architectures. In my work, instead, the “internalist picture” is to be contrasted with my externalist 
construal of syntactic properties as grounded on teleological semantic properties. As I have already 
pointed out (section 4.4.3), while my claim that computational properties should be individuated 
relative to the teleological intentional properties of the input architecture, entails that they should be 
individuated “broadly”, like Wells urges, the opposite implication does not hold: Wells’ interactive 
approach need not be committed to a semantic picture of implementation.
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is to suppose that the symbols acquire their meanings by virtue of some fact that 

pertains to the cognitive economy of the implementing organism. Wells, for instance, 

hypothesizes that there might be “natural symbols”, whose interpretations are “in­

trinsic”. As an example of how these “intrinsic” interpretation may come about, 

consider the fear of snakes.

It is not hard to see how evolution might have selected for a generalized 

avoidance/fear reaction to snakes based on the “natural syntax” of their 

shape and movement which type-identified them as creatures to which a 

particular class of response is appropriate. [..] Thus we arrive at the idea 

of a natural symbol as a type which has a built-in grounding arising from 

its adaptive significance.49

This picture of computationalism joins a broad construal of syntax (albeit of the 

non-semantic brand), with a broad construal of semantics. It is therefore precisely 

the same computationalist picture of the mind that is affordable by my theory of 

implementation (Computational Externalism).

The key difference is that while Wells maintains the syntax/semantics division of 

conceptual labor, I have the broadly individuated semantic properties entering the 

picture at an earlier stage, as a necessary condition for the applicability of computa­

tion to a theory of the mind.

6.6.4 Com putational externalism and evolutionary theory

Among the items that interact with the implementing system in a systematic way (i.e. 

complying to some behavioral regularity), some will also comply with the conditions

49Wells [94], pp. 286-287.
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for being representations (intentional icons, if we buy Millikan’s theory, for example). 

These will be all and only the computations that the system implements.

The functions computed by the system will then be the ones that it implements (in 

the externalist sense of the word), when functioning properly (in the sense specified 

by teleological theories). In other words, the system will function properly only if the 

relevant equivalence relations obtain (those discussed in section 4.4.2).

One of the advantages of having the symbols laying outside of the computing 

system, as the interactivist picture prescribes, is that they can be manipulated so as to 

comply with the relevant constraints. One of the alleged shortcomings of the orthodox 

view of computation, in fact, is that it is not particularly friendly to evolutionary 

theory, when applied to a theory of the mind.

The rigidity of computational structures, conceived as implemented by the intrin­

sic properties of the implementing systems, with the consequent fragility that this 

entails, leaves one wondering how the random variations selected by evolutionary 

pressure might have brought these computational properties about.

Moreover, supposing that a computational structure was achieved by sheer luck, 

it is not clear how subsequent random variations would not fatally disrupt such ar­

chitecture. This unwanted feature has often been mentioned by the detractors of 

computationalism as a major shortcoming. Wells dubbed it: the evolutionary prob­

lem.

To better contrast this difficulty with the relative advantage of the externalist 

stance, consider the following picture. Consider the space of maximal internal config­

urations of biological systems (each point of this space represents the precise physical 

description of a possible biological system at a given time). All biological systems,
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as described at the physical level, spend their lives moving about this space. If we 

assume an internalist stance, the configurations (the points) that comply with the 

conditions for being implementations of computational structures, will be scattered 

about the space, but isolated. Let us call these points: computational points.

Under internalist assumptions, even the slightest displacement from a computa­

tional point (caused by gene mutation or crossing through different generations, or 

by natural causes within the same organism), would determine the abrupt fall of the 

system (or species of systems) from the “computational heaven”. So, even assum­

ing that a system (or its species) managed somehow randomly to reach an adaptive 

computational point, it is reasonable to assume that this would not be a stable equi­

librium.

As a consequence, a “computational strategy”, i.e. the pursuit of adaptive advan­

tage on the basis of the capacity to implement a certain series of computations, would 

soon be selected away. The traits that get selected must be (almost by definition) 

stable points of evolutionary equilibrium in the motions of biological systems through 

their configuration space. Another way of putting it, is that the amount of informa­

tion needed for computational points to be stable evolutionary equilibria would be 

unreasonably high (if available at all) for biological systems as we know them.

Contrast this with computationalism as understood from an externalist perspec­

tive. As the conditions of applicability of the notion of implementation are externalist 

(relational), computational points need not be isolated and scattered in the space of 

internal configurations of systems. The obtaining of the relevant equivalence rela­

tions, in fact, is compatible with large portions of configuration space: as it does not 

supervene on intrinsic properties of the system alone (because points in configuration
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space now represent properties of both the system and of its environment), the com­

putational status can be maintained in spite of ontogenetic or filogenetic variations. 

The additional degree of freedom is provided by the possibility to actively intervene 

on the environment so as to preserve a certain computational status.

Under Well’s interactivist approach this advantage is particularly obvious: it is 

reasonable to suppose that both (1) the internal causal makeup of a system (its 

position and movements in internal configuration space) and (2) the properties and 

representational status (relative to it) of the items of its environment, would have 

co-evolved.

It is now no longer unreasonable to suppose that computational points be stable 

evolutionary equilibria: it suffices to suppose that a system (and its siblings) be ac­

tively engaged in the attempt to preserve their computational status by manipulating 

their representational environment. The attentive, emotional or affective processes 

that Wells hypothesizes to supply the lack of a tape that is scanned one square at 

the time, from the standpoint of external computationalism, need not perform the 

daunting task of filtering everything that is input to the system: they only need to 

“scan” the inputs that correspond to intentional icons.

This is not to say that these items must be fixed once and for all in the environment 

of the system: we can imagine that an original set of fixed items constitutes the basis 

on which the representational repertoire of the cognitive system (and consequently 

its repertoire of computations implemented) is then built through learning. When or 

whether this is the case now only depends on empirical investigation.
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6.7 Teleological Computationalism and the proper 
description of cognitive system s

6.7.1 The thesis that all cognitive system s are dynam ical sys­
tem s

It is obvious that only RDS’s really undergo change in space-time and that MDS’s 

describe some (usually not all) aspects of this change. Given a certain RDS, then, 

several MDS’s can be said to be instantiated by it. Given the two possible mean­

ings of the expression “dynamical system” (real dynamical system and mathematical 

dynamical system), to say that a given real entity is a dynamical system is either 

trivial or absurd. In fact, if the claim is intended to say that the entity is a RDS, 

then this doesn’t add anything to the notion of a real entity: any real entity is a real 

dynamical system. If, on the other hand, the claim is intended to say that the real 

entity is a MDS, then this is an absurdity, for it identifies a real entity with a timeless 

mathematical description.

However, there is a third way to interpret the claim that a real entity is a dynamical 

system. Any real entity, I repeat, is a dynamical system. Nevertheless not all entities 

are, as a matter of fact, described by means of the mathematical dynamical systems 

that they instantiate. Sure a school is a (real) dynamical system, but no policy 

about education is decided by means of a mathematical description of its change in 

time. There is then a methodological understanding of the claim that an entity is a 

dynamical system. According to this understanding the claim is to be interpreted as 

the claim that a certain (real) entity can be and should be understood by means of a 

mathematical description that pertains to the theory of dynamical systems.
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Giunti50 has argued that “all cognitive systems are dynamical systems” . The thesis 

is to be understood as a methodological claim. The premise of Giunti’s argument is 

that cognitive systems (to our best knowledge) belong to at most three categories: 

symbolic processors, neural networks and other continuous systems described by a 

set of differential (or difference) equation. The argument consists in showing how a 

system that belongs to any of these three categories is a dynamical system (in the 

methodological sense specified above).

Now, systems belonging to the third type are obviously dynamical systems. Neu­

ral networks also are clearly dynamical systems: a complete state of them can be 

identified with the activation level of its units and the change they undergo can be 

specified by the differential equations that regulate the updating process. The bur­

den of the proof is then left to the argument that symbolic processors are dynamical 

systems. The strategy is to consider a specific kind of symbolic processor: Turing 

Machines.

The future behavior of a Turing machine is determined when 1) the state of 

the internal control unit, 2) the symbol on the tape scanned by the head and 3) 

the position of the head, are given. We can therefore take the set of all triplets 

< state, headposition, tapecontent > as the state space M of the system. The set 

of non-negative integers can be taken as the time set T. The set of quadruples of 

the machines is then used to form the set {<?*} of state transitions. This shows that 

all Turing machines are in fact dynamical systems, for they can be described by a 

mathematical structure (T, M , {#*}) with T being discrete. In other words any Turing 

machine can be described by a cascade.

50 Giunti [41].
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Research in cognitive science is characterized by various attempts to provide an 

explanation of cognitive phenomena based on the study of models that reproduce 

some aspect of the change of the system. These models are (so far) symbol proces­

sors, neural networks or systems governed by differential (or difference) equations. 

All of them are MDS therefore, the argument concludes, all cognitive systems are dy­

namical systems. The thesis should probably be rephrased in a less ambiguous way 

along one of the following lines. Cognitive scientists believe that cognitive systems 

are dynamical systems. Or: the object of cognitive science has so far been the study 

of a particular kind of dynamical system. Or: all attempts to explain cognition at 

a fundamental level within a scientific framework have been characterized by vari­

ous attempts to determine the dynamical system that appropriately describes some 

aspects of it.

The argument, I believe, has the effect of conferring a substantial degree of 

methodological unity to the research programme of cognitive science. The following 

paragraph will be instead devoted to the discussion of some significant methodological 

distinctions.

6.7.2 The two main explanatory styles

The above considerations seem to narrow the gap between the theoretical stances 

that can be found in the literature. One could say that scientists are just arguing 

about what mathematical model we should use to describe cognition, but that they 

all agree on a main point: an explanation of cognition should be in the form of 

a (mathematical) dynamical system that describes it. At the methodological level, 

however, the different approaches lead to very different strategies. These strategies 

inevitably bring with them different conceptual apparatuses, and this cannot but
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produce different pictures of what cognition is, at least conceptually and most likely 

also metaphysically.

If the models adopted by cognitive scientists, as we have seen, can be sorted into 

three categories, explanatory styles (or methodological strategies) can be sorted into 

two main families: computational and dynamical. Computational strategies are char­

acteristically conceptually grounded in computability theory. Dynamical strategies 

in dynamical system theory. Traditionally symbolic processors have been studied by 

means of the conceptual repertoire of computability theory, while neural networks 

and other “dynamical” models by means of that of dynamical system theory.

Here I want to discuss whether this is a mere historical happenstance or whether it 

can be justified by showing that there are dynamical systems (RDS) whose behavior 

can only be explained by using one or the other conceptual repertoire. I shall discuss, 

that is to say, if there exists a RDS that cannot be described using concepts drawn 

from computability theory and if there exists a RDS that cannot be described by 

using dynamical system theory. To answer these questions we need a more precise 

characterization of “symbol processors”.

There are two kinds of symbol processors: automata (like Turing machines) and 

systems of rules for symbol manipulation (like Post canonical systems or tag systems). 

As we have seen, these systems can be described mathematically by discrete-time 

dynamical systems (i.e. cascades). It is legitimate to ask whether the concept of 

cascade is coexstensive with that of symbol processor. It turns out that the concept 

of cascade is too broad. In fact not all cascades are symbol processors, for the latter 

additionally require that the cascade be effectively describable.

Notoriously the notion of effective procedures is an intuitive one, and one can
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only hope to capture it appropriately by a formal concept. Traditionally this has 

been achieved (through a very corroborated conjecture) by means of the concept of 

computable (recursive) function. The intuition behind the requirement that the cas­

cade be effectively describable is that its workings must be “mechanical” , or that they 

must be describable by an idealized machine. Giunti51 provided a formal characteri­

zation of “effective describability” of a (mathematical) dynamical system.

[Description of a  D ynam ical System] A “description” of a dynamical system 

S  = (T, M, {<?*}) is a second dynamical system that is isomorphic to it.

An effective description is naturally one for which the state space Mi is a decid- 

able set and for which every state transition h* is a computable function (there exists 

a Turing machine that computes it). The notion of an effective cascade (a computa­

tional system), can thus be formalized in the following way:

[Com putational System] S is a computational system if and only if S  =  

(T, M, {<?*}) is a cascade and there exists another cascade Si = (Ti, Mi, {/i*}) such 

that:

(1) S is isomorphic to Si

(2) If P(A) is the set of all finite strings built from a finite alphabet A , Mi C P[A ), 

and there is a Turing machine which decides if a finite string is a member of Mi.

(3) For all t G Ti there is a Turing machine which computes ht.

51 Giunti [41], p. 560.
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It is clear from the above definition that if the description of a (mathematical) 

system S is such that either T\ or Mi is non denumerable then the system cannot be 

a computational system.

We can now answer the question asked at the beginning of this section. All (math­

ematical) systems whose time set or whose state space are non denumerable (such as 

neural networks that make use of continuous activation values or systems described 

by differential or difference equations) cannot be described within the conceptual 

framework of computability theory.

This result should not be confused with the (empirical) claim that there are (real) 

systems that cannot be described by computability theory. A (real) computer, for 

example, is a physical system that is describable by both a dynamical system and a 

computational system, depending on the preferred level of description. This does not 

contradict the above result: the claim, in fact, must be understood as referring to the 

impossibility that a dynamical description of a (real) computer be “translated” into 

a computational description.52

I now turn to the other question: is it possible to base a computational description 

on a dynamical description? Computational systems (effective cascades) are a special 

kind of dynamical system, so concepts drawn from dynamical system theory can 

be applied to computational systems. We can, for example, treat the processes of 

a symbolic system as motions within an orbit in a state space. We can distinguish 

periodic, aperiodic and eventually periodic orbits. Attractors and basins of attraction 

make also sense. These systems, however, usually lack a natural topology in their

52It is nevertheless possible that a computational description approximate a dynamical description 
and if the real numbers involved are computable the approximation can be carried out at an arbitrary 
degree of precision: this, however, has no conceptual consequences.
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state space, and this precludes the use of many concepts that are commonly used 

in dynamical system theory (chaos theory, for example, falls beyond the scope of 

computational systems). It is natural to ask if forcing the mathematical apparatus of 

dynamical system theory to the restricted scope of effective cascades fatally reduces 

the explanatory power afforded by the full conceptual repertoire.

6.7.3 Dynam ic system  treatm ent of com putational system s

It is an open question whether it is possible to recover the full explanatory power 

of the computational strategy if we take a dynamicist stance in treating computa­

tional systems. “Infiltrations” of dynamical concepts in the treatment of symbolic 

processors, however, are becoming very common in the literature. Here I consider 

two examples: one is Giunti’s treatment of the halting problem in Turing machines 

and the other is Morris’ analysis of Sosic and Gu’s algorithm for solving the N-Queen 

problem. Notoriously the halting problem for Turing machines is undecidable: there is 

no universal (non specific to a particular machine) algorithm that can decide whether 

an arbitrary Turing machine halts.

Giunti provides a dynamical characterization of a machine halting. When a ma­

chine halts, from a dynamical point of view, it enters a cycle of period 1 in state 

space. There are two ways in which this can happen: either the machine enters the 

cycle immediately, or it does so after a number of steps (in this case we say that the 

machine has an eventually periodic orbit). Under what conditions can we be sure 

that a system does not have an eventually periodic orbit?

A theorem in dynamical system theory ensures that a system with an eventually 

periodic orbit has at least one transition gl that is not injective. From this it follows 

that any logically reversible Turing machine (one such that all its state transitions
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are injective) cannot have an eventually periodic orbit. The only way in which such a 

machine can halt is if it halts in its first step. Thus, if we select the class of logically 

reversible Turing machines the halting problem becomes decidable.

An analogous case of application of dynamical system theory to computational 

systems is the treatment of Sosic and Gu’s algorithm for solving the N-Queens prob­

lem. The problem is that of placing N queens on a N  x N  board in such a way that no 

two queens are on the same row, column or-diagonal. The problem has at least two 

solutions (two different arrangements of the N queens) for every N  < 4. The problem 

here is that of finding one (any one) solution. The most straightforward solution to 

the problem deploys an algorithm suggested by Sosic and Gu. In a first phase the 

system is to distribute the queens in such a way that no two queens are found in the 

same row or column. The problem is then reduced to replacing the queens in such 

a way that all diagonal collisions are also eliminated. The algorithm now prescribes 

that two columns should be swapped if and only if the result of doing so reduces the 

total number of collisions. The procedure is continued until when it is no longer pos­

sible to perform any further swapping: i.e. until when the total number of collisions 

has reached a minimum. In a generic programming language the algorithm has been 

described as:

1. Repeat

2 . S W C L p S i n d e x  —  0

3. For i in [l...n] do

4. For j in [(i+l)...n] do
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5. If queerii is attacked or queenj is attacked then

6. If swap(queeni, queen j) reduces collisions then

7. Perform swap (queeni, queen j);

8. SUJCipSindex .— SuJCLpSindex "P 1 1

9. Until swapsindex = 0

As a matter of empirical fact the algorithm has been proved to find a solution 

in 99% of cases. Why? There is no available explanation for the success of the 

algorithm that makes use of typical computational terms. Morris has explained the 

result by proving that the solutions are dense for the swap-the-column heuristics. 

The algorithm creates a space in which the density of solutions among equilibrium 

points approaches 1 as N increases: i.e. the ratio of the probabilities of relaxing in a 

non-solution (a configuration from which it is no longer possible to perform any swap 

but for which the number of collisions is not 0) and the probabilities of relaxing in 

an equilibrium point (0 collisions) rapidly approaches 0 as N increases.

It turned out that although the system is clearly algorithmic (it is described 

by an algorithm!) the explanation of its behavior is only afforded by referring to 

terms of dynamical system theory. The analogy between this argument and a typical 

dynamical description of the behavior of a system is more then superficial, and this 

can be better appreciated by confronting Sosic and Gu’s algorithm with a typical 

“dynamical” approach.

The most used strategy for solving such constraint satisfaction problems is to 

deploy Attractor Neural Networks (ANN). These are connectionist networks whose
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state changes in a space according to a dynamics that “attracts” the system to “so­

lution” points. The desired states are points (or areas) in state space that “attract” 

the trajectories of the system so that regardless of the initial state position the sys­

tem (under certain conditions) is guaranteed to reach a stable relaxation point (a 

solution).

If an ANN is such that its weights are fixed, symmetric and non-reflexive and the 

activation values are updated one at the time then it is guaranteed to reach a solution 

in a finite amount of time. In solving the N-queens problem the board is represented 

by a (fully recurrent) network of N 2 units, where each unit represents the state of 

one cell of the board (the unit is activated if and only if there is a queen on it). The 

dynamics of the system is traditionally described by assigning an energy function 

(a function that assigns a value to each point in state space) and imposing that the 

system evolves in such a way as to minimize the function. The minima of the function 

(i.e. the equilibrium points) represent the solutions to the problem. Technically, an 

appropriate energy function for solving the N-queen problem has been proved to be:

e = 1/2 a  axk ■ axi + 1/ 2jB ^ 2  ^ 2 axk' ayk+ l t 2C  S  ~ n)2+ -
x  k j j^ k  k x  y ^ x  x  k

• • •  +  a x k  ‘ a x+ m ,k+ m  + 1/2F  ^ mzfi0 ^ x k  ’ ® x + m ,k —m

When the constant values are positive numbers the function E has a global mini­

mum (value 0) that is reached if and only if all the sums are zero. The first two triple 

sums are zero respectively iff there are no two queen on any given row and no two 

queen on any given column. The third sum is 0 iff there are exactly N queen on the 

board. The fourth and fifth triple sums, finally, are 0 iff there are no two queen on 

any given diagonal line.
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It has been proved that the density of solutions (global minima) among all minima, 

for a system that uses the above energy function and is allowed to move in directions
\ r 2

that increase it (to allow escape routs from local minima) is

This result is obtained from considerations that make reference only to mathe­

matical relations between the energy function and other dynamical magnitudes of the 

system. Given an ANN like the one described above and set to solve the N-queen 

problem, the explanation of its behavior is, as we have seen, analogous to that of the 

behavior of the (algorithmic) system considered at the beginning of this section.

6.7.4 Com putational externalism  and the debate over cogni­
tive architecture

What we have done is, first, provide a computational description of a procedure for 

the completion of a task; then, provide a dynamical system description of the com­

putational one, that explains that the procedure achieves its goal, and why it does. 

What is this dynamical description a description of? As we have stressed, it is not 

meant to be directly the description of the behavior of a RDS, but rather the dynam­

ical (mathematical) description of the computational description of the behavior of 

the RDS. So the order of instantiation is the following. First comes the real dynam­

ical system. Its behavior is then interpreted as implementing a certain algorithm, 

or a certain connectionist network: these are the computational and connectionist 

descriptions of its behavior. Then dynamical system theory is used to describe the 

computational, algorithmic or connectionist description.

The fact that the genuine solutions are showed to be dense in the set of all solutions 

is deduced by using mathematical features of the model alone, and is used to con­

clude that the computational system described will achieve its goal, if implemented.
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Now, the same mathematical dynamical system can be used to describe directly the 

connectionist model that performs the same task by minimizing the energy function 

described above.

Imagine that we came across an agent (not necessarily human) who we observe 

as she solves the N-queen problem. Let us call her Katherine. We observe, also, that 

Katherine’s strategy for solving the problem systematically complies with the Sosic 

and Gu’s algorithm presented above. We may ask what accounts for her behavior. 

Is she really implementing' Sosic and Gu’s algorithm, or does she just appear to be 

doing so? Is she instead implementing the neural network that minimizes the energy 

function described above? Are the two options compatible (for example because any 

instantiation of a connectionist network like that is, ipso facto, the implementation 

of Sosic and Gu’s algorithm), or are they mutually excluding models?

Let us analyze how orthodox computationalists and connectionists would argue. 

The orthodox computationalist would argue that the physical object that is relevant 

for explaining the behavior of Katherine (her brain, if she is human, but any other 

object, as far as we know), must be implementing the algorithm.

Her sensory apparatus must be such as to transduce the signals that depart from 

the wooden pieces (the queens) and from the squared patterns on the board, into the 

appropriate symbols of the computation. For example, her sensory apparatus must 

be such as to transduce the signals that depart from Queen 1 and Queen2 on the board 

into the symbols “queeni” and “queen2” respectively. And when the physical object 

that implements the computational description of her activity, tokens the string of 

symbols: “Perform swap: (queeni, queen2)”, her physical output must be such as to

result in the physical swapping of Queeni and Queen2 on the real board. It doesn’t
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really matter how the physical object manages to do this.

Is it a neural network that minimizes its energy function? Fine! What counts 

is that anything else (even if it is not a neural network like that), would do just as 

well, provided that the relevant mappings (the ones that ensure that the physical 

system implements Sosic and Gu’s algorithm) are realized. So, according to the 

orthodox internalist view, the connectionist model is at best an implementation of 

the algorithm: it might explain how Katherine’s nervous system manages to solve the 

problem, but it doesn’t tell us what it means, in general, for a cognitive system, to 

solve the problem the way she does.

The orthodox connectionist would contest that if, as he thinks, Katherine is im­

plementing the connectionist model, then she cannot be also implementing Sosic and 

Gu’s algorithm. For example, he argues, there is nothing in the description of the 

workings of the network that corresponds, explicitly, to the rule: “two columns should 

be swapped if and only if  the result of doing so reduces the total number of collisions”. 

All the network ever does is minimize the energy function. The activity of the nodes, 

moreover, need not be interpreted as representing the presence of a queen on a cell, for 

the input to an analogous, more complex, but equally successful network, could well 

be distributed over several nodes, with effects on the overall activity of the system 

that could not be systematically interpreted (mapped) as referring to operations on 

configurations of queens on the board.

Who is right, the computationalist or the connectionist? A standard connectionist 

attitude is to resort to empirical evidence on the performance of real cognitive systems 

in completing the task. For example, our connectionist could inflict some damages 

to Katherine’s brain and observe her subsequent performance at the task. He would
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claim that, as (say) Katherine now succeeds in finding a solution some 80% of the 

times, rather then 99% of the times (as she did before), this entails that she could not 

possibly be implementing Sosic and Gu’s algorithm. If she were, in fact, any damage 

to the system would totally disrupt her capacity to complete the task by complying 

with the rules prescribed. So, her score should either be unchanged (if the damage 

did not involve any relevant implementing parts), or suddenly reduced to 0.

The computationalist would reply that he can patch things up by adding features 

to his computational model that account for the graceful degradation of Katherine’s 

cognitive capacities. But the connectionist, he would continue, is unable to explain 

why Katherine can combine together, for example, the same symbols that repre­

sent Queeni and Queen2, to produce two different representational complexes, corre­

sponding, say, to two different actions like: “Perform replace: (gueeni, giteer^)” and

“Perform replace: (queeri2 , queeni)”, which correspond to the actions of replacing

Queeni (respectively Queen2) with Queen2 (Queeni). Katherine’s cognitive system, 

that is, shows compositional capacities that the connectionist cannot account for. 

The debate would continue along these lines...

Contrast the above imaginary clash of paradigms with the analysis that is afforded 

by my externalist treatment of implementation.

1. The mere fact that we can individuate, inside Katherine’s brain, a causal 

structure that can be mirrored (mapped) onto a Turing machine that (virtually) im­

plements Sosic and Gu’s algorithm, does not speak in favor or against either theories. 

If we accept the criticism discussed throughout this work, in fact, one can always find 

such a causal arrangement, inside any physical system, and given any algorithm.

2. In order to argue conclusively that Katherine is implementing the algorithm,
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and that the connectionist model represents, at best, an implementation of it, it must 

be proved that: (a) Katherine’s brain, in those circumstances (i.e. when she is solving 

the problem), does indeed have states that represent (in the sense specified by some 

physicalistic theory of intentionality) states of affair that comply with the intended 

interpretation of the input architecture of the putative Turing machine; and (b) it 

must be further proved that the transformations of these physical states that are 

allowed to sustain the relevant computational abstractions are such as to preserve 

these intentional properties (at least throughout the completion of the task). This 

amounts to the requirement that the conditions set forth at the end of the last chapter 

for the matching of the equivalences obtain.

3. The judgement on whether such intentional states are instantiated by Kather­

ine’s brain or not should be based on our preferred physicalistic theory of intention­

ality, and not on our independent judgement as to what cognitive architecture she is 

implementing. The cognitive architecture implemented supervenes, in part, on the 

intentional properties instantiated, and not vice versa.

4. If such intentional states are not instantiated, or if they do not relate to each 

other in compliance with the algorithm, then the computationalist is wrong, and the 

connectionist model is a genuine alternative.

5. It might well be that the damage inflicted to Katherine’s brain has no effect on 

her behavioral capacities, but has the effect of disrupting her intentional properties. 

So, it is well possible that: (a) we can observe no difference in her ability and ways to 

complete the task, i.e. she still does it 99% of the times, seemingly complying, relative 

to our representational capacities, with Sosic and Gu’s algorithm; but, nevertheless, 

(b) now she is merely instantiating the connectionist model, even though before being
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damaged she was (really) implementing the algorithm.

6.8 Potential future developments of com putational 
externalism

The debate over cognitive architecture has so far concentrated on explaining/predicting 

cognitive behavior and, to this end, on the capacity to build artificial systems that 

simulate it, relative to our representational capacities.

If my treatment proves to be correct, more attention should be payed, instead, to 

systems that are autonomously endowed with representational capacities, along (and 

improving on-) the fines suggested by the now enormous literature about the natu­

ralization of intentionality. The capacity that our artificial devices should attempt to 

simulate, I argue, is the capacity to manipulate the environment in such a way as to 

systematically preserve the equivalence relations that sustain the implementation of 

a given computation.

My treatment of implementation, I believe, has three main concrete consequences 

that need to be further explored. For one, the implicit internalist assumption about 

syntactic properties, might have thrown scientific investigation off the track, unduly 

excluding from its scrutiny all potentially relevant syntactic generalizations that could 

not be seen as being instantiated by a physical system alone.

Secondly, the unnecessary division of conceptual labor between syntactic and se­

mantic machines, that comes with the orthodox internalist construal of computation, 

put, in many cases, an unsatisfiable explanatory burden on both of them, at the 

expense of the credibility of the sufficiency hypothesis.

Finally, the syntactic/semantic division of labor contributed to the maintenance
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of a correspondent isolation of the mathematical tools that are used to describe them. 

The theory of computation, and the theory of dynamical systems, as a consequence, 

have not so far perspicuously interacted with each other.

A prospect for the future of my analysis of computation is the possibility to develop 

a mathematical theory of the emergence of adaptive syntactic properties out of the 

interaction of dynamical systems. A condition for this to happen is the possibility that 

our philosophical understanding of intentional properties develop into a full blown 

empirical science. I believe it has the resources for doing so. Although I have not 

tackled directly these potential developments, I hope my theory of implementation 

will help to lift the explanatory burden that has so fax prevented us from foreseeing 

such an empirical investigation.

An intuitive upshot of my treatment is that if we wish to uphold the thesis that 

thought and cognition are coextensive with the implementation of certain compu­

tations, then we must investigate (a) how nature instantiates cross-semantic prop­

erties53 and (b) how it manages to operate transformations in the domain of these 

representations that can be systematically subsumed under syntactic generalizations.

53RecaIl that I have called a property (or a set of properties) cross-semantical, if it instantiates 
the truth conditions of a relational statement whose terms refer to entities that belong to different 
semantic levels (i.e. one term refers to an entity that belongs to the domain of representations, and 
another refers to an entity that belongs to the correspondent represented domain).



Conclusions

The main argument that has been put forward in this thesis is the following. For 

the sake of clarity, I have omitted to mention explicitly when a claim depends on the 

assumption that vacuousness arguments are sound. Each claim that so depends on 

the assumption is indicated by an asterisk on top of its correspondent number. I also 

presupposed a physicalistic metaphysics, according to which a property is real if an 

only if it can be described (at least in principle) by reference to physical properties 

only54.

1* No amount of information on the intrinsic properties of a physical system suffices 

to ascribe to it computational properties in an objective (non observer-relative) 

way. It follows that:

2* Either computational properties are not real, or they supervene on extrinsic prop­

erties of the implementing system.

3 Either (a) these extrinsic properties are essentially (hence always) sufficient to 

instantiate semantic properties, or (b) there are extrinsic properties that suffice 

for instantiating computational ones but do not suffice for instantiating semantic 

ones.
54The expression “physical property” should be understood openly as coextensive with “any prop­

erty that features in some explanation provided by the physical sciences”.

333
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4* If (b) is the case, then vacuousness arguments can be applied to show that the can­

didate extrinsic implementing properties are insufficient to rule out unwanted 

models. It follows that:

5* If computational properties are real, then they are partly grounded on semantic 

properties.

6 From 2 and 5 it follows that the semantic properties on which computational ones

are grounded must be instantiated by extrinsic properties of the implementing 

system.

7 The only class of remotely specific externalist theories of content are Teleological

Theories of content.

8* We can conclude that, to our best knowledge, if computational properties are real, 

a necessary condition for their implementation is that the candidate implement­

ing system instantiate teleological intentional properties.

9* A necessary and sufficient condition for implementation is that the candidate sys­

tem instantiate teleological representations whose transformations can be sys­

tematically subsumed under true syntactic generalizations.
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