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A bstract

This thesis deals with the issue of persistence, focusing on economic time series, 

and extending the subject to seasonal and cyclical long memory time series. Such 

processes are defined. In the frequency domain they are characterized by spectral 

poles/zeros at some frequency u  between 0 and 7r.

First we review some of the work done to  date on seasonality and long memory, and 

we focus on research tha t try  to link both issues. One of the limitations of the existing 

work is the imposition of asymptotic symmetry in the spectral density around lj. We 

describe some processes tha t allow for spectral asymmetry around the frequency u  

where the pole/zero occurs. They are naturally described in the frequency domain, 

and they imply two possibly different persistence parameters describing the behaviour 

of the spectrum to the right and left of u .  Two semiparametric methods of estimating 

the persistence parameters in the frequency domain, which have been proposed for 

the symmetric case u  =  0 and are based on a partial knowledge of the spectral density 

around u>, are extended to u  ^  0 and their asymptotic properties are analysed. These 

are the log-periodogram regression and the local W hittle or Gaussian semiparametric 

estimates. Their performance in finite samples is studied via Monte Carlo analysis.

Some semiparametric Wald and LM type tests on the symmetry of the spectral 

density at u  and on the equality of persistence parameters at different frequencies 

are proposed, showing their good asymptotic properties. Their performance in finite 

samples is analysed through a small Monte Carlo study.

All these techniques are applied to a monthly UK inflation series from January 

1915 to April 1996, where we test not only the symmetry of the spectral poles but 

also the equality of persistence parameters across seasonal frequencies.

Finally some concluding remarks and possible extensions are suggested.
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Chapter 1

GENERAL INTRODUCTION 
AND LITERATURE REVIEW

1.1 INTRODUCTION

The evolution of economic time series is often determined by different phenomena, such 

as weather, calendar events (e.g. Christmas, Easter) or timing decisions (industry 

vacations, tax years), which have a regular or quasi-regular behaviour (Hylleberg 

(1992)) tha t cause the cyclical movement we observe in many economic time series. 

Some of these phenomena are fixed and repeat exactly along time (e.g. Christmas) so 

tha t they are completely deterministic in the sense tha t they can be forecast with zero 

mean square error. Others, although varying over time, are also deterministic because 

they can be forecast perfectly (e.g. Easter). But many of them are time-varying and 

not perfectly predictable (e.g. weather), although their variation is small so tha t we 

can talk about quasi-regular behaviour. Different processes have been proposed to 

model different cyclical movements like those mentioned above. Some of them are 

described in Sections 1.2 and 1.3. But before going any further we define some basic 

concepts tha t will be used in this chapter and over the whole thesis.

1 .1 .1  D e fin it io n s  and  c o n c e p ts

Let {x t , t  =  0 ,± 1 ,...}  be a real and discrete covariance stationary process with mean 

fi and lag-j  autocovariance 7j ,

p  = E x t , 7j =  E (x t+j -  f i)(xt - f t )
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where E  denotes the mathematical expectation. If x t shows a regular or quasi-regular 

behaviour th a t causes cycles, then we call period of the cycle the time period (or 

number of observations if they are equally spanned) needed to  complete the cycle. If 

we denote the period by 2, then the frequency (in radians) of the cycle is 27t j  z. This 

implies tha t the lag-kz  autocovariances, where k is an integer, are high in relation 

to  neighbour autocovariances. Thus, cyclical behaviour of x t will be reflected in the 

movements of 7 j with j .  However a visual inspection of the autocovariances may 

not be very informative about the period or the frequency of the cycle, specially if 

the repetitive evolution of the series is not very regular, which is the typical case in 

most economic time series. When analyzing cyclical time series, the frequency domain 

is a more adequate framework than the time domain, since it reflects the cycle more 

clearly. The basic tool is the spectral distribution function which, although containing 

the same information as the autocovariances, gives a clearer view of the period and 

frequency tha t define the cycle. The relation between autocovariances, 7 j ,  and spectral 

distribution function, -F(A), can be written in terms of Stieltjes integrals

7j =  [  cos(j X)dF(X) , j  =  0, ± 1 ,... (1.1)
J  —  7T

where F(X) is a monotonically non-decreasing function, with symmetric increments 

(i.e. d.F(A) =  d F (—A)), with F ( —7r) = 0 and continuous from the right. Note that 

7 0  = d.F(A) so tha t T’(A) gives a decomposition of the overall variance into com

ponents, each describing the variance due to  a different frequency A. The relationship

(1.1) exists for all covariance stationary processes. When F (A) is absolutely continu

ous, there exists an even and continuous function, /(A ), such that d.F(A) = /(A)dA. 

/(A ) is the spectral density function, also called power spectrum or spectrum. Since, 

for x t discrete, /(A ) is a periodic function of period 2ir such th a t /(A ) =  / ( 2tt +  A), 

and, for x t real, it is symmetric around A =  0, /(A ) is usually defined at frequencies 

A 6 [0, 7r]. The cyclical behaviour is reflected in /(A ) by a peak at frequency u;, which 

defines the cycle such tha t the period is 27r/a;. Thus, the location of the spectral peak 

determines the cycle. In relation to this spectral characteristic arising from cyclical 

behaviour, Nerlove (1964) defined seasonality as “tha t characteristic of a time series

12



that gives rise to spectral peaks at seasonal frequencies” . Seasonal frequencies are 

defined as 2ir j/s  for j  =  1 , 2 , [s/2], where [s/2] is the integer part of s /2 , th a t is 

s /2  if s is even and (s — l ) / 2 i f s i s  odd, and s is the number of observations per year. 

This is the definition we adopt throughout the whole thesis. Thus seasonality implies 

the existence of [s/2] cycles of periods s / j ,  j  =  1 ,2 ,..., [s/2].

We say th a t a process has long memory if its spectral density satisfies

f ( u  +  A) ~  C |A |-W as A - 0  (1.2)

where 0 < C < oo, the memory or persistence param eter, d, is different from zero, u> 

is a frequency in the interval [0,7r] and a ~  b means tha t a/6  —*• 1. Using the notation 

in Engle et al. (1989) we also call a process with such a  spectrum integrated of order 

d at frequency w, and we denote it by / w(d). Stationarity entails d < 1/2 (note tha t if 

d > 1/2 /(A ) is not integrable) and d > —1/2 is required for invertibility so that the 

persistence param eter, d , is often restricted to be between —1/2 and 1/2. Although 

processes satisfying (1.2) are considered long memory as long as d ^  0, more rigorously 

we say th a t the process has long memory or persistence if d > 0, short memory if d =  0, 

and antipersistence if d < 0 (some surveys on long memory are Robinson (1994d), 

Baillie (1996) and Beran (1992, 1994a)). Long memory literature has traditionally 

focused on Io(d) processes satisfying (1.2) with u> = 0. When u  € (0. jt] we say that 

the process has cyclical long memory with period 2it/u>. The most com m on rase is 

seasonal long memory that occurs when the spectral density satisfies ( 1.2> for every 

seasonal frequency. However, for non-seasonal time series (for example with annual 

data) we can have a cyclical behaviour such tha t (1.2) holds for a single *j. Since

(1.2) only restrict the behaviour of /(A ) around one specific frequency, u;, and does 

not impose any other condition far from u> (in particular, in the seasonal case, (1.2) 

only refers to  one of the [s/2] seasonal frequencies) we feel it appropriate to use the 

terminology Seasonal/Cyclical Long Memory (SCLM) to  denote Iu(d) processes with 

spectral density satisfying (1.2) for some u  € (0,tt].

Under mild conditions (see for example Yong (1974) and Chapter 2 in this thesis) 

the spectral relation (1.2) translates in the time domain to autocovariances th a t are
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0 ( j 2d~l ) as j  —► oo. In particular, when d > 0 and u> =  0 the autocovariances are 

not summable and when u> ^  0 the absolute values of the autocovariances are not 

summable but the raw values are summable as long as the spectrum is bounded at 

the origin.

When d > 1/2 the process is not stationary and the spectral distribution function 

(and thus the spectral density) does not exist. In those cases we consider /(A ) in

(1.2) represents the pseudospectrum which we define in the following manner. Let 

Xt be a non-stationary process such tha t Ut =  r(L )x t  is stationary with absolutely 

continuous spectral distribution function, and t ( L )  is a polynomial in the lag operator 

L  (Lkxt =  Xt-k for k integer). If f u{A) is the spectrum of Ut, then the pseudospectrum 

of x t is /(A ) =  \T(etX)\~2f u(X), where \z\2 — z  x z  and z  is the complex conjugate of 

z. In this way we allow the definition of SCLM in (1.2) be valid for stationary and 

non-stationary processes.

In Section 1.2 we review traditional methods of modelling cyclical and seasonal 

behaviour, as well as some methods of adjusting for seasonality. We dedicate Section

1.3 to the description of some parametric SCLM processes satisfying (1.2). Section

1.4 pays attention to the estimation of the persistence param eter in long memory time 

series. Several tests on seasonal integration and cointegration are briefly reviewed in 

Section 1.5. Whereas /(A ) has to be symmetric around frequency zero, it need not be 

symmetric around a u> different from O,mod(n). This broadens the scope of modelling 

SCLM time series. In Section 1.6 we introduce the possibility of asymmetric spectral 

poles or zeros. Some effects of this asymmetry are analysed throughout the whole 

thesis.

1.2 MODELLING SEASONALITY AND CYCLES

Seasonality has traditionally been considered a nuisance, and several seasonal adjust

ment procedures have been proposed. They are typically based on the idea th a t a 

time series {x t , t  = 0 ,± 1 , ...}, possibly after logarithmic transformation, is additively 

composed of three different components, the trend-cycle, Tt, the seasonal, S t , and the

14



irregular component, / f,

Xt = Tt +  St +  It' (1*3)

Traditionally Tt includes also the possibility of a cyclical component. The reason for 

this is tha t the cycle in economics has usually been considered a periodic component 

with period larger than the number of observations per year. This implies a spectral or 

pseudospectral peak at some frequency between zero and 2ir/s , where 5 is the number 

of observations per year. This phenomenon may be indistinguishable from a stochastic 

trend, characterized by a pseudo-spectral pole at the origin. However, there may be 

cycles of period different from the seasonal ones, s / j , for j  =  1 ,2 ,..., [s/2]. To allow 

for this behaviour we can include a cyclic component, Ct, in the model (1.3),

x t = Tt + Ct + St + I f  (1.4)

The additive form in (1.3) and (1.4) (perhaps after taking logarithms) is often known 

as Unobserved Component (UC) or Structural Time Series model. The seasonally 

adjusted series is obtained by subtracting an estimate of Sf. We group the different 

methods of estimation of St and adjustment of x t in two classes, “model-free” and 

“model-based” adjusting procedures. The “model-free” techniques do not take into 

account the possible form of the seasonality and the same procedure is essentially 

applied irrespective of the series. They are basically based on the application of a 

succession of moving averages to produce seasonally adjusted data. The most widely 

used is the US Bureau of the Census X -ll procedure (Shiskin et al. (1967)). This 

technique is based on the application of a series of two-sided filters to the series. 

Clearly it is not possible to  apply a two-sided filter at the end of the series. Instead 

a one-sided filter must be applied and the latest adjusted figures must be revised 

as new observations become available and it becomes possible to  apply a two-sided 

filter. The X -ll ARIMA (Dagum (1980)) allows the application of two sided filters 

by fitting an ARIMA model to the series, forecasting future values and seasonally 

adjusting the whole series, actual and predicted, by X -ll. Revisions are still necessary 

as observations come in to replace the predicted values, but they should be smaller 

than before.
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The “model-based” seasonal adjustment procedures are made according to  the 

characteristic of each series. They are based on the estimation of parametric models 

that fit the seasonal behaviour of the series. Some of these models are described below.

Seasonal adjustment procedures have been criticized for causing undesirable effects 

such as spectral dips at seasonal frequencies or distortion of the spectral density at 

other frequencies (see Nerlove (1964) or Bell and Hillmer (1984)). Furthermore, the 

UC models in (1.3) and (1.4) suppose tha t each component in x t can be specified 

separately and independently of the rest of components. This is not always the case. 

Often the same model includes two or more of the components in x t (for example 

the stochastic seasonal processes classified as b), c) and d) below include an irregular 

component). The existence of these models and the undesirable effects caused by 

traditional methods of seasonal adjustment have given rise to the use of seasonally 

unadjusted data.

Most of the processes we describe in this section are seasonal, so tha t they model 

a specific cyclical behaviour. However, other cyclic patterns can be modelled similarly 

by suitably choosing the dummy variables, cosinusoids or lag operators in the models 

described below.

One of the earliest attem pts to model seasonality assumes tha t the series repeats 

the cyclical behaviour in a regular manner, and uses seasonal dummies . P kt% to 

construct the deterministic model,
s

x t = ^ 2 akDkt (1.5)
k=l

where D kt =  1 if t — k is a multiple of s (the number of observations per year) atid 0 

otherwise. It is usually assumed that
S

^2 ak = 0 
k=l

since we may achieve this, if it is not so, by subtracting a constant from the original

series in such a way tha t the seasonal movement is not affected. We can express (1.5)

as a function of sine and cosine waves via the equivalent formula

[-]
z. =  X > M  '(1-6)

>1=1
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where

/ \ /i • / \ 2tt h .Vh,t = <*h cos(ujht) +  p h sm{Ljht) , u h = — , (1.7)

2 s
a h =  -  ^T afccos^u^),

5 fc=i 
2 s

Ph = - ^ 2 a k sm(kLJh),
s  k = i

for 1 < h < s / 2, and if 5 is even P± sin(u;|f) is zero and

1 s
a » =  -  ^  ak cos(koj2.)

2 5 Jk=i 2

(see Hannan (1963)). x t in (1.6) can be equally written Xt =  Y^h=i rh cos(UJhi — Oh) 

where rk =  \]<*\ +  P\ is the /&-th amplitude and =  a rc tan f/^ /a /i)  is the to-th phase. 

It is rarely plausible tha t time series have such a rigid deterministic behaviour as (1.5) 

or (1.6) impose, so a stochastic error is often added. If this irregular component is 

well behaved and the frequencies are known, then and Ph in (1.7) or ak in (1.5) 

can be estimated through simple regression methods.

The processes (1.5) and (1.6) are completely deterministic, and if a^, Ph are fixed 

parameters they are non-stationary so tha t it does not make sense to speak of spectral 

distribution function or spectral density. However the spectral behaviour of stochastic 

seasonal time series will give us relevant information about the characteristics of the 

process. According to spectral characteristics we distinguish four classes of stochastic 

seasonal/cyclical processes:

a) Stationary with spectral distribution function with jumps and thus not absolutely

continuous.

b) Stationary with absolutely continuous spectral distribution function everywhere

and smooth, positive, spectral density.

c) Stationary with absolutely continuous spectral distribution function but spectral

density with one or more singularities or zeros.

d ) Non-stationary so tha t no spectral distribution function exists.
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a) Stationary processes with jumping spectral distribution. This kind of process

is defined by (1.6) and (1.7) but we make Wh,t stochastic by allowing ah and Ph be

random variables satisfying

E[ah] = E[/3h] =  0 , E{a\] =  £[/3j|] =  <r2h for all h 
E[aha %] =  E[f)hpi\ = 0 h j i i ,  £[a/,/3,] =  0 for all h, i.

Under (1.8), x t is covariance stationary with lag - j  autocovariance

Ifl r
7j =  E ( x tx t- j )  cos (u)hj )  =  /  cos(j'A)dF(A) j  = 0, ±1... .

h=l
Although ah and Ph are random variables, they are fixed in any particular real

ization. Thus, although ^h,t is stationary, the model is still deterministic; only two 

observations are necessary to  determine ah and Ph, and once this has been done the 

remaining points in the series can be forecast with zero mean square error. In prac

tice, therefore, the only difference between the non stationary model, (1.7), and the 

corresponding stationary model, (1.7) and (1.8), is the interpretation of the parame

ters. The spectral distribution function, F(  A), is a step function consisting of jum ps of 

magnitude 2 at frequencies —u)h and u>h, for h = 1 ,..., [s/2]. Since F (A) is not con

tinuous the spectral density does not exist. However, in a similar manner as Stieltjes 

integration is carried out, we can define the so-called line or discrete spectrum, which 

is a discrete function with values at frequencies —a>h and Uh for h =  l , . . . , [ s / 2]. 

The line spectrum at u>h gives the relative importance of a cycle of period s /h  in the 

variance of Xt.

b) Stationary processes with absolutely continuous spectral distribution and smooth

spectral density. The models in (1.5) and (1.6) assume tha t the cyclic behaviour in

x t is constant over time and does not change its form. However, economic systems

are evolving over time and the seasonal/cyclical behaviour is likely to  change across

time. Of course the variation must be slow (otherwise we cannot speak of seasonality

or cycle) in such a way tha t the periodical structure seems to  persist and the series

has a quasi-periodic behaviour. Hannan (1964) allows for this behaviour by modelling

x t as the seasonal process,

[f]
^ t - ^ 2  Wh't , =  <*h,t cos(u>ht) +  Ph,t sin(wfcf), (1.9)

/i=i
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where u>h = 2irh/s are seasonal frequencies and ah,t and fih,t are not constant but 

evolve with time. Hannan (1964) assumed

E[&h,t] =  E[fih,t] =  0 for all h and all t  ,

E\och,t&h,t-j\ =  E[Ph,tPh,t—j\ = chPhi \Ph\ < 1? /■> iq \
E[ctil,ta i)S] =  E \ph,tPi,a\ =  0 for h ^  i and all /, 5,
E[ah,tPi,a\ =  0 f°r all h, i and all t ,s .

Thus the lag-.; autocovariance of ^h,t Is

E[Vh,tVh,t-j] = ChP3h cos{whj) .  (1.11)

Stationarity of ^h,t entails \ph\ < 1. However, ph has to  be close to  1 to  avoid quickly 

changing behaviour of ^ h,t• When \ph\ < 1, Vh,t is stationary and non deterministic 

with absolutely continuous spectral distribution and smooth spectral density,

OO

h W  = 7̂  Ph cos(a;/ii) cos(Ay)
j ——oo

= £*/ IzA + IzA \ (1.12)
4x [1 + p2h -  2ph cos(A - u h) 1 +  p \ -  2ph cos(A + u>h) J

which, for ph near to  unity, will be concentrated around A =  u;/j. Hannan et al. (1970) 

considered a parameterization of ah,t and /3h,t obeying (1.10)

<*h,t =  Ph<Xh,t-l +  £h,t > Ph,t =  P h P h , t - l  +  ’ \Ph\ <   ̂ (1-13)

where £h,t and t have zero mean and common variance <7̂ , and all correlations 

between £, and between two time points and for differing values of h vanish. Sub

stituting (1.13) in Wh,t in (1.9), we get th a t is an ARMA(2,1) process

(1 -  2ph cos(a>h)L +  p lL 2) y hft = Tjh,t ~ Ph c o s ^ ^ M - i  -  Ph sm(<jjh ) r ) l , t - i  I 1 -1 4 ) 

where

Vh,t =  £h,t cos( u ht )  +  e \  t s i n ^ f )

rih ,t =  £ h,t s m ( v h t )  -  CQ8(u>ht )

are thus zero mean random variables with variance a \  and they inherit the uncorre-

Iatedness properties of e^t and t . The lag-j autocovariance and spectral density of
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Wh,t are (1-11) and (1*12) with Ch =  o\HX — p\)- Consequently the spectrum of x t is 

a smooth function
[J]

(1.15)/w = E hw
)i=i

which shows peaks (sharper the closer ph is to 1) around seasonal frequencies u^, 

h =  1,2, ...,[s/2]. An equivalent manner of allowing for a time-evolving behaviour of 

^h,t is via the recursion (see Harvey (1989)),

'  **,4 ’

.  .

= Ph
cos u>h sin 

— sin u)h cos u>h
*h,t-1
¥ h,t- 1

+ Vh,t
l i t  J

where r)h,t aad 77J t are two uncorrelated white noise sequences with the same variance, 

crjj, and ph is a damping factor, 0 < ph < 1. If ^h,o =  <*h, ,0 =  Ph and ph =  1, the

recursion in (1.16), apart from the stochastic vector including rjh,t and 7/£t , gives the 

value of ^h,t in (1*7). Note tha t t only appears by construction to  form Wh,t an(I is 

of no intrinsic importance. When we include the stochastic terms we see that Vh,t is 

the ARMA(2,1) process in (1.14) with spectral density (1.12) with Ch =  0^/(1 — Ph)- 

Thus the spectrum of x t is (1.15) and for ph close to 1 it will be concentrated around 

frequencies u

In addition to the specific ARM A in (1.14) we can use many other ARM A processes 

to  model a changing cyclical behaviour. In particular, if the spectrum of an AR(2), 

(1 — <t>\L — (f>2L 2)xt =  £*, contains a peak at frequency A* within the range 0 < A* < 7r, 

its exact position is

A* =  cos-1
-(f) i (1 — <f>2)

402

For example the spectrum of the AR part in (1.14) has a peak at

( l  + pl)casu>hX* =  cos- l
2 Ph

so tha t A* is closer to Uh the closer ph is to 1. We can also use the seasonal lag

operator, 2/*, (Lsx t =  Xt- a) 1° define the seasonal ARMA(1,1) model

(1 -  <t>aL 8)xt =  (1 +  eaL a)£t (1.17)

where et is white noise with variance a 2. When <f>a and 0a are inside the unit circle,
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x t is stationary and invertible with smooth spectral density

_  <t2 1 +  0] +  2fl5 cos(As)
27t 1 +  4>2S — 2<j>s cos(As) ’

If <f)s > 0 and 9S > 0, /(A ) exhibits peaks at the seasonal harmonic frequencies,

ujh =  27T/i/s, h =  1 ,2 ,..., [s/2], as well as at zero. More general seasonal ARMA

processes can be defined as

$ s(L s)xt =  Oa(L s)et (1.18)

where $ a(L s) and Qa(L s) are polynomials in the seasonal lag operator with zeros 

outside the unit circle (see Box and Jenkins (1976)).

c) Stationary processes with absolutely continuous spectral distribution and spectral 

density with singularities or zeros. The structure of ah and flh in (1-13) may generate 

a relatively rapid change in the seasonal pattern, whereas the definition of seasonality 

implies a regular or quasi-regular behaviour. The closer ph is to 1 the more regular

the movement of ^!h,t- In fact we can choose ph = 1, but in this case h,t ceases to

be stationary. Instead we can assume tha t ah,t and (3h,t evolve as

( 1 - L ) V <  =  £M - (1 -  =  4,< (119)

where £h,t and t are defined as in (1.13). Thus ah,t and f3h,t are fractional ARIMA(0,d^,0) 

processes and they are stationary if dh < 1/2 and invertible if dh > —1/2 (see Hosking 

(1981)). The slowly changing behaviour necessary for seasonality requires dh > 0 and 

stationarity entails dh < 1/2. Under these circumstances ah,t and flh,t are Io(dh) with 

spectral density, /o(A), diverging at the origin, and lag - j  autocovariances 

t  _  l -  tp\ r  r  l _  2 T ( 1  -  2dh)Y(j +  dh)
I h J -  [Ph,tPh,t-j] -  aAp(dA)r (i _ dh^ j  + 1 _ d h y

Thus the lag-j autocovariance of ^ h,t is

E [ * h , t V h , t - j ]  =  l { , j  cosU » h )

and its spectral density is

1 OO 1 oo

hw = s  E = s  E i ^ ' r
j = —oo j ——oo

= — U^) +  -/o(A-f-U^).
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The multiplication of a ^ t  by cos(uht) and fih,t by sin(a;^t) produces a phase shift 

such tha t the spectral pole moves from zero in ah,t and flh,t to u>h in ^h,t- Thus, 

the process (1.9) and (1.19) has an absolutely continuous spectral distribution but its 

spectral density is not smooth, but goes to  oo (if dh > 0) or is zero (if dh < 0), at 

frequencies ±u>h as described in (1.2). This is the SCLM property tha t characterizes 

the processes we analyze in this thesis. A more detailed description of existing models 

conforming to  this property is given in the next section.

d) Non-stationary and non-deterministic stochastic seasonal processes. If a ^ t  and 

(3h,t are determined by the fractional ARIMA processes in (1.19) but with dh > 1/2, 

then they are not stationary and thus in (1.9) is clearly non-stationary. In this 

case there does not exist a spectral distribution. Nevertheless, the frequency domain 

is still an adequate framework to  detect seasonality using the pseudospectrum. For 

example, if dh =  1 in (1.19) or equivalently ph =  1 in (1.13) or (1.16), then ^ h,t is a 

non-stationary ARMA(2,1) process

Th(L )V h,t =  Vh,t ~  cos(u>h)Vh,t-i ~ s m iu h ) ^  ^

where Th(L) =  1 — 2 cos(u>h)L + L 2. The non-stationarity comes from the fact tha t the 

AR polynomial, Th(L), has zeros at cosu^i-y/cos2^  — 1, with modulus one. However 

Th(L)^h,t is a stationary MA(1). Since ^ (e** )!-2 = (2(cosu;^ — cos A))-2 diverges 

at A =  iu ;^ , then the pseudospectrum of Vh,t goes to  infinity at frequencies 

reflecting a strong cyclical pattern with period 2x/uh  =  s /h .  Hannan et al. (1970) 

used this model and estimated it using optimal methods for the extraction of a signal 

(i.e. the seasonal component) extended to  allow for non-stationary signal (Hannan 

(1967)).

In the Box-Jenkins framework we can define the seasonal ARIMA(P,D,Q) time 

series

$ , ( £ s) ( l  -  L ’)Dx, = Q ,(L ’ )e, (1.20)

where the et are white noise (0,<r2), $ a(Ls) and 0 S(X5) are polynomials in the lag 

operator with zeros outside the unit circle, and D  is a positive integer (Box and 

Jenkins (1976)). We can also consider a fractional D. In this case (1.20) defines the
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fractional seasonal ARIMA(P,D,Q), which is stationary if D  < 1/2 and non-stationary 

if D  > 1/2. The spectrum (D  < 1/2) or pseudospectrum (if D > 1/2) of is

/ w  =
a 2 |0 s(e « ‘) |2

A ' 24 sm —  
2

—D

( 1.21)27T |$ s(e*As) |2

and diverges if D  > 0 or is zero if D < 0 at frequencies u>h, =  2irh/s , h =  0 , [s/2], 

tha t is at the origin and at seasonal frequencies. The seasonal difference operator, 

(1 — Ts), can be written as the product of the difference operator, (1 — Z-), and the 

seasonal summation operator, S(L)  =  (1-f T +  ... +  T5-1), such tha t the pole in (1.21) 

at the origin corresponds to the operator (1 — L), and the spectral poles at seasonal 

frequencies are due to S(L).  Thus (1 — L s) includes a stochastic trend in addition to 

the seasonal factor. This is why sometimes (e.g. Harvey (1989)), S (L ) is used instead 

of (1 — L a) to  model the seasonal component of a UC time series model as described 

in (1.3) and (1.4).

A different class of non-stationarity may be due to the fact tha t the autocovariances 

are not time invariant, for example because there is a different data generating process 

for each season. This phenomenon is often modelled via the Periodic ARIMA process 

tha t allows for a different behaviour in each season of the cycle (e.g. Troutman (1979), 

Tiao and Grupe (1980), Osborn (1991), Franses and Ooms (1995)). This kind of model 

can be written as

*,(£)(1 -  L ’ Y-X^J. = © , ( i ) 4  ? = 1,...,4, T  =  1,2,..., (1.22)

where eqT is white noise with variance cr2, the index q indicates the season or situation 

of the observation in the cycle (for example different months) and T  represents the 

year such tha t Xj. =  x^T_ ^ s+q. The lag operator, T, retards the observation one 

period such tha t L x ^  =  L x ^ _ ^ a+q =  a^T-ija+g-i =  x t ~1 an^ f°r anY integer k , 

L ksX j  =  x qT_k. Thus, (1.22) allows for s different models, one for every season (month 

in case s =  12). When the zeros of $ q(L) lie outside the unit circle, and dq < 1/2, 

then (1.22) is stationary for every q =  1,2, Although x \  may be stationary, 

the variable Xt is clearly non-stationary if some of the parameters corresponding to  

different qs are different. In this case the variance and autocovariances of x t depend on
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q and therefore are not time invariant. Thus there does not exist a spectral distribution 

function and we cannot use frequency domain techniques to explore the characteristics

of such a process. The analysis of this kind of process is usually performed in a

multivariate setup using a vector ARMA representation. Define the s x 1 vector 

zt =  (x\">..., Xj)' =  (£(t-i)s+i> •••> x Ts)'- The periodic process in (1.22) can be written 

in vector ARMA form as

A(L*)C(L*)zt  = B(L*)ut  T =  1 ,2 ,..., (1.23)

where u t  =  (£ j, . . . , £ 7.)', C(L*) = diag{( 1 -  L *)dq}, A(L*) and B{L*) are matrix 

polynomials in L *, and the operator L* is the lag operator for the index T , L * z j  =  

z t - i- This implies seasonal difference in the elements of z t , L*xqT =  L aX(T- i ) a+q =  

x (T-2)s+q — x t - i* The vector z j  is stationary if dq < 1/2 for q =  1, and \A(z)\ 

has zeros outside the unit circle, and invertible if dq > —1/2 for q = 1, and the 

zeros of \B(z)\ lie outside the unit circle. Under stationarity z t  has a spectral density 

matrix f 2(A). We have already pointed out tha t xt is not stationary and consequently, 

it does not have a spectral distribution function. However, the expectation of the 

sample autocovariances of Xt converge to  the autocovariances of a stationary process 

with spectral density function

/(A ) = ±R (e 'xy f z( s \ ) R ( e - iX) (1.24)

where R(r)  is a s X 1 vector with k-th  element rk (Tiao and Grupe (1980)). Of course 

the spectrum of x t is not (1.24), but asymptotically we can use (1.24) to classify 

periodic processes in the same way we have done before for non-periodic seasonal 

models.

1.3 SEASONAL/CYCLICAL LONG MEMORY PRO
CESSES

In this thesis we focus on the analysis of seasonal/cyclical stationary processes with 

spectral density satisfying (1.2). These are the class c) of the stochastic seasonal time 

series models introduced in the previous section, processes with absolutely continu

ous spectral distribution but non-smooth spectral density function. In particular the

24



spectral density satisfies (1.2) so tha t it diverges (if d > 0) or is zero (if d < 0) at 

some frequency u  E (0 ,7r]. Since (1.2) only restricts the behaviour of /(A ) around 

u>, and <jj can be any frequency between 0 and 7r (seasonal or not), then we say tha t 

a process with spectrum satisfying (1.2) has SCLM or is integrated of order d at u>, 

Iu (d). This notation covers the stationary case (d < 1/2) as well as the non-stationary 

one (d > 1/2). In the latter, /(A ) in (1.2) represents the pseudospectrum.

Though (1.2) is a semiparametric condition and only imposes knowledge of /(A ) 

around w, it is interesting to  describe parametric processes satisfying (1.2), specifying 

short memory as well as long memory components of £*, for example for the purpose 

of Monte Carlo simulations. Some examples have been introduced in the previous 

section (e.g. (1.9) and (1.19) or (1.20)). In case of Gaussian series it suffices to  specify 

/(A ) for all A E (—7r , 7r], and the mean, fi, to  have an absolute knowledge of the 

process. Since the spectral density and the autocovariances give the same information, 

we could equivalently specify the autocovariances, 7j ,  for all j .  A characteristic of 

autocovariances of SCLM processes is tha t they have a slow decay typical of long 

memory but they also have oscillations tha t depend on the frequency u>. Often 7j = 

0 { j2d~l ) as j  —► 00 but with sine oscillations depending on the frequency u;, and 

if d > 0 then 5Zl7j'l =  °°» although may >̂e finite if f { t y  is bounded at zero 

frequency. Complete parameterization of /i and /(A ) or 7 ,- permits the simulation 

of Gaussian series satisfying (1.2). Non-Gaussian x% are not fully described by \i 

and /(A ) or 7j, but nevertheless, assuming they have finite variance, they could have 

spectrum or autocovariances of the type we discuss, and so will be SCLM as far as 

second moment properties are concerned. There remains the possibility tha t x t may 

not exhibit long memory in second moments but in some other way (for example x\  

could have long memory) as discussed in Chapter 8.

Two different types of parametric SCLM models have been stressed in the lit

erature. They are natural extensions of the processes used to model standard long 

memory at zero frequency , ( (1.2) with u> =  0), namely the fractional noise and the 

fractional ARIMA in the Box-Jenkins setup.
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1 .3 .1  S eason a l F ra c tio n a l N o ise

This kind of stationary process is characterized by a spectral density

2(l+d)

and lag - j  autocovariance

(1.25)

(1.26)

where s is the number of observations per year, C  is a positive constant and d < 1/2

(see Jonas (1983), Carlin and Dempster (1989) or Ooms (1995)). The spectrum in 

(1.25) satisfies (1.2) for lj =  2irh/s, h = 0,1, ...,[s/2], and the 7j  in (1.26) have slow

kind of process is a generalization of the fractional noise described by Mandelbrot and 

Van Ness (1968) tha t is characterized by (1.25) and (1.26) with 5 =  1, and has the 

typical long memory behaviour at frequency zero.

1 .3 .2  S C L M  in  th e  B o x -J e n k in s  se tu p

Gray et al. (1989, 1994) analysed the so-called Gegenbauer process, first proposed by 

Hosking (1981), which is of the form

where Ut is a process with positive, finite and continuous spectrum, f u(A), and d can 

be any real number. For example when u t is a stationary and invertible ARMA(p,q)

(1.27) is called GARMA (Gegenbauer ARMA). The spectral density of x t in (1.27) is

and it satisfies (1.2) so th a t x t has SCLM at frequency u>. For u) ^  0,tt, the process 

in (1.27) is stationary if d < 1/2 and invertible if d > —1/2. When u  =  0 and ut is a 

stationary and invertible A R M A (p , q), then (1.27) is the fractional A R IM A (p , 2d, q),

and oscillating decay as j  —* 00, and if d > 0 they are not absolutely summable. This

(1 — 2L  cos a; +  L 2)dx t = ut (1.27)

/(A ) =  (4(cosu> — cos A)2) d/ti(A) (1.28)

(1 — L )2dx t =  ut , so tha t Xt is stationary if d < 1/4 and invertible when d > - 1 /4 .  

If lj =  7r the spectrum of x t has a pole at frequency w and it is stationary if d < 1/4



and invertible when d > —1/4. When the ut s in (1.27) are i id(0,a2) and d < 1/2 the 

autocovariances of x t are

7i =  -2 d )(2 s in o ;)2 -2d[P^72(cosa;) +  ( - ly P ^ T 'C - c o s a ; ) ]  (1.29)
Zy7T J 2 • '2

where are associated Legendre functions (Chung( 1996a)). The asymptotic be

haviour of 7j in (1.29) is

7j ~  A' cos^u;)^2̂ -1 as j  —*■ oo (1.30)

where K  is a finite constant th a t depends on d but not on j  (see Gray et al. (1989) 

or Chung (1996a)). We observe tha t the autocovariances of x t in (1.27) have the slow 

and oscillating decay typical of SCLM.

Porter-Hudak (1990) and Ray (1993) among others, proposed the use of the frac

tional seasonal difference operator, (1 — A*)d, where d can be any real number. Porter- 

Hudak (1990) used the operator (1 — L 12)d in monthly monetary USA aggregates and 

Ray (1993) used (1 — A3)d3( l  — L 12)dl2 for monthly IBM revenue data. Note that 

(1 — L s)d can be decomposed into the product of some operators (1 — 2L c o s *j  + L 2)d. 

For instance if 5 =  4,

(1 — L 4)d =  (1 — 2Xcosu>o +  L 2)$( 1 — 2L cosu>i +  L 2)d( 1 — 2Lcosu>2 4- L2)* (1.31)

for u>o =  0, u>i =  7t/2 and L02 =  7r. Thus the process x t in (1 — L4)dx f = u, i> !{l(d), 

U ( d )  and I ^ d ) .

In order to allow for different persistence parameters across different fr»*<juenri<»s. 

Chan and Wei (1988), Chan and Terrin (1995), Giraitis and Leipus (1995) and Robin

son (1994a) used the model

h - i
— 2Lcosu>j +  L 2)dj}( 1 +  L)dhx t =  u t (1.32)

j - 1

where u>j can be any frequency between 0 and tt and ut has continuous, positive and 

bounded spectrum. Thus x t in (1.32) is /^ ( d j )  for j  = 0 ,1 ,2 , ...,/i, where u>0 =  0 and 

u>h = 7r. When Ut is a stationary and invertible ARMA, Giraitis and Leipus (1995) 

used the terminology ARUM A to denote a process satisfying (1.32). When \dj\ < 1/2
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for j  =  0,1, ...,h , (1.32) can be expressed

oo

Y  =  Ut
j=0

or
oo

x t =
j=0

where 7r0 = -00 = 1 and

' i  =  £  < “* /8)(»»)C'J^)( m ) .. .C J t^ ,)( i f t - i ) C t <‘/a)(itt) (1.33)
0 <  k0, . . . , k h <  j  
ko +  ... +  kh =  j

for j  =  1, where rfi =  cosa;,, i =  0, 1, . . . , h , and C f f \ x )  are orthogonal Gegenbauer 

polynomials. Similarly is (1.33) with d0, ...,dh instead of —do, ..., — dh (see Giraitis 

and Leipus (1995)). The weights t t j  in (1.33) have the asymptotic behaviour

h - i
7Tj ~  K \ j ~ l ~d° +  ( - l ) 3j ~ 1~dh +  Y j ~ dk' 1(cos(u}kj)  +  V*)] (1*34)

k= l

where K  is a finite constant and Vk is a constant depending on do,...,dh and u>k- 

Similarly the Vb' behave asymptotically as (1.34) with do,..., dh instead of — do, ..., — d ^  

The complicated form of the ARUM A model in (1.32) makes it difficult to  calculate 

an explicit formula for the autocovariances. As a m atter of fact, they have only been 

obtained for the Gegenbauer process in (1.27) (see (1.29)), but if there are more than 

one spectral pole/zero, only the asymptotic behaviour has been established. Giraitis 

and Leipus (1995) showed tha t the autocovariances of the ARUMA process (1.32) 

satisfy
h

7j ~  K  Y j  j 2dk~l cos(ju>k) as j  —> oo 
k =0

where K  is a finite constant. Thus t t j ,  i p j  and 7j  have slow decay with oscillations 

tha t depend on the different u;*. Eventually it is the largest persistence param eter 

which governs the behaviour of 7Tj, and 7j.

The model (1.32) allows for spectral poles/zeros a t any frequency Uj € [0, 7r]. One 

particular case occurs when U j  are seasonal frequencies, u j  = 2irj/s,  j  = 1, 2,..., [5/ 2]. 

Then (1.32) has been called “flexible ARFISMA” (Hassler (1994)) or “flexible (sea

sonal) ARMA(p, d, q)sn (Ooms (1995)).
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1.4 ESTIMATION IN SCLM PROCESSES

Since the analysis of long memory in the flows of the river Nile and the introduction 

of the rescaled range statistic (R / S ) to measure this phenomenon by Hurst (1951), 

interest in long memory processes has increased significantly. Some applications, anal

ysis and extensions of the R / S  statistic are Mandelbrot (1972,1975), Mandelbrot and 

Wallis (1968), Mandelbrot and Taqqu (1979), Taqqu (1975,1977), Davies and Harte 

(1987) and Lo (1991). The interest in the analysis of long memory in economics 

has its origin in Granger (1966) who observed th a t most economic variables have an 

estimated spectrum which is consistent with the behaviour of long memory processes.

Estimation and statistical inference in long memory processes can be done using 

parametric or semiparametric techniques. Parametric methods are generally more 

efficient if they are based on a correct and complete specification of /(A ). However, 

parametric estimation of the persistence parameter, d in (1.2), can be inconsistent if 

/(A ) is misspecified at frequencies far from u.  Semiparametric techniques, th a t only 

assume partial knowledge of /(A ) around a known frequency (like in (1.2)), guarantee 

consistency under this type of misspecification. The price to pay is a loss of efficiency 

with respect to  parametric methods when the model is correctly specified.

Since R / S  analysis several techniques have been developed. Some of them, like 

R / S  itself, are not suited for SCLM processes (see Ooms (1995)). In this section we 

review methods proposed to estimate SCLM processes and propose extensions of those 

techniques tha t have been developed for the standard long memory case at frequency 

zero.

1 .4 .1  P a ra m e tr ic  E s t im a tio n

Consider the covariance stationary process, Xt, satisfying

<f>(L)(xt -  fi) =  Et (1.35)

where
oo oo

= ^  < 00 ’ ( L36) 
j =1 j =1
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fi is the population mean of x* and the Et have zero mean and are uncorrelated with 

variance <r2, for all t. All the stationary and invertible processes described in previous 

sections can be written as (1.35) satisfying (1.36). Suppose tha t the <f>j and cr2, as 

well as fi are unknown, but we know a function

oo
<j>(z;6) = l ~ Y , M e)z3 

j=l

where 0 is an unknown k x  1 param eter vector such tha t there exists 9q for which 

<f>j(60) =  <j>j for all j ,  and therefore $o) =  <f>(z). The spectral density of x t is given

by

/(A ) = ^ ( e iA) | - 2 , —ir < A < x (1.37)

and the lag-j autocovariance by

Tj =  /  /(A)cos(jA)dA.
J  —  7T

Writing /(A ) and 7j  as a function of the unknown parameters, we have

/(A ;* ,* 2) =

7 j { 0 ,CT2 )  =  <r2 7 j W

where

7j ( 0) =  ~  J MA; 0) cos(yA)dA

and h(2r; 0) =  |<£(e**; 0)|-2 . Thus the parameter vector 0o describes the aut<»rorrelation 

properties of x t . In this section we consider the so-called Gaussian estimate?*, although 

Gaussianity is not required to achieve good asymptotic properties. First, denote by 

A(0) the n  x n Toeplitz matrix with ( i , j )-th element 7i -j (0),  by 1 the n x 1 vector of 

ones and by x the n  x 1 vector of observations (x j, X2, x n)'. Consider the function

L a{0,n,(r2) =  i lo g  a 2 +  i lo g  |A(0)| +  ^ ( x  -  /n ) 'A (0 )_1(x -  f i l )  (1.38)

where fi and a 2 are scalars. Define

(0a,£a,<72) =  arg min L a(0,fi,(T2)
0,/i, a
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where the minimization is carried out over an appropriate range of values of the 

unknown parameters. In case the et in (1.35) (and therefore x t ) are Gaussian, 9a is a 

maximum likelihood estimate of 0q.

As in other minimization problems introduced below, cr2 and // can be estimated in 

closed form and the nonlinear optimization carried out only with respect to  0. Under 

regularity conditions (e.g. Theil (1971) 8.5) 9a is consistent and

Vn(»a -  Oo) 4  N k(0, I T 1) (1.39)

where means convergence in distribution, Nit(*, *) is a fc-variate normal and

«  =  ~  ^  log h(\-, »o) ^ 7  log ft(A; 0o)dA. (1.40)

Since the function h(z \0 ) is known, Q, can be consistently estimated by, for exam

ple, substituting $o in (1.40) by a consistent estimate (e.g. 0a). These asymptotic

properties do not rely on x t being Gaussian, though under Gaussianity 0a is also

asymptotically efficient.

We can approximate L a(0,n, a 2) by

L b(0,fi, a 2) =  i  log a 2 +  ^  (L41)

where et (0,/x) =  <f>(L; 9)(xt — /x) and we take x t =  0 for t < 0. We call

(0h,[ih, a b) =  arg mm L h(0,fi, a 2)

a (nonlinear) least squares estimate of (0o , where the minimization carries out 

over an appropriate range of values (see Box and Jenkins (1976)). Under regularity 

conditions, 0b has the same asymptotic properties as those of 9a, th a t is 9b is consistent 

with asymptotic distribution (1.39), and if the et are Gaussian it is asymptotically 

efficient.

Next define the centered periodogram

=  2 t^  f ^ Xt ~  ( L 42)
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W hittle (1953) proposed to  approximate L a(0,fi, cr2) by the frequency domain approx

imate likelihood

i . ( ^ )  =  J L £  { ,o g < ^ (A ;* )+  j ^ ) }  dA. (1.43)

The so-called W hittle estimates are

(0c, fic, v 2) = arg min L c(0,fi, a 2).

Under regularity conditions, 0C has the same asymptotic properties as 0a and 

FinaUy define the (uncentered) periodogram

7» ( A ) = 2 ^ l E ^ <iA|2- (!-44)

Define the Fourier or harmonic frequencies A j =  27tj / n ,  and consider the discrete

approximation to L c(0,fi,cr2) (see Hannan (1973c))

U e ,  =  {log g) + J ^ 0 )} (1-45)

where Yfj runs over all J =  1? 1, such that 0 < ^(A^;^) < oo for all admissible

0. By omitting j  — 0 and n  we avoid the need to estimate \i. Let

(Od, al)  =  arg min Ld(0, a 2)
9 ,a 2

where the minimization is over a compact subset of R k+1. Then 0d has the same 

asymptotic properties as 0a, 0f, and 0C described above.

The relative computational needs of 0a , 0C and 0d, which we call Gaussian 

estimates, depend on the parameterization we impose. In general, 0\> is more easily 

calculated than 0a since it avoids the matrix inversion in (1.38). Despite its repre

sentation in terms of h(A;0), (1.43) avoids the m atrix inversion in (1.38) as well as 

the linear transformation in (1.41). Furthermore, in many cases h(X;0) is more easily 

written down than 7j(0). Thus 0d has computational advantages, especially because 

it can make use of the fast Fourier transform.

The above discussion has made no reference to  long memory or SCLM models, 

and in fact 0a, 0b, 0c and 0d and their asymptotic properties were originally obtained
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for short memory time series models such as stationary and invertible ARMAs (see 

for example W hittle (1953) or Hannan (1973c)). However the discussion also seems 

relevant to long memory and SCLM. In fact, for long memory models with a spec

tral pole/zero only at the origin, Fox and Taqqu (1986), Dahlhaus (1989), Giraitis and 

Surgailis (1990) and Heyde and Gay (1993) provide asymptotic properties for 9C which 

are consistent with those earlier obtained for short memory processes, namely consis

tency, asymptotic normality and efficiency under Gaussianity. Li and McLeod (1986) 

and Sowell (1986,1992) discuss computational aspects and Yajima (1985) asymptotic 

properties of 9a for fractional ARIMA processes

§ ( I ) (1  -  L )d(x t - n )  = @(L)st (1.46)

where d can be any real number and the zeros of 4>(z) and 0 (z) lie outside the unit 

circle. Beran (1994b) proposed a modified version of 9b for long memory processes 

tha t is robust against the presence of outliers. Asymptotic theory for 9d has not been 

considered explicitly for long memory models with a spectral pole at zero frequency 

but it seems it can be done by avoiding the spectral singularity with the omission of 

frequencies close to the origin in Ld(9,<r2). In the long memory case, §d appears to 

have an extra advantage over 9a, 9b and 9C, because it does not require estimation of 

/i. When there is a spectral pole/zero at zero frequency, fia, fib and fic converge more 

slowly than y/n (see Vitale (1973), Adenstedt (1974) and Samarov and Taqqu (1988)) 

which can affect the finite sample properties of 9a, 9b and 9C as discussed by Cheung 

and Diebold (1994) via Monte Carlo analysis.

The discussion of Gaussian estimates is also relevant to  SCLM models with spectral 

poles/zeros at known frequencies different from zero. In case of processes satisfying

(1.2) we have to  obtain the function h(A; 9) or 7j{9) and then the same optimization 

procedures can be applied to get 9a, §b, 9C and §d. Nevertheless some comments are 

needed. The complicated form of the autocovariances (when they can be obtained 

in an explicit form) in many SCLM processes (see for example (1.29)) makes the 

matrix inversion in (1.38) rather difficult to  calculate, and therefore obtaining 9a may 

be rather complicated. Chung (1996a,b) considered the estimate 9b for the GARMA
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process

$ { L ) { l - 2L c o s u  + L 2)d(x t - p )  = G(L)et (1.47)

where the et are white noise (0,cr2), \d\ < 1/2 and $ (2) and 0 (^ ) are polynomials of 

order p  and q respectively with zeros outside the unit circle. Chung (1996a,b) claimed 

tha t Ob for (1.47) is yfn-consistent and asymptotically normal.

Due to the natural expression of SCLM in the frequency domain, a more elegant 

manner of estimating SCLM processes like (1.47) seems to  be 0C and $d . For (1.47)

h ( \ ] 0) =
Q{eiX)
$ (etA) (4(cos A — cosu;) )2\ -d

where 0 =  ( $ 1,..., $ p, © i , ..., 0 g, d)'. More generally consider the stationary ARUMA 

model (assume p  =  0)

$ (£ )  J J (1  -  2L cosLjj +  L 2)d’x t =  Q(L)et 
3 =0

(1.48)

where dj > 0 for all j , and dj < 1/2 if Uj ^  0,7r and dj < 1/4 if Uj =  0,7r, 0 (z ) and 

${z)  have their roots outside the unit circle and the Et are iid(0, a 2). In this case

0 (e tA)
h ( \ ; 0) = $ (e*A)

2 h
JJ(4(cos A — cosu>j)2)~dj 
3 = 0

where 0 =  ($ 1,..., 0 j ,..., 0 g, 4 ,  -  4 / -  Giraitis and Leipus (1995) obtain con

sistency of 0C but they do not establish the asymptotic distribution, although a non- 

Gaussian limit distribution is conjectured.

As a m atter of fact, Chung (1996a,b) and Giraitis and Leipus (1995) consider 

also the estimation of the frequencies uij, j  =  0, where the spectral poles/zeros 

occur. Since in this thesis we consider uj  fixed and known we do not discuss the 

estimation of Uj in this introductory chapter. However, a section of the concluding 

chapter is dedicated to  review the literature on estimating frequency, and in particular 

on estimating ojj in SCLM processes.

Hosoya ( 1996a,b) considered x t in (1.35) a vector instead of a scalar. Allowing for 

spectral poles at a finite number of known frequencies, Hosoya proposed a multivariate 

extension of L c(0, /x, cr2) in (1.43)

L'c(0 ,p ,a 2) = j  |lo g  \(r2h{\] 0)| +  tr  0)/n(A,/z)J |  dA (1.49)
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where h(X]6) is now a matrix defining the spectra and cross-spectra and / n(A;^) is 

a m atrix with the periodogram and cross-periodogram of the elements of the vector 

series x t. W ithout assuming Gaussianity, Hosoya showed tha t the arguments that 

minimize (1.49) are asymptotically normal.

A different approach focuses attention on the semiparametric specification of the 

spectral density in (1.2). The estimation is based on a regression of the logarithm of the 

periodogram onto the logarithm of Fourier frequencies and known as log-periodogram 

regression. Since this technique is basically semiparametric we describe it more thor

oughly in the next subsection where we review semiparametric methods of estimation. 

We mention it here because Kashyap and Eom (1988) proposed the use of all harmonic 

frequencies in the log-periodogram regression performed to obtain an estimate of d. 

This technique is used by Ray (1993) to  estimate and d\2 in the SCLM process

0 o (£ )* i(£ 3)< M £ 12)( l -  £ 3)* (1  -  L 12)d'2x t =  0o(L)e3(L3)812( L '2)et (1.50)

where the et are white noise. Ray (1993) uses these estimates of cfo and d\2 as a first 

step in the estimation of the complete model (1.50) for monthly IBM revenues.

1 .4 .2  S em ip a ra m etr ic  E s t im a tio n

When we are only interested in the estimation of the persistence parameter, d in (1.2), 

we only need to specify /(A ) around u  in order to obtain consistent estimates of d that 

we call semiparametric. This is a clear advantage with respect to  parametric estimates 

tha t need a complete and correct specification of /(A ) over the whole band of Nyquist 

frequencies, though in the event of such specification the parametric estimates have the 

competing advantage of converging faster. The semiparametric estimates we describe 

in this subsection are consistent even if we do not have any knowledge about the 

behaviour of /(A ) at frequencies far from u;, whereas the parametric methods may be 

inconsistent if /(A ) is misspecified at those frequencies. In this section we only assume 

tha t Xt is a process whose spectral density satisfies (1.2) around a known frequency

UJ.

Due to their simplicity, perhaps the most popular semiparametric procedures are
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variants of the one introduced by Geweke and Porter-Hudak (1983). This methodol

ogy, known as log-periodogram regression, has gained great popularity among empir

ical researchers, and often, a semiparametric estimate of d is used as a first step prior 

to a complete parametric fit of the model (see for example Geweke and Porter-Hudak 

(1983) or Diebold and Rudebusch (1989)). This class of estimate is based on a least 

squares regression of log In (u  +  A j )  on — 2 log Â  and an intercept, where / n(A) is the 

periodogram defined in (1.44) and A j  = 2'Kj/n are Fourier frequencies. The regression 

is carried out for j  =  l , . . . ,m , where m  is an integer between 1 and n /2 , called the 

bandwidth, satisfying at least

1 772
 1-------->0 as 72 —► oo. (1.31)
772 72

The original version, due to  Geweke and Porter-Hudak (1983), uses instead of —2 log A j 

the regressor — log{4 sin2(Aj/2)}, but as indicated by Robinson (1995a), use of the sim

pler —21ogAj, which corresponds more naturally to (1.2), leads to equivalent asymp

totic properties. This class of estimates was originally proposed for the standard long

memory at zero frequency, (1.2) with u> =  0. Note tha t in tha t case / n(Aj) is an even

function, so regression of lo g /n(Aj) on —2 log|Aj| for j  =  ± l , . . ,± m  is equivalent to 

using frequencies for j  =  1,..., m.  When u> ^  0 ,7T, use of information on both sides of 

the pole/zero makes a substantial difference. Thus the log-periodogram estimate for 

such a a; is
- = +  M

o \p±m  2 v '
z  2^j=± l vj

where Vj =  log |j | — Work on estimating (1.2) with u  =  0 suggests two

possible modifications to this scheme. Due to  anomalous behaviour of the periodogram 

very close to a spectral pole/zero (see Robinson (1995a), Kunsch (1986) and Hurvich 

and Beltrao (1993,1994)), Kunsch (1986) and Robinson (1995a) trimmed out some 

frequencies close to  a? (the proofs of the asymptotics without trimming in Geweke 

and Porter-Hudak (1983) and Hassler (1993a,b) are incomplete as pointed out in 

Robinson (1995a)). The second type of modification is an efficiency improvement 

suggested by Robinson (1995a) and based on pooling adjacent periodogram ordinates.
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Incorporating these two suggestions we have the estimate

m j ) =  i Z k  M y [ J) +  ytJ)] f l  ^
4 E i* 2

where yk = lo g (£ /=J In(u>+Afc+J-—r)), =  lo g (£ 4=1 In( u - \ k + j - j ) ) ,  J  is a positive

integer (the pooling number) and Y^k *s a sum over ^ =  f +  2J, When

the pooling number, J  =  1, and the trimming number, 1 = 0, then (1.53) reduces to 

(1.52). When u  = 0, and for symmetry of the periodogram at the origin we only use 

m  — I frequencies in the estimation, Robinson (1995a) proved tha t under Gaussianity

y / m ( d — d) - i  N  ^0, as n  —► oo

where ^'{z )  = and ^ ( z )  is the digamma function defined as ^ l o g r ( z )  where

r(z )  is the gamma function. In Chapter 3 we show tha t the same asymptotics follow for 

u> ^  0 in a more general spectral specification. Velasco (1997c) relaxes the assumption 

of Gaussianity and only imposes boundness of the fourth moments of the et in (1.35). 

Using a tapered periodogram (cosine bell or hanning taper) he obtains consistency 

and asymptotic normality with variance Note th a t tapering increases the

variance. Assuming Gaussianity Velasco (1997a) proved consistency of d for the 

non-stationary case d £ [1/2,1). Velasco (1997a) also shows tha t d ^  is asymptotically 

normal with variance J'tpf(J ) /4  for the non-tapered estimate if d £ [1 /2 ,3 /4 ), and 

3«/y/(J)/4 for d £ [1 /2 ,3 /2 ) if the tapered periodogram is used. The good properties 

in finite samples of d ^  for d £ [1/2,1) are shown in Hurvich and Ray (1995).

A variant of (1.52) has been proposed by Reisen (1994) and Chen et al. (1994). 

They used a smoothed periodogram instead of the raw periodogram in (1.52) trying 

to soften the anomalous behaviour of / n(A) close to  uj. Janacek (1982) introduced 

an alternative method to estimate d through estimation of the Fourier coefficients of 

log/(A ) using the log-periodogram. Although originally this estimate was proposed 

for long memory at zero frequency, Janacek claimed tha t this method can be naturally 

extended to SCLM time series.

Related to the parametric Gaussian estimates described in the previous section, 

Kunsch (1987) and Robinson (1995b) considered a semiparametric approximation of
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LdiQiV2) in (1-45) assuming just the partial knowledge of /(A ) described in (1.2). The 

estimate, d , is the argument tha t minimizes

1 ±m f \X \2d 1Q{C'd) = 2̂  £  | 1°sC’!^ r2d + + A>) j  (1-54)
where the bandwidth number, to, is an integer satisfying at least (1.51). The estimate 

d has received the names of Gaussian semiparametric or local W hittle estimate. When 

u  =  0 only frequencies on one side of lj are used, due to the symmetry of I n{A) at the 

origin. But if u  E (0 ,7r), periodogram ordinates on both sides of u  are informative and 

should be used in the estimation. W ithout requiring Gaussianity, Robinson (1995b) 

obtained consistency and asymptotic normality for the case u> = 0 such tha t

y/m(d — d) -i iV(0,1/4).
Note tha t d is asymptotically more efficient than d ^  because J)  j  1 as J  —*■ oo. 

The same asymptotics are shown to hold for u  ^  0 in Chapter 4 in a more general 

setup. Velasco (1997b) extended Robinson’s results to  non-stationary processes ob

taining consistency for d E [1/2,1) and asymptotic normality when d E [1 /2 ,2 /3) 

(d E [1 /2 ,3 /4) under Gaussianity).

Lobato (1995) extended Robinson’s Gaussian semiparametric technique to a sta

tionary long memory multivariate setup. Lobato considered x t in (1.35) a r x 1 vector 

with a-th element x* and with spectral density matrix

/(A ) -  A°G0A0 as A 0+

where A0 =  diag{ \~da} for a = 1 ,..., r, and Go is a positive definite Hermitian matrix. 

Note tha t under this specification every x f  has a spectrum

fa (A) ^  <7aa A 2êa as A —> 0+

where gaa is the a-th element in the diagonal of Go. The objective function to  minimize 

is a discrete semiparametric version of (1.49)

m
Q(G,d) =  5^{log lAjGAjI +  tr(AJIG -1A j‘/„(AJ)]} (1.55)

j = 1
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where A j =  diag{X~da}. Under conditions similar to those in Robinson (1995b) for 

the univariate case, Lobato obtained consistency and asymptotic normality of the 

estimate of the vector of persistence parameters d° = (d\, ...,d r),

\ /m (d  — d°) - i  Nr(0,E~*)

where E  =  2Ir + 2Re(Go*(GQ*)'), I r is the r x r  identity matrix, Re  denotes “the real 

part of” and * is the Hadamard product. A generalization of this method to  SCLM 

processes is analyzed in Chapter 4.

Robinson (1994c) proposed an alternative technique to estimate d when the spec

tral density satisfies

/ ( w + A ) ~ l ( j l ) | A | - 2J as A -» 0 (1.56)

where L (z ) is a slowly varying function, tha t is a positive measurable function satis

fying
L(tz)  „ . „
■ _ . . —*■ 1 as z  —»• oo for all t > 0.
L(z)

Note tha t (1.56) specializes to (1.2) when the function L(z)  is a constant. The pro

posed estimate is
1 log{/’(9Am)// '(A m)}

= 2 ------------- 2 b f ,   (1 '57)

where
2^ MX™/2*]

F W = —  E  /» ( « +  Aj), (1.58)
”  j t ± i

Xj =  27rj7n, q G (0,1) is a user chosen number and m  is again a bandwidth parameter 

satisfying at least (1.51). With only second moment restrictions and without requiring 

Gaussianity, Robinson (1994c) showed the consistency of dqmuj for cj =  0. In this 

case only periodogram ordinates on one side of zero frequency are used to construct 

(1.58). Assuming Gaussianity, Lobato and Robinson (1996) obtained the asymptotic 

distribution of dqrn(jj for u  =  0. This is normal for d G (0 ,1 /4 ) and non-normal (related 

to Rosenblatt processes) for d G (1 /4 ,1 /2 ). The same properties are likely to hold for 

/  0 .
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Finally, based on an original idea of Parzen (1986) an alternative estimate of d in

(1.2) has been proposed by Hidalgo and Yajima (1997),

* 771

d* = — Y d p (1.59)
771“p = 1

where dp =  a \ f a 2 and

“ i =  ^ £ w(0 J°g /p (Ai ) - ( ^ £ w( 0 ) los / I>(Vi-i)

a2 =  — 2 /  w(w)logtidu 
Jo

where tn(/) =  (l / p )c — ( / / p ) ^ ”, c > 1 and / P(A/) is a particular moving average of 

periodogram ordinates at frequencies close to  a;. Under some regularity conditions, 

but without assuming Gaussianity

The variance of d* is, for c > 1, smaller than tha t of d so tha t a gain in asymptotic 

efficiency is achieved with respect to previous semiparametric estimates.

1.5 TESTING ON SEASONAL/CYCLICAL INTEGRA
TION AND COINTEGRATION

The characteristics of the process generating the series depend strongly on the value of 

the persistence parameter, d. In particular, d determines if the process has persistence 

(stationary or non-stationary), short memory or antipersistence (invertible or non- 

invertible). Some interesting situations th a t may require a rigorous test are

a) d =  0 (short memory) against d > 0 (persistence or long memory) or d < 0

(antipersistence),

b ) d =  1/2 ( “ju st” non-stationarity) against d > 1/2 (non-stationarity) or d < 1/2

(stationarity),

c) d =  —1/2 ( “ju st” non-invertibility) against d > —1/2 (invertibility) or d < - 1 /2

(non-invertibility).
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The hypotheses involved in a) can be tested using simple t methods based on the 

estimates and their asymptotic distributions described in Section 1.4. £-tests of b) 

and c) can be carried out using those estimates whose limit distributional properties 

hold for non-stationary or non-invertible processes.

Traditionally, interest has focused on testing the possibility of unit roots where d, 

in (1.2) is an integer. Some early work is due to  Dickey, Hasza and Fuller (1984) who 

test the possibility of a seasonal unit root of the form

(1 - L s)x t = £t t = 1 ,2 ,... 

where the et are iid (0,<72) random variables, against the alternative

x t = a x t- a +  et

with |q | < 1. They provide percentiles for the proposed test statistic. One of the 

limitations of this procedure is tha t it is a joint test for unit roots at the origin and 

seasonal frequencies, u>h =  2irh/s , h =  1 ,2 ,..., [5/ 2] (see (1.31) for the case s = 4). 

Furthermore the alternative is a specified form of 5-th order autoregressive process. 

Hylleberg et al. (1990), using quarterly data, extended this procedure allowing for an 

individual test at zero and at every seasonal frequency tha t is robust to behaviour at 

other frequencies. Some extensions of this procedure to monthly d a ta  are Beaulieu 

and Miron (1993) and Franses (1991). The null hypothesis in all of them i> pure 

integrability (7W( 1)) and the alternative is pure stationarity or short rnemor\ ( /JO )). 

Canova and Hansen (1995) extended the test of Kwiatkowsky et al. (199;?) to  the  

seasonal case, testing the null of stationarity (7W(0)) against the alternative of pure 

integration (7^(1)). Bearing in mind the properties of these two types of tests, that 

basically differ in the specification of the null and alternative, the simultaneous use 

of both procedures has been advised in order to  test for pure integrability. If the 

conclusion in both types of test is the same (i.e. one rejects and the other does not 

reject the null), then we conclude th a t there is strong evidence to accept the result 

implied by both procedures. If one test contradicts the other, then we need a more 

thorough analysis. In this case we may have fractional integration. A general test,
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based on the parametric model (1.32) and allowing for fractional and integer /^(d) 

as null and alternative, has been recently proposed by Robinson (1994a) and applied 

to  quarterly macroeconomic data by Gil-Alaiia and Robinson (1997). The procedure 

considers a scalar real-valued sequence satisfying

4>{L)xt =  ut t = 1 ,2 ,...,

x t =  0 t < 0,

where ut is a short memory covariance stationary sequence with zero mean, and <f>(z) 

is a known function. Consider the function <f>(z; $) where is a  p-dimensional vector 

of real valued parameters such tha t <j>(z; i?) =  <f>{z) if and only if

H0 : d  = 0. - (1.60)

The hypotheses of principal interest entail <j> of the form

h - i
0)  =  (1 -  L)da+d'e { [ ]  (1 -  2X cos +  L 2)d’+'3'> }(1 + (1.61)

3 = 1

where for each j ,  0^  =  1?/ for some I and for each I there is at least one j  such that = 

tii. The null hypothesis to test is tha t the p x  1 vector (p < h + 1) =  (d j, $2, •••, dp) is

equal to  a vector of zeros. Thus fractional seasonal and cyclical integration is allowed

in the null and alternative. This is a new feature with respect to previous unit root

tests tha t usually consider stationary AR and integrated processes of order one as 

null and alternative. To avoid estimation of the persistence parameters, Robinson 

(1994a) used a score test although undoubtedly the same asymptotic behaviour can 

be expected of Wald and likelihood ratio tests. When u t is white noise the proposed 

test statistic is
 ̂ n ~ , _

R  = — a A a
(T

where a 2 =  £ £ i  ttj, ut =  <j>-'(L]Q)xt, a =  -&■£)'• l r(Aj ) /tl(Ai ), IU(X) is the peri

odogram of ut defined in (1.44), ^(A) =  Re{-§# log <£(etA; 0)} and A = ^  

where the primed sum is over Xj G M  =  {A : —7r < A < ir, X £  (a;/ — Ai,u;/ +  Ai), I =  

0 ,1, . and U3i are the distinct poles of \P(A) on ( - t t ,  7r]. Asymptotically equivalent 

expressions for a and A  can be found in Robinson (1994a), as well as a time domain
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test statistic. Robinson (1994a) also proposed a modification of R  tha t allows for 

param etric weak correlation in Ut as long as its spectrum is bounded and bounded 

away from zero and of known parametric form (although a fixed number of parameters 

may be unknown). Unlike the techniques earlier described these procedures have the 

advantage of being standard in the sense tha t the test statistic has a well known Xp 

limit distribution under the null and a limiting non-central \ p  distribution against 

Pitm an or local alternatives of the form

where 6 is any p x 1 vector. Furthermore they are asymptotically most powerful 

against those local alternatives.

Also of interest is the test of the hypothesis of equality of persistence parameters 

across different frequencies. This is done in Chapter 5 of this thesis on a semipara

metric basis.

As far as cointegration is concerned, Hylleberg et al. (1990) considered the possi

bility of seasonal cointegration and defined this concept as

A pair of series each of which are integrated at frequency u  are said to be 

cointegrated at th a t frequency if a linear combination of the series is not 

integrated at u.

Hylleberg et al. (1990) pointed out tha t if the series present several spectral poles 

(as for example x t in (1.32)) the procedure in Engle and Granger (1987) to test for 

cointegration at zero frequency is invalid, so tha t prior to  any test for cointegration 

we have to filter the data in such a way tha t only the pole at the frequency where 

we suspect the cointegration occurs remains. For instance, if we want to  test for 

cointegration at the origin, we have first to remove seasonal roots, for example by 

applying the seasonal summation operator, S ( L ) =  (1 +  L  + . . .  +  Z/*-1 ), to  the original 

series and then perform a standard cointegration test such as those discussed in Engle 

and Granger (1987).

Engle and Granger (1987) and Hylleberg et al. (1990) focus on pure cointegration, 

tha t is they only consider the possibility of a linear combination of Iu ( l )  processes
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be I ^ (0)• But our definition of SCLM or Iu (d) processes allows for the possibility 

of fractional integration (fractional d) and cointegration. In th is  sense Engle et al. 

(1989) define cyclical cointegration in the following manner,

A vector of series x t , each component Iw(d) (integrated of order d at fre

quency u>), may be said to be cointegrated at th a t frequency if there exists 

a vector a u such th a t z? =  oljxt is integrated of lower order at u>.

As in the definition of SCLM, if the series are Iu (d) a t every seasonal frequency 

we are in the case of seasonal cointegration, but in general u  can be any frequency 

between 0 and 7r, both inclusive.

1.6 INTRODUCTION TO ASYMMETRIC SCLM

The research on SCLM reviewed in this chapter is based upon the  semiparametric

specification of the spectral density about u  described in (1.2). This definition imposes

an asymptotic symmetry (that is for frequencies very close to  u>) of f (X)  around w. Of

course, this has to happen for u  =  0,mod(n)  and real x t. However, when w #  (0, ?r),

/(A ) need not be symmetric and can behave like

x f CA -2dl as A —>0+ ,
/ ( W + A ) ~ j  d w -2J, ^  A ^ 0-  (1-62)

where 0 <  C, D  < oo, and we permit

d\ ^  d2 and/or C  ^  D  ( 1.G3)

so th a t we have two (possibly different) persistence parameters, d\ and 42 al the same 

frequency w. In case di ±  d2 we say tha t x t has asymmetric SCLM. Cleaily (1.62) nests

(1.2) as a special case. In Chapter 2 we analyze some parametric asyirmetric SCLM 

processes th a t satisfy (1.62). Since its definition is naturally done in the frequency 

domain, we found the time domain parameterization of processes safefying (1.62)

and (1.63) rather difficult. Instead we analyze in Chapter 2 the belnviour of the

autocovariances, and in most cases we are only able to give their asymptote behaviour.

The asymmetry in (1.62) has not been considered to  our knowledge ii any work on 

seasonal or cyclical long memory done to date. This possibility will h^e  important
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consequences on the estimation procedures described in Section 1.4. In particular, 

assuming (without loss of generality) tha t ^2 > the periodogram ordinates just 

before u  exert a relatively serious effect on those just after, contaminating in many 

cases the estimation of d\ if these frequencies are used. In Chapters 3 and 4 we analyze 

the effects of this possible asymmetry on two semiparametric estimates, namely the 

log-periodogram in (1.53) and the Gaussian semiparametric or local W hittle based 

on the minimization of (1.54). Chapter 5 proposes some tests of the hypothesis of 

symmetry d\ =  ^2 in (1.62) as well as of the equality of persistence parameters across 

different frequencies, showing their good and standard asymptotic properties. The be

haviour of these estimates and tests procedures in finite samples is studied in Chapter 

6 via Monte Carlo analysis. In Chapter 7 we apply the techniques developed in earlier 

chapters to  a monthly UK inflation series. Finally Chapter 8 suggests some possible 

uses and extensions of SCLM. In particular we include one section tha t reviews ex

isting work on estimating frequency. We place this section in the concluding chapter 

because throughout the whole thesis we assume uj is known. Estimating u,  in case it 

is unknown, in SCLM processes, symmetric or asymmetric, is a rather difficult task 

and further research seems worthwhile.
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Chapter 2

SEASONAL/CYCLICAL 
ASYMMETRIC LONG 
MEMORY

2.1 INTRODUCTION

Various parametric processes have been proposed to  model seasonal/cyclical long 

memory defined by a spectral density tha t satisfies (1.2) for some u; different from 

zero. Some of them are described in Chapter 1. Perhaps the more general form is the 

process used for instance by Robinson (1994a) and Giraitis and Leipus (1995) tha t we 

introduced in (1.32) and we rewrite here,

D (L)x t =  ut for t =  l , 2 , ... (2.1)

x t =  0 if t < 0

where
h - i

D(z)  =  (1 -  Z)d°(l  +  Z)dh A d -  2z COS OJj +  z 2)d>,
i=i

L  is the lag operator such tha t L kxt =  Xt-k and ut is a process with positive and 

bounded continuous spectral density (e.g. a stationary and invertible ARMA(p,q) 

process, $(L)u* =  0(Z)£f, where et is white noise (0,<r2) and the zeros of $(z )  and 

0 (z ) lie outside the unit circle).

This general specification covers many cases studied by several authors in the 

Box-Jenkins setup. Some examples are the following:

46



1. D(z)  =  (1 — z )d. This parameterization corresponds to “fractional ARIMA” 

processes introduced by Hosking (1981) and Granger and Joyeux (1980).

2. D(z)  =  (1 +  z)d. This process has a spectral pole/zero at frequency 7r , useful 

to model cycles with period two (for example many half-yearly series).

3. D ( z ) =  (1 — 2zcosu; +  z 2)d. These are the Gegenbauer processes introduced 

by Hosking (1981) and extended and analysed in Gray et al.(1989) and Andel 

(1986), modelling a cyclical behaviour at any frequency u  between 0 and 7r.

4. D (z ) =  (1 — z )dQ{ 1 +  z )d% n j L / t t  “  2 z c o s ^ -  +  z 2)di . This model is called 

“flexible ARFISMA” (Hassler (1994)) or “flexible (seasonal) ARMA(p,d,q)5” 

(Ooms (1995)), and allows for different persistence parameters a t frequency zero 

and at each seasonal frequency j  =  1,2, ...,5 /2 , where s (that here we 

assume to be even) is the number of observations per year.

The spectral density function of the process in (2.1) is:

/(A ) =  |X>(eiA) r 2/«(A) (2.2)
\ \

=  (4 sin2 — )_d°(4cos2 — )~dh JJ{4(cosu>j — cos A)2}-d j/ 1i(A)
2 2 j =i

= (4sin2 ^ ) - d°(4cos2 I I ( 4sin2 )~dj(4 sin2 A ^  )~d} f u( \ )

where f u(A) is positive and bounded (e.g. f u(A) =  f°r u t an ARMA pro

cess). The second specification of /(A) will be useful in subsequent analysis.

As pointed out in Chapter 1, all these manners of modelling SCLM suffer the 

drawback of imposing the same memory param eter on either side of the possible spec

tral poles/zeros at frequencies u; 6 (0,7r). In Section 1.6 of Chapter 1 we introduced 

the notion of asymmetric SCLM and we defined it by saying tha t x t is an asymmet

ric SCLM process if its spectral density satisfies (1.62) and (1.63). This implies two 

(possibly different) persistence parameters at each frequency between 0 and tt with a 

spectral pole/zero. The possibility of spectral asymmetry imposes a serious difficulty 

when trying to  parameterize a process with such a /(A ) in the time domain. In fact we
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do not propose any time domain parametric model, like those in (2.1), with a spectral 

density satisfying (1.62) and (1.63). Instead we study the behaviour of the autocovari

ances of parametric asymmetric SCLM processes defined via a complete specification 

of its spectral density. In Section 2.2 we calculate the autocovariances of some asym

metric SCLM processes with only one spectral pole/zero. Section 2.3 generalizes the 

results obtained in Section 2.2 allowing for the possibility of a finite number of spectral 

poles. In this case no explicit form for the autocovariances is obtained, but only their 

asymptotic behaviour can be offered. Finally Section 2.4 analyses the asymptotic bias 

of the periodogram as an estimate of the spectral density in a general asymmetric 

SCLM with only one spectral pole/zero. This bias will be relevant when explaining 

the behaviour of different semiparametric estimates of d\ and d,2 in (1.62) in following 

chapters.

2.2 ASYMMETRIC GEGENBAUER PROCESS

Let {x t} be a stationary SCLM process with spectral density

2
/(A ) =  ^ - |1  — 2etA cosa; +  et2A|_2dl if a; < A < 7T

27T 
2

= p - \ l  -  2eiX cosu> + ei2X\~2d2 if 0 < A < u.  (2.3)
2tt

By analogy with the Gegenbauer processes analysed by Gray et al. (1989), we call a 

process with spectral density (2.3) asymmetric Gegenbauer process. /(A ) in (2.3) can 

be written

/(A ) =  ^£.2-4d> {sin2 {sin2 i f w <  A < x
2ir 2 2

= {sin2 —  }~d> if 0 < A < oj
2tt 2 J 1 2 J "

and thus its asymptotic behaviour around the frequency u  is

~  ^ 2 - 2dMsi n ^ r 2dl|A - u ; |- 2dl as A j  a;

~  — 2_2d2{sin — }~2c*2|A — u>|~2ck as A t  u>.
2x 2 1

Now we extend the Lemma in Gray et al. (1989) to the asymmetric case. This
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extension, stated in Lemma 1, will be useful when investigating the behaviour of the 

autocovariances of a process with spectral density (2.3).

L em m a 1 Let R(k)  = f ( w)  cos(kw)dw for an integer k. Let wo E (0,7r) and 

suppose that f ( w)  can be expressed as:

f ( w)  =  bi(w)\w -  Wol- ^1 i f  w e {w0, 7r]

= b2(w)\w -  w0\-P2 i f w £ [0, w0]

where 0 < /3\,/32 < 1, b2(w) is a function of bounded variation in (0, wo — £) and slowly 

varying from the left at wq and b\(w) is a function of bounded variation in (wq +  £, 7r)  

and slowly varying at wo from the right, where e > 0. Then when k —> oo:

R(k) ~  fcA-1 sin (|/3 , -  +  ^ )r ( l  -  A )

+ k 02~' sm(^/32 + k w 0)b2( w 0 -  i)T(l -  /J2)

where a ~  b i f  f  —*■ 1 and r(-)  is the gamma function.

P ro o f: Write

R(k)  =  f  f ( w)  cos(kw)dw 
Jo

[ W q [ IT

=  I b2(w)\w — Wq\~^2 cos(kw)dw +  I b\(w)\w — Wq\~^ cos{kw)dw 
Jo Jwo

=  Sa -f- Sb.

Using the change of variable x =  w — wq the integral Sa can be expressed

f W° -RSa — I b2(w)\w -  w0\ P2 cos(fcw)dw
Jo
/ o

\x\~^2b2(x + w q )  cos(fc[:r +  Wo])dx
■Wq

/ O
(—x)~^2b2(x +  w0) cos(kx) cos(kw0)dx

■Wq

/ 0
(—x)~^2b2(x +  wo) sin(fcx) sin(A;wo)da:

■Wq

=  50i — Sa2.
Now

[ W q [ IT

S a l=  x~p2b2(wo -  x)  cos(kwo) cos(kx)dx = cos(kwo) I x  ^2b\(x) cos(kx)dx 
Jo Jo
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where

b\(x) =  b2(w0 -  x) if x E (O,tu0]

=  0 if x G (w0, tt]

b\(x) is of bounded variation in any interval (e, 1r), e > 0, (because b2(w) is of bounded

variation in (0, wq — £)) and slowly varying as x —► 0+ (b2(w) is slowly varying from

the left at u>o). Then applying Theorem 2.24 of Zygmund (1977, Chapter 5),

Sal ~  kh ~l b\d-)T{l  — P2) sin cos(kwo) as k —> 00.
rV /

Similarly

f W° -8Sa2 = —sm(kwo) I x P262(100 — x)  sin(fcx)dx 
Jo

= —sm(kw0) /  x~(32b\(x)  sin(fcx)dx 
Jo

and applying the same theorem,

Sa2 ~  —&̂ 2_1 sin(Artt;o)62( ^ ) r ,( l  — /?2) cos~ ^  as k —*■ 00.

Thus

S a ~  fcA - 1r ( l  -  /92)6 j( i )  js in  ^  cos(kwo) +  sin(fciy0) cos ^  j 
_  _  fj2)b\(^-) s in ( ^ ^  +  kw0) as k —► 00.

fZ z

W ith respect to

r n

Sb =  I b-[(w)\w — wQ\~Pl cos(kw)dw
J W o  

r i r — w o

= I |a;|- ^16i(a: +  wq) cos(fc[x +  wo])dx
Jo

r i r - W Q

= I (x) Pl6i(x  +  W q )  cos(kx) cos(kwo)dx
Jo

r i r - w 0

— I (x) Plbi(x +  wo) sin(fcx) sin(kwo)dx
Jo

= Sbl -  Sb2-

As before

Sbi =  cos(kwo) I x ^ 6 j(x )  cos(fcx)dx 
Jo
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where

b\(x) =  bi(w0 + x)  if x e  (0,7r -  w0]

=  0 if x 6 (x — W0, 7T].

Since b\(x)  is of bounded variation in any interval (£, 7r) , £ > 0 (&i(u;) is of bounded 

variation in (wo +  £,tt)) and slowly varying as x  —*• 0+ (&i(w) is slowly varying from 

the right at u>o) we again apply Theorem 2.24 of Zygmund (1977, Chapter 5) and 

obtain,

Sbi ~  k0l~l cos(kwo)b\(^)T(l — (J\) sin as k — oo.
K  Z

Similarly

Sb2 =  /  x~^16}(a;)sin(A:a:)sin(A;'u;o)dx
Jo

~  k01-1 sm(kw0)b \ (^ )T ( l  -  P i ) c o s ^ y - .

Thus,

‘S't =  Sbi -  Sb2

~  A^1_16 } ( i ) r ( l  — Pi){cos(kw0) sin — sin(A;u;o) cos
rW Z Z

= ^ 1_16 5 ( i ) r ( l  - / ? i ) s i n ( ^ -  -  fcu>0)

and

£(fc) ~  Ar/?1_16 } ( i ) r ( l  -  / ? i ) s in ( ^ -  -  fcw0)

+  k02~l b\{^)T{l  — P2) si n ( - ^  +  kw0) as fc —► 00 □
rC Z

Using Lemma 1 we show in the following theorem tha t the autocovariances of a 

process with spectral density (2.3) not only decrease in a hyperbolic rate typical of 

long-range dependent data but also exhibit the cyclic behaviour of the sine function 

with a period depending on u.

T h eo re m  1 Let x t be a stationary process with spectral density function

2
/(A ) = ^ - |1  — 2e,A cosa;-f e*2A|~2dl if  u  < A < 7r 

27r 
2

= ~ \ l  — 2etX cosu; -f e*2A|-2d2 i f  0 < \  < u
2tt
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where l j  ^ 0 and 0 < d \,  d2 <  1/2, and denote 7j  = E [x t — E x \] [x t~j — E x  1] the lag-j  

autocovariance. Then

In order to apply the previous lemma we have to show:

a) 62(A) is of bounded variation in (0 ,u> — e).

61(A) is of bounded variation in (u> +  £, t ).

b) 62(A) is slowly varying from the left at uj.

61(A) is slowly varying from the right at u>.

The proof of a) is clear from the form of 61(A) and 62(A). In order to show b) we 

say that 62(A) is slowly varying from the left at u> if :

1. (a; — A)562(A) is decreasing,

2. (a; — A)-562(A) is increasing

in some left-hand neighbourhood of u>, (A < u>), for 6 >  0.

7j  «  j 2dl 1 sin(7rdi — juj) 4- j 2d2 1 sin(7rd2 + j u )  as j  —»■ 00.

where a «  6 i f  |  —> C  where C  is a fin ite non-zero constant.

Proof: Due to symmetry of /(A) around zero

7j = 2 /  /(A) cos(j'A)dA. 
Jo

Now /(A) is

if 0 < A < u>

if uj < A < 7T

that is,

/(A) = 6i(A)|A — u>\ 2dl if lj <  A < 7T

= 62(A)|A — uj\~2d2 if 0 < A < cj
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1. Define the function

*2, (A) = (u> -  A)S&2(A)

= ^ -4  d2(u — X)s+2d2(cos X — cos a;) 2d2
27T

Now

TT02i(<M =  ?^*4 d2(u  — X)6+2d2 1(cos A -  cosa;) 2d2 1 
dA 27T

X {—(tf +  2d2)(cos ^ — cosa;) +  2c?2 sin A(a; — A)}.

The terms outside the braces are positive because A < a;. The expression within 

braces is negative if
2d2(u> — X) sin A

v '  < 1 .
(6 + 2d 2)(cos A — cosa;)

By L’Hopital it tends to g + fy  < 1 as A —*• a; so that 1 holds for A close enough 

to a;.

2. Define

<f>22(X) = (a; — X)~sb2(X) = ^ -4 -d2(a; — A)2d2-5(cos A — cosa;)-2**2.
27T

Differentiating with respect to A we have

-tt<£22(A) = 7p-4_d2(a; -  A)2d2-5_1(cos A -  cosa;)-24*2-1 
dA  27T

X {—(2^2 ~ ^)(cos A — cosa;) + 2d2(u> — A) sin A}

that is positive for A < u  if 2d2(u  — A) sin A > (2d2 — £)(cos A — cosa;). As A —► a; 

we have that
2d2(u> — A) sin A 2d2

(2d2 — £)(cos A — cosa;) 2 2̂ ~  ^

for a small enough 6 . Note that if (a; — A)_5&2(A) is increasing for a small enough

6, the same holds for any a > 6 because (a; — X)~ab2(X) = (a; — A)-a+5(o; —

A)-*62(A) s o  that ( a ;  — X)ab2(X) is the product of two positive (since a ;  > A) and

increasing functions and thus is itself increasing. Thus 2 is proved.
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Now we have to show that &i(A) is slowly varying from the right at uj. In order to 

do that we will check that

1. (A — Lj)sb i ( \ )  is increasing

2. (A — u>)- ^&i(A) is decreasing

in some right-hand neighbourhood of w, (A > a;), with 6 > 0 .

1. Define the function

2
0 n(A) = (A — u>)5&i(A) = 7^-4-d l(A — o;)5+2dl(cos A — cosu>)~2dl.

2tt

Now

TT^nC^) — ^ - 4_dl(A — o;)5+2dl_1(cos A — cosu;)_2<il_1 dA 2 7T
x {(£ + 2di)(cos A — cosa;) + 2di sin A(A — a;)}.

Since A > a; the term outside the braces is negative and thus gj^ii(A) is positive 

for A close enough to u> because

(£ + 2cfi)(cosa; — cos A) S +  2c?i  ̂ _
 ~ / ----- r-:—x   -»• —7n—  > 1 as A - i  w.

2ai(A — a;) sin A 2ai

2 . Define

2

0 i2(^) = (A — a;)-56i(A) =  ^ -4_dl(A — u ) 2dl~6(cos A — cosa;)_2Jl
27T

and

=  7r~^ dl(A —a;)2dl 6 1(cosA — cosa;) 2di 1dA 27T
X {(2d\ — £)(cos A — cosa;) +  2di(A — a;) sin A}

tha t is negative for A close to u  because

2di(A — a;) sin A 2di
(2di — £)(cosa; — cos A) 2di — 6

> 1 as A —> u>.
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Thus if we apply Lemma 1 we obtain

I j  ~  j 2dl~12bi(u + j ) r ( l  -  2c?i) sin(7Trf1 -  j u )

+ j 2d2~12b2(u -  4 )r(l  -  2d2) sin(7rc?2 + j u )
3

as k —► oo, what concludes the proof because b2(u> — y) and &i(u; -f A) tend to  finite 

non-zero constants as j  —> oo. □

R em ark 1: If d\  =  d 2 =  d  and a j  =  a \  then &i(A) = 62(A) = 6(A) and we obtain

the same result as in Gray et al. (1989, 1994) and Chung (1996a and b), because in

tha t case 7j  behaves as j  —► 00,

7j ~  2y2d_1r ( l  — 2d)[cos(yu>) sin(7rd){&(u; — -r) +  b{u +  i ) }

+  sin(ju>) cos(7rd){6(u> — i )  — b(u +  ^)}]
3 3

and thus 7 j «  j 2d~1 cos(ju>) because 6(0; ~  y) +  +  y) approaches a finite non-zero

constant and b(u — y) — b{u> +  y) approaches zero as j  —► 00.

R em ark 2: Some of the heuristic approaches to estimate the persistence parame

ter at the origin tha t use the sample autocovariances (for a description of some of these 

techniques see Delgado and Robinson (1994)) are not valid to estimate tlie persistence 

parameter at frequencies u> ^  0 because they require 7j  to  be eventually positive, a 

condition tha t does not hold if u> /  0( mod 27r).

R e m a rk  3: Parallel to and independent of this work, Chung (1996a) ha* obtained 

an explicit expression for the autocovariances of the GARMA(0,0) proo*s* of the form 

(1 — 2Lcos<jJ +  L 2)dx t =  £t with £< white noise. These autocovariances have the 

form described in (1.29) in Chapter 1. W ith a slight modification of Chung's proof 

and using equation 3.663.1 in Gradshteyn and Ryzhik (1980) we obtain the following 

exact expression for the autocovariances of a process with spectral density function

(2.3) but with d\  and d 2 constrained only to  be less than 1/2 for stationarity,

l j  =  r - ^ = (2 s i n u ; ) 2 -2d2r ( l  -  2 d 2) P ™ \ ~ 2( c o s u )
Zy/TT J 2

+  ( - l ) J -^= (2 s in u ;)^ ~ 2dir ( l  — 2 d i)P 2d\  2(-co su ;) (2.4)
2y/1Z 3- 2
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where P^{x) are associated Legendre functions. Applying equation 8.721.3 in Grad- 

shteyn and Ryzhik (1980), namely

p i (COS0) = 2 r(o +  6 + l ) c o s [ ( a + l ) g - |  +  ^ ]  
a ypK T ( a + | )  y/2 sin 9

1 + 0 ( 1
a

(2.5)

and Stirling’s formula to (2.4) we obtain the result stated in Theorem 1 using the 

fact tha t — cosa; =  cos(7r — a;). Note tha t while Theorem 1 is only valid for the 

persistent and stationary case (0 < d i ,d 2 < 1/2), using expressions (2.4) and (2.5) we 

obtain the asymptotic behaviour of the autocovariances stated in Theorem 1 as long 

as d i,d 2 < 1/ 2.

In case u  =  tt/2 , (2.4) can be enormously simplified and the autocovariances 7j 

have a much simpler form. This fact is stated in the following proposition.

P ro p o s itio n  1 Let {â t} be a stationary process with spectral density

m  = | i | i + ei2A| - 2d> , / | < \ < *

=  ? | 1  +  ei2A|-2lij i f  0 <  A < J27T 2

where d i , < 1/2. Then the lag-j autocovariance, j j ,  is equal to 

r ( i - 2  d2) -a? r ( i - 2d0
2 r ( i - d 2 - f ) r ( i - d 2 +  §) ’ 2 T ( i - d 1 - i ) T ( i - d 1 + i )

for j  =  0, ± 1, ± 2,....

P roof: The proof is shown in two different ways.

First we can use expression (2.4) and equation 8.756.1 in Gradshteyn and Ryzhik 

(1980),

P 6(0) = ---------- 2_v/7r-----------
aV ) r ( a ^  +  1)r ( ^ 6± i)

and we obtain the desired result.

Secondly, without using (2.4) and directly from the form of the spectral density, 

we can prove the proposition in the following manner. Write

I j  =  2 f /(A ) cos(j'A)dA 
Jo



+ —  2 2dl(cosA) 2dl cos(jA)dA|

(To OJ- ~ a}= _ l 2“2ti252 + — 2- 2dl5'1.
7T 7T

Now

S 2 =  / 2 (cos A) 2dz cosf;A)dA = ---- ;
7o 21-:

7 rr(l -  2d2)
2i-2d2r ( i  - d 2 + f  )r(i  -  d2 -  f )

applying formula 3.631.9 in Gradshteyn and Ryzhik (1980). Also

1̂ = /r  (cos^)~2til cos(j‘A)dA = J 2 [cos(A + ^)]_2dl cos[j(A + ~)]dA.

Now

7T
cos(A +  - )

7T.
cos [7 (A +  —)]

=  — sin A

.. jrc . . jir
=  cos 7 A cos—— sm 7 A sin —  

J 2 J 2
=  ( — 1)2 cos j'A if j  even 

=  ( — 1)^2“ sinjX  if j  odd .

Thus if j  is even

r~
S\ =  (—1)2 1 2 (sin X)~2di cos(>;A)dA =  (—1)2 

Jo

and

f  (sin A) 2dl cos(y'A)dA
■'f

= ^ 2( s i n ( A + | ) ) - 2dlco s ( i (A + | ) )d A

=  ( —1)2 /  2 (cos A)“ 2dl cos(yA)dA.
Jo

Then

5i =  (—1)^ f (sin A) 2dl cos(j X)dX — f 2{ cosA) 2dl cos(j'A)dA 
Jo Jo

( - l ) 2  7TCOs(^L)r ( l  -  2di) 7rr(l — 2d\)
2 - « i r ( i  -  dj + §)r(i  -  dx -  §) 2 i - 2dir ( i  -  *  +  §)r(i  -  4  -  §)

7 r r ( l - 2 d i )
2 1-2 * 1 X 1 -^  + j ) T ( l - d 1 - § )

by formulae 3.631.8 and 3.631.9 in Gradshteyn and Ryzhik (1980).
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Thus if j  is even

a \  r ( l  - 2rf2) g\  r ( l  -  2rft )
11 2 r ( i  -  d2 -  i ) r ( i  -  d2 + i )  2 r a - ^ - i j r u - d j  +  i ) '

If j  is odd,
7T

S\  =  ( - l ) 2̂ -  f 2 (sin X)~2dl sin(jX)dX =  ( —1)**
Jo

and the integral between tt/2  and 7r is equal to

f 2 (sin(A +  ^ ) ) _2dl sin(j(A +  ^))dA =  ( - l ) ^ 1 f 2 (cosX)~2dl cos(jA)dA.
JO I  2. Jo

Then 5i is equal to

(—1)^2“ /  (sin A)~2dl sin(>;A)dA — (—1)J [ 2 (cos A)_2dl cos(jX)dX 
Jo Jo

( - l ) 4 1J s i n ( f ) r ( l - 2 d , )  ■_________ )iT(l — 2d])_________
2- wi r ( i - d 1 +  i ) r ( i - d 1 - i )  *• ; 21-w > r(i -  d, +  § ) r ( i  -  d, -  i )

_ 7rr(l — 2di)
—21- 2Ji r(i -  d! + |)r(i -  dj - 1)

by formulae 3.631.1 and 3.631.9 in Gradshteyn and Ryzhik (1980). Thus when j  is 

odd

a 22 T ( l - 2d2) <r\ r ( l - 2d,)
7i _  2 r ( i  -  d2 — j ) r ( i  -  d2 +  j )  2 r ( i  -  d, -  p r ( i  -  d, + p

and the proposition is proved. □

Applying Stirling’s formula to  'fj we obtain tha t when u  =  f ,

7i ~  ( - l ) 2j 2d2_1 +  ( - l ) 2j 2dl_1 if j  even 

«  ( — 1)*T“j 2£*2_1 — (—l ) 2̂ - ^ 2̂ 1-1 if j  odd

as j  —> oo, which corresponds to the result obtained in Theorem 1.

When u) =  7r/2  we can construct a parametric process with autocovariances (2.6)

in the following manner. Suppose we have two independent series x n , i =  1, 2, of

quarterly data, each of them formed from two half-yearly series, y}t and y2t , such that

xn — y}L if t is even and xn = y2t±i if t is odd. Assume tha t the different yft come 
*2 * 2

from I-n(di) processes,

(1 + £ ) V .  = 4  '* '= 1 ,2 , * = 1,2
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where the different s \ t and £** are independent white noises (0 , cr )̂ and (0, <t|) respec

tively. Thus the lag-j autocovariance of yft , i = 1,2 and k =  1,2, is

7”' = <7,?r ( i - d , - i ) r ( i - < i , '  +  j)  3 = ° ’± 1 ......  (2'7)

Note tha t we have the same autocovariances for y}t and yft . Although we suppose that

e\t and £** are independent we assume a certain covariance between e\t and sft such

that the covariance between y}t and yft_j is 7* 2]+i defined in (2.7). Then the lag-j
y 2

autocovariance of xa,  for i =  1, 2, is

7 i j  =  7 'yi  fc =  0 , ± l , . . .

Now let xt be

Xt =  7 2 X2t +  (<~ 1^ ' ^ 2 Xlt' ^2’8  ̂

Since Xu and X2t are independent (because £*t and e\ t are independent), then the

lag -j  autocovariance of x* in (2.8) is (2.6) in Proposition 1.

We observe a similarity between these type of processes and periodic ARIMA

processes described in Chapter 1, which are of the form

^q{L^Xj> =  (3q{̂ L̂ Sj< Q = 1, •••»

where s is the number of periods and the sequences £ j,  T  =  1 , 2 , for <7=1, • 

are white noise with variance In our case we have

(1 + L )dly\T =  e\T

( l  + L )dlyiT =  e\T

and we form the quarterly series, X\*, from these two half-yearly series with a spe

cific correlation between them. We proceed similarly for X2t so tha t x t is a linear 

combination of periodic fractionally integrated processes.

2.3 FINITELY MANY POLES IN THE SPECTRUM

Consider the process {xt} with spectral density function

_  /  fjl-*- — ctA|_2<io|l  +  etX\~2dl |1 — 2etX cosa; +  et2X\~2d21 if u  < X < tt
I  ^ \ 1  — e*A|“ 2tio|l  +  etX\~2d' |1 — 2etA cosa; +  et2X\~2d22 if 0 < A < uj

(2.9)
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with 0 < ofo, di, g?2i, g?22 < 1/2. This specification of the spectral density allows for 

different poles at 0, w and to  the right and left at cj. /(A ) can be equally written

f | |( 4 s in 2 | ) -<io(4cos2 | ) -dl{4 sin2( ^ ^ ) } -rf21{4 s in ^ ^ y ^)}- **21 if lj < A < 7r 
\  f*(4sin2 |) - * (4 c o s 2 f ) - i l{4 sin2( i f i )}"'i22{4 sin2( 4 ^ ) } - ' i22 if 0 < A < u

(2.10)

Figure 2.1: Spectra with asymmetric pole at j

0.0 2.0 2.a 3.2o .a 1 .2

dO-.2,d1 « .3 .d 2 0 » .  1 ,021 -  .35

0.0 1 .a 2.0 2 . ao .a 1 .2

dO-.35,d1 -  ,0 5 .d 2 0 - .3 5 ld2 1 — . 1

An example of two different spectra like (2.9), for the persistent case with u  = 7t / 2, 

can be seen in Figure 2.1. Note tha t /(A ) is in fact infinity at the origin, at 7r and at
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7r / 2. In Figure 2.1 those frequencies are not considered and only frequencies around 

them are plotted. This is enough to give some intuition of the behaviour of the spectral

density (2.9).

If there is more than one spectral pole/zero we can not obtain an explicit ex

pression for the autocovariances like in the simple GARMA(0,0) with only one pole. 

Nevertheless, in the persistent case (no zeros in the spectral density), we can achieve 

some knowledge of the asymptotic behaviour of 7j  when j  —*■ 00. In Theorem 2 we 

state tha t if there is more than one (possibly asymmetric) spectral pole, then the 

autocovariances have the expected hyperbolic decay, but the possible cyclic pattern 

depends on the magnitude of the different persistence parameters, such tha t if do is the 

biggest, then the autocovariances will eventually have a monotonic decrease without 

any cyclical movement.

T h eo re m  2 I f  Xt has a spectral density function (2.9) then the lag-j autocovariance, 

7j, behaves

where 0 <  £1  <  u  <  6 2  <  t .  Now we study the behaviour of the four integrals as 

j  —► 00. The integral between 0 and <$i is equal to

7j «  j 2d° 1 +  j 2d™ 1 sin(7rd22 + j u )  + j 2dil 1 sin(7rd2i -  j u )  + j 2dl 1( - 1)J’

P roof:

X {4sin2( -  j22{4sin2( ^ ^ ^ )} d22 cos(j'A)dA

(2 .11)

where G\ depends on £1, d\, d22. The integral in (2.11) can be written
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where
2 sin —

61(A) =

* \  — 2do
■jr~ , if 0 < A < <*i

0 if 61 < A < 7r.

Now 61(A) is of bounded variation in any interval (e, 7r] and we have to  show tha t it is 

slowly varying as A —» 0+ in order to apply Theorem 2.24 in Zygmund (1977, Chapter 

5). Two conditions have to  hold:

1. A56i(A) is increasing

2. A- 56i(A) is decreasing

for S > 0, in some right hand neighbourhood of 0.

1. Define <f>u (A) = A*6i(A) =  A5+2d°(2 sin §)~2d°. Then

■ j^ n (A ) =  Afi+2do-1(2 sin ^ ) -2do_1{(6 +  2d0)2sin ^  - 2d0^ c o s^ }  

is positive if (gt 2fo)2si” 2 > ^  This fraction tends to -t ^ dl > 1 as A —► 0 and 1
r  2 d o \co s  j  2d0

holds for 6 > 0.

2. Similarly let <£i2(A) =  A_56i(A) =  A2d°“ ^(2sin ^ )~ 2d°. Then

A 0i2(A) =  A2do_5_1 (2 sin ^ ) " 2d°-1 {(2d0 -  ^)2 sin ^  -  2d0X cos

is negative for a small enough 6 because

9 d n
> 1 as A —► 0

2dgA cos ^ 2do
(2do — 6)2 sin ^ 2do — 6

Thus we can apply Theorem 2.24 in Zygmund (1977, Chapter 5) and we have th a t as 

j  -> 00,

f  A- 2d°6i(A) cos(j'A)dA ~  i 2do-16i ( i ) r ( l  — 2do)sin7rd0- 
Jo J

The second integral is

rtJ ruJ ( A — lj 1 —̂22
j  /(A ) cos(j'A)dA =  G2 j  |4 s in 2 —-— j  cos(j>'A)dA (2.12)
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where G2 depends on 61, u>, o\, d0, d\ and d22. The integral in (2.12) can be written

;-A\ 'J - 2£i22

f “ ~ 6'  _ o j  f  2  s i n  f  1 ~ 2 d *2 =  j  x  22 |  - j  cos(j(c«; — x))dx
r Ti*

= /  x ~ 2d22b2(x) cos(j(u> — x))dx
Jo

where

[ 0  if a; — 61 < a; < w.

(2 .12) is then equal to

r i r  p i r

cos(juj) I x ~ 2d22b2(x )cos ( j x )d x  +  s m ( j w )  I x ~ 2d22b 2 ( x ) sm ( jx ) d x  
Jo Jo

~  j 2d22~l b2( \ ) T ( l  -  2d22)sin (7rd22 +  iw ) as j  -* 00,

applying Theorem 2.24 in Zygmund (1977, Chapter 5) because 62(a;), like 61(A), is of 

bounded variation in any (£,7r) and slowly varying as x —*■ 0+ .

Similarly,

f t 2 rS2 r \  -  lj } ~2d21
j  /(A ) cos(j‘A)dA =  G 3 j  | 2 s in —- — j  cos(j*A)dA

where G3 depends on 62,u>, <rf, do, d\ and d2i and the integral is equal to 

f \ x  -  „ )-* * •  cos(jA)dA

rSo—u) (  9  c in  — 'i ~2<f2l
= J  x ~ 2d2' I  - i  co s ( j ( u  + x))dx

Jr i r  r i r

f x ~ 2d21bz(x) cos ( jx )dx  — s m ( j u )  I x ~2d21 b^(x) s m ( j x ) d x  
0 Jo

= cos

2dai 163( i ) r ( l  -  2d2i)s in (7rd2i -  j u )  as j  -»• 00,~  J
J

applying once more Theorem 2.24 in Zygmund (1977, Chapter 5) because the function

63( s ) = (  ^  if 0 < X < S 2 - u ,
 ̂ 0 if 62 — u> < x < ic

is of bounded variation in any (e, tt) and slowly varying as x —»• 0+ .

Finally

[ /(A ) cos(jA)dA =  G4 f  (2 c o s^ )_2dl cos(jA)dA 
Js2 Js2 2
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and the integral is

A 'I “ 2di„ . 9 J I Z CUS
(jt -  A) 1 < ------

f $2

>ir-62 ( 2 COS

£(*_A) \ S }  cos(iA)dA
p r-S2 ( 2 cos 1 2dl

=  J  x 1 <  —  > cos(j(7T — x))dx

MT /*7T
( jn )  /  x_2dl&4(x) cos(jx)dx +  sin(j7r) /  &4(x) sin(7x)d; 

jo Vo
=  cos

~  j 2dl_164( i ) r ( l  -  2di) sin(7rdi +  jw)  as j  —► oo 
3

_  j 2di - 164 ( I ) r ( l  -  2 d i )  s i n ( 7r d i ) ( —l)-7

applying the same Theorem in Zygmund (1977, Chapter 5) because the function

r—x \  “ 2dl

b4(x) =  < if 0 < X < 7T — <$2 

0 if 7T — 62 < x < 7T

is of bounded variation in any (£, 7r) and slowly varying as x —► 0+ . To prove this note 

that

1. <f>21 = x sb4(x) =  x5+2dl(2cos 2Lj £ )-2dl is increasing in some right hand neigh

bourhood of 0, since

~r~<f>2 i  = x 6+2dl~1(2 cos * - ) ~ 2dl~1{(^ +  2di)2 cos * X -  2d\x sin — }
dx 2 2 2

is positive for x  close enough to  0 because

(6 + 2d i)2 cos 2Lj £ 6 +  2dh ,— > 1 as x —> 0 ,
2d ix s in 2L2£ 2 d\

and similarly

2. <f>22 = x~564(x) =  x 2di~s(2 cos 2̂ £ )~ 2̂ i is decreasing in some right-hand neigh

bourhood of 0.

Thus the proof of the theorem is completed because &i(y), ^2( 7)5 ^3(7) an^ ^4( 7) tend 

to non-zero constants as j  —> 00. □

R e m a rk  1: The result obtained in the previous theorem can be generalized to 

finitely many spectral poles in the interval [0, 7r], possibly with different persistence
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parameters across different frequencies as well as on each side of the poles at frequen

cies in (0, 7r). Let x t have a spectral density function /(A ). Suppose /(A ) has poles 

at frequencies 0 < w\ < w2... < wr - 1 < 7r and possibly at wq =  0 and wr =  7r. Let 

Sj  =  (wj- i ,  Wj] for j  =  1,..., r. Write

ho{\) = 

hr( A) =  +

hj:k ( \ )  =  |1 -  2e'A cos wj +  e'2X\~i>‘lc , j  =  1, r  -  1 , k =  1, 2,
r—1

9(A) =  V A ) 2M A )2 n ^ , i ( A ) ^ ,2 ( A ) ,
j = l

where d0,dr,djk 6 (0 ,1 /2 ). Let #j(A), j  =  l , . . . , r ,  be even, positive and bounded 

functions in [—7r,7r]. Now specify the spectral density function as

' * (* )» (* )& $ { • if A € 5 i ,
/ ( A )=<  9 j ( A ) 9 ( A ) ^ f j4 ^ f | l j  if A 6 Sj,  j  = 2 , 3 , . . . , r - 1, (2.13)

■ if A e  5 -~
If we take gj{A) =  f u(A) for all j ,  and dji =  dj2 =  dj, we have (2.2) for the case of

symmetric spectral poles.

For a process with a spectral density (2.13), the lag -j  autocovariance is

r  f Wk+17j =  2 / /(A)cos(.;A)dA =  2 ^  /  /(A ) cos(./A)dA.
-70 *=o •/w *

Proceeding as in Theorem 2, we get tha t as j  —► oo the autocovariances are

r—1
+ 2 { i2dfcl“ 1 sin(7rdfci -  jw*) +  j 2dk2~l s\n{i:dk2 +  j™*)} 

k =1
with behaviour finally governed by the highest d . A similar result has been found by 

Giraitis and Leipus (1995) for the case of symmetric poles.

R e m a rk  2 : The autocovariances of a process with spectral density like those 

studied in this section are not summable if do > 0 and are not absolutely summable 

whenever any of the d’s is positive. This fact corresponds to  the long memory property 

in the time domain. We also observe tha t the asymptotic behaviour of the autocovari

ances is finally governed by the highest d, with hyperbolic decay and cyclical behaviour 

if this d corresponds to a positive frequency.
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R e m a rk  3: Remark 2 in the previous section applies in this more general case. 

Furthermore the time domain techniques th a t use the sample autocorrelations for long 

lags j  are only asymptotically valid (if they are at all) for the highest d.

2.4 ASYMPTOTIC RELATIVE BIAS OF THE PERI- 
ODOGRAM

The periodogram has traditionally been used to estimate the spectral density. It is 

thus im portant to achieve some knowledge (at least asymptotically) about the rela

tionships between periodogram and spectral density function in the different situa

tions we analyse in this thesis, and in particular the effects the existence of SCLM 

may have on these relationships. One im portant and early work is due to  Hannan 

(1973b) who showed tha t the periodograms evaluated at Fourier frequencies close to  a 

fixed frequency A are asymptotically independent and identically distributed as ^ j^ x i  

where /(A ) is the spectral density at A and x i *s chi-square distribution with two 

degrees of freedom. However his assumptions rule out the possibility of long-range 

dependence. Yajima (1989) allowed for the possibility of long memory and gave the 

joint asymptotic distribution of the periodogram when evaluated at a set of fixed 

frequencies not depending on n, the sample size, so tha t Fourier frequencies are not 

considered. These results have led many authors (e.g. Geweke and Porter-Hudak 

(1983) based their proof on Hannan’s theorem) to conclude tha t the log-periodogram 

estimator proposed by Geweke and Porter-Hudak is asymptotically normal with vari

ance 7t2/ 6. However, the log-periodogram regression performed to  obtain the estimate 

is based on Fourier frequencies A j =  2tt j f n  for j  =  1,2 ...,<7(71), where g(n ) is an 

integer smaller than n / 2. Consequently these frequencies do change with n, so tha t 

Yajima’s result can not be applied. As far as Hannan’s result is concerned, his as

sumptions rule out the possibility of persistence. For d < 0 Hannan (1973b) stated 

tha t the periodogram evaluated at a finite number of Fourier frequencies close to  the 

origin converges in probability to  zero. However, when we normalize with the spectral 

density the remainder is divided by a quantity which approaches zero, and therefore 

does not need to  be negligible. These facts have been noted in Hurvich and Beltrao
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(1993) and Robinson (1995a). Hurvich and Beltrao (1993) considered the asymptotic 

distribution of the periodogram normalized by the spectral density function of weakly 

stationary time series with zero mean and spectral density

/(A ) =  | l - e - iV ‘7*(A)

where \d\ < .5 and /* (A) is an even, positive, bounded and continuous function on 

[—7r, 7r], They studied the behaviour of the normalized periodogram at Fourier fre

quencies, Xj =  2nj’/n ,  where j  is fixed and n  —> oo, and they showed tha t they are

not asymptotically identically distributed. In fact limn-^*, E[In(X j ) / f (X j )] depends 

on j  and d and is typically greater than 1, implying positive asymptotic relative bias 

in the periodogram as estimate of /(A ). Hurvich and Ray (1995) extended the results 

in Hurvich and Beltrao (1993) to the case when d falls outside the range (—1/ 2,1 /2 ). 

They proved tha t when d < —0.5, E[In(Xj)/ f(Xj)]  tends to infinity as n  —*• oo, when 

d E [0.5,1) the asymptotic relative bias of the periodogram is finite and decreases 

with j ,  if d =  1 it is constant for all j  and when d E (1,1.5) it increases with j .  In 

this section we extend these results to the SCLM case allowing for the possibility of 

asymmetric spectral poles/zeros like those described in earlier sections.

Let {a*} be a stationary process with spectral density function

-  I I1 ” 2etAcosu; +  e,2A|“ 2dl0i(A) u> < X < v  ( .
|  jl — 2etX cosu; +  et2 \~2d2g2(X) 0 < A < u

Si (A) I 4 2 sin2 ( A f * )  ( n S p )  j  IA -  w r 2*  «  < A < x

S2( A ) | 4 2 Sm 2 ( A ± ^ ) ( 5 ^ p ) 2J  I w - A I - 2*  0 <  A <  w

where </i(A) and ^ (A ) are even, positive and bounded continuous functions on [—7r, 7r]. 

We can write (2.14) as

_ I  A*(A)|A -  w |_Ml W < A < IT
f W  ~ \  A'(A)|w -  A|-2 2 0 < A < u  (215)

where / 2(A) and /j(A ) are positive and bounded continuous functions on [0,oa] and 

(a;,7r] respectively. Let / n(A) = |Wn(A)|2 =  2^1 H"=i x te%tX\2 be the (uncentered)
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periodogram of x t a t frequency A. Then the result stated in the following theorem 

follows.

T h eo re m  3 Let x t have spectral density (2.14) with —1/2 < d i,c?2 < 1/2. The 

asymptotic relative bias of the periodogram as estimate of f (  A) at Fourier frequencies 

just after u ,  u  +  A j,  where A j = and j  is fixed, is

I n(u  +  Aj)
L j (d \ ,d 2) = lim E

f(u> + A j )

a) I f  d2 < d\
2

L j(d i ,d2) =  /  —
Jo ft

00 2 sin2 |
(2ft j  — A)2 2ft j

dA,

b ) i f  d2 =  d\ =  d

foo o
L j (d \ ,d2)=  /  -  

Jo ft
2 sin2 1 

(2 ft j  — A )2 27t;

-2d

d x + W ) ff \  (^ ) J —oo 7T
/2 (w) /°  2 sin2 |

c) and i f  d\ < d2

lim n ^ dl- d2)E
I ( lo +  Aj)
/ ( a ;  +  A j ) /,*(«)' Jl /-o o  it (2>r; — A)2

(2ft j  -  A)2

0 2 sin2 4

27TJ

— 2d
dA,

P ro o f: Since d j , d2 < 0.5 we can write the expectation as

7n(u> +  Aj)
E

f(uj +  Aj)
= r  9n(X)dX

J —rr
(2.16)

where

9 n ( ty  — K n ( u  + ^ j — )̂ f W
f ( u  +  Aj)

and K n( •) is Fejer’s kernel

K  r.V) -  1 sin2( |» )Kn(X) -  I27rn t=l 27rn sh r  y

The integral (2.16) can be decomposed into

f r—ui—n~a r—uj+n/ —u>+n a rO fuj—n a rui+n a rir ]
+  /  +  /  +  /  +  /  f  <7n(A)dA

-<jj—n~a J —w+n~“ JO Ju>—n~a Ju/+n~a J

for some a  6 (0,0.5].

68



The integral over [—7r, —uj — n a] can be written

f ~ n~a f (  A —
Kn{2u + Xj ~ X)f (u ,+  Xj ) iX

r -°  sin^(~~±^~~7i) J I ( X - u )  |A |- ^

J-ir+u  2 7 m s i n 2( 2ct;+-̂ - A) / f ( «  +  A?) l ^ j l -2 d l

by symmetry of the spectral density around zero. Now f f ( \ )  is bounded and positive 

and sin2( 2̂ +2J~A) /  0 for — 7r +  u> < A < — n~a and n  sufficiently large. Consequently 

(2.17) is

0 ( n ~ l ~2dl f ~ n |A|_2dldA) =  0 ( n -1_2dl) =  o(l)

as n  —► oo for d\ > —0.5 and a  > 0. Similarly the integral over [—a; +  rc~“ ,0] is equal 

to

/ ( A - u )l l K n( 2 .  + X] - X ) I L ^ - ) d X
/ ( u  -f Aj)

_  /■" sin2( ^ ± ^ n )  } j ( X - u )  |A|~2<i2
Jn-<* 27rn sin2( 2u" ^ ~ - )  /i*(k> +  Aj) |Aj|—2til

Since 0 < 2a; +  Aj — A < 2x  for A G [n~a ,u] and a large enough n, and / f  and are 

positive and bounded functions, we have that (2.18) is

0 ( r  n~ l ~2dl |A|—2d2dA) =  0 (n -1_2dl) =  o (l)
Jn~a

for d \ , c?2 > —0.5, a; fixed and a  > 0.

Now the integral over [0,u; — n~Q] is equal to

f ( u  +  A)
/  n K n(Xj -  A)-

J  — UJ
dA

/ ( w +  Xj)

j - " - °  sin2( ^ n )  / |(h )  +  A) l-M"2*'*. .  ,.2 | q ,
J - «  2 ^ n s i n 2 ( ^ ) / , ' ( «  +  A i ) | A , | - 2'i '  ' 1 ^

Since / j  and /£  are positive and bounded, and

A?■ +  n~a
inf sin2 ( ^  = sin2 

;A<-n-Q \  2 /  y—u/<A<—n—Q

for a sufficiently large n, then (2.19) is bounded by



Since sin2 A =  A2 +  0(A 4) then sin 2 A =  A 2 +  0 (1 ) as A —> 0 and (2.20) is

/  n~i ~‘2dl(u>1~2d2 +  n - “(,-2 * ) ) \

V ( ^ + » - “ ) 2 )
= 0 ( n - ' - 2i ' n 2a)

= o (l)

for d i ,d i  > —0.5 and 0 < a  <  0.5 +  d\. Similarly the integral between u  +  n~a and 

7T is

r ~u k  ( \  _
y„-« n( i v ^ + a . )/ ( u> +  Aj)

_  ,*-w Sin2( i ^ n ) /* (u  +  A) |A|—2J|

Jn- *  27r n s i n 2( ^ j ^ )  / T ( w  +  l ^ i l -2 t i l

< const.n~l ~2dl sin-2 ^ ^ [(tt — u;)1-2dl +  ra-0^1-2^ ]

= 0 (n_1_2dln 2a)

= o(l) (2.22)

for a large enough n, such that Aj — n -a  < 0 , d\ > —0.5 and 0 < a  < 0.5 +  d\.

Now the integral over [—a; — n~Q, —a;] is

f ( X - u ; )

/ ( «  +  ^ i)
dA/  -&n(2u> +  Aj — A)

J - n ~ a

,0 sin2( ——̂1——7t) y?(A -h>) |A|~2dl
J-n~a 2irn sin2( 2fa,+̂ ~ A) /fO** +  Aj) |Aj|~2dl 

=  0 ( n -1_2<il f° |A |_ 2 d l d A )
J - n ~ a

= 0 (7i-1-2dl n- "(1-2dl))

= 0(1)

as ra —► oo, for a  > 0 and di > —0.5. Similarly

*—ut+n—a/ —UJ+Ti
9n(A)dA

[ n a sin2( ^ ± ^ n )  / 2*(A -a>) |A| 2t*2 

*/o 27rnsin2( ^ :j i:i^) /i*(w +  ^ j)  M -2**1
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— a

=  O fa -1-2*  I  |A|_2djdA)
Jo '

= 0 (n_1" 2<Zln"°,(1" 2rf2))

=  °(!)

as n —► oo, for a  > 0 and d,2,d\  > —0.5. Thus as n  —► oo and j  fixed

E In{u +  Aj) rtj+n a
= /  £n(A)dA + o ( l ) .

Ju—n~a
(2.23)

/ (w + Aj)

Since the behaviour of the spectral density (2.14) is different to  the right and left of 

o>, we split the integral in (2.23) into two. First

ru>+n~a

/: 9n(A)dA

s i n 2( - ^ — rc) f i ( u  +  A ) | A | ~ 2rfl 
o 2irnsin2( ^ j - A) +  A j )  | A j | - 2 d l

/ nl-°  sin2( ^ )  fJ (w + $)
Jo 2irn2 sin2(^ £ p ^ ) f \ { u  +  Aj)

dA

—2d\

2n j
dA

where

f  oo
= /  *i(A)dA

Jo

11 m  =  Sjn2( ^ )  / , > + * )
” ’ 2wn?sin2( ^ A )  +  A,) 27TJ

- 2ij
X[0,nl-Q]

and Xio.n1- 0] is the indicator function of the interval [0,71* “]. As n —► oo we have 

that h*(A) —*■ hi (A) where

2wj

—2(2]

7T (27Tj  -  A)2

for 0 < A < oo. Proceeding like in the proof of Theorem 1 in Hurvich and Beltrao 

(1993) we see tha t h*(A) is dominated by an integrable function. Thus we can use 

Lebesgue’s dominated convergence theorem (see for instance Temple (1971), Theorem 

9.3.7 ) and we have tha t

roo roo roo O
h'n( W  = l  A((A)dA = j  -

00 2 sin2( f )
(2*7 -  A)2 2 n j

—2 d\
dA

using the fact tha t sin2(-2-̂ --- ) =  sin2(£ ) for j  an integer.
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Finally scale the integral over [lj — n multiplying it by n 2(dl d2K Then we 

have

n2( * - * )  r  ffn(A)dA
J<jj—n~a

=  f °  /aV + A) \ \ ? i2
J—n~a 27m sin2 ( *̂1 I'M-2**1

-  n~2d* 1° sll>2(^~4 ) f i ( u  +  n ) |2t j | 2*  -  d \
~  2™ 2 sin’ ( ^ = A ) / 1> + A i ) 1 Jl

=  r  h i ( \ ) d x
J—oo

where

u2 ( \ \  _  |g TT' |3di s n̂ 2 ( 2 2 )  f i f a  +  n )  | \  | —2cf2
n( ) _ l  j |  2™ 2sin2( ^ ) / J*(« +  Ai ) 1 1

and Xf-n1- 0 ]̂ is the indicator function of the interval [—n1-“ , 0]. Proceeding as before 

we see that as n  —► oo, h\{A) —* h2{X) where

h, (X)  -  I2 t iI2* 2 5i" 2(2) /2 ( t j) |.\|-2lfe/1 2 (A ) -  |2jtj | ^  _  A^2

for 0 < A < 00 so that proceeding as before we see that

lim f° h2n(A)dA =  f° h2(X)dX
n~*oo J - o o  J —oo

using Lebesgue’s dominated convergence theorem. Thus if d\ > d2 then / J < 7„( A)dA 

0 as n -+ 00 and consequently a) is proved. When d\ = d2 we obtain the  result s tated

in b). If d\ < d2 then n2(dl~d2) —► 0 as n —► 00  so that if we multiply the  integrals

with a finite or zero limit by n 2 d̂l~d2̂  the only integral with a limit different from 

zero is

„ * (* -* )  / “ <7„(A)dA

so that c) is obtained. □

When d\ = d2 and 01 (A) =  g2(X) for all A E [—7r, 7t], the spectral density function 

(2.14) is the one analysed by Hurvich and Beltrao (1993), and the same result as 

their Theorem 1 is obtained. However, when d2 < d\, the asymptotic relative bias, 

although depending on d\ and j ,  reduces with respect to that obtained by Hurvich

72



and Beltrao at zero frequency. Finally, when d\ < c?2 the asymptotic relative bias of 

the periodogram as estimate of /(A ) increases without limit as n —> oo. This feature 

will affect the behaviour of those estimates analysed in Chapters 3 and 4. A more 

exhaustive comment on this fact will be done when studying the performance of those 

estimates in finite samples in Chapter 6 .

Theorem 3 focuses on the behaviour of the scaled periodogram at Fourier frequen

cies just after u.  A similar result is obtained for frequencies just before the spectral 

pole/zero. In particular, the asymptotic relative bias evaluated at those frequencies 

diverges as n —► oo when di > c?2.
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Chapter 3

LOG-PERIODOGRAM 
REGRESSION

3.1 INTRODUCTION

Let {x t, t  =  0, ±1 ,...}  be a real valued and scalar covariance stationary process with 

absolutely continuous spectral distribution function and spectral density satisfying 

(1.62). When C  =  D, d\ =  c?2 =  d and w /  0 we say tha t x t has symmetric 

SCLM. Some parametric processes which are in accord with this property have been 

mentioned in Chapter 1. Several parametric and semiparametric methods to  estimate 

d in symmetric SCLM processes were also described in Chapter 1. Many of them were 

originally proposed, and their properties derived, for the standard long memory case 

at zero frequency where /(A ) is always symmetric for x t real. The same properties 

are likely to hold for any u> £ (0, tt] as long as /(A ) is symmetric around u.  Of course 

this symmetry holds for u  =  7r in addition to  a; =  0. However, when 0 < uj < tt there 

exists the possibility of what we called asymmetric SCLM in Chapter 1. In this case 

we have two (possibly dilferent) persistence parameters at the same frequency a;, and 

the relationship between periodogram and spectral density at frequencies close to  w 

depends on the difference between both parameters (see Theorem 3 in Chapter 2 of 

this thesis). This dependence will affect the properties of those estimates proposed for 

symmetric long memory processes. In this chapter we analyse the log-periodogram 

estimate proposed by Robinson (1995a). In Chapter 1 we described this technique as 

well as a more efficient (at least asymptotically) method of estimation, namely the
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Gaussian semiparametric or local W hittle estimate proposed by Robinson (1995b). 

This la tter technique will be analyzed in Chapter 4. There are other estimates of d 

based on a semiparametric specification similar to  (1.2), like the averaged periodogram 

introduced by Robinson( 1994c), but its complicated asymptotic distribution makes it 

less preferable than the two methods studied in this thesis (see Chapter 1).

The different semiparametric methods to  estimate C and are based on an

approximate knowledge of /(A ) at frequencies just after u;,

f(u> + A) ~  CX~2d' as A -► 0+ (3.1)

for C  E (0, oo) and d\ E (—1 /2 ,1 /2 ). Taking logarithms in (3.1) and substituting 

/(A ) for the periodogram, we get a simple linear relationship between lo g /n(A) and 

—2 log A. The log-periodogram estimate of d \ , is obtained by applying least squares 

to

log I n(u> +  Xj) =  c +  d i(—21og Aj) +  Uj j  =  l , . . . ,m ,  (3.2)

where m  is the bandwidth such that ^  —► 0 as n  —> oo, Aj  =  I n (A) =  |Wn(A)|2

is the periodogram and Wn(A) =  z te11* is the discrete Fourier transform of

x t . The simplicity of this approach makes it very easy to  implement and tha t is why 

log-periodogram and its variants have become the most used methods of estimating d 

in applied work (see for example Diebold and Rudebush (1989), Porter-Hudak (1990), 

Shea (1991), Cheung and Lai (1993) or Hassler and Wolters (1995)). The original 

version of this approach, due to Geweke and Porter-Hudak (1983), uses the regressor 

— log{4 sin2(A j/2)}, but as indicated by Robinson (1995a), use of the simpler —2 log A j, 

which corresponds more naturally to  (3.1), leads to equivalent asymptotic results. The 

good properties of these estimates hold if the Uj are uncorrelated and homoscedastic. 

However, if c = log C — rj, where rj = 0.5772... is Euler’s constant, Uj can be considered, 

for frequencies close to a;, as

= i o g ( ^ p ^ 4 ) + i ?

1 E s t i m a t i n g  D  a n d  d.2 i s  e q u i v a l e n t  a n d  o n l y  c h a n g e s  i n  t h e  u s e  o f  f r e q u e n c i e s  j u s t  b e f o r e  u> i n s t e a d  

o f  t h o s e  j u s t  a f t e r .
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and for d\ ^  0 they are not asymptotically uncorrelated nor identically distributed 

as n —> oo and j  fixed (see Theorem 1 in Robinson (1995a) for u  =  0). In order to 

obtain the asymptotic properties, Robinson (1995a) introduced a trimming number, 

/, such tha t the number of frequencies used in the regression (3.2) is from j  =  / +  1 

to j  =  ra. Clearly I has to  go to infinity more slowly than m  such tha t ^  —► 0 as 

n —> oo. Under Gaussianity and some other mild conditions, Robinson( 1995a) showed 

that when u  =  0 (and because of the symmetry of the spectral density around 0,
A ^  2

d\ =  ^2)5 y/rn(d\ — d\) —► N ( O ,^ ) .  A gain in efficiency is obtained by pooling J  

adjacent frequencies and regressing

=  C(J) +  d i(—21ogAjk) +  k = I + J , l +  2J, . . . ,m .  (3.3)

where y[J  ̂ =  log($3j=1 7n(u> +  Afc+j-j)) and J  is fixed and assumed tha t m  — I is a 

multiple of J  (if this condition does not hold the effect on the asymptotic properties 

is negligible because J  is fixed and y  —> 00). Note tha t, even if we use the pooling 

of J  adjacent periodogram ordinates, every frequency from u> + A/+i up to  w +  Am is 

used in the estimation so tha t there is no loss of efficiency. In this case the asymptotic 

distribution of the least squares estimate of d\ in (3.3), d[J\  is y/m(d \J  ̂ — d\) 

A (0, ), where 'tp'(z) =  is the digamma function, /ip(z) =  ^ lo g T (z )

and T is the gamma function. The gain in efficiency comes about because y>'(1) =  re2 /6  

and J^'(«7) decreases in J  and goes to 1 as J  —► 00.

In regression (3.3), u can be considered,

uk ] =  loe { ]£  -n^ - 2  d?3~J ^  -  J ) k = I + J , l  + 2J , ..., m. (3 .4)
j = 1 c  J

If the u are uncorrelated and homoscedastic with zero mean, least squares in (3.3) 

provides the best linear unbiased estimates of and d\.  The disturbances in (3.3) 

do not have those properties, but Robinson (1995a) showed th a t, when a; =  0, d[J  ̂ has 

the same limiting distributional behaviour as if such properties held. In this chapter 

we prove th a t this fact holds for to ^  0, allowing for asymmetric SCLM.
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3.2 ASYMPTOTIC DISTRIBUTION

Let {xgi, t  =  0 ,± 1 ,± 2 ,...}  and {xht, t  =  0 ,± 1 ,± 2 ,...}  be two real valued scalar pro

cesses with spectral density functions / 5 (A )  and / / i ( A )  respectively, integrables over 

[—7r , 7r], and cross-spectral density f gh(A). Let us state the following assumptions: 

A .l :  For a frequency uj E (0 ,7r) there exists a  E (0,2] such tha t as A -* 0+ ,

f . ( u  + A) = C i \ ~ 2d" ( l  +  0(A “ )) 

f . ( u -  A) =  D,X~2d2‘(l  +  0(A “ ))

for s =  where Ca, D a G (0, oo) and dia,d,2S G (—1 /2 ,1/ 2).

A .2: In a neighbourhood (—£,0) U (0,£) of u j  f gh is differentiable and as A —»■ 0+ ,

l ^ ( «  +  A )| =  0 (A -*-**)

\ -  \) \ =

where 2d, =  d{g +  d ^ , i =  1, 2.

A .3: For some /3 G (0,2]:

+  A) -  =  O(A^) as A -  0+

where A) =  , , is the coherency between s.* and x^t .
* V/*(a)A(A) '  *

The two main assumptions on the spectral density used in our univariate analysis 

are A .l  and A .2 (for g — h ), but we introduce A .3 to  allow an easy multivariate 

extension of the results obtained in the univariate case. These assumptions hold with 

a  =  (3 =  2 in the cases studied in Chapter 2 (note tha t sin(u; — \ ) ~ 2d = ( u j  — A ) _ 2 J ( 1 -f 

0 ( ( uj — A )2) )  as A —► uj ) .  Assumption A . l  could be generalized allowing for different 

a ’s before and after uj but this increase in the number of parameters would complicate 

the notation and the results we obtain hereafter would be similar.

Let lFns(A) =  ^1— Ya =i be th e discrete Fourier transform of x at (s =  g , h ),

t =  1, 2, ...,n , where correction for an unknown mean of x at is not necessary because 

lFn4(A) is computed only a t frequencies A j  =  for j  — 1,...., m, where m  is an integer 

less than n /2. Introduce the scaled discrete Fourier transform v s ( uj + A) =
C ? \ ~ dl s

and denote u s (A )  the complex conjugate of v s (A ) .
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T h e o re m  4 Let assumptions A .1-A .3  hold and let k  =  k(n) and j  =  j {n )  be two 

sequences of positive integers such that j  >  k and ^ —> 0 as n  —► oo. Then as n —> oo,

a) £ [„ ,(«  + A,•)»*(« +  A,-)] =  Rth(y>) +  0

b) E M u  + \ j ) v h(u  +  A,-)] =  o  ( h * i x j * dt~d' ))

c) E[v,(u; +  A,-)t*(u> +  At)] = 0  ^ L x J ^ ’' ^

d) E[v,(u + \ j ) v h(u> + At )] =  0

e) E[vg(« +  A,-)%(w -  Aj)] =  O { H i ( x f ’~d̂  +  x f h~d̂ ))

f )  E[va(u  + A >*(u, -  Aj)] =  O ( * * i )

g) E[vs (u + Xj)vk(u  -  A*)] =  O ( ^ f ( A - la“ ',2a +  Xd2h~d' h) j

h) E[v,(u + \ s)vk(u -  At)] = 0  i ( \ f ’- d'° +  A**-'-'*))

where i =  1 i f  d\ > d2 in a) and b) and i f  d\a > c?2S, s = g ,h  in c) and d) and i =  2 

otherwise.

P roof: See Appendix A.

If di > d 2 the results in a), b), c) and d) are basically those obtained by Robinson 

(1995a, Theorem 2) when u j =  0. We focus on frequencies just after u j  because 

Theorem 4 will be useful when studying the properties of semiparametric estimates 

of C  and d\ in (1.62), which describe the behaviour of the spectrum after u j .  If we 

aim to estimate D  and d2 in (1.62) equivalent results to a),b),c) and d) in Theorem 4 

would be obtained for the scaled discrete Fourier transforms evaluated at u j  — A j  and 

uj  -  X k .

R em ark : Even in the case d2 > d i, b) and d) are 0 ( ^ L )  and O (^ jP ) respectively 

if 1/2 — d2s +  d\s > 0 for s =  g ,h  and 1/2 — d2s +  2di >  0 for s =  g or h (see proof of

Theorem 4 in Appendix A). These conditions hold if d\s > 0 for s =  g, h irrespective

of the values of d2a. In Appendix A we also show tha t if d2h >  d\s for s =  g or h then
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Hereafter we focus on the estimation of C  and d\ in the univariate case, so that 

g — h and d{g =  dih =  i =  1,2, in A .l  and A .2 . In order to obtain the asymptotic 

distribution of the least squares estimates in (3.3) two further assumptions are needed.

A .4: {x t , t =  0, ±1, ±2 ,...}  is a Gaussian process.

A .5:
y/mn2(di~d') logm  /(logn)2 m 1+
 nToTT—71-------1---------------1" ------------- * 0 as n —»■ oo,/l+ 2(a,—iOi) yti n

where i =  1 if d\ > and i =  2 if di < d2-

m and I are the bandwidth and trimming numbers respectively such tha t the

estimation is carried out using frequencies u  +  ^  for I < j  < m.  If d\ > d2 A .5 is

Assumption 6 in Robinson( 1995a) and the proof of the asymptotic normality of the 

least squares estimates in (3.3) is basically the same, noting Theorem 4. However when 

d\ < ^2 a stronger condition needs to be imposed on the bandwidth and trimming 

numbers. In this case there is a “trade-off” between assumptions A . l  and A .5 in 

the sense th a t the larger the difference c?2 — d\ the larger the lower bound of a. For 

example if — d\ > 1/2 A .5 can only hold if a  > 1, because in tha t case

y/mn2(d2~dl) \ogm  ^  y /m n lo g m  n  m l+ 2̂  logm  /n
Jl+2 (*-<!.) -  P  =  P  • ( }

The first fraction goes to oo under A .5, so th a t the whole expression in (3.5) can go 

to zero only if the second fraction converges to 0. Since l / m  —► 0 under A .5, then 

tha t can only happen if a > 1. Consider for example m  ~  n 6, I ~  n In this case 

A .5 entails

2(di -  di) + -  ^(1 +  2(d{ - < / , ) ) <  0 , <t> < 6 , 9 ( l  +  i )  <  1. (3.6)

The first two conditions imply 0 > <f> > 4(d{—d i ) / ( l + 4(dt —di)), and incorporating the 

last condition in (3.6) we have tha t a > 2(dj — d{) has to hold. Because |c?2 — d\ \ < 1, 

A .4  can be satisfied for any d\, di if a  =  2. We also observe tha t the larger ^2 with 

respect to d\ the larger m  and / needed to get rid of the influence of the periodogram 

at frequencies just before uj on the estimation of d \ . This is so because, according to 

Theorem 4, the scaled discrete Fourier transforms are asymptotically homoscedastic
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and uncorrelated if i „_,n \  * !osA—— —» 0 as ft —» oo, so tha t although 7 -f- £- —>■ 0 as 

n —* 00 the increase in and y has to be faster with respect to n the larger d2 — d\ is.

Define v(A) = =  v r W  + *v/(A), where v r ( \ )  and v/(A) are the real and

imaginary parts of u(A). Thus the u in (3.4) can be written

4 J) = l°g t X > * ( W . / )  +  ^ (A m - w ) } * " * 0 ]- (3.7)
j - 1

Introduce the 2 x 1  vector ^(A) =  (ft/?(A), v/( A)). The second moments of the elements 

of v ( \ j )  and v( \k )  can be deduced from those of v(Aj) and u(A*) and their complex 

conjugates. Theorem 4 indicates tha t the different i'(Aj) for j  increasing adequately 

slowly with n  can be regarded as approximately uncorrelated with zero mean (because 

Wn(A) =  ^ = 53 =̂1(z t — E x i )e itX) and covariance matrix | / 2, where / 2 is the 2 x 2  

identity matrix. Assumption A .4  implies th a t the v ( \ j )  are Gaussian and thus the ap

proximate uncorrelation can be interpreted as approximate independence. Introduce 

the two dimensional vector

Vj ~  ]VTD(0,±I2) j  = l + 1 ,  , m  (3.8)

where Vj =  {V\j ,  V^j), and the variates

=  l o g C M 2, +  Vl k +1- j } * ~ MJ)\ , k  = l + J , l  + (3.9)
i = l

It foUows th a t £ /= i  (v l k+j_ j  + ~  \ x ^ j  for each k. Thus (see Johnson and

Kotz (1970) pg.167 and 181) E [ w ^ ]  =  0 and has finite moments of all orders 

and variance , where =  - ^ ^{ z )  is the first derivative of the digamma func

tion. Further, independence of the Vj implies independence of w ^ j , w \ ^ 2J, 

Consequently if the vfjf^ in (3.3) can be replaced by w without affecting the limit 

distribution of the centered and adequately scaled least squares estimates in (3.3), 

we can apply the Lindeberg-Feller CLT and we will obtain the result stated in the 

following theorem.

T h eo re m  5 Let A . l ,  A .2 (with g=h), A .4  and A .5 hold. Then as n —> 00,

' i g ( « M - -  cW )  '
2y/m(d[J  ̂— d\)
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P roo f: For d\ > d2 the assumptions and proof are equal to those in Robin- 

son( 1995a) for u  =  0, noting Theorem 4. When d\ < ^2 A .5 differs from Assumption 

6 in Robinson. Anyway the steps followed in the proof are quite similar and therefore 

they will be presented very briefly, paying attention to  the steps where A .5 takes 

part. The proof is based on showing th a t each moment of the variates on the left- 

hand side of (3.10) converges to  the corresponding moments of the normal distribution 

implied by the right-hand side, and then appeal to  the Frechet-Shohat “moment con

vergence theorem” (Loeve(1977), pg.187) and the unique determination of the normal 

distribution by its moments. We use Theorem 4 to  show tha t the moments differ 

negligibly from those which would arise if instead of u we had w ^  and then apply 

the Lindeberg-Feller CLT.

The least squares estimates in equation (3.3) are

c(J ) 1
= ( Z ' Z ) - ' Z ' Y  (3.11)

where Y  is a —j -  X 1 column vector such tha t Yj = and Z  is a x 2 matrix 

with the first column a vector of ones and the components of the second column are 

=  —2 log A*, k =  / +  i J ,  i =  1 ,2 ,..., (m — /)/«/. Then

cV) -  C(J) 

d \(J) -  d!
= ( z ' z y ' z ' u

where U is a 22j-^ x 1 column vector such th a t Ui =  for k =  1 + i J , z =  1 ,2 ,..., (m — 

l ) / J .  By approximation of sums by integrals we have as n —» oo2 (see Robinson 

(1995a)),
 ̂  ̂ 2t77

^ 2 zk = — [logn-f 1] -1- 0 (/log n) 
k J

'5 2 4  = ~7"[0 ° g n )2 +  21ogn +  2] +  0 (/(logn)2) 
k J

and thus

\Z’Z\ = 4 ^ £ ( l o g A * ) 2 - 4 ( £ l o g A *)2 =  4 ^  +  0 (lm (logn )2). (3.12)
k k J 2

Under A .5,

^ = 2y /m( l  +  O (logn) 1) (3.13)

2The sum is over k = / + J, I -+- 2 J, ..., m.
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where 2 =  ^ 7  z k = - 2^  J2k loS *k, and we also have

J m
AZ'Z\  = 4 y  +  0 (/(lo g n )2). 

m  — I J
(3.14)

Now,

( z 'z r l = 7t 7
1 m  — I

\Z'Z\ J
z r~ n  1 1 0 '

- 1 [z  i j 1 ^  1 m  — I 0 0

and

[z -  1 ]Z'V =  [z -  1] E * * ^  1
V' (J). E * **«*

1 0 " Z'U = ’ 1 '
0 0 0 E 4 7’-

k

Now define the matrix

We have that

A ( Z ' Z ) - l Z'U = J 2( 

J
+

A = p ——  0
l o g n

0 2 y/rn

3 ) 2

m  — I

m  +  o(m)
y/in 

l o g n  

0

1 
- 1

E 4 j>-
k

E('°g Xk - ^ r { E  loe x̂ uhJ)

(3.15)

The proof of the theorem is completed if as n —► 00,

0 (£)* E*(i°gxk -  t£ri E*log a*)«1J) -4 JV (o, v-'(J))

(3.16)

b ) 7 s r f e E t 4 J ) ^ o .

In order to prove a) and b) we claim tha t

( ^ E ^ ^ m v - V ) )
771 ,k

for any triangular array a\.n — satisfying as n  —► 00,

max |ajt| =  0(771) , V ] a* ~  -7 and V ] |ajfc|p =  0 (m ) for all p  > 1. (3.17)
* k 3 k

For b) dk =  1 and for a) a* =  log A; — ]£*log A; an(  ̂ (3-17) holds for both of them

(see Robinson(1995a), pg.1067). Thus if we can verify our claim (3.16) the proof
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is completed. If instead of uk ' in (3.16) we have wk ' a direct application of the 

Lindeberg-Feller CLT shows tha t (3.16) holds under (3.17). Thus we have to prove 

tha t the moments of (£ )*  J2k aku\f^ differ negligibly from those of J2 k akw^  

and then we use the Frechet-Shohat “moment convergence theorem” (Loeve (1977)).

Write Xk =  (m )*aku^  • ^  an *nteSer E[12kXk]N is a sum of finitely many 

terms of the form
M

£ - 2 X l W ‘) (3-i8)
*1 kM *=1

where N kl, Nk2 1 NkM are all positive and sum to  N  and 1 < M  < N .  Fix such M  

and N kl, . . . ,N kM, and introduce the 2J  x 1 vector vk =  ( v ( \ k + j - j ) f, ...^(A *)') ' and 

the 2J M  x 1 vector -  K O ' -  Under A .4  v* is normally distributed with 

zero mean and Theorem 4 implies tha t for

i f j  =  k

=  o ( ^ ^ X J id 2 ~ d ' ) X ^ {d:‘ - d ' ) ^  if j > k .  

as n  —> oo. It follows from A .5 that

s  =  £[„*„«) =  I / 2, M +  o ( ( ^ ) “ +  ^  (3>19)

=  JM + o(m~2) (3.20)

as n —► oo. Thus S _1 = V exists for a large enough n. If (pp is the density function of 

a p-dimensional standard normal variate, (3.18) is

r M
2 - 2 I ( [ [ X k tki)(P2JM(**i'*)dv* (3.21)
ki kM i=l

for n sufficiently large. Robinson( 1995a) has proved tha t the difference between (3.21) 

and
■ M j

*1 kM Li=l
(3.22)

is negligible (tends to zero as n —► oo) which proves the theorem. □

R e m a rk  1: converges more slowly than d[J  ̂ and there exists perfect negative

correlation in the limiting joint distribution of c(J) and d[J\  This distribution, as we 

could expect, is equal to  tha t obtained by Robinson( 1995a) for the case u> =  0 and it
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only differs in a stronger condition on the bandwidth, m, and trimming, /, in order to 

get asymptotic uncorrelation of the scaled discrete Fourier transforms of x t .

R e m a rk  2: C  can be estimated from c^J\  =  e x p ( c and a simple 

application of the “delta method” provides the asymptotic distribution of C ^ :

^ ■ ( C ^  -  C)  - i  N(0,  C 2J1>'(J)). 
log n

3.3 MULTIVARIATE EXTENSIONS

The results obtained in the previous section can be easily generalized to the multi

variate case where x t is a G X 1 vector where all the components, x at, for s =  1 ,2 ...G, 

have a spectral pole or zero at frequency u j . Noting Theorem 4 and our assumption

A .5 the asymptotic distribution can be obtained as in Robinson (1995a).

We can also consider the possibility of simultaneous estimation of d \ ,C  and d,2,D  

but as we will see in Chapter 5, if d i ,C  and d2, D  are functionally unrelated there is 

no gain in asymptotic efficiency because the estimates of the parameters before and

after uj  are asymptotically independent. However if we test and do not reject the

hypothesis d\ — d2 =  d , frequencies on both sides of uj  are informative in order to 

estimate d (of course the estimates of =  logC  — i/j(J) and 6^  =  log D — ^ ( J )  

can be incorrect using frequencies on both sides of uj  if C  ^  D).  The log-periodogram 

estimate of d is
4 J> +  4 y»

2

and since d[J  ̂ and are asymptotically independent (see Chapter 5), then

2V2m(cF> -  d) - i  JV(0, (3.23)

The same result is obtained in the multivariate setup followed by Robinson (1995a) 

imposing the restriction d\ =  c^- Let

y = c(J) -  di (2 log A*) +  u[J) 

y[J) =  ~  ^ ( 2  log Xk) + u[J)
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where

J

y[J) = \og(^2 l n(uj + Xk+j. j ) )  
j =i 

J

y[J) =  l o & ^ J n f a - X k + j - j ) )  
j =1

for k = I +  J, I 4- 2 J, is defined in (3.4) and u differs only in the use of

frequencies before u> like in the definition of and y ^ -  Denote (X )t- the i-th row 

of the matrix X ,  and write

(Z)i  =  ( 1 ,- 2  log At )

(uh = (4J).4 J))
A = C ( J > SW 

d\ d>2

for k =  li +  J ,  i =  1 , 2 , ( m — l) / J .  Then

Y  = Z A  + U.

Consider the restriction d\ =  d2 = d,

rfi
d2

d =  Pd.

The restricted estimate in Robinson (1995a) is

=  {Q ' (Z 'Z ®  S l - ^ Q y ' Q ' v e c i t t - ' Y ' Z )
c ( J )

6(J)
ifV)

where

Q =
h  o 
o p

and 12 =  ^ '(  J ) /2. From (3.24) the estimate of d is

d(J) = Et log At Et(yfJ) + # )  -  ^  Et log + y1J))
4 2if i Et(logA t)2 - 4 ( E t lo g A t ) 2

(3.21)

the same as the estimate we obtain from the regression

dfP =  c — d(2 log |Ajt|) +  vfjf^ k =  —m, — m  +  «/,..., — / — J, I +  J, / +  2,7,..., to, (3.25)
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where z =  y ^ ,  if k is negative and z[J  ̂ =  y \ f \  =  u for positive

k. Not surprisingly the asymptotic distribution obtained in Theorem 4 by Robinson 

(1995a) is (3.23), the same as the one we obtained by applying least squares to (3.25).

It is also interesting to  study the multivariate extension in the case of a G X1 vector 

series, x t , whose elements, x st, s =  1 , 2 have a spectral pole/zero at different 

frequencies. If for all s =  1 A. l  holds substituting the fixed u> for a different 

a;, for every x st , if x* is a Gaussian process and if assumptions A .2 (with g =  h) and

A .5 hold for every d ia, d,2S then

-  c<'>) 
2y/m{dSJ  ̂ — d)

N  [ 0, JY>'(J)
1 - 1

- 1  1 (3.26)

where now c ^  =  ( c ^ , c ^ ) ' ,  d =  ( d n , ..., dia)'  and the estimates are obtained 

from

where — (Y ^  v ^ Y  —w n e r e  i  '  —  { i i  , • • . ,  i G  ) ,  i a — y y Sti+ j ,  y aj + 2J i  •••» » J/S(fc —

l ° g (E /= i / .( « .  +  ^fc+j-./)), =  (^ /+ J^ /+ 2J , - ,^ m ) / and 2* =  (1, —21ogAjt). The

proof is similar to  tha t in Robinson (1995a) noting tha t now the vectors v(Aj) = 

(ri/?(Ai ),...,i;g(A J),Vi/ (Ai ) , . . . ,^ ( A i )) where vs(A) =  can

be considered, for j  increasing suitably slowly with n, approximately uncorrelated 

with mean zero and covariance matrix \ l 2G- This differs from the case u a =  u> for all 

5 = 1,..., G , when the covariance matrix of w(Aj) can be regarded as

R r  —R i  
R i  R r

where R r  and R j  are the real and imaginary parts of R(u)j  the m atrix of coherencies 

at frequency u> ([-R(u;)]5/i =  R gh(v), g ,h  =  1 ,...,G ), and R(u>) is assumed to  be 

nonsingular. In case of different u;as we do not need any condition on the cross- 

spectral densities between the different x ats because it can be shown in the same way 

as in Theorem 4 tha t E[vg(ujg + \j)vh,(u>h + Aj)] =  0 ( j -1 log jA J2^ 1-^ )  and of course 

the rest of statements in Theorem 4 hold if we allow for different u;as. Thus the 

u is Jk  =  log [£ /= i( (v f (w . +  Ak + j - j ) ) 2 +  (v*(<Jt  +  Ak + j - j ) ) 2 e - ^ ]  for 5 =  1 , G, can
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be considered approximately independent for all k =  / +  «/, I +  2J , ..., m, which differs 

from the case with equal u ss where only the vectors can be

considered asymptotically independent but not the intravector variates. Taking this 

fact into account, the proof of (3.26) is straightforward following the steps in Robinson 

(1995a) and noting Theorem 4 and assumption A .5 for d\s,d 2S, 5 =  1, ...,G .

In (3.26) we focus on the estimation of the different diss, th a t is, we study the 

behaviour of the spectral density matrix at frequencies just after the different ojs s . 

The same result would be obtained for d =  (^21? — ? ^2g); as l°ng as the frequencies u a 

are different for all s =  1, ...G.

Finally we can consider the case u s = u> if s E H , and H  is a subset of {1 ,2 ,..., G}, 

tha t is , the case when only some of the ujs s  are equal. In this case we need to  introduce 

assumptions A .2 and A .3  for those g ,h  E H  and substitute a  in A .5 by min(<*,/?) 

and we obtain the same result as in Robinson (1995a), namely

- i  n  [o , J 1 - 1  "

2 y/fn{dSJ) — d) 1 7 - 1  1

where the diagonal elements of are and for g ^  h is zero if cjg ^  u>h

and some finite figure if u>g = u>h-

3.4 APPENDIX A: PROOF OF THEOREM 4

The proof of Theorem 4 is based on tha t of Theorem 2 in Robinson (1995a) for the 

case uj =  0.

a) In order to show a) we see first that

E[W,(u, +  Ai )W h(u, + A,)] =  fgh(u> +  A,-) +  0  ( ^ A - 2* )  (3.27)

and then tha t

fgh(u + \ j )  -  c j  c |  A-2*  Rgk(w) =  O ( \ f « a’0)- 2d'). (3.28)

To prove (3.27) first write the left hand side of the equality as

^ E E l 9h(t -  s)e*'’<"+A;>e-i‘<“'+A'> =  f  f gh( \ ) K ( v  + Aj -  A)dA
Z7TU t =  1 5 = 1  •'“*
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where — s ) is the covariance between xgt and Xhs and A"(A) =  IZs

is Fejer’s kernel.

Since K(u> +  Xj — A)dA =  1 we have to  study the order of magnitude of

f  i fgh(^)  — fgh{u +  Xj)}R  (cj  +  A j  — A)dA. (3.29)
J  — IT

Due to assumptions A .l  and A .2 we can chose so small a £ tha t for some C£ < oo,

/ , * ( « + A)l < /A<» +  A)/kh «  +  A )< C eA-M*
& / » * ( " + A ) |  <  C.  A - 1- * *

for A G (0,e) and 2di =  dgl +  d^i, and

l / , k ( « + A ) |  <  C , | A | - 2*

+  A) <  CelA!"1" 21'2

for A G ( -£ , 0) and 2d2 =  dg2 + d^2-

Because u  G (0,7r) and £ —► 0 as n —> oo, we can choose e > 0 such that for a 

large enough n

e > 2Aj 

2u  ± Xj — £ >  0

2u>  -f" Xj  “J-  £  K. 2  7T (3.30)

which will be necessary for subsequent analysis. For such a £ we have that t he absolute  

value of part of the integral (3.29) is

I ru-e rir

/  + / ,
J  — 7T J u + I  |

<  {m jO cJif(w  +  Xj -  A )}  J_J \fghW \  +  |f gh(u> +  A j) |} d A

= 0 ( n _1( l +  X~2J') )  = 0 ( - X ~2J' )
J j  J

where f t  =  [ — 7r , o ;  — £]  U [u j +  £ , 7 r ] .  The first equality comes from the following facts

which will be useful in subsequent analysis:

p ( A )|2A'(A) =
2ttti

(3.31)
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|Z?(A)| =  | y ' e“ A| < r-^ T T  if o < A < 2tt (3.32)
t I'sinfl

|A'(A)| =  0 ( n -1 A-2 ) for 0 < |A| < 7r (3.33)

\fgh(X)\ < fg (A)f£  (A) and f  /,■(A)dA =  var(xit) < oo , i = g, h, (3.34)
J  — IT

and the second one because

n -1 = 0  + 1 J xj 2dlj  and 1 +  2dx > 0. (3.35)

Now decompose the remainder of the integral,
A .  A ,

ro j+ e  r u j - - * -  r u j+ - f -  /-UJ+2X, ru>+e

/  =  /  + / ^ + / i + / „ -  (336>«/U/—C •/ CJ —£ JV- 2  «/w-f2Aj

The first integral in (3.36) is bounded in modulus by

_Xj_

{ max | / fffc(A)|} T  2 /^(w +  A j-A JdA
w — c <  A < u > — Ju>—£

A ,

“b \fgh{u +  ^i)l [  K ( uj + \ j  — A)dA
Ju)—e

— ( max \fgh(v ~  A)|} L A'(Aj +  A)dA +  \fgh(u  +  Aj)| /  K(Xj  +  A)dA
^<A<e J i -

< (  max A)l 1 jr (A )A i-^ d A
"  ^ ~ d21- \ J - t

fc+Xj
+  IM “ + * i ) \Jx i  K ( \ ) d \

= 0 ( n - l \ - ' - 2di + n ~ 'X J l - 2d' )  = 0 ( j ~ l X f di)

because of (3.33). Similarly the last integral in (3.36) is bounded in absolute value by

{ m a x  | f gh(u> +  A)|} f  K(Xj -  A)dA +  | f gh(u  +  Xj)\ f  K ( \ j  -  A)dA
2Xj<X<e J2 X} J2Xj

= o ( r '  XJU ').

Now, using the mean value theorem,

I t  j
/  a ,- =  A, {fgh(w +  A) — f gh(v  +  A j )} A ^ ( A j  -  A )dA
J W+-J- \J-j-

r2X3
< { max | f gh(u  +  A))} \X -  X ^ X j  -  A)dA

i t < A < 2 A y  2

=  0 ( n - ' \ - ' ~ 2d' £ ’ \D(X, -  A)|dA) =  O ( ^ A J 2* )
2 
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because of (3.31) and

|Z?(A)| < 2|A| , 0 < |A| <  jt

J _ |D(A)|dA =  O (log j) for C  < oo
■C A,

(3.37)

(3.38)

For the property (3.37) on Dirichlet’s kernel D ( A) see Zygmund (1977), pages 49-51, 

(3.38) is Lemma 5 of Robinson (1994b).
eU/+

To complete the proof of (3.27), /  x . in (3.36) is bounded in absolute value by

{ Am a x A K ( Xj ~ X ) )  [ l A \ f g h ( w  +  * ) \  +  \ f g h (w  +  Ai) | }dA

Now the left hand side of (3.28) is dominated by:

i -

C I C ' i \ ~ 2d''9

f h z
+ \Rgh(u  + Xj) -  R sh(u)\Cs>C£X-j—1d\

where the spectral densities are evaluated at u  +  Xj. This is

under assumption A .l  and A .3.

b ) To prove b) write

= i)e «<<-+W <"+a>>
t=l S=1

=  j T  f gh(X)D(oj + Xj +  A)D (u  +  Xj -  A)dA. 

Decompose the integral into

A ,  A ,

/ — (jj— e  r — <jj— 2 X j  r — u j— j-  f — u>+ -£■ r — u j + e  r i

+  +  +  /  A- +  /  A -  +  /
■7T J —UJ—£ J —UJ — 2 A j  J —CJ J —CJ-f- J —

ru)— r u / +2 Aj  t t t

+  /  + ±  + ±  + x +J UJ— 2  U ;+ 2A j •/UZ+ff

u/+e
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The integral over ft =  [—7r, —uj — e] U [—uj -f £, w — e\ U [a; +  £, 7r] is bounded in absolute 

value by

2 ^ { m a x \D(u  +  A3 + A)||D(w +  Xj -  A)|} | / s*(A)|dA

=  0 ( n - ' )  = 0 ( j - ' X - 2d')

using (3.30), (3.32), (3.34) and (3.35). Now | /_  “_£2Aj | is bounded by

L {  max | / f*(-A  -  « ) |}  r  |£*(Aj -  A)||£)(2w +  A,- +  A)|dA
KTl 2 \ j < \ < e  J2\ j2irn

< J _  J  ma*  -  A)iKmax  •> * . . .  I  /  2A i ^ ‘ dAA,<A<«|s in 2 £ ± M A |/y Ai27rn 1 Aj<a<5 \ 2~dlh

= 0 ( n - 1A7^"d,s) = 0 ( \x ~ 2d' (—) i +d'h) =  0 ( j - 1A72''1)
J j  J n J

the first inequality because of (3.30), (3.32) and (3.37) and the last equality because 

1/2 +  dig > 0. Similarly
UJ+£

W+2A,L = 0 ( j~ l X~2d' ).

Proceeding in the same manner the integral over [—uj -f —uj +  e] is bounded in 

modulus by

- i - {  max |fgh(-u> +  A)|} J  \D(Xj  +  X ) \ \ D ( 2 u j  +  Xj  -  A)|dA

<  ^ { m a x  \fah( - „  +  A)|} {max | ^  2 p ^ f d A

< - ! - (  max max   1 I 2 / ‘^ V H ’.dA
2™ W < A < e+A, Ai“ * .  j \ i ,< A < £ | s i n ? S ^ | /  h

= 0 ( n - 1X~i ~d2h) = OCT'AJ2* )

and under the conditions in the remark to Theorem 4 this is 

0 ( j - ' X j 2i' X f d2h+2d') = 0 ( j ~ 1X~2d' ).

Similarly

= 0 ( j - '  A-2* )fJ o j—

and 0 ( j ~ l X~2dx) under the conditions in the remark to Theorem 4
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Now

r u j - \ - 2 \ j  1

/  »i *  5 ^ r h m“  + L  |JJ(a-» + A,- +  A)||0(A,--A)|dA
J u + ^ -  27m J - ±

- ^ X max +  A)l>^ > max I . 2 ^ , + A | f /  ',|Z)(A)ldA
-£-<\<2\j l ^ ^ A ;  I sin-----f — I y - X j

= 0 ( n ~ ' X j 2J' lo g j)  =  0 ( ^ A J 2t,‘ )

the second inequality because of (3.30) and (3.32) and the first equality due to  (3.38). 

Similarly

/—u>-

■UJ —uj—2A ,

log i x-=  0 (^ 2 2 . A7W>).

To complete the proof of b), the integral over [u; — 4*-,a;+4^] is bounded in absolute

value by

*j
- i - {  max \D(2u  + Xj +  A)|}{ max \D ( \ j  -  A)|} f  * \fgh{u +  A)|dA 
27m J—2-~1L<A<1L
=  0 ( n - 1A-, (A j-2<'1 +  A]"2* ) )  =  0 ( i _1A“ 2<i’)

the first equality because of (3.30), (3.34) and (3.37) and under the conditions in the 

remark this is

0 ( j ~ l X~u ' ( \ j  +  Aj-2Jj+2lil)) =  0 ( j ~ ' X ~ 21').

The analysis for the integral over [—a; ±  41] is similar and this concludes the proof of

b).

c) To prove c) write

SIW ^w  +  A ^W ^w  +  A*)]

= 2  ̂E E 7«*(* -
t = l  S=1

=  r  f A A)£;*(A)dA
J  — 7T

where E jk =  ^ ^ ( ^  +  — t y D t y  — <+> — A*) . Since e^a ^ AdA =  0 for s /  t and

27r for 5 =  f, and 52?=i ext^ ~ Xk  ̂ =  0 for 0 < j  — k < n j 2, then

Ejk(A)dA =  0.
2  — 7T

(3.39)
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Thus we can expand the integral as

I  r + t  + r  } { /,* (A) -  f sh(u + A;)}£;*(A)dA (3.40)
I J  — 7T J<jJ+2\j I

ru j+ 2 \ j

4" I A f c + A ,  {fgh(ty ~ fgh{u +  ^j)}Ejk{ty&^  (3*41)

U I xk + xj
+ f \ /  { f g h m - M u  + *k)}Ejk( \ ) d \  (3.42)

Juj+ 2
w_l_ *fc+*j

- { / , * ( «  + A,-)- / , * ( «  + At)} r » ,  ’ £i*(A)dA. (3.43)

r Afc + A

3

Now (3.41) is bounded by

r2Aj

^ W aJ / ^ o a , > ^ (w +  A)l}/ i A |0(A -  A*)|dA

= 0 (n ~’ log;) = 0  ( ^ A 7 * * A ^ * ( j ) i+<,‘ )

= 0 6 S A" iaÂ )

for j  > &. The absolute value of (3.42) is bounded by

i w i g + A . , / *  ^ + a ) |  4 2 ,z?(Aj - A)|aA

= 0  (» - V * *  log;) = O

=  °(^v*,Â ‘)
if i / 2  < fc < y , and when k < j / 2  (3.42) is bounded by

~ k  ™“ . ,I/«a(w +  A)| +  |/j),(w +  A;)|}(A; -  Afc)-1 /.  2 |X>(A;-A)|dA
7T'* Aj|.s2As(AjTAj[) 2*"

= 0 ((A-2Jt + A ^ ')(; - fc )-M o g ;)

Now (3.43) is bounded by

A ;  +  A fc

^ â ^ + a) |> 4 2

= 0 (n - ' a; 1-'-  log ;)  = O ( ^ j A7*«A]^»)
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if k > j / 2, and when k < j / 2  (3.43) is bounded by

—{!/»*(" + Ay)l + + A‘)l}(Ai -  A*r' L  2 P(A -  A*)|dA
7T72 •/ - J t

= 0 ((A J2‘i* +  AJ2'i' ) ( i - * ) - 1lo g j)  =  0  ( ^ j A7 * 'A J ^ ‘ )  

as in the evaluation of (3.42). Now the integral in (3.40) can be decomposed into

/ <jj—e yui—Aj f u>~~ 2 ~ f UJ~^~2 ' f ^ + e  f ir

+  /  +  /  +  /  a  +  /  + / •
■IT J u — C J l j J — X j  J u)  J i V + £

As in a ), the integral over [—7r,u>—£]ll[u>+£:, 7r] is 0 ( n  1(H-AJ-2dl)) =  0 ( ( j k )  5 \ j  dlgXk dlh). 

The integral over [u — e,u; — Aj] is bounded by

+  Ai)| f  \D(Xj + A )||D (-A  -  A*)|dA
2wn

f  ____________
A l ~ d2a

+  —  (  max
7Tn I Aj < A < 2

= 0 ( n -1 AJ 1 A"1 +  n XJ 2) =  0 ( j ~ l \ J * a') =  0 ( — A J ^ A p * ) .  

Similarly for the integral on [u; + 2\j,u> +  e] we obtain the upper bound

The integral on [a; — A — Afc/2] is bounded by

max<A l/sfc(“  “  A)| +  \ f , h ( u  + *j)}  +  A)||D(-A -  A*)|dA

= 0 ( n ~ 1(XJ2d' +  A ,-^)A -> log j )  =  0 ( - ^ X J d,’ X ^ k)

as in the evaluation in (3.42). Finally the integral on [u;± Afc/2] is bounded in absolute 

value by

( max I D(A; — D(X — Al'I! f
2lT7l

= O in - 1 A" V ( A j - 2* +  A*AJ 2d'))  =  0 ( - ^ X j ^ \ - hd'1')

and this completes the proof of c).

1
— {_x m «  \D ( \ j  -  X)D(X -  A*)| +  A)| +  |/ ,* («  +  A,)|}dA
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d ) Write

E[Wg(u  + \ j ) W h( u + \ k)\ 

=  r E E ^ ( < - 4)e<«“+ W *(«+ > 0  

= .  - —  f  f gh{X)D{uj +  Xj +  \)D{u> +  Ajt — A)dA
Z7T71 «/—7f 

and split the integral into

*~w—2 A, f —w+- -̂ t —w-fj/—u>—e r —u/— j -  /■—u /+  - j -  r —u + e  r i

+ + + h ± + ±  +-7T «/—U/—ff v —UJ—2 A j  J  —U>-f- •/ —

ru - - j -  ru ~~2’ z~ rv + 2 \k w+£ rir
+  /  +  /  A- +  /  A +  /  * +  /  +  /Ju>—£ J u>— J u>—A- •/ u»+2At J u;4«/u/+2Afc •/(*»+£

Doing the same as in b),

C * I Z * L \  ■
■  0 ' 7 r f i ‘ " r ‘ d“ '

Now the integral over [—uj — £, —uj — 2Aj] is bounded in absolute value by 

max \fgh { - u -  A)|} f  \D{Xj -  A)||D(2u; +  Xk +  A)|dA
27T71 2Ay<A<e J2Xj

< max _ i _ } (  max M ^ j  r x - i - ^ i a
-  fl-n |^2Aj<A<c I s in  2u;+ **+ A| J A ^ i *  J  A ,

=  O fn "1 A j" - ''” ) =  0 ( - ^ f . \~d' 3\ Z d"‘\ \ +d' h)

 ̂ \ -£hs \
VJ%

A_dl»
VJ%

and similarly

rut+e

xj jb  3 3 y / jk

The integral over [— u j  — 2Aj ,  —a; — is bounded in absolute value by

i-{ max If sh ( - v  -  A)|} /  '  |H(Aj -  A)||Z?(2oj+ Xk + A)|dA 
T"  ^<A<2A) • ' f

=  0 ( n _1AJ2lil lo g i)  =  0 ( ^ A “ ‘i,JA ;J'''A | <,lfcA |+<t,'‘) 

_   ̂ ^  }

95



and similarly

ru /+ 2 A *£ l  * = ° ( n' 1Xk2d‘ log*) =

The integral over [—a; ±  is bounded in absolute value by

h.
9^ -{  Amax \D(Xj + X)\\D(2u + Xk -  A)|} [ l  | / flfc(-w +  A)|dA

= O ^ A f A } - 3* ) =  0 ( - L  A J * » A ^ )

and under the conditions stated in the remark this is

0 ( - i =  A J* ’ A* i l '“ [AJ —Jlfc X£+dlh +  AJ—2d2+<iljr A J+dlh ]) =  0 ( - ^ = A ~ JlaA“<'1'').

We obtain similarly the same result for the integral over [uj ±  4̂ -].

The integral over [— uj +  4^, — uj +  e] is bounded in absolute value by

max \ D { 2 u  +  \ k -  A)|}{ max \fgh(X -  u;)[} f  - ■ * dA 
™  ± < \ < e  ^ < x < e  ^ |A , -  +  A|

-  ^ A maX +  A)|}{ max f  3 \ - ' * ~ d 2 h d \ftn  ^L<,\<c Aj<A<Aj+e “2h

=  0 ( n - ' \ p - d2’ ) = 0 ( - ± ;  AJ*»AJ<“ ) 

and under the conditions in the remark

0( -jj=j\~d'g X^'1* Xjd*!+d'* \ i+d'h)

= 0 ( -± jX -d'’Xid'l' X f d”‘+2d') = O i - ^ X J ^ X - ^ ) .

We obtain similarly the same upper bound for the integral over [uj — s , uj — 4^-]. 

Finally the absolute value of the integral over [a; — 4f ,u; — 4^] is bounded by

- i - {  max \D(2u  + \ j  -  X)\] I  max \ f  ’ A 2 ^ d A
27rn \2  d*9 J J A*

=  0 (n~' X ^ ~ d’th X?~d29) =  0 ( - j j ^ X ~d23 X^d2h)

and under the conditions in the remark this is

0 ( k - ' X J d' 9X^d' hX] d2<‘+dl<‘\ \  <hk+dlH) = 0 (^ X ~ d,3X^dt'')
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so that d) is proved.

e) Write

E[Wg(u +  Aj)M0,(w -  Aj)] =  j T  /,a (A )0 (w +  Aj -  A)Z)(A -u> +  A,)dA 

and split the integral up,
A ,  A ,

/w —e r w —2 X 1 r  u>+-%- r u j+ 2 X 1 ru>+e r i t

+  /  +  /  +  /  a +  /  a - +  /  +  /  (3.44)
•ir </w—£ <<11/—2 A j  «/u;— ^  •/ u>-\- J uj+ 2 X j  J  ui-\-c

with £ such tha t (3.30) holds. As before the integral over [—w,u> — £] U [u; +  £,7r] is 

0 (  n - 1) =  0 ( j ~ 1\ J 2dl).

The integral over [u> — £,u> — 2\j] is bounded in absolute value by

~  i l  ^ +  -  A)'dA

< . 1 /  majc i / ^ - A ) i l  r ^ ± AX
7T71 ( A j< A < o o  \ 2 ~ d*9 J  JXj  A 2

=  0(n~l \~^~d2’'\~*~d29) =  O ( j A J Ma)  •

Similarly

r  = o  ( - A - ^ 1) .
y u ;+ 2 A J \ J  /

Now the integral over [a; — 2\j,u> — 4̂ -] is bounded in modulus by

i - {  max | f gh(u> -  A)|}{ max |Z>(Aj +  A)|} f  ’ |-D(Aj -  A)|dA 
"  ^-<A<2A, ^<A<2A, J~t

= O C n - 'A J ^ A J 1 log j )  =  O ( “y ^ A J 2,i2)  

and similarly

g  - « * * ■ » ) •
Finally the absolute value of the integral over [u> ±  4f] is bounded by

h.
-A -{  max |I>(Ai -A )|} {  max |Z?(A3- +  A)|} f  ’ f , h{u  +  A)dA
2™  A< ^  —a"

=  O  ( j ( \ j 2i> +  \ f d' ) j
J

which proves e).
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f) To prove f) write

E[Ws (u  +  \ j )W h (u  -  Aj)] =  - L  j T  f gh(X)D(u + Xj + X)D(u> -  Xj -  A)dA 

and split the integral into
A, A

/ —uj—e r—uj—2\ j  r—u — j -  /•—u>+ r —u>-\-£ ru>—e
+  /  +  /  +  /  x . +  A . +  /

-7T J — u j — e  J — uj— 2 A j  • / —w — J - uj+ - £ -  J — u j + e

/•uj—2 X j  [ & + - f UJ +e  ri r

+  /  +  /  +  /  V  +  /  A- +  /  •
J uj— e  J ( j j — 2 \ j  J  uj— 2̂ " */ > /w 4 ,i

Since the proof is like tha t in b) we present it in a more abbreviated form.

i £ ~ + C . + £ . 1  ■*0<" " 1 ■ 0  ( j ^ ' "  A.'“ )

for an e such tha t (3.30) holds. Now

'—uj—2\
j =  o  = o  = o  Q a - ^ a - ^ )

and the same upper bound is obtained for the modulus of the integral over [u> +  ^,u>  + 

e). Now

I Z t  = 0  (¥*<-*) = 0  (tjiA;'“Ar'-)
and

C ti  = °  ( & 2 d i + x ? di)) = °  { ] xi d', x J d" )

and we obtain the same bound for the absolute value of the integral over [—a; ±  -j-]. 

The rest of integrals are

£ T i | - °  ■ )(jA.“ ,A.''“ )
and similarly the same bound is obtained for the modulus of the integral over [u> — 

£,u> — 2Xj]. Finally

L t  = 0  Aj2d2)=0  ( c r x" ' 3XJ d2h)  ■

g) Write

E[W„{u +  X})\Vh(u  -  A*)] =  ^  r  f , h(X)D(u + Xj -  X)D(X - u  + A*)dA.
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The modulus of the integral over [—7r,u> — £]U[a; +  £:, 7r] is 0 ( n  1). The rest of integrals 

are
ru>—2\j /‘a'+ ~2~ ru>+2\j rw+J

/  +  /  + / * + / * + /  A' + /J U) — E Ju> — 2\j J<jj+2\j

Now

r w - 2 \ j  1  (
I < ----- < max

J u - E  2 x 7 1  [ A j < A < :

! / ,* (« - A ) | 1 A’ l - ^ d A
2x n  1 \ j < \ < 2 e  \ 2 ~ d29

o ( ± a7 ‘- * ) = o ( ^ a; * a^ ) H » )

and similarly

The integral over [uj — 2\ j , u  — is bounded in modulus by

- L {  max \fgh(u  -  A)|} /  '  |D(Aj +  A)||.D(A* -  A)|dA
ZX 71 - £ -< \< 2 \ j  J 2

=  0 ( i ( A - ^  +  A - ^ )A-1 |° g J )

= ° (5 k J2sa )̂
( ~ ) ~ d29 _j_ ( ~ ) d2h

L j  j

and similarly

Now the integral over [u> +  4- 2Aj] is bounded in modulus by

- L {  max 1/^(0, +  A)|} /  '  |H(A; -  A)||D(A* +  A)|dA 
2 ” ^<><2Aj H

= o ( ^ X - * X - ' ) = o ( ^ X J * ’ X ^ )

and finally the absolute value of the integral over [a; ±  4M is bounded by

1 /““*■
- {  max m X j - X m X + X k ) ] }  I | / , i ( u  +  A)|dA
wn J-%-

f  1  . 1 . 1 .  1 - o j A  ^  {  1  \ ~ d i g \ - d i h \



and thus g) is proved.

h) The proof of h) is fairly similar to that of d) so we present it in a more abbre

viated manner. Write

E[W„{u +  \ j ) W h{u -  Ajt)] =  - L  j T  f gh(X)D(u  +  Xj +  A)D(u  -  A* -  A)dA.

Now split the integral up

w—e r—uj—2\jr —tJ—Z A j  r —u — ru i—e  

+  /  +  /  +  /  *  +  /  V +  /
■JT J —id— E  « / — U — 2 A j  j — U) 2~ J  —  j — !»/■(■£

f u j —2 \ j  / • w +  4 ^ -  a u / + A j  r a H - c  rir

+ / + / + /  a +  /  a +  /  + / ■J(jj—c J ld —2Xj J  LJ--- j  U/+ Ju )+ X j  J u + c

Like in d),

Ir —ui—e rur—c rir  I

/  + /  + /  h 0^ -1)
«/—tt • /—u;-(-e . /u > + e |

£ 4 1= 0  = 0  (^ (Â,9A",h+
and 0  (!SA;JlaA‘j2h)

£ l ! | = 0 ( ¥ a7Mi ) = 0  ( t S a" ,sa£

/—w —2A j e w + £

+ /
-u>—e  « /w + A j

L T  = ok-'a;*-**) = 0  ( ^ * 7 ^ )

L Z t  = 0  ( £ (A^ 2 + A " i2)) = 0

where o can be either 1 or 2. Now

C ; \ =o('i‘,A"A"w,)=° iwkxji'ix"ih)
where d, =  m a x jd i,^ } ?  and

0 ( ^ A7',,^ ‘^ ,,4 w“_Mi) = 0 ( £ â ”a£

if ^ 2h  > d i3 for s =  <7 or

/_

—U/+ff

W+-̂ -

=  0 ( n - > A ; * - * ' )  =  O ( £ a; ^ » a^ )
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Finally

Jru>+\j

ui+

and

0  X^d2h \ f 2h + \ f 9\ dk2h~2dl)]  =  0  ( ^ t \~ d'9

if ^2h > d\a for s =  g or h. □
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Chapter 4

GAUSSIAN
SEMIPARAMETRIC
ESTIMATION

4.1 INTRODUCTION

This method of estimation has its origin in the approximation of the Gaussian like

lihood function suggested by W hittle (1953) and described in Chapter 1. Whittle 

(1953) proposed the maximization of the approximate frequency domain likelihood 

function (1.43), so tha t absolute knowledge of the spectral density up to a vector of 

parameters is assumed. This technique was originally proposed for short memory pro

cesses with a smooth spectral density function. The application of this methodology 

to  standard long memory processes with a spectral pole only at the origin has been 

analyzed by Fox and Taqqu (1986), Dahlhaus (1989), Giraitis and Surgaihs (1990) 

and Heyde and Gay (1993). They showed tha t the good asymptotic pr<>|>erties of 

the estimates obtained for short memory hold for standard long memory. In partic

ular the estimates are y^n-consistent, asymptotically normal and, when x t is actually 

Gaussian, asymptotically efficient. However these properties depend strongly on cor

rect specification of /(A ) over (—tt, 7r] and if some kind of misspecification occurs the 

estimates will in general be inconsistent. In particular, the estimates of long mem

ory parameters will be inconsistent if short memory components are misspecified. To 

overcome this inconvenience Kunsch (1987) and Robinson (1995b) considered a semi- 

parametric discrete version of (1.43) so tha t his estimate, d , is obtained by minimizing
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(1.54). Robinson (1995b) called this estimate Gaussian semiparamttric. For obvious 

reasons it has also received the name of local Whittle estimation. Here we use both 

terms indistinguishably. The advantages of this estimate over the one obtained by log- 

periodogram regression analysed in Chapter 3, dSJ\  are tha t we neither need to  trim 

out frequency components close to  the spectral pole/zero (at least under symmetric 

SCLM) nor the user-chosen number «/, much weaker assumptions than Gaussianity 

are imposed and we gain asymptotic efficiency in the sense th a t d has a lower asymp

totic variance than d^J\  The main disadvantage is that d , unlike d^J\  is not defined 

in a closed form. Nevertheless, despite the non-linearity of the objective function to 

minimize, its higher asymptotic efficiency and less restrictive assumptions (gaussianity 

is not needed despite its name) makes the Gaussian semiparametric a very interesting 

estimate to study. Furthermore it has been found in the univariate case (Robinson 

(1995b) for =  0 and Chapter 6 of this thesis for u> ^  0) and in the multivariate 

extension (Lobato (1995)) tha t with very simple iterative procedures the estimates 

converge quickly, which makes the Gaussian semiparametric a very attractive method 

of estimation.

The drawback of this estimate with respect to  the parametric one studied by Fox 

and Taqqu (1986), Dahlhaus (1989), Giraitis and Surgailis (1990) and Heyde and 

Gay (1993) is tha t only v ^ " consisfency is achieved because only m  frequencies are 

used such tha t ^  ;► 0, and the proportion of the frequency band (—7r,7r] involved 

in the estimation degenerates relatively slowly to  0 as n increases. Therefore the 

semiparametric estimate is much less efficient than tha t based on a complete and 

correct specification of /(A ). This loss in efficiency is the price to  pay for guaranteeing 

consistency under misspecification of the spectral density at frequencies far from the 

one we are interested in.

In this chapter we study the properties of the Gaussian semiparametric estimate 

analysed by Robinson (1995b) when /(A ) satisfies (1.62) around a positive frequency, 

uj, and we aim to  estimate the parameters C  and d\ (the procedure is similar for 

D  and and it only differs in the use of frequencies just before u>). The case of
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asymmetric SCLM has a peculiarity with respect to the analysis at zero frequency 

where /(A ) is symmetric for real Xt. If the param eter we want to  estimate, dj, is such

tha t dt\ > the asymptotic normality follows directly from the analysis in Robinson

(1995b). However when d\ < we trim  out some frequencies close to u  in the same 

way as in log-periodogram regression in order to get rid of the influence of periodogram 

ordinates just before u>, where the spectral density is governed by the param eter 

(see Theorem 4).

Let {x t , t  =  0, ±1, ±2 ,....}  be a real-valued covariance stationary process with 

spectral density function /(A ). Assume we only know tha t /(A ) satisfies (1.62) as A 

approaches u; and it is integrable over ( — 7 r ,7 r ]  (necessary for covariance stationarity). 

The Gaussian semiparametric estimates of d\ and C  are obtained by minimizing

1 m f A2d 1
G (C ,d )=  — j £  { l°g C A -“ +  - f l i j  (4.1)

where A j  =  I j  =  I n { u  +  A j )  =  \Wn(u> -f Aj) |2 is the (uncentered) periodogram of 

x t at frequency u) -J- Aj, / =  0 if d\ > ^2 and I -+ oo more slowly than m  as n —> oo if 

d\ < ^2*

Concentrating C  out of the objective function we have th a t minimizing (4.1) is 

equivalent to minimizing

1 771

R(d) = \ o g C ( d ) - 2d— - ^ l o g A ;  (4.2)
m  1 (+i

where
-j 771

<509 =  — 7 (4-3)
Z+l

Then the procedure consists in obtaining an estimate of d\, d\ =  argminjg© R(d),

where 0  =  [Ai, A 2] is the set of admissible values for d\, and then plug d\ in (4.3) to

obtain an estimate of C, C{d\).

4.2 CONSISTENCY

In order to  prove the consistency of d\ we need to  make the following assumptions:
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B .l :  For a  G (0,2] and uj G (0,7r), as A —>• 0+ ,

/(w  +  A) = C A -2Jl( l  +  0(A “ )) 

f ( u  -  A) = D \ ~ 2d2(l  +  0(A “ ))

where C , D  £ (0, oo), 1^1 < 1/2 and di G 0  =  [Ai, A 2] where - 1 /2  < A i < A2 < 1/2. 

The choice of Ai and A 2 reflects prior knowledge on d\ , for example if we know tha t 

/ ( lj +  A) 0 as A —► 0+ a reasonable choice is A i =  0.

B .2: In a neighbourhood (— 0) U (0, £) of u>, /(A ) is differentiable and

-jy  log/(u> ±  A) =  0(A _1) as A —► 0+ . 
dA

B.3: x t - E x i  =  J2T=Q a j £t - j  and Ej!Lo aj < 00 where E[£t\Ft- i]  = 0 , E[el\Ft-\} =  

1 for t =  0 , ± 1 , ± 2 , Ft is the <7-field generated by es, s < t and there exists 

a random variable e such tha t E e 2 < 00 and for all rj > 0 and some k < 1,

> V) < * P {kl > v)- 

B .4: If d\ > d2 then / =  0 and

1 m 1 ► 0 as n —>■ 00
m  n

and if d\ <  d2,

Tfl I 1̂ 3
 1- — log m  +  —:——— — (logm)2 0 as n -> 00.
n m  i5+(d2-di)

Assumption B .l  is just (1.62) with d\ contained in the interval of admissible 

estimates 0  = [Ai,A2] and a rate of convergence is imposed as in A .l ,  while B.2 

is equivalent to A .2 in the log-periodogram analysis with g =  h. Assumption B .3 

says that the innovations in the Wold decomposition of Xt are a square integrable 

martingale difference sequence that satisfies a milder homogeneity restriction than 

strict stationarity. Assumption B .4  differentiates the cases d\ >  d2 from d\ <  d2. In 

the former, m  tends to 00 (necessary for consistency) but more slowly than n (due 

to our semiparametric specification of /(A)). In the latter we introduce the trimming 

number, /, which has to go to infinity with n at a slower rate than m  (for consistency)

but its rate of divergence, i.e. the velocity at which it goes to infinity as n —> 00, is
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higher the larger the difference c?2 ~ d\ is. This is due to  the fact tha t the higher c?2 

with respect to d\ the more influential the periodogram at frequencies just before u  

(where the spectral density is governed by c?2) in the estimation of d\ (see Theorem 

4) such that a larger trimming is needed. The more restrictive case comes up when 

c?2 — d\ approaches 1. In tha t case -^-(log771)2 —>• 0 as n -* 00 so th a t if m  ~  n e and 

I ~  then 1 > 9 > <f> > 2/3 ensures B .4.

The following theorem establishes the consistency of the Gaussian semiparametric 

estimate of d\ when the spectral density satisfies (1.62). We only focus on the case 

d\ < c?2- The proof when d\ > d2 is almost equal to tha t when u  =  0 in Robinson 

(1995b), with the modification of some minor steps because of the positiveness of u>, 

steps that can be deduced from the proof of the former case.

T h eo re m  6 Let assumptions B .1 -B .4  hold. Then as n  —► 00 

<*1 A d i .

P roof: d\ =  argmin© R{d) where R{d) is defined in (4.2). Write S(d ) =  R(d) — R(di),  

=  {d : \d — d\\ < £} for 0 < 6 < 1/4 and Ng — (—00, 0 0 ) — Ng. Then

P(\di ~ d 1\ > 6) = P (d j G Ng n  0 )  = P(  inf R(d)  < inf R(d)) < P(  inf S(d ) < 0)
N s n Q  N 6r \Q  N s n &

because d\ G Ngf10. Now define the following subsets of the set of admissible estimates

0,

01 =  {d : A < d <  A 2} such tha t (  , , if j 1 ^  1 1”  ~ 1 dj > A  > rfi -  1 if rfi >  A! +  1

q  _  J \ u • *-*1  ^  d < A} i f  d\ > A i +  \_ /  {d:  A , 

=  \® otherwise 

Thus

P ( |J i  -  di| > 6) <  P(  inf S(d)  < 0) +  P (inf 5(d) < 0).
N 6 n © !  © 2

Write S(d)  =  U(d) — T(d)  where U(d) is the deterministic part of S(d)  obtained by

replacing I j  by C X J 2di and sums by integrals, and T(d)  is the remainder.

/7(d) =  2(d — d\)  — log{2(d — d\) +  1}
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m  = logj îlj-iog^ogl  ̂_£(-L7)^){2(<,-*>+1}J
+ 2( d - d 1) X3 lo g ) - lo g ( m - Z )  +  l |

where
1 m

c (d) = c — l Y ( xf d~d' )- (4.4)

Note tha t U(d) achieves a unique minimum in 0 i  for d = d\. Now,

P(  inf 5 ( r f )< 0 )  =  P ( inf (U(d) -  T{d))  <  0) < P(sup \T(d)\ > inf U(d)). 
N6 n©i ^n© i ©j iV5n0!

Using the mean value theorem we have

log( 1 +  * ) < * -  - x 2 

log(l -  x) > x +  i x 2

for 0 < x < 1. It follows tha t

62
inf U(d) > min(2<5 — log{2£ +  1}, — 26 — log{l — 26}) > — . (4.5)

Ntfn0! 2

On the other hand, from the inequality | log(l +  x)| < 2\x\ for |x| < we deduce tha t

for any nonnegative random variable y , P (2 |y  — 1| < e) < ^(1 log 2/1 < e) for e < 1/2

and
' ...........................  '  ^ C ( d ) - C ( d )

> E <_r{ C(d)
>

and thus sup0l |T(d)| 0 if

a) supe, | |= op(l)

b) supe, | 2Ĵ ^ T , w ( ^ z 1)2{d- d') ~ 1 1= o(l)
«) I ^7 E&1 l0s i -  log(™ -  0 + 1 1= 0(1)-

If d\ < c?2 {I =  0) the left hand sides of b) and c) are and 0 { ^ ^ )

from Lemmas 1 and 2 in Robinson (1995b). If d\ > d2 (I oo) the left hand sides of

b) and c) are 0 ( ( ^ ) 1+2 Â~dl^) and 0 ( n^ m) from Lemmas 2 and 3 in Appendix B. 

Since 1 -f 2(A — d\) > 0 in 0 i ,  condition B .4  implies tha t b) and c) hold.
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In order to prove a) write,

C{d) -  C(d) A(d)
C(d) B{d)

where

^ - 1  
9j ,

B(d)  =
2( d - d 1) + l 

m  — I

7 7 1 /  \

5  t ii)
2(d-d1)

for gj =  CXj 2dl. Since B(d)  +  \B(d) — 1| > 1 it follows tha t

inf B(d)  > 1 — sup \B(d) — 1| > ^
©i ©i 2

for all sufficiently large m  using Lemma 2. Now, by summation by parts, 

bounded in absolute value by,

m  — I 

3

rr^ l ty  r  y id -d i )  / r + 1 N2(d-dl)| r /  j .

\ m - l )  } £  \ 9j
-  1

3 (  m  \
m  — I \ m  — IJ

2(d-dx)
E - - 1

Using the mean value theorem we have tha t for r > 1,

1 + r )

1 \ 2(d-dx)
-  1

2| ( d - di)|
< — ------- — max (1 - |—  ) < -

r>i \  r j  r

in 0 . Thus the supremum in 0 i  of (4.7) is bounded by 

3
SUP©1 ------ 71 m  — I

< 12
2(A2—< h ) + l  /  j ,  \  2(A—d j ) + l  j/  m  y t  ( r \

Since —► 1 for all a  we focus on the analysis of

r n - l  ^  r  X 2 (A —d ! ) + l  j

£ (£r = l + 1
E ( - - 1

\ S i  ,

Now,

i  -  1 = ( 1 -  g-f ) £  + 1 f t  -  |a,-|%] + (2jr/ej -  1)
V / j /  9j Jj
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(4.6)

A{d) is

(4.7)

(4.8)

(4.9)

(4.10)



where Iej = Ic{u +  A,•) =  \We(u  +  Aj)|2, W.(A) =  ^  E L i  =  f ( u  + Aj),

/ j  = / n(u; +  A j) and =  a(cj -f Aj) = ^2^=0 otketk û+x^ . Assumption B . l  implies 

that

9j1 -

/ ,
=  O ( A J ) .

Assumptions B . l  and B .2  and Theorem 4 imply tha t for n  sufficiently large,

E =i+o((9 +
j \ a , dlMogj

j l+ 2(d2—di)

(4.11)

(4.12)

Thus

E { m_1 / r \ 2M ) +1 1 

r=/+l V771/ E
j=f+i

= o

= o

/ r \2(A-rf,)+l ! '  / j \ a /  n2(d2-di)l
E ( - )  ? § ( » )  ( 1 + ( n )

OgJ
l+2(t/2—d\)

i ̂  a ™̂ {  T \  2(^ <̂l )"l"l j 2̂(̂ 2 ) log 7*
t /  r 2 I n“ /2(^2—̂i)

-  °  ( © ■ ( ■ + © * +

= O
777^“ ^  Tl2^ 2 dl)(log77l)2 ^  772^ 2 dlMog77l

^l+2(d2—̂1)

in 0 i  under B .4.

Since ||a |2 — |6|2| =  |Re{(a — b)(a +  6)}| < |(a — b)(a +  6)| < |a — b\\a +  6| and

applying the Cauchy-Schwarz inequality we have tha t E\Ij  — \otj\2I £j\ is bounded by

E\\Wj -  OjW'jWWj +  ajW 'j |]

< {E l,  -  txjEW'jWj -  ajEW'jWj +  \aj\2EI,j}*

X {E l,  +  a ,EW t,W, +  a,EW e,W, + \a,\2EIc,}$ .  (4.13)

In view of the proof of Theorem 4, as 71 —> oo, / < j  < m  and d\ < we have that

EI, = f ,  +  0  ( l ^ A J 2* )  , EW,Wt, =  2L +  0  ( ^ A J 2j2)
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because I tj  = E)"=i H?=i £t£se‘l'C and under B .3 E I , 3 = jb . Thus under

B .4  and d2 > dlt (4.13) is 0 ( ( !£6i)5A "(<i!+<il)). Now3 3

(  m _ 1  /  T \  2(A “ dl ) + l  1
£  j - U i  -  k i % ) )

;= /+ i ^  JM l©
(4.14)

y+1 x'”' / ■ /+1

We distinguish the cases d2 — dj > 1/2, =  1/2, < 1/2. When d2 — d\ < 1/2, (4.14) is

0 m 2(A-d!)+l (4.15)
f+1

=  0( 1)

Now if 2(A — di) — (d2 — d\) — 1/2 > —1, (4.15) is

/ ttd2-<hm 2(A-di)-(d2-<ii)+7 (logm )t \  / n d2~dl (logm )t

^ ro2(A-*>+i J  ^

under B .4, and if 2(A — d\ ) — (c?2 — di) — 1/2 <  —1, (4.15) is

^  / n d2-dl/2^ ~ dl _̂ ^ 2-dl +̂ 2(logm)2 \  ^  / n d2-dl(logm)2 ^
^ m 2(A-dl)+1 y y /|+rf2-di ^

in 0 i  because of B .4. Now if d2 — di =  1/2, (4.14) is

In case 2(A — di) > 0, (4.16) is

0  / » * -* ( lo g m )> \  = Q f  ̂ ( l o g m ) U  A  =
V 771 /  V t 771 J

under B .4, and if 2(A — di) <  0, (4.16) is

( y ^ (lo g m )2 2(A_Jt)\  _  ( V n(logm )2 l2( * - d>)+' \  _
^m2(A-i,)+i / V 1 m2̂ -d0+1) ~ { >

in 0 i  and because of B .4 . Finally when d2 — d \ >  1/2, (4.14) is

(  ro2(A-d,)+i ^  J ’

if 2(A — dj) > 0, (4.17) is

n ^ - 'i> (logm )l; i _ (j2_rfl)ro2(A_dl)\  =  Q / n ‘b -< '.(logm )§ \

= o(l)

(4.16)

(4.17)

O
l\+d2—d\
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and if 2(A — d\ ) < 0, (4.17) is

( n ^ ( l o g m ) z  2(A_dl)_(j2_d])+A  _  / n d* ^  (log to) I \
\  m 2(A- d■)+> /  \  l i+d*-d' )

and consequently (4.14) is o(l) in 0 i  under B .4.

The final contribution to  (4.9) comes from the term  involving 2irI£j — 1. Write

2tt /„  -  1 =  -  1
t = l  3 — 1

=  r  - J ) +  “  £  S  cos{(4 ~  *XW +  a j)}£:<£‘
t=  1 71  t ± 8

because sin(A) =  — sin (—A). Thus

T = l+ 1 r2

1 n 

71
i = l

m~1 /  r \  2(A-di)+l j j

<

X I (2ir/=J -  1)
3= 1 + 1

(  r  \  2(A-d!)+l r  _  lm_1 /  r  '
E dw  Vm-

(4.18)

7 ^ - 1  /

+  S i r )  4 ^ X l £ ] L cos{(*_ s X“  +  Ai)} £|£*l- (4 1 9 )
J+l V 7 /+1 <#3

Under B .3 , £ l3?= i(£t) 1 from Theorem 1 in Heyde and Seneta (1972) and

m_1 /  r  >v2(A-d1)+i r  _  1 ! ™, f  r  \ 2(A-rfi)+i 1

r = / + l  \ / + l

=  0 r  =0(1)

and thus (4.18) is op{ 1) in ©i. Assumption B .3  also implies that 

^ E E £‘£* Z  cos{(/ — 5)(u> +  Aj)}]2
S t £ s  j = l + 1

* t^s /+1

=  2 ^ 2  ^  C  Z  cos{(* “  SXW +  Ai)}  cos{(* -  s )(w +  A*))l
J=/+l fc=/+l s

r  n n
= 2 5 ^  z  [ Z  Z  cos{(* ~ <s)(u ;+ Ai)}  cos{(* -  *)(w +  A*)} -  ni

A ; = / + l  f = l  s = l

= (r — l )n2 — 2 (r — l)2n  (4.20)

for r  such tha t 0 < u  +  Ar < 7r. To prove (4.20) write

cos{(t -  s)(uj +  Aj)} cos{(t -  s)(u> +  A*)} = ats +  bts +  cta +  dts

111



where

ats = cos[s(u; +  A j)] cos[s(u> +  A )̂] cos[t(u; +  Aj)] cos[t(u> +  A^)] 

bts = cos[s(u> +  Aj)] sin[,s(u; +  A )̂] cos[t(u> +  Aj)] sin[t(u; +  A*)] 

cts = sin[5(0; +  Aj)] cos[s(u; +  Ajt)] sin[t(u; +  Aj)] cos[t(a; +  Xk)] 

dts = sin [5 ( 0;  + Aj)] sin[s(u; +  Aa:)] sin[t(u; +  Aj)] sin[t(u; +  A*)]. (4.21)

Now

12 12 ats = 12 cos[t(a; +  Aj)] cos[t(u; +  A*)]£ =  if k =  j
t = l  5=1 t

= 0 otherwise

n n n n

1 2  1 2  bt* =  1 2  1 2 Cts =  0
t  =  1 S=1 t = 1 5=1

and

n n 2
1 2 1 2  dts =  -7 - if k = j
t = 1 5=1

= 0 otherwise

which proves (4.20), and thus (4.19) is

—  op( 1)

as n —*• 00. In the second equality the cases 2(A — d\)  > —1/2 and 2(A — d\) < - 1/2 

are distinguished and the last equality comes from the definition of 0 i and assumption

B.4. Thus we have proved tha t sup@1(4.7)= op(l).

Now supei (4.8) is bounded by



Because ( -Z3 j ) 0( —> 1 for all a  as n —> oo we focus on E1+1(^~ ~  1)1 and use (4.10)771 771 Q j

to show in the same manner as above tha t sup0 l (4.8) is op(l) . When d\ < c?2,

m

/+ i

m 2(̂ 2 di) lo g i
W ( d 2- d 1)

_ /  m “ m 2a m a n2^ 2 dlMog m  
0  —  +  - = -  +  6

TV- n 2a J\-\-2(d2 —dj)

under B .4. On the other hand,

o  ( — j r  nd2~dl ^^+d2— d\

= o

H-i 3 
nd2-d\ (logm )^

[ \+d2-di = ° (1)

under B .4, and finally ,

1 m
- £ | 2^ - i i

1 71 1 m  1

= op( 1) +  Op ^ =  °p(l)-

<

m i+1

m  — I 
m m  7+1 n  t

We have shown tha t sup0l |^4(d)| 0 and thus

sup
©i

C(d) A(d)
C(d)

= sup 
©1 B(d)

< sup01 [A(rf)| ^  
inf01 |£ (d )|

and the proof is completed in the case d\ < A i +  But if d\ > Ai +  | ,  ©2 is not an 

empty set and P (in f©2 S(d)  < 0) may be different from zero. However we will see that 

in fact P (in f©2 S(d)  < 0) —► 0 as n —► 00 when d\ < (the proof when d\ > di and 

/ =  0 is the same as that in Robinson (1995b)). Write p  =  pm =  exp( E I+ i l° g i)  

and S(d)  =  l o g { ^ ^ }  where D(d)  =  ^17 E /+ i(  j ) 2(d_dl)i 2dl^ -  Since I + 1 < p < m
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then,

2 (d-d!) 2(A—d i )
in f  f  >
02 \ p j

©2 \ p j

P>
for I + 1 < j  < p 

for p < j  < m.

It follows tha t

where

■% m

a a =
( j )  ( ^  for / +  1 < j  < p
/ 7\2(A i-d i) .

for p < j  < m

Thus

Under B .4,

1 m
P(inf S(d) < 0) < P (— l £(« ,- -  l ) i2‘,'/J < 0).

p ~  exp ( —-—r{m[log m  — 1] — /[log / — 11} ) 
\ m  -  / /

=  exp(—1 +  log m)  exp
\ m  — I m  — l )

m ,  m
-  —(1 + o(l)) ~  —, 

e e

and

£  aj ~  J *  z ^ - V d z  =
l2(A—d\ )+l

j=M-l 

Thus

2(A -  dj) +  1 (2(A -  rfi) +  1 ) p ^ - d i )  •

m
1 m 1 p 
3 7  £ ( « J  -  1) > 7 ^ 3 7  - 1

/+1
1

1 +

M-l
/ (^^(A -dO +l

e(2(A — di) +  1) ^ m  — l (m — /)ra2(A-dl)

1 - 1  +  0(1).

- 1

e ( 2 ( A - d 1) + l )

Choosing A < di —1/2 +  l/(4 e ) (which can be done without loss of generality because 

d\ — 1/2 > A i in ©2) we have tha t for m  sufficiently large and ^  0 as m -+ 00,

s b D + i ( “;  - ^  1 and
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Since YSi+i aj ~  P2 d̂l Si x2^  dl^dx + p2(dl Al) f ™ x 2(Al dl^dx =  0 (m)  it follows 

that

_ J_ f ;(8j._i) ( i - ^ U  
m ~ l w  V f j / S j

=  Op +  ! ) ( - ) ' ” ( 1 + ( T f  +  ^\ m!+1 ' n '  V 3

n2(c£2 d\) |Qg j
l+ 2(d2—di)

-  “- ( ( f ) ' + ( ? ) “ + ( ? r = s s r '

-  » . ( ( = ) ■ ) - m u

as n  —► oo, under B .4  and because a  > 0. On the other hand,

1 m 1 
- 7 E ( « ) - i ) 7 [ ^ - K i 2y

0 ,

o T

H-l

1 -vnd2_<il(logi):E { -
( • ) - ■ ) - ! ^ T

r ^ . ( l o g m ) i \  =
P \  ,£ + * -*  y

as 7i —► oo under B .4, and finally

-> m
———- ^ 2 (aj ~  — 1) =
m  1 /+i
1 n -j 77i

m ~ ‘ w  
1 . _ 1 m 

+  “ E E  ^ T j  E ( ° i  -  ! ) cos{(* -  s )(u  +  a j)}£!£i

(4.23)

(4.24)
t  S ^ t /+1



Since J2{aj ~  1) =  0 (1 ), (4.23) is op( 1). Now (4.24) has variance

-j 771

— 7 H ( ai “  !) cos{(^ “  5)(w +  Aj )}
f m  - 1 1 + 1

9 1  m  m  n  n

E  (°j ~ E  (a*- 1)(EE(°‘» + + c<» +rfi3)_ n)
«2 ( m - 0 % 5 + i  t=i+i <=l s =i

where ats,bta,c ts and dts are defined in (4.21). Thus the variance of (4.24) is

n? ( m - l ) 2 |^ ° J' " “ n ( m - l ) 2^ a> ~ 1̂ 2' ('4'25^

The second term of (4.25) is 0 ( n ~ l ) because X^+i(aj — 1) =  0 (m ) .  Now

4(A—d\) m /  ,’\  4(Ai— di)

= 0

and thus

E o* =  E ( 0  + E ( ;
i+ i  i + i  X F /  p +1 X F '

plogp +  / l - l  +  m logm  I — 1

= o(m logm  + ; ( i )  ‘

^ e =̂o( ^ +5S^)=0(1)
l+l

because 4(A — d\) +  2 > 0. Thus (4.24) is op( l)  and consequently /Y infn, *^(^) 5: 

0) —► 0 so tha t the proof is completed. □

4.3 ASYMPTOTIC DISTRIBUTION

In this section we show tha t under some conditions stronger than those ii**«-<b*«l f«»r con 

sistency but milder than the assumptions imposed in the log-periodogram r**gr«*Nsion, 

in the sense tha t Gaussianity is not needed,

i/m(dj — di) - i  J V (0 ,1).

The constancy of the asymptotic variance of d\ makes easy the use of approximate 

rules of inference. We also observe a gain in efficiency with respect to  log-periodogram 

regression where the asymptotic variance has an upper bound of 7r2/24 and a lower 

bound of 1/4, but this lower bound is only achieved when the pooling number J  is 

oo, so that the asymptotic variance 1/4 is not attainable by this class of estimates.
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The assumptions needed in this section are the following:

C .l :  B . l  in previous section holds.

C .2 : In a neighbourhood (—<5,0) U (0, S) of w, a(A) = YlkLo &ketkX is differentiable

and
d * / |a ( w ± A ) | \  . .

— a(u> ±  A) =  0  ( ------  J as A —► 0+ .

C.3: Assumption B .3  holds and

E(e%\Ft- i )  = H3 and E(e\\Ft- \ )  = Ha, t = 0, ± 1,...,

for finite constants fi3 and /Z4.

C.4: If d\ > d2,

1 m 1+2a (logm )2 1---------- \ ------ - ► 0 as n —► 002am  n

and if d\ < d2,

(logm )3 I3 4 n 2{d2~d\) m i+2a
_ _ _  +  _ ( l ° g m )  + _ _ _ l o g m  +  _ 5 _ ( l o g m )  ^ 0

as n  —► 00.

Assumption C.2 implies B .2 because /(A ) =  f^|c*(A)|2. C .3 implies th a t x* is 

fourth order stationary and holds if the St are independent and identically distributed 

with finite fourth moments, and C .4 is Assumption A.4’ in Robinson (1995b) if d\ > d2 

but when d\ < d2 we use a trimming as in the proof of consistency. Taking m  ~  n e 

and / ~  we have that in case d\ > d2, 9 < 2 a / ( l  +  2a)  suffices, but when d2 > dj, 

C .4 can only be satisfied if d2 — d\ < a / ( 3 +  4a). For instance when a  =  2, d2 — d\ 

has to  be smaller than 2/11. However we can relax C .4 by strengthening C .3. We 

thus consider:

C.5: The fourth cumulant of et is zero for all t.

C.6: If d\ > d2 C .4 holds and when d\ < d2

(logm )3 I2 2 n2(d2~dl} m 1+2a 2
— r̂ _  +  - ( I ° g  m )  +  l o g m  +  - ^ - ( l o g m )  - 0

as n  —► oo.
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Assumption C .5 is implied by Gaussianity and C .6 entails (d,2 — d\ ) < a /2 ( l  +  a ), 

where the upper bound is 1/3 when a = 2. This requirement is not much stronger 

than d,2 — d.\ < 1/2 which is satisfied if there is both a left and right (stationary) 

spectral pole at lo.

T h eo re m  7 Under C .1 -C .3  and either C .4  or C .5 and C .6 ,

yfm(d\ — d\) N { 0, as n —> oo.

P roof: Like in the proof of consistency we focus on the case cfo > the proof 

with c?2 < di is a straightforward extension of tha t in Robinson(1995b). Since d\ is 

consistent under the conditions in Theorem 7, then with probability approaching 1 as 

n —> oo, d\ satisfies

dR{d,) AR(di)  d2iJ(d) j
0 -  S T  ~  S T  + ~ dl)  (4'26)

where \d — d\\ < \d\ — d i|. Write
-j 771

j = i +1

Then

=  2m  * £ w
dd  C (d )

d2R(d) 4{C2(d)C(d) -  C\(d)}
id,2 ~  C 2(d)

Define also
'I 7ft -J 7ft

n  =  — y E  O o g jf A f / j  , E k(d) =  — 7 E  n o g i) t i 2t' / J ,
7 /i I . . 771 ( . , . 1;=/+l J=l+1

thus
d2fl(d) _ 4{F2(d)/b(d) -  F 2(rf)} _ 4 {£2(d )£ 0(d) -  E 2(d)}

i d 2 F 2(d) E 2(d)

Fix C > 0 and choose n such tha t 2£ < (log m )2. On the set M  =  {d : (log m)2\d—d\ \ <

Q
1 m

|E k( d ) - E k(d1)\ < —
!+i

< 2e\d — di\Ek+i(d\)

< 2e£(log m ) k~2Eo(di)
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where the second inequality comes from the fact tha t

I j 2 ( d —d \ ) _  | |  1

—r r j— T-j— < (log j ) m 2\d~d^ < log j  =  e lo g j2 | u  — d \  |

on M .  Thus for 77 > 0,

p  (|£*(<f) -  £*(<*,)! >  n ( ^ r 2dl)

< P  ^2eC(\ogm)k~2E0(di) > rl ( ~ ) ~ 2d' \d £ Af)

+ P  ( \ E k(d) -  E k{di)I > V ( ^ - T 2d' \d t  M \

< P(C(di )  > 7̂ ( log ™)2~k) +  P ((logm )3| d -  d2| > Q.  (4.27)

Since from the proof of Theorem 6, C (di) C  G (0 ,00), the first probability in (4.27) 

tends to  zero for £ sufficiently small and k = 0 ,1 ,2 . The second probability is bounded

by

P((logm )3|di -  d i| > C)

< P ( inf _5(d) < 0) +  P ( inf 5(d) < 0) +  P (inf 5(d) < 0) (4.28)
©1 r \ N s r \ M  ©1 nN 6 ©2

where M  =  (—00, 00) — M.  We have already shown in the proof of Theorem 6 that 

the last two probabilities in (4.28) tend to  zero. The first probability is bounded by

P ( sup |T (d ) |>  inf U(d)). (4.29)
©1 n N s  © i n / V ^ n M

As in the proof of Theorem 6,

c2inf _ U(d) >
©inTV̂ nM (logm )6 '

Call 7  = 2(A -  di) +  1 . On 0 i ,  7  > 0. Consider (^ ) 7 (logm ) 6 =  where

0 < a < 7 . Now ---- > 0  as m —*■ 00 and

( — ) ’ =\nP ~a J
12 1 
^ m J- T

»2
Under C .6  (and of course C .4), -- —► 0 as n —► 0 0 . Chose a < which can always2

be done because 7  > 0. Then (-j-y^logm ) 6 —► 0 as n —► 0 0 . Thus noting the form of
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T (d ) and the orders of magnitude obtained in Lemmas 2 and 3 it follows tha t under

C .4 or C .6 (4.29) tends to 0 if

C(d) -  C(d)
sup

QidNs C(d)
=  o„((logro) )

Using the notation in the proof of Theorem 6, and because of (4.6),

inf B(d)  > inf B{d)  > 1
©ifl Ns ©l 2

for all large enough m.  Thus it remains to  prove tha t sup©in^  |^4(d)| =  op((log 77i)~6). 

Now

sup |i4(d)| 
© i n  Ns

< sup < 12
0 inNtf

2 { d - d 1 ) + l  m - 1 r  r  V 2(fZ-d1)+ l  2

( ^ 7) ’ ’ E  (£\ m  — IJ *77 \ m

+ ( — )\ m  — IJ

2(d-di)
r = / + 1

m  — l

Since ( - 2ZLr ) Q' —► 1 for all a  we focus on'  m —l '

*»p f E ( - ) 2<I,’d,)+,Jje,nNS 1 \mj r2 s i s - 1.
1

H-----771 l+i ,9j

< f ;  ( - Y  2 5 1  ^  f i - i
1

H-----
7 7 1 s ( s -

Now, using Lemmas 4 and 6, the first part of (4.30) is

^ 2  ( -  27r/ffj  +  27rl£j -  1
1+1 \ gi  >"  \ 77l /  r2

‘  0' ( s © '

■ ‘4 ( = H = ) , * - + ( = r +
log m  
yfm J

(4.30)

(4.31)

under C .4  or C .6 . Since S <  j  then (4.31) is op((log to) 6). Similarly the second part 

of (4.30) is
(  1   777^"^  ̂ 3 1 \

° p I +  +  =  0p((!°6.m )“ 6)m
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under C .4  or C .6 . Thus P ( ^ i QinNgnI^ S (d )  < 0) —> 0 and

P  ( |£* (d ) -  E k(d,)\ > v ( ^ - r 2d' )  -*■ 0

as n —> oo. Consequently

d 2R(d) 
d d?

4[{£2(d1) +  Op( » ^ ) } { £ 0(d1) +  o„(rc2j>)} -  { E ^ d i )  +  op(n2di ) } 2]

{ £ 0(di) +  oP(n2‘'')}2
4 [f2(d1)/b (d 1) -/? (< * ,)] +  Oj,(l) as n  —► oo. (4.32)

Now for k = 0 ,1 ,2 ,
-j 771

h w - c — Y ^ o s j ) '
1 + 1

=  0  ( a a s E + r - r
V v™

= Op(l)

<  (logm )*—— - J 2  
m ~ l W

Gre) (loS m )2 +  (logm )1

^ - 1
Sj

(4.33)

under C .4  or C .6 . Thus from (4.32) and (4.33) 

d 2R{d)
d d2

C v ^ m_ 4 [{^  E^i(logj)2 +  O p W H C  +  Op(  1)} -  ESi log j +  Qp(l)}2]
{C +  op( l )}2 +  Op(l)

► (1 +  Op(l)) +  Op(l) 4

as n —► oo. Now since C(d\) C

^ - d ^ d O  = 2^ _ p  - lo g A j
drf 771 C(rfi)

/----------  1 m  i  m

y / r n  ^ C  +  ° p ( l )  J  j 3 j

=  I t ( w  ~ 27r/ej) ( 1 +
2 m

+  /— t>i2ir/e<( l  +  0, ( 1))

(4.34)

(4.35)
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where Vj = log j  — ^37 X3/+1 l°g.7 satisfies Y17+1 vi =  Since \vj\ = O (logm ), using 

Lemma 6 we have tha t (4.34) is

„  ( m a + i  i / f  , \
Op — —  logm  +  — logm  

V n  7714 J

under C .4  and
„  f m a + i t I , \Op — —  log m +  —=  log m  

y na yjm J

under C .5 and C .6 . In both cases (4.34) is op( 1). Apart from the op( l)  terms, (4.35) 

is

m n n
4 = i S > £ E £‘£‘ei(,' ’)(“ +A,)

n  -t 771 n  t — 1

■7 =  r  £  ®>'2 £  £  e*£*cos^(( -  * )("  +  A>)}
V l+l t=2s=l

2 1

/+1
n

t=1

where z\ =  0 and

t- i
for t = 2 ,3 ,..., n,

S=1 
2  1  m

cs = ----7=  V 'u jC os{s(a ;+ A j)} . (4.36)
n

The z* form a zero-mean martingale difference array and from a standard martingale 

CLT (Hall and Heyde (1980), section 3.2) ]C?=i zt converges in distribution to a N ( 0 ,1) 

random variable if

a) f X z ^ - O - l - O
1
n

b )  £ £ ( * ? J ( | * |  > « ) ) - ►  0  fo r  all  6 >  0 .
1

To prove a) write

l

=  £ - e [4 ( £ ^ « :,_ .)2| / ’1_i] - 1 =  ^ ( ^ £ sc,_s)2 - 1
2 s=l 2 s=l

=  { £ £ 4 < :?-5 - 1} +  £ £ £ £--^ci - r c<-.-
t—2 s=l t—2 r^s

122



The term in braces is

n—1 n—t n —1 7 i—t
(4-37)

t= 1 5—1 t= 1 5 = 1

Now X ÎLi1 12s=i c5 is equal to

71 — 1 n — t 771 

'2 m  f.
1 771 771 71— 1 n — t

•2 m  .
3

771 71 — 1 71 — t

4 £ E B E  vi cos{s(w +  Â )})1
t  =  l  5 = 1  l+ l

t h  E  E  v p k  E  E  cosM w +  ^i)} cos{i(a> +  At)}
j = l + i  * = ( + i  t = i  » = l

4 E  ' ) E E cos!W "  +  J j ) l  (4-38)
j=!+l i i

f \  771 n —In  —J

+  E ^ 2Z ) Z ) vi t;fcZ ) S [ cos{5(2a;+AJ +  Afc)} +  cos{;S(Ai - A*)}]- (4-39)
/+ii#Jt l l

From formula (4.18) in Robinson (1995b), namely,

g g c w -  - 1 ^ 1  (4.40)
7=1 (=1 4  sin 2 /

for 6 0,mod(27r), we have tha t for j  such tha t 0 < u; +  A j < 7T (which holds for n

large enough),

^ ] T c o s 2{s(u>+aj)} =  ^ E E a  +  H ^ + y i )
( = 1  5 = 1  1 1

1 v*v~ l cos{2(q; +  A j)} -c o s{ 2n(a; +  Aj)} n -  1
2 2 4sin2(u; +  A j )  4

=

Since

■j 771 -j 171 /  -I 771

— 7 E ^ i  = ~ — / E ( 1oS7')2 - ( - — j E l o g i
m - ' w  ,

*2'
=  l + o  {logmy

m

we have tha t (4.38) is

4 f  (n -  l )2 1
^  j  +  0 (— (logm) )J  - 1  as n  —> oo.
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Now for j , k such that 0 < 2u  +  Xj -f Ajt < 2ir (which always holds for a large enough 

to) and j  ^  k we can again apply formula (4.40) and we get tha t
n—1n—t

so th a t (4.39) is

2 2  ^ [cos{s(2u ; -I- Xj +  Xk)} +  cos{s(Aj -  A*)}]
t=1 s=1

= -71 +  0 (1 )

Thus the second term in (4.37) tends to zero as n —> oo. The first term  has mean zero 

and its variance is
n—1 n—t

o ( £ ( £ c»)2)-
f = l 3=1

Now

|c,l“ V
and for 1 < s < to/2, by summation by parts, |ca| is 

2

m
n

(4.41)

,— y  Vj cos{s(u) +  A,)}
Tly/m 3 1 V 3)3

m—1
—j =  2 2  (Vr -  *V+l) 2 2  cosM w + Ai)} +  7=Vm VcOs{s(w + Aj)}

2 m —1 r 2 m
— 7== 2 1  O o g r-lo g (r +  1)) 2 2  cos{s(u>+Aj)} +  — 7= v m^cos{s(u>+A j)} 
nv mr=/+1 j= i+1 n V m  l+1

_ /  1 7£->1 . . 1.71 1 7 l\
= 0  ^ 2  los ( 1 +  “ ) t +  w ^ logm T

\ n V m r H j 1 r S n V m  S)

= 0 ( M
S y / m J

(4.42)

because X)/+i cos{s(u; +  Aj)} =  0 ( n s  *) for 1 < s < n j2  (see proof of Lemma 4) and 

< 1 /r  for r > 1. The bound in (4.42) is at least as good as tha t in (4.41) 

for n / m  < s < to/2. Consider u  a harmonic frequency (which can always be done for 

n sufficiently large), then ca =  cn_s and from (4.41) and (4.42)

to 7ro(log 7ro)2 (log m )2
E 4  =  o
3=1

=  O

771 TO

(log 77l)2 
TO

+
771 E s- 2

(4.43)
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and the variance of the first part of (4.37) is 0 (  Thus (4.37) is op( l) . In order

to  prove a ) it remains to show that

n t — 1

E E E ^  s c t - T C t - s  = Op (1). (4.44)
t= 2 r^s

The left hand side of (4.44) has mean zero and variance

n  n t —1 u—1

^  ]  y  1 y  ^ y  ]  y  ]  E \ s TEs EpE(^Ct—r^t —s^u—pC-u—q
t= 2 u=2 r^ s  p^q

n n m i n ( t —l , u —1)

= 2 y   ̂ y  Ct—rCt—sOu—rCu—a
t= 2 u—2 t^s

= 2E EE J-rcl,+4 E E EE «w«w*-r«w (4.45).
t = 2  r ^ s  < = 3  t t= 2  r ^ s

The first part of (4.45) is 0((log m )4n -1 ) from (4.43). The second part is bounded in 

absolute value by

n  t —1 tA—1 u—1 n  n  t —1 t —1

4 E E(E 4-, E c«-») ̂  4(Ec«)(E E E 4)- (4.46)
t = 3  u = 2  r = l  5 = 1  1 t = 3  u = 2  t - u + 1

Now

n  t —1 t—1 n —2 n

E E  E  4  =  ! )ci+ i ^ " E ' w
< = 3 u = 2  t —u + 1  j = l  1

[ n m " i ]  n

13  i cj + n £
2 [nm” ^]+l

/  n n m (logm )2 2 (log 772)2 7723 \
=  0  n —T —T -------o h n

7723 7723 71 772 72

= o  [ ^ (lo g m )2
i

7723

using (4.41) and (4.42). Thus noting (4.43) we see tha t (4.46) is

Q / Ti(logm)2 (log 772)2\  _  Q / (logm )4\  _  ^
\  7723 n  )  \  7723 )

and (4.44), and thus a ), are proved.

In order to  prove b ) we check the sufficient condition

^  E[zf] -► 0 as 
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Now

E lz t] =  l t E [£t l 2  £sct - s ]4 =  Ha t ,  t sCt-s ] 4
1 2 s = l  2  1

n  t—1

^ E ^ E E E E  £ S £ r £ p £ q  Cf  — g C f - y C f — p C f — g ]

2  s  r  p  q = l

< A* E ( E  c>) +  ^ A .  E  E  E  A - A - t
2 «=1 t= 2  S r = l

=  o („ (X :c ? )2) =  o ( 2 ^ ) = 0( i)

in view of (4.43) and this concludes the proof of the theorem. □

4.4 MULTIVARIATE EXTENSION

The multivariate case is im portant in order to  analyse the interrelations between differ

ent variables. Lobato (1995) proposed the joint estimation of the memory parameters

at the origin of a vector series x t of r elements a =  l , . . . , r ,  by minimizing the 

local discrete approximation to  the W hittle likelihood function (1.55) in Chapter 1. 

Considering the correlation structure among the elements of x t Lobato obtained an 

asymptotic efficiency improvement with respect to  the individual estimation of the 

persistence parameters in each z “. The methodology and properties of this sornipara- 

metric multivariate W hittle estimation are mentioned in Chapter 1.

The extension from w =  0 to  w /  0 introduces two possible niodifir.itions with 

respect to  the case at the origin. First, the frequency, u a, where the pole zero iwTurs 

can be different for every x“, a =  1,..., r*. Secondly, as in the univariate rase, we ran 

allow for the possibility of asymmetric poles/zeros for u a ^  O(modir) which forces us 

to trim  out some corresponding frequencies. Thus, in order to  estimate the persistence 

parameters just after the spectral pole, the objective function to  minimize is

m
Q (C ,d) =  £  {log |AjCAj| +  trfA -’C - 'A - 1/,]}  (4.47)

j = l + 1

where Aj  =  d ia g { \ Jda} for a =  1, . .. ,r ,  d =  ..., dr) is any admissible value of the

vector of memory parameters, C  is a r x r matrix and / j i s a r X r  matrix with diagonal 

elements I aa(ua + Aj ) =  |Wa(u;a +  Aj) |2 =  x?e- t*(u'a+A)|2, the periodogram

126



of X*, a =  1,..., r, at frequency u>a +  Xj and the off-diagonal elements are 0 if u>a ^  Ub 

and the cross periodogram, I ab(u +  Aj) =  W a(u  +  A ^W ^u; +  Xj), if u a =  u>b =  

where * indicates conjugation and transposition. The trimming number will be zero 

only if da2 < da\ for all a =  1, r, and will go to  oo more slowly than m  if dai < da2 

for some a. Thus, one disadvantage of this multivariate set up with respect to  the 

univariate case is that we need the trimming even in the cases da\ > da2 as long as 

there exists at least one b in {1, r} such th a t db2 > db\.

In Lobato (1995) /(A ) represents the r x r spectral density m atrix of the vector 

x t , where f aa(X) is the spectrum of and f ab(X) is the cross spectral density between 

and X* for a,& =  1, All the elements in /(A ) are evaluated at the same

frequency A. In the multivariate SCLM case, where the poles/zerOs can appear at 

different frequencies, we denote /(A ) the matrix whose diagonal elements are the 

spectra / aa(u a +  A) and the off-diagonal figures represent the cross spectral densities 

fab(ua +  A) if u>a =  LJb and are 0 otherwise. Note tha t in the case of different u>a’s /(A) 

is not the spectral density m atrix of x t . Modifying Lobato (1995) to  allow u>a ^  0 and 

u a ^  u>b, a,b =  1, ...,r , we introduce the following assumptions,

J . l :  For a  E (0,2],

/ ( A ) -  A jC A ^ l- f  0 (X a)) as A —► 0+

/(A ) ~  A2I>A2(1 +  0 (|A |“)) as A -> 0"

where C, D  are two Hermitian positive definite matrices with typical elements Cab, 

Dab if u a =  LOb and 0 otherwise, and At- =  diag{\X\~da'}, a =  1, . .. ,r , i =  1, 2, where

0 < da2 < 0.5 and da\ E 0  =  [Ai, A 2] where 0 < A i < A 2 < 0.5.

J . 2: In a neighbourhood (—£,0) U (0,£) of u;a, / ao(A) is differentiable and

^ lo g /a a ( ^ a  ±  A) =  0(A _1) as A -► 0+

for a =  1, ...,r .

J .3 : x t =  E x 0 +  0 Aj£t- j  where et is a martingale difference sequence with

E\et\ < 00, E[£t£t\Ft-i] =  R  where the diagonal elements of R  are equal to  1, Ft- 1 is 

the (7-field generated by £a, s < t — 1 and £t and £t£ft — R  are uniformly integrable.
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J .4 : If dai > da2 for all a =  1,..., r, then / =  0 and

1 m 1--------► 0 as ft —► oo
m  ft

and if da\ < da2 for some a

171 I . n2A 3
— +  — log m  + (log m) —► 0 as ft ^  00 

where A =  maxa{da2 — dai}.

Assumption J .l  is similar to  C5.1’ in Lobato (1995) but we allow for different u;’s 

and asymptotic asymmetry of the spectral density at each of those frequencies. As in 

the case uja =  0 studied by Lobato, we only focus on positive values of the different 

persistence parameters. J.2 is B.2 in the univariate case for every a. Assumption J .3 

implies tha t the typical element of Xt is
00

Xt =  E x 0 +  ^  a aj£t—j 
j = 0

where a aj is the 1 x r a-th row of Aj.  It also implies

El£t£'u\ =  0 for f ^  ft

and

(see Lobato (1995)).

Let d1 =  (d n , ...5 driY  be the vector of actual memory parameters just after the

spectral poles, d =  ( d i , ..., dr) any vector of admissible values and d1 the local Whittle

estimate of d1. Concentrating C  out of the objective function (4.47), we have that 

d1 =  argmindg© R(d)  where
t 1 m

R(d) = - 2  £  - r £  log Xj + log \C(d)\ (4.48)
,  TTv I .

a = l  3 = l + 1

and
-a 171

=  (4-49)
j = l + 1

As in the univariate case the procedure consists in obtaining d1 by minimizing 

(4.48) over a closed set of admissible values and then plug d1 into (4.49) to  get an 

estimate of the matrix C.
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T h e o re m  8 Under 3.1-3 A ,

d1 d} as n —*■ oo.

P ro o f: The proof is similar to tha t in Lobato (1995) for u>a =  0 noting the results

we had in the univariate case so tha t it will be described here in an abbreviated

manner. Write R(d)  — R(d1) =  U(d) — T(d)  where
r r

U(d) =  2 ^ ( d a -  d«i) -  l > g ( l  +  2(da -  dai)}
a = l a = l

T(d) = 2 ' £ ( d a - d al)
a = l

m 7 ]C  los i  ~  log(m -  0  +  1 
i+i

+  log |r ~ 1C'(d1)| -  log | z r _1 AfC(d)|-1

where

Now

M  =  diag{ da)} , T = d*a0 {Caa} , Z  =  diag{\ +  2(da -  dol)}.

rS2
inf (d) > —  > 0 

N*n0 2

where N& = R r — N$, N$ =  {d :|| d — d1 ||<  £} and || 2? ||=  maxt-(|2?t’|). Thus it only 

remains to show tha t sup© |T(d)| 0. Now sup© |T(d)| is bounded by

2r
m

1 771

-  log(m -  0  + 1
/+i

+  2 sup | log \ZT MC(d)\\.  
0

(4.50)

(4.51)

By Lemma 3, (4.50) is o(l) and using log |i4| < tr(A — I),  log \ZT l MC(d)\  is bounded

by

tT{ZY~l M C ( d ) - I r )

=  tr  M

=  tr  ( i z E W ^ - y )  

+ » ( ^ r 7 E ( ^ - ^ ) ) (4.52)
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where = diag{Â da1}, 4> =  diag^^j^ ) 2^ 0 dal)} and because M K  - 2l& ■ 1 =  I r .

Then t r ( Z r - 1M C(d) — IT) is equal to

£ ( 1  +  2  ( d a - d a l ) ) — 7 £
a=l m  — \ m  — I

3=1+ 1

[A f +  Xj) -  1] (4.53)

+ f ) ( i  +  2K - d . i ) ) - T 7  £  f - r - ; )
2(da—dal)

- 1 (4.54)

and (4.54) is o (l) by Lemma 2 and the fact th a t (4.53) is op( l)  has been shown in the 

proof of Theorem 6 for a single a. □

Note tha t the proof of the consistency does not use any information about the 

correlation structure of the different elements of x t (reflected in the cross spectra in 

our frequency domain set up). This information will be needed for the asymptotic 

distribution and it will produce a gain in asymptotic efficiency in the same way as 

when wa =  0 for all a =  1, ...,r .

Since the estimates of the different memory parameters dai,db\ for a, 6 =  1 , . . . , r  

are asymptotically independent when oja ^  Ub (this can be shown in the same way as 

we prove the asymptotic independence of da\ and da2 in the univariate case in Chapter 

5), the efficiency improvement will only occur in those cases when LJa =  Ub — w. Thus 

we study the asymptotic distribution when the spectral poles/zeros in every element 

of xt are at the same frequency u.  As in Lobato (1995) and the univariate case, we 

need the following assumptions,

J .5 : Assumption J . l  holds.

J . 6 : Let
■^i(w 4* A)

4(A) = :
. AT(u) +  A) .

where Aa(A) =  'EjLoa ajet3̂  =  (A j(A ),..., A£(A)). Assume

)
as A -+ 0+

for a, k =  1, ...,r .

J .7 : J .3  holds and

E[£a(t)£b(t)£c(t)\Ft-i] -  flabc Wbc\ <00  
E[ea(t)£b(t)£c(t)£d(t)\Ft-l]  =  3 +  Kabcd \*abcd\ < 00
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for a, 6 , c, d =  1 ,..., r.

J .8 : If dai > da2 for all a = 1, ...r, then / = 0 and

m n

and if da\ < da2 for some a,

1 m1+2“(log m)2
 1-----------\ -------  > 0 as n —*> 002a

(logm )3 / 3 4 n2A m}+2a 2

— p —  +  - ( los m ) +/T+2j los m +  ^ r ( los m) - >0

as n —> 0 0 .

T heorem  9 Under J .5-J .8

as n —► 0 0 , where E  =  2 /r +  2Re(C * (C -1 )') and * is the Hadamard product so that 

the typical element of E is

_  f 2 +  2CaaCaa if a = b
ab ~ \  2 ReCabCba if a ^ b

where Cab and Cab are typical elements of C and C~l respectively.

Proof: The proof is similar to that of Theorem 5.2 in Lobato (1995) noting the 

possible asymmetry as in the univariate case, therefore it will be presented in an 

abbreviated form. In particular, since dl estimates consistently d1 we have to show 

that

82R(d1) P
ddaddb Eab (4.55)

dR(d>)
 ” (4-56)

a = l

for any r x l  vector rj and ||d* — rf111 < \\d} — d11|. Now

« g > .  „  (1, 8)

The proof of (4.55) is similar to that in Lobato (1995). Noting that the sums are 

from j  =  I +  1 to m, the behaviour of I and m in assumption J .8  and the results
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obtained in the univariate case (and in particular Theorem 4) we can see tha t (4.58) 

is asymptotically equivalent to

tr
 ̂ /  i m \ 2 i m
- c - ' c tc - 'C a  — + c - ' c . t — t E ^ ' )

-  - \ m ~ l w  )  m ~ l W

where CL =  C is +  isC , s =  a, b, and Cab =  iah C  +  iaCib +  ibCia +  C iaib where is is a 

matrix of zeros except a 1 in the s x  s element. Since

m

■i 771 (  -t 771

1 as n oo

and tr[C  1CbC 1C J  =  tr[C  1Cob] then (4.55) follows.

Now since C ~1(dl ) =  C~l +  op( l)  then (4.57) is asymptotically equivalent to

,_1 dC(d ' )
dda (4.59)

Omitting the op( l)  terms we have that \A n£Ia=i Va 9  ̂ is

ey T m  T
^ ' ’ . r rV > ^ak \ da+dk

Now

- 7= E ^  E  lo g i{ ^ e [ E  +  A,)] -  1}.
a = l  j = / + l  * = 1

r  i  m

E cah— ! E  +
* = i  m  ‘ , = i + i

=  E  = E  c a* (c t .  +  op(i))  =  i  +  op( i)

(4.60)

fc=l Jt=l

and then (4.60) is asymptotically equivalent to

2 ~

- S  E  ^  E  " i W E  C°k\ f + d* I U u  +  A,)] -  1} (4.61)
a = l  j = / + l  jfc=l

where Vj =  log j  — such tha,t Ez+i vj = 0* Then proceeding like in

Lobato (1995) and taking into account the results we obtained in the univariate case 

we have

^ E * ^  = i > ( i  + «v(i))a = l t = l

where zt =  e\ r ™ 5^  and

m r r
r T-s = ~ j = ~  E  vi  E  ■ n . M Y .  C ‘i Xdj " +d“ (A'kA a +  A'aA k)] cos[(« -  s)(u  + Aj)]TTy/mn .v j=l+1 a=l Ar=l
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where the different A s are evaluated at u; +  Xj and the overline indicates conjugation. 

Thus zt is a martingale difference so th a t the Theorem is proved if

'Ha'HbEab * 0
t= 1 a=l 6=1

n

Proceeding as in Lobato (1995) we can see th a t £37=1 E ( zt \F t - i )  is asymptotically 

equivalent to Ya =i S«=i tr(T™* .ftr™ 5.ft) which tends to  Yla=i 5X=i VaVb^ab• To prove 

2) it suffices to show th a t E zt 0 which can be proved in the same way as in 

Lobato (1995). □

R e m a rk  1: We observe th a t, unlike the log periodogram regression, the multi

variate extension of the local W hittle estimate produces a gain in asymptotic effi

ciency when u*a =  for a, b =  1, ...,r , because the variances of the joint estimates of 

d n , •••> dri are lower than the variances of the individual estimates (see Lobato (1995)).

R e m a rk  2 : Assumption J .8 implies that A  = maxa{da2 — dai} <  a /(3  +  4a). As 

in the univariate case this restriction can be relaxed to  A < a / 2(1 +  q) by imposing 

a stronger condition in the distribution of the £*, namely tha t their fourth cumulant 

is zero for all t .

R e m a rk  3: Since E  depends only on the different elements of C  and C -1 , and 

C  can be estimated consistently using (4.49), then E  can be consistently estimated, 

which is useful for statistical inference.

4.5 APPENDIX B: TECHNICAL LEMMAS

L em m a 2 For e E (0,1] and k E (£, oo), when I —*■ oo and ^  —> 0,

P roof: For 7 > 0
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t ‘ { ( z z y

< {fay
/ + 2 ‘

m - J—1

m  — I
7-2< 7 / * +  i  V  1 ■ i  . j  \

~  m  — l \ m  — l )  (m  — l )7 (m — I)2 "  \ r a  — l )

dx

(4.63)

using the mean value theorem. The first term is 0 ( ra -7 /7-1), the second is 0 (m -7 ) 

and the third is 0 { m ~ l l) for 7 > 1, zero for 7 =  1 and 0 (m ~ 7/7) if 7 < 1. Thus

(4.63) is 0 ( ( ^ ) 7 +  ^ ) and the right hand side of (4.62) is 0 ( ( ^ ) e) because £ E (0,1]. 

□

L em m a 3 Let I —> 00 and - — ► 0 as m  —► 00. Then,
771 7

1 m /  / \
— 7 l°g J -  log(m -  /) +  1 =  O I — log m  ) .
- 1 \ m  Jm j = l + 1

P roof:

m

■j 771

5 3 loS i  ~  los (m “  0  +  1
/+i

1 JUL r i~ l
W

Z M i )
da: +  - log(/ +  1)

m  — l m  — l

< \x -  j \ - — 7— -d x  +  Z~ ~ 1  +  , l°g(f + 1)m  — l "  J j - i - i  1 1~ ' m - l  ' m - l
m—l—1

< ^ 7  E 7 + ~ 7 (1 + 1o6(, + 1))— I j  m  — l
|T+ 1|
m

= 0  f — logm  + -i- +  — log/') =  0  ( —  logm ') . □
\ m  m m  J \ m  J

L em m a 4 Let r > I and I €j  defined in (4.10) and C .3  hold. Then

E - !) = 0,(ri) .
j=l+1

P roof: Write

2)r/£i =  2»r|W7 (w +  A7 | 2 =  i | f > 1e*i<“+^>|2
71 t=1

= ~ ^ 2 £t +  “ X I S +  *i)(* “  s )}
<=1 * <̂ 5

n 1—1
= ■ -  i t ,  £t + -  c°s{(^+ * j)(t -  «)}■

71 t=1 t—2 5 = 1
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Thus
t j n n t—1r — I x-

(4.64)
j = l +1 1 = 1 <=2 5—1

where ds =  ^ X̂ F+i cos{(^ +  ^ j)5}- If ^  is a harmonic frequency of the form u> =  ^2̂ ,

where w is an integer then ds =  dn- s. Since in our analysis n  —> oo, we can express 

any frequency u  E (0 ,7r] as a harmonic frequency for a large enough n. Also |ds | < ^  

and for 1 < s < n j 2, \ds\ < — +  f  • This last inequality can be proved in the following 

way. Write
2 r 2 r

da =  — y  cos(u>s) cos(sA j) sin(u;s) sin(sAj),
71 1+1 71 Z+l

then

ld»l ̂  £lScos(iAi)l + ̂ 1 X̂sin('sAj)l-
!+i n  w .

By formulae (5.10) and (5.11) in Zygmund (1977, Chapter 2),

1 r 1 1
I — +  ^ 2  COS tV ~  Q COS rA ^  ”  f°r o < t <  7T

2 „=1
and

Thus

T 1 2 
y ;  sin tv — -  sin r t | < - .
V=1

r r I
y  cos(Ajs) <  | y  cos(Aj 5)i +  i y cos(Ai5 )i 
/+i i i

i  r i  i i
^  12 +  ^  cos(A->5) “  2 C° S Ar5  ̂+   ̂2 ~  2 C° S Xr^

1 * 1 1 1
+  12  +  Z ) c o s ( Ai 5 ) ~  2  c o s A / 5 I +  12  "  2  c o s  A , 5 I

n n
< ----- [-2 for 1 < 5 < —

7T5 2

and

y  sin(Ai a)| < I y  sin(Ajs)| +  | ] T  sin(Ai5 )|
H-i l l

r 1 1
< iy s in ( A j5 ) -  -s in (A rs| +  |-s in (A rs)|

1 1 1
+  I X J sin(Aj.») -  -sin(A ,s| +  |-sin(A i«)|

<  -  +  1
T S
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and thus \ds\ < — +I s\ — i n

Both terms on the right hand side of (4.64) have zero mean and variance respec

tively O ( ^ )  and

=  0 (r)

which concludes the proof. □

L em m a 5 Let j  be a sequence of integers such that £ —► 0 as n —»• oo. Then under 

C . l  and C .2,

2

rJ  — 7T

a(A)
a(u  + Xj)

-  1 K (A -  Xj -  u))dX =  O Q )  z/ dj >

1

P roo f: C . l  and C .2 imply th a t we can pick S E (2A j,7r) such tha t for some C < oo,

|a(w +  A)| <  C A -* 

|a (w -A ) | < CA“ *

and

|a '(w + * ) l  < CA" ,i* -1 

|a '(w -A ) | <  CA- *2-1

for 0 < A < 6. Now split the integral up into,

/ ui—S ru>—f- rv+2\j ru>+6 rir
+ / + /  X  +  /  A + / + / *

-7T Ju — S J Uf~̂— JW+2\j

Write ctj =  q ( w  +  Aj) and f j  =  f(u> +  Xj).  The first integral is equal to

T-7 T2 /  { H A)I2 “  .<*(*)«; ~ <*ja(X) +  \aj\2}K(X -  Xj -  w)dA
|Q j | J  — 7T
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and this is bounded in absolute value by 

1
j j  ^ - v<x<L-s K (x ~  Xj ~  { / .*  ^ (A)dA +  " i r  L v la (A^ dA

+ £  «(A )dA | +  J “~6 K ( A -  Aj -  u;)dA

=  0
:2di ;di

+ +  71-1 1 =  0 {j~l )-1
i tj1+2cZi 1 ji\+d\

using (3.33) and (3.34). Similarly

rJ tjj+6

Using again (3.33) the integral over [uj — 8,u> — A j/2] has an absolute value bounded

by

+

+

i  {s zS^1} 4  x h d l K i ~ x  ‘ Aj)dA

m /
K P  A2~d2

max ]^ _ _A)I  ̂ [ 6 \ 2~d2K ( - \  -  Aj)dA

max —7Y L  d2K ( - \  -  Aj)dAb.
2“ J ' | J  A ^ ' d 2  

+  A’(-A  -  A3)dA

=  0 ( A f 1n - ’ AJ1- 2''2 +  X ^ n - ' A - ' - j2 + n " 1 A"1) 

=  O ( i )  if d , >  <f2

2̂~^l)\
I if d\ < d2.

°  OK
Proceeding similarly we get that

Lu/+5

u ;+ 2A j

Now the integral over [u ±  -£] is bounded in modulus by

{ ^ n a x ^ l A ^ A - A ^ l j - i - ^ ^  +  AJdA

+  / _ L | f i ( w + A ) | d A + V b .  + A )|dA + A *

= O f n ^ A j ^ A ^ A j - ^  +  A ^A j-^  +  A,-])
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where i =  1 if d\ > and i =  2 if c?2 > rfi- Thus (4.65) is 0 ( j  ! ) if d\ > c?2 and

0 (} [f]2^ - d>))ifrf2 > d i -

Finally using the mean value theorem

/*u>+2Aj 1 f2X>
/  »,■ 1 12 A |a(w +  A) -  c*(u) +  A^p/t'CA -  Aj)dA

l«j|2 ■'~2

< I max - a ( u  + A)
■2Xj

|A -  Aj|2A'(A -  Aj)dA
|a j |2

=  0(A 2dl AJ2_2dln _1AJj  =  0 ( j ~ l ) 

using (3.33) which concludes the proof. □

L em m a 6 Let 0 < I < r < m. Let C .1 -C .3  hold and e?2 > d\. Then

5 Z  ( 1 .  j  -

j=l+1 \ 9 j J

= Or

ra"*"1 ,3 i \
 1- h r *  I under C .4)
T.a+1 \

+  1 1 under C .5 and C .6
rr

(4.66)

(4.67)

where Ij is the periodogram of Xt =  E x \  +  a j £t - j  at (u +  Xj), I £j is the peri- 

odogram of £t at frequency (oj +  Xj) and gj =  CX~2dl.

P roof: From Theorem 4 and C .l ,

E y '  ! i - ! i
m U  U ,

= E £ H ) &

= o
1 ^2(^2 1̂ ) Jog T

n a na /i+ 2(d2—̂i) =  0
.a+l

7T

under C .4  or C .6 .

Write Uj =  a/27T]~^ and Vj =  y/2irWej  where Wj  and Wej  are discrete Fourier 

transforms of x t and st respectively at frequency uj +  Xj, and aj  =  a(uj +  Xj) = 

EkLo<Xkeik(“+x’ l  Then

E | l ^  { j .  ~ 2irI^  J =  E (51(\uj \2 -  M 2)}2 =  a + b
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where

a = (E\uj\4 + E\vj\4 -  2E\ujVj\2)
3=1+1 

r
b =  2 ^ 2  ^ 2 ( E \u3u k\2 -  E \u jV k \2 -  E \ u kVj\2 +  E\v jV k \2). 

j=l+1 k>j

Since for any zero mean random variables u , v , w , z ,

E ( u v w z ) =  E ( u v ) E ( w z ) +  E ( u w ) E ( v z )  +  E ( u z ) E ( v w ) +  c u m ( u , v, w, z)

where c u m ( u , v, w, z) is the joint cumulant of u, v, w  and z, we can decompose a and 

b into ai +  02 and 61 +  62 where

at =  £ { 2 ( £ W 2)2 +  \ E ( « W  ~  2 |£ ( W ) |2>
f+1
—2|Z(»j® j)|J -  2 £ |« j |J£ |» j |J +  2 ( £ h f ) 2 +  |£ (« J ) |2}
r

0 ,2  = ^ 2 { c u m (uj i  u ji  UjiUj) — 2 c u m (u j ,  Vjj Uj, Vj) +  c u m (v j ,  Vj, V j , v j ) }
1+1

6 1 =  2  ^  ^ 2 { E \ uj \ 2E \ u k \2 +  \ E ( ujUk)\2 +  \E(ujUk) \2 — E \ u j \ 2E \vk \2
j=i+1 fc>j

- \ E ( u j V k )\2 -  \E(ujVk)\2 -  E |w j t |2- ^ | v j |2 -  \ E ( u kVj)\2 -  \ E ( u kVj)\2 

+ E \ v j \ 2E \ v k\2 +  \E(v jVk )\2 +  \E(v jVk)\2}
r

62 =  2 -  c u m ( u j , v k , u j ,  vk )
j=l+l k>j

—cum(uk, Vj ,uk, Vj) + cum(v j , vk, Vj, v*)}.

Now because E \ v j \ 2 = 1 and Theorem 4,

fli =  £ { 2( £ k j 2 -  I )2 +  2 ( E \ u j \ 2 -  1) +  l^ ( « 2) |2 ~  2 \ E ( u j V j ) \ 2 

1+ 1

- 2 \ E ( u j V j )  -  1 | 2  -  2(E(ujVj  -  1) -  2(E(ujVj) -  1) +  \E(v])\2}

/-i n2(d2 _ „  ( n^ d2 d l)!
“  j l + 2 ( d 2 - d i )  J  ~  0  ^ / 2 ( d 2 - d i )  l 0 S

= 2 £  £ { ( ^ N 2 -  l ) ( ^ l^ | 2 "  1) +  |£ ( < W )|2 +  \ E ( U j U k ) \ 2 ~  \ E ( U j V k ) \ ' 
/+1 k > j

- \ E ( u j V k ) \ 2 -  \ E ( u k V j ) \ 2 -  \ E ( u k V j ) \ 2 +  \ E ( v j V k ) \ 2 +  \ E ( v j V k ) \ 2 }

O (  V  V  n4(tf2-ch)(iogfc)2
1 2 ~ t  U\+2(d,2—d.\) j \ + 2 ( d . 2—d.\)
\ j = l +1 *>j J

=  ° ( 7 ^ < ^ r (logr) J
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and under C .4  or C .6 , a\ is 0(1) and b\ is 0 ( l 2). Now applying formula (2.6.3) of 

Brillinger (1975),

cum (u j,vk,u j , v k) = J J J  f Uj,Vktu3,yk( A,/i,C)dAd/idC

where f Uj,vk,uj,vk is the fourth order cumulant spectrum, and by formula (2.10.3) in 

Brillinger (1975), we have tha t

cum ^j.Vk.U j.Vk)  =  JJJ - P -  C M i/fcW ^iy^M i^O dA d/idC

where k is the fourth cumulant of et , k = ^  — 3, and A U j A Vfs, ;, Ayk are transfer 

functions of the filters implied in the definition of Uj and Vj,

. . n oo
“ j  = j— r —j=  e'1(" +A,) a >:£t-k

^  = 4 = ' £ ei,(u+x,)^

so tha t if a(A) =  o a ketkX,

A^  = \ k \ 7 * a (- x )p i,iw+X’+X)

A ^

A„k( \ )  = J = y ' e i‘<“+A‘+A>

V »  t= 1

Since k =  0 under C .5, then 02 =  62 = 0, and (4.67) follows. In any other case 

cum (u j,vk, u j , v k) is equal to

W r^ J IL — U p H ^ ^ (A’^ ) d W  (4'68)
where Ejk(A, /i,C) =  E ( oj +  Xj -  A -  fi -  ()D(u> +  Xk +  A)D(^ -  w -  \ j ) D ( (  -  u  -  Xk) 

and D (A) =  £27=1 e%tX is Dirichlet’s kernel. Doing the same with the other cumulants 

in 62 we see tha t the summand of (27t)3&2 is

M l ■ JPtSP  - *} <4.69,
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Since
4 4 2 2

(cic2 -  l)(c3c4 -  1) =  II (C1 _  !) +  ]C  life -  !) +  £  £ ( c<' -  1)(cj+2 -  !)
j=1 i=l j^ i  i=l j —1

then (4.69) has components of three types. The first one is

■ } { * ? -  ■}
(4.70)

Proceeding as in Robinson (1995b) we have th a t because of the Schwarz inequality 

and by periodicity, (4.70) is bounded in absolute value by k(2w)3PjPk where

a(X) 2
w *J — 7T

-  1
Qi

K(X — u> — u>j)dX

and A'(A) =  Fejer’s kernel.

The second component is

iS j f J ^ ± s i .  . , } { t a .  l}  E M K r , 0 i w c

(4.71)
I

As before, (4.71) is bounded in absolute value by K(2-jr)3P jP g .

An example of the third type component is

^ (A’/1’c)dAd/ldc

= %JIL{?  - w  ~A' c’c)dAd*dc

x D(uj -j- Xj — 0)D(u> -|- Ajt H- X)D(6 — 2uj — A — Xj — Afc)dAd0 (4.72)

because

/  D(u  +  X)D(v — A)dA = 2ttD (u +  v).
J — 7T

Thus the absolute value of (4.72) is bounded by P j •

Now since the summand of a2 is tha t of 62 with j  =  k , applying Lemma 5 we have 

when d\ < d2 ,

/  ' f  n4(d2-da) n3(d2- dl) n 2 (d2- dl) _ n \
“ 2 ~~ 0  I j L  +  ^ . 1 + 3 ^ - d , )  +  jl+KJz-J,) j )
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/  n 4 ( d 2 - d , )  n 3 ( d 2 - d , )  J l 2 ( d 2 - d 1 ) _ l

0  I /l+4(d2-di) *  j±+3(d2-<h) +  /2(da-di)

= 0 ( 0
n4(d2-di)

'̂l+2(d2 —dj) i.l+2(d2 — ) 
j=Z+lJb=Z+l W *

n3(d2-di) 2 n 2(^2-ch)
+  — _,.— — r r  +

jl+2(d2-di ) k §-+(̂ 2—̂1) ^/n j  j+(^2-di )^.|+(d2-d i)

{ n 4{d2 - d i )  n3^ 2-dlM oer n3(d2-di)

/ 4 ( d 2 —d i ) / 2 ( d 2 - d 1 ) r - j + ( d 2 - d 1 ) / - j + 3 ( d 2 - d a )

1 n 2(d2~dl) I n 2(d2-di) \
+  -T=T-TTTw3— 7T +/ _ 1 + 2 (d 2 —d i )  r - l + 2 (d 2 - d i ) j o g  r

= 0(1% r 2 )

under C .4  which completes the proof of the lemma. □
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Chapter 5

SEMIPARAMETRIC TESTS 
ON ASYMMETRIC SPECTRA

5.1 LOG-PERIODOGRAM WALD TEST

The simplicity of the asymptotic distribution of the log-periodogram estimates of the 

memory parameters on either side of a spectral pole/zero, d[J  ̂ and (see Theorem 

5 in Chapter 3), allows us to suggest a very simple Wald type test of the hypothesis of 

spectral symmetry, d\ =  d2, tha t we will state in Theorem 11. In order to  analyse the 

properties of this Wald test we need first to investigate the possible asymptotic depen

dence between d[J  ̂ and d In the next theorem we calculate the joint distribution 

of the log-periodogram estimates of the parameter vector = (c(J), d\, d2) where

c(J) =  logC -J- V>(«7) and =  log D + ip(J) in the semiparametric specification of the 

spectral density function (1.62). We obtain asymptotic independence of (c^J \ d \ J )̂ 

and (6 Ĵ\ d ^ )  under similar assumptions to those used in Chapter 3. Since we do 

not know which parameter, d\ or d2, is larger we impose the same condition on the 

trimming and bandwidth numbers on both sides of oj. This condition is stated in the 

following assumption.

A .6: As n —► oo

y/m n2\dl~d2\\ogTn /(logn)2 m 1+^
/i+ 2Mi-cfel m  n

If we take m  ~  ne and I ~  n^, A .6 entails a  > 2|di — d2\. Since \d\ — d2\ < 1,

A .6  can be satisfied for any d\, d2, if a  =  2. Had we some information about the 

relationship between d2 and d\ we could use different bandwidths and trimmings
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on the estimation of (c(J\  d\ ) and d2), so that A .6 would only hold for the

smaller d and a weaker condition would be needed for the higher param eter (namely 

Assumption 6 in Robinson (1995a)). Imposing A .6 we guarantee th a t the results 

obtained in Chapter 3 for the parameters describing the behaviour of the spectral 

density on one side of uj hold for both sides of the spectral pole/zero.

Introduce the m atrix

A = 0
0 2y /m l2

T h e o re m  10 Let 1? =  ( c ^ ,  d2)'. Under assumptions A .l ,  A . 2 (with g=h),

A .4 and A .6

as n  —► 00.

P ro o f: Write Y  =  { Y ,Y ) ,  \Y]k =  y[J), [Y]k = where y\J' =  lo g (£ /=1 / n(«  +  

Ak+ j-j))  and y[J) =  lo g (£ /=1 In (w -  Xk+ j- j ) ) ,  [Z]k =  (l,-21ogA *) and [U]k =  

where is defined in (3.4) and

1 - 1
- 1  1

-

4 j ) = io g (
\ j = 1 V A k + j - J  J

(5.1)

for k = I + J , l  + 2J , ..., m. Then = vec (Y 'Z (Z 'Z )  1) and

4 - 4  = vec(U 'Z(Z 'Z)~ l ) =  ( (Z 'Z ) - 1 <g> I 2)vec(U'Z).

Proceeding as in Theorem 5 we get th a t under A .6 , A ((Z 'Z )~ l ® I2)vec(U'Z) is equal 

to

J*  ( --------- r )
\ m  +  o{m) J

h
- h

£ ( lo g A * -  —  £ l o g A fc)£/*

+ m  — l
V™ r
logn  ^

k

where Uk =  ( u ^ \ u ^ y . Thus the proof is completed if for any 2 x 1  vector 77 ^  0 

( m ) 2 ^ ^ akT)'Uk N ( ° ^ ' ( J W I 2Tl) as n —► 00,
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for any triangular array a kn =  ak satisfying (3.17). Now write

4 J) = log [E (^ (w + xk+j - j )  + v](u + \ k+ j~ j ) ) e~^J}] 
j=i 

J

« (J) -  w
j = 1

for k =  I + J, / + 2 J , m ,  where

UL ' = l o g [ ] [ > ^  -  Xk+j-j)  + v 2j(u  -  Xk+j- j ) ) e  ^ J)]

v (lj +  A) = + =  VR(u  _|_ X) +  iv i{u  +  A)
C * \ ~ d'

, _x W (u ;-A ) . ..  . ,
v (cj — A) =  j =  vR(u> — A) +  ivi{uj — A)

D 2A-rf2

for positive A. Introduce the vector

v(A) =  (vr (uj +  A), vR(u -  A), v/(a; +  A), v/(a; -  A)).

From Theorem 4 we can consider the u(Aj), for j  increasing suitably slowly with to, as 

approximately uncorrelated (independent under A .4) with mean zero and covariance 

m atrix | / 4 . Now consider the 4-dimensional vector variates

JV/C(0,i/4) j  = l +

where Vj = (V \ j , V2J , V3j ,  Vi jY  and introduce the variates

® * / )  =  i ° g E ( v , j t + .,'_ ./ +  v l k +1- j Y ~ MJ)\
3= 1

w[J) = log[^(V^jk+i-j +  Vlk+j-j)e~HJ)]
3= 1

for k =  I -f «7, / +  2 J, Arguing as in Theorem 5, and have mean zero

and variance ^ ' ( J )  and they are independent and independent of the rest of 

k =  / +  J, / +  2J , 771. Write wk =  (ig£^, w j^ )'. Since as n —>• 00

J ^ E (—)*n'akUk]N =  E ^ y — )^i}'akw k]N +  o(l)k m k m
for fixed N ,  as proved in Robinson( 1995a), a simple application of the Lindeberg-Feller

CLT concludes the proof. □

Once we have obtained the asymptotic independence of the estimates on each side 

of u> we propose the following simple Wald test, where x i ,a denotes the critical value 

of a Xi distribution a t 100a% significance level.
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T h e o re m  11 Let assumptions A . l ,  A .2 (with g=h), A .4  and A .6 hold. Then under 

the hypothesis H q : d\ =  d2 +  c, where c E ( — 1,1),

*  = (5.2)

as n —► oo. The test based on rejecting Ho at 100a% significance level when W  > x i a 

is consistent.

P roo f: From Theorem 10 we have tha t under Ho

-  4 J) ~ c ) ^ N  (o , M ^ )  (5.3)

and thus W  x? • In order to prove the consistency of the test we have to  show that

P (W  > 0\d\ -  d2 -  c =  k) 1

as m  —► oo, for k  ^  0 and for all 0 > 0. Under f / i  : d\ — d2 — c =  k,

y/m(d[J) -  4 J) -  c -  ac)  4 -  A(0,

so tha t ■v/m ( 4 ^  — 4 ^  ~ c) ~  +  0 P( 1) and VF oo as m —► oo. □

R e m a rk  1: A similar analysis can be done in order to  test the hypothesis Ho :

C = pD. Since cW  =  logC  + i>(J) and =  log D  +  this null is equivalent 

to  the hypothesis Ho : c(J) = 6^  +  log p. From asymptotic independence obtained in 

Theorem 10 it is easy to  see tha t under Ho,

* '  = 2J W )  lo g n ^ - ^ - 108^ 4 ^  <5'4>

and the test based on rejecting Ho at the 100a% significance level when Wc > a is 

consistent.

R e m a rk  2: If we are interested in testing, for instance, the hypothesis d\ < d2 

(the same can be done with C  and D ) we can use the asymptotically normal statistic 

from (5.3),

146



as m  —> oo under the hypothesis d\ =  d2, and compare it with the critical value 

obtained from a standard normal distribution at 100a% significance level, za . We do 

not reject tha t d\ < d2 (^1 > d2) if W)v < — za (W n  > za).

R e m a rk  3: Under symmetric spectral poles, d\ =  d2 =  d, the estimate of the 

persistence param eter is d ^  =  (d[J  ̂ +  d^ ) / 2  and it can be used to  construct the 

operator (1 — 2L  cos uj+L2)1̂ ^  to  seasonally (or cyclically) adjust series with stochastic 

seasonality or any other cyclical behaviour. This is a more flexible alternative than the 

typical fractional seasonal difference operator, (1 — L s)d, or the summation operator 

S (L ) =  1 +  L  +  ... +  Ts_1, which impose the same persistence at every seasonal 

frequency (as well as at the origin in (1 — L a)d). The limit distributional properties 

of are easily deduced from Theorem 10.

R e m a rk  4: It may also be interesting to  test the hypothesis Ho : d\ — d2 =  \  

against H\ : d\ — d2 > The rejection of the null suggests evidence of persistence on 

one side of u> and antipersistence on the other which seems rather unrealistic.

5.2 GAUSSIAN SEMIPARAMETRIC WALD TEST

We can also use the Gaussian semiparametric estimates, d\ and d2, to perform Wald 

type tests on the relationship between d\ and d2. As in the log-periodogram case, the 

properties of this test will depend on the asymptotic independence of the estimates 

on each side of the spectral pole/zero. In the next theorem we obtain the joint 

distribution of (d i ,d 2) showing their asymptotic independence. Arguing as in the 

previous section we impose the same trimming and bandwidth in both estimates such 

tha t the restriction on those numbers is now,

C.4*: If dx /  d2l

(logm )3 /3 4 n2\d\~d2\ m 1+2a ,
—  +  - ( l o S m) + _ j3_ Tlogm +  _ 5—  (logto) ^ 0

as n  —► 00 , and if d\ =  d2 then / =  0 and

1 m 1+2“

as n —* 00.

147



If we have some knowledge about the relationship between d\ and c?2 such tha t 

we know which one is bigger, we can use the previous trimming and bandwidth when 

estimating the smallest param eter but we do not need any trimming in the estimation 

of the largest one and the bandwidth is restricted only to the first part of C .4 ’ for 

the smallest d and the second one for the largest. Taking m  ~  n9 and / ~  again, 

we see th a t C .4 ’ can only be satisfied if \di — d2| < a / ( 3 +  4a), where the upper 

bound is 2/11 for a = 2. However, assumption C .4 ’ can be relaxed in the same way 

as in Chapter 4 imposing condition C .5  which restricts the fourth cumulant of et , the 

variates in the Wold decomposition of x t , to  be zero. Imposing this condition (which 

holds under Gaussianity) it is possible to  find suitable m  and I for a larger range of 

distant a^d d\ as pointed out in Theorem 7. Thus if C .5 is assumed the restriction 

on the bandwidth and trimming numbers is

C .6 ’: As n —> oo, if d2 ^  d\

(logm )3 I2 2 n 2ld2-dll m 1+2a. . 2
— p — +  - (1°g m) + p +2ld2_dl, lo g m  +  - ^ - ( l o g m )  - 0

and if d\ =  C .4 ’ holds.

For m  ~  ne and I ~  n^, C.6* entails |di — ^1 < 1/3 for a  =  2. This requirement is

not much stronger than \d\ — di\ < 1/2, which is implied by a left and right stationary

spectral pole. Consider also the following condition:

C .l* : For a  6 (0,2] and 6 (0,7r), as A —► 0+ ,

f ( u  + A) =  C \ - 2d' ( l  + 0 ( \ ° ) )  

f ( u -  A) = D \ ~ 2d2( l  + 0(A “))

where C ,D  £ (0, oo), d \ ,d 2 £ O = [A i,A 2] and —1/2 < Ai < A 2 < 1/2.

T h eo re m  12 Let d =  ( d i , ^ /  and d = ( d i , ^ ) 7* Under assumptions C . l ’, C .2 , C .3 

and either C .4 ’ or C .5 and C .6 ’,

y/rn(d — d) —> N ( 0, ^ 2) as n —>■ oo.
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P ro o f: In order to  show this result we follow the multivariate setup used in 

Theorem 5.2 in Lobato (1995). Using Taylor’s series expansions

y/m d\ — d\ 
d>2 ~~ d2

0

„ d2B2(J2)
Od2

1 -1 r d«! (d!) 1
y f m , dd 

d/?2(d2)
L dd  J

=  A  y / m B

where \d\ — d\\ < \d\ — d\\, \d2 — d2\ < \d2 — d2\, R\(d)  is R(d) in (4.2) and

9 d 771
R 2(d) =  log D(d) ^ l o g  Xj (5.5)

(+1

where £>{d) =  ^  X f l ,  and / ,  =  In(u> -  Xj) = \Wn(u  -  Aj)|2.

Since
" 4 0 

0 4

(see the proof of Theorem 7) and d\ and d2 estimate consistently d\ and d2, it only 

remains to show tha t

y/m B  - i  iV (0,4/2)

as n —► oo, tha t is for every 2 x 1  vector 77 = (771, 772/  /  0, y /m rfB  - i  ^V(0,477̂  +  4t7|). 

Proceeding as in the proof of Theorem 7 we get

/—dJ2i(<fi) 1 (y\V™——— = 22̂ et 2̂ £act-a + op(l)

y/rn

d d

dR 2(d2) 
d d

t= 2  5 = 1

n <—1
— 2 5  > 5   ̂£aCt—s 4~ Op(f-)

t = 2  5 = 1

where

2  1  m

cs =  — 7=  5 2  Vj cos(s(u; +  XA)
n v ^ t + i  
2 1 m

Cs =  — 7 =  5 2  cos(s(u> -  Xj))
n yjm f̂+i

and Vj =  log j  -  ^  Y%-i log j .  Thus

n  t —1 n

y/rnrfB =  2 5 2 ^  5 2  +  W t-a ]  +  op( l)  = 2 ^ ,  zt + op( l)
t - 2  5 = 1  < = 1

where z\ -  0, z t =  £* ^ 5=1 £5^-5 for f > 2 and ba =  771c, +  r}2ca. The z t form a zero 

mean martingale difference array. Then y /m rfB  N ( 0 ,477̂  +  477I) if
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a) E “=i E izt \Ft-i)

*>) E?=i E{z}I(\zt \ > « )] -> ()  for all S > 0

where Ft- \  is the <r-field generated by es, s < t, and /(•) is here the indicator function. 

To prove a) write

S E lz t \ F t - i ]  ~  Vi ~  v l  ( 5 . 6 )
t = i

= -ni
t — 2 5 = 1

=  £  Y 1 J 2  ea£rb t - sb t - r -  rfi -  t)\
t= 2  5 = 1  r = 1

=  » ) i E S -  ! ]  +  £ . t r C t - , c t - r  (5.7)
t—2 5 = 1  t = 2 r a^r

+ %2E  ] £  & 2t-s -  1] + i t ,  S  £s£rCt - aCt- r  (5.8)
t=2  5 = 1  t=2 T S^T

n t—1  t—1

+ 27}1r}2 '52'52'52£seTc t-rct-s . (5.9)
t—2 5 = 1  r = l

Proceeding as in the proof of the asymptotic normality of d\  in Theorem 7 we have

that (5.7) and (5.8) are op(l). Thus it remains to show that
n t - l  ( - 1

S  Es £rCt - rCt -3  = Op(l). (5.10)
t=2  5 = 1  r = 1

The mean of the left side of the equality in (5.10) is
n  t—1  n — 1  n—t

y .  y i  c t s c t s  =  c s ^ s
t = 2  5 = 1  (  =  1  5 = 1

j 71 — 1 71 — t 771 771

= Y  vi cos(s(o; + Xj ) )  J 2  vk cos(s(u -  \ k))
t= 1 5 = 1  J  =  / + l  f c = /+ l

2  l i t  TM 7 1 ™ 1  7 l — t

n2m .S  2  ^  Y  5^[cos(s(2o; +  Aj -  A*)) +  cos(s(Aj +  Ajt))](5.11)
j= i+1 fc=/+i t = i  5=1

Since from (4.40)
7-1 g-r c o s 0 -c o s (90) q -  1
B E  c o s W =  , t  j -
r = l  i = l  *  &m 2

then the absolute value of (5.11) is bounded by

771 771 , \

£  £  |vj vJb|(0 ( l )  +  n) =  O ( —(logm )2J  =  o(l).
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The variance of the left side of (5.10) is

n  n  1—1 1—1 u —1 u —1

<EEEEEE £ f £  s £ p £  q C t —r ^ t —s ^ u —p ^ u —5 ]
t = 2 u = 2  r  s  p  q

n  n  m i n ( t —1 , « —1)

= M4 EE E Cj — Ŝ 't — Ŝ 'U— a^u—s (5.12)
t — 2 u —2 s

n  n  t —1 u —1

4" ^  ^  ^  ^  y C i —r C t —r Cu —s Cu —s  (5.13)
t —2 u —2 t  s ^ r  

n  n  m i n ( t —l , u —1)

+ EEE E C i —j-C(—5&u—r ^ u —a (5.14)
1 = 2  i t = 2  s  r ^ s

n  n  m i n ( t —l , u —1)

+  5 3  5 3  5 3  5 3  Cf — r Cl  — s ^ U  — S ^ U - T '  (5.15)
t = 2  U—2 s  T ^ S

Now (5.12) is

n  t — 1 n  t —1 -u—1

1̂ 4 ^  ^  y ^t—s^t—s "h 2/^4 ^   ̂ ^  ^   ̂Ct—sCi—sCu—s^u—S' (5.16)
t = 2  3 = 1  < = 3  u = 2 3 = 1

Since |cs| and |c5| are the first part of (5.16) is

(e e ^
\ t  =  2 3 = 1

o  | U  ^ | ^ )  =  o  =  o ( l ) .

The second block of (5.16) is bounded in absolute value by

n  t—1 t—1 -u—1

2/̂ 4 ^   ̂ ^  ^  1 \ct—a^t—s| y   ̂ l^u—a^u—3)
t = 3  u = 2  3 = 1  3 = 1

n  n  t—1 t—1

< 2/x4( ^ | c5cs| ) ^ 5 Z  5 3  <V17>
3 = 1  1 = 3  u = 2  3 = 1 —t i + 1

Since |cr | and |cr | are 0 ( n ~ 1y/m \ogm ),  and for 1 < r < n j 2 they an* (){ 7̂ -7 ) (sw  

the proof of Lemma 4) and cr — cn_r we have that

£  | CrC- r l =  o  I +  £  Q s l s I )  =  0  ( 3 * 2 ? ) .  ( 5 . 1 8 )
n \ m  n l " ,  s l m  I V n J

r=1 V *>[£] /  v /

Now

n  1 - 1  1 - 1

EE E ic*5»i
1 = 3  u = 2  3 = 1 —tt+ 1  

n —2

= ^ j ( n - j - l ) \ c j+icj+1\ 
3=1
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[?]
< 2 n ^ j | c j+ icj+ i|

/

= 0

= 0

m(log m )1 m  3

n E ;+«2 E ms*

\ j>
m o

n(log m ):
m  3

Thus (5.17) is

Q I  (log m )2 n(logm )2\  = Q (  (logm )4\  =  ^
n 7713 J  \  7773 /

and (5.12) is o(l).

Now (5.13) is equal to
n  n  t —1  i t — 1

E E EE
t=2 u=2 r

n  i - 1  n  n  m i n ( f - l , i i - l )

= (5 3  S  ct- act- a)2 -  ^  ^  5Z Ct - a Ct - a Cu - a Cu - a . (5.19)
t — 2 3 = 1  t = 2  - u = 2  s = l

The term in braces is o (l) as in the proof of (5.10), and the other term is (5.12) divided 

by the constant /X4 and we have already proved tha t this is o (l). Thus (5.13) is o(l).

Now (5.14) is

E E E +2 E E E E
t = 2  s  r ^ s  t —3  u —2 * r ^ s

(5.20)

The first part of (5.20) is bounded by
n  t —1 t —1 n  n  t —1

E E c«-<- E - (E^)EE 4-.-
t = 2 r = l  s = l  s = l  f = 2  r = l

Now c2 =  0 ( n _1 (log ?7i)2) and from the proofs in (4.38) and (4.39) J 2 t= 2 Z ) £ = i  c t - r  = 

Ylt=i IZ?=i c5 =  ̂ (1)* Thus the first part of (5.20) is o (l). The second block of (5.20)

is bounded in absolute value by
n  t —1 11—I

2 ^  ^  ^  ^  ] \ct—rCt—s^u—T^u—s\
t —3  i i = 2  r ^ s  

n  t —1 11—I 11—I

— 5 3  5 3  lc t - r C n - r |  5 3  l ^ u —3 Q —3 1
t = 3 1 1 = 2  r = 1

=  q  ( V j j t i o g j n  

\  71

5 = 1

n  t —1 11—I

E ia>l E E E • (5.21)
5 = 1  t = 3 u = 2 r = l
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Now

n l o e  n

D * * i  =  0
5 =  1

/ log n log m \  
V V ™  /

y>  Vm log m ^  ^  log m
n Sx/rh\  rU o^n V\ 771

and

•u t —1 u —1

E E E ic<-^i
< = 3  <t=2 r = l  

n —2  n —1

= E E (n -  u)\ctcu\
t = i  « = t + i

< » E w X > « i
« = i  t = i

0  ^ 7i(logn)2(logm )2j

Thus (5.21) is 0 (  (lo?mM logn)..) which is o (l) if for example m  ~  C na as n —> oo for

C  G (0, oo) and 0 < a < 1, and we get tha t (5.14) is o (l).

Finally (5.15) is equal to

n  / —I

E E E c< —f C t —s C t —s C t —r  (5.22)
t = 2  r ^ s

n  t —1 u —1

+  2 E E E E ^ <  — T Cl  — gCu  — gCU—T . (5.23)
t —3  u = 2  r j k s

Now (5.22) is bounded in absolute value by

n  t —1 n

EEic‘-'?‘->-i(Eic*g*i)
t=2 r = 1 s = l

' 2ra(logm )2 (logm )2\
=  0 \ n

n* n

. - 1

= O ( ^ ( io g m ) 4)  = o ( l )

using (5.18) and because |cs| and |ca| are 0 ( n  1-v/m lo g m ). The absolute value of 

(5.23) is bounded by

n  t —1 i t —1 i t —1

2 ^  ^  ^  1 \ct—Tcu—T \ ^  ] |c1i_sc^_5| (5.24)
t= 3  t t= 2  r = l  « = 1

\  3 = 1  t= 3  u = 2  r = l  /
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Now

£ i c;i =  0 / i 2 i i i M
\  y/rn J

and
71 t  — 1 1/ —1 71 — 2 71 — 1

E E E |c(_rcu_r | =  ^  (n -  u)\ctcu\
t = 3  u = 2  r = 1 i = l  t i = t + l

< n J 2  M  i t ,  l£*l = 0 (£-(los^)20°g^)2) •
u=l *=1 '  '

Thus (5.24) is O (m -1 (logn)3(logm )4) =  o (l), (5.15) is o (l) and a) is proved. In order 

to  prove the Lindeberg condition stated in b) we show th a t the Liapounov condition, 

Y ?  E \z t |4 —* 0, holds, which is sufficient to prove b). Write

£ e {4]
1
n t—1

=  E £ [£‘ E £»6<-«]4
t = 2 3 = 1

71 t — 1

= M4 E^lEEEE
t = 2  r s p q

= +  3/i4/ * I £ ] C ] C 6?-r6?-*
t = 2  r = l  t = 2

= 0 ( " ( X > ? ) 2)- (5.25)
t= 1

Since bj =  t/jC^ +  +  2TjiT}2CtCt then

w - 0 ^ )
and (5.25) is 0 ( n -1 (logm )4) =  o(l) which concludes the proof. □

Perhaps the most interesting situation we can test is the hypothesis of spectral 

symmetry, d\ =  c?2- In this case no trimming is needed to  obtain the asymptotic 

distribution under the null. However, to  prove the consistency of the test we need 

the consistency of the estimates under the alternative and tha t condition requires 

trimming out some frequencies close to  u .  We introduce now the following condition 

on the bandwidth and trimming numbers.

D .4: If d\ ^  d2,
1 _ 2 |d 2 - d i  | „ l + 2 a

i  log ™ + £ ^ t 0 ° 6  r n f  +  - ^ - ( l o g  m f  -  0
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as n —> oo, and if d\  =  d2 then I =  0 and

1 m l+2a 2
— + — — (log to) —*■ 0 
m  n

as n —► oo.

If we consider m ~  n e and / ~  we have tha t D .4  entails \di — d2| < a , so that

D .4  holds if a > 1 for any d i,d 2 € 0 . Based on the asymptotic independence of d\ 

and d2 we propose the following simple Wald type test.

T h e o re m  13 Let assumptions C . l ’, C .2 , C .3  and D .4  hold. Under the hypothesis 

H0 ' d\ — e?2 =

W  =  2m(di -  d2)2 —> Xi

as n —> 00 and the test based on rejecting Hq at 100a% significance level whenever 

W  > x \  a is a consistent test.

P ro o f: The asymptotic distribution is easily deduced from the asymptotic inde

pendence of d\ and d2 obtained in the previous theorem. Note tha t no trimming of 

frequencies close to u  is needed to  obtain this result because under the null d\ — d2. 

But in order to prove the consistency we have to show that

y/m{d\ — d2) ±00 (5.26)

under the hypothesis H\ : d\ — d2 = 0 ^  0. In these circumstances

y/m{d\ — d2) — y/m(di — d\) + ^ /m (d2 — d2) + y/m,0

= op(y/m) +  op(y/m) +  yfmB

because of consistency of d\ and d2 under the conditions in the theorem (see Theorem

6) and thus trimming out I frequencies close to  w. Then (5.26) and the consistency of 

the test are proved. □

R e m a rk  1: As in the log-periodogram Wald test we can use the one-tailed test 

y/2m{d\ — d2), which has a standard normal limit distribution under the null, for the 

hypotheses d\ > d2 or d2 > d\.
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R e m a rk  2: In view of the local character of d\ and ^2 (the same remark follows 

for d[J  ̂ and d ^ )  we can similarly estimate the right and left memory parameters 

at each of several known spectral poles/zeros, u>j, as permitted in the modelling of 

Chapter 2. It is clear from Theorem 12 tha t the asymptotic properties of the left 

and right d estimates will not vary across the u>j, and moreover the estimates will be 

asymptotically independent across the u>j so th a t we can readily construct statistics 

for testing hypotheses across the Uj, for example of equality of all right or left mem

ory parameters. In the interests of parsimony this would be a useful preliminary to 

parametric modelling.

R e m a rk  3: Since > 1 it seems by comparison with Theorem 11 that

d\ — d>2 produces a locally more powerful test of spectral symmetry than d[J  ̂ — d ^  

for any J.  The finite sample performance of both tests will be analysed in Chapter 

6. However di, ^2? unlike d[J\  d ^ \  are not defined in closed form. It is possible 

to alleviate this problem by means of a score test which entails only estimation of a 

single param eter under the null hypothesis. This procedure is described in the next 

section.

5.3 GAUSSIAN SEMIPARAMETRIC LM TEST

In this section we consider a score or Lagrange Multiplier type test of the hypothesis 

of spectral symmetry, d\ =  cfo- Unlike the Wald tests, this procedure only requires 

one estimation of d\ =  e?2> using frequencies on both sides of u>. Consider the fol

lowing objective function, which is a semiparametric discrete version of the W hittle 

approximate likelihood function,

^  m {  y2d2

Q(C, £>,^1,^ 2)= 2(m — I)

(5.27)

where I j  and I j  are the periodogram ordinates of x t , t  = 1 ,..., n, at frequencies u> +  Xj 

and u> — Xj respectively. If C ,D ,d \  and ^2 are functionally unrelated, minimization of 

Q implies using frequencies just after uj in the estimation of C  and d\ and those before 

u> for D  and c?2- Also if we assume d\ =  c?2 =  d we can estimate d using frequencies
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on both sides of uj without assuming equality of C  and D. Concentrating C  and D 

out of the objective function we have tha t minimizing Q(C, D, dj, d2) is equivalent to 

minimizing

1 1 j  rn 1 m
R(d1,d2) = -  log C (d i) +  -  log D (d2) -  2  log Xj -  £  log

z z m  i /+1 m  1 i+ l

where

1 m
C(d) = — (5-28)

f + l
i  m

O W  =  (5-29)

We restrict our analysis to  the persistent case, th a t is d i,d 2 £ © where 0  =  

[A i,A 2] and 0 < Ai < A 2 < 1/ 2. If we assume wrongly tha t d\ =  d2 =  d and 

we estimate d using frequencies on both sides of u> we will obtain a value, d, which 

consistently estimates some value, do? tha t will be different from d\ and d2. Intuitively 

do will be between dj and d2 and closer to  the highest one due to  the larger influence 

of periodogram ordinates at frequencies where the highest param eter define the be

haviour of the spectral density. In order to prove this fact we modify assumption B . l  

(imposed for the consistency of d\ in Theorem 6) in the following manner.

B . l ’: For a  £ (0,2] and u  £ (0, 7r), as A —► 0+

/ ( «  +  A) =  C A -2J>(1 +  0(A “ ))

f (u> -  A) =  DX~2d2( l  +  0(A “))

where C ,D  £ (0,oo), d i,d 2 £ 0  = [Ai, A 2] and 0 < Ai < A 2 < 1/2.

We also need the following condition on the bandwidth and trimming numbers.

B .4 ’: If dj ±  d2,

771 I 3
— +  — log m + —— (logm )2 o as n —► oo 
n m  l j + \ d 2 - d i \ y

and if d\ =  d2 then / =  0 and

1 m  n
 1--------> 0 as n  —► oo.
m  n
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Assumption B . l ’ is a restriction of B . l  in the sense tha t we only focus on the 

persistent case when both d\ and are positive. B .4 ’ is similar to assumption B .4  

but we take into account tha t we are using frequencies on both sides of u.  In the 

worst case, when \di — c^l approaches 1/2, the last summand in B .4 ’ is bounded by 

^ ^ ( lo g  771)2 which goes to  zero if, for example, I = n a and a  > 1/2 so tha t we can 

always find some m  and I such tha t B .4 ’ holds.

T h e o re m  14 Let d =  argmin© R(d, d). Under B . l ’, B .2 , B .3  and B .4 ’ 

d do = +  2d2 — 1 +  — d2)2 +  1]

as n  —► 00.

Note th a t only if d\ — ^2 =  d, d estimates the memory param eter consistently, in any 

other case do is between d\ and ^2-

P ro o f: The proof is quite similar to tha t of Theorem 6, therefore it will be pre

sented in a more abbreviated manner. Write S{d ) =  R(d, d) — R(do, do) =  U(d) — T(d)  

where U(d) is the deterministic part of S(d) and T(d)  is the remainder,

U(d) =  2(d — do) +  -  log[2(c?o — ^1) +  1] +  ^ ^°S[2(^o — ^2) +  1] 

log[2(d-  di) +  1] -  i  log[2(d -  d2) +  1]

(5.31)

1 , I 1 7 \ 2 ( d ~ d ' )

1+1

1 ( | 1 ^  /  j  \ 2(d°~d*)

f+i

1 1 ^ / 7
-  2l0g{ ^ 7 g f e )  + (5-32)

1 f 1 J2. /  7 \ 2(do~di) 1
+ 2,0g{ ^ 7 g t e )  W - -.) + !}] (5.33)

1 f 1 /  7' \2(d~d2) )
-  2l0g{ ^ g f e )  W - * )  +  l > j  (5 3 4 )

1 f 1 JIL /  7' \ 2(do~d2) 1W - d2) + l} | (5.35)

2(d — do)  ̂ S  log — l°g(m “  0 + 11 (5.36)

+ 2
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where C(d) and D{d) are (5.28) and (5.29), C(d) is defined in (4.4) and

1 m

D(d) =  D    V  (5.37)
171 ~  l+l

Note tha t do is the unique minimum of U(d) in 0  because the other local minimum

0.25[2(di +  d2) -  1 — y/^{d\ — d2)2 +  1] does not belong to 0  if d \ ,d 2 E 0 . Thus 

U(d0) =  min© U(d) =  0 and since U(d) is a convex function for all d (the second 

derivative is positive for all d) we have tha t

inf U(d) > 77 > 0
|d-do!>* ”

for all 6 > 0 and some 77 > 0. Thus it remains to show tha t sup@ \T(d)\ 0. Since we

focus on positive values of d\ and d2 we have tha t (do — di) > —1/2 and (d —d{) > —1/2 

on 0  for i =  1,2. Consequently the supremum on 0  of the absolute value of (5.32), 

(5.33), (5.34) and (5.35) are o(l) due to Lemma 2. Applying Lemma 3 we also see 

tha t supe |(5.36)| =  o (l). Then it remains to  show tha t

C(d ) -  C(d)
sup

©

sup
©

C(d) 

D(d) -  D(d)

= o,,(l) (5.38)

= o„(l). (5.39)
D(d)

Since (5.38) has been shown when proving Theorem 6, and (5.39) can be demonstrated 

similarly the proof is concluded. □

Note tha t although we are using frequencies on both sides of to we still need to 

trim out some points close to  u  to  get rid of the bad behaviour of the periodogram 

evaluated at those frequencies. This trimming seems necessary to  obtain the value d0 

defined in the theorem but it seems tha t if we do not use the trimming, the estimate 

d will converge to a value different from d\ and d2 and even closer to the highest one 

than the trimmed d.

A similar result is obtained for the log-periodogram regression 

J

log(]T  I n(u> +  Afc+j+j)) =  +  d( - 2 log |A*|) +  uk
7=1
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for k =  ± (/ +  «7),±(/ +  2J ) , . . . ,± m  where in (5.1) if k < 0 and Uk =  Uk in

(3.4) if k > 0. The least squares estimates of o; and d are

q (j )
<fV>

r> rr\-\\r7^ 1 r c(J ) 1 1 ■ m '
2

>

'w'
•

+  2 . 4 J ) .

where Z, Y  and Y  are defined in the proof of Theorem 10. Then under the conditions 

in Theorem 10
9  p d\ -j- d2

The result obtained in Theorem 14 will be useful when proving the consistency 

of the score tests we propose in the next theorem. But prior to  stating the theorem 

we modify the notation to facilitate the understanding of the test procedure. Write 

9 = d\ — c?2- Then

1 1 a m od m
R(0, d2) = x  log C(B + d2) + -  log D(d2) -  — - • £  log Xj -  — 2-  J 2  log A,-. (5.40)

Z Z 171 1 l+l m  1 l+l

The hypothesis d\ =  d2 in R (d i ,d 2) is equivalent to  0 =  0 in R (0 ,d2) and under this 

hypothesis, minimizing R(0, d2) we obtain an estimate of d\ =  d2 using frequencies 

on both sides of u .  Call ^10,^20 and 9q the true unknown parameters and d \ ,d 2 and 

9 any admissible value. Now

8R (0 ,d2)
89

8R(0 ,d2)
dd2

= G(9 + d2) 

=  G(9 +  d2) +  H (d2)

where

G(9 + d2) -  Crd0 + d ^ - ^ l + ]OgXl 

H{d2) =

/+1Co(9 +  d2)

P \ (d 2) 1 1 x
D0(d2) m - l Y ° S r

(5.41)

(5.42)
i+i

and

C M  = — jEGogA,-)''Xflj
m  1 /+i

1 m
Dk(d) =  — _ £ ( l o g  X j f X f i j .

l+l

(5.43)

(5.44)
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Now

d2R (9 , d2) d 2R(9 , d2) d2R(9 , d2) 2[C2(0 +  d2)C(0 +  d2) -  C 2(9 +  d2)]
d02 ddddi dd2dO C l (6 + d2)

92R(0, d2) 92R(0, d2) 2[D2(d2)D(d2) -  b \ { d 2)\
dd2 ~ 902 ' r>2(d2)

Write ipo =  [0o>^2o] the vector of true parameters where Oq =  d\o — d2Q. Since 

y/mG(9o +  d2o) and y/rnH(d2o) are asymptotically uncorrelated, as has been proved 

in Theorem 12, then under C . l ’, C .2, C .3  and C.4*

y/m

Since d\ =  9 +  d2 we know tha t under C . l ’, C .2 ,C .3  and C .4 ’

d2R

dR
ae V'o - i i v | ’  0 ‘ ’  1 1 "

dR
dd.2 V'o .

0 9 1 2

di})2 (0,d2)

2 2 
2 4

for |0 — 0q\ < \9 — 9q\ and |d2 — d2o| < \d2 — d2o|. Thus the estimates of #o and d2o 

obtained minimizing R (9 ,d2) are asymptotically distributed as

y/m _ 9 - 9 0 
d2 — d2 o

N (5.45)

as n —>■ oo and under assumptions C . l ’, C .2 , C .3  and C .4 ’. T hat is what we 

would expect because 9 =  d\ — d2 and the estimates of d\ and d2 are asymptotically 

independent.

Now we propose some score tests of the hypothesis of symmetric spectral poles 

(Ho : d\ =  d2) in the environment described above. The advantage of these tests 

with respect to the Wald type one is tha t only one estimation around u  is needed. 

In order to  prove the asymptotic distribution and consistency of the tests, condition

D .4  on the trimming and bandwidth has to be assumed. This is a weaker condition 

than tha t needed in Theorem 7 for the asymptotic normality of d\. As a m atter of 

fact, no trimming is needed in order to prove the asymptotic distribution of the test 

under the null. However the consistency is obtained trimming out I frequencies close 

to u> because we use the result stated in Theorem 14.
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d\ > d2 
d\ < d2 
d\ ±  d2

(5.46)

Three different statistics, depending on the alternative hypothesis we use, are

proposed in order to test the null of spectral symmetry, d\ =  d2 :

LM \ — y/2me\ if the alternative is H\
L M 2 =  y/2me2 if the alternative is H 2
LM z  =  2meg if the alternative is H 3

where e, =  e2 =  j f t ,  e3 = % ,  L k = ^ E M k =

N k = ^ = iE& i wl vi  =  >°gJ - ; E * los *, wi  = los i  -  EJ+i >°gK  Ij  =  

In(u  +  A j), / j  =  / n(u; — Aj) and d is the estimate of d\ =  d2 =  d under the null, tha t

is using frequencies on both sides of u> but trimming out the I nearest frequencies.

T h e o re m  15 Under B . l ’, C .2, C .3  and D .4  and the hypothesis H q : d\ — d2,

LM y  - i  J V ( 0 ,1 ) L M 2 - ^ N ( 0 ,1 )  LM3 -^x l  as m —  oo .

The tests based on rejecting the null in favour of the respective alternatives whenever 

LM \  < — za , L M 2 < —za or LM$ > x i a a* 100ol% significance level (where za and 

Xia are the corresponding critical values from a standard normal and a chi-square with 

one degree of freedom) are consistent.

P roof: Note tha t

ei =
3R(9, d2)

dd (0 ,3)

where R{9 , d2) is now (5.40) with / =  0 and d is the estimate of d\ = d2 = <A» trimming 

out I frequencies close to  u>. Since d -£• do we have th a t under the null

ei =

0 =

dR
39

OR
dd2

+
d2R

(0,do) 393da
( J — do)

(o ,3 )

_ 0 #  
(o,J) ®d2 (0,cf0)

+ ( d - d o )
(o,d)

for |d — do| < |d — do| so tha t yfme\ is

d 2£ /  d 2#
r yfrn

Îso

(0,do)
d00d2 . jv 1 ddl (o,d) \  2 (o,3)/

a/i
ad2 (°,̂ o) .

N
w  - b ( \  2

= N (  0 , - )
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under B . l ’, C .2 , C .3 , D .4  and the hypothesis H q : d\ =  d2. This result is proved in 

the same way as Theorem 7 in Chapter 4.

A similar proof can be done for L M 2 noting that

dR (du 9i)
e2 = &e1 (d,o)

where $1 = d2 — d\, and

1 1 0 m 2 d m
R ( d u h )  =  - lo g  (?(<*!) +  - \o g D (e ,  +  <*,)- - r 2 > g - v , -  -  - z r E 10? ^

Z  Z  Tft  j  H i  J

where C(d)  and D(d)  are defined as in (5.28) and (5.29) with / =  0.
dNote th a t £3 is e\ but introducing the trimming so th a t y/2me^ —*■ N ( 0 ,1) and 

r3 - i  Xi under the null.

The proof of the consistency is based on the following relations based on Theorem

4,

E

E

E

E

= 1 +  0 ( ^ + ( £ ) a)  ' f d i > d 2

=  1 + 0

=  1 +  0
' j \ a n 2(dl d2h o g j ^  
Kn )  j ]

(5.47)

(5.48)

(5.49)

(5.50)

= 1 +  0  ( ^ + ( 0 ° )  > f d i < d 2

(rfi-da)log j \
;i+2(d ,-* ) )  l i d i > d 2

under B . l ’ and C .2 where gj =  CXJ2dl and hj  =  DXJ 2d2. Although only the results 

corresponding to Ij  =  / n(u> + Xj) are rigorously proved in Theorem 4, the properties 

concerning Ij  =  / n(u; — Xj) can be similarly deduced. Note also that as m  —* 00,

m
]jPlog j  ~  m[logm -  1] (5.51)

E-'CK

, J T T ^
771 / 1 \ 
E(iogi)r^(iogm- — ) —
771

^ l o g y  ~  m[logm — 1] — /[log / — 1]
/+ i
771

^  m 1+" /1+"
> 7 ~     — --------
"  1 +  a  1 +  a

(5.52)

(5.53)

(5.54)

(5.55)
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™ /  1 \  m a+l /  1 \  la+1
E ( lo g i ) i“ ~  (log™  T Y ^ )  -  (log! -  j ^ )  (5.56)

1 \  m a+1 . 1 \  /“+1
~  ( log 771 — —

J+l

for a  > —1. From Theorem 14 we know tha t d rf0 so tha t

where a & b means th a t |  1. From the proof of Theorem 6

k  =  1 +  ( i  _  £ l )  k  +  i [ / 3. _  |a j p /e .] +  (2jr/ ej _  1). (5.58)
yj  \  J j J  9 j Jj

Now

=  0

from (4.11) and (5.47) if d\ > c?2* Then (5.59) is

o  (  logm rm2(do-dl)+a+1)^
\ m n W  o -*)+«^m >)

= 0 ( \ 2J;do- d' )+a\ogm )  (5.60)

because 2(do — d\) > —1 and a  > 0. Since E \ I j  -  K ) % - |  =  0 ( / , ( lo g i / i ) 5 )  for 

di > c?2 w6 have that

j=i *'-J

— O p
l o g m ^ >  A2(do-rf i )

m  j
_  Q (  ( lo g ^ )2 Y  .2(d0- d , ) - \

ym n2(d°“ dl) “ ■

_  / (logm )l (logm )f 2(<Wl)\  ,
_  ^  m +  m l+2(<(o-<f1) A>" j '  ( &-b l l

Now

j=i
/n» 771 1 71

=  (5.62)
j = l  4= 1

+  ^ E ”  s )(“  +  Aj )}?<£». (5.63)
J=1 *
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Since under C .3 , ^ Y l i ( £t )  1 then (5.62) is

(5-64)

Note tha t f?[(5.63)2] is

n / ~ i 2  m m  n

- ^ £ 2 vj^ A j (do" dl)A ^ 0_dl)^ ^ cos{(< -  s )(uj +  A,)} cos{(* -  s){u> +  A*)}
j=lk=\ s t^s

m m  n  n2 C 2
m 2n2 . i t1 1 t = l  3= 1

J 2 ^ 2 vj vk ^ j (d° dl)A^d° dl\ ^ 2 ^ 2 ( a ts + bts + cta + dta) -  n] (5.65)

where atsjbts,cts and dts are defined in (4.21). Proceeding as in the proof of Theorem 

6, (5.65) is

c 2m 2n 2 t—f '  J m*n '* ,j= i j=i

_  n  ( (loe m )3 i4(A.-t,) , (logm )2 (logto)2 . jn_j, A
_  \  TO m + TO2+4(J„-d ,)A'n +  „  J

so that (5.63) is

Now using (5.51), (5.52) and (5.53) ,

C  x2(d0- d i )  . r^ \2(dn- d i )  2 ( d 0 -  d i )
’ (1 +  2(rfo_ rfl))2 <>«*-)

as n —> oo so tha t noting (5.57), (5.58) and the orders of magnitude in ( VMM. ( Yfi l ). 

(5.64) and (5.66) we conclude from (5.67)

T P /nr X 2(rfn —ril ) 2 ( d p - d i )
1 m  ( l  +  2 ( d o - r f , ) ) 2

Similarly

so that

L0 ~
1 +  2(rfo — ^i)

as n  —► oo

_ P 2(c?0 -  ^ i) -r j  ^  j
81 ~ 1 + 2(4,-*,) “ "~>00 'frfl- rf2

and y/rnei — oo unless d\ =  cfo which only happens if d\ =  c?2-
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In the same way, and noting (5.49), we can show tha t

-  v  2(d0 — d2) . .  . .
e 2 ~  , A / , T T  a s  72 >■ OO i f  Cf2 >  <*11 +  2{do — d2)

and y/me2 — oo unless d\ = d2.

Finally, noting (5.47), (5.48) and (5.54), (5.55), (5.56), assumption D .4  and the 

fact th a t in e3 we trim out the lowest Z frequencies, we can show, using the same type 

of calculations, that
_ p 2(do — d\)
63 ~  1 +" 2(d0 ~  dl)  a S ” ^ ° °

so th a t 2me§ 00 unless d\ =  do which only happens when d\ =  d2. □

R e m a rk  1: The consistency of the previous score tests has been obtained only 

for the persistent case, i.e. d \ ,d 2 £ 0  =  [Ai, A 2] where 0 < Ai < A 2 < 1/ 2. This is 

so in order to use the consistency of d obtained in Theorem 14. However, the same 

result is achieved as long as d \ ,d 2 £ 0  =  [Ai, A 2] and A 2 — Ai < 1/2 so tha t the 

antipersistent case and a mixture of persistence and antipersistence is also covered by 

the previous test procedures.

R e m a rk  2: The statistic y/me3 provides also a consistent test of the hypotheses 

d\ > d2 or d\ < d2. However £3 implies a trimming of I points which reduces the 

number of observations used in the construction of the statistic. T hat is why we 

propose the untrimmed LM \ and L M 2 to  perform the one-tailed tests. Furthermore 

it is not clear how important the trimming is in finite samples, or if it is only a 

theoretical device needed to obtain the asymptotic properties derived above. Note 

also tha t in the three statistics we use the trimmed estimation of d under the null. 

This is so in order to use the convergence of this estimate proved in Theorem 14. The 

effect of the trimming on the performance of the different test procedures in finite 

samples will be analysed via a small Monte Carlo study in Chapter 6.

5.4 TESTING EQUALITY ACROSS FREQUENCIES

The procedures described in previous sections focus on testing the hypothesis of spec

tral symmetry at one known frequency u.  Thus, only spectral behaviour around tha t
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frequency is considered. However there may be several spectral poles/zeros at differ

ent frequencies. For example many economic time series are likely to  have spectral 

poles at every seasonal frequency as well as at the origin as described in Chapters 1 

and 2 (see for example UK monthly inflation in Chapter 7). Thus it is interesting 

to investigate the possible equality of persistence parameters at different frequencies, 

trying to find a parsimonious and reliable model.

Throughout this section we impose symmetry of every spectral pole in the sense 

tha t the spectral density function satisfies the following condition:

E . l  : For a  E (0,2],

f(u>i ±  A) =  C i\~ 2di( \  + 0 (A “)) as A -*• 0+ 

where u>; E [0, tt], Ct E (0, oo), E [Ai, A 2] and 0 < A i < A 2 < 1/2 for i =  0 ,..., H.

The hypothesis we want to test is the equality of the persistence parameters at 

frequencies 0 < u>o < <*>1 < ... < ujj < 7r, do =  d\ =  ... =  dm- Note tha t /(A) 

can have other spectral poles/zeros in addition to  those in E . l .  Taking into account 

the asymptotic independence of the log-periodogram or Gaussian semiparametric es

timates at different frequencies, Wald tests can be easily constructed. An application 

of these tests to UK monthly inflation is performed in Chapter 7. The main incon

venient of Wald tests is tha t we need to perform H  -f  1 estimations. Based on the 

Gaussian semiparametric or local W hittle procedure we suggest a score test that only 

requires one estimation using frequencies around all u % — 0 ,1 ,. . . ,FT. As in Section 

5.3 we first propose the following objective function to  obtain local W hittle estimates 

of C0, C / / ,  and d0, ..., dn,

.  H  m  (  ) 2 d i  \

Q(C0, ...,C //,do, — ,d n )  = S S r . log C i\J U‘ +  |  (5.68)

where = 1 if a;,- =  0 ,7r, and Si = 2 otherwise, F{j =  In(^j )  if <̂i =  0, Fij = In(t  — Xj) 

if = 7r and Fij = / n(u>t- +  Xj) +  Jn(u;t- — Aj) if w; E (0 ,7r). Since we are interested in 

inference on do,...,d jj, we concentrate C q,...,C h , out of (5.68) so tha t the estimates
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of d{, i =  0 , H , are obtained by minimizing

H  f  m  ^
R(do, { logC f(d,) -  — 1 ^ lo g A j  I (5.69)

• = o  { m j= l  J

where now
m

<?,*«) =
j = l

The hypothesis we want to test is the equality of H  +  1 persistence parameters, Ho :

d0 =  d\ =  ... =  d jj , against the alternative tha t at least one of the equalities does not

hold. Therefore there are H  restrictions.

Since we are assuming symmetric spectral poles we do not trim  out any frequency 

close to  u)i in the estimation of d{. Thus we only need to  impose Assumption A4’ in 

Robinson (1995b) tha t we rewrite here.

E .4: As n —» oo
1 m 1+2a(logm )2

 1----------- 2a-----------*m  nZct

This bandwidth is enough to guarantee the properties of the score test procedure we 

describe in the following theorem.

T h e o re m  16 Lei E . l ,  C .2, C .3  and E .4  hold. Then under the hypothesis Ho : do = 

d\ =  ... =  dn,

L M u  =  me A ~ l e Xh as m  * 00 

where e is a H  x 1 vector with i-th element [eb =  T H d ) = YITij (ao) J J
do is the joint estimate under the null (using frequencies around u>q, ... ,u h ) , vj = 

l°g j ~  ^  E i"  log1 and A is a H  X H  matrix with elements

An  =  i = h - , H
2^j=o °j

Aij =  - ^ 7 -  i ? j
Z^j=o

where (fi =  4 i f  u*i =  0,7r and (f{ =  2 otherwise. The test based on rejecting the null 

against the alternative that at least one o f the equalities does not hold i f  L M h  > a 

at 100a% significance level is consistent.
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Proof: Call 0{ = di — do, i = 0, (note tha t instead of do we can take any

other d{ as reference param eter) such tha t Oo =  0- We are going to test Ho : do = 

di =  ... =  dfj by testing Ho ’ 0\ =  ... =  Oh — 0. In order to do this define

R {e ,, B„, do) =  £  Si ( lo g  C ? ( # i  +  do) -  m  +  do) £ )  log A j ]  .

Thus

i m  . „ .i=0  ̂ j= l J

9 1 (9, =  2 j ^ h G i(e . + dQ)
dd0

d R (9 u 'd ' ^ H' do) =  2*G,(0,- +  do) * =  l , . . . , fr,

where

G ,(z) =  -  — V lo g  Aj.
C ? «  m  J

Let $i,do  be the actual parameters and 0t-,do any admissible value. Proceeding as 

in the proof of Theorem 12 we get tha t the different Gi(0°  +  dg) are asymptotically 

independent and

The second derivatives are

d 2R
dOidO

d H
= 4 £ i iG?(«j + d0)

d*R d*R A). , 
=  4 0{Gi (0i +  do)ddodOi d0\

where

i (  } (<5?(z ))2

We have already shown in the proof of Theorem 7 in Chapter 4 tha t under the null, 

G?(0 +  do) £  1 for |d0 -  do| < |do — do| and do a consistent estimate of do. Call
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which proves the asymptotic distribution under the null. The consistency of the test 

procedure can be shown in the same way as Theorem 15 for H  =  1 using a similar 

result to  Theorem 14. We conjecture tha t the same result follows for H  > 1. □

R e m a rk  : In this section we assume spectral symmetry at the frequencies u i =  

0 ,1 ,. . . , i f .  Of course this symmetry can be relaxed modifying the objective function 

(5.68) in the same manner as we did in the previous section. Thus we can perform 

similar tests of the equality of all or some right and /or left memory parameters across 

different frequencies.



Chapter 6

SMALL SAMPLE BEHAVIOUR

6.1 SIMULATION PROCEDURE

In this chapter we study via Monte Carlo analysis the performance of the different 

methods of estimation and test procedures proposed in Chapters 3, 4 and 5. In order 

to do tha t we generate a process with a spectral density (2.3) in Chapter 2 in the 

following manner. Let {£i,*} and {£2,*} be two independent Gaussian processes with 

zero mean and lag - j autocovariances

.1 _  -2 ( c  sinO'wA
-  CTi O  ~ ~ ^ r ) '

7 ? =
7CJ

respectively, where Sjo =  1 if j  =  0 and 0 otherwise. Now let £ lt* and £2,t be formed 

as

(1 -  2Lcosuj  + L 2)dkXk,t = £k,t , A; = 1 , 2  , t = 0, ±1, ±2... (6.1)

and call x t =  £ if* +  £2,t- Since the spectral density of {£*,*} is
1 0 0

/ t ( A ) = 2 ^ + x L T j cos(JA)

then using formula 1.441.1 in Gradshteyn and Ryzhik (1980), namely

E°° sinffor) ir — x
— T - 1 =  - 5-  0  <  1  <  2 t ,

Jfc=l

and the fact that 2 sin(ju>) cos(.; A) =  sin(j(a; — A)) +  sin(j(a; +  A)), we have tha t the 

spectral density of { x t} is



The filter in (6.1) implies an infinite sum of the form

OO
'* T c idk\c o s u ) x k,t-s =  £k,t (6.3)
s=0

where the Gegenbauer polynomials, d d\r)), are of the form

c w M  =  ‘f 1 { - * ? * { • - i - * ) w r v
’ f?0 T ( j + l ) T ( s - 2 j + l ) r ( - d )

where [s/2] is the integer part of s /2  (see Gray et al.(1989)). We truncate the sum in 

(6.3) so th a t the series generated are

1500

xk,t =  Cidk)(cosu)xkft- a -f £k,t , k =  1,2,
5 = 1

where we put x k,t =  0 for t <  0, and the Gegenbauer functions are obtained via the 

recursion

c i d)(n)  =  2v ( ~ r i+/ ~ 1)  r,) -  ( ~ M + / ~ 2 )  ^

(see formula 8.933.1 in Gradshteyn and Ryzhik (1980)). This method permits the ap

proximate generation of Gegenbauer processes with an asymmetric spectral pole/zero 

at any frequency between 0 and 7r. A more direct generation procedure, without the 

truncation used above, is the application of some algorithm (e.g. Davies and Harte 

(1987)) to the autocovariances obtained in Proposition 1 in Chapter 2 for u  =  7r/2. 

However this method is only valid for tha t specific frequency. T hat is why we use the 

more general procedure described earlier despite the truncation it implies. Further

more, comparison of the exact and approximate procedures on the basis of actual and 

sample autocovariances plots indicated little difference in performance.

In the Monte Carlo study reported, lj  =  tt/2 , o \ =  o \ — 1 and dj, d>2 G {—0.4, —0.2, 

0,0.2,0.4}. Note th a t the processes generated satisfy C .l (A .l )  with a  =  2, C .2(A .2), 

C.3 and C.5 since £ \ t and £ 2 1 are Gaussian. In order to  obtain log-periodogram 

estimates, the explicit formula from the least squares method of estimation is used 

and we consider only the case J  =  1. Gaussian semiparametric estimates are obtained 

by applying a simple golden section search to  the first derivative of the objective 

function (4.2). The minimization is carried out over the closed set 0  =  [—0.499,0.499].
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The chosen sample sizes are n =  64,128,256 and 512 and for each three different 

bandwidths are tried, m  =  n /1 6 ,n /8  and n/A.  The effect of the trimming number is 

only analysed for n =  128,256 and 512 and three different trimmings are used, I =  

n /128 ,n /64  and n / 32. The number of replications was 1000 and all the calculations 

were done using GAUSS-386i VM version 3.2.8.

6.2 LOG-PERIODOGRAM AND GAUSSIAN SEMIPARA
METRIC ESTIMATION

The results we present in this section are bias and mean square error (MSE) of the two 

methods of estimation described in Chapters 3 and 4 (for an analysis of the effects 

of short memory components on the bias of the log-periodogram estimate at zero 

frequency see Agiakloglou et al. (1993)). We only consider the estimation of that 

of d2 is equivalent and only differs in the utilization of periodogram ordinates situated 

just before the frequency where the spectral pole or zero occurs. In all the tables the 

number within parentheses correspond to the log-periodogram estimate, d\ .

6 .2 .1  B ia s

The bias of the untrimmed estimates of d\ for different n and m  is described in tables 

6.1-6.4. We can observe tha t the bias of d\ tends to  decrease from m  =  n/16 to 

m = n /8  and to increase thereafter. The tendency of d\ is of a greater increase with 

all m. However when d2 is quite large with respect to d\ the bias of both estimates 

tends to decrease with m. This is what we would expect because the more frequencies 

we use in the estimation the less im portant the influence of periodogram ordinates 

close to l> that are “contaminated” by d2.

The bias tends to be positive for negative values of d\ and when d\ < d2 and 

negative for positive d\ and when di > d2, although a positive bias is more pervasive 

in the log-periodogram method of estimation. We also observe th a t when d2 is higher 

than d\ the bias of the estimates increases with n  for fixed m. These facts can be 

explained noting the results obtained in Theorem 3 and th a t the spectral density (6.2) 

is of the form (2.14) where <7i(A) and g2(X) are constants a \ j el'K and cr|/27r. According
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to this

log Jn(w +  X3) =  log f t  (u  +  Aj )  -  2dl log | Aj| +  log ^6'4^

where f t ( z )  can be deduced from (2.14), (2.15) and (6.2). We have from Theorem 3 

tha t E[In{u +  \ j ) / f (uj + Aj)] decreases as j  increases for n sufficiently large (see also 

Hurvich and Beltrao (1993)). Then it is plausible tha t 2?[log(/n(u; -f Xj)/f(u> +  A j) ) ]  

decreases as j  increases producing a positive bias in d \ . Furthermore, since the relative 

bias of In(uj + Xj)  as estimate of / ( cj -j- Aj) increases with n  when d\ < dz, then this 

fact can explain the increase of the bias of d\ th a t we observe for fixed m  (for instance 

when m  =  16) and an increasing n (n =  64,128,256), in tables 6.1-6.3, when ^2 is 

higher than d\. The same behaviour occurs for d\ and the cause of it is also likely to  be 

the increase of the relative bias of the periodogram, although an intuitive explanation 

like tha t for d\ can not be applied here.

In case d\ > c?2 the bias is much smaller than when d\ < ^2* This is so due to 

the influence of periodogram ordinates just before u> on those ordinates just after (see 

Theorem 4) where the behaviour of the spectral density function is governed by d\.

When we introduce the trimming we observe in tables 6.5-6.13 tha t the bias reduces 

in those cases where the difference di — d\ is positive and large. In the rest of the 

cases the bias tends to  increase, mainly when the number of frequencies used in d\ is 

small. However the bias of d\ reduces in some cases when m  is small, even if di < d\.

We also observe th a t when c?2 > d\ the decrease of the bias due to the trimming is 

more im portant for d\ than for d\. As a m atter of fact the bias of d\ finally increases 

with a large trimming, whereas tha t of d\ tends to  decrease for c?2 large with respect 

to d\. For instance when d\ =  —0.4 and =  0.4 the bias of d\ decreases with the 

trimming I in all situations except the case m =  n /4  when it increases from I =  n / 64 

to I =  n /32, whereas tha t of d\ has a clearer increasing tendency when I passes from 

n/64 to  n /32.
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6 .2 .2  M ea n  S q u are  E rror

We observe in tables 6.14-6.21 that the mean square error (MSE) of both untrimmed 

estimates decreases with m  and n. It also tends to increase with the difference d2 — d\ 

when this is positive. When we introduce the trimming we use fewer frequencies for 

the same bandwidth, ra, and the MSE in both estimates tends to  increase. Only when 

d2 is quite large with respect to  d\ the MSE decreases. This behaviour can be seen in 

tables 6.16-6.21 for n  =  256 and n =  512.

We also report the efficiency of the Gaussian semiparametric estimate, di, with 

respect to the log-periodogram one, d\. The entries in tables 6.22-6.29 are to be 

compared with the asymptotic relative efficiency 0.608 obtained from the asymptotic 

distributions in Theorems 5 and 7. When d\ > d2 the ratios of MSEs tend to  that 

figure from below as m  and n  increase. However when d2 > d\ the ratio tends to be 

higher than 0.608 for n > 128 and is higher than one when d\ =  —0.4, d2 =  0.4 and 

n  =  512, m  =  64,128. This fact reflects a greater sensitivity of the MSE of d\ to the 

difference d2 — di, which is in accordance with the stronger trimming we needed to 

obtain the asymptotic distribution of d\ . When the trimming is introduced we observe 

tha t the efficiency is always below one and decreases with /. Only the cases n =  128 

and n — 256 are reported in tables 6.23-6.28. The behaviour of the efficiency when 

n =  512 is similar and can be deduced from the MSE in tables 6.19-6.21.

6.3 TESTS ON THE SYMMETRY OF THE SPECTRUM
6 .3 .1  S y m m e tr y  a t  th e  sa m e  freq u en cy

In tables 6.30-6.33 we present a small Monte Carlo study of the Wald tests of the 

hypothesis of spectral symmetry at tt/ 2 introduced in Chapter 5. The significance 

level is 5%. The test statistics are calculated through the estimates obtained in the 

previous section. Only the untrimmed test statistics are included. The trimmed 

versions perform quite worse than the untrimmed ones with a higher size in all cases 

and not a higher power so th a t the type I error increases and the type II error does 

not tend to decrease with the trimming.
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The entries in the tables are size (along the NW-SE diagonal) and power ob

tained with 1000 replications. The numbers within parentheses correspond to the 

log-periodogram test and the other figures are size and power of the Gaussian semi- 

parametric Wald test. As expected, in both test procedures the power tends to  increase 

and the size to decrease with m  and n. The Gaussian Wald test performs better in 

the sense tha t the power tends to  be higher and the size lower than the test based 

on log-periodogram estimates. In both cases the size is higher than 0.05 (the nominal 

size) and tends to th a t number as m  and n increase.

The behaviour of the different score tests of the hypothesis of asymptotic spec

tral symmetry at tt/2  is described in tables 6.34-6.51 for n  =  128,256,512, m  = 

n /4 , n / 8, n / 16 and I =  n j  128, n j 64, n / 32. The trimming concerns only the estimation 

of the persistence param eter under the null, i.e. using frequencies on both sides of 

7r / 2. Although the consistency of the tests is only rigorously proved in Chapter 5 

when |c?2 — d\ \ < 1/ 2, we present the results also for the cases \d,2 — d\ \ > 1/ 2, and we 

see tha t the good properties of these tests are likely to hold also for those cases. We 

only report power and size for the LM 2 and LM 3 tests at 5% significance level, those 

of LM \ are similar to the powers and sizes of L M 2 for the corresponding null and 

alternative. The trimming in the LM 3 test statistic concerns only the estimation of 

d so tha t the statistic used is tha t presented in Theorem 15 in Chapter 5 with / = 0. 

The reason for this is tha t performance of the tests was found to worsen ui th the 

exclusion of frequencies close to u>.

We observe that powers and sizes tend to increase with d\ and b*‘i»ig higher for 

positive values of both parameters than for negative ones, reflecting a more conser

vative behaviour of the tests under antipersistence than under persistence. The size 

increases with the trimming applied to the joint estimation under the null. The power 

of LM 2 tends to increase with /, mainly when the difference ^2 ~  di is not very large 

and/or when m  is small. The power behaviour of the LM 3 test is similar with respect 

to  the positive difference d\ — However, when c?2 > d\ the power of LM 3 tends to  

decrease for m  > 16 with the introduction of the trimming. This behaviour can be
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explained from the expression obtained in the proof of Theorem 15

_ p 2(do — d\)
* 3 ~ 1 + 2(do_ dl) m  —* oo.

In an intuitive manner we can argue tha t the joint estimate, d, will estimate a value, 

do, which is closer to the highest d (c^ in this case), the smaller the trimming. Then 

the difference do — d\ will decrease with the introduction of the trimming and the ZM3 

statistic will be lower reducing its power in finite samples. The same type of intuitive 

explanation can be applied for the increase of power with the trimming in the LM 2 

test since
_ p 2(do  — c ^ )

and under the alternative > d\ , d will estimate some value closer to  c?2 the smaller 

the trimming.

If we compare the results for the score and Wald tests when no trimming is used 

we observe tha t the score tests tend to  be more conservative, with generally lower 

sizes and powers than the two Wald type tests analysed here. However, as n and m  

increase, although the L M  sizes remain lower than those corresponding to the Wald 

procedures, the powers tend to  be similar and in some cases higher than those of the 

Wald tests.

6 .3 .2  E q u a lity  across freq u en c ie s

In this section we analyse the performance in finite samples of the L M u  test of the 

equality of persistence parameters across different frequencies introduced in Section 

5.4. In order to do this we generate a Gaussian process with symmetric spectral 

poles/zeros at 0 and 7r/2  by adding two independent Gaussian Gegenbauer processes 

generated using the truncation described in Section 6.1. For each spectral singularity 

five different persistence parameters are used, —0.4, —0.2,0,0.2,0.4, corresponding 

to  antipersistence (—0.4, —0.2), short memory (0) and long memory or persistence 

(0.2,0.4). Three sample sizes are analysed, n =  128,256,512, and for each of them 

three bandwidths are used, m  =  n /1 6 ,n /8 ,3 n /1 6 . We only use until m  =  3n/16 in 

order to  avoid the use of frequencies close to a spectral pole/zero different to those

177



used in the construction of the test statistic as well as the twofold use of the same 

frequency in the estimation of the persistence param eter under the null. The number 

of replications is 1000.

The null hypothesis to test is H q : do =  d\, where do and d\ are the persistence 

parameters at the origin and 7r/2 respectively. From Theorem 16 in Chapter 5 the 

test statistic is

T M  3 m  ~2L M h  =  —  eT

where c =  4T}(d)/T?(d), T*(d) = £ ?  +  A,) +  Jn( f  -  A,)], Vj = log j  -

m Yj\ 1°S  ̂ and d is estimate under the null, i.e. using frequencies around 0 and 

7t/2.

Tables 6.52-6.54 show powers and sizes of the L M h  test for the different sample 

sizes and bandwidths. Power and size increase with m  and n  and tend to be higher 

under persistence than under antipersistence. We also observe a large size for the 

extreme cases do = d\ =  —0.4,0.4, and a larger power for do > d\ than for do < d\. 

This latter fact occurs because we use do as reference param eter in the test procedure. 

Thus we construct the statistic LM h  using frequencies around 7r/2. This implies tha t 

if equality does not hold

.  p 2(d* — d \ ) _________________ 8_____________
1 +  2 (d* — d \ )  2(do ~  d j)  +  1 +  \ / 4 { d \  — do)2 +  1

as n  —> oo, which can be shown in the same way as the proof of the consistency of

the score tests of spectral symmetry at one known frequency in Section 5.3, and using

a similar result to Theorem 14 concerning the convergence in probability of the joint 

estimate to  d*. Thus (6.5) is larger when do >  d\ than when d\ > do, even if the 

distance between do and d\ is the same. This fact is reflected in higher power of the 

test against do > d,\ than against do < d\. The opposite occurs when we use d\ as a 

reference parameter and construct the L M h  statistic using frequencies around 0. In 

this case

_ p , 2(dr -  do) 8
e ~  4  L—  ----- - =  4 —

1 *f 2(d* — do) 2(d\ — do) +  1 +  y/4(d\ — do)2 "b 1
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as n  —► oo, and this L M h test is more powerful against d\ > do than against d\ < do 

(we do not report results for this case due to the similarity with the tables reported).

6.4 TABLES

6 .4 .1  B ia s

Table 6.1: Bias of the Gaussian (log-periodogram) estimates of d \, n=64
771 =  4

di\d-2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.1561 (0.0535) 0.1597 (0.0601) 0.1707 (0.0802) 0.1978 (0.1288) 0.2573 (0.2305)
- 0 .2 0.0469 (0.0162) 0.0482 (0.0201) 0.0544 (0.0336) 0.0727 (0.0655) 0.1137 (0.1269)

0 -0.0427 (-0.0040) -0.0412 (0.0030) -0.0378 (0.0136) -0.0283 (0.0336) -0.0018 (0.0686)
0.2 -0.1171 (-0.0058) -0.1168 (-0.0012) -0.1155 (0.0045) -0.1129 (0.0158) -0.1030 (0.0292)
0.4 -0.1912 (0.0071) -0.1919 (0.0079) -0.1932 (0.0086) -0.1949 (0.0086) -0.1961 (0.0088)

m =  8

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0820 (0.0479) 0.0852 (0.0521) 0.0938 (0.0651) 0.1154 (0.0925) 0.1644 (0.1565)
- 0 .2 0.0055 (0.0161) 0.0087 (0.0197) 0.0163 (0.0286) 0.0334 (0.0462) 0.0688 (0.0857)

0 -0.0356 (-0.0045) -0.0337 (-0.0001) -0.0295 (0.0062) -0.0208 (0.0180) 0.0011 (0.0402)
0.2 -0.0648 (-0.0140) -0.0635 (-0.0116) -0.0614 (-0.0074) -0.0576 (-0.0003) -0.0484 (0.0095)
0.4 -0.1093 (-0.0111) -0.1088 (-0.0102) -0.1083 (-0.0096) -0.1074 (-0.0091) -0.1052 (-0.0066)

771 =  16
d \  \^2 - 0 .4 - 0 .2 0 0.2 0.4
—0.4 0.0802 (0.1124) 0.0831 (0.1152) 0.0899 (0.1228) 0.1047 (0.1400) 0.1386 (0.1795)
—0.2 0.0204 (0.0681) 0.0222 (0.0701) 0.0267 (0.0750) 0.0374 (0.0862) 0.0618 (0.1122)

0 -0.0203 (0.0299) -0.0188 (0.0338) -0.0159 (0.0373) -0.0095 (0.0440) 0.0058 (0.0603)
0.2 -0.0524 (-0.0000) -0.0514 (0.0018) -0.0496 (0.0057) -0.0461 (0.0089) -0.0377 (0.0174)
0.4 -0.0889 (-0.0220) -0.0882 (-0.0215) -0.0873 (-0.0203) -0.0859 (-0.0192) -0.0827 (-0.0146)
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Table 6.2: Bias of the Gaussian (log-periodogram) estimates of di, n=128
m  =  8

d \ \d .2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0765 (0.0378) 0.0840 (0.0503) 0.1040 (0.0809) 0.1543 (0.1503) 0.2726 (0.3051)
- 0 .2 0.0028 (0.0041) 0.0077 (0.0091) 0.0196 (0.0264) 0.0512 (0.0682) 0.1317 (0.1682)

0 -0.0338 (-0.0080) -0.0315 (-0.0073) -0.0257 (-0.0006) -0.0091 (0.0204) 0.0372 (0.0741)
0.2 -0.0549 (-0.0117) -0.0540 (-0.0097) -0.0517 (-0.0065) -0.0449 (0.0046) -0.0248 (0.0299)
0.4 -0.0943 (-0.0033) -0.0939 (-0.0027) -0.0928 (-0.0004) -0.0902 (0.0050) -0.0839 (0.0143)

m  =  16
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0402 (0.0351) 0.0450 (0.0423) 0.0575 (0.0602) 0.0907 (0.1023) 0.1730 (0.1978)
- 0 .2 -0.0090 (0.0077) -0.0060 (0.0108) 0.0020 (0.0212) 0.0232 (0.0464) 0.0787 (0.1079)

0 -0.0280 (-0.0065) -0.0264 (-0.0056) -0.0226 (-0.0017) -0.0119 (0.0108) 0.0187 (0.0440)
0.2 -0.0368 (-0.0151) -0.0361 (-0.0137) -0.0344 (-0.0117) -0.0297 (-0.0055) -0.0153 (0.0104)
0.4 -0.0555 (-0.0158) -0.0553 (-0.0152) -0.0546 (-0.0136) -0.0529 (-0.0103) -0.0480 (-0.0042)

m  =  32
- 0 .4 - 0 .2 0 0.2 0.4

- 0 .4 0.0635 (0.0840) 0.0665 (0.0880) 0.0744 (0.0978) 0.0966 (0.1224) 0.1514 (0.1793)
- 0 .2 0.0214 (0.0456) 0.0234 (0.0471) 0.0281 (0.0534) 0.0409 (0.0684) 0.0750 (0.1047)

0 -0.0094 (0.0146) -0.0085 (0.0153) -0.0061 (0.0182) 0.0003 (0.0256) 0.0193 (0.0455)
0.2 -0.0352 (-0.0127) -0.0348 (-0.0113) -0.0336 (-0.0103) -0.0304 (-0.0063) -0.0209 (0.0043)
0.4 -0.0599 (-0.0337) -0.0597 (-0.0331) -0.0592 (-0.0319) -0.0577 (-0.0297) -0.0536 (-0.0258)

Table 6.3: Bias of the Gaussian (log-periodogram) estimates of d i, n=256
m  =  16

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0408 (0.0338) 0.0477 (0.0420) 0.0705 (0.0725) 0.1395 (0.1523) 0.2999 (0.3293)
- 0 .2 -0.0085 (0.0059) -0.0051 (0.0097) 0.0065 (0.0206) 0.0431 (0.0568) 0.1490 (0.1742)

0 -0.0231 (-0.0032) -0.0217 (-0.0029) -0.0174 (0.0004) -0.0024 (0.0129) 0.0521 (0.0736)
0.2 -0.0271 (-0.0053) -0.0266 (-0.0059) -0.0248 (-0.0040) -0.0192 (0.0012) 0.0021 (0.0238)
0.4 -0.0446 (0.0013) -0.0444 (0.0012) -0.0439 (0.0016) -0.0423 (0.0032) -0.0368 (0.0105)

771 =  32
d \  \^2 - 0 .4 - 0 .2 0 0.2 0.4
—0.4 0.0224 (0.0244) 0.0275 (0.0297) 0.0429 (0.0484) 0.0896 (0.0956) 0.2014 (0.2050)
—0.2 -0.0080 (0.0023) -0.0055 (0.0049) 0.0021 (0.0121) 0.0259 (0.0341) 0.0961 (0.1057)

0 -0.0195 (-0.0083) -0.0185 (-0.0078) -0.0156 (-0.0052) -0.0057 (0.0028) 0.0293 (0.0404)
0.2 -0.0253 (-0.0141) -0.0248 (-0.0144) -0.0237 (-0.0128) -0.0198 (-0.0095) -0.0053 (0.0055)
0.4 -0.0335 (-0.0139) -0.0332 (-0.0138) -0.0328 (-0.0135) -0.0314 (-0.0124) -0.0268 (-0.0071)

771 =  64
d \ \d ,2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0519 (0.0634) 0.0550 (0.0664) 0.0649 (0.0772) 0.0949 (0.1046) 0.1699 (0.1699)
- 0 .2 0.0187 (0.0301) 0.0201 (0.0316) 0.0244 (0.0358) 0.0387 (0.0488) 0.0827 (0.0913)

0 -0.0084 (0.0038) -0.0078 (0.0040) -0.0060 (0.0055) 0.0001 (0.0105) 0.0218 (0.0334)
0.2 -0.0317 (-0.0193) -0.0314 (-0.0196) -0.0307 (-0.0187) -0.0281 (-0.0164) -0.0188 (-0.0068)
0.4 -0.0522 (-0.0385) -0.0520 (-0.0383) -0.0517 (-0.0384) -0.0507 (-0.0376) -0.0471 (-0.0335)

180



Table 6.4: Bias of the Gaussian (log-periodogram) estimates of n=512
m  =  32

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0200 (0.0201) 0.0294 (0.0312) 0.0609 (0.0677) 0.1539 (0.1609) 0.3422 (0.3492)
- 0 .2 -0.0086 (0.0019) -0.0051 (0.0049) 0.0071 (0.0178) 0.0517 (0.0631) 0.1762 (0.1902)

0 -0.0160 (-0.0050) -0.0149 (-0.0043) -0.0111 (-0.0012) 0.0044 (0.0155) 0.0646 (0.0784)
0.2 -0.0167 (-0.0059) -0.0163 (-0.0055) -0.0153 (-0.0047) -0.0107 (-0.0009) 0.0109 (0.0210)
0.4 -0.0208 (-0.0015) -0.0207 (-0.0018) -0.0205 (-0.0020) -0.0193 (-0.0012) -0.0137 (0.0052)

m  =  64
d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0165 (0.0201) 0.0229 (0.0270) 0.0436 (0.0490) 0.1064 (0.1047) 0.2429 (0.2224)
- 0 .2 -0.0029 (0.0038) -0.0007 (0.0059) 0.0069 (0.0139) 0.0348 (0.0410) 0.1189 (0.1189)

0 -0.0121 (-0.0055) -0.0114 (-0.0049) -0.0090 (-0.0027) 0.0006 (0.0072) 0.0393 (0.0456)
0.2 -0.0172 (-0.0109) -0.0170 (-0.0105) -0.0162 (-0.0100) -0.0134 (-0.0075) 0.0005 (0.0059)
0.4 -0.0202 (-0.0123) -0.0201 (-0.0124) -0.0200 (-0.0125) -0.0192 (-0.0119) -0.0152 (-0.0079)

m  =  128
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0476 (0.0539) 0.0514 (0.0580) 0.0639 (0.0710) 0.1035 (0.1037) 0.1988 (0.1746)
- 0 .2 0.0188 (0.0256) 0.0201 (0.0269) 0.0245 (0.0316) 0.0411 (0.0475) 0.0959 (0.0941)

0 -0.0056 (0.0013) -0.0051 (0.0017) -0.0037 (0.0031) 0.0021 (0.0090) 0.0264 (0.0320)
0.2 -0.0274 (-0.0204) -0.0272 (-0.0201) -0.0267 (-0.0198) -0.0249 (-0.0182) -0.0161 (-0.0100)
0.4 -0.0466 (-0.0395) -0.0465 (-0.0395) -0.0464 (-0.0395) -0.0458 (-0.0391) -0.0430 (-0.0364)

Table 6.5: Bias of the trimmed Gaussian (log-periodogram) estimates of d1? n=  128, 
m=8_________________________________________________________________________

/ =  1
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.1300 (0.0472) 0.1331 (0.0487) 0.1412 (0.0582) 0.1609 (0.0955) 0.2176 (0.1834)
- 0 .2 0.0459 (0.0200) 0.0481 (0.0223) 0.0541 (0.0287) 0.0693 (0.0512) 0.1087 (0.1105)

0 -0.0180 (0.0054) -0.0160 (0.0060) -0.0118 (0.0123) -0.0020 (0.0291) 0.0221 (0.0636)
0.2 -0.0774 (-0.0005) -0.0762 (-0.0010) -0.0735 (0.0016) -0.0680 (0.0117) -0.0548 (0.0375)
0.4 -0.1510 (0.0065) -0.1504 (0.0078) -0.1491 (0.0111) -0.1463 (0.0184) -0.1406 (0.0308)

/ =  2
d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
—0.4 0.1949 (0.0486) 0.1975 (0.0502) 0.2025 (0.0611) 0.2133 (0.0866) 0.2408 (0.1464)
—0.2 0.0919 (0.0360) 0.0942 (0.0386) 0.0979 (0.0474) 0.1054 (0.0649) 0.1253 (0.1053)

0 -0.0030 (0.0355) -0.0014 (0.0372) 0.0015 (0.0427) 0.0068 (0.0544) 0.0200 (0.0775)
0.2 -0.0935 (0.0350) -0.0927 (0.0332) -0.0913 (0.0352) -0.0884 (0.0424) -0.0827 (0.0629)
0.4 -0.1916 (0.0437) -0.1913 (0.0438) -0.1907 (0.0469) -0.1900 (0.0525) -0.1880 (0.0649)

1 =  4

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.3009 (0.0170) 0.3027 (0.0146) 0.3065 (0.0159) 0.3106 (0.0208) 0.3162 (0.0801)
- 0 .2 0.1499 (0.0108) 0.1511 (0.0096) 0.1527 (0.0116) 0.1548 (0.0133) 0.1608 (0.0554)

0 -0.0029 (0.0055) -0.0014 (0.0066) 0.0000 (0.0104) 0.0019 (0.0134) 0.0064 (0.0353)
0.2 -0.1555 (0.0011) -0.1540 (0.0018) -0.1526 (0.0030) -0.1513 (0.0128) -0.1472 (0.0290)
0.4 -0.3085 (0.0129) -0.3080 (0.0128) -0.3073 (0.0183) -0.3067 (0.0251) -0.3046 (0.0427)
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Table 6.6: Bias of the trimmed Gaussian (log-periodogram) estimates of d1? n=128,
m = L6

/ =  1
d \ \ d 2 - 0 .4 -0 .2 0 0.2 0.4
- 0 .4 0.0655 (0.0483) 0.0672 (0.0493) 0.0718 (0.0546) 0.0845 (0.0731) 0.1207 (0.1225)
- 0 .2 0.0156 (0.0267) 0.0169 (0.0273) 0.0203 (0.0303) 0.0298 (0.0421) 0.0569 (0.0755)

0 -0.0101 (0.0111) -0.0090 (0.0105) -0.0064 (0.0134) -0.0001 (0.0222) 0.0174 (0.0409)
0.2 -0.0287 (-0.0007) -0.0282 (-0.0012) -0.0269 (-0.0005) -0.0233 (0.0046) -0.0135 (0.0182)
0.4 -0.0650 (-0.0037) -0.0648 (-0.0035) -0.0643 (-0.0019) -0.0630 (0.0010) -0.0594 (0.0077)

1 =  2

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0881 (0.0488) 0.0890 (0.0497) 0.0914 (0.0543) 0.0981 (0.0641) 0.1185 (0.0948)
- 0 .2 0.0289 (0.0329) 0.0301 (0.0331) 0.0327 (0.0360) 0.0391 (0.0434) 0.0559 (0.0640)

0 -0.0039 (0.0211) -0.0028 (0.0205) -0.0008 (0.0223) 0.0038 (0.0273) 0.0153 (0.0384)
0.2 -0.0331 (0.0091) -0.0325 (0.0082) -0.0315 (0.0083) -0.0290 (0.0111) -0.0223 (0.0200)
0.4 -0.0830 (0.0038) -0.0828 (0.0034) -0.0824 (0.0045) -0.0813 (0.0057) -0.0784 (0.0109)

1 =  4
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.1365 (0.0439) 0.1363 (0.0436) 0.1368 (0.0433) 0.1386 (0.0427) 0.1456 (0.0598)
- 0 .2 0.0553 (0.0267) 0.0553 (0.0251) 0.0558 (0.0242) 0.0576 (0.0241) 0.0636 (0.0353)

0 -0.0080 (0.0091) -0.0080 (0.0074) -0.0078 (0.0068) -0.0064 (0.0070) -0.0011 (0.0118)
0.2 -0.0685 (-0.0087) -0.0684 (-0.0093) -0.0681 (-0.0103) -0.0671 (-0.0097) -0.0632 (-0.0067)
0.4 -0.1442 (-0.0200) -0.1442 (-0.0204) -0.1441 (-0.0202) -0.1435 (-0.0211) -0.1417 (-0.0185)

Table 6.7: Bias of the trimmed Gaussian (log-periodogram) estimates of c?i, n=  128, 
m=32

I =  1
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0760 (0.0978) 0.0771 (0.0987) 0.0802 (0.1013) 0.0886 (0.1112) 0.1122 (0.1381)
- 0 .2 0.0311 (0.0580) 0.0320 (0.0586) 0.0342 (0.0610) 0.0403 (0.0674) 0.0570 (0.0854)

0 -0.0045 (0.0226) -0.0039 (0.0222) -0.0024 (0.0249) 0.0016 (0.0292) 0.0125 (0.0398)
0.2 -0.0367 (-0.0105) -0.0362 (-0.0101) -0.0352 (-0.0090) -0.0327 (-0.0069) -0.0261 (0.0008)
0.4 -0.0707 (-0.0376) -0.0703 (-0.0370) -0.0697 (-0.0364) -0.0683 (-0.0348) -0.0649 (-0.0306)

1 =  2

d i \ d 2 - 0 .4 -0 .2 0 0.2 0.4
- 0 .4 0.0878 (0.1080) 0.0883 (0.1088) 0.0900 (0.1106) 0.0947 (0.1156) 0.1082 (0.1311)
- 0 .2 0.0376 (0.0669) 0.0384 (0.0674) 0.0399 (0.0695) 0.0438 (0.0732) 0.0541 (0.0835)

0 -0.0020 (0.0292) -0.0014 (0.0288) -0.0001 (0.0310) 0.0027 (0.0330) 0.0100 (0.0392)
0.2 -0.0392 (-0.0080) -0.0386 (-0.0076) -0.0377 (-0.0067) -0.0357 (-0.0061) -0.0309 (-0.0013)
0.4 -0.0814 (-0.0407) -0.0809 (-0.0402) -0.0803 (-0.0400) -0.0792 (-0.0392) -0.0767 (-0.0361)

1 =  4

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.1078 (0.1270) 0.1079 (0.1275) 0.1084 (0.1270) 0.1100 (0.1273) 0.1151 (0.1345)
- 0 .2 0.0445 (0.0774) 0.0446 (0.0773) 0.0451 (0.0781) 0.0467 (0.0784) 0.0516 (0.0829)

0 -0.0064 (0.0297) -0.0062 (0.0290) -0.0057 (0.0306) -0.0043 (0.0303) -0.0002 (0.0330)
0.2 -0.0560 (-0.0174) -0.0557 (-0.0166) -0.0553 (-0.0157) -0.0541 (-0.0165) -0.0511 (-0.0147)
0.4 -0.1135 (-0.0605) -0.1133 (-0.0598) -0.1129 (-0.0603) -0.1122 (-0.0602) -0.1104 (-0.0585)
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Table 6.8: Bias of the trimmed Gaussian (log-periodogram) estimates of d1? n=  256,
m = ] L6

I =  2
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0717 (0.0146) 0.0732 (0.0167) 0.0785 (0.0246) 0.0953 (0.0571) 0.1540 (0.1544)
- 0 .2 0.0132 (0.0026) 0.0142 (0.0037) 0.0177 (0.0088) 0.0289 (0.0252) 0.0692 (0.0806)

0 -0.0157 (-0.0029) -0.0150 (-0.0020) -0.0130 (-0.0002) -0.0063 (0.0074) 0.0183 (0.0403)
0.2 -0.0358 (-0.0026) -0.0354 (-0.0024) -0.0344 (-0.0021) -0.0310 (0.0013) -0.0189 (0.0181)
0.4 -0.0795 (0.0022) -0.0792 (0.0018) -0.0787 (0.0015) -0.0772 (0.0016) -0.0730 (0.0110)

1 =  4

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.1283 (0.0360) 0.1291 (0.0359) 0.1308 (0.0388) 0.1373 (0.0523) 0.1604 (0.0950)
- 0 .2 0.0496 (0.0288) 0.0502 (0.0275) 0.0514 (0.0296) 0.0556 (0.0386) 0.0735 (0.0621)

0 -0.0055 (0.0238) -0.0054 (0.0239) -0.0048 (0.0243) -0.0022 (0.0285) 0.0091 (0.0440)
0.2 -0.0570 (0.0205) -0.0571 (0.0204) -0.0569 (0.0209) -0.0555 (0.0228) -0.0493 (0.0346)
0.4 -0.1257 (0.0197) -0.1258 (0.0192) -0.1257 (0.0195) -0.1250 (0.0206) -0.1220 (0.0285)

1 =  8

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.2542 (0.0367) 0.2549 (0.0390) 0.2559 (0.0421) 0.2581 (0.0543) 0.2650 (0.0759)
- 0 .2 0.1267 (0.0276) 0.1273 (0.0300) 0.1277 (0.0342) 0.1285 (0.0357) 0.1326 (0.0510)

0 0.0024 (0.0245) 0.0023 (0.0275) 0.0019 (0.0286) 0.0016 (0.0287) 0.0040 (0.0366)
0.2 -0.1224 (0.0182) -0.1225 (0.0198) -0.1229 (0.0211) -0.1235 (0.0194) -0.1231 (0.0265)
0.4 -0.2505 (0.0131) -0.2507 (0.0115) -0.2508 (0.0091) -0.2509 (0.0080) -0.2511 (0.0141)

Table 6.9: Bias of the trimmed Gaussian (log-periodogram) estimates of d\, n=  256, 
m=32

1 =  2
d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0402 (0.0277) 0.0414 (0.0289) 0.0449 (0.0330) 0.0560 (0.0497) 0.0934 (0.1011)
- 0 .2 0.0073 (0.0129) 0.0080 (0.0131) 0.0104 (0.0158) 0.0181 (0.0245) 0.0444 (0.0549)

0 -0.0055 (0.0018) -0.0050 (0.0020) -0.0035 (0.0029) 0.0010 (0.0071) 0.0164 (0.0261)
0.2 -0.0142 (-0.0055) -0.0139 (-0.0056) -0.0131 (-0.0055) -0.0107 (-0.0034) -0.0022 (0.0066)
0.4 -0.0350 (-0.0095) -0.0348 (-0.0095) -0.0344 (-0.0098) -0.0333 (-0.0098) -0.0299 (-0.0048)

1 =  4
d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0561 (0.0385) 0.0569 (0.0388) 0.0586 (0.0403) 0.0635 (0.0467) 0.0803 (0.0685)
- 0 .2 0.0173 (0.0241) 0.0178 (0.0235) 0.0190 (0.0246) 0.0227 (0.0287) 0.0357 (0.0423)

0 0.0001 (0.0115) 0.0003 (0.0112) 0.0010 (0.0114) 0.0034 (0.0137) 0.0121 (0.0234)
0.2 -0.0143 (0.0007) -0.0142 (0.0004) -0.0138 (0.0005) -0.0123 (0.0019) -0.0071 (0.0084)
0.4 -0.0481 (-0.0078) -0.0481 (-0.0076) -0.0478 (-0.0077) -0.0471 (-0.0074) -0.0445 (-0.0041)

1 =  8
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
-0 .4 0.0892 (0.0404) 0.0893 (0.0410) 0.0901 (0.0419) 0.0926 (0.0454) 0.1004 (0.0552)
- 0 .2 0.0331 (0.0220) 0.0333 (0.0220) 0.0341 (0.0229) 0.0362 (0.0242) 0.0426 (0.0322)

0 0.0001 (0.0054) 0.0003 (0.0054) 0.0009 (0.0056) 0.0025 (0.0070) 0.0072 (0.0131)
0.2 -0.0335 (-0.0097) -0.0334 (-0.0098) -0.0330 (-0.0096) -0.0320 (-0.0088) -0.0292 (-0.0048)
0.4 -0.0885 (-0.0226) -0.0884 (-0.0223) -0.0881 (-0.0230) -0.0875 (-0.0232) -0.0862 (-0.0216)
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Table 6.10: Bias of the trimmed Gaussian (log-periodogram) estimates of d\ ,  n= 256,
m =64___________________________________________________________________________

/ =  2
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0651 (0.0799) 0.0658 (0.0805) 0.0679 (0.0826) 0.0748 (0.0914) 0.0981 (0.1196)
- 0 .2 0.0294 (0.0461) 0.0299 (0.0461) 0.0312 (0.0475) 0.0355 (0.0528) 0.0501 (0.0696)

0 -0.0024 (0.0147) -0.0021 (0.0145) -0.0013 (0.0152) 0.0012 (0.0180) 0.0099 (0.0289)
0.2 -0.0324 (-0.0148) -0.0322 (-0.0148) -0.0317 (-0.0145) -0.0303 (-0.0128) -0.0253 (-0.0070)
0.4 -0.0608 (-0.0415) -0.0606 (-0.0416) -0.0604 (-0.0417) -0.0597 (-0.0414) -0.0573 (-0.0377)

I =  4
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0767 (0.0951) 0.0770 (0.0952) 0.0780 (0.0960) 0.0810 (0.0991) 0.0912 (0.1111)
- 0 .2 0.0364 (0.0576) 0.0367 (0.0572) 0.0373 (0.0577) 0.0393 (0.0606) 0.0465 (0.0680)

0 -0.0003 (0.0214) -0.0002 (0.0210) 0.0002 (0.0214) 0.0015 (0.0232) 0.0062 (0.0287)
0.2 -0.0356 (-0.0141) -0.0355 (-0.0141) -0.0352 (-0.0137) -0.0344 (-0.0124) -0.0314 (-0.0088)
0.4 -0.0705 (-0.0471) -0.0704 (-0.0472) -0.0703 (-0.0472) -0.0699 (-0.0466) -0.0682 (-0.0439)

/ =  8
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0949 (0.1152) 0.0951 (0.1153) 0.0956 (0.1158) 0.0969 (0.1171) 0.1011 (0.1227)
- 0 .2 0.0443 (0.0687) 0.0445 (0.0686) 0.0449 (0.0689) 0.0460 (0.0705) 0.0496 (0.0745)

0 -0.0017 (0.0235) -0.0016 (0.0230) -0.0012 (0.0236) -0.0004 (0.0249) 0.0022 (0.0281)
0.2 -0.0467 (-0.0216) -0.0466 (-0.0214) -0.0463 (-0.0210) -0.0458 (-0.0198) -0.0440 (-0.0179)
0.4 -0.0941 (-0.0642) -0.0941 (-0.0643) -0.0939 (-0.0645) -0.0937 (-0.0641) -0.0927 (-0.0620)

Table 6.11: Bias of the trimmed Gaussian (log-periodogram) estimates of d\, n=  512, 
m=32

1 =  4
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0394 (0.0109) 0.0408 (0.0139) 0.0446 (0.0203) 0.0573 (0.0382) 0.1058 (0.1016)
- 0 .2 0.0032 (0.0019) 0.0041 (0.0032) 0.0065 (0.0067) 0.0139 (0.0157) 0.0440 (0.0497)

0 -0.0069 (-0.0026) -0.0064 (-0.0022) -0.0052 (-0.0003) -0.0014 (0.0035) 0.0141 (0.0205)
0.2 -0.0132 (-0.0043) -0.0128 (-0.0043) -0.0122 (-0.0040) -0.0106 (-0.0018) -0.0035 (0.0063)
0.4 -0.0404 (-0.0025) -0.0401 (-0.0023) -0.0398 (-0.0022) -0.0390 (-0.0013) -0.0364 (0.0019)

1 =  8
d \ \ d 2 - 0 .4 -0 .2 0 0.2 0.4
- 0 .4 0.0779 (0.0121) 0.0785 (0.0141) 0.0803 (0.0191) 0.0858 (0.0309) 0.1081 (0.0621)
- 0 .2 0.0223 (0.0060) 0.0229 (0.0075) 0.0244 (0.0110) 0.0288 (0.0191) 0.0453 (0.0395)

0 -0.0046 (0.0017) -0.0041 (0.0023) -0.0029 (0.0042) 0.0003 (0.0103) 0.0107 (0.0250)
0.2 -0.0290 (-0.0004) -0.0286 (-0.0002) -0.0279 (0.0006) -0.0262 (0.0043) -0.0203 (0.0124)
0.4 -0.0770 (0.0002) -0.0767 (0.0003) -0.0763 (0.0007) -0.0754 (0.0019) -0.0727 (0.0055)

/ =  16
d \ \ d 2 - 0 .4 -0 .2 0 0.2 0.4
- 0 .4 0.1947 (-0.0027) 0.1953 (-0.0008) 0.1964 (0.0016) 0.1988 (0.0105) 0.2061 (0.0309)
- 0 .2 0.0903 (-0.0149) 0.0907 (-0.0133) 0.0913 (-0.0111) 0.0930 (-0.0023) 0.0984 (0.0133)

0 -0.0079 (-0.0233) -0.0077 (-0.0219) -0.0072 (-0.0201) -0.0060 (-0.0131) -0.0019 (-0.0022)
0.2 -0.1052 (-0.0292) -0.1050 (-0.0284) -0.1047 (-0.0264) -0.1036 (-0.0216) -0.1000 (-0.0175)
0.4 -0.2071 (-0.0332) -0.2068 (-0.0338) -0.2064 (-0.0328) -0.2056 (-0.0297) -0.2035 (-0.0274)
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Table 6.12: Bias of the trimmed Gaussian (log-periodogram) estimates of d \ ,  n=  512,
m =64____________________________________________________________________________

/ =  4
d \ \d .2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0250 (0.0206) 0.0258 (0.0222) 0.0282 (0.0255) 0.0359 (0.0353) 0.0665 (0.0692)
- 0 .2 0.0067 (0.0087) 0.0073 (0.0094) 0.0088 (0.0114) 0.0134 (0.0167) 0.0313 (0.0355)

0 -0.0032 (-0.0007) -0.0029 (-0.0004) -0.0021 (0.0007) 0.0004 (0.0032) 0.0099 (0.0134)
0.2 -0.0113 (-0.0085) -0.0111 (-0.0083) -0.0106 (-0.0080) -0.0093 (-0.0066) -0.0044 (-0.0013)
0.4 -0.0228 (-0.0146) -0.0227 (-0.0145) -0.0224 (-0.0142) -0.0218 (-0.0133) -0.0196 (-0.0105)

1 =  8

d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0332 (0.0244) 0.0336 (0.0252) 0.0347 (0.0273) 0.0383 (0.0327) 0.0519 (0.0482)
- 0 .2 0.0085 (0.0123) 0.0089 (0.0129) 0.0099 (0.0145) 0.0128 (0.0183) 0.0229 (0.0285)

0 -0.0035 (0.0013) -0.0032 (0.0017) -0.0025 (0.0025) -0.0007 (0.0053) 0.0057 (0.0127)
0.2 -0.0140 (-0.0087) -0.0137 (-0.0084) -0.0132 (-0.0079) -0.0120 (-0.0063) -0.0081 (-0.0018)
0.4 -0.0346 (-0.0178) -0.0345 (-0.0177) -0.0342 (-0.0172) -0.0336 (-0.0162) -0.0318 (-0.0134)

1 =  16
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0557 (0.0271) 0.0557 (0.0275) 0.0560 (0.0279) 0.0570 (0.0301) 0.0612 (0.0374)
- 0 .2 0.0131 (0.0106) 0.0133 (0.0109) 0.0137 (0.0114) 0.0149 (0.0135) 0.0192 (0.0188)

0 -0.0069 (-0.0047) -0.0067 (-0.0043) -0.0063 (-0.0039) -0.0053 (-0.0026) -0.0019 (0.0015)
0.2 -0.0262 (-0.0195) -0.0260 (-0.0190) -0.0256 (-0.0187) -0.0248 (-0.0177) -0.0224 (-0.0151)
0.4 -0.0649 (-0.0344) -0.0647 (-0.0344) -0.0644 (-0.0339) -0.0638 (-0.0325) -0.0622 (-0.0302)

Table 6.13: Bias of the trimmed Gaussian (log-periodogram) estimates of d j, n= 512,
m = L28

1 =  4

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0594 (0.0644) 0.0600 (0.0654) 0.0615 (0.0672) 0.0662 (0.0724) 0.0838 (0.0908)
- 0 .2 0.0282 (0.0336) 0.0286 (0.0341) 0.0294 (0.0351) 0.0319 (0.0380) 0.0420 (0.0484)

0 -0.0017 (0.0041) -0.0015 (0.0044) -0.0010 (0.0049) 0.0004 (0.0062) 0.0060 (0.0121)
0.2 -0.0306 (-0.0245) -0.0305 (-0.0243) -0.0302 (-0.0242) -0.0294 (-0.0234) -0.0263 (-0.0202)
0.4 -0.0582 (-0.0522) -0.0581 (-0.0521) -0.0579 (-0.0519) -0.0575 (-0.0515) -0.0559 (-0.0498)

1 =  8

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0688 (0.0755) 0.0690 (0.0761) 0.0697 (0.0771) 0.0719 (0.0797) 0.0798 (0.0876)
- 0 .2 0.0328 (0.0405) 0.0330 (0.0409) 0.0335 (0.0415) 0.0350 (0.0434) 0.0403 (0.0487)

0 -0.0020 (0.0061) -0.0019 (0.0063) -0.0015 (0.0067) -0.0005 (0.0079) 0.0029 (0.0118)
0.2 -0.0362 (-0.0278) -0.0361 (-0.0276) -0.0358 (-0.0275) -0.0352 (-0.0266) -0.0330 (-0.0242)
0.4 -0.0694 (-0.0613) -0.0693 (-0.0612) -0.0691 (-0.0610) -0.0687 (-0.0606) -0.0674 (-0.0591)

1 =  16
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0858 (0.0940) 0.0859 (0.0944) 0.0862 (0.0946) 0.0869 (0.0954) 0.0897 (0.0986)
- 0 .2 0.0406 (0.0498) 0.0407 (0.0500) 0.0409 (0.0501) 0.0415 (0.0509) 0.0437 (0.0533)

0 -0.0035 (0.0060) -0.0034 (0.0063) -0.0032 (0.0064) -0.0027 (0.0067) -0.0011 (0.0085)
0.2 -0.0472 (-0.0376) -0.0471 (-0.0372) -0.0470 (-0.0373) -0.0466 (-0.0369) -0.0454 (-0.0356)
0.4 -0.0906 (-0.0811) -0.0905 (-0.0811) -0.0904 (-0.0809) -0.0902 (-0.0805) -0.0893 (-0.0796)
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6 .4 .2  M ea n  S q u are  E rror

Table 6.14: MSE of the Gaussian (log-periodogram) estimates of n=64
m  =  4

d \ \d ,2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.1258 (0.3581) 0.1282 (0.3620) 0.1329 (0.3575) 0.1491 (0.3910) 0.1886 (0.4111)
- 0 .2 0.1249 (0.3511) 0.1253 (0.3525) 0.1269 (0.3552) 0.1311 (0.3518) 0.1433 (0.3894)

0 0.1381 (0.3601) 0.1374 (0.3510) 0.1374 (0.3484) 0.1377 (0.3409) 0.1374 (0.3542)
0.2 0.1462 (0.3599) 0.1464 (0.3559) 0.1465 (0.3530) 0.1470 (0.3497) 0.1455 (0.3671)
0.4 0.1486 (0.3587) 0.1488 (0.3568) 0.1495 (0.3568) 0.1513 (0.3642) 0.1559 (0.3758)

m =  8
di\^2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0480 (0.1174) 0.0497 (0.1218) 0.0533 (0.1252) 0.0621 (0.1385) 0.0850 (0.1514)
- 0 .2 0.0614 (0.1176) 0.0621 (0.1196) 0.0632 (0.1239) 0.0665 (0.1283) 0.0760 (0.1382)

0 0.0749 (0.1231) 0.0751 (0.1211) 0.0756 (0.1231) 0.0772 (0.1225) 0.0787 (0.1256)
0.2 0.0755 (0.1228) 0.0754 (0.1229) 0.0754 (0.1206) 0.0759 (0.1199) 0.0764 (0.1246)
0.4 0.0645 (0.1207) 0.0644 (0.1209) 0.0645 (0.1217) 0.0647 (0.1239) 0.0641 (0.1261)

m  =  16
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0277 (0.0579) 0.0283 (0.0603) 0.0299 (0.0626) 0.0342 (0.0710) 0.0457 (0.0860)
- 0 .2 0.0290 (0.0508) 0.0294 (0.0521) 0.0299 (0.0532) 0.0314 (0.0567) 0.0358 (0.0658)

0 0.0315 (0.0487) 0.0316 (0.0496) 0.0318 (0.0503) 0.0324 (0.0499) 0.0333 (0.0541)
0.2 0.0333 (0.0497) 0.0332 (0.0510) 0.0332 (0.0505) 0.0332 (0.0493) 0.0331 (0.0509)
0.4 0.0322 (0.0492) 0.0320 (0.0487) 0.0319 (0.0496) 0.0317 (0.0503) 0.0313 (0.0521)
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Table 6.15: MSE of the Gaussian (log-periodogram) estimates of n=128
m =  8

d i \d ,2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0452 (0.1215) 0.0480 (0.1206) 0.0545 (0.1215) 0.0753 (0.1446) 0.1413 (0.2113)
- 0 .2 0.0590 (0.1177) 0.0596 (0.1182) 0.0611 (0.1122) 0.0661 (0.1159) 0.0877 (0.1374)

0 0.0733 (0.1152) 0.0734 (0.1166) 0.0732 (0.1152) 0.0723 (0.1117) 0.0727 (0.1152)
0.2 0.0725 (0.1216) 0.0724 (0.1174) 0.0723 (0.1172) 0.0711 (0.1129) 0.0676 (0.1129)
0.4 0.0597 (0.1184) 0.0597 (0.1182) 0.0594 (0.1160) 0.0583 (0.1141) 0.0560 (0.1164)

m =  16
d \ \d ,2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0190 (0.0459) 0.0198 (0.0459) 0.0220 (0.0456) 0.0298 (0.0536) 0.0586 (0.0861)
- 0 .2 0.0269 (0.0449) 0.0269 (0.0449) 0.0268 (0.0427) 0.0279 (0.0440) 0.0363 (0.0554)

0 0.0308 (0.0439) 0.0307 (0.0448) 0.0305 (0.0440) 0.0302 (0.0429) 0.0314 (0.0455)
0.2 0.0309 (0.0452) 0.0308 (0.0443) 0.0307 (0.0445) 0.0303 (0.0428) 0.0296 (0.0428)
0.4 0.0250 (0.0448) 0.0249 (0.0447) . 0.0247 (0.0441) 0.0243 (0.0434) 0.0233 (0.0441)

m  =  32
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0143 (0.0269) 0.0148 (0.0276) 0.0163 (0.0292) 0.0209 (0.0356) 0.0372 (0.0557)
- 0 .2 0.0128 (0.0227) 0.0128 (0.0227) 0.0129 (0.0230) 0.0139 (0.0251) 0.0192 (0.0326)

0 0.0125 (0.0204) 0.0125 (0.0209) 0.0124 (0.0214) 0.0124 (0.0215) 0.0132 (0.0227)
0.2 0.0138 (0.0207) 0.0137 (0.0205) 0.0136 (0.0204) 0.0134 (0.0202) 0.0129 (0.0201)
0.4 0.0148 (0.0214) 0.0148 (0.0216) 0.0147 (0.0212) 0.0144 (0.0210) 0.0139 (0.0208)

Table 6.16: MSE of the Gaussian (log-periodogram) estimates of d \ , n —256, m  =  1
/ =  0

d , \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0192 (0.0446) 0.0206 (0.0466) 0.0257 (0.0494) 0.0468 (0.0718) 0.1298 (0.1673)
- 0 .2 0.0275 (0.0454) 0.0276 (0.0442) 0.0281 (0.0444) 0.0322 (0.0500) 0.0572 (0.0817)

0 0.0312 (0.0444) 0.0312 (0.0448) 0.0312 (0.0446) 0.0319 (0.0463) 0.0348 (0.0509)
0.2 0.0306 (0.0452) 0.0306 (0.0460) 0.0305 (0.0451) 0.0303 (0.0452) 0.0297 (0.0446)
0.4 0.0229 (0.0450) 0.0228 (0.0448) 0.0227 (0.0447) 0.0224 (0.0451) 0.0214 (0.0452)

1 =  2

d x \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0404 (0.1132) 0.0410 (0.1134) 0.0428 (0.1172) 0.0490 (0.1227) 0.0732 (0.1376)
- 0 .2 0.0576 (0.1159) 0.0578 (0.1153) 0.0586 (0.1175) 0.0608 (0.1231) 0.0679 (0.1263)

0 0.0710 (0.1154) 0.0711 (0.1166) 0.0713 (0.1177) 0.0718 (0.1198) 0.0715 (0.1215)
0.2 0.0705 (0.1151) 0.0707 (0.1146) 0.0710 (0.1158) 0.0708 (0.1190) 0.0687 (0.1168)
0.4 0.0560 (0.1145) 0.0562 (0.1145) 0.0563 (0.1155) 0.0562 (0.1179) 0.0548 (0.1186)

1 =  4

d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0878 (0.2554) 0.0880 (0.2549) 0.0888 (0.2573) 0.0914 (0.2637) 0.1024 (0.2487)
- 0 .2 0.1026 (0.2517) 0.1025 (0.2517) 0.1024 (0.2538) 0.1028 (0.2586) 0.1058 (0.2577)

0 0.1143 (0.2531) 0.1141 (0.2536) 0.1137 (0.2535) 0.1131 (0.2545) 0.1109 (0.2602)
0.2 0.1068 (0.2593) 0.1066 (0.2567) 0.1063 (0.2527) 0.1055 (0.2517) 0.1031 (0.2514)
0.4 0.0916 (0.2609) 0.0916 (0.2597) 0.0915 (0.2587) 0.0910 (0.2573) 0.0897 (0.2493)

1 =  8

d x \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.2233 (1.5794) 0.2244 (1.5695) 0.2257 (1.5785) 0.2278 (1.5758) 0.2319 (1.5655)
-0 .2 0.1886 (1.6139) 0.1894 (1.6054) 0.1901 (1.5904) 0.1903 (1.6104) 0.1918 (1.6161)

0 0.1813 (1.6086) 0.1811 (1.6167) 0.1809 (1.6440) 0.1813 (1.7339) 0.1821 (1.6963)
0.2 0.1956 (1.6083) 0.1957 (1.6225) 0.1960 (1.6248) 0.1967 (1.6711) 0.1995 (1.6708)
0.4 0.2370 (1.6308) 0.2370 (1.6295) 0.2373 (1.6397) 0.2382 (1.6702) 0.2417 (1.6544)
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Table 6.17: MSE of the Gaussian (log-periodogram) estimates of d\ ,  n=256, m =  32
1 =  0

d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0098 (0.0187) 0.0104 (0.0196) 0.0124 (0.0209) 0.0210 (0.0291) 0.0596 (0.0663)
- 0 .2 0.0127 (0.0189) 0.0127 (0.0185) 0.0127 (0.0187) 0.0139 (0.0205) 0.0244 (0.0318)

0 0.0131 (0.0187) 0.0131 (0.0189) 0.0130 (0.0189) 0.0131 (0.0195) 0.0143 (0.0203)
0.2 0.0134 (0.0192) 0.0134 (0.0196) 0.0133 (0.0193) 0.0132 (0.0192) 0.0130 (0.0186)
0.4 0.0113 (0.0189) 0.0113 (0.0188) 0.0113 (0.0189) 0.0112 (0.0191) 0.0109 (0.0190)

1 =  2

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0142 (0.0330) 0.0144 (0.0328) 0.0149 (0.0333) 0.0167 (0.0357) 0.0244 (0.0423)
- 0 .2 0.0207 (0.0332) 0.0207 (0.0331) 0.0207 (0.0336) 0.0209 (0.0348) 0.0227 (0.0369)

0 0.0226 (0.0334) 0.0226 (0.0337) 0.0226 (0.0339) 0.0226 (0.0342) 0.0226 (0.0347)
0.2 0.0229 (0.0335) 0.0229 (0.0334) 0.0229 (0.0336) 0.0228 (0.0343) 0.0224 (0.0340)
0.4 0.0187 (0.0329) 0.0187 (0.0330) 0.0187 (0.0333) 0.0186 (0.0340) 0.0182 (0.0345)

1 =  4
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0217 (0.0533) 0.0217 (0.0536) 0.0219 (0.0540) 0.0228 (0.0560) 0.0265 (0.0560)
- 0 .2 0.0302 (0.0522) 0.0303 (0.0529) 0.0303 (0.0531) 0.0304 (0.0541) 0.0314 (0.0551)

0 0.0330 (0.0525) 0.0330 (0.0524) 0.0330 (0.0525) 0.0329 (0.0530) 0.0328 (0.0545)
0.2 0.0319 (0.0531) 0.0319 (0.0529) 0.0319 (0.0525) 0.0318 (0.0526) 0.0314 (0.0530)
0.4 0.0251 (0.0525) 0.0251 (0.0525) 0.0251 (0.0525) 0.0249 (0.0526) 0.0242 (0.0523)

1 =  8
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0442 (0.1275) 0.0443 (0.1275) 0.0444 (0.1277) 0.0450 (0.1272) 0.0470 (0.1302)
- 0 .2 0.0582 (0.1272) 0.0582 (0.1276) 0.0583 (0.1274) 0.0584 (0.1287) 0.0593 (0.1321)

0 0.0690 (0.1275) 0.0691 (0.1278) 0.0691 (0.1289) 0.0692 (0.1337) 0.0695 (0.1339)
0.2 0.0666 (0.1277) 0.0667 (0.1293) 0.0669 (0.1303) 0.0673 (0.1325) 0.0677 (0.1331)
0.4 0.0586 (0.1298) 0.0588 (0.1303) 0.0590 (0.1313) 0.0594 (0.1331) 0.0598 (0.1334)
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Table 6.18: MSE of the Gaussian (log-periodogram) estimates of d\ ,  n=256, m  — 64
/ =  0

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0083 (0.0131) 0.0088 (0.0136) 0.0101 (0.0151) 0.0157 (0.0207) 0.0384 (0.0405)
- 0 .2 0.0062 (0.0099) 0.0063 (0.0099) 0.0065 (0.0102) 0.0076 (0.0117) 0.0140 (0.0185)

0 0.0059 (0.0088) 0.0059 (0.0089) 0.0059 (0.0089) 0.0059 (0.0093) 0.0066 (0.0103)
0.2 0.0068 (0.0092) 0.0068 (0.0094) 0.0068 (0.0093) 0.0066 (0.0091) 0.0062 (0.0089)
0.4 0.0083 (0.0101) 0.0083 (0.0101) 0.0083 (0.0101) 0.0082 (0.0101) 0.0078 (0.0100)

1 =  2
d \  \<̂ 2 - 0 .4 - 0 .2 0 0.2 0.4
—0.4 0.0104 (0.0168) 0.0106 (0.0169) 0.0109 (0.0175) 0.0121 (0.0189) 0.0164 (0.0241)
—0.2 0.0084 (0.0133) 0.0084 (0.0135) 0.0086 (0.0137) 0.0089 (0.0142) 0.0101 (0.0159)

0 0.0081 (0.0120) 0.0081 (0.0121) 0.0082 (0.0123) 0.0082 (0.0124) 0.0083 (0.0127)
0.2 0.0097 (0.0127) 0.0097 (0.0126) 0.0097 (0.0126) 0.0096 (0.0126) 0.0093 (0.0126)
0.4 0.0124 (0.0147) 0.0124 (0.0146) 0.0123 (0.0147) 0.0123 (0.0147) 0.0119 (0.0146)

1 =  4
d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0137 (0.0227) 0.0138 (0.0229) 0.0140 (0.0233) 0.0146 (0.0241) 0.0166 (0.0260)
- 0 .2 0.0108 (0.0178) 0.0108 (0.0181) 0.0109 (0.0182) 0.0112 (0.0186) 0.0119 (0.0195)

0 0.0100 (0.0157) 0.0101 (0.0157) 0.0101 (0.0159) 0.0102 (0.0163) 0.0103 (0.0167)
0.2 0.0117 (0.0164) 0.0118 (0.0164) 0.0118 (0.0164) 0.0118 (0.0163) 0.0116 (0.0163)
0.4 0.0152 (0.0191) 0.0152 (0.0190) 0.0152 (0.0191) 0.0152 (0.0190) 0.0149 (0.0187)

/ =  8
d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0216 (0.0371) 0.0216 (0.0371) 0.0217 (0.0374) 0.0220 (0.0373) 0.0231 (0.0381)
- 0 .2 0.0174 (0.0300) 0.0175 (0.0301) 0.0175 (0.0299) 0.0177 (0.0301) 0.0182 (0.0307)

0 0.0166 (0.0266) 0.0166 (0.0266) 0.0167 (0.0270) 0.0167 (0.0277) 0.0168 (0.0278)
0.2 0.0195 (0.0279) 0.0196 (0.0279) 0.0196 (0.0281) 0.0196 (0.0283) 0.0195 (0.0282)
0.4 0.0252 (0.0332) 0.0252 (0.0329) 0.0252 (0.0332) 0.0252 (0.0332) 0.0250 (0.0331)
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Table 6.19: MSE of the Gaussian (log-periodogram) estimates of d\ ,  n=512, m  =  32
/ =  0

dx\d2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0089 (0.0188) 0.0098 (0.0190) 0.0143 (0.0238) 0.0394 (0.0486) 0.1414 (0.1534)
- 0 .2 0.0117 (0.0180) 0.0117 (0.0181) 0.0118 (0.0184) 0.0154 (0.0233) 0.0490 (0.0607)

0 0.0122 (0.0176) 0.0122 (0.0178) 0.0120 (0.0180) 0.0118 (0.0181) 0.0174 (0.0251)
0.2 0.0122 (0.0177) 0.0122 (0.0176) 0.0121 (0.0177) 0.0118 (0.0180) 0.0117 (0.0184)
0.4 0.0098 (0.0176) 0.0098 (0.0178) 0.0097 (0.0180) 0.0096 (0.0182) 0.0089 (0.0186)

/ =  4
di\d2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0233 (0.0548) 0.0236 (0.0551) 0.0246 (0.0565) 0.0279 (0.0594) 0.0441 (0.0720)
- 0 .2 0.0327 (0.0538) 0.0327 (0.0540) 0.0329 (0.0547) 0.0337 (0.0539) 0.0382 (0.0578)

0 0.0368 (0.0541) 0.0368 (0.0539) 0.0368 (0.0541) 0.0368 (0.0541) 0.0374 (0.0536)
0.2 0.0348 (0.0548) 0.0348 (0.0548) 0.0347 (0.0548) 0.0345 (0.0545) 0.0339 (0.0532)
0.4 0.0235 (0.0561) 0.0234 (0.0561) 0.0234 (0.0561) 0.0232 (0.0558) 0.0225 (0.0540)

/ =  8
d\\d2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0480 (0.1277) 0.0481 (0.1277) 0.0485 (0.1308) 0.0499 (0.1274) 0.0568 (0 .1286)
- 0 .2 0.0641 (0.1273) 0.0642 (0.1287) 0.0644 (0.1299) 0.0646 (0.1297) 0.066.1 (0 .1268)

0 0.0721 (0.1287) 0.0722 (0.1297) 0.0722 (0.1309) 0.0723 (0.1301) 0.0721 (0 1285)
0.2 0.0637 (0.1295) 0.0636 (0.1305) 0.0637 (0.1310) 0.0637 (0.1309) 0.06.16 (0  1.128)
0.4 0.0475 (0.1315) 0.0475 (0.1317) 0.0475 (0.1319) 0.0476 (0.1319) 0.0476 (0 | 127)

I =  16
d i \ d 2 -0 .4 - 0 .2 0 0.2 u  4

- 0 .4 0.1593 (0.7312) 0.1598 (0.7311) 0.1606 (0.7330) 0.1623 (0.7347) 0 1 #.*.>» i n  7 1 *•»|
- 0 .2 0.1535 (0.7236) 0.1537 (0.7246) 0.1541 (0.7301) 0.1550 (0.7309) 0 r .7 | M l  7 | |M

0 0.1556 (0.7209) 0.1557 (0.7240) 0.1561 (0.7319) 0.1570 (0.7333) 01'.**'. in  7 1 7 7 1
0.2 0.1603 (0.7242) 0.1604 (0.7281) 0.1605 (0.7352) 0.1604 (0.7402) 0.161)1 ( I I  72'H.)
0.4 0.1721 (0.7365) 0.1720 (0.7382) 0.1718 (0.7411) 0.1716 (0.7451) 0.171.1 (0 7451)
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Table 6.20: MSE of the Gaussian (log-periodogram) estimates of d\ ,  n=512, to =  64
/ =  0

- 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0046 (0.0087) 0.0050 (0.0090) 0.0070 (0.0109) 0.0189 (0.0206) 0.0721 (0.0631)
- 0 .2 0.0051 (0.0081) 0.0051 (0.0082) 0.0051 (0.0083) 0.0067 (0.0101) 0.0228 (0.0246)

0 0.0052 (0.0079) 0.0052 (0.0079) 0.0051 (0.0080) 0.0050 (0.0080) 0.0074 (0.0104)
0.2 0.0053 (0.0079) 0.0053 (0.0079) 0.0053 (0.0079) 0.0052 (0.0080) 0.0050 (0.0080)
0.4 0.0051 (0.0079) 0.0051 (0.0079) 0.0051 (0.0080) 0.0050 (0.0081) 0.0048 (0.0082)

1 =  4
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0081 (0.0151) 0.0082 (0.0150) 0.0084 (0.0152) 0.0093 (0.0162) 0.0142 (0.0216)
- 0 .2 0.0095 (0.0145) 0.0095 (0.0145) 0.0095 (0.0145) 0.0096 (0.0142) 0.0108 (0.0162)

0 0.0095 (0.0144) 0.0095 (0.0143) 0.0095 (0.0142) 0.0095 (0.0142) 0.0098 (0.0146)
0.2 0.0096 (0.0144) 0.0096 (0.0144) 0.0096 (0.0144) 0.0096 (0.0145) 0.0097 (0.0147)
0.4 0.0084 (0.0147) 0.0084 (0.0147) 0.0084 (0.0148) 0.0084 (0.0149) 0.0083 (0.0150)

1 =  8
- 0 .4 - 0 .2 0 0.2 0.4

- 0 .4 0.0120 (0.0254) 0.0120 (0.0252) 0.0121 (0.0252) 0.0124 (0.0250) 0.0141 (0.0274)
- 0 .2 0.0157 (0.0248) 0.0157 (0.0248) 0.0157 (0.0246) 0.0157 (0.0244) 0.0161 (0.0257)

0 0.0162 (0.0248) 0.0162 (0.0247) 0.0162 (0.0246) 0.0163 (0.0245) 0.0164 (0.0251)
0.2 0.0165 (0.0249) 0.0165 (0.0249) 0.0165 (0.0249) 0.0166 (0.0250) 0.0167 (0.0258)
0.4 0.0140 (0.0256) 0.0140 (0.0256) 0.0141 (0.0257) 0.0141 (0.0257) 0.0142 (0.0261)

/ =  16
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0229 (0.0568) 0.0229 (0.0570) 0.0230 (0.0569) 0.0232 (0.0564) 0.0239 (0.0564)
- 0 .2 0.0326 (0.0563) 0.0326 (0.0564) 0.0326 (0.0565) 0.0326 (0.0559) 0.0327 (0.0556)

0 0.0373 (0.0563) 0.0373 (0.0564) 0.0372 (0.0565) 0.0371 (0.0565) 0.0369 (0.0559)
0.2 0.0371 (0.0571) 0.0371 (0.0571) 0.0371 (0.0573) 0.0371 (0.0575) 0.0370 (0.0574)
0.4 0.0319 (0.0588) 0.0319 (0.0589) 0.0318 (0.0590) 0.0317 (0.0592) 0.0316 (0.0596)
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Table 6.21: MSE of the Gaussian (log-periodogram) estimates of d\ ,  n=512, m  =  128
1 =  0

d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0046 (0.0067) 0.0050 (0.0072) 0.0066 (0.0091) 0.0143 (0.0154) 0.0464 (0.0369)
- 0 .2 0.0027 (0.0044) 0.0028 (0.0045) 0.0029 (0.0048) 0.0042 (0.0064) 0.0133 (0.0139)

0 0.0024 (0.0037) 0.0024 (0.0038) 0.0024 (0.0038) 0.0023 (0.0040) 0.0034 (0.0053)
0.2 0.0031 (0.0041) 0.0031 (0.0041) 0.0031 (0.0042) 0.0030 (0.0042) 0.0027 (0.0041)
0.4 0.0046 (0.0053) 0.0046 (0.0053) 0.0045 (0.0053) 0.0045 (0.0053) 0.0043 (0.0053)

/ =  4
d , \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0067 (0.0101) 0.0068 (0.0101) 0.0070 (0.0103) 0.0076 (0.0111) 0.0106 (0.0145)
- 0 .2 0.0041 (0.0069) 0.0041 (0.0068) 0.0042 (0.0068) 0.0043 (0.0070) 0.0052 (0.0080)

0 0.0034 (0.0056) 0.0034 (0.0055) 0.0035 (0.0056) 0.0035 (0.0056) 0.0035 (0.0058)
0.2 0.0045 (0.0061) 0.0045 (0.0061) 0.0045 (0.0061) 0.0045 (0.0061) 0.0043 (0.0061)
0.4 0.0071 (0.0083) 0.0071 (0.0083) 0.0071 (0.0084) 0.0070 (0.0083) 0.0069 (0.0081)

1 =  8
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0088 (0.0134) 0.0089 (0.0134) 0.0089 (0.0134) 0.0092 (0.0136) 0.0103 (0.0149)
- 0 .2 0.0056 (0.0094) 0.0056 (0.0093) 0.0056 (0.0093) 0.0057 (0.0093) 0.0061 (0.0099)

0 0.0048 (0.0079) 0.0048 (0.0079) 0.0048 (0.0079) 0.0048 (0.0078) 0.0049 (0.0079)
0.2 0.0064 (0.0088) 0.0064 (0.0088) 0.0064 (0.0088) 0.0064 (0.0088) 0.0063 (0.0088)
0.4 0.0102 (0.0121) 0.0102 (0.0121) 0.0102 (0.0121) 0.0102 (0.0120) 0.0101 (0.0120)

/ =  16
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.0141 (0.0214) 0.0141 (0.0215) 0.0142 (0.0215) 0.0143 (0.0214) 0.0147 (0.0218)
- 0 .2 0.0093 (0.0152) 0.0093 (0.0152) 0.0093 (0.0152) 0.0094 (0.0151) 0.0095 (0.0153)

0 0.0082 (0.0128) 0.0082 (0.0129) 0.0082 (0.0129) 0.0082 (0.0130) 0.0082 (0.0130)
0.2 0.0110 (0.0145) 0.0110 (0.0146) 0.0110 (0.0147) 0.0110 (0.0147) 0.0109 (0.0147)
0.4 0.0174 (0.0202) 0.0174 (0.0202) 0.0174 (0.0203) 0.0173 (0.0202) 0.0172 (0.0201)
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6 .4 .3  E ffic ien cy

Table 6.22: eff of the untrimmed Gaussian/log-periodogram estimates of dj, n=64
m = 4

d\\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.3513 0.3475 0.3519 0.3217 0.3060
-0.2 0.3568 0.3554 0.3528 0.3562 0.3218

0 0.3815 0.3913 0.3943 0.4029 0.3878
0.2 0.4083 0.4129 0.4163 0.4203 0.4004
0.4 0.4345 0.4368 0.4369 0.4280 0.4148

m =  8
d i\d3 -0 .4 -0.2 0 0.2 0.4
-0.4 0.4089 0.3940 0.3832 0.3466 0.3170
-0.2 0.5279 0.5188 0.5008 0.4839 0.4491

0 0.6145 0.6244 0.6142 0.6173 0.6019
0.2 0.6185 0.6181 0.6294 0.6336 0.6095
0.4 0.5316 0.5304 0.5272 0.5177 0.5089
Sz m = 16

di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.4787 0.4599 0.4425 0.3904 0.3225
-0.2 0.5776 0.5638 0.5515 0.5175 0.4461

0 0.6526 0.6414 0.6321 0.6370 0.5871
0.2 0.6664 0.6500 0.6566 0.6722 0.6517
0.4 0.6363 0.6416 0.6304 0.6222 0.5999
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Table 6.23: eff of the Gaussian/log-periodogram estimates of d\ ,  n=128, m =  8
/ =  0

d\\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.3724 0.3978 0.4482 0.5206 0.6689
-0.2 0.5012 0.5040 0.5446 0.5702 0.6384

0 0.6365 0.6294 0.6356 0.6476 0.6311
0.2 0.5960 0.6167 0.6168 0.6295 0.5987
0.4 0.5037 0.5050 0.5119 0.5112 0.4812

/ =  1
di\d2 -0.4 -0 .2 0 0.2 0.4
-0.4 0.3330 0.3447 0.3526 0.3816 0.4337
-0.2 0.3694 0.3780 0.3748 0.3922 0.3882

0 0.4273 0.4277 0.4240 0.4148 0.4149
0.2 0.4401 0.4356 0.4322 0.4351 0.4159
0.4 0.4161 0.4148 0.4184 0.4241 0.4329

/ = 2
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.2538 0.2507 0.2497 0.2614 0.2715
-0.2 0.2410 0.2426 0.2365 0.2435 0.2498

0 0.2516 0.2540 0.2559 0.2572 0.2548
0.2 0.2733 0.2730 0.2731 0.2756 0.2756
0.4 0.2979 0.2954 0.2925 0.3067 0.3145

I — A
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.0802 0.0816 0.0826 0.0819 0.0856
-0.2 0.0637 0.0629 0.0631 0.0656 0.0665

0 0.0594 0.0591 0.0589 0.0595 0.0620
0.2 0.0657 0.0655 0.0661 0.0669 0.0705
0.4 0.0866 0.0861 0.0873 0.0903 0.0925

194



Table 6.24: eff of the Gaussian/log-periodogram estimates of d\ ,  n=128, m  =  16
/ = 0

di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.4142 0.4304 0.4825 0.5560 0.6800
-0.2 0.5997 0.5988 0.6270 0.6342 0.6556

0 0.7022 0.6843 0.6931 0.7043 0.6902
0.2 0.6836 0.6958 0.6892 0.7072 0.6921
0.4 0.5574 0.5573 0.5606 0.5598 0.5289

/=  1
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.3871 0.3994 0.4047 0.4410 0.5128
-0.2 0.5427 0.5504 0.5381 0.5550 0.5684

0 0.6575 0.6525 0.6422 0.6274 0.6388
0.2 0.6346 0.6256 0.6169 0.6085 0.5930
0.4 0.5076 0.5010 0.4944 0.4941 0.5003

/ = 2
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.3837 0.3817 0.3785 0.3934 0.4284
-0.2 0.4895 0.4879 0.4800 0.4812 0.5139

0 0.5557 0.5501 0.5465 0.5423 0.5620
0.2 0.5385 0.5373 0.5365 0.5331 0.5405
0.4 0.4665 0.4638 0.4584 0.4707 0.4772

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.3654 0.3674 0.3728 0.3756 0.3920
-0.2 0.3925 0.3892 0.4022 0.4078 0.4107

0 0.4345 0.4320 0.4347 0.4279 0.4365
0.2 0.4419 0.4427 0.4435 0.4361 0.4424
0.4 0.4404 0.4399 0.4377 0.4423 0.4447
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Table 6.25: eff of the Gaussian/log-periodogram estimates of n=128, m  =  32
1 = 0

d\\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.5324 0.5377 0.5587 0.5871 0.6675
-0.2 0.5642 0.5636 0.5628 0.5552 0.5892

0 0.6125 0.5965 0.5808 0.5796 0.5818
0.2 0.6663 0.6714 0.6701 0.6656 0.6438
0.4 0.6904 0.6855 0.6936 0.6882 0.6662

/=  1
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.5185 0.5297 0.5348 0.5534 0.5910
-0.2 0.5835 0.5924 0.5884 0.5889 0.5873

0 0.6439 0.6389 0.6283 0.6023 0.6012
0.2 0.6845 0.6790 0.6671 0.6603 0.6444
0.4 0.6950 0.6963 0.6968 0.6910 0.6954

1 = 2
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.5234 0.5244 0.5224 0.5251 0.5451
-0.2 0.5734 0.5762 0.5755 0.5639 0.5673

0 0.6209 0.6168 0.6102 0.5908 0.5902
0.2 0.6502 0.6513 0.6471 0.6396 0.6381
0.4 0.6630 0.6671 0.6694 0.6769 0.6741

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.5122 0.5141 0.5187 0.5162 0.5236
-0.2 0.5452 0.5455 0.5561 0.5552 0.5447

0 0.6104 0.6070 0.6051 0.5875 0.5879
0.2 0.6287 0.6271 0.6245 0.6190 0.6292
0.4 0.6446 0.6513 0.6573 0.6637 0.6667
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Table 6.26: eff of the Gaussian/log-periodogram estimates of d\ ,  n=256, m  =  16
/ = 0

d\\d2 -0.4 -0 .2 0 0.2 0.4
-0.4 0.4296 0.4417 0.5198 0.6519 0.7761
-0.2 0.6063 0.6248 0.6318 0.6432 0.7001

0 0.7042 0.6971 0.7007 0.6881 0.6826
0.2 0.6766 0.6639 0.6751 0.6713 0.6657
0.4 0.5083 0.5097 0.5082 0.4975 0.4737

1 = 2
di\d2 -0 .4 -0 .2 0 0.2 0.4
-0.4 0.3572 0.3613 0.3654 0.3993 0.5321
-0.2 0.4968 0.5017 0.4989 0.4941 0.5379

0 0.6152 0.6099 0.6056 0.5991 0.5883
0.2 0.6121 0.6173 0.6132 0.5954 0.5881
0.4 0.4888 0.4906 0.4877 0.4766 0.4621

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.3439 0.3453 0.3451 0.3466 0.4116
-0.2 0.4076 0.4071 0.4035 0.3977 0.4105

0 0.4515 0.4498 0.4486 0.4444 0.4262
0.2 0.4118 0.4155 0.4208 0.4190 0.4101
0.4 0.3511 0.3528 0.3536 0.3539 0.3599

/ = 8
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.1414 0.1430 0.1430 0.1446 0.1481
-0.2 0.1168 0.1180 0.1195 0.1182 0.1187

0 0.1127 0.1120 0.1100 0.1046 0.1074
0.2 0.1216 0.1206 0.1206 0.1177 0.1194
0.4 0.1453 0.1454 0.1447 0.1426 0.1461
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Table 6.27: eff of the Gaussian/log-periodogram estimates of n=256, m  =  32
1 = 0

di\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.5257 0.5306 0.5949 0.7223 0.8991
—0.2 0.6733 0.6857 0.6783 0.6783 0.7686

0 0.7015 0.6914 0.6913 0.6706 0.7015
0.2 0.6979 0.6810 0.6895 0.6888 0.7002
0.4 0.6012 0.6015 0.5982 0.5850 0.5712

1 = 2
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.4316 0.4393 0.4483 0.4688 0.5774
-0.2 0.6220 0.6236 0.6142 0.5998 0.6153

0 0.6761 0.6707 0.6665 0.6607 0.6512
0.2 0.6831 0.6857 0.6814 0.6647 0.6603
0.4 0.5699 0.5686 0.5615 0.5466 0.5260

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.4069 0.4050 0.4063 0.4075 0.4727
-0.2 0.5794 0.5725 0.5703 0.5624 0.5705

0 0.6288 0.6301 0.6289 0.6212 0.6023
0.2 0.6013 0.6038 0.6076 0.6038 0.5915
0.4 0.4785 0.4789 0.4773 0.4729 0.4635

1 = 8
d\\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.3466 0.3472 0.3480 0.3534 0.3610
—0.2 0.4579 0.4563 0.4574 0.4542 0.4491

0 0.5413 0.5403 0.5362 0.5173 0.5188
0.2 0.5217 0.5161 0.5136 0.5081 0.5085
0.4 0.4514 0.4511 0.4496 0.4463 0.4484
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Table 6.28: eff of the Gaussian/log-periodogram estimates of rfi, n=256, m  =  64
/ = 0

d\\d2 -0.4 -0 .2 0 0.2 0.4
-0 .4 0.6369 0.6416 0.6687 0.7577 0.9465
-0.2 0.6292 0.6394 0.6376 0.6499 0.7600

0 0.6738 0.6652 0.6613 0.6375 0.6457
0.2 0.7431 0.7248 0.7309 0.7245 0.6975
0.4 0.8258 0.8269 0.8205 0.8062 0.7790

1 = 2
d\\d2 -0.4 -0 .2 0 0.2 0.4
-0.4 0.6219 0.6264 0.6257 0.6380 0.6780
-0.2 0.6303 0.6265 0.6258 0.6228 0.6369

0 0.6773 0.6721 0.6658 0.6588 0.6505
0.2 0.7585 0.7646 0.7644 0.7596 0.7421
0.4 0.8423 0.8466 0.8415 0.8361 0.8190

1 = 4
di\d2 -0.4 -0 .2 0 0.2 0.4
-0.4 0.6048 0.6041 0.6025 0.6076 0.6381
-0.2 0.6024 0.5962 0.5998 0.6007 0.6082

0 0.6367 0.6396 0.6363 0.6261 0.6133
0.2 0.7151 0.7186 0.7210 0.7212 0.7109
0.4 0.7945 0.8003 0.7964 0.7996 0.7942

1 = 8
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.5811 0.5828 0.5812 0.5905 0.6044
-0.2 0.5813 0.5798 0.5873 0.5891 0.5922

0 0.6219 0.6229 0.6180 0.6037 0.6043
0.2 0.7015 0.7010 0.6976 0.6916 0.6907
0.4 0.7595 0.7659 0.7616 0.7598 0.7564
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Table 6.29: eff of the Gaussian/log-periodogram estimates of di ,  n=512
m = 32

di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.4738 0.5150 0.5992 0.8120 0.9218
-0.2 0.6504 0.6440 0.6397 0.6630 0.8069

0 0.6913 0.6858 0.6699 0.6524 0.6942
0.2 0.6879 0.6908 0.6839 0.6559 0.6351
0.4 0.5560 0.5515 0.5412 0.5264 0.4805

m = 64
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.5304 0.5581 0.6414 0.9174 1.1420
-0.2 0.6307 0.6212 0.6128 0.6638 0.9262

0 0.6577 0.6508 0.6349 0.6239 0.7075
0.2 0.6708 0.6731 0.6678 0.6430 0.6257
0.4 0.6458 0.6410 0.6334 0.6222 0.5891

m =  128
di\di -0.4 -0.2 0 0.2 0.4
-0.4 0.6886 0.6938 0.7257 0.9262 1.2571
-0.2 0.6166 0.6139 0.6073 0.6623 0.9566

0 0.6427 0.6347 0.6160 0.5822 0.6513
0.2 0.7533 0.7527 0.7427 0.7099 0.6473
0.4 0.8603 0.8579 0.8518 0.8436 0.8084
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6.4.4 Wald tests  of the sym m etry of the spectrum

Table 6.30: Power and size of the Gaussian (log-periodogram) Wald test, n= 64
m  =  4

d i \d ,2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.159 (0.286) 0.194 (0.298) 0.234 (0.323) 0.289 (0.356) 0.313 (0.382)
- 0 .2 0.166 (0.301) 0.183 (0.292) 0.227 (0.302) 0.260 (0.324) 0.279 (0.369)

0 0.236 (0.332) 0.237 (0.298) 0.232 (0.290) 0.236 (0.302) 0.241 (0.340)
0.2 0.286 (0.369) 0.274 (0.332) 0.252 (0.302) 0.223 (0.281) 0.191 (0.296)
0.4 0.327 (0.400) 0.298 (0.372) 0.267 (0.345) 0.223 (0.315) 0.181 (0.284)

m  =  8
d \  \d,2 - 0 .4 - 0 .2 0 0.2 0.4
—0.4 0.091 (0.184) 0.153 (0.217) 0.292 (0.302) 0.460 (0.409) 0.598 (0.500)
—0.2 0.163 (0.215) 0.167 (0.192) 0.242 (0.233) 0.357 (0.314) 0.468 (0.412)

0 0.303 (0.298) 0.240 (0.229) 0.221 (0.209) 0.267 (0.240) 0.320 (0.317)
0.2 0.465 (0.398) 0.353 (0.297) 0.252 (0.226) 0.201 (0.198) 0.206 (0.243)
0.4 0.600 (0.501) 0.467 (0.396) 0.334 (0.298) 0.214 (0.219) 0.146 (0.199)

m =  16
d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.082 (0.166) 0.210 (0.223) 0.427 (0.338) 0.686 (0.511) 0.853 (0.691)
- 0 .2 0.194 (0.211) 0.146 (0.172) 0.252 (0.234) 0.459 (0.353) 0.688 (0.527)

0 0.413 (0.329) 0.234 (0.207) 0.166 (0.183) 0.261 (0.230) 0.440 (0.357)
0.2 0.672 (0.520) 0.453 (0.346) 0.248 (0.203) 0.169 (0.170) 0.228 (0.220)
0.4 0.848 (0.680) 0.680 (0.519) 0.437 (0.342) 0.228 (0.210) 0.116 (0.173)

Table 6.3 Power and size of the Gaussian (log-periodogram) Wald test, n=128
m =  8

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.089 (0.184) 0.159 (0.215) 0.303 (0.271) 0.442 (0.366) 0.470 (0.402)
- 0 .2 0.160 (0.209) 0.164 (0.188) 0.241 (0.196) 0.341 (0.269) 0.388 (0.363)

0 0.276 (0.282) 0.230 (0.224) 0.193 (0.187) 0.236 (0.201) 0.280 (0.279)
0.2 0.432 (0.352) 0.347 (0.295) 0.252 (0.217) 0.186 (0.164) 0.178 (0.200)
0.4 0.477 (0.408) 0.396 (0.359) 0.298 (0.301) 0.179 (0.217) 0.120 (0.176)

m =  16
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.058 (0.135) 0.177 (0.179) 0.445 (0.329) 0.700 (0.536) 0.846 (0.685)
- 0 .2 0.201 (0.200) 0.127 (0.141) 0.248 (0.178) 0.484 (0.343) 0.690 (0.532)

0 0.498 (0.355) 0.276 (0.205) 0.148 (0.142) 0.249 (0.173) 0.457 (0.358)
0.2 0.735 (0.570) 0.525 (0.373) 0.273 (0.214) 0.139 (0.124) 0.212 (0.184)
0.4 0.862 (0.704) 0.732 (0.580) 0.493 (0.385) 0.213 (0.224) 0.083 (0.125)

m =  32
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
-0 .4 0.076 (0.107) 0.309 (0.224) 0.680 (0.502) 0.927 (0.774) 0.987 (0.924)
-0 .2 0.291 (0.213) 0.107 (0.109) 0.310 (0.237) 0.693 (0.512) 0.933 (0.773)

0 0.672 (0.513) 0.311 (0.234) 0.115 (0.108) 0.331 (0.234) 0.698 (0.525)
0.2 0.923 (0.773) 0.687 (0.520) 0.308 (0.226) 0.111 (0.104) 0.328 (0.247)
0.4 0.984 (0.910) 0.926 (0.770) 0.675 (0.513) 0.294 (0.223) 0.081 (0.101)

201



Table 6.32: Power and size of the Gaussian (log-periodogram) Wald test, n = 256
m  =  16

d \ \d .2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.080 (0.128) 0.180 (0.197) 0.439 (0.343) 0.646 (0.501) 0.673 (0.510)
- 0 .2 0.189 (0.185) 0.141 (0.138) 0.247 (0.195) 0.485 (0.346) 0.616 (0.465)

0 0.447 (0.316) 0.254 (0.192) 0.156 (0.127) 0.261 (0.177) 0.453 (0.347)
0.2 0.661 (0.494) 0.483 (0.349) 0.259 (0.192) 0.142 (0.131) 0.208 (0.182)
0.4 0.693 (0.543) 0.610 (0.467) 0.446 (0.346) 0.207 (0.191) 0.077 (0.129)

m  =  32
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.067 (0.099) 0.288 (0.232) 0.716 (0.548) 0.935 (0.804) 0.974 (0.894)
- 0 .2 0.337 (0.223) 0.133 (0.103) 0.320 (0.245) 0.737 (0.561) 0.929 (0.795)

0 0.739 (0.576) 0.360 (0.245) 0.134 (0.112) 0.328 (0.247) 0.739 (0.563)
0.2 0.930 (0.812) 0.756 (0.587) 0.365 (0.259) 0.134 (0.112) 0.313 (0.240)
0.4 0.977 (0.906) 0.929 (0.807) 0.752 (0.570) 0.351 (0.241) 0.087 (0.105)

m  =  64
d \ \d .2 - 0 .4 - 0 .2 0 0.2 0.4
-0 .4 0.085 (0.099) 0.460 (0.346) 0.924 (0.788) 0.996 (0.970) 1.000 (0.998)
-0 .2 0.468 (0.322) 0.104 (0.097) 0.468 (0.365) 0.928 (0.800) 0.997 (0.969)

0 0.923 (0.771) 0.496 (0.343) 0.097 (0.094) 0.482 (0.371) 0.930 (0.801)
0.2 0.996 (0.964) 0.928 (0.787) 0.496 (0.352) 0.095 (0.091) 0.485 (0.373)
0.4 1.000 (0.994) 0.996 (0.955) 0.925 (0.785) 0.475 (0.336) 0.087 (0.093)

Table 6.33: Power and size of the Gaussian (log-periodogram) Wald test, n= 512
m =  32

d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.057 (0.098) 0.304 (0.232) 0.706 (0.537) 0.874 (0.733) 0.877 (0.738)
- 0 .2 0.296 (0.217) 0.116 (0.101) 0.341 (0.232) 0.728 (0.536) 0.843 (0.681)

0 0.702 (0.514) 0.337 (0.224) 0.114 (0.089) 0.342 (0.228) 0.698 (0.502)
0.2 0.875 (0.717) 0.699 (0.519) 0.335 (0.240) 0.103 (0.087) 0.313 (0.232)
0.4 0.866 (0.730) 0.847 (0.686) 0.673 (0.511) 0.313 (0.235) 0.065 (0.095)

m =  64
d \ \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.052 (0.068) 0.501 (0.365) 0.952 (0.847) 0.997 (0.978) 1.000 (0.993)
-0 .2 0.534 (0.372) 0.085 (0.070) 0.523 (0.375) 0.953 (0.853) 0.998 (0.970)

0 0.949 (0.837) 0.565 (0.382) 0.085 (0.074) 0.526 (0.366) 0.948 (0.838)
0.2 0.995 (0.980) 0.954 (0.842) 0.574 (0.382) 0.084 (0.069) 0.514 (0.361)
0.4 0.997 (0.995) 0.995 (0.979) 0.959 (0.847) 0.555 (0.377) 0.068 (0.071)

m  =  128
d i \ d 2 - 0 .4 - 0 .2 0 0.2 0.4
- 0 .4 0.068 (0.070) 0.742 (0.565) 0.999 (0.974) 1.000 (1.000) 1.000 (1.000)
- 0 .2 0.736 (0.544) 0.074 (0.069) 0.756 (0.578) 0.999 (0.979) 1.000 (1.000)

0 0.996 (0.974) 0.753 (0.546) 0.073 (0.067) 0.762 (0.584) 0.998 (0.975)
0.2 1.000 (1.000) 0.997 (0.976) 0.757 (0.557) 0.068 (0.067) 0.758 (0.581)
0.4 1.000 (1.000) 1.000 (1.000) 0.997 (0.973) 0.756 (0.569) 0.064 (0.066)
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6.4.5 LM tests of the sym m etry  of th e  spectrum

Table 6.34: Power and size of the LMz test, n =  128, m =  8
/ = 0

d\\d.2 -0.4 -0.2 0 0.2 0.4
-0.4 0.001 0.001 0.002 0.008 0.014
-0.2 0.000 0.000 0.000 0.000 0.007

0 0.002 0.000 0.000 0.000 0.002
0.2 0.010 0.005 0.003 0.001 0.002
0.4 0.025 0.013 0.009 0.005 0.004

/ = 1
d\\d2 -0 .4 -0 .2 0 0.2 0.4
-0.4 0.027 0.021 0.020 0.033 0.052
-0.2 0.069 0.055 0.037 0.043 0.045

0 0.140 0.106 0.081 0.065 0.058
0.2 0.212 0.169 0.133 0.099 0.081
0.4 0.266 0.216 0.173 0.139 0.103

1 = 2
d\\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.038 0.028 0.035 0.057 0.091
—0.2 0.085 0.071 0.061 0.064 0.085

0 0.183 0.154 0.118 0.098 0.097
0.2 0.267 0.235 0.192 0.147 0.121
0.4 0.335 0.298 0.243 0.204 0.165

1 = 4
di\d3 -0.4 -0.2 0 0.2 0.4
-0.4 0.060 0.071 0.082 0.100 0.178
-0.2 0.118 0.111 0.114 0.132 0.178

0 0.213 0.198 0.191 0.191 0.205
0.2 0.313 0.297 0.279 0.260 0.252
0.4 0.399 0.379 0.360 0.332 0.302
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Table 6.35: Power and size of the LM$  test, n =  128, m — 16
/ = 0

d\\d2 -0 .4 -0 .2 0 0.2 0.4
-0.4 0.007 0.015 0.086 0.236 0.422
-0.2 0.011 0.004 0.016 0.090 0.233

0 0.068 0.012 0.005 0.016 0.094
0.2 0.202 0.074 0.013 0.005 0.020
0.4 0.384 0.207 0.082 0.021 0.008

/ = 1
rfl\*2 -0 .4 -0 .2 0 0.2 0.4
-0.4 0.057 0.050 0.090 0.197 0.328
-0.2 0.125 0.073 0.054 0.088 0.193

0 0.247 0.138 0.076 0.053 0.108
0.2 0.374 0.253 0.145 0.083 0.053
0.4 0.499 0.385 0.258 0.157 0.091

1 = 2
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.072 0.080 0.120 0.213 0.318
-0.2 0.160 0.102 0.094 0.131 0.216

0 0.291 0.181 0.113 0.086 0.121
0.2 0.438 0.317 0.185 0.113 0.087
0.4 0.571 0.449 0.339 0.207 0.123

1 = 4
d\\d2 -0.4 -0 .2 0 0.2 0.4
—0.4 0.130 0.157 0.208 0.284 0.354
—0.2 0.221 0.189 0.203 0.224 0.275

0 0.358 0.277 0.221 0.205 0.204
0.2 0.482 0.374 0.287 0.217 0.168
0.4 0.603 0.508 0.393 0.305 0.220
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Table 6.36: Power and size of the L M 3  test, n — 128, m  =  32
1 = 0

d\\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.009 0.083 0.362 0.719 0.935
-0.2 0.064 0.011 0.103 0.401 0.751

0 0.327 0.081 0.013 0.116 0.433
0.2 0.663 0.357 0.093 0.017 0.125
0.4 0.882 0.684 0.380 0.115 0.023

1=1
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.043 0.071 0.333 0.648 0.862
-0.2 0.158 0.049 0.092 0.366 0.658

0 0.368 0.175 0.056 0.111 0.358
0.2 0.666 0.415 0.201 0.077 0.122
0.4 0.853 0.705 0.443 0.247 0.100

/ = 2
di\d7 -0 .4 -0.2 0 0.2 0.4
-0.4 0.063 0.107 0.342 0.635 0.808
-0.2 0.185 0.071 0.129 0.343 0.612

0 0.404 0.215 0.092 0.133 0.335
0.2 0.658 0.462 0.249 0.106 0.134
0.4 0.840 0.695 0.525 0.313 0.137

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.115 0.188 0.377 0.594 0.731
-0.2 0.230 0.149 0.187 0.362 0.550

0 0.437 0.266 0.183 0.183 0.330
0.2 0.670 0.501 0.326 0.219 0.189
0.4 0.827 0.730 0.586 0.396 0.259
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Table 6.37: Power and size of the L M 3  test, n =  256, m  =  16
/ = 0

di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.004 0.019 0.075 0.197 0.304
-0.2 0.022 0.006 0.017 0.073 0.186

0 0.078 0.024 0.004 0.016 0.073
0.2 0.204 0.088 0.022 0.002 0.015
0.4 0.306 0.194 0.089 0.026 0.005

1 = 2
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.079 0.064 0.103 0.177 0.240
-0.2 0.190 0.120 0.091 0.110 0.177

0 0.324 0.221 0.121 0.090 0.101
0.2 0.432 0.329 0.225 0.131 0.079
0.4 0.540 0.438 0.332 0.220 0.134

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.119 0.143 0.216 0.303 0.377
-0.2 0.257 0.210 0.216 0.258 0.291

0 0.399 0.308 0.240 0.227 0.232
0.2 0.508 0.419 0.318 0.244 0.195
0.4 0.590 0.511 0.426 0.332 0.235

1 = 8
di\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.321 0.368 0.425 0.522 0.607
—0.2 0.438 0.428 0.456 0.492 0.550

0 0.503 0.475 0.452 0.450 0.452
0.2 0.538 0.498 0.458 0.410 0.383
0.4 0.565 0.527 0.476 0.427 0.374
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Table 6.38: Power and size of the L M z  test, n =  256, m  =  32
1 = 0

di\d2 -0 .4 -0.2 0 0.2 0.4
-0.4 0.014 0.098 0.427 0.766 0.917
-0.2 0.081 0.013 0.106 0.439 0.762

0 0.423 0.088 0.012 0.112 0.441
0.2 0.781 0.438 0.093 0.014 0.119
0.4 0.909 0.777 0.436 0.091 0.017

/ = 2
d\ \<̂ 2 -0 .4 -0.2 0 0.2 0.4
—0.4 0.093 0.120 0.364 0.657 0.759
—0.2 0.256 0.096 0.127 0.371 0.633

0 0.495 0.265 0.096 0.139 0.363
0.2 0.728 0.504 0.279 0.112 0.137
0.4 0.894 0.744 0.526 0.283 0.118

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.150 0.180 0.372 0.584 0.686
-0.2 0.310 0.171 0.205 0.367 0.565

0 0.540 0.325 0.169 0.205 0.356
0.2 0.732 0.552 0.338 0.173 0.190
0.4 0.863 0.748 0.572 0.361 0.189

/ = 8
d\ \^2 -0.4 -0.2 0 0.2 0.4
—0.4 0.245 0.312 0.468 0.585 0.656
—0.2 0.401 0.324 0.355 0.476 0.571

0 0.553 0.417 0.331 0.350 0.461
0.2 0.693 0.574 0.426 0.328 0.320
0.4 0.816 0.715 0.592 0.423 0.287
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Table 6.39: Power and size of the L M 3  test, n =  256, m  =  64
1 = 0

di\d2 -0 .4 -0.2 0 0.2 0.4
—0.4 0.019 0.252 0.817 0.989 1.000
—0.2 0.225 0.028 0.284 0.845 0.988

0 0.789 0.262 0.031 0.314 0.864
0.2 0.996 0.814 0.300 0.033 0.339
0.4 1.000 0.997 0.838 0.324 0.035

1 = 2
di\d3 -0 .4 -0 .2 0 0.2 0.4
-0.4 0.074 0.277 0.788 0.974 0.993
-0.2 0.280 0.084 0.291 0.780 0.962

0 0.727 0.329 0.096 0.298 0.769
0.2 0.967 0.772 0.383 0.125 0.292
0.4 0.999 0.971 0.823 0.445 0.154

1 = 4
di\d2 -0.4 -0 .2 0 0.2 0.4
-0.4 0.108 0.316 0.754 0.954 0.977
-0.2 0.300 0.122 0.301 0.729 0.938

0 0.687 0.362 0.142 0.290 0.697
0.2 0.937 0.755 0.434 0.170 0.265
0.4 0.996 0.957 0.825 0.532 0.223

1 = 8
di\d2 -0 .4 -0.2 0 0.2 0.4
—0.4 0.202 0.429 0.725 0.905 0.947
—0.2 0.311 0.214 0.389 0.665 0.847

0 0.660 0.376 0.232 0.345 0.603
0.2 0.898 0.720 0.481 0.268 0.299
0.4 0.984 0.938 0.810 0.608 0.335
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Table 6.40: Power and size of the LM$  test, n  — 512, m  — 32
/ =  0

di\d3 -0 .4 -0.2 0 0.2 0.4
-0.4 0.009 0.067 0.376 0.680 0.770
-0.2 0.096 0.010 0.079 0.391 0.666

0 0.438 0.103 0.013 0.082 0.388
0.2 0.737 0.445 0.105 0.014 0.080
0.4 0.784 0.686 0.440 0.107 0.016

1 = 4
di\d2 -0 .4 -0.2 0 0.2 0.4
—0.4 0.140 0.160 0.319 0.495 0.541
—0.2 0.338 0.189 0.169 0.329 0.488

0 0.551 0.341 0.198 0.168 0.329
0.2 0.751 0.559 0.337 0.189 0.153
0.4 0.865 0.750 0.567 0.340 0.183

1 = 8
di\d2 -0 .4 -0.2 0 0.2 0.4
-0.4 0.235 0.313 0.430 0.533 0.570
-0.2 0.431 0.339 0.352 0.445 0.522

0 0.581 0.437 0.348 0.348 0.421
0.2 0.724 0.580 0.441 0.330 0.309
0.4 0.821 0.723 0.585 0.429 0.285

/ = 16
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.471 0.550 0.613 0.710 0.778
-0.2 0.653 0.648 0.675 0.707 0.758

0 0.706 0.678 0.684 0.681 0.716
0.2 0.718 0.671 0.628 0.602 0.581
0.4 0.713 0.644 0.577 0.511 0.446
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Table 6.41: Power and size of the L M 3  test, n  — 512, m  =  64
/ = 0

di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.017 0.287 0.890 0.996 1.000
-0.2 0.327 0.024 0.310 0.895 0.997

0 0.898 0.337 0.023 0.333 0.903
0.2 0.990 0.902 0.340 0.020 0.346
0.4 0.996 0.989 0.906 0.332 0.024

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.132 0.301 0.771 0.937 0.921
-0.2 0.430 0.136 0.326 0.785 0.907

0 0.818 0.430 0.134 0.325 0.751
0.2 0.973 0.833 0.449 0.136 0.298
0.4 0.998 0.975 0.844 0.473 0.159

1 = 8
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.195 0.351 0.740 0.877 0.865
-0.2 0.468 0.212 0.348 0.729 0.848

0 0.776 0.476 0.216 0.352 0.699
0.2 0.941 0.782 0.488 0.217 0.336
0.4 0.986 0.947 0.804 0.524 0.219

/ = 16
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.336 0.489 0.696 0.792 0.786
-0.2 0.489 0.371 0.484 0.683 0.750

0 0.712 0.503 0.377 0.480 0.645
0.2 0.886 0.736 0.532 0.390 0.470
0.4 0.970 0.903 0.750 0.551 0.346
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Table 6.42: Power and size of the L M 3  test, n =  512, m  — 128
/ =  0

di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.023 0.588 0.998 1.000 1.000
-0.2 0.593 0.033 0.630 0.998 1.000

0 0.994 0.629 0.038 0.670 1.000
0.2 1.000 0.996 0.671 0.043 0.698
0.4 1.000 1.000 0.996 0.707 0.047

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.075 0.613 0.988 1.000 1.000
—0.2 0.537 0.083 0.612 0.989 1.000

0 0.968 0.608 0.092 0.598 0.985
0.2 1.000 0.982 0.691 0.132 0.544
0.4 1.000 1.000 0.987 0.767 0.182

/ = 8
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.116 0.649 0.975 0.996 0.996
-0.2 0.476 0.128 0.611 0.966 0.991

0 0.945 0.573 0.149 0.543 0.950
0.2 0.999 0.965 0.695 0.203 0.459
0.4 1.000 0.999 0.981 0.794 0.286

/ = 16
di\d2 -0.4 -0.2 0 0.2 0.4
-0 .4 0.258 0.703 0.953 0.993 0.990
-0.2 0.408 0.227 0.626 0.924 0.974

0 0.888 0.533 0.243 0.514 0.842
0.2 0.994 0.942 0.682 0.314 0.411
0.4 1.000 0.997 0.980 0.829 0.430
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Table 6.43: Power and size of the L M 2  test, n =  128, m  =  8
1 = 0

rfl\c?2 -0.4 -0.2 0 0.2 0.4
-0 .4 0.001 0.002 0.018 0.033 0.070
-0.2 0.000 0.000 0.004 0.017 0.044

0 0.000 0.000 0.001 0.007 0.029
0.2 0.000 0.000 0.000 0.003 0.018
0.4 0.000 0.000 0.000 0.002 0.018

/=  1
di\d2 -0 .4 -0.2 0 0.2 0.4
—0.4 0.044 0.106 0.194 0.278 0.342
—0.2 0.033 0.079 0.153 0.234 0.292

0 0.023 0.054 0.092 0.173 0.236
0.2 0.026 0.041 0.071 0.112 0.182
0.4 0.038 0.037 0.053 0.072 0.120

1 = 2
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.047 0.122 0.215 0.317 0.401
-0.2 0.043 0.099 0.190 0.271 0.341

0 0.040 0.084 0.153 0.226 0.293
0.2 0.056 0.081 0.124 0.183 0.252
0.4 0.095 0.094 0.109 0.148 0.202

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.064 0.142 0.248 0.360 0.436
-0.2 0.060 0.138 0.244 0.342 0.417

0 0.067 0.135 0.231 0.325 0.400
0.2 0.102 0.152 0.239 0.310 0.382
0.4 0.187 0.204 0.246 0.291 0.341
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Table 6.44: Power and size of the L M 2 test, n  =  128, m  =  16
1 = 0

di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.007 0.053 0.191 0.416 0.620
-0.2 0.002 0.011 0.060 0.208 0.407

0 0.001 0.001 0.009 0.066 0.212
0.2 0.000 0.001 0.002 0.011 0.066
0.4 0.000 0.000 0.000 0.003 0.026

1 = 1
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.066 0.176 0.332 0.500 0.617
-0.2 0.038 0.092 0.192 0.343 0.506

0 0.012 0.039 0.098 0.211 0.358
0.2 0.008 0.013 0.041 0.090 0.215
0.4 0.009 0.009 0.016 0.040 0.107

1 = 2
d\\d2 -0.4 -0.2 0 0.2 0:4
-0.4 0.080 0.210 0.359 0.544 0.669
-0.2 0.054 0.124 0.233 0.393 0.556

0 0.030 0.068 0.137 0.247 0.415
0.2 0.022 0.037 0.068 0.149 0.259
0.4 0.022 0.022 0.034 0.067 0.160

1 = 4
d\\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.115 0.272 0.427 0.547 0.663
—0.2 0.086 0.202 0.319 0.459 0.569

0 0.061 0.128 0.227 0.344 0.478
0.2 0.054 0.094 0.150 0.229 0.375
0.4 0.069 0.079 0.105 0.166 0.257
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Table 6.45: Power and size of the L M 2 test, n =  128, m  — 32
/ =  0

di\d3 -0.4 -0.2 0 0.2 0.4
-0.4 0.011 0.159 0.516 0.836 0.968
-0.2 0.004 0.016 0.184 0.552 0.859

0 0.000 0.003 0.023 0.203 0.580
0.2 0.000 0.000 0.002 0.031 0.229
0.4 0.000 0.000 0.000 0.001 0.036

/=  1
di\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.069 0.220 0.498 0.782 0.933
—0.2 0.023 0.078 0.253 0.543 0.820

0 0.006 0.019 0.091 0.294 0.591
0.2 0.002 0.006 0.026 0.109 0.343
0.4 0.000 0.002 0.006 0.025 0.130

/ = 2
di\d3 -0.4 -0.2 0 0.2 0.4
-0.4 0.085 0.245 0.504 0.750 0.905
-0.2 0.019 0.104 0.284 0.571 0.813

0 0.006 0.027 0.118 0.339 0.616
0.2 0.003 0.008 0.032 0.149 0.390
0.4 0.001 0.002 0.013 0.048 0.193

1 = 4
rfi\c?2 -0.4 -0.2 0 0.2 0.4
-0.4 0.110 0.283 0.491 0.742 0.884
-0.2 0.045 0.144 0.332 0.556 0.792

0 0.017 0.062 0.177 0.399 0.641
0.2 0.008 0.027 0.089 0.224 0.479
0.4 0.008 0.014 0.039 0.122 0.283
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Table 6.46: Power and size of the L M 2 test, n =  256, m  — 16
1 = 0

d\\d2 -0.4 -0.2 0 0.2 0.4
-0 .4 0.007 0.053 0.165 0.355 0.461
-0.2 0.000 0.009 0.052 0.179 0.345

0 0.000 0.000 0.008 0.051 0.180
0.2 0.000 0.000 0.000 0.010 0.064
0.4 0.000 0.000 0.000 0.000 0.024

1 = 2
di\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.084 0.218 0.361 0.512 0.609
—0.2 0.057 0.136 0.242 0.373 0.511

0 0.045 0.082 0.140 0.246 0.381
0.2 0.045 0.043 0.074 0.138 0.258
0.4 0.067 0.052 0.045 0.070 0.145

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.106 0.270 0.414 0.527 0.633
-0.2 0.092 0.206 0.330 0.428 0.542

0 0.095 0.156 0.234 0.341 0.446
0.2 0.123 0.134 0.175 0.247 0.350
0.4 0.178 0.148 0.140 0.176 0.259

1 = 8
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.123 0.302 0.428 0.516 0.586
-0.2 0.126 0.272 0.396 0.465 0.541

0 0.139 0.263 0.360 0.428 0.486
0.2 0.216 0.264 0.329 0.384 0.441
0.4 0.316 0.300 0.312 0.340 0.394
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Table 6.47: Power and size of the L M 2 test, n  — 256, m  =  32
/ = 0

di\d2 -0 .4 -0.2 0 0.2 0.4
-0 .4 0.021 0.180 0.574 0.869 0.961
-0.2 0.000 0.021 0.203 0.597 0.867

0 0.000 0.000 0.024 0.221 0.604
0.2 0.000 0.000 0.000 0.023 0.215
0.4 0.000 0.000 0.000 0.000 0.027

1 = 2
di\d2 -0 .4 -0.2 0 0.2 0.4
-0.4 0.104 0.297 0.576 0.810 0.941
-0.2 0.027 0.113 0.306 0.594 0.811

0 0.006 0.025 0.115 0.317 0.609
0.2 0.007 0.010 0.030 0.122 0.337
0.4 0.008 0.008 0.011 0.030 0.130

1 = 4
di\d2 -0 .4 -0.2 0 0.2 0.4
-0.4 0.138 0.356 0.582 0.786 0.905
-0.2 0.068 0.177 0.359 0.599 0.805

0 0.032 0.080 0.176 0.379 0.612
0.2 0.021 0.032 0.084 0.181 0.401
0.4 0.028 0.023 0.037 0.087 0.205

1 = 8
di\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.156 0.379 0.574 0.729 0.848
—0.2 0.102 0.232 0.403 0.593 0.751

0 0.077 0.139 0.242 0.427 0.614
0.2 0.066 0.094 0.148 0.271 0.454
0.4 0.095 0.085 0.102 0.163 0.289
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Table 6.48: Power and size of the L M 2  test, n  =  256, m =  64
/ = 0

d\\d2 -0.4 -0 .2 0 0.2 0.4
-0.4 0.030 0.380 0.902 0.994 1.000
-0.2 0.000 0.032 0.413 0.924 0.997

0 0.000 0.000 0.035 0.445 0.928
0.2 0.000 0.000 0.000 0.043 0.471
0.4 0.000 0.000 0.000 0.000 0.051

I =  2
d\\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.073 0.373 0.817 0.977 1.000
—0.2 0.008 0.077 0.430 0.858 0.985

0 0.002 0.008 0.089 0.495 0.897
0.2 0.001 0.001 0.011 0.122 0.555
0.4 0.001 0.001 0.002 0.015 0.163

/ = 4
d\\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.092 0.374 0.776 0.957 0.995
-0.2 0.017 0.107 0.438 0.834 0.976

0 0.004 0.024 0.145 0.527 0.870
0.2 0.001 0.002 0.027 0.189 0.613
0.4 0.001 0.001 0.004 0.044 0.242

1 = 8
d\\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.100 0.380 0.700 0.926 0.983
—0.2 0.030 0.135 0.445 0.794 0.954

0 0.004 0.049 0.191 0.547 0.865
0.2 0.002 0.012 0.077 0.280 0.642
0.4 0.006 0.008 0.025 0.107 0.374
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Table 6.49: Power and size of the L M 2 test, n =  512, m  =  32
/ = 0

di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.016 0.143 0.531 0.803 0.845
-0.2 0.001 0.017 0.156 0.565 0.775

0 0.000 0.001 0.020 0.159 0.573
0.2 0.000 0.000 0.001 0.022 0.165
0.4 0.000 0.000 0.000 0.000 0.029

1 = 4
di\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.121 0.332 0.571 0.779 0.885
—0.2 0.063 0.170 0.349 0.576 0.783

0 0.026 0.066 0.161 0.354 0.588
0.2 0.038 0.032 0.061 0.154 0.372
0.4 0.114 0.047 0.035 0.065 0.167

1 = 8
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.166 0.397 0.571 0.746 0.857
-0.2 0.116 0.245 0.407 0.583 0.750

0 0.087 0.143 0.245 0.414 0.697
0.2 0.118 0.101 0.144 0.247 0.421
0.4 0.241 0.151 0.120 0.161 0.263

/ = 16
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.180 0.422 0.530 0.620 0.703
-0.2 0.176 0.353 0.449 0.538 0.630

0 0.194 0.302 0.374 0.455 0.551
0.2 0.273 0.277 0.326 0.385 0.463
0.4 0.378 0.311 0.295 0.333 0.392
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Table 6.50: Power and size of the L M 2  test, n  — 512, m  =  64
/ =  0

di\d2 -0 .4 -0.2 0 0.2 0.4
-0.4 0.032 0.418 0.943 1.000 1.000
-0.2 0.001 0.031 0.450 0.952 0.999

0 0.000 0.001 0.029 0.467 0.952
0.2 0.000 0.000 0.001 0.033 0.472
0.4 0.000 0.000 0.000 0.001 0.031

1 — 4
di\d2 -0.4 -0.2 0 0.2 0.4
—0.4 0.128 0.465 0.868 0.986 0.999
—0.2 0.016 0.122 0.488 0.879 0.988

0 0.000 0.015 0.123 0.523 0.892
0.2 0.000 0.000 0.015 0.138 0.554
0.4 0.003 0.000 0.000 0.022 0.158

I = 8
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.164 0.493 0.809 0.965 0.997
-0.2 0.035 0.175 0.502 0.830 0.973

0 0.012 0.038 0.186 0.526 0.846
0.2 0.008 0.017 0.040 0.207 0.561
0.4 0.025 0.008 0.014 0.050 0.234

/ = 16
di\d% -0 .4 -0.2 0 0.2 0.4
—0.4 0.213 0.483 0.739 0.900 0.973
—0.2 0.087 0.262 0.498 0.766 0.920

0 0.043 0.102 0.286 0.537 0.795
0.2 0.040 0.049 0.114 0.311 0.576
0.4 0.087 0.052 0.061 0.141 0.342
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Table 6.51: Power and size of the LM?  test, n =  512, m  =  128
/ = 0

di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.030 0.716 1.000 1.000 1.000
-0.2 0.000 0.036 0.753 1.000 1.000

0 0.000 0.001 0.041 0.778 1.000
0.2 0.000 0.000 0.001 0.046 0.808
0.4 0.000 0.000 0.000 0.000 0.049

1 = 4
d\\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.068 0.610 0.986 1.000 1.000
-0.2 0.000 0.079 0.686 0.994 1.000

0 0.000 0.001 0.110 0.757 0.997
0.2 0.000 0.000 0.001 0.162 0.832
0.4 0.000 0.000 0.000 0.006 0.217

1 = 8
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.070 0.558 0.969 0.999 1.000
-0.2 0.002 0.095 0.656 0.976 0.999

0 0.000 0.004 0.153 0.758 0.991
0.2 0.000 0.000 0.008 0.223 0.840
0.4 0.000 0.000 0.001 0.020 0.333

/ = 16
di\d2 -0.4 -0.2 0 0.2 0.4
-0.4 0.077 0.456 0.910 0.997 1.000
-0.2 0.007 0.119 0.591 0.956 0.999

0 0.001 0.012 0.210 0.746 0.984
0.2 0.000 0.002 0.028 0.333 0.858
0.4 0.001 0.003 0.005 0.066 0.479
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6 .4 .6  L M  te s t  o f  eq u a l p e r s is te n c e  a cross freq u en c ie s

Table 6.52: Power and size of the LMh test, n = 128
m = 8

d0\di -0.4 -0.2 0 0.2 0.4
-0.4 0.002 0.002 0.001 0.001 0.005
-0.2 0.003 0.002 0.001 0.001 0.006

0 0.004 0.003 0.002 0.001 0.006
0.2 0.014 0.008 0.004 0.002 0.006
0.4 0.059 0.052 0.030 0.008 0.007

m = 16
do\d\ -0 .4 -0.2 0 0.2 0.4
-0.4 0.020 0.007 0.005 0.019 0.131
-0.2 0.024 0.005 0.004 0.010 0.090

0 0.038 0.021 0.006 0.002 0.034
0.2 0.148 0.090 0.031 0.008 0.007
0.4 0.422 0.324 0.216 0.092 0.027

m =  24
do\di -0 .4 -0.2 0 0.2 0.4
-0 .4 0.037 0.013 0.021 0.159 0.527
-0.2 0.057 0.016 0.010 0.086 0.421

0 0.135 0.054 0.009 0.026 0.202
0.2 0.381 0.200 0.075 0.021 0.043
0.4 0.802 0.657 0.424 0.201 0.062
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Table 6.53: Power and size of the L M h  test, n =  256
m = 16

do\di -0.4 -0.2 0 0.2 0.4
-0.4 0.014 0.012 0.007 0.017 0.124
-0.2 0.017 0.013 0.010 0.011 0.104

0 0.031 0.024 0.012 0.005 0.044
0.2 0.104 0.083 0.042 0.015 0.014
0.4 0.414 0.365 0.238 0.092 0.016

m = 32
do\di -0.4 -0.2 0 0.2 0.4
-0.4 0.048 0.016 0.028 0.205 0.681
-0.2 0.060 0.021 0.017 0.134 0.581

0 0.149 0.063 0.011 0.044 0.318
0.2 0.474 0.317 0.131 0.018 0.062
0.4 0.882 0.826 0.656 0.322 0.053

m = 48
do\di -0.4 -0 .2 0 0.2 0.4
-0.4 0.090 0.018 0.098 0.563 0.958
-0.2 0.156 0.031 0.045 0.384 0.904

0 0.379 0.120 0.025 0.131 0.658
0.2 0.825 0.567 0.249 0.036 0.189
0.4 0.993 0.963 0.869 0.530 0.112

Table 6.54: Power and size of the LMh test, n =  512
m = 32

do\d\ -0 .4 -0.2 0 0.2 0.4
-0.4 0.039 0.021 0.022 0.128 0.621
-0.2 0.041 0.025 0.021 0.124 0.595

0 0.080 0.054 0.014 0.051 0.391
0.2 0.343 0.300 0.161 0.021 0.074
0.4 0.852 0.825 0.696 0.325 0.042

m = 64
do\d\ -0.4 -0.2 0 0.2 0.4
-0.4 0.109 0.034 0.090 0.581 0.988
-0.2 0.147 0.040 0.051 0.473 0.972

0 0.336 0.137 0.026 0.165 0.844
0.2 0.830 0.692 0.344 0.034 0.239
0.4 0.999 0.992 0.957 0.686 0.105

m = 96
do\d\ -0.4 -0.2 0 0.2 0.4
-0.4 0.221 0.024 0.264 0.941 1.000
-0.2 0.365 0.046 0.102 0.819 0.999

0 0.724 0.288 0.024 0.348 0.978
0.2 0.992 0.923 0.544 0.045 0.447
0.4 1.000 1.000 0.994 0.884 0.216
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Chapter 7

SEASONAL LONG-MEMORY 
IN UK INFLATION

7 .1  I N T R O D U C T I O N

The characteristic of long-range dependence in various inflation series has been anal

ysed by several authors. Many of these works have focused on testing the PPP 

(Purchasing Power Parity) (see Cheung and Lai (1993)), Fisher’s hypothesis that 

the one-period nominal rate of interest is the equilibrium real return plus the fully 

anticipated rate of inflation (e.g. Barsky (1987)) or Friedman’s (1977) hypothesis of 

a positive association between inflation and its uncertainty (e.g. Baillie, Chung and 

Tieslau (1996)). In order to see if these properties are reflected in the real world we 

need knowledge of the long-run as well as the short-run behaviour of inflation. The 

research done to  date trying to  describe the long-run properties of inflation use sea

sonally adjusted data (usually via seasonal dummies) or simply pay attention only 

to low frequency behaviour (as in Delgado and Robinson (1994)). Nevertheless, the 

seasonal component of economic series such as inflation is im portant and deserves 

a more thorough analysis. In that sense Franses and Ooms (1995) model quarterly 

United Kingdom inflation using the so-called PARFIMA(0,ds,0) (Periodic Autore

gressive Fractionally Integrated Moving Average) tha t allows for different behaviour 

in every season since the value of the persistence parameter, da, can vary with season, 

s =  1 ,2 ,3 ,4 .

In this chapter we analyze UK monthly inflation from 1915 to 1996, investigating
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the possibility of seasonal as well as low frequency long-range dependence. Long 

memory in monthly inflation series of the UK and other four industrial countries in 

the period 1969-1992 has recently been analysed by Hassler and Wolters (1995). They 

focus only on low frequency behaviour and try  to eliminate seasonality by means of 

seasonal dummies, noticing however th a t this deterministic seasonal adjustment was 

not completely adequate. In this chapter we examine the possibility of seasonal long- 

range dependence in the sense tha t the spectral density function diverges at seasonal 

frequencies, in addition to  the usual analysis at zero frequency. In order to perform 

this analysis we avoid restrictive parametric models, instead using the semiparametric 

methods described in previous chapters.

The series we use is the UK RPI (Retail Price Index) from April 1915 to  April 1996 

and the inflation series is constructed by first differencing the logarithm of the RPI. 

Call pt the RPI at time f, then the series we will analyze is Tt =  logp* — logp*_i from 

May 1915 to April 1996 so th a t we have n =972 observations. All the calculations 

and figures were done using S-Plus 3.1.

Figure 7.1: UK Inflation from May 1915 to April 1996

&«?

s

The plot of the inflation series, 7rf, in Figure 7.1 suggests different behaviour before

 1 —  , , , ■ ■ ! , , 1---
1920 1030 1040 1950 1960 1070 1980 1 900
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and after the late sixties-early seventies. Possible causes of this change of pattern may 

be the sixties devaluation, the change from fiscal to monetary policy in 1971 focusing 

on the control of the quantity of money and letting interest rates move freely in the 

market, and the return to  floating exchange rates in 1973. From the technical point of 

view the apparent structural change can also be related to the inclusion of mortgage 

interest payments in the RPI since 1974. For a more exhaustive analysis of those 

facts see among many others Rowlatt (1992) or Joyce (1995). W ithout attem pting to 

estimate a change point or study its causes, we analyze the existence of long range 

dependence in the whole series and in two subseries, April 1915-September 1969 and 

October 1969-April 1996.

7 .2  D I F F E R E N C E S  A C R O S S  F R E Q U E N C I E S

Figure 7.2 displays the periodogram of irt from 5:1915 to  4:1996. Of course this is not 

a consistent estimate of the spectral density, but the sharp peaks at the origin and 

to varying extents at seasonal frequencies, suggest the possibility of low frequency as 

well as seasonal long memory.

Figure 7.2: Periodogram of UK Inflation (5:1915-4:1996)

m
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Tr«

We extract the same conclusion from the plot of the first 150 autocorrelations 

in Figure 7.3. We observe oscillations th a t decay very slowly, as explained by the
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theoretical study of seasonal long memory models in Chapters 1 and 2.

Figure 7.3: Sample autocorrelations of UK Inflation (5:1915-4:1996)

60 -• ooo »o
>o

The issue of seasonality has usually been treated either by including seasonal 

dummies or seasonal differencing. The unsuitability of the former treatm ent, so far as 

UK inflation is concerned, has been pointed out by Hassler and Wolters (1995). The 

la tter seems excessive. Figure 7.4 shows the periodogram of the seasonal differenced 

series (1 — L 12)irt . We observe deep troughs at the origin and at seasonal frequencies 

suggesting possible overdifferencing. A milder fractional differencing could be more 

appropriate. Moreover we observe in Figure 7.2 tha t each of the peaks may be of 

different magnitude, suggesting the possibility of different persistence parameters at 

the origin and across seasonal frequencies.

In this section we use the results obtained in Chapter 5 and, assuming symmetry of 

the spectral poles, we perform Wald and score tests of the equality of the persistence 

parameters, da, across frequencies u>a =  2x5/12, s =  0,1, ...,6. The first hypothesis we 

test is

Ho : do =  d\ =  ... =  do (7.1)

against the alternative th a t one or more of the equalities in (7.1) do not hold. The 

asymptotic independence of the estimates (log-periodogram and local W hittle) of the 

persistence parameters across different frequencies (this can be shown in the same
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Figure 7.4: Periodogram of Seasonal Differenced UK Inflation

0.0 0.6 *1.61 .O 2.0 3.0

frequency

manner as the asymptotic independence of the estimates to  the right and left of a

known frequency in Chapter 5), provides us with two simple Wald tests statistics

W, 1 = ^ ( R l d l )'(R1H1Hf1) - \ R 1d1) 

Wgl = 4m {R id l ) \R \H \  R ^)-1 (R id 1)

where m  is a bandwidth number, d1 and d1 are 7x1 vectors with elements the log- 

periodogram ( J = 1 and 1 = 0) and local W hittle estimates of d = (do,...,d6) respec

tively, R \  is a 6x7 matrix of zeros except the and [72i]i(i+i) elements tha t are

1 and -1 respectively, for i = 1 ,..., 6- Thus the null and alternative in (7.1) can be 

written

Ho : R \d  = 0

H\ : R \d  ^  0.

Due to perfect symmetry of the periodogram at uo = 0 and uq = ir we only use m  

frequencies in the estimation of do and do. For d \ , ..., d$ we use periodogram ordinates 

on both sides of u>i , . . . , l >s , s o  th a t 2 m  frequencies are utilized. This fact is reflected
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in H i, that is a 7x7 diagonal matrix such tha t [7/i]n = [-ffi]77 =  1 and [H\]a =  1/2 

for i =  2,..., 6. If the null is true, both test statistics are asymptotically distributed 

as a chi square with 6 degrees of freedom (x§)? an(  ̂ t îe test s based on rejecting the 

null whenever W n ,W g\ > x l,a  at 100a% significance level are consistent.

In Section 5.4 of Chapter 5 we introduced a score test procedure for the hypothesis 

of equality of persistence parameters across different frequencies. In particular, the 

test statistic for the null in (7.1) is

LMgi = m e[A ^ l e-[

where t \  is a 6x1 vector with elements

[e- l ] 6 = 2 z f w  [ ^ . = 4 ^ = 1 , . . . , 5 ,
1 J Tg(d) 1 1 T?(d)

TH d)  =  £ ”Li [/„(«,■+Ai ) + /B(« ,-A i )] for i =  1 , 5 ,  T*(d) =  £7=1 / „ ( * -

Aj), Vj =  log j — ^ £ 71° d is the estimate obtained under the null, th a t is using 

frequencies around u>o, ...,<*>6, and A\ is a 6x6 matrix with elements [j4i]66 =  11/3, 

[^i]« = 20/3, =  Hi]*'6 =  —2/3 for i =  1,..., 5, and —4/3 otherwise. If (7.1) is

true, LMg\ is asymptotically x§* Figure 7.5 displays the three test statistics, W n ,W gi 

and LMgi as a function of the bandwidth, m. We only study the behaviour for m  = 

11, ...,40, to avoid using the same frequency twice. We reject (7.1) at 5% significance 

level but the tests are not so conclusive at 1%.

We may also consider the possibility that we may reject (7.1) because of do but 

the seasonal parameters d i , . . . , ^  are in fact equal. We can test this situation in a 

similar manner to (7.1). The null hypothesis is now

H q : d\ =  e?2 =  ••• =  do (7-2)

and the alternative is tha t one or more of the equalities in (7.2) do not hold. The 

Wald statistics are

W,2 =  ^ ( R 2 d 2Y(R2H2R'2r 1(R2d2)IT*
Wg 2 =  4 m ( R 2d2Y ( R 2H 2R'2) - 1( R 2d 2)
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Figure 7.5: Tests of equal persistence parameters across all frequencies

26 30 361 O 1 6 20

Note: The continuous, dotted and dashed lines correspond to W i\, Wg\ and LM g\ respectively. The 
two horizontal lines are critical values at 5% (12.6) and 1% (16.8) significance level.

where d2 and d2 are 6x1 vectors containing the log periodogram and local W hittle 

estimates of di,...,de, R 2 is a 5x6 m atrix defined similarly to and H 2 is a 6x6  

diagonal matrix with [H2]« =  1/2 for i =  1 , 5  and [H2]66 =  1- Under (7.2) W 12 and 

Wg2 are asymptotically x§- 

The L M  statistic for (7.2) is

LM 92 =  m ef2A 2 1e2 

where e2 is a 5x1 vector with elements

[e"2li =  i  =  1’ - ’5’

ds is the estimate under the null, i.e. using frequencies around uq,...,u>6, and A 2 is a 

5x5 matrix with off-diagonal elements equal to -16/11 and all diagonal elements equal 

to 72/11. If (7.2) is true, LM g2 has a x i  asymptotic distribution. Figure 7.6 shows 

Wg2 and LM g2 in function of the bandwidth m. We see evidence to conclude 

tha t the rejection of the hypothesis of equality of all memory parameters is not only 

due to do but the seasonal d’s can not be considered as being equal either.
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Figure 7.6: Tests of equal persistence parameters across seasonal frequencies

S3 —

*1 6 20 26 30 361 O

Note: The continuous, dotted and dashed lines correspond to W1 2 , W g2 and LM g 2 respectively. The 
two horizontal lines are x l  critical values at 5% (11.1) and 1% (15.1) significance level.

However there still exists the possibility of some d’s being equal. Thus it may be

interesting to  test

Ho : d2 = d3 = ... =  de (7.3)

against the alternative tha t one or more of the equalities in (7.3) do not hold. The

statistics used are

W,3 = ^ ( R 3cP)'(R3H 3R'3) - \ R 3^ )
7T

Wg 3 =  4m {R3P ) '(R 3H3R'3) - \ R 3^ )

LMg3 =  mi'3A3 l e3

where #3 is a 4x5 matrix defined in a similar way as R \  and R 2, H3 is a 5x5 diagonal 

m atrix with elements [Ff3]tl- =  1/2 for i =  1, ...,4 , and [i/sjss =  1, d3 and d3 are the 

vectors of log-periodogram and local W hittle estimates of d2,...,ds, respectively, 4̂3 

is a 4x4 matrix with diagonal elements equal to  56/9 and off-diagonal ones equal 

to -16/9, and e3 is a 4x1 vector with elements [£3],- =  4T/+1(d5l )/T t̂ .1(dai), where 

da 1 is the estimate under the null, i.e. using frequencies around v 2,...,u)6. The three
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statistics are shown in Figure 7.7a). We observe th a t the tests tend to accept (7.3) 

for most values of the bandwidth used.

Figure 7.7: Tests of equal persistence parameters at u>2,...,u>6

at
« > H o :e l2 M eiaM  v c

t o *•

Note: The continuous, dotted and dashed lines correspond to Wiz, W gz and LM gz in a) and Wu, Wg4 
and LM gi  in b) respectively. The horizontal lines are \ \  critical values at 5% (9.49) and 1% (13.3) 
significance level in a) and xi critical value at \%  (15.1) significance level in b).

Once (7.3) is not rejected it may be interesting to  study if d2,...,de, are in fact 

zero. The statistics used to test

Ho : di =  ... =  do — 0 (7-4)

against the alternative that at least one d,-, i — 2, is different from zero, are

WU =
7r

Wg 4 = 4 m{d3Y H ^ ( d 3) 

LM g4 =  m e \ A ^ e \

where A 4 is a 5x5 diagonal matrix with elements [^ 4]^ =  8 for i = 1,...,4 and 

[Ai]55 = 4, and e4 is a 5x1 vector with elements [£4]; =  4T/+1(0)/Tt̂ _1(0) if i =  1, ...,4, 

and [^Js =  2T6(0)/Te(0). The asymptotic properties of LM g4 can be proved in the 

same way as those of the score test of the equality of persistence parameters across 

different frequencies in Chapter 5. In Figure 7.7b) we see tha t (7.4) is rejected for 

every m.
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Similarly we can test the hypothesis H q : d$ = d\. The three different test statistics 

are shown in Figure 7.8. We do not reject equality of do and d\ for any of the 

bandwidths used (m). The tests of equality of these parameters to  zero are not 

reported but they clearly reject the null for every m.

Figure 7.8: Tests of equal persistence parameters at u>q and u>\

“1 6 20 30

Note: The continuous, dotted and dashed lines correspond to the log-periodogram Wald, Gaussian 
Wald and LM test statistics respectively.

Assuming symmetry in the spectral poles, we can conclude that there are two 

different persistence parameters in the UK inflation series from 5:1915 to  4 :19% . one 

describing the spectral behaviour at the origin and at 7r/6 (i.e. the long run and 

the annual movement of 7r*) which is around 0.4 (log-periodogram or local Whittle 

estimates) and the other, closer to 0 (around 0.2 for both, log-periodogram and local 

W hittle estimates) reflecting the behaviour of the spectrum at u)a = 2‘KsjVl for s = 

2 ,..., 6 (corresponding to  cycles of period of 6, 4, 3, 2.4 and 2 months respectively). 

However, although there exists spectral symmetry at uo =  0 and ujq =  7r, the rest of 

frequencies may well have asymmetric behaviour as described in previous chapters. 

This possibility will be formally tested in Section 7.5 using the techniques described 

in Chapter 5. Some of the statistics we will use require the estimation of the memory 

parameters on both sides of ,...,u;5. To this task we dedicate the sections that follow.
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7 .3  E S T I M A T I O N  O F  T H E  P E R S I S T E N C E  P A R A M 

E T E R S

In this section we use the techniques described in Chapters 3 and 4 to estimate the 

persistence parameters dsj , j  =  1,2, at frequencies u s =  27rs/12, s  =  0,1, ...,6, i.e. at 

the origin and seasonal frequencies. We allow for different behaviour before and after 

the seasonal frequencies u>a, s — 1,2, ...,5, so tha t the subindex j  =  1 corresponds 

to  the parameter just after and j  =  2 just before those frequencies. Of course, by 

symmetry of the spectral density function, doi =  ^02 =  ^0 and =  ^62 =  ^6- The 

tests of spectral symmetry at frequencies uja for s =  1 ,2 ,..., 5, will be carried out in 

Section 7.5, where we use the procedures described in Chapter 5.

In both methods of estimation (Gaussian semiparametric or local W hittle and 

log-periodogram) we employ the bandwidths m  =  11,12, ...,50. Since we have 81 

frequencies between seasonal frequencies, a reasonable choice for m, in order to  avoid 

distorting influence of other spectral poles, seems to be less than 30. However, the 

influence of neighbour poles will depend on the magnitude of the persistence param eter 

at those neighbour frequencies, and tha t is why we analyse the cases up to m  =  50, 

although we consider the most relevant results to  be those obtained with m between 

20 and 30.

Figure 7.9 shows the estimates of do with no trimming (/ =  0). We see tha t they 

stabilize around 0.4. When we introduce trimming (for I =  1 ,..., 6) the results only 

vary for small m  (due to  the use of fewer periodogram ordinates), and as m  increases 

these estimates also stabilize around tha t value.

Figure 7.10 shows the periodogram of a truncated version of the fractionally dif

ferenced series
0 0

(1 -  X)°-4(7rt - f )  = ^ 2  Djfe(0.4)(7rt_* -  7f) (7.5)
k= 0

where

n  1̂  -  r(-k ~ d)
) r(fc +  i)r (-d )

and 7r is the arithmetic mean of irt . We approximate (7.5) by taking 7r* =  7f for all
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Figure 7.9:t Estimation at the origin

1 O 20 30 50

Note: The continuous and dotted line are log-periodogram and local Whittle estimates respectively.

t previous to January 1915 1. We observe tha t fractional differencing removes long- 

range dependence at frequency zero, but peaks at seasonal frequencies persist and are 

more noticeable.

Figures 7.11 and 7.12 show the log-periodogram and local W hittle (or Gaussian 

semiparametric) estimates of da\ and da2 for s =  1 ,2 ,3 ,4  with / =  0 (no trimming) 

and / =  1 respectively. Throughout this section, the continuous line represents the 

estimates just after the frequency under study (i.e. da\ ) and the dotted line are the 

estimates just before u a (da2). As we would expect the estimates tend to  decrease 

when we trim out the closest frequency, and as bandwidth increases. The decreasing 

behaviour of di2 and di2 with m  may be generated by the influence of the im portant 

peak at the origin. For a bandwidth of around 30 the estimates on either side of the 

spectral pole are similar and around 0.25. Of interest is the behaviour of the estimates 

to  the right of 7r/3 (e^i)- When we omit the closest frequency these estimates decrease

significantly and the difference between d2\ , ^21 and <£22, ^22 becomes bigger. This

1Although we use only data from April 1915 our series starts in January 1915. We do not use the 
first 4 observations in order to have seasonal frequencies that can be represented as Fourier frequencies 
of the form 2icj/n for some integer j-
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Figure 7.10: Periodogram of (1 — L ) 0A(Trt — x)

 1- - — ■ -y , , ,--
0.0 O.S 1.0 1.5 2.0 2.5 3.0

fr«qu«noy

fact is in accordance with the results obtained theoretically and through simulations 

in Chapters 3, 4 and 6, where we saw that when the difference between the persistence 

parameters just before and after the frequency under study is large, trimming seems 

unavoidable and estimation of the smaller parameter using all frequencies is likely to 

be positively biased due to the influence of the larger persistence parameter.

Using the asymptotic distribution of the log-periodogram and Gaussian sernipara- 

metric estimators obtained in Chapter 3 and 4 we can test the significance of the 

different d’s. In Figures 7.11 and 7.12 we show the confidence intervals obtained  from 

these asymptotic distributions. The estimates at 5x/6  and x  (that we do not report) 

are not significantly different from zero for almost every m. This is what we would 

expect, because cycles with period 2.4 and 2 months seem implausible in an inflation 

series. The rejection or not in the other d’s depends on the method of estimation, the 

trimming and the bandwidth m.
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Figure 7.11: Seasonal persistence estimates (1=0)
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Note: The continuous lines correspond to the estimates to the right or just after, the dotted lines are
the estimates to the left of or just before u>3 and the crossed lines are the bounds of the significance
confidence intervals at 5%  significance level.
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Figure 7.12: Seasonal persistence estimates (1=1)
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h)Local Whittle estim ates at 2pl/3

Note: The continuous lines correspond to the estimates to the right or just after, the dotted lines are
the estimates to the left of or just before u , and the crossed lines are the bounds of the significance
confidence intervals at 5% significance level.
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7 .4  P E R S I S T E N C E  I N  S U B - S E R I E S

Figure 7.13 displays the periodogram and estimates of the persistence param eters at 

zero frequency of the sub-series from April 1915 to September 1969, so th a t we have 

n = 654 observations. There are at most 55 Fourier frequencies between spectral poles. 

Arguing as in the estimation in the full series, we only use bandwidths m  =  11, ...,35. 

As we could deduce from a visual inspection of the series in Figure 7.1, the peak in 

the periodogram and the persistence estimates at the origin are smaller than those in 

the full series. The estimates of the seasonal persistence parameters without and with 

trimming can be seen in Figures 7.14 and 7.15.

Figure 7.13: Periodogram and estimates at frequency 0 (4:1915-9:1969)

R « r l o d o a i * a m  o f  E s t l m s i t o a  «it th io  o r l g l r i
i n f l a t i o n  *i e i  s - o :  *i e e o >

m

S

Note: The continuous and dotted lines are the log-periodogram and local Whittle estimates respec
tively.

Figures 7.16, 7.17 and 7.18 display the estimates of the various persistence parame

ters for the second sub-series from October 1969 to  April 1996, so tha t we have n=319 

observations. Although there are at most 27 frequencies between different spectral 

poles we use m = ll,...,6 0 , in the estimation of do and m = ll,...,4 0 , in the estimation 

of dsj,  j  =  1,2, s =  2 ,3 ,4 , in order to  analyse the effects on the estimates of the 

use of frequencies around different poles than those under study. We observe tha t 

the estimates at the origin, for a reasonable m  (say between 10 and 20), are larger 

than those obtained in the full series which is in accordance with the behaviour of 

this subsample in Figure 7.1. In fact for m  < 20 (before the spectral pole at 7t/6) we
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Figure 7.14: Seasonal persistence estimates, 1=0 (4:1915-9:1969)
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Note: The continuous lines correspond to the estimates to the right or just after and the dotted lines
are the estimates to the left of or just before u>3.
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Figure 7.15: Seasonal persistence estimates, 1=1 (4:1915-9:1969)
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Note: The continuous lines correspond to the estimates to the right or just after and the dotted lines 
are the estimates to the left of or just before u ,.
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Figure 7.16: Seasonal persistence estimates, 1=0 (10:1969-4:1996)
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Note: The continuous lines correspond to the estimates to the right or just after and the dotted lines
are the estimates to the left of or just before u>3.
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Figure 7.17: Seasonal persistence estimates, 1=1 (10:1969-4:1996)
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found evidence tha t do > 1/2 reflecting a non-stationary behaviour of this subseries2. 

A similar result is found by Hassler and Wolters (1995). We also see that the esti

mates of the parameters to the right and left of tt/3  (c?2i and ^22) are closer to each 

other than those obtained using the complete series. This possible symmetry will be 

analysed in the next section. The opposite occurs at 7r/6  where we observe tha t when 

we trim  out the closest frequency, the estimates of d\2 are smaller than -0.5 for every 

m.

Figure 7.18: Estimates at frequency 0 (10:1969-4:1996)

s

s

CO

Note: The continuous and dotted lines are the log-periodogram and local Whittle estimates respec
tively.

Now we consider the effects caused by the inclusion of periodogram ordinates near 

a frequency where the spectrum is likely to  have a pole on the estimation of the 

persistence parameter describing the long-memory behaviour at a different frequency. 

This occurs when we use bandwidths approaching m  =  27 in the second subseries 

(from October 1969 until April 1996). We see tha t the estimates decrease when m 

includes those frequencies and a sharp fall occurs when the frequency with the spectral 

pole is used in the estimation. This fact is clearly reflected in the estimation of do in 

Figure 7.18 where we observe two sharp falls around m = 27 and m=54, tha t is when 

we include uq =  7r/6 and 0J2 =  7r/3 in the estimation of do. We also observe tha t this

2The asymptotic results in Chapters 3 and 4 are only valid for |d| <  1/ 2 . Nevertheless Velasco 
(1997a) has proved that the log-periodogram estimate, do is consistent for do £ [1/2,1) and asymp
totically normal for do £  [1 /2 ,3 /4 ). The good properties of do for do £ [1 /2 ,1) in finite samples are 
shown in Hurvich and Ray (1995). As far as the local Whittle estimate is concerned, Velasco (1997b) 
has demonstrated that it is consistent for do £ [1/2,1) and asymptotically normal for do £ [1 /2 ,2 /3 )  
(do £  [1 /2 ,3 /4 ) under Gaussianity) and behaves quite well in finite samples.
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effect is stronger in the local W hittle case reflecting a higher sensitivity of this method 

of estimation to  the inclusion of frequencies with im portant peaks in the periodogram.

7 .5  T E S T S  O F  S P E C T R A L  S Y M M E T R Y

We have seen in Sections 7.3 and 7.4 tha t some of the estimates of the persistence 

param eter at some seasonal frequencies are quite different if we use periodogram or

dinates before or after the frequency under study. We use now the procedures ob

tained in Chapter 5 in order to test the possibility of asymmetric spectral poles at u>3, 

s = l ,  ...,5 . We report the results where this asymmetry seems more evident, th a t is 

7t/6 , 7t/3 and 27t/3 for the full series.

Figures 7.19a) and 6) display the log-periodogram Wald test statistics without 

trimming (/ =  0), and trimming out the closest frequency (/ =  1) for the three 

seasonal frequencies under study3. The most interesting feature is the rejection of the 

hypothesis of symmetry at u>2 =  tt/3 , specially when / =  1. For 7r/6 we only reject for 

small m. A similar behaviour can be observed in the Gaussian Wald test in Figures 

7.19c) and d).

Figures 7.19e) and / )  show the LM \  test of the hypothesis d\\ =  d\2 (i.e. at 

7t/6) against the alternative d\\ > di\ (continuous line), the L M 2 statistic to  test 

d21 =  c?22 (i-e- at tt/3 ) against < ^22 (dotted line) and the LM \  test of the

hypothesis d^\ =  d42 (i.e. at 27t/3) against the alternative d±\ > d& (short dashed 

line)4. For a detailed description of these test procedures see Chapter 5. We use 

one-tailed tests because their theoretical properties do not need trimming and they 

are more powerful than the corresponding two-tailed tests (see the Monte Carlo study 

in Chapter 6). We chose LM \  at 7r/6 in order to  use frequencies after 7t/6 in the 

construction of the statistic and in this way avoid the influence of the im portant peak 

at the origin. Moreover, for a reasonable bandwidth (m  <  30), the results obtained 

with LM i  and L M 2 are complementary in the sense th a t we do not reject the null

3The two straight lines reflect the critical values from a x i  distribution at 5% and 1% significance 
level.

4The straight lines represent the critical values from a standard normal distribution (N(0,1)) at 
5% and 1% significance level. Note that these critical values correspond to one-tailed tests.
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Figure 7.19: Tests of spectral symmetry (5:1915-4:1996)
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Note: The continuous lines correspond to the different tests at tt/ 6, the dotted lines are the tests at
7t/3 and the dashed lines at 2tt/3. The straight lines are N(0,1) and x i  critical values at 1%  and 5%
significance level.
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with either procedure. Similarly, the alternative c?2i > ^22 at 7r/3 is rejected for all m  

using the LM \  procedure (we do not report the results). In Figure 7.19 we show the 

L M 2 statistic at 7t/3 and we see tha t when we do not trim  out any frequency in the 

estimation of the joint parameter under the null we do not reject the hypothesis of 

spectral symmetry at 7r/3 either. The same fact can be observed for 27t/3 using the 

LM \  test statistic, although the non rejection is even clearer than for 7t/3. The L M 2 

test of the hypothesis d$\ =  d^2 against the alternative d^\ < d±2 does not reject the 

null either (not reported).

When we omit one frequency just before and after the frequency under study in 

the joint estimation of the persistence param eter under the null we observe tha t the 

spectral symmetry at 7r/6 and 7t/ 3 is now rejected for a wider range of values of the 

bandwidth m. This is in accordance with the Monte Carlo results in Chapter 6, where 

we found tha t power and size of the different test procedures tend to  increase with the 

introduction of a small trimming in the joint estimation of the persistence parameter 

under the hypothesis of symmetry.

We also saw in Theorem 14 in Chapter 5 tha t when da\ ^  ds2 then the joint local 

W hittle estimate converges to  a value [2da\ +  2da2 — 1 +  y/4(ds 1 — da2)** + l]/4  which 

is between da 1 and da2 and closer to the highest one. This behaviour ran be seen 

in Figure 7.20 where we show the joint (continuous line), right (dotted line) and left 

(dashed line) estimates of the persistence parameters at frequencies where we reject 

the hypothesis of symmetry in more cases, tha t is at 7r/6  and tt/3 . We do not rejK>rt 

joint estimation based on log-periodogram regression because it is equal to (</,j -f d ,^ )/2 

by definition.

Figures 7.21a), 6), c) and d) show the log-periodogram and Gaussian semipara- 

metric Wald test statistics for the subseries April 1915 to October 1969 at frequencies 

7t/3 (continuous line), 7r/2 (dotted line) and 2tt/3 (dashed line). The behaviour of 

these tests at 7r/6 is similar to  when we use the whole series. We do not observe 

clear evidence of asymmetric spectral behaviour in any of the frequencies analysed, 

although the trimmed Gaussian Wald test is not conclusive for 7r/3 and tt/2  for some
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Figure 7.20: Joint, right and left local Whittle estimation
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Note: The continuous lines are the joint estimates, the dotted lines are the estimates to the right or 
just after and the dashed lines the estimates to the left or just before.

of the m  used. The score tests do not reject the hypothesis of spectral symmetry at 

7t/2, 7t/3 or 27t/3 for any of the bandwidths. This fact can be seen in Figure 7.21e) 

and / )  where we show the LM \  statistic for 7r/2 and L M 2 for 7r/3 and 27t/3.

Figures 7.22a), 6), c) and d) display the different Wald tests using log-periodogram 

and local W hittle estimates for the subseries 10:1969-4:1996 for the hypothesis of 

symmetry at 7r/6 (continuous line), 7r/3 (dotted line), 7t/ 2  (short dashed line) and 

2tt/3 (long dashed line). Symmetry is rejected at tt/ 6 . The tests are not conclusive 

for 7r/2 and 2ir/3 and they clearly do not reject symmetry at 7t/ 3 . Figures 7.22e) and 

/ )  show the LM \  test statistic for the symmetry at 7t/ 6 , 7t/ 3  and 7t/ 2  and the L M 2 at 

2tt/3. We only reject the symmetry at tt/ 6  for a large bandwidth corroborating the 

more conservative behaviour of the score tests found in Chapter 6 trough simulations, 

especially when the sample size is small.
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7 .6  C O N C L U S I O N

We have found evidence of long memory in the UK monthly inflation series not only at 

frequency zero (as in Hassler and Wolters (1995)) but also at seasonal frequencies. We 

have also seen tha t the persistence parameters are likely to be different at the origin 

and at seasonal frequencies so th a t application of the fractional seasonal difference 

operator (1 — L 12)d, used in Porter-Hudak -(1990), which imposes the same memory 

param eter at every uj8 =  2x5/12, s =  0,1, may lead to  distorted conclusions. In 

fact, assuming spectral symmetry, we have found evidence tha t there are at least two 

different memory parameters, one for frequencies 0 and x /6  and other for u)s =  2x5/12, 

5 =  2 ,..., 6. Furthermore the spectral poles at some seasonal frequencies may be 

asymmetric which will cause the joint estimation, using frequencies on both sides of 

the frequency under study, be incorrect in small and large samples.

The series suffers a change of pattern in the early seventies. The more relevant 

feature is the fact tha t the series from October 1969 presents a stronger persistence in 

the trend and is likely to be non stationary although “less non stationary” than that 

caused by a unit root.
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Figure 7.21: Tests of spectral symmetry (4:1915-9:1969)
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Figure 7.22: Tests of spectral symmetry (10:1969-4:1996)
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significance level.
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Chapter 8

CONCLUSION AND  
EXTENSIONS

In this thesis we have analysed the possibility of seasonal or cyclical long-range de

pendence or antipersistence, which is characterized by a spectral (or pseudospectral in 

the nonstationary case) pole or zero at some frequency a;, reflecting the cycle. One of 

the originalities of this analysis is tha t we allow for asymptotic spectral asymmetries 

at tha t frequency u>. To date, all extensions of long range dependence to the seasonal 

or cyclical case impose a symmetric behaviour tha t is not implied by the definition of 

spectral density function, as long as u  ^  0,m od(7r). Here, we have tried to relax that 

condition allowing for a different spectral behaviour before and after the frequency u>.

The analysis of SCLM is naturally done in the frequency domain and we follow 

this approach throughout the whole thesis. The time domain behaviour (in some cases 

only asymptotic) of some parametric SCLM (symmetric and asymmetric) models has 

been described in Chapters 1 and 2.

The possibility of spectral asymmetries at u> has interesting implications on the es

timation of the two (possibly different) persistence parameters implied. Some of these 

implications have been analysed in Chapters 3 and 4, and via simulations in Chapter 

6. Consequently, a test of the traditionally assumed symmetry seems necessary, prior 

to any other analysis. Some semiparametric test procedures of spectral symmetry at 

one frequency and of equality of persistence parameters across different frequencies 

have been proposed in Chapter 5, and their finite sample performance analysed in 

Chapter 6.
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Throughout the whole thesis one of the main assumptions is tha t the frequency 

where the spectral pole or zero occurs, is known. Of course, this is so in the 

seasonal long memory case, where those frequencies are the seasonal ones, cj j  =  2f t j /s ,  

j  =  1,..., [s/2], but in any other case we may need to estimate it. A brief review of 

the work done to date on this issue is introduced in Section 8.1.

Of course a lot of work remains to  be done in the field of seasonal or cyclical 

long memory, specially taking into account the possible asymmetry of /(A ). Some 

extensions are suggested in Section 8.2.

8 .1  E S T I M A T I O N  O F  T H E  F R E Q U E N C Y  u

Most analyses to date, either to model seasonal/cyclical long memory time series or 

to  estimate the persistence parameters describing tha t behaviour, are based on the 

assumption tha t the frequency uj where the spectral pole occurs is known. Of course, 

seasonal frequencies are known, but in cyclical time series, the frequency u) may well 

be unknown and an estimation of it may be required.

The literature on estimating u; in cyclical long memory is of recent date and it is of 

interest to  consider first earlier work on estimating frequency in an alternative model, 

namely the deterministic periodic time series

x t =  ao sin u>t +  (3q cosu>t +  ut (8.1)

where ut is a stationary random process with mean zero and spectral density, f u(A), 

continuous at a;. W hittle (1952) found tha t the least squares estimate of u; in (8.1), 

u>, is the periodogram maximizer and has a variance 0 ( n “3). Walker (1971) (for 

u t white noise) and Hannan (1971, 1973a) extended W hittle’s work and, without 

assuming Gaussianity, found tha t the asymptotic distribution of d>, for lj 0, 7r, is

In case u  =  0, 7r, Hannan (1973a) showed tha t there exists an integer valued random 

variable, no, with P (n0 < 00) =  1 such tha t Cj =  u  for n > no, so tha t u  will 

be equal to the value it estimates for a large enough sample size. Mackisack and
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Poskitt (1989) proposed a different technique based on the minimization of the transfer 

function calculated by fitting high order autoregressions to x t. Only -y/n-consistency 

for a; E (0, 7r) is rigorously proved (although it is claimed tha t the variance of the 

estimate is 0 (n~ 2) when the order of the autoregression is 0 (n 5 )), and their method 

is computationally intensive. A different approach has been suggested by Quinn and

Fernandes (1991). The technique is based on fitting ARMA(2,2) models iteratively 

and propose a simple algorithm tha t converges quite quickly to  the true parameter 

u>. The same asymptotic distribution, (8.2), as the maximizer of the periodogram is 

obtained. A similar procedure with the same asymptotic distribution is described in 

Truong-Van (1990).

In (8.1) only one sinusoidal component is assumed. However a multiple finite 

number of components can describe the seasonal or cyclical movement of the series,

In this context estimation of r, the number of sinusoidals components, has been treated 

in Quinn (1989), Kavalieris and Hannan (1994), Hannan (1993) and Wang (1993) 

among others. Estimation of the different ujj has been analysed in Chen ( 1988a,b), 

Walker (1971) and Kavalieris and Hannan (1994).

Although the behaviour described in (8.1) or (8.3) can be appropriate for some 

time series in many areas of natural sciences, in economic time series where the cycles 

or periods have a less regular behaviour, this rigid deterministic periodicity seems 

implausible. A changing pattern can be generated by stochastic sine and cosine co

efficients in (8.1) or (8.3), as in Hannan (1964) (see (1.9)), by seasonal ARMA or 

ARIMA models (see (1.18) and (1.20)), or more generally using the GARMA process 

introduced by Gray et al. (1989) (see (1.27)) or the ARUM A (see (1.32)) analysed 

by Giraitis and Leipus (1995) among others *. These processes are characterized by 

a strong and persistent periodical behaviour, although their amplitude and periodic

ity can change over time unlike those series generated by deterministic trigonometric 

polynomials. The estimation of u> in cyclical long memory models may be necessary 

1For a more exhaustive description of these seasonal models see Sections 2 and 3 in Chapter 1.

r

(8.3)
j =1
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to determine the periodicity of the cycle and as a first step prior to the estimation 

of the persistence parameters or of the complete parametric model. Yajima (1995) 

proposed an estimate of u; in a process with spectral density function

f( \;u ) ,0 )  =  0)|A — uj\~2d u ; E [ 0, 7r] and 0 < d < 1 /2 ,d E 9 (8.4)

where 9 is a param eter vector of unknown short and long run parameters, and the 

function ^(A) obeys some regularity conditions, such tha t the GARMA process is 

a special case of (8.4). The estimate of u  proposed by Yajima is the periodogram 

maximizer. He only obtains na-consistency under Gaussianity for any a  E (0,1) and 

shows tha t the W hittle estimates of 0 obtained by minimizing

U ^ O )  =  £  { lo g /(A ;ii,S )+  0A (8.5)

are y/n -consistent and asymptotically normal. Yajima (1995) does not provide any 

distribution theory for his estimate of u>, but a nonnormal distribution is conjectured.

Hidalgo (1997), without assuming Gaussianity, proposes an alternative semipara- 

metric technique to estimate the frequency uj when the spectral density function be

haves around u> as

/(A ) ~  C|A -  uj\~2d as A u

for C  E (0,oo) and d E (0 ,1 /2). The estimate is the argument tha t maximizes the 

estimate of d established in Hidalgo and Yajima (1997) and described in (1.59) in 

Chapter 1. Asymptotic normality of nk~%{Cj — u>), where k —► oo suitably slowly with 

n, is obtained.

Chung (1996a) obtained an estimate of rj =  cos a; in a simple Gegenbauer process, 

(1 — 2Ltj +  L 2)dx t =  £t where et is white noise, by maximizing the conditional sum of 

squares

S(d ,rj)=  - |( lo g 2 7 r +  1 ) -  | l o g

which clearly is equivalent to  minimizing the sum of squared innovations. Chung 

stated tha t for \r)\ < 1 and d ^  0, n{fj — rj) converges in distribution to  a functional of 

Brownian motions, and for rj =  1 , - 1  and d /  0, n 2(fj — rj) converges in distribution
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to a different functional form of Brownian motions. Chung (1996b) generalizes this 

result to a general stationary GARMA process

1 -  2Lrj +  L 2)d(x t -  fj,) =  6{l)et

where et is white noise, I77I < 1, |d| < 1/2 and the roots of the ARM A polynomials lie 

outside the unit circle. The same asymptotic distribution for fj is claimed.

A joint estimation of all the frequencies ujj, j  = 0,1, ...,/&, and the rest of long 

and short memory parameters in the ARUM A model (1.48) is proposed by Giraitis 

and Leipus (1995). They obtain consistency of the W hittle estimates obtained by 

minimizing Un(u),0) defined in (8.5), but no asymptotic distribution is established.

8 .2  F U R T H E R  R E S E A R C H  A N D  E X T E N S I O N S

Throughout this thesis we have treated a number of issues concerning seasonal or 

cyclical long memory. Some other features tha t may need a more thorough analysis 

are the following:

1. Obtaining a time domain expression for asymmetric SCLM processes like those 

in (2.1) for the symmetric case may be useful to empirical researchers. The 

knowledge of some function D (z) as in (2.1) would facilitate the application of 

those processes. However the task is not as easy as it appears at first sight. The 

asymmetry of the spectral density makes the use of techniques similar to those 

used in the symmetric case inappropriate and some different methods should be 

used.

2. Related to  the previous suggestion, obtaining the AR and MA coefficients for 

the processes analysed in Chapter 2 may also be useful. The knowledge of the 

AR coefficients could be interesting for forecasting. Porter-Hudak (1990) used 

the fractional seasonal differencing operator (1 — L 12)d to  forecast US monetary 

aggregates and found tha t it performs better than the usual airline model. How

ever, assuming symmetric spectral poles, if the persistence parameters across 

different frequencies are different, the ARUMA model in (1.48) could be more
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precise. This is described as

h oo
J J (1  -  2L cosu)j +  L 2)d}x t =  = Ut
j =o j =o

where the AR coefficients, 7Tj, are described in (1.33) as functions of Gegen-

bauer polynomials, cj.d\r}). In Chapter 6 we saw tha t C^(r/) can be recursively

obtained quite easily. However, the generation of the different gets more

complicated as the number of spectral poles and the sample size increase. A

simpler way of generating the 7Tj’s could be useful for applied research.

3. The study of the effects of asymmetric SCLM on the different parametric and 

semiparametric methods of estimation described in Chapter 1 may reveal inter

esting features. Of course the parametric estimates of the persistence parameter 

will be inconsistent if we consider symmetric spectral poles when in fact an 

asymmetry is present.

4. Analysis of the implications of spectral asymmetries on the tests of fractional 

integration and fractional cointegration (see Section 1.5 in Chapter 1).

5. Some financial series, such as asset returns, appear to  be approximately uncor

related. However, there are nonlinear transformations, such as squares, tha t 

can exhibit autocorrelation as modelled in the extensive ARCH and stochastic 

volatility literature, following Engle (1982) or Taylor (1986, 1994). GARCH 

(Generalized Autoregressive Conditional Heterosckedastic) models let the con

ditional variance be a function of the squares of previous observations and past 

variances (for a survey on the field see Bollerslev et al. (1992)). Baillie et 

al. (1996) combined these models with fractional integration to  describe long 

memory and time-dependent heterosckedasticity in the inflation series of ten 

countries. They proposed the ARFIMA(p,d,q)-GARCH(P,Q) process

<t>p(L)( 1 -  L )d(irt - p -  b'xu -  S(7t) =  0q(L)et (8.6)

et |f l* - i~ (0 ,f f t2) (8.7)

Pp{L)o2 = w + otQ{L)£2t +  i ' x 2t (8.8)
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where x \ t and X21 are vectors of predetermined variables (x^t can include lagged 

7T̂ ), 11 is the mean of the process, (f>p(z) ,  0q( z ), (3p(z)  and ocq{z) have roots 

outside the unit circle and 7rt is the monthly inflation at time t. Baillie et al. 

(1996) noted tha t seasonality is im portant for 9 out of the 10 countries analysed 

and they dealt with it by the inclusion of seasonal coefficients in the ARMA 

specification of 7r*. However we have seen in Chapter 7 tha t UK inflation is likely 

to  have seasonal long-range dependence. As a result it could be more adequate 

the use of the ARUMA(p,ds,q)-GARCH(P,Q) process th a t can be defined by 

(8.7), (8.8) and
h

(j>P{L)  1 1 ( 1 - 2  L c o s  ujj +  L 2)di(irt — p -  b 'xi 1 ~  fo t )  =  0q(L)st  
j =0

where, in the case of the inflation series, the u)j  are seasonal frequencies (of 

course the ujj  can be any frequency in order to describe any cyclical behaviour).

The long-range dependence can also appear in the volatility of the series. The

first model tha t causes this effect is the general GARCH process proposed by

Robinson (1991) who used it as an alternative in testing for no-ARCH. His model

is sufficiently general to describe SCLM behaviour in the squares of the series.

This effect can also be modelled by specifying a 2 in (8.7) as 
h

J J (1  — 2 L cos ujj +  L 2)d]<j\ = w + u t 
j =0

where in is a constant and u t is some short memory process (e.g. a stationary

and invertible ARMA). This process is a generalization of FIGARCH models and

it allows for seasonal long-range dependence in addition to  the usual fractional 

integration at frequency zero.

In a recent paper Henry and Payne (1997) use the “long memory in stochastic 

volatility” model proposed by Harvey (1993) to describe the possibility of long- 

range dependence in the volatility of three intra-day foreign exchange data series. 

The process is described as

rt =  cre ^ £ t , Et ~  N (0,1) (8.9)

(1 -  L)dh,  =  u t (8.10)

257



where u t is a short memory stationary process. In Henry and Payne (1997) r t 

is the intra-day foreign exchange return series. They found tha t rt has long 

memory in the volatility measured by logr^. Henry and Payne (1997) also 

found strong seasonal behaviour in log and used a Double-Window smoother 

to remove this seasonality. However, the volatility may have SCLM. In this case 

a more appropriate model might be the “seasonal long memory in stochastic 

volatility” tha t can be defined by (8.9) and

h
J J (1  — 2Lcosu>j -f L 2)djht =  ut . 
j=o

Similar extensions to cover the possibility of seasonal or cyclical long memory 

in the volatility (conditional variance) and the mean can be carried out in most 

models used in Financial Economics.
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