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A bstract

This thesis analyses some of the more mathematical aspects of the Probably 

Approximately Correct (PAC) model of computational learning theory.

The main concern is with the sample size required for valid learning in the 

PAC model. A sufficient sample-size involving the Vapnik-Chervonenkis (VC) 

dimension of the hypothesis space is derived; this improves the best previously 

known bound of this nature.

Learnability results and sufficient sample-sizes can in many cases be derived 

from results of Vapnik on the uniform convergence (in probability) of relative 

frequencies of events to their probabilities, when the collection of events has 

finite VC dimension. Two simple new combinatorial proofs of each of two of 

Vapnik’s results are proved here and the results are then applied to the theory 

of learning stochastic concepts, where again improved sample-size bounds are 

obtained.

The PAC model of learning is a distribution-free model; the resulting sample 

sizes are not perm itted to depend on the usually fixed but unknown probability 

distribution on the input space. Results of Ben-David, Benedek and Mansour 

are described, presenting a theory for distribution-dependent learnability. The 

conditions under which a feasible upper bound on sample-size can be obtained 

are investigated, introducing the concept of polynomial Xcr-finite dimension.

The theory thus far is then applied to the learnability of formal concepts, 

defined by Wille. A learning algorithm is also presented for this problem.

Extending the theory of learnability to the learnability of functions which 

have range in some arbitrary set, learnability results and sample-size bounds, 

depending on a generalization of the VC dimension, are obtained and these 

results axe applied to the theory of artificial neural networks. Specifically, a 

sufficient sample-size for valid generalization in multiple-output feedforward 

linear threshold networks is found.
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Preface

This thesis studies the sample complexity of Valiant’s Probably Approximately 

Correct model of learning, together with related problems in probability theory, 

and applies the results to the theory of formal concepts and to the theory of 

learning in artificial neural networks.

Chapters 1 and 2 are introductory. Chapter 1 introduces the idea of PAC learn­

ability and sets up the essential definitions. Chapter 2 discusses the Vapnik- 

Chervonenkis dimension for collections of sets and Boolean-valued functions. 

It contains a new treatment of the VC dimension of half-spaces of Euclidean 

space, a new bound on the number of Boolean threshold functions on a given 

number of variables, and a result which extends a result of Haussler and Welzl 

concerning the VC dimension of a graph.

In Chapter 3, we obtain bounds on the sample-size required for learnability, 

these bounds depending on the Vapnik-Chervonenkis dimension of the hypoth­

esis space. First, a result is obtained which bounds the probability of present­

ing a “bad” training sample. This involves the expected values of the index 

functions, which we show exist if the hypothesis space is universally separable. 

The result is applied to obtain an upper bound on sufficient sample-size which 

is better than  previously obtained bounds. We end the chapter by discussing 

lower bounds on necessary sample-size.

Chapter 4 concerns the uniform convergence (in probability) of the relative 

frequencies of events in some class of finite VC dimension to their probabilities. 

This is an area of probability theory which underpins learnability theory (and 

in particular sample-sizes). Two simple new combinatorial proofs of each of
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two results of Vapnik are given. We also give a quick and easy proof of a 

learnability result of Haussler, derived in the previous chapter as a corollary 

of the more general analysis presented there.

In Chapter 5, we apply the uniform convergence results to obtain results on the 

approximation of stochastic concepts by spaces of Boolean-valued functions of 

finite VC dimension. This idea is not new, but we discuss the measurability 

aspects and the resulting sample-size improves upon the best previously ob­

tained. We end the chapter with a brief discussion of possible applications of 

this theory.

We discuss non-uniform learnability in Chapter 6, describing sufficient condi­

tions on a hypothesis space for it to be learnable in a distribution-dependent 

manner. An im portant problem is to guarantee not merely a finite but a 

feasibly small sufficient sample-size. The concept of polynomial X<7-finite di­

mension with respect to a particular distribution is introduced and is shown 

to imply distribution-dependent learnability with feasible sample-size.

In C hapter 7, we apply the theory of learnability to Wille’s formal concept 

analysis, showing th a t in contexts having certain boundedness properties, the 

set of formal concept extents has bounded VC dimension and is thus learn­

able. An algorithm for learning formal concept extents in a finite context is 

presented.

Chapter 8 discusses the generalizations of VC dimension and learnability to 

spaces of functions which have general range. We describe how a generalized 

VC dimension may be defined for such spaces and we define stochastic con­

cepts with range in some countable set. The results of previous chapters are 

then applied to give learnability results for such functions and such stochastic 

concepts.

Chapter 9 uses the framework and results of Chapter 8 to study the sample-size 

required for valid generalization in certain types of artificial neural network. 

We briefly define and discuss artificial neural networks and discuss previous
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results on sample-size. A bound is obtained on the (generalized) VC dimension 

of the space of functions computable by a feedforward linear threshold network 

with real inputs. This result leads to a sample-size upper bound which depends 

on the number of computation nodes and the number of weights but not on 

the number of output nodes. This extends a result of Baum and Haussler on 

feedforward linear threshold networks with a single output node.
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Chapter 1 
PAC Learning and Learnability

1.1 Introduction

In this introductory chapter we describe Valiant’s Probably Approximately 

Correct (PAC) model of learning. This is a stochastic model in which a hy­

pothesis, from a set of hypotheses, is chosen which is meant to approximate 

to a target concept, usually also from the same set of hypotheses. It is shown 

that PAC learning can be achieved if there is an efficient consistent hypothesis 

finder and if the hypothesis space is potentially learnable.

We then formalise potential learnability further, describing the measurability 

constraints to be imposed upon the spaces we consider. We end the chapter 

with a proof that any finite hypothesis space is potentially learnable.

1.2 Probably Approxim ately Correct Learning 

M otivation  and inform al definitions

A few years ago Valiant [33, 34] described a computational model of learning 

which Angluin [1] has called the Probably Approximately Correct (or PAC) 

learning model.

Suppose that a set X  of objects is partitioned into two sets, called the positive 

and the negative examples. We think of this partition as representing a concept 

or a classification of the objects; formally, the concept is the set of positive 

examples or the characteristic function of this set. In what follows, we often 

identify subsets with {0, l}-valued functions; given a subset, we may represent
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it by its characteristic function, and given a boolean-valued function, we may 

identify it with its support. A learner, which may be thought of as a machine 

or algorithm, has to choose a {0, l}-function (from a given set of functions) 

which is supposed to approximate to the concept. The only information given 

to the learner is the set of functions available to choose from, a finite sequence 

of objects and information as to whether each of the objects in this sequence 

is a positive example or a negative example of the concept being learned. The 

PAC model is a stochastic model of learning in which it is required tha t, in a 

probabilistic sense to be made precise below, the learner generalizes well from 

the examples presented to it during the training procedure. The description we 

give below is framed in terms of boolean-valued functions, but can be modified 

in the obvious way to refer to subsets of the set of inputs.

Roughly speaking, the idea of PAC learning is that a function

c : X - > { 0 , 1 )

(the target function  or target concept) from H  is PAC learnable by a set of

functions H  (the hypothesis space) if there is an algorithm C (the learning

algorithm) which takes as input a sequence of randomly chosen elements of X , 

labelled with the values of c on these elements (a training sample), and returns 

(a representation of) a hypothesis h E H  such that the following holds:

For a sufficiently large training sample, there is high probability that the re­

sulting hypothesis is approximately equal to c.

The input space X  is assumed to have a fixed probability measure / i  defined 

on it and, for a sample of length m, the probability referred to above is the 

product probability measure /xm on X m. This is the distribution from which 

the training sample is randomly drawn. Since the measure is generally un­

known, we require tha t the above condition holds for any probability measure 

pt on X .  Additionally, since the target concept c is not known to the learner, 

we require that the above condition holds for any c in i f .  The “sufficiently 

large” sample-size above must not depend an the distribution or on the target
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concept, for neither of these is known by the learner: In attem pting to learn 

some target concept from H , the learner has to be able to guarantee tha t if it 

takes a certain number of randomly drawn training examples, it will probably 

output a good approximation to the target concept. This guarantee clearly 

cannot be made in general if the sufficient length of training sample depends 

on things unknown to the learner.

Form al defin ition

We define the actual error erM(/i,c) of the hypothesis h with respect to c and 

H to  be the probability that on a further randomly chosen input, h and c 

disagree. T hat is,

er^(h, c) =  fi{x  £ X  : h(x) ^  c(r)}.

(Assume for the moment that this measure is defined; we address measurability 

conditions later in the chapter).

We can formally define a training sample from X  of a hypothesis from H. 

Suppose tha t c £ H  and that

( r i , r 2, . .. , r m) £ X m.

Then the training sample c(x) of c on x is the vector x labelled with the values 

of c ( r i ) , . . . ,  c(xm). That is,

c(x) =  ((a?!, c(zi)), (x2,c (x2) ) , . • •, (x m,c (x m))) .

Then the above informal description of PAC learning a particular concept may 

be formalised and used to define the PAC learnability of the hypothesis space 

H. (Recall that, by the above discussion, we require every hypothesis from H  

to be learnable and the sufficient sample-size to be independent of both the 

distribution and the particular hypothesis chosen to be the target concept).
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D e fin itio n  1.1 The hypothesis space H  is PAC learnable i f  there is an 

algorithm C taking as input training samples from X  o f hypotheses from H  

such that the following holds: Given an accuracy parameter 0 <  e <  1 and a 

confidence parameter 0 < S < 1, there is a positive integer mo =  mo(e,6) (a 

sufficient sample-size) such that

m  >  m 0 = >  p m {x £ X m : erM (£  (c(x )), c) <  e} >  1 — 6, 

for any probability measure p on X  and for any c in H . □

C o m p lex ity  o f  th e  le a rn in g  a lg o rith m

Usually, some complexity conditions must be imposed on the learning algo­

rithm  C. For feasible computation, C should run in a time which is polynomial 

in various parameters characterizing the complexity of the particular learning 

problem. In particular, C should run in a time polynomial in 1/e and 1 /6, 

where e and 6 are (respectively) the accuracy and confidence parameters. This 

complexity condition can be met if C runs in a time polynomial in its input 

and if the sufficient sample-size mo(e, 6) is polynomial in 1/e and 1/S.

If £  is a learning algorithm for H  which runs in a time polynomial in 1/e 

and 1 /£ , we say H  is polynomially learnable by C. (More generally, it is 

often appropriate that the algorithm should be required to operate in a time 

polynomial in some measure of the complexity or size of both the input space 

and the target concept. See, for example [26]).
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1.3 Potential Learnability

P oten tia l learnability and consisten t h yp oth esis finders

Informally, notice that H  will certainly be PAC learnable if for any c € H:

• W ith probability close to 1, any hypothesis from H  consistent with c on 

sufficiently many randomly chosen inputs from X  is approximately equal to c; 

and

• There is an algorithm C for finding a hypothesis from H  consistent with c 

on any training sample from X  of a hypothesis from H . Such an algorithm is 

called a consistent hypothesis finder.

The first condition leads to the following definition of potential learnability.

D efin ition  1.2 The hypothesis space H  is said to be potentially learnable 

i f  given e > 0 and 6 > 0 there is an integer m 0 =  mo(e,^) such that for all 

m > m  o,

p m {(xi ,X2 , . . .  , im)  E X m : v/i € H, t(x i) = h(xi)V i =*► erM(h) <  e} >  1 — 6, 

for any probability measure p defined on X } o ^ k  -^r <xM H □

We have not stipulated in this definition that m 0(e, 6) be polynomial in 1/e 

and 1/6  (a desirable property, by the discussion in the previous section). In 

fact, as a consequence of results presented later, if H  is potentially learnable 

then one can find a value of m 0(e, 6) which is polynomial in 1/e and 1/6.

It is not the aim here to discuss the algorithmic aspects of PAC learning, 

an area which has interested many researchers in recent years, and in which 

much work remains to be done (see, for example, [26]). Rather, we shall be 

concerned with the size of sample required for learning; tha t is, the sample 

complexity or information complexity of learning. For this reason, we study 

potential learnability and will refer to potential learnability from now on simply 

as learnability.
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1.4 The Input Space and the H ypothesis Space

We now specify the types of input space and hypothesis space we consider. 

These are obtained by imposing certain measure-theoretic and non-triviality 

conditions.

T h e input space as a probability space

Throughout, the input space X  is assumed to be either finite, countably infinite 

or a subset of Euclidean space R n for some n. In the first two of these cases, 

we take the <7-algebra E to be 2X, the set of all subsets of X .  If X  is a subset 

of the Euclidean space R n, we take E to be the Borel cr-algebra induced on 

X ; tha t is

E =  { £ n X : R e £ } ,

where B is the cr-algebra of subsets of R n generated by the subsets open 

with respect to (for example) the standard Euclidean metric. (An alternative 

description of this latter <r-algebra is as the cr-algebra of subsets of X  generated 

by the subsets of X  which are open with respect to the induced Euclidean 

metric on X .)

The probability distribution according to which examples are drawn is a prob­

ability measure /z defined on the cr-algebra E. When we discuss probability 

measures /z on X , we shall mean probability measures /z on the cr-algebra E 

(where E is defined as above for the various cases); tha t is, measures such that 

(X, E, /z) is a probability space. In particular, a statem ent of the form “For all 

probability measures /z on X ...” should be interpreted as “For all probability 

measures /z defined on the cr-algebra E, where E is the power set of X  if X  is 

countable and is the induced Borel <r-algebra if X  is Euclidean, ...” .
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T h e  h y p o th e s is  space

We assume that i f  is a set of E-measurable functions from X  to  {0,1}. This 

is equivalent to demanding that for each h in i f ,  the set fo-1 ( l)  belongs to E. 

W ith this measurability condition, it is possible as earlier to define the (actual) 

error of one hypothesis with respect to  another hypothesis as the measure of 

the set of inputs on which they disagree, this set being measurable. That is, 

the error er/i(/i, c) of h £ H  with respect to c G i f  is

e r c) = n { x  £ X  : h(x) ^  c(r)} ,

the probability tha t h and c disagree on a randomly chosen input.

A hypothesis space i f  is said to be trivial if it consists of just one hypothesis, 

or if it consists of two hypotheses h and g such that

h(x) =  1 '4=>- g(x) =  0.

T hat is, a hypothesis space is trivial if it consists of one hypothesis or if it 

consists of two hypotheses which are complementary. Trivial hypothesis spaces 

are not interesting, and we assume throughout tha t any hypothesis space we 

discuss is non-trivial.

W ell-b eh av ed  h y p o th e s is  spaces a n d  u n iv e rsa l s e p a ra b ili ty

In order to discuss the further measure-theoretic conditions to be placed on 

the hypothesis spaces, we need some definitions.

Let 0 <  e <  1 and c £ H , and denote by B € the set of hypotheses from H  

which have error greater than e with respect to c. That is,

B € =  {h £ H  : erp(h, c) > e] .

Given any positive integer m  and any x =  (x \ , #2 , • • •, x m) £ X m , let

erx(/i) =  — \{i : h(xi) ^  c(z j )} | , 
m

the observed error of h on x with respect to c.

We define two sets which will be crucial in our analysis.
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D efin ition  1.3 W ith m ,c ,p ,e  as above, define

Qm =  Qm(c, p) =  {x € X m : 3 h e  B e with erx(h) =  0} .

Further, for a positive integer k and 0 <  r < 1, let

Jm+k =  J ^ +k(c ,r ,p )  =  {xy € X m+* : G B t s.t. erx(h) =  0, ery(h) > re} .

□

It will become clear later why these sets are of interest. The analysis presented

in Chapter 3 requires tha t for all m, Qm be a measurable subset of X m (with

respect to the product cr-algebra £ m) and that for all m ,k ,  «7m+* be a mea­

surable subset of X m+k (with respect to E m+*). Further, this must be true 

for all possible c, e, r and p. Ben-David (see [11]) has called hypotheses spaces 

with this property well-behaved.

D efin ition  1.4 The hypothesis space H  is well-behaved i f  the sets Qm and

J m+k defined above are measurable subsets o f X m and X m+k (respectively) 

for all c ,e ,m ,k ,r ,p .  □

This definition is an awkward one to have to work with. However, we can 

introduce a stronger restriction to place on H  which will imply th a t H  is well- 

behaved. This condition, known as universal separability, was introduced by 

Ben-David (see [11]).

D efin ition  1.5 The hypothesis space H  is universally separable i f  there is a

countable subset H q o f H  such that any hypothesis in H  is the pointwise lim it 

o f some sequence in H q . In this case, we say that H  is universally separable 

by H 0. □

Thus, H  is universally separable by H q if the following holds: Given h G H  

there is a sequence (h{)°Z1 of hypotheses in H q such th a t for every x £ X ,  

there is n(x)  for which

i >  n(x) h{(x) =  h(x).
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Ben-David proved (essentially) the following result. We omit the proof, but 

see Blumer et al [11].

P ro p o s itio n  1.6 I f  the hypothesis space H  is universally separable then 

H  is well-behaved □

Thus there is an easily-described condition on H  which ensures that H  is 

well-behaved and therefore that all necessary sets are measurable.

1.5 Learnability: Further Discussion

The aim of this section is to again formally define learnability and to develop 

further the notation and terminology that shall be used in later chapters.

W ith the measurability details behind us, we shall now suppose that all sets 

we wish to measure axe indeed measurable. This is the case if X  and H  are as 

described in the previous section.

A p p ro x im a tin g  th e  ta rg e t  co n cep t b y  a  h y p o th e s is

Above, we gave a natural definition of how good an approximation a given 

hypothesis h is to the target concept c. The error erM(ft, c) of h with respect to 

c (and the underlying probability distribution p on the input space) is defined 

to be the probability that h and c disagree on a randomly chosen input. We 

shall often use notation er^(h)  when c is clear from the context.

Given a target concept c from H  and x =  (xi,  #2 , • • • 5 £ X m, we denote

by H[x, c] the set of hypotheses from h which agree with c on x \ , . . . ,  x m and 

we call this set the set of hypotheses consistent with c on x. Thus,

H[x,c] — {h G H  : h(x{) =  c(xj) (1 <  i <  m)}

=  {h E H  : erx(h) = 0} .

When the target concept c is clear from the context, we shall denote H[x, c] 

simply by H  [x] and describe it as the set of hypothesis consistent on or with 

x.
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Given any subset F  of i f ,  we may define hazM(F, c), the haziness of F , to be

hazM (F, c) =  sup (erM( / )  : /  G F} .

Again, if c is clear, we use the notation hazM(F). Thus, hazAt(F ) is a measure 

of the worst error with respect to c and fx tha t any hypothesis from F  can 

have.

Given that the learner chooses a hypothesis consistent with the target con­

cept on the training sample, the definition of learnability is motivated by the 

requirement that the sample-size m is large enough so th a t the sample is rep­

resentative of the target concept on the whole of the input space. That is, we 

wish to ensure that m  is large enough so that there is a low probability that 

a training sample x of length m is “bad” . We can formalise this using the 

notation developed in this section:

The sample is “bad” if there is some hypothesis from H  which is consistent with 

the target on the sample but has error larger than e (the desired accuracy) with 

respect to the target concept (and the probability distribution on the input 

space). Thus, the set of bad samples of length m  is precisely the set

g = {X6 r : 5 enF[x,c]/ i},

defined earlier.

We wish the event Q to have a low probability. The probability referred to 

here is the natural product measure fxm on the product <r-algebra £ m. Given 

a (small) real number 8 strictly between 0 and 1, one could demand that

r ( Q )  <  «•

As earlier, we call 8 the confidence parameter and we call the quantity 1 — 8 

the confidence.

We can now re-define learnability.
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D efin ition  1.7 The hypothesis space H , defined over the input space X  

is learnable i f

• for every target concept c E H ,

• for every probabihty distribution p on (the cr-algebra E of subsets o f ) X ,

• for every accuracy parameter e and confidence parameter 8, (0 <  e, 8 < 1), 

there is a sufficient sample-size mo =  m 0(e,8) such that

m  > mo = >  p m {x E X m : hazM (H [x, c]) >  e} <  8.

□

That is, H  is learnable if there is a sufficient sample size mo =  mo(e, 8) such 

that given any target concept c from H  and given any sample of m >  mo inputs 

chosen according to any fixed distribution p on X ,  if h E H  is consistent with 

c on the sample then, with probability at least 1 — 8, h is an approximation to 

c with error less than  e.

In Definition 1.7, we usually omit explicit reference to any target concept c, 

since the defining property is required to hold for all c in H . Therefore, from 

now on, we shall write the last line of the definition as

p m {x E X m : haz/i(ff[x]) >  e} <  8.

Notice tha t the mo of the definition does not depend in any way on p  or 

the target concept c. The learner knows neither the target concept nor the 

distribution and so must be able to use a sample of a size independent of these 

to be guaranteed good generalization (with fixed high probability).
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1.6 Finite H ypothesis Spaces

The definition of learnability may at first sight look difficult to satisfy in gen­

eral, because although it must hold for any probability distribution on the 

input space and for any target concept from the hypothesis space, the suffi­

cient sample-size must be independent of both the distribution and the target. 

We show here tha t any finite hypothesis space is learnable. This is the easiest 

of the learnability results and can be regarded as “folklore” . The r esult is not 

too surprising*- given a large enough -sample, with high probability the sample 

contains moot of the significant inputs (that is, those which1 h are-a  hi-gh-proly- 

ability) and if-a hypothesis h is found whieh agrees with the target concept on 

th is-sampley-it-should bo a good approximation to e .

Indeed, suppose th a t H  is a finite set of {0, l}-valued functions defined on an 

input space X  and tha t c E H . Let /i be any probability measure defined on 

X  and suppose tha t h E H  has error er^(h)  >  e with respect to c and fi; that 

is, h E B e. Since er/i(/i) > e, we have

f i { x  E X  : h(x) =  c(r)} =  1 — erM(/i) <  1 — e.

Therefore

Hm {x e X m : h <E H[x]} < (1 -  e)m.

This holds for any h E B € and therefore
{x E X m : B e fl H[x] ^  0} =  //m {x E X m : 3h E B e such tha t h E H[x]}

<|JT| ( l - 6 ) ro.

Now, for any 0 <  e <  1 and for any positive integer m,

(1 — e)m < exp(—em).

Therefore

pLm {x E X m : haz /i(LT[x]) >  e} <  \H\ exp (—em).

Now,

'?)•
and so we have shown:

\H\ exp(—em) < 6 m >  -  log T
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T h e o re m  1.8 I f  H  is a finite hypothesis space then H  is learn able. A  

suitable value o f m 0(e, 6) is

m 0(e, <S) = M 1?)'
□

Notice that this proof relies very heavily on the finiteness of H  and can in no 

way be extended to infinite H . That learnability can hold at all for infinite 

hypothesis spaces will be the subject of Chapter 3.
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Chapter 2 
The Vapnik-Chervonenkis D im ension

2.1 Introduction

We have seen that any finite hypothesis space is learnable. A key problem 

is to determine which infinite hypothesis spaces are learnable. To this end, 

one can make use of the Vapnik-Chervonenkis dimension or VC dimension, a 

combinatorial parameter associated with a hypothesis space. This parameter, 

introduced by Vapnik and Chervonenkis [36] and discussed in [19], can, in a 

sense, be regarded as a measure of the expressive power of the space.

2.2 The Vapnik-Chervonenkis D im ension  

Shattering

Suppose that H  is a collection of subsets of the set X .  For any finite subset S  

of A , let S  fl H  be the collection

s n H  = { S n h :  h e  H}

of subsets of X.  We shall call the sets of S  fl H  the dichotomies o f S by H. We 

use this term  as each h E H  creates a dichotomy of S; a partition of S  into 

two parts. The set S  is said to be shattered by H  if the set of dichotomies of S  

by H  is the set of all subsets of S. Thus, S  is shattered by H  if every subset 

T  of S  can be expressed as

T = snh,

for some h £ H.
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If i f  is a set of {0, l}-valued functions, we say tha t a subset S  of X  is shattered 

by i f  if 5  is shattered by the collection

H - \ i )  = { h - 1( i ) - . h e H }

of subsets of X .  Alternatively, if S  =  { r i , . . .  , r m}, then S  is shattered by i f  

if the vectors

yield all binary vectors of length m  as h runs through i f .  We may also define 

the shattering of a vector in X m. The vector x =  ( z i , . . . , £ m) G X m is 

shattered by i f  if x i , X 2 t . .. , x m are distinct and if the set { r i , . . . , r m} is 

shattered by if; that is, if any binary vector b of length m  can be expressed 

in the form

b =  ( /i(z i) , .. . , h ( x m) ) ,

for some h G i f .

The index function

For a collection of subsets i f  of a set X  and for any finite subset S  of X ,  the 

number of possible dichotomies of 5  by i f  is at most the number of distinct 

subsets of 5; that is, 2 m where m  = l^l. Further, S  is shattered by i f  precisely 

when the number of such dichotomies is 2m. Thus a useful quantity to measure 

is the number of dichotomies of S  by i f .

Fix the positive integer m, and for an m-subset 5  of X , let IIm>/f(5 ) be the 

number of dichotomies of 5  by i f . Thus

I W (S )  = |{S r U :fc e iy } |< 2 " \

This defines a function
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from the set of all m-subsets of X  to the integers between 1 and 2 m. S  is 

shattered by H  if and only if IIm># (S ) =  2m. These functions, one for each 

positive integer m, can be subsumed by defining the function

m = l X 7

from the set of all finite subsets of X  to the set of positive integers by

nH(S) =  II |s |iH(S) (5  C X , |5 | <  oo).

Thus S  is shattered by H  if and only if II# (S ) =  2 l5L II#  (S) is called the 

index of S  in H  and II#  is the index function (for H).

Again, an analogous definition can be made for Boolean-valued functions de­

fined on X .  Fix a positive integer m, and for any x =  (x i , X2 , . . . ,  x m) £ X m , 

define the function

x* : H  -► {0, l } m

by

x*(/i) =  (h(x1) , . . . , h ( x m)).

Then the image of H  under x* is the set of all binary vectors expressible in 

the form (h(x i ) , . . . ,  h(xm)) for some h £ H.  W ith this in mind, we define

by

We then define

n m,H : X m —> {1 , 2 , . . . ,  2m}

n m>H(x) = |x*(J5T)| (x £ X m).

oo
n H : (J X m —> N

m=1

by

n H(x) = n m,„(x) (x 6 x m).

Thus x £ X m is shattered by H  if and only if 11# (x) =  2m. Again, II# (x) is 

called the index of x in H  and II#  is the index function (for H ).
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We remark that when H  is a set of Boolean-valued functions defined on X , for 

a finite subset S  of X , IIh (S ) is the cardinality of

H \ S = { h \ S : h e H ] ,

the set of functions in H  restricted to domain S.

T he grow th function and the V C  d im ension

The Vapnik-Chervonenkis dimension, or VC dimension, of a family H  of sub­

sets of a set X  is defined to be the supremum of the cardinalities of the subsets 

of X  shattered by H.  The definition allows for H  to have infinite VC dimen­

sion if for each positive integer m, there is an m-subset of X  shattered by 

H.

For a family H  of boolean-valued functions defined on X , the VC dimension is 

infinite if given any positive integer m, there is some x =  (x i , £2 , . . . ,  x m) £ X m 

such that every binary vector b of length m  can be expressed as

b =  (hixi) ,  . . . , h ( x m))

for some h £ H.  Otherwise, the VC dimension is the largest m  for which this 

holds.

If H  is a collection of subsets of a set X  or a collection of boolean-valued 

functions defined on X , we define the growth function (of H)

JlH : N  -> N

by

IIH(m) = max {UH(x) : x £ X m} =  su p IIm>H-

The same notation is used for the growth function and the index function, but 

this should cause no confusion. Then the VC dimension of H  is

VCdim(H) =  sup {m  : I I h ( ^ )  =  2m} ,
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where we take the supremum to be infinity if this set is unbounded. Clearly, if 

i f  is a set of subsets of X  and there is no m-subset of X  shattered by H  then 

there is no (m +  l)-subset of X  shattered by H.  An analogous observation 

holds for the case in which H  is a set of functions. Therefore, the VC dimension 

of H  is either infinity or is the least integer d such that

UH(d) = 2d, UH( d + l ) ^ 2 d+\

The following elementary observation (made, for example in [19]) applies when 

H  is finite.

P ro p o s itio n  2 . 1  Let H  be a finite set of  subsets o f a set X  (or, equivalently, 

o f Boolean-valued functions on X ). Then H  has a finite VC dimension o f at 

most log2 \H\.

P ro o f  If H  shatters an 6 -subset of X , then there are at least 29 distinct 

sets (or functions) in H , at least one for each dichotomy of the shattered set. 

Therefore

2’ < \ H \ ,

and hence

s <  log2 \ H \ .

The result follows. □

The following observation will prove useful later in this chapter.

P ro p o s itio n  2 . 2  I f  H  is a set of  subsets o f a finite set X  (or, equivalently, 

o f Boolean-valued functions defined on X ) , then

\H\ = Uh ( \X\ ) .

P ro o f  Two members of H  are distinct if and only if they induce distinct 

dichotomies of X , and therefore \H\ is the number of dichotomies of X  by H.  

That is,

Iff I = nH(X).
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The result follows since, clearly, II//(X ) =  II//(|-X"|). □

Sauer’s lem m a

As one might suspect, the growth function for a set H  of sets or Boolean­

valued functions can be related to the VC dimension of H.  We know that if 

H  has infinite VC dimension then, by definition, for all positive integers m, 

II# (ra) =  2 m. When H  has finite VC dimension d then for all m  less than 

or equal to d, II#  (m) =  2m, and for all m greater than d, 11# (m) < 2m. An 

interesting and useful result is that, although the values of II# (m ) for m  < d 

are the values of the exponential function 2 m, the growth function is actually 

bounded by a polynomial function of m.

Before proving this result, known as Sauer’s Lemma, in the form we require, 

some preliminaries axe needed. (Actually, the result we seek is a corollary of a 

result of Sauer, but we will refer to it as Sauer’s Lemma).

Following Vapnik and Chervonenkis [36], for d, m > 1, we shall denote by 

$(d, m) the maximum number of components or cells into which it is possible 

to partition d-dimensional Euclidean space by means of m hyperplanes.

It can be shown that

f 2 m if m < d
, m ) ~  \ E t = o  (? )  if ™ > d -

We extend the definition of $  according to this formula, defining $(0, m)  =  1 

for all m  > 0 and $(d, 0) =  1 for all d > 0. An im portant observation is that 

the function $  satisfies the relation

$(d, m)  =  $(d, m  — 1 ) +  $ (d  — 1 , m  — 1 ).

The following result is essentially due to Sauer [29] and our proof is similar to 

that in [19].
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T heorem  2.3 I f  i f  is a hypothesis space o f finite VC dimension d then for 

all positive integers m,

n jj(to) <  $(d, m).

In particular, for m  > d,

n , w s £ ( ” ) .
* = 0  x  7

P ro o f  We prove the result for the case in which i f  is a set of subsets of the 

space X .  (The result for i f  a set of Boolean-valued functions defined on X  

follows immediately from this).

The result clearly holds true for d =  0, for in this case, for any positive integer 

m, both sides of the inequality are equal to 1. The result also clearly holds 

when m =  1 and d >  1, for we have IIh(1) <  2 =  $(d, 1). Assume therefore 

that m  > 0, d > 0. Assume also, inductively, that if G is any hypothesis 

space of VC dimension at most d, then I Ig (^ )  <  $(d, m ) and tha t if G is any 

hypothesis space of VC dimension at most d +  1 then I Ig (^ )  5: $ (d  +  1, to). 

Now suppose that i f  is a hypothesis space of subsets of X  and th a t i f  has VC 

dimension at most d +  1. Let S  C X  be an (m -f l)-subset of X  and let

H s = s n H  = { s n h :  h e  H}

be the set of dichotomies of S  induced by if .  Clearly, by definition,

\Hs \ = U h (S).

Choose x E 5, and let

H s  -  x =  {T \  {x} : T  e  H s } = {(5 fl h ) \ { x } :  h e  H ]

and

Then

H s  = { T  e  H s  : X £  T, TU  {x} e H s } .



To see this, observe that, under the mapping which removes x  from the sets 

of Hs,  any two sets of the form T  and T  U {x} map to the same set. T hat is,

\Hs - x \  = \ { T \ { x } : T £ H s } \

= |ffs | -  |{I7 € H s  : x  $  U, U = T \ {x} for some T  € H s }|

= |H s | - |^ s | .

Now,
\ H s ~ x \  = |{ (S 'D /i) \{ x }  : h e H } \

=  \ { ( S \ { x } ) n h : h e H } \

=  n „ ( s \ { x } )

< $(d  +  1 , m), 

by induction, since S  \  {#} is an m-set. Now consider

H S = { h e H s  : x < ? h , h U { x }  G #<?} C H s

as a hypothesis space of subsets of S \  {x}. Then, by Proposition 2 .2 ,

\Hs \ =  n l i s ( s \ { x } ) .

We claim that the hypothesis space H 5  has VC dimension at most d. To see 

this, suppose that R  C S  \  {x}  is shattered by Hs-  Clearly, x £  R. For any 

subset A  of R , there is h E H s  such that A  = R  fl h. Now, x $  A, x £  h and 

h U {rc} E Hs,  (by definition of H 5 ). Therefore,

A  =  (R  U {x}) fl h

and

A  U {x} =  (R  U {x}) fl (h U {ar}) .

It follows that the set R U {re} is shattered by H s  and \R\J {z}| <  d +  1 , since 

H s  has VC dimension at most d +  1 . Hence \R\ <  d, and so H s  has VC 

dimension at most d. By induction,

|ffs |= n ^ ( S \ { x } ) < $ ( d ,m ) .
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Therefore,
n H(S) = \Hs - x \  +  \Hs\

< <&(d +  1 , m ) +  $(d, m)

— $(d  +  1 ,m  +  1 ),

and the result follows. □

The result we seek is a corollary of this, and the following result from [11] 

takes us some way towards it.

P ro p o s itio n  2.4 For m  > d >  1, we have

. 2 m d
<S>(d,m) <  — .

P ro o f  If d =  1 then

$(d, m) =  m  +  1 < 2 m.

If m  =  d > 1 then $(d, m) =  2d. Now, for d > 1 , we have

( 1 + d
d 1

1 +  ~ ) >  1 +  d — — 2 , 

and therefore, making the obvious inductive hypothesis,

2d+1 < 2“* 

< 2 { d + i V d *

=  2

d )  d\ 
(d +  l) ''
(d + 1 )! ’ 

verifying the result for m  =  d >  1 .

Suppose that m  > d > 1 . Now,

$(d  +  1 , m  -f 1 ) =  $(d  +  1 , m) +  $(d, m),

so it suffices to prove that

m d+1 n m d (m  + l ) d + 1

( d + 1 )! d! “  (d + 1 )! '
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This is true if and only if
m M  +  ( 1  +  d)m d <  (m +  l ) d + 1

(d +  m  +  1 )m d <  (m  -f l ) d+1

d +  m +  l  (m  +  l ) d+1 
m  ~  m l

< ( . + i fm  )  \  m j

,.)d+1 

f  d 4-1 \  /
1 +

and this last inequality follows from the binomial theorem. □

We shall call the following result Sauer’s Lemma.

T h e o re m  2.5 [S au er’s Lem m a] I f  H  is a hypothesis space o f finite VC  

dimension d > 1 then for all positive integers m  > d, we have
_  . . / e m \ d
n « ( m ) C ( - J )  •

P ro o f  In view of the preceeding two results, we have, for m  > d,

m d
n H(m) < $ (d ,m ) <  2 — , 

and therefore it suffices to show that for all m >  d > 1 ,

\ e  J
This can be proved using Stirling’s Approximation, but we shall give a simple 

proof by induction on d. The result clearly holds when d =  1. Making the 

inductive hypothesis, for d > 1 we have

(d +  1 )! =  (d, +  1 ) d\ >  (g? +  1 ) 2  •

It suffices to prove that

d V  n f d +  l \ d+1
(d +  1) 2 ( -  ) > 2  

This is true if and only if

l  +  d )  < e >

which is true for any d >  1. The result follows. □

This last proposition shows that the function 11#(ra) is bounded by a polyno­

mial in m  of degree d, where d is the VC dimension of H.
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2.3 Examples

R ays on th e real line

We start with a very simple example to illustrate the ideas of this chapter. A 

ray on the real line is an interval of the form (—0 0 , a] for some a £ R . It is 

trivial to see that if x and y are real numbers satisfying x < y, then one cannot 

find a real number a such that y E (—0 0 , a] and x  0  (—0 0 , a]. T hat is, if X  is 

taken to be the real line and H  is the set of all rays on the real line, then

V C dim (tf) <  2.

But H  certainly shatters any singleton subset of X  and therefore H  has VC 

dimension 1.

Let

xi < x 2 < . . .  <  x m 

be any m  distinct real numbers and let

S  =  {x1, x 2, . . . , x m} .

Then the dichotomies of S  by H  are the empty set and the sets

{ # ! , . . . ,Xk} , (1 <  k < m).

That is IIH(S) = m  +  1. Clearly, II//(m ) =  m +  1 since any set of m  distinct 

points on the real line has the same number of dichotomies by H.  Compare 

this with Theorem 2.3, which gives the result

n H(m) < 1 +  m.

Therefore we can obtain equality in this theorem, and the bound of the theorem 

is tight. Later, we exhibit a general family of hypothesis spaces for which 

equality is achieved in Theorem 2.3.
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H alf-spaces o f E u c lid ean  space

If we allow the H  of the previous example to additionally contain all intervals 

of the form [6, oo) for real numbers 6, then the VC dimension of the resulting 

space Hi is 2. This hypothesis space can be described as the set of all closed 

half-spaces of 1-dimensional Euclidean space.

Consider now the set H 2 of closed half-spaces of R 2, and suppose th a t S  is a 

set of four points in R 2. Observe that T  C S  is a dichotomy of S  by H 2 if 

and only if T  and S \ T  can be separated by a hyperplane (that is, a line). If 

any three of the points of S  are collinear then the two of these points farthest 

from each other are not separable from the middle one by a hyperplane (line), 

and therefore not all subsets of S  can be obtained as dichotomies of S  by H.  

So suppose then that no three points in S  are collinear. Then there are two 

possibilities to consider; either all four points lie on the boundary of the convex 

hull of S, or there is one point lying in the interior of the convex hull of S. 

In the first case, two opposite points cannot be separated from the other two 

points by a hyperplane, while in the second case, the point lying inside the 

convex hull is not separable from the other three points by a hyperplane. In 

all cases, then, S  is not shattered by the set of half-spaces and therefore H 2  

has VC dimension at most 3. But it has VC dimension at least 3 since any 

(non-degenerate) triangle of points can be shattered.

More generally, we have

T h e o re m  2.6 If H n is the set of  half-spaces o f R n then H n has VC di­

mension n +  1.

P ro o f  Firstly, we observe that for a finite set S  of points of R n, the subset 

T  of S  is a dichotomy of 5  by H n if and only if T  and S' \  T  lie in different 

open half-spaces on either side of some hyperplane of R n. T hat is, T  is a 

dichotomy of S  by H n if and only if there is some hyperplane such tha t the 

points of T  lie strictly on one side of the hyperplane, and the points of S \ T
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lie strictly on the other side of the hyperplane. (Because S  is finite, we can 

insist no points of T  or S  \  T  lie on the hyperplane). We shall say tha t T  and 

S  \  T  are linearly separable if this condition holds. Now, open half-spaces are 

convex subsets of R n. It follows that if T  and S \ T  are linearly separable by 

the hyperplane L, then the convex hulls of T  and S \ T  lie strictly on different 

sides of L  and therefore have no points in common. (We interpret the convex 

hull of the empty set as the empty set). Conversely, if T  C S  and the convex 

hulls of T  and S  \  T  do not intersect then T  is a dichotomy of 5  by H n. 

Now, Radon’s theorem [15] asserts that if S  is any set of n +  2 points in 72- 

dimensional Euclidean space, then there is a partition of S  into two non-empty 

disjoint subsets Si and S 2 such that the convex hulls of S\ and S 2 intersect. 

It follows that Si and S 2 are not linearly separable and therefore that Si and 

S 2 are not dichotomies of S  by Hn. Therefore Hn has VC dimension at most 

n +  1.

Conversely, let o denote the origin and, for 1 <  i <  72, let e* be the point 

of R n with a 1 in position i and every other entry 0. Then it is easy to see 

that for any T  C S  =  {o,e1?. . .  ,en} , the convex hulls of T  and S  \  T  have 

empty intersection. Therefore, S  is shattered by Hn. Consequently, the VC 

dimension of Hn is at least 72 +  1, and the theorem follows. □

We now show that Theorem 2.3 is tight, and that equality is achieved for some 

hypothesis space of each finite VC dimension.

For any 72, let Gn be the set of all subsets of R ” of the form

gy = { x £  R n : (x, y) > 1},

where (x, y) denotes the inner product of x and y. We shall call the space Gn 

the space of one-side half-spaces of R n. Observe that the members of Gn are 

precisely the closed half-spaces of R n not containing the origin. We have
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T h e o re m  2.7 Let Gn be the set o f all one-sided half-spaces o f R n, as

defined above. Then for any positive integer m ,

HGn( m ) =  $ (n ,m ).

P ro o f  The proof of this is as in [36]. Given any x £ R n, there is a partition 

of G into those gy such that (x, y) >  1 and those gy such th a t (x, y) <  1, and 

an obvious corresponding partition of R n. Let

S  =  {xi,. . . , x TO}

be any m-subset of R n. Then from S  we obtain a partition of R n by m  

hyperplanes into a number of components or cells such that for all vectors 

y belonging to one particular cell, gy induces a particular dichotomy of S,  

and this differs from the dichotomies induced by gz for z in any other cell. 

Thus the number of dichotomies of S  by G is the number of distinct cells 

obtained, and I Ig (^ )  is therefore the maximum number of components into 

which it is possible to partition n-dimensional Euclidean space by means of m  

hyperplanes. By definition, this is $(ra,m). □

We now show

T h e o re m  2.8 W ith Gn as above, Gn has VC dimension n.

P ro o f  Suppose that S  is any set of n + 1 points in R n and suppose, with the 

view to obtaining a contradiction, that S  is shattered by G =  Gn. Observe 

that the origin o cannot belong to any set in G , since for any y, the inner 

product of o and y is 0, which is less than 1. Therefore, the origin is not one of 

the points of S. Now consider the set S* =  S  U {o}. This is an (n +  2)-subset 

of R n, and so, by Radon’s theorem, has a partition into two subsets S* and 

such that the convex hulls of S* and intersect. Now, one of 5*, contains 

the origin; without loss of generality we suppose this is • Because the convex
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hulls of S* and S% intersect, there is no closed half-space h of R n such that 

S*C\h = S*. Let

Si =  ST \  {o} =  s t ,  s 2 =  s 2* \  {o}.

If, for some g 6 G, we have Si =  S  fl g, then

s* n 5 =  (ST u ST) n g

= (Si n g) U ((S \  Si) n g) U ({o} n g)

= Si = ST,

since o $  g. This contradicts the above. It follows tha t the set S  is not 

shattered by G and, consequently, G has VC dimension at most n.

Conversely, let the points e i , e2 , . . . ,  en be as before, and let

S  = {ei,e2 , . . .  ,e n} .

Then we claim that S  can be shattered by G. Indeed, consider S* =  S  U {o}. 

We saw in the course of proving the previous result that S* is shattered by 

the space of closed half-spaces of R n. Let T  be any subset of S', and let 

T* == T  U {o}. Then there is hi E Hn such tha t T  =  S* fl hi and there is 

h2 € H n such that T* =  S* fl /&2 * Now, hi is a closed half-space of R n and 

o 0  hi, so hi E G. Therefore there is gi =  hi E G such that T  =  S* fl g\. 

Further, since T* is a dichotomy of S* by H n, there is a hyperplane L  strictly 

separating T* from S* \ T *  =  S  \ T .  Therefore there is <72 £ G such that 

S \ T  =  S  fl </2 - (We take g2 to be that half-space determined by L  which 

does not contain the origin). It follows that S  is shattered by G and the VC 

dimension of Gn is at least n. The theorem follows. □

Theorem 2.3 implies, since Gn has VC dimension n, th a t IlGn( ^ )  is at most 

$ (n ,m ). Therefore, the inequality of the theorem becomes an equality for the 

spaces ( jn , and the theorem is tight.

A •positive half-space of R n is a set of the form

py = {x E R n : (x,y) >  0}, 
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for some y £ R n. We remark that in a manner similar to that of the proof of 

Theorem 2.8, one can easily show that the set of all positive half-spaces of R n 

has VC dimension n.

B oolean  threshold  functions

A Boolean function

/ :  {0, 1}" {0, 1}

is called a Boolean threshold function  or Boolean linear threshold function  if 

there is a vector

w =  (uq, w2, . • • , w n) £ R n 

and a constant 6 £ R  such that

f ( x i , z 2, • • •, xn) =  1 WiZi 4- w2x2 +  . . .  +  wnxn > 0.

That is, /  returns a 1 if the weighted sum of the inputs exceeds or equals a 

certain threshold, and returns a 0 otherwise. Geometrically, a Boolean thresh­

old function is determined by a closed half-space of R n; the inputs for which 

/  computes 1 are those vertices of the n-dimensional unit cube which lie on 

the side

{x : (x, w) >  8}

of the hyperplane

{x : (x, w) =  9} .

Thus the space Tn of Boolean threshold functions on n variables can be de­

scribed as the space of all closed half-spaces of R n, restricted to the unit cube. 

Therefore, the VC dimension of Tn, a restriction of a space of VC dimension 

n -f 1, is at most n -f-1.

But the set

S  { o ,e i,. . . , en}
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described earlier is a subset of the set of vertices of the unit cube, and is 

shattered by the space of closed half-spaces of R n. It follows tha t Tn has VC 

dimension at least n +  1. Therefore the VC dimension of Tn is n  +  1.

An interesting application of the VC dimension and Sauer’s Lemma is to use 

these results to bound the number of Boolean threshold functions on n vari­

ables. For a simple lower bound, note that since T  = Tn has VC dimension 

n -f 1, it follows from Proposition 2.1 that

\Tn\ >2n+1.

Muroga [24] has shown that

\Tn \ < 2n\

Using the powerful machinery described in this chapter, we can produce a 

significantly better upper bound.

T h e o re m  2.9 The set Tn o f Boolean threshold functions defined on {0,1}” 

satisfies
| j ^ |  _  q  ^ 2 n 2+ 3n - (n + 1) lo82( n + 1)^

P ro o f  Let X  =  {0,1}” be the input space to T  =  Tn. The VC dimension 

of T is 72 +  1 and therefore, by Proposition 2.2, we have

|T| = nr (|x|)

( ^ )
n+1/ e l-A I \<

e2" '  n+1
n  +  1

ne \  /  2e \ „ 2
2”

\72 +  1 /  \72 +  1 
_  Q  ^ 2 n 2+ 3n - (n + 1) lo82(n + 1) ^

□
2

Thus \Tn \ is significantly less that 2” . Compare this number with the total 

number of Boolean functions of n variables, which is 22n.

41



G raph neighbourhoods

Following Haussler and Welzl [19] we may, as a further example on the VC 

dimension, define the VC dimension of a graph. Let G =  (V,E)  be a (simple, 

loopless) graph with vertex-set V  and edge-set E . The neighbourhood of a 

vertex v is the set

N(v)  = {u 6 V  : {u,v} G E}  U {v},

the set of all vertices at distance at most 1 from v. Denote by N( G)  the set 

of all neighbourhoods of vertices of G,

N(G)  =  {N(v)  : v e V } .

Then N (G ), as a set of subsets of the set V , has a VC dimension, which we 

shall call the VC dimension of the graph G.

A graph G is said to be homeomorphic to a graph H  if (an isomorphic copy of) 

G can be obtained from H  by the addition and removal of vertices of degree 

two (the incidence being changed in the obvious manner). Further, a subgraph 

H  of the graph G = (V, E) is a graph of the form H  =  (Vi, Ei) ,  where V\ C V  

and E i C E.  We now show the following.

T heorem  2.10 I f  the graph G has VC dimension at least n, then G must 

contain a subgraph homeomorphic to the complete graph K n on n vertices.

P ro o f Suppose that S  is a set of n  vertices of G shattered by N(G)  and let 

x , y  be any two vertices in S  and suppose that x  and y are not adjacent in G. 

Since S  is shattered, the set {z,y} can be obtained as a dichotomy of S  by 

N(G).  Thus, there is a vertex w =  w(x,y)  such that

S  fl N( w)  =  {x , y}.

If w is one of x or y, say x , then the above condition implies that y E N(w)  — 

N(x) .  That is, if w is one of z, y, the above condition implies that x  and y are
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adjacent in G. Thus, w is neither x nor y and so w is some vertex in V  \  S  

such that the only vertices of S  adjacent to w axe x and y. This analysis holds 

for each pair of non-adjacent vertices in S.  Let

V\ =  S  U {w(x,y)  : x , y  € S, x , y  not adjacent in G}

where, for any non-adjacent pair x, y of vertices from 5, w(x ,y )  is, as above, 

any vertex of G such that N  (w(x, y)) fl S  =  {#, y}. Further, let E\  be the set 

of edges of G joining two vertices of S  or a vertex of S  and a vertex w(x,  y) of 

V\. Then the subgraph H  =  ( h i ,£*1 ) of G is homeomorphic to the complete 

graph on n vertices; in £ ,  any two vertices of S  are adjacent or there is a 

vertex of degree two in H  adjacent to each of the two vertices. The result 

follows. □

Note that it was not necessary for this result to have every subset of S  equal

to a dichotomy of S  by N(G);  rather, all we required was th a t every 2-subset

of S  be a dichotomy of S  by N(G).

43



Chapter 3
Bounding Sample Size w ith  th e VC D im ension

3.1 Introduction

We have already seen that any finite hypothesis space is learnable, but it re­

mains to consider the learnability of infinite hypothesis spaces. In this chapter, 

we show how to relate the VC dimension of a hypothesis space to the learn­

ability of the space and to the sample-sizes sufficient for and necessary for the 

learnability of the space to given accuracy with a given confidence. We first 

give a new estimate of the probability of a bad training sample, involving the 

expectations of the index functions rather than the growth functions. A new 

sufficient sample-size for learning in a space with finite VC dimension is given, 

improving the best known previous bounds. A proof of a simple lower bound 

on necessary sample-size in terms of the VC dimension of the hypothesis space 

is presented, and we use this to show that if a hypothesis space is learnable, 

then it necessarily has finite VC dimension. We also present lower bound re­

sults of Blumer et al [11] and Ehrenfeucht et al [13]. The results of this chapter 

combine to give a key result in computational learning theory, due to Blumer, 

Ehrenfeucht, Haussler and W armuth [11], which states tha t a hypothesis space 

is learnable if and only if it has finite VC dimension.
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3.2 Bounding the Probability o f a Bad Training Sample

D efin itions

Recall the conditions placed on X  and H  in Chapter 1. We assume throughout 

tha t H  is a non-trivial well-behaved hypothesis space defined on an input space 

X  and that E is a a -algebra of subsets of X  which will be the power set of X  

if X  is countable and will be the induced Borel er-algebra if X  is a subset of 

Euclidean space. Further, we assume that m, k are positive integers, c £ H  is 

some target concept, e, r  are real numbers strictly between 0 and 1 and fi is a 

measure such that (X, E, fi) is a probability space. We denote by B e the set

B e =  {h £ H : e r ^ h )  > e}

of hypotheses from H  which have error at least e with respect to target concept 

c. Q denotes the set

Q = =  {xG X m : hazn(H[x]) > e} ,

and J  denotes

J  =  J €m+*(c,r,//) =  {xy G X m+k : 3h G B e s.t. erx(h) = 0, ery(h) > re} .

Notice that Q could equally well be described as

Q =  { x G  X m : 3h G #[x] s.t. er^{h)  >  e} .

Since H  is a well-behaved hypothesis space, for any values of r, e, m, fc, for 

any c G H  and for any probability measure fi on (X, E), Q and J  will be 

measurable; tha t is, they belong to the product a -algebras E m and £ m+fc 

(respectively).

45



M easurability  o f  th e index function

Part of our main bounding theorem involves the expected value (or expecta-
R>01Aa4m

tion) of the index function, when this expected value exists. For anyjfunction, 

the expectation of the function exists if and only if the function is measurable. 

We have seen that if H  is universally separable then it is well-behaved. We 

now show th a t if H  is universally separable then the index functions IImjBe 

and IImt H  are E m-measurable.

We first need the following result, in which for

y =  ( y i , y 2 , . . . , y m )  e  { 0 , i } m

and h E i f ,  we define

h_1(y) =  . , z m) e  X m : h(xi) = y{ ( 1 <  i < m)} .

L em m a 3.1 Suppose that H  is a universally separable hypothesis space 

defined on an input space X  and that Ho is as in the definition o f universal 

separability Then , for any y E {0, l} m, we have

U  *_1(y) =  U  fc-,(y) €
h e H h e H 0

P ro o f  Suppose that

y = (yi,y2 , . . . ,ym)

and

x = ( x i , x 2, . . . , x m) e  ( J  fr-1 (y).
h e H

Then there is h E H  such that

h(xi) — yi (1 <  i < m).

By universal separability of H  by H q, there is a sequence of hypotheses

in Ho such tha t h is the pointwise limit of this sequence. Therefore, for each 

1 <  k <  m, there is n(h) such that

i >  n (k) => hi(xk) =  h(xk) = yk.
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Thus, for

n — max {n(k ) : 1 <  i <  k} ,

we have

X 6 ^n ^y )-

Hence

(J h~l (y) C (J /i_1(y),
heH heH0

and the reverse containment is obvious. Now,

fc_1(y) = ^-1({yi}) x ^-1({y2 }) x ...  x fc-1({ym}) e  s m,

and so

(J  7,-1 (y)>
heH

as a countable union of measurable subsets of X m, is measurable. □

This has the following implication.

P ro p o s itio n  3.2 I f  H  is a universally separable hypothesis space over X  

then for each positive integer m , Hm,H Is a E m-measurable function.

P ro o f  Fix y £ {0, l} m and let

f f - 1(y) =  U  h~'(y) £  x m -
heH

By the previous result, i7 _1(y) is a E m-measurable subset of X m . Now, for 

x £ X m,

n m,ff(x) =
y

where the summation is over all y £ {0, l} m and where I jj- i(y) is the charac­

teristic (or indicator) function of H ~ 1(y). It follows that HmiH is a measurable 

function. □

In the same way, if H  is universally separable then n b c is measurable for any 

e >  0.
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Statem ent o f  the bounding theorem

For any positive integer n and for any real-valued E n-measurable function <f>

defined on X n, we shall denote by E (<̂ >(x)) the expected value, or expectation, 

with respect to p n of <j> (over X n).

In particular, for any hypothesis space F,  when IIn>̂  is measurable, we denote 

by E (nn>F(x)) the expected value of IIn)/r. We shall omit the subcript n in 

what follows when it is clear from the context.

We are now in a position to state the main bounding theorem.

T h e o re m  3.3 Let H  be a hypothesis space o f functions from an input 

space X  to {0,1}. Let 0 < e < 1 and m  a positive integer. Suppose that p is 

any probability measure on X  and that c E H  is any target concept. Let

Denote by B e the subset o f H  o f hypotheses h for which er^(h) > e. For any 

positive integer k > 1/e and for any r such that

let the constant C( r , k ) be defined as

Q =  {x G X m : hazM (#[x]) >  e} .

Then i f  IIb c and II// are -measurable functions (in particular, i f  H  is 

universally separable), we have

In any case,
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Here, E ( .)  denotes expected value over X m+k with respect to the product 

probability measure p m+k. □

It is worth remarking that even when 11// is not measurable, we may replace 

E ( n H(x)) by

inf E  (<^(x)),

where the infimum is over all measurable functions <}> which bound IIh  from 

above. Alternatively, the expectation could be replaced by using the outer 

measure /x™ of /xm, replacing E (II//(x )) by

2 m

E* (n„(x)) = £  k {x € X m : n*(x) = k} .
k= 1

Similar remarks apply to I I s e.

The proof of Theorem 3.3 is quite involved, and we require some preliminary 

results to convert the proof to a simple counting argument.

G ro u p  a c tio n

A key technique in the proof is to use a group action on the product space to 

convert the problem to a combinatorial one.

The symmetric group of degree n, Sn, has a natural action on X n. For any 

cr £ S n and x =  (x \ , . . . ,  x n) E X n, we define crx by

=  (*^<r(l)? • • • > ®or(n)) •

That is, the entries of the vector are permuted according to cr. We make the 

following definitions.
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D efin itio n  3.4 Let A be a subset o f the full sym metric group o f degree n, 

acting on X "  as above. For any subset A  o f X " , and for any x G X " , define

Qa (A,x) =  |{cr £ A : crx G A}|

and

£Ia (A) =  sup x) : x G X n} .

□

The following lemma will prove useful. Given a set A of permutations of degree 

n,  it enables us to express the measure of a //"-measurable subset A  of X n in 

terms of Qa (A, x) and to bound the measure of A  in terms of the combinatorial 

param eter fl>t(A).

L em m a 3.5 Suppose that A  is a p n-measurable subset o f X n and that 

A is any subset o f the full symmetric group o f degree n, acting on X n in the 

natural way. Then £Ia (A, x) is a measurable function, and

P"(A ) =  ^ E ( Q a (A ,x) ) < ^ } ,

where E  (.) denotes expected value over X n with respect to the product mea­

sure //".

P ro o f  For a subset 5  of X n , let I s  denote the characteristic (or indicator) 

function of S. That is, I s  is the {0, l}-valued function on X n such that 

fs(x ) =  1 if and only if x belongs to S. If S' is a measurable subset of X ” , 

then I s  is clearly a measurable function. Now, the symmetric group of degree 

n acts as a measure-preserving group of transformations of X ” , with respect 

to the product measure p n. That is, for any r  G S n and for any //"-measurable 

subset S  of X " , the set t S  = {rx : x G S}  is measurable and //"(rS 1) =  //"(5). 

It follows that

^a (A ,x ) =  ^ 2  IA(<rx) = ^ 2
(tGA «r£ A
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as a sum of measurable functions, is therefore a measurable function. Now,

<7£ A

= E ^ n(^ lA)
* e  a

=  ^ 2  f  /„-m(x)</#j"(x)
7 th  J x "

=  £  /  ^(<^x) ^ n(x)

= J x n  \ Y 1  I a (<tx)J <^n(x)

= f  n yt(A,x)d/i"(x)
J X n

=  E ( f i j4(A ,x)),

and clearly

E (f2>i(A,x)) <  Qa (A).

The result follows. □

P ro o f  o f  th e  b o u n d in g  th e o re m

Following [11], Theorem 3.3 is proved in two main stages. The first relates the 

measure of Q to the measure of J ,  and the second uses group action to bound 

the measure of J  by means of a combinatorial argument.

P ro p o s itio n  3.6 W ith Q and J  as before, for any positive integer k > 1/e 

and for any r such that

0 <  r < 1 —
y/ek ’

the following holds:

' ‘"’W ) <  e k ( l - ~ r y -  1 = C{r’k) f im+k(J)-

P ro o f  The proof uses Chebyshev’s inequality [14], which states tha t if rj > 0 

and Y  is a bounded random variable with expectation zero then

r2 
,1FProb ( |F | >  77) <  ^ - ,

T
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where a 1 is the variance of Y.  For a particular h £ i?e, let

eh =  er^(h) > e.

Then,
fj,k {y € X k : ery(/i) < re} =  /  (y  G : ffc -  ery W  >  ^  — re}

<  /  {y G : |fcery(/i) -  fceft| > (eft -  re)k} .
Now, k ery(/i), the number of entries of y on which h and c disagree, is a

binomially distributed random variable on X* with expected value €hk and

variance e^(l — th)k- It follows, by Chebyshev’s inequality, that this measure

is at most
eh( l - e h)k eh( l - e h)

((eh -  r t ) k f  (eh ~  reh)(e -  re)k 
1

<

ek( 1 — r)2 
1

ek( 1 — r)2 *

Therefore, for any h E B e,

n k { y e l ‘ : ecy(h) > re} > 1 -  =  C(r, k ) ~ \

It follows that for any x G Q,

f  / j (x ,  y) dfik =  / { y  G X k : 3h G B e fl #[x] s.t. ery(h) >  re} 
Jy e x*

> sup(fik {y G X* : ery(h) > re})

> C ( r , k y X,
where the supremum is taken over all h in B e fl H[x].

By Fubini’s theorem,

p m+k( J ) =  f I J(x1, . . . , x m+k)dfim+k 
J x m+k

= I ( f  / j (x ,y )d / / fcN) d/im 
Jxex™ \ J y e x k J

> f ( f  /j (x ,y )d /z fcN) dfim.
JxeQ \ J y e x k J

Therefore,

from which the result follows. □
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P ro p o s itio n  3.7 W ith J  defined as above, and for r and k as in Proposition 

3.6, for all z £ x m+k, we have

'  ✓ i \  /  . » \  1
:’Z) ( \ (  k \ ( m  + k\  
)! - n B ‘ ( z ) U r e f c l J ( r r e f c l J  ‘(m -f k)\

P ro o f Fix z £ x m+k and let

{^ij h2? • • • ? ^t}  ^  B € 

be a complete set of representatives of B t for z. By this, we mean

(1) t =  n B((z),

( 2 )  i  ^  j  = >  fei(z) #  * j ( z ) ,

(3) {^t(z) : 1 < * < 0  =  (M z) : h £ -®e} •

For each i between 1 and t, define

J* =  {xy £ x m+k : hi £ i7[x], ery{hi) > re] , 

and, for z £ X m+k, let

ft'j(z) =  t i j i ( S m+it,z) =  |{ a  £ 5 m+ifc : <rz £ J * } |.

Then



= / X J  ■Suppose that fPj(z) ^  0. Then there is a  E S m+k such that <7z/E J*. Let 

I = k e iJ h i)  be the number of entries of z on which hi and c disagree. This is 

an integer and er J h )  > re; thus, I > [rcfcl. If r  E is such tha t rz  E J*,

then r  must permute the entries of the vector z in such a way that the I entries 

on which hi and c disagree axe among the last k entries of the vector rz. The 

number of permutations r  for which this is the case is

k N
/! (m +  fc -  /)!■

Therefore,

O j(z) k(k  — 1 ) • • • (k — I +  1 )
(m +  k)\ (m  +  &)(ra +  k — 1 ) • • • (m +  k — I +  1 )

=  (  k \  (  k ~ l  \  f
\ m  + k ) \ m  + k — 1 /  -f k — I +  1 /

Each term in this product is less than one and / >  [refc], so an upper bound 

for the product is obtained by putting / =  \rek~\ in the right-hand side, giving

(m -f k)\ \|Yefc] J  \  \refc\

Therefore,

flj(S m + t,z) y '  fl'j(z) , J  k \ f m  + k \  1
(m -f k)\ ~  ( m  -f- k)\ ~  Bi \\re fc])  \  \rek~\ J  ’

and the Proposition is proved. □

We are now in a position to prove Theorem 3.3.

P ro o f o f  T heorem  3.3 By Lemma 3.5 and Proposition 3.6, taking n =

m  + k and A =  5 m+fc,

Hm{Q) < C(r, k) fim+k (J )  = C(r, k) * E ( n j ( S m+k, z ) ) .

Now, by Proposition 3.7,

Qj (Sm+k,z) /  k \  I'm +  fc\ _1
(m  + k)\ ~  Be \ \ re fc] )  \  \rek~\ J
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If TLb € is a measurable function then its expected value is defined, and the first 

part of the theorem follows if in addition we use the obvious fact that

E (n B<(x))<E(n*(x)) ,

assuming that 11# is measurable. The second part of the theorem follows on 

using Lemma 3.5 to give

< .up jn„.M  ( r, y  ( ” **) : ■ €

U ) G £ i T
which, of course, is at most

□

3.3 Learnability in Spaces o f Finite VC Dim ension  

A  d is tr ib u tio n - in d e p e n d e n t b o u n d

Theorem 3.3 can be used for obtaining distribution-independent learnability 

results. However, it is the fourth, and weakest, assertion that must be used 

since both the set B e and the expectations of the index functions depend on 

the probability measure \i. Applying the theorem, we have

C o ro lla ry  3.8 W ith Q ,r ,k  as before,

Vm(Q) < C(r, k) n H(m +  k) •

P ro o f  We use the fact, from Theorem 3.3, that
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Now,

m  +  k \  1 k(k — 1 ) . . .  (k — \refc] +  1 )
\rek~\J \  \refc] J  (m +  k)(m  + k — 1 ) . . .  (m +  k — [refc] +  1 )

k — \rek] +  1=  /  * - i  \  /
\ r a  +  k )  \ m  -f k — 1J  \ m  +  k — \rek] +  1

/  k \ rrel1 
\ m  +  k )

and the result follows. □

Suppose that m > 8 /e, and k =  m. Then

l < i -  1
2  y/eic’

so we may take k = m  and r =  1 / 2  in Corollary 3.8. This gives: 

C o ro lla ry  3.9 For m >  8 /e,

< 2 n H( 2 m ) 2 - cm/ 2.

P ro o f  We have

and

1 _ em ( l )2
(§)2- i-  J emC  I « ’ m I =   p 2    ^  2 ’

rek

m  + k
  2~ e m /2

□

This is essentially the result in [16] and [11]. We shall show tha t other choices 

of r  and k  provide better bounds. The following result will be useful in our 

analysis:
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L em m a 3.10 For any e, r with  0 <  e, r < 1, and for any positive integers 

m  and k,
(  k \ rek f km  )
U n J  < e x p \ - re^ } -

P ro o f  For 0 < y < 1, from the power series expansion of log(l — y), we 

have

~ lo§(i - y )  <  - l .

It follows that for all x > 1,

X

1 - i )  < e - 1.
X

Therefore,
rek /  \7 — m m -f- k

\ m  +  k j  \  m +  k j

{ km \  
~ r € m  +  k J

<  exp < —re-

□

Suppose now that H  has finite VC dimension d > 2. By Sauer’s Lemma, we 

have

P ro p o s itio n  3.11 With Q, r, k as before, i f  H  has finite VC dimension d,

A 9 X C ( r , t ) ( ^ )  e x p { - r e^ } ,  

whenever m  + k > d. □
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C h o o sin g  r  an d  k.

We aim to show tha t it is possible to choose values of r  and k which give better 

bounds than previously obtained. Motivated by Proposition 3.11 and the fact 

tha t the real function

is minimized when
(rem  \

x = m K i r  ~  ) '
we choose

‘ - K T - 0 1 -
Before choosing a value of r, we require the following result:

L em m a 3.12 For any (3 > 2 and em > Ad the equations

have a solution (x , r)  with x  >  m.

P ro o f  The real number x > 0 is a solution to the equations if and only if

em2 em2 Hf
— ---------------  m  = x.

d d y ex

Let
/ N , ( em2 \  em2 jd

9 ( y ) = y

Then the original equations have a solution for x  >  m  if and only if g(y) = 0 

for some y > y/m. But em > Ad. Therefore,

g(y/m) < m y/m  — 3m y/m  < 0 .

Since g(y) tends to infinity with y, it follows th a t g has a zero y such that 

y >  y/in. □

We obtain the following distribution-independent bound on the probability of 

presenting a bad sample.
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T h e o re m  3.13 Suppose that H  is a hypothesis space over an input space 

X  and that H  has £nite VC dimension d > 2 . Let p he any probability measure 

on X  and let m  > 4d/e. Then we have

p m {x e  X m : haz/x(if[x]) >  e} <  ^ 2 ^  exp(-em ).

P ro o f  The required probability is the measure of Q. Let x > m  be a 

solution to the equations of Lemma 3.12, and let

fc =  |Y |, r =  1 -
V ex

Then

ek y /ek ’

and
, n ( e(m  +  £ +  1 ) \ d f  km  1

" M ) < CM ) ( --------2-------- )  exp { - r£^ T l }

It can easily be shown that

erm 2 _ em2
m +  x +  1 =  — ;---- h 1 < d '

Further, since k > x,

C (r ,k ) <  C (r ,x ) = '

Now,
n r  i  d r~d~ i

r =  1 -  \ —  > 1 -  \ —  >  1 -  \ h n  = o- V ex V em V 4 d 2

Hence

x
2 em2/ r em \  em 

=  m ( —  4d ’

this last inequality because em > 4d.
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=  rem  —  d

1
ex

d
em — em

ex
d.

V ex

But x > em2/4d  and so

f  m k \  d 2d f . 
exp < —re  —  f <  e e exp(—emj.

m  +

It follows that

r i Q )  <  ( 5 3 1 )  ( t )  exp (~ em)-

□

A  lea rn a b ility  th e o re m

We can use Theorem 3.13 to obtain learnability results and sample-size bounds 

for hypothesis spaces of finite VC dimension. In order to do so, we require one 

further lemma.

L em m a 3.14 For any a  > 0 and for x > 0 ,

logz < Hog (  — j  — 1 J +  ax.

P ro o f  By elementary calculus, the real function

f ( x )  = log x — a x

is maximized when x =  1 / a ,  and its maximum value is — log a  — 1 . □



T h e o re m  3.15 Let H  be a hypothesis space o f finite VC dimension d > 2. 

Then H  is learn able. Given an accuracy parameter 0 <  e < 1 and a confi­

dence parameter 0  < 8 < 1 , a suitable sufficient sample-size for learnability to 

accuracy e with confidence 1 — 8 is

m 0 (e, 8) =
e(l -

P ro o f  From Theorem 3.13,

2d

^ Q ) <  ( j z t )  ** ( i r )  e*p(-«")>

for m  > 4d/e. It follows that p m(Q) tends to zero as m  tends to infinity, 

and that the rate of convergence is independent of the target concept and the 

probability measure on X .  That is, H  is learnable. More specifically, we show 

that if 0  <  e, 8 < 1 and

m * <iT7i) (2dlog ( ? )  + log ( ^ T “^ )) ’
then

and, consequently, by Theorem 3.13, < 8.

Let D  =  d /(d  — 1). Then,

( 2 \  2d
j  ed exp (-em ) < 8

log D  +  4d +  2d log m  — 2d log d +  d log e — em < log 8 

em > log +  4d — 2dlogd +  dloge +  2dlogm .

Let a  =  qe/2d in Lemma 3.14, with 0 <  q < 1. We have

2 dlogm < 2 d ^log _  0

=  2 dlog(2 d) — 2 d log q — 2 d log e — 2 d +  qcm.
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Therefore, it suffices to have

em (l — q) >  log — dloge  — 2d\ogq  — 2 c?logc? +  2 d lo g 2 c? +  2d

=los(f)
Observing that 2d +  2c?log 2 =  2c?log(2e), a sufficient sample-size is

H  ( I ? ) + ' » » ( ? ) )  •

Choosing q =  yfe yields the result. □

The sample-size bound given in Theorem 3.15 improves upon the bound

in [16].

3.4 Lower Bounds on Necessary Sam ple-Size

We have seen tha t finite VC dimension is a sufficient condition on a space 

H  for H  to be learnable. There is a strong converse to this; if a hypothesis 

space H  is learnable then it must have finite VC dimension. This result can 

be proved quite easily (see Chapter 6 ), but it also follows from lower bounds, 

involving the VC dimension, on necessary sample-size. We prove one easy such 

bound and thereby show that finite VC dimension of the hypothesis space is 

necessary for learnability. We then describe lower bounds of Blumer et al [1 1 ] 

and Ehrenfeucht et al [13].

The following lower bound result is easily obtained.

m 0 (e,£) =  -  f  2 c?log2 ] +  log2

+ c?log ( -  ] — 2 dlogg +  2 c? +  2 c?log2 .
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T h e o re m  3.16 Suppose that H  is a hypothesis space over an input space 

X  and that H  has finite VC  dimension d. Let 0 <  e <  1. Then, there is a 

probability measure p on X  such that for any target concept c G H  and for 

any positive integer m  with

m  < d( 1 — e), 

p m {x G X m : haz^LZ^x]) > e} = 1.

P ro o f  Let c G H  be any target concept and suppose th a t m  is a positive 

integer less than d( 1 — e). Since H  has VC dimension d, there is a set S  of d 

points of X  shattered by H . Let the probability measure p be uniform on S  

and zero elsewhere. That is, define p by defining, for a measurable subset A  

o f X ,

n(A) = ± \ A n S \ .

Let

X =  ( x i , X2 , . . . ,  x m) G S m.

Then, since H  shatters S , there is h G H  such that h agrees with c on 

x i , X 2 , .. • ,x m , but disagrees with c on each of the other d — m  points of S.  

Therefore, there is h G H[x) such that

/ /  j  d - ( l - e ) dern(h) = ( d -  m ) -  > -------    =  e,

and the result follows on observing that

p m {x G X m : hazM(tf  [x]) > e] > p m(S m) = 1.

□

This result shows that if we aim to learn H  to accuracy e with any degree of 

confidence, we need a sample-size greater than d( 1 — e).

We have
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C o ro lla ry  3.17 I f  the hypothesis space H  has infinite VC dimension then 

H  is not learnable.

P ro o f  Suppose that H  has infinite VC dimension and let c E H  be any 

target concept. For each positive integer d there is a set Xd  of d points shat­

tered by H. The above result shows that if pd is the probability measure on 

X  which is uniform on Xd  and zero outside X d , then for all m  < d/2 ,

t i t  {x  € X™ : haz„(ff[x]) >  H  =  1 .

Suppose that H  is learnable. Then, with the function mo(e, 8 ) as in the defi­

nition of learnability, we must have

mo (5 -5 )

and this must hold for any positive integer d. This is a clear impossibility, and 

the result follows. □

Ehrenfeucht et al [13] have (essentially) given the following stronger lower 

bound, which we shall not prove here.

T h e o re m  3.18 Suppose that H  is a hypothesis space over an input space 

X  and that H  has Gnite VC dimension d. Suppose that 0 <  e <  1/8. Then 

there is a probability measure p on X  such that for any positive integer m  

with
d -  1m  <  ,
32e

1
p m {x G X m : haz„(fT[x]) >  e} >

100

□

Neither of these bounds has any explicit dependence on 8. The following result 

of Blumer et al [1 1] gives a sample-size lower bound tha t depends on e and 8, 

but not on the VC dimension of the hypothesis space.
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T h e o re m  3.19 Suppose H  is a hypothesis space over an input space X  

and that 0 <  e, 8 < 1. Then there is a probability distribution p on X  such 

that for any positive integer m  with

we have

p m { x e X m : haz„(F[x]) > e} > 6.

P ro o f  Suppose firstly that there are two hypotheses h and g in H  such that 

for some «■*-#-€: X , h(a) =  g(a) =  1 and g(b) =  1 , h{b) =  0 ( tha t is, h and 

g are neither equal nor disjoint). Let the measure p be such tha t p({b}) =  e, 

/i({a}) =  1 — e, and p is zero elsewhere on X .  Let the target concept be h. 

Suppose an m-sample x is drawn randomly, according to p. The probability 

that each entry of x is a is ( 1  — e)m, and if

this is at least 8. In this case, g is consistent with h on the sample, but has 

error e (the probability of b). Now,

1 1 -  e
- l o g ( l - e ) >  e

and the result follows for this case.

The only remaining case to consider (since H  is non-trivial) is when there are 

distinct h,g  E H  such that h(x) =  1 implies g(x) =  0, g(x) = 1 implies h(x) =  

0 (that is, h, g are disjoint), and there is a E  X  such tha t h(a) = g(a) = 0 

(that is, h and g are not complementary). Now, h and g cannot both be the 

identically zero function on X  (for, they are not equal) and so, without loss of 

generality, we may assume that there is some b E X  such that h(b) =  1 . Define 

the probability measure p as before. The same analysis now applies. □

The main sample-size bounds presented in this chapter can be summarized in 

the following.
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T h e o re m  3.20 Let H  be a hypothesis space over input space X .  Then 

H  is learnable i f  and only i f  H  has fn ite  VC dimension. I f  H  has finite VC  

dimension d >  2 then, given 0 <  e, 8 < 1 , there is m o =  mo(e, S) such that

m > m 0 => p m {x G X m : haz^ ( if  [x]) >  e} <  S.

The sample-size mo(e, S) satisfies

^ ) ( 2dlos( ^ ) +los(^o(e, 6) <  

and, for 6  <  1 / 1 0 0 ,

d /(d  -  1 )
e(l ))

( 1 - e )
m 0(e ,«) >  m ax ( v~ log •

□
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Chapter 4 
R elative Frequencies and Probabilities

4.1 Introduction

D efin itions

Throughout this chapter, (5, E, v) will be a probability space and C will be 

a collection of sets from the cr-algebra E. Thus, in this probabilistic setting, 

S  may be thought of as a set of elementary events and C as a collection of 

random events. We shall need the theory only for countable 5 , in which case 

E will consist of all subsets of S', and for S  a subset of some real Euclidean 

space, in which case E will be the induced Borel <r-algebra. The class C must 

satisfy certain measurability conditions, which we shall not include here. For 

details of these “permissibility” conditions on C, see [27]. We shall assume that 

all classes under discussion here are permissible and that all sets we require to 

measure are therefore measurable.

A sample from S  of length m  is a vector y =  (y1? f/2, . . . ,  ym) £ S m. The 

relative frequency of occurence of event A  6  C on y is defined to be

P y ( A) =  ^ l { i : w e 4 } | .

This is the empirical estimate on sample y of the probability of A. Further, 

we let I ( y ) =  be the set of entries of y.
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U niform  convergence o f  relative frequencies

We say that the relative frequency of an event A in a class C of events tends 

(in probability) to the probability of A  as the sample-size tends to infinity if 

for any 77 >  0 ,

v m {x E S m : |P X(A) — v(A)\ >  77} —► 0 as m  —► 0 0 .

Classical theorems of probability theory, such as Hoeffding’s inequality, assure 

us of the convergence (in probability) of the relative frequency of an event to 

the probability of the event.

W hilst the relative frequencies of the events in C converge to their probabilities, 

there may be no bound uniform over C on the rate of this convergence. We 

say th a t the relative frequencies of events A  E C converge uniformly over C (in 

probability) to their probabilities if for any 77 > 0

x E S m : sup |P X(A) — u(A)\ > 77^ —> 0 els m  —> 0 0 .

Thus, the relative frequencies converge to the probabilities uniformly over C if 

and only if the rate of convergence for each event can be bounded by a quantity 

depending only on the class C. Clearly, if there are only a finite number of 

events in C, then we have such uniform convergence. However, when C is 

infinite a more sophisticated theory is necessary. The VC dimension of the 

class C is of great importance here.

Our aim in this chapter is to give simple new proofs of two theorems, due to 

Vapnik [35], which provide bounds on the probability of a given deviation of 

relative frequencies from probabilities. These theorems prove uniform conver­

gence of relative frequencies to probabilities over classes C of finite VC dimen­

sion and the theory of the preceeding chapter (with slightly weaker bounds) 

follows immediately from the second of these theorems. The results show not 

only that if the class C has finite VC dimension then the relative frequencies of 

events in C converge uniformly over C to their probabilities, bu t also th a t the
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rate of convergence can be bounded independently of the probability measure 

v. The techniques we use are similar to those used in the preceeding chapter.

T w o b o u n d in g  th e o re m s

The bounds we derive are due to Vladimir Vapnik [35] (although our results 

have slightly different constants). The first is a bound on the probability that 

the relative frequency of an event A  in C differs from the probability of A  by 

more than a certain amount.

T h e o re m  4.1 [B ound  One] With the above definitions, for any 77 >  0 

and for any positive integer m ,

v m | x  € S m : sup |P X(A) — v(A)\ >  771 < 4IIc(277i) exp •

□

The second result concerns relative deviation rather than absolute deviation.

T h e o re m  4.2 [B ound  Two] With the above definitions, for any 77 >  0 

and for any positive integer m,

vm j x  6  S m : sup > V j <  4 n c (2m )exp ( -  j»?2™ ) •

□

We shall prove each of these results in two different ways. Although Bound 

One follows from Bound Two (indeed, the obvious stronger result follows), we 

include a proof of Bound One for completeness and to illustrate the common 

proof techniques.

When C has finite VC dimension it follows by Sauer’s Lemma tha t the growth 

function is polynomially bounded and both these bounds tend to zero as m  

tends to infinity. T hat is,
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C orollary 4.3 I f  C has finite VC dimension, then the relative frequencies 

o f events in C converge uniformly over C to their probabilities. □

Clearly, also, the bounds are independent of the measure v. Thus these bounds 

are precisely the types of results we need for learning applications. These 

applications are discussed later, where it will become apparent that Bounds 

One and Two both imply learnability results, but tha t the consequent upper 

bound on sufficient sample-size implied by Bound Two is significantly less than 

tha t implied by Bound One.

4.2 Proof Techniques

In this section, we describe how the results are proved. We leave the techni­

calities to the next section; the aim here is to give an idea of the techniques 

involved.

Sym m etrization

As in [35], [27], [18] and the preceeding chapter, the desired probability is first 

bounded in terms of the probability of an event in some higher-dimensional 

product space, this event being “empirically” based on two samples. We shall 

follow Pollard, and call this technique symmetrization. In what follows, we 

shall often write a vector in S 2m in the form xy, where x ,y  £ S m , and we 

assume (by the permissibility of H ) tha t all sets discussed are measurable. 

The symmetrization results are as follows.

P roposition  4.4 With the above notation, for rj >  0, let

x G S m : sup |P X(A) -  i^(j4)| >  v |  C S m, 

and

R  = ( x y  e S 2m : sup |P x(yl) -  P y(A)| >  C S2m.

Then, for m  > 2/rj2,

vm( Q ) < 2 v 2m(R).
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P ro p o s itio n  4.5 With the above notation, for rj >  0, let 

F = ( x 6 5 ”1 : sup U(A ) - P *(A '> > , | c r ,
I « V U( A ) J

and

W  =  {xy € 5 2m : su p (P y(A) -  P X(A)) >  r / ^ P ^ A ) |  C S

Then, for m  >  2/r)2,

v m(V ) < 4 v 2m(W ).

□

T h e  sw ap p in g  su b g ro u p  a n d  c o m b in a to ria l b o u n d in g

As in the previous chapter, after symmetrization, we prove the results by using 

combinatorial arguments arising from consideration of a group action. We con­

sider the natural action of a group of perm utations of degree 2m on the vectors 

of S 2m. The particular group we shall use is the “swapping” subgroup of the 

full symmetric group of degree 2m. The swapping subgroup was introduced 

in this context by Pollard [27] and greatly simplifies the counting arguments 

required.

D efin itio n  4.6 The swapping subgroup, A  — A-2 m? is that subgroup o f the 

full symmetric group o f degree 2m which is generated by the transpositions 

( j ,m  +  j ) ,  fo r j  between 1 and m. That is,

A =  (( j ,m  +  j )  : 1 <  j  < m) < S 2rn-

□

Note that |A| =  2m. Having symmetrized, we use the group action to bound 

the measures of R  and W, using Lemma 3.5.
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We let Qr (A,z) be the number of permutations a  E A such th a t crz E R. 

Lemma 3.5 then shows that

2 m / m  /
|A |  ,

where

Qr (A) =  sup z) : z E S 2m} .

The next step is to fix, arbitrarily, z =  Z2m) € S'2”1, and bound ft#  (A, z )

independently of z. This yields an upper bound for Q r ( A ), and hence for

and i/m(Q). We treat V and W  in the same way.

Let { A i,..., A t]  be a complete set of distinct representatives of C for z. That 

is,

(1) t =  nc(z),

(2 ) i ^  j  ==> At n I ( z) ±  A j n I ( z),

(3) {A{ fl I ( z) : 1 < i <  2m} =  {A fl J(z) : A E C}.

Thus, the sets Aj fl 7(z), (1 < i <  t) form a complete repetition-free list of all

sets of the form A fl /(z ) with A in C.

For each i between 1 and £, we define the sets R l and W* to be the events R  

and W  restricted to Aj. By this we mean

R ‘ = {xy e  S’2™ : |Px(A,-) -  P y(A,-)| >  v} ,

and

W* =  {xy 6 S 2m : (P y(A,-) -  P x(A t)) > ^ P x y ^ i ) }  •

As in Definition 3.4, we let

CtlR(z) =  &Ri(A, z) =  |{cr E A : crz E i2*}| . 
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Then, by an argument similar to that given in Chapter 3,

A,z) =  |{cr E A : <jz E -R}|

cr E A : crz G ( J  -R*( *=i

<  ^  |{cr E A : crz E -R*}| 
i=l

=  y > * R(z).
t=i

Thus, we can bound the quantity

& r ( A,z)
|A| ’

and hence v 2m(R ), by bounding 17^(z) for each relevant i. Specifically, if

fijj(z)
|A|

< B{m )

for all z E 5 2m, then 

Q r ( A,z)

|A|

The same analysis applies to W. We call bounding

Oft(A,z) fivv(A,z)
|A| ’ |A|

in this manner combinatorial bounding.

The combinatorial bounding results are as follows.

T h e o re m  4.7 With the above notation, for any z E S 2m,

^  ^  2 lie(2m ) exp •

□

T h e o re m  4.8 With the above notation, for any z E S'2’

fiw(A,z) / ' _ I r,2rri\|^ | — Ilc(2m )exp I m j  .
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Bounds One and Two follow from the symmetrization and the combinatorial 

bounding results. Indeed, combining these results implies that Bounds One 

and Two hold for any m >  2/r}2, while the bounds hold trivially for m  less 

than 2 / /72, since in this case the right-hand side of each of the bounds is greater 

than one.

4.3 Proofs

In this section, we prove the symmetrization and combinatorial bounding re­

sults described in the last section. Our symmetrization proofs are essentially 

those given by Vapnik, but the combinatorial bounding proofs are far simpler 

than those he gives, using the action of the swapping subgroup rather than 

the full symmetric group.

E x p o n e n tia l in eq u a litie s

For each of the bounds, we perform the combinatorial bounding in two ways. 

For this, we require two inequalities. The first, which appears in [23], is a bound 

on the tail of the binomial series and the second is Hoeffding’s inequality, 

as stated in [27]. The first can be regarded as a special case of Hoeffding’s 

inequality, but we derive it from a better known result of Chernoff [12].

P ro p o s itio n  4.9 For any positive integer n, and for any A < n / 2,

X I  ( ” )  <  2” exP ( -2A2/n)
t< ̂ n—A

P ro o f  Denote the sum by £). We use a bound of Chernoff [12]: For any 

0 <  p  <  1 and any positive integer n,

g  ( " ) p ;( l -  P)”-* <  exp { (n  -  fc)log ( ^ f ^ )  +  H og ( ^ )  } .
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Putting p =  1/2, and k =  | n  — A, this gives

2 -  £  <  exp { +  a)  log ( ^ )  +  ( i n  -  a)  log ( - ^ )  }

=  exp | - i "  (log  (1 -  4z2) +  2 2  log ( |  ^ 2 z ) )  }  ’

where
A 1

z  = -  <  - .  
n 2

Now, for 0 < x <  1/2, define

f ( x )  = log ( l  -  4z2) +  2x log ^  ~ 2x )  ~~ 4x2'

Then

/ '(x> = 21o g ( f S ) _ 8 x -
That this is positive can be verified from the power series for the logarithmic 

term. It follows that, for x > 0, f ( x )  >  /(0 )  =  0. Therefore,

log ( l  -  4z2) +  2z log Q  >  4z*’

and

2~n <  exP (—2z2) =  exp ^ ^  ,

from which the result follows. □

P ro p o s itio n  4.10 [H oeffding’s In eq u a lity ] Let Y i ,Y 2, . . .  ,Y n be inde­

pendent random variables with zero means and bounded ranges:

a,i < Y i < b{.

Then, for any rj > 0, the probability that

Y1 + Y 2 + . . .  + Yn > r}

is at most

exp ( “ £ ; = i ( * ! - « ; ) 2)  '
□

For a proof of Proposition 4.10, see [27].
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S y m m e triz a tio n  p roofs

We now prove the symmetrization results, the proofs being similar to those in

[35].

P ro o f  o f  4 .4  Suppose that x E Q. Then there is C  E C such tha t

|P X(C) -  v(C)\ > n».

In this case, for y E 5 m,

|P y(C) -  v(C )I < 1 = , .  |P X(C) -  P y(C)| >

Now, the probability (with respect to um) tha t |P y(C) — v(C)\ > r]/2 is, by 

Chebyshev’s inequality, at most

v (C )(\ — v(C ))m  1
J2EJ2 rj2m '

It follows that for m  >  2/t;2, |P y(C) — u(C )\^< t}/2 with probability at least

1/2. Therefore, applying Fubini’s theorem as in the proof of Proposition 3.6,

H r ) >

and the symmetrization result for Bound One follows. □

P ro o f  o f  4.5 Suppose x E V, so that there is C  E C with

u(C) -  P X(C) > ,

Since P x(C0 >  0, this implies

u(C) > r ,\

Now suppose m  > 2/i;2 and y € S m is such that

P y(C) >  v{C).

Let
r  P y(C) -  P X(C)

\ f c A C )  ’
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noting that the denominator is positive since P y(C) >  0 . A simple piece of 

calculus shows that F  > rj.

As Vapnik notes, since m  >  2/r}2 >  2 /v (C ), it follows that with probability at 

least 1/4 (with respect to i/m), P y(C) > v(C). Thus, with probability at least

1/4,

py(C) -  Px(c) > n y / v ^ i C ) .

We therefore have, applying Fubini’s theorem,

v2m (W ) >

and the symmetrization result for Bound Two follows. □

C om binatorial bounding proofs

We give two proofs of each of these results.

First p roof o f  4.7  Let T* be the one-sided version of i2*,

r  =  {xy 6  S 2m : (P y(A) -  P x( ^ )  >  | } ,

Ac ^ ^  P a .

Suppose that fi^(z) 7/  0. Then there is some a in A such that crz E T*. Choose

«j so that crz 6  T* and, writing

crz =  xy =  ( ®i , . . . , a ; m, y i , . . . , y m) ,

P y(A,) is maximal (and, consequently, P X(A,) is minimal) among all such cr. 

Let

P y(A;) =  -  and P x(Aj) =
m m

W ithout loss of generality, we may assume that the r entries of y which belong 

to A{ are the first r  entries of y. Then the s entries of x which belong to A{ 

must be among the first r entries of x (for, if not, at least one of these entries 

could be “swapped” , contradicting the maximality of r).

Let

u>(z) =  {r G A : r(crz) E T*}.
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Now, because A is a group,

^ k (z ) =  |{ t G A : rz  G R l}\

=  2 |{ r G A : rz  G T*}|

=  2 |{t G A : r(crz) G T*}|

= 2 |w(z)|.

There is an obvious one-to-one correspondence between perm utations in A and 

subsets of { l,...,m } ; cr maps to the subset

S(cr) =  { z : l < z < m ,  a (i) =  m +  z}

of {1,2, consisting of the positions “swapped” by a. Suppose that,

under this correspondence, r  G u>(z) maps to the subset T  =  5 (r) . Then T

can contain any position k such x * and y* either both belong to A{ or both

do not belong to Ai. Suppose that, in addition, T  contains j  of the r — s 

positions k such that y* belongs to Ai and Xk does not belong to Ai. Then, 

since t ( ctz)  g T ‘, we must have

( r - j )  (s + j ) 77

That is, j  <  6, where

m  m 2

x 1c \ r!m

njJ(z) = 2Kz)| = 2 2 » 2 " - ^ ( r .

It follows that

r — s

j<s

By Proposition 4.9,

^ k ( z) _  ^ k ( z)
|A| _  2m

2 r]2m 2
< 22 2 exp

16 (r — s)
(  r}2m 2 \

~  6XP \  8(r~—5 ) /

<  2 exp f -g * ? 2™ ) . 
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using

(r — s) < r < m.

Therefore

and the combinatorial bounding result for Bound One follows. □

S econd  p ro o f  o f 4.7 We can give a second, more sophisticated, proof of 

this result using Hoeffding’s inequality. Write

Z =  (*1, 22,-. . ,22m).

Following Haussler [18], for each 1 <  j  <  2m, we let

Xj  = l l
1 0 otherwise.

For 1 <  j  < m , we let Yj be the random variable

v  _  J  X j  — X m+ j  with probability 1/2 ;
J ( X m+ j  — X j  with probability 1/2.

Let P  be the uniform distribution on A. Then,

|A|

Now, for a random perm utation a from A (chosen according to the uniform 

distribution on A), the elements of S(a) (that is, the swaps present in <7) can be 

regarded as chosen independently each with a probability 1/2 of being chosen. 

Therefore this quantity is twice the probability that

m

3 = 1

and, by Hoeffding’s inequality, this is at most



as required. □

F irs t  p ro o f  o f 4.8 The arguments are very similar to those given in the 

preceeding proof. As there, choose a E A so that

<tz =  xy =  , z m,y i , . . .  ,y m) E W \

and Py(A x) is maximal (and, consequently, P X(A,) is minimal) among all such 

(7 . Let

P y(A<) =  -  and P x(A i) =m m

Again, without loss of generality, assume that the r entries of y which belong 

to A i  are the first r  entries of y and that, consequently, the s  entries of x which 

belong to A i  are among the first r entries of x.

Let

u>(z) =  { t 6  A : r (az ) E W*}.

As above, the fact that A is a group implies

Q]v (z) = \ { T e A : r z £ W i}\

=  |{ t E A : t (crz) e  W '} \

= K * ) |.

Under the correspondence S  of the last proof, suppose tha t r  E w(z) maps to 

the subset T  =  S (r). Then T  can contain any position k such that Xk and 

yk either both belong to Ai or both do not belong to A{. Suppose now that, 

additionally, T  contains j  of the r — s  positions k  such tha t y* belongs to A i  

and Xk does not belong to A,-. Then, since r(crz) E W \  we must have

(■r - j ) ( s + j )  ^ I r  + s
------------------------ >  Tl\ —---- .

m m V 2m

That is, j  < 8, where

C 1 ,  ̂ 1 l (r  +  s)m
6 = 2 { r - s ) - l n V ^ — -
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It follows that

Uiw (z) = 2’2 m- r E ( r / ) '

By Proposition 4.9,

^W (z) _  ^W (z)
|A| 2m

\s—rnr—s< 2  2  exp - -
1 Tj2(r -j- s)m
4 (r — s)

< exp .

The symmetrization result follows. □

Second  p ro o f  o f 4.8 Again, we can give a second proof using Hoeffding’s 

inequality. In this case, with the same definitions of the variables X i  and Yj, 

for 1 <  i <  m, we have

^W (z)
|A|

_1_

lAf
- m - m /  - 2m

: — ^ X r - . (m+i) -  — > n I ^  Y X i
j= 1 j=l \  j = l

1 / 2  '

=  P  { a  e  A : Y  (*-<~+i> -  x °(») > n \ o Y x i
j = 1 V i= i

2 m 1 /2  '

2r}2m  E - r i
< exp

Observing that
2 m

we have

as required.

Y(x,-xm+J)2 <Yx„
j =i i=i

□
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4.4 A Result o f Chapter 3

In the previous chapter, Corollary 3.9, we gave a proof of essentially the fol­

lowing result.

T h e o re m  4.11 With the definitions o f this chapter, for x E S m, let C[x] 

denote the subclass o f C consisting o f those events A  for which P X(A) =  0. 

Then, for any rj > 0, and for any positive integer m  >  8/rj,

v m \  x 6  S m : supi/(A) > v \ < 2 n c (2 m )2 - ',m/ 2.
C[x]

□

We have seen that this result is very useful in learnability theory. The same 

from of result, with slightly weaker constants, can be obtained directly from 

Bound Two.

If x E S m and A  E C[x] is such that i/(A) >  77 then, in particular, since

P X(A) = 0,
u ( A ) - P  X(A)
- ^ 7 > yfi- 

v K ^ )
By Bound Two, this can occur with probability at most

4IIc(2m )exp ^ —- 7̂7771^  .

If we apply Bound One, we obtain a weaker result with rj2 in the exponent.

The techniques of this chapter can easily be applied to obtain a simple direct 

proof of Theorem 4.11. The symmetrization result is the same as th a t for 

Bound One, and the combinatorial bounding argument is particularly simple 

in this case; no binomial sums are required. We sketch the proof below.

P ro o f  o f 4.11 Let

Q =  { x E 5 m : sup A) > 77

c[*l
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Fix z G 5 2m, and suppose that {Ai , . . . , Af }  is a complete set of distinct 

representatives of C for z. For each i between 1 and t, let

T  =  {xy € S2m : P x( ^ )  =  0, P ,(A |)  >  .

Then, using Chebyshev’s inequality and Fubini’s theorem, as in chapter 3, and 

using an argument similar to the symmetrization proof for Bound One,

v m(Q) <  2 i/2 m(T).

Suppose that

az  =  xy =  ( z i , . . . , z m, y i , . . . , y m) G T*

and that

Py(Ai) = — > rjr . yK ’ m  2

Let r  G A be such that r(xy) G T*. It is easy to see tha t only for k such that 

yk & Ai can r  be such that r(m  +  k) =  k. Therefore, as before,

  —r
~~ 2 m

= 2- r ,

and this is at most 2 -T ?m / 2 since r >  rjm/2. The result follows. □



Chapter 5 
Stochastic C oncepts

5.1 Introduction

In this chapter, we discuss stochastic concepts [1 1 ]. Until now, we have con­

sidered the learnability of {0 , l}-valued functions (or, equivalently, sets). One 

reason for this is that we are attem pting to approximate to an underlying ta r­

get concept by a {0 , l}-function, and if this approximation is to be guaranteed 

to any arbitrary degree of closeness, the concept itself must be such a function. 

Thus the target concept is sharply defined; a given input is either a positive 

example or a negative example of the concept and there is no ambiguity. There 

are many reasons why it is unrealistic to assume tha t the object being learned 

is a function. In many real learning situations there may be some inputs which 

should not be classified as definitely positive examples or definitely negative 

examples, but rather as somewhat positive and somewhat negative (in some 

sense). For example, it may not be clear what classification should be given 

to points very close to the edge of an object in a pattern  recognition problem.

Even when the concept to be learned is indeed well-defined (that is, a function), 

the training examples may be randomly misclassified to some degree during 

the training procedure. Theoretically, one may like to consider this as learning 

from a faulty teacher. In practice, it may be due to some electrical “noise” in 

a computer implementation of a learning algorithm. We briefly discuss how 

consideration of stochastic concepts has proved useful in studying learning in 

the presence of such classification errors [2 0 ].
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Another situation in which the idea of stochastic concepts is useful is that 

in which the hypothesis output by the learning algorithm is not consistent 

with all of the training examples that have been presented during the training 

procedure, but rather only with at least a certain fraction of them. This is a 

realistic situation; even when there is no noise and the target concept is well- 

defined, it is a great restriction on the learning algorithm to stipulate tha t after 

training, it output a hypothesis consistent with all of the training sample.

5.2 Stochastic Concepts 

S to ch as tic  co n cep ts

Stochastic concepts are defined in such a way that, with respect to a stochastic 

concept, an input need not be either a positive example or a negative example 

but, rather, has a certain probability as a positive example and a certain 

probability as a negative example. Thus it is possible that a particular input 

may be presented sometimes as a positive example and sometimes as a negative 

example during training.

As before, X  denotes the input space, which is finite, countable or Euclidean. 

E is a cr-algebra of subsets of X  which in the case of countable X  is the 

power set of X  and in the case of Euclidean X  is the induced Borel cr-algebra. 

Throughout, S  will denote the cartesian product S  =  X  x {0 , 1 } and $  the 

product <7 -algebra E x 2 0̂)1  ̂ of subsets of S. We make the following definition, 

following [1 1 ].

D efin itio n  5.1 A stochastic concept on X  is a probability measure v de­

fined on the (r-algebra $  =  E x 2^0>1̂  of subsets o f X  x {0,1}. □
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D eterm in istic  concepts

If the definition of stochastic concept is to be a sensible one, it must generalize 

the previous framework in which a concept is regarded as a measurable function 

from X  to {0,1} and there is an underlying probability measure fi defined on 

the <j-algebra E. This is indeed the case. We require the following lemma.

L em m a 5.2 The a-algebra $  =  E x 2^0,11 consists precisely o f all sets o f 

the form

(A0 x { O H U ^ j  x {1 }),

with Ao, A \ E E.

P ro o f  Let A  denote the collection of sets

A  =  {(A0 x {0}) U (Ai x {1}) : A0, Ai E E} .

Then it is easily verified that A is a a-algebra containing all product rectangles. 

Therefore A  3  $ . But the reverse inclusion is clear, and therefore A  =  $ . □

Consider any measurable function c from X  to {0,1} and any probability 

measure fi on (X, E). We can define a measure v  =  i /(c,  f i )  on $  by defining v  

on an arbitrary member of $  as follows:

v ( ( A 0 x {0}) U (Ai x {1 })) =  p  (c- 1 (0) H A0) +  p (c- 1( l )  fl A i) .

Then v  is easily seen to be a probability measure on $  which represents the 

pair (c, p) in the following way.

P ro p o s itio n  5.3 For any A E E, let

A c =  {(a:, c(z)) : x E A}

and let

A c =  (A x {0,1}) \  A c =  {(&, y ) : x  E A, y  ^  c ( x ) }  .
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Then both these sets belong to the a-algebra $  and i f  v =  i'(c, //) is the measure 

defined above,

i/(Ac) =  //(A), v(Ac) = 0.

P ro o f  Consider the set A c. We have

A c =  {(x, c(x)) : x  E A}

=  {(x, 0) : x E A, c(x) =  0} U {(a;, 1 ) : x £ A, c(x) =  1 }

=  (c- 1 (0) n A) x {0} U (c_1( 1) n  A)  x {1},

which is measurable. Further,

*,(AC) =  v ((c- 1(0) D A)  x {0} U (c_ 1 ( l)  D A)  x {1 })

=  n (c_1(o) n a ) + n (c_1( i )  n a )  

=  ^  ( ( c - 1 (o) n A) u  (c_1( i )  n  A))

=  /z(A).

Now, Ac =  (A x  {0,1}) \  Ac is measurable since A x {0,1} and Ac axe mea­

surable. Further,

i / ( A x { 0 , l } )  =  i / ( A x  {0} U A x {1})

=  fi (c- 1 (o) n  a )  +  /i (c- 1 ( i )  n  a )

=

It follows that

v ( A c) = v ( ( A x  {0,1}) \  Ac) =  i/(A x {0 ,1 }) -  v ( Ac) = 0 .

□

Thus i/(c, fi) represents the target concept c together with the underlying dis­

tribution fi. We call the stochastic concept i/(c, fi) the deterministic concept 

representing c and fi.
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5.3 Approxim ating Stochastic Concepts by Functions

In this section, we shall consider the approximation of stochastic concepts on 

X  by a space of measurable functions from X  to {0,1}. The framework is as 

follows: We have a set H , the hypothesis space, of measurable functions from 

X  to {0,1} and we axe to approximate the target stochastic concept v by a 

hypothesis from H .

T he error o f  a hypothesis

Suppose that v  is some target stochastic concept on X .  For any h E i f ,  the 

set

{(x, a) : a ^  h(x)}

is a ^-measurable set. To see this, observe that

{(x, a) : a ^  h(x)} =  {(x, 1 ) : h(x)  =  0 } U {(x, 0 ) : h(x)  =  1 }

=  (ft-- 1 (0) x {1}) U ( h - \  1) x {0}),

which, as the union of two measurable sets, is measurable. We can therefore 

define the actual error (with respect to v) of h E i f  to be

erv(h) =  i/{(x,a) : a ^  /i(x)}.

Notice that if v — i/(c, fi) is the deterministic concept representing (c, /i), then

erV(K) =  i/{(x ,a) : a ^  h(x)}

= v ( ( h - \ l ) x { 0 } ) u ( h - \ l ) x { l } ) ) .

Now, h is measurable and so h~x(0), /i- 1 ( l)  E S. Therefore

e iu(h) =  fi (h~1( 1 ) fl c- 1 (0 )) -f // (/i- 1 (0 ) fi c_ 1 (l))

=  / / ( { x : c ( x ) ^ / i ( x ) } ) .

This coincides with the previous definition of the actual error of h with respect 

to c when the underlying probability measure is fi.

For a subset F  of i f ,  we define the haziness of F  with respect to v  to be

hazU(F)  =  sup{erI/( / )  : /  E F}.
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A sample of length m  of v is a sequence y  of m  points of S', randomly drawn 

according to the distribution is. We regard y  as an element of the product 

space (X  x {0, l} )m. For h E H , the observed error of h on sample

y  =  ((xi ,ai ) ,

is defined to be

ery(h) =  — |{i : h(xi) ±  a t} | . 
m

Clearly, it is not possible to approximate a stochastic concept is arbitrarily 

closely with a function from H  unless is is a deterministic concept representing a 

hypothesis from H.  However, we should like to be able to give a guarantee that, 

with high probability, any hypothesis h from H  which has small observed error 

on a random sample of is of sufficient length is indeed a good approximation 

to is. By this, we mean that, with probability at least 1 — e, for a randomly 

chosen point ( r , a )  6  5, h(x)  =  a; that is, h has actual error less than  e with 

respect to is.

The proofs that such a guarantee can be given for the case of finite hypothesis 

spaces and for hypothesis spaces of finite VC dimension form the remainder of 

this section. For finite hypothesis spaces, we use an estimation for the tail of the 

binomial distribution, while for hypothesis spaces of finite VC dimension, as 

in [1 1 ] we use the powerful theory of Chapter 4, obtaining sample-size bounds 

which improve the best previously known.

F in ite  h y p o th es is  spaces

We consider here the approximation of a stochastic concept on X  by a finite 

set of {0, l}-valued functions defined on X .  We first state a result of Angluin 

and Valiant [3] which provides a useful bound on the tail of a binomial series. 

For a proof of this result, see [21].
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L em m a 5.4 For any 0 < j3 < 1, for any 0 <  p < 1 and for any positive 

integer n,

E  ( " ) pi(1 “  p)n_’ -  exp (  2 )  '

□

Using this, we can prove the following [1 1 ].

T h e o re m  5.5 Let H  be a finite hypothesis space o f {0, l}-vaiued functions 

defined on an input space X .  Let v be any probability measure on S  =  

X  x {0,1} (that is, a stochastic concept on X ) , let 0 <  e <  1 and 0 <  7  <  1. 

Then the probability (with respect to i/m) that, for y  E S m, there is some 

hypothesis from H  such that

erv(h) >  e and ery(h) < ( 1  — 7 )e rI/(/i)

is less than

\H \exp
( ~ b 2 e m )  ■

P ro o f  For any h E H  with erv(h) =  > e and for any 0 < 7  <  1, we have

L(l-7)cfcH . v

*"* {y 6  5 m : ery (h) <  ( 1  -  7 )e*} =  J )  4 (1  -  '
t = 0

< exp ^ - ^ 7

< exp ^ - ^ 7 2 em^ ,

by Lemma 5.4. The probability that there is some h with er„{h) >  e and 

ery(h) <  (1 — 7 )erv(h) is bounded by \H\ times this quantity, and the result 

follows. □
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C o ro lla ry  5.6 Let 0 <  e, 8 < 1 and 0 <  7  <  1 and let v  be any probability 

measure on S  = X  x  {0,1}. I f  H  is a finite hypothesis space then there is 

an integer m 0 =  rao(e, 6 ,7 ) such that i f  m  >  mg then, for y  E 5 m, with 

probability at least 1 — 6 (with respect to v m ),

ery(h) <  ( 1  — 7 ) 6  ==> eru(h) < e.

A suitable value o f mo is

m 0 (e, 6,7 ) =  

where log denotes natural logarithm. 

P ro o f  We have

X S 1)'

I#! exp ^ 7 2 em^ <  S 

<=> log \H\ — ^ 7 2em < log^

~ * X ¥ ) -
□

This result shows that, in a finite hypothesis space, if a hypothesis is a good 

approximation to the target stochastic concept on a large enough sample of the 

concept (the sufficient size being independent of the target stochastic concept) 

then it is probably a good approximation to the target on the whole input 

space (where “probably” and “good approximation” have the usual technical 

meanings).
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H y p o th es is  spaces o f fin ite  V C  d im en sio n

We can apply Bound Two of Chapter 4 to the approximation of stochastic 

concepts by a hypothesis space H  of finite VC dimension.

Let S  be X  x {0,1} and suppose that H  is a hypothesis space of measurable 

functions from X  to {0,1}. For any hypothesis h from H , we define the error 

set Eh of h by

Eh =  { (z ,  a) E S  : a ^  /i(z)} .

Let C be the collection of all error sets of hypotheses in H . That is,

C = { Ek : h e H } .

The following result (an extension of a result from [1 1 ]) shows that C (as a class 

of subsets of 5) has the same growth function as H  (as a class of functions 

from X  to {0,1}):

L em m a 5.7 For any positive integer m , Uc(m)  =  II//(m ). In particular, 

C and H  have the same VC dimension.

P ro o f  Let y  =  ( ( ^ i , ^ ) , . . .  , (#m, a m)) E 5 m, and let

/ ( y) =  {(£,-, a,-) : 1 < i < m ) .

Suppose that h,g  E H. Then

E h n  I ( y) =  E g fl J(y ) =  {(art , a*) : i E J}

=$> h(xj)  =  g(xj) a,j (j  E J)  and h(xi)  =  g(x{) =  ai (i 0  J)

= >  h(xi) =  g{xi) ( 1  <  i < m).

Hence

E h fi 7(y) = Eg fl I ( y) <=> h(x{) = g(xi)  ( 1  <  i < m).

Therefore the number of distinct sets of the form C  fl J(y ) where C  E C is

equal to the number of distinct vectors of the form (h(x i ) , . . . ,  h(xm)) where

h E H.  Thus, for any y  E S m there is x E X m such that

n c(y) = n H(x)
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and, consequently, Ilc(m ) < IIf/(m ). Conversely, for. any x  G X m , let y 

be as above, with any choice of the a* (1 <  i < m). The above analysis 

shows that Ilc(y) =  II//(x ) and therefore we obtain the reverse inequality 

IIc(m)  >  II//(ra). Thus Ilc(m ) =  II//(m ). It follows immediately th a t C and 

H  have the same VC dimension. □

We therefore have the following result, applying Bound Two to the family C.

T h e o re m  5.8 Let H  be a hypothesis space o f {0, l}-valued functions de­

fined on an input space X . Let u be any probability measure on S  =  X  x {0,1} 

(that is, a stochastic concept on X ) ,  let 0 < e <  1 and let 0 <  7  <  1. Then 

the probability (with respect to the product measure v m) that, for y  G S m, 

there is some hypothesis from H  such that

erv(h) > e and ery(h) <  ( 1  — ~f)erv(h)

is at most

4II//(2m )exp  j 7 2em

P ro o f  We apply Bound Two of Chapter 4. As suggested above, we take 

S  =  X  x  {0,1} and C to be the collection of error sets of the hypotheses from 

H . For any Eh G C, the relative frequency of occurence of event Eh on sample

y  =  ( y i , . . . , y m) =  ( ( s i , cti), . . . ,  (xm, am)) G S m

is

Py  (Eh) =  i  |{i : (Xi,ai) G ^ } |

~  ~  KZ : h{x i) 7̂  a*}|

=  er y (h),

the observed error of h on the sample y. Further,

v ( E h) = v {(x, a) : h(x)  ^  a} =  eru(h),
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the actual error of h with respect to v. Now, if h is such th a t erv(h) =  > e

and ery(h) <  ( 1  — 7 )e^ then

erv(h) -  eTy(h) > eh -  (1 -  ~()eh =  7 ^ ,

and hence
er„(h) -  ery(h) ~feh r
  r— J^r > -7 =  = l\f^ h  > 7 v e-

y /e r jh )  y/Zh

That is,
v (Eh) -  P y ( Ek) r

7 V

By Bound Two, the v m-measure of the set of y  £ S m for which such an h 

exists is at most

4IIc(2m )exp ^ — j ( 7 \/e)2 m ^ =  4 n # ( 2 r a )  exp J 7 > 

where we have used Lemma 5.7. □

C o ro lla ry  5.9 Let 0 < e, 6 < 1 and 0 <  7  <  1 and let v be any distribution 

on S  =  X  x {0,1}. I f  H  has finite VC dimension d, then there is an integer 

mo = mo(e, £,7 ) such that i f  m  > mo then, for y  £ S m, with probability at

least 1 — 6 (with respect to the product measure v m),

ery{h) < ( 1  — 7 )e =>  eru(h) <  e.

A suitable value o f mo is

m 0(e, 6,7 ) =
7 2 e(l -  y/e) \ 41° S W  +  6dl°S

where log denotes natural logarithm.

P ro o f  The proof uses Sauer’s inequality and Lemma 3.14; for any a, x  >  0, 

logz <  (—logo: — 1 ) +  ax. H  has finite VC dimension d and therefore, for 

2 m > d , by Sauer’s Lemma,

_  \ ( 2 em \ d
n"(2m)<( T )  •
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from which the result follows.

Now,

4  exp ( - <  S

log4 +  d lo g 2 +  d -f c?log m  — dlogd  — - 7 2em <  log £ 

1 / 4 \
- 7 2em > log [ -  I +  (/log2  — dlogcZ +  (/-+- c/logm.
4 V o /

Let a  =  q'yejAd  in Lemma 3.14, where 0 <  q < 1 is to be chosen. We have

dlogm  < d (log -  l )  +

— d log Ad — d log 7 2 — d log e — d log q — d -1--- - —m.

Therefore, it suffices to have

1 / 4 \
- y 2em(l  — q) > log I 7  ) +  (/log2  — dlogd  +  d
4 \ o  J

-f (/log 4(Z — (/log 7 2 — (/ log e — (Z log <7 — d

=  log +  dlog +  dlog -  d logq.

So a sufficient sample size is

log ( 7 ^ +  <*log ( - }  +  dlog ( +  dlog ( -
7 2 e(l — q) \  \ 6 J  \ e J  \ 7  /  \Q

Choosing q = y/e gives the result. □

This sample-size bound is better than that previously obtained [11] for this 

problem.

We can prove similar results using Bound One of Chapter 4. However, the 

resulting sample-size involves the reciprocal of e2 rather than tha t of e.



5.4 Classification N oise and Sem i-Consistent Learning

In this section, we briefly describe how the above results on approximating 

stochastic concepts can be applied to two of the problems mentioned earlier: 

learning in the presence of classification errors and learning when the hypothe­

sis output by the learner need not be consistent with all of the training sample.

C lassification error

There are many types of error that can occur during a practical implementation 

of a learning algorithm [32]. We do not attem pt to describe all of these, but we 

briefly describe a particular type of error or noise, which is to be thought of as 

a random misclassification of the examples presented during the training part 

of the learning process. This may be due to some degree of electrical “noise” 

or due to a fault with the teacher or oracle presenting the examples to the 

learner [2, 20]. Random classification error has been described by Angluin and 

Laird [2] as follows: Suppose that the target concept is c and the probability 

distribution on the input space X  is fi. As before, during training, the training 

inputs are randomly drawn according to fi. Suppose tha t input x  has been 

chosen and that, without loss, c(x) =  1 . A biased coin is then thrown, and with 

probability j x , x is presented as a negative example of the target concept (that 

is, x is labelled with 0 ) and with probability 1 — 7 X, x  is correctly presented 

as a positive example of the concept. Regarding examples as points from 

S  =  X  x {0 ,1 }, this process can be modelled by considering the examples as 

being chosen randomly from a distribution v on S  =  X  X {0,1}. In this context, 

v is to be thought of as a corrupted version of the pair (c, fi) (or rather, as a 

corrupted version of the deterministic concept v(c, fi)). It is generally assumed 

th a t the 7 x are uniformly bounded by some constant 7 .

Suppose now that we want the learner not to be able to learn the target concept 

c, bu t to be able to approximate to the distribution v with a function from a 

hypothesis space of finite VC dimension. That is, we wish to be able to find 

a hypothesis from H  which provides a good approximation to the stochastic
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concept v. The above theory is immediately applicable. If one finds any 

hypothesis which has observed error at most ( 1  — 7 )e on a random sample of v 

of sufficient length, then with high probability 1 — 6, the hypothesis has actual 

error at most e with respect to v. Corollary 5.9 provides an upper bound on 

how large a sample will suffice.

Sem i-consistent learning

As mentioned before, a learning algorithm need not produce a hypothesis 

consistent with all the training examples presented to it. This is clearly true 

if the examples are examples of a stochastic concept, where during training 

a particular input may have been presented as both  a positive example and 

a negative example of the target concept. However, even if the concept to 

be learned is truly deterministic (when the teacher is faultless, the concept 

is well-defined, and there is no noise), it is perhaps unreasonable to demand 

that the learner output a fully consistent hypothesis. If the learner outputs a 

hypothesis from a hypothesis space H  of finite VC dimension which agrees with 

at least a sufficiently large fraction of the training examples, then it seems that 

learnability to some accuracy should still be guaranteed (albeit with a larger 

sample-size than for fully-consistent learnability). This is indeed the case, as 

the preceeding theory shows. Suppose that on presentation of a sample of 

length m  of a (stochastic) concept i/, the learner has produced a hypothesis 

which has observed error at most ( 1  — 7 )e with respect to v on the sample. 

That is, the hypothesis correctly classifies at least a fraction 1 — (1 — 7 )e of the 

sample. Corollary 5.9 shows that there is a sufficient sample-size mo for which 

it can be guaranteed that if m  >  mo then this hypothesis, with high probability 

1 — 6, has error less than e with respect to v. If v  is the deterministic concept 

v  =  1/(c,/i), this is equivalent to saying that the hypothesis has error less than 

e with respect to c and fi. Notice that, here, to guarantee that the hypothesis 

has error less than e with respect to the target (stochastic) concept, we have 

to demand that the error of the hypothesis on the random sample be less than 

some definite fraction of e.
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Chapter 6 
Non-Uniform  Learnability

6.1 The N otion o f Non-Uniform  Learnability

Introduction

In many realistic learning problems, the distribution on the input space is 

fixed but unknown. This is the primary reason for proving learnability results 

and finding sufficient sample-sizes which are independent of the distribution; 

results that are independent of the distribution certainly hold for any particular 

distribution. If something is known of the distribution, it may be possible to 

say more, proving learnability-type results and finding sample-size bounds even 

when the hypothesis space is not of finite VC dimension.

In order to introduce non-uniform learnability, we can start from basics by 

considering the learnability of a particular concept c from a hypothesis space 

if ,  with respect to a particular probability measure /x on the input space X .  

We say that c is pL-learnable in H  if given any e, 6 E (0,1), there is an integer 

ra0 =  rao(e, 6) such that for all m > m 0,

/xm {x € X m : hazM(if[x,c]) >  e} < S.

The definition of learnability of H  is obtained by stipulating th a t every hy­

pothesis from H  be /x-learnable with respect to every probability measure /x 

on X , with a sufficient sample-size ra0 which is independent of both the ta r­

get concept and the distribution /x. The idea of non-uniform learnability is to 

allow weaker conditions than this, allowing mo to depend in various ways on 

the target concept and the distribution. We make this precise below.
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U niform ity param eters for learnability

Recall the definition of learnability of a hypothesis space H  (Definition 1.7). 

H  is learnable if for any accuracy param eter e, any confidence param eter 8, 

any target concept c G H  and any probability measure /i on I ,  there is a 

sample-size mo, which is a function of e and 8 alone, such tha t the following 

holds: W ith probability at least 1  — 8, if some hypothesis h is consistent with 

c on more than mo inputs chosen randomly according to the distribution //, 

then h has actual error less than e. As emphasised earlier, the value of mo 

must depend on neither the target concept c nor the distribution (probability 

measure) p. Similarly, the sample-size bounds in Chapter 5 on approximating 

stochastic concepts by functions from a hypothesis space depend only on the 

accuracy and confidence parameters and not on the (stochastic) target concept.

These are very stringent requirements. Indeed, we have seen tha t these forms 

of learnability only hold when the hypothesis space has finite VC dimension. 

Following Ben-David et al [7], and weakening these requirements by allowing 

some degrees of dependence on target concept and distribution, we obtain 

four definitions that are of the standard learnability format, but which are 

parameterized by uniformity conditions.

D efin itio n s  6 . 1  For a hypothesis space H , we say that

(a) is L(c,p),

(b) H  is L(c,Jl),

(c) H  is L(c,p),

(d) H  is L(c,~p)

i f  for all c G H  and for all probability measures p on X ,  there is an integer mo 

such that for all m  > mo,

p m {x G X m : hazM(if[x]) >  e} <  8,

(that is, any c G H  is p-learnable), and
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(a) mo is a function o f e, S only,

(b) m 0 is a function o f e, 6 and fi only,

(c) mo is a function o f e, 6 and c only,

(d) mo is a function o f e,S,c and fi.

□

We shall, for example, talk of the class L(c , fx) of hypotheses spaces, meaning 

the set of all hypothesis spaces which are L{c,fx). In particular, the class 

L(c , fx) is precisely the set of learnable hypothesis spaces.

6.2 Distribution-Independent Learnability

Ben-David et ol [7] have shown that the class L(c , fx) of hypothesis spaces which 

are learnable uniformly over all distributions on the input space is precisely 

the class L(c, //) of hypothesis spaces learnable uniformly over all concepts and 

all distributions (and is, therefore, the class of hypothesis spaces of finite VC 

dimension). The proof of the result follows immediately from a closer analysis 

of the proof of Theorem 3.16, but we give a direct proof for completeness.

T h e o re m  6 . 2  I f  H  is L(c , fx) then H  has Unite VC dimension.

P ro o f  Suppose that H  has infinite VC dimension. Let c £ H  be a fixed 

target concept, and let m be any positive integer. We show that there is some 

probability measure fi on X  such that

/zm j x  G X m : haz^ (#[x]) > =  1,

and, consequently, H  is not L (c , / i ) .

Since H  has infinite VC dimension, there is some Y  C l  with |y |  =  2m such 

that Y  is shattered by H . Note that the 2m elements of Y  are distinct. Define 

/i on X  by defining, for a measurable subset A  of X ,

=  A n n .

100



Thus // is the probability measure that is uniform on Y  and zero elsewhere.

Suppose that x =  ( x i , . . . ,  x m) G Y m , and let

F  — {xj : 1 <  i < m ]  C Y.

Since Y  is shattered by H , there is h G H  which agrees with c on every element 

of F  and disagrees with c on every element of Y \ F .  Then h G H[x] and

er ll(h) = , (Y \ F ) > ^ = 1- .

This shows that

Y™ C j x  6  X"* : h a z ^ x D j  |  J ,

and therefore

jx e x m : haz/i(i/'[x]) >  H  > (Y m) = 1 .

□

C o ro lla ry  6.3 H  is L (c,/j.) i f  and only i f  H  is L(c,fi).

P ro o f  By the theorem, if H  is £(c, /i) then H  has finite VC dimension, and 

therefore, by Theorem 3.15, H  is learnable; that is, H  is The converse

is plain since for any H , if H  is T(c, //) then H  is certainly X(c, /i). □

Therefore the class of hypothesis spaces learnable uniformly over distribution 

but not over target concept is empty. That is, if any particular concept in H  

is //-learnable in H  for all //, with a value of m o independent of //, then H  is 

T(c, //); that is, H  is learnable.

6.3 D istribution-D ependent Learnability

The aim of this section is to show, first by considering the expectation of the 

index function and then by presenting a general theory of Ben-David et al [7], 

that, in contrast to the negative result of the previous section, allowing learn­

ability to be distribution-dependent does indeed bring some new hypothesis 

spaces into consideration.
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D istribution-dependent learnability and index functions

In chapter 3, in search of learnability results and sample-size bounds which 

were independent of distribution, we made use of the bound

nm { x e r :  haz„(i?[x]) > e} < C(r,fc)nH(m) (|-r^ )  ( j r e ^ )

of Theorem 3.3. For distribution-dependent analysis, if n #  is measurable 

(which is certainly the case if H  is universally separable) we can use E (11# (x)) 

in place of II#(m ). Here, as earlier, E(n#(x)) denotes the expected value 

(with respect to fj,m+k and over X m+k) of n m+;k># .

A function /  is said to be subexponential if, for all e >  0 , as x  tends to infinity, 

/ ( r ) e x p ( —ex) tends to zero. W ith this definition, we have the following.

T h e o re m  6.4 Let \i be any probability measure on X .  I f  E  (IIn>#(x)), the 

expected value o f n nj#(x) over X n (with respect to fin) is a subexponential 

function o f n, then any concept c E H  is p-learnable, with a sufficient sample 

size mo independent o f c.

P ro o f  In view of the above discussion, proceeding as in Chapter 3 and 

modifying Corollary 3.9 in the obvious way, we obtain: For all m  > 8 /e,

{x E X m : hazM(ff[x]) > e} < 2E(n2m,H(x)) 2"cm/2.

If

E (n2m;#(x)) 2-cm/2 —► 0 as m —► oo,

for all e > 0, which is certainly the case if E (n nj#(x)) is a subexponential 

function of n, then the quantity on the right-hand side can be made less than 

any S > 0 by choosing m > mo, say. Since the right-hand side of the inequality 

does not depend on c, m 0 can be chosen independently of c. Therefore any 

c E H  is //-learnable, with a sufficient sample-size uniform over all c £ H . □

102



As an application of this theorem, we give an example of a hypothesis space 

H  of infinite VC dimension and a particular distribution p on the input space, 

for which Theorem 6.4 implies the //-learnability of any concept in H.

Let {5„}n>i be any sequence of disjoint sets such tha t |i?,| =  i, (i >  1). Take 

as input space the count ably infinite set

oo

x  =  U
i= 1

and let the probability measure p be defined on the <r-algebra of all subsets of 

X  by

MM) = ( x  e B i ) .

Let the hypothesis space H  be the set of functions

oo

H = U  U c  : C C Bi) ,
i= 1

where I c  ' X  —* {0,1} is the indicator (or characteristic) function of the subset 

C. Then:

L em m a 6.5 The hypothesis space H  defined above has infinite VC  dimen­

sion.

P ro o f  For each positive integer m, the set Bm is shattered by H  and there­

fore H  has infinite VC dimension. □

P ro p o s itio n  6 . 6  Any concept c £ H  is p-learnable, with a sufficient 

sample-size independent o f c.

P ro o f  For x £ X m, let I(x) be the set of entries of x. T hat is, /(x ) =

{ r , : l < i < m } .  Then it is not difficult to see that

Ilff(x) =  ^ 2 |,(x)nB'1,
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where the sum is over all i such that 7(x) fl Bi ^  0. Therefore,
k

/(x )  C S k =  |J  Bi = >  n H(x) < 2 +  22 +  . . .  +  2* <  2*+1.
1=1

Further, n H(x) < 2m for all x G X m.

Let rjk be the probability that J(x) C S*; that is, 77* =  fim (S™)- Then,

Vk = (n(Sk))m = ( l -  ^  ■

For any 0 <  x < 1,

( 1  -  x)m > 1 -  mx.

Therefore, for k > 2,

f  1 \ m m
Vk -  rik-1  < 1 -  [1 ~  2*=T J  < ^Z T -

Since the sets S™ cover X m, we therefore have
m —1 00

E (n „ (x ) )  < 2 m + J 2 ( t l k -  Vk-i) 2* + 1  + ' 5 2 ( * ) k -  r )k -1 ) 2m
k—2 k=m

m — 1 00

< l + E ^ 7 2 * + 1 + £ ^ m
k—2 k=m

= 1 +  4m(m — 2) *f 4m

< 4m2.

It follows that the expected value of II//(x) over all x G X m, with respect to 

the measure ^ m, is polynomial and therefore, by Theorem 6.4, any c G H  is 

^-learnable in H  with a value of mo independent of c. □

Thus we see that it is possible to have every concept in a hypothesis space 

learnable with respect to a particular distribution and to have this learnability 

uniform over the concepts, even when the hypothesis space has infinite VC 

dimension. Since the hypothesis space has infinite VC dimension, Corollary 

3.17 implies that it is not learnable; tha t is, H  is not L(c,fi).  We shall see in 

fact that the conclusion of Proposition 6 . 6  holds for any probability measure 

fi on X  and not merely the particular one chosen above, so th a t H  is L(c,/Z). 

Note that the sample-size, the mo in the definition of L(c,/Z), must depend on 

the distribution fi since H  is not learnable.
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H y p o th e s is  spaces o f  Xcr-finite d im en sio n

We now present a theory due to Ben-David, Benedek and Mansour [7], who 

introduced the idea of Xcr-finite dimensional hypothesis spaces. For a hypoth­

esis space H  defined over an input space X , the notation H \ Y , for Y  C X , 

shall denote the restriction of H  to domain Y.

D efin itio n  6.7 A hypothesis space H  over an input space X  is said to 

have Xo-fin ite  dimension i f  there is a countable family

m t  i

o f subsets o f X  such that

VCdim (H\B{)  <  oo

and
oo

U  Bi = X .
i= 1

Here, H\B{ denotes the restriction o f H  to domain B i. □

Consider again the example of the previous subsection. The input space X  is 

the disjoint union of sets B{, where Bi has cardinality i, and the hypothesis 

space H  is the collection

oo

H  =  U  { Ic  : C  C Bi]
1 = 1

of all indicator functions of the subsets of the sets Bi. Each of the sets Bi is 

shattered by H , and so the VC dimension of H \B i is equal to i. Thus X  is the 

countable union of sets on which H  has finite VC dimension; th a t is, H  has 

Xcr-finite dimension. Here, of course, H \B i has finite VC dimension since each 

Bi is finite. However, in general, the Bi of the definition need not be finite.

The following result is proved in [7]. The proof follows from the proof of a 

theorem in the next section and so we shall omit it here.
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T h e o re m  6 . 8  I f  hypothesis space H  has X  a-finite dimension then H  is 

L(cJI).  □

In particular, this theorem shows:

C o ro lla ry  6.9 I f  H  is a hypothesis space over a countable set, then H  is 

L(c,JI).

P ro o f  Suppose tha t H  is defined over the countable set X .  Then H  cer­

tainly has X o - finite dimension. For, take the Bi of the definition to be the 

singleton subsets of X .  The VC dimension of H  restricted to a singleton set is 

at most one, and X  is the countable union of its singleton subsets. The result 

follows from Theorem 6 .8 . □

Corollary 6.9 provides a proof, mentioned earlier, of our claim tha t the result 

of Proposition 6 . 6  holds for any distribution p,  and it therefore shows that the 

class of hypothesis spaces which are L(c,~p) and not learnable is non-empty. 

Thus the notion of distribution-dependent learnability is not a vacuous one.

Corollary 6.9 shows that any hypothesis space defined over a countable input 

space has X<r-finite dimension. We now give an example of a hypothesis space 

H  over a (necessarily) uncountable input space X  such tha t H  is not Xcr-finite 

dimensional. Take X  to be the closed interval X  = [0,1], and let H  be the 

space of all (characteristic functions of) subsets of X .  Now, H  shatters any 

subset of X  and therefore, for any Y  C l ,

V C d im (tf |r )  =  |F |.

If X  were the countable union
oo

* = U  Bi
i=l

of sets Bi such that H  had finite VC dimension on Bi then, in particular, 

each Bi would be finite and X , as the countable union of finite sets would be 

countable. However, X  is uncountable and we therefore deduce tha t H  does 

not have X cr-finite VC dimension.
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Polynom ial D istrib u tion -D ep en d en t Learnability

Theorem 6 . 8  provides a positive distribution-dependent learnability result. 

However, it does not address the size of sample required for learnability to 

given degrees of accuracy and confidence. A closer analysis of the proof of this 

result in [7] shows that the resulting sufficient sample-size will not be polyno­

mial in 1/e and 1 /8  for many distributions. The learnability results for spaces 

of finite VC dimension in chapters 3 and 5 provide sample-size bounds poly­

nomial in these parameters, and this is desirable for the reasons mentioned in 

Chapter 1 : if a learning algorithm is to run in time polynomial in 1 /e  and 1/8 , 

it must take as input a sample of size at most polynomial in these parameters. 

We therefore make the following definition:

D efin itio n  6 . 1 0  Let H  be a hypothesis space over input space X  and let 

V  be a set o f probability measures (distributions) defined on X .  Then H  is 

polynomially L(c,p) with respect to T> i f  H  is L(c,~p) and i f  for any c 6  H, 

for any e, 8 £ (0,1) and for any p in T>, there is an integer m o =  m o ( e ,  8, p), 

polynomial in 1/e and 1/8, such that for all m  > m 0,

p m{x  £ X m : haz/1(Hr[x]) >  e} <  8.

□

To introduce the approach taken here, we prove the following.

P ro p o s itio n  6 . 1 1  H  has Xcr-hnite dimension i f  and only i f  there exists 

an increasing sequence of subsets o f X  such that

VCdim(i7|Sjfc) < k

and
oo

U St = x.
*= 1
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P ro o f  Suppose that H has Xa-finite dimension, and let the sets Bi be as 

in Definition 6.7. Let xq E B\ and set Bq =  {aro}- For k > 1 let

m(k)

S t  =  Q B „
t = 0

where

m (k) — max B{ has VC dimension <  k |  .

Given any x  E X , there is an m such that x  E I X  o Bi. Let

m
VCdim I = k < oo.

Then m (k)  >  m, so x E S k.

Conversely, if such sets 5* exist, take Bi = Si. Then V Cdim (H \Bi)  is finite, 

and U S i B i = X .  □

If H  “nearly” has finite VC dimension, in some sense, we might hope to get 

polynomially bounded sample-sizes. Therefore, motivated by Proposition 6.11, 

we make the following definition.

D efin itio n  6 . 1 2  H  has polynomial Xa-finite dimension with respect to 

probability measure p i f  there exists an increasing sequence { 5 * } ^ !  o f subsets 

o f X  such that

V C d im (H \S k) < k,
oo
U Sk = x
k=l

and

k(a)  =  min{fc : p (S k) > 1 — o} <  P  > 

for some polynomial P.

If V  is a set of probability measures defined on X , then H  has polynomial X a -  

finite dimension with respect to T> if H  has polynomial Xcr-finite dimension 

with respect to each p in T>. □
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Benedek and Itai [8 ] have gone some way towards investigating sample-sizes 

for distribution-dependent learnability, but only for the case of discrete dis­

tributions (that is, distributions nonzero on only countably many elements of 

the input space). W ith the definition of polynomial Xcr-finite dimension, we 

can formalise some of the ideas they have considered and develop a theory for 

non-discrete as well as discrete distributions.

The following holds:

T h e o re m  6.13 Let H  be a hypothesis space over X ,  and V  a class of  

probability measures defined on X .  I f  H  has polynomial Xcr-finite dimension 

with respect to T>, then H  is polynomially L(c , Ji) with respect to T>.

P ro o f  Suppose that H  has polynomial Xcr-finite dimension with respect to 

the class Z>, and let p be a particular probability measure from T>. Suppose 

tha t 0 <  o l <  1 and S  C X  is such that p(S)  >  1 — a. The probability (with 

respect to p m) that a sample of length m  =  2 /, chosen according to //, has at 

least half of its members in S  is at least

a ' 2 2' - 1.

Therefore, this probability is at least



then

Z(log2 a  +  2 ) <  i  log ^  ( log( l ) )  l o g 2  S =  l o g 2  S'

This implies that the above probability is greater than 1 — 8/2. For,

1 -  a'22'"1 > 1 -  S-  

< = >  a'22'-1 < ^
2

£
I log2 a  +  2 / — 1 <  — — 1 

/(log2 a  +  2 ) <  log2 8.

Therefore, with probability at least 1 —£/2, a random sample of length m  >  2/o 

has at least half of its members in S  =  Sk(a)- Let

2
m 0 =  m 0 (e, 8, ji) = ^ 2 fc(<*) log )  +  log ( j )  )

e(l -  ,/e)

Suppose that we choose c E H  as the target concept. Since H \S  has VC 

dimension at most fc(a:), m 0 is twice a sufficient sample size for the learnability 

of H \S  with accuracy e/2 and confidence 1 — 8/2. Let m  > mo, and let 

I = \m /2 \ > Iq. If x  E X m is such that x has at least ts entries from 

S  =  Sk(Q)i then we shall denote by x s  the unique vector of length I whose 

entries are precisely the first I entries of x from 5 , appearing in the same order 

as in x. Let fi 1 be the probability measure induced on S  by fi. Thus, for any 

measurable subset A  of X ,

Observe that if h E H  is such that h E H [x] and er^(h) > e then, since

> 1 — a > 1 — e /2 , 

the function h\S (h restricted to S)  is such that

h\S  E (H\S)[xs]
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and
e r^ (f t |S )  =  6  s  ■ h(x ) ¥= c(*)})

H ({x € X  : h(x)  ^  c(x)} fl S)
K S )

¥ t( - 5 )> /‘(5)
e

>  2 ’

Therefore, denoting the number of entries of a vector x which lie in S  by s(x), 

we have

fim {x G X m : hazM(if[x]) > e}

=  //m{x G X m : haz/i(ff[x]) >  e and s(x) > /}

+  fi171 {x G X m : hazM(ff [x]) >  e and s(x) <  /} .

The second measure here is at most 6/2 since with probability at least 1 — 6/2, 

s(x) is at least I. Further,

//m {x G X m : h a z [ x ] )  >  e and s(x) >  /}

=  fim {x G X m : hazM(tf[x]) >  e|s(x) >  /} //m {x G X m : s(x) > /}

< //m {x G X m : 3h G #[x] with er^(h) > e|s(x) >  /}

< //m {x G X m : 3 /  G ( # |S)[xs ] with erMl(/0 > e/2} ,

where, for any events A  and B , [im(A \B )  is the conditional probability (with

respect to fim) of A  given B.

Now, if s(x) > I and x is //-randomly chosen, then x s is a //i-randomly chosen 

sample of length I. Therefore this last measure is at most 6/2, since / is a suf­

ficient sample-size for the learnability of H \S  to accuracy e/2 with confidence 

6 / 2 .

Thus, H  is L(c,/7). Now, since H  has polynomial Xcr-finite dimension with 

respect to //, k(a)  is polynomially bounded in 1 /e  and 1 / 6  and hence so also 

is m 0 (e, 6 ,//). Since this holds for all // in V , H  is polynomially L(c,/Z) with 

respect to T>. □

The proof of this theorem also provides a proof of Theorem 6 .8 . This can be 

achieved by using the alternative characterization given in Proposition 6.11 of
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spaces of Xcr-finite dimension, and then repeating the proof without the last 

paragraph.

It is also perhaps worth noting that if, in the definition of polynomial Xcr- 

finite dimension, the VC dimension of H  restricted to Sk is allowed to be at 

most q(k) for some polynomial q, rather than just k, the same result follows. 

This follows directly from the above proof; q(k(a)) would replace k(a)  in the 

sample-size bound.

To illustrate the idea of polynomial Xcr-finite dimension, we now give an ex­

ample of a hypothesis space H , together with a distribution fi such that H  

has polynomial Xcr-finite dimension with respect to fi. It is the same example 

as earlier. The input space X  is the disjoint union of the sets Bi,  where B, is 

of cardinality i, and the hypothesis space is the collection of all (characteris­

tic functions of) the subsets of each Bi. Note that H  certainly has Xcr-finite 

dimension since X  is countable. Define the probability measure fi as before;

M M ) = (x € Bi).

For each k , let
k

Sk =  U  B ‘-
t=l

Then is an increasing sequence of subsets of X  such tha t

oo
U  Sk =  x .  
k= 1

Further, if a subset of Sk is shattered, that subset must lie entirely within one 

of the Bi ( 1  <  i <  k) and hence

VCdim (H \S k) = max {VCdim (H\Bj) : j  < k}

= VCdrni(H \Bk) = k.

Now,

fj,(Sk) =  1 -
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from which it follows that, for 0 < a  <  1,

k(a)  = log; G)
which is certainly bounded polynomially in 1 /a . Thus H  has polynomial Xcr- 

finite dimension with respect to fi.

We have given an example of a hypothesis space H  over an input space X  

such tha t H  has infinite VC dimension and Xcr-finite dimension. We have also 

given an example of a hypothesis space (over an input space X ) which does 

not have Xcr-finite dimension. Above, we provided an example of a hypothesis 

space H  (over input space X ), together with a probability measure fx on the 

input space, such that H  has polynomial Xcr-finite dimension with respect to 

/i. It remains to give an example of a hypothesis space H  over an input space 

X , together with a probability distribution // on X , such that H  has Xcr-finite 

dimension but does not have polynomial Xcr-finite dimension with respect to

/i.

Let X  be the set of all natural numbers and H  the set of all subsets of X . The 

input space is countable, and therefore H  has Xcr-finite dimension. Define the 

probability measure /i on X  by

* « > - k h - 5 S ( r n ) (* > x ) ’

Suppose that the sequence of sets is such that

oo
X  =  U  S k and VCdim (H\Sk) < h.

k= 1

Every subset of X  is shattered by if ,  so that

VCdim (H \Sk) = \Sk\.

But H  restricted to S'* is supposed to have VC dimension at most k. Therefore, 

for each integer k , Sk has cardinality at most k. It follows that

f*(Sk) < ^ ( { ! , 2 , . . . , fc}) =  1 -  1
log(fc +  1 ) 
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From this, we obtain

k(a)  > exp G)
which is not bounded by any polynomial in 1/a .  It follows th a t H  does not 

have polynomial Xcr-finite dimension with respect to //.

Given the sequence the crucial quantity in the above analysis is the

function /  defined by

f ( k )  =  1 - / / ( £ * ) •

If f ( k )  tends to 0 “fast enough” as k tends to infinity, then the theorem 

guarantees a sample-size polynomial in 1/e and 1 / 6 . Formally, if

m ~°{i)
for some constant c > 0 , then

polynomial in 1/a.  But if

f ( k )  = SI
(log k)<

then

and the theorem does not guarantee a polynomial sample size.
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Chapter 7 
Learning Formal C oncepts

7.1 Introduction

Formal Concepts were introduced by Wille [37] to capture the philosophical 

ideas of intent and extent in a lattice-theoretic framework. In this chapter, 

we discuss formal concept analysis and show that learnability results can be 

applied to give results on the learnability of the space of formal concept extents. 

We investigate the relationship between the VC dimension of these spaces and 

the structure of the underlying context, showing that in certain cases we can 

bound the VC dimension.

We also show that formal concepts can be regarded as a generalization of 

monomials, and that monomial learning algorithms [33, 16] can be adapted to 

yield efficient algorithms for learning concepts in finite contexts.

It is intended that this chapter illustrate much of the theory developed in the 

preceeding chapters.
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7.2 Formal Concept Analysis

C o n te x ts  a n d  fo rm al co n cep ts

Let X  and A be (possibly infinite) sets, whose members we will call objects and 

attributes respectively. Let I  be a subset of X  x A. Wille [37] calls the triple 

(X, A, I )  a context. Thus a context can be regarded as an incidence structure 

defined on sets X  and A  with incidence given by I .  We shall write x la  to 

mean (r , a) € I .  This can be thought of as meaning “object x has attribute 

a” .

Given a context (X, A , / ) ,  we have incidence operators I x  and I Ai defined on 

the power sets of X , A respectively.

D efin itio n  7.1 For a context (X, A, I), I x  '• 2X —> 2A is defined for C  C X  

by

I X (C) = { a e A : c I a  Vc € C } 

and I a  ’• 2A —+ 2X is defined for D C. A  by

I a {D) = { x e X  : x l d  Vd E D}.

□

Thus, for C C X ,  Ix (C )  is the largest set of attributes shared by the members 

of C  and for D C A ,  I a (D) is the largest set of objects sharing the attributes 

of D. We shall use the symbol I  to denote each of I x  and I  a , as it will usually 

be clear which is meant.

The ordered pair (C, D ) is a said to be a formal concept if the objects of C  all 

share the attributes in D  and no others, and the objects sharing the attributes 

of D  are precisely the objects in C. More formally,
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D efin itio n  7.2 A pair (C, D) with C Q X  and D  C A  is a formal concept 

belonging to the context (X , A, I ) i f  1(C) = D and 1(D) =  C. □

Using terms borrowed from philosophy, C  is called the extent and D  the intent 

of the formal concept (C ,D ).  If (C ,D )  is a formal concept, then the pair 

(C ,D )  has a certain maximality with respect to the context; C  is maximal 

among all subsets C' of X  for which every member of C 1 is incident with 

every attribute in D  and, dually, D  is maximal among all subsets D' of A for 

which every member of D 1 is incident with every object in C. Notice that 

the extent of a formal concept uniquely determines the intent and, dually, 

the intent uniquely determines the extent. Therefore either the extent or the 

intent serves to uniquely define a formal concept. We denote the set of formal 

concepts belonging to (X, A, I )  by F C (X ,  A, I).

When X  and A are countable, the context can be represented by a (0, l)-array, 

which we call the context table. The rows are indexed by X  and the columns 

by A, with a one in position (x, a) if and only if x la .  Thus, the context table is 

the incidence array of the context. Let us call a sub-array of the context table 

a block if every entry of the sub-array is a one. A formal concept (C ,D )  gives 

rise to a block; namely the sub-array formed by the rows indexed by C  and 

the columns indexed by D. The definition of formal concept implies that this 

block is maximal. That is, it is not a sub-array of any strictly larger block. 

Conversely, any maximal block gives rise to a unique formal concept in the 

obvious way.

E x a m p le

To illustrate these definitions, consider the following finite context table, where 

the rows have been labelled with the objects

X  =  { x 1 , X 2 , . . . , X 7 }

and the columns with the attributes

A =  {a i , a 2 , . . . , a 6}- 
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a i a  2 « 3 IZ4 a 5 a 6

Xi {  0 1 1 0 1 0 ^
X 2 0 0 0 0 1 1

x 3 0 1 1 1 1 0

x ± 0 1 1 0 1 0

x § 0 1 1 1 0 1

X q 0 1 0 1 0 1

X 7 U 1 1 0 0 0 /

Then

( { ^ l  i *̂ 3 j }  j {® 2 j ^3 j ®5 } )

is a formal concept belonging to the context, but neither of

( { ^ 1 , ^ 3 } ,  {<*2 , 0 3 ,  a s } ) ,

({zi,Z3,z4} ,{a2,a3}) 

is a formal concept belonging to this context.

P ro p e r t ie s  o f th e  incidence o p e ra to rs

We shall require some elementary results from [37] involving the I  operators.

P ro p o s it io n  7.3 I f  C1 C C2 C X  then I (C X) D I(C 2). Similarly■ i f

D 1 C D 2 C A  then I (D X) D I (D 2).

P ro o f  Suppose C\ C C2 C X .  If a E I (C 2) then cla  for all c E C2.

Therefore d a  for all c E C\. Thus I(C 2) D I(C \) .  The proof of the second

part is similar. □

P ro p o s itio n  7.4 For C C l  and D  C A, C  C I 2(C ) and D  C P (D ) .

P ro o f  This is clear. For, each object in C  has each of the attributes in 1(C) 

(by definition of 1(C)), and therefore C  C I 2(C). The other part is dual to 

this. □
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P ro p o s itio n  7.5 For any C  C X  and D  C A, I 3(C) =  1(C) and I 3(D) =  

1(D).

P ro o f  We prove the first half of the result, the second half being dual to this. 

By the preceeding proposition, C  C I 2(C) and so, since I  reverses inclusion,

I 3(C) = I ( I 2(C)) C 1(C).

Also, for any D  C A, D  C P (D ) .  Taking D  =  1(C) gives 1(C) C I 3(C). 

Therefore I 3(C) = 1(C). □

We shall denote the set of all extents of formal concept belonging to the context 

(X , A, I )  by £ ( X , A, I). The formal concept extents can be characterized as 

those subsets C  of X  for which P (C )  =  C, because F C ( X ,A , I )  consists 

precisely of the pairs (C, 1(C)) where I ( I (C ))  =  C. We shall often identify 

concept extents with their characteristic functions in what follows.

F o rm al co n cep ts  an d  m onom ials

The extents of the formal concepts in F C ( X , A, I )  are precisely the subsets of 

X  of the form 1(D) for some subset D  of A. For, given any D  C A, we certainly 

have 1(D) C X , and I 2(D) = I (I (D ))  C A. Further, I (1 (D ))  =  I 2(D) (by 

definition) and

I  ( I \ D ) )  = I \ D )  = 1(D),

by Proposition 7.5, so that (I (D ), I 2(D)) is a formal concept belonging to the 

context. Therefore, for any subset D  of A, 1(D) is a formal concept extent. 

Conversely, if C  C X  is the extent of the formal concept (C ,D )  then, by 

definition, C  =  1(D).

This result enables the idea of formal concepts to be related to th a t of mono­

mials. For x  G X  let x denote the element of {0,1}^ (that is, the function 

from A to {0,1}) such that

x(a) =  1 x la .

119



When A  is countably infinite, we regard x =  (xa)a^A as a (0, l)-sequence, and 

when A  is finite, we regard it as a Boolean vector. Let (C, D) be a formal 

concept belonging to the context. Then

x E C <=> {r }  C C

^  /({*}) D 1(C) = D  

<=> x(d) =  1 Vd E D.

When X  is countable we may regard the set {xa : a E A}  as a countable set 

of Boolean variables. For D  finite,

x E C f D(x)  =  1

where

f ° ( x )  = I I  Xd’
d e D

is the monotone monomial formed as the conjunction of the variables x& (d E 

D). Therefore C  may be identified with a subset of the set of positive examples 

of a monotone monomial of finite length over a countable set of Boolean vari­

ables. This observation will prove useful in a later section, where we describe 

an efficient learning algorithm for learning formal concept extents in a given 

finite context.

Consider again the earlier context. W ith the above notation, x\  is the Boolean 

vector which is the first row of the context table. That is,

X! = (0 ,1 ,1 ,0 ,1 ,0 ) .

We similarly define ^ 2 , . . . ,  £7 . Now,

({xu x 3,x 4} ,{a 2,a3ia5})

is a formal concept belonging to this context. The extent C  of this concept is

C =  {x 1, x 3, x 4}.
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Let (3Jt)j denote entry j  of for i  <  i  <  6 . Then C  can be expressed as the 

set of Xi such that

=  1.

T hat is,

C = {xi : f 2'*'5 (*i) = 1},

where, for y =  (yi , y2, . . . ,  ye) G {0 , l} 6,

Z2,3’5 (yi, V2 , • • • ? ye) =  y2yzy5-

Then /  =  / 2 >3 >5 is a monotone monomial and C  can be identified with a subset 

of the set of positive examples of / .

7.3 The Dim ension o f a Context 

Introduction

We have seen in Chapter 3 that a hypothesis space is learnable if and only if 

it has finite VC dimension, and that if it has finite VC dimension, then the 

sample-size for learnability can be bounded in terms of the VC dimension. 

In this section, we discuss the VC dimension of the set of extents of formal 

concepts belonging to a given context, relating this to the structure of the 

context. We show that in contexts with certain boundedness properties the 

VC dimension of the space of formal concept extents can be bounded and 

therefore that learnability results can be obtained.

For ease of notation, we make the following definition.

D efin ition  7.6 The dimension of the context (X, A, I )  is defined to be 

the VC dimension of £ (X , A, I). □

Thus, the dimension of the context is a measure of the expressive power of the 

context or of the degree of classification of the objects provided by the context.
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B o u n d ed n e ss  p ro p e r tie s  an d  d im en sio n

We shall find a sufficient condition for a context to have finite VC dimension 

(and thus for S ( X , A, I)  to be learnable).

D efin itio n  7.7 The context (X , A , I ) is uniformly K-bounded (where K  

is a positive integer) i f  each object has at most K  attributes. That is,

V x e X ,  \ I { { x } ) \ <K.

□

Thus, in a countable uniformly if-bounded context, each row of the context 

table has at most K  ones, and any formal concept extent is a subset of the set 

of positive examples of a monotone monomial which is the product of at most 

K  literals. We may weaken this boundedness condition slightly, allowing a 

“small” number of objects to have a large or unbounded number of attributes.

D efin itio n  7.8 The context (X , A , I ) is almost uniformly K-bounded i f  

there are at most K  objects which have at least K  +  1 attributes. That is,

\ { x e X :  \I(x)\ > K } \  < K .

□

Thus, if (X , A, I )  is almost uniformly bounded then there are less than K  +  1 

objects having more than K  attributes. Thus, (in a countable context) there 

can be no square blocks of size (K  +  1) x (K  +  1 ) in the context table. We 

say that a context is almost uniformly bounded if it is almost uniformly K-  

bounded for some positive integer K.  In an almost uniformly bounded context, 

it is possible (in the case of infinite A)  for some of the objects to have an 

infinite number of attributes, so that in this case a formal concept extent does 

not necessarily correspond to a finite monotone monomial as above. However, 

in such contexts the space of concept extents has finite VC dimension, as the 

following result shows.
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T h e o re m  7.9 I f  a context is almost uniformly K-bounded then the con­

text has dimension at most K  +  1.

P ro o f  Let x be any member of X  such that |7({rc})| <  s. We show that x 

can belong to at most 2 s concept extents. If C  £ £( X,  A, 7), so tha t (C, D)  E 

F C ( X , A, 7) for some D C  A, then

x e c = >  I ({x})  D 1(C) = D.

There can be at most 2s such subsets D  of A, this being the number of subsets 

of a set of cardinality s. Therefore, since C  is determined by D , there can be 

at most 2a such extents C.

Let H  =  £( X,  A, 7) and suppose that there is a subset

S =  {xu x2, . . . , xK+2} 

of cardinality K  +  2 which is shattered by H . Then the collection

{ Cn S : Ce £ ( x , A ,  i)}

consists of all subsets of S. This implies that each X{ belongs to at least 2K+1 

formal concept extents. The context is almost uniformly TC-bounded, so there 

are at most K  of the X{ with at least K  +  1 attributes. Therefore at least 

one of the X{ has strictly less than K  +  1 attributes, and this xi can belong 

to at most 2k  formal concept extents, contradicting the above. Therefore 

VCdim(£(X, A, 7)) < K  + 1. □

This theorem shows that £ ( X , A, 7) is learnable if (X , A, 7) is almost uniformly 

bounded. We now define another type of “finiteness” that a context may have.

D efin itio n  7.10 The context (X ,  A, 7) is locally finite i f  each object has 

at most a finite number of attributes. That is,

Vz G X , 7({x}) is finite.

123



Thus, in a countable locally finite context, each row of the context table has 

a finite number of ones. However, local finiteness is not a strong enough 

restriction to guarantee finite dimension of the context, as the following result 

of D. Cohen shows.

T h e o re m  7.11 There is a locally finite context o f infinite dimension.

P ro o f  The construction essentially concatenates contexts of each finite di­

mension. Let X  be the disjoint union,

oo

x = U ( * i X {i}),
1 = 1

where Xj =  {l , . . . , t} and let

oo

A  = U  (A< x {*» >
i=1

where Ai =  {0,1,...,«}. I  is defined to be

oo

I  =  {((#> *)» *)) : 1 — x — *» o ■< a <  t,a? ^  a}.
i=i

Then (X, A , I)  is certainly locally finite, but not almost uniformly bounded. 

It is easy to show that, for each fc, the subcontext with object set (X* x {&}), 

attribute set (A* x {k})  and incidence induced by I  (that is, the restriction 

of / ) ,  has dimension k. The dimension of the context is certainly at least as 

large as the dimension of any subcontext, and hence must be infinite. □
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7.4 Non-Uniform Learnability o f Formal Concepts

W hen the context is of infinite dimension and therefore not learnable, it is nat­

ural to consider non-uniform learnability. By the results of Chapter 6 , we can 

not hope for learnability which is uniform over distribution. However, as shown 

there, we can guarantee distribution-dependent learnability in many cases. We 

illustrate this by discussing the context introduced in the proof of Theorem 

7.11. By Theorem 6.9, since X  is countable, £ ( X , A ,  I )  E However, we

should like to consider polynomial distribution-dependent learnability. Using 

the notation introduced there, suppose that the probability measure /z on X  

is such that (X,- x {«}) has measure p,-. Let H  =  £ (X , A,  I )  and let (X,- x {?}) 

be denoted B{. Then for any i,

VCdim (H\Bi )  =  i.

Now, let
k

Sk =  U  Bi.
1 =  1

Then the sequence {Sk} of sets is increasing, and

VCdim ( H\ Sk) = k.

By Theorem 6.13, if

k(a) = min i^k : >  1 — <  P

for some polynomial P  then £(X , A, I)  is polynomially with respect to

p.

For example, suppose that p t- =  1/2*. Then

/ n \ \ '  1 1
^ ( S k )  = Y , ^ i  = 1 ~

and therefore

. = i 2i 2‘

k(a)  =

which is certainly bounded polynomially in 1/a

log2 (I
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7.5 Learning Formal Concepts in a F inite C ontext

The context (X, A, I)  is said to be finite if X  and A are finite sets. Throughout 

this section, the context is assumed to be a fixed finite context (X , A, I)  and we 

shall often identify a subset of X  with its characteristic function. As mentioned 

above, formal concepts can be related to monomials. In this section we show 

how monomial learning algorithms can be modified in a straightforward way to 

obtain efficient algorithms for learning the formal concept extents belonging to 

the context. As described earlier, if A =  {a\ ,a%, . . . ,  a*} , any particular formal 

concept extent can be identified with a subset of the set of positive examples 

of a monotone monomial over the t =  |A| boolean variables {za i ,..., x at}. Ex­

plicitly, we identify the concept extent 1(D) with the set of positive examples 

in X  of the monotone monomial f D, the conjunction of the variables Xd for 

d in D. The context is finite and therefore £(X,  A , / )  is finite and, conse­

quently, (potentially) learnable. By modifying any efficient monomial-learning 

algorithm so that it returns a consistent concept extent, we can produce an 

efficient algorithm that learns £(X,  A, I).  To learn a particular member C 

of £( X,  A, / ) ,  the algorithm A /, which “knows” the context (X,  A, /) ,  learns, 

using the sample x, a subset D  of A tha t approximates 1(C). A i  then returns 

1(D) as the approximating concept extent; tha t is, A /(x) =  1(D).

Using the standard and simplest monomial learning algorithm [33], a suitable 

algorithm A i  is:

begin
D  :=  { a i , . . . , a t }
for each positive example x presented do  

begin
for i =  1 to t do

if  (z, a,-) £  I  th en  D  := D \  {a,}
end

A ,(x) :=  1(D)
end
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The following elementary observation is critical.

L em m a 7.12 The algorithm A i  when given as input the sample x produces 

a member o f £ ( X , A, I)  consistent with the target extent on x. That is, A  is a 

consistent algorithm.

P ro o f  By the earlier discussion, 1(D) € £(X,  A, I).  At each stage of the 

algorithm, the current D  contains 1(C) , the true intent. Therefore 1(D) is 

contained in I 2(C)  =  C,  the true extent. So 1(D) correctly classifies the 

negative examples of the sample. (Indeed, it correctly classifies all negative 

examples of C). Let x  be a positive example from the sample. At each stage 

after x  has been presented to the algorithm, the current D  is contained in 

7({r}). Therefore,

{x} C i*({x}) C 1(D).

That is, x is correctly classified by 1(D). □

Therefore, provided the number of examples input to this algorithm is at least 

r a o ( e ,  8), where this is the sufficient sample-size given in Theorem 3.15, the 

algorithm produces a concept extent which, with probability at least 1 — 8, 

has error less than e with respect to the target extent. Notice th a t S ( X , A J I)  

has VC dimension at most n = \X\t since there arc at-most-2 n possible formal 

concept- extents. Therefore, by Theorem 3.15, we may take m 0 to be poly­

nomially bounded in 1 /e, 1/S and n. Since 1(D)  can be computed from D  in 

at most \D\n operations, the worst-case time complexity of A i  on an input 

of m 0 examples is 0  (\D\n -f tm o). This establishes the polynomial learnabil­

ity of £( X,  A, I).  Notice that the worst-case time complexity also depends 

polynomially on the “size” , |A"||A| =  nt of the context.

We end this section by remarking tha t when 1(C) is small in size relative to 

A , it may be more efficient to use the algorithm developed by Haussler [16]. 

This method, which makes use of both the positive and the negative examples 

in the sample, is based upon a heuristic for the set-cover problem.
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Chapter 8 
The Learnability o f Functions

8.1 Introduction

Instead of considering just {0, l}-valued functions, we should now like to con­

sider functions taking values in some arbitrary set Y .  We consider here only 

countable Y .  One reason for this is that to apply the standard learnability 

framework and define a hypothesis to be in error on an input if its value on 

tha t input is not the same as the value of the target function on tha t input 

seems extremely restrictive when Y  is, for example, the set of real numbers 

or some real interval. If we hope to achieve such exact correctness, we should 

perhaps deal with discrete and not continuous output spaces Y .  Another rea­

son is tha t when Y  is countable, any measurable function c from X  to Y ,  

together with a probability measure / / o n l ,  can be represented as a proba­

bility distribution on an appropriate a-algebra over the product space X  x Y .  

This representation is not so explicit if Y  is uncountable. The same sorts 

of upper bounds on sufficient sample size for learnability can be obtained as 

for the case of Boolean-valued functions, again in terms of a param eter that 

quantifies in some sense the “expressive power” of the space of functions. We 

use a definition of Haussler [17] for this parameter, which we continue to call 

the VC dimension. The aim of this short chapter is to provide a framework in 

which to apply learnability theory, in the next chapter, to particular types of 

artificial neural network.
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8.2 Learnability R esults for Function Spaces

A V C  dim ension for function spaces

We now discuss various approaches to finding a generalized definition of VC 

dimension which, in some sense, quantifies the expressive power of a set of 

functions from an input space A  to an output space Y .  For consistency, we 

want the generalized dimension to reduce to the straightforward definition of 

VC dimension when the range space has only two elements. Various definitions 

have been proposed.

If Y  is finite, one possible definition which extends the earlier theory is as 

follows: Suppose tha t H  is a set of functions from a set X  to a finite set Y  

and define, for each x =  ( x i , . . . ,  x m ), the function

x* : H  - > Y m

by

x*(/i) =  ( / i (xi ) , . . . ,  h(xm)).

Let

A H(m) = m ax{|x*(tf)| : x  <E X m} < |V |m,

and define the VC dimension of H  to be the largest integer d such th a t IIn(d)  =

\Y\d (If such an integer exists; if not, define the dimension to be infinite).
wv

However, the condition A #(ra) =  \Y\ is a very demanding condition to be met 

and it seems that a space may have quite a large degree of expressibility, yet 

have a low VC dimension according to this definition.

Using definitions of N atarajan [25] we can give another possible definition of a 

VC dimension for function spaces with range in some arbitrary set Y .  Suppose 

that H  is a set of functions from a set A  to a set Y .  N atarajan defines a subset 

5  of X  to be “shattered” by H  if there are two functions f , g E H  such that

f ( s )  ^  s (« )  Vs e  s,
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and if for any T C 5 ,  there is a function e E H  such that

e(s) = f ( s )  (s E T), e(s) =  $r(s) ( 5  G 5  \  T).

Thus the functions /  and g separate the set S.  We could then define the 

VC dimension of H  to be the size of the largest subset of X  shattered by H.  

However, as with the previous definition, this measure seems too small; the 

separation requirement is a very stringent one.

We therefore adopt a definition of Haussler [17], which involves a weaker sep­

aration condition. For any h £ i f ,  the graph Q(h) of h is the subset

Q(h) =  {(x, h(x)) : x e  X }

of the product space I x F ,  and the graph space of H  is the set of all graphs 

of functions in H ,

g( H)  = {Q{h) : h E H]  .

We now define the VC dimension of the space H  of functions from X  to Y  to 

be the VC dimension of the graph space Q{H).  This is (infinity, or) the size 

of the largest subset of X  x Y  which is shattered by Q(H).  Now

S  — { ( ^ 1, f l i ), (#2 j ^2)5 • • • » (*^m 1 ® m )} ^  X  X Y

is shattered by Q(H)  if and only if for any T C  {1 , 2 , . . . ,  m}, there is Q(hx) E 

Q(H)  such that for 1 <  i < m,

i e T  => (X i , a i ) €

and

i E S \ T  => (xi,  0  Q(hT ).

Thus, S  is shattered by Q(H)  if and only if for each

b =  ( 61 , 62 , . . . ,  bm) G {0, l } m ,

130



there is h\y E H such that

/ib(z*) =  ai •<=> b{ =  1 .

The VC dimension of H  is the cardinality of the largest subset of X  x Y  

shattered by Q(H).

An alternative description can be given. For y  =  ( y i , . . .  , ym) € F m, let the 

function

7y : Y m -+ {0 ,l}m

be defined by

Iy( ( z1, . . . , z m)) = ( a u . . . , a m), where ai = 1 <=> yi =  Z{.

As earlier, for x  =  ( r 1?. . . ,  x m) E X m and h E H,  define

x* : H  -> Y m

by 
x*(/i) =  (/i(ri),  / i (r2) , . . . ,  h(xm)).

For each y  E F m, the composition

(■̂ y o x *) : H  —> {0, l} m

is a mapping from H  to the finite set {0, l } m. We then define, for x E l m,

n m,H(x) =  m ax{|(7y o x*) (H)\  : y  E Y m}

to be the maximum, as y  ranges over F m, of |Jy ox*(27)|, the cardinality of the 

image of H  under (7y o x*). Such a quantity is well-defined, since the range of 

(7y ox*) is finite. As in Chapter 2 , we can, in the obvious way, define

n H : 0  X"* -  N .
m—1

Further, we let

UH(m)  =  max {IIh(x) : x  E X m} =  su p Ilm>H
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be the maximum of II//(x) over all x  G X m. Now, n n ( m )  =  2m if and only if

for some x  G X m and y G Y m , / y o x*(H)  is the whole of {0, l } m. This holds

if and only if for any b  G {0, l } m, there is hb G {0, l } m such that

^b(*E*) =  Vi > bi — 1.

Thus Uh (m)  =  2m if and only if Q(H)  shatters

S = { (xi , y1) , . . . , ( xm,ym)} .

Hence the VC dimension of H  (is either infinite, or) is the largest integer d 

such tha t HH(d) =  2d.

An observation which will prove useful later is that if Y  is finite, then 

n H(x) =  max-J(/y ox*)(H ’)|: y G Y m}

< \x*(H)\

< A H(m),

where Aj / (m) is the maximum over all x G X m of |x*(iJ)|.

It is easy to see that if Y  = {0,1}, this notion of VC dimension coincides with 

the standard one.

Stochastic  and determ inistic concepts w ith  arbitrary range

As in Chapter 5, we can consider probability distributions on the set 1 x 7  

rather than functions from X  to Y  with underlying probability distributions 

on X.  This allows us to discuss stochastic concepts with range Y , defined 

as probability measures on an appropriate product <r-algebra. When Y  is 

countable, every pair (c, fi) where c G H  and fi is a probability measure on X  

can be realised by a probability measure v  =  i/(c, f i) on the product <7-algebra 

$  =  S x 2 V. To see this, note that if Y  = {s/nJJJLi is an enumeration of Y  

then the product cr-algebra $  =  S x 2Y consists precisely of the sets of the 

form
oo

|^J A n x {yn}?
n = l
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where each A n belongs to E (The proof of this is a simple extension of argu­

ments given in Chapter 5). We then define v  =  by

( oo \  oo

(J A n X {yn} ) =  H (c_ 1(2/n) n A n) .

n=l /  n=l

Then v  is a probability measure, and

P ro p o s it io n  8 . 1  For any A G E, the sets

A c =  {(£,c(a;))

and

A c =  ( A x Y ) \ A c =  {(x, y)  : x E A, y ±  c(x)} 

belong to the cr-algebra E X 2y , and i f  v  =  i/(c, /i) is the measure defined above,

v(Ac) =  fi(A), v ( A c) =  0.

P ro o f  We have
oo

{(a;, c(x)) : x e  A)  =  (J {(z, yn) : c{x) =  yn and x € A)
n= 1 
oo

= U  (c_1( ^ ) n>1) x
n=l

which is a measurable set. Further,

oo

HAc) = (c_1(^«)n (A n c_1(y«)))
n=l

oo

=  ^ ^ ( An C_ 1( ^ ) )  • 
n=l

= v  ( U  A n c ~1(yn)
\ n = 1

=  m(^) .

Similarly,

oo

Ac =  {(z, y ) : x  e A , y ^  c(z)} =  (J (A \  c_ 1 (yn)) x {yn},
n=l
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which is a measurable set. Also,
oo

K ^c) = '5 2 ?  (c-\vn)  n  (A \  c_ 1 (yn))) =  0.
n = l

□

As in Chapter 5, we shall call the deterministic concept representing c

and / i .

When Y  is uncountable, we cannot necessarily find v =  i/(c, pi) which represents 

fi and c in the above sense. However, we can still go some way towards it, as 

we now show.

Suppose that the uncountable set Y  has the cr-algebra B defined on it. (Usually, 

we think of Y  as some subset of Euclidean space, and B as the induced Borel 

sigma-algebra.) Let c be a function from X  to Y.  Then the function

F  : X  —> X  x Y

defined by

F (x)  =  (z ,c(z))

is (E, E x H)-measurable. To show this, we need only verify tha t

A e X , B e B = >  F ~ \ A  x B )  6  E.

Now,

F _1(A x B) = {x e  X  : ( z ,c(x)) E A x B } = A (1 c~1(B ) 6 E,

and so F  is measurable. We now define the measure v =  i/(c, fi) on E x B by

i/(E) =  ^ ( F - 1 (E ) ) ,  E g E x H .

Then v has the property that for any A  E E and any B  E B,

v(A  x 5 ) =  / < ( A n  c~1(B )) ,

and in this sense i/(c, pi) represents the target concept c together with the 

underlying distribution fj, on X .
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A pproxim ating stochastic concepts o f  countable range

When Y  is countable, for any h £ H  and any probability measure v on the 

<7 -algebra E x 2 y (that is, any stochastic concept with range Y  defined on X ), 

the set

= y + K x)}

is measurable. For,

{(*, y) : V ^  h (a:)} =  (X  x Y ) \  {(x, y) : y =  h(x)}
oo

=  ( X  x  Y )  \  U  h - \ y n ) x  {„„} ,
71=1

which is measurable by the elementary properties of a cr-algebra. We can, 

therefore, as the obvious extension to a definition of Chapter 5, define the 

actual error of a hypothesis h E H  to be the measure of this set. A training 

sample of a stochastic concept and the observed error of a hypothesis on the 

training sample can be defined as in Chapter 5.

Learnability resu lts

In the (non-stochastic) standard learning framework of Chapter 1 , we have 

a target concept c : X  —> {0,1} to be learned. The same notation can be 

extended to discuss the learnability of a target concept c : X  —► Y  where Y  is 

an arbitrary set. In the obvious manner, for h £ H , fi a probability measure 

on X , and x 6  X m, we can define er^(h) and fT[x].

Applying the standard learnability result, Theorem 3.15, to the problem of 

learning a function with countable range (re-interpreted as the problem of 

learning the graph of the function), we have the following.

T heorem  8 . 2  Let 0 <  e, 8 < 1 and suppose H  is a hypothesis space o f 

finite (generalized) VC dimension d > 1 o f functions from an input space X  

to a countable set Y . Let c E H  be any target concept and p any probability 

measure on X . Then

p m {x e  X m : haz„Cff[x]) > e} < 6 
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for

m  >  mo(e, 8)  =
e(l

d / ( d ~  1 )

P ro o f  Let c £ i f  be any target concept, and

X  =  ( x i , X 2 , . . . , X m ) e  x m .

For ease of notation, identify Q(h) and its characteristic function, for any 

h G H . Then

h G i f  [x, c]

h(x{) =  c(rcj)(l < i <  m)

G (h)(xi, < £ ,))  =  G(c)(xi, c(xi)) (=  1 ) ( 1  <  i <  m) 

g ( h ) e g ( H ) [ c ( x ) , g ( c ) i  

where, as in Chapter 1 ,

c(x) =  ((a?!, c (x i)), (x2,c(x2)), • • •, (xm, c(xm) ) ) .

Now, by Proposition 8.1, if v =  i/(c,/i), we have 

er v(g{h), g(c)) =  i/ {(z, y) £ X  x Y  : c(x) = y ^  /i(z) or /i(z) =  y ±  c(x)}

=  i/ {(z, c(x)) : h(x) ±  c(x)} +  v  {(a;, y) : h(x) = y ±  c(z)}

= f i {x  : h(x) ^  c(z)}

=  er M(/i,c).

It follows, since G(H)  has VC dimension d, that with mo as in the statem ent 

of the theorem, if m  >  mo,

fim {x G : hazM(ff[x],c) >  e}

=  fim {x G X m : haz„ (£(if)[c(x), Q(c)]) > e}

=  i/m (c(x) G (X  x V )m : haz„ ( £ ( #  )[c(x), 0(c)]) >  e} <  £

The result follows. □

Similarly, we have the following result concerning the approximation of stochas­

tic concepts by hypotheses from a space of finite VC dimension.
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T h e o re m  8.3 Let 0 <  e <  1 and 0 < 7  <  1. Suppose H  is a hypothesis 

space o f functions from an input space X  to a countable set Y , and let v be 

any probability measure on S  =  X  x  Y  and c C H  any target concept Then 

the probability (with respect to v m)  that, for s E S m, there is some h E H  

such that

erv(h) > e and ers(h)  < ( 1  — 7 )erv(h)

is at most

4IItf(2m )exp ^ - 7  .

Furthermore, i f  H  has finite (generalized) VC dimension d, this quantity is less 

than 8 for

+6dl° g (^ k ))  •

P ro o f  The proof of this is similar to the proof of the parallel result, Theorem 

5.8, for Boolean stochastic concepts. As there, let the error set Eh of h E H  

be the set

E h = { ( x , y ) e X x Y : h ( x ) ^ y } .

Observe that Eh = ( X  x Y ) \  Q(h). Let

C = {Eh : h E H]

be the collection of error sets. Then the growth function of C is the same as 

the growth function of the graph space Q(H).  Indeed, suppose that h,g E H,  

let

s =  ( ( r i ,y i ) , ( r 2 ,t/2 ) ,. .. ,(^ m ,y m ))  G ( X  x Y ) m ,

and let

/ ( s) =  {(rj , y1) , ( r 2,y2) . . . , ( r m,ym)} .

Then we have, using the fact that Eh is the complement of Q(h),

E h H / ( s) =  Eg D / ( s)

<=* I ( s) \  Q(h) = I ( s) \  Q(g)

Q(h) fl / ( s) =  Q{g) fl / ( s).
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Therefore, as in the proof of Lemma 5.7, n # (s )  =  IIc(s), a n d n # ( ra )  =  Ilc(m ). 

The proof now proceeds as in the proof of Theorem 5.8, on noting th a t the 

VC dimension of the graph space is, by definition, d. □
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Chapter 9 
A n A pplication to  Artificial N eural N etworks

9.1 Introduction

In this chapter, we apply the results we have obtained on the learnability 

of functions to the im portant problem of bounding the number of training 

examples which should be presented to an artificial neural network. We discuss 

previous results for particular families of artificial neural networks and then 

obtain an upper bound on sufficient sample-size for learning in multiple output 

feedforward linear threshold nets with real-valued inputs [5, 30]. Our result 

improves upon a result of Natarajan for multiple output feedforward linear 

threshold networks with Boolean inputs, by a factor at least equal to the 

number of nodes in the network. Further, it is more general, applying to the 

case in which the inputs can be arbitrary real numbers. The bound depends 

only on the number of nodes and weights in the network and generalizes a 

result Baum and Haussler obtained for single output feedforward threshold 

networks with real-valued inputs.

9.2 Artificial Neural Networks

Artificial neural networks [28, 9] have recently received much attention. In 

particular, many researchers are involved in studying the problem of training 

a network to compute particular functions and to generalize from the train­

ing data  presented to it. Before addressing this problem, we have to define 

mathematically what we mean by an artificial neural network. As the name 

suggests, these are computational systems in which the m ethod of computa­

tion and transfer of information in some way reflects the neuronal structure
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of the brain. Here, we discuss the computational or representational power of 

particular types of network and do not enter the debate on whether artificial 

neural networks axe any valid model of real brains. It is for this reason that 

we use the word artificial.

D efin itions

The networks we describe are feedforward networks. Roughly speaking, these 

are networks with no cycles or feedback. A feedforward neural network is an 

ordered pair

j v = ( G , n

where G =  (V , E )  is a directed acyclic graph and T  is a finite set of activation 

functions. V  is the disjoint union of a set I  of input nodes and a set C  of 

computation nodes, and 0  C C  is the set of output nodes. Further, there 

is a bias node no E /• The number of input nodes will be denoted 5 +  1 

and the number of output nodes t. The underlying graph G is such that all 

computation nodes are connected to the bias node and the input nodes have 

zero in-degree. That is,

E  C (C  U I )  x C

and

{n0} x C  C E.

The computation nodes are labelled with the integers 1 to n =  \C\ in such a 

way tha t

( i j )  e E = >  j  > i .

This can be accomplished since G is acyclic. We denote by d(j)  the in-degree 

of computation node j .

Associated with computation node j  is a set of states Q.j C We let

denote the product

x . . .  x 1)*,
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and we denote simply by Q (this is the set of all states of the network). 

Any w G ft can be decomposed as

4O =  UJ\U)2 • • • 4c?n ,

where, for each i between 1 and n, u G  fi*. Given such a decomposition, we 

denote by u k the vector u>2 • • - Wk-

One thinks of a state of the network as describing the weights, or connection 

strengths, on the edges of the underlying directed graph. In particular, we 

think of £lj as the set of all possible allowed weights on the edges into node j .  

We use W  to denote the number of weights in the network; thus, W  — \E\.

Each computation node j  has associated with it an activation function

P  : Q, x R ^  R, 

and T  is the set of n activation functions. Writing u> =  u;7-, the function

h i  : R ^  -+ R

is given by

hl (y)  =

and we let H 3 denote the set of functions h3u where u  runs through $lj.

An input x  G R s to the network consists of an assignment of a real number 

to each non-bias input node. Further, each node has an output value, this 

being defined recursively in terms of the outputs of the previous nodes. The 

output of a non-bias input node is defined to be the input on th a t node, and 

the output of no is always 1 . The input vector to computation node j  depends 

on the input x and on a;-7-1, and we write it as I j (u*~1,x)  G R rf̂ .  The first 

entry of input vector x)  is 1 , representing the fixed input to the node

from the bias node; the other entries represent the (variable) outputs from the 

nodes adjacent to node j .  The output of node j  is then computed as

f 1 0 ) •
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The function computed by the network when in state lj £ ft is the function 

Fu from R s to R* whose value is the vector of outputs of the output nodes. 

The set of all Fu as uj ranges through ft is denoted F(Af),  and we call F(Af)  

the set of functions computable by Af.

A network is said to be a layered network with h hidden layers if the nodes of 

the network can be decomposed into h + 2  sets called layers such tha t layer 0  

is the set of input nodes, layer h is the set of output nodes, and if (*, j )  £ E  

(that is, node i is connected to node j )  then there is some k such th a t i belongs 

to layer k and j  to layer k -f- 1 . Thus the network is feedforward and the only 

connections are from one layer to the next.

T yp es o f  feedforward artificial neural network

We now describe two basic types of feedforward artificial neural network which 

have been studied theoretically and used in practice.

Perhaps the most general class of neural network consists of networks with 

real-valued activation functions which are evaluated by adding some function 

of the inputs to a node j  with the weighted sum of the outputs of the nodes 

connected to j , and passing the result through some suitably well-behaved 

monotonic real function. Suppose that the node j  has in-degree d and denote 

the inner product of the vectors y, z E R d by (y, z). Suppose that the activation 

function at node j  is such that the output of node j  is of the form

f } (u h W  =  Cj ( n  ( W  +  H - 1.?)) »

where

fij i R d —► R  

is a fixed Lipschitz continuous function and

(jj : R  —► [0,1]

is an arbitrary non-decreasing (or non-increasing) Lipschitz continuous func­

tion. The function fij is known as the modifier for node j .  We shall call the
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function <jj the through-function of node j .  It is often assumed tha t crj is 

differentiable, but we shall only require that it is Lipschitz continuous for the 

results we describe. In the literature, Oj is often called the activation function 

of node j , but this is not appropriate in our framework. If every activation 

function of the network is of this form, with a Lipschitz continuous <7j, we shall 

say tha t the network is a Lipschitz network.

Recall tha t to say a real-valued function a  is Lipschitz continuous on a region 

D  of some Euclidean space means that there is some constant K ,  a Lipschitz 

bound for f  on D , such that for any x, y E D,

I /O )  — /(y )l < K \ x - y \ .

We now describe another major class of networks; the feedforward linear thresh­

old networks. We say that Af is a feedforward linear threshold network in the 

case when, for each j  between 1 and n, the activation function / J computes 

the weighted sum of the outputs of the nodes adjacent to node j  and outputs 

1 if this is non-negative and 0  otherwise.

This can be described in a manner similar to that used to describe Lipschitz 

networks. The output of node j  is defined to be

/ J(wi>I j) =  cr((wi . I j » .

where the through-function cr is the linear threshold step function which has 

value 1 if its argument is non-negative and value 0 otherwise. Clearly, the 

linear threshold networks are not Lipschitz networks, as the linear threshold 

function is not Lipschitz continuous in any region containing the origin.

We shall call a neural network consisting of a single linear threshold a percep- 

tron (Minsky and Papert [22] give a more general definition of a perceptron). 

More generally, for this reason, a layered linear threshold network is often 

described as a multilayered perceptron.
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Learnability in artificial neural networks

An artificial neural network is trained to compute a function of its inputs 

by presenting certain training examples together with the required output on 

these examples. As earlier, regarding this as a sequence of labelled inputs, we 

call the set of examples a training sample. The state of the network is changed 

by some means so that the function computed by the network agrees with the 

target function on all, or on a large fraction of, the sample. Thus, learning 

in such a system consists of changing the connection weights in response to 

the presentation of training examples. Many learning algorithms, both on­

line algorithms and batch-processing algorithms, have been investigated and 

implemented in particular families of network. For example, we have the back- 

propogation algorithm [28] and the linear programming algorithm [31] for lay­

ered Lipschitz networks in which the through-functions are differentiable, and 

the perceptron learning algorithm [28, 22, 9] for perceptrons. We shall not 

address the problem of finding efficient learning algorithms. This is a difficult 

issue; indeed, there is complexity-theoretic evidence for the non-existence of 

successful learning algorithms in many cases [10]. Here, we shall consider the 

following im portant question:

Given an artificial neural network and a learning algorithm for tha t network, 

how large a training sample should be used so tha t the function computed by 

the network after training is a good approximation to the target function?

T hat is, how large should the sample be in order that the network achieves a 

valid level of generalization from the training sample?

We can immediately formulate the problem in the probably approximately 

correct learnability framework:

Suppose tha t there is a fixed (but possibly unknown) probability distribution 

on the set of all possible inputs to the network, and that a training sample is 

drawn according to this distribution. Given a desired level of accuracy e and 

a confidence param eter 6, how large should the training sample be in order
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that, with probability at least 1 — 6, the network, after training on the sample, 

computes a function which with probability at least 1 — e computes the correct 

value on a further randomly chosen input? In particular, can one give an upper 

bound on this sufficient sample-size which is independent of the distribution?

W ith the previous theory in mind, we are lead naturally to consider the (gen­

eralized) VC dimension of F(jV), the space of all functions of the inputs that 

can possibly be implemented on the network. We call the functions in F(Af)  

the set of functions realisable or computable by the network.

9.3 Previous Results

In this section, we discuss some previously known results. These give sample- 

size bounds for learnability in layered Lipschitz networks and in feedforward 

linear threshold networks with a single output and real-valued inputs. We 

also describe a result of Natarajan, which can be used to provide sample-size 

bounds for multiple output (not necessarily feedforward) linear threshold nets 

in which the inputs are constrained to be either 0  or 1 .

Suppose tha t the artificial neural network has, as above, t >  1 output nodes, 

so tha t the output space Y  is (some subset of) R* if the outputs are real, and 

{0,1}* if the outputs are binary. As earlier, in studying learnability it is useful 

to consider distributions on the set X  x Y  rather than pairs (c, fi) where c 

is some measurable function from X  to Y  and fi is some probability measure 

on X .  We mention that, as described earlier (subject to some measurability 

conditions) any such pair can be represented as a distribution on the product 

space. The same terminology as before will be used, so tha t we will often 

describe the set of functions computable by a network as a hypothesis space, 

and so on.
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A  result o f  H aussler on L ipschitz networks

We begin by describing a result due to Haussler [18]. This result uses a different 

measure of the error of a hypothesis and is relevant for the family of layered 

Lipschitz networks. It does not translate into a result on linear threshold 

networks, the main topic of this chapter, because the through-functions must 

be Lipschitz continuous; indeed, the Lipschitz bounds appear in the sample- 

size bound. However, a significant observation is tha t if we use our definition 

of error, the sufficient sample-size of Haussler translates into one th a t depends 

linearly on the number of outputs.

The L \ -metric d\ on R* is defined by

i=l

Haussler defines the error ER„(/i) of a hypothesis h to be the expected value, 

E  (di ( f (x) ,  y)) (with respect to the measure u on X  x 7 )  of g?i(/(x), y). Let 

do be the discrete metric on Y , which has value 1 unless its arguments axe 

equal, in which case it has value 0. Then the standard definition of error that 

we have used up to now can be expressed as the expected value, with respect 

to i/, of do(/(x ),y ). This is the case simply because the expected value of 

do( f (x) ,y)  is precisely the measure of the set of (x ,y) for which do( f (x) ,y)  

takes the value 1; that is, the probability tha t f ( x )  ^  y. If the outputs can 

be real numbers and axe not restricted to be 0  or 1 , it seems more sensible to 

use Haussler’s definition of error. However, our main concern in this chapter 

is with networks where the outputs are binary.

The following elementary result relates the metrics d\ and do.

£o,llt
L em m a 9.1 For any y =  (y i, . . . ,  yt) and z =  ( z \ , . . . ,  z t) in

~d0 (y, z) <  d i(y ,z) < d0 (y,z).
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Let

z =  ((zi,yi),-- - ,(^m,ym)) e (x x y ) m

be a training sample for a neural network with input space X  and output space 

Y .  For any h € F(Af),  let ERz(h) denote the empirical estim ate of ERI/(h) on 

the sample z. That is,

1 m
ER , (h)  = (h (x i) ,yi) .

m  *—'»=l

This is the observed error in the L \ -metric of the hypothesis h on the training 

sample.

A special case of Haussler’s result can be stated as follows.

T h e o re m  9.2 Let Af be a layered Lipschitz network with h hidden layers 

and let 0 <  e, 6 < 1 . Suppose that the weights are bounded in absolute value 

by (3 and that there are at most I nodes in a layer. Suppose further that there 

is a Lipschitz bound o f at most s on each through-function, and that each 

modifier has a Lipschitz bound o f at most r, where these quantities satisfy 

s(/3l +  r) >  1 . Suppose that v is some probability measure on R s x R* and 

that a training sample z o f length m  is drawn according to u. Then there is a 

sample-size m 0 = m 0 (e, S) such that i f  m  > m 0 then the probability that there 

is some h in F(Af) with

|ERm(h) -  ER„(fr)l 1
ERz(h) -j- ERj/(h) 4* c 2

is at m ost S. This sufficient sample-size m 0 satisfies

m° =  °  (  e ( l0S (  e )  +  h l0g +  r ^ )  +  l0g ( 1 )  )  )  ’ 

where W  is the total number o f weights. □

This result looks rather unwieldy, but it has some interesting implications. 

Suppose, in particular, that the relative error of h on the sample z is required 

to be 0 ; tha t is, the final state of the network after training is such 'that the
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function it computes is consistent with the training sample. The result then 

shows that for a sample-size m  >  mo(e, 8) of the order detailed in the theorem, 

the probability that h has actual L \-error ER |/(/i) greater than e is at most 8. 

Now, by Lemma 9.1, if er„(/i), the expected value of do(h(x), y) (our standard 

measure of actual error) is greater than e then the above error, which is defined 

to be the expected value of di(h(x) ,y) ,  is greater than e/t.  This occurs with 

probability less than 8 for m  > ttiq(e/t, 8), where the function mo is as in the 

theorem. Therefore, this result gives a sufficient sample-size which, if we use 

the discrete metric to measure errors on the output, varies more than linearly 

with the number of output nodes. Specifically, if all other param eters are fixed, 

the upper bound on sufficient sample-size that it implies for a network with t 

outputs and W  weights is

We mention again that this theorem has no relevance to linear threshold net­

works, because it involves a Lipschitz bound on the through-functions.

L in ea r th re sh o ld  ne tw orks

Baum and Haussler [6 ] considered linear threshold networks with a single out­

put. In this case, the generalized VC dimension is simply the standard VC 

dimension, as the functions computable by the network have range {0 , 1 }. 

They show the following.

T h e o re m  9.3 Let F(Af )  be the space o f functions computable by a feed­

forward linear threshold neural network Af with n computation nodes and one 

output node. Then

VCdim (F(J\f))  < 2  WTog(en), 

where W  is the number o f weights in the network. □

From this result we can, as in previous chapters, obtain a sufficient sample- 

size for learnability to given accuracy with given confidence. This bound on
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the VC dimension of the network depends only on the number of weights and 

the number of nodes in the network, and hence so does the resulting sample- 

size bound. That this bound is effectively independent of the structure of the 

underlying graph suggests that it is not tight. In particular, it is not known 

whether the logarithmic term  is necessary. However, Haussler has reported 

(personal communication) that recent experimental results of Baum seem to 

suggest that it may be.

Baum and Haussler have also given a lower bound on the VC dimension of some 

threshold networks. Specifically, they have shown that a layered feedforward 

threshold network with s (non-bias) inputs, one hidden layer of k nodes and a 

single output node has VC dimension at least 2  \ k j 2 J s. Notice that this lower 

bound has no logarithmic term  and is approximately equal to the number of 

weights in the network.

N atarajan [25] has (essentially) obtained a bound on the VC dimension of 

linear threshold networks with any number of output nodes and {0 , l}-valued 

inputs. He uses a result of J.W . Hong (personal communication to N atarajan, 

1987). Hong’s result is that a (not necessarily feedforward) linear threshold 

network Af with Boolean-valued inputs, n nodes and weights of arbitrary pre­

cision (that is, real weights) can be replaced exactly by a linear threshold 

network with n  nodes and n logn-b it integer weights. Therefore, the num­

ber of functions computable by the original network is at most the number 

of possible assignments of n log n-bit integers to each of the W  weights of the 

network, which is
^2 «log w

Thus

|F (A 0 | < 2 Wnlogn
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and hence the graph space of the set of functions computable by the network 

has at most this cardinality. It follows that

VCdim (F(JV)) <  log2 ( |0 (F (A O )|)

<  log2 2Wnlosn 

=  W n  log n.

Thus,

T h e o re m  9.4 I f  A f is a linear threshold neural network with Boolean­

valued inputs, n nodes, W  weights, and possibly more than one output, then

VCdim (F(Af)) < W n  logra.

□

Note that the n of this theorem is the total number of nodes, not merely the 

number of computation nodes.

In the next section, we prove that the upper bound of Baum and Haussler is in 

fact also an upper bound on the (generalized) VC dimension of a feedforward 

linear threshold network with real inputs and more than one output node. For 

feedforward networks, this betters Theorem 9.4 by a factor at least equal to 

the number of nodes, and it is more general than that theorem, applying to 

networks with real-valued inputs.
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9.4 M ultiple Output Threshold Networks

T he ou tpu t function

In this section, we prove the result described above. In order to do this, we first 

make some further definitions. Recall that we now consider linear threshold 

networks, and so the output of any computation node will be either 0  or 1 .

The output function  of the network, which describes precisely the output of 

each computation node, is the function

<t : Q x X —>{0, 1}".

Entry i of cr(u>, x ) is 1 if and only if when the network is in state uj and receives 

input z, node i has ou|>ut 1. For a sequence x =  ( z i , . . .  , z m) of inputs, we 

define S(J\f, x) to be the number of distinct vectors of the form

(<7(cj, zi ) , . . . ,  cr(w,xm)),

where u> runs through all the states in ft, and we define S(Af,  m)  to be the 

maximum over all x G X m of 5(A/’, x). Clearly if F  denotes F(Af)  then, using 

the notation of Chapter 8 ,

n F(m) < A F(m) <  S(Af ,m) .

Therefore a bound on is also a bound on IIF (m). In the following,

we simplify the notation and denote S(Af ,x)  and S(Af ,m)  by 5(x) and S(m)  

(respectively).
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V C  dim ension  o f m ultiple output threshold  networks

We bound S(m) in the following lemma, obtaining the same bound as was 

obtained in [6 ] for the case of one output. This result is not restricted to 

the class of threshold networks, but applies more generally to feedforward 

networks in which each activation function has range {0,1}. For such networks, 

we denote by Ilj(m ) the growth function of the space H 3 of Boolean-valued 

functions computed by the computation node j .  W ith this, we have

Lem m a 9.5 With the above notation, for any positive integer m ,

S (m)  <  IIi(m )Il2 (m ) . . .  IIn(m).

P ro o f For any i between 1 and n, let Mi be the subnetwork induced by the 

input nodes and nodes 1 to i, which is itself a feedforward linear threshold 

network. Observing that the set of states of M% is QS%\  let

Cj : x —► {0,1}'

be the output function of Mi. Further, for each i between 1 and m, let Si(m)  =  

S(Mi ,m)  be defined for the network Mi in the same way as S(m)  is defined 

for M.  We claim that for any i between 1 and n,

Si(m)  < IIi(m )Il2 (m) . . .  Ilj(m ),

from which the result will follow. We prove the claim by induction.

The base case is easily seen to be true; S i(ra) =  Ili(m ), since the output 

function in this case is exactly the output of node 1 .

Assume that the claim holds for i = k — 1 (k > 2 )  and consider now the case 

i =  k. Observe that, writing u> E as

Jfc—lLJ = (jJ Wk,
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where ujk 1 6  & k ^  and cjjt G fijt, we have

crk { u k , x )  =  ( T k i u ^ u k . x )  =  ®), / fc(o;jfc,Ijfc(a;fc_1, x)).

Let x =  (® i,. . . , x m) E X m. The number of vectors of the form

(<rk- i ( u k~ l, X i ) , . . . ,  d k-i(u:k~ l , xm))

as u)k~l ranges through is at most 5fc_i(m) and, for a fixed a; * - 1  in

Q(*_1) the number of vectors of the form

(,f k (wfc,Ijk(wfc_1 ,a;i)) (wjfc,Ijk(u;A:_1 ,a;m)))

as u k ranges through f lk is at most n*(ra). Thus, for any x =  (aii,. . .  ,£ m) in 

X m, the number of vectors of the form

Xi), . . • , d k( u k~ lu k, X m ))

as u) =  ojk~l u k ranges through Q^k  ̂ is at most IIjt(m)5jt_i(m ). Hence

S k(m) < Hk( m) Sk- i ( m )

< n jt(m )n i(m )n 2 ( m ) . . .  n * - i(m )

= ni(m)n2(m)... njfc(m),

and the result follows. □

This implies the following extension of a result from [6 ], which again applies 

to a general network in which each activation function is Boolean-valued.

P ro p o s it io n  9.6 Let J\f be a feedforward artificial neural network with 

real-valued inputs, possibly more than one output, and n computation nodes 

which have {0 ,1 }-valued activation functions. Suppose that the VC dimension 

o f the set o f functions computable by computation node j  is r j, and let

R =
j = 1
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Then, for m  >  R, i f  F  denotes the set o f functions F(Af)  computable by the 

network, we have, for m  > R,

* * > * < = ) ' .

P ro o f  We use the above lemma. Certainly, R >  rj for j  between 1 and n, 

and so, for each such j  and for m  > R,

n j W  < ( = ) " .

It follows from the above result that

n F(m) < n i ( m ) n 2 ( m ) . . .  n„ ( m)

Now, if Oj >  0 for 1 <  i <  n and =  1 then

n

^ - a . - l o g a , -  <  logn.
i=l

Setting ati =  r,- / R,  we obtain

| j i l og ( ^ ) - losn

<=> r, log ( ~ )  <  iZlogn — logR  =  /J lo g n  — i j lo g l i

from which the result follows. □

Recall tha t in a feedforward linear threshold network, the activation function 

f j  E T  computes the inner product of its arguments and outputs 1 if this is non­

negative and 0 otherwise. That is, each computation node j  computes (some 

restriction of the characteristic function of) a positive half-space of 

Thus, by the discussion after Theorem 2.8, the VC dimension of H 3 is at most

d(j).
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C o ro lla ry  9 .7  Let F  =  F  (Af) be the space of functions computable by a 

feedforward linear threshold neural network Af with n computation nodes and 

possibly more than one output node. Then

VCdim(F) <  2 W log(en),

where W  is the total number o f weights in the network.

P ro o f  We use the above Proposition. As discussed above, the VC dimension 

of H i is at most d(j).  Then

n

R < Y , dU) = W ’
t=l

the to tal number of weights in the network. By Proposition 9.6, with F  = 

F(Af ), for m  > W  we have

„  , v ^ / n e m \ wn F ( m ) < ( — )  .

Now,
/ 2e n K n o g ( e n ) ^ ly  <  2W log (tn )

■4=  ̂ 2 en log(en) <  (en)

2 1 og(en) <  en,

which is true for any n >  1. Therefore, II/r(m) <  2m when m  =  2WTog(en), 

and the VC dimension of F  is at most 2 WTog(en), as required. □

In particular, the VC dimension of the network can be bounded independently 

of the number of output nodes.
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Sam ple-size bounds

This result has the following immediate implication for generalization in such 

networks, which applies to the case when there is some function being learned, 

the training sample is drawn according to some fixed distribution on the input 

space, and the learning process produces a hypothesis (or state) consistent 

with the target function on the sample.

C o ro lla ry  9 .8  Suppose we axe given an accuracy parameter 0 <  e < 1 and 

a confidence parameter 0 < 8 < 1. Let A f be a feedforward linear threshold 

artificial neural network with W  variable weights, n computation nodes and 

possibly more than one output node. Suppose that A f is being trained to 

compute some function o f its inputs. (We assume that the network is capable 

o f computing this function). Then there is a sample-size m o  =  m o ( e ,  6) such 

that i f  A f is trained to compute the correct output on a training sample o f 

m  >  m 0 inputs, chosen according to some distribution on the set o f all inputs, 

then the following holds with probability at least 1 — S: W ith probability at 

least 1 — e, for a randomly chosen input, the network computes the correct 

output. A  suitable value o f tuq is

m 0
e(l -  y/e) ^log +  4W 'log(en)log

□

More generally, when we allow a certain degree of error during the training, 

or when the learning process need not produce a hypothesis consistent with 

the training sample but only highly consistent, as in Section 5.4, we have the 

following.

C o ro lla ry  9.9 W ith e , 6 ,A f , W and n as above, suppose that 0 <  7  <  1. 

Suppose that Af is being trained to compute some (computable) target function 

o f its inputs. Then there is mo =  mo(e, ^ ,7 ) such that i f  A f is trained to 

compute the correct output on at least a proportion 1 — ( 1  — 7 )e o f m  > mo
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inputs, chosen according to some distribution on the set o f all inputs, then 

the following holds with probability at least 1 — 8: W ith probability at least 

1 — e, for a randomly chosen input, the network computes the correct output. 

A  suitable value o f mo is

m 0(e,8, 7 ) = (41°s 6) + 1W1°s(en)log {wi.
□
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