
ESTIMATING THE EFFORT IN THE EARLY
STAGES OF SOFTWARE DEVELOPMENT

Zeeva Levy

London School of Economics
and Political Science

Submitted in fulfilment of the requirements
for the award of the degree of

Doctor of Philosophy
of the University of London.

July, 1990

UMI Number: U555047

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disscrrlation Publishing

UMI U555047
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

X
5b

5o

D o

"TV

DO

4
s
r />

CA

ABSTRACT

Estimates of the costs involved in the development of a software product and the
likely risk are two of the main components associated with the evaluation of
software projects and their approval for development. They are essential before
the development starts, since the investment early in software development
determines the overall cost of the system. When making these estimates, however,
the unknown obscures the known and high uncertainty is embedded in the process.
This is the essence of the estimator’s dilemma and the concerns of this thesis.

This thesis offers an Effort Estimation Model (EEM), a support system to
assist the process of project evaluation early in the development, when the project
is about to start. The estimates are based on preliminary data and on the
judgement of the estimators. They are developed for the early stages of software
building in which the requirements are defined and the gross design of the
software product is specified. From these estimates only coarse estimates of the
total development effort are feasible. These coarse estimates are updated when
uncertainty is reduced.

The basic element common to all frameworks for software building is the
activity. Thus the EEM uses a knowledge-base which includes decomposition of
the software development process into the activity level. Components which
contribute to the effort associated with the activities implemented early in the
development process are identified. They are the size metrics used by the EEM.
The data incorporated in the knowledge-base for each activity, and the rules for
the assessment of the complexity and risk perceived in the development, allow the
estimation process to take place. They form the infrastructure for a ‘process
model’ for effort estimating.

The process of estimating the effort and of developing the software are
linked. Assumptions taken throughout the process are recorded and assist in
understanding deviations between estimates and actual effort and enable the
incorporation of a feedback mechanism into the process of software development.

These estimates support the decision process associated with the overall
management of software development, they facilitate management involvement
and are thus considered as critical success factors for the management of software
projects.

To my family, who went with me all the long way, with love.

ACKNOWLEDGEMENTS

On my completion of this research, I would like to thank the staff and my
colleagues in the Department of Information Systems at the London School of
Economics. Particular thanks are extended to my supervisor, Professor Ian
Angell, who was a constant source of advice and encouragement. His support
helped me shape many of the ideas presented in this thesis, to conduct my research
successfully and to bring it to completion.

My sincere thanks to the many individuals in Israel, the UK and the
Netherlands for their time, co-operation and contribution to this research by
acting as facilitators, completing the questionnaires, participating in the
walkthrough sessions, commenting and advising.

I extend special thanks to my friend and colleague Dr. Edgar Whitley, who
worked with me to build the prototype. Edgar made every effort to transform my
ideas into a working system and as a result could give help and advice in many
other aspects of the research, thank you Edgar.

Last, but by no means least, I would like to thank my family for all the
support, encouragement and love. This thesis is dedicated to them.

TABLE OF CONTENTS
PART I

Chapter 1 THE PROBLEM DOMAIN 16

1.1 INTRODUCTION 16

1.2 DEFINITION OF SOFTWARE AND SOFTWARE ENGINEERING 17
1.3 SOFTWARE ENGINEERING AS AN EDUCATIONAL SUBJECT 19
1.4 THE NEED FOR EFFORT ESTIMATION 20
1.5 THE PROBLEM DOMAIN 21
1.6 SOFTWARE DEVELOPMENT AND EFFORT ESTIMATION 26

1.6.1 Software development and effort estimation as
interactive and iterative processes 26

1.7 CURRENT RESEARCH 29

1.8 DIFFICULTIES IN ESTIMATING SOFTWARE
DEVELOPMENT EFFORT 31
1.8.1 The Software product and its development process 32
1.8.2 The people 33

1.9 THE ESTIMATOR’S DILEMMA 34
1.10 LONG-TERM RESEARCH GOALS AND SPECIFIC

OBJECTIVES 35
1.11 RESEARCH DIRECTIONS 37

1.11.1 The principles of the proposed solution 39

1.11.2 The Effort Estimation Model (EEM) 40
1.12 RESEARCH METHOD AND THESIS STRUCTURE 43

1.12.1 Thesis structure and outlines 43

Chapter 2 SOFTWARE DEVELOPMENT AND THE EFFORT
ESTIMATION PROCESSES 46

2.1 INTRODUCTION 46

2.2 LIFE CYCLE MODELS FOR SOFTWARE DEVELOPMENT 47

2.2.1 The Waterfall Model 48
2.2.2 The Verification and Validation (V&V) concept 53

2.2.3 Deviations from the Waterfall route 55
2.2.4 Motivation for the new paradigms 57

2.2.5 The new paradigms 58

2.3 RESEARCH FINDING 66
2.4 THE TRADITIONAL AND NEW PARADIGMS (for SDLG) -

DISCUSSION 67

2.4.1 Issues required special attention when using the New

Paradigms 69
2.4.2 Summary of discussion 71

2.5 THE PROCESS OF EFFORT ESTIMATION 72

2.6 TOP-DOWN VERSUS BOTTOM-UP ESTIMATING 75

2.7 ALTERNATIVE ESTIMATION APPROACHES 76
2.7.1 Expert judgement 77
2.7.2 Analogy 77
2.7.3 Parametric Models 79
2.7.4 Standards Estimates and Ratio analysis 80
2.7.5 Parkinson’s Law 81
2.7.6 Price-to-win 82

2.8 IMPLICATIONS FOR EFFORT ESTIMATION 83

2.8.1 Future trends 83
2.8.2 Base Model for effort estimation process 84
2.8.3 Phase-based estimation 85
2.8.4 Judgement and measurement: On the horns of a dilemma 87

PART II STATE-OF-THE-ART 91

Chapter 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS 92

3.1 INTRODUCTION 92
3.1.1 Estimation models and tools what do they provide? 93
3.1.2 Classification of Estimation Models 93

3.2 STATISTICALLY BASED MODELS 94
3.2.1 The System Development Corporation (SDC) Model 95

3.2.2 Aron’s Model 97
3.2.3 Bailey and Basili’s Model 99

3.3 HISTORICALLY BASED MODELS 100

3.3.1 The TRW Cost Estimation Model 100
3.3.2 Walston and Felix’s Model 104

3.2.3 Doty’s Model 109
3.4 ANALYTICAL MODELS 111

3.4.1 Background - Norden’s Model 111

3.4.2 Putnam’s Model - SLIM 113
3.5 COMPOSITE MODELS 125

3.5.1 Boehm’s COCOMO Models 125
3.6 COMPARISON OF MODELS 135

3.6.1 Economies and diseconomies of scale 135
3.6.2 Comparison among schedules 139
3.6.3 Sensitivity to elapsed time 139
3.6.4 Comparison: Putnam’s SLIM and Boehm’s COCOMO 140

3.7 CONCLUSION 143

Chapter 4 ESTIMATING THE PROJECT SIZE 146

4.1 INTRODUCTION 146
4.1.1 Standard Measure for Unit of Product 147

4.2 IMPROVING THE ESTIMATES OF LOC 150

4.2.1 The General Approach 150

4.2.2 Sizing by Analogy 151
4.2.3 Comparison of Project Attributes 155

4.2.4 Size - in - Size - Out or Expert Judgement 158
4.3 ALTERNATIVE UNITS OF MEASUREMENT FOR SOFTWARE

PRODUCT 160

4.3.1 Function Point Analysis 160

4.3.2 Rubin’s ESTIMACS Model 167
4.3.3 Converting the Function Point Value to SLOC 168

4.3.4 DeMarco’s Bang (Function Weight) 168
4.4 CONCLUSIONS 172

Chapter 5 CRITIQUE OF PARAMETRIC MODELS AND
COMPLEXITY 174

5.1 INTRODUCTION 174
5.1.1 Problems with effort estimating - the current practice 175

5.2 EVALUATION OF MODELS - EMPIRICAL STUDIES 177

5.2.1 Rubin’s study 177

5.2.2 Kitchenham’s and Taylor’s study 179

5.2.3 Miyazaki’s and Mori’s evaluation study 179
5.2.4 Conte et al.’s study 180
5.2.5 Kemerer’s evaluation study 185

5.3 TRANSPORTABILITY OF COST ESTIMATION MODELS 185

5.3.1 The relative efficiency of the models 185
5.3.2 The need for calibration 186

5.4 RESOURCE ALLOCATION AMONG PHASES OF
DEVELOPMENT 188

5.5 UNDERSTANDING COMPLEXITY 190
5.5.1 Uncertainty 191
5.5.2 Feedback and entropy 192

5.6 ALTERNATIVE APPROACHES TO COMPLEXITY 195
5.6.1 Logical complexity 195
5.6.2 Structural complexity 195

5.6.3 Cyclomatic Complexity Value 196

5.6.4 Composite software complexity 198

5.6.5 Environmental Composite Complexity 200
5.6.6 Inter-connections between system components 201

5.6.7 Discussion 201

5.7 COMPLEXITY DETERMINANTS 203

5.7.1 User interface and the reiative stability of the
requirements 204

5.7.2 Management factors; Number of decision leveis 204

5.7.3 Team composition 205

5.7.4 Systems interactions 206
5.7.5 Multi-sites development 207

8

5.7.6 Re-use of software 207
5.7.7 Complexity of software product 208

5.7.8 Various size attributes: Data elements, I/O and files 209
5.7.9 Factors affecting productivity - summary 210

5.8 THE NEED FOR HISTORICAL DATA-BASES 212
5.9 SUMMARY 213

5.10 CONCLUSIONS - PART II 213

PART III THE EFFORT ESTIMATION MODEL (EEM) 216

Chapter 6 RESEARCH METHOD 217

6.1 INTRODUCTION 217
6.2 DEVELOPMENT METHOD 217

6.2.1 Conceptual design the Knowledge-base 218
6.2.2 Knowledge acquisition 219
6.2.3 Data collection 221

6.3 BUILDING THE PROTOTYPE 222

Chapter 7 THE EFFORT ESTIMATION MODEL - (EEM) 223

7.1 INTRODUCTION 223

7.2 THE FUNDAMENTALS OF THE EEM 224

7.2.1 Decomposition of the problem 226

7.2.2 Recording and tracing assumptions and decisions 227
7.2.3 The applicable size metrics for the Preliminary System

Design 228

7.3 THE STRUCTURE OF THE EFFORT ESTIMATION MODEL
(EEM) 229

7.4 BASE MODEL FOR EFFORT ESTIMATION 231

7.4.1 The Software Development Life cycles 231
7.4.2 Alternative strategies for software development 237
7.4.3 Cost drivers 239

7.4.4 Standard of Effort 240
7.5 RISK AND COMPLEXITY 242

7.5.1 Complexity and risk assessm ent 245
7.6 WHO IS THE ESTIMATOR? 251
7.7 THE EEM’S ESTIMATION PROCESS: ALGORITHM.

ITERATION AND JUDGEMENT 251

7.7.1 The first cycle: Reviewing, choosing and tailoring

the SDLC strategy 253
7.7.2 The first cycle: Assessing the characteristics of

the project 256
7.7.3 The second cycle: Consultation session, estimator - EEM 257

7.7.4 The third cycle: Fine tuning the EEM to the specific

environment 258
7.7.5 The fourth cycle: Providing a coarse estimate for the

total effort and re-assessing project risk 259
7.8 CALCULATION OF THE ESTIMATES 260

7.8.1 Assessing alternate complexity 261
7.9 THE PRODUCTS OF THE MODEL 262
7.10 A CASE STUDY - PROJECT 'A' 263

7.10.1 An estimation session, using the EEM 265
7.10.2 Analysis of results 271
7.10.3 Conclusions - project 'A' 272

7.11 A CASE STUDY - PR O JEC T‘B’ 273
7.11.1 Recording life cycle assumptions 274
7.11.2 Assessing the complexity of project ‘B’

and its environments 275

7.11.3 The EEM estimation session and the outputs 277

7.11.4 Analysis of results 279

7.11.5 Conclusions - project 'B' 280

10

Chapter 8 EVALUATION OF THE EEM 281

8.1 INTRODUCTION 281

8.2 EVALUATING THE EEM - QUALITATIVE ANALYSIS 282
8.2.1 Evaluation summary 288

8.3 EVALUATING THE EEM - QUANTITATIVE ANALYSIS 290
8.3.1 Comparison: the EEM planning approximates with the

projects team s' estimates 292
8.3.2 Regression Analysis 293

8.4 CONCLUSIONS 294

Chapter 9 CONCLUSIONS 296

9.1 INTRODUCTION 296
9.2 EFFORT ESTIMATION MODELS FOR SOFTWARE

DEVELOPMENT 296
9.3 WHAT IS UNIQUE ABOUT THE EEM IN RESPECT

TO CURRENT MODELS AND TOOLS? 297
9.4 THE BENEFITS OF THE APPROACH TAKEN IN THE EEM 300
9.5 AGENDA FOR FURTHER RESEARCH 302
9.6 CONCLUSION 304

11

LIST OF APPENDICES 305

4A Definition of the Information Domain - Walston and Felix 306

5A Complexity determinants - A comparison table 307

6A The EEM questionnaire 309

7A Decomposition of the PSD phase into segm ents and activities 310
7A1 Decomposition of the PSD phase into segm ents and activities

for the iterative strategy 312
7B List of cost drivers used in the EEM 313

70 The EEM structure and concepts - examples 314
7D Complexity and risk determinants and rules for calculation 318

7D.1 COMPLEXITY AND RISK CALCULATION 318
7D.2 ASSESSMENT OF GENERAL COMPLEXITY 318

7D.3 ORGANISATIONAL ENVIRONMENT 322
7D.4 TECHNICAL ENVIRONMENT 324
7D.5 PROJECT TEAM COMPOSITION 326
7D.6 ASSESSMENT OF PROJECT RISK 327

7E Case study ‘A’, examples screen 330
7F Case study ‘B’, examples screen 334

LIST OF FIGURES

Figure 1.1 The cost spent and commitment, hardware and software 22

Figure 1.2 A general view of software development. 27
Figure 1.3 A general view software development and effort

estimating process 28

Figure 1.4 The conceptual view of the EEM 42

Figure 2.1 The Waterfall model including the V&V process 54

12

Figure 2.2 The prototype paradigm and its relationship to the
conventional SDLC 61

Figure 2.3 Software cost estimate accuracy versus phases [Boe81] 74
Figure 2.4 The interaction between software development

and phase-based effort estimation processes 86

Figure 3.1 R & D project are composed of cycles 112
Figure 3.2 Current manpower utilisation 116
Figure 3.3 Cumulative manpower utilisation 117
Figure 3.4 Alternative manpower loading strategies 119

Figure 3.5 Relative effort and elapsed time [Mac87] 141

Figure 7.1 The conceptual model of the EEM 231
Figure 7.2 An activity data-model (a partial view) 234
Figure 7.3 Alternative strategies for software development used by

the EEM 237
Figure 7.4 A partial view (a) of the conceptual data model used in

the EEM. (A base model view) 241
Figure 7.5 A partial view (b) of the conceptual data model used in

the EEM. (A project view) 241
Figure 7.6 A partial view (c) of the conceptual data model used in

the EEM. (A base model view) 242

Figure 7.7 A partial view (d) of the conceptual data model used in

the EEM. (A project view) 243

Figure 7.8 Complexity and risk 244
Figure 7.9 Complexity and risk assessm ent 250
Figure 7.10 The EEM's function chart 252

Figure 8.1 A plot of the results of the regression analysis 295

In A ppendices 7A and 7A1

Figure 7.11 Decomposition of the PSD Phase into segm ents 310
Figure 7.12 Decomposition of the iterative approach into segm ents 312

13

LIST OF TABLES

Table 2.1 Productivity by estimation approach [Jef85] 82

Table 3.1 Aron’s Matrix of Productivity Rates 98
Table 3.2 The Cost Drivers affect the size/effort tradeoff [Boe81] 128
Table 3.3 The basic effort and schedule coefficients COCOMO

models [Boe81] 130
Table 3.4 Phase distribution of effort and schedule 131
Table 3.5 Project classification as function of project size 132

Table 3.6 Comparison of effort equations [Boe81] 136
Table 3.7 Comparison of schedule equations [Boe81] 139

Table 4.1 The Function Domain and their weighting factors

Table 4.2 Complexity weighting factors for various classes of
functions

Table 4.3 Weighting factors for ‘data-strong’ systems

164

170
171

Table 5.1 Rubin’s key Estimation Results 178
Table 5.2 Conte’s calibration of Jensen’s Model and SLIM 182
Table 5.3 Punch’s nominal effort and schedule coefficients

compared with Boehm’s originals coefficients [Fun87] 187

Table 5.4 Typical top level breakdown structure, after [Tau83] 188

Table 5.5 Typical resource allocation for customised development

[Wol74] 189
Table 5.6 Typical resource allocation, after [Wal77] 189

Table 5.7 Comparison of typical resource allocation prior to the

detail design 190

Table 7.1 Actual versus estimated effort (A Case study -

Project ‘A’)
Table 7.2 The contribution of the various cost drivers

to the total effort
Table 7.3 Actual versus estimated effort - project ‘B’

272

278
279

14

Table 8.1 Comparison of the EEM approximations and estimates

with the actual and estimates effort by project team 282
Table 8.2 A comparison of the EEM with the I IT's size models 284

In Appendix 7 0 ;

Table 7.2 An example of activities and their associated cost drivers 315
Table 7.3 An example of ‘standard of effort’ associated with

activities and cost drivers 317

BIBLIOGRAPHY 339

GLOSSARY 375

15

Chapter 1
THE PROBLEM DOMAIN

1.1 INTRODUCTION

This chapter discusses the motivation for estimating the effort needed for software
development and the problems associated with this process. The various
approaches, models and tools currently available are analysed. This establishes
the foundation for further research by proposing the infrastructure for a process
model for the task of forecasting the development effort. The results will assist
development project team members, managers and users of software, by linking
between the process of software development with that of estimating the effort
needed for software building.

How does this research fit into the broader area of software engineering
and management science research? The processes of software development and
effort estimation are strongly interconnected. Software strategy decisions affect
the effort estimation process, while the estimates resulting from the effort
estimation process affect decisions related to the development process. Cost
estimation is thus a major layer in the economic evaluation of a new or an
upgraded software product. The ability to evaluate software cost is dependent on
fundamental knowledge stemming from computer science and management
science, incorporating various disciplines such as inform ation systems,
organisational behaviour and psychology.

16

CHAPTER 1 THE PROBLEM DOMAIN

1.2 DEFINITION OF SOFTWARE AND SOFTWARE ENGINEERING

Let us begin by defining software, the product and the discipline used for the
process of developing the software product, for which estimates are needed. This
thesis considers software in a broad sense. Webster’s New Collegiate Dictionary’s
definition of software is a good starting point:

Software is the entire set o f programs, procedures and related documentation
associated with a system, especially, computer system [Web79].

The emphasis here is on the words system and computer system. Webster defines
a system as:

A group o f interacting bodies under the influence o f related forces, or the body
considered as afunctional unit [Web79].

Within this thesis, the key terms are interacting bodies and functional units. The
interacting bodies are processed for attaining an end, a functional unit. In
emphasising the functional unit, it is suggested that software includes, both the
application software itself and the operational configuration on which the
application software is built. A computer based system is defined as:

A set or arrangement o f elements organised to accomplish some method,
procedure or control by processing information [Web79].

The elements involved in this arrangement are, procedures, documentation,
hardware, systems, data-bases, software and people. This definition is quite broad
and includes more than just computer programs. However, even this broad
definition may not suffice as software itself is a very general term. For instance,
considering software projects and systems, software products and software support,
do we really mean the same when using each of these terms? The answer is,
usually not. Fox [Fox82] states:

Software is too broad a word. It is generic, like the word *animal* which can be
a pet or a cat or an 800 pound Polar bear. Yet, people talk about software as

17

CHAPTER 1 THE PROBLEM DOMAIN

though it were a thing, or a uniform body o f things. It is everything but.

The term software engineering was introduced at the 1968 NATO
Workshop devoted to the issue, at Garmisch, West Germany [Nau69]. The
software engineering concept evolved further in the 1970’s with Fritz Bauer,
applying the stronger disciplines of engineering (in contrast to ‘art’) to the
software development process. Bauer defined software engineering as:

The establishment and use o f sound engineering principles (methods) in order
to obtain economically software that is reliable and works efficiently on real
machines [Bau72].

This definition encompasses the key issues at the heart of all definitions of the
engineering discipline. ‘Sound engineering principles’ for the development process
should result in an economical, reliable and functional product. The term ‘sound
engineering principles’ also includes managerial considerations.

The fundamental objective of software engineering is to produce a quality
product and to reduce the severity of possible failures in software development.
The software engineering concept encompasses the key factors of methods, tools
and procedures in support of all principle stages of software development. This
enables the manager of software development to gain control over the process and
provides the system developer with a foundation for building software. Based on
these concepts, m ore comprehensive definitions have been proposed, all
reinforcing the importance of engineering discipline in software development.
Boehm’s [BoeSl] definition emphasises the management of expectation and the
necessity of satisfying human need, which means that software is a working
product only when it satisfies a set of requirements:

Software Engineering is a application o f science and mathematics, by which
the capabilities o f computer equipment are made useful to man via computer
programs, procedures and associated documentation [BoeSl].

18

CHAPTER 1 THE PROBLEM DOMAIN

1.3 SOFTWARE ENGINEERING AS AN EDUCATIONAL SUBJECT

Researchers and practitioners, including Freeman [Fre76], Wegner [WegSO],
Jensen and Tonic [Jen79], Boehm [BoeSl], Sommerville [SomS5] and Macro and
Buxton [Mac87], view software engineering as a branch of engineering. Macro and
Buxton [Mac87] question whether or not software engineering should be taught in
educational establishments, and if so how it should be discriminated from
computer science. Jensen and Tonic suggest that a software engineering
curriculum, as a professional and as an academic subject, should be composed of
the following primary areas: management science, engineering fundamentals,
computer science, physical science, communication skills and project laboratory
work.^ They propose to place cost estimation under the umbrella of management
science and in particular under the topic of cost analysis.

Yet, it is controversial whether estimating software cost should be taught
only as a part of cost analysis. Cost estimates support the decision process
associated with the project definition and the m anagem ent of software
development. Furthermore, the parties involved in this decision process come
from various parts of the organisation and may have conflicting objectives and
views of the solutions offered for a given set of requirements. Complexity and
uncertainty, caused by a wide range of problems, are also associated with the
development of software and therefore with the estimation process. The reasons
for complexity in software development might be logical and/or technical.
Problems stem from the nature of the application being developed, or external
factors such as the organisational and the technical environments. Modelling
software costs is dependent on understanding the broad areas of management
science and computer science. However, modelling of software costs interacts
with other disciplines in management science, particularly organisational, cognitive
psychology and decision theories. The subject of estimating the effort required for
software development would undoubtedly benefit from interdisciplinary treatment.

1. This work was supported by the Institute of Electrical and Electronic Engineers, Inc. (IEEE) .

19

CHAPTER 1 THE PROBLEM DOMAIN

1.4 THE NEED FOR EFFORT ESTIMATION

Planning and forecasting is imperfect work beset with uncertainties o f various
kinds, yet it is essential to keep the gap between disaster and simple variance
wide enough to enable progress to be made in some orderly way [Blu69].

The incentive for estimating the effort needed in software development arises
from the need for planning. Forecasting is a difficult management task, since
uncertainties of all kinds are involved. Planning is the process of setting formal
guidelines and constraints for managerial action. Its purpose is to show how to act
instead of react, to provide adaptable methods and to overcome the alarm
syndrome that prevails today. Management of software is still a matter of personal
style and individual experience. Management, from a software engineering
viewpoint, is primarily the management of the design process. The process is
highly creative knowledge work, yet it must still be estimated and scheduled so that
the various life cycle activities can be co-ordinated and integrated into an
harmonious result.

Knowing the estimated cost of software development assists us in the
processes of justifying the cost for a software project, analysing realistic tradeoffs,
planning resource requirements, designing-to-cost and/or designing-to-schedule,
and controlling the development process.^

The need to estimate the effort required for software development exists
before and during the development process, therefor, the cost analysis of a project
should be a continuing activity throughout the project life cycle. Yet, as decisions
made early in the software development determine the cost of the software life
cycle, an estimate of the total effort required to build a software product, its
schedule and cost, is essential before any investment decision is made. Estimating
the effort required to develop a software product is a major factor in evaluating a
potential project. Labour is not only the most expensive resource, it is a scarce
resource: there is a shortage of high quality, experienced people. We can’t

2. This is an iterative procedure. It consists of design and estimation activities and aims to ensure
design-to-cost and design-to-schedule. This process also enables us, if it is at all necessary, to design
only the minimum to satisfy a set of requirements stated by the customer.

20

CHAPTER 1 THE PROBLEM DOMAIN

"...indefinitely, add people and get the job done faster" [Nor63], nor are "Manpower
and time interchangeable" [Bro75]. Knowledge about the behaviour of this
valuable resource assists management in prioritising both alternative solutions and
development strategies, in which the estimated effort differs meaningfully.

The timing of the installation of a new project might be of critical
importance to the user organisation as far as changes in the economic feasibility of
the project are concerned. Software users are often more concerned about
predictability and control over software costs and schedule than they are about the
absolute values of the costs and schedule. Good estimates enable management to
synchronise their software development with other critical development, such as
major changes in their services.

Knowledge about the estimated effort and the development schedule, for
each development phase, is essential through the project life cycle. This
knowledge enables managers to control the development process by tracing the
project status with regard to two important factors: the effort and schedule
associated with the process.

However, the degree of understanding of the project under development
varies throughout the life cycle. The uncertainties in factors influencing the
estimating process are also reduced as the development process continues. The
nature of the estimates differ for each type of system, as well as in each phase of
the software development life cycle, according to the estimation objectives and the
maturity level of the project. Therefore, although an interdependent estimation
model for the entire life cycle is claimed to be of benefit, this research will
question whether it is reasonable (or worthwhile) to explore such a model. This
research takes the attitude that each software development phase should employ
different estimating procedures.

1.5 THE PROBLEM DOMAIN

The 1980’s have often been called the information decade. The trends established
throughout this decade are certain to continue into the 1990’s and probably well

21

CHAPTER 1 THE PROBLEM DOMAIN

into the next century. The implications of these trends on management of
software development should be understood. The convergence in the late 1970’s
of computer technology (hardware & software) with communications has resulted
in the software development environment becoming far more complex. Man
power costs have increased continually while the management skills needed to
control this complex process, which is technically oriented and heavily affected by
human and organisation behaviour factors, have remained scarce.

The computer industry has seen a dramatic rise in the cost of software
relative to hardware. Hardware costs have been declining significantly while
software costs have been increasing. Typically, at the time when only 2% of the
project costs have been spent, a commitment already exists for 70% of the
software and hardware costs, as shown in Figure 1.1. Whilst this percentage varies
slightly, the conclusion is well supported. Therefore, decisions made at the outset
of a project will significantly and unalterably shape the system cost.

100%

80%

S ystem specification
75%

70%

S ystem requ irem ents

50%

V
Commitment

25% Spend

<5%

Concept DevelopmentDefinition Production

Figure 1.1 The cost spent and commitment, hardware and software [Win87]

22

CHAPTER 1 THE PROBLEM DOMAIN

If the trends in software costs are being also considered, then we realise
that the ‘software crisis’ is important and is not just a cliche. Problems that have
been addressed in this context are associated with schedule and cost estimates of
software development which are often inaccurate. The software industry has often
experienced inaccurate cost and schedule estimates as well as overruns in software
development. Therefore, it is not at all surprising that meeting project deadlines
has become a prime worry for managers in major industrial countries.^

The total world population of professional programmers in 1980 was
estimated to be 3,250,000 [JonS3]; [BoeSSa]. Of these about 1,000,000 were
located in the US, 1,000,000 in Western Europe and 500,000 in the Far East
(mainly Japan). The 1980 annual cost of the programming labour force in US
accounted for approximately 40 billion dollars, which represented 2% of the GNP.
With an estimated growth of 7% per year, the expected population and cost of
programmers for 2000 is [Boe88a]:

* US 3 million professional programmers,
at a cost of 400 billion dollars.

* World 10 million professional programmers,
at a cost of 800 billion dollars.

By the turn of the century, the software industry is estimated to have total
turnover cost of about 800 billion dollars world-wide."^ Therefore, controlling and

3. Price Waterhouse International Computer Opinion Survey indicates that managers in US, UK,
Australia and France considered meeting project deadlines as their major worry while, managers in
Japan didn’t considered this issue to be a problem [PriSS].

4. Total software cost trends, based on 1985 figures with a continued estimated growth of 12% per
year (indicating a 5% annual increase in personnel costs and 7% increase in the number of
personnel) [DOD85], [Boe87a], in billion dollars are:

1985 1995 2000
US DOD 11 36 63
US Overall 70 225 400
World wide 140 450 800

23

CHAPTER 1 THE PROBLEM DOMAIN

saving even a small part of this cost is meaningful. The gap between the demand
for new and upgraded systems and the ability of the software industry to fulfil this
demand is wide. This stems from a shortage of talented software engineers,
programmers and managers, which is the major cause for the increase in software
cost.^ However, this is only part of the problem. Analysis of a sample of nine US
Federal projects [Usg79] (at the total cost of 6.8 million dollars) showed that less
than a tenth of all projects are delivered on time and within the specified budget.
Furthermore:

Only 5% of the software had paid for been used ($0.3M), and less than 2%
($0.1M) had been used as delivered, i.e. without change.
29% of the contracted software was paid for but not delivered ($2M).
47% of the contracted software was delivered but never used ($3.2M) and
19% was abandoned or reworked ($1.3M).

Although this sample represents only a tiny part of total software cost in the US, it
is well supported. This picture should alarm those who have the authority over
software contracts and those who manage software development. What are the
reasons for such a poor record? It is not a question of technological
breakthroughs, for they are required on few, if any, software projects. So where
does the problem lie? The actual difficulty has been in estimating the appropriate
resources needed for the solution. This difficulty is derived mainly from the
inability to identify and appreciate all aspects of the problem [Ton79].

Even so, this situation is only one side of the coin. There are other
endeavours from which we can learn a lesson although a very different one. Mills
[MilSO] of IBM, describes his experience with very large and complex projects

5. The world wide programming backlog for 1980 was estimated as 5 million programmers, which is
150% of the world wide calculated professional programmer for this year [PriSS], This trend
continued throughout the eighties. The backlog is defined as requests outstanding for new or
improved computer systems. This is supported by the US Air Force survey which has identified a
four years backlog of important data processing functions which cannot be implemented mainly due
to limited availability of personnel [BoeSSaj.

24

CHAPTER 1 THE PROBLEM DOMAIN

which were delivered on time and within budget. One of the projects was
developed for 8 different processors and involved 200 person years of effort over a
period of 4 years. The successful development of this project and of a few
additional projects, all of which were im plem ented using an increm ental
(evolutionary) strategy, is attributed to the strategy chosen for the development
process. This approach enabled the completion and delivery on time and within
budget for each of the 45 incremental deliveries. Mills’s conclusion that there were
few late or overrun deliveries in that decade and none at all in the past few years"
[MilSO] contradicts the previous example. Though this does not represent a
common view held by the professional and the academic communities, it does
suggest a better way of estimating the software development effort.^

Computer hardware technology has advanced rapidly whilst customers and
users’ requirements have become more sophisticated. Software complexity has
steadily increased, creating a significant gap between software technology and
m anagem ent. Software technology, which includes both m anagerial and
development methodologies, was inadequate to satisfy the innovative users’
requirements [Jen79a]. For example, only the convergence of computer hardware
and communication enabled the introduction of office autom ation into
organisations in an attempt to meet the long-time vision of a ‘paperless society’.
Although the technology exists, these expectations are still unfulfilled. Given the
increasing dependence of organisations on software-based systems, it has become
increasingly difficult and eventually will be impossible to return to the previous
way of doing business, or even to continue effective operation if the computing
systems are out of date [LehS9].

Increase in size of software systems, particularly when poorly structured,
may cause the m anagem ent effort to increase exponentially [WegSOa].
U nfortunately, software projects expand if not properly controlled. The
evolutionary nature of system development is subject to a "Law o f increasing

6. Fox [Fox82] supplies us with few examples of that type. Two major airlines, each sued its supplier
because after $40 million, already spent, the system was not even close to working. A major
European bank went to court for a $70 million claim over software.

25

CHAPTER 1 THE PROBLEM DOMAIN

unstructuredness'' [Bel79b] unless specific resources are devoted to maintaining
the structure during the system development and growth. Good management is
essential to the development of successful and reliable systems. Software
development requires a careful, intense management system, which must be aimed
at ensuring the highest quality of delivered products within budget and constraints
of the project. These two aspects of a project are interdependent. The quality
management of the software development process cannot be implemented by
ignoring its economic aspects. The ability to evaluate the costs and benefits of a
potential project at an early stage is paramount.

1.6 SOFTWARE DEVELOPMENT AND EFFORT ESTIMATION

Estimating the effort needed for software development cannot be discussed
without considering the software development life cycle (SDLC), a conceptual
framework that underlies the development and management processes.

Software development can follow a number of alternative approaches to
fulfil a desired set of requirements. Sequential software development where the
development process is consists of discrete phases and stages (within the phases)
implemented in definite sequence, or an iterative development process are two
possible strategies. Customised software development, or modification of an
application package are additional two alternative approaches. Each of these
strategies can incorporate the use of tools such as, data-base management systems
(DBMS) and report generators. Each strategy will make use of the universal view
of software development as discussed below.

1.6.1 Software development and effort estimation as interactive and
iterative processes

The software development process is composed of four principal phases, regardless
of the specific development approach or the unique features of that project.

26

CHAPTER 1 THE PROBLEM DOMAIN

These phases are definition, design implementation and operation.

D E F I N I T I O N > D E S I G N > I M P L E M E N T A T I O N > O P E R A T I O N

Figure 1.2 A general view of software development.

The main concern of the definition step is what should be done from the
viewpoint of the users. In other words, what are the desired functions, what is the
data to be processed (in order to implement these functions) and what is the
desired performance of the new system. This is explored in detail in this thesis so
that all implications are understood. The design phase addresses the questions of
how the data is to be structured and how the overall hardware and software
architecture are to be designed. In the implementation phase the designed
architecture is constructed and the designed functions are implemented. The
operation step focuses on changes to existing software. Changes that result from
user requirements, from errors, from modification and adaptations due to changes
in the technical, users and/or external environments.

But, project development does not occur in a vacuum. A software project
is a part of a larger computer and societal system. Projects are being initialised
either in long range planning for information systems, or in a Project Planning
phase. Initialisation through a Project Planning phase occurs as a result of an
urgent, or ad hoc need, where established priorities for development cannot be
undertaken. Cost analysis for proposed projects is done in either of these project
initialisation phases. Therefore, this thesis takes the view that the definition phase
should be comprised of 2 phases, a Project Planning phase and a Preliminary
System Design (PSD) phase. The concepts identified at the Project Planning
phase are further analysed into system requirements at the Preliminary System
Design. These are similarly transformed into detailed design that is then

27

CHAPTER 1 THE PROBLEM DOMAIN

implemented as a computer program. This is done at the Construction phase.^
The processes of identifying what is desired and how it should be implemented are
of an iterative and interactive nature. The process of estimating the software
effort should be implemented in each of these major phases and should continue
throughout the project life cycle, as shown in Figure 1.3.

E s t i m a t i o n
M o d e l A 1

P R O J E C T < ..
P L A N N I NG
OR
L ONG RANGE
S Y S T E M P L A N N I N G

E s t i m a t i o n
M o d e l A2

C O S T S P L A N N I N G <
AND EST I MAT I N G

S T A T I S T I C A L < - -
D A T A FROM
O T H E R P R O J E C T S

P R E L I M I N A R Y < ---------
S Y S T E M D E S I G N

(R e q u i r e m e n t
a n d
p r o d u c t
d e s i g n }

C O N S T R U C T I O N < ------
{ D e t a i l e d
d e s i g n a n d
i m p l e m e n t a t i o n }

COS T P E R F O R M A N C E
AND
E S T I M A T I O N

P R O J E C T >
P E R F O R M A N C E
D A T A <

Y e s
I S COST P E R F O R M A N C E <
MON I TOR I N G CONS I S T E N T
W I T H P L A N N I N G ?

N 0

V
COST P L A N N I NG
AND EST I MAT I N G

O P E R A T I ON

Figure 1.3 A general view, software development and effort estimating processes.

7. This phase is often called the development, production or implementation phase. However, as
the main work of this phase is around the actual construction of the target system, the title
Construction phase will be used in this thesis.

28

CHAPTER 1 THE PROBLEM DOMAIN

1.7 CURRENT RESEARCH

Research into effort estimation cannot be isolated from research within adjacent
fields of interest. In order to understand the behaviour of the effort required for
software development, researchers investigating it have approached the subject
from different aspects. The earlier works of Benington, [Ben56] and Norden
[Nor63] influenced Putnam [Put79], whilst Parr [ParSO] proposed an alternative
approach. Royce [Roy70], Boehm [Boe76] and Jensen [Jen84] modelled the
process of software development, and concluded with various versions of a process
model popularised as the ‘Waterfall’ model for SDLC. As new technologies
became available, new paradigms for the SDLC were proposed and labelled with
the generic term Prototyping.®

Researchers have long been interested in staff productivity using different
software development processes and environments. The aim has been to define an
agreeable and reliable measure of productivity for the software industry and
perhaps to come up with a standard measure as is customary in the engineering
arena. With such a measure we could record the effort of the SDLC (as a whole,
or for various parts), measure productivity, establish productivity trends and
hopefully predict the effort required for a new project.^

Researchers have been looking into the various aspects of the complexity
associated with the software development process. Complexity is both a
characteristic of the product to be developed and of the organisational
environment. There are different causes for the complexity associated with
software development. Complexity can stem from the behaviour of the people
involved in the development, their attitudes, their roles in the organisation, their
expertise and skills. A further aspect is technical complexity emerging from the
development environment, such as new hardware and new development tools.

8. [Bal83]; [Ala84j; [Zav82;84]; [Agr86;86a].

9. [Wal77]; [Alb79]; [DeM85j; [Jon86j; [Dun83].

29

CHAPTER 1 THE PROBLEM DOMAIN

Complexity often results from uncertainty associated with the project and the
development process. Entropy caused by interactions among system components
(in the broad context of systems) and the feedback associated with these
interactions, are the prime cause for the uncertainty which is inherent in the
process of software development. The outset of the project life cycle is
characterised by a high level of uncertainty.^®

Empirical research in the subject of estimating software development costs
has been done since the late 1960’s in the area of estimating the effort and cost of
software development.^^ In the early 1970’s, with the dynamic growth of the
information technology industry, the need to compete for large and risky software
development contracts, illuminated the necessity to improve the process of
estimating the effort needed to produce software. It was only in the late 1970’s
and the 1980’s that intensive research resulted in a number of effort and cost
estimation models, which were followed by the development of support tools for
estimating the software development effort. However, a few new projects have
been launched in recent years stemming from the work of the Esprit and Alvey
committees, such as the MERMAID, SPEM, COSMOS and PIMS projects. Even
with such intensive research no clear understanding of the behaviour of the
software development process resulted.

Most of the models were developed, not coincidentally, by very large
companies. These companies not only realised the need for estimating methods,
models and tools, but they themselves could not afford to stay out of the race for
software tenders and contracts. They needed support tools throughout the
estimation process. This was the incentive to carry out intensive research into the
area of software effort and cost estimation. But, the new approaches introduced
by that work did not bring salvation to the industry. The early models were used
by their developers (companies such as RCA, Boeing, Bell Laboratories, IBM) as

10. [MaC76;89]; [GU77]; [Hal72;77]; [Che78j; [Cur81j; [Bas81]; [Bel81]; [DeM82]; [Leh89;89a]

11. [Nel66]; [Wol74;84j; [Dot77]; [Wal77]; [Hal77]; [Boe73]; [Put78;79;80;80a;811; [Alb79;83]

12. [Put78;79;83;84;84a]; [Alb79]; [Boe81]; [Moh81j; [Jen83]

30

CHAPTER 1 THE PROBLEM DOMAIN

competitive weapons. The studies and research findings did not become ‘common
knowledge’.

1.8 DIFFICULTIES IN ESTIMATING SOFTWARE DEVELOPMENT EFFORT

The difficulties in estimating the costs of software development appear to stem
from the management of complexity, in other words managing people and
developing products in a dynamic and uncertain environment. Complexity is not a
well-defined term in software engineering literature. A consensus does exist,
however, as to its importance in estimating the effort for software development.
The term appears in different contexts and is generally used in this problem
domain, to indicate difficulty in the development process, caused by one or more
factors. A definition which emphasises the interaction between all agents involved
in the process was proposed by a panel which dealt with complexity in software
development^:

Complexity is the measure o f the resources expended by another system
interacting with a piece o f software. Categories o f systems that may interact
with software are machines, other software, people and even external
environment [Bas79a].

But can complexity, which is an intuitive concept, be quantified and measured?
The nature of the software product, its development process, the people

who are involved in it and the environments in which the software is being
developed and/or will be used, are important factors in the process of software
developm ent and that of software cost estim ation. U nderstanding the
characteristics of the software product and the factors influencing its development
is essential.

13. After Curtis [Cur79]

31

CHAPTER 1 THE PROBLEM DOMAIN

1.8.1 The software product and its development process

The process of software development is characterised by the software product
itself and the associated environments in which the development process takes
place. During most of its development, software is basically an intangible product.
Only as a working end product, which satisfies the requirements, is the software
tangible and therefore, quantifiable. The fact that 50,000 lines of code (LOG)
were written indicates nothing meaningful about the status of the development
process. It can be used as a posterior measuring of productivity only when
software is fully completed. On the other hand, the ‘life-time’ of this end-product
is naturally limited as the application domain undergoes continuous changes. The
software product should be treated as: "an ever to be adapted organism rather than
as a to be produced once artifact" [Leh89]. This last point implies that a software
product should be built in an evolutionary manner, to be modified and changed.
The way to build software for that purpose is entirely different from development
software as a ‘black box’ which is easy to use but need never be opened.

Desired software characteristics are often in conflict, requiring tradeoffs
among factors (such as core storage requirement versus light code, flexibility or
adjustibility to new needs, accuracy and reliability). The application developer of
software finds himself in a dynamic environment. The software cost is derived by
an extremely intricate environment in which many factors play a role and it is very
difficult to isolate each of the factors influencing the software development. In
addition, these factors behave differently in various situations. For example, a
high response time might be of crucial importance for a project and, therefore,
expands the effort needed for its development. The same factor might not be of
importance in a different development environment and, hence, may affect
differently the effort needed. Even within a given company, fluctuations in
company project demands may dictate changes in priorities and thus affect project
development dissimilarly. It is only the combination of all the factors of this
environment which drive the cost of a software effort.

Volatility of the requirements. There is no one discrete correct solution to
a set of requirements. Furthermore, there is no way to check the attributes of a

32

CHAPTER 1 THE PROBLEM DOMAIN

‘correct’ software solution, the same way in which the stress characteristics of
materials might be used to check the properties of design for a building [Kit89].
Software requirements are often driven by forces far removed from the actual
software laboratory. Product requirements in most cases are not well-defined nor
are they frozen before any design activities began. Software engineers like to start
quickly the detailed design and coding, they have problems stemming from
frequently underestimating the time needed to understand the user functional
requirem ents. This can result in software that does not m eet the user
requirements, which will inevitably alter during the lifetime of the project.

The control of the development process. There are virtually no objective
standards of measure by which to evaluate the progress of software development.
Software work is ‘knowledge work’ which can’t be seen, does not fit into discrete
tangible units and is difficult, if not impossible to measure. Therefore, a manager
of ‘knowledge work’ faces difficulty in knowing when he has accomplished
something. The abstract nature of software development makes it more difficult
to manage. The physical visibility of a partially completed building must be
replaced by documentation, that provides the state of a partially completed
project, which aids in understanding and modifying the system.

Product development is often dependent upon the availability of supporting
software, programs or data-base elements of another project. Delays in the
availability of supporting program s or data-bases may subsequently induce
slippages in the product development. The current practice, often used to describe
the progress and the status of software development by indicating percentage of
completion, is not satisfactory.

1.8.2 The people

Experience indicates that software size and complexity is generally underestimated
[BoeSl]; [Wol74]; [Bro75]. If we could understand the reasons for this
phenomenon we might be able to overcome these obstacles. Cultural behaviour is
considered as the cause. The people involved in software work are optimistic, they

33

CHAPTER 1 THE PROBLEM DOMAIN

desire to please and they tend to have incomplete recall of previous experience.
Team m embers are generally not fam iliar with the entire software job.
Furthermore, software engineers and programmers tend to ‘gold-plate’ the
developed product to satisfy their own technical challenge aspirations rather than
the essential functionality of the system.

Software engineers and programmers often have trouble communicating
directly with users. They prefer interesting work which often gets done in
preference to dull work, meaning that the latter is frequently postponed or
ignored. The software manager often has more interest in the feasibility and
technical issues of the project, while the business manager’s awareness of the
influence of the loose control, direct or indirect, is low. Both types of managers
are not always motivated or equipped to consider an information technology
project.

Lastly, managers of software development effort often find themselves in
conflict and are forced to act defensively. They are asked to estimate the required
effort and to take responsibility for the development process following their
estimates. At the same time, they face pressure to lower their estimates, knowing
that high estimates, although well justified, might not be accepted by higher
authority, causing the postponement or even abandonment of the project.

1.9 THE ESTIMATOR’S DILEMMA

There is a need to know what the costs of developing a software product will be.
Yet, it is difficult to estimate these costs accurately. It is even more difficult at the
outset of the project life cycle. A strong link exists between the availability of
estimates of effort and duration for software development, the functionality within
the project problem domain being estimated and the capability to plan, manage
and control the software development effort and cost. We cannot manage without
being able to control and we cannot control without knowing what is to be
controlled. In other words we cannot control without planning, nor can we plan
without estimating.

34

CHAPTER 1 THE PROBLEM DOMAIN

The abstract nature of the software development process cannot be
changed. Neither can we change the volatile nature of the requirements and the
driving forces of this phenomenon. Yet, does the fact that it is difficult to estimate
the effort required for software development imply that nothing should be done
about estimating this effort? Does the fact that we cannot isolate the exact effects
of each of the influencing factors on the software development process justify
doing nothing about estimating this effort? These difficulties do not eliminate the
need for effort estimates. Nor are they a reason to abandon software cost
prediction and to improve methods of estimating.

Estimates deal with the unknown, and the unknown has a perverse way to
subject poor developers to all kinds o f rude shocks. I know only one thing that
keeps these rude shocks to a minimum, and I shall take this opportunity to pass
it to you: Good Luck!, [DeM77].

1.10 LONG-TERM RESEARCH GOALS AND SPECIFIC OBJECTIVES

Perhaps there are avenues in which we could help the ‘Goddess of Fortune’. We
should not rest quietly waiting for Her to help us, although such help is truly
needed. The subject of this research is about what should be done to help the
software manager, the project team, the users and all who are involved in the
process of software development with this matter.

Having discussed the difficulties stemming from the phenomenon described
as the ‘software crisis’, recognising the trend of software costs, and having gained
understanding of the difficulties associated with estimating the effort needed for
software development, it is now the time to establish the long range goals and the
specific objectives for this research. This research aims to pave the way for
members of organisations who are parties to the software development and effort
estimation processes, by proposing a concept which will aid the understanding of
these complex processes. The long-term research goals are:

1. To describe a practical and systematic method of software estimation which

35

CHAPTER 1 THE PROBLEM DOMAIN

will serve as a guideline for the parties involved in estimating the software
effort.

2. To identify the possibilities of automation and to specify a system which
will make use of the ‘common knowledge’ which exists with regard to
software development management.

3. To build an automated tool for future research.
4 To establish the foundation for an historical data-base for further research.

The problem of designing an effective model and tool for estimating the
effort required for software development is both important and difficult. Yet,
what can be done to help in solving the estimator’s dilemma? The scope of this
research is restricted to estimating the effort required during the Preliminary
System Design (PSD) phase only. By so doing, a response will be given to a part of
the process that needs special attention that it does not receive in current tools.
This thesis offers a model which has the following advantageous properties:

1. A practical and systematic method of software estimation which would
serve as guidance for the parties involved in estimating the software effort,
and by that:

* Assist experienced project managers and all other data processing
professionals by suggesting an interactive and structured estimation
process. This process which facilitates thinking about both their
work and their decision making and allow the incorporation of the
estimators’ judgement into the estimation process.

* Serve as a training tool for the inexperienced project manager and
user, by proposing a standard procedure for software project
development and for the estimation process.

* Provide a basis for assessing project risk, comparing and evaluating
the various development alternatives and for developing a working
plan for a project.

36

CHAPTER 1 THE PROBLEM DOMAIN

2. A way to capture and to retrieve the assumptions underlying the estimation
process and therefore to:

• Keep the organisational knowledge and the knowledge associated
with a project, and so they are not lost through personnel change.

* Gain better knowledge and understanding of the process and the
factors that influence it.

3. A software estimation process which is integrated into the process of
software development.

These qualities will hopefully allow informal interaction among all parties
in the development process: the user, the project manager, the project team and
the organisation’s management and hence, improve reliability among these parties,
produce more precise estimates and decrease overruns.

1.11 RESEARCH DIRECTIONS

Background. The economic evaluation segments are the weak links in the various
phases of the projects’ life and they do not receive the degree of attention they
deserve. There are many different reasons for this phenomenon. It is common to
think that most projects get off on the wrong foot because the project definition
and the project planning factors are not treated with sufficient attention and
competence. The manageability of any development process is determined by the
amount of uncertainty experienced during the development. Unfortunately these
properties are particular to the Project Planning phase. Yet, the argument is that
if the information system manager had an understandable, friendly and practical
method, which emphasises the principles involved in the estimation process and
the results, using tools of support, then he would have taken advantage of it and
used it.

One way of supporting quality management in this area is to provide, at the

37

CHAPTER 1 THE PROBLEM DOMAIN

different phases of the life cycle, guidelines for the products to be supplied and the
means for producing them. This will serve as a facilitator to the information
technology manager and will assist in the dissemination and usage of the ‘common
knowledge’ which already exists in the organisation, related to both the software
development process and the effort estimation process.

One possible way to deal with the issue of estimating the cost for software
developm ent is derived from the world of engineering. In the software
development process, we could employ a standard approach similar to that used
for production planning and scheduling. Some qualitative attributes might be
drawn from the production process. For instance, we might gain insight from
analysing the software development process, the various procedures, their
components, and the ways they interact and integrate, whilst bearing in mind an
analogy derived from the engineering practice, the ‘Bill of Material’ and the
‘Routeing’ principles. This research will argue that it is feasible to approach
software development estimates using surveyors, decomposing the software
development life cycle into standards components which have an associated
average effort needed to produce them.

Each of the SDLC phases employs activities characterised by various
attributes. Therefore, this research takes the view that effort estimation for each
phase should be dealt with differently. None of the current models, known to the
author of this thesis, deal with estimating the effort for the Preliminary System
Design phase (PSD) of software development explicitly.

Aiming to provide an insight into the process being modelled, this research
advocates the bottom-up approach for estimating the effort for the subsequent
phase (the PSD) and a top-down approach for the Construction phase. A better
understanding of both the software development process and the effort estimation
process will help in producing better estimates, since, the major obstacle is
underestimating the effort which results from not knowing what is involved in a
specific solution. The bottom-up approach assists in providing insight into the
estimating process. This property is of high benefits although intangible.

38

CHAPTER 1 THE PROBLEM DOMAIN

1.11.1 The principles of the proposed solution

The Effort Estimation Model (EEM) developed in this thesis has the following
m ^o r principles;

Life cycle. Software development has a life cycle pattern which is
composed of phases, segments and activities which represent the processes
of transforming concepts and desires into a real operating software system.
The concept is borrowed from the engineering world where the notion of
product life cycle has long been used in product planning.
Phase - by - phase estimation. The prime aim of this research is to develop
a model appropriate for the process of effort estimation which takes place
at the Project Planning (PP) phase and provides estim ates for the
subsequent phase only. At that phase the effort is estimated only for the
PSD phase of the software development process. The effort needed for the
rest of the project is extrapolated from these estimates using resource
allocation among the development phases based on resource distribution
among the project’s phases, which is known statistically.
Activities. Most activities involved in the software development life cycle
have a standard list of cost drivers. The cost drivers serve as the basic unit
for estimating the effort needed for each activity. A cost driver is, for
example, an input document, a report, a file to be converted, a contract to
be signed, etc.
Measurement. Each of the standard list of cost drivers involved in system
development has associated standards of effort. A Standard of Effort
(SOE) is the amount of effort required to accomplish one work unit, or the
amount of effort needed for a defined cost driver which is not expressed in
work units e.g. system overhead. Standard of Effort (SOE) is the
(organisational) inverse of a standard rate of productivity, measured in
person-hours (PH). It is the result of m easurem ent of projects
performance, but with and heuristic adjustment process.
Judgem ent. However, some of the activities involved in the software

39

CHAPTER 1 THE PROBLEM DOMAIN

development life cycle do not have a standard list of cost drivers and,
therefore their standard of effort is not known a priori. The effort needed
to implement these activities is estimated separately, by the effort estimator
for each project, using his experience and expert judgement.
Complexity. Every project has a complexity level which affects the
productivity of a project. It should be noted and emphasised that the
productivity rate of a project is a function of various attributes, among them
staff ability and management competence which, also, inferred productivity.
But, the aim of the estimation process at the outset of the project life cycle
is to predict the person months (PM) required for the development. The
‘natural’ schedule, the number of various professionals and their required
skills can be worked out only after the person months number, the effort
required, is known and agreed upon. At that time it is not yet known who
will be the individuals assigned to the project. Therefore, the only valid
assumption about the productivity of a project, is a function of the general
system complexity, uncertainty and difficulty associated with the system.
Consequently, the project complexity affects the set of standards of effort
associated with a project.

The concept proposed in the Effort Estimation Model (EEM) should be
applicable for each of the alternative approaches for software building, however,
with an adaptation to the specific approach.

The nature of the effort estimating task relies heavily on the judgement of
experienced performers. Effort estimation of software development, in particular
at the outset of the project, is an ‘ill defined’ problem and therefore, a closed
algorithm is not an adequate solution for this process.

1.11.2 The Effort Estimation Model (EEM)

The EEM developed in this thesis assumes the use of a management framework
for the software development life cycle (SDLC) of phases, which are composed of

40

CHAPTER 1 THE PROBLEM DOMAIN

segments (group of related activities) and activities.
A standard list of cost drivers is associated with each activity. The cost

drivers serve as the basic unit for estimating tasks associated with each activity. A
cost driver might be viewed as a further refinement of an activity and indeed, in
some cases, the cost drivers are work components that identify the tasks to be
performed. However, this is not always the case, some of the cost drivers identify
an overhead for a system.

A ‘standard of effort’ (SOE) is associated with each of these combined
entities, composed of a cost driver and a concurrent activity. The standard of
effort associated with each of the cost drivers and corresponding activity may
differ for an identical set (of cost driver and concurrent activity), according to the
complexity of the project.

The proposition is to associate with each combination of activity and cost
driver, three different ‘standards of effort’ according to the assumed complexity
level of the system, complex, moderate or simple. The degree of complexity is
considered as a subjective classification since human beings are involved in the
development and in the complexity assessment. The various parties involved in
the development may differ in their attitude and understanding of the project
under discussion. The different groups might also have conflicting objective.

However, the standard of effort is not known for every activity involved in
software development. There are activities which are characterised by a high
variance of effort needed to accomplish them in different projects. Therefore, the
estimates of the effort required to accomplish these activities is subject to the
judgement of the estimator.

The Effort Estimation Model (EEM) is supported by a conceptual SDLC
composed of phases, segments and activities, each activity is associated with one or
more cost drivers which are correlated to a ‘standard of effort’. The forecasted
effort for some activities which differ widely in the effort required for their
im plem entation is provided by the estim ator based on his judgem ent, as
schematically described bellow:

41

CHAPTER 1 THE PROBLEM DOMAIN

SDLC
Which consists of

PHASES
Which consist of

SEGMENTS
Which consist of

which have
AcnvmES < ------------> COST d r i v e r s

which consume

RESOURCES

which can be forecast based upon

MEASUREMENT and JUDGEMENT

which produces which leads to

STANDARD OF EFFORT PREDICTED EFFORT (PH)

which is measured in which is not a

PERSON HOURS (PH) STANDARD OF EFFORT

And is classified by the

GENERAL SYSTEM COMPLEXITY of the PROJECT

Figure 1.4 The conceptual view of the EEM.

42

CHAPTER 1 THE PROBLEM DOMAIN

1.12 RESEARCH METHOD AND THESIS STRUCTURE

The research incorporates the following methods:

1. Developing a conceptual model of the process of estimating the effort
required for software development early in the life cycle of a project,
engineering.

2. Acquiring knowledge, using walkthrough sessions, case studies and
discussions, developing a questionnaire which imitates an estimation
session.

3. Developing an algorithm for estimating the effort for the Preliminary
System Design phase of the software development process.

4. Designing a support system and building a prototype using the suggested
algorithm.

5. Capturing and analysing data, mainly for the purpose of tuning the
algorithm, assessing the complexity rules incorporated in the EEM and
evaluating the model.

1.12.1 Thesis structure and outlines

The following parts and chapters encompass this thesis.

Part I Focuses on two issues, setting the scene for this research and
establishing the basic foundation for understanding the two
processes of concern: the life cycle development process and the
software estimation process. Two chapters are included:

Chapter 1: In this chapter the concept of software engineering and the
estimator’s dilemma were introduced. The need to estimate the
required effort for the software development at the outset of the
development process is contrasted against our inability to do so.
This inability results from the complexity of the problem, uncertainty

43

CHAPTER 1 THE PROBLEM DOMAIN

related to the objectives and preferences of the people concerned,
the lack of information associated with the complexity of the
problem, and the uncertainty of the problem solving methods
themselves.

Chapter 2: This chapter will focus on the processes of software development,
and on the alternative methods for estimating this effort. Armed
with the required understanding of the two processes and their
implications on the desired structure of an effort estimation model,
this chapter culminates with a short discussion of the primary
concepts of the EEM proposed solution.

Part II These three chapters focus on the current research in the area of
effort estimation which is a multi-disciplinary area.

Chapter 3: The ontology of effort estimation models, tools for software
development and their evolutionary development is the subject of
this chapter. Two models which represent the most commonly used
approaches are discussed in detail. These are SLIM which
represents the analytical approach and COCOMO which represents
the composite approach. A comparison among the models, with
particular emphasis on COCOMO and SLIM. The chapter
concludes with a short summary of the current approaches and
conclusions.

Chapter 4: Estimating the size of the software product is a prerequisite for
estimating the effort required for its development. However,
estimating the product size is a very difficult task which has
implications for the ability to estimate the effort required for the
development process. An error in size prediction results in a much
higher error in the effort estimates. Two issues are addressed in this
chapter, improving the size estimates and using alternative sizing
methods which use a non-Line of Code (LOC) unit of measure.

Chapter 5: This chapter provided a critique of param etric models and
complexity. Its starts with the presenting and analysing the results of

44

CHAPTER 1 THE PROBLEM DOMAIN

empirical comparative studies and the major findings from the
discussion in chapters 2 and 3. Resource allocation among the
phases of software development is of particular interest for this
research and is analysed in detail. The discussion elaborates on
themes associated with complexity of software development. They
are: uncertainty, entropy and feedback as the causes of complexity.
The major complexity determinants are analysed.

Part III Focuses on the Effort Estimation Model. The methodology used to
develop the EEM and that which is incorporated in it are discussed.
The structure of the EEM is described, accompanied examples of its
use and a case study. Part III culminates with an evaluation of the
EEM and with the contribution of this thesis to further research.

Chapter 6: The methodology used in developing the EEM is discussed.
Chapter 7: The Effort Estimation Model (EEM) is presented in this chapter.

The discussion starts with analysis of the fundamentals of the EEM,
followed by a thorough description of the model. A general system
description, data models and functional chart of the process are
given. The chapter closes with two case studies.

Chapter 8: The focus of this chapter is on the evaluation of the EEM. An
evaluation of the qualitative feature of the EEM as presented in the
prototype built, and a quantitative evaluation of the results from a
field study are analysed.

Chapter 9: This chapter summarises the major issues addressed in this thesis,
discusses the advantages of the model developed. The chapter
closes with a look ahead, the contribution of this thesis to further
research into the problem domain.

45

Chapter 2
SOFTWARE DEVELOPMENT AND THE
EFFORT ESTIMATION PROCESSES

2.1 INTRODUCTION

This chapter addresses the processes of software building and estimating of effort
required for software development. Various models used to direct and manage
software development are analysed with the aim gaining of a better understanding
of the process. The unique characteristics of each phase which together constitute
the software development life cycle (SDLC), and its major concerns, will be
considered. The nature of the estimation process and the classical approaches
used in estimating effort will be introduced. The implications stemming from the
analysis of the two processes will lead us to the basic assumptions upon which the
Effort Estimation Model (EEM) will be based. This forms an introduction to the
models and tools considered in the following chapters.

The processes of software development and effort estimation are strongly
interconnected. Decisions taken at the outset of the software building process
heavily influence the course of the development, its costs and schedule. Examples
of such decisions include those associated with the approach chosen for the
development process, the choice of support tools for this process and the decisions
related to the functions incorporated into a software product and their desired
quality. Decisions on software strategy clearly affect the effort estimates which, in

46

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

turn, affect decisions relating to the development process.
Software projects vary in many respects, but we can learn much from the

similarities in the process of building software, which will be helpful in estimating
the effort needed for developing software. These similarities serve as the
infrastructure for software building. Therefore, the place to begin the analysis of
effort estimation is with a study of the software development life cycle.

2.2 LIFE CYCLE MODELS FOR SOFTWARE DEVELOPMENT

The software development life cycle (SDLC) is essentially a heuristic process
which serves as the basic framework for software development. The SDLC models
are descriptive representations of the software process and the documentation
required in each life cycle stage. The documentation, defined to be the
satisfactory completion criteria for each stage, are the deliverables or the
intermediate products of that stage. Even though the software development
process is customarily characterised by a top-down approach and decomposed into
stages, each having defined starting and ending points, it does not progress in a
sequential manner from project inception to system implementation. The SDLC
is an iterative and often evolutionary process. The primary functions of a software
development model are to determine the order in which the major stages should
be carried out and to establish transition criteria for moving from one step to the
next [Boe88].

A number of software development models have been proposed: the
conventional Waterfall model and its variations [Roy70]; [Boe76]; [Ton79]; the
Iterative Enhancement to the Waterfall life cycle [Bas75]; the Canonical model
[Leh84]; the Contractual model [Leh85]; the Spiral model [Boe88] and new
paradigms such as the Prototyping [Sch83]; Operational Specification [Bal81;83]
and the Transformational Implementation model [Bau82]; [Che81]. There are
many representations of the life cycle, each subculture of the software industry has
its own representation and each of these tends to be modified somewhat for
specific projects.

47

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

2.2.1 The Waterfall Model

The traditional SDLC model, the Waterfall model, was foreseen in early works,
such as Benington’s [Ben56] who described a process model with the basic
characteristic, subsequently termed the Waterfall model by Royce [Roy70].
However, Boehm’s [Boe76] presentation of the Waterfall model, in which he
described the model and its basic assumptions, was an influential milestone
providing the economic rationale underlying the model. This model became the
standard for software development in US government and industry.

The software development process consists of discrete phases decomposed
into stages, implemented in a definite sequence, each of which aims to achieve a
defined set of sub goals, before the next stage starts. These phases and stages
although sequential are interdependent, and a change made in one may have
significant influence on the other.

Four major phases are clearly identified in the process of software
development. They are, the Project Planning, the Preliminary System Design and
the Construction (including the: detailed design, coding and testing) and forming a
complete software product life cycle model, and the O peration including
maintenance.

The Project Planning phase

Project planning involves the development and the selection of the necessary
course of action to achieve an objective. The Project Planning phase (PP) aims to
develop an overall plan, a detailed programme for implementation of the plan and
the method for controlling the progress, cost and time variables of the project.
Project control consists of the appraisal of the performance and the execution of
plans in accordance with the established standards, and the initiation of corrective
action, if required. Thus, the availability of a plan and established standards of
performance are prerequisites for controlling the effort required for project
development. The main concerns of this phase are:

48

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

To establish which resources are required for the development process,
when are they required and to ensure that they are obtained.
To evaluate the alternatives and to choose between them.
To establish standards of performance and methods of control for the
development process.

The Preliminary System Design phase

The Preliminary System Design phase (PSD) aims to specify what the system
should do from the viewpoint of the user needs and the technical aspects to be
solved, in order to develop the desired system’s functionality.^ Even though this
phase is the most important of the development process, because it affects the rest
of the process, it is the least studied and the least understood. The PSD phase is
concerned with the problem formulation and analysis, the search for potential
solutions, their evaluation and comparison. Three major stages are incorporated
into this phase. They are system feasibility, system requirements and product
design. The software requirements stage emphasises the user’s view of the target
system, while the product design emphasises the technical requirements. The
product design stage deals with the functions needed to fulfil the users
requirements and with the data necessary to support these functions. Various
design alternatives are evaluated and iterated between the software designers and
the users, until an acceptable design emerges which satisfies the user
requirements.^ The model assumes that all the required information about an
application can be obtained prior to the development, and a concise and consistent
specification of the proposed system can be produced prior to the product design

1. This phase is often called the requirements specification and product design phase. However, as
it is in this phase that the preliminary architecture and the functionality of the target system is
designed, it should be titled as the Preliminary System Design.

2. The process of choosing the preferred solution to the problem is tricky, it is usually based on trial
and error, negotiation and social interaction.

49

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

stage.^ Experience shows that various types of inherent uncertainties are
associated with the software development process.

Formalisation of user requirements is a difficult task and is often ignored in
favour of the easier one of developing solutions to what the programmer thinks
the problem to be. The difficulty stems from the fact that users, more often than
not, do not know how to state their needs in a manner that the software analyst
can clearly understand. However, the main difficulty arises from the fact that the
problem has been formalised by those who are not the problem owners. The term
‘problem owner’ is used to indicate the owner of the business problem that is the
trigger for the target system. Communication of concepts between the users and
the designers of the system, and later on in the process, between the designers and
the implementors becomes a problem. This is especially true when a system
includes the need for new hardware elements to be incorporated, particularly
elements such as displays, logic chips and customised interfaces. The key
considerations of this phase are in:

Understanding the user requirements, mapping them onto a design which
will eventually be approved by the users, and identifying the technical
requirements needed to build the system.
Setting the design baseline for the target system and ensuring that all
parties responsible for using and operating the system, understand and
agree with the key design and cost factors.
Securing management commitment to the project and arranging for user
participation in the development process.

There are good reasons for the identification of the Preliminary System
Design as a critical phase. Firstly it is more costly to resolve software problems if
they are identified further into the development cycle. Errors detected early in the
life cycle can be solved much more easily and more cheaply than those discovered

3. This view point introduces problems and therefore invited critique from researches such as:
Peters [PetSl], McCraken and Jeckson[McC81] and Swartout and Blazer [Swa82].

50

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

in later stages of SDLC. When using the Waterfall model, the first time a software
project is totally assembled and tested is quite late in the life cycle, at the early
part of the integration and implementation stages. Obviously, a great risk is
involved in such an approach. Major implementation problems can only be
tackled at a time when solving the problems would imply delay in schedule and
overruns of costs. Secondly, the effort needed for software development
accumulates exponentially, starting im m ediately after the PSD has been
completed. At that transition point we are still in a position to terminate the
project if necessary, having used only a relatively small amount of the planned
resources and before a commitment is made for a high percentage of the total
costs [Win87].

Analysis of system requirements provides a detailed foundation upon which
the technical programmes and procedures will be developed. The initial emphasis
is directed entirely to an analysis of the user operation. Once the user
requirem ents and environm ent are understood, the technical approach is
determined. The designers of the system then have a sound basis on which to
proceed with implementation. The definition of the system is formally reviewed
and agreed upon and the design baselines are revealed. Changes to the baselines
are accepted and accomplished only through a formal change of control process.

The Construction phase

The Construction phase aims to specify the chosen solution in detail, to indicate
how the requirements are to be met by the data processing system, and to
construct the design of the system. The following major stages are included in the
Construction phase: detailed design, coding, system integration and
implementation. Each of these stages is accompanied by an iteration loop feeding
back details to a previous stages or phases and thus forcing a more complete
definition of requirements. This phase starts by further refining the definitions
and system design which resulted in the design baselines. It continues with
finalising the technical software and the system design necessary to complete the

51

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

software. The Construction phase focuses on completing, documenting and
validating the design, establishing an approach for converting the system to be
replaced, keeping the development status visible and controlled, establishing the
testing approach; testing the system and delivering a quality system to the users.
The major concerns of this phase are in:

Controlling the construction process by monitoring project activities and
progress. This is achieved by maintaining the design at a proper level of
refinement, based on the design baselines and by keeping programming
simple. Unless requirements for response time or other constraints make it
absolutely essential, unnecessarily complex programs should be avoided.
Avoiding the ‘after-thought’ and the ‘gold-plating’ syndromes. The
tem ptation to incorporate changes which are improvements or
modifications to the design baselines often exists. Such refinements should
be employed only after thorough consideration of costs and schedule delays
that may be incurred.
Correcting errors as soon as detected. As time passes, designers tend to
forget the reasoning and rationale used to support an approach or a
particular technique. Therefore, the early detection and correction of
errors is of great value to the development process.

The Operational phase

Finally, when the system test is formally completed and audited, the software is
transferred to the user’s control. The Operational phase starts at that point in a
project and is not part of the ‘development effort’, even though the target system
may undergo changes. This phase embraces all the activities that are required to
continue operational use of the software. The required modifications resulting
either from errors discovered while software is operational or from the need for
software upgrades, are accumulated and evaluated periodically. The evaluation
process aims to establish short-term and long-term strategies for the employment

52

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

of the desired changes. Each change, if major, should be considered as a new
project or an additional increment to the system. The formality of the SDLC is
again employed, either in total or in part. The main considerations of the
Operation phase are:

Identifying and controlling the cost, schedule and sequences of the desired
changes to the system.
Assessing the quality and structure of the system to provide a basis for
future planning.

2.2.2 The Verification and Vaiidation (V&V) concept

The ability to minimise the risk associated with the development process, and the
power to control the actual development process, are critical to the success of
software development and in particular to the PSD phase. Experience has shown
that the most extensive cause of late delivery of software and inadequate
performance is an ineffective requirements analysis [Deu79]; [BoeSl]; [Fox82].
The introduction of the Verification and Validation (V&V) concept aims to
improve the means to deal with these key issues. A constant iteration takes place
between levels, as analysis and synthesis at one level uncover deficiencies in the
design at a earlier level. Similarly, an iteration loop takes place between the
stages of the life cycle, feeding back to the predecessor stage and thus forcing a
more complete definition of requirements as illustrated in Figure 2.1

The verification process aims to assure that the right product is being
developed that each level of requirement or specification correctly echoes the
desired requirements. The validation process aims to assure that the right product
is being built, that each end item functions and contains the features prescribed by
its requirements or specifications. The V&V processes are addressed in each
stage of the SDLC and are the major means of providing quality assurance to a
software system. They are often referred to as Configuration Management. This
formal mechanism minimises the expensive rework involved in feedback across

53

CHAPTER2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

S T A G E S P H A S E S

S Y S T E M /
F E A S I B I L I T Y / V A L I D A T I O N

I

S O F T WA R E /
R E Q U I R E M E N T S / V A L I D A T I O N

P R OD U CT
D E S I G N / V E R I F I C A T I O N

- I .

D E T A I L E D
D E S I G N

- V . I -
/ I

/ VER I F I CAT I ON 1<

I . I

CODE / U N I T
/ T E S T

I . V . I -
I I N T E G R A T I O N / P R OD U C T j
I / V E R I F I C A T I O N | <

I . I . - - - I

I I M P L E M E N T A T I O N / S Y S T E M
1 / T E S T

O P E R A T I O N /
/ R E V A L I D A T I O N

P R O J E C T
P L A N N I N G P HA S E

P R E L I M I N A R Y
S Y S T E M
D E S I G N
P H A S E

S Y S T E M
C O N S T R U C T I O N
P HA S E

I O P E R A T I O N A L
I P H A S E

Figure 2.1 The Waterfall model including the V&V process [After BoeSl]

54

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

many stages, since a major source of reworking results from misinterpretation of
requirements.^ Each stage culminates with a verification or validation feedback
loop to the predecessor stage.

2.2.3 Deviations from the Waterfaii route

Presumptions implicit in software development following the Waterfall process are
that the developer knows the requirements, that the requirements are stable and
that an efficient approach to satisfy them can be designed. However, the real life
situation is very different, in particular when systems are either new to the user
and/or to the developer, or when the subject of development is state-of-the-art.
The sequential approach, usually forced by the Waterfall model, is not appropriate
for the development of software in situations where either the user is unable to
define the nature of the system to be solved, or where there is no simple solution
to the problem. In such circumstances, the problem description and definition can
benefit from extended exposure of the user to the data processing capabilities in
the real environment. Thus, only when the user gets the first version of a system
can he recognise the capabilities of the technology and what it can supply. This is
achieved by either of the following approaches: ‘throw it away’ prototyping or
incremental development within the framework of the waterfall approach.

The initial incorporation of prototyping via a ‘throw it away’ or ‘build it
twice’ step, helps the user to accumulate experience with the functionality of the
target system and its behaviour. The user is then more capable of adding to and
changing the original requirements. The prototype is implemented in parallel with
the requirements analysis and product design [BoeSl]. Only mainline functions.

4. An often quoted failure, that perhaps could have been avoided, if the initial requirements and
specification had been validated and verified, is described in the US Congress Bulletin [Con76]. The
initial requirement for the Advanced Logistics System, contracted by the US Air Force, was that
90% of the transactions should be performed online. However, previous to cancellation of the
project it was quite clear that only 10% of the transactions needed to be performed online. The US
Air Force spent over $300 million in a futile attempt to automate this system [BoeSl]; [Fox82].

55

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

which are related to the basic tasks desired by the user, should be implemented on
a trial basis.

The second deviation from the sequential development is employing the
incremental strategy. Recognising the difficulty of achieving a good design for a
new system on the first attempt, Basili and Turner [Bas75] suggest incremental
developm ent as a way to cope with the uncertainty associated with the
specification of complex systems. This approach forces top-down implementation
to be incremental, and the increments represent all the functions desired for the
target system. However, a parallel development of increments can start only when
the Preliminary System Design is completed and verified. Thus, taking this
approach forces solid preliminary design work and a careful selection of the
appropriate system for incremental development. Each increment is developed
and delivered to the user. The lessons learnt from the development are
incorporated, if applicable, to the increments not yet delivered. The aggregation
of the increments become the total target system. This approach allows for the
implementation of the design-to-cost approach discussed in Section 1.4. However,
taking this approach may reduced the alternative solutions.

The advantage of the incremental strategy over the prototype ‘build-it
twice’ approach, stems from the difference between the process of building a total
system to that of building successive increments. In the traditional development
process a ‘prototype’ is produced by using iteration over the entire development
cycle. Thus, the effort accumulation curve needed to build the system behaves
differently in each of these approaches. When the prototyping strategy is taken,
the requirements are completed only after the prototype has been built, exercised
and approved by the user. Therefore, the incremental approach provides a less
expensive way to incorporate the users’ experience into a refined system than the
total development involved in the ‘build it twice’ approach. The effort
accumulation curve takes a ‘flatter shape’ when developing in increments than
when the prototype approach is followed.

56

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

2.2.4 Motivation for the new paradigms

The key factor in the search for alternative methods for developing software was
the convergence of the recognition that Waterfall model has not been able to
satisfy completely the requirements evolving, with a dramatic change in the state-
of-the-art of the industry. The cost of hardware has been declining significantly,
while software costs have been increasing constantly since the introduction of the
Waterfall model in early 1970’s [CorSO]; [BoeSl]; [Mus83]. Computerised
information systems, often complex, incorporating distributed and communication
capabilities, became essential to the operation of many sectors of society.
However, the demand for new and updated systems is not being met as result of an
extreme shortage of adequately trained professionals, a shortage which causes
m anpower to be a very expensive commodity in the process of software
development. A need therefore, has developed to accelerate the software building
process.

All critique of the Waterfall model is centred on its inflexibility. The model
fails to provide adequate mechanisms both for managing the inevitable changes in
requirements and for involving end users throughout the development process.
Although the Waterfall model employs a systematic approach to software building,
in which a successful system is achieved by attaining sub-goals in a particular order,
it does not provide much insight into the processes occurring within these phases.
In addition, the emphasis on fully elaborated documents as completion criteria for
the requirem ents design is a primary difficulty and not always effective.
Organisations undergo changes continuously, therefore, when the specified system
is completed and delivered to the user, it is often no longer desired. Curtis
[CurS7] sees that the major shortcoming of the model is in its failure to treat
software building as a problem solving process:

Not only the developer trying to solve problem presented by stated requirements
and the constraints o f available technology, but customers are also trying to
solve a problem for which they believe the requirements will yield a solution
Yet, since customers often don’t understand the subtleties o f their problem, and
even more often don’t understand the limit o f technology, software
development becomes a problem solving process involving multiple agents.

57

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

An additional critique of the Waterfall model arises from the fact that it is
difficult to extricate the analysis of what should be done, from the synthesis and
how it should be done. For many years, researchers advocated the need to
separate specification from implementation.^ This rests on the assumption that
the analyst has, or can obtain, a detailed understanding of the problem, can
implement a solution and move on to another project, leaving the maintenance to
others. But, since the new hardware and software technologies afford us more
flexibility in software building, this separation now seems artificial. Too many
problem-oriented issues, such as decomposing high-level functions, and system
performance constraints, are left to impinge on design decisions.

Similarly, researchers who advocate the evolutionary approach to software
building, such as Lehman [Leh84;85;85a;87], Dixon [Dix88] and Williams [Wil88],
are opposed to the separation of the Construction and the Operation phases.
They argue that software development is not a ‘one-off production process,
followed by maintenance. They believe instead that it is an evolutionary process
throughout the system life cycle. Upgrades and changes are constantly needed.
This is the philosophy which led to the development of the Transformational
Implementation paradigm, which is discussed in Paragraph 2.2.5.

2.2.5 The new paradigms

The search for alternative methods of specifying requirements motivated the new
developments. Users and developers of software systems felt that "it is really
impossible for a client, even working with a software engineer, to specify completely,
precisely, and correctly the exact requirements o f a modem software product before
trying some versions o f the product" [Bro87]. The earlier an activity occurs in the
SDLC, the less we understand about the nature of the activity. Therefore,
alternative ways to facilitate the process of understanding user requirements and
hence speed up the software development, are of great benefit. The new

5. [Knu74j; [Dij75j; [Mil80];[Bau82]; [Sch83]; [Bal82;83]

58

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

paradigms for system development exploit the advances in computer technology
itself, through powerful and high-level software tools, made practical by
inexpensive hardware. These technologies provide us with the capability to
develop a quick version of the software system or part of it, which can then be
evaluated and re-specified if necessary. This is known as prototyping.

The process of prototyping aims to clarify the characteristics and operation
of a system or a part of it. It is used for exploration and experimentation, which
often takes place with the user in an operational environment and before the ‘real’
system is developed. Issues which are difficult to specify, using the traditional
process, are often addressed, e.g. user requirements, user interface, feasibility
design and system performance. The process is a continuous one, until the fit
between user and system is acceptable.

The terms ‘prototyping’ and/or ‘rapid prototyping’ are frequently used as
generic terms for all models of the new paradigms, often classified as Prototyping,
Operational Specification and Transformational Specification.^ These three
models are partial models only, in the sense that each of them responds to a
different need or disadvantage experienced in the conventional life cycle model.
The information gained from the implementation of a prototype in understanding
the users needs, the operational and the design feasibility, can be incorporated
into the conventional life cycle procedures, and thus improve both the complex
communication and the feasibility decisions involved in the process.

Prototyping

As noted above, the most cited of the new paradigms is the prototyping model, the
building of an early version of a system or a part of it. A software prototype
mainly aims towards producing rapidly and cheaply, as early as possible, a working

6. Other terminologies and classifications for the various types of prototypes exist, Floyd [Flo84]
suggests: Exploratory, Experimental and Evolutionary. Law [Law85] adds the Performance and the
Organisational prototypes, which are special cases of the Experimental prototype. Yet, the
Organisational prototype aims to evaluate the associated organisational implications.

59

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

model of a system, and gaining information about the problem from it. This
information is used later in the development process of the operational version of
the software product. This type of prototyping is often referred to as Specification
Prototyping [Keu82], Specification by Example [Chr84] or Exploratory Prototyping
[Flo84]; [Law85]. The prime value of the prototyping approach is in the PSD
phase, particularly in the product design stage, for the purpose of feasibility
evaluation.

Two schools of thought exist. The first advocates the use of a prototype
approach only as an initial version of the system, which is thrown away when the
needed information is gained [Geh82]; [Bud84]. The second suggests that a
prototype may become the final version of a system by means of an evolutionary
development process. In cases where a working prototype is identified to provide
a core of functionality certified by the user to meet his needs, it is feasible to
extend this core into a final system. This approach was suggested as early as 1975
by Basili [Bas75] as a alternative route to the Waterfall model. The approach is
highly recommended by researchers as: Mills [M1180]; Scharer [Sch83] and Gilb
[G1187]. However, only the new technological capabilities such as 4GL’S and
‘formal specification’ methods, justify them being called new paradigms.

The prototype approach can be implemented either as a separate route, or
accommodated within the traditional Waterfall SDLC. The information gained
about the user requirements or design issues is transferred to the relevant
processes in the conventional SDLC, to be incorporated into the final
requirements and design specification. See Figure 2.2.

By adopting the prototype approach as part of the conventional SDLC, we
may gain:

Improvement in the communication between the various groups involved in
building the software, mainly information technology personnel and users.
This is achieved by relating the prototype to user experience.
Simplification of the process of identification of the user’s real needs. This
can be achieved since the flexibility to adopt changes, in the perception of
user’s needs, is relatively easy when using prototyping tools.

60

CHAPTER2 SOFTWARE DEVELOPMENT AND TI IE EFFORT FvSTIMATION PROCESSES

PRELIMINARY SYSTEM DESIGN

S Y S T E M
R E Û U I R E M E N T S - -

- - A N A L Y S E U S E R
R E Q Ü I R E ME N T S
I N F O R M A L L Y

(P R O T O T Y P E P A R A D I G M)

- - D E T E R M I N E S C OP E AND
O B J E C T I V E OF P R O T O T Y P E

- - P R O T O T Y P E S T A T E M E N T OF WORK

- - P L A N S C H E D U L E AND R E S O U R C E S
FOR D E V E L O P I N G THE P R O T O T Y P E

- - B U I L D P R O T O T Y P E AND D E L I V E R
I T TO THE U S ER

US ER E X E R C I S E
P R O T O T Y P E

US ER
VER I F I CAT I ON - -

P R E P A R E L I S T
OF R E V I S I O N

- - R E V I S E
P R O T O T Y P E

- R E F I N E AND E V O L V E P R O T O T Y P E
o r

- T R A N S F E R I N F O R M A T I O N TO
R E Q U I R E M E N T S A N A L Y S I S

a n d / o r

- T R A N S F E R I N F O R M A T I O N A B O U T
D E S I G N F E A S I B I L I T Y TO D E S I G N

- - A N A L Y S E USER
R E Q U I R E ME N T S

(C O N V E N T I O N A L P A RA D I G M)

- - P R ODUCT D E S I G N

P R O T O T Y P I N G P A R A D 1 GM- -

SYSTEM CONSTRUCTION

D E T A I L E D
D E S I G N

Figure 2.2 The prototype paradigm and its relationship to the conventional
SDLC.

6 1

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

Efficiency in understanding the system characteristics. As a result, all
parties that have participated in the development process are better armed
to evaluate high risk issues at an early stage of the development process
and possibly to avoid them. The use of this approach gives us an additional
opportunity to alternate strategy or course of action, when it is still
possible, at relatively low cost and risk.
Assistance in the design and the operational feasibility processes, hence
reducing the ‘deadline’ effect of the project. This can be achieved since an
initial version of the system is delivered and available to the user early in
the SDLC.

Discussion

Prototyping is not the panacea to all software problems. There are some crucial
issues associated with software development for which the prototyping approach
does not provide information. They are discussed below.

Effort required for the implementation of the final system. It is generally
possible to obtain a large portion of the most valuable capabilities of a system
after implementing only a small part of that system. However, the effort
consumed for building a prototype cannot be extrapolated into the effort
requirements for the total system. Building the total system will differ from the
prototyping in the use of tools for the development. Tools such as 4GL’s and
small Data-base Management System (DBMS) packages are generally used for
prototyping. However, the real system will often reside on the organisation’s
DBMS which differs from the experimental one used for prototyping.

System interaction with other elements in the software environment.
Figuring how to handle interfaces between elements of the systems is a crucial
issue in any software development, and if not well planned it will cause significant
difficulties mainly in the systems integration stage.

The major aim of prototyping is to gain inform ation about user
requirements and feasibility issues, which are otherwise difficult to visualise. Since

62

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

major decisions are based on the results of prototyping, the value of this
information lies in getting it as early as possible in the development process.
Otherwise, the total planning of the system suffers. System planning, more often
than not, is done less comprehensively when prototyping than when specifying a
system. One of the neglected areas, resulting from this phenomenon, is the
systems interface.

System behaviour in extreme situations. When creating a prototype
performance characteristics such as speed, security, accuracy or completeness of
error handling are sometimes compromised. What is achieved from prototyping
may be enough for the users to extrapolate what they want, whether the
requirements were correctly understood by the implementors or whether it is
feasible to implement them as requested. But, to get the full performance of the
system may require much additional work.

The Operational Specification

An Operational Specification is a prototype, sometimes called a functional
prototype. The basic idea of this form of prototype is that a system can be
specified using a formal specification language, that has a precise meaning and
therefore can be executed directly. The paradigm has a twofold aim: exploration
of the behavioural aspect of the system and improvement of maintainability.
Operational Specifications are machine processes, written in a language which is
not understood by end users nor other non-technical people. Computer specialists
specify the desired system, in terms of implementation-independent structures,
that generate the behaviour of the target system [Bal82]; [Zav84].^ Thus, the
Operational Specification output can be seen and evaluated by the end user.
When using the traditional development process, the functional behaviour of a
system can be analysed, only very late in the software life cycle, after the

7. The structures provided are independent of a specific hardware or software configuration, while
the conventional design process refers to a specific environment.

63

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

implementation stage. But, when implementing an Operational Specification
process it is possible to evaluate and interpret the specification, to show the system
behaviour and hence to help in various feasibility decisions. By using the
Operational Specification approach we may gain:

A shortcut towards the understanding of the functional behaviour of a
system but not the efficiency aspect of the system^. This can be achieved as
the communication process between the users and the developers about the
preferred behaviour of a system benefits from implementation of the
Operational Specification, for the purpose of approval, even though it is
not readable by users.
A basis for rapid prototyping. Since by implementing and evaluating an
Operational Specification prototype, the essential relations among the
system elements are captured, it can provide a basis for interpreting the
specification.

The Operational Specification responds to the problem of separation
between what should be included in a system and how it should be built, as
discussed in Paragraph 2.2.4. However, by so doing the paradigm introduces new
problems of over-constraining and premature Operational Specification. Formal
specification responds to significant decisions early in the SDLC, yet these
decisions cannot be validated until the very end of the development process. The
Operational Specification prototype often introduces internal structure (detail
design function) into the process before specifying it thoroughly.

The paradigm aims mainly to enhance maintainability. However, the price
is a less efficient system. Therefore, after the specification is stabilised, it is usually
compiled. But, if compiled then it contradicts the evolutionary development
objective. Although the Operational Specification process consumes more effort

8. Efficiency under extreme workload is very difficult to predict. Efficiency of workload is evaluated
by a prototype running in an operational situation with simulated workload. But, as a prototype is
only a simplified version of the target system this aim is difficult to achieve.

64

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

than the conventional specification, part of the output can be re-used in other
Operational Specification processes. This approach can be employed as an
integral part of the conventional life cycle, or only for a demonstration. Similarly,
in addition to the formal specification resulting from the implementation of this
process, the O perational Specification can be used as an input to the
Transformational Implementation process.

Transformational Implementation

The Transformational Implementation is an approach to software development
that uses automated support to convert a desired specification, which is written in
a formal language, into a concrete software system.^ This paradigm aims to
reduce the labour intensive aspect of software development. It responds to the
constant needs for safe, verified and reliable software^^, as well as for upgrades
and changes to working systems. These needs cannot always be postponed until a
periodical change of control process takes place. By using the Transformational
Im plem entation, the separation between the developm ent and the system
maintenance is not so sharp as employed traditionally.

The process starts with a formal statement of a problem or its solution and
ends with an executed program. The formal specification of the desired system is
automatically transformed into system design and code. Successive application of
transformation rules that preserve corrections is constructed and iterated to
optimise the results. Most methodologies of this class consider the relationship
between data and processes. The functional specification is prepared as structured
outlines of the two objects: processes and data a g g re g a te s .T h re e products

9. [Bal81]; [CheSl]; [Bau82]; [Agr86].

10. These objective are of special importance when dealing with production of correct chips, critical
software for weapons or nuclear systems.

11. The analyst is free to start defining either process or data groups since there is no algorithms
which will produce repeatable specifications as the link between the data aggregates and the
processes.

65

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

emerge from the process: a formal specification; a delivered system and a formal
record of the sequence of the transformations, and the decisions taken during the
process. The expected benefits from this model are:

Reduction of labour intensiveness.
Preservation of correctness, as a result of applying automated tools for
transformation.
Elimination of final product test. By applying such a process it is
guaranteed that the final version of a program will satisfy the initial
specification.

The Transformational Implementation paradigm can be used in a wide
scope of application such as general support for program modification [Par83].
This may include the optim isation of the control structure, efficient
implementation of data structure or rule generation. Additional applications are
program synthesis, program adaptation to a particular environment, or program
description by building a family tree of algorithms. It is essential, therefore, that
the user of this approach is armed with a thorough understanding of the technical
details of the system such as I/O , internal representation, mode of operation and a
understanding of the implementation technique.

Two points of weakness are indicated [Zav84];[Blu84]. The first one relates
to the m aturity of the model which they considered an ‘un-developed’
methodology. The second has to do with the difficulty associated with the
management of these processes. Managers may find it difficult to guide this
process and analysers find it difficult to analyse.

2.3 RESEARCH FINDINGS

Boehm [Boe84] describes a case study in which seven teams developed the same
small application: 4 of the teams used the traditional method of software building
and 3 of the teams followed the prototyping approach.

66

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

The prototype products averaged about 40% smaller, in Lines of Code
(LOG), than the specified products and they required about 45% less effort.
The effort needed to implement a prototype did not tend to produce a
higher productivity level in the common productivity measurement, lines of
code per person-month (LOC/PM). However, the prototyping approach
produced more user specification per person-months than the conventional
development.
The prototype product led to somewhat better maintainability.^^

In comparison with the conventional SDLC, however, the prototype
paradigm tended to create several negative effects:

Prototype im plem entations consumed proportionally less effort for
planning and designing and more for testing and fixing the system.
System integration appeared to be more difficult in prototype
implementations due to lack of an interface specification.
System design phase appeared to be less coherent in implementing the
prototype approach than in a specified product.

2.4 THE TRADITIONAL & NEW PARADIGMS FOR SDLC - DISCUSSION

The reader is now acquainted with various approaches currently in use for
managing the process of building software, for which estimates of effort are
required. Two paradigms, very different in their basic assumptions, were
presented: the traditional W aterfall model and the new approaches for
prototyping and Transformational Implementation. The first one, the Waterfall
model represents a conservative alternative which misses the flexibility needed to
support a dynamic environment. The inability to present the user with a product

12. The maintainability was evaluated subjectively by asking the students who participated in the
experiment to grade their preference in an ordinal way.

67

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

Other than a verbal or graphic description is a real obstacle. It is difficult either to
identify the real business problems, or to visualise the technological opportunities
which can be incorporated in a system to satisfy these needs. The second
alternative presents a flexible approach which overcomes this obstacle. The new
paradigms enable us to demonstrate the system or part of it early in the SDLC,
and to exercise the use of the product and its capabilities in a semi-operational
environment. They enable us to conclude if this is really the expected product or if
there is a need for revision. Or, if it is desirable and possible to extend the
capabilities of the demonstrated product, in an evolutionary process, so it will
become the target system.

However, the new paradigms are not a homogeneous group of models.
The first representative of the new paradigm, the prototype, aims mainly towards
exploration and experimentation of user requirements. The implementation uses
4GL tools. The Operational Specification is also a prototype and has the same
aims, mainly towards the experim entation part of the system behaviour.
Implementation of the Operational Specification involves the use of a formal
specification language. Its output can be used as the input for the process of
Transformational Implementation. But, a conflict arises when the output of the
Operational Specification is transferred to the process of Transformational
Implementation. The objectives of the two models differ and thus both cannot be
optimally achieved. The main objective of the first paradigm is maintainability of
the software, while the Transformational Implementation paradigm aims at
optimisation of the performance.

The Transform ational Im plem entation represents a totally different
approach, will involves automatic transformation of programs and systems. The
Transformation process might be from one language to another, or transformation
of a system by automating the selection of transformation rules and optimising the
process of system execution.

Each of the new paradigms responds to a particular problem in software
development. Therefore, they are mainly partial models which can be integrated
into the various stages of the software development life cycle and hence, improve
the conventional process. Yet, these models can be used as stand-alone models.

68

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

However, they do not offer comprehensive solutions to the chronic problems,
rather only modest improvements in productivity. Productivity and quality can be
achieved from employing the new models, but only through skilful management.

2.4.1 Issues requiring speciai attention when using the New Paradigms

The new paradigms for software development require careful attention to
economic considerations, to management implications, to potential pitfalls, and to
the question of when to use them.

Economic considerations. The economic rationale of the new paradigms is
based on the tradeoffs between hardware, software resources and scarce skilled
manpower, since the industry is no longer hardware bound, but instead, limited by
the number of experienced people. Prototyping has often been dismissed as a
practical approach because it is considered expensive. Certainly, the costs of
building a prototype are influenced by the availability of appropriate development
tools, which are quite expensive if their cost is applied to one project only. But, if
these costs are considered in terms of the organisational overheads and applied to
a number of projects, a different picture emerges. Indeed, Gomaa and Scott
[Gom81;83] and Zelkovitz [Zel80;82] reject the notion that prototyping is too
expensive. They argue that although somewhat higher costs are agreed for
building a system using prototyping, the aid offered by the approach is of high
value to the requirements stage.

Im plementing a prototype involves the expensive tim e of the most
knowledgeable people in the users’ organisation. Time cannot always be secured
for this process, even if planned for ahead of time.

A crucial aspect associated with prototyping, and which has an economic
effect on the development process, is setting the scope for a prototype and
deciding when to stop the iteration process for revision purposes. These decisions
heavily influence both the effort needed for prototyping a system, and the ability to
estimate this effort. The only possible way to keep the development process under
control and effective is if the implementation rules are defined at the outset of the

69

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

process.
When to use prototyping. The prototyping strategy should be used, where a

learning process is involved in articulating either the user needs or the technical
means required (e.g. an algorithm) to build a system with the desired properties.
The Prototype and the Operational Specification models serve as a mechanism for
exploration and experimentation in order to identify and to clarify the user
requirements and to support the decision process of what is technically feasible.
The flexible development process, in which the role of automation is increased,
allows us to deliver to the user an executable object in the early stages of the
software building. Therefore, the prototyping approach plays a great role in
reducing uncertainty and risk associated with software development. The risk
anticipated from user abandonment of a system is largely reduced. Hence, the
tangible contribution unfolding from the new paradigms is mainly at the early
SDLC stages and provides a risk reduction capability.

M anagement aspects. The management process of the new paradigms is
more complex than that which controls the conventional Waterfall model. The
flexible development process requires more management effort and is of a
different style, as more uncertainty and changes are involved in the process. The
users are heavily involved in this process, which aims to better their understanding
of the system requirements and its behaviour. The emphasis, while employing
these strategies, is on a fast response to requests for changes, using high-level
hardware and software tools. The use of a formal mechanism, for control of
change for each modification required, is therefore not appropriate as it slows
down the development process. Yet, although not easy to manage, building a
prototype should not be exempted from the management process by the reason of
it being a ‘quick and dirty’ product which is not incorporated in the released
version. The basic conventional sequence of activities: specification, design,
coding and testing, should be maintained. Documentation of the positive and
negative lessons learned from each implementation of a prototype is of great
importance. Thus the new paradigms require a different management style, which
emphasises the control of an environment which changes often and provides the
tools to match it.

70

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

Potential pitfalls. The dominant purpose of the new paradigms is to buy
information and they should be used for this purpose only, unless otherwise
planned at the outset of the project. When a new system concept or a new
technology is used, the ‘throw it away’ approach is beneficial since, even the best
planning is not so omniscient as to get it right the first time. Therefore, the
management dilemma is not whether to built a pilot system and throw it away, but
to plan for it in advance. A potential danger involves incorporating prototypes in
a released version without designing them to do so.

State of maturity. The Operational Specification and the Transformational
Implementation models let us formally specify an idea which can then be
transferred to a concrete system. The concept employed in these two paradigms
is very promising for software development and for the development of process
models for software building. Although organisations, very advanced in
information technology, have been incorporating these tools, in their software
developm ent process since the beginning of the 1980’s, the O perational
Specification and, in particular the Transformational Implementation are as yet in
an immature stage for commercial use.

2.4.2 Summary of discussion

Prototyping as a paradigm, like the classic life cycle, can be problematic, mainly
when the incremental evolution of the prototype system is integrated into the final
system. Here, the overall software quality is not always considered. Choices made
for demonstration purposes and thus not always the best for real systems, become
an integral part of the system. Long term maintainability suffers. A failure to
develop an overall system plan before prototyping individual modules, can cause
system integration to suffer. The new paradigms require a different management
style, which emphasises the control of a changing environment and must provide
tools for solution. Although the opportunities resulting from the new paradigms
are of great value to the process of software development, they introduce a new
set of problems. The aim of the Prototyping and the Operational Specification is

71

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

mainly to demonstrate a working product early in the software life cycle. But, the
overall planning of the process often suffers. Thus, integration and interface
problems arise later on in the process, when correcting them becomes a
complicated and costly issue. The Operational Specification often introduces the
p ro b lem of p re m a tu re sp e c ifica tio n and , w hen in te g ra te d in to the
Transform ational Im plem entation process, a question of efficiency versus
m aintainability arises. The O perational Specification aims to optimise
maintainability while the Transformational Implementation attempts to optimise
efficiency.

However, there is no general agreement as to what exactly Prototyping,
Operational Specification and Transformational Implementation should mean
within the context of software engineering. The new paradigms, mainly the
Transformational Implementation, are as yet in experimental stages, not all
aspects of their implementation are clear. Furthermore, even the classification
often used in the literature and discussed in this chapter is not the only one that
exists.

2.5 THE PROCESS OF EFFORT ESTIMATION

Having analysed the processes of software development, it now becomes obvious
that the iterative nature of the software development process is a dominant
characteristic. The process of estimating the effort for software development
should take the same form. Effort estimation should thus be integrated into each
of the SDLC phases, starting with high level estimates at the early life cycle phases.
These estimates are further refined and updated when new data is available, when
uncertainties associated with project functionality are reduced and when the level
of complexity is understood. The process of estimating the effort is therefore a
continuous process, involving iteration and judgement. The following section will
deal with the process of effort estimation and with the classic approaches used in
this process.

Of particular interest is ‘Who are the estimators?’ Almost certainly they are

72

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

not a homogeneous group occupying identical positions and carrying out identical
tasks in organisations. Rather estimators come from all ranks; project managers,
programme managers and software engineers all take part in the estimation
process. Their needs are many and the task of building support for estimators is
further complicated when considering Svhen’ estimation takes place.

It is essential to know what total effort is involved in the development of a
software project throughout its life cycle. The need certainly exists at the project
initiation stage. However, this cannot be met because little is known about the
product. All that can be done is to make an intelligent guess as to the size of the
product, based on past experience. Boehm [BoeSl] suggests that the estimates will
deviate by a factor of 4. In other words within 80% confidence limits, the estimate
will fall within a factor of 4 on either side of the final outcome.

Upon completion of the feasibility study an attempt can be made to supply
better estimates, although the level of uncertainty will still be high. At that stage,
the range of the estimates diminishes to a factor of 2 in either direction. The
scope and objective of the system under consideration are known at that stage, as
are the general design features. Issues such as the specific functions to be
performed and how they should be performed, or even the specific types of user
query to be supported are still to be pinned down.

The project manager acquires and accumulates knowledge which allows
him to refine the early estimates by taking account of actual values. Estimates are
further updated when the software requirement are specified, at the Preliminary
System Design when preparing the work plan towards the Construction phase. At
that time the user requirements as well as suggested ways to resolve them should
be well known to the project team. Boehm suggests that the estimated costs could
now fall within factor of 1.5. Figure 2.3 depicts the accuracy of software cost
estimates for each phase. Rubin [RubSSa] reports a faster drop off in the level of
uncertainty when using an interactive macro estimation procedure. That is, the
estimation process begins by using a few key variables to forecast macro project
characteristics and goes on to incorporate greater detail of a lower level to
forecast micro project characteristics.

73

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

4 x _ _

2 x

1 . 5 x ___

I 1 . 2 5 x - _

0 . 6 7 x

0 . 5 x _ _

P r o d u c t
d e s i g n -

s p e c i f i c a t i o n s s p e c i f i c a t i o n s

D e t a i l e d
d e s i g n A c c e p t e d

s o f t w a r e
C o n c e p t o f

o p e r a t i o n
R e q u i r e m e n t s
s p e c i f i c a t i o n s0.25X - -

F e a s i b i l i t y P l a n s a n d
r e q u i r e m e n t s

P r o d u c t
d e s i g n

D e t a i l e d
d e s i g n

D e v e l o p m e n t a n d t e s t

P h a s e s a n d m i l e s t o n e s

Figure 2.3 Software cost estimate accuracy versus phases [BoeSl].

The nature of the task of estimating effort relies heavily on the judgement
of experienced professionals, who know what is involved in the process of building
software and are capable of applying their past experience into the estimation
process. The process of effort estimation involves both analysis and synthesis. A
project can be broken down into tasks that are analysed separately and then
synthesised into an overall estimate. It is also an iterative process. However, at
present, resource estimation is a creative art which is not applied in large scale
software environments.

74

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

2.6 TOP-DOWN VERSUS BOTTOM-UP ESTIMATING

Essentially, there are two approaches for estimating of the quantitative product
and project attributes: the top-down and the bottom-up. When the estimator
approaches the process by applying his judgement to the overall system effort, by
comparing it to the effort of similar past projects, the approach is referred to as
top-down. The total development effort is divided up over the phases. In the case
where the estimator chooses to base his judgement on a breakdown of the project
into relatively small work units, to estimate them separately and then calculate the
cost of the overall system, the approach is referred to as bottom-up. The unit
breakdown is done to a degree that allows him to clarify the steps and the skills
involved in completing the task and to identify similarities and differences between
completed projects. Work units which are not comparable must be estimated by
other methods.

Items of information used in adjustments for differences between project
environments, include:

* Analysis of initial requirements.
* Type of software to be developed.
* User environment.
* Complexity and risk involved in the project.
* Programming technology used, languages and tools.
* Technical experience of development staff.
* Size of software product.
* Length of development.
* Number of development staff.

Thus, estimating software development can be implemented in either or
both of these ways. The two approaches are complementary, however, the top-
down approach is the only possibility before a detailed work breakdown structure
of the project is available.

The advantage of a top-down approach springs from focusing on functions

75

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

at the system level. Thus, functions such as integration, documentation quality
assurance or configuration management are considered, which might be neglected
when implementing a bottom-up approach. The pitfalls of a top-down approach
include the overlooking of technical difficulties and a lack of details needed for
future cost justification.

The advantage of the bottom-up approach is looking into the system
components in detail and can result in improved estimates. Furthermore, this
approach enables us to allocate the estimation activity to the person who will be
assigned to implement the task. This can result in a greatly improved commitment
to the estimates. The pitfalls of the bottom-up approach stem from the
accumulation of errors. Each piece of work being estimated includes some degree
of uncertainty and inaccuracy. Therefore, the calculated overall effort will
accumulate a high degree of error. However, this error is sometimes balanced out
if the errors are distributed equally in conflicting directions and sizes.

2.7 ALTERNATIVE ESTIMATION APPROACHES

The alternative approaches for estimating the software effort and cost are:

* Expert judgement.
* Analogy.
* Parametric Models
* Standard estimating and Ratio Analysis.
* Parkinson’s law
* Price-to-win

Apart from the last approach, any of these can be applied to a project as a
whole (top-down), or as individual tasks (bottom-up).

76

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFO RT ESTIMATION PROCESSES

2.7.1 Expert Judgement

One or more local or external experts are asked to estimate the required effort for
a project. The experts rely on their experience with similar projects and use their
intuition. This expert judgement can be implemented in various ways using
different approaches and depends on the estimation objectives and the state of the
project. Some researchers argue that the estimation process could be improved
through using group consensus techniques such as Delphi [BoeSl] or Decision
Conferencing [PhiSVj. Using more than one expert involves either averaging
hence biasing the results, or grouping the experts and using group dynamics
techniques to obtain an agreed estimate. The question arises in this context of
how to average the individuals’ estimates. Should the years of experience be
considered as the important factor, which adds more value to the estimates
suggested by an experienced programmer than to those suggested by a novice
project leader? The literature does not support this view.

2.7.2 Analogy

It is frequently said that there is nothing new under the sun, which in this context
implies that no new system is completely new. We can always learn from past
experience, identify the resemblances or differences and make use of the known
cost components, to support the required cost estimates. Using projects histories,
similarities and differences as far as the effort estimation of the new project can be
identified. Differences between the projects might be in either the development
cycle or in system functionality. Estimating by analogy involves a form of pattern
matching (reasoning) by analogy with completed projects or tasks. Wolverton
suggested refining the first top-down estimates by reference to the more recent
successful projects which include activity, duration and costs [Wol74;84j.

Advantages. Estimating by analogy is a version of ‘expert judgement’.
Hence, ‘expert judgement’ assisted by analogy to similar representative projects
might have advantages which stem from basing the estimate on recent experience

77

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

with projects or tasks successfully completed .
Disadvantages. There is a risk involved in this approach, which stems from

the way it is used. Analogy is developed by intuition. Items which are not really
related become associated out of the context of the considered issue. An
additional weakness of the approach arises from the fact that it is often not clear
which parts of the completed projects are represented in the new project.
Although analogy is the approach most used for estimating the required effort for
product development, it is the least definable in terms of mathematical or
statistical rigor. Analogy requires an estimator to have not only a thorough
understanding of the developed product, but also an in-depth knowledge of
completed projects which are similar in functionality to the developed product.
However, it is very difficult to retain the organisational knowledge of completed
projects as a result of staff turnover and effort required to establish a thorough
historical database. In addition, the development environments may differ
between projects in the same organisation.

As the type of information needed by parametric models may not be known
when software estimates are essential, and estimating by analogy may be the only
viable alternative.

Artificial Intelligence, in particular the Expert Systems approach has
recently been pressed into service for use in estimation by analogy. Estimation by
Analogy using an Expert Systems approach has been proposed by Cowderoy and
Jenkins [Cow86;88a], Galashan [Gal86] and Najberg [Naj88].^^

All authors propose the incorporation of Expert Systems techniques for
selection and evaluation of analogous systems or their components. The
specification of the analogy selection criteria and technical definition of the
project which requires an estimate are compared against the historical database

13. The system proposed by [Naj88] aims to support avionic systems, with an embedded software
component. This system identifies the analogy by using one of the following approaches:

Tolerances, which govern whether a certain data element value is equivalent.
Weights associated with specific data elements which indicate their relative importance.
Thresholds which determine whether an analogy exists or not.

78

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

for qualitative and quantitative attributes.

2.7.3 Parametric Models

The parametric modelling approach uses historical data to formulate one or more
algorithms which produce estimates of software development effort. This
approach makes use of an average ‘productivity factor’. This assumes productivity
as the basic factor, whereas software factors and organisational variables such as
project team composition are somehow incorporated in the calculated productivity
rate. Most researchers agree that there is a need to modify the results of the
models for the ‘software factors’ which are identified as potential amplifiers of
effort.

The quality of the parametric models is highly dependent on an expert
estimation of the size and complexity of the individual components of the system
to be built. The underlying assumption is that the components of a model can be
estimated more accurately than the effort needed for the development of a system.
But, size is nearly impossible to predict with any degree of accuracy in the early
stages of a product SDLC. Even as the product matures, this difficulty remains.

The historical data, from which the parametric relationships were extracted,
affects the quality of the models. The parametric models are inherently linked to
the conditions of their development environments. Any variance exhibited by
effort estimation models is not so much due to a difference of perspective among
the developers as it is to the unique nature of the software effort estimating task
itself and more specifically to the dynamic environment that inherently governs the
world of software development. It is the environment that is being modelled and
not simply the required effort of a particular product.

Therefore, parametric models may be applied successfully only by analysts
who are very familiar with the requirements of the product to be developed and
with the characteristics of the development environment.

14. [Wol74;84j; [Her77]; [Wal77]; [Frei79j; [BoeSl]; [Alb79;83]; [Jon83]; [Rub83]; [Jen84].

79

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

2.7.4 Standards Estimates and Ratio analysis

The ‘standards estimates’ approach is classified as a parametric model. This
research is based on this version of parametric modelling. This approach to the
estimation of software development effort is derived from the engineering world
and in particular the standardisation approach to production planning and
scheduling. Wolverton suggested a Standards Estimating approach, in which "the
estimator relies on standards o f performance that have been systematically developed,
and have become a stable reference point from which new tasks can be calibrated by
ratio and or by similarities" [Wol74;84].

It can be argued whether or not an analogy to the production line and
hence to the production planning and scheduling procedure is appropriate for the
software development process as a whole. This results in the view that a given
project is very rarely repeated, which inhibits project to project comparison.
Furthermore, the means of production is mainly human beings and not machines.
Nevertheless, an insight might be gained from analysing the software development
process, the various procedures, their components, and the ways they interact and
are integrated, whilst bearing in mind concepts derived from engineering practice
such as the ‘Bill of Materials’.

The route in which the activities are performed in the SDLC is not rigidly
defined. Various legitimate strategies are available for the development process,
in which the activities take different forms as a result of changes in emphasis and
therefore they are not always processed in a fixed sequence.

Ratio Analysis involves measurement of size and complexity at the module
level. Both ‘ratio analysis’ and ’standards estimating’ are adopted by the TRW
model which deals with the estimation process mainly at the tendering stage.
These methods have had some influence on the US DOD standards for software
project management (DOD 2176 and 2176a).

80

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

2.7.5 Parkinson’s law

G. N orthcote Parkinson first described the phenom enon now known as
Parkinson's Law or 'Work expands so as to fill the time available for its completion"
[Par57]. A manager may reduce the estimated effort and schedule to avoid the
Parkinson syndrome and as a result the effort estimates and schedule might not be
achievable. But, an alternative scenario might occur, such as the estimation
experiment performed at the Rand Corporation, were 4 groups were asked to
estimate identical software specification, using Delphi or ‘standard group meeting’.
The group which used the Parkinson approach, ("since there were 20 full time
people available and they must finish in two years, or they don't finish at all")
estimated the effort to be 485 PM while the actual time spent on the project was
489 PM! [Boe81]. This approach cannot be considered as an estimating method.
Macro and Buxton [Mac87] suggest that it is a "a philosophy o f despair". Yet, it is
often the approach used in practice.

It is worth noting the results of the Jeffery and Lawrence [Jef85] survey
which summarised the average productivity of the programming task by estimation
methods. Jeffery and Lawrence did not observe that the estimation method had
any impact on programming productivity as shown in table 2.1. Furthermore, they
observed slightly higher productivity when the estimates were produced by a
programmer alone (8.0) compared to the cases in which a supervisor estimated the
effort without consulting a programmer (6.6). When an analyst estimated the
effort, it correlated with even higher programming productivity (9.5) than the cases
in which a programmer and/or a supervisor estimated the effort. These
observations are quite reasonable. A system analyst is typically more familiar with
the work in enough detail, and is more experienced than the programmer in effort
estimation. However, Jeffery and Lawrence’s last observation is quite surprising.
The highest productivity was associated with no estimate (12.0 for 24 cases)! This
result is not easily explained. They suggest that either these projects were simple
and, therefore, estimates were not produced, or that tight deadlines prevented
estimation and increased pressure. These results should cause us to question the
Parkinson’s legend.

81

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESHMATION PROCESSES

E F F OR T E S T I MA T E S
P R E P AR E D BY

AVERAGE
PRODUCT I V I T Y

NUMBER OF
CAS E S

P r o g r a m m e r a I o n e 8 . 0 1 9
S u p e r v i s o r a l o n e 6 . 6 2 3
P r o g r a m m e r & s u p e r v i s o r 7 . 8 1 6
S y s t e m a n a l y s t 9 . 5 21
No e s t i m a t e p r e p a r e d 1 2 . 0 2 4

Table 2.1 Productivity by Estimation Approach [Jef85]

2.7.6 Price-to-win

This estimation approach is followed sometimes when a company tenders for a
project at a lower price than estimated, as result of an urgent need to win a tender,
particularly when knowledge of the customer’s budget figure has reached the
tenderers. Managers who have the responsibility for software tenders believe that
a price-to-win strategy is sometimes the only way to get a foot in the door of a
company and by that, either cause a customer dependency on the software
contractor, or afford him a better starting point for future tenders with this
company. An inherent risk is often associated with this approach, resulting from
inability of the tenderer to deliver the product within the agreed terms. A
different incentive to take the ‘price-to-win’ approach in software estimates may be
a desire to obtain software contracts which might enable to keep the professional
people in the organisation throughout the ‘seven bad years’. Or even an essential
need to do so which resulted of the inability to make employees redundant. Such
an approach might be suggested as a result from a priori knowledge of the
customer’s budget. This may or may not be an appropriate approach to manage
software development, however, when taken, should always be accompanied by
procedures to reduce functionality such as the design-to-cost approach discussed
earlier.

82

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

The last two approaches are associated with the psychology and sociology
of the tenderers.

2.8 IMPLICATIONS FOR EFFORT ESTIMATION

The first part of this chapter analysed and criticised the various processes for
software development. An understanding of the main activities incorporated in
these processes, and of the major concerns of each of the phases were gained.
The opportunities and benefits associated with the new paradigms were identified.
Thereafter, the traditional methods for software cost forecasting were described
and analysed. Yet, what can be learnt from this analysis that is helpful for
modelling the process of estimating the effort for software development? What
can be suggested as the basis for modelling the process of estimating the effort for
software development? The future trends of software development, the basic
assumptions and the primary suggestions, upon which the Effort Estimation Model
(EEM) will be built, are the subject of the following paragraphs.

2.8.1 Future Trends

We are not trying to tear down the lamppost, we just want to build one across
the street where the search for one's wallet may be more fruitful [Cur87].

The future of the system development process lies in the incorporation of new
paradigms in a systematic approach to software development by exploring the
advantages each one offers. However, our ability to estimate the effort required
to develop software products is heavily affected by the strategy chosen for the
implementation. If the term ‘easy’ can at all be used in this context, then it is
easier to estimate the effort required to develop software when the traditional
process is used. The difficulty in estimating the development effort when the

15. The Spiral model [Boe88] for software development is an example of such integration,

83

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

implementation process follows the new paradigms stems, firstly, from the ‘trial
and error’ approach which characterises the new paradigms. Secondly, the
traditional model for software development have been experienced for almost two
decades, and some understanding have been gained from observations of its
behaviour in varying situations. As yet, there is not enough observations of the
effort behaviour in the new paradigms, although it is observed that the effort
required for the development process differs between of these strategies. The
traditional model follows a pattern similar to the Rayleigh distribution [Nor63];
[Put78;79], the Prototyping and the Incremental development follow a pattern
more similar to the Pareto distribution [Fox82[; [Ste87].

2.8.2 Base Model for effort estimation process

The traditional model for software development and the new paradigms evolve in
the same principal phases as discussed early in this chapter: the Planning, the
Preliminary System Design, the Construction, and the Operational phases. The
basic elements are common to both frameworks, namely the activities and the
intermediate products which are delivered at the end of a phase or a group of
activities. Although these elements take somewhat different forms in each of the
models, the similarities are of value for modelling the software building process
and hence for the modelling of the effort estimation process.

This thesis suggests that the management framework for software building
can be described as a base model. The manager of a software project can delete
activities not relevant to the project under consideration, or add new activities to
the base model. Changes to the activities and their components should be
accompanied by a recorded explanation. In this way, knowledge associated with
how projects are being implemented will remain in the organisation and can serve
as the basis for comparison between the processes of project development, for the
purposes of effort estimation. This knowledge could assist in training novice
estimators in their first steps as estimators. They could learn what work
breakdown structures are commonly used, and what the reasons are for changes.

84

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

The base model should represent activities of a range of particular software
processes and should allow reasoning about their use. It should include the drivers
for the effort required for each activity, and the standard level of effort needed to
implement each of the cost drivers and their associated activities. Recently, much
attention has been given to modelling the process of software development, with
emphasis not only on the products of this process, but on an approach that will
make it possible to reason about the software process and provide the basis for
structuring automated software environments [Cur87]; [Leh87;87a]; [Ost87].
However, satisfactory software process models have yet to emerge [Wil88].

2.8.3 Phase-based estimation

The Preliminary System Design phase is critical to all the parties interested in the
process of the software development, in particular to management and users.
Sufficient information resulting from problem analysis and definition of the system
is accumulated throughout this phase and thus provides a reliable basis for
estimating the costs and benefits of proceeding with the development. However,
the time required for this phase is often underestimated and does not include the
effort consumed in studying the application domain.

Defining system specifications is as much a political as an intellectual
process. Thus, involving users in the design process by using the new paradigms as
catalyst for communication encourages creative participation and stimulation of
suggestions. This process may eliminate the emergence of conflicting goals. It
may help keep users’ expectations in line with realistic opportunities, which is a
very important target of system development and one of its prime critical success
factors.

The belief of the author of this thesis is that estimating the effort needed
for project development at the Project Planning phase, can be done relatively
accurately only for the subsequent phase in the project life cycle, the Preliminary
System Design. However, from these estimates coarse estimates of the total
development effort can be extrapolated. This should be based on statistical data

85

CHAPTER2 SOFTWARE DEVELOPMENT AND TI IE EFFORT ESTIMATION PROCESSES

with regard to the resource distribution between the PSD and the rest of phases of
the software development life cycle.

Only towards the end of the Preliminary System Design phase, better
estimates for the Construction phase and for the total development can be offered.
This can be done as result of the accumulated knowledge about the requirements,
the design possibilities and the actual performance, which allows us to validate our
estimation assumptions and to correct them (as discussed in Paragraph 1.6.1) This
should be an ongoing process throughout the development process, as summarised
in Figure 2.4.

V V
> P R O J E C T

P L A N N I N G OR
LONG RANGE
S Y S T E M S P L A N N I N G

E s t i m a t i n g t h e
e f f o r t f o r
t h e PSD p h a s e
a n d p l a n n i n g t h e
c o a r s e e s t i m a t e s
f o r t h e t o t a l
d e v e I o p m e n t

V V
> P R E L I M I N A R Y

S Y S T E M
D E S I G N

I I
V V

- - > C O N S T R U C T I O N
V 1

O P E R A T I O N

- - > D E T A I L E D < - - > S O F T W A R E
- - > D E S I GN D E S I G N

M e a s u r i n g
d e v i a t i o n s a n d
E s t i m a t i n g t h e
e f f o r t f o r t h e
C o n s t r u c t i o n
p h a s e a n d u p d a t i n g
t h e e f f o r t f o r t h e
t o t a l d e v e l o p m e n t

M e a s u r i n g
d e v i a t i o n s a n d
u p d a t i n g t h e
e s t i m a t e s f o r
t h e s o f t w a r e
d e s i g n

Figure 2.4 The interaction between software development and phase-based
effort estimation processes.

The discussion in this chapter leads to the conclusion that the PSD phase is
of great importance for the development process. Using the new paradigms does
not reduce its importance, although using them influences our ability to cope with

86

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

some of the more problematic areas associated with this phase. The skills
required to develop this phase and the triggers of its costs are different from those
required for the Construction phase. Therefore, the proposed EEM is a phase-
based estimation process.

This thesis argues that on the basis of the knowledge which exists in the
organisation early in software development, it is feasible to offer a process which
will assists us in:

Evaluating the complexity and the risk associated with the development
process as a whole, and thus enable us to plan the resources needed for it.
Estimating the effort associated with the Preliminary System Design phase
only.
Planning coarse estimates for the effort needed for the total development.

The hypothesis in doing so is that the EEM will yield estimates with a high
degree of accuracy, for the effort required for the Preliminary System Design
phase. However, even though the degree of precision of the coarse estimates for
effort needed for the total development will be less accurate then those estimated
for the PSD, it is presumed that the procedures by which the EEM will lead the
project manager through the estimation process will be beneficial to him. Such a
process will help the user to understand the meaning of the suggested estimates,
the assumptions and the measurements they are based on. The effort needed for
the rest of the software development phases should be estimated based on
different cost drivers and may use units of productivity measurement different
from those suggested for the PSD estimation.

2.8.4 Judgement and Measurement: on the horns of a dilemma

The two fundamental methods followed in estimating are expert judgement using
analogy and parametric models. As discussed early, the expert judgement
approach may be incorporated in parametric models. Most of the models, if not

87

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFTORT ESTIMATION PROCESSES

all, require expert judgem ent throughout the estim ation process. Expert
judgement is essential in the process of sizing the product to be developed. It is of
particular importance in projects which are characterised by high degree of
innovation and, therefore, high degree of uncertainty and, thereby, complexity.
Judgement is essential in evaluating the effort required for sub-processes which
cannot be compared with any projects which have previously developed in a
similar environment. Analogy is used to identify similarities or differences
between components of products or between complete products. Some models
facilitate an iterative process to obtain the estimates and some have an associated
tool which supports the product size estimation process.

Cost estimation, by its nature, is not an exact science. Only a certain level
of accuracy and precision is possible. Many factors affect the software
development process, differing between organisations, and varying in the degree to
which they affect the development process. The estimation process involves
assumptions and judgements and, therefore, carries inherent risk, particularly early
in the project, and "all efforts to do better are futile" [Put79].

Indeed, the spectrum of opinions on that m atter is wide. Some
philosophers, researchers and practitioners take the attitude of the scientist as
expressed by Lord Kelvin:

When you can measure what you are speaking about and express it in numbers,
you know something about it; but when you cannot measure it, when you
cannot express it in numbers, your knowledge is o f a meager and unsatisfactory
kind [Lord Kelvin, 1889]

Others will argue that if something cannot be measured in an exact and
precise way, it is not worth measuring at all. They will argue that a random
number is a^ good as the imprecise measurement, as:

all our reasonings concerning causes and effects are derived from nothing but
custom Or, there is nothing in any object, consider'd in itself, which can
afford us a reason for drawing a conclusion beyond it; and. That even after the
observation o f frequent or constant conjunction o f objects, we have no reason
to draw any inference concerning any object beyond those o f which we have
had experience [David Hume, 1739]

88

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

Engineering disciplines are marked by the availability of standardised,
precise and well understood parameters of measurement that have evolved
through a process of scientific examination and investigation, such as the
measurements of length, pressure and temperature. These measurement are
based on physical properties. But our domain of interest, the software science,
does not have such metrics. There are good reasons for this phenomenon. There
is no agreed unit of measurement for a software product, from which productivity
can be measured and used for the effort estimation process. In its conventional
economic definition, the term productivity is quoted as the ratio of the amount of
product over a given input of means of production, e.g. labour or expenses. This
definition implies the need to measure the amount of input and output of the
production process. Measuring ‘something’ requires comparison with a standard.
But, what could serve as the standard unit of measurement for a product in the
software arena? What units of measure should be used to measure the amount of
input and output involved in the production process? The issue is easier for the
input part. In measuring the manpower effort, the input measure will be person-
hours (months/years), even though the people involved in the process do not have
identical characteristics and, therefore, could not produce the same quantity or
quality of a defined product unit. However, the issue is much more complex when
the unit of measure for the software product is considered. This issue will be
further discussed in Chapter 4, after investigating the current practice.

It is crucial that a single set of underlying principles generally serves as the
basis for many systems, in a broad variety of contexts. This modelling paradigm
applies to the soft sciences as well as to the hard sciences. The difference is in
essence that in the soft sciences the problem are generally of statistical or
probabilistic nature. The cost is high for collecting and analysing data of project
performance, at a detailed level and precision which allows systematic comparison.
Most of the efforts of data collection is esoteric. The results of the analysed data
are given in literature. However, the detailed databases are, in most cases,
proprietary and are not available for further examination. As a result, comparison
between software development at the abstract level is rare. Software engineering
does not yet have, adequate rules of standards practice.

89

CHAPTER 2 SOFTWARE DEVELOPMENT AND THE EFFORT ESTIMATION PROCESSES

The thrust of this research is that both measurement and judgement, should
be used in modelling the effort estimation process. The estimator should:

Based his estimates on measurement of what can be measured.
Use his judgement to assume values for attributes that either cannot be
compared to other projects, or have no hard data associated with their
performance.
Use his judgement to assume values for attributes which the available data
is associated with high degree of uncertainty. This uncertainty might,
hopefully, be reduced when the process is repeated through the software
development process.

Therefore, Aristotles’ philosophy should be adapted:

It is the mark o f an unstructured mind to rest satisfied with the degree o f
precision which the nature o f the subject admits and not to seek exactness
when only approximation o f the truth is possible.

Attributed to Aristotle, 330 EC.

This thesis’ suggestions for modelling the estimating process are based on the
principles discussed in this chapter. However, before we allow ourselves to
elaborate on the subject, we have to investigate the models and tools currently in
practice for effort estimation and system sizing purposes. These are the major
themes of the second part of this thesis.

90

PART II - STATE-OF-THE-ART

This part of the survey is comprised of three chapters which as a whole provide a
thorough analysis and understanding of the current practice of modelling the
process of estimating the effort required for software development. But, models
for estimating the software effort assume that project size can be estimated.
Therefore, these two major themes are the subject of the first two chapters.
Chapter 3 focuses on models for estimating the effort required for software
development and Chapter 4 on models for estimating the size of software product.

Effort and cost models have been developed since the late 1960’s, but,
models and tools for sizing the software product have been developed only over
the last few years. The need for the size models was always there. However, this
latest development is attributed to the advances made in the fields of Formal
Methods and Artificial Intelligence, mainly Expert Systems. A representative of
this group of models will be analysed. The implications of errors in size estimating
on predicting the effort required for development will be addressed. A point in
question is what could be considered as an appropriate unit of measurement for
estimating the product size, in particular, for the purpose of estimation the effort
required for the PSD phase, which is the scope of this research.

Estimating the effort for software development cannot be isolated from
research in adjacent fields of interest. Indeed, in order to understand the observed
behaviour of the software development effort, researchers investigating the
Software Development Life Cycle (SDLC) have approached the subject from
different directions, as discussed in Chapter 2. From this discussion and the
analysis of the themes addressed in Chapters 3 and 4, several foci of interest for
effort estimation have emerged. These are the aspects of uncertainty, complexity
and the resource distribution among the phases of SDLC. In Chapter 5 these
issues will be addressed, as well as additional points of interest to support the
EEM.

Only a thorough discussion will enable us to support firmly the Effort
Estimation Model (EEM) proposed for early stages of software development.

91

Chapter 3
SOFTWARE EFFORT AND COST ESTIMATION
MODELS

3.1 INTRODUCTION

Chapter 3 introduces the ontology of effort estimation models for software
development and their evolutionary development. Emphasis will be placed on
models which are regarded as ‘classics’ in the area of modelling the estimation
process of software development. The models presented in this survey contributed
either in establishing the foundation of a new theory or improving the practice.
Their underlying assumptions, the methodology used to derive them, and their
strengths and weakness will be analysed. Discussion and critique will follow the
description of each model. The chapter culminates with a comparison of models
with a particular focus on the comparison between the representatives of the two
main approaches currently in practice. They are the SLIM [Put78] tool and the
COCOMO [BoeSl] set of models. SLIM is based on Norden’s [Nor63] and
Putnam’s analytical model [Put78], whilst the COCOMO represents the composite
modelling approach for effort estimation.

The analysis focuses on the following themes which are of particular
interest to this research, namely:

* Methodology in which the models were achieved.

92

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

* Estimation approach, e.g. top-down or bottom-up.
* Factors affecting productivity, i.e. complexity determinants.
* Resource allocation among the phases encompassing the SDLC.
* Results of applying the models.
* Applicability of the model to the various SDLC phases.
* Estim ation approaches to product size and what should be

considered as an acceptable standard measurement for unit of
product.

3.1.1 Estimation modeis and toois; What do they provide?

The existing effort and cost models vary in the range of facilities they offer. Based
on product size, most provide estimates for manpower resources, effort and
duration. Some models incorporate a Svhat-if analysis. Some add an effort - to -
cost conversion which may include inflation and financial cash flow factors. Some
have an attached planning tool which enables the project manager to select the
preferred strategy for software development, including the associated activities for
the development effort. Some have an attached or a stand-alone model
supporting the sizing process.

The tools differ not only in what they offer and in the methods employed to
obtain them, but also in their data collection, type of projects and the
environmental factors among software development sites included in the database
upon which the model is based.

3.1.2 Classification of Effort and Cost Estimation Modeis

Several researchers have suggested classifications of resource and cost estimating
models. Shooman [Sho79] differentiated between resource models and cost
estimating models. A similar approach was taken by Jeffery and Vessey [JefSO]
when they compared Putnam’s model to the one developed by Walston and Felix

93

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

[Wal77]. Kitchenham and Neumann [Kit89] distinguished between models that
specify the relationships among various cost parameters (e.g. effort/cost and or
duration/staff level) and models that do not. It is in the interest of this research to
understand the methods used in deriving the models. It is, therefore, appropriate
to adopt the Conte et al. [Con8 6] categorisation of effort and cost models,
depending on the method used in deriving the models, namely:

* Statistically based models.
* Historical experimental models.
* Theoretically based models.
* Composite models.

3.2 STATISTICALLY BASED MODELS

Linear models have the form:

(3.1) E = Cq + (SUM ex.)
Where,

E = effort in person-months.
Cq = fixed cost per system, usually derived from

historical data.
X. = cost driver, i.e. software attributes that are

believed to affect software development effort.
c. = cost associated with the specific cost driver.

The values c. are chosen to provide the best fit
to a set of observed projects.

Non-Linear models are expressed in the form:

Either,

(3-2) £(„„„) = «+ 6 S'

94

CHAPTERS SOFTWARE EFFORT AND COST ESTIMATION MODELS

Where,

Or,

Where,

'(n o m)

a,b,c =

E

M(X) =

is the nominal effort before applying an
adjustment multiplier.
estimated size of the project in KLOC.

(Thousand lines of code).
constants usually derived by regression analysis of
historical data.

(a + b S^) * M (X)

adjustment multiplier that depends on one or
more cost drivers, given in a vector X

3.2.1 The System Development Corporation (SDC) Model

This pioneering model was developed in the mid-1960's by the System
Development Corporation (SDC) group and described by Nelson as early as 1966
[Nel6 6]. The study included 169 projects. Of the 104 cost drivers, only 14 were
classified as leading. The sample included a variety of applications, large and
small projects, written in assembly and high-level languages. The study analysed
programming effort only. Design, integration and testing were excluded, as was
management effort.

The model equation takes the specific form of (3.1):

- 33.6 + 9.15 + 10.73x2 0.5 Ixg + xO.46 4 + xO.4 ^
+ 7.28 + (-21.45 x-y) + 13.53 Xg + 12.35 Xg
+ 58.82 x̂ Q + 30.61 Xjj + (-0.53 x^g) + (-25.20x^4);

And the attributes found to affect the software effort are:

95

'12

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

Lack of requirement
% 2 Stability of design (0-2) *
JC3 Percentage of mathematics instructions. (0-3)
JC4 Percentage of storage and retrieval instructions.

Number of sub-programs.
Programming language. (0-1)

jCy Business application. (0-1)
Xg Stand alone programs. (0-1)
Xg First program on computer. (0-1)
x̂ Q Concurrent hardware development. (0-1)

Random access device used. , (0-1)
Different host target hardware. (0-1)
Number of personnel trips.
Developed by military. (0-1)

The numbers in the parentheses refer to rating to be made by the estimator.

The m ajor cost drivers affecting the software effort are: lack of
requirements, stability of design, concurrent hardware development, random
access devices used and changes in host target hardware.

Discussion

Assigning zero values is a legitimate option, and the model results in an effort of
-33.6 PM to produce nothing [Kit89]. Linear models have been found to correlate
quite satisfactorily with development effort for small to medium size projects
[Jef79]. Yet, Boehm [BoeSl] and Conte [ConS6] concluded that linear models
were unsatisfactory for effort estimation. It is common to assume an exponential
increase in effort with size of project for very large projects. A possible
interpretation being that the effort is a highly non-linear function of a large
number of variables.

96

CHAPTER 3 SOFTWARE EFTORT AND COST ESTIMATION MODELS

Project size measured by lines of code (LOG) does not enter into the model
as a direct factor affecting the effort, even though all other models assume effort
increases with program size.

Boehm [BoeSl], Conte [ConS6], Macro and Buxton [Mac87] all agree that
the SDC model does not perform well by evaluation criteria such as mean estimate
and standard deviation.

The SDC model is mainly of historical interest. The statistical methods by
which the model has been obtained (least squares and factor analysis), the
significance of the param eters indicated, and the data associated with
programming productivity rate provide a valuable basis for further research into
parametric effort estimates and productivity, assuming linearity. One such model
is by Walston and Felix [Wal77] which will be discussed in Paragraph 3.3.2.^

3.2.2 Aron’s Model

Aron [Aro69] of IBM introduced a new concept to the software development
taxonomy: complexity. He interpreted complexity as a function of the difficulty of
the project and its duration. He suggested that difficulty is mainly caused by the
interactions of the project under development with other projects. Aron also
determined a matrix of productivity rates that explicitly recognised this, and
provided guidelines on classifying difficulty.

Category 1: An ‘easy’ classification is characterised by very few interactions
with other systems. This difficulty level applies to programs that generally
interact only with input/output programs, data management programs and

1. A similar approach was taken by Farr and Zagorsky [Far65]. Some of the attributes they believed
to be of importance were different:

* Number of instructions.
* Number of document types delivered.
* Experience of systems programmers.
* Number of display consoles.
* Percentage of new instructions.

97

CHAPTERS SOFTWARE EFFORT AND COST ESTIMATION MODELS

monitor programs.
Category 2 : Is classified by the existence of some interactions. The
programs included in this category are mostly utility programs, compilers,
input/output packages, schedulers in management packages.
Category 3: The third category is characterised by many interactions with
other system elements. Monitors and operating systems fall into this
category.

Aron suggested the productivity table (see Table 3.1) to assist the
classification process. He recognised that the manpower employed in producing
large systems builds up gradually, reaching a peak close to the time in the project
development life cycle when the system test is completed. This phenomenon was
later observed by Putnam also. Aron suggested the following four criteria for
identifiers of a large system:

Size of project team, if more than 25 programmers are involved in
the development process.
Development time is more than six months.
Levels of management, if more than one level of management is
associated with the process.
Program size is more than 30,000 deliverable instructions.

1 D u r a t i o n 1

1 6 - 1 2 [1 2 - 2 4 [m o r e t h a n [

1 D i f f i c u I t y 1 MM 1 MM 1 2 4 MM 1

[I n s t r u c t i o n s p e r [

1 d a y [m o n t h 1 y e a r 1

1 E a s y 1 2 0 [5 0 0 [1 0 , 0 0 0 [

I V e r y f e w i n t e r a c t i o n s [1 1 1
[M e d i u m 1 1 0 [2 5 0 [5 , 0 0 0 [

[S o m e i n t e r a c t i o n s [[1 1
[D i f f i c u l t 1 5 [1 2 5 [1 , 5 0 0 [

i M a n y i n t e r a c t i o n s 1 1 1 . 1

Table 3.1 Aron’s Matrix of Productivity Rates

98

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

Discussion

It should be noted that these identifiers are still valid, although the values for
some of the attributes may differ today. Interfaces between sub-systems and
anticipated duration of development are considered as a m ajor cause of
complexity and for the risk associated with software development. This type of
complexity results mainly from uncertainty and entropy.

Aron’s observations and concepts introduced in this work established the
foundation for a software estimation practice. These are the:

Interaction between project under development and other projects is the
cause for project difficulty.
Difficulty and duration is the cause of complexity.
Standard productivity matrix and the identifier of large system^

3.2.3 Bailey and Basili’s Meta-Model.

Another approach to software cost modelling was suggested by Bailey and Basili
[BaiSl]. They suggest a meta-model for effort estimation. The meta-model is a
defined set of statistical procedures for creating a model from a set of software
development project data for a given environment. Statistical analysis is used to
produce a baseline effort estimate using final product size as input. Bailey and
Basili discuss in detail effective methods of defining and statistically analysing the
effect of various additional project attributes as correction factors to be applied to
the initial baselines estimate. Bailey and Basili’s [Bas81] equations for calculating
effort are:

2. The concept ‘largeness’ is addressed by Belady and Lehman [Bel79b] when characterising large
software systems. They argue that the root cause of largeness is the variety and not the number of
instructions or the number of modules in a software product, although they are expected to grow as
result of system largeness. They account for the variety of needs and activities associated with the
development and maintenance of software. More on this subject matter in Chapter 5.7.4

99

CHAPTERS SOFTWARE EFFORT AND COST ESTIMATION MODELS

E a b
Where,

E total effort in person-months.
S = estimated size of the project in KLOC.
a = constant, the initial preparation to understand the

design before programming begins.
b,c = constants

And,
E 3.4 + 0.72

Where,
DL = composite measure of work based on LOC.

Different classes of programs were given different
weights before they were summed.

Basili [Bas83] suggested that the constants a and b are not transportable to
a different environment. Hence each environment needs to develop its own model
for prediction of effort for software development. The importance of this model is
in providing a methodology by which an individual organisation may build its own
estimation model which is calibrated to its particular environment.

3.3 HISTORICALLY BASED MODELS

3.3.1 The TRW Cost Estimation Model

Of the historically based models that have been described in the literature, the
TRW model is probably the best known. This is one of the few models that
actually estimates the cost of a project in monetary terms. The model is classified
as a static, multi-variable model [Bas83]. Wolverton [Wol74], recognised different
effects on cost as a result of difficulty arising from the use of new or old code.

100

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

Assumptions

The TRW cost estimation algorithm is based on the assumption that cost
varies proportionally with the size of the software product, measured by the
number of instructions.
Various categories of software routines have their own cost of
development. The re-use of software and difficulty are the dominating
factors for the estimating process at the early design stage. Cost per object
instruction is the only parameter that changes as a function of the degree of
novelty and difficulty of the estimated project.
Resource allocation among phases of the SDLC is based on historical data.

The estimation process

Producing the estimated cost involves the following steps:

1. Group the software routines into six categories:

* Control routines. (Control execution flow)
* Input/output routines.
* Pre- or post-algorithm processor, (manipulate data for subsequent

processing or output).
* Algorithms which perform logical or mathematical operations.
* Data management routines which manage data transfer within the

computer.
* Time critical processors, which are highly optim ised machine

dependent code.

2. Estimate the size and complexity by routine. Six levels of difficulty are
suggested for each routine, based on the combination of degree of the re
usable software and difficulty factors, namely:

101

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

Easy Medium Hard
Old O E (l) ’ CM (2) OH (3)
New NE (4) NM (5) NH(6)

The numbers in the parentheses (1...6) indicates a form of order for the degree of difficulty
involved in developing the various category of modules.

Then,
C(M) = S(M) *

Where,
C(M) = represents the cost of a module M.
S(M) = the estimates line of code for a module M.

i(M) = the module type (category).

j(M) = the presumes difficulty of the module.

^ i(M)J(M) the corresponding cost by category and degree
of difficulty.

The cost is the total number of instructions by category and degree of difficulty
multiplied by the corresponding cost. The overall cost of the system will then be
obtained by summing the cost over all modules:

(3.7) SUMC(M) = System cost.
all modules

3. Identify the development strategy, namely the various phases for producing
the software from the conceptual stage to the delivery of operational
software to the user.

4. Define the activities in each development phase by means of an activity
array and the associated cost matrix.

5. Provide schedule data based the on user’s need or other management
considerations. The schedule data are input as months from go ahead, for
each of the milestones in the SDLC.

102

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

Resource allocation among phases of development

W olverton provides us with statistics of resource allocation among the
development phases from few resources. He concludes that statistics are necessary
for the assignment of the resource to each of the activities for each of the phases
of development, however, judgem ent gained from previous experience is
fundamental. The resource allocation distribution is used as a baseline which is
then intuitively adjusted to predict the effort required for each of the phases. The
resource distribution serves also as guideline to the staffing activities. The subject
is further discussed in Chapter 5, including comparisons with data provided by
other research.

The resource distributions are based on empirical data which varies greatly
among particular projects, depending mainly on the complexity level of the specific
project.

Discussion

As in Aron’s [Aro69] work, this approach introduces a kind of objective measure
of complexity, old and re-used code, although, the process for arriving at cost
involves a great deal of subjectivity. The.range of cost given varies from a low of
$15 per instruction for easy algorithms and old code to $75 per instruction for all
kinds of time critical processors.^ Even though the values are given in monetary
terms, the cost matrix is valuable and may be used as a complexity weighting for
estimating module size. However, it should be noted that the matrix is applicable
for use only after the project has been broken down into module level, i.e. quite
late in the design process.

The database used for developing the software cost includes the sensitivity
coefficients or exchange ratios which were used by the cost estimation algorithm.

3. The monetary values are corresponding the values of the US dollars in the late 1960’s and early
1970’s.

103

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

They reside in the database and are not available for further investigation.

3.3.2 Walston and Felix’s Model

The work of Walston and Felix from IBM [Wal77] covers 60 projects, completed
during the period 1973-1977, from which they obtained coefficients for their static
single-variable model, using multi-linear regression analysis. They proposed a
Productivity Index which takes the form of a static multi-variable model [Bas83].
The model was obtained empirically. The following data was collected from
completed projects, by phase of software development:

* Number of modules.
* Number of pages of documentation.
* Errors.
* Use of modern programming techniques.
* Computer resources.
* Languages used.

Assumptions

The rate of productivity is a factor of the delivered LOC produced by a program.
The factors affecting this productivity rate are measured to produce a Productivity
Index, which predicts productivity for a new project and thus its effort.

The Model equations

The baseline effort equation is non-linear of the general form described earlier.
Walston and Felix’s basic equation for effort is:

104

CHAPTERS SOFTWARE EFFORT AND COST ESTIMATION MODELS

5.2 L 0 . 9 1

They suggested additional equations for the following relationships:

(5.9; S — 0.54

(3.10) DOC = 49L^o^

And either.
(3.11) D 4.1
Or,
(5.72; D 2.47
Where,

E total effort in person-months.
L = thousands lines of delivered code (KLOC) including

comments.
S average staff size, i.e. total staff months/duration of

the project.
DOC = pages of documentation.
D Duration of the project in calendar months.

Factors affecting productivity

However, Walston and Felix found that their basic effort equation (3.8) performed
relatively badly on their data sets, so they investigated the effect of a number of
factors which might have been responsible for the large deviations between actual
and estimated effort. Project managers were asked to rate the 29 productivity
variables for the expected condition of specific projects. The average productivity
was calculated for all projects with the same rating for a particular factor. The
changes in productivity which could be attributed to this factor were calculated
from this figure.

Walston and Felix identified user involvement as a key issue affecting

105

CHAPTERS SOFTWARE EFFORT AND COST ESTIMATION MODELS

productivity and consequently software development effort. They concluded that
experienced users could improve productivity whereas inexperienced users could
affect productivity negatively. The productivity rate for the ‘Customer Interface
Complexity’ variable, observed in this research, ranges from 500 DSI/PM to 124
DSI/PM (DSI, Delivered Source Instruction). The drop is due to time and effort
lost from the need to communicate and co-ordinate with the customer. But, Fox
argues that Walston and Felix could not conclude this from their database which is
"too sparse to draw any such conclusion" [Fox82].

Three out of the eight attributes that most affect the productivity are
related to the user interface, four to personnel skills and the eighth is associated
with pages of documentation produced. Walston and Felix used the set of 29
attributes to define a Productivity Index.

The proposed Productivity Index

(3.13) I
Where,

/

X.

SUMW.X.

productivity index. This can be negative or
positive.
- 1 , 0 or + 1 , depending on the task rates (low, medium

and high) with respect to certain attributes of the
productivity variance factor.

1 , if the rating for variable . increased productivity.
0 , if the rating for variable . was nominal.
- 1 , if the rating for variable . lowered productivity.

W. Weighting defined as:

Where,
W. 0-5 (PV^

106

CHAPTER 3 SOFTWARE EFFORT AND COST ESHMATION MODELS

PK = productivity range measured by the ratio between the
lowest and the highest values found for variables..

By linear regression and least square they find the best fit to the equation,

(3.15) LogL = a + b l
Where,

L = project productivity.

Which can be used to predict productivity for a new project. The effort is
obtained by:

(3.16) E = S / L
Where,

S = Lines of code

Discussion

The range of projects was diverse in terms of the range of LOC, (from 4 KLOC to
467 KLOC) with project durations of 12 to 11758 person months, languages (28
high level languages) and computers (6 6 computers) used.

The Walston and Felix model, as with the SDC model, does not use the
actual size of the product directly. The size is used as a scaling factor to convert
an estimated effort per line of productivity into an overall effort estimate.
However, Walston and Felix did not suggest any transform ratio for this
conversion. This is analogous to the TRW model which uses size as a scaling
factor to convert estimated cost per instruction into an overall cost estimate.

The method has theoretical limitations and, as neither the database nor the
actual model are given, practical limitations. The method assigns the values to the
X ’s, as in practice there are environment and product related factors which affect
them. This is considered to be a problem. The important features of the model

107

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

are its contribution to the list of factors affecting productivity and the method
suggested for assessing the impact of each of the factors, on the programming
productivity. It is also the case that IBM continued to refine their approach to
productivity and effort estimation by continuing the collection of project data, and
are now claiming extremely high precision for their cost estimates [Dal85].

The Walston and Felix model was the only exponential model which has
exponent less then 1 . The implication of the exponential value is that larger
projects achieve greater productivity than smaller projects. In other words a
model that exhibits this characteristic suggests ‘economies of scale’ while a model
with an exponent greater than one suggests ‘diseconomies of scale’ [BoeSl].
Jeffery and Lawrence [Jef79;81] and Jeffery and Vessey [Jef80] have reported
‘economies of scale’ on small projects."*

But, if one looks closely, it is almost linear and probably possible to
establish a linear relationship, [Bro83].

(3.8) E = 5.2 1,091

Indeed, Jeffery and Lawrence convert equation (3.8) to a linear one as
follows:

(3.17) Ejfort = a Size + b
Where,

a and b are constants derived from historical data.

Freburger and Basili [Fre79] analysed a sample of 19 projects from the
Software Engineering Laboratory.^ They began with thirty factors and ended with
only two major factors upon which effort is dependent:

4. This subject will be addressed in a more detailed form when introducing Boehm’s set of models.

5. This work is based on the same data-base used by Bailey and Basili [BaiSl]

108

CHAPTERS SOFTWARE EFFORT AND COST ESHMATION MODELS

* The organisation environment.
* The project team composition.

They reported the following relationships as applying to the Software
Engineering Laboratory database:

(3.8a) E 1.41

(3.9a) S 0.24

(3.10a) DOC = 30.4
and either.
(3.11a) D 4.6 LP'^
Or
(3.12a) D 4.4 EP'^

Basili [Bas83] further argued that the relationships arrived at by Walston
and Felix are not necessarily transportable to another organisation. DeMarco
labelled this "Waiting for GODOT" [DeM82]. He concluded that each
environment should develop its own model for software development effort
prediction and, indeed, suggested a method so to do.

DeMarco suggested that the results of this model are acceptable because
the convergence was obtained even before adjustment. Boehm suggested that this
form of model appears to work well if the variables chosen are reasonably
independent. Otherwise, a problem of double counting of the cost and interaction
effect arises.[Boe81].

3.3.3 Doty’s Model

Another model which falls into this category is the Doty’s Model. Doty [Dot77]
conducted a cost study for the US Air Force in which the program domain is

109

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

divided into four categories based on the language used. He hypothesised that
productivity increases with high level language due to reduction in size. He found
that the productivity increased by a factor of three to seven. The Doty factors for
productivity modifications are:

Special display (1.11-1.43);
Detailed users requirements (1.11-2.0);
Volatility of users requirements (1.05-1.05);
Real time (133-167);
CPU constraints (1.18-1.43);
Time constraints (1.33-2.32);
New hardware (1.92-1.92);
Parallel hardware development(1.25-2.22);
Remote devices (1.43-1.43);
Site devices (1.39-1.39);
Host Devices(1 .1 1-2.22);
Multi-site device (1..21-1.75);
New languages (1.80-1.80);
Interactive devices (.83-.83);
Software engineering access (.67-.90).

Doty provides a different set of weights for different applications. This
study covered estimated effort required for analysis and development but not
maintenance and enhancements.

110

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

3.4 ANALYTICAL MODELS

3.4.1 Background - Norden’s Model

One of the most influential milestones is the work of Peter Norden [Nor60;63].
This is recognised as the foundation of the analytical approach based on the
plausible mathematical relationship between project team size and phase of
activity in project development. A few of the major contributors to the research in
this area followed Norden’s findings. Norden studied sixty hardware research and
development projects at IBM and concluded that:

Projects are composed of overlapping work cycles or phases.
There are regular patterns of manpower build-up and recurrent patterns for
these phases, which can be fitted into a Rayleigh distribution. There is a
family of such curves, relating manpower used each month with elapsed
time. The curves are fitted to a small number of successive ‘cycles’ of work
which occur during the life of a project. The cycles differ only in size and
proportions as shown in Figure 3.1. Each cycle can be described by the
following equation:

(3.18) y ’ = 2 K a t [exp (-af')]

Where:
y ’ = manpower utilised each time period measured in PM.
K = total cumulative manpower utilised by the end of the

project.
a = shape parameter (governing time to peak manpower).
t = elapsed time from the start of cycle measured in PM.

When the individual cycles are linked together, they produce the profile of
the entire project. "The life cycle manpower model provides an orderly summary,

111

CHAPTER3 SOFEWARE EFFORT AND COST ESTIMATION MODELS

crystallised out of past experience, at functional level It gives us the capability of
conveniently using historical experience to shed light on the future" [N o r 6 3] .

T h e m a n p o w e r c y c l e c u r v e i s c o m p u t e d e i t h e r b y u s i n g t h e f o r e g o i n g

r e l a t i o n s h i p s o r b y s t a t i s t i c a l c u r v e - f i t t i n g t e c h n i q u e s . ^

M a n p o w e r

u t i l i s e d

p e r u n i t

o f t i m e

(m o n t h ; y e a r

P R O J E C T P H A S E

A . P l a n n i n g C y c l e D .

B . D e s i g n C y c l e E .

C . M o d e l C y c l e (p r o t o t y p e)

D e s i g n C y c l e (e x t e n s i o n s)

P r o d u c t S u p p o r t C y c l e

(M o d i f i c a t i o n a n d m a i n t e n a n c e)

Figure 3.1 R&D projects are composed of cycles

The staffing of engineering R&D projects is not inherently a matter o f wide
tradeoffs of time and manpower. Rather, they seem to embody a two-stage
process in which the limiting condition is the problem-identification rate or
insight environment of unsolved problem space. This implies that one cannot
indefinitely add people and get the job done faster [N o r 6 3] .

6. The fact that this distribution has a ‘tail’ explains the ninety percent work completion syndrome.

1 1 2

CHAPTER 3 SOFTWARE EFFORT AND COST ESHMATION MODELS

This conclusion was confirmed later by Brooks, who claimed that "putting
more people on a late job makes it later" [Bro75]. Norden found that the limiting
factor is the rate in which ideas can be generated, and that this is not widely
affected, if a t all, by the number of staff, but rather by some capability level of the
group. Generating ideas and solving problems are random and independent
events. Therefore, within one cycle (phase) the exponential parameter remains
constant over a considerable period of time.

The relationships among the Rayleigh parameters are highly complex. This
probably explains why purely empirical approaches have not yielded satisfactory
solutions. This issue will be elaborated while addressing the SLIM tool for effort
estimation, which is based on Norden’s findings.

3.4.2 Putnam’s Model, SUM

Putnam’s Resource Allocation Model (SLIM) is based on the work of Norden
[Nor63], Aron [Aro69], Brooks [Bro75] and Putnam’s own findings.^ He analysed
several hundred of software projects in the Computer System and Command and
other US governmental organisations. The model specifies the relationships
among effort, duration and staffing and describes the variation of staffing level
during the project life cycle. The model is classified as dynamic, analytical and
multi-variable since the Rayleigh curve describes the variation in manning level
across the development time.

Methodology

Putnam’s analysis uses statistical and mathematical approaches that incorporate
linear programming for determining optimal values of objective functions in the
light of known constraints. One of the major relationships employed by the SLIM
model, the productivity - difficulty relationship, was found empirically by plotting

7. [Put75;78;79;80;80a;81;84a]

113

CHAPTER 3 SOFTWARE EFFORT AND COST ESHMATION MODELS

difficulty versus productivity lines from which the Software Equation was
manipulated.^

Assumptions

The basic assumptions of the SLIM model are:

The manpower utilisation of software development follows a non-linear
form which matches the Rayleigh curve and Norden’s theoretical approach
to problem-solving behaviour. Complexity factors which are incorporated
are based on interactions of the project team as they carry out the
connected activities which formulated the project.
The shape of the curve somehow relates to both the difficulty of a
particular development (state of technology incorporated in the project
work) and the skills of the project team.
The Software Life Cycle is dynamic and not static.
The number of problems to be solved is finite.

It should be noted that Putnam explicitly excluded the feasibility study and
the requirements analysis from the life cycle.

The model equations

The man-power distribution is expressed by means of a Rayleigh function:

(3.19) Y(t) = K /t^ ^ t [exp (-f-) -exp (2 1^)]
Where,

8. The Software Equation links the size of a software, the development time and the total man
power to the environmental factor.

114

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

Y(t) = is the manpower needed at a time t.
t = the elapsed time in years or months from the

beginning of the detailed logic design and coding
phase. It is an independent variable representing
any point in the life cycle - current elapsed time.

K = is the total life cycle effort in PM. It is the area
under the curve Y from t = zero to infinity.

= time (in months) at which the software
development team size peaks (to a first
approximation is the development time for
the software task, from specification to test.)

In probability theory, a Rayleigh density function is of the form:

(3.18) y = 2 K a t [exp (-at^)]

The coefficient a determines the month in which the manpower utilisation
reaches a peak. The time at which peak effort occurs can be derived as follows:

= 1/2

(3.20)

(3.21) a
Where,

(d time at which Y ’ is a maximum.

The shape of this curve defines the rate at which effort is consumed by the
project throughout its life cycle, as shown in Figure 3.2. The model has, therefore,
two fundamental parameters, namely: the cumulative life cycle effort K and the
development time

115

CHAPTERS SOFTWARE EFTORT AND COST ESTIMATION MODELS

project throughout its life cycle, as shown in Figure 3.2. The model has, therefore,
two fundamental parameters, namely: the cumulative life cycle effort K and the
development time

1 5 _|

tr
S
o5
Bo

1 0 _

o
c
CDO
0
Q .

0 2 4 6 8 10 12 14 16 18

tim e

Figure 3.2 Current manpower utilisation [Nor63]

In solving equation 3.18, it is assumed that the effort required for the
software development was already estimated, and our problem is how to staff the
project throughout its life cycle in the optimal (natural) way. Thus, integrating
(3.18) over the interval [0, t], we obtain:

Y K [1 - exp (- at^)]

Where,
Y = cumulative number of people used at any time t.

116

CIIAPTHRS SOFTWARE En^ORT AND COST ESTIMATION MODELS

100 _|

7 8 % o f t o t a l e f f o r t u t i l i z e d
tr
gQ)
âo

7 5 _

y = K{ ̂ - e - a f Z
K =1.00
a = 0.02

3 9 % o f t o t a l e f f o r t u t i l i z e do
c
CDO 5 0 _

0)
C L
CD
>

i53
E
3

2 5 _

1 80 2 8 10 12 1 64 6 1 4
t i m e

Figure 3.3 Cumulative manpower utilisation [Nor63]

The shape of the curve implies that the people involved in this type of
project are learning and gaining in effectiveness. Each such curve represents a
manpower staffing strategy that does not violate any natural rule about how
people in a project interact. This current manpower utilisation curve has a point
of inflection at a point at which the decrease in manpower utilised monthly slows
down in the descending portion of the curve.

So, if we can know the month in which manpower utilisation has reached or
will reach a peak, and if we know or can estimate the manpower level in that
month, we can calculate the value of K, the total manpower required in the cycle,
by substituting for a, as determined above:

(3.23) K

117

CHAPTER 3 SOFTWARE EFFORT AND COST ESHMATION MODELS

In terms of software projects, has been shown empirically to correspond
very closely to the design time [Put78]. This agrees with Aron’s findings as
discussed in paragraph 3.2.2.

If these equations are applied only to the design and coding stage of a
computer system, then:

(3.24) Yj = 2 K ^ a t [exp (-at^)]

Where,
Yj = design and coding effort at time t

= total design and coding effort

This makes the assumption that the general shape of the Norden/Rayleigh
curve applies to both the total system life cycle and also the design and coding
stages of that life cycle.

The Software Equation

The relationship which links the size of the software , the development time
and the total man-power K to the Environmental Technology Factor is known
as the ‘Software Equation’.

a, =
Where,

= number of delivered source instructions
= a technology factor

K = total life cycle effort in years excluding requirement
analysis and specification, but including maintenance

= development time in years

, sometimes called the ‘Technology Factor’, assumes the technical

118

CHAPTERS SOFTWARE EFFORT AND COST ESTIMATION MODELS

, sometimes called the Technology Factor’, assumes the technical
appropriateness of the programming support environm ent, project team
composition, hardware constraints and program complexity. is one of 2 0 values
in the range of 610 to 57,310.^ It is claimed that this factor can be determined for
a individual development environment from the data of past projects.

Putnam realised that Norden’s findings suggested that software projects
follow a life cycle curve, which is composed of a set of sub life cycle curves and
that such a curve can be helpful in forming a basis on which to plan and control a
software system project. This concept affords a dynamic approach to the effort
estimation. The parameters K and are called the management parameters.
Changes in K or in or both will result in a change in the shape and magnitude of
the curve as shown in Figure 3.4.

P E O P L E

61 people

40 people

30 people

6 0
K = 1 0 0 M A N Y E A R S

4 0

20

5.52,50 , 5
Y E A R S

1 . 5'd

Figure 3.4 Alternative manpower loading strategies

9. = 2,000 for a poor software development environment which do not incorporate the use of
method for the development process, batch process, etc. Cĵ = 8,000 for a good software
development environment and = 11,000 for an excellent environment which involves automated
tools and techniques

119

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

Difficulty Gradient

Putnam found that the ratio (K /1^), has an interesting value as it represents the
difficulty of the system from the programming viewpoint. Projects that exhibit a
high productivity had a relatively slow initial team build-up and projects that
exhibit a low productivity have a relatively fast initial team build-up. If the number
(K /1^) is small, it corresponds to easy systems, while a large volume for (K /t^)
corresponds to difficult systems. Putnam titled this ratio as the Difficulty
Gradient.

(3 2 0 IX =
Where,

D. = constant for a particular class of project.

Each such line presents the maximum difficulty gradient line that a software
organisation is capable of accomplishing. That is, as system size increases the
development line will also increase [Put78]. Therefore, if a system is:

Entirely new, has many interfaces with other systems, then the Difficulty
Gradient will be = 8 ;
New and stand-alone then ̂ 2 = 15;
Rebuild or composite build-up from existing system then D^= 27;

These values vary slightly between software houses as analysed by Putnam. They
are in a sense ‘learning curves'.

Using this form ula illustrates how m anagem ent considerations can
influence the project difficulty. For example, in the case that the required effort
for a given project is 1 0 0 person-years and a development time of two years then
the difficulty ratio is 100/2^ = 25. However, if a management decision is taken to
reduce the project effort by 10 percent to 90 person-years, then the new difficulty
ratio will be: 90/2^ = 22.5. Clearly, there is an assumption that the software
product will have less functionality or else the difficulty ratio makes no sense.

120

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

Discussion

Feasible Effort-Time Region / The Rayleigh distribution

Putnam advocates the usage of the Rayleigh distribution for estimating the
software effort on the following grounds:

Development time for the vast majority of large systems ranges from two to
five years. Five years is the limiting point from an economic viewpoint.
Two years is the lower limit as result of the manpower build-up. This
springs from Vysottsky’s observation as cited by Brooks [Bro75] that
software projects cannot stand more than 30% per year build-up. The
Rayleigh equation meeting this criterion is t ̂ > = 2 years.
The manpower rate invokes the inter communication law. Complexity =
N[(N-l)/2] where N is number of people that have to intercommunicate.
As the number of people on a project increases arithmetically, the number
of human interactions increase in a non-linear way.
Management cannot control the people on a large software project at rates
of < 2 years without exercising significant difficulties. As the
development time is shortened, the difficulty increases dramatically.

There is support for these assumptions among researches and practitioners
who advocated the evolutionary delivery for software developm ent, which
concentrates on short term results. "There is a narrow six to twelve months 'time
window* for optimum manageability" [Gil87]. Duration, expectation and volatility
are the three vital factors that impact manageability.

But, does the Rayleigh distribution correctly echo the empirical
observations of the manpower behaviour in software development? Other authors
have found some empirical support for the Rayleigh curve shape for very large
projects, Mapp [Map78]; Parr [Par80]; Basili & Beane [Bas81]. Basili and
Zelkovitz [Bas78] in an earlier study felt it was inappropriate for medium to large
projects. Boehm does not agree with using the Rayleigh curve for all project types.

121

CHAPTER 3 SOFTWARE EFFO RT AND COST ESTIMATION MODELS

He concludes the shape of the Rayleigh distribution is not a close approximation
to that of labour distribution curve for any of his Organic mode projects.^® He
attributes this to the fact that the project team build-up is much slower in this type
of projects than assumed by the Rayleigh distribution. The team involved in this
type of project is usually an in-house team (by definition of the mode type) and the
project starts with a good knowledge of the application area. The central portion
of the Rayleigh distribution, however, does provides a good approximation to the
labour curve of the Organic mode software projects. Boehm argues that the
Rayleigh distribution is a reasonably good fit for portions of the manpower
distribution, particularly for the Semidetached mode, except for its zero level
behaviour at the start of the project. Therefore, Boehm points out the need to
tailor a portion of a Rayleigh curve to a particular mode and a particular portion
of the development cycle. Kitchenham and Taylor [Kit85] found that the Rayleigh
distribution did not fit the size of project and environment they analysed (mainly
small projects). Warburton [War83], who analysed real-time projects, found the
Rayleigh curve to be appropriate when 40% of the development effort had been
used. Parr [Par80] challenges the appropriateness of the Putnam’s basic
assumption. He argues that the parameter a (shape of the Rayleigh curve) should
not include the skills’ availability for a particular project, since, these skills are
constraints imposed on the project by management. Parr finds it conflicting with
the intrinsic constraints on the rate at which software can be developed as
discussed earlier (in the Feasible Effort Time). His interpretation is that the
manpower build-up is governed by the relationships and dependencies between the
problems in the project.

Kitchenham and Taylor [Kit85] found the SLIM model lacking in the
following aspects:

In practical terms, is difficult to define. They found it difficult to identify
the Rayleigh curve with phases in the development process.
The accumulated life cycle effort was found to have two peaks and not one.

10. See Paragraph 3.5.1, for Boehm's definition of projects modes.

122

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

This finding might result from a degree of difficulty which is different from
that anticipated, and thus caused a change in the PM allocated to the
project.
The choice of the technology factor which dominates the Rayleigh curve
shape is difficult to make.

Effort - Time Relationships

The model raises the essential question of what the relationships are between the
effort required for the development process and its duration. If we accept
Putnam’s Effort - Time relationship, we should expect substantial penalties for
compressing the duration of development, as depicted in Figure 3.4. For example,
a project requiring 2 0 person years of effort in two elapsed time years, would
require 320 person years of effort in one elapsed time year or alternatively about 4
person years in effort in three years elapsed time.

Indeed, other researchers defined these relationships differently. Jensen
[Jen 83;83a;84;86] proposed a theoretical model which is very similar to Putnam’s
model. A range of multipliers similar to Boehm’s are used together with a curve
similar to the Rayleigh curve for relating changes in time scales to product cost.
However, the constant used in the equation are less extreme than Putnam’s.

Jensen suggested the following relationships:

Where,
Lines Of Code given in thousands.
effective technology constant.

T elapsed time.
K Life cycle effort.

Where,

= c . , / i

123

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

And,
Cjjj = basic technology constant.
/j = the measure of the j environmental adjustment factor.

The /j are similar to those processed by Boehm [BoeSl].

The minimum time constraints are:

(3.28) K =

Putnam’s model is based on a plausible mathematical relationship between
project team size and the phase of software development. Some researchers argue
that this relationship is less plausible for maintenance and a new version of
existing software [Wei84].

Shooman [Sho79] suggests that Putnam’s model is valid for most software
development types of projects. The management parameters are appreciated as
good indicators as to how cost allocation between development phases should be
done. Shooman indicates that for the purpose of total cost estimation (K is
known) only one or two data points for manpower levels should be sufficient to
obtain a reasonably accurate estimate of the parameter Knowing we can
independently calculate the significant milestones of the project, and check these
results with the existing schedule.

The model suggests a way to estimate the effort and a natural staff build-up,
provided that we can quantify each of the independent parameters in the Rayleigh
formulae (S ̂must be estimated, D. must be known and C must be derived). None
of these is a trivial task.

Putnam’s assumes that the ‘cost drivers’ attributes are applied uniformly
across the entire SDLC. This approach is adequate for coarse early estimates
only.

The model has became well known and it is used by many US governmental
agencies as well as in Europe and the rest of the world.

124

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

3.5 COMPOSITE MODELS

3.5.1 Boehm’s COCOMO Models

In 1981 a major cost estimation model was introduced, by B. Boehm [BoeSl], the
COCOMO (constructive COst MOdel) Model. Boehm’s analysed data from 63
completed projects was fitted into a pair of non-linear equations that can be used
to apply this experience to new projects. The database includes projects that were
developed in the period 1964-1979; they vary in size from 20K-1,000K LOC and
were developed in a variety of languages. The uniqueness of this work is its
comprehensiveness and perhaps more important, its public accessibility in an easy
to understand form.

Boehm proposed a set of three models, each of these models with three
modes of development. The complexity of the model increases in three levels
along with the stated accuracy obtained in estimates using the model as follows:

* Basic-COCOMO model.
* Intermediate -COCOMO model.
* Detailed-COCOMO model.

The three modes of development domain classified by Boehm are:

* The Organic mode.
* The Embedded mode.
* The Semidetached mode.

They are defined by product type, certain characteristics of the project and its
team composition, namely:

The Organic development mode is characterised by small teams, working
in a familiar in-house environment. Thus, the initial learning and

125

CHAPTER 3 SOFTWARE EFFORT AND COST ESHMATION MODELS

communication load is not high and there is room for negotiation when
difficulties arise.
The Embedded development mode is characterised by relatively large
projects, complex operating environments which spring-up from complex
hardware software and operational inter-relationships. The project team is
not familiar with similar projects and there is a high initial learning and
communication load. Thus, there is a slow project start as technical
interfaces have to be resolved. There is some freedom to negotiate
requirements.
The Sem idetached development mode falls somewhere between the
Organic and the Embedded Modes.

The models equations and assumptions

As in the Putnam model there are underlying equations describing relationships
between effort, size and elapsed time. These relationships are non-linear and take
the functional form:

Where,
Effort = a * Size^

Effort = number of PM (a month = 152 working hours).

Size = measured in thousands of Delivered Source
Instruction. Delivered Source Instruction (DSI) are
defined as program instructions created by project
personnel that are delivered as a part of the project.
Comments and unmodified utility software are
excluded.

(3.30)
Where,

Elapsed time =

126

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

Elapsed time describes how much time it takes to use a number of
person-months of effort effectively for a typical project.

The values of the model parameters a, b and d are dependent on the mode
of development and the level of COCOMO model in use. The parameter c is
dependent on the mode of development only. Thus, the elapsed time varies with
the mode of development.

The following equations define the productivity and the average staffing:

(3.31) Productivity = Size/Effort

(3.32) Average (ESP) staffing = Effort/ Elapsed time.
Where,

ESP = the full time equivalent software personnel.

The Basic COCOMO is a relatively simple model which aims at coarse and
quick estimates. Only one primary parameter affects effort, the size measured in
DSI. Yet, the assessment of the project’s mode defines the appropriate coefficient
(e.g for the Organic = 2.4; for the Semidetached = 3.0 and for the embedded = 3.6).
However, the Interm ediate and D etailed COCOMO m odels are more
sophisticated versions. The assumption is that it is harder to produce DSI under
very high reliability requirements, time and storage constraints. Boehm introduces
fifteen independent variables which are attributes of the end products, which he
believes influence the value of the equation’s parameters and therefore, are
suitable for refining the equation. Boehm groups these factors, which he calls cost
drivers, into four categories, namely: product attributes; computer attributes;
personnel attributes and project attributes. The cost drivers and their rating is
given in Table 3.2.

127

CHAPTERS SOFTWARE EFFORT AND COST ESTIMATION MODELS

Rating
Very Low nom- High Veiy Extreme
low nal high high

Product attributes.
r e q u i r e d r e l i a b i l i t y . . 7 5 . 8 8

d a t a b a s e s i z e . - . 9 4

s o f t w a r e p r o d u c t c o m p l e x i t y . . 7 0 . 8 5

1 . 1 5 1 . 4

1 . 0 8

1 . 1 5 1 . 3 0 1 . 6 5

Computer attributes.
e x e c u t i o n t i m e c o n s t r a i n t ,

m a i n s t o r a g e c o n s t r a i n t -

v i r t u a l m a c h i n e v o l a t i l i t y

c o m p u t e r t u r n a r o u n d t i m e

1

. 8 7

. 8 7

1 . 1 1 1 . 3 1 . 6 6

1 . 0 6 1 . 2 1 1 . 5 6

1 . 1 5 1 . 3

1 . 0 7 1 . 1 5 -

Personnel attributes.
a n a l y s t c a p a b i l i t y ,

a p p l i c a t i o n s e x p e r i e n c e ,

p r o g r a m m e r c a p a b i l i t y ,

v i r t u a l m a c h i n e e x p e r i e n c e

P r o g r a m m i n g l a n g u a g e

e x p e r i e n c e .

1 . 4 6 1 . 1 9 1

1 . 2 9 1 . 1 3 1

1 . 4 2 1 . 1 7 1

1 . 2 1 1 . 1 0 1

1 . 1 4 1 . 0 7 1

86

91

86

. 7 1

. 8 2

. 7 0

. 9 0

. 9 5

Proiect attributes.
m o d e r n p r o g r a m m i n g

p r a c t i c e s .

u s e o f s o f t w a r e t o o l s

s c h e d u l e c o n s t r a i n t s .

1 . 2 4

1 . 2 4

1 . 2 3

1 . 1 1

1 . 1 1

1 . 0 8 1 1 . 0 4

. 9 1

. 9 1

1 . 1 0

. 8 2

. 8 3

Table 3.2 The Cost Drivers afTect the size/effort tradeoff [BoeSl].

128

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

The basic equation then takes the form:

(3.33) Ejfort = a * Size^ *M(X.)
Where,

M (X) = a correction factor, for the cost drivers effect on the
specific project. Each cost driver attribute has a set of
multipliers which are keyed to a set of project rating
for the attribute. M(X.) is the product of all fifteen
cost driver’s multipliers, which is then multiplied the
nominal effort.

M (X) = 1, if all cost drivers are given a nominal rating.

A development project is divided into the four following phases:

* Product Design.
* Detailed Design.
* Coding and Unit Test.
* Integration Test.

The cost drivers are estimated and applied to each phase separately. The
Detailed Model assumes that the influence of the cost drivers is phase dependent,
while Basic - Organic and the Intermediate - COCOMO models do not. These
two models distinguish only between development and maintenance. Boehm
recommended that when using the Detailed model some of the cost drivers be
applied at a module level, some at a subsystem level and some at the system level.
The coefficients for these equations corresponding to the various modes of
development are given in Table 3.3. To obtain estimates of effort, the size of the

11. For example, ‘use software tool’, which is one of the cost drivers, has five numerical values
corresponding to the five possible ratings (as shown in Table 3.2). Then, the effort (PM) is
multiplied by the numerical values corresponding the selected rating.

129

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

product must be estimated and the mode of development must be specified.

B a s i c COCOMO I n t e r m e d i a t e COCOMO
E f f o r t S c h e d u l e N o m i n a l e f f o r t S c h e d u l e
a b c d a b c d

O r g a n i c 2 . 4 1 . 0 5 2 . 5 0 . 3 8 3 . 2 1 . 0 5 2 . 5 0 . 3 8

S e m i d e t a c h e d 3 . 0 1 . 1 2 2 . 5 0 . 3 5 3 . 0 1 . 1 2 2 . 5 0 . 3 5

E m b e d d e d 3 . 6 1 . 2 0 2 . 5 0 . 3 2 2 . 8 1 . 2 0 2 . 5 0 . 3 2

Table 3.3 The basic effort and schedule coefficients for the Basic and
Intermediate types of projects [BoeSl].

Methodology

The equations were obtained using a combination of experience, results of other
cost estimation models, the subjective opinion of experienced software managers
and trial-and error to arrive at initial model parameters based on a subset of the
entire database. These initial parameter values were further refined, tuned and
calibrated using additional projects from the database.

Project Profile and Resource allocation among phases of development

Boehm defines a project profile as a function of project size. It can be represented
accordingly by manipulating the COCOMO equations, as a function of effort,
schedule, average staffing and productivity rate. Effort and schedule distribution
among phases of development is suggested to be a function of the product size.
Even though, both large and small Organic projects have relatively flat labour
distributions compared with other modes of development. The phase distribution
for effort and schedule for the various models are given in Table 3.4 and the
project classification as function of project size is shown in Table 3.5.

130

CHAPTERS SOFTWARE EFFORT AND COST ESTIMATION MODELS

Project size
Project profile and effort allocation (percentage)

2K 8K 32K 128K 512K

EFFORT
The Organic Mode

P l a n & r e q u i r e m e n t s 6 6 6 6
P r o d u c t d e s i g n 1 6 1 6 16 1 6
P r o g r a m m i n g 6 8 6 5 6 2 5 9
I n t e g r a t i o n & t e s t 1 6 1 9 2 2 2 5

The Semidetached Mode

P l a n & r e q u i r e m e n t s 7 7 7 7 7
P r o d u c t d e s i g n 1 7 1 7 1 7 1 7 1 7
P r o g r a m m i n g 6 4 61 5 8 5 5 5 2
I n t e g r a t i o n & t e s t 1 9 2 2 25 2 8 31

The Embedded Mode

P l a n & r e q u i r e m e n t s 8 8 8 8 8
P r o d u c t d e s i g n 1 8 1 8 1 8 1 8 1 8
P r o g r a m m i n g 6 0 5 7 5 4 5 1 4 8
I n t e g r a t i o n & t e s t 2 2 2 5 2 8 31 3 4

SCHEDULE
The Organic Mode
P l a n & r e q u i r e m e n t s 1 0 1 1 1 2 13
P r o d u c t d e s i g n 1 9 19 1 9 1 9
P r o g r a m m i n g 6 3 5 9 55 5 1
I n t e g r a t i o n & t e s t 1 8 2 2 2 6 3 0

The Semidetached Mode

P l a n & r e q u i r e m e n t s 1 6 1 8 2 0 2 2 2 4
P r o d u c t d e s i g n 2 4 2 5 2 6 2 7 2 8
P r o g r a m m i n g 5 6 5 2 4 8 4 4 4 0
I n t e g r a t i o n & t e s t 2 0 2 3 2 6 2 9 3 2

The Embedded Mode

P l a n & r e q u i r e m e n t s 2 4 2 8 3 2 3 6 4 0
P r o d u c t d e s i g n 3 0 3 2 3 4 3 6 3 8
P r o g r a m m i n g 4 8 4 4 4 0 3 6 3 2
I n t e g r a t i o n & t e s t 2 2 2 4 2 6 2 8 3 0

Table 3.4 Phase distribution of effort and schedule [Boe81].

131

CHAPTERS SOFTWARE EFFORT AND COST ESTIMATION MODELS

Boehm provides us with an algorithm to deal with values which fall in
between the interval of the discrete values presented in Table 3.5.

S i z e of
p r o j e c t

O r g a n i c
PM S CHE - ESP

DULE

S e m i d e t a c h e d
PM

E m b e d d e d
S C H E
DULE

ESP PM S CHE - ESP
DULE

4 . 8 1 . 4 8 . 3 4 . 9 1 . 7

8 . 3 3 . 7 4 4 8 . 4 5 . 2

1 4 1 0 2 3 0 1 4 1 6

2 4 2 9 1 2 1 6 2 4 51

4 2 7 7 6 4 2 0 41 1 5 7

S m a l l , 2KD S I

I n t e r m e d i a t e 8 KDS I

M e d i u m , 3 2 K D S I

L a r g e , 1 2 8 K D S I

V e r y l a r g e , 5 1 2KDS

5 . 0 4 . 6

2 1 . 3 8

91 14

1 . 1

2 . 7

6 . 5

3 9 2 24 1 6

31

1 4 6

6 8 7

2 5 0

Table 3.5 Project classification as function of project size [BoeSl],

By linear interpolation and by using the observed distribution of effort between
phases of development, the effort and schedule for project of particular size can be
calculated.

Kitchenham & Taylor [Kit85] conclude with a similar average phase
distribution while comparing COCOMO in the ICL and British Telecom (BT)
environments. Yet, individual projects vary widely from this average.

Discussion

The basic set of equations, their associated coefficients, project classification, the
‘standard’ effort and schedule allocation among phases provide a vehicle for the
planner of a software project development, given that it is feasible to estimate the
project size and characterise the development mode. Although a given project
may deviate from the pattern suggested by the elapsed time equation, it makes
good sense to plan on delivery time consistent with this equation.

Boehm explicitly incorporates into his models the additional independent
variables, the cost drivers (while Putnam includes them within the constant C^).

132

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

The introduction of the cost drivers to the Intermediate and the Detailed models
allow us to adjust the estimated effort to individual characteristics of a project.
The values of the cost drivers afford us to crystallise the role played by each aspect
of software development and to act to improve the situation. This could be used
as a powerful management instrument. Moreover, if we use the models after
major software components are identified, we are able to tune the estimate by
applying the cost drivers to the individual identified component. The intermediate
and the detailed model present an increasing degree of sophistication to the
estimation process. The detailed model is a phase sensitive model, in which the
cost drivers applied differently to each of the phases and or segments of
development. This helps in the manning the particular phase and/or segment.
These powerful features are attributed to the ‘cost drivers’ under the assumption
that they add information.^^ However, most of the attributes on this list were
covered by his fellow researchers.

As noted earlier, the COCOMO models do not deal with the planning and
the requirements phases. They are targeted towards estimating the programming
effort and, thus, miss some of the important attributes that have impact on the
early stages of the system development such as the organisational factors
mentioned by Walston and Felix [Wal77], Aron [Aro69], Nelson [Nel6 6] and Doty
[Dot77].

An additional feature of COCOMO models is the inclusion of instructions
for adjustment of the LOC to reflect the use of existing software which is adapted
for current projects. The model suggests algorithms for handling re-useable of
code and assessing maintenance. Recently, the original model was expanded to
include risk assessment and modern process model, this is the Spiral SDLC
[Boe8 8]).

Although the model presents a hierarchy of models, which provide a way of
estimating the effort at the different levels of understanding the project under
development, this is a typical micro model. It is the bottom-up estimation process

12. This assumption was questioned by the Kemerer study [KemST]. The results of his study do not
support this statement.

133

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

which gives us insight into factors affecting the process of software development
and, hence, helps in understanding the effort estimation process.

It should be noted that the models are suitable and intended for use after
requirements are completed. However, the estimated effort includes the effort for
the requirements and the project planning, using resource allocation among the
stages. The model covers the management and documentation efforts but
excludes some efforts which take place during the development period, such as
user training, installation planning and conversion planning.

Theoretical Issues, methodology

Conte [Con8 6] has criticised the COCOMO model set on a number of fronts:

Too many parameters. Boehm uses 15 parameters in addition to project
size. The range of these 15 attributes can result in a wide range of
estimated effort. M(X) = 72 if each cost driver is assigned the highest
attribute and M(X) = .088, if each cost driver assigned the lowest attribute.
The cost drivers’ attributes and the constants derived empirically, needed
tuning to fit the database. It is therefore questionable whether the model
has the quality of a universal model.
The quantification of the attribute to two significant digits is questionable.

Empirical Issues

Although theoretically desirable, the quality of a model should not only be judged
by the number of parameters used. COCOMO models use 15 attributes to tune
the noniinal effort equations to the individual project. However, the estimator
knows what the correction factors are and, thus, is able to analyse their effects and
to calibrate them accordingly. This is no less legitimate than using a model which
incorporates only a few parameters which are a ‘black box’ to the estimator. In
such cases the estimator does not know how to obtain the parameters included in
the ‘black box’, nor does he understand how his input is interpreted to form the

134

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

parameters.
Empirical research indicates poor results, mainly for the Intermediate and

the Detailed model. Kitchenham and Taylor [Kit84;85] who analysed data from
ICL and British Telecom (BT), conclude this as a poor fit. Kemerer [Kem87] who
evaluated Putnam ’s SLIM, Boehm ’s COCOMO and R ubin’s ESTIMACS
concludes similarly for all three COCOMO models. Kemerer points out that the
average error for all versions of the model was 601%, with the lowest single error
being 83%.^^

COCOMO models are considered by many to be the most applicable to
other environments. Cowderoy [Cow8 6] indicates (from discussions at meetings of
the user community of COCOMO) that the company with a better tailored version
of COCOMO has the advantage in tendering for the DOD contracts.

3.6 COMPARISON AMONG MODELS

3.6.1 Economies and diseconomies of scale

A developm ent process presents ‘economies of scale’ when the average
productivity is increasing (the marginal return of an additional unit of input
exceeds the average return), and ‘diseconomies of scale’ when the average
productivity is d e c re a s in g .B o e h m [Boe81] concludes that ‘diseconomies of
scale’ prevail for large projects. Boehm’s conclusion agrees with those of many
other researchers such as Brooks [Bro75], Aron [Aro69], Putnam [Put78;79] and
Wolverton [Wol74]. From Table 3.6 (adopted from Boehm [Boe81]), we can

13. Kemerer suggests that these results may be due to the TRW data used for the development of
the models. This data vary in size of the projects and their composition form the data used as
source for this experiment.

14. When a ‘diseconomy of scale’ exists, the effort equation exhibits an exponent which is greater
than one and the productivity rate decreases.

135

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

observe that the only two models that do not suggest ‘diseconomies of scale’ are
the Walston and Felix [Wal77] and the Nelson [Nel6 6] models.

Walston 5.2®-̂ ^
Nelson 4 9 0 . 9 8

Freburger 1.48^°^
COCOMO - Organic 2.4^
Herd 5.3^°^
COCOMO - Semidetached 3̂ ^̂
Fredric 2.43 '̂^^
COCOMO - Embedded 3 .6 ^
Phister Q 9 9 1 . 2 7 5

Jones
Walston 1.12̂ -̂ *̂
Halstead 0.70^^°
Schneider^^ 28̂ ®̂

Table 3.6 Comparison of effort equations [Boe81]

Banker and Kemerer [Ban8 8] did not accept the harmony observed in
earlier studies, as shown in Table 3.6. They suggest that the effort required for
software development may be either ‘economy or diseconomy of scale’ and argue
that a locally increasing or decreasing return to scale depends upon the size of
projects. Banker and Kemerer came to this conclusion after analysing data, from
various sources, representing a variety of applications. Increasing returns to scale
were observed for the:^^

15. This is not a mistake!

16. Yourdon’s data: various business application, 22 projects) [DeM82]; Baileys’ data: NASA, 19
projects [BaiSl]; Behren’s data: Equitable Life Assurance Society, 25 projects [Beh83]; Kemerer’s
data: Commercial data processing, using Function Point; [Kem87].

136

CHAPTER 3 SOFTWARE EFFORT AND COST ESHMATION MODELS

Yourdon an exponents of .72
Bailey an exponents of .95
Behren an exponents of .95
Kemerer an exponents of .85

And, decreasing returns to scale for:^^

Albrecht an exponents of 1.49
Belady and Lehman’s an exponents of 1.06
Wingfield’s an exponents of 1.06

The authors associate this phenomenon with project size. They suggest that
the software development first exhibits increasing returns to scale in most
organisations, but decreasing returns for very large projects. Whether a model
results in ‘diseconomy or economy of scale’ depends on the complexity of the
project itself, the technological environment, the project team composition and or
the organisational factors [BanSS]; [BoeSl]; [Bro75]. Software development tools
such as on-line debuggers or code generators should increase productivity.
However, although modern tools might increase productivity level in the long
term, they require relatively large initial investments in purchasing and adapting to
the organisation. The factors which may contribute to ‘economies of scale’ are:

Management overhead which does not increase directly with project size.
Software development tools if used in an organisation repeatedly despite
the initial investment in purchasing and learning curve.

The factors which may contribute to ‘diseconomies of scale’ are:

Size of project team might have conflicting effects. The size of the project

17. Albrecht’s: IBM, 24 projects [Alb83]; Belady and Lehman’s: software house, 33 projects
[Bel79bj; Wingfield’s: US Army, 15 projects estimated using SLIM [Win82].

137

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

team affects a number of communication paths between members of the
project team. The number of communication paths increases in a non
linear rate. In addition, personal conflicts may increase with size of team.
However, size of the project team might be a cause for ‘economy of scale’.
For instance, large project team may benefit from the accessibility to high
level specialised personnel whose expertise may increase the overall
productivity of the project [Ban8 8].
Overhead activities such as planning and documentation grow faster than at
a linear rate. It is customary to assume that a large project will end with a
more complex interfaces than a small project. The need for parallel
activities exists in large projects. A large project requires relatively more
time to implement the integration and test activities. Verifying, validating,
testing, integration and managing the project are the activities which are
mostly affected by the project size as relatively more time is needed for
communicating and resolving interface problems.

It would be of benefit to the software industry if a way to size a new
software development project which would reflect ‘economy of scale’ could be
suggested. But, this problem does not concern us here.^^

18. Banker and Kemerer address this issue and suggest a research direction which might allow for
the identification of the scale size for software project development where average productivity is
maximised [BanSS]. The authors suggest a method for identifying the most productive scale size for
a given software development environment. They argue that most small projects exhibit a
increasing return to scale while vary large projects decrease in their productivity and exhibit
‘diseconomies of scale’. That is, average productivity is increasing as long as the project size is
smaller than the ‘Most Productive Scale Size’ (MPSS) and is decreasing for projects that are larger.
The MPSS exists where the marginal productivity equals the average productivity. The actual
MPSS tends to differ between organisations. In other words what they are suggesting is that for a
given team there is an optimal project size. Cowderoy, Jenkins and Harry [CowSSb] suggested that
a more sensible approach is to look at the optimal staffing pattern for a project of a given size.

138

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

3.6.2 Comparison among schedules

The effort and schedule equations obtained in various models are difficult to
compare as assumptions and definitions are not always available. However, one
can realise the remarkable agreement shown in the various scheduling coefficients
and constants, as shown in Table 3.7. "Even though, to date no one has came up
with a good explanation for this relation in terms o f project phenomena" [Con8 6].

Freburger - Basili 4.38°'^
COCOMO - Embedded 2 .5 °
Putnam 78 2.15°-̂ ^̂
COCOMO - Semidetached 2.5°’̂^
Walston 77 0.247°^^
Nelson 3.04°^
COCOMO - Organic 2.5°^

Table 3.7 Comparison of schedule equations [BoeSl]

3.6.3 Sensitivity to elapsed time

Boehm’s COCOMO and Putnam’s SLIM are sensitive to compression in elapsed
development time, as is PRICE S [Frei79], the Jensen model [Jen84] and the
BANG model [DeM82]. They are all based on the assumption that there is a
relationship between the elapsed time and the effort required to develop a
software product. Reducing the time frame may increase total effort by making
co-ordination more complex and reducing individual efficiency. The theory states
that there is a cost involved in shortening the elapsed time in a way that conflicts
with the ‘natural’ schedule for a project of a given size [Put78]; [BoeSl]; [Wol84].
Extending the time frame may also reduce the momentum in part of the team and
extend duration on project management. Putnam titled this as the Time Trade-off
Law and suggested that there is an optimum elapsed time for a project in which

139

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

the required effort to develop the system is minimised.^^

3.6.4 Comparison: Putnam’s SUM and Boehm’s COCOMO

SLIM and COCOMO models are archetypal effort estimation models. They differ
in their assumptions and their interpretation of the observed behaviour of effort
throughout the SDLC. It is therefore of benefit to compare them.

Similarities

The similarities between Putnam’s and Boehm’s models are:

The functional form of the equations; both are non-linear.
The basic variables in the equation are size, effort and schedule constraints.
Both models specify the relationships among the various cost parameters
e.g. effort/cost and duration/staff.
Both models interpolate the total development effort and schedule, and
from that, based on resource allocation among the phases of development,
estimate the effort for the construction phase of the project.

Some authors argue that no one model adequately represents all task types
and environmental factors in a totally convincing fashion. For instance, Basili
[Bas81b;81c], Pressman [Pre87] and. Macro and Buxton [Mac87] who suggested
that ”No one o f the models developed is conclusively better than all others in all
circumstances". Putnam and Boehm take a different view. Both suggest the use
of a single model, adjusted for usage in various environments. A similar view is
taken by Rubin [Rub85]. He suggested a single coherent model that can capture
and make use of the range of estimation parameters when known.

19. This subject was also explored by [Cow88b], who tried to identify the optimised ‘cost’ or ‘elapsed
time’.

140

CHAPTERS SOFTWARE EFFORT AND COST ESTIMATION MODELS

Differences

Elapsed time constraints. The two models vary in their explanation of the effect
of the elapsed time constraints and expansion, as shown in Figure 3.5.

Putnam
SLIM

Jensen

RCA
PRICE

Relative
Effort;
EÆ (NOM)

COCOM O

DSN

1.0

Relative schedule:
T/T(N O M)

Figure 3.5 Relative effort and elapsed time [Mac87].

This figure shows the relative elapsed time on the x-axis and relative effort on the
y-axis.^ Thus relative effort shows the extent to which effort is more or less than
would be expected for a project of a certain size, assuming no elapsed time or

20. Relative effort (E /E ^ ^ is calculated by dividing a project’s actual effort (E) by its expected
effort Expected effort is calculated from the empirically based equation describing the
relationship between lines of code and effort = a * lines of code^).

141

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

schedule pressures. Relative elapsed time measures the extent of schedule
constraints by dividing the desired completion time, which is enforced on the
particular project, by the elapsed time that would be normal, based on the
empirical equation describing the relationship between actual effort and actual
elapsed time (elapsed time = c * effort"̂).

Boehm believes in the existence of an ‘impossible region’ for development,
which represents infeasible manpower strategies. Acceleration of the nominal
elapsed time of a project as given in equation (3.30)y below 75% of the
development time for a project as given in equation (3.29), is considered as
impossible by COCOMO.

Putnam [Put78] gives the following relationships for the minimum
development time for a stand alone project:

(3.35) K = C r /
Where,

K = total effort in Person Years.
Tj = measured in years.
C = in the range from 14 to 15.

In the case C equals to 14.5, then converting to months:

(3.36) = 2.15 (PM)^^

C = 2.15 in the Putnam equation represents a typical minimum compression of
schedule of about 86%, while in COCOMO models C = 2.5 which represents only
75% schedule compression limit. Putnam’s effort-schedule tradeoff equation
(3.36) presents an extremely steep penalty for compression in schedule, and an
extremely reduced effort for spread of schedule.

There is clearly a limit to the extent to which effort can be squeezed within
a given elapsed time. DeMarco agrees and describes the phenomenon as a
"weapon in your arsenal to use against unreasonably inflated expectations dropped on
you from above" [DeM82].

142

CHAPTERS SOFTWARE EFFORT AND COST ESTIMATION MODELS

3.7 CONCLUSIONS

The selection of models analysed in this chapter aimed to give the reader an
understanding of the modelling approaches for estimating the effort for software
development. Thus, each category^^ of the model is represented, emphasising
models which contribute to the research and practice in this area of interest. The
selection also includes models which illuminate aspects of productivity (e.g.
[Wal77]) of software development, and models which emphasise the process
associated with estimating the effort (e.g. [Aro69];[Wol74]).

A summary of the major themes of interest, resulting from the analysis
presented in this chapter is given below.

The models for estimating the effort and/or cost for software development
result in one or more of the following:

Unit of cost, cost per instruction, cost per routine or module, cost per
activity.
Param etric Equations, the project required x modules, y types of data, z
displays etc., and the effort or cost for the development is the summation of
the products of the units of each of these modules, displays etc., with its
corresponding cost parameter. Equations (3.1) and (3.7) are representative
of this group.
Some models result in a set of parametric formulae:

* A basic formula, representing the required effort in PM or PY. The
size of the software product, given in LOC, is the variable needed to
solve the effort equation. The estimated effort can be adjusted.

* A correction form ula, accounting for a set of factors which are
believed to impact the productivity of the development effort.
These factors are either attributes of the software product, or of the
environment in which the development occurs. Equations (3.2) and

21. See Paragraph 3.1,2

143

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

(3.3) are representative of this approach.

Some models add a nominal schedule formula, representing the required
schedule for the development of the software for which the effort was
estimated. Equations (3.12) and (3.30)^^. The schedule is derived based on
historical data, with known percentage of resource distribution among the
phases and stages of development.
Other models present the staff build-up, of the effort required for the
specific development, through the life cycle. The manpower demand is
represen ted analytically by means of a Rayleigh distribution. The
distribution shows how the total effort is used during the life cycle of a
project, for different values of the parameter Restated here, is:

(3.18) Y ’ - 2 K a t [exp (-at^)]

The representative of this approach in this chapter is Putnam’s SLIM, based
on Norden’s findings. Two parameters govern the ‘staff build-up’ curve are:

* Cumulative effort
* Development time in which the manning of the project will

reach the peak.

The month in which the manning of the project will reach the peak is
related to the parameter representing the ‘learning curve’ associated with
the project {('a\ in (3.21)}. Therefore, if ‘a ’ is known and constant, then the
number of people involved in a project at the peak time is easy to
determine.^^

The total effort required for the development is calculated using

22. See also Table 3.7

23. This is achieved by replacing ‘a ’ with (3.21) in (3.18).

144

CHAPTER 3 SOFTWARE EFFORT AND COST ESTIMATION MODELS

(3.22) and assuming the duration of the total project. This model assumes
the ‘ideal’ staffing conditions which may not be available, therefore,
tradeoffs must be made.

The top-down approach is used in some models while in others the bottom-
up approach is employed. However, the input required by the models requires
knowledge about the software product. Estimating the LOC, which is the major
input to most of the models, can be achieved only after a thorough analysis is
implemented.

The correction factors used to adjust the basic formula to a specific
environment are assessed subjectively and intuitively since neither the structure of
the software product, nor the the correction factors for the environment are
known early in software development. This implies uncertainty which is the major
reason why most of the models are employed only after requirements and product
specification are implemented.

All the models analysed are empirically driven. Project histories are used
to establish the parameters of the formulae representing the effort, schedule and
their relationships. This is true for formulae derived using statistically methods,
(e.g. least squares or regression) or for those which are based on analytical
methods, (e.g Rayleigh distribution).

The manner of treating the effort-time tradeoffs clearly differs among the
models.

The discussion in this chapter and the analysis of the models describes indicated
the importance of estimating the size of the software product. The next chapter
focuses on measuring the size of the software product.

145

Chapter 4
ESTIMATING THE PROJECT SIZE

4.1 INTRODUCTION

Sizing the product is the weakest link in estimating the effort for software
development. A weakness of all effort estimation models which base their effort
estimation in LOC is that it is very difficult to estimate LOC. The clear need for
better size estimation, coupled with the new technology made available to the
industry this decade, introduced a new family of tools aimed at supporting the
estimation of the project size. This has resulted in the development of LOC
estimation tools which can be used to generate the inputs to the cost models,
some of which act as front-ends to the proprietary effort estimation tools. This
new family of models uses the same approaches described earlier as applicable for
estim ating the effort required for developing software: Analogy; Expert
judgement; Delphi; and additional techniques such as Size-in-size-out and
Function Point Analysis. Some of the models use Expert Systems techniques, e.g.
Naef [Nae88] and Najberg [Naj88].

This chapter focuses on two problems associated with estimating the size of
a software project, for the purpose of estimating the required effort:

1. Improving the estimates of LOC for the software product. Representatives
of the various approaches currently in practice for this purpose will be

146

CHAPTER 4 EmM ATING THE PROJECT SIZE

discussed, they are:

* Sizing by Analogy.
* Comparison of Project Attributes.
* Size-in-size-out.
* Linguistic Approach.^

2. Using alternative non-LOC units of measurement for the software product.
These measurement need to be available early in the life cycle, and they
must be amenable to counting. The various approaches currently in
practice for this purpose are:

* Function Point Analysis.
* DeMarco’s Bang.

4.1.1 Standard M easure for Unit of Product

'To èstimate the software cost on the basis o f LOC is analogous to estimating
home construction cost based on the number o f nails or bricks to be used"
[Cal84]

Before an attempt is made to estimate the effort required to develop a piece of
software, there is a need to estimate the project size. Most of the effort models
currently in use rely on an estimate of project size in LOC as a primary factor.
Although the LOC, as the software product size, is paramount to effort prediction,
it is very difficult, if not impossible to estimate at the outset of a project. "It is an
illusive goal" [Con86]. A percentage degree of error in the size estimate will result
in an even larger percentage error in estimated effort. Most of the effort
equations are non-linear and exhibit an exponent which is greater than one:

1. This approach, which is based on Halstead’s [Hal77] Software Science Law, will be discussed in
Paragraph 5.6.4 as an approach to measure complexity.

147

CHAPTER 4 ESTIMATING THE PROJECT SIZE

Effort = a Size^, b > 1

The higher the exponent, the higher the error in the estimate. For example, the
estimated effort for a project classified by Boehm as an Embedded Mode project,
has the coefficients:

Effort = 2.8 Size

Therefore, a 150% error in estimated size will result in a 166% error in effort
estimates. As most of the models exhibit ‘diseconomies of scale’ and human errors
are not uncommon in this area, it should not be a surprise that the corresponding
error in the effort estimates is high. Even when a system matures, when the
Preliminary System Design is already implemented, the requirements are specified
and ‘stabilised’, interfaces defined and processing functions identified, the process
of sizing software is still subject to a wide margins of error. LOC can be difficult
to estimate for totally new projects, but, it might be even more difficult to estimate
the size for projects when new code is incorporated into old software.

Many factors contribute to this phenomenon, but the unifying characteristic
of them all is the potential for error inherent in any subjective human reasoning
process. Some of the problems might stem from terminology and semantic
definitions, some from redundancy in calculation, or design and environmental
constraints such as maintenance, or high quality standard for the product (e.g.
software tool), high reliability requirements, or a high degree of user friendliness.
It should, therefore, be asked if the LOC qualifies as a standard unit of
measurement of product. Nevertheless, the majority of productivity studies have
used LOC per period of time as their productivity metric and thus the measure for
a unit of software product. Johnson [Joh77] addresses the applicability of LOC
and concludes that it is the "only usable measure o f program development
productivity available. " Prell and Sheng [Pre84] came to the same conclusion: " the
most practical and widely used metrics are still based on the line count o f software. "

Productivity in the majority of studies to-date is expressed in terms of
Delivery Source Instruction (DSI) per person-day. Hence, software factors.

148

CHAPTER 4 ESTIMATING THE PROJECT SIZE

organisational, technical or project team composition factors are incorporated in
the calculated productivity rate.^

(4.1) Productivity = L O C /P M

The uniformity of programming languages used in the early years when
programs were coded mainly in one major language, the Assembly language,
enabled LOC to be the standard measurement of effort, although with some
difficulties. Unfortunately, today the LOC no longer qualifies as a standard
measure, for the following reasons:

Differences between individual producers of LOC can be enormous,
[Bro75], [DeM82], [Boe8 8]. Boehm, Brown and Lipow showed a one to ten
difference in error rates between personnel [Boe76a]. Differences between
individual teams of producers of LOC can also be enormous, [Jon8 6]. In
addition, variability in human ability is ignored and the person months
(PM) factor assumed to be of an ‘average’ level of skills.
Some LOC are more complex than others [DeM82].
Cost-per-defect measures penalise high quality programs [Jon8 6].
LOC measures penalise high-level languages and the use of advanced
programming tools, e.g. reports and screen generators, program generators.

The above discussion, however, does not depict the entire picture, which is
even more complex stemming from the lack of a standardised definition of LOC.
Walston and Felix [Wal77] ignore object code and their report counts only source
lines of code although they do include in their formulae comments that consist of
up to 50% of the code. Doty [Dot77] and Boehm [Boe81] use source lines of code
only and do not compensate for documentation. Yet, Boehm uses a complicated
formulae that accounts for the percentage effort required for the adaptation of old
code in the various SDLC phases as defined in his model (design, code and

2. [Wal77]; [Chr78]; [Jef79;81]; [Bai81]; [Bas81a]; [Jon86].

149

CHAPTER 4 ESTIMATING THE PROJECT SIZE

integration). Bailey and Basili [BaiSl] define source LOC as a sum of new code +
20% of old code. Reifer [Rei8 8] excludes comments and data declaratives while
Boehm includes the data declaratives lines. Putnam [Put79] includes overheads
that account for about 50% of the code, in his factor. One difficulty is very
obvious. LOC is not the natural measure of productivity for the phases in the
development life cycle which are not oriented towards programming. Therefore,
most of the models which are based on the LOC approach exclude the early
phases of the SDLC from the estimation process. Alternatively, they interpolate it
from the total project size according to the industry average resource allocation
between the various phases.^

The LOC might be a suitable measurement for the programming effort,
although the LOC are not identical in the effort they consume, even when the
same language is used [Dot77]. In addition, its usage as a productivity measure
penalises well designed but short programs. The LOC volume is not known early
in the life cycle, so it is not a suitable measure for other life cycle phases.

4.2 IMPROVING THE ESTIMATES OF LOC

4.2.1 The general approach

The new supportive tools are based on the assumption that accuracy in the LOC
estimate will result in more accurate cost estimates. The appropriate analogy is
selected using confidence levels. The tool proposes an analogy based on system
characteristics or system functionality or both. Systems with the highest number of
matching systems characteristics and matching functionality are offered to the cost
analyst as the best analogies. It is claimed that the tools have the capability to
transla te the high level system description into a taxonomy of software

3. The SLIM model, the TRW Model and the Software Estimation and Evaluation Resources
(SEER) System [Gal88] are examples of this approach.

150

CHAPTER 4 ESTIMATING THE PROJECT SIZE

characteristics. The system analogous to the target system is later scanned for
detailed data. The new system size is calculated based upon the portion of the
new system for which an analogy was found. A sample of the various approaches
and tools aiming to support the process of estimating the software size are
described and analysed in the following paragraphs.

4.2.2 Sizing by Analogy

The Sizing by Analogy approach involves comparing a new project to previously
developed components of a software product, such as modules and sub-systems,
and generating size estimates from the data from other similar projects. A
prerequisite for using this approach is the construction of a data-base consisting of
descriptions of either completed projects or ongoing projects. The data-bases
usually include decomposition of the product into functions the and number of
Source Lines of Code (SLOG) for each function. The analogy can be applied
either at the system or at the function level, depending on the degree of detail at
which the analogies are drawn. The comparison at the system level is based on
comparison of project attributes, and works similar to the comparison with the
cost driver, while a functional comparison works at the level of application. It is
obvious that searching for analogy at the functional level may yield better results,
but can be implemented only at the point in the SDLC where the system definition
is completed.^

Electronic System Division (BSD) Sizing Model

The Electronic System Division Sizing Model consists of two primary components:

4. This approach is being used by the various commercial models yet in different ways. The
Electronic System Division (BSD), Software Sizing Package developed in 1987, the Software Sizing
Analyser (SSA) developed in 1985, the Quantitative Software Methods (QSM), are examples of
tools using the Sizing by Analogy.

151

CHAPTER 4 ESTIMATING THE PROJECT SIZE

an historical data-base and a user interface. The user interface facilitates the use
and maintenance of the data-base. It has data extraction and statistical report
generation facilities.

The data-base

The sizing data-base consists of 825 (September 1987) previously designed or
developed units of code which originated in four governmental and research
agencies in the US. These entries are grouped and indexed into approximately 105
standard functions. The size range of the units vary from 2 to 500K SLOC.
Examples of the standard functions are: On-line Monitor; Data-base design; Test
case generation; Sort/Merge; Avionic navigation. An entry descriptor includes the
following:

* Standard function.
* System identifier.
* Status of the unit, e.g code, test.
* Computer used.
* Word size.
* Unit size.
* Language used and SLOC.

The sizing process

1. The input. To obtain an estimate for a module the user indicates the
selecting parameters, namely:

* Index (identifier of standard function group)
* Development status, indicating whether the project in the data-base

is completed or not.
* Language.
* System name.

152

CHAPTER 4 ESTIMATING THE PROJECT SIZE

* Function name.
* Range of SLOC.
* Development computer.

2. The process. The system creates a temporary data file of the selected
potential analogy entries, from which the user may chose a subset for
statistical manipulation.

3. The output. Statistical manipulation on the selected data yields:

* Record count.
* Mean, median, variance and standard deviation.
* Beta distribution curve, using weighted averages .
* The most likely value for the size of the new function.

4. Graphic representation of the expected range of SLOC, based on standard
deviation, at the confidence level prescribed by the u se r.

The Quantitative Software Management (QSM) Sizing Model

The Quantitative Software Methods (QSM) Size Planner [Put87] offers two
separate methods for sizing products, which differ primarily with respect to the
level at which they are applied, namely:

Standard components are grouped at a detailed level of specification that
allows comparison of attributes of a new project with the same attributes of
completed projects. The compared components are: files; reports; screens;
batch programs; modules; subsystems; SLOC; interactive programs; bits;
bytes; words and object instructions.
A predicative model to estimate LOC based on non-LOC based size at the
application/functional level (e.g. Function Point Value).

153

CHAPTER 4 ESTIMATING THE PROJECT SIZE

Both methods are based on analogy, and use Fuzzy Logic theory.

The data-base

An historical data-base is used, comprised of eleven sub data-bases, each including
one application category e.g. real time, business, micro-code. The statistics
included in the data-base allow us to associate a range (size) to each of the
categories. The size category and the size range are classified in Fuzzy Logic.

The sizing process

1. The input. The user defines:

* The desired sub data-base according to the application category.
* The overall size category (to be assigned to the application which is

being sized), ranging from very small to very large.
* A size range within the category and by this refines the overall size

estimate.

It should be realised that judgement is needed as early as the initialisation
stage of the process.

2. The output. A mean and standard deviation is provided for the following:

* Quantitative Software Managements (QSM) data-base statistics.
* Estimates from user selection.
* Combined weights estimate. This is calculated using the Bayesian

formulae. A heaviest weight is given to the estimate which has the
smallest standard deviation.

154

CHAPTER 4 ESnMATING THE PROJECT SIZE

Discussion

The major component in all tools is the statistical data-base. The data-bases differ
in their scope, the number of entries and the descriptors for each of the entries.
One data-base is dedicated to the aerospace environment while the others include
a variety of environments and applications. The descriptors of each entry and the
way they are manipulated for the purpose of identifying an analogy depends on the
approach adopted by its builders. All use statistical methods to describe the
accuracy of the estimate provided. The analyst’s (the user of the sizing model)
judgement is essential in one or more of the steps in the process. However, the
various models search for and identify the analogy in different ways. For example,
the Quantitative Software Methods (QSM) model uses Fuzzy Logic, while
E lectronic System Division (BSD) and Software Sizing M odel search for
similarities to match a set of descriptors.

The input required for the BSD and the QSM tools to identify the project
size at the system level is available relatively early in the life cycle. The data
required is found to be easily understood [IIT87a]. It is also assumed that these
two tools can be applied effectively without knowledge or experience in the
application area, although the author of this thesis believes this to be somewhat
dangerous.

4.2.3 Comparison of Project Attributes

The Comparison of Project Attributes approach requires a detailed historical
data-base. The approaches within this category relate the current project to
previous developments at either the system or component level. The approach
compares projects in order to identify an analogy within project attribute
categories. Statistical analysis is then used to yield an estimated size. The method
differs from the tools described previously in details of the historic data-base used
for Analogy. It affords comparison not only at the system or functional level but
also at system components level and within the project attributes category. The

155

CHAPTER 4 ESTIMATING THE PROJECT SIZE

Computer Economics Inc. Sizer (GETS) tool described below is an example of a
tool in which this technique is applied.

The Computer Economics Inc. Sizer (CEIS)

The CEIS approach to estimate the size of a new project, is to compare attributes
of a new task with those of three tasks existing in the data-base, whose their size is
already known.^ This implies a need for knowledge of the application area.

The sizing process

The sizing process comprises a comparison (and determination) of a size
relationship between the attributes of the new task with three reference tasks of
known size (completed tasks or to be developed). An Intensity of Importance
(relative importance) value is assigned to the compared item with respect to:
complexity; peak staff; technology rating; requirements volatility; specification
level; required reliability.

The scale for the Intensity of Importance values ranges from one to nine,
and its values are defined as follows:

1 = Equal Importance.
Two attributes or tasks contribute equally to the objective.

3 = Weak Importance.
Experience and judgement slightly favour one over the other.

5 = Strong Importance.
Experience and judgement strongly favour one over the other.

7 = Demonstrated Importance.

5. Lambert [Lam86] described the model at the 1986 ISPA Conference. It is based on the concept
developed by Saaty [SaaSO]. A technique incorporating a similar approach is suggested by Bozoki
[Boz84;87] and is used by the Software Sizing Model (SSM) he developed.

156

CHAPTER 4 ESTIMATING THE PROJECT SIZE

Activity is strongly favoured and dominance is demonstrated in
practice.

9 = Absolute Importance.
Evidence favouring one activity over another is overwhelming.

The values 2, 4, 6 and 8 lie in between the defined values and are used when a
refinement is needed.

1. Input. The user is asked to compare a pair of attributes and to assign a
numeric value using the Intensity of Importance definitions. This process
goes on until all pairs have been compared and have been assigned a
Intensity of Importance volume.

2 Process and results. The model compares, calculates and iterates between
these steps to calculate the size of the unknown task. The process involves
the following steps:

* Checking the matrix of the Intensity of Importance values assigned
for consistency. If the consistency ratio is inappropriate, then the
matrix is re-evaluated.

* Calculating the weights for each of the project attributes using
Eigenvalue analysis. The Eigenvector is calculated and when
normalised, so that the sum of the components of the vector equals
one, the weights for each of the project attributes are found.

* I te ra tin g , in a s im ila r way, th e se s tep s to d e fin e the
interrelationships between the three reference tasks for each of the
attributes. When these relationships are determined and checked
for consistency, the task to be sized is compared to each of the
reference tasks for each of the attributes.

* The model calculates the size of the unknown task as function of the
actual size of the three references tasks.

157

CHAPTER 4 ESTIMATING THE PROJECT SIZE

4.2.4. Size - In - Size - Out or Expert Judgement

The Size-in-size-out approach also initially asks for an approximation. The output
is a refinement of the approximation given as an input. Statistics are used for the
refinement process. A few techniques use this approach, e.g. Wide Band Delphi
which combines several independent estimates from individual experts. Or, the
Software Sizing Model (SSM), which involves ranking the software product or its
components (e.g. modules) into a size order relative to some reference products as
modules whose size is known. The Software Sizing Model now described is an
example of this technique.

The Software Sizing Modei (SSM)

The Software Sizing Model (SSM) was introduced in 1980 by Bozoki and revised
in 1987 [Boz87]. The model offers a size estimate based on either SLOC or
Function Point Analysis. The basic assumptions of this model differ from those
described earlier. They are:

The qualitative information available at the proposal stage is more accurate
then corresponding quantitative data.
An ordinal scaling technique is more appropriate for the size estimation
process than a cardinal measurement. Small units that comprise the
development process (e.g. modules) are often estimated more accurately in
a relative form than those that relate to absolute size. This assumption
dictates the point of time in the project SDLC at which the method can be
used, that is, when the product can be partitioned into modules whose
operational and functional characteristics are defined.

The sizing process

1. The Input. The users provide the model with:

158

CHAPTER 4 ESTIMATING THE PROJECT SIZE

* Module names and descriptions.
* Module size, if known. (Size is a mandatory input for at least two of

the modules.

2. The process. The user is then asked to:

* Rank each module relative to the others. The modules are
presented to the user two at a time, and he has to judge which is the
larger of the two. This process goes on till all modules have been
ranked from the largest to the smallest.

* Associate each module with a designated size interval.
* Provide a size range for each module, highest possible size, most

likely and lowest possible.

3. The output. Based on the size of the modules already provided by the user
as reference points, the SSM provides each module with the expected size
and standard deviations and, for overall system the:

* Expected size.
* Standard deviation.
* Confidence limits, for each expected level of probability: low and

high confidence limit.

The model uses statistical methods to map the relative size of each
component to the reference modules of known size in order to obtain all module
sizes, standard deviations and the total system size.

Although the input required is available early in the development life cycle
and is easily understood, it is clear that the model cannot be applied without
having a thorough understanding of the application area.

159

CHAPTER 4 ESTIMATING THE PROJECT SIZE

4.3 AN ALTERNATIVE UNIT OF MEASUREMENT FOR SOFTWARE
PRODUCT

In the late ’seventies, a very different approach to project size was introduced.
This was the ‘Function Point Value’ introduced by Albrecht [Alb79] and has been
developed further since then [Alb83; 84].^ Albrecht felt that the traditional LOC
approach tended to penalise higher order languages and ‘award’ unusual code
expansion due to use of code generators, re-use of code [Alb83]. A modified
version of the Function Point Analysis was suggested by Symons in an attempt to
overcome problems he identified [Sym8 8].

DeMarco [DeM82] takes a similar approach and suggested Bang delivered
per unit of time as a productivity measure. The Bang is a quantitative indicator of
the net usable function from the user’s point of view. The Bang is based on 12
essential counts of primitives (p-count) that are adjusted by the number of input
and output. It is a similar approach to that suggested by Albrecht, although the
approach differs in the measure itself.

Reifer states in his wish list for cost estimating that ''better and more
accurate ways o f developing size estimates will be made available as research into
Function Point theory begins to realise its potential" [Rei87].

Emerging from implementing the prototype paradigm, a third approach to
measure productivity might be offered: user specification per PM [Boe84].

4.3.1 Function Point Analysis (FRA)

The Function Points approach deals with what the system does rather than how it
does it. The project size is measured by counting the functions and then is
weighted for general complexity. However, it is worth emphasising that this

6. Two years after the Walston and Felix survey was published, another substantial productivity
survey originated from the IBM environment. This dealt with projects completed over a similar
time frame (74-79). Albrecht [Alb79], and Albrecht and Gaffney [AlbS3] established the
foundations of an approach to cost estimation called Function Point Analysis (FPA).

160

CHAPTER 4 ESTIMATING THE PROJECT SIZE

approach aims to define a productivity measure applicable throughout the project
SDLC.

The model is linear using compensation factors for complexity. The
relative size of the system (the product, the functions delivered) to be developed is
determined by the product of two factors, the product size and the technical
complexity. More accurately, FPA provides a more reliable measure than LOC of
product size early in the SDLC. Indeed, this method has gained widespread
acceptance as a way of m easuring size, particularly in IBM -based MIS
departments. The attractiveness of the Function Point as a productivity measure
and thus as a means for estimating the software development effort, emerges from:

Its basis on data existing in an organisation quite early in the project life
cycle.
Its simplicity of use. The assumption is that a non data processing user can
evaluate the measure [Rub83].
Its language independence.

Productivity is defined as the weighted sum of delivered Function Points
units, per each of the classified information domains (inputs, outputs, internal
files, external interfaces and enquiries, all divided by person-months).

(4.3) Productivity = F P /P M

(4.4) FP = UFP *[0.65-^0.01'^ SUMDI(f.)]
Where,

UFP = Total of all the weighted functions
/j = the complexity adjustment value. The degree of

influence associated with each of the 14 general
characteristic variables which the authors [Alb83]
believed affects complexity.

D I = The total degree of influence.

161

CHAPTER 4 ESTIMATING THE PROJECT SIZE

However, it should be noted that the Function Points are often converted
to machine or assembly language LOC. The inverted LOC is then input into an
effort estimation model to calculate the estimated effort.^ Function Point
Analysis is increasingly being used for sizing systems incorporating fourth
generation languages [Ver87],

The Lines of Code and the Function Points approaches are distinct
estimation techniques that both require the decomposition of software into
modules or Function Points, that can be estimated separately. The two techniques
differ in the level of detail required for decomposition. Estimates based upon
lines of code can only be made, with a high degree of certainty, after the detailed
design phase is completed. This means that only the estimation process for the
effort needed during the Construction phase can be based upon LOC. The
knowledge required for this method is available, with a certain degree of
uncertainty, at the Project Planning phase. But it is only reliable after the
Preliminary System Design is completed.

A weakness of the FPA method is that it does not consider environmental
factors [Sym8 8].

Methodology

A heuristic approach was used to develop the model. The basic productivity
standards were empirically obtained by analysing the history of completed
projects, while the weights were determined by debate and trial. A prerequisite for
applying the method is the existence of an historical productivity data-base of
completed projects and a complete task schedule.

The Function Point is a ‘surrogate size’ m easure from which the
productivity is measured. Once the Function Point values have been calculated,
they are used in a similar manner to LOC.

7. Albrecht used the average number of LOC required to develop a Function Point to show the
relative productivity of COBOL, PL/1 and DMS/VS.

162

CHAPTER 4 ESTIMATING THE PROJECT SIZE

Assumptions

The project development process follows a ‘disciplined management technique’, a
development process strategy following the Waterfall SDLC called: The Phase
Approach. The SDLC is composed of phases, namely:

Objective definition.
System Design phase, which includes the following:

* Requirements definition for customer approval.
* External and Internal Design. The customer is provided with a

proposed design of a system subject to his approval. This is done by
providing the customer with a blueprint and proposal for further
development and implementation.

Implementation phase.
Installation and maintenance phase.

The estimation process

The following steps are involved:

1. Assess the project risk.
2. Count the system components for each of the five classified information

domains, namely:®

* Number of user inputs.
* Number of user outputs.
* Number of user inquiries.

8. For full details of the Information Domains see Appendix 4A.

163

CHAPTER 4 ESTIMATING THE PROJECT SIZE

* Number of files.
* Number of external interfaces.

3. Compute the Function Point value by weighting each group of functions
and summing the results, as illustrated in Table 4.1. This result is described
as an ‘Unadjusted Function Point’, (UFP). The weightings are subjective
assessments based on the number of functions in each category.

F u n c t i o n D o m a i n C o u n t S mp I e

W e i g h t i n g f a c t o r s

A v e r a g e C o m p I e x T o t a l

U s e r i n p u t s . . x 3 . . x 4 . . X 6 =
U s e r o u t p u t s . . x 4 . . x 5 . . x 7 =

U s e r i n q u i r i e s x 3 . . x 4 . . x 6 =

I n t e r n a l l o g i c a l f i l e s . . x 7 . . x 1 0 . . X 1 5 =
E x t e r n a l i n t e r f a c e s x 5 . . x 7 . . x 1 0 =

Table 4.1 The Function Domain and their weighting factors.

4. Adjust the Function Point Value for complexity. This is achieved by
estimating the ‘degree of influence’ of 14 ‘G eneral Application
Characteristics’. The ‘total degrees of influence’, [SUM DI (f.J] is then
converted to the ‘Technical Complexity Factor’ (TCP) using the following
formulae.

TCF = [0.65 + 0.01 *SUMDI(f.)]

The degree of influence is a linear scale from 0 to 5 and each degree of
influence is worth 5% of a TCF which itself ranges from 0.65 to 1.35.

0 Indicates no influence
1 Incidental
2 Moderate

164

CHAPTER 4 ESnMATING THE PROJECT SIZE

3 Average
4 Significant
5 Indicates essential influence

And,
(4.4a) FP = UFP* TCF

Productivity = FP / PM
Quality = Errors / FP
Cost = $ / FP
Documentation = Pages o f Documentation / FP

Discussion

Albrecht and Gaffney [Alb83] concluded that the Function Point approach
enabled the determination of productivity trends for business applications in the
IBM data processing services environment. This was the aim of the original
research. Indeed, Function Point is used within IBM to measure efficiency
(FP/PM), quality (errors/FP), productivity trends and maintenance. Pressman
[Pre87] comments that as the method was designed and found suitable for business
applications, it may not be suitable for applications of embedded systems.
Albrecht’s work was expanded to include embedded and real time systems [Rei87]
with quite satisfactory results [IIT87a]. Symons [Sym8 8] comments that FPA is
attractive as a productivity measure quite early in the project life cycle hence it is a
means of estimating the software development effort. Furthermore, the overhead
for data collection is low. However, Pressman [Pre87] takes a different view on
this subject matter. He indicates that it can be difficult to collect the post-mortem
data. Pressman points out that the opponents to the methodology find it
‘subjective magic’. The same argument is presented by other researchers such as
Verner [Ver89] and Symons [Sym8 8], who question the validity of the weights and
their universalibility, i.e. their transferability to all environm ents and
circumstances. The subjectivity of the weights assigned to the various Information

165

CHAPTER 4 ESTIMATING THE PROJECT SIZE

Domains is considered a problem. In addition, the following weaknesses of the
methodology are noted:

Over-simplification of the system components [Sym8 8]; [Ver89]. Symons
replaces files by entity-relationships [Che77] in his FP tool (MARKII).
Verner and Tate [Ver89] argue that such components should be further
divided into primitive elements which differ for each function. For
example: screens and reports should include the number of data elements,
and files; reports should also include the number of data elements. In
addition they take the view that the metrics should change with the
technology.

It is not at all clear that the 5 categories of function domains are
sufficient to cover system functionality. The degree of function partitioning
depends on the state of development.
Redundancy of calculation, in determ ining the in ternal processing
complexity. This factor is encountered while counting the UFP when
weighting each of the domains and while adjusting for Technological
Complexity. The use of a LOC count obtained from the conversion of FP
to LOC in some the cost models can cause these system attributes to be
reflected twice in the effort calculation.
Overlapping between technological complexity factors.
Adjustment scale for Degrees of Influence (DI). Symons argues that the
range is not sensitive enough for the purpose it intended to serve. The
weights aim to scale the system size and technical complexity. Some factors
are included in the weights of the system size as well as in the DI, e.g.
internal processing. The adjustment scale for DI is some times not
adequate, as it does not provide enough range for difficulties existing
between systems, related to the particular variable of/j. For example, the
effort needed to introduce a system to multi-sites will differ from the effort
required to install a similar system in a single site.
U nderestim ating the in ternal processing complexity factor. Symons
[Sym8 8] suggests that this caused Albrecht [Alb84] to observe an unreal

166

CHAPTER 4 ESTIMATING THE PROJECT SIZE

decrease in productivity by factor of 3, when system size increased from 400
to 2,000 Function Points.
The method takes little or no account of the development environment.

In general, however, the Function Point Value approach is widely accepted
as a sizing and estimating tool. A study done by IIT Research Institute (IIT)
[IIT87a] reported a fit of 28% and 30% between the actual and the estimated
project size using ASSET-R (a tool for determining FP counts for real-time
systems).

La Fourcade and Pickford of AT&T [LaF87] present an adaptation suitable
to the Continuing Development strategy for the SDLC (often called Incremental
Development). The strategy involves regular modification as a result of changing
user needs. This adaptation addresses the need for additional function domains
and the associated weights which will allow the counting of:

* Adding functions.
* Modifying functions.
* Deleting functions.

Each function domain will be counted and calculated separately but the
total effort is the absolute value of the changing functions.

The Function Point Value is a way of sizing projects. A few of the sizing
tools use modified versions of the FPA technique originally developed by [Alb79].^

4.3.2 Rubin’S ESTIMACS Model

There are a number of widely used tools which are based on Function Point

9. For example: Quantitative Software Methods (QSM) and Caper Jones’s SPQR SIZER - FP
assess the complexity differently, while SPQR Feature Point and ASSET - R are modified versions
adopted for real time applications. Before You Leap (BYL) developed by Gordon [GorST], and
ESTIMACS [Rub83] also use the Function Point Value technique.

167

CHAFTER 4 ESTIMATING THE PROJECT SIZE

Analysis. One example is ESTIMACS [Rub83;85] which is designed for use during
Project planning (pre-requirements definition). ESTIMACS is a series of nine
estim ators: Small Project; Function Point Calculator; Financial Analysis;
Maintenance; Portfolio; Risk; Hardware; Effort; Staffing and Cost Estimators.

The model validation is based on 5,000 development projects [IIT87a]. A
major advantage of the model is its use at the outset of the project life cycle.
However, its use for the development of embedded systems is questionable.

4.3.3 Converting the Function Point Value to SLOC

Software sizing tools provide a conversion table for Function Points to LOC in
different languages, i.g. SPQR SIZER-FP, ASSET-R and BYL. Size prediction is
based upon empirical observations of the relationship between various source
languages and Function Points. The conversion table shows a difference in the
estimated SLOC per Function Point as given by the various models and it
illustrates the relative power of languages.^®

The conversion supplied by the various models varies as the result of using
different data-bases which may include subjective estimates for complexity and
system characteristics, as well programs written by people of varying skills and
language experience. Therefore, these conversion factors should be modified to fit
the organisation which intends to make use of them.

4.3.4 DeMarco’S Bang

DeMarco [DeM82] introduced a new measure of size that measures the net usable

10. For example, Basic Assembler is converted to 300, 320 or 400 SLOC. The last figure is the
conversion for real-time applications. C is converted to 128 by two of the models but 90 by ASSET-
R. The same phenomenon is shown for Pascal and MODULA 2,91 by two of the models and only
70 SLOC by the ASSET-R model for Pascal while 80 and 65 for MODULA 2, FORTRAN and
COBOL give almost the same SLOC.

168

CHAPTER 4 ESTIMATING THE PROJECT SIZE

function from the user’s point of view, called the System Bang. The Bang metric is
based on Structured System Analysis and the counts are derived from data flow
diagrams, entity-relationships models and state diagrams. DeMarco’s Bang is
calculated from a specification or, if the system is strongly data oriented, from a
count of objects in the data-base. Bang requires information which is not available
early enough to be useful for sizing and estimating the cost for the feasibility study
stage.

The system specifications are developed down to functional primitives. A
Functional Primitive (FPR) is described as trivial piece which is too small to
justify further partitioning" [DeM82]. The number of data tokens (input and
output) associated with each Functional Primitive are summed and then used to
adjust the value of the Functional Primitives. DeMarco provides a table of
weighted FP increments for this adjustment and states that the values are based on
Halstead’s [Hal77] Volume/vocabulary formulae.^^ He defines RE as the number
of inter-object relationships in the automated part of the data model and classifies
the following:

A ‘Function Strong’ developed product is determined as product having
RE/FPR < 0.7.
A ‘Data Strong’ developed product is determined as product having
RE/FPR > 1.5.
An ‘Hybrid’ product have RE/FPR in the range 0.7 and 1.5.

If a developed product is ‘Function Strong’, then the calculation of the
Bang will be:

(4.6) CTC, = TC,*log^(TC.)
Where,

11. Halstead [Hal77] suggested a family of composite metrics to assess the complexity of the
programming effort. The metrics consider both the data and the functional aspects of the
programming. Halstead’s work is discussed as a complexity metric in Paragraph 5.6.4.

169

CHAPTER 4 ESTIMATING THE PROJECT SIZE

And,

TC. =

CTC. =

Bang =

is Token Counts, input and output associated with
the î ̂functional primitive.
Corrected TC.

SUM IV. * CTC.

The CTC is multiplied by its relevant complexity weighting Wj and the
Bang is the sum of the weighted, corrected token counts. DeMarco defined 16
classes of primitive (see Table 4.2) although he suggests that the correction values
for some classes may be less likely to remain invariant than others.

C l a s s W e i g h t 1 C l a s s W e i g h t

S e p a r a t i o n 0 . 6 S y n c h r o n i s a t i o n 1 . 5
A m a l g a m a t i o n 0 . 6 O u t p u t g e n e r a t i o n 1 . 0
D a t a d i r e c t i o n 0 . 3 D i s p l a y 1 . 8
S i m p l e u p d a t e 0 . 5 T a b u l a r a n a l y s i s 1 . 0
S t o r a g e m a n a g e m e n t 1 . 0 A r i t h m e t i c 0 . 7
E d i t 0 . 8 C o m p u t a t i o n 2 . 0
V e r i f i c a t i o n 1 . 0 I n i t i a t i o n 1 . 0
T e x t m a n i p u l a t i o n 1 . 0 D e v i c e m a n a g e m e n t 2 . 5

Table 4.2 Complexity weighting factors for various classes of functions

If the system is ‘data-strong’ (large data-base) then the Bang is computed
on the count of objects in the data-base (REJ. Each object is adjusted for the
number of relationships at the object boundary and the corrected objects (OB) are
then summed. The OB is the number of relationships associated with each object
in the automated data-model. The weighting factors for ‘data-strong’ systems are
given in Table 4.3.

If the developed product is a hybrid it is advisable to calculate two sets of
Bang metrics for the various characterised parts of the developed product. The
two parts should not be combined and the development should be treated as if it
were actually two projects.

170

CHAPTER 4 ESTIMATING THE PROJECT SIZE

RE. C o r r e c t e d OB 1 RE. C o r r e c t e d OB

1 1 . 0 1 4 5 . 8
2 2 . 3 1 5 7 . 8
3 4 . 0 1 6 9 . 8

Table 4.3 Weighting factors for ‘data-strong’ systems

Discussion

The Bang is environment dependent, therefore, the weightings should be
calibrated to the particular organisation, including new weightings factors if
necessary.

DeMarco [DeM82] does not explicitly state the basis for the weighting
figures. But, it appears that the weighting figures are generated by using
RE.^+1 in Halstead’s volume formulae.
The Bang has some appeal as it is developed from specifications. But, the
functional primitives are at such a level that the information would not be
available early enough to be useful for feasibility sizing and costing.
The approach would have gained more support if it was incorporated into
an automated tool for structured systems analysis [Ver87].

DeMarco suggests that professionals should gain the skills to produce their
own models that will be best suited to their own environments. He believes that
even a relatively small project could invest in its own tools. The Bang is a general
approach to sizing the software product rather than a precisely defined procedure.
The user can customise the approach to his own needs and environment in various
ways.

In the long-term, this could provide a system that is indeed well suited to
each project, but it has disadvantages:

171

CHAPTER 4 ESTIMATING THE PROJECT SIZE

It takes time (and hence cost) to set up such a system and to thoroughly test
it.
There are no initial default values until reliable data about projects
developed in the specific environment is available.
The person setting-up the model needs expertise.
A large organisation will end up with a wide variety of different models,
with little or no compatibility with other systems.
The tools will normally be slower and less easy to use, with fewer spin-off
benefits, than professionally produced tools.

4.4 CONCLUSIONS

A consensus exists about project size being the one factor that obscures all others
affecting the software development effort. But, do we know what the project size
will be when we start the development process? Do we have the ability to estimate
it? A unanimity exists here that it is very difficult to estimate the project size. It is
particularly true for product size measured in LOC at the outset of project life
cycle. Estimating the number and types of functions associated with a software
development is not easy either. The product size, which is the major input to the
effort estimation formulae, is in itself an estimate. Even as the development
process matures, the process of sizing software is subject to wide margins of error.
Many factors contribute to this phenomenon but the unifying characteristic of all
of them is the potential for error inherent in any subjective human reasoning
process.

In addition, the difficulties associated with standardisation in counting of
the LOC (see Section 4.1) and the nature of software as a human problem solving
activity, makes it difficult both to identify useful measurements and to produce
accurate estimates. These are the prime causes for poor input estimates to the
effort and cost model, which is a real weakness of all the models. The implication
from this is that we may need to accept a substantial degree of imprecision in the

172

CHAPTER 4 ESTIMATING THE PROJECT SIZE

best estimates for effort required for building software.
Life cycle phase for Implementing. The sizing tools, that provide estimation

facilities using the analogy concept, can be implemented during the ‘requirements
analysis’ stage of system development. Examples are the BSD, SSA, SSM, QSM
(Fuzzy Logic) and CEIS models, although they differ in the analogy technique
used. Tools which base the sizing estimates on Function Point Analysis techniques
can be applied, when the ‘external design’ is complete. ASSET-R uses counts of
the number of operators/operands. QSM (Standard Components) is based on a
count of components. Therefore, both tools can be implemented only when the
detailed design is complete.

The unit of measure for software product. LOC is still a standard measure
of product size: it can be measured for the programming phase of the software
development effort. The trend towards the replacement of the LOC as the unit of
m easure for the software product is discernible, at least among software
organisations, where the majority of the applications are business oriented. The
spread of the function based estimation models is evident. LOC and Function
point are useful measures, however, for estimating the effort in early stages of the
SDLC non LOC size metrics are preferable.

173

Chapter 5
CRITIQUE OF PARAMETRIC
MODELS AND COMPLEXITY

5.1 INTRODUCTION

After our consideration of the development of effort estimation modelling, models
for assessing productivity and methods for sizing software products, it is now
appropriate to assess current estimation practice. Three major issues are the
concern of this chapter:

The problems with the current practice are summarised. The results of
comparative studies and of the major findings from models are presented
and analysed. Conclusions are derived for the transportability of cost
estimation models, the relative efficiency of the models and the need for
calibration.
Resource allocation among phases of software development is of particular
interest for this research and is analysed in detail.
Several themes concerning effort estimating have emerged from the
previous discussion (in Chapters 2, 3 and 4). These are aspects of the
uncertainty, feedback, entropy and complexity associated with software
development and their affiliated measurements. Alternative approaches to
complexity are presented and their limitation for the purpose of this

174

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

development and their affiliated measurements. Alternative approaches to
complexity are presented and their limitation for the purpose of this
research is emphasised and criticised. The complexity determinants are
examined and their implication for usage in estimating the effort required
for the development of a project early in the life cycle is addressed.

5.1.1 Problems with effort estimating - the current practice

Managers at all levels in the organisation and others who are associated with the
software development process, and hence with estimating the effort required for
this process, are in need of support in this area. Good estimates of both the cost
and duration of the development effort are considered critical to the success of
software development. The existence of so many models shows that companies
involved in large scale software projects require some mechanism to predict
effectively, to manage and to track the amount of time and cost associated with
software development. Software effort and cost models may support the
management of software development throughout the process. However, the level
of confidence in the estimates differs, based upon the stage in the life cycle at
which the estimates are made, the amount of reliable information known to the
estimator at that time, the dynamics of the environment and the inherent absolute
and relative uncertainties [Leh89] associated with the process of building software.

Both the practices of sizing the target project and of estimating the effort
needed involve tradeoffs between system specifications, aspects of software quality
and scheduling within resource constraints. This implies that human interactions
and judgement are essential throughout the estimation process. Interactions are a
source of entropy in the process of software development. Judgement implies
feedback and recycling to previous stages, and so, is also concerned with entropy.^

6. Webster defines entropy as a measure of the disorder of a closed thermodynamic system
[Web79]. It is related to such things as: friction and resistance, heat loss, turbulence and random
motion and disorder. The concept of entropy is borrowed and is used as a concept in management
of software development as is further discussed later in this chapter (Paragraph 5.5.2) [Ton79];
[Bel79a]; [Bro75]; [Moh79].

175

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

as a reason for poor estimates of the effort needed for software development.
People involved in this process come from various professional backgrounds.
Their interest in the development stems from different objectives and from various
political sources. The various parties associated with the software development
speak ‘different languages’. They may have different objectives in estimating the
effort and may interpret issues differently. Often, the meaning of an estimate is
not clear. Do estimates represent the lowest effort and the shortest duration for
the development process? Alternatively, do they portray the scenario for the worst
case? Problems stem from an attempt to impose a target rather than to estimate a
range of effort values representing the estimator’s belief of what is likely to
happen. Analytical issues stem from the use of different terminology causing
difficulty in identifying the activities associated with an estimation model, or
interpreting the model’s parameters. The Tower of Babel syndrome is a possible
outcome of the process of estimating the effort for software development.
Problems which are often encountered include underestimating the effort and the
inability to improve the estim ates throughout the developm ent process.
Estimating and maintaining software effort consumes the time of experienced
people. Managers often do not want or are not able to approve this costly
procedure, which might be 5% to 10% of project development costs [Kit89].

Independent empirical studies indicate that the models yield substantially
different estimates.^ Some reasons for this phenomenon are:

Difficulties in applying consistent rules for estimating and counting the
LOG and the effort required to develop them.
Inconsistencies in using subjective adjustment factors.
Differences in environments. The environment in which a model was
developed and the environment in which the model is to be used often
differ. This may mean that the adjustment factors are not appropriate for
use in the different environment.

2. [Kit85]; [Miy85]; [Rub85]; [Con86j; [Kem87]; [Fun87].

176

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

Accepting these reasons implies that a practical approach to minimising the
inaccuracy can be found.

The current practice does not emphasise the early stages of project
development. The prime reason for this is understandable. The lack of reliable
information about the problem to be solved, the environments it intends to serve,
the alternative solutions for technical design issues, all emerge in uncertainty.
Hence, estimating the effort required at the outset of software life cycle is a very
difficult task with a minimal perceived chance for success.

5.2 EVALUATION OF MODELS - EMPIRICAL STUDIES

Evaluating the current estimation tools will take us one step further towards
understanding the factors affecting the software development process. The studies
are of three overlapping types:

Studies which compare estimates using hypothetical problem statements.
Rubin’s [Rub85] study belongs to this category.
Studies which use actual data from development projects to validate
models and tools, or to calibrate them to a particular environment, e.g.
[Kit84;85]; [Miy85]; [Con86]; [Kem87].
Studies which compare estimates from two or more estimation models and
or tools, such as the studies of Kitchenham [Kit84;85]; Conte [Con86] and
Kemerer [Kem87].

Other studies which discuss specific languages (e.g. ADA) or maintenance
effort are excluded and are only mentioned to indicate interesting related findings,
e.g. Mohanty’s [Moh81] and Punch’s [Fun87] studies.

177

CI lAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

5.2.1 Rubin’s study

Rubin’s study [Rub85] is based upon a hypothetical problem. The objective was to
present a general comparison of models. The paper served as the basis for a panel
discussion at the 8th International Conference on Software Engineering. It was
not intended to judge accuracy. The statement of the problem contains
information at two points in SDLC, the ‘conception’ and the ‘post external design’,
and includes quantitative data as well as qualitative information relating to the
constraints and the environments.

All the compared tools, with the exception of ESTIMACS, are based on
LOG as the unit of measure for project size. The SPQR tool has the ability to
estimating size in either Function Points, or LOG. Yet, these two tools
(ESTIMAGS and SPQR) differ in the method used to count the Function Points
and hence, to estimate the product size. ESTIMAGS uses a high level business
description and the answers to a set of questions as the basis for the Function
Point counts and their complexity adjustments. SPQR requires the Function Point
type counts as an input, although it is not differentiated by complexity. The study
results in the following:

T o o l s E f f o r t (P M) D u r a t i o n (M o n t h s) P e a k S t a f f

J S - 2 9 4 0 * 31 4 3
SLI M 2 0 0 * 1 7 1 7
GECOMO 3 6 3 2 3 2 2
E S T I MAC S 1 1 2 * * / * * * 1 6 1 5
PCOC 3 4 5 2 3 2 4
S P Q R / 10 4 3 7 2 8 1 6

Minimum time solution
Application structure was assumed to have average complexity.
For convenience the original figure (in hours) was converted to months using COCOMO’s
average of 152 hours per month.

Table 5.1 Rubin’s Estimation Results

178

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

These tell us more about differences in the environments from which the
tools were obtained and calibrated than it does about any particular tool. It
should be noted that the study could not judge accuracy, given that the projects did
not take place.

5.2.2 Kitchenham’s and Taylor’s Study

Kitchenham and Taylor [Kit84;85] advocate the need for calibration. Their
conclusion stems from a comparison of the COCOMO and SLIM models
implemented in British Telecom and ICL environments. The two studies covered
34 projects, with considerable differences in the data. The ratio of SLOC per PM
varied by a factor of over 30 for the BT data and by over 20 for the ICL data.
Kitchenham and Taylor show that for both models the estimated cost and schedule
worked out much higher than the actual effort in almost every case. Hence,
calibration was required in order to make sensible predictions, but needed, a fairly
large historical data-base. There appears to be significant differences between the
two environments with ICL being significantly more productive than BT, though
not necessarily on the same types of applications.

5.2.3 Miyazaki’S and Mori’s Study

Miyazaki and Mori [Miy85] made an extensive evaluation of Intermediate
COCOMO using data from 33 projects which served as the basis for the
COCOMO model. Using the non-calibrated model they observed an average
deviation of 166% between the estimates and the actual data, and in only 6 % of
the cases was it less than 2 0 %, which emphasises the need for calibration as an
adaptation process. These figures differ from those achieved by Kemerer’s study
[Kem87].^ As a result they calibrated the COCOMO model to their environment

3. See Paragraph 5.2.5.

179

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

by:

Eliminating a number of cost drivers, including: virtual machine volatility,
analyst capability and main storage constraint.
Changing the influence values of the various cost drivers.
The calibrated equation for nominal effort, is:

(5.1) Effort = 2.15
Where,

S = KDSI*

Miyazaki and Mori support Boehm’s practice of counting only one third of the lines of code in the
COBOL declarative divisions.

Note that the exponent value in equation 5.1 is less than one, which
indicates ‘economies of scale’ for their environm ent, in contrast to the
‘diseconomies of scale’ shown in data sets for the different environment for which
Boehm originally calibrated the Intermediate COCOMO (Effort = 3.2 5 ̂°̂). By
calibrating the results, an average deviation of only 17% is found. This means that
where data from the history of projects exists in an organisation, a calibration
process could improve the results of the model’s estimates to an acceptable level.

5.2.4 Conte et al.’s study

Conte et al. [Con8 6] calibrated and applied both SLIM and Jensen’s models for six
separate data-sets, from widely differing environments, 187 projects in all. The
evaluation of tools was based upon a set of evaluation criteria suggested by Conte.
The results are given in Table 5.2. Conte’s evaluation criteria are:

* the Magnitude of Relative Error (MRE).
* the Mean Magnitude of Relative Error (MMRE).
* the Prediction level of a model PRED(level).

180

CHAPTERS CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

(5.2) MRE.
Where for project i,

MRE. =

* =

E \

the magnitude of the relative error,
the actual value of a cost per parameter,
the estimates of the cost parameter.

Where,

Where,

MMRE = 1/n {SUM} MRE.
i = l

n = number of projects in the data-set.

PRED (level) = k / n

k = the number of projects in a set of n projects whose
MRE. ̂ < = PRED (level)

The prediction ^.XPRED (level) means that liPRED (0.25) = 0.85, then 85%
of the predicted values fall within 25% of their actual values.

Conte et al. suggest that MRE < = 2 5 and that PRED(0.25) >= 0.75 are
acceptable for an effort prediction model. This criterion would permit some
extremely poor values since, there is no limit on the MRE of the other estimates
that exceed 25% of the actual values.

Both tools exhibit poor predictions of effort for all the data sets. The SLIM
effort prediction had a mean error of around 0.9 of the actual value and a
PRED(0.25) of 0.10, which means that only 10% of these estimates are within 25%
of the actual effort expended on the project. However, Jensen’s results are slightly
better than that of SLIM, with a mean error of around 0.8 and a PRED(0.25) of
0.17. Conte et al. concluded that SLIM over estimates effort for small and
medium size systems, exaggerates the effect of schedule compression on effort and
is quite sensitive to the choice of level of the Technology Factor.

181

CHAPTERS CRITIQUE OFPARAMEl RIC MODELS AND COMPLEXITY

This comparison emphasises that models for estimating are not easily
transferred to different environments and that their calibration is essential.

D a t a - b a s e

No. o f J e n s e n
P r o j e c t s MMRE P R E D (0 . 2 5)

S L I M

MMRE P R E D (0 . 2 5)

B o e h m (C O C O M O) 6 3

Be I a d y - L e h m a n 3 3

I n d u s t r y (A n o n) 4 0

N A S A / G o d d a r d 19

Y o u r d o n 7 8 - 8 0 s u r v e y 1 7

USA A r m y 15

01
7 6

7 6

6 3

7 0

8 0

0 . 1 0
0 . 0 6

0 . 1 0
0 . 2 1
0 . 2 4

0 . 3 3

0 4

88
8 3

7 8

0 . 7 8

0 . 9 7

0 6

0 6

0 5

05

0 . 2 4

0 . 1 3

Table 5.2 Conte’s calibration of Jensen’s Model and SLIM

5.2.5. Kemerer’s Study

Kemerer’s [Kem87] study aimed to evaluate the accuracy of the model’s estimates
of effort outside their original environments. The study evaluated four estimating
approaches: The SLIM and the ESTIMACS tools, a tool based on COCOMO and
the FPA method. This selection represents a symmetry from two view-points, the
unit measure of project size and the proprietary nature of the model. Two of the
tools, the COCOMO based tool and SLIM, use LOC as the unit of measure for
the project size, while the other two use non LOC units of measure for the same
purpose. The COCOMO based tool and the FP method are nonproprietary while
the other two are proprietary. Fifteen projects were chosen, 12 of which were data
processing projects written entirely in COBOL. The average project size was
under 200 KSLOC. The project data originated in two companies: a national
computer consulting firm and a consultancy firm ABC. The tests conducted were:

182

CHAPTERS CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

Percentage error = (P M - P M / P M *100
MRE* = \ (P M ^ ,- P M J /P M ^ \

* F-test

*
Errors in estimating can be of two types: under-estimates and over-estimates. The two types of

errors do not cancel each other out when an average multiple error is taken.

The study results

The study results show the following percentage errors:

SLIM 772%
* COCOMO 603% as average for the three COCOMO models with

the lowest error being 83%.
FPA 167%
ESTIMACS 85%

None of the models give good effort estimates. All overestimated substantially,
from 85%-772%. SLIM over-estimated all fifteen projects. This can be explained
by the data-base used for the development of SLIM (Defence related projects) in
which productivity is usually assumed to be lower than in other environments^
COCOMO (both the Basic and the Intermediate models) provided similar results
presumably for similar reasons to the SLIM model. Effort was overestimated in
all 45 cases. The Function Point Analysis method produced substantially better
results than either of the two models which use SLOC.^ This is probably due to
the fact that the Function Point Analysis was developed in a similar environment
to that of the study test. However, between the two PFs based models, the

4. The SLIM data-base currently contains projects from all sectors of industry which is used to
calibrate the tool to a particular environment.

5. The FP method produces size, not effort. The effort (PM) is generated by performing a linear
regression with the PM as the dependent variable and FPs as the independent variable.

183

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

ESTIMACS produced better results, probably due to the estimators* experience
with the application area (insurance).

The results after calibration of the models proved to be significantly better.
Paradoxically, SLIM, which gave the worst result before calibration, correlated
well with the actual effort after calibration, explaining 8 8 % of the behaviour of the
actual person month effort in the ABC data-base. The SLIM estimates were used
as the independent variable and the actual PM as the dependent variables using a
regression equation.

The F-test checked the null hypothesis that the ABC and the Function Point
Value models are the same. The two individual regressions (one of the Function
Point Value data and the second of the ABC data), were compared with a single
regression composed of all 39 data-points. The null hypothesis could not be
rejected at 95% confidence level.

ESTIMACS evaluation (including only nine projects) produced the better
results. This may again be due to the similarity between the ESTIMACS data-base
and that of ABC.

Effect of Complexity factors

The various factors for complexity adjustment proved to have no effect on the
estimates produced in the study environment by the various models. Also
noteworthy are the results of an additional test run by Kemerer which aims to
validate Albrecht’s assumption that the Function Points count is highly correlated
with SLOC. The unmodified Function Counts were found to have higher
correlation with the actual effort than the modified Function Points. Similarly, the
cost drivers in COCOMO appeared to have little effect on the estimates. The
Intermediate and the Detailed COCOMO models were not significantly better
than the Basic Model, and in fact correlated less well with actual PM. The
Function Point method provides better estimates than LOC, although ESTIMACS
uses 20 additional questions which aim to assess productivity. From this Kemerer
concluded that Albrecht’s complexity adjustment factor and COCOMO cost

184

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

drivers do not add any information in this particular case. Hence, they do not
model the factors affecting productivity very well.

5.3 TRANSPORTABILITY OF COST ESTIMATION MODELS

The inability to transport cost estimation models is well supported by the
independent empirical studies discussed previously, which in addition, pointed out
the incompatible nature of the models. In nearly all instances, the models were
formulated in the late 1970’s for a particular environment and the software
development methods used at that time. For example, although the prototyping
approach was known, it was not widely used. Most of the models do not
specifically account for prototyping and/or incremental development. But, the
accumulated effort required when following these strategies differs from that
observed when using the traditional development strategy.

5.3.1 The relative efficiency of the models

The results presented in Kemerer’s study indicate that the two models which based
their estimates on size measured in Function Points resulted in estimates with
lower error before calibration, in terms of MRE. In terms of the regression
results, both LOC based models correlate higher than either of the non LOC
based models. Yet, it is important to recognise that the Function Points counts
can be obtained early in the project’s life cycle, while the LOC estimates can only
be obtained later in the development process. This implies that the models which
are based on the Function Points method represent the better alternative to size
estimates early in the SDLC.

Some of Rubin’s [Rub85] results conflict with those indicated by Kemerer
[Kem87]. Rubin points out that the SLIM model forecasts a lower effort than the
two COCOMO based models. SLIM’s prediction is 200 months with minimum
time constraints, while GECOMO and PCOC predict 363 months and 345 months

185

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

respectively, without considering time constraints (see Table 5.1).^ Further
analysis of Rubin’s results, shows that the two tools in which a minimum time
solution is suggested, yield very different results. The JS-2 tool suggests the
minimum time solution to be 940 months, while SLIM suggests it to be only 200
months. Is this a property of the model’s basic formulae for effort prediction? Or
is this a result of the model’s different perception of the relationships between
effort required for the development and its duration? It could be assumed that the
compensation factor in the JS-2 tool for shortening the elapsed time is much
higher than that assumed by the SLIM formulae, but, this assumption contradicts
our previous analysis. The SLIM’s effort/time relationship is highly penalised for
shortening the project’s duration. The constant used in the JS-2 tool (3.27; 3.28) is
less extreme than the formulae (3.25) used in the SLIM tool.

5.3.2 The need for calibration

The second major conclusion of these findings is the need for calibration when a
model is used in different environments. Indeed, a consensus exists about the
need for calibration. Developers of the estimation models recognised the need to
calibrate their models to a new environment [Put78]; [BoeSl]; [Frei79]. The
calibration is done by assigning values derived from projects implemented in the
environment in which the model is to be used. The need was underlined by a
number of studies, Rubin [Rub85], Kemerer [Kem87], Kitchenham and Taylor
[Kit85]. Miyazaki and Mori [Miy85] report a meaningful improvement in
estimates resulting from calibration. Funch [Fun87], Acosta and Gloub [Aco87],
Desharnais [Des8 8], Jeffery and Low [Jef89] also concluded the need for
calibration. Funch [Fun87], who studied 26 US Air Force and Mitre Corporation
projects, reports that calibration substantially improved the results. Yet, he
concluded that coefficient calibration was superior only to coefficient and

6. Kemerer’s study results before calibration are: SLIM > COCOMO > FPA > ESTIMACS.
Rubin’s study results are: COCOMO (based models GECOMO and PCOC) > SLIM.

186

CHAPTER 5 CRmOUE OF PARAMETRIC MODELS AND COMPLEXITY

exponent calibration. The coefficients Funch found to be suitable for effort
estimation are shown in Table 5.3.

E f f o r t E f f o r t S c h e d u l e

B a s i c m o d e __________ I n t e r m e d i a t e m o d e _______ I n t e r m e d i a t e m o d e

F u n c h B o e h m F u n c h B o e h m F u n c h B o e h m

E m b e d d e d m o d e l 6 . 5 3 . 6 2 . 4 2 . 8 3 . 8 2 . 5

S e m i d e t a c h e d 2 . 4 3 . 0 3 . 1 3 . 0

Table 5.3 Punch’s nominal effort and schedule coefficients compared with
Boehm’s originals coefficients [Fun87]

An investigation of the factors influencing the software development effort
has shown the difficulty in isolating, determining and measuring the effect of a
particu lar factor on software development effort, as these factors are inter
dependent. Models developed in a certain environment will only be able to reflect
the impact of the factors which have variable effects within that environment.
Factors which are constant and hence, do not cause variations in productivity
among projects produced in that environment, may have variable effects in
another environment. In addition, each organisation has its own standards,
procedures and culture, thus, scaling and calibrating would be necessary. This may
clarify why different organisations find some models more effective than others.

It is possible to adapt a model that has been developed elsewhere in order
to improve the process of estimating. The results after calibration (such as the
SLIM improvement in the studies of Kemerer [Kem87] or Miyazaki and Mori
[Miy85]), probably justify considering parametric models, if there is sufficient
historical data for the calibration process. Yet, the cost of those improvements
should be taken into account. A model for effort estimation should only be
adapted if the cost of adaptation is less than that of developing a new model from
scratch.

187

CI lAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

5.4 RESOURCE ALLOCATION AMONG PHASES

The interest of this research lies in understanding the resource allocation between
the Preliminary System Design and the rest of the SDLC. Each of the tools
discussed uses an empirical approach which tries to identify the activities
associated with the process of building software. Historical data is then used to
determine the percentage of the effort which was expanded on each activity or,
more specifically, on each set of activities. The various tools use different
averages of resource distributions over the SDLC, based on the environment from
which they were obtained. What can be inferred from these distributions for the
purposes of this research? It will not be easy, since analytical issues arise. Terms
used in the context of effort estimation are often ill-defined. Although these terms
may have a precise meaning in some models, they normally differ from model to
model. However, it is worth trying.

Tausworthe [Tau83] offers the following as a typical top-level Work Break
Structure skeleton (WES), as shown in Table 5.4. The first three tasks comprise
what is considered in this research as the Project Planning (PP) and the
Preliminary System Design (PSD). The typical accumulated percentage for these
two phases is 26.5%.

E f f o r t

1

P e r c e n t a g e
T i m e 1 E f f o r t

2 1 3

T i m e

4

S y s t e m p l a n n i n g a n d r e q u i r e m e n t s 8 . 5 9 . 5 1 9 . 5 1 0 . 5

S o f t w a r e p l a n n i n g a n d r e q u i r e m e n t s 5 . 4 6 . 7 1 6 . 0 7 . 4

S o f t w a r e a r c h i t e c t u r e a n d d e s i g n 9 . 9 9 . 9 1 1 1 . 0 1 1 . 0

D e t a i l e d s o f t w a r e d e s i g n a n d p r o d u c t ! i o n 4 7 . 0 2 9 . 8 1 5 2 . 2 3 3 . 1

S o f t w a r e t e s t a n d t r a n s f e r 1 9 . 2 3 4 . 1 1 2 1 . 3 3 8 . 0

M a n a g e m e n t t a s k s a n d m i l e s t o n e s 1 0 . 0 1 0 . 0 1 - - - -

Time will vary if task precedences are changed so tasks become more sequential or more
concurrent.

Columns 3 and 4 represent the resource allocation excluding the management task, as this task is
not included in any resource allocation presented hereafter.

Table 5.4 Tfypical top level breakdown structure, after [Tau83]

188

CHAPTERS CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

Wolverton [Wol74] presents a typical allocation of resources in customised
software development as shown in Table 5.5. His way of phrasing activities differs
from Tausworthe’s, and causes analytical problems. The first two or three tasks
contain what is considered in this research as the PP and the PSD. The range of
the accumulated typical percentage for these tasks in is 26.0 - 30.0%.

P e r c e n t a g e o f e f f o r t (t o t a l)

R e q u i r e m e n t s a n a l y s i s 8 . 0

P r e l i m i n a r y d e s i g n 1 8 . 0

I n t e r f a c e d e f i n i t i o n 4 . 0

D e t a i l e d d e s i g n 1 6 . 0

C o d e a n d D e b u g 2 0 . 0

D e v e l o p m e n t t e s t i n g 2 1 . 0

V a l i d a t i o n t e s t i n g a n d o p e r a t i o n a l d e m o n s t r a t i o n 1 3 . 0

Table 5.5 Typical resource allocation for customised development [Wol74]

Walston and Felix [Wal77] suggested resource allocation, as shown in
Table 5.6. The first two tasks contain what is considered in this research as the
Project Planning and the PSD. Their accumulated equivalent percentage is 26.0%.

P e r c e n t a g e o f e f f o r t

R e q u i r e m e n t s a n a l y s i s 7 . 9 1 1 0 . 1

P r e l i m i n a r y d e s i g n 1 2 . 1 1 1 6 . 0

D e t a i l e d d e s i g n 1 2 . 9 1 1 2 . 9

C o d e 1 3 . 1 1 1 3 . 1

U n i t t e s t 2 4 . 3 1 2 4 . 3

I n t e g r a t i o n 1 3 . 0 1 1 3 . 0

T e s t 1 1 . 6 1 1 1 . 6

U s e r D o c u m e n t a t i o n 6 . 0

The right column represents the resource allocation where the ‘user documentation’ task is
included in the two first tasks. ‘User documentation’ is part of the ‘requirements analysis’ and the
‘preliminary design’.

Table 5.6 Topical resource allocation, after [Wal77]

189

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

Summing the effort expanded prior to the ‘detail design’ resulted in:

Percentage
Tausworthe 26.5 (including 8.5% for planning)
Wolverton 26 - 30.0 (including 8 % for planning)
Walston and Felix 26.0 (including 7.9% for planning)
Boehm, Organic Mode^ 2 2 . 0 (including 6 % for planning)
Boehm, Semidetached Mode 24.0 (including 7% for planning)
Boehm, Embedded Mode 26.0 (including 8 % for planning)

Table 5.7 Comparison of typical resource allocation prior to the ‘detail design’

It is not always clear what activities are included in an effort estimate
provided by a model. Project Planning (‘concept development’) and ‘requirements
specification’ are not covered by any of the prominent models, yet the proper
specification and documentation of these requirements are essential to the proper
development of the software product. Ambiguity exists also for the ‘direct’
software development activities. It is not clear which activities are included in the
effort estimate and which are not. For example, activities often excluded from the
estimates are those associated with the tendering process, the cost benefit analysis
or the independent Verification and Validation set of activities which typically
consume 25% of all project resources [Fai85].

5.5 UNDERSTANDING COMPLEXITY

The particular part o f the world we are going to address is that concerned with
the management o f human-activity systems which we try to create and control
in order to achieve some collective purpose. The management o f such systems
is constrained by the limits o f our perceptions and understanding o f actions and
reactions, and by the beliefs we have about causes and effects. ... The problem
o f dealing with the world o f complexity and surprises: a world for which we

1. See Table 3.6

190

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

have no ready-made models and pat formulae, and for which there is as yet
no great body o f received wisdom to which to turn [Rob8 8].

Understanding complexity is a worthy exercise in its own right. Yet, the interest of
this research lies in understanding complexity and how it affects the process of
software development. It aims to find points of view which will be of help in
choosing an approach for interpreting complexity in the proposed model for Effort
Estimation (EEM). It is perhaps most appropriate to start this discussion with a
series of questions: What is meant by complexity in the context of software
development? Are the effects of the determinants of complexity on the process of
software development static, or are they dynamic? Are we able to identify the
causes of complexity? And if so, can we isolate and classify the effects of each of
the factors determining complexity and then measure them?

Complexity, as introduced in Chapter 1 (1.8), is generally used to point at
foreseen difficulties in the development process caused by a variety of interacting
agents affiliated with software development. In other words, process complexity
equals risk. Understanding and managing complexity is considered a key to large
software endeavours [McG80]. The ability to estimate the effort required for
software development is highly dependent on the ability to identify areas of
potential complexity and to prepare for them as the:

Productivity rate of software development is a function of the system
complexity (system difficulty) and of the uncertainty associated with the
development process and as such has an impact on the effort and the
duration of software development.
Complexity in system development may cause a reliability problem.

5.5.1 Uncertainty

This research concentrates on estimating the effort required for the Preliminary
System Design phase, at the Project Planning phase. Uncertainty is inherent in the

191

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

process of software development. However, the level of uncertainty associated
with the PSD is much higher than at the later phases. There are many reasons for
this. The problem is often unstructured and poorly defined. It is in this phase
where solutions to the problem are identified and negotiated. Intensive learning
processes take place as these are the least understood facets in the development
process. The users are learning about the potential of information systems, the
alternative solutions, the resources required for the various alternatives and their
implications on the application area. While this is going on, the software
engineers and the system designers are learning about the application problems, to
which a solution is needed. These learning processes are unavoidable and so is the
uncertainty.

The inability to specify these needs in formal language is an additional
cause for the high level of the uncertainty which resides early in the SDLC. At the
start of software development, the organisational objectives are transformed to
user needs and requirements, which are then transformed to system specifications,
and which can be expressed only in verbal form, in natural language. This
situation is theoretically unique to the the first stage of system development, as
system specifications can be expressed in a formal method which avoids ambiguity
in the transformation process to the next stage [Leh89]. But, although supporting
tools and formal methods are available, they are not widely used. Ambiguity is,
therefore, difficult to avoid and in practice, feedback is needed throughout the
development process, for example: the Verification and Validation (V&V)
processes. Hence entropy is generated which results in inherent uncertainty.

5.5.2 Feedback and entropy

Systems with feedback, driven far from equilibrium, may become unstable and
undergo spontaneous transitions to produce new, more complex processes
which are also stable. They exhibit the property o f self organisation. How this
arises in the natural world is the subject o f heated debate at present. It
seems clear that the complex system may suddenly possess the property o f
spontaneously generating systems o f a higher order and that the emergence of
hierarchical organisation is a far-from-rare event at all levels in the physical

192

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

and biological world and, if we accept the power o f analogical reasoning, in
the organisational world as well [Rob89].

The previous discussion and analysis leads to the understanding that each process
of developing a software system models the complex environment it aims to serve
and includes an implicit model of itself, with built-in feedback mechanisms.
Changes occur during the process of software development (and operation), which
result in changes to previous decisions and actions, and to objects that have
resulted from these actions. These changes result from the very nature of
computerised systems being used to address problems in working environments in
which human beings are involved and which are never static.^ It is noteworthy that
the changes are, neither solely nor mainly, caused by previous mistakes or
imperative understanding of the problem.

Every interactive process results in some amount of entropy. In the social
reality, where the process of software building occurs, uncooperativeness,
incoherence, confusion, indirect or disordered action are some of the issues which
will cause entropy. Interactions and communication among the parties associated
with the development process such as managers, project teams, users and
secondary contractors, are required to negotiate a solution for the stated problem
which the target system aims to solve. For additional problems not addressed in
the problem statement but raised throughout the development process, they may
yet require solutions.

The communication and the interaction among the parties involved in the
two processes, the development process and the effort estimation process, are
additional causes of loss of resources. Each of the processes represents different
resources which interact, aiming at building a software product, thus, yielding
entropy. The software development process represents the manpower resource,
and the effort estimation process represents the other resources which are
associated, such as budget and manpower available for the development and
duration of a project. The interaction between the two processes yields a cascade

8. See the definition of a system in Section 1,2,

193

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

of changes. A new cycle of negotiation, for either additional resources or a design-
to-cost process, may start when the effort required for the negotiated and agreed
upon solution is estimated, although, the allocated resources are insufficient, or
when there are time constraints on the development process. Hence, it is certain
that feedback and entropy will be among the products of these activities and, thus,
uncertainty.

Tonies [Ton79] suggests that the goal of software management is to
minimise the ‘total integral of entropy in the system’. He identifies groups of
factors which induce confusion and disorder into the management of the software
development process. These are common causes of entropy. The factors
considered are whether: the software task is under-sized and the requirements
baselines are poorly analysed and therefore, the project resources do not match
the software task; the methods used for design and program m ing are
inappropriate; the test disciplines are poor; the communication between the
parties is poor; the configuration control and the project management controls are
ineffective. The characteristic causes for these factors are proposed. For example,
some of the characteristic causes suggested for under sizing the software task are
short estimates for project schedules and insufficient budget for the development
of the product. The characteristic causes for ineffective project management
control are such as: poor visibility of product status and uneven support of
management by staff.

The notion of entropy can be used in various ways. It can provide a
measure of the amount of uncertainty within a system and a probabilistic measure
of complexity [Bel77;79a]. Belady used entropy to model the uncertainty involved
in the decisions taken in the various stages of introducing a change into a system.

A different approach is presented by Mohanty [Moh79] based on the work
of Channon [Cha74] and Schutt [Sch77]. The entropy within a system is defined in
relation to the number and the importance of assumptions one subsystem must
make concerning another.^ This measure can be used to compare the quality of
different arrangements for the structure of the system. However, it is difficult to

9. See definition of complexity in Section 1.8 for similarity between these approaches.

194

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

identify and assign proper importance weights to assumptions.

5.6. ALTERNATIVE APPROACHES TO COMPLEXITY

Researchers have tried to identify complexity factors, to propose ways of
measuring them and to relate these measurements to the actual development
effort and quality. Most of the studies focus on measuring complexity of the
programming process, only a few have concentrated on measuring complexity of
developing specifications. The various approaches suggested to measure the
complexity associated with the software development are the subject of the
following paragraphs.

5.6.1 Logical complexity

Farr and Zagorsky define logical complexity as: "A measure o f the degree o f
decision-making logic within a system" [Far65]. This definition refers to the
decisions count of a program. The density of IF statements (logical branches) is
the measure of the logical complexity. Farr and Zagorsky found it to be a
significant predictor for program cost.

Although the metric of IF statements has the characteristics of being easily
countable through computerised algorithms, the density of IF statements is
impossible to estimate at the start of the project life cycle. This metric does not
represent the difficulty for the PSD effort. Therefore, the metric could be of value
as a post productivity measure only.

5.6.2 Structural complexity

Gilb defined structural complexity as "A measure o f the degree o f simplicity o f
relationships between subsystems" [Gil77]. The term Relative Structural Complexity

195

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

(RSC)y is defined as:

(5.5) RSC = ML / M
Where,

ML = Number of modules linkages
M = Number of modules

The absolute struc tu ra l complexity is defined by Gilb as the number of
modules or subsystems. Its aim is to indicate system maintainability, flexibility and
adaptability. This definition introduces complexity as relationships between
subsystems, which is foreseen as an important element. Gilb does not support his
definition with any empirical or theoretical findings.

5.6.3 Cyclomatic Complexity Value

A different approach to the logical complexity is offered by McCabe [McC76] and
has been further developed by Chen [Che78]. McCabe defined complexity in
relation to the decision structure of a program. Based on Graph Theory, the
metric counts the number of distinct control paths in a module. The number of
regions computed from the planar graph is the Cyclomatic Complexity level V(G).
^^McCabe’s argument is that the higher the decision count, the more difficult it is
to test and to build a reliable module. Cyclomatic Complexity may be computed
by one of the following algorithms:

(5.6) V(G) = E - N + 2
Where,

V(G) = the number of ‘regions’ in the planner graph of
the control flow G. ‘Regions’ are defined as
the surrounding outside the area of the graph

10. This is Euler’s Law.

196

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

and all enclosed or bounded domains.
E = number of flows of controls (number of edges)
N = number of nodes in the flow graph G.

(5.7) V(G) = P+1
Where,

P = number of predicate nodes, contained in the
flow graph G. A predicate node represents a
decision point in a program.

V(G) provides a quantitative measure of logical difficulty, as it will increase
with the number of decision branches and loops. Also, the value V(G) has the
capability to propose an upper level for module size, which McCabe found as:
V(G) = 10, meaning that modules with a V(G) value of 10 or less are considered
well structured and stable.

McCabe’s Cyclomatic Complexity measurement was found to correlate with
the number of errors existing in a code and the effort required to identify and to
repair these errors. There is some evidence that the measure is also correlated
with the effort required to develop a module. Productivity decreases in a non
linear fashion as the density of decision points increases [Gaf79]; [DeM82].
Variations on this theme were suggested by Chen [Che78]; Basili [Bas79] and
Myers [Mye77]. Lately, McCabe and Butler [McC89] suggest the application of
Cyclomatic Complexity to architecture of hierarchical design. The Cyclomatic
Complexity approach is to measure (and control) the number of sub-trees through
the architectural design. The ‘design entity’ which is analogous to ‘number of
paths in a source module’ is the ‘design tree’ (the order established by the
hierarchical relationship among modules of a system) and the sub-tree. This new
direction might be an improvement, but it should be noted that the point in the life
cycle where it could be used effectively is very expensive to reach.

McCabe’s work was further investigated and modified by researchers, e.g.
Myers [Mye77]; Basili [Bas79]; DeMarco [DeM82] and Boehm [Boe82]. But, Shen
[She88] for example, criticised the work, and suggests that the Cyclomatic

197

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

Complexity is no better than LOC as a predictor of complexity.
However, in spite of the popularity of the Cyclomatic Complexity, two

limitations of the approach are of importance. Firstly, it only covers programming
effort and has no direct way of dealing with the complexity of the user’s (original)
problem. Secondly, it does not comes to grips with data complexity.

5.6.4 Composite software complexity

Halstead [Hal72;77] proposed a Software Science Law, which is a composite
measure of complexity. His model is based on an assumption rooted in the
psychological theory of Miller [M1156] and Stroud [Str66], that human mind can
make only a limited number of mental discriminations per unit of time, the
"human brain follows a more rigid set o f rules than it has been aware o f [Hal77].
Halstead proposed the use of a set of primitive measures that identify the measure
of software complexity, at the program level and at the overall level. These
measures are:

* Program level.
* Program length.
* Potential minimum volume for an algorithm.
* The actual volume.
* Development effort.
* Development time.
* Project number of faults.

Where the primitives are:

- number of unique operators appear in a program.
« 2 - number of unique operands appear in a program.

- total number of operators occurrences in a program.
Â 2 - total number of operands occurrences in a program.

198

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

The length of a program is estimated by the expression:

(5.8) N = n^log^n^ + n^log^n^

The program volume or information volume is defined as:

(5.9) V* = (N^ + Ay * log ̂(n^+ n j
*

V varies with programming languages.

The volume ratio is defined as the ratio between the volume of the most compact
form of a program and the volume of the actual program:

(5.10) L = 2 / r t j * n ^ / N 2

The argum ent is that programming difficulty increases if additional
operators are introduced and if an operand is used repetitively

The ‘program volume’ formulae (5.9) which is Halstead’s interpretation of
a software complexity measurement, is found to correlate with the effort required
to create a program. A correlation greater than 0.9 has been reported frequently
between these metrics and the number of errors in a program [Cur79].^^
Halstead’s Composite Complexity measurement (5.9) is used as a method to
estimate program size called the Linguistic or the Vocabulary approach [IIT87a].

Halstead’s work has received considerable attention and has been subjected
to considerable evaluative r e s e a r c h .S e v e r a l authors suggested that the
Composite Software is no better than LOC as a measure of complexity, e.g.
Kitchenham [Kit87], Shen [She83], Shooman [Sho83]. The argument indicated
earlier, that the metrics information being achievable late in the SDLC, is

11. These metrics have proven useful in actual practice such as indicating code complexity to
programmers.

12. [Fit78]; [Els78]; [Cur79]; [Gaf79]; [DeM82].

199

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

applicable for the Cyclomatic Complexity and the Composite Complexity as well.
The predicative value of the approach is therefore doubtful. In addition, as a
result of incorporating only operators and operands, the method cannot be
effectively used in the analysis of 4GL’s.

5.6.5 Environmental Composite Complexity

DeM arco [Dem82] differentiates between volume and complexity, as the
complexity factors are environment dependent (data; objects; relationships; states
and transitions), and not only size dependent. He offers a size correction for the
defined Functional Primitives and Complexity W eighting Factors for each
suggested category of the Functional P rim itiv e s .T h e volume is evaluated in bits
and multiplied by a complexity factor which is based on a decision counts
associated with each of the categories. DeMarco’s composite complexity is based
on Halstead’s [Hal77] syntactical complexity and on McCabe’s control flow metric
[McC76].

A lbrecht [Alb83] also approaches complexity as an environm ental
dependent factor, however, in two different ways. One is by assigning a relative
complexity factor to each of his function type categories. The second is by
assigning a complexity factor to each of these categories based upon system
characteristics. The category classification suggested by Albrecht is mainly of a
data driven type, while the system compensation factor is basically dependent on
the environment.

5.6.6 Inter-connections between system components

Since the modularisation of software, as suggested by Parnas [Par72], has become
a dominant concept in building software, metrics have been proposed to assess the

13. The categories of Functional Primitives suggested by DeMarco are shown in Table 4.2.

200

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

complexity of the inter-connections between parts of a system. The idea is that
complexity is related to the proportion of the rest of the system that the
programmer has to understand in order to work on his part. This applies to both
physical units (e.g. modules) and logical units (e.g. functions). Such metrics were
proposed by Belady and Lehman [Bel76]; McClure [McC178] and Myers
[Mye76;78]. Myers has suggested modelling complexity as two aspects, the
strength of the module and the coupling between modules. He advocates having
as much independence between modules as possible, suggesting that the
complexity of the interface between modules is a good predictor of system
complexity but has not, as yet, offered an operational definition.

The focus here is quite different from that taken by Halstead or McCabe.
Metrics measuring the syntactical constructs or the control flow emphasise the
micro-view of an individual program, while interconnectivity takes the macro-level.
Although these metrics aim mainly at predicting the maintenance resources, they
are of interest as they incorporate a different approach which might be of help in
the macro level prediction of resources.

5.6.7 Discussion

However, these deterministic metrics do not suit the objective of this thesis, which
is to assess software development complexity at the outset of the development.
The reasons are as follows:

Both McCabe’s and Halstead’s complexity metrics are essentially code size
metrics suitable to assess complexity of completed software products.
These metrics can then be used as an analogy based on similarities of
project function, or predicting effort required during succeeding cycles.
M anagem en t d isc ip line and tech n ica l co m m u n ica tio n becom e
determinative, while the efficiency and the structure of an algorithm is of
secondary importance [McG80]. Thus, for the purpose of this thesis,
neither the computational - logical complexity (McCabe’s example) nor the

201

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

syntactical complexity (Halstead’s example), is considered to present a
prime cause of difficulties in the Preliminary System Design phase of
software development, apart from the natural difficulty that stems from the
size of the product. There is no doubt that logical complexity is important
at the detailed design, the programming and the testing segments, but not at
the outset of the development process, which is the prime concern of this
research. In addition, when a computational complexity is identified, it is
definable in mathematical terms, while the complexity originated in the
socio-psychological arena is not. Therefore, computational complexity can
be computerised, measured and dealt with, even though it is often difficult
and complex to implement such measurements. It is easier to deal with
understandable and measurable phenomenon than with unexplained or
unmeasurable ones.

This thesis proposes that the most important complexity determinants are
those associated with the interactions among system components, the parties
affiliated with the developm ent work, w hether they are individual or
organisational entities. Interactions among the technical components of a system
are important complexity triggers. It is not only in the human societal systems
where the Tower of Babel syndrome exists, the ‘technical components’ of a system
do not integrate easily either. Much attention and effort is devoted to these
‘technicalities’ in order to enable them to communicate smoothly within a system.
Hence, two different categories of interactions exist in system development
practice and both are important complexity determinants. However, one is
measurable in either deterministic or probabilistic form, while the other is not
measurable in the deterministic form and it is also questionable whether it is in a
probabilistic form. The definition of complexity suggested by [Cur79] is the more
appropriate for our purposes.

Complexity is a characteristic o f the software interface which influences the
resources another system will expand or commit while interacting with software
[Cur79].

202

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

However, this research argues that it cannot be measured as was proposed
by Basili [Bas79a] as quoted in Section 1.8.

The next section analyses the complexity determinants as they are incorporated in
the various models for effort estimation. It aims to support the arguments of this
thesis as previously expressed and to establish the basis for the complexity
approach proposed for the EEM.

5.7 COMPLEXITY DETERMINANTS

There are a variety of factors influencing our ability to estimate the effort required
for software development. No one model incorporates all cost drivers that have
been identified by the SPEM Esprit Project [CohSS]. Walston and Felix [Wal77]
cited 127 different potential factors with a bearing on the successful estimates of
effort and schedule. Although the effect of each of these factors cannot be
isolated, we could learn what factors dominate the productivity of the software
development process.

Indeed, scanning the models represented in Chapter 3 for factors affecting
the ability to predict successfully the effort required for building software will lead
us to the important factors discussed below and summarised in Appendix
Although self evident, there is an agreement as to the significance of this list of
factors, it can be easily noticed that similar attributes are phrased or defined
differently, which causes subjectivity and thus inconsistency, in their assessment.

14. Included in this are factors used by tools which are not described in detail in this thesis. Fuller
details can be found in the State of The Art Survey of the MERMAID Esprit project P2046
[Cow89].

203

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

5.7.1 User interface and the relative stability of the requirements

Interaction and communication among information technology professionals and
the users of the target software play an im portant role throughout the
development. However, early in the development when the problem is being
defined, the users' contribution to the process is high and, therefore, necessitates
communication. Thus, Walston and Felix's [Wal77] findings are of particular
interest for this research. It is important to recognise the high impact on the
development process of factors such as user interface complexity and the volatility
of the requirements that originated either in the user organisation or were
identified during the process of negotiating the appropriate solution. Lack of
requirements and stability of design are considered as belonging to the same
family of factors. These findings are well supported by research.^ These
attributes are dominating contributors to the feedback, entropy and thus, to the
uncertainty and complexity associated with the process of software development.

The implications for the estimation process at the outset of the project life
cycle are very clear, the process is bound by uncertainty concerning a great deal of
as yet unknown factors.

5.7.2 Management factors: number of decision levels

Noteworthy is the observation by Aron [Aro69] that the number of management
levels associated with the development process is a cause for complexity in the
software development process. The interactions between systems, in their broader
context (as addressed in Chapter 1) are suggested as an indicator for large projects
and, therefore, for system complexity. This corresponds with the view that
complexity arises in environm ents which are characterised by rich in te r
connections and many levels of hierarchy. The number of decision levels, as well

15. Albrecht’s underlying assumption is stability of the requirements, Nelson [Nel66], Doty [Dot77],
Boehm [BoeSl], Jensen and the PRICE S model use them as modifying factors.

204

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

as the number of the project team members, are a source of entropy and thus,
should be accounted for in estimating the effort and scheduling of the project.
Aron’s note that "the emphasis on management rather than technology represents a
major change in the nature o f programming since the early 1950Y [Aro74], indicated
a new direction in software management.

5.7.3 Team composition

Although it should be obvious that experience is important for the success of
software development, it is worth mentioning the second group of significant
factors observed by Walston and Felix [Wal77] which are related to the overall
project team composition. Of particular importance are two factors: experience
with application type, and with programming language. These findings gained
wide support among researchers, as depicted in Appendix 5A. Boehm’s [BoeSl]
list of cost drivers supports these findings, in particular, the ‘analyst’s capabilities’.
Freburger and Basili [Fre79] consider this group of factors as one of their two
major categories of factors affecting the software development. As discussed in
Chapter 2, an error introduced early in software development has a great impact
on the process of development, if not detected and corrected early in the process.
Experienced staff could reduce the amount of errors in these stages, as well the
degree of entropy. In addition, as previously discussed, the PSD is where the
proposed solution is negotiated, and whether an understanding of the application
domain and the technological opportunities are gained. The benefits from this
process cannot be realised if the project team composition is not appropriate. The
availability of high quality analysts is a prerequisite for the implementation of the
Preliminary System Design. The PSD phase cannot be implemented at all if
quality people are not available for it. It should be noted, however, that Miyazaki
and Mori [Miy85] did not find this cost driver effective for their environment and
eliminated it when calibrating COCOMO. The continuity and stability of the
implementation team should be considered also.

205

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

5.7.4 Systems interactions

Aron’s [Aro69] observations about interactions between systems being the cause of
difficulty and thus, of complexity are of interest and importance. The reasons are
those previously discussed and associated with entropy, feedback and uncertainty.
The behaviour of a system or subsystem in isolation may be very different from its
behaviour, when it interacts with other systems or subsystems. Most of the models
consider system interactions as adjustm ent factors for system complexity.
However, these factors deserve particular attention, as the potential degree of
uncertainty and complexity, stemming from systems interactions, are quite high.
Therefore it is crucial to plan for them. Planning might help us in our attempt to
cope with the complexity, although it does not secure us from its unpredictable
consequences. The dynamics of the real world in which systems are operated are
causes for continuous change. Changes in the internal components of a system
and/or in the relationships between the systems and the external world occur.
Even a small discrete change might give rise to a new unexpected change which in
consequence will emerge in the form of multiple changes and interactions at many
levels of the system. Noteworthy is the Belady and Lehman [Bel71] study
concerning the history of successive releases in a large operating system. They find
that the total number of modules increases linearly with release number, but that
the number of modules affected increases exponentially with release number. If
such changes are not anticipated early and not planned for, the development of
the software will run out of control and will need more effort and time than was
estimated.

A notion closely related to uncertainty is variety. If in doing some task, the
variety of information and necessary equipment is large, then the task is complex.
Belady and Lehman identify the concept and the attribute of ‘largeness’ in
software development as related to the concept of variety. "A program is large if it
reflects within itself a variety o f human interests and activities" [Bel79b]. Large
systems require a group of individuals. Therefore, it is the communication within
the implementing organisation, communication between the implementors and the
users, the operating organisation, that leads to the emergence of largeness.

206

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

Interactions between systems imply variety, hence complexity.
Interconnectivity among systems components strongly affects the effort

required for development, in particular at the Preliminaiy System Design phase
where the interconnectivity among systems components are analysed and
considered. System interactions should also serve as an indicator for the risk
anticipated with the development effort. Abdel-Hamid and Madnick [Abd89] who
modelled the dynamics of software development, report that action taken by one
subsystem can be traced throughout the entire management system.

5.7.5. Multi-sites deveiopment

Software developed in a number of different locations or organisations requires
additional co-ordination among the various development teams. Likewise for
software developed on different target hosts, which might be in the same or in
different locations, or software developed concurrently with hardware. Therefore,
these factors are high contributors to the entropy and uncertainty associated with
the development process. This stems from the variety of equipment and or
organisations affiliated with the process of development. These factors were
considered as complexity factors by the early models such as: SDC [Nel66], Doty
[Dot77], Aron [Aro69] and adopted by Albrecht [Alb79], PRICE-S Freimàn
[Frei79] and Jensen [Jen83a] tools.

5.7.6 Re-use of software

Various categories of software routines have their own cost of development,
resulting from the degree of difficulty involved. The difficulty and the re-use of
software (concept introduced by [Far65]) are the dominating factors for the
estimating process at the early design stage [Wol74]. The PRICE-S model
considers the novelty of the project as complexity adjustment only if it is a new line
of business. Various researches have incorporated the effort needed for re-use

207

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

software differently. Boehm [BoeSl] did not suppose re-use of software to be a
correction factor (which he defines as a cost driver), yet, considers it an important
enough factor to provide an algorithm for the adjustment of project profile (size
and duration) for re-use of software code. However, his assumption about the
effect of re-use being identical between the SDLC phases does not agree with
other research, e.g. Black [Bla77] (Boeing model) suggests that the effect of re
used code varies among activities. Boydston [Boy87] suggests the effect of the re
use of software code varies among languages. Walston and Felix [Wal77] took a
different approach. They believe that for every percent of new code there will be
3% increase in cost.

Recent work by Pfleeger [Pfl89] has concentrated on re-use of software
issues in object oriented software development. They suggest that a cost factor
affecting productivity can be defined by the user and, for each factor X, a cost
multiplier is generated from estimates of the portion of the project affected by X,
the cost of creating X, the cost of incorporating X into the product, and the
number of projects over which the costs will be amortised. The results of
Pfleeger’s model were much better than COCOMO results. They were PRED
(0.25) of 50% compared with 0% for COCOMO.

Although intuitively re-use of software should reduce the required effort
for software development, there is much support for the findings that the required
effort for the testing and system integrating segments will increase.

The implication from these findings is the possible shift in the resource
allocation among phases of software development as a result of the increasing
trend of re-using software components.

5.7.7 Complexity of software product

The COCOMO [Boe81] set of models considers complexity of software product as
one of the more significant attributes affecting productivity during the
programming effort (it is related mainly to the module level). Walston and Felix
[Wal77] consider similar attributes such as overall complexity of code developed

208

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

and complexity of application processing, yet, they did not score these attributes
highly. Putnam [Put78] accepts that software product complexity affects the
development effort. This factor is incorporated in the SLIM tool, although it is
not a separate factor. SLIM anticipates only one composite factor, the ‘technology
factor’ which incorporates the major complexity determinants already identified:
the technology characteristics of the developer’s organisation, the programming
support environment, the hardware constraints, the project team composition and
the program complexity. Information is not provided on how each of these factors
contributes to the technology factor.

If ‘software type’ is anticipated as an indicator for system complexity then
almost all researchers consider it as an important indicator for the required effort,
as shown in Appendix 5A. However, the grouping into categories varies among the
researchers. The terms used are different and even when similar terms were used
(real-time; control systems; scientific programs) it is likely that each author
interpreted the term differently.

5.7.8 Various size attributes: Data eiements, I/O and Fiies

Farr and Zagorsky’s [Far65] model was the first to consider the number of data
elements in the target system to be an important driver of development costs.
Walston and Felix [Wal77] observed the ratio of number of classes of items in the
data-base per 1000 LOC as a factor affecting the programming productivity. Yet,
they observed a low productivity change for this factor. Boehm [BoeSl] considers
the data-base size as a correction factor and defines it similarly to Walston and
Felix [Wal77]: the data-base size per LOC.

The emergence of non-LOC sizing metrics expanded the list of complexity
determinants with new attributes. Albrecht suggested the measurement of system
size by the functions employed, which he found to be highly correlated with
productivity of the programming effort. These functions are inputs and outputs,
inquiries, internal logical files and external interfaces. Although the SLIM tool
uses LOC as its primary size metric, Putnam found that reports or output formats.

209

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

files, inputs and number of application subprograms, all correlate with the
development effort [Put78].

Albrecht’s model [Alb79] was obtained from a data-base composed of
business applications. This explains his emphasis on data communication,
distributed systems and transaction rates as complexity factors, while in the models
originating in the defence and space industries in the US, the emphasis is on
attributes such as real-time and time constraints.

DeMarco [DeM82] suggests the data density and the function density of the
problem as the composite elem ents affecting productivity, and hence, as
determinants of complexity. He uses the number of Functional Primitives, the
number of data tokens associated with each Function Primitive, the number of
output elements, number of data elements and the number of interrelationships
among the data elements as complexity determinants.

Gaffney [Gaf79] indicates that productivity decreases in a nonlinear fashion
as the density of decision points increases. DeMarco [DeM82] agrees with
Gaffney’s findings for large and monolithic programs, but suggests the complexity
of small modules might be better described in terms of an absolute number of
decision points.

5.7.9 Factors affecting productivity

The factors which affect productivity have been clarified. However, the various
models employ them in different ways. It is yet to be learnt how and to what
degree each one of the various factors affects the prediction of each model.
However, it is questionable whether the degree of influence of each of these
factors can be measured.

Some attempts were made to measure the possible effect of each of the
complexity factors on the effort and duration of the software development.
Walston and Felix give some indications of the possible affect on the effort
required to produce number of LOC per period of time. The productivity
assessment models of Aron [Aro69], Doty [Dot77] and Wolverton [Wol74]

210

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

categorised the program type according to their assessed level of difficulty. Each
category is associated either with productivity rate (LOC per PM) or with cost per
category of LOC. The productivity in these models is a composite measure which
is based on composite complexity assessment. We do not know how the individual
factors affect the composite productivity measure.

This thesis does not recommend placing too much meaning on the specific
values associated with these attributes, outside the context of the particular
environment from which they were obtained. Some of the factors are difficult or
even impossible to quantify e.g. human expectations, quality, team synergy. It is
impossible to quantify the unique affect of a factor on the effort required for the
development, or the impact of a factor on other parts of the system.

Dependent probabilities can be used to measure the effect of each of the
factors affecting complexity. But if chosen to do so, an additional question arises
about whether the required probabilities could be assessed meaningfully?

Inconsistency in these factors among models and the use of subjective
correction factors do not necessarily invalidate the idea of trying to predict effort
based on mathematical formulae. But this inconsistency contributes significantly
to the imprecision of the resulting estimates. This implies that parametric models
may be applied successfully only by analysts who are very familiar with the
requirements of the software to be developed, with the assumptions and the
context of the sizing, and the resource models.

The state of the art is that there is not yet a well established set of rules or
concepts for analysing or evaluating the properties of software systems. This is not
to say that measurement of properties of programs and systems cannot be made.

16. Walston and Felix article [Wal77] state that interaction between the 29 variables which compose
their Productivity Index (see Paragraph 3.3.2) are ignored. It states, "this analysis was performed on
each variable independently and does not take into account either the possibility that these variables
may be correlated, or there may be interrelated effects associated with them". But, clearly these
variables interact. The importance of each variable was judged by project managers all over the
world. But, would the judgement of a manager in US match that of a manager in Saigon? [Fox82]
It is a very personal judgement. Therefore, the results of this survey and other similar surveys
should be taken into limited consideration, only as an indication that complexity exists and may
have an impact the development process.

211

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

The problem lies in the fact that the variables which can be measured conveniently
do not map readily upon properties or characteristics which are both quantifiable
and comparable across a broad spectrum of contexts.

It is interesting to note that models developed prior to the mid 70 ’s
emphasised productivity without considering the quality of the resulting product.
Although the developers of more recent models are aware of the impact that high
quality requirements will have on effort, they do not include quality explicitly.

5.8 THE NEED FOR AN HISTORICAL DATA-BASE

There is a general lack of historical data on completed projects in the public
domain. Such data includes detailed characteristics of completed projects and
their development environments so that an analogy for a planned project can be
identified and, calibration to a new environment can be implemented.

Although articles describing the findings of research have been published,
the detailed data-bases of completed and analysed projects are still not generally
available. When a data-base is available for commercial use, it is usually
dependent on an exchange of information and is, therefore, relatively expensive.
The use of such a data-base and a resource estimation model is usually
accompanied by the users’ commitment to supply the vendor with a post-mortem
analysis data of his completed projects. This enables the vendor to characterise
the users’ profile, to position the user on the industrial productivity trend, and to
propose an appropriate technology profile for the user’s own environment
[Tha88]. This procedure is a means of calibrating an estimation model to the
user’s environment and as such is a prerequisite to the usage of the model.

5.9 SUMMARY

The chapter has discussed various issues resulting from the discussion in the two
previous chapters in this Part. The chapter started by identifying the problems in

212

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

current practice of parametric models and continued with an evaluation of the
models using empirical studies. The conclusions are that the models yield
different results which are mainly a ttribu ted to the dynamics of their
environments. This implies that the transportability of the models is feasible only if
they are calibrated to the target environment. A calibration process needs data
from project histories in the target environment, but this is often not available. In
addition, and as result of the uncertainty embedded in the process of software
development early in life cycle, most of the models do not offer estimates at the
outset of project development.

The need for research in the area of resource allocation among phases of
development is addressed. Such data could help in providing estimates early in the
life cycle. The lack at a public domain of historical data is, therefore, emphasised.
The discussion encompassed the importance of understanding the complexity
associated with software development. Theoretical and practical issues were
discussed and the important complexity determinants were identified.

The chapter closes with a conclusion from Part II in general.

5.10 CONCLUSION - PART II

The lessons learned from the current practice of effort estimation and its
implication on modelling the process of effort estimation are now summarised.

The current tools based on parametric models are not widely used outside
large software development environments and when used, yield different size
estimates for the same project. This phenomenon is attributed to the different
links of the estimation tools to the conditions of their development environments.
Any variance exhibited by an effort estimation model is not so much due to a
difference in perspective among the developers as it is to the dynamic environment
that inherently governs the world of software development.

The parametric models require the user to supply values for a wide range of
inputs which describe the characteristics of the software product under

213

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

development, as well as the environmental characteristics of the development
effort. But the required values and environmental characteristics cannot be
m easured with sufficient rigour to be used in a changing technological
environment.

Most of the parametric models are based on the assumption that the
product size is known or can be estimated. The size of the software product is
measured in Lines of Code (LOC), the Function Point Analysis, or a variation of
it. But size is neither known nor easy to establish and, as far as this research is
concerned, estimating the product size up-front of the project development, using
LOC as the unit of measurement, is not applicable. The Function Point has the
advantage of being obtainable earlier than LOC in the life cycle. However, the
current practice of function point analysis is not appropriate either, as the
Preliminary System Design includes ‘satellite’ activities which are not directed to
the analysis of requirements, but, which require effort.

Most, if not all of, the estimation tools address the development process
only from the detailed design stage, after the specifications are established as a
baseline. The estimated effort for the Preliminary System Design (requirements
and the product design stages) is interpolated from the total effort to the specific
phase, using resource distribution among the various phases. None of the models
deal explicitly with the Preliminary System Design phase of software development.

There is a pattern of resource allocation between the Preliminary System
Design phase and the reminder of the SDLC. This pattern could assist in
extrapolating the total effort required for the software development from the
estimated effort for the PSD.

A trend can be observed towards the development of knowledge-based
techniques for supporting the sizing and estimating of the software development
effort. One area is the use of the analogy approach for the identification of
similarities with previous projects from which we could learn about the future
project [Cow88].

An Expert System as an aid for the calibration process is suggested by
Cuelenaere et al. [Cue87]. They calibrated the PRICE S for their environment by
using an Expert System as the interface between the estimator and the tool.

214

CHAPTER 5 CRITIQUE OF PARAMETRIC MODELS AND COMPLEXITY

In Chapter 2 the processes and the objectives of the software development
and software estimation were analysed. That chapter culminated with the
perception of the future trends of software development and the belief (of the
author of this thesis) that various methods of effort estimation are required to
support the different decision processes addressed in each of the software
development phases. An analysis of the primary suggestions for building an Effort
Estimation Model was offered. Two basic concepts were suggested, a base model
for effort estimation and phased base estimation process. Chapters 3 and 4
introduced the various models and tools currently available for estimation of the
project size and effort. The analysis in these chapters, the critique of the current
practice in this chapter and the introduction of the issues associated with
complexity brought the conclusion that the current code of practice supports
neither of the concepts recommended in Chapter 2.

Part III will focus on the Effort Estimation Model (EEM) the methodology and
the assumptions it is based upon.

17. See Paragraphs 2,8.2 and 2.8.3.

215

PART III

THE EFFORT ESTIMATION MODEL (EEM)

Part I focused on the problem domain, the estimator dilemma, the process of
building software and that of estimating it were analysed. Part II presented an
analysis of the state-of-the-art in sizing software products and estimating the effort
needed for developing them. The difficulties associated with the estimation
process were indicated and the limited understanding of what these models
m easure and represent was recognised. Each part culm inated with the
implications for the Effort Estimation Model.

Four chapters encompass Part III. Chapter 6 discusses the methodology
used in building the Effort Estimation Model and the methodologies incorporated
in the model. Chapter 7 focuses on the Effort Estimation Model itself. The
infrastructure for the knowledge-base for effort estimation as well as for further
research is described and analysed. The fundamentals of the EEM are discussed,
the EEM is presented and demonstrated in detail, along with examples and design
features (data models and function charts). A case study closes this chapter. In
chapter 8 the EEM is evaluated using qualitative and quantitative approaches.
The last chapter of this thesis summarises the major principle upon which the
EEM is built and the advantage of the approach taken. The discussion culminates
with the contribution for further research.

216

Chapter 6
RESEARCH METHOD

6.1 INTRODUCTION

This chapter focuses on the research methods used to build the EEM. The
approach utilised in modelling the EEM, the methods employed in the knowledge
acquisition and the data collection considerations will be discussed.

6.2 DEVELOPMENT METHOD

Two approaches for modelling are recognised in this thesis, the analytical
(structural) model and the empirical (descriptive). In using the analytical
approach, a system is described in terms of how it is presumed to work, and
predictions about its behaviour are derived from measurements or predictions
about the known behaviour of its components. The empirical model does not
attempt to model the underlying structure. Predictions about the system
behaviour are made by extrapolation from previous observations relating the
various inputs to the system behaviour. Structural models are considered
appropriate for small systems, as the investigator can then make reasonable
hypotheses about how they work. Descriptive models are more plausible for large
systems in which the underlying structure is not well understood, but nonetheless

217

CHAPTER 6 RESEARCH METHOD

important so that some predictions can be made [Bro83].
Generally, software development cannot be considered a small task, even

when the ‘underlying structure’ of the development process is understood. This
statement may seem contradictory in relation to the discussion in previous
chapters and, therefore, deserves an explanation. The pillars of the process are
the activities and they are well understood. Their routeing, although changeable,
is also generally understood and known for each of the common strategies.^ What
is not well understood is the complexity associated with the process of software
development and which is caused by the uncertainty inherent in this process.

By the same arguments used to justify the conceptual structure of the EEM,
the analytical approach was chosen as the main approach for building the EEM.
The descriptive modelling approach is incorporated in the EEM for predicting
planning approximations where the underlying structure is not clear at the outset
of the project.

6.2.1 Conceptual design of the Knowledge-base

It is appropriate to start the process of developing the EEM with the design of the
knowledge-base. The first major task is the identification and determination of
fundamental properties of the model.

The development of this part was based on the author’s own professional
knowledge, supported by the some of the concepts used in M ethod/1 [And79].
The activities included in the design are:

Segmentation of the SDLC for each of the strategies into a Work
Breakdown Structure (WBS). The parts encompassing the WBS must be
manageable, and must present the milestones for the development and
have identified deliverables which are often prerequisites for continuing the
development process.

1. The reader is referred to Section 2,2 and Paragraphs 7.4.1 and 7.4.2 of this thesis.

218

CHAPTER 6 RESEARCH METHOD

Identification of the major contributors to the cost associated with each
activity involved in the alternative strategies. These are the ‘cost drivers'
used by the EEM.
Assignment of Standards of Effort (SOE) units to all of the combined
entities, each composed of an activity and an associated cost driver. Two
procedures were associated with this process. The first was based on
statistical information from projects’ histories in a variety of environments.
The second was a fine tuning process based on the knowledge gained by
walkthrough sessions and the author’s judgement resulting from analysing
the data collected with questionnaires. This has taken place in the latter
stages of the design process.
Identification of rules which allow the assessment of complexity and risk
associated with a software project.
Identification of rules which allow adjustment and calibration of the effort
required for software development for different technologies are used
and/or when the particular development is state-of-the-art.

A questionnaire was developed. This was intended to explain the concepts
of the EEM, to exchange ideas about the validity of the concept and the feasibility
of its implementation, to elicit additional knowledge as well as to collect actual
and estimated data. A copy of the questionnaire can be found in Appendix 6A.

6.2.2 Knowledge acquisition

Two pilot cases were conducted, one in Israel and one in the UK, each of which
included a number of projects and a few individual walkthrough sessions, from
which considerable experience was gained which improved the questionnaire and
hence the EEM.

The first case study aimed mainly to clarify the concept, the feasibility and
the data collection process. It was held in Israel and a Hebrew version of the
questionnaire was used. Project managers, senior project leaders and a manager

219

CHAPTER 6 RESEARCH METHOD

of an information technology unit participated. The ideas, concepts and
assumptions were presented to them. Each of the attendees tried to complete a
questionnaire. This was followed by a discussion of misunderstood issues, a
critique, suggestions for additional topics to be covered, and the difficulties which
were anticipated in completing the questionnaire. The conclusions from this first
walkthrough were:

The validity of the concept for application development was accepted,
although a concern was expressed as to the accuracy of the relevant data at
the outset of project life cycle.
The Validity of the concept, as it is, for the development of basic system
software such application generators, was questionable.
Ambiguity and vagueness of some of the questions were identified. For
example, it was not clear what a ‘major report’ meant. However, an exact
definition would not be of help at the outset of project, where only a list of
reports exists. There is a need here for the analyst’s experience and
judgement. Therefore, for the purpose of this thesis, a decision was taken
that the analyst should apply his judgement following some guidance given
by the EEM. Similarly, the meaning of a ‘screen’ was not clear. Screens
differ not only when used for various purposes, (e.g. inquiries, menus or
data entry screens, all of which are covered by the questionnaire) but also
among hardware used. For example, an IBM definition of a screen differs
from the NCR definition.

Based on this discussion, the first English version of the questionnaire was
developed. The second case study was held in the UK with the same objectives as
the first case study. Yet, the procedure was different. Three senior project
m anagers, who were engaged in three different projects, received the
questionnaire from their information technology manager. They were asked to
complete the questionnaires and to comment in particular, on the way the
questions were phrased (and whatever else they thought was worth commenting
on). The three projects were chosen so that the span of applications and

220

CHAPTER 6 RESEARCH METHOD

development strategies were as wide as possible. It was important to check the
feasibility of the concept for a variety of development strategies and project types.
Therefore, the selection included two projects which were developed using
different strategies. One used the customised strategy and the second used the
application package strategy. The third project selected was a novel project,
concerned with the introduction of a new office automation system into an
organisation. The three completed questionnaires were returned accompanied
with a detailed covering le tter including the project leaders’ comments,
identification of ambiguities in a few questions, and suggestions for phrasing them
differently or adding further explanations.

Individual walkthrough sessions were conducted with a few practitioners
from variety of organisations such as software houses, software contractors within
governmental organisation and within the private sector.

Corrections to the questionnaire were made to enable the data collection
process.

6.2.3 Data collection
/

The data collection and the walkthrough process aimed to:

Validate the method used by the EEM.
Analyse the estimates it yielded.
Identify rules for corrective action when different technologies are used.

Therefore, collecting data from a variety of organisations, and from variety
of projects, was considered an important goal. The possibility of establishing a
follow-up walkthrough session with members of the organisation from which
additional knowledge could be acquired was considered an advantage. The
decision to follow this data collection process was taken, although it was clear that
this procedure jeopardises the homogeneity of the experiment.

Accordingly, questionnaires were sent to individuals who were introduced

221

CHAPTER 6 RESEARCH METHOD

to the research through intermediate facilitators. The individuals were chosen
based on their expertise and their involvement in managing software projects as
well as their interest and willingness to take part in this research. A walkthrough
process accompanied most of the cases, either before or after the completion of
the questionnaires.

6.3 BUILDING THE PROTOTYPE

Based on the principles and the concepts discussed in Chapter 7, a prototype was
built using a PC-based expert system shell PESYS^. The questionnaire, the
function chart and the data models described in Chapter 7 established the
functional and the technical specification as well as the design from the view-point
of the user.

The following aims directed the building of the prototype:

To demonstrate the EEM and to evaluate it.
To learn from the process of using the EEM, in semi-real world.
To collect data and to establish the basis for an historical data-base.
To evaluate the use of the Expert System technique.

An expert system shell was used to take advantage of the reasoning
facilities it offered. It was hoped that it would facilitate the tracing and allow to
exhibit easily the assumptions and decisions taken throughout an estimation
session, a benefit that was well presented in practice. However, quite early in the
prototype development process it became clear that the EEM could not benefit
from all the facilities offered by the shell, e.g. the Svhat if facility due to a shortage
in memory space. Hence, part of the model was re-developed using Turbo Pascal.

2. PESYS is a rule base system developed as a part of the doctoral thesis by Edgar A. Whitley
[Whi90], in the Information Systems Department of the London School of Economics and Political
Science.

2 2 2

Chapter 7
THE EFFORT ESTIMATION MODEL (EEM)

7.1 INTRODUCTION

Armed with some understanding of the current practice in estimating the size and
cost of software projects, it is now easier to suggest an alternative to assist the
software manager with the estimation dilemma. This chapter describes the Effort
Estimation Model (EEM). The discussion opens by re-emphasising the objectives
of the estimation process at the outset of the project life cycle and with an
overview of the fundamentals of the Effort Estimation Model. The structure of
the EEM, the knowledge-base used and design features such as data models and
function charts are presented. The effort estimation process, the functions and the
features incorporated in the model are demonstrated in a number of examples.
The chapter closes with two case studies.

The fundamentals of EEM stem directly from the analysis in previous
chapters, they are:

* Decomposing the problem.
* Estimating the process from bottom-up.
* Recording of assumptions and decisions.
* Applying size metrics for the Preliminary System Design.

223

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

7.2 THE FUNDAMENTALS OF THE EFFORT ESTIMATION MODEL (EEM)

This section focuses on establishing the fram ework of objectives to be
incorporated in the Effort Estimation Model (EEM).

The objectives of estimation process at the outset of project life cycle (at the
Project Planning Phase) are to develop budgetary estimates for the Preliminary
System Design Phase (PSD) and to provide coarse estimates of the effort required
for the total development. Decisions associated with development strategies
might affect the effort required, while the estimated effort might have implications
which affect both the chosen strategy for development and the functionality of the
proposed solution. An important part of the decision process at the outset of the
project life cycle is associated with the feasibility of the suggested solution and its
foreseen costs.

The assessed complexity and risk associated with software development
provide an insight into the processes that affect costs and resources. Thus,
knowing the estimated effort and the perceived complexity and risk at the outset
of the project supports the process of evaluation of alternatives, enables the
project manager to plan resources, and allows their scheduling when needed. Such
a plan ensures cost and schedule visualisation of the process, as well as (technical)
performance measurements of the emerging product. Hence, the estimated effort
required for the development of a software product, and/or for the adaptation of a
software package is an important component of the economic evaluation of a
proposed project and its feasibility. The EEM estimates include the effort
required for the development process by all parts of the organisation, the
contractor as well as the user organisation. These estimates support the decision
processes associated with the overall management of software development, they
facilitate management involvement and thus are considered critical success factors
(CSF) for the management of a software project.

W hat is missing? The previous discussion and analysis led us to the
understanding that each process for developing a software system, models the
complex environment it aims to serve, and includes an implicit model of itself.
This characteristic has implications for the ways in which we could assist software

224

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

managers in their estimation dilemma. The first is that the process of estimating
should be an evolutionary, iterative and interactive process, with a built-in
feedback mechanism. The second implication is that a closed algorithm cannot be
a satisfactory solution for an effort estimation model at the outset of a project.

Much of the difficulty in estimating software effort arises from the degree
of uncertainty associated with both the application domain and with the dynamics
of the environments in which the software is being developed and that it is aiming
to serve. Each of the software development phases and/or segments is based on its
predecessor, which can be viewed as its specification and could be formalised to
help in reducing the uncertainty associated in its implementation. However, this is
not the situation for the first phase of the software development, the Project
Planning. The only representation of the problem existing here is a verbal
expression of needs, which may themselves not always be known. The uncertainty
in software development and in estimating the effort required for its development,
is a consequence of the nature of the real world and the essential need (and
difficulty) to abstract from that world. "Imprecision and incompleteness o f models
on which this process must be based implies embedded absolute uncertainty",
[Leh89]. This uncertainty is why most Parametric Models form estimates only
after the a major part of the Preliminary System Design is completed. Some of
these models estimate the effort required for the PSD phase by interpolating them
from the estimates of the total effort.

What is the EEM all about? This thesis limits its scope to establishing the
concept and the design of a detailed method for estimating the effort required for
the Preliminary System Design phase. The assumption is that it is possible to
estimate the effort required for the PSD quite accurately. However, at the same
time only coarse estimates of the effort needed for the total development are
feasible. These coarse estimates can be obtained by extrapolating the estimates
for the first phase (PSD), and the likely distribution of effort among the
development phases, which is known statistically from project histories, and by
judgement about the foreseen effort allocation in the particular project.

An estimate is developed for a single phase of a project when there is a
reasonably precise definition of the scope and objectives of the software to be

225

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

developed. A coarse estimate is a forecast of the total effort for the systems
development including the Construction phase. They are developed early in the
life cycle before the completion of the PSD, when uncertainty about the problem
and the solution to it is still high. Therefore, measurement and judgement are
integrated in the process. The forecasts and estimates are updated as the project
proceeds, when new information is gained as shown in Figure 2.4. It is customary
to assume that as the development process proceeds the uncertainty associated
with the development is reduced. However, this is not always true as new
uncertainties may be introduced which should be incorporated into the updated
estimates.

The importance of the PSD phase, and its critical to the welfare of the
project and to the achievement of the goals of software management, led to the
consideration of this approach. It should be noted that the EEM is a
supplementary model which provides a method for effort estimation at the outset
of the project life cycle. Ideally it should be applied in tandem with other models
which support the estimates for the later stages.

7.2.1 Decomposition of the probiem

The estimation of the effort required for a software project is viewed as an ‘ill
defined’ problem, in particular at the outset of the project life cycle. It is a unique
decision making activity which is a form of problem solving, and in most cases the
problem to be solved is too complex to be considered in one step. Decomposition
techniques are a natural approach to problem solving. If the problem to be solved
is ‘ill defined’ and too complicated to be solved as one unit, it can be subdivided
until manageable problems are encountered. Each problem is solved in isolation
and the solutions are combined to answer the original problem. Effort estimation
is a complicated decision process. It is a multi-attribute and multi-party decision
process. Thus, the decision process associated with effort estimation as a whole
should be decomposed into parts. Each development phase is a unique decision
process and, therefore, should be based on different parameters and tools.

226

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

Decomposing the decision process associated with effort estimation, and
basing each decision on size metrics representing the effort associated with the
activities incorporated in the particular phase of the process, enable us to
transform the process from a ‘black art’ into a series of steps. Such an approach
may help in providing estimates within an acceptable degree of risk. Although
there is no panacea to the estimator’s dilemma, a common framework promoting
a common culture is an essential step forward. A systematic approach helps the
estimator to judge better. This research takes the view that the two concepts
described previously, the base model for effort estimation process and the phase
based estimation process, provide a solution to the problems stated.^ A base
model supports the requirement for a systematic approach to the effort estimation
task. The phase based estimation process reduces the degree of uncertainty
associated with that process. The infrastructure for a base model for effort
estimation proposed in this thesis could be only considered with the bottom-up
approach is being implemented.

7.2.2 Recording and tracing assumptions and decisions

The uncertainty associated with the software development process, its iterative and
evolutionary nature, mean that assumptions taken throughout the software
development process will change, as will the decisions which are based on them.
Nevertheless, these assumptions are the basis for the estimation process. It was
already noted that underestim ating the effort is caused by the common
phenomena of ‘short-term memory’ and, of more importance, by the reliance on
the knowledge and the memory of individuals who might not be available when
their expertise and knowledge are needed.^ Therefore, the EEM addresses this
issue by recording the decisions taken throughout the software development and

1. See Paragraphs 2.8.2 and 2.8.3.

2. See Paragraph 1.8.2

227

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

the effort estimation processes. Decisions and assumptions associated with the
project include:

Development strategies, e.g. the use of software packages, the use of
development tools, or the use of prototyping.
Work break-down for a particular development process.
Software size metrics and their values.
Perception of software product complexity, as well as other types of
complexities which are associated with the development process, i.e.
organisational, technical and project team complexity.

Hence, a way which allows us to trace the assumptions taken while
estimating the effort, brings us a step forward in our aim of improving the
estimation procedures and of understanding deviations from the basic assumptions
upon which the estimation process was developed.

Recording the assumptions and decisions taken throughout the estimation
processes and linking them to the relevant activity or segment, enables us to
incorporate a feedback mechanism into the process of software development.
Such a mechanism could point out specified deviations from the basic assumptions
and suggest corrective measures for the estimated effort. Tracing the assumptions
enables us to reason about the decisions taken throughout the processes of our
concern. However, the relative importance and the value of information
stemming from recording each decision should be considered.

7.2.3 The applicable size metrics for the Preliminary System Design

Each phase in the SDLC addresses various issues in the development process and
employs activities characterised by various attributes. It is thus obvious that the
size metrics associated with each of these phases will vary. The best representative
unit of measure for the effort required to implement a phase of software is based
on the input unit of measure to this phase. Early in the software development the

228

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

focus is on the functionality of the target system, therefore, the most appropriate
size metric is ‘function’ oriented.

The proposal is to decompose the software development life cycle into
phases, segments and activities, to identify size components which are the major
cost contributors to the PSD work, and to associate with each component and
activity a ‘standard of effort’ measured in person hours. However, the variety of
projects and their associated environm ents, and the in troduction of new
technologies, quite often imply that this is not applicable for all activities. Some
activities vary widely from one project to another and thus their ‘standards of
effort’ are not known a priori. The effort required for these activities should be
estimated separately by the effort estimator for each project, using his experience
and expert judgement. Standards measurement of project history is mandatory,
but measurement must be used in conjunction with judgement.

However, estimates cannot be better than their ingredients. Based on the
information available at the Project Planning phase, only coarse estimates of the
effort for the total project can be provided. Although these estimates will not
remove the uncertainty, they will almost surely place the organisation in a better
position, to deal with the unknowns and to take advantages of developments as
they occur. Knowing ahead of time where the trouble is going to come from, will
make some difference.

7.3 THE STRUCTURE OF THE EFFORT ESTIMATION MODEL (EEM)

The Effort Estimation Model for Software Development Projects is a support
method for the estimation process, which takes place when a project is about to
commence and uses attributes and measurements consistent with the level of
knowledge generally available in the organisation at that time.

The effort estimating task relies heavily on the judgement of experienced
performers. Therefore, the EEM is built as an interactive process enabling the
estimator to interact with it as though it were the expert, thus, providing
professional assistance when needed. The EEM recommends an activity

229

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

breakdown for alternative development strategies, provides ‘standards of effort’
for various size components that generate the cost of the activities to which it
contributes and assists in identifying and assessing complexity and risk.
Furthermore, at a later stage, it provides guidance for choosing the appropriate
model for effort estimation based on the estimation objectives, type of system, and
also prepares a schedule to the project. By taking an advantage of AI, it should
‘learn’ from the data generated by active projects and incorporate that experience
into the knowledge-base.

Consequently, the EEM has the following 2 main components (as shown in
Figure 7.1):

An interactive component which enables the estimator to converse with the
model throughout the estimation session, to use his judgement when
corrective action is needed, and to interrupt when additional information is
required. The interactive com ponent make use of a series of
questionnaires with the aim of directing the estim ator through the
estimation session and to capture the estimator’s assumptions and decisions
made throughout the estimation session for further processing. It is also
the means by which the system can provide an explanation of its reasoning.
A knowledge-base and the inference engine, and the reasoning facility which
examines and uses the knowledge-base. The knowledge-base is a store
representation of the expert knowledge, and includes three elements,
namely:

* A base model for effort estimation. The major element in the base
model is the Life cycle decomposition into phases, segments and
activities and their associated affiliated information.

* Complexity and risk assessment rules.
* A data-base of estimation models.

230

CHAPTER? THE EFFORT ES'HMATIQN MODEL (EEM)

- > Estimator

> I n t e r a c t i v e <
m o d u l e

I - -

V V
- - > K n o w l e d g e - b a s e <

a n d i n f e r e n c e
- - > e n g i n e <

S t a t i s t i c a l d a t a f r o m
o t h e r p r o j e c t s

P r o j e c t ' s p e r f o r m a n c e
d a t a - b a s e

- - M o d e I A 1

. - - M o d e l A2
> D a t a - b a s e - - - -

o f E s t i m a t i o n - - M o d e l
models

- - M o d e l A n

A b a s e m o d e l f o r t h e
e f f o r t e s t i m a t i o n p r o c e s s .

C o m p l e x i t y a n d
r i s k a s s e s s m e n t r u l e s

Figure 7.1 The conceptual model of the EEM

7.4 BASE MODEL FOR EFFORT ESTIMATION

7.4.1 The Software Development Life cycle

T h e E f f o r t E s t i m a t i o n M o d e l (E E M) a s s u m e s t h e u s e o f a s y s t e m a t i c m a n a g e m e n t

f r a m e w o r k a n d t h a t t h e p r o j e c t d e v e l o p m e n t p r o c e s s i s s u p p o r t e d b y a s t a n d a r d

s o f t w a r e d e v e l o p m e n t p r o c e s s w h i c h s e r v e s a s a t o o l f o r d i r e c t i n g t h e c r e a t i o n o f

n e w i n f o r m a t i o n s y s t e m s . I t i s c u s t o m a r y t o c o n s i d e r t h e s o f t w a r e d e v e l o p m e n t

p r o c e s s a s h a v i n g a l i f e c y c l e , c h a r a c t e r i s e d b y a t o p - d o w n a p p r o a c h o f b r e a k i n g

t h e p r o c e s s i n t o m a n a g e a b l e , l o g i c a l a n d f u n c t i o n a l u n i t s . T h e d e v e l o p m e n t

p r o c e s s i s d e c o m p o s e d i n t o p h a s e s , e a c h h a v i n g d e f i n e d s t a r t i n g a n d e n d i n g p o i n t s .

E a c h p h a s e i s f u r t h e r d e c o m p o s e d i n t o i n d i v i d u a l w o r k s e g m e n t s , e a c h o f w h i c h

p r o d u c e s p r e - d e f i n e d e n d - p r o d u c t s a n d a i m s t o a c h i e v e a s p e c i f i c t a r g e t . E a c h

s e g m e n t c o n t a i n s a g r o u p o f s t a n d a r d c o n t r o l l a b l e a c t i v i t i e s . T h e E E M u s e s a

c o n s i s t e n t s e t o f t e r m s t o d e s c r i b e t h i s c o n c e p t u a l t o p - d o w n a p p r o a c h :

231

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

A phase is a major self-contained component. Four phases encompass the
development process:

* Project Planning.
* Preliminary System Design.
* Construction (Detailed Design and Implementation).
* Operation.

A segment is a logical part in accomplishing the objectives of a particular
phase. The Preliminary System Design phase includes the following
segments:

* Organisation.
* User requirements.
* User design.
* Technical design.
* Technical support.
* Construction schedule.
* Cost / benefit analysis.
* Management review and approval.

If hardware and/or application software procurement is considered as part of the
project, then the following segments will be added to the PSD.

* Hardware and software direction.
* Application software evaluation and design.
* Hardware and software selection.

Each segment contains a group of standard activities which provides the
project team with guidelines to accomplish the segment’s end result. For
example, the Project Definition segment of the Project Planning phase
contains activities such as:

232

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

* Initiate a project.
* Review present status.
* Identify business objectives and information strategies.
* Survey information need.
* Identify hardware and software environment.
* Develop conceptual design.
* Investigate application software alternatives.
* Evaluate development alternatives.
* Prepare project impact analysis.
* Prepare project plan.

Each activity is decomposed into individual tasks needed to perform a
specific activity. For example, the ‘Prepare project plan’ activity includes a
task in which the effort estimates for the next phase are established.

1 : M* 1 : M 1 : M

P H A S E> S E G M E N T> A C T I V I T Y > T A S K

1 : M

T h e > notation means, a phase is decomposed into one or more segments, a segment is
decomposed into one or more activities, and activity into one or more tasks.

The basic component common to all frameworks for software development
is the activity, to which a satellite of attributes are associated. These attributes
are, for example, the objectives for implementing the activity; the intermediate
product deliverables which indicate the state of the activity; the cost drivers which
identify the major contributors to the effort associated with the specific activity;
the ‘standards of effort’ associated with a cost driver and an activity (see
Paragraphs 7.4.3 and 7.4.4); the outlines of recommended documentation; the
prerequisite and the dependable activities. All types of activities share common
information and have similar notions of causality, time relationships, and
milestones. A partial view of an activity schema is shown in Figure 7.2. The base
model represents activities of a range of particular software processes and allows
reasoning about their use.

233

CHAPTliR? TIIE EFFORT ESTIMATION MODEL (EEM)

M a n a g e m e n t
r e V 1 e w

1 : M

S p e c i f i c a r e a s
c o m p l e x i t y
a s s e s s m e n t

Phase
1 : M

> S e g m e n t

1 : M

I 1 : M

1 : M

I - - - - > S u b - s e g m e n t -
I 1 : M 1 : M

D e l i v e r a b l e s

1 : M

M a n d a t o r y a c t i v i t y <
e v e n f o r s m a l l p r o j e c t s

1 : M
K e y c o n s i d e r a t i o n s <

O b j e c t i v e s

1 : M

1 : M
> I n p u t s

1 : M
> 0 u t p u t

I 1 : M
A C T I V I T Y i > S p e c i a l
• ... I e v a l u a t i o n

p r o c e d u r e s

1 : M

E n v i r o n m e n t a l r e l a t e d 1 : M
f a c t o r s a n d t h e i r i m p a c t , < ------

 > Q u a l i t y a s s u r a n c e

1 : M
> D e p e n d e n t a c t i v i t i e s

1 : M

1 : M

> C o s t d r i v e r s

1 : M

A c t i v i t y &

> c o s t d r i v e r

1 : M

S t a n d a r d o f
e f f o r t

j 1 : M
V

A d j u s t m e n t
f a c t o r f o r
t h e u s e o f
s o f t w a r e
p a c k a g e s

Figure 7.2 An activity data-model (a partial view)

234

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

These phases and activities portray the software development life cycle as
viewed by the user and provide the basis for effective management. The set of
activities and segments (groups of activities) may overlap in time but each must be
scheduled for completion prior to a dependent sub-segment or an activity.

Definition of the softw are iife cycle p h ases

The process of software development and the various paradigms currently in
practice, were addressed in Section 2.2. The objectives, functions and main
concerns of each of the phases were analysed and presented in comparison to
Boehm’s traditional life cycle process. Here, the complementary focus is on the
view of this thesis regarding the processes associated with each of the phases.

Phase 1: Project Planning. The Project Planning addresses both project definition
and feasibility issues. In the project definition segment the preferred concept for
the software project is stated, the software development strategies are formulated
and the superiority of the chosen concept over alternatives is presented. The
Project Planning phase accepts the general needs or problems as inputs and
proposes a comprehensive scope, an agreement on problems and a definition of a
project, which includes a work plan for the next phase. The deliverables of this
phase also include the following four articles: the system overview, the overall
strategies for the target system, the functions to be incorporated in a given project,
and the data-model to support them. The Project Planning phase is implemented
by looking into fact gathering and analysis, interviews and discussions.

Phase 2: Prelim inary System Design. The objectives of this phase are to
determine how the target system should be implemented to meet the business
needs of the organisation and to obtain the commitment of the management to the
proposed system, before the major portion of the project development cost is
incurred. The main concerns of this phase lie in the following issues:

235

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

* What does the system do from the user’s viewpoint?
* How does the system operate from a technical viewpoint?
* What are the estimated operating costs and benefits of the system?
* What are the estimated installation costs and time-table?

This phase includes the ‘specification requirements’ and ‘product design’. It also
includes complete and validated:

* Functional and technical specification of the ‘user requirements’.
* Design from the user point of view.
* Interface, performance, security and control requirements of the

software product.
* A complete and verified specification of the the overall hardware

and software architecture and the project data models.

Appendix 7A contains the decomposition of the PSD phase into segments and
activities, as defined and used in the EEM.^

Phase 3: Construction or Detailed Design and Implementation. The objectives of
this phase are to finalise the system design and install successfully the system in the
operational environment of the company. Tlie phase includes the detailed design,
code and debug, test and preparations. The objectives of this phase should be
accomplished with:

* Developed procedures.
* Trained users.
* Ensured acceptance of the system by both computer operation and

user personnel.

Some development processes employ all the activities included in the

3. The list of activities is adopted from Arthur Andersen Method/1 [And79].

236

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

conceptual framework whereas others may employ only a subset of the activities
for a particular project or, they may find it necessary to add activities to the work
breakdown. The EEM allows the user to delete unnecessary activities. It is also
possible to add the effort required for activities which are not specified in the
proposed work breakdown, or for activities which vary highly among
environments.

7.4.2 Alternative strategies for software developm ent

The EEM currently recognises four alternative strategies for the software
development process as shown in Figure 7.3. The first three strategies follow the
Waterfall model. The fourth is geared toward a fluid environment with changing
business needs as well as changing organisational infrastructure, and provides a
flexible enough route to allow changes in requirements to be defined and obsolete
functions to be eliminated.

C u s t o m i s e d
s o f t w a r e
s t r a t e g y

SOFTWARE DEVELOPMENT LIFE CYCLE

WAT E R F AL L S DL C

C u s t o m ! s e d
S t r a t e g y

a n d
I n c r e m e n t a l

s t r a t e g y

NEW P A R A D I G MS

A p p l i c a t i o n
p a c k a g e s
s t r a t e g y

I t e r a t i v e
s t r a t e g y

(P r o t o t y p i n g)

Figure 7.3 Alternative strategies for software development used by the EEM

237

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

The Customised software development follows the Waterfall SDLC model,
but also allows the integration of the prototyping paradigm into the classic flow of
project development using the EEM life cycle decomposition into segments and
activities, as shown in Appendices 7A and 7A1. It thereby improves both the
complex communication and feasibility decisions involved in the process.

Customised software strategy and Increm ental development. The
Incremental development as opposed to the ‘pure’ Waterfall model concentrates
on short-term results. Project development is partitioned into increments, whose
development is scheduled or phased over the total development cycle. Each
increment is a subset of the planned software product and provides specified
system functions. The emphasis here is on overall planning of the software
product, yet, the implementation is partitioned. Each increment is estimated for
its required effort and schedule and is managed separately. The planning and
estim ating processes of the short-term budget are im plem ented for the
deliverables planned in the intermediate future. The evolutionary delivery process
employs the management of relatively small projects. Taking the evolutionary
approach it becomes easier to control each increment, to operate to a stable plan,
thus significantly decreasing the volatility of the requirements. However, by
controlling this factor we reduce the ‘overall’ system functionality as additional
functions requested by the users become a planned part of the next increment.

Application packages from many different industries are readily available
and may save the developer much time because much of the time-consuming and
costly ground work has already been done. One should not reinvent the wheel
every time there is a need for a piece of software. This strategy also follows the
Waterfall SDLC model. It is a sub-set of the customised approach for software
development. When this strategy is taken, the SDLC is changed and includes
some additional segments while others might be omitted.

I te ra tiv e developm ent. The new paradigms result from the new
technological opportunities that have been developed since the introduction of the
Waterfall model. The emergence of fourth generation languages and productivity
tools for end-user computing has brought the need for a systems development
approach very different from the conventional one. This route varies distinctly

238

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

from the customised and application packages strategies in that it allows for a ‘trial
and error’ approach to problem solving, when a specific solution is impossible to
identify initially.

When this strategy is chosen, the activity list decreases. However, there is
no guarantee that the effort required for the entire system will be less than if
implementing the same system using the custom-made approach. Even so the time
and cost of the first iteration may be substantially less.

7.4.3 Cost drivers

The EEM assumes that each activity is associated with a standard list of cost
drivers involved in the process. The cost drivers are size attributes of the project.^
The cost drivers serve as the basis for estimating tasks associated with each
activity, during the estimation process. A cost driver is, for example, a transaction,
an input document, a report, a screen, a contract to be signed, a software package
for final evaluation, a modification of a software package, a request for proposal
or a project team member.

Some of the cost drivers identify an overhead for a system and some stem
from the need to motivate and train the project team. Thus, a project team is
identified as a cost driver for the organisational set of activities, although, the
number of team members assigned to a project is known only as a result of the
estimates. A cost driver might be associated with one or more activities.
Appendix 7B contains the list of cost drivers used in the EEM.

4, The term project size and not product size is used here, since this metric includes size attributes
of three different sources: the target system, the replacement system and the process of
implementing the PSD. These will affect the effort required for the total development, however,
they are not product attributes in the common use of the term

239

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

7.4.4 Standard of Effort

A Standard of Effort (SOE) is the organisational inverse of a standard rate of
productivity, for either the amount of work required to accomplish one work unit,
or for a defined cost driver. ‘Standard of effort’ multipliers, which are not
expressed in work units are, for example, a project team member or the system
overhead. The ‘standard of effort’ which is associated with each of the cost drivers
and correlated activity may differ between environments for an identical cost
driver and associated activity, according to the complexity of the project.
Therefore, the EEM associates each combination of activity and cost driver with
one of three different ‘standards of effort’ according to the assumed complexity
levels of the system: simple, moderate or complex. The degree of complexity is a
subjective classification since human beings are involved in the development and
thus in the complexity assessment processes. The various parties involved in the
developm ent and the complexity assessment processes may differ in their
productivity level and in their attitude and understanding of the project under
discussion. The same parties might also have conflicting objectives. A ‘standard
of effort’ (SOE) will be of either a direct or indirect type. An example of an
indirect type is the management and administration effort.

The partial structures of the base model used in the EEM are shown in
each of the Figures 7.4 - 7.7, each of which includes an additional part of the
conceptual scheme for the base model or the project’s view.

240

CHAPTER 7 THE EFTORT ESTIMATION MODEL (EEM)

1 : M 1 : M M : N
P H A S E > S E G M E N T > A C T I V I T Y < > C O S T D R I V E R

1 : M 1 : M

V V
A C T I V I T Y & COS T D R I V E R

1 : M

V
S T A N D A R D S OF E F F O R T

Figure 7.4 A partial view (a) of the conceptual data-model used in the EEM
(A base model view)

M : N

The <> notation means that each activity is associated with zero or more cost drivers, and
each cost driver is associated with zero or more activities.

H o w e v e r , s o m e a c t i v i t i e s w i l l v a r y i n t h e e f f o r t r e q u i r e d d e p e n d i n g o n t h e

n u m b e r o f u s e r s , p o t e n t i a l a v a i l a b i l i t y o f s o f t w a r e , e x p e c t e d t e c h n i c a l c o m p l e x i t y ,

e t c . T h e ‘ s t a n d a r d o f e f f o r t ’ i s , t h e r e f o r e , n o t k n o w n f o r e a c h o f t h e a c t i v i t i e s

i n v o l v e d i n s o f t w a r e d e v e l o p m e n t . H e n c e , e s t i m a t i o n o f t h e e f f o r t r e q u i r e d t o

a c c o m p l i s h t h e s e a c t i v i t i e s r e q u i r e s t h e j u d g e m e n t o f t h e e s t i m a t o r . A s i t u a t i o n i n

w h i c h a n ‘ a v e r a g e ’ e f f o r t w i l l n o t b e o f g r e a t h e l p i s f o r e x a m p l e t h e f i r s t

d e v e l o p m e n t o f a c o m m u n i c a t i o n s - b a s e d s y s t e m i n a n o r g a n i s a t i o n w h i c h i s

i n c o m p a t i b l e t o a n y s u c h p r o c e s s d e v e l o p e d e l s e w h e r e . S u c h a p r o c e s s s h o u l d b e

d e c o m p o s e d i n t o i t s d e t a i l e d a c t i v i t i e s , e a c h a c t i v i t y s h o u l d b e e v a l u a t e d a n d

e s t i m a t e d s e p a r a t e l y . T h e o n l y h e l p a g e n e r a l m o d e l c o u l d o f f e r f o r s u c h a

p r o c e s s i s i n a g e n e r a l b r e a k d o w n i n t o a c t i v i t i e s a n d s o m e v e r y c o a r s e r a n g e s o f

e f f o r t .

1 : M 1 : 1
A P R O J E C T (S O M E) A C T I V I T I E S P R E D I C T E D E F F O R T

w h i c h i s a r e s u l t o f t h e
e s t i m a t o r s ' j u d g e m e n t

Figure 7.5 A partial view (b) of the conceptual data-model used in the EEM
(A project view)

241

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

I t i s t h e r e f o r e c l e a r t h a t e s t i m a t e s c o n c e r n i n g a p a r t i c u l a r p h a s e , c a n n o t b e

d e v e l o p e d u n l e s s t h i s p h a s e i s c l e a r l y d e s c r i b e d a n d u n d e r s t o o d b y i t s u s e r s . T h i s

r e s e a r c h a d d r e s s e s t h e e f f o r t e s t i m a t i o n i s s u e w i t h r e g a r d t o a s i n g l e s y s t e m . T h e

c o n c e p t u a l v i e w o f t h e E E M w i l l t a k e f o r m a s s h o w n i n F i g u r e 7 . 6 .

1 : M 1 : M 1 : M M ; N
S D L C> P H A S E > S E G M E N T > A C T I V I T Y < > C O S T D R I V E R

Figure 7.6

PRED I CT ED E F F O R T <
w h i c h i s a r e s u l t
o f t h e e s t i m a t o r s '
j u d g e m e n t

1 : M

1 : M 1 : M

V V
A C T I V I T Y & COST D R I V E R

1 : M

S T A N D A R D S OF E F F O R T

A partial view (c) of the conceptual data-model used in the EEM
(A base model view)

7.5 COMPLEXITY AND RISK

I d e n t i f i c a t i o n o f t h e p o t e n t i a l a r e a s o f c o m p l e x i t y o f a n e w s y s t e m i s a k e y f a c t o r

i n t h e e f f o r t e s t i m a t i n g p r o c e s s , s i n c e t h e c o m p l e x i t y i s a p r i m e c a u s e f o r r i s k i n

s o f t w a r e d e v e l o p m e n t . R i s k i s t h e t r a d i t i o n a l m a n n e r o f e x p r e s s i n g u n c e r t a i n t y

a n d d i f f i c u l t y i n t h e s y s t e m ’ s l i f e c y c l e . T h e p r o d u c t i v i t y r a t e i s a f u n c t i o n o f t h e

s y s t e m c o m p l e x i t y a n d d i f f i c u l t y a n d , h e n c e , t h e l e v e l o f c o m p l e x i t y a f f e c t s t h e

e f f o r t a n d t h e d u r a t i o n o f t h e p r o j e c t d e v e l o p m e n t . T h e r e f o r e , t h e s e t o f

.5. This is a 1:M relation, since resulting from projects histories, more than one prediction are
included. The information included in the base model is an indication that this activity requires
expert judgement for provision of the predicted effort and ‘pointers’ to projects where similar
activities were implemented are provided.

242

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

‘ s t a n d a r d s o f e f f o r t ’ a s s o c i a t e d w i t h a p r o j e c t i s d e t e r m i n e d b y c o m p l e x i t y r u l e s

w h i c h p r e s e n t t h e ‘ g e n e r a l c o m p l e x i t y ’ a n t i c i p a t e d f o r t h e s y s t e m a s a w h o l e , a s

s h o w n i n F i g u r e 7 . 7 .

Project
1 : M 1 : M 1 : M M : N
 > P H A S E > S E G M E N T> A C T I V I T Y < > C O S T D R I V E R

I

1 : M
PRED I CT ED E F F O R K -
w h i c h i s a r e s u l t
o f t h e e s t i m a t o r s '
j u d g e m e n t

1 : M

I

I 1 : M

1 : 1

A G E N E R A L S Y S T E M C O M P L E X I T Y
1 : M

V V
ACT I V I T Y & COST D R I V E R

1 : M

> S T A N D A R D S OF E F F O R T
(C l a s s i f i e s t h e) t o b e u s e d i n a p r o j e c t

Figure 7.7 A partial view (d) of the conceptual data-model used in the EEM
(A project view)

E x a m p l e s a r e g i v e n t o c l a r i f y h o w t h e c o n c e p t d e s c r i b e d i s i m p l e m e n t e d b y

t h e E E M i n Appendix 7C.
I n a q u a n t i t a t i v e s e n s e , r i s k i s t h e p r o b a b i l i t y a t a g i v e n p o i n t i n a s y s t e m ’ s

l i f e c y c l e t h a t p r e d i c t e d g o a l s c a n n o t b e a c h i e v e d g i v e n t h e a v a i l a b l e r e s o u r c e s .

D u e t o t h e c o m p l e x i t y o f r i s k c o m p o n e n t s a n d t h e c o m p o u n d i n g u n c e r t a i n t y

a s s o c i a t e d w i t h f u t u r e s o u r c e s o f r i s k , t h e t h e s i s o f t h i s r e s e a r c h i s t h a t r i s k c a n n o t

b e t r e a t e d w i t h m a t h e m a t i c a l r i g o r d u r i n g t h e e a r l y l i f e c y c l e p h a s e s . ^

U n c e r t a i n t y , c o m p l e x i t y a n d r i s k a r e a s s o c i a t e d w i t h t h e p r o c e s s o f d e v e l o p i n g a

s o f t w a r e p r o d u c t . T h e i r r i g o r o u s q u a n t i f i c a t i o n i s m e a n i n g l e s s e a r l y i n t h e l i f e

c y c l e .

6. As a system progresses through the life cycle and uncertainty diminishes, the degree of
mathematical precision increases and can be used for the various measurements of complexity
associated with the programming effort.

243

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

T h e c o m p l e x i t y l e v e l o f a s y s t e m i s a s u b j e c t i v e c l a s s i f i c a t i o n a n d i s b a s e d

u p o n t h e d i f f i c u l t y o f a p r o j e c t a s p e r c e i v e d b y t h e v a r i o u s p a r t i e s i n v o l v e d w h o

m a y d i f f e r i n t h e i r a s s e s s m e n t s . T h e y w i l l o b v i o u s l y b e n e f i t f r o m a t o o l w h i c h

h e l p s t h e m i n p r e p a r i n g t h e m s e l v e s f o r t h e n e g o t i a t i o n a n d t h e d e c i s i o n p r o c e s s e s

a s s o c i a t e d w i t h t h e e c o n o m i c e v a l u a t i o n o f a p o t e n t i a l p r o j e c t .

T h e c o m p l e x i t y m e t r i c s i d e n t i f i e d i n t h i s t h e s i s a r e a priori m e t r i c s w h i c h

a i m t o :

I d e n t i f y t h e a p p r o p r i a t e ‘ s t a n d a r d o f e f f o r t ’ v a l u e s t o b e u s e d b y t h e E E M

i n e s t i m a t i n g t h e e f f o r t r e q u i r e d f o r t h e d e v e l o p m e n t o f a s o f t w a r e p r o d u c t .

E v a l u a t e t h e c o m p l e x i t y a s s o c i a t e d w i t h t h e d e v e l o p m e n t o f t h e s y s t e m a n d

t h e r i s k o f p r o j e c t f a i l u r e (o v e r r u n o f s c h e d u l e o r b u d g e t) .

C o m p l e x i t y i s o f t e n a p r o b l e m o f u n d e r s t a n d i n g . U n d e r s t a n d i n g i n t h i s

c o n t e x t i s a f u n c t i o n o f t h e s t r u c t u r e o f t h e s y s t e m a n d i t s s i z e . A l t h o u g h l a r g e

s y s t e m s m a y b e o f l i n e a r s t r u c t u r e (w i t h l i m i t e d d e c i s i o n p o i n t s) , t h e y a r e a s s u m e d

t o b e m o r e d i f f i c u l t t o u n d e r s t a n d a n d c o m p r e h e n d a s r e s u l t o f t h e v a r i e t y a n d

c o n n e c t i v i t y t h e y r e q u i r e . T h e k n o w l e d g e a b o u t t h e p r o b l e m a t t h e o u t s e t o f

p r o j e c t d e v e l o p m e n t i s n o t s u f f i c i e n t t o a l l o w a t h o r o u g h a s s e s s m e n t o f c o m p l e x i t y

w h i c h s t e m s f r o m l o g i c a l a n d p r o b l e m o r i e n t e d i s s u e s . T h e r e f o r e , t h e a s s e s s m e n t s

o f c o m p l e x i t y a n d t h e r i s k i n d i c a t o r s i n t h e E E M i s b a s e d o n d a t a a b o u t t h e s i z e o f

t h e p r o d u c t a n d a b o u t t h e c o m p l e x i t y o f t h e e n v i r o n m e n t s (s y s t e m c h a r a c t e r i s t i c s) ,

a s f o l l o w s :

P r o d u c t s i z e

a t t r i b u t e s

S y s t e m s

c h a r a c t e r i s t i c s

C o m p l e x i t y o f t h e

e n v i r o n m e n t s

C O MP L E X I T Y

AND R I S K

R U L E S

> S e t o f c o m p l e x i t y

i n d i c a t o r s

> S e t o f r i s k i n d i c a t o r s

Figure 7.8 Complexity and risk

244

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

The level of complexity and risk involved in a system development is
affected by various logical and problem oriented issues plus external factors, such
as the organisational and technical environm ents and the project team
composition. Thus, the EEM uses the following set of alternative indicators of
complexity 'P

* General system complexity.
* Organisational environment.
* Technical environment.
* Project team composition.

Appendix 7D includes the set of rules used by the EEM to assess each of these
indicators.

7.5.1 Complexity and risk assessment

The assessment of the ‘general system complexity’ considers two groups of
complexity determinants, they are attributes of product size measures (quantitative
attributes) and environmental systems characteristics, as follow:

Group A: Attribute of product size

* Number of data elements in data-base.
* Number of logical data-bases.
* Number of complex/major functions, from user design viewpoint.
* Number of inquiry screens.
* Number of major reports in the target system.
* Number of reports in the target system.

7. This is based on the analysis in Section 5.8, the author’s own experience and a cluster analysis on
the data collected.

245

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

* Number of batch inputs (types, not volumes) or input documents.
* Number of on-line inputs (types, not volumes) for updating.

Group B: Environmental complexity determinants

* Required (realistic) response time for high volume transactions.
* System impact on financial status.
* System impact on operational status.
* Interface with other applications.
* Percentage of replacement of existing functions.
* User familiarity with the system.

In addition, when evaluation of application packages is assumed as part of
the project, then the following complexity determinants should be considered:

* How many software packages, that were found suitable for in-depth
evaluation, will be actually evaluated at the Preliminary System
Design Phase?

* Level of customisation required. Number of modifications needed
to fit the requirements.

The ^organisational environment’ considers the size of the company
adm inistrative and organisational structures, the pace and general systems
effectiveness of the user organisation as external factors affecting the estimates.
This is based on the assumption that an organisation with large and multiple
committees will require significantly more project time than a small organisation
with managers who are fam iliar with the system and the surrounding
environments. The size of the organisation may be a major factor, due to the
necessity of considering many viewpoints and of meeting the needs of diverse
interests. The assessment of the ^organisational environment’ indicator is based
on the following complexity determinants:

246

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

* Number of departments (other then the IS) involved with the
project.

* Number of working units involved in the project. Is this project
being developed for the usage of one working unit?

* What is the severity of procedural changes in the user department
caused by the proposed system?

* Is this project a conversion or a functional repeat of a well known
project?^

* Does the user organisation have to change structurally to meet
requirements of the new system?

The following factors should affect the schedule of user oriented segments
such as user requirements, user design, but mainly the system test.

* What is the general attitude of user?
* Number of people whose working practice will be affected by the

system.
* Number of people whose working practice will be affected by the

system, in one working unit. If great variation in unit size, then give
an average.

* Decision makers.
* Information processing service structure.
* Commitment of the upper level user’s management to the system?

The ‘Technical environment’ reflects the relative complexity of the
information processing environment. It should be assessed in addition to the
‘general system complexity’ since the complexity of the application and that of the
technical environment can differ. The following complexity determinants should

8. This question was phrased as an substitute to the question: ‘percentage of replacement of existing
functions’, which is considered as an ‘environmental complexity* determinants, in group B above. It
was assumed that the response to both questions would be close. However, the results of the
cluster analysis did not place them in the same group.

247

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

affect mainly technical oriented segments such as technical design and
programming.

* Communication and distributed systems.
* Computer type, operating system, installation aids and project

familiarity.
* Is any hardware new to the company?
* Data-base management system.
* On line monitor.
* Data dictionary.
* The development methodology.
* System architecture.^

The ‘Project team composition’ reflects the experience of the individual
project team members at the time of the Preliminary System Design initiation.
The adjustment applied should represent a specific assessment of appropriateness
betw een required and available skills. The estim ates should be revised
accordingly.

* Project team structure.
* Experience with industry/application.
* Technical experience.
* Staffing and Hiring considerations.

Although the EEM evaluates the complexity for each of the various
categories, the results are not automatically incorporated in the direct calculation
of the estimated effort for the PSD. The set of ‘standard of effort’ which is used in
the estimation algorithm is classified only by the ‘general system complexity’,
assuming a standard level of complexity for a project. The ‘technical and the

9. This complexity determiner is currently included in the complexity assessment, however, it did
not add any information in the sample data.

248

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

project team complexity’ affect particular segments, mainly in the Construction
phase. The 'organisational environment’ impact is on the project risk assessment.
Nevertheless, where a standard level of complexity is not applicable for a project,
an alternate level of complexity may be assigned to a particular segment and or
activity as further discussed in Section 7.8.1.

Risk and complexity assessments of a project are closely related processes,
since both complex software products and complex environments are potential risk
triggers. Thus, the risk indicators are a subset of the complexity determinants.
They are:

System impact on financial status?
System impact on operational status?
Number of departments (other then the IS) involved with the
project?
If you propose to replace the system, what percentage of existing
functions are replaced on a one-to-one basis?
What is the severity of procedural changes in the user department
caused by the proposed system?
Does user organisation have to change structurally to meet the
requirements of the new system?
What is the severity of procedural changes in the user department
caused by the proposed system?
Does user organisation have to change structurally to meet
requirements of the new system?
What is the general attitude of user?
Staffing and Hiring consideration.

Yet, there are unique risk indicators which are not complexity
determinants. They aim to account for schedule risk associated with a project.
Since the project schedule is heavily dependent on the estimated effort, the
following two risk determinants should be added:

249

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

* T o t a l e f f o r t i n P M .

* P r o j e c t d u r a t i o n i n m o n t h s .

T h e s e t o f r u l e s u s e d b y t h e E E M t o a s s e s s t h e r i s k i n d i c a t o r , a r e g i v e n i n

A p p e n d i x 7 D , S e c t i o n 7 D . 6 .

T h e c o n c e p t d e s c r i b e d i n S e c t i o n 7 . 5 i s s h o w n i n F i g u r e 7 . 9 .

h a s a
A P R O J E C T G E N E R A L S Y S T E M c l a s s i f i e s t h e SET o f S T A N D A R D S

C O M P L E X I T Y OF E F F O R T (S O E)
t o b e u s e d f o r a p r o j e c t

h a s a

I O R G A N I S A T I O N A L
C O MP L E X I T Y - -

 T E C H N I CAL
E N V I RONME NT
C O MP L E X I T Y

- - P R O J E C T TEAM
C O M P O S I T I O N
C O MP L E X I T Y

r e s u l t s
from

r e s u l t s
f r o m

r e s u l t s
f r o m

r e s u l t s
f r o m

a f f e c t e d b y

P R O J E C T E F F O R T - -

a f f e c t e d b y a f f e c t e d b y

P R O J E C T D U R A T I ON

a f f e c t e d b y

C O M P L E X I T Y AND R I S K A S S O C I A T E D W I T H S O F T WA R E D E V E L O P M E N T

F i g u r e 7 . 9 C o m p l e x i t y a n d r i s k a s s e s s m e n t

250

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

7.6 WHO IS THE ESTIMATOR?

The estimation process can be implemented by an individual estimator or a
group. The group should be composed of the project team members and/or
various data processing personnel, experts from the user’s department and/or
external consultants who use their best judgement in order to determine the
different aspects of the project profile. A group can work in one of the following
ways:

Each group member operates the model separately and eventually the
model proposes estimates based on the data provided by all members. In
this way the members act individually and the model computes an average
of the group estimations based on the weighted answers of the team
members.^®
The group uses the Delphi or some other group decision process in order
to achieve consensus among the members. One agreed answer is input
into the model. This process might be important for the assessment of the
cost driver, which are the size attribute of the project.

7.7 THE EEM'S ESTIMATION PROCESS:
ALGORITHM, ITERATION AND JUDGEMENT

The software estimation is an interactive and iterative process. The model uses
different processes for the production of estimates. It works in cycles as
discussed in the following paragraphs.

A schematic description of the processes encompassed by the EEM is
given in Figure 7.10.

10. An attempt was made to place greater faith in estimates given by experienced project
leaders/analysts (measured in years of experience). However, this attempt did not gain support in
the walkthrough sessions. Most of the projects’ data collected in this research were estimated by
individuals

251

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

R e v i e w i n g a n d C h o o s i n g
a n d t a i l o r i n g t h e l i f e
c y c l e s t r a t e g y

A s s i g n i n g t h e
c h a r a c t e r i s t i c s o f
t h e p r o j e c t ,
s i z e a n d c o m p l e x i t y

C a l c u l a t i n g t h e
r e q u i r e d e s t i m a t e s -

 C u s t o m i s e d s o f t w a r e d e v e l o p m e n t
O r

 C u s t o m i s e d s o f t w a r e d e v e l o p m e n t
a n d i n c r e m e n t a l d e v e l o p m e n t
0 r

 A p p l i c a t i o n s o f t w a r e d e v e l o p m e n t
Or

 I t e r a t i v e d e v e l o p m e n t

P r o j e c t P r o f i l e
d e t e r m i n a n t s

- - R e p l a c e d s y s t e m

- - T a r g e t s y s t e m

E x t e r n a l ------
d e t e r m i n a n t s

C a l c u l a t e t h e
r e q u i r e d e s t i m a t e s

E s t i m a t o r - s y s t e m
c o n s u l t a t i o n

A d h o c c h a n g e s
t o t h e p r o j e c t

R e c a l c u l a t e t h e
e s t i m a t e d e f f o r t

[- - O r g a n i s a t i o n a l
I e n v i r o n m e n t

[- - T e c h n i c a l
I e n v i r o n m e n t

[- - P r o j e c t t e a m
c o m p o s i t i o n

- - S p e c i a l a c t i v i t i e s
0 r

- - R e c o n s i d e r b a s i c
a s s u m p t i o n s
o r

- - T u n e b a s i c c o m p o n e n t s
' w h a t i f a n a l y s i s

[- - R e c a l c u l a t e

- - I - - P r o v i d e e s t i m a t e s f o r
e a c h o f t h e s e g m e n t s

- - A d j u s t a l t e r n a t e c o m p l e x i t y

- - R e c a l c u l a t e t h e e n q u i r e d e f f o r t

- - A s s e s s i n g t h e p r o j e c t r i s k

Figure 7.10 The EEM s function chart.

 T e c h n i c a l c o m p l e x i t y

 O r g a n i s a t i o n a l c o m p l e x i t y

 P r o j e c t t e a m c o m p o s i t i o n

- - - R e c a l c u l a t e

- - - P r o v i d e e s t i m a t e s f o r
e a c h o f t h e s e g m e n t s

 C a l c u l a t e c o a r s e e s t i m a t e s

- - - R e - a s s e s s r i s k i n d i c a t o r s

252

CHAPTER? THE EFFORT ESnMATION MODEL (EEM)

7.7.1 The first cycle: Reviewing, choosing and tailoring the SDLC
strategy

Based on strategy decisions already taken, the estimator is asked to indicate
which development strategy is to be followed, for example, whether software
packages or an incremental approach are to be used. The estimator is then
presented with the segments and activities which comprise the Preliminary
System Design phase.^^ He is asked to indicate which of these segments and/or
activities will be incorporated in the particular development process. The
estim ator is authorised to delete segments an d /o r activities not being
implemented. Similarly, he can either reduce or increase the effort required for
a segment or an activity. The effort required from data processing sources may
decrease for some segments or activities, however, it may increase for others
when external entities take part in the development process. External entities
are, for example, the user organisation or consultancy firms. The effort
estimated for co-ordination should be increased while the effort estimated for
the particular segment or activity which is implemented by the external entity
may be reduced. The assumptions and their reasoning are recorded and will
support the calculation of the estimated effort.

Consider the following example. It is decided that the ‘user requirements’
will be identified, defined and specified thoroughly by individuals from the user
organisation. This decision may reflect the estimates in several scenarios:

Scenario A: The effort required by the contractor organisation for the
development of the particular project should be reduced.^^ Such a decision
affects mainly the ‘user requirements’ segment which includes the following
activities:

11. See Appendix 7A and 7A1.

12. A contractor organisation may be the data processing department or an external software house.

253

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

* Review present system
* Identify functional requirements and information needs
* Identify performance and control requirements

However, it should be clear whether the user’s organisation will be able to
perform the whole segment without any help from the contractor organisation.^^
In addition, the contractor may decide that he is willing to accompany the
process with one of his analysts, in order to permit continuation of the process.
Hence, this decision regarding the development process has an impact on the
estimator’s assumptions. The estimator has to decide how to incorporate these
decisions and assumptions into his estimates. He may do it in several ways:

Alternative 1, the estimator assumes that the contractor organisation will
need only 1 0 % of the total effort estimated for this segment.
Alternative 2, the estimator assumes that the proportion of the effort
which will be implemented by the contractor in this segment will be, for
example, as follows:

* Review present system 5%
* Identify functional requirement and information needs 10%
* Identify performance and control requirements 15%

Taking different assumptions is likely to result in different efforts. The
different assumptions might be used in different estimation sessions which are
targeted on different objectives. However, the second alternative allows the
EEM to produce a detailed work plan which is based on activities.

Scenario B: Although the decision was that the ‘user requirements’ (external

13. The decision maker might not be aware that technical difficulties might be encountered in
implementing the last activity.

254

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

requirements) will only be identified, defined and specified by the users’
organisation, the effect on the estimated effort for the ‘user design’ segment
should be also considered. Since the ‘user design’ segment is usually best
performed by a team of users, system analysts who are familiar with the business
domain and technical analysts, they should be involved in the implementation of
this segment. It includes the following activities:

* Define inputs and outputs
* Define processing functions
* Define data requirements
* Issue preliminary functional and technical specifications

The estimator should clarify whether the user’s organisation aims to be involved
in the implementation of this segment and if so to what d e g re e .B a s e d on his
judgement, the estimator may conclude with the following example of allocation
of effort for the contractor organisation:

* Define inputs and outputs 60%
* Define processing functions 100%
* Define data requirements 80%
* Issue preliihinary functional

and technical specifications 1 0 %

Scenario C: The estimated effort for organising the project should be increased.
Since the number of team members is considered as the cost driver for
‘organising the project’. It should be (either proportionally, or based on the
estimator judgement) increased according to the number of participants, either

14. The decision makers may not be aware that the activity ‘define processing functions’ includes
the functions which support the flow of information among work stations. This activity cannot
easily be implemented by the user staff. Ideally, when such a decision is recorded, the EEM should
direct the estimator to explore the exact meaning of the decision and its implications. This is
included in the agenda for ftirther development of the EEM.

255

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

full-time or part-time.
Scenario D: The complexity associated with the development may be reduced.
This stems from ‘user involvement* being a factor which reduces complexity and
improves productivity or, more correctly, effectiveness. This will be present in
the complexity assessment.

The appropriate life cycle route for the development of the particular
project has been chosen and tailored to the strategy decisions taken. The
estimator’s assumptions and decisions were incorporated into the life cycle
approach and recorded. Moving to the next session in this cycle: the profile of
the project is assessed.

7.7.2 The first cycle: Assessing the characteristics of the project

Since a prime critical success factor in software development is the prevention of
uncontrolled risk, one of the first questions the parties have to ask themselves is
how risk-laden the project is from the managerial and technical points of view.
Hence, complexity and risk analysis should be conducted. The EEM initiates a
series of questions to which the estimator is asked to respond. The evaluation of
the project characteristics such as size, complexity and risk will be based on the
estimators response, and the corresponding rules which reside in the knowledge
base. Two main data entry sections are included in this cycle. These serve to
record the estimators’ assumptions. The first section records assumptions
regarding the project size and the second the complexity and the risk associated
with the projects environments.

Attributes associated with three different sources: the target system, the
replaced system and the process of implementing the PSD, are used for sizing the
development project, e.g.: number of screens, reports and inquiries in the
replaced system and in the target system, number of data elements, file
conversions and re-designed forms needed to support the functionality of the
target system, and number of tenders to be evaluated, number of high volume
transactions, for which capacity planning is needed. The answers given by the

256

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

estimator are based on the general knowledge available in the organisation, as a
result of the ‘preliminary survey’ (in the Project Planning phase).

Although the EEM evaluates the complexity for each of the various
categories, the results are not incorporated in the direct calculation of the
estimated effort for the PSD. The set of ‘standard of effort’ values which is used
in the estimation algorithm is classified only by the ‘general system complexity’.
The reason is that some attributes associated with the organisational
environment are considered as project size attributes (e.g. number of interviews,
number of tenders to evaluate, contracts to negotiate). The technical complexity
and the project team complexity affect particular segments, mainly although not
explicitly, in the Construction phase. They should considered separately and at
present it is subject to estimator judgement.

7.7.3 The second cycle: Consultation session, estimator - EEM

The second cycle includes the following:

* Calculating the first iteration of the required estimates.
* Recalculating the required estimates following a consultation:

Estimator - EEM.

At the beginning of this cycle, the model tries to calculate the estimates.
It may encounter difficulties in doing so with regard to a few activities
characterised by a high variability of effort needed to accomplish them in
different projects. For example, the ‘hardware and software selection’ process
will vary among organisations and types of projects. We cannot compare this
process when done for a governmental agency with that for a company in the
private sector. Similarly, we cannot compare the establishing of selection criteria
for a data-base management system (DBMS) software to be installed in a
mainframe computer that supports a distributed system, with that of selecting
DBMS software for a micro com puter which aims to support software

257

CHAPTER 7 THE EFFORT ESHMATION MODEL (EEM)

development in user departments.
Wherever the model comes across activity of that sort, it consults the user

and uses it to consequently generate an estimate. If the estimator feels that the
estimates do not accurately reflect his opinion, experience, intuition, etc., he
informs the model, which responds by presenting him with all the questions and
the answers, for his reconsideration. The estimator is allowed to change them
and the model will provide new estimates.

The end product of this cycle is an estimate for the number of working
hours required to accomplish the activities included in each of the segments
which compose the Preliminary System Design phase. The required number of
working days is derived from the estimator’s answers, the knowledge-base of the
model and the inference rules which manipulate both. The EEM will also inform
the estimator of the major assumptions that affect the estimates. The algorithm
for calculating of the estimates is given in Section 7.8

7.7.4 The third cycle: Fine tuning the EEM to the specific environment

The third cycle includes the following:

* Examining the principal components of the knowledgebase and
making ad-hoc changes to them.

* Recalculating the required estimates.

The prim e concern of this cycle lies with fine tuning the m ajor
components of the model to the specific organisation or project.

If at this time the estimator is still not satisfied with the estimates, the
principal components of the knowledge-base are shown for his examination in
the following two iterations:

The first iteration covers the rules used by the model in determining the
project complexity level. The estimator is asked to examine the rules

258

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

included in the knowledge-base for the determination of the complexity
level. He is authorised to change the complexity level on which the
estimates are calculated if, in his opinion, it is not suitable for this project
environment.
The second iteration covers the cost drivers which contribute to each of
the activities and their correlated ‘standard unit of effort’. It is suggested
that the estimator examine the:

* Associations, proposed by the model, between the cost drivers and
the activities.

* The ‘standard of effort’ (SOE) units attached to each of the
integrated entities composed of cost factor and activity.

These components are also subject to an ad-hoc change by the estimator.
The EEM offers the estimator a ‘what if analysis option for that purpose.

The cycle culminates by recalculating the estimates for the effort required
for the PSD phase.

7.7.5 The fourth cycle: Providing a coarse estimate for the total project
effort and re-assessing project risk

The coarse estimate for the total effort can be obtained now. This is based on
the estimator’s judgement about the resource distribution among the phases of
life cycle in the particular development process. The EEM may suggest guidance
for the classification of the project based on size, development strategy, and
environments.

Based on the coarse estimates for the total effort the risk indicator should
be re-assessed, since target effort and duration required for its implementation
are themselves possible sources of project risk.

259

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

7.8 CALCULATION OF THE ESTIMATES

Having described the conceptual framework of the model, the software
development effort for the Preliminary System Design phase is calculated, as
follows:

1. The life cycle components take the form of a binary M by N matrix (L) in
which each cell has the value of either 1 or 0 , respectively indicating that
the identified activity does or does not have a cost driver that contributes
to it.

Lij = 1 means that cost driver j does contribute to the cost
of activity i

While,
Lij = 0 means it does not.

Hence, the dimensions of the matrix Lij are:

* Activities i, i = 1....M
* Cost drivers j, j = 1....N

2. The assessment of the project profile results in values of size attributes,
which represent the work needed for the phase, being estimated. The size
of the project is defined by a vector dj, where dj is the number of times
cost driver j is used.

3. In order to estimate the effort, the life cycle matrix Lij must be related to
the number of times each cost driver is used. This is achieved by
calculating matrix Dij, showing the units of work required for activity i and
all the occurrences of cost drivers in the overall project. Therefore,

(7.1) Dij = L ij* d j

260

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

4. Matrix Kij includes the ^standard of effort’ of activity i and cost driver j.
There are three levels of complexity (c = 1,2,3) corresponding to simple,
moderate and complex. There are three matrices K ^j which store the
‘standard of effort’ for each complexity c, activity i and cost driver j. The
content of each matrix will be the ‘standard of effort’ units (person-hours)
with each of the associated activities and cost drivers.

5. To calculate the effort for a project with complexity c, we need to
calculate EHj. This is achieved by multiplying the following matrices:

(7.2) EHj = Dij*ICHj

This assumes that there is no adjustment for software packages.
6 . In order to estimate the effort for a project incorporating the search for

application software packages and their usage, there is a need to employ
an adjustment factor Sij which reflects the reduction of effort required to
accomplish activity i and cost driver j. Each cell Sij includes an effort
adjustment factor, associated with activity i and cost driver j. The
estimated effort will be achieved through the multiplication of the
following matrices:

(7.3) EsHj = EHj* Sij
Where,

Es indicates the estimated effort assuming an adjustment
factor for application software.

7.8.1 Assigning aiternate complexity

Using the above procedure, the effort has been estimated assuming a standard
level of complexity for a project. However, this is not always valid. No doubt
there are projects which incorporate different levels of complexity for various
activities or segments, to which we would like to assign an alternate rating of

261

CHAPTER 7 THE EFFORT ESHMATION MODEL (EEM)

complexity. These issues can be dealt with in either or both of the following
ways:

1. Using a particular complexity factor which is correlated with a specific
activity and cost driver. This will imply the replacement of individual
‘standard of effort’ cells (in the KHj matrix) which had been found to be
generally suitable for the project’s level of complexity. Furthermore, a
requirement to account for the specific categories of complexity might be
considered. Segments and/or sub-segments being mostly affected by each
of complexity attributes (categories) could be identified.

2. Adjusting a specific complexity factor to segments and/or sub-segments
which are expected to be affected by the specific complexity attribute.
This approach implies that, as a result of assessment of the complexity of
the external environments, an adjustment factor will be applied to
relevant segments.

Unfortunately, adopting the discrete comparison (standard approach)
does not help in all cases. The variance between projects for the same activity
may be of such an order of magnitude that no comparison will apply. The model
suggests that the adjustment should be done by the estimator, using his expert
judgement.

7.9 THE PRODUCTS OF THE MODEL

Based on the answers given by users of the system, the EEM knowledge-base and
the rules for manipulating them, the model offers estimates for the manpower
needed for each segment in the Preliminary System Design phase. From these
estimates, the coarse estimates for the total effort can be calculated using the
resource allocation which is the most applicable to the particular project profile
and its environments. Having in front of him the detailed assumptions and
decisions taken throughout the Project Planning phase and the estimation

262

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

session, and using his judgement, the estimator can decide on a different
allocation of resources for the calculation of the coarse estimates. Project risk is
re-assessed by incorporating these results.

7.10 A CASE STUDY- PROJECT‘A*

A case study is introduced here to demonstrate the main features incorporated in
the EEM and the support it provides throughout an estimation session. The
major outputs of the EEM will be introduced throughout this discussion.

The case study describes an enhancement project aimed to add and to
update existing functions in a large data-base, using the AD ABAS Data-base
Management System. The project was developed, by an in-house data processing
unit in the private sector, for a company in the banking, insurance and financial
services segment.

The proposal for a software project is a product of the Project Planning
phase. It includes decisions regarding the development strategy such as the use
of tools and the level of involvement expected from the various organisational
entities throughout the development process. The Project Planning Document
(PPD) for the case study is given.

THE PROJECT PLANNING DOCUMENT (PPD) - PROJECT ‘A’

The Project Objectives were to produce a computer system, which would provide
a significant reduction in the amount of clerical work required to process
scheduled ‘ordinary branch’ maturities and ‘income bonds’. It was also to
improve customer servicing through the improved design and quality of all
associated forms and documentation.

The scope of the project covered the following areas:

the processing of scheduled ‘ordinary branch’ maturities and ‘income

263

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

bonds’ automatically generated from the ‘ordinary branch’ update system,
the clerical functions of the life claims department associated with this
processing.
the link between maturities processing, the Cashiers and Cheques Systems
and the ‘ordinary branch’ Loans System.
the introduction of newly designed claim documentation to improve
presentation to the customer.
the consideration of alternative methods for the printing of all maturity
forms and documentation.
the identification and addition of in terest on delayed claims and
associated tax documentation.
the effects of any changes on the clerical functions of the House Purchase
Public, House Purchase staff and Banking Service departments,
the conversion of policies from the current to the new maturities system,
the flexibility of the system to be extended to cover other claim areas in
the future.

Costs and Justification. The volume of ‘ordinary branch’ maturities
would increase significantly during the coming year and for several years
thereafter. A full cost/benefit analysis is not shown here as this was produced as
part of the System Proposal.

Project Organisation was established. The user manger, the Information
System project manager and the project team members were identified. It also
indicated that additional staff were to be added to the team (from department X)
as the amount of development work increased. Additional Life Claims staff were
required during the testing and the training phases of the project.

The reporting links and responsibilities were established. The individuals
who were in control of the user team, the IS team, the liaison officer and the
training were identified.

Key assum ptions. Experienced Life Claims staff, in addition to project
team members, were to be available to carry out testing of the system and
supervise training during the period leading up to implementation.

264

CHAPTER? THE EFFORT ESTIMATION MODEL (HEM)

Resources were to be available from other departments to carry out
interface testing within the time scale of the project.

The re-design of forms and documentation, the printing of stationery and
the testing of it were carried out before implementation.

System development approach was based on the use of Natural 2 for the
online applications. Batch applications were to be written in Cobol or Natural 2
as appropriate.

7.10.1 An estimation session, using the EEM

Each EEM estimation session started with a life cycle editing session. The
estimator analysed the life cycle strategies, choosing the appropriate strategy and
modifying it based on the strategy decision taken.

Life cycie editing and recording strategy assumptions

At the start of an estimation session, the EEM presented the life cycle strategies
from which the estimator chose the relevant strategy for his development task.
The estimator was now referred to the segments encompassed in the chosen
development strategy to which he incorporated the strategy decisions which were
included in the PPD, as follows:

The ^organisation segment’. Since the number of team members (part
time or full time) is the major cost driver for organising the project, the
effort for the ‘organisation segment’ was increased to account for the user
involvement. In project ‘A’ the contractor’s organisation was to use 3 part
time staff and the user planned to involve one part timer in the PSD work.
Therefore, increasing the effort required for this segment by a third was
considered an appropriate compensation for the extra user involvement.
The estimator recorded this assumption by indicating the proportion of

265

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

the total effort to be used for the ‘organisation segment’ as 1.3. (The
estimator could have used a different ratio, however, in this case study this
assumption was agreed upon). He was then asked to record the reason
for adjusting this segment.
The ‘user requirements’ and ‘user design’ segments were to be
implemented mostly by the users. It was assumed that the users would
produce half of the effort required for this segment.
The ‘technical design’ included the design of the technical architecture,
data-base and system processes. Since a data-base was largely, already, in
existence, only 3 new logical files and references to nine existing files were
planned. The effort required for this segment was reduced accordingly.
The ‘installation schedule’ segment was reduced to a tenth of the level of
effort expected for this segment as no new hardware and software was
part of the project.

Examples screens for this process are presented in Appendix 7E.

Inputting projects data

The session continued with an assessment of the project profile. The EEM
initiated a series of questions to which the estimator responded. The session
included inputting the values for the size and the complexity attributes.
Whenever the EEM came across values corresponding to the tasks characterised
by high variability of effort required to im plem ent them in different
environments, the EEM initiated a request for additional information. In the
case of project ‘A’, the EEM came across values for size attributes which were
considered to belong to the categories of concern. The following groups were
identified:

Control and utility modules. For example, modules to manage file access
and track updates, produce control reports, data-base management

266

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

control routines.
Complex or major functions from the user design viewpoint. They were
based on the business functions.
Complex process from the technical design viewpoint, which were not
directly related to input or output.

The EEM requested the additional inform ation and received the
following:

180 hours were planned for the accomplishment of 20 identified control
and utility modules. These modules were concerned with the restriction
of access to parts of the online system and dialogue switching via the use
of tables.
60 hours were estimated as being required for the accomplishment of an
allocation strategy to work in totally flexible way and of the design for
total user control of batch running of the system.
100 hours were estimated for the accomplishment of a procedure to
convert numbers (money terms) to words etc.

Assessing the profile and the compiexity of the project and its
environments

The values for the size and the complexity attributes were updated. The data was
analysed and the session culminated with the complexity assessment. The
‘general system complexity’ which determined the ‘standard of effort’ (SOE) to
be used was presented. The estimator was asked to approve the EEM’s
recommendation or otherwise change it. To support this decision, the EEM
provided the results for each of the categories of complexity and risk. This
presentation was followed by detailed information on the contribution of each

15. These estimates were, as anticipated, for the total effort the PSD and the Construction phases.

267

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

component which was incorporated in the calculation of the complexity and the
risk.

In the case study, the EEM recommended that the ‘general system’ was
complex, however, at the lower end of the range (42 points, in the range 41 to 70
points for a complex assessment). The risk associated with this development was
considered as moderate (16, in the ranges of 8 to 23 for moderate risk). The
major contributors to this were the requirements for a high response time and
the multi-directional interfaces with several applications involved in this project.
However, the project was a functional repeat of a well known project and the
users were planned to participate actively in the development process as an
integrated part of the project team. The additional categories of complexity were
all assessed as moderate.

The ‘technical environment complexity’ was anticipated to be moderate
(18 in the range of 7-20). Although the system incorporated extensive
communications, the communication facilities system was well established and
there was no need for modifications. The hardware environment was complex
but the project team was familiar with it. The ‘organisational complexity’, was
anticipated as moderate (22 in the range of 10-29) and so was the ‘project team
complexity’ (8 in the range of 4-11). The team was very small with a single
decision maker. All staff required were available and familiar with the system,
the team had considerable previous exposure with industry, yet had limited
knowledge with the specific area of application, therefore a small learning curve
was anticipated. The determinants contributing to each category of complexity
were presented.

Analysing this information the estimator could safely decide on a
moderate level of complexity for the estimates calculation. He confirmed his
decision and the EEM chose the moderate matrix (K^ij) of SOE to be used in the
algorithm for the effort estimation, as defined previously in Section 7.8.

AD ABAS was the main DBMS used by project ‘A’. The DBMS and
NATURAL/2 was mainly used for screen formatting. The impact of the use of
these tools was considered. Since firm data on this issue was not available when
building the model, a decision was made to use (as a starting point) the SOE

268

CHAPTER? THE EFFORT ESnMATION MODEL (EEM)

matrix (Sij) which is used by the EEM when the application software strategy is
considered. The question was asked whether the same level of effort and
distribution of resources (between the PSD and the Construction phase) could be
assumed, at that macro level of coarse estimates, when using AD ABAS and
NATURAL/2 and when assuming the application software approach. The
similarity between the use of a screen formatter, report generator in such
applications and the use of software packages in general systems development
was considered to be sufficient to attempt this combination.^^

Consultation session, estimator - EEM

One of the original and important features of the EEM is that it estimates all the
effort required for the PSD development process. This stemmed from the main
objective for building the EEM, namely the wish to provide support for all
parties involved in the management of the software development. High level
decision makers needed to know the total organisational effort and not only the
effort consumed by the contractor organisation. The EEM was therefore built to
support these decision making situations. The estimator was able to evaluate his
own part in the development process given that he knew the proportion of his
contribution to the effort.

All the data required was now available to the system. The EEM was able
to analyse the data provided by the estimator, by using the knowledge-base and
the inference rules and to propose estimates for the PSD effort. Three curves
presenting the minimal, the most likely and maximum estimated effort for each
segment in project ‘A’ were shown on the screen. The peak and the lowest
estimated effort were indicated.

Estimated effort from the first attempt was presented. The output
included the effort in person hours (PH) and the percentage for each segment in

16. This assumption was tested on 2 additional projects and found to be appropriate, however,
additional research is required to confirm this.

269

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

the PSD. To allow a top-down comparison of the EEM estimates with the
industry ‘average’, a ‘common’ distribution of effort for the two main strategies
for software development was also presented. Assumptions and decisions taken
at the life cycle editing session were shown, although they were not yet
incorporated into the calculation of the effort. They were given for the estimator
to re-evaluate.

Additionally, the contribution of each of the cost drivers to the total effort
was given for the purpose of analysis. The preliminary estimates were presented
for project A’.

These were preliminary results in which the decisions made at the life
cycle session were not yet embodied in the calculation. The estimator realised
that the estimated effort for the ‘technical support’ segment was high in
comparison with the industrial average distribution of effort. The complex
processes and complex functions contributed to this segment. The estimator
might have been willing to reconsider his assumptions about the effort embodied
in these processes. Or he might have considered approaching the users regarding
their requirements (design-to-cost procedure). The high effort for the ‘technical
support’ was an indicator which should have directed the attention of the
estimator, the user and the software developer to the existence of issues which
may require special solutions.

In addition, the estimator of project ‘A’ learned that the estimated effort
for the planning of the file conversion effort was about a third of the total
estimate for the PSD work. The other major contributors were the system
overhead and the effort associated with the re-design of forms.

If the estimator of project ‘A’ had been the manager who had the overall
responsibility for the development of the project, he would have learned that the
effort accumulation would reach the peak when 470 PH were consumed.

The decisions taken thus far were taken into account and were presented
in the subsequent screen. The estimator was still given the opportunity to
analyse and change some of his assumptions, or to try the effect of additional
assumptions. He could have added, subtracted or multiplied the effort for each
of the segments. The changes were followed by requests to provide the reasons

270

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

for the alterations made. The changes and reason for the adjustments were
recorded.

A decision was made (independently of the estimating process) to
postpone the screen formatting effort to the Construction Phase. The cost
drivers contribution to the PSD effort showed that the effort associated with
screens and enquiries which were required in the target system was estimated at
62 PH (for the users and the contractor organisation). Since the users were
involved in this process, a decision was that only 40 hours would be reduced from
the estimated effort on this account. Using the last output screen, 20 PH were
subtracted from the user design and the from the technical support segments.

The last output screen in this series presented the effort calculated by the
EEM incorporating all the decisions taken.

Additional information was available for the estimator to support the
decisions taken throughout these estimation and the consultation sessions. The
estim ator may have wished to analyse the project profile based on his
assumptions of the application domain and its environment.

Examples screens of this process are shown in Appendix 7E.

7.10.2 Analysis Of results

The actual effort required for the PSD was 490 PH, for Information System’s
personnel only.^^

The EEM calculated the effort, on moderate complexity, as 530 person
hours which is 108% of the actual effort required. The estimator’s view of the
project estimated the effort as 420 PH which is only 85.7% of the actual effort.
Based on the assumption that the resource allocation between the PSD Phase
and the Construction Phase is around 17%, the total effort required for the
project development is extrapolated.^^ The coarse estimates for the the total

17. This effort did not include the user who was assigned to the project.

271

CHAPTER? THE EFFORT ESnMATION MODEL (EEM)

development effort for this project are 3118 hours, which is 106% of the actual
effort for this project (2930 hours). The project team estimated the effort
required for the total project to be 3150 hours which account for 107% of the
actual effort. A summary is given in Table 7.1.

P H A S E

P R O J E C T

A c t u a l

e f f o r t

D A T A

T e a m

e s t i m a t e s

EEM C O M P A R I S O N

E s t i m a t e s v s .

(A c t u a l e f f o r t

p r o j e c t t e a m

(%)

A c t u a l

= 1 0 0 %)

EEM

P r e l i m i n a r y
S y s t e m D e s i g n 4 9 0 4 2 0 5 3 0 - 1 4 . 3 + 8

T o t a l p r o j e c t 2 9 3 0 3 1 5 0 3 1 1 8 + 7 + 6

Table 7.1 Actual versus estimated effort - project ‘A’

7.10.3 Conclusions - Project‘A’

The EEM estimates for the PSD phase are more accurate than the project team’s
estimates (-14% to + 8 %), the EEM coarse estimates do not differ from the those
estimated by the estimators of the project. Both are quite accurate.

However, the quantitative analysis is only one side of the coin. The
process demonstrated using the project ‘A’ case study demonstrated the features
embodied in the EEM and the ability to support the management of software
development, emphasising the effort estimation process.

The flexibility of the EEM to cope with changing situations was
demonstrated in the situation where a decision was made to move the activities

18. These coarse estimates are based on the assumption that resource distribution among the
phases of software development, is approximately 20% for projects which are characterised as
belonging to the Organic Mode [BoeSl], However, prototype requirements, using screen
formatting activities were postponed to the Construction phase (to the detailed Design segment)
therefore, the assumption to account for 17% only, is considered as appropriate. This agrees with
the actual resource allocation for this project.

272

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

associated with prototyping of the screens to a different stage. The usefulness of
the outputs in supporting various parties was also shown. Similarly, the EEM
handles quite easily a change in the assumption to use the ‘application packages
factor’. The only thing for the estimator to do was to indicate this to the EEM
whilst repeating the analysis stage.

7.11 A CASE STUDY - PROJECT B

Additional case study is introduced with the aim to analyse various characteristics
of software development, their impact on the effort required for the development
and the way the EEM deals with it.

The project’s background. Project ‘B’ was a development of entirely new
system which aimed to support a set of processes previously implemented
manually, in multi-sites, scattered all over the country. The system was
developed by an in house IT department in the public sector. The project
involved the selection of hardware and software, and interfaces among various
types of hardware.

Project ‘B’ was developed using a report generation language and an
application generator, both in house developments. Whilst the report generator
was a long time in place and usage, the application generator was a new
development, project B’ being the first software development to use it.^^ The
application generator evolved and under-went changes during the development
of project ‘B’ and as result of its use in the project. The evaluation of the
application generator was a part of the project mission, although informally.
90% of project ‘B’ was implemented using the application generator and the
remaining 10% in Assembler. All the reports required produced using the report
generator.

19. It might be worth explaining what is meant by application generator. An application generator
is defined as "a tool which produces and executable application from a non-procedural source
language, hut the application thus created uses services and features from the application generator and
can only executed with the generator as a host [Jon86].

273

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

All Staff required for the development were available, yet a major learning
curve was anticipated resulting from the type of the application, the use of
entirely new hardware and new application generator.

Some size a ttribu tes of project ‘B’ are given below. The list of size
attributes used in the EEM can be seen on the examples screen in Appendix 7F.

* Project size in LOG was 70K.
* The project involved about 50 interviews.
* The replaced manual system had about 50 reports and about 120

input forms.
* One site, for example, included more than 100 local work stations

and around 2 0 remote work stations.

7.11.1 Recording life cycle assumptions

The following adjustments were made to the life cycle base model, with respect
to the activities associated with project ‘B’:

Only 50% of the activity ‘define inputs and outputs’ which is included in
the ‘user design’ segment were implemented by the IT group. The rest
was implemented by the user.
The ‘technical support’ segment was not implemented, testing and
conversion processes were not designed and the resource requirements
for them were not evaluated. There were no good reasons for it.
Only 20% of the activity ‘develop conversion approach' which is included
in the ‘installation schedule’ segment was implemented.
Contracts negotiation was not in the responsibility of the IT group.
Therefore, the activity ‘negotiate contracts’ which is included in the
‘hardware and system software selection’ segment was eliminated.
In the ‘C ost/benefit’ segment, the operating costs and benefits of the
system were not fully evaluated. Thus, it was assumed that only 20% of

274

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

the required effort will be consumed.

7.11.2 Assessing the complexity of project and its environments

The ‘general system complexity’ for project ‘B’ was assessed by the EEM as
complex, (41, in the range of 41-70 for complex score) although on a very low
level. The risk associated with the project was recommended by the EEM as
moderate (16, in the range of 8-23 for medium risk).

The major contributors to the ‘general system complexity’ were the
following:

* Amount of reports, although most of them minor reports. The
target system required 50 reports.

* Six complex function and three complex process were required.
* The data-base involved more than five logical data-bases.
* The required response time was high (1-3 seconds)
* The interface with other application was a multi-directional with

several applications.
* The impact on operational status was critical.

The ‘organisational system complexity’ was anticipated to be moderate,
but at the highest level (29, in the range of 10-29 for moderate score). The
contributors to this score were:

* More than three departments (other than the IS) were involved
with the project.

* Although the project was developed on a single-site, it was
intended for multiple working units within multiple-sites.

* The project was an entirely new system. The algorithm and logical
design were developed from scratch.

* The decision process associated with the project was considered as

275

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

complex. Multiple committees were involved and multiple reviews
were held.

The ‘technical complexity’ was assessed as complex (26, in the range of 21-
35 p o in ts fo r com plex sco re). A lthough th e system in c o rp o ra te d
communications, the communication system was established but there was no
need for substantial modifications. The reasons for this score were namely:

* All hardware was new to the entire project team.
* File management was customised. No DBMS was used.
* A new on-line monitor was used.
* Communication facilities were established but some development

required support.
* The system architecture involved distributed facilities, however, a

centralised data-base was used.

‘Project team composition’ was assessed as complex, although, at the very
low end (13, in the range of 12-20 for complex score). The reasons for this score
were the following:

* The team’s experience with the application was minimal.
* A major learning curve was anticipated.

It was also the team’s first exposure to the use of an application generator.
In summary, each of the complexity categories was considered as either

complex, or very high on the moderate scale. This might indicate a need for
adjustments of particular segments.

The impact of the use of the two generators in the development process
should be also incorporated into the estimates, however, differently. Application
generators, usually, are most effective in the internal design and coding segments,
meaning in the Construction phase. Their impact on the requirements, user
design and technical support and on the planning of testing and conversion

276

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

processes are minimal. The impact of their usage is minimal also on the user
documentation and integration. In addition, in the case of project ‘B’ it was clear
that the effort required for the development will not be reduced. On the other
hand, it was clear that it should consume additional effort and duration, resulting
from the evaluating process and the learning curve anticipated.

The use of a report generator impacts mainly the Construction phase, its
impact on the user requirements is also minimal, however, the impact on the user
design might be greater, although not significantly. The effect on the
Construction phase is significant in the coding segments (a fall of about 80% in
the effort might be observed), testing and error correction is easier when a report
generator tool is used. The overall impact on the Construction phase might be as
high as 40-45% of the effort.

7.11.3 The EEM estimation session and the outputs

The first piece of information the estimator received resulting from the EEM
analysis of the data was the contribution of the various cost drivers to the total
effort (the life cycle adjustment were not yet incorporated). The results are
shown in Table 7.2.

The results indicated clearly the high effect of the concurrent evaluation
of hardware and software on the development effort. Although the activities of
tendering and evaluating the proposals took part mainly in the PSD, it had
impact on the rest of the development. The effort required for producing the
new reports and screens was also substantial. Capacity planning effort was
associated with project ‘B’ and the EEM recommended an estimated effort of
2736 hours for this activity.

The effort consumption at the peak manning level was estimated as 4080
PH, and the minimum was 2040 PH.

277

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

Cost driver Hours

System overhead 694
Project team members 100
No. of interviews 301
Old reports, screens and inputs 348
New reports 800
New screen, messages 1856
New inquiries 8

Re-designed forms 56
Data-base size 346
Invitations to RFP 1200
Evaluations of RFP 6460
High volume online inputs 2736
Utility and control 125
Special file conversion 175

Table 7.2 The contribution of the various cost drivers to the total effort

The Basic estim ates were shown, including the distribution of the effort
among the segments of the PSD. The impact of the evaluation of H&S was
clearly indicated. The EEM estimated that these activities consume about 50%
of the effort required for the development of the PSD, by all parties involved in
the development effort. The total effort for the PSD was estimated as 15444 PH
for all parties involved in the development, and when the changes to the life cycle
were accounted the PSD effort was estimated as 12380 PH.

At that stage the EEM initiated a screen on which the alteration required
can be made and their reasons recorded. In the case of project ‘B’ the estimator
decided to incorporate two additional changes, as follows:

The ‘user requirement’ segment was increased with 10% compensating for
the anticipated difficulties in the development as a result from the unique

278

CHAPTER? THE EFFORT ESTIMATION MODEL (EEM)

issues described previously.
The ‘user design’ was reduced to 85% accounting for the use of the report
generator. This reduction considered the effect on the Construction
phase also.

This resulted in the EEM estimates of 12263 PH for the PSD.
Examples of the screens supporting the EEM process are given in

Appendix 7F.

7.11.4 Analysis of results

The EEM estimated the effort required for the PSD for IT personnel to be 12263
PH, which was 101% of the actual effort required. The actual effort required for
the PSD was 12096. The project team did not estimate this part of the effort.
The EEM estimated the effort required for the total development to be 40052
which was -12% of the actual effort. The actual effort required for project ‘B’
was 46368 PH. The project team estimated it to be 24192 PH. The EEM coarse
estimates were based on the assumption that resource distribution between
phases of software development is approximately 25%, for the Project planning
and the Preliminary System Design phases, for projects of that type. The actual
versus estimated effort is shown in Table 7.3.

PHASE
P R O J E C T

A c t u a l
e f f o r t

DATA
T e a m
e s t i m a t e s

EEM C OMP AR I S ON (%)
E s t i m a t e s v s . A c t u a l

(A c t u a l e f f o r t = 1 0 0 %)
p r o j e c t t e a m EEM

P r e l i m i n a r y
S y s t e m D e s i g n 1 2 0 9 6 * * * 1 2 2 6 3 * * * + 1

T o t a l p r o j e c t 4 5 3 6 8 2 4 1 9 2 4 0 0 5 2 - 4 8 1 2

Table 7.3 Actual versus estimated effort - project ‘B’

279

CHAPTER 7 THE EFFORT ESTIMATION MODEL (EEM)

7.11.5 Conclusion - Project

The EEM estimates are significantly better than the project team
estimates. One reason is that the EEM accounts for activities which are not
usually considered such as tendering, evaluating of proposals and capacity
planning. Those are time consuming activities which affect the effort and the
duration of the total project. In addition, the EEM didn’t compensate for the
usage of application generator, while the project team did. They estimated that
the use of application generator will reduce significantly the development time
even though it was the first exposure of the project team to this strategy of
development. It is worth noting that the in house application generator was not
the only one considered for project ‘B’. Additional software was evaluated for
this purpose, however the project team concluded that the in house development
match best their needs. The project team did not evaluate the difficulties
anticipated with the users and those raised from the implementation of system
that was never computerised but worked quite smoothly manually. Most of these
factors are included in the complexity rules used in the EEM and thus classify the
SOE for the specific development.

280

Chapter 8
EVALUATION OF THE EEM

8.1 INTRODUCTION

Two avenues of evaluation are considered in this chapter, a qualitative and a
quantitative analysis of the EEM. The qualitative analysis includes a summary of
informal discussions and a comparative evaluation. The comparative evaluation
follows the process employed by the IIT survey of sizing models done for the US
Air Force [ITTSTa]. The IIT report concluded by rating each model according to
its relevance to its intended usage. The criteria suggested in this report are of
general relevance to effort estimation models. This method was used to compare
the EEM with related approaches. All the scores for the EEM are based on the
prototype currently in use.

The quantitative analysis uses two tests, they are: C onte’s [Con 8 6]
evaluation criteria as discussed previously and a linear regression. The regression
analysis is used as a means of measuring and comparing the relationships between
the estimates yielded by the EEM and by the projects teams, and with the actual
effort. A comparison of the EEM coarse estimates with the actual results and with
the original estimates as produced by the project teams are then presented for a
sample of 18 projects.

281

CHAPTER 8 EVALUATION OF THE EEM

8.2 EVALUATING THE EEM - QUALITATIVE ANALYSIS

When evaluating a model, the motivation for its development and its objectives
should be considered. Four long-term research goals were stated in the opening
chapter of this thesis, and these were qualitative in nature.^ In the same way, the
evaluation process of the EEM should also emphasise its qualitative nature.

It is appropriate to start this section with a quotation from ''An Open Letter
to Cost Model Evaluators". Robert Park [Par89] (who is both a developer and
evaluator of cost models) argues that an evaluation of a cost model should not be
based on the presumption that it is the models which predict the cost.

The reportas focus on model accuracy says, in effect, that you believe that
models, not estimators are responsible for estimates! Only the most naive
estimators would ever turn an estimate over a model Tfie challenge to a
model builder is to help the users make correct inputs happen. No
professional estimator or evaluator should ever encourage anyone to rely on
models to make estimates for them The report's occupation with model
accuracy seems to be based on an assumption, perhaps made by your sponsors,
that an estimating model is some form o f precision instrument. An
oscilloscope might be a fair analogy. Nothing could be further from truth. The
purpose o f a model is to help an estimator to perform his tasks, not to do the
job for him. It follows, then, that the way to compare models is to evaluate the
help they give [Par89].

Following this line of thought and aiming to get a diverse feedback, the EEM was
presented in a number of meetings of Special Interest Groups in Israel, the
Netherlands and the UK. These were attended by professional software engineers,
IT users, professional managers as well as professional educators in IT and
management.

The feedback received was very encouraging. The participants felt that the
EEM helps the estimator in understanding what is involved in both the process of
software development and the process of estimating the effort required for the
development. The way in which the estimator incorporates his decisions into the
WBS structure, the ease with which this facility is used when new assumptions or

1. See Section 1.10

282

CHAPTER 8 EVALUATION OF THE EEM

decisions are made, was of particular interest. Professional educators in IT and
management areas expressed their appreciation of the way in which the EEM
introduced the decomposition of the SDLC into segments and activities, as well as
the way the assumption were recorded and traced. They indicated that the EEM
provided a good basis for training managers and IT personnel.^ Professional
software engineers who are associated with the development of integrated tools
for software management mentioned that the EEM is applicable for the use in
such tools. Furthermore, the decision recording facility should be expanded to
additional areas of concern. This facility is applicable only when a bottom-up
approach is taken, this is one of the reasons for the EEM being built as bottom-up
model.

Additional properties of the EEM were discussed in these discussions, they
were mainly associated with the:

Ability to build interfaces among the EEM and other software management
or decision support tools (e.g. PERT).
Ability to incorporate the EEM into various environments.

These issues were considered when building the EEM, however, it is not
possible to provide an indicator of how easy this will be to implement. An
interface to PERT tools is of particular interest. The bottom-up approach upon
which the EEM is based makes such an interface possible. Interfaces with project
management and decision support systems should also be a topic for further
research.

The applicability of the EEM to different environments is questionable but
not impossible. It is worth indicating that the preliminary findings from the
analysis of two projects (a real-time and an embedded environment) suggest that
the concept used in the EEM may well be applicable to those environments. The
two projects are not included in the sample results below as the projects have not

2. Although the WBS is not at all a new concept, managers of software development often start a
software planning or estimation session with a blank piece of paper.

283

CHAPTER 8 EVALUATION OF THE EEM

yet been completed. The EEM estimates and the project team estimates for the
PSD are similar in both cases. The COCOMO Intermediate formulae were used
to estimate the effort for one of these projects.

The second avenue for qualitative evaluation of the EEM followed the
descriptive evaluation of sizing models exerted by the IIT [HT87a]. Although this
evaluation process was directed towards sizing models, most of the compared
items are also applicable to effort estimation models. It was felt that such a
comparison might add an extra dimension to the evaluation of the EEM. Only
features included in the EEM’s prototype were considered in this comparison.

The IIT report suggests the following criteria for evaluation: user input,
historical data and analysis, methodology, model output and model usability. Each
of the criteria will be explained below and then the score earn by EEM is given.^
The scoring used is 0 -4 ; 4 being the best score.

User input

Four issues are dealt within this criteria; user effort while implementing the
model, the amount of knowledge and experience required in the application area,
training requirements, and the availability of input early in the software life cycle.

User effort is quantified by counting the number of ‘input types’ to the
model and the ‘discrete input parameters’. The latter counts the number of
values which are required as input for each attribute of ‘input type’. The
counting is for the following five categories:

* Q ualitative inputs - inputs that are used to characterise the
development environment and the complexity of the application.

* Q uantitative inputs - inputs that require determ ination of
information.

3. The EEM scoring is the subjective rating of the author of this thesis.

284

CHAPTER 8 EVALUATION OF THE EEM

* Identification inputs. These inputs are not used for the estimating
process.

* Modular and functional input - inputs that require knowledge of the
modularity and functionality of the software system.

* Calibration factors - correction factors that reflect a development
environment which could cause deviation from an estimate for a
‘typical’ development environment.

The EEM would have a low score using the IIT criteria as it requires
substantial of input. However, it should be noted that each of the models
evaluated by the IIT asks for detailed information, but groups the
individual attributes into categories and each category is counted as an
‘input type’. For example, the counting rules for the ‘input types’, called
‘external inputs’, are defined to include the following input types: inputs
files; tables; input forms; input screens and input transactions, all of which
cross the external boundary of the system and causes processing to happen.
In the EEM an equivalent to this categorisation could be grouping of the
size attributes into categories of the cost drivers. This procedure would
have greatly reduced the number of input types used in the EEM.
Amount of knowledge required, training requirements and availability of
input early in the software life cycle. The basic knowledge, that is required
to apply the EEM early in the life cycle, is available in the organisation. It
is part of the deliverables of the ‘preliminary survey’. The EEM tries to be
a self explanatory, the input is generally easily understood and therefore it
can be used by inexperienced estim ators. There are few training
requirements. Therefore, if the EEM were to be included in the IIT
evaluation the following ratings would have been scored:

* Can the model be applied without knowledge in the application
area? Rating 3.

* Are the inputs easily understood? Rating 4.
* Is the input available early in the SDLC? Rating 4.

285

CHAPTER 8 EVALUATION OF THE EEM

Underlying methodology

The evaluation questions for this criteria are:

Is the model a Svhite box’? Is the underlying theory in the public domain?
The EEM is based on the stages of the software development process in
association with the standard of effort. It is a open framework. It would
have scored 4, for this criteria.
Is the model applicable to different user environments? The particular
issue addressed here is the applicability of the sizing model to scientific and
real-time systems. The applicability is judged by the size results yielded by
a particular model. To date the EEM has not concentrated on this area.
Function Point (FP) based models, for which the IIT survey has not been
able to attain access to pubhshed studies that address this finding, were
rated as 2. It is assumed that the EEM falls in the same category and would
have a similar rating.
Are the equations parametric-based? This criterion is concerned with the
procedure in which the model’s parameters were obtained. Only two
options are considered: models which were developed and based on project
data are scored as 4, and those which are derived purely statistically are
assigned a rating of 0. The EEM is based on the history of project data, but
heuristic procedures are also involved in the process of building it.
Therefore it is likely to have a high score (3).
Is the model’s result accurate? This issue is addressed in the quantitative
analysis of the sample data (see Section 8.3 and Paragraph 8.3.1)

Model output

The third criterion concerns the model output. The questions in this section are:

Is there a probability associated with the estimates? The EEM does not

286

CHAPTER 8 EVALUATION OF THE EEM

forecast probability ranges. Nevertheless, the EEM collects the minimum,
maximum and most likely values for the appropriate quantitative inputs,
from which a range of estim ates incorporating probability can be
calculated. This approach substitutes the preliminary approach taken in
the design of the EEM, as expressed in the early versions of the
questionnaire. The estimator was asked to associate one of three degrees
of uncertainty (high, medium or low) with the input metrics. The idea was
to associate with each uncertainty level a range of probabilities.
Does the model estimate Function Points? All the FP based models are
assigned a high rating of 4. For the purpose of this evaluation it can be
assumed that the EEM would have scored 4.^
Are inputs summarised on the output report? The concern here is whether
all the input data is provided in the output summary reports. The EEM
provides a full report of the size and the complexity assumptions. It would
have scored 4.
Does the model provide graphic capabilities? The EEM provides only
limited graphic capabilities in its prototype version. It would have been
therefore scored 1 or 2.

Model usability

Model usability is the final category which is assessed in this survey. Only one of
the two questions included in this category is relevant to the evaluation of the
EEM.^ It is:

Does the model have a user-friendly interface? The individuals who were
exposed to the EEM rated its interface highly, although the EEM is

4. It should be mentioned that the sizing models generally incorporate the use of a conversion table
from FP to LOG. As the EEM is not a sizing model this is not relevant to the evaluation, therefore
the score 4 was assigned.

5. The second question is related to the availability of user support

287

CHAPTER 8 EVALUATION OF THE EEM

demonstrated as prototype which was built for research purposes only and
as such does not include all the help and explanations which would be
required. It is assumed that the ITT would have scored the EEM for user
friendliness as 4.

8.2.2 Evaluation summary

This comparison reinforces the quality of the EEM. It performs at least as well as
the established models included in the ITT sample. Further analysis shows that:

* In six of the twelve assessment criteria none of the models scored
better.

* In one of the criteria only 9% of the models presented a better score
than the EEM.

* In the five remaining assessment criteria around half of models
include in the ITT sample scored better then the EEM.

The EEM shows strengths in each area included in the evaluation survey. The
comparison of the EEM with the sizing models included in the IIT survey is
presented in Table 8.1

288

CHAPTERS EVALUATION OF THE EEM

A S S E S S M E N T C R I T E R I A NUMBER OF MO D E L S
AS S CORED I N THE

I I T S U R V E Y
RAT I N C

0 1 2 3 4
EEM

R A T I N G

T HE EEM
A C H I E V E D A

B E T T E R SCORE
T H A N THE I I T

M O D E L S (%)

USER INPUT (the sample includes 11 models)

A r e t h e r e f e w i n p u t s t o d e r i v e ? 6 0 1 1

C a n t h e m o d e l b e a p p l i e d 1 3 1 5
e f f e c t i v e l y w i t h o u t k n o w l e d g e
e x p e r i e n c e i n t h e a p p l i c a t i o n a r e a ?

A r e i n p u t e a s i l y u n d e r s t o o d ? 0 1 4 1 '

I s i n p u t d a t a a v a i l a b l e e a r l y
i n l i f e c y c l e ? 0 0 2 4

HISTORICAL DATA AND ANALYSIS Not Applicable

UNDERLYING METHODOLOGY (the sample includes 11 models)

I s t h e m o d e l a w h i t e b o x ?

I s t h e m o d e l a p p l i c a b l e t o
d i f f e r e n t u s e r s e n v i r o n m e n t ?

A r e t h e e q u a t i o n s
p a r a m e t r i c - b a s e d ?

D i d t h e m o d e l p r o v i d e a c c u r a t e
r e s u l t s i n a c a s e s t u d y ?

MODEL OUTPUT (the sample includes 9 models)

I s t h e r e a p r o b a b i l i t y a s s o c i a t e d
w i t h t h e e s t i m a t e s ? 3

D o e s t h e m o d e l e s t i m a t e
F u n c t i o n P o i n t s ? 5

A r e i n p u t s s u m m a r i s e d
o n t h e o u t p u t r e p o r t ? 2

D o e s t h e m o d e l p r o v i d e
g r a p h i c c a p a b i l i t i e s ? 5

MODEL USABILITY (the sample includes 9 models)

D o e s t h e m o d e I h a v e
a u s e r - f r i e n d l y i n t e r f a c e ? 0

0

0 0

This issue is addressed separately.

5 4

9

0

0

5 4

6 4

6 7

0

0

4 4

I s u s e r s u p p o r t a v a i l a b l e ? Not Applicable

Table 8.1 A comparison of the EEM with the sizing models included in the IIT
survey.

289

CHAPTER 8 EVALUATION OF THE EEM

8.3 EVALUATING THE EEM - QUANTITATIVE ANALYSIS

The evaluation sample included 18 projects from heterogeneous environments.
The projects differed in size, programming languages and technology used to
develop them, the type of organisations they served and the contractors’
organisations which built them. It should be noted that a few of the projects
originated in software houses where the actual effort was limited, by definition, to
the ‘estimated effort’. Under these conditions an average comparison is not the
best test. However, it should give us some indication of the accuracy of the EEM
prediction. Two questions should be asked:

* Does the EEM yield satisfactory planning approximations?
* Can the model improve the teams’ original estimates?

Conte et al [ConS6] suggest the following measures should be used to
evaluate effort models for accuracy: the MRE^ MMRE and the PRED(level).^ They
will be analysed below. The sample data produces the results as shown in Table
8.2.

The EEM results under the Mean Magnitude of Relative Error (MMRE)
criteria is 36.1. This is considered to be a satisfactory result for a sample built as
heterogeneously as the EEM, although Conte considers only M M RE<=25 as
acceptable for effort prediction.

However, even when the MMRE is small, there may be one or more
predictions that are very poor. Therefore, Conte et al suggest an additional
criteria for the goodness of the prediction. This is the PRED at a specified level,
which indicates the percentage of predictions that are equal to or less than the
PRED specified level. This means that only the MRE values which are equal to or
less than the acceptable level are considered in this calculation.

6. See discussion in Paragraph 5.2.4

290

CHAPTERS EVALUATION OF THE EEM

P R O J E C T D A T A EEM

I D A c t u a l * E s t i m a t e d c o a r s e

t o t a l t o t a l e s t i m a t e s

e f f o r t e f f o r t

MRE

PSD

e s t i m a t e s

p r o j e c t
t e a m s

EEM K LOG

e f f o r t e f f o r t

2 2 5 5 9 1 5 4 1 4 2 9 0 . 7 3 5 . 5 2 0 0 0

3 2 3 3 3 3 8 8 0 2 5 . 0 9 2 . 4 1 0 0 0

3 8 8 8 0 1 2 5 0 6 0 5 5 . 5 7 5 0

8 3 8 3 1 5 0 9 2 3 . 1 2 2 2 . 4 1 7 5

2 0 2 8 5 1 4 2 0 5 1 . 3 5 0 . 0 1 6 2

4 3 8 5 3 1 1 4 0 2 1 2 . 4 8 . 1 1 5 6

3 8 0 0 4 5 6 4 0 . 0 1 7 . 2 2 0 0

3 1 1 8 5 3 0 7 . 5 6 . 4 8 0

6 4 4 3 4 5 1 * * 1 4 . 1 8 0

2 9 8 4 0 5 9 6 8 8 . 0 1 9 . 3 8 0

4 9 0 4 0 1 2 2 6 0 4 7 . 8 5 . 8 7 0

9 7 2 0 9 7 2 4 1 . 8 1 3 . 0 6 5

1 2 3 8 7 4 9 5 5 6 2 . 0 5 6 . 8 6 0

1 4 5 2 0 4 3 5 6 7 . 2 9 . 6 4 6 . 6

9 0 3 3 2 4 3 9 2 3 . 6 5 . 7 3 6 . 5

2 6 5 2 3 4 5 4 . 6 1 7 . 4 3 0

2 5 9 0 5 1 8 1 8 . 2 1 7 . 1 2 5

3 2 6 0 6 5 2 3 5 . 0 4 . 9 1 9

r 3 5 0 0 0 0

w 1 6 8 0 0

n 2 5 0 0 0

X 2 6 0 0

0 4 0 5 7 2

P 4 0 5 7 7

h 4 5 9 0

a 2 9 3 0

c 7 5 0 0

t 2 5 0 0 0

9 4 6 3 6 8

q 8 6 0 0

I 7 9 0 0

J 1 6 0 5 9

d 8 5 4 7

f 3 2 1 3

i 2 2 0 0

b 3 1 0 8

PRED (0 . 2 5) =

PR ED (0 . 2 0) =

3 2 5 1 8

1 2 6 0 0

2 5 0 0 0

2 0 0 0
1 9 7 5 9

3 5 5 2 5

2 7 5 0

3 1 5 0

2 3 0 0 0

2 4 1 9 2

5 0 0 0

3 0 0 0

1 4 8 9 5

6 5 2 7

3 0 6 6

1 8 0 0

2 0 2 0

P R E D (0 . 1 5) =

5 5 . 5

3 8 . 9

3 3 . 3

6 6 . 7 * * *

6 6 . 7 * * *

4 4 . 4 * * *

MMRE 2 9 . 5 * * * 3 6 . 1

* Effort is given in man weeks
** Not estimated. The MMRE was considered for the PRED calculation.
*** Best under this criteria.

Table 8.2 Comparison of the EEM coarse estimates and estimates with the
actual and estimated effort as provided by project teams.

E x a m i n i n g t h e r e s u l t s f o r PRED (level) s h o w s t h a t t h e E E M p r e d i c t s t h e

s a m e f o r PRED(0.25) a n d PRED(0.20). T h e s e r e s u l t s i n d i c a t e t h a t 6 6 . 7 % o f t h e

c o a r s e e s t i m a t e s i n t h e s a m p l e a r e w i t h i n 0 . 2 0 o f t h e a c t u a l e f f o r t . A l t h o u g h t h e

291

CHAPTERS EVALUATION OF THE EEM

acceptable value suggested by Conte is PRED(0.25) = >75%, the EEM results could
considered satisfactory results under the sample restrictions. Putting these results
in perspective the reader is referred to the previous discussion on the topic of
‘diseconomies of scale’ and the impact of inaccuracy in size estimates on the
estimates of effort.^

8.3.1 Comparison: the EEM planning approximates with the projects
teams’ estimates

The estimates of the project teams and the coarse estimating resulting from the
EEM are compared for accuracy. The criteria used for this comparison are the
MMRE and the PRED. The PRED is tested for three specified levels 0.25, 0.20 and
0.15.

A comparison of the EEM results with the estimates of the project teams
shows that their estimates are better than the EEM under the Mean Magnitude of
Relative Error (MMRE) measure, as the smaller the value of the MMRE, the
better the prediction. Examining the results for this measure shows that the EEM
predicts better than the project team at a prediction level of 0.25, though this is not
statistically significant. When the PRED level is reduced to 0.20, the EEM
performs markedly better than the project teams (‘as a collective’) in estimating
the total effort. In this case only 38.9% of the estimated values fall within 0.20 of
their actual effort, whilst with the EEM 66.7% did so.

Despite the restrictions indicated above, the conclusions that can be drawn
from this sample are that:

The EEM coarse estimates are as good as the average estimates produced
by the ‘collective’.
The EEM performs considerably better than the ‘collective’ under PRED
when relatively low values are specified for it.

7. See Paragraphs 3.6,1 and 4.1.1.

292

CHAPTERS EVALUATION OF THE EEM

8.3.2 Regression Analysis

T h e s e c o n d q u a l i t a t i v e a v e n u e t a k e n t o e v a l u a t e t h e E E M i s l i n e a r r e g r e s s i o n

a n a l y s i s . T h i s t e s t i s u s e d t o i n d i c a t e t h e e x t e n t t o w h i c h t h e v a r i o u s s e t s o f

e s t i m a t e s a n d t h e a c t u a l e f f o r t a r e l i n e a r l y r e l a t e d . A h i g h v a l u e o f s u g g e s t e d

e i t h e r t h a t a l a r g e p e r c e n t a g e o f v a r i a n c e i s a c c o u n t e d f o r , o r t h a t t h e i n c l u s i o n o f

a d d i t i o n a l i n d e p e n d e n t v a r i a b l e s i n t h e m o d e l i s n o t l i k e l y t o i m p r o v e t h e m o d e l

d r a m a t i c a l l y .

T w o s e t s o f l i n e a r r e g r e s s i o n w e r e p e r f o r m e d b y u s i n g t h e a c t u a l e f f o r t

(m e a s u r e d i n P H) a s t h e d e p e n d e n t v a r i a b l e a n d t h e e s t i m a t e d e f f o r t (P H) , g i v e n

b y t h e E E M a n d b y t h e p r o j e c t s t e a m s , a s t h e i n d e p e n d e n t v a r i a b l e . T h e f i r s t

r e g r e s s i o n s e t a i m s t o c o m p a r e t h e c o a r s e e s t i m a t e s y i e l d e d b y t h e E E M a n d t h o s e

p r o d u c e d b y t h e p r o j e c t s t e a m s . T h e s e c o n d s e t a i m s t o m e a s u r e t h e c o r r e l a t i o n

b e t w e e n t h e E E M e s t i m a t e s f o r t h e e f f o r t r e q u i r e d f o r t h e P S D w i t h t h e a c t u a l

e f f o r t . T h e r e s u l t s o f t h e r e g r e s s i o n a n a l y s i s a r e g i v e n i n T a b l e 8 . 3 .

Teams
estimates

EEM coarse
estimates

EEM PSD
estimates

Constant 9184.042 6730.816 1410.738
Std. Err. of Y Estimates 9869.875 9053.914 3002.500
R Squared 0331994 0.971071 0.946406
X Coefficients 0.084192 0.634651 0.153670
Std. Err. of Coefficient 0.029856 0.027385 0.009083

Excluding observation No. 1

Constant 612.3531 2163.707
Std. Err. of Y Estimates 4671.161 8007.16
R Squared 0.826776 0.766112
X Coefficients 0.664747 0.943979
Std. Err. of Coefficient 0.078563 0.134671

No. of observation 18 18 18
Degrees of freedom 16 16 16

Table 8.3 Regression analysis

293

CHAPTER 8 EVALUATION OF THE EEM

The results of the regression analysis show the EEM estimates are highly
correlated with the experience. The EEM coarse estimates resulted either an
of 0.97 and with a ‘standard error of estimates’ of 9053.9, while the projects teams
‘as a collective’ estimates resulted with an of only 0.33 with a ‘standard error of
estimates’ of 9869.8. This test suggests that the EEM estimates, for the sample
data, are about three times better than the projects team’s estimates. However,
since the data set includes one extreme observation, an additional regression
analysis was performed excluding this observation. This resulted with an R^ of
0.76 and with a ‘standard error of estimates’ of 8007.16 for the EEM coarse
estimates, while the projects teams prediction was correlated with the actual
experience with an R^ of 0.82 with a ‘standard error of estimates’ of 4671.16. The
teams present a slightly better correlation in this case.

The second regression was implemented by using the EEM estimates for
the PSD as the independent variable. This resulted with an R^ of 0.94 with a very
low ‘standard error of estimates’, namely 3002.5. Once again suggesting the EEM
estimates are approximately three times better than those of the project teams.

A plot of the regression results is shown in Figure 8.1

8.4 CONCLUSIONS

The EEM presents strength in both the quantitative and the qualitative aspects of
effort estimation. In half of the qualitative criteria assessed by the IIT survey none
of the models scored better. The areas in which the EEM scored low are those
which were not part of the research or were not implemented in the prototype and
thus could not be evaluated, e.g. incorporating probability into the EEM or the
applicability of the model to different users’ environments. The quantitative
results of the EEM are also encouraging. This is despite the heterogeneous nature
of the sample data evaluated by the EEM.

294

i . . i . . . I

i... :

(./:!
i . . 1. . 1

i . . . j i

-j '"j
i. . i . . i
i.
■cf

L . . J

<L
i . j . . i

c:!"

r (
r-i

II'} i.!'::'

i""..

..

|.i')

i:
IE

î
E
E l :

IT. |:E
Li'"i

i:;
15
E

fi

;!]:I:}[J-

!.i.J

ii;;; p u a := n j_ j
n

a

295

Chapter 9
CONCLUSIONS

9.1 INTRODUCTION

This chapter summarises the fundamentals of the EEM and its unique features.
The conclusions reached from the analysis of the data collected, the use of the
prototype and from the demonstration sessions held with various professional
groups will be shown. The chapter finishes with an agenda for further research.

9.2 EFFORT ESTIMATION MODELS FOR SOFTWARE DEVELOPMENT

Most of the parametric models offer estimates for effort and duration, and some
deal with risk assessment. The output style and content vary between the tools.
Some of the tools appeal to IS/DP personnel while others are preferred by those
oriented towards engineering. Human interaction and judgement are essential
throughout. The level of confidence in the estimates differs according to the stage
in life cycle at which the estimates are made, and the amount of solid information
known at that time.

The models offer either a basic formula for the nominal effort in PM based
on productivity to which a correction multiplier is applied to account for

296

CHAPTER 9 CONCLUSIONS

complexity factors believed to impact on the productivity of software development.
A lternatively a form ula which describes the observed behaviour of effort
accumulation throughout the life cycle of the software development is presented.

The first type of model is derived empirically and the second group is
analytically based. Many of the estimation models are composites of analytical,
empirical and heuristic approaches.

Productivity is measured in Lines of Code or Function Points. The LOG
measure assesses the size of the completed product while FP aims to measure the
amount of functionality incorporated into the product. The units of measure used
here are the number of files, inputs, outputs, reports and screens in the target
system. The correction factors affect one or all phases of development.

There is no agreed standard set of rules for counting the LOG or the FPs.
This also applies to the assessment of the correction factors.

9.3 WHAT IS UNIQUE ABOUT THE EEM IN RESPECT TO CURRENT
MODELS AND TOOLS?

The EEM approach adopted in this thesis and the unique features incorporated in
the EEM will be summarised below.

This thesis has argued that, at the outset of the project life cycle, estimates
can be developed with a high degree of accuracy only for the PSD phase.
Therefore, the EEM estimates the effort required for the Preliminary System
Design and from that estimate, extrapolates coarse estimates for the total project
development. The coarse estimates are extrapolated according to resource
allocation among phases of development, as known statistically and by the
estimator judgement about the foreseen distribution of a particular project. The
coarse estimates are updated when uncertainty is reduced.

The EEM is a complementary approach to the current models for
estimating the effort required for software development. The EEM emphasises
the estimating process early in the software life cycle. The estimates are
developed for a single phase. The model should be implemented in tandem with

297

CHAPTER 9 CONCLUSIONS

Other models which are built to estimate the effort when the requirements are
completed and the software product is specified. None of the current models or
tools take this approach. Nor do most of the models estimate the effort required
for the feasibility and the requirements, they are only used after the design of
software product is completed.

The information available to support the estimation process early in the life
cycle is limited. The uncertainty associated with this information in the product
and development process is high. But estim ates are needed. They are
fundamental for evaluating and choosing among alternatives, for planning and
budgeting the development of a software product. This is the main source of the
estimator’s dilemma, to which the EEM provides an answer. However, only a
certain level of accuracy and precision is possible at the early phases of the life
cycle, when there is a minimal level for knowledge of what the software is to do.

Thus, the approach taken in the EEM emphasises the method of achieving
the estimates, the process in which the estimator is led through the estimation
session, and his ability to influence the results, not only by estimating the size
components and assessing the complexity level of the development process, but
also by changing and adding basic components, if required. It is not the model
which produces estimates, it is the estimator. The EEM is an open framework
which offers a set of standards, advice when needed and an estimation process.

Estimating the effort for software development requires quan titative and
qualitative information about the product to be developed and the process in
which it is being developed.

In quantitative product information, items like the number of reports,
screens, outputs and inputs in the target system are considered. In the process
information, quantities of items which consume resources, but which do not affect
the product size are considered. These are items associated with the strategy
chosen for the development process, e.g tenders that have to be evaluated and
contracts negotiated and signed; size attributes which are associated with the
replaced system (either manual or automated system), or size items that affect, for
example, the capacity planning and the project organising activities. Although the
items which are considered here as quantitative information are unique to the

298

CHAPTER 9 CONCLUSIONS

process of the development of the PSD, they will impact upon the resources
consumed further in the development. Using these units of measure for the
project size is unique to the EEM.

Qualitative information is required for both the product and the process.
The product structure, the logical and structural complexities, the in te r
connections among processes an d /o r functions are considered as p ro d u c t
qualitative information. Although deterministic metrics are offered for these
attributes, at the outset of the development there is not enough knowledge to
allow the quantitative assessment of these of complexity attributes. The only
information available on this matter is the estimator’s judgement about the
number of complex functions from the user’s viewpoint and the anticipated
number of corresponding complex processes from the technical point of view. The
process information is associated with the dynamics of the environments in which
the development takes place.

The complexity and risk indicators are assessed according to these sources
and types of information. The approach taken in the EEM is that the complexity
and risk cannot be measured in a rigorous way early in the project development.
The estimator can, however, use his knowledge, experience and judgement to
score each complexity and risk determinant. The accum ulation of these scores
indicates the level of complexity and the risk anticipated in the development of the
project in an ordinal measure.

The bottom -up approach chosen for modelling the process of estimating
the effort required for software development links both the process of building a
software product and that of estimating the effort required for it. These links
afford the foundation upon which the EEM is established and from which the
infrastructure for a process model for effort estimation can be built. Furthermore,
this link provides an insight into the process which is being modelled. It is
assumed that a better understanding of both the software development process
and the effort estimation process will help in producing better estimates, since the
major problem is underestimating the effort, caused by not knowing what is
involved in a specific solution.

The EEM links these two processes through the activities which encompass

299

CHAPTER 9 CONCLUSIONS

the PSD development process. The connection is implemented in two different
ways:

Each of the activities is associated with one or more cost drivers to which a
^standard of effort’ is associated, based on the complexity assessment of the
system. In other words the productivity is measured for each of the cost
drivers affecting an activity, at three various levels of complexity.
Assumptions (e.g. quantities associated with the various cost drivers) and
decisions taken throughout the estimation processes are recorded and
linked to the relevant activity or segment. This allows the incorporation of
a feedback mechanism into the EEM

9.4 THE BENEFITS OF THE APPROACH TAKEN IN THE EEM

A number of benefits emerge from these features and they are summarised below.
The EEM emphasises the process of estim ating the effort for software

development. The model directs the estimator through the estimation session; the
process is understandable and therefore easy to change and to adapt to an
individual organisation. This was clearly demonstrated using the prototype tool
developed. The tool was well received in each of the demonstrations held.

The EEM uses information which usually exists in the organisation at early
stages of software development as a result of the ‘preliminary survey’ and
information residing in the EEM knowledge-base. However, this information is
not always sufficient to provide estimates without consulting the estimator and
requesting him to estimate the effort required for particular functions, which vary
widely among projects. The EEM supports this consultation session by providing
information on past projects.

The use of the bottom-up approach allows the building of an integrated
tool for software management which incorporates both the software development
and effort estimation processes. For example, by providing effort estimates for
each activity, and using the base model, particularly the data suggested to be

300

CHAPTER 9 CONCLUSIONS

associated with each activity, it is possible to interface the EEM with a PERT or
other project management tool. In addition, based on the estimates and the
knowledge-base, the model can provide the project manager with advice on topics
such as alternate schedules, milestones and required products at the end of each
milestone (end of phase and/or segment and/or activity). At a later stage, it can
provide guidance for choosing the appropriate model for effort estimation based
on the estimation objectives, type of system, etc.

Basing the estimates on activities and cost drivers is more understandable
and approachable for project managers and analysts, than a formula which is
based on LOC or FPs. They can easily understand why the estimates resulted. If
the managers do not agree with the results and/or the components, they are
allowed to change the components associated with the process as an ad-hoc
change. The EEM is an open framework understandable to all parties involved in
the process of estimating the effort, the users, managers and IT personnel, in
which measurement and judgement are incorporated.

Recording the assumptions (e.g. quantities associated with the various cost
drivers) and decisions taken throughout the estimation processes and linking them
to the relevant activity or segment, enables us to incorporate a feedback
mechanism into the process of software development. Since the activity is the
basic unit for many of the processes associated with the management of software
development, this foundation can be expanded into a process model. Consider an
example: a message indicating the com pletion of an activity is sent and
incorporated into the process model. This message initiates an automated
measuring activity of the quantifiable cost drivers associated with the completed
activity. Since a cost driver is associated with more than one activity, this will
point out a specified deviation from original estimates and will suggest corrective
measures for the estimated effort (or a design-to-cost).

The EEM inputs provide information which allows adjustments to the
estimates made. For example: differentiating between novel and familiar
application areas. These inputs affect the complexity assessment of the project
and thus the ‘standard of effort’ used in calculating the estimated effort, which is
the prime factor affecting the project schedule. However, it may be useful to

301

CHAPTER 9 CONCLUSIONS

provide the estimator with a set of rules which are of particular interest to the
project for his additional consideration of schedule and/or effort adjustments.
When analysing the data received through the questionnaires, such rules were
applied. This could be easily added into the knowledge-base, automated and
offered to the estimator when appropriate.

The EEM can also be used as a training tool for effort estimation. It will
help managers and analysts understand factors that are likely to influence the
effort estimation process.

The quantitative and qualitative evaluation of the EEM (see Sections 8.2
and 8.3) indicates that the EEM produced as good estimates as the sample data
and shows strength in the majority of the qualitative criteria.

9.5 AGENDA FOR FURTHER RESEARCH

The contribution of this thesis to further research is based on:

The infrastructure presented and demonstrated in the EEM. The concept
developed, which was partially implemented in the prototype, can be
further developed to become a complete process model for managing the
development of software. Incorporating the EEM into a process model is
feasible, however, further research is needed.^
More automation. An example could be the adjustment of the effort
associated with a segment as result of the assessment of the complexity
rules. An additional example is the incorporation of a feedback mechanism
into the EEM
Developing a descriptive language to be used for comparison of project
attributes.

1. The term: ‘process model’ is still not well defined in the literature, yet it is commonly used to
describe a model for the whole process of software development.

302

CHAPTER 9 CONCLUSIONS

The advantages highlighted earlier can be developed further. For example,
recording the decisions provides the foundation for learning capability. This
research suggests a way to incorporate assumptions and decisions into the process
of estimating and linking them into the life cycle. This facility can be expanded to
account for decisions taken in the design process.

Estimates are based on comparisons. Differences and similarities to past
experiences are the basis for expert judgement and analogy. Therefore, there is a
need to acquire quantitative information from projects developed in the past to
put the comparative evaluation on a demonstrably sound footing. Incorporating
recorded assumptions taken in addition to the quantitative information helps in
this purpose and should be considered in the design of historical data-bases.
There is a need to assess further the value of recording the additional assumptions
suggested.

Furthermore, by taking advantage of AI, the EEM could ‘learn’ from the
data generated by active projects and incorporate that experience into the
knowledge-base.

The EEM records the description of the activities and the forecast effort
suggested by the estimator. An effort should be made towards providing a
descriptive language for comparing or contrasting the content (description) of
these activities. The same is applicable for the recorded assumptions and
decisions. This will help in building traceable trails for reasoning and explaining
the estim ated results, and thus communicating the credible estim ates to
management.

The ability to incorporate the EEM into various environments should also
be a topic for additional research. Although this thesis focused on estimating the
PSD for business software applications, the effort could be expanded to
embedded, real-time systems and basic software. It might be the case that
additional cost drivers will be required and others should be eliminated. There is
a need for further research in the area of resource allocation.

A continuous effort towards the incorporation of a wider range of
development strategies and additional types of software projects in the EEM,
would be of real value to the industry.

303

CHAPTER 9 CONCLUSIONS

9.6 CONCLUSIONS

The EEM aims to support the process of the economic evaluation of alternatives
for software development early in the life cycle. It aims to serve all the parties
involved in the process of managing the software development and hence are in a
need for coarse estimates of the effort required for the development. The
motivation in developing the EEM is the need to establish an 'open framework'
for the estimation process. The term ‘open framework' indicates a process which
is understandable to all parties involved in building and managing software
development and, thus, in estimating its required resources. Each of the
individuals involved in the process can use and is authorised to use the model.
The user can input his view of the application domain and of the surrounding
environments, he can analyse the estimates resulting from his model of the
application and environment domains. When the basic assumptions do not fit his
own judgement, they can be changed or amended. However, such a change is
considered by the EEM as an ad hoc change only, it is not incorporated in the
EEM's knowledge-base. In cases where additional research is required before
estimates can be suggested, the user can consult the EEM for analogy to previous
projects. The underlying assumption is that the practice of estimating can be
improved - learned, by the individual who is using it. However, understanding can
be gained only if the process of estimation is tied to the process of software
development. The conceptual design of the EEM provides such a link.

The results are that the EEM showed strength in both the qualitative and
the quantitative aspects as discussed previously.

304

APPENDICES

305

Appendix 4A Definition of the Information Domain - Function Point
Analysis.

Number of user inputs.
Each user input that provides distinct application oriented data to the software is
counted. Input should be distinguished from inquiries, which are counted
separately.

Number of user outputs.
Each user output that provides distinct application oriented information to the
user is counted. In this context output refers to reports, screens, error massages
etc. Individual data items within a report are not counted separately.

Number of user inquiries.
An inquiry is defined as an on-line input that results in the generation of some
immediate software response in the form of an on-line output. Each distinct
inquiry is counted.

Number of files
Each logical master file (a logical grouping of data that may be part of a large
data-base or a separate file) is counted.

Number of of external interfaces.
All machine readable interfaces (data files on tape or disk) that are used to
transmit information to another system are counted.

306

Appendix 5A. A Comparative table - Factors affecting productivity of
software development and complexity determinants.

N-SDC;
AARON;
D-Doty;
AL-Albrect;
S-SLIM;
J-Jensen;
E-ESTIMACS

FZ-FARR AND ZAGORSKY;
T-TRW;
W-Walston and Felix;
DM-DeMarco;
C-COCOMO;
R-RCA-PRICE-S;

SIZE ATTRIBUTES

N o . o f i n s t r u c t i o n s

' % ' o f n e w i n s t r u c t i o n

N o . o f d o c u m e n t a t i o n

N o . o f d a t a e l e m e n t s

N o . o f u s e r i n p u t s

N o . o f u s e r o u t p u t s

N o . o f u s e r / o n - l i n e i n q u i r

N o . o f i n t e r n a l L o g . f i l e s

N o . o f m a s t e r f i l e s .

N o . o f e x t e r n a l i n t e r f a c e s

N o . o f F u n c t i o n P r i m i t i v e s

N o . o f p e r s o n n e l

N F Z A T D W A L DM S c J R E

F Z A T D W A L S c J R

- F Z - T - - - - s c J R E
- FZ - - D w - - s - J - E
- FZ - - - u AL DM - - c - - -
- - - - - - AL - - - - - E
- - - - - - AL - - - - - E

- - - - - - AL - - - - - E

- - - - - - AL - - - - - -

E
- - - - - - A L - - - - - E

DM

PROJECT ORIENTED COMPLEXITY
- T y p e o f a p p l i c a t i o n N - A I D W AL DM S C J R E

at system - level
e . g . : B u s i n e s s / n o n - b u s i n e s s

R e a l - t i m e / n o n r e a l - t i m e

- D u r a t i o n - A - - W - - S C J R

- T y p e o f p r o g r a m N - A T D W A L - S C - R -

sub-svstem / module level
P r o g r a m c a t e g o r i e s

(e . g : TRW a n d o r A r o n ' s

c a t e g o r i s a t i o n

% m a t h e m a t i c s i n s t r u c t i o n

N o . o f s u b - p r o g r a m s

S t a n d a l o n e p r o g r a m)

- L a n g u a g e N F Z A - D W - D M S C J R E

- R e u s e - F Z - T - - D M S C J R E

- R e q u i r e d r e l i a b i l i t y - F Z - - D - - DM S C J R E

N o . o f m a j o r s u b s y s t e m s - - - - - - - - - - - - E

N o v e l t y o f b u s i n e s s f u n c t i o n - - - - - - - - - - - R E

N o v e l t y o f s y s t e m - - - - - - - R E

307

ORGANIZATIONAL ENVIRONMENT

- C u s t o m e r i n t e r f a c e c o m p l e x i t y

- C u s t o m e r o r i g i n a t e d c h a n g e s

L a c k o f r e q u i r e m e n t s

R e q u i r e m e n t s v o l a t i l i t y

S t a b i l i t y o f d e s i g n

A v a i l a b i l i t y o f p r o j e c t

o b j e c t i v e s a n a l y s i s

- M u l t y - s i t e

- N o . o f c o m p a n y f u n c t i o n a l

o r g a n i s a t i o n .

- N o . o f p e o p l e i n

o r g a n i s a t i o n i n v o l v e d

- D i f f e r e n t h o s t t a r g e t H W

FZ

A L

A L

A L

C J R E

J R E

E

E

A L J R

TECHNICAL ENVIRONMENT

- M o d e r n p r o g r a m m i n g p r a c t i c e s

U s e o f s o f t w a r e t o o l s

a n d t e c h n i q u e s

- C o m m u n e i c a t i o n a n d

d i s i s t r i b u t e d s y s t e m s

- L o g i c a l c o m p l e x i t y

U A L

A L

-Computer attributes

- H a r d w a r e c o n f i g u r a t i o n N

c o n c u r r e n t h a r d w a r e d e v e l o p m e n t

-Computer access
- T i m e c o n s t r a i n t s

- S p a c e c o n s t r a i n t s

- H a r d w a r e d e v i c e s

R a n d o m a c c e s s d e v i c e u s e d

c o m p u t e r r e s o u r c e s

- S c h e d u l e C o n s t r a i n t s

- C r i t i c a l i t y o f d a t a t r a f i c

l o a d a n d p e r f o r m a n c e

D ■

T D

D

D

A L

A L

PRO.IECT TEAM COMPOSITION

A p p l i c a t i o n e x p e r i e n c e

C o n t i n u i i t y

L n a g u a g e e x p e r i e n c e

C a p a b i I i t y

H a r d w a r e e x p e r i e n c e

FA -

W A L

W
U

U

W

308

Appendix 6A. The EEM Questionnaire

309

EFFORT ESTIMATION

MODEL

ZEEVA LEVY

INFORMATION SYSTEMS SUB-DEPARTMENT

The London School of Economics and Political Science
Houghton Street, London WC2A 2AE

Telephone: 01-405 7686 / ext. 2958
Telex: 24655 BLPES G

Facsimile line (01) 242 0392

September 15,1989

D ear Project Manager,

I am currently undertaking research into Effort Estimation for Software Project Development
(EEM) at the London School o f Economics (the Information Systems Sub-department) and at
Imperial College (the Management School). I am asking experienced project managers such as
yourself, to assist me by answering a questionnaire. A ll information provided will be treated as
confidential.

The EEM for Software Project Development I have been developing, aims to estimate, at the
outset o f a software development project, the person months o f effort required for the
Preliminary System Design (requirement specifications and product design) o f software
development project. The incentive for my attempt to develop this model stems from my twenty
five years o f accumulated experience in the process o f software development. Through these
years I have been exposed to the need for estimating, evaluating and justifying the development
o f software projects. I had the opportunity to observe closely the ways in which development
projects are being customarily evaluated and justified. While working in the U.SJi for several
years , I learned about relevant approaches which I qualified to my personal usage and
improved to suit my own environment. The EEM proposed here, is based on the accumulated
experiences in this area and it is a direct product o f it, which I would like to share with you
while working for my Ph.d.

I would appreciate it if you would be kind enough to take the time to read the two parts o f the
attached document. Secondly, could you please think about a project you were recently
involved in and for which you could assemble, the information relating to the project profile
and to the complexity o f the project environment. The information I ask for is in Part 2 o f the
attached document. Thirdly, could you please answer the questionnaire.

Your answers will be then processed by the EEM. The estimates produced by the model will be
analyzed and compared with your data relating to the actual effort needed for the development
o f your project and the original estimates. This process would be o f help in both analyzing the
importance o f each o f the questions to the estimation process and in the evaluation o f the
model and its* fine tuning. It might also enable me to establish a historical database for
estimating software project development.

I am available for further information, explanation o f for facilitating the process o f answering
this questionnaire. I f you require any help or need any further information, please do not
hesitate to contact me at London School o f Economics, telephone number:

(01) 405-7686/ext. 2958 or, at home: (01) 4856277.

Finally, I would like you to mail your response by the mid o f October, 1989 to:
Mrs. Zeeva Levy,
Information systems sub-department,
London School o f Economics.
Houghton Street,
London, WC2A2AE. Telex: 24655 BLPES G Facsimile line (01) 242 0392

Thank you very much for your co-operation. When the project is completed, I will be pleased to
send you the results arid would be interested in your observation.

Sincerely,

Zeeva Levy.

EFFORT ESTIMATION FOR SOFTWARE PROTECT DEVELOPMENT

TABLE OF CONTENTS.

PARTI

Introduction.

The objectives of the Effort Estimation Model.

Who is the estimator?

TERMS and CONCEPTS

Definition of the Software Development l ife Cycle phases.

The products of the Model.

HOW DOES THE MODEL WORK.

The model’s sources of knowledge.

Project life cycle strategies.

The cycles of the model.

PART 2

A questionnaire.

Appendix A:- Decomposition of the software development strategies.

A word of thanks.

P A R T 1

Introduction.

There exists the need to estimate the effort (person days/months) required for software project
development towards and during the development process. Unfortunately, it is difficult to
estimate this effort. Much of the difficulty stems from the degree of uncertainty associated with
both the project oriented problems and the inherent complexity of managing the software
development process. Whilst uncertainty exists in each of the stages where the estimates are
needed, it is much higher in the first stages of the software project development process.

The obiectives of the Effort Estimation Model (EEM).

The Ejfort Estimation Model for Software Development Project is a support system for the
estimation process, which takes place when a project is about to start, and uses techniques more
consistent with the level of current knowledge generally available in the organization at that time.
More precise estimates for the effort required at the later stages of the software development life
cycle, are done in a more detailed form, by using different techniques, towards the end of the
requirement analysis and the preliminary design stages. Different estimating approaches may be
used at different points in the system development process.

The Effort Estimation Model (EEM) emphasizes the estimation process at the outset of the
project development process. It is done as a part of the economic evaluation which at that point of
time is done only at a low level of precision, that enables the management to determine the
project feasibility.

The EEM aims to:-

Serve the project team members, users and management. It does so by providing its users
with a guide for action by illuminating both the process associated with the software project
development and that associated with the production of estimated effort.

^ s i s t experienced project managers and all other data processing professionals by
suggesting an interactive and structured estimation process which facilitates thinking about both
their work and decision making.

Serve as a training tool for the inexperienced project manager and user, by proposing a
standard procedure for software project development and for the estimation process. It does this
by:-

-- Providing the project leader with a choice of development strategies, each of which
is decomposed into relevant, manageable and functional umts and activities.

Presenting the potential decisions in each of the relevant stages or the actual
decisions taken during the estimation process.

Provide a basis fon-

1

Assessing project risk.

Comparing and evaluating the various development alternatives.

Developing a working plan for the project’s next stage.

These qualities allow informal interaction among all parties in the development process: the user,
the project manager, the project team and the organization’s management, and hence improves
reliability, produces more precise estimates and decreases unplanned overruns.

Who is the Estimator?

The estimation process can be implemented by an individual or a group of estimators. The group
should be composed of the project team members or of various data processing personnel,
experts from the user’s department or external consultants, who use their best judgement in order
to determine the different aspects of the project profile. A group can work in one of the
following ways:-

1. Each group member operates the model separately and eventually the model proposes
estimates based on the data provided by all members. In this way the members act individually
and the model computes an average of the group estimations based on the weighted answers of
the team members.

2. The group members arrive at an estimate to a given question and only one agreed answer
updates the model. Here the group can be assisted by the Delphi decision process in order to
achieve consensus among the members, or by a group decision process.

TERMS AND CONCEPTS.

While operating the EEM, the estimator may come across some terms and concepts which will be
clarified here:-

1. The Software Development Life cycle.

The Effort Estimation Model is based on the assumption that the project development process is
supported by a standard software development process, which serves as a tool for directing the
creation of new information systems. It is customary to consider the software development
process as having a life cycle, characterized by a top-down approach of breaking the process into
manageable, logical and functional units. The development process is decomposed into phases,
each having denned starting and ending points. Each of the phases is further decomposed into
individual work segments, each of which produces pre-defined end products and aims to achieve a
specific target. Each of the segments contains a group of standard controllable activities.

The Effort Estimation Model uses a consistent set of terms to describe this conceptual top-down
approach:-

A phase is a major self-contained component. Three phases encompass the development
process:-

Project Planning.

Preliminary System Design.

Detailed Design and Implementation.

A segment is a logical part in accomplishing the objectives of the particular phase.

The Preliminary System Design phase, includes the following segments:

Organization.

User requirements.

Technical design.

Technical support.

Implementation schedule.

Cost / benefit analysis.

Management review and approval.

Hardware and software direction.

Application software evaluation and design.

Hardware and software selection.

An activity. Each segment contains a group of standard activities^ which provides the
project team with guidelines to accomplish the segment end result.

For example, the Project Definition segment contains activities such as:-

Project initiation.

Review present status.

Identify business objectives and information strategies.

Survey information need.

Identify hardware and software environment.

Develop conceptual design.

Investigate application software alternatives.

Evaluate development alternatives.

Prepare project impact analysis.

Prepare project plan.

3

A task. Each one of the activities is decomposed into individual tasks needed to perform a
specific activity.

For example, the’* Prepare project plan'' activity includes a task in which the effort estimates
for the next phase are estabhshed.

P H A S E> S E G M E N T > A C T I V I T Y

1 : M 1 : M

1:M
T h e > notation means, a phase is decomposed into one or many segments, a segment

is decomposed into one or many activities.

2. Cost drivers.

The model assumes that each activity is associated with a standard list of Cost Drivers involved in
the process. The Cost Drivers serve as the basis for estimating tasks associated with each activity,
during the estimation process. A cost driver is, for example, an input document, a report, a screen,
a module, a contract, a proposed final software package, a request for proposal.

3. Standard of Effort.

A Standard o f Effort is the (organizational) inverse of a standard rate of productivity, the amount
of work required to accomplish one work unit. The standard of effort associated with each of the
cost drivers and correlated activity, maj ̂differ, for an identical cost driver and associated activity,
according to the complexity of the project. Some activities will vary in effort required depending
on the number of users, potential availability of software, expected technical complexity, etc.

The Effort Estimation Model (EEM) is supported by a conceptual Software Development Life
Cycle SDLC composed of phases, segments and activities , each activity is associated with one or
more cost drivers which are correlated to standard of effort, as follows:-

1 : M 1 : M M : M

P H A S E> S E G M E N T> A C T I V I T Y <> C O S T D R I V E R

I I
I 1 : M I 1 : M

V V

A C T I V I T Y & C O S T D R I V E R

I
I 1 : M

V

S T A N D A R D S OF E F F O R T

M:M
The < -------> notation means that each activity is associated with zero or many cost drivers,

and each cost driver is associated with zero or many activities.

It is therefore clear that one cannot develop on Effort Estimation Model which is concerned with a
particular phase, unless this phase is clearly described and understood by it users. This research
addresses the eËort estimation issue with regard to a single project.

Definition of the software life cvcle phases.

Phase 1:- Proiect Planning.

Project Planning addresses the project initiation and feasibility issues. The project definition
segment is part of this phase. It is often called the "Preliminary Survey". In this segment the
preferred concept for the software project is defined, the software development strategies are
developed and the superiority of the chosen concept to alternatives is presented. The Project
Planning accepts the general needs or problem s as inputs and produces a proposed
comprehensive scope, an agreement on problems and a definition of a project which also includes
a work plan for the next phase. The Project Planning phase is implemented by looking into the
fact gathering and analysis, interviews and discussions, etc. This process usually lasts between one
week and one month.

Phase 2:- Preliminarv System Design.

The objectives of this phase are to determine how the new system (target system) should be
implemented to meet the business needs of the organization and to obtain the commitment of the
management to the proposed ystem, before the major portion of the project development cost is
incurred. The main concerns of this phase lay in the following issues:-

What the system does from the user's viewpoint?

How does the system operate from a technical viewpoint?

What are the estimated operating costs and benefits of the system.

What are the estimated installation costs and time table.

This phase includes the "specification requirements" and "product design." It includes a
complete, validated:-

Functional and technical specification of the user’s requirements.

Design from the user point of view.

Interfaces, performance, security and control requirements of the software product.

A complete and verified specification of the:-

Overall hardware and software architecture.

Data models for the project.

Phase 3:- Detailed Design and Implementation.

The objectives of this phase are to finalize the system design and successfully install the system in
the operational environment of the company. The phase mcludes the detailed desigi^ code and
debug, test and pre-operations. The objectives of this phase should be accomplished with:-

Developed procedures.

Trained users.

Ensured acceptances of the system by both computer operation and user personnel.

Appendix A. includes the decomposition of the various software life cycle development strategies.

The products of the model.

Based on the answers given by users of the system, the data stored in the knowledgebase and the
rules for manipulating them, tne model would offer estimates for the manpower needed for each
segment of the Preliminary System Design phase. By estimating the effort for the Preliminary
System Design, the model will also indicate a general approximation of the effort needed for the
Detailed Design and Implementation phase.

Upon receiving the estimates (in the later stages of this model development) the model
will provide the project manager with advice on the following topics: an alternate schedule,
milestones, required products at the end of each milestone, etc.

HOW DOES THE MODEL WORK.

The modePs sources of knowledge.

The model that supports the estimating process (which will use a combination of tools such as:
expert system and decision support system tools, group decision processes, etc.), is based on two
prmciplal sources of knowledge:-

Basic knowledge:- A collection of data and rules that result from accumulated experience
in various projects and organizations. Statistics regarding the productivity rate of the
development process.

Specific knowledge:- Produced by professionals involved in a given project which aims to
assess its profile.

Proiect life cvcle strategies.

The model recognizes three alternative strategies for the software development process. The first
two strategies follow the conventional Waterfall model rationale [Boe7o]. The Waterfall SDLC
consists of discrete phases implemented in a defined sequence, each of which aims to achieve a
defined set of sub-goals, before the next phase starts. These phases, also sequential, are very
interdependent. Changes made in one phase have a significant influence on other phases. TTie
third development strategy is geared toward a fluid envuronment with changing business needs as
well as changing organizational infrastructure. This strategy provides a flexible enough route to
allow different requirements to be defined and obsolete functions eliminated.

S D L C

I

W a t e r f a l l m o d e l I n c r e m e n t a l s t r a t e g y

I
I

I I I
C u s t o m i z e d s o f t w a r e C u s t o m i z e d s o f t w a r e A p p l i c a t i o n p a c k a g e s

s t r a t e g y s t r a t e g y s t r a t e g y

a n d

I n c r e m e n t a l s t r a t e g y

1. Customized software development.

This strategy follows the Waterfall SDLC model, however the approach does allow the
integration of the new prototype paradigm into the classic flow of project development. The
information gained from implementing a prototype, incorporating the traditional development
procedures, can be added to the classic Waterfall paradigm and thus improve both the complex
communication and the feasibility decisions involved in the process.

2. Application packages system selection, design and installation.

Application packages from many different industries are readily available and may save the
developer much time because much of the time-consuming and costly ground work has already
been done. One should not reinvent the wheel every time there is a need for a piece of software.
This strategy also follows the Waterfall SDLC model. It is a sub-set of the Customized Software
Development approach. When this strategy is taken, the SDLC is changed and includes some
additional segments while others might be omitted.

3. Incremental development.

The new paradigm results from the new technological opportunities that have been developed
since the introduction of the Waterfall model. The emergence of fourth generation languages and
productivity tools for end-user computing has brought the need for a system development
approach very different from the conventional one. This route varies distinctly from the
Customized and Application packages strategies in that it allows for a "trial and error" approach
to problem solving when a specific solution is impossible to pin-point initially.

When this strategy is chosen, the activity list decreases. However, there is no guarantee
that the effort required for the entire system will be less than if implementing the same system
using the custom-made approach, even so the time and cost of the first iteration may be
substantially less.

The cycles of the model.

The software estimation process is an interactive and iterative process. It cannot produce fair
estimates without consulting occasionally the estimator. The model uses different processes for
the production of the estimation. The model works in the following cycles:

1. The first cvcle includes the foUowing:-

Choosing the appropriate software development life cycle route.

Assessing the characteristics and complexity of the project.

At the start of this cycle the estimator is asked which SDLC strategy is to be followed, as a
result of strategy decisions, e.g. whether or not, software packages or an incremental approach are
to be used. Whether the process of hardware selection is involved in the project or not, etc.
Following this decision the estimator is asked to answer a series of questions on which the
evaluation of the project characteristics such as size, complexity and risk, will be based.

The answers given by the estimator are based on the general knowledge available in the
organization, even at this point of the project life cycle, as a result of the "preliminary survey".

2. The second cvcle includes the following:

Calculation of the required estimates, first iteration.

Consultation: Estimator - EEM.

Recalculation of the required estimates.

At the beginning of this cycle, the model tries to calculate the estimates. It may encounter
difficulties in doing so with regard to a few activities characterized by a high variance of effort
needed to accomplish them in different projects. For example, the "hardware and software
selection" process will vary among organizations and types of projects. One cannot compare this
process if done for a governmental agency with one done for a company in the private sector. The
procedures vary, they might be much more complex in the public sector than in the private sector.
One cannot compare the process of establishing criteria for selecting database management
system (DBMS) software to be installed in a main frame computer that supports a distributed
system to that of selecting DBMS software for a micro computer which aims to support the
software development in the user’s departments.

Wherever the model comes across activity of that sort, it consults the user and eventually
offers an estimate.

If the estimator feels that the estimates do not reflect (accurately) his opinion, experience,
intuition, etc., he informs the model, which responds by presenting all the questions and the
answers he gave, for his reconsideration. The estimator is allowed to change them and the model
will provide new estimates.

The end product of this cycle is the number of working days required to accomplish the
activities included in each of the segments which compose the Preliminary System Design phase.

The required number of working days is derived from the estimator’s answers, the knowledgebase
of the model and the inference rules which manipulate both. The model will provide the estimator
with the major assumptions that affect the estimates.

3. The third cvcle includes the following:-

Examining the principle components of the knowledgebase and making ad-hoc changes to
them.

Recalculating the required estimates.

Approximating the required effort for the total project.

Assessing project risk.

The chief concern of this cycle lies with fine tuning the major component of the model to the
specific organization or project.

If at this time the estimator is still not satisfied with the estimates, the principal
components of the knowledgebase are shown for his examination in the following two iterations:

The first ite ra tion covers the rules used by the model in determining the project
complexity level. The estimator is asked to examine the rules included in the knowledgebase for
the determination of the complexity level. He is authorized to change the rules that, in his
opinion, are not suitable to this project environment.

The second iteration covers the cost drivers which contribute to each of the activities and
their correlated standard unit of effort. It is suggested that the estimator examine the:-

Associations, proposed by the model, between the cost drivers and the activities.

The "standard o f effort" units attached to each of the integrated entities composed of
cost factor and activity.

These components are also subject to change by the estimator.

P A R T 2 ■ THE QUESTIONNAIRE.

Instructions to the estimator.

1. Please, name the project to which you will relate your answers. Give a brief description of
the scope of this project and its use.

2. Please, read the questionnaire. Do not answer it yet. Examine the questions’ relevance to
the project under consideration and make sure you have with you the documentation which will
enable you to answer them as precisely as possible. If not all of the documentation is available,
please try to answer all the questions even if vou are not certain of all the answers. In such a case,
base your information on your experience in similar projects or on vour intuition.

3. The questions are grouped into categories. You are asked either to select the appropriate
answer or to indicate a quantitative value. If a question is not relevant to the project, please
indicate so and move to the next question.

4. The instructions for each category of questions will introduce the group.

Please, tiy to answer even if your confidence in the answer is rather low

Remember, the system is designed to enhance the team, its considerations and judgements.

Please, feel free to comment, express your opinion or draw my attention to any question which
may not be clear to you.

I am available for further information, explanation or facilitating the process of answering the
questiormaire. Please, do not hesitate to contact me.

10

GROUP 1 - General background: proiect. organization and estimator.

I.O Today’s date

1.0.1 When had the project been developed:

Start date (month, year):_________________

9 Defence contractors.
10 Other. Please name:

Finish date (month, year):_____

I .l The name of the project:-

1.2. The type of project. *
(Circle the appropriate option.)

* This estimation model is not
appropriate for the development of support
software.If your project is of this type please
ask someone else in your organization to
answer this questionnaire.

Application software.

1 Batch.
2 Interactive.
3 Batch and database
4 Interactive and database.
5 Scientific and engineering
6 Embedded or real time.
7 Multiple type application software.

8 Utility software.

9 Other. Please name:

1.3 Organization name:-

1.3.1 lÿpe of organization:
(Circle the appropriate option.)

Manufacturing industry.
Banking, insurance or financial
institute.
Government / public service
Software house.
Retail.
Service industry, (non financial
services)
Scientific / Engineering
Inter-organizational, (e.g. Swift)

1.3.2 Computer type.
(Circle the appropriate option.):-

1 Mainframe.
2 Mini.
3 Micro.
Please name.

1.4 How was the required effort estimated?

1 Fully or partially automated estimating
tool?

Please name:

2 Formal manual estimating method.
Please name:

3 Informal manual estimating method.
Please describe:

1.5 Who estimated the required effort for
the project?
(Circle the appropriate option.):-

1 Individual estimator.
2 Team members as individual

estimators.
3 Team members as a group of

estimators.

4. Other. Please name.

If the estimation process was done by a group
of estimators, (your answer to question 1.5 is
3), move to question number 1.8 In this case,
each individual estimator in the group
estimation process should indicate his
assignment in the developed project.

11

Estimator's backgroud:-

1.6 Surname:

First name:

1.7 Your title in the organization)

The proiect development strategy.

I.IO Which of the following software
development strategies are suitable for
the project under consideration? See
page 6 for a detailed description.

(Circle the appropriate answer)

1 . 8 Your assignment in the
developed project
{Circle the appropriate answers} :-

1 Customized software development.

2 Customized software development and
1 Project leader. incremental development.

2 System analyst. 3 Application packages system
development.

3 System designer.
4 Incremental development.

4 Programmer.
5 Other. Please describe:

5 User

6 Quality assurance.
P .l How many full time or part time team

7 Technical assistant. members were active at the Preliminary
System Design phase of the project and ii

8 Data base administrator. what skills?

9 External consultant. Remember, at this point of the project life
cycle the estimates were implemented for the

1 0 Professional (expert) estimator. Preliminary System Design only. Therefore,
only members that were active at that phase

1 1 Other. If your assignment was defined
differently, please name:

should be indicated here.

If the estimation process was done by a group
of evaluators, ignore question 1.9 and move
directly to question 1 . 1 0

1.9 Describe briefly your background and
experience.

(Years as project leader, type of projects you
managed or took part in, etc.)

1

2

3

4

5

6

7

Project leader

System analyst

System designer_

Programmer____

User_________

Quality assurance

Technical assistant

8 Data base administrator.

11 Other. Please name.

12 Total team members:

12

GROUP 2 - The profile and characteristics of the proiect.

The following group of questions aims to assess the profile and characteristics of the new system.
The values I ask for are those you anticipated at the project planning phase. You are asked to
indicate, for each question, three possible values: the highest, the lowest and the most likely
estimated values, only if you recorded your estimations this way. If you did not record your
estimations using a range of values use the "most likely " row to indicate your estimated values.
You are also asked to indicate if this data was recorded for the project. Ii it was, please indicate it
by circling the letter Y, if not circle the N. If the question is not relevant to the project, mark x
and turn to the next question.

From my own experience, I realize that there are organizations that do not record
regularly the information I am asking for. If your organization is one of these, please give the
actual values, at the end of the project, for each of the following questions. Please indicate which
is the case by circling the appropriate answer, 1.11 or 1.12.

1.11 The following are the estimated values at the Project Planning phase.

1.12 The following are the actual values at the end of the Project.

In case the project is composed of sub-systems, each sub system should be estimated separately.

"PRESENT SYSTEM".

The "present system" is the one which was
replaced by the project which is the subject of
this questionnaire. Remember, a present
system might also be a manual system.

P.2 Number of inputs (types, not volumes)
in "present system"

Mark x if the question is not relevant___
Most likely estimate
Low estimate ________
High estimate ________

P.3 Number of reports in "present system"

Mark x if the question is not relevant___
Most likely estim ate________
Low estimate ________
High estimate ________

P.4 Number of screens in "present system"

Mark x if the question is not relevant
Most likely estimate
Low estimate
High estimate _______

Was this data recorded (P.2,P.3,P.4)? Y /N

TARGET SYSTEM (Replacement system)

Screen formatting

P.5 Number of screens.
(Each window is a screen)

1 Inquiry screens.

Mark x if the question is not relevant___
Most likely estimate ________
Low estimate______ ________
High estimate

Was this data recorded? Y/N

2 Display screens.

Mark x if the question is not relevant___
Most likely estimate ________
Low estimate ________
High estimate

Was this data recorded? Y/N

3 Data entry screens.

Mark x if the question is not relevant___
Most likely estimate ________
Low estimate ________
High estimate

Was this data recorded? Y/N

13

Report generating

P.6 Number of reports in the target
system.

Only reports for users’ application. Not
including systems or error messages.

1 Total number o f reports expected:

Mark x if the question is not relevant
Most likely estim ate_______]
Low estimate _______
High estimate _______

Was this data recorded? Y/N

2 Major reports:

Mark x if the question is not relevant___
Most likely estim ate________
Low estimate ________
High estimate

Was this data recorded? Y/N

Batch data entry,

P.7 Number of batch inputs (types, not
volumes) or input documents.

Mark x if the question is not relevant___
Most likely estimate ________
Low estimate ___
High estimate

Was this data recorded? Y/N

On line data entry.

P.8 Number of on line inputs (types, not
volumes) for updating.

Mark x if the question is not relevant___
Most likely estimate ________
Low estimate
High estimate

Was this data recorded? Y/N

Resource requirement and capacity planning

High volumes For planning the resource
requirements (capacity planning), in certain
situations where a high degree of estimating
accuracy is necessary, or when response time
is critical.

P.9 Number of high volume inputs.

Mark x if the question is not relevant_
Most likely estimate ______
Low estimate________ ______
High estimate ______

P. 10 Number of high volume inquiries.

Mark x if the question is not relevant___
Most likely estimate ________
Low estimate ________
High estimate ________

P.10.1 Number of high volume remote
outputs transfer.

Mark x if the (question is not relevant___
Most likely estimate ________
Low estimate________ ________
High estimate ________

P .l l Number of simulation models.

Mark x if the question is not relevant__
Most likely estimate ________
Low estimate ________
High estimate ________

Was this data recorded (P.9 - P .ll)? Y/N

DESIGN FACTORS

P.12 Number of data elements in database
divided by 100.

Mark x if the question is not relevant
Most likely estimate _______}
Low estimate _______
High estimate

Was this data recorded? Y/N

P.13 Number of complex / major functions,
from user design viewpoint.

The functions define the system’s processing
from the user’s perspective. They are based
on the business function. A complex function
might be a function that involves data
manipulation or statistical analysis such as:-
calculating gross / net pay, calculating the re
order point, matching deliveries versus orders,
application of cash e.g. billing, unique
validation procedures, etc.

14

Mark x if the question is not relevant___
Most likely estimate ________
Low estimate ________
High estimate ________

Was this data recorded? Y /N

P. 14 Number of processes.

The processing functions are identified during
the user design group of activities. Their
identification provides a basis for identifying
computerized processes, (e.g. group of
logically related transactions, on-line
processes, batch processes or internal
processes) which are organized into programs
and programming units. Processing one
record type per work unit. (A fype of record is
for example: transaction, data-base segment,
message, report line.)

Mark x if the question is not relevant
Most likely estimate _______]
Low estimate
High estimate

Was this data recorded? Y/N

P.15 Number of complex processes, from
technical design viewpoint, but not
directly related to input /output.

When a complex calculation or decision must
be made while processing the data elements
within a record.

Mark x if the question is not relevant___
Most likely estim ate________
Low estimate
High estimate

Was this data recorded? Y/N

P.16 Number of modules, excluding control
and utility modules.

A module is a discrete piece of work that has
a definable product that can be tested, (e.g.
validate a transaction, code to print a report).

Mark x if the question is not relevant
Most likely estim ate_______]
Low estimate
High estimate

P.17 Number of control and utility
modules.

E.g. a module to manage file access and track
updates, produce control reports, a database
management control routine or a job control
to run a periodical processing.
Mark x if the question is not relevant___

Most likely estim ate________
Low estimate______ ________
High estimate ________

Was this data recorded? Y/N

OTHER FACTORS

P.18 Number of users, to be interviewed in
order to determine the functional
requirements of the system.

Mark x if the question is not relevant___
Most likely estimate ________
Low estimate ________
High estimate

Was this data recorded? Y/N

P.19 Number of new or redesign forms.(e.g.
output reports on preprinted forms).

Mark x if the question is not relevant
Most likely estimate________ '
Low estimate ________
High estimate ________

Was this data recorded? Y/N

Was this data recorded? Y/N”

P.20 Number of files to be converted.

Include also manual files which are to be
computerized, (e.g. transaction, master or
table look-up files, manual ledger).

Mark x if the question is not relevant___
Most likely estim ate________
Low estimate ________
High estimate

Was this data recorded? Y/N

P.21 Number of special file conversions.

When planning the conversion and / or the
testing process of a new system, one should
identify any work required on special facilities
during the System Implementation phase, that
are integral of the operational system,
conversion system or testing procedures.

15

Mark x if the question is not relevant
Most likely estimate ________
Low estimate ________
High estimate

Was this data recorded? Y/N

P.22 Number of invitations to tender
(requests for proposals RFP) to be
developed, during the Preliminary
System Design phase. (For example:
hardware, application software,
support software or subcontracting)

Mark x if the question is not relevant___
Most likely estim ate________
Low estimate ________
High estimate

Was this data recorded? Y/N

P.23 Number of tenders (requests for
proposals) to be evaluated, (short list):

Mark x if the question is not relevant___
Most likely estim ate________
Low estimate ________
High estimate

Was this data recorded? Y/N

P.24 Number of contracts to be negotiated
during the Preliminary System Design
phase. For example: hardware,
software, equipment maintenance,
third party or internal contracts.

Mark x if the question is not relevant___
Most likely estimate _________
Low estimate
High estimate

Was this data recorded? Y/N

P.25 How many software packages that were
found suitable for in-depth evaluation,
were actually evaluated at the
Preliminary System Design phase?

Mark x if the question is not relevant___
Most likely estimate ________
Low estimate
High estimate

Was this data recorded? Y/N

P.26 Level of customization required.
Number of modifications needed to fit
the requirements.

Modifications were not required.

Only minor changes were required.
Exclude extensive changes, such as
updating programmes or file changes:

Mark x if the question is not relevant
Most likely estimate _______[
Low estimate ________
High estimate ________

3 Extensive changes were required, such
as updating programmes or file
changes.

Mark x if the question is not relevant___
Most likely estimate ________
Low estimate ________
High estimate ________

Was this data recorded? Y/N

P.27 Was a working model or a prototyping
approach used in this project to
clarify the user’s requirements?

Your answer is? (Y/N)
NO, move to the next group of questions.

YES, please describe your approach:-

P.28

P.29

What parts of the requirements
was prototyped?

All I/O and functions were prototyped.
The majority of the inputs / outputs
and the functions were prototyped.
Only a few of the I/O were prototyped?

What was the number of iterations for
prototyping?

Mark x if the question is not relevant
Most likely estim ate_______}
Low estimate ________
High estimate

Was this data recorded? Y/N

P.30 Were prototyping tools used in this
process? Please name:___________

16

GROUP 3. - Complexity classification and risk indicators

The following group of questions relates to a set of external factors which affect the system’s
complexity and thus the development process. Please, choose the appropriate answer and circle it.
Some of the groupings may appear incompatible, but from the perspective of system complexity
they are grouped naturally. For example: question G.5: "How committed is the upper level user
management to the system?" has : "Somewhat reluctant, or unknown" as an optional answer. The
two parts of the answer are not the same, however from a complexity view point it does not make
any difference. This group of questions applies to the whole project SDLC.

P.31 Database environment.

How many logical databases, does the
project incorporate?
A logical database is the application

view of the database, (e.g. customers,
claims, payments)

1 A single logical database
3 Two to four logical databases
5 Five or more logical databases

S.l What was the required (realistic)
response time for high volume
transactions (inquiry only)?

1 Response time not a factor in this
project.

2 Over 10 seconds.
3 5-10 seconds.
4 3-5 seconds.
5 1-3 seconds.

S. 1.2 System impact on financial status?

Minor.
Major.
Critical.

S. 1.3 System impact on operational status?

Minor.
Major.
Critical.

S.2 Interface with other applications.

1 Few interfaces
3 Several uni-directional interfaces.
5 Multi-directional interfaces with

several applications.

5.2.1 Number of departments (other then
the IS) involved with the project?

1 One
3 Two
5 Three or more

5.2.2 Number of working units involved in
the project? Was this project
developed for the usage of one working
unit or more?

1 Single-site development for one
working unit.

3 Single-site development for multiple
working units within a single-site.

4 Single-site development for multiple
working units within multiple-sites.

5 Multiple development sites or a
multi-company project.

5.2.3 If you propose to replace the system,
what percentage of existing functions
are replaced on a one-to-one basis?

1 50% to 100%
3 25% to 50%
5 0% to 25%

5.2.4 What is the severity of procedural
changes in the user department caused
by the proposed system?

1 Low
3 Medium
5 High

17

S.2.5 Was this project a conversion or a
functional repeat of a well known
project?

1

2

3

4

5

S.2.6

Straight conversion. Code was
transfered from one machine to
another.
Functional repeat with some new
features, (e.g. algorithm and logical
design are well known).
An even mixture of repeated and new
features.
A new system. Algorithm and logical
design was developed from scratch.
A new system. Algorithm and logical
design was developed from scratch.
Hardware and software interfaces
were defined as the design matured.

Does theuser organization have to
change structurally to meet
requirements of the new system?

0 No
1 Minimal
3 Somewhat
5 Major.

S.2.7 What is the general attitude of user?

1 Good - understands value of data
processing solution.

3 Fair - sometimes reluctant
5 Poor - anti data processing solution.

Technical environment.

T .l Computer type, operating system,
installation aids and project
familiarity.

1 Computer with simple operating
system, good installation aids and
project team is familiar with it.

2 Computer with average operating
system, fair installation aids and all
are generally familiar to project team.

3 (5) Computer with average operating
system, fair installation aids and
project team is unfamiliar with.

4 (5) Complex, large computer and
operating system, includes installation
aids which are generally familiar to the
project team.

5 Complex, large computer and
operating system which are not
familiar to the project team.

T.1.2 Is any hardware new to the company?

0 None.
2 Most hardware is familiar to the

project team.
3 (4) Most hardware is familiar to a part of

the project team.
4 (5) Most hardware is new to the entire

project team.
5 All hardware is new to the entire

project team.

T.2 Data base management system.

1 Easy to use. Much prior experience.
3 Typical major DBMS with prior

experience.
5 New or user customized.

T.3 On line monitor.

1 Easy to use. Much prior experience.
Handles all system requirements.

3 Major monitor. No supplementary
logic required.

5 New or user customized.

T.4 Data dictionary

1 Data dictionary with development aids
is available.

3 Data dictionary without development
aids is available.

5 New dictionary or no dictionary.

T.5 The development methodology

1 There is use of propriety structured
methodology, for the whole life cycle.

3 There is no use of propriety structured
methodology, but some usage of
structured technique when designed.

4 (5) There is only limited use of structured
techniques.

5 There is no use of structure techniques

18

T . 6 Communication and distributed
systems.

1 Established and there is no need for
modification.

3 Established but some development
required to support.

5 First time use.

T.7 System architecture.

1 Centrahzed. (single processor)
2 Coupled, (multiple processors)
3 Federated, (processors linked via bus)
4 Distributed, f centralized database)
5 Distributed, (distributed database)

Organizational environment.

G.l Number of people whose working
practice was affected by the system,

1-50 employees.
50-500 employees.
500- 2000 employees.
2 0 0 0 or more employees.

G.1.1 Number of people whose working
practice was affected by the system,
in one working unit. If great variation
in unit size, then give an average.

1 1-50 employees.
2 50-500 employees.
4 500- 2000 employees.
5 2000 or more employees.

G.2 User familiarity with the system.
(How knowledgeable is the user
representative in the proposed
application area?)

1 Extensive, has been involved in prior
implementation.

3 Considerable, understands the concept
but no experience.

5 Minimal.

G.3 Decision makers

1 Key individuals.
3 Single committee with key individuals.
5 Multiple committees with multiple

reviews.

G.4

G.5

Information processing service
structure

Single decision maker.
Established, strong project
management function.
Project has multiple decision makers,
within complex organization

Commitment of the upper level user’s
management to the system?

Extremely enthusiastic.
Adequate.
Somewhat reluctant, or unknown.

Proiect team composition

C.1 Project team structure

1 Single decision maker and less than
four team members.

2 Four to eight project team members.
Some technical assistance is required.

3 (5) Lar^e project team and multiple
decision makers.

4 (5) Large team and matrix organization.
5 Ambiguous or uncertain project

orgamzation structure.

C.2 Experience with industiy / application

1 Extensive, high degree of capability.
3 Considerable, previous exposure but

limited knowledge.
5 Minimal, first exposure.

C.3 Technical experience

1 Extensive, all required systems
software has been successfully used
before.

3 Considerable, small learning curve
anticipated.

5 None, major learning curve.

C.4 Staffing and Hiring.

1 There was no need to hire new
personnel for this project.

3 Personnel could be hired as justified,
for this project.

5 There is a need to hire personnel for
this project but hiring is difficult.

19

GROUP 4. Actual effort data.

This part of the questionnaire aims to capture historical data, related to the actual and original
estimates. In this part you are asked to relate to the various project life cycle phases (SDLC).
Therefore, to remind you, this research uses the following life cycle phases:

Project planning. This phase addresses the project initiation and feasibility issues. The
preferred concept for the software project is defined, the software development strategies are
developed and the superiority of the chosen concept to alternatives is presented.

Preliminaiy System Design. This phase is the start-up point of the project, in which the
software product is specified. This phase includes the "specification requirements" and the
"product design specification". It includes a complete, validated:-

Functional and technical specification of the user’s requirements.
Design from the user point of view.
Interfaces, performance, security and control requirements of the software product.
A complete and verified specification of the:-

Overall hardware and software architecture.
Data models for the project.

Detailed Design and Implementation. This phase includes the "detailed design", "code and
debug", "tests, system integration and pre-operations".

Please, follow the project development strategy (SDLC) you had chosen (your answer to question
1.0) in appendix A. You are asked to cancel the segments and/or activities that you did not follow
in this project and to add those you did follow but are not included in my list of activities.

A.1. What was the total actual effort
required in this project?

Total person hours:-_____________

A. 1.2 What was the actual effort required
in this project for the Preliminary
System Design phase?

Person hours:-______________

A 1.3 If your project development life cycle
(SDLC) phases do not agree with
those given in this research, please
group the following categories so that
they correspond with yours:

Percentage
of effort

Preliminary System Design effort.
Total person hours:-________%

Detailed Design and Implementation
effort.

Total person hours:-________%

A2 What was the elapsed time for the
total project?

Weeks:-____________________

A2.1 What was the elapsed time for the
Preliminary System Design?

Weeks:-____________________

A2.3 If your project development life cycle
(SDLC) phases do not agree with

those given in this research, please
group the following categories so that
they correspond with yours:

Percentage of
elapsed time

Preliminary System Design
elapsed time.

Total weeks:-___________ %

Detailed Design and Implementation
elapsed time.

Total weeks:- %

20

A.3 How many full time persons
worked in the total project?

Number of full time persons:______

A.3.1 How many of full time persons worked
in the Preliminary System Design.

Number of full time persons:-__________

A.3.2 Does your actual effort include the
user’s departments effort?

Your answer is ?(Y/N)
No, move to question number A.4

Yes, What percentage of the effort was
due to the users’ departments?

Throughout the Preliminary System
Design:___________%.

Throughout the Detailed Design and
Implementation:-______________%

A.4 What was the peak time in the project?
How many weeks from the starting
date of the project was it staffed the
most?

Weeks:-___________________

A.5 What was the total number of source
lines of code in the project?
Do not include conunents.Include new,
modified and unmodified code.

Total lines of code:-______________

A. 6 What was the major language used in
the project?______________________

What percentage of the work was done
using this language?_______ %

A.6.1 What was the secondary language used
in the project?____________________

What percentage of the work was done
using this language?_______ %

A.7 Did you use fourth generation
languages?

Your answer is ?(Y/N)
No, move to question A . 8

Yes, which languages?____________________

using this language?

Throughout the Preliminary System
Design: - ______%

Throughout Detailed Design and
Implementation: - ______%

A. 8 Did you use screen formatting tools?
Your answer is ?(Y/N)
No, move to question number A 9

Yes, which tools and what percentage of
the work was done using them?

Please, name the tools:-_________________

Throughout the Preliminary System
Design: - ______%

Throughout Detailed Design and
Implementation: - ______%

A.9 Did you use report generator tools?
Your answer is? (Y/N)
No, move to question number A . 8

Yes, which tools and what percentage of
the work was done using these tools?

Please, name the tool:__________________

What percentage of the work was done

21

Throughout the Preliminary System
Design: - ______%

Throughout the Detailed Design and
Implementation: - _____ %

A.10 Was this project, in your opinion, of
complex, moderate or simple difficulty?

1 Simple.
2 Moderate.
3 Complex.

The following group of questions addresses
the activities which vary between projects and
organizations.

E . 1 Did this project include the design
for complex processes such as new
authorization or control?

Your answer is ?(Y/N)
No, move to question number E.2

Yes, what were these processes? (describe)

E.4.1 What, was the effort needed to
accomplish this activity in your project?
Work hours:-_________

Describe the complex functions:-

E.1.1 What, was the effort needed to
accomplish this activity in the
project?

Work hours_________

E.2 Did the project include the design of
control and utility modules?

Your answer is ?(Y/N)
No, move to question number E.4

Yes, what were these utilities? (Please name):

E.2.1 What, was the effort needed to
accomplish this activity in the project?

Work hours_________

E.4 Did the project include the design of
complex functions?

Based upon the business functions
included in the scope of the project, the
computerized processing functions are
defined. For example, the associated
computerized processing function for the
"order entry business function" may be an
order entty on line conversation. Such
conversation may take the form of:-

Identify customer.
Enter order.
Enter line header.
Recapitulate order.

But, in more complex applications
each of the above items could be a
conversation by itself.
Your answer is? (Y/N)
No, move to question E.5.

Yes, move to the next question.

E.5 Did this project include the design for
communication and distributed
systems?

Your answer is ?(Y/N)
No, move to question number E . 6

Yes. (Circle the appropriate answer)

1 Communication systems only.
2 Distributed systems only.
3 Both.

E.5.1 What was the effort needed to
accomplish this activity in your
project?

Work hours:-____________

E . 6 Was hardware and software selection
part of the project?

Your answer is? (Y/N)
No, move to question E.7.

Yes. (Circle the appropriate answer)

1 Hardware only.
2 Software only.
3 Both.

E.6.1 What was the effort needed to
accomplish this activity in your
project?

Work hours:-_________

E.7 Was special file conversion part of the
project?

Your answer is? (Y/N)
No, move to group 4.

E.7.1 What was the effort needed to
accomplish this activity in your
project?

Work hours:-

22

"A CONFESSION":

A. 12 What were your estimates for the
required person hours at the Proiect
Planning phase?

1 Estimated person hours for the total
project:-

Person hours

Were these estimates recorded? (Y/N)

2 Estimated person hours for the
Preliminaiy System Design phase:-

Person hours

Were these estimates recorded? (Y/N)

3 If your project SDLC phases do not
agree with those given in this research,
please group the following categories
so that they correspond with yours:

Percentage of
estimated effort

Preliminary System Design effort.
Total person hours:-________%

Detailed Design and Implementation effort:
Total person hours:-________%

A. 13 What were your estimates for the
required elapsed time (in weeks) at
the Project Planning phase?

1 Estimated elapsed weeks for the
total project:-

Weeks:-

Were these estimates recorded? (Y/N)

2 Estimated elapsed weeks
for the Preliminary System Design:-

Weeks:-

3 If your project SDLC phases do not
agree with those given in this research,
please group the following categories
so that they correspond with yours:

Percentage of
elapsed time

Prehminary System Design
elapsed time.

Total weeks:-___________ %

Detailed design and Implementation
elapsed time.

Total weeks:-____________%

A.14 What were your estimates for the
required full time persons at the
Proiect Planning phase?

1 Estimated full time persons for the
total project:-

Number of full time persons:-_________

Were these estimates recorded? (Y/N)

2 Estimated full time persons for the
Preliminary System Design:-

Number of full time persons:-_________

Were these estimates recorded? (Y/N)

3 If your project SDLC phases do not
agree with those given in this research,
please group the following categories
so that they correspond with yours:

Percentage of
full time persons

Preliminary System Design.
Full time persons:-__________%

Detailed design and Implementation.
Full time persons:-__________ %

Were these estimates recorded? (Y/N)

23

A word o f thanks

Now that you have survived to this
point, thank you very much for
your perseverance in the task

Zeeva Levy

24

Appendix A. Decomposition of the various SDLC strategies.

Appendix A.1:- Decomposition of the Preliminary System Design Phase for the
Customized Software Development strategy.

T h e
s t r a t e g y

r h e P r e l i m i n a r y S y s t e m D e s i g n p h a s e , i f t h e C u s t o m i z e d S o f t w a r e d e v e l o p m e n t
, h a s b e e n a p p l i e d , i s c o m p o s e d o f t h e f o l l o w i n g s e g m e n t s : -

I O R G A N I Z A T I O N

U S E R R E Q U I R E M E N T S

H A R D W A R E A N D S Y S T E M S

S O F T W A R E D I R E C T I O N

I I
I I

U S E R D E S I G N

• > I H A R D W A R E A N D S Y S T E M S

■ > I S O F T W A R E E V A L U A T I O N

T E C H N I C A L D E S I G N

T E C H N I C A L S U P P O R T I <

I N S T A L L A T I O N

S C H E D U L E

C O S T B E N E F I T

A N A L Y S I S

H A R D W A R E A N D S Y S T E M S | <

S O F T W A R E S E L E C T I O N I

■> I M A N A G E R I A L R E V I E W | < -

I A N D A P P R O V A L I

The following activities composite of these segments:

Organization
Organize project

Hardware and systems software direction
Review company policies related to H&S.
Identify and evaluate hardware
alternatives.
Identify and evaluate software
alternatives.

Determine overall evaluation
criteria *.
Evaluate alternatives
(Only for final proposal.)
Establish hardware approach.
Estabhsh software approach.

Hardware and system software evaluation
Identify modification to system software.

Write direction for technical and
functional specification.

Obtain requirements inventories for
proposed application system’s function.

Evaluate packages against the
systems requirement criteria.

Summarize evaluation of
each package for
comparison.

Identify and evaluate hardware
alterntives.

User requirements
Review present system
Identify functional requirement
Identity other requirements (Such as

performance and security and
control requirements)

User design
Initiate prototype [define scope, etc.’]

Define inputs and outputs
Define processing functions *
Define data requirements

Issue preliminaiy
functional specifications.

Design data base .
Design system processes *
Design other processes *

Technical support
Design testing and conversion processes.
Determine resource requirements

Installation schedule
Identify installation steps

Establish personnel requirements
Develop conversion approach

Develop installation work
plan

Note: An iterative process will take place
at that point.

Cost/benefits analysis
Estimate installation costs.

Estimate operating costs and
benefits.

Document the intangibles
Summarize overall
economics

Hardware and software selection
Finalize selection

Negotiate contract terms

Management review and approval
Pubhsh specifications.
Review with management.
Prepare management report.

Approve project and priority.

* These activities are characterized
by high variance among projects and
orgamzations

Technical design
Design technical architecture. *

Appendix A.2:- Decomposition of the Preliminary System Design for the Application
Packages Strategy.

I f t h e A p p l i c a t i o n S o f t w a r e D e v e l o p m e n t S t r a t e g y , h a s b e e n a p p l i e d , t h e P r e l i m i n a r y
S y s t e m D e s i g n a n d s e l e c t i o n p h a s e , i s c o m p o s e d o f t h e f o l l o w i n g s e g m e n t s : -

O R G A N I Z A T I O N .

S U R V E Y A N D S C R E E N I C R I T E R I A D E V E L O P M E N T

• > I E V A L U A T E A N D S E L E C T | < -

V

C O N F I R M A N D D E S I G N

C O N V E R S I O N

P L A N N I N G

C O S T / B E N E F I T

A N A L Y S I S

M A N A G E R I A L R E V I E W | < <

A N D A P P R O V A L I

The following activities composite of these segments:-

Organization
Organize project.
Set scope.

Survey and screen.
Survey packages.
Survey requirements.

Develop preliminary criteria.
Select finalists.

Criteria development.
Review present system.
Identify functional requirement.
Identify other requirements (Such as

performance and security and
control requirements, reliability
requirements, response
requirements, real time
requirement, interactive
requirements, etc.)
Define functional criteria.

Identify technical architecture.
Evaluate technical alternatives.

Define technical criteria.
Finalize selection criteria.

Evaluate and select.
Develop contract strategy.

Obtain information and training.
Evaluate features.
Compare costs and benefits.

Make preliminary selection
Prepare report.
Negotiate contract terms.

Obtain approval to
continue.

Confirm and design.
Define application flow.
Prepare for acceptance test.
Define modification approach.

Perform acceptance test.
Design interfaces and
modifications.

Define testing
approach.
Define resource
requirements.

Conversion planning
Define conversion approach.

Define conversion processes.
Define conversion files.
Define conversion resource
requirements.

Develop implementation
plan.

Establish personnel
requirements.

Cost benefit analysis.
Estimate implementation cost.

Estimate operation costs and
benefits.
Document intangibles.
Summarize overall economics.

Management review and approval.
Publish specifications.
Prepare management report
Review with management.

Approve project and priority.

Appendix A.3:- Decomposition of the SDLC for the Incremental Strategy.

I f t h e I n c r e m e n t a l D e v e l o p m e n t S t r a t e g y , h a s b e e n a p p l i e d , t h e S D L C i s c o m p o s e d o f t h e
f o l l o w i n g s e g m e n t s : -

O R G A N I Z A T I O N .

P R O P O S E D S O L U T I O N

I M P L E M E N T A T I O N

R E V I E W

D O C U M E N T A T I O N

T h e f o l l o w i n g a c t i v i t i e s c o m p o s i t e o f t h e s e s e g m e n t s : -

Organization
S e t s c o p e
D e f i n e t h e p r o b l e m

Proposed solution
D e f i n e i n p u t s a n d o u t p u t s
D e s i g n l o g i c a l d a t a .
S e l e c t t o o l s / t e c h n i q u e s .

D e f i n e i t e r a t i v e s t r a t e g y
D e f i n e t e c h n i c a l a r c h i t e c t u r e

Implementation.
D e s i g n P r o c e s s i n g l o g i c .
D e s i g n p h y s i c a l d a t a

I m p l e m e n t p r o c e s s i n g l o g i c
T e s t i m p l e m e n t a t i o n

R e c o n f i r m s c o p e

Review
E s t a b l i s h n e x t c y c l e

Documentation
D e v e l o p u s e r d o c u m e n t a t i o n
F i n a l i z e s y s t e m d o c u m e n t a t i o n

Appendix 7A. Decomposition of the Preliminary System Design Phase

T h e P r e l i m i n a r y S y s t e m D e s i g n P h a s e i s c o m p o s e d o f t h e f o l l o w i n g s e g m e n t s :

HARDWARE AND S Y S T E MS
S OF T WAR E D I R E C T I O N

HARDWARE AND S Y S T E MS
S OF T WAR E S E L E C T I O N

O R G A N I S A T I O N

US E R R E Q U I R E M E N T S

HARDWARE AND S Y S T E MS
S OF T WA R E E V A L U A T I O N

US E R D E S I G N

I V I
I T E C H N I C A L D E S I G N I

T E C H N I C A L S U P P O R T | <
. I

COS T B E N E F I T
A N A L Y S I S

MA N A G E R I A L R E V I E W
AND A P P R O V A L

I N S T A L L A T I O N I
S C H E D U L E

Figure 7.11 Decomposition of the PSD Phase into segments.

310

The following activities encompass these segments:

Organisation
Organise project

Hardware and systems software direction
Review company policies related to H&S.
Identify and evaluate hardware
alternatives.
Identify and evaluate software
alternatives.

Determine overall evaluation
criteria *.
Evaluate alternatives
(Only for final proposal.)
Establish hardware approach.
Establish software approach.

Hardware and system software evaluation
Identify modification to system software.

Write direction for technical and
functional spécification.

Obtain requirements inventories for
proposed application system’s function.

Evaluate packages against the
systems requirement criteria.

Summarise evaluation of
each package for
comparison.

Identify and evaluate hardware
alternatives.

User requirements
Review present system
Identify functional requirement
Identify other requirements (Such as

performance and security and
control requirements)

User design
Initiate prototype [define scope, etc.’]

Define inputs and outputs
Define processing functions *
Define data requirements

Issue preliminary
functional specifications.

Technical design
Design technical architecture. *

Design data-base.
Design system processes *
Design other processes *

Technical sunnort
Design testing and conversion processes.
Determine resource requirements

Installation schedule
Identify installation steps

Establish personnel requirements
Develop conversion approach

Develop installation work
plan

Note: An iterative process will take place
at that point.

Cost/benefits analysis
Estimate installation costs.

Estimate operating costs and
benefits.

Document the intangibles
Summarise overall
economics

Hardware and software selection
Finalise selection

Negotiate contract terms

Management review and annroval
Publish specifications.
Review with management.
Prepare management report.

Approve project and priority.

* These activities are characterised by
h i g h v a r i a n c e a m o n g p r o j e c t s and
organisations

311

Appendix 7A.1 Decomposition of the SDLC for the Iterative Strategy.

I f t h e I t e r a t i v e d e v e l o p m e n t s t r a t e g y i s a p p l i e d , t h e S D L C i s c o m p o s e d o f t h e

f o l l o w i n g s e g m e n t s :

ORGAN I SAT I O N .

I P R O P O S E D S O L U T I O N j

I MP L E M E N T A T I O N

I REV I EWI ---------

DOC UME NT AT I ON

Figure 7.12 Decomposition of the iterative approach into segments.

T h e f o l l o w i n g a c t i v i t i e s c o m p o s i t e o f t h e s e s e g m e n t s :

Onzanisation
Set scope
Define the problem

Proposed solution
Define inputs and outputs
Design logical data.
Select tools /techniques.

Define iterative strategy
Define technical architecture

Implementation.
Design Processing logic.
Design physical data

Implement processing logic
Test implementation

Reconfirm scope

Review
Establish next cycle

Documentation
Develop user documentation
Finalise system documentation

312

Appendix 7B List of cost drivers used In the EEM.

Number of new systems (equals 1, each subsystem is estimated separately)

Number of project team members

Number of interviews.

Number of old reports, screens, inputs.

Number of new reports

Number of new screens: inputs,outputs and massages.

Number of new inquiries.

Number of new or re-design forms.

Number of data elements in data-base divided by 100.

Number of files conversion processes.

Number of invitations to tender (requests for proposal - RFP)

to be developed, during the PSD.

Number of requests for proposal to be evaluate, short list.

Number of contracts to be negotiated during the PSD.

Number of high volume inputs and or inquiries.

Number of simulation models.

Number of (working models?) or iterations for prototyping?

Number of application packages to evaluate (short list)

Number of modification required in software application package to fit

the requirement

Number of complex functions.

Number of complex processes.

Number of utility and control modules, only.

Number of special processes or files to be converted.

The EEM collects the following information: description of the functions implemented and the

actual effort on the following two activities:

Hardware and software selection

Communication and distributed systems

313

Appendix 7C. The EEM structure and concepts - examples

Examples are given to clarify the concepts described and implemented by the
EEM. Since the EEM estimates the effort required for the PSD, all the segments
and activities indicated in this example are of the PSD. The selection of the
activities and cost drivers in the examples aims to introduce gradually the concepts
used by the EEM and to cover the variety of its usage. The examples show that
the ‘standard of effort’, the resources consumed by a cost driver, may differ in the
implementation of various activities. Two types of cost drivers are introduced,
cost drivers which are size attributes of the product and cost drivers which are
identified as an overhead resources.

The primary aim of the ‘user requirements’ segment is to define the
functional requirements of the system that support the business needs of the users.
It is in this segment that the information flows (manual or computerised) of the
current system are determined, the business functions to be implemented in the
target system are described in detail and additional performance requirements are
specified. Therefore, in aiming to identify the ‘user requirements’, we need to
implement the following activities:

* Review the present system
* Identify the functional requirements
* Identify requirements such as performance, security and control

The ‘user design’ segment aims to transform the functional requirements
defined in the ‘user requirements’ segment into a design from the user viewpoint,
in business-oriented terminology. In this segment, the user interaction with the
system, the inputs and outputs, and the business data managed by the system are
defined in detail. Thus, when implementing the ‘user design’ segment we need to:

* Define inputs and outputs
* Define data requirements

Attempting to ‘review the present system’ we need to understand how it
functions. This understanding is gained, in part, by interviewing key people in the

314

users’ organisation and by studying the reports and enquiries, currently provided.
Therefore, the number of interviews to be held for reviewing the current system
and the number of reports, screens or inputs supplied by the present system are
major contributors to the cost associated with this activity and, thus, with the ‘user
requirements’ segment. See Table 7C.1 for an example of activities and their
associated cost drivers.

Segments / Activities

Organisation
Organise project

User requirements
Review present system

Identify functional requirement

Identify other requirements

User design
Define inputs and outputs

Define data requirements

Technical design
Design data-base

The cost drivers associated with an activity

Number of project team members

Number of interviews
Number of reports, screens and inputs in the

replaced system.

Number of new reports
Number of new screens, inputs and outputs

Number of new systems

Number of new reports
Number of new screen inputs and outputs
Number of new inquiries
Number of new or re-designed forms.

Number of data elements in data-base

> > >

> > >

Number of data elements in data-base

This is an example of a cost driver which is identified as an overhead resource.

’ ’ These indicate cost drivers which are common to more than one activity in this example.

Table 7C.1 Examples of activities and their associated cost drivers.

Identifying the functional requirements of the target system involves
understanding the reports, screens, inputs and outputs that are needed. Hence,
the number of new reports, new screens, new inputs and outputs are major factors
contributing to the effort involved in implementing this activity and, thus to the
‘user requirements’ segment. This understanding is also required for the definition

315

of inputs and outputs. However, the effort consumed in the understanding of
these articles, in the context of the ‘user design’ segment, differs from the effort
required for gaining this understanding when identifying the ‘user requirements’.
Hence, the ‘standard of effort’ required for an identical cost driver will vary when
implemented in conjunction with various activities. In addition, when defining the
inputs and outputs of the target system we might identify requirements for
inquiries and for the re-design of forms. Hence, there are also cost drivers
associated with this activity and thus, with the ‘user design’ segment.

The major contributor to the definition of the data requirements and to the
design of the data-base is the number of data elements anticipated in the data
base. The number of data elements is identified as a cost driver associated with
the ‘define inputs and outputs’ and ‘design data-base’ activities and therefore,
contributes to the effort required for both the ‘user design’ and the ‘technical
design’ segments. Nevertheless, the resources consumed by this cost driver in the
implementation of these two activities differ. Hence, different ‘standards of effort’
are associated with this cost driver in various activities.

The activity ‘identify other requirements’ has a cost driver which represents
the overhead effort required for a system. However, additional effort might be
needed to implement this activity when high performance plays an important role
in the target system, or when specific security and control features are required. It
is obvious that a ‘standard of effort’ cannot be established for implementing
unique requirem ents, since the effort consumed will differ widely among
environments. Hence, the estimated effort for this activity is the result of the
estimator’s judgement (apart from the system overhead). The EEM collects
performance data of such activities in various projects. This data will be used in
estimating effort for projects where similar functions are required within similar
environments.

The ‘standard of effort’ associated with each activity and cost driver is a
function of the general complexity of the system. Therefore, a set of 3 values for
the ‘standard of effort’ is correlated with each of the combined entities (activity
and associated cost driver). Each value represents a different level of complexity.
As previously discussed, and it is worth re-emphasising, the ‘standard of effort’ is a
result of measurement of projects histories in heterogeneous environments, they
were fine-tuned throughout this research. The concept is shown in Table 7C.2.

316

Segments / Activities
Organisation
Organise project

User requirements
Review present system

Identify functional requirement

Identify other requirements

User design
Define inputs and outputs

Define data requirements

Technical design
Design technical architecture

Design data-base

Standard of Effort associated with the activities and cost drivers

Number of project team members
SOE 10 if system is Simple (S)

20 if system is Moderate (M)
30 if system is Complex (C)

Number of interviews
SOE 3 if system is Simple

4 if system is Moderate
6 if system is Complex

Number of reports, screens and inputs in the old system
SOE 1 if system is Simple

2 if system is M or C.
Number of new reports ̂ ̂'
SOE 2 if system is S. or M. or C,
Number of new screens: inputs, outputs
SOE 2 if system is S. or M. or C.
Number of new systems
Estimator’s judgement for unique requirements.

Number of new reports ̂ ̂'
Number of new screens, inputs and outputs
SOE 3 if system is S. or M. or C.
Number of new enquires
Number of new or re-designed forms.
SOE 4 if system is S. or M. or C.
for the cost drivers: new enquiries & re-designed forms
Number of data elements in data-base
SOE 10 if system is S. or M. or C.

Number of new systems
SOE 40 if system is Simple.

60 if system is Moderate.
180 if system is Complex.

Number of data elements in data-base
SOE 20 if system is Moderate.

This should be read 10 Person Hours is the resources (SOE) consumed for each team
members to support the activity ‘organise the project’, when the system is of simple complexity.

Table 7C.2 An example of ^standard of effort’ associated with an activity and a
cost driver.

317

Appendix 7D. Complexity and risk determinants and rules for calculation.

7D.1 COMPLEXITY AND RISK CALCULATION

The complexity determinants are phrased as questions with options for answers
which are scored between 0 and 5, from which the estimator is asked to choose the
appropriate answer. These scores are totalled for each category of complexity (as
previously discussed) and the added score is assessed as simple, moderate or
complex according to the range it falls in. When the number of determinants
included in each category is multiplied by 1, it classifies the lower level for
‘moderate’ complexity and when multiplied by 3, minus 1, it indicates the lower
level of ‘complex’ complexity. Since 14 determinants encompass the General
System Complexity, the ranges are classified as follows:

* Simple 0 -13
* Moderate 14 - 40
* Complex 41-70

7D.2 ASSESSMENT OF GENERAL COMPLEXITY

The EEM uses set of rules to assess the system’s complexity and the project risk,
they are given below. Two groups of attributes are considered in the assessment of
the ‘general system complexity’, they are size attributes of the target system and
environmental system characteristics.

Group A: Attributes of product size

P.5 Number of inquiry screens. (Each window is a screen)

The complexity rule is: number of inquiry screens less than 10 is scored 1

greater or equal than 10 and less than 20 is scored 2

greater or equal than 20 is scored 3

The code adjacent to each determinants refers to the question numbers used in the questionnaire.

318

P.6 Number of reports in the tai^et system.

(Only reports for users’ application. Not including systems or error messages.)

P.6.1 Total number of reports expected:

(P.6.1 itself is not a complexity determinant)

P.62 Major reports:

The complexity rule is: number of major reports less than 10 is scored 1

greater or equal than 10 and less than 30 is scored 2

greater or equal than 30 is scored 3

Minor reports: (P.6.2-P.6.1)

The complexity rule is: number of minor reports less than 20 is scored 1

greater or equal than 20 and less than 40 is scored 2

greater or equal than 40 is scored 3

Batch data entry

P.7 Number of batch inputs (types, not volumes) or input documents.

The complexity rule is: number of batch inputs less than 10 is scored 1

greater or equal than 10 and less than 30 is scored 2

greater or equal than 30 is scored 3

On line data entry

P.8 Number of on-line inputs (types, not volumes) for updating.

The complexity rule is: number of on-line data entry less than 5 is scored 1

greater or equal than 5 and less than 20 is scored 2

greater or equal than 20 is scored 3

P.12 Number of data elements in data-base divided by 100.

The complexity rule is: number of data elements in DB less than 200 is scored 1

greater or equal than 200 and less than 500 is scored 2

greater or equal than 500 is scored 3

319

P.13 Number of complex / major functions, from user design viewpoint.

The complexity rule is: number of complex functions less than 30 is scored 1

greater or equal than 30 and less than 50 is scored 2

greater or equal than 50 is scored 3

GROUP B: Environmental systems complexity

V21.1 Data base environment.

How many logical data-bases, does the project incorporate?

A logical data-base is the application view of the data-base. (e.g. customers, claims,

payments).

1 A single logical data-base.

3 Two to four logical data-bases,

5 Five or more logical data-bases.

The numbers in the first column are the scores.

S .l What was the required (realistic) response time for high volume transactions (inquiry

only)?

1 Response time not a factor in this project.

2 Over 10 seconds.

3 5-10 seconds.

4 3-5 seconds.

5 1-3 seconds.

S.1.2 System impact on financial status?

1 Minor.

3 Major.

5 Critical.

S.13 System impact on operational status?

1 Minor.

3 Major.

5 Critical.

320

S 2 Interface with other applications.

1 Few interfaces.

3 Several unidirectional interfaces.

5 Multi directional interfaces with several applications.

S.23 If you propose to replace the system, what percentage of existing functions are replaced

on a one-to-one basis?

1 50% to 100%.

3 25% to 50%.

5 0% to 25%.

G 2 User familiarity with the system. (How knowledgeable is the user representative in the

proposed application area?)

1 Extensive, has been involved in prior implementation.

3 Considerable, understands the concept but no experience.

5 Minimal.

Application software evaiuation

P.25 How many software packages that were found suitable for in-depth evaluation, were

actually evaluated at the Preliminary System Design Phase?

Few 1-2 simple.

Several 3-5 moderate.

Major 5 + complex.

PJ26 Level of customisation required. Number of modifications needed to fit the requirements.

1 Modifications were not required: - No effect (0).

2 Only minor changes were required. Exclude extensive changes, such as updating

programmes or file changes: Moderate (3).

3 Extensive changes were required, such as updating programmes or file changes.

Complex (5).

321

7D.3 ORGANISATIONAL ENVIRONMENT

S2.1 Number of departments (other then the IS) involved with the project?

1 One.

3 Two.

5 Three or more.

S.22 Number of working units involved in the project? Was this project developed for the

usage of one working unit or more?

1 Single-site development for one working unit.

3 Single-site development for multiple working units within a single-site.

4 Single-site development for multiple working units within multiple-sites.

5 Multiple development sites or a multi-company project.

S2.4 What is the severity of procedural changes in the user department caused by the proposed

system ?

1 Low.

3 Medium.

5 High.

SJ2.5 Was this project a conversion or a functional repeat of a well known project?

1 Straight conversion. Code was transferred from one machine to another.

2 Functional repeat with some new features, e.g. algorithm and logical design are well known.

3 An even mixture of repeated and new features.

4 A new system. Algorithm and logical design were developed from scratch.

5 A new system. Algorithm and logical design were developed from scratch. Hardware

and software interfaces were defined as the design matured.

S2.6 Does user organisation have to change structurally to meet requirements of the new

system ?

0 No.

1 Minimal.

3 Somewhat.

5 Major.

322

The following factors should affect mainly user oriented segments such as
user requirements, user design, system test.

S2.7 What is the general attitude of user?

1 Good - understands value of data processing solution.

3 Fair - sometimes reluctant.

5 Poor - anti data processing solution.

G.l Number of people whose working practice was affected by the system.

1 1-50 employees.

2 50-500 employees.

4 500- 2000 employees.

5 2000 or more employees.

G.1.1 Number of people whose working practice was affected by the system, in one working unit.

If great variation in unit size, then give an average.

1 1-50 employees.

2 50-500 employees.

4 500- 2000 employees.

5 2000 or more employees.

Only the highest score between G .l and 0.1.1 determinants is used to calculate the
complexity indicator for the ‘technical environment’.

GJ Decision makers.

1 Key individuals.

3 Single committee with key individuals.

5 Multiple committees with multiple reviews,

G.4 Information processing service structure.

1 Single decision maker.

3 Established, strong project management function.

5 Project has multiple decision makers, within complex organisation.

323

G.5 Commitment of the upper level user’s management to the system?

1 Extremely enthusiastic.

3 Adequate.

5 Somewhat reluctant, or unknown.

7D.4 TECHNICAL ENVIRONMENT.

The following Complexity factors should affect mainly technical user oriented
segments such as technical design, programming, etc.

T.l Computer type, operating system, installation aids and project familiarity.

1 Computer with simple operating system, good installation aids and project team is famihar

with it.

2 Computer with average operating system, fair installation aids and all are generallyfamiliar

to project team.

5 Computer with average operating system, fair installation aids and project team is

unfamiliar with.

5 Complex, Itu-ge computer and operating system, includes installation aids which are

generally familiar to the project team.

5 Complex, large computer and operating system which are not famihar to the project team.

T.1.2 Is any hardware new to the company?

0 None.

2 Most hardware is famihar to the project team.

4 Most hardware is famihar to a part of the project team.

5 Most hardware is new to the entire project team.

5 All hardware is new to the entire project team.

Only the highest score between T .l and T.1.2 is used in calculating the complexity
value for the ‘technical environment indicator’.

324

T2 Data-base management system.

1 Easy to use. Much prior experience.

3 Typical major DBMS with prior experience.

5 New or user customised.

T3 On line monitor.

1 Easy to use. Much prior experience. Handles all system requirements.

3 Major monitor. No supplementary logic required.

5 New or user customised.

T.4 Data dictionary.

1 Data dictionary with development aids is available.

3 Data dictionary without development aids is available.

5 New dictionary or no dictionary.

T.5 The development methodology.

1 There is use of propriety structured methodology, for the whole life cycle.

3 There is no use of propriety structured methodology, but some usage of

structured technique when designed.

5 There is only hmited use of structured techniques.

5 There is no use of structure techniques.

T.6 Communication and distributed systems.

1 Established and there is no need for modification.

3 Established but some development required to support.

5 First time use.

If this question T.6 is scored for 5 (Communication and distributed systems first
used) and one additional determinants which is included in this category is scored
high (5),

than ‘technical environment’ should be considered as complex.
Or, if any three questions are scored 4 or 5,

than the system should be considered as complex.

325

T.7 System architecture.

This question was not found contributing in the sample projects used in this thesis.

1 Centralised (single processor).

2 Coupled (multiple processors).

3 Federated (processors linked via bus).

4 Distributed (centralised data-base).

5 Distributed (distributed data-base).

7D.5 PROJECT TEAM COMPOSITION

C.l Project team structure.

1 Single decision maker and less than four team members.

2 Four to eight project team members. Some technical assistance is required.

5 Large project team and multiple decision makers.

5 Large team and matrix organisation.

5 Ambiguous or uncertain project organisation structure.

C.2 Experience with industry/application.

1 Extensive, high degree of capability.

3 Considerable, previous exposure but limited knowledge.

5 Minimal, first exposure.

C3 Technical experience

1 Extensive, all required systems software has been successfully used before.

3 Considerable, small learning curve anticipated.

5 None, major learning curve.

C.4 Staffing and Hiring.

1 There was no need to hire new personnel for this project.

3 Personnel could be hired as justified, for this project.

5 There is a need to hire personnel for this project but hiring is difficult.

326

7D.6 ASSESSMENT OF PROJECT RISK

The following determinants are incorporated into the risk assessment:

R.1 Total effort in PM.

1 100 PM - 3000 PM.

2 3000 PM -15000 PM.

3 15000 PM - 30000 PM.

5 30000 PM and more.

R2 Project duration.

1 12 PM and less.

2 13 PM - 24 PM.

5 More then 24 PM.

Implementation time is calculated based on the coarse estimated, number of hours divided by full

time people x 3, might be one way to produce coarse estimates of the project duration, another

might he to incorporate the estimates of the EEM into a PERT tool.

S.1.2 System impact on financial status?

1 Minor.

3 Major.

5 Critical.

S.13 System impact on operational status?

1 Minor.

3 Major.

5 Critical.

S3.1 Number of departments (other then the IS) involved with the project?

1 One.

3 Two.

5 Three or more.

327

S.23 If you propose to replace the system, what percentage of existing functions are replaced

on a one-to-one basis?

1 50% to 100%.

3 25% to 50%.

5 0% to 25%.

52.4 What is the severity of procedural changes in the user department caused by the proposed

system?

1 Low.

3 Medium.

5 High.

52.6 Does user organisation have to change structurally to meet requirements of the new

system?

0 No.

1 Minimal.

3 Somewhat.

5 Major.

52.4 What is the severity of procedural changes in the user department caused by the proposed

system?

1 Low.

3 Medium.

5 High.

5.2.6 Does user organisation have to change structurally to meet requirements of the new

system?

0 No.

1 Minimal.

3 Somewhat.

5 Major.

328

s J.7 What is the general attitude of user?

1 Good - understands value of data processing solution.

3 Fair - sometimes reluctant.

5 Poor - anti data processing solution.

C.4 Staffing and Hiring.

1 There was no need to hire new personnel for this project.

3 Personnel could be hired as justified, for this project.

5 There is a need to hire personnel for this project but hiring is difficult.

329

Appendix 7E. Case study ‘A*, example Screens

330

ORGANIZATION

HARDWARE AND SYSTEMS
SOFTWARE DI RECTI ON

USER REQUIREMENTS

TECHNICAL DESIGN

TECHNICAL SUPPORT

HARDWARE AND SYSTEMS
SOFTWARE SELECTION

COST BENEF I T
ANALYSIS

MANAGERIAL REVIEW
AND APPROVAL

P r e s s < E s c > t o f i n i s h
< C n t r I & R e t u r n > t o
c h a n g e s t r a t e g y

USER DESIGN

X

I NSTALLATION
SCHEDULE

ORGANIZATION
P r e s s < E s c > t o f i n i s h
< C n t r l & R e t u r n > t o
c h a n g e s t r a t e g y

HARDWARE AND SYSTEMS
SOFTWARE DI RECTI ON

USER REQUIREMENTS

% 0 . 5 0 SEGMENT U s e r R e q u i r e m e n t s

R e v i e w P r e s e n t S y s t e m
I d e n t i f y F u n c t i o n a l R e q u i r e m e n t
I d e n t i f y O t h e r R e q u i r e m e n t s

TECHNICAL SUPPORT

HARDWARE AND SYSTEMS
SOFTWARE SELECTION

INSTALLATION
SCHEDULE

COST BENEF I T
ANALYSIS

MANAGERIAL REVIEW
AND APPROVAL

ORGANIZATION
P r e s s < E s c > t o f i n i s h
< C n t r l & R e t u r n > t o
c h a n g e s t r a t e g y

HARDWARE AND SYSTEMS
SOFTWARE DI RECTI ON

USER REQUIREMENTS

USER DESIGN

TECHNICAL DESIGN

HARDWARE AND SYSTEMS
SOFTWARE SELECTION

TECHNICAL SUPPORT

I I NSTALLATION
ULE

% 0 . 1 0 SEGMENT I n s t a l l a t i o n S c h e d u l e

I d e n t i f y I n s t a l l a t i o n S t e p s
E s t a b l i s h p e r s o n n e l r e q u i r e m e n t s
D e v e l o p C o n v e r s i o n A p p r o a c h
D e v e l o p I n s t a l l a t i o n P l a n

L‘ ____ 'I

331

Prudent

E f f o r t R e s u l t s E x p e c t e d %
E s t i m a t e PERCENTAGE C u s t o m P a c k a g e

O r g a n i s a t i o n 1 3 2 . 0 0 2 . 3 % 1 - 2 1 - 2
H a n d S y s S o f t w a r e s e l 1 0 0 % 0 - 5 0 - 5
A p p l i c a t i o n S o f t w a r e E v a l 1 0 0 % 0 2 0 - 3 0
U s e r R e q u i r e m e n t s 1 1 6 8 . 0 0 1 2 . % 1 0 - 1 4 1 0 - 1 4
U s e r D e s i g n 1 4 7 1 . 0 0 3 4 . % 1 8 - 2 5 1 8 - 2 5
T e c h n i c a l D e s i g n 1 2 6 9 . 0 0 1 9 . % 1 8 - 2 5 1 8 - 2 5

T e c h a n d F u n c S p e c 1 9 0 8 . 0 0 6 6 . %
T e c h n i c a l S u p p o r t 1 2 8 8 . 0 0 2 0 . % 5 - 7 5 - 7
I n s t a l l a t i o n S c h e d u l e 1 6 4 . 0 0 4 . 6 % 5 5
C o s t B e n e f i t S c h e d u l e 1 8 0 . 0 0 5 . 8 % 5 5
H a r d w a r e a n d S o f t w a r e 1 0 0 % 0 - 5 1 0 - 1 5
S e l e c t i o n 1

T o t a l 1 1 3 7 2 . 0 0 100% 100%

R e s u l t s w i t h o u t a c c o u n t i n g f o r t h e l i f e c y c l e c h a n g e s .

P r u d e n t
0 . 0 0 0 . 1 0

A l t e r a t i o n s t o b e d o n e
E s t i m a t e ★ + R e a s o n

O r g a n i s a t i o n 1 3 2 . 0 0 1 . 3 0 0 U s e r s I n v o l v e m e n t
H a n d S o f t w a r e s e l e c t i o n 1 0 0 0
A p p l i c a t i o n S o f t w a r e E v a l 1 0 1 . 0 0 0
U s e r R e q u i r e m e n t s 1 1 6 8 . 0 0 0 . 5 0 0 U s e r I n v o l v e m e n t
U s e r D e s i g n 1 4 7 1 . 0 0 0 . 5 0 0 U s e r s I n v o l v m e n t
T e c h n i c a l D e s i g n 1 2 6 9 . 0 0 0 . 2 5 0 O n l y 3 . 0 0 New F i l

T e c h & F u n c S p e c 1 9 0 8 . 0 0
T e c h n i c a l S u p p o r t 1 2 8 8 . 0 0 0 . 2 5 0 C o n v e r s i o n O n l y
I n s t a l l a t i o n S c h e d u l e 1 6 4 . 0 0 0 . 1 0 0 H&s A l r e a d y I n P i
C o s t B e n e f i t S c h e d u l e 1 8 0 . 0 0 0 . 8 0 0 p a r t o f C / B p o s t p .
H a r d w a r e a n d S o f t w a r e 1 0 1 . 0 0 0
S e l e c t i o n 1

T o t a l 1 1 3 7 2 . 0 0

T h e d e c i s i o n s t a k e n t h r o u g h t h e l i f e c y c l e e d i t i n g a r e s h o w n o n t h i s s c r e e n ,
b u t , t h e c a l c u l a t i o n o f t h e e f f o r t h a s n o t t a k e n t h e m i n t o a c c o u n t y e t .

A l t e r a t i o n s t o b e d o n e
E s t i m a t e * +

O r g a n i s a t i o n 1 3 2 . 0 0 1 . 3 0 0
H a n d S o f t w a r e s e l e c t i o n 0 0 0

R e a s o n
U s e r s I n v o l v e m e n t

W h a t Do Y o u A d d To T h i s V a l u e

I n s t a l l a t i o n S c h e d u l e
C o s t B e n e f i t S c h e d u l e
H a r d w a r e a n d S o f t w a r e
S e l e c t i o n

6 4 . 0 0
8 0 . 0 0

H&s A l r e a d y I n P i
P a r t o f C / B p o s t p .

T o t a l 1 3 7 2 . 0 0

A d d i t i o n a l c h a n g e s w e r e r e q u e s t e d , t h e s c r e e n f o r m a t i n g w a s p o s t p o n e d t o t h e n e x t p h a s e ,
T h e r e a s o n f o r t h i s c h a n g e i s r e c o r d e d o n t h e n e x t s c r e e n .

332

A l t e r a t i o n s t o b e d o n e
E s t i m a t e * + R e a s o n

O r g a n i s a t i o n 1 3 2 . 0 0 1 . 3 0 0 U s e r s I n v o l v e m e n t
H a n d S o f t w a r e s e l e c t i o n 10 0 0
A
U Why Do Yo u M a k e T h i s A d j u s t m e n t
U
T

P o s t p o n e d s c r . f o r m a t .

T --

I n s t a l l a t i o n S c h e d u l e 1 6 4 . 0 0 0 . 1 0 0 H&s A l r e a d y I n P i
C o s t B e n e f i t S c h e d u l e 1 8 0 . 0 0 0 . 8 0 0 P a r t o f C / B p o s t p .
H a r d w a r e a n d S o f t w a r e 10 1 . 0 0 0
S e l e c t i o n 1

T o t a l 1 1 3 7 2 . 0 0

A l t e r a t i o n s t o b e d o n e 1
E s t i m a t e + R e a s o n 1

O r g a n i s a t i o n 1 3 2 . 0 0 1 . 3 0 0 U s e r s I n v o l v e m e n t I
H a n d S o f t w a r e s e l e c t i o n 1 0 0 0 1
A p p l i c a t i o n S o f t w a r e E v a l 1 0 1 . 0 0 0 1
U s e r R e q u i r e m e n t s 1 1 6 8 . 0 0 0 . 5 0 0 U s e r I n v o l v e m e n t
U s e r D e s i g n 1 4 7 1 . 0 0 0 . 5 0 - 2 0 . P o s t p o n e d F o r m a t t
T e c h n i c a l D e s i g n 1 2 6 9 . 0 0 0 . 2 5 0 O n l y 3 . 0 0 New F i l

T e c h & F u n c S p e c 1 9 0 8 . 0 0
T e c h n i c a l S u p p o r t 1 2 8 8 . 0 0 0 . 2 5 - 2 0 . P o s t p . F o r m m a t i n g
I n s t a l l a t i o n S c h e d u l e 1 6 4 . 0 0 0 . 1 0 0 H&s A l r e a d y I n P I
C o s t B e n e f i t S c h e d u l e 1 8 0 . 0 0 0 . 8 0 0 P a r t o f C / B p o s t p .
H a r d w a r e a n d S o f t w a r e 1 0 1 . 0 0 0
S e l e c t i o n 1

T o t a l 1 1 3 7 2 . 0 0

A l l t h e c h a n g e s r e q u e s t e d a r e s h o w n o n t h i s s c r e e n .

E f f o r t R e s u l t s E x p e c t e d % I
E s t i m a t e PERCENTAGE C u s t o m P a c k a g e I

O r g a n i s a t i o n 1 4 1 . 6 0 7 . 2 % 1 - 2 1 - 2
H a n d S y s S o f t w a r e s e l 1 0 0 % 0 - 5 0 - 5
A p p l i c a t i o n S o f t w a r e E v a l 1 0 0 % 0 2 0 - 3 0
U s e r R e q u i r e m e n t s 1 8 4 . 0 0 1 4 . % 1 0 - 1 4 1 0 - 1 4
U s e r D e s i g n 1 2 3 5 . 5 0 4 1 . % 1 8 - 2 5 1 8 - 2 5
T e c h n i c a l D e s i g n 1 6 7 . 2 5 1 1 . % 1 8 - 2 5 1 8 - 2 5

T e c h a n d F u n c S p e c 1 3 8 6 . 7 5 6 7 . %
T e c h n i c a l S u p p o r t 1 7 2 . 0 0 1 2 . % 5 - 7 5 - 7
I n s t a l l a t i o n S c h e d u l e 1 6 . 4 0 1 . 1 % 5 5
C o s t B e n e f i t S c h e d u l e 1 6 4 . 0 0 1 1 . % 5 5
H a r d w a r e a n d S o f t w a r e 1 0 0 % 0 - 5 1 0 - 1 5
S e l e c t i o n 1

T o t a l 1 5 7 0 . 7 5 100% 100%

T h e s e a r e t h e r e s u l t s , c o n s i d e r i n g t h e f i r s t s e t o f a s s u m p t i o n s t a k e n a t t h e l i f e c y c l e e d i t i n g
s e s s i o n o n l y .

E f f o r t R e s u l t s E x p e c t e d %
E s t i m a t e PERCENTAGE C u s t o m P a c k a g e

O r g a n i s a t i o n 1 4 1 . 6 0 7 . 8 % 1 - 2 1 - 2
H a n d S y s S o f t w a r e s e l 10 0 % 0 - 5 0 - 5
A p p l i c a t i o n S o f t w a r e E v a l | 0 0 % 0 2 0 - 3 0
U s e r R e q u i r e m e n t s 1 8 4 . 0 0 1 5 . % 1 0 - 1 4 1 0 - 1 4
U s e r D e s i g n 1 2 1 5 . 5 0 4 0 . % 1 8 - 2 5 1 8 - 2 5
T e c h n i c a l D e s i g n 1 6 7 . 2 5 1 2 . % 1 8 - 2 5 1 8 - 2 5

T e c h a n d F u n c S p e c 1 3 6 6 . 7 5 6 9 . %
T e c h n i c a l S u p p o r t 1 5 2 . 0 0 9 . 8 % 5 - 7 5 - 7
I n s t a l l a t i o n S c h e d u l e 1 6 . 4 0 1 . 2 % 5 5
C o s t B e n e f i t S c h e d u l e 1 6 4 . 0 0 1 2 . % 5 5
H a r d w a r e a n d S o f t w a r e 10 0 % 0 - 5 1 0 - 1 5
S e l e c t i o n 1

T o t a l 1 5 3 0 . 7 5 100% 100%

s t h e f i n a l r e s u l t . T h e e f f o r t e s t i m a t e d f o r t h e PSD i n PHT h i s
a s s u m p t i o n s m a d e .

333

Appendix 7F. Case study 'B', example Screens

334

The life cycle assumptions are recorded by the EEM as shown on the following screens.

ORGANIZATION

HARDWARE AND SYSTEMS
SOFTWARE DI RECTI ON

USER REQUIREMENTS

TECHNICAL DESIGN

HARDWARE AND SYSTEMS
SOFTWARE SELECTION

P r e s s < E s c > t o f i n i s h
< C n t r l & R e t u r n > t o
c h a n g e s t r a t e g y

USER DESIGN

TECHNICAL SUPPORT

F
SEGMENT H a r d w a r e a n d S y s t e m s S o f t w a r e S e l e c t i o n

F i n a l i z e S e l e c t i o n
X N e g o t i a t e C o n t r a c t T e r m s

I NSTALLATION
SCHEDULE

3 ”

AND APPROVAL

HARDWARE AND SYSTEMS
SOFTWARE DIRECTI ON

HARDWARE AND SY
SOFTWARE SELECT

ORGANIZATION

USER REQUIREMENTS

I
TECHNICAL DESIGN

P r e s s < E s c > t o f i n i s h
< C n t r l & R e t u r n > t o
c h a n g e s t r a t e g y

SEGMENT C o s t B e n e f i t A n a l y s i s

E s t i m a t e I n s t a l l a t i o n C o s t s
% 0 . 2 0 E s t i m a t e O p e r a t i n g C o s t s a n d B e n e f i t s

D o c u m e n t t h e I n t a n g i b l e s
X S u m m a r i z e O v e r a l l E c o n o m i c s

USER DESIGN

COST BENEF I T
ANALYSIS

MANAGERIAL REVIEW
AND APPROVAL }

£
HARDWARE AND SYSTEMS
SOFTWARE DI RECTI ON

ORGANIZATION

I HARDWARE AND SYSTEMS
SOFTWARE SELECTION

[
€

USER REQUIREMENTS

TECHNICAL DESIGN >

TECHNICAL SUPPORT

P r e s s < E s c > t o f i n i s h
< C n t r l & R e t u r n > t o
c h a n g e s t r a t e g y

USER DESIGN

I I NSTALLATION

SEGMENT I n s t a l l a t i o n S c h e d u l e

I d e n t i f y I n s t a l l a t i o n S t e p s
E s t a b l i s h p e r s o n n e l r e q u i r e m e n t s

0 . 2 0 D e v e l o p C o n v e r s i o n A p p r o a c h
________D e v e l o p I n s t a l l a t i o n P l a n ___________

y ^

.a t i o n Iu ^

335

T h e e f f o r t r e q u i r e d f o r t h e PSD b y a l l p a r t i e s a s s o c i a t e d w i t h t h e d e v e l o p m e n t a r e s h o w n b e l o w .
T h i s d i d n o t t a k e i n t o a c c o u n t t h e l i f e c y c l e c h a n g e s .

1 E f f o r t R e s u l t s E x p e c t e d %
1 E s t i m a t e PERCENTAGE C u s t o m P a c k a g e
^ O r g a n i s a t i o n 1 1 0 0 . 0 0 0 . 6 % 1 - 2 1 - 2
UH a n d S y s S o f t w a r e s e l 1 2 5 2 . 0 0 1 . 6 % 0 - 5 0 - 5
^ A p p l i c a t i o n S o f t w a r e E v a l 1 4 0 8 0 . 0 0 2 6 . % 0 2 0 - 3 0
B u s e r R e q u i r e m e n t s 1 1 0 6 1 . 0 0 6 . 8 % 1 0 - 1 4 1 0 - 1 4
l u s e r D e s i g n 1 1 4 8 3 . 0 0 9 . 6 % 1 8 - 2 5 1 8 - 2 5
■ T e c h n i c a l D e s i g n 1 1 6 9 0 . 0 0 1 0 . % 1 8 - 2 5 1 8 - 2 5
1 T e c h a n d F u n c S p e c 1 4 2 3 4 . 0 0 2 7 . %
■ T e c h n i c a l S u p p o r t 1 3 0 6 4 . 0 0 1 9 . % 5 - 7 5 - 7
■ I n s t a l l a t i o n S c h e d u l e 1 1 0 2 . 0 0 0 . 6 % 5 5
I c o s t B e n e f i t S c h e d u l e 1 3 2 . 0 0 0 . 2 % 5 5
I n a r d w a r e a n d S o f t w a r e 1 3 5 8 0 . 0 0 2 3 . % 0 - 5 1 0 - 1 5
I s e l e c t i o n 1

[T o t a l 1 1 5 4 4 4 . 0 100% 100%

f o r t r e q u i r e d f o r t h e P S D, c o n s i d e r i n g t h e c h a n g e s t o l i f e c y c l e a

E f f o r t R e s u l t s E x p e c t e d %
E s t i m a t e PERCENTAGE C u s t o m P a c k a g e

O r g a n i s a t i o n 1 1 0 0 . 0 0 0 . 8 % 1 - 2 1 - 2
H a n d S y s S o f t w a r e s e l 1 2 6 2 . 0 0 2 . 1 % 0 - 5 0 - 5
A p p l i c a t i o n S o f t w a r e E v a l 1 4 0 8 0 . 0 0 3 2 . % 0 2 0 - 3 0
U s e r R e q u i r e m e n t s 1 1 0 6 1 . 0 0 8 . 5 % 1 0 - 1 4 1 0 - 1 4
U s e r D e s i g n 1 1 4 8 3 . 0 0 1 1 . % 1 8 - 2 5 1 8 - 2 5
T e c h n i c a l D e s i g n 1 1 6 9 5 . 0 0 1 3 . % 1 8 - 2 5 1 8 - 2 5

T e c h a n d F u n c S p e c 1 4 2 3 9 . 0 0 3 4 . %
T e c h n i c a l S u p p o r t 10 0 % 5 - 7 5 - 7
I n s t a l l a t i o n S c h e d u l e 1 1 0 2 . 0 0 0 . 8 % 5 5
C o s t B e n e f i t S c h e d u l e 1 3 2 . 0 0 0 . 2 % 5 5
H a r d w a r e a n d S o f t w a r e 1 3 5 8 0 . 0 0 2 8 . % 0 - 5 1 0 - 1 5
S e l e c t i o n 1

T o t a l 1 1 2 3 9 5 . 0 100% 100%

A d d i t i o n a l c h a n g e s w e r e r e q u i r e d . T h e c h a n g e s r e q u i r e d a n d t h e r e a s o n s f o r t h e m a r e r e c o r d e d o n
t h e f o l l o w i n g t h r e e s c r e e n s .

A l t e r a t i o n s t o b e d o n e
E s t i m a t e *

O r g a n i s a t i o n | 1 0 0 . 0 0 1 . 0 0
H a n d S o f t w a r e s e l e c t i o n 1 2 5 2 . 0 0 1 . 0 0
A F

R e a s o n

W h a t Do Y ou M u l t i p l y T h e V a l u e B y

I n s t a l l a t i o n S c h e d u l e
C o s t B e n e f i t S c h e d u l e
H a r d w a r e a n d S o f t w a r e
S e l e c t i o n

T o t a l

11 0 2 . 0 0 1 . 0 0 0
I 3 2 . 0 0 1 . 0 0 0
1 3 5 8 0 . 0 0 1 . 0 0 0
II = = = = = = = = = = = = = = = =

1 1 5 4 4 4 . 0

336

A l t e r a t i o n s t o b e d o n e
E s t i m a t e * +

[O r g a n i s a t i o n 1 1 0 0 . 0 0 1 . 0 0 0
Ih a n d S o f t w a r e s e l e c t i o n 1 2 5 2 . 0 0 1 . 0 0 0
Af
u l w h y Do Y o u M a k e T h i s A d j u s t m e n t
U n a n t i c i p a t e d d i f f i c u l t y
T f

R e a s o n

[i n s t a l l a t i o n S c h e d u l e
(c o s t B e n e f i t S c h e d u l e
[H a r d w a r e a n d S o f t w a r e
S e l e c t i o n

11 0 2 . 0 0 1 . 0 0 0
1 3 2 . 0 0 1 . 0 0 0
1 3 5 8 0 . 0 0 1 . 0 0 0
I

T o t a l 1 1 5 4 4 4 . 0

A l t e r a t i o n s t o b e d o n e
E s t i m a t e + R e a s o n

O r g a n i s a t i o n 1 1 0 0 . 0 0 1 . 0 0 0
H a n d S o f t w a r e s e l e c t i o n 1 2 5 2 . 0 0 1 . 0 0 0
A p p l i c a t i o n S o f t w a r e E v a l 1 4 0 8 0 . 0 0 1 . 0 0 0
U s e r R e q u i r e m e n t s 1 1 0 6 1 . 0 0 1 . 1 0 0 A n t i c i p a t e d D i f f i
U s e r D e s i g n 1 1 4 8 3 . 0 0 0 . 8 5 0 U s e O f R e p o r t G e n
T e c h n i c a l D e s i g n 1 1 6 9 0 . 0 0 1 . 0 0 0

T e c h & F u n c S p e c 1 4 2 3 4 . 0 0
T e c h n i c a l S u p p o r t 1 3 0 6 4 . 0 0 0 0
I n s t a l l a t i o n S c h e d u l e 1 1 0 2 . 0 0 1 . 0 0 0
C o s t B e n e f i t S c h e d u l e 1 3 2 . 0 0 1 . 0 0 0
H a r d w a r e a n d S o f t w a r e 1 3 5 8 0 . 0 0 1 . 0 0 0
S e l e c t i o n 1

T o t a l 1 1 5 4 4 4 . 0

T h e f i n a l r e s u l t s a r e s h o w n b e l o w .

E f f o r t R e s u l t s E x p e c t e d %
E s t i m a t e PERCENTAGE C u s t o m P a c k a g e

O r g a n i s a t i o n 1 1 0 0 . 0 0 0 . 8 % 1 - 2 1 - 2
H a n d S y s S o f t w a r e s e l 1 2 5 2 . 0 0 2 . 0 % 0 - 5 0 - 5
A p p l i c a t i o n S o f t w a r e E v a l 1 4 0 8 0 . 0 0 3 3 . % 0 2 0 - 3 0
U s e r R e q u i r e m e n t s 1 1 1 6 7 . 1 0 9 . 5 % 1 0 - 1 4 1 0 - 1 4
U s e r D e s i g n 1 1 2 6 0 . 5 5 1 0 . % 1 8 - 2 5 1 8 - 2 5
T e c h n i c a l D e s i g n

T e c h a n d F u n c S p e c
1 1 6 9 0 . 0 0
1 4 1 1 7 . 6 5

1 3 . %
3 3 . %

1 8 - 2 5 1 8 - 2 5

T e c h n i c a l S u p p o r t 1 0 0 % 5 - 7 5 - 7
I n s t a l l a t i o n S c h e d u l e 1 1 0 2 . 0 0 0 . 8 % 5 5
C o s t B e n e f i t S c h e d u l e 1 3 2 . 0 0 0 . 2 % 5 5
H a r d w a r e a n d S o f t w a r e
S e l e c t i o n

1 3 5 8 0 . 0 0
1

2 9 . % 0 - 5 1 0 - 1 5

T o t a l 1 1 2 2 6 3 . 6 100% 100%

337

The cost drivers associated with project 'B' are shown on the following two screens.

C o s t D r i v e r s (1 o f 2)
N u m b e r o f n e w s y s t e m s 1 . 0 0
N u m b e r o f p r o j e c t t e a m m e m b e r s 5 . 0 0
N u m b e r o f i n t e r v i e w s 5 0 . 0
N u m b e r o f o l d r e p o r t s , s c r e e n s , i n p u t s 1 7 0 .
N u m b e r o f n e w r e p o r t s 5 0 . 0
N u m b e r o f n e w s c r e e n s , I / O , m e s s a g e s 1 2 0 .
N u m b e r o f n e w i n q u i r i e s 2 . 0 0
N u m b e r o f n e w o r r e d e s i g n e d f o r m s 4 . 0 0
N u m b e r o f d a t a e l e m e n t s (/ l O O) 7 . 2 0
N u m b e r o f c o m p l e x f u n c t i o n s 6 . 0 0
N u m b e r o f c o m p l e x p r o c e s s e s 2 . 0 0

C o s t D r i v e r s (2 o f 2)
N u m b e r o f u t i l i t y / c o n t r o l m o d u l e s 1 2 . 0
N u m b e r o f f i l e c o n v e r s i o n p r o c e s s e s 0
N u m b e r o f f i l e s t o b e c o n v e r t e d 4 . 0 0
N u m b e r o f a p p l i c a t i o n p a c k a g e s 0
N u m b e r o f m o d i f i c a t i o n s t o p a c k a g e s 0
N u m b e r o f i n v i t a t i o n s t o t e n d e r 5 . 0 0
N u m b e r o f r e q u e s t s f o r p r o p o s a l s 1 7 . 0
N u m b e r o f c o n t r a c t s t o b e n e g o t i a t e d 0
N u m b e r o f h i g h v o l u m e i n p u t s 1 1 0 .
N u m b e r o f s i m u l a t i o n m o d e l s 0
N u m b e r o f i t e r a t i o n s f o r p r o t o t y p i n g 0

338

BIBLIOGRAPHY

[Abd89]
Abdel-Hamid, T.K., and Madnick, S.E. "Lessons Learned From Modelling the
Dynamics of Software Development". Communications o f the ACM, Vol. 32, No.
12, (December 1989), pp. 1426-1455.

[Aco87]
Acosta, E.C., and Golub, H.D. "Early Experience in Estimation of Embedded
Software Cost at AVSCOM". Proceedings o f the International Society o f Parametric
Analysis, 9th Annual Conference. Vol. VI, No. 1, San Diego, CA., (May 1987), pp.
665-675.

[Agr8 6]
Agresti, W.W. "The Conventional Software Life-Cycle Model: Its Evolution and
Assumptions". Printed in: Tutorial on New Paradigms for Software Development,
edited by: Agresti, W.W., pp. 2-5. IEEE Catalog No. EH0245-1. Washington,
D.C.: IEEE Computer Society Press, 1986.

[Agr8 6 a]
Agresti, W.W. "Framework for a Flexible Development Process". Printed in:
Tutorial on New Paradigms for Software Development, edited by: Agresti, W.W., pp.
11-14. IEEE Catalog No. EH0245rl. Washington, D.C.: IEEE Computer Society
Press, 1986.

[Ala84]
Alavi, M. "An Assessment of the Prototyping Approach to Information System
Development". Communications o f the ACM, (June 1984), pp. 556-563.

[Alb79]
Albrecht, A.J. "Measuring Application Development Productivity". Proceedings o f
the Joint SHARE/GUIDE/IBM Application Development Symposium. Chicago,

339

Guide International Corporation, 1979.

[Alb83]
Albrecht, A.J., and Gaffney, J.E. "Software Function, Source Lines of Code and
Developm ent Effort Prediction: A Software Science Validation". IEEE
Transactions on Software Engineering, Vol. SE-9, No. 6, (1983), pp. 639-648.

[Alb84]
Albrecht, A.J. "AD/M Productivity Measurement and Estimate Validation-Draft".
IBM Information Systems and Administration, A D /M Improvement Program.
Purche, NY., (May 1984).

[And79]
Arthur Andersen. Method/1: Systems Development Practice. Chicago, XL.: Arthur
Andersen & Co., 1979.

[Aro69]
Aron, J.D. "Estimating Resources for Large Systems". In: Software Cost
Estimating and Life Cycle Control, edited by: Putnam, L.H., pp. 257-268. IEEE
Computer Society, 1980.

[Aro74]
Aron, J.D. The Program Development Process: Part I - The Individual Programmer.
Reading, MA.: Addison- Wesley, 1974.

[Bai81]
Bailey, J.W., and Basili V.R. "A Meta-Model for Software Development and
Resource Expenditures". Proceedings o f the 5th International Conference on
Software Engineering. New York: IEEE, (March 1981), pp. 107-116.

[Bal81]
Balzer, R. "Transformational Implementation: An Example". IEEE Transactions
on Software Engineering, (January 1981), pp. 3-14. Reprinted in: Tutorial on New
Paradigms for Software Development, edited by: Agresti, W.W., pp. 227-238. IEEE

340

Catalog No. EH0245-1. Washington, D.C.: IEEE Computer Society Press, 1986.

[Bal82]
Balzer, R.M., Goldman, N.M., and Wile, D.S. "Operational Specification as the
Basis for Rapid Prototyping". ^4CM SIGSOFT Software Engineering Notes, Vol. 7,
No. 5, (December 1982), pp. 3-16. Reprinted in: Tutorial on New Paradigms for
Software Development, edited by: Agresti, W.W., pp. 116-132. IEEE Catalog No.
EH0245-1. Washington, D.C.: IEEE Computer Society Press, 1986.

[Bal83]
Balzer, R., Cheatham, T.E., and Green, C. "Software Technology in the 1990’s:
Using a New Paradigm". IEEE Computer, Vol. 16, No. 3, (March 1983), pp. 39-45.

[Ban88]
Banker, R.D., and Kem erer, C.F. "Scale Econom ies in New Software
Development". Center for Information System Research, Sloan School Of
Management MIT. CISR WP No. 167, (February 1988).

[Bas75]
Basili, V.R., and Turner, A.J. "Iterative Enhancement: A Practical Technique of
Software Development". IEEE Transactions on Software Engineering, Vol. SE-1,
No. 4, (December 1975), pp. 390-396.

[Bas78]
Basili, V.R., and Zelkowitz, M.V. "Analysing M edium Scale Software
Developments". Proceedings o f the 3th International Conference on Software
Engineering, (May 1978).

[Bas79]
Basili, V.R., and Zelkowitz, M.V. "Measuring Software D evelopm ent
Characteristics in the Local Environment". Computer and Structures, 10, (1979).

[Bas79a]
Basili, V.R. "Quantitative Software Complexity Models: A Panel Summary".

341

Workshop on Quantitative Software Models for Reliability, Complexity, and Cost: An
Assessment o f the State o f the Art. IEEE Catalog No. TH0067-9. New York: IEEE,
(1979), pp. 243-245.

[Bas79b]
Basili, V.R., and Reiter, R.W. Jr. "An Investigation of Human Factors in Software
Development". IEEE Computer, Vol. 12, No. 12, (December 1979), pp. 21-38.

[BasSO]
Basili, V.R. "Resource Models". Tutorial on Models and Metrics for Software
Management and Engineering, edited by: Basili V.R. IEEE (1980), pp. 4-9.

[Bas81]
Basili, V.R., and Beane, J. "Can the Parr Curve Help With Manpower
Distribution and Resource Estimation Problems?" Journal o f Systems and
Software, Vol. 2, No. 1, (February 1981), pp. 59-69.

[Bas81a]
Basili, V.R., and Freburger, K. "Programming Measurement and Estimation in
the Software Engineering Laboratory". Journal o f Systems and Software, Vol. 2,
(1981), pp.47-57.

[Bas81b]
Basili, V.R., and Philips, T. "Evaluating and Comparing the Software Metrics in
the Software Engineering Laboratory". Performance Evaluation Review. ACM
SIGMETRICS, 10, (March 1981), pp. 95-106.

[Bas81c]
Basili, V.R., and Reiter, R.W. Jr. "A Controlled Experiment: Quantitatively
Comparing Software Development Approaches". IEEE Transactions on Software
Engineering, Vol. SE-7, No. 3, (1981), pp. 229-320.

[Bas83]
Basili, V.R. "Resource Models". Printed in: Software Metrics, edited by: Perlis, A.,

342

Sayward F.G., and Shaw, M., pp. 111-130. Cambridge MA.: The MIT Press, 1983.

[Bau72]
Bauer, F.L. Software Engineering. Amsterdam: North Holland, 1972.

[Bau82]
Bauer, F.L. "From Specifications to Machine Code: Program Construction
through Formal Reasoning". Proceedings o f the 6th International Conference on
Software Engineering, (1982), pp. 84-91.

[Beh83]
Behrens, C.A. "Measuring the Productivity of Computer Systems Development
Activities with Function Points". IEEE Transactions on Software Engineering, Vol.
SE-9, No. 6, (November 1983), pp. 648-652.

[Bel71]
Belady, L.A., and Lehman, M.M. "Programming Systems Dynamics, or the
Metadynamics of Systems in Maintenance and Growth". IBM Research Report
RC3546, (September 1971).

[Bel76]
Belady, L.A., and Lehman, M.M. "A Model of Large Program Development".
IBM Systems Journal, Vol. 15, No.3, (1976), pp. 225-252.

[Bel77]
Belady, L.A., and Merlin, P.M. "Evolving Parts and Relations - A Model of
System Families", IBM Research Report RC6611, (August 1977).

[Bel79]
Belady, L.A. "An Anti Complexity Experiment". Workshop on Quantitative
Software Models for Reliability, Complexity, and Cost: An Assessment o f the State o f
the Art, edited by: Shooman, M.L. IEEE Catalog No. TH0067-9. New York:
IEEE, (1979), pp. 128-129.

343

[Bel79a]
Belady, L.A. "On Software Complexity". Workshop on Quantitative Software
Models for Reliability, Complexity, and Cost: A n Assessment o f the State o f the Art,
edited by: Shooman, M.L. IEEE Catalog No. TH0067-9. New York: IEEE,
(1979), pp. 90-94.

[Bel79b]
Belady, L.A., and Lehman, M.M. "The Characteristics of Large Systems". Printed
in: Research Directions in Software Technology, edited by: Wegner, P., pp. 106-139.
Cambridge, MA: The MIT Press, 1979.

[BelSl]
Belady, L .A "Complexity of Large Systems". Printed in: Software Metrics: An
Analysis and Evaluation. Edited by: Perlis, A., Sayward F.G., and Shaw M., pp.
225-234. Cambridge, MA.: The MIT Press, 1981.

[Ben56]
Benington, H.D. "Production of Large Computer Programs". Proceedings o f
Symposium on Advanced Computering for Digital Computers, (1956). Republished
in: Annals o f the History o f Computing, (October 1983), pp. 350-361.

[Bla77]
Black, R.K.D., Curnow, R.P., Kats, R., and Gray, M.D. "Final Technical Report,
RADC-TR-77-116, Boeing Computer Services". BCS Software Production Data,
NTIS, No. AD-A039852, (March 1977).

[Blu69]
Blumental, S.C. Management Information Systems; A Framework for Planning and
Development. New Jersey, N.J.: Prentice Hall, Englewood Cliffs, 1969.

[Blu84]
Blum, LB. "Three Paradigms for Developing Information Systems". Proceedings
o f the 7th International Conference on Software Engineering, (1984), pp. 534-543.

344

[Boe73]
Boehm, B.W. "Software and its Impact: A Q uantitative Assessment".
Datamation, (May 1973), pp. 48-59.

[Boe76]
Boehm, B.W. "Software Engineering". IEEE Transactions on Computers, Vol. C-
25, No. 12, (December 1976), pp. 1226-41. Reprinted in: Classics in Software
Engineering, edited by: Yourdon, B., pp. 325-61. New York: Yourdon Press, 1979.

[Boe76a]
Boehm, B.W., Brown J.R., and Lipow M. "Quantitative Evaluation of Software
Quality". Proceedings o f the 2th International Conference on Software Engineering,
(1976), pp. 592-605.

[BoeSO]
Boehm, B.W. "Software Engineering: R&D Trends and Defence Needs". Printed
in: Research Directions in Software Technology, edited by: Wegner, P., pp. 44-86.
Cambridge, MA: MIT Press, 1980.

[Boe81]
Boehm, B.W. Software Engineering Economics. Englewood Cliffs, N.J.: Prentice-
Hall, 1981.

[Boe82]
Boehm, B.W. "Keeping a Lid on Software Costs". Computer World, (28 January
1982).

[Boe84]
Boehm, B.W., Gray T., and Seewaldt T. "Prototyping Versus Specifying: A Multi
project Experiment". IEEE Transaction on Software Engineering. Vol. 10, No. 3,
(May 1984), pp. 290-303.

[Boe87]
Boehm, B.W., and Belz F.C. "Reasoning About Iteration: A Cost Benefit

345

Approach”. Proceedings o f the 3th International Software Process Workshop. IEEE
Computer Society Press, (1987), pp. 40-42.

[BoeSTa]
Boehm, B.W. "Improving Software Productivity”. IEEE Computer, (September
1987), pp. 43-54

[Boe88]
Boehm, B.W. "A Spiral Model of Software Development and Enhancement”.
IEEE Computer, (May 1988), pp. 61-72.

[Boe88a]
Boehm, B.W. "Understanding and Controlling Software Costs”. IEEE
Transactions on Software Engineering, Vol. 14, No. 10, (October 1988), pp. 1462-
1477.

[Boy84]
Boydston, R.E. "Programming Cost Estimate: Is It Reasonable?”. Proceedings o f
the 7th Conference on Software Engineering, (1984), pp. 153-160.

[Boz84]
Bozoki, G.J. SSM User Guide. GJB Associates, 1984.

[Boz87]
Bozoki, G.J. Target Software, (May/June 1987)

[Bra63]
Brandon, D.H. Management Standards for Data Processing. New York: Van
Nostrad, 1963.

[Bro75]
Brooks, F. The Mythical Man Month. New York: Addison-Wesley, 1975.

346

[Bro83]
Browne, J.C., and Shaw, M. ’Toward a Scientific Basis for Software Evaluation".
Reprinted in: Software Metrics: An Analysis and Evaluation, edited by: Perlis, A.,
Sayward F.G., and Shaw M., pp. 19-42. Cambridge, MA.: The MIT Press, 1983.

[Bro87]
Brooks, F. B. "No Silver Bullet, Essence and Accidents of Software Engineering".
Printed in: Information Processing *86, edited by: Kugier, H. J. ISBN No. 0-444-
70077-3. Elsevier Science Publishers B.V. North Holland. IFIP, (1986). Reprinted
in: Computer, (April 1987), pp. 10-19.

[Bud84]
Budde, R. Approaches to Prototyping, edited by: Budde, R., Kuhlenkamp, K.,
Mathiassen, L., and Zullighoven, H. Springer-Verlag, Heidelberg, 1984.

[Cal84]
Callisen, H., and Colborne, S. "A proposed Method for Estimating Software Cost
from Requirements". Journal o f Parametric, Vol. IV, No. 4, (December 1984), pp.
33-40.

[Cha74]
Channon, R.N. "On a Measure of Program Structure". Proceedings o f the
Programming Symposium, edited by: Goos, G., and Hartmanis, J. Paris: Springer-
Verlag, 1974.

[Che77]
Chen, P. P. "The entity relationship Approach to Logical Data-base Design". The
Q.E.D. Monograph Series, Data-base Management, No. 6. Q.E.D. Information
Science, Inc., 1977.

[Che78]
Chen, E.T. "Program Complexity and Programmer Productivity". IEEE
Transactions on Software Engineering, Vol. SE-4, No. 3, (May 1978), pp. 187-94.

347

[CheSl]
Cheatham, T.E. Jr., Holloway, G.H., and Townley J.A. "Program Refinement by
Transformation". Proceedings o f the 5th International Conference on Software
Engineering, (1981), pp. 430-437.

[Chr78]
Chrysler, E. "Some Basic Determinants of Computer Programming Productivity.
Communications o f the ACM, Vol. 21 No. 6, (June 1978) pp. 472-483.

[Coh88]
Cohen, G., Mancini, L., Mathieu, A., and Mora, A. "Data Classification and
Measurement Procedure". SPEM Esprit project. Deliverable D1.3, (March 1988).

[Con76]
US Congress, House of representatives, "Advanced Logistic (ADP) Systems,"
Department o f Defence, Appropriation Bill, 1976, Report No. 94-517, (September
25,1975), pp. 163-165.

[Con86]
Conte, S.D., Dunsmore, D.E., and Shen, V.Y. Software Engineering Metrics and
Models. Menlo Park, CA.: Benjamin/Cummings, 1986.

[Cor80]
Cordata, J.W. EDP Cost and Charges. Prentice-Hall Publication, 1980.

[Cow86]
Cowderoy, A.J.C., and Jenkins, J.O. "State of the Art Survey for Software Cost-
estimation". ESPRIT P38 report WP5 la (issue 3). London: Imperial College
Management School, (1986).

[Cow87]
Cowderoy, A.J.C., and Jenkins, J.O. "New Trends in Cost Estimation". The 4th
Annual Conference o f the Centre o f Software Reliability. Elsevier, 1987

348

[Cow88]
Cowderoy, A.J.C., and Jenkins, J.O. "Cost-estimation by Analogy as Good
Management Practice". Proceedings o f the 2nd lEE/BCS conference on Software
Engineering. Liverpool, (1988).

[Cow88a]
Cowderoy, A.J.C., and J.O. Jenkins. "Combining Expert System Technology with
Parameters for Cost Estimation". Proceedings o f the International Society o f
Parametric Analysis^ Vol. VII, (1) (July 1988), pp. 149-163.

[Cow88b]
Cowderoy, A.J.C., and Harry, C.M., and Jenkins, J.O. "Software Process
Modelling", London: Imperial College, Management School ,(1988).

[Cow89]
Cowderoy, C., Jenkins, J., and Levy, Z. "State of The Art Survey, Effort and Size
Estimation Models". MERMAID Esprit project P2046. Deliverable D1.2C, Vol.
1 (February 1989).

[Cue87]
Cuelenere, A.M.E., and Genuchten, M.J., and Heemstra, F.J. "Calibrating Cost
Estimation Model: Why and How?". Information and Software Technology^ Vol.
29, No. 10, (December 1987).

[Cur79]
Curtis, B. "In Search of Software Complexity". Workshop on Quantitative Software
Models for Reliability, Complexity, and Cost: A n Assessment o f the State o f the Art,
edited by: Shooman, M.L. IEEE Catalog No. TH0067-9. New York: IEEE,
(1979), pp. 95-106.

[Cur81]
Curtis, B. "The Measurement of Software Quality and Complexity". Printed in:
Software Metrics: A n Analysis and Evaluation, edited by: Perlis, A., Sayward F.G.,
and Shaw, M., pp. 203-224. Cambridge, MA.: The MIT Press, 1981.

349

[CurSla]
Curtis, B. "Experimental Evaluation of Software Characteristics". Printed in:
Software Metrics: An Analysis and Evaluation, edited by: Perlis, A., Sayward F.G.,
and Shaw, M., pp. 61-76. Cambridge MA.: The MIT Press, 1981.

[CurS7]
Curtis, B., and Knasner, S.V., and Jscoe, N. "On Building Software Process
Models Under the Lamppost". Proceedings o f the 9th International Conference on
Software Engineering, (1987), pp. 96-103.

[Dal85]
Dale, C.J., and Kitchenham, B.A. Report on visit to USA Software data library
report, 1985.

[DeM77]
Demarco, T. Report on the 1977 Productivity Survey. New York: Yourdon Inc.,
(September 1977).

[DeM82]
DeMarco, T. Controlling Software Projects: Management Measurement and
Estimation. New York: Yourdon, 1982.

[DeM85]
DeMarco, T., and Lister T. "Programmer Performance and the Effects of the
W orkplace". Proceedings o f the 8th International Conference on Software
Engineering. IEEE, (August 1985), pp. 268-272.

[Des88]
D esharnais, J. M. "Analyse statistique de la productive des projets de
development en informatique a partir de la technique des points de function".
Rapport d’activité de synthèse. Programme de maitrise en informatique de
gestion. Université du Quebec a Montreal, (December 1988).

350

[Deu79]
Deutsch, M. S. "Verification and Validation". Printed in: Software Engineering,
edited by: Jensen, R.W., and Tonies C.C., pp. 329-407. Prentice-Hall Publications,
1979.

[Dij75]
Dijkstra, E. W. "Guarded commands, nondeterminancy, and formal derivation of
programs". Communications o f the ACM, (8), (August 1975), pp. 453-457.

[DixSS]
Dixon, D. "Integrated Support for Project Management". Proceedings o f the 10th
International Conference on Software Engineering, (1988), pp. 49-58.

[DOD85]
"DOD Computing Activities and Programs: Ten Year Market Forecast Issues,
1985-1995". ElectroniclndustriesAssociation, (October 1985).

[Dot77]
Doty, D.L., Nelson, P.J., and Stewart, K.R. "Software Cost Estimation Study:
Guidelines for Improved Software Cost Estimating". Technical Report RADC-TR-
77-220, Vol. II. Rome Air Development Center, (August 1977).

[Dow87]
Dowson, M., "Iteration in the Software Process", Proceedings o f the 9th
International Conference on Software Engineering. IEEE, (1987), pp. 36-39.

[Dun83]
Dunham, J.R., and Kruesi, E. "The Measurement Task Area". IEEE Computer,
Vol. 16, No. 11, (November 1983), pp. 47-54.

[Els78]
Elshoff, J.L. "An Investigation into the Effect of the Counting Method Used on
Software Science Measurements". Proceedings o f the 5th International Conference
on Software Engineering, (1979), pp. 30-45.

351

[Fai85]
Fairley, R. Software Engineering Concepts. McGraw-Hill, New York, 1985.

[Far65]
Farr, L., and Zagorsky, H.J. "A Quantitative Analysis of Programming Cost
Factors: A Progress Report". Printed in: Economics o f Automatic Data Processing
- ICC Symposium Proceedings^ Rome 1965. Amsterdam: North-Holland, 1965.

[Fit78]
Fitzsimmons, A., and Love, T. "A Review and Evaluation of Software Science".
Computing Surveys, Vol. 10, No. 1, (March 1978), pp. 3-18.

[Flo84]
Floyed, C. "A Systematic look at Prototyping". Printed in: Approaches to
prototyping, edited by:, Budde, R., Kuhlenkamp, K., Mathiassen, L., and
Zullighoven, H. Springer-Verlag, Heidelberg, 1984.

[Fox82]
Fox, J.M. Software and Its Development. New Jersey, N.J.: Englewood Cliffs,
Prentice Hall Inc., 1982.

[Fre75]
Freeman, P. "Towards Improved Review of Software Designs". Proceedings o f the
National Computer Conference. AFIPS Press, (1975). Reprinted in: Tutorial on
Software Design Techniques, edited by: Freeman, P., and Wasserman, A I. IEEE
Computer Society, IEEE Catalog No. EHO 161-0, (1980), pp. 434-439.

[Fre76]
Freeman, P., Wasserman, A.I and Fairley, R.E. "Essential Elements of Software
Engineering Education". Proceedings o f the 2nd International Conference on
Software Engineering. October, (1976), pp. 116-122.

[Fre79]
Freburger, K., and Basili, V.R. "The Software Engineering Laboratory:

352

Relationship equations". University of Maryland, Technical Report TR-764, (May
1979).

[Frei79]
Freiman, F.R., and Park, R.E. "Price Software Model - Version 3. An
Overview". Workshop on Quantitative Software Models for Reliability, Complexity,
and Cost: A n Assessment o f the State o f the Art, edited by Shooman, M.L. IEEE
Catalog No. TH0067-9. New York: IEEE, (1979), pp. 32-41.

[Fun87]
Punch, P. "Recalibration of Intermediate COCOMO to recent AF Acquisitions".
Third A nnual COCOMO Users* Group Meeting, Carnegie Mellon University,
Software Engineering Institute, Pittsburgh, PA, (November 3-5,1987).

[Gaf79]
Gaffney, J.E. Jr. "Program Control Complexity and Productivity". Workshop on
Quantitative Software Models for Reliability, Complexity, and Cost: A n Assessment o f
the State o f the Art, edited by: Shooman, M.L. IEEE Catalog No. TH0067-9. New
York: IEEE, (1979).

[Gaf79a]
Gaffney, J.E. Jr., and Heller, G.L. "Macro Variable Software Models for
Application to Improved Software Development Management". Workshop on
Quantitative Software Models for Reliability, Complexity, and Cost: An Assessment of
the State o f the Art, edited by: Shooman, M.L. IEEE Catalog No. TH0067-9. New
York: IEEE, (1979).

[Gaf84]
Gaffney, J.E. Jr. "Estimation of Software Code Size Based on Quantitative
Aspects of Function (With Application of Expert Systems Technology)". Journal
o f Parametrics, Vol. 4, No. 3, (September 1984).

[Gal86]
Galashan, M.M. "Expert Systems in Software Cost-Estimation". MSc dissertation.

353

Kingston Polytechnic. London, (1986).

[GalSS]
Galorath, D.D., and Rampton, J.C. "Software Engineering Costing: Transition
into the 90’s". ISPA, International Conference on Parametric Analysis^ Vol. VII,
No. 1, (July 1988), pp. 253-258,.

[Geh82]
Gehani, N.H. "A Study in Prototyping", ACM SIGSOFT Software Engineering
Notes, Vol. 7, No. 5, (December, 1982), pp. 71-74.

[GÜ77]
Gilb, T. Software Metrics. Cambridge, MA.: Winthrop Publishers, 1977.

[GÜ85]
Gilb, T.J. "Estimating Software Attributes: Some Unconventional Points of View.
Unpublished article. Contact author: Iver Holtersvei 2, N-1410 Kolbotn, Norway,
(1985).

[Gil87]
Gilb, T.J. The Principles of Software Engineering Management. Addison Wesley,
1987.

[Gom81]
Gomaa, H., and Scott, D.B.H. "Prototyping as a Tool in the Specification of User
Requirements". Proceedings o f the 5th International Conference on Software
Engineering. IEEE, (1981), pp. 333-342. Reprinted in: Tutorial on New Paradigms
for Software Development, edited by: Agresti, W.W., pp. 69-77. IEEE Catalog No.
EH0245-1. Washington, D.C.: IEEE Computer Society Press, 1986.

[Gom83]
Gomaa, H. "The Impact of Rapid Prototyping on Specifying User Requirements",
ACM SIGSOFT Software Engineering Notes, Vol. 8, No. 2, (April 1983), pp. 17-28.

354

[Gor77]
Gordon, R.L., and Lamb, J.C. "A Close Look at Brook’s Law". Datamation, Vol.
23, No. 6, (June 1977), pp. 81-83.

[Gor87]
Gordon Group, Before You Leap, User*s Guide, (1987).

[Hal72]
Halstead, M.H. "Natural laws controlling algorithm structure". SIGPLAN
Notices, 1 (2), (1972), pp. 19-26.

[Hal77]
Halstead, M.H. Elements o f Software Science. New York: Elsevier North-Holland,
1977.

[Her77]
Herd, J.H., Postak, J.N., Russekk, W.E., and Stewart, R.K. "Software Estimating
Study; Study Results". Technical Report RADC-TR-77-220 Rom e Air
Development Center, Vol. I, (June 1977).

[Hum39]
Hume, D. The Treatise o f Human Nature, edited by: Selby-Biggs, L.A. Oxford:
The Clarendon Press, 1978. Originally published, 1739.

[Hum88]
Humphreys, P. "Intelligence in Decision Support - A Process Model".
Unpublished Paper. London School of Economics and Political Science, (1988).

[Hum89]
Humphreys, P. "Risk analysis tools and techniques in project management".
Proceedings o f the Royal Society Symposium on Project Risk in space industry,
(March 1989).

355

[IIT87]
HT Research Institute. Software Cost Model Research. US Army Cost and
Economic Analysis Center (September, 1987).

[HT87a]
IIT Research Institute. A Descriptive Evaluation o f Software Sizing Models. IIT
Research Institute; Data and Analysis Centre for Software. Lanham, Maryland,
(1987).

[Ita81]
Itakura, M., and Takayanagi, A. "A Model for Estimating Program Size and Its
Evaluation". Proceedings o f the 6th International Conference on Software
Engineering, (1981), pp. 104-109.

[Jef79]
Jeffery, D.R., and Lawrence, M.J. "An Inter-Organisational Comparison of
Programming Productivity". Proceedings o f the 4th International Conference on
Software Engineering, (1979), pp. 369-377.

[Jef80]
Jeffery, D.R., and Vessey, I. "Models, Metrics and Management of IS
Development". Information and Management. 3, (1980), pp. 89-93.

[Jef81]
Jeffery, D.R., and Lawrence, M.J. "Some Issues in the Measurement and Control
of Programming Productivity". Information and Management. 4, (1981), pp. 169-
176.

[Jef85]
Jeffery, J.R., and Lawrence, M.J. "Managing Programming Productivity". The
Journal o f Systems and Software. 5,1, (February 1985), pp. 49-58.

[Jef88]
Jeffery, J.R., and Basili, V.R., "Validating the Tame Resource Data Model",

356

Proceedings o f the 10th International Conference on Software Engineering, (1988),
pp. 187-197.

[Jef88a]
Jeffery, D.R., Loo, C.C., and Low, G.C. "The Validity, Reliability and Practicality
of Function Points as a Measure of Software Size". Information Systems Research
Report, Department of Information Systems, University of New South Wales,
(1988).

[Jef89]
Jeffery, D.R., and Low, G.C. "Generic Estimation tools in the management of
software development". Pre-publication draft. School o f Information Systems
Research Report, Department of Information Systems, University of New South
Wales, (1989).

[Jen79]
Jensen, R.W., and Tonies, G.C. "Software Engineering Education: A Constructive
Criticism". Printed in: Software Engineering, edited by: Jensen, R.W., and Tonies
C.C., pp. 553-567. Prentice-Hall Publications, 1979.

[Jen79a]
Jensen, R.W., and Tonies, C.C. Software Engineering, edited by: Jensen, R.W., and
Tonies C.C. Prentice-Hall Publications, 1979.

[Jen83]
Jensen, R.W. "An improved M acrolevel Software D evelopm ent Resource
Estimation Model". Hughes Aircraft Company, Space and Communications
Group, Los Angeles, CA., (1983).

[Jen83a]
Jensen, R.W., and Lucas, S. "Sensitivity Analysis of the Jensen Software Model",
Hughes Aircraft Company, Space and Communications Group, Los Angeles, CA,
(1983).

357

[Jen84]
Jensen, R.W. "A Comparison of the Jensen and COCOMO Schedule and Cost
Estimation Models". Proceedings o f the International Society o f Parametric Analysis.
(1984), pp. 96-106.

[Jen86]
Jensen, R.W. "Predicting and Controlling Software Development Costs: Metrics
for Managers", (October 1986)

[Joh77]
Johnson, J.R. "A Working Measure of Productivity". Datamation, (February
1977).

[Jon83]
Jones, T.C. "Demographic and technical trends in the Computing Industry".
Software Productivity Research, INC., (July 1983).

[Jon86]
Jones, T.C. Programming Productivity. McGraw-Hill, 1986.

[Kell889]
Lord Kelvin, Popular Lectures and Addresses, 1889. In: Cook, M. L. Software
Metrics: An Introduction and Annotated Bibliography. Software Engineering Notes
ACM SIGSOFT, Vol. 7 No. 2, (April 1982), pp. 41-60.

[Kem87]
Kemerer, C.H. "An Empirical Validation of Software Cost Estimation Models".
Communications o f the ACM, Vol. 30, No. 5, (May 1987), pp. 416-428.

[Keu82]
Keus, H.E. "Prototyping : A More R easonable Approach to System
Development" ACM SIGSOFT Software Engineering Notes, Vol. 7, No. 5,
(December 1982), pp. 94-95.

358

[Kit84]
Kitchenham, B.A., and Taylor, N.R. "Software Cost Models", ICL Technical
Journal, (May 1984), pp. 73-102.

[Kit85]
Kitchenham, B.A., and Taylor, N.R. "Software Project Development Cost
Models". ICL Technical Journal. (May 1984), pp. 73-102. Reprinted in: The
Journal o f Systems and Software^ Vol. 5, No. 4, (May 1985), pp. 502-506.

[Kit85a]
Kitchenham, B.A. "Management Metrics". CSR Workshop^ (1985).

[Kit87]
Kitchenham, B.A. "Management Metrics". Printed in: Software reliability:
Achievement and assessment. Littlewood B., Blackwell Scientific Publication,
Oxford, 1987.

[Kit89]
Kitchenham , B.A., and De Newmann, B. Software reliability handbook.
Unpublished draft. Elsevier, 1989.

[Knu74]
Knuth, D.E. Structure Programming with GOTO Statements. ACM Computing
Survey Vol. 6, No. 4, (December 1974), pp. 261-301.

[LaF87]
LaFourcade, D., and Pickford, B. "Counting Function Points for Continued
Development. International Function Point Users Group conference Proceedings,
(September 1987).

[Lam86]
Lambert, J.M. "A Software Sizing Model". Journal o f Parametrics, Vol. VI. No. 4,
(December 1986).

359

[Las79]
Lasher, W. "Software Cost Evaluation and Estimation: A Government Source
Selection Case Study". Workshop on Quantitative Software Models for Reliability,
Complexity, and Cost: An Assessment o f the State o f the Art. IEEE Catalog No.
TH0067-9. New York: IEEE, (1979), pp. 42-55.

[Law85]
Law, D. Prototyping: A State o f the Art Report, NCC, 1985.

[Lec67]
Lecht, C.P. The Management o f Computer Programming Projects. American
Management Association, New York, 1967.

[Leh84]
Lehman, M.M., Stenning, V., and Turski, W.M. "Another Look at Software design
Methodology". ACM SIGSOFT Software Engineering Notes, Vol. 9, No. 2, (April
1984), pp. 38-53.

[Leh85]
Lehman, M.M., and Belady, L.A. Program Evolution. London: Academic Press,
1985.

[Leh85a]
Lehman, M.M. "Approach to a Disciplined Development Process - The ISTAR
Integrated Project Support Environment". ICST DoC Research Report 85/19.
Presentation to the Second Process Workshop, Coto de Caza, (March 27-29,1985).

[Leh85b]
Lehman, M.M., and Stenning, N. V. Concepts o f an Integrated Project Support
Environment. Butterworth & Co Ltd., 1985.

360

[Leh87]
Lehman, M.M. "Process Models, Process Programs, Programming Support". The
Proceedings o f the 9th International Conference on Software Engineering, (1987),
pp. 14-16.

[Leh87a]
Lehman, M.M. "Model based approaches to ISPE architecture and the design.
The 1ST ISTAR Project as an Instantiation". Invited Contribution. Quarterly
Bulletin IEEE, (1987).

[Leh89]
Lehman, M.M. "Uncertainty in Computer Application and its Control Through
the Engineering of Software". Software maintenance: research and Practice, John
Wiley & Sons Ltd., Vol. 1,3-27,1989.

[Leh89a]
Lehman, M.M. "Software, Systems and Application Uncertainty and its Control
Through the Engineering of Software". Lehman Software Technology Associates
Ltd., and Department of Computing Imperial College of Science and Technology.
Unpublished paper, (November 1989).

[Mac87]
Macro, A., and Buxton, J. The Craft o f Software Engineering. UK: Addison-Wesley
Publishing Co., 1987.

[Map78]
Mapp, T.E. "Applicability of the Rayleigh Curve to the SEL Environment".
Unpublished paper. University o f Maryland, (1978), pp. 1-19.

[McC76]
McCabe, T.J. "A Complexity Measure". IEEE Transactions on Software
Engineering, Vol. SE-2, No. 12, (December 1976), pp. 308-20.

361

[McC78]
McCue, G.M. "IBM’s Santa Teresa Laboratory - An Architectural Environment
for Program Development". IBM Systems Journal Vol. 17, No. 1, (1978), pp. 4-25.

[McC81]
McCracken, D.D., and Jackson, M.A. Systems Analysis and Design - A Foundation
for the 1980% edited by: M.M Cotterman et al., (1981), pp. 551-553. Reprinted in:
Tutorial on New Paradigms for Software Development, edited by: Agresti, W.W., pp.
23-26. IEEE Catalog No. EH0245-1. Washington, D.C.: IEEE Computer Society
Press, 1986.

[McC89]
McCabe, T.J., and Butler, C.W. "Design Complexity Measurement and Testing".
Communications o f the ACMj Vol. 32, No. 12, (December 1989), pp. 1415-1425.

[McC178]
McClure, C.L. Reducing COBOL Complexity Through Structured Programming.
New York: Van Nostrand Reinhold, 1978.

[McG80]
McGowan, C.L. and McHenry, R.C. "Software Management". Research
Directions in Software Technology, edited by: Wegner, P., pp. 207-253. Cambridge,
MA.: The MIT Press, 1980.

[MCS87]
"Using ESTIMACS - The ESTIMACS questions Explained", (draft). Management
and Computer Services, Inc., (March 1987).

[Mil56]
Miller, G.A. "The magic number seven, plus or minus two". Psychological Review,
No. 63, (1956), pp. 81-97.

[Mil80]
Mills, H.D. "The Management of Software Engineering. Part I: Principles of

362

Software Engineering". IBM System Joumaly Vol. 19, No. 4, (1980), pp. 415-420.

[MiySS]
Miyazaki, Y., and Mori, K. "COCOMO evaluation and Tailoring" Proceedings o f
the 7 th International Conference on Software Engineering, (1985), pp. 292-299.

[Moh79]
Mohanty, S.N. "Models and Measurements for Quality Assessment of Software".
ACM Computing Surveys, 11, (1979), pp. 251-275.

[Moh81]
Mohanty, S.N. "Software Cost Estimation: Present and Future". Software Practice
and Experience. Vol. 11, (1981), pp. 103-121.

[Mye76]
Myers, G.J. Software Reliability. New York, Wiley, 1976.

[Mye77]
Myers, G.J. "An Extension to the Cyclomatic Measure of Program Complexity",
SIGPLAN Notices, (October 1977).

[Mye78]
Myers, G.J. Composite/Structure Design, Van Nostrad, New York, (1978).

[Mus83]
Musa, J.D. "Stimulating Software Engineering Progress - A Report of the
Software Engineering Planning Group". ACM Software Engineering Notes Vol. 8,
No. 2, (April 1983), pp. 29-54.

[Nae88]
Naef, R.E.L. "CEACSIZE Software Sizing Model". Proceedings o f the
International Society o f Parametric Analysis, Vol. VII, No. 1 (July 1988), pp. 555-
589.

363

[Naj88]
Najberg, A.C. "Application of Expert System Techniques for Estimating by
Analogy". Proceedings o f the International Society o f Parametric Analysis, Vol. VII
No.l, (1988), pp. 591-614.

[Nau69]
Nauer, P., and Randell, B. Software Engineering - Report on a Conference
Sponsored by NATO Science Committee, Garmisch, 1968. Scientific Affairs
Division, NATO, Brussels 39, (1969).

[Nel66]
Nelson, E.A. "M anagement Handbook for the Estim ation of Com puter
Programming Costs". AD-A648750, Systems Development Corporation. Santa
Monica, CA., (October 31,1966).

[Nor60]
Norden, P.V. "On the anatomy development projects". I.R.E. Transaction,
P.G.E.M., Vol. EM-7, No. 1, (1960), pp. 4.

[Nor63]
Norden, P.V. "Useful Tools for Project Management". Operational Research in
Research and Development, edited by: Dean, B.V. John Wiley & Sons, Inc., (1963).

[Ost87]
Osterweil, L. "Software Processes are Software Too". Proceedings o f the 9th
International Conference on Software Engineering, Monterey, CA.: IEEE, (1987),
pp. 2-13.

[Par57]
Parkinson, G.N. Parkinson*s Law and others. Studies in Administration. Boston,
MA.: Houghton-Mifflin, 1957.

[Par72]
Parnas, D.L. "On Criteria to Be Used in Decomposing Systems into Modules".

364

C4CM, Vol. 14 No.l, (April 1972), pp. 221-227.

[ParSO]
Parr, F.N. "An A lternative to the Rayleigh Curve M odel for Software
Development Effort". IEEE Transactions on Software Engineering, Vol. SE-6, No.
3 (May 1980), pp. 291-96.

[ParS3]
Partsch, H., and Steinbruggen, R. "Program Transformation Systems". Computing
Surveys, Vol. 15, No. 3, (September 1983), pp. 199-236. Reprinted in: Tutorial on
New Paradigms for Software Development, edited by: Agresti W.W., pp. 189-226.
IEEE catalog No. EH0245-1. Washington, D.C.: IEEE Computer Society Press,
1986.

[Par88]
Park, R.E. "The Central Equations of the Price Software Cost Model".
Proceedings o f the Fourth COCOMO Users' Group. Pittsburgh, PN., (1988).

[Par89]
Park,. R.E. "An Open Letter to Cost Model Evaluators". Journal o f Parametrics,
Vol. IX, No. 2, (June 1989), pp. 1-5

[Pet81]
Peters, L. J. Software Design: Methods and Techniques. New York: Yourdon Press,
1981.

[Per83]
Perlis, A.J. "Controlling Software Development Through the Life Cycle Model".
Printed in: Software Metrics: An Analysis and Evaluation, edited by Perlis, A.,
Sayward F.G., and Shaw, M., pp. 95-110. Cambridge, MA.: The MIT Press, 1983.

[Phi87]
Phillips, L.D. "Requisite Decision Modelling for Technological Projects". Printed
in: Social Decision Methodology for Technological Projects, edited by: Vlek, C., and

365

Cvetkovitch G. North Holland, (1987).

[Pfl89]
Pfleeger, S.L. and Bollinger, T. "A Reuse-Oriented Survey of Software Cost
Models", unpublished draft, Contel Technology Centre, Fairfax, VA., (June, 1989).

[Pre87]
Pressman, R. Software Engineering - A Practitionefs Approach. New York:
McGraw-Hill, 1987.

[Pre84]
Prell, E.M., and Sheng, A.P. "Building Quality and Productivity into a Large
Software System". IEEE Software, (July 1984), pp. 47-54.

[Pri88]
Price Waterhouse International Computer Opinion Survey, (June 1988).

[Put75]
Putnam, L.H. "A General Empirical Solution to the Macro Software Sizing and
Estimating Problem". IEEE Transactions on Software Engineering, Vol. 1, No.2,
(1975).

[Put78]
Putnam, L.H. "Example of an Early Sizing, Cost and Schedule Estimate for an
Application Software System". Proceedings o f COMPSAC *78. New York: IEEE,
(1978).

[Put79]
Putnam, L.H., and Fitzsimmons, A. "Estimating Software Costs". Datamation,
(September 1979), pp. 189-198.

[Put80]
Putnam, L.H. Software Cost Estimating and Life-Cycle Control: Getting the Software
Numbers. IEEE Catalog No. EHO 165-1. New York: IEEE, 1980.

366

[PutSOa]
Putnam, L.H. "The Real Economics of Software Development". Symposium on
the Economics o f Information Processings (December 1980).

[PutSl]
Putnam, L.H. "SLIM A Quantitative Tool for Software Cost and Schedule
Estimation". Proceedings o f the NBS/IEEE/ACM Software Tool Fair, San Diego,
CA., (March 1981), pp. 49-57.

[Put83]
Putnam, L.H., Putnam D.T., and Thayer L.P. "A Method to Measure the
‘Effective Productivity’ in Building Software Systems". Proceedings o f the
International Society o f Parametric Analysts s Vol. 2, No. 1, (April 1983), pp. 95-143.

[Put84]
Putnam, L.H., Putnam D.T., and Thayer L.P. "A Tool for Planning Software
projects". The Joumal o f Systems and Software^ 5, (January 1984), pp. 147-154.

[Put84a]
Putnam, L.H., and Putnam D.T. "A Data Verification of the Software Fourth
Power Trade-Off Law". Proceedings o f the Intemational Society o f Parametric
Analysis, Vol. 3, No. 1, (May 1984), pp. 443-471.

[Put87]
Putnam, L.H. Quantitative Software Management, Inc. Size Planner Manual, 1987.

[Rei79]
Reifer, D.J. Tutorial: Software Management. IEEE Computer Society, (1980).

[Rei86]
Reifer, D.J. "Predicting the Size of Real-Time Systems". Proceedings of theNIS
Software Cost and Quality Management Conference (October 1986), pp. 29-30.

367

[Rei87]
Reifer, D J. "Analytical Software Size Estimation Tool - Real - Time (ASSET-R:
An Overview", RCI-Tn-118, (May 1987).

[Rei88]
Reifer, D.J., and Kane, P.T. "How to Conduct a Software Project Post Mortem".
Reifer Consultants Inc. Los Anglos, CA., (1988).

[Rob88]
Robb, F.F. 'The Management o f Complexity - Keynote Paper", Transactions of The
Institute of Measurement and Control, Vol. 10, No. 3, (August 1988), pp. 116-121.

[Rob89]
Robb, F.F. "Cybernetics and Superahuman Autopoietic Systems". Systems Practice
Vol. 2, No. 1, (March 1989), pp. 47-74.

[Roy70]
Royce, W.W. "Managing the Developm ent of Large Software Systems".
Proceedings o f the 9th Intemational Conference on Software Engineering, (1987),
pp. 328-338.

[Rub83]
Rubin, H.A. "Macro-Estimation of Software Development Parameters: The
Estimacs System". IEEE. Catalog No. CH1919-0, (1983), pp. 109-118.

[Rub85]
Rubin, H.A. "A Comparison of Cost Estimation Tools. (A Panel Session)".
Proceedings o f the 8th Intemational Conference on Software Engineering. IEEE,
(1985), pp. 1-3.

[Rub85a]
Rubin, H.A. "The Art and Science Of Software Estimation: Fifth Generation
Estimators". Joumal o f Parametrics. Vol. 5, No. 2, (June 1985), pp. 50-65.

368

[SaaSO]
Saaty, T.L. The analytical Hierarchy process. McGraw-Hill, 1980.

[Sch77]
Schutt, D. "On a Hypergraph Oriented Measure for Applied Computer Science".
Printed in: Proceedings o f C0M PC0N77 y New York: IEEE, (1977).

[SchS3]
Scharer, L. "The Prototyping Alternative". ITT Programming. Vol. 1, No. 1, (1983),
pp. 34-43. Reprinted in: Tutorial on New Paradigms for Software Development.
edited by: Agresti. W.W., pp. 59-68. IEEE Catalog No. EH0245-1. Washington,
D.C.: IEEE Computer Society Press, 1986.

[She79]
Sheppard, S., B. Curtis, P. Milliman, and T. Love. "Modern Coding Practices and
Programming Performances". IEEE Computer, Vol. 12, (1979), pp. 41-49.

[She80]
Shen, V.Y., and H.E. Dunsmore. "A Software Science Analysis of COBOL
Programs". CSD-TR-348, Department of Computer Science, Purdue University
(August 1980).

[She82]
Shen, V.Y., Conte S.D., and Dunsmore H.E. "Software Science Revisited: A
Critical Analysis of the Theory and Its Empirical Support". Unpublished paper,
(1982).

[She83]
Shen, V.Y. "Software Science Revisited: A Critical Analysis of the Theory and its
Empirical Support", IEEE Transactions on Software Engineering, SE-9 (2), (1983),
pp. 155-156.

[She88]
Shepperd, H. "A Critique on Cyclomatic Complexity as a Software Metric".

369

Software Engineering JoumaU (March 88), pp. 30-36.

[Sho83]
Shooman, M.L. Software Engineering. New-York: McGraw-Hill, 1983.

[Sho79]
Shooman, M.L. "Tutorial on Software Cost Models". Workshop on Quantitative
Software Models for Reliability, Complexity, and Cost: A n Assessment o f the State o f
the Art. IEEE Catalog No. TH0067-9. New York: Institute of Electrical and
Electronics Engineers, (1979), pp. 1-19.

[Som85]
Sommerville, I. Software Engineering, 2nd Edition. London: Addison Wesley,
1985.

[Ste87]
Steward, D.V. Software Engineering with System Analysis and Design, Brooks/Cole
Publishing Company, 1987.

[Str66]
Stroud, J.M. "The Fine Structure of Psychological Time". Annals o f the New York
Academy o f Science, (1966), pp. 623-631.

[Swa82]
Swartout, W., and Balzar, R. "On the Inevitable Interwining of Specification and
Implementation". Communications o f the ACM, (July 1982), pp. 438-440. Also in:
edited by: Agresti, W. W., pp. 29-37. IEEE Catalog No. EH0245-1. Washington,
D.C.: IEEE Computer Society Press, 1986.

[Sym88]
Symons, C.R. "Function Point Analysis, Difficulties and Improvements". IEEE
Transaction on Software Engineering, Vol. SE-14, No.l, (January 1988).

370

[Tau83]
Tausworthe, R.C. "Software Economics. Cost and Schedule Forecasting".
Workshop on Estimating Software Costs. Organised by Hyman Silver & Assoc. Ltd.
Tel-Aviv, (1983).

[Tha84]
Thadhani, A.J. "Factors Affecting Productivity During Application Development".
IBM Systems Joumal 23, (1984), pp. 19-35.

[Tha88]
Thayer, L.P. "Productivity Im provem ent Trends - A Q uantified Result"
Proceedings o f the Intemational Society o f Parametric Analysis Vol. VII, 1 (July
1988), pp. 771-808.

[Ton79]
Tonies, C.C. "Project Management Fundamentals". In: Software Engineering.
edited by: Jensen, R.W., and Tonies C.C., pp. 553-567. Prentice-Hall Publications,
(1979).

[Usg79]
Usg79. Analysis o f nine US federal Projects, [FG-MSD-80-4]. United States General
Accounting Office, (1979).

[Ver87]
Verner, J.M., and Tate G. "A Model for Software Sizing". The Joumal o f Systems
and Software, No. 7, (1987), pp. 173-177.

[Ver89]
Verner, J.M., Tate, G., Jeckson, B., and Hayward, R.G. "Technology Dependence
in Function Point Analysis: A Case Study and Critical Review". Proceedings o f the
11th Intemational Conference on Software Engineering, Pittsburgh, (May 1989),
pp. 375-382.

371

[Wal77]
Walston, C.E., and Felix, C.P. "A Method for Programming Measurement and
Estimation”. IBM Systems Joumal, Vol. 16, No. 1 (January 1977), pp. 54-73.
Reprinted in: Writings of the Revolution: Selected Readings on Software Engineering,
edited by: E. Yourdon, pp. 389-408. New York: Yourdon Press, 1982.

[Wal79]
Walston, C.E. "Working Group on Software Cost". Printed in: Workshop on
Quantitative Software Models for Reliability, Complexity, and Cost: A n Assessment of
the State o f the Art. IEEE Catalog No. TH0067-9. New York: IEEE, (1979), pp.
240-242.

[War83]
Warburton, R.D.H. "Managing and Predicting the Costs of Real-Time Software".
IEEE Transactions on Software Engineering, Vol. SE-9, No. 5, (September 1983),
pp. 562-569.

[Web79]
Webstefs new collegiate dictionary. G. & C. Merriam Company, Springfield, MA:
USA 1979.

[Weg80]
Wegner, P. "Introduction to Part II. - Software Methodology". Printed in:
Research Direction in Software Technology, edited by: P. Wegner., pp. 203 - 206.
Cambridge, MA.: The MIT Press, 1980.

[Weg80a]
Wegner, P. "Introduction and Overview". Printed in: Research direction in
software technology, edited by: P. Wegner., pp. 1-36. Cambridge, MA.: The MIT
Press, 1980.

372

[Wei74]
Weissman, L.M. "A Methodology for Studying the Psychological Complexity of
Computer Programs". Ph.D, Dissertation. Technical Report CSRG-37. Computer
System Group M551A4. University of Toronto, (August 1974).

[Wei74a]
W eissman, L. "Psychological Complexity of Com puter Programs: An
Experimental Methodology". v4CM SIGPLAN Notices 9, 6, (June 1974), pp. 25-36.

[Wei84]
Wiener-Bhrlich, W.K., Hamrick, J.R., and Rupolo, V. F. "Modelling Software
Behaviour in Terms of a Formal Life Cycle Curve: Implication for software
Maintenance". IEEE Transactions on Software Engineering, SB-10 (4), (July, 1984),
pp. 376-383.

[Whi90]
Whitley, B.A. "Embedding expert systems in semi-formal domains: Examining the
boundaries of the knowledge base". A Doctoral Thesis. University of London,
(1990).

[Wil88]
Williams, L.G. "Software Process Modelling". Proceedings o f the 10th Intemational
Conference on Software Engineering IEEE, (1988), 174-186.

[Win82]
Wingfield, C.G. "USUCSC Experience with SLIM" Technical Report AW AR 360-5,
USA. Army Institute for Research in Management Information and Computer
Science, (1982).

[Win87]
Wingrove, A. "Software Failures are Management Failures". In Software
Reliability: Achievement and Assessment. B. Littlewood Blackwell Scientific
Publications, Oxford, (1987).

373

[Wol74]
Wolverton, R.W. "The Cost of Developing Large Scale Software". Software Cost
Estimating and Life Cycle Control, edited by: Putnam, L.H. IEEE Computer
Society, (1980).

[Wol84]
Wolverton, R.W. "Software Costing". Printed in: Handbook o f Software
Engineering, edited by: Vick, C.R., and Ramamoorthy, C.V., pp. 469-493. Van
Nostrad Reinhold Company. New york, 1984.

[Zav82]
Zave, P. "An O perational Approach to Requirem ents Specification for
Embedded Systems". IEEE Transactions on Software Engineering. Vol. SE-8, No.
3, (May 1982), pp. 250-269. Reprinted in: Tutorial on New Paradigms for Software
Development, edited by: Agresti W.W., pp. 159-178. IEEE Catalog No. EH0245-1.
Washington, D.C.: IEEE Computer Society Press, 1986.

[Zav84]
Zave, P. "The Operational Versus the Conventional Approach to Software
Development". Communications o f the ACM. Vol. 27, No. 2, (1984), pp. 104-118.

[Zel80]
Zelkowitz, M.W. "A Case Study in Rapid Prototyping". Software Pract. Exper. 10,
12, (December, 1980), pp. 1037-1042.

[Zel82]
Zelkowitz, M.W., and Branstad, M. Proceedings ACM SIGSOFTRapid Prototyping
Symp., Columbia, MD., (April 1982), pp. 19-21.

374

GLOSSARY OF TERMS

AI Artificial Intelligence
ASSET-R Analytical Software Size Estimation Technique
AT&T American Telephon and Telegrph

Bang
BT
BYL

A measure of software size
British Telecom
Before you Leap

CD Cost Driver
CEI Computer Economics, Inc.
CEIS CEI sizer
COCOMO constructive COst MOdel
COSMOS Name of an Esprit project
CSF Critical Success factors
CTC Corrected Token Count

DBMS Data-base Management Systems
DI Degree of Influence
DOD Department of Defence
DSI Delivered Source Instruction
DLOC Delivered lines of Code

EEM Effort Estimation Model
ESD Electronic System Division
ESPRIT Europeam Strategic Research Programe of Information Technology
ESTIMACS An estimation tool based on FP technique

FP
FPA
FPR
FPV
FSP

Function points
Function point Analysis
Function Primitive
Function Point Value
Full time equivalent Software Ppersoimel

375

4GL Fourth Generation Language

IBM
ICL
ITT
IS
ISPA
IT

Intemational Business Machine
Imperial Computers Limited
ITT Research Institute
Information Systems
Intemational Society for Parametric Analysis
Information Technology

JS-2 Jensen’s cost estimation model

KDSI Thousands Delivered Source Instmction
KLOC Thousands Lines of Code

LOC lines of Code

MERMAID Name of an Esprit Project
MIS Management Information System
MMRE Mean Magnitude of Relative Error
MPSS Most Productive Scale Size
MRE Magnitude of Relative Error

NASA National Aeronautics and Space Administration, US

OB Objects in the automated part of the data-model

P-count Counts of primitive
PH Person Hours
PIMS Project Integrated Management Systems
PM Person Months
PY Person Years
PERT Program Estimating and Reporting Tool
PP Project planning phase
PRED(l) PREDiction level

376

PSD Preliminary Systems Design phase

RCI
RE
REP
RSC

Reifer Consulants, Inc.
Inter-object RElationships in the automated part of the data-model
Request for Proposal
Relative Structural Complexity

SDLC Software Development Life Cycle
SDC System Development Corporation
SEER Software Estimation and Evaluation Resources System
SLOC Source Lines of Code
SLIM Software Life Cycle Methodology
SOFTCOST A composite estimating model, developed at Jet Propulsion

Laboratory, under the direction of Tausworthe.
SPEM Software Productivity Evaluation Model
SPQR Softwware productivity Quality and Reliability
SSA Software Sizing Analyser
SSM Software Sizing Model

TC
TCP

Token Counts.
Technical Complexity Factor

UFP Unajusted Function Point

WBS Work Break Structure

QSM Quantitative Software Management, Inc.
QSM(SC) Quantitative Software Methods, Standard Components Sizing.
QSM(FL) Quantitative Software Methods, Fussy Logic sizing

377

