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Abstract

This dissertation looks into the interplay of financial and insurance markets 
that is created by securitization of insurance related risks. It comprises four chap
ters on both the common ground and different nature of actuarial and financial 
risk valuation.

The first chapter investigates the market for catastrophe insurance derivatives 
that has been established at the Chicago Board of Trade in 1992. Modeling the 
underlying index as a compound Poisson process the set of financial derivative 
prices that exclude arbitrage opportunities is characterized by the market prices 
of frequency and jump size risk. Fourier analysis leads to a representation of price 
processes that separates the underlying stochastic structure from the contract’s 
payoff and allows derivation of the inverse Fourier transform of price processes in 
closed form. In a market with a representative investor, market prices of frequency 
and jump size risk are uniquely determined by the agent’s coefficient of absolute 
risk aversion which consequently fixes the price process on the basis of excluding 
arbitrage strategies.

The second chapter analyzes a model for a price index of insurance stocks that 
is based on the Cramer-Lundberg model used in classical risk theory. It is shown 
that price processes of basic securities and derivatives can be expressed in terms 
of the market prices of risk. This parameterization leads to formulae in closed 
form for the inverse Fourier transform of prices and the conditional probability 
distribution. Financial spreads are examined in more detail as their structure 
resembles the characteristics of stop loss reinsurance treaties. The equivalence be
tween a representative agent approach and the Esscher transform is shown and the 
financial price process that is robust to these two selection criteria is determined. 
Finally, the analysis is generalized to allow for risk processes that are perturbed 
by diffusion.

In the third chapter an integrated market is introduced containing both insur
ance and financial contracts. The calculation of insurance premia and financial 
derivative prices is presented assuming the absence of arbitrage opportunities. It 
is shown that in contrast to financial contracts, there exist infinitely many market 
prices of risk that lead to the same premium process. Thereafter a fink between 
financial and actuarial prices is established based on the requirement that financial 
prices should be consistent with actuarial valuation. This connection is investi
gated in more detail under certain premium calculation principles.

The starting point of the final chapter is the Fourier technique developed in 
Chapters 1 and 2. It is the aim of this chapter to generalize the analysis to 
underlying L6vy processes. Expressions for the conditional moments and proba
bilities based on these processes are derived and their inverse Fourier transforms 
are obtained in closed form. The representation of conditional moments and prob
abilities separates the stochastic structure from the deterministic dependence on 
the underlying Levy processes.
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Chapter 0

Introduction

In the past decade the convergence of capital and insurance markets has emerged as 

one of the most important phenomena in risk management. This overlap manifests 

itself in the growing number of products coming onto one of the markets and 

containing a component of the other market. Insurers are developing policies that 

depend on the performance of financial indicators such as indices and interest 

rates. Financial contracts are introduced that encompass insurance risk such as 

natural catastrophes. Both approaches aim to create new investment opportunities 

and hedging instruments for global risk management. In order to tailor these new 

products optimally to the needs of market participants, both financial as well as 

actuarial risk valuation must be reconsidered and further developed, explicitly 

taking into account their similarities and differences.

This dissertation consists of four chapters that investigate the valuation of 

financial instruments that are based on insurance related risk, the connection be

tween actuarial and financial valuation in an integrated market, and the class of 

stochastic processes that comprises insurance processes used in risk theory. The 

following sections summarize the idea for each chapter, the techniques and methods 

applied, and the main results.

0.1 Pricing Catastrophe Insurance D erivatives

This chapter focuses on the financial valuation of catastrophe insurance derivatives 

that have been introduced at the Chicago Board of Trade in 1992.

7
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Catastrophe insurance derivatives are financial securities whose payments de

pend on the value of an underlying index that reflects estimated insured property 

losses due to natural catastrophes. They are traded as European call, put, and 

spread options with the aim of providing an alternative to reinsurance contracts 

and attracting additional capital sources from financial investors.

The underlying loss index is modeled as an compound Poisson process, a sto

chastic jump process that is used in classical risk theory to model aggregate losses.

First, solely the assumption of absence of arbitrage opportunities is imposed 

and the set of consistent derivative prices is parameterized by the market prices of 

frequency and jump size risk. Fourier analysis is used to deduce a representation 

of financial derivative prices that separates the underlying stochastic structure 

from the contract’s payoff. The first component is captured by the characteristic 

function of the underlying loss index, the latter by the inverse Fourier transform 

of the payoff structure. This representation makes it possible to derive the inverse 

Fourier transform of derivative prices in closed form.

Second, a representative agent is introduced whose preferences are represented 

by a utility function. The investor’s preferences determine the market prices of 

frequency and jump size risk and consequently the unique price process of the 

catastrophe insurance derivative.

The analysis and results developed in this chapter suggest to calibrate the 

model to market data. Since we derived the inverse Fourier transform of derivative 

prices in closed form, it is suggested that there is much to be gained by using Fast 

Fourier Transform as an efficient algorithm for the calculation of prices.

0.2 A sset Valuation in Risk Theory

This chapter builds on the previous one and investigates the interplay of insurance 

risk theory and financial valuation through the securitization of insurance related 

risk.

The Cramer-Lundberg model is a classic model in insurance risk theory, used
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to model the surplus of an insurance company with income from premia arriving 

at a constant rate and outflow in the form of claims. The exponential of this 

surplus process is used to describe the dynamics of a basic financial security that 

could reflect a price index of a portfolio of insurance stocks. In addition, the basic 

security serves as an underlying process for derivative securities.

In this framework, the Fourier technique developed in Chapter 1 is applied 

to describe the dynamics of securities’ price processes that do not allow for ar

bitrage strategies. Similar to the result in Chapter 1, the martingale property 

of price processes alongside the Fourier analysis techniques leads to a representa

tion of prices that separates the underlying uncertainty in the market from the 

specification of the financial contract. The set of no-arbitrage derivative prices is 

parameterized by the market price of jump size risk and their inverse Fourier trans

form is derived in closed form. The valuation of spread options is examined in more 

detail as their payoff structure reflects the specifications of stop loss reinsurance 

treaties. As well as the representation of financial prices of these contracts, the 

conditional probability of the surplus being between two boundaries is analyzed 

and its inverse Fourier transform derived in closed form.

Next, a representative agent is considered and the unique price process is deter

mined that is consistent with the investor’s preferences. In addition, the Esscher 

transform that has been introduced as a premium calculation principle in actuarial 

science is used as an alternative price process selection criterion. Financial prices 

that are robust with respect to this criterion are derived and the analogy to the 

representative agent approach is shown.

Finally, the analysis is generalized to allow the underlying surplus process to 

be perturbed by an independent diffusion process that might reflect additional 

market noise. Similar analysis applies and the corresponding results are derived.
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0.3 Financial and A ctuarial V aluation in an In

tegrated  M arket

Chapters 1 and 2 discuss a market that consists of financial securities based on 

insurance related risk. In these chapters, the interplay between insurance and 

capital markets is established through financial valuation techniques applied to 

insurance models of risk processes.

In this chapter, however, an integrated market is considered in which both 

insurance and financial contracts are available for trading. The consistency and the 

consequent relationship between insurance premia and financial prices is examined.

Analogous to Chapter 1, the underlying uncertainty in the economy is related 

to insurance risk. Therefore, a compound Poisson process is used to describe 

the dynamics of the fundamental process since it exhibits characteristics similar 

to aggregate claim processes, namely random loss sizes at random points in time. 

Both an insurance contract and a financial derivative, each of which is based on the 

same fundamental risk, are traded. The insurance contract Specifies a premium 

process for which the remaining risk can be sold off, whereas the payoff of the 

financial contract depends on the realization of the underlying process at maturity 

of the contract.

Premium calculation principles can be understood as insurance prices that arise 

in a no-arbitrage framework. Financial prices are assumed not only to exclude 

arbitrage strategies but additionally to be consistent with the actuarial valuation 

of the same underlying risk. The Fourier techniques developed in Chapters 1 and 

2 are used to derive a representation of financial price processes that are robust 

to these two selection criteria. The concept of actuarially consistency of financial 

prices provides the analytical ground for linking financial prices with insurance 

premia. It is shown that this fink is inherent in the characteristic function of the 

underlying risk process.

Finally, certain commonly used premium calculation principles and their cor

responding financial prices are investigated in more detail, taking into account 

actuarial consistency.
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0.4 Conditioned M om ents Based on Levy 

Processes

This chapter generalizes the analytical techniques developed in Chapters 1 and 2 to 

investigate conditional moments of random variables that are based on stochastic 

processes with stationary and independent increments.

The stochastic processes that are used in the previous chapters to model the dy

namics of insurance related risk belong to a more general class - stochastic processes 

with stationary and independent increments, the so-called L6vy processes. Sta- 

tionarity and independence of increments are the only properties used to derive 

the representation of financial prices in previous chapters. Therefore, the same 

Fourier technique is applicable to a set-up in which the underlying process on 

which random variables depend is a general Levy process.

Furthermore, financial prices in a no-arbitrage market can be expressed as the 

conditional expected payoff under an appropriate equivalent probability measure. 

It is shown that the same techniques can be applied to conditional moments of 

arbitrary order.

Analogously, a representation of conditional moments based on L6vy processes 

is derived that consists of two components. One factor captures the complete sto

chastic structure in the form of the characteristic function of the underlying Levy 

process. The other factor contains solely the dependence of the random variable on 

the underlying Levy process in form of the inverse Fourier transform. This repre

sentation leads to a closed form expression for the inverse Fourier transform of the 

conditional moments. In addition, an expression for the probability of the Levy 

process taking values between certain boundaries is derived in a similar manner.



Chapter 1

Pricing Catastrophe Insurance 

Derivatives

1.1 Introduction

In recent years there has been an ongoing economic and political debate on whether 

financial markets should be used to insure risk that has been traditionally hedged 

through other channels. Famous examples include the discussion about the change 

to a funded pension scheme, equity-linked life insurance contracts, and insurance 

derivatives. This need for an alternative way of insurance resulted in a growing 

number of insurance products coming onto the market and containing a financial 

component of some sort. In order to tailor these new financial products optimally 

to the needs of the different markets, both finance experts as well as actuaries will 

have to get to know the other expert’s field better. This overlap suggests that 

combining the methods used in both areas, insurance mathematics and mathe

matical finance should prove indispensable. The objective of this chapter is to 

model the risk involved in insurance markets by the appropriate class of stochas

tic processes and to focus on the problem of price determination for catastrophe 

insurance derivatives that have been introduced at the Chicago Board of Trade 

in December 1992. These are traded financial securities based on an underlying 

index that encompasses insurance losses due to natural catastrophes.

Most models that have been proposed in mathematical finance include a conti-

12
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nuity assumption on the evolution of prices, i.e. the underlying risk is predictable. 

In the presence of enough securities, Black and Scholes [12] and Merton [59] have 

shown how to determine prices of derivatives relying only on the absence of ar

bitrage opportunities. An arbitrage opportunity is a trading strategy that with 

probability one yields a positive return without any initial investment.

However, when being exposed to insurance related risk - e.g. earthquake, wind

storm, or flood - one necessarily has to include unpredictable movements of the 

underlying index reflecting the risk involved. This leads in a natural way to the 

class of stochastic processes including jumps at random time points. We therefore 

model the dynamics of the index that underlies catastrophe insurance derivatives 

as a compound Poisson process, a stochastic process that is used in risk theory to 

model aggregate losses.

In the context of catastrophic risk, the valuation of such derivatives proves to 

be more problematic compared to the Black and Scholes setup [12] for two reasons. 

First, valuation based on arbitrage arguments make sense only when all underly

ing assets are explicitly defined. However, the current generation of catastrophe 

derivatives is based on underlying loss indices that are not traded on the market. 

Second, stochastic jump sizes of the underlying index ‘create’ an incomplete mar

ket. It is thus not possible to perfectly duplicate the movement and consequent 

payoffs of insurance derivatives by continuously trading in other securities. Both 

problems are inherently related to the fact that price processes of insurance deriv

atives cannot be uniquely determined solely on the basis of excluding arbitrage 

opportunities.

Cummins and Geman [21] were the first to investigate the valuation of catastro

phe futures and derivative on futures. These securities were the first generation 

of traded contracts at the Chicago Board of Trade. The authors model the incre

ments of the underlying index as a geometric Brownian motion plus a jump process 

that is assumed to be a Poisson process with fixed loss sizes. Because of the non

randomness in jump sizes the model can be nested into the Black and Scholes 

framework [12]. Since the futures’ price, the basis for catastrophe derivatives, is 

traded on the market the market is complete and unique pricing is possible solely
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based on assuming absence of arbitrage opportunities. While the completeness 

of the market is convenient, the assumption of constant loss sizes is questionable 

in the context of insurance related risk. Furthermore, futures and derivatives on 

futures did not generate enough interest and ceased to be traded in 1995. They 

were replaced by options and spread options that axe based on an underlying loss 

index that is not traded itself. The market is thus incomplete even with constant 

jump sizes of the underlying index.

Geman and Yor [37] examine the valuation of options that axe based on the 

non-traded underlying loss index. In the paper, the underlying index is directly 

modeled as a geometric Brownian motion plus a Poisson process with constant 

jump sizes. The authors base their arbitrage arguments on the existence of a vast 

class of layers of reinsurance with different attachment points to guarantee com

pleteness of the insurance derivative market. An Asian options approach is used 

to obtain semi-analytical solutions for call option prices in form of their Laplace 

transform. In addition to the assumption of constant jump sizes, the existence of a 

liquid catastrophe reinsurance market is questionable since coverage and premium 

rates in catastrophe reinsurance are individually negotiated and depend on the 

insurance company’s past loss experience. Furthermore, the observed loss index 

exhibits no change in value between catastrophic events except from adjustments 

in loss amounts. These rare and small adjustments of the loss index do not justify 

dynamics with infinite variation that are inherent to a Brownian motion.

Aase [1] and [2] takes a different, more realistic modeling approach and uses 

a compound Poisson process with random jump sizes to describe the dynamics of 

the underlying index. The author investigates the valuation of catastrophe futures 

and derivatives on futures that ceased to be traded in 1995. Since the underlying 

futrues’ price is traded on the market the incompleteness in his setup does not 

arise out of the fact that the underlying index is not traded - as in Geman and Yor 

[37] - but from the randomness in jump sizes. The author specifies the preferences 

of market participants by a utility function and determines unique price processes 

within the framework of partial equilibrium theory under uncertainty. Closed 

pricing formulae are derived under the assumption of negative exponential utility
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function and Gamma distributed loss sizes.

15

In this chapter, we fill the gap in the literature by investigating the valuation 

of current catastrophe insurance derivatives based on a non-traded underlying loss 

index that is modeled as a compound Poisson process with stochastic jump sizes. 

We therefore examine the actually traded derivatives - as in Geman and Yor [37] 

- while using a model that is more accurate in this actuarial context - as in Aase 

[1] and [2].

The derivation of prices purely based on no-arbitrage arguments is very at

tractive as prices arise independent of investors’ preferences. The disadvantage, 

however, is the indeterminacy of price processes since the insurance derivative 

market is incomplete.

In this chapter, we tackle this problem in the following way. Without imposing 

any preferences, except that agents prefer more to less, we apply Fourier analysis 

to derive a representation of the class of possible price processes solely on the 

basis of excluding arbitrage strategies. This set of no-arbitrage price processes is 

parameterized by market prices of frequency and jump size risk. For every fixed 

pair of market prices of risk, our approach enables us to derive the inverse Fourier 

transform of price processes in closed form. We allow for a very general class of 

financial contracts - including the currently traded catastrophe derivatives - and 

do not impose any assumptions on the distribution of jump sizes. Building upon 

this characterization, we show that the set of price processes excluding arbitrage 

opportunities and the set of market prices of frequency and jump size risk are one- 

to-one connected. In a liquid insurance derivative market, it is therefore possible 

to obtain the market prices of risk as implied parameters from observed derivative 

prices.

In the context of a market with a representative agent, market prices of fre

quency and jump size risk are determined by the preferences of the representative 

agent. The principle of utility maximization thus determines the unique price 

process of the insurance derivative.

An additional nice feature of our approach is that the representation of no
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arbitrage price processes separates the underlying stochastic structure from the 

financial contract’s specification. The stochastic structure is captured by the char

acteristic function of the underlying index, the contract’s specification by the in

verse Fourier transform of payoffs. In a fixed stochastic environment, this separa

tion allows for faster calculation of derivative prices. The characteristic function 

has to be derived once and, thereafter, the calculation of derivative prices is re

duced to the derivation of the inverse Fourier transform of the contract’s payoff 

structure.

The remainder of this chapter is organized as follows: in Section 1.2 we dis

cuss the catastrophe insurance market with emphasis on the current generation of 

catastrophe insurance options. Section 1.3 presents the model that describes the 

economic environment, the dynamics of the underlying catastrophe index and the 

change between equivalent probability measures. In Section 1.4 we investigate the 

pricing mechanism, first solely based on an arbitrage approach, then by adding a 

representative agent. Section 1.5 concludes.

1.2 C atastrophe Insurance D erivatives

This section presents the main ideas behind the development of the catastrophe in

surance market and describes the structure and specification of existing derivatives 

related to catastrophic risk.

1.2.1 A lternative Risk Transfer

The experience of major natural catastrophes in the nineties - e.g. Hurricane An

drew in 1992, Northridge California earthquake in 1994, earthquake in Kobe in 

1995 - resulted in a widespread concern among insurance and reinsurance compa

nies that there might not be enough allocated capital to meet their underwriting 

goals. This fear provoked a growing demand for additional capital sources and 

accelerated interest in using financial markets to spread catastrophic risk.

The standardization and securitization of insurance related risk provides an 

alternative to reinsurance contracts that traditionally have been purchased to
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manage catastrophe exposure. Catastrophe reinsurance is a highly customized 

business, where coverage and rates are individually negotiated. Premium rates 

vary depending on a specific company’s present and past loss exposure, the lay

ers covered, and current market conditions. On the contrary, financial contracts 

are not negotiated and contract specifications do not vary over time. In addi

tion to the integrity and protection of standardized, exchange-traded instruments, 

price transparency also attracts investors and capital from outside the insurance 

industry.

Let us summarize the main attractions for buyers and sellers of catastrophe 

insurance derivatives:

First, insurance derivatives can be used by insurers and reinsurers to buy stan

dardized protection against catastrophic risk. Alternatively, gaps in existing rein

surance contracts can be filled since financial protection can be provided between 

a lower desired retention level and the attachment point currently offered. In ad

dition, these derivatives can offer an opportunity to synthetically exchange one 

layer for another without the need to enter costly negotiations.

Second, securitization of catastrophic risk turns catastrophes into tradeable 

commodities. Investors thus have the opportunity to invest indirectly in risk that 

traditionally has been addressed by the insurance industry only. Since catastrophic 

risk should prove highly uncorrelated to any other financial risk that underlies stock 

or bond price movements trading in catastrophes provides an additional way to 

diversify the investors’ portfolio.

1.2.2 ISO Futures and Options

The first generation of catastrophe insurance derivatives was developed by the 

Chicago Board of Trade (CBoT) and trading started in December 1992. Futures 

and options on futures were launched based on an index that should reflect ac

cumulated claims caused by catastrophes. The index consisted of the ratio of 

quarterly settled claims to total premium reported by approximately 100 insur

ance companies to the statistical agent Insurance Service Office (ISO). The CBoT
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announced the estimated total premium and the list of the reporting companies 

before the beginning of the trading period. A detailed description of the structure 

of these contracts can be found in Aase [1] and Meister [58]. Due to the low trading 

volume in these derivatives trading was given up in 1995.

One major concern was a moral-hazard problem involved in the way the index 

was constructed: the fact that a reporting company could trade conditional on 

its past loss information could have served as an incentive to delay reporting in 

correspondence with the company’s insurance portfolio. Even if the insurance 

company reported promptly and truthfully, the settlement of catastrophe claims 

might be extensive and the incurred claims might not be included in the final 

settlement value of the appropriate contract. This problem occurred with the 

Northridge earthquake which was a late quarter catastrophe of the March 1994 

contract. The settlement value was too low and did not entirely represent real 

accumulated losses of the industry.

Since options based on these futures had more success - especially call option 

spreads - they were replaced by a new generation of options called PCS options.

1.2.3 PCS Catastrophe Insurance O ptions

PCS Catastrophe Insurance Options were introduced at the CBoT in Septem

ber 1995. They are standardized, exchange-traded contracts that are based on 

catastrophe loss indices provided daily by Property Claim Services (PCS) - a US 

industry authority which estimates catastrophic property damage since 1949. The 

PCS indices reflect estimated insured industry losses for catastrophes that occur 

over a specific period. Only cash options on these indices are available; no phys

ical entity underlies the contracts. They can be traded as calls, puts, or spreads; 

futures are no longer listed for trading. Most of the trading activity occurs in 

call spreads, since they essentially work like aggregate excess-of-loss reinsurance 

agreements or layers of reinsurance that provide limited risk profiles to both the 

buyer and seller.

By definition, a catastrophe is an event that causes in excess of $5 million 

of insured property damage and affects a significant number of policyholders and
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insurance companies. PCS assigns a serial number to each catastrophe for iden

tification throughout the industry. It also compiles estimates of insured property 

damage using a combination of procedures, including a general survey of insurers, 

its National Insurance Risk Profile, and, where appropriate, its own on-the-ground 

survey. PCS estimates take into account both the expected dollar loss and the pro

jected number of claims to be filed. If a catastrophe causes more than $250 million 

according to preliminary estimates, PCS will continue to survey loss information 

to determine whether its estimate should be adjusted.

PCS Options offer flexibility in geographical diversification, in the amount of 

aggregate losses to be included, in the choice of the loss period and to a certain 

extent in the choice of the contracts’ expiration date. Let us describe the contracts’ 

specifications in more detail:

PCS provides nine geographically diverse loss indices to the CBoT: a National 

index; five regional indices covering Eastern, Northeastern, Southeastern, Midwest

ern, and Western exposures; and three state indices covering catastrophe-prone 

Florida, Texas, and California.

The CBoT lists PCS Options both as “small cap” contracts, which limit the 

amount of aggregate industry losses that can be included under the contract to 

$20 billion, and as “large cap” contracts, which track losses from $20 billion to $50 

billion.

Furthermore, most PCS Options track calendar quarters to allow insurers and 

reinsurers to focus financial coverage towards those times when they might be 

particularly exposed to catastrophe risk. A catastrophic event must occur during 

that loss period in order for resulting losses to be included in a particular index. 

During the loss period, PCS provides loss estimates as catastrophes occur. The 

PCS indices that best cover hurricane risk - Eastern, Southeastern, Florida, and 

Texas - all track quarterly loss periods, as do the National, Northeastern, and 

Midwestern indices. The California and Western indices track annual loss periods, 

since the catastrophe most common in that region - earthquake - is not seasonal. 

Insurers and reinsurers that want broader protection can buy PCS Options in 

one-year strips, covering an entire year of risk in one transaction.
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After the contract specific loss period, PCS Option users can choose either a six- 

month or a twelve-month development period. The development period is the time 

during which PCS estimates and reestimates for catastrophes that occurred during 

the loss period and continue to affect the PCS indices. The contract expires at the 

end of the chosen development period and settles in cash, even though PCS loss 

estimates may continue to change. The exercise style of PCS Options is European. 

The following table clarifies the time structure of the insurance contracts:

Contract Loss Development Period Settlem ent Date

M onth Period

Six Twelve Six Twelve

Month Month Month Month

March Jan-Mar Apr 1-Sep 30 Apr 1-Mar 31 Sep 30 Mar 31

June Apr-Jun Jul 1-Dec 31 Jul 1-Jun 30 Dec 31 Jun 30

September Jul-Sep Oct 1-Mar 31 Oct 1-Sep 30 Mar 31 Sep 30

December Oct-Dec Jan 1-Jun 30 Jan 1-Dec 31 Jim 30 Dec 31

Annual Jan-Dee Jan 1-Jun 30 Jan 1-Dec 31 Jun 30 Dec 31

Each PCS loss index represents the sum of then-current PCS estimates for 

insured catastrophic losses in the area and loss period divided by $100 million. 

The indices are quoted in points and tenths of a point and each index point equals 

$200 cash value as indicated in the chart below:

PCS Loss PCS Options Industry

Index Value Cash Equivalent Loss Equivalent

0.1 $20 $10 million

1.0 $200 $100 million

50.0 $10,000 $5 billion

200.0 $40,000 $20 billion (small cap limit)

250.0 $50,000 $25 billion

350.0 $70,000 $35 billion

500.0 $100,000 $50 billion (large cap limit)
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Strike values are listed in integral multiples of five points. For small cap con

tracts, strike values range from 5 to 195. For large cap contracts, strike values 

range from 200 to 495.

In the next section we introduce the stochastic fundamentals, the model for the 

dynamics of the underlying loss index, and an investigation of changing equivalent 

probability measures.

1.3 The Econom ic Environm ent

Uncertainty in the insurance market is modeled by a complete probability space 

(fl, P , P) on which all following random variables will be defined. 12 is the set of 

all states of the world u  and T  is the <r-algebra of possible events on f2. The econ

omy has finite horizon T  < oo where T  represents the maturity of the insurance 

derivative.

Let the stochastic process X  =  (X t)0<t<T represent the PCS loss index, i.e. we 

assume that X t reflects aggregated insured industry losses resulting from catastro

phes up to and including time t. Let us suppose that all investors in this market 

observe the past evolution of the loss index including the current value. Therefore, 

the flow of information is given by the augmented filtration (Pt)0<f<T of a-algebras 

generated by the process X  with T t =  T . Let us assume that the usual hypothe

ses hold, that is the filtration is right-continuous and Po contains all the P-null 

sets of T .

The market consists of one risky European insurance derivative with payoff 

depending on the value X t of the loss index at maturity T. We also assume the 

existence of a risk-free asset with price process B  =  {Bt)0<t<T, i.e.

dBt = rtBtdt, (1.1)

where r is the deterministic short rate of interest. Without loss of generality, we 

express the price process of the insurance derivative in discounted terms, i.e. we 

set r =  0.
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1.3.1 M odeling the PCS Loss Index

The classical approach of modeling the dynamics of financial stock prices assumes 

that news in the market causes an infinitesimal change in corresponding prices. 

Black and Scholes [12], for example, modeled the stock price as a geometric Brown

ian motion, i.e. as a continuous stochastic process. In actuarial risk models, how

ever, claims cause sudden movements in the affected processes. Particularly in the 

context of catastrophes, losses cannot be considered as being infinitesimal. Hence 

we assume that catastrophic events cause unpredictable jumps in the specific PCS 

index at random time points. Therefore, we model the underlying index X  of a 

PCS contract by a stochastic process of the form

N t

x * = £  y* = £  (12)
{k \Tk < t }  k = 1

where 7* is the random time point of occurrence of the kth catastrophe that 

causes a jump of size Y* in the underlying index and Nt is a random variable 

counting catastrophic events up to time t. We shall assume that X  =  (X t)0<t<T 

is a compound Poisson process, i.e. the counting process N  = (Nt)0<t<T is a 

Poisson process with intensity A, and ... are nonnegative, independent and

identically distributed random variables, all independent of the counting process 

N. Let G be the distribution function of Yk with support [0, oo). The parameters 

(A, dG (y)) are called the characteristics of the process X.

Under our assumption, the index X  of a PCS contract thus is a time-homogeneous 

process with independent increments. Actuarial studies (see Levi and Partrat [55]) 

have shown that these assumptions are reasonable in the context of losses aris

ing from windstorm, hail and flood. Earthquakes are described as events arising 

from a superposition of events caused by several independent sources. The PCS 

index therefore approximates a compound Poisson process. The assumption on 

time-homogeneity is questionable for the case of hurricanes which occur season

ally. However, the indices of regions, that are exposed to hurricane risk, all track 

quarterly loss periods to account for seasonal effects.

R em ark  1 Filtrations that are generated by compound Poisson processes and com

pleted by P-null sets o fT  satisfy the usual hypotheses, i.e. they are right-continuous
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(see Protter [67] p. 22).

1.3.2 Change o f Equivalent M easures

In this section we examine the change between equivalent probability measures and 

the change in the characteristics that it induces on compound Poisson processes. 

We restrict the set of equivalent probability measures to the subset of probability 

measures under which the structure of the underlying process X  is preserved, i.e. 

under which the index remains a compound Poisson process. This subset has been 

characterized by Delbaen and Haezendonck [25] as follows:

Let P  denote the physical probability measure in the insurance market under 

which the compound Poisson process X  has characteristics (A,dG (y)). A proba

bility measure Q is equivalent to P, and X  is a compound Poisson process under Q 

if and only if there exists a nonnegative constant k and a nonnegative, measurable 

function v : R+ —> R satisfying

such that the associated density process =  E p [fT | Pt] of the Radon-Nikodym

for any 0 < t < T.  Ep [•] denotes the expectation operator under the probability 

measure P.

Under the new measure Q the process X  has characteristics (Aq , dGQ (y))

Let us denote the measure Q corresponding to the constant k and the function

derivative £T =  ^  is given by

(1.3)

=  (A«,v(2/) dG (y)).

v (•) by P K,V and the corresponding distribution function G® by Gv. Hence, for all 

A e  B+

(1.4)
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and

E*” ’’ [JVi] =  Ak, (1.5)

where B+ represents the Borel <r-algebra on R+ and E p“'” [■] denotes the expecta- 

tion operator under the measure P K'V.

Remark 2 In an economic sense, k can be interpreted as a premium of frequency 

risk and v(-) as a premium of claim size risk.

Remark 3 Meister [58] generalized the result of Delbaen and Haezendonck [25] 

to mixed Poisson and doubly stochastic Poisson processes.

In the following Lemma we show that the correspondence between the set of 

parameters /c, v (■) and the set of equivalent measures P K,V is one-to-one.

Lemma 1 Define K  x V  =  {(/c, v (•)) € R+ x L1 (R+, G) |EP [v (Vi)] =  l} . Then 

the mapping

(*,«(•)) e K x V - ^ P K’v 

is injective.

Proof. Let (k,v(-)) and («/,?/ (•)) belong to K  x V  with P K,V =  P K'>v/. Then 

E pK,v [IVi] =  Ep" ,v [Ni] and thus k =  k!. Furthermore, for all A  G B+

[  v (y) dG (y) =  [  v1 (y) dG (y),
Ja Ja

and so v = v' G-a.s. ■

1.4 Pricing o f Insurance D erivatives

The aim of this section is to investigate the price determination of insurance deriv

atives that axe based on PCS indices under the assumption of the previous section 

that the underlying index is a compound Poisson process. First, we review the 

equivalence between the existence of equivalent martingale measures and the ab

sence of arbitrage opportunities in the market. Then by solely imposing absence
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of arbitrage possibilities we derive the inverse Fourier transform of price processes 

in closed form. Thereafter, we will be more restrictive and assume the existence of 

a representative investor in the market whose preferences determine uniquely the 

price of derivatives.

1.4.1 The Fundamental Theorem  o f A sset Pricing

The equivalence between the existence of equivalent martingale measures and the 

absence of arbitrage opportunities in the market plays a central role in mathe

matical finance. An equivalent martingale measure is a probability measure that 

is equivalent to the “reference” measure P  and under which discounted price 

processes are martingales. It is important to be aware of the specifications of 

the model in which this equivalence is used since arbitrage has to be differently 

defined to guarantee the existence of equivalent martingale measures.

Harrison and Kreps [45], and Harrison and Pliska [46] were the first to establish 

an equivalence result in a model based on a finite state space O. In a discrete 

infinite or continuous world, the absence of arbitrage is not a sufficient condition for 

the existence of an equivalent martingale measure. Other definitions of arbitrage 

opportunity or restricting conditions on the dynamics of price processes have been 

derived to guarantee the existence of martingale measures. Fritelli and Lakner 

[35] give a definition of arbitrage, called “free lunch” , under which the equivalence 

result is derived with high level of generality. The only mathematical condition 

that is imposed on asset prices is that they are adapted to the filtration (iPt)0<t<T 

which is a natural requirement.

As asset price processes are not a priori assumed to be semimartingales sto

chastic integrals that reflect achievable gains from continuous trading strategies 

are not well-defined. To circumvent this problem, the set of trading strategies is 

restricted to permit trading at either deterministic times or stopping times. The 

“no free lunch” condition then postulates that the set of achievable gains contains 

no positive random variables. In a continuous time setting closure of the set of 

gains has to be considered which essentially depends on the topology on this set. 

Under a topology that makes use of certain dualities, Fritelli and Lakner [35] prove
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that there is “no free lunch” with trading strategies at deterministic times if and 

only if there exists an equivalent martingale measure. Furthermore, if every un

derlying process is right-continuous, then this result holds additionally for trading 

strategies at stopping times.

Henceforth, we assume “no free lunch” in the market as outlined above, so that 

the existence of an equivalent martingale measure is guaranteed.

1.4.2 Representation of No-Arbitrage Prices

In this subsection we deduce a representation of prices solely on the basis of ex

cluding arbitrage opportunities as defined above. We will present two possible 

methods of deriving prices:

• the first relies on risk neutral valuation and is simply a calculation of the 

expected payoff under the appropriate probability measure;

• the second method makes use of the infinitesimal generator of the underlying 

process X  to derive prices as solutions of the appropriate integro-differential 

equation that represents the corresponding pricing equation.

In the catastrophe insurance market, the underlying index X  is not traded. 

Thus it is not possible to construct a hedging portfolio based on X  and hence 

the price of a derivative cannot be uniquely determined by the assumption of “no 

free lunch” in the market. However, assuming “no free lunch” guarantees the 

existence of an equivalent probability measure Q ~  P  under which discounted 

price processes of insurance derivatives are martingales. In addition, our model 

exhibits a second source of incompleteness arising from stochastic jump sizes of 

the underlying PCS index.

Let us suppose that we choose and fix an arbitrary equivalent martingale mea

sure Q such that the index process X  =  (X t)0<t<T remains a compound Pois

son process after the change to the probability measure Q with characteristics 

(Aq , dGQ (y))- The set of equivalent probability measures that preserve the struc

ture of X  has been characterized by Delbaen and Haezendonck [25] and presented 

in Section 1.3.2, p. 23 of this chapter.
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First M ethod (Risk neutral valuation)

Assuming “no free lunch” in the market, a consistent price process of an insurance 

derivatives that pays out 0 (Xt ) at maturity can be expressed as

IT? =  E Q exp ( - /  rsds)<j>(XT) |^ tj (1.6)

7rf is of the form (Xt, t) since we have assumed that r  is deterministic 

(r =  0 without loss of generality), ( ^ ) 0<t<T is generated by X, and X  is a Markov 

process under Q. The stochastic process (f® (Xt, t))Q<t<T reflects the consistent 

price process under the probability measure Q with payoff (Xt ,T)  = (j) (Xt ) 

at maturity T.

Let us assume that </> : R —► R is a measurable function such that </>(•) — k G 

L2 (R) =  |g  : R —> C measurable | \g (x)\2 dx < ooJ for some k € R. This

assumption is satisfied by all catastrophe insurance derivatives that are traded at 

the CBoT. Notice that the payoff of all call options is capped at either $20 billion 

or $50 billion. We will now make use of Fourier analysis to calculate the expected 

payoff in (1.6).

The Fourier transformation is a one-to-one mapping of L2 (R) onto itself. In 

other words, for every g e  L2 (R) there corresponds one and only one /  G L2 (R) 

such that the Fourier transform of /  is the function g, that is

f{u) = i  / I  e~™9 (x) dx (1,7)
is the inverse Fourier transform of g.

Applying the Fourier transform, and thereafter the inverse Fourier transform, 

to the function (f> (•) — k G L2 (R) we deduce

1 roo poo
<P( x ) - k  =  —  I /  ei'‘xe - iaz(4 > (z ) -k )d zd u .  (1.8)

J —oo J —oo

With respect to (1.6) we get

»r? =  f Q{Xt,t) = E c>[<j>{XT) \ r t } 

=  [0 ( X t ) — k \ X t }  +  k
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=  2l EQ f / ”  / ° °  eiuXre~iuz (<j> (z) -  k) dzdu \Ft +  k
1 roo  poo

=  — I /  E^ [eiuXT \Ft\ e~iuz (<j> (z) — k) dzdu +  k
J_ og J—oo

E<5|'e™Jfr|jrt ] ^ ( u) du +  yi.j
/

where we applied Fubini’s theorem and (•) denotes the inverse Fourier transform 

of (j) (•) — k , i.e.

(u) =  ± j ~ e - ™ { 4 , { z ) - k ) d z .  (1.9)

Since a compound Poisson process is a Markov process with stationary and 

independent increments, we have

e q |yuXT | ^ j  =  eiuXtEQ |-eiU(xT-x t) \X t ]

=  eiuXtEQ [eittXr- ‘ |Xt ]

_ g t u X t E Q

is the characteristic function of the random variable X r- t  under 

the probability measure Q and given by

x?_* (u) =  exp ( x Q N ° °  f d G *  (y) — l )  (T  — t ) )  (1.10)

(see for example Karlin and Taylor [52] p.428).

Hence, the price at time t of the catastrophe insurance derivative is given by

/oo

eiuXtXr-t (w) £  (u) du + k (1.11)
■oo

/oo
g j u X t  e x p  ^ E Q  | y « ^ i  j  _  I'j (r  _  £ ) )  <£ ( i t )  du +  k.

•oo

The inverse Fourier transform can be explicitly calculated for the catastrophe 

derivatives that axe traded at the CBoT, i.e. for spreads, call and put options.

This representation of no-arbitrage price processes enables us to derive the 

inverse Fourier transform of the price process in closed form. For a given value of 

the loss index X t =  x, we have

1  roo
—  J  e_<ux (f Q (x, t) - k ) d x  =  Xr-t  (“ ) •¥>(“ )• (1-12)

Our result can be summarized as follows:
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Proposition  2 Let X  be a compound Poisson process with characteristics 

(A* dGQ (y)) under the probability measure Q, let <j> : R —► R be a function such 

that (/)(-) — k E L2 (R) for some k E R, and let ( /^  (X t,t))Q<t<T be a stochastic 

process defined through

|T t ) .

Then the function f® : R+ x [0,T] —► R defining the process ( /^  PG>£))0<t<r can 

6e represented by

/ oo

e tu x X T - t  ( u )  V  ( u ) d u  +  k >

■oo

where (p (•) is the inverse Fourier transform of (•) — k and XxT- t (’) ®5 char

acteristic function of X r-t under the probability measure Q, i.e.

x i - t  («) =  exp (V (jT  fa) - l )  (T  - 1) )  .

Therefore, the inverse Fourier transform of f® (-,t) — k is given by

- (  2tt J_

OO _ <Qe lux (f Q (x , t) - k ) d x  = Xr-t (u) * ¥> H  •

R em ark  4 It is interesting to observe that the ratio

i  e- i -  (E0 [<p {Xt)  lXt = x ] - k) dx
-------------------EQ [e ^ r - .] -------------------- =  (L13)

does not depend on the probability measure that we choose. Hence, for any two 

equivalent probability measures Qi and Q2 we have

/_“  e~iux (EQl [4 ( XT) \Xt =  * ] - * )  dx [ e ^ - ]
j ^ x e -i™(W*[<t>(XT)\X t = x ] - k ) d x  E«» [ e ^ H  '

One question we would like to answer is whether different equivalent probability 

measures will lead to different prices for a given payoff <j> ( X t ) at maturity. To 

be consistent with the notation used in Section 1.3.2, p. 23, let us characterize 

the equivalent probability measure Q by the parameters ( k , v  (•)) that reflect the 

change in the local characteristics of the compound Poisson process X.  Recall 

that the local characteristics of the process X  under the probability measure Q = 

P K>V ~  p  axe given by XQ =  Xk and dGQ (y) = v (y) dG (y). Let us denote the price
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process that corresponds to the probability measure P K'V by ( f K,v (Xt ,t))Q<t<T, i.e. 

f K,v is given by

(x,t) = r  ip (u) du +  k. (1.15)
J —  OO

Lem m a 3 Assume that the payoff function 0 is non-constant. Then the mapping

(*, v (•)) € K  x V f K'v e  C0’1 (Rx [0, T])

is injective where f K,v is given by the formula (1.15) and 

K x V = { ( k, v (•)) G M+ x L1 (R+, G) |EP [v (YJ] =  l} .

Proof. Assume that f K*v (x,t) = f K>,v> (x, t) for all x > 0 and 0 < t < T  for some 

(k, v (•)), (/c', v' (•)) G K  x V. From the formula for f K,v and f K',v' we deduce that 

for all x  and t

-i roo roo

0  =  ^  /  oo y  oo e 'u ( I ~ 2) (<p ( z )  ~ h )

We observe that the double integral is the Fourier transform of

J _  /'e A«Ep [ei“y i-v (y 1) - l ] ( T - t )  _  e A(t'Ep [eiu y i V ( y i ) - l ] ( r - t ) \

27T \ )

/oo

e -iuz{<t>{z)-k)dz.
■oo

The Fourier transform is a one-to-one mapping of L2 (R) onto itself. Since it 

is assumed that (j) is non-constant, for all u and t we have

A/cEp [e™n  • v (Fi) -  1] (T -  t) = \ k'E p [ juY' • v' (Yi) -  l] (T  - 1) .

For u —y oo we deduce k = k! and hence

Ep [eiuYl • v (Yi)] =  E p [eiuYl • t/ (Yl)] ,

for all u. Again, since the Fourier transform is a one-to-one mapping we can 

conclude that
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This result is important as it shows that the market price of frequency risk k and

derivative prices. However, the result does not carry over to actuarial valuation 

in a similar “no-arbitrage” context as introduced by Delbaen and Haezendonck 

[25]. In fact there are many equivalent probability measures that lead to the same 

insurance premium. We refer to Chapter 3, Section 3.4.1, p. 87 on actuarial 

valuation in a no-arbitrage insurance market.

Before investigating spreads, call and put options in more depth, we present an 

alternative method of deriving the pricing formula (1.11) that can be reconciled 

with the first method presented.

Second M ethod  (Pricing equation)

This method exploits the fact that discounted price processes in the insurance 

market are martingales under an equivalent martingale measure. To characterize 

martingales based on the underlying PCS loss index X  we make use of the con

cept of an infinitesimal generator associated with a Markov process. In fact, it is 

possible to define the infinitesimal generator by the following martingale property 

(see e.g. Davis [23] for further details):

The infinitesimal generator A  associated with a Markov process X  =  (Xt)Q<t<T 

is an operator on the set of functions /  : R+ x [0, T] —> R in its domain, for which 

the process M  — (Mt)Q<t<T with

The underlying PCS index X  is a Markov process as it is a stochastic process 

with stationary increments that are independent of the past. The infinitesimal

jump size risk v (•) can be uniquely obtained as implied parameters from observed

A ( f )  (X3,s)ds (1.16)

is a martingale under Q. Let V  (^4) denote the domain of the infinitesimal gener

ator.

generator of X  with local characteristics (y)) can be represented as



1. Pricing Catastrophe Insurance Derivatives 32

r) r°°
•A (f Q) x̂ ' ^ = g l f Q (*> ^ +  J0 (x +  y ’t ')~ f Q (I >*)) d° Q (y) >(1-17)

for all f Q G V  (.A) (see Davis [23]).

Dassios and Embrechts [22] proved that if /  is a measurable function, and

E q £ |  f  {Xn ,Tt) -  f  (X v - .T i
.T i< t

for all 0 < t < T  then /  belongs to the domain of the infinitesimal generator.

Since the discounted price process of an insurance derivative is a martingale 

under the measure Q, we are interested in characterizing the set of martingales 

that can be constructed as a function of the underlying index X  for a particular 

contract. In the following Proposition we present a necessary and sufficient condi

tion, in form of an integro-differential equation, for a process [fQ (Xt, t))Q<t<T to 

be a martingale under Q. This equation can also be derived by using the change 

of variable formula as described by Barfod and Lando [8].

Proposition 4 Let X  be a compound Poisson process with local characteristics 

(Aq , dG® (y )) under the measure Q and let fQ : M+ x [0, T] —► R belong to the do

main of the infinitesimal generator A  of X . Then [fQ (Xt,t)) Q<t<T is a martingale 

under Q if and only if fQ satisfies the integro-differential equation

ft
— f Q[x,t) = \ Q • f Q[x,t) -  >̂Q ' Jq f Q (x + y ,t)d G Q (y) , (1.19)

for all given values X t =  x > 0 and 0 < t < T.

Proof. Suppose fQ satisfies the integro-differential equation (1.19), i.e. A  [fQ)  =  

0 by (1.17). Therefore, we know from (1.16) that [fQ [Xt,t) )0<t<T is a martingale 

under Q.

Now suppose that [ fQ (X t,t) )Q<t<T is a martingale under Q with mean 

fQ (X0, 0). Applying the martingale property to the martingale M  in (1.16) we 

can deduce that the process

aA ( f Q) (X. , s )d s
0
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is a zero-mean martingale under Q. Furthermore

f  A ( f Q) (X„,s)ds 
Jo

= Jo (§-s f Q (X„ s) + XQ (} Q (Xa + y,s) — fQ (Xs, s)) dGQ (y)) ds

is a continuous process of finite variation. Therefore, it has to be constant (see 

Revuz and Yor [70] p. 120) and equal to zero, i.e.

j f  ( j t f Q  (Xs' s)+A<? / ”  (/Q ( X s +y>s) ~  f Q (x »>s)) d ° Q ( ? / ) ) d s  = °-

For a given value X s = x, differentiation with respect to t leads to the integro- 

differential equation (1.19). ■

In order to prove the uniqueness of the solution of this integro-differential 

equation for a given boundary condition it is useful to transform the integro- 

differential equation (1.19) into an integral equation using variation of constants.

Corollary 5 satisfies the integro-differential equation (1.19) if and only if

f Q (x,t) =  e-*°<T- <>/<3 (x ,r )
pT  poo

+ \Q - /  e - xQ(‘-QfQ(x + y , s )dGQ(y)ds, (1.20)
J t  Jo

for 0 < t < T  and x > 0.

Proof. Define hQ : R+ x [0, T] —> R through

f Q (x, t) = exQt • hQ (x, t) .

Substitution into the integro-differential equation (1.19) leads to

a  poo
— hQ (x, t ) =  - XQ J hQ (x +  y, t) dGQ (y) .

By integrating we obtain

pT  poo
hQ (r, t) = XQ ■ /  / hQ (x + y, s) dGQ (y) ds +  hQ (x , T ) .

J t  Jo

Resubstitution leads to the integral equation (1.20) for fQ. ■
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In the following Proposition we provide a solution of the integro-differential 

equation (1.19) and prove uniqueness for an arbitrary but fixed boundary con

dition. In the context of the insurance market, we thus derive the unique price 

of an insurance derivative for a fixed martingale measure and payoff structure at 

maturity. The solution coincides with the pricing formula (1.11) derived through 

risk neutral valuation.

P roposition  6 Let G® : R —► [0,1] be a distribution function with support [0, oo), 

E R+, and (f> : R —► R be a function such that (/>(•) — k E L2 (R) for some 

k E R. Then the integro-differential equation

d_
d t

roo

- jv  (x , t) = XQ ■ f Q (x, t) -  A° ■ I f Q (x +  y, t) dGQ (y) (1.21)

with the boundary condition fQ (x,T) = <j> (x ) has the unique solution

f Q (x,t) =  J  exp ^Aq ^ f  etuydGQ (y) — 1̂  (T — t) +  z u ij  (p (u) du +  k,

(1.22)

in the space of all measurable functions fQ : R+ x [0, T] —► R that are differentiable 

with respect to the second variable, (p (•) denotes the inverse Fourier transform of 

— k, i.e.

*(u)=ijT e~iuz^ ( z ) ~ k) dz-

Proof. First, we prove uniqueness by using the Gronwall inequality that states 

the following:

Let v be a nonnegative function such that

v (t) < C +  A  • f  v(s) ds, for all 0 < t < T, (1.23)
Jo

for some constants C and A. Then

v(t) < C  • exp (A  • t) for all 0 < t < T.  (1-24)

Suppose now that f \ , f §  : R+ x [0, T] —► C axe solutions of (1.21) with the 

same boundary condition 0, i.e. f £  (x, T) =  f® (x, T) = 0 (x). Define the function
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hP : R+ x [0, T] —► R by hP (x, t) =  (x , t) — (x, £) . Then hP > 0 and by the

integral representation (1.20) of solutions given in Corollary 5, p. 33 we deduce 

that

hP (x,t)

= xQ It L  e~Ag(s_t) (^ Q ^  +  2/’5) _  f ?  (x  +  2/>s) ) dGQ (y)
/*T /“oo

< XQ ’ /  e~xQ̂s~^hP (x +  2/, s) dG^ (y) ds.
Jt Jo

Let us revert time by defining the function TP : R+ x [0, T] —► R by TP (x, t) =  

bP (x ,T — t). Hence TP > 0 and

p T  poo

hQ(x,t) < \ Q ■ I  /  e -xQ̂ - T+,)h 9 (x  + y , T - s ) d G Q(y)ds
Jx-t Jo

n
oo

e-X^{t-s^Q y  ̂s  ̂^q Q ^  ^s

.

Since G® is a distribution function we derive for 0 < t < T  and x > 0 

TP (x, t) < sup A® • [  TP (x, s) ds
x>0 Jo

< • f  sup TP (x, s) ds.
Jo x>0

As this inequality holds for all x > 0 it is satisfied for the supremum, i.e.

sup TP (x, t) < • f  sup TP (x, s) ds, for all 0 < t < T.
x > 0  J o  x > 0

If we define the function v by v (t) = sup TP (x, t) we have thus shown thatx > 0

(t) < • f  v (s) ds, for all 0 < t < T,
Jo

and therefore condition (1.23) for applying the Gronwall inequality is satisfied for 

C = 0 and A = A^. From (1.24) we deduce that

v (t ) = sup TP (x, t) < 0, for all 0 < t < T.
x>0

Since TP is a nonnegative function it follows that TP =  0 and thus hP =  0. 

Given the definition of hP, uniqueness of the solution is proved.

Existence is proven by the explicit solution given in (1.22). ■
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Given that the price can be expressed as an expected value of the real-valued 

random variable 0 (Xr) (see first method) it follows that the solution (1.22) is a 

real-valued function which we may confirm as follows:

We observe that the first integral term in the solution

5(X,4) = / o o 6XP( AQ ( f  etuydG® (y) — 1^ (T — t) +  iux^j (p (u ) du 

is the Fourier transform of the function

g (u, t) =  exp ( a 5 ( j T  e ^ d G Q (y) -  1) (T -  i ) )  -<p(u).

Remember that <p (u) = d- e~%uz (</> (z) — k) dz is the inverse Fourier transform 

of <£(•) — k.

In the situation in which the boundary function </> is real-valued, we know that

<p(—u) = p(u).  Therefore

g (- u , t) = exp ( V  ( /  eiuydG® (y) — 1^ (T — t)^ • (p (u)

= H ^ t ) -

The Fourier transform of a function with this property is real-valued. Hence 

we conclude that the solution (1.22) defines a real-valued function.

Risk Premium

The risk premium in insurance economics is defined as the difference between the 

market price of an insurance contract and the expected payoff under the contract. 

In our analysis the financial market determines the risk premium that is thus 

defined as

/ « ( X t ,  t) -  E p  [4, (XT) 1*1] =  E? [4> (XT) \Xt] -  E p [<j> (XT) \Xt ] , (1.25)

for a fixed equivalent martingale measure Q.

From our pricing formula (1.11) we conclude that the risk premium can be 

represented in the form
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f  eiuXt (x?-t («) -  X r - t  (“)) <P («) d u < C1-26)
J  — OO

where Xr-t (n) =  exP (fo° e%uvdGQ (y) — 1) (T — t)) is the characteristic func

tion of Xr-* under the probability measure Q, and <p (•) is the inverse Fourier 

transform of (j) (•) — k. The inverse Fourier transform of the risk premium is thus 

given by

( x r - t  (“ ) -  X r - t  (“ ) )  • V> (« )  • ( ! - 2 7)

In the next subsections, we explicitly calculate the Fourier inverse of <(>(•) — k 

in the situation of call options, put options, and spreads. Thus under a fixed 

equivalent martingale measure, we will give a closed-form expression of the inverse 

Fourier transform of PCS option prices.

Cedi Spreads

A call spread on the index is a capped call option and can be created by buying a 

call option with strike price Ki, and selling at the same time a call option with the 

same maturity but with strike price K<i> K\. Hence the payoff function <j)cs  (x ) 

depends on the index value x  at maturity in the following way

(0 if 0 < x < Ki

x - K x \ i K x < x < K 2 (1.28)

K 2 - K y i f x >  K 2.

As X t > 0 it is sufficient that (<j)cs  (•) — k) • l[o,oo) (•) € L2 W  for some k e  R 

where 1a (•) denotes the indicator function on a Borel set A. The integrability 

condition is satisfied for k — K 2 — K \ and the inverse Fourier transform is given 

by

VC S(u) =  J ^ °  e~iux (<f>c s  (x) — (K2 — K {) )  dx

= ^ -^ 5  (e~iuK» -  e~iuKl + in (K2 -  K,))  .
27TU2 V 7

Hence, under the equivalent martingale measure Q the price at time t of a call 

spread with underlying PCS index value X t — x  and strike prices K\ < K 2 is
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/oo

eiuiXr-( (“) Vcs  (“) du +  K 2 -  Ki
■oo

i r ° °  i
=  5 -  /  - iX T - t  («) e4”  (e '“ *2 -  +  <« (if, -  Jfi)) du

J-O O  u

+k 2 - k x.

Equivalently, applying the inverse Fourier transform

£  e_"“ ( fS s  (*,*) -  (K t  ~  K i ) )  dx 

=  X ? - ,  ( “ ) '  4  (e ~mKl ~  e ~'UKl + iu  (K 2 -  Kr)) .\L

Remember that Xr-t (u) = exP (fo° eiuydG® (y) — l) (T — t)) is the char

acteristic function of the process X P-t under the measure Q.

P u t Spreads

A put spread is a capped put option and thus the payoff (f>PS is given by

K 2 — K\ if 0 < x < Ki 

<!>ps (*) =  K 2 -  x  if K x < x < K 2 (1.29)

0 if x > K 2.
<

We observe that <f>PS (•) • l[o,oo) (•) £ W  an(l <t>ps (x ) =

— (<j)cs  (x ) — (K2 — Ki)).  Therefore

& P S  (u) — ~Vcs (u) 
1_1 

2 tt u
=  " i i  -  e" “*1 +  “  (K i -  K i ) ) ,

and

1 C°° 1
f p s ( * , t )  =  - ^ - M ^ i e ^ K ' - e - ^ - i u i K z - K i ^ d u

=  -fSsfaQ + Kt-Ki.
We have thus shown that our pricing formula fulfills the put-call parity under 

every equivalent martingale measure Q.
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Call Options

Since every PCS index is capped at either $20 billion or $50 billion, a call option

“upper strike price” K 2 =$20 billion or $50 billion. Hence we can use the pricing 

formula for call spreads.

Put Options

A put option on a PCS index with strike price K  can also be understood as a put 

spread with “lower strike price” K\ — 0 and “upper strike price” K 2 =  K.  Due to 

this observation we can again apply the pricing formula for put spreads, i.e.

Characteristic Function of Parameterized Distributions

Let us review some parameterized distributions with support [0,00) and their 

characteristic function. We assume that the parameters are already determined 

under the equivalent martingale measure Q.

• The Gamma distribution T (c, 7) is defined by its density function

with strike price K  is in fact a call spread with “lower strike price” K\  =  K  and

1 1
f ?  (X, t )  = —  J  - 2x%-t (u) e*“  (1 -  e~iuK -  iuK) du.

or

/°o 1
e - “ / £  (x, t)  dx  =  X r - t  ( « ) '  —  (1 -  e - iuK +  iu K )

•OO U

d r (c ,7) (y) =  c7e 1 
dy T (7)

with mean 7/c and variance 7/c2 where T (•) is the Gamma function, and 

0 < c, 7 < 00. The characteristic function is given by

e ^ d T i c ^ i y )

The characteristic function of X r-t  under Q is thus,
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• The inverse Gaussian distribution IG  (/i, a) has density function

40

<UG(n,o){y) _  / <r ^  (  -<x (y -
,3 -expdy y 2^2/ V 2n2y

with mean is ji and variance y?/(T for fi € R and cr > 0. The characteristic 

function is given by

J r eiuydIG  (/i, cr) (y) = exp ( a /\l -  yj(cr/y) 2 — 2criu'j .

Therefore,

Xr-t (“ ) =  exP ( CXP (V l* ~  \/(ct/m)2 -  2cnuj — l j  (T -  t)J  .

(1.31)

The distribution Pareto mixtures of exponentials P M E  (8) belongs to the 

class of distributions with heavy tails. Their density function is given by

dPME (6) rOO

=  /  (S -  l) s z-V + V z-'e-v^dz,
J{6- l ) /6

with mean 1 and variance 1 +  2/8{8 — 2) for 8 > 1. The characteristic 

function is given by

roo
/  eiuyPME{8){y)  =

Jo

fo5- 1 -A -dzJ'J z —iu
$6 - 1  

(«-l)l

Therefore,

X r- t(“ ) =  exp fAQ f -  1^  ( T - t)^  . (1.32)

In this paragraph, we investigated the valuation of catastrophe insurance deriv

atives for an arbitrary but fixed equivalent martingale measure. However, in the 

setup of our insurance market there exist an infinite number of equivalent martin

gale measures, and hence an infinite collection of prices that are consistent with
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the no-arbitrage assumption on the bond market. Therefore, we need to be more 

specific on the preferences of market participants. We follow an approach sug

gested by Aase [1] and [2] who uses the framework of partial equilibrium theory 

under uncertainty. The next section includes a brief outline of the economic theory 

as it is presented in Duffie [28], Chapter 10.

1.4.3 Representative A gent’s Valuation

Let us characterize the insurance companies i =  1, 2 , . . . , /  that are affected by 

catastrophes under a specific PCS contract by net reserves S l =  (Sl)t>0 and utility 

functions Uz : L+ —► M defined on the consumption space L+. We assume that

L+ is the set of nonnegative, adapted processes C with Ep ^/QT Cfdt  

smooth-additivity of utility functions, i.e.

Ui (Ci) = E p [  i j ( C i t )
Uo

dt

< oo and

(1.33)

for Cl £ L+. Furthermore, smooth-additivity requires that for allz 6 {1,2,...,/}  

ul : R+ x [0,T] —► R is smooth on (0, oo) x [0,T] and, for each 0 < t < T, 

ul (•, £) : R+ —> R is increasing, strictly concave, with an unbounded derivative

UcM ) =  on (0, o°)-

An Arrow-Debreu equilibrium is a collection (II, C1, C2, ..., C1) such that Cl 

solves insurance company z’s maximization problem

sup Ul (C) subject to II (C ) < II (Sl) , (1-34)
C £ L +

i i
where (C71, C72, ..., C1) is a feasible allocation, i.e. ^2 Cl < ^2 S l = S, where S  is

i = l  i = l
the aggregated net reserves, and I I : L —> R is a linear price function that describes 

the price at time 0 for a consumption process in L. Furthermore, if II is strictly 

increasing, then there is a unique, strictly positive process tt G L+ such that

»T -|

for C  £ L. (1.35)n ( C ) = E p hT ntCtdt

Since Ul is strictly increasing any Arrow-Debreu equilibrium price function II is 

strictly increasing. The representation (1.35) is known as the Riesz representation 

of II (•) (see Duffie [28] p. 221).
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For incomplete markets, there is yet no set of conditions that is sufficient for 

the existence of an Arrow-Debreu equilibrium. However, with negative exponential 

utility functions a Pareto efficient outcome can be achieved and is characterized by 

a linear risk-sharing rule. This implies that every investor holds a certain fraction 

of the aggregate risk.

Let us therefore assume that preferences of investors can be described by neg

ative exponential utility functions, i.e.

«*(c,f) =  e-“‘c- '>‘t, (1.36)

for some a 1 > 0, p% > 0. a% represents the intertemporal coefficient of absolute risk 

aversion and p% the time impatience rate of agent i.

Under these assumptions, there exists a representative agent in the market with 

utility function

U (C) = E
T

P  ' [  u {Cut) 
Jo

dt (1.37)

where u is of the form

uc (c,t) = e~ac~pt, (1.38)

with intertemporal coefficient of absolute risk aversion a > 0 and time impatience 

rate p > 0 in the market. Furthermore, the Riesz representation n of n  (•) is given 

by

TTt =  uc (Su t) , (1.39)
i

with aggregated net reserves St — ^2 S1.
i=i

Coming back to the martingale approach, n is not only the Riesz representation 

of n  but also the gradient of U (see Duffie [28] p. 300) and defines a state-

price deflator. Furthermore, this state-price deflator determines an equivalent

martingale measure Q through the Radon-Nikodym density process
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In addition, we know from the last section (see (1.3)) that £ can be represented

by

(
N t r*t pOO \

In ( k v  ( Y k ) )  +  jf J  ̂ (1 -  k v  (y)) A dG (y) d s \  , (1.41)

for some nonnegative constant k  and nonnegative function v.

Remark 5 This equivalent martingale measure Q = P K,V can be interpreted as the 

one under which the representative agent calculates prices in the insurance market. 

Hence, the corresponding local characteristics k  and v (•) reflect the representative 

agent’s market price of frequency risk and claim size risk respectively.

We follow the classical Cramer-Lundberg model and assume that aggregate 

net reserves in the insurance industry is represented by a stochastic process S  =  

(St)o<t<T °f tlie form

St = sq +  pt — Xt  
N t

= s o + p t - ^ Y k ,  (1.42)
k= 1

where s0 represents aggregate initial capital in the market by time 0, X t is the 

PCS index at time t for a specific contract, and p is total premium of the industry 

for a unit time interval within the loss period of the contract. Hence, the process 

S  represents the surplus of those companies that axe affected by catastrophe losses 

reflected in the particular PCS index X.  For example, the net reserves of an 

insurance company in Florida would not be included if we consider the California 

index.

By equating the two representations (1.40) and (1.41) of £ and putting r = 0, 

we deduce

N t N t

-  (ap + p ) t+ '£ f aYk =  A (1 -  «) t+  ^  In ( k v  (Yk) ) , (1*43)
k = l  k = 1

for 0 < t < T. Therefore
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K,v(y) = eay, (1-44)

for y > 0. Since / 0°° v (y) dG (y) =  1

k, = Ep [eayi] (1.45)
eay

v { y )  =  ( 1 - 4 6 )

Additionally, equation (1.43) imposes the following restriction on the parame

ters of the model:

ap +  p =  A (Ep [eaYl] -  l ) . (1.47)

This leads to the following corollary:

Corollary 7 Consider a market containing a risk averse representative agent as 

outlined above. Then the coefficient of absolute risk aversion a is uniquely de

termined by the equilibrium relation (1.47) for a given premium rate p and time 

impatience rate p in the market.

Proof. We only consider risk aversion, i.e. we assume a > 0. The same argument 

holds for a risk loving agent. We have to prove the existence of a unique a* > 0 

satisfying (1.47).

Define the function h : M+ —► R b y

h (a) =  A (Ep [e“n ] - \ ) - a p -  p, (1.48)

for given p, p > 0. We deduce h (0) =  — p < 0 and

h(ct) = \ E P [Y?eaYl] > 0 ,
da2

i.e. h is a convex function.

If the distribution function G is sufficiently regular then

h (a) —► +oo for a  —> oo,

and there exists a unique a* > 0 such that h (a*) =  0. ■
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Alternatively, for a given degree of absolute risk aversion a  the premium rate 

p is of the form

p =  i  (A (Ef  [e“y‘] -  1) -  p ) . (1.49)

The first factor 1/a  reflects the representative agent’s risk tolerance whereas the 

second can be interpreted as the difference between the frequency risk premium 

A (Ep [eaYl] — l) and the time impatience rate p. The agent’s risk tolerance and 

frequency risk premium are positively related to the premium rate p contrary to 

the time impatience rate.

R em ark  6 Under risk aversion, i.e. a  > 0 we observe that k v  (y) > 1 for all

y > 0. As v(-) is a density, it follows that k  > 1. We conclude that in a risk-

averse insurance market the risk-adjusted frequency Ak  is larger than the physical 

frequency A.

The coefficient of absolute risk aversion a  determines uniquely the market prices 

of frequency risk k  and of jump size risk v (•) and thus the equivalent martingale 

measure P K,V = Pa, the local characteristics of the underlying PCS loss index 

under P a, and the price process of catastrophe insurance derivatives as follows:

• prices are calculated under the equivalent measure P a ~  P  that is defined 

through its density process

/  -Wt p t  POO \

&  =  e x p  ( J E  aYk  + 1  I  - e ay) M G ( y ) d s j

= exp ^aX t + I T  (1 -  eay) A dG (y) d s \  , (1.50)

• X  is a compound Poisson process under P a with local characteristics

E p “ [IVi] =  A - E p [e“y i] (1 .51)
eay

d° a(y) = ^ \ ^ ] dG{y)’ (L52)

the unique price process ( / Q {Xt,t))0<t<T of an insurance derivative with 

payoff function (j) is given by
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/oo

e<“*‘XxT-t (“ ) V (“ ) du +  k> (1-53)
•oo

where

xf-«  («) =  exp ("a j "  eay (eiuy -  l)  dG (y) (T  -  t ) \  , (1.54)

and (p (•) is the inverse Fourier transform of (j) (•) — k.

The parameters of the model are restricted by the equilibrium relation

ap + p = X (Ep [e“yi] — l) .

Let us finish this chapter with the following remark.

R em ark  7 For given parameters a, p, and p the characteristic function is of the 

form

Xr-t M  =  exp fc . ^ Yi _  - j • (op +  p) • (T  -  .

We have thus established a link between the premium rate p and the price process 

( f a (Xt, t))0<t<T through the characteristic function. The connection between ac

tuarial and financial prices will be introduced and examined in Chapter 3.

1.5 Conclusion

In this chapter we examined the valuation of catastrophe insurance derivatives 

in a model in which the underlying, non-traded loss index is a compound Pois

son process, a stochastic process used to describe aggregate losses in risk theory. 

Initially, we only imposed the absence of arbitrage strategies and showed how to 

structure the market’s incompleteness by exploiting the fact that prices under spe

cific probability measures are martingales. This structure was built on parameters 

that capture the market prices of frequency and loss size risk.

We introduced a new technique based on Fourier analysis that allowed us to 

deduce a representation of the set of no-arbitrage price processes. This representa

tion enabled us to derive the inverse Fourier transform of derivative prices in closed
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form and to separate the underlying stochastic environment from the derivative’s 

payoff structure. Furthermore, it was shown that the set of no-arbitrage prices and 

the set of market prices of frequency and loss size risk is one-to-one connected.

In the preference based equilibrium model the utility function of a represen

tative agent determines uniquely the market prices of frequency and jump size 

risk. Building upon our representation of derivative prices and their link to mar

ket prices of risk, we determined the agent’s attitude towards catastrophic risk and 

thus the unique price for the representative agent.

The analysis and results developed in this chapter suggest to calibrate the 

model to market data, i.e. to obtain the market prices of risk as implied parameters 

from observed derivative prices. Since we derived the inverse Fourier transform of 

derivative prices in closed form, it is moreover suggested that there is much to be 

gained by using Fast Fourier Transform as an efficient algorithm for the calculation 

of prices.



Chapter 2

Asset Valuation in Risk Theory

2.1 Introduction

Within the last decade the securitization of insurance related risk has evolved 

to one of the most important phenomena in risk management initiated by the 

fact that risks in the insurance business have become more apparent and severe. 

Examples include the introduction of catastrophe insurance derivatives due to 

global warming, funded pension schemes and equity-linked life insurance contracts 

due to changes in the population statistics. The main idea behind spreading 

insurance related risk through financial markets is twofold: diversification and use 

of additional capital sources.

A combined financial and insurance market offers an increased set of products 

that financial investors, insurance and reinsurance companies might use to diver

sify financial and insurance related risk. The merger of both markets can thus be 

understood as an essential step towards a complete Arrow-Debreu market. In addi

tion, connecting both markets opens up new capital sources for the insurance and 

reinsurance business addressing the growing concern in the insurance world that 

reinsurance companies might not have allocated sufficient capital to cover huge 

losses caused by events such as Hurricane Andrew. A financial contract spreading 

insurance related risk thus represents an alternative to the traditional insurance or 

reinsurance treaty. With additional market participants these financial contracts 

offer higher liquidity compared to the customized insurance business. Therefore, 

they enhance the possibility to quickly react to changes in the economic environ

48
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ment by synthetically exchanging one layer for another without entering into costly 

negotiations.

One issue that arises in this context and that will be investigated in this chapter 

is the determination of financial security prices, the dynamics of which evolve due 

to insurance risk. With this aim in view, it is essential to take into account the 

characteristics that are specific for insurance related risk, e.g. random occurrences 

of events and changes in the economic environment that cannot be regarded as 

being infinitesimal. We will therefore consider dynamics of the underlying state 

variable that have been used in risk theory, such as the classical Cramer-Lundberg 

model. This model describes the surplus process of an insurance company with 

income from premia arriving at a constant rate and outflow in the form of claims 

occurring stochastically of random size.

The consequence of events causing unpredictable movements of random size to 

the underlying process is that assets in this market are non-redundant. Hence, 

even by adding more and more basic securities to the market, it is impossible to 

perfectly hedge against the risk that is inherent in the market. As regards the 

determination of prices the exclusion of arbitrage strategies is consequently not a 

sufficient condition for unique valuation of derivative securities.

There exists a vast literature on stochastic processes used in risk theory and 

questions arising in the context of insurance risk such as the probability of ruin, 

the distribution of the risk process immediately before ruin and at the time of ruin 

(see e.g. Paulsen [65], Rolski et al. [73], or Wang and Wu [78]). Only recently, the 

literature started to investigate these models in the context of financial markets.

Gerber and Shiu [40] examine an underlying asset price that is based on a 

stochastic process with deterministic, negative drift and jumps occurring randomly 

with constant, positive jump size. This is a simplified version of the ‘reversed’ 

Cramer-Lundberg model seeing that the only source of uncertainty in this model 

stems from the random moments of jump occurrence. In this framework, a self- 

financing portfolio can be constructed that perfectly replicates the derivative’s 

payoff. Under absence of arbitrage opportunities in the market, the derivative price
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is thus uniquely determined by the initial investment of the portfolio. Furthermore, 

it is shown how option prices evolve from the Esscher transform of underlying 

processes, a method that can be justified by the existence of a representative 

agent maximizing expected utility. The Esscher transform is additionally applied 

to the valuation of perpetual American options in a setup in which the underlying 

process is a two-dimensional Wiener process without a jump component.

Neither one of the models seems to be accurate to be applied to an economic 

environment in which market uncertainty arises from insurance risk. The latter 

model with an underlying Wiener process does not capture the random occurrence 

of claims causing unpredictable movements in the asset price. In the former model, 

the results rely on the assumption of constant jump sizes. The corresponding 

market is complete and allows for unique valuation of derivatives based solely on 

the absence of arbitrage opportunities. While a complete market is convenient for 

price determination the assumption of constant jump sizes is rather unrealistic in 

an actuarial context.

Gerber and Landry [39] investigate the classical Cramer-Lundberg model that is 

perturbed by an independent Wiener process for the surplus process of an insurance 

company. The authors derive a renewal equation that is satisfied by the expected 

discounted value of a penalty that has to be paid at ruin and depends on the 

level of deficit. The results are then applied to determine the optimal exercise 

boundary for perpetual put options that exponentially depend on the perturbed 

Cramer-Lundberg model.

In a later paper by Gerber and Shiu [41], the pricing of reset guarantees for a 

mutual fund and perpetual put options is examined in a model in which the loga

rithm of the underlying asset price follows the classical Cramer-Lundberg model. 

This seems to be a reasonable model for the stock price of an insurance or reinsur

ance company or the price index of a portfolio of insurance stocks. The authors 

derive pricing formulae for these derivatives from analyzing the time of ruin in 

terms of its Laplace transform. However, the multiplicity of no-axbitrage prices 

arising from stochastic jump sizes is not investigated.

In both papers, Gerber and Landry [39] and Gerber and Shiu [41], the authors



2. Asset Valuation in Risk Theory 51

consider financial contracts with an infinite expiration time. Perpetuity in the 

model removes the dependence on time and adds thereby tractability. These mod

els thus approximate a financial market in which contracts are traded that expire 

after a finite time period.

In this chapter, we contribute to the existing literature by addressing the val

uation of European contracts based on an underlying asset price, the logarithm of 

which follows the classical Cram6r-Lundberg model. In addition, we investigate 

and structure the multiplicity of no-arbitrage derivative prices by finking the set 

of prices with the set of market prices of uncertainty.

The technique that we introduce to tackle these questions is based on Fourier 

analysis and generalizes the technique developed in Chapter 1. It enables us to 

derive a representation of derivative prices that separates the uncertainty which 

underlies the market from the contract’s payoff. Furthermore, the inverse Fourier 

transform of derivative prices is obtained in closed form. The multiplicity of prices 

that are solely assumed to exclude arbitrage opportunities is captured by two 

parameters, the market price of frequency and jump size risk.

Our approach is applicable within a very general framework, where there are 

no distributional assumptions or restriction to specific contracts. It also allows for 

an analogous analysis of risk processes that are perturbed by diffusion to include 

independent financial market risk. On top of that, the method presented in this 

chapter is applicable to a model in which the logarithm of the stock price follows the 

‘reversed’ Cramer-Lundberg model, i.e. with deterministic outflow at a constant 

rate and stochastic income at random points in time. This model could capture 

the price index of a portfolio of annuities or the stock price of a company that 

continuously invests in research and development and discovers randomly new 

inventions.

We examine the valuation of spread options in more detail since these deriva

tives capture characteristics of stop loss reinsurance treaties and therefore provide 

an alternative way of reinsurance. As a by-product we derive a closed-form ex

pression for the inverse Fourier transform of the conditional probability that the
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insurance company’s surplus at maturity takes values in between a given lower and 

upper value.

As a selection criterion for price processes we consider a representative agent 

and determine the unique price process that is consistent with the agent’s prefer

ences. The Esscher transform is used as a second criterion and the analogy to the 

representative agent approach is shown.

The remainder of the chapter is structured as follows: Section 2.2 presents 

the economic environment, the dynamics of asset prices, and the change between 

equivalent probability measures. In Section 2.3, we investigate the valuation of 

derivative securities in the absence of arbitrage opportunities. Section 2.4 examines 

a market in which prices are determined by a representative investor and in Section 

2.5 the results are compared to prices derived through Esscher transformation. In 

Section 2.6, we generalize the model to allow for perturbed classical risk processes. 

Section 2.7 concludes.

2.2 The Basic M odel

In this section we introduce the structure of the market and the model that we 

use to describe the dynamics of the underlying fundamental and asset prices.

2.2.1 The Economic Environment

We consider an economy of finite horizon T  < oo with an underlying complete 

probability space (f t ,P,  (P*)o<t<T > P) on which ah random variables will be de

fined. The state space Q consists of all possible realizations u  of the economy and 

the cr-algebra P  is the set of all possible events on O. We assign probabilities to 

all events in P  through the probability measure P . The flow of information in the 

market is described by an increasing sequence of cr-algebras Pt. We assume that 

the filtration {Pt)o<t<T right-continuous, P q contains all the events in P  that 

Eire of P-measure zero and Pt  =  P.

In this framework, we assume the existence of a fundamental process X  =  

(X t)0<t<T that drives all financial products and generates the information observ



2. Asset Valuation in Risk Theory 53

able in the market. The filtration ( ^ ) 0<t<T is thus assumed to be generated by 

the process X .

A priori, the market consists of one traded risky and one traded risk-free asset. 

The price process of the risky asset is denoted by 5  =  (St)0<t<T and the price 

process of the risk-free asset by B = (Bt)0<t<T. The risk-free asset is assumed to 

yield a deterministic return process r, i.e.

dBt =  rtBtdt.

Without loss of generality we set r = 0.

2.2.2 Insurance Risk M odels

To investigate the valuation of securities whose uncertain movements are related 

to insurance risk it is necessary to take into account the characteristics of these 

sources. As opposed to financial market risk that can be regarded as the cause of 

approximately infinitesimal changes in prices, insurance risk is based on random 

occurrences of events such as accidents or natural disasters. These events unavoid

ably give rise to unpredictable jump movements of the underlying state variable 

X.

More specifically, we assume two sources of uncertainty: the moment of the 

event and the magnitude of the impact the event has on the underlying process 

X . They are described as sequences of random variables. Let

• Ti, T2, T3, ... denote the moments of the first, second, third, ... event, 

and

• Yl, Y2, >3,... the magnitude of corresponding events measured in real-valued 

sizes.

To motivate the additional structure that we put on the fundamental process 

X , we think of X  as reflecting the surplus of an insurance company. In general, 

surplus of a company is given by

(2.1)
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initial capital +  income - outflow.

In our setup we examine the classical model for surplus of an insurance com

pany, the Cramer-Lundberg model:

• income in this model is defined as the total premium paid by all policyholders 

of the company which is assumed to be deterministic at a constant premium 

rate p > 0;

• outflow of an insurance company is defined as the total amount of capital 

the company has to pay to their policyholders due to occurrences of claims. 

Let us assume that the points in time of claim occurrences and settlements 

of these claims coincide and that claim sizes are independent and identically 

distributed. Therefore, Yi, Y2 , Y3, ... is a collection of iid random variables, 

having a common distribution function G with support [0, 00);

• as regards occurrences of claims, let us consider the process N  = (Nt)Q<t<T 

counting the number of claim arrivals up to time t < T, i.e.

In the classical Cramer-Lundberg model N  is a homogeneous Poisson process 

with frequency parameter A, i.e.

for 0 < s < t < T. It is assumed that claim sizes are independent of the 

counting process N. A represents the expected number of claims occurring 

within a unit time interval.

In summary, the surplus process X  =  (Xt)0<t<T of an insurance company in 

the classical Cramer-Lundberg model is given by

(2.2)

(2.3)

(2.4)
k=1

where xq > 0 denotes the initial capital stock.
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A different model for the underlying stochastic process would be one with 

contrasting properties to the Cramer-Lundberg model, i.e. with interchanged roles 

of claims and premium. This model could be applied to a portfolio of annuities 

with deterministic outflow at rate p and random income reflecting the reserve that 

becomes free whenever a policy holder dies.

The fundamental process X  = (Xt)0<t<T for the ‘reversed’ Cramer-Lundberg 

model is thus given by

N t

X t = x0 - p - t + Y , Yk’ (2-5)
k=1

for p > 0 and 0 < t < T.

One major object of interest in risk theory is the moment of ruin, i.e. the point 

in time when X  crosses zero, and the probability of the moment of ruin being finite. 

The two models differ enormously with respect to the tractability of this problem 

for the simple reason that the surplus at ruin in the latter model is zero whereas 

it could well be that the surplus at ruin in the classical Cramer-Lundberg model 

is strictly negative. This reflects the possibility of undershoot and gives rise to the 

difficulties in determining the probability of ruin. However, as regards valuation 

of derivatives analogous results can be derived by changing the appropriate signs.

R em ark  8 Both stochastic processes exhibit stationary and independent incre

ments, i.e. they belong to the class of Livy processes. Filtrations generated by 

Livy processes and completed by of all P-null sets are right-continuous (see e.g. 

Protter [67] p. 22).

2.2.3 M odel for Insurance Stocks

The financial market consists of one risk-free asset with short rate of interest r  =  0 

and one risky asset with price process S  =  (St)0<t<T- The stochastic evolution of 

the risky asset’s price process is assumed to be solely based on the fundamental risk 

process X , i.e. we consider a basic security that is traded on a financial market but 

for which the risk is purely insurance related. Later, we will extend the framework
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to allow for additional noise driven by a diffusion process that can be interpreted 

as independent financial market risk.

To preserve the properties of the underlying risk the price process S  should be 

a monotonic transformation of the underlying process X  such that asset prices are 

positive. For simplicity we consider that S  is of exponential form, i.e.

for 0 < t < T.

However, we will see that the technique we use for valuation of derivatives that 

axe based on S  does not require the specific exponential form of insurance stock 

prices.

2.2.4 Equivalent Probability M easures

Changing the probability measure is a crucial tool for determining financial prices 

that do not allow for arbitrage strategies, i.e. for portfolios which generate almost 

surely positive gains without risks. In this section we briefly review the change 

between equivalent probability measures and the impact it has on the underlying 

stochastic process X .

In both models for the fundamental process X  underlying the insurance market 

the stochastic component of X  is a compound Poisson process. As we mentioned 

above, uncertainty of these processes can be decomposed into two sources, the 

moment of occurrence and the magnitude of events. In the previous section, these 

two factors have been parameterized by A, the expected number of events within a 

unit time interval, and (7, the distribution function of jump sizes. Let us call the 

pair (A, dG (y)) the characteristics of the process X  under our “reference” measure 

P. We are interested in the change in characteristics the switch to a different 

probability measure induces.

St =  exp (Xt) (2.6)

We restrict the set of all probability measures on T  to those that preserve 

two properties under the change. First, we only consider probability measures 

that are equivalent to the “reference” measure P, i.e. the fact of attributing
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zero likelihood to an event in T  is to be invariant under the change. We further 

assume that the structure of the underlying process X  is invariant under the 

change of probability measures, that is X  under the new probability measure can be 

characterized by a time-constant, deterministic frequency rate and a time-constant 

distribution function of jump sizes. The subset of equivalent probability measures 

that preserve the structure of compound Poisson processes under a change of 

measure has been described by Delbaen and Haezendonck [25] as follows:

A probability measure Q is equivalent to P  and the structure of the compound 

Poisson process under Q is preserved if and only if there exists a nonnegative 

constant k and a nonnegative, measurable function v : R+ —> R satisfying

rJo
V (y ) dG  ( y ) =  1,

r0
such that the associated density process =  Ep [£r  | Tt\ of the Radon-Nikodym 

derivative £T =  ^  is given by

it  = Q8 kv (**)) • exp or (1 — kv (y)) A dG (y)

= exp In (kv (1*)) +  A (1 -  /c) , (2.7)

for any 0 < t < T. Ep [•] denotes the expectation operator under the probability 

measure P.

Under the new measure Q the process X  has characteristics (A*5, dG® (y))

=  (Ak,v  (y) dG (y)). Let us recall that the set of parameters a c ,  v ( - )  is in one- 

to-one correspondence to the set of equivalent measures (see Lemma 1, p. 24 

in the previous chapter). We therefore denote the measure Q corresponding to 

the constant k  and the function v (•) by P K,V and the corresponding distribution

function G® by Gv. Hence, for all A  G 13+

GV(A)= [  v (y )dG(y ) , (2.8)
Ja

and

[Ai] =  A/e, (2.9)

where B+ denotes the Borel er-algebra on R+ and E,pK,v [•] the expectation operator

under the measure P K,V.
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R em ark  9 As mentioned in the last chapter, we interpret k as the premium of 

frequency risk and v (•) as the premium of claim size risk.

2.3 R isk-N eutral V aluation

In this section, we examine the valuation of securities in our market based on 

the fundamental theorem of asset pricing that establishes the equivalence between 

the absence of arbitrage opportunities and the existence of a so-called martingale 

measure. Based on this equivalence we investigate the dynamics of the basic 

security S  under the martingale measure before turning the attention to price 

processes of derivatives that are written on S. For the latter, Fourier analysis 

proves to be a useful tool to represent price processes.

The equivalence between absence of arbitrage strategies and the existence of 

equivalent probability measures under which discounted price processes axe mar

tingales plays a central role in mathematical finance. It is important to be aware 

of the specifications of the model in which this equivalence is used since arbitrage 

has to be differently defined to guarantee the existence of equivalent martingale 

measures.

In this chapter, we adopt the definition given by Fritelli and Lakner [35], called 

“no free lunch” , under which the equivalence result is derived with high level of 

generality. The only mathematical condition that is imposed on asset prices is 

that they are adapted to the filtration (^rt)0<t<T which is a natural requirement. 

As discussed in the previous chapter, the “no free lunch” condition postulates that 

the set of gains that can be achieved by trading at deterministic or stopping times 

contains no positive random variable. In a continuous time setting closure of the set 

of gains has to be considered which essentially depends on the topology on this set. 

Under a topology that makes use of certain dualities Fritelli and Lakner [35] prove 

that there is no free lunch with trading strategies at deterministic times if and only 

if there exists an equivalent martingale measure. Furthermore, if every underlying 

process is right-continuous, then this result holds additionally for trading strategies 

at stopping times.
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Henceforth, we assume absence of “free lunch” in the market as outlined above, 

i.e. the existence of an equivalent martingale measure is guaranteed.

2.3.1 The Basic Security

In our market, we assume the basic security to be defined through its price process 

S  = (St)0<t<T of the form

St = exp (X t) , 

for 0 < t < T.

For both the classical and the ‘reversed’ Cramer-Lundberg model the results 

on the determination of security prices are the same modulo changes of the appro

priate signs. We therefore assume from now on that the fundamental process X  

follows the classical Cramer-Lundberg model, i.e.

N t

x t = x0+ p - t -  2̂ c2*11)
k= 1

for p > 0 and 0 < t < T.

The condition that discounted price processes are martingales under appropri

ate probability measures can be seen as a further restriction on the set of equivalent 

martingale measures under consideration. Due to the one-to-one correspondence 

between the set of equivalent probability measures and the set of market prices 

of frequency and magnitude risk, this restriction can be transferred to the latter 

set. If the market were complete the remaining set would be a singleton, i.e. the 

condition would pin down an unique equivalent martingale measure. Let us now 

state the following proposition:

Proposition 8 Let the underlying process X  have characteristics (A, dG (y)) un

der P. Let us characterize a probability measure Q = P /C>v( ) that is equivalent to 

P  and preserves the structure of the underlying process X  by the parameters k > 0 

and v : R+ —► R which reflect the changes in characteristics of X . Then the price 

process S  =  (St)0<t<T is a martingale under P K>VW if and only if

P + \ k (Ef  [v (Yi) e~Yl\ -  1) =  0, (2.12)

(2.10)
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with Ep [v (Yi)] =  1.

Proof. In the proof we make use of the infinitesimal generator A  of the underlying 

process X . For a given function /  in the domain of the generator and an equivalent 

probability measure P K>VU under which X  has characteristics (A/c, v (y) dG (y)) the 

infinitesimal generator is given by

J poo

■ A { f ) ( x ) = p - - ^ f ( x )  + \ K - J  ( f  (x -  y) -  f  (x)) V (y) dG (y) . (2.13)

A stochastic process ( /  (A())0<(<T is a martingale under P K<V if and only if

-4 (/ ) (x ) =  0,

that is

J  poo

p ■ (2) + X k ~ j Q (x ) )v (y)dG (y) =  (2.14)

for all given values X t — x  (see e.g. Proposition 4, p. 32 in Chapter 1).

For the asset price process (eXt)0<t<T of the basic security we consider the 

function

/  (x) =  ex, (2.15)

and a necessary and sufficient condition for the discounted price process to be a 

martingale under P K'V̂  is consequently

p  + Xk • (Ep [v (Yi) e~Yl] -  l) =  0.

■

The restricting equation (2.12) is the well known Lundberg fundamental equa

tion that plays a crucial role in determining upper bounds for the probability of 

ruin in the classical Cramer-Lundberg model. In our context, the equation puts 

a restriction on the set of market prices of risk under consideration, namely for 

every market price of jump size risk v (•) with E p [v (Yi)] =  1 the market price of 

frequency risk is given by
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Alternatively, for a given jump size distribution v (•) dG (•) under P K'V̂  the 

frequency of events is given by

>  V___
1 — Ep [v (Yi) e~Yl]'

2.3.2 Derivative Securities

We now extend the set of available securities by introducing a derivative that is 

written on the existing risky asset. In this section, we examine the valuation of 

this derivative assuming absence of free lunch in the market.

We assume the new derivative to be of European style and written on the asset 

S. The new derivative is thus defined through its payoff at expiration date T  

that depends on the realization S t , and therefore on the realization of X t ■ We 

represent the specifications of the contract by a payoff function 0 : R —► R, i.e. 

the buyer of the contract receives <f> ( X t ) at maturity.

As the payoff depends on the realization of the economy at T  we are interested 

in determining the value, i.e. the price of the contract for all 0 < t < T. Imposing 

the absence of free lunch in the market guarantees that discounted price processes 

are martingales under appropriate probability measures. The martingale property 

is a powerful tool in determining the price of such derivatives as will be seen in 

the following proposition:

Proposition 9 Let us fix an arbitrary equivalent probability measure P K’V̂  and 

let <p : R —► R be a function such that

(/>{•)- k e  L2 (R), (2.18)

for some k € R. Suppose (f K,v̂  (X t,t))Q<t<T is a martingale under P K,V̂  with 

f K'"(■) (X t , T ) = </)(Xt )- Then the function f K>vV : R+ x [0,T] —► R defining the 

martingale ( f K>v() (X t,t))Q<t<T can be represented by

/oo

e%uxXTV-t  (‘u) V iu) du +  k, (2.19)
■oo

where ip(’) is the inverse Fourier transform of </>(') — k, i.e.

(2.17)
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*(u)=h  r  e ~iu‘ ^ (z)  ~ k)  d z ’ (2'2o)
and Xr-t (') ** characteristic function of X x-t under the probability measure 

i.e.

(u) =  . (2.21)

Before we proceed to the proof let us point out that the characteristic function 

is given by

\T J i \u )  =  e^o+rtr-O ) . E p-»<->
Nr-t

exp —iu ^ 2  y kk
k = 1

=  exp (ixou +  (Ak (Ep [v  (Yi) e-mYi] — l) +  ipu) (T — t ) ) .

(2 .22)

Proof. The proof is analogous to Proposition 2, p. 29 in Chapter 1.

The Fourier transform is a one-to-one mapping of L2 (R) onto itself. In other 

words, for every g G L2 (R) there corresponds one and only one inverse Fourier 

transform that is of the form

h  / ° °  e~'uz9 (x) dx (2-23)

First, we apply the Fourier and thereafter the inverse Fourier transform to 

<!>{■)- k €  L2 (R), i.e.

1 roo poo

0 ( i ) - f c  =  — /  /  ^ m:e-i'‘z ( ^ ( z ) - k )d z d u .
J_ 00 J _qo

Using the martingale property under P K,V̂  and Fubini we deduce that
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where ip (•) denotes the inverse Fourier transform of (j) (•) — k, i.e.

¥>(“) = ̂  J  e mz (4> (*) -  k) dz.

The underlying process X  is a Markov process with stationary and independent 

increments. Therefore

In the context of derivative pricing, we derived a representation of discounted 

price processes in a market without free lunch for every fixed martingale measure. 

This representation enables us to deduce the inverse Fourier transform of prices in 

closed form. For a given value X t =  x  we have

Hence the technique presented here splits the inverse Fourier transform of deriv

ative prices into two components, the characteristic function of the underlying 

state variable X  and the inverse Fourier transform of the contract’s payoff. Inter

estingly, the indeterminacy of equivalent martingale measures is wholly captured 

by the characteristic function whereas the contract’s specification are reflected in 

the second factor. The ratio

E P^() [eiuXT_tj is the characteristic function of the random variable X x-t 

under the probability measure P K'V̂ .

Hence, we deduce

/oo
e iu X ,E P-.<> [e i«X T -< ] jj, ( u )  d u  +  k

J —OO

1 f°°
_  e - iu z  ( /« .-(•)  (Xi t) - k)dx =  («) • <P («)

J —  OO

(2.24)

I Z c e ~<UX (x >4) “  k ) d x

is therefore independent of the equivalent martingale measure

(2.25)
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R em ark  10 Let us note that the representation of derivative prices in Proposition 

9, p. 61 could be analogously derived for asset price processes S  that are not of 

exponential form .

So far, we investigated the valuation of derivative securities neglecting the fact 

that the underlying risk X  in the market is traded itself through the basic security 

S  =  exp(X). In Proposition 8, p. 59 of the previous section we derived an 

equation reflecting the restriction on the set of all equivalent probability measures 

under consideration. The following corollary characterizes the set of derivative 

prices that are consistent with the dynamics of underlying asset S  in the market.

Corollary 10 Suppose the market contains one risk-free asset with return r =  0, 

one basic security S  =  exp (A) and one derivative with payoff </> (X t ) at maturity 

T  of the contract such that <j>(-) — k € L2 (R) for some k € R. I f  there is no free 

lunch in the market, then the function f v^  : R+ x [0, T] —► R defining the price 

process (f v^  (Xt,t)"j 0<t<T of the derivative for a given market price of jump size 

risk v : R+ —> R can be represented by

Proof. We combine the representation of derivative price processes (2.19) with 

the restriction on the market prices of frequency and jump size risk, reflecting the 

fundamental Lundberg equation (2.12). ■

The fact that the underlying risk is traded itself through the basic security 

puts a further restriction on the set of possible equivalent probability measures, 

and therefore the set of market prices of frequency and jump size risk. In Corollary 

10, p. 64 we used this consistency requirement in such a way that derivative prices 

appear to be independent of the “physical” frequency rate A.

where (p (•) is the inverse Fourier transform of 0 (•) — k and the characteristic 

function is given by

Xr-t (“ ) =  exP ( “ o« -
E p [«(yi) e~iuYl] -  1 
E p [u (Fi) e~Yl] — 1

• p -  ipu (T - 1) .

(2.27)
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R em ark 11 Corollary 10, p. 64 establishes a link between the premium ratep and 

derivative prices. It provides the motivation for Chapter 3 in which the connection 

between actuarial and financial prices will be investigated in more detail.

The analysis presented in this section achieves a high level of generality as 

no distributional assumptions need to be imposed. For certain parameterized 

distributions and their characteristic functions we refer to Section 1.4.2, p. 39 of 

Chapter 1. The condition we imposed on the payoff structure of contracts is very 

mild. For call, put, and spread options the inverse Fourier transform of 0 has been 

derived explicitly in Section 1.4.2, p. 37 of Chapter 1.

In the following section we examine a class of derivatives that captures certain 

features that are inherent in reinsurance treaties.

2.3.3 Stop Loss Reinsurance and Financial Spreads

One typical reinsurance contract is called stop loss reinsurance or aggregate excess 

of loss cover contract. The reinsurer under such a contract pays the excess of 

an agreed limit amount M  of the cedent’s aggregate claim amount accumulated 

during a certain time period. In practice aggregate excess of loss reinsurance cover 

is usually limited. This means that the reinsurer’s liability is capped at a level A , 

i.e. the treaty covers the layer A  in excess of M.

If Ct denotes total claims aggregated over the time period [0, T] then the payoff 

of such a contract is given by

min (A, (Ct — M )+) ,  

where (Ct — M )+ =  max (Ct — M, 0).

Let us now transfer the specifications of stop loss reinsurance treaties to finan

cial markets by securitizing the underlying insurance risk. Hence we would like to 

design a financial contract that can be used by insurance companies as an alterna

tive to the traditional reinsurance contract. An insurance company with surplus 

process X  = (Xt)0<t<T might be interested in reinsuring itself against large losses, 

i.e. it would like to be compensated if the surplus of the company at T  drops

(2.28)
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below a certain level M  4- A  for example. However, the counterpart would not 

be interested in bearing an unlimited risk, i.e. the liability should be limited at a 

certain level M  for example. A financial derivative with these specifications is a 

put spread or bear spread. A bear spread can be created by selling a put option on 

the asset price S  with a certain strike price and buying a put option on the same 

underlying with a higher strike price. Therefore, the payoff function 0 is given by

<f>(XT) = imn(A , (M + A - X T)+) , (2.29)

which reflects the payoff of a bear spread based on S  = exp (X ) with lower strike 

price eM and higher strike price eM+A.

For this contract we observe that there does not exists any k € R such that 

the integrability condition

/'J —(
\<f> (x) — k\2 dx < oo (2.30)

is satisfied. Let us therefore follow the idea to decompose the function (j) into

</)(x) = </) (x) • 1(_oo,M] fa) +  (z) • l(M,oo) fa) , (2.31)

where 1a (•) denotes the indicator function on a Borel set A.

For the bull spread outlined above we get

(j) (z) =  A  • 1(_oo,M) (x) + (M + A -  x)+ • l[M,oo) ( z ) , (2.32)

where the advantage is that the second function in the decomposition satisfies the 

integrability condition (2.30).

The price process (f K,v̂  (Xt, t))0<t<T under an equivalent martingale measure 

prcX-) can therefore be written as

=  ’E pKM ) [<(>(Xt ) \X t ]

=  A - P ^ I X t K M  |X(]

+ E p'‘’”(-> [(M + A -  X T)+ ■ l (Mi00) (XT) \Xt ]

/
OO

j uXtX T- Hv )v { u ) du ,
-oo

(2.33)
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where (p (•) is the inverse Fourier transform of (M +  A — *)+ • 1[m ,o o ) (•) and can be 

derived explicitly as

■j p M + A

!p{u) = P  I e~iuz (M  + A — z)dz  
2^ Jm

= J -  ■ 4  • e~iuM • (1 -  iuA -  e~iuA) .
2tt  u 2 '  ’

Suppose we decompose the payoff function 0 of a bull spread in a different way,

e.g.

4> (x) = A  • 1(-oo,l] (x) +  min (A, (M  + A -  x)+) • l (L>oo) (x) ,

for some real number L < M.  The second term of this decomposition too satisfies 

the required integrability condition (2.30).

However, this decomposition leads to the following representation 

f K'vU (X t , t) =  A ■ [XT < L \ X t}+ H  eiuX‘X T -i  (“ ) ¥* (“ ) du> (2-34)
J — OO

where the appropriate inverse Fourier transform (pL (•) is

A p M  -j p M + A

<PL (u) = —  e~iuzdz + —  e~iuz (M  + A - z ) d z
J  l  2tt  7  m

2/KIU

Equating the two representations (2.33) and (2.34) leads to 

P*’0 [ X t < M  \Xt \ = P*'vV [X T < L \ X t]

~ h  <«)■<«.

and thus

1 r ° °  p i u X t , x
p«X) [L < < M \ X t ]  = I —  (e~iuM -  e~iuL) xT-t* (« )du’

^  J —  OO ^

or alternatively

/°° ,. e~iuL — e-iuM / \e-%uxp K.,v{) [ L < X T < M \ X t = x]dx = ----------------- x ? - t : («).
■OO l U

For L — —M  we derive
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[_Af < X T < M \ X t ] =  -  f  eiuX‘- n M̂u X̂r’-t> (u)
J —oo U

or alternatively

f  e-i*xpK,v(-) < x T < M \Xt = x] dx =  2Slp(M“)x^(-) (u) .
. / - o o  U

We have thus derived a closed-form expression for the inverse Fourier transform 

of the probability that the surplus of the insurance company at T  takes values in 

between a given lower and upper value.

2.4 R epresentative Investor

In the previous section, we derived a representation of derivative prices that are 

consistent with absence of free lunch in the market and the dynamics of the traded, 

underlying asset. However, due to random jump sizes the no free lunch condition 

does not determine uniquely the market price of risk and consequently the deriv

ative price process. We therefore have to be more specific about preferences of 

investors. One approach is to assume the existence of a representative investor 

whose preferences are defined through a utility function. We refer to Section 1.4.3, 

p. 41 in the last chapter and to Duffie [28], Chapter 10 for a detailed outline of 

the economic theory.

We assume that consumption preferences of agents can be represented by neg

ative exponential utility functions. We then obtain a representative agent with a 

utility function U of the form

• T

U { C ) = E p \ J ^  u ( C t , t ) d t (2.35)

where u is of the form

|;u ( c , t )  =  e- “c- pt, (2.36)

with intertemporal coefficient of absolute risk aversion a > 0 and time impatience 

rate p > 0 in the market.

The representative investor maximizes her utility over the set of nonnegative, 

adapted consumption processes C  =  (Ct)0<t<T with Ep ^JQr  Cfdt < oo subject to



2. Asset Valuation in Risk Theory 69

n (C) < n (x ) , (2.37)

where X  = (Xt)Q<t<T reflects aggregated net reserves and II is a linear price 

function that describes the price at time 0 for a consumption process. If II is 

strictly increasing, then the unique, strictly positive process 7r =  (7rt)0<KT such 

that

U ( C ) = E p \ j \ tCtdt 

is given by

(2.38)

r\

nt = — u ( X u t).  (2.39)

7r is the Riesz representation of II that defines a state-price deflator and there

fore an equivalent martingale measure through the Radon-Nikodym density process

£ =  ^
4 tto

fcU(X t ■*) 
^ u ( X o,0)

(2.40)

In addition, we know from Section 2.2.4, p. 56 that £ =  (Oo<*<r can 

represented by

(
Nt p t poo  \

111 ( KV (Y k )) + j  J  ( l - K V  (y)) X dG (y ) ds \ , (2.41)

for some nonnegative constant k and nonnegative function v.

Aggregate net reserves X  — {Xt)Q<t<T in our insurance market are described 

by the classical Cramer-Lundberg model, i.e.

Nt

X t ^ x o + p - t - ^ K -  (2-42)
fc=1

By equating the two representation (2.40) and (2.41) of the Radon-Nikodym 

density process we deduce

Nt Nt

( - a p  -  p ) t + Y 2  a Y k =  A (1 -  «) ^  In ( k v  (V*)), (2.43)
f c = l  k=1
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for 0 < t < T. Therefore

70

kv  (y ) =  eay, (2.44)

for y > 0. Since J0°° v (y) dG (y) =  1

k  = E p [eQn] (2.45)

v{y) = w \ * n y  (2-46)

Additionally, equation (2.43) imposes a restriction on the coefficient of absolute 

risk aversion a:

ap + p = A (Ep [eaYl] -  1) . (2.47)

Let us remember that the martingale property of the discounted asset price 

process implied another restriction on the parameters of the model, namely

P + Xk (Ep  [t> (Yi) e -y‘] -  1) =  0,

i.e.

p +  A (Ep [e(Q- 1)n] -  1) =  0. (2.48)

Let us summarize the results in the following corollary:

C orollary 11 Assume a market with a representative investor characterized by 

a negative exponential utility function with coefficient of absolute risk aversion a 

and time impatience rate p. Then the function f  : R+ x [0,T] —► R defining 

the derivative price process ( /  (At,£))0<t<T with payoff 0 (Xt ) that is consistent 

with absence of free lunch and the dynamics of the underlying asset price can be 

represented by

/oo

e%uxXT-t iu) <P iu) du +  k> (2.49)
-oo

where Cp (•) is the inverse Fourier transform of </>(•) — & and Xr-t (') charac

teristic function of X r - t  under the corresponding probability measure, i. e.

Xr-t (u) =  exP (**o« +  (EP [ê Q lu)yi] — l) +  ipu) (T — t)) . (2.50)
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Furthermore, the parameters of the model have to satisfy the two equations

ap + p = X (EP [eaYl] -  1), (2.51)

and

p +  A (Ep [e(a~1)yi] -  l) =  0. (2.52)

Let us investigate the two restricting equations (2.51) and (2.52) in more detail. 

Positivity of the premium rate p in equation (2.52) requires

a  < 1, (2.53)

i.e. the model only allows for risk-neutral valuation if the representative agent is 

not too risk-averse.

Let us consider the following two situations:

(1) Assume that the coefficient of absolute risk aversion a  < 1 and the frequency 

rate A are exogenously given. Then the time impatience rate p and premium 

rate p are endogenously determined by equation (2.51) and (2.52), namely

p =  A (Ep [eaYl -  1] +  aE p [e(°_1)n -  l]) (2.54)

p =  A ( l - E p [e(“- 1)n] ) .  (2.55)

Hence, we derived endogenously a premium calculation principle that is con

sistent with the representative agent’s valuation of financial contracts.

(2) Assume instead that the frequency rate A and the premium rate p are ex

ogenously given and define the function h : (—00,1) —> M by

h (a) =  A (1 -  E p [e(° - 1)Yi]) -  p. (2.56)

Equation (2.52) requires h (a) =  0 for the coefficient of absolute risk aversion 

a  in equilibrium.

We deduce h (1) =  —p < 0 and
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j - h ( a )  =  -A E P [Yie(a-1)yi] < 0,

■ ^ h  ( a )  =  — A E P  [ y i2 e ( ° - 1 ) y i ]  <  0 .

h is therefore a continuous, decreasing and concave function with

h (a) —► A — p for a  —> —oo.

We conclude that if A < p then there exists no equilibrium whereas if A > p  

there exists a unique a* G (—00,1) such that h (a*) =  0. Furthermore, we 

have

fc(0) =  A ( l - E p [e~Yl] ) - p .

If the premium rate is small relative to the frequency of events, i.e.

?  <  1 -  E p  [ e -y‘]

then the representative investor is risk-averse in equilibrium as h (0) > 0 

implies a* > 0.

If, on the contrary, the premium rate is large relative to the frequency rate, 

i.e.

1 > Y > 1 — E p [e~Yl]A

then the representative agent is risk-loving as h (0) < 0 implies a* < 0.

The time impatience rate is then determined by equation (2.51) as

p =  A (Ep [ea*Yx] -  1) -  a*p.
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2.5 Esscher Transform
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The Esscher transform has been introduced as a premium calculation principle in

gregate claims. More generally, it can be used as a change of probability measure 

for stochastic processes. If the parameter involved in the Esscher transformation 

is chosen in such a way that discounted security price processes are martingales, 

it reflects a selection criterion on the set of equivalent martingale measures. The 

attractive property of the Esscher transform is that it can be justified on economic 

grounds with a representative agent that maximizes expected utility. In this sec

tion, we examine the analogy between the Esscher and the representative agent 

approach outlined in the previous section.

In our model, the underlying risk process X  = (X t)0<t<T is described by the 

classical Cramer-Lundberg model (see equation (2.4)), i.e.

with characteristics (A, dG (y)) under the original probability measure P.

To define an equivalent martingale measure by the Esscher transform we need 

the following lemma:

Lem m a 12 The process

Proof. The proof is analogous to that of Proposition 8, p. 59. The infinitesimal 

generator A  of the underlying process X  is given by

actuarial science and reflects a transformation of the original distribution of ag-

(2.57)

(2.58)

for some h €  R \ {0} is a martingale under P  with mean 1 i f  and only if

ph + A • (Ep [e"'*n ] -  1) =  0. (2.59)

j  roc

A  ( /)  (x ) = P • -j~ f (x ) +  A • J  ( f { x ~ y ) - f  (*)) dG (y) , (2.60)

for a given function /  in the domain of the generator.
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A stochastic process ( /  (X t))Q<t<T is a martingale under P  if and only if

M f )  (x ) = o,

that is

d C°°
p ' d x *  ^ + A ' L  ( * ) ) dG  f a ) = 0 >

for all given values X t = x.

Therefore, a necessary and sufficient condition for the process (ehXt)0<t<T 1° 

be a martingale under P  is

ph + A • (Ep [e -^ 1] -  1) =  0.

If the parameters of the model satisfy Lundberg’s fundamental equation (2.59) 

an equivalent probability measure P h on T  can be defined through the Radon- 

Nikodym derivative £r  = with associated density process

ehXt
& ~  e  p [ehx‘)' 2̂’61^

for any 0 < t < T. If we make use of the structure of the underlying process X  

we deduce

& =  exp ( - X  ( E p  [e-hy‘] -  1) t -  h £  yt j  . (2.62)

Comparing the density process with its general representation in Section 2.2.4, 

p. 56

=  exp ^ -A  (k -  1) t+ ^ 2  In (KV > (2.63)

we derive the following market prices of frequency and jump size risk

k = E p [e~hYl] (2.64)
e~hy

v (y) =  EP[e~W ]’ (2-65)

for a given Esscher parameter / i G l \  {0}.
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We now observe the analogy to the representative agent approach derived in 

the previous section. Referring to the market prices of frequency risk (2.45) and 

jump size risk (2.46) of the representative investor, the Esscher parameter h can 

be interpreted as the negative coefficient of absolute risk aversion.

2.6 Risk M odels Perturbed by Diffusion

In this section, we generalize the model by allowing the fundamental risk process 

X  =  (X t)0<t<T to be perturbed by diffusion, i.e. we consider the following process

N t

X t = x0 + pt + aWt-  Yk, (2.66)
k = l

where a > 0 and W  =  (Wt)0<t<T is a standard Brownian motion that is assumed to 

be independent of the compound Poisson process. We assume that the probability 

measure P  is already one under which discounted price processes are martingales. 

Its existence is guaranteed by the “no free lunch” condition.

X  is a process with independent and stationary increments and the character

istic function under the probability measure P  is given by

X f ( u )  =  E f [ e “ * ‘ ]

=  exp ^ixou +  ^ipu — ^ a 2u2 + X (Ep [e-luyi] — l)^  . (2.67)

The infinitesimal generator A  of X  under the probability measure P  for a given 

function /  in the domain of the generator is given by

A ( f )(x ) = +
poo

+A- / ( f ( x - y ) - f ( x ) ) d G ( y ) .  (2.68)
Jo

The technique we developed in the previous sections can be applied in the same 

manner and leads to the following results:

• The basic security price process

St = exp(Xt) (2.69)
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is a martingale under the probability measure P  if and only if
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P + \ a 2 + A (Ep [e"n ] -  l) =  0. (2.70)

• The function /  : R+ x [0, T] —> R defining the price process ( /  (At, t))0<̂ <Tof

a derivative with payoff 4>(Xt ) at maturity T  of the contract under the

probability measure P  can be represented by

/oo

e z u x X T - t  (u) V (u) du +  k > (2.71)
-oo

where <p (•) is the inverse Fourier transform of </>(•) — k and XxT~t (') *s 

characteristic function of X x-t  under P , i.e.

Xr-t iu) =  exP ( ix 0u +  +  A (Ep [e~*“yi] -  l)^  (T -

2.7 Conclusion

In this chapter, we investigated the valuation of European financial derivatives 

that are based on insurance related risk. A combination of tools developed in both 

actuarial science and financial mathematics proved to be essential. On the one 

hand, classical models introduced in risk theory have been used for the evolution 

of underlying risk in the market. On the other hand, absence of arbitrage strategies 

in capital markets was the essential condition we based financial valuation on.

Using Fourier techniques, the set of derivative price processes that are con

sistent with the absence of arbitrage opportunities has been characterized by two 

parameters, the market price of frequency risk and claim size risk. For an arbitrary 

fixed pair of market prices, the inverse Fourier transform of the corresponding price 

process has been derived in closed form. The existence of a traded basic security 

imposes a restriction on the set of parameters of the model. Our technique achieves 

a high level of generality since no conditions are imposed on the distribution of 

claim sizes and few on the payoff structure of the contract. We examined the 

valuation of spreads in more detail since they exhibit the same payoff structure as 

limited stop loss reinsurance contracts.



2. Asset Valuation in Risk Theory 77

In a market with a representative investor, we derived the unique market prices 

of risk and hence the unique derivative price process that is consistent with the 

investor’s preferences. Equilibrium conditions have been used to endogenously 

determine a premium calculation principle. Additionally, we outlined the anal

ogy to the selection criterion based on the Esscher transformation of probability 

measures.

Finally, we generalized the framework to allow the classical risk model to be 

perturbed by diffusion. The same Fourier technique can be applied and analogous 

results were derived.



Chapter 3 

Financial and Actuarial Valuation 

in an Integrated Market

3.1 Introduction

The importance of the interface of capital markets and insurance markets has been 

increasingly emphasized by both the private and public sector. This economic and 

political debate has its roots in the growing concerns amongst individuals of the 

long-term risks over the lifecycle as the nature and magnitude of some of these 

risks have become apparent only recently. In the past 30 years, financial costs 

from natural catastrophes have risen, risk to social capital and risk of inflation 

have become more severe. These developments suggest that innovations in risk 

management would make a valuable contribution in reducing risk over individuals’ 

lifecycle. In response, one major focus in recent years has been the idea of making 

risks tradeable in financial markets, that were traditionally spread through insur

ance and reinsurance contracts. This attempt at risk securitization results in the 

emergence of financial products that capture insurance related risks, e.g. catastro

phe insurance derivatives, index-linked life insurance contracts, index-linked debt, 

or funded pension schemes.

This overlap of insurance and financial markets evokes several questions on risk 

valuation and suggests to examine the similarities and differences of methods that 

have been developed in both insurance mathematics and mathematical finance. Let

78
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us classify these issues and the related literature by two factors, the specification 

of the contracts that are available on the market and the source of uncertainty. To 

be more precise, our classification is based on whether the economy contains

• financial and/or insurance contracts

that axe based on

• financial and/or insurance related risk.

The type of contract is related to the concept on which valuation is based 

on, whereas the type of underlying risk is connected to the appropriate class of 

stochastic processes that are used to model the evolution of market uncertainty.

Prior to the converge of capital and insurance markets, exclusively either fi

nancial contracts based on financial risk or insurance contracts based on insurance 

related risk have been introduced to the market. Stochastic models for the under

lying risk processes and methods for the valuation of the corresponding contracts 

have been developed separately in mathematical finance and insurance mathemat

ics. We refer to Bjprk [11], Duffie [28], and Musiela and Rutkowski [62] and the 

references therein for the former field of research, and to Btihlmann [16], Gerber 

[38], and Grandell [44] for the latter.

In a sequence of papers by Brennan and Schwartz [15], Bacinello and Ortu [6], 

and Nielsen and Sandmann [63], the pricing equity-linked life insurance contracts is 

investigated. The benefits of these insurance policies depend on the performance 

of a reference portfolio that is traded on the capital market. According to our 

classification, these contracts belong to a market containing insurance contracts 

that are based on both financial and insurance related risk in form of policyholders’ 

mortality risk.

In Chapters 1 and 2 of this dissertation we looked into the valuation of financial 

contracts that are based on insurance related risk such as catastrophe insurance 

derivatives. In Section 2.6, p. 75 of Chapter 2 we added independent capital 

market noise modeled as a Wiener process. The stochastic processes that we used 

to model the underlying risk in such an environment are embedded in the class of
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semimartingales. We refer to Biihlmann et al. [17] for the use of semimartingales 

in mathematical finance. According to our classification, this economy is one that 

consists of financial contracts based on both insurance related and financial market 

risk.

In two articles by Delbaen and Haezendonck [25] and Sondermann [76] the au

thors show how premium calculation principles for reinsurance contracts can be 

embedded in a no-arbitrage framework. The important contribution of these pa

pers lies in the construction of an analytical bridge between actuarial and financial 

valuation. Referring back to our classification, the authors investigate a market 

that consists of insurance contracts based on insurance related risk.

Recent papers by Schweizer [74] and Mpller [60] and [61] consider a capital 

market in which a risk measure is a priori given that can be interpreted as an 

actuarial premium. The authors use an indifference argument based on the possi

bility of trading in financial instruments to transfer the a priori given risk measure 

into an a posteriori risk measure. The resulting measure can be interpreted as a 

financial premium.

We conclude that the literature, initiated by the convergence of capital and 

insurance markets, has separately focused on markets consisting of insurance con

tracts linked to financial market risk, on markets consisting of financial contracts 

based on insurance related risk, and on embedding actuarial valuation into a no

arbitrage framework.

In a global economy, in which capital and insurance markets merge, financial 

investors and insurance companies additionally trade in contracts of the other mar

ket with the aim of exploiting new investment opportunities and hedging instru

ments. It is therefore relevant to consider an economy in which both financial and 

insurance contracts coexist and to investigate price determination in view of this 

coexistence. This idea of an integrated market and the valuation therein captures 

exactly the aim of this chapter and our contribution to the existing literature.

To be more precise, we assume that an investor facing insurance related risk 

is able to sell off the risk. This possibility reflects the existence of an insurance
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contract in which the premium to be paid is specified. In addition, we assume the 

existence of a traded financial contract that securitizes the underlying risk in the 

form of a European derivative. To come back to our previous classification, we 

investigate a market consisting of financial and insurance contracts that are both 

based on insurance related risk.

One major difficulty in valuation of these contracts is the unpredictable nature 

of insurance related risk. This feature makes it impossible to synthetically provide 

a completely secure hedge by continuous trading in existing contracts. Our inte

grated market is thus incomplete and there exists an infinite collection of financial 

and insurance price processes that exclude arbitrage strategies.

With the aim of tackhng the multiplicity of no-arbitrage prices, we require 

financial prices to be consistent with the actuarial valuation of the same underlying 

risk. We therefore introduce a new price process selection criterion in incomplete 

markets that originates in the coexistence of financial and insurance contracts. 

Additional to exclusion of arbitrage opportunities we thus demand financial prices 

to be robust with respect to this new selection criteria.

It can be shown that in general there exists still an infinite collection of fi

nancial price processes that are consistent with actuarial valuation. However, the 

additional selection criterion restricts the set of no-arbitrage price processes and 

we explicitly characterize this remaining set. Building on the representation of 

price processes that we deduced in Chapters 1 and 2, we show that the connec

tion between financial and actuarial prices, emerging from actuarial consistency, 

is wholly incorporated in the characteristic function of the underlying risk. These 

results are valid for a very general class of premium calculation principles. We 

then pick out some principles that are commonly used by the insurance industry 

and investigate in more detail the set of financial price processes that correspond 

to the chosen premium principle.

The remainder of the paper is organized as follows: in Section 3.2 and 3.3 

we introduce the fundamentals of the market, the underlying risk process and 

the contracts that are available in the market. Section 3.4 investigates actuarial
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and financial valuation and introduces the concept of consistency with insurance 

premia. In Section 3.5 we examine certain premium calculation principles in more 

detail before we conclude in Section 3.6.

3.2 The Fundamentals

In this section we introduce the stochastic structure and the underlying process 

that represents insurance related risk in the market. In addition, we briefly exam

ine the change between equivalent probability measures and the inducing effect on 

the risk process.

3.2.1 Uncertainty

Uncertainty enters through different possible realizations u  of the world. All re

alizations are collected in a sample space 12. An event is defined as a subset of f2 

and T  denotes the set of all possible events. We assume that T  forms a cr-algebra. 

The likelihood of events is represented by a probability measure P  that assigns 

probabilities to every event in T . The triple (Q, F , P) thus describes the stochastic 

foundation for the market on which all following random variables will be defined.

As we consider the stochastic evolution of prices we need to introduce time 

and the amount of information that is available to market participants at every 

point in time. We assume that the economy is of finite horizon T  < oo and the 

flow of information is modeled by a nondecreasing family of a-algebras (Pi)0<t<T> 

a filtration. We assume that T t =  P? each P t contains the events in T  that are 

of P-measure zero, and the filtration is right-continuous, i.e.

Pt =  Pi +,

where Jrt+ — D T s.
s > t

In the following section we put more structure on the evolution of uncertainty 

by taking into account the features of insurance related risk.
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3.2.2 Risk Process

Risk in an insurance context is caused by single events such as accidents, death, or 

natural catastrophes. One source of uncertainty is therefore the moment of events. 

Additionally one has to introduce some variable that measures the impact such 

an event has on the economy. Let us imagine that this variable measures insured 

losses and thus claims to be paid by an insurance company. Hence the magnitude 

of losses represents a second source of uncertainty in the economy.

We model the moments and magnitudes of events as sequences of random vari

ables (Tn)nGN and (Fn)n€N where 7* denotes the moment of the k-th. event causing 

a corresponding loss of size Y*.. Let us now combine both moment and magnitude 

risk by introducing a stochastic process X  =  (X t)0<t<T where for each point in 

time t the random variable X t represents the sum of claim amounts incurred in

{k\Tk<t}

The stochastic process X  — (X t)Q<t<T is called accumulated claim process, also 

referred to as risk process in the literature.

We assume that the past evolution and current state of the risk process X  is 

observable by every agent in the economy, i.e. X  is assumed to be adapted to 

the filtration (Pi)0<t<r . For simplicity, we shall assume that X  generates the flow 

of information, i.e. T t =  cr (<j (Xs, s <t )  Uj\f) where M  denotes the events of 

P-measure zero.

As regards occurrences of events we assume that the counting process N  — 

(Nt)Q<t<T defined through

(0,£]. Therefore

(3.1)

Nt =  sup{k > l\T k < t} (3.2)

is a homogeneous Poisson process with frequency parameter A € M+. The proba

bility of k events occurring in the time interval (0, t] is therefore
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with the expected number of events

E p [JV«] =  At,

where E p [•] denotes the expectation operator under the measure P.

Furthermore, we assume that loss sizes Yi, Y2, Y3, ... are independent and iden

tically distributed random variables that are independent of the counting process 

N. Let G denote their common distribution function with support (0,00].

In short, we model the risk process X  as a compound Poisson process with 

characteristics (A, dG (y)).

3.2.3 Equivalent Probability M easures

In this section, we briefly review the change between equivalent probability mea

sures and the consequent change in characteristics of the process X.  Section 1.3.2, 

p. 23 of Chapter 1 or Section 2.2.4, p. 56 of Chapter 2 provide a more detailed 

exposition.

Let us examine the set of probability measures Q on (fi, T)  that are equivalent 

to the “reference” measure P  and that preserve the structure of the underlying 

risk process X,  i.e. X  is a compound Poisson process under the new probability 

measure Q. This set can be parameterized by a pair ( k ,  v  ( • ) )  consisting of a 

nonnegative constant k  and a nonnegative, measurable function v : R+ —► R  with 

Ep [v (Yi)] =  1. The density process =  E p [£T | Pt] of the Radon-Nikodym 

derivative £r  =  ^  is then given by

ft =  exP 

for any 0 < t < T.

Let us denote the measure Q corresponding to the constant k  and the function 

v (•) by P K,V. Under the new measure P K,V the process X  is a compound Poisson 

process with characteristics (Ak , v  (y) dG (y)). k  can therefore be interpreted as 

market price of frequency risk, and v (•) as market price of claim size risk.

N t

In (kv (Yk) )  +  A (1 -  k) t (3.3)
fc=1
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Changing the probability measure plays a central role in the context of valua

tion of both insurance and financial contracts. In the following section we introduce 

the contracts that are available on the market before proceeding to the pricing of 

these contracts.

3.3 The Market

Suppose an individual or a company is facing the risk process A, e.g. an insurance 

company that has to pay out claims to their policyholders. The company can make 

use of three assets that are traded continuously on the market:

• one risk-less bond with price process B  =  {Bt)0<t<T and associated deter

ministic short rate of interest r. Without loss of generality, we assume r = 0, 

i.e. Bt = 1 for all 0 < t < T ;

• one insurance contract that specifies the premium process of the underlying 

risk process X \

• one European-style financial contract, i.e. at maturity T  the contract’s payoff 

depends on the realization of the risk process X t only.

Let us define the specifications of the latter two risky assets in more detail.

3.3.1 The Insurance Contract

We consider the setup of Delbaen and Haezendonck [25] in which the insurance 

(reinsurance) contract allows the individual (insurance company) to sell off the 

risk of the remaining period. Let pt denote the premium the individual (insurance 

company) has to pay at time t to sell the risk X t — X t over the remaining period 

{t,T\.

The premium process p =  (Pt)o<t<T a stochastic process that is assumed to 

be predictable, i.e. it is adapted to ( ^ _ ) 0<f<T, where T t~ — V T s.
— ~  s < t

R em ark  12 Sondermann [76] considers dynamic reinsurance policies, i.e. the 

insurance company can decide to sell off a certain fraction of their risk and adjust



3. Financial and Actuarial Valuation in an Integrated Market 86

their decision continuously. I f the insurance company is allowed to only adjust at 

finitely many times this approach can be embedded in the framework of Delbaen 

and Haezendonck [25] by defining the maturities of several contracts accordingly.

3.3.2 The Financial Derivative

We assume that the financial derivative securitizes insurance related risk reflected 

in the underlying risk process X . The buyer of this contract receives a certain 

payment at expiry T  of the contract that depends solely on the realization of X t . 

In exchange the seller of the contract receives a certain price that reflects the 

value of the payoff. The financial contract is therefore of European-style, i.e. early 

exercise is not allowed and the contract is path-independent.

Let (f) : M+ —► M be a measurable function that specifies the buyer’s payoff 

at maturity, i.e. at T  the buyer receives <p ( X t ) .  We shall assume the following 

integrability condition:

* ( • ) - * €  L2(R+), (3.4)

from some k £ R where L2 (R+) is the set of measurable, square-integrable func

tions with respect to the Lebesgue measure.

Let the random variable 7rt denote the price at time t that one has to pay 

in order to enter into the financial contract. Hence the stochastic process 7r =  

(7r«)o< t< T  is fhe financial price process that reflects the value of the payoff <j> { X t )  

at maturity T  of the contract.

Financial contracts with a structure that is similar to existing insurance or 

reinsurance contracts are spread options that cover a certain layer of losses. These 

contracts with limited liability fulfill the integrability condition specified in equa

tion (3.4).

In the following section we investigate the price process p and 7r of the insurance 

and financial contract in more detail.
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3.4 No-Arbitrage Valuation

In this section, we examine the valuation of traded assets in the absence of arbitrage 

strategies. We define “no arbitrage” in the sense of “no free lunch” in Fritelli and 

Lakner [35] and refer to Section 1.4.1, p. 25 of Chapter 1 for a more detailed 

exposition.

First, we investigate the valuation of both the insurance and financial contracts 

under the assumption that the corresponding price processes exclude arbitrage 

opportunities. Thereafter, we introduce the additional restriction that financial 

prices should be consistent with actuarial pricing principles.

3.4.1 No-Arbitrage Insurance Prem ia

One ad-hoc approach of calculating insurance premia would be to take the math

ematical expected value of the underlying risk. However, an insurance company 

charging such a “pure premium” would not be able to survive. Therefore, a sensible 

insurance premium should be greater than the “pure premium” and the additional 

increase should reflect the nature of the underlying risk and/or the agents’ atti

tude towards risk. In practice, many different principles are used for calculating 

insurance premia. The loading factor could be just proportional to the underlying 

risk or it could take into account higher moments. Another loading factor could 

depend on agents’ preferences that are reflected by some utility function. We re

fer to Goovaerts et al. [43] for a comprehensive outline of premium calculation 

principles.

Delbaen and Haezendonck [25] introduced the condition of “no-arbitrage” in an 

insurance market. Under the additional assumptions of liquidity and divisibility of 

insurance products, a premium calculation principle is deduced that includes com

monly used principles as special cases. In fact, premia are calculated as expected 

values under a different, equivalent probability measure. A certain loading factor 

can then be obtained by choosing the equivalent probability measure accordingly.

Albrecht [4], in response to a paper by Venter [77], questions the implications 

of no-arbitrage in insurance markets, namely that identical risks will be insured
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at the same price and premium calculation principles have to be additive. The 

author concludes on p. 251:

uStatements on no-arbitrage premiums are completely non-informative for real

insurance markets!”

However, insurance premia can be thought of as if they emerge from a no

arbitrage framework. This standpoint has the advantage of providing a method

ological link between financial and actuarial valuation. In this chapter, we deduce 

results for financial prices that axe consistent with specific loading factors. Hence 

our results do not rely on the “no-arbitrage” framework in the insurance market 

and can be derived independently for different premium calculation principles. In 

Section 3.5, p. 93 we examine some commonly used principles. Nevertheless, let 

us briefly review the setup given by Delbaen and Haezendonck [25]:

Let us assume that the company’s liabilities are of the form

Xt+Pt ,  (3-5)

for all 0 < t < T.  The first component X t denotes accumulated claims up to time 

t and the second component pt describes the premium for which the insurance 

company can sell the risk of the remaining period (£, T].

A trading strategy in this setup means the possibility of ‘take-over’ and the 

company’s liabilities thus represent the underlying price process. According to the 

fundamental theorem of asset pricing (see Section 1.4.1, p. 25 of Chapter 1) the 

absence of arbitrage strategies implies the existence of a probability measure Q 

that is equivalent to the “reference” measure P  and under which price processes 

are martingales.

If one further assumes that the predictable process p =  (p*)0<t<T under Q is 

linear, i.e. of the form

P t = P  (Q) ( T - t ) , (3.6)
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then Delbaen and Haezendonck [25] conclude that the existence of sufficiently many 

reinsurance markets implies that the risk process X  under Q is still a compound 

Poisson process.

As our risk process X  has stationary and independent increments the martin

gale property implies that the premium density takes the form

p(Q)  =  E« [JVTa]

=  E q [ATj] • E® [VI]. (3.7)

In Section 3.2.3, p. 84 the set of equivalent probability measures that pre

serve the structure of the underlying risk process X  has been characterized by the 

market price of frequency risk k and the market price of claim size risk v (•). Us

ing the notation P K,V for an equivalent probability measure the premium density 

corresponding to the pair («, v (•)) is given by

p ( p K ,v )  =  E P - [ X l ]

=  E T ,V  [ N d E * ” "  \ Y i ]

= Xk • Ep \Yi • v (Yi)]. (3.8)

As pointed out and shown in an explicit example by Baxfod and Lando [8], 

the premium density is not in one-to-one correspondence to the set of equivalent 

measures. This is a crucial difference to the correspondence between financial 

prices of insurance derivatives and the set of equivalent measures. In Lemma 3, p. 

30 of Chapter 1 we have shown that this correspondence is one-to-one for financial 

valuation.

In fact from the representation of the premium density (3.8) we deduce that 

there are infinitely many market prices of risk and therefore equivalent probability 

measures that lead to the same premium process. It is indeed this indeterminacy 

that does not pin down a unique financial price process under our additional re

quirement that financial prices should be consistent with actuarial valuation of the 

same underlying risk.

Before introducing this additional requirement let us review financial valuation 

of insurance-related risk as derived in Section 1.4.2, p. 26 of Chapter 1:



3. Financial and Actuarial Valuation in an Integrated Market 90

3.4.2 No-Arbitrage Financial Prices

We denote by 7rt the value at time t of a financial contract that pays out (j> (Xt ) 

at maturity T. In the absence of arbitrage strategies the fundamental theorem of 

asset pricing (see Harrison and Kreps [45], Harrison and Pliska [46], Fritelli and 

Lakner [35]) implies that the price process 7r =  (7rt)0<f<T is a martingale under an 

equivalent probability measure PK,V. It can therefore be expressed as

* r  =  E ,’~ [* (X T) | * ] 1 (3.9)

for all 0 < t < T  where the superscript v  states the dependence on the market 

prices of risk.

As the underlying risk process X  is a Markov process and generates the filtra

tion (Pt)0<t<T nt is of the form

=  /*'" ( X t , t) =  E p “ ' “ [0 ( XT) \Xt ] , (3.10)

for some function measurable function f K,v with f K,v (Xt , T) = (j) (Xt )-

Under the integrabihty assumption (3.4) <f> (•) — k G L2 (R+) we have shown in 

Proposition 2, p. 29 of Chapter 1 that the price function f K,v can be represented 

as

/oo

e^ 'X r-t (“) V (“ ) du +  k > (3-H)
-OO

where (p (•) is the inverse Fourier transform of (j) (•) — k and Xxr-t (*) *s ciiar~ 

acteristic function of XT-t under the probability measure P K'V: i.e.

<P

and

(«) =  ^  / ° °  e~iU* (* (*) -  Q dz, (3.12)

Xr-t  (u) =  exp ( Xk ( J Q eiuSv (y ) dG (y ) -  *) (T  -  o )  • (3.13)

We deduce that the inverse Fourier transform of f K,v (•, t) — k 

_L j ”  e-iu* { r ,v (Xt t )  _ k)dx = (u). ip {u) (3,14)
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is the product of two factors where the first, the characteristic function, contains 

the whole stochastic structure and the second solely depends on the contract’s 

payoff. Therefore the characteristic function is the important component in linking 

financial prices with insurance premia under our concept of consistency that we 

introduce in the following section.

3.4.3 Actuarially Consistent N o-A rbitrage Prices

This section presents an internal consistency requirement that we impose on fi

nancial prices in addition to the exclusion of arbitrage strategies. Although the 

consistency requirement reflects a further restriction on the possible dynamics of 

financial prices it is not strong enough to pin down a unique price process. Never

theless, we characterize the remaining set of price processes and derive a connection 

between financial and actuarial prices.

As outlined above the market consists of an insurance contract and a finan

cial contract that are both written on the same underlying risk process X . The 

insurance specifies a premium process (pt)o<t<r °f the linear form

pt = p ■ (T - 1) (3.15)

with premium density p for selling the remaining risk X t  — X t. The financial 

contract specifies a price process (nt)0<t<T for the payoff <f> (Xt ) at maturity.

Internal consistency should require that the financial valuation is consistent 

with actuarial valuation in the sense that market prices for frequency and claim 

size risk that lead to the specified premium density are inherent in financial prices.

The following proposition is the main result of this chapter linking financial 

with actuarial prices on the basis of internal consistency as described above.

Proposition 13 Let X  =  (X t)0<t<T be a compound Poisson process with char

acteristics (A,dG(y)) and let (Pt)o<t<T a ^near premium process specified in 

the insurance contract. Suppose that the function <j> : R+ —> R specifies the 

payoff of the financial contract at time T  and satisfies the integrability condition 

(j) (•) — k G L2 (R+) for some k € R. Then for a given market price of frequency
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risk v : R+ —► R with Ep [v (Yi)] =  1 the function f v : R+ x [0,T] —► R defining 

the financial price process (f v {Xt,t))Q<t<T that excludes arbitrage strategies and 

is consistent with the premium process can be represented as

C°° (  Ep \eiuYl • v (Yi) -  ll \
f v (x,t) = J  c“ * e x p U  Ef  [yi • v  (Vj)l +  (3.16)

where (p (•) is the inverse Fourier transform of 0 (•) — k.

Proof. Internal consistency requires that the market prices of risk characterizing 

financial no-arbitrage prices lead to the same premium process. This set of market 

prices of frequency risk k and claim size risk v (•) can be described by equation 

(3.8), that is

P =  AK-Ep [y1 -t)(yi)], 

and the corresponding premium process (pt)o<t<T is thus given by

Pt = \ K - E p [Y1-v(Y1) ] - ( T - t ) .

Substituting this expression into the representation (3.11) of no-arbitrage finan

cial prices describes financial prices that are consistent with the specified premium 

process and completes the proof. ■

If we subtract k and apply the inverse Fourier transform on both sides of 

equation (3.16) we deduce for every given value X t = x

_L [°°
2 r̂ ]_„

A u \ j  I E p [e’“Vl ■ v ( y )  — l]
e ( /  (x, t) — k)dx = exp | pt  „ (y 1)]  I ’VK").

or alternatively

jooo e _iux ^  _  k ) d x \  e p [ y  • v  ( y ) ]
Pt =  ln e~iux ((/) (rr) — k)dx J  Ep [eluyi • v (Yi) — 1]

We observe that financial prices under the additional requirement of actuarial 

consistency can still not be determined uniquely. Nevertheless, the set of prices can 

be parameterized solely by the market price of claim size risk. The indeterminacy 

is an implication of the fact that there are many market prices of risk that lead to 

the same actuarial price.
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This is an important difference to financial prices where it is possible to back 

out market prices of risk from financial prices in a unique way (see Lemma 3, 

p. 30 of Chapter 1). We therefore conclude that a premium process is uniquely 

determined by requiring it to be consistent with a given financial price process as 

it uniquely determines the market prices of risk. The consistent premium density 

is then determined by equation (3.8).

In the following section, we investigate some premium calculation principles 

that are commonly used by the insurance industry and derive financial price 

processes that are actuarially consistent.

3.5 Premium  Calculation Principles

As mentioned in the beginning of Section 3.4.1, p. 87 reasonable insurance pre

mia contain a factor in addition to the “pure” mathematical expectation of the 

underlying risk. The explicit form of this loading factor differs depending on the 

risk’s nature. In the no-arbitrage framework introduced by Delbaen and Haezen- 

donck [25] this is reflected by the fact that the expected value of the underlying 

risk is taken under different probability measures. The additional factor is thus 

inherently related to the choice of the equivalent probability measure, i.e. to the 

market prices of frequency and claim size risk.

We examine three different premium calculation principles and derive a repre

sentation of the corresponding market prices of risk. This allows us to represent 

financial prices that are in line with the respective insurance premia.

3.5.1 E xpected Value Principle

Under the expected value principle the premium density is given by

p  =  (1 +  <5) E p  [Xt ] =  (1 +  <5) A EP M  ,

for some 8 > 0. This premium calculation principle is mainly used in life insurance 

because of the homogeneity of the collectives.

If we choose
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« - q | g ) EfM
l l  +  e ; Ep [y1 -t>(Fi)] 

as a function of v (•) with Ep [v (Yi)] =  1 we have thus characterized the set of 

parameters k, and v (•) that correspond to this premium calculation principle.

Furthermore, for any market price of claim size risk v (•) with E p [v (Yi)] =  1 

the function f v defining the financial price process that is consistent with the 

expected value principle can be represented as

/oo

e i u X , X T - t  ( « )  V  («*) d u  +  k ,

■oo

where the characteristic function is given by

.  / X  / w ,  , «  ES'* M  • E * *  M )  -  1 ]  ,m
XT_t («) =  exp I A  (1 + 6 ) ----------- e p [F i„  (y i)]---------1 • (T -  t)

3.5.2 Variance Principle

The variance principle is mostly used in property and casualty insurance. It addi

tionally includes fluctuations of X  and the premium density is calculated according 

to

p = X (Ep [y] +  0  ■ V arp [Yi]),

for some (3 > 0.

To be consistent with this premium density the market price of frequency risk 

for a given market price of claim size risk v (■) with E p [v (Yi)] =  1 has to be 

determined through

E p [r!] +  /3-V arp [yi]
* E f [y 1 -« (y 1)] •

The function f v defining financial price processes that are consistent with this

premium calculation principle can be represented as

/oo

eluXtX T - t  (u ) V  (u ) d u  +
■oo

where the characteristic function is given by

_  f  A  • ( E *  f t ]  +  lV a rp [y]) ■ E p  [ ^ v  ( y )  -  l ]  \
X r - t W  exp l E p [Yiv (y )] '  ’ ) '
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3.5.3 Esscher Principle

The last example of premium calculation principles we investigate is the so-called 

Esscher principle that is gaining more and more attention as it can be derived from 

equilibrium analysis or from the minimization of a particular loss function. It is 

defined by a premium density of the form

, Ef [yie^ ]
P E p  [ e ^ ]  ’

for some 7 E R \ {0}.

Here k  depends on the density function v (•) through 

E p  [Y ie ^ 1]

and the function f v defining the price process that corresponds to this premium 

principle for a given market price of claim size risk v (•) can be expressed as

/oo

j " x 'X^-.t ( u ) v { u ) d u  +  k,
•OO

where the characteristic function is given by

X r - t W  e x p ^  E J ’ [ e i ’n ] . E f , [ y 1v ( y 1 ) ]  J  '

3.6 Conclusion

In this chapter we investigated valuation in a market that contains both insurance 

and financial contracts written on the same underlying compound Poisson process. 

We examined both corresponding valuation principles - actuarial and financial - 

on the basis of excluding arbitrage opportunities and deduced a representation of 

prices for given market prices of frequency and claim size risk.

We introduced a new concept arising from internal consistency that originates 

in the coexistence of financial and insurance contracts. Financial prices should 

be consistent with the actuarial valuation of the insurance contract. Although 

financial prices cannot be uniquely determined, under this additional restriction 

on their dynamics, we characterized the set of prices that fulfill both absence of
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arbitrage and actuarial consistency. Through this characterization we established 

a link between financial price processes and insurance premia. This connection is 

wholly incorporated in the characteristic function of the underlying risk process.

We clarified that an important difference between financial and actuarial valua

tion is contained in the mapping between price processes and market prices of risk. 

The mapping between financial price processes and market prices of risk is one-to- 

one whereas there are infinitely many market prices of risk that lead to the same 

premium process. This implies that premium processes are uniquely determined 

by assuming them to be consistent with a given financial price process. However, 

consistency with a given premium process is not strong enough for financial prices 

to be uniquely determined.

Finally, we examined three premium calculation principles that are widely used 

by the insurance industry. A representation of financial price processes were de

rived that are consistent with the respective premium calculation principle.



Chapter 4 

Conditional M oments Based on 

Levy Processes

4.1 Introduction

The theory of stochastic processes is an approach to the mathematical modeling of 

changing ‘objects’ in an environment that encompasses uncertainty. The position 

of pollen grains in water, the price of tulips, and the number of customers in a 

queue are famous ‘objects’. In an environment with changing ‘objects’ it is possible 

to introduce the concept of time through which information about past, present 

and future properties of these ‘objects’ is generated. Flow of information builds 

the basis for fundamental concepts to describe certain dependence structures over 

time and to transfer knowledge about past changes into predictions about future 

properties. Important dependence concepts are adaptation to information, mar

tingales, the Markov property, stationarity, semimartingales, etc. These properties 

can be used to classify stochastic processes.

In an environment, in which ‘objects’ take real values, changes can be measured 

by their increments. We impose two dependence structures on the evolution of 

these ‘objects’: independence and stationarity of increments. The former concept 

describes changes that are independent of the past whereas the latter requires 

that distribution of changes do only depend on the time difference. The family 

of stochastic processes that is classified by these two properties is called the class

97
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of L§vy processes. This class comprises the Brownian motion and the Poisson 

process. Amongst many other ‘objects’, the former stochastic process is used to 

describe the position of particles or price evolution of stock prices, the latter is 

applied to an environment with random occurrences of customers or claims.

In Chapters 1 and 2, insured property losses due to natural catastrophe and 

the surplus of insurance companies were the ‘objects’ under investigation, changes 

of which were modeled by specific Levy processes. In the context of a capital 

market, these ‘objects’ were used as building blocks to model the evolution of in

surance derivative prices. If the market does not allow for arbitrage strategies, 

then price processes can be expressed as conditional expectations of the contracts’ 

future payoffs. We then developed a method based on Fourier analysis to de

rive a representation of derivative prices that separates the stochastic structure 

of the underlying ‘objects’ from the contracts’ payoff structure that depends in a 

deterministic way on the realization of our ‘objects’.

The aim of this chapter is to generalize the Fourier technique that we developed 

in Chapters 1 and 2 as follows. The underlying ‘objects’ are allowed to evolve ac

cording to a general L6vy process. We are then interested in deriving an analogous 

representation for the conditional moments of random variables that are elements 

of the underlying ‘object’.

To be more precise, we are interested in deriving a representation for the con

ditional moments of random variables that are of the form

4> ( X r ) ,

where the underlying random variable X t is an element of a Levy process X  =  

(Xt)teR+ and the function <j> is assumed to satisfy a certain integrability condition.

We apply Fourier analysis and derive closed form expressions for the inverse 

Fourier transforms of conditional moments. Similar to the results in Chapters 

1 and 2, the inverse Fourier transform is the product of two expressions, one of 

which comprises the underlying stochastic structure whereas the other depends 

solely on (j). Therefore, the stationarity and independence of increments enables us
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to decompose conditional moments of <f> ( X t ) into a stochastic and a deterministic 

component. Thereafter we apply the results in such a way that a representation of 

the conditional probability that the random variable X T takes values in an interval 

is derived.

The remainder of this chapter is organized as follows: Section 4.2 introduces the 

stochastic fundamentals. In Section 4.3 we derive an expression for the conditional 

moments based on Levy processes and in Section 4.4 we examine the conditional 

distribution function. Section 4.5 concludes.

4.2 Stochastic Elements

Let ( c i ,T ,F  =  (^rt)t<ER+ be a stochastic basis where Cl is the space of elemen- 

tary outcomes cu, F  is a collection of subsets A  C  Q, called events and forming 

a a-algebra, P  is a probability measure on P , and ( ^ ) t€R+ is a non-decreasing 

family of er-algebras, called filtration. We assume that the filtration F  =  (P*)teR+ 

is right-continuous, i.e.

Ft = F t+,

where Pt+ = H T s. Furthermore, we assume that the stochastic basis is complete,
s > t

i.e. T  is completed by the sets of P-measure zero and each T t contains the sets of 

F  with P-measure zero.

In this framework, we introduce a stochastic process X  =  (Xt)teR+ that is 

adapted to the filtration F  and X q =  0 P-almost surely with the following prop

erties:

(1) almost all sample paths are right-continuous on [0, oo) with left limits on 

(0, oo),

(2) X  has increments independent of the past, that is X t — X 3 is independent of 

T a for all 0 < s < t < oo,

(3) X  has stationary increments, that is X t — X s has the same distribution as 

X t- S for all 0 < s < t < oo.
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A stochastic process with these properties is called a Levy process and belongs 

to the class of semimartingales that are Markovian. Well-known L6vy processes are 

Brownian motions and compound Poisson processes. Indeed, the only continuous 

L6vy processes are Brownian motions with drift.

It follows that for each t > 0 the random variable X t is infinitely divisible, that 

is for any n > 1 it can be represented as the sum of n independent identically 

distributed random variables. Also the converse is true: any infinitely divisible 

distribution is the distribution of X \ for some Levy process X  (see Rogers and 

Williams [71] Section 1.28 or Feller [34] Section XVII. 1).

Let Xt (') be the characteristic function of X t, i.e.

X t  («) =  E  [e**] , (4.1)

where E [•] denotes the expectation operator under the probability measure P.

The properties of L6vy processes imply that Xo (*0 =  1, Xt+s iu) = Xt (u)'Xs 

and Xt (u) 7̂  0 for every t, u. As almost all sample paths are right-continuous we 

conclude that the characteristic function must be of the form

X t ( u )  =  e » M  (4.2)

for some continuous function ip (•) with ip (0) =  0.

The classical Levy-Khinchine theorem (see e.g. Rogers and Williams [72] Sec

tion VL2) provides a representation of the cumulant characteristic function ip (•), 

namely

ip (u ) =  ifiu — \cr2u2 +  f  (emz — l) v (dz)

+  f  (etuz — 1 — iuz) v (dz) , (4.3)
(M<i}

where fi G M, o > 0, and v is a measure on R \  {0} such that

/J R
min (z2, l) v (dz) < oo.

R\{0}
The characteristic function of a Levy process X  plays a central role in the 

representation of conditional moments that we present in the following section.
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4.3 Representation o f Conditioned M oments

In this chapter we are interested in the conditional moments of 

<j>(XT),

from some T  G R+, and some function <j>, i.e. we examine the random variable

E [ ^ ( X r )  I.F*], (4.4)

for n > 1, 0 < t < T, and where 4>n (Xt ) = (<j> (X t ))n.

Levy processes are Markov processes and the conditional moments M n are thus 

of the form

M n (Xt,t) = E[<j>n (XT) \X t], (4.5)

where we assume that M n (x,t) < oo for all values X t — x.

Let us now present the main result of this chapter in the following proposition.

P roposition  14 Let X  be a Livy process with characteristic function Xt (u) = 

E [etuXt] . For n > 1 let (j): R —► R be a measurable function such that

4>n ( - ) - k e  L2 (R ), (4.6)

for some fee I ,  i.e. J^  \(f>n (x) — k\2 dx < oo. Then the conditional n-th moment

M n (Xt,t) = E [ r ( X T) \Xt] 

admits the representation

/ oo

eluXiX T - t  (u ) <Pn (u ) d u  +  k > (4*7)
■oo

where <pn (•) is the inverse Fourier transform of (j)n (•) — k, i.e.

<Pn («) = e ( r  (*) -  k) dz. (4.8)
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Proof. The proof is analogous to Proposition 2, p. 29 in Chapter 1 since station- 

arity and independence of increments were the only properties of the underlying 

process that were needed. Let us briefly review the technique:

The Fourier transform is a one-to-one mapping of L2 (R) onto itself and the 

inverse transform of a function g € L2 (R) is given by

1 f°°
—  J  e - ~ g ( x ) d x .

Applying the Fourier transform and thereafter the inverse Fourier transform to 

the function (j)n (•) — k G L2 (R) we can deduce

1 poo poo

4>n (x) -  k =  —  /  /  eiuxe~iuz (</>" (z) -  k) dzdu.
J —oo J —oo

The 7i-th conditional moment can be rewritten as

M n (Xt,t) =  E [ P ( X T) \X t]

=  E [0 n (Xr ) - A : |X t] +  fc

=  2^ E \ P  J ™  ^ uXTe~iuz (<t>" (z) -  fc) dzdu \Xt + k
1 poo poo

=  — /  /  E [e“ *r | X t] e - iuz{4>n ( z ) - k ) d z d u  + k
27T J _og J _00
/ oo

E [e iuXT| X t]<pn (u)du + k,
■oo

where we applied Fubini’s theorem and (pn (•) is inverse Fourier transform of 4>n (•) — 

k, i.e.

(«) =  —  £  e~™ { F  (z) -  k) dz. (4.9)

Stationarity and independence of increments of the Levy process X  implies

E[e iuXT\Xt\ = eiuXtE[eiu(XT~Xt)\Xt]

= eiuXtE[eiuXT~t \ X t \

= eiuXtE [eiuXT~t]

=  e i u X t X T - t ( u ) -

Hence we deduce

/ oo

etuXtXr-t (u) Vn iu) du + k.
■oo

(4.10)
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From this representation we derive the inverse Fourier transform of M n (•,t) — k 

in closed form as

From the representation (4.7) we derive the inverse Fourier transform of M n (•,£) — 

k in closed form as

We have therefore decomposed the inverse Fourier transform of M n (•, t )—k into 

two components. One component, the characteristic function, completely covers 

the stochastic structure whereas the other depends solely on the function (/). The 

ratio

X T - t  ( “ )

is thus deterministic, i.e. independent of the underlying probability measure P.

Setting t = 0 we deduce a representation for unconditional n-th moment, 

namely

4.4 Conditioned D istribution Function

In this section we derive a representation for the conditional distribution function 

of a family of random variables (Xt)teR+ that evolve according to a Levy process.

Let us fix a time horizon T  < oo and define the conditional distribution function 

Ft (•) at t G M+ as

h  I .  e ~ i a x  ( M ” ( l ’ f )  ~ k ) d x = X t ~* (u) ■ ^ (u)

h  / ° °  e_i,“ (M " k )  d x = X t ~‘ (u ) ' ^ (u)
(4.11)

f -oo e *ux (x, t) — k) dx

(4.12)

Ft (x) = P [X T < x \ X t \ (4.13)

for any x  € R. We are interested in finding an expression for

Ft (M ) — Ft (L) = P[L < X T < M  |Xt ] . (4.14)
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for given lower and upper values — oo < L < M  < 00.

With this aim in view, we define a function <j>: R —► R through

</>(x) = l[LtM)(x) ,  (4.15)

where 1 a (•) denotes the indicator function on a Borel set A. This function has 

the property

^  (■) =  * ( • ) €  L:

and the inverse Fourier transform can be derived explicitly as 

1 f M
P M  =  ^ J.  e ~ 'UZdzL

_ p—iuM
(4.16)

g —iuL   g —iuM
2mu

We now apply representation (4.7) of the conditional moments in Proposition 

14, p. 101 to the indicator function on [L, M) and thus derive an expression for 

the conditional probability function (4.14)

M n (Xt ,t) = E  [1[LM) (XT) |X(]

=  P [ L < X T < M \ X t]
1 roo p—iuL   p—iuM

=   Tu---- Xr- t {u)dn. (4.17)

For the inverse Fourier transform we deduce

/'J —<

p—iuL   p—iuM
e~inxP  [ L < X t < M  \Xt = x] dx = --------:----------- Xr-t  M  ■ (4-!8)

iu

Finally, let us consider two special cases: 

• For L = —M  we deduce

[  e-™*p r- m  < X T < M  \Xt =  x) dx = 2 s m (M u ) ,x  (u) .(4.19) 
J - <x> «

For t =  0 we derive an expression for the unconditional probability as

P [ L < X T <M)  = F0 ( M ) - F 0 (L) (4.20)
*00 0—%uL „—iuM1 roo p—iuL   p—tuM

2;JL— s— x A u ) d u -



4. Conditional M oments Based on L6vy Processes

4.5 Conclusion

105

We derived a representation of conditional moments and the distribution function 

of a family of random variables (0 pft))teR that depends on the flow of a Levy 

process (Xt)t€R+. The technique developed in this paper is based on Fourier analy

sis and leads to closed formulae for the inverse Fourier transform of the conditional 

moments and distribution function. Furthermore, the representation splits the con

ditional moments and distribution functions into a component that captures the 

stochastic structure in form of the characteristic function and a component that 

solely depends on the transformation </>.
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