
University of London

Path-dependent functionals of Constant Elasticity 
of Variance and related processes: distributional 

results and applications in Finance.

Jayalaxshmi Nagaradj asarma 

London School of Economics and Political Science

A thesis submitted in partial fulfillment of the requirements for obtaining the degree

of Doctor of Philosophy

Department of Statistics, Houghton Street, London WC2A 2AE

July 2003



UMI Number: U613350

All rights reserved

INFORMATION TO ALL USERS  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript 
and there are missing pages, th ese  will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disscrrlation Publishing

UMI U613350
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



T h £ S £ S

F

S 2 i6

POLITICAL

1 0 1 6 8 6 ^



Acknowledgem ent

First and foremost, I would like to thank my supervisor, Dr Angelos Dassios for 

his encouragements, his patient guidance, his resourceful advice and his permanent 

availability in helping me to overcome the difficulties that arouse during the course 

of this research work.

I would also like to thank Pr. Ragnar Norberg and Pr. Riidiger Kiesel for their 

comments and suggestions offered during my presentations at the Department of 

Statistics seminar. I am also grateful to Dr Chacko and Dr Das for answering some 

of my questions regarding their research work on average-rate claims.

I am grateful for the financial support the Department of Statistics of the London 

School of Economics has given me through the LSE Research Studentship.

To my friends and office mates, Diego, Panos and Yorghos, evxc^pi'O'TU for your 

help, your ability to cheer me up when needed and your friendship. Also thank you 

to Simona and Teresa whose seniority made them play a scout role for me.

To my husband, I would like to address a special thanks for his encouragements 

and love and for having beared with me regular travelling and separation. To my 

parents who supported me in all possible ways each and every day, I want you to 

know that it is your support and your faith in me which helped me through the years. 

No word can express how grateful I am to you and how much I owe you.



A bstract

The present thesis provides an analysis of some path-dependent functionals of Constant Elasti­

city of Variance (CEV) processes. More precisely, we study the continuous arithmetic average of the 

process over time, plain or sometimes multiplied by a knock-out indicator. We start by describing 

its mathematical properties and provide new distributional results (moments, densities, moment 

generating function among others). Some of these results also pertain to the joint distribution of the 

integral and the process itself. The versatility of the process enables us to consider diverse financial 

applications: fixed and floating strike Asian options on equities, European vanilla options on equity 

in the presence of stochastic volatility as well as zero-coupon bonds, guaranteed endowment options 

and average-rate claims under stochastic interest rates.

We devote a great part of the present work to the square-root process and the geometric Brownian 

motion, two important subcases of the CEV process. For both these nested diffusions, a number of 

mathematical and financial quantities have been solved for in the literature in closed-form, in terms 

of Laplace transforms. In this thesis, we derive these quantities in a fully explicit form, which is 

advantageous both from a theoretical point of view, to gain insight in their mathematical structure 

and from a practical stand, as the numerical evaluation of our formulae appear more robust and 

efficient than other numerical methods for some ranges of parameters. In the general CEV case, for 

which the integrated process has scarcely been considered in the literature, we derive semi-closed 

form expressions.
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Introduction

Option pricing theory - an endeavor to reduce the likelihood of being fooled 

by randomness, as Nassim Taleb would claim, but also a fascinating field with a 

relatively long history. By 1900, Bachelier first suggested a fair game approach to a 

world driven by a gaussian underlying security price, suspicious idea when examined 

under the utility and risk-aversion theory light. Shouldn’t an option be worth less 

than its fair value for a risk-averse individual? This puzzle was solved only seventy- 

three years later by Black and Scholes who proved that a call option can be perfectly 

replicated by a self-financing portfolio of cash and asset under the assumption that the 

security follows a geometric Brownian motion with constant volatility, that there is no 

short-selling constraint and no transaction cost and finally that absence of arbitrage 

opportunity prevails. Their work represents the cornerstone of financial mathematics 

and the ulterior option pricing results derived under the same set of assumptions 

have generally - respectfully or affectionately - referred to this model as the Black- 

Scholes environment. Most of the subsequent research has been heading towards 

either relaxing one or more of these basic assumptions, specially the distributional 

hypothesis (jump diffusion: Merton [55], etc., constant elasticity of variance processes: 

Cox and Ross [16], Beckers [6], etc., stochastic volatility models: Hull and White [41], 

Stein and Stein [67], Heston [40], etc.. Levy processes, etc. ) or towards valuing more



complex exotic or path-dependent instruments (barrier options: Merton [54], etc., 

lookback options: Goldman and al. [36], occupation time derivatives: Dassios [20], 

etc.).

In the present work, we focus on path-dependent functionals of constant elasticity 

of variance (called CEV hereafter) processes, more precisely on temporal integrals 

of these processes, either unrestrained or constrained by a knock-out condition, i.e. 

multiplied by the indicator of the underlying process not reaching a given high level 

before some maturity date. The versatility of the CEV process enables us to develop 

applications in different main branches of mathematical finance, since it has been 

used to model equities, interest rates and other stochastic volatilities.

Our analysis, i.e. this thesis, is constituted of four chapters. The first and most 

general one collects a summary of the distributional attributes and a thorough ana­

lysis of the CEV processes. We first deal with the square-root process as it could be 

hailed as the root or rather the common ancestor of all the processes encountered in 

this thesis. Indeed, both the CEV process of elasticity strictly less than unit and the 

geometric Brownian motion originate from the square-root process through a power 

transformation and respectively a random time-change. We therefore devote a major 

part of the chapter to the square-root case. After getting better acquainted with the 

Feller [29] process itself by studying its different mathematical properties, we present 

various new results pertaining to the integrated process, starting with its moments. 

The moments have been used in the literature, typically for stochastic volatility mo­

dels (see Ball and Roma [5] for example). However, they are usually obtained by 

successive differentiation of the moment generating function of the integral - which 

can prove tedious- and thus quoted only up the fourth-order. We show that the joint



moments of the process and its integral are expressible as a polynomial of exponen­

tials and powers of time whose coefficient can be computed with a simple recursion. 

We also show that knowing these moments is of paramount importance since they 

determine the joint distribution. Though this result theoretically enables us to ex­

press a great number of quantities related to the integral, we prefer a more direct 

approach to the issue of determining the joint distribution and to this effect, employ 

the joint moment generating function (abbreviated as MGF throughout the thesis) of 

the process and its integral as our starting point. It turns out that the problem boils 

down to considering the - relatively simpler - corresponding squared Bessel process, 

since we prove that a general square-root process can be brought back to its squared 

Bessel counterpart with an appropriate change of measure. Other links between these 

processes have been provided in the literature. Yet, our change of measure result is 

stronger in the sense that it allows to study path-dependent properties in a simple 

way. It noticeably enables us to derive the joint distribution as an explicit series, 

both for the mean-reverting and the non mean-reverting case, which needs a careful 

treatment to account for the absorption at the origin. This formulation turns to be 

quite simple for the non mean-reverting case. However, a simpler expression can be 

obtained for the marginal distribution of the integral in the mean-reverting case from 

a different construction of the inverse Laplace transform of the moment generating 

function. All of these results are novel to the best of our knowledge and have a number 

of applications, some of which are discussed in the following chapters. Having tho­

roughly examined the square-root case, we move to another important subcase, the 

geometric Brownian motion case and then to the general CEV process. For the Geo­

metric Brownian motion, we will only present an overview of the research developed 

so far, as we will directly look at this process with the motivation of pricing Asian



options rather than deriving results on the already well-studied distribution itself. 

All our new results concerning this process are therefore left to be presented in the 

second chapter. We finally study the general CEV case for elasticities strictly between 

0 and 1. Showing how they relate to the square-root process, we deduce a number of 

properties, among which a generalisation of the change of measure which simplifies 

the diffusion equation in the square-root case. We then attem pt to characterise the 

distribution of the integrated process through its moment generating function. Under 

the least restrictive hypothesis that the elasticity is a rational number, we provide an 

expression for the Laplace transform with respect to time of the moment generating 

function resulting from a second-order inhomogeneous differential equation. This ap­

proach has never been attempted before, to the best of our knowledge, and helps us 

to gain insight into the mathematical structure of the problem.

The second chapter focuses on the pricing of Asian options on equities, deriva­

tives of considerable importance both for market practitioners and financial theorists. 

Asian type of options are advantageous treasury management tools as well as safer 

structures for thinly-traded assets whose price could be hugely impacted by one large 

enough market participant. They are also renowned as one of the most difficult to 

evaluate path-dependent options as testified by the concentration of research and 

diversity of approaches explored for this problem. We concentrate on continuous 

arithmetic averages, i.e. underlyings related to the temporal integral of the process. 

Given the richness of the field, a review of the various results and main techniques 

proposed in the literature appears a compulsory step and is carried out first. We 

then explore the most commonly adopted model, the geometric Brownian motion,

i.e. the Black and Scholes environment. Our contribution consists in the derivation 

of fully explicit forms for the prices of both ffoating and fixed-strike Asian options.



We provide as well a synthesis of different formulations reducing the problem to a 

one-factor Markovian one, either by time-reversal arguments or by working under the 

asset-numeraire. Along these lines, we present a simple alternative derivation of the 

Geman and Yor [77] Laplace transform of the Asian call price, methodology later 

generalised to handle jump processes. We then invert analytically this Laplace trans­

form by contour integration for different types of options. A second approach, which 

is to bound the state space by absorbing the process at a high level, enables us to 

derive these prices as an eigenfunction series instead of an integral. We finally show 

how these Laplace transforms can be modified under the extended model including 

multiplicative jumps on the underlying, which completes our study of the geometric 

Brownian motion case. In the last part of this section, we show that simpler ex­

plicit solutions can be obtained under the alternative square-root model of Cox and 

Ross [16] as an application of the results derived in the first chapter. This makes this 

model quite interesting for testing and risk-management purposes.

Interest rates derivatives are another main branch of application and the subject 

of Chapter 3. The Cox Ingersoll Ross [15] (CIR) model based on a square-root 

process for the instantaneous rate constitutes a benchmark model for its combined 

tractability and adequacy to what is expected from a short rate process evolution. 

This model is generally labeled as tractable for the existence of an explicit formulation 

for bond prices. Yet, a number of other derivatives can only be obtained in term of 

Laplace transforms. The distributional results derived in the first chapter allows 

us to further the analysis of this model and provide explicit prices for guaranteed 

endowment options as well digital and regular average-rate claims. As any interest 

rate derivative depends on the cumulated rate, other applications could be considered 

as well. A second model is also treated in this chapter, the Chan, Karolyi, Longstaff



and Sanders [13] popular and empirically validated model featuring the short rate 

as a CEV process. Unlike in the CIR case, no explicit solutions could be given. 

We however extend the results of the first chapter on equities CEV and propose 

a semi-closed expression for the Laplace transform of the zero-coupon bonds prices 

with respect to the maturity. A fast Fourier inversion of this transform would be an 

effective solution when a whole yield-curve is needed, as often happens in practice.

The fourth chapter takes us back to the equity world. However, instead of consider­

ing elaborate path-dependent derivatives, we will study standard vanilla options under 

more complex models including stochastic volatility. The classical stochastic volatility 

processes considered in the financial literature are typical subcases of the CEV pro­

cess: Geometric Brownian motion for the Hull-White model [41], Ornstein-Uhlenbeck 

for the Stein and Stein [67] model and square-root process for the Heston [40] model. 

Synthetising these original models first, we propose an intuitive way of using moment 

generating and characteristic functions to recover very simply the characteristic func­

tion of the log-asset under the last two models. We also extend this methodology to 

derive novel close-form solutions for the Hull-White case. We then focus on moment- 

based approximates for the options prices, first by extending and comparing several 

approximation previously proposed for the Hull and White model and then by finding 

convergent series based on polynomial expansions.

A couple of remarks should be added before finishing this introduction. Except for 

the distributional hypothesis in some cases, all the standard assumptions of the Black 

and Scholes world hold throughout this thesis, namely, no short-selling constraint, 

no transaction cost and no free-lunch. We work on a probability space (f^ ,P ,^ ) 

and always place ourselves under the risk-neutral measure unless otherwise specified. 

Wt (or (W /, W|p) in bivariate cases) denote a standard Brownian motion under this



measure. The work of Harrison and Kreps [39] then equates the value at time t of any 

derivative with the expectation of its payoff conditionally on ^  under the risk-neutral 

measure. All the option prices handled in this thesis are derived as such expectations. 

We finally wish to point out some abbreviations used throughout this thesis, some 

of them have already been defined in this introduction. We abbreviate Constant 

Elasticity of Variance by CEV, Moment Generating Function by MGF, Stochastic 

Differential Equation by SDE, Partial Differential Equation by PDE and Ordinary 

Differential Equation by ODE.



Chapter 1

D istributional results

The popularity of the CEV process in all main branches of financial modelling 

can be explained by its desirable property of positivity and its richness of behaviour: 

indeed, depending on its parameters, the process can be mean-reverting or exploding, 

the boundary at 0 can be absorbing, refiecting ... It has been used to model equities, 

interest rates, stochastic volatility and other financial quantities. Our goal, here, is 

to derive some properties and distributional results for these processes.

We first consider the square-root process, which is the most tractable since it allows 

for fully explicit formulations for various quantities. It is also closely linked with the 

more general CEV process, as explained in the introduction. We start by presenting 

some of the main properties of the square-root process given in the literature. We 

then derive the joint moments of the process and its average. The average moments 

have indeed an important informational content, since they are proven to actually 

determine the distribution of the average. A more direct approach yet allows us 

to determine in a more efficient way the joint distribution of the process and its 

integral by analytic Laplace transform inversion, using a simplifying measure change
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relating the square-root process to its square Bessel process counterpart. We then 

proceed to find a simpler expression for the marginal distribution of the average in 

the mean-reverting case. This completes our study of the square-root case. We then 

present the main classical results concerning the distribution of the temporal integral 

of a geometric Brownian motion. Finally, we turn to the general CEV process for 

elasticities strictly between 0 and 1 and attempt to solve for its moment generating 

function under the non restrictive assumption that the elasticity is a rational number.

1.1 The square-root process

Defining first the notations used in this section, X t will represent a smooth version 

of the square-root process following the stochastic differential equation:

dXt = {a — bXt)dt P ayjX tdW t (1.1)

with (a, a) G M'*' x R+ and 6 G M.

The next part of this section collects a number of important properties of Xt, some 

of which are well-known^ but need to be recalled to provide a deeper understanding 

of the process structure. Xt may sometimes be referred to in the following as the spot 

(for spot-rate or spot-equity) whereas the temporal integral Yt = / J  Xgds will often 

be called the integrated process.

1.1.1 Study of the process

The first and foremost issue to consider when studying a diffusion remains the actual 

existence and uniqueness of such a process.

^References and sources will always be provided for those.
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i. Strong solution

Proposition 1.1.1. (see Feller [29], Lamberton-Lapeyre [46]) For any positive x q , 

there exists a unique continuous adapted process X t satisfying the stochastic differen­

tial equation (1.1) and the initial condition Xq = x q .

P roof. Though the usual Lipschitz condition is not satisfied by the local volatility 

of the equation (1.1), the square-root function is locally holderian. Adding that the 

drift coefficient is locally Lipschitzian, existence and uniqueness of a smooth version 

are ensured (see the references in Lamberton and Lapeyre [46]). □

ii. The zero-boundary

Positivity is a very well-known (and for modelling purposes, a generally apprecia­

ted and useful) property of the square-root process. But, for a proper understanding 

of the process, its behaviour at 0 needs to be analysed.

Proposition 1.1.2. (see Lamberton-Lapeyre [46]) I f  a > ^ ,  0 is an entrance bound­

ary, i.e almost surely, the process will not reach 0 in finite time^. I f  a = 0, 0 is an 

absorbing boundary. Then, if  b > 0, the process will almost surely get absorbed in 

finite time. I fb < 0 ,  the absorption probability lies strictly between 0 and 1.

Proof. A proof of all these results can be found in Lamperton and Lapeyre [46]. □

iii. The lim it-distribution in the m ean-reverting case

It appears from the previous result that the process behaviour depends crucially 

on the sign of b. Indeed, a strictly positive b induces the process to mean-revert to

"^Except when X q =  0, in which case the process automatically departs from  0 and never get back 
to it in finite time
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the level |  and convergence with time to a stationary distribution can be expected. 

Therefore, whenever positive and non-null, b will be thereafter denominated the mean- 

reversion strength.

P ro p o s itio n  1.1.3. (see Shreve [66]) Whenb is strictly positive, the process converges

with time to the gamma distribution

\  %26 r  1
x ~ ^ e ~ ^  (1.2)

r(H)
Proof. If such a equilibrium-distribution exists, it has to be the solution of

+  (a -  <7̂  -  b x ) ^  -  b p M  = 0

. /o°° P<x,(x)dx = 1 

with the the constraint Poo(^) >  0,V?/ >  0.

(1.3) arises from taking the limit when time tends to infinity of the Kolmogorov 

forward equation

 ̂ “  bx)p { t ,x ) )  -  - — {a ‘̂ xp{t ,x))  =  0

given that for a distributional limit to exist, the following condition should be satisfied

i t a £ p | £ ) = ot-KX) Ot

Note that the forward equation represents here a natural choice compared to the 

backward one, since the limit distribution should be independent of the starting 

values, i.e. the backward variables xq and to, implying that taking the limit in time 

of the Kolmogorov backward equation would provide no information.

The basis for the vector space of solutions being

^ 2a —2 b x \  ( 2 b x \ ' ^ ~ ^  , ( 2 a  2a —2bx
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The second function, which can be rewritten as p 2 = is the only

integrable solution over R+ and is also clearly positive. Normalising it by its integral 

leads to (1.2).

This convergence in distribution can be actually proven by taking the limit in 

infinite time of the moment generating function of X t which will be given in the next 

subsection in Proposition 1.1.4. □

Remark. When b is negative, on the other hand, the MGF does not converge and 

the first moments of the process are easily shown to grow to infinity with time.

iv. The joint m om ent-generating function

The first and actually main results concerning the temporal integral Yt = /q Xsds 

have been derived by Cox and al. [15] in their computation of the price of a zero- 

coupon bond. Their result can easily be generalised to obtain the moment generating 

function of Yt. W ithout heavy complication, the same method actually produces the 

MGF of the joint distribution {Xt,Yt) as observed, for example, by Lamberton and 

Lapeyre [46]. The (relative) simplicity of these functions comes from the additivity 

property of the process. This same tractability of solutions of linear (or rather affine) 

differential equations have given rise to the so-called affine models.

Proposition 1.1.4. The moment generating function of the joint distribution of 

(X t,Y t) has the exponential form

n) =  =  xo) =  (1.4)

with
^  A((7 -  6) +  e-'y*(7 +  6)) +  2^(1 -  e"''') , .

ct2A(1 — e~'>'*) +  (7 -h 6) +  e~T'*(7 — b)
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and

where

—2 f  27e 2̂ *̂
Va2A(l -  e -^ )  +  (7 +  6) +  e"i'*(7 -  h) ^

7 =  y/h"̂  P  2/x<j2 (1.7)

Proof. This proof is included both because of the importance of the result and 

because of the development of the proof itself, which might be useful to be compared 

with related results we will derive later in this thesis for the CEV process.

Consider L{t, x), the bounded solution of the following partial differential equation

dL d'^L ,  ̂ ,d L  ~
a ï  -  T  W  +

subject to the initial condition

L{0,x) =  e - ^

The process

M( =  - 1, Xt)

is then a martingale and this implies

L (T ,X t)  =  M o =  E (M t)  =  = L{X,n)

As in Corollary (1.3), Chapter 11 in Revuz and Yor [62] ( See also Pitman and Yor 

[60] and Shiga and Watanabe [70] ), the solution has the form L{X,(jl) =

The sum of two independent square-root process with parameters a^, 6, cr and a‘̂ ,b ,a  

respectively and initial values xj and Xq respectively is a square-root process^ of

^It follows from the corresponding result for square Bessel processes (see Revuz-Yor [62]) and the 
fact that a square-root process is the product of a deterministic function and a time-changed square 
Bessel process.
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parameters a  and initial value Xq-\-Xq. The joint MGF for the process with

parameters a, b, a  and xq is hence the product of the joint MGF for a square-root 

process with parameters 0 ,6, a  and xq and the joint MGF for an independent 

square-root process with parameters a, 6, a and initial value 0. Each of these two

MGF are multiplicative and equal to 1 at 0.

The differential equation then becomes

ü T { t )  =  X +  T ^ ( ^ )  - |-  6 T ( ( )  —

giving the following system

e'(t) = m  (1,8)
_ V ( t)  =  -  6T(«) +

with the initial conditions 0(0) =  0 and T (0) =  A.

The last equation in (1.8) is a ordinary Riccati differential equation, with the 

constant particular solution: Tq =  -b+y/b^+2^  W ith 7 defined as in (1.7), the 

change of variables: h{t) = Y(tf-ro le&ds to

2

h'{t) = —  + (ct^Tq -f b)h{t)

and
1

h{0) =
A — To

which result in the expressions (1.5) and (1.6). □

V. The density o f the spot-process

Although the MGF completely characterises a distribution in theory, its density 

remains in practice most desirable since needed, for instance, to compute the expec­

tation of any non-analytic function.
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T h eo rem  1.1.1. The square-root process density is an infinite weighted average of 

gamma densities. In the non-absorption case,

f ^ i x )  = e-^oB e-  g  (19)

where

Feller [29] represents it in the equivalent form

=  ( 1 .11)

where 12 ^ - 1  is the modified Bessel function of the first kind of order | l  — 1*

This density corresponds to a non-central chi-square with ^  degrees of freedom and 

parameter of non-centrality 2Bxoe~^^.

R em ark . Besides the intrinsic importance of this result, the proof given below is 

of specific interest as it illustrates the analytic Laplace transform inversion method 

which consists in decomposing the transform into a sum or a series of elementary 

analytically invertible terms, method widely used in this thesis.

P ro o f o f  T heorem  1.1.1. Taking // =  0 in (1.6) and (1.5), leads to the MGF of

" "I
(1.12) can be rewritten as

C^(X)  =  I

00 n /  R \

n=0 \  /
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Given that (A +  a)~'' is the MGF of the gamma distribution of density 

the linearity property of Laplace transforms along with the Beppo Levi monotone 

convergence theorem applied to this weighted sum of (positive) densities allow the 

inversion (1.9). The equivalence with (1.11) follows from the series representation of 

the Bessel function
oo /  \ '^ + 2 *

( 2 1
□

This is the first result in this chapter involving Yt. Our interest for this quantity 

is rooted in its importance as a financial underlying. But, if, for some derivatives, 

the price depends only on the marginal distribution of the average, the spot enters 

as well the payoff of some other derivatives, in which case the joint density might be 

needed We will therefore first study the joint distributional properties of (Xt,Yt),  

starting with their moments.

1.1.2 The joint moments o f {Xt,Yi)

In the literature concerning stochastic volatility, the moments of the average have 

been used either to compute approximations for the price (see Ball and Roma [5]) or to 

gain insight in the distribution of the stock (see Das [19]). However, only the four first 

moments have been given in these texts since they were computed through successive 

differentiation of the moment-generating function. Though it is theoretically possible 

to obtain all these moments through repeated differentiation, this method remains 

tedious and even with formal calculus packages like Mathematica or Maple, only the 

first ones can be handled in this quite time-consuming way. We show here that it is

^This is also the reason why we chose here to present the joint and not the marginal moment 
generating function.
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actually possible to obtain all of them analytically, since it turns out that they have

a relatively simple form.

i. T h e  jo in t m om en ts  in  exp lic it form  

T h eo rem  1.1.2. The joint moments of X t andYt are given by
jm,n

=  E i Y r x r n  =  È (115)

where

I p ^  = min(n +  1 — j, m +  1) (116)

The coefficients can be obtained by recursion through the relations3,1'
•  For j  ^ n  — m

a, ■ = m E“  ( { n - m -  j)by-'^+^

For j  = n — m

o For i = 1

n  ^n—m TTl—l , n

/  2 \  n—m m ,7 l—1

+(n-m)(a + {n-m- Dy) g  E +
3='

o For 2 >  1

-  'ITT'CC-m̂ i-1 F {tI ~  Tu) + {u ~  TU -  1)— ^ (l-^^)



CHAPTER 1. DISTRIBUTIONAL RESULTS 18

where

Cm,n =  r o l { m = 0 }  ( 1 - 2 0 )

•  Initial condition

û;o;Î =  1 (1-21)

R em ark . The marginal moments of Yt are obtained with n = m, since E{Yt^) = 

A I n , n { t ) '

P ro o f  o f  Theorem  1,1.2. Assessing first the issue of existence, the joint MGF

given in Proposition 1.1.4 is infinitely differentiable in a neighbourhood of (0,0) ,

implying the joint moments of Xt and Yt exist for any positive order for any finite t .

Therefore, applying the Ito formula to Y^X!^, taking the expectation of the result 

and differentiating it with respect to t gives

2
-bkE{Yt"^X^) +  k(k -  l ) y E ( y ( ” ‘X * - ‘ )  ( 1 . 2 2 )

since the stochastic integral appearing when applying the Ito lemma is a martingale, 

due to the square-integrability property of the integrand formed by power functions. 

It should be noticed that the computation of positive order moments does not actually 

involve the moments of the reciprocals of either or When m  = 0 or respectively 

A: =  0, the use of m E {Y^~^ Xt'^^) and respectively kE{Y/^X t~^) are mere notations 

let for simplicity while those expectations do not in fact appear in the equation and 

the terms quoted are simply null.

Now, denoting Mm,n{C) the Laplace transform of = E {Y ^ X t~ '^ )  with

respect to time for (  G R+, Mm,n{0 = €T^^Mm,nit)dt , the ordinary differential 

equation (1.22) becomes

^ m , n ( C ) [ C  +  -  m ) ]  -  M m , n { 0 )  =  m M m - l , n ( 0  +  d ( u ,  m ) M m , n - l { 0  ( 1  2 3 )
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with

d{n,m ) = {n — rn)^a-\-{n  —m — 1 ) ^ ^  (1 24)

(1.15) can then be shown trough induction. Assuming that for a given n  > 0 and for 

all integers m < n, the joint moments have the form

n —1 L  ’ m ,n—1

The Mk,n are also assumed the corresponding form for all k strictly below a given 

integer m >  0, whenever m >  0. As in (1.20), defining the variable Cm,k by co,k = 

and Cm,k =  0 if m >  0, (1.23) implies that^

jTfVfTl jTTl — 1 ,Tl
n ■'i m,7i N  m - l ,n

j , i  Cm,n _  ^ j , i ________

^  +  M  Ç +  b { n - m )  ^  ^  (C +  jbYiC +  b(n -  m))

r?n ,n —1
n —1   771—l , n

E  M Ë W z # )  < * ■ “ >

Given that, for p g positive integers,

1 _  /ÎÎ.. ,

(1.27)

(C + 96)‘(C + vb) (,+pb ^  (C + gf»)'

with

~  (g-p)fc

(1.26) and (1.27) leads to the recursions (1.17), (1.18) and (1.19).

Since (1.25) is clearly initially satisfied for (m, n) =  (0, 0) with Mo,o =  ^ (explai­

ning (1.21)), the Mo,o =   ̂ have the form given in (1.25).

®Once again, whenever m =  0 or resp. n =  m, the sum following m  or resp. d{n,Tn), which are 
null in those cases, is a mere simplifying notation



CH APTER 1. DISTRIBUTIONAL RESULTS 20

The classical result

/•OO f i - 1  1

along with the linearity property of the Laplace transform operator induce the result

(1.15). □

Corollary 1.1.1. Yt possesses the following mean and non-centered 2^^ moment

=  ^6 *̂{(2 — bxo} +  {abt +  {bxQ — a)}^ ^

E {Y^) =  ^{{2xocr^5 — Aax^b — 5aa^ +  2a^ +  2xo6^) +  2(cr  ̂ — 2a +  2bxo)abt 

+2a^bH'^} +  e“^*{4(ocr  ̂— a^ — +  2axob) +  4(acr^ — axob"̂  — x̂ b'̂ a'̂

-\-a^b)t} +  e~'^^^{{2xlb‘̂ +  2a^ +  acr  ̂— 4aa;o6 -  2xoa^b)Ÿj ^

ii. Im portance o f those m om ents

To complete this moments study, it should be noticed that the information con­

veyed by them is total, in the sense that they fully characterise the distribution:

Theorem  1.1.3. The joint distribution of {Xt , Yt )  is determined by its moments, the 

same being true for each marginal distribution.

Proof. The analytic expression for the moment-generating function of (Xt ,  Yt) exists 

for some negative values. More precisely, it exists for /x > — ̂  and for A >  with 

Xfi = — ) where 7 defined as in (1.7) is a function of fi. It actually also

exists for /X =  — ̂  and A greater than or equal to the lower bound:

- =  ,im _ 7  +  6 +  e 7 ‘( 7 - f c ) ^ _ ^  (1.28)
. 20̂ /i-f-

By the application of the Beppo Levi theorem, e (^  exists for

/X >  — ̂  and is given by the value taken by the analytic expression at these points.



CHAPTER 1. DISTRIBUTIONAL RESULTS 21

Similarly, E = xq^ exists for /x >  —̂  and for A > X̂ .  The 

distribution is hence doubly subexponential and, as a consequence, determined by its 

moments. □

Therefore, the moments could be used to approximate the distribution: Laguerre- 

polynomials expansion method (see Dufresne [26]), Edgeworth expansion, etc. The 

coefficients of the moments can be computed given a specific set of parameters a, b and 

a.  Evaluating the moments for different values of time is then straightforward, which 

makes this procedure all the more interesting, since it would enable us to evaluate 

options of different maturities and strikes at a reduced level of additional computa­

tion. However, given the actual form of the marginal density derived later in Part

1.1.4, these moments-based approximations are not likely to be very fast-converging. 

Laguerre polynomials expansions, for example, do not converge in 60 steps® for our 

selections of parameters. The problem inherent to this expansion method is that the 

parameters of the expansion play a critical role in the convergence speed of the series, 

while there is no specific selection critérium or algorithm for these parameters, except 

for proceeding by trial and error. Edgeworth expansions around a normal might be 

faster in the mean-reverting case for very large values of time, t, since the distribution 

of the average ^  tends to a gaussian (see Fouque and al. [31]).

1.1.3 The joint density of (Xt,Yt)

If the preceding results allow us to state explicitly the density in an analytical 

form, possibly involving some free parameters, these expansion methods^ in terms

^Computing 60 moments, although they are expressed as simply as they can, requires quite a 
number of operations.

^Some of these methods are unidimensional, but might be generalised or adapted.
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of moments remain quite general and their actual efficiency depends on the specific 

distribution. In this part we will derive a better specific explicit series form for this 

density, arising from the exploitation of a change of measure under which the spot 

process and hence its integral follows a simpler diffusion, resulting in a joint moment 

generating function itself simpler than in Proposition 1.1.4.

i. A n  equivalen t m easu re  re su lt 

T h eo rem  1.1.4. The following process L is a martingale

L, =  (1.29)

Proof. From the SDE defining X,

J ~  y /  XudWu — -^0 ~  J hXy)du +  X t^

which implies

Lt =  e^° ^V^dWu-fo -^Xudu

Since the Novikov condition < oo is verified (see proof of Theorem 1.1.3),

L is an exponential martingale with mean 1. □

T h eo rem  1.1.5. Under the measure Q* given by the Radon-Nykodim derivative 

^  =  L{T), the process X (t) follows a.s. the SDE

dXt = adt +  ( j\ /X td W f  (1.30)

W f being a Brownian motion under the Q*—measure.

Proof. From Girsanov’s theorem and the previous results on L, the process W*

defined by W f = Wt — /q ^ypQ dW u  is a Brownian motion under Q*. □
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R em ark . X t is then a multiple of ( precisely ÿ  times ) a squared Bessel process 

of index under Q*. If Xt might also be connected with Bessel processes through 

other transformations, the change of measure proposed here is a simple result, easy 

to manipulate and suited to the analysis of the path-dependent integral Yt which 

requires path properties to be exploitable.

This result allows us to work under the Q*-measure, finding the Q*-joint density 

of (XtjYt) and then coming back to the Q-measure through the Radom-Nykodim 

derivative.

ii. T h e  case a > 0

As showed in Part 1.1.1, the behaviour of the process crucially depends on the 

sign of a. We will start with the mean-reverting case.

T h eo rem  1.1.6. Denoting a  = ^  and D^ the parabolic cylinder function of order 

V, the joint density of X t and Yt (under Q) is given by

with the term Nn(y) defined as

where
x + xq-\- {a-\- naO t

On -  2 (1.33)

i/ =  p + g  +  ?^  +  l  (1.34)
(t2

Proof. Under the Q* measure, the joint MGF becomes, with 7 =  y /2 a ^ ,
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= (  (1.35)
\ <7̂ (1 — e T'M / “  7t! / \  I 7(l+e-^*) \^+%?

n=0

The integral lytil^) = /o°° y)dy can be calculated by inverting this Laplace

transform with respect to A. Observing that (1.35) is a weighted average of gamma

distribution MGFs, it can be inverted* just like (1.13) in Theorem 1.1.1

Noting C =  | |  — 1, ly{lA  can be linked with the modified Bessel function of the

first kind of index (  through (1.14)

â (l - e~'y*) J \To J V cr̂ (l —
where is the modified Bessel function of the first kind of index (. It can be

rewritten® as

U v  &  r ( n  +  c  +  i )

where refers to the Laguerre polynomial of order n  and index ( , i.e.

It is known that the inverse of for q and k positive is (see Gradshteyn

and Ryzhik [37])

(1.37)

®That the series of the inverses converges to the inverse of the series can be proved by using 
Beppo Levi theorem, again as in Theorem 1.1.1.

®For any |z| <  1, we have the relation (see Gradshteyn and Ryzhik [37])

(xyz)
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where cx = y  ^.ppears because of the scaling property of the Laplace transform and 

Dç is the parabolic cylinder function of index ç (see Appendix A), related to the 

degenerate hypergeometric function ÿ through

D,{z) =  2ie - T  | ^ ^ 0 (  -  i ,  i ,  I  Ç j  }

This result, along with the linearity of the inverse Laplace transformation operator 

and the fact that dividing by L{t) transfers the density back to the Q-measure^^, 

completes the proof. □

R em ark . For computational purposes, it should be noted that most of the mathe­

matical /statistical packages possess quick built-in routines to compute the special 

function D„ and that once it is computed for the first two indexes, its value for the 

subsequent indexes can be deduced from the relation

Di^+2 {z) =  zD,y^i(z) — (z/ +  l)Di/_|_2(z)

iii. T h e  case a =  0

For the Cox-Ross equity process , the results are slightly different because of the 

absorption at zero, implying a mass at that point. More precisely, the case X t > 0 

and X t = 0 have to be treated separately.

T h eo rem  1.1.7. With the same notation as above, the joint density o f X t and Yt, 

for X t > 0 under Q is given by

n=0

^^Linearity is actually not sufficient since an infinite series is dealt with here. Yet, convergence 
and even uniform convergence of the series of inverses can be proven using uniform convergence 
properties of the Laplace transform series. The same kind of arguments will be used later for the 
marginal density of Yt in the mean-reverting case and we refer to this analysis as exactly the same 
applies here.
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with the terms On (y) defined as

and
X X q {{n + l)cr^t)

2 (1.40)

Proof. The absorption point at zero changes slightly the joint MGF (still under the 

Q*-measure)

/' 4e-yv

r - ( A . . ) = E  g  d-^D
n = 0  y A  +  ^ 2 ( i _ e - 7 t )  J

Inverting this MGF with respect to A as we did for (1.35) leads to

«»)+ / I
since (1.41) is the sum of a constant and weighted gamma MGFs. (5 (̂0) stands here

for the Dirac delta function which is null everywhere except at 0 where it is infinite.

For non-null x, this can be rewritten with (1.36) as

Inverting this expression with respect to /x as in the previous result (with the same 

convergence argument) leads to the formula (1.38), as for any n  € N

D n ( z )  =  e - ^ H e n ( z )

where Hcn is the n^^ Hermite polynomial: Hen{z) =  (—l)"e '2 ^
.2  1

e 2 □

The joint MGF containing all the information needed, the distribution of Yt can 

also be deduced for the case X t = 0.
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T h e o rem  1.1.8. Under Q, the density ofYt conditional o n X t = 0 is pPQ{Xt=0)

f  Pn+1 Ê±1

with

and

&  =  (1.43)

3tnfc(l+ĝ )̂
Pq (X( =  0) =  (1.44)

Proof. Since +  e“^^*/{Xt=o}j taking the limit of the

joint MGF at A — oo gives

7(1+6“'''*)
lim C ^ '^ {X ,n )  = E « '(e - '‘''‘/{x,=o}) =

It can be reexpressed as

= e “"'’̂ ( l - e - ^ ) X ] L „ ( ^ ) e - ^ " ‘ (1.45)
n = 0  ^ '

since (See Gradshteyn and Ryzhik [37]), for |z| < 1,

1 °°
T ^ e - a  =  ^  L„(x)z" (1.46)
^  ^  71=0

L„(x) being the Laguerre polynomial of order n  and index 0.

The formula (1.45) expanded and inverted as previously gives the result. □

R em ark . This series is fast-converging, as the leading term is roughly of order

e - # " \
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iv. N um erical illu stra tions

We choose to illustrate this series method with an adaptation of the textbook 

Black-Scholes regular example Sq  ̂ = 100, r®® =  0.05 and =  20%. A square-root 

process with comparable parameters would be Sq = 100, a = 0, b = —0.05 and a = 2. 

With this choice of parameters. Figure 1.1 draws the joint density surface of (%i, Yi) 

when no absorption occurred.

Joint density of the square-root process and its temporal integral
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In the following tables, N represents the number of terms needed for the absolute dif­

ference^^ between the limit (series truncated at 50 terms) and the series truncated at 

N terms or more to be less than 10“ .̂

We thus observe in Table 1.1 that N increases with y and the evolution is indeed 

rather quadratic than linear in N.

Y 80 90 100 110 120 130 140 150 160
N 1 20 31 37 42 46 51 55 57

Table 1.1: Evolution with at x =  100.

For y = E{Yi) ^  102.54, N plunges extremely quickly with increasing maturities, as 

shown in Table 1.2.

T 1 1.1 1.2
N 33 22 1

Table 1.2: Evolution with ( at x =  100 and y = 102.54.

For increasing volatilities {y = E(Yi) % 102.54), the decrease in N is also pronounced 

but still less violent.

a 2 3 4 5 6
N 31 12 6 4 1

Table 1.3: Evolution with cr at x =  100 and y = 102.54.

But, we would have expected the series to react to changes in T  and to changes in a 

in roughly the same way. This fulgurant evolution with maturity can be accounted

prefer holding the absolute difference as the stopping criteria rather than the relative differ­
ence, since the density can reach values quite close to 0.



CHAPTER L DISTRIBUTIONAL RESULTS 30

for by the fact that the density itself vanishes SiS y = E(Yi) % 102.5 moves further 

and further away from E{Yt). A better understanding of the series behaviour can 

hence be obtained by studying the density at the moving point y = E(Yt) =

t 1 2 3 4
102.54 210.34 323.66 442.80

N 33 15 9 1

Table 1.4: Evolution with t at x = 100 and y = E{Yt). 

Table 1.4 indeed shows the expected deceleration in the decrease.

1.1.4 The marginal density of the integral in the mean-reverting 

case

Though the formulae presented in the preceding results prove simpler in the case 

a =  0, they appear complex when it comes to integrating out the marginal density of 

Yt when a > 0. Indeed, taking the expectation of the joint density (1.31) with respect 

to X leads to (using the same notation as in Theorem 1.1.6)

V2
f  i y )  — —

y/ïr{^/2ÿâ)^ 

with (y) defined as

rn+%-1

b̂ y I bxQ I abt E n!û;
T ^ r ( n + ^ )

K ( y )  ( 1 .4 7 )
n=0

n y \ p  n / _  \q

and

v / 2 ÿ Q  J
(1.49)
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in which we have altered the notations to an(x, y) to emphasise the dependence on x  

and y. Dv{‘) represents the parabolic cylinder function of index v.

Recursions could be used for the D ^(n,p){y). Yet, the initial values for those 

terms would still not be that easy to compute and would be needed for each new n. 

We thus present here another approach: a direct analytical inversion of the marginal 

moment generating function of the integral process, resulting in a tractable and easier 

to evaluate formula for its density.

i. R elating the two approaches

Before developing this alternative approach, we first show here how to retrieve 

(1.47) by a direct inversion of the marginal MGF of Yt. From (1.1.4),

Decomposing it thanks to the relation (1.46),

Recalling (1.37), the inverse of — fn°°  ̂ du is12

where the term (3 comes from rescaling the Laplace transform. More precisely. 

Inverting (1.51) term by term, we recognise the terms appearing in (1.47).

^^Taking the Laplace transform of the expression, Fubini-Tonelli theorem allows us to interchange 
the order of integration thanks to the absolute convergence of the double integral.
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The sole purpose of this result is to show the consistency of the two approaches 

presented in this thesis to compute the marginal density of the integral process. The 

marginal MGF can actually be manipulated in a slightly different manner to lead 

to a series representation in which the numerical integration of parabolic cylinder 

functions is not required. We will first present a complete formula, in which each 

term is explicitly written down, but is - for that very reason - unduly complex. The 

purpose of this first representation is to show that it is indeed possible to express 

the density in a totally explicit form although in practice, it is more efficient to 

evaluate the terms recursively. We therefore present afterwards a reformulation of 

this series, constructing its inner terms by recursion. For the square-root process, all 

the formulae and applications following this result in the rest of the thesis will be 

given in a recursive form. But, it should be kept in mind that all of them can be 

expressed in a completely explicit manner. For this reason, we call them fully-explicit, 

given that the really complete series formulation is a straightforward corollary.

ii. T h e  com plete  fo rm ula  for th e  density .

D efin itions a n d  n o ta tio n s. The density depends on the following functions: 

•  Hck is the Hermite polynomial (see Appendix A)

[*] .x^ k\

s=0 ' '

Hck is a polynomial of order k given by (see Appendix A)

[*] X* k\

s= 0
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•  For g € N and tu € R+, the function J^„(y) is defined as

•  For I e  N and w  € R'*', the function is as follows

Case I = 0

JS ,Jy)  =  (157)2V7T2/3

Case I =  1

J t M  =  A W  =  (1.58)

Case I > 1

/ J  e-Ÿ dfi

1-3

T h eo rem  1.1.9. T/ie density ofYt is given by (j3 defined as in j(1.53))

m  .  ^ e* = s- £  t  s;4=C  * -  » > * ' “  "■“ >k=0 n=0 \ /

with

G.,n(y) = E '  ”)  (-1)‘ (  E C) (-&)*-■ (2/̂)
i=0 \ \  j =0

X — W /  /

and
j = k —n + l

at +  Xq
'^n,i = —^ ----- \-{n + i)t (1.62)

Proof. See Appendix 1.5.1. □
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R em arks.

1. The proof of the uniform convergence of the series (1.60) presented in Appendix 

1.5.1 is of importance, since it is also applicable for most of the other expansions 

derived in the square-root process context. Appendix A also contains recursion for­

mulae (see (A.3) and (A.6)) useful to compute numerically the polynomials Hek{x) 

and Hek{x).

2. The integrals appearing in (1.59) are only (up to a multiplicative constant) the 

complementary error function, which has been widely studied in the literature. There 

exists a good number of algorithms to compute it numerically with accuracy, some 

of which extremely fast and not taking more than thrice the time of an exponential 

evaluation to get it to machine precision. Most mathematical software packages have 

their own built-in routines to compute it. It can therefore be considered just as 

another standard arithmetic function like exp(-) or cos(-) .

(1.60) provides a full analytical expression for f^ {y ) ,  which enables us to gain 

a better insight into this density. Yet, as mentioned earlier, employing simplifying 

recursions is more efficient than using the explicit formulation of the Gk,n{y), since it 

cuts down the amount of calculations by an order of magnitude proportional to AT̂ .

iii. A recu rsive  fo rm ula tion

D efin itions an d  n o ta tio n s. For w  G R+\{0}, we construct a sequence Ip,q{'cu) in 

the following recursive way for positive integers p and q 

•  For q = 0

(1.63)
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For q = I
,2

2 e 4»̂  „  I ' — 2yh(3\

For q = 2

,2

-  b I „ M  (1.65)

•  For Ç =  3

=  p l{ p > 0 } V i ,2 ( l / . r o ) - C T 7 J p ,2 ( j / , r o )  +  f  ( 1 ^ 6 )

# For q > 3

/  (2/ u )  — "F ‘̂ yP^p,q-2{ŷ  '^ip,q-i{y^
Ç -  2

from the only two initial conditions needed:

-—, e
( 1.68)

/o,2(y,ti7) =  e r f c ( ^ )

R em arks.

1. The term constructed with the previous formulae is either Ip̂ q or Ip + i,q .  This 

differentiation is meant at emphasising whether the formula holds for p =  0 or whether 

an initial condition is needed.

2 . The Hermite polynomials appearing in the following recursions are to be them­

selves computed by recursion, see Appendix 1.5.1

T h eo rem  1.1.10. The marginal density o f the integral Yt can he rewritten as

= (1.69)
ifc=0
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where

nn—n  nm <n \  /  \  /n = 0 m =n

and
at Xq / I  \

^m  = —^  \-m t (1.71)

P roof. See Appendix 1.5.2. □

R em ark . For programming purposes, it might be simpler to use (with AT > 0, the 

number of terms included to compute the series)

=  12 “ M,m4,n(j/,C7m) (1-72)
A:=0 m —0 k = m  n—k—m

k—n

2” (A:—n)! \  ~n )  \m + n

puted with

where 0  („+"_*) can also be simply recursively com-

(ji — k)(2a {k — n  — 1)<7 )  

=  2 x o (m -h n - l - l -A :)

(fc+H)

  ^0 '^171,0,m
«m+1.0„m+l -

and the initial condition

uo,o,o =  1

iv. N um erical app lica tions

We illustrate the numerical implementation of the series on the set of parame­

ters used later in Chapter 3 for interest rate derivatives in the Cox Ingersoll Ross
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model, parameters taken for comparison purposes from the reference cases presented 

in Chacko and Das [12]. The base case corresponds to a =  0.15, b = 1.5, cr =  0.2 and 

%o =  0.1. In all the tables of this section, N represents the first integer for which the 

relative error is less than 10“"̂, i.e. |/^(?/) -  f ' ^ { y ) \  <  10~^/^(r/).

We first consider the process at different ages.

— 2 -t Density N Density N Density N Density N
t  =  0.1 t  =  0.5 t =  1 f =  2

0.08 65.9406 54 28.1437 21 14.4597 15 7.4378 11
0.09 257.4734 50 39.0138 21 18.0505 14 9.3976 13
0.1 364.6207 54 39.9561 22 17.7163 16 9.1161 12

0.11 205.9241 64 32.1209 23 14.4371 16 7.2715 13
0.12 69.1999 70 21.1870 21 10.1401 13 4.9905 13

Table 1.5: Evolution with time (base parameters: a = 0.15, b = 1.5, a = 0.2 and 
X q = 0.1).

We observe in Table 1.5 that the series converges more and more rapidly as t 

increases. Globally, the series converges in around or less than 20 terms for dates 

greater than half-a-year and in around or less than 15 terms for a year, less than 10 

terms for more than 5 years (see Table 1.6).

All the density values presented in this section have been tested and confirmed by 

numerical Laplace transform inversion by the Abate and W hitt method, one of the 

most popular inversion method. Whenever this method failed, we still managed to 

check the results against a numerical integration of (B.l) using the NIntegmte built-in 

routine of Mathematica, which allows for very precise and fine integration.

All the numerical Laplace transform inversion schemes involve the selection of 

some free parameters. The analytical formula we propose for the density in Theorem 

1.1.10 has the important advantage of allowing a systematic implementation: the 

only parameter N can be selected with a stopping criteria ensuring convergence is 

obtained; N could actually be theoretically analytically chosen using the same type
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of bounds exploited in Appendix 1.5.2 to prove the convergence of the serie but an 

empirical method is more advisable as such a bound overestimates the number of 

terms needed. On the contrary, the selection of the free parameters requires a great 

deal of care for numerical inversions. For example, in the Abate and Whitt method 

described in Appendix B, the value and the speed of convergence can depend on the 

value of the parameter A in a critical way. To determine the right value for the inverse, 

a plateau of stability should be reached, i.e. an interval of A  for which the numerical 

inverse remains the same. Table 1.6 points out this interval denoted [Amin, A^ax] can 

become tight and quite variable across parameters. N still represents the number of 

terms needed for the series (1.69).

k
t Density 1 N 1 A-nnin Amax Density 1 N 1 Amin

t — 5 t  :=  10
0.08 2.7501 8 3.1 3.9 0.7094 8 9.34 9.45
0.09 4.5641 9 1.7 3.1 2.6151 8 9.59 9.68
0.1 4.7297 9 0.1 2.2 3.1546 7 9.92 9.99

0.11 3.4902 9 0 1.3 2.0543 8 10.39 10.45
0.12 2.0004 10 0 0.5 0.8454 9 11.01 11.06

Table 1.6: Inversion for large t (base parameters: a = 0.15, b = 1.5, a = 0.2 and 
Ao =  0.1).

These [Amin, Amax] are actually computed as the ones for which the numerical inverse 

agrees with series (1.69) and a precise numerically integration of (B.l), not as the 

ones for which we detected stability. In fact, without a-priori information, the Abate- 

Whitt is so unstable in some of those cases that the numerical inverse cannot be 

determined.

Figure 1.2 shows the values for the Abate-Whitt numerical inverse for different A for 

the case f =  0.1 and t = 10. There is no apparent stability or change of slope around 

[Amin, Amax] =  [9.92,9.99] which contains the actual density. In other cases, a plateau
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Figure 1.2; Instability of Abate-Whitt numerical inverse.

of stability can be found around the right inverse but the intervals [Amin, Amax] vary 

a lot across different parameters, making it necessary to scan a number of values for 

A as no intuition of the location of the stability plateau is available.

The numerical inversion is inefficient for large times whereas the analytical series 

actually converges very fast in those regions. As a major application of this form 

of the square-root process is interest rate modelling, it should be pointed out that 

interest rate products can be very long-dated and maturities of ten, twenty years or 

more are not all unusual in this context. In the same way, the Abate-Whitt method 

has difficulties to cope with high volatilities whereas the analytical series converges 

more and more quickly as a increases, as can be seen from Table 1.7.

IT ■
t Density j1 N 1 Ajnin Amax

a =  0.3
0.06 7.7615 9 - -

0.08 12.4710 12 5.7 6.3
0.09 12.6671 12 - -

0.1 11.6966 11 2.6 4.3
0.11 10.0330 10 1.5 4
0.12 8.1133 13 0 3.8

Table 1.7: Inversion for cr =  0.3 and t = 1.
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If a numerical integration of (B.l) works where the Abate and W hitt method fails, 

it should be added that a number of free parameters are also involved here and the 

degree of precision required to perform the integration for these specific cases would 

not be usually chosen. The numerical integration is, in general, more involved than 

the Abate and W hitt inversion and is used in this thesis only for checking purposes.

With this numerical results, we conclude this section by the observation that the 

analytical expressions we derived here are a robust and efficient way to evaluate the 

corresponding densities. We now turn to the geometric Brownian motion case.

1.2 The geometric Brownian motion

The geometric Brownian motion

dSt = rStdt +  aStdWt (1.73)

is the basis of option pricing theory. The study of its temporal integral Yt = Jq Sudu is 

both of great global interest for various branches of science and of specific importance 

in finance due to the popularity of the so-called Asian options. A considerable amount 

of research (see the references within Dufresne [27]) has consequently been devoted 

to this temporal integral. In this thesis, we prefer to analyse the temporal integral 

directly in the context of Asian options and with the motivation of evaluating them 

rather than to study the distribution of Yt per se. We will therefore present all of 

our new results on this model in the next chapter, in which the actual study of these 

Asian options will be treated. In this section are only recalled known properties and 

main classical results pertaining to Yt.
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Geman and Yor [77] exploited advanced probabilistic techniques and the represen­

tation of the geometric Brownian motion as a random-time changed squared Bessel 

process to derive the Laplace transform with respect to maturity of a multiple of the 

fixed-strike Asian option price of payoff (Yt  — K )^ .

They first normalise the problem, noticing that
+ \ ^-rT

where

C‘'{h,q) =  E ( ( r du -  g )  (1.74)

with the normalisation parameters h =  q — - ^ K T  and v = ^  — I.

They then obtain the Laplace transform LC''(X, q) as
poo

LC‘'(A ,g )=  /  e-^^C''(h,q)dh
Jo

“  (2g)5('‘- ‘'>-iA(A -  2 -  2i/)T(l(ti -  u) -  1)

“  A ( A - 2 i / - 2 ) ^ n ! l ,  2 q )  t(m  +  1 +  n)r(üf!; -  1) ^

where fj, = \/2A +

This expression for the Laplace transform , main discovery in the Asian options 

field, results from Yor’s analysis of the integral Yh or rather of the normalised quantity 

=  Jq Yor showed in 92 that Dh taken at an exponentially distributed

random time Ty, independent of W , with mean ^ is characterised by

o rM' rw l̂,Ot

where represents a Beta distributed variable of parameters 1 and a = and 

G j a Gamma distributed variable of parameters (3 — a  —v and 1. He also shows that

p \d ^ G [it,w +  ditjlWi -\-vt = x =
L J It «
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where 9 r { t )  =  I o { r ) f r { t ) ,  f r { t )  being the Hartman-Watson density. More precisely,

9r{t) = ~̂ ==ê  J  sinh(?/) sin

Dufresne [27], [25] and Schroder [65] also contributed to deepen the mathematical 

analysis of the density of this integral by proposing sophisticated serial and integral 

forms for it. The references within these papers present other related prior works in 

non-hnancial fields. Chapter 2 provides a review of the other approaches carried out 

in the literature for the treatment of Asian options. Only the works presented in this 

chapter focus on an analysis of the exact distribution of Yt .

1.3 The general CEV process

The general Constant Elasticity of Variance process is defined as a process of the 

form

dSt =  (a — hSt)dt +  aS^dW t (1.76)

Using the same terminology as in Section 1.1, we will be considering only the non 

mean-reverting form in this chapter, the mean-reverting case being analysed in Chap­

ter 3 as it is most importantly used for modelling interest rates. This allows us to 

present our results in a simpler case first, before extending them in Chapter 3.

1.3.1 The equity CEV model

In this section, we will hence more precisely focus on the CEV processes used to 

model the evolution of equities.

dSt = rStdt -t- aSfdW t, X q = xq (1.77)
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This model was introduced by Cox and Ross [16] as an alternative for the Black- 

Scholes log-Brownian model. This process allows us to model many desirable features. 

Firstly, the volatility changes stochastically and the inverse type of relationship be­

tween the evolution of the asset and the local volatility of the instantaneous

return ^  is an empirically well-proven property of financial equities and indices time 

series. The main drawback in this construction is that the absolute correlation be­

tween the asset and its volatility is full. Yet, the CEV process remains the most 

tractable model allowing for stochastic volatility. Secondly, the absorption at the 

origin provides a convenient way to account for industrial bankruptcy, which was an 

almost impossible event in the Black-Scholes world. Finally, the extra parameter a  

enables us to better fit the distribution of assets and capture more information, as 

their skewness.

We will restrict ourselves to the case 0 < a  <  1, for this is the case initially studied 

in the original Cox [14] model and it enables us to restredn ourselves to well-defined 

problems, avoid the possibility of encountering explosions, etc. Our results could 

though be extended and generalised, provided extra care is taken.

With these restrictions, it turns out that the CEV process is closely linked to the 

square-root process.

P ro p o sitio n  1.3.1. Zt = follows

dZi = (cr^(l — o)( l  — 2d) +  2 r(l — oi)Zi)dt +  2(j(l — o t)\/ ZtdWt (1.78) 

Proof. This a simple application of Itô Lemma. □

This result has been often used in the literature (see Davydov and Linetsky [21] 

for example) since it considerably simplifies the analysis of the spot-equity process. 

Indeed, it is simply a power function of the square-root process, which is a well-studied
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process. From the results presented in Section 1.1, it is possible to deduce a number 

of properties for Xt.

The behaviour of the process at the zero-boundary can be also be inferred from 

Proposition 1.1.2 type of results and Feller classification. For a  >  ^, 0 is an exit 

boundary. For ol < \ ,  the origin is regular boundary point and we adjoin a killing 

boundary condition so that the process is an absorption boundary at 0 in any case. 

The process has no limit-distribution given that (1.78) has the non mean-reverting 

form. The density of the spot-equity is a straightforward transform of the corre­

sponding density given in Theorem 1.1.1. Analytics to compute vanilla options prices 

have been produced in the literature by integration against this density. Exotic op­

tions such as barrier and lookback options on this process have also been given some 

importance very recently thanks to the works of Boyle and Tian [8], Davydov and 

Linetsky [21] and Lo and al. [52]. Yet, Asian types of derivative depending on the 

continuous average of the process have not received much consideration till now al­

though they constitute the next step to be taken to deepen our understanding of 

the derivatives market under this model. We will therefore try to derive here some 

properties concerning the distribution of the temporal integral Yt = Jq Xtdt.

Before beginning our analysis of Yt  in the next subsection, a last property of 

interest for X t  should be noticed as it involves another path-dependent integral func­

tional of Xt. The relation between the CEV process and its non-drifted (martingale) 

counterpart involves the integral xf^^~°‘̂ dt.

T h eo rem  1.3.1. The change of measure defined by ^  =  L{T), with the exponential 

Radon-Nikodym derivative

(1.79)
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cancels the drift of X t, i.e.

dXt =  (1.80)

W( being a Brownian motion under Q*.

Proof. This change of measure is an application and the counterpart of Theorem

1.1.5. Indeed, Proposition 1.3.1 establishes Zt = as a square-root process.

From Theorem 1.1.4 and 1.1.5, L{t) is then a martingale and under Q*,

dZt = <7^(1 — o;)(l — 2cx)dt +  2(j(l — cx)\/~^dW ^

Applying Itô Lemma to X t = leads to the stochastic differential equation

(1.80) under Q*. □

R em ark . Although this change of measure is interesting from a theoretical point of 

view, it does not immediately help to simplify the problem of evaluating the moment 

generating function o îY r  = Jq Xtdt, unlike in the square-root case. Indeed, compu­

ting =  E ^ * L ~ ^ ( T ) )  using the Q*-measure requires solving a partial

differential equation even more complicated.

1.3.2 The integrated process

To characterise the distribution of Yt = Jq X tdt, we would like to obtain its 

moment-generating function as this random variable is positive.

T h eo rem  1.3.2. Any function belonging toC^’̂ (R+,R+), bounded with bounded deriva­

tives for its second variable, bounded on any compact interval for its first variable and 

satisfying the partial differential equation



CHAPTER L DISTRIBUTIONAL RESULTS  46

with the initial condition

Vxo > 0, f{0 ,xo) = l  (1.82)

is equal to the moment generating junction E{e~^^'^) at time T.

Proof. Applying the Itô lemma to

proves to that Mt is a martingale.

Therefore, E{M t ) — E { e ~ ^ = Mq = /(T , Aq) □

Given the complexity of the easier subcase constituted by the Geometric Brownian 

motion, the simpler result we expect to obtain is an elaborated function, typically in 

series or integral form, for the Laplace transform with respect to T  of the MGF of 

Yt . We hence define g{\, x) =  e~^^f{t, x)dt and look for it as a bounded solution

to

As -  1 =  +  r x ÿ  -  t ix g  (1.83)

To obtain a solution for this equation, we will work under the following least- 

constraining but useful assumption.

A ssum ption . For the remainder of this section, we will assume that o  is a rational 

number, i.e. a  = For simplicity, p and q will denote the integers such that ^ is 

irreducible.

This assumption is not restrictive at all in practice. Indeed, the finite precision 

of computers bounds us anyway to use rational numbers for any sort of numerical 

calculation. Statistical estimates for a  will always be rational just as the a  input in 

any numerical routines related to this model.
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We should notice that the condition 0 < a  < 1 implies 0 < p  < q.

i. T h e  hom ogeneous eq u a tio n

In this framework, it is worthwhile considering first the homogeneous equation for 

two reasons. Firstly, it enables us to understand the structure of the affine space of 

solutions to the inhomogeneous equation; given any particular solution, Qp, of the in- 

homogeneous equation, this space is the set of linear combinations of two independent 

solutions to the homogeneous equation added to Qp. Secondly, this analysis throws 

some light on the possibility\ feasibility of an eigenfunction expansion.

For this purpose, we start by setting some definitions.

D efin itions an d  n o ta tio n s. Given I — 2{q — p), A  = B  = ^ and C =

refers, in this section, to the power series
oo

k=0

Î'I =  I/o

=  0 
_  X - B { k - l )  u,X

=  I/l
_ (A-n (i/Q ,1/1 ,1̂1 )

A[A+C7(A:—1)]

for =  0

for 0 < A: < /

for / <  A: < g -h Z, k ^  q

for k = q

ioT q-\-l < k
(1.84)

T h e o rem  1.3.3. The vectorial space of solutions to the homogeneous differential 

equation on ]0, oo[

is generated by the basis (^hi'^{x) = h^ '^{l,0 , x ) , h 2 ^(x) = l,xŸ j except in the

case a  — ^ = 2(k'+i) some k' G N.
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Proof.  The change of variables j/ =  x î ,  h{X, y) = g{X, x) gives

0 =  +  [A +  -  Xy^h

A classical method to find a solution to an homogeneous second-order differential 

equation is the Frobenius or analytic coefficient method. Assuming a power series 

form h = UkV  ̂ leads to the relations (1.84), leaving uq and Uq as free parameters 

whenever VA:' € N, {2k' -f l)q ^  2{k' -t- l)p. □

If there exists some A:' G N such that the integral parameters are related through 

2{k' 4- l)p = {2k' +  l)g, which includes the square-root case (p =  1, q = 2), then all 

the solutions to the homogeneous equation are not analytic.

Theorem  1.3.4. When {2k'-\-l)q =  2{k'-\-l)p for some k' G N, h2 ^{x) =  l ,x )

is still a solution. But, h^'^{l,0,x) is no more.

Proof. The relation

k[A -(- C{k — V)]u^’̂ {i/q, Ui) =  [A — B{k  — i(^0) ^i) for I k K. q 1

together with q[A -t- C{q — 1)] =  0 imply that the terms ^i), for A: <  A:' -H 1

should remain null. These terms include Uq, removing hence one degree of freedom. 

All the analytic solutions become therefore multiples of h2 ^{x).

An independent solution could formally be calculated with

Jo

□
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ii. The inhom ogeneous equation

The preceding discussion enables us to deduce the following result.

T heorem  1.3.5. Any solution to the inhomogeneous equation candidate to he the 

Laplace transform of the M GF should verify
oo

( 1.86)
A=0

UQ'̂ (z/) =  J fo r  k =  0

=  0 f o r ^ < k < q F f k ^ q
 ̂ (1.87)

^g’̂ (^) =   ̂ fo r  k =  q

/o rg  +  f<A:

Laplace transform of th 

class o f functions which satisfies

k -  k [A + C {k -l)]

The Laplace transform of the M GF is more precisely the transform among this

lim i^’̂ (u,x) = 0
X  ►DO

Proof. The same change of variable as previously leads to

0 =  y [ A  + B y ^ ] y ^  -  -  Xy^h +

As in the homogeneous case, we take the Frobenius approach and look for a particular 

solution in power series. We obtain the same recursions as in (1.84) with the difference

'  ^ ’ ~ l [ A  +  C { l - l ) ]  

x) is thus a particular solution of the inhomogeneous equation with = X

and = 0. {hi'^{x),h2 ^{x)) being the basis of the vector space, the Laplace

transform of the MGF can then be expressed as /^(A, x) = z ’̂̂ (0, x) +  0 /if  ̂ (x) +  ^/i^ ’̂ (ar).

The absorption at 0 of the CEV process implies that E (e "^ ^  |xq =  0) =  1 and 

/^(A, 0) =  J. This condition imposes (j) = 0 because /i2’̂ (0) =  0 Thus the result. □
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ill. A bsorption

To obtain the exact expression for the transform, i.e. the right value for i/, we 

would need to understand the asymptotic behaviour of x), which seems tricky 

from the recursion formulae.

One solution would be to numerically find the limit of by approximating
^2 (x )

it by for a sufficiently large B. This approach might be difficult to handle

numerically as well as risky, since uniform convergence in A is not guaranteed.

A better - i.e. theoretically valid and safer - approach is to consider the approxi­

mate model in which the CEV process gets absorbed at a level B when it is reached. 

We will call it restrained model. The MGF under this model, denoted con­

verges towards the MGF under the standard assumptions (unrestrained model) £ “ (/i) 

as B  grows to infinity. The density under the restrained model converges too towards 

the density under the standard assumptions. This convergence remains also true for 

other related quantities such as moments, bounded functionals, increasing and other 

functionals of Yt . Thus, the restrained model stands as a good approximation for 

the unrestrained model for B  sufficiently large, although the adverb needs to be de­

fined relatively to the specific problem considered. In our case, a condition to ensure 

the absolute error is less than e for any // (and any A) is to bound the probabil­

ity P(l{Tg<T}) < e where tb denotes the first hitting time of B  by Xt. Although, 

numerically, we would practically just analyse the direct convergence to decide the 

right value of B, it can give more intuition and better understanding of the results to 

compute this probability for some value. For this reason and for the sake of rigour, 

we first study this hitting time.
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T h e o rem  1.3.6. The M GF of the hitting tim e is

Xn(b( -  |_ 1 2 __

^  ^\2r{a-l) 2(l-a) 2(l-a) ’ a^{a-l) J
Proof. To determine the hitting-time of any positive level B, we consider the follo­

wing ordinary differential equation, transformed of a Kummer equation,
2

^ x ° f " { x )  +  rx / '(x )  =  A/(x) (1.89)

for which +  1.2 -  2p=S)> solution null at

0. The boundedness of this function on [0, B] permits to be a

martingale. In the limit, we then obtain (1.88). □

Now, we just have to solve for the Laplace transform of the MGF in the restrained 

model.

T h e o re m  1.3.7. The Laplace transform of the M GF under the restrained model is

g i i X , . )  = [ f - > . x )  -  ( i  _  g M ) "  (1,90)

Proof. The moment generating function E(e"^^l{Tg>r}) is the solution /  € R+)

to the partial differential equation

%  =

with the initial condition

Vxo >  0, f{0,xo) = l

as well as the boundary condition

VO <  t <  T, f ( t , B )  = 0

and which is bounded on x R for any compact C R. The previous results help

to identify this function as (1.90). □

This completes the approximation.
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1.3.3 Numerical illustrations

We preferred to focus on only one illustration but see it in detail to gain insight 

in the behaviour of the algorithm. We chose the base case r  =  0.05, a = 0.1, p = 1, 

q = 4.

The first question concerning this method arising in our mind: is how fast the 

series are?

X f l n l f2 n2
0.25 1.000051 9 1.004006 4
0.5 1.065834 28 1.192474 28

0.75 41.954773 74 83.540390 74
1 4345753.182 186 8732160.599 186

1.25 9.74605E+15 594 1.95833E+16 594
1.5 3.23941E+32 1697 6.50913E+32 1704

1.75 1.23651E+60 4104 2.48459E+60 4104

Table 1.8: Evolution of the basis functions with respect to vq .

Table 1.8 shows that, not surprisingly, the power series converge faster for small 

X .  Both the basis functions grow to infinity, which was expected as well.

B 1.25 1.75
const 0.497672 0.497672

X 9 b
0.25 0.996133 0.996133
0.5 0.940368 0.940368

0.75 0.754586 0.754586
1 0.494434 0.494434

1.25 0.287738
1.5 0.163842

Table 1.9: Evolution of the approximate Laplace transform for different B  .

Table 1.9 shows that the approximate Laplace transform has satisfactorily con­

verged for B  =  1.25 for initial values Sq less than 1.

Figure 1.3 draws the evolution of the Laplace transform with respect to p  at the 

point A =  1. We observe a decrease with increasing p  as expected.
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Figure 1.3: Evolution of the transform with respect to pL at \  = I.
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Figure 1.4: Evolution of the transform with respect to X at f i=  1.
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Figure 1.4 shows the decreasing family of curves for increasing X aX = 1. The 

transform is correctly decreasing from ^ at a; =  0.

1.4 Conclusion

In this chapter, we aimed at a thorough analysis of the distributional properties 

of temporal integrals of CEV processes. Special attention has been devoted to the 

square-root process, for which we derived a number of properties from the joint MGF 

of the process and its integral. This results built in explicit series form- moments, den­

sities, etc. - pertain both to the marginal and to the joint distribution. Implementing 

numerically these series, it appeared that they are practical as they do not involve 

any free-parameter selection and more efficient than numerical inversion methods in 

regions of high volatilities or maturities. These probabilistic results will be applied 

in the next chapter to the pricing of financial derivatives.

We also presented a way to compute the Laplace transform with respect to time 

of the MGF of the integral of the general CEV process. An adaptation to interest 

rate will be furnished in Chapter 3.

1.5 Appendices to  this chapter

1.5.1 P roof of Theorem  1.1.9

i. Expansion

Reexpressing the marginal MGF of Yt (1.50) in such a manner that we can separate 

an exponential term with the same argument (up to a multiplicative constant) as the
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one in the power function

we expand it

Z  v r ' ~  ( ( ,  .  >1 . ? f -

Now, expanding =  ^1 -  , we obtain

£  ( / i )  =  e 1

. n = 0

where the generalised binomial coefficient is defined as

^n-h k i ' T i • {n-\- H  -\- k — 1)
k J  k\

and is conventionally equal to 1 when k = D.

Noticing that the sums involved in (1.93) are absolutely convergent, we can modify 

the order of summation
oo k

(1.94)

To obtain (1.60), we will actually need to go a bit further (though it would not 

be needed to compute the density through recursions) in the decomposition in or­

der to invert the MGF in terms of elementary Laplace inverses and split the term 

appearing in (1.94) into

i f  S  (^ 7 ") ("A)' V*"^"
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Before going in the details of the analytic inversion of the elementary terms 

we will first study the convergence of the global MGF inverse resulting from this 

decomposition. In the next subsection, we point out that for each of the series ex­

pansions used here, we are in a closed bounded set belonging to the convergence disk 

of the involved entire series, implying they are not only convergent, but uniformly 

convergent.

ii. Uniform  convergence o f the inverse

This time, the elementary terms in the expansion are not Laplace transforms of 

positive functions, so that we cannot appeal to the Beppo Levi theorem as for the 

Xfdensity. But, the convergence still holds and is even uniform, as will be proven 

here.

To this effect, we will need to use Bromwich integral representations. For /  being 

either the marginal density f ^ { y )  itself or any of the internal terms or sum of terms

in the series (1.94), its inverse Laplace transform can be written in the form^^
1 p ioo  1 POO

since 0 is to the right of all the singularities of /  in every case.
. at+X Q

We will denote C = e and

r y ( - i  A 1 a:g /fc +  ^  -  (7 -  &)*(! -
* \  k — n J  (27)*“ ’̂n = 0   ̂ \  I /

We observe that, though 7 =  is multivalued, the value of the MGF

remains the same no m atter which branch of 7 is chosen. We hence arbitrarily take 

the branch with positive real part

Ib̂  +  y/b  ̂+  4cr̂ ct;2 y/2a'^u
7 =  \ --------------------------

^^This form also highlights the link with the characteristic function (—iw) and Fourier inversion.
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We deduce that I7 — 5|e is bounded by some positive constant M  for any w G 

and that

2k-n < 1 +  e-bt
(1.96)

Having as well - since 5 >  0 - the inequality

(7 — b)^~^
7 k—n < 1 (1.97)

it follows that

-bt \  k-n

Therefore,

98)

The series in (1.98) being convergent, the expansion (1.94) is uniformly convergent 

Ve > 0 , 3 A " >  0,VK > K ^ o j  e  K, 

k
a f + x r

fc=0

which, for any positive y, leads to

K

< e

/ oo POO

C \{ —iu)e~^^^dhJ — /  duj
■oo J-oo

j :

<

- 7 ( ^ )
/•OÜ

dw <2e I 
Jo

This proves that the sum of the inverses of the Ck (//) converges uniformly to the 

inverse of Z^(/z), i.e. to the density of J^Xgds.
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iii. A slightly stronger result

We can actually go a bit further than the previous convergence result. Setting 

7 =  +  2a‘̂jjL, if we replace 7 by 7 in (1.6) and (1.5), we obtain the Laplace

transform of e '^ ^ f^ { y ) .  Expanding it exactly in the same way as (1.94), we keep the 

uniform convergence property. Indeed, (1.97) still holds, I7 — remains bounded, 

but by a different M ', and can replaced by  ̂ ^  iii (1.96). This normal

convergence then implies

Ve > 0 , 3 Æ >  0,VÆ > K , y y >  0,

k

k=0

if we note (y) the inverse of the C\{y).

W ith this result, we can for instance interchange sum and integral when computing 

the expectation of giXt), where g is a bounded function. Indeed, in that case,

ro o  ^  fo o  ro o  ^

/  f ^ ( y ) g { y ) < i y - '^  fk9(.y)dy <\\f\\oc \ f ' ^ { y ) - ' E , k i y ) \ d y
■>° k=0 ■'0 k=0

< e

k=0

8(7̂

Hence, the sum of integrals converges towards the integral of the sum, which is an 

useful result whenever we want to compute the expectation of bounded functions of 

Yt, for pricing issues, etc.

The same type of arguments apply for all the series decompositions for densities, 

probabilities and prices under the square-root model (both mean-reverting model and 

equity model) and will not hence be explicitly stated in the corresponding proofs.
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iv. Inversion o f the elem entary term s

From (1.94), it follows that only two kinds of elementary inverses appear in the 

decomposition of f ^ (y ) .  Thanks to the scaling property of Laplace transforms, we 

only need to find for > 0 the inverse of for p G N and J^^(y)  the

inverse of for q G N\{0}.

First kind o f elem entary inverses

From the inverse gaussian distribution t h e o r y w e  can infer that, for any p > 0,

r  4\y,P ,r])e-i^ydy  =  '
Jo [p — -*■>)!

for

the parameters being subjected to the constraints 77 > —6, zu > 0 and p  > 0.

F i r s t  s t e p :  i n t e g r a t i o n  

We have

j(°° J^\y,p,y)e-'^ydydp =  (1.101)

/o°° /o°° I« ^ ( 2/, Pi q)e~^y\dydp is clearly well-defined. Hence, by the Tonelli test, J^{y^  /?, q)e~^y 

as a function of y  and p  is in L(R^) and by Fubini’s theorem, we can interchange the 

order of integration.

'̂^The inverse gaussian distribution has for density

y l G / . A  _  I  «

and for moment generating function

= (1.100)

with the parameters « >  0 and p real.



CHAPTER 1. DISTRIBUTIONAL RESULTS 60

= /o°° is therefore the inverse of

( y / b ^ T T i T)){p -  1 ) !

Integration by part leads to

where we have defined
Î37 +  2yrj
~ V W ~

S e c o n d  S t e p : d i f f e r e n t i a t i o n

Now, assuming p >  2, differentiating (p — 1) times (1.101) with respect to p gives

dP- 1 /•oo

/  J„ (y ,v )
=0 JodpP~^

which is our desired Laplace transform. 

We first define the following notations

e =
7y/^+fl

(y/b^-^p)p

2 /*00 2 
J^^’%y,p) = e ~  /

J a

and

dx^
= Hek{x)e‘̂

The Hek are then the polynomials defined in (1.55). 

Then, differentiating J ^ ’̂ {y,p)

dp^
He, ,(A )e^  J  e - - d h - ^ H e (^ ) ( V ^ Y (1.102)
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' (jj—1—
where the superscript in HCj (A) represents the (g — 1 — j)  derivative of the 

polynomial, with the convention \ a ) = Hek{A).

Coming now to the derivative of Jÿ-’̂ {y,r]), we obtain

Hence, from equation (1.102),

Ô7?î>-1 I

Since and from (1.103), |̂ _p is indeed uniformly

bounded by an integrable function of y for 77 in a neighborhood of 0, the differentiation 

under the integral sign is justified, implying that

L00  ̂ g-W-y//T+^

with, for p > 0
A P -I /d l ,b

4  =  i{p=i}(4^'“) +
77=0dyP'

This result leads to (1.58) and (1.57).

The case p = 0 now is directly given by the inverse gaussian density multiplied by 

the constant (see (1.57)).

Second kind o f elem entary inverse

We now want to find the inverse Laplace transform of the term 

for Ç >  0 (and w  > 0).

For this purpose, consider first such that

I  p)e-“̂ dy = (1.104)
Jo
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Once again, from the inverse gaussian distribution,

Differentiating both sides of equation (1.104) with respect to p at the point tu, we 

obtain

S i  r  P)e-'^''dy =
op lp=o7 Jq

The right-hand side expression being almost our desired transform, we have our in­

verse on condition the left-side expression is differentiable under the sum sign. But,

a,jm o I (   ̂ (  p \  e - i

dfft ^

where Hek{x) refers to the Hermite polynomial (1.54)

With (A.3), it is possible to rewrite (1.105) as (1.56). The derivative (1.105) being 

uniformly bounded by an integrable function of y for p in a neighborhood of tu, the 

differentiation under the integral sign is justified and thus the result follows.

1.5.2 Proof of Theorem 1.1.10

Our aim, here, is to build the inverse Laplace transform of e~^'^ in a recursive 

manner for any strictly positive real number w. This inverse will be denoted Ip,q{y, w). 

Since this term is defined differently for ç > 0 and g =  0, we need to treat these cases 

separately.

C a s e  g  >  0
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From (1.100), the inverse in this case can be expressed as

du (1.106)

since the previous Appendix 1.5.1 shows that when taking the Laplace transform of 

(1.107), it is licit to interchange the order of integration and differentiate under the 

sum sign at the point (  =  0.

From (1.106), we are naturally lead to define the simpler expression

(1.107)

Differentiating it once under the integral sign, we obtain

dP f°° +  (  +  u)u -̂'^
{-l)p4y/7r(yfiy{q -  l)\y

Integrating by parts the integral on the right-hand side and setting (  =  0 leads to

‘̂ P+1,9(2/3 ^ )  ^{q>l}dp^q-l{y,^)

(td—2yb/3)̂  1

For g > 1, (1.108) actually provides an alternative formulation for the recursive 

construction of the sequence Jp,q{y, which can be computed in different equivalent 

ways.

Plugging g =  1 in (1.108) results (with appropriate transformations) in

-  b J p - u M  (1.109)

Trying now to relate Jp^q^i{y,w) with the preceding terms, we replace by 

— (in 4- in the integro-differential form (1.107).
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Integrating then by part the first term coming from this replacement gives

(w—2yhp)̂  u !—  ̂ ^

■ h l{g > l}  ^ ~ Jp,q{y^^) "b l{p > 0 }~ '^ p —l,g(?/) ( 1 - 1 1 0 )

The initial condition

Jo,x(î/,t^) =  ^ e r f c ( ^ )  (1,111)

can straightforwardly be worked out from the corresponding equation (1.58) defined 

in the complete formulation of the marginal density of Yt-

Coming back to the original Ip,q{y, ^ ) ,  we still need to relate it to the Jp^q^i(y, w) 

to complete the inversion for g > 0

■ -b^y/3+K ̂ q-vpoo

J p , q { y < ' ^ ) =  ( a J  +  C +  « ) ( - l ) ' ’
Jo

dp
du

-l{p>0} 

which can be reexpressed as

Ip,q{y^^) =  ^ 4 ,9(2/, M  +  Qjp,q+l{y,'^) -  hp>0}{pJp-l,q(y^'^)} (1-112)

C a s e  q = 0

Now, for this case, the integro-differential formula (1.106) is not valid anymore 

and is to be replaced by the differential formula

ip,o{y) = +  C ) (1.113)

since, again from Appendix 1.5.1, it is justified to interchange differentiation and 

integration when taking the Laplace transform of the right-hand side of (1.113).
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It follows from (A.l) that

p ( w -  2ybn \ \

expression from which it is possible to derive (1.63) and

/o,o(l/,w) =  (1.114)

Combining together these different ingredients enables us to express the density 

in the form given in Theorem 1.1.10.



Chapter 2

Asian options on stocks

Asian options, whose payoff is based on the average of the underlying equity over 

some period of time, have known a very large success over the past years, specially 

in their most popular form, the arithmetic Asian option and have been used in many 

different markets^: equity, interest rate, commodity, energy, etc. This success can 

be explained by several economic reasons. Firstly, Asian options provide a better 

hedge for firms having a stream of positions over time and thus constitute a natural 

hedging toolbox for managing the financial exposure (typically foreign exchange or 

commodity exposure) over an accounting period for corporate treasury. The Asian 

option will indeed be cheaper than the corresponding portfolio of plain vanilla options 

although, as noted in Geman and Eydeland [35], a single Asian option is not always 

cheaper than the standard European option with the same characteristics. Secondly, 

these derivatives reduce the exposition to near-the-maturity market manipulation. 

Indeed, for thinly traded underlyings, large market participants may have a weight

^Though the title emphasizes the fact the processes studied in this chapter are mainly used 
for equity modelling, the results concerning Asian options are still valid for other markets and 
types of underlying on condition that the lognormal or the square-root processes provide a good 
representation for these underlyings.

66
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sufficient to impact the price movements in their favor when the option maturity 

comes close. This kind of market manipulation have a much smaller effect on Asian- 

type derivatives.

Asian options are among the most difficult to price path-dependent options, as 

mentioned in Geman and Eydeland [35]. This fact, along with the practical impor­

tance of this financial instrument, accounts for the amount of research dedicated to 

this specific pricing problem.

In this work, we will only consider European-type - i.e. exercisable at maturity 

only - Asian options on continuous arithmetic averages. The first part of this chapter 

synthétisés the main results that have been derived and the main techniques that 

have been applied to this problem in the literature. In the second part are presented 

the analytic pricing formulae for fixed and floating strike seasoned and unseasoned 

options that we obtain by inverting the Laplace transform with respect to time of these 

options, in the classical Black-Scholes lognormal equity model. In the last part, we 

derive slightly simpler analytic formulae for an alternative equity model: the square- 

root CEV process of Cox and Ross [16], extending first the results of the previous 

chapter to the non mean-reverting case and then applying them to this option pricing.

2.1 Literature review of Asian options

2.1.1 The different types o f Asian options

Different types of Asian options have been studied in the literature, although all 

of them are not actually traded. Typically, the continuous-time averaging option, the 

most studied Asian option, is an “ideal” option, since real continuous reporting is not 

possible. It yet remains of great importance to develop intuition on discrete options
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and approximate well the frequently marked ones. We will expose here these different 

varieties of Asian options.

To present a fairly general definition, Asian options are derivatives whose payoff 

is a function of the values their underlying asset assumes over a part or the whole of 

their life-time. Rogers and Shi [63] define more precisely this payoff / { I t )  as a call 

( / ( / t )  =  { I t  — A")+) or put ( / ( / r )  =  (AT — / t ) ^ )  on the variable I t  defined as

I t  = r  Sul^idu) (2.1)
Jo

where // is a measure on [0, T], T  being the maturity of the option and Su the under­

lying asset, which has mainly be modelled so far as a geometric Brownian motion^,

i.e. dSu = rdu -h adWu-

More commonly, four main types of averaging are considered:

•  Discrete arithmetic average

N

n = 0

•  Discrete geometric average

N  \

. n = 0

•  Continuous arithmetic average

1 r
I t  — 7  ̂ I Sudu

^ -  ^0 Jto

•  Continuous geometric average

It  =  exp  l n ( 5 „ ) d u |

^With the notable exception of average options on interest rates, where square-root processes 
and affine models have been considered. But, since this chapter focuses on the equity case, they are 
not included in this review.
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where {Tj, i = 0..N} is a set of different ordered dates such that Tn  = T  is the 

maturity and To the averaging starting time.

According to their payoff, those derivatives^ can moreover be

•  Fixed-strike options

payoff =  (It  — K )^

•  Floating-strike or average-strike options

payoff =  {St  — It V

Finally, another differentiation lays the emphasis on the role of the pricing date. 

Indeed, these options being path-dependent, the date t at which the option is evalua­

ted can change the nature and complexity of the pricing problem. We hence classify 

these options as

•  Forward-starting: Tq > t

The averaging has not yet started, which basically means that the price is the 

expectation of the starting option over the distribution of the asset at the starting- 

date.

E{f{lT)\St)  =  E (E ( /( /T )  !% )!% ) (2.2)

This option will not be much considered here, since the main difficulty in this 

valuation problem is the actual starting option pricing.

•  Starting: To = t

The option is priced at the very moment the averaging is activated.

• Backward-started : Tq < t

The option is priced while the averaging has already started and some information 

is therefore already available. This can either simplify a lot the pricing or complicate

^The payoffs given here are those of call options, the corresponding put options payoff can be 
easily inferred.
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it or not really matter. The case a simplification occurs is the fixed-strike option 

which turns to already be in the money: this option will almost surely be exercised 

at maturity and its price is simply ^(H-h\St)+h _  expectation known in a simple 

closed-form thanks to Fubini theorem. In the case we are dealing with an out-of-the- 

money fixed-strike option, the price is simply ^  times the starting option price with 

maturity T  — t and strike {K — As for the backward-started fioating-strike

option, it cannot be brought back to the same form as a floating-strike starting option; 

the structure of the problem is thus more complex for a backward-started option. As 

a final remark, it should be noticed that these backward-started derivatives are also 

called seasoned as opposed the unseasoned starting options.

2.1.2 The different approaches carried out

Geometric averages both discrete and continuous have simple dynamics under the 

assumption of lognormality of the asset, which constitutes the main reason why these 

options have been studied, along with the fact that they are somehow - but in a 

complex way - linked with the arithmetic option: they provide bounds (arithmetic 

mean always dominating the corresponding geometric average) and also prove to be 

useful as control-variate in Monte-Carlo pricing of arithmetic options since they are 

highly correlated with the arithmetic average.

However, the valuation of arithmetic average Asian options turns out to be far 

more complex and has been triggering the interest of financial mathematicians for over 

a decade. Research has been evolving towards an intricate interplay between theo­

retical and computational approaches. The following review, though not exhaustive, 

presents the main approaches and attempts proposed in the literature.
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Analytical approaches and Laplace transform analysis

As early as 1992, Yor [75] formulated the price as a triple integral, which, though 

theoretically of great value, remains difficult to compute numerically (see Schroder 

[65] for some numerical illustrations). He also initiated with Geman [76] the Laplace 

transform approach, expressing the Laplace transform with respect to time of the 

option as a product of special functions, exploiting the connection with Bessel pro­

cesses. Most of the work along this line has afterwards consisted in numerically in­

verting this transform. Some of the main contributions on this topic are: Geman and 

Eydeland [35] who proceeded through quasi-fast fourier methods, Graddock, Heath 

and Platen [17] who compared the efficiency of different numerical Laplace inversion 

techniques and Fu and al. [32] who compared Monte-Garlo and Abate-W hitt me­

thods. However, the recent work of Schroder [65] provides an innovative analytical 

inversion of this Laplace transform.

• Pseudo-analytical approximations

This approach mainly consists in finding quick and simple approximations. The 

principal technique used to this effect is to approximate the distribution of It  with a 

known distribution sharing a number of higher moments, typically at least the first 

two^. One of the first such attempts is Levy’s [48] who used a lognormal distribution 

for It  and a bivariate normal distribution for (ln(/T),ln(5r)), which is computatio­

nally very simple but provides a poor approximation, given that a sum of lognormals 

is far from being a lognormal. Milevsky and Posner [57] provide an approximation 

for long-dated options, using the limit distribution of It , which is a reciprocal gamma 

distribution whenever the interest rate is less than half the square-volatility. They 

later used Johnson distribution of type I and II in [61], since those allow for the fitting

'^This notably allows the conservation of the important call-put parity relation.
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of more higher moments. Turnbull and Wakeman [71] chose a different way to include 

more moments by opting for an Edgeworth expansion around a lognormal.

Those approximations based on the moments of It  share the common pitfall that 

the distribution of It  might not be determined by its moments, determinacy problem 

which has remained unresolved. Other approaches less simple but more theoretically 

justified are using variables linked to It  which, unlike 7r, are proven to be determined 

by their moments: Dufresne [26] proposed a Laguerre expansion using the reciprocal 

^  while Fusai and Tagliani [34] used different methods (normal approximation, Ed­

geworth series around a normal, generalized beta of second kind approximation which 

allows for a greater flexibility since this distribution depends on more characteristic 

parameters, etc.) to approximate the law of ln (/r). The main difficulty in these two 

approaches is the actual computation of the moments, requiring to solve a numerical 

differential-difference equation^ for ^  or the inversion of a Laplace transform for 

ln(/T).

Other simple approximations not based on moments are the linearisation argu­

ment used by Bouaziz, Briys and Crouhy [7] who approximated to the

first order by the normal variable ^  + e r f ^ f o r  small volatilities and the 

bounds and approximations given by Curran [18], Rogers and Shi [63], deduced by 

conditioning on the variable Wudu. These last bounds have shown to be surpri­

singly tight and have even be further tighten by the work of Thompson [68].

®Work has been done on a easier computation of the reciprocal moments, but they still need 
involved numerical procedure.
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• Numerical PDE

The first attem pt to evaluate the fked-strike Asian call option through the nu­

merical resolution of a partial differenthl equation was the three-dimersional initial- 

boundary value problem given by (See'ngersoli [43]):

C{T,Sr , ln )  = { l T - K ) +  (2.4)

C((, St, K )  =  (2.5)

Cit ,  0, It) = » - ’-('^-*)(/* -  iT)+ (2.6)

Similar equations can be deduced for pits and for fioating-strike optiom.

Ingersoll [43] first noticed that the fi»ating-strike option valuation can be reduced 

to a two-dimensional problem by using homogeneity properties. Rogers and Shi [63] 

and Alziary and al. [1] extended this resilt to the fixed-strike option using the variable 

Zi = (see also section 2.2.1):

" f&b) S +%="
C(Z,T) =  (2.8)

lin C =  0 (2.10)Z-fo

A large part of the research has thei focused on how to improve tie numerical 

handling of this PDE: Zvan [79], Vecer [73] and how the PDE can be extended for 

slightly different assumption: Andreasoi [2]. These reference are h r from being 

exhaustive.
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• Monte Carlo simulation

Monte-Carlo pricing remains in general the most flexible (allowing for example 

more complex modelling of the underlying asset, including dividends, etc.) but also 

usually the most time-consuming numerical method. In the case of Asian options, 

this approach has been considered by Kemna and Vorst [45] and a good number of 

other authors. Notably, Fu and al. [32] explained the inefficiency of naive simulations 

and the great care that should be taken when using control variâtes.

• Tree and lattices

Trees are well-known not to be a suitable method for pricing Asian options, since 

the latters depend on the whole path of the asset during the averaging time and 

require to keep track of all the averages possible at a node, the cardinal of these 

possibilities growing explosively. A number of works have though considered this 

numerical approach: Hull and White [42], Neave and Turnbull [58] and sophisticated 

methods have been developed to try and circumvent the problem, the main advantage 

of tree and lattice methods being the extension to American-type of Asian options, 

which can be exercised at any time in a predeflned discrete or continuous window of 

dates including the maturity of the option.

•  Miscellaneous numerical methods

Other miscellaneous methods that cannot be classifled in the previous categories 

have been explored, as for example: Caverhill and Clewlow [11] who use Fourier 

transforms for discrete options.
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2.2 The classical lognormal case

In this section, we assume that the asset Xt  follows a lognormal diffusion

^ = r d t  + adWt (2.11)

under the risk-neutral measure Q. All the options studied in this section depend on 

the random temporal integral Yt  = Jq Stdt.

The recent developments in Asian option pricing are mainly based on the fact

that, in the lognormal case, the SDE followed by the integral can be fully specified

independently - in a loose sense - of the one followed by St. Hence, the dimensionality 

of the problem can be reduced, thanks to the properties of the following linear SDE. 

We here present the different forms of reduction possible, showing how they relate, 

how they have been used so far and how they can be used, synthetic point of view 

yet lacking in the literature - to the best of our knowledge.

2.2.1 A linear SDE of interest 

T h eo rem  2.2.1. The following linear SDE

dXt = {a{t) -  (3{t)Xt)dt -h cr{t)XtdWt (2.12)

has the unique strong solution

X t = L t ( x o  + j ^ ^ d s j  (2.13)

where

Lt =  (2.14)

Proof. The existence and uniqueness of the strong solution come from the fact that 

the coefficients satisfy the Lipschitz condition. Now, looking at solutions of the form

Xt =  LtZt
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natural candidates are

dLt = p{t)Ltdt +  a{t)LtdWt

and

dZt =  ^ d t
I>t

Applying Ito lemma to this guess with Yq = X q and Zq = 1 shows that it is the strong 

solution. □

C o ro lla ry  2.2.1. The SDE

dXt =  (o — l3Xi)dt +  cXtdWt (2.15)

has the unique strong solution

X t  = ( x o  +  a j ^  (2.16)

Proof.  This straightforwardly follows from the previous result. □

This result allows us to express both the floating and flxed-strike Asian pricing 

issue in function of a one-dimensional process following a SDE of the type (2.15). In 

fact, different reformulations of the problem are possible.

T h e  s ta n d a rd  re fo rm u la tio n

For the floating-strike Asian option, this formulation first appeared in Ingersoll 

[43]. For the flxed-strike option, this appeared in Rogers and Shi [63] and Alziary 

and al. [1].

They are all based on the use of the following equivalent probability measure

5'T

The fixed strike option price can then be reexpressed as
+

dQ EQ(St )

;e

s [  K  Yj'

(2,17)

e - r T E Q [ ^ - K ]  = 5 o £ « q f - ; ^ l  (2.18)
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The real underlying process ^  ~  with the starting value X q = ^  satisfies 

the SDE

dXt = ^  — (r — a ^ ) X ^  dt — a X td W ^  ~  ^  ~  T  ~  ~  (2.19)

(resp. being a Brownian motion under Q (resp. Q^).

The fioating strike price takes the similar corresponding form

^ - r T ^  ^ 5 r  -  Ç  j  =  SoEfi" ( l  -  (2.20)

with Xt  =  —̂  following the same SDE as (2.19) but the starting value X q = 0. 

A n o th e r  re fo rm u la tio n

We present here a second type of reformulation, which will be useful in the next 

part of this section.

T h e o rem  2.2.2. I f  the process Xt follows the SDE

dXt =  {oiSo +  rXt)dt +  cX td W ^  (2.21)

with the initial value X q = XqSqj then X t  has the same distribution as xqSt  +  oAr

with St a lognormal process of parameters {r,a) starting at Sq.

Proof. As demonstrated above, the SDE has the unique strong solution

't
^dsX t = +  aSo [

Jo 

Jo

The rightmost part of this equality follows from the change of variable u — t ~  s. 

But, B(t)  =  is a Brownian motion under Q since its paths are continuous
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and the increments B{u 2 ) — B{ui) are normal of mean 0 and variance U2 — u\ and 

independent of the past {B{u),u < ui). Hence, by time-reversal,

Xt = + aSo [
Jo

□

A special case of this result can be found in Dufresne [25]. This result will be used 

in the following part to produce a simple derivation of the Laplace transform with 

respect to maturity of the Asian option and to propose another form for the transform.

2.2.2 H itting tim e M GF

The hitting time of Xt  following the linear SDE (2.15) is a random quantity of 

great value in the Asian option problem. Indeed, since the integral Yt is an increasing 

process, the hitting time being less than maturity or not determines whether the 

option ends in the money or not.

T h eo rem  2.2.3. Considering a process Xt defined as the strong solution of the SDE 

(2.15) with X q = Xq > 0 and a  < 0, the hitting time o f a ^ O  defined as Ta = i n f { t  > 

0 : X t = a} has for moment generating function

+ ^  +  2,

with _______________

+  +  +  +  (2 23)

where the complex square-root function is here defined as the branch with positive real 

part and ÿ represents the Kummer confluent hypergeometric function of the first kind.
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Proof. Applying the Ito lemma to e~^^f{Xt) prompts us to search the smooth func­

tions /  satisfying the PDE

^ x ^ f ' \ x )  +  (o !-  (Ix)f'{x) = Xf{x) (2.24)

We attem pt a Frobenius or analytic coefficient approach and assume that the solution 

can be written under the form f{x )  = Transposing this into the equation

(2.24) gives a simple form for the coefficients but leads to a diverging series. The form 

of the coefficients suggests that using the variable z — l / x  would preserve a simple 

form for the coefficients and at the same time lead to a convergent series. So, letting 

g{z) = f { ^ ) ,  the equation (2.24) is transformed into
2

y 2:V '(^) +  z(cr  ̂+  / ) - a z )g \z )  -  \g{z) = 0 (2.25)

Now, assuming g{z) = (2.25) becomes
oo 2 00

^ 2  z^^^an{{n 4 -  fT){n +  — 1)— +  (cr̂  + /3){n fi) — X) = ^   ̂a:̂ "'"”a„_i(n +  /i — l)o;
n = 0  n = l

II is determined by the lower order coefficient®
2

"^M(M — 1) +  ^

Hence, /i can take the two possible values and ii~

“  \ /  ( t  +  20-2A
(7"

And the coefficients follow the recursion

_  a (n  +  / x - l )  _  (/x)„
-  f  „ ( „  +  2^  +  1 +  H ) -  U V  n!(2^  +  f  +  2) „ ““

®This PDE has been solved in the hterature in some other contexts by transforming it to a 
classical known PDE (See Lewis [49], for example). Yet, the proof given here starts from the roots 
of the equation and naturally explains the intuition behind the change of variable made in Lewis 
[49].
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where

(t t)n  =  û ( û  +  1 ) . . .  (a +  7̂  — 1 ) =  

denotes the Pochhammer symbol. Hence, two independent solutions of (2.24) are

For a  < 0, (/?+, the solution with /i+, is the only one bounded in (0, oo). Its two first 

derivatives are bounded as well on M+. After prolonging this function to R~ so that 

the prolonged function is on R, the Ito lemma can be applied. Then, after 

stopping the relation obtained at Tq,

’T-a 

'0
-  <^+{Xo) =  p  ^ { X , ) d W ,

Therefore,

□

C oro llary  2.2.2. The hitting time of the origin, tq, possesses the MGF

+  S  r(t+Và + 2) (  " S )
Proof.  By dominated convergence, the result is the limit of the expression (2.22) 

when a —)> O'*". The asymptotic behavior of the confinent hypergeometric function of 

the first kind (See Erdelyi [28]) when x ^  —oo,

(p{a, c, x) =  p f f l ' +  C’( k r ' ) ]  (2 28)

implies that

□
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This last result enables a simple alternative derivation of the Laplace transform 

of Asian options given in Geman and Yor [77].

2.2.3 An alternative derivation of the Laplace transform of 

fixed-strike Asian options

The following simple proof does not directly appeal to the techniques like condi­

tioning on exponential random time or Green function methods employed by Yor in 

different papers ([77], [22], etc.) to deduce the Laplace transform. Placing ourselves 

in the framework defined in 1.2, Chapter 1 and using the same notations, consider 

the Laplace transform

POO

L C '{X ,q )=  /  e-^'^C^''\h,q)dh (2.29)
Jo

of the normalised fixed-strike Asian option

C^''\h,q) = E ( j ^  -  g ) (2.30)

and Xt  the process following

dXt =  (—1 — (2i/ — 2)Xt)dt — 2XtdWt (2.31)

with Xo = =  q.

From the results of section 2.2.1,

C^''\h,q) = E 9 \ X h) -  (2.32)

under the 5rnumeraire measure.

Yet, the calculation of the Laplace transform (2.29) can be conducted under the

risk-neutral measure itself while still using the one-factor process Xt. Indeed, a quite
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generic relation between a vanilla option and the derivative of the corresponding 

digital option with respect to the strike gives (see for example Alziary and al. [1]):

fQo
C M (ft,g )-C M (/t,9 o )=  / Q { X h < 0 , X o  = k)dk (2.33)

Jo

The properties of the process Xt  are such that once it crosses 0 (starting from a 

strictly positive value), it cannot become positive again. This is easily seen by writing 

the strong solution and implies that

Q{Xh < 0|%o = k) = Q{tq < h\Xo = k) (2.34)

Moreover, the Laplace transform of a distribution function can be deduced from the 

moment generating function

E{e-^^\Xo = k)POO

/  e~^^Q(TQ < h\Xo = k)dh =  
Joro A

Taking % oo^ in (2.33), the celebrated classical formula (1.75) can be recovered 

from

fq A

^  r(//+  + V P l )  /  J _ \  ^  2̂ ____________ /g 35)
T{2jjA +  z/ +  1) y2g j  (2)U+ +  z/ +  l)„n!(^+ +  n — 1)

given that, here, with this parametrisation,

A+ =  (2.36)

In the next section, this Laplace transform will be analytically inverted using complex 

analysis and contour integration.

^In the limit ço —̂ oo, the call value vanishes.
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2.2.4 Analytical inversion of the Asian Laplace transform: 

Bromwich integral and residue calculus.

We keep using the notations of Section 1.2, Chapter 1.

T h eo rem  2.2.4. The normalized fixed-strike Asian call price (2.30) is given by

{/■
(2(A,g))e 2 9^^ L \{ -q )e  2  ̂ e 2

7rg2+i (î/ +  l)g 

—1/ — 1,1 — i/, —g) L \{—g)

1/ + I

e 2
( i /+ l ) V  r( l  -

— 2, —1 — I/, —g)
r(-z /)g ‘̂ +2 +

1/ +  I

^  ^ ( —n —v —A
lQ S n { - lT K ^ { q )e ^ - ^

} (2.37)
L ^  +  1)(A„ -  !/2)(A„ -  (1/ +  2)2)g"+"+3

where we denote N  = [ ^ ^ ] ,  9 =  ^» A„ =  (2n +  i/ +  4)^, =  —2n — 1/ — 4 an<f

2
H(A,g) =

r ( ^  +  2)
r(iA)

4 g T V (4 ^  +  2, l  +  2A,g)
(A2 +  i/2)(A2 +  (,/ +  2)2)

(/)(a, 6, •) and 'ip{a,b,-) represent the Kummer Junctions of the first and second kind 

respectively, L^{-) the Laguerre polynomial ofordern and index u andV{’) the Gamma 

function, all of which are the special functions defined in Appendix A.

Proof. We start by using the shifting and scaling properties of the Laplace transform 

and define C^^\h,q)  as

®[x] represents the integer part of x.
^Although the presence of complex numbers in the definition of H(A, q) casts a doubt as to the 

nature of CO')[h,q), it actually turns out that +  2,1 +  iA, ^  j  is reassuringly real
valued, which comes from the properties of the Kummer function.
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Therefore, C^''\h,q)  has a Laplace transform with respect to h equal to

=  (A -  S  _(! + 2 ) ^ ) K ^ " è ) +  1)

The usual Laplace inversion integral formula gives

1 p c + io o

C^’' \h ,g )  = —  e^’'L ( f { \ , q ) d \  (2.38)
27T2 J c —ioo

where the real number c can be set anywhere at the right of all the singularities of 

LC'' (i.e. any singularity should have a real part inferior to c).

Studying those singularities, it appears that, given that the function <j)* = 

is analytic^® in both its variable x  and its parameters a  and 7 (see Erdelyi [28]), the 

only poles of LC^ are those of and those of +  2), the Gamma

function being well-known (see Gradshteyn and Ryzhik [37] for example) to have 

only simple poles at the negatives integers —n  with the corresponding residues 

Additionally, the presence of y/X makes LC*" multivalued in the complex plane. But, 

recalling Theorem 2.2.3, the square-root is here defined as the branch with positive 

real part. This implies that we need to put a branch cut along the real negative 

axis to avoid crossing this half axis, which is the only part of the A-plane where the 

function is not single-valued.

This analysis prompts us to choose the complex contour C drawn in Figure 2.1 to 

calculate the integral. The residue theorem implies that the integral along C is equal 

to the sum of the singularities of e^^LC^(X,q) lying inside the surface delimited by

^°In the general case, this follows from the fact that

lim =  ^"+1 ,^(a +  n +  l ,n  +  2,^) (2.39)
7 - ^ - n  r ( 7 )

and that the Gamma function has no zero. But, here, the negative values of the parameter 7  =  1+VX 
in the above formula would anyway not be attainable given that VÂ is chosen to be of positive real 
part.
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Figure 2.1: The Bromwich contour

this closed contour, i.e.

^ . i e ^ ' ' L C ‘'{X,q)dX=  ^
Xi€S{C)

(2.40)

where S{C) represents the interior of the surface bounded by C, A* the singularities 

of LC^{X,q) and Ri the corresponding residues.

As the radius of the two quarters of circle included in C is let to infinity, their 

contributions tend to 0, which can be seen from the asymptotics of the Gamma 

function for argument with large modulus, a Stirling type of formula

r(z) =

Vx — V
and from

lim (j)
|A |- > cxd

Hence, setting c as the abscissa of the vertical line in C and after a change of 

variable in the two real integrals, the limit of the integral along C is equal to the sum
1 p c + io o  1  fo o

—  /  e^>'L(f{X)dX+ —  I  e - ^ \L ( f ( X é ' ' ) - L < f{ X e - ' ' ' ) ) d X
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which means that

1 POO

& ' ' \ h ,q ) =  Y "  e-^'‘(LC‘'{Xe") -  L< f {X e-"))d \  (2.41)
Jo

The inversion can be therefore be completed as soon as the residues and the branch 

cut integral are computed explicitly.

a) Residue at A =

The residues at the simple poles A* are given by

=  lim (A -  Ai)e^"Z,C"(A) (2.42)
A—

Therefore, if i/ >  0 (y/X = i/), using r( l  -h z) = zT{z) as well as the rela­

tion between the Laguerre polynomials and the confluent hypergeometric functions

^n(^) =  +  1, 4 , the residue is ^ ) .

If <  0, the residue becomes ^ “  1» 1 “  since y / \  = —v.

b) Residue at A =  (i/ -\-2)“̂

If 1/ -I- 2 >  0, the residue is

If 1/ +  2 <  0, it becomes — — i/ — 2, —1 — i/, —

c) Residue at the poles of +  2)

Though situated at the negative integer values —n  of the argument of the Gamma 

function, these poles are in flnite number because of the condition Re{y/~X) >  0, 

which imposes n  € [|0, [^^^]|]. Then, for n in this range, using the Kummer relation 

(j){a,7 , z) = e^0(7 — a , 7 , —z), the residue at A =  (2n + 1/ +  4 y  is

( - l ) ’‘ (2g)’*+‘'+3 16s„
r(a^  +  i) ( A - ! /2) (A - ( : ,  +  2)2)

d) Branch cut integral

This integral is computed with the complex square-root equal to iy/X above 

the negative axis and —iy/X below. Using the Kummer relation and the equality
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tp{a ,^ ,z)  = r ^ ^ : ^ ÿ ( a , 7 ,z) +  j  P 1,2 -  z), as well as the con­

jugate relation F(z) =  r(z ) , it can be established that

+  2,1 +  ,VÂ, 1
iy/X

T { i ^ p 2 )
r(%VÂ)

which leads to the result after a change of variable in y/X. □

2.2.5 Eigenfunction expansion technique: explicit integral 

form.

Lo and al. [52] showed how the eigenfunction expansion technique is particulary 

well suited to the interesting problem of pricing barrier options and applied it to a 

single barrier under the square-root process. Although the eigenfunction expansion 

is a quite popular and well-known method in other fields, it is relatively new in 

finance: see Hansen and al. [38] and Florens and al. [30] for some applications 

in econometrics. Lewis [50] applied the method to option pricing under stochastic 

volatility. In another remarkable work [49], he also considered two specific problems: 

the valuation of European-style options on stocks paying a continuous time dividend 

and the Merton [56] economic growth model, problems which, as will be seen in the 

next section, are related to the Asian option valuation issue. The work in this section 

and the following one is mainly inspired by Lewis [49] and Lo and al. [52] research 

papers and shows how the techniques developed in these texts can be applied to the
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different types of European-type arithmetic Asian options^^.

The next section will deal with Lo and al. [52] type of countable eigenfunction 

expansion. In this section, we present an extension of Lewis’s result, lifting the 

constraint of positivity for the interest rate. Though a negative rate would not be 

expected when modelling vanilla options on stocks, this case will prove to be of 

importance when considering the standard Asian option case again.

i. C all o p tio n  on  stock  pay ing  a  con tinuous ab so lu te  d iv idend

T h e o re m  2.2.5. Considering a stock paying the positive constant absolute dividend 

D following the SDE

dSt = {rSt -  D)dt +  aStdWt (2.43)

where r  G M and defining

0  = ^  (2.44)
(7̂

and

7 =  ^  (2.45)CT̂

the call option on this stock with strike K  > 0 and maturity T, of payoff {St  — AT)+ 

has the value

(̂— -
note that very recently, in a work carried out independently, Linetsky [51] has also applied the 

eigenfunction expansion technique to the fixed-strike Asian option problem. But, firstly, we derive 
the exact integral formulation in a much simpler way by exploiting a slight extension of Lewis’s work 
and a combination of the one-dimensional Markov formulations for the Asian valuation problem. We 
also express our results in terms of the confluent hypergeometric function rather than the Whittaker 
function employed by Linetsky [51], a better choice in the asymptotic regions. Finally, we give 
analytical results and approximations for both unseasoned and seasoned floating strike options which 
are not at all treated by Linetsky [51].
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with

and

+ lw > 3 }7 (-^ ) e *  ^
^*0  ̂ m=0

poo 2

Jo

r(c^ — a^ — 2)
r ( 2%/z)

2 / ^ 2  \

5o/r

(2.46)

(2.47)

(2.48)

wAere 6 = +  m((3 -  3 — m), a^ = ^  +  i/i, =  1 +  2%̂  and

Cm = P — — 2m. t4s m Theorem 2.2.4, (t>, ip, T, LJJ are the special functions de­

fined in Appendix A.

Proof. The proof of this result given in Appendix 2.5.1 follows the lines^^ of the one 

in Lewis [49]. □

ii. In te g ra l fo rm ula  for th e  fixed-strike p u t

T h eo rem  2.2.6. The fixed strike Asian option put price, of payoff , can

be evaluated as

P ' '% So ,K ,T ) = N ^ ^ , y ( z à r ! l 4 _ 3 r 2 - 5 £ - ^ A
[So ' r T \ '  r ( 2 - ^ ) ^ V  <r2’ ^ 2 ’

1 -

—  + —  I 1 _  IfHML
- ^ r T \  r ( 2 - ^ ; ^

 ,
r ( - ^ )  V ’ <t2> ĉ 2Kt J

a '^ K T J )

2So \ .rT

^^The price has basically the same form as in Lewis [49] with two exceptions: the first residue 
(first line of the result) and the third line.
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- i ? -

m = 0

/ £ ^ \ m + 2 , _  x ^ , - f ^ - 3 - 2 m , _ ^ x

C (C K^ = ________I 2 g p  ; I  Ka-^KT)________
 ̂ ( m  +  l ) ( m  +  2 ) r ( - ^  -  3  -  2 m ) ( - ÿ  -  2  -  2 m ) ^ + z  ^

where

and

(u{Sq, ^
r ( ^  -  i  +  ifi)

and finally 5 =  ^

Proof.  W ith the standard formulation in equation (2.18) of section 2.2.1 using the 

asset-numeraire defined by the Radon-Nykodym derivative (2.17),

r ’̂ E ^  ( K - ^ y  = SoE<^\x+)

where the underlying process Xt = ^  — ^  can be defined as the strong solution of 

the SDE

dXt — ^ — — — r X ^  dt — a d W ^

with the starting value X q = —^ .  The Asian fixed-strike put price is thus worth 

Sq6~ '̂  ̂ times the vanilla European call option with null strike^^ on a stock paying 

a dividend D =  ^ , starting at the initial value ^  with the interest rate —r. The 

exponential in the multiplicative coefficient Soe~^^ represents the correction for 

the discounting at the interest rate —r, as moving to the asset-numeraire lifts the 

discounting of the payoff.

^^The stock having here the possibility to go negative, this call price does not reduce to the 
expectation of the stock.
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Given this, the expression (2.51) follows from the asymptotics (2.28), (2.76) and from 

the limit:

lim (2.52)
x-^oo X"" m\

The limit and summation can be inverted for the calculation of the last term of (2.51), 

since the limit expression is absolutely convergent. This results from the expansion 

(2.76), the relation (see Gradshteyn and Ryzhik [37]):

7T

and from the limit (see Erdelyi [28]):

y { x , y ) e R ^ ,  lim |r (x  +  i y ) \ e ^ = yj(2ir)

(2.53)

(2.54)

□

ill. In te g ra l fo rm ula  for th e  unseasoned  fioa ting -strike  call

T h eo rem  2.2.7. The floating strike Asian option price of payoff [St  — can be 

evaluated as

C ^'-'(S o ,T ) =  [so -  § ( l  -  5  + 2.

+ 1
---1

r ( ^ )

2r  . 2r
(j2’ (j2T

, - r T

/  2

m=0

where

—

fs -

{îji +  i){’fn +  2 )r(%  — 3 — 2 m ){ ^  — 2 — 2m)m+2

(2.55)

(2.56)
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and

1 r ( - ; 3  — 5 + i^ )
r ( 2in)

(^-1-1)2
and finally Ô =  — .

Proof.  Using the asset-numeraire defined by (2.17), this price could be computed 

through the relation

( s t - y Y  = "  è )  ̂  ( l - ÿ ) ^  (2.58)

The Itô lemma gives X t = ^  as the strong solution of

dXt =  ( 1  —  rXi)dt  - l-  (jX^dW^

with X q =  0.

But, the alternative formulation of Theorem 2.2.2 shows that X t  has the same 

distribution as In other terms, the starting fioating-strike call

option is worth 5oe“^^ units of the starting fixed-strike Asian put option of strike 1 

on an asset of initial value 1 and interest rate^^ —r. This result, though interesting 

as it brings together two apparently unrelated options, depends on the lognormal 

assumption for the asset distribution

Alternatively, the expression (2.55) can also be obtained as the price of a vanilla 

call option with null strike on a stock paying a dividend ^  and starting at ^o, with 

the interest rate r. Indeed, from Theorem 2.2.2, if Xt satisfies

*̂ 0 , T/- \  j n j r QdXt — ( — — +  r Xt ]dt -\- GX tdW j

'̂̂ It is straightforward to generalise the results of this chapter to an asset model which includes 
proportional dividends or comparable features which can turn the asset drift negative. Typically, 
in the foreign exchange market, negative drifts are sometimes encountered. Considering a short 
rate —r is thus not shocking in financial terms, since there is no discounting at a negative rate in 
this formula. This relation between fixed and fioating strike options is therefore not merely a pure 
mathematical object, it has a financial sense.
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then X t  has the same distribution as St  — Yz.
T □

iv. In te g ra l fo rm ula  for th e  seasoned  fioa ting-strike  call

T h e o rem  2 .2 .8 . Noting a =  the seasoned floating strike call option price of

payoff (St  -  is

r T y  T { ^  + 2 y \ ( 7 ‘̂ '

1 _  1 2r  ^  ■
r(% ) ’ a ^ ’ a2T[

a ‘̂ T

. - r T

1 + ̂
m—0
'OO

with

and

1-I-Æ /*00 2
+Si  ̂ a ~ ^ e“ ^  /

Jo

/ o £ l T i \ " i + 2 r S - 3 - 2 m / ^ ^ x  ^ - 3 - 2 m .  g \
 ̂ / o  _  I 4St j ^m+2

sm Wi ) — (%? — 2 — 2m)ni+2r ( - ?  — 3 — 2m)

r ( - ^  -  5 +  v )
r ( 2^ ) \au^T^ )

•f*

(2.59)

(2.60)

(

1 r  25'f \  / 3  r  2 \

Proof.  This option can be seen as a vanilla call option with strike a on a stock 

paying a dividend ÿ  and starting at St with the instantaneous interest rate r. This 

representation follows from Theorem 2.2.2. □
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R em ark . In this section and the following one, our choice to evaluate either one 

of the call or put option price is determined by their mathematical properties. For 

example, the payoff of a fixed-strike Asian put is bounded, which makes it easier to 

price than the corresponding call. It is yet possible to retrieve one from the other 

with the classical call-put parity relations.

For fixed-strike options,

C^“ (So,K ,T )  -  p f ‘̂ {So,K ,T) = go -  e~''^K (2.62)

which comes from the fact that^^

e ( J  S^,du\ (2.63)

For fioating-strike options,

r T  — 1 -4-
C^'"‘'(Sq, T) -  T)  = -------- ^ ------ So (2.64)

2.2.6 Eigenfunction expansion technique: series form.

We start by observing that the fixed-strike Asian option is a barrier option, 

since the underlying is a strictly increasing process. This would naturally appeal 

to the application of countable eigenfunction expansion methods for barriers options 

like the one used in Lo and al. [52]. However, among the two Markovian one- 

factor representations we can use for this valuation, only the second one (second 

formulation of section 2.2.1) would allow us to work with a bounded state-space. But, 

this representation is valid only at maturity, given that the distributional equivalence 

is not valid at the process level: path-properties and hence barrier features cannot be 

exploited. It is still possible to consider a barrier option and exploit this eigenfunction
15 Straightforward application of Fubini theorem.
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representation as an approximation to the Asian option in the limit that the barrier 

H, well above the strike level K ,  recesses to infinity. The approximate option can 

then be priced, following the same method as in Lo and al. [52], the main intuition 

being that, for a regular Sturm-Liouville problem, the associated Green function will 

only have discrete negative simple poles and can hence be (relatively) simply inverted. 

A brief account of the theory of eigenfunction expansions can be found in Zanderer 

[78).

i. Series ap p ro x im a tio n  for th e  fixed-strike  p u t.

T h eo rem  2.2.9. For any H  > K T  sufficiently large, the fixed strike Asian put price 

can be approximated by

oo
(2.65)

n=0

with An the (negative) zeroes of the function \n ) , where

( (3 / ,;^ )=  O y  % L + ( A n ) , 2 ;z+ (A n )-%  +  2 , ^ )  (2.66)
\ y a ^ J  V ^  cr 2/ /

and

Cn is defined as (with fin = K ^n ))

=  ( ^ )  +  +  (2.68)

And ||f(An,-)|P is given by the equivalent expressions

l im . .  ■)(■ =  r  « t i n ÿ z x i î * .



(2.70)
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for any y and

<pt{x) =  x “ " i 0 ( / / i ( A ) , 2 ^ i l ( A ) - ÿ  +  2 , | § )

g (x ,A )  =  ^ ( x ) - ^ ^ ( x )

- ^ { x )  =  (;ii(A))x“'‘- “ + 1.2/ii(A) — + 2,1^ )

Proof.  To avoid the payoff integrability problems encountered in Lewis [49] and Ap­

pendix 2.5.1 and to work on a positive state space, we will use the second formulation

of Section 2.2.1, i.e. we consider Xt  following

dXt = {Sq +  rXt)dt  +  crXtdW^ , X q = 0

which, at a given date t, has the same distribution as the point Yt.

We note P{Sq, K, T) the price of the put option of strike K ,  maturity T  and time 

to maturity t  = T  — t. Then, from the results of section 2.2.1, the non-discounted put 

price P {X q, t ) = e^'^P{So, K, T) is the solution of the second-order partial differential 

equation

with the initial condition

p ( x ,o ) =

and the boundary conditions Vr <  T, P{H, r) = 0.

We define Q(x,X) =  f^e~ ^ '^P (x ,r )dT  the Laplace transform of P  with respect 

to r . Since P  is bounded by K ,  this Laplace transform exists at least for any A >  0. 

Then, for any A for which the transform exists, Ç{x, A) follows the ODE

AaCx. A) -  F(x, 0) =  +  (5„ +  r x ) % ^  (2.72)

with the boundary condition G{H, A) =  0.
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We follow the eigenfunction expansion methodology described in Appendix C 

(and use the same notations). Indeed, even if there is no absorption condition at 

0, the expansion is still valid with appropriate changes since there is a solution of 

the associated homogeneous equation tending to a limit at 0 (see Zauderer [78]). We 

construct the Green function from the solutions to this homogeneous equation, i.e.

d^Çh(x,X) 2{So + rx)dgh(x,X )  _  2A 
dx^ +  a T "  “

It can be put in a self-adjoint form with

s{x) = =  e ~ ^ x

and

2 r

w(x) = e ^

This ODE is the same as the equation (2.24) in section 2.2.2 with a  = Sq and /? =  —r. 

Hence (the form of the solutions does not depend on the sign of the parameters), two 

independent solutions of (2.73) are, with the same notations as in 2.2.2, (/?+ and (p~ 

defined in (2.70). Solutions of (2.72) can then be formally constructed (for x > 0)̂ ® 

as

A) .  Al +  SC. A) / "  (2.74)

where rj{x, A) and ({x, A) are solutions of (2.73) satisfying some conditions discussed 

below and Ĥ (̂ ,t/)(2/) is the Wronskian of these two solutions. As mentioned in the 

discussion in Lewis [49], this Green function solution exists if some sufficient integra­

bility conditions are verified. More precisely, noting p(y) = »7)(y)’ integrals

in (2.74) exist if (  € £ 2,^(0, x), rj € C2 ,p{x,H) and P(., 0) G £ 2,^(0, i7). These condi­

tions are sufficient to ensure the existence of the considered integrals but not always 

^®The function is then prolonged by continuity at 0.
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necessary. More specifically, Lewis [49] provides a counter-example in which the last 

integrability condition on f  (., 0) is not satisfied but the integrals are finite. In our 

setting, though, this condition on the final payoff is readily verified by the put payoff, 

although the diffusion considered here is very similar^^ to the one in Lewis [49]. FYom 

these observations, the first step to choose (  and r] is to determine the form of p{y). 

As W{^^ri){y) = 7 ^ 5  we have p{y) = Now, considering the asymptotics of the 

Kummer function ÿ (See Erdelyi [28]) as h —̂ oo

<!>{a, c, h) =  +  0(|A |-:)] (2.75)

it is clear there is only one linear combination (up to a multiplicative factor) of 

and <p~ which satisfies the p-square integrability condition near 0. We choose the 

multiplicative constant that enables us to express it directly in terms of the Kummer 

confluent hypergeometric function of the second kind tp. This leads us to the definition 

of ((?/, A) given in (2.66), where

r ( 2^+ -  ^  + 1) /  o c . \ / o c .  \ M -(*+

T { n h
The Kummer function of the second kind rp has the known asymptotics (See Erdelyi 

[28]) when \h\ —> oo, —| 7t < arg(h) <  §7r and A  =  0, 1, 2, . . .

1p(a, C, h) =  - C  +  l ) n ^ - a - n  ^  (g  y g )

0

which confirms that r}{x, A) is p-square integrable. It is actually the only bounded 

solution in [0,H].

^^This difference is mainly due to the sign of a  which decides whether C{y) vanishes or explodes 
near 0. a, positive in our case, is negative in the case presented in Lewis [49], hence limiting there 
the range of C-square integrable payoffs.
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Now, coming to r){y, A), the integrability condition on [x, H] is automatically ve­

rified by any solution, but for the condition Q{H,X) =  0 to be satisfied for any A for 

which Ç is defined, the supplementary condition r){H, A) =  0 is needed. The natural 

choice is therefore the one given in (2.70).

The Green function is then equal to

G(Aj

As outlined in Appendix C, we can exploit this expression to determine the eigen­

values and the normalised eigenfunctions. The eigenvalues A„, n = 0 ..  .oo are the 

discrete negative (real) values for which f ( i l ,  A„) =  0. The corresponding eigenfunc­

tions are multiples of r}(Xn,x) and ^(A„,a^). Their norms can be computed by using 

the definition of the scalar product (C.16) or the relation (C.17) with C(A). For the 

latter, we notice that

C(A) =

From the relation (see Erdelyi [28])

cP 
dx^

the derivative of rj is

X a+n x)] =  { a ) n X ‘̂ (j){a +  71, C, x)

<p(p^ + l , 2 p + - y ^ + 2 , ÿ f j

Finally,
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We still have to calculate the expansion coefficients

Cn= /  ^{y,\,)P{y,(>)vj{y)dy 
Jo'0

which, divided by the norms, are the projections of P ( . ,0) on the orthonormal com­

plete basis of eigenfunctions
oo

Vy € (0, H), P(y, 0) =  ^  A„) (2.77)
n=0

After making the change of variable h = ^  and using the relations (see Erdelyi [28])

fjn
c, x)] =  (— c, x)

dx^

we can compute explicitly the coefficients, which leads to the expression (2.68).

□

Remark. Considering the solutions of the homogeneous equation (2.73), a first idea 

would have been to use the relation between the confinent hypergeometric function 

and the Laguerre polynomials and decompose the final payoff in terms of Laguerre 

polynomials. But, this would lead to a divergent series, since the implied A„ would be 

positive. Yet, as seen earlier, using eigenfunction expansion without limiting the state 

space (i.e. without using the option barrier property) leads to a formula counting the 

first Laguerre terms and replacing the series with positive A„ by an integral of a 

Kummer function and other terms.

ii. Series approxim ation for the unseasoned floating strike call.

Theorem  2.2.10. For any H  > T  sufficiently large, the floating strike Asian put 

price can be approximated by
oo

C f ‘̂ \ S o , T )  =  5o (2.78)
n —0
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with \n  the (negative) zeroes of the function Ç(i/, A„) , where

/  2  /  2 r  2  \
=  ( — 2 ) H--2 + 2 ,  —̂  j (2.79)

\y(y J \  cr a ^ y j

and

Cn is defined as (with yin =

2 /  2 2 /  2r  2 \
e-?^,^(^/Xn +  2 .2 /i„  +  ^  +  2 , ^ j  (2.81)

The other terms are defined in the same way as in Theorem 2.2.9 except for

ll f̂A Alp — ^  j  (̂y,An)llU^n, jjj -  Jo +7̂  ^ y -  rjivM)

=  :r-^-<^(/^t(A),2/zi(A) -  ÿ  +  2, (2-82)

- ^ ( x )  =  (/il(A))x“^ -“V(/^-('^) +  Ij 2/il(A) — +  2,

Proof. The floating strike options call price can be derived, as previously, from the 

standard formulation of section 2.2.1

e-rTE<^(sr -  I ) "  = %E^'(l -

with Xq =  0 and

dXi =  (1 — r Xt)dt +  odW ^  (2.83)

This expectation is the price of a flxed-strike Asian option with iSo =  1, X  =  1 and 

interest rate —r. Given that the Theorem 2.2.9 is valid for any real r, this leads to 

the result. □

iii. Series approxim ation for the seasoned floating strike call.

The seasoned option price can be deduced in the same way as the unseasoned one, 

by using the asset-numeraire and a process satifying the SDE (2.83). The starting
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value of the process is not 0 anymore but a/SO, where a = . To obtain the

price, it is sufficient to multiply each term of the series (2.78) by An).

2.2.7 Numerical applications

In their reference paper, Geman and Eydeland [35] studied a group of cases that 

have been generally used afterwards as a benchmark to evaluate the performance of 

other numerical methods. We will thus check our formulae against these cases.

Case r a T K So GY GE-MC Integral
1 0.05 0.5 1 2 1.9 0.195 0.191 0.193174
2 0.05 0.5 1 2 2.1 0.308 0.306 0.30622
3 0.02 0.1 1 2 2 0.058 0.056 0.055986
4 0.18 0.3 1 2 2 0.227 0.217 0.218387
5 0.0125 0.25 2 2 2 0.1722 0.1711 0.172269
6 0.05 0.5 2 2 2 0.351 0.347 0.350095

Table 2.1: Fixed-strike Asian options, explicit integral form .

Table 2.1 compares the results by Geman and Eydeland on the numerical inversion 

of the Geman-Yor Laplace transform (column GY) and a Monte-Carlo estimation 

(column GE-MG) with the numerical evaluation of formula (2.49) adding put-call 

parity (column Integral). We are able to obtain a good accuracy with our numerical 

integration completed through the built-in NIntegrate routine of Mathematica.

Case r a T So Integral
1 0.05 0.5 1 1.9 0.191499
2 0.05 0.5 1 2.1 0.211657
3 0.02 0.1 1 2 0.265788
4 0.18 0.3 1 2 0.062566
5 0.0125 0.25 2 2 0.148986
6 0.05 0.5 2 2 0.265788

Table 2.2: Fioating-strike Asian options, explicit integral form . 

Table 2.2 shows the corresponding results for the floating strike options.
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It should be noted that the numerical evaluation of our formula does not present 

much difficulties, except in case 3. As a V T  decreases, the formula requires a finer 

and more time-consuming integration.

In Table 2.3, we consider exactly the same reference cases described in Table 2.1 

with the approximate series method presented in Section 2.2.6.

Case Value B N
1 0.193174 1.6 5
2 0.30622 1.6 5
4 0.218387 1.3 6
5 0.172269 1.5 6
6 0.350095 2.2 4

Table 2.3: Fixed-strike Asian options, approximate series form .

The column Value contains the value obtained trough the series method, B the 

minimal value such that placing the absorbing point at H  = B * K * T  leads to a 

sum less than 10“  ̂ away from the correct price. The maximal level this B reaches 

in these numerical application is 2.2. N represents the number of terms needed for 

the partial sum to be less than 10“^̂ away from the limit in relative value. As can be 

seen, for these levels for the barrier, the series converge in only 5 to 6 terms. This 

series is therefore extremely fast-converging.

However, as for all the other methods to evaluate these options, the troubles start 

when (j V T  decreases too much. For the case 3, we could not produce a result for this 

reason.

The behaviour of the series depends on the barrier level and, hence, on B. As this 

parameter decreases, the basis function rj becomes more and more oscillatory and the 

frequency or number of zeroes in an interval increases while the speed of convergence 

of the series decreases at the same time. This is illustrated by Table 2.4 and Figure 

2 .2 .
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B 1 2 4 5 8 10 15
1.76 .68 0.28 0.21 0.12 0.10 0.06
4.14 2.01 1.08 .90 0.63 0.54 0.42
6.87 3.65 2.12 1.81 1.33 1.17 0.92
9.92 5.54 3.37 2.92 2.20 1.94 1.56
13.25 7.67 4.80 4.19 3.20 2.84 2.32
16.84 10.00 6.39 5.61 4.34 3.87 3.19
20.67 12.53 8.14 7.18 5.60 5.02 4.15
24.73 15.24 10.04 8.88 6.98 6.27 5.22
29.02 18.12 12.07 10.72 8.47 7.63 6.37
33.51 21.17 14.24 12.67 10.07 9.09 7.62
38.21 24.39 16.53 14.75 11.77 10.64 8.95

Table 2.4: Evolution of the location of the zeroes with respect to B

9

7

Z

5

3

1
0 5 2510 15 20

Figure 2.2: Evolution of the speed of convergence with respect to B
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2.2.8 An excursion to jump-diffusions

The two reformulations to a one-dimensional markovian problem studied in Part 

2.2.2 and the alternative derivation of the Geman-Yor Laplace transform provided 

in Part 2.2.3 simplify considerably the framework in which the Asian option pricing 

problem is worked out. The foundation for this simplification lies on the nature 

of the strong solution of the SDE (2.12) and on the iSt-numeraire measure whose 

properties turn out to remain valid under more general assumptions, deviations from 

the lognormal Black-Scholes model, as for example non-fiat interest rate, stochastic 

volatility, etc (see Vecer and Xu [74]). However, it may become difficult to obtain a 

close-form solution with such extensions of the model. In this part of the chapter, 

we attem pt a generalisation to a multiplicative jump model and show that in some 

cases, we can still solve for the Asian option price in close-form. This problem has 

for example been considered by Andreasen [2].

We consider an equity defined by

St = ^  jj Z, j (2.84)

where Nt is a Poisson process of intensity A, Zj = independent and identically

distributed random variables on ] — 1, oo[, of mean m  = E { Z \ ) .  Nt and the Zj are 

assumed independent of the Brownian motion and the density of the variable In Z\  is 

denoted /^(-)- As previously, we denote Y t  =  Jq Sudu.

Andreasen [2] showed how the diffusion process gets modified under the asset- 

numeraire for gaussian log-jumps. The following proposition generalises this result.

P ro p o sitio n  2.2.1. Under the asset measure given as before by

the Poisson process remains one but with the intensity Xm and the distribution of the
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log-jumps becomes the Esscher transformed distribution, i.e. under Q^, the InZj have 

the density

P roof.  Defining A{t) =  ̂ Girsanov’s theorem for Poisson processes

implies that A/” is a Poisson process with intensity Am under the measure given from 

the risk-neutral measure by the Radon-Nykodym derivative A(T).

■ 3=̂

g{—u) = E {Z f^ )  standing for the MGF of In Z\. But, the random variable of density 

has for MGF □

As in the Black and Scholes case, we can work with the payoff process Xt = ^  — ^  

since E (J ^  — K ) ^  = E ^^{X t )~- This process satisfies a modified linear SDE with 

jumps under Q^, SDE whose parameters can be deduced from the results of Propo­

sition 2.2.1. But, as in the Black-Scholes case, we need only its diffusion under Q to 

work out the Laplace transform of the option

dXt = ( - -  X m )x A  dt -  adW ^ -  ^ ^ d N ^  (2.85)

As in Section 2.2.3, we deduce the Laplace transform from the MGF of the hitting 

time Tx =  inf{t > 0 ,  Xt < x}  for x = 0. To this effect, we study

7 /(x )  =  (a  -  +  ^ 2  f M ^  + y M y )d 'y - (2 86)

with a  =  —T, p  = r — — Am and i/(-) the density of Z  =

Using the change of variable z =  ^ as in the sheer Black and Scholes setting.

g " { z ) + z { a ^ + P z - a ) g '{ z ) - y g { z ) + x ( j  g ( r A ^ v { y ) d y - g { z ) ^  = 0 (2.87)
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Assuming the form g{z) = we try the analytic coefficient method and

infer an equation for fi from the lower-order terms

— /X — (A 4- "y) =  — AM^
2 r- 2 ' " J "  "  ■■ ^

where { ï ^ ) ^ ^ { y ) d y  represents the generalised moment E ( Z ^ ) .  With

D { g )  =  +  ( t  +  / )̂/x -  (A +  7) +  AM ,̂ we notice that D { 0) =  - 7  <  0 and

D { —oo) =  D(-\-oo) =  +00 and therefore conclude that there exist two roots for the 

equation D { ijl) =  0 , one positive and one negative. We shall call those roots and 

fj,~ hereafter. Since we want a solution bounded on [0,00[, only the solution with //+ 

is left. We redefine g{z) = with the coefficients Gq =  1 and

_  a{n +  /G+ — 1)
Tx/xo"̂  +  +  (/? +  +  A(M„-|_  ̂— M^)

To complete the calculations, we would have to find the asymptotics of this solution 

poo =  liniz ,00 9{z)  as when — 1 >  0

L̂ 0

which depend on the jump distribution chosen.

For this whole approach to work, we need to assume smoothness conditions on 

the jump density and that the MGF solved for is analytic with a very fast-convergent 

power series representation since the distribution should have moments of any order 

and the integral and the summation in 9 {ï^)j^{y)dy  should be interchangeable. 

These conditions should all be checked. We present below an application with a 

specific jump distribution.

In the case Z  is exponentially distributed with intensity p, we have to consider 

the following equation:

7 / W  =  {oix -  l3)f'{x) +  ^ - ^ f " { x )  +  A ^ y  f{xe^)pe~f^dv -  f { x ) ^  = 0
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This equation can be solved with the methodology described above or with the change 

of variable xe^ = u. Defining Aq = Bi = 7 +  (o; —cr^)(/?+1) +  A, B 2 = —/?(p +  2), 

C2 =  Û! — (2 +  C3 =  Cl =  —p  and D3 =  — is the positive root of

A q +  B i f i  +  C2p(/x +  1) +  D^fjL{pL — — 2) =  0

Although this equation has actually three roots, there is no contradiction with the 

previously shown result as, since D 3 <  0, there is a zero of this equation below —p 

which does not count since moments are not defined for this value. Denoting —fi and 

—̂ 2 the two - possibly complex - solutions of the second-order equation

B\ 4- C2(C +  (2/i^ — 1)) +  +  (3/x"*" — 3)(  ̂ +  2) =  0 (2.89)

we obtain
Q/r C^{n -\- — l){n  -I- — 2 4-

an-i nD^{n +  -h (2)

which means that

g{z) = 2^ 2 ( 1  +  f , C2 +  1; (2.90)

As g has the representation

9{z) =
r(f^+) /o Cl +  1, -%^zy)dy

r (2 — ^  +  C2)r(Ci + 1)B3

its limit at infinity is

This little excursion concludes our study of Asian options on geometric Brownian 

motion underlyings.
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2.3 The square-root process case

In this part, we show that it is possible to obtain simpler or rather easier to 

compute formulae for the Asian option prices when the underlying asset follows the 

Cox-Ross [16] square-root process instead of the Black and Scholes geometric Brow­

nian motion. Vanilla options (Cox and Ross [16]) and other exotic options (barrier 

options in Lo and al. [52]) have been studied and given in explicit form for the specific 

tractable square-root CEV equity model. But, to the best of our knowledge, no such 

attem pt has been made for Asian options.

In this section, St will refer to the square-root equity-spot

dSt = rStdt (j\fStdWt

and, as previously, Yt = fg S^du.

After some needed preliminary results, we will analyse the distribution of Yt by 

deriving its density and probability distribution function, thus extending the distri­

butional results provided in Section 1.1.3, Chapter 1. We then tackle the valuation 

of the Asian option in this model.

2.3.1 Prelim inary results

The quantity basically needed for valuing the Asian option is the expectation^® 

E(e~^^'^l{YT>K})- This expectation can be determined by double integration of 

e~^yi{y^K} against the joint-density of (St ,Yt ) or alternatively, by inversion of the 

corresponding Laplace transform, this last method being the one adopted here.

The first step is then to find the Laplace transform of this expectation.

^®Indeed, taking A =  0 gives the probability of being in-the-money and differentiating with respect 
to A at 0 gives E{Yt I{Yt>k })  ̂ the other term appearing in the option valuation.
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Theorem  2.3.1. The Laplace transform of E(e~^^r\^Y^^K}) fo r  A >  0 is

r  e-!^’̂ E{e->-^^l{Yr>K))dK = _  g (e  (2.92)
Vo

Proof. This can be seen by inverting expectation and integration with respect to K, 

using a dominated convergence argument. □

Now, given that the first term on the right-part of (2.92) can straightforwardly be 

inverted into only the second term is left to be inverted. To this effect, we

first set some notations and objects.

Definitions and notations. First defining the scaling quantity a  = ^  and the

parameters ^  — f  ^  ^ ^  ̂ ’ we build a multiply-

indexed series M  from another series O with the following procedure.

Induction rules

o For

/ 2
~ / - p+g+3 (2.93)
" \  2K a

o For Ôp̂ q̂ fi)

A f 1 \ tt {  S q + {n -V \)(j'^T\ ( g Q + ( n + l ) < r 2 T ) 2
Up^q,n[K) = <l{p==oy

+pÔp-i,q,„{K) H— j Ô p , > 2 V2 Ka  (2.94)
f j 2 I

Initialisations
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and

and

(2.95)
~  2D^^P,n{D^, K)

Mo_3,n(g, =  ^ (P o ^ n {0 ,K )  — 0o^n{D^,K))

Mp-p-3,n ^ =  "2 (2.96)

O  F o r  0 p̂ —p—3^n,

0p-p-3^n{I^) =  — ^‘S'o +  (n. +  l)cr^T — SKa-^^0p-i -p-2 ,n(I^)

+ 8/Ca^l{p=i}e 16*̂“ +  (p — l)0 p -2 ,-p - i,n (^ ) | (2.97)

Sq (n -\- l ) c ^ T ’ — SKoi-^
Oo,.s,n{K) =  {2VirKa)evfc  ^  J  (2.98)

o For the additional initialising terms 0 p ^ n { D ^ ,  K ) ,

0 p ^ n { D ^ ,  K )  —  — { S q  +  ( n  +  1 )(T ^ T  +  A : K a { ^  +  2 D ^ ) ) 0 p _ i , f i ( D ^ ,  K )

+ 8 % a j l ( p = i } e - +  ( p -  l)0 p _ 2 .„ (£ )f,A ')| (2.99)

100)

T h eo rem  2.3.2. For X G M'*', /̂le inverse Laplace transform of the modified MGF  

E[e ( respect to /x  MMI(i^, A) +  MMP(X, A), it/Ziere the component due

to absorption has been separated in MMP{K, A). The non-absorbed part is

U U l i K , X ) ^ S . f ^ ± ^  (2.101)
' ' 71=0

19 MMI standing for Modified M GF Inverse
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where mn{K, A) is given by

n  n  / R + l \

E  ^  E  ^ ( - S o ) ’ (M,,,.„ (-/? (A), K ) -  M^,,,„(/J(A). K ))  (2.102)
P=0 P - q=0

with p{X) — + |è-

Proof.  See Appendix 2.5.2 to this chapter. □

Now, coming to the case where the spot is null at maturity, i.e. has been absorbed

T h e o rem  2.3.3. /?(A) being defined as in Theorem 2.3.2, the component due to ab­

sorption is

MMP(/^, A) =  5 3  ^  (G,,„ (-/? , K ) -  K )
n = 0  p = 0  l~'\ )

—<jp,n+i(“ /?j K )  -t- K))  (2.103)

with

and

C - U t . K ) .  (2.104)

(2.105)

Proof.  See Appendix 2.5.3. □

2.3.2 The distribution of Yp

The calculations done in the previous section give the basis for finding the marginal 

distribution of Yp.
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T h e  d en sity  o f Yt

The marginal density of Yt  can be obtained by integration with respect to s of the

joint density given in Theorem 1.1.7, Section 1.1.3, Chapter 1.

T h eo rem  2.3.4. The density o fY x  is

=  (2.106)

with

where the Op^q^niv) the ones defined in the Theorem 2.3.2 and / q (y) was defined 

in Theorem 1.1.8, Section 1.1.3, Chapter 1.

Proof.  This comes from the definition of Op^q^niv) given in Appendix 2.5.2. □

T h e  d is tr ib u tio n  function  o f Yt

The distribution function of Yt  can be straightforwardly deduced from Theorem 2.3.2. 

T h eo rem  2.3.5. The distribution function o/ Y t  is given by

p {Yt  < k ) = mmi(a^, 0) +  mmi^(a:, o) (2.108)

Proof. This comes from Theorem 2.3.2 and Theorem 2.3.1. □
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2.3.3 Fixed strike Asian option

D efin itions an d  n o ta tio n s . We need to define two elements and Ĉ ĵ..

•  The non-absorption component C,na
sqr

This component can be written as
r(2 5 'n + r-K ')  qo  /

(5o, K, T) = n T  -  KP''^ +  So" Z  n + 1

where

• The probability of non-absorption P^^ is worth
5nr(l+e~̂ )̂

pna _  >  0) =  1 -  e ) (2.110)

The truncated moment is

• The terms cg^(5o, K, T) are given by

é  Ê  % ^ ( - S o ) ’ (  -  | .  ^ )  -  ( g ,  K
p = 0  q= 0  \  \  /  \  >

+DMp^g^„{— (2.112)

where the , K )  and other notations have been defined in Theorem 2.3.2 and

the DMp^g^ni^, K)  are given by the recursions

Z?Mp.,,„(e, K) = K ) -  K )

+  (M l!!± lk!lzi£2i)M ,,,,„(e , K )  +  K )

if )  =  So±is±D^Mp,^p.3,„{^,K)

+iM^l,_^_4.n(Ç, K ) -  if^C dp,n(D i, K )
(2.113)
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•  The absorption component C'asqr

The absorption component has a similar structure

,(5o, K, T) =  -  K P -  +  2  c : ( % ,  K, T)  ( 2 . 1 1 4 )

with

• The probability of absorption

„=o

-ËSEil+îllIl
= P { S t  = 0) = e ( 2 . 1 1 5 )

• The truncated moment

rt -  -  e - î* S S ^  (  -  $ 1 ^

• The series terms

Cn{So,K,T) = ^ { - S q Y  (̂ Gp̂ n ^

- G p , n + 1  ^ +  < ^ p ,n + l  +  ^ G ' p . n  ^

—  D G p , „ + i  ^  }  ( 2 . 1 1 7 )

where the D G p ^ n i ^ ,  satisfy the recursions

DGp^n(^,K) — —Gp-i^n{i^y) — i-DGp-\^n{i,K)

'2 (5n+nTĝ +4JfaQ̂
16K a

+ s r i |l 2 Î ( g a ± î ïd c ) g r f c ( M z ^ ^ 4 ^ )

(2.118)
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T h e o rem  2.3.6. The value of the fixed-strike Asian option Csqr(<5o, ÜT, T) = K, T )+

Cgqi-(5o, T) for the square-root process is the inverse Laplace transform of

- 1))

with respect to pi.

Proof.  The Laplace transform comes from

'0 \ T

The proof of the inversion is gathered in Appendix 2.5.4. □

2.3.4 Numerical illustrations

We once again come back to the reference cases of Table 2.1 and adapt the diffusion 

parameters of the geometric Brownian motion to obtain similar levels of asset, local 

variance and mean for the square-root process.

Case r <7 T K So Moment Intrinsic Option N
1 0.05 0.69 1 2 1.9 1.8533 0 0.1902 4
2 0.05 0.72 1 2 2.1 2.0484 0.1459 0.3098 5
3 0.02 0.14 1 2 2 1.9801 0.0197 0.0197 0
4 0.18 0.42 1 2 2 1.8303 0.1598 0.2189 11
5 0.01 0.35 2 2 2 1.9752 0.0246 0.1725 7
6 0.05 0.71 2 2 2 1.9033 0.0936 0.3339 3

Table 2.5; Fixed-strike Asian options.

Table 2.5 collects the moments of E { ^ ) ,  the intrinsic values and the prices of 

the options. N represents the number of terms needed for the error to be inferior to 

10“ .̂ Two points spring to the eyes from this table. Firstly, the series converges very 

rapidly for a broad range of cases. Secondly, the prices obtained for the square-root
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process are quite close to the Black and Scholes Asian ones. The differences between 

the models are to be computed in basis points rather than in percents, except in cases 

3 and 6. The greater differences appearing in these two cases could be accounted for 

by the relatively greater importance of the tails there as the synthetic parameter cry/T 

becomes very small for case 1 and quite large for case 6.

As in the mean-reverting interest rate case for the marginal distribution (Section

1.1.4 of Chapter 1 and Section 3.1.8 of Chapter 3), the series converges more and 

more rapidly as T or cr increase. This can be seen from Table 2.6 and Table 2.7. 

Here, as well, the results were cross-tested against a numerical Laplace inversion. We 

once again observe that these algorithms get strained and even become unreliable as 

the volatility or the maturity increase.

r a T K So Moment Intrinsic Option N
0.05 0.71 0.1 2 2 1.9950 0.0050 0.0751 30
0.05 0.71 0.5 2 2 1.9752 0.0246 0.1725 7
0.05 0.71 1 2 2 1.9508 0.0484 0.2468 5
0.05 0.71 2 2 2 1.9033 0.0936 0.3339 3
0.05 0.71 5 2 2 1.7696 0.2120 0.3733 2

Table 2.6: Evolution with the maturity.

r a T K So Moment Intrinsic Option N
0.05 0.1 1 2 2 1.9508 0.0484 0.0484 0
0.05 0.3 1 2 2 1.9508 0.0484 0.1207 18
0.05 0.5 1 2 2 1.9508 0.0484 0.1827 7
0.05 0.7 1 2 2 1.9508 0.0484 0.2446 5

Table 2.7: Evolution with the volatility.

Table 2.5 highlighted a strange or rather unexpected behaviour of N with respect 

to the volatility. The analysis of Table 2.7 enables us to explain it. The series 

converges slowly for small a. But for too tiny cr, as nothing can really happen for
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such values, the put option is almost worthless and the series converges in one term.

We finally analyse the evolution with respect to the strike K. Table 2.8 shows 

results in agreement with our observations concerning the series representing the 

density in Section 1.1.3, Chapter 1. In fact, all the results obtained here corroborate 

the observations and comments made in that section concerning the effect of the 

different parameters on the speed of convergence. This is due to the fact that the 

leading term remains the same.

r a T  K % Moment Intrinsic Option N
0.05 0.71 1 1 2 1.9508 0.9996 1.0017 2
0.05 0.71 1 1.5 2 1.9508 0.5240 0.5644 4
0.05 0.71 1 2 2 1.9508 0.0484 0.2468 5
0.05 0.71 1 2.5 2 1.9508 -0.4273 0.0822 6
0.05 0.71 1 3 2 1.9508 -0.9029 0.0210 8

Table 2.8: Evolution with the strike.

2.4 Conclusion

In this chapter, we studied Asian derivatives on geometric Brownian motion and 

square-root process underlying assets. For the geometric Brownian motion, after ha­

ving presented the different possibilities to modelise the valuation as one-dimensional 

Markov problem, we derive explicit exact integral expressions and approximate se­

ries form for fixed and floating strike seasoned and unseasoned options. We tested 

the numerical implementation of these formulae against benchmark results in the 

literature.

We also considered the alternative model constituted by the square-root process 

and applied the methods and results proposed in the previous chapter to construct 

explicit series solutions for Asian options in this model. These formulae turn out to
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be simpler than for the Black and Scholes model. We also analysed the performance 

of the numerical evaluation of this series and found it very rapid in general but also 

more specially for large volatilities and maturities. This hence provides a model, 

interesting on its own but also as a benchmark to test numerics in the Black and 

Scholes model.

2.5 Appendices to this chapter

2.5.1 Call option on an absolute-dividend paying stock: Proof 

of Theorem 2.2.5

Using no-arbitrage argument, the call price function follows the second-order par­

tial differential equation

where r  = T  — t represents the time to maturity.

Defining a; as J  and t as ^  and using otherwise the same notations as in Theorem

2.2.5 , the function c(x, t) = C{S, r )  has a Laplace transform c{s) with respect to time 

which satisfies the second-order ordinary differential equation

rip

where c q { x )  = c(a;, 0). As also explained in (2.2.9), the solution of this inhomoge- 

neous equation can be formed as a Green function from rj and f  two solutions of the 

corresponding homogeneous equation

r x  p o o

c(x,X) = -r]{x,X) p {y)i(y ,X )co{y)dy-i(x ,X ) f  A)co(2/)dÿ (2.120)
JQ Jx
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with p{y) =  y2vŷ (̂y) where Wrj^^{y) is the Wronskian of the two solutions and the new 

variable A =  — (g+ ) =  —(g + 6) has been introduced for convenience of notation.

Defining the square-root as the branch with positive imaginary part, Lewis shows that 

the functions verifying integrability conditions are i{x,X) = —

a, 2 — c, x) and t){x , A) =  e~^x'^'ip(c — a, c, x), where a = +  iVX  and c =  l - f  2iy/X

and that their Wronskian is Wr,,^{y) = r ( i Z a ) , leading to (noting /i(rc, A) 

the first integral appearing on the right side of (2.120) and h ix .  A) the second)

h {x ,  A) =  w(A) j  — l{k<x} — 1? 2 — c, k)^

 ̂ 2 -  c . . ) )  }

and
rpC—a—2   ^c—a—

 -  a -  1, c, a:)

jç;C-a-2^^c — a — 2,c,k) — x^~^~‘̂ip(c — a — 2, c, rr) 1 
fl(<2 4- l)(c — CL — l)(c — CL — 2) J

where w(A) =  and k = ^ .

As explained by Lewis, the final payoff is not p-squaxe-integrable, which leads to

the transform having a few more simple poles than what the classical eigenfunction

expansion theory would imply. However, this function is still having only a finite

number of simple poles and a branch cut line along the positive half-axis, coming

from the branch choice made for the square-root function. The following residues

and branch cut integrals computed by Lewis are still valid in our case

Residue at A — — : l{p>i} ^ 7  -  |^1----- r̂(/3) "% )

Branch cut integral: Sq^ K ^ e ~ ' ^

The following residues are changed compared to Lewis’s work:
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Residue at A =  —

When P > —1, then a = —1 and c =  —/?. This is a pole of both I\ and I 2 . h  

contributes to nothing since 'ip{c — a — 2,c, z) = — 1, — z) =  After

calculation and reexpressing 'ip function in terms of ÿ, the residue is then 7 | “ — ^ +  

^ f ^ ( t > ( P , l 3  +  2 , - x ) y

When /? < — 1, then a = P and c = 2 + p. This is only a pole of h-  But, once more,

given that tp{c — a — 2,c,z) = '0(0,2 p, z) = 1, the contribution of I 2 is nil.

Therefore, the overall residue is l{/3> -i}7  ̂ + 2, - 3;) j.

Residue at the poles of T(1 — a):

They appear when 1 — a is a negative integer —m, i.e. when iy/X =  n +  ^  for 0 <

m  < Then, using the relation 0 (a , 7 , z) =  z^~^jp{a — 7 +  1,2 — 7 , z), expressing 

0  in terms of 0 gives for the residue of c (after some manipulations)

( x k )  ”  { - C m ) m ( l > { - n , C m , x ) ( t ) { - n - 2 , C m , k )
(m  +  2)! T{cm — 1)

Using the relation with Laguerre polynomials, (p{—m ,a,z){a)jn  = m \L ^^{z) ,  the 

contributions of these poles (noticing these poles exist only if ^  >  3) is

[ ^ ]è  Çm(5o,A')e-Tr(m™)
m=0

2.5.2 Square-root Asian option: proof o f the preliminary

Theorem 2.3.2

The following conventions will be used for this appendix and all the appendices 

linked to Section 2.3: all the Laplace transforms will have fi as argument and all 

inverse transforms will have y  (for the value of Yt ) as argument.
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Coming to the Theorem 2.3.2 now, we need to invert From the result

of Section 1.1.3, Chapter 1, for the non-absorbed part, this amounts to invert

(2.121)
H a* n +  1

n = 0

with

and to integrate this resulting inverse with respect to 5 on R+.

Denoting as in (1.40), Section 1.1.3, Chapter 1, o;„ =  and starting

with the observation that

<tV  M ( |}  _ /J(A)) ( | ï  + /?(A))

................................................................................... "  "  - m )

e r ’Ç B

2 0 { X ) \ ^ - 0 ( X )  ^  +

it appears that only inverse Laplace transforms of terms of the type

are needed for the inversion of (2.121).

Specialising to the case =  (1/?(A))^ =  ^  and given that the inverse of

{y/Ji)^e~''^ is iL e n + i( ;^ )e ~ ^ , then it follows that the inverse of (2.122)

i :

IS

This result follows from the scaling and shifting properties of Laplace transform^®

^î/ilTvji\(y) — from the Fubini-Tonelli theorem allowing to change

^°Here, the round brackets contain the argument of the inverse transform while the square- 
brackets in the indices contain the argument of the Laplace transform £
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the order of integration after taking the Laplace transform in (2.123) and noting that

The expression (2.123) will subsequently be named 5). Integrating it

by part leads to

(2124)
The inverse can hence be written

p+q+2

_ ^ ( _ 1 ) P + 9 + 3  f  6  , , ^ P + g + 3 g - K ^ ^ \

Jo v 22/a  J
where the last integral is simply an exponential multiplied by a complementary error 

function erfc.

Recalling now that this inverse has to be integrated with respect to 5, the following 

notation is introduced

poo
=  /  s’>G^,,,niè,y,s)e-^‘dx (2.125)

Jo

where % =

The relation (2.124) implies

(2.126)

Noting Ôp^q^niy) = integration by part leads to

Ôp^q^niy) —
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+  J  e~^^{pxP~'^ -  xs^)2y/^H ep+ q+2 e ~ ^ d x

which implies

^p,q,n{y) — ^  l{ p = 0 } ^ 6 g + 2  ^  y / 2 y O ^  ̂ pÔp-l^q^niv) ~  X^p,q- l ,n{y)  ^ 2 y ^ 2 2 /û ;

where â„ =  So+Çrm)^

Therefore, the Ô can be recursively computed once the Ôp_p_3,„(î/) are known. 

But, 0p-p-z^n{y) belongs to a wider class that proves convenient to be defined here

u (Ax+B)2
O k{A ,B )=  / s e (jjx

Jo

where A is a strictly positive real and B  a real. This class satisfies the following 

recursive relation

0 ,{ A ,B )  =

+ (k — l)Oyt_2(A, B) >

4 y a

which comes from

B  _ { A x + B f -s  e 4ya
A

and integration by part of the first resulting integral. The Os can be therefore com­

puted through recursion from the first term

O o{A ,B )=  r e - ^ d x  = & H c ( ^ )
Jo A  \2 y /ÿ â J

Coming back to Ô, they are related to O through

0p-p-3,n(2/) =  +  4?/qx)
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Now the Ô are explicitly given, the initialising Mp-ps,n{^ ,y)  are still left to be 

computed in order to obtain Mp^q^niî^y) from (2.93)

K -p-3 ,n(f.2 /) =  ^
POO POO ^2

= C' /  e ~ ^ d h d x  (2.127)
Jo J^+ân+2ya^

where C' =  and = x  ~  2 - Since e ~ ^ d h  =  if ^  0

and p > 0,

=  r  e - ^ d h
K ^5n+2ya^

Noting 0k,n{D^,y) = dx,

=  r  e - é d f t
L J 6tn+2yai

P ^   ̂ Q (TJ \ \
~ W  ô^ ^ rT T ÿ î) 5ïTïO p-i-M (^c, y ) ]

which leads to

Ü C' -
^p,-p-3,ni^^y) — ~^^p-l,-p-2,ni^^y) ~

For the case p =  0, integration by part gives

C' ^
^0,-3,ni^^y) ~  2D^ ( ^ 0,n(0) P) ~  ^ 0,n(^^)P}}

Now, if = 0, i.e X = 2  ̂ by integration by part

C' 1 ''
^p,-p-3,ni^Ty) — ~2p_^ -^Op+i^n{0,y)

The Ô can be computed through

Ôk,n{D(, y) =  1  â„  +  2ya(  +  4yaD^)

which completes the calculation.
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2.5.3 Square-root Asian option: proof of the preliminary 

Theorem 2.3.3 for absorption

The absorption case is treated in the same way as the non-absorption. From 

(1.45), Section 1.1.3, Chapter 1, the result is the inverse of

i e - s » ^ ( l  _  e-^‘) ^
^  n=0

Denoting /3„ =  the result is built, as previously, from the inverse of

which is

G;,„«,!/) =

Similarly to (2.124), the Gp,„(C, 2/) satisfy

The initial value is

-e e

Hence the result.
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2.5.4 Fixed strike Asian option: proof of Theorem  2.3.6

Given that we have already solved for the probability to be in the money at 

maturity, we only need to compute E{Yt I{Yt>k })- Therefore, we need to differentiate 

the expressions given in Theorem 2.3.2 and Theorem 2.3.3 with respect to A at 0, 

which means differentiating with respect to (  at then multiplying the result by 

^^ |a= .o  =  •

Recalling from (2.125) the following expression for g/)

% )  àudx

where we use the same notations as in Appendix 2.5.2, we can differentiate under the 

integral sign, which gives

For p +  9 +  3 >  0, using

- ( p  +  5 + 3 ) i î e ^ , + 2 ( ^ ^ )

we are lead to

+  2 ^ îH - 1 ,5 - 1 ." ( ^ > 2 / )  +  ÔînMp^^n{i,y) ~  ( p  +  9  +  J/)

recalling â„ =

Now, for p = —q — 3,
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— 2 y a C ( 0 p ^ n { D ) )

which can be seen from manipulating (2.131) or differentiating (2.127).

These recursions enable us to compute the derivative for the non-absorption case. 

For the absorption part, we obtain by differentiation of (2.129) and (2.130)

d C

and
(Pn-̂ 2yaiY

CK6 e 4%/a



Chapter 3

Interest rate derivatives

The concept of interest rate belongs to our every-day life. That lending money 

must be rewarded and that a certain amount of money possessed today will not be 

worth the same tomorrow is common knowledge and wisdom although an abstract 

formulation of this can be quite complex. Fixed-income theory thus constitutes a 

major area of mathematical finance. Moreover, the properties of positivity and mean- 

reversion of the CEV processes render them natural driving diffusions for interest rates 

and hence a valuable application field for us.

The square-root process of Cox Ingersoll and Ross [15] has played a considerable 

role in fixed-income theory and practice for its tractability and positivity make it one 

of the most popular one-factor model. A number of important quantities and instru­

ments are though not known explicitly, but only in closed-form. This chapter mainly 

focuses on the use of the distributional results derived and methodologies proposed 

in Section 1.1, Chapter 1 to obtain explicit solutions for some such derivatives. The 

very last part of the chapter deals with the general mean-reverting CEV instantaneous 

rate model for which we propose a closed-form for the zero-coupon bonds under some

129
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parameter restrictions.

3.1 The Cox Ingersoll Ross model

3.1.1 Introduction

The theory of interest rate modelling was originally based on the construction of a 

one-dimensional diffusion for the instantaneous short rate process. All the pertaining 

quantities could then be derived by no-arbitrage arguments as the expectation of 

functionals of this short rate under the risk-neutral measure. This approach has 

been pioneered by Vasicek [72], who proposed a mean-reverting gaussian Ornstein- 

Uhlenbeck for the short rate.

Cox, Ingersoll and Ross [15] later developed a general equilibrium approach, 

modelling the short rate as a square-root process. Belonging to the class of time- 

homogeneous endogenous processes initially employed to represent the short rate, the 

CIR model has been a benchmark for many years because of its allying both strictly 

positive interest rates - unlike the Vasicek short model - and a relative analytical 

tractability, unlike many other positive rate models.

i. T h e  m odel

Under the risk-neutral measure, the short rate is assumed to follow

drt = (a — brt)dt -h a^/rldWt (3.1)

P ro p o sitio n  3.1.1. (See Cox Ingersoll and Ross [15]). Under this model, the price 

at time t of a zero-coupon bond maturing at time T  is
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Proof. This comes from setting A =  0 and fi = 1 in the joint moment generating 

function given in Proposition 1.1.4, Section 1.1.1, Chapter 1. □

ii. Forward m easure and options on zero-coupon bonds

Thanks to the use of the forward measure, it is possible to obtain an analytical 

expression for the price of options on zero-coupon bonds.

Proposition 3.1.2. (See Lamberton and Lapeyre [46])- Under the forward measure 

defined by
dQ'^ / q

dQ ~  P (0 ,T )  ̂ ^

the short rate retains a square-root structure, but with modified parameters

drt =  (a -  (6 +  a ‘̂ T{T))rt)dt +  cjy/FtdWf (3.4)

where the function T(t) is the one defined in Proposition 1.1.4, Section If 1.1, Chapter 

1
^  A((7 -  6) +  +  6)) +  2/^(1 -  e~T‘) , .

 ̂ ’ <t2A(1 -  e-T") +  (7 +  6) +  e-T^(7 - b )   ̂ ’

Proof. See, for example, Lamberton and Lapeyre [46]. □

This forward measure, along with the distributional results concerning rt - see 

Chapter 1 -, enables us to formulate explicitly the price of any derivative whose payoff 

depends solely on ry. Options on zero-coupon bonds are an important example of 

such derivatives.

Proposition 3.1.3. (See Lamberton and Lapeyre [46]) The price of a call maturing 

at 9 on a zero-coupon bond, P{9, T) maturing at T, is

E{e-^‘(P(e,T) -  K)+) = P (0, ( £ )  -  K P { 0 , ( £ )  (3.6)
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where

C l

C2

and

with the notations

  8rp7*ê  _̂_________ _____
tT2(e7’'fl-i)(7»(e7*«+i)+(a2T(T-0)+6)(eT'’«-l))

 8rp7*^e'’'*̂ _____
jy2(e7*0-i)(̂ *(e7’fl+i)+6(e7*o_i)

ct2 1
2 7*(e7*e+i)+(<T2x(T-0)+6)(eT̂ ’»-l) 

J _  0-2 e'>'*̂ -l
2 2 7 * ( e 7 ’ f l+ i ) + 6 ( e 7 * < ? - i)

„*    a© (T —0)+ ln /C
' ~  T { T - e )

h

(3.7)

(3.8)

(3.9)
7* =  +  2cr2

R em ark . F  represents here the non-central chi-square probability distribution func­

tion, which can be computed, for example by integration of the power series density 

given in Chapter 1. This distribution has actually been acutely studied and a few 

algorithms are available to compute it.

iii. A  sim ple ex ten sio n

As mentioned above, the CIR model belongs to the important classical but early 

interest rate models. One of its major drawbacks is that it is endogenous, i.e. the 

term-structure is an output rather than an input and we can only hope to get as close 

as possible to a specific term-structure rather than fitting it perfectly. A possible 

simple extension which improves this point is the following model

dXi = {a —  bXi)dt  - f -  dy/JQdWt
yO* i U  J

n  = Xt-\- h(t)

The addition of the deterministic function h{t) gives us more degrees of freedom 

to perfectly fit a yield-curve while the main structure is preserved. A discussion of 

this model, the so-called CIR++, can be found in Brigo and Mercurio [9]. Although
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the results of this chapter deal with the basic CIR, they can be easily generalised to 

this framework.

3.1.2 Prelim inary results

We proceed in the same way as in Section 2.3.1 of Chapter 2 and for the same 

reasons - i.e. to compute the same type of truncated moments and probabilities - we 

first try to invert the Laplace transform ^(e respect to fi. We also derive

as a preliminary result its derivative with respect to A for simplicity of presentation.

i. First result

Before stating the actual result, we start by defining some sequences of functions 

on which the inverse Laplace transform will depend.

Definitions and notations. Using the parameters P = - ^  and

Î? =  V62 +  2Aa2 (3.11)

we define three sequences Ipq{y,X,zo), Ipq{y,X,w) and Ipg(y,X,zu) recursively con­

structed in the following way for g >  1 and p >  0.

» For

o Recursion
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o Initial value recursion

A ,:.) =  - b i i i v M  +

o Starting point

=  (3.14)

For ï lg (y ,X ,w )

o Recursion

^,g+iiy> \  = lip.g(y< -  ^ ^ M + i i y ’ ( ^ is )

o Initial value recursion

^ ^ 1,1(2/. ro) =  (i? -  6)/p,i(22> ''• +  ^ ^ , 1(2/' (3 16)

o Starting point

^4(2/. A ,- )  =  5 ^ e r f c ( ^ ^ )  -  ^ e r f c ( ^ )  (3.17)
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o Recursion

Fp.,+i(!/. A,iu) =  A,î37) +  ^ F p ,,+ i( î/ , A,ro) (3.18)

O Initial value recursion

: — ( h  4 -  . ( i i  \  r n l  4 -■Çfi,i(ÿ. A,î37) =  - (6  +  j1)/|i(î/, A,ro) +  ^ î l i { y , X , w )  (3.19)

O Starting point

Î2 r \  ̂ ^  \   ̂ +  2y^ 'd \ (3.20)

We can now formulate the main result.

T h eo rem  3.1.1. For A >  —//, the inverse Laplace transform of *)

respect to ij,> 0 is

t+  ̂ ^
Qa,b,a{yi A) =  e ^   ̂^  ^   ̂'^k,k—n,Tnïk,k—n{yi '^m) (3.21)

A = 0  n = 0  m = n

or equivalently
K  K  k

Qa,b,aiy  ̂ — lil^ 6 ° ^   ̂ ^   ̂ ^   ̂ '̂ A:,n,m̂ A:,n(2/ j ^ m )  (3.22)
m = 0  fc=m n = k —m

k—rx

where Uk,n,m = (-I)""  L §-n)! ^)(m4-n -J  orc the same

as in Part 1.1.4 of Chapter 1.

For p > 0 , q > 0  and w  > 0, the main term î p , q { y ,  A, zo) is given by

L „ ( y , \ w )  =  l{ ,=o}|2j//î(i?^(/^_i(ÿ,A,tü) -  î l i ( y ,X ,w ) )  + ^ ,i(ÿ , A,o7) H  

(,= i)j% /)^(% i(3 /, A, 07) +  7 |i(y , A ,ro ) ) |

+  l{g>i}i2yp[ïp,g-i{y, X, w) -  /^,,_i(ÿ, A, ro)) I

(3.23)

lp ,q \

+ 1)
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Proof. See Appendix 3.4.1. □

R em ark . The subscript a, 6, a  appearing in the notation Ga,b,(n is meant to point out 

the dependence of the inverse Laplace transform G on the parameters of the diffusion. 

It ought to be added to all functions involved in this section, yet has been dropped 

for most of them to lighten the notations. We retained this notation only for a couple 

of main functions.

The formulation of Theorem 3.1.1 given above is helpful to understand the struc­

ture of the inverse Laplace transform. Yet, it is possible to reexpress the main element 

Ip,q{y, X,zu) in terms of a different set of sequences, which reduces the actual amount 

of calculations needed to compute Ip,q{y, X,w).

D efin itions an d  n o ta tio n s. Keeping the same notations, we build two sequences 

Hp,q{y,X,zj) and Gp(y,X,w) from Ip^^(y,X,w) defined above in (3.12), (3.13) and

(3.14)

o Recursion

Hp,,+i{y, A, w) = A, w) -  A, ro)) (3.24)

o Initial value recursions

Hp,2{y,X,w) = i^Gp{y,X,w) -bHp^i{y,X ,w)

Hp+i,i{y, X, w) = 'dGp{y, A, w) -  hHp^i{y, A, w)  (3-25)

, Gp+i(2/,A,w) =  d H p ^ i{y ,X ,w )-h G p {y ,X ,w )p X j^q { jj^ \^^ )

o Starting points

Go{y, A, w) =  )  -  & ^ e r f c ^ ^ ^ ^ )

H , , { y M  =  ^ e r f c ( ^ )  +  ^ e r f c ( ^ )  (3.26)
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T heorem  3.1.2. The terms îp^q(y,\,w) appearing in (3.21) and (3.22) in Thpi^fh,

3.1.1 can be computed with

ïp,q{yi^<'^) =  hq=o}l^yP()^^Hp,i{y,X,w) + i l i {y ,X ,ur) j \

+ i{q=i}i^ylddGp(y,X,-[u)\ ^-27)

+  ^q > i}h y P H p ,, . i{y ,X ,tu ) \

Proof.  This result comes from setting

Hp,q{y,X,w) = î l^ q (y ,X ,m )-I lq {y ,X ,w )

G p { y , X , w )  =  ^,i(3/,A,%r) +  ^ i(3/, A,w)

(3.15) and (3.18) then give the general recursion formula (3.24). (3.16) and (3.19' l^ad 

to the recursion formula for the initial values in q (3.25). And, finally, the starting 

values (3.26) - initial values for p =  0 and q = 1 - can be devised from (3.17' &nd 

(3.20). P

ii. Second result

As mentioned in the introduction of this section, the second intermediate insult 

we need is the inverse Laplaice transform of with respect to p.

D efinitions and notations, we define three new sequences Ip^q{y, A, w), ^^ (p , ru) 

and Ipq{y,X,zü) constructed recursively for ç >  1 and p > 0 from ^,^(2/, A ,^), 

A, w) and /^^(p, A,tu).

• For îlqjy,  A, w) 

o Recursion

^ , g + l ( 2 / , =  - — il ,q {V t\ '^ )  +  l{p>0}|^^p-l,g(2/, A,ÎZ7)|
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+ l{g> i} |-^^ |,g_ i(2 /, A ,îu ) | +  l{g=i}|—  _ _ ~ He<o{ 7= ^  ) \ (3.29)
__________________ _ tu  -  2y b p ^  \

y / 2 Tr(2 y ^ ) p ^  V^VP
o Initial value recursion

VO

o Starting point

/& (!,,A ,M  =  ^ e r f c ( ^ )

(3.30)

(3.31)

o Recursion

/ I  (,j X n y ) -  (ÿ,  A, ro) (3.32)

o Initial value recursion

t3 / \ \ I
^+1,1 (2/, 1(2/1 -  -y ^ ,i(2 /i/\ ,^ )  +  — —— — ^  "

cr̂  -1

o Starting point

irj/ 2)?® 2i?2

tu 1
7  +  ^

1 _of_
2

(3.33)

(3.34)

For îl^(y, A, to)

o Recursion

^p,q+iiyf ro) —

î l q { y , \ ‘̂ )
Û

<r^4,(2/ , to) 7^,,+1(3/, A, to) < r V ® , + i ( ÿ , A ^
j?3 2î?2 "*■ ,94

(3.35)
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o Initial value recursion

cr
\  ro) -  (6 +  A, w) +

o Starting point

2 'â
(3.36)

XU \

f  VD 2y(3'ù\
" W  I 2 ^  )

w  1 
~2 ~ ^ +

2 1?̂ !/ 

yir 2 'd̂
(3.37)

T h eo rem  3.1.3. For A > —fi, the inverse Laplace transform of ^ with 

respect to /x > 0 î5

oo k k

Qa.bAy, A) =  e ' ' ^  I ]  I ]  I ]  X,Wm) (3.38)

or equivalently

4 a t̂(2/,A) =  lim ^  ^  ^  ! ĵk,n,m4,n(3/, A,07m) (3 39)

A = 0  n = 0  m = n

m =0 A:=m n = k —m

where, fo rp  > 0 , q > 0  and w  > 0 , îp,q{y, A, w) is given by

îpAy> =  l{s=0} A, w) -  î h ( y ,  A, tr))  +  î ^ i y ,  A, i»))

-2y(/p,i(2/. A,to) -  A, ro ) ) |

+  l{,= i}(33 //)])(/p ,i(3 /,A ,c7 ) +  A ,w )^

+ hi>nUyi^{^p,q-iiyA,-^) -  îp,g-i{yA,'^))j
(3.40)
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Proof. Since, from Theorem 3.1.1, A) is the inverse Laplace transform of ,

we have for any fj,> 0

^(g-(A+/x)Vt)

!
e ^yç[y ,\)dy  =

Thus, for Ae g]A — A + ^[,

Jo 9 K  ^  M

That it is possible to interchange the order of the differentiation and the integration 

operators is straightforward to prove for the right-hand side of the equation but more 

difficult to show for the left-hand side. Instead, for the left-hand side, it is easier to 

first consider each atom Gkiy, K )  separately

J q u a  ̂ fi C'Ag
where

t+  ̂ ^
GkiVi — G ^   ̂ ^  ] '^k,k—n,mïk,k—n{y: '^m)

n = 0  m = n

and, with 7 =  y/b^ +  2 cr^(À + /x),

* “  n! (7̂  ̂ \  k — n )  (27)^-"

Indeed, is integrable for y e R '^ ,  allowing the differentiation under the integral

sign leading to (3.41). It is then left to prove that the sum of the inverses Qk{y,^) 

converges to the inverse of the sum which can be done by following

the same steps as the convergence proof given in Appendix 1.5.1 of Chapter 1.

Setting îp^g(y,X,w) =  ^g (y ,X ,tu )  = îlg{y,X,zo) =

and î^g(y,X ,w)  =  the manipulation of the equations used

in Theorem 3.1.1 results in the formulation of Theorem 3.1.3. □
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Just like Ip,q(yj A, w)  in the first result, it is possible to reexpress Ip,q{y, A, w)  in a 

more efficient way, computation-wise.

D efin itions an d  n o ta tio n s . Similarly, we build two derivative sequences Hp^q{y, A, w)  

and Gp{y, A, ru) based on Hp^q{y, A, txj) and Gp{y, A, zo). 

o Recursion

(3.42)

o Initial value recursions

Hp,2 {y, A, xu) = T^Gp{y, A, w) -  ^G p{y,  A, zu) -  bHp^i{y, A, w)

Hp+i,i{y, A, zu) = i^Gp(y, A, zu) -  ^G p{y,  A, w) -  bHp^i{y, A, zu)

Gp+i{y, A, tu) =  'àHp^iiy, A, z^) -  ^H p,i(y,  A, w) -  bGp{y, A, tu)

+è^P,g(2/j K  A, ZI7)

o Starting points

Go(2/,A,c7) =  ^ e r f c ( ^ ) [ f  +  i ]

H oA y,X ,w )  =  2 ^ e r f c ( ^ ) [ f  +  i

[ f  +  ;

[ 2  +  ^

Try

(3.43)

(3.44)

Given these derivative sequences, it is possible to rewrite the last expression (3.40) 

of Theorem 3.1.3.

T h eo rem  3.1.4. The terms Ip^q(y,XjZj) appearing in (3.38) and (3.39) in Theorem
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3.1.3 can be computed with 

îp,q{yA,‘!^) = l{g=o}|23//?(t?^ffp,i(y,A,ro) +  /®i(j/,A,ro)) -2 y H p ,i{ y ,X ,w ) \

+ l{q=i}l2yP§Gp{y,X,w) -  lGp{y,X,zu)\

+  i{q>i}l'iy0 H p^q-i(y ,X ,^)\
(3.45) 

Proof. Setting

H p , g { y , X , w )  =  =  î l ^ { y , X , w ) - î l g { y , X , w )

Gp{y,X,'^) = -5 5 e M e )  =  î l J j ) ,X ,w )  + î lJ ,y ,X ,w )

and manipulating the equations defining Ipq{y ,\ ,w ), Ipq{y,X,zo) and

Ip,q{y, A, xu) lead to this formulation. □

3.1.3 Probability distribution function o f the cum ulative in­

terest rate

T h eo rem  3.1.5. For y > 0, the probability distribution function ofYt is given by

P (}^< 2/) =  Ĉ a,6,.(%/,0) (3.47)

Proof. For // > 0, the Laplace transform of the probability distribution function is

J \ - > ‘yE{liY,<yy)dy = E ( ^ r  =  E
/  \  /̂

which, combined with Theorem 3.1.1, implies the result. □

3.1.4 Truncated expectation o f the cumulative interest rate 

T h eo rem  3.1.6. For y >  0; the truncated expectation ofYt is given by

E[Ytl{Yt<y}) = Qa,bAy^^) (3.48)
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Proof. For // > 0, the Laplace transform of the probability distribution function is 

J\->^yE{Yt^Y,<y})dy = E (Y tJ^  e- ŷdy  ̂ = E ( v t ^ ^

From Theorem 3.1.3, it leads to the result. □

3.1.5 Guaranteed endowment option

This option pays out the shortfall between 1 and the amount accumulated in 

a standard savings account (1 — It is simply used to guarantee a minimal

accrual on an initial amount of cash, a common insurance feature.

Theorem  3.1.7. For 1 > K  > 0, the guaranteed endowment put option is given by 

the expectation of the discounted expectation of its payoff

GEOP{K, T )  =  E(e-^^ -  K)+ =  In K,  1) -  K£!a,6,,T(- In K, 0) (3.49)

Proof. The option price can be split in two parts

GEOP(A',r) =  E { e - ^ ^ ^ Y r < - \ .K } )  -  K P { Y t  < - l n K )

We denote k = — In K .  Since 1 > K  > 0, k is strictly positive and we therefore have, 

for /LA > 0,

poo /  POO \  /
J  e->̂'‘E{e-^'^liYr<k})dk = E^e-^-^ J  e->̂'‘d k j= E ^ ---------j

Therefore, Theorem 3.1.1 allows us to explicit the first part. Theorem 3.1.5 gives the 

second part. □

Remark. The assumption K  < 1 is due to the fact that < 1. For K  > 1, the 

option is simply worthless.
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T h e o rem  3.1.8. The guaranteed endowment call option can he deduced with the 

parity relation

GEO%K, T) -  GEOP{K, T)  =  Pit, T ) - K  (3.50)

Proof. This results follows from

( e - ^  -  K)+ - { K -  e - ^ )+  =  -  K

□

3.1.6 Binary Asian options

In general, binary - or digital - options are classified in two classes: the ones paying 

in cash units and the one paying in asset units, i.e. paying an interest rate here. In the 

context of Asian interest rate derivatives, their respective payoff is E{e~^'^l{Yr>K}) 

and E{YTe~^'^l[YT>K}) for cap - or call - options. For floor - put - options, those 

payoffs are E{c~^'^1 {Yt<k}) and E{YTe~^'^l{YT<K})-

T h eo rem  3.1.9. For K  > 0 , the cash binary Asian floor is worth

CBAf[K, T)  =  E ie -^n ^Y r iK ))  =  G,.fi,.iK, 1) (3.51)

P r o o f  We have , for /i >  0,

/•oo /  POO \  y

I  /  e - X M )  -  b { — ^ )
' Q—{tl+l)YT \

] = E [

Hence the result. □

T h e o rem  3.1.10. For K  > 0, the rate binary Asian floor is worth

R B A 'iK ,  T) = E(YTe-'^niY^<K}) = Ga.bAK, 1) (3.52)



(3.53)
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Proof.  In the same way,

J " e - '^ E { Y T e - '^ n iY r< K } )d K  = e (̂ ^ ^

□

We end this subsection with the call-put parity relation which allows us to deduce 

cap option prices from the floor option prices given above.

T h e o rem  3.1.11. The options are linked in the following way

CBA'^{K,T) + C B A f{K ,T )  =  P(0,T)

RBA% K ,T) + R B A f{K ,T )  = P(0 ,T )E ^(Y t )

Proof.  Indeed,

E(e-^n[Yr<K}) +  =  E ( e - ^ )

E {Y re~ ^ '^ l{Y T < K }) +  E {Y T e~ ^ '^ l{Y T < K }) =  E { Y t 6~^'^)

□

3.1.7 Regular Asian options

Interest rates Asian options have been developed to cover needs similar to those 

having created equity Asian. Those instruments have been noticeably studied by 

Leblanc and Scaillet [47] and Chacko and Das [12].

T h eo rem  3.1.12. The regular Asian option can be computed as the inverse Laplace 

transform with respect to pL of

EjYre-^T) ^

H iJ?

Proof.  Straightforward application of the previous results. □
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R em ark s .

1. The first term of the expression (3.54) can easily be obtained explicitly as the 

derivative of the MGF at f  =  1. We do not present the actual formula

here as the expression turns out to be quite heavy.

2. To compare our Laplace transform result to the existing solutions to this prob­

lem, the Laplace transform approach proposed in Theorem 3.1.12 is simpler. Indeed, 

Leblanc and Scaillet [47] proposed to first compute the density of Yp through nu­

merical Laplace transform inversion of its MGF and then integrate it against the 

discounted payoff of the option, which is a quite heavy numerical procedure. Chacko 

and Das [12] expressed the option as a sum of Asian binary calls at ascending strikes 

and used Fourier inversion. Our expression is more immediate to calculate.

We can yet also propose a completely explicit solution for this option.

T h e o re m  3.1.13. For K  > 0, the Asian floor is worth

A O f(K ,T )  =  E {(K  -  Yr)+ e-^n  =  KÇ^aA K ,  1) -  G afiA^,  1) (3.55)

Proof.  The regular Asian option is the difference between two binary, one paying in 

cash unit and the other in rate unit

AO f{K , T) = K .CBA(K , T) -  RBA(AT, T)

□

R em ark . For the actual analytical inversion of the Laplace transform (3.54), we 

decompose the option in binary options. The computation of these options being 

made at the same time, there are some recurrent terms used in the computations of 

both binary derivatives and some simplifications in the algorithm.

As previously, we present a call-put parity result:
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T h eo rem  3.1.14. For K  > 0, we have

A (T {K ,T )  -  A Q f(K ,T )  =  -  K P { 0 ,T ) (3.56)

3.1.8 Num erical results

The works of Chacko and Das [12] on one hand and Leblanc and Scaillet [47] on 

the other provide us with material for comparison. We consider the prices of regular 

Asian caps, AO^{K,T) = cash binary caps, C B A^{K ,T) =

E[e~^'^l{YT>KT}), and additionally the valuation of rate binary caps, RBA^(A", T) =  

E(Yre~^'^l{YT>KT}), truncated moments defined as T M ^(K ,T ) = E(Yt1{Yt>kt})  

and probabilities, P { Y t  > K T ).

Following Chacko and Das [12], we first analyse the evolution with respect to the 

maturity T  and strike K.

M aturity Type K  =  0.08 K  =  0.09 K  =  0.10 K  =  0.11 iC =  0 . 1 2

P(Yt >  K T ) 0.1061 0.2936 0.5337 0.7427 0.8790
CBAC 0.9631 0.8104 0.4812 0.1763 0.0387

T  =  0.1 TM<= 0.0098 0.0085 0.0053 0 . 0 0 2 1 0.0006
RBAC 0.0097 0.0084 0.0052 0 . 0 0 2 1 0.0005
AO^ 0.0199 0.0109 0.0043 0 . 0 0 1 1 0 . 0 0 0 2

P{Yt  >  K T ) 0.1549 0.3261 0.5280 0.7107 0.8441
CBA^ 0.8018 0.6377 0.4452 0.2718 0.1459

T  =  0.5 0.0444 0.0285 0.0275 0.0180 0.0103
RBAC 0.0421 0.0351 0.0260 0.0169 0.0097
AO^ 0 . 0 2 0 1 0.0128 0.0074 0.0039 0.0018

P(Yt  >  K T ) 0.1878 0.3535 0.5354 0.6979 0.8209
CBAC 0.7301 0.5779 0.4125 0.2662 0.1565

T = 1 TMC 0.0867 0.0726 0.0553 0.0383 0.0242
RBA<= 0.0777 0.0647 0.0490 0.0337 0 . 0 2 1 1

AO": 0.0193 0.0127 0.0078 0.0044 0.0023
P(Yt >  K T ) 0.1789 0.3509 0.5395 0.7050 0.8276

CBA^ 0.6644 0.5193 0.3633 0.2291 0.1317
T  =  2 TMC 0.1744 0.1451 0.1093 0.0746 0.0465

RBA^ 0.1402 0.1155 0.0859 0.0578 0.0354
AO': 0.0170 0 . 0 1 1 0 0.0066 0.0037 0.0019

Table 3.1: Evolution with T, Chacko and Das parameters.

The diffusion parameters of the instantaneous rate are a=0.15, b=1.5, a  = 0.2
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and ro =  0.1. The results we obtained in Table 3.1 do not actually exactly tally with 

the ones presented by Chacko and Das [12]. Yet, the Abate and W hitt algorithm 

confirm our results.

To double-check the validity of our method, we also consider Asian options on 

yields in the setting of Leblanc and Scaillet [47]. The yield y { T ,T  +  r)  of maturity 

T at time T  is defined as — aQ(r)+rTT(T)  ̂ the functions defined in

Theorem 1.1.4, Chapter 1 for A =  0 and fi = 1. Asian call options on yields are then 

given by

Cy = E fljT y{u ,u  + T ) d u -  k \ e - ^  (3.57)

They are related to the Asian options on the instantaneous rate trough

Case a b <7̂ T r K LS Fusai Series
1 0 . 0 2 0 . 2 0 . 0 2 1 1 0 0 . 1 0.000949 0.00094927 0.000949272
1 0 . 0 2 0 . 2 0 . 0 2 0.25 1 0 0 . 1 0 . 0 0 0 1 2 0.00012019 0.00012019
1 0 . 0 2 0 . 2 0 . 0 2 1 0.25 0 . 1 0.008131 0.00813132 0.00813132
1 0 . 0 2 0 . 2 0 . 0 2 0.25 0.25 0 . 1 0.008131 0.00477464 0.00477464

Table 3.2: Asian options on yield.

Table 3.2 confirms that the values computed with our series are correct. Indeed, 

the column LS and Fusai collect the prices respectively produced by Leblanc and 

Scaillet [47] and Fusai [33].

This cross-checking done, we come back to the parameters proposed by Chacko 

and Das [12]. We first observe how higher maturities, common in fixed-income, affect 

the results in Table 3.3.
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Maturity Type K  =  0.08 K  =  0.09 K  =  0.10 K  =  0 . 1 1 K  =  0 . 1 2

P { Y t  >  K T ) 0.1061 0.2936 0.5337 0.7427 0.8790
CBAC 0.5354 0.4130 0.2637 0.1399 0.0631

T  =  5 TM^ 0.4607 0.3806 0.2665 0.1571 0.0791
RBAC 0.2730 0.2208 0.1499 0.0851 0.0410
AO‘= 0.0118 0.0070 0.0036 0.0016 0.0006

PÇYt  >  K T ) 0.0436 0 . 2 2 0 1 0.5255 0.7936 0.9343
CBAC 0.3504 0.2756 0.1576 0.0634 0.0185

T =  10 TM(: 0.9668 0.8154 0.5248 0.2442 0.0834
RBAC 0.3495 0.2853 0.1732 0.0747 0.0234
AO': 0.0069 0.0037 0.0016 0.0005 0 . 0 0 0 1

Table 3.3: Higher maturities, Chacko and Das parameters.

The volatility of ^  should start from a low level, increase with T  and then decrease 

again for high maturities, the mean-reversion pulling the rate to its long-term level 

| .  The call prices and the probabilities corroborate this intuition. The monotonous 

evolutions with respect to K  are as expected.

Type T 0.08 0.09 0 . 1 0 0 . 1 1 0 . 1 2 T 0.08 0.09 0 . 1 0 0 . 1 1 0 . 1 2

Qa,b,a{KT, 0) 50 51 54 57 59 16 19 19 2 1 2 1

Ga,bAKT, 1) 49 51 53 56 53 16 19 19 2 1 2 1

Ga,bAKT,0) 0 . 1 49 51 53 57 53 0.5 16 19 19 2 1 2 1

Ga,bAKT, 1) 50 51 54 57 59 16 2 0 19 2 1 2 1

Ga,bAKT,0) 15 14 1 2 14 14 1 1 1 0 1 1 1 0 9
Ga,bAKT,l) 15 14 1 2 14 14 1 1 1 0 1 1 1 0 9
Ga,bAKT,0) 1 15 14 1 2 15 14 2 1 1 1 0 1 1 1 0 9
Ga,bAKT,l) 15 14 1 2 15 14 1 1 1 0 1 1 1 0 9
Ga,bA^T,0) 9 7 8 7 8 8 6 6 6 6

Ga.bAKT,!) 9 3 8 7 6 8 6 6 6 5
Qa,bAKT,0) 5 9 7 8 7 8 1 0 8 6 6 6 6

Ga.bAKT,!) 9 7 8 7 6 8 6 6 6 6

Table 3.4: Evolution of the speed of convergence with T.

The series performance, i.e speed of convergence, indicated in Table 3.4 are in 

agreement with our observation concerning the behaviour of the density series f ^ ( y )  

in Section 1.1.4 of Chapter 1. The figures of Table 3.4 represent the minimal number 

of terms needed to ensure the relative error is inferior to 10“ .̂ As for the density, the 

four series converge more and more quickly as T  increase. N  remains roughly of the
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same order throughout the strike curve.

Once again, all the results produced in this section have been cross-tested again 

numerical Laplace transform inversion and numerical integration of (B.l). For ma­

turities superior than five years, the Abate-Whitt starts becoming unstable and for 

ten years maturities, the numerical integration cannot be performed successfully with 

Mathematica.

Evolution of the Abate and Whitt inverse with A

0.2134-

0,2132 -

0.2130 -

0.2128 -

15 16 17 18 19 20 21

Figure 3.1: Tq =  0.1, a = 0.15, b - 1.5, a =  0.2 and T  = 10

Figure 3.1 shows no hint can obtained as to the location of the real inverse for 

T  = 10 with the Abate and Whitt algorithm. As mentioned earlier, long-dated 

instruments are not rare in fixed-income markets. Our series brings a quick and 

effective solution for those problematic high maturities regions.

The same is true for high volatilities as expected.

Table 3.5 contains the results for the higher volatility case considered in Chacko 

and Das [12], a = 0.3, all other base parameters remaining the same. Not surprisingly.
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K
N Value

Q { K T , 0 ) G ( K T ,  1) G {K T ,Q ) G { K T ,  1) P CBA^ RBA<: AO":
0.08 8 8 1 1 1 1 0.3040 0.6204 0.0803 0.0711 0.0215
0.09 1 1 1 0 1 2 1 1 0.4308 0.5039 0.0695 0.0612 0.0158
0 . 1 1 1 1 1 1 1 1 1 0.5534 0.3924 0.0579 0.0506 0.0114

0 . 1 1 1 0 1 0 1 0 1 0 0.6625 0.2942 0.0464 0.0403 0.0079
0 . 1 2 1 0 1 0 1 0 1 0 0.7533 0.2133 0.0360 0.0310 0.0054

Table 3.5: a = 0.3, T  = 1, Chacko and Das parameters.

our series converge faster as the volatility increases whereas the numerical inversions 

routines start having difficulties.

K
N Value

G { K T , 0 ) G { K T ,  1) G { K T , 0 ) G { K T ,  1) P CBAC TMC RBAC AO':
0.08 1 1 1 1 1 1 1 1 0.6173 0.3475 0.0370 0.0335 0.0057
0.09 1 0 1 0 9 9 0.7724 0.2050 0.0238 0.0214 0.0030
0 . 1 1 1 1 1 1 2 1 2 0.8771 0.1097 0.0139 0.0124 0.0014

0 . 1 1 1 1 1 1 1 1 1 1 0.9391 0.0539 0.0074 0.0066 0.0007
0 . 1 2 1 0 1 0 1 0 1 1 0.9720 0.0246 0.0037 0.0032 0.0003

Table 3.6: |  =  0.05, T  =  1, Chacko and Das parameters.

Table 3.6 presents the last group of cases analysed in Chacko and Das [12], a shift 

in the long-term mean level. We observe that our series converge slightly faster.

This numerical analysis of the performance of the series we derived concludes our 

study of the CIR model. We will now consider the general CEV model.

3.2 The CEV model for the instantaneous rate

As a short-term interest model, the CEV process has been introduced by Chan, 

Karolyi, Longstaff and Sanders [13] in its mean-reverting form

drt =  (a — brt)dt -h ar^dWt (3.58)
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with a > 0 and 6 >  0. This model proved a better statistical fit to historical data 

than other one-factor models.

As for the equity model studied in Chapter 1, we will suppose 0 < a  <  1 and

û  =  £.

T h e o rem  3.2.1. Any function belonging toCh2(R+,M+)^ bounded with bounded deriva­

tives for its second variable, bounded on any compact interval for its first variable and 

satisfying the partial differential equation

with the initial condition

Vzo >  0, P(0,xo) = l (3.60)

is the zero-coupon bond price for this short-rate model

Proof. The proof follows the same line as the demonstration of Theorem 1.3.2 in 

Chapter 1. □

3.2.1 A Laplace transform approach

Trying to solve the differential equation (3.59) with a Laplace transform with 

respect to time comes across quite naturally.

T h eo rem  3.2.2. The Laplace transform of the zero-coupon bond price in this model 

P{X,x) — e~^'^E{e~^o^*^*\Xo = x)dT  - clearly defined for  A >  0 - satisfies the

ODE

P(A, x ) - l  = y  +  (a -  -  x P { \ ,  x) (3.61)
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Proof.  This simply results from taking the transform of the equation (3.59), taking 

into account the condition (3.60). □

T h e o rem  3.2.3. For q < 2p, i.e. a >  no analytic solution to the equation (3.61) 

exists. For q > 2p, i.e. a  < both the vector space of solutions to the homoge­

neous equation and the affine space of solutions to the non-homogeneous equation are 

composed of analytic functions.

Proof. As in the equity case in Chapter 1, we use the change of variables y = x 'i , 

h(A, y) = g{\, x) which, with I = 2 (q — p), gives

y ^  -  -  Xy^h +  ŷ

for the non-homogeneous ODE. When applying Frobenius method (see Theorem 2.2.3, 

Chapter 2 for another application of this analytic coefficient method) and trying to 

find a solution in the form different cases arise, l î  q >  2 p, there are two

possibilities: P = 0 and p  = q{l — When q < 2p, there is only one possibility: 

p  =  0 . And it turns out that, even in that case, the recursions lead to a divergent series 

for q < 2p. The same analysis can be carried out for the homogeneous equation. □

We could not find a way to solve this ODE in explicit form for the case q < 2 p  

and no such solution seems available in the mathematical literature.

We will thus focus here on the case q > 2p, for which it is possible to obtain an 

explicit formulation for the Laplace transform of the zero-coupon bond prices. 

D efinitions and notations. Given I = 2{q — p), A  = B  = C = - ^  and

D = -, h^i^o, 1/1, x) refers, in this section, to the power series

k=0
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«0(^0, 1'l

uiivo, Vi 

uliva,

ul{va, vi 

u^iuo, 1/1

k [A + C ( V  1 )] ' ^ k + q - l  (  ̂ 0  5 ^ l )

for A: =  0

ÎOT 0  < k < I — q

for I — q < k < k ^  q

foTk = q
_  [X-B{k-l)]u^_i{vo,vi)-D{k+q-l)u^_^_^_i(yo,i/i) _̂___ 1 ^  u ^   ̂ \ 1
~  h.\AA-n(k-U] I ^  K <. q  Lk [A -^ C {k—1)] 

k[A-\-C(^k—1)]
[D{k+q-l)]û _̂ _̂ _i{vo,ui)

k [ A + C { k - l ) ]

ÏOT q - \ - 1  < k

T h eo rem  3.2.4. When q > 2p, the solutions to the homogeneous equation

Xh(x) -- +  (a — bxY ' 2 y  — xh{x)
.d'^h{x) dh{x)

dx"̂ dx

are the Junctions h^{i/Q,i'i,x).

(3.62)

Proof. This follows from assuming the form h{\, x) = and deducing the

recursion formulae from the homogeneous differential equation. □

We need to set more notations for the inhomogeneous equation.

D efin itions a n d  n o ta tio n s . With the same notations, refers, in this

section, to the power series

i^{vq, v i, x ) = Y ^ v l ( y o ,v i ) x
k = 0
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Voit'O, 

viii'o, I'l 

Vkivo, 

v^ivo, I'l 

vl'ivo, 1/1

Vk(V0 , t'l 

I'l

“  k [ A + C { k - \ ) ] ' ^ k + q - l i ^ O ^  ^ l )

=

for A: =  0 

ioT 0 < k < I — q 

for I — q < k < I, k ^  q 

ÎOT k = q 

ÏOT k = I
[X-Bik-l)]v^_i{vQ,ui)-D{k+q-l)v^_^.^_i{vQ,ui)  ̂  ̂ , ,

k \A A -r(k .- i} ]  L li q  1

£z

Xi/Q—Dqui — 1
/[^+C(i—1)]

k \A-\-C { k —1 )]

k [ A + C { k - l ) ]  
[D{k+q-l)]vĵ _̂ _̂ _l{IyQ,Vl) 

k [ A A C { k —1)]

ÏOT q-\-l < k

(3.63)

T h eo rem  3.2.5. When q > 2p, the solutions to the inhomogeneous ODE (3.61) are 

the i^{v'o,U]_,x).

Proof.  This follows from assuming the form i(A, x) = and computing the

resulting analytic coefficients. □

As in the equity case, we proceed to approximate the model by adding an absorp­

tion at the high level B  since we do not know the asymptotics of the h^{uo,i/i,x).

T h eo rem  3.2.6. For q > 2p with an absorbing condition at the origin 0, the Laplace 

transform of the zero-coupon bond price can be approximated to any arbitrary level of 

closeness by the function

Pb W  = 1 - (3.64)

Proof.  This proof can be conducted in the same way as the proof of Theorem 1.3.7 

in Chapter 1. □
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3.2.2 Considering an eigenfunction expansion approach

The zero-coupon bonds can, in theory, be expanded in eigenfunctions for q > 2p. 

To discuss this possibility, we follow the steps of the methodology presented in the 

general Appendix C.

The homogeneous equation can be transformed into a self-adjoint one with

s ( i)  =  e ) (3.65)

and

w{x) = ----------------g -----------  (3.66)
a"^x «

The solutions to the homogeneous equation so that rj{X, 0) =  0 and ((A, B) = 0 are

?j(A,0) =  A ^(0,l,x) (3.67)

and

f(A,0) =  ft"(l,0 ,x ) -  j j | i i ^ / i ^ ( 0 , l , x )  (3.68)

The eigenvalues are the zeroes of the function A i-> r]{X, B) in A.

The coefficients of this expansion are

 dxO i n =  / t ^ ( 0 , 1 ,T ) :
Jo'0 a^x~^

and the norms

h^^{0 ,l,x) \\‘̂ = /  (h ^ ^ { 0 ,l ,x )y ----------------^ ----------- dx (3.70)
Jo (j'^X 9

Though expansions and other tricks could be considered to deal with these inte­

grals, these calculations seem quite involved. Yet, the eigenfunction expansion could
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be very useful for this problem, as it would allow a fast computation of the whole 

term-structure of zero-coupon prices, once the main quantities relating to the calcula­

tion, An, Qn and || l ,x )  |p have been evaluated once. Practically, the question

implied is: what amount of initial calculation would be acceptable or can this amount 

be reduced to an acceptable level? This issue is here left to be explored in a future 

research work, as it should be the object of a separate study. We though briefly 

wanted to present how the methodology would work, since the idea remains valuable.

3.2.3 Num erical exam ple

As in the equity case, we present one example in details. We place ourselves in 

the case: b = 0.2, |  := 0.1, a = 0.2, p =  1 and q = 4.

For^ A =  7.5, we study the behaviour of the solution (3.64) for different tq.

Table 3.7 draws the basis functions denoted / I  and l , x )  denoted

/2 . n l  and n2 represent the terms needed in these respective summations for the 

error to be inferior to 10“ .̂ Both functions recess to infinity.

X f l n l f2 n 2

0 . 1 0.133333 0 0.133432 0

0.15 0.133333 0 0.133825 1

0 . 2 0.133333 0 0.134861 4
0.3 0.133344 0 0.141089 1 1

0.4 0.133533 1 0 0.164404 2 2

0.5 0.135931 25 0.305733 34
0 . 6 0.174035 45 2.138934 56
0.7 1.538270 64 65.998457 8 6

0 . 8 179.310360 1 2 0 8376.717839 134
0.9 131727.134 190 6158053.022 204

1 951344667.3 287 44474027808 302
1.25 1.77061E+25 752 8.27734E+26 770
1.5 1.30359E+58 1804 6.09409E+59 1824

Table 3.7: Evolution of the basis functions with respect to vq .

^This choice would come from the choice A =  15 in the Abate and Whitt algorithm for example.
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From Table 3.8, we can see that the approximate Laplace transform is quite stable 

in the regions of interest and B  = 1 is sufficient, “const” in this table denotes the 

adjustment ratio

B 0.7 1 1.25 1.5
const 0.023308 0.021391 0.021391 0.021391

X P b
0 . 1 0.133331 0.133331 0.133331 0.133331

0.15 0.133322 0.133323 0.133323 0.133323
0 . 2 0.133297 0.133300 0.133300 0.133300
0.3 0.133159 0.133174 0.133174 0.133174
0.4 0.132796 0.132858 0.132858 0.132858
0.5 0.131879 0.132220 0.132220 0.132220
0 . 6 0.127145 0.131086 0.131086 0.131086
0.7 0.129261 0.129261 0.129261
0 . 8 0.126557 0.126557 0.126557
0.9 0.122799 0.122815 0.122815

1 0.117943 0.117943
1.25 0.101069

Table 3.8: Evolution of the approximate Laplace transform for different B  .

We also draw the real part of the Laplace transform for complex A in Figure 3.2. 

Although the corresponding figures are not presented here for simplicity, we observed 

that the number of terms needed to reach convergence in the basis functions increase 

as the imaginary part of A increases.

Globally, the series converge fast for the tq we would expect. Computing the 

basis functions at the boundary B point can yet take many more terms. But, the 

advantage of this method resides in the possibility of applying powerful techniques 

like fast fourier inversion.

3.3 Conclusion

In this chapter, we focus on the applications of the results derived in Chapter 1 

to the world of fixed-income derivatives. We analysed one of the most fundamental
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Figure 3.2: Real part of the Laplace transform along a complex vertical line of abscissa 
7.5.

models in interest rate theory, the CIR model and produced explicit series formulae 

for the probability distribution function of the average instantaneous rate as well 

as other Asian or average-rate claims options. As previously, we observed that our 

series is a theoretical tool but also an efficient method to evaluate those quantities 

numerically specially when the volatility or the maturity is large.

We also considered the general CEV instantaneous rate model, adapting the re­

sults on equity CEV processes.
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3.4 Appendices to this chapter

3.4.1 P roof o f Theorem 3.1.1

From Appendix 1.5.1 of Chapter 1, the expectation that we are trying to Laplace- 

invert can be decomposed as

^  ^  ^  .  ( 7  -  ^_ e  ' ^ ' ^ ' ^ U k , k - n , m  ryk-Tin
^  k = 0  n = 0  m = n  7

where

7 =  \/6^ +  2ct2(A +  (jl)

Given that /i =  tLiJ^h±Él^ § being defined in (3.11), we are mainly interested in 

the inverse Laplace transforms of terms of the type , 'OJ G M”*". The

inverse of this expression, named Ip^q{y,w) hereafter, can be written in an integro- 

differential way, with the same type of arguments^ as those used in Appendix 1.5.1 

of Chapter 1. The case q > 0 and q = 0 give rise to different expressions and need 

hence to be treated separately.

C a s e  g  >  0

The inverse Laplace transform in this case can be expressed in the form

p o o  POO POO

/  /  /  ,h~)dh^dh~du
JQ JQ JQ

where Jq(y, zu, (, u, /i+, h') is given by

(3.71)

2 y / ' ï ï { y ^ f { q -  1)!

^Justifications for interchanging integrals or integrals and differentiation can be worked out in 
the same way.
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However, it is easier to study the simpler expression 

where:

/•oo POO POO

/ / / Jq{yT'^,(,u,h^,h~)dh^dh'du
Jo Jo Jo

(3.72)

J,  C . „ ------------- 2 , / , W ) l ( , - l ) l -------------

To link this with the original expression (3.71), we integrate by part

-fc±î±ri|l±iOÎ+K+»(^---.+)-»>h(^ +  (  +  « +  /,+ +
/ /?------------------------------- ,      du

J o  2 y / 7 r ( y i 3 y { q  -  1)!

=  2 yP ^l{g=i}Ji(2/, C, 0, h+, h~) +  J^-iiy, (, u, h‘)dit j

which implies that, for g > 0,

îp.ii.y,'^) = 1{î>i}{2î/^-^p,,-i(2/,ct)} +  l< ,= i ) |( - l ) '’( 2 ÿ ^ ) ^ L ( j / ,n 7 ) | (3.73)

where

‘̂ y /A y P Y
The inverse Ip^q{y,vj) can thus be recovered from the study of Kp^q-\{y,w) and 

Lp(y,i^) = { - i y ^ i { y , w ) .

To start with the calculation of Kp^q{y,w), the double integral

POO POO

J i q { y , ' ^ ) =  /  /  J q { y , ' ^ , C , u , h + , h ' ) d h + d h ~
Jo Jo

can be simplified using the fact that its inner integral can be reexpressed as

p o o  ^  POO

/  JUy,zuX^u,h+,h~)dh+ = /  _ J^{y ,w ,C ,u ,h ',g)dg
J q I TP+C+M+ft +2ÿ/3i?

POO p(.

L{y,w ) = /  /  P~------------^ - p = = = ------------- dh^dh'
Jo Jo

. 2

JAy,-^ ,C ,i^ ,h ',9 )  =
 ̂ g—■̂ +i?(c7+(̂ +u+2/i )+b̂ ŷ q—l

y V ^ { q  -  1)!
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Integrating by part /J ”  Jg{y, C , h',g)dgdhr then gives the following

expression

0̂ My/7T(yPY{q -  1)!

Denoting

■(°̂ +C+̂ f̂e-+2v/3r?)2 +b(+l)(w+(+tf+2/t- )

we split K q { y , w )  in two and are next first interested in the quantity
ro o  ro o

^ y ( 2 / , ^ ) =  /  /  Jq{y,w ,C,u,h ')dh'du
Jo Jo

After transforming the inner integral as previously, 

integration by part of Kq^^{y,zu) leads to:

■oo g -  + 6 ( - i ) ( w + ( + i i )

47?^7r(î//?)3g!

/"OO /•oo p - '^ + 6 C - i ) ( a 7 + ( + « )
+  /  /   p = --vJdgdu (3.75)

Jo 2yy/2'ïïq\

Defining

- a  4V (I.W ‘(»-1)!
(3.75) becomes

■^5‘(y. + Ki^i{y,  (3 77)

The second expression we need to study to get (3.74) is

poo ro o  -  (^+c+^+fc'+2v/3.?)" + K + i)(« ;+ C + « )

% Jo IdJM a-lV.

7
K^'^{y,w) = p   ------------- .  u^du

Jo
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As previously, integration by part gives

g -  +K+tf (■°+C+«)

4'â^/w(y0yq'

/•c
Kq'^iy, z u )= P   ------------- , . ..  u^^du

Jo

poo poo  p -% -+ 6 (+ i) (n 7 + (+ u )
-  /   7= --u^dgdu (3.78)

Vo 2 yy/2 'ïïq\

We notice the the first integral on the right-side of (3.78) is exactly the same as the 

one in (3.75). The counterpart to (3.77) is thus

+  K,q+i(y' (3-79)

Computing Kq'^{y, vo) and Kq’̂ {y, cj) then amounts to compute their initial values

and as well as the integrals K^'^{y,vj) and Kq’'^{y,zü).

The initial values can actually also be computed through integration by parts but

expressing the integrand as the product of a couple of functions different from the

one chosen in (3.78):

_ ,  .  r°° r°° p-^+bc-'&{rxi+c+u)
K {  {y,w) = J  ----- —— j = ------dgdu

0 J  2 ' d ' U y / ^

g-4+K ->>(°+C) /•“  g -  +«-!)(=:+(+«)r<x) rc

2'd‘̂ y y /^  ^ Jo7+c-2yi3^ 2 'â‘̂ y y / ^  ^ '"Jo A'â‘̂^/'K{y/3 )^

Therefore,

In the same way,

poo  poo p -^ + b C + '0 {z ii+ C + u )

K 2 (2/, ru) =  /  /  ---------— = ------dgdu
J o  / w+ç+u+2yp^ 2 ' â y y / ^

\2

■ J .  « . v % #  " -
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To obtain Kp^g{y,w), we need now to differentiate p  times these different expres­

sions with respect to 

Denoting

(3.77) and (3.79) are respectively transformed into

and

The term

i :
■û  du

0̂ 4î?y^7r(^^(g -  1)!

is very similar to the term

%" (T- i / “
studied in Appendix 1.5.2, Chapter 1. The analysis of îpg(y,zu) can be carried out in 

the same way with only minor changes in the resulting formulae. These changes are 

basically only the replacement of b' ŷ(3 with d'^ylS in the exponentials. Hence, (1.108) 

becomes:

Similarly, we obtain (3.12), (3.13) and (3.14) respectively.
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For the initial values

AP+l

I

dP

oo
/?■ du (3,81)

=  -  ( - 1)

L
J o  4 ^ - ^ v ( y l 3 Y

g-i^±|ÿ^-d=i,/3+K
(e*" -  1)

M^y/Tr{ypY

OO

OO p-

which gives (3.16).

Setting p =  — 1 in (3.81) leads to the expression (3.17).

In the same way,

 ----------------------   -du
AP+l I.Jo 4î?2^7t(î//?)'

(3.82)

which, similarly, lead to (3.19) and (3.20).

Now /p,g(p, tx7) and 7^g(p, vo) are fully determined, it is possible to compute the 

expression (3.72) we wanted:

K p Â v ,^ )  = i l g i y , ^ )  -  î lg iy , '^ ) (3.83)

which arises from (3.74).

The term Lp{y,w) = { - i y - ^ L { y , z j )  in the equation (3.73) still remains to be 

analysed:
POO POO -̂3̂ +bC+'d{w+C+2h~)

L{y, 'aj)= /   — --------dh^dh~Jo I (̂ +<+h~+2yl3)
>/2y3 y V ^

A /
2 «Jo

(3.84)
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joo _  e - ^ ) d u

This, in turn, leads to

Lp{y,'cu) = ( - 1 ) ^ ^ ^

which completes the inversion for g > 0 

C a s e  g =  0

In this case, the inverse Laplace transform of is given by

f  00 poo

/ / J^{y,wX ,h^,h ')dh '^dh '
Jo Jo

with

/)e Ç + ft-)

2 \ A W F

once again following the kind same of derivation as the one used in the Appendix 

1.5.1 of Chapter 1.

Manipulating the inner integral as previously and integrating by parts

îpÀV’^ )  = ( - I f
d”

(22//?) I
Jo

0 -

poo pc

■{2yl3)ÿ /  /
Jo Jo

0 -

2 yJ'K{y0 Y

-  +K-i?w+/i+-k- )

dh'

2y/7r{y0)^
■dh^dh'

=  2y/3(2ÿ^îliiy,w) + î^iiy.w)^ -  2yl3ê‘̂ (î^i{y,w) +  ïli(y,üp)j  

This identity completes the study and proves the first line in (3.23).



Chapter 4

Stochastic volatility m odels

The hypothesis of constant volatility assumed by Black, Scholes and Merton has 

been questioned early. In 1976, Fisher Black writes: “Suppose we use the standard 

deviation ... of possible future returns on a stock ... as a measure of its volatility. 

Is it reasonable to take that volatility as constant over time? I think not” (See Lewis 

[50]). For most financial equities and indexes, statistical tests strongly reject the the 

idea they could have been generated by a constant volatility. Derivatives markets 

practitioners also observe that call and put options prices emerging from the the 

economic law of supply and demand produce a pattern for the implied volatilities - 

the smile - that invalidates Black-Scholes assumptions. This smile, happily named 

after the shape of the implied volatility surface, started to be particularly noticeable 

after the crash of 1987.

Indeed, the implied volatility, is defined as the positive real value, which fed 

into the Black-Scholes analytic formula, BS^ for call options of right m aturity T  and 

strike K  gives the actual market price of the call C{S, K, T, r)

K, T, <T™P, r, 5) =  C{S, K, T, r, S) (4.1)

167
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S denoting the continuous proportional dividend rate^.

Under the Black-Scholes assumptions, this value should remain constant across 

maturity and strikes. In practice, the implied volatility is rather a local parabola 

(smile) or can even exhibit others shapes (smirks, etc.). Stochastic volatility models 

are a natural extension of the Black-Scholes model which allow the implied volatility 

patterns to appear (See Das and Sundaram [19] for example). Although many other 

alternatives can be considered (jumps, local volatlity approach, etc.) to obtain an im­

plied volatility surface, stochastic volatility models are relatively simple and capture 

most of the important features of the smile.

Stochastic volatility models constitute for us both an interesting and important 

area of application. Indeed, the main models developed are based on constant elas­

ticity of variance processes: the Geometric Brownian motion for Hull and White [41], 

the Ornstein-Ulenbech for Stein and Stein [67] and the square-root process for Heston 

[40]. The temporal integral of the variance related CEV process is involved in all of 

these model and generally in a complex way. We therefore devote a whole chapter to 

this class of models.

After having recalled the main results concerning these reference models, we will 

first provide more insight in their structure, by highlighting the role of two condi­

tioning variables. We will explain how some results on these reference models can be 

retrieved in a very simple and intuitive way through the use of moment generating 

functions and characteristic functions. We will also extend and apply this method 

to the Hull and White model so as to obtain a close-form solution by incorpora­

ting results gained in the not so independent problem of Asian options pricing. We

^Until now, we have not introduced proportional dividend rate in our equity derivatives model, 
as our framework and results can be straightforwardly generalised in this case. In this chapter 
though, it is quite convenient to introduce it because as we will see later, stochastic volatility brings 
a stochastic dividend rate into play.
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then focus on approximating the call option price through expansion, more precisely 

moments-based expansion. After providing new expressions for the joint moments of 

the conditioning variables for the reference models, we will compare and extend dif­

ferent asymptotic expansions proposed in the literature. We will finally present two 

convergent expansions, which are of theorical interest for their convergence and of 

practical utility when it comes to compute a whole surface prices for different strikes 

and maturity.

We evaluate either one of the call or put options as the model independent call-put 

parity allows us to deduce one from the other.

4.1 Reference models

4.1.1 The H ull-W hite model

This model is of historical importance, since the geometric Brownian motion was 

the first diffusion proposed to model the stochastic volatility of the index, otherwise 

conditionally lognormal itself.

^  M

^  +  (4-2)

< dW^ , dW^ > =  pdt

The market premium for volatility risk is then taken to be null, meaning that, under 

the resulting risk-neutral measure, we have:

^ ^  =  ( r - S ) d t  + a^^dW t^

^  =  n^dt + ^dW ^ (4.3)

< dW l,dW t^>  = pdt
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Hull and White then produce an approximate solution series in the case the two 

Brownian motions are independent. The underlying process is then:

This expression is actually valid for any stochastic volatility diffusion as long as the 

asset St follows the same stochastic differential equation and the Brownian motions 

leading the asset and the volatility are independent. The argument of the exponential 

is a normal of mean (r — 6)T — ^ and variance conditionally

on the accumulated variance Hence, the price of the a call option in

this framework is an average of Black-Scholes call option prices:

p o o

C{So, <70, K ,T ) =  K , T, r, S)f^'^(v\cTo)dv (4.5)
Jo

where fx ^ i '^ l^o )  represents the density of the random variable ^   ̂ given the

initial value ctq.

P ro p o sitio n  4.1.1. (See Hull and White [41])- When =  0, Hull and White give 

the approximation to the call option price

I So(ToVTJ\f' (di){did2—l) 
8

S ovT A rqdi)[(d id2-3)(d id2-l)-(d?+ dl)]
48^

(4.6)

, _6e3''-(9+18fc)e''+(8+24ik+18fc2+6fc3) ,

+  ^0 3P ^

where JV is the probability distribution function of the standardised normal and d\, d2 

are the functions used inside the Black-Scholes formula. More precisely,

_  l n ( f )  +  ( r + ^ ) r  
-  ,oVT

C?2 — d\ — (7q\ /T
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A similar formula is also proposed for ^  0, with one order less, though, in the 

Taylor development.

Hull and White also provide a Monte-Carlo analysis for the correlated case (p ^  0) 

and present the evolution of the the prices with the strike for different correlations.

4.1.2 The Stein and Stein model

The previous model had two main drawbacks. Firstly, the volatility does not 

have a stationary limit. In the case /  0, the volatility either increases to infinity 

or decreases to 0 with time. This behaviour is not desirable in a volatility model. 

The second main defect of the Hull-White model is its lack of tractability.

The Stein and Stein model brings both tractability and a convergence in time to 

a stable economy by choosing an Ornstein-Uhlenbeck volatility process.

daf^ = {a — baf^)dt -f ^dW^ 

where the two Brownian motions W/ and are independent.

Assuming a constant market price of volatility risk A, the process diffusion under 

the risk-neutral measure becomes:

=  (r -  6)dt 4- crpdW /
( 4 . o j

daf^ = {a — baf^)dt -h ^dW^ 

where a = â —

The independence of the Brownian motions allows us to write the underlying 

process under the form (4.4). Stein and Stein solve the call option pricing problem 

in the following way:

P ro p o sitio n  4.1.2. (See Stein and Stein [67]). The call price can be evaluated by 

integrating the payoff {St  — against the density / t ^{s ) of S^^ in the risk-neutral
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measure.
p o o

(To, A:, T) =  /  (a -  (g)(fg (4.9)
Jk' K

This density can be numerically calculated as an inverse Fourier transform
3

So 27t

where the function I^^ is given in Appendix 4-5.1.

This method is implying first a numerical Fourier inversion and then another 

numerical integration, hence a double integral. It is actually possible to solve the 

problem with a less burdensome method involving one and only one Fourier transform 

inversion, a real one-dimensional integral. This will be investigated in Section 4.1.4.

This section on the Stein and Stein model cannot be ended without pointing 

out the important fact that, although this model does not possess the two major 

drawbacks of the Hull-White lognormal stochastic volatility setting, it still has one 

major defect: the volatility can go negative. A lot of controversy arised from this. 

Stein and Stein justified their model by emphasizing the fact that the volatility enters 

the process only as in squared way (see (4.4)). These authors conclude from this that 

the sign of crp does not m atter and their model can be interpreted as equivalent to 

reflecting crp at 0. Ball and Roma [5] contradicted this interpretation by proving 

that reflecting the Ornstein-Uhlenbech at 0 would completely modify the density of 

the process, which is not what happens here. Though right in this, they wrongly 

conclude that Stein and Stein are taking the absolute value of crp. It is true that 

erf® enters the model only in a squared-fashion. Yet, the value and hence the sign of 

a p  condition the subsequent behaviour of the volatility for time above t. This can 

easily be intuitively seen for a mean level f  >  0. Suppose that |crp| is slightly inferior 

to the mean-level; we will then expect the volatility to raise due to the attraction
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towards the mean level. When the initial volatility is negative, the process will then 

to decrease first in absolute value as the volatility increases in real value. Hence, 

the average  ̂ is likely to be inferior in the case ctq® < 0 compared to the 

case ctq® > 0. This shows that the sign of the volatility has an indirect influence on 

the value of ^   ̂ and therefore on the process behaviour. In the case, the two

Brownian motions and are correlated, it becomes even more obvious that 

the sign of the volatility has an effect on the process, since crp enters the formula 

in a non-squared fashion as well. Extending the Stein and Stein model by adding 

correlation and deducing the corresponding closed-form solution has been recently 

done by Masoliver and Perello [53] as well as Schobel and Zhu [64].

4.1.3 The H eston model

i. The original m odel

This model is labelled as typical by Lewis [50], in the sense that it displays the 

qualitative properties we expect in general from time-homogeneous cases. Dragulescu 

and V. M. Yakovenko [23] also show that probability distribution functions resulting 

from the Heston model fit quite well market data and possess a number of common 

properties. Under this model, the equity follows the diffusion:

^  =  fidt -H y/vldW l

dvt = {a — bvt)dt + ^y/v^dW^ (4.11)

 ̂ < d W t\d W t^>  = pdt

This model groups the three advantages of both the previous reference models: the 

volatility cannot go negative, is mean-reverting and still leads to tractable closed-form 

expressions for call option prices.
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Heston [40] assumes a proportional form for the market price of volatility risk, 

following economical consumption-based models. He proves that, under the risk- 

neutral measure arising from this assumption, the asset is driven by:

^  = {r -  S)dt y/v^dWf

dvt = (a -  bvt)dt + ^y/vldW^ (412)

 ̂ < d W /,d W 2 >  =  pdt

Basically, with this choice of volatility risk premium, the process retains the same 

form, which is very practical. Only the reversion strength, 6, is different from its 

historical value.

Heston then solves for the price of a call option in the form

C'^{So,vo,K ,T) = SoPi{So,vo,K ,T) -  K B {0,T)P2{So, vo,K ,T )  (4.13)

where B{0,T )  is the price of the zero-coupon bond with the same maturity, T, 

as the option and P j,j  = 1,2 are the functions to be computed. More precisely, 

these functions are given by Fi(iS'o, vq, K , T) — and P2 {Sq, Vq, K , T) =

E(1{St>k }) and therefore are both probabilities. Indeed, fi(5'o, fo, T) is the prob­

ability of {St  > K }  under Sr-numeraire measure given by the Radon-Nykodim 

derivative ^  Heston characterises these probabilities by their Fourier trans­

form.

P ro p o s itio n  4.1.3. (See Heston [40]). For j  G {1,2}, the Pj{So,vo, K ,T )  can be 

computed by numerical integration

1 I
Pj{So,Vo, K ,T )  = - -\—  / Re 

where the transforms are given by:

i(j)
d(j) (4.14)

fj{x , V, T, (j)) = ê L̂<t>)+D{T,cf>)v+icf>lnSo (4.15)
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with
C(T, (f)) — (r — 5)(j)iT +  — pacj)i +  d)T  — 2 In  ̂ j |

  bj —pacjn+d
" b j —pa(f)i—d

d = y/{p(7(j)i — hjY — a'^(2uj(l)i — 

anrf the parameters

ui =  2 ’ ^2 =  “ 2 ? b i = b -  pa, b2 = b

Numerous papers (Bakshi and al [4], Duffie and al. [24], Pan [59], Tompkins [69]) 

compared option pricing derived from this model and its extensions with empirical 

data on option pricing and found that the Heston model describes the empirical 

options prices, much better than the Black-Scholes theory and that its extension 

even further the agreement. Dragulescu and Yakovenko [23] also showed that the 

Dow Jones actual distribution itself is close to the theorical distribution resulting 

from the Heston model and analyse some of its important asymptotic properties, 

which turn out to be empirically verified by the index time-series.

ii. T h e  R o m a an d  B all ap p ro ach

Roma and Ball [5] considered in their paper the special case in which the correlation 

p is null, i.e. the Brownian motions and are independent and showed that 

the methodology followed by Stein and Stein in [67] can be replicated here.

P ro p o sitio n  4.1.4. The call option price can be computed as in (4.9) by integrating 

the payoff against the density function of the asset in the risk neutral measure. This 

density is given by:

/«(.) - r  (4,16)
V ?  27r



CHAPTER 4. STO CH ASTIC VO LATILITY MODELS 176

with

= (4.17)

where is the joint MGF given in Proposition 1.1.4, Chapter 1.

The authors proceed in exactly the same way as Stein and Stein [67], with only 

the function I{z) being changed. This method has therefore the same weakness; it 

involves a double numerical integration, one of which is a real Fourier inversion.

4.1.4 M om ent generating\characteristic functions approaches

For the rest of this chapter, we will consider, except otherwise specified, the fol­

lowing general diffusion which encapsulates the previous models.

dSt = (r — 6)Stdt +  atStdW^

dat = d{t,a t)dt-\-vv{t,a t)idW ^  (418)

< d W ^ ,d W ^ >  =  pdt

i. Zero correlation

We consider here the case the driving Brownian motions dW^ and dW^ are in­

dependent, i.e. p =  0. Both Stein and Stein [67] results and Ball and Roma [5] 

analysis are examples of such diffusions. We here point out that the methodology 

these authors follow can be improved. Indeed, standard vanilla option price can be 

computed with only one real numerical integration, instead of a double one.

In this zero-correlation framework, it is theorically possible to recover put option 

prices - and call prices by parity - in the following way.

Theorem  4.1.1.

r , .  f  / ■  ,4 , , „
J —oo V ' A
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where I(z) is the MGF of the average variance for z  G and M  = y / K ^ e  2

is a geometric mean.

Proof. Recalling the result already stated in Section 4.1.1 and (4.4), the distribution 

of the log-asset X t  = In St  is conditionally normal

X t  ^  So + {r — 5)T J J cr^d^ J a^ds (4.20)

This observation enables us to put in relation the characteristic function of the log- 

asset and the generalised characteristic function of the cumulated variance. Using the 

expression for the characteristic function of the normal variable,

Now, to link this result with the call option price, we observe that the Fourier trans­

form of the difference between and the payoff function can be expressed in a nice 

form when the integrating variable is the logarithm of the strike, k = \n K . For any 

positive real a  and any real rj ,

_g(l-a+i?7)Xr/ oo
_ (gXr _  e*)+]e-“*dfc =

-OO
(1 — a  +  irj){irj — a)

By Fubini, we obtained an expression for the Fourier transform of a multiple of the 

put option price

/ oo

.  '"'I
The real part of this function is the simplest for a  =  choice of parameter which 

leads to the result. □

The expression chosen for the price (choice of a ) is motivated by the fact that 

manipulating a well-defined real function is easier. Ball and Roma [5] even preferred
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employing a double real integral rather than a single complex integral. It could, of 

course, be argued that the complex integral can always be expressed as a real integral 

by taking the real part of the kernel. However, one of the main difficulties in manip­

ulating complex functions lies in the possibility of their being multivalued, property 

generally inherited by their real part. Some of the reference stochastic volatility mod­

els (Stein and Stein, Heston) do indeed involve multivalued characteristic functions 

and a naive numerical computation of the inverse Fourier integral by using the real 

part of the integrand, as proposed by Heston [40], may result in wrong values if 

the existence of different branches is not taken into account. This point has been 

highlighted by Schobel and Zhu [64].

ii. N on-Z ero  co rre la tio n

The approach followed in the previous subsection can be adapted to the case the 

driving Brownian motions dW^ and dW^ have a non-null instantaneous correlation 

Pt-

T h e o rem  4.1.2. For z = a  + icj), a  being such that E{S^'^^) < oo, we have

K-a-i4>i(^z -h 1)r o o  T ^ - a - i ( f > T (  I i \

C(5o, <70, K , T) =  So -  2 ir{z+ l)z  (4 23)

where

I(z)  =  E  ( e '  ^ s.) (424)

P roof. When the Brownian motions are not independent, we have:

S t  = ^0 (^sds+ff ps(TsdW^+ff y/i-p^asdw^^ (4.25)

where is a Brownian motion independent of W^.
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The log-asset is therefore normally distributed conditionally on the couple of ran­

dom variables (  ~  ^ f o  +  f o  (which has also been

noted by Lewis [50]) and the generalised characteristic function of the log-asset 

I{z) = is given by (4.24) for the values of z for which the right-hand side of

(4.24) exists. (4.22) gives us then the Laplace transform. □

C o ro lla ry  4.1.1. For the reference models, the generalised characteristic function 

I(z )  and therefore the Fourier transform of the put price can be directly retrieved 

from the joint characteristic function of

Hull — White ^<7™, cr^^ds"j

Correlated Stein and Stein lo (4.26)

Heston (((Tr)^ Jo{(^^)‘̂ ds^

For example, for the Heston model

I(z )  =  -  i  +  M  +  |( 1  -  (4 27)

where is the joint MGF given in Proposition 1.1.4, Chapter 1.

P roof. Either Ito’s lemma or the volatility stochastic differential equation itself give 

•  For Hull and White model

•  For Stein and Stein model

J \ s s ^ .  .  ( £ f ^  _  Ç  _  I  +  I

•  For Heston model

Jo Ç s 70
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□

Rem arks.

1. We expect the asset to have a finite expectation^, since the discounted asset is 

a martingale under the risk-neutral measure. Hence, all negative values of a  are 

valid. In order to apply fast Fourier methods, Carr and Madan [10] provide another 

generalised Laplace transform formulation for any case in which the generalised char­

acteristic function of the asset is known. They also present an interesting empirical 

discussion for the selection of a parameter which is similar in function to a  but is 

more constrained.

2. Theorem 4.1.2 provide an alternative formulation for the result of Heston[40]. This 

formulation has two advantages over Heston formulation. Firstly, it is simpler and 

more intuitive; indeed, we directly use in a simple way the joint MGF from Proposition 

1.1.4, Chapter 1, a result that was first derived from the interest rate CIR model, 

whereas Heston proceeds by solving again a partial differential equation for each of 

the probabilities P j,j  = 1,2 to get the results. Secondly, we directly provide the 

transform of the option price whereas Heston gives the transform of probabilities 

from which the price can be deduced: our formulation leads to the option price in 

one numerical inversion.

4.1.5 R evisiting the H ull-W hite model

The characteristic function approach discussed in the previous section also applies 

to the Hull-White model if a second Laplace transformation - with respect to time - 

is added.

^We can actually even generally expect the asset to be square-integrable.
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T h eo rem  4.1.3. The double Laplace transform of the put option price in maturity 

and log-strike k = ^\nK  is a generalised hypergeometric function.

POO POO

J 0 J—oo

g-at-AT(g _  e^,T))dkdT =  ̂  ̂ (4.28)

with u = a  — I and e~^^E{e~^^'^)dT is the double Laplace transform

of the cumulated variance (see Fu and al [32]).

iF 2 {rii,di,d 2 \z) being the generalised hypergeometric function, pv, (y  the coefficients 

of the which is a geometric Brownian motion as well and 2/i =   ̂ — —

yi + V2 =  ̂— yiV2 = —I rsv sy

1 -

2(/^y — (3 )
1 +

1^(1 ; 1 — 2/1,1 — 2/2; ^ ) i v

{pv -  P)

Proof. The difference Sq — C (Sq, (Tq, e^, T) will be noted D{k, T) so as to emphasize 

its dependency on the log-strike and the time to maturity. It follows from (4.22) that

The double transform of the temporal integral of a geometric Brownian motion is 

known since the work of Fu and al [32] on Asian options. We notice that this transform 

exist for any value of p, which completes the result. □

4.2 M oment based approximations

A number of research works have treated stochastic volatility as a perturbation 

(Hull and White [41], Romano and Touzi, Lewis [50], Fouque and al. [31]) and 

considered expansions. Moments-based expansions occur naturally in this context, all
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the more naturally since the distribution of the log-asset is determined by its moments. 

Indeed, we assume that the expectation of the asset is finite (more precisely, E (S t ) = 

This implies that the distribution of the log-asset is subexponential and 

thus determined by its moment.

4.2.1 M om ents for the reference models

Moments-based methods can obviously only be used if it is possible to compute the 

moments. For the reference models, for which the diffusion coefficients are linear, 

it turns out that the joint moments of the conditioning variables {6t , Vt ) can be 

expressed explicitly. For the Heston model, the joint moments of are given

by Theorem 1.1.2, Chapter 1. The approach followed in the proof of this theorem 

remains fruitful when it comes to the Hull-White and Stein and Stein models.

T h eo rem  4.2.1. For the Hull-White model,

HW \2 j tj /2 (4.30)

the Laplace transform of the joint moments of Yt  = /^ ( o ’̂ ^ ^ d t  and cr™ is given 

by

m!((j™)^fOO

Jo ri/=o(C — l^v{n — I) — ^ { n  — l){n — I — 1))
(4.31)

where n = k A m.

Proof. Given that the joint moments are finite, Ito’s lemma applied to the product 

results in

F;((a^W)2fcym)

dT

C2
fjivk H—^ k { k  — 1)
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the Laplace transform of Mm,n{T) = with respect to T

and argument (" G R+, is

m!(cro^)^”
AIm,n

r E o ( ( — —0 ~  —o (^  -  ^ —t))

□

It is then completely straightforward to obtain the actual moments by partial 

fraction decomposition. Indeed, depending on the number of different values //y(n — 

I) -\- ^ { n  — l){n — I — 1) can attain, we have

Therefore,

The following corollary presents the two most common cases 

C o ro lla ry  4.2.1. When 2^y  is not a multiple of iv ,  then

m

E ( Y p { a ^ Ÿ ’‘) =
1=0

where \{ j ,  I) = /jLv(j -  0  +  2 Ü ~  0 ( j  ~   ̂~  1)

Oil =
tn

J J  f A(n +  m ,/) -  A(n +  77i,î)j
_i=0, %̂l

When fly = 0 and X =  { 0 , m } \{ n  — 1, n}, then

-1

^aie^^<"+“ '‘)+ a i  +  a2T
lei

(4.32)

(4.33)

(4.34)
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where

OLl

Ü2

a i  =  -

- 1

(4.35)

- 1

EigT (-A (n +  TO,i)) - 1

R em ark . Geman and Yor [77] as well as Dufresne [26] provided expressions for the 

moments of the temporal integral of Geometric Brownian motions in the context of 

Asian options. Their assumption, however, is that 2fjLy is not a multiple of which 

excludes the situation — 0, most important case for the Hull-White model. Our 

result first presents the exact solution for this crucial special case and a simple general 

methodology to account for any case. Secondly, we also propose joint moments and 

not only the marginal moments of Yt -

4.2.2 H ull-W hite type of approximations

i. Zero co rre la tio n

As noticed by Ball and Roma [5], the method developed by Hull-White can be 

applied to any volatility diffusion if p =  0.

P ro p o sitio n  4.2.1. An Hull-White type of expansion can be written for any volatility 

diffusion for which the average variance moments are known.

(To, K ,T )  = (5o, K, T, s )

.. A E{Vt  -  E{Vt ))'‘^  ,r ,d j
fc!T*

-t- higherorderterms (4.36)

where Vt  represents the cumulated variance = agds.
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This formula arises from the Taylor expansion of the Black-Scholes formula around 

the variance. Taking the expectation of this Taylor expansion leads to (4.36). No 

proof of convergence has been provided by Hull and White for their original expansion. 

We notice that the power series of the Black-Scholes formula in variance is already 

divergent, because of the presence of in the formula. The moment expansion is 

hence expected to be divergent in most cases. Yet, this expansion still remains of 

practical interest, since it has been proven to be a reasonably good approximation 

for small volatility of volatility for the Hull and White model, though only third or 

fourth-order truncations have been studied in the literature.

T h e o rem  4.2.2. The derivatives of the Black-Scholes call formula with respect to the 

variance are

■  V 2Ï  ( ° S  ^

with a  = \ n ^  {r — 5)T and

® 2n+2 — %’ ^2n

(̂ 2n+l = “ (2?^+ 5)̂ 271

an + l  __
=  +  (4-38)

=  - f

Proof. A simple recursion procedure enables us to deduce the derivatives of

ii. N on-Z ero  co rre la tio n

Although the Hull and White expansion may not be convergent, practitioners still 

widely use it as a ’’quick and dirty” approximation for small volatility of volatility.
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The zero-correlation constraint imposed on the method is however very restrictive. 

Indeed, empirical studies proved the existence of a negative correlation between log- 

returns of many stocks and their local volatilities. It is therefore quite useful to extend 

the Hull and W hite methodology to the case p ^  0.

T h eo rem  4.2.3. The Hull-White type of moments expansion has to he modified to

<70, K , T ) =  BS^ (%, K , T , r, +

^  ô fô ^ jW V  ’ ’ f  T  ) ~  m f i ^ ‘n = 2  k + l= n   ̂ '

+h.o.t (4.39)

when the correlation is not null. The random variables appearing in this approxima­

tion are

St  =  ST +  p,a ,dW ^

Proof. The expression (4.25) establishes as a conditional lognormal with the 

modified instantaneous drift r  — ÿ  and volatility . The double AT^^-order Taylor 

expansion of the Black-Scholes price formula around the variance at the

compounded dividend rate at thus leads to the result, when taken in expectation.

□

4.2.3 Volatility o f volatility expansion

It must be pointed out that, in our previous results, we kept Hull and White 

notations when referring to higher order terms, which are conveniently used in the 

Hull and White [41] paper and can be intuitively understood, but are not rigorously 

defined. Hull and White expansion is an approximation for small volatility of volatility
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values, i.e. small Ç. An expansion in f  might hence be mathematically more relevant. 

It gives more meaning to the h.o.t, which become 0(Ç”).

T h eo rem  4.2.4. The -order Taylor approximation of the call option price with 

respect to (  is

C“ (S„, n ,  K,  T)  .  BS“ (S), K . T ,  +

71=2 k + l - n   ̂ '

where EN(k, Vr,/,<^r) represents the order Taylor expansion of the corresponding 

joint moment E(^{Vt  — E(yr))^{ÔT — E{5t )Y), Vt cind 8t being the random variables 

defined in (4^40), Theorem 4-^-3.

Proof. To prove this theorem, it is sufficient to notice that the Taylor expansions of 

V t  — E { V t )  and 8 t  — E { 8 t )  have to start at the first order since they get neutralised 

when (  =  0. This means that the joint moment E [ ( V t  — E { V t ) Y { 8 t  — E ( 8 t ) Y )  is 

at least of starting order k 1 and that the right-hand side of (4.41) contains all the 

terms of order inferior to TV. □

Lewis [50] have also proposed a volatility of volatility series expansion. Our 

method is though easier to implement and complete, since our formulation can be 

taken to any order N  for the reference models, given the expressions we formulate for 

their moments. Lewis approach is more complicated and he provides only the first 

few terms of the expansion (order <  4).

4.2.4 Edgeworth expansion

The Edgeworth expansion is a common tool in statistics and has been also often 

used in financial mathematics, notably for the pricing of Asian options but also to take



( ,4 2 )

CHAPTER 4. STO CH ASTIC VO LATILITY MODELS 188

into account excess skewness and kurtosis in the stock risk-neutral distribution. This 

method comes quite naturally in mind when thinking about stochastic volatility, once 

we realise that, though the underlying process is complex, its moments are simply 

given in terms of the moments of the effective variance and the effective drift of the 

log-asset.

We first show how simple the moments of the log-return are, given the moments 

of the conditioning mixing variables.

T h eo rem  4.2.5. The moments of X t  can be expressed in terms of the joint moments 

of the variables /jlt =  In +  (r — 5t )T  — ^  and Vt , when they exist.

' ' '  E{fj:^-^^Vf)n'.

s = 0

Proof. A gaussian random variable G of mean /a and volatility a  possesses the fol­

lowing moments derived by differentiation of the MGF of G

(  -  f  ) = I  a

where Hen{x) is the polynomial previously defined in (1.55), Section 1.1.4, Chapter

1. The result then follows from E{X ^) = E{E {X^\{ ijLt ,Vt )))- O

T h eo rem  4.2.6. Denoting fix  =  In 5'o +  (r — 5)T — =  /q (i Ps)EMds^

Kn the cumulants of X t and kn the cumulants of a normalJ\f{fix^cr\), the call option 

price C{So,ao, K ,T )  can be approximated in the following way

iV /  n - 2  e  HCr, I  1

B S ^ ( S o , K , T , ^ , r , f  + r  + s ) + Y , ( K j 2 ----------
* n = l  '  p = 0
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For a fixed N , the terms Tn,n = 1..N are determined by the Taylor expansion

exp I  f  (K„ -  I  =  f

e{N, K ) simply denotes the error term.

P roof. We apply the approximation methodology proposed by Jarrow and Rudd [44]. 

W ith k = \n K , the price of a call option when expanding around a given distribution 

f ( x )  is, in this framework

C(5o, (To, K, T) =  e-'^ ^ ” (e" -  e") ^ /(x ) +  g  j  dx +  6-̂ (JV, K)

The approximating distribution we choose is normal as can be expected, with a mean 

and a variance equating those of X t , so as to cancel two terms in the development. □

Rem arks.

1. T„ is a linear combination of the difference between the theorical cumulants of X t  

and the cumulants of the approximating distribution. It is hence a linear combination 

of the moments of X t  given previously. We expect to be needing at least a fourth order 

expansion since the first four cumulants are the mean ki = p x , the variance «2 =  

the skewness «3 =  E ( X t  — fJ-xY and a measure of kurtosis «4 =  E { X t  — f ix Y  — 3<jJ.

2. As pointed out by Jarrow and Rudd [44], there is no general analytical bound 

known for e{N ,K ). These authors claim, though, that the error for the density ex­

pansion tends uniformly towards 0 as soon as the moments exist, which would mean 

that the Edgeworth expansion converges for any distribution which possesses all of 

its moments. This assertion is unfortunately false; the lognormal distribution taken 

around a normal one constitutes a typical counterexample. Another wrong belief 

would be to consider the expansion as convergent as soon as the distribution approxi­

mated is determined by its moments (see Fusai [34]). Indeed, a simple counterexample
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is given by the exponential distribution. When the approximating distribution is a 

gaussian, a sufficient condition for convergence is Cramer’s, demanding ’’subgaussian” 

tails, i.e. tails decreasing at least as quickly as those of a gaussian. Although this con­

dition is quite restrictive, Edgeworth types of expansions remain quite useful because 

they can produce good asymptotic approximations when they are not convergent.

4.2.5 Laguerre polynom ial expansion

As discussed above, all the previous expansions have the drawback that they might 

not always be convergent. As a result, our aim will be here to produce convergent 

moment-based expansions (at the cost of more complex terms though). We explore 

two stategies. We first consider a polynomial expansion in the moments of the effective 

variance and drift. A second solution, dealt with in the next subsection, consists in 

continuing to use the moments of the log-returns but forcing convergence by cutting 

the higher tail of the volatility process.

To explain our first methodology in a simple way, we restrict ourselves to the 

case p = 0 and to stochastic volatility processes such that the cumulated variance is 

subexponential, which is the case for both the Stein and Stein and the Heston models.

T h e o rem  4.2.7. Under these assumptions, the effective variance is Vt  = cr^ds 

and the call option price can be expressed in the following form

C{So, ao, K , T) = BS^ (% , K , T, r, s )

OO /  Tl

e ^ ( e
n = 0  ^ k = 0

V r p

for any p > 0  such that E(V>f^) < oo and 13 such that E(e^^ ) < oo.
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The coefficients of this expansion are

where the (-1^) are Bessel functions of index an integer plus one-half, special 

case in which they simplify to (See Gradstein and al. [37])

{q + 1)\ (4.46)
Z!(g -  /)!(2z)f

Proof. According to the theory of Laguerre-series (for example see Dufresne [26]), 

any function g defined on M+such that g‘̂ {h)h^e~^dh < oo has a representation 

g{h )+g{h+) _  This series of functions is normally convergent with respect

to the scalar product < f ,  g >— g{h)f{h)h^e~^dh, i.e.

N

j "  {g{h) - ' p  c„ L i{h )yh ”e-'‘dh 0

The Black-Scholes call option formula is bounded with respect to the volatility. It 

hence verifies the square-integrability condition and has a Laguerre-series representa­

tion for any positive v.

n = 0

with

Cn =
n\

j y °  (so , K ,T , r, 5\l/„ (v)dv
(n-hp)!

Denoting Cn {Sq, gq,K ,T )  = /v^t(') the density of the cu­

mulated variance, the convergence in expectation follows from the Cauchy-Schwarz 

inequality

C (Sq, ctq, K, T) — Cn {Sq, (Jo, K, T) <
poo
/ v~^e^fl^{v(3)Pdv 

Jo
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X jT”  ^So, K, T, ^ V  E  j  v^e-"pdv

The first integral in the right-hand side being finite, this inequality proves the con­

vergence of (4.44).

To compute Cn, we introduce the notations A =  I n ^  +  (r — 6)T, B  = W (')

the probability distribution function of the standard normal and k = ±1. We notice 

that

by integration by part, knowing that L^{x) =

(4.45) follows then from the relation (see Gradstein and al. [37])

r x ^ - h ~ i - ' '= ‘dx =  a ( ^ )

valid for Re(a) > 0 and Re(7 ) > 0.

□

Remarks.

1. The methodology can still be applied for the Hull-White model by taking the re­

ciprocal of the effective variance as the argument of the Laguerre polynomial. Indeed, 

Vrf^ is subexponential (see [26]). The coefficients Cn are then slightly modified but 

grossly keep the same form.

2. When p 7  ̂0, the result can be generalised by using multivariate Laguerre expan­

sion. In that case, the representation becomes a double series.

4.2.6 A small parenthesis on bounded variance

We wanted to highlight that, for bounded variance, it is possible to use Hermite 

expansion on the moments of the log-asset rather than a Laguerre polynomial on the
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moments of the variance. More precisely, whenever the effective variance Vt  and drift 

processes are bounded above, the tails of the log-asset decrease quickly enough to 

verify Cramer’s condition and produce a convergent Edgeworth expansion.

T h eo rem  4.2.8. I f  the effective variance Vt  is bounded by some positive constant Vb 

and the random part o f the effective drift, fiT = ILt  — — ^)T, is also bounded, then,

for a  < <  OO; where Zt  = X t  — In Sq -  {r -  6)T.

Proof. Conditioning on Vt  and fiT,

.  e ( I  < 00y/Ô̂ ïFVr J y y/l — ‘Io lV t

□

This result enables us to construct a convergent Edgeworth expansion to appro­

ximate the price under a general volatility model. Indeed, taking the bounds on Vt  

and p t  to infinity gives the price for the unbounded model. Setting these bounds to a 

high level should hence constitute a reasonable approximation. In this subsection, we 

will though take a slightly different path and propose an alternative Hermite series 

instead of considering a direct Edgeworth expansion. The advantage of the Hermite 

expansion approach is that the coefficients (as functions of the moments) are known 

in an analytic form for any order.

T h eo rem  4.2.9. Under the same assumptions as in the previous theorem, the call 

price can be approximated, for (d > ^ ,  by

C(So,  ao, K ,  T )  = BŜ  (%, K , T , ^ , r , 5 - ^ )

W e ( ( - ^
V _ n8_V V

2® (n —2s)!5!
n = l  \  s = 0
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where

Proof. We apply exactly the same kind of arguments as in the Laguerre polynomial 

expansion. The Laguerre weight x^e~^ is changed to the Hermite weight The 

function admits a Hermite series representation, since it is

square-integrable with respect to the Hermite weight.

n = 0

where

_ y/2(y—/A)̂

Applying the inequality of Cauchy-Schwarz then bounds (C(5q, (Tq, K , T )—E ( ^ q dnHn{ZT)))‘‘ 

by a term term tending to 0 with N , which proves convergence. □

It could be argued that this method could be used as well as an approximation for 

the reference model by absorbing the variance process at a high level. The moments 

could then typically be obtained by eigenfunction expansion methods. Indeed, for 

the reference models, solutions to the appropriate homogeneous differential equation 

are known. This method would be interesting only when we need to compute a 

whole smile surface, i.e call option price at numerous strike and maturities. Indeed, 

the major numerical work would consist in computing the eigenvalues. Once these 

values found, the second step for each maturity is to compute the moments, which is 

relatively quick given the eigenvalues. The price for all strikes at that m aturity can
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then be done quasi-instantly. We notice that, for the Heston model, in the case p =  0, 

the moments can be expressed in explicit form as they can be obtained by term by 

term differentiation of the series

£ :(!? )  =  (4.49)

We deduced the first moment in the subsection 3.1.3 of Chapter 3. Repeated diffe­

rentiation with the same approach lead to explicit forms for the moments of higher 

order. However, fast fourier methods are probably easier to implement than this type 

of expansion.

4.3 Numerical comparisons

The Heston [40] model remains the most popular of all and its close-form solution 

makes it quite practical for numerical test. For simplicity, we set p =  0 and choose 

to use the framework and parameters used by Roma and Ball [5].

We first extend the analysis performed by Roma and Ball [5], observing the be­

haviour of the Hull and White types of series for a greater number of terms. We notice 

that, for the Heston model, the Hull and White type of expansion and the Taylor 

expansion in the volatility of volatility coincide since the moments are polynomial in 

terms of

Table 4.1 presents this expansion for the cases studied in Roma and Ball [5]. The 

first group is based on the parameters b = 4, ^ = 0.09, (  =  0.4, Vq = 0.09 and T  = 0.5, 

the second group on 6 =  8, |  =  0.1225, f  =  .8, vq = 0.1225 and T  =  0.5. The lines 

exact contain the value of the call options computed from numerical integration of 

the close-form solutions.

Chacko and Das [12] observed that adding the third term lead to a higher error.
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From Table 4.1, it can be seen that the even indexed partial sum are actually generally 

closer to the correct value than the odd indexed ones.

80 90 100 110 120
First group

Exact 21.43002 13.93501 8.35948 4.67992 2.48682
1 21.42544 13.98983 8.44700 4.74568 2.50378
2 21.42980 13.93277 8.35700 4.67738 2.48541
3 21.42587 13.93700 8.36654 4.68292 2.48330
4 21.43134 13.93458 8.35755 4.67920 2.48803
5 21.42857 13.93503 8.36162 4.68025 2.48505
6 21.43095 13.93515 8.35802 4.67984 2.48813
7 21.42922 13.93466 8.36102 4.67979 2.48540
8 21.43063 13.93554 8.35788 4.68022 2.48825
9 21.42957 13.93417 8.36144 4.67933 2.48519
10 21.43019 13.93633 8.35691 4.68093 2.48872
11 21.43035 13.93282 8.36318 4.67813 2.48450
12 21.42866 13.93878 8.35373 4.68314 2.48966
13 21.43350 13.92819 8.36905 4.67387 2.48341
14 21.42197 13.94794 8.34248 4.69176 2.49043

Second group
Exact 22.19201 15.09917 9.72561 5.99216 3.57592

1 22.20610 15.18579 9.84818 6.09349 3.62259
1 22.19081 15.09415 9.71944 5.98643 3.57255
3 22.18630 15.10484 9.73841 5.99958 3.57282
4 22.19497 15.09721 9.72044 5.98947 3.57794
5 22.18797 15.10046 9.73145 5.99431 3.57222
6 22.19598 15.09850 9.72023 5.99069 3.58003
7 22.18711 15.09924 9.73234 5.99325 3.57008
8 22.19819 15.09994 9.71658 5.99157 3.58431
9 22.18359 15.09669 9.73948 5.99175 3.56263
10 22.20394 15.10535 9.70221 5.99493 3.59833
11 22.17484 15.08426 9.76900 5.98338 3.53549
12 22.21584 15.13557 9.63825 6.01673 3.65320
13 22.16435 15.00729 9.91552 5.92470 3.42025
14 22.20036 15.34065 9.28263 6.18021 3.90393

Table 4.1: Volatility of volatility expansion.

We could not really find an explanation for this phenomenon. Globally, the 6^^ 

terms sums seems the better, but there is no specific theoretical justification for that.

Table 4.2 shows the values of an Edgeworth expansion for the Roma and Ball 

reference cases. Clearly, the volatility of volatility expansion approximates the call 

price better the Edgeworth expansion. This probably comes from the tails of the 

log-asset being much fatter than a gaussian.
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80 90 100 110 120
First group

Exact 21.43002 13.93501 8.35948 4.67992 2.48682
1 21.42750 13.99319 8.45101 4.74948 2.50681
2 21.42750 13.99319 8.45101 4.74948 2.50681
3 21.41701 13.92592 8.46535 4.77852 2.54145
4 21.40686 13.92748 8.38425 4.73451 2.55419
5 21.40888 13.93380 8.38322 4.73145 2.55121
6 21.40694 13.93380 8.39245 4.73426 2.54592
7 21.40518 13.93177 8.39356 4.73755 2.54818
8 21.40911 13.92692 8.38501 4.73693 2.55554

Second group
Exact 22.19201 15.09917 9.72561 5.99216 3.57592

1 22.21072 15.19252 9.85594 6.10105 3.62908
2 22.21072 15.19252 9.85594 6.10105 3.62908
3 22.19916 15.19647 9.88459 6.15113 3.68978
4 22.16322 15.09792 9.77332 6.08417 3.69254
5 22.16806 15.10057 9.77060 6.07725 3.68500
6 22.16873 15.11551 9.78875 6.08453 3.67749
7 22.16366 15.11182 9.79173 6.09216 3.68408
8 22.16746 15.09902 9.77477 6.08888 3.69663

Table 4.2; Edgeworth expansion.

First group Second group
80 90 110 120 
4 5 6 7

80 90 110 120 
6 3 5 7

Table 4.3: Laguerre expansion.



CHAPTER 4. STOCH ASTIC VO LATILITY MODELS 198

In Table 4.3, we evaluate the performance of the Laguerre series for the same set 

of options. N represents the number of term needed to reach convergence within 10“  ̂

relative error convergence.

4.4 Conclusion

We considered stochastic volatility as a natural application as the reference models 

of volatilities or variance belong to the CEV processes. We wanted first to relate 

the closed-form solutions derived in some of those models (Heston [40], Stein and 

Stein [67]) to more basic MGF results and give a more graspable structure to the 

models trough the use of conditioning variables. As an attem pt to construct generic 

solutions, we then extended asymptotic expansions existing in the literature and also 

presented a converging Laguerre type of expansion.

A question to be worked out here is: could the moments of the integral of a general 

mean-reverting CEV process be computed at least in a series form so as to use these 

expansions?

4.5 Appendices to  this chapter

4.5.1 Stein and Stein model: functions definitions

The MGF is defined as

(4.50)

which involve the different functions

"4 =  ^  (4 51)
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a = 'JA^ -  2C, /? = ------ (4.52)
a

«  .  ‘g # |o = -A B --B = « rr  + £ 15:22 | ! = t i S t i a g g p |

+  a 3 ^ (l+ j+ (a -A )e= » V r) “  2 1“  |  2 ( a  +  l )  +  2 ( ^  “

(4.55)



Conclusion

Temporal integrals or averages of processes can prove delicate to study, as shown 

in this thesis. In many cases, their study relies upon the analysis of their moment ge­

nerating function or characteristic function, i.e. the Laplace transform of their density 

(for positive processes). One of our aims here was to push the analytical investiga­

tion as far as we could, before giving in to numerical methods. We thus managed to 

provide explicit series or real integral expressions for a number of quantities which 

have been, up to now, mainly solved in practice by numerical Laplace or Fourier in­

version algorithms and other numerical methods. Those explicit expressions help us 

to gain insight into the mathematical structure of the problem and the behaviour and 

properties of the diverse quantities studied. Moreover, they also furnish a way for 

systematic implementation whereas the other numerical methods generally depend 

on free parameters they may not be robust to and on whose location no intuition is 

available. The explicit expressions we derived also appear more efficient, quicker or 

allowing more accuracy than numerical inversion schemes for some ranges of param­

eters. We also obtained explicit formulae to approximate Laplace transforms when 

they were not available in the mathematical literature. We considered in depth two 

special cases of CEV processes, both of theoretical interest for their tractability and 

of great practical importance as they drive the most fundamental models in finance.

200
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Of these two special cases, the square-root process stands out. Indeed, its many- 

advantageous properties - positivity, tractability, mean-reversion - make it quite versa­

tile and enabled us to consider a variety of applications. Moreover, it leads to simpler 

expressions and an easier handling than the geometric Brownian motion. The square- 

root process has been given special attention in interest rate and equity derivatives 

research for these exact reasons. In this thesis, we extended this analysis to Asian and 

other options depending on the integrated square-root process. To this effect, we first 

examined the probabilistic properties of this integrated process and arrived to a num­

ber of distributional results, among which its moments to any order, its density and 

probability distribution function. We then deduced Asian options and other average- 

rate claims prices in a series form by inverting the Laplace transform analytically. Our 

series perform well for medium volatilities and maturities and converge very quickly 

for high volatilities or maturities whereas classical numerical Laplace transform in­

version algorithms become too oscillatory to be trusted for these levels of parameters. 

For very low volatilities or maturities, yet, our series appear slow. However, those 

regions of parameters are not really problematic since numerical inversions work best 

there and actually even some quick and dirty approximations would reasonably do. 

High volatilities and maturities constitute a more interesting and problematic region 

for which our series form a nice and quick solution. Although we considered seve­

ral financial applications for the process in this thesis, a number of others can still 

be derived from or in the same way as the distributional results we obtained. One 

such example coming naturally to mind is credit derivatives, the square-root process 

modelling the intensity of default. Another topic for future research and develop­

ment arising from our work concerns the feasibility of a generalisation of the methods 

and formulae we proposed to broader model assumptions, typically multifactor CIR
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processes.

We could not help studying the second important special case of CEV diffusions 

constituted by the geometric Brownian motion, the major actor on the equity stage. 

As indicated by the considerable amount of research devoted to Black and Scholes 

Asian options by financial mathematicians, the valuation of these derivatives is a dif­

ficult exercise. Our aim was once again to arrive to an explicit solution in a series 

form or a real integral. We analytically inverted the Laplace transform of fixed strike 

as well as unseasoned and seasoned floating strike options. The formulae we derived 

for the prices are specially useful to achieve high levels of accuracy. Along with the 

development of these results, we presented a synthesis of the different possible formu­

lations of the Asian pricing problem as a one-factor Markov one and of the relation 

between the options. It appears that the Asian option price is linked to a number of 

special functions. Further research should include an attempt to interrelate the diffe­

rent representations of these various quantities in special functions. Another point of 

interest is how these methods could be extended to incorporate more elaborate model 

features given that we saw the one-factor Markov formulation of the Asian pricing 

problem is robust to a number of extensions. One such extension we considered in a 

small parenthesis in Chapter 2 is the addition of multiplicative jumps to the lognor­

mal equity process, model whose analysis could be further deepened on the basis of 

what we derived.

Our research regarding the general CEV process is still in its initial stage as 

chronologically the last part of this thesis work. We built an explicit series solution 

for the Laplace transform of the MGF of the integral of the equity-type process 

as well the mean-reverting process for a subclass. The first obvious application is 

the valuation of zero-coupon bonds in the Chan Karolyi Longstaff and Sanders [13]
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model through numerical Laplace inversion. Asian options on the CEV equity models 

could also be obtained from these results with a double numerical Laplace inversion. 

Several points leave room for further development and research: could the series be 

represented in an integral form or in terms of special functions?

Chapter 4 devoted to stochastic volatilities models stand a bit aside from the 

rest of the thesis, as we wanted to develop generic results rather than formulae spe­

cific to only one model. We first gained insight in the structure of the model by 

showing how conditioning variables and MGF or characteristic function methods can 

be constructed from basic characteristic functions. We then proposed several asymp­

totic expansions as well as a Laguerre convergent expansion. We believe this type of 

expansions could be useful as in many cases, it is easier to obtain moments rather 

than moment generating functions. The extension of this expansion to a correlated 

stochastic volatility is left for future work.



A ppendix A

Special functions

This brief appendix collects the definition and various results on special functions 

which are employed in this thesis. We advise Erdelyi [28] and Gradshteyn and Ryzhik

[37] for further reference. Other specific results concerning these special are quoted 

inside the body of the thesis whenever needed. We also add that, for simplicity of 

presentation, we quoted some of the definitions and properties given in the Appendix 

inside the thesis itself.

A .0.2 Herm ite polynomials

The Hermite polynomials are a group of orthogonal polynomials defined by

=  ( - l ) ‘ i?e ,(x )e -T  (A.1)

Their explicit form is given by
[Al

j.k-2s

8 = 0  '  '

They are generated by

g{x,t) =

204
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We can deduce from this

He[{x)  =  nHek- i {x )

and

Hek+i{x)  =  xHek{x)  -  kHek- i {x)  (A.3)

A .0.3 H erm ite polynomials o f the second kind

These polynomial do not actually belong to the usual classification of special 

functions. We gave them this name as they are similar to Hermite polynomials. More 

precisely, they are defined by

dx^

which results in the explicit form

=  Hek{x)e  2 (A.4)

[i] x^ &!
=  E  2» { k -2 sy .s \

3 = 0  '  '

It is useful to notice that they are generated by

g{x, t) = eT+('

and satisfy

Hek{x) = kH ek-i(x)

and

Hek+i{x) = xHek{x) +  kH ek-i{x) (A.6)

A .0.4 Laguerre polynomials

Still another class of orthogonal polynomial defined by

i “(x) =  (A.7)
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which leads to

< w -D -:r (r :)s  (*»)
m =0 ^ ^

The differential relation

=  -^ n - l( ^ )  (A.9)

and the recursive relation

(n +  l)L^_^i{x) — {2n +  a +  1 — x)L^{x) +  (ri +  a)L^_i{x) = 0 (A.10)

should be noted.

A .0.5 Gamma functions

The Gamma function

ro o

r(z )  =  /  Re(z) > 0 (A.11)
Jo

is defined by a specific contour integral for all complex values of z except non-negative 

integers —n, which are simple poles with residues

The relation T(z +  1) =  zV{z) is valid for complex values of the argument as well. 

Erdelyi [28] collects a good number of other relations involving this function.

A .0.6 Confluent hypergeom etric functions

The confluent hypergeometric functions or Kummer functions of the first and second 

kind, respectively denoted (/>(a, c, z) and ip{a, c, z), are two solutions to the differential 

equation
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They are defined by

+  1) . . . (fl +  71 — 1)

n —0

and

ip(a,c, z) =  c, 2) +  "4>{a -  c + 1 ,2 - c , z )  (A. 14)

They are also called degenerate hypergeometric function, the generalised hyper­

geometric function being

pF,(ai, 02, . . .  Op; Cl, C2, . . .  c„ 2) =  g  (A.15)

where

{o i)k  — ck(o; -t" 1 ) . . .  ( q  -|- — 1)

refers to the Pochhammer symbol.

(j) possesses several integral representations, among which the important following 

one, for 0 < Re(a) < Re(c),

For ÿ , we have, for Re(a),

1 /•oo
tpia, e,z) = : ^  e-^H“- \ l  + (A. 17)

1 Jo

A number of relations and properties of this function are known, among which 

the Kummer relation

(f){a, c, z) = e (̂j){c — a, c, —z) (A. 18)

and the special case of negative integers for the first argument

4 > {-n ,a + l,z) = - i ^ L l { z )  (A. 19)
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The asymptotics of the Kummer functions are

0(o, c, z) =  +  0 ( |« r ‘)] (A.20)

for high positive z and

<l>{a,c,z) = “[l +  0 ( k l  ')] (A.21)

For 'ip, we have

■'/ 1 \n  jQ jn tQ

n\
■4>{a, c, z) =  c + l ) n ^_„_„ (A.22)

n=0

when \z\ — >• oo and —|7f < arg(z) < \'k .

A .0.7 Parabolic cylinder functions

This function is a linear combination of (p

D ,{z) = i, I  y )  } (A.23)

satisfying the recursion

Dp-\-\{z) — zDp{z) pDp-i{z) = 0 (A.24)

The parabolic cylinder function has different possible integral representations and 

is linked with Hermite polynomial for positive indexes

Dn{z) = e ~ ^  Hen(z) (A.25)

and with the gaussian probability distribution function for negative integers

£»_i(z) =  e V y f [ l - A T ( ^ ) ]

£>_i(z) = e4yï[yïe-x-^(i-AT(^))]
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A .0.8 Bessel functions

In these thesis, we mainly use the Bessel functions and modified Bessel function

—  2  ̂ l ^ k = Q \  22fcjt!r(i/+ifc+l)
,2k

(A.27)
I v { z )  — ^  EA=0 22kt!r(i/+A;+l) 

and Kv which is defined in a complex way.

All these functions follow two-step recursions and simplifies ton finite sums for 

indexes equal to an integer plus one half.



A ppendix B

Num erical Laplace transform

inversion

Initially renown as a difficult and ill-conditioned, the numerical Laplace transform 

has become a fashionable and often employed tool. A full plethora of methods have 

been developed over the years to invert both Laplace and Fourier transforms. As men­

tioned in Craddock and al. [17], there is generally only one way to determine which 

of these methods is the most suitable for a specific transform: trial and comparison. 

Denoting f{'y) = e~'^^F{t)dt, the inverse can be obtained by

OgOi ro o

F{t) = ------ /  Re(f{a-\-iu))cos{ut)du  (B.l)
^  Jo

for any a to the right of all the singularities of /(•).

The most popular inversion method, the Abate and W hitt algorithm, rely on a 

trapezoidal rule to invert this oscillatory integral. Defining A  = at, the Abate and 

W hitt is the sum of the series

210
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The series can critically depend on the choice of A: the series may not converge to 

the correct values for too small A. On the other hand, it might become too difficult to 

evaluate numerically for large A. The correct value for the inverse can be located on 

a interval of A for which the sum (B.2) remains constant. This length of this interval 

of stability can vary greatly from one application to another.



A ppendix C

Eigenfunction expansion

In some of the results developed in this thesis, we use the theory of eigenfunc­

tion expansion. Those eigenfunctions arise as the solutions of the following regular 

Sturm-Liouville boundary-value problem ioi x  e  [L,U]

+ r(a:))/(æ) =  0 (C.l)

with the boundary conditions

f(L )  = 0, / ( [ / )  =  0 (C.2)

and the restriction q{x) > 0, Vx g]L, U[.

This equation should first be transformed into his self-adjoint form as the eigen­

function expansion theory is based on second-order self-adjoint differential equations. 

To this effect, we need to consider

s(x) =  m ''»  (C.3)

and

«;(x) =  g  (C.4)
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Defining the operator
1 d

L /  = (C.5)
w{x) dx

the transformed differential equation (L — (A +  r{x ))) f  =  0 is self-adjoint.

The eigenfunction expansion theory states that there is a countable infinity of 

couples of positive real eigenvalues and associated eigenfunctions (A, / )  satisfying the 

equation (L — (A +  r{x )))f = 0, i.e. ODE (C.l) as well as the boundary conditions

(C.2). This countable set of eigenfunctions constitute a orthogonal basis for the

Hilbert space C2 ,w{L, U) of functions on [L, U] of finite norm with respect to the 

norm associated with the scalar product

r U

< f ^ 9 > = J  f{x)g{x)w {x)dx  (C.6)

Normalising the eigenfunctions, we obtain a orthonormal basis for C2 ,w{L, U), i.e. a 

sequence of couples (A„,/„(•)) satisfying

çU
J  fi(x )w {x)d x  =  1 Vz G N (C.7)

'U
r2j  fi{x)fj{x)w {x)dx  =  0 V(z, j )  e N '\  2 7̂  j  (C.8)

and

p U  oo

V/(-) : [L, U] — ► R, /  f{ x )w (x )d x  <  oo = >  /(•) =  ^  Cn/n(*) (C.9)
n=0

where
pU

Cn =  y  fn{x)f{x)w {x)dx  (C.IO)

This decomposition is the core of the Sturm-Liouville theory and allows us to project 

any sufficiently smooth function on this eigenfunction basis. We see in this thesis that 

this expansion has some important applications in Finance. It has also been widely 

in other areas of science, typically in Physics (see Arfken [3] for some examples).
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Is still left the issue of how to practically implement this expansion. The answer 

follows from a careful analysis of the Green function, a quantity useful in general to 

handle non-homogeneous equation but also of specific importance in this case as it 

provides a numerical - in the best case, an analytical - way of finding the eigenvalues 

A„. Representing the Dirac delta function by this Green function is defined as 

the bounded solution of

(L -  (A + r{x)))G-x{x, y) = 5{x -  y) (G .ll)

with the two boundary conditions G -\{L ,y) = G-\{U,y) = 0.

From (C.9), we thus obtain

=  (C.12)

Denoting t ] { X , x )  and C { X , x )  two independent solutions of the homogeneous equation 

and Wrj^^(x) their Wronskian,

=  'n i \  x) -  7]'{X, x)^{X, x) (C.13)

it is well known that a non-homogeneous second-order differential equation of second 

member F{x) has for solutions

! { X , x ) = n { \ x ) j  ^ S ^ ^ d s - i { x ) j  (C.14)

whenever these integrals exist.

Choosing the two solutions to the homogeneous equation in such a way that t7(A, L) =  0 

and ((A, U) = 0, we obtain the Green function

where (7(A) is a constant depending on A only. More precisely, (7(A) =  Wrj^^{x)s{x), 

again a classical result from the theory of second-order homogeneous equation.
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Combining the representations (C.12) and (C.15) provides a complete information 

as to the eigenvalues and corresponding eigenfunctions. Indeed, the A„ are the only 

singularities of G-x{x, y) and are thus determined by the zeroes of C'(-), i.e the zeroes 

in A of the Wronskian Wrj,^{x). The nullity of the Wronskian at the points A„ means 

that for these values, the two solutions ry(A„, •) and ^(An,-) are the same up to a 

multiplicative constant. They thus satisfy both the ODE (C.l) and the condition 

(C.2). They therefore are multiples of the normalised eigenfunction. The actual 

normalised eigenfunction can be found either by calculating the norm directly

•u
(C.16)

or by computing the residual of the Green function (C.12) at the simple poles Â

((An, A)
v iK , h) A ►An Aji — A

C(An,h)
v ( K , h )

C'(A) (C.17)

where the ratio is independent of h.
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