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ABSTRACT
The first chapters of the thesis put special emphasis on tax-benefit microsimulation 

models. The state of the art in the economic literature of tax-benefit microsimula
tion models is reviewed and discussed. Particular attention is paid to issues such 
as the reliability of estimation and the grossing-up of the sample. In order to anar 
lyze tax-benefit microsimulation, a new model is developed focusing on the case of 
Italy: it shares many features with other country-specific tax-benefit microsimulation 
models. The model, appropriately calibrated to population totals, is also used for 
an estimation of tax evasion via comparison with a number of different data sources. 
Non-parametric density estimation is used to improve the understanding of policy 
simulations and to analyze the effect of fiscal reform: an application to the 1998 
Italian personal income taxation reform is provided. The first part concludes with 
an analysis of the reliability of microsimulation models, which has been addressed 
by few authors before. The analysis is undertaken using the bootstrap, which tends 
to show a better performance in finite sample than asymptotic approximations. The 
main result is that static microsimulation does not by itself make confidence intervals 
larger: on the contrary they can also make it smaller. To improve the reliability of 
microsimulation models the best way to proceed is to reduce the sampling ..error of 
the available data sets.

In the remaining chapters the thesis analyzes how microsimulation models can 
be useful in understanding the causes of inequality trends. As a preliminary step, 
the review and discussion of the literature about the main methods for inequality 
decomposition is provided. Based on this, a combination of two recent microsimu
lation methods is proposed to analyze the trend of inequality in Italy in 1977-2000. 
It is found that analysis using traditional methods of inequality decomposition can 
be seriously misleading if the sample is not representative of the whole population 
in some of its dimensions, such as female labor force participation. Microsimulation 
techniques can overcome this problem and can account for the major factors that 
driving inequality. Finally, the thesis discusses the issue of inference with thick-tailed 
distributions, such as the Pareto distribution with infinite second moment, that is 
of special relevance to empirical analysis of income distribution. It is shown that 
inference based on the standard t-ratio statistic can induce a non negligible error 
in rejection probability. Some solutions are suggested with an application to Italian 
household income data.
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Chapter 1 

Microsimulation: a tool for 

economic analysis

Simulation can be described as a process of imitating the behavior of complex systems, 

such as economic or biological systems, a set of tax rules or the computer network of a 

large firm: given a set of available information, simulation allows one to build a system 

that imitates the “reality”. Simulation, as a method of solving problems, becomes of 

relevance when conventional analytical, numerical, physical or experimental methods 

are too expensive, complicated or time demanding.

Simulation models in economics were originally developed by Orcutt (1957) and 

Orcutt et a!. (1961) to investigate socioeconomic systems using a microanalytic ap

proach. Economic modelling using simulation was seen as an alternative to aggregate- 

type national income models originated by the work of Tinbergen (1939), and input- 

output models that followed the work of Leontief (1951). Tinbergen’s approach uses 

major sectors, such as the household and business sector, as basic components, es



timating and testing macroeconomic relationships on the basis of annual or quar

terly time series data of such variables as aggregate consumption and income of the 

household sector. Leontief’s approach uses industries as basic components and places 

emphasis on the cross-sectional structure of the economy rather than on its dynamic 

features. Orcutt’s approach instead develops the most general model in terms of its 

statistical structure, since it is developed to include both Tinbergen’s and Leontief’s 

models features and to increase details of the micro unit involved (Orcutt et al., 1976).

Since the pioneering work of Orcutt, simulation has played an increasing role in 

economic research and has greatly evolved with respect to its initial aims. In Sec

tion 1.1 the role of simulation in economics will be discussed, focusing mainly on 

microsimulaton models, i.e. on models that use microeconomic units as the basis of 

their simulations. The following sections will focus mainly on tax-benefit microsimula

tion models, broadly divided in static and dynamic models: Section 1.2 deals with the 

former, Section 1.3 with the latter. A distinction is often made between cross-section 

and longitudinal dynamic microsimulation models: they will be discussed in Sections

1.3.1 and 1.3.2. In Section 1.4 some issues of particular relevance to microsimulation 

modelling will be discussed, namely the grossing-up procedure, the validation and 

reliability of microsimulation models. Section 1.5 concludes this chapter.

1.1 M icrosimulation in economics

In recent years, there has been an extensive development of simulation models for 

quantitative research in economics. Simulation has been used more and more fre

2



quently as a research tool in economics also thanks to the rapid development of 

computers and their easy access to users: fast computers allowed improved accuracy 

and the development of more complex simulation systems.

Simulation models are used as conditional forecasting tools to forecast the effect 

of shocks or policies on individual units or larger systems. Forecasting can be ex 

ante or ex post. In the ex ante case, forecasts are computed on the basis of distinct 

conditions described by a given scenario: they are a conditional look into future 

developments. In the ex post case, the given real world situation is compared with 

alternative interventions (Merz, 1991).

Simulation can be performed at macro or micro level. Macrosimulation models 

analyze relationships between national economic sectoral and aggregate variables. 

They axe developed using aggregates or sub-aggregates of the totals. They have been 

used mainly in government offices for tax forecasting but in the last decades have 

been replaced when possible by micro models, which obtain more reliable results the 

larger is the complexity of each tax, the diversity of taxpayers and the variation in 

the tax base (Eason, 1996, 2000). Macrosimulation models are still used in particular 

contexts, such as forecasting of North Sea taxation (Blow et al., 2002). Macrosimu

lation models are developed by central banks to describe long-run equilibrium in the 

economy. An example of such models is the Macro Model (MM) at the Bank of Eng

land, which is mainly used by the Monetary Policy Committee to set interest rates 

and attain the inflation target. Macromodels are also used in applied general equilib

rium models, which can include detailed scenarios on macroeconomic developments in 

both domestic and foreign economy, changes in world prices of internationally traded

3



goods, changing in trade policies. An example of these complex models is MONASH 

for the Australian economy (Meagher, 1996).

Microsimulation models focus directly on micro units such as individuals, house

holds and firms. If these micro units are firms they can be identified by their orga

nization, their occupation structure, the set of products, etc.; if they are individuals 

they can be identified by demographic characteristics such as age, sex, occupation, 

residence.

Microeconomic models of firms are relatively less common, the main limitation 

being in the availability of data for firms. Microsimulation of firms within a model 

of the economy was first developed by Eliasson (1978) in a model for Sweden. This 

model is a complete micro- to macro-model that contains a selection of the most 

important corporate firms, which are simulated in conjunction with residual firms to 

replicate the Swedish economy. These models often incorporate production aspects as 

well as financial aspects, using a firm in an uncertain and changing environment that 

is assumed to behave with bounded rationality. These models are very demanding in 

terms of data and this is one of the main reasons why not all developed economies 

have such a model. Among the few exceptions, see van Tongeren (1995) for the Dutch 

economy.

Microsimulation models on individuals or households have developed rapidly in 

recent decades. Simulation is used in economics mainly to develop counterfactual 

analysis to forecast possible effects of different economic policies, but it also serves 

in particular situations for generating data that are missing. The structure of a 

simulation model is principally expressed in terms of logical mathematical relations:



a simulation model is a set of algebraic equations and decision structures, which can 

be characterized as a complex set of “if... then” relations. Relations, procedures and 

data can be either completely determined or incorporate random errors. If relations 

are all completely specified the simulation is known as deterministic; if randomness 

is included the simulation is known as stochastic.

The main aim of microsimulation models based on individual or household data 

is to analyze the impact of policy changes on the distribution of some target vari

ables rather than on their mean, as it happens using regression techniques. The 

development of microsimulation models on households goes together with increas

ing availability and reliability of micro data sets and improving computer capacity. 

Static models generally are based on sample surveys, which provide detailed informa

tion about individual and family characteristics, labor force status, housing status, 

earnings. They typically contain the receipt of social security benefits and income 

tax liabilities, or incorporate enough information for their calculation. With a mi

crosimulation model the immediate distributional impact of fiscal policies, such as 

an increase in child benefits, in income tax rates or in the minimum wage, can be 

modelled, and estimates of the characteristics of winners and losers and total cost can 

be computed. Microsimulation models can also be used to project into the future and 

to assess the socio-economic consequences of an ageing population, or of changes in 

educational structure and in marriage patterns. In recent years various microsimula

tion modelling methodologies have been developed: some of them will be discussed 

in Section 5.3 in the context of inequality decomposition and Chapter 6 will provide 

an application to Italy combining two microsimulation methodologies.
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A field of economics where microsimulation has been widely exploited is the analy

sis of the effects of tax-benefit reforms on income, welfare and behavior of individuals. 

Until the early 1980s tax-benefit microsimulation models were not widespread and 

it was rather common to analyze tax-benefit effects using a range of representative 

households. Government agencies and academic departments decided to invest effort 

and monetary resources in developing microsimulation models since it was clear that 

representative household analysis is unable to give a broad picture of the effect of 

the policy on the whole population. For instance, Atkinson and Sutherland (1983) 

compared the family composition and circumstances recorded in the UK Family Ex

penditure Survey 1980 with the hypothetical family types used in the Department 

of Health and Social Security (DHSS) tax-benefit model. They found that some 4% 

of actual families were covered by the assumption of the complex DHSS hypothet

ical family model. This concern is even more relevant for some of the theoretical 

simulation models used to investigate the effects of government policy in a complex 

intertemporal setting.

Nowadays virtually all developed countries have at least one model to simulate 

changes of taxes and benefits on individual incomes (see among others Mitton et al., 

2000; Gupta and Kapur, 2000; Sutherland, 1994) and after the transition from central

ized planning to a market economy and the consequent need of financing government 

policy through taxation, also Eastern and Central European countries showed an in

creased interest in tax-benefit microsimulation models (see for instance Coulter et al., 

1998; Juhasz, 1998). In the European Union the EUROMOD project developed a 15- 

country Europe-wide microsimulation model to provide estimates of the distributional
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impact of changes to personal tax and transfer policy each taking place at either the 

national or the European level, to assess the consequences of consolidated social poli

cies and to understand how different policies in different countries may contribute to 

common objectives (Sutherland, 2001). The rest of this chapter will mainly focus on 

tax-benefit microsimulation models (MSMs).

1.2 Static microsimulation models

Static MSMs are based on instantaneous pictures of characteristics of a sample of a 

population in a given period. They are appropriate models for the analysis of the 

impact of policy changes, where these effects can be deduced, completely or in large 

part, from knowledge of the current circumstances of individuals in the sample.

In static MSMs behavioral relations and institutional conditions are varied exoge

nously. Micro-data bases are comprised of a cross-section of micro units in a given 

period. These micro units are generally assigned a sampling weight, which allows one 

to infer about the population of origin.

Static microsimulation is first developed for the specific period to which the data 

relate. A static MSM can then be applied to different time periods using static “aging 

procedures”. Such a procedure consists in re-weighting the available information using 

given aggregate of another time period. After re-weighting a sample, a new weight will 

be assigned to each micro unit, i.e. each micro unit will represent a different number 

of units in the whole population. However, the number of observations in the data 

set will remain unchanged after performing any simulation or aging of the sample.
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A static ageing procedure is the easiest ageing procedure and can be reasonably 

applied for short- or medium-run forecasts, where it can reasonably be assumed that 

demographic characteristics of the underlying population do not change significantly.

A static aging procedure involves updating income and wealth data. It is common 

to update income and wealth variables using for all units growth in money income 

or a price index such as the retail price index (RPI) or the consumer price index. 

This solution can lead to important bias. Sutherland (1989) showed that while in 

the period 1982-1988 RPI increased by 32%, the earnings of full-time adult men in 

the bottom decile grew by 42% and those in the top decile grew by an average of 

64% in the same period. Notwithstanding this limitation, straightforward indexing 

by published data is often the only possible way to go, mainly for reasons of data 

limitation. Updating bias can be a very limited problem if considered over a short 

period of time.

The term “static” may seem limiting when compared to “dynamic” . However, in 

some contexts dynamic models are not very useful. In fact, static models allow one 

to hold constant a large number of variables so that it becomes possible to isolate 

some elements of particular interest. In the setting of fiscal policies, for instance, they 

can separate direct effects on income of changing the structure of tax and benefits 

from other possible effects (see for instance, Chapter 3). Static models, which are 

sometimes also called “arithmetic”, are the building block of more complex models, 

such as behavioral or dynamic ones (see among many others, Atkinson and Sutherland 

(1988a,b); Dilnot et al. (1988); Bourguignon et al. (1988)).
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1.2.1 Static microsimulation m odels w ith  behavioral responses

One of the shortcomings of static MSMs is the assumption that individual behavior 

is exogenous. However, many tax and benefit policies are designed specifically to 

have behavioral effects. For instance many policy reform are designed to encourage 

more labor force participation; other transfer policies may have unintended negative 

incentive consequences; government revenues and expenditures calculations may be 

misleading if potential behavioral responses are not properly taken into account and 

estimated.

The type of static MSMs discussed in this subsection are intended as an improve

ment through the introduction of explicit modelling of behavioral responses to policy 

reforms. They hold certain characteristics fixed (such as family composition) but 

allow other characteristics to change, like labor force participation and, consequently, 

earnings. This type of modelling presents many computational and analytical prob

lems and is nowadays one of the most dynamic field in the microsimulation literature. 

To include behavioral response it is necessary to handle complex budget constraints 

that allow each individual’s constraint to be unique, along with the desire to model 

heterogeneity. All these issues impose demanding modelling and computer program

ming requirements (Duncan, 2003). In fact, all components of a tax-benefit MSM 

have to be closely integrated and, given the large number of sample units involved, it 

is important to invest in developing efficient computer routines. Researchers have to 

decide about the underlying economic model and its econometric specification. They 

also have to decide whether to use discrete or continuous methods when modelling
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observed outcome, and simulating the effects of policies on individual behavior.

MSMs with behavioral responses are developed from a static MSM without be

havioral responses. Since they introduce additional complication to modelling issues, 

they also increase their limitations in terms of grossing-up, validation and reliability of 

results issues. Moreover they are more demanding in terms of data quality. Most data 

sets include fewer information about non-workers than about workers: the researcher 

has then to introduce “reasonable” assumptions, which will affect the reliability of the 

estimates. Although MSMs with behavioral response have been criticized for being 

rather unreliable, particularly in estimating figures of losers and gainers, tax revenue 

and overall inequality after-tax reforms (Pudney and Sutherland, 1996), their use has 

proved very successful in the labor economics literature, namely in estimating the 

labor supply responses to changes in net wages (see, among others Blundell et al., 

1992, 1998; Duncan and Giles, 1996).

1.3 Dynam ic microsimulation models

Dynamic MSMs differ from static ones mainly in terms of the ageing procedure. 

In dynamic MSMs each micro unit is aged individually using survivor probabilities 

estimated empirically. Dynamic models not only include the possibility of death but 

introduce events such as marriage, household composition evolution, such as births, 

inclusion of other relatives in the household, divorce. Hence, dynamic demographic 

ageing will create a new data set whose dimension will typically be different from the 

original one.
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Demographic dynamics will also rises the issue of the inclusion of behavioral re

sponse to demographic changes: for instance, if a child is born it is possible that 

the mother’s decision to participate in the labor market will change. However, the 

magnitude of behavioral change is difficult to assess due to the widely divergent es

timates of relevant elasticities, and simulations are generally presented for a number 

of different estimates (Hagenaars, 1990, p. 31).

It is also debatable whether the elasticities obtained from cross-section data can 

be assumed to closely reflect lifetime behavioral response. For instance, there is panel 

data evidence that labor force participation decisions are made with a very long time 

horizon in mind (Heckman and MaCurdy, 1980, p. 67) and that future expected 

values of variables determined current labor supply decisions (MaCurdy, 1981, 1983). 

Therefore it could be that a higher real wage increases labor force participation in 

the short term but life-cycle income will be partly offset by a decision to retire earlier 

(Harding, 1990, p. 15). Among dynamic MSMs, the main distinction is between 

dynamic cross-section and dynamic longitudinal models.

1.3.1 Dynam ic cross-section microsim ulation m odels

Dynamic cross-section MSMs (or dynamic population MSMs) attempt to project mi

cro units forward through time simulating demographic events such as death, birth, 

marriage, divorce, etc. Recently also immigration has been introduced (see for in

stance Walker, 2000). After a main demographic event has been modelled, other 

characteristics can be imputed, such as education, labor force status, housing. The
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data base for dynamic cross-section MSM is the same as in the static model, i.e. a 

random sample of the population.

Dynamic cross-section models are aimed at depicting the future structure of the 

population and typically map only a few decades of the lives of individuals from many 

age cohorts. They are useful to forecast the future characteristics of the population 

and to model the effects of policy changes during the next years or decades.

These models have been mainly applied for analyzing the distributional impacts of 

social security system (see, for instance Favreault and Caldwell, 2000; Nelissen, 1996), 

the evolution of the pension systems (see Galler, 1996; Eklind et al., 1996; Andreassen 

et al., 1996) or lifetime analysis of poverty alleviation programs (see Falkingham and 

Harding, 1996).

1.3.2 Dynam ic longitudinal microsim ulation m odels

In a dynamic longitudinal MSMs (or dynamic cohort MSMs) the aging process is 

as in the cross-section models but only one cohort is aged rather than the entire 

population. In general, one cohort is aged from birth to death so that a whole life 

cycle of one cohort is simulated. The same life cycle profiles can be generated with 

dynamic cross-section models, however it would be inefficient if lifetime circumstances 

of one or two cohorts are of interest.

Dynamic longitudinal models are generally used for analyzing lifetime earnings 

and income distributions, to assess the lifetime incidence of taxes and government 

spending programs (Harding, 1990). Dynamic longitudinal MSMs are much quicker to
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process than cross-section MSMs and are easier to model since they restrict attention 

to the demographics and socio-economic dynamics of a single cohort rather to all 

cohorts in a population.

1.3.3 Lim itations o f dynam ic microsim ulation m odels

Dynamic models, as extensions of static MSMs, present additional limitations.

Dynamic MSMs axe more data hungry: they need additional information to esti

mate demographic changes to be included in dynamic models. Ideally these data sets 

include death rates by age, sex and socio-economic status, marriage rates by age, sex, 

education level and previous marital status; divorce rates by age, sex, duration of 

marriage, and number of age of children; attendance rates at primary, secondary and 

tertiary levels by age, sex, parental socio-economic status and previous education; 

labor force participation rate by age, sex, education, marital status, age of children, 

duration of current employment and of unemployment spells, etc. Moreover, cross- 

section data are not usually adequate for setting the parameters in dynamic models. 

For instance, the probability of transition between states can only be obtained from 

longitudinal data (Harding, 1990).

Since it is rare for a data set to be suitable for every kind of analysis, dynamic 

models generally rely on whatever piece of data is available, using matching techniques 

to put information together. This procedure is done at the expense of reducing the 

accuracy of the models and of requiring frequent updates.

The reliability issue is even stronger here than in static models because sampling
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error is likely to happen in estimating survivor and transition probabilities and demo

graphic changes. An additional source of error arises from the simulation of transitions 

to different states and survivor probabilities: since these events are obtained using 

Monte Carlo simulations, different simulations introduce different state-transition in 

the single micro unit. The model sensitivity to different simulation can be assessed by 

using a large number of replications. However, this is often difficult to perform since 

dynamic models (and especially dynamic cross-section models) require huge comput

ing resources to run: the characteristics of the micro units in the initial year have to 

be stored and the final analysis is thus frequently based upon a very large number of 

observations.

1.4 Issues in microsimulation m odelling

Among the various challenges that microsimulation modelling poses, the issues of 

grossing-up, validation and reliability are worth additional attention. They have 

been studied mainly in the context of static MSM, though they are of relevance for 

all types of microsimulation models.

1.4.1 Grossing-up

The procedure of grossing-up is concerned with generating figures to cover the popu

lation being modelled from the data set under use. The procedure should adjust for 

differences between the sample data and the characteristics of the population to be 

modelled at the date of sampling.
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The grossing-up procedure is basically aimed at adjusting the data set to reflect 

differential non-response between different groups in the sample. It involves stratify

ing the sample, by some relevant characteristics, after the data have been collected 

and applying known proportions. This procedure is also sometimes referred to as 

post-stratification (see for instance Atkinson and Micklewright (1983)).

The grossing-up procedure consists in assigning to each unit in a sample of di

mension N  a weight Pj with j  =  1,..., N ,  such that some chosen statistics of interest 

calculated on the weighted sample coincide with the population statistics. The pro

cedure is trivial if we want to reconcile the sample with the population using only one 

discrete statistic, s* with k  =  1,...K , such as family types or income ranges. In this 

case, we compute the probability of having the characteristic s* in the sample, say 

P(sjfc), and make it equal to the probability of having the same characteristic in the 

population, say p(s*). If the dimension of the sample and of the population are N  

and n  respectively, then the grossing-up weight is Pj =  np(sk )/N P (sk),  i.e. the size 

of the cell with characteristic s* in the population divided by the size of the cell with 

characteristic s* in the sample. If more variables are considered for the grossing-up 

procedure it should be necessary to consider the interactions between the different 

variables, i.e. consider the joint distribution of the control variables considered. How

ever, this conflicts with available information from external sources, that in general, 

do not report the joint distribution of population variables but only the totals for 

each variable. For instance, it is possible to know the total number of single-parent 

families and the total number of self-employed in the population but not how many 

single-parent families have self-employment income. Hence, the conditions imposed
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on the weights pj are far less stringent than in the “full information” case we would 

have if the joint distribution were known, and in general there are many possible 

sets of weights Pj achieving the desired adjustment. To choose among them Atkinson 

et al. (1988) suggest the requirement that given a data set of dimension N , with 

original sampling weights qj, j  = 1,2, ...,1V, the set of grossing-up weights Pj have 

the least deviation from original weights, qj. The original weights could reflect the 

sampling procedure or be uniform. Both grossing-up and initial weights have to sum 

up to the population size: Qj = YhPj ~  71 • If original and sample weights sum up

to the sample dimension, they first have to be multiplied by n /N .  It is then common 

practice to impose the condition that the new weights minimize the distance from 

initial weights. Hollenbeck (1976) proposed to use as a measure of distance the half 

of the squared sum of the difference between final and initial weights. However, in 

order to avoid negative weights, Atkinson et al. (1988) suggest minimizing a measure 

of distance derived from information theory (Theil, 1967; Cowell, 1980):

d(p,q) =  ^ lPjlog(%-'j (1.1)

As for the optimal number of control totals to be included, no result is currently avail

able. Although it is more common to face the problem of not having enough external 

sources than to have too many, Sutherland (1989, p. 15) warns on the risk of increas

ing the variance of weights since the larger the number of control totals becomes, 

the smaller the number of observations in each “cell’ (i.e. with each combination of 

characteristics being controlled for).
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Atkinson et al. (1988) applied their methodology1 to TAXMOD, a MSM for the 

UK, and compared their results with what could be obtained with uniform weights, i.e. 

multiplying the sampling weights by n /N .  The grossed-up results were significantly 

more plausible. The conclusion from their analysis is that the use of uniform weights 

can be seriously misleading.

1.4.2 Validation

Model validation is a task consisting of two distinct but related aspects. First it con

sists in comparing the primary data set to external data from a number of sources. 

This procedure is complementary to grossing-up in that detailed information not used 

as control totals are used as control data after grossing-up has been performed. Sec

ondly, validation involves looking at the results of the model’s output and analyzing 

them in relation to estimates published elsewhere. If the external source for validation 

is using the same sample this validation ends up in a comparison of different models. 

If validation is with estimates using different data sets, the comparison analyzes the 

robustness of results of both estimates. Hence, model validation is an exercise with a 

broader scope than grossing-up since it deals with model construction as well as its 

output (Hope, 1988).

However, model validation is also less easy to perform than grossing-up, at least 

as for the comparison of different estimates: it presumes that there is at least another 

model with a comparable level of accuracy to compare results with.

xAs control totals they used the variables (i) family composition, (ii) employment status, (iii) 
income range and (iv) housing tenure.
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1.4.3 Reliability

Although MSMs are widely used nowadays few authors working in this field have paid 

explicit attention to the statistical reliability of MSM output. MSMs typically produce 

summary statistics such as average income, income percentile, inequality indices, 

number of gainers and losers after a policy simulation. This output is an estimate 

of effects of changes in some policy instruments and, as well as any other statistical 

estimate, it should be accompanied by a standard error or confidence intervals. MSMs, 

as all survey-based models, can be affected by measurement and misreporting errors. 

They can also introduce peculiar errors such as errors in updating data to a later year, 

bad or no specification of behavioral response and market adjustments, stochastic 

simulation error. However, simulated figures are often quoted without standard error 

or confidence intervals and it is often hard to distinguish reliable results from those 

badly affected by sampling or other source of error. The main reason for not providing 

confidence intervals or standard error to MSM output is probably due to the technical 

problems involved in their calculation.

Pudney and Sutherland (1994) provide the first contribution on the reliability 

of MSMs. They investigate the asymptotic sampling properties of a set of typical 

simulation results, focusing on the sampling error assuming that finite population 

corrections can be avoided. They used equivalent income to account for economies of 

scale in the family or household. Although equivalence scales are non linear transfor

mations, Pudney and Sutherland simply assume that errors are normally distributed 

and derive the (1 — a)  asymptotic confidence intervals as ca/2 deviations from the
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standard error, where ca/2 is the a /2  critical value for the normal distribution. Their 

application on 1998 Family Expenditure Study (FES, U.K.) data using a static MSM 

without behavioral response shows that the basic process of simulation seems rear 

sonably reliable. However, they find that while some statistics are estimated with 

acceptable precision, others, like number of gainers and losers, poverty and inequality 

indices, can have a wide margin of sampling error and suggest that there should be 

some doubt about the reliability of some widely-quoted simulation results.

Even more pessimistic conclusions are reached in Pudney and Sutherland (1996) 

where asymptotic confidence intervals are estimated in a static MSM that incorporates 

a multinomial logit model of female labor supply. The resulting confidence intervals 

allow errors associated with sampling variability, parameter estimation and stochastic 

simulation. Pudney and Sutherland found that the sampling error is the main source 

of variability for most summary statistics, but that the measures describing the impact 

of policy on female participation are very uncertain and may be of no practical use 

to economists, mainly because of the variability of parameter estimates.

Chapter 4 contributes to the analysis of static MSM reliability using the bootstrap 

to compute confidence intervals. The bootstrap is considered for two main reasons: 

(a) it allows one to remove the hypothesis of infinite population to compute confidence 

intervals using a simulation-based methodology rather than finite sample corrections, 

and (b) there is a growing body of literature showing that bootstrap often performs 

better, or not worse, than asymptotic approximation in small samples. It is found 

that bootstrap confidence intervals are in general less conservative than asymptotic 

confidence intervals, especially the smaller are sub-samples used. However, because
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of the complex non-linear setting of MSMs, to derive the exact or Monte Carlo finite 

population confidence intervals is a formidable task and it is not possible to evaluate 

the improved precision of bootstrap confidence intervals compared with asymptotic 

confidence intervals. However, the generally good performance of the bootstrap in 

finite samples should increase the concern about the reliability of estimates on par

ticular sub-samples of widely used surveys. It was also found that MSMs itself do not 

necessarily make confidence intervals larger. In some cases, summary statistics on 

simulated incomes have narrower confidence intervals, as percentage of the computed 

statistic, than before the tax-benefit simulation. These results show that concerns in 

sampling error with MSMs are sometimes misplaced: it is not microsimulation that 

necessarily makes the estimation less reliable. A poor coverage of the population 

of some current surveys is often the main cause of error and improvement in data 

collection should be pursued.

1.5 Conclusion

Microsimulation models and, in particular tax-benefit microsimulation models are 

powerful tools for analyzing effects of demographic trends or to assess the effects on 

living standards of various public policies. However they cannot provide an answer 

for every question and must be handled with care. A great deal of attention should 

also be devoted to the presentation and analysis of data. In Chapter 3 non-parametric 

density estimation is proposed to increase the understanding of MSM output.

Microsimulation modelling requires a large effort in programming but its aims
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should never be just the production of numbers: grossing-up, validation procedures 

and confidence interval estimation should be carefully addressed. A reliable MSM will 

also increase the credibility of a modelling technique that has only recently started 

being extensively exploited by academics.

A great deal of attention should also be devoted to improve data collection, since 

quality of the data sets is the key ingredient for a reliable MSM.
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Chapter 2 

A static tax-benefit 

microsimulation model for Italy

MSMs are powerful research tools with high fixed costs. In recent years the devel

opment of personal computers allowed single researchers to build their own MSM, 

however, building a MSM to simulate the complexity of economic systems still often 

requires team work. In the case of tax-benefit MSMs good programmers, who manage 

to develop fast computer codes, have to work together with experts of the tax and 

benefit legislation and of its implementation problems, and with econometricians who 

axe able to analyze and treat data with rigor. For this thesis it was decided to look 

at Italian models for personal interest and also because my knowledge of the Italian 

tax-benefit system is deeper than that of any other national system, although the 

results of this and the following two chapters should also be of interest for non-Italian 

MSMs. The starting point for any MSM is the choice of the data set: the more it is 

representative of the population of interest and the wider the information it provides,
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the more reliable the model becomes. Section 2.1 describes and discusses the main 

limitations of the 1998 SHIW data set, which is used for the MSM presented in this 

chapter.

To gain full access to a MSM, a new model had to be developed. When this 

project started no model using 1998 SHIW data set had been completed. The MSM 

developed for this thesis is TABEITA98: it was constructed using 1998 SHIW data 

set and STATA software, partly following the structure of Dirimod951. The main 

features of TABEITA98 are briefly described in Section 2.2. Section 2.3 describes 

how the tax base was built from the available data set and Section 2.4 deals with the 

issue of grossing-up the model. Section 2.5 shows how the model was employed to 

estimate tax evasion and how these findings were used to validate the model. Section

2.6 concludes.

2.1 The data set for Italian MSMs

The data set used in this chapter is the Survey of Household Income and Wealth 

(SHIW) published by the Bank of Italy and based on interviews run in 1998. This 

data set will also be used in Chapters 3, 4 and 7. The SHIW is a long standing survey: 

it was started in the mid 1960s, was run about annually up to 1987, henceforth about 

every two years. The Bank of Italy paid particular attention to improve the quality of 

the data. For instance since 1995 an increasing number of interviews were performed 

using a computer to check consistency of answers and particular attention was paid

1Dirimod95 is a MSM developed at Prometeia, Bologna, using 1995 SHIW data and SAS software. 
It was kindly provided by Daniela Mantovani.
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in formulating questions as clearly as possible with several trial interviews (Banca 

d’ltalia, 2000, p.29). At present the SHIWs are the main, if not the only, data set 

for Italian household MSMs and among the most frequently used for any kind of 

household income analysis at the national level in Italy (for a review of other data 

sets, see Brandolini, 1999).

The 1998 data set collects detailed micro data for about 7,147 households and 

20,901 individuals on disposable income, consumption, labor market, monetary and 

financial variables. The sample was drawn in two stages (municipalities and house

holds) with the stratification of the primary sampling units (municipalities) by units 

and size, to make it representative of the national population. Within each stratum, 

all municipalities with population of more than 40,000 were selected, while smaller 

towns were randomly included. Households were then selected randomly and a sam

pling weight, defined as the inverse of the probability of inclusion of each household 

in the sample, was attached to each observation. Since 1989 a number of households 

who had been interviewed previously have been interviewed again, to start producing 

a panel data set. Although in the present and following chapters the panel will not 

be considered, it has an effect on the probability of a household being included in the 

sample. These issues have been addressed and resolved by the Bank of Italy, which 

provides a set of appropriate sampling weights. Data are checked before release: the 

strategy is either to drop the interview for the whole household if missing data can

not be reasonably inferred from other characteristics of the individual/household or 

to impute the missing data, often using regression models to forecast missing vari

ables based on the personal characteristics of the individual/household involved. Data
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imputation is less 0.1% for most variables (Banca d’ltalia, 2000, p.35).

2.1.1 Some lim itations of the database

Among the limitations of the SHIW data set some affect any analysis of Italian 

household income, some others are specifically of interest for the reliability of MSMs.

A first limitation of the data set is the low rate of response. Participation in 

the survey is voluntary and not paid. Although all households were granted total 

anonymity, in 1998 only 52.6% of contacted households agreed to being interviewed. 

The low rate of response can cause a selectivity bias as some households seem to be 

more likely to refuse an interview. In fact, the likelihood of accepting an interview 

decreases with increases in income, wealth and education of the household head, and 

the size of the town of residence (Banca d’ltalia, 2000, p.31). In order to mitigate 

the selectivity bias some measures are adopted, such as the replacement of refusing 

households with others from the same town. Some estimations of the selectivity bias 

on incomes recorded in SHIW show that the underestimation of household income is 

on average rather limited (Cannari and D’Alessio (1992) estimate it at about 5%). 

Other limitations of this data set include the fact that the household is interviewed 

rather than the family. This leads to an overestimation of the average number of 

components, which cannot be corrected at all since the relevant information is missing. 

The interviews include only recall questions, i.e. questions referring to the previous 

year, reducing the precision of the reporting. An alternative approach would be to ask 

households to record all their incomes and expenditures of the coming week or month
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but it was discarded to keep a reasonable rate of response and to avoid approximations 

that come from extending the week or month to cover the whole year. Finally, data 

do not include information about people who do not have a registered dwelling or are 

in a hospital or other kind of institution.

As for the limitations which are more relevant for MSMs, the main one refers 

to the type of income recorded: it refers to disposable income, excluding taxes and 

social contributions paid and benefit received. Hence, the first role of a MSM is to 

simulate the before-tax income before introducing any other policy simulation. This 

feature implies that, in contrast to other MSMs, no simulation error2 can be properly 

assessed (for the U.K. see Pudney and Sutherland (1994)).

2.2 Structure o f the m odel

The MSM developed for this thesis is TABEITA98, a TAx-BEnefit microsimulation 

model on ITAlian 1998 SHIW data. TABEITA98 refers to 1998 personal income 

taxation (IRPEF and “imposte sostitutive”)3 net of social contributions. TABEITA98 

is a static model without behavioral response. It can be described as a deterministic 

transformation of a given sample into a new one. Let yA and yB be the vectors 

of after-tax (AT) and before-tax (BT) income, respectively: the former vector is 

obtained from the latter through a tax transformation, say r*, i =  1,2..., iV, where N  

is the number of individuals in the sample. Since the data are net of taxes and social

2The simulation error is defined as the difference between the simulated after-tax income, obtained 
applying the MSM to the declared before-tax income, and the declared after-tax income.

3IRPEF and “imposte sostitutive” on interest and capital gains accounted for 75,8% of 1998 total 
Italian revenues from direct taxation (Banca d’ltalia, 1999).
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contributions, the first role of the model is to recover individual BT income:

y ?  =  r r 1(y?) (2 .1)

for alH  =  1, ...N. There are two major complications here. First, the tax transfor

mation Tj is not the same for all individuals. Personal income taxation in Italy is on 

individual base; the amount of tax each individual has to pay depends on the type 

of incomes she receives and her family characteristics. For instance, arrears do not 

enter the personal income tax (IRPEF) base: they are taxed with a proportional tax 

rate while work and pension income is taxed with progressive tax rates; there are 

several tax allowances which depend on a set of individual and family characteristics, 

such as the number of dependent children, whether the spouse is dependant, whether 

income comes from self-employment, employment or pension, etc. Secondly, the tax 

transformation in (2.1) is highly non linear. This implies that y s  has to be obtained 

numerically, by recursive approximations. The tax transformation, 7*, used to recover 

y B is obtained from the 1998 tax code. Various assumptions about take-up rates of 

tax allowances could be introduced, however no uncertainty is considered here. Al

though the analysis of benefits take-up is a relevant issue in countries where welfare 

programs are widespread4 in Italy there are no generalized unemployment benefit, 

income maintenance or house benefit schemes. The issue of non take-up is limited to 

tax allowances and tax deductions which do not involve issues of stigma or psycho

4For instance, see among others Fry and Stark (1993), Duclos (1995), Bollinger and David (1997), 
Pudney (2001) and Pudney et al. (2002).
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logical dependency and is then less relevant. Moreover, this choice, together with the 

idea of not considering behavioral responses, allowed the model to be as simple and 

robust as possible5.

In this model the main assumptions are that (a) the sample is representative of 

the population and contains enough details for simulation, (b) the tax and benefit 

legislation, 7*, is perfectly known by the individual and applied without error. Al

though the first assumption is granted by the Bank of Italy who produced the data, 

the second is meant to keep variability to a minimum. An alternative solution would 

be to randomly include errors in the model assessing the relevance of such changes 

in the MSM. Here, instead, only systematic errors leading to under-reporting are 

considered and treated as tax evasion or tax avoidance in Section 2.5; involuntary 

under-reporting is assumed to be off-setting with involuntary over-reporting errors. 

The probability of programming mistakes is kept to a minimum with a number of 

checks and a validation procedure (see Section 2.5).

TABEITA98 is developed in four different modules using Stata 7 on a personal 

computer. The first module involves the preparation of the data base, and in par

ticular the data consistency checks. The second is the grossing-up procedure. The 

third involves an estimation of tax evasion to correct the underreporting of certain 

population groups and validation of the output. The last deals with the simulation of 

alternative scenarios. The first three stages will be briefly presented in the following 

sections. Chapter 3 will provide an illustration of simulations that can be performed 

with TABEITA98.

5For a discussion of the low reliability of MSMs with behavioral responses, recall Section 1.4.3
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The model allows one to compute the amount of tax allowances, of tax base 

deductions, the amount of personal income tax paid, the BT income6, transfers and 

pensions not liable of personal income tax. All incomes can be computed at the 

individual and household level, allowing for different equivalence scales.

2.3 Building the tax base

As a first step the model has to put together the different types of incomes to build 

the tax base. TABEITA98 was initially built and developed following Dirimod95, 

using 1995 SHIW data (Mantovani, 1998)7. Analysis of data is performed starting 

from employment, pension, self-employment incomes and rents. They all form the 

IRPEF tax base. During the reconstruction of the tax base, the data imputation of 

the Bank of Italy is analyzed: it appears to be particularly relevant especially for 

self-employment and rental income. Although the Bank of Italy does not explain in 

detail how the data imputation is performed and what kind of additional information 

are known and used, imputed data are used here.

Once all the components of the IRPEF tax base have been assembled, household 

relations axe recovered identifying those who are required to present the tax form and 

those who are not, the family relations and the right to use tax allowances depending 

on family composition according to the 1998 tax code. This analysis is performed

6BT income is divided into five components: (a) employment, (b) self-employment, (c) pension, 
(d) rental and estate income, (e) capital, interests and participation.

7In particular TABEITA98 follows Dirimod95 quite strictly for reconstructing the BT income 
while the algorithm for obtaining AT income was developed ad hoc. However, so many were the 
changes made on Dirimod95, especially as for estate and rental incomes, grossing-up procedure and 
tax evasion estimation, that the TABEITA98 is quite different from Dirimod95, the latter bearing 
no responsibility for possible mistakes in the former.
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income brackets tax rates
0-15,000 19%
15,000-30,000 27%
30,000-60,000 34%
60,000-135,000 40%
over 135,000 46%

Table 2.1: Structure of 1998 IRPEF tax brackets in Lit ’000 (Lit 1,936.27 =  €1).

assuming a coincidence of household and family since the data do not allow one to 

disentangle the presence of more than one family under the same dwelling.

Up to this point, income is only AT. The program then recovers the BT income 

excluding those components of AT income which are not liable to IRPEF (e.g. in

validity pensions), taking into account those tax allowances which do not depend on 

income, then applying an iterative procedure to recover numerically the BT income. 

For the Italian personal income tax law, the AT income of individual i can be derived 

as:

v? =  y f  -  U{yf -  yexi -di)  +  A  +  (2.2)
yet

where £*() is the five-bracket tax function applied to taxable income; t/c* is the IRPEF 

gross income, which is equal to BT income minus IRPEF-exempt incomes, yex\\ di 

is a set of deductions to be subtracted from t/c*; A  and Dyi are a the set of tax 

allowances that do and do not depend on BT income, respectively, and that reduce 

the tax to be paid. Table 2.1 shows the structure of the five-bracket tax schedule: 

the lower tax rate is 19% the higher 46%, showing the strong progressivity of IRPEF. 

Table 2.2 shows the main tax allowances for family burdens: some are depending 

on the BT income, some other are constant regardless of the BT income. Table 2.3
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Dependent spouse Other dependent relatives
income brackets amount type amount
0-30,000 1,057.55 each child 336
30,000-60,000 951.55 other relative 336
60,000-100,000 889.55
over 100,000 817.55

Table 2.2: Tax allowances for dependent spouse and for other dependent relatives in 
Lit ’000 (Lit 1,936.27 =  €1)

presents the other main tax allowances aimed at reducing the tax due by individuals 

whose income comes mainly from work income. Traditionally tax allowances are lower 

for the self-employed, mainly because, in contrast to the employed, their tax base can 

be reduced by the costs of producing income.

The algorithm developed in ITAXMOD98 then recovers the BT income as:

y f  =  y f  ~  Di -  Dyi -I- t i (y f  -  yex{ -  di) (2.3)

Clearly, in the first step of (2.3) y f  and Dyi on the RHS are unknown, then they 

are set to zero. From the second step onward, y f  on the RHS is replaced with y f  

obtained in the previous iteration, as well as Dyi is computed accordingly to y f  of the 

previous iteration. The process goes on until y f  does not change for two successive 

iterations for all individuals in the sample.

2.4 Grossing-up

As discussed in Chapter 1, MSMs are mainly used for forecasting and analyzing

the impact of a change in the structure of the tax and benefit system on (a) the
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Employment Self-employment
income brackets amount income brackets amount
0-9,100 1,680 0-9,100 700
9,100-9,300 1,600 9,100-9,300 600
9,300-15,000 1,500 9,300-9,600 500
15,000-15,300 1,350 9,600-9,900 400
15,300-15,600 1,250 9,900-15,000 300
15,600-15,900 1,150 15,000-30,000 200
15,900-30,000 1,050 30,000-60,000 100
30,000-40,000 950
40-000-50,000 850
50,000-60,000 750
60,000-60,300 650
60,300-70,000 550
70,000-80,000 450
80,000-90,000 350
90,000-90,400 250
90,400-100,000 150
over 100,000 100

Table 2.3: Tax allowances depending on amount and type of income received in Lit 
’000 (Lit 1,936.27 =  €1)

distribution of income and (b) the public accounts.

While the analysis of the redistributive effects of tax-benefit policies could be con

ducted in relative terms, the forecasting of the aggregate effects on public accounts 

requires the projection of the sample to country totals. This projection can be ob

tained using a simple proportion between the dimension of the sample and that of 

the national population, generally weighted using the sampling weights provided in 

the data set. More often, data sets come with weights to be used for national projec

tions, which are obtained from a process of post-stratification of the sample to known 

population totals. Post-stratification is an issue that have been extensively analyzed 

in survey statistics (see for instance Sarndal et al. (1992)) and consists in calibrating 

some sub-samples (post-strata) of a data set to given totals. In the MSM literature
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post-stratification is more commonly referred to as grossing-up, since the problem 

consists in grossing the sample up to the population under study. The aim of the 

grossing-up procedure is to make the sample as close as possible to the true popula

tion, although it depends on the variable used for performing the grossing-up as well 

as on the procedure implemented. For instance, the grossing-up procedure proposed 

by Atkinson et al. (1988) aims at minimizing the distance between the initial weights, 

provided with the data set, and the grossed-up weights using a measure of distance 

derived from information theory (recall Section 1.4.1). However, a particular set of 

grossing-up weights can be able to closely reflect the characteristics of the population 

as for some variables but not for others.

The SHIW data set is post-stratified using the variables sex, age class, area and 

dimension of the town of residence (Banca d’ltalia, 2000, p. 40). However, it is 

not clearly stated what methodology was used and, for instance, which age classes 

were considered. Table 2.4 shows the population totals taken for ISTAT (Italian 

Institute of Statistics) as for a set of variables. Using the weights provided in the 

SHIW data set, the differences between the grossed-up and actual figures are less 

than 0.2% for sex and area of residence (North-West (NW), North-East (NE), Center 

(C) and South (S)). As for the age classes, the difference between grossed-up and 

population figures is however more relevant: for instance, the grossed-up totals are 

under-estimated by 3.7% and over-estimate by 6.4% for the 18-30 and the over-65 

years groups, respectively. Since the Bank of Italy does not make public the age 

groups considered, it could be possible that this difference is due to the different age 

groups used here. None the less, this shows a problem with grossed-up simulation: a
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redistributive policy in favor of the old age would imply an overstatement of its cost 

due to the over-sampling of this age group. These distortions could be even worse for 

other subsamples. For instance, using the same age groups divided in the 4 macro 

areas considered before, Table 2.4 shows that the SHIW grossed-up weights would 

over-represent the elderly living in the South (S) by about 25%. They would also 

induce an over-representation of the self-employed in the Center (C) and an under

representation the self-employed in the S (Table 2.4). Moreover, while the difference 

between the actual and the grossed-up total number of employed and self-employed 

is smaller than 1%, these figures hide a 29% over-representation of the self-employed 

in the C and an under-representation of self-employed in the NE and in the S by 

13% and 21%, respectively. All these issues are of relevance whenever an analysis of 

income by population sub-groups is performed.

For these reasons a set of alternative grossing-up weights were estimated using 

the same methodology as Atkinson et al. (1988) using control totals found in ISTAT 

(2004); CNEL (2004). Tables 2.5 and 2.6 show the results for six different weights: 

“weight 1” uses total population, by area, by sex, by age groups (below 18, between 19 

and 30, between 31 and 65, over-65). Although the grossing-up methodology performs 

well for the variables considered, it does also have an effect on other variables. For 

instance, it has a positive effect on the over-65 living in the S, reducing its over

representation but it has a negative effect on the over-65 living in the C, increasing 

its under-representation. The “weight 2” improves on “weight 1” for grossing-up also 

on the age groups by area of residence. Although for some variables its effect is 

positive, reducing the discrepancy from actual totals, it is still rather unsatisfactory
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Variables Actual SHIW diff.
Tot Population* 57,612,615 57,612,568 0.00%
Males* 27,967,670 27,951,136 -0.06%
Females* 29,644,945 29,661,432 0.06%
Pop NW* 15,069,493 15,099,744 0.20%
Pop NE* 10,560,820 10,547,936 -0.12%
Pop C* 11,071,715 11,064,505 -0.07%
Pop S* 20,910,587 20,900,383 -0.05%
age£18* 10,845,419 11,032,994 1.73%
18<age£30* 9,987,651 9,619,324 -3.69%
30<age£65* 27,218,646 26,787,452 -1.58%
age>65* 9,560,899 10,172,798 6.40%
age£18NW* 2,409,663 2,497,552 3.65%
age£l8NE* 1,687,699 1,853,786 9.84%
age£18C* 1,873,809 2,073,762 10.67%
age£18S* 4,874,248 4,607,894 -5.46%
18<agejS30NW* 2,498,184 2,411,373 -3.47%
18<age£30 NE* 1,766,221 1,630,855 -7.66%
18<age£30 C* 1,824,075 1,988,102 8.99%
18<age£30S* 3,899,171 3,588,994 -7.95%
30<age£65 NW* 7,509,728 7,523,230 0.18%
30<age*65 NE* 5,174,474 5,070,504 -2.01%
30<age£65 C* 5,368,887 5,191,858 -3.30%
30<age£65 S* 9,165,557 9,001,860 -1.79%
age>65 NW* 2,651,918 2,667,589 0.59%
age>65 NE* 1,932,426 1,992,791 3.12%
age>65 C* 2,004,944 1,810,783 -9.68%
age>65 S* 2,971,611 3,701,635 24.57%
employed** 14,549,000 14,530,169 -0.13%
self-employed** 5,886,000 5,852,953 -0.56%
employed NO** 4,470,000 4,345,113 -2.79%
employed NE** 3,104,000 3,199,310 3.07%
employed C** 2,911,000 2,821,364 -3.08%
employed S** 4,086,000 4,164,382 1.92%
self-empl NO** 1,643,000 1,793,760 9.18%
self-empl NE** 1,330,000 1,156,244 -13.06%
self-empl C** 1,184,000 1,532,649 29.45%
self-empl S** 1,730,000 1,370,300 -20.79%
Elementary schooling* 16,104,000 15,625,930 -2.97%
Compulsory schooling* 16,118,000 13,975,447 -13.29%
High School degree* 13,365,000 15,402,757 15.25%
Laurea* 3,066,000 3,641,053 18.76%
Agriculture** 1,201,000 1,038,245 -13.55%
Industry** 6,730,000 6,548,547 -2.70%
Services** 12,504,000 12,796,330 2.34%
Single* 4,982,000 4,380,481 -12.07%
Single parent* 1,655,000 1,666,809 0.71%
Couple no kids* 3,828,000 4,373,753 14.26%
Couple w/ kids* 9,410,000 9,978,556 6.04%
Others* 1,440,000 773,930 -46.25%
All families* 21,315,000 21,173,529 -0.66%

Table 2.4: Grossed-up variables using Banca d’ltalia (2000) grossing-up weights com
pared with population totals. *External source: ISTAT (2004). **External source:
CNEL (2004).
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as for the number of employed and self-employed in different parts of the countries. 

Since this is relevant for detecting the possibility of tax evasion/avoidance, some more 

grossing-up weights are estimated. Eventually, “weight 6” is chosen to replace the 

SHIW initial weights. It allows one to gross-up the sample to a population that is 

very close to the true population for a large number of relevant variables, including 

occupation by area of residence, education and sector of activity. However, as the 

last column of Table 2.6 shows, this weight is still unable to represent correctly the 

distribution of family by type: single households tend to be under-represented while 

couple with kids tend to be over-represented. It is chosen not to perform the grossing- 

up procedure also for type of families mainly because external data refer to families 

and SHIW refers uniquely to households. In chosing “weight 6” as final weight it 

was also considered the risk of increasing the variance of weights with respect to 

initial weights. The increased variance could come from two type of factors. First, 

in contrast to SHIW initial weights “weight 6” is not uniform within the household 

since the grossing-up procedure is performed at the individual level. Second, the 

larger the number of control totals the smaller the number of observations with each 

combination of characteristics being controlled (Sutherland, 1989). However, as Table

2.7 shows, the variance of “weight 6” is not larger than original SHIW weights.

In comparable Italian MSMs the issue of estimation of grossing-up weights alter

native to those provided in the data set is often overlooked. Neither MASTRICT 

(Proto, 2000), nor Dirimod95 (Mantovani, 1998) and its updated version Mapp98 

(Baldini, 1998), nor the Italian module in EUROMOD (Atella et al., 2001) address 

the problem and the weights provided in the SHIW data set are used instead.
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Variables Actual weight 1 diff. weight 2 diff. weight 3 diff.
Tot Population* 57,612,615 57,612,734 0.00% 57,612,769 0.00% 57,612,689 0.00%
Males* 27,967,670 27,967,738 0.00% 27,967,745 0.00% 27,967,768 0.00%
Females* 29,644,945 29,644,996 0.00% 29,645,024 0.00% 29,644,921 0.00%
Pop NW* 15,069,493 15,069,523 0.00% 15,069,538 0.00% 15,069,537 0.00%
Pop NE* 10,560,820 10,560,844 0.00% 10,560,808 0.00% 10,560,852 0.00%
Pop C* 11,071,715 11,071,708 0.00% 11,071,783 0.00% 11,071,708 0.00%
Pop S* 20,910,587 20,910,659 0.00% 20,910,640 0.00% 20,910,592 0.00%
age£18* 10,845,419 10,845,442 0.00% 10,845,466 0.00% 10,845,422 0.00%
18<age2S30* 9,987,651 9,987,683 0.00% 9,987,658 0.00% 9,987,698 0.00%
30<ages:65* 27,218,646 27,218,712 0.00% 27,218,727 0.00% 27,218,684 0.00%
age>65* 9,560,899 9,560,897 0.00% 9,560,918 0.00% 9,560,885 0.00%
age£18NW* 2,409,663 2,448,122 1.60% 2,409,678 0.00% 2,452,333 1.77%
age£18NE* 1,687,699 1,825,501 8.17% 1,687,702 0.00% 1,829,320 8.39%
age£18C* 1,873,809 2,036,606 8.69% 1,873,838 0.00% 2,040,402 8.89%
age£18S* 4,874,248 4,535,213 -6.96% 4,874,248 0.00% 4,523,367 -7.20%
18<age^30NW* 2,498,184 2,496,925 -0.05% 2,498,198 0.00% 2,485,397 -0.51%
18<age£30 NE* 1,766,221 1,696,552 -3.94% 1,766,211 0.00% 1,685,816 -4.55%
18<age£30 C* 1,824,075 2,062,713 13.08% 1,824,076 0.00% 2,064,014 13.15%
18<age£30 S* 3,899,171 3,731,493 -4.30% 3,899,173 0.00% 3,752,471 -3.76%
30<age£65 NW* 7,509,728 7,624,243 1.52% 7,509,742 0.00% 7,628,840 1.59%
30<age£65 NE* 5,174,474 5,162,376 -0.23% 5,174,474 0.00% 5,164,466 -0.19%
30<age£65 C* 5,368,887 5,271,826 -1.81% 5,368,918 0.00% 5,265,679 -1.92%
30<age£65 S* 9,165,557 9,160,267 -0.06% 9,165,593 0.00% 9,159,699 -0.06%
age>65 NW* 2,651,918 2,500,233 -5.72% 2,651,920 0.00% 2,502,967 -5.62%
age>65 NE* 1,932,426 1,876,415 -2.90% 1,932,421 0.00% 1,881,250 -2.65%
age>65 C* 2,004,944 1,700,563 -15.18% 2,004,951 0.00% 1,701,613 -15.13%
age>65 S* 2,971,611 3,483,686 17.23% 2,971,626 0.00% 3,475,055 16.94%
employed** 14,549,000 14,832,997 1.95% 14,830,481 1.93% 14,549,021 0.00%
self-employed** 5,886,000 5,951,129 1.11% 5,942,476 0.96% 5,886,031 0.00%
employed NO** 4,470,000 4,428,138 -0.94% 4,381,285 -1.98% 4,346,883 -2.75%
employed NE** 3,104,000 3,276,169 5.55% 3,317,881 6.89% 3,218,263 3.68%
employed C** 2,911,000 2,877,905 -1.14% 2,838,694 -2.48% 2,824,913 -2.96%
employed S** 4,086,000 4,250,785 4.03% 4,292,621 5.06% 4,158,962 1.79%
self-empl NO** 1,643,000 1,817,118 10.60% 1,802,766 9.72% 1,798,636 9.47%
self-empl NE** 1,330,000 1,178,261 -11.41% 1,190,253 -10.51% 1,167,382 -12.23%
self-empl C** 1,184,000 1,560,119 31.77% 1,548,420 30.78% 1,543,659 30.38%
self-empl S** 1,730,000 1,395,631 -19.33% 1,401,037 -19.02% 1,376,354 -20.44%
Elementary schooling* 16,104,000 15,303,360 -4.97% 15,235,698 -5.39% 15,381,891 -4.48%
Compulsory schooling* 16,118,000 14,110,613 -12.45% 14,156,361 -12.17% 14,100,825 -12.52%
High School degree* 13,365,000 15,692,853 17.42% 15,725,012 17.66% 15,646,311 17.07%
Laurea* 3,066,000 3,691,111 20.39% 3,687,272 20.26% 3,663,811 19.50%
Agriculture** 1,201,000 1,058,337 -11.88% 1,064,699 -11.35% 1,039,454 -13.45%
Industry** 6,730,000 6,686,566 -0.65% 6,684,699 -0.67% 6,579,136 -2.24%
Services** 12,504,000 13,039,223 4.28% 13,023,559 4.16% 12,816,462 2.50%
Single* 4,982,000 4,245,869 -14.78% 4,251,030 -14.67% 4,240,640 -14.88%
Single parent* 1,655,000 1,676,363 1.29% 1,664,537 0.58% 1,674,495 1.18%
Couple no kids* 3,828,000 4,289,382 12.05% 4,296,591 12.24% 4,297,968 12.28%
Couple w/ kids* 9,410,000 10,061,245 6.92% 10,052,744 6.83% 10,059,334 6.90%
Others* 1,440,000 760,855 -47.16% 753,073 -47.70% 760,403 -47.19%
All families* 21,315,000 21,033,714 -1.32% 21,017,975 -1.39% 21,032,840 -1.32%

Table 2.5: Grossed-up variables using alternative grossing-up weights compared with
population totals. ^External source: ISTAT (2004). **External source: CNEL
(2004).
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Variables Actual weight 4 diff. weight 5 diff. weight 6 diff.
Tot Population* 57,612,615 57,612,738 0.00% 57,612,693 0.00% 57,612,819 0.00%
Males* 27,967,670 27,967,691 0.00% 27,967,666 0.00% 27,967,812 0.00%
Females* 29,644,945 29,645,047 0.00% 29,645,027 0.00% 29,645,007 0.00%
Pop NW* 15,069,493 15,069,535 0.00% 15,069,524 0.00% 15,069,552 0.00%
Pop NE* 10,560,820 10,560,850 0.00% 10,560,811 0.00% 10,560,825 0.00%
Pop C* 11,071,715 11,071,748 0.00% 11,071,755 0.00% 11,071,777 0.00%
PopS* 20,910,587 20,910,605 0.00% 20,910,603 0.00% 20,910,665 0.00%
age£18* 10,845,419 10,845,437 0.00% 10,845,455 0.00% 10,845,487 0.00%
18<age£30* 9,987,651 9,987,679 0.00% 9,987,642 0.00% 9,987,667 0.00%
30<age£65* 27,218,646 27,218,670 0.00% 27,218,696 0.00% 27,218,729 0.00%
age>65* 9,560,899 9,560,952 0.00% 9,560,900 0.00% 9,560,936 0.00%
age£18NW* 2,409,663 2,462,053 2.17% 2,464,446 2.27% 2,409,685 0.00%
age£18NE* 1,687,699 1,813,836 7.47% 1,816,658 7.64% 1,687,714 0.00%
agesi8C* 1,873,809 2,122,875 13.29% 2,146,916 14.57% 1,873,829 0.00%
age£18S* 4,874,248 4,446,673 -8.77% 4,417,435 -9.37% 4,874,259 0.00%
18<age£30NW* 2,498,184 2,498,413 0.01% 2,508,562 0.42% 2,498,199 0.00%
18<age*30 NE* 1,766,221 1,680,691 -4.84% 1,673,535 -5.25% 1,766,212 0.00%
18<age£30 C* 1,824,075 2,052,503 12.52% 2,036,362 11.64% 1,824,073 0.00%
18<age^30 S* 3,899,171 3,756,072 -3.67% 3,769,183 -3.33% 3,899,183 0.00%
30<age£65 NW* 7,509,728 7,605,731 1.28% 7,607,615 1.30% 7,509,730 0.00%
30<age*65 NE* 5,174,474 5,194,626 0.39% 5,205,307 0.60% 5,174,472 0.00%
30<age£65 C* 5,368,887 5,136,223 -4.33% 5,117,690 -4.68% 5,368,921 0.00%
30<age£65 S* 9,165,557 9,282,090 1.27% 9,288,084 1.34% 9,165,606 0.00%
age>65 NW* 2,651,918 2,503,338 -5.60% 2,488,901 -6.15% 2,651,938 0.00%
age>65 NE* 1,932,426 1,871,697 -3.14% 1,865,311 -3.47% 1,932,427 0.00%
age>65 C* 2,004,944 1,760,147 -12.21% 1,770,787 -11.68% 2,004,954 0.00%
age>65 S* 2,971,611 3,425,770 15.28% 3,435,901 15.62% 2,971,617 0.00%
employed** 14,549,000 14,549,021 0.00% 14,549,022 0.00% 14,549,025 0.00%
self-employed** 5,886,000 5,885,996 0.00% 5,885,999 0.00% 5,886,023 0.00%
employed NO** 4,470,000 4,470,026 0.00% 4,470,001 0.00% 4,470,008 0.00%
employed NE** 3,104,000 3,103,998 0.00% 3,103,985 0.00% 3,103,999 0.00%
employed C** 2,911,000 2,911,003 0.00% 2,911,012 0.00% 2,911,011 0.00%
employed S** 4,086,000 4,063,994 -0.54% 4,064,024 -0.54% 4,064,007 -0.54%
self-empl NO** 1,643,000 1,642,995 0.00% 1,642,994 0.00% 1,643,006 0.00%
self-empl NE** 1,330,000 1,330,003 0.00% 1,330,004 0.00% 1,329,990 0.00%
self-empl C** 1,184,000 1,184,001 0.00% 1,184,002 0.00% 1,184,014 0.00%
self-empl S** 1,730,000 1,728,997 -0.06% 1,728,999 -0.06% 1,729,013 -0.06%
Elementary schooling* 16,104,000 15,387,753 -4.45% 16,104,016 0.00% 16,104,072 0.00%
Compulsory schooling* 16,118,000 14,121,594 -12.39% 16,118,021 0.00% 16,118,041 0.00%
High School degree* 13,365,000 15,619,639 16.87% 13,365,006 0.00% 13,365,007 0.00%
Laurea* 3,066,000 3,661,898 19.44% 3,065,999 0.00% 3,066,023 0.00%
Agriculture** 1,201,000 1,055,137 -12.15% 1,200,997 0.00% 1,201,005 0.00%
Industry** 6,730,000 6,574,907 -2.30% 6,730,011 0.00% 6,730,028 0.00%
Services** 12,504,000 12,804,973 2.41% 12,504,013 0.00% 12,504,015 0.00%
Single* 4,982,000 4,226,747 -15.16% 4,230,030 -15.09% 4,236,991 -14.95%
Single parent* 1,655,000 1,669,811 0.89% 1,685,693 1.85% 1,672,088 1.03%
Couple no kids* 3,828,000 4,290,829 12.09% 4,278,283 11.76% 4,289,241 12.05%
Couple w/ kids* 9,410,000 10,069,620 7.01% 10,056,183 6.87% 10,047,093 6.77%
Others* 1,440,000 762,475 -47.05% 762,409 -47.05% 754,947 -47.57%
All families* 21,315,000 21,019,482 -1.39% 21,012,598 -1.42% 21,000,360 -1.48%

Table 2.6: Grossed-up variables using alternative grossing-up weights compared with
population totals. *External source: ISTAT (2004). **External source: CNEL
(2004).
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weight Obs Mean Std. Dev. Min Max
SHIW 20901 2756.453 2688.614 228.1136 28395.24

weight 1 20901 2756.453 2672.33 232.074 28755
weight 2 20901 2756.453 2669.014 232.642 28326
weight 3 20901 2756.453 2671.421 228.981 28569.5
weight 4 20901 2756.453 2669.172 220.594 27490.8
weight 5 20901 2756.453 2760.695 186.943 33526.2
weight 6 20901 2756.453 2759.995 183.083 33711.1

Table 2.7: Summary statistics for initial SHIW and final grossing-up weights.

2.5 Estim ation of tax  evasion and validation

A common finding from the SHIW data set is that total income in the survey is on 

average higher than what declared to fiscal authorities and that the difference is larger 

for some incomes (e.g. self-employment) and smaller for others (e.g. employment) (see 

among others Marenzi, 1996). Disregarding this fact would than imply a simulation 

of a larger tax yield than that actually obtained, hence an incorrect forecasting of 

redistributive and revenue effects of different fiscal policies. Any MSM for Italy that 

uses SHIW data, needs to consider this discrepancy. The common practice is to 

assume that the difference comes from the fact that taxpayers are more honest with 

an interviewer that grants anonymity than with the fiscal authorities. The difference 

between the total amount of income grossed-up from individual incomes declared 

in the SHIW and the total amount of income declared to the fiscal authorities is 

therefore attributed to tax evasion or tax avoidance. This approach has also been 

used in recent year to provide an estimate of tax evasion to be compared with other 

methods of tax evasion estimation. Alternative methodologies include the direct
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approach8, the indirect approach9 or the latent variable approach10 (for a review of 

results from different methods to estimate underground economy in Italy, see Zizza 

(2002)).

In Dirimod95 an estimate of evasion/avoidance is obtained making use of the 

analysis of 1991 tax forms, relative to 1990 incomes (Ministero delle Finanze, 1995). 

Tax evasion and tax avoidance is estimated in two stages. At first the model is run 

assuming zero evasion, data are grossed-up and total BT income is compared to BT 

income as found from aggregated tax forms. In the second stage increasing level of 

tax evasion and tax avoidance is estimated and the resulting income is compared with 

data from aggregate tax forms. It is then found that grossed-up employment income 

is about the same as what was declared to fiscal authorities while self-employment 

income is about 15% lower (Mantovani, 1998). In Dirimod95, however, tax form data 

refer to 1990 incomes and their updating to 1995 using a constant consumer price 

index (CPI) adds a bias in the estimation procedure. The module of EUROMOD 

for Italy deals with tax evasion and tax avoidance in a similar way, using results 

from MASTRICT, a MSM developed at ISTAT (Proto, 2000). In particular, in the 

EUROMOD module for Italy employment income tax evasion and tax avoidance is

8The direct approach is based on tax audits or on census and labor force data and on analysis 
of expenditures. The assumptions are that the labor force participation obtained from population 
census and labor force surveys include unregistered employment, and that consumption is more 
truthfully declared than income, clearly an analogous assumption to what used here.

9The indirect approach is based on the currency demand approach, which assumes that hidden 
transactions use cash. A demand for currency is than estimated with regression methodologies (for 
a review of the approach and updated results, see Schneider (2000))

10The latent variable approach considers the underground economy as a non observable variable 
and estimates the links with a set of determinants, including the production and the labor market 
activities. It employs latent variable econometric tools combined with factorial analysis (see, for 
instance Frey and Weck-Hanneman, 1984)
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Type of income total of tax forms 
(Lit ’000)

total of SHIW 
(Lit ’000)

Difference

rents and estates 40,713 53,100 30%
employment 636,553 667,800 5%
self-employment 115,213 166,300 44%
capital and participation 65,022 53,100 -18%

Table 2.8: Tax evasion estimation for TABEITA98

estimated to 0%, self-employment income to 50% (Atella et al., 2001).

The methodology to estimate tax evasion in TABEITA98 is analogous to the one 

in Dirimod95. Results differ as for the estimation obtained for two main reasons. 

First, the data set used is 1998, not 1995 SHIW; second, the external source is the 

analysis of 1999 tax forms, relative to 1998 incomes (Ministero delle Finanze, 2002). 

The time coincidence of the external source and the data set allows one to avoid the 

adjustments to different periods and, possibly, different conditions of the economy. In 

order to compare the SHIW and the Ministry of Finance (MF) data a MSM is needed 

since MF data presents information only about BT. In the first stage the model is run 

exactly as described in Section 2.3. The weighted sum of individual t/c* is compared 

with MF external data for the population of taxpayers.

Results show that tax evasion is particularly relevant for self-employment income 

(44%) and for rental and estate income (30%) and is small, although positive, for 

for employment income (5%) (Table 2.8). Capital income are underestimated with 

SHIW compared to tax forms data by 18%. Although this results may seem odd, it 

was also noted in other MSMs using SHIW data (for instance, see Atella et al., 2001).

Equation (2.3) is modified to include tax evasion/avoidance in TABEITA98 ,
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subtracting evaded/avoided individual income, yevi, from the tax base.

Vi = Vi ~  Vevi -  A  -  Dyt +  U(yf  -  yex{ -  di -  yevi) (2.4)

y f  is then BT income as it appears to the fiscal authorities, but it is not the actual 

BT. To obtain the actual BT income, y a f , the concealed income has to be added 

back:

y a f  =  y f  +  y ^  (2.5)

The amount of evaded income is derived calibrating yevi at the aggregate level starting 

from tax evasion results reported in Table 2.8. The individual evaded income is 

obtained multiplying individual employment, self-employment and rental and estate 

income by 6%, 27% and 31%, respectively. No correction is applied to capital and 

participation income.

Using this procedure it is then possible to provide a first validation of the model’s 

output. At the national level employment, self-employment and rental and estate 

incomes are about the same as found from tax returns. Capital income is still un

derestimated because no correction was introduced. At the national level actual BT 

income is lower than the declared BT income by 13%, a result in line with other 

findings (for instance, see Calzaroni, 2000). Comparing the model’s results with MF 

data by geographical areas, the differences with MF data are generally larger than at 

the national level.

These results are consistent with other Italian MSMs and in some cases TABEITA98
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performs better than other models. For instance, the Italian module of EUROMOD 

overestimates family tax allowances by 44%, TABEITA98 only by 3% (Table 2.9) . 

Some variables reported in Table 2.9 are not easily comparable because they are not 

reported in other MSMs documentation. For instance, validation results are reported 

only at the national level and no results about work tax allowances are produced.

2.6 Summary: why another MSM?

In this chapter TABEITA98, a static MSM for Italy developed using 1998 SHIW data, 

was presented. TABEITA98 allows one to simulate personal income taxation, which 

accounted for about 3/4 of Italian direct taxation in 1998. It does not introduce 

behavioral responses and avoids simulating different take-up rates to keep its struc

ture as simple as possible. This chapter discussed the importance of addressing the 

grossing-up of the sample to population totals, both for redistributive analysis and 

the forecasting of effects of fiscal reforms on public finances. The grossing-up weights 

estimated here will also be used in the following chapters. The use of TABEITA98 

provided an updated estimation of tax evasion and tax avoidance in Italy: it seems 

to be low for employment income, over 40% for self-employment income and about 

30% for rental and estate income.

TABEITA98 produces results that are comparable to other Italian MSMs, improv

ing on the issue of grossing-up and validation and on the estimation of tax evasion/tax 

avoidance. However, in contrast to some of them, it is limited to personal income tax

ation. Notwithstanding this limitation, TABEITA98 is suitable to study tax-benefit
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variable
SHIW 

(Lit ’000,000)
Ext. Source 

(Lit ’000,000)
Difference

(%)
Ita ly
declared BT income 844,700,000 866,004,870 -2
employment inc. 635,000,000 636,553,037 0
self-empl inc. 116,100,000 115,212,773 1
capital inc. 52,910,000 65,022,227 -19
rental& est. inc. 40,730,000 40,712,541 0
actual BT inc. 980,200,000 866,004,870 13
N W  area
declared BT income 279,400,000 290,741,450 -4
employment inc. 207,800,000 208,730,788 0
self-empl inc. 39,050,000 41,435,160 -6
capital inc. 20,590,000 24,881,868 -17
rental & est. inc. 11,980,000 12,886,631 -7
actual BT inc. 323,400,000 290,741,450 11
N E area
declared BT income 188,200,000 202,179,990 -7
employment inc. 137,100,000 143,368,984 -4
self-empl inc. 24,810,000 28,569,365 -13
capital inc. 16,020,000 19,050,314 -16
rental & est. inc. 10,250,000 9,291,672 10
actual BT inc. 216,800,000 202,179,990 -7
C area
declared BT income 174,900,000 180,395,573 -3
employment inc. 132,700,000 133,010,136 0
self-empl inc. 23,810,000 23,398,024 2
capital inc. 9,055,000 12,486,490 -27
rental & est. inc. 9,374,000 9,531,839 -2
actual BT inc. 202,800,000 180,395,573 12
S area
declared BT income 202,100,000 192,687,857 5
employment inc. 157,300,000 151,443,129 4
self-empl inc. 28,390,000 21,810,224 30
capital inc. 7,248,000 8,603,555 -16
rental & est. inc. 9,117,000 9,002,399 1
actual BT inc. 237,200,000 192,687,857 23

family tax. allowances 8,137,920 9,186,184 3
work tax. allowances 31,392,390 23,454,708 34

Table 2.9: Validation of the TABEITA98 output, at the national and area level. Ext. 
Sources: Ministero delle Finanze (2002); CNEL (2004)
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microsimulation modelling. TABEITA98 was validated with external sources, espe

cially with those coming from the analysis of 1998 tax forms: its results are at least 

as good as those of comparable MSMs.

The main limitation of this MSM lies in the input data: only AT incomes are 

asked for in the survey and BT incomes have to be simulated. Moreover, there are 

problems in identifying the appropriate variable for the model since the SHIW survey 

was not primarily collected for MSMs. Sometimes these problems axe resolved using 

other information in the data set (e.g. tax allowances depending on family burdens 

are estimated using information about household relations), in others dropping the 

variable (e.g. capital and participation incomes is often disregarded from the analy

sis). However, these limitations are common to all Italian MSMs since, unfortunately, 

no alternative data set for tax-benefit simulation is currently available.

Chapter 3 proposes the use of non-parametric density estimation to assess the 

effect of fiscal reforms and Chapter 4 addresses the issue of reliability of MSMs. Both 

chapters make use of TABEITA98.
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Chapter 3 

Microsimulation and 

non-parametric estimation

Nonparametric density estimation can be regarded as a development of the more 

intuitive histogram technique for density estimation. In contrast to histograms, non

parametric density estimation does not suffer major limitations such as choice of 

origin, limited robustness of estimates, ragged picture, absence of derivative and low 

flexibility for multivariate density analysis. Although the theory of nonparametric 

density estimation is well established and has developed since the 1950s, the use of 

nonparametric density estimation in empirical research has spread widely in more 

recent years mainly because of the rapid growth in computing power. The interpola

tion of pointwise estimation of density provides a smooth picture, useful in detecting 

unusual behavior of the distribution such as bimodality.

Nonparametric density estimation has proven to be an effective research tool in 

economics. For instance, in income inequality literature kernel estimation has been
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used to show the evolution of income distributions from a unimodal to a bimodal 

shape. Cowell et al. (1996); Jenkins (1994) among others called this phenomenon 

the “shrinking of the middle class”. They showed that the widening gap between 

least and most well-off households in the UK was mainly due to stagnating income 

of non-working and relatively large households opposed to dynamic earnings of work

ing households. Pudney (1993) used nonparametric methods to analyze income and 

wealth inequality in the life-cycle using Chinese data: he found that only a small 

part of observed inequality can be explained by life-cycle factors in contrast to what 

other authors had found using dummy-variable regression methods. In the empirical 

growth literature Quah (1997) used nonparametric estimation to point out the emer

gence of a “twin peaks effect” - the clustering of a large number of countries at lower 

per capita incomes and the increasing gap between poor and rich countries. In labor 

economics DiNardo et al. (1996) used a semi-parametric analysis based on kernels 

to show the importance of institutional factors, such as unionization and minimum 

wage, for the evolution of wage distribution in the US labor market.

Kernel density estimation has been used also on Italian data, mainly to assess 

household income inequality between the late 1980s and early 1990s. Bimodality 

of disposable equivalent income density has been found using polarization indices 

(D’Ambrosio, 2001) and bimodality tests (Pittau and Zelli, 2001).

This chapter suggests a combination of MSMs and the descriptive power of non

parametric density estimation to analyze tax policies. Using a static MSM developed 

for personal income taxation in Italy, it focuses on the 1998 personal income taxation 

reform and shows that nonparametric density estimation is a useful tool for tax-benefit
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policy analysis.

Section 3.1 deals with the data set and the microsimulation model used and briefly 

describes the main novelties of the 1998 IRPEF reform. Section 3.2 presents the 

non-parametric methodology for density estimation. In Section 3.3 the methodology 

proposed is developed and the results obtained are discussed. In Sections 3.4 and 3.5 

some other simulations axe performed and results commented. Section 3.6 concludes.

3.1 The data set, the microsimulation m odel and 

the IR PEF reform

The data set used is the 1998 Survey of Household Income and Wealth (SHIW) de

scribed in Section 2.1. The SHIW database is the most frequently used data set for 

Italian household microeconomic analysis, including tax policy analysis, since it com

prises information about all members of the interviewed household and their relation

ships. However, since all data are net of taxes and social contributions, TABEITA98 

model is used to recover gross income prior to any simulation of change in taxes and 

benefits, as described in Section 2.2.

Because of the financial and currency crisis that hit Italy in 1992, several tax 

policies were introduced during the 1990s, affecting both direct and indirect taxation. 

In particular, two clearly different periods may be distinguished: the first up to 1996 

and the second starting from 1996. The first of these periods was characterized by 

constant political instability and frequent changes of the Minister of Finance, with
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several temporary taxes without a clear overall design, while during the second higher 

political stability favored the design of a comprehensive tax reform. Here, the focus 

will be on some aspects of the 1997-98 tax reform, and in particular on the effects 

caused on the distribution of income and inequality on Italian households caused by 

the personal income tax (IRPEF) reform.

The two main novelties of the 1998 IRPEF reform with respect to previous years 

IRPEF concern the modification of the tax brackets and of the tax allowances struc

ture, while no relevant change in income base definition was introduced. As shown in 

Appendix A, the number of fiscal brackets were reduced, from seven to five, with the 

reduction of the highest tax rate (from 50% of 1991, increased to 51% from 1992 on

wards, to 45.5% of 1998), the increase of the first tax rate (from 10% of 1991 to 18.5% 

of 1998) and a substantial change of the others. Tax allowances for employment and 

self employment were increased in amount and in number, tax allowances for “family 

burdens” were increased, a new tax allowance for pension recipient where introduced 

depending on income and a few other attributes. The center-left government which 

passed the reform claimed that the increase in tax allowances would have offset the 

effect of the first bracket tax rate increase.

These topics have been analyzed by other authors. Among others, Bosi et al. 

(1999), CER (1998b,a) and Birindelli et al. (1998) analyzed in detail the 1998 reform 

compared with the previous year legislation, while Giannini and Guerra (1999) com

pared 1999 taxation system with the 1990 one. They all conclude that the reform 

caused an overall increase of IRPEF liability on Italian households but there is less 

agreement in detecting the most and least affected group dividing the sample by area
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of residence and the occupation of the household head. Moreover the results are at 

times numerically quite different and an abundance of numbers tends to obscure the 

main picture of the distributional effects of the reforms.

3.2 The density estim ation technique

The nonparametric density estimation method used here is derived from a generaliza

tion of the adaptive kernel density estimator to take into account sampling weights. 

The adaptive kernel is obtained in a two-stage procedure. In the first stage, a pilot 

estimate with fixed-bandwidth is performed to get a rough idea of the density along 

the data range. In the second stage, the fixed bandwidth parameter is replaced by 

a function of the fixed-bandwidth and of the pilot density estimation such that the 

bandwidth is larger where the pilot density estimate is smaller (i.e. the data are 

more sparse), and is smaller where density estimation is larger (i.e. the data are 

more concentrated). Such an estimation technique is particularly suitable for thick

tailed distributions such as income densities, since a variable bandwidth tends to 

dampen fluctuations in the tails and increase precision in the bulk of the distribu

tion. In detail the procedure is as follows (Abramson, 1982; Silverman, 1986). Let 

X  =  { X i , i  =  1,..., N }  be a univariate random sample from an unknown distribution 

/ .  The pilot estimate / n (x ) to be estimated for the first stage is:



where h x  is a fixed-bandwidth, K  is the kernel function and /jv(-Xi) > 0 for all i. 

The second stage begins with the estimation of a local bandwidth factor A* :

A, =  I I (3.2)

where 0 < a  < 1, and g is the geometric mean of

g = n l 1 ( f N( Xi) ) 1/N (3.3)

The final estimation fjq is given by:

/ » « - *  <M)

The adaptive kernel can then be modified to take into account the sampling

weights, Oi, normalized to sum to N .  Every observation is then weighted by and

not by j j  implying that (3.1) becomes:

<“ >

then (3.4) becomes:

The choice of the bandwidth parameter is a delicate issue: a larger than 

optimal flu will oversmooth the density increasing the bias, a smaller than optimal
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Hn  will increase the variance of the estimate reducing the bias. Moreover, it was 

proved that the optimal bandwidth, defined as the parameter that minimizes the mean 

integrated square error, depends on the unknown density being estimated (Parzen, 

1962). Among the various optimal bandwidth parameter proposed in the literature1, 

I chose the Silverman’s rule-of-thumb bandwidth:

hN =  0.9A(n)(1/5) (3.7)

where A  =  mm{standard deviation, interquantile range/1.34} is an adaptive esti

mate of spread. This bandwidth parameter was proposed by Silverman (1986, p. 48) 

as a parameter that copes well with a wide range of densities and is trivial to compute. 

However, other bandwidth have also been used and some results will be presented for 

bandwidths that are equal to a given proportion of the optimal bandwidth in (3.7).

Making the local bandwidth factor dependent on a power of the pilot density gives 

flexibility in the design of the method: the larger the power a, the more sensitive the 

method will be to variations in the pilot density. Following Silverman (1986, p.48)’s 

suggestion, it was set at a  =  1/2.

As for the choice of the kernel function, K , the Epanechnikov kernel was used 

since it maximizes efficiency (see among others Silverman, 1986, Section 3.3.2).

Finally, in some relevant cases, to assess the reliability of density estimates the 

90% confidence bands are computed as 1.645 standard errors around f a (x). Standard

JFor an introductory description of the choice of the smoothing parameter, see Silverman (1986, 
Section 3.4) or Bowman and Azzalini (1997, Section 2.4)
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errors come from the following expression for the variance of f a(x) given in Burkhauser 

et al. (1999, p. 261):

I )  /<*<«>>■* m

3.3 The non-parametric density estim ation and the  

M SM  combined using counterfactuals

The combination of microsimulation and nonparametric density estimation here is 

undertaken comparing the existing 1998 IRPEF system with actual 1991 IRPEF 

system, weighted by CPI.

In the first stage, using the disposable income data contained in the TV-dimensional 

1998 SHIW sample (10i98j* 3 =  1, •••, N )  and the 1998 IRPEF legislation (/?g8j), the 

MSM is used to obtain the BT income (yhgsj). In the second stage, the counter- 

factual estimation is performed starting from BT income (Vng8j, for j  =  1,..., TV), 

simulating 1991 IRPEF system (/?9ij). The density estimation of disposable income 

under actual 1998 legislation ( / ( Yaw)) and counterfactual 1991 legislation { f c{YA9 i)) 

are then estimated and compared. The counterfactual distribution can be described 

as the “distribution of income that would have prevailed if 1998 IRPEF had been 

replaced by the 1991 IRPEF”2. It would be more precise to say that f c{YA9 i) is the 

density that would have prevailed in 1998 if personal taxation had been replaced by

2Of course, given the assumptions of the MSM, if Pggj was applied in the second stage it would 
give YA9%.
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1991 IRPEF and each income recipient had obtained exactly the same income, before 

personal taxation”3.

Given the focus on household welfare an equivalence scale was adopted for indi

vidual incomes, assuming equal distribution among members of household income. 

Due to the impossibility of obtaining a unique equivalence scale (see Cowell and 

Mercader-Prats (1997) and Blundell and Lewbel (1991)), the normal practice is to 

present results with different equivalence scales to show the sensitivity of results to 

different hypothesis, or to use a conventional equivalence scale. In this chapter, the 

Italian Poverty Commission equivalence scale, derived from the Engel methodology, 

was conventionally adopted. With this approach the issue of zero expenditures for 

the estimation of Engel curves (Pudney, 1990) is overlooked: the elasticity of total 

consumption on family magnitudes is estimated by a weighted regression with the 

proportion of food expenditure on household expenditure (c/) as dependent variable, 

and the log of total household expenditure (c) and the log of the number of the 

members of the household (m) as regressors (De Santis, 1998):

Cf = 70 +  7i In c +  72 In m  +  u  (3.9)

The elasticity estimate is obtained as e =  (—72/ 71) and the equivalent income of

3It is not claimed that this simulation is fully suitable to compare 1998 and 1991 Italian personal 
income taxation because I do not estimate behavioral response to taxation that possibly played a 
role in changing distribution of income in the 7-year-period considered. I would rather say that 1998 
personal taxation is compared with a simulated one, which is equal to the one in place in Italy in 
1991. The year 1991 was considered as the comparison year since 1992 is regarded as the year before 
the “turning point” of Italian public finance management. The year 1991 is the last year before the 
financial and currency crisis and that prompted the recovery process.
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each member of household h can be estimated as:

x h =  ^  (3.10)
m £

where Yh is the sum of all incomes in household h. From the regression performed on 

1998 SHIW data, an elasticity equal to 0.757 was obtained.

Figure 3-1 presents density estimations on the whole sample for BT, actual and 

counterfactual AT income distributions with three different bandwidths: h equal to 

the Silverman’s optimal bandwidth (3.7), =  0.75h and h$ — 2h. This figure pro

duces a clear picture of the concentration effect induced by personal income taxation: 

the 1998 BT income density presents a lower maximum and a higher mode than AT 

income. The AT density presents a thinner upper tail than the BT income density, 

showing that the 1998 IRPEF system is very effective in reducing the overall density 

at medium-high incomes. AT income density is clearly bimodal if /ijv is equal to or 

smaller than the Silverman’s bandwidth (3.7). This result add something to findings 

of Pittau and Zelli (2001) and D’Ambrosio (2001): the bimodality of equivalent AT 

income is due to or at least magnified by personal income taxation.

The comparisons between the actual and the counterfactual AT income distribu

tions show that the counterfactual AT density reaches lower maxima than the actual 

1998 AT income density, although the location of the modes do not widely change.

The last panel of Figure 3-1 depicts the difference between counterfactual and 

actual AT distributions for the three bandwidths considered. It shows that density 

of incomes at income levels below about Lit 18 millions (approximately €9,000) was
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higher in 1998 than with the counterfactual 1991 tax system. Given this pattern we 

can reasonably expect that inequality indices will show a decreasing trend from BT 

income to counterfactual AT income and to actual AT income4. Another relevant 

issue is clearly evident from the kernel density estimation: the personal income tax- 

benefit system is not effective in tackling poverty. In fact the BT income density at 

zero equivalent income is different from zero, showing that there axe households with 

zero income. However, BT and AT incomes do not differ at zero equivalent income 

level. This is mainly due to the fact that IRPEF does not allow tax credits in case 

of negative tax or of tax allowances larger than BT income5

act AT 
ctf AT 
act BT

actual 1998 AT income density, /(t/A9s) 
countefactual AT income density, f c ( yA 9 i )  

actual 1998 BT income density, f ( y B 9s)

Table 3.1: Abbreviations used in tables and figures

3.3.1 D ecom posing the sample

Other interesting observations can be provided breaking down the sample by occupa

tion of the householder. Figure 3-2 depicts the actual and counterfactual AT density 

estimates with a bandwidth as in (3.7) using continuous and dashed lines, respectively. 

Thinner lines are the 90% confidence bands of the two density estimates. Figure 3- 

2 shows that bimodality of AT incomes is very clear in employed household and is

4Indeed such a guess is correct as shown in Appendix B using Lorenz curves.
5The analysis of Figure 3-1 is performed without confidence bands mainly for clarity reasons. 

It should however be noted that the confidence regions greatly overlaps for the two AT densities. 
BT density is instead significantly different from AT incomes densities. Finally, confidence bands 
also show that the density is significantly different from zero at zero income. Figure 3-1 inclusive of 
confidence bands can be obtained on request from the author.
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An analysis of losers and gainers is performed analyzing the joint distribution of 

X  and Y , where X  is the actual 1998 BT income and Y  is the difference between 

counterfactual and actual 1998 AT income relative to 1998 BT income, i.e. the 

relative loss of income caused by the 1998 personal taxation system. Given the N  

pairs {#*, yi, i  =  1,..., N } ,  the relationship between Y  and X  can be estimated as:

2/j =  m(xi) + ti (3.H)

E { Y \ X  = x)  =  m (x)  (3.12)

where e* is a random error. The estimation of m(x)  is then performed nonparamet- 

rically using the Nadaraya-Watson estimator. As in the kernel density estimation 

the bandwidth h s  determines the degree of smoothing of to. As the goes to 

zero, rh(Xi) converges to F,, i.e. we obtain an interpolation of the data. On the

other hand, if h x  goes to infinity the estimator is a constant function that assigns

the sample mean of Y  to each x  (see, among others Hardle et al., 2004). Choosing 

the smoothing parameter for the covariate vector is again a crucial problem: as be

fore I started by using Silverman’s rule-of-thumb bandwidth (3.7) and analyzed the 

sensitivity of the estimates to different bandwidths.

Figure 3-5 shows the results on the whole sample of a nonparametric regression of 

the relative loss caused by 1998 tax system on 1998 BT income for different values of 

the bandwidth, i.e. a nonparametric regression of Y  over X  as defined above. It shows 

that those in the lowest part of the income range suffered the highest relative loss: 

in some cases they had to pay up 6-8% more with 1998 personal income reform than
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than others. In Figure 3-5 the nonparametric regression by occupation of the house

holder are reported with a bandwidth chosen as in (3.7) and 90% confidence bands. 

Relative loss was increasing from zero level for employed, but it was higher than av

erage for poor pensioner households and the residual ( “other”) group and for some 

of the self-employed households below 20 millions Lit.

Estimates are reasonably reliable with the only exception of higher incomes in the 

residual group due to the small sample size. These results show that the probability of 

experiencing poverty is higher after the reform than before it especially for households 

with a non-employed head. This result is likely to come from the fact that the 

“entry” marginal tax rate in 1998 (18.5%) was higher than that in 1991 (10%), and 

tax-allowances were increased more for working than for non-working tax-payers.

3.4 A revenue-neutral reform simulation

Since the 1998 IRPEF reform induced a relevant increase of revenue compared to 

the 1991 system, two different revenue-neutral simulations were performed. In the 

first of these the 1998 excess revenue is distributed equally to each individual in 

the population, in the second the excess revenue is distributed to each individual in 

proportion to her BT income.

It is of course difficult to assess how the increased tax revenue was employed, 

partly because other tax and welfare reforms were introduced in the same period, 

and partly because the increased tax revenue was not constrained to be used for any 

particular policy. However we can equally think of redistribution as happening in





cash or in kind or in reductions of other taxes liabilities.

A lump-sum redistribution of excess revenue, if compared to 1998 actual AT in

come, would induce a reduction of the density at a lower levels of income and an 

increase in the mode of the distribution basically due to a shif of the former distribu

tion to the left (Figure 3-6). Since the transfer is per capita, it would benefit more 

larger households.

bandwidth: h=Silv bandwidth: h2=h*.75

s
©20000 40000 

equivalent income
60000 80000 20000 8000040000 

equivalent income
60000

act AT ------------ cfr AT + LS act A T -------------cfr AT + LS
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80000 i20000 40000 

equivalent income
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Figure 3-6: Revenue-neutral simulation: lump-sum redistribution; with 90% confi
dence bands; in Lit ’000 (Lit 1936.27=€1)

A proportional redistribution have a slightly smaller effect on equivalent income 

distribution (Figure 3-7), showing that the excess revenue of 1998 IRPEF compared 

with 1991 IRPEF revenue was mainly due to a proportional (to BT income) increase 

of tax liability rather than to an equal increase of tax liability for all.
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3.5 Decom posing the fiscal reform

The difference between the counterfactual and actual densities was decomposed7 to 

investigate the overall importance of tax allowances for altering the shape of equivalent 

income distribution and inequality, as opposed to that of the bracket structure.

Using pd =  98 to denote the set of tax allowances from gross tax liability in 1998 

and fit, =  98 the tax bracket structure of 1998 and similarly for 1991, the difference 

between the two densities mentioned earlier can be represented in equation (3.9a) and 

decomposed as in (3.9b)-(3.9c) and (3.9d)-(3.9e).

J(Ya \Pd =  91, pb =  91) -  f ( Y A; pd =  98, pb =  98) =  (3.9a)

[f(YA; Pd = 91, Pb =  91) -  f ( Y A; pd =  98, pb =  91)]+ (3.9b)

[f(YA; Pd =  98, pb =  91) -  f ( Y A; pd =  98, pb =  98)] =  (3.9c)

\ f (YA; Pd = 91, Pb =  91) -  f ( Y A\ pd =  91, Pb =  98)]+ (3.9d)

\ / (Y a ; Pd =  91, pb =  98) -  f ( Y A] pd =  98, pb =  98)] (3.9e)

Line (3.9c) presents the difference between a counterfactual AT income density, 

which was obtained using the 1998 tax allowance system and the 1991 IRPEF brack

ets, and the actual 1998 AT income density. In the last part of this chapter two 

alternative scenarios axe simulated, both on 1998 data. Scenario 1 is characterized by 

a tax allowance system equal to the one actually in use in 1991 but with an income

7A brief description of the 1998 IRPEF tax reform is provided in Section 3.7
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bracket structure and tax rates like that in 1998 (i.e. the first part of (3.9e)). On 

the other hand, Scenario 2 considers the case in which the tax allowance system is 

like that in 1998 and the income brackets structure and tax rates as in 1991 (the first 

part of (3.9c)). Results are shown in Figures 3-8 and 3-9 together with actual 1998 

AT density.

o
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Figure 3-8: Scenario 1 vs. actual AT; with 90% confidence bands; in Lit ’000 (Lit 
1936.27=€l)

From the comparison of densities it is evident that the Scenario 1 density ap

proaches the actual 1998 AT density more closely than Scenario 2 one. These results 

show that the new tax rates and brackets were more effective than the new tax al

lowances in modifying the distribution of income

These simulations have been analyzed also by using nonparametric regression. In 

Figure 3-10 the relative loss variable, Y  is defined as the difference between Scenario
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1 and actual AT income (i.e. the difference in line 3.9e) relative to actual BT income. 

Figure 3-10 shows that had tax allowances been set as in 1991 the average loss of 

households with equivalent incomes higher than 20 millions Lit would have been 

about zero, however, poorest income would have suffered significant losses because of

tax allowances higher than in 1998.
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Figure 3-10: Losers and gainers: simulation D l, with different bandwidths and 90% 
confidence bands; in Lit ’000 (Lit 1936.27=€1)

In Figure 3-11 the relative loss variable, Y  is defined as the difference between
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Scenario 2 and actual AT income (i.e. the difference in line 3.9c) relative to actual 

BT income. Figure 3-11 shows that had tax brackets and tax rates been set at the 

1991 level, losses would have been more evenly spread across different levels of income 

and would approximately average 3%. The lower than average losses of equivalent 

incomes below 10 millions Lit are likely to be due to the effect of 1998 tax allowances.
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Figure 3-11: Losers and gainers: simulation D2, with different band widths and 90% 
confidence bands; in Lit ’000 (Lit 1936.27=€1)
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3.6 Conclusions

This chapter proposed a methodology consisting in a combination of microsimulation 

and non-parametric estimation for tax-benefit policy analysis. It was shown that this 

combination can increase the understanding and access of microsimulation results and 

provide useful insights regarding income distribution profiles.

Simulating AT income for 1998, the higher concentration induced by the taxa

tion system was illustrated. The combination of microsimulation and nonparametric 

density estimation allowed us to show that the 1998 IRPEF system increased the con

centration around the mode with respect to the updated 1991 IRPEF system. The 

higher concentration was obtained with a movement of part of the density mass from 

upper to lower levels of equivalent income, resulting in an overall decrease of inequal

ity. Nonparametric density estimation also showed that personal income taxation 

has an important role for the emergence of bimodality in the Italian AT equivalent 

income density.

Decomposing the sample into different subgroups, it was shown that some house

holds have been affected differently from others. While poor employed households 

had been basically unaffected by the reform, other households, namely those headed 

by a non-working head, suffered major losses increasing their probability of experi

encing poverty. In fact, for these groups of households the increased tax allowances 

were more than offset by the increased tax rate of the first bracket.

Finally, it was shown that the increased tax liability was roughly proportionally 

spread across tax payers and that changes in income brackets were more effective in
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changing the overall distribution of equivalent incomes than changes in tax allowances.

3.7 Appendix A: 1998 IRPEF vs. counterfactual 

1991 IRPEF

The following provides detail about the difference between the 1991 and the 1998 

legislations. The counterfactual density has been simulated updating 1991 IRPEF 

tax brackets and tax allowances to 1998 price. Income brackets were reduced from 

seven to five (Table 3.2).

1991 IR P E F C ounterfactual ta x  ra te 1998 IR P E F ta x  ra te
(Lit ’000) (Lit ’000) (%) (Lit ’000) (%)
0-6,800 0-8,786 10 15,000 18.5
6,800-13,500 8,876-17,442 22 15,000-30,000 26.5
13,500-33,700 17,442-43,540 26 30,000-60,000 33.5
33,700-67,600 43,540-87,339 33 60,000-135,000 39.5
67,600-168,800 87,339-218,090 40 over 135,000 45.5
168,800-337,700 218,090-436,308 45
over 337,700 over 436,308 50

Table 3.2: Actual 1998 and counterfactual structure of IRPEF tax brackets (Lit 
1936.27=€1)

For a fiscally dependent spouse, tax allowance depends on BT income (Table 3.3).

1991 IR P E F ta x  all.
(Lit ’000)

C ounter, ta x  all.
(Lit ’000)

1998 IR P E F
(Lit ’000)

ta x  all.
(Lit ’000)

any income 675 872.1 0-30,000
30.000-60,000
60.000-100,000 
over 100,000

1.057.552
951.552
889.552
817.552

Table 3.3: Actual 1998 and counterfactual tax allowances for dependent spouse (Lit 
1936.27=61)
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Tax allowances for dependent children and other dependent relatives do not de

pend on BT income (Table 3.4).

1991 ta x  all. coun terf ta x  all. 1998 ta x  all.
(Lit ’000) (Lit ’000) (Lit ’000)

depend, child 78 101 336
other dep. relative 108 139.5 336

Table 3.4: Actual 1998 and counterfactual tax allowances for dependent children and 
other relatives (Lit 1936.27=€1)

Tax allowances for employment and self-employment income are different and

depend on income (Table 3.5).

1991 IR P E F Fisc.all. count, brack, t.a . 1998 brack. t.a .
(Lit ’000) (Lit ’000) (Lit ’000) (Lit ’000) (Lit ’000) (Lit ’000)
12,400 851 16,021 1,099 0-9,100 1,680
12,400-12,659 750** 16,021-16,355 969 9,100-9,300 1,600
over 12,659 648 16,355 837 9,300-15,000 1,500

15,000-15,300 1,350
15,300-15,600 1,250
15,600-15,900 1,150
15,900-30,000 1,050
30,000-40,000 950
40,000-50,000 850
50,000-60,000 750
60,000-60,300 650
60,300-70,000 550
70,000-80,000 450
80,000-90,000 350
90,000-90,400 250
90,400-100,000. 150
over 100,000 100

Table 3.5: Actual 1998 and counterfactual tax allowances for employment income. * 
is an average. The actual tax allowance (in Lit ’000) was computed as 851 - [ { j j b  — 

12,400) x 0.78], where y s  is BT income.

If the individual receives only a pension income which is less than Lit 18 million, 

and he is not owner of other building apart from the principal dwelling, there is an
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1991 inc. brack tax.all. C ounterf. t.a . New IR P E F t. a.
(Lit ’000) (Lit ’000) (Lit ’000) (Lit ’000) (Lit ’000) (Lit ’000)
0-6,800 168 0-8,786 217 0-9,100 700
6,800-7,000 90* 8,876-9,044 116 9,100-9,300 600

9,300-9,600 500
9,600-9,900 400
9,900-15,000 300
15,000-30,000 200
30,000-60,000 100

Table 3.6: Self-employment tax allowances. * is an average. The actual tax allowance 
(in Lit ’000) was computed as 168- [ { v b  — 6,800) x 0.78], where yB is BT income.

additional tax allowance equal to Lit 70,000 in 1998, while he did not receive anything 

in 1991.

3.8 Appendix B: inequality analysis of BT, actual 

and counterfactual AT incomes

A traditional analysis of inequality of BT, actual and counterfactual AT incomes can 

be performed using Lorenz curves.

Provided that the density function is non zero throughout the range [Yi, YV]> where 

N  is the number of observation, and Y\ < YN, then for each p  G (0,1), there is just 

one income level y, which satisfies p  =  F(y) ,  the income of the first lOOp percent of 

income recipients is N  JQy y f ( y )d y  and the total income is N  J0°° y f ( y ) d y  =  N p ,  where 

p  is the mean income (Lambert, 1993). Hence, using f ( y )  for the density estimation 

of income, a finite-sample Lorenz curve L(p) is defined by
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In Table 3.7 the Lorenz curve for BT income, counterfactual AT income and 

actual AT income is provided. Lorenz curves do not cross, i.e. 1998 AT income 

Lorenz-dominate (i.e. is more equally distributed of) the counterfactual AT income, 

which Lorenz-dominates the 1998 BT income. This results will be confirmed by a 

large class of inequality indices satisfying axioms of anonymity, mean independence 

and the transfer principle (Cowell, 1995). In Table 3.8 some inequality indices are 

reported: they show, coherently with what stated before, that equality is increased 

by 1991 IRPEF and even more by 1998 IRPEF.

Pop. share B T  income. count. AT y AT y  1998
1/10 0.0117 0.0161 0.0176
2/10 0.0396 0.0560 0.0611
3/10 0.0811 0.1146 0.1247
4/10 0.1363 0.1920 0.2093
5/10 0.2066 0.2880 0.3123
6/10 0.2936 0.4015 0.4315
7/10 0.3997 0.5282 0.5615
8/10 0.5308 0.6631 0.6939
9/10 0.6986 0.8086 0.8313
10/10 1 1 1

Table 3.7: Lorenz curve for different type income

AT income count AT y AT incom e
rel. m ean deviation 0.306 0.288 0.285
coeff. o f variation 0.923 0.826 0.818
G ini index 0.429 0.404 0.401
Theil en tropy meas. 0.325 0.283 0.279
T heil m ean log dev. 0.359 0.315 0.312

Table 3.8: Some inequality indices for different type of income

75



Chapter 4 

Assessing the reliability of MSMs 

using the bootstrap

Static MSMs are widespread techniques for analyzing the “morning after” effects of 

government policy on welfare and distribution of income. In recent years research on 

MSMs has mainly focused on finding the most efficient way to introduce behavioral 

relations, to improve computer routines, to calibrate the sample to known totals or 

develop a general equilibrium model of the economy starting from microeconomic 

relationships (see Chapter 1).

However, little attention has been paid to assessing the reliability of the output of 

frequently quoted tax-benefit MSMs, even in the simplest case of MSMs without be

havioral response. One of the few exceptions remains Pudney and Sutherland (1994), 

which investigates the asymptotic sampling properties of a set of typical simulation 

results using a UK tax-benefit model on FES data. They start with the consideration 

that even the simplest static deterministic MSM without behavioral response pro
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duces an output that is affected by stochastic error, as any survey-based model. This 

error could come from a variety of sources such as sampling error, misreporting or 

underreporting behavior, programming mistakes, and it might increase variability in 

the model estimation. The importance of the stochastic error has to be assessed, and 

estimates from an MSM should be accompanied with standard errors or confidence 

intervals. This remark, which might seem obvious to many, is indeed well placed 

since it is still common to see MSM results quoted without any standard error or 

confidence interval.

Although there are formidable technical problems involved in the deriva

tion of confidence intervals, there is no reason why the sampling properties 

of simulation results should not receive as much attention from econome

tricians as do the properties of estimators of behavioural relationships 

(Pudney and Sutherland, 1994, p. 328).

The method used by Pudney and Sutherland (1994) is to assume that the under

lying population is infinite so that finite population correction can be avoided and 

asymptotic theory can be applied. The income vector used is that of net equivalent 

income, which is a transformation of the sum of all net incomes of all members of a 

family that takes into account economies of scale within the family. Net incomes are 

obtained by deducting income tax and national insurance contributions. Then some 

common statistics for the analysis of MSM output axe produced, properly taking into 

consideration the sampling weights contained in the FES data set. The weighted 

statistics and their corresponding variance are then used to compute confidence in
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tervals.

Section 4.1 presents the approach used here. This approach differs from Pudney 

and Sutherland (1994) since no infinite population assumption is introduced. In

stead of introducing finite sample corrections a simulation based method, namely the 

bootstrap, is used to approximate the true distribution and estimate confidence in

tervals. The choice of the bootstrap is motivated by the finding that in small samples 

it performs significantly better and in other cases no worse than asymptotic theory. 

The consequences for asymptotic confidence interval estimation of using a nonlinear 

transformation to equivalize household incomes and to perform simulations will be 

discussed. Section 4.2 will briefly present the data, MSM and hypotheses adopted in 

this chapter. Section 4.3 will discuss some results obtained using a tax-benefit model 

on Italian household data. Section 4.4 concludes.

4.1 M ethodology for assessing the sampling error

Supposing we have a family of tests, with the same level, a, for testing a set of 

hypotheses about a scalar parameter 9 € K, it is possible to use them for constructing 

a confidence interval for the parameter of interest. A confidence interval is defined as 

the interval on the real line which encompasses all values of 9 for which the hypothesis 

that 9 =  9q is not rejected by the appropriate test in the family, where 90 is a 

certain parameter value. The coverage probability of the interval is defined as the 

probability that the true parameter will lie in the computed interval. Confidence 

intervals can be either exact or approximate. The confidence intervals are exact if
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the finite-sample distribution of the test statistic is known, while they can only be 

asymptotic confidence intervals if the distribution of the test statistic is known only 

asymptotically. In the latter case, the smaller is the sample the more inaccurate the 

coverage of the confidence interval tends to be, i.e. the interval will not “cover” the 

true parameter value with the specified probability.

Let r(y , 6 q) be the test statistic for testing the null hypothesis that 6  = Oo, where 

y is the vector of realizations of a random variable Y  from an unknown distribution

^  TTthat is used to compute the particular realization of the statistic, 0. Let c“ / 2 denote

the value on the real line such that the probability under the null that the test statistic

is larger than c ^ 2 is equal a / 2; correspondingly c ^ 2 denotes the value on the real 

line such that the probability under the null that the test statistic is smaller than 

c£/2 is equal a/2 .  Hence, by definition

Pr(co/2 <  t (y, 0O) < c"/2) =  1 -  a  (4.1)
VO

It is then possible to obtain the limit of the confidence interval of level a,  by 

inverting the test statistic r(y,0o).  If the distribution of r(y , 6q) is symmetric and 

centered around zero then c ^ 2 =  c ^ 2 =  cQ/2, and the confidence interval in (4.1) can 

be rewritten as:

P r(|r(y , 0O)| < ca/2) =  1 -  a  (4.2)
Oo

If the test statistic is the classical t-ratio, r  =  (0 — Oq) / sq, the confidence interval
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can also be written as:

9 = 9 d= caj2 x Sq (4-3)

_
where Sq is the standard error of 9. This is the confidence interval computed by 

Pudney and Sutherland (1994), where all statistics are weighted using the sampling 

weights provided. Assuming that the underlying population is infinite and that the 

the random variable Y  is extracted from a finite variance distribution, the classical 

t-ratio will be distributed as a standard normal and cQ/2 can be obtained by standard 

normal statistical tables (for the analysis of the t-ratio statistic of a random sample 

from an infinite variance distribution see Chapter 7).

Such a confidence interval is rather conservative as a measure for evaluating the 

reliability of estimates. It only assesses the magnitude of the sampling error and 

avoids considering the simulation, misreporting and underreporting errors and, where 

relevant, the approximation errors due to the updating of the sample to different 

years or external data sources. The asymptotic confidence intervals can also be more 

conservative than the true ones if the asymptotic approximation tends to over-reject 

in small samples.

An alternative way to construct confidence intervals is to use simulation-based 

methods such as the bootstrap. For simplicity, let us start by considering the classical

>*s.

t-ratio statistic t(9o) =  r(y , 9q) — (9 — 9 ) / sq, where Sq is the standard error computed

-

using the data y  and r  is an asymptotically pivotal statistic . First 9 and s$ are

*A test statistic r  is pivotal for a given model if, for each sample size, its distribution is in
dependent of the DGP that generates the data from which r is calculated. The statistic r is 
asymptotically pivotal for a given model if its asymptotic distribution exists for all possible DGP 
and it is independent of the DGP that generate the data (Davidson and MacKinnon, 2001). The
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computed using the original data y, then, through random sampling with replacement 

from the original data set, B  bootstrap samples, y ^ j  =  1,..., B  of the same size as y, 

need to be generated. For each of these samples, an estimate 0j and its standard error 

Sj , are computed in the same way 0 and s# were computed in the original sample. 

Then the bootstrap test statistic is computed

0*  - 0
<J =  r (  y*,0) =  - i _  (4.4)

si

This statistic tests the null hypothesis that 0 = 0 , because 0 is the true value of 

0 for the bootstrap data generating process (DGP). However, if r  is an asymptotic 

pivot, the difference between 0 and 0q is negligible (see for instance, Hall (1992b)).

The limits of the bootstrap confidence intervals will then depend on the quantiles 

of F*, the empirical distribution function (EDF) of the t*-.

If F* were the cumulative distribution function (CDF) of a continuous distribution, 

the confidence interval could be expressed in terms of the quantiles of this distribution 

but since the distribution of t j  is always discrete in practice, a little more attention 

has to be paid. Assuming for simplicity that t{0o) is on the left side of the distribution, 

the bootstrap P  value is

2i?*(?(0o)) = I  £  i ( t ;  < t (e0)) =
j =1

method of computing confidence intervals based on an asymptotically pivotal statistic as t(0o) is 
called bootstrap-t or percentile-t. Other methods are also available such as the percentile and the 
BCa (Efron and Tibshirani, 1986), although asymptotically pivotal statistics has generally a better 
performance (Beran, 1988).
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where r(0 o) is the number of bootstrap t  statistics that are less than or equal to tg0. 

Thus 0o belongs to the 1 — a  confidence interval if and only if 2 r($o)/B > a, that is, if 

r(0o) > clB / 2. Since r(0o) is an integer, while a B / 2  in general is not, this inequality 

is equivalent to r(0o) > ra/2, where ra/2 is the smallest integer not less than a B / 2 .

After sorting t j from smallest to largest, let c*aj2 denote the entry in the sorted 

list indexed by ra/2, where ra/2, is the smallest integer not less than a B / 2 . So, if 

*(0o) =  Cq/25 the number of the tj less than or equal to t(9o) is precisely ra/2, if 

<(0o) is any smaller than Ca/2> then this number is strictly less than ra/2. Thus 0U, 

the upper limit of the confidence interval of the estimate 0, is defined implicitly by 

t(du) =  c*/a, i.e.:

0 U —  0  S q X c a j 2

To obtain the lower limit of the confidence interval, let us start by assuming that 

t(9o) is on the upper part of the distribution and following the same reasoning as 

before it can be found that

0 i = 0 - s e x  cJ_(a/2)

where is the entry indexed by ri_(a/2) when t*- are ordered from smallest to

largest.

The asymmetric equal-tail bootstrap confidence interval can then be written as

[0|A] =  [0 -  s«cI_(a/2), 9 -  s„c*/2]
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If the statistic is an exact pivot, then the probability that the true value of 0 is 

greater than 6 U is exactly equal to a /2  only if a ( B  +  l) /2  is an integer (Dufour and 

Kiviet, 1998; Davidson and MacKinnon, 2000).

The bootstrap as a method for deriving confidence intervals is used to overcome 

some of the limitations of the asymptotic confidence intervals. If ca is the critical 

value for the asymptotic distribution of r(y , Oo), but not for the exact finite-sample 

distribution, then (4.1) is only approximately true. Although the bootstrap t-statistic

(4.4), as most test statistics used in econometrics is asymptotically pivotal, it is 

likely to be non-pivotal in finite samples. This means that the distribution of the 

t-statistic depends on unknown parameters or other unknown features of the DGP. 

This leads to bootstrap p-values that are inaccurate in some way because of the 

difference between the true and the bootstrap DGP. However, theory suggests that 

the bootstrap test generally performs better in finite samples than tests based on 

asymptotic theory, in the sense that they commit errors that are of lower order in the 

sample size (see, among others, Hall (1992a), Davidson and MacKinnon (1999b)). 

There is also a growing body of literature that shows that bootstrap tests indeed 

performs better than asymptotic tests (see, for instance, Horowitz (1994), Davidson 

and MacKinnon (1999a), Godfrey (1998)) or at least as well as asymptotic tests 

(see, for inequality indices, Cowell and Flachaire (2002)). Of course, a smaller error 

in rejection probability (ERP) of a test is mirrored by a smaller error in coverage 

probability of the confidence interval.

Moreover the bootstrap allows one to compute asymmetric confidence intervals, 

i.e. it does not impose the distribution of r(y , 9q) to be symmetric. In finite samples
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it is likely that (y, 90) is not symmetric.

There is at least one more reason for using the bootstrap. It is used when the 

distribution of a statistic is unknown or is too difficult to derive analytically. For 

instance, if all the elements of the vector of random realizations y  of the random 

variable Y  is multiplied by the same scalar, k  € Ro, the confidence interval in (4.3) 

does not change: because of the mean and variance properties with linear transfor

mations, all elements in the left and right hand side of (4.3) are multiplied by k. 

However, if different elements of the vector y  are multiplied by different scalars the 

confidence interval does change. In particular we cannot say a priori if the confidence 

interval as percentage of the estimated parameter is any different from (4.3) and, in 

general, there is no way to define the distribution of the t-ratio statistic in finite sam

ples. We cannot say if the finite sample properties of the distribution of the t-ratio 

changes at all, hence we cannot evaluate how accurate is its asymptotic approxima

tion. This point is of relevance for equivalent income data that are generally used in 

MSM literature. The equivalent income transformation is in fact highly non linear.

The main drawback of using the bootstrap is that it takes a long time to process. 

However, thanks to the rapid development in computing power this limitation is 

becoming less relevant.

4.2 The data set and the microsimulation m odel

The data set used in the present chapter is the 1998 Survey of Household Income and 

Wealth (SHIW) published by the Bank of Italy and described in Section 2.1. The
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MSM used is TABEITA98, which assumes that household and family coincide. This 

assumption is due to the fact that questions are asked to households and there is 

no information to infer if there are more family units living under the same dwelling 

(see Chapter 2). In contrast to other countries, the SHIW one, which is the only 

suitable data set for Italian MSM, does not record the amount of taxes paid and 

benefits received. Hence, the first role of a MSM is to simulate the gross income 

before performing any other policy simulation. This feature implies that, differently 

to what performed in Pudney and Sutherland (1994), no simulation error (difference 

between the simulated tax and the actual one) can be properly assessed.

Before analyzing the MSM output, the income of each individual j  belonging to 

household h, Zjh, has been equivalized using an equivalence scale. As mentioned in 

Section 3.3 there is no unique equivalence scale. The equivalence scale used here 

consists in scaling the household income Zh by beh, where e is a constant 0 < e <  1 

and bh is number of components in the household, i.e.:

Vjh =  TT (4-5)
0h

The Luxemburg Income Study’s approach is to use e =  0.5. The Italian poverty 

commission’s approach is to fix e equal to the elasticity of total consumption on family 

size (De Santis, 1998)2.

The sample was divided by main occupation of the household head, distinguishing 

between employed, self-employed, pensioners and “others” , the residual group. The

2Applying the Italian Poverty Commission approach to 1998 SHIW we would have e =  0.757 (see 
Chapter 3).
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household head is considered to be the one declared in the interview, regardless of

contribution to household income. The largest sub-group is that of pensioners, fol

lowed by the employed (see Table 4.1). Of the “other” households most declare that 

they have a household head who is unemployed and actively looking for a job or who 

is a housewife (see Table 4.2).

Sample Freq. Percent
0. all 7112 100.00
1. employment 2715 38.17
2. self-empl 1049 14.75
3. pensioner 2760 38.41
4. other 588 8.27

Table 4.1: Proportion of households by occupation of the household head

Status Freq. Percent
Looking for first job 27 4.59
Unemployed 278 47.28
Housewife 241 40.99
Well-off 18 3.06
Student 24 4.08
Total 588 100.00

Table 4.2: Occupation of household head if not working

4.3 Non-linear transformation and confidence in

tervals: results of the analysis

Applying the model to net incomes to recover gross incomes means imposing a 

strongly non-linear transformation on the original data set. A non-linear transfor

mation is also applied to the data set whenever attention is focused on the vector of 

equivalized incomes. This section shows the effect of these non-linear transformations
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using the 1998 SHIW data set and the TABEITA98 model. The data axe analyzed 

using some common summary statistics such as the mean, the 20th, 40th, 50th, 60th 

and 80th quantiles, the G E  indices with parameter a  =  0,1,2 (for a definition of 

quantiles and G E  indices used see Section 6.2.3 and 6.6, respectively). Since G E  

indices axe only defined for positive incomes, households with non positive equivalent 

incomes axe dropped from the analysis. Both the asymptotic and the bootstrap con

fidence intervals axe computed as described in Section 4.1. The confidence intervals 

axe set at 90% in both cases. Grossing-up and validation issues axe not considered 

since they would significantly complicate the analysis without additional value for the 

purpose of this chapter.

In bootstrap re-sampling I have used the sampling procedure used by the Bank 

of Italy. Because of its stratified sampling procedure the SHIW data set includes 

sampling weights, which record the inverse of the probability of the households to be 

included in the sample. These sampling weights axe defined for households, i.e. all 

members of the same household have the same weight. Sampling weights axe normal

ized to sum to the number of households in the sample, provided each household is 

counted only once. No additional information about the sampling stages and strata 

is provided. Call these weights “original”, pQ.

All asymptotic confidence intervals axe weighted as in Pudney and Sutherland 

(1994). As for the bootstrap confidence intervals a different procedure is undertaken. 

An analysis of sampling weights in the 1998 SHIW data set shows that the number 

of household-units with positive household income is N  =  7112 and the sampling- 

weight distribution is highly skewed to the right: it has mean 1, median at 0.69, a
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minimum value of 0.08 and a maximum value of 10.11. In the first stage the original 

sampling weights, p0, have been normalized dividing by their minimum and rounded 

to the nearest integer, yielding weight pn. The smallest value of pn is 1. Then the data 

set has been expanded using pn. For instance, a household with pn equal to 5 before 

expansion will be replicated 5 times after the expansion. This expansion makes the 

sample a close image of the underlying population, provided sampling weights have 

first been correctly estimated. From the expanded data set, a number B  of bootstrap 

samples of dimension N  =  7112 is built using random sampling with replacement. 

By construction, the new data set will present sampling weights uniformly equal to 

l 3. In this procedure households rather than individuals are re-sampled, as is the 

case in the SHIW data set. Whenever a household unit is sampled more than once it 

is renamed so that it is considered a completely different household from its clone.

For each bootstrap sample a t-ratio statistic is produced as in (4.4) for each sum

mary statistic. They are then used to compute the EDF of the t j and the bootstrap 

confidence intervals as described in Section 4.1. For the computation of the sampling 

variance of sub-sample means and quantiles I followed Pudney and Sutherland (1994); 

for the G E  indices, I followed Cowell (1989).

In the experiments presented the number of bootstrap replications were fixed at 

B  =  999.

The first point analyzed is the role of an equivalence scale on assessing the impor

tance of sampling weights. For this procedure, no MSM is used. Hence, all incomes

3A similar algorithm to deal with sampling weights and the bootstrap was also taken in Fiorio 
(2004).

88



are net of taxes and social contributions. Since the effect of the equivalence scale on 

the confidence interval cannot be assessed analytically, both asymptotic and boot

strap confidence intervals are computed. Ideally we would like to find that there is 

no large difference between asymptotic and bootstrap confidence intervals so that the 

former can be used also in smaller samples, as they are quicker to compute. Secondly 

we would hope to find that confidence intervals as percentage of the estimated statis

tic do not change with the equivalence scale adopted or, otherwise, see how different 

equivalence scales affect reliability (i.e. modify confidence intervals). The equivalence 

scales considered are as in (4.5), with e =  0,0.5,1.

As for the mean, there is no significant difference between the confidence intervals 

as different economies of scale are considered. There is instead quite a large difference 

between asymptotic and bootstrap confidence intervals. Bootstrap confidence inter

vals tend to be larger than asymptotic ones and the difference is larger the smaller is 

the sample size, e.g. for the self-employed and the “other” households (Tables 4.3,4.4 

and 4.5).

Sample mean AS lb AS ub BS lb BS ub

0. all 53416 -0.90 0.90 -1.56 1.72
1. employment 54483 -1.04 1.04 -2.01 2.15
2. s-e. wrk 73545 -2.55 2.55 -4.44 5.22
3. pens. 47884 -1.48 1.48 -2.39 2.55
4. other 30908 -3.73 3.73 -7.01 8.69

Table 4.3: Asymptotic and bootstrap 90% confidence intervals as % of the estimate 
for the sample mean; e =  0

Almost the same conclusions can be reached using the percentiles as summary
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Sample mean AS lb ASub BS lb BS ub

0. all 29854 -0.92 0.92 -1.47 1.71
1. employment 29322 -1.05 1.05 -1.87 1.97
2. s-e. wrk 39269 -2.80 2.80 -4.46 5.32
3. pens. 29418 -1.39 1.39 -2.03 2.38
4. other 16575 -3.82 3.82 -5.58 7.59

Table 4.4: Asymptotic and bootstrap 90% confidence intervals as % of the estimate 
for the sample mean; e =  0.5

Sample mean AS lb AS ub BS lb BS ub

0. all 17486 -1.06 1.06 -1.52 1.76
1. employment 16338 -1.24 1.24 -1.92 1.86
2. s-e. wrk 21742 -3.28 3.28 -4.52 5.93
3. pens. 19078 -1.48 1.48 -1.93 2.33
4. other 9427 -4.66 4.66 -5.70 8.19

Table 4.5: Asymptotic and bootstrap 90% confidence intervals as % of the estimate 
for the sample mean; 6 = 1

statistics: the bootstrap confidence intervals tend to be wider than the asymptotic 

ones and there is no clear trend as for the role of the equivalence scales on the relia

bility of the estimates. However, in some cases the difference between the asymptotic 

and bootstrap confidence intervals is very small or even reversed (for instance, see 

Table 4.7 for pensioners). Moreover, the distribution of the bootstrap t-ratio statistic 

seems highly non symmetric, hence the assumption of symmetric confidence intervals 

employed with the asymptotic approach seems very strong (see Tables 4.6 to 4.20).

Although confidence intervals for sample means and percentiles can be worryingly 

wide at least for certain sub-samples, they become even wider for the inequality

90



Sample 20th pet AS lb AS ub BS lb BS ub

0. all 25600 -1.78 1.78 -2.16 2.22
1. employment 31135 -1.94 1.94 -1.92 2.04
2. s-e. wrk 32900 -3.99 3.99 -5.77 7.92
3. pens. 22002 -3.19 3.19 -2.32 1.90
4. other 9757 -9.79 9.79 -9.02 13.50

Table 4.6: Asymptotic and bootstrap 90% confidence intervals for the 20th percentile; 
e =  0

Sample 20th pet AS lb AS ub BS lb BS ub

0. all 15127 -1.61 1.61 -1.84 1.80
1. employment 16766 -2.04 2.04 -3.09 3.03
2. s-e. wrk 17489 -4.04 4.04 -8.35 8.49
3. pens. 15600 -2.51 2.51 -2.32 2.15
4. other 5403 -9.19 9.19 -22.16 16.26

Table 4.7: Asymptotic and bootstrap 90% confidence intervals for the 20th percentile; 
e =  0.5

Sample 20th pet AS lb AS ub BS lb BS ub

0. all 8370 -1.70 1.70 -2.29 2.71
1. employment 8435 -2.22 2.22 -3.52 2.01
2. s-e. wrk 8980 -3.97 3.97 -9.26 9.87
3. pens. 10495 -2.64 2.64 -2.97 2.69
4. other 2900 -8.82 8.82 -18.49 12.33

Table 4.8: Asymptotic and bootstrap 90% confidence intervals for the 20th percentile;
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Sample 40th pet AS lb AS ub BS lb BS ub

0. all 37920 -1.38 1.38 -2.03 1.24
1. employment 43440 -1.77 1.77 -2.45 2.15
2. s-e. wrk 48975 -2.87 2.87 -4.11 5.03
3. pens. 33150 -2.59 2.59 -2.36 3.54
4. other 19542 -7.37 7.37 -12.95 9.33

Table 4.9: Asymptotic and bootstrap 90% confidence intervals for the 40th percentile; 
e =  0

Sample 40th pet AS lb ASub BS lb BS ub

0. all 22066 -1.27 1.27 -1.83 1.97
1. employment 23074 -1.75 1.75 -2.56 2.35
2. s-e. wrk 26176 -2.77 2.77 -2.06 2.97
3. pens. 22167 -2.13 2.13 -2.04 2.76
4. other 10441 -6.90 6.90 -7.38 15.42

Table 4.10: Asymptotic and bootstrap 90% confidence intervals for the 40th per
centile; e =  0.5

Sample 40th pet AS lb ASub BS lb BS ub

0. all 12505 -1.28 1.28 -1.79 2.13
1. employment 12048 -1.89 1.89 -1.97 2.40
2. s-e. wrk 13505 -2.91 2.91 -3.40 2.76
3. pens. 14421 -1.94 1.94 -2.15 2.59
4. other 5221 -7.16 7.16 -13.36 13.19

Table 4.11: Asymptotic and bootstrap 90% confidence intervals for the 40th per
centile; e =  1
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Sample 50th pet AS lb AS ub BS lb BS ub

0. all 45241 -1.32 1.32 -1.82 2.07
1. employment 50052 -1.55 1.55 -1.22 3.24
2. s-e. wrk 55364 -2.80 2.80 -3.58 3.09
3. pens. 39166 -2.52 2.52 -2.27 4.32
4. other 24405 -6.02 6.02 -13.55 6.54

Table 4.12: Asymptotic and bootstrap 90% confidence intervals for the 50th per
centile; e =  0

Sample 50th pet AS lb AS ub BS lb BS ub

0. all 25643 -1.11 1.11 -1.61 1.88
1. employment 26832 -1.61 1.61 -1.79 2.76
2. s-e. wrk 29958 -2.61 2.61 -3.29 5.01
3. pens. 25086 -1.98 1.98 -3.02 2.05
4. other 13386 -6.39 6.39 -9.05 6.58

Table 4.13: Asymptotic and bootstrap 90% confidence intervals for the 50th per
centile; e =  0.5

Sample 50th pet AS lb ASub BS lb BS ub

0. all 14532 -1.14 1.14 -1.67 1.62
1. employment 14154 -1.72 1.72 -2.54 2.73
2. s-e. wrk 15587 -2.87 2.87 -2.65 3.13
3. pens. 16576 -1.74 1.74 -1.68 2.88
4. other 6984 -7.40 7.40 -17.42 5.71

Table 4.14: Asymptotic and bootstrap 90% confidence intervals for the 50th per
centile; e =  1
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Sample 60th pet AS lb ASub BS lb BS ub

0. all 53089 -1.16 1.16 -1.33 1.60
1. employment 56684 -1.42 1.42 -1.72 2.66
2. s-e. wrk 65294 -3.03 3.03 -4.79 4.75
3. pens. 46666 -2.58 2.58 -4.25 3.77
4. other 29831 -4.99 4.99 -12.86 6.36

Table 4.15: Asymptotic and bootstrap 90% confidence intervals for the 60th per
centile; e =  0

Sample 60th pet AS lb AS ub BS lb BS ub

0. all 29418 -1.07 1.07 -1.43 1.85
1. employment 30541 -1.40 1.40 -1.83 2.27
2. s-e. wrk 34832 -2.77 2.77 -1.55 5.49
3. pens. 28854 -2.01 2.01 -2.49 3.22
4. other 16900 -4.58 4.58 -6.98 8.63

Table 4.16: Asymptotic and bootstrap 90% confidence intervals for the 60th per
centile; e =  0.5

Sample 60th pet AS lb ASub BS lb BS ub

0. all 16735 -1.07 1.07 -1.31 2.11
1. employment 16161 -1.56 1.56 -1.68 1.71
2. s-e. wrk 18317 -3.22 3.22 -4.30 5.03
3. pens. 18474 -1.65 1.65 -1.62 2.45
4. other 9333 -5.16 5.16 -6.50 6.45

Table 4.17: Asymptotic and bootstrap 90% confidence intervals for the 60th per
centile; e =  1
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Sample 80th pet AS lb AS ub BS lb BS ub

0. all 73880 -1.18 1.18 -2.14 2.45
1. employment 73738 -1.44 1.44 -2.48 2.91
2. s-e. wrk 94043 -3.20 3.20 -3.87 6.70
3. pens. 68758 -2.41 2.41 -4.75 3.93
4. other 42519 -3.47 3.47 -10.73 4.93

Table 4.18: Asymptotic and bootstrap 90% confidence intervals for the 80th per
centile; e =  0

Sample 80th pet AS lb AS ub BS lb BS ub

0. all 39424 -1.03 1.03 -1.91 1.39
1. employment 39451 -1.39 1.39 -2.40 1.49
2. s-e. wrk 48498 -3.25 3.25 -5.31 4.46
3. pens. 38656 -1.73 1.73 -2.32 2.38
4. other 24071 -4.03 4.03 -8.80 11.25

Table 4.19: Asymptotic and bootstrap 90% confidence intervals for the 80th per
centile; e =  0.5

Sample 80th pet AS lb ASub BS lb BS ub

0. all 23254 -1.31 1.31 -1.37 1.78
1. employment 22208 -1.76 1.76 -2.53 2.94
2. s-e. wrk 27565 -3.90 3.90 -5.30 6.42
3. pens. 24872 -2.22 2.22 -2.90 2.66
4. other 13597 -4.56 4.56 -6.80 4.02

Table 4.20: Asymptotic and bootstrap 90% confidence intervals for the 80th per
centile; e =  1
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Sample GE(0) AS lb AS ub BS lb BS ub

0. all 0.234 -3.38 3.38 -5.56 6.26
1. employment 0.139 -4.10 4.10 -7.58 7.84
2. s-e. wrk 0.268 -7.80 7.80 -12.79 15.76
3. pens. 0.212 -4.63 4.63 -6.59 9.24
4. other 0.446 -9.16 9.16 -16.63 19.00

Table 4.21: Asymptotic and bootstrap 90% confidence intervals for the GE(0); e =  0

indices considered. According to my calculations, all bootstrap confidence intervals 

for G E  indices are asymmetric: the t-ratio statistic is highly skewed to the right, i.e. 

there is more uncertainty on the upper bound. Again, bootstrap confidence intervals 

are significantly wider than asymptotic ones, the difference being larger the smaller 

the size of the sub-sample considered. In various cases, the bootstrap upper bound 

is more than 100% larger than the estimated statistic (for instance, see Table 4.29). 

Finally, there is a clear effect of the equivalent income transformation, especially 

in smaller sub-samples. In particular, the larger the economies of scale assumed in 

the household (i.e. the smaller e in (4.5)) the narrower the confidence intervals (see 

Tables 4.21-4.29). This result applies both using asymptotic and bootstrap confidence 

intervals.

The final part of this chapter focuses on the effect of MSM transformation on 

sampling error. To derive the t-ratio statistic analytically starting from the original 

data set and the knowledge of the tax rules used in the microsimulation procedure 

requires a formidable effort even for trivial tax-benefit schemes. Alternatively, we 

can proceed along two alternative paths: assume that the underlying population is
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Sample GE(0) AS lb AS ub BS lb BS ub

0. all 0.219 -3.79 3.79 -5.72 7.20
1. employment 0.147 -4.50 4.50 -7.89 8.99
2. s-e. wrk 0.269 -8.66 8.66 -11.68 17.39
3. pens. 0.166 -6.09 6.09 -7.34 12.45
4. other 0.436 -10.53 10.53 -14.81 22.63

Table 4.22: Asymptotic and bootstrap 90% confidence intervals for the GE(0); e =  0.5

Sample GE(0) AS lb ASub BS lb BS ub

0. all 0.251 -3.83 3.83 -5.56 6.19
1. employment 0.189 -4.92 4.92 -7.31 8.39
2. s-e. wrk 0.306 -8.82 8.82 -11.61 17.12
3. pens. 0.173 -6.81 6.81 -8.82 11.49
4. other 0.485 -13.72 13.72 -16.41 25.01

Table 4.23: Asymptotic and bootstrap 90% confidence intervals for the GE(0); e =  1

Sample GE(1) AS lb ASub BS lb BS ub

0. all 0.224 -4.62 4.62 -6.88 9.20
1. employment 0.130 -3.60 3.60 -6.20 7.31
2. s-e. wrk 0.290 -9.58 9.58 -13.87 20.84
3. pens. 0.210 -6.85 6.85 -8.16 19.30
4. other 0.360 -10.19 10.19 -17.43 23.76

Table 4.24: Asymptotic and bootstrap 90% confidence intervals for the GE(1); e =  0
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Sample GE(1) AS lb ASub BS lb BS ub

0. all 0.215 -5.67 5.67 -6.96 10.66
1. employment 0.139 -4.61 4.61 -6.79 8.73
2. s-e. wrk 0.303 -11.47 11.47 -13.53 27.27
3. pens. 0.175 -10.06 10.06 -10.74 29.52
4. other 0.360 -18.36 18.36 -20.61 43.98

Table 4.25: Asymptotic and bootstrap 90% confidence intervals for the GE(1); e =  0.5

Sample GE(1) AS lb ASub BS lb BS ub

0. all 0.253 -6.14 6.14 -7.05 10.28
1. employment 0.187 -6.83 6.83 -7.33 10.37
2. s-e. wrk 0.356 -12.20 12.20 -14.36 27.67
3. pens. 0.188 -11.32 11.32 -12.96 24.94
4. other 0.440 -31.87 31.87 -28.52 115.59

Table 4.26: Asymptotic and bootstrap 90% confidence intervals for the GE(1); e =  1

Sample GE(2) AS lb A Sub BS lb BS ub

0. all 0.312 -9.54 9.54 -11.73 21.95
1. employment 0.144 -4.30 4.30 -6.72 10.89
2. s-e. wrk 0.448 -14.99 14.99 -17.47 40.79
3. pens. 0.273 -17.49 17.49 -19.11 98.32
4. other 0.500 -17.60 17.60 -27.09 42.45

Table 4.27: Asymptotic and bootstrap 90% confidence intervals for the GE(2); e =  0
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Sample GE(2) AS lb ASub BS lb BS ub

0. all 0.328 -12.99 12.99 -14.40 32.65
1. employment 0.159 -7.92 7.92 -9.22 17.30
2. s-e. wrk 0.524 -20.44 20.44 -21.66 73.21
3. pens. 0.253 -25.75 25.75 -26.06 147.90
4. other 0.578 -48.51 48.51 -41.41 241.20

Table 4.28: Asymptotic and bootstrap 90% confidence intervals for the GE(2); e =  0.5

Sample GE(2) AS lb A Sub BS lb BS ub

0. all 0.428 -14.88 14.88 -15.34 33.02
1. employment 0.248 -16.81 16.81 -14.89 33.97
2. s-e. wrk 0.693 -24.08 24.08 -25.21 86.25
3. pens. 0.299 -26.95 26.95 -28.95 102.31
4. other 1.051 -85.38 85.38 -73.99 822.57

Table 4.29: Asymptotic and bootstrap 90% confidence intervals for the GE(2); e =  1
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infinite, hence use the normal critical values for confidence interval estimation, or 

use simulation-based inference methods such as the bootstrap. Since our interest is 

to see whether an MSM in itself makes sampling error more serious, simulated BT 

income was used for the asymptotic confidence intervals: the simulation was from 

AT income as recorded in the original data set using the TABEITA98 model. For 

the bootstrap confidence intervals the procedure is more time demanding. In fact the 

MSM model needs to be applied to each of the B  bootstrap samples produced from 

the AT income as recorded in SHIW data set4. The income vector is equivalized using

(4.5) with e =  0.5.

Estimates on the whole sample are quite reliable. Confidence intervals are never 

larger than ±3.3% of estimated statistics for the mean and the quantiles; they are also 

relatively narrow for the G E  indices. The most striking result is that there is no clear 

evidence that microsimulation transformations make summary statistic estimation 

less reliable. Comparing simulated BT income with original AT income with e =  0.5 

in various cases the confidence interval, as a percentage of the estimated statistic, is 

smaller for simulated income than for the original income. For instance comparing 

Tables 4.25 and 4.37 confidence intervals are smaller as percentage of the estimated 

statistic for simulated income in the sub-sample of employed, pensioners, and other 

households, using both asymptotic and bootstrap confidence intervals. The confidence 

intervals are even narrower if the G E (2) index is considered (compare Tables 4.28 and 

4.38).

4It took us 16 hours to compute these confidence intervals with B = 999 and Intel Pentium M, 
1.6GHz processor, 512Mb of RAM.
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Sample mean AS lb AS ub BS lb BS ub

0. all 28855 -1.00 1.00 -1.57 1.74
1. employment 30965 -1.10 1.10 -1.96 1.93
2. s-e. wrk 36316 -3.24 3.24 -4.77 6.30
3. pens. 26137 -1.38 1.38 -2.13 2.20
4. other 13996 -4.62 4.62 -8.39 11.22

Table 4.30: MSM: Asymptotic and bootstrap 90% confidence intervals as % of the 
estimate for the sample mean; e =  0.5

Sample 20th pet AS lb AS ub BS lb BS ub

0. all 13015 -2.19 2.19 -3.29 2.80
1. employment 16629 -2.31 2.31 -2.95 3.32
2. s-e. wrk 13880 -5.14 5.14 -5.54 9.21
3. pens. 12435 -3.73 3.73 -3.06 5.65
4. other 3221 -13.34 13.34 -15.99 32.99

Table 4.31: MSM: Asymptotic and bootstrap 90% confidence intervals as % of the 
estimate for the 20th percentile; e =  0.5

The non-linear microsimulation transformation that simulates BT income has a 

different distribution (and in particular a different first and second moment) from the 

original AT income. The MSM transformation also modifies the distribution of the 

t-ratio statistic. Hence, the confidence intervals do change, but not necessarily for 

the worse.

4.4 Conclusions

This chapter contributes to the analysis of static MSMs reliability using the bootstrap 

to compute confidence intervals. The bootstrap is considered mainly for two reasons:
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Sample 40th pet AS lb ASub BS lb BS ub

0. all 20703 -1.44 1.44 -2.12 1.95
1. employment 24150 -1.88 1.88 -2.06 3.13
2. s-e. wrk 23147 -3.66 3.66 -3.90 4.89
3. pens. 19178 -2.67 2.67 -3.96 3.43
4. other 7025 -9.72 9.72 -14.39 11.79

Table 4.32: MSM: Asymptotic and bootstrap 90% confidence intervals as % of the 
estimate for the 40th percentile; e = 0.5

Sample 50th pet AS lb ASub BS lb BS ub

0. all 24421 -1.31 1.31 -2.28 1.14
1. employment 27752 -1.68 1.68 -2.41 2.08
2. s-e. wrk 27275 -3.13 3.13 -4.68 4.14
3. pens. 22519 -2.35 2.35 -2.86 2.95
4. other 10341 -8.31 8.31 -14.24 15.37

Table 4.33: MSM: Asymptotic and bootstrap 90% confidence intervals as % of the 
estimate for the 50th percentile; e =  0.5

(a) It allows one to drop the assumption of an infinite population to compute con

fidence intervals, (b) There is a growing body of literature showing that bootstrap 

often performs better, or not worse, than asymptotic approximation.

At first, using the original sample before performing any tax-benefit microsim

ulation, the bootstrap confidence intervals for some summary statistics (mean, per

centiles and G E  indices) are computed and compared with asymptotic ones, as sug

gested in Pudney and Sutherland (1994). It is found that bootstrap confidence in

tervals are less conservative than asymptotic confidence intervals, especially for the 

smaller sub-samples used. Although there is no clear theoretical result to compare
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Sample 60th pet AS lb AS ub BS lb BS ub

0. all 28753 -1.23 1.23 -1.86 1.70
1. employment 32034 -1.55 1.55 -2.42 2.21
2. s-e. wrk 32124 -3.09 3.09 -3.15 4.18
3. pens. 26651 -2.32 2.32 -2.21 4.09
4. other 13912 -7.06 7.06 -11.00 10.34

Table 4.34: MSM: Asymptotic and bootstrap 90% confidence intervals as % of the 
estimate for the 60th percentile; e =  0.5

Sample 80th pet AS lb ASub BS lb BS ub

0. all 40531 -1.16 1.16 -1.68 1.95
1. employment 42308 -1.52 1.52 -2.22 1.43
2. s-e. wrk 46938 -3.27 3.27 -6.57 4.59
3. pens. 37834 -2.13 2.13 -3.76 3.03
4. other 21737 -3.94 3.94 -9.12 7.91

Table 4.35: MSM: Asymptotic and bootstrap 90% confidence intervals as % of the 
estimate for the 80th percentile; e =  0.5

asymptotic and bootstrap confidence intervals in the complex non-linear setting con

sidered, the generally better performance of the bootstrap in finite samples should 

give rise to concern about the reliability of estimates on sub-samples of widely used 

surveys. It was also shown that the non-linear equivalence scale transformation can 

have effect on reliability of estimates. It should then become a good practice to 

provide confidence intervals for different equivalence scales.

Secondly, the chapter analyzed the effect of a typical microsimulation transfor

mation on the reliability of the summary statistics considered. It was found that 

MSMs do not necessarily make confidence intervals larger. In some cases, summary
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Sample GE(0) AS lb AS ub BS lb BS ub

0. all 0.298 -3.66 3.66 -5.91 6.80
1. employment 0.173 -4.64 4.64 -8.95 8.78
2. s-e. wrk 0.358 -8.84 8.84 -13.97 17.39
3. pens. 0.262 -6.15 6.15 -7.96 9.04
4. other 0.635 -7.95 7.95 -14.55 18.99

Table 4.36: MSM: Asymptotic and bootstrap 90% confidence intervals as % of the 
estimate for the GE(0); e =  0.5

Sample GE(1) AS lb ASub BS lb BS ub

0. all 0.256 -5.66 5.66 -7.89 11.60
1. employment 0.160 -4.66 4.66 -7.26 7.99
2. s-e. wrk 0.377 -13.27 13.27 -18.24 29.75
3. pens. 0.213 -5.55 5.55 -7.50 10.05
4. other 0.472 -10.36 10.36 -17.93 40.04

Table 4.37: MSM: Asymptotic and bootstrap 90% confidence intervals as % of the 
estimate for the GE(1); e =  0.5

statistics on simulated incomes have narrower confidence intervals, as percentage of 

the computed statistic, than before any tax-benefit simulation.

These results show that concerns in sampling error with MSM are sometimes mis

placed: it is not microsimulation that necessarily makes the estimation less reliable. 

A poor coverage of the population of some current surveys is often the main problem. 

An improvement of data production should then be a major concern for policy makers 

interested in understanding in advance the effects of their policies.
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Sample GE(2) AS lb ASub BS lb BS ub

0. all 0.378 -15.00 15.00 -17.15 43.70
1. employment 0.185 -7.62 7.62 -9.34 12.32
2. s-e. wrk 0.710 -24.84 24.84 -29.02 83.25
3. pens. 0.246 -9.28 9.28 -10.80 18.56
4. other 0.713 -22.12 22.12 -36.20 148.89

Table 4.38: MSM: Asymptotic and bootstrap 90% confidence intervals as % of the 
estimate for the GE(2); e =  0.5
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Chapter 5 

Review of the literature on income 

inequality decomposition

Decomposition analysis is important in understanding the “sources” of inequality 

and its main determinants; it may also indicate directions for policy. The first con

tributions on inequality decomposition started to appear at the end of the 1970s and 

were based on the analysis of the mathematical properties of inequality indices. This 

could be referred as the “traditional” approach to inequality decomposition. In the 

last decade or so, interest in inequality decomposition has been revitalized by the pos

sibility offered by a regression-based approach, which seems to overcome some of the 

main limitations of the traditional methods and, more recently, by simulation-based 

approaches. This chapter will focus mainly on (household/family) income inequality. 

However, inequality indices are, broadly speaking, dispersion measures which can be 

applied to any random variable.

Section 5.1 deals with the “traditional” approach to inequality decomposition.
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Section 5.2 discusses the regression based approach and Section 5.3 the microsimula- 

tion methodology. Section 5.4 concludes.

5.1 The “traditional” approach

The “traditional” decomposition analysis has mainly focused attention on levels 

rather than trends in inequality and has developed two main ways for decomposing 

inequality levels: (i) the decomposition by population subgroups (the main reference 

thereby axe Bourguignon (1979), Cowell (1980) and Shorrocks (1980)) and (ii) the de

composition by “factor components”1 (Fei et al. (1978); Pyatt et al. (1980); Shorrocks 

(1984)).

The decomposition by “population subgroups” requires the division of the sample 

of interest in non-overlapping sub-samples (e.g. age groups, sex, area of residence, 

etc.) and the choice of an inequality index, since different indices have different 

decomposability properties. In some ideal cases (i.e. indices belonging to the Gen

eralized Entropy class), the total inequality can be expressed as a weighted sum of 

the inequality in each subgroup (“within” inequality) and of the inequality remaining 

where each person’s income is set equal to her sub-group’s mean income (“between” 

inequality). In other cases (e.g. the Gini coefficient), the decomposition is not ex

act: a residual term has to be added to account for total inequality. However, such 

a decomposition methodology suffers serious limitations, common to all inequality 

indices.

JThe decomposition by “factor components” is often called by “income source”, especially in the 
literature considered here, namely inequality of individual or household/family income.
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First, the decomposition applies only to discrete categories and while this is rea

sonable for characteristics like sex it is less so for variables such as age, which could be 

regarded as continuous. This has often been seen as a minor limitation since analysis 

by age groups are nonetheless very informative. Second, the relative importance of 

“between” and “within” inequality is dependent on the number of subgroups consid

ered (see, among others, Cowell and Jenkins, 1995). In the extreme case in which 

there are as many subgroups as households or individuals, the “between” components 

account for the whole inequality index. Moreover, the finer is the decomposition, the 

smaller becomes the number of individuals/households belonging to each cell increas

ing the variance of the estimates, i.e. their reliability. Finally, there is no control for 

endogeneity in the sense that the dependent variable (e.g. income) can be a deter

minant of some characteristics of the unit under observation (e.g. area of residence 

or education) leaving this decomposition methodology open to the criticism of being 

simply a descriptive tool, unable to provide insights about the causes of inequality.

The decomposition by “factor source” stems from looking at income as the sum of 

different income sources, which can be either positive (e.g. work income, pension) or 

negative (e.g taxes) components of the total income. Let { y ^ i  — 1,..., N }  be the set 

of individual incomes in a sample of size N .  Each individual income can be derived 

as the sum of incomes coming from M  different sources, y* =  2m =i VT and total 

income from source m  can be derived as ym — y™. Total inequality of income,
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/ ( y), can then be written as a weighted sum of individual incomes:

N

T(y) =  '^2a>(y)vi C5-1)
i=l

where a»(y) is the weighting factor. The proportional contribution of source m  to 

overall inequality is simply

m _  S i = i  a i ( y ) y i  / r  9 \
/(y) ^

Proposing additional requirements to such decomposition2 Shorrocks (1982) showed 

that there exists a unique decomposition rule, invariant to the inequality index used:

P P -  (5.3)
var(y)

where y m =  {y™, i =  1, . . .N}.  Factor contributions can be either positive or negative, 

depending on the factor providing a disequalizing or equalizing contribution. This 

decomposition rule put a stop to the discussion on which is the best decomposition by 

“factor components” (see for instance, Fei et al., 1978; Pyatt et al., 1980). However, 

the invariance to inequality index, besides being one of the strong points of this 

decomposition rule can also be seen as a drawback when different inequality indices 

provide different answers regarding direction and amount of the overall change. In 

particular it can be argued that the relative contribution of a component must depend 

on the inequality measure chosen, which could depend on how this measure weights

2Namely, (i) that a given income source makes no contribution to overall inequality if income 
receipts from this source are equally distributed and (ii) that if total income is divided into two 
components whose factor distributions are permutations of each other, then the two components 
contribute equally to aggregate inequality
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a progressive transfer against a regressive one (Chantreuil and Trannoy, 1999).

Both the decompositions by “population subgroup” and by “factor source” are 

decompositions for the level, which are addressing a different question than the de

composition for the trend of inequality, namely the change between different moments 

in time.

The analysis of the trend of inequality with the “traditional” decomposition 

methodologies has been performed extending the existing decompositions. Mookher- 

jee and Shorrocks (1982) provide the main reference for the extension to the analysis of 

trend of the decomposition by “population subgroups”3. Inequality changes between 

two different periods can then be decomposed into “pure” inequality changes within 

groups (weighted by the average of the population in each group in the two periods), 

changes due to variation in the numbers of individuals in different groups and changes 

resulting from variations in the relative income of different groups. Jenkins (1995) 

extends the decomposition by “factor components” using counterfactuals since the 

direct extension of the Shorrocks (1982) does not provide an intuitive interpretation. 

This extension allows one to represent the absolute contribution of a factor as the 

average of two alternative ways of summarizing the statement that factor m  makes a 

contribution Cm to total income inequality. In particular, such a contribution can be 

regarded as (a) the inequality which would be observed if income component m  were 

the only source of income differences or (b) the amount by which inequality would 

fall if factor m  income receipts were eliminated. The two counterfactuals can then be

3Mookherjee and Shorrocks (1982), provide the extension to the trend only for the Generalized 
Entropy measure with parameter equal zero, i.e. the mean logarithmic deviation.
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estimated and their change compared over time (Jenkins, 1995, p. 40).

Jenkins (1995) is an interesting paper from a methodological point of view, as 

well as for the evidence it presents on the UK income inequality. In particular, the 

combination of the two “traditional” decomposition methodologies presented there 

is not only novel but also instructive for understanding its pros and cons. The pros 

are clearly that you can get a broader explanation of the causes of a certain trend of 

inequality, disentangling between “income recipients” and “income source” influences 

to change of inequality. The cons are that such a combination is performed at the 

expense of clarity of results, in part due to the need for using different inequality 

indices in part to the fact that you can only have direction of change rather than 

exact contribution values of different factors. The variability of the estimates can 

be very large and, last but not least, the conclusions obtained from such an analysis 

are highly sensitive to the researcher’s choices, as for which years are compared and 

which types of income are analyzed.

A general limitation of traditional decomposition analysis is that decomposition 

by “population subgroup” and by “factor source” address different problems and 

cannot be combined in a single framework. Recently some authors have attempted 

to put together the two techniques into a unifying framework. Shorrocks (1999) 

suggests starting from the definition of an inequality index, I ,  as some function of m  

factor contributions. He then suggests computing the marginal effect of each of the 

factors as they are eliminated in succession, and then averaging these marginal effects 

over all possible elimination sequences. Formally the resulting formula is identical to 

the Shapley value in cooperative game theory, henceforth it has been referred as the
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Shapley decomposition (see also Chantreuil and Trannoy, 1999). However, application 

of this methodology (which potentially allows studying levels as well as trends of 

inequality) has been quite disappointing. The main reasons for its unsatisfactory 

performance lies in the high sensitivity of computation to the level of disaggregation 

of the factors that account for inequality. Moreover it does not properly handle 

causality in inequality factors (Sastre and Trannoy, 2000b). To overcome some of its 

limitations Sastre and Trannoy (2000a) suggested developing a tree of causality and 

to use Shapley value only when no clear priority of causes can be declared. However, 

this solution makes the method more cumbersome and less convincing.

5.2 The regression-based approach

Mainly to overcome some of the limitations of the “traditional” approach, recent 

contributions have looked at regression analysis to decompose inequality.

In the “traditional decomposition” the attention has been focused on expressing 

total inequality as a function of the inequality in population subgroups or of different 

sources of income, possibly without residuals, with little attention to the causes of 

inequality (hence the critique for being “only” a descriptive tool). In the “regression- 

based approach” instead, the main attention is on the DGP that led to a particular 

distribution of income, that is on the causal relation of individual and household 

characteristics on the generation of income. The income-generating function, with 

Y, an N  vector of (log) incomes, X, an N  x  K  matrix of individual and household 

characteristics, /?, a K  x 1 vector of coefficients (or “prices”) and e, an N  x 1 vector
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of residuals, can be expressed as:

Y  =  X/? +  e (5.4)

This model is then estimated for a sample of observations {yi, i =  1,2, . . .N}.  

Morduch and Sicular (2002) estimate an income regression as in (5.4) with the vector 

of per capita household income as dependent variable on a constant and a set of 

individual characteristics such as age, education, etc. Hence the vector (5 is interpreted 

as the effect (or “price”) of the independent variables on income flows.

Assuming that there are M  different sources of income, such as pension, employ

ment, transfer, etc., per capita household income of household z, y* can be seen as 

the sum of z/™, m  — 1, 2,..., M, such that

M

yi = '52y? (5-5)
m =l

Per capita income of household z is represented as:

The shares attributable to the characteristic k  =  1,..., K ,  using (5.2) take the 

form:

K

(5.6)
k = l

(5.7)

However it should be noted that the sum of all sk adds up to the predicted value
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% and not to the actual value y{.

Since the decomposition (5.7) is linear in the parameters, Morduch and Sicular
, ^  

(2002) claim that the variance of sk is easily estimated using the variance of

var((3k)i which is a standard output in regression analysis:

var(sk) =  var{(3k) x E*(y)zr2
y)

(5.8)

Morduch and Sicular (2002) claim that this method “yields an exact allocation of 

contributions to the identified variables, it is general in that it can be employed with 

different inequality indices and decomposition rules” (p. 94).

However, in the application of the method to Chinese data, it is also shown that 

the wide applicability to different inequality measures is counterbalanced by its large 

variability. For instance, while the net effect4 of an additional year of education is to 

reduce per capita household income inequality by about 50% using the Theil index, it 

is to slightly increase it using the Gini index. They motivate the difference pointing 

out the fact that the Gini does not fulfill the Corollary of the Uniform Addition 

Property (CUAP), but even sticking to the Theil index it is difficult to be satisfied 

with a decomposition method, which leaves over 90% of inequality unexplained5. The 

same critique can be applied to the other regression-based contributions especially 

when household income is the dependent variable, as is the case, for instance in 

Fields (2002)6.

4The net effect of education is given by the sum of the effects of the variables average education 
of adults and education squared. The same approach is taken also by Fields (2002).

5See “Residual regression” line in Table 2, p.103.
6In Fields and Mitchell (1999) the dependent variable is labor income.
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Moreover, their explanation in support of the Theil vis-arvis the Gini index based 

on their Corollary to the Uniform Addition Property is not convincing. The CUAP 

states that if a component of total income (say, income type m)  is perfectly equally 

distributed its contribution to total income inequality, sm, must be negative. Clearly 

this property is not satisfied by the decomposition rule (5.3). In fact, using Shorrocks’s 

rule (5.3) the contribution sk is negative only if there is a negative correlation between 

total income and income component k, as is often the case for taxes or transfers. The 

decomposition rule that Morduch and Sicular (2002) are suggesting is then “just” 

another of a big bunch of possible decomposition rules. However, unless valid reasons 

are provided for constraining the set of potential decomposition rules, preferably to 

the point where inequality index can be decomposed in only one way, “the inequality 

contribution assigned to any income source can vary arbitrarily, depending on the 

choice of decomposition rule. This turns the calculation of inequality contributions 

into a meaningless exercise...” (Shorrocks, 1983, p. 315). Besides not fulfilling CUAP, 

which is crucial in the Morduch and Sicular argument, the decomposition rule (5.3) 

is the unique one to be invariant to the choice of inequality measure and, to the best 

of my knowledge, no alternative “unique” rule has been proposed.

Morduch and Sicular (2002) also claim that their method is associated with a sim

ple procedure for deriving standard errors and confidence intervals for the estimated 

components of inequality, sk, as described above. However, even assuming that the 

component a*(y ) x k in the numerator of eq. (5.8) is non-stochastic, the denominator,
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J(y), certainly is stochastic and the correct estimated variance should then be:

var{sk) = var  x  (5-9)

The variance (5.9) is clearly less easy to compute since the standard error of 

implies the use of the bootstrap or of relatively complicated formulae (see for example 

Cowell, 1989; Cowell and Flachaire, 2002).

Like Morduch and Sicular (2002), Fields (2002) also takes an approach based on 

estimating a (per capita) income-generating equation without modelling the endoge

nous decision at the household level, claiming that it is general enough to be applied 

to household income as well as individual income. The factor share, sfc, proposed by 

Fields (2002) is based on a decomposition of the Total Sum of Squares into Explained 

Sum of Squares and in Residual Sum of Squares ( T S S  =  E S S  +  R S S ) .  Given a 

sample of size N  and denoting =  N  YliLi (x ij ~  Xj)(Vi ~  V):

E S S  =  P\r\y +  /?2?"2y +  ••• +  Pk Tkm

~ c o v ( x u y) t ~ c o v ( x 2iy) , , % cov(xK ,y)
— Pi T \  r P2  7-v 1" ... + P k --------/—v—var(y) var(y) var(y)

This decomposition of the E S S , and the notation yk =  fax* and a(x)  =  y/var(x)  

allows one to write down the following:

ST* Jfc _  ST' cov(yk»V) _ f t  ‘ * ( * * )  ' corr(xk, y)  2
2 ^  2 s  var iy ) 2 s  ff(y)
k = l  k = 1 k= l
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where corr(xk, y) is the correlation coefficient between x k and y  and R 2 is the centered 

coefficient of determination. It was claimed that this method allows a “full and exact 

decomposition of an inequality index” (Fields, 2002, p. 6), however it regards only the 

share of the inequality index that is explained by the variables used in the regression. 

In general, the decomposition is not full and exact, since the R 2 is equal to one only 

if there is perfect coincidence between the dependent variable predicted by the model 

and its true value, which happens only in uninteresting cases7. Fields (2002) also 

discusses the problems that regression-based decomposition faces when interaction 

terms are introduced and found statistically significant in the regression, such as the 

product between a sex dummy and an education variable. The proposed solution of 

splitting the contribution to the interaction of sex and education components evenly 

is not completely satisfactory because it assumes that they have the same importance 

in the interaction term. Nor is it satisfactory to split the sample into at least two 

groups, “males” and “females” and run two different regressions: not only would this 

solution become very cumbersome if a dummy variable taking more than two values 

is used or more than one interaction term is introduced, but also a pooled and two 

(or more) separate regressions imply different estimates for the same coefficients and 

their standard errors.

The only extension of the regression-based approach to inequality decomposition 

to the trend of inequality is provided by Fields (2002) and Fields and Mitchell (1999).

7Namely, when the space spanned by the dependent variable is the same as the space spanned 
by the vector of columns of the matrix of explanatory variables.
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Considering two years, say t  and t', the change in inequality can be expressed as:

It -  I f  =  £ > * / , - s?,/,] (5-11)

V n *  =  [f ‘ ~  s ‘J t '] =  i  (5.12)
k h ~ II'

and the contribution of the &-th factor to the change in inequality between time t  

and time tf, regardless of the inequality measure I  used, is given by:

n * =  [skihr S; M  (5.i3)
h  ~  h '

The difference between the sk in the two years, assuming the change is only 

marginal, is studied taking the percentage rate of growth (log-differention) of sk in 

(5.10) obtaining:

[sk] = [A] +  [v(xk)] +  [(corr(xk, y)] -  [a(y)] (5.14)

the “ ' ” symbol indicating a percentage rate of growth. However, Fields (2002) and 

Fields and Mitchell (1999) do not discuss the fact that approximation (5.14) can be 

very poor8 and no discussion of confidence intervals for sk are introduced. Finally, a 

common limitation of the regression-based approach that applies to both the analysis 

of level and trend is that only linear income-generating models can be considered.

8In Fields and Mitchell (1999), Table 5.4 for example, the variable CHJOB ( “individual has 
changed job within the last year”) contributes for 163% to inequality change in Taiwan in 1980- 
1993, but the sum of the element of the RHS of (5.14) is overestimating the actual change, [sfc], 
where k =  CHJOB, by 39.7%.
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In conclusion, the regression-based approach presents more limitations than real 

advantages, and does not look very appealing for analysis of the trend either. More

over, the high share of total income that is left unexplained, especially when household 

income is considered as the dependent variable, suggests that a better model should 

be considered, possibly estimating the labor participation decisions conditional on the 

participation decisions of the other members of the household, which are intrinsically 

non-linear.

5.3 M icrosimulation approaches to  inequality de

composition

Under the heading of microsimulation there is a broad class of models which basically 

involve the construction of counterfactuals (i.e. simulated models) and its comparison 

with the actual model.

Let us consider a general income formation model for individual/household i at 

time t. Her income can be expressed as yit =  g{xit , Wu, eit), where <?(•) is un unknown 

function of a set of individual or household characteristics or some policy variables 

(e.g. taxes), x , a set of sampling weights, w, and some unobservable characteris

tics or error term, e. In this model the function g(-) is not constrained to be linear 

nor parametric, and can represent a single income-generating equation or a system of 

income-generating functions. In most cases however, some constraints are introduced. 

For instance, the function g (•) is often assumed to be parametric and the parameters,
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P it ,  then represent a set of prices, labor remuneration rates and parameters describ

ing the occupational choice behavior of i at time t. To estimate the parameters, a 

sample of observations, {yi, Xi, W{, i =  1 , 2 is used and the set of parameters 

constrained to be constant throughout individuals, i.e. pa =  Pjt = p t , j  j ^ i .

The income generating model can then be expressed as: yu =  g(xa, Pt,wit,€it) 

and can be used to simulate a large number of experiments. Three broad classes of 

possible simulations can be distinguished:

(i) the observed conditioning variables Xu can be replaced with some set of counter-

factual explanatory variables, x cit, to simulate changes in population character

istics;

(ii) the sampling weights, Wu, can be changed to modify the relative weight between

observations;

(iii) when g(•) is a system of functions generating different (and interdependent) 

incomes (as work income, pension income, etc.), different counterfactual incomes 

can be generated and aggregated through the function g(-).

The difference between the simulated and the actual model will finally be measured 

and interpreted as a policy shock or a demographic or an institutional change. The 

change can be expressed in terms of:

(a ) the change in the expected outcome;

(b) the change in a single random outcome;

(c) the change in the distribution of random outcomes;
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(d) the change of some function (e.g. an inequality index) of the distribution of 

random outcomes.

A common factor in all microsimulation approaches is the need for a detailed and 

time-consistent micro data set. The functional form of g(-) should be the same for 

actual and counterfactual data sets but comparison can be either at different times 

or at the same time.

The famous Blinder-Oaxaca decomposition (Blinder, 1973; Oaxaca, 1973) belongs 

to the microsimulation models of type (i). It was developed to explain wage dif

ferences between different groups of the population and was based on the estimate 

of an earnings equations. Let y  denote the vector of individual log-earnings and x  

the matrix of individual characteristics for two non-overlapping groups, say A  and B.  

Assuming there are no major selection problem, it is possible to run a separate regres

sion of y  over x  for each group: yl =  x l(3x +  e*, with i = A , B .  Standard econometric 

techniques allows one to obtain two different sets of parameter estimates, (3A and ( 3 .  

These parameters are then used to predict the counterfactual income y which is the 

average value of income of group A  provided it was paid according to prices of group 

B,  and viceversa =  x A(3B). The difference y 1 — y}, with i , j  = A, B  and i ^  j ,  

then measures the amount of this difference in prices paid to the two groups, where y 1 

is the actual mean wage in each group. Notwithstanding this methodology being very 

helpful, it presents two main limitations as for household inequality analysis. First 

it can only be used for analyzing the difference in mean (case (a) above); second, 

when the dependent variable is household income a single equation model can be a
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poor representation of the process that generated household income, neglecting issues 

such as the combination of employment, self-employment, pension and possibly cap

ital income, household formation decisions, labor participation of single individuals 

conditional on other household members’ decisions.

Bourguignon et al. (2001) propose an extension of the single-wage-equation Blinder- 

Oaxaca decomposition to a system of simultaneous equations, describing the struc

tural model of income formation. Their interest is in the change across time of the 

full distribution of income and on some functions of it (e.g. inequality indices) as in 

cases (c) and (d) above. The components of their model are an earnings equation 

for each household member (linking individual characteristics to their remuneration), 

a labor supply equation (explaining the decision of entering the labor force depend

ing on individual and other household’s members decisions) and a household income 

equation (aggregating the individuals’ contributions to household income formation). 

The estimation of such an econometric model at two different dates allows one to 

disentangle: (i) a “price effect” (people with given characteristics and the same oc

cupation get a different income because the remuneration structure has changed) (ii) 

a “participation” or “occupation effect” (individuals with given characteristics do 

not make the same choices as for entering the labor force because their household 

may have changed) and (iii) a “population effect” (individual and household incomes 

change because socio-demographic characteristics of population of households and 

individuals change).

The main merit of such an approach is that it builds a comprehensive model of 

how decisions regarding income formation are taken, including the individual decision
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of entering the labor force and wage formation mechanism, into a household-based 

decision process, extracting part of the information left in the residuals of linear mod

els described in Section 5.2. Bourguignon et al. (2001) have used this methodology to 

explain that the apparent stability of Taiwan’s income inequality was just due to the 

offsetting of different forces: the increased wage inequality due to increased return of 

schooling was partly off-set by the increase in relative weight of middle earners due 

to changes in participation decisions and a change in the socio-demographic structure 

of the population. This methodology also allows the consideration of the husband- 

wife sorting that can induce well-educated working women to marry well-educated 

men, inducing an increase of household income dispersion. However, the other side 

of the coin is that the structural model is developed at the expense of increasing the 

complication of the estimation process and of introducing additional and debatable 

assumptions.

Among what I consider to be the most important limitations of this approach, 

the robustness of the estimates of some coefficients is an issue. Bourguignon et al. 

proposed treating the original estimates from the various cross-sections using “time- 

smoothing”, i.e. replacing all the estimated parameter with their predicted value 

coming from a simple regression on a time polynomial of order two: such a procedure 

seems a debatable procedure to reduce variability and induces a reduction of the 

amplitude of price effects. There is the problem of simultaneity between household 

members’ labor-supply decisions, which is taken into account solely by considering the 

various household members sequentially, starting from the household head. The issue 

of understanding what is left in the residuals and how to treat them appropriately
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in counterfactual analysis still remains. In particular, there are problems with the 

labor supply equations - where residuals have to be imputed for the inactive since the 

residuals of the inactive are unknown - and in the counterfactual wage equations - 

that determine the effect of the change of “price” coefficients. The path-dependence 

problem (i.e. which counterfactual is computed first) is also a problem. To have 

an idea of the magnitude of the path dependence problem the authors computed 

all possible evaluations of price, participation and population effects, although the 

complex problem of computing proper confidence intervals for the structural model 

is not tackled. Finally in Bourguignon et al. (2001) the residual is zero only because 

it is given the name of “population effect” after the sum of price and participation 

effect are taken out of the actual change in the distribution of individual earnings. 

This solution does not say anything on the ability of the structural model to reduce 

the dimension of the regression residual.

The contribution by DiNardo et al. (1996) is aimed at performing counterfactual 

analysis to evaluate how much distribution of wages has changed due to changes in 

the minimum wage, unionization and other characteristics of individuals and of the 

labor market. In their simulations weights are estimated and then applied to re

weight a kernel density estimation (a simulation of type (ii), according to the scheme 

above). Their method is however disjoint from kernel density estimation and can 

be applied to other kinds of functional of data, as for example inequality indices. 

The change of weights induces a variation of the “relative importance” of different 

groups in the population. For instance, if wage inequality is compared in two years 

and the frequency of unionized workers increased from year 0 to year 1, one could
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assess what wage inequality would have been if unionization in year 1 was as in year 

0 changing appropriately the relative weights between unionized and non-unionized 

workers. A standard probability frequency could be used here, but DiNardo et al. 

(1996) proposed a method based on propensity scores for conditioning the probability 

of being unionized for each individual on her own characteristics. The actual density 

of wage, f {y ) ,  in two different years, 0 and 1, can be written as the integral of the 

density of wages conditional on a set of attributes x  (which would also include union 

status) and the date:

15151

(5.16)
f ( t y = 0 , tx = 0)

= J  f ( y \ x ,  ty — 0 ) f ( x \ t y =  0, tx =  0)dx  (5.17)

=  J  f ( y \ x ity = 0 ) f ( x \ t x =  0 )dx  (5.18)

f (y \ ty  = l , t x = l)  = J  f ( y \ x , t y  = l ) f { x \ t x = 1 )dx  (5.19)

where tx and ty are the time of individual characteristics and incomes, respectively,

and /(•) is a density function. (5.17) comes from (5.15) using Bayes’ rule and condi

tioning probability definition. (5.18) comes from the fact that x  is independent from 

t y. (5.19) is obtained analogously. The counterfactual density, can be read as “what 

the density of y  in t  =  1 would be if the distribution of x  were as in t =  0” and can
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be computed as:

f (y\ ty =  I,** =  0) =  J  f (y \x , t y =  1 )f(x\ tx =  0 )dx (5.20)

Clearly, the only element that changes in the RHS of (5.20) with respect to (5.19) is 

the conditional density f ( x |-). It can happen that the integral in (5.20) can be easily 

computed but more often this is not the case. The idea of DiNardo et al. (1996) was 

to estimate a weight

M x )  =  f(x, \ tx =  1)

so that the counterfactual density function can be easily transformed into a re

weighting of the actual density:

f (y\ ty =  l , t x =  0) =  J  f (y \x , t y =  1) • $(x)  • f (x\ tx =  1 )dx

DiNardo (2002) proves that this counterfactual is analogous to the Blinder-Oaxaca 

one and discusses some of its limitations. Among them there is the fact that re

weighting methods are “methods of ignorance” in the sense that it is not made explicit 

why the treatment effect (i.e. the probability of being unionized, in the previous 

example) varies across individuals; that very high or low values of the propensity 

score are a potential problem since they involve having a very small number of either 

“treatment” or “control” observations; that errors in estimating the denominator
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in /i/j(x ) can result in an imprecise estimation of ip{x) itself9; that there could be a 

“selection” problem arising in the estimate of the propensity score which is based only 

on observables; that for the propensity score to be appropriate, the x  variables have 

to be exogenous, ruling out problems of endogeneity or interactions (for a discussion 

of this issue, see also Bourguignon et al., 2002). However, the DiNardo et al. (1996) 

approach is still a valuable methodology as fax as underlying household inequality is 

concerned, and it can be extended to analysis of equivalent household income (see 

Daly and Valletta (2002) and Chapter 6).

The decomposition proposed by Burtless (1999) is a microsimulation technique 

based on a rank-dependent transformation that does not involve the estimation of 

a regression model. It does not consider y(-) as the income-generating function but 

more simply as the function that aggregates different individual incomes (such as 

self-employment, employment, etc.) into total individual income and, eventually, 

into household income. Given a vector y, of dimension N , the rank function at time 

t, Rt , can be defined as that function that assigns to each and every element y* a 

number between 0 and N  such that if i£*(y») < Rt(Vj) than, at time t, y* < y j , 

and vice versa10. Hence, given the two actual income vectors at time 0 and time 1, 

y° and y 1 respectively, the counterfactual income vector using the Burtless (1999) 

simulation method is defined using the inverse of the rank function. For instance, a 

counterfactual income vector, yc, may be obtained as the vector of income such that 

the lowest income at time 1 is replaced with the lowest at time 0, the second lowest

9This can cause more than a problem since the estimate ^  is performed using fitted values from 
some discrete choice model, setting the prediction error to zero.

10The event of ties is often treated assigning the same integer values to each tie.
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with the second lowest, etc. and can be expressed as:

yc =  « o l (* i( y 1)) (5.21)

Clearly, the extension of the rank function to a non-integer codomain gives the (dis

crete) quantile function and in the limit, when y  can be regarded as a continuous 

variable, the counterfactual can be written using the inversion of the cumulative den

sity functions11.

The Burtless (1999) decomposition can be seen as a step forward to overcome 

one limitation of the Shorrocks (1982) decomposition, namely the invariance of the 

decomposition rule to the inequality index. Looking at the evolution of overall dis

tribution as the combination of (a) the evolution of relative share of different sources 

in total income, (/3) the evolution of the marginal distribution of each income source 

and (7) the modification of the correlation between the different income sources, the 

transformation in equation (5.21) corresponds to see what are the changes in overall 

distribution keeping (/?) fixed at a given year, without varying (a) and (7).

The problems with residuals do not arise here simply because no stochastic income- 

generation model is ever considered. With this decomposition it is assumed that 

without caring about the individual personal characteristics, either observable or 

non-observable, the least paid worker will not change her decision to work in a given 

year (it is not introduced a change in labor force participation) and she will only be

11 Since the attention is pointed at the effect of changing dispersion, total incomes is normalized 
so that they do not change in the different years.
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able to get the least paid job on the market. Hence, it is assumed that there is no 

randomness as to how individuals are assigned which wage out of the ordered set of 

available wages. This assumptions could seem overly restrictive to some researchers, 

at least clear and easy to understand to others. This approach does also affect the 

mobility of the individual income although when focusing on inequality we are adopt

ing the anonymity principle, according to which inequality does not change if two 

individuals swap their income, hence their position, in the income ranking. Analysis 

of mobility is also relevant to understand the forces underlying the evolution of in

equality, however, in all the microsimulation-based methods considered here, mobility 

issues are not analyzed. Burtless (1999) applies the rank-dependent transformation 

to a sample of the US male and female wage distributions in two different years, and 

extends the simulation to incorporate marriage patterns matching male and female 

wage distributions accordingly. He finds that the main factors that induced American 

inequality to increase after 1979 were the growing correlation of husband and wife 

earned incomes and the increasing percentage of Americans who five in single-adult 

families, typically characterized by more unequal incomes than husband-wife families. 

An analogous matching could be performed between different marginal distribution 

of the same individual (for instance, see Fournier (2001) and Chapter 6).

5.4 Conclusions

This chapter has reexamined the problem of decomposing income inequality in an 

informative manner. Recent developments in the literature have focused on method
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ologies for overcoming some of the limitations of the “traditional methods” for income 

decomposition. For instance, although the “traditional approach” has reached a high 

level of formalization it is still unable to explain the causes of inequality and is subject 

to the criticism of being merely a descriptive tool, unable to provide convincing policy 

implications and to be unsuitable to extensions to the analysis of trends of inequality. 

As discussed in Section 5.2, regression-based inequality decomposition has proved 

to be unsatisfactory to overcome the limitations of the “traditional decomposition” . 

In fact, the main problems lay in the inadequacy of a single equation model to ex

plain household income, to extract enough information out of the total variability of 

the inequality index, to extend the methodology to inequality trends. Simulation- 

based methods seem more promising, although there is so far no single established 

methodology among the variety of those available. They all rely on building some 

counterfactual income vectors to be compared with actual outcomes: some are based 

on developing a comprehensive model to understand the process that generated the 

data, others are based on re-weighting the sample, others on inverting the rank func

tion. Recently some authors have tried combining different decomposition methods 

to provide a broader picture of income inequality trends (for instance, see Daly and 

Valletta, 2002). In Chapter 6 a combination of two microsimulation methods is de

veloped to analyze inequality trends in Italy in the period 1977-2000. It allows one to 

understand the role of demographic factors, such as the increased female labor force 

participation, and of the changed dispersion of different income sources, assessing 

their relative importance for the actual change in inequality.
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Chapter 6

Understanding inequality trends in 

Italy

According to recent comparative studies on OECD countries, the highest income in

equality is found in the US, followed by the UK and Italy, the latter two presenting 

similar figures using standard inequality measures (Atkinson et al., 1995; Smeed- 

ing, 2000). However, while the US and the UK present a roughly increasing trend of 

income inequality since the 1970s, Italian household income distribution exhibits sub

stantial fluctuation but no clear trend (Brandolini and D’Alessio, 2001; D’Alessio and 

Signorini, 2000). From their decomposition of income distribution by population sub

groups Brandolini and D’Alessio (2001) find that demographic characteristics, such 

as household size, sex of household head, age class of household head and household 

composition, are able to explain only a limited amount of overall inequality but do 

not investigate the issue further.

This chapter contributes to the empirical analysis of Italian household inequal
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ity and its determinants by assessing the role of the changed dispersion of different 

income factors and of the demographic evolution on household income distribution. 

It also contributes to the literature on household income inequality decomposition 

by proposing a unified framework for two different microsimulation methods for de

composing inequality and overcoming some limitations of traditional methodologies. 

Such a decomposition takes into consideration the dispersion of income sources as 

well as socio-demographic factors, across many years. This methodology maximizes 

the clarity of results and allows one to study the reliability of the estimates. For 

robustness of conclusions, more than one inequality index is considered.

Section 6.1 reviews the available evidence about Italian household inequality. Sec

tion 6.2 discusses the data, hypotheses and aims of the investigation. Section 6.3 

describes the methodology adopted and Section 6.4 presents results. Section 6.5 con

cludes.

6.1 Analysis of Italian household income distribu

tion: available evidence

In recent years Italy has experienced important demographic and social changes. The 

population has grown older, the family structure has changed, female labor partic

ipation has steadily increased. The impact of some of these demographic changes 

have been studied in some detail in recent papers, mainly using the Bank of Italy 

SHIW-HA data set, and their findings are relevant to this chapter.
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D’Alessio and Signorini (2000) focused on the role of the household for reducing 

inequality from work and transfer income and found that, while inequality among 

income receivers exhibits a clear downward trend since 1977, household inequality 

presents no trend but substantial fluctuation. Using a decomposition of the Gini 

index, they explained the decrease of inequality among income receivers in terms of 

the increase of the number of people receiving income from work, mostly because 

of an increased female labor force participation, and of the augmented number of 

people receiving pension income. Using SHIW data Brandolini and Sestito (1993) 

showed that household inequality tends to have pro-cyclical patterns. These results 

have been found also using a different data set, that from ISTAT. Brandolini and 

D’Alessio (2001) focused on household inequality and analogously described the trend 

of inequality as having “many fluctuations / . . . /  but no particular medium term ten

dency” (p. 2). Using the Luxembourg Income Study data set, they also pointed out 

that elderly Italian households (where the head is over 65) have a higher income than 

analogous household in other OECD countries. However, their decomposition of the 

mean logarithmic deviation index trend by population subgroups, such as household 

size, sex of household head, age class of household head and household type, has not 

been very satisfactory in understanding the causes of equivalent income inequality. 

The greatest change is found in the classification by sex of the household head. If the 

composition of the household heads in 1977 had been as it was in 1995, overall in

equality would have been 3.3% higher, mainly due to the greater weight attributed to 

women, among whom, they say, dispersion was higher. Neither has regional dualism 

been found to provide useful insights for inequality dynamics.
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Baldini (1996) compared the level of household inequality in the period 1987- 

1993 using the decomposition by “factor components”. Using the Gini and G E ( 2) 

indices, he claims that the increase of household inequality in the period considered 

was mainly driven by increased relevance of pension and capital income in house

hold income. However, Baldini (1996) reaches this conclusion comparing the share 

of inequality explained by different sources in different years, without developing a 

“factor components” decomposition for inequality trend as Jenkins (1995) did using 

counterfactuals (see Section 5.1, page 110). Such a methodology is then debatable 

since it does not properly handle demographic evolution.

As final remark about income inequality during the 1990’s it should be noted that 

during the early 1990s the Italian economy went through one of the deepest recession 

after the WWII and returned to growth only after 1995. The bad conditions of Italian 

public finances characterized the 1990s as a period of rising fiscal burden, which in 

same cases badly affected the poorest households (for an analysis of the 1998 IRPEF 

reform and the effect on non-employed households, see Chapter 3).

Although not focused on household inequality but on individual inequality, other 

contributions are relevant for this chapter. Brandolini et al. (2001) focused mainly 

on primary-job earnings and found a clear downward trend of inequality up to the 

late 1980s followed by a marked increase in the early nineties. They also found that 

changes of early 1990s were mainly concentrated among workers at the margin of 

the labor market; that diffusion of low-paid jobs evolved in parallel with the increase 

of earnings inequality; and that the probability of being in poverty was more closely 

correlated with the amount of employment in the household (particularly employment
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of members other than the head), rather than with low pay. Moreover, during the 

period considered, employment fell, exacerbating the cost of the early 1990s recession 

for low skilled and low experienced workers, who suffered from the deficiencies of the 

Italian safety net and unemployment benefit scheme (Brandolini et al., 2001).

Erickson and Ichino (1995) and Manacorda (2002) have also studied the distri

bution of wages in Italy in recent years finding evidence of an effect of the abolition 

of the automatic indexation of wages, which took place gradually at the end of the 

1980s up to 1991. Erickson and Ichino (1995) found that even those workers who 

kept the same job throughout the period suffered changes in their relative wages, 

since the automatic indexation of wages was abolished in 1991 and the contribution 

relief for firms in the South was gradually stopped since 1994, increasing the volatility 

of wages. Using data up to 1991 partly coming from SHIW and partly from a private 

source (Federmeccanica-Assolombarda), Erickson and Ichino (1995) concluded that 

at the end of the 1980s Italy pesented a compressed wage structure which had not 

experienced the decompression seen elsewhere during the 1980s. Moreover it could be 

that the spread of part-time and fixed-term employment contracts and the effect of 

institutional changes had unleashed a decompression of the wage structure, resulting 

in a larger dispersion of incomes already at work in other countries as shown in Man

acorda (2002), using SHIW data. Manacorda also argues with counterfactual analysis 

that, had the automatic wage indexation been inoperative, earnings inequality in Italy 

would have increased at a rate similar to that observed in the US.

Finally, Devicienti (2003) analyzed wage inequality using administrative data from 

the Italian Institute for Social Security (INPS) from 1985 to 1996. These data show
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an analogous, though moderate increase of wage inequality in the early nineties. Devi

cienti (2003) finds a story consistent with earlier papers: earnings have become more 

dispersed because more senior and skilled workers have been able to obtain greater 

reward in the labor market after the abolition of the wage indexation mechanism.

The clear evidence about wage inequality trend has not yet been fitted into house

hold inequality analysis. It still is unclear why household inequality is so different 

from individual inequality and what is the relevance of self-employment and pension 

income to explain household inequality trend.

6.2 Data, hypothesis and aims

6.2.1 The data set: pros and cons

The SHIW data set, based on interviews run about annually from 1966 to 1987 and 

about every two years thereafter, collects detailed information on income, wealth, 

consumption and individual characteristics relative to a sample of resident Italian 

households. The 1998 data set was described in detail in Section 2.1. Since 1998 the 

Bank of Italy gathered all SHIWs starting from 1977 and made them consistent in 

a Historic Archive (SHIW-HA). The last version of the Historic Archive at present 

covers the period 1977-2000.

Although it is a very attractive data set, it is important to reflect on some of its 

limitations. As any survey-based data set obtained though direct interview whose 

participation is voluntary, the SHIWs present problems of non-response or under
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reporting, especially for sensitive data such as income and wealth, problems of low 

response rates as well as of under representation of household living in very isolated 

places of the country, whose interview are very costly. Moreover, the SHIW-HA 

presents the additional limitation of being a collection of data sets: besides recording 

the same variables and being developed by the same institution, in some cases sample 

designs and dimensions was not constant through time. For instance, a first important 

change in the sample selection was introduced in 1984, with units no longer from 

electoral lists, but rather from registry office records, removing the over-sampling of 

large households. In 1986 the sample design was completely revised and the number 

of households interviewed more than doubled. In 1987 there was an over-sampling 

of high-income households. After 1989 onward, instead, the sampling methodology 

did not change and the dimension of the sample remained about constant1. Some 

of these shortfalls have been corrected with various sets of sampling weights but the 

data should still be analyzed with caution (for a comprehensive discussion of the data 

set, see Brandolini, 1999).

Despite these problems, the SHIW-HA is the only data set that permits measure

ment of the changes in the whole Italian income distribution through time and relate 

it to household characteristics and income components.

1 Actually, in 1989 and 1991 there was a dramatic drop of response rate but this could be due to 
the fact that interviewers started to be paid also for non-responding unit. The decline could thus be 
explained either by the under-reporting of non-responding units in previous surveys, or by a tendency 
to inflate non-responses in those years, or both (Brandolini, 1999). However, inequality indices and 
quantile ratios, performed also for different kind of income, do not present high variability for all 
years after 1989.
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6.2 .2  D escrip tion  o f dem ographic trends

As for demographic changes2, the age groups decomposition shows a decrease by 

about 20% of cohorts younger than 30 and an increase by 45% of the over 65 during 

the 23 year period considered. The former group was about 43% and the latter about 

12% of total population in 1977, at the end of the period they were respectively 34% 

and 18%. There has been some increase also in the cohort 31-65, mainly due to the 

sons of the 1960s Italian “baby boom” (Table 6.1 and Figure 6-1).

T r e n d  o f  a g e  g r o u p s  o v e r  t o t a l  p o p .

o

1977 1979 1981 1983 1986 1989 1991 1993 1995 1998 2000
year

age<=30  3Q<age<65    age>=63 |

T r e n d  o f  a g e  g r o u p s :  c h a n g e  o v e r  1 9 7 7

8

1977 1979 1981 1983 1986 1989 1991 1993 1995 1998 2000
year

age<=30 — — — - 30<age<65 . . . . . . . . .  age>=65

Figure 6-1: Decomposition of the population by age groups

2In this chapter SHIW-HA sampling weights are used. The grossing-up procedure described in 
Section 2.4 was not used because too complicated to be applied to 16 different data sets.
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Year_______ <30 yrs__________ 31<yrs<40________ 41<yrs<50
total % total % total %

1977 24,500,000 42.84 7,181,393 12.55 8,082,990 14.13
1978 24,700,000 42.14 7,608,596 12.99 8,000,017 13.65
1979 24,900,000 42.39 7,385,158 12.56 8,462,309 14.39
1980 24,800,000 41.58 7,502,312 12.59 8,193,308 13.75
1981 26,900,000 44.11 7,804,814 12.77 7,910,079 12.95
1982 25,300,000 42.42 7,438,001 12.48 8,242,708 13.83
1983 25,200,000 41.43 7,705,300 12.66 8,633,686 14.19
1984 24,700,000 41.74 8,135,767 13.77 8,223,285 13.92
1986 24,300,000 41.52 8,301,395 14.21 7,853,034 13.44
1987 24,500,000 41.90 7,934,049 13.56 8,037,568 13.73
1989 24,300,000 40.96 7,592,147 12.81 8,504,180 14.34
1991 23,700,000 39.72 7,931,810 13.27 8,276,795 13.85
1993 23,300,000 39.87 8,400,389 14.38 7,827,936 13.40
1995 22,500,000 37.98 8,693,111 14.67 7,821,800 13.20
1998 22,200,000 35.85 9,329,555 15.07 8,507,282 13.74
2000 20,400,000 34.19 9,562,311 15.99 8,243,886 13.78

Year 51<yrs<65 over 65 Total
total % total % total %

1977 10,400,000 18.11 7,072,426 12.36 57,236,809 100
1978 10,900,000 18.59 7,399,249 12.63 58,607,862 100
1979 10,500,000 17.78 7,576,160 12.88 58,823,627 100
1980 11,300,000 18.99 7,803,431 13.09 59,599,051 100
1981 10,300,000 16.93 8,091,380 13.24 61,006,273 100
1982 10,700,000 18.01 7,895,534 13.25 59,576,243 100
1983 11,400,000 18.67 7,941,044 13.05 60,880,030 100
1984 10,500,000 17.79 7,547,575 12.78 59,106,627 100
1986 10,400,000 17.81 7,612,212 13.03 58,466,641 100
1987 10,200,000 17.41 7,846,751 13.41 58,518,368 100
1989 10,600,000 17.81 8,345,906 14.08 59,342,233 100
1991 11,000,000 18.39 8,832,156 14.78 59,740,761 100
1993 9,695,718 16.60 9,198,317 15.75 58,422,360 100
1995 10,500,000 17.79 9,700,094 16.37 59,215,005 100
1998 11,000,000 17.69 10,900,000 17.66 61,936,837 100
2000 10,800,000 18.11 10,700,000 17.93 59,706,197 100

Source: own calculation on SHIW-HA data

Table 6.1: Decomposition of the population by age groups
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The proportion of single-person households more than doubled, so that in 2000 one

out of five households had this structure. The proportion of single-parent households 

with children increased by over 30%, while that of couples with kids decreased by 

over 20%. Female-headed households became markedly more frequent in the last 

decades as well as the average dimension of household showed a clear downward trend 

(Tables 6.2, 6.3 and Figure 6-2). During the period in question, the importance of 

the male household head income became less relevant, partly because of the increased 

number of female-headed households and partly because of the increased labor force 

participation of the other members of the household (Figure 6-3)

Year cpl.w/ cpI. no sngw/ sng no single Male HH Female
kids kids kids kids onlv head HH head

1977 58.85 21.65 7.16 2.46 9.88 88.15 11.85
1978 59.85 20.96 7.07 2.29 9.83 86.97 13.03
1979 57.54 20.13 6.74 2.17 13.42 86.28 13.72
1980 57.67 20.62 7.06 2.89 11.76 85.68 14.32
1981 57.32 20.23 7.64 2.00 12.80 84.82 15.18
1982 59.20 21.14 6.54 2.45 10.66 87.78 12.22
1983 57.74 20.94 6.37 2.62 12.33 85.17 14.83
1984 56.82 19.54 7.64 1.71 14.29 84.07 15.93
1986 55.65 20.32 7.38 2.14 14.52 81.81 18.19
1987 56.62 18.34 7.66 2.63 14.75 81.82 18.18
1989 53.10 19.58 7.82 2.19 17.32 80.45 19.55
1991 52.82 19.09 8.24 1.64 18.21 78.81 21.19
1993 51.42 19.05 9.55 2.46 17.53 71.94 28.06
1995 50.29 19.52 9.15 2.73 18.31 71.67 28.33
1998 47.18 20.61 8.86 2.67 20.69 71.94 28.06
2000 45.43 21.71 9.51 2.48 20.87 64.68 35.32

Source: own calculation on SHIW-HA data

Table 6.2: Decomposition of the population by household type

According to the SHIW-HA data, total labor force participation (LFP)3 had a 

stable path up to 1986, increased significantly up to 1989 (between 10% and 20% 

depending on the wage groups considered) and then remained stable at higher values

3Total LFP is computed as percentage of working age individuals - i.e. between 15 and 65 years 
- who declare to be either working or actively looking for an occupation.
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Year 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp +6 comp

1977 9.69 24.79 25.39 24.00 9.79 3.92 2.42
1978 9.83 23.85 26.30 23.76 10.44 3.79 2.02
1979 13.41 23.61 23.39 23.30 9.88 4.40 2.02
1980 11.79 25.43 24.98 21.81 10.38 3.62 1.99
1981 12.79 24.57 24.58 23.26 9.45 3.46 1.90
1982 10.36 25.49 24.24 23.91 10.70 3.58 1.72
1983 12.33 24.96 23.94 24.50 9.72 2.84 1.71
1984 14.29 23.97 25.19 22.85 9.29 2.95 1.46
1986 14.52 24.54 23.95 23.51 9.33 3.01 1.13
1987 14.75 23.76 23.78 25.20 8.71 2.81 0.99
1989 17.32 24.82 23.71 23.14 7.45 2.77 0.80
1991 18.21 23.70 23.86 23.57 7.41 2.41 0.83
1993 17.53 24.64 23.53 23.60 7.61 2.19 0.91
1995 18.31 25.41 23.47 22.89 7.41 1.81 0.70
1998 20.69 26.79 23.12 21.17 6.16 1.64 0.44
2000 20.87 28.05 22.52 20.78 5.84 1.55 0.41

Source: own calculation on SHIW-HA data

Table 6.3: Decomposition of the population by number of components
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Figure 6-3: Decomposition of the population by HH type

in the following period. However, while male LFP has been fairly stable throughout 

the period, the increase has been marked for female LFP. This dynamics reduced the 

differential of male-female LFP by about 10% points. It should also be noted that the 

very high variability of LFP figures up to mid 1980s was probably due to the small 

sample size4 (Table 6.4 and Figure 6-4).

Another feature of the evolution of the population which has attracted the atten

tion of researchers is the change of the ratio between income receivers and number of 

members of the household (Figure 6-5). Over the period, on average about 35% of 

the household members received labor income and this percentage remained stable 

for the whole period. On the other hand, pension income was received on average by 

an increasing proportion of individuals in the household and, in particular since 1993, 

the proportion of individuals receiving pension income was higher than the propor

tion of individuals receiving labor income (regardless of their respective amounts). 

A similar trend is found also looking at the population instead than at an average

in d iv id u al sample size was about 10,000 before 1980, about 13,500 between 1981 and 1984, not 
less than 20,900 in the rest of the period.
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Total LFP over 15 Total LFP over 24 Male LFP over 15
Year total % total % total %
1977 19,200,000 48.37 18,100,000 54.67 13,800,000 71.61
1978 19,700,000 49.75 18,500,000 56.14 14,000,000 72.54
1979 20,300,000 51.08 19,100,000 58.00 14,200,000 72.36
1980 20,300,000 50.76 19,300,000 57.52 13,800,000 70.19
1981 20,100,000 51.23 19,000,000 57.63 13,700,000 71.70
1982 20,000,000 49.03 19,000,000 56.94 13,800,000 68.78
1983 20,400,000 49.38 19,400,000 56.67 14,300,000 70.00
1984 20,500,000 51.75 18,800,000 59.94 14,100,000 72.14
1986 19,500,000 49.34 17,800,000 56.78 13,400,000 68.40
1987 20,700,000 52.18 18,800,000 59.52 13,800,000 70.58
1989 23,900,000 59.73 19,800,000 62.71 15,200,000 77.73
1991 23,900,000 59.56 20,600,000 63.98 14,900,000 75.06
1993 23,800,000 60.56 20,500,000 65.22 14,800,000 76.32
1995 23,800,000 60.21 21,000,000 64.63 14,600,000 74.34
1998 24,000,000 61.22 21,500,000 65.34 14,400,000 74.88
2000 23,600,000 60.19 21,600,000 64.72 14,600,000 74.70

Male LFP over 24 Female LFP over 15 Female LFP over 24
Year total % total % total %
1977 13,200,000 82.17 5,417,333 26.53 4,914,579 28.80
1978 13,300,000 83.38 5,701,033 28.09 5,156,085 30.44
1979 13,600,000 82.77 6,118,284 30.40 5,565,376 33.55
1980 13,100,000 80.50 6,566,139 32.13 6,113,980 35.64
1981 13,100,000 82.38 6,440,035 31.90 5,911,027 34.64
1982 13,300,000 80.57 6,203,209 29.92 5,768,463 34.01
1983 13,600,000 81.03 6,153,319 29.35 5,786,168 33.21
1984 13,200,000 84.64 6,455,095 32.00 5,683,182 35.78
1986 12,300,000 81.82 6,162,132 30.75 5,410,471 33.44
1987 12,700,000 82.52 6,935,503 34.35 6,089,851 37.61
1989 13,100,000 84.92 8,615,103 42.36 6,726,816 41.57
1991 13,100,000 83.65 8,966,156 44.34 7,522,508 45.41
1993 13,000,000 83.95 8,944,273 45.12 7,481,286 47.00
1995 13,000,000 81.61 9,238,063 46.30 7,952,013 48.19
1998 13,000,000 81.58 9,521,853 47.95 8,446,128 50.00
2000 13,400,000 81.48 9,033,466 45.82 8,129,078 48.30
Source: own calculation on SHIW-HA

Table 6.4: Labor force participation: Total, by sex, by age
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household.

It should also be noted that the increased proportion of pensioners is only partly 

due to the fact that life expectancy increased in recent years. As can be seen in 

Figure 6-5, the proportion of pensioners over 65 did not change significantly, and the 

increased proportion of pensioners on overall population was induced mainly by the 

increase of young pensioners (between 45 and 65 years of age). This phenomenon 

was partly due to the pension system, which allowed very early retirement, some 

times even before workers were in their forties, without linking the pension to the 

pensioner’s life expectancy. The phenomenon of the so-called “baby pensioners” has 

been partly reduced with the 1993 and 1995 pension reforms.

6.2.3 Preliminary hypothesis for inequality analysis

This chapter focuses only on disposable income per equivalent adult, using the LIS 

equivalence scale5. It involves assigning to each individual the total income of her 

household multiplied by AT̂"C, where is the number of components of household 

h (h =  1,2,..., H)  and e =  0.5. Using the LIS equivalence scale it is also assumed 

that intrarhousehold allocation is egalitarian, i.e. that all members of the household 

get the same share of income, regardless of their individual income, their role in the 

household and other characteristics. The individual equivalent income (also referred 

to as household equivalent income) is considered as the elementary unit of analysis. As

5Brandolini and D’Alessio (2001) and D’Alessio and Signorini (2000) also used the LIS equivalence 
scale. However, it was verified that the conclusion of the present chapter are not strongly dependent 
of the type of equivalence scale used, changing the value of the parameter e to 0, 0.25, 0.75 and 1. 
All results from this sensitivity analysis axe not presented here for reason of space but they can be 
obtained from the author.

145



Av. % of income receivers per HH

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1998 2000

Av. % of income receivers per HH

o .

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1998 2000

l a b o u r  • — - pension

% o f pensioners, by age

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1998 2000

♦  all — - o —  45<age<55

•••■*••• 55<age<65 -----a —  age>65

Figure 6-5: Frequency of income earners in av. HH or population

146



in D’Alessio and Signorini (2000) only income by work and transfers is considered, 

excluding income from capital since it presents measurement problems and is not 

uniformly available for all considered years. Finally, the 2.5% of poorest households 

are attributed the equivalent income of the household at the 2.5th percentile, mainly 

because some of the inequality indices used here cannot be computed for non positive 

incomes. This is a peculiar choice since it is generally more frequent to disregard the 

drop of zero or negative observations. It was however taken to make the comparison 

across time consistent without losing any data.

Three different inequality indices are considered: the Generalized Entropy (GE)  

indices, with a =  0,1,2. These indices are chosen because they should provide a broad 

picture of the distribution. In fact, these inequality indices differ in their sensitivity 

to difference in various parts of the distribution: the more positive the parameter a 

of the G E  class is the more GE(a)  is sensitive to income differences at the top of 

the distribution, the smaller a is the more GE(a)  is sensitive to differences at the 

bottom of the distribution (see Appendix C in Section 6.6). Moreover, the use of G E  

indices allows us to compute their confidence intervals using asymptotic distributions 

(Cowell, 1989). In some cases, the Gini index and quantile ratios will also be used, 

since quantiles relative to the median can provide useful insights on where the main 

changes in the distribution happened6. Let z/* be the z-th element of the income 

vector y  in ascending order, with z =  1,..., N ,  and Wi be the corresponding sample 

weight of z/j, with YliLi wi =  The ^-quantile, with q € [0,1] can be defined as

6Moreover, as proved by Cowell and Victoria-Feser (1996), the quantile function is the only 
inequality index robust to outliers.
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Vj ^ {Vii * =  !»•••) -W} or its nearest value such that

j
E Wi

Ni—1

6.2.4 Analysis o f inequality estim ates and data contam ina

tion issues

Figures 6-6, 6-7 and 6-8 report inequality indices and quantile ratios for individual 

monthly incomes7. It can be seen that inequality is much higher among self-employed 

income receivers, and it is generally higher for pensioners than for employed people. 

As for the trend, it appears decreasing up to the end of the 1980s, increasing between 

the 1991 and 1993, and finally fairly stable for all types of income, though there are 

much more fluctuations for self-employment income. The GE(2)  index increase after 

1980s confirms other researchers’ findings that major changes in employment income 

happened in top incomes8. Figure 6-9 shows the share of different types of incomes 

on household income and some inequality indices and quantile ratios for equivalized 

household income. As can be seen from the first panel, the share of employment 

income on household income has been decreasing constantly, pension income has 

increased at least up to 19939, while self-employment has fluctuated10. Restricting

7Monthly incomes are derived from yearly incomes using information available in the data set.
8The GE(2) index was not included in the self-employment and pension income figures since the 

high spikes presented in the first part of the sample, would make the scale of the figures unclear.
9In 1993 and in 1995 two major pension reforms were approved, which among other things aimed 

at reducing the ratio of paid pension/DGP.
10It should be noticed that this type of descriptive statistics yields limited information since, for 

instance, the increase of the share of pension income does not take into account that households 
have become older across time.
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attention to the period post 1989, all indices show a slight decrease from 1989 to 

1991, when the minimum was reached, and a dramatic increase in 1993, followed 

by a slight decrease only from 1998 to 2000. Comparing their numerical values in 

1991 and in 2000, the Gini coefficient increased by 16.2% and the G E ( 0), G E (  1) 

and G E (2), increased by 46.3%, 41.8% and 55.6% respectively. Since the G E (0) and 

G E (2) indices are more sensitive to lower and to higher incomes respectively, these 

changes show that more of the action in the changing income distribution occurred at 

the bottom and at the top, respectively. This conclusion is confirmed using quantile 

ratios. In the top quantiles there has been a clear rise of the richer quantiles, the 

95/50 ratio increasing comparatively more that the 90/50 ratio, which still showed 

more dynamics than the relatively stable 75/50 ratio. Changes in the distribution 

were also quite pronounced in the lower quantiles where the widening of the gap 

between the lower quantiles and the median is evident: even the 25th percentile saw 

a decrease with respect to the 50th percentile and only after 1998 signs of improvement 

appeared.

Based on Figure 6-9 and Tables 6.5 and 6.6 and looking at the whole 1977-2000 

period, one could perhaps agree with Brandolini and D’Alessio (2001) and D’Alessio 

and Signorini (2000) that there is no clear trend, but rather a substantial fluctuation 

in household inequality. However, looking at the quantile ratios, it should also be 

pointed out that weird spikes appear in connection with 1980 and 1987. In particular 

if the year 1987 were removed, the trend would indeed appear to be decreasing up 

to 1991, then increasing in the following years, similarly to the trend of individual 

income inequality.
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These considerations lead to consider issues of data contamination in years 1980 

and 1987 rather than to rule out the presence of a trend. Data may be contaminated 

as a result of recording errors, measurement errors, data collection problems, and 

alike. Data contamination reduces the quality of the data introducing a bias that, 

if not removed, can seriously mislead the analysis. Part of the possible contamina

tion is corrected by the Bank of Italy before publishing the data (see Section 2.1 for 

1998 SHIW), but some remains. Although the Historic Archive (SHIW-HA) covers 

an attractively long period of time and have proved to be useful for the analysis of 

primary-job income dispersion (Brandolini et al., 2001), it seems to present some 

limitations for analysis of household income in particular years. Some of these prob

lems may be due to changing sampling procedures (see Section 6.2.1, page 137), some 

others to difficulties during data collection (see note 1, page 137). Data quality of 

SHIW-HA is an issue until mid 1980s, before sample size was significantly increased 

(see note 4, page 142). Data quality might also be a problem in 1987 because of the 

over-sampling of high income households (see Section 6.2.1, page 137). One possi

ble, though drastic, solution in this case is to remove the contaminated observation. 

Removing 1987 from the analysis makes the household inequality trend to resemble 

income-receivers inequality trend quite closely, with a trend that is decreasing up 

to the end of 1980s and than increasing. Another solution is to try correcting the 

contamination. Section 6.4 will show how microsimulation can be useful to correct 

for possible data contamination bias.
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Figure 6-6: Inequality indices, individual (monthly) incomes

151



Employment

p  .

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1998 2000
year

97/50   95/50   90/50   75/50

Self-employment

p  .

1998 20001977 1979 1981 1983 1985 1987 1989 1991 1993 1995
year

95/50   90/50   75/50

PensionO

O

O
CN

p

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1998 2000
year

95/50   90/50    75/50

Figure 6-7: Inequality indices, individual (monthly) incomes

152



Employment

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1998 2000
year

25/50   10/50 5/50

Self-em ploym ent

O ■
1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1998 2000

year

25/50   10/50 5/50

Pension
p  _

©  ■

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995
year

1998 2000

25/50   10/50 5/50

Figure 6-8: Inequality indices, individual (monthly) incomes

153



Share over HH income

\

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1998 2000

■ —  Depend. — — - Self-empl. ............  Pension

Equivalent HH income
<N

r-N

1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1998 2000

G i n i --------------GE(0)   GE(1)

Equivalent HH income Equivalent HH income

Figure 6-9: Frequency of income earners in av. HH or population

154



Monthly em ploym ent income  
Year N GINI GEO GE1 GE2 95/50 90/50 75/50 25/50 10/50 5/50

1977 2,831 0.239 0.119 0.110 0.144 1.810 1.552 1.267 0.776 0.517 0.310
1978 3,293 0.243 0.123 0.116 0.152 1.778 1.556 1.213 0.800 0.533 0.333
1979 3,011 0.232 0.113 0.106 0.131 1.800 1.500 1.236 0.800 0.500 0.360
1980 3,035 0.213 0.095 0.083 0.087 1.754 1.462 1.231 0.769 0.554 0.385
1981 4,169 0.225 0.111 0.103 0.139 1.667 1.449 1.192 0.769 0.513 0.359
1982 4,128 0.216 0.094 0.086 0.096 1.833 1.556 1.222 0.833 0.600 0.427
1983 4,153 0.213 0.089 0.081 0.089 1.786 1.488 1.255 0.796 0.595 0.425
1984 3,869 0.211 0.089 0.084 0.097 1.682 1.500 1.167 0.800 0.600 0.417
1986 7,023 0.202 0.078 0.073 0.079 1.714 1.429 1.143 0.786 0.571 0.429
1987 7,219 0.205 0.076 0.077 0.089 1.800 1.567 1.200 0.800 0.667 0.500
1989 7,066 0.194 0.065 0.070 0.085 1.667 1.444 1.167 0.783 0.667 0.556
1991 6,802 0.195 0.067 0.069 0.087 1.737 1.526 1.263 0.821 0.632 0.541
1993 6,457 0.240 0.107 0.110 0.143 1.905 1.571 1.238 0.774 0.571 0.429
1995 6,472 0.236 0.101 0.104 0.132 1.909 1.636 1.250 0.818 0.591 0.455
1998 5,931 0.243 0.120 0.115 0.147 1.875 1.556 1.250 0.792 0.500 0.375
2000 6,439 0.244 0.126 0.114 0.141 2.000 1.600 1.200 0.800 0.520 0.384

Monthly self-em ploym ent income
Year N GINI GEO GE1 GE2 95/50 90/50 75/50 25/50 10/50 5/50

1977 791 0.481 0.484 0.419 0.643 3.750 3.000 1.875 0.469 0.188 0.107
1978 1,020 0.466 0.472 0.392 0.586 3.333 2.778 1.667 0.417 0.167 0.111
1979 975 0.472 0.459 0.408 0.621 4.000 3.000 2.000 0.500 0.250 0.125
1980 925 0.503 0.504 0.559 1.763 3.333 2.500 1.667 0.500 0.200 0.137
1981 1,028 0.444 0.403 0.365 0.562 3.429 2.833 1.667 0.600 0.250 0.133
1982 1,158 0.441 0.387 0.356 0.579 3.375 2.500 1.750 0.575 0.250 0.175
1983 1,254 0.406 0.337 0.311 0.490 3.000 2.300 1.500 0.600 0.300 0.150
1984 1,212 0.411 0.325 0.305 0.435 3.333 2.417 1.500 0.583 0.333 0.200
1986 2,111 0.446 0.413 0.392 0.851 3.333 2.500 1.667 0.542 0.250 0.167
1987 2,101 0.408 0.318 0.292 0.396 3.529 2.353 1.529 0.588 0.353 0.212
1989 2,387 0.381 0.255 0.347 1.322 2.817 2.106 1.459 0.676 0.473 0.338
1991 2,161 0.325 0.179 0.198 0.301 2.632 2.105 1.474 0.705 0.526 0.395
1993 2,035 0.413 0.329 0.309 0.451 3.177 2.310 1.470 0.578 0.332 0.173
1995 2,213 0.439 0.374 0.375 0.699 3.222 2.309 1.500 0.556 0.278 0.167
1998 1,898 0.451 0.408 0.401 0.762 3.571 2.476 1.571 0.571 0.286 0.175
2000 2,031 0.411 0.320 0.321 0.569 3.195 2.399 1.520 0.600 0.320 0.200

Monthly pension income
Year N GINI GEO GE1 GE2 95/50 90/50 75/50 25/50 10/50 5/50

1977 1,804 0.345 0.199 0.254 0.486 3.448 2.759 1.667 0.874 0.743 0.632
1978 1,716 0.345 0.205 0.284 0.748 3.321 2.847 1.708 0.939 0.769 0.617
1979 1,595 0.337 0.186 0.229 0.444 3.462 2.698 1.769 0.862 0.769 0.615
1980 1,773 0.330 0.181 0.188 0.234 3.432 2.790 1.775 0.832 0.692 0.592
1981 2,441 0.343 0.201 0.275 0.886 3.062 2.591 1.790 0.871 0.707 0.565
1982 2,254 0.282 0.132 0.139 0.169 2.800 2.400 1.600 0.880 0.720 0.600
1983 2,385 0.282 0.128 0.133 0.156 2.700 2.333 1.667 0.833 0.667 0.593
1984 2,337 0.281 0.127 0.134 0.165 2.571 2.286 1.714 0.814 0.714 0.571
1986 4,537 0.284 0.133 0.137 0.183 2.467 2.189 1.667 0.778 0.667 0.533
1987 4,239 0.263 0.115 0.114 0.129 2.166 1.805 1.444 0.722 0.614 0.505
1989 4,558 0.270 0.120 0.120 0.135 2.176 1.838 1.357 0.679 0.588 0.441
1991 5,030 0.282 0.130 0.131 0.154 2.400 2.000 1.477 0.733 0.613 0.492
1993 5,756 0.304 0.154 0.159 0.207 2.667 2.267 1.600 0.788 0.640 0.437
1995 5,774 0.307 0.155 0.158 0.190 2.636 2.221 1.604 0.719 0.630 0.424
1998 4,707 0.308 0.161 0.165 0.211 2.338 2.014 1.496 0.655 0.561 0.388
2000 5,444 0.298 0.147 0.153 0.194 2.320 1.976 1.460 0.644 0.571 0.476

Source: own calculation on SHIW-HA

Table 6.5: Inequality by different type of incomes
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year N GINI GEO GE1 GE2 95/50 90/50 75/50 25/50 10/50 5/50
1977 2915 0.328 0.184 0.189 0.257 2.515 2.075 1.494 0.671 0.460 0.359
1978 3044 0.317 0.173 0.179 0.246 2.464 2.008 1.504 0.707 0.477 0.362
1979 2886 0.330 0.189 0.194 0.267 2.473 2.020 1.493 0.683 0.436 0.335
1980 2980 0.328 0.188 0.230 0.519 2.462 1.990 1.469 0.696 0.500 0.403
1981 4091 0.303 0.154 0.165 0.225 2.382 1.945 1.430 0.700 0.520 0.424
1982 3967 0.289 0.140 0.148 0.212 2.306 1.936 1.433 0.716 0.524 0.444
1983 4107 0.291 0.142 0.146 0.189 2.295 1.898 1.410 0.702 0.509 0.417
1984 4172 0.300 0.151 0.154 0.194 2.353 1.909 1.431 0.693 0.501 0.398
1986 8022 0.302 0.156 0.166 0.267 2.286 1.941 1.458 0.687 0.486 0.393
1987 8027 0.320 0.176 0.173 0.211 2.528 2.049 1.489 0.676 0.478 0.350
1989 8274 0.289 0.138 0.140 0.169 2.278 1.907 1.436 0.692 0.510 0.437
1991 8188 0.277 0.129 0.128 0.153 2.131 1.813 1.379 0.675 0.495 0.441
1993 8089 0.322 0.186 0.174 0.205 2.375 2.000 1.464 0.655 0.432 0.298
1995 8135 0.327 0.191 0.187 0.243 2.362 1.964 1.464 0.653 0.425 0.279
1998 7147 0.333 0.206 0.201 0.291 2.448 1.930 1.440 0.664 0.421 0.272
2000 8001 0.321 0.183 0.180 0.237 2.406 1.929 1.447 0.656 0.441 0.315

Source: own calculation on SHIW-HA

Table 6.6: Inequality of equivalent household income

6.3 Description of the m ethodology

In this section, two different microsimulation methods are combined: that of DiNardo 

et al. (1996) and that of Burtless (1999) (henceforth DFL and B, respectively). The 

re-weighting method introduced by DFL allows one to disentangle the impact of 

demographic changes on equivalent household income inequality. The B method 

allows one to determine the relative importance of the change of the distribution 

of either self-employment income, employment income, or pension income on total 

inequality.

6.3.1 Effects o f individual and household characteristics on

household inequality

The N  x  1 vector of weighted equivalent household income, y ,  for a sample of N  

individuals and H  households is obtained as follows. Let z  be the N  x 1 vector of
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individual incomes ordered by household, w be the N  x 1 vector of corresponding 

sampling weights, E  be the N  x N  matrix of equivalence scale and D I A G (w) the 

diagonal matrix whose diagonal elements are the elements of w, then

y =  D IA G ( w )  • E • z
N x 1

E is a block diagonal matrix, with H  blocks on the diagonal. The blocks have 

dimension bh x bh, (h =  1,2..., if), all the elements of each block are the same and 

equal to l/6^5, where bh is the dimension of household h, h G 1,2,..., H.  For example, 

if the first household has 3 members, the second 2, etc, the matrix E is as follows:

(

E(6)
N x N

f  r -  r -  ^l/v/3 1/V3 1/V3 
1A/3 1/V3 1/V3 
l / y / Z l/v/3 l/v/3 J

\

f  r -  r- ^
l /v /5  l / v ^

1 /v ^  l/v /2

'  /

As in any microsimulation analysis a base year had to be picked and 1991 was 

chosen for two reasons: (i) the sample size in SHIW data sets was enlarged from 

1989 keeping sampling methodology unchanged. Hence post-1989 data sets represent 

a more reliable picture of the underlying population; (ii) in 1991 equivalent income 

inequality reached its lowest point and results are easily interpretable using 1991 as
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reference year11.

The DFL methodology was described in Section 5.3. For the current application 

it is useful to interpret each observation as a vector (y , X , t) coming from the CDF 

G ( y , X , t ), where y  records equivalent household income, X  is a vector of individual 

and household characteristics (some of which are discrete variables), and t  is a date. 

The CDF of income and attributes at time t  is the conditional distribution G(y, X \ t y =  

t, t x  = t). The density of income at a point in time, g(y\ty =  £), can be seen as 

the integral of the density of equivalent household incomes conditional on a set of 

individual and household characteristics and on a date ty = t, g(y \X, t y = t) over the 

distribution of individual and household characteristics, G { X \ t x  =  t ) } at date t x  = t:

9{y\ty = t , t x  = t) = f  g (y \x ,  ty = t )d G ( X \ tx  = t) (6.1)
Jxe n x

where Q x  is the space of all possible values of the individual and household char

acteristics. For example, g(y\ty =  2000, t x  = 2000) represents the actual density 

of equivalent household income in 2000, g(y\ty = 2000, tx  =  1991) represents the 

density of equivalent household income that would have prevailed in 2000 had the 

distribution of individual and household characteristic been as in 1991. Hence the

11For economy of space the analysis with 1991 as base year will only be presented, without reverse 
order decomposition. However, the analysis has been performed using different base years after 
year 1989 and using reverse order decomposition: results change interpretation but do not change 
substance.
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counterfactual density g(y\ty =  2000, t x  = 1991) is:

g(y\ty =  2000, tx  =  1991) =  J  g(y \X ,  ty =  2000)dG(X\tx  =  1991)

=  J  g(y\X, ts =  2000) ■ 4>x  ■ d G (X \ tx  =  2000)

(6.2)

Clearly, (6.2) differs from (6.1) only by the factor ipx , where:

=  dG (X \ tx  = 1991) P r ( X \ t x  = 1991)
V x  dG (X \ tx  = 2000) P r ( X , t x  =  2000) [ }

Hence, following DFL, the counterfactual density can be computed as a weighted 

version of the actual one.

Here the vector X  is a set of individual and household characteristics, which 

comprises (a) the number of income receivers, (b) the number of members in the 

household, (c) the number of pension receivers in the household, (d) and the female 

labor force participation. In X  other individual and household characteristics, such 

as area of residence (if either North, Center or South), size of town of residence, age, 

age squared, years of study, years of study squared are also recorded. The counterfac

tual inequality indices have been computed on the counterfactual distribution. The 

probabilities in (6.3) are estimated either using standard logit (when the outcome 

is binary) or with ordered logit models (when possible outcomes of the dependent 

variables are ordered).

Four counterfactual weights ipi, 2 =  1,..., 4 are defined as the ratio of :
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(a) the probability of having R  (R  =  1, ...,4,5+) income receivers in the household

in year 1991 over the probability of having R  income receivers in year t  (t from 

1977 to 2000, available years);

(b) the probability of having a household of N  members (iV=l,...,5,6+) in year 1991

over the probability of having a household of N  members in year t\

(c) the probability of receiving a pension (regardless of the amount) in 1991 over the

probability of receiving a pension in year t ;

(d) the probability that a working age (15-65) woman is in the labor force in 1991

over the probability she is in the labor force in year t.

The application of the DFL methodology is aimed at assessing the effects on household 

income distribution of (a) number of income receivers, (b) number of member in the 

household, (c) number of pension receivers in the household, (d) female labor force 

participation. It allows the estimation of counterfactuals with an easy interpretation.

The traditional decomposition was not used since such an analysis only made a 

limited contribution to understanding Italian household inequality trends as reviewed 

in Section 6.1. Because of the limitations of the regression-based methodology pointed 

out in Section 5.2,1 looked at microsimulation methodologies. The Bourguignon et al.

(2001) was discarded mainly because it would not help in explaining the questions 

under consideration (i.e., the effect of individual income dispersion on household in

equality); it gives a nice decomposition of inequality into a limited number of effects 

at the expense of developing a complicated structural model with debatable assump
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tions (recall Section 5.3). Such a procedure becomes even more cumbersome once you 

try to compare a full range of years, rather than just two years.

6.3.2 Effects of changing dispersion o f individual incom es on

household incomes

The application of the B methodology investigates the importance of the trend of 

employment inequality for household inequality. However, the analysis can also be 

extended to self-employment and pension income to see whether and to what extent, 

they caused an effect on the distribution of equivalent household income.

For the B methodology the counterfactual analysis is applied on the vector of 

individual incomes, z. The individual income variable is constructed as the sum 

of her employment (zfmpl), self-employment (z*el^) and pension income (zf67*), i.e. 

Z{ =  2̂ mpI +  z * ^  +  zf671; each income variable is then split into number of months the 

income was received times the average income received in each month, dividing annual 

income by number of months it was received, by income type. The rank-dependent 

transformation is based on holding the distribution of certain kind of income constant 

through time and then calculating how much household inequality would change under 

this assumption.

The B methodology was presented in Section 5.3 and implemented here as follows. 

For instance, assuming that monthly wage inequality changed between year 1991 

and 2000, i.e. the distribution of the yempl vector was different in the two years, 

the basic idea is to assign to each 2000 employee the wage the employee at her
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rank would have received according to the 1991 wage distribution. This preserves 

the exact 2000 earning distribution of wages but ignores the change in the average 

wage between the two years. To keep the sum of the 2000 wages constant, I simply 

assigned to 2000 employees the 1991 wage corresponding to their rank in the wage 

distribution, multiplied by the ratio of total year-round wages in 2000 divided by 

total year-round wages in 1991. This procedure is straightforward if the number of 

employees is the same in the two years but this can happen only by pure coincidence, 

and does not happen in this case. Hence, the empirical distribution function using 

the same number of quantiles is computed, properly weighted to take into account 

sampling weights. Then the median within each quantile is calculated. For each 

individual in the 2000 data set the median income of the wage quantile distribution 

she belongs to is subtracted and replaced by the median income of the same quantile 

in the normalized 1991 quantile wage distribution. The individual wages are then 

summed up to other individual incomes. All individual incomes of each household are 

then summed together and equivalized using the LIS equivalence scale, as described 

in Section 6.2.3. In the empirical application a distribution by centiles is used, i.e. a 

quantile distribution with 100 quantiles, but even with 500 quantiles the results do 

not change significantly. For the centile distributions, only incomes greater then Lit 

1000 (€0.52) are considered, i.e. if an individual did not have any wage income in 

2000, the replacement based on normalized 1991 wage distribution would still have 

left her with zero wage income. In the same way the 1991 income vectors are also 

replaced with normalized 2000 income vectors. An analogous analysis was performed 

for self-employment and pension incomes.



This procedure aims at accounting for the importance of the dispersion of income 

from different sources for household inequality. However, it is not an exact decom

position of inequality and a residual is expected to come mainly from the covariance 

between different incomes accruing to the same individual or between different indi

viduals in the same household.

6.3.3 Testing the change of inequality

All inequality estimates for the G E  class are accompanied with their asymptotic 

standard errors, as in Cowell (1989); Cowell and Jenkins (2003); Biewen and Jenk

ins (2003). A large standard error compared to the estimate would mean that the 

inequality index is not significantly different from zero and that the data set is un

suitable for inequality analysis. This is never an issue for our data sets. Asymptotic 

standard errors are then used to perform a test for the significance of the difference 

between inequality for different data sets. Given an inequality index belonging to the 

GE(a)  class with a =  0,1,2, computed on two different independent data set, say 

Jj*991 and ooo, the asymptotically normal statistic,

Ta =  A w i  ~  ^000 (g  4 )
y/var  11991 +  y/varl%000

tests the hypothesis uHo : there is no difference in inequality according to index 

GE(a)  between year 1991 and year 2000”.

The test is performed on differences between actual figures, to test if there is a 

statistically significant change in inequality in different years. Whenever the difference
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in inequality is significantly different from zero, and a counterfactual distribution is 

computed, I tested whether the difference between the counterfactual and actual 

distribution is still statistically different from zero. If not, this is prima facie evidence 

that the simulation exercise explains most of the change in inequality that actually 

occurred.

6.4 Results of the analysis

The combination of the DFL and B methodology allows one to put into a single 

framework the analysis of the effects of socio-demographic trends and income fac

tors dispersion on inequality. In the traditional analysis of income decomposition the 

effects of socio-demographic changes are assessed by “population subgroup decompo

sition” , and the effects of income sources dispersion by “factor source decomposition” . 

However, these two approaches cannot be easily integrated. In the present framework, 

socio-demographic changes and effects of income sources inequality on total inequality 

are assessed by DFL and B methodologies, respectively and eventually put together.

The main results are presented using graphs of the actual and counterfactual 

inequality measures using Gini, G E (0), G E (  1) and G E (2) indices. The results of the 

significance tests on the changes for the most interesting cases, limited to the G E  

indices, are also presented.

The DFL methodology applied to Italian household income inequality shows that 

demographic changes had a limited effect for the trend of overall inequality, as other 

researchers had found using traditional decomposition analysis (recall Section 6.1).
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Socio-economic variables, such as female labor force participation and number of 

income receivers, had a greater impact, although it does not exhaust the total change 

of inequality relative to 1991 (Figures 6-10 to 6-12).

However, the DFL re-weighting methodology is effective in identifying the effect 

of some odd figures obtained from the sample and their effect on the picture of overall 

distribution. For instance, if we were to accept the idea that the marked decrease 

of income receivers in the household recorded in 1987 data set was not a reliable 

picture of the population due to data contamination (see Section 6.2.4), the DFL 

methodology allows one to re-estimate the inequality indices and shows that Italian 

household inequality, at least according to Gini, G E (0) and G E (  1) indices, did have 

a trend, decreasing at first (up to 1991) and then increasing (Figure 6-10).

Summing up, using the DFL methodology we may conclude that:

•  The decrease of the average household size does not have much effect on income 

distribution. The only visible effect induced by conditioning the equivalent 

income distribution to 1991 distribution of household size was to reduce the 

odd spikes in 1980, especially for the G E (  1) and G E (2) indices (Figure 6-10).

• The increased percentage of income receivers per household (Figure 6-5) had 

a negative effect on income distribution. In fact, holding the distribution of 

income receivers per household at 1991 levels, makes the spikes in 1987 and 

1980 decrease for all indices, correcting for the bias due to data contamination 

(see Section 6.2.4). It also reduces household inequality in the post-1991 period 

(Figure 6-10).
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Figure 6-10: DFL methodology: number of income receivers and number of compo
nents in HH



Act. Actual figures
DFL: #  comp. DFL: conditioning on number of household components
DFL: #  i.rec. DFL: conditioning on number of income receivers 

in the household
DFL: #  pens. DFL: conditioning on probability of being a pensioner
DFL: fern. LFP DFL: conditioning on female in the labor force
DFL: i.rec.+f.LFP DFL: conditioning on number of income receivers 

in the household and on female in the labor force
B: s.-e. inc. ineq. B: holding self-employment inequality constant 

at base year
B: dep. inc. ineq. B: holding employment inequality constant at base year
B: lab. inc. ineq. B: holding employment and self-employment 

(work income) inequality constant at base year
B: pens. ineq. B: holding pension inequality constant at base year
B: lab. -f pens. ineq. B: holding work and pension inequality constant 

at base year

Table 6.7: Abbreviations used in tables and figures

• The increased number of pensioners in the average household has only a small 

effect on income distribution. In particular, had the probability of being a 

pensioner remained at the 1991 level, inequality would have been higher in 1987, 

using Gini and G E{0) indices, and in 1980 and 1998 using the G E (2) index 

(Figure 6-11). In 1980, 1987 and 1998 pension income inequality was higher 

than in 1991 but the average number of pensioners increased steadily since the 

beginning of the period. However, modifying the weights of pensioners without 

changing the distribution of pension income had the same inequality-increasing 

effect.

•  Conditioning on the female labor force participation shows a larger effect on 

the post 1991 period. From this it is clear that if the female labor force partic

ipation had remained as in 1991 the household inequality measures would have 

significantly decreased in the following decade. The effect would have been less
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Figure 6-11: DFL methodology: number of income receivers in HH and probability
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clear in the period before 1991, moreover with an odd spike at 1984 (Figure 

6-12), because of the reduced sample size and of data contamination (see also 

Figure 6-13 for the non-standard over-sampling of females in 1984).
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Figure 6-13: Decomposition of the population by sex

the 5% significance level. The same conclusion applies to the GE{2) except for 1989, 

where a larger point estimate of .102 is not significantly different from the base year 

at the 10% significance level. The change of inequality indices after conditioning on 

the number of income receivers and, cumulatively, on female labor force participation 

is tested, showing that counterfactual figures are no longer significantly different from 

the base year for 1989, for main part of the 1980s and all GE  indices used. As for the 

1990s, if the number of income receivers and labor force participation (conditional 

on household size and other individual and household characteristics) had remained 

as in 1991, the inequality indices considered would have shown a reduction in their 

value of about 15-20%. However, the differences between the counterfactual and the 

actual 1991 inequality figures are still significantly different from zero for the whole 

post-1991 period.

The B methodology applied to Italian household income inequality shows that 

much of the dynamics in inequality is due to the changed distribution of income 

sources. In particular, individual self-employment and employment income dynamics,
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GE(O)

A c tu a l  f ig u re A c t. - b a s e y e a r
C o n d . o n  #  in c . 

r e c .

C o u n t.1

C o n d . o n  #  f e m . 
L F P

C o u n t .  1 - 
y e a r

b a s e

y e a r index s.e. % p -va l index s.e. index s.e. % p -v a l
1 9 7 7 0 .1 8 4 0 .0 0 4 43.1 0 .0 0 0 0 .1 8 6 0 .0 0 5 0 .1 8 3 0 .0 1 0 4 2 .3 0 .0 0 0
1 978 0 .1 7 3 0 .0 0 4 3 4 .9 0 .0 0 0 0 .1 6 9 0 .0 0 4 0 .1 7 3 0 .0 0 8 3 4 .2 0 .0 0 0
1 979 0 .1 8 9 0 .0 0 5 4 7 .3 0 .0 0 0 0 .181 0 .0 0 5 0 .1 5 6 0 .0 0 6 2 1 .6 0 .0 0 0
1 9 8 0 0 .1 8 8 0 .0 0 9 4 5 .8 0 .0 0 0 0 .171 0 .0 0 7 0 .1 6 7 0 .011 2 9 .6 0 .001
1981 0 .1 5 4 0 .0 0 4 1 9 .7 0 .0 0 0 0 .1 5 2 0 .0 0 4 0 .1 3 8 0 .0 0 5 7.1 0 .0 9 0
1 982 0 .1 4 0 0 .0 0 3 8 .6 0 .0 1 2 0 .1 4 2 0 .0 0 4 0 .1 3 2 0 .0 0 4 2 .7 0 .4 5 5
1 9 8 3 0 .1 4 2 0 .0 0 3 1 0 .0 0 .001 0 .1 4 2 0 .0 0 3 0 .1 3 4 0 .0 0 4 4 .0 0 .3 3 3
1 9 8 4 0 .151 0 .0 0 3 17 .2 0 .0 0 0 0 .1 5 2 0 .0 0 3 0 .1 0 6 0 .0 1 6 -1 7 .9 0 .1 4 5
1 9 8 6 0 .1 5 6 0 .0 0 3 2 1 .0 0 .0 0 0 0 .1 5 2 0 .0 0 3 0 .1 4 2 0 .0 1 3 1 0 .4 0 .3 1 7
1 9 8 7 0 .1 7 6 0 .0 0 3 3 6 .7 0 .0 0 0 0 .1 5 7 0 .0 0 3 0 .1 5 3 0 .0 1 0 1 9 .3 0 .0 1 7
1 9 8 9 0 .1 3 8 0 .0 0 2 7 .3 0 .0 0 8 0 .1 3 7 0 .0 0 2 0 .1 3 5 0 .0 0 2 5 .3 0 .0 5 4
1991 0 .1 2 9 0 .0 0 3 0 .0 1 .0 0 0 0 .1 2 9 0 .0 0 3 0 .1 2 9 0 .0 0 3 0 .0 1 .0 0 0
1 9 9 3 0 .1 8 6 0 .0 0 3 4 4 .3 0 .0 0 0 0 .1 8 3 0 .0 0 3 0 .1 7 7 0 .0 0 3 3 8 .0 0 .0 0 0
1 9 9 5 0 .191 0 .0 0 3 4 8 .5 0 .0 0 0 0 .1 8 7 0 .0 0 3 0 .1 7 3 0 .0 0 4 3 4 .7 0 .0 0 0
1 9 9 8 0 .2 0 6 0 .0 0 5 5 9 .9 0 .0 0 0 0 .1 9 2 0 .0 0 5 0 .1 7 2 0 .0 0 5 3 3 .5 0 .0 0 0
2 0 0 0 0 .1 8 3 0 .0 0 3 4 2 .3 0 .0 0 0 0 .1 7 5 0 .0 0 3 0 .1 6 3 0 .0 0 3 2 6 .6 0 .0 0 0

G E (1 )

A c tu a l  f ig u re A c t. - b a s e  y e a r
C o n d . o n  #  in c . 

r e c .

C o u n t.1

C o n d . o n  #  fe m . 
L F P

C o u n t .  1 - 
y e a r

b a s e

year index s.e. % p -va l index s.e. index s.e. % p -v a l
1 9 7 7 0 .1 8 9 0 .0 0 7 4 7 .4 0 .0 0 0 0 .191 0 .0 0 8 0 .1 9 7 0 .0 1 8 5 3 .9 0 .0 0 0
1 9 7 8 0 .1 7 9 0 .0 0 7 3 9 .8 0 .0 0 0 0 .1 7 3 0 .0 0 6 0 .1 8 6 0 .0 1 4 4 5 .6 0 .0 0 0
1 9 7 9 0 .1 9 4 0 .0 0 9 5 1 .5 0 .0 0 0 0 .1 8 4 0 .0 0 8 0 .1 5 8 0 .0 0 8 2 3 .3 0 .001
1 9 8 0 0 .2 3 0 0 .021 7 9 .5 0 .0 0 0 0 .1 9 8 0 .0 1 5 0 .2 0 3 0 .0 2 6 5 8 .4 0 .0 0 4
1981 0 .1 6 5 0 .0 0 6 29.1 0 .0 0 0 0 .161 0 .0 0 5 0 .1 4 5 0 .0 0 6 1 3 .5 0 .0 2 7
1 9 8 2 0 .1 4 8 0 .0 0 6 15 .6 0 .0 1 2 0 .151 0 .0 0 7 0 .1 3 8 0 .0 0 5 7 .9 0 .1 3 2
1 9 8 3 0 .1 4 6 0 .0 0 4 14.2 0 .0 0 2 0 .1 4 6 0 .0 0 3 0 .1 3 6 0 .0 0 5 6.1 0 .2 6 7
1 9 8 4 0 .1 5 4 0 .0 0 4 2 0 .5 0 .0 0 0 0 .1 5 4 0 .0 0 4 0 .1 0 7 0 .0 1 7 -1 6 .3 0 .2 3 0
1 9 8 6 0 .1 6 6 0 .0 0 5 2 9 .7 0 .0 0 0 0 .1 6 2 0 .0 0 6 0 .1 5 2 0 .0 1 5 1 8 .6 0 .1 2 8
1 9 8 7 0 .1 7 3 0 .0 0 3 3 5 .4 0 .0 0 0 0 .1 5 7 0 .0 0 3 0 .1 6 3 0 .0 1 0 2 7 .0 0 .0 0 3
1 9 8 9 0 .1 4 0 0 .0 0 3 9 .3 0 .0 3 2 0 .1 3 8 0 .0 0 3 0 .1 3 5 0 .0 0 3 5 .8 0 .1 7 2
1991 0 .1 2 8 0 .0 0 5 0 .0 1 .0 0 0 0 .1 2 8 0 .0 0 5 0 .1 2 8 0 .0 0 5 0 .0 1 .0 0 0
1 9 9 3 0 .1 7 4 0 .0 0 3 3 6 .2 0 .0 0 0 0 .1 7 2 0 .0 0 3 0 .1 7 0 0 .0 0 4 3 2 .6 0 .0 0 0
1 9 9 5 0 .1 8 7 0 .0 0 4 4 5 .8 0 .0 0 0 0 .1 8 3 0 .0 0 4 0 .1 7 3 0 .0 0 5 3 5 .4 0 .0 0 0
1 9 9 8 0.201 0 .0 0 8 57.1 0 .0 0 0 0 .1 9 3 0 .0 0 8 0 .1 7 2 0 .0 0 7 3 4 .3 0 .0 0 0
2 0 0 0 0 .1 8 0 0 .0 0 4 4 0 .3 0 .0 0 0 0 .1 7 3 0 .0 0 4 0 .161 0 .0 0 4 2 5 .4 0 .0 0 0

e i___________________________________________________________
C o u n t.1

A c tu a l  f ig u re A c t. -  b a s e y e a r
C o n d . o n  #  in c . 

r e c .
C o n d . o n  #  f e m . 

L F P
C o u n t .  1 - 

y e a r
b a s e

y e a r index s.e. % p -va l index S.e. index s.e. % p -v a l
1 9 7 7 0 .2 5 7 0.021 6 8 .0 0 .0 0 0 0 .2 6 3 0 .0 2 3 0 .3 0 0 0 .0 6 0 96 .1 0 .0 1 6
1 9 7 8 0 .2 4 6 0 .0 2 0 6 1 .2 0 .0 0 0 0 .2 3 2 0 .0 1 6 0 .281 0 .041 8 3 .6 0 .0 0 3
1 9 7 9 0 .2 6 7 0 .0 3 0 7 4 .8 0 .001 0 .2 4 9 0 .0 2 7 0 .1 9 8 0 .0 1 7 2 9 .4 0 .0 3 6
1 9 8 0 0 .5 1 9 0 .0 9 4 2 3 9 .3 0 .0 0 0 0 .401 0 .0 6 8 0 .4 7 2 0 .1 2 3 2 0 8 .4 0 .0 1 0
1981 0 .2 2 5 0 .0 1 5 4 6 .9 0 .0 0 0 0 .2 1 3 0 .0 1 2 0 .1 8 8 0 .0 1 3 2 3 .0 0 .0 5 5
1 9 8 2 0 .2 1 2 0 .0 2 6 3 8 .3 0 .0 4 7 0 .2 1 8 0 .0 2 9 0 .1 8 0 0 .0 1 3 1 7 .6 0 .1 4 3
1 9 8 3 0 .1 8 9 0 .0 0 9 2 3 .3 0 .0 2 6 0 .1 8 5 0 .0 0 8 0 .1 6 5 0 .0 0 8 7 .8 0 .4 4 8
1 9 8 4 0 .1 9 4 0 .0 0 8 27.1 0 .0 0 9 0 .1 9 4 0 .0 0 9 0 .1 2 5 0 .0 2 2 -1 8 .3 0 .2 7 7
1 9 8 6 0 .2 6 7 0 .0 2 2 7 4 .3 0 .0 0 0 0 .2 6 4 0 .0 2 5 0 .2 0 8 0 .0 2 3 3 6 .0 0 .0 3 7
1 9 8 7 0 .211 0 .0 0 6 3 8 .0 0 .0 0 0 0 .191 0 .0 0 6 0 .2 0 5 0 .0 1 4 3 3 .9 0 .0 0 8
1 9 8 9 0 .1 6 9 0 .0 0 6 10 .2 0 .2 6 4 0 .1 6 4 0 .0 0 5 0 .1 6 0 0 .0 0 5 4 .9 0 .6 0 6
1991 0 .1 5 3 0 .0 1 3 0 .0 1 .0 0 0 0 .1 5 3 0 .0 1 3 0 .1 5 3 0 .0 1 3 0 .0 1 .0 0 0
1 9 9 3 0 .2 0 5 0 .0 0 6 3 3 .8 0 .0 0 0 0 .2 0 2 0 .0 0 6 0 .2 0 0 0 .0 0 7 3 1 .1 0 .001
1 9 9 5 0 .2 4 3 0 .0 0 9 5 8 .9 0 .0 0 0 0 .2 3 7 0 .0 0 9 0 .2 2 4 0 .011 4 6 .4 0 .0 0 0
1 9 9 8 0 .291 0 .0 2 8 9 0 .2 0 .0 0 0 0 .2 8 7 0 .0 3 0 0 .2 4 3 0 .0 2 2 59.1 0 .001
2 0 0 0 0 .2 3 7 0 .0 1 4 5 4 .8 0 .0 0 0 0 .2 2 8 0 .0 1 4 0 .2 0 6 0 .011 3 4 .5 0 .0 0 2

Source: own calculation on SHIW-HA data

Table 6.8: Counterfactuals using DFL methodology - Base year is 1991
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which were both decreasing up until 1991 and then increasing, had a strong influence 

on the evolution of equivalent household income. If the distribution of labor income is 

kept constant at 1991, there would be no trend before 1991 and a very slight increase 

in post-1991 period (Figure 6-14). The higher incomes would have been more affected 

by the transformation on self-employment income (note 1998 for G E (2)12), while the 

jump registered from 1991 to 1993 seems due to employment rather than to self- 

employment increase of inequality. These pictures also show the importance of the 

change in dispersion of self-employment, which was at least as important as the change 

in dispersion of employment income, besides the self-employed workers being only a 

quarter of the labor force.

Holding the distribution of individual pension income as in 1991 instead, had 

virtually no effect for the period 1987-2000. For the previous period, had distribution 

of individual pension income been as in 1991, household inequality would have been 

between 5 and 25% lower (Figure 6-15).

Putting together the B decomposition on different incomes individually, it is pos

sible to account for a much larger share of income dynamics (Figure 6-16). Holding 

labor income dispersion at 1991 levels decreases household inequality by about a half, 

and even more for the period before 1991. As noted before, holding pension income 

dispersion fixed as well would make no substantial difference for the post 1991 period, 

while it would induce an overshooting of the decomposition, causing the counterfac

tual inequality to be even lower than in 1991. These results suggest that concern

12As explained in Section 6.6 on page 182, the GE2 is more sensitive to income differences at the 
top of the distribution than GE1 and GEO: a larger GE parameter a means more sensitivity to 
high incomes in the data.
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Figure 6-15: Counterfact uals using Burt less methodology
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about pension income is indeed misplaced. While the trend in pension income is 

often taken to be a major cause of increasing inequality in the 1990s, it actually had 

only a limited effect during those years. By contrast, household inequality during the 

1980s would have been significantly lower had pension income been distributed as in 

1991.
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Counterfactual 2 is not statistically different from zero for GE(2), though the results 

for lower incomes (i.e. GE{0) and GE( 1))) are less conclusive. In other words, 

combining both DFL and B methodologies the change of inequality in top incomes 

(as stated by GE(2)) is mainly due to the increased dispersion of employment and self- 

employment income but also to the increased female participation in the labor force 

and the increased number of income receivers in the average household. However, 

there is still much to explain in the case of GE(0) and GE( 1) inequality measures.
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Figure 6-17: Counterfactuals using DFL-f Burtless methodology



g eo

Count 1:
Holding dop. Holding m  inc. Holding tab Inc Count 2: tab Dtff. of Actual DHf. Count 1 DHf. Count 2 

Actual figure Inc. const const conat ♦pens const wrt baa# year wrt baaa year wrt basa yoar
Year index s.e. index s.e. index S.e. Index S.e. % p-val % p-val % p-val % p-val

1977 0.184 0.004 0.182 0.009 0.155 0.006 0.152 0.006 0.106 0.004 0.431 0.000 0.180 0.000 -0.176 0.000
1978 0.173 0.004 0.159 0.007 0.160 0.007 0.145 0.006 0.108 0.004 0.349 0.000 0.126 0.011 -0.162 0.000
1979 0.189 0.005 0.159 0.006 0.142 0.006 0.143 0.006 0.101 0.004 0.473 0.000 0.112 0.022 -0.214 0.000
1980 0.188 0.009 0.161 0.010 0.140 0.009 0.135 0.008 0.115 0.008 0.458 0.000 0.053 0.440 -0.109 0.092
1981 0.154 0.004 0.135 0.004 0.130 0.004 0.126 0.004 0.101 0.003 0.197 0.000 -0.017 0.661 -0.217 0.000
1982 0.140 0.003 0.130 0.004 0.119 0.003 0.118 0.003 0.095 0.003 0.086 0.012 -0.086 0.010 -0.262 0.000
1983 0.142 0.003 0.135 0.004 0.126 0.004 0.127 0.004 0.107 0.004 0.100 0.001 -0.010 0.797 -0.166 0.000
1984 0.151 0.003 0.104 0.015 0.094 0.013 0.095 0.013 0.078 0.011 0.172 0.000 -0.265 0.011 -0.391 0.000
1986 0.156 0.003 0.144 0.012 0.131 0.012 0.134 0.011 0.120 0.010 0.210 0.000 0.040 0.650 -0.070 0.396
1987 0.176 0.003 0.152 0.010 0.139 0.010 0.138 0.010 0.129 0.008 0.367 0.000 0.074 0.350 0.006 0.924
1989 0.138 0.002 0.137 0.002 0.130 0.002 0.131 0.002 0.131 0.002 0.073 0.006 0.018 0.492 0.017 0.515
1991 0.129 0.003 0.129 0.003 0.129 0.003 0.129 0.003 0.129 0.003 0.000 1.000 0.000 1.000 0.000 1.000
1993 0.186 0.003 0.161 0.003 0.168 0.003 0.155 0.003 0.151 0.003 0.443 0.000 0.202 0.000 0.173 0.000
1995 0.191 0.003 0.164 0.004 0.165 0.004 0.156 0.004 0.152 0.003 0.485 0.000 0.214 0.000 0.181 0.000
1998 0.206 0.005 0.161 0.004 0.160 0.004 0.150 0.004 0.152 0.004 0.599 0.000 0.167 0.000 0.178 0.000
2000 0.183 0.003 0.153 0.003 0152 0.003 0142 0.003 0.148 0.003 0.423 0.000 0.104 0.001 0.151 0.000

GE1
Count 1: Count 2:

Holding dep. Holding e-e Inc. Holding tab Inc tab +pens Dm. of Actual Dm. Count 1 Dm. Count 2
Actual figure Inc. const const const const wrt basa year wrt base year wrt base year

Year Index s.e. index S.e. index s.e. index s.e. % p-val % p-val % p-val % p-val
1977 0.189 0.007 0.189 0.016 0.159 0.010 0.152 0.008 0.109 0.007 0.474 0.000 0.188 0.013 -0.150 0.018
1978 0.179 0.007 0.165 0.012 0.167 0.010 0.147 0.009 0.109 0.005 0.398 0.000 0.147 0.058 -0.150 0.005
1979 0.194 0.009 0.155 0.007 0.140 0.006 0.138 0.006 0.100 0.005 0.515 0.000 0.076 0.206 -0.218 0.000
I960 0.230 0.021 0.191 0.023 0.163 0.021 0.155 0.019 0.135 0.018 0.795 0.000 0.212 0.173 0.057 0.692
1981 0.165 0.006 0.138 0.005 0.136 0.006 0.128 0.005 0.103 0.004 0.291 0.000 0.002 0.968 -0.192 0.000
1962 0.148 0.006 0.135 0.005 0.122 0.004 0.120 0.004 0.098 0.003 0.156 0.012 -0.062 0.198 -0.236 0.000
1983 0.146 0.004 0.136 0.005 0.127 0.005 0.127 0.005 0.108 0.004 0.142 0.002 -0.012 0.824 -0.154 0.002
1984 0.154 0.004 0.105 0.016 0.094 0.013 0.093 0.013 0.077 0.011 0.205 0.000 -0.270 0.011 -0.399 0.000
1986 0.166 0.005 0.153 0.014 0.137 0.013 0.139 0.012 0.124 0.011 0.297 0.000 0.084 0.409 •0.030 0.757
1987 0.173 0.003 0.160 0.011 0.145 0.010 0.143 0.010 0.134 0.009 0.354 0.000 0.119 0.176 0.048 0.536
1989 0.140 0.003 0.136 0.003 0.129 0.002 0.129 0.002 0.129 0.002 0.093 0.032 0.006 0.878 0.004 0.921
1991 0.128 0.005 0.128 0.005 0.128 0.005 0.128 0.005 0.128 0.005 0.000 1.000 0.000 1.000 0.000 1.000
1993 0.174 0.003 0.157 0.003 0.163 0.003 0.152 0.003 0.148 0.003 0.362 0.000 0.184 0.000 0.157 0.000
1995 0.187 0.004 0.163 0.005 0.166 0.005 0.156 0.005 0.152 0.004 0.458 0.000 0.219 0.000 0.191 0.000
1998 0.201 0.008 0.163 0.007 0.156 0.005 0.148 0.005 0.149 0.005 0.571 0.000 0.153 0.006 0.166 0.003
2000 0.180 0.004 0.150 0.004 0.149 0.004 0.140 0.003 0.145 0.003 0.403 0.000 0.091 0.047 0.135 0.004

GE2

Actual figure
Holding dep. 
inc. conat

Count 1: 
Holding s-e inc. Holding tab Inc 

const const
Count 2: tab 
+pens const

Diff. of Actual 
wrt base year

Dm. Count 1 
wrt base year

Diff. Count 2 
wrt baaa year

Year Index s.e. index s.e. index s.e. index s.e. % p-val % p-val % p-val % p-val
1977 0.257 0.021 0.268 0.050 0.206 0.023 0.188 0.020 0.132 0.014 0.680 0.000 0.231 0.137 -0.138 0.280
1978 0.246 0.020 0.232 0.034 0.225 0.024 0.187 0.020 0.127 0.009 0.612 0.000 0.223 0.156 -0.171 0.101
1979 0.267 0.030 0.185 0.014 0.164 0.011 0.155 0.009 0.111 0.006 0.748 0.001 0.014 0.897 -0.272 0.005
1980 0.519 0.094 0.419 0.107 0.346 0.097 0.310 0.084 0.271 0.075 2.393 0.000 1.024 0.067 0.769 0.121
1981 0.225 0.015 0.166 0.010 0.173 0.011 0.153 0.009 0.122 0.008 0.469 0.000 0.001 0.993 -0.203 0.044
1982 0.212 0.026 0.172 0.012 0.153 0.010 0.147 0.010 0.119 0.008 0.383 0.047 •0.036 0.738 -0.223 0.027
1983 0.189 0.009 0.161 0.008 0.148 0.007 0.145 0.007 0.124 0.006 0.233 0.026 -0.052 0.591 -0.191 0.046
1984 0.194 0.008 0.121 0.020 0.106 0.016 0.104 0.015 0.084 0.014 0.271 0.009 -0.319 0.014 -0.451 0.000
1986 0.267 0.022 0.205 0.021 0.173 0.018 0.172 0.017 0.152 0.015 0.743 0.000 0.124 0.377 -0.006 0.964
1987 0.211 0.006 0.201 0.014 0.176 0.013 0.172 0.013 0.160 0.012 0.380 0.000 0.126 0.305 0.045 0.697
1989 0.169 0.006 0.162 0.006 0.147 0.004 0.148 0.004 0.147 0.004 0.102 0.284 -0.034 0.710 -0.039 0.675
1991 0.153 0.013 0.153 0.013 0.153 0.013 0.153 0.013 0.153 0.013 0.000 1.000 0.000 1.000 0.000 1.000
1993 0.205 0.006 0.185 0.007 0.194 0.006 0.180 0.006 0.176 0.006 0.338 0.000 0.178 0.066 0.150 0.118
1995 0.243 0.009 0.207 0.011 0.207 0.009 0.192 0.009 0.188 0.009 0.589 0.000 0.255 0.015 0.230 0.028
1998 0.291 0.028 0.228 0.021 0.199 0.014 0.187 0.014 0.190 0.014 0.902 0.000 0.221 0.076 0.240 0.061
2000 0.237 0.014 0.190 0.010 0.187 0.010 0.172 0.010 0.160 0.010 0.548 0.000 0.127 0.237 0.178 0.106

Source: our calculation on SHIW-HA data

Table 6.9: Counterfactuals using DFL +  Burtelss methodology - Base year is 1991
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GEO

Actual figure
Holding dep. 

Inc. const

Count 1: 
Holding s-e inc. Holding lab Inc 

const const
Count 2: lab 
4-pens const

Diff. of Actual 
wrt base year

Dm. Count 1 
wrt base year

Dm. Count 2 
wrt base year

Year Index s.e. Index s.e. Index s.e. index s.e. % p-val % p-val % p-val % p-val
1877 0.184 0.004 0.176 0.004 0.157 0.003 0.147 0.003 0.119 0.002 0.431 0.000 0.144 0.000 -0.078 0.005
1878 0.173 0.004 0.157 0.004 0.161 0.003 0.143 0.003 0.114 0.002 0.349 0.000 0.111 0.000 -0.113 0.000
1878 0.189 0.005 0.180 0.005 0.160 0.004 0.150 0.003 0.126 0.003 0.473 0.000 0.165 0.000 -0.024 0.446
1880 0.188 0.009 0.180 0.009 0.155 0.007 0.149 0.007 0.130 0.006 0.458 0.000 0.155 0.006 0.010 0.856
1881 0.154 0.004 0.146 0.004 0.143 0.004 0.134 0.003 0.114 0.003 0.197 0.000 0.038 0.257 -0.114 0.000
1882 0.140 0.003 0.134 0.003 0.124 0.003 0.119 0.003 0.107 0.003 0.086 0.012 -0.071 0.021 -0.170 0.000
1883 0.142 0.003 0.140 0.002 0.132 0.002 0.130 0.002 0.116 0.002 0.100 0.001 0.013 0.635 -0.097 0.000
1884 0.151 0.003 0.143 0.003 0.137 0.003 0.131 0.003 0.120 0.003 0.172 0.000 0.016 0.607 -0.064 0.029
1888 0.156 0.003 0.151 0.003 0.135 0.002 0.132 0.002 0.125 0.002 0.210 0.000 0.027 0.323 -0.025 0.361
1887 0.176 0.003 0.170 0.003 0.159 0.002 0.154 0.002 0.150 0.002 0.367 0.000 0.194 0.000 0.169 0.000
1888 0.138 0.002 0.139 0.002 0.132 0.002 0.133 0.002 0.133 0.002 0.073 0.008 0.035 0.188 0.035 0.195
1881 0.129 0.003 0.129 0.003 0.129 0.003 0.129 0.003 0.129 0.003 0.000 1.000 0.000 1.000 0.000 1.000
1883 0.186 0.003 0.167 0.003 0.174 0.003 0.159 0.002 0.156 0.002 0.443 0.000 0.234 0.000 0.211 0.000
1885 0.191 0.003 0.177 0.003 0.176 0.003 0.162 0.002 0.160 0.002 0.485 0.000 0.263 0.000 0.245 0.000
1888 0.206 0.005 0.189 0.004 0.188 0.004 0.172 0.004 0.173 0.004 0.599 0.000 0.338 0.000 0.346 0.000
2000 0.183 0.003 0.169 0.003 0.168 0.003 0.155 0.002 0.161 0.002 0.423 0.000 0.208 0.000 0.248 0.000

GE1
Count 1: Count 2:

Holding dep. Holding M in e. Holding lab Inc lab+pens Diff. of Actual Dm. Count 1 Dm. Count 2
Actual figure Inc. const const const const wrt base year wrt baaa year wrt bass year

Year index s.e. index s.e. index s.e. index s.e. % p-val % p-val % p-val % p-val
1877 0.189 0.007 0.176 0.006 0.158 0.004 0.146 0.004 0.120 0.003 0.474 0.000 0.141 0.003 -0.060 0.173
1878 0.179 0.007 0.158 0.006 0.161 0.005 0.141 0.004 0.114 0.003 0.398 0.000 0.102 0.035 -0.113 0.008
1878 0.194 0.009 0.179 0.008 0.161 0.006 0.148 0.005 0.127 0.005 0.515 0.000 0.157 0.005 •0.009 0.870
1880 0.230 0.021 0.216 0.019 0.179 0.016 0.170 0.015 0.152 0.014 0.795 0.000 0.325 0.007 0.186 0.101
1881 0.165 0.006 0.151 0.005 0.152 0.006 0.138 0.005 0.119 0.004 0.291 0.000 0.082 0.128 -0.068 0.186
1882 0.148 0.006 0.141 0.006 0.130 0.006 0.125 0.005 0.113 0.005 0.156 0.012 -0.026 0.641 -0.121 0.022
1883 0.146 0.004 0.142 0.003 0.135 0.003 0.132 0.003 0.119 0.002 0.142 0.002 0.029 0.492 -0.071 0.087
1884 0.154 0.004 0.146 0.004 0.141 0.004 0.134 0.004 0.124 0.004 0.205 0.000 0.048 0.327 -0.029 0.541
1888 0.166 0.005 0.160 0.005 0.140 0.004 0.136 0.003 0.129 0.003 0.297 0.000 0.060 0.189 0.012 0.797
1887 0.173 0.003 0.168 0.003 0.154 0.003 0.149 0.003 0.146 0.003 0.354 0.000 0.165 0.000 0.143 0.001
1888 0.140 0.003 0.140 0.003 0.132 0.002 0.132 0.002 0.132 0.002 0.093 0.032 0.035 0.405 0.033 0.434
1881 0.128 0.005 0.128 0.005 0.128 0.005 0.128 0.005 0.128 0.005 0.000 1.000 0.000 1.000 0.000 1.000
1893 0.174 0.003 0.160 0.003 0.166 0.003 0.153 0.003 0.151 0.003 0.362 0.000 0.199 0.000 0.179 0.000
1995 0.187 0.004 0.172 0.004 0.174 0.003 0.160 0.003 0.158 0.003 0.458 0.000 0.247 0.000 0.232 0.000
1998 0.201 0.008 0.187 0.008 0.178 0.006 0.165 0.006 0.167 0.006 0.571 0.000 0.293 0.000 0.303 0.000
2000 0.180 0.004 0.166 0.004 0.165 0.004 0.152 0.004 0.157 0.004 0.403 0.000 0.191 0.000 0.226 0.000

GE2__________________________________________________
Count 1:

Actual figure
Holding dep. 

Inc. const
Holding e-e inc. Holding lab inc 

const const
Count 2: lab 
+pens const

Diff. of Actual 
wrt base year

Dm. Count 1 
wrt base year

Diff. Count 2 
wrt base year

Year index s.e. index s.e. index s.e. index s.e. % p-val % p-val % p-val % p-val
1877 0.257 0.021 0.226 0.017 0.196 0.009 0.175 0.008 0.142 0.006 0.680 0.000 0.142 0.159 -0.073 0.446
1978 0.246 0.020 0.204 0.016 0.204 0.011 0.169 0.009 0.129 0.004 0.612 0.000 0.107 0.303 -0.154 0.095
1979 0.267 0.030 0.233 0.025 0.203 0.018 0.180 0.015 0.153 0.013 0.748 0.001 0.175 0.180 0.000 0.999
1980 0.519 0.094 0.462 0.082 0.357 0.073 0.321 0.063 0.286 0.056 2.393 0.000 1.100 0.009 0.869 0.022
1981 0.225 0.015 0.192 0.012 0.203 0.013 0.173 0.011 0.148 0.010 0.469 0.000 0.134 0.233 -0.035 0.747
1982 0.212 0.026 0.197 0.024 0.180 0.022 0.168 0.019 0.151 0.017 0.383 0.047 0.102 0.511 -0.015 0.919
1983 0.189 0.009 0.179 0.008 0.165 0.006 0.157 0.005 0.142 0.005 0.233 0.026 0.029 0.754 -0.074 0.420
1984 0.194 0.008 0.180 0.008 0.182 0.010 0.170 0.009 0.156 0.009 0.271 0.009 0.112 0.297 0.023 0.824
1986 0.267 0.022 0.248 0.020 0.199 0.015 0.188 0.013 0.178 0.013 0.743 0.000 0.231 0.063 0.167 0.165
1987 0.211 0.006 0.204 0.006 0.182 0.005 0.175 0.005 0.170 0.005 0.380 0.000 0.142 0.132 0.114 0.224
1989 0.169 0.006 0.170 0.006 0.154 0.005 0.154 0.005 0.154 0.005 0.102 0.284 0.009 0.919 0.005 0.958
1991 0.153 0.013 0.153 0.013 0.153 0.013 0.153 0.013 0.153 0.013 0.000 1.000 0.000 1.000 0.000 1.000
1993 0.205 0.006 0.188 0.006 0.197 0.006 0.182 0.006 0.179 0.006 0.338 0.000 0.190 0.047 0.170 0.076
1995 0.243 0.009 0.220 0.008 0.219 0.007 0.198 0.007 0.196 0.007 0.589 0.000 0.294 0.003 0.279 0.004
1998 0.291 0.028 0.269 0.026 0.232 0.018 0.213 0.017 0.215 0.017 0.902 0.000 0.392 0.005 0.409 0.004
2000 0.237 0.014 0.216 0.013 0.213 0.013 0.194 0.012 0.200 0.013 0.548 0.000 0.266 0.024 0.307 0.011

Source: our calculation on SHIW-HA data

Table 6.10: Counterfactuals using Burtless methodology - Base year is 1991
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6.5 Conclusions

This chapter combined the DiNardo et al. (1996) and Burtless (1999) microsimula

tion methodologies for decomposing income inequality indices. The purpose of this 

combination was to provide a unifying framework for inequality decomposition anal

ysis that corresponds to decomposition by “population subgroups” and by “factor 

sources”. It does not provide a picture of inequality evolution with zero residual, 

however it shows where the main changes came from.

The combination of the DFL and B methodologies was applied to Italian house

hold income distribution across the period 1977-2000. Results show that socio- 

demographic factors, such as the reduction of average household size and increased 

probability of receiving pension income had a negligible effect on household income 

distribution. The increased participation of women in the labor market as well as the 

increased proportion of income earners in the household were more effective in increas

ing inequality in the period after 1991. Results also showed that socio-demographic 

factors are less relevant in determining inequality dynamics than effects of dynamics 

of dispersion of income sources. In fact the changed dispersion of employment and 

self-employment income played the major role in explaining where the increase of 

household inequality came from. The increasing dispersion of self-employment and of 

employment income had a major role in explaining the increase in overall inequality 

after 1991. The increased dispersion of individual incomes together with the evolution 

of female labor force participation and number of income receivers explains most of 

the increase in inequality recorded by G E (2) but most of the inequality by G E (0)
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and G E (  1) still remains partly unexplained. Results also suggest that the concern 

about pension income is often misplaced. While the pension income trend is often 

taken to be a major cause of increasing inequality in the 1990s, it actually had only a 

limited effect during those years. By contrast, household inequality during the 1980s 

would have been significantly lower had pension income been distributed as in 1991.

The approach taken in this chapter builds on that of Daly and Valletta (2002) but 

differs from that in three main respects. First, the concern of Jenkins (1995) that 

analysis often changes because different years axe compared is taken seriously: this 

microsimulation study is extended to each and every year available in the data set and 

then the overall trend is discussed. Secondly, the B methodology is extended to all 

labor income receivers, regardless of their sex and their role in the family, while Daly 

and Valletta (2002) applied it to male household heads only. Basically, my extension 

is motivated by the assumption that household heads and non-household heads do 

not have different income distributions and by the fact that male household head is 

becoming less important across time (see Section 6.2.1, page 140). Finally, the B 

methodology is extended to pension income and the effect of labor income divided 

into employment and self-employment. The different propensity to work or receive 

a pension are considered holding the number of months of income each individual 

received constant and then replacing only the monthly income vector rather than 

the yearly income. Structural changes in the economy, that would induce a change 

in income distribution, are not considered. The increased dispersion of income, for 

example, could be due to an increasing importance of specialized and skill-intensive 

industries that pay high skill premia. The effect of these changes as well as differing
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employment probabilities in different years at different level of incomes are not con

sidered. These factors should account for changes in inequality that are not explained 

by the present analysis.

Finally, it was shown that data quality is an issue. Some authors have recently 

written that the Italian distribution shows large fluctuations but no trend. Our anal

ysis suggest instead that there was a trend in household income inequality, at first 

decreasing up until 1991, then increasing. Large fluctuations, especially in the pre- 

1991 period, are mainly due to data contamination. These problems are of course 

larger the more important are issues such as non-response and under-reporting. Re

sults also show that no matter what concern we may have about the reliability of 

self-employment income data, if we are interested in household equivalent income 

we cannot neglect the role of self-employment dynamics and should instead think of 

possible improvements in survey data collection.

6.6 Appendix C: The Generalized Entropy class of 

inequality indices

In this chapter three different inequality indices are considered: the Generalized En

tropy (GE)  indices, with a =  0,1,2. They are known as the mean logarithmic 

deviation (Gi£(0)), the Theil index (GE(1)) and half the square of the coefficient of 

variation {GE(2)). In order to incorporate the sample weights the G E  indices con

sidered can be formalized as follows. Given a vector of incomes y of dimension AT,
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its arithmetic mean, y, and a vector of weights, w, of the same dimension as y, and 

such that S i l i  wi — N ,  the G E  class of inequality indices is given by

GE(a) =  I a =  1
a(a — 1) m r } - , a ■=£ 1, a 7̂  0 (6*5)

G £ ( 0 ) ^ o  =  t j l o g ( ^ )  (6.6)

N

G £ ( l ) ^  =  E f f l o g ( ! )  (6-7)

These indices are chosen because they should provide a broad picture of the dis

tribution. In fact, these inequality indices differ in their sensitivity to difference in 

various parts of the distribution: the more positive the parameter a of the G E  class 

is the more G E (a ) is sensitive to income differences at the top of the distribution, 

the smaller a is the more GE(a)  is sensitive to differences at the bottom of the dis

tribution (Cowell, 1995). Cowell and Flachaire (2002) examined the sensitivity of 

estimates of some inequality indices to extreme values, in terms of their robustness 

properties and of their statistical performance. Their analysis is performed using the 

influence function, a tool taken from the theory of robust estimation. They find that 

G E  indices are not robust when the tail of the distribution is heavy, and in particular 

that G E  measures with a > 1 are very sensitive to high incomes in the data. Extreme 

values can appear in the income distribution because of data contamination but also 

because the true distribution is thick-tailed (in Chapter 7 the issue of performing 

inference with thick tail distributions will be discussed).
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Chapter 7 

Inference issues with thick tail 

distributions

As was discussed in Chapter 6, Section 6.4 - with an application to Italian data - and 

in Section 6.6, inequality indices can be highly non-robust in the presence of extremely 

large income values. There are two main reasons why it is possible to find high values 

in an income data set. The first is because data could have been contaminated, due 

to, for instance, measurement error or misreporting; the second is because income 

distribution may truly be thick-tailed, i.e. it is possible that some people are very 

much richer than the average.

The robustness of inequality indices has been addressed in a number of recent 

papers. Cowell and Victoria-Feser (1996) study the effect of data contamination on 

income distribution inequality and suggest adopting a parametric approach to income 

distribution analysis and inequality measurement, estimating inequality from robust 

estimates of the parameters of the income distribution model. Cowell and Flachaire
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(2002) address the sensitivity of estimates of inequality to extreme values and find 

that these measures are very sensitive to the properties of the income distribution. 

They show that estimation and inference can be dramatically affected when the tail 

of the distribution is thick. As a possible solution, they suggest making use of the 

semi-parametric approach introduced by Cowell and Victoria-Feser (2001): apply an 

appropriate functional form to the tail of the income distribution and estimate the 

parameters of this functional form robustly. However the issue of correct estimation 

of the tail of the income distribution remains: the assumption that the tail is para- 

metrically distributed does not eliminate all the troubles. For instance, assuming that 

the tail of the distribution is distributed as a Pareto distribution reduces the problem 

to the robust estimation of the tail and location parameters but there is no clear 

results about which is the robust estimation to be preferred. In fact, the literature on 

robust estimation of the location parameter is large and still evolving (among others, 

see Victoria-Feser and Dupuis (2003); Hsieh (1999); Beirlant et al. (1996)).

This chapter shows that Pareto distributions are also affected by other kind of 

problems. For instance, given an income data set that was extracted from a Pareto 

distribution, a standard test to verify that the average income is larger than some 

given number can be seriously misleading if the tail parameter is 1 <  a  <  2. Analo

gous problems arise with a two-sample test of difference in mean when the samples 

are both drawn from a Pareto distribution, and the location parameter of at least 

one of the two is 1 < a  < 2. The analysis that follows focuses on the t-ratio of thick 

tail distributions. In fact, it is well known that the t-ratio of any sequence {A*} of 

i.i.d. random variables converges towards a standard normal distribution, where the
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t-ratio is defined as

* -  f  (7-1)

X  =  N ~ 1^ ^  X i  and S  =  N ~ 2Y ^ iL iX f ,  i =  1 , ...A. However, for the t-ratio to 

converge to a standard normal it is required that E X f  < + 00.

Phillips and Hajivassiliou (1987) studied the t-ratio of a random sample ..., X n  

from a Cauchy distribution, where the r-moments are all infinite for r  =  1,2,.... 

They showed that the statistic t does converge towards a stable distribution, which 

is bimodal with modes around ± 1.

This chapter provides a simulation-based study of the asymptotic distribution of 

the classical t-ratio for distributions with no finite variance, it discusses how classical 

testing is affected and then proposes an alternative way to perform inference with such 

distributions. As reviewed in Section 7.1, Pareto and symmetric Pareto distributions 

have finite first moments provided the tail-thickness parameter, a , is larger than 1. 

They have finite second moments provided the parameter a  > 2. Section 7.2 replicates 

simulation results about the distribution of t-ratios with Cauchy distributions of 

Phillips and Hajivassiliou (1987) and extends them to the Pareto and symmetric 

Pareto distributions with 0 < a  < 2. Section 7.3 discusses the issue of naive testing 

with Pareto or symmetric Pareto distributions with finite mean and infinite variance: 

it discusses the error that a researcher would commit assuming that the standard 

t-ratio test is normally distributed when in fact it is not. A solution is suggested in 

Section 7.4 and an illustration using Italian household income data is proposed in 

Section 7.5.
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7.1 The t-ratio distributions of some infinite vari

ance distributions

Distribution functions with infinite first moment belong to the family of thick tail 

(TT) distributions. In the literature there is no universally accepted definition of a 

TT distribution. In general, a random variable from a TT distribution presents a non 

negligible probability of assuming very large values (extremal events). In other words, 

TT distributions have more weight in the tails than some reference distribution. When 

it is assumed that the reference distribution is the normal whose tails decay as the 

square of an exponential, it implies that distributions with power-law decay, as well as 

with exponential decay, are considered to be TT distributions. Other, more complete 

definitions, consider as TT a distribution whose exponential moments are infinite, 

E(e t x ) =  oo,Vt > 0, which implies that the moment-generating function does not 

exist. Since different distributions have different degrees of thick-tailedness, a number 

of quantitative indicators for evaluating the probability of extremal events have been 

developed, such as the extremal claim index to assign weights to the tails and thus the 

probability of extremal events (Embrechts et al., 1999). Finally, some cruder though 

widely used definitions consider as TT a distribution with an infinite variance, or 

kurtosis larger than 3 (leptokurtic) (Bryson, 1982).

In what follows I focus on some aspects of some distributions with thick tails, 

namely the Cauchy, the Pareto and the symmetric Pareto with infinite mean or with 

finite mean but infinite variance. Phillips and Hajivassiliou (1987) studied in detail 

the t statistic defined in (7.1) from a Cauchy random sample, providing theoretical
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and simulation results about its asymptotic distribution. They showed that when 

X i , X 2 , —<>Xn is a random sample from a Cauchy (0,1) population, the numerator 

and the denominator of t\  converge weakly to random variables, which are dependent, 

as n  —> oo. Hence, asymptotically the t-statistic is a ratio of random variables. It 

is well known that the ratio of two random variables gives rise to a random variable 

with a possibly bimodal distribution. Such a distribution is derived in Fieiller (1932) 

and its density in Phillips (1982). Marsaglia (1965) shows the conditions under which 

the ratio of two independent normal random variables with variance 1 and different 

means has a bimodal rather than a unimodal distribution.

Phillips and Hajivassiliou (1987) show that the phenomenon of bimodality can 

also occur with the classical t-ratio test statistic for populations with undefined sec

ond moments as is the case of the standard Cauchy (0,1). In the classical case the 

numerator and denominator statistics in the t-ratio are independent and, as n  —> oo, 

the denominator, properly scaled, converges in probability to a constant. They ar

gue that the dependence of the numerator and denominator in the t-statistic is the 

main factor that induces the bimodality in the distribution. The fact that the modes 

are at ±1 comes from simulation evidence that the numerator and denominator of 

the t-statistic are identical up to the sign. They suggest studying the distribution 

of the t-statistic focusing on the dependence between the numerator and denomi

nator statistics. Such dependency remains even in the limit. In fact they showed 

that S 2 converges weakly towards a stable random variate with exponent a  — 1/2 

and that the numerator and the denominator of the t-statistic follow a jointly stable 

distribution.
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Stable distributions are not in general a subset of TT distribution as they also 

include the normal distribution. There are four different and equivalent ways to 

define stable distributions (Samorodnitsky and Taqqu, 1994; Focardi, 2001). A key

any number of identical replicas of the same variable. This property involves that 

the entire distribution is equal and not only the tail. Note that in this context equal 

distribution means that distributions have the same functional form but they can 

have different parameters1.

This chapter contributes on the study of the t-ratio statistics when first moments 

do not exist. In particular, it will focus on the case of the t-ratios from random 

samples extracted from distributions with finite mean and infinite variance and on 

the implications this has for hypothesis testing.

For distributions with infinite first moment the t-ratio statistic will be defined as:

property of a stable distributions is that a random variable is said to have a stable

distribution if it has the same distribution of the (normalized) independent sum of

(7.3)

1 Formally, a random variable X  is said to have a stable distribution if, for any positive number 
<Zj, there exist a positive number c and a real number d such that

n

]P a , X , - i c X  + d (7.2)
1 = 1

where X» are independent copies of X , and A  denotes convergence in distribution.
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and for distributions with finite first moment, it will be defined as:

(7.4)

where X i 1X 2^ . . , X n  is a random sample from some distribution and /i is the true

as well as the difference between t  and ti, hence asymptotically they give the same 

results2: tz differs from t\ only in the location factor, —[i/Sx-

The first TT distribution considered is the standard Cauchy (0,1). It has density 

function (DF)

and all its moments are infinite.

The Pareto distribution (type I) has DF

The first moment, E ( x ), exists if a  > 1 and the second central moment, V (x) ,  

exists if a  > 2:

2Formally, S2 — Sx  =  Op(N~1) and t — t \=  Op(N~1) (Phillips and Hajivassiliou (1987), Lemma

mean. It can be proved that the difference between S  and S x  is negligible as N  —► oo

f ( x )  =  a/3ax  a 1 (7.6)

The Pareto cumulative distribution function (CDF) is

(7.7)

1, p. 5.)
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E (x )  =  - 2 - / J  
a  — 1

(T.8)

<79>

The Pareto distribution belongs to the family of the exponential distribution since 

its DF can be written as:

pa(x) = C(a) x  e(£<-‘ ««<°)‘.M)Mx) (7.10)

with C (a) = a/3a , Qi(ot) =  —(a +  1 ),U(x) =  Inx,h(x)  =  1 (Silvey, 1975). Analo

gously to the bilateral exponential (see, Feller, 1971), p. 49), the CDF of the sym

metric Pareto distribution, with Id > /?, is:

F (x)  = l - ~  f r  , \ x \ > P , 0 > O  (7.11)

The DF can be written as:

f ( x )  =  ±a/J“ | i r a_1 (7.12)

and can be seen as the convolution of the Pareto density a(3ax~a~l (x > (3, a  > 0, (3 > 

0) with the mirrored density a(3a(—x)_Q_1 (x < —fi ,a  > 0,/? > 0). In other words, 

the symmetric Pareto is the density of X \  — X 2 when X \  and X 2 are independent 

and have the common exponential density af3ax~a~l (x > (3,(3 > 0 ,a  > 0).

190



Its first two centered moments axe (see Appendix D, Section 7.7):

E (x)  =  0, a  > 1

v (*) =  2 7-------T&7------5^ 2> ° > 2(a — l ) 2(a  — 2)

7.2 Simulation results

The results that follow have been obtained via Monte Carlo simulations from random 

samples of dimension N  using the method of inverted CDF, i.e. a random sample 

of dimension N  is extracted from a unit rectangular variate, C/(0,1), and then it is 

mapped into the sample space using the inverse CDF. The number of simulations M  

has been set to 10,000. This study allows one to disentangle some differences about 

the asymptotic distribution of the t-ratio statistic when either one or both first two 

moments do not exist.

The Cauchy and the symmetric Pareto distribution with a  < 1 are both symmetric 

and with infinite mean. For these distributions, as sample size increases, the statistic 

t i  converges towards a stable distribution which is symmetric and bimodal. The 

convergence is fairly rapid, even for samples as small as 10, and the two modes are 

located at ±1. As for the symmetric Pareto, the t-ratio distribution does depend on 

a: the lower is a, the higher is the concentration around the two modes (Figure 7-1).

For 1 < a  < 2 the t-ratio, t2 , is not always clearly bimodally distributed. The 

more a  departs from 1 the less evident is the bimodal distribution of the t-ratio and 

the clearer the convergence towards a standard normal distribution (Figure 7-2). This
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tl o f Cauchy, M =10.000 tl o f sym. Pareto a=.5, b=3, M= 10000
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Figure 7-1: t-ratio of Cauchy and infinite-first-moment symmetric Pareto distribu
tions
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result applies for any value of (3 > 0, since /3 is simply a threshold parameter that 

does not affect the t\ statistic behavior.

t2 of sym. Pareto a= 1.1, b=3, M= 10000 t2 of sym. Pareto a= 1.8, b=3, M - 10000

o
o

-3  - 2  - 1  0 1 2  3

o

c*©

o
©

■ 3 - 2 - 1 0  1 2  3

N = 1 0  —
N = 1 0 0  —

 N = 5 0
 N = 5 0 0

N = 1 0
N = 1 0 0  —

 N = 5 0
 N = 5 0 0

Figure 7-2: t-ratio of symmetric Pareto distributions with 1  <  a  < 2

Moving to a Pareto distribution defined on a positive support3  with a  <  1 , the 

t-ratio t\ is clearly non-normal. However, the convergence towards a unimodal distri

bution with mode located just above 1, is clearer the smaller is a. The closer a  gets 

to 1, the more dispersed the distribution becomes (Figure 7-3).

tl of Pareto a=.5, b=3, M= 10000 tl o f Pareto a=.9, b=3, M= 10000

o  I

o "
0 1 2 3

p _

0 1 2 3

N = 1 0  —
N = 1 0 0  -

 N = 5 0
 N = 5 0 0

N = 1 0
N = 1 0 0  —

 N = 5 0
 N = 5 0 0

Figure 7-3: t\ Pareto distributions with 0 < a  <  1 

When a sample is randomly drawn from a Pareto distribution with a  grater than

3 Results for the negative Pareto distribution are symmetric to those for the positive Pareto and 
are not presented here.
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1  and less than 2, the t-ratio, t2 , is still clearly non-normally distributed. Due to 

the occurrence of large values, the £ 2  distribution is asymmetric and biased towards 

negative values. The closer a  gets to 2, the clearer the convergence to a standard 

normal appears. With a=1.8, the distribution is still clearly non-normal with strong 

skewness to the left (Figure 7-4).

t2 of Pareto a= 1.1, b=3, M= 10000

©  _

-3  -2 1 0 1 2 3

N = 1 0  —
N = 1 0 0  —

 N = 5 0
 N = 5 0 0

t2 o f Pareto a=1.8, b=3, M= 10000

p  _

-3 -2 2 31 0 1
N = 1 0  —
N = 1 0 0  —

 N = 5 0
 N = 5 0 0

Figure 7-4: £ 2  of Pareto distributions with 1 <  a < 2.

The regularity in the t\ distribution leads us to investigate the relationship be

tween the first and the second centered moment, respectively in the numerator and 

denominator of t\. Phillips and Hajivassiliou (1987) noted that if the distribution is



Var. of Cauchy, M= 10000
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Figure 7-5: Distribution of the variance of some distributions with infinite mean.
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Figure 7-6: Distribution of the variance of some distributions with infinite mean.
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A simple OLS estimate for the coefficient b of the parabolic relationship (S x  =  
 2

a -I- bX  ) is always very close to 1 and highly significant using the Cauchy, the Pareto 

or the symmetric Pareto with a  < 2. However, the coefficient a is not significantly 

different from zero for any value of the sample size4. In other words, the average of 

the squared deviation from the sample mean can be well approximated by the square 

of the sample mean. This property is a direct consequence of the fact that the Pareto 

distribution with infinite variance belongs to the class of subexponential distribution, 

which is characterized by two properties: the convolution closure property and the 

property of the sum (Embrechts et al., 1999). The first property states that the 

shape of the tail is preserved after the summation of a random sample from a given 

subexponential distribution. The second property states that in a sum of observations 

from a random sample, the largest value will be of the same order of magnitude as 

the sum itself5. The latter property implies that the deviation from the mean will 

be of the same order of magnitude as the mean, hence the ratio between the mean 

of the squared deviation from the mean and the squared mean will be of the same 

order of magnitude. The fact that the modes of the bimodal distribution for the t\  

statistic are at ±1 comes from this property and the fact that the sample mean can 

be negative whereas its standard error cannot.

4Phillips and Hajivassiliou (1987) found a b coefficient between .570 and .376 for the Cauchy 
distribution and different sample sizes. However, in their regression the dependent variable was the 
uncentered second moment while the centered one is considered here.

5Formally, for any sample size N, if Spf(x) = YliLi Xi is the sum of i.i.d. random variables and 
Mn is their maxima, it is verified that

lim >  X\  = 1 (7.13)
x-*oo  P(MN > X)
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7.3 Testing with TT distribution

The preceding results are of relevance for hypothesis testing in regressions with error 

terms that are independent and identically distributed as a Pareto, with 1 < a  < 2. 

It is of interest also for testing the hypothesis of difference in means or other statistics 

of two samples when either or both come from a TT distribution.

What happens in these cases if the classical t-ratio test statistic is compared with 

the critical values of a N ( 0,1) distribution? This problem is illustrated using the 

p —value discrepancy plot (Davidson and MacKinnon, 1998). The p —value discrep

ancy plot is based on the empirical distribution function (EDF) of the p —values of 

some test statistic r , generated via Monte Carlo simulation using a data-generating 

process (DGP) that is a special case of the null hypothesis. The simulation is usu

ally carried out for a large number of M  replications obtaining simulated values 

Tj, j  =  1,2, ...M. The p —value of the Tj is the probability of observing a value of r  

more extreme than tj, according to some distribution F(t ). This distribution could 

be the asymptotic distribution of r , derived numerically or theoretically, as well as 

other distributions such as an approximation derived by bootstrapping. The p —value 

is a function of Tj, pj =  p{rj). Assuming r  is asymptotically distributed as a standard 

normal with DF 4>(z) and CDF $ (2), then pj =  1 — $(Tj)6.

The EDF of the pj is an estimate of the CDF of p(r). At any point r* in the (0,1) 

interval, it is defined by

1 m
*■(*«) (7-14) 771 r—f3=1

6For a two-sided test, the p—value is pj =  p(|tj|) =  2(1 — $(r,)).
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where I(p j < x*) is a Boolean operator that takes the value 1 if the argument is true 

and 0 if not true. Although the function (7.14) can be evaluated at every data point, 

when m  is large it is unnecessary in order to produce a reasonable picture of the 

(0,1) interval or one of its portions. In these applications 1000 equally spaced data 

points are considered, x ^ i  =  1,2, ...1000. The simplest graph that can be analyzed 

is the plot of F(xi)  against X{. However, for dealing with test statistics that are well 

behaved, it is more revealing to plot the p —value discrepancy plot, namely F(x{) — Xi 

against X{.

The p —value discrepancy plot of the t-ratio statistic, for the Pareto and the sym

metric Pareto with different values of a  was constructed as in (7.14), where the 

p —value is derived both using the standard normal and the distributions derived pre

viously by simulation. The p —value discrepancy plot allows one to distinguish at a 

glance among test statistics that systematically over-reject, test statistics that sys

tematically under-reject and test statistics that reject about the right proportion of 

times at each desired level of in the first case the plot will be over, in the second 

below, in the third around the zero line.

Let us now assume that we have a random sample from a symmetric Pareto 

distribution with 1 < a  < 2 and we run a test H q : p  =  po against the alternative 

H a : p  7̂  po, where p  is the true mean and po some value on the real line. The 

sample mean is used to estimate p. Performing such a test using the standard normal 

rather than the correct distribution causes the null hypothesis to be under-rejected 

by quite a small amount, not larger than 5% for tests of size 5%, and even less for 

tests of size 1% or 10%. This conclusion would often lead us to ignore the caveat
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of having a systematic error in rejection probability using the standard normal for 

testing two-sided hypothesis with a symmetric Pareto distribution with 1 < a  < 2. 

However, two important points should be noted.

First, the “ignore argument” can be an acceptable policy if the size of the test is 

smaller than 10%. If the test has a larger size - for instance 40% - the ERP can be 

larger than 10 and is obviously more difficult to tolerate7. Clearly, the former policy 

corresponds to minimize the type II error as opposed to minimize the type I error, as 

it is typically performed in economics and several other disciplines. In such cases it 

is common to find confidence intervals with about 60% coverage probability (see for 

instance Karlen, 2002).

Secondly, the “ignore argument” cannot be extended to the Pareto distribution. 

The ERP for a two sided test about the mean of a Pareto distribution with 1 < a  < 2 

can be quite larger than 10%. For instance if a  =  1.1, the test will over-reject H 0 about 

60% of times (Figure 7-7), even for tests of size 5%. This result clearly comes from the 

non standard distribution of t 2 (Figure 7-4). The same concerns apply to one-sided 

tests: standard testing is highly unreliable. For instance, a test of the hypothesys 

Ho : \i =  fio vs. Ha  : [i > Ho, for the Pareto distribution with 1 < a  <  2, assuming 

asymptotic normality, will seriously under-reject with an ERP that increases with the 

size up to the 40% level. For test of the hypothesis Ho : \l — //o vs. H a : fJ> < fM) the 

test will dramatically over-reject with an ERP which can be larger than 60%, even 

for tests of size 5% (Figure 7-8).

7Although tests of size larger than 10% are rather unusual in economics it is much less so in other 
disciplines, such as physics, where the main point is often to maximize the power of the test, rather 
than to minimize its size.
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Figure 7-7: ERP for two-tail test with a sample from a symmetric or a positive definite 
Pareto with 1 < a  2.
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Figure 7-8: ERP for one-tail test with a sample from a symmetric or a positive definite 
Pareto with 1 < a  2.
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Obviously, the non standard distribution of the t-ratio with infinite second moment 

does also affect the two-sample test of difference of means. Let us assume that we 

have two independent samples from two different distributions, one of which is a 

Pareto distribution with infinite first or second moment. Call the two distributions 

A  and B.  We want to test whether the mean of the first is different from the mean 

of the second using the t-ratio

fD =  ______ Va  ~  Vb________________ (7 1 ̂
2 ( }

where Ha i Hb  are the true means, and S £ ,  S% are the sample variance of A  and B , 

respectively. The distribution of t% is again non-standard. Moreover, in many cases 

it does not look to converge to a stable distribution as the sample size increases. 

Figure 7-9 shows via Monte Carlo simulations the distributions of the t-ratio, t!?, for 

testing the difference in means of two Pareto distributions that may differ in a  but 

are constrained to have the same location parameter, (3 =  3, on the assumption that 

a sample of the same size has been drawn from each. Clearly, there is no point in 

using the sample t-ratio and comparing it with the normal critical values.

7.4 Solutions

The main problem with testing with TT distribution, such as the Pareto and sym

metric Pareto with 1 < a  < 2, comes from the fact that the t-ratio distribution 

converges towards a distribution which is clearly not the standard normal. It also
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Figure 7-9: Test of difference in mean of Pareto distributions with /3 =  3.

depends on unknown parameters, such as the a  in the Pareto and symmetric Pareto 

distributions. Provided we had full knowledge of the true a  parameter of the Pareto
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complication derives from the fact that the parameter a  is rather difficult to estimate 

with confidence even in large samples: the Maximum Likelihood estimation of a, 

being based on the sample mean, which is highly non-robust, is highly non-robust 

itself and presents a large variability (Rytgaard, 1990); the Hill estimator (Hill, 1975), 

which is based on ordered statistics and in its simplest form produces a plot to identify 

the a  parameter, in many cases is totally unhelpful, producing what have been defined 

“Hill horror plots” (Embrechts et al., 1999). Hence, it is not possible to derive the 

true distribution of the t-ratio using Monte Carlo simulation since it changes quite 

significantly for different values of a , as we saw in Section 7.2.

An alternative solution is then to consider a more robust statistic than the mean, 

such as the median (Amemiya, 1985, among others).

Let X i,...,X /v be a sample from a continuous distribution F,  defined on the 

real line, and X i  < X 2 < ... < X n  be the order statistics, obtained arranging the 

observations in increasing orders without ties. The p-th quantile of F  is defined 

as =  F _1(p), and the p-th sample quantile is defined as X k  where k  =  \pN] 

is the smallest integer greater than or equal to p N .  Provided the DF f ( x )  exists 

and is continuous and positive in a neighborhood of some quantile, then the joint 

distribution of the corresponding sample quantile is asymptotically normal. For the 

median, x.g, it can be proved (Ferguson, 1996, Ch. 13) that:

V N i X ^  -  * ,5) S  N  (o , (7-16)
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and the t-ratio statistic is

4  =  (7-17)

where X 5 and are the sample and true median, respectively, and S x  =  )

where f{x, 5 ) is a consistent estimate of f (x . 5 ). The asymptotic normality of £ 3  can 

be also seen in Figure 7-10 and 7-11, where /(x . 5 ) has been estimated using a kernel 

density estimator with fixed bandwidth.
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Figure 7-10: £ 3  with infinite first moment distributions
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line. In these cases, using a sample size N  = 100, the ERP is never larger than 4% 

for tests of size less than 10%. The ERP is always smaller than 5% even with larger 

test sizes for two-tail and left-tail tests. It is negligible for left-tail tests (Figure 7-12).
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Figure 7-12: ERP with t3 from a Pareto distribution with 1 <  a  <  2
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income presents a larger probability of large incomes since the progressive personal 

income taxation compresses the income range. In this simple illustration, the problem 

of the consistent estimation of the j3 parameter is neglected. The variable is truncated 

at Lit 30 millions (about €15.000). The sample is split into two groups: the employed 

and the others. The incomes in the former group belongs to people who declare to 

be employed; the latter is the residual group. The average BT income over Lit 

30 millions of the employed is 53.8 millions and maximum value is about 10 time 

larger than (3. The average BT income of the residual group is on average about 

Lit 2 millions larger than employment income and the maximum value is about 50 

times larger than (3. The second sample is nearly twice the size of the first (Table 

7.1). Testing the hypothesis that the average income over f3 of employment income is 

different from the average income over (3 of the non-employment income, the t-ratio 

statistic, t§ ,  is -1.739. A naive researcher, who does not check for the possibility that 

a  > 2 for both distributions, would compare it with the standard normal critical 

values and conclude that the two distributions are different and that the mean of 

the BT income of the employed group is smaller than the income of other group as 

the p —value is P r( t  < —1.739) =  0.041. Since (3 is given, she would also conclude 

that the a  parameter is larger for the employed than for the others. However, as 

shown previously, the mean cannot be used if the samples are distributed as Pareto 

distributions with a  < 2. Moreover the mean is a highly non robust estimate and, 

for these type of data, it is likely that a  <  2.

Using the median instead, the t-ratio statistic, £3, is 6.044. The results of Section
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Variable Obs Mean Median Min Max
employed

others
2093
3485

53830.44
55718.96

46138.3
42935.3

30150.38
30075.19

384154.1
1449541

Table 7.1: Summary statistics for BT income over Lit 30 millions

7.4, lead us conclude that the two medians are different and the samples come from 

two different Pareto distributions. Moreover, it also suggests that the median of 

the employed sample is larger that the the median of the residual group, i.e. the a  

parameter is larger for the latter group.

7.6 Conclusions

This chapter has investigated the issue of performing inference with TT distributions, 

which are often found in various fields of economics, including the income inequality 

literature8. It has been shown that when the distribution is TT, and the first mo

ment is finite while the second is not, the standard t-ratio does not asymptotically 

converge to a standard normal distribution. Hence, it was discussed when inference 

is invalidated and how relevant the ERP can be. A simple road map is suggested 

to the careful researcher: whenever she suspects that the sample could come from a 

Pareto distribution with infinite variance, either she does not perform any inference 

at all or she uses the median. In the latter case it is then possible to compute a 

t-ratio statistic with it, and compare it with the critical values of a standard normal 

distribution.

This solution is superior to the classical t-ratio based on the sample mean and

8For a short review of the relevance of the TT distributions in the economics literature, see 
Appendix E, Section 7.8.
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would be correct in many situations. However, the median-based t-ratio statistic 

could still present problems in particular samples: as studied in Cowell and Victoria- 

Feser (2002), the median can also be nonrobust, especially in the tails, where dead 

intervals are more likely to appear.
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7.7 A ppendix D: M oments o f the sym m etric Pareto  

distribution

The first moment of the symmetric Pareto distribution can be obtained using convo

lution:

E { X ) (aPa)2(x +  t ) - a- 1x - a- 1dx

[dt
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The second central moment of the symmetric Pareto distribution is:
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7.8 Appendix E: TT in the economics literature

The results established above relate to the Cauchy and the symmetric Pareto distri

bution with infinite first moments as important elements of the class of TT distribu

tions. In public economics the Pareto distribution was introduced in Pareto (1896) 

to describe the distribution of incomes. Pareto distribution has proved important 

for modelling top-income distribution or wealth distribution and the coefficient a  has 

often been estimated around 1.5 (for various reference see Cowell, 1995). In economic

geography TT distributions are of interest for the distribution of cities by size. The

interest springs from “Zipf’s law”, which says that for most countries the size dis

tribution of cities fits a power law, i.e. the number of cities with population greater 

that a given threshold C  is proportional to 1 /C  (Zipf, 1949). Zipf’s law is a discrete 

form of the Pareto distribution. Given the size in population of a given city, X , its 

density function is:

P r ( X  > C )  = 1 -  a X ~ a (7.18)

In this model a  can be estimated by regression:

log(y) =  /x +  alog(x) (7.19)

where x  and y are size and rank, respectively. In many empirical studies a  is found 

to be not significantly different from 1 (for a discussions and reference, see among 

others Gabaix, 1999). In industrial economics TT distributions are of interest for 

the distribution of firms by size (Hart and Prais, 1956; Steindl, 1965). Gibrat (1931)
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proposes a stochastic growth model to explain the rank-order relationship, primarily 

referring to firms9. Let x t be the size10 of a firm x  at time t, the evolution of x  over 

time is expressed by:

x t = I- Xtx t- i  (7.20)

where At is a random growth factor, and fi is a constant. In general, At is does not 

depend on firm size, x t, but can depend on other economic variables, including the 

size of the other firms in the industry. Hence, the rank-order relationship within 

an industry is conditional on their relative size. The implied distribution of random 

variables generated by an equation as (7.20) is a Pareto distribution.

The Gibrat and Zipf relationships are referred as “laws” because of the striking 

constancy of the estimate of the a  parameter, found to be not significantly differ

ent to 1. This means that none of the standard moments of the underling Pareto 

distributions exist.

In finance TT distributions are of relevance since it is well established that returns 

of financial data, as well as size of corporate bankruptcies, are non-normal. These 

issues arise also policy matters regarding the regulation of markets where such ex

tremes occurs (Embrechts, 2001; Danielsson and de Vries, 1997; Loretan and Phillips, 

1994).

In the economics of information technology there is a growing literature on heavy 

tailed distributions. The design of robust and reliable networks has become an in

9For a survey and an embedding of this law into economic optimization framework with a model 
of market structure see Sutton (1997).

10Size may be any measure of firm size, e.g., market capitalization.
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creasingly important issue in today’s Internet world. It has been established that 

Web traffic often presents heavy-tailed distributions, i.e. that the distribution of file 

sizes in some systems declines with power law (Arlitt and Williamson, 1996) and 

the parameter a  has been estimated to be approximately equal to 1 (Crovella and 

Bestavros, 1996). This literature suggests that there is a direct link between the self

similar nature11 of measured aggregate network traffic and the underlying heavy-tailed 

distributions of the Web traffic at the source level (Zhu et al., 2001). For example 

the lengths of bursts in network traffic and the sizes of files in some systems are well 

described by distributions with non-negligible probability of extremely large events. 

Additional evidence of power-law behavior is present in same data on transmission 

lengths of network transfers. Bodnarchuk and Bunt (1991) show that the sizes of 

reads and writes to an NSF server12 seem to show power-law behaviour. Paxson and 

Floyd (1995) found that the upper tail of the distribution of data bytes in FTP bursts 

was well fit to a Pareto distribution with 0.9 < a  <  1.1. These are relevant element 

for designers of computing and telecommunication systems who need to use heavy 

tail distributions for simulating workloads (Crovella and Lipsky, 1997).

11 Self-similar process are stochastic processes that are invariant in distribution under suitable 
scaling of time and space (Embrechts and Maejima, 2000). Self-similarity refers to the condition in 
which the autocorrelation of a time-series declines like a power-law, leading to positive correlations 
among observations widely separated in time.

12 Originally developed by Sun Microsystems, the Network File System (NFS) is a TCP/IP appli
cation that has since been implemented on most DOS and Unix systems. NFS allows one to graft 
remote filesystems - or portions of them - onto your local namespace. Directories on the remote 
systems appear as part of the local filesystem and all the utilities used for listing and managing files 
(e.g. Is, cp, mv) operate on the remote files exactly as they do on local files.
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Chapter 8

Conclusions

This thesis focuses on income inequality in Italy but it raises a number of points that 

are of more general interest. It proceeds along three main themes: (a) The value 

of microsimulation and its relevance in terms of public policy assessment, analysis 

of socio-economic trends and data analysis, (b) Practical methods for analyzing the 

causes of inequality, (c) Special methods required for analysis of income distribution 

data.

8.1 The value of microsimulation

The term microsimulation is used here in a broad sense. In the Public Finance 

literature microsimulation is often considered to be a contraction of tax-benefit mi

crosimulation. However I call microsimulation any technique based on a process of 

imitation of complex systems given a set of information provided by micro data sets 

(see Chapter 1). Microsimulation can then be used for simulating the effect of tax-
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benefit policies as well as the effect of socio-demographic changes through the devel

opment of counterfactuals. Conterfactuals are constructed to answer “what happens 

if” questions and can be used to forecast ex-ante the effect of a set of interventions on 

a population or to evaluate ex-post what would have happened had a different policy 

been introduced.

The first part of the thesis is mainly focused on tax-benefit microsimulation. Tax- 

benefit microsimulation models (MSMs) are powerful tools for fiscal policy analysis: 

they are developed using a representative micro-data set and, when compared to 

representative household analysis, they provide a more reliable picture of the effects of 

changes in tax-benefit policies on individual and social welfare. The new TABEITA98 

model (Chapter 2) plays a special role as an MSM in the context of Italian personal 

income taxation. As any Italian MSM it is necessary to model before-tax income and 

assess the importance of taxation in altering income distribution since available data 

for Italy only come as disposable income, with no information about taxes paid and 

(some of the) benefits received. TABEITA98 improves on existing Italian MSMs for 

addressing the grossing-up of the sample to population totals, both for redistributive 

analysis and the forecasting of effects of fiscal reforms on public accounts. It is shown 

that if the grossing-up procedure is overlooked results can be seriously biased since 

some population sub-groups are not correctly represented in the sample. TABEITA98 

is also used to provide an updated estimate of tax evasion in Italy. The general point 

of tax-benefit microsimulation models is that they are a powerful but demanding task 

and their aims should not be just the production of numbers: proper attention should 

be paid to issues such as validation of the results, grossing-up to population totals
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and, in particular, reliability of their estimates.

As with other comparable MSMs, TABEITA98 allows one to build counterfactuals 

through the modification of tax-benefit parameters. In Chapter 3.3 TABEITA98 is 

used to analyze the effect of the 1998 Italian personal income tax reform on household 

income distribution. However, the main contribution of Chapter 3.3 is to suggest ana

lyzing MSMs’ output using nonparametric density estimation to complement analysis 

through standard summary statistic. Nonparametric density estimation allows one to 

detect peculiarities of the income density and to have a visual representation of the 

effect of personal income tax on before-tax incomes. Although other contributions 

had already noted that the 1998 Italian personal income tax reform had reduced in

equality, the use of nonparametric density estimation was successful to show what 

others had overlooked: reduction of inequality was not evenly spread among popula

tion subgroups and some elements of the reform where more effective than others to 

improve income distribution. Moreover, it was shown that personal income taxation 

has a major role in explaining the bimodality of disposable income distribution. The 

analysis was performed developing counterfactuals such as “what would have occurred 

if a given feature of the 1998 reform was as it was in 1991”.
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8.2 Practical m ethods for analyzing the causes of 

inequality

Chapter 6 develops a microsimulation methodology to build counterfactuals to an

alyze inequality trends. It does not use a tax-benefit MSM as it is performed only 

on after-tax incomes and it is applied to Italy. The main reason why microsimula

tion is used is because traditional methods for inequality decomposition are unable 

to explain but a small part of the change of inequality across time (Brandolini and 

D’Alessio, 2001). Regression-based methods for inequality decomposition were not 

considered since they axe not convincing for a number of reasons, and in particular 

because a one-equation regression model is unable to explain the most of household 

income formation (see Chapter 5). The combination of two microsimulation method

ologies, namely the DiNardo et al. (1996) and the Burtless (1999), made it possible to 

show that among the socio-economic factors that played the major role for the evolu

tion of household inequality there are the increased female labor force participation 

and the increased dispersion of employed and, in particular, self-employment income. 

Contrary to received wisdom, changes in the probability of receiving a pension and 

changes in pension income dispersion had only a minor effect.

217



8.3 Special m ethods required for analysis of in

come distribution data

A recurrent point in the thesis is that data quality is an issue for inequality analy

sis. As revised in Chapter 6, Section 6.1, various authors noted a U-shaped trend 

in employment inequality since the late 1970s but failed to find any similar trend on 

household income inequality. Brandolini and Sestito (1993); D’Alessio and Signorini 

(2000); Brandolini and D’Alessio (2001) believe instead that household income distri

bution is mainly characterized by fluctuations rather than by a clear trend. Section

6.4 shows that these fluctuations are mainly due to an over-sampling of household 

with small number of income receivers. Counterfactual analysis can contribute to 

the removal of such a bias: the resulting picture is that of an household income in

equality trend similar to the individual income inequality trend, decreasing until the 

end of the 1980 and then increasing. Moreover, the importance of the dispersion of 

self-employment income for the evolution of household income inequality shows that 

no matter what concern we may have about the reliability of self-employment income 

data, if we are interested in household income we cannot neglect the role of self- 

employment dynamics and should instead think of possible improvements in survey 

data collection.

Data quality seriously affects the reliability of estimates. In Chapter 4 the issue 

is analyzed in the context of MSMs. In particular, using the bootstrap to compute 

confidence intervals, we can see that it is not the tax-benefit microsimulation per 

se that increases variability. On the contrary, since tax-benefit simulation is highly
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non-linear it can sometimes even have beneficial effects on the variability of estimates. 

The main factors that seem to affect reliability of estimates are data contamination 

or extreme values, which are a typical feature of income distributions. In Chapter 7 

the issue of thick tail distributions is analyzed. It is shown that simple inference on 

samples drawn from Pareto distributions with tail indices typically found in income 

distribution analysis can be seriously misleading. A possible solution lies in using a 

modified t-ratio statistics that is well-behaving as the sample size increases.

This thesis highlights the common-sense point that empirical analysis of public 

policies is a complex task. Institutions interested in forecasting and analyzing effects 

of public policies on income distribution should devote great effort to the production 

of good quality data. Researchers should be careful to use them: even when data are 

reliable and representative of a population, available methodologies can have unsat

isfactory performance, also because income distributions typically present a positive 

probability of very high incomes compared to the average. However, alternative pro

cedures can be considered. I here suggest the construction of counterfactuals using 

microsimulation analysis. It can indeed be very informative, provided major compli

cation with data are properly handled.
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