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A bstract

This thesis explores pricing models for interest rate markets. The 
model used to describe the short rate is based on the discontinuous shot 
noise process. As a consequence the market is incomplete, meaning 
that not all securities contingent on the short rate can be replicated 
perfectly with a dynamically adjusted portfolio of a bond and cash. This 
framework is still consistent with the absence of arbitrage as evidenced 
by the existence of an equivalent martingale measure. This measure is 
not unique, however, due to the incompleteness of the market.

Two approaches to pricing contingent claims are pursued. The first, 
risk-neutral pricing, evaluates the expected value of the pay-off at expi­
ration under an equivalent martingale measure. A parameterized class 
of martingales, based on the Esscher transform, allows for the definition 
of a flexible set of equivalent martingale measures and results in a for­
mula for the conditional joint Laplace transform of the short rate and its 
time-integral. The pricing formula for a discount bond follows trivially 
from these results. A method for pricing a European call option is also 
proposed, requiring numerical inversion of the aforementioned Laplace 
transform.

The second approach, mean-variance hedging, addresses the incom­
pleteness of the market. A contingent claim is priced by forming a 
portfolio of a bond and cash. The portfolio is dynamically updated to 
mimic the pay-off of the claim at expiration. The replicating portfolio 
is restricted to be self-financing and predictable. This approach leads to 
a closed-form pricing formula for a discount bond and formulae for Eu­
ropean call and put options, requiring the numerical Laplace inversion 
methods mentioned above. All this is in the context of a discrete-time 
model that includes as a special case a discrete-time version of the shot 
noise process.
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Chapter 1

Introduction

1.1 M artingales and Arbitrage

Martingale theory has provided a suitable framework for pricing securities, 
particularly contingent claims. A key element of this framework is the exclusion 
of arbitrage opportunities, which started with the work on option pricing by 
Black and Scholes [6].

Harrison and Kreps [26] relate the concept of arbitrage to the valuation of 
contingent claims in a general setting for the discrete-time case using results 
from martingale theory, while Harrison and Pliska [27] expand these results 
to the continuous-time case. See Harrison and Pliska [27] and Baxter and 
Rennie [5] for specific derivations of the Black-Scholes option pricing formula 
that are based more explicitly on the relation between martingale theory and 
the absence of arbitrage than that of Black and Scholes.

This section summarizes some results of the work mentioned above relevant 
to this thesis. The notation used in Harrison and Pliska [27] will be adopted in 
what follows. We begin by calling into existence a probability space (fi, T , P) 
and filtration {Pt\ 0 < t  <  T}, satisfying the usual conditions (see Harrison and 
Pliska [27] or Protter [35]). In a frictionless market with unrestricted borrowing 
and short selling let the price processes (which are right continuous with left- 
hand limits or RCLL) of K  +  1 securities be given by positive components 
5°, S'1, . . . ,  S K which are adapted and collected in a vector S. The market is
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assumed to evolve from time 0 to time T. Security zero plays the role of a 
cash bond, the price of which, if it is absolutely continuous, may be written

f* \  dsas eJo a where Xt is interpreted to be the instantaneous short rate at time 
t. It will be convenient to normalize the price processes by dividing by the 
price of security zero. Thus the discounted price processes Z°, Z 1, . . . ,  Z K are 
obtained, where Z° is identical to 1 for 0 < t < T.

A trading strategy ip =  {<pt : 0 < t < T}  is defined to be a predictable 
vector process with components <p°, ip1, . . . ,  ipK. The vector process <p is pre­
dictable if its components (pl, i  = 0 , . . . , K  are measurable with respect to the 
a-algebra generated by the adapted processes with left-continuous paths. A 
strategy (p defines a portfolio with value process V  (ip) =  X)£=o (p'S1. The gains 
process of portfolio (p is defined to be the stochastic integral G (ip) — f  <pd,S = 
EiLo f  <pldSl or Gt ((p) =  Jo <pudSu. A strategy ip is said to be self-financing if 
V (ip) =  Vo (p) +  G (ip), where Vo (ip) is the initial value (investment) of the 
portfolio.

The portfolio may also be viewed in terms of the discounted securities. The 
discounted value process is defined as V* (ip) = 0 ipxZ % =  ipQ+Y$L i (f t^ t and
the discounted gains process as G* (ip) = f  ipdZ =  I  ip'dZ*. Harrison and 
Pliska [27] prove that <p is self-financing if and only if V* (ip) =  V̂* (<p)+G* (ip).

Next the existence is assumed of at least one measure P* which satisfies 
the following: 1) P* is equivalent to P  and 2) the discounted price processes 
Z 1, . . . ,  Z K are P*-martingales. It will be necessary to determine the existence 
of P* in specific applications. If such a P* exists then for predictable ip1 the 
stochastic integrals /  ipldZ% are local P*-martingales. Moreover, because the 
Z x are positive, /  ip'dZ1 are supermartingales under P*.

An arbitrage opportunity is defined to be a self-financing strategy ip such 
that Vo (ip) =  0, Vo (ip) > 0 for 0 < t < T, but Vt  (ip) > 0 with positive prob­
ability. There can be no arbitrage opportunities if an equivalent martingale 
measure exists. This is because, as mentioned above, under any equivalent 
martingale measure P*, V* (ip) is known to be a positive supermartingale and 
thus must remain zero if it starts there. Under certain conditions the reverse 
implication also holds true yielding the Fundamental Theorem of Asset Pric­
ing, which states that the existence of an equivalent martingale measure is
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equivalent to absence of arbitrage. See, for example, Schachermayer [37] for 
a proof of this theorem when time is finite discrete. Other treatments of the 
theorem can be found in Harrison and Kreps [26], Harrison and Pliska [27] and 
Delbaen and Schachermayer [15, 16].

A contingent claim is defined to be a positive, integrable random variable X  
(by convention T  =  T t , thus X  is .Fr-measurable). Such a claim is attainable 
if there exists a self-financing strategy such that Vf (<p) =  (Sj.)-1 X , then 
(p is called a replicating strategy and tt =  Vq (ip) the price associated with 
X .  Traditionally the trick has been to limit the range of trading strategies 
<p to predictable processes for which V* (tp) is a P*-martingale, in which case 
7r =  E* [Vf (ip)] = E* [(Sj.)-1 x j .  Attainability is then defined with regards 
to this more limited set of strategies. A market is complete if all contingent 
claims are attainable. If a market is complete then the equivalent martingale 
measure is unique, see Harrison and Pliska [27].

The search for an equivalent martingale measure is thus justified in two 
ways. Firstly, finding at least one equivalent martingale measure implies the 
model does not allow arbitrage opportunities, providing an economic rationale 
to support the theory. Secondly, if the securities market is complete the mar­
tingale measure is unique and yields a unique price for any contingent claim.

Completeness is a fairly specialist property, which even minor modifications 
of a complete model may not possess. Examples are diffusion processes with 
a stochastic volatility component and stochastic processes with jumps. This 
thesis explores an incomplete model of the latter type. When the market is 
no longer complete not all contingent claims are attainable. The absence of 
arbitrage is still implied by the existence of an equivalent martingale measure, 
but as this measure is no longer necessarily unique, neither is the price of a 
non-attainable contingent claim.

Since no replicating strategies exist for an non-attainable contingent claim, 
one possible approach is to choose a strategy that is as close as possible to 
a replicating strategy according to a some (subjective) criterion. Follmer 
and Sondermann [22] drop the condition that a replicating strategy be self- 
financing. In their approach the strategy is certain to have a terminal value 
equal to the pay-out of the claim at expiration, but may require cash in- and
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out-flows during its lifetime. The strategy is chosen by minimizing a risk func­
tion, which is defined as the expected value at present of the square of the cash 
flows to the strategy incurred over the remaining time to expiration. Follmer 
and Sondermann [22] only consider the case where K  =  1 and the discounted 
price process is already a martingale under the base measure. It turns out 
that the risk minimizing strategy is mean-self-financing, that is the cost pro­
cess, defined to be the accumulated cash flows to the strategy, is a martingale. 
Follmer and Schweizer [23] extend this result to the general case where the 
discounted price process is a semimartingale and the strategy is locally risk- 
minimizing. Schweizer [39] provides an overview of the above as well as the 
alternative approach, mean-variance hedging, where the replicating strategy 
is required to be self-financing and where the expected value of the squared 
difference between the value of the replicating portfolio at expiration and the 
pay-off of the contingent claim is minimized.

1.2 Interest Rate M odels

The main topic of this thesis is the pricing of securities that axe contingent on 
interest rates. As with all securities, martingales and arbitrage play a key role 
in pricing those that depend on interest rates. An extensive literature is de­
voted to this topic, but the paper by Heath, Jarrow and Morton [28] is central. 
In this paper the authors build on the work of Harrison and Pliska [27] to con­
struct a unifying theory for valuing contingent claims under a stochastic term 
structure of interest rates. Their model, based on diffusion-type processes, 
describes a complete market with a unique equivalent martingale measure and 
unambiguous prices for contingent claims. The earlier companion papers by 
Cox, Ingersoll and Ross [8, 9], also describe a term-structure theory based 
on diffusion-type processes, but do not use the martingale theory-based ar­
gument of no-arbitrage to value securities. Instead, their approach is based 
on economic equilibrium. Baxter and Rennie [5] provide an overview of the 
various term-structure models available in the literature that are special cases 
of the very general Heath-Jarrow-Morton (HJM) model.

Some terminology standard in the term-structure literature follows. Analo­
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gous to section 1.1, a probability space (17, T ,  P) and filtration {Tt\ 0 <  t  <  t }  

describe the uncertainty in the economy and evolution of information, respec­
tively. Default-free discount (zero-coupon) bonds trade with various maturities 
T  € [0, t]. The price at time t  of the T  maturity bond is denoted by P  (t, T). It 
is required that P (T ,T )  =  1, P ( t ,  T) > 0 for t  € [0,T] and <9 log P  (£, T) /d T  
exists.

The instantaneous forward rate at time t  for date T  > t  is then defined by

f { t , T )  = - d \ o g P ( t , T ) / d T  for T  E [0, r ] , te [0 ,T ]

This rate represents the forward price at time t  of instantaneous risk-free bor­
rowing at a later time T. It follows that

P ( t ,  T) =  exp

The short rate at time t  is the instantaneous forward rate at time t  for date t  

and is given by
A* =  /  (£, t) for t e  [0, t]

The value of a continuously compounding cash bond or deposit is then given 
by Bt =  efoXads, the same as security 0 from section 1.1 above. This se­
curity will have the special role of being a numeraire for other securities. 
Thus the discounted zero coupon bond price is Z  (t, T) = B ^ lP  (£, T). Under 
the assumption of no arbitrage an equivalent martingale measure P* exists 
that allows a given interest rate contingent claim to be priced according to 
BtE* F t) , where X  is the pay-off at expiration. A direct consequence
is that the discount bond price is given by P  (£, T) =  BtE* •

In the HJM model the forward rate curve evolves over time according to a 
(possibly multi dimensional) stochastic process. Though many popular interest 
rate models are defined in terms of a short rate process, they can be written as 
a forward rate model along the lines of HJM. The interest rate model examined 
in this thesis is a short rate model. Instead of a diffusion-type process, however, 
the short rate model is based on the discontinuous shot-noise process. Unlike 
HJM, this model describes an incomplete market. The approach in this thesis

j 1 f  (t, s) ds j for T  e [0, r ] , t e [0, T]
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follows that of Dassios [10], Dassios and Jang [11, 12] and Jang [31], where 
the model has been explored extensively in an insurance mathematics context. 
The shot noise process is introduced in the next chapter.

1.3 Overview

This dissertation is organized as follows: Chapter 2 presents an overview of 
the shot-noise process. An important martingale is introduced which leads to 
an expression for the joint Laplace transform of the interest rate and its time 
integral. The martingale is also used to define an equivalent martingale mea­
sure based on the Esscher transform. These results will be used in subsequent 
chapters to derive results for pricing interest rate contingent claims. Finally, a 
short overview is given of the important affine jump-diffusion model, of which 
the shot-noise process is a special case.

Chapter 3 develops some results in a continuous-time risk-neutral pricing 
context. An interest rate model based on the shot-noise process is introduced. 
The price of a zero-coupon bond is derived by taking the expectation of the 
discounted pay-off under an equivalent martingale measure. The derivation 
of this result relies on the Laplace transform from Chapter 2. A method is 
presented to invert the Laplace transform when the jumps of the joint noise 
process are assumed to be exponentially distributed. This yields the joint 
probability density function of the interest rate and its time integral, which is 
used to compute the price of a call option on a bond, by taking the expectation 
of the pay-off under an equivalent martingale measure. The Laplace inversion 
method used here is well-known in the telecommunications literature [1, 2] 
as it is well suited for problems in queuing-theory, but we are unaware of its 
application heretofore in the field of mathematical finance.

In Chapter 4 a discrete-time interest rate model is introduced, which has as 
a special case a discrete-time version of the shot-noise process. This model is 
more general, however, and allows for non-deterministic paths between jumps. 
The discrete nature of this model makes it easier to price a non-attainable 
security by tracking the value of a replicating portfolio that is designed to 
have a value as close as possible (in a mean-square sense) to the pay-off of the

14



target security at expiration. The replicating strategy is derived by solving a 
recursive optimization problem. Using this methodology, a general contingent 
claim, which has zero-coupon bonds and European call and put options as 
special cases, is priced by forming replicating portfolios of a longer-dated zero- 
coupon bond and a cash account. The derived pricing formula is closed-form 
up to an expectation operator. The expected value is evaluated using Laplace 
inversion techniques in the context of a discount bond as well as a European 
call and put option. The expectation result is closed-form in the case of the 
bond while numerical Laplace inversion techniques are required for the options. 
These techniques lead to numerical evaluations that have not been before and 
the option pricing result is central to this thesis. The equivalent martingale 
measure implied by the mean-variance replicating bond price is examined and 
an explicit representation for the Rado-Nikodym derivative is derived. This is 
also a new result.

The model in chapter 4 is parameterized so that the length of the time- 
increments can be made arbitralily small. A limit argument then ties much 
of the discrete-time theory developed in 4 in with the continuous-time model 
presented in chapter 3. The framework developed for pricing bonds and Euro­
pean call and put options on bonds allows for a rich set of short rate processes 
that are discrete-time approximations to processes which can include multiple 
sources of jumps and diffusion-type behavior between jumps. These results are 
another novel contribution of this thesis to the mathematical finance literature.

Chapter 5 concludes with numerical implementations of the results devel­
oped in the previous chapters.
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Chapter 2 

Overview of the Shot Noise 
Process

2.1 Introduction

This chapter presents an overview of the shot-noise process. Much of the theory 
is based on piece-wise deterministic Markov processes introduced by Davis 
[13, 14]. We give an overview of the generator and the extended generator 
of a Markov process. Next, the shot noise process is defined along with its 
generator. An important martingale is introduced which leads to an expression 
for the joint Laplace transform of the shot noise process and its time integral. 
The martingale is also used to define an equivalent martingale measure based 
on the Esscher transform. These results are from Dassios [10], Jang [31] and 
Dassios and Jang [11] and will be used in subsequent chapters to derive results 
for pricing interest rate contingent claims.

Finally, a short overview is given of the important affine jump-diffusion 
model, of which the shot noise process is a special case. This is based on 
Duffie, Pan and Singleton [19].
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2.2 Strong Generator

In this and the following section notation similar to that in Davis [14] will 
be used and the reader is referred to this publication for further details. Let 

(Ft) , (xt) , (Px,x  € E)) be a Markov family on a state space E. The 
initial distribution is 6X, i.e. Px [xo =  x] = 1, while the transition function p is 
related to the measure Px by

Px [xt e A] =  p (t , x, A)

and satisfies the Chapman-Kolmogorov equation

p( t  + s ,x ,A )  = f  p(s,y ,A)p(t ,X jdy)
JE

The expectation operator associated with the above Markov family is then 
defined as

Ex [f (*<)] =  /  f ( y ) p  (t , x, dy)
JE

If we let B  (E ) denote the set of bounded measurable functions on E  we may 
define an operator Pt : B  (E) —> B  (E) by

Ptf ( x )  = Ex {f{xt)} (2.1)

Note that Ptf  (x) is again a function of x, the initial value of the process x t . 
The Chapman-Kolmogorov equation is equivalent to the following semi-group 
property of Pt for all s , t >  0 ,

PtPs =  Pt+8

The strong generator of a (vector) Markov process x t acting on a function 
/  (x), denoted by A f  (x), is defined as



for any function /  (x) in B (E), for which this limit exists. The strong generator 
can be regarded as a generalization of the derivative of Ex [f (x*)] with respect 
to t evaluated at 0. It can be proved (see Davis [14] or Oksendal [33]) that

EX [ / (*«)] = / ( * )  +  Ex [jf A f  (xu) du (2.3)(2.3)

for any stopping time t > 0. This is known as Dynkin’s formula. The set 
of functions for which the limit in (2.2) exists is called the domain of A and 
denoted by D .

2.3 Extended Generator

Consider the Markov process xt from the previous section. Let D (A) denote 
the set of functions f  in B  (E) for which the following property holds: for 
every /  G D (A) there exists a measurable function hf  : E  —» R  (which may 
vary with / )  such that the function t —► h f ( x t) is integrable Pz-a.s. and the 
process

is a martingale, where t > 0. We can then write A f  (x) =  hf (x) and call A  
the extended generator of the process x t. We write

which is essentially the same as (2.3), Dynkin’s formula. It is often much

(2.4)

Taking expectations on both sides gives us

Ex [Cl\ = Ex [f (xt)] -  Ex [f (x)] -  Ex A f  (xu) du = 0

As C{ is a martingale, Ex | c / |  =  Cq =  0 for any stopping time t > 0, and 
thus

Ptf  (x) =  /  (x) +  /  PuA f  (x) du (2.5)

easier to find easily checked sufficient conditions for a function’s membership
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of D (A) than of D  ( a )  .

2.4 The Shot Noise Process

The shot noise process consists of a series of random jumps occurring at poisson 
times. In between jumps, process decays deterministically at an exponential 
rate. The following definition is from Dassios and Jang [11]. At time t the 
process is represented as

At =  Aoe-* 1 +  J 2  V i e ~ i { t~ Si)
all t 
«j<t

where:

Ao initial value of A

2/i size of jump i with 2/* > 0 and E  (2/*) < 00

Si time at which jump i occurs, where s* < t < 00

S exponential decay 

p the rate of jump arrival.

The jump-size distribution is denoted G (y). The aggregated process x t is 
defined as the time-integral of Af:

Xt =  f  Xads 
Jo

Following Jang [31] and Dassios and Jang [11], a slightly more general type 
of shot noise process will be considered, where the parameters and jump-size 
distribution depend on time:

8{t) ,p(t) ,G{y\ t)  (2.6)

This is a special case of the so-called Piecewise Deterministic Markov Processes
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(PDPs), a general class of non-diffusion stochastic processes, developed by 
Davis [13, 14].

Using the fact that the triplet (xt, At, t) is jointly Markov, the notation in 
(2.1) can be adapted to suit the particular case of the shot noise process

Ptf  (x, A, 0) = E  [ f  (art, At, t)\ (x0, A0, 0) =  (ar, A, 0)] (2.7)

When conditioning on a starting point different from (x, A, 0), (2.7) implies 
that

Ptf  (xa, As, s) = E [ f  (xt+a, At+8, t +  s)\ (x„ Aa, s)] (2.8)

Also, the generator of the generalized shot-noise process described above, act­
ing on a function /  (x, A, t) is given by

A f  (x, A, t) =  ■— +  A ^  -  S (t) A ^  +

P (t) JjT + /  (x, A 4- 2/, t) dG (y ; t) -  f  (x, A, t)j (2.9)

where the domain of the generator, D (A), is the set of functions /  such that 
for all i =  1, 2, . . . ,

•  /  is absolutely continuous on R+ x R+ x [s*-!, s»), that is, between jumps.

•  ^ [ | / ( ^ i5As<,s i) - / ( x ai,A8r ,s i)|] < oo

This follows from the results presented in Davis [13, 14] and is stated directly 
in Jang [31].

The next result is from Jang [31] and can also be found in Dassios and 
Jang [11].

Proposition 2.4.1 (Theorem 2.1.11 by Jang) For constants k ,v  > 0 and
the aggregated process xt associated with a generalized shot noise process Xt as 
defined above, the function defined by

e~VXt exp f *  e - W d r ^ A t ^  X

e x p  ^ /o^ (s) [ l—g ( k e ^ B) — i/eAM f *  e-A (r)dr;s)]ds^ ( 2 .1 0 )

20



is a martingale where A (t) = JqS (s) ds and g is the Laplace transform of the 
jump-size distribution G.

Proposition 2.4.1 leads directly to the next useful result:

Corollary 2.4.2 The joint Laplace transform of Xt2 andxt2, given , is

e- "1**1 exp ( -  /1‘Je-A<r>ifr̂ At,) X

exp ( — f** p(s) |̂ l— f*2 e-A*rW;a  ̂j da) (2.11)

Proof: Because (2.10) is a martingale 

E Tt, xe~VXt2 exp f̂ceA(t2)-^eA(t2) f*2 e -^ d r jX t^  

exp (/0t2p(a)[l-5(fceA<*>-i/eA(a> f* e-A<r>dr;a)]ds) =  

e~VXt1 exp ^ - ^ f c e ^ ( t 1 ) _ | / e A ( t 1 )  f*1 e-AWdr^Xt!^ X 

exp (jjj1 p(a)[l-g(keAM-veA<s> f* e-A(r>dr;«)]da)

Substituting v = V\ and k =  z/2e_A^  +  v\ Jq2 e~A^ d r  into the above produces 
the desired result in (2.11). Note that from (2.11) and the fact that \ t is a 
Markov process, it follows that

eUlXtiE  [e~UlXt2e~^Xt2\ j rtl] =  E

Also note that x t denotes a specific scalar-valued process in this section and is 
distinct from x t in the previous section where it denotes any (possibly vector­
valued) Markov process. In fact, (xt, Xt, t) in this section taken together as 
a single vector-valued Markov process is analogous to xt from the previous 
section. For the special case 5 (t) =  5, the martingale in (2.10) reduces to

e—Kr,e—(*e«-*(e«—1))A, ^  (2.12)

When none of the parameters depend on time, the martingale further reduces
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to
e - ,z te-(*e«-*(e«<-l))At exp (pj^[l-a(fce^-y(e*._1))]rf.) (2.13)

Assume the latter case, where no parameters depend on time. Let Xt describe 
the short-rate process. Then the value of a cash bond (or deposit) at time t
is eXt. The extended generator of (xt,Xt,t) acting on a function /  (x, X,t) is
given by

A f ( X,X,t)  =  g  +  A | - a |  +

P [j^+ f ( x , X  + y , t) dG (y) -  f  (x, A, t)j (2.14)

a result found in Dassios [10] and a special case of (2.9).

2.5 The Esscher Transform and Equivalent 
Martingale Measures

The Esscher transform is a tool borrowed from actuarial science, as noted in 
Gerber and Shiu [25], which has also proved useful in finance. The transform 
induces an equivalent martingale probability measure on certain stochastic 
processes which can be useful in valuing derivative securities. Gerber and 
Shiu [24, 25] apply Esscher transforms to option pricing for several types of 
stochastic processes. Biihlmann, Delbaen, Embrechts and Shiryaev [7] discuss 
Esscher transforms as they relate to the no-arbitrage argument in mathemat­
ical finance. Jang [31] applies the Esscher transform method to the pricing of 
insurance derivatives.

Let P* denote a change of measure, equivalent to P. Then the expectation 
with respect to P* is defined as

E*
P*

X T (2.15)

for a random variable X , which is measurable wrt T .  The expectation of a 
process X t, adapted to T u conditional on T s can then be defined using the
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martingale Mt — E  [ ̂  | Pt\ as

E* Y  Mt
Ms Ts (2 .16)

The Esscher transform allows us to reverse-engineer P* by defining Mt as 
follows: Let R (x, A, t) be a measurable function such that Mt =  eR(Xt'Xt,t  ̂ is 
a martingale. Then we will use Mt to define the Radon-Nikodym derivative 
as in (2.16). This Radon-Nikodym derivative is a special case of the Esscher 
transform. For any measurable function /  the expectation of the random 
variable f  (xt, Xt,t) with respect to the newly defined probability measure is 
then given by

E-  [ / (* „  A * t) |* ]  =  [}[E [ e ’(:t M \ r s] ' J (2-17)

The following result is due to Jang [31], where it is proved in the slightly 
narrower context of the strong generator.

T heorem  2.5.1 Let xt andXt be as defined above. Let A denote their extended 
generator given by (2.14) and let A* denote the extended generator of (xt, At, t) 
under the new measure given by (2.17). Also, let R  be a function as defined 
above and furthermore satisfy the same restrictions as f  given below (2.9). 
Then A* acting on a function f  (xt, At ,t) is given by

A \ f ( x ,X , t )
1 eR(xAt) !-a .e .  (2.18)

Proof: Let P  denote the base measure with respect to which the process 
(xt, At, t) is originally defined and let P* denote the change of measure implied 
by using eR(Xt,Xt^  to define the Radon-Nikodym derivative. Recall from the 
previous section that A f ( x t,Xt ,t) is defined to be the process hf (xt, Af, t), 
where hf (x, A, t) is a measurable function of (x, A, t), such that the process

Ct = f  (x t , At, t) -  f  (0, A0, 0) -  f  hf  (xu, Au, u) du
Jo
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is a P-martingale. Similarly, for (2.18) to hold, we need the process

d f  =  /(*«. K  t) -  f  (0, A„, 0) - 1  X eR(J ^  U u  (2.19)

to be a P*-martingale. As C*^ is adapted to Ft, for t > s we have 

E> [c;! -  C 'J \Ta) =  E ‘ [ f ( x t, \ t , t ) \ F , ] - f ( x „ \ „ s ) -

I.t A  [ /  (xu, Au, u)
jit) du F s

(2.20)

We will examine the last term more closely:

rt A  [ /  (xu, Au, u)
)Au jti)

* tp* \  ̂ 1 / (Xui A*»u  ̂efl(Xt‘,A,1’u)]
^R{x\i j At* )U)

du

jM

F a \ =

rt  ̂ f  A  [ /  (xa, As, s) eR{-Xa >a)]
J ,  p “  -

F A  du =

du =

r>{A [ / (xs, As, s)
gi2(ls,Aa,s) dr (2.21)

In the first and second step above we made use of the Fubini theorem and 
Markov property of (xt, At) t), respectively. The operator Pt* is defined analo­
gous to (2.7) and (2.8). Using (2.17) yields

Pf f  (x8, 8̂1 s) — E  [ f  {,Xt+8i  ̂ ^)| (^sj )̂]
exp (R  (.xt+s, Xt+a, t +  s))

f  (x t+8, ^t+si t s')E  tJ exp(P (xa, Aa,s))
Pt [/ (x3, A3, s) exp (P  (a:3, A3, s))] 

exp (R (x8, \  S,s))

(xs, A 3, s)

(2.22)
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Substituting (2.22) into (2.21) results in

J f  Pr { ^  iR  (*«■ A»> *»} dT
exp (R (xa, As, s))

Pt_a [/ (xs, Aa, s) exp (R (x8, Aa, s))] _  /  (xa, Aa, s) exp (R (xa, Aa, s)) __ 
exp (R (xa, A5, s ) )  exp(R(xa, \ a,s))

p t-3 If (xa, As, s)] -  /  (xa, Aa, s) (2.23)

The RHS of the first equality in (2.23) follows from (2.5). In order to use (2.5) 
the function / ( x ,  A,£)exp(R(x, A, t)) must he in the domain of A, which it 
does by the restrictions imposed on R  in the hypothesis. Noting that

E* [f  (xt, Xu t)| T a\ =  Pt*_a [f (x„ As, s)]

then shows that the last term in (2.20) cancels out the first two. We conclude 
that C*^ is a martingale and thus that the generator of (xt, At , t) is character­
ized by (2.18).

We now turn to a specific form of eR X̂uXut\  namely a slightly rewritten 
version of the martingale given in (2.13):

_  g—niSxtg— («i+K2e5t)AtgP/0*[l—fl(«i+K2e5a)]ds

Here and n2 are constants such that «i > 0 and k2 > —Kie~6t* and it is 
assumed that the process evolves up to time t*(see Dassios [10] for details). 
Thus R  (x, A, t) has the following form:

R  (x, A, t) =  — K\Sx — +  n2eSt  ̂A + P J [l — 9 (^1 +  «2efo)] ds

The Radon-Nykodim derivative process may then be defined as

Mt = eR(xtAt,t) ^  e-KiSxte-(Ki+K2e6t)Xtepf*[l-g(Ki+K2e6a)]d3 (2.24)

Let A* denote the generator under the equivalent measure defined using (2.24).
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In order to find A* f  (x, A, t) we will need A  { /  (x, A, t) Define

ip (x, A, t) =  /  (x, A, t ) eR(x,x,t)

From (2.14) we know that

A<p(x,X ,t) = &  + \ ? g - 6 X j £  +

P <p(x, A +  y, t) dG (y) -  <p (x, A, *)j (2.25)

Furthermore, it is easily verified that

d t ~  \ d t + J d t )

^  =  e«(xA<) ( dJ -  + f f )
OX \o x  ox J

& P _ eR(x,X,t) ( W + f 9 R \
d x ~  \ d x ± J d x )

dR  =  -SK2e6tX +  p [l -  g (aci +  K2e6t)\

OR (x, A, t)

and

where

and

dx
—KiS

Additionally,

<p(x,X + y ,t) = f  (x , A + y ,t)  e-( 't*+«e<*)>'efl(x'A't) 

Substituting the above equations into (2.25) yields 

A<p (x, A, t) =

e“ ‘ A '’ { ! + -  “ I +/<■ [■ -  4 ( « . + ■ » " ) ] } +
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eR(xX‘)p \ J  /  (x, A +  y, t) (y) -  f  (x, A,«)] (2.26)

And thus

where

P f  f ( x , \  +  y, t )  e ' ^ + ^ d G  (y) -
JE+

p f  ( x ,\ , t )g (K i + K2e6t>)

=  % + x % ~ s x % + p t  {t) L f { x , x + y ' t] d G ' { y ' t]
(2.27)

P* (t ) = pg («i +  K2est) (2.28)

and

rfr*r„-rt e -{K1+K2e“)vdG(y)
d G  (y , t ) -  ~g ( K i  +  K 2 E s t )  (2'29)

This result is due to Jang [31] (Theorem 3.2.5) where it is noted that (2.27) 
is a special case of (2.9) and thus, under the new equivalent measure P*, Xt 
follows a generalized shot noise process with time-dependent parameter p* (t ) 
and time-dependent jump-size distribution function G* (y; t).

We will now obtain an expression for the joint conditional Laplace trans­
form (LT) of (xt, Xu t) under the equivalent martingale measure P*. This result 
can be obtained in two ways: Firstly, by using the generator A* in (2.27). The 
second way is by using the Laplace transform under the base measure P , given 
in (2.11).

We start by using the result in (2.27) combined with (2.12). Since

}—VXt exp (-(,kest-%(est-l))\t) exp (/oV (a)[l-$*(*e«*-$(e**-l);s)]<fe) (2.30)
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is a P*-martingale we have

E  |exp^-i/*t2-(fccit2_^^eit2-i^At2+J’ p*(a)[l-ff*(fce5a-^(e5*-l);«)]da  ̂|̂ rt1 j —

e~UXtl exp (-(fce**i-£(e**i-l))Atl) exp (f*1 p*(s)[l-p* (***--£ (e*8-l);a)]da)

Take

and

which implies

1/1 = v 

i/2 =  ke5t2 — ^  (e^ 2 — l)  

i/2e~6t2 +  ( l  — e~5t2>) =  k

and thus

kelt' -  -  (eil1 -  l )  =  +  y  ( l  -  e~s^ - ^ )

This leads to

E* =

e-v\xtx eXp ^_^e-i(t2-*i)+f^(i-e-i(t2-*i)))At1) X 

exp (-  / tt2p*(s)[l-fl*(y2e-^t2--)+^(i_e-tf(t2-«));s)]ds) =

e”*'1**1 exp X

exp ^-p/[p(Ki+K2e{8)-p(»^e-6(t2-®)+f^^i_e-i(t2- fl))+/ci+/C2ei*)]dâ  (2.31)

The second method allows us to prove the result in (2.31) without the trans­
formed generator. Using the joint Laplace transform of xt2 and Xt2, given Xtl, 
in (2.11) leads to

E* [ e -^ * * a c " ^ | Ftl] =
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e-(n+KiS)xHe-(n+n+Kâ ) x a exp (pJ^-^m + w **)]*)

E  (e -* l{*'se-('tl+',2e<‘2N  exp (p£s[i-i(«+«^*)]*)| ^ j . )
%'t \

exp ^-p J^2 Jl-p (̂iA2+«i+K2etft2)e-«(t2-«)+lil^UiI(i-e-«(*2-*))^jdaj 

e-/ci5a:tie-(«i+«2etfti)At1 exp ^  Jjj1 [i-̂ Kx+Kae*-)]*) 

e-{v\+K\S)xtx exp ^_^l̂ e-i(t2-ti)+K2e«i)-|-i^(i_c-5(t2-ti))+/c1)At1) X 

exp p̂ j'0t2[l-p(«i+/C2ei*)]tfâ  X

exp ^-p/ t*a Jl-5̂ (wa+Ki+K2eft2)e-^t2-*)+^JSl^(l-e-a(*2-»))JJ<l8̂  

e-mSxHe-(Ki+K2eSti)Xtl exp ^  j t t [1_3(#Cl+#taC*#)]<kJ

e~UlXtl exp (-(^2e-5(t2-*x)+i^(l-e-^t2-*i)))At1) X 

exp (pf£[g(!£ - ( !£-V2)e-6(t-2-e')+Ki+K2eSs)-g(Ki+K2eSB)]ds>j

which is the same result as (2.31), yielded by using the generator.

2.6 Affine Jump-Diffusion M odels

The shot noise process described above is a special (and simple) case of a more 
general class of processes called affine jump-diffusion (AJD) processes. AJD 
models nevertheless have sufficient structure to yield closed- or nearly closed- 
form expressions for securities prices and many models of the term structure 
are special cases. For an introduction to AJD term-structure models, see 
Duffie and Kan [18]. Duffie, Pan and Singleton [19] develop an option pricing 
methodology within the AJD framework. Duffie et. al. [17] provide a rigorous 
definition and characterization of regular affine processes.

Following Duffie, Pan and Singleton [19], but modifying the notation to 
conform to the previous section, the AJD model is defined as follows: Let a 
probability space (f2, J7, P) and information filtration {Ft, 0 < t < r} be given. 
Let C be a Markov process in some state space D C Rn, solving the stochastic
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differential equation

d(t — p, (£t) dt +  (j (£*) dBt +  dJt (2.32)

where B  is an (J^)-standard Brownian motion in Rn; p : D —> Rn, o : D —> 
Rnxn, and J  is a pure jump process whose jumps have a fixed probability 
distribution G on Rn and arrive with intensity {p (Ct) : t > 0}, for some p : 
D  —> [0, oo). The generator of the process in (2.32) acting on a function /  (£) 
is then given by

A f { Q  =  + ^  rtr(CM C)1’ +
dC .dC

P ( 0 [  [f(C + y ) - f  (C)] dG (y) (2.33)

An affine structure is imposed on the functions /i, aaT and p. Moreover, the
short rate is also assumed to be affine in its dependence on the state variable
£. The affine structure has made the model in (2.32) analytically tractable 
compared to its general form.

Comparing (2.33) to (2.14) it is immediately clear that for n =  1 and 
trivially affine transformations p, (x ) =  — Sx, a (x) = 0 and p (x ) =  p, the SDE 
in (2.32) defines a shot noise process.

The framework for the AJD models allows for an extension of the shot- 
noise process, described in section 2.4, by adding a Brownian perturbation. 
This process will be referred to as a diffusion shot noise process and is defined 
by the SDE

dXf; — —5 \tdt ■+■ crdBt dJ% (2.34)

Let its aggregated process x  be defined by

xt = f  \ ads (2.35)
Jo

Prom (2.14) and (2.33) the generator of the process (x t , At, t )  acting on a func-
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tion /  (x, A, t) is given by

d f  . , d f  t s d f  . I # 2/  2A/(*,A,t)  =  — + A5 i - * A g j  +  2 ^  +

P [jf + /  (x, A +  j/, t) dG (y) -  /  ( i, A, t) (2.36)

With (2.36) it is possible to extend the result in (2.13).

T heorem  2.6.1 Let A and x be as defined in (2.34) and (2.35), respectively, 
evolving up to a fixed time t*. Also, let and «2 be constants such that «i > 0 
and k>2 > —Kie~St*. Then the process given by

g KiSxtg («1+/S2e )At eXp J*^i_^Kl+K2e6a^ds_ la2 (2.37)

is a martingale.

Proof: Following Dassios [10], define

wt = 6xt +  A*

and

Zt =  Xte6t 

We will try a function of the form

/* (to, z, t) = e~Klwe~K2Zh (t) = e- ^ + » e- < ^ ‘h ̂

or

/  (x, A, t) =  /* (fa  +  A, \e st, t) =  e- KlSxe - ( '1+K2eSt)xh (t) (2.38)

Substituting (2.38) into (2.36) yields 

A f  (xt A, t) =
g- Kl(Xe-(KI+K2e‘>)x / h, +  1^2 ^  +  K2(,Sty h +
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e- M ( t ) p ^  ^  +  K2e«) _  x]

Setting this to zero yields

t i  (t) = h(t) p ( l - g  (ki +  «2e5t))  -  («i +  Ac2e<5t) 2J (2.39)

Solving for h (t) results in

h(t) = K  exp jp /04[l—<7(/ci+K2e*a)]ds—§a2 ̂ (/ei+^e**)2*  } (2.40)

where K  is an arbitrary constant. This completes the proof.
Theorem 2.6.1 leads directly to a generalization of the result in 2.11.

C orollary  2 .6.2  The joint Laplace transform of Xt2 and x t2, given Atl is 

E  [ e - ^ ^ e - ^ l ^ ]  =

exp |— P jf ( l  — 5 (vi  1~e~Ŝ 2~a) dsj x

exp|^cr2jf (vi 1- e~y?~") +U2e~s(t2-g)̂  dsj (2.41)

Proof: Because (2.37) is a martingale,

E ^ y e  '*iix*2 “(Ki+K2 e 2)*t2 expĵ J, ^p(l-p(/ci+/c2e5a))-^ (« i+K 2 etf5)2j<isj J  =
e  KiSxtl e  (K l+ K 2 e  )^*1 exp J o*1 ( l - g ( « 1+iC2e5a))d « -J< T 2 ^ ^ ( j s x + ^ e * ® ) 2* ]

(2.42)

Dividing both sides of (2.42) by

exp
*2 r •
f  p ( l—<7(«i+K2e*a) ) —̂ -(/ci+Ktte*41) Ida
n L J

and substituting the values «i =  ^  and «2 =  (^2 — ^ )  e yields the desired 
result.
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Chapter 3

A Continuous-Time Interest 
Rate Model

3.1 Introduction

This chapter introduces an interest rate model based on the shot-noise process 
described in chapter 2. The price of a zero-coupon bond is derived by taking 
the expectation of the discounted pay-off under an equivalent martingale mea­
sure. The derivation of this result relies on the Laplace transform results from 
Chapter 2.

Weeks’ method to invert Laplace transforms is introduced and applied in 
the context of a shot-noise process with exponentially distributed jumps. This 
yields the joint probability density function of the interest rate and its time 
integral, which is used to compute the price of a call option on a bond, by taking 
the expectation of the pay-off under an equivalent martingale measure. This 
equivalent martingale measure is often interpreted as a risk-neutral measure 
and this approach to option pricing will be referred to as risk-neutral valuation.

Though Weeks’ method is well-known in the telecommunications literature, 
as it is well suited for problems in queuing-theory, its current application to 
option pricing is new.
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3.2 Definition o f the M odel

We will use the shot noise process At with parameters p and S and jump 
size distribution G(y) (all independent of time), as defined in section 2.4, to 
model the instantaneous short rate. Also, let xt denote the aggregate process 
/o Aads. The shot noise process is a suitable model model for an interest rate 
because it does not assume negative values as long as the domain of the jump- 
size probability density g is R+. Clearly, a model that produces occasional 
negative short rates is unrealistic because interest rates are rarely below zero. 
People are usually not paid to borrow money. That said, there are examples 
of interest rate models where the short rate is allowed to go negative. The Ho 
and Lee model is an example (see Baxter and Rennie [5] for an overview).

The generator of the Markov process (xt, At, t) acting on a function /  (x, A, t) 
is given by (2.14). The value of a continuously compounding cash bond or de­
posit is now given by Bt =  eXt. Let P (t,T )  denote the price at time t of a 
zero-coupon or discount bond maturing at time T  and let Z  (t, T) denote the 
corresponding discounted bond price process B ^ P  (t,T). We will use P  to 
denote the original measure with respect to which ( \ t,x t,t) is defined and P* 
to denote an equivalent martingale measure, suitably chosen with the aid of 
an Esscher transform as described in section 2.5.

As discussed in sections 1.1 and 1.2, a bond maturing at time T  may be 
viewed as a contingent claim with payoff 1 at time T  and thus may be priced 
within a risk-neutral framework as P  (£, T) =  BtE* 1 , where E* is the
expectation with respect to P*, an equivalent martingale measure. As it turns 
out, the equivalent martingale measure is not unique, even when it is defined 
using the Esscher transform Mt, defined in (2.24). Recall that according to
(2.27), under this new measure, the process is a generalized shot-noise process, 
the parameters of which are given right below (2.27). We will use (2.12) to find 
an expression for the discounted bond price process Z  (t ,T ) =  E*
In fact,

e~UXte~ (keSt ~ % (eSt~I))1Xt eti p* ( keSa ~ 7 (e*a~l) ]a)\*

34



is a P*-martingale and thus we have

E * ^ e-„xTe-(keSt-%(e*T- l ) ) \ T e fo p*(s)[l-g*(kes>-^(e6>-l);s)]ds^:F^  =

e~VXte~ (fee6<” * (eSt- 0 )x* efo p* (•) [w* (ke*a~ i  (e69 ~1) ;*)]*

or

E * ^e-UXTe- (keSt~!s(eST- 1))XT\ j rt  ̂ =

e - v x t e - ( k e St-% (e St- l ) ) \ t e -  p*(s)[l-g*(keSa-% ( e 6a- l);a )]ds

We will choose v — 1 and k = ^ ( l  — e~ST ĵ. This yields 

E*(e~XT\ f t) =

Recall from (2.27), (2.28) and (2.29) that the generalized shot-noise process in 
question is defined by

P* (t) = pg («i +  n2est)

and

yv' ’ g(Ki + W “ )
It is easily established that

» • ( { ; . )  -  /  .
y VS y JR+ ^ '  Jr+ g(K !+ K 2eSt)

g ( i  + K i +  ^ e St) 
g  («1 +  n2est)

and thus
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/ X \ r £ ( l  ( 1 -  e 5(T a)) +  «1 +  /c2etfs)
(Kl +  K2e6‘) 1 - l M i   '   >-
v 1 9  («i +  «2eds)

P [0 («i +  «2e6s) -  § 0  ( l  -  e_<J(T_s)) +  «i +  /c2e*s)  j 

We finally obtain the desired expression for the discounted bond price process 

Z ( t ,T )  = E ’ (e “IT|5 i)  =

e- n e-J(j-e -J(T- ‘))A,e>>/tT[S(isi+K2e<'+ j(l-e -,(T-*)))-s(it1+/C2es')]<i>

(3.1)

Z  (t,T ) is a P*-martingale, because

E ' [Z  (t , T )\T ,\ = E*{E* [e~XT\ Et] \ E ,}  = E ‘ [e~XT\ E ,] = Z ( s ,T )

We will not worry about how K\ and k2 should be determined but assume they 
have been chosen suitably in some sense.

If K\ and «2 are zero, i.e. assuming no change of measure, the price process 
for a discount bond maturing at time T  is

P (t,T )  = e-K 1- ‘- i(T- ‘))**e'/.T[KH‘- ‘- s<I' - )) J -1!*

As was pointed out in section 2.6, the interest rate model defined in this 
section is a special case of the affine jump-diffusion process presented in Duffie, 
Pan and Singleton [19]. It is not surprising that the change of measure they 
propose is equivalent to the Esscher transform used above when their model is 
limited to the special case of the shot noise process. In fact, since the shot noise 
process becomes a generalized shot noise process with deterministic, but time- 
dependent parameters under the change of measure, the affine structure of the 
model is preserved, just as in the more general case of the AJD model. This 
allows the machinery developed for affine processes to be used for derivatives 
pricing and it is easily verified that the AJD model leads to the same bond 
price as in (3.1). Beyond preserving the affine structure of the model, the issue 
of choosing an appropriate equivalent martingale measure is largely ignored.
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The remainder of this chapter is in line with this philosophy and assumes that 
a suitable change of measure has already been decided on. Chapter 4 will 
address the choice of equivalent martingale measure in detail, albeit indirectly.

3.3 Inverse Laplace Transform

3.3.1 Introduction

The Fundamental Theorem of Asset Pricing justifies pricing a contingent claim 
by computing the expected value of the pay-off at expiration under an equiv­
alent martingale measure. The pricing formula for a discount bond in (3.1) is 
an example of this approach, which also illustrates the key role that Laplace 
transforms play, especially when the discounted pay-off at expiration can be 
written as an exponential function of an affine combination of Xt  and Ar, 
where T  is the expiration date.

Duffie, Pan and Singleton [19] pursue a similar approach for pricing claims 
by using a type of extended Fourier transform. Specifically, using the notation 
in section 2.6, the extended transform of given the information available 
at time t , is

E exp R ((a,s)ds^J (uq +  Ui -(T)eu<T Tt (3.2)

where the short rate R  is an affine function of £r, possibly time dependent, 
and Vo, v\ and u may be complex-valued. This extended transform differs 
from the (conditional) characteristic function (Fourier transform) because the 
discounting at rate R  (ft, t) and the term v0 +  v\ • Ct- Though a closed-form 
expression for (3.2) will automatically produce a closed-form expression for the 
price of a discount bond, pricing more complicated claims, such as options, is 
more involved. As an example, Duffie, Pan and Singleton [19] consider the 
price at time 0 of an option that pays off (ed'̂ T — cj at time T, for given 
d G Rn and strike c. For any real y and a and b in Rn, let Ga,b (y ) denote the 
price of a security that pays ea'̂ T at time T  in the event that b • (t  <  2/. The
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price of the call option at time 0 is then

P =  Gd - d ( -  log c) -  cG0,-d ( -  log c)

The function Ga,b (z ) is given by (3.2) for the complex coefficient vector u =  
a +  izb, with Vo — 1 and V\ = 0. Because of the affine structure of the model, a 
closed-form expression exists for the Fourier transform of the function Ga,b (•) 
defined by

roo
Ga,t(z)= e ' * v d G a , „ ( y )

J—OO

The closed-form solution is

Ga,b(z) = eam+m<°

where a  and (3 solve known, complex-valued ordinary differential equations 
with boundary conditions at T  determined by z. In some cases these ODEs 
have explicit solutions, in others they need to be solved numerically. The 
function Ga,b (•) can then be be obtained by inverting the Fourier transform 
Qa,b (*)• This example in the beginning of Duffie, Pan and Singleton [19] is 
fairly typical of their approach toward pricing various types of options.

The approach pursued here in the context of the shot-noise process is some­
what different. In (2.31) an expression was presented for the joint conditional 
Laplace transform of x t and At, given and Xtl for t\ < t, under the equivalent 
martingale measure P*. The simple nature of the shot-noise process, when 
jump-sizes are assumed to be exponentially distributed, allows for an explicit 
evaluation of the Laplace transform in (2.31). The inverse Laplace transform is 
equivalent to the joint conditional probability distribution of xt and Xt- Given 
a few regularity conditions, with the inverse transform the conditional expected 
value of many types of functions of Xt  and At can be computed, allowing for 
the evaluation of a general set of contingent claims. The remainder of this sec­
tion will focus on the implementation of Weeks’ method of Laplace transform 
inversion. Though implementing this method requires numerical integration, 
it produces a closed-form expression of the inverse Laplace transform, which 
can be manipulated analytically to compute integrals of functions of xt  and
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At - In the next section the inverse Laplace transform will be used to compute 
the price of a European call option by taking the conditional expectation of 
the pay-off at expiration under the equivalent martingale measure P*.

3.3.2 Laplace Transform

Abusing our notation slightly, we will denote the conditional joint probability 
density of x t and \ t , given T tx, by II (xt, At), ignoring any reference to J^ .T he  
next theorem presents the Laplace transform of II for the specific case when 
the jump sizes follow an exponential distribution.

T heorem  3.3.1 Let A and x  be as defined in section 2.4, where S and p are 
time-invariant and the jump-size distribution is exponential, that is

g(y) = ae~ay (3.3)

and its Laplace transform is

(3.4)

Then the joint LT of xt2 and Xt2, given Atl under the measure P*, as given in 
(2.31), takes on the specific form

H(uu u2) = E , { e~nXt* e~nXt? \ f tl} =

e~nx’i exp exp x

a  +  Ki + n2estl +  i/2e~{(t:,- tl> +  f  (l -   ̂*(a+“‘)+,/1
a + «i + K2est2 + u2 J

pa
f a  +  Ki +  K2e6tl A 
\ a  -I- Ki +  K2e St2)

Proof: Recall from (2.31) that

exP (~ /.‘2 (^+(*-2- ; « ) ] < < » )

(3.5)
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Also, recall from (2.28) and (2.29) that

P* W =  P9 («1 +  «2e*)

and
e-(K1+K*p-St)ydG(y) 

9 (ki + K2e5t)

Using (3.4) yields

P* W =
pa

a  +  Ki +  K2eSt 

g* (y; t) = (a  + Kl + K2est) e-(«+«iW *)v

and

Thus

and

9*to*) =
a  +  /ci + <St

9* =

a  +  «i +  ^

a+Ki+«2Ca*
a+Ki+^+^K2+(v2-^-)e 5t2)e'<5t

pa
a+Ki+Q+(K2+(v2-^)e St2̂ e5t

From (2.31) it is clear that we need to evaluate

£  p* (a) [l -  y* (^.+(^-^)e-*<*J- ) i.)] ds =

}  f-Ju IIti [a+Ki+K2ea* a+«i+^+(/C 2+(i/2 - i^ )e  6t2)ea*
ds (3.6)

Both terms in the integral on the RHS of (3.6) are of the form • These 
integrals may be evaluated as follows:

L

*2 ds _  1 re**2 du
ti A  +  Be68 S Jesti (A +  Bu) u

1 M  _  
<5 Je6ti [Au

B
A (A  + Bu)

du (3.7)
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We have

f eSt2 du 1 , ,e«t2 S {t>2 — ti)
L  ~Au = ~A [ gulcSl1 =  A (3-8)

and

/'
Je(

,St2 du 1 , (A  + Be6t2\
=  B l0gtfest 1 A  +  Bu  

Substituting (3.8) and (3.9) into (3.7) yields

A  +  Be6ti ) (3-9)

I  rest 2

5  JeSt l

B
Au A (A +  Bu) d“  =  S i  \-5 (*2 “ J l ) " log ( ^ f $ r ) ]  (3 1 0 )

Applying (3.10) to the two terms on the RHS of (3.6) yields

r t2

J t i  OL

pads pa

and

pads

[ * f e - fl) - l o g ( s ± a ± 2 g ) ]  (3.11)

rt2

hi a +  Ki +  ^  +  ( « 2  +  (^ 2  — e -<Jt2)  e*s

pa
S t2 

St i

S +  Ki +
S (t2 -  ti) -  log ( ----------«+K1+Ky“ 2 +

v ' V tt+fCi+̂ e'

(3.12)

Thus combining (3.6), (3.11) and (3.12) yields

exp < -{ - / ?
 pet   pot_________________I i I __
a+Ki+K2et* a + fs 1 +  ̂  +  ( K 2 + ( * ^ - ^ ) e - 6 t 2 ) e ^ J  J

exp|pa|^/ti a+ltl + i^ + ((C2+̂ _ i^ je-tft2̂ e«a ft! a+N1+N2e««] |
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/ g+K1+>C2ê tl+t/2e~ĝ 2~tl̂  + ̂ (1-e~̂ 2̂~tl )̂̂  (̂<*+«l)+*'l 
y g+«l+»s2ê t2+,/2 /

pot

e x p ( ^ - < o ( ^ - ^ ) ) ( g ^ )  “+“‘ (3.13)

The desired result follows from substituting (3.13) into (2.31).

3.3.3 W eeks’ M ethod

For the purpose of pricing a European call option we will need to invert (3.5) 
w.r.t. i/2- It will become clear at the end of section 3.4 why (3.5) does not 
need to be inverted w.r.t. i/\. In a nutshell, the option pricing formula derived 
will turn out to have the form of a Laplace transform wrt x t2. Though this 
inversion problem is not known to be analytically tractable, techniques exist 
to approximate II (z/i, v2) with a linear combination of functions (of 1/2) whose 
inverse Laplace transforms axe known.

The inversion technique applied here is based on Laguerre polynomials and 
known as Weeks’ method [40]. Though this method was one of the first suc­
cessful implementations, the idea of using Laguerre functions to invert Laplace 
transforms goes as far back as Widder [41]. He proved that, under certain 
regularity conditions, the inverse transform may be represented as an infinite 
weighted sum of Laguerre functions. Many transform inversion methods based 
on that of Weeks have been proposed since. An example is that presented in 
the companion papers by Abate et al. [1, 2], which describe a method for 
the univariate and multivariate cases, respectively. The paper by Kano et al. 
[32] provides a description of Weeks’ method and an extension to the case of 
matrix functions.

The description of Weeks’ method by Kano et al. [32] is presented next, 
adapted to the present context. Weeks’ method returns an analytical formula 
for the inverse transform function. It assumes that a function II (x) can be 
represented as an expansion in terms of Laguerre polynomials Ln (x)

00

n (x) = eax Y ,  Cne~bxLn (2bx) (3.14)
7 1 = 0
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The Laguerre polynomials Ln (x ) form an orthogonal basis in L2 (R) and are 
commonly used to approximate functions. The two scaling parameters a  and 
b need to be chosen so that b > 0 and a > ao, where oq is the abscissa 
of convergence. If the infinite Laguerre expansion converges uniformly then 
II (x) may be approximated for numerical purposes by

N
n Or) «  eax Y ,  Cne'^Ln (2bx) (3.15)

n=0

where N  is chosen so that the error of the approximation is below the desired 
tolerance.

The principal challenge is to compute the coefficients Cn, which is described 
next. Given a Laplace transform II (i/), its inverse is defined as a contour 
integral in the complex plane

where i = y[—\  and T is the Bromwhich contour T (i/) =  <t + iy , with a > obj 
y € R. Then

roo ^

II (rc) =  —— /  e*yxn  (a +  iy) dy (3.16)
Z 7 T  J —oo

Equating (3.14) and (3.16) yields

° °  1  roo ^
Y  Cne'^Ln (2bx) = —  /  etyxU (a +  iy) dy (3.17)
7 1 = 0  2 ? r  J ~°°

The weighted Laguerre functions have the Fourier representation

l 3 ' 1 8 )

e - b x

Substituting (3.18) into (3.17) and interchanging sum and integral, which is 
valid if (3.14) converges uniformly, leads to

( 3 ' 1 9 )
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Next, a Mobius transformation is applied to map v to a new complex variable 
w

Using v = a + iy leads to

and the inverse is

v — a — b
w = ------------

v — <7 +  b

i y - b  
iy + b

ib (w + 1) 
w — 1

w =

y =
Equation (3.19) becomes

CnWn =  (iy +  6) ft (a +  iy) =  ft (cr -  6 ^ 4 )
1 - i u V  w - l j

The coefficients c„ may be computed using Cauchy’s integral formula by inte­
grating along the unit circle w =  etd

Cn = —  f  1 26 ft (a  -  6 ^ - ^ )  dw =2ixi J\w\=i wn+11 — w \  w — 1 /

T "  ( < 7  -27r y-7r 1 — etd \  e10 — 1J

The resulting inversion formula is then

n w  - E  ( i  ■») <*•>

For numerical purposes, the coefficients Cn need to be evaluated via numerical 
integration. Using the midpoint rule leads to the approximation

Cn r*j
e jm _  2b ^

2M  1 -  ei0m+1/2m = —M

^ (  eWm+l/2 1 \
(32°)

where 6m =  m  = — M , . . . ,  M  — 1 and n =  0 , . . . ,  iV.
Kano et al. [32] also provide error bounds for the approximation due to 

numerical rounding error and truncation error. They ignore the error induced 
by numerical integration, though numerical integration error estimates are
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readily available in e.g. [4].
The Laguerre polynomials Ln (x ) can be defined via the generating function

(1 -  t y 1 e~—< =  £  L„ (*) tn (3.21)
n=0

Laguerre polynomials satisfy the well-known triple recursion relation

L„ (x) =  2n ~  1 ~  X£ n_t (x) -  — 2 ( i)  (3.22)
n n

which may be proved with (3.21) or by using their orthogonality property [4]. 
The recurrence relation in (3.22) can be useful for computing the values of the 
Laguerre polynomials to evaluate the approximation in (3.15). It is possible, 
however, that the Laguerre polynomials become large as their order increases, 
which can lead to a prohibitive loss in precision. In this case Kano et al.
[32] recommend evaluating the sum in (3.15) by using the backward Clenshaw
algorithm as described in [34]. In the applications in chapter 5 there is no 
apparent need for using the backward Clenshaw algorithm and it has not been 
implemented here.

We will need to evaluate integrals of the form

In (x ,v )=  [ Xe -* L n (y)dy  (3.23)
Jo

The generating function (3.21) may be used to develop a recursion that is 
useful for computing (3.23). Evaluating the integral of the left-hand side of 
(3.21) yields

i rx vt 1 — e~xve~x*=*
(1 — t) f  e vye l-tdy  =  —  r — =
v '  Jo y (1 - t ) v  + t
l - e - ^ ( l - t ) E ” 0Ln (s) tw

(1 — t) v + 1

Equating this to the same integral of the right-hand side of (3.21) yields

0° oo

1 -  e~z" (1 - 1) £  Ln (I ) t" = ( ( l - t ) u  + t ) ' £  tn/„ Or, v)
n=0 n=0
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or

oo oo
1 _  e—  £  L„ (*) t" +  «—  £  L„ (*) <"+> =

n=0 n=0
oo oo

V tnIn (x, v) +  (1 -  v) tn+1In (x, v)
n=0 n=0

Equating powers of t leads to

r / . . A  l - e ~ ~ L o ( x )Iq (X, 1/j —
V

and
e xv 1 — if

In (x, v) = (Ln_ 1 (x) -  Ln (x ))------— In-1 (x, v)

When x —► oo the integral in (3.23) becomes the Laplace transform of 
Ln (y ). It is well-known, see e.g. [1], that the Laplace transform of Ln (y) is

1 » M  =  iHSo7" ") =  ('/̂ + i ) (3-24)

Since n(i/i , j/2) is assumed to be known from the outset, it can be used to 
assess the accuracy of the approximation in the Laplace transform domain.

N ote  3.3.2 Weeks ’ method implicitly assumes that the inverse Laplace trans­
form has support on R+. It is clear from (3.16), however, that the support 
could just as well be R, because this inversion formula does not distinguish 
between a Laplace transform and a bilateral Laplace transform of the form

^  r +oo
h(v) = I e~uxh (x) dx (3.25)

J —oo

On the other hand, because the inner product with respect to which Laguerre 
polynomials are orthogonal only has support on R+, the Laguerre approxima­
tion in (3.15) is only accurate on R+. Moreover, while the exponential term 
in (3.14) will produce appropriate behavior for the right tail of a probability 
density function (i.e. approach zero at a suitable rate), it will explode in the 
left tail as its argument tends to minus infinity.

This problem is easily fixed by splitting the support into two components,
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R  and R+. I f  B  denotes the bilateral Laplace transform operator it is easy to 
see that

B~l {ft (i/)} ( - y )  = B ' 1 {ft (-j/)}  (y)

Thus to evaluate h (y) for negative values of y we can invert h ( 
to using the inverse of h(y) to evaluate h (y) for positive y.

3.4 A Call Option Pricing Formula

In subsection 3.2 brief mention was made of pricing contingent claims. Let 
P (t,T )  =  BtE* denote the price at time t of a zero-coupon or
discount bond maturing at time T  and let Z  (t, T) denote the corresponding 
discounted bond price process B ^ lP  (£, T) with Bt =  efo Xad3 = eXt. Then

E * (erXT\T t ) =

e~Xte~*(l~e S{T ° ) At exp ( - / tTp*(s)[i-5*(^(i-e-^T->);s)]d«)

and

P ( t ,T ) =  eXtE* (e -XT\ f t) =

We follow the same logic here as in section 3.2, namely that a discount bond 
may be viewed as a contingent claim with a deterministic payoff of 1 at time 
T. Thus its value at time t < T  is the conditional expected value under 
a suitably chosen measure P*. Having established the price process of the 
discount bond, one may extend the above logic to determine the value of a 
claim contingent on that bond. We will price a European call option at time 
t\ to purchase a discount bond (maturing at time T) at time £2 at strike price 
k , where T  > t2 > t\. At the expiration date t2, the call option’s pay-off is

(3.26) 

—1/), in addition
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max (P  (t2, T) — k, 0). Thus the option value at time t\ is

(e - x*2 m ax(P (t2,T ) -  fc,0)|^tl)

where

max (P  (t2, T) — k,Q) = P  (t2, T) — k, if P  (t2, T) > k, 0 otherwise

Thus

P  (t2, T) > k &
e_i(i_e 6{T-t2)y t2 ^  > k<*

( l - e - * ( T-*a)) \ t2 -  /^P*(®)[1- f f * (K 1- e' ,5(T"<,));s )] d s  >  lo S  k < &

At2 <  -  ■'_e- 4 r -ta ) ( ft2 P*(«)f1^ *  ( 7 ( l - e - J(r-*)) ;a)]<fa+logft) =  C* (3 .2 7 )

Recall that

pa
8 (a +  Ki) 

pa
8 (a  +  +  j )

8(T - 12) -  log ^ <*+«! + *2'.ST

a+K1+K2eit2 + ̂ l - e-6(T- t2)))]
Continuing, the option price may be written as

e**>E* (e~x‘i max (P  (i2lT) -  Jfc, 0)| P tl) =  

eXt'E* {max [e~xt*P {t2,T ) -  e“x*^,o] | } =

ex" r  P  n  ( x ,2, A(2) e _ I *2e“ K 1- e _ i(T _ ‘2) ) A*2dxt2d\ t2 x
Jo Jo

exP ( - / ^ w [ 1-a, (K 1-« ',(T_*)):*)]*) -
n

OO
U (xt2,Xt2)e~x^kdxt2dXt2 =

e*“ f  Lx {n} (1, \ t2) e - ^ - e~‘fT~t2)) ^ d \ t2 x 
JO
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eXti f  Lx {n} (1, A*2) d \ t2k «
Jo
N /  i -e-sw-ta) ■ fr

eX“ E ^  26c*, * + b
n=o 26 \ 26

f ----------------------- x

* - * £  I ' - K ’ N r )  <3 28)

where {11} (i/, A) denotes the LT of II (x, A) w.r.t. x, where

/n  ^ 260* ,-------^ 26

and

r" ( 26c*’ 26 )

are as defined in (3.23) and where c* is as defined in (3.27). Prom (3.28) it is 
clear that we only need to invert a Laplace transform w.r.t. A, as was alluded 
to in subsection 3.3.3.

Numerical experiments using the option pricing formula in (3.28) are pre­
sented in section 5.1.
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Chapter 4 

Pricing in Discrete Time

4.1 M otivation

This chapter presents one of the main contributions of this thesis, namely a 
pricing formula for a claim contingent on a discrete-time short rate. Special 
cases are discount bonds and European call or put options on those bonds. 
Explicit pricing formulae are presented for these claims.

In chapter 3 a continuous-time interest rate model was defined, which is 
based on the shot noise process. Within this framework pricing formulae were 
developed for a discount bond as well as a European call option on such a 
bond. The pricing was based on evaluating the expected value of the pay­
off at expiration under an equivalent martingale measure. This risk-neutral 
valuation approach, justified by the Fundamental Theorem of Asset Pricing, 
was originally used for models of complete markets, starting with Black and 
Scholes [6] and made rigorous by Harrison and Kreps [26] and Harrison and 
Pliska [27]. Heath, Jarrow and Morton [28] apply this approach in an interest 
rate context.

Risk-neutral pricing has also been used in the context of models of incom­
plete markets such as those in Gerber and Shiu [24, 25] and Duffie, Pan and 
Singleton [19]. As noted in section 2.6, the shot noise process is a special case 
of the AJD proposed in the latter publication and it is not unreasonable to 
expect the pricing results from chapter 3 to be equivalent to those in [19].
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As mentioned in chapter 1, this approach is not entirely satisfactory. The 
equivalent martingale measure for pricing a given claim is not unique and 
the approach offers no guidance for making an appropriate choice. Moreover, 
this approach ignores the risk incurred when selling a contingent claim and 
hedging the resulting exposure with the underlying asset and cash. This risk 
results from the fact that claim is unattainable; the discontinuities (jumps) 
in the short-rate process, which cannot be anticipated beforehand, make it 
impossible to construct a portfolio of cash and the underlying security that 
perfectly replicates the pay-off of the claim at expiration.

The remainder of this thesis is devoted to finding a partial remedy for this 
problem in the context of an interest rate market. Though the ambiguity of the 
martingale measure will not be removed entirely, it will be limited to a single 
security, namely the discount bond with the longest maturity that is priced in 
a market. Once an equivalent martingale measure has been decided on for the 
long bond, the price for any shorter dated bond or other claim can be derived 
by replicating it with a dynamically adjusted portfolio of the long bond and 
cash. The replicating portfolio is constructed so that the expected value at 
present of the squared difference between the discounted portfolio value and 
the discounted pay-off of the claim at expiration is minimized. The squared 
difference is an arbitrary but not unreasonable criterion. Once this criterion 
and the equivalent martingale measure of the long bond have been decided on, 
all other securities that axe contingent on the interest rate can, in principle, 
be priced.

Two types of quadratic hedging strategies that specifically deal with pricing 
in incomplete markets have been covered in the literature. The first, local risk 
minimization, forces the replicating strategy to have the same value as the 
claim at expiration and minimizes the expected squared cash in- and out-flows 
(Follmer and Sondermann [22], Follmer and Schweizer [23], Runggaldier and 
Schweizer [36] and Schweizer [38]). As the name suggests, this strategy hedges 
only locally without taking future evolutions of the price or short rate into 
account when minimizing risk. The results in these publications are based 
on the Kunita-Watanabe decomposition and its generalization by Follmer and 
Schweizer, which essentially allows the value of a claim to be represented as the
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sum of a scalar and two orthogonal martingales, one of which is a stochastic 
integral with respect to the (martingale) price process of an underlying asset. 
The stochastic integral can be interpreted as the value process of the replicating 
strategy. The optimality of the strategy, in a mean-variance sense, is based on 
the orthogonality of the two component martingales.

The second quadratic approach, mean-variance hedging, forces the replicat­
ing strategy to be self-financing and minimizes the expected squared difference 
between its value and that of the claim at expiration. The minimization prob­
lem solved in this approach is global. Duffie and Richardson [20] explore mean- 
variance hedging in the context of futures markets (without jumps). Heath et 
al. [29, 30] compare local risk minimization and mean-variance hedging in the 
context of option pricing with several stochastic volatility models (again with­
out jumps). Schweizer [39] provides a more general and theoretical overview 
of both approaches. Though the theory in these papers is fairly general in 
nature, specific option pricing results for non-trivial price/short rate processes 
with jumps have remained elusive.

The approach explored in this thesis clearly belongs to the mean-variance 
category. In order to solve the minimization problem of the replicating portfo­
lio, the decision is made to develop the framework in terms of a discrete-time 
interest rate model. This short rate model, though specific, is quite flexible 
and allows for incremental movements with both a diffusion nature as well as 
a jump nature.

A central result in this thesis is a pricing formula for a claim contingent on 
any discount bond with a maturity shorter than or equal to that of the long 
bond. This claim has a “European” flavor in the sense that it can only be ex­
ercised on the expiration date. Special cases are discount bonds and European 
call or put options on those bonds. The option pricing results in particular 
are new as no explicit pricing formulas based on mean-variance hedging in an 
incomplete market with jumps have been presented in the literature so far.

This model is parameterized in such a way that the length of the time steps 
can be reduced arbitrarily. Some limit results are presented which demonstrate 
the equivalence of the discrete-time model in this chapter to the continuous­
time model in chapter 2. In principle, continuous-time counterparts of the

52



pricing results developed in this chapter can be obtained in the limit as well. 
This is a lengthy and messy affair, however, which was not found to add any 
further insights or yield more effecient algorithms for computing prices. Hence 
these limit results have been omitted from the dissertation.

Sections 4.2 and 4.3 below develop some useful results for the discrete-time 
approximation of the shot noise process. In section 4.4 the optimization prob­
lem is solved for the case where a contingent claim with a fairly general pay-off 
at maturity is priced by hedging it with cash and a longer dated discount bond. 
Section 4.5 applies the general pricing results to the special case of a discount 
bond. Section 4.6 develops pricing formulae for both European call and put 
options.

4.2 A  D iscrete-Tim e Interest R ate M odel

The discrete-time short-rate model we consider will be restricted to the time 
interval [0, £*]. Here t* is chosen to be suitably large, but finite. An integer
n will parameterize the granularity of the time-steps by dividing [0,t*] into
n sub-intervals [iAn, (i +  1) A") for i =  0 , . . . ,  n — 1 and An =  Then tn 
denotes a discrete map of t E [0, t*] defined by

tn = iA n (4.1)

whenever

iA n < t < (i +  1) An (4.2)

for some i = 0 , . . . ,  n — 1 and tn = t* when t =  t*. Equations (4.1) and (4.2) 
imply

t -  A n < tn < t (4.3)

for t <t*. And, since limn_oo An =  0, we have

lim tn =  t (4.4)
n—*oo
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Next, consider the discrete-time process A", which represents the short rate 
and evolves as follows:

A? =  A"_a» (1 -  aA") +  XJ* (4.5)

Here 0 < a < 1 and A” and Xp  are discrete in the sense that A” =  XpAn 
and X p  =  XpAn for some i =  0 , . . .  ,n  — 1, analogous to (4.1) and (4.2). The 
increments XpAn are i.i.d. with d.f. hn (y ), which is thus allowed to depend 
on n. Clearly, A” is a Markov process. The filtration generated by A” will be 
denoted Tp.

It will be useful to define

Thus, when [0, t*] is divided into n sub-intervals, Nn (u) returns the number 
of whole sub-intervals on [0,it], for u € [0, £*]. Clearly, Nn (t*) =  = n.

The aggregated process x” (not to be confused with Xp) can now be defined
as

The following result expresses A” and xp as functions of X jAn, j  < N n (t ) 
in addition to some boundary conditions:

Lem m a 4.2.1 The discrete-time shot noise process A” may he written as

(4.6)

w„(e)
(4.7)

j = 1

A? =  A”_T„ ( l - a A n)JV”(T) +
N „ ( t )
£  Xj*A„ (1 -  aA ")""1'1-' (4.8)

j= N n( t ) - N n (r)+l

and the aggregated process may he written as

n  _  n •i't t—Tn
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Proof: The result in (4.8) follows easily from (4.5) by carrying out repeated 
substitutions. To prove the result in (4.9), note that by (4.7) the aggregate 
process x™ can be written as

Nn (t)

£  A"a„A" (4.10)
j= N n ( t ) - N n (T) + 1

Also note that

Nn (t)
£  (1 -  oA")‘ =

J V „ ( r ) - l

(1 -  aAn)iv"(t)"iv”(T)+1 £  (1 -  aA“)' =
t= 0

(1 -  (1 -  «A") -  (1 -  aA")w"<T>
} aA n

The result then follows by repeatedly substituting (4.8) into (4.10). This con­
cludes the proof of lemma 4.2.1.

T heorem  4.2.2 The joint Laplace Transform ofX” and x1̂ ,  given T rx, is 

E  [exp ( - „ ,  (z» -  *» ) -  v2\ l ) | =
exp (— (l-i + ^ ( 1_ aA n)Nn(r;)-W„(n )  ̂ x

N n ( n )
n  hn (4.11)

i= N n (r i)+ l

Proof: Using (4.8) and (4.9) leads to

(■a l =^ n- ( ^ (1_aA„)W„ ^ ) -W„(n)) A" +

£  L  w-'+» +^ (1- aA-)^ ..) - i)  X " (4.12)
j= N n (r i)+ l



Note that, because un =  Nn (u) A n, we can write

Nn (r2) -  Nn (n) =  ±  (Nn (r2) A" -  Nn (n) A") =  ^  (r? -  7f) 

Moreover, E  [e_I/XiAn | PJXn] =  E  Je-l/X Ân] =  hn (v) when j  > i and thus 

E  [exp ( -  (V! 1- .(1~aAn)^W(r2) J+1 +^(l-aA n)^h)-jj X jAn)] =

/in (t/11-(1~aAW)^n(T2) J+1

Because the X?An are i.i.d., we have

E
( JVnfo)

j = N „ ( n ) + i  ,

N n ( V l )

j j  ^  w - i)  (4.13)
j=iVn(ri)+l

where is the Laplace transform of hn. Combining (4.13) with (4.12) leads 
to the desired result. This concludes the proof. Note that from (4.11) and the 
Markov property of A” it is clear that

E  [exp (~ Vl (x"n  -  x“ ) -  i/2A") 

E  [exp ( - H  ( x ;  -  x " )  -  i/2A" )
K ]

An]

If we are willing to settle for the base-measure P  as the risk-neutral mea­
sure, theorem 4.2.2 can be used to evaluate PtT,n, the price at time tn € [0, t*] 
of a zero-coupon bond maturing at time T n € [£”,£*], as discussed in sections 
1.1 and 1.2. This is achieved by setting i/i =  1 and i/2 =  0 in (4.11). Since 
the pay-off of a zero-coupon bond at maturity is unity, its discounted price at 
time £n, e~x* PtT’n, is the conditional expectation of the discounted pay-off:

e-*?pT,» =  £ [g -x f  |^J*] =

—Xn ( l-aAn-fl-aAn')JVn(-r -̂JVn̂t +̂1 \e x* exp ( -  V -- - J -------------- a?J x
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A T n ( T )

JJ  Ĵ n ^I-(l-aA»XJ
J=iVn(t)+1

N n ( T ) - j + l) (4.14)

Clearly, the discounted bond price process e xt p j 'n is a martingale since 
E  [E [e~xT\ |  F ? \= E  [e -^ l pp] for s < t .

4.3 Change of Measure

We would like to go a bit further than (4.14) and use a measure different from 
the base-measure as an equivalent martingale measure. This section introduces 
a martingale that will allow us to define a change of measure analogous to the 
continuous-time case described in section 2.5, and specifically given in (2.24). 
This martingale is presented in the following

T heorem  4.3.1 Let A” be the short rate process defined in (4-5) and let x” 
be its aggregated process defined in (4-V- Furthermore, let hn be the Laplace 
transform o fh n, the density function of the increments of A". Then the fol­
lowing process is a martingale:

exp ( -M g  -  ( ti a'A-nfNM +e(1- aAV) A?)
Nn(t) „ / £ \

n h" ( c i ^  +  s )

Proof: In (4.11) we see that on the LHS A” is multiplied by i/2, while on the 
RHS A” is multiplied by

1  r u A n    (1  \  n \^ n ( T 2)—Nn (ri)+l
( }-------------------+  i/2 (1 -  aA n)jVn(7a)_JV- (Tl) (4.16)a

which contains v2 again. Hence there seems to be an element of recursion in 
this equation. To obtain a martingale we wish to obtain an expression for v2 
which is internally consistent in the following sense: Define 7  (t2) =  v2, and 
v = V\ such that

i / j  i - c . A n - ( i - a A n ) A^ ( T2 > - Ar* < Ti ) + i  ^  ^  _  a ^ n ^ N n( n ) - N n ( n )  _
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v + 7  ̂  ^  _ aA»jW«(7a)-JV»(n) = 7 (Tl)

It is easily verified that

7 (Tl) =  v  + 7 (T2) ( 1 _  a A »)« r> )-W .(n )

is a solution. It follows immediately that

! / - — (  } ------------------------------- +  7  ( t 2 )  ( 1  -  =a
*

(1 -  aAnY a

To make the non-stochastic product term on the RHS consistent as well, note 
that

.“ p ( - ” ■ -  ( (i _  + (1 -  ° A‘ > ^

" p ( “ " *  ■ ( ( T t B i 5” + 11- » * • ) ; ) « . )  -
Nnfa)

TT hn ( C~Q ,+z) 
*=JV,i(n)+i

Thus

exp ( - v x l  -  ( (I_a2„pv„fa> + £ (1 ~  aAn)) A")
Nn(V2) * /  _ _ \
n h“( ( i ^  + s)

exp -  ( (1_J^f>Un) + S C1 -  qA")) An)
An(ri)  ̂ / r_J/ \
n *" (<££? + =)

And thus the process in (4.15) is a martingale, which concludes the proof.
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The martingale in (4.15) may be used to construct a Radon-Nykodim 
derivative as follows

FT hnf—c at .+£)

E
e x p  ( - 1/ x y -  f K (t) + * ( l -  a $ )  ) A ?

N n (t)
n '•"(irŜ F+s)

exp (-VX?  -  ( (1_ ;A> „ W +  I  (1 -  aA n)) A?)
Nn (t) /  v \

e -(c-*/A")A- A  ' h n (  c~ a  , +  H ) 
i l l  V(l-aA-)* oy

(4.17)

This Radon-Nykodim derivative can be used to define a change of measure. As 
before let P  denote the base measure and P* the transformed measure using 
(4.17). Define the expectations E  and E* similarly. We will use the convention 
n}=fc =  1 when k > i. The P*-analogue of (4.11) is presented in the following

T heorem  4.3.2 The joint Laplace transform of A” and x” conditional on 
T^x under the changed measure P*, as defined above, is

E* [e-UlX̂ -U2X^
^ ]  =

E
N n (  T2 )n v 7 ^ ;  a ✓ m \

JV»(T2). f „ Z. \n w  c~« • + * - 1
Tl

exp aAW ^ aAW)^w(T2) iVn(Tl)+1+t<2(i-aAn)JVn(T2)~jVn(Ti)̂ ^:y1̂  x

ATnfa) *

n  hn (i/ia^(tAn)+t^(l-aAn)JV"(T̂)- i+6n(*Af*)) 
i=Nn(ri)+ l_________________________________________

Nn (r2) .

0  h” (6n (iA”))
t=iVn(n )+ l

(4.18)
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where the step functions aTn and bn are defined as

“ n (t) =

Tn — tn+&n
1 -  (1 -  aA n) An 

a

and

bn (t ) =
V  

+  -
(1 -  aA n)** a  

Proof: From the definition of E* in (4.17), the LHS of (4.18) is

E * =

E Nni-ri)  ̂ \n *“((1=^+5)1=1 ' '
Tl

£  ̂ \ TT frn( c g . H-— 1A A \  (i - qA1*)' q /

■ITn
T l

Using theorem 4.3.1, it follows that the denominator of (4.21) is

W  + ̂ (1- aAn)k )K
N n ( n )

n h n
c ~  S va

T  +  -
i=Nn(n)+i \ ( 1 aA n)* OL 

while the numerator is evaluated as

E  [exp (-(*+■/,)s"- (^+ <l_a ‘~>%„(r2i +g(i-°A"))x;2) |  

e-(-+ -iK  x ■

exp ( -  ( „ +̂ (1_<,A„)Wn(T2l-^ (n )) A" ] 

^  ( -  ( i r r ^ r r o + S f 1-^ " * )  An )  x

(4.19)

(4.20)

(4.21)

(4.22)
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N n(n)
n  &» (,, +„ (1- aA„).„ ,^ ,-+_ jz |_ r+s) (4.23)

* = J V n ( r i ) + l

Note that, from (4.19),

1 -  (1 -  a A")iv"*n *"i+1
<  *An = ----- -------------------------o:

and from (4.20),

bn (iAn) = C~ °  . +  -
V ' (1 -  aA") a

Substituting (4.22) and (4.23) into (4.21) concludes the proof.
The change of measure defined using (4.17) allows for a richer set of bond 

price processes. The price at time t of a zero-coupon bond maturing at time 
T  can now be defined as P['n — ex*E* [e-x£| and is evaluated in the 
following

L em m a 4.3.3 The expression for the discount bond price, defined as PtT,n =  
ex"E ' [e_I?| ^7*], is

P t'n =  exp ( -  a,.) (4.24)

where

>Nn(T) Nf [ } ~h" (“n (iA") +  bn (iAn))
&»(M< A-)) (4'25)

where a„ (iA n) and bn (zAn) are as defined in (4-19) and (4-20), respectively.

Proof: This follows directly from (4.18).
Also, using virtually the same argument as that below (4.14), it follows 

that the discounted bond price process e-x"PtT,n, with PfT,n given in (4.24), is 
a P*-mart ingale. There is, of course, no longer any reason for e-x”PtT,n to be 
a P-martingale.
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4.4 Mean-Variance Hedging

Let Zt denote the discounted version of the bond price P j'n defined in (4.24):

Z?’n = e~x‘ exp ^  (4 2g)

with as defined in (4.25).
Consider a contingent claim which expires at time tn. The discounted pay­

off (ft of this contract is a random variable measurable with respect to 
As an example, the discounted pay-off of a European call option to purchase 
on date tn a discount bond with maturity T n > tn at strike price k is </>” =  
( z tT’n -  e-*?k)+.

To determine the value of this claim, this problem may be viewed in the 
context of a multi-period hedging problem. We will try to replicate the dis­
counted pay-off at expiration with a self-financing portfolio of cash and the 
underlying bond. The portfolio is rebalanced at discrete time points using 
only information available before that time. The discounted value of the repli­
cating portfolio at expiration of the claim can be written as

v(n =  Vo" +  Z l i  + . . .  +  C a «  A Z j'n (4.27)

or, equivalently, as the recursion

vtn =  V "A„ +  7rtn_A„ AZ?'n (4.28)

The hedging error is

s” =  V? -  Ft (4.29)

The values of VJ1,7rJ, . . . ,  tt”_An will be determined by minimizing the expected 
squared hedging error E  [(£”)2| . If we define

(4-30)
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with

W0" =  V0" (4.31)

then using (4.29) this minimization problem can be restated as

rmnE[(V?)2 - 2 V W \ F S } (4.32)

The solution to this minimization problem will yield VJ1, the price at time 0 
of the contingent claim with pay-off </>” at time t. This is the main result of 
this section and is presented in theorem 4.4.1 below. In order to prove this 
theorem we solve this minimization problem iteratively, for one value of 7rt~iA 
at a time, i =  1 , . . . ,  Nn (t).

The toolt needed to solve these one-step minimizations are provided by 
lemma 4.4.2 and corollary 4.4.3 below. These intermediate results further 
depend on a number of supporting lemmas which are listed below the main 
results of this section in order of progression, the proof each lemma depending 
on results in prior lemmas.

First, we present the main result:

T heorem  4.4.1 The price at time 0 of a contingent claim with pay-off 4% at 
time tn, obtained by solving the minimization problem in (4-32) is

(4.33)
M,n1!5? <!>?—  Vt Mg

where M™ is a martingale defined by 

(
Nn (t)nj=i

i + -

(<> ))-'*i‘J. ( “n (* j))] (°n ( ‘i ) )  -  K  ( ‘i ) ) 
*3-1

(4.34)

63



with Mg =  1,

tj =  j A n for j  = 0, . . . ,  n (4.35)

and

In (v) + (t))
hn (bn (t))

Also, a„ (tj) and bn (tj) are defined in (4-19) and (4-20), respectively.

(4.36)

As mentioned above, the proof of theorem 4.4.1 is carried out by solving the 
minimization problem iteratively. This is accomplished by casting an interme­
diate minimization problem as a recursion:

Lem m a 4.4.2 Consider the minimization problem

min E
w?-m

(4.37)

where An < r n < tn, <$ denotes the pay-off of a contingent claim at expira­
tion described at the start of this section, VJ” Tn is the value of the replicating 
portfolio at time tn — r n given in (4-27), M? is the martingale given in (4-34) 
and, similar to (4-30), W?_rn is given by

W t _ Tn =  ,7Tq , . . .  , 7 r ”_ r n _ ^ n j

Then by solving for n"_Tn_^n the minimization problem in (4-37) can be cast 
as the recursion
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min E  wnt—rn—An

£  f (a z £?„) 'TJl
•T j_rn_An

(Vn \ 2 _  o y n
y  t —Tn — A n y  * v t - T n - A n<Pt iurnM£_Tn_fcn

Proof: The minimization problem in (4.37) can be written as

*o (4.38)

mm
w?-m AiJLr"

min £  j  n min J  U 1 (4.39)
t -r n-A n 1 7rt-TTl-A n L t - T  J  | J

Using (4.28) the term inside the outer expectation (conditional on Fq ) can be 
expanded as

(V£ t „_a „ )2 -  2V"t„_a„ £ 4>:
n M ? r n

S ’ t - T n - An +

r„min 27r1n_T„_A„ £  | [ V£T„_A„ -
t—rn—An An

rnt—rn—An

+

(4.40)

Solving the minimization problem for 7r”_Tn_An in (4.40) yields

7 Tt—Tn —An
E[(Az^n)2|^r-r».A»]

(4.41)

Substituting 7r£_An back into (4.40) results in 

(V7Lt „_a „ )2 -  2Vt"_T„_A„E

E  [ ( v £ T„_A„ -  Azgff.

£ [ ( A ^ „ ) 2| ^ _ t „_a ,

r n  
f—Tn—An

2
r nt—Tn —An
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(4.42)

The term multiplied with VJ” r„_An in (4.42) can be simplified by applying 
lemma 4.4.14. Substituting the result into (4.39) completes the proof of lemma 
4.4.2.

The first step in the minimization problem in (4.32) follows directly from 
lemma 4.4.2 and is stated as

Corollary 4.4.3 By solving for 7r£_An, the minimization problem in (4-32) 
can be rewritten as

min E  
n

E

( v n  —  2 V n  6 n  ^  

Mp_An

E ( < f t A Z ? ' n \

E ( ( A Z ? ’n ) 2 • T ' t - A " )

•7? (4.43)

where M” is defined in (4-34)-

Proof of theorem 4.4.1: Repeated applications of lemma 4.4.2 to 
starting with the result in corollary 4.4.3, allows us to solve for 7Tq , . . .  
yielding

(4.32),
,7T”-  An

im ni?[(V ?)2 - 2V r # | j ? ]  =
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Nn(t) Nn(t)- e n
j = 1  i=Nn ( t - t j ) + 2

E

\  e \ a z I ^ _ X  X

/
E ( fhn A 7 n'N ^

1 
1

2 \

n

/\
e  [(a z ?i I +a„)2

Nn (t)n
J=1

+

min EV”
M n

W )2 -  2W ] j ^
o J

(4.44)

Note that from (4.31), Wq = Vg. We can now easily solve for Vq to yield the 
result in (4.33).

To prove that Mtn in (4.34) is a martingale, note that from the definition 
of Z j 'n in (4.26)

Z j'n exp {-aZ  (t ) X f)

% %  ~  k t  (al (t))
(4.45)

Then, using the definition of M” in (4.34),

Mf. ( a l ( t j ) ) -h? .  ( a l  (^) ) ]  ^hn (a£( t j)) -exp (-a%(tj)X?.  ) J

M t i - A "  +  h " ( 2 a Z ( t j ) ) - h ” ( a T ( t j ) ) 2

for j  =  1 , . . . ,  Nn (t). It is clear from (4.46) that

M l hE
M IL Ij —An

=  i (4.47)

for r  < t j  — An. Also,

M l
w =  n wr*-

j = l  M t j - A n
(4.48)

MP
Hence, using the fact that the Mn J are independent (because the X J* axe
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W„(r)
e [m ? \ i ?}=  n

j = 1

M,n3
Nn (t)

nMn
1V1t j - A n j=JVn(r)+l

E
M l___z3

M lL tj —An
T l =  M" (4.49)

This completes the proof of theorem 4.4.1.
Note that because Mq =  1 we could have used the notation M ” instead

of in (4.33). We opted for the latter to emphasize the similarity with the 
notation in (2.16), which indicates a change of martingale measure.

In the remainder of this section we list lemmas 4.4.4 through 4.4.14, which 
are needed to prove lemma 4.4.2 and ultimately theorem 4.4.1:

Lem m a 4.4.4 Let A” be the short rate process defined in (4-5) and let x™ 
be its aggregated process defined in (4-V- Furthermore, let hn be the Laplace 
transform of hn, the density function of the increments of A”, and let a% (t) 
and bn (t) be as defined in (4-19) and (4-20), respectively. Finally, let Z j 'n be 
the discounted bond price process given in (4.26). Then

Nn(T)

exp J J  * » »  (4-50)
i=Nn (t)

Proof: This follows directly from (4.26) and the definitions in (4.35) and (4.36).

Lem m a 4.4.5 Let A” be the short rate process defined in (4-5) and let x” 
be its aggregated process defined in (4-V' Furthermore, let hn be the Laplace 
transform of hn, the density function of the increments of A”, and let (t) 
and bn (t) be as defined in (4-19) and (4-20), respectively. Finally, let Z j 'n be 
the discounted bond price process given in (4-26). Then

E  {Z j'^  =

e_I"-A” exp (_ w+2
Nn (T)

h" (a% (t)) j] h i  (a l  (t,))
i=Nn (t)+l

) *

(4.51)
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Proof: This follows from (4.26) and theorem 4.3.2.

Lem m a 4.4.6 Let A” be the short rate process defined in (4-5) and let x" 
be its aggregated process defined in (4-V- Furthermore, let hn be the Laplace 
transform of hn, the density function of the increments of A”, and let a£ (t ) 
and bn (t) be as defined in (4-19) and (4-20), respectively. Finally, let Z j 'n be 
the discounted bond price process given in (4-26). Then the expected value of 
the first difference of the discounted bond price is

E [i\Zj'n\ *JLa.] = E [ z f 'n| ̂ r_A„] -  Zfll„ = 

e-t-A* exp x
Nn (T)

[A" (a* (t)) -  A" (a£ (4))] j] K  (a« («<)) (4-52)
i=Nn (t) + 1

Proof: This follows from lemmas 4.4.4 and 4.4.5. Lemma 4.4.6 leads directly 
to the following result:

Lem m a 4.4.7 Let A” be the short rate process defined in (4-V o,nd let x" 
be its aggregated process defined in (4-V- Furthermore, let hn be the Laplace 
transform of hn, the density function of the increments of A", and let a£ (t) 
and bn (t) be as defined in (4-19) and (4-20), respectively. Finally, let Z j 'n be 
the discounted bond price process given in (4-26). Then

E [AZj* |^7_a„]2 =  exp x

[An (eg (t)) -  A" (a% (t))] j ]  A" (<£ (tj)) (4.53)
i=Nn (t)+l

The following two lemmas present conditional expected values useful in eval­
uating E (AZtT’n) 2| .

L em m a 4.4.8 Let AJ1 be the short rate process defined in (4-V cmd let x” 
be its aggregated process defined in (4-V- Furthermore, let hn be the Laplace 
transform o fhn, the density function of the increments of A”, and let a„ (t ) be
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as defined in (4-19). Then

E [e-2*? exp | =

e -2l *-A" exp ( - 21-°^.-('-°A"2w"<T)-w"(‘>+2Ar_An) p  (2oJ(()) (4 .54)

Lem m a 4.4.9 Let A” be the short rate process defined in (4-5) and let x? 
be its aggregated process defined in (4-V- Furthermore, let hn be the Laplace 
transform o fhn, the density function of the increments of A”, and let a„ (t) be 
as defined in (4-19). Then

E [e-T  exp =
exp P  (aj (t)) (4.55)

Both lemmas 4.4.8 and 4.4.9 follow directly from theorem 4.3.2.

Lem m a 4.4.10 Let A" be the short rate process defined in (4-5) and let x™ 
be its aggregated process defined in (4-V- Furthermore, let hn be the Laplace 
transform ofhn, the density function of the increments of A", and let a„ (t) and 
bn (t) be as defined in (4-19) and (4-20), respectively. Finally, let Z j 'n be the 
discounted bond price process given in (4-26). Then the conditional expected 
value of the squared difference of the discounted bond price at time tn, given 
F t _ f r n ,  is

E [(AZ(r'")2| = e“2l"-A» exp x
N n ( T )  ^  2

£/ln (2aJ(0 )+ fc" (<*n ( 0 ) 2— («n ( 0 )^ ” (°n  (0 )J  I I  K  ( a n  ( U ) )  ( 4 .5 6 )
i=Nn(t)+l

Proof: Using (4.25), (4.26), (4.36) and (4.50) it is easily verified that

rj,  l-QAn-(l-oAn)Wn(T)_JVnW+1 *T ( r p \\ 7 T'n — *>~xt ---------- *------i-------------- \? kNn(T)-  e * « Nn (t) ~
l_aAn-(l-aAn)Wn(T)~N"W+2 %n ^ at frr\

e~x‘~An  i --------------  !-A"/i? (ajw) A«;g> (4.57)
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Taking the square of (4.57) results in

vN„(r)-jvn(t)+i/  t « \ 2  l - a A n - f l - a A n r n lJ  x 2

( a z T 1" )  =  e~2*” ~2 (-------- i --------------------- *•’ ( * £ { ? )  -

l - a A n - ( l - QA n ) JVn(T )_W n (t >+ 2  o /  x 2

- 2 --------------------- 1— 1----------------------------------------------- ^(^w)2(a2”S>) -e ~ 2xt - A n ~*  a  "V

n  l - o A n - ( l - a A n ) JVn(T)_JVnW +1 v_
2e~xt ------------ * a-------------------------X

n l - a A n - ( l - a A n ) W n(r)_JV n( t)+ 2  , n  ,  x 2

(4.58)

The expected values of those terms in (4.58) that axe stochastic conditional 
on that is, the terms involving A” and x”, were evaluated in (4.54)
and (4.55). Substituting these results into (4.58) leads directly to the desired
expression for E   ̂(AZ j'n^ An in (4.56), proving the lemma.

Lem m a 4.4.11 Let A” be the short rate process defined in (4-5) and let x”
be its aggregated process defined in (4• V- Furthermore, let hn be the Laplace
transform ofhn, the density function of the increments ofX”, and let a j  (t) and
bn (t) be as defined in (4-19) and (4-20), respectively. Finally, let Z j 'n be the

e \ A Z T , n \ ^ n  Vdiscounted bond price process given in (4-26). Then the ratio —A— * | 2|~

is non-stochastic and evaluates to

E [A Z ? 'n\ j ?_A„]2 _  [frK w )-S?K M )]2

E^(AZt'”) 2 A " ( < ) ) + V ( < £ ( < £ ( < ) ) A"(<£(0 )

Proof: This follows from (4.53) and (4.56).

Lem m a 4.4.12 Let A” be the short rate process defined in (4-5) and let Z j 'n 
be the discounted bond price process given in (4-26). Then

E {A Z T-\E ?_a„] _  eJ,n

£ [ ( A 2 f '" ) 2|^ L A„]
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where ej'n is defined as

k  (al  (t)) \ k  ( “ n (* ) )  -  hn ( a „  (< ) ) ]
e l'n =

hn (2a l  (t )) +  k  (al  ( t ) f  ~  2h? (al  (t )) A" (<£ (<))

Proof: This follows from (4.26) and lemmas 4.4.6 and 4.4.10.

(4.61)

Lem m a 4.4.13 Let Z?'n be the discounted bond price process given in (4-26) 
and let e j,n be as defined in (4-61). Furthermore, let <$ denote the pay-off of 
a contingent claim at expiration as described at the start of this section. Then

E  (<^AZjl% e  ( a * "-A")

E

(  7 T'n I pT’n t—Tny l  ,n 
t—Tn—An

Proof: This follows from lemma 4.4.12 and the definition of e j’n in (4.61).

Lem m a 4.4.14 Let Z['n be the discounted bond price process given in (4>26) 
and let M f be the martingale defined in (4-34)- Furthermore, let denote 
the pay-off at expiration described at the start of this section. Then

2

E

J

Proof: From (4.60) the LHS of (4.62) can be written as

'rn
• r  t - T n - An (4.62)

E <t>,
n M t

‘ Ml_T„
1 -  e£"T„ +

y T ,n  t—Tn
zT'n .PT >n  t—Tn

t - T n -  An
'rn t—Tn —An (4.63)
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Using (4.59) it follows that

1 -
E[*zJ'n\r?_±n}2 _ hn ( 2 a £  ( t ) ) - h n ( a l  ( t ) ) '

s [ (A Z tT*n) 2 ^ _ An] 'hn (2aJ(t)) +/»” (a£(t))2—2/i"(aJ(t)) /in(a£(£))

and the definition of Mtn in (4.34) yields

(4.64)

M?
=  1 +

T,n
p"(<*n (0)-*?(°n(*))] hn(a£(t))-  7<w h?(a£(t))

t-A"

M£_An h(2aT(t))-h(aZ(t)y

Using (4.64), (4.65) as well as the definition e j,n in (4.61) yields

(4.65)

yT,n
1 _  PT ’n  _ i_  _ £ t _ _  T,n _  
1  e t  +  « - r T ,n  e t  “z\iAn

i  £ [A Z ,r 'n|^ L A„1

£ i - A n

MI1 
1 (4.66)

M t An

Substituting (4.66) into (4.63) produces the desired result in (4.62).

4.5 Pricing a Discount Bond

We will now consider a special case of the contingent claim priced in the 
previous section, namely a discount bond with unit pay-off at expiration. The 
discounted pay-off in this case is <f>f =  e~x*. The price is given in the following

T heorem  4.5.1 Letffi =  e~x* be the discounted pay-off function of a discount 
bond with maturity tn. The value of Vq that solves the minimization problem 
in (4-32) for this special case is

Vnn = E [e~x‘ |^o] x

* K  (‘J)) - * " )} ] ["” (“" (m) ) ( ° % ))]JVn(t)n
3=1

(4.67)

where hn is the Laplace transform o fhn, the density function of the increments 
of A", and a£ (t) and bn (t ) are as defined in (4-19) and (4-%0), respectively.
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Proof: Using theorem 4.2.2 and the definitions of A” and x f  in (4.5) and (4.7), 
respectively, yields

E (e ~ x" \ j * )  =  e x‘i exp x

Nn (t)

n  hn { <  (t*))
i=Nn (tj)+l

(  „  , n .N n (Lt ) - N n ( t A +  2
=  e ^ - AWexp ) ______1^ —-x:

x?t* — A n

Nn (t)

e x p ( - “ n f e ) ^ t " )  n  ( a n ( t i ) )
i=Nn ( tj  )-f-l

Another application of theorem 4.2.2 combined with (4.68) then yields

E (e* ? e xp (-a Z (tj )X Z ) \j? j_ ^ )  = 

£ ( j 5 ( e * | j 3 ) « p ( - < S  ( t , )  X $ )  | ^ _ A» )  =

(4.68)

^  t - - A n   ___e j exp

Nn (t)

h "  ( “ n (* i)  + a n ( t j ) )  II h "  ( a n ( * i) )  =
i—Nn (tj  )■+■1

E (  - X ?  j - n  \ h n ( a n (* j)  +  a n ( t j ) )  

(* » • « « , ) >
(4.69)

EVom (4.69) and the definition of M" in (4.34)

^ 5 - a- )  =£  ( ex<*

1+
W a T ( t  U  h n ( ° " ( b ) + a " ( t i ) )  

fc * » ( < ( * , ) )
[ StaK ( * i ) ) J ^ ( “ » ( « i ) ) ]

fc " (2 a T ’( t j  ) ) - h "
( - W

(4.70)
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Repeated applications of (4.70) then allows us to evaluate

completing the proof.

4.6 Option Pricing

This section explores the special case of pricing European call and put options. 
In both cases the security underlying the derivative is a T-maturity discount 
bond. The derivative is a contract to buy (call) or sell (put) the underlying at 
time t, obviously with 0 < t < T, at strike price k. The object is to determine 
the price of these derivative contracts at time 0.

The option contracts are considered to be be European in the sense that 
the holder can exercise the right to call or put on the expiration date. This 
is distinct from American options where the holder can exercise at any time 
prior to expiration as well.

For the special case of a European call option to buy a T-discount bond
( rT% ft 71 \Zt ’ — ke~x* ) .

Using (4.12) in theorem 4.2.2 and the definition of Z?'n in (4.26), this pay-off 
can be written as

exp (—A q ( 1 — aAn)oJl(An)) exp -  £  a £ ( j A n ) X i A »  1  ( £ " )

where 1 (•) is the indicator function which equals 1 when the condition in its



argument is met and 0 otherwise and Cn is the event that the call option is 
in-the-money:

C" =  [zj'n -  e~x‘ k  >  0} =
Nn (t) ^ n ( T )  \

Y .  (aZ(j&n) -a n U A n)) X j A n < log ^    AJ (a£(0)-a*,(0)) > (4.72)

Likewise, the pay-ofF of a put option can be written as

+

JVn(t)

(e~x'k  -  Z?'n) =

exp(-AS(l-aA"K(A"))A;exp 1 (V™) ~

exp (—Aq (l—aAn)a (̂An)) exp ^ ^ ( jA " )X ,An^ 1 {Vn) (4.73)

where V n is the event that the put option is in-the-money:

V n = {e~x‘ k - Z j ' n > 0} =
( Nn(t) ^Nn(T) \
|  y ,  (“nO'^n)-an(j^n)) ATjAn > log—  A[J (a£(0)-<£(0)) > (4.74)

In what follows we base our notation on Duffie, Pan and Singleton [19], 
which was touched on in subsection 3.3.1 above. For any real y and step 
functions an,bn : [0, t*] —► R, let G (y;an,bn, t) denote the price of a security 
that pays

/  Nn (t) >

eXP ( “  Xj X jAndn ( jA n)

at time t G [0, t*] in the event that

Nn (t)

Y  x jA»bn (jA n) < y
j=l

Then, using (4.71) and (4.72), the price at time 0 of a European call option to
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buy a T-discount bond at time t and strike price k is

C ? (M ) =
n m  (  Â n(T) \exp ( -A 5 (l-a A n)a^(A«)) A j ^ G  (tog ^ai*L -A j(aX (0)-a^(0));aJ,a^-a^«J -

/ ANn(T) \
e x p  ( —Aq (1—aAn)a^(An)) kG (tog - J ^ -A * (a £ (0 ) -a ^ (0 ) ) ;a U £ -< O  1 (4.75)

Similarly, using (4.73) and (4.74), the price at time 0 of a European put option 
to sell a T-discount bond at time t and strike price k is

P0"(M) =

exp (-ASU-aA"K(A")) kG ( -  (log —*o (“STM-oU0))^ ;■>».-(<£-■>»).*) -  

exp (-AS(l-aA")aJ(A”>) ( -  (log AS(<£(0)-<£(0)) j

(4.76)

In order to evaluate the option prices in (4.75) and (4.76) we will need to 
obtain an expression for G (y; an, bn, t). From theorem 4.4.1 we have

G  iy  5 hni ^) — E (N n W  \  ( N n (t) \  M ?
-  J2 AnOn(jAn) ) 1 I £  XiAn6n(jAn)<y I

(4.77)
The main result of this section is a formula for the expectation in (4.77), 
presented in theorem 4.6.1. In order to evaluate the integral in (4.77) we rely 
heavily on an important insight similar in spirit to that in Duffie, Pan and 
Singleton (see [19], equation (2.10) and following). This insight is captured 
by lemma 4.6.3, which states that integrals of a particular form are easily 
evaluated in the Laplace transform domain. It is, of course, necessary to 
invert the results back to the real world, which in our case involves resorting 
to numerical Laplace transform inversion methods such as those discussed in 
section 3.3.

First, we present the main result of this section:

Theorem  4.6.1 Assume that the increments Xj&n in the short rate model
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(4-5) for j  =  1 , 2 are independently distributed with identical density 
function hn (y) with support on R, so that its (possibly bilateral) Laplace trans­
form is hn (*/). Also, let G {y, an, bn, t) be as defined above. Then for y > 0

(2/5 0  =

( l Nn(t)r l l
A / 1  1  ~  n  ) * “  ( « n  (tj ) + I / 6 n  ( t j  )  ) + £ ( t j  ) / l n  ( a n  ) + a n  ( * j  J + l '& n  ( t , -  )  )  >  ( ? / )

(4.78)

(t ( y , on, 6n , t) — G (00; an, 6n, t) C? (f/j &n, 6n , t) (4.79)

and

G (00, fln, bn, t ) —
Wn(t)
n  (*i) A" K  (*j)) +  B («,) i"  (a , (tj) +  (t,))] (4.80)
j=1

where A  (t ) and B  (t ) are defined as

A  m = %n (2a» W) ~ K  W)%n (a" <*>) (4 8n
S"(2a J (« ) ) - / ;» ( a J ( t ))2  ̂ '

and

hn (afl (£)) — h” (a£ (£))
B («) =  ~ V n ' — J  V n {  (4.82)

W hn (2al (<)) -  fc» {al ( t ) f  K >

Proof: First, note that from the definition of Z f'n in (4.26)

Z j'n exp { - a l  (t ) X f )  

~  k  (al (t))
(4.83)
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From the definition of the martingale Mtn in (4.34) it is then easy to see that

N n ( t )

K  =  n  A(tj )  -  e - ^ -
j=l

(4.84)

with A ( t j ) and B (tj) given in (4.81) and (4.82), respectively. We can then 
evaluate the expectation in (4.77) as

E

E

-  Y ,  * , A « a n C ? A n )

(  N n (t) N n ( t )

(4.85)

An application of lemma 4.6.3 below then leads to the result in (4.78). 
To prove (4.79), note that

E

E

( N n W  \ \  (  N n ( t) \  MP
1 ■ H£ Jjexpr £ j m s

(  N n (t) \  MP
e x p l - E ^ w )  ^ (4.86)

The first term on the RHS of the second equality in (4.86) may be defined as 
G(oo;an, 6n,t), since setting y = 00 is equivalent to removing the restriction 
imposed by the indicator function. This yields (4.79). The expression for 
G (00; an, 6n, t) in (4.80) now follows trivially. This completes the proof of 
theorem 4.6.1.

The formula in (4.79) allows us to rewrite the formula for the price of a put 
option in (4.76) as the price of a call option minus the price of a forward, a 
contract that obliges the purchase of the underlying security on a certain date, 
at a certain strike price. This result is known as put-call parity (see Baxter 
and Rennie [5]) and is presented in

C orollary 4.6.2 (Put-call parity ) The put option pricing formula in (4-76)
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is equivalent to

F? (k,t) = CS (k,t) -  F£ (k,t) (4.87)

where Ftf (k, t) denotes the price of a forward contract, the obligation to buy a
T-discount bond at time t and strike price k and is given by

F£ (k , t) =  exp (—A£(l—«An)a£(An)) (oojaM-a^t) -

exp (—AS(1—aAn)4(An)) kG (oo;aU£—aU) (4.88)

It is easy to verify (see, for example, (4.71)) that the pay-off of the forward 
contract at expiration is 0J1 =  Z j'n — ke~x".

In the proof of theorem 4.6.1 we made use of the following

Lemma 4.6.3 Let real y,dj, A j ,  > 0 and let X j be independent and
identically distributed random variables with density function h with support 
on R  and with Laplace transform h, for j  =  1 , . . . ,  N . Then

/  n  i  ( t  n  h w )  d X j=
j  j=i \ j - ‘ /  j=i

Lul | ~  n  [Af i (qj +  udj) +  Bf i (ft +  udj) |  (y) (4-89)

where L~l is the inverse (possibly bilateral) Laplace transform operator with 
respect to v.

Proof: The indicator function on the LHS of (4.89) can be written as

1 djXj < yj =  U dJXi ]  (4-90)

where U is Heavyside’s unit function. The Laplace transform of (4.90), as a 
function of y, is

^  J m =i fi ̂ diXi 
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The Laplace transform of the entire integral term on the LHS of (4.89), with 
respect to ?/, is

-  f  f [  \ A j e - { a ‘ +L,di ) x > +  B j e ~ ^ + ‘' d ‘ ) x A  h  (Xj) d X j  =
V  J  j =1

-  n  [A f i  (a i  +  vd i )  +  (Pi +  v d i) \  (4 -91)
i =i

Inverting (4.91) yields the desired result.

N ote 4.6.4 To apply Weeks’ method for numerical Laplace transform inver­
sion to the transform in (4-89) it is advisable to invert

L v X | f [  [ A f i  ( a J  +  v d i )  +  B j h  ( f t  +  v d i ) \  |  ( V )  ( 4 *9 2 )

instead. Then (4-89) may be computed as

J |II \A f i  (aj + vdj) +  Bjh ( / 3 j +  vdj) J (u) du (4.93)

Weeks’ method may be used to compute the inverse Laplace transforms in 
(4-93). The integrals can then be computed using integrals of the Laguerre func­
tions as described in (3.23) and below.

4.7 Limit Results

In this section we motivate the choice of model introduced in section 4.2. 
It will be shown that a special case of An in (4.5) converges in law to the 
shot-noise process A presented in section 2.4 for n —> 00. Also, a slightly more 
general version is shown to converge in law to the diffusion shot noise process in 
section 2.6. Both these results axe proved by evaluating the limit of the Laplace 
transforms of the conditional density functions of these processes. The model 
presented in this chapter is much more general than either of those special 
cases, however. Resorting to a discrete-time framework is the compromise
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struck in part to achieve this generality.
We will see that other results from the continuous-time theory also have 

parallels in the discrete-time framework in this chapter. The bond price derived 
in (4.26) is a discrete-time approximation to the one derived in (3.1). On the 
other hand, the pricing results developed in the context of the mean-variance 
hedging framework, especially the option prices, have no known parallel deriva­
tion in continuous time. These pricing results were the main motivation for 
abandoning the continuous-time framework. It is, of course, possible to eval­
uate the limit of these pricing results for n —► oo, but this exercise is lengthy 
and was not found to offer any additional insight and hence has been omitted.

The first result in this section unveils the form of the Laplace transform in 
(4.11) when n —► oo. A restriction on hn is required to guarantee decorum in 
the limit.

T heorem  4.7.1 Let A” and x” be as defined in (4-5) and (4-V above. Fur­
thermore, let hn be of the form

hn (i/) =  1 +  An7n (i/) +  o (An) (4.94)

where 7n is a Laplace transform. Then the limit of the Laplace transform in 
(4-11) for n  —► oo is

Um E  [exp ( - 1 7  (x" - )  -  17 A " ) | =  

exp ( — x

exp fJ 72 7 f  171 - 6  J <T2 *’ + u2e-atn- A  ds (4.95)

Proof: Define the function

rff —t*+An
rf1 {u\ l/\, 1̂2) 7*2) = 1/11 ^ aA )---------- |-»^(l-aAn) A" (4.96)

so that

r f1 (jA n; t 2) = 1/11-(1~ttAnr w(T2) 3+1 +^(i-aA n)*n(Ta)-j (4.97)
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Note that

lim ( i - a A n)w"(‘)- JV“(T)+1 =
n—► oo

i f l   Tt i y y t t

lim (1 — aA n) ^  =  e~a^~T̂
n —*oo

(4.98)

It then follows that

Urn r f  { u \ v u v 2 , t 2 ) =  7?(u;i/i,i/2, r 2) =

1 _  g-afo-u)

O' +  ^2e— a ( T 2 — « ) (4.99)

It also follows that the limit of first term on the RHS of (4.11) is

(-(<« ‘- '~ T ~ Tl) -n»«-*»-n> )0exp (4.100)

Using (4.94) and (4.97), the second term on the RHS of (4.11) can be written 
as

N n ( n )n hn w  (*-^2, t2)) =
*=JV n(n )+ l

exp

exp

Nnln) . _
53 tog (1+ A"^** (?7n (i An \v \  ,V2  ,T2 ))+o( An))

<=*„(»! )+l
Nn(T2)  Wn(T2)

^  1 n (Tjn ( iA n ;i/i,V2,T2) ) +  5Z o(An)
»=Afn(ri)+l t=JVn(rj)+l

exp [/T̂+A„ 7*(vn(w;i/i,V2 ,T2) )d u + 0 (£) {r2n- r f  - An} ]  

exp [ f  7(77 (w;z/i,i/2, r 2))dtxj (4.101)

Combining (4.100) with (4.101) leads to the desired result in (4.95).
The next two results follow readily from theorem 4.7.1. They show that 

two special cases of the discrete-time model presented in this chapter converge 
in law their continuous-time counterparts discussed in chapter 2.

C orollary  4.7.2 Let A" and x” be as defined in (4.5) and (4-7) above. Fur­
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thermore, let hn be of the form

hn (y) = p&ng (y) +  (1 -  pAn) 6 (y) (4.102)

where g is a probability density function with Laplace transform g. Then, as 
n —> oo, the finite dimensional distributions of (AJ r̂r”) converge to those of 
(At, xt), the continuous-time shot noise process with constant decay and its 
aggregated process, introduced in section 2-4-

Proof: The Laplace transform of hn in (4.102) is of the same form as (4.94) 
with

7n (« ')= P (§n M - l )  (4.103)

Prom theorem 4.7.1 it then follows that

E  [exp { - v x (*» -  a* ) -  v2\ ”n ) 13*]  -  

exp ^ i 1 ^  T1> + ^ e’Q(T"_Tl)j  Anj  x

exp |p  J n  g 1 ~  6 p  U) + v2e -a(n- u)>\ -  l l  du j  (4.104)

Clearly (4.104) has the same form as (2.13), the Laplace transform of the 
conditional joint density of the continuous-time shot noise process and its 
aggregated process as proved in Jang [31] and Dassios and Jang [11].

Let IP  ( A” , rr” A” , x” ) denote the joint conditional distribution of A”2 
and x” , given A” and rr” . Similarly, let II (A^, | An , xn ) denote the joint
conditional distribution of A^ and given Ari and xTl. Then from (4.104) 
it follows that

K ’xn) = n(A^,rr^| A^,^)

where A” is the discrete-time process with characteristic (p, a, g (•)) and At is 
the continuous-time process with characteristic (p, <£, <?(•)), with p = p and 
a  =  S.
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Let IP  (A” , x” , . . . ,  A”̂ , x”̂ ) denote the joint distribution of A” , x” , . . . ,  
A tn ix tn foranyri < . . .  < rN <t* and N  > 0. Define II (XT1, xn , . . . ,  XTn , x T n )  

similarly. Then by the joint Markov property of (A",x”) and (At,x t) we have

N

nt=i

and

n  ^  (  ̂ Ti ’ *̂T* I ^ Ti 1 > 11 — n  (ATl, X r j , . . . , X rN, X Tff )
i= l

where we define tq =  0. Finally, it follows that

Jim nn (a" , i" ,..., \"K, ) = n ( a„ , xn , . . . ,  \ TN, xT„ )

This concludes the proof.
The next result demonstrates equivalence with the diffusion shot noise pro­

cess in section 2.6:

C orollary  4.7.3 Let AJ1 and x{* be as defined in (4-5) and (4-7) above. Fur­
thermore, let hn be of the form

hn (y) = (h l* h 2 )(y )  (4.105)

where * denotes the convolution operator, let

K  (V) = P&n9 (V) +  (1 -  Z>An) 5 (y) (4.106)

with the Laplace transform of g continuous and bounded and let

Wo (y) = , exp ( — —^ |  (4.107)
2Kyj y/2^ a  \  2Ana2J v '

Then, as n —* oo, the finite dimensional distributions of (A”,x”) converge to 
those of (Xt,x t), the continuous-time shot noise process with constant decay, 
perturbed by Brownian motion and its aggregated process as described in section 
2.6.
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Proof: We will prove that the limit of the joint Laplace transform in (4.11) is 
of the form (2.41) as n —► oo, when hn is of the form (4.105). First note that 
the LT of hn is

hn (u) =  h i (y) h i (u) (4.108)

with

h i (i/) =  pA ng (u) +  (1 — pA n) (4.109)

and

* /  A ncr2i/2 \
=  (4.110)

From (4.108) it is clear that the joint Laplace Transform of A” and , given 
in (4.11) takes on the form

E  [exp (-i/!  (j*  -  x” ) -  i/2A£,) | =
exp ( -  („. +|^(1_aA„)W„,^)- ^ (n)) A» ) x

i = N n ( r i ) + l

N n f a )

n  k  ( „  ^  +^(l-aA")^(^)-«) (4.111)
i=Nn ( n )+ 1

The limits of the first two terms on the RHS of (4.111), as n —*■ oo were already 
determined in corollary 4.7.2. The limit of the third term is

■Wn(T2) / , \ 2\J] exp ( - ^ i  L ) =
i = N n ( n ) + l  V  '  '  '

exp I NnZ  L l- ^ nf * ^ +l
i= N n (r  i)+l

exp ( - g j ^  i-e-aQ(T2~u) +v2e-<*(T2-u)ydt̂ j (4.112)
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Combining the result in (4.112) with that in (4.104) yields

E  [exp ( -u i  (x" -  a £ ) -  ^ A ") | J*]
(  (  1 _  e —a f o - n )

exp I -  I I/i 

exp

a

exp
a2 r

~~2 U

X _  g-a(n-u)
a + V2&

-a(T2-u) x

T2 / 1 _  e~<*(T2~u) \  *
1/1-----  +  ^ e - a(7*“u) du

a  /
(4.113)

Clearly (4.113) has the same form as (2.37).
A similar argument to that used in the proof of corollary 4.7.2 then allows 

us to conclude that the finite dimensional distributions of the discrete-time 
model with characteristic (p, a, g (•), cr) converge to those of the continuous­
time diffusion shot noise process with characteristic (p, 6, g (•), cr), where p =  p 
and a  =  5, as the sampling frequency increases. This concludes the proof.

The next theorem is the equivalent martingale measure version of theorem 
4.7.1.

T heorem  4.7.4 Let A” and x" be as defined in (4-5) and (4-7) above. Fur­
thermore, let hn be of the form given in (4-94)- Then the limit of the equivalent 
martingale measure Laplace transform in (4-18) for n  —► oo is

lim E* =
n —► o o  L I T1J

e 1/11x1 exp I — I v\
X _  g-afa-n)

a )An)
exp | y  [7 (y\aP (u) -I- v2e +b  (u)) — 7 du j

(4.114)

where

a75 (u) =
X — e~a(T2~u)

a
(4.115)
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and

&(M) =  l _ f l l- + -  
v 1 e~au a

Proof: It follows from (4.19) that

jim  (“ ) =  an  (u)

and from (4.20) that

lim bn (u) =  b (it)

(4.116)

Define the function

Vn (“ ) =  "i<C (u) + 1/2 (1 -  aA") A" +  b„ (u) (4.117)

It is easy to see that

v% (it) —> v 72 (it) =  vian (it) +  v2e~a^ ~ u  ̂+  b (it) (4.118)

Then, similar to the proof of theorem 4.7.1, we have

N n (Vi)

n  hn (iw Z  (iA n) + 1/2 (1 -  a A nf ^ )- < + b„ (iAnj) =
i= N „ (ri)+ l

II hn (v% (iAn)) -> exp |y 7  (V72 (it)) du
i=Nn(n )+ l

exp £y 7  (via7* (u) +  V2& +  b (it)) dit (4.119)

and

N n(T2)  ̂ r fT l

n  hn (bn (iA n)) -» exp 7  (6 (u)) du (4.120)
*=iv„(n)+i

Substituting (4.119) and (4.120) into (4.18) completes the proof.

Corollary 4.7.5 Let A” and x” be as defined in (4-5) and (4-7) above. Fur-
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thermore, let hn be of the form given in (4-102). Then the limit of the equiva­
lent martingale measure Laplace transform in (4-18) for n  —> oo is

lim E* \e~VlX̂ - ^  j *  1 =
n—»<x> L J

e_l'llT1 exp ( -  ft/i1 ~  6 + v2e-a(n~TA  X^) x

6XP [P In -  9 (f^+s)) du]
(4.121)

iVo£e that (4-121) is equivalent to (2.31) with

p =  P

6 =  a
VKi =  —a

VKi =  c -----a (4.122)

Proof: This follows from the same argument as in (4.103), combined with the 
definitions of a72 (u) and b (u) given in (4.115) and (4.116), respectively.

With corollary 4.7.5 it is easy to tie the discounted bond-price process of 
the discrete-time model in with that based on the continuous-time shot noise 
process:

m
C orollary 4.7.6 Let Zt ’ be the discrete-time discounted bond-price process 
given in (4-26) with the added constraint that hn is of the form given in (4-102). 
Furthermore, let Z  (t , T) be the continuous-time discounted bond-price process 
given in (3.1). Then

Urn Z j 'n = Z  (t, T) (4.123)

Proof: This follows from (3.1), lemma 4.3.3, (4.26) and corollary 4.7.5.
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Chapter 5 

Numerical Experiments

This chapter presents results from numerical implementations of the various 
pricing formulae developed in the thesis. All of these experiments were imple­
mented using S-Plus.

5.1 Continuous-Time M odel

The option pricing formula using Weeks’ Laplace transform inversion method 
from (3.28) was implemented and used to compute option prices as a numerical 
example.

The parameter values used are given in table 5.1. The values for N , M  and 
b were chosen so that the error in the Laplace transform domain was small. 
Because ft (vi, 1/2) from (3.5) does not have poles for non-negative values of 
and v2, cr can be kept small. The computed prices of a European call option 
to buy a 250-day bond for various strike prices and maturities are presented 
in table 5.2.

5.2 Discrete-Tim e M odel

In this section the pricing results of the refined discrete-time short rate model 
(4.5) from chapter 4 are explored. Several special cases of this fairly general 
model are examined in turn. We start with the discrete-time version of the

90



Table 5.1: Parameter values used to compute option prices

Parameter Value
6 0.02
P 0.35
a 125000
K X 500
k 2 500
T 250
Ao 0.0002
X q 0
b 100000
a 0.01
M 1000
N 1000

shot-noise process with exponentially distributed jumps.

5.2.1 Exponential Shot N oise

In this section results axe presented for the short rate model where the incre­
ment size distribution hn is defined in (4.102) with exponentially distributed 
jump-sizes. The parameter values used are given in table 5.3. Note that in 
table 5.3 the values for v and c are specified indirectly through and n2 using
(4.122).

Figure 5.1 shows two realizations of the short rate using parameter values 
from table 5.3 evolved over 1000 time increments, which could be interpreted 
as 250 days with 4 updates per day.

Figure 5.2 shows two versions of the price process for the discount bond as 
defined in (4.24) with a maturity of 250 days. The two versions represent the 
price under an equivalent martingale measure («i =  k2 = 500) and the base 
measure («i =  k2 =  0).

Table 5.4 compares results for the pricing model in (4.24) with that in
(4.67). Bonds with several maturities are priced. The values of and k2 
are as given in table 5.3. The maturity of the long bond is 250 days. The 
prices based on (4.67) axe generated in two ways: with the pricing formula in
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Table 5.2: Exponential (continuous time) shot-noise option prices

Strike
price

Maturity

0.9475 0.9530 0.9585 0.9640 0.9695 0.9750

78 0.030905 0.025477 0.020049 0.014621 0.009193 0.003775
96 0.033370 0.027956 0.022543 0.017129 0.011715 0.006301

114 0.035752 0.030352 0.024952 0.019552 0.014152 0.008752
132 0.038058 0.032672 0.027285 0.021899 0.016512 0.011125
150 0.040290 0.034917 0.029543 0.024170 0.018796 0.013422
168 0.042441 0.037080 0.031719 0.026358 0.020997 0.015636
186 0.044497 0.039148 0.033799 0.028450 0.023100 0.017751
204 0.046439 0.041101 0.035763 0.030425 0.025087 0.019749
222 0.048243 0.042915 0.037588 0.032260 0.026933 0.021606
240 0.049883 0.044566 0.039248 0.033930 0.028612 0.023294

Table 5.3: Parameter values used the for discrete-time short rate

Parameter Value
An 0.25
a 0.02
P 0.35
P 125000
«i 500
«2 500
^0 0.0002
X q 0

(4.67) (column “Formula (Opt)”) as well as by evaluating the expected value 
of (4.33) through Monte Carlo simulation (10000 replications), with <$ =  e~x* 
(column “Simulation”).

Option pricing results are displayed in tables 5.5 and 5.6. Both tables 
display option prices for a European call option on a 250-day discount bond 
for various strike prices and dates. The prices in table 5.5 are computed using 
formula (4.75), whereas the prices in table 5.6 are computed by evaluating the 
expected value of (4.33) through Monte Carlo simulation (10000 replications), 
with 4>t =  {%t'n — &e-x”) + .
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Figure 5.1: Two exponential shot-noise short rate paths
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Table 5.4: Exponential shot-noise bond prices

Maturity Formula Formula (Opt) Simulation
30 0.994484 0.994484 0.994428
60 0.989636 0.989636 0.989579

120 0.980987 0.980987 0.980880
200 0.970942 0.970942 0.970915

5.2.2 G am m a Shot N oise

In this section results are presented for the short rate model where the incre­
ment size distribution hn is defined in (4.102) with gamma distributed jump- 
sizes, which have Laplace transform

( 5 1 )

The parameter values used are given in table 5.7.
Figure 5.3 shows two realizations of the short rate using parameter values 

from table 5.7 evolved over 1000 time increments, which could be thought of 
as 250 days with 4 updates per day.
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Figure 5.2: Exponential shot-noise bond price process: Under the equivalent 
martingale measure (solid) and the base measure (dotted)
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Figure 5.4 shows two versions of the price process for the discount bond as 
defined in (4.24) with a maturity of 250 days. The two versions represent the 
price under an equivalent martingale measure («i =  k 2 =  500) and the base 
measure («i =  k 2 =  0).

Table 5.8 compares results for the pricing model in (4.24) with that in
(4.67). Bonds with several maturities are priced. The values of «i and k 2 

are as given in table 5.3. The maturity of the long bond is 250 days. The 
prices based on (4.67) are generated in two ways: with the pricing formula in
(4.67) (column “Formula (Opt)”) as well as by evaluating the expected value 
of (4.33) through Monte Carlo simulation (10000 replications), with <£” =  e ~x" 
(column “Simulation”).

Option pricing results are displayed in tables 5.9 and 5.10. Both tables 
display option prices for a European call option on a 250-day discount bond 
for various strike prices and dates. The prices in table 5.9 are computed using 
formula (4.75), whereas the prices in table 5.10 are computed by evaluating the 
expected value of (4.33) through Monte Carlo simulation (10000 replications), 
with 0” =  ( z j ' n — ke~xt ) + .
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Table 5.5: Exponential shot-noise option prices

Strike
price

Maturity-

0.9475 0.9530 0.9585 0.9640 0.9695 0.9750

78 0.030834 0.025406 0.019978 0.014550 0.009122 0.003703
96 0.033300 0.027886 0.022472 0.017059 0.011645 0.006231

114 0.035684 0.030284 0.024884 0.019484 0.014084 0.008684
132 0.037993 0.032607 0.027220 0.021834 0.016447 0.011061
150 0.040230 0.034856 0.029483 0.024109 0.018736 0.013362
168 0.042387 0.037026 0.031665 0.026304 0.020943 0.015582
186 0.044451 0.039101 0.033752 0.028403 0.023054 0.017705
204 0.046402 0.041064 0.035727 0.030389 0.025051 0.019713
222 0.048218 0.042890 0.037563 0.032236 0.026909 0.021582
240 0.049868 0.044551 0.039235 0.033917 0.028599 0.023287

5.2.3 Double Gamma Short R ate

The model explored in this section illustrates the flexibility of the discrete­
time framework developed in chapter 4. The probability distribution of the 
step-sizes have the following Laplace transform

h" (v) =  piA"g\ (u) +  (i/) +  (1 -  pi A" -  P2) (5.2)

with

9 i(

and

]h_
An

(5.3)

r2
(5.4)

This specification of step-sizes is a mixture of two gamma distributed jumps. 
The first jump term in (5.2), <71, has essentially the same form as the gamma 
distributed jump-sizes in subsection 5.2.2, where the jump-size distribution 
does not vary with n, but the probability of a jump occurring decreases pro-
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Table 5.6: Simulated exponential shot-noise option prices

Strike
price

Maturity

0.9475 0.9530 0.9585 0.9640 0.9695 0.9750

78 0.030867 0.025443 0.020019 0.014595 0.009171 0.003754
96 0.033259 0.027858 0.022458 0.017057 0.011657 0.006257

114 0.035773 0.030370 0.024967 0.019563 0.014160 0.008757
132 0.038051 0.032665 0.027279 0.021893 0.016507 0.011121
150 0.040344 0.034965 0.029585 0.024205 0.018825 0.013445
168 0.042307 0.036962 0.031617 0.026273 0.020928 0.015583
186 0.044388 0.039052 0.033717 0.028382 0.023046 0.017711
204 0.046865 0.041482 0.036098 0.030714 0.025331 0.019947
222 0.047675 0.042412 0.037149 0.031886 0.026623 0.021360
240 0.049948 0.044627 0.039307 0.033986 0.028665 0.023344

portionately with the time-increments An. The second jump term has a differ­
ent form where the probability of a jump occurring in a given time step does 
not change with its length, whereas the jump-size distribution does. In fact, 
the mean of the jump-sizes defined in (5.4) is Anr2//?2- The parameter values 
chosen to implement the model defined in (5.2), (5.3) and (5.4) axe given in 
table 5.11. Figure 5.5 shows two realizations of the short rate using parameter 
values from table 5.11 evolved over 1000 time increments.

Figure 5.6 shows two versions of the price process for the discount bond as 
defined in (4.24) with a maturity of 250 days. The two versions represent the 
price under an equivalent martingale measure ( =  k2 = 200) and the base 
measure («i =  k2 — 0).

Table 5.12 compares results for the pricing model in (4.24) with that in
(4.67). Bonds with several maturities are priced. The values of and k2 
are as given in table 5.11. The maturity of the long bond is 250 days. The 
prices based on (4.67) axe generated in two ways: with the pricing formula in
(4.67) (column “Formula (Opt)”) as well as by evaluating the expected value 
of (4.67) through Monte Carlo simulation (10000 replications), with =  e~x* 
(column “Simulation”).

Option pricing results axe displayed in tables 5.13 and 5.14. Both tables
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Table 5.7: Parameter values used the for discrete-time short rate (gamma)

Parameter Value
An 0.25
a 0.02
P 0.35
r 3
P 375000
K i 500
«2 500
^0 0.0002
X q 0

Table 5.8: Gamma shot-noise bond prices

Maturity Formula Formula (Opt) Simulation
30 0.994478 0.994478 0.994430
60 0.989612 0.989612 0.989568

120 0.980881 0.980881 0.980819
200 0.970496 0.970497 0.970447

display option prices for a European call option on a 250-day discount bond 
for various strike prices and dates. The prices in table 5.13 axe computed using 
formula (4.75), whereas the prices in table 5.14 are computed by evaluating the 
expected value of (4.33) through Monte Carlo simulation (10000 replications), 
with f t  = (Z j'n -  ke-x" )+ .
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Figure 5.3: Two gamma shot-noise short rate paths
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Figure 5.4: Gamma shot-noise bond price process: Under the equivalent mar­
tingale measure (solid) and the base measure (dotted)
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Table 5.9: Gamma shot-noise option prices

0.9475 0.9530 0.9585 0.9640 0.9695 0.9750

0.027503
0.029997
0.032416
0.034771
0.037065
0.039296
0.041454
0.043525
0.045485
0.047302

0.021582
0.024092
0.026526
0.028896
0.031204
0.033449
0.035621
0.037704
0.039677
0.041507

0.015660
0.018186
0.020636
0.023020
0.025343
0.027602
0.029788
0.031884
0.033870
0.035713

0.009739
0.012281
0.014745
0.017145
0.019482
0.021756
0.023955
0.026064
0.028062
0.029921

0.003819
0.006375
0.008855
0.011269
0.013622
0.015909
0.018122
0.020244
0.022254
0.024121

0.000009
0.000750
0.002970
0.005394
0.007761
0.010062
0.012288
0.014424
0.016446
0.018325

Table 5.10: Simulated gamma shot-noise option prices 

0.9475 09530 09585 09640 0.9695 0.9750

0.027539
0.030040
0.032450
0.034761
0.036990
0.039361
0.041610
0.043520
0.045955
0.046338

0.021621
0.024138
0.026564
0.028897
0.031148
0.033513
0.035764
0.037709
0.040094
0.040667

0.015704
0.018236
0.020679
0.023033
0.025307
0.027666
0.029917
0.031897
0.034233
0.034995

0.009787
0.012334
0.014793
0.017169
0.019466
0.021818
0.024071
0.026085
0.028372
0.029323

0.003870
0.006432
0.008907
0.011305
0.013624
0.015970
0.018225
0.020274
0.022512
0.023652

0.000011
0.000790
0.003026
0.005441
0.007783
0.010123
0.012378
0.014462
0.016651
0.017980
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Table 5.11: Parameter values used the for discrete-time short rate (double 
gamma)

Parameter Value
An 0.25
a 0.02
Pi 0.14
n 3
A 250000
P2 0.21
r 2 3
P2 250000
«1 200
k2 200
Ao 0.0002
Xfl 0

Figure 5.5: Two double gamma shot-noise short rate paths

o

* « 
E 5E § -2 §
I

o
o

0 50 100 200 250150

100



Figure 5.6: Double Gamma shot-noise bond price process: Under the equiva­
lent martingale measure (solid) and the base measure (dotted)
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Table 5.12: Double Gamma jump bond prices

Maturity Formula Formula (Opt) Simulation
30 0.993949 0.993949 0.993896
60 0.987845 0.987845 0.987777

120 0.975655 0.975655 0.975592
200 0.959794 0.959794 0.959716
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Table 5.13: Double Gamma short-rate option prices

Strike
price

Maturity

0.9475 0.9530 0.9585 0.9640 0.9695 0.9750

78 0.017951 0.012538 0.007125 0.001781 0.000000 0.000000
96 0.021420 0.016027 0.010634 0.005242 0.000427 0.000000

114 0.024878 0.019505 0.014132 0.008759 0.003391 0.000017
132 0.028319 0.022966 0.017613 0.012260 0.006908 0.001625
150 0.031738 0.026405 0.021072 0.015739 0.010406 0.005073
168 0.035127 0.029814 0.024501 0.019188 0.013874 0.008561
186 0.038480 0.033186 0.027892 0.022598 0.017305 0.012011
204 0.041784 0.036510 0.031235 0.025960 0.020686 0.015411
222 0.045026 0.039770 0.034514 0.029259 0.024003 0.018747
240 0.048187 0.042949 0.037712 0.032474 0.027237 0.021999

Table 5.14: Simulated Double Gamma short-rate option prices

Strike
price

Maturity

0.9475 0.9530 0.9585 0.9640 0.9695 0.9750

78 0.017951 0.012538 0.007125 0.001783 0.000000 0.000000
96 0.021419 0.016027 0.010634 0.005242 0.000427 0.000000

114 0.024866 0.019495 0.014124 0.008753 0.003386 0.000016
132 0.028263 0.022916 0.017570 0.012224 0.006878 0.001602
150 0.031732 0.026400 0.021068 0.015736 0.010404 0.005072
168 0.035201 0.029878 0.024555 0.019233 0.013910 0.008587
186 0.038337 0.033061 0.027785 0.022509 0.017233 0.011957
204 0.041868 0.036583 0.031298 0.026013 0.020728 0.015443
222 0.045002 0.039749 0.034496 0.029243 0.023990 0.018737
240 0.048261 0.043015 0.037770 0.032524 0.027279 0.022033
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