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A bstract

This thesis develops theoretical tools for fractional cointegration analysis of 
nonlinear time series. These tools are employed to establish consistency of narrow 
band versions of Least Squares and Principal Components, in situations when the 
observables do not follow traditional linear process assumptions. Chapter 1 intro­
duces the problem, and Chapter 2 reviews the tools and techniques used in the 
literature for analysing stationary fractional cointegration, emphasizing methods 
that will be the focus of subsequent chapters. Chapter 3 considers a bivariate factor 
model, where the unobservable common factor and idiosyncratic errors are sta­
tionary and serially uncorrelated, but have strong dependence in higher moments. 
Assuming the latent variables are driven by long memory stochastic volatility mod­
els, and that the underlying persistence is higher in the factor than in the errors, a 
fractional cointegrating relationship can be recovered by suitable transformation 
of the data. We consider a narrow band semiparametric estimate of the factor 
loadings, which is shown to be consistent with a rate of convergence. Chapter 4 
contains two Monte Carlo experiments: the first illustrates the performance of the 
Narrow Band Least Squares estimate in the setting of the previous chapter, while 
the second attempts to fill the gap in theoretical distributional results for nonlin­
ear processes, by analysing distributional properties of the more general Weighted 
Narrow Band Least Squares estimate, under linear and nonlinear settings. Chap­
ter 5 extends the techniques of Chapter 3 to a general multivariate setting, with 
more than two observables and multiple common factors. A narrow band version 
of the Principal Components estimate is introduced and shown to converge to  the 
space spanned by the factor loadings, allowing their consistent estimation under 
suitable linear restrictions. A Monte Carlo study of finite sample performance and 
an empirical application to European equity indices are also presented.
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Chapter 1

Introduction

The analysis, estimation, and testing of cointegration relationships, introduced 

by Granger (1981) and developed, among others, by Granger and Weiss (1983), 

Engle and Granger (1987), has grown to be one of the most important and active 

areas of research in time series econometrics. It was noticed by these authors 

that in a variety of different situations, notably in macroeconomic models, certain 

linear combinations of nonstationary time series may be stationary, and that such 

situations may be interpreted as a long run relationship between variables driven 

by common factors.

In much of the early literature on the subject, the concept of nonstationarity 

has been used interchangeably with the presence of unit roots; likewise, the only 

type of stationary processes considered were short memory ones, such as autore­

gressive moving average (ARMA) processes, or more generally those satisfying 

certain strong mixing conditions. In recent times, some of the focus has shifted to 

a more general framework, where the orders of integration of both the observable 

time series and the cointegration residuals are allowed to be real valued, rather 

than integers. Obviously, such a framework nests the unit root case; perhaps 

more importantly, it accurately represents additional types of persistence that are
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excluded from unit root cointegration analysis. One may observe nonstationary 

time series that nonetheless revert to a stable, long run mean value; or stationary 

series where shocks appear to decay very slowly over time. W ithin this framework, 

one can even entertain the concept of cointegration between stationary variables, 

wherein estimates such as ordinary least squares (OLS), frequently employed in 

the unit root setting, become invalid.

As the analysis of fractional cointegration is a fairly recent field, most of the 

asymptotic statistical theory has been developed under assumptions that may not 

be satisfied in practice. A range of parametric methods is available; however, these 

methods require correct specification of the short run dynamics of the data, which 

is not directly relevant to the intrinsically long run phenomenon of cointegration. 

We focus instead on semiparametric estimates, which are valid under substantially 

weaker conditions, at the cost of a slower rate of convergence. Still, most analysis 

of these estimates has relied on restrictions on the heterogeneity and dependence 

of the innovations in the Wold representation of the processes. These restrictions 

may range from Gaussianity to the conditional homogeneity of some moments, and 

are in general invalid for nonlinear processes. In this thesis, we aim to develop the­

oretical tools applicable to a wide variety of nonlinear models, where observables 

are non-trivial transformations of underlying stationary long memory processes. 

For concreteness, and also because of its empirical relevance, we focus throughout 

on a particular framework where observable time series follow a statistical factor 

model, and the underlying components of the model follow stochastic volatility 

(SV) models. This framework, while relatively general, is particularly well suited 

to describe properties of multivariate asset returns, and presents a clear violation 

of the type of assumptions mentioned earlier.

Financial time series, such as asset returns, axe commonly found to be approx­

imately uncorrelated but not independent across time. Much of this dependence
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can be traced to the fact that volatilities are time dependent, with highly volatile 

observations grouped in some periods, and relatively low volatilities elsewhere. A 

great deal of attention has focused on modelling the consequent conditional het- 

eroscedasticity. Influential early contributions were the autoregressive conditional 

heteroscedasticity (ARCH) model of Engle (1982) (applied there to inflation data), 

the generalised ARCH (GARCH) extension of Bollerslev (1986), and along a dif­

ferent line, the SV model of Taylor (1986). Empirical evidence has suggested a 

higher degree of persistence than these models entail, leading to Engle and Boller- 

slev’s (1986) introduction of the integrated GARCH (IGARCH) model. However, 

the persistence implied by this model (and other unit root based ones, such as in­

tegrated exponential GARCH, IEGARCH) seems too extreme. On the one hand, 

the absence of mean reversion in the second moments implies permanent shifts 

to long term volatility forecasts, which is theoretically implausible. On the other, 

empirical investigation of volatility measures, such as absolute values and squares 

of observations, suggests they are better explained as stationary processes with 

long memory, indicating the need for a more flexible model of volatility persis­

tence; see, for example, Whistler (1990), Ding, Granger, and Engle (1993), Ding 

and Granger (1996), Andersen and Bollerslev (1997).

Several parametric models for this phenomenon have been proposed. Robinson 

(1991) extended the GARCH framework to an ARCH(oo) model that can explain 

greater persistence. Other models within this framework include Ding and Granger 

(1996), Baillie, Bollerslev, and Mikkelsen (1996), Bollerslev and Mikkelsen (1996). 

Other authors have extended Taylor’s (1986) SV model to explain long memory in 

squares, e.g. Andersen and Bollerslev (1997), Harvey (1998), Breidt, Crato, and 

de Lima (1998).

In a parallel line of research, asset pricing models assume the existence of one or 

more common factors explaining asset returns. The classical capital asset pricing
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model (CAPM) of Sharpe (1964) decomposes returns into a single factor, inter­

preted as the market return, and an idiosyncratic component. The intertemporal 

CAPM (ICAPM) of Merton (1973) and the arbitrage pricing theory (APT) of Ross 

(1976) show that, under more realistic assumptions, multiple factors need to be 

considered as determinants of returns. Estimation of the ICAPM requires correct 

specification of the factors, there assumed to be observable state variables; the 

APT uses asymptotics on the cross-sectional dimension (i.e. the number of assets) 

for its theoretical implications, and also to allow estimation of the unobservable 

factors and respective loadings.

The methods introduced in the following chapters allow for identification and 

estimation of factor loadings when cross sectional asymptotics are not available, by 

exploring the persistence in higher moments implied by the SV models employed. 

We analyse narrow band versions of least squares and of principal components, 

under quite general semiparametric assumptions. We relax the linear process as­

sumptions used in the past, which are invalid in this setting, and consider instead 

general nonlinear transformations of underlying Gaussian processes. Our tech­

niques allow for nonparametric nonlinearity, in the form of generalised SV models, 

and semiparametric dependence structures of underlying components, where the 

short run dynamics are essentially unrestricted.

The following chapter reviews the tools and techniques used for analysing sta­

tionary long memory and fractional cointegration, emphasizing semiparametric 

methods that will be the focus of subsequent chapters. After introducing the 

main concepts, we describe how they can be applied in the context of nonlin­

ear processes. A simplified factor model (in the spirit of those mentioned above) 

is presented and used to exemplify how the long memory properties of underly­

ing factor model components can give rise to fractional cointegration in higher 

moments of observables. Some of the challenges associated with this setting are



discussed, namely the lack of orthogonality and the nonlinearity implied by the 

power transformation. The leading semiparametric estimates of fractional cointe­

gration are then introduced, together with a sketch of the arguments typically used 

to establish consistency. A brief description of semiparametric memory estimation 

techniques is also provided.

Chapter 3 presents our main theoretical results. A more general version of the 

bivariate factor model introduced in Chapter 2 is described, where the unobserv­

able common factor and idiosyncratic errors are stationary and serially uncorre­

lated, but are generated by SV models with strong dependence in higher moments. 

We introduce an approximation result for cross-moments of nonlinear functions of 

Gaussian variables, which is then used to establish consistency of the Narrow Band 

Least Squares estimate. Under fairly general assumptions, the rate of convergence 

for nonlinear processes is shown to be comparable to that of linear processes.

Two Monte Carlo studies of finite sample properties are shown in Chapter 4. 

The first of these studies illustrates the performance of the Narrow Band Least 

Squares estimate in the setting of Chapter 3, showing encouraging performances 

for small to moderate sample sizes across a variety of specifications. The second 

study attempts to fill the gap in theoretical distributional results for nonlinear 

processes, by analysing distributional properties of the more general Weighted 

Narrow Band Least Squares estimate, under linear and nonlinear settings. Results 

indicate that asymptotic distributional results may be misleading in finite samples, 

and that under a number of different specifications Weighted Narrow Band Least 

Squares may be dominated by its unweighted counterpart.

Chapter 5 applies the theoretical tools developed in Chapter 3 to a multivariate 

setting, extending the bivariate model presented therein to allow for more than 

two observables and multiple common factors. A narrow band version of principal 

components is introduced and shown to be consistent for the space spanned by
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the factor loadings, under assumptions comparable to those of Chapter 3. Under 

a suitable set of linear restrictions on the parameters, it is possible to consistently 

estimate the original factor loadings. The practical application and finite sample 

performance of these techniques are illustrated in a Monte Carlo study and an 

empirical study of risk exposures for a set of European large-cap equity indices.

18



Chapter 2

Stationary long memory and 

fractional cointegration in 

nonlinear m odels

2.1 Introduction

This chapter presents a general discussion of the tools commonly employed in 

the analysis of long memory and fractional cointegration,, with special emphasis 

on problems raised by nonlinearity. In Sections 2 and 3 we introduce the con­

cepts of long memory and fractional cointegration. Section 4 describes some basic 

properties of nonlinear transformations of long memory processes, while Section 5 

discusses the possibility of fractional cointegration between such transformations. 

Section 6 reviews methods of estimating cointegrating coefficients (the stress being 

on relatively simple “single equation” methods). Section 7 briefly describes some 

leading semiparametric estimates of the memory parameter. Section 8 concludes.
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2.2 Long memory processes

As noted in Chapter 1, the modelling of dependence in stationary economic 

variables has until recently relied heavily on models satisfying certain weak de­

pendence conditions, notably the (stationary and invertible) ARMA specification. 

These models are necessarily associated with absolutely summable autocovari­

ances, and a spectral density bounded away from zero and infinity. Nevertheless, 

various time series across the natural and social sciences have been found to dis­

play a degree of persistence that violates these assumptions, leading to a diverging 

spectral density and hyperbolically decaying autocovariances. An early example 

was found in Hydrology by Hurst (1951), in his study of the Nile river yearly 

minima over a period spanning several centuries. In Economics, Granger (1966) 

noted that “the typical spectral shape of an economic variable” is dominated by a 

sharp peak at frequency zero, and other authors (see e.g. Mandelbrot, 1969) have 

argued for the need to explicitly account for these effects in econometric models.

The early literature on long memory processes is closely related to self-similarity, 

in particular to fractional Brownian motion, studied in detail by Mandelbrot and 

van Ness (1968). We first introduce the fundamental properties used in the defi­

nition of fractional Brownian motion, wherein “equality in distribution” signifies 

equality of all finite-dimensional distributions of the processes.

D efin ition 1 A continuous time process {At}ien is self-similar with index H  > 0 

if, for any a > 0, {Aaf}teR and {aHX t}t^u are equal in distribution.

D efinition 2 A continuous time process {At}teR has stationary increments if, for  

any h E l ,  {X t+h ~  A/jj-teR and {X t — Ao}teR are equal in distribution.

Both self-similarity and stationary increments are invariance properties of the 

process between different time intervals. Intuitively, a process with stationary in­

crements moves in the same manner in any interval of fixed length t, irrespectively
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of the starting point h. A self-similar process behaves similarly in intervals of any 

length: keeping the starting point at zero, if the length of the time interval, t, 

is expanded or shrunk by a factor a, then scaling the units of the process by a 

factor aH leaves its distribution unchanged. Fractional Brownian motion is simply 

defined as a Gaussian process with these two properties.

Definition 3 A continuous time process is a fractional Brownian motion

if

(i) I t is a mean zero Gaussian process with B q = 0 a.s.;

(ii) It has stationary increments;

(Hi) It is self-similar with index 0 < H  < 1.

It can be shown that, for a given H , all fractional Brownian motion processes 

are equal in distribution up to a multiplicative scaling factor; furthermore, the 

variance of B t is given by

£ (£ ? )= < r2\t\2H, (2.1)

where <r2 =  E {B \), while the autocovariance function is

E (B tBs) = y  (It\2H +  |s |“  +  11 -  41“ ) .  (2.2)

Since a mean zero Gaussian process can be uniquely characterised by (2.2), or

equivalently by (2.1) and the stationary increments property, alternative (and 

equivalent) definitions of fractional Brownian motion may be employed, wherein 

(2.1) or (2.2) replace the requirement of self-similarity. Taking the usual Brownian

motion (which in this setting corresponds to the above definition with H  = | )  as a

primitive, fractional Brownian motion may also be defined as a fractional integral 

thereof. We will not pursue such alternative definitions here.
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Fractional Brownian motion is a nonstationary process, but its increments form 

a stationary, Gaussian, and mean zero process by definition. We therefore focus 

on the (discrete time) increment process.

Definition 4 I f  {B t}te^ is a fractional Brownian motion, the process

X t =  B t+1 -  Bt, (2.3)

where t G Z =  {0, ± 1 , . . .}, is a fractional Brownian noise.

From (2.2), it is easily found that the autocovariance function of X t is

p} = E (XoX ,)

= y ( U  +  l |2" - 2 b | 2H +  | i - i r ) ,  j e  Z. (2.4)

For H  = | ,  this reduces to pj = <r2l ( j  =  0), where l(-) denotes the identity 

function. This is a well known result; the usual Brownian motion has independent 

increments. However, for H  ^  |  the autocorrelation function pj is non-zero for all 

j ,  and furthermore

Pj ~  a2H{2H -  l) \j\2H~2, as j  oo, (2.5)

where indicates that the ratio of left- and right-hand sides tends to one. 

We find that the autocovariance function of fractional Brownian motion decays 

hyperbolically. If H  2’ this decay is so slow that the p- are not absolutely 

summable.

Alternative parametric models displaying long memory, inspired by the popular 

integrated ARMA (ARIMA) models, were developed by Adenstedt (1974), and 

later popularised in Economics by Granger and Joyeux (1980), Hosking (1981),
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and Granger (1981). We first introduce the Wold Representation Theorem (here 

restricted to scalar processes for simplicity).

Theorem  2.1 Any covariance stationary scalar process zt may be uniquely rep­

resented as

zt = p + r)t A  3>(L)et , t £ Z, (2-6)

where:

(i) p  =  E(zt);

(ii) rjt is a deterministic component;

(Hi) £t is a white noise process with variance i.e.

E(et) =  0,

E{et£s) = a2£l( t = s);

(iv) <h(L) is an infinite order polynomial on the lag operator L, i.e.

OO

j =0

where cp0 = I, and furthermore the Wold coefficients <pj are square summable,

OO

3 = 1

We will assume throughout this chapter that the process zt in (2.6) is mean 

zero and purely non-deterministic, so that p = 0, rjt = 0 a.s., and we can write zt 

as a linear filter on et,

zt = * (L )et. (2.7)
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In the special case of stationary ARMA processes, we have

$(L) = A - \L )B (L ) ,  (2.8)

where A(L) and B(L) are finite dimensional polynomials, and all roots of A(-) lie 

outside the unit circle; in this case, the Wold coefficients <Pj decay exponentially to 

zero with j ,  or are indeed identically zero for large enough j  if A(L) =  1. It follows 

that the autocovariance function, pj = Cov(zQ,Zj), is absolutely summable. To 

see this, let cr̂  =  1 without loss of generality, and note that

OO

Pj =  5Z  VkVk+j, J > °> (2-9)
k=o

so we may write

OO OO

EN = E
j =o j =o

OO OO /  OO \  2

 ̂E w E w= E M ■ (21°)
k=0 j =0 \ j =0 /

and therefore absolute summability of pj follows from absolutely summability of

<Pi-

Adenstedt (1974), Granger and Joyeux (1980), and Hosking (1981) discussed 

processes where instead 4>(L) is the fractional differencing operator,

*(L) = ( l - L ) - d, (2.11)

where — \  < d < which implies that the weights y? ■ can be written, by a binomial

E
fc=0

Vk<Pk+j k+j I
k—0 7 = 0
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expansion, as functionals of the Gamma function T(-),

r(j + d) (9
r(d)r(j + i y  ( 2 ' 1 2 )

By analogy with ARIMA models, this family of processes is referred to as frac­

tionally integrated ARMA (ARFIMA) (0, d, 0), or simply fractionally integrated 

noise.

D efin ition  5 A scalar process Zt is said to be an ARFIM A(0,d,0), process, for  

—|  < d < \ ,  i f  it is covariance stationary and

Zt — (1 — L ) d€t, t G Z,

where et is a white noise process.

The asymptotic behaviour of the <pj sequence may be derived from Stirling’s 

approximation,

( j x ’Y  ( e ) * ’ a s 2 : - >00- (2-13)

While processes generated by (2.7), (2.11) are still stationary and invertible, when 

d 0 the (fj decay hyperbolically,

jd -i
<Pj ~  3s j  ► oo. (2.14)

The autocovariance function, pj = Cov(z0, Zj), is

.  _ 2  ( - i m i - 2d)
Pi ffer(i -d+j)r( i-d-j)’ ( )

so using Stirling’s approximation again we may derive a power law for p-, namely

Pi ~  Cpj 2d \  as j  -> oo, (2.16)
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for some finite, non-zero constant Cp that depends on o\ and d. Furthermore, the 

spectral density /(A) of zt , which satisfies pj — /(A) cos(jA)dA, is

a1 (  \ \  ~2d
/(A> = 2# ( 2Sin 2)  > (2'17)

for 0 < A < 7r, and therefore (since sin x  ~  x  as x  —> 0)

/(A) ~  Cf X~2d, as A —> 0+, (2.18)

for a finite constant Cf > 0.

For d < 0, the autocovariances p  ̂ are all negative for j  ^  0 (thus Cp < 0), 

and /(0 ) =  0, implying that YlJLo Pj  =  0- For d = 0, zt trivially reduces to 

white noise, as 3>(L) =  1. For d > 0, the autocovariances Pj  are all positive (thus 

Cp > 0), the Wold coefficients and the autocovariances are not summable, and 

therefore the spectral density diverges around A =  0. Extension to the general 

ARFIMA(p, d, q) family is straightforward, replacing the white noise et in (2.7) by 

a stationary ARMA(p, q) process, whence (2.16), (2.18) still hold for finite Cp ^  0 

and Cj > 0 respectively.

D efinition 6 A scalar process Zt is said to be an ARFIMA(p, d, q) process, for  

—\  < d < if  it is covariance stationary and

(1 -  L)dA(L)z, =  B(L)et, t  6 Z,

where et is a white noise process, and A{L), B (L ) are polynomials of degree p, q 

respectively, with no common roots.

The crucial property (2.18) is invariant to short range dynamics. Assume that 

Zt = (1 -  L)~dvt, t  e Z, (2.19)
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where now vt is any covariance stationary process with spectral density, g(A), 

bounded away from zero and infinity at the origin. The process vt thus defined is 

quite general; in particular it may display slower-than-exponential decay of auto­

correlations and Wold coefficients, which is excluded by the ARMA(p, q) specifi­

cation. The spectral density of zt is

satisfying (2.18). As such, it is possible to disentangle the long rim persistence of 

the process from the short run dynamic properties, captured here by g{\)- Analysis 

of parametric ARFIMA(p, d, q) processes is sensitive to specification of the orders 

p  and q, assumed to be finite, and estimates derived under such assumptions are 

likely to be inconsistent otherwise. By contrast, methods relying only on the 

asymptotic behaviour of /(A) around the origin (or as j  —> oo) are valid under 

significantly weaker assumptions, and do not require specification or estimation 

of high frequency dynamics at all. As is typical of semiparametric analysis, the 

additional robustness is attained at the cost of slower rates of convergence. We 

present two alternative semiparametric definitions of long memory.

D efinition 7 (frequency domain) A scalar process zt is said to be integrated of 

order d, denoted 1(d), for d £ (— | )  if  (2.18) holds for some C f  £ (0, oo).

D efin ition 8 (time domain) A scalar process zt is said to be integrated of order

(2.20)

for 0 < A < 7r, yielding

/(A) ~  g(0)A 2d, as A -► 0+, (2.21)

d, denoted 1(d), for d £ (— 1) i f  either:

(i) d = 0 and 0 < YljLo Pj < °°> or
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(ii) d t^O and (2.16) holds for some finite Cp ^  0.

Note that, under mild regularity conditions (see Theorem 111-12 of Yong, 1974), 

satisfied in particular by ARFIMA models, these two definitions are equivalent, 

and indeed we will use them interchangeably throughout this chapter. Some au­

thors employ slightly more general versions of (2.16), (2.18) replacing the finite 

constants Cp, Cf by possibly diverging functions, assumed to be slowly varying at 

infinity or zero, respectively. We call d the “memory parameter” of zt", if d < 0 the 

process is said to to be anti-persistent or negative memory; if d =  0 the process 

is said to be weakly correlated or short memory; if d > 0 the process is said to 

be strongly correlated or long memory. While the negative memory case may be 

relevant in some special situations, namely in the analysis of overdifferenced time 

series, its properties are less relevant in the context of cointegration, and we will 

mainly focus throughout the thesis on the case d > 0. Comparison of (2.16) with 

(2.5) indicates that the decay of the autocovariance function (and therefore the 

persistence of the processes) for fractionally integrated noise and fractional Brown­

ian noise will be comparable when d = H  — 1, and indeed this reparameterisation 

allows either definition to nest fractional Brownian noise, as well as ARFIMA 

models.

Unfortunately, the semiparametric definitions presented are too broad for use­

ful asymptotic theory to be developed, and a number of additional technical as­

sumptions have been employed in the literature. The ones most widely used as­

sume a linear process structure for zt\ while we know (by Theorem 2.1) that such 

a representation can always be obtained for a covariance stationary process, The­

orem 2.1 only ensures that the innovations et are serially uncorrelated. Stronger 

versions are obtained by imposing additional structure on the innovation process.

The most restrictive assumption under which semiparametric analysis of long 

memory processes has been pursued is that of Gaussianity. If zt is a Gaussian
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process, the following assumption holds.

A ssum ption  2.1 The process zt is generated by (2.7), where the innovations et 

are iid Gaussian.

An alternative, weaker specification assumes that zt is a linear filter of an iid 

process, without requiring Gaussianity.

A ssum ption  2.2 The process zt is generated by (2.7), where the innovations et 

are iid.

It is possible to allow added generality by stating assumptions only on specific 

moments of the innovations, in particular imposing neither serial independence 

nor strict stationarity of et. These assumptions (used by e.g. Robinson, 1994a) 

may take various forms, depending on the particular application, but are usually 

restrictions on the dependence and heterogeneity of such moments (conditional or 

otherwise) stated using the well known concept of martingale difference processes.

D efin ition 9 A process et is said to be a martingale difference sequence if

E{st+\\J~t) — 0, t € Z, 

where T t is the a-algebra generated by {ss, s <*}.

A ssum ption  2.3 The process zt is generated by (2.7), where et, e\ — a2e are mar­

tingale difference sequences.

This assumption is frequently extended to guarantee constant conditional skew­

ness and kurtosis, i.e. that s* — E(e^) is also a martingale difference for k — 3,4.

Finally, some authors abandon the linear process assumption altogether, es­

tablishing asymptotic theory for nonlinear transformations of processes satisfying 

either (2.1) or (2.2). We discuss these models in Section 2.4.
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2.3 Fractional cointegration

The concept of cointegration, first introduced by Granger (1981) and developed 

by Granger and Weiss (1983), Engle and Granger (1987), plays a crucial role in 

the modern analysis of economic time series. Many economic models suggest that 

certain variables, which may be highly persistent or even nonstationary, obey 

an equilibrium relationship. This relationship is not expected to hold exactly 

at any particular point in time, but deviations from it trigger mechanisms that 

drive the economy back towards the equilibrium state. For a q x 1 column vector 

Zt = (zit, . . . ,  zqty, t G Z, suppose that the the linear constraint

represents the equilibrium relationship. As stated before, (2.22) is not expected 

to hold exactly, but one would expect the deviations from this equilibrium state, 

say

to be small in some sense, and to revert to zero relatively quickly. In particular, for 

the concept of equilibrium to hold any value in the description of the underlying 

processes, one would expect Ut not to share the persistence and/or nonstationarity 

of the original processes Zt.

While Engle and Granger (1987) (and subsequent authors, see e.g. Phillips and 

Durlauf, 1986; Stock, 1987; Johansen, 1988) focused much of their attentions on 

the case of unit root Zt and short memory ut , they did note that their results can 

be generalised to (stationary or nonstationary) fractionally integrated processes. 

We will frame their definition in the case of interest for this thesis, where both 

the observables Zt and the errors ut are stationary fractionally integrated 1(d)

a 'Z t = 0 (2.22)

Ut — a'Zt , (2.23)
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processes, as introduced in the previous section.

D efin ition  10 (Engle and Granger, 1987) Zt is said to be cointegrated of orders 

d and b, denoted CI(d, b), if:

(i) all the components of Zt are I{d),

(ii) there exists a q x  1 vector a  ^  0 such that (2.23) holds, where ut is an I{d—b) 

process with 0 < b < d.

The (usually unknown) a  is called a cointegrating vector, and the equilibrium 

error, ut, is called a cointegrating residual. To highlight the distinction between the 

traditional literature on cointegration and the analysis of long memory processes, 

when d and/or b are not integers Zt is said to be fractionally cointegrated. In 

the context of fractional cointegration, it is possible to generate the traditional 

behaviour of nonstationary observables and stationary errors (when d > i and 

d — b < 1), but other combinations are possible, namely where observables and 

errors are all nonstationary (d — b > 1) or all stationary (d < |) .  We will focus 

on the latter case throughout the thesis.

This definition may be extended to allow the elements of Zt to have differing 

memory parameters. We will adopt instead the alternative definition used by 

e.g. Robinson and Marinucci (2003) in the study of fractional cointegration of 

nonstationary Zt ; alternative definitions were reviewed and discussed by Robinson 

and Yajima (2002).

D efin ition  11 (Robinson and Marinucci, 2003) Z t is said to be (fractionally) 

cointegrated if:

(i) zit is I(di), 0 < di < \ ,  i = 1, . . . ,  q > 1,

(ii) there exists a q x  1 vector a / 0  such that (2.23) holds, where ut is an I(du) 

process with 0 < du < min* di.
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The existence of cross-correlation between the Za is a necessary condition for 

cointegration, but we will presently avoid specifying the nature of this, except 

to note that by the Schwarz inequality the cross-spectral density at frequency A 

between zu and Zjt has modulus of order no greater than \\\~di~d3 as A —> 0. If 

q = 2, a necessary condition for fractional cointegration is that d\ = d,2, so the 

two definitions are identical; however, this is not necessarily the case for q > 2, as 

we will illustrate below, and in the context of real valued memory parameters it 

may be unreasonable to make such restrictions.

Engle and Granger (1987) also noted that in the q > 2 case there may be 

multiple cointegrating vectors a  satisfying the definition. The set of vectors a  

for which the (2.23) constitute cointegrating residuals is a linear subspace of R9, 

and can therefore be characterised by a base of linearly independent vectors. The 

dimension of this subspace, k , is called the cointegrating rank, and necessarily 

k < q. If k = q, then any vector a  would be a cointegrating vector, including 

a  =  (1, 0, . . . ,  0), which would yield ut = zu  and contradict the requirement that 

du "C d j .

The study of multivariate fractional cointegration involves delicate issues that 

are largely absent in the unit root case. Following work in the unit root frame­

work (e.g. Stock and Watson, 1988), Robinson and Yajima (2002) suggested a 

representation of Zt in terms of unobservable components, which is also relevant 

in the modelling of fractional cointegration. Whenever Zt is cointegrated, it can 

be expressed as

Zt = AFt + Ut, (2.24)

where Ft is a J  x 1 column vector of (unobservable) common components, for 

J  = q — k, Ut is a q column vector of unobservable residuals, and A  is a full rank 

q x J  matrix of coefficients. Note that no row of A  is identically zero, as that
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would contradict our definition of cointegration, and denote by Ai the z-th column 

of A. Assume, for the time being, that in this representation Ft is a vector of (not 

cointegrated) 1(d) processes, while all the elements of Ut are I(du), with d > du. 

It follows that all elements of Zt are 1(d) , the cointegrating residuals are I(du), 

and the cointegrating vectors are given by the null space of A, i.e. the solutions 

to the equation a'A  — 0. This setting has been studied in great detail in the unit 

root framework, but here we need not assume that d, du are integers.

Now assume that instead Fit is di, i =  1 , . . . ,  J , and that d\ > d<i > ... > 

d j > du. It is still true that the (q — J)-dimensional null space of A  contains 

vectors for which (2.23) is a linear combination of Ut, and therefore I(du). Still, 

other vectors may satisfy our definition of fractional cointegration. Using, for 

instance the partition A = [A*|Aj], where A* = [A\ . . .  A j-i]  is a full rank q x 

(J  — 1) matrix, then any a  in the (q — J  + l)-dimensional null space of A* will 

generate residuals in (2.23) which are either I(du) or I(d j). These will therefore be 

cointegrating residuals, provided that no row of A* is identically zero, and thus all 

the observables are at least I ( d j - 1). Following this argument to the extreme case, if 

all the elements of A\ are non-zero, so that all the Zt axe I(di), any a  orthogonal to 

Ai generates residuals that are (at most) /(c^)- In this case, the cointegrating rank 

of Zt is q — 1, and indeed one could let Fit, i — 2, . . . ,  J , be “absorbed” into Ut to 

yield a single factor version of (2.24). If, on the other hand, some of the coefficients 

of Ai are zero, then the corresponding elements of Zt will have memory parameters 

lower than di, while still being part of meaningful cointegrating relationships. In 

this case (and also in the general case where some of the di may be equal and the 

elements of Ut may have different memory parameters), there may be cointegration 

between processes of different memory, and the cointegrating residuals themselves 

may have differing memory for alternative cointegrating vectors.
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2.4 Nonlinear m odels o f long memory

It is desirable to reconcile these properties of long memory and fractional coin­

tegration with a more fundamental modelling of Zt , which is plausible in financial 

series. Consider first a strictly stationary scalar process rjt , such that

=  2(?7t), (2.25)

where g(-) is a scalar nonlinear function. Since our definition of long memory 

requires the existence of a spectral density, in what follows we will assume that 

both zt and rjt have finite second moments. Furthermore, and without loss of 

generality, we will assume that both zt and r)t are mean zero (otherwise subtract 

the means and redefine g accordingly). We are interested in inferring properties 

of zt , in particular its memory parameter, in this setting. To do this, we must 

consider not only the memory parameter of the underlying rjt , but also the nature 

of the transformation g and the joint distributional properties of the {rjt} process. 

There is a large literature on the asymptotic behaviour of partial sums of long 

memory processes such as (2.25) (see e.g. Taqqu, 1975; Taqqu, 1979; Dobrushin 

and Major, 1979; Breuer and Major, 1983; Ho and Sun, 1987) when {r)t} is assumed 

to be Gaussian, enabling the use of a Hermite expansion.

D efinition  12 For integer k > 0 , the Hermite polynomials Hk(-) are given by

pih
Hk(x)<f>(x) = ( -1  )k-^cf>{x), (2.26)

where </>(•) denotes the standard normal density.

Assume {rjt} is Gaussian, and furthermore (without loss of generality) that

r)t is N (0,1). The process {r)t} is thus fully characterised by its autocorrelation
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function j t = E(r)Qrjt), t > 0. For functions g(-) such that E(z$) < oo, we may 

express zt as
oo ^

z« = E f c f ^ w -  <2-27)
k=r

where the Hermite coefficients Gk are given by

G k = E[g(nt)Hk(r,t)], (2.28)

and the Hermite rank r is defined as

r = min{A: > 0 : Gk ^  0}. (2.29)

Note that Go =  E (zt) is zero by assumption, and therefore in this setting r > 1.

Hermite polynomials constitute an orthogonal base (under the Gaussian prob­

ability measure) for the space of square integrable functions g(-), and furthermore 

it is well known that

E{Hj (r,0)Hk(rlt)] = k\'i* l(j = k), j , k , t e  Z. (2.30)

It follows that, if r)t is 1(d) for d > 0, and therefore its autocovariance satisfies 

(2.16), then

E[Hk(Vo)Hk(Vt)] ~  fc!C'*t's(2d- 1), as t  -  oo. (2.31)

Now, from (2.27) the autocovariance of zt is

00 / \  2 00 ^  2

£ (* * ) = E  ( fcf) E{HdVo)Hk(m)] = Y,  fcf7‘- (2'32>
k=r k=r

The contribution of the j -th term in the expansion is proportional to the j -th

power of the autocorrelation of r]t . As t —> 00, ryt —> 0, and since YlT=r =
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£(*?) < oo, the leading term of (2.32) can be shown to dominate the remaining 

ones. Therefore,

Cov (zq, zt) ~  C t2d* x, as t —► oo, (2.33)(2.33)

for some finite constant C, where

(2.34)

which follows trivially from setting 2d* — 1 =  r(2d — 1). If d* > 0, zt is a long 

memory process with memory parameter d*, while if d* < 0 the autocovariance 

function is summable and thus Zt is short memory. The process zt in (2.27) 

will share the memory of rjt if G\ = E[r)tg(r)t)\ ^  0, say for g(x) — ex. In the 

special case where G\ =  0 (in particular, if g is symmetric around the origin), 

but Gi =  E[(r}t — l)g(r}t)] ^  0 and d > | ,  zt will be I(2d — | ) ,  and thus of 

lower memory than r)t\ this would arise for instance if g(x) =  |a;|a, a ^  0. While 

theoretically possible, functions orthogonal to both Hi and H2 are less likely to 

be of practical interest.

Robinson (2001) provided a multivariate extension of (2.32), in the general 

setting where the quantity of interest is the covariance between two nonlinear 

functions of a multivariate Gaussian process. This expansion is then used to 

approximate the autocovariance function of models of the form zt = 9 i{’nit)92(r}2t)- 

Models such as Taylor’s (1986) SV model are nested by this form; it can therefore 

be seen as a generalised SV model if, say, E\gi(i)lt)\ = 0, rjlt is iid, and rjlt is 

independent of past values of i]2t, so that zt satisfies the martingale property. 

Moreover, Robinson (2001) noted that \zt \a may also be represented within this 

family, but in this case E[\gi(r)lt)\a] > 0, for any (non-trivial) g\ and a, and thus 

\zt \a may inherit some of the autocorrelation assumed for r]2f  I11 this general 

setting, the existence of long memory in zt, and the actual value of its memory
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parameter, will depend as above on the nature of g\ and namely a multivariate 

extension of (2.29), as well as the memory parameters (and dependence) of rjlt 

and rj2t.

Most of the literature on nonlinear transformations of long memory time series 

assumes Gaussianity of the underlying processes which, as previously illustrated, 

greatly facilitates theoretical analysis. Nonetheless, some asymptotic theory has 

been developed where the Gaussian rjt is replaced by a linear process with non- 

Gaussian iid innovations, see e.g. Giraitis and Taqqu (1997) and Giraitis, Taqqu, 

and Terrin (1998). The non-Gaussian case is considerably more complicated to 

handle theoretically, and the added generality is offset by strong restrictions on 

g, typically assumed to be a finite order polynomial. For these reasons, we will 

assume Gaussianity of r)t wherever the use of Hermite expansions is called for, not­

ing that the nonparametric nature of g adds enough flexibility to this specification 

to lead to an essentially unrestricted distribution for zt.

2.5 Fractional cointegration in nonlinear m odels

It may be possible, further, to infer a cointegrating relation for Zt from an 

underlying structural relation in terms of rjt. In the spirit of the previous section, 

consider a jointly strictly stationary s x 1 vector process rjt , for s > q, such that

Zit = 9i{rit), i =  l , . . . , g ,  (2.35)

where the gi are nonlinear functions. We consider perhaps the simplest interesting 

case leading to a nonlinear cointegrating relationship. We take q = 2, s = 4, 

write r)t — (^it,^2t)7?3t> 774t)/j an(A assume it is Gaussian. Suppose that the {r)it} 

are mutually independent processes, that for i — 1,2,3 the r)it are iid with zero 

mean and variance of, and that r)At is an I{dA) process, for dA > 0. Suppose that
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we observe sequences xt , yt , generated by

=  PiCt +  V w

Vt =  P 2Ct +  V2t>

(2.36)

(2.37)

where p x, /32 7̂  0 and

Ct = % M m t), (2.38)

where h is a possibly nonlinear function, with E{h(r)4t)2} < oo. The common 

factor thus follows a SV model of the type discussed previously.

This setup can be interpreted as a factor model for asset returns, x t and yt , 

where is the (unobservable) market return, and (31, are the market risk 

exposures of x t and yt , respectively. Since memory properties (of volatilities, in 

this case) are invariant to temporal aggregation (see Chambers, 1998), (2.36)-

(2.38) should be a reasonable model across all sampling frequencies. Now Ct is 

not an iid sequence but it is a square-integrable martingale difference, and thus 

uncorrelated, sequence, as therefore are x t and yt. Thus xt and yt exhibit an ideal 

property of asset returns, say. Because xt and yt are therefore 1(0) sequences, and 

all linear combinations of them are also /(0), they are not cointegrated. However, 

we can deduce a cointegrating relation between the squares z\t =  x ^, Z2t =  Vt- We 

have

*2t =  (P2Ct +  V2t)2

—  6z\t +  ut, (2.39)

where 6 = P \/P \ and

ut = r)\t +  2/32772*C* -  20PiriltCt -  0rfit . (2.40)
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Clearly ut has no autocorrelation, and is thus an 1(0) process. We have

%it — P iC t  +  ^P iW itC t “1" Wit" (2-41)

The last two terms on the right are also /(0). However, for suitable h the leading 

term has long memory, and thence so has Z \ t . Noting that

C? =  [wit ~  E (wlt)}h2(W4t) +  E(wlt)h2(Wit)> (2-42)

where the first term is a martingale difference sequence, the memory of is 

given by using the Hermite rank of h2 in (2.34). For example if ( t = r)3trj\t and 

c?4 > | ,  Zu is I(2di — |) ,  or if ( t = rj3ten4t, z\t is /(d 4). In either case, z2t has 

the same memory parameter as Z \ t , and Zt =  (zu , z2t)' is fractionally cointegrated, 

with cointegrating vector a = (—6, 1)'. A similar conclusion is drawn if, even more 

simply, rjlt is missing from (2.36), in which case z\t — #iCt and ut = W2t ^ ^ 2W2tCf 

Recall that is generated by a SV model and plays the role of a common 

factor. Fractional cointegration can also arise if the idiosyncratic components rjlt 

and/or rj2t are themselves replaced by processes with SV, allowing ut to have long 

memory if it is still dominated by (%. This situation will be fully explored in the 

following chapter.

Though (2.39) is expressed in the form of a regression model, it does not possess 

the classical properties. The unobservable sequence ut actually has nonzero mean 

(as does zu), but this situation is rectified by introducing an intercept. More 

importantly, however, ut is not orthogonal to the right-hand side observable zu :

Cov ( z l t , U t )  =  -2e<x\ {<7? +  2E(C,)}  <  0, (2.43)

taking (3-̂  — 1 with no loss of generality, since the scale of the unobservable ( t is
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indetermined in (2.36), (2.37).

The absence of rjlt in this simple setting would ensure orthogonality (though 

not independence) between z lt and ut, from which classical linear regression as­

sumptions would trivially follow. However, such a simplifying assumption is not 

realistic in a situation where the designation of left-hand variable is arbitrary. For 

general q, after rewriting a 'Z t = ut in regression form, then even in the absence 

of an underlying structure like (2.36), (2.37) there is no reason to suppose that 

orthogonality between cointegrating errors and right-hand side regressors obtains.

Alternatively, it would be possible to specify SV models where issues associated 

with nonlinearity can be avoided. Deo and Hurvich (2001), Hurvich and Soulier

(2002), Hurvich and Ray (2003), Arteche (2004), and Hurvich, Moulines, and

Soulier (2005) discussed semiparametric estimation and testing of the memory 

parameter under the long memory SV model of Harvey (1998) and Breidt, Crato, 

and de Lima (1998). Following these authors, if instead of (2.36)-(2.38) we assume, 

say,

Xt = h1{p1rjlt + r}2t), (2.44)

Vt =  M t o i t  +  %t), (2-45)

for known and invertible functions h i,h 2, and furthermore that the memory of 

r)2t,rj3t is dominated by that of r]lt, then a fractional cointegrating relationship 

between z\t =  h i 1(xt) and z2t — h ^ iv t)  could be explored by imposing suitable 

linearity assumptions on rjt. In particular, such a relationship would follow (for 

hi(x) = h2(x) — exp(x)) if the long memory SV model held for both sequences, 

with linearly related long memory components (yielding 7(0) r/2t and r]3t). How­

ever, in a general setting where h i , h2 are unknown or non-monotonic, or if additive 

errors are present as in (2.36), (2.37), no such “linearising” transformation can be
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assumed to exist, and nonlinearity needs to be accounted for explicitly.

2.6 Estim ation o f cointegrating vectors

Assuming the existence of a cointegrating relationship such as (2.23), and 

furthermore that the q-th  element of a  is non-zero (adopting an arbitrary normal­

ization), so that we may designate zqt as the left-hand side variable, rewrite the

cointegrating relation as

Yt = 9'Xt + uu (2.46)

where Yt = , X t = (z\t , . . . ,  zq- i)t)' and 9 is a (q — 1) x 1 vector. It is desired

to estimate the unknown 6 = (91, . . . ,  9q- i)', on the basis of observables Zt, t = 

1

The most obvious estimate of 9 is OLS with intercept correction (bearing in 

mind that ut may have non-zero mean, as the discussion of the previous section 

suggests). This is

=  ( £ ( * * - * ) * ; )  E {Xt - X ) Y U (2.47)
U=i J t=i

where X  =  n_1 EILi However, the correlation envisaged between Ut and X t 

makes 9o inconsistent for 9. We can write

0 o - 0 = { f : ( X t - X ) X l \  j t ( X t - X ) u t ,  (2.48)
U=i J t=i

where stationarity of X t and ut implies (under mild additional assumptions) that 

n -1 — X )X [  will converge in probability to a constant positive definite

covariance matrix, while E ”= i(^ t ~  X )u t does not converge to zero unless 

ut and X t are assumed orthogonal. This outcome differs from the familiar one in

41



which Zt has a unit root and Ut is 1(0). In this case, suitably scaled versions of the 

sample moments, namely n~2 Ylt=i(Xt — X)X{. and n -1 J2t=i(Xt ~ X )u t, converge 

in distribution to random matrices that can be expressed as certain functionals of 

Brownian motions (see e.g. Phillips and Durlauf, 1986; Stock, 1987). The asymp­

totic dominance of sums of squares of Ut by those of X t, embedded in the different 

scaling factors above, overwhelms the simultaneous equation bias, leading to n- 

consistency of Oo.

Robinson (1994a) proposed an estimate of 0 that, under linearity assumptions, 

achieves consistency. Before introducing this estimate, some additional notation 

is required. For a vector sequence at , define the discrete Fourier transform

wa(X) =  (27Tn)~% ateitx, (2.49)
t=l

and for a vector sequence bt, possibly the same as at, define the (cross-) peri- 

odogram matrix

Iab( A) =  ti;0(A K (-A ), (2.50)

and the averaged (cross-) periodogram

2„ m
Fai( A™) =  — (2. 51) 

”  1=1

where Xj =  2irj/n  are the Fourier frequencies. We can interpret the averaged 

cross-periodogram as the portion of the sample covariance of at and bt pertaining 

to frequencies up to Am, in much the same way as the integrated spectrum relates to 

the population variance. In particular, note that by orthogonality of the complex 

exponential

Fab(K-i) =  n _1 £ ( “< -  «)&<> (2-52)
t=l

where the mean correction arises from the exclusion of frequency Ao =  0 in (2.51),
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as it can be easily seen that 27ro_1/ a&(0) =  ab.

Hannan (1963) first introduced “band spectrum regression,” later developed 

by Engle (1974), wherein the traditional time domain OLS specification in (2.47) 

is replaced by frequency domain analogues of the sample moments. While those 

authors focused their attentions on a fixed, nondegenerate band of frequencies, 

Robinson (1994a) followed a similar approach but considered instead a degener­

ating band of frequencies around zero. For a sequence of bandwidths, m  = m(n), 

such that

m  <  (2.53)

1 777
 1--------► 0, as 77, —► oo, (2.54)
77i n

define the narrow-band least squares (NBLS) estimate of (3,

@NB =  R e | F x x ( A m) J  R e | F x y ( A m) | ,  (2.55)

where Re(-) is the real part operator. Note that if in contrast to (2.53), (2.54), we

have instead m  = n — 1, then (2.52) yields Qnb  = Oo- However, condition (2.54) is 

crucial to the consistency of 6n b - The basic intuition for consistency is as follows. 

By linearity of the Fourier transform, Fxr(Am) =  Fxx(Am)0 +  Fxu(Am), which 

allows the estimation error of O^b to be expressed as

Qnb  — 0 = Re |F x x (A m) |  Re |F x u(Am) | . (2.56)

For i — 1, . . . ,  g — 1, each component of the latter term can be bounded by the

Cauchy inequality,

Re -{X„(Ara)} < , (2.57)
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and under suitable conditions (ensuring convergence of the averaged periodogram 

to the corresponding integrated spectrum) the right-hand side is

(2.58)

where Oe(-) indicates an exact order of magnitude. On the other hand, under 

suitable conditions, for Am =  diag{A^,. . . ,  A^-1},

for 9. This result is intuitively comparable to the unit root case discussed above: 

while stationarity implies that (full-band) sums of squares of ut and z \t , . . . ,  zq- i jt 

diverge at the same rate, the spectral densities of z \t, . . . ,  zq- i)t dominate that of 

ut in the neighbourhood of zero, and such dominance overwhelms any potential 

simultaneous equation bias (whose contribution is bounded by (2.57)).

Consistency of Onb  was first shown by Robinson (1994a) in case q = 2 and by 

Lobato (1997) for general q, while Robinson and Marinucci (2003) established the 

rate in (2.60), also for general q. The conditions they imposed to deduce the crucial 

properties (2.58) and (2.59) were that Zt is generated by a linear moving average 

in conditionally homoscedastic martingale differences, as in Assumption 2.3. As 

previously noted, this is inconsistent with the SV setup (2.36)-(2.38) illustrated 

in the previous section, albeit compatible with the more restrictive model (2.44),

(2.59)

where Q is a constant positive definite matrix. It follows that

(2.60)

where di and 9n b ,{ are the z-th elements of 6 and 9nb  respectively. Since coin­

tegration entails du < di, i =  I , . . .  ,q — 1, (2.54) ensures that 9nb  is consistent
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(2.45). The estimate Q^b is desirably computationally simple, it does not involve 

estimation of ancillary quantities such as memory parameters, and the exclusion 

of high-frequency contributions makes this estimate robust to contamination by 

short run dynamics,, such as those introduced by microstructure noise. It has been 

applied in fractional cointegration analysis of implied and realised volatility by 

Christensen and Nielsen (2006), Bandi and Perron (2006).

In general the rate in (2.60) is sharp, and indeed under additional conditions 

it seems that, for each i, Am ^i^N B i — ®i) converges in distribution not to a 

non-degenerate random variable, but to a constant. This is due to the presumed 

coherence between X t and ut around zero frequency, under which the bound in 

(2.57) cannot be improved. Without such coherence, asymptotic normality and 

a faster rate of convergence are possible. Christensen and Nielsen (2006) sup­

posed that the cross-spectral density between zit and ut is o(|A|-di-du), as A —» 0, 

rather than having real part behaving precisely like |A|-di-du. Assuming also that 

di +  du < i = 1, . . . , q — 1, they deduced that — #) is asymptoti­

cally multivariate normal; they assumed Zt is linear in homoscedastic martingale 

differences, as in Robinson (1994a), Robinson and Marinucci (2003).

Though the model constructed in the previous section, (2.39) based on (2.36)-

(2.38) and z\t =  X t = x%, Z2t = Yt =  yh  does not satisfy the linearity assumption 

of Christensen and Nielsen (2006), it does satisfy a lack-of-coherence assumption 

that corresponds to theirs. It is easily seen that Covfyo^t) =  0 if t ^  0, so 

in view of (2.41), the cross-spectral density of z\t and ut is finite and constant, 

and o(|A|—*5), where S > 0 represents the memory parameter of Z \ t . (In the cases 

discussed after (2.41), the possibilities that 5 =  d± and 5 = 2d* — |  emerged.)

Violation of orthogonality represents an important way in which (2.46) dis­

obeys classical regression conditions, but it is not the only one. Though the 

simple set-up with q = 2 analysed in the previous section ensured that ut has no
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autocorrelation (see (2.40)), more generally ut can be not only autocorrelated but 

even have long memory, as implied by Robinson (2001). In the absence of simulta­

neous equations bias, a suitable weighted frequency domain estimate will be more 

efficient. In (2.46) with short memory Ut orthogonal to X t, Hannan (1963) showed 

that weighting inversely with respect to a nonparametric estimate of f u can achieve 

the same asymptotic efficiency as generalised least squares based on a correctly 

specified parametric model for f u. Robinson and Hidalgo (1997) derived a central 

limit theorem for long memory ut, under the assumption of a known parametric 

form for f u (allowing for estimation of du and other parameters), while Hidalgo 

and Robinson (2002) extended these findings by considering both long memory Ut 

and nonparametric estimation of f u. These results are obtained under orthogonal­

ity of errors and regressors, which we have previously argued to be an undesirable

assumption in a cointegration context, and otherwise Hidalgo and Robinson (2002)

noted that these “full-band” estimates will incur similar simultaneous equations 

bias and inconsistency to Bo-

Nevertheless, it is worth considering whether some such weighting can improve 

on Qn b , since f u changes even over the interval [Ai,Am], Smith and Chen (1996) 

proposed the weighted narrow-band least squares (WNBLS) estimate

Q\v n b  =  ^ (^ u )>  ( 2 - 6 1 )

where

( m  \  m
E Af Re{/XX(Ai)} E Af Re{ I x y ( A;)}, (2.62)
;=i /  j=i

and du is a consistent estimate of du (some popular choices of du are discussed 

in the following section). Note that 0(0) =  On b , while otherwise the averaged 

periodogram in (2.55) is replaced by a weighted version thereof. Smith and Chen 

(1996) in fact proposed Ow nb  in a more traditional regression setting, with ut or-
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thogonal to X u and did not establish any asymptotic properties. Recently, Nielsen 

(2005), under the same kind of incoherence-near-zero assumption as Christensen 

and Nielsen (2006), established asymptotic normality of m i A" 1 (0(d) — 0), for 

a fixed d satisfying

max ^  ^u — -  < d < du, (2.63)l<i<q 2 4

and furthermore that the same result holds for the feasible (2.61), provided that 

(as in Robinson, 1994a)

(logn)(du -  du) —>p 0, as n  —> oo, (2.64)

which can readily be justified in view of asymptotic theory for various memory

parameter estimates. Nielsen (2005) also discussed the relative efficiency of 0(d)

and 9n b , noting some circumstances in which 0(d) can be the more efficient even 

when d ^  du.

Still, du is clearly an optimal choice of d, and given that du is unknown it is 

natural to focus on Ow nb  which, like 9n b , should still be consistent in the presence 

of coherence between ut and X t, violating Nielsen’s (2005) condition. We have, 

say,

m
E A f - R e ^ A , ) }
j =1

Under (2.64),

_  y 2 d u du)  ^  ^ 2 d u ^ o ((]o g n )_ 1 ) y 2 d u ^ o { \ )  ^  ^  g g ^

for n  sufficiently large. It is then readily seen, under suitable conditions, that the

< { E Af“/
771

WAj )  E Af“/„,.(A;) (2.65)
j =i
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right-hand side of (2.65) is

Oe n U XWu-^dXXm (2.67)

Also under (2.64), and similar conditions to those giving (2.59), we can justify the 

step

converges in probability to a constant positive definite matrix.

Notice that in the model (2.39) derived from (2.36)-(2.38), du = 0 so we expect

be extended to allow at the same time du > 0 and incoherence at frequency zero 

between regressors and errors, namely by replacing rjl t , rj2t in (2.36), (2.37) by SV 

processes comparable to (2.38).

At least for linear processes, bias and autocorrelation can be corrected simul­

taneously by more elaborate methods. These are based on a full system of q equa­

tions that expresses also the long memory properties of the zit, i =  1, . . . ,  q — 1, 

and lead to estimates of 9 which depend not only on du, but also on estimates 

of the di, i = 1 ,...  ,q — 1. Such estimates of 9 were developed by Hualde and 

Robinson (2007); they are asymptotically normal (centered at 9) with the same 

rate as described for 9nb and 9w nb  under the incoherence-near-zero assumption, 

but without imposing that. This thesis focuses mainly on the “single-equation” 

estimates (based on (2.46)) we have discussed above, partly due to their compu­

tational simplicity, but also because incoherence-near-zero can often be justified 

in a factor model context, as discussed above, whence 9nb and 9w nb  enjoy a

Af" -  A f“)  Re {/xx(A,-)} K. 0, (2.68)

and then that
1 771

Am £  A f” R e f c t A , . ) }  A,
771 j —i

(2.69)

no improvement of 9wnb over 9n b - However, as mentioned before this model can
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reasonably fast rate of convergence.

2.7 Estim ation of m em ory param eters

Even if simple estimates of 6 are used, there may be interest in estimation 

of the di, as well as in estimation of du, as is required for Ow n b - In particu­

lar, such estimates are useful in determining the existence and extent of cointe­

gration, as described by Robinson and Yajima (2002). In this multivariate set­

ting, efficiency gains are possible by estimating memory parameters jointly, espe­

cially if prior equality constraints are placed on the d{. However, joint estimates 

have principally been developed under the assumption of no cointegration (e.g. 

Robinson, 1995a; Lobato, 1999), and if there is cointegration they are liable to be 

inconsistent; see, however, Velasco (2003) for an application of Lobato’s (1999) 

procedure to joint estimation of the memory parameters of observables and error 

in a bivariate cointegrating relation. Thus we briefly describe some leading uni­

variate semiparametric estimates. We introduce a generic univariate stationary 

process vt , which can represent any of the zit or, where estimation of du is con­

cerned, residuals yt — 9 X t, such that 6 represents one of our consistent estimates 

of 0. Denote by d the unknown memory parameter of vt (or du when vt represents 

regression residuals).

Geweke and Porter-Hudak (1983) proposed an estimate of d with an intuitive 

linear regression interpretation. Taking logs of (2.18), we obtain

In/(A) ~  c — 2d In A, as A —> 0+, (2.70)

for c =  InC f. Geweke and Porter-Hudak (1983) originally considered a different 

approximation, where A is replaced by 2sin(A/2). The simplification above, due 

to Robinson (1995a), is easily shown to share the same properties. Intuitively,
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there is an approximate linear relationship between In/(A) and —2 In A in the 

neighbourhood of zero, and the slope coefficient in this relationship is d. Replacing 

/(A) by Ivv{A), and evaluating (2.70) at Fourier frequencies only, then

ln Ivv(Xj) = c — 2dlnXj +  Uj, (2.71)

where the errors Uj contain both approximation errors in (2.70) and estima­

tion errors, which can be represented as logs of the normalised periodograms, 

\n{Ivv(X j)/f(X j)}. Geweke and Porter-Hudak (1983) suggested interpreting (2.70) 

as a traditional linear regression, where the observations are the logged peri­

odograms within a vanishing neighbourhood of zero, and using the OLS slope 

as an estimate for d. Defining sequences of trimming numbers I = l(n) and band- 

widths m  = m(n), where the latter satisfy at least (2.53), (2.54), and denoting 

dj =  —2 In Aj, a = (m — I +  1 we may write this “log-periodogram

regression” estimate as

j  _ E JL i(aj ln Iw(Xj)
®LP ~~ ( -\2

i a 3 -  a )

The suggested interpretation of (2.71) as a linear regression model may be decep­

tively simple, as establishing properties for the Uj sequence is not trivial. In addi­

tion to having non-zero mean, which can be easily corrected by suitably redefining 

the intercept c, the well known asymptotic unbiasedness and orthogonality of the 

periodogram at Fourier frequencies are invalidated by the presence of long memory 

(see Kiinsch, 1986), and thus, even asymptotically, the normalised periodograms 

cannot be treated as an iid sequence. Still, Robinson (1995a) established bounds 

on the magnitude of these effects that tighten as j  increases, allowing him to prove 

consistency and asymptotic normality of OLS for slowly diverging I and m. These 

are assumed to satisfy a suitable condition on their growth rates, which implies
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in particular that m  = o(n4/5), while the conditions on I are satisfied for I — m b, 

|  < 6 < 1. Assuming further that vt is Gaussian, Robinson (1995a) showed that

(dLP - d )  ->«* N  (o, , as n —> oo. (2.73)

Hurvich, Deo, and Brodsky (1998) established consistency and the same limiting 

distribution under different assumptions and without the need for trimming, i.e. 

setting I = 1 in (2.72); Velasco (2000) reached the same results, for a tapered 

version of d,LP, replacing the Gaussian vt by a stationary linear process in non- 

Gaussian iid innovations, as in Assumption 2.2.

An efficiency improvement is possible, for the same m  sequence, via the “lo­

cal Whittle” estimate of Kiinsch (1987). This estimate maximises the Whittle 

approximation to the Gaussian likelihood, using the semiparametric model (2.18) 

over a vanishing neighbourhood of frequency zero:

(dLW,C t ) =  a rg ^ m in ^  +  InfC/AT^) J , (2.74)

where V  and C are compact subsets of (— | )  and (0,oo) respectively. Concen­

trating out Cf =  m~l Y1T= i X?dIvv(\j) , the estimate for d is

dLW =  arg mm < In ( \ 2dIVv{Xj) J -  2dm  1 £  In > . (2.75)

This was shown by Robinson (1995b) to satisfy

m 2 (dLw — d) —*d N  ( 0, i  ) , as n  —> oo, (2.76)

under a condition on the bandwidth implying m = o(n4/5). Even though (2.74) 

is an approximation to the Gaussian likelihood, asymptotic theory does not re­
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quire the assumption of Gaussianity, and is indeed established under variations 

of Assumption 2.3. Consistency is proved for linear processes in conditionally 

homoskedastic martingale differences, while the central limit theorem requires in 

addition finite and constant conditional skewness and unconditional kurtosis.

Another approach to estimation of the memory parameter relies directly on 

properties of the averaged periodogram (2.51). Under the assumption that vt is 

a linear process in conditionally homoskedastic martingale differences, Robinson 

(1994a) showed that
F l W  (  A m )  -1 f n  r r r A— —  - 4P 1, as n —> oo, (2.77)
"vv \ A m )

where Fvv{ A) =  f(x )dx . From (2.18),

Fvv{A) ~  Cf { 1 -  2d)_1A1_2d, as A —> 0+, (2.78)

and hence, for any q > 0,

91_2d, as A —» 0+, (2.79)
Fyy (gA)   ̂r l—2d
Fvv( A)

which does not depend on any unknown parameters other than d. Solving for d 

and replacing the integrated spectrum with the averaged periodogram, which is 

justified by (2.77), Robinson (1994a) proposed the estimate

~ 1 l n i ^ g A ™ )  l n F vw(Am) , .

dA P  =  2  ^  ’ ( 2 '8 0 )

where 0 < q < 1 is imposed without loss of generality, noting that (Iap remains 

identical when (q ,m ) is replaced by (g-1, qm), and is undefined for q = 1. As 

Robinson (1994a) noted, consistency of <1ap is a direct consequence of (2.77) and 

(2.78). Under Gaussianity and for m  =  o(n4/5), Lobato and Robinson (1996) 

established limiting distributions for dAP, which unlike the previous two estimates
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crucially depend on d. For d < | ,

i - (  (1 — 2q~2d + q-1) (b — d)2\
m* (dAP — d) — N  f 0, --------(ing )2(1 _  4dj--------J  ’ as n  —»• oo, (2.81)

and furthermore they tabulated the minimum mean squared error (MSE) choice of 

q for different values of d. However, for \  < d < |  (and under stronger regularity 

conditions) the limiting distribution is found to be neither normal nor centered 

around zero, rendering dAp less useful for inference than the alternative estimates 

described above.

Various modifications, in particular bias corrections, have been proposed. The 

condition m  = o(n4/5) imposed in deriving (2.73), (2.76), (2.81) can be understood 

by noting that, under mild smoothness assumptions on (2.18), the leading bias 

term is Oe(A^J, while the asymptotic variance is Oe(m-1). The minimum-MSE 

rate for the bandwidth (for which bias and variance decay at the same rate) 

is therefore m  =  Oe(n4//5), in which case an asymptotic bias term will appear 

in the above distributions, while for faster rates asymptotic bias will dominate, 

and so scaled estimation errors will, in general, converge to a constant. The 

modifications discussed below ensure that, for some r > 1, the first r — 1 terms in 

the bias expansion vanish, so that the bias is now Oe(A^), and therefore that the 

optimal rate becomes m  = Oe(n4r^ 4r+1 )̂. If sufficient smoothness is present in 

the spectral approximation (2.18), the convergence rate of mh may be improved 

until it is arbitrarily close to n^. It should nonetheless be noted that, as a general 

feature of bias reduction methods, both asymptotic and finite sample variances 

tend to be inflated. This effect may be potentially so large that the advantages of 

the method are completely nullified for finite samples.

Robinson and Henry (2003) introduced a very flexible class of higher-order ker­

nel M-estimates, which allows for: pooling of periodograms; replacing (2.18) with
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an alternative specification, Cfg(X)~2d, such that g(X) ~  A; the choice of a suitable 

functional form for the first order conditions (nesting in particular both d^p and 

dLw)', and most importantly the filtering of the periodogram by higher-order ker­

nels. Robinson and Henry (2003) noted that conditions used in asymptotic theory 

bear similarities to those used in spectral estimation of short memory processes, 

here imposed on the approximation errors h(X) — f ( X ) C j 1g2d(X), and that higher- 

order kernels may explore assumed smoothness therein. Assuming Gaussianity, 

they heuristically derived formulae for asymptotic bias, variance, MSE, and cor­

responding optimal bandwidth of such estimates, and if h is assumed sufficiently 

smooth (2r-times continuously differentiable, for r  > 1), then the use of rth-order 

kernel leads to the bias and optimal MSE reductions discussed above.

Another bias reduction method expresses (2.18) as

/(A) =  ff(A)|A|-2d, (2.82)

where g(X) is an even function such that 0 < 2(0) < oo, and refines the approxi­

mation by using the first r — 1 > 1 terms of the Taylor expansion of lng(A) around 

zero, i.e.
r— 1

ln/(A) ~  lnp(0) — 2dln A +  ^  &2JfcA2fc, as A —»■ 0+, (2.83)
k=i

for some coefficients 62, • • •, &2r - 2, where the odd powers are absent because Ing{A) 

is even. This enhanced approximation may be used to derive corresponding ver­

sions of dpp, replacing (2.71) with a multiple regression containing r — 1 additional 

regressors, and dxw? replacing CfXj2d in (2.74) by the approximation above. As­

suming that g(X) is 2r-times continuously differentiable, but otherwise under as­

sumptions comparable to Robinson (1995a) and Robinson (1995b), respectively, 

consistency and asymptotic normality were established for the modified estimates 

by Andrews and Guggenberger (2003) (log-periodogram regression) and Andrews
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and Sun (2004) (local Whittle). These authors focused on the optimal bandwidth 

introduced previously, m  = Oe(n4r^ 4r+1 )̂, and showed that the reduction in opti­

mal MSE is obtained at the cost of a known multiplicative factor in the asymptotic 

variance, which increases with r.

Guggenberger and Sim (2006) proposed instead to reduce bias by computing 

either the local Whittle or the log-periodogram estimate at a finite grid of different 

bandwidths, and averaging these estimates using a particular set of weights, which 

are essentially discrete versions of the higher-order kernels used by Robinson and 

Henry (2003). They obtained rates of convergence (using optimal bandwidths) 

comparable to Andrews and Guggenberger (2003) and Andrews and Sun (2004), 

under the same assumptions, but with the potential for reducing asymptotic vari­

ance inflation. In theory, weights may be selected so that the asymptotic variance 

is actually smaller than those in (2.73), (2.76); however, the authors noted that 

in finite samples this may imply the use of large bandwidths that undermine the 

bias reduction properties of the modified estimate.

Note that the conditions imposed to deduce (2.73), (2.76), (2.81) do not cover

the SV setup described in the previous section. However, as mentioned in the end

of Section 2.4, some authors have examined the properties of memory estimates 

under a particular nonlinear model, inspired by the long memory SV model of 

Harvey (1998) and Breidt, Crato, and de Lima (1998). Assume

zt = rjl t expri2t/2, (2.84)

where {r)2t} is a long memory process, while {rju } is iid and independent of {r)2t}- 

Defining vt =  In z%, we have

vt = In rfit + ri2t, (2.85)

and thus estimation of the memory parameter of vt can be interpreted more gen­
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erally as a signal-plus-noise problem, where observables are the sum of a long 

memory process (on which appropriate linearity or Gaussianity assumptions may 

be imposed) and an iid sequence. For d^p (with Gaussian rj2t), Deo and Hur- 

vich (2001) and Hurvich and Soulier (2002) showed (2.73), while for (with 

r}2t linear in conditionally homoskedastic martingale differences) Arteche (2004) 

established (2.76). Although the limit distribution remains unchanged, it should 

be noted that the bounds on bandwidth growth, and thus on rate of convergence, 

are tighter in this case, and become stricter as d —> 0. The spectral density of vt 

is simply the sum of the spectral densities of In r]\t and rj2t, where the former will 

be constant, so we may write

/(A) ~  Cf(a +  A_2d), as A —» 0+. (2.86)

For this reason, Hurvich and Ray (2003) and Hurvich, Moulines, and Soulier (2005) 

refined (2.74) to take the signal-plus-noise structure explicitly into account, leading 

to the following “modified local Whittle” estimate,

{ d M L W ,  a) = arg min I In I E  j +  — E  ln(a +  A •2d) \ , (2.87)
( d , a ) e v * A  [  a  +  A7- /  m  / = i  v J '

where T> and A  are compact subsets of (0, | )  and [0, oo) respectively. Under similar 

assumptions on r/2t as Robinson (1995b), and allowing In r]\t to be a white noise 

process, Hurvich, Moulines, and Soulier (2005) established

m^(dMLW ~ d) ~^d N  (o, » as n oo. (2.88)

A comparable extension of the log-periodogram regression estimate, (2.71), to a 

signal-plus-noise setting had been proposed earlier by Sun and Phillips (2003). Fol­

lowing a similar approach to Andrews and Guggenberger (2003), they included in
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the regression an additional term, b \2d, derived from a first order Taylor expansion 

of the approximation errors, ln{A2d/(A)}, under the assumption of a signal-plus- 

noise structure. They suggested performing a nonlinear regression for both d and 

6, where the latter can be interpreted as the noise-to-signal ratio at frequency zero. 

Assuming that signal and noise are independent and Gaussian, and restricting at­

tention to the optimal bandwidth case, they showed joint asymptotic normality of 

the estimates, where the covariance matrix also depends on d.

Very little is known about the asymptotic properties of these semiparametric 

estimates in the absence of linearity. Recently, Dalla, Giraitis, and Hidalgo (2006) 

established general sufficient conditions for consistency of djjw that do not require 

a linear process specification for vt. Under (2.18), they show that (Ilw will be 

consistent if an ergodicity condition on the “renormalised periodograms,”

as n —► oo, (2.89)
j= i  f

holds for every bandwidth sequence satisfying (2.54). Under mild additional con­

ditions, they also establish a rate of convergence and provide an asymptotic ex­

pansion that may be used in deriving limiting distributions for specific models. 

These results are applied to a general signal-plus-noise setting, where they estab­

lish (2.76) for linear (in iid innovations) signal, under minimal conditions for the 

noise process (assumed only to be covariance stationary with less memory than the 

signal), and under no restriction on the dependence between the two. They also 

consider nonlinear transformations of Gaussian variables, of the type discussed 

in Section 2.4, establishing consistency of efyw under a mild spectral smoothness 

assumption, and (2.76) under additional conditions including the Hermite rank 

being one. Finally, the two applications are combined to analyse powers of SV 

models such as (2.84), for Gaussian rj2t, which can be expressed as a signal-plus-
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noise model with a nonlinear signal.

2.8 Final com m ents

Fractional cointegration analysis is increasingly found to be a promising tool 

for dimensionality reduction in financial time series. On the one hand, series 

of asset returns may have little autocorrelation, whereas instantaneous nonlinear 

functions, such as squares, can exhibit evidence of long memory. Considering 

series on several assets, it is possible that there exists a linear combination of 

the nonlinear functions that has shorter memory. Then there is said to be frac­

tional cointegration. Note that here, as implied by many SV models, series are 

supposed to be stationary. By contrast, in traditional cointegration analysis of 

macroeconomic time series, levels are typically believed to be nonstationary with 

a unit root, and cointegration exists when there is a linear combination that is 

stationary (with short memory).

A variety of tools for analysing fractional cointegration in stationary series is 

becoming available. The main stress has been on semiparametric methods, such as 

those reviewed in this chapter. These avoid full parameterisation of autocorrela­

tion, in favour of a local power law for the spectral density around zero frequency. 

Estimates of memory parameters can be rendered inconsistent by misspecifica- 

tion of short memory properties. Moreover, when the cointegrating relation is 

expressed in regression form, with one of the observables on the left-hand side, 

the other observables cannot plausibly be assumed orthogonal to the cointegrat­

ing errors. In a stationary environment, (full-band) time domain procedures that 

do not explicitly account for this dependence (such as least squares) will inconsis­

tently estimate the cointegrating vector, while more elaborate methods that aim 

to correct it depend on preliminary estimates of various ancillary parameters. This
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leads to a focus on methods based on a vanishing neighbourhood of zero in the 

frequency domain, such that the number, m, of Fourier frequencies used increases 

with sample size n, but more slowly. An undesirable consequence of this semi- 

parametric strategy is rates of convergence (in case of both memory parameters 

and cointegrating vector estimates) that are slower than would be possible in a 

fully parametric setting. However, parametric estimates of memory parameters 

and (due to stationarity) cointegrating vectors can only converge at rate 7?i (there 

is no super-consistency), and the slower rates of the semiparametric methods (de­

pending on m ) may be acceptable when n is very large indeed, as is the case with 

many financial time series.

Asymptotic theory for the semiparametric estimates has been developed mainly 

under the assumption that the innovations in the Wold representation of the 

process of interest are essentially conditionally homoscedastic martingale differ­

ences (see Robinson, 1994a; Lobato, 1997; Robinson and Marinucci, 2003; Nielsen, 

2005; Christensen and Nielsen, 2006). These assumptions are justified if, for exam­

ple, series are Gaussian, but are unfortunately implausible in this setting. Recall 

that in financial series the long memory property, and the possibility of fractional 

cointegration, has tended to emerge only for certain nonlinear functions, namely 

for measures of volatility such as squared, absolute, or log-squared asset returns.

It is possible (see e.g. Hurvich, Moulines, and Soulier, 2005) to specify SV 

models for which the log-squares transformation yields a linear representation, on 

which linear filter assumptions might be plausible. Note, however, that common 

factor structures in the levels often follow from behavioural foundations, as in the 

CAPM literature, while in volatilities they are typically used just as a convenient 

assumption for dimensionality-reduction. The presence of additive errors, which 

seems realistic, would render this type of “linearisation” impossible. Furthermore, 

these results crucially hinge on particular parametric specifications for the SV
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model, which are proposed, at least in part, for reasons of technical convenience. 

As a result, linear-in-martingale-difference representations should not be assumed 

to necessarily hold for volatility measures. Models for them can be articulated, in 

terms of underlying independent and identically distributed (iid) sequences, say, 

but the nonlinearity makes derivation of asymptotic properties (already a delicate 

matter in the linear setting) extremely complicated and lengthy. Moreover, due 

to second order bias that affects some estimates, useful limit distribution theory 

is unavailable.
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Chapter 3 

Consistency of Narrow Band  

Least Squares in long m emory 

stochastic volatility m odels

3.1 Introduction

This chapter presents a proof of consistency of NBLS for a bivariate factor 

model with a single unobservable common factor. It is shown that, under some 

conditions, persistence in higher moments can allow consistent estimation of the 

ratio of factor loadings. The bivariate setup is chosen for simplicity; the theoretical 

tools developed here will be applied to a multivariate model in Chapter 5.

We extend the model (2.36), (2.37) discussed in the previous chapter to allow 

for long memory in the idiosyncratic errors, as well as the factor. Suppose two 

observable scalar time series, yt and x t, t e  Z, are generated by

xt = P2C t +

Vt =  Pi Ct + (3.1)

(3.2)
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where fi2 axe unknown, ^  ^  0, and ( t , et , 5t are unobservable stationary 

processes, generated by SV models such as (2.38). As we mentioned in Section 

2.5, this may be interpreted as an asset pricing model, where yt and x t would be 

asset returns, ( t the (unobservable) market return, and /3j, fi2 the market risk 

exposures of yt and x t, respectively. Since the scale of ( t cannot be identified, we 

only aim to estimate /3 =  /52; equivalently, fi2 could be normalised to unity by

suitably rescaling ( t . In the suggested interpretation, knowledge of the relative 

risk exposures of the assets would allow the researcher to compare (and reduce, 

if necessary) the total exposure to market risk of portfolios containing the two 

assets. In particular, a portfolio could be derived which completely hedges against 

the common source of risk.

The OLS estimate of yt on x t suffers from errors-in-variables inconsistency for 

f3, as exemplified in a simpler setting by (2.43), due to the 8t component in x t . 

Indeed, our assumptions will imply that £t, et , 5t are white noise sequences, so 

in no meaningful sense can (3.1), (3.2) be described as a cointegrating relation. 

However, £t, et , 5t are not serially independent, but exhibit persistence in higher 

moments. In particular, for some integer p > 1, our assumptions imply that xf and 

2/f are cointegrated long memory I(d\) processes, 0 < d\ < 1/ 2, with cointegrating 

coefficient 9 = f3p, and cointegrating errors are I(du) for 0 <  du < d\. Squares of 

asset returns are typically found to display the underlying persistence, so a coin­

tegrating relationship of the type described in Section 2.5 could be present, with 

p = 2. Still, x£ and ?/f are stationary, so the OLS estimate is inconsistent for 9, 

unlike under the traditional assumption of 1(1) observables and 1(0) cointegrating 

errors. The usual instrumental variables estimates employed in time series mod­

els (e.g. with as instrument) will also be inconsistent here, as the assumed 

persistence renders all available instruments invalid.

We argued in Section 2.6 that the existing asymptotic theory for NBLS re­
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quires linearity assumptions (in conditionally homoskedastic martingale differ­

ences) that are not compatible with this intrinsically nonlinear framework. Nev­

ertheless, NBLS has been applied to financial data (see e.g. Christensen and 

Nielsen, 2006; Bandi and Perron, 2006), as have other models for fractional coin­

tegration in volatility (such as the parametric FIGARCH model of Brunetti and 

Gilbert, 2000). The present chapter aims to fill this gap in the theoretical prop­

erties of the NBLS estimate of 0, by establishing consistency under more relevant 

assumptions. While a model such as (2.44), (2.45) would allow a “linearising” 

transformation, and therefore sidestep the problems associated with nonlinearity, 

our specification may be more realistic, as discussed in the previous chapter. Our 

approach allows the presence of additive errors, does not require a specific (or 

known) shape for the volatility function, and indeed allows that shape to vary 

between the common and idiosyncratic components.

A key component of the proof of consistency is an approximation for expec­

tations of products of nonlinear functions of Gaussian processes (Theorem 3.1), 

which may be of independent interest and is presented in the following section. 

Section 3 describes the SV setting. Section 4 details the NBLS estimation proce­

dure and our consistency result, which is proved in a series of propositions stated 

and proved in Appendix A, using lemmas in Appendix B, as well as Theorem 3.1. 

Section 5 contains concluding remarks.

3.2 Approxim ating cross-m om ents o f nonlinear 

functions o f Gaussian variables

With the objective of examining the memory of SV models similar to those 

introduced in Sections 2.4 and 2.5, Robinson (2001) established an asymptotic 

expansion for the covariance between nonlinear functions of multivariate normal
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random vectors. Here we need a (non-trivial) extension to cross-moments of more 

than two real functions.

Recall the methodology introduced in Section 2.4, in particular Definition 12.

ficient Gj = f R f(x )H j {x)(f>{x)dx and the Hermite rank r  =  min{j > 0 : Gj ^  0}. 

Define Pq — {i E N  : i  < q}, where N =  {1 ,2 ,...} , Qq =  {( i , j)  G Pq : i < j }, and 

Rg,k = { (h j )  € Qq : i =  k or j  = k} for k G Pq.

Theorem  3.1 For integer J  > 1, let fij, j  G Pj be jointly normally distributed 

with zero mean, unit variance, and covariances pjk — Cov(fij,[ik), j  ^  k; let 

f j  = fj{Pj) be a function such that E ( f j )  < oo, with k-th Hermite coefficient Gjjk 

and Hermite rank rj. Then

For a function /(•) satisfying f R f 2(x)j>(x)dx < oo, define the j- th  Hermite coef-

(3.3)

where

2J va —q, 
aeQj

I f  in addition r  =  2 |p«! < then

(3.4)

2q < r, (3.5)

2q > r, (3.7)

where r = r, and a  = {U j€Pj E ( f j ) Y /2-

Proof. Throughout the proof, we denote P  = Pj, Q = Qj, and R j  — R j j ,



j  e  P. Furthermore, all sums and products run over P  unless otherwise stated. 

We have

e  ( n  f i j = fRJ n  / i ^ ( « ^  (3.8)

where D) denotes the density function of fi =  ( /q , . . . ,  /ij) ' and Q =  i?(/x//).

From (22) of Slepian (1972) and Definition 12,

t n£n{(£y\w}
va = 0 :a eQ a eQ  a ' j  L \ 07i j /  )

00 nva

= e  n f r n { ( - ^ ^ ) }
va = 0 :a eQ a eQ  a ’ j

00 A= E (3-9)
va = 0 :a eQ a eQ  a ‘ j

since Y l j wj = 2 YlaeQ even- Using (3.9) in (3.8),

e (uA = f w m ) e  nSn{^(^K)}dM
\  j  /  ® j  va =0:a£Q a£Q  a  j

, °°. nVa r= e  nr7/ ,n-n-n,cno,cn a ' »H -•wa=0:aCQ aGQ 
oo

= E v,,.
va =0:aeQ  a£Q  j

-  £  n Gj,™* n pia
V ^

va =0:a£Q j  oc€Q a ’

This proves (3.4). For the remainder of the proof, we use the Cauchy-Schwarz 

inequality in

kl :£ E
ua >0:

T,va =q,a£Q
j  a£Q  “

e  n % 4 n v ^n k
Va

va >0: j  V Wr  j  a e Q  V a '
Y,va =q,a£Q
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—  {AqBq) 2 , (3.10)

where

a= e  n%> eq= e
u a > 0 :  j  3  v a > 0 :  j  \  a £ R j  a

E t >a = q , a £ . Q  H v a = q , a £ Q
w j > r j  , j € . P  W j > r j , j £ P

The Aq term is bounded since

oo s~i2
n e  -rn- * n £(//) ̂  **■ (3.1DW jl

j  W j = r j  J  J

If 2q < r, there always exists a j  in (3.4) such that Wj < rj, implying (3.5). 

For 2q > r, the multinomial theorem yields

B,< E E II N il
W j  > r j : v a > 0 : T , v a — W j  j  \  a £ R j

E w j  = 2 q , j £ P  a ^ R j  , j £ P

\pX
v„\

< e  n e  wi' n I Pc
Va \

w j  > T j : j  v Q > 0 :  a E R j
H w j = 2 q , j £ P  E v a = W j , a € R j

 ̂ e  n e  w
W j>rj\ j  \ a £ R j  

E w j=2q,j£P

^n(Eki) e  n e w
j  \ o t £ R j  J Wj >0: j  \ a £ R j

J 2 w j = 2 q —r j £ P

^ ( e ^V e
j  \ a e R j  J W j >  0: j  3

E  W j  = 2  q —r , j £ P

2 q —r
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j

T2q-T (3.12)

Using (3.11), (3.12) in (3.10) gives (3.6). Then (3.7) follows from r  < 1. □  

The bounds (3.5), (3.6) reflect the individual, possibly differing, Hermite ranks 

Tj of the fj .  The weakest version of Theorem 3.1 arises when rj =  0 (i.e. when 

E (fj)  ^  0 for all j) ,  and because this would be relevant also when the rj are 

unknown, we present it in the following Corollary, whose proof follows from the 

inequality J2aeRjtJ \P<*\ < T-

Corollary 3.1

As in Robinson (2001) in case J  = 2, Theorem 3.1 provides a valid asymp­

totic expansion when r  —> 0. Robinson (1994a) established consistency of the 

NBLS estimate using L 1 arguments enabled by linear process (in conditionally 

homoscedastic martingale difference innovations) assumptions. Since those are 

unavailable to us, we use L2 arguments. These were also employed by Robinson 

(1994b) in studying the mean squared error of the averaged periodogram, but in 

case of Gaussian and linear (in iid innovations) assumptions. In the SV setting 

introduced in the following section, matters are considerably more complicated, 

and we are led to consider various cross-moments of nonlinear functions of Gaus­

sian processes. Theorem 3.1 is crucial in obtaining sufficiently sharp bounds on 

these cross-moments to establish consistency.

3.3 Long memory stochastic volatility setup

To describe the structure of the latent processes ( t , et, St in (3.1), (3.2), we 

first refine the definition of I (d) processes originally presented as Definition 8.
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Definition 13 We say a process zt is 1(d), with memory parameter d € [0,1/2), 

if it is stationary with finite variance, and has autocovariance function pj = 

Cov(zo, Zj) satisfying
OO

X ^ l < 0 ° ’ (3-13)
j=o

if  d — 0, and

Pj ~  Cpj 2d~l as j  -* oo, for Cp > 0, (3-14)

\P j - p H , \ < K ! ^ ;  j > 0 ,  (3.15)

i f  0 < d < 1/2, where K  throughout denotes a generic, arbitrarily large finite 

constant.

The alternative, frequency domain Definition 7 holds as a consequence of (3.13) 

or (3.14), (3.15). For d = 0, the spectral density /(A) of zt is continuous for all A, 

whereas for 0 < d < 1/2, Theorem 111-12 of Yong (1974) indicates that

/(A) ~  Cf X~2d as A -> 0+, (3.16)

where

Cf  = 7r“ 1r ( 2d) sin {(1 -  2d ) |}  Cp,

so that /(A) diverges at A =  0. We can therefore use Definitions 7 and 8 inter­

changeably under the additional quasi-monotonicity condition (3.15). Stationary 

ARMA processes satisfy (3.13), and stationary ARFIMA processes satisfy (3.14), 

(3.15).

Assum ption 3.1 For t € Z,

C t = riit9u St = Vitht, Et = €u lti (3.17)
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where for real-valued functions g, h, I,

fft = diVx), ht = h{v a), lt = Z ^ ) ,  (3.18)

and:

(i) {hit}? {uit}, {£if} are jointly iid processes with zero mean;

(ii) {r)2t} is I{d\),  {i/21} Is I{d2), and {£2*} ^  ^(^3 ), for d2 >  0, d3 >  0, where 

max{d2,d3} < d\ < 1/ 2;

(Hi) {r)2t}, {^21], {£2*} are standard Gaussian processes, independent of each 

other and of{rjlt}, {v lt}, {flt};

(iv) For some integer p > 1,

E(rflt) E { f ( r , 2t)Va} ^  0, (3.19)

and for j  =  1, . .  . , p -  1,

{gJ(v2t)v2t} =  E W i t i l D E  {gj {r}2t)V2t} = 0; (3.20)

(v) {nit}, {vit}, {£ iJ , {gt}, {ht}, Ot} have finite Ap-th moments.

It follows that et , 5t, described by SV models in (3.17), are serially uncorre­

lated but not serially independent. In particular, is I(di),  due to (3.19), which 

entails E{rf[t) ^  0 and cfi — E(g%) having Hermite rank one. Condition (3.20) 

ensures a valid cointegrating relationship between and $ ,  since it implies that 

the cointegrating error has memory smaller than d\. If r)lt is independent of v\t , 

£lt, the smallest integer satisfying (3.19) will also satisfy (3.20). It is assumed that 

p is known, which imposes some restrictions on g; in practice it may be reasonable
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to suppose that p = 2. As discussed in Section 2.4, the most notable exception 

would occur if g is a symmetric function, e.g. gt = |772i|“, a  >  0, but then no finite 

p satisfies (3.19). This does not rule out a cointegrating relationship of the type 

that we study below, but the associated conditions would be extremely complex, 

involving the magnitudes of the di, i — 1,2,3, and the Hermite ranks of each cen­

tered power of gt , ht, lt . Note that for 7 ^  0, gt = I7 +  r)2t\a giyes p = 2. Further 

discussion concerning the Hermite rank for functional forms in SV models with 

long memory can be found in Section 2.4 and Robinson (2001).

An advantage of a low p is that the moment conditions in part (v) of Assump­

tion 3.1 increase in strength with p. Even for p = 2, the 8-th moment condition 

that is required seems stringent for most financial data: Jansen and de Vries 

(1991) and Loretan and Phillips (1994), among others, suggested that several fi­

nancial time series may have infinite fourth moments. Other parts of Assumption 

3.1 might be relaxed at cost of substantial lengthening of the proof, in partic­

ular the mutual independence assumptions of (iii). A consistency result under 

weaker versions of (iii) could surely be provided with the same theoretical tools, 

but enumeration of all relevant cross-moments would be a tedious exercise with 

little added value. The Gaussianity assumption on 77̂ , v2t, £2* mitigated by 

allowing g , h, I to be quite general functions, and without Gaussianity the details 

would be considerably more complex; of course Gaussianity frequently plays a role 

in short memory SV models also. We do not assume Gaussianity of rjlt, v \t , £lt.

3.4 Consistency o f Narrow Band Least Squares

We generalise the techniques of Section 2.5, namely the use of (2.39), to trans­

form (3.1), (3.2) to

Yt = 6Xt +  Uu (3.21)
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where

j=o

j=o

£ ( p) m ^ i - / r o r ' ' )
o—n \3/j=0

It will follow from (3.21) and Assumption 3.1 that Yt and X t are cointegrated 

I(di) processes. As an example, if p = 2, then Ut is given by a variation of (2.40),

The memory parameters of 8%, e\ are bounded by c^, respectively, and therefore 

smaller than d\ by part (ii) of Assumption 3.1. Condition (3.20) guarantees that 

either gt has Hermite rank greater than one, reducing the memory of the last 

term by virtue of Theorem 3.1, or that both ( tet and ( t5t contain a zero mean 

and serially uncorrelated multiplicative error, and are therefore white noise. By 

contrast, (3.19) ensures that gf in X t has Hermite rank one, and thus retains the 

memory, d\ , of its underlying volatility process.

Since X t , Yt, t  = 1, . . . ,  n  are now scalar sequences, the NBLS estimate (2.55) 

of Robinson (1994a) for 9 may be written as

Ut = e2t -  (3262t +  2ftCt ( f e  -  P%).

(3.22)m
Fxxi^m)
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^ ~  1  I p

We can estimate ft by (3m — 9m , though only up to an unknown sign when p 

is even. As discussed in Section 2.6, for consistency we require that the band of 

frequencies considered slowly degenerates to zero.

A ssum ption  3.2 The bandwidth sequence m — m(n) satisfies

This assumption is slightly stronger than (2.54), reproduced here for conve-

We need (3.23) over (3.24) only in order to handle powers of gt , ht, It with particular 

combinations of memory parameters and Hermite ranks, notably for d* =  1/4. 

This case presents no special problems with the method of proof in Robinson 

(1994a), and is excluded in Robinson (1994b).

For integers j  G [ l,p —1] and k G [0,p—1], denote the Hermite rank of centered 

gi, hp~k, lp~k by rgj , r ^ ,  respectively, and introduce the sets

Sg =  { j  '■ P3 3) ^  P PE{rf l t5pt J ), 0 <  j  <  p}  ,

Sh = {fc : £ K r ‘C?) ±  0, 0 <  fc < p} ,

S, = [ k : E ( & h C‘ ) ^ 0 ,  0 < f c < p } ,

Sgh = { j  : E i i j i y - 3) ±  0, 0 < j  < p} ,

Sgi =  { j  : E( r f i t f S t3) ±  °> 0 <  3 <  p }  •

(3.23)

for all e >  0.

mence,

 1 ► 0 as n
m  n

oo. (3.24)

Intuitively, Ut will be expanded as a sum of terms involving the basic processes 

described in Assumption 3.1. This allows us to express the autocovariance function
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of Ut as a linear combination of covariances of powers of gt , ht, k  and products of 

these covariances. The memory of Ut will depend only on those terms associated 

with a nonzero coefficient, in particular for which the white noise component 

has nonzero mean. These five sets group the particular exponents for which this 

occurs: Sg, Sh, Si for terms including only the covariances of powers of gt , ht, k 

respectively, and Sgh, Sgi for cross-products of said covariances. Note that Ut does 

not contain products of et and 8t, and therefore interactions between ht and lt do 

not occur. Using the convention that the maximum over an empty set is — oo, the 

slowest rate of decay corresponding to each source is defined by

max < -
kesh 12

max < -  
kest 12 (3.27)

(3.26)

(3.25)

d* 7 =  maxj£Sgl

where !(•) throughout denotes the identity function, and

(3.30)

T heo rem  3.2 Under Assumptions 3.1 and 3.2, as n  —> oo

(3.31)

where du — d*l(d* > 0) +  e l(d* — 0), for any e > 0.
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Proof. As in Section 5.3 of Robinson (1994a),

By Proposition 3.2,

( nrr> \  2 d u —\  ^

— J F u u ( K n )  =  O p ( 1), 

while by Propositions 3.1, 3.3, and Slutsky’s Theorem,

- W   ^  —  < 00. □
Fxx(^m) C*

Proofs of Propositions 3.1, 3.2, and 3.3 can be found in Appendix A, using 

lemmas in Appendix B. Since e is arbitrarily small and d* < di, it follows that 

9m is consistent for 6. Moreover, when d* > 0, we can write d\ — du = d\ — d*, 

which is the difference between the integration orders of X t and Ut. In this case, 

the rate in (3.31) corresponds to that of Robinson and Marinucci (2003). For 

some particular combinations of memory parameters and Hermite ranks, yielding 

zeros in (3.25)-(3.29), the autocorrelation function is 0 ( j -1), and an additional 

logn factor arises. When such a process dominates in the expansion of Ut, (3.23) 

is required to derive (3.31), justifying the appearance of e in the above rate of 

convergence.

3.5 Final com m ents

To our knowledge this represents the first formal treatment of fractional coin­

tegration in the context of nonlinear processes. The stationary environment, the 

SV models employed, and the NBLS estimate seem well motivated by applications
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in finance. Our model is semiparametric both in the sense that only assumptions 

about low frequency behavior axe required, and the volatility functions are non- 

parametric. While the nonlinear setting necessitates a considerably more complex 

proof of consistency of NBLS than earlier ones, a comparable result is obtained, 

with rate of convergence depending essentially on the strength of the cointegrating 

relation, namely the gap between integration orders of observables and cointegrat­

ing error.

As always, consistency results are reassuring only in very large data sets. 

Though these do exist in finance, one would like a limit distributional result 

that could be used in statistical inference. Christensen and Nielsen (2006) have 

achieved this in a simpler setting, indeed with regressor and disturbance assumed 

incoherent at frequency zero, and linear process (in conditionally homoscedastic 

martingale difference innovations) assumptions. In general, not only is the proof 

likely to be much more complicated than even our proof of Theorem 3.2, but the 

limit distribution is likely to be non-standard for various combinations of memory 

parameters (as is the case for the averaged periodogram estimate of the mem­

ory parameter, discussed in Section 2.7), though a bootstrap procedure might be 

investigated. By analogy with experience in 1(1)/1(0) cointegrated models (e.g. 

Johansen, 1991; Phillips, 1991), it may be possible to obtain estimates with nicer 

asymptotic distributional properties, in particular leading to Wald statistics with 

null limiting x 2 distributions. However, in our nonlinear setting it is not immedi­

ately obvious that the sort of transformations used in those references to achieve 

the necessary “whitening” will be successful, the estimates would require prelim­

inary estimation of memory parameters, and proofs would be significantly more 

complicated. In the following chapter, we present some simulation results which 

seem to indicate that the finite sample distribution of NBLS, under this nonlinear 

setting, is far from Gaussian. Still, those wishing to embark on limit distribu­
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tional proofs for NBLS or other estimates in our SV setting should find techniques 

described in the present chapter relevant.

The bulk of the fractional and non-fractional cointegration literature assumes 

nonstationary observables. The motivation usually comes from macroeconomics, 

but nonstationarity can often appear in financial time series also. The modelling 

of nonstationary series via analogues of (3.21) is itself a somewhat open topic, but 

given that X t has a kind of 1(d) property, for d > 1/2, some of the arguments 

of Robinson and Marinucci (2001) should be relevant in establishing rates of con­

vergence of NBLS. Indeed, these authors, following Stock (1987) in the /( l ) / /(0 )  

case, found OLS also to be consistent here, though in some circumstances NBLS 

has bias of smaller order. The nonstationary X t case is in some respects techni­

cally easier than the stationary one, because consistency of OLS follows from the 

domination of sums of squares of Ut by those of X t.

3.A  Propositions for Theorem  3.2

We denote the Dirichlet kernel by Dm(A) =  X^Li ey'A> for m > 1, and will use 

the fact that

Dn (Aj) = n l ( j  = 0, modn). (3.32)

We also use the abbreviating notation

1 n
Sm(a, b) = E  | F a6(Am)} =  — Cov(aa, 6t)Dm(At_s),

s,t=1

from (3.32), and

S'm(a, b; a’, Cov(os, bt) Cov(a'„ b't )Dm(Xt->lnz '
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where at, 6t, aj, b't, t =  1, ,n  are scalar sequences with finite second moments. 

The integer part of x is denoted throughout as [a;].

P ro p o sitio n  3.1 Under (3.2) and Assumptions 3.1 and 3.2,

E  {#xx(A „)}  C* as n  -  oo,

where

c* = 2(2T)~ ^ 2dl) Sin {(1 -  2 > 0,

Cp =  lim E{rj2Qrj2j) j l~2dK
j —>oo

Proof. Write

X, = £  Ai ‘B*  A »  = V ^ i  t t f ,  BJt = g i h r j .
j=o w

Using Lemma 3.2, since {Ajt} is independent of {Bkt}, for any j  and k ,

Cov(XatX t) =  y ;  Cov(i4jaBj-a, A ktB kt)

= {-£’(- ĵs)-£'(-^*:t) Cov(.Bjs, +  Cov(>ijfs, ,

where ^  denotes X)jfc=o throughout the proof.

Now define aj = E(Ajt), bgj  =  ajE(hp~J), and bkj  = ajE(gl). Since {Ajt} is 

iid, using Lemma 3.2 again, for s ^ t ,  Cov(Xs, X t) is

y  ajak Cov(Bjs, B kt) =  y  {bg>jbg)k Cov(pJ, g*)

C o hpt~k) + ajak Cov(sj, rf)  C o v ( ^ ',  /if-*)} . (3.33)
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For s = t, denote by A the difference between Var(Xf) and (3.33). It follows 

that £{Fxx(A m)} is

Y ,  { h A . k S ^ ,  gk) + bkjbktkSm(h”- \  h T k) +  9k\ b T \  0 } + ^  A.

From (3.19), (3.20), and Lemma 3.4,

if either j  < p  or k < p, while

Lemma 3.4 and c?2 < d\ imply that

bkJbk_ks m( h r j ,h ’- k) = o ( ( ^ ) ^ Ml)  -

and by Lemma 3.5,

aj akS lm(g^,gk-1h”- \ h ’- l‘) = o ( ( ^ y ^ * )  , 

which concludes the proof. □

P ro p o sitio n  3.2 Under (3.1), (3.2), and Assumptions 3.1 and 3.2,

E { F uv{Xm)}  = o ( 0 - U“) .

P roof. Write
p -  l

Ut ^   ̂A £j tB £j t AsjtBsjt,
3 = 0
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where

A jjt =  \^ )02& >rfltSPU 3, — 9t^t 3

A SJt =  ^ W V u i ' T ,  B 5Jt =  g i h r j -

Using Lemma 3.2 repeatedly, since {A£j t}, {Asjt} are independent of {B £>kt}, 

{Bs,kt}, for any j  and k , Cov(C/s, Ut) is

^ 2  {Cov (A£jsB £,jsi A£j k t^£,kt) “I- Cov(^4)5jja5 j j s, AgfaBg^t)

Cov(A£j sB£j S) Ag^htBgfa') Cov(A$jsB§jS)A£>i~tB£'if:t)}

=  ^ 2  {E {A £j S)E(A£'kt) Cov(B£j s, B£jkt) +  Cov(y4C)jS, A£̂ t)E(B£j sB£̂ t)

4- Cov(-B<$jiS, B§tf.t) 4- Cov(i4.$tja, As^^E^BgjgBg^t)

E ( A £j s')E(A$ykt') Cov(5 £j S, -Sjjfct) Cov(̂ 4£j s, A§yitt )E[B£yjSB§ykt) 

E(Afija)E (A £y]tt) Cov(B§jS, B £j~t) Cov(j45j s, A £j:t )E(B§jSB £yfCf^y ,

where ^  denotes Yl^tLo throughout the proof.

Now define a£j = E ( A £yjt), aSj = E ( A 5yjt), bgj = a£jE(l%~j ) -  aSjE(h^~j ), 

bhj = asjE(gi),  and btj = a£jE(g{).  Since {A£yjt}, {A Sj t} are jointly iid, using 

Lemma 3.2 again, for s ^  t, Cov(Us, Ut) is

^   ̂{O'ejQ'ek Cov(B£j s, B£yfct) Q>6jQ/6k Cov(B§jSi

Q'ejQ'Sk C°v(B£Js, Bfi kt) Q'SjQ'ek Cov(5(jjS, B £ykt)}

=  E  { 6<A * Cov(sJ, gk) +  bhjbhk Cov(h?-*, K ~ k)

+  btjblk Cov(F~S, i r k) +  aSjaSk Cov(j„ gkt ) Cov(*T>, HT*)

+acjack Cov(sj,s*) C o v f/r3', T * ) } ■ (3.34)
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For s = t, denote by A the difference between Var(Ut) and (3.34). It follows 

that E{FUXJ{Am)} is

5 3  {b3jb3kSm(gi,gk) + bhjbhkSm( h ^  ,h?~k) + b ^ S ^  X ~ k)

+aSja5kS ^ , g k^ , h ^ k) + aejaekS'my , g k- , p - \ p - k)} + - A .
n

By (3.25), applying Lemma 3.4 to each (j, k) pair with non-zero coefficient,

bgjbgkSm(<?,gk) = o  (iOgn)i(̂ =0)j

Similarly, by (3.26) and (3.27), Lemma 3.4 yields

b„j bhkSm(hT i ,h’- k) =  O ( ( ^ ) 1' 2” ”‘t<iX'0>(logn)1« = 0) )  , 

bij blkSm(l”- ’ , p - k) =  0  ( ( ^ ) I“2"“ XW’0>(logn)1« = 0>) .

Finally, Lemma 3.5, (3.28), and (3.29) give

aSjaskS'my,cf-,K'-\W-k) =  O (h g n ) 1̂ 0)  ,

asJalkS ^ , g k;l* -J ,F -k) =  O ( ( ^ ) 1“2“ “ {d' ,'°>(logn)1̂ - ^ )  .

By (3.20), d* < d\. Since d*h and d*h are bounded by d^ < d\ while d\ and d*gl 

are bounded by d3 < d\, we have d* < d\. The bound for d* = 0 follows from 

Assumption 3.2. □

P ro p o sitio n  3.3 Under (3.2) and Assumptions 3.1 and 3.2, 

V ^ { F x x (Xm) } = o { 0 ~ ld' ) .

80



Proof. Define pt = E(r)2Qr)2t)] wherever time indices t*, i = 1, . . .  ,4 are used, 

it will be convenient to write also 7^ =  Denoting Zt =  X t — E {X t),

there exists a Gaussian'I{di) process Vt such that the bounds in Lemma 3.6 hold. 

Lemmas 7 and 10 in Robinson (1994b) and Lemma 3.7 imply that

V ar{*W (Am)} =  o ( ( f ) '  ^ )  .

so we need to show that the approximation error satisfies

A = Var {#XX(A„)} -  Var { /W (A m)} =  o ( ( ^ ) 2~4,<I)  • (3-35)

Since

71
n2[Fx x (Xm) -  E{Fx x (Xm)}] = J 2  { X h X h -  E ( X tlX ta)} Dn (Xb . tl)

n
=  £  {ZtlZb - E ( Z tlZb )}D m(A ,^tl)

*1,*2 = 1

by (3.32), we have

1 n
Var |.Fxx(Am) |  =  Cov(ZtlZt2J Zt3Z<4)Dm(A<2_tl)Dm(Af4_t3),

*1>*2 ,t3,t4 = l

and therefore A  is

^  £  {Cov(ZtlZt„ Z tsZ J  -  Cov(VtlVb , Vt3Vti)} J3„(A,2_tl)Dra(At4_t3).
TV1 ^ '*1>*2>*3 >*4 = 1

We now decompose A  into sums where the time indices conform to cases (a) 

to (g) in Lemma 3.6. Using Lemmas 3.3 and 3.6 repeatedly, the approximation 

error for each case is bounded by:
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(a)

E £ E Tai I'l'aj 11 ) 11 An (At, _t3 ) |.
ai,a2€Q4:o:i7̂ a2 tl)̂ 2>i3>*4=l

If a i is either (1,2) or (3,4), each-element in the first summation is bounded by

^ Ê |An(A,)| E |p,l|A»(Ai)| + J E>?IAn(A,)| E hi E l̂ -MI

5  -  ( ' * £ £ ) { ■ *  ( - “K *  -  9 + £ ) “ ’■ ■ ( * > 9 )

while if a i  is not equal to (1,2) or to (3,4), we have a bound

jy* n n n jy n n
i \  v  ^  o  v  ^  i i * _  /  > v i x  ^  i -r-v / »  \  i A

„  E ^ E h i i ^ ^ i E i ^ t ^ i + ^ E ^ E h i

s  *  0 - %  ( , + i )  { , ,  J  i )  / „ E  ( *  > i ) }

(b)

~ l  (^12 + 7 l 3  +  723)|-^m(At2- t 1)||£>m(At3- t 1)|rr z—'tl,t2,t3=l

E i E nwi+£ E ̂  {e  ia»(a,)i }

+{(5 )“ - - “ -,!r } ‘ (*> 9 :

(c)

4̂ X ]  ( 7 l2 + 7 ? 3  + 7 2 3 ) |-Dm (0)||I>m (At3 -t2)| 
ti,t2,t3=l

^  E ̂ -(A;)i+̂  X>? E iD̂ )i
i=i j=i i=i
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(d), (e), (f) For any a =  a ( ti , t2) and b = b(t1, t2),

J E  h 12\\Dm(a)\\Dm( b ) \ < K ^ j 2 \Pj\ < K Q \ ^
«1,*2 =  1 3 = 1

(g)

4  E  Pm(0)|2 < /r ( - ) 2n-*n4 '  \ n  Jtx=i

Since cases (a) to (g) satisfy (3.35), the proof is complete. □

3.B Technical lem m as for A ppendix 3.A

Lem m a 3.1 Let \pj -  pj+1\ < K\pj+1\/j and \jj -  7J+1| < K \^ j+1 \/ j ,  for all 

j  > 1. Then, for any positive integers r, s, and j ,

\ f i - f j+l\ < K ^ ,  (3.36)

m  ~  PHiTS+il < • (3-37)

Proof. First note that

fc / 1 \   ̂ y ik \  A/ x—s/A:(a-i)* = E , = E (“* -
t=0 x 1=0

since

^ 2  ( ^ ( - b ) ^  = ( b -  b)k = 0.
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Hence,

la*- 6*1
k- 1

i=1 
fc-1

( a - 6 ) * - £  • ( a '- f tO M )vfc—i

< |a -& |*  +  £ (  . ) l&Ma* - 6'
i=l

Proceeding by induction, suppose (3.36) holds for r = 1 ,2 , . . . ,  k — 1. Then

i$  -  pU i < ipj -  + £  Q )  ip^iiip- -  p‘+1i

< k \ M  + k j 2
J i=l J J

proving (3.36). To prove (3.37) we use (3.36):

IpJT) “  ^ + i^ + il  =  KpJ “  ^ + i)(7 j -  7j+i) +  7;+i(Pj -  Pj+i) +  Pj+iilj -  7;+i)l

<  K l/>5+il hi+il +  ^ l7 ’+i l % ^  +  A 'K + i l ^ r 1 <  K □

Lemma 3.2 /f  (ai, b\) is independent of (a2 , 6 2 ) o,nd E(aj +  6 ?) < 00,

Cov(aia2, 6162) =  Cov(ai, bi)E(a2)E(b2) +  E(aibi) Cov(a2, b2)

= Cov(ai, bi)E(a2)E(b2) +  E{ai)E(bi) Cov(a2, b2) +  Cov(ai, 61) Cov(a2,&2)-

Proof. By independence,

Cov(aia2, 6162) =  E(aia2bib2) — Z?(aia2)-E(M2)

=  E{a\bi)E{a2b2) — E(ai)E(a2)E(bi)E(b2).
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The proof follows by writing E(aibi) = Cov(a*, bi) +  E(ai)E(bi), for i = 1, 2, and 

rearranging terms. □

Lem m a 3.3 Let pj = 0 { j2d~l ), d < 1/2, a > 0, b > 1, m  < n f 2, and d+ =  

(a — l)/2a . Then,

n

(Pj-1° =  0 (1  +  (logn)l(d =  d+) +  n a 2̂d_1̂+1l(d  >  d+)) ,
j'= i

n

^  |Om(Aj )|b =  0 (n { lo g rn  + 771^1(6 >  1)}), 
j '= i

y j  l/Oj-rpmfAj)!6 = o  ^m6 j l  + (logn)l(d = d+) + ) ( l(d > rf+) j )  •

Proof. The first equation follows from

j=i j=i

K, if d < d+,

K lo g n , if d =  d+,

A'na(2d-l)+ lj if

noting that d = d+ is equivalent to a(2d — 1) =  —1.

From e.g. Zygmund (1977, p. 11) and an elementary inequality,

{ TL I 77

1̂ - 2 ' 3̂ '38^

Using this bound repeatedly,

[n/m]71 [ 7 4 /7#4j 71 ✓ \

E (t)
J = 1  j=l' j = [ n / m ] + 1

n

< K n m h~l +  ifn 6 j -6
j—[n/m]+i
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< K n m b 1 + K n blogm , if 6 =  1, 

K n m f - 1  +  K m b, if b > 1,

and

n [n/m] n /  \ b
J 2 \pj \<‘\Dm(\i) \b < K j 2 m bf i2d" 1)+ K  Y .  ( ” )
j=l j= l  j=[n/m]+l '

[n/m]
< ifm ‘ J ]  J°(2d" 1) +  X I j a(2d_1)"6

J=1 j=[n/m]+l

<

<

K m b + K m b{n/m)<2d- ^ +\  if d < d+

K m b\ogn +  jRrm6(n/m )a(2d-1 +̂1, if d =  d+ 

i f m V /m )a(2d- 1)+1 +  ATm^n/m)0^ - 1̂ 1, if d > d+

K m b +  K m b, if d < d+, 

ifm 6 log rc +  K m 6, if d =  d+,

Arm6(n/m )a(2<i-1)+1, if d > d+.

Note that the last sum retains the same form in all cases, because our assumptions 

imply that a(2d — 1) — b < —1. □

L em m a 3.4 For j  = 1,2, define g^t = gj(Pt)> where p t is a standard Gaussian 

1(d) process, and pt = E(p0pt). Assume E(g2t) < oo. Denote by G j t h e  k-th 

Hermite coefficient of gj(-), and let

r = min{A; G N : Gi>kG2,k ^  0}. (3.39)

I f  d > 0, define

d' = l ~ r ( \ - d ) , Cp =  lim P j j 1 2 d .
J —* o o

Let A  — Sm(gi,g2), where m  satisfies Assumption 3.2 i f  d* = 1/ ( 2r +  2) or just
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(3.24) otherwise. Then,

A = 0  {l(d =  0) +  1 (d* < 0) +  (logn)l(cf =  0)}^

) } ■ « • > » > •

where
(2 ir)~2d'T (2d*) G,,rGv  ( 7q

C  = 2  1 — 2 d*--------- r\ s in |( 1  — 2 d ) —j C p j(: 0.

P roof. Let 71 =  C o v ^ o ; g2,t)- Then

A  = 3  E  I t - s D M t- s )  nz

-  \  £  ( ' - ? ) v w
u—l —n x 7

We will make repeated use of (3.38) and of pru = K u r(3d~1̂ = 0 (u 2d* 

Theorem 3.1 and (3.39),

7u =  £  +  O d /C ‘1).
fc=l

where C =  Gi.rG^rA’!.

(a) If d =  0, then 'yu = 0(|p£|) are summable. Similarly, if d* < 

7U =  0(|py|) =  0 (u 2d*-1) are summable. In either case,

n— 1A * f £  ( l - ^ ) l 7 j |A » ( A „ ) |
u=l—n '  7

n — 1

< i f -  £  7.  = ° ( - ) -  n z--' \ n /w=l—n

(3.40)

(3.41)

(3.42)

- 1)- By

0, then

(3.43)
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(b) If d* =  0, 7tt =  0 {\pru|) =  0 (u x), hence

A < K — ^  |7J  = o ( — logn) . (3.44)
n  ' \ n  /u=l—n

(c) If d* > 0,

\lu -  CpTu\ < K\pru+1\ < K\pru\1+U, 

where u  — r _1. Defining

71 —  1

we get

|A - CBil < i E ( l  -  M) |7„ -  C ^ ||D m(A„)| n  ' \  n J
-14=1—71 N '

< ; E  \Pl \1+ u \Dm ( K ) \71 *n i1 4 = 1 —71

n n  z 'U=1

Therefore, setting d+ = oj/(2 + 2c<j) in Lemma 3.3, 

l-A -  CBil = O ( ^  ( l  + (logn)l(d* =  d+) + ^ y i+“)(1- M )_11(d. > J)
1—2d*

=  O

choosing 0 <  e < 2d* in Assumption 3.2 if d* = d+. Now, write

Bi =  i  E  f 1 -  — )  PuDm(K )
71  | u | < n  V  n  /

= - E p*D™(A”) - 4 E m/W-mn ' 7rlî Cn |«|<n
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where

Then

~  m -j oo

= M-) = ̂  E
j =1 u=—oo

1 00
Bz = ~ ~ Y , P l  { An(Au) +  A ^ ) }  ,

w=n 
1 n—1

A  =  — ̂  ^ ^ uPu {A nA u) +  An(Au)) .

(3.45)

(3.46)

(3.47)

|A -  C B 21 =  |A -  C(Bi -  B3 -  B4)| <  |A -  CBi| +  C\B3\ + C |B4|. (3.48)

Note that, for any u,

Y , D m( \ k)
k=l

E E e
k=l 3=1

< K n  log m. (3.49)
3=1 3=1 J

Using summation by parts, (3.49), and Lemma 3.1 in (3.47),

y ]  L)m(Afc)
fc=i

K  
H— 2

n— 1

E ^ f )
j=i

^Pnl

n—1

^  ~  S ^ l ^ ' ^ + i l  +  l^ + il)71106771" ^ ^ 2̂  l l o g m
it=l

< u2d*_1 -f K n 24* " 1 log m
U=1



Using the partial summation formula for infinite sums, (3.49), and Lemma 3.1 

in (3.46),

K

k=l

K
H----n

n—1

j =i

< K  log m  ̂ 2  u2d* 2 +  K n 2d* 1 log m

< K n 2d* 1 log m  — o ( ( — J
m \ 1 - 2  d*

Lemma 3.1 implies that /(A) Cf A 2d* as A —> 0+, where

C , =  7r_1r(2d*)sin {(1 -  2<f ) | }  CJ.

(3.51)

Thus, by Proposition 1 in Robinson (1994a),

27r m

"  t ?  -/o3 =

which together with (3.48), (3.50), (3.51) gives (3.40). □

L em m a 3.5 F o r i , j  = 1,2, define gij)t = gij{Pu), where git is a standard Gaus­

sian I(di) process and pi t = E(pi0git). Assume E(g?j t) < oo. Denote by Gij$ the 

k-th Hermite coefficient of gij{-), with

ri =  min{A: > 0 : Gn,kGi2,k ±  0}. (3.52)

Let d\ > c?2 without loss of generality, and define



Let A  = S'm(gn, gn, 921, 922), where m  satisfies Assumption 3.2 i f  d* +  di = 1/2 

or just (3.24) otherwise. Then,

A = 0  {1 +  (logn)l(d* =  0)})

♦ H : r « ( e r ) K *  <»■“»
where

r * o(27r)_2d r (2d*) GiitriGi2,n G2l,r2G22,r2 • f o rJ*\7r'l /T rim  / n 
C  = 2 1 — 2d* rH ^  Sm l (1 " 2d ) 2 / *  °‘

Proof. Let 7it =  Cov(<7ji)0; <7*2,*). Then, similarly to (3.41),

A = ~ Y 1  ( l - ^ ) T l u T 2uDrn(K)- n t-r1 \  n )u=l—n '  '

By Theorem 3.1 and (3.52),

00 f* (~<= E “I,,2’7i = + °(î +1i)>
fc=i

where Ci =  Cjii>riG<2,ri/n!-

(a) If did2 =  0, then 7lu72u =  are summable. Similarly, if d\ d2 > 

0 but d* < 0, then 7 iu72« =  0 (IPiLp2J) =  0 (un (2dl- 1)+r2(2d2_1)) =  0 ( j2d*-1) 

are summable. In either case, writing 7 ltt72u instead of 7U in (3.43) yields A =  

0 (m/n).

(b) If d* = 0, 7 iu72u =  O i j - 1), hence (3.44) holds for 7 lu72u instead of 7U.

(c) If d* > 0,

I7iu72u -  < |7i«ll72u -  C2pZ\ +  G2 \A LII7i« ~  C iA l

<KWuP?u+l\+I<\P?uP?u+l\
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< K\P?»XPZ\ < Jl JT2 |1+W
1 u r 2 u I

where u> = (1 — 2di)/(l — 2d*), since d\ > d2. Then (3.53) follows from the proof 

of case (c) of Lemma 3.4, writing priupr2u instead of pTu. □

L em m a 3.6 Under (3.2) and Assumption 3.1, let Zt = X t — E (X t). For t\, t2, 

ts, t^ distinct, define p^ = E(r)2tir}2tj) and p'^ = E{v2tiv2tj) . Then there exists a 

mean-zero Gaussian I(di) process Vt such that:

(b) Cov(Zh Zt2, Zh Z J  -  Cov(VtlVb , VtlVt3) = 0 (p2a  + p\ 3 + p223);

(c) Cov (Z l ,  Zt3Zt3) -  Cov(Vg, Vb Vt3) =  0 (p?2 + p213 + p223);

(d) Cov(Zh Zt2, Zh Zb ) -  Cov(VtlVt3, VtlVb ) =  0(\pl2\);

(e) Cov(Z?„ Z 2) -  Cov(V2, V 2) = 0 ( |p 12|);

(f) Cov (Z 2l t ZtlZb ) -  Cov(Vg, Vh Vt3) = 0 ( |p 12|);

(g) Cov ( Z l , Z l )  -  CoV(V2, V 2) =  0(1).

P roof. By the law of iterated expectations, all Zt covariances in (a) to  (g) can 

be written as Unear combinations of

where, conditionally on gs and hs, Zs is independent of Zt , gt, and ht , for any

In what follows, let s*, i = 1 ,.. .  ,4 denote (not necessarily distinct) elements 

of {ti, t2, ts, t f \ .  Wherever Ui and s* are both defined, let

(a) Cov(ZtlZb ,Z t3Zu ) -  C o v ^ .K * , V„VU) = 0 ( £
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and define c* =  E(Ai), Cij — E(AiAj), Cijk = E ( A iA j A k) 1 where throughout the 

proof — Z™ — E(zt).  We first compute E(Zt\gt , ht) for k = 1 , . . . ,  3. Setting 

Sj =  52 =  S3 =  t, but omitting time subscripts for convenience,

p
Z  =  5 3  {AjBj -  E (A 1B 1)}

■ u i = 0

p

i t i = 0

p
=  5 3 ( i 1B1 +  c1B1).

111=0

Therefore, independence of Ai and Bi yields

p
E(Z\g, h) = 5 3  C1B 1. (3.55)

1/ 1=0

Similarly,
k p

Z k = Y [ Y j (AiB i + ciBi)<
1=1 i i i = 0

so by independence of A4 and Bj, for a lii, j

p
E (Z 2 \g ,h)=  5 3  (ccjB iB a +  cijB jB j), (3.56)

111, 1 1 2 = 0

P

E{Z 3 \g ,h )— (C1C2C3B 1B 2B 3 +  C123B 1B2B 3
111,112,113=0

+  C12C3B 1B 2B 3 +  C13C2B 1B 3B 2 +  C23C1B 2B 3B 1). (3.57)

Unless otherwise noted, we will use ^  to mean u2)u3 u4=o f°r remainder

of the proof. Using (3.55), (3.56), (3.57) in (3.54), we can write £7(n?=i ^sA  35

follows:
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(i) if Si = U, i = 1 ,.. .  ,4,

E(Zt1Zt2Zt3Zt i ) — C\C2C3C4E{B\B2B3B4)',

(ii) if si =  52 =  ii, s3 -  *2, *4 =  t3,

EiZ^ZtzZtz) =  ^ClC2 C3 C4 E 1 ( J?2 -8 3 J?4) +  Ci2C3C^E(^B\B2B 3B4j j- ;

(iii) if si =  s2 =  ti, s3 =  s4 =  t2,

~  X ]  |C iC2C3C4E (B iB 2B 3B^) +  c n C u E i B ^ B s B , )

-\-ci2C3C4E (B iB 2B 3B 4) +  cic2c34E (B \£?2.E?3i?4)̂  ;

(iv) if si =  s2 =  s3 =  *i, s4 =  t2,

EiZ^Ztz) = ^CiC2C3C4E (-£?iB 2B 3B4) +  ci23C4E(BiB2B3B4)

+  Cl2c3C4E(B\B2B3B4) +  Ci3C2C4E (B i B 3B2B4) 

+C23C\C4E{B2B3B i B 4 .

We can also write E (Z SlZS2) as follows:

(v) if si =  U, s2 = t j , i ^  j,

p
E (Z tiZ tj) =  ciC2-E'(-Bi52);

U l , U 2 = 0

(vi) if si =  s2 =  U,

v
E (z t,) =  E  {ciC2E (B lB2) +  c12E ( B 1B2) j .

Ul,tt2=0

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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We now proceed to expand Bi and Bi in terms of g and h. Wherever u* and s* 

are both defined, we use the following notation: Xi — 9 s*> V7* — hp~Ui\ x%j — 9 sl+U\
9/1 — U 2 P ~ U i ~ Uj .  v  _ n U i + U 2 + U 3  _ U Z j > - U \ - U 2 - U 2 . -w _ n U \ + U 2  n U 3 + U 4iPij — nSi , Xl23 — 9s 1 5 t  123 — ' ‘si 5 Xl2,34 ~  i/si Ss3 >

^ 12,34 =  h2sp- Ul- U2h2P-U3~U4. Note that

=  ch,iXi +  X iA  +  (3-64)

where Ch,% = E(h^~Ui), cg>i =  E(g^).  Four forms of expectations need to be 

accounted for in (3.58) to (3.61).

1. E {B \B 2B^B^) will be a linear combination of 81 terms, all of them ex­

pectations of products of Xi and * =  1, - - ., 4. Denoting by (1), (2), (3), 

(4) any permutation of P4 , those terms can be separated into the following cate­

gories: terms that vanish due to E(Xi) = E ( ,tpi) = 0, namely -E(x<i)V;(2)'0{3),0(4))> 

■EW,<i>X<2>X<3)X<4>)» 311(1 ^ 0 / ,<i>XiX2X3X4); non-vanishing terms

with four factors, namely £ (x iX 2X3X4)> and E (x {i)X(2)V,(3)V,{4));

non-vanishing terms with five factors, namely -E(X(i)X<2)V,<i)V;(3)V,{4)) and 

^(V,{1)V,{2)X(1)X(3)X(4>); terms with six factors, namely £(x<i>X<2)^i^2^3W> 

^(V,(i)^(2)XiX2X3X4 ) J and £ ,(X{i)X(2)X{3)V’(i)V,{2)V;{4>); terms with seven factors, 

namely E {x{i)X(2)X(3) ^ i i ’2^ s M  and £(^< 1)^(2) V,(3>XiX2X3X4 ); a term with eight 

factors, namely F'(XiX2X3X4'0iV,2^,3V’4)- It can be seen from (3.64) that, for each 

i = 1 ,.. .  ,4, the corresponding coefficient will include a factor if only Xi 1S 

present or c9ti if only ^  is present.

2. E (B iB 2BsB4) will be a linear combination of 9 terms. Denoting by 

(3), (4) any permutation of {3,4}, these can be grouped in the following cat­

egories: £(Xl2^12^3^4)> ^ ( ^ 12X12X3X4), £(Xl2X<3>^12^<4>)> £(Xl2X<3>^12^3W> 

E(ip 12̂ (3)X12X3X4)5 and £ (x i2X3X4</;i2<M;4)- As in the previous case, (3.64) im­

plies that, for each i — 3,4, the corresponding coefficient will include a factor Ch,i
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if only Xi is present or cg>i if only i\)i is present.

3. P (P iP 2P 3P 4) =  cM # (x  123X4̂ 123) +  Cs/(X l23^123^4) +  E{Xi2zX4̂ 12^ a )-

4. E{B \B 2B$B±) =  (X12,34̂ 12,34)•

In (3.62) and (3.63), the relevant expectations are E (B iB 2) — c/l)iC/l)2£^(XiX2)+ 

C g ^ C g tE ^ M  + ^ (x iX 2̂ i'02) and E (B 1B 2) =  P(Xi2̂ i2)-

We can now use Theorem 3.1 to expand each these expectations as Yl^=o aq- 

Let iit represent either rj2t or v2t, with 7^ =  E(iitintj), and define f ijt = 

f*j,t = f ? M )  such that =  0. Denote by Gi;q, Gijiq, Gijk.q, G*j.q the q-th.

Hermite coefficient of / ift, f*j,t respectively.

For E { f i ttlf 2,t2f3,tJiM)> we have

ao =  ai — 0, a2 — Gri;iG2;iG 3;iG 4;i (7^734 +  7i3724 +  714723)- 

Since G^o =  0, Theorem 3.1 yields

Label the elements of P4 as (1), (2), (3), (4), such that |7 (i){2)| is the largest 

absolute correlation. Then YlaeQ4 l7al ^  ^l7(i)(2)l an(^

n e  17J  ^  - ^ 7 ( 1 ) ( 2 ) ( | 7 ( 1 ) { 3 > I  +  1 7 < 2 > < 3 )  I +  17 ( 3 ) ( 4 )  I ) ( 17 < 1 ) < 4 )  I +  | 7 < 2 > < 4 )  I +  | 7 < 3 ) < 4 >  I ) *

i= 1 aZR '̂i

Choosing the second largest absolute correlation, we have a bound of the form

v a > 0 :  i = l  a £ Q 4
Hva=q,a£Q4

a£R4,k

4

00 00

E W  ^  ^ 7 ( 1 ) ( 2 ) | 7 ( 3 ) ( 4 ) I  or E ! “ « !  -  -f t : 7 ' < l ) < 2 ) l 7 < l X 3 ) l -
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Therefore, taking all possible permutations for (1), (2), (3), (4), 3 \aq\ ~  G(e3),

where e3 =  yielding

4

E { f 1Mf 2,t2h t 3k u )  = n  GW (^12734 +  713724 +  7i4723) +  0 (e3). (3.65)
i= 1

Again from Theorem 3.1 but using Corollary 3.1, defining e2 =  7 i2 +  7 i3 +  723>

E(fl,tif2,tif3,t2f^ t3) = ^12;0C3;iG4;i723 +  0 (e2), (3.66)

E { f l , t i f 2 , t i f 3 , t 2 f 4 , t 2 ) = Gi2-oGs4fi + 0 ( |7 12|), (3.67)

E ( f i )t1f 2,t1h,tif^,t2) =  0 ( |7 i2I)> (3.68)

E ( f \ , t 1 f 2 , t 2 h , t z )  — ^ (e 2), (3.69)

E ( f l , t i f 2 , t i f 3 , t 2 )  =  C i2;i(j3 ;i7 12 +  ^ ( 712)) (3.70)

^ (/i ,* 1/a,*i/3,ti) =  G i23-,o, (3.71)

E ( f l , t i f 2 , t 2 ) ~  Gfl;lG?2;l7l2 +  ^(7?2)> (3.72)

E (fl , t i f2,ti) — Gi2-,o, (3.73)

E {fl2,txf3,t2f 4,t3) = ^12;0<̂ 3;lG?4;i723 +  0 (e2), (3.74)

E { f  12,tx h , t 2 f 4,t 2 )  =  G I2;0^34;0 +  0(|7l2l)» • (3.75)

E ( f n , t x h t 2 )  = G*12}1G3;lJ l2  +  0(7?2), (3.76)

E U ktx )  =  GI2;o. (3.77)

E ( f n , t x f k t 2 )  =  ^12;0^34;0 + ^ ( l7 l2 1)- (3.78)

Now let the G and G* coefficients in (3.65) to (3.78) apply to the case

/i,« =  r ,  ^  = 9 ^ ,  (3.79)
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while corresponding G' and G*' coefficients apply to

=  f l i t  = (3.80)

We can approximate each term in the expansion of (3.58) to (3.63) using (3.65) 

to (3.78):

(i) E{ZtlZt2Zt3Zti). Denote by (1), (2), (3), (4) any permutation of P4. Using 

(3.65), (3.69), (3.72), the only terms that are not 0(e 3) are:

£ ( X l X 2 X 3 X 4) =  <2 l ; l ( ? 2 ;lC?3 ;lC?4 ; l ( P l 2 P 3 4  +  P13P24 +  P14P23) +  ^ ( e 3 ) ,  

E (ll> 1lj>2lJ>3ll>4t)  =  ^ l ; l G ?2 ;1 ^ 3 ;lC ? 4 ;l(P l2 P 3 4  +  P 13P 24 “b  P 14P 23)  +  ^ ( e 3)> 

-^ (X { 1 )X (2 ) ) ^ ( ^ < 3 ) ^ { 4 >) =  ^ ( l ) ; l <̂ { 2 ) ; lG !/{3 ) ; l (̂ ( 4 );lP { l)(2 )P{3 )<4 ) +  0 ( e  3 ).

(ii) E { Z lZ t2Zt3). Using (3.66), (3.69), (3.70), (3.72), (3.73), the only terms in 

E{B iB 2BzB4)  tha t axe not 0 (e 2) are:

^(XiX2X3X4) =  G?i2ioGf3;iC?4;iP23 +  0 (e2),

- ^ ( ■ 0 4) ~  ^ 12;0^ 3;1̂ 4;lP23 “b 0 {e2):

^ ( x ^ ) - ^  ( f e M  =  G i^oG '^G '^p^  +  0 (e 2),

E{'4’i'lp2)E(X3X4:) = G'i2,qG3-,\G^ip2z +  0 (e2), 

E(XlX2)E('lPl'tiJ2'tp3'll;4) — Gf12;oGfi2;0^3;1^4;lP23 +  0 (e2), 

E('tpi'lp2)E(XiX2X3X4) ~  Gf/12;0^12;oG,3;lG?4;lP23 +  0 (e2).

Using (3.74), (3.76), (3.77) the only terms in E (B iB 2B3B4) that are not 0 (e 2)

are:

-£'(Xl2)- '̂(',/,12V;3V,4) =  ^12,0^12;0^3;1^4;lP23 ~b 0 (e2),
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^(V,12)^(Xl2X3X4) — ^12,0^12;0^?3;lG,4;lP23 +  0 (e2).

(iii) E(Zf1Zf2). Prom (3.67), (3.70), (3.72), (3.73) it follows that all terms in 

E ( B i B 2B sB 4) will be 0 ( \p l2\) except the ones only involving (3.67) and (3.73):

-E'(XlX2X3X4) =  Gf12;oG!34;o +  0 ( \p 12\),

2 ^ 4 )  =  G l 2 f i G ' M .0  +  0 ( \ P l 2 \ ) ,

#(XlX2) # ( ^ 4) =  G12;oG'm.0,

E ^ M E i x  3 X 4 )  =  G rl2.QG M.i0,

E{XiX2) E { M 2^ a )  =  G12.0G'l2.QG'M-fl +  O ( M ) ,  

E { x ^Xa) e { M 2 ^ a) =  G34-qG ,12.0G'34.q +  0 ( | p 1 2 | ) ,  

£ '(^’l'02)-^(XlX2X3X4) =  Gf/12;0^12;0Gr34;0 +  0 ( \p 12\),

£(^3V ,4)£(XlX2X3X4) =  G'M.0G12.toG34-,o +  0 ( \p 12\), 

£(XlX2X3X4)£ (^ l< /;2Vv/’4) =  G12-oG34fiG,12.QG,34.0 +  0 ( |p 12|).

Similarly, from (3.75), (3.76), (3.77), (3.78), all terms in E (B \B 2B 3B 4), 

E {B iB 2B 3B4), and E (B iB 2B 3B 4) will be 0 ( |p 12|) except the following:

E { X n ) E ( M M  =  ^12;0^12;0^34;0 d" 0 {\pl2\), 

E {X34)E {'ll)34lP l ll)2) ~  ^12;0^12;0^34;0 +  ^(|Pl2l)> 

-£?('012)^(Xl2X3X4) =  ^12;0^12;0^34;0 ^(|Pl21) J

^W ,34)-^(X34XlX2) =  G ^;0^2;0G34;0 +  0 (\pl2\),

E (.X12X3 X4 ) E ( . ' i f t 3 ^ 4 ) ~  ^ 1 2 ; 0 ^ 3 4 ; o G ?i 2 ; 0 G ?3 4 ; 0  +  0 ( \ p i 2 \), 

E iX34X\X2)E {'4)34ll)\ lp2) ~  ^12;0^34;0G?12;0 '̂?34;0 +  0 (\p i2\), 

Ĵ (Xl2,34)-^'(V,12)34) =  ^12;0^34;0^12;0^34;0 +  0 ( \p l2\).
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(iv) E { Z lZ t2). Using (3.68), (3.70), (3.71), (3.72), (3.73) in E ^ B A B ^ )  

note that at least one factor in each term necessarily involves £2. Therefore, one 

of (3.68), (3.70), (3.72) will apply, making all terms 0{\p12\).

Similarly, in E { B \ B 2 B $ B 4 ), E ^ B i ^ B ^ B ^ ,  E ( B i B 2 B ^ B 4 ), EiKB \ B 2 B ^ B 4 ),  at 

least one factor in each term necessarily involves £2. Thus, (3.76) will apply for 

some function f*j t , not necessarily one given in (3.79) or (3.80), making all terms 

^(|Pl21) *

(v) E(Z tiZtj). Using (3.72), the following are not O(p^):

E ( X i X2) =  G1;1G2;1Py +  <>(/%), E t y  M  +  0 { p % ) .

(vi) E(Zt.). Using (3.73), E (B i B2) and E (B iB 2) include the following terms:

E ( X l X 2) =  ^12-0,  £ ! ( X i X 2 ) £ ' ( ^ i V , 2 )  =

E & M  = E (x 12)E (^ 12) = G ^ G ^ o -

We now compute the coefficients of the leading terms listed above. Define 

Li — L\

Lij — CiChflCjChjGij-o, T2

Lij — (k Cj Gij; o G^ ; o, L2

Note that Lp =  CpCh,pGp;i =  P2E(r^t)E{gp(rj2t)Hi(7]2t)} 7̂  0 by assumption, but 

Li = 0 for any i < p. Hence L\ =  Lp ^  0. The contributions of the non-negligible 

terms will be:

U{=0
P

Ui—0
P

—  y  ]  L i j ,  —  C i C g i C j c g  j G ^ . q ,  L 2  —  y  ]  L i j ;

Ui,Uj=0 Ui,Uj= 0
P P

E r * t ** __  /nr* /̂ r*/ F**   \  A r **
ij’ ij ~  CijLrij-,0Lrij\0i L 2 ~  *3 '

Ui,Uj=0 Ui,Uj=0
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(i) E (Z tlZt2Zt3Zt4)

E { x  1X2X3X4) : L i L 2 L 3L 4( p12p M + p 13p24 + P u P 2 3 )  +  0 (e 3);

E{'ipi'fp2'lp3tlJ4) ’ '^l^,2 /̂3-̂ /4(/?12P34 +  ^13̂ 24 +  P14A23) +  ^ ( e3)>

-^'(X(1)X(2))-^(V;<3)'0(4)) : -^(l)-^(2)^(3)-^(4)/?(l)(2)P{3)(4) +  ^ ( e3)-

Thus, E(Z tlZt2Zt3Zt4) is

^  { ^ l- ^ 2 ^ 3 ^ 4 ( /? i2 P 3 4  +  P 13P 24 “I" P 14P 23) +  ^ 1  -^2-^3-^4(^12^34 P l3 ^ 2 4  +  P 14P 23)

+  L i L 2 L 3L 4 p 12p ,34 +  L ,1L ,2 L s L 4 p ,l2 P34 +  L i L 2L 3 L 4 p 13p 24 +  L'1L 2 L 3 L 4p'13p 24 

+LiL2L 3L4p14p23 +  Tj i/2-̂ 3-̂ 4̂ 14̂ 23} +  ^ ( e3)

=  {(LiL2p12 +  L,1L2p'12)(L3L 4p34 +  L'3L'4p'34)

+  (i'ii'3Pi3 +  L,'1L,3p>13)(L2L 4p24 +  L2L 4p24)

+(LiL4p14 -j- L,1Li/?i4)(L2L3p23 +  L2L3p23)} +  0 (e3)

=  ( ^ i P i 2 +  Lip'12) ( L \ p 34 +  L f P 34) +  ( T i P i 3 +  Lfp[3) { l \p 24 +  L'i p'24)

+  (^ iP i4  +  -^fPw ) C^i#23 +  L 1 P2 3 ) +  0 (e3). (3.81)

(ii) £ (Z t2Zf2Z*3)

£(X i X2X3X4)

E {^

E { M 2)E{XiX2X3Xd

E(XiX2) E ( M 4)

E i x ^ E i i p n ^ M

E { ^ 2 )E { X 3 X a)

Li2L3L4p23 +  0 (e2

^12^3^4^23 +  ^ ( e2 

^12-^3^4^23 “t" ^ ( e2 

LI2E3L4P23 +  0 (e2 

L\2L'3L'4p'23 +  0 (e2 

Ĵ12̂ ‘3̂ J4:P23 “t- ^ ( e2

E12L 3L4P23 +  0 (e2
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E{'1̂ 12)E{X\2XzXa) ’• -^12 '̂3-t'4/?23 +  ^ ( e2)-

Thus,

E i Z ^ Z t z Z t z )  =  (-^ 12-^ 3^ 4^ 23  +  L'm L's L ^ P ^ s +  L 1 2 L 3 L 4 P 2 3  +  L 4 2 L 3 L 4 P 2 3

+  E*l2L'3LrAp'23 +  L\2L^Lip23 +  L12L3L4P23 +  LHL^Lip23)  +  O(ea) 

=  ^ ( L i 2 +  L'12 +  LJ2 +  Lll)(L 3L4p23 +  L'zL'Ap'23) + 0 (e 2)

=  (La +  L' +  L; +  LT) (L?p23 +  L ? ^ )  +  0 (e2). (3.82)

(hi) E { Z \Z l )

E ( x  1X2X3X4 ) : L 12L 34 +  0 ( |p i 2|);

E (x  1X2)E(lfi 111*2^ 3^ 4) : •̂ 12-̂ 34 +  ^ (|P l2l)i 

E {^ i^ 2 ll;3[i;A) : -̂ 12-̂ 34 ^ (|P l2l)»

E i X s X ^ E ^ i ^ ^ M  : ^12^34 +  0(|/)i2|);

^ ( X iX ^ f a M ^ )  '■ E \ 2L34 ;

£(V,iV,2)£(XiX2X3X4) : E\2L%4 +  0 ( |p 12|);

E & M E i X s X i )  ' L i2L 34l 

^(V’3^4)^(XiX2X3X4) : £ 12^34 +  0 ( |p 12|); 

E ( X n ) E ( ^ M  : L g L ^  +  0 ( |p 12|); 

E{X\2X3X4)E{'4’i2tl>3lP : E\2L3A +  0 ( |p 12|);

E{X34)E{lp24^Pl^2} : E'tfLll +  ^(|Pl2l)i 

E{XMXiX2)E{4,34tPi'll;2) • E12L3A +  0 ( |p 12|); 

^ ( ^ i2)^ (x i2X3X4): ^ I 2̂ 34 +  0 ( M ) ;  

^ ( X lX 2X3X4) ^ ( V ,lV’2V,3 ^ 4 ) : L l 2^34  +  0 ( |P l 2 l);
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£’(V,3l)£'(X3'lXlX2) : Z12Z34 +  IPl21) 5

■®(Xl2,34)- '̂(V'l2134) : ^12^34 ^  IPl21)•

Thus,

= y^(-^l2^34 +  ^12^34 +  ^12^34 +  ^12^34 +  L \2L'M

+ L'l2L*M +  L\2L3 4 +  ZI2Z;4 +  Z;2ZJ, +  Z ^  +  L5 L34

+  z ; ;z ;4 +  l'12l s  + i i 2z £  + ^ 2z £  + z s z £ )  + o ( |ft2|)

=  ^ ( Z l 2  +  £'12 +  ZJ2 +  ZJ2)(Z>34 +  ^34 +  ^34 +  Z £ )  +  0 ( |p u |)

=  (Z2 +  +  L; +  L ? f  +  O (M ) . (3.83)

(iv)

Z ^ Z , , )  =  0 ( |ft2|). (3.84)

(v) E (Z uZtt) , i y i j

E ( x  1X 2 )  :  L j L s f t j  +  0 ( 4 ) ;  E ( i > M  :  Z ' j Z 2 4  +  0 ( 4 ) .

Thus,

E (Z uZtj) =  ] T  (LiL2̂  +  L'1̂ 4 )  +  0 ( 4 )  =  L ?^. +  Z f 4  +  0 ( 4 ) .  (3.85)
Til ,li2=0

(v>) S(Zg)

£(XiX2) : Tl2j ^ 2;

E t y M  ■ L[2; E (Xl2)E (i,12) : Z 5.
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Thus,

E ( Z l ) =  J 2  (L12 + L '12 + L *12 + LH) = Li + L '2 + L; + L? .  (3.86)
Ui ,1X2=0

Define Vt as a mean-zero Gaussian I{di) process with E (V 2) = L 2+L2+L 2+LI* 

and E(VtiVtj) — L\p{j +  L'lPij, for i ^  j .  Using equations (3.81) to (3.86) to 

compute the covariances of interest in each case, they are easily shown to be 

identical to

Cov(us1k 2, VS3VS4) = E(VS1VS3)E(VS2VS4) +  E(VS1VS4)E(VS2VS3),

up to the desired approximation errors. □

L em m a 3.7 I fV t is Gaussian 7(1/4), under (3.24),

log 771
n

Proof. Let p • — Cov(Vo, Vj) and assmne pQ = 1, without loss of generality. By 

assumption, |p -| <  K j~ x!2. We will use similar methods to the proof of Lemma 

10 in Robinson (1994b), including the decomposition

1 n
V a r{ fW (V )}  =  ^  Y  Cov(V,Vt , K K,)Dm(A«_<1)£)m(A„_„)

s,t,u,v=1
I n _________

=  ~  ^   ̂ (P u - s P v - t  4“ P v - s P u - t ) D m { ^ t - s ) E m ( \ v —u )
71 * 1

1 m
- (Wj 'k- j WkJ- t + W j ' - j - t W - w ) ,  (3.87)n j,k= 1

where
n—1 n—u~

W j*=  Y  P ^ iUTk(u), Th(u )=  Y  e'tXk>
u=l—n £=l+ix+
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denoting the positive and negative parts of u by u+ — (|u| +  u ) / 2  and u~ = (|u| — 

u ) /2 respectively. Note that Robinson (1994b) has a typo in this decomposition, 

using k instead of —k in the first index of the last W. However, the correct 

expression is used in the remainder of his proof.

To bound Wj$, for j  = 1 , . . .  ,ra, note that To(u) = n — \u\. Summation by 

parts gives

n—1

u=l—n
71—1

n — u —

so using (3.38) we get

\Wj f i \ < n  +  K ^ 2 { ( n - u ) \ p u -  p u+1\ +  |pu+1|} |A*(A,-)|
U= 1
n— 1

XL

(3.88)

For k ^  0 and u > 0, (3.32) implies that Tk{0) =  0,

n n u

t= l+U t—1 t= 1
n—u n to— 1

Tk( -u )  = J V Afe =  J 2 e itXk ~  eiXk eUXk =  -e^A ^A fc).
t=n—u
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Therefore, using summation by parts,

n—1
W j *  = Y , P u  { e ^ T ^  +  e ^ m - u ) }

U = 1

= I > «  -  P * i) E  { - e iX* D , ( \ k) -  }
U=1 9=1

n—1
+ A>E { - e ikj,Dg(Xk) -  e ^ -^ S ^ A O }  ,

9=1

implying

n — 1

\ W j , k \ < K J 2 \Pu - P , + i \
U=1

2 > ^ £ > , (  \ k)
9=1

+  K \ P n \

n —1

AO
9=1

Since

£  eiX‘"Dq{ \k) =  £  ett«  £  eilA‘ = iAj-g

9=1 9=1 i=l 9=1

1 -  eiqXk 
e~lXk — 1

=  F a ^ r [ E ( eiAi,- eiA<+‘4) =
9=1

Du (Xj)
e-iAfc _  ]_

and |e — 1| ~  |A| as A —► 0, we have

J 2 e iXi*Dq( A*)
9=1

n

So, using (3.38) and for a =  min{|j|, |j +  A:|},

[n/a]
\ W * \ < K m Y , \ P ^ \ + K m  £

U = 1

[n/a]

n \pu+i \ n
|&| |fc| —  u a1 1 u=l 1 1 U=[n/a]+1

-  + *>»!
n
|fc|a

n—1 3
t-j- U" V—'  _I Tl̂  x r   3 712 ̂̂ in E ^  E ”"5+Jfm:1*1 ^-r1 1 t/=l \k\ci u=[n/a]+1 |&|a



yielding

n3
\Wj,k-jWKj- k\ < K ( j _ k f ^ n { m > 1 < 3,k < m, j  ft fc,

n3
|WA. ^ . W+*| < * 0 . +  fc)amin0. fc}, 1 <  3, k < m.

Thus, using (3.88), (3.89), (3.90) in (3.87),

/x O K  ^ n 3 K  ^  n3
Var pW(AJ j y  +  ^  jL ( j - f c ) 2min{j,fc}

£  v  -  n3
n4 0‘ +  &)2 min{j, A:} 

logm K  n 3 K  n 3<K l̂  + f L Y   +  - V -
n n4 ^  ”  k )2i  n4 0  +  k^2i

j<k j<k
1 7" / •  TTl 1 771 j  — -  77 J. 777.-f- j

j=l a=l j=l a=2j
^ l o g m )

n

which completes the proof. □

107

(3.89)

(3.90)



Chapter 4

Finite sample performance of 

Narrow Band Least Squares

4.1 Introduction

We now present two Monte Carlo studies of finite sample performance of NBLS. 

For linear processes, Robinson and Marinucci (2003) reported simulation experi­

ments of NBLS with 7(1) observables and 7(0) cointegrating errors, while Marin­

ucci and Robinson (2001) explored different cases of I{dx) nonstationary observ­

ables and I(de) stationary errors. Bandi and Perron (2006) examined NBLS for 

the regression between realized and implied volatility, generating the data from a 

discretised continuous time SV model.

The following section aims to evaluate in detail the validity in finite samples 

of the asymptotic results derived in the previous chapter. We make use of the 

modelling assumptions proposed in that chapter, for moderate sample sizes ranging 

from 256 to 2048 observations.

Section 3 attempts to fill the gap in theoretical distributional results, by pro­

viding a comparative study of distributional properties of weighted and simple
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NBLS, as described in Section 2.6, under a variety of different settings. We com­

pare nonlinear SV models with the linear setting, and explore the impact of the 

weighting scheme in WNBLS, for both fixed and data dependent weights. Given 

the focus on distributional properties, we make use of sample sizes ranging from 

512 to 8192 observations, and present kernel density estimates of the finite sample 

distribution under various settings.

4.2 F inite sam ple performance of Narrow Band  

Least Squares under a stochastic volatility  

setting

In this section, we employ 50,000 replications of series of various lengths n 

generated by (see (2.37), (2.36) and (3.1), (3.2))

Vt = PCt +  £t, x t — Ct +  fit, (4.1)

where we set =  1 and (see (3.17), (3.18))

Ct =  »7it0(»72i)> fit = vu h{v2t), £t = £ i M 2t)' (4-2)

All basic processes in (4.2) are independent of each other, and standard Gaus­

sian. Processes r)lt, £lt in were generated as iid, while the Davies and Harte 

(1987) algorithm was used to generate r)2t as ARFIMA(0, di, 0) and v2t, £21 85 

ARFIMA(0, c/2, 0). In most cases h and I are constant functions, as in (2.37), 

(2.36), and v2*, £2* are n° t required. For all functions g considered, p — 2 satisfies 

Assumption 3.1.

Our goal is to estimate /?, or at least 9 = (32. Denoting Yt = y\ and X t =  x%,
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we compare the performance of NBLS estimates (2.55),

(4.3)

with OLS estimates (2.47) obtained either from levels,

^  -  x)yt
Y & t  -  x ) 2 ’

(4.4)

or squares,

Y K X ‘ -  * ) 2 '

(4.5)

« 2
To make the three estimates comparable, we take ft as an estimate of 6 . Of course,

neither (4.4) nor (4.5) are consistent for ft or 6 respectively, but they are simple 

estimates that a practitioner might optimistically compute. One can furthermore 

interpret (4.5) as the full band version of the proposed NBLS estimate, i.e. (4.3) for 

m  = n f  2. We report the bias, standard deviation (SD), and root mean squared 

error (RMSE) for each estimate. On occasion, relative quantities are reported, 

meaning the ratio between the corresponding quantity for NBLS and (4.5), which 

dominates (4.4) in every experiment.

B an dw id th  choice

Theorem 3.2 highlights the relationship between bandwidth m  and rate of

convergence. In the first experiment, we present-the evolution of relative bias, 

SD, and RMSE for different m  and d\. We set n  =  256, d\ =  0.1, 0.2, 0.3, 0.4,

We chose this value for Var(^) in several experiments in order to balance the 

contributions of bias and SD to RMSE; the impact of the signal to noise ratio is

g{x) — exp{kx), with k chosen to satisfy Var(^) =  2, and h(x) = l{x) = 1.
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explored later.

Figure 4.1 shows the bias reduction achieved by NBLS relative to OLS. Not 

surprisingly, it is greater for small m  and large d\. It is only around frequency 

zero that the spectral density of X t dominates that of Ut; frequencies further 

from the origin are more contaminated by the correlation between X t and Ut, 

and contribute more to bias. Also, a higher d\ indicates a stronger cointegrating 

relationship, increasing the spectral density of X t around the origin and thus the 

averaged periodogram.

The increase in SD of NBLS relative to OLS, displayed in Figure 4.2, is a 

consequence of discarding high frequency information, and is decreasing in m. 

The influence of d\ on relative SD appears to be small, specially if compared to 

Figure 4.1.

The different profiles of bias and SD give rise to the traditional trade-off in 

bandwidth choice. Figure 4.3 presents the relative RMSE of NBLS. For most m, 

NBLS dominates OLS. For this particular n, a low di does not provide enough 

information for NBLS to work, due to the modest bias reductions displayed in 

Figure 4.1, making the improvement over OLS negligible. The RMSE is essentially 

a flat function of m, implying that any m  above a certain threshold, thereby taking 

in OLS, attains similar RMSE. However, note that an increase in n should have 

a similar effect to an increase in d\ on RMSE, although it will be minimized at a 

different m. This effect is explored in the next subsection. Higher d\ lead to very 

low values for the optimal m, and more significant improvements in RMSE. For 

di = 0.4, a noticeable reduction is already achieved, of over 10% for a number of 

different m. It should also be noted that if the bandwidth selection is larger than 

optimal, it is still possible to considerably reduce RMSE, while choosing too small 

an m  can lead to an undesirably large SD.
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4.1: Relative bias of NBLS versus OLS, for varying m  and d\.
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Figure 4.2: Relative SD of NBLS versus OLS, for varying m  and d\.

112



1.05

0.95

0.9

0.85

1280 32 64 96

m

Figure 4.3: Relative RMSE of NBLS versus OLS, for varying m  and d\.

Memory in signal

We now investigate the influence of n and d\ on the performance of the three 

estimates. We consider n = 256, 512, 1024, 2048 and d\ =  0.1, 0.2, 0.3, 0.4. As 

before, g(x) =  exp(kx), with k chosen to satisfy Var(£t) =  2, and h(x) = l(x) =  1. 

In this experiment and in the following ones, we evaluate NBLS at the bandwidth 

m* that minimizes RMSE. Although this is not a feasible choice in the usual sense, 

it gives an indication of potential gains; the effects of deviating from this optimal 

bandwidth should be qualitatively similar to those presented in Figure 4.3. Table 

4.1 summarizes the results.

As expected, the RMSE of all estimates improves with n. For even moderate 

n, NBLS has the lowest RMSE, being clearly less biased than OLS; while OLS 

in levels attains the lowest SD, especially for small n, its larger bias makes it the 

worst.

Both bias and SD of OLS increase with d\. Both also decrease with n, but 

while SD seems to be rapidly converging to zero, bias decreases rather slowly and
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n 256 512 1024 2048
d\ m* Bias SD RMSE m* Bias SD RMSE m* Bias SD RMSE m* Bias SD RMSE

t — -0.560 0.085 0.567 — -0.558 0.062 0.561 — -0.557 0.045 0.559 — -0.556 0.033 0.557
0.1 6 — -0.269 0.179 0.323 — -0.244 0.141 0.282 -0.226 0.111 0.252 — -0.213 0.087 0.230

9m* 58 -0.264 0.184 0.322 53 -0.234 0.149 0.278 50 -0.212 0.123 0.245 64 -0.197 0.097 0.220

? — -0.564 0.098 0.573 — -0.561 0.075 0.566 — -0.559 0.057 0.562 — -0.558 0.044 0.559
0.2 6 -0.279 0.184 0.334 -0.251 0.145 0.290 — -0.231 0.115 0.258 — -0.216 0.090 0.234

9 m* 22 -0.253 0.203 0.324 23 -0.215 0.164 0.270 22 -0.184 0.136 0.228 24 -0.160 0.111 0.194

— -0.577 0.127 0.591 — -0.571 0.107 0.581 — -0.568 0.090 0.575 — -0.564 0.076 0.570
0.3 e — -0.309 0.199 0.367 — -0.276 0.160 0.319 — -0.252 0.129 0.283 — -0.233 0.102 0.254

0m* 12 -0.246 0.232 0.338 12 -0.191 0.188 0.268 14 -0.152 0.147 0.212 13 -0.113 0.121 0.165

t — -0.611 0.181 0.637 — -0.604 0.168 0.627 — -0.599 0.156 0.619 — -0.594 0.146 0.611
0.4 9 — -0.404 0.239 0.469 — -0.368 0.208 0.423 — -0.339 0.183 0.385 — -0.314 0.159 0.352

9 m* 8 -0.291 0.290 0.411 7 -0.205 0.247 0.321 8 -0.148 0.192 0.242 8 -0.096 0.147 0.175

Table 4.1: Monte Carlo bias, SD, RMSE of NBLS for varying n and d\.



appears to stabilize at some substantial non-zero value. For small n, changes in 

d\ similarly affect NBLS, but for larger n, the small m* makes bias decrease with 

di.

The bias reduction of NBLS becomes quite large with n, while the variance 

penalty is always of small magnitude. In fact, when d\ = 0.4 and n = 2048, NBLS 

actually dominates OLS in both SD and bias. The improvement in performance 

for high di and the rate of decay of RMSE seem compatible with the asymptotic 

result of Theorem 3.2.

While Figure 4.3 and Table 4.1 both illustrate the high sensitivity of m* to di, 

caused by the different scope for bias reduction in each case, m* does not appear 

to grow with n. This is surely a small sample effect, as NBLS is only consistent 

if m  —> oo. As a consequence, m* will diverge when bias becomes negligible 

compared to SD, a situation which does not occur in the sample sizes considered. 

Since Theorem 3.2 suggests that convergence of 9m is faster the slower m  grows, 

this phenomenon is not entirely surprising.

M em ory in signal and noise

In Table 4.2, d\ is kept constant, while we introduce long memory in the errors. 

We set g(x) =  ex p ^ rr)  and h(x) =  l{x) = exp(&2z), with ki, k2 chosen to satisfy 

Var(Ct) =  10 and Var(^) =  Var(£t) =  2. These values were again chosen to balance 

contributions of bias and SD to RMSE. We consider n  =  256, 512, 1024, 2048, 

di = 0.4 and d2 =  0, 0.1, 0.2, 0.3.

The results are very similar to the previous experiment, but here d\ — d2 takes 

the role of d\. As before, RMSE improves with n  for all estimates. OLS displays 

similar patterns of bias and SD across d\ — d2 and n, with the exception that SD 

decays much more slowly with n. The bias of NBLS decreases with d\ — d2 for all 

n; for n > 256 even SD decreases with d\ — d2. A surprising fact in this case is
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n 256 512 1024 2048

d-2 m* Bias SD RMSE m* Bias SD RMSE m* Bias SD RMSE m* Bias SD RMSE

— -0.520 0.276 0.588 — -0.498 0.261 0.562 — -0.476 0.246 0.536 — -0.455 0.232 0.511
0.0 e — -0.281 0.318 0.424. — -0.225 0.277 0.357 -0.176 0.232 0.291 — -0.133 0.189 0.231

em* 12 -0.228 0.327 0.398 11 -0.156 0.266 0.308 9 -0.097 0.205 0.227 8 -0.054 0.145 0.155

$ — -0.519 0.276 0.588 — -0.497 0.261 0.561 — -0.475 0.247 0.536 — -0.455 0.232 0.511

0.1 9 -0.280 0.318 0.423 — -0.224 0.276 0.356 — -0.175 0.232 0.291 — -0.133 0.189 0.231

9m* 14 -0.236 0.327 0.403 11 -0.162 0.271 0.316 9 -0.104 0.211 0.235 9 -0.062 0.152 0.164

t — -0.516 0.278 0.586 — -0.495 0.262 0.560 — -0.474 0.247 0.535 — -0.454 0.233 0.510
0.2 9 — -0.276 0.317 0.421 — -0.222 0.276 0.354 — -0.174 0.232 0.290 — -0.132 0.189 0.231

9 m * 19 -0.245 0.326 0.408 13 -0.173 0.277 0.327 13 -0.120 0.219 0.250 13 -0.078 0.164 0.181

t — -0.506 0.282 0.579 — -0.487 0.266 0.555 — -0.468 0.251 0.530 — -0.449 0.236 0.508

0.3 9 — -0.266 0.316 0.413 — -0.215 0.274 0.348 — -0.169 0.231 0.286 — -0.129 0.189 0.229

e m * 35 -0.251 0.323 0.409 26 -0.189 0.278 0.336 27 -0.141 0.227 0.267 35 -0.102 0.180 0.206

Table 4.2: Monte Carlo bias, SD, RMSE of NBLS for varying n and di, with d\ =  0.4.



related to the variance/bias trade-off of NBLS. While this can be found in small 

samples, as n  increases it starts dominating OLS in both bias and variance. The 

evolution of m* is also similar to the previous section.

We do not directly address the impact of short run dynamics in finite samples, 

as we expect its consequences to be qualitatively analogous to the linear case. As 

reported in Robinson and Marinucci (2003), the presence of short memory positive 

autocorrelation in the common factor should boost the spectral peak in small 

samples, reducing bias in a similar manner to a higher d\ in Table 1; conversely, 

negative autocorrelation in the common factor should have a similar effect to 

a lower d\. The impact of short rim dynamics in the idiosyncratic components 

would predictably be the opposite: positive correlation should worsen performance 

similarly to an increase in in Table 2, while negative correlation would be 

associated with a dampened di- Both effects should become negligible as n grows.

Signal to  noise ratio

This experiment investigates the influence of the signal to noise (S2N) ratio 

on the performance of NBLS. We use g(x) =  exp(fcx), such that Var(£t) =  2, and 

h(x) =  l(x) =  <j, so that Var(£t) =  Var(£f) =  <r2, for o2 =  0.25, 0.5, 1, 2, 4. The 

results obtained for different d\ were qualitatively similar, so we report results only 

for di = 0.3 and n — 256, 512, 1024, 2048. Since it is unreasonable to compare 

absolute performance for different S2N ratios, in Table 4.3 we focus on relative 

performance only. We also report the ratio between bias and SD. Although we 

refer to Var(£t) /  Var(£*) as the S2N ratio, for simplicity, it is only an accurate 

description for the regression in levels. For x 2 =  Ct +  the dominant

term is , not ( t, and even there r}\t could be considered a multiplicative noise. 

Hence, the definition of the “true” S2N ratio would be ambiguous, but it would 

be arguably smaller than the one in levels.
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n 256 512 1024 2048

S2N Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE
0.5 0.994 1.280 0.998 0.981 1.960 0.992 0.961 2.924 0.980 0.927 4.141 0.956
1 0.910 1.406 0.959 0.818 1.682 0.902 0.737 1.773 0.829 0.621 1.955 0.731
2 0.797 1.163 0.920 0.691 1.175 0.839 0.604 1.144 0.749 0.485 1.181 0.650
4 0.834 1.050 0.969 0.738 1.057 0.922 0.652 1.048 0.857 0.557 1.059 0.781
8 0.996 1.000 1.000 0.879 1.013 0.989 0.773 1.019 0.965 0.683 1.016 0.922

Bias /  SD Bias /  SD Bias /  SD Bias /  SD
S2N. TO* OLS NBLS TO* OLS NBLS TO* OLS NBLS TO* OLS NBLS
0.5 52 -9.29 -7.22 27 -11.42 -5.72 17 -14.19 -4.66 12 -17.26 -3.86
1 12 -3.38 -2.19 8 -3.72 -1.81 8 -4.14 -1.72 7 -4.69 -1.49
2 12 -1.55 -1.06 12 -1.73 -1.02 14 -1.95 -1.03 13 -2.28 -0.94
4 26 -0.82 -0.65 28 -0.93 -0.65 33 -1.09 -0.68 35 -1.31 -0.69
8 121 -0.43 -0.43 87 -0.49 -0.42 86 -0.57 -0.43 90 -0.69 -0.47

Table 4.3: Monte Carlo relative bias, SD, RMSE of NBLS versus OLS, for varying n and S2N, with di



NBLS performs best when bias and SD are balanced. The regressor X t consists 

of two parts: a long memory component containing a dominating pole at frequency 

zero, and a component with less memory not orthogonal to Ut. In this case, it 

is actually short memory, since 5t is iid. If the S2N ratio is very large, the first 

component will dominate the second even at frequencies distant from zero. As a 

result, any large enough m  will perform well; even with OLS, bias will contribute 

very little to RMSE and gains from NBLS will be small. On the other hand, for 

very small S2N, the second component will be relatively large, dominating the 

signal even at frequencies close to zero. In small samples, an attempt to reduce 

bias by only choosing informative frequencies would imply the use of very small 

ra, which would force SD to be too high (see Figure 4.2). In this case, NBLS 

would also provide little gains, as the cost (in terms of SD) of reducing bias is too 

high for RMSE.

With OLS the ratio between bias and SD increases with n. This is expected, 

since OLS still converges in probability to a constant. In NBLS, the ratio is very 

close to that of OLS in small samples. From that point, it increases with n if it 

was originally small, but decreases if it was originally large. It appears that this 

ratio will stabilize at some value close to unity for large enough n, and from that 

point on NBLS will have a noticeable RMSE improvement over OLS.

N onlinearity

To investigate the influence of nonlinearity on NBLS, Table 4.4 reports its 

performance in three different settings, for n — 256, 512, 1024, 2048 and d\ = 0.1, 

0.2, 0.3, 0.4. The nonlinear setting (NL), already used in the first two subsections, 

has g(x) =  exp(fcr), with k chosen to satisfy Var(£t) =  2, and h{x) — l(x) = 1. In
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the other two we deviate from (4.1), (4.2), using instead

Yt = X t + uu X t = f t +vt,  (4.6)

where ut, vt are generated as iid mean zero Gaussian with Var(ut) — 20, Var(ut) =  

6, and Cov(ut , vt) = —10. In a fully linear setting (L), we generate ft as a Gaussian 

mean zero ARFIMA(0, di, 0), with V ar(/t) =  44. In a linear setting with a multi­

plicative noise (MN), we set f t = r)ltZt, where rjlt is iid standard Gaussian while Zt 

is independently generated as a Gaussian ARFIMA(0, <2i,0), with E(z t) = 2 and 

Var(zt) =  12. The chosen moments replicate those of corresponding processes in 

the nonlinear setting.

Both OLS and NBLS perform much better under L than NL, while performance 

under MN falls in the middle. A similar ordering is found in relative performance 

(not shown), since a relatively stable, large bias of OLS estimates throughout 

makes variations in RMSE smaller than for NBLS. Although some of the gap in 

performance should be a consequence of nonlinearity, significant excess kurtosis in 

NL and MN is arguably the dominant factor, since it directly affects the variance 

of the periodogram. In MN, the kurtosis of f t is around 77, while in NL it is 

around 3523 for f t , 36 for vt, and 30 for ut. A more detailed comparison of linear 

and nonlinear settings can be found in the next section.

V olatility  function

Finally, we explore the impact of the functional form of the volatility function 

g. considering g(x) = exp(kx), (1 +  kx )2, |1 +  k x |, with k chosen in each case 

so that Var(^) =  2. We set h(x) =  l(x) — 1 and d\ — 0.1, 0.2, 0.3, 0.4. Table 

4.5 presents the results for n — 512, where the properties of each estimate seem 

robust to the choice of volatility function. Normalizing Var(£f) appears to be
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n 256 512 1024 2048
di m* Bias SD RMSE 777* Bias SD RMSE 777* Bias SD RMSE 777* Bias SD RMSE

L 20 -0.151 0.086 0.174 19 -0.132 0.083 0.156 23 -0.120 0.072 0.140 24 -0.106 0.066 0.125
0.1 MN 41 -0.207 0.088 0.225 37 -0.190 0.079 0.206 41 -0.179 0.069 0.192 34 -0.167 0.070 0.181

NL 58 -0.264 0.184 0.322 53 -0.234 0.149 0.278 50 -0.212 0.123 0.245 64 -0.197 0.097 0.220
L 13 -0.101 0.090 0.136 16 -0.083 0.073 0.111 17 -0.065 0.063 0.091 22 -0.054 0.050 0.074

0.2 MN 17 -0.178 0.111 0.210 17 -0.152 0.098 0.181 19 -0.133 0.085 0.158 20 -0.114 0.077 0.138
NL 22 -0.253 0.203 0.324 23 -0.215 0.164 0.270 22 -0.184 0.136 0.228 24 -0.160 0.111 0.194
L 11 -0.072 0.084 0.111 14 -0.054 0.064 0.084 17 -0.040 0.050 0.063 22 -0.030 0.038 0.048

0.3 MN 12 -0.151 0.121 0.193 13 -0.118 0.099 0.154 15 -0.094 0.081 0.124 15 -0.069 0.070 0.098
NL 12 -0.246 0.232 0.338 12 -0.191 0.188 0.268 14 -0.152 0.147 0.212 13 -0.113 0.121 0.165
L 9 -0.061 0.087 0.106 12 -0.042 0.062 0.075 15 -0.028 0.045 0.053 20 -0.019 0.032 0.037

0.4 MN 8 -0.133 0.140 0.193 10 -0.098 0.105 0.143 11 -0.067 0.082 0.106 13 -0.046 0.062 0.077
NL 8 -0.291 0.290 0.411 7 -0.205 0.247 0.321 8 -0.148 0.192 0.242 8 -0.096 0.147 0.175

Table 4.4: Monte Carlo bias, SD, RMSE of NBLS in settings L, MN, NL, for varying n and d\.



9 exp (x) (1 +  x )2 |1 +  x\
d i m* Bias SD RMSE m* Bias SD RMSE m* Bias SD RMSE

f — -0.558 0.062 0.561 — -0.557 0.059 0.560 — -0.556 0.056 0.559
0.1 e — -0.244 0.141 0.282 — -0.262 0.122 0.289 — -0.291 0.112 0.312

®m' 53 -0.234 0.149 0.278 47 -0.250 0.136 0.284 52 -0.280 0.128 0.308

t — -0.561 0.075 0.566 — -0.560 0.072 0.564 — -0.559 0.066 0.563
0.2 9 — -0.251 0.145 0.290 -0.267 0.125 0.295 — -0.295 0.114 0.316

em- 23 -0.215 0.164 0.270 17 -0.219 0.159 0.271 23 -0.255 0.148 0.295

? — -0.571 0.107 0.581 — -0.570 0.105 0.580 — -0.566 0.094 0.574
0.3 9 -0.276 0.160 0.319 -0.285 0.136 0.316 -0.308 0.122 0.332

9 m * 12 -0.191 0.188 0.268 12 -0.190 0.174 0.258 13 -0.220 0.174 0.280

t — -0.604 0.168 0.627 — -0.603 0.172 0.627 — -0.593 0.152 0.612
0.4 9 — -0.368 0.208 0.423 -0.358 0.181 0.401 — -0.359 0.150 0.390

9  m - 7 -0.205 0.247 0.321 8 -0.190 0.219 0.290 8 -0.205 0.219 0.299

Table 4.5: Monte Carlo bias, SD, RMSE of NBLS for varying g{x) and di, with 
n = 512.

sufficient to capture most of the differences across functions. Results for other n 

are qualitatively similar and not shown.

Final com m ents

Though this section briefly addressed the choice of bandwidth m, it would 

evidently be desirable to develop a feasible rule for bandwidth selection. In a 

Gaussian or linear setting, Robinson (1994b) developed formulae for minimum- 

MSE bandwidth with respect to the basic averaged periodogram statistic, and 

these were further analyzed by Delgado and Robinson (1996). In principle these 

could be extended to the NBLS estimate, though the formulae will be highly 

complex, and feasible versions would require estimating memory parameters and 

other quantities. As in other circumstances, sensitivity to choice of m  can be 

assessed by a “window-closing” approach, computing NBLS over a sensibly chosen 

grid of m  values; since discrete Fourier transforms at all Fourier frequencies can be 

obtained simultaneously by the Fast Fourier Transform, and NBLS is algebraically

122



simple, this can cheaply be achieved, indeed a simple recursion deals with unit or 

other increases in m.

4.3 Finite sam ple properties o f W eighted Nar­

row Band Least Squares under linear and  

stochastic volatility frameworks

We present Monte Carlo results for two settings, linear and nonlinear, where 

the nonlinear framework is similar to the one in the previous section. Under the 

linear model, we generate

where we use the abbreviated notation Ct — rjlt, 5t = rj2t, et = rj3t, and for 

i = 1, 2,3, {rjit} is a zero mean Gaussian ARFIMA(0, di, 0) process with variance 

of. In the nonlinear case (see (4.1), (4.2)), we use

where Ct = Clth(rjlt), 8t = £t = CsMVst), 311(1 for * =  2» 3, {£it}

is an independent standard Gaussian sequence, and {rjit} a zero mean Gaussian 

ARFIMA(0, di, 0) with variance of. In both models, the basic processes and 

{riit}i * =  1, 2,3, are all generated independently of each other, and we will denote 

the variances of ( t , 8t, et by of, of, o\  respectively.

Under each model, we employ 1,000 replications of series of length n =  2048

X t  — C t  +  8t ,

(4.7)

(4.8)

Yt — {PCt +  £t ) 2 »

Xt = (Ct + <̂ )2>

(4.9)

(4.10)
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(when evaluating the impact of sample size, n = 512,8192 are also used) and 

estimate 0 by narrow-band regressions of Yt on X t, where 6 = ft2 in the nonlinear 

setting. Note that both models can be written (see (2.39) and (3.21)) as

Yt = 9Xt + Ut, (4.11)

with

Ut = et -  06t (4.12)

in the linear setting and

Ut = e2t - 6 6 2t + 2pCt (et - 0 S t) (4.13)

in the nonlinear setting. We present bias, standard deviation (SD) and root mean 

squared error (RMSE) of WNBLS estimates (2.62),

for various values of d, both fixed and estimated (see (2.61)). All are evaluated at 

the bandwidth, m*, that minimises RMSE.

A sym p to tic  theory

We first examine the performance of Nielsen’s (2005) asymptotic theory for 

WNBLS, under the linear model, when St is absent in (4.8). We set 9 = 1, 

d\ = 0.4, c?3 =  0.2, a2 =  4 and cr2e = 2. This simulation is comparable to his 

model A, although we focus on full-band estimates, i.e. m = n/2.  (Given the 

independence between Ut and X t, this choice dominates any other value of m.) 

Table 4.6 reports asymptotic (Asy.) and Monte Carlo (MC) SD for different values
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d Asy. SD MC SD Ratio
0.10 0.0176 0.0213 1.211
0.15 0.0155 0.0203 1.307
0.20 0.0152 0.0201 1.323
0.25 0.0154 0.0204 1.328
0.30 0.0157 0.0209 1.332
0.35 0.0161 0.0216 1.337
0.40 0.0166 0.0223 1.341
0.45 0.0171 0.0230 1.344

Table 4.6: Asymptotic and Monte Carlo SD of WNBLS, for varying d; linear 
setting with 8t absent.

of d. Monte Carlo bias is negligible in this setting and therefore omitted. Note 

that Nielsen’s (2005) theory requires (see (2.63))

(2di +  2d3 -  l) /4  < d < d3, (4.15)

which in this case is equivalent to 0.05 < d < 0.2, but we compute his asymptotic 

SD also for d > 0.2. Here we find that Monte Carlo SD is almost always over 

30% larger than the asymptotic one, so the asymptotic theory is not a good 

approximation even when n — 2048.

More realistically, a complete factor model such as (4.7), (4.8) allows the ex­

planatory variable X t to include an idiosyncratic component, 8t. The discrepancy 

between X t and the ideal explanatory variable, ( t , can be interpreted as a case of 

measurement error (ME), causing X t to be correlated with Ut. While still compat­

ible with Nielsen’s (2005) assumptions, this would increase the Monte Carlo SD 

even further without changing the asymptotic one (as long as d2 < d3), thereby 

widening the gap between them. Figure 4.4 plots the theoretical and Monte Carlo 

SD of 6(d) relative to that of 6(ds), for different values of d. Although the asymp­

totic and Monte Carlo levels in Table 4.6 substantially differ, their ratios across d 

are comparable, and d = d3 is the optimal choice in both.
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Figure 4.4: Asymptotic and Monte Carlo relative SD of 6 ( d )  versus ^(c/3), for 
varying d; linear setting with St absent.

Variation in measurement error

We present results for different types of ME, namely: no ME, i.e. 8t absent 

in (4.8) or (4.10); antipersistent ME (c/2 =  —0.2); iid ME (c/2 — 0); and long 

memory ME (c/2 = 0.2). In the nonlinear model, the antipersistent case would 

still generate 7(0) ME in (4.10) and is therefore omitted. In both settings we use 

9 =  1, di =  0.4, c/3 = 0.2, = 4, o\ — =  2, and h(x) = exp(:r) as the volatility

function for the nonlinear setting.

Table 4.7 reports Monte Carlo optimal bandwidth, bias and RMSE, under the 

linear setting, for various regression estimates of 0: unweighted NBLS, <9(0); the 

theoretically optimal but infeasible weighted estimate, (̂cfa); and feasible versions 

of it, 0 ( d s ) ,  where d^ is a consistent estimate of c/3. In the feasible cases, c/3 

is estimated using the log-periodogram (LP) estimate (2.72), the Local Whittle 

(LW) estimate (2.75), or the Modified Local Whittle (MLW) estimate (2.87), based 

on the regression residuals from a first step unweighted NBLS regression, denoted
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Ut. These memory estimates are described in more detail in Section 2.7; the same 

bandwidth m  is used in the first and second steps. Due to the modified spectral 

approximation in (2.87), when using MLW we compute WNBLS as

8(d,  & ) = ( t £  R e { /X y (^ ) } , (4-16)
V = i o  +  A7m /  J=i a +

instead of (4.14). Table 4.8 reports bias and RMSE for these preliminary estimates 

of d3.

In the model without ME all regression estimates have, as expected, virtually 

no bias and perform best in the full-band case. Here, 0(d3) clearly exhibits an effi­

ciency gain over 0(0), which is equivalent to OLS (4.5). However, as progressively 

more persistent ME is introduced, both estimates have increasing bias, and the 

RMSE of 0(^3) grows much faster than that of 0(0). Indeed, in the presence of ME, 

simple NBLS always outperforms the weighted estimate. Here and throughout all 

experiments, estimates are biased towards zero, due to the negative correlation be­

tween X t and Ut caused by ME. The feasible versions of WNBLS seem to closely 

match the infeasible one in both RMSE and bias, in many cases even appearing 

slightly better. This behaviour arises because whenever ME is present, the opti­

mal weighting is actually obtained for d < d3, so the negative bias of LP and LW, 

seen in Table 4.8, can actually work to their advantage. Although MLW actually 

displays positive bias, the weights in (4.16) do not depend on d2 alone but also on 

a in (2.87), allowing it to still outperform the infeasible estimate for d2 =  —0.2. 

The optimal bandwidths for each estimate are lower the more persistent the ME 

is, since frequencies closer to zero become more contaminated with the correlation 

between X t and Ut-

Table 4.8 shows that both LP and LW perform relatively well throughout. The 

small biases are insufficient for the bias reduction properties of MLW to make a
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8t absent d2 =  —0.2 d2 = 0 d2 =  0.2
9 m* Bias RMSE m* Bias RMSE m* Bias RMSE m* Bias RMSE

NBLS 1024 -0.0005 0.0273 81 -0.0279 0.0642 25 -0.0470 0.0897 12 -0.1301 0.1752
True c?3 1024 -0.0001 0.0201 53 -0.0283 0.0652 23 -0.0555 0.0933 10 -0.1326 0.1789

LP 1024 -0.0001 0.0209 53 -0.0297 0.0651 23 -0.0524 0.0928 10 -0.1322 0.1799
LW 1024 -0.0001 0.0204 53 -0.0296 0.0650 23 -0.0524 0.0930 10 -0.1321 0.1800

MLW 1024 0.0001 0.0205 53 -0.0301 0.0650 23 -0.0539 0.0937 10 -0.1339 0.1807

Table 4.7: Monte Carlo bias and RMSE of regression estimates, for different types of measurement error; linear setting.



d$ m
5t absent 

Bias RMSE
d2 =  

Bias
- 0 .2

RMSE
d2

Bias
=  0 

RMSE
d2 =  

Bias
0.2
RMSE

LP 80 -0.0020 0.0806 -0.0485 0.0934 -0.0574 0.0993 -0.0070 0.0821
LW 80 -0.0072 0.0628 -0.0519 0.0821 -0.0613 0.0892 -0.0108 0.0675

MLW 200 0.0491 0.1002 0.0569 0.1464 0.0184 0.1177 0.0418 0.0908

Table 4.8: Monte Carlo bias and RMSE of residual memory estimates, for different types of measurement error; linear setting.



0 m*
St absent 

Bias RMSE m*
d2 =  0 

Bias RMSE m*
d2 =  0.2 
Bias RMSE

NBLS 973 -0.0042 0.0840 8 -0.1495 0.2717 8 -0.1944 0.3210
True c?3 973 -0.0042 0.0855 8 -0.1589 0.2829 8 -0.2020 0.3290

LP 973 -0.0042 0.0840 8 -0.1516 0.2753 8 -0.1969 0.3243
LW 973 -0.0043 0.0842 8 -0.1514 0.2747 8 -0.1966 0.3237

MLW 973 -0.0043 0.0847 8 -0.1532 0.2776 8 -0.1987 0.3266

Table 4.9: Monte Carlo bias and RMSE of regression estimates, for different types 
of measurement error; nonlinear setting.

difference; in fact, this estimate displays larger bias than LP and LW in three 

of the four cases. As expected, the much lower SD of LW makes it the best in 

RMSE. Although some of the bias can be attributed to estimation error, most 

of it surely comes from the “signal-plus-noise” nature of the residuals, as seen in

(4.12). When 5t is absent or when 5t has the same memory as et , LP and LW are 

essentially unbiased, while for d2 =  —0.2,0 some bias is present.

Tables 4.9 and 4.10 present results for the nonlinear setting. Here it can be 

seen that the weighted estimate is always outperformed by NBLS, with ME causing 

much more significant bias. Even in the absence of ME, the optimal bandwidth is 

slightly below the full-band case, possibly as a consequence of Ut being orthogonal 

to but not independent of X t, as can be seen by setting 8t = 0 in (4.13). All feasible 

weighted estimates outperform the infeasible one, which can again be explained 

by the negative biases found in Table 4.10. Biases are stronger here than in the 

linear setting, partly because of the estimation error and the nonlinear setting, 

but also because of the signal-plus-noise structure. Note that in this setting the 

1(0) noise in (4.13) does not vanish even if 8t is absent. For both LP and LW, bias 

is the main component of RMSE. Therefore, the bias reduction provided by MLW 

allows it to dominate the other estimates in the presence of ME. Again, the inferior 

performance of the weighted estimate relative to  simple NBLS demonstrates that 

d =  ^3 is not the optimal choice in this setting.
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dz m
St absent 

Bias RMSE
dz

Bias
=  0 

RMSE
dz =  

Bias
0.2
RMSE

LP 80 -0.1512 0.1704 -0.1827 0.2016 -0.1640 0.1861
LW 80 -0.1562 0.1690 -0.1847 0.1969 -0.1666 0.1810

MLW 200 -0.0411 0.1827 -0.0986 0.1840 -0.0697 0.1788

Table 4.10: Monte Carlo bias and RMSE of residual memory estimates, for differ­
ent types of measurement error; nonlinear setting.

Naturally, if d3 is no longer the optimal choice for d, the usefulness of estimating 

it from the data can be questioned. This is verified in Figures 4.5 and 4.6, which 

show the RMSE of 6(d) relative to that of 6(d$), for different values of d, in the 

linear and nonlinear settings. Only in the linear case without ME is d = d$ 

optimal; in all other cases, the optimal value is smaller, and it is reduced the more 

persistent the ME is. In the nonlinear case the optimal values for d are always 

negative, and in a region excluded by (4.15). It should also be noted that, in 

the absence of information on the optimal d, NBLS should be chosen over 6(d3) 

(or its feasible versions). Tables 4.11 and 4.12 report optimal bandwidth, bias 

and RMSE for 6(d), with d = 0, 0.2 and the values of d that minimise RMSE 

in each case (indicated in bold-face), in the linear and nonlinear settings. The 

degradation in performance with more persistent ME can still be seen here, and 

bias is often slightly smaller for the optimal d. However, the variation in bias 

across d is relatively small, and most of the variation in RMSE can be explained 

by variations in SD.

The minimization of RMSE at values different from d = d3 is surprising since it 

does not conform to  the asymptotic theory. A frequency domain generalised least 

squares approach will weigh the contribution of each frequency by the inverse of 

their approximate SD, thereby “whitening” the observations. A possible expla­

nation for the discrepancy lies in the approximation error in f u ( A) C  |A|-2d, 

which in the limit theory is made irrelevant by assuming enough smoothness in

131



■”  S t  a b s e n t

  d 2  =  - 0 . 2

  d 2  =  0

  d 2  =  0 .2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4d

Figure 4.5: Relative RMSE of 0(d) versus 0(d3), for varying d and d2\ linear setting.
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Figure 4.6: Relative RMSE of 9(d) versus 0(ds), for varying d and do; nonlinear 
setting.
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the spectral density, but can play a major role in finite samples. The whitening 

approach will give low weight to the frequencies closer to zero, where variance is 

higher but the previous approximation is more accurate, and will boost the impact 

of more distant frequencies where the approximation is not so accurate. Another 

relevant factor is the coherence between X t and Ut, here generated by St, which 

is the leading source of bias. Being of smaller order than the spectral pole, it 

will be irrelevant asymptotically, but this also means higher frequencies are more 

contaminated than lower ones. Again, decreasing the weight of the lowest frequen­

cies is likely to worsen the estimation. Both these factors lead to an optimal d 

that will tend to be lower than d2; in some circumstances they can outweigh the 

heteroscedasticity in the periodogram, and the optimal d will be negative, as can 

be seen in Figures 4.5 and 4.6 and Tables 4.11 and 4.12.

V ariation in sam ple size

Failure of asymptotic theory to provide a good approximation in finite samples 

is further explored by changing the sample size. Figures 4.7 and 4.8 and Tables 

4.13 and 4.14 present similar results to Figures 4.5 and 4.6 and Tables 4.11 and 

4.12, for n — 512, 2048, 8192. We set 0 =  1, d\ =  0.4, d2 =  0, d$ =  0.2, a j? =  4, 

ae = as ~  2, and use h{x) — exp (a;) as the volatility function for the nonlinear 

setting. In both the linear and nonlinear settings, the optimal value for d increases 

with n, but not dramatically. Even for n — 8192, the optimal d is not only below 

c?3, but also outside the parameter range in (4.15). For all values of d, there is a 

strong improvement in both bias and RMSE as n  increases. While in the linear 

case the optimal bandwidth for each d increases with n, in the nonlinear setting 

it is often higher for n = 512 than for n = 8192. Bandwidths for n — 2048 are the 

lowest of the three sample sizes, suggesting a “U-shaped” bandwidth profile that 

will continue diverging to infinity as the theory requires.
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5t absent

<MO1IIw d2 = 0 d2 =  0.2
d m* Bias RMSE m* Bias RMSE m* Bias RMSE m* Bias RMSE

-0.05 1024 -0.0005 0.0331 67 -0.0303 0.0663 33 -0.0519 0.0902 12 -0 .1 2 6 9 0 .1 7 5 0

0.00 1024 -0.0005 0.0273 55 -0.0279 0.0642 25 -0.0470 0.0897 12 -0.1301 0.1752
0.05 1024 -0.0004 0.0235 52 -0 .0 2 9 4 0 .0632 25 -0 .0 5 0 2 0 .0 8 9 6 11 -0.1298 0.1757
0.20 1024  -0 .0 0 0 1 0 .0 2 0 1 39 -0.0283 0.0652 23 -0.0555 0.0933 10 -0.1326 0.1789

Table 4.11: Monte Carlo bias and RMSE of 0(d) , for varying d and different types of measurement error; linear setting. The 
minimum RMSE choice of d is indicated in bold-face.
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Figure 4.7: Relative RMSE of 0(d) versus 0(d3), for varying d and n; linear setting.
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Figure 4.8: Relative RMSE of 0(d) versus 0(d3), for varying d and n; nonlinear 
setting.
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d m*
5t absent 

Bias RMSE m*
d2 =  0 

Bias RMSE m*
d2 =  0.2 
Bias RMSE

-0.30 1022 -0.0025 0.0946 14 -0.1476 0.2674 14 -0 .1 9 0 1 0 .3148

-0.20 976 -0.0033 0.0845 8 -0 .1 3 8 6 0 .2 6 6 6 14 -0.1963 0.3154

-0.10 973 -0 .0 0 3 9 0 .0 8 3 0 8 -0.1441 0.2681 14 -0.2022 0.3178

0.00 973 -0.0042 0.0840 8 -0.1495 0.2717 8 -0.1944 0.3210
0.20 973 -0.0042 0.0855 8 -0.1589 0.2829 8 -0.2020 0.3290

Table 4.12: Monte Carlo bias and RMSE of 6(d), for varying d and different 
types of measurement error; nonlinear setting. The minimum RMSE choice of d 
is indicated in bold-face.

n
d m*

512
Bias RMSE m*

2048
Bias RMSE m*

8192
Bias RMSE

0.00 15 -0 .0 9 5 0 0 .1 5 5 5 25 -0.0470 0.0897 61 -0.0271 0.0532
0.05 13 -0.0905 0.1560 25 -0 .0 5 0 2 0 .0 8 9 6 61 -0 .0 2 9 6 0 .0525
0.20 12 -0.0977 0.1601 23 -0.0555 0.0933 41 -0.0265 0.0538

Table 4.13: Monte Carlo bias and RMSE of 9(d), for varying d and n\ linear 
setting. The minimum RMSE choice of d is indicated in bold-face.

Figures 4.9 and 4.10 illustrate the distributional properties of NBLS by plotting 

kernel density estimates for varying n, under the linear and nonlinear setting. 

Density estimates are computed for a sequence of s =  50,000 NBLS estimates fy, 

i = 1 , . . . ,  s, using

<‘ i7>
1 = 1  X '

where </> (•) is the standard Gaussian density function and the bandwidth h is 

chosen using (3.31) of Silverman (1986),

h = 0.9s-1/5 min(SD, I Q R /1 M ) ,  (4.18)

where SD  and IQ R  are the sample standard deviation and interquartile range 

of the bi. Estimates for other values of d yield very similar shapes and are thus 

omitted. However, unlike for other values of d, NBLS is not covered by (4.15). 

Still, in the linear case all curves in Figure 4.9 seem to be fairly close in shape to
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n
d m*

512
Bias RMSE m*

2048
Bias RMSE m*

8192
Bias RMSE

-0.30 15 -0 .3 0 6 0 0 .4 5 2 0 14 -0.1476 0.2674 16 -0.0583 0.1419
-0.20 15 -0.3145 0.4528 8 -0 .1 3 8 6 0 .2 6 6 6 13 -0.0586 0.1396
-0.05 15 -0.3261 0.4572 8 -0.1468 0.2697 11 -0 .0 5 9 4 0 .1 3 8 9
0.00 15 -0.3296 0.4591 8 -0.1495 0.2717 11 -0.0608 0.1392

0.20 8 -0.3096 0.4669 8 -0.1589 0.2829 8 -0.0555 0.1424

Table 4.14: Monte Carlo bias and RMSE of 6(d), for varying d and n; nonlinear 
setting. The minimum RMSE choice of d is indicated in bold-face.

that of a normal density. On the contrary, densities in Figure 4.10 are all highly 

skewed to the left, even for n = 8192, suggesting that the asymptotic distribution 

under the nonlinear setting might not be normal. In both settings, bias and SD 

seem to be decaying at the same rate, which is natural given our minimum RMSE 

bandwidth choice.

V ariation in  th e  signed to  noise ratio

Figures 4.11 through 4.14 and Tables 4.15 through 4.18 can be interpreted in 

the same way as Figures 4.5 and 4.6 and Tables 4.11 and 4.12, for the linear and 

nonlinear settings, where we first change the variance of the ME, then the variance 

of the signal. In both experiments we start with 9 = 1, d\ — 0.4, d2 =  0, cfo =  0.2, 

<j£ =  4, <jg =  o\ — 2, and h(x) = exp(z) as the volatility function for the nonlinear 

setting. The variance of the ME in the first experiment is then set to crj =  1/2, 

2, 8, by varying o\  in the linear setting, and by using hk(x) = kexp(r), with 

k = 1/2, 1, 2, as the volatility function for 5t, while keeping a\  constant, in the 

nonlinear setting. The resulting sequences St are consequently the same, up to a 

multiplicative factor, for each value of o\. In the second experiment, the variance 

of the signal is changed by choosing a\  so that = 2, 4, 8.

These parameters affect the accuracy of the estimates by influencing the rela­

tive variance of X t and Ut in (4.7), which can be interpreted as a signal to noise
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 n  = 512
 n  =  2048
 n  = 8192
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Figure 4.9: K ernel density  es tim ates of NBLS for vary ing  n; linear setting .
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 n  =  8192
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Figure  4.10: K ernel density  estim ates of NBLS for vary ing  n; nonlinear setting .



d m*
1/2

Bias RMSE m*
2

Bias RMSE m*
8

Bias RMSE

-0.10 142 -0.0297 0.0629 39 -0.0524 0.0913 10 -0 .0 8 9 7 0 .1 5 1 6
0.00 112 -0.0329 0.0584 25 -0.0470 0.0897 10 -0.0969 0.1527
0.05 82 -0.0301 0.0579 25 -0 .0 5 0 2 0 .0 8 9 6 10 -0.1005 0.1541
0.10 81 -0 .0 3 2 6 0 .0 5 7 8 25 -0.0533 0.0904 10 -0.1041 0.1560
0.20 55 -0.0280 0.0596 23 -0.0555 0.0933 7 -0.0893 0.1595

Table 4.15: Monte Carlo bias and RMSE of 0(d), for varying d and a]; linear 
setting. The minimum RMSE choice of d is indicated in bold-face.

d m*
1/2

Bias RMSE m*
2

Bias RMSE m*
8

Bias RMSE

-0.40 1022 -0.0477 0.1333 18 -0.1454 0.2682 4 -0 .4 6 0 7 0 .5 8 5 8
-0.20 98 -0.0444 0.1233 8 -0 .1 3 8 6 0 .2 6 6 6 4 -0.4703 0.5880
-0.10 68 -0 .0 4 4 7 0 .1 2 1 6 8 -0.1441 0.2681 4 -0.4751 0.5903
0.00 66 -0.0491 0.1228 8 -0.1495 0.2717 4 -0.4798 0.5933
0.20 63 -0.0555 0.1308 8 -0.1589 0.2829 4 -0.4889 0.6007

Table 4.16: Monte Carlo bias and RMSE of 0(d), for varying d and o\\ nonlinear 
setting. The minimum RMSE choice of d is indicated in bold-face.

ratio, and the covariance between X t and Ut, which can be seen in (4.12) and

(4.13) to depend crucially on 6t.

Figures 4.11 and 4.12 and Tables 4.15 and 4.16 show that both m * and the 

optimal d decrease rather heavily as o\ increases, especially in the nonlinear set­

ting. For large values of o\, the common component in X t and Ut becomes very , 

important, influencing even frequencies relatively close to zero. As a result, both 

the bandwidth and the weights should adjust so that only the lowest frequencies 

(where the spectral pole still dominates) have significant influence. Tables 4.15 

and 4.16 display a strong degradation in both bias and RMSE, caused by the 

increased coherence between regressor and residuals.

While increasing cr| influences both Ut and X t, scaling up the common com­

ponent in both, increasing the cointegrating parameter 0 boosts the weight of the 

common component in Ut alone, keeping X t constant. Still, this provokes a  com­

parable increase in correlation, causing very similar effects to those reported for
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0.9
-0.4 -0.3 -0.2 -0.1 0 0.1 0.3 0.4d

Figure 4.11: Relative RMSE of 0(d) versus #(d3), for varying d and a\\ linear 
setting.
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 *1 = 1/2
  oj =  2
 ^1 = 8

0.9
0.3-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.4d

Figure 4.12: Relative RMSE of 6(d) versus #(d3), for varying d and o\\ nonlinear 
setting.
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- 2C
d m*

2

Bias RMSE m*
4

Bias RMSE m*
8

Bias RMSE

-0.05 25 -0 .0 8 4 3 0 .1 3 8 0 33 -0.0519 0.0902 42 -0.0310 0.0585
0.00 23 -0.0852 0.1382 25 -0.0470 0.0897 4 0 -0 .0 3 2 7 0 .0 5 7 9
0.05 22 -0.0883 0.1392 25 -0 .0 5 0 2 0 .0 8 9 6 39 -0.0346 0.0580
0.20 19 -0.0946 0.1455 23 -0.0555 0.0933 25 -0.0305 0.0603

Table 4.17: Monte Carlo bias and RMSE of 6(d), for varying d and <r̂ ; linear 
setting. The minimum RMSE choice of d is indicated in bold-face.

o\. Monte Carlo results for this case are therefore omitted.

Figures 4.13 and 4.14 and Tables 4.17 and 4.18 display the effect of the strength 

of the signal ( t . In the linear case, this scales up the signal in X t without affecting 

Ut. In the nonlinear case, both are affected, but since the SV model used gener­

ates heavily leptokurtic processes (implying that the variance of Ct 1S the major 

contribution to the variance of X t) and only affects Ut through a white noise 

component (thus having a bounded contribution to the spectrum around the zero 

frequency), the impact on Ut will be minimal compared to that on X t. In both 

models, increasing will have the double effect of increasing the variance of X t, 

thereby making the observables more correlated at all frequencies, and scaling up 

the spectral pole caused by the memory in r)lt, improving the local signal to noise 

ratio. While both effects will have a clearly positive influence on the accuracy of 

the estimates, as seen in Tables 4.17 and 4.18, the effect on m* and on the optimal 

d is not clear, as even frequencies distant from zero become less contaminated by 

the dependence between X t and Ut. As a result, Figures 4.13 and 4.14 show very 

little variation on relative RMSE with <r̂ .

D istribution al properties o f residual m em ory estim a tes

While the previous experiments show that estimates of residual memory are 

not necessarily useful for choosing d in (4.14), they might still be relevant for 

other purposes, namely to verify if a cointegrating relationship exists at all. The
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0.9
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d

Figure 4.13: Relative RMSE of 6(d) versus #(<̂ 3), for varying d and crj?; linear 
setting.

1.1
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 O f  —  4

r< =
0.9

-0.4 -0.3 -0.2 -0.1 0 0.1 0.3 0.4

d

Figure 4.14: Relative RMSE of 9(d) versus 9(d^)} for varying d and cr̂ ; nonlinear 
setting.
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al
d m*

2
Bias RMSE m*

4
Bias RMSE m*

8
Bias RMSE

-0.30 8 -0 .3 3 5 0 0 .4 7 2 2 14 -0.1476 0.2674 18 -0.0702 0.1696
-0.20 8 -0.3453 0.4733 8 -0 .1 3 8 6 0 .2 6 6 6 8 -0.0628 0.1695
-0.15 8 -0.3504 0.4750 8 -0.1414 0.2671 8 -0 .0 6 4 2 0 .1 6 9 1

0.00 8 -0.3649 0.4833 8 -0.1495 0.2717 8 -0.0680 0.1705

0.20 7 -0.3714 0.4980 8 -0.1589 0.2829 8 -0.0726 0.1764

Table 4.18: Monte Carlo bias and RMSE of 6(d), for varying d and a^; nonlinear 
setting. The minimum RMSE choice of d is indicated in bold-face.

use of the LP and LW estimates is well established by now, and their finite- 

sample properties have been examined in various settings (see e.g. Robinson and 

Henry, 1999; Nielsen and Frederiksen, 2005). In finite samples, LW is generally 

found to have bias of similar magnitude but lower variance than LP, to conform 

with the asymptotic distributions (2.73) and (2.76). However, the recent MLW 

estimate has not yet been directly compared to LW. The findings of Hurvich, 

Moulines, and Soulier (2005), Hurvich and Ray (2003), and Table 4.10, indicate 

that, even for moderate sample sizes, MLW can successfully reduce bias in the 

presence of a “signal-plus-noise” structure, but at the cost of a substantially higher 

SE than LW. We now present a short comparison of finite-sample distributional 

properties of LW and MLW in the context of residual memory estimation, for 

n  =  512,2048,8192. Residuals are obtained from s = 1,000 replications of NBLS 

regression in the linear and nonlinear settings, with 6 = 1, d\ — 0.4, d-i — 0, 

ds = 0.2, (T̂  =  4, o\ =  cr| =  2, and h(x) — exp(r) as the volatility function for 

the nonlinear setting. The minimum RMSE bandwidths reported in Tables 4.13 

and 4.14 are used in this step. Then, LW and MLW estimates are constructed 

from the residuals for a grid of bandwidths (from 10 to n f 2, with increments of 

10), allowing us to approximately locate the minimum RMSE bandwidth for each 

memory estimate. Figures 4.15 through 4.18 show kernel density estimates (see 

(4.17), (4.18)) of LW and MLW, under the linear and nonlinear settings, using the
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Linear setting Nonlinear setting
n 512 2048 8192 512 2048 8192

LW 140 270 360 240 320 300
MLW 240 940 3720 240 680 4010

Table 4.19: Approximate minimum RMSE bandwidths of cLlw  and (Im lw > for 
varying n; linear and nonlinear settings.

approximately optimal bandwidths given in Table 4.19.

Table 4.19 shows that while LW works best with a narrow-band approach, 

MLW has optimal bandwidth rather close to n/2. This is possible because, unlike 

LW, MLW corrects for the presence of iid noise, and thus its spectral approxi­

mation is relatively accurate throughout all frequencies considered. However, for 

higher frequencies to be informative, the absence of short memory dynamics is cru­

cial; the inclusion of, say, ARMA dynamics in any of the {%} would undoubtedly 

require MLW bandwidths to be much lower.

All curves in Figures 4.15 and 4.16 suggest that the finite-sample density of LW 

is fairly close in shape to that of a normal density, but heavily biased downwards. 

While in the linear setting both bias and SD are substantially reduced when n 

increases, estimation in the nonlinear one seems surprisingly insensitive to sample 

size; even for n  =  8192 the mean is much closer to 0 than to 0.2. Figures 4.17 and 

4.18 highlight a potential problem of MLW in finite samples. In several cases, the 

distribution of MLW is bimodal, with peaks close to 0 and 1/2, the boundaries 

of the parameter space. In the nonlinear setting, this behaviour is apparent even 

for n  =  8192, with a small mode close to the true parameter value being barely 

distinguishable. Performance in the linear setting is more encouraging: for n = 

8192, the “boundary” modes disappear and are replaced by an essentially unbiased 

unimodal density. Still, it is worth noting that the SD in this case is roughly twice 

that of LW, and that the tails of the density are still moderately asymmetric. 

The findings of bimodality and higher SD in MLW are maintained in alternative
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 n =  512
 n  =  2048
 n =  8192

0.2 0.3-0.1 0 0.1

d

F igure 4.15: K ernel density  e stim ates of LW  for vary ing  n; linear setting .

 n  — 512
 n  =  2048
 n  =  8192

-0.2 -0.1 0 0.1 0.2 0.3

d

F igure 4.16: K ernel density  e stim ates of LW  for varying n; non linear setting .
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 n  =  512
 n  =  2048
 n  =  8192

0.5 0.60.1 0.2 0.3 0.4-0.1 0 d

Figure 4.17: Kernel density estimates of MLW for varying n; linear setting.

 n  =  512
 7i =  2048
 n  =  8192

0.4 0.5 0.60 0.1 0.2 0.3-0.1 d

Figure 4.18: Kernel density estimates of MLW for varying n; nonlinear setting.
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(unreported) experiment designs, suggesting that they are linked to the additive 

noise structure itself, not to first step estimation error or nonlinearity. Estimation 

error in the first step regression actually contaminates the true errors (4.12), (4.13) 

with a higher memory component (in this case, of memory d\ = 0.4), which should 

induce a positive contribution to both bias (thereby reducing the LW bias) and 

SD.

Final com m ents

The results presented indicate that asymptotic theory should not necessarily 

be expected to provide a good approximation to finite-sample performance.

We first showed that, even in a standard setting, where error and regressor 

are independent Gaussian processes, Monte Carlo SD deviates substantially from 

its asymptotic counterpart. While in this setting d = d$ is the optimal choice 

for WNBLS, further results demonstrate that the introduction of nonlinearity 

or ME makes this choice sub-optimal, and indeed dominated by simple NBLS. 

Furthermore, the nonlinear setting always yields a negative optimal d, even in the 

absence of ME. Although optimal bandwidths somewhat vary, they appear to be 

lower than those implied by commonly used feasible rules. For instance, Nielsen

(2005) uses m — [n0 4] and m  = [n0 5], yielding m  = 21, 45 for n  =  2048, which 

would be clearly too high for most of the nonlinear settings considered. While in 

the linear setting the RMSE profiles seem to be relatively sensitive to the choice 

of d , in the nonlinear one a wide range of values for d perform comparably; this 

is possibly a consequence of the lower bandwidths used. The optimal choice of d 

seems to be sensitive to most parameters in the model, so a feasible rule would 

undoubtedly require preliminary estimation of these.

All the finite sample results were generated under assumptions which might 

not be realistic in practice, such as Gaussianity and independence of the under­
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lying, unobservable processes, and the absence of short memory dynamics. These 

assumptions constitute a best-case scenario, and relaxing them might well widen 

the gap between theoretical predictions and finite sample performance. More elab­

orate methods, such as those of Hualde and Robinson (2007), exhibit more desir­

able asymptotic properties under conditions that are in some sense weak, though 

it is not clear to what extent they can be justified when the linearity assumptions 

underlying them are relaxed. Heavy dependence on preliminary estimates may 

also hamper their finite sample performance.

A brief comparison of residual memory estimates was also presented. It seems 

that, while MLW is found to dominate LW in RMSE for large enough n, due to 

the large negative bias of the latter, it displays high dispersion and bimodality, 

which can be especially misleading in cointegration analysis, where the focus is 

often on the difference between memory estimates obtained from observables and 

residuals. On the contrary, LW, being biased downwards in both cases, might yield 

more accurate inference on the existence and degree of fractional cointegration. 

Evaluation of these issues is beyond the scope of this thesis.
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Chapter 5

Narrow Band Principal 

Com ponents estim ation o f 

m ultivariate factor m odels w ith  

long memory

5.1 Introduction

The present chapter is an application of the techniques developed in Chapter 3 

to estimation of a multivariate factor model. We extend the bivariate model pre­

sented there to allow for more than two observables and multiple common factors, 

i.e. more than one cointegrating relation, as illustrated in Section 2.3. On the one 

hand, cointegrating relations between a potentially large number of asset returns 

can be of interest, while on the other, Ross (1976) and others suggest the need 

for additional unobservable factors in asset pricing models. We prove that, under 

analogous conditions to the bivariate setting, long memory in higher moments can 

allow consistent estimation of the space spanned by the factor loadings. We also
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show how the factor loadings may be identified by suitable linear restrictions, as 

in the classical factor analysis literature (see e.g. Anderson and Rubin, 1956).

We use the Narrow Band Principal Components (NBPC) estimate of the coin­

tegrating vectors. This estimate, introduced by Phillips and Ouliaris (1988) in 

the I (1)/7(0) setting, and used by Morana (2004) in the case of stationary long 

memory, relies on the fact that the spectral density matrix of a cointegrated mul­

tivariate time series is singular at frequency zero, and its null space corresponds 

to  the cointegrating vectors. Chen and Hurvich (2003), Chen and Hurvich (2006) 

employ a fixed band version of the averaged periodogram matrix, computed using 

a tapered Fourier transform, but they otherwise also rely on singularity of the 

respective limit matrix. We extend the results of these authors to a setting where 

linear process assumptions are unavailable, and furthermore we allow common 

components with possibly differing memory parameters, as in Chen and Hurvich

(2006). In addition to nonlinearity, our setup also generalises the model of Chen 

and Hurvich (2006) by allowing the memory of factors to be equal in sets, for 

cointegration between observables of differing memory (what Robinson and Ya- 

jima (2002) termed “polynomial cointegration”), and for the presence of individual 

error terms, possibly correlated and with potentially differing memory parameters.

The use of regression based estimates of cointegrating vectors, namely NBLS 

(2.55) and multivariate generalisations thereof, is more established in the frac­

tional cointegration literature than principal components. Nonetheless, the factor 

model context introduced in Sections 2.3 and 2.5 seems to warrant treatment by 

methods adapted from classical factor analysis. On the one hand, we have argued 

throughout Chapter 2 that in our setting the designation of the left-hand side 

variable is arbitrary. Unlike regression based estimators, the NBPC approach we 

pursue in this chapter is invariant to the labelling of observables, and in particular 

does not require assumptions of nonzero factor exposures of a subset of observ­
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ables (though such assumptions may still be useful in this setting, to resolve part 

of the indeterminacy in the estimates). On the other hand, the transformation of 

the structural factor model to a regression specification will necessarily introduce 

errors-in-variables bias, as in (2.43). While we show in Chapter 3 that this bias can 

be made asymptotically negligible by means of local dominance of averaged peri- 

odograms around zero frequency, a number of experiments in Chapter 4 indicate 

that substantial small sample bias may still be present in NBLS. By contrast, if 

the underlying idiosyncratic errors have an approximately scalar covariance matrix 

(which may not be unreasonable when the observables are squared asset returns 

and a sufficient number of factors is used), a NBPC estimate may be expected 

to produce lower bias in small samples. Finally, principal components estima­

tion is a commonly used approach in the APT literature (see e.g. Chamberlain 

and Rothschild, 1983; Connor and Korajczyk, 1986), and furthermore this exten­

sion illustrates the flexibility of the theoretical tools of Chapter 3, which can be 

adapted wdth relative ease to establish asymptotic properties of estimates other 

than NBLS.

The following section describes the model and the main assumptions on its 

underlying components. Section 3 describes the model transformation and es­

tablishes properties of the averaged periodogram matrix, using propositions and 

lemmas in Appendix A, also relying on results from Chapter 3. Section 4 in­

troduces the NBPC estimate, proves its consistency for the space spanned by 

the factor loadings, and describes how these may be identified via suitable linear 

restrictions. Section 5 contains a small Monte Carlo study of finite sample prop­

erties. Section 6 presents an empirical application of both NBPC and NBLS to 

estimation of exposures to common risk factors for a set of European large-cap 

equity indices. Section 7 contains some concluding remarks.
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5.2 A  m ultivariate factor m odel w ith long mem­

ory in higher m om ents

Suppose a vector time series Zt = {z\t, • • •, % )', t e  Z, is generated by a 

multivariate factor model with J  factors, for integer J  satisfying 1 <  J  < q. Write

j
zit = ̂ 2  PijCjt +  Sit, (5.1)

j=1

or in vector form

=  P C  t +  $t, (5.2)

where (3 is a q x J  matrix of factor loadings, ( t is a J  x 1 vector of unobservable

factors, and 6t is a q x 1 vector of idiosyncratic innovations. We will assume that

J  is known throughout the chapter, though we briefly discuss estimation of J  in 

Section 4. As in (2.36), (2.37) and (3.1), (3.2), this may be interpreted as a factor

model for asset returns, now in the spirit of APT: the unobservable factors

would be different sources of risk, the loadings j3 represent the exposures of each 

asset to each common risk source, and the 6t encompass asset-specific sources of 

risk. The following assumption generalises Assumption 3.1 to this multivariate 

setting.

Assum ption 5.1 For j  =  1, . . . ,  J ,  i =  1, . . . ,  q, t G Z,

Cjt ~  VjtQjt, Sn — Cit^n, (5-3)

where for real-valued, functions gj, hi,

9jt =  9j(vjt), hu = hi(Xit), (5-4)
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and:

(i) {£**} are jointly iid processes m th  zero mean, and {rjjt} is independent 

of {rikt}, {&.}, for any k = l , . . . , J  such that k ±  j ,  and I =  1, . . . ,  q;

(ii) {vjt} is I(dj), {x it} is I  (hi), and

\  > di > . . .  > d j > bi > . . .  > bq > 0; (5.5)

(Hi) {vjt}, {Xit} are standard Gaussian processes, independent of each other and 

of {rikt}> {fit} fo r a n y k  = l , . . . , J , l  = l , . . . , q ;

(iv) There is a finite integer p such that, for all j  — 1 , . . . ,  J,

p = min {k  G N : E{qkjt)E {g fa j t )”# }  ^  0} ; (5.6)

(v) {ijt}} {fit}? {9jt}? {ha} have finite Ap-th moments.

This assumption shares the main features of its bivariate counterpart. The 

unobservable processes 8a follow SV models, and are therefore serially uncor­

related but not necessarily independent. Each individual factor and idiosyncratic 

component may have a different volatility function gj or h The underlying per­

sistence of the common factors dominates that of the idiosyncratic components 

8it by (5.5), which together with assumption (iv) will ensure the existence of (at 

least) q — J  cointegrating relationships in the p-th  powers of (5.1). The exponent 

p is assumed known, as in Chapter 3. In most practical applications it may be 

reasonable to assume that p = 2 satisfies (5.6), in which case the cointegrating 

relationships are present in the volatilities.

Due to the more complex nature of the proof, (i) restricts each rjjt to be inde­

pendent of all other underlying processes; in part (i) of Assumption 3.1 we only
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used the jointly iid property for corresponding processes, not restricting contempo­

raneous dependence between them in any way but that implied by (iv). This is a 

simplifying assumption, which could arguably be relaxed with a suitable strength­

ening of (iv). However, unlike the bivariate case (where only one factor and two 

idiosyncratic errors are present, and the latter do not interact) these dependences 

would give rise to the appearance of cross-product terms involving more than two 

underlying processes. The need for special treatment of these terms seems to indi­

cate that such an extension is not trivial, and might require additional theoretical 

tools.

5.3 The transform ed m odel and the averaged  

periodogram  m atrix

Given observations za> i =  t = 1 , . . . ,  n, transform the data by

(5.7)

where

(5.8)

(5.9)

(5.10)

Zpj<P,j£Pj
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and write (5.7) in vector notation,

Z  = 9 f  + U. (5.11)

In this transformed form, Z  is the new q x n  matrix of observables, /  is the J  x n  

matrix of the latent factors, 0 — (#i , . . . ,  Oj) is the q x J  matrix of (transformed) 

factor loadings, and U is a q x n  matrix of errors. The transformed Z, 6, f  are 

simply the (element-by-element) p-th powers of Zf, /3, ( t in (5.2), while elements 

of U are expressed as polynomials in elements of 5t and £f. This transformation 

converts specification (5.1), which contains only white noise components by As­

sumption 5.1, to one where the observables display long memory and cointegrating 

relationships are present. Indeed, (5.6) and Theorem 3.1 ensure that all compo­

nents in the /  matrix display the full memory of the underlying Gaussian I(dj) 

process, Vjt .

A ssum ption  5.2 6 is full rank.

Assumption 5.2 is a minimal requirement for identification of 0 in the above 

system. The presence of linear dependence in a group of factors would imply that 

one of them (the one with the lowest df) could be “absorbed” by the remaining 

ones without affecting the memory of the errors Uu or of the remaining factors.

Recall the averaged periodogram statistic introduced in (2.51),

Chapter 3, and indeed Assumption 3.2 is reproduced here as Assumption 5.3 for 

convenience.

(5.12)

We will omit the dependency on the bandwidth m  throughout the chapter for 

brevity, and write Fab = Fab(Am). We impose the same conditions on m  as in
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A ssum ption 5.3 The bandwidth sequence m  =  m{ri) satisfies

1 /  771 \  c
 M — ) log n —> 0 as n  —> oo, (5.13)
77i V n  /

/o r all e > 0.

Using (5.7), we may write

j  j

Z l l t l Z i2t 2 — 'y ^ jl ̂ 2j2 f j l t l  f h t 2 +  y  ^ i@ilj f j t i  Ui2t2 +  ^ 27^ 1 1̂/ 7*2 ) "I" Ui\tiUi2t2-
jl ,72=1 j=l

By linearity of the Fourier transform,

j  j
^ztl,zi2 = 0nhei2hFfjx,fj2 + 2 +  0%2jFui^fj) +  FUil>Ui2,

jl ,72—1 j=l

or in matrix notation,

-Pzz =  OFffO' +  Ff/yF + 0Fy|7 +  Fjy[/, (5.14)

where F^z is q x <7, 0 is <7 x J , Fyy is J  x J , Fj/y is <7 x J, Fyj/ is J  x q, and Fj/t/ is 

q x <7. As long as the first term in the right-hand side retains rank J  and dominates 

the others, the first J  eigenvectors of Fzz  will converge to a linear transformation 

of 6. We state the asymptotic properties of (5.14) as Theorem 5.1. Dominance of 

Fuu by Fyy is guaranteed by (5.5), but dominance of the cross-terms F^y, Fju  by 

Fyy requires the following additional assumption on memory parameters.

A ssum ption  5.4

d\ — d j  < dj — max bL 
— i<*<g

where b\ is the memory parameter of Ui (as defined in Proposition 5.2, Appendix 

5.A).
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Theorem  5.1 Under Assumptions 5:1 through 5.4,

Fz z  = 0Ff f 9'(l + op( l )), (5.15)

as n  —* oo, and

A  ( ? )  F,sA  ( ? )  n ,  ( 5 - 16)

where

A (A) =  diag{A‘‘1- 5 , . . . ,  (5.17)

ft =  diag{o;i, . . . ,  l j j }  , (5.18)

for positive constants Uj, j  = 1 , . . . ,  J.

Proof. Proposition 5.1 establishes the asymptotic behaviour of F jf  sum­

marised in (5.16). Analogously, Proposition 5.2 provides an asymptotic bound for 

diagonal elements of Fuu- The remaining elements of Fjju, and the cross terms in

Fuf and Fju, are negligible by Assumption 5.4 and the Cauchy inequality. □

Theorem 5.1 establishes asymptotic properties of the Fz z  matrix that allow us 

to establish limits for the relevant eigenvalues and eigenvectors. Furthermore, since 

Fff  converges to a diagonal matrix, its imaginary part vanishes asymptotically, so 

Re(Fz z ) and Re(F//) also satisfy (5.15) and (5.16), respectively.
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5.4 Narrow Band Principal Com ponents estim a­

tion of factor loadings

Denote by 77 > . . .  >  > 0 the ordered eigenvalues of Re(Fzz), i.e. the roots

of the characteristic equation

| R e ( F z z ) - 74,1= 0, (5.19)

where Iq is the q x q  identity matrix. For each 77, define the associated eigenvector 

dj as a non-zero solution to

{Re(Fz z ) - % I q}c = 0, (5.20)

normalised to satisfy c'cJ =  1. For any 7  ̂ ^  77, it is known tha t c'-Cfc =  0. If 

some of the eigenvalues have multiplicity greater than one, choose corresponding 

eigenvectors that constitute an orthonormal base of the space of solutions, so that

cfjdk = l ( j  = k) holds for all 1 < j , k  < q. The NBPC estimate of the space

spanned by 9 is

c =  (c i , . . . , c j ) ,  (5.21)

where again we omit the dependence on m  for brevity.

In order to allow for full generality in the memory parameters of the factors, 

we need to introduce some notation grouping factors with the same memory into 

I < J  partitions. Define ko < . . .  < ki and d(q > . . .  >  d(/), such that ko = 0, 

ki = J  and for i =  1 , . . . ,  /

d(i) = 1 =  dfa. (5.22)

Partition the limiting matrix Q, in Theorem 5.1 into I diagonal blocks, Q =
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diag(tyi),. . . ,  where

n (i) =  diag{wfci_1+i , . . . ,  u ki}. (5.23)

Similarly, let 6 = (0(x),. . . ,  #(/)) where

0{i) = (0ki_1+1, . . . , 9 ki), (5-24)

and c =  (c(i),. . . ,  c^)  where

C(i) (cfci_1+1) • • •, ĉ ). (5.25)

For i — 2 , let

0.(0 =  (0i , - . . ,  **_.), (5-26)

and define the orthogonal projections

P(i)  =  0*(i)(0lt(i)0*(t))_10/*(i)̂ (i)> (5‘27)

which are by construction linear combinations of the columns of 6*(*). For nota- 

tional simphcity, we will use the convention that P(\) — 0, and we will also write 

A A,* — ki ki—\.

To link the properties established in 5.1 to the asymptotic behaviour of the 

eigenvalues and eigenvectors of Fzz  (and thus of Re(Fzz)), we introduce an ad­

ditional assumption, which excludes the possibility of limiting eigenvalues with 

multiplicities greater than one within each group of factors with the same mem­

ory. Although asymptotic theory for principal components may still be developed 

when the limiting eigenvalues are equal in sets (see Anderson, 1963), these circum­

stances are unlikely to occur in this context, and as such the additional generality
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would add little value.

A ssum ption  5.5 For all 1 <  i < I, the A ki positive eigenvalues of

((9W -  p w )n (i)(0(i) -  p {i)y

are all distinct.

T heorem  5.2 Let Assumptions 5.1 through 5.5 hold. Then, for j  > J ,

(y-fl \  2d j  — 1
—j  7j — 0, as n  —> oo, (5.28)

while for 1 < i < I and ki-1 < j  < ki, there exist full rank Afc* x A A;* matrices $(*)

and sign sequences S jn E {—1,1}, snc/i that:

(i)
/m  \ l~2d3 /r.

7j  ~  77 —J , as n —> oo, (5.29)

where 77 is the (j  — ki)-th diagonal element of

(ii)

SjfiC-j ■“ ^  Cjj 7i  ̂oo, (5,30)

where

c ( i )  =  ( c f c i _ i + l 5 • • • 5 c k i )  =  ( $ ( i )  —  P ( i ) ) ^ ( i )  J (5.31)

and therefore each Cj is a linear combination of 0*(*+i) orthogonal to 6 ^ .  

P roof. Write

4 „ = ( ^ ) M , r l R e f e ) .

From Theorem 5.1,

A \ n  ~  $ (1) ^ (1)0 (1)(1 +  Op(1) ) • 
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It follows that Ain converges in probability to 0(i)fl(i)0(1), which is a positive 

semidefinite matrix of rank £4 . By Slutsky’s Theorem, the first hi eigenvalues of 

A in converge in probability to the positive eigenvalues of 0(i)Q(i)0(1), while the 

remaining J  — ki are op(l). Therefore, the first k\ eigenvalues of Re(Fzz) are 

Oe( (^ )1-2dl), while the remaining ones are op( (^ )1_2dl). The ki eigenvectors of 

0(i)Q(i)0(1) associated with non-zero eigenvalues span the same subspace as 0(i); 

they can thus be written as 0( i )$^ ,  for some full rank ki x ki matrix $(1), while 

the corresponding eigenvalues are the elements of the diagonal matrix $(i)f7(i)$^). 

Since these eigenvalues are assumed all distinct, the transformation $(i) is essen­

tially unique (up to sign), and the first ki eigenvectors of Ain converge, in the 

sense of (5.30), to the respective columns of 0 (i)$ ^ , yielding (5.29) and (5.30), 

(5.31) for i = 1.

Now, proceeding by induction, fix 1 < i < I, assume that (5.29)-(5.31) hold for 

1, . . . , «  — 1, and define the A^-i x ki- 1 matrices

=  d iag{wi , . . . ,wfci_1},
f / r n \ d(i)~d 1 / m \ d(i)-dki- i >\

Bi-  =  diag\ U  w  ;■

where d(i) — d ^ - i  < 0 by construction. Theorem 5.1 implies that

A in =  ( 0 * ( i ) - R m l ^ * ( i ) ^ i n 0 * ( i )  d -  ^ ( i ) ^ ( i ) ^ ( i ) ) ( ^  d -  ^ p ( l ) )

~  {^*(i)-RinfI*(i)Rm^=(t(i) d~ P(i)^(i)Pri)

+  (Pit) ~  -P(i))tyt)(0(i) -  -P(i))'}(1 +  OpC1))*

since P(i) and 0(*) — are orthogonal. By assumption, the first ki- 1 eigenvectors 

of Ain converge in probability to a linear combination of 0*(i), implying that the 

remaining limiting eigenvectors must be orthogonal to 0*(j) (and thus to P(i))-
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For ki-1 < j  < ki the jf-th eigenvalue of A in converges in probability to the 

(j — fcj_i)-th eigenvalue of (9^  — P ^ ) f l^ (9 ^ )  — P(i))\ while the remaining J  — ki 

are op(l). This shows that the j -th eigenvalue of Re(Fzz) is Oe( (^ )1_2d(i)) for 

h - 1 < j < h , and oP( ( f  )1_2d(i)) for j  > k^ As before, the first A ki eigenvectors 

of (9(i) — P(i))Q(i)(#(i) — P(i))' span the same subspace as (9^) — P(i)), and can thus 

be written as (#(*) — P(i))<&^, for a full rank A ki x A ki matrix $(;), while the 

associated eigenvalues are the elements of the diagonal matrix Since

all eigenvectors of (9(i) — P(i))Q(i)(9(i) — P(i)) are orthogonal to 9 ^  by construction, 

C(j) converges (up to sign) to (9^  — P ^ )* ^ 1, yielding (5.29) and (5.30), (5.31) for 

i = 2 , . . . ,  Z; (5.28) follows when i = I. □

Some of the indeterminacy present in c.\ may be resolved if di > In this case, 

$(i) =  ||#i || (where ||*|| denotes the Euclidean norm) and ci will be consistent for 

up to arbitrary scale and sign. This mimics the indeterminacy found in Theorem 

3.2, avoided therein by focusing on estimation of a ratio. Note, however, that 

subsequent principal components are still affected by more serious indeterminacy, 

irrespectively of the relationships between memory parameters, since 6 cannot be 

reasonably assumed to be an orthogonal matrix. For even p, all elements of 9 are 

non-negative, which rules out orthogonality if any of the observables is exposed 

to more than one factor. As a result, even when d is unique, and therefore 

is a scalar, P ^  cannot be assumed to vanish from (5.31). Still, when the memory 

parameters of all factors, . . . ,  dj, are distinct, Theorem 5.2 can be substantially 

simplified. We state this result as a Corollary, whose proof follows from ki — i, and 

the fact that our chosen eigenvector normalisation requires |3>(j)| =  ||9j — PU)\\-

C orollary  5.1 Let Assumptions 5.1 through 5.4 hold, and furthermore let d\ >

. . .  > dj. Then, for  1 < j  < J, there exist sign sequences Sjn E  {—1,1}, such that

as n —> oo
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Theorem 5.2 indicates that, in general, c does not converge to 9, but the 

probability limit of c spans the space generated by 0 (in Corollary 5.1, c converges 

to the Gram-Schmidt orthonormalisation of 9). This would suffice if, say, one was 

interested in the cointegrating vectors as exemplified in Section 2.3. In this case, 

for any 1 < i <  I, all vectors of coefficients, a, in the null space of the matrix 

(ci , . . . ,  CfcJ will eliminate the ki leading factors, and lead to linear combinations 

a Z t with memory at most d^+1). Still, in many applications the interest is on the 

factor loadings themselves, as is the case in asset pricing models, and it may be 

desirable to identify 9 via suitable linear constraints, as in Anderson and Rubin 

(1956).

Assume that di > . . .  > dj, so that Corollary 5.1 holds, and denote the 

probability limit of c by c =  (ci , . . . ,  Cj) (where we omit the sign factor in each 

dj for notational simplicity). We know from Corollary 5.1 that each dj converges 

to a linear combination of 9 i , . . . ,  9j, where the weight on 9j is nonzero; therefore, 

there exists a full rank, upper triangular J  x J  matrix $> such that 6 = c$>, or

j
@j =  ̂4)kjck'>

k=1

for j  =  1, . . .  , J.  The J{J  +  l ) /2 unknown elements of the matrix $  are free, 

but identification for 0 may be achieved by imposing enough restrictions on 9 to 

determine <3>. The simplest (and perhaps most useful) structure that can be con­

ceived to identify 0 relies on J (J  —1)/2 exclusion restrictions and J  normalisation 

restrictions. Let Q denote a q x J  submatrix of a q x  q permutation matrix, i.e. 

for distinct indices i \ , . . . ,  i j  satisfying 1 < i j <  q, define Q — (t . . . ,  iij), where 

ti is the z-th column of Iq. Assume that Q'9 (a certain subset of the rows of 9)



has the lower triangular form

1 0 ••• 0 0

* 1 ••• 0 0

I I  I I ?

* * • • • 1 0  

* * • • • * 1

where the elements denoted by * are unrestricted. Formally, 9 satisfies the restric­

tions

0i.j =  1, for j  = 1, . . . ,  J, (5.32)

Oijk =  0, for 1 <  j  < k < J. (5.33)

In this structure, zilt is assumed to have nonzero exposure to ( lt (where this 

exposure is normalised to unity) and zero exposures to £ -t, j  = 2, . . . ,  J; zi2t is 

assumed to have nonzero exposure to C2* (again, normalised to unity) and zero 

exposures to Cjt, j  =  3 , . . . ,  J; and so forth up to zijt, whose exposure to ( Jt is 

assumed nonzero and normalised to unity.

Suppose we observe c, and wish to recover the coefficients 4> such that 9 =  c$ 

satisfies these restrictions. Since 9\ — 0n Ci, the restriction 9ixi =  1 will be 

uniquely satisfied by (f>n  = Cni, where is nonzero by assumption. For 1 < 

j  <  J , define the q x j  submatrices 9* =  (9i,. . .  ,9j), Q* =  . . . ,  t^.), c* =

(ci , . . . ,  Cj), and the j  x 1 column vectors . . . ,  i* =  (0, . . . ,  0,1)'.

We may write

Q*9*l* — QfC+Q* = £.*,

where the j  x j  matrix Q*c* can be expressed as a product of the square submatrices 

of Q'9 and 4>-1 corresponding to the first j  rows and columns. Since both Q'9 and
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4>-1 axe full rank triangular matrices, <5*c* is invertible, and these j  restrictions 

yield a unique solution for $*, namely the j - th  column of (Q*c*)_1. Constructing 

in this manner from the estimates c, it follows from Corollary 5.1 and Slutsky’s 

Theorem that 6 — cl> — 6. Note, however, that in finite samples nothing prevents

this method from yielding negative values for some of the 0^, which would be

nonsensical for even p.

We conclude this section with a brief discussion of the choice of J. The follow­

ing Theorem adapts the model selection procedure of Robinson and Yajima (2002) 

and Chen and Hurvich (2003) to our setting, enabling consistent estimation of J  

if the memory parameters of factors and errors are known. Define

U

L(u) =  vnu -  ^ 2  (5.34)
i= 1

where vn > 0 is a deterministic sequence, and estimate J  by

J  = arg min L{u). (5.35)
1 < U < P

A ssum ption  5.6 For some K  > 0 and 0 < dv < | ,

vn ~  K  — j  , as n  —+ oo.

T h eo rem  5.3 Under assumptions 5.1 through 5.6, if  di > dv > di+

P (J  — i) —> 1, as n  —> oo,

while if  d j > dv > {d\ +  max6^)/2,



Proof. We follow the proof of Theorem 4 of Robinson and Yajima (2002), and 

Theorem 3 of Chen and Hurvich (2003). We have

p -  l

P ( j  > i) <  £  P{L(u) < L(i)}
■ u = i + l

< pP(Si+1 >  vn),

while on the other hand

i— 1
p { j < i ) < Y , p { p ( v ) < m }

U — l

< iP(6i < vn).

Noting (5.29) and Assumptions 5.3, 5.6, if d i>  dv > di+1 then P (J  ^  i) —*• 0 

as n  —> oo. If dj > dv, P (J  < i) —> 0 by (5.29). Theorem 5.2 does not provide 

an exact order of magnitude for 7 J+1; note, however, that by Propositions 5.1, 

5.2 and the Cauchy inequality, each element of 9'Fuf +  OFfu +  Fuu is bounded 

by K  (r^ )1 maxdj maxbi Theorem 5.2 ensures that the first J  eigenvectors of Fzz  

converge to a base of the space spanned by 6, and therefore the remaining eigenvec­

tors are asymptotically orthogonal to 6. From (5.14), the eigenvalues associated 

with the last (q — J) eigenvectors of FZz  are bounded by the first eigenvalue of 

O'Fuf + OFfu + Fuu. Thus, if dv > (di +  max6-)/2, P(SJ+1 > vn) —> 0, completing 

the proof. □

Since the dj and b[ are typically unknown, the usefulness of Theorem 5.3 to 

estimate J  in practice is limited by the sensitivity to dv and K. Still, J  may be 

better interpreted as an estimate for the number of factors with memory above dv. 

Under this interpretation, a researcher may not be concerned with whether the 

cointegrating residuals admit a further dimensionality reduction if their persistence 

is already below the user-specified threshold dv. In particular, d\ may be readily



estimated from the data using the methods described in Section 2.7 (e.g. using the 

sequential testing procedure of Robinson and Yajima, 2002), and dv may be set 

to a fraction of this estimate. Estimation of d,2 , . . . ,  dj  is a more complex problem 

and beyond the scope of this thesis.

5.5 F inite sam ple properties

We now present a Monte Carlo study of finite-sample performance. Data 

are generated from (5.1)-(5.4), where for i = 1 , . . . ,  q and j  — 1 , . . . ,  J , we set 

9 j (x) =  hi(x) = exp(x), {r]jt} and {xu}  35 independent standard normal proc­

esses, {vjt} as Gaussian ARFIMA(0, dj,0) with Vai(vjt) = 4, and the vector 

process {£t} as jointly iid N (0,E). All innovations are mutually independent, 

except for time dependence in the factor volatilities {vjt} and contemporaneous 

dependence between elements of £t. In each setup we set q, J, d =  (c?i, . . .  ,d j), 

and report results for n = 512, 1024, 2048 and the following four cases of £: ho- 

moscedastic and independent, heteroscedastic and independent, heteroscedastic 

and positively correlated, heteroscedastic and negatively correlated. We compute 

two estimates: the traditional principal components method, using the J  eigen­

vectors of z'z  associated with the largest eigenvalues as an estimate for the space 

generated by /?; and the NBPC method for squared data, using the J  eigenvectors 

of Re(Fzz) associated with the largest eigenvalues as an estimate for the space 

generated by 0 .

For both estimates, we report the average proportion of remaining variance (or 

its narrow band equivalent) explained by each eigenvector. We denote by Rj the 

ratio of 7  ̂ and the sum of the smallest j  eigenvalues,

Rj = (5-36)
z—/k=j
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which indicates the relative importance of each explanatory factor.

There are two problems in comparing these estimates. Since they are only 

estimating a base for the corresponding linear space, the accuracy of a given 

estimate cannot be evaluated simply with bias and variance. We address this 

issue by reporting D j , defined as the Euclidean distance between Cj and the true 

parameter space, i.e.

(5.37)

Although Corollary 5.1 would allow us to define a more demanding convergence 

measure, namely the distance between dj and the space spanned by (01, . . . ,  6j), 

such a criterion could not be used for the full-band estimate. The second problem 

arises from the different parameter matrices being estimated. In general, and 

without using additional restrictions as described in the previous section, the two 

estimates only aim to provide a base for the linear subspace spanned by (3 or 0. 

However, due to the nonlinear nature of the transformation, a vector within the 

space spanned by (3 will not be transformed, in general, to a vector within the 

space spanned by 0. Still, the chosen normalisation bounds Dj  between zero and 

one, and we choose values for {3 such that the structures of (3 and 9 are similar, so 

comparing the estimates based on these distances should still be meaningful.

Monte Carlo standard deviation of both Rj and Dj are also presented in paren­

theses. NBPC is evaluated at the optimal bandwidth m*, chosen to minimise the 

average distance between the last relevant eigenvector, cj, and the true parameter 

space.

Tables 5.1 and 5.2 report Ri, Di, and m* for q = 2, J  =  1, d\ =  0.4, j3 = 9 — 

(1,1)', and four covariance structures for

1. Independent and homoscedastic components, i.e. E =  J2;

2. Independent components £it with variances E =  diag{l,4};
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1. Homoscedastic errors
n 512 1024 2048

R i Lev 0.928 0.946 0.959
(0.098) (0.084) (0.069)

NB 0.971 0.982 0.990
(0.070) (0.054) (0.039)

D i Lev 0.033 0.019 0.009
(0.087) (0.060) (0.024)

NB 0.057 0.031 0.015
(0.145) (0.100) (0.055)

m* NB 33 26 30

2. Heteroscedastic errors
n 512 1024 2048

R \ Lev 0.909 0.925 0.938
(0.089) (0.082) (0.072)

NB 0.963 0.973 0.984
(0.066) (0.057) (0.044)

D i  Lev 0.125 0.095 0.073
(0.180) (0.151) (0.127)

NB 0.112 0.073 0.046
(0.208) (0.165) (0.121)

m* NB 9 8 6

Table 5.1: Monte Carlo average eigenvalue ratio (Rj), average distance to parame­
ter subspace (Dj), and optimal NBPC bandwidth (m*) of PC in levels and NBPC 
in squares, for varying n  and E; q =  2, J  = 1. Monte Carlo standard deviation in 
parentheses.

3. Same variances as above, with Corr(£lf, £2*) =  0.5;

4. Same variances as above, with Corr(£lt, £2t) =  —0.5.

In all cases R\  is higher for the narrow band approach than for the levels. It 

is fairly close to one for both estimates, ranging from 0.896 to 0.959 in the levels,

and from 0.961 to 0.990 in the squares. For both estimates, this ratio gives a clear

indication of the relative importance of the two components, and approaches one 

as the sample size increases.

For covariance structure 1, the estimate in levels is on average closer to the true 

parameter space than NBPC. This is a consequence of the particular covariance 

structure chosen, for which both estimates are consistent. To see this, write the
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model in levels in matrix notation, 2 +  5, yielding

n n n n n

- ,/8 V a r(C ,)^  +  Var (6 t),

since ( t , 5t are stationary, with all moments finite, and mutually independent. 

Assuming all eigenvalues are distinct, the eigenvectors of z'z  will converge (up to 

sign) to the eigenvectors of /3 Var(^)/5/ +  Var(d>t), while (5 and the eigenvectors of 

P Var(£f)/3' will span the same subspace. Principal components is still consistent if 

Var(^) is a scalar matrix, as both sets of eigenvectors will coincide. The empirical 

findings illustrate this fact; both estimates are approaching the true parameter 

space as n  increases.

With the introduction of heteroscedasticity, Var(^) is a non-scalar matrix, and 

principal components in the levels is no longer consistent. The reported distances 

are higher for the levels than for the narrow band estimate, and NBPC distances 

seem to decrease at a much faster rate.

The introduction of correlation between the disturbance terms has almost no 

impact on NBPC. The average distances for all sample sizes are extremely similar 

for structures 2, 3, and 4, as are their Monte Carlo standard deviations. For the 

estimate in levels, matters are considerably different: positive correlation improves 

estimation, while negative correlation worsens it. This effect should depend on how 

“similar” the matrices /? Var(£t)/?' and Vai(5t) are, which may influence how close 

the limiting eigenvectors of z'z  are to the true parameters.

The optimal bandwidths, m*, seem to be insensitive to sample size. Although 

all values are quite small, ranging from 6 to 33, they are mostly affected by the 

presence of heteroscedasticity. The presence and direction of correlation have little 

impact on bandwidth.

170



3. Positive correlation
n 512 1024 2048

R \  Lev 0.923 0.936 0.947
(0.075) (0.071) (0.062)

NB 0.963 0.974 0.983
(0.066) (0.058) (0.046)

D i  Lev 0.112 0.084 0.066
(0.156) (0.128) (0.110)

NB 0.110 0.070 0.043
(0.207) (0.162) (0 .121)

m* NB 10 9 11

4. Negative correlation

n 512 1024 2048
R i  Lev 0.896 0.914 0.929

(0.100) (0.092) (0.082)
NB 0.961 0.972 0.983

(0.069) (0.061) (0.042)
D i Lev 0.145 0.108 0.080

(0.213) (0.177) (0.145)
NB 0.114 0.073 0.045

(0.207) (0.164) (0.126)
771* NB 11 13 15

Table 5.2: Monte Carlo average eigenvalue ratio (Rj),  average distance to parame­
ter subspace (Dj), and optimal NBPC bandwidth (m*) of PC in levels and NBPC 
in squares, for varying n  and E; q = 2, J  = 1. Monte Carlo standard deviation in 
parentheses.

Tables 5.3 and 5.4 report Rj, Dj, and m* for j  = 1,2,3, corresponding to the 

three largest eigenvalues (of which only the first two should be relevant), q = 5, 

J  = 2, d = (0.4,0.3),

1 1 1 1 1

1  2  i  4  5

3  3  1  3  3

1 1 1

1 1 j
9  9  x

1 1

16 25
9 9

and four covariance structures for £t :

1. Independent and homoscedastic components, i.e. E =  I5;

2. Independent components £it with variances E =  diag{|, | ,  1,2,4};

3. Same variances as above, with Corr(£it,£Jf) =  0.5 for 1 < i < j  < 5 ;
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1. Homoscedastic errors
n 512 1024 2048
j 3 2 1 3 2 1 3 2 1

R j Lev 0.428 0.735 0.966 0.403 0.791 0.970 0.388 0.829 0.972
(0.057) (0.200) (0.028) (0.041) (0.181) (0.021) (0.034) (0.163) (0.018)

NB 0.651 0.905 0.974 0.633 0.931 0.974 0.621 0.955 0.976
(0.134) (0.145) (0.039) (0.129) (0.132) (0.036) (0.134) (0.105) (0.034)

D i Lev 0.982 0.103 0.003 0.991 0.054 0.002 0.998 0.027 0.001
(0.075) (0.193) (0.004) (0.057) (0.135) (0.002) (0.020) (0.070) (0.001)

NB 0.967 0.163 0.007 0.979 0.098 0.004 0.990 0.055 0.002
(0.106) (0.278) (0.008) (0.091) (0.223) (0.007) (0.059) (0.159) (0.003)

m* NB 15 50 87

2. Heteroscedastic errors
n 512 1024 2048
j 3 2 1 3 2 1 3 2 1

R j Lev 0.612 0.731 0.963 0.617 0.773 0.968 0.620 0.805 0.971
(0.066) (0.162) (0.032) (0.053) (0.159) (0.023) (0.042) (0.152) (0.019)

NB 0.767 0.904 0.973 0.772 0.931 0.973 0.766 0.949 0.975
(0.119) (0.126) (0.040) (0.117) (0.115) (0.038) (0.113) (0 .101) (0.034)

D i Lev 0.947 0.262 0.005 0.967 0.183 0.003 0.974 0.138 0.002
(0.099) (0.308) (0.008) (0.071) (0.256) (0.006) (0.069) (0 .221) (0.002)

NB 0.951 0.207 0.009 0.967 0.135 0.005 0.979 0.084 0.003
(0.126) (0.316) (0.016) (0.113) (0.259) (0 .010) (0.089) (0.209) (0.004)

m* NB 15 16 45

Table 5.3: Monte Carlo average eigenvalue ratio (Rj), average distance to parame­
ter subspace (Dj), and optimal NBPC bandwidth (m*) of PC in levels and NBPC 
in squares, for varying n  and E; q = 5, J  — 2. Monte Carlo standard deviation in 
parentheses.
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4. Same variances as above, with Corr(£it, =  —0.2 for 1 <  i < j  < 5.

All values of Rj are higher for NB than for the levels. In both cases, the first 

principal component is clearly dominant, with values of R\  ranging from 0.962 

to 0.972 in levels, and from 0.973 to 0.976 in squares. However, R 2 and R 3 take 

substantially different values between levels and squares. In each setup, R 2 for 

the squares goes from around 0.9 for n = 512 to around 0.95 for n = 2048, 

while corresponding values for levels are around 0.73 for n = 512 and around 

0.81 for n — 2048. These values indicate that the second principal component is 

less relevant in levels than in squares. On the other hand, R$ (which should be 

low because the model has two factors only) is also higher for squares than for 

levels. In the homoscedastic case, it takes values in 0.62-0.65 for squares and in 

0.39-0.43 for levels. Noting that R$ is bounded from below by | ,  the model in 

levels clearly indicates the irrelevance of the third component, while it still exhibits 

some explanatory power in squares. In the three remaining cases, where errors are 

heteroscedastic, it takes values in 0.76-0.77 for squares and in 0.61-0.62 for levels. 

Here both estimates display some explanatory power in the third component, 

possibly making it harder to distinguish the number of factors in situations where 

it is unknown. Still, it appears that the contributions of the first two factors grow 

at a reasonably fast rate with sample size, while the irrelevant third factor has a 

more stable contribution.

For both estimates, the first principal component is extremely close to the 

subspace generated by the true parameters. Values of D\ range from 0.005 to

0.001 for the levels, and from 0.009 to 0.002 for NB, decreasing as the sample size 

increases. Estimation of the second component is understandably less precise. For 

the case of homoscedastic errors, where the estimate in levels is still consistent, it 

outperforms NB by a clear margin: D2 goes from 0.103 to 0.027 as n  increases, 

while for NB D 2 goes from 0.163 to 0.055. However, the presence of heteroscedas-
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ticity and autocorrelation inverts the situation. In these three cases, NB always 

yields lower values for D2 than the levels, and in addition they appear to decrease 

at a faster rate with sample size. The presence of positive autocorrelation seems to 

improve the performance of both estimates, while negative autocorrelation wors­

ens it. The first non-significant component is approximately orthogonal to the 

parameter space in all cases, as indicated by the high values for D3 (from 0.947 

to 0.998), which become higher with sample size.

Optimal bandwidths for homoscedastic errors tend to increase clearly with n. 

However, there does not appear to be a clear ordering of bandwidth sizes from

positive to negative correlation. In these cases, the increase in bandwidth from
%

n = 512 to n  =  1024 is small or non-existent, while the increase from n = 1024 to 

n =  2048 is more substantial. Still, additional results (not shown) indicate that 

bandwidths close to those presented yield very similar values for Dj.

Tables 5.5 and 5.6 report Rj, Dj,  and m* for j  = 1,2,3,4, corresponding to 

the four largest eigenvalues (of which only the first three should be relevant), for 

q = 9, J  =  3, d =  (0.4,0.4,0.3),

-1  /

1 1 1 1 1 1 1 1 1

1 2 3 4 1 6 7 8 9
5 5 5 5 X 5 5 5 5 >

1 3 1 7 9 7 1 3 1
5 5 X 5 5 5 X 5 5_

1 1 1 1 1 1 1 1 1

1 4 9 16 1 36 49 64 81
25 25 25 25 X 25 25 25 25

1 9 1 49 81 49 1 9 1
25 25 X 25 25 25 X 25 25

and four covariance structures for £t :

1. Independent and homoscedastic components, i.e. E =  ig;
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3. Positive correlation
n 512 1024 2048
j 3 2 1 3 2 1 3 2 1

R j Lev 0.615 0.751 0.966 0.618 0.793 0.969 0.619 0.824 0.972
(0.070) (0.163) (0.028) (0.058) (0.157) (0.021) (0.045) (0.149) (0.018)

NB 0.764 0.908 0.974 0.768 0.933 0.973 0.762 0.952 0.975
(0.118) (0.125) (0.039) (0.118) (0.111) (0.037) (0.115) (0.097) (0.034)

D i Lev 0.950 0.235 0.005 0.972 0.161 0.003 0.979 0.118 0.002
(0.102) (0.299) (0.008) (0.069) (0.243) (0.006) (0.062) (0.202) (0.002)

NB 0.952 0.200 0.008 0.965 0.132 0.005 0.981 0.077 0.002
(0.122) (0.315) (0.018) (0.122) (0.264) (0.011) (0.079) (0.198) (0.003)

TO NB 23 35 37

4. Negative correlation

n 512 1024 2048
j 3 2 1 3 2 1 3 2 1

R j Lev 0.609 0.724 0.962 0.616 0.767 0.967 0.620 0.798 0.970
(0.064) (0.161) (0.033) (0.053) (0.158) (0.024) (0.042) (0.153) (0.019)

NB 0.766 0.903 0.974 0.771 0.928 0.973 0.769 0.947 0.975
(0.119) (0.125) (0.039) (0.119) (0.118) (0.039) (0.110) (0.102) (0.034)

D i Lev 0.946 0.270 0.005 0.965 0.192 0.003 0.972 0.145 0.002

NB
(0.100)
0.951

(0.310)
0.211

(0.007)
0.009

(0.076)
0.968

(0.262)
0.137

(0.004)
0.006

(0.070)
0.978

(0.227)
0.085

(0.002)
0.003

(0.129) (0.318) (0.012) (0.106) (0.258) (0.011) (0.093) (0.208) (0.004)
TO* NB 16 16 51

Table 5.4: Monte Carlo average eigenvalue ratio (Rj),  average distance to parame­
ter subspace (Dj), and optimal NBPC bandwidth (m*) of PC in levels and NBPC 
in squares, for varying n  and E; q =  5, J  =  2. Monte Carlo standard deviation in 
parentheses.
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1. Homoscedastic errors
n 512 1024 2048
j 4 3 2 1 4 3 2 1 4 3 2 1

R j Lev 0.251 0.591 0.784 0.937 0.233 0.641 0.803 0.937 0.216 0.706 0.827 0.933

NB
(0.049)
0.530

(0.236)
0.769

(0.142)
0.914

(0.039)
0.942

(0.044)
0.543

(0.232)
0.811

(0.126)
0.923

(0.036)
0.938

(0.032)
0.559

(0.214)
0.873

(0.107)
0.935

(0.034)
0.931

(0.153) (0.206) (0.107) (0.073) (0.155) (0.207) (0.096) (0.075) (0.163) (0.172) (0.083) (0.077)
D j Lev 0.975 0.148 0.017 0.003 0.986 0.085 0.010 0.002 0.997 0.035 0.005 0.001

(0.099) (0.238) (0.031) (0.002) (0.074) (0.169) (0.022) (0.001) (0.023) (0.077) (0.011) (0.001)
NB 0.925 0.349 0.040 0.006 0.939 0.259 0.025 0.004 0.955 0.164 0.013 0.003

(0.174) (0.389) (0.090) (0.007) (0.168) (0.357) (0.059) (0.005) (0.152) (0.304) (0.039) (0.004)
m* NB 26 31 39

2. Heteroscedastic errors

n 512 1024 2048
j 4 3 2 1 4 3 2 1 4 3 2 1

R j Lev 0.531 0.552 0.729 0.920 0.539 0.570 0.749 0.926 0.550 0.600 0.779 0.925
(0.081) (0.138) (0.139) (0.057) (0.073) (0.147) (0.131) (0.043) (0.065) (0.159) (0.113) (0.038)

NB 0.667 0.753 0.883 0.937 0.657 0.781 0.902 0.936 0.666 0.817 0.925 0.931
(0.135) (0.168) (0.125) (0.079) (0.131) (0.175) (0.110) (0.077) (0.132) (0.176) (0.090) (0.078)

D j Lev 0.840 0.557 0.107 0.005 0.857 0.471 0.075 0.003 0.870 0.376 0.046 0.002
(0.254) (0.410) (0.135) (0.014) (0.248) (0.420) (0.095) (0.003) (0.247) (0.408) (0.058) (0.002)

NB 0.882 0.508 0.097 0.014 0.904 0.397 0.054 0.006 0.936 0.270 0.025 0.004
(0.210) (0.396) (0.169) (0.056) (0.206) (0.402) (0.114) (0.007) (0.170) (0.360) (0.062) (0.005)

m* NB 15 21 31

Table 5.5: Monte Carlo average eigenvalue ratio (Rj), average distance to parameter subspace (Dj),  and optimal NBPC 
bandwidth (m*) of PC in levels and NBPC in squares, for varying n  and E; q = 9, J  =  3. Monte Carlo standard deviation in 
parentheses.



2. Independent components £it with variances

S =  diag{^, 1 ,2 ,4„ 8,16};

3. Same variances as above, with Corr(£it, £jt) = 0).5 for 1 < i < j  < 9 ;

4. Same variances as above, with Corr(£^, =  —0.1 for 1 < i < j  < 9.

The simulation results are qualitatively similar tco the previous case, though 

significantly less accurate. Values of Rj  are higher for NB than the levels, both 

in the case of relevant R 2 , R 3) and irrelevant ((R4) components. The first 

principal component yields high values of Ri in bo th  estimates with a relatively 

small gap between levels and NB. For the two remaining components, the values 

of R 2 and R 3 display a much larger gap between NB and Levels. In the case ho­

moscedastic errors, the irrelevant component displays little influence on the levels, 

with R4 decreasing from 0.251 to 0.216 with n, while still having some impact in 

NB, with R 4 increasing from 0.530 to 0.559 with n. For heteroscedastic errors, 

both NB and levels have R 4 increasing with sample size and of moderate size: it 

ranges from 0.530 to 0.557 for levels, and from 0.656 to 0.684 for NB. The small 

gap found between R 4 and R$ in these experiments indicates that estimation of 

the number of factors could be a difficult task, since the  corresponding eigenvalues 

will be of a similar order of magnitude.

Both parameter estimates are significantly more accurate in the case of ho­

moscedastic errors; in the other cases, positive autocorrelation induces marginally 

better results than negative one. Naturally, all values of Dj decrease with sample 

size for relevant components (Di, D2, D3), and increase for irrelevant ones (D4) 

The coefficients of the first principal component are extremely close to the para­

meter space, with the estimate in levels outperforming NB in every case. For the 

levels, Di takes values between 0.001 and 0.005, whifle for NB it ranges between
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0.003 and 0.014. The other two components display substantially different behav­

iour in the homoscedastic and heteroscedastic cases. In the homoscedastic case, 

the estimate in levels attains very fast convergence in all factors, clearly outper­

forming NB. As n  increases from 512 to 2048, D2 for the levels decreases from 

0.017 to 0.005, while D% decreases from 0.148 to 0.035. Results for NB are much 

less encouraging, with D2 decreasing from 0.040 to 0.013 and D3 decreasing from 

0.349 to 0.164. However, the presence of heteroscedasticity, and thus inconsistency 

of the estimate in levels, makes D2 and D3 lower for NB than for the levels, and 

decreasing at an apparently faster rate. For n = 2048, while the estimate in levels 

can only attain values of D2 ranging from 0.038 to 0.048 and of D3 ranging from 

0.313 to 0.387, the NB estimate yields D2 ranging from 0.023 to 0.025 and of D$ 

ranging from 0.259 to 0.275. It should be noted that the performance for the third 

component would not be satisfactory for most purposes; accurate estimation of 

three components under these conditions would require substantially larger sample 

sizes. This fact is also reflected in the values for D4, which especially for n = 512 

are reasonably far from unity.

In all cases, optimal bandwidths display a steady, albeit slow, increase with n. 

Unlike the previous settings, here homoscedastic errors lead to a slower increase 

of bandwidth with n  than the other cases. For heteroscedastic errors, negative 

autocorrelation seems to warrant slightly higher bandwidths, though this ordering 

is reversed for n = 512. Unreported experiments again show that estimation 

results are essentially insensitive to moderate variations in bandwidth.

5.6 Empirical application

We apply the methods described in this chapter to estimate common risk 

exposures for a set of European large-cap equity indices. The series are obtained
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3. Positive correlation
n 512 1024 2048
j 4 3 2 1 4 3 2 1 4 3 2 1

R j Lev 0.541 0.569 0.748 0.923 0.547 0.591 0.766 0.927 0.557 0.624 0.793 0.926
(0.085) (0.146) (0.134) (0.053) (0.076) (0.156) (0.125) (0.042) (0.065) (0.167) (0.108) (0.037)

NB 0.684 0.755 0.886 0.936 0.673 0.787 0.904 0.936 0.683 0.831 0.925 0.930
(0.142) (0.167) (0.124) (0.083) (0.134) (0.173) (0.107) (0.078) (0.130) (0.168) (0.092) (0.079)

D i Lev 0.852 0.499 0.090 0.005 0.871 0.414 0.063 0.003 0.894 0.313 0.038 0.002
(0.249) (0.409) (0.113) (0.012) (0.245) (0.410) (0.078) (0.003) (0.235) (0.384) (0.046) (0.001)

NB 0.887 0.498 0.096 0.013 0.903 0.394 0.052 0.006 0.936 0.259 0.023 0.004
(0.196) (0.389) (0.166) (0.048) (0.206) (0.398) (0.114) (0.007) (0.172) (0.356) (0.057) (0.005)

m* NB 12 19 20

4. Negative correlation

n 512 1024 2048
j 4 3 2 1 4 3 2 1 4 3 2 1

R j Lev 0.530 0.549 0.725 0.920 0.538 0.566 0.746 0.925 0.549 0.596 0.776 0.925
(0.080) (0.135) (0.141) (0.056) (0.072) (0.145) (0.132) (0.044) (0.065) (0.158) (0.114) (0.038)

NB 0.672 0.757 0.883 0.937 0.656 0.779 0.901 0.936 0.662 0.808 0.924 0.931
(0.133) (0.166) (0.125) (0.081) (0.129) (0.176) (0.111) (0.077) (0.134) (0.181) (0.091) (0.077)

D j Lev 0.834 0.571 0.111 0.005 0.858 0.478 0.077 0.003 0.866 0.387 0.048 0.002
(0.258) (0.410) (0.138) (0.014) (0.246) (0.419) (0.099) (0.003) (0.250) (0.411) (0.064) (0.002)

NB 0.888 0.509 0.099 0.013 0.898 0.402 0.054 0.006 0.934 0.275 0.024 0.004
(0.204) (0.391) (0.172) (0.042) (0.216) (0.404) (0.114) (0.007) (0.178) (0.368) (0.055) (0.006)

*m NB 12 23 45

Table 5.6: Monte Carlo average eigenvalue ratio {Rj), average distance to parameter subspace {Dj), and optimal NBPC 
bandwidth {m*) of PC in levels and NBPC in squares, for varying n and E; q =  9, J  = 3. Monte Carlo standard deviation in 
parentheses.



i Index Bloomberg ticker Country/Region
1 AEX25 AEX Netherlands
2 BEL 20 BEL20 Belgium
3 CAC 40 CAC France
4 DAX 30 DAX Germany
5 FTSE 100 UKX UK
6 IBEX 35 IBEX Spain
7 OMXH 25 HEX25 Finland
8 OMXS 30 OMX Sweden
9 S&P/MIB 40 SPMIB Italy
10 SMI 20 SMI Switzerland

STOXX 600 SXXP Europe

Table 5.7: Data description.

from Bloomberg and described in Table 5.7. All indices include a relatively small 

number of blue chip stocks, which nevertheless account for the majority of traded 

volume and market valuation within each exchange. W ith the exception of the 

FTSE 100, all other national indices include between 20 and 40 assets, while 

the Pan-european index includes 600. Prices for indices in currencies other than 

EUR (GBP for the FTSE 100, SEK for the OMXS 30, and CHF for the SMI 20) 

are corrected for exchange rate movements. In order to account for the different 

holiday schedules of local exchanges, we kept in the sample those dates for which 

only one or two national exchanges were closed, filling the price with the last 

available value. If three or more exchanges were closed we deleted the date from the 

sample, implying that returns were aggregated over two trading days for exchanges 

that remained open. After 36 days were excluded by this process, the sample 

contains 2321 daily price observations, ranging from 4 January 1999 to 10 March 

2008.

Figure 5.1 shows the evolution of the indices over the sample period. Not 

surprisingly, there is clear comovement across all the indices, and the broad di­

rection of the market is reflected in all of them. Still, there are strong differences 

in particular periods, most notably in the peak of the dot-com bubble, from 1999

180



260%

220%

180%

140%

100%

60%

20%
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

I AEX — -BEL20 CAC — DAX UKX B E X  HEX25 OMX SPMIB SM I SXXP

Figure 5.1: Total returns for European indices from 1999 to 2008.

to 2001. In this period, both the OMXS 30 and the OMXH 25 displayed strong 

sensitivity to  the sharp increase and fall in technology stocks, while most other 

indices had more moderate movements, and in particular the BEL 20 appeared 

to have no exposure to the bubble. These patterns illustrate the difficulty of in­

dices such as the STOXX 600, or indeed of univariate factor models, in capturing 

the pervasive sources of risk in European markets. Despite the similarity of asset 

inclusion criteria across all indices considered, the presence of different exposures 

to particular sectors, international linkages, and other risk sources may cause na­

tional exchanges to  diverge substantially from each other, more so than  can be 

explained by exposures to  a single risk factor. By contrast, and a t first glance, co­

movement in the period from 2003 to  2008 appears much stronger, and potentially 

explainable simply by different exposures to  aggregate market risk.

Figure 5.2 further illustrates these differences by plotting monthly realised
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Figure 5.2: Monthly realised SD for European indices from 1999 to  2008.

standard  deviations, d**, com puted as

di* =
2

(5.38)

where zu denotes the returns of index i in date t and T* is the set of dates belonging 

to  m onth k. The volatilities again display the comovement present in the levels, 

bu t this comovement was much stronger in the low volatility, post-2003 period 

than  it was during the dot-com bubble. As before, the wide variations in volatility 

in the earlier period can be justified by the different sector exposures of individual 

indices, suggesting the need for multivariate analysis of risk factors.

The data  we collected allowed us to examine the performance of NBPC in two 

different settings: one where returns appear to  be well explained by a single risk 

factor, and another where other factors are potentially present. In the following 

analysis, we obtained estimation results for the full sample of 2320 daily logarith-



mic returns, and also for two subsamples of 1160 observations each, corresponding 

to periods before and after 11 August 2003. When using regression methods, we 

used the STOXX 600 as a proxy for European market returns. We estimated fac­

tor loadings using OLS (4.4) regression of daily national index returns on STOXX 

600 returns, NBLS (4.3) regression of corresponding squared returns, and NBPC 

(5.21) on the multivariate time series of squared index returns. For both NBLS 

and NBPC we used the bandwidth m  = [n0 5], corresponding to  m  =  48 for the 

full sample and m  = 34 for each subsample. We estimated memory parameters 

of squared returns and squared regression residuals using Local W hittle (2.75), 

with the bandwidth m  =  [n0-8], corresponding to m =  492 for the full sample and 

m  =  282 for each subsample. The results are not sensitive to these choices; results 

for alternative bandwidths are relegated to Figures 5.3 to 5.23 in Appendix B.

N um ber o f factors

While we have not developed a feasible method for estimation of J  in the 

context of NBPC, this subsection heuristically evaluates the eigenvalue ratios R j , 

j  — 1, . . .  9, defined in (5.36). Table 5.8 indicates the existence of a clearly dom­

inant factor, but also that this factor was more important in the second half of 

the sample than on the first. These facts are in fine with our initial observation 

that the indices appeared to display stronger comovement in the post-2003 period 

than during the dot-com bubble. The relevance of a second risk factor cannot be 

analysed convincingly in the absence of a formal statistical test. However, and 

as predicted, results for the full sample and the first half of the sample seem to 

support the inclusion of a second factor, while the second half of the sample seems 

more consistent with a single factor model. Factors beyond the first two do not 

display any potential for inclusion. We therefore report NBPC results assuming 

J  = 2, with the proviso that the second factor may be weak or non-existent during



j  Full sample First half Second half
1 0.811 0.779 0.901
2 0.590 0.530 0.461
3 0.364 0.372 0.411
4 0.290 0.302 0.411
5 0.356 0.368 0.366
6 0.439 0.445 0.321
7 0.355 0.362 0.369
8 0.495 0.455 0.474
9 0.562 0.538 0.613

Table 5.8: Proportion of remaining averaged periodogram (Rj) explained by the 
j -th NBPC eigenvector.

the latter period.

Factor exposures

Estimates of factor exposures using OLS in returns and NBLS in squared re­

turns axe presented in Table 5.9. We convert NBLS estimates to market exposures 

by simply taking the positive square root, since all exposures can be reasonably 

assumed positive. Exposures are concentrated around one (which is natural in 

this setting), and this concentration increases substantially from the first subsam­

ple to the second. Most NBLS estimates are slightly higher that those obtained 

by OLS, arguably reflecting the stronger OLS downward bias suggested by the 

Monte Carlo results of Section 4.2. The notable exception is HEX25, to which 

NBLS attributes an exposure of 0.49 in the first half of the sample. While this 

is a surprisingly low value, Figure 5.2 illustrates the abnormal behaviour of this 

index in this period: it displayed significant excess volatility over the STOXX 600 

during the peak of the bubble, from 1999 to the end of 2001, but it was one of the 

least volatile assets throughout 2002 and 2003. The volatility profiles during that 

subsample cast doubts over the crucial assumption of cointegration in volatility 

between the two indices.
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Full sample
OLS 

First half Second half Full sample
NBLS 

First half Second half
AEX 1.139 1.175 1.043 1.360 1.391 1.093

BEL20 0.778 0.736 0.886 1.028 1.030 1.054
CAC 1.128 1.140 1.095 1.193 1.184 1.109
DAX 1.159 1.183 1.095 1.324 1.333 1.034
UKX 0.989 0.987 0.993 1.018 1.010 0.989
IBEX 0.970 0.968 0.975 1.019 0.960 1.145

HEX25 0.951 0.927 1.015 0.800 0.489 1.174
OMX 1.177 1.175 1.183 1.177 1.088 1.190

SPMIB 0.935 0.953 0.887 1.013 1.009 0.886
SMI 0.799 0.802 0.789 1.002 1.028 0.816

Table 5.9: Univariate OLS and NBLS estimates of market exposures.



Table 5.10 reports the first two eigenvectors obtained from the NBPC pro­

cedure, denoted PCI and PC2. The first component clearly corresponds to a 

measure of market exposure, and follows very closely the relative magnitudes of 

NBLS estimates. In particular, HEX25 displays an extremely low exposure in the 

first half of the sample, and above average exposure in the second half. The sec­

ond principal component is harder to interpret due to the indeterminacy discussed 

in Section 5.4. Still, for the full sample and first half of the sample the bulk of 

the (normalised) exposure is assigned to HEX25. This is consistent with previous 

results: there appears to be a second factor explaining the cross-section of returns, 

to which HEX25 and OMX have particularly strong exposures, at least during the 

first half of the sample.

We now illustrate the methods used in Section 5.4 to remove the indeterminacy 

in the coefficients and allow estimation of the squared factor loadings. Assuming 

different memory parameters of the two unobservable factors, identification of 

exposures to the first factor requires only one normalisation restriction. Taking 

into account the results of Table 5.9, and also the relative importance of each 

individual index, we normalised the exposure of UKX to one. The estimates 

obtained by univariate regression for this loading range from 0.987 to 1.018; in 

addition, the FTSE 100 has the largest market value and traded volume of all the 

national indices considered, and is substantially more diversified than any of the 

others.

Identification of exposures to the second factor is not as straightforward, as it 

requires two restrictions on the coefficients. While the normalisation restriction 

poses no problems, the additional exclusion restriction is somewhat arbitrary. In 

the full sample and in the first subsample, HEX25 has the lowest weight on the 

first component and the largest (absolute) weight on the second component; we 

therefore normalised its loading on the second component to one. AEX is chosen
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Full sample
PCI 

First half Second Half Full sample
PC2 

First half Second Half
AEX 0.456 0.495 0.333 0.335 0.265 0.280

BEL20 0.262 0.277 0.308 0.127 0.121 -0.004
CAC 0.351 0.356 0.340 0.089 0.043 0.172
DAX 0.438 0.455 0.305 0.186 0.109 0.405
UKX 0.251 0.253 0.256 0.021 -0.011 -0.150
IBEX 0.256 0.231 0.370 -0.087 -0.087 0.389

HEX25 0.177 0.063 0.381 -0.755 -0.754 -0.244
OMX 0.353 0.300 0.397 -0.483 -0.560 -0.700

SPMIB 0.252 0.252 0.215 -0.035 -0.061 -0.058
SMI 0.244 0.264 0.184 0.127 0.091 0.020

Table 5.10: First two NBPC eigenvectors.



for the exclusion restriction, since it is the only asset for which such a restriction 

yielded non-negative values for all squared loadings; AEX it is also the index with 

the highest exposure to the first component. In the second subsample, we kept the 

normalisation restriction on HEX25 for comparison purposes, but the exclusion 

restriction was imposed on DAX to obtain non-negative exposures throughout. As 

noted before, the second factor does not appear to be strong in this subsample, and 

therefore results relating to these exposures should be interpreted with caution.

Table 5.11 reports estimated factor loadings using the described restrictions 

and a square root transformation. As for NBLS, the loadings for the first factor 

may be assumed positive, and we may use the positive root for direct comparison 

with Table 5.9. However, there is no reason to expect weights on the second factor 

to be all of the same sign, and we may only interpret the resulting loadings as 

estimates of absolute exposures. The weights for the first factor are essentially 

identical to the NBLS estimates in Table 5.9, with discrepancies all below 0.06. 

The weights of the second factor for the full sample and the first half seem to 

indicate the strength of deviations from the market during the dot-com bubble. 

In particular, the Nordic indices HEX25 and OMX both display strong exposures 

consistently over both subsamples. The relative ranking of other individual expo­

sures is hard to evaluate, since it is likely to be sensitive to the restriction chosen 

for identification.

M em ory param eters

Both NBLS and NBPC depend crucially on the assumption that the persistence 

in volatility of the leading factor (or factors) dominates that of the errors. To 

assess the validity of this assumption, Table 5.12 reports Local W hittle estimates 

of the memory of squared returns and squared regression residuals, where the 

latter are obtained from both OLS and NBLS. To make the residual memory

188



First factor Second factor
Full sample First half Second Half Full sample First half Second Half

AEX 1.348 1.398 1.140 0 0 0.466
BEL20 1.021 1.047 1.096 0.271 0.186 0.742
CAC 1.183 1.187 1.152 0.437 0.432 0.610
DAX 1.322 1.341 1.090 0.392 0.413 0
UKX 1 1 1 0.430 0.431 0.808
IBEX 1.010 0.955 1.202 0.557 0.517 0.370

HEX25 0.840 0.499 1.219 1 1 1
OMX 1.186 1.089 1.244 0.916 0.957 1.279

SPMIB 1.002 0.998 0.915 0.499 0.499 0.676
SMI 0.986 1.022 0.846 0.242 0.252 0.547

Table 5.11: NBPC estimates of absolute exposures to first two factors, under normalisation and exclusion restrictions.



estimation fully comparable, we computed NBLS residuals by first applying the 

square root transformation to the estimates, obtaining excess market returns using 

those estimates, and squaring the resulting sequence. We also report asymptotic 

SD for the estimates (see (2.76)), and summary statistics for the ten national index 

estimates.

All Local Whittle estimates in Table 5.12 indicate the presence of stationary 

long memory, being significantly different from 0 and 0.5. Memory estimates of 

squared returns appear consistent with identity of memory parameters. Differences 

between memory estimates for OLS and NBLS squared residuals are negligible, 

with only three of the thirty residual estimate pairs displaying discrepancies larger 

than 0.02. Most residual estimates are substantially lower than the corresponding 

squared returns estimate, indicating the validity of the cointegration assumption. 

A notable exception is HEX25, for which the memory stays essentially the same 

after regression in the full sample, and is even slightly higher for squared residuals 

in the first subsample. This fact sheds some fight on the unusually low exposure 

found by both NBLS and NBPC for these sample periods. The second subsam­

ple is substantially different, with a sizeable reduction in HEX25 memory, from 

0.3 in squared returns to 0.1 in regression residuals. The estimated memory re­

ductions for BEL20 and OMX are also relatively low for the full sample and the 

first subsample, rising to substantial values for the second subsample. All other 

assets appear to yield strong memory reductions in all samples, ranging from 0.09 

(CAC, full sample) to 0.27 (CAC, second subsample). The indices for which the 

first subsample appears to invalidate the cointegration hypothesis can be immedi­

ately identified in Figure 5.1: both HEX25 and OMX were initially found to have 

excess sensitivity to the dot-com phenomenon, while BEL20 appeared to display 

no sensitivity at all.
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Squared returns OLS residuals NBLS residuals
Full sample First half Second half Full sample First half Second half Full sample First half Second half

AEX 0.307 0.275 0.360 0.198 0.124 0.124 0.168 0.080 0.114
BEL20 0.271 0.232 0.389 0.230 0.199 0.142 0.228 0.196 0.119

CAC 0.282 0.242 0.379 0.194 0.105 0.119 0.196 0.108 0.113
DAX 0.319 0.279 0.354 0.190 0.144 0.174 0.170 0.128 0.181
UKX 0.331 0.289 0.331 0.171 0.134 0.150 0.171 0.135 0.150
IBEX 0.294 0.236 0.382 0.193 0.120 0.153 0.188 0.122 0.166

HEX25 0.226 0.171 0.304 0.230 0.185 0.093 0.225 0.190 0.100
OMX 0.254 0.197 0.286 0.183 0.137 0.099 0.183 0.142 0.099

SPMIB 0.306 0.248 0.309 0.209 0.146 0.130 0.197 0.133 0.130
SMI 0.288 0.263 0.254 0.187 0.147 0.119 0.186 0.159 0.118

SXXP 0.320 0.277 0.376 — — — — — —

Asy. SD 0.023 0.030 0.030 0.023 0.030 0.030 0.023 0.030 0.030
Maximum 0.331 0.289 0.389 0.230 0.199 0.174 0.228 0.196 0.181

Average 0.288 0.243 0.335 0.198 0.144 ' 0.130 0.191 0.139 0.129
Minimum 0.226 0.171 0.254 0.171 0.105 0.093 0.168 0.080 0.099

SD 0.031 0.037 0.046 0.019 0.029 0.025 0.021 0.035 0.028

Table 5.12: Local Whittle estimates for squared returns, squared OLS residuals, and squared NBLS residuals.



5.7 Final com m ents

We have presented an application of theoretical techniques developed in Chap­

ter 3 to a multivariate setting. In the context of a multivariate factor model, where 

both the factors and idiosyncratic errors are driven by general SV models, a narrow 

band version of principal components is shown to converge to vectors spanning the 

same space as the transformed factor loadings. Monte Carlo results are encour­

aging in a number of alternative specifications; however, they also highlight the 

superiority of the “traditional” principal components approach in the levels when 

the idiosyncratic errors are uncorrelated and homoscedastic across the observable 

series. This contrasts with the regression setting of Chapter 3, where errors-in- 

variables inconsistency is always present for the OLS estimate. The empirical 

application of the previous section illustrates the use of NBPC, there applied to 

equity indices. We find strong support for the need of more than one factor in 

modelling equity returns, at least during the peak of the dot-com bubble. NBLS 

estimation by regression on a proxy for market returns yields reassuringly close 

results to the first factor of NBPC, which does not rely on pre-specified risk factors.

The indeterminacy in parameter estimates highlighted in Theorem 5.2 and 

Corollary 5.1, coupled with the transformation (5.8), may limit the usefulness of 

the estimates. If d\ > d2, the different rates of growth of Fff  components in 

(5.16) allow consistent estimation of the vector 0\ up to scale. However, even 

when d2 > ^3, the second principal component can only be shown to converge to a 

linear combination of 0\ and <92, and so on for subsequent vectors. The imposition 

of linear restrictions on elements of 6 may resolve the indeterminacy, but such 

prior knowledge may not be available to the researcher in practical applications. 

Furthermore, since the elements of 9 are related to the original /3 by a power 

transformation, any linear restrictions involving more than one element of f3 will
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be translated into nonlinear restrictions on 6. While a sufficient number of such 

restrictions may still fully identify /?, specifying general conditions for identification 

is not trivial in this setting.

Our choice of a principal components approach instead of a regression based 

estimate, such as NBLS, seems to be in fine with widespread practice in APT 

applications. This approach does not require the separation of variables into de­

pendent and explanatory, which would be arbitrary under (5.1). Furthermore, 

tests or estimates for the number of factors frequently rely on functions of eigen­

values, and principal components has the potential of being integrated on a full 

data-dependent modeling technique, where the number of factors and correspond­

ing cointegrating vectors are estimated jointly. Nonetheless, establishing consis­

tency of a multivariate extension for NBLS would be of considerable independent 

interest, and indeed such a result is likely to follow closely the theoretical steps 

presented here.

In practical applications of multivariate factor models, the number of common 

factors is rarely known to the researcher, and must be determined by the data. 

We presented a method of estimating J  if the memory parameters of factors and 

residuals are known, which is not a realistic assumption. In Section 5, we also sug­

gested certain ratios of eigenvalues, denoted Rj, as a possible means of determining 

cointegrating rank. Obviously, our use of these quantities is purely heuristic and 

would require a formal theoretical justification before being applicable in practical 

situations, such as the empirical analysis undertaken in the previous section. It 

would be obviously desirable to develop methods of formally testing hypotheses on 

the number of factors and other parameters, for which asymptotic distributional 

theory would be required. As was the case for NBLS, finding limiting distributions 

in our nonlinear setting is far from trivial, and would require considerable further 

work; we leave these topics for future research.
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5.A  Propositions and lemmas

P ro p o sitio n  5.1 For 1 < j i , j 2 <  J,

m \ l- dn~d32
+ Op

^  ^ 771 ̂  dh  dJ2
(5.39)

where C* ^  0 iff j i  =  j 2.

Proof. For k = 1,2, write =  A ktB kt, where =  rjjk t and B kt = 

gjk{vjk,t), and apply Lemma 5.1 to Cov(/jljt, f j2tS)- Then (5.39) follows immedi­

ately from from Lemma 5.3, noting that C* ^  0 iff j \  =  j 2 due to (5.6). □

For the following Proposition some notation is needed. Fix 1 <  i < q, write 

P =  (pi, • • • , P j ) ' ,  and for 1 < j  < J  denote by r£ and the Hermite ranks of 

) and — E{h?it Epj) respectively. Using the convention 0° =  1,

define

j
P  =  {p : 0 <Pj < p , ^ 2 p j  < p},

j=l

S1 = { p € P : E  { C 2*  n /= l ( f t ^ ) n } ±  o} . 

52p =  { l < j <  J : E ( « # ) ^ 0 } ,

( i - 6 i) - l { £ ( f t r 2'’, )6i =  0 } 1

d* =  max{d*,&*},

where we omit the dependence on i for convenience.

P ro p o sitio n  5.2 For 1 <  i < q, defining b[ =  max{d*,0},

(5.40)
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Proof. Write

Un — ^  } Cp̂ 4p£-Bp£>
P € P

where the dependence on i is omitted throughout for convenience, and

^ = f r Swn ^ -  A . < = c Ewn $ ,
j =1 j=l

p! fr/%
(p - L L p^ M ^ '

c„ =

Noting that for any p, q G P, {-Apt} is independent of {#qt}, and Apt is 

independent of Aqs unless t = s, Lemma 5.1 yields

Cov(C4s, U i t )  —  ^   ̂ CpCq Cov(ApSI?pS, Aqt5 qt) 

p.qeP

=  ^ 2  cpc<lE (A pt)E (A tlt)Cov(BpS,B clt)+ A l( s  = t),
p,qeP

where A =  ]CP,qep °pcq Cov(Apt, A(lt)E (B ptB (lt) < oo. Thus,

EiF^u,) =  CpCq£(-4pe)£;(Aqt)£;(FBp,B,) +  A ^ . (5.41)
p,q

For j  =  1 , . . . ,  J  denote

(* _  4) = Cov(^ i-s lO . 4  =  E (g$),

- s ) =  C o v (C Sw, 4  =  £ ( A r Eyj)-

Using Lemma 5.1 again, Cov(£?ps, 5 qt) can be written

j j { e £ 4  +  ccwjq(£ -  s)} -  J ]  4 e Jq
j=0 j=0
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=  S  epeq 1 1 ( 4 4 )  n  C04 q (*  “  5)
<3 jzQ

J

+  I I ( 4 eq)«WS q (* -a)
J=1

+ S 11(44) II co4q(̂  - «)«*&(* -5)’
<3 j£ g  j£Q

where ]T)q denotes summation over all non-empty subsets Q of {1 , . . . ,  J}. 

It follows that E(FBp,Bq) is

X !  ePeq n  ( 4 0  4  x  ^ ( ^ - j  n  OTujpq(( - s) }  <5-42)
g i^g I s,*=i ieg J

+ 1 1 ( 4 0  4  X Om(Xt- s)cov°m ( t -«)]■ (5.43)
j = i  I” .,«=l J

+ X 11(40 4  X A»( V . )  II «°4q(* - - *) } (5'44)
g jgg I s,t=i j e Q  J

If p £ Si or q ̂  Si, the corresponding p ,q  term will vanish from (5.41).

Similarly, unless Q C S^p FI ^ q ,  the Q terms will vanish from (5.42) and (5.44), 

while if =  0 (5.42) disappears. For the remaining values of p, q, Q, Lemma 

5.3 implies that

1 n
^ 2  J 2  D m ( Xt - s )  n  COujq ( t  -  S)

^  pqQ’°l „ S1M. _ nA
( w )  (l°gn ) pq0 ) J

n s , t= i  j e Q

1 n
2 ^  v E m(\t—s)cOVpq(t — s)

71 s,t= 1

=  O ( ( ^ ) 1- 2m“ {6;’ -0>(logn)‘^ » ) ) ,

1 n
—  D m { ^ t - s )  n  _  S) C° 4 q(*  ~  5 )

s , t = i  j e Q
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_ j.o) „ . ,/jx _0)\
O ( - )  (logn)1(dMO-0,J ,

where

d;«Q = \ - E r™ \ *j e Q

bPn = 2  ~  rPi ( 2  “  bi)  ’

dU  = \ - H rU ( \ - d)  -  ’■p, (\ -  *.).
j e Q  '  '  v /

r pq =  min{fc >  0 : G ^ G 3̂  ±  0},

r°q =  min{k  > 0 : Gp^G^k ±  0},

a n d ^ G j , *  axe the fc-th Hermite coefficients of g^l, hpit Epj respectively. Notice 

that since r j q < r j ,  j  =  0 , . . . ,  J , we have d*qQ < d*pflQ < d*ppQ and b*pq < b*p. 

Also, notice that for any j  £ Q, we have dppQ < dppyy < dp. It follows that all 

terms in (5.42) to (5.44) can be bounded by (5.40), completing the proof. □

The following Lemmas are straightforward generalisations of results proved in 

Chapter 3, namely Lemmas 3.1, 3.2, 3.4, and 3.5, to a multivariate setting.

L em m a 5.1 Let {a^bi), i = 1 , . . . , k, be mutually independent random variables 

such that E(a\ +  bf) < 00. Then,

/  k \  k

E  I Y l  aibi I =  n  {Cov(ai, bi) +  E(di)E(bi)}
\ i =1 /  i=i

= E n { £w ^ ) > n  Cov(ai, bi),
Q i£Q ieQ

where denotes summation over all subsets Q of { 1 , . . . ,  k } .

Proof. Straightforward. □
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L em m a 5.2 For i = 1 , . . . ,  k, assume |pit — pi>t+1\ < K t 1\pi)t+i\ for all t > 1. 

Then, for positive integers r \ , . .. ,r k and t,

i=1 i=l
(5.45)

i=1

Proof. By Lemma 3.1, (5.45) holds for k = 1,2. Proceeding by induction, 

suppose it holds for k — 1 , . . . ,  s — 1. Then,

n ^ - I R +i
2 = 1  2= 1

S — 1 S —1
m - m + i
2 = 1  2 = 1

< I *

^  -Fsrf_i n  n

+ \P/,t Pa't+ll 11 |P»,t+ll
i= l

L em m a 5.3 F o ri = 1 , . . . , k , j  =  1,2, define g^ t = gij(Pit), where pit is a 

standard Gaussian I(di) process and pit = E (p i0pit). Assume E(gf j t) < oo. 

Denote by G i j t h e  k-th Hermite coefficient of gij(-), with

U = min{& > 0 : G n>kGi2,k ^  0}. (5.46)

Let di — maxj di without loss of generality, and define

d* = \  ~  ^ 2  n  ( \  ~  ’ Cip = j ^ o  Pî 12di •
2=1 '  '

Let  ̂ n  k

A. — 2 ^  y ^m (^t—s) C ov(^ijS,
U  S , t =  1 2=1

where m  satisfies Assumption 5.3. Then,

A  = 0  {1 +  (logn)l(d* =  0)})
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(5.47)

where

Proof. Let t =  C o v ^ i^ ;^ ,* ) . Then, similarly to (3.41),

An(Au) f j 7 ,

By Theorem 3.1 and (5.46),

where C* =

(a) If n l i  <k =  0, then nt=i7*« =  G flliU  \pZ\) are summable. Similarly, if 

Ui=i di > 0 but d* < 0, then f lL i  7i« = ^ d l L i  \Pil\) = 0 ( j 2d*~l ) are summable. 

In either case, writing Yli=i liu  instead of r)u in (3.44) yields A = 0 (m /n ).

(b) If d* = 0, n f= i liu = O i r 1), hence (3.44) holds for 7iu72«-

(c) If d* > 0,

where u j  =  (1 — 2di)/(l  — 2d*). Then (3.53) follows from the proof of case (c) of

so

Lemma 3.4, writing ]f[£=i Piu instead of pru, and making use of Lemma 5.2. □
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5 .B  S en sitiv ity  o f  em pirical resu lts to  b an d w id th  

choice

This appendix expands on the empirical results of Section 5.6 by analysing 

the im pact of bandwidth choice on various estimates. Figures 5.3 to  5.23 display 

the evolution of NBLS estimates, NBPC eigenvalue ratios, the first two NBPC 

eigenvectors, and Local W hittle memory estimates. Despite the natural instability 

for very small bandwidths, all estimates are fairly stable in the neighbourhood of 

those used in Section 5.6.
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Figure 5.3: NBLS estimates of market exposures for varying m; full sample.
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Figure 5.4: NBLS estimates of m arket exposures for varying m; first subsample.
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Figure 5.5: NBLS estimates of market exposures for varying m; second subsample.
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Figure 5.6: Proportion of remaining averaged periodogram (Rj)  explained by the 
j- th  NBPC eigenvector, for varying m; full sample.
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Figure 5.8: Proportion of remaining averaged periodogram ( R j )  explained by the 
j - th  NBPC eigenvector, for varying m; second subsample.

0.5

0.4

0.3

0.2

0.1

0.0
10 20 30 40 50 60 70 80 90 100

I -AEX B6L2P CAC PAX UKX— BB C H B 0 B  OMX 8PMB 8Mll

Figure 5.9: First NBPC eigenvector for varying m; full sample.
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Figure 5.10: First NBPC eigenvector for varying m; first subsample.
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Figure 5.11: First NBPC eigenvector for varying m; second subsample.
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Figure 5.12: Second NBPC eigenvector for varying m; full sample.
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Figure 5.13: Second NBPC eigenvector for varying m; first subsample.
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Figure 5.14: Second NBPC eigenvector for varying m; second subsample.
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Figure 5.15: Local Whittle memory estimates of squared returns; full sample.
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Figure 5.16: Local W hittle memory estimates of squared returns; first subsample.
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Figure 5.17: Local W hittle memory estimates of squared returns; second subsam­
ple.
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Figure 5.18: Local W hittle memory estimates of OLS residuals; full sample.
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Figure 5.20: Local W hittle memory estimates of OLS residuals; second subsample.
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Figure 5.21: Local Whittle memory estimates of NBLS residuals; full sample.
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Figure 5.22: Local W hittle memory estim ates of NBLS residuals; first subsample.
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