
A Stochastic Ramsey 
Theorem

Zibo Xu

A thesis subm itted  for the  degree of 
Doctor o f Philosophy

D epartm ent of M athem atics

London School of Economics 
and Political Science

Septem ber 2010



UMI Number: U61B443

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U613443
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



P

Library
British Library o f Political 
and E co n o m ic  S c ien ce

\ 1 7 0 ^ \ $



Declaration

I certify that the thesis I have presented for examination for the M Phil/PhD 

degree of the London School of Economics and Political Science is my own 
work.

The copyright of this thesis rests with the author. Quotation from it is 
permitted, provided that full acknowledgement is made. This thesis may 
not be reproduced without the prior written consent of the author.

I warrant that this authorization does not, to the best of my belief, infringe 
the rights of any third party.

1



Abstract

A stochastic extension of Ramsey’s theorem is established. Any Markov 

chain generates a filtration relative to which one may define a notion of 
stopping time. A stochastic colouring is any fc-valued (k < oo) colour func­
tion defined on all pairs consisting of a bounded stopping time and a finite 

partial history of the chain truncated before this stopping time. For any 
bounded stopping time 6  and any infinite history u> of the Markov chain, let 

oj\6  denote the finite partial history up to time 0(u). It is first proved for 
k =  2 that for every e >  0 there is an increasing sequence 9\ < 9<i < ... of 

bounded stopping times having the property that, with probability greater 
than 1—e, the history uj is such that the values assigned to all pairs (u\Qi, 6 j ), 
with i < j ,  axe the same. Just as with the classical Ramsey theorem, an 
analogous finitary stochastic Ramsey theorem is obtained. Furthermore, 
with appropriate finiteness assumptions, the time one must wait for the last 
stopping time (in the finitary case) is uniformly bounded, independently of 
the probability transitions. The results are generalised to any finite number 
k  of colours. A stochastic extension is derived for hypergraphs, but with 
rather weaker conclusions. The stochastic Ramsey theorem can be applied 
to the expected utility of a Markov chain to conclude that on some infinite 
increasing sequence of bounded stopping times the expected utility remains 
the same to within e (also in probability).
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1
Introduction

1.1 Stochastic Ram sey Theorem

Let C  be a finite set whose elements axe colours. Ramsey [13] proved that, 
for every function that assigns a colour c(k,l) E C to every two positive 
integers k < I, there is an increasing sequence of integers n\ < ri2 <  ... such 
that c (n i,712) =  c(ni,rij) for all i < j .  (For a textbook treatment, see [7].) 
We prove a stochastic Ramsey theorem.

To state our result, we first establish some notation. We denote the set of 
natural numbers by N. For all n in N, let Jn be a nonempty countable set 
of states. We regard the sets Jn as discrete spaces, and define the history 

space to be ft := J^n For any n in N, denote Ili<m<n by f2n. Any 
q in Qn is a partial history with length n, and we denote the length of q by 
||q||. Write Q<O0 for [Jn f2n. We give Q the Tychonoff product topology: for 

a basic open set U in the Tychonoff product f2, we have U =  Um with 
each Um open in Jm and with the support of U , i.e., {m : Um J m}, finite. 

Let T n be the <7 -algebra on 12 of Borel sets generated by the basic open sets 
with support included in {1,..., n}. That is, T n is the collection of all events 
included in 12 that are known at stage n to be true or false (so knowable) 
from the course of history. Then {.Fn}n>o is a filtration, i.e., an increasing 
family of sub-<r-algebras of V(Q) : Tq C T \ C ... C V(Sl), where V(Cl) is 
the power set of f2. Define Too to be the cr-algebra of Borel sets on fi. Let
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Chapter 1. Introduction

P  be a probability measure on (ft, Poo). Call (ft, Poo) and (O, Tqq, P) the 
measurable spa-ce and the probability space constructed from the sequence 

{ J n }neN  of sets of states, respectively.

We write an element in ft as uj =  {a>(n)}n€N where a ;(n) is in Jn for each 
n. We denote by uj\n the partial history of uj truncated at stage n, i.e., 
u \n  := (u;(l), ...,u;(n)}. Define the basic open set determined by a q in ftn 
by B(q) := { uj G ft : uj\n =  q}. A mapping r  : ft —» {0,1,2,..., oo} is called 
a stopping time if

Vn < oo, { r =  n} =  {w G O : t ( uj )  = n} G Tn.

That is, by stage n  the decision whether or not to execute some action 

(referred to as ‘stopping’) is a ‘knowable’ event in relation to the information 
so far disclosed by history. For every n  in N, we denote by Tn the collection 

of all stopping times r  on f2 bounded by n, and put T  := (Jn For any 
r  G T  and any uj G O, it is natural to denote the partial history of uj 

restricted to r  by

u j \t  :=  w |t (w )  =  ( w ( l ) ,  . . . ,w ( r ( u / ) ) } .

We call u j \ t  the stopping place of r  on u j , and denote by ST : =  { u j \ t  : u j  €  0} 
the set of stopping places of r . We say that r  is consistent with q € On, 
and write r  G T(g), if t ( u j )  > n  Vu; € B{q). Note that the collection 7” of 
bounded stopping times has a natural partial order. Namely, for any two 
bounded stopping times cr,r € T , we say that a  is ahead of r ,  and write 
a < r , if < j ( u j )  < t { u j )  Vuj G ft. Denote the partial ordered pairs of bounded 
stopping times by

7<2̂  := {(cr, r )  : cr, r  G T  and a < r}.

We drop the subscript '< ’ when context allows. We also need the following 
notion of a stochastic colouring.

Definition 1.1. Given a set C o f colours, a stochastic colouring f  is a 

mapping from Z  := {(<?, r)  : q G fl< 00  and r  G T(q)} to C. The induced 
stochastic colouring f  of f  is a mapping from x. ft to C and defined by

fo,T{u) :=  /(w|cr, r )  V(<r, r )  G T ^  Wuj G f t .
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Chapter 1. Introduction

Com m ent 1. The set Z  here is the key for Definition 1.1 and later in 

the proof of Theorem 3.2 and Theorem 3.13. There some of the arguments 
reduce to the consideration of the case when all J{ are finite. In this circum­

stance, Z  is countable. To see this, first note that, for given n in N, each 

r  in Tn is uniquely encodable by reference to its stopping places, which are 

contained in a finite set of cardinality Ili<n 1*̂ 1- By the same argument, for 
a given r  in Tn, the set of partial histories q with which r  is consistent, i.e., 
r  G T(q), is finite.

Note that if some Ji is infinite, then Z  is uncountable. To see this, suppose 
that J i =  N. For any i C N ,  define a mapping ta ■ Cl —► N by

2 if a;(l) A.

Each ta is a stopping time bounded by 2, since {w €  fi : w(l) € A}  € T \. 
Furthermore, if A  ^  B, then ta =£ tq . Because there are 2 N many such t a , 
Z is uncountable.

Com m ent 2. For the definition of fa,r (w), note that if r  and cr are bounded 
stopping times with t  > a, then r  is consistent with w|<r, as

t { u )  >  j|u;|cr|| =  <j(w) Vw €  Q .

Com m ent 3. We can replace ‘bounded’ r  by ‘finite’ r  in the definition of 
stochastic colouring. Indeed, if the replacement were made, the proofs of all 
theorems in this thesis would still only refer to the action of the stochastic 
colouring on all bounded stopping times.

We are now ready to state our stochastic Ramsey theorem. It implies the 
classical result when | Ji\ =  1 Vi E N.

Theorem  1.2. (Stochastic Infinitary Ramsey Theorem). Given a probabil­
ity space (Cl, P) constructed from, a sequence {Ji}ieN o f sets o f states 
and a stochastic colouring f  with values in a finite set C, then for ev­
ery e > 0  there exists an increasing sequence of bounded stopping times
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Chapter 1. Introduction

9\ < $ 2  < 6 3  <... such that

p (foi,92 = h ifii VI <  * < j )  > 1 — e,

where f  is the induced stochastic colouring of f .

Com m ent. The complete version of the probability formula above is 

P({u/ G n  : feud2 {v) = hifijiw ) VI < i < j} )  > 1 -  e.

Given an increasing sequence of bounded stopping times 6 \ < 6 2  < 6 3  <•••, 

we note that the set (u; G : fdi,d2(w) = VI < i < j }  is in JFoq. In
this thesis, whenever a set S  is trivially in Poo, we use the shorthand P(S) 

for P ({oj : w G S'}), and omit the proof of that S  G Poo-

Note that some special cases of the induced stochastic colouring /  in Defi­
nition 1.1 will essentially induce results in the deterministic Ramsey theo­
rem. For example, suppose that f a<T is a constant function on ft for each 
(cr, r )  G T ^ .  Then we can simply confine ourselves to the sequence of 
bounded stopping times {0n} in which 9n(uj) =  n Vw G 0  Vn > 0. The 
problem of finding an infinite sequence of bounded stopping times on which 
f  is monochromatic is here simply a problem in classical Ramsey theory.

Shmaya and Solan [16] considered a stochastic Ramsey theorem in a general 
probability space (f2, P) with a given filtration {Pn} (where T n C 
Vn G N). They defined an NT function in the stochastic setting as follows. 
An NT function is one that assigns to every nonnegative integer n  and every 
bounded stopping time r  an P n-measurable function CntT defined over the set 
{ t >  n} with range C. They also imposed an P-consistency requirement: 

if t \  =  T2 >  n  on F  with F  G Fn, then cn,T1 =  Cn,r2 on F. When cr 
and t  are two bounded stopping times with a < r , they put cajT(uj) := 
c0.(a,) T(u;), and thus made cCT)T an P CT-measurable random variable. Under 
these conditions, they derived the weaker conclusion of the existence of a 
stepwise monochromatic path rather than a Ramsey theorem: for every 
finite set C  of colours, every P-consistent NT function c and every e >  0, 

there exists a sequence of bounded stopping times 0 <  9\ < ^ 2  <  ••• such 
that P(c0 lt02 = c$i)si+1 Vi) > 1 — e. In their paper they commented that ‘the
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Chapter 1. Introduction

natural stochastic generalisation of Ramsey’s theorem requires the stronger 
condition that P(cquo2 =  c#.^. VO < i < j)  > 1 — e. We do not know whether 
this generalisation is correct.’ Their hunch turned out to be right, at least 
in our ‘tree’ context, as the current thesis demonstrates.

Our stochastic colouring in Definition 1.1 is almost the same as an NT 
function in the case that the measurable space (fi, Too) is constructed from 

a sequence of sets of states, except that we do not need the ^-consistency 
requirement in Definition 1.1. Given a partial history q G fl<00, consider 
two bounded stopping times t\,T2 G T{q) where uj\t\ =  oj\t2 Vo; G B(q). 
In this context, the ^"-consistency condition of Shmaya and Solan requires 
that f(q ,r i)  =  f(q ,T2).  That is, for any q G 0 <0o and any r  G T(q), it is 
the subset {u)\t  : w G B(q)} of {u \r : u> G fl} that determines the value of 
f{q, r ) . By contrast, our Definition 1.1 places no such requirement: the value 
of f(q , t ) in the above context is allowed to be determined by the larger set 
{u \t  : u> G O}; so Definition 1.1 also includes stochastic colourings with T -  
consistency. Note that, in the case of (D, Too) constructed from a sequence 
of sets of countably many states (Markov chain), the Stochastic Infinitary 
Ramsey Theorem (Theorem 1.2) not only includes the result of Shmaya and 

Solan: Ptfexfo  =  fdiA+iV«) >  1 “  c, but also answers affirmatively their 
open question.

1.2 The structure o f this thesis

The outline of this thesis is as follows. After an introduction to the stochastic 
Ramsey theorem in this chapter, we review the classical Ramsey theorem in 
Chapter 2. Besides the standard proof, we give a detailed proof analogous 
to the proof of the stochastic Ramsey theorem to be shown in Chapter 3. 
One can compare these proofs for a deeper understanding of the Ramsey 

theorem in both deterministic and stochastic formulations.

In Chapter 3, we prove the Stochastic Infinitary Ramsey Theorem (Theorem 
1.2) and results analogous to the classical finitary Ramsey theorem. For a 
more detailed introduction of this chapter, please see Section 3.2.

9



Chapter 1. Introduction

In Chapter 4, we consider the problems of hypergraphs in the Ramsey theory. 
In the deterministic context, given a natural number k > 2, we colour every 
set of k  natural numbers n\ < n,2 < ••• < nf- and check for the existence 
of an infinite monochromatic subset A  of N in the sense that every subset 
of cardinality k  in A  is assigned the same colour. While the extension of 
the deterministic (classical) Ramsey theorem to hypergraphs is a standard 

result, it is by no means a trivial problem in the stochastic variation. We 
have to first determine the best suited definition of colouring for hypergraphs 
in the stochastic context. The complexity of colouring multiple bounded 

stopping times then denies any easy generalisation of the proofs in Chapter 
3, and in Theorem 4.2 (for k = 3) we have only a result weaker than the 
conjectured one.

In Chapter 5, we present an application of the stochastic Ramsey theorem 
in expected utility theory. We refer to a utility function u to value a random 
variable X  which is regarded as a random monetary result. Our conclusion 
is that, for any e >  0, we can find an infinite increasing sequence of bounded 
stopping times such that with probability greater than 1 — e, there exists 
a real number r  and the expected utility on those stopping times is always 
bounded by [r — e, r +  e]. (cf. Theorem 5.1)

10



2
The classical Ramsey 
theorem

Given k in N, we denote { ( n i , n * )  : n; € N VI < / <  /c; ra* <  rij VI <  i <
(k)j  < k} by N< . If no ambiguity, we drop the subscript ‘< ’.

For simplicity, we here only apply colour functions c from to a set of 
colours C, but we shall consider the general case that the domain of c is 
N(m) for any to =  2,3,... in Chapter 4. Recall the classical Ramsey theorem 
for the case of .

T heo rem  2.1. Given a set of colours C  =  {c i,..., c*}, for every function c : 
f^(2) c ,  there is a sequence of integers n\ < ri2 <  ... such that c (n \,n 2 ) = 
c(ni tn j) VI <  i < j .

We give in Chapter 3 a stochastic generalisation, which includes Theorem
2.1 as a special (deterministic) case. The proof of our more general version 
may thus be adapted to apply directly to the classical setting, so giving a 
new proof. Rather than present this ‘stripped-down’ proof a t a later stage, 
we give it here to aid a better understanding of the proof strategy of Chapter 
3 in the more general (so more complex) setting. Our proof here highlights 
in Lemma 2.3 (see citations in Remark 2 ) properties arising in the definition 
of the Ellentuck topology. As a preliminary, we include a standard proof, 
though not as in [13], for the two-colour case to introduce some ‘labelling’

11



Chapter 2. The classical R am sey theorem

terminology.

In what follows, subsets of N may sometimes usefully be also termed ‘sub­
sequences’ (of the sequence of natural numbers).

Theorem  2.2. (Two-colour Ramsey Theorem) Given a set o f colours C  =  
{Red, Blue}, for every function c : —> C, there is an increasing sequence
of integers n\ < n<i < ... such that c (n i,n 2 ) =  c(n*, ) VI <  i < j .

First Proof (Standard Proof). Under the given function c, we shall construct 
inductively an infinite sequence Q N and a sequence {Tj}j>o of
subsets of N with T^+i C T{ Vi. In doing so, we shall label each element in 

{si}ieN with a symbol r or b. We finally show that any infinite subsequence 

of {si}ieN with identical label is the desired sequence.

Let To =  N and si =  1. We write R i := {n € To : c (si,n ) =  Red} 
and B\ := {n E To : c(si,n ) =  Blue}, i.e., B \ =  To \  ({si} U Ri). Then 
at least one of R \ and B \ is infinite. If R \ is infinite, let Ti be R \ and 
label si with r; otherwise let Ti be B \ and label si with b. Suppose that 
we have already obtained the labelled initial subsequence {si, ...,s*} and a 
decreasing sequence {T i,...,Tk}, i.e., Tj+i c  Tj VO < i < k. The induction 
assumption is that, for each i with 1 < i < k, Si E T*_i and c(sj,n) is the 
same colour for all n  in T*. Let Sk+i be the minimum element in T*,. Write 

Rk+i := (n  E Tfc : c(sfc+1 ,n) =  Red} and B k+ 1  := {n  E Tk : c(sfc+i,n )  =  
Blue}. If R k + 1 is infinite, let Tk+i be R k + 1 and label sk + 1  with r; otherwise 
let Tfc+i be B k+i and label sk+i with b. Then the new initial subsequence 
{ s i , ..., Sfc+i} and the decreasing sequence {T i,..., Tk+i}  satisfy the induction 
assumption. In this way, we obtain a labelled infinite sequence {sj}^^. We 

write R :=  {i £ N  : Si labelled with r} and B  := {i E N : Si labelled with b}. 
For any i , j  E R  with * <  j , Sj E Tj. So c(si,Sj) =  Red. By similar 
arguments, c(si,Sj) =  Blue Wi,j E B  with i < j .  At least one of R  and B  

is infinite, which completes the proof. □

We now prove Theorem 2.2 by a different method, which will shed light on 
the approach in the proof of the Stochastic Ramsey Theorem introduced in 
the next chapter. For the preparation of the proof, we analyse the charac­
terisation of one special infinite sequence of natural numbers under a colour

12



Chapter 2. T he classical R am sey theorem

function c and obtain a lemma as follows.

Lem m a 2.3. Given a colour function c, there exists an infinite sequence 
A  =  (o i,a 2 ,...) C N (ai < aj Vi <  j )  with a partition A  =  R(A) U B (A) 
having the following property: for any infinite subsequence A! C A  and any 
finite subset S  C A 1, there exists an infinite subsequence T  =  (ti, ti, •••) C A ' 
such that

c(n, tf) = Red Vn € S  n  R(A) V/ > 0 (2.1)

and
c(n, t{) =  Blue Vn G 5  f 1 B (A) Vi >  0. (2.2)

Rem ark 1: The partition above may be degenerate, that is, one of the
partitioning sets of A  may be empty. This lemma is the deterministic version 
of Lemma 3.7.

Rem ark 2: Note that the two conditions of ‘5  finite’ and lT  C A 1 here are 
key to the defin ition  of the basic open sets of the Ellentuck topology, (cf.

[9])

Proof We first extract an infinite subsequence A  = {oi}i>o of N by a la­
belling process, each element being labelled with r or b. We shall then show 
that the sequence A  has the desired property and the two collections of ele­
ments labelled with r and b are respectively the two partitioning sets of A, 
R(A) and B(A).

Step 1: We construct an increasing sequence of finite subsets {Ei}i>o of N 

with Eq =  0 and Ei C Ei+i Vi >  0, a sequence of infinite sets {<?j}j>o of N 
with Go =  N and Gi 3  Gj+i, and a partial labelling of each Gi with symbols 

r and b. In doing so, we pick an infinite sequence {oi}i>o of labelled natural 
numbers such that {«o,..., ftj} C Gi Vi, in an inductive procedure.

Set oo =  1.

Suppose that we have defined ao < ... <  a*, {Eo, ...,E i}  and (G o,..., Gi}. 
We define Ei+1 and G{+1 by cases.

13



Chapter 2. The classical R am sey theorem

C ase 1, First suppose that for any infinite sub-subsequence G C G{, there 

exists an infinite subsequence Tq =  {^1 ,^2 , •••} C G with tm < tn Vm < n 
such that

c(cii, ti) =  c(a, t[) = Red V/ >  0 Vo G Ei.

Then we label Oj with r, and put -E,t+i =  Ei U {a*}, G* + 1 =  G^

C ase 2. Now suppose otherwise; then there exists an infinite subsequence, 

say Gi{ai)(Ei), of Gi with the following property. Given any T  =  {t/}/>o C 
Gi{a,i){Ei) with c(a, t{) =  Red VZ > 0 Va G Ei, there exists N  G N such that

c(cti, ti) =  Blue VZ >  N.

Indeed, otherwise c(ai,ti) =  Red infinitely often, say on {£j}/eN G T; then 
on we have

c(ai,t'i) — c(a,t'i) =  Red VZ > 0 Vo G Ei.

Choose such a Gi(a,i)(Ei). We let Gi+\ be Gj(ai)(.Ej)U{ao,..., Oj}, so Gj+i C 
Gi; then label ai with b, and keep Ei+ 1 =  Ei.

We let Oj+i := min{n G Gi+i : n > a*}. This completes the induction.

Denote the sequence {ao,oi,...} obtained above by A. Hence, A  is the 
infinite sequence all of whose elements are labelled with either r or b. The 

union of the finite sets {I?t}t>o is the union of all numbers labelled with r 
in A.

S tep  2: We denote the two subsets of A  labelled with r and b respectively, 
by Sr and 6 5  respectively. That is, Sr =  U i> 0  Ei and Sb =  A \ S r. We show 
that the two partitioning sets Sr and Sb of A  can fulfill the roles of R(A) 

and B{A). Suppose A ' =  {a^, a^, •••} is an infinite subsequence of A  and 
5  is a finite subset of A 1. We show the conditions (2.1) and (2 .2 ) hold for 
an infinite subsequence T ' =  ...} C A!, via an intermediate infinite
subset Ta> =  ...} C A' with the property T ' C Ta>- (T& will take the
form Tq when Case 1 above apphes.)

We define for a finite S

d(S) := min{n : S  C {a* : 0 < i < n}}.

14



Chapter 2. The classical R am sey theorem

To obtain the result (2.1) in Lemma 2.3, we consider a fixed S  and the finite 
sequence Ed^  in A. Recall that Ei = [at : 0 < I < i; at is labelled with r}. 

It follows that Sr fl S  C E d(g)-

On the one hand, if E d($) 0? by the definition of label r in respect of

the last a in Ed($)> f°r any infinite subsequence in Gd(s)> and hence in 
particular for A ' (note A! C A C  Gd(s)), there exists an infinite subsequence 

Ta ' =  {**} j>o C A! (as in Case 1 above) such that

c(o, ti) =  Red Va G E d($) Vi > 0- (2-3)

Therefore,
c(a, ti) = Red Va G Sr fl S  Vi > 0,

i.e. condition (2 .1 ) holds.

If on the other hand Ed($) =  0? then SrDS =  0 and (2.1) will hold vacuously, 
provided we define Ta> to be, say A'. Note that result (2.3) still holds in 
this case, albeit vacuously.

We now show that the condition (2 .2 ) in Lemma 2.3 also holds by reference 
to the same infinite sequence Ta '. Without loss of generality, we suppose 
Sbn S  ^  0 and consider an element indexed as am. Since am is labelled with 
b, by the definition of Gm+i, for any infinite sequence K  = (k\, •••) C

Gm + 1  with
c(a, hi) = Red Vi >  0 Va G Em, 

there exists N m G N such that

c(am, ki) =  Blue Vi >  N m.

Since Ta> C A' C A  C Gm+i, E m C Ed($) and (2.3) holds, we can take 
Ta> =  {tj}i>o for K  above. Moreover, for any element am> in Sb fl S, we can 
likewise take Ta> again for K  above. Hence, there exists a corresponding 

Nm' G N such that (with U =  k{)

c(am/,ti) = Blue Vi > Nm>.

Because Sb fl S  is finite, we can validly define N  to be the maximum of all 

the numbers N m'. Therefore, for Ta> — {tz}i€N as above

c(a, t{) = Blue Va G Sb fl S  Vi > N.

15



Chapter 2. The classical Ram sey theorem

Define a new infinite sequence T ' = {^}ieN C such that =  ti+N Vi G N. 
This is the desired infinite subsequence for the set S  in the infinite sequence 
A!. □

Remark: In fact, we do not need the full strength of Lemma 2.3 in the 
proof of Theorem 2.2: we only need the special cases A  =  R(A), or B(A). 
We prefer to establish a more informative result, mainly for the analogy 
with the situation in the stochastic Ramsey theorems later.

Proof of Theorem 2.2 from Lemma 2.3. In the infinite sequence A  obtained 
from Lemma 2.3, at least one partitioning set of R{A) and B{A) is infinite. 
W ithout loss of generality, assume R(A) is infinite.

Let n\ = a\. We construct the desired infinite subsequence C
R(A) C N inductively. Suppose that we have already obtained the initial 
subsequence (ni,...,nfc). Since (ni,...,rifc) C R{A), by (2.1) in Lemma 2.3, 
there exists an infinite subsequence T k =  C R{A) with the property
that

c(a ,tk) =  Red Vo € {ni, ...,7ifc} Vi >  0.

Denote nfc+i to be t k. In this way, we find an infinite sequence {n*}ieN C 
R(A) C N where

c(ni,rij) =  Red Vi <  j.

Similarly, if B(A) is infinite, we can find an infinite sequence {rii}jGN C 
B(A) C N where

c(rti,nj) = Blue Vi <  j.

□
For completeness, we include the standard derivation of Theorem 2.1 from 
Theorem 2.2.

Proof o f Theorem 2.1. We prove this by induction on the number of colours. 
Recall that =  {(m, n) : m  < n; m, n  € N}. Suppose that given 
the natural number k > 2 , for every function that assigns a colour c : 
N<2) —y {ci,... , Cfc_i}, there is a sequence of integers n \ < < ... such that
c (n i,n 2) =  c(rii, nf) VI < i < j .  For any function c : C = {c i,..., c&},
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we define a new function d  : —> { c i , c * ; _ 2, c} such that for any
(ra, n) G

f  c(m ,n) if c(m ,n) G {ci,...,cfc_2} 
c (m, n) := <

( c if c (m ,n ) G {cfe_ i ,c fc}.

Then by induction assumption, there is an increasing sequence of integers 

7ii <  n 2 <  ... such th a t d { n ^ n j ) has the same colour c G { c i, . .. ,Cfc_2 , c} 

for all (i,^‘) G N^2). If c G {ci, ...,c*_2}, then  c(n i ,r i j) =  c V ( i , j )  G N ^ .  If 

c =  c, then by Lemma 2.2, there is an  infinite subsequence {n ^ ,n ^ ,...} C 

{ n i ,n 2, ...} such th a t cin'^rdf) =  c (n ^ ,n ') V(«,j) G N ^ .  In  either case, 

we have obtained an infinite sequence {si, s2, ...} C N such th a t c(si, s2) =  

c(si, s j)  V ( i , j )  G N^2\  which completes the proof. □

We can go further to deduce the finitary version of the Ramsey theorem, 
which says that, given a set of finitely many colours, no m atter how large a 
target size for a monochromatic subset, there exists a bound such that under 
whatever colour function defined on N(2) we can find a monochromatic subset 
of the target cardinality within that bound. (See [7] for reference.)

Theorem  2.4. (Finitary version) Given a set o f colours C  =  {c i,...,c^} 
and the natural number m, there exists h = n (m ) G N such that for every 
function c : N^2̂  —f C, there is a sequence of integers n \ < n 2 <  ... <  nm < n  
such that c (n i,n 2) =  c{n^nj)  VI < i < j  < m.

Proof The set of all colourings /  is [C]N(2): the finite set [C] is given the 
discrete topology, and [C]N(2) the product topology. By Tychonov’s theorem, 
this space is compact. For each subset in N of size m, say Q = {ni, n2, ...nm} 

where < n j  VI <  i < j  < m, the set C q  of colourings in [C]N(2) in which

c (n i,n 2) =  c(ni,n j) VI <  i < j  <  m

is an open set (by definition of the product topology). The Infinitary Ramsey 
Theorem (Theorem 2.1) asserts that these sets cover the whole of [C]N(2). By 

compactness, some finite collection {Cqx, ..., Cgt} of these sets also covers 
[C]N(2). This implies that every colouring on U*= 1  Qi will have

c(n i,n 2) =  c(n i,n j) VI <  i < j  < m,

17
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on at least one of the Qi. Then we may take for n  any bound of |Ji=i Qi 
such that VI < l < t  Vnm € Qi, nm < n . □

R em ark : There are alternatives to this proof: for instance, one can reor­

ganise the proof using ‘sequential compactness’ or apply the ‘compactness 
theorem for first-order logic’, (cf. [7])

18



3
The main stochastic theorem

3.1 Examples

We first give several examples of stochastic colouring all based on the same 
probability space (fl, P ) which we now define. Referring to Section 1.1, 
let Jn = {Head, Tail} Vn € N. Let P  be the usual product probability 
measure associated with elements of Jn being given equal measure. So, for 
any partial history q € fln,

P{w : uj\n =  q and u)(n +  1) =  Head \B(q)) =  1 / 2 ,

and
P (uj : uj\n = q and u (n  +  1) =  Tail |B(q)) = 1 / 2 .

We can view this model as tossing a fair coin infinitely many times, and 
visualise fl<00 as generating a binary tree F. A partial history is a finite 
sequence of Head and Tail; a  bounded stopping time is an instruction of 
when to stop referring only to the revealed partial history. An example of 

what is not a bounded stopping time is the instruction to stop at the first 
time when you get a Head. T hat is because the stopping time would be 
infinity if the randomly chosen history turned out to be Tails forever. Below 
is an example of an increasing sequence of bounded stopping times.

19



Chapter 3. The m ain stochastic theorem

6 \ =  min{5, the first time Head shows up},

0 2  =  min{1 0 , the third time Head shows up},

$3 — min{12, the fourth time Head shows up}.

Examples of stochastic colouring axe as follows.

1 . Let C  =  {Red, Blue}. For any partial history q = (q( 1 ),..., q(n), q(n +  
1) =  Head), let f ( q ,r)  =  Red Vr G T (q )‘, for any partial history 

Q =  - ,q (n ) ,q (n  +  1) =  Tail), let f (q ,r )  =  Blue Vr € T{q). 
That is, the value of /(<?, t )  is determined by the last coordinate of 
the partial history q only.

This example is similar to  the one given by Shmaya and Solan in [16], 

which shows that, in the stochastic Ramsey theorem, the condition 

e >  0 is indispensable. Consider any three bounded stopping times 

01 < 02 < 03 in which 02 €  Tn  for some N . Note th a t there exists a 

history uj such th a t the last coordinates of the two partial histories of 

uj restricted to  0\ and 02 are different, i.e., uj\0i (0i (uj)) 7̂  uj\02(02(u )). 

To be specific, for the history uj\ =  (w i(l),u ;i(2) , ...) in which uji(k) =  

Head V/c €  N, it follows th a t /(w i|# i, #2) =  / ( ^ l l^ i ,  $3) =  Red. Now 
consider UJ2 =  (^2(1),^2(2),...) in which uj2(k) =  Head VI <  A; <  

||u>i|0i|| and uj2(k) =  Tail Vfc >  ||u;i|0i||. I t follows th a t f(uj2\02,03) =  

Blue, and P ( B ( uj2\02)) ^  1/ 2^ .  Note th a t B ( uj2\0i ) D B ( uj2\02)i from 

which we may infer th a t P (feu02 =  fdu93 =  f 62,63) < 1 -  l / 2 N .

2. Let C  =  {Red, Blue}. Given any function g : fi<oo —>■ C, define a 
stochastic colouring /  such that, for every partial history q, f(q , 0 ) =  
g(q) V0 € l~(q)- Thus, the stochastic colouring only depends on the 
partial history, but it is still a more general stochastic colouring than 

the one in the preceding example. For convenience, with this / ,  we 
label a partial history q with r if f(q ,0 )  =  Red W  G T(q), and with 

b if f(q ,0 ) =  Blue V# G T{q). If the Stochastic Infinitary Ramsey 
Theorem (Theorem 1 .2 ) is to be true in this context, then we should 

be able to find a partition H =  R  U B  with R ,B E  P n  for some N
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in N, and an infinite increasing sequence of bounded stopping times 

N  < $i < 6 2  < ... such that

P{<jj E fl : w\Qi is labelled with r Vi E N|R) >  1 — e

To find a sequence {0*} with this property, recall in measure theory 
that a set S r  = { u j  : oo\n is labelled with r infinitely often} is in Poo and 
can be approximated in probability by a Borel set R  in (Jn T n. This 
means that in the set R, with very large probability (i.e., >  1 — e), we 
will come across infinitely many partial histories labelled with r along a 
randomly selected history. If R  is e-maximal, then in its complement 
one may similarly find a Borel set B  in which partial histories axe 
labelled with b eventually. We will find an increasing sequence of 
natural numbers {TV*} from which we can then define Qi simply for 
each i to be the bounded stopping time which stops at Ni unless we 
come across the ith partial history in R  labelled with r or the ith partial 
history in B  labelled with b. More detailed and rigorous analysis will 
appear in Lemma 3.8.

3. Let C  =  (Red, Blue, Green}. For each pair (q ,r ) in Z , i.e., q E fl<oo 
and r  € T (q ), we denote P({w € fl : w(r(u;)) =  Heaxf}|B(^)) by 
Pg)T(Head) and P({w € fl : a;(r(u>)) = Tail}|.B(#)) by Pg)T(Tail). Let

4. Let C = {Red, Blue}. For a pair (q ,r)  in Z, we say that r  is uniform  
under q if there exists n  in N such that r(cu) = n  for all a; in B(q). 
For each pair (q, r)  in Z, let

and
P{u  E f l : w\9i is labelled with b Vi G N|J3) >  1 — e.

Red if Pg)T(Head) >  Pq,T(Tail);
f{<hT) := i Blue if P9)T(Head) <  Pg)T(Tail);

Green if P 9>r(Head) =  Pq,T{Tail).

Red if r  is uniform under q\ 
Blue otherwise.
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5. We can release the constraint that /  is defined conditional on B  (q) 
in both example 2 and 3 above. For instance, in example 2, given a 
partial history q in f2<00, we can simply define P9)T(Head) := P({o; G 

ft : =  Head}) and PgjT(Tail) similarly, for all r  G T{q).

6 . Let C  =  {Red, Blue}. For any bounded stopping time r  € T, define 

bT to be the minimum bound of r  such that r  € %T but r  ^ 7 ~bT-i-  
For each pair (q, r )  in Z , let

J Red if bT is even;
' ( B l u e  if bT is odd.

See Chapter 5 for an application of the stochastic Ramsey theorem in ex­
pected utility theory.

We show two mappings below that are not stochastic colourings. Let C = 
{Red, Blue} and ft =  J N for a  finite J  in both two examples.

1. For any partia l history q =  (<?(1),..., q(nq)), we say a partia l history 

h — (h(l), ...,h(nq),h (n q +  1 ),..., h(nh)) is consistent with q if h(i) =  

q(i) VI < i < nq. T h at is, for any u j in B(h), oj\nq =  q and uj\nh =  h, 
w ith n/j, >  nq. Denote the set {(<7, h) : q G D<00; h is  consistent w ith q} 
by X . We define a mapping g : X  —»■ C  and an induced m apping 

g : T (2) x f i - > C b y

:=  9(u \<t , u \t ) V(cr,r) G T ®  Vu> G ft.

2. For any bounded stopping time r  G T , we say a partial history q is 
unrevealed by r  if ||^|| >  t ( u j )  Vo; G B{q). Denote the set {(r, q) : r  G 

7”; q is unrevealed by r}  by Y. We define a mapping 7  : Y -» C  and 
an induced mapping 7  : x ft —> C  by

7<vrM  :=  V(cr,r) G T (2) Va; G ft.

Recall that for any (<r, r )  G the induced stochastic colouring /<r,r(w) =  
/(o;|(T, r )  is determined at stage o;|<j. In examples above, both the formula­

tions of &t,t(w) and 7 <t,t(^ ) include the partial history o;|r, which means one 
has to determine ga,r{w) and 7 <rjT(w) at a later stage o;|r. More rigorously 
fa,r is Pa-measurable but both ga<T and are only P T-measurable.
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3.2 Outline of the proof

It is clear that a proof similar to the standard proof of Lemma 2.2 is not 
enough for the two-colour case in the Stochastic Infinitary Ramsey Theorem 

(Theorem 1.2), as fGifij is randomly selected for each pair ( i,j) . We defer 
its proof to Section 3.5 and firstly focus on the following theorem, which 

contains the essence of the argument.

Theorem  3.1. (Finite-state Two-colour Stochastic Partition Theorem). 

For a set C = {ci,C2 }, a probability space (ft, Too, P) constructed from a 
sequence o f sets o f finitely many states, and a stochastic colouring f  with 
values in C, for every e >  0, there exists a natural number N , two sets 

S \ ,S 2 £ T n  with S \ U S2 =  fi, and a sequence of bounded stopping times 
6 1  < 0 2  < ... such that

P { f0i,Gj =  C l,  VI < i <  j |5 i)  > 1 -  e, if  P (S i)  >  0,

and

P(fOi,0j =  C2 , VI < i < .7 IS2 ) >  1 — c, i f  P (S 2 ) >  0.

The main idea in the proof of Theorem 3.1 is to view Ct<OQ as a tree. (See [10] 
for an account of probability theory on trees.) In this tree setting, which we 
develop in Section 3.3, we can define new finer filtrations by modifications 
(priming) of the tree structure. Our approach can be interpreted, but only as 
a m atter of convenience, in the language of Markov chains, via the projection 
process X n(u>) := u/|n. (For other aspects of Markov chains and Ramsey 

theory see e.g. [6 ].)

After Theorem 3.1 proved in Section 3.4, the remaining steps to prove The­
orem 1.2 are straightforward. We shall give a brief proof of a generalised 
version of Theorem 3.1 for any set C  of finite colours in the latter part of 

Section 3.4. In Section 3.5, we consider the case that some J* in {Jn}n€N 
are countably infinite sets: we sacrifice a very small probability relative to 
€, and ignore all but finitely many states in each Jj. This method reduces 
the problem of countably many states to a problem of finitely many states.

23



Chapter 3. The m ain stochastic theorem

Similarly to Ramsey’s theorem, a finite version of Theorem 1.2 can be proved 
by compactness arguments. This is done in Section 3.6. Surprisingly, in the 
case that J{ is a finite set for every i, we obtain in Theorem 3.2 below a 
strong finite version of Theorem 1.2 for all stochastic colourings /  and all 

probability measures P  defined on the measurable space; that is, n(m, e) 
mentioned below does not depend on /  or P.

Theorem  3.2. (Strong Stochastic Finitary Ramsey Theorem). For a mea­
surable space (fi, Poo) constructed from a sequence of sets each containing 
finitely many states, a set C of finitely many colours, a natural number 
m  > 2 and any e > 0, there exists n  = n (m , e) € N such that, for every prob­
ability measure P  defined on (ft, Poo) and every stochastic colouring f  with 
values in C, there exist m  bounded stopping times 6 \ < 6 2  <  ... <  9m < n  
with

p {hi,e2 =  h ifij VI < i < j  < rn) > 1 — e.

3.3 The m odel

The set f2< 00  ordered by sequence extension forms a directed tree F. (This 
is a graph theoretic tree. We regard it as directed downwards and call it 
the tree of partial histories. For convenience, denote the vertex set of F by 
Vp, i.e. Vp =  n <OQ. A vertex in F is a partial history, and in particular, 
the root of F is the empty partial history. In the tree F, we see that a 
directed edge is an extension of a partial history, while an infinite directed 
path from the root of F is a history. Define a covering set V  in F to be a 

subset of Vp such that any path in F goes through infinitely many vertices 
in V. Hence, at each vertex q G V, along any path u  with u  € B(q), there 

exists a unique vertex q^(uj) which is the first vertex in V  gone through 
by path a/ beyond q. Define a covering subforest of F generated from a 
covering set V  in F to be a forest with vertex set V  and directed edge set 
{(<?,gl~(u;)) : q € V, uj 6  B(q)}. For any covering subforest G of F, we 
denote its vertex set by Vq. Any covering set V  in a covering subforest G 
determines a covering subforest of the covering subforest G. Note that a
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covering subforest of F is a  subtree of F if and only if V  includes the root of
F.

Given a covering subforest G of F, we say that a stopping time 6  is adapted 

to G if (j j \6 €  VG \/u > €  ft. Given a stopping time 6 adapted to G, we denote 
the set of vertices {ui\6  : w € fi} by 5g(G), and call it the set of stopping 
places of 0 in G, so extending the notation in Section 1.1 (by emphasising 
restriction to certain subforest). Intuitively, a stopping time 6  is adapted to 
G if, according to 6 , we always stop at a partial history which is a vertex in

G, and Sq{G) is the set of all such vertices determined by 6  in G.

The definition of a covering subforest is closely related to bounded stopping 

times. Given a covering subforest G of F, for any n  > 0, define crn(G) to be 
a bounded stopping time adapted to G such that, for any w G fi, o;|<rn(G) is 
the (n +  l)st vertex in G along the directed path u j  in F. Denote 5^n(G)(G) 
by Ln(G), and call it the n th level set of G. We see that VG = (Jn > 0  Ln(G), 
from which we may infer that the sequence {Ln(G)} generates the covering 
subforest G of F. The following lemma shows a way of constructing a cover­
ing subforest of F from a sequence of covering subforests of F. We call this 
a fusion lemma by analogy with set theory usage (see e.g. [8 ], Chapter 15).

Lem m a 3.3. (Fusion Lemma). Given a sequence of covering subforests 
{Gn} of F with VGn 2  Vcn+1 Vn >  0 , the sequence {Lra(Gn)}n>o generates 
a covering sub forest G; of F.

Proof Since VGtl D VGn+1, crn(G„) < <rn+i(Gn) <  <rn+i(Gn+i). That im­
plies Li(Gi)  D L j ( G j )  =  0 Vi ^  j .  It then follows immediately that any path 
w in F goes through infinitely many vertices in Vq/ :=  U n>0  Ln(Gn). Thus, 
VGf is a covering set in F, which completes the proof. □

Let G be a covering subforest of F. At each n > 0, define the cr-algebra 
generated by Ln(G) to be

Qn := a{B(q) : q €  L n(G)}.

If G =  F, then Qn is exactly JFn for every n.
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Given a covering subforest G of F generated from V  and a covering set S  
in G, we say that S  generates a covering subforest G' pruned below <7j(G) if 

S  D Uo<n<t (The nth level sets of G and G' are the same for each
n  with 0 < n <  i.) If a vertex q is in Li(G), a covering subforest of G 

pruned below <7*(G) is also called a covering subforest of G pruned below 
q’s level. Note that this last definition is meant to be a quick way of saying 

that pruning occurs below all the vertices in G of the same level as q.

3.4 The stochastic R am sey theorem  for sets of finitely  

many states

In this section we prove the Finite-state Two-colour Stochastic Partition 
Theorem (Theorem 3.1) and its* generalisation (Theorem 3.9). We begin 
with a simple but important observation. In the case that J* is a set of 
finitely many states for each i, for any covering subforest G of F and any 
bounded stopping time 6  adapted to G, the set of stopping places of 6  in G 
introduced in Section 3.3, i.e. ^ (G ) ,  is finite.

To prove Theorem 3.1, we shall firstly define and find a well-structured sub­
tree A of F under the stochastic colouring / .  Then we shall extract a cov­
ering subforest F of A, which has a ‘nice’ partition of its vertex set Vp. 
Finally, we shall show that there exists a sequence of bounded stopping 

times 0i < $ 2  < ... adapted to F which satisfies Theorem 3.1.

We write Red and Blue for c\ and C2 . Denote {0,1,2,...} by Z+. Now we 
introduce some preliminary technical definitions and results.

D efin ition  3.4. A well-structured subtree A under the stochastic colouring f  
is a covering subtree ofW with a partition of its vertex set Va =  -R(A)UjB(A) 
such that for any covering subforest G of A and any finite subset S  C  V q,  

there exists an infinite sequence o f bounded stopping times 6 i < 62  < ... 
adapted to G with the property

f(q , Si) =  Red Vq G 5  n  R{A) VI > 0

and
f ( q , Si) =  Blue V q e S H  B{A) VI > 0.
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Remark: The partition above may be degenerate, that is, one of the par­

titioning sets of Va may be empty.

We intend to find a well-structured subtree A of F under /  by breadth- 
first search. When we define inductively a sequence of vertices {(&}, each 
vertex in it will be labelled with a symbol r or b. We will show that the 
sequence {qi} generates a well-structured subtree A of F under /  and the 

two collections of vertices labelled with r and b are respectively the two 
partitioning sets of vertices, R(A) and B{A). In doing so, we will need the 
following marking scheme and a related lemma.

Definition 3.5. Given a covering subforest G of F and a finite set M  of 
vertices with M  C Vq, for every vertex q in V& \ M , mark q with symbol 
r relative to M  in G, i f  for any covering subforest Gf of G, there exists an 
infinite sequence of bounded stopping times 8 \ < 8 2  < S3 < ■■■ adapted to G' 
such that

f(q , 61) =  f(q , Si) =  Red V/ > 0 Vq 6  M.

Mark q with symbol b relative to M  in G i f  q cannot be marked with r relative 
to M  in G.

Note that in the condition ‘for any covering subforest G' of G’ above we do 
not need either q € V&> or M  C Vq/.

As a consequence of the definition above, a vertex q is marked with b relative 
to M  in G in either of the following circumstances.

I. There exists a covering subforest G of G such tha t no infinite sequence 
of bounded stopping times <5i < 8 2  < 8 3  <  ... adapted to G has the 
property that f (q , Si) =  Red VZ >  0 Vq € M .

II. There exists a covering subforest G' of G such that, for any sequence 

of bounded stopping times <5i <  8 2  < 8 3  < ... adapted to G' which 
satisfies f{ q ,8 {) — Red VZ > 0 € M, there exists N  £  N such that
f ( q , 8 i) = Blue Vi >  N.
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For any such G' in the condition II, we say that q is marked with b relative 
to M  with witness G' in G. (G; is a witness to the condition II.) Note that 
the finite set M  can be empty. In such a case, the condition II simplifies 

down to the existence of a covering subforest G' of G such that, for any 

sequence of bounded stopping times S\ <  6 2  < £3 <  ... adapted to G', there
exists N  G N such that f{q , Si) =  Blue Vi >  N.

R em ark : In the proof of Lemma 3.7 later, the fact that a vertex q is labelled 
with b always follows from the condition II above.

L em m a 3.6. I f  a vertex q is marked with b relative to M  with witness G' 
in G, then there exists a covering subforest G (q)(M) o fG  pruned below q ’s 
level such that q is marked with b relative to M  with witness G (q)(M) in G.

Proof. Suppose q 6  Li{G) for some i. Consider a new covering subforest G 

of G generated from a covering set (Uo<n<i -^n(G)) U Vq/, which means that 
G is a covering subforest of G pruned below q's level. Because we are only 
concerned with the existence of an infinite sequence of bounded stopping 
times, and Ln(G) =  Ln(G') Vn > i, q is also marked with b relative to M  
with witness G in G. Hence G satisfies to be one desired G (q)(M). □

We use the word ‘marking’ only in the sense above, in distinction to ‘la­
belling’ used as a generic term.

L em m a 3.7. Given a stochastic colouring f ,  there exists in the tree of 
histories F a well-structured subtree A under f .

Proof. We first extract a subtree A of F by a labelling process, then prove

this subtree A is a well-structured subtree of F under / .

S tep  1. We construct an increasing sequence of collections of vertices {Ei} 
with £b =  0 and Ei C £ i+ 1  Vi > 0, a, sequence of covering subforests {G*} 
of F with Go =  F and Voi D kci+i Vi > 0, and a partial labelling of Gj with 
symbols r and b. We shall see that E{ for each i is the set of vertices having 
been labelled with r at induction stage i. The induction hypothesis is that 
given the current covering subforest Gj of F, for every covering subforest G of
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Gj, there exists an infinite sequence of bounded stopping times <$i < <$2 <  ••• 
adapted to G such that f ( q , 6 i) =  Red Vg € Ei VZ. Given Ei and Gi, 
we will check one vertex qi which has not been labelled in G* to define 
Ei+ 1 and Gj+i- If qi is marked with r relative to Ei in G*, we will let 

E{+\ = Ei U {qi}, Gj+i =  G», and label qi with r. Otherwise, by inductive 
hypothesis, we will see that q is marked with b relative to Ei in Gj by the 
condition II below Definition 3.5. It follows from Lemma 3.6 that there 
exists a covering subforest G{(qi)(Ei) of G* primed below qi s level. Let 
Gj+i be this Gi(qi)(Ei),  let Ei+i =  E i, and label qi with b.

We now explain how to determine the vertices qi which are to be checked. 

Denote the root of F by go- After obtaining E \ and Gi from go, Eq and Go, 
we enumerate all vertices in L i(G i). Note as before that L i(G i) is finite. 
Suppose |L i(G i)| =  Zi; enumerate the elements of L i(G i) as gi,g2 , ■■■qil - 
Applying the above process to  gi,g2 , ■••qh hi turn, we obtain two finite se­
quences {■£*} and {Gf} in which 1 <  i <  l\ 4 - 1 . Note that Li(G i) =  
Li(Gj+i) VI <  i <  li, since if qi is labelled with b, Gj+i is a covering subfor­
est of Gj pruned below cri(Gi). It follows that all gi to g/x indexed in Gi are 
in Li(Gj) for all 0 < i < l\ -I-1. We then enumerate all vertices in Z ^G ^+ i) 

as g^+i,gj1+2 , qi1+i2. By applying the process to ©1+i, g/1+2 , •••>qh+h> we
obtain two finite sequences {Z?*} and {Gj} in which l\ -f-1 <  i < l\ + I2 +  1- 

We can then define all Lj+i ((̂ i+x;m<i im) for all * in a similar way.

Let lo =  1. Define z(k) =  ^o<i<fe^- Given k, it follows that Ln(Gz^ )  =  
VO < n < k  Vi >  z(k), and in any Gi with i >  z(k), all vertices in 

Uo<n<fc ^ n(G i) have already been labelled. Note that VGz(k) 3  ^Ga(fc+1) VA: >
0. So, by Fusion Lemma (Lemma 3.3), the sequence {Lfc(Gz(fc))}/c>o gener­
ates a covering subforest of F. Denote this covering subforest by A. Note 

that since Lo(Gz(0)) only contains the root of F, A is actually a covering 
subtree of F. From the definition of z(k), A is the covering subtree that con­
tains exactly the vertices labelled with r or b. The union of the collections 

{Ei : i £  Z+} is the union of all vertices labelled with r in A.

S tep  2 . We keep the index order of V \ =  {qi}iez+ ^  in the labelling process 
above, and denote two collections of vertices labelled with r and b by Sr and 

Sb, respectively. That is Sr = Uiez+ and Sb = V&\ Sr. We show that
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the two partitioning sets Sr and of Va can be regarded as R (A) and 
jB(A), respectively, in Definition 3.4 and hence the covering subtree A is a 
well-structured subtree under / .

For any covering subforest G of A and any finite set S  C Va , we define 

d(S ) := min{n : L{(A) D S }.
0 <i<n

If no ambiguity, we abbreviate d(S ) to d. By the definition of z(k) in the 
labelhng process, we see that in fact

Li{A) =  {qi : 0  <  i < z(d)}.
0 <i<d

Hence S  C {qi : 0 < i < z{d)}. Recall that

Ei = {qi: 0  <  I < i, qi is labelled with r}.

It follows that Sr fl S  C E z^ .  On the other hand, if E z^  j=- 0, then for 
any covering subforest of Gz(j), and so in particular for G (since Vg Q V \ C 

V gz((1)),  there exists an infinite increasing sequence {<%} of bounded stopping 
times adapted to G such that

f{q , 6 i) =  Red Vq e  Ez(d) Vi > 0,

by the definition of r. Therefore,

/(<?> $i) = Red Vq G Sr fl S  Vi > 0.

If E_2(d) =  0, pick any infinite increasing sequence of bounded stopping times 

adapted to G to be {<5j}i>o.

Suppose that one vertex qm is in fl S. By the definition of Gm(qrn)(Em) 
and the condition II of the definition of b, for any infinite increasing sequence 
{rj} of bounded stopping times adapted to Grn(qm)(ETn) with

/(?> n )  = Red V i > 0 V q£  Em,

there exists Nm £ N such that /(<?m, Ti) — Blue Vi > N m. Since each 
brnmded stopping time in is adapted to G, and G is a covering
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subforest of Gm(qm)(Em), each bounded stopping time in {^i}ieN is also 
adapted to GTn(qm)(ETn). Because E z^)  3  E m, we see

f{q> h ) = Red Vi > 0  Vg G E m.

Therefore, we can take the sequence {^} for the sequence {r^} above. Fur­
thermore, for every vertex qm in Sf, fl 5 , we can likewise take {<5j} again for 
the sequence {rj} above. Hence there exists a corresponding Nm €  N such 
that

f fa m J i)  =  Blue Vi > N m.

Because Sf, fl S  is finite, we can define N  to be the maximum of those N m. 
Hence,

f{q, $i) =  Blue V# € Sb fl S  Vi > N.

Define a  new infinite sequence of bounded stopping time {<^}ieN such that 
5[ =  Si+jy Vi G N. This is the desired sequence of bounded stopping times 
as per Definition 3.4, for the finite set S  in the covering subforest G. □

Com m ent on the labelling process. The covering subforest A is gener­
ated from the covering set {<?i}i€z+. In practice, we achieve A by building 
the sequence {Ln(A)} from the sequence {<&}. For all i, it is important 
to replace the current covering subforest G* by a covering subforest pruned 
below qis  level, if qi is labelled with b. If we simply replace Gi by an ar­
bitrary covering subforest G' when is marked with b relative to Ei with 
witness G' in Gi, then we may fail to achieve the desired sequence {Ln(A)}. 
Consider the extreme case of every qi labelled with b, and assume that we 
are now building L m(A) in which m  > 0, and that the minimum number of 

vertices in Gi to form a Lm(A) in Gi with the current subsequence {qk}o<k<i 
is I. The arbitrary covering subforest G' may stretch out so wildly that to 
form a Lm(A) in G', the minimum number of vertices in G7 with the current 

{qk}o<k<i is far greater than I -1-1. We can, however, only include one vertex 
qi-(_i into the sequence {qk}- If we regard this G' as Gi+i, and achieve a se­

quence {qk}k>o in this way, we may never obtain the desired Lm(A). In that 
case, the sequence {qk}k>o is not a covering set, and we cannot generate any 
covering subforest from it.
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We fix one well-structured subtree A of F under /  obtained by the labelling 
process. As in the definition after Lemma 3.3, we obtain the filtration {An} 
from this A. That is, for each n  G An  =  a{B (q ) : q G Ln(A)}.

For our next result, we need a further notation. In any covering subforest 
G of A, for any bounded stopping time 9 adapted to G, we denote

r 0 (G) := U{£(g) : q G ^ (G )  fl R (A)}

and
be(G) := U{B(q) : q G 5®(G) n B (A)}.

Recall the definition of events happening infinitely often or eventually. Sup­

pose tha t (En : n  G N) is a  sequence of events. We define

(En i.o.) :=  (En infintely often) := lim sup En := P | En
m n>m

and
(En ev.) := (En eventually) := lim inf En := [ J  p |  En.

m n>m

The following lemma says that, for any e > 0, we can find a ‘nice’ covering 
subforest F of A with the associated filtration {.Fn}. In {.Fn}, we can ap­
proximate the set S  G Eoo where for any u j  € S  the vertices in A along the 
path uj are labelled with r infinitely often (b eventually, respectively), by a 
set R  (B, respectively) in ^ i .  Furthermore, we can arrange that R U B  =  fl, 
and the probability that a path includes no vertex labelled with b (r, re­
spectively) in F conditional on R  (B, respectively) is greater than 1 — 5e/8. 
We prove this lemma by a method adapted from one used in [16].

L em m a 3.8. For any e > 0, there exists a covering subforest F of A with the 
associated filtration {En} which has two sets R , B e F i such that R U B  = Cl 
and, for any sequence of bounded stopping times B\ < 6 2  < ... adapted to F,

p ( f > <  ( ¥ ) \R ) > l - 5 e /S ,  i fP ( R ) > 0 ,  
i> 1

and
p (C 1 6«i( F ) |B ) > l - 5 e / 8 ,  i f  P (B ) > 0 .

i> 1
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Proof. Adopt the abbreviation a* := 0 i(A) in this proof. Then {rai (A)}z€Z+ 

and {bai(&)}iez+ are well defined in A. Because rGi(A),bGi(A) 6  Ai and 
L{(A) is finite for every i, [rai(A) i.o.} and {bai(A) ev.} are both Borel 

measurable sets in Aoo• Let Yr  := {rGi(A) i.o.} and Yr  := {bGi(A) ev.}. 
Note that the topological space associated with A is a Cantor space, in 
particular a metric space. Since any measure on a metric space is regular 

(cf. [12], Theorem II.1.2), P  is regular in Aoo- Therefore, there exists 
N  € N such that we can find two sets R ,B  € A n  to approximate Yr , Yr  
respectively, i.e.

(a) i? [ jB  =  fl,

(b) P{Yr \R) > 1 -  e /2 , if P{R) >  0 ,

(c) P(Yb \B) >  1 -  e/2, if P(B) > 0.

Without loss of generality, assume both P{R) and P (B )  are positive. Note 
that (A) eventually’ implies lb<Ti (A) infinitely often’. Hence, for any P >  0 
and any x  G N, there exists y  € N with y > x  such that

P( U *v((A)|yJ!) > i - « '
x<i<y

and
P( 1J 6„((A)|yB) > l  —e'.

x<i<y
Thus we can find a sequence of integers no = N  < n\ < < ... and two
sequences of sets, to be denoted by {SR i}i>i and {SBi}i>\ with SRi :=

Unj _!<*<«{ r< T,(A )*nd SB, : = \X ,- 1<i<n,b<r<W' such that for every I >  1

P (SR ,\Yr ) > 1 -  (l/8 )(e /2 l)

and

P(SB,|yB) > l - ( l / 8 ) ( e / 2 ' ) .

It follows that

P ( f |5 B , |y H) > l - e / 8
l> 1

and
P ( f |S S , |y B) > l - e / 8 .

Z>1
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From P(Yr \R) > 1 — e/2 and P(Yb \B) >  1 — e/2, we may infer that

P if^ S R ilR )  >  l - 5 e / 8

i>i

For each I >  1, define a stopping time Si adapted to A so that on SRi fl R  

6 i(u>) =  min{i : c r^ ^ u ;)  < i <  <rniM ;  w| i e  R (A)},

on SBi H B

Si(u) =  min{« : < i < <rnj(u;); u\i 6  B (A)},

and on (R  \  S R t) U ( B \  S B t),

Si(u}) =  ni — 1 .

Define a covering subforest F  so that

(7i(f) := £z+i VZ >  0.

For any infinite increasing sequence of bounded stopping times {0i} adapted 
to F,

We are now ready to prove the Finite-state Two-colour Stochastic Partition 
Theorem (Theorem 3.1).

P ro o f  o f T h eo rem  3.1. In a covering subforest F of A obtained from 
Lemma 3.8, we define 6 \ to be 0 0 (F). We construct the desired infinite 
increasing sequence of bounded stopping times inductively. Suppose that

l> l

and
P ( f |  S B t\B) > 1 -  5e/8.

(f>#))r>  ̂ (n^n^
and

This completes the proof. □
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we have obtained (0i,02> —>0fc)- Denote Ui<i<fc Sd i$ )  by S k. Since F is a 
covering subforest of A and S k is finite, by Definition 3.4, there exists an 

infinite increasing sequence of bounded stopping times {<5f}ieN adapted to 
F with the property

f(q , 6 f )  =  Red Vq € S k n  R(A) Vi > 0

and

f(q , 6 $) = Blue V q £ S k n  B{A) Vi > 0.

Define 6 k+i to be Sk. In this way, we find an infinite increasing sequence of 
bounded stopping times {0n}neN- It follows from Lemma 3.8 that, for all 
initial subsequences {6 \, ...,0 *} (i >  2 ) in it,

P (fehdm =  Red VI < l < m <  i\R ) >  1 -  5e/8, if P(R) > 0,

and

P(foi,6m = Blue VI <  I < m  < i\B) >  1 — 5e/8, if P(B) > 0, 

which completes the proof. □

Comment: The desired sequence {0n}neN hi Theorem 3.1 is by no means 
unique. When we label each vertex qi in F, the covering subforest Gj+i =  
Gi(qi)(Ei) is not unique, if qi is labelled with b. Suppose the qi is in 
Lm(Gi) for some m. The assertion follows from the same idea in Lemma 
3.6: because we are only concerned with the existence of an infinite se­
quence of bounded stopping times, any deletion or addition of finite vertices 
in \Jn>mLn{Gi(qi)(Ei)) is allowed for the construction of Gj+i. Then, the 
well-structured subtree A under /  is not unique, as the generating sequence 

of covering subforests {Gj}j€N can vary. The extraction of F from A is not 
fixed either. To see this, any covering subforest of F still suffices to be one 

F, by the definition of A (Definition 3.4). When we build 6 k+i based on 
Ui<i<& the definition of A only assures the existence of from
which 6 k+ 1  can be chosen, but there may well be many qualified sequences 

{^}ieN hi F. In summary, the collection of infinite increasing sequences of 
bounded stopping times {0n}neN which satisfy Theorem 3.1 is ‘rich’.
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Given the proof of Theorem 3.1, the multiple-colour case is straightforward 
except some minor modification in the marking process. For completeness, 
we give below this more general theorem for the set of colours C  =  { c i , c ^ }  
with k > 2. (Of course, for k  =  1, the problem is trivial.)

Theorem  3.9. (Finite-state Finite-colour Stochastic Partition Theorem). 

Given a set C  =  {c\,C2 , ---Ck}, a probability space (£l,Foo,P) constructed 
from a sequence of sets of finitely many states, and a stochastic colouring f  
with values in C, then for every e > 0, there exists a natural number N , k 

sets Qm G F n  VI <  m  < k with Ui<m<fc Qi =  and a sequence of bounded 
stopping times 0 \ < 6 2  < ... such that

VI <  m < K P ^ f i s  =Cm, VI < i < j\Q m) > 1 -  e, i f  P(Q m) > 0.

We begin by the definition of a well-structured subtree in this multiple-colour 
context.

D efinition 3.10. For a set C = {c\, C2 , ..., c*} of finitely many colours, 
a well-structured subtree A under the stochastic colouring f  is a covering 
subtree o f F with a partition of its vertex set Va =  U i < i < f c such that 
for any covering subforest G of A and any finite subset S  C Vq, there exists 

an infinite sequence of bounded stopping times 6 \ < 62  < ... adapted to G 
with the property

VI < i < k, f (q , 61) = ci Vq G 5  fl Si(A) V/ > 0.

Remark: The partition above may be degenerate, that is, some partitioning 

sets of Va may be empty.

Similarly as in the case of \C\ =  2 , we are going to find a well-structured 
subtree A of F under f  by breadth-first search. When we define inductively 
a sequence of vertices {<&}, each vertex in it will be labelled with a symbol in 
{ s i,..., Sk}- We will show that the sequence {qi} generates a well-structured
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subtree A of F under f  and, for each i with 1 <  i < k, the collection of 

vertices labelled with Si is exactly the partitioning set 5*(A).

In doing so, we need a more elaborate multi-colour marking scheme below. 
As with the two-colour marking scheme, here vertices will be ‘marked’ using 

distinct symbols s i, ..., corresponding to the colours c i , c ^ .  A vertex 
marked with Si can be labelled with Si in the partial labelling scheme later. 
The marking scheme is done by means of a definition that begins with a 
symbol si by referring to a property involving only the colour ci, and pro­
ceeds to  a symbol sm (1  <  m  < k) by reference to a property involving 
only the colours c i,...,c rn (in such a way that sm is the earliest available to 
mark with -  see condition b3 below). The final symbol Sk (corresponding to 
Cfc) is ‘complementary’ to all the preceding cases, as we shall see. To avoid 
confusion, we have denoted the symbols by s i , ..., Sk rather than c i , ..., c*.

Suppose that we are given a covering subforest G of F and a (k — 1) sequence 
(Mi, M2 ,..., Mfc_i) of sets of nodes with the following properties.

I. Mi C VG VI < i < k.

II. Mi is finite (perhaps empty) for each 1 < i < k.

III. For any covering subforest G' of G, there exists a sequence of bounded 
stopping times <5i <  6 2  <  ... adapted to G ' such that, for any i with 
1 <  i <  k, f(q %, <5/) =  q  V/ >  0 Vq1 e  M j.

We call such a sequence (Mi, M2 ..., M k-i)  a (k — 1 )-matched collection in

G.

For every vertex q in Vg \  (Ui<i<jfe ^*)> n^ark Q as follows.

a. Mark q with Si relative to (Mi, M2 ,..., M*_i) in G if, for any covering 
subforest G' of G, there exists a sequence of bounded stopping times 

<5i < 6 2  < adapted to G ' such that, for any i with 1 < i  < k, f(q l , 61) =  
Ci VZ >  0 Vq1 €  Mi and f ( q , Si) =  ci Ml > 0 .

b. Mark q with sm (1 <  m <  k) relative to (Mi, M2 ,..., Mfc_i) in G if q 
satisfies the three conditions below with respect to sm.
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b l. There exists a covering subforest Gm of G pruned below q1 s level 

such that for any sequence of bounded stopping times Si < 62  < ••. 
adapted to Gm which has the property that, for any i with 1 < 

i < k, f(q l , Si) = a  VI > 0 Vq1 € Mi, there exists N  € N such 
that f(q ,S i) £ {ci, VI >  N . Denote any one such Gm by

b2. For any covering subforest G' of G(q)((Mi, M 2 , Mfc_i))(m), there 
exists a sequence of bounded stopping times t i  <  T2 <  ... adapted to 
G' such that, for any i with 1 <  i < k, f(q %, 77) =  c* V/ > 0 Vq1 € Mi 
and f(q , t{) = Cm VI > 0.

b3. For all 1 < i  < m ,q  does not satisfy the conjunction of 1 and 2 above 
with respect to s*. (Thus sm is the earliest symbol to satisfy both 1 

and 2 .)

c. Mark q with s* relative to (Mi, M 2 ,..., M*_ 1) in G if q cannot be marked 

with any of ( s i , ..., Sk-1 } relative to (Mi, M 2 , M^- i )  in G.

According to the definition above, a vertex q is marked with s* relative 
to (Mi, M 2 , Mfc_i) if the following circumstance holds. There exists a 
covering subforest G' of G pruned below q:s level such that for any sequence 
of bounded stopping times £1 < 8 2  < ... adapted to G' there exists N  G N 
with f(q , Si) = CkVl > N , provided that, for all i with 1 <  i < k, f(q %, Si) = 
Ci VI > 0 Vq1 € Mj. Denote any one such G' by G(q)((Mi, M 2 ,..., M k-i))(k).

Remark: For a vertex q marked with symbol sm (1 < m  < k) relative to 
(Mi, M 2 ,..., Mfc_ 1 ) in G, we can find a covering subforest Gm of G pruned be­
low q’s level with the attached conditions by the same arguments in Lemma 
3.6.

Lem ma 3.11. Given a set C  = {c i, C2 , ..., c*} of finitely many colours, there 
exists in the tree of histories F a well-structured subtree A under f .

Proof As in the two-colour case, we first extract a subtree A of F by a 

labelling process, then prove this subtree A is a well-structured subtree of F 
under / .
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S te p  1 . We construct:

i. k — 1 families {E j} ^ .n{E^~1} (consisting of vertices) with Eq1 =  0  and 
EV* C E llbl V 0 < m < k V i > 0 ;

ii. a sequence of covering subforests {G»} of F with Go =  F and Vq{ D Vg1+1 

Vi > 0; and

iii. a partial labelling of Gi with symbols in { s i , a * } .

The inductive hypothesis ensures that the (k — 1 ) sequence (-E1*,...,!^-1 ) to 
be constructed forms a (k — l)-matched collection in Gi for each i. Given 

E andG i, we will, by an analogous procedure to that in the earlier 
proof of Lemma 3.7, pick some vertex Qi which has not been labelled in Gj 
to define El+l, . . . ,E ^ l  and Gf+i. We proceed in parallel to the definition of 
a multi-colour marking scheme:

a. If qi is marked with si relative to (E j , E*' x) in Gi, let E }+ 1 = E}u{qi}, 
E ^ 1 = E l 1 VI < m  <  k, Gi+i =  Gi, and label qi with si.

b. If ^  is marked with si (1 <  I < k) relative to (E j, ...,E ^~l ) in Gi, then 
there exists a covering subforest Gi(Qi)((El,..., E*- 1))(Z) of Gi pruned 
below Qi’s level, as in b l. Let Gi+i be this Gi{qi){{E\ , ..., E*- 1))(Z), let 
E \ + 1 =  E\ U {Qi}, =  EV1, VO < m < l & c l < m < k ,  and label Qi with

si-

c. If Qi is marked with Sk relative to (E l ,..., E1*-1) in Gi, then there exists a 
covering subforest Gi(Qi)((E*,..., E^~ 1 ))(k) of Gi pruned below Qi’s level, 
as in the paragraph following c above. Take this Gi(Qi)((El,..., E^~ 1))(k) 
to be Gi+i, let E =  E l 1 VO < m <  fc, and label Qi with s*;.

We now explain how to determine the vertices qi which are to be picked. 
Denote the root of F by qo- After obtaining (E },..., E*-1 ) and Gi from 
Qo, (E I,...,E q~1) and G0, we enumerate all vertices in L i(G i), which is 
the 1st level set of Gi defined in Section 3.3. As noted at the beginning 

of this section, Li(G i) is finite. We suppose |E i(G i)| =  Zi, and enumerate 
the elements of Li(G i) as Q i,Q 2 , -••qi1- We now apply the above process to
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qi,q2 , ■••qil in turn, and obtain finite sequences {E/}, ...,{ £ f-1 } and {G*} 
with 1 <  i < l\ +  1. Note that Li(Gi) =  Li(G i+i) VI <  i < Zi, since if qi is 
labeled with sm (1  <  m  < k), Gj+i is a covering subforest of G* pruned below 
oi(Gi). It follows that all q\ to %  indexed in Gi are in L\ (G i )  for all 0 <  i < 

li +  1 . We then enumerate all vertices in L2 (G/1+i) as % +i, qh+2 , •••> Qh+h- 
By applying the process to qi1+i,qi1+2  ̂•••, qii+i2, we obtain finite sequences 
{ E l } , { E * -1} and {G*} for all li + 1  <  i < l\ +I2 +1- We can then define 

all Li+i im) f°r ah * hi a similar way.

Let Iq = 1. Define z(k) := X)o<i<fc Given fc, it follows that

-^n(Gz(fc)) =  L n (Gi)  VO < n < k V« > z(k),

and in any G* with i > z (k ), all vertices in (Jo<n<fc have already been
labeled. Note Vfcz(fc) 3  1/G2(fc+1) Wk > 0. So, by Fusion Lemma (Lemma 3.3), 
the sequence {L/c(G2(/-))}fc>o generates a covering subforest of F. Denote 
this covering subforest by A. Note that since Lq(Gz^ )  only contains the 
root of F, A is actually a covering subtree of F. From the definition of z(k), 
A is the covering subtree that contains exactly the vertices labeled. For 

every 1 <  n  < k, (Ji>o *s fl16 union of all vertices labeled with sn in A.

S tep  2 . We keep the index order of Va =  {<7i}*ez+ 85  m  fl16 labelling 
process above. Denote the collection of vertices labelled with S{ by S*. That 

is, Si =  Um>oE%m VI < i < k  and S k = VA \  (Ui<i<fc^)- We show the 
partition { S i,..., S*} of Va satisfies Definition 3.10 and hence the covering 
subtree A is a well-structured subtree under / .

For any covering subforest G of A and any finite set S  C  Va, we define 

d(S) := min{n : L*(A) 3  S}.
0 <i<n

If no ambiguity, we abbreviate d(S) to d. By the definition of z(k) in the 

labelling process, we see that in fact

Li{A) =  {qi : 0  <  i < z(d)}.
0 <i<d

Hence S  C  {qi : 0 <  i < z(d)}. Recall that

E ^  =  {qi : 0 < / <  m, qi is labelled with s*} VI < i < k.
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So, for each i with 1 < i < k, we have Si fl S  C E*z^ .  On the other 

hand, if Ui<i<& ^z(d) ^  ^ en ôr covering subforest of G2(d) and so in 
particular for G  (since V q  C  Va Q  V(j2(d)), there exists an infinite increasing 
sequence {<Sj} of bounded stopping times adapted to G  such that

/(g i,Ji) =  ci V l < i < k V q i e E i id) VI > 0,

by the labelling process. Therefore,

f{q \$ i)  = ci v i < i < f c V gi €S' i nS 'V Z>0.

^  Ui<i<fe ^l(d) = $■> pick any infinite increasing sequence of bounded stop­
ping times adapted to G to be {<5i}i>o-

Suppose that one vertex qm is in fl S. By the labelling process, for 
any infinite increasing sequence {77} of bounded stopping times adapted to 
G  E ^ ) ) ( k )  with

f (q i , n ) = c i v i  < * < fc v<f e  ££, Vi >  0 ,

there exists Nm G N such that f{qm, t~i) =  VZ > Nm. Since each bounded 
stopping time in {<Sz}zeN is adapted to G, and G is a covering subforest of

each bounded stopping time in {<S»}zeN is also
adapted to Gm(gm) ( ( ^ , ..., £ * _ 1))(A;). Because D E?m VI <  i <  k, we
see

/(<?\<Si) =  Ci V l < i < f c V 9 i G JEil V Z > 0 .

Therefore, we can take {<^}z>o for the sequence {tz}z>o above. Furthermore, 
for every vertex qm in Sf- fl S, we can fikewise take {$z}z>0 for the sequence 
{rz}z> 0 above. Hence there exists a corresponding Nm G N such that

— ck VZ > N m .

Because Sk H S  is finite, we can define N  to be the maximum of those Nm. 
Hence,

/(«*, Si) = <* Vqk e S k n S V i > N .

Define a new infinite sequence of bounded stopping time {<Sj}zen such that 
6 'i — 5i+tv VZ G N. This is the desired sequence of bounded stopping times 
as per Definition 3.10, for the finite set S  in the covering subforest G. □
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We fix one well-structured subtree A of F under / .  As in the definition after 
Lemma 3.3, we obtain the filtration {An}  from this A. That is, for each 
n  G Z + , An =  a{B{q) : q G Ln(A)}. For any bounded stopping time 0 
adapted to A, we define

Sq = U{B(q) : q G Se(A) n  5i(A)} VI <  i < k.

We prove the generalised Lemma 3.8 for \C\ = k.

Lem m a 3.12. For any e >  0, there exists a covering sub forest F of A  with 
the associated filtration {.Fn} which has k sets Qi €  T \  VI < i < k such that 
Ui<i<fc Qi — Q and, for any sequence of bounded stopping times 0 \ < 6 2  < ... 
adapted to F and for each i with 1 <  i < k,

p ( f l  \Qi) > 1 -  5e/8, i f  P(Qi) > 0 .
m> 1

Proof Adopt the abbreviation <jj := <jj(A) in this proof. Then {S^n : 1 < 
i < k, n  > 0 } are well defined in A. Because S^n G A n VI <  i < k and Ln(A) 
is finite for every n > 0 , {5^n i.o.} and {6£n ev.} with respect to n are both 
Borel measurable sets in Aoo, for all 1 <  i <  k. Let Y{ := {S£n i.o.} VI < 
i < k and Yk {S%n ev.}. Note that the topological space associated with 
A is a Cantor space, in particular a metric space. From Theorem 1.2 on page 

27 in [12], P  is regular in Aoo- So, given any e7 >  0, for any set S  G Aoo, we 
can find a set S' G Un ^  such that P (S  A  S') < e'. Therefore, there exists 
N  G N such that we can find k  sets Q \,...,Q k  € Am  with the property that

(a) Ul<i<fc Qi =

(b) VI <  i < k, P(Yi\Qi) > 1 -  e/2, if P(Qi) > 0.

Let us note that lS%n eventually’ implies lS%n infinitely often’. Hence, For 

any e' >  0, for any x  G N, there exists y G N with y > x  such that

x<n<y

Thus we can find a sequence of integers no =  N  < n \ < n 2 < ... and 
k  sequences of sets to be denoted by {W/}/> 1 VI < i < k  with :=
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U„1_1<m<„, SL such th a t for every 1 ^ 1

P(W}\Y,) > 1 -  ( l/8 )(e/2 ‘).

It follows that

e/ 8  VI <  i <  fc.
i> i

From P (li |Q i)  > 1 — e/ 2  VI <  i <  k, we may infer that

^ ( f l  Wi\Qi) >  1 ~  5e/8  VI <  i < k.

For each I > 1, define a stopping time 6 i adapted to A such that, for every 
1 <  i < k, on fl Qi

6 i(u}) = min{m : ) < m  < (Tni(uj); u>\m is labeled with Si in A},

8 i(u>) = ni — 1 .

Define a covering subforest F such that

<t/(f) := <h+i v; > 0 .

For any infinite increasing sequence of bounded stopping times {0m} adapted 
to F,

As in the proof of Theorem 3.1, we prove the Finite-state Finite-colour 

Stochastic Partition Theorem (Theorem 3.9) by induction.

P ro o f  o f T h eo rem  3.9. In a covering subforest F of A obtained from 

Lemma 3,12, we define Q\ to be cro(F), We construct the desired infinite 
increasing sequence of bounded stopping times inductively. Suppose that 

we have obtained (0i,02, •••j#*)- Denote Ui<i<* by S 1. Since F is a
covering subforest of A and S 1 is finite, by Definition 3.10, there exists an

PnUi<i<fc(<3i\W/),

This completes the proof. □
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infinite increasing sequence of bounded stopping times {<Sf}ieN adapted to 
F such that

f (q \s j )  =  a  v i < i < k V q i e s t n Si{A ) v z > o.

Define 0k+i to be <5̂ . In this way, we find an infinite increasing sequence of 
bounded stopping times {0n}neN- It follows from Lemma 3.12 that for all 
initial subsequences {6\, (t > 2 ) in it and each i with 1 <  i < k

P ( f 0i,em = d  VI <  I < m  < t\Qi) >  1 -  5e/8, if P(Q i) > 0 , 

which completes the proof. □

3.5 The stochastic R am sey theorem  for sets o f count 

ably m any states

Before proving the Stochastic Infinitary Ramsey Theorem (Theorem 1.2), we 
comment on the approach to be taken. Suppose that in the sequence {Ji}igN 
of sets of states, some Ji are countably infinite sets, and we arrive at the 
probability space (fl, ̂ oo, P) constructed from { If we represent fI 
as the tree F defined in Section 3.3, then for some bounded stopping times 
6  > 0 in F, the set of stopping places of 6  in F, i.e. 5^(F), is infinite. That 
may invalidate the approach in Section 3.4. The extreme case is that Ji is 
a countably infinite set for all i. Then, for any covering subforest G of F 

and any i > 0, L»(G) is infinite. Hence, we would never finish the labelling 
process, if we insisted on following exactly the same procedure as in Section 
3.4.

To prove Theorem 1.2, we follow the strategy mentioned in the Introduction: 
ignore all but finitely many vertices a t each level of the tree F so that the 

probability of the ignored part of F is ‘small’, and the remaining tree looks 
like one constructed from a sequence of sets of finitely many states; then we 

can prove the result by the Finite-state Finite-colour Stochastic Partition 
Theorem (Theorem 3.9). This is in the nature of routine. For a detailed 
proof, there is a technical problem: the finite set of successor vertices at level 
n  +  1 depends on its predecessor vertex at level n. Recall that our setting
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in Theorem 3.9 and Theorem 3.1 requires a  ‘uniform’ Jn+i, that is, every 
vertex at level n  has the same finite set of successor vertices at level n  +  1 . 
To this end, we shall construct an adjusted probability space (fl', P')
from a sequence { of sets of finitely many states. By Theorem 3.9, 

we then find a ‘solution sequence’ {0 ^}neN of increasing bounded stopping 
times after defining a new stochastic colouring f  on (fl', P '). We will

eventually show that an image sequence {0n}n£N defined on the original 
probability space (fl, Too, P) satisfies the condition of Theorem 1 .2 .

For any partial history q G fln, denote the collection of extensions of q at 
stage n + 1 , i.e., {o;|(n +  1 ) : uj G B(q)}, by e(q).

P ro o f  o f T h eo rem  1 .2 . Let e >  0 be given. To obtain the adjusted 
probability space constructed from a sequence of sets of finitely many states, 
we first construct a ‘bridging’ probability space (fl, Poo, P) from (fl, P qq, P) 
by defining the collection fln of partial histories for each n.

We place an absorbing state * in the yet-to-be-constructed Jn for all n with 
the property that for any partial history q =  (<z(l),...,q(n) =  *), the only 
extension of q in the yet-to-be-constructed fln+i is (q( 1 ),..., q(n) =  *, q(n +  
1 ) =  *). Let flo =  flo, i.e., the set of empty partial history. Assume that 
we have already defined fln for all 0 < n < k. For every partial history 
q =  (<j(l),..., q(k)), if q(k) =  *, then we already know the only extension of 
q at stage k + 1 is (q( l ) , ...,q (k ) =  *,£(£-1-1) =  *). If q(k) ^  *, the inductive 
assumption is q € flk and P (B (q )) =  P(B(q )) > 0. Now we define a set 
c(q) C e(q) with the following properties.

1 .

e(q) \  c(q) is finite.

2 .
Vq e  (e (q )\c (q )),P (B (q )) > 0.

3.

E  w w iflw ) < oT̂E+rj-
qec(q) '  >
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Denote ( g ( l ) , q(k), *} by qA*. We define the collection of extensions of q 

at stage k  +  1 to be e(q) :=  (e(q) \  c(q)) U {qA*}. Define

P(B (g)|B (9)) := P(B(«)|B($)) V? 6 (e(«) \c(« ))

and
P(B (,'A*)|B(g-)) :=

q€c(q)

We see that every partial history in e(q) satisfies the inductive assumption 
at stage k +  1 . Then we can achieve Cln for all n  and hence the history 
space Cl. The existence of a probability measure P  follows from the Kol­
mogorov Extension Theorem (ci. [3], Theorem 36.2). We then construct the 

probability space (Cl, T q cP) in a similar way to (Q ,Pqo, P)-

We can modify (Cl, P) to a further probability space (Q!,Ptcjo, P') (the 

adjusted probability space) which will be constructed from a sequence of 
sets of finitely many states. For all q = (£(1),..., q(k)) G Clk, define the 
collection of the last coordinates of partial histories in e(q) by L(q). That 
is,

L(q) := {h : (q(l), ...,q(k),h) € e(q)}.

Define

4+1 := U  Z(«)-
qe&k

Note that for every q G Cl<oc, e(q) is finite, and hence L(q) is finite. It 
follows that J'k+i is finite for every k, because Clk is finite. Define

^ :== :== II <̂oo :=
k m<k k

We see that the new measurable space (D', Z ^ )  is constructed from the 
sequence { of sets of finitely many states. For every q' G f2'<00, let

<oon m ) ..J  m o )
v "  \  o i i< j$  n < x .

The existence of probabifity measure P ' again follows from the Kolmogorov 
Extension Theorem (cf. [3], Theorem 36.2).
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Denote the collection of all bounded stopping times on (ft', P '^, P ') by T '. 
For any u j  = (u;(l),u;(2),...) in ft, define a shadow history s ( u j ) in ft' as 
follows. If u j G f t ' ,  let s(w) =  u j . If u j  £ ft', then there exists a unique new 
history u j' — (u j ' ( \ ) , u j ' ( 2) ,  ...,uj'(m ) , ...) G fl' such that uj'(i) = u)(i) VI < i < 

m  and uj'(i) =  * V« >  m, and we let s (u j ) = u j '. Define y to be an injective 
mapping from T ' to T  such tha t y{9'){uj) =  6' ( s (u j ) ) .

We still assume that C = { c \ , ..., Cfc}. From the stochastic colouring /  with 
values in C, we define the new stochastic colouring / '  on (O', P'^) such that 

for all pairs (q', r')  with cf G fI<oo and r '  G T'(q')

: =  |n g W ) : = {  / ( « '■ * ') )  * *  =  ( *  K f )  (3 -i)
C l if <f = (h'1 , . ..,h n = *).

Apply the Finite-state Finite-colour Stochastic Partition Theorem (Theorem 

3.9) to obtain a sequence of bounded stopping times 0 < 9[ < 0'2 < 0'3 <  ...
defined on (ft', P ') such that

P ’U k A  =  f # A  VI < i <  i )  > 1 -  5e/8.X1 A t' j

As
p ( f t  n  ft') = p '(  n  n o O > i -  e/s, 

and for any Borel measurable set S  Q f tD f l ' ,  P (S)  =  P '(S), we find that

p ( fe i,02 =  h t f i j  VI <  i < j )  > 1 -  e 

where 9n := y(9'n) Vn G N. □

3.6 Finite stochastic R am sey theorem

Before proving the Strong Stochastic Finitary Ramsey Theorem (Theorem 
3.2), we use the Stochastic Infinitaxy Ramsey Theorem (Theorem 1.2) to 

prove the following result. This time n (m ,e ,P )  mentioned below depends 
on P, but not on / .

T h eo rem  3.13. (Stochastic Finitary Ramsey Theorem). For a probability 
space (ft, Poo, P) constructed from a sequence of sets of countably many
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states, a set C  of finitely many colours, a natural number m  > 2 and any e >
0, there exists n = n(m , e, P) €E N such that for every stochastic colouring f  
with values in C, there exist m  bounded stopping times < 6 2  <  ... <  0m < 
n which satisfy

P(foi,0a = fOi,0j VI <  * < j  < m) > 1 -  e.

Proof Recall from Definition 1 .1  that

z  = {(q ,T) : Q €  n«x>,T G T(q)}.

We firstly suppose that (O, Too, P) is constructed from the sequence {Jn}neN 
where each J n is finite. The set of all stochastic colourings /  is [C]z : the 
finite set [C] has the discrete topology, and [C]z  the product topology. By 
Tychonov’s theorem, this space is compact. For each collection Q of m 

bounded stopping times Q =  {0i,02, with 6 i < Qj Vi <  j ,  we define
the subset Cq of stochastic colourings included in [C]z  to comprise those /  
with

P (fo i ,02 = feud, VI < i < j  < m) > 1 -  5e/8.

We claim and now prove that Cq is open in [C]z  for every such Q —

{0 1 , 0 2 , ••; 0 m}•

For a stochastic colouring /  € [C]z , we write

Mf, Q) ■■= f l  € PI2 : 9{u\0i,0i) = /(WI«j, 9))}.

If /  is in Cq , then any stochastic colouring f  which agrees with f  on Q,
1.e., f  € A {f,Q ), is also in Cq . Given an w in and a pair of i and j  

with 1 <  i <  j  < m, it follows from the definition of open sets in a product 
space that {g 6  [C]z  : g{u\0i, 0j) =  f(ui\0i, 0j )}  is open in [C\z . As each J n 

in {Jn}nGN is finite, A (f, Q) is actually a finite intersection of these open 
sets in [C]Z] this is becasue there axe only finitely many vertices of the form 

u\0i for each bounded 0{. Since A ( f,  Q) is a subset of Cq for each /  in Cq , 

\Jf€CQ A (f, Q) =  Cq is also open, which completes the proof of the claim.

48



Chapter 3. The m ain stochastic theorem

The Stochastic Infinitary Ramsey Theorem (Theorem 1.2) asserts that these 

sets C q  cover the whole of [C]z . By compactness, some finite collection 
{ C q x , C g t } of these sets also covers [C]z . This implies that every stochas­

tic colouring /  on U*= 1  Qi will have

p (fe 1,02 = hifij  VI < i < j  < ™) > 1 -  5e/8

on at least one of the Qi. Then we may take for n any bound of (Ji=i Qi 
such that VI <  I < t V0m E Qi, Qm < n.

For the case that at least one Jn is countably infinite, we construct an 
adjusted probability space (ft', P ')  from the sequence {«/^}n€N of sets
of finitely many states, as in the proof of Theorem 1.2 in Section 3.5. Recall 
the definitions of the new stochastic colouring f  on (O 'jp ^ ) , the shadow 
history s(uj) and the injective mapping y : T ' —► T  in the proof of Theorem 
1.2. From the result for the case of finite Jn for all n above, the existence 
of an n; =  n'(m , 5e/8 ,P ') € N follows such that for every new stochastic 
colouring g' defined in (O', .F^), there exists m bounded stopping times 
0 i <  0'2 < ... < 0 'm < n '  on 0 ' with the property that

p l is'e'x,e'2 =  ^ , 0'. VI <  * <  j  < m) >  1 — 5e/8. (3-2)

We now show that we can regard this n ' as a qualified bound n(m, e, P) for 

(0 , .Foo, P)- Given a stochastic colouring /  defined in (O, Poo), we obtain 
the corresponding new stochastic colouring / '  defined on (O', and a 

sequence of bounded stopping times 9[ < 0'2 < ... <  &m <  n ' which satisfies 
the property (3.2). Define a sequence of bounded stopping times #i <  #2  < 
... <  Om on 0  where Qi := y{6 'i) VI < i < m. Recall that

/(s'. y(r')) =  /'(s ', r ')  v«' 6 fi<oo n n'<OOI i> e T { 4 \

as shown in (3.1). So for any ui with s(uj)|(?(n _ 1 e  fl<tx„ 

h ifijfa )  =  (SM)> VI <  * < j  < m.x j

Recall at the end of the proof of Theorem 1.2 that P(O flO ') =  P '(O nO ') > 
1 — e/3, and for any Borel measurable set S  C QfiO', we have P (S) = P '(S). 

Hence

p (fei ,02 =  htfij VI < i <  j  <  m) >  1 -  e,
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and it follows from the definition of y  that 0 m <  n'. □

To prove the Strong Stochastic Finitary Ramsey Theorem (Theorem 3.2), we 
first review the weak-* topology defined in a space of probability measures, 
(cf. [9], [5]) This will help us to verify the following lemma and later to 
check easily that certain sets are open in the weak-* topology.

Recall that a topological space X  admitting a countable dense set is called 
separable; a space X  is complete metrizable if it admits a compatible metric 
d such that (X , d) is complete; a separable complete metrizable space is 
called Polish. Let X  be a compact metrizable space and Y  a metrizable 
space. We denote by C(X,  Y ) the space of continuous functions from X  to 
Y  with the topology induced by the sup or uniform metric

du{ f , 9 ) =  sup dY (f(x) ,g(x))  V /,p  £ C ( X ,Y ) .
x € X

where dy  is a compatible metric for Y.  If Y  is a Polish space, then C(X,  Y)  
is also Polish (cf. (4.19) in [9]). Recall that a Banach space is a normed 

linear space which is complete in the metric defined by its norm. So, for a 
compact metrizable space X , C (X , R) is a Banach space with norm ||/||oo =  
supx(EX 1/0*01, whose associated metric in C(X,  R) is du( f ,g) = \\f — <y||oo-

For separable Banach spaces X  and Y ,  we denote by L(X,  Y)  the Banach 
space of bounded linear operators T  : X  —* Y  with norm ||T|| =  sup{||Ta;|| : 
x e X ,  \\X\\ <  1}. Denote by L i ( X , Y )  the unit ball {T  £ L ( X , Y ) : ||T|| < 
1} of L (X ,Y ) .  The strong topology on L(X,  Y)  is the topology generated 

by the family of point evaluation maps ex(T) = Tx> ex ; L ( X , Y ) —» Y ,  for 
x  6  X .  It has a basis consisting of the sets of the form

VXI xn;e;T =  { S e  L(X ,  Y ) :  ||SX! -  TX! || < e , | | S x „  -  Tx„|| <  e},

for x \ , . . . ,x n € X ,  e > 0, T  £ L ( X ,Y ) .  The unit ball L \ ( X , Y )  with the 

strong topology is Polish.

Denote by Cb(X) the set of bounded continuous real-valued functions on X .  
Recall that a linear functional A on Cb(X) is a map A : Cb(X) —» R such 
that for any two constants a  and /3 and any two elements /  and g of Cb(X) 

the equation
A ( a f  +  f a )  =  oA ( /)  +  j3A (g)
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holds. A linear functional A is called positive if A( /)  >  0 whenever /  >  0. 

Let X  be a separable Banach space. The dual space X* of X  is the Banach 
space of all bounded linear functionals x* : X  —>• R, with norm ||x*|| =  

sup{x*(x) : x  G X , ||x|| <  1}. So X*  =  L p fjR ). The strong topology on 
X* is the topology generated by functions x* i-» x*(x), for x  € X ,  and is 
called the weak-* topology of X * . Let Bi(X*)  = L \ (X ,  R) be the unit ball 

of X*,  then B\(X*)  with the weak-* topology is Polish and compact, (See 
Theorem 4.7 in [9].)

Back to the condition in Theorem 3.2, the measurable space (Cl, F ^ )  is sup­
posed to be constructed from a sequence { where each J* is finite. 
Then Cl is a compact Polish space. We denote by A t  the space of all prob­
ability measures defined on this (Cl, F qo). Let I  denote the function which 
takes the value 1 everywhere, i.e., a constant function. Given any probabil­

ity measure p  € A t  the functional AM ; /  *-* J  fd p  can be seen as a positive 
linear functional on Cb(Cl) with A^(7) =  1 . We endow A i  with the topology 
generated by the maps p  i-> J f d p  where /  varies over Cb(Ci). A base of 
open neighbourhoods for any po in A t  is of the form

V ^ C /i,/2 , ei,..., e*) = { p e M :  | J  f i d p -  J  fidp0\ < e* VI <  i < k}

where / i , / 2 , are in Cb(Cl) and 6 1 , 6 2>•••>£& are positive numbers. We
shall call this the weak topology in A i, since we can view it as the relative 
topology of the weak-* topology of Bi(C(Cl,R)*) restricted to A t .

Lemma 3.14. I f  the measurable space (Cl,Foo) is constructed from  {Jn}neN 
where each Jn is finite, then the space A t of probability measures on (Cl, 7r00) 
is compact metrizable.

Proof From the condition in the lemma, we find tha t Cl is a compact Polish 
space and C(Cl, R) is a separable Banach space. The unit ball B\(C(Cl, R)*) 

with the weak-* topology is compact metrizable, Let K  be the set of positive 
linear functionals on Cb(Cl) with A(I)  = 1 VA € K.  Then K  is closed in 

Bi(C(fl,R)*), and hence compact metrizable. By Theorem 5.8 on Page 38 
of [12], for any A G K ,  there exists a unique measure p € A t  such that

A(/) =  Jfdii V/ € Ci(n).
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In fact, it is a homeomorphism of K  with Ai.  Thus A i  is compact metriz­

able. □

Comment: We can also use the Riesz Representation Theorem (cf. Theo­

rem 2,14 in [14]) to prove the existence of a bijection A «-*■ p between K  and 
A i  in the sence that A ( /)  =  f f d p  V / £

We now employ a similar procedure to prove the Strong Stochastic Finitary 
Ramsey Theorem (Theorem 3.2).

P roof o f Theorem  3.2. Recall again the definition of Z. The set of all 
stochastic colourings /  is [C]z : the finite set \C] has the discrete topology, 
and [C]z  the countable product topology. By Tychonov’s theorem, this 
space is compact. Q is a Cantor space, and hence also a compact metrizable 
space. By Lemma 3.14, the set A i  of probability measures on (fl, J ^ )  
with the weak topology is a compact metrizable space. Hence, the product 
A i  x [C]z  is also compact. For each collection Q of m  bounded stopping 
times Q =  {0i , 02, with 9% < 9j Vi <  j , we define the subset S q

included in A i  x [C]z  such that for each (P, / )  in S q

p Uei,02 =  hifij  VI <  i < j  <  m) > 1 — €.

We now prove that Sq is open in A4 x [C]z  for every such Q =  {#i,
We copy the definition of the class A( f ,  Q) for a stochastic colouring /  in 
[C]z  from the proof of Theorem 3.13. That is, we again put

Mf, Q) ■= n  i s  € [ c f : g(u>\e,,$j) = /M0,, }.

From the claim in Theorem 3.13, it follows that A( f ,  Q) is open in [C]~ for 

each / .  For a stochastic colouring / ,  we write Uf =  {u> G ft : fdi,e2(a;) =  

(w) VI < i < j  < m }, and denote {P  £ A i : P{fouo2 =  forf, VI < 
i < j  < m)  =  1} by K f .  That means J l u f dP  =  1 Vp £ K f ,  where 1  is 
the indicator function. By the definition of the weak-* topology in Ai ,  for 

any P  in K f ,  S(P)  := {p £ A i  : | / 1  uf dp ~  f  i-Uf dP\ <  e} is an open set in 
Ai,  because l jjf is a continuous function from Cl to {0,1}. Thus M ( f )  :=
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UPeKf S(P)  is open in M .  It follows that Sq =  \J^e^ z (M ( f )  x A ( f , Q )) 
is open in At x [C]z .

The Stochastic Infinitary Ramsey Theorem (Theorem 1.2) asserts that these 

sets cover the whole of M. x [C]z . By compactness, some finite collection 
{SQt , Sq2, SQt} of these sets also covers At x [C]z . This implies that 
every pair (P , f )  comprising of a probability measure P  and a stochastic 

colouring /  on (Ji=i Qi have

H fo i fo  =  h ifij VI <  * < j  <  m) > 1 -  e

on at least one of the Qi. Then we may take for n  any bound of (J*=1 Qi 
such that VI < I < t  V0m € Qi, 6 m < n. □

Comment: It is unknown whether Theorem 3.2 is still true for a measurable 
space (f2, Aoo) constructed from a sequence of sets of countably many states. 
However, we make a conjecture that it is false with the following two reasons. 
For simplicity, suppose ft =  JJn Jn where Jn =  N for all n. Then Q is no 
longer a compact metrizable space. So the set Af of probability measures 
on (fi, Poo) with the weak topology is not a compact metric space, which 
invalidates the approach of the proof of Theorem 3.2. Furthermore, so far all 

the proofs of stochastic Ramsey statements with respect to this ft — J3n Jn 
need to refer to an adjusted probability space (f2', P '), where the P'
entirely depends on the probability measure P  on (fl, Poo). Since P  is 
arbitrary in the conjecture, we cannot go further to reduce the problem to 
the one in a measurable space constructed from a sequence of sets of finitely 
many states as in Theorem 3.13 before.

We can see this conjecture from another point of view. For each i in N, we 

suppose ai := where Jn = {1,2,...,«} Vn. Given a  natural number
m  > 1 and an e > 0 , we define n* to be min[ra(m, e)] associated with a{ 

in the condition of Theorem 3.2. That is, for every probability measure P  
on (fli, Pix ) and a stochastic colouring / ,  there exist m  bounded stopping 
times 9\ < 6 2  < ... < 0 m < n* on fij such that

p (fo 1 ,0 2  =  Uifij VI <  i <  j  <  m) <  1 — e.

It is an open problem whether for each pair (m, e) the sequence {nj}jGN is
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strictly increasing. An affirmative answer would be enough to prove the 

conjecture.

3.7 Further com m ents

1 . (An alternative marking process which is symmetric) It may be a 
slightly more elegant way to define the marking process of Section 3.4 

as follows. Under a stochastic colouring / ,  for a vertex q which satisfies 
condition II of Definition 3.5, we adopt a more natural formulation in 

analogy with the standard proof of the classical Ramsey theorem. In­
stead of searching for a bound N  for each infinite increasing sequence 
of bounded stopping times {£*} such that f(q,Si) =  Blue Vi >  N , we 

describe the colouring properties of such a {^x}ieN hi a symmetric way, 
by replacing the original condition II by a statement of the following 

format (in which M  is an appropriate finite subset of Vg).

There exists a covering subforest G of G such that for every cover­
ing subforest G7 of G, there exists an infinite increasing sequence of 
bounded stopping times {<5*} adapted to G7 such that

fqtsl = Red Vf €  M  VI >  0

and

fqA  =  Blue VZ > 0.

To put this on a rigorous footing, we give below a new marking process 

following this approach. Note tha t this necessitates an alternative defi­
nition of a well-structured subtree (with a more informative name) and 
some associated definitions and lemmas detailed below. The general 
idea after that is still the same as that in Section 3.4.

D efin ition  3.15. Given a covering subforest G of F and a vertex q 

in Vg, say that a sequence of bounded stopping times Si < 62  <  ... 
makes q c-rich over G, i f  all Si are consistent with q, adapted to G, 

and satisfy f(q, Si) = c VZ >  0.
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D efinition 3.16. For a covering subforest G of F, suppose given two 
finite sets M r ,  M r  of vertices included in V&, for every covering sub­
forest G' of G, there exists an infinite sequence of bounded stopping 

times 6 \ < 6 2  <  ... adapted to G' that makes all vertices in M r  Red- 
rich over G and all vertices in M r Blue-rich over G. We then say 
( M r ,  M r )  is {Red,Blue}-richly layered over G.

D efinition 3.17. We call a covering subforest A {Red,Blue}-richly 
layered if  there is a partition of its vertex set Va =  R (A) U B (A) such 

that for any finite subset S  C Va, (S  D R (A), S H B (A)) is {Red,Blue}- 
richly layered over A.

Lem ma 3.18. Given a covering subforest G of F and two finite subsets 
M r ,  M r  C V q  with ( M r ,  M r )  {Red,Blue}-richly layered over G, for 
any vertex q £ V q \ ( M r U M r ) , it is true either that ({g}uMi?, M r )  is 
{Red,Blue}-richly layered over G, or that, for each covering subforest 
G' ofG,  ( M r ,  {5 } U M r } )  is {Red,Blue}-richly layered over G'.

Proof This is straightforward as an equivalent statement to condition 
II in Definition 3.5. □

D efinition 3.19 (Marking process). Given a covering subforest G of 
F, two finite subsets M r  and M r  of V q  with ( M r ,  M r )  {Red,Blue}- 
richly layered over G, for a vertex q £ V<& \  ( M r  U M r ) ,  mark q with 
symbol r relative to ( M r ,  M r )  in G i f  ({#} U M r ,  M r )  is {Red,Blue}~ 
richly layered over G. Otherwise mark q with symbol b relative to 
( M r ,  M r )  in G.

2. (Stochastic Ramsey numbers) As indicated in Section 1 .1 , the stochas­
tic Ramsey theorem is an extension of Ramsey’s theorem. So it is 

natural to ask whether the stochastic versions of other theorems from 
Ramsey theory exist. Besides, we may enquire about the stochas­
tic version of Ramsey numbers. According to the Strong Stochastic 
Finitary Ramsey Theorem (Theorem 3.2), a uniform bound n exists 

for all stochastic colourings /  and all probability measures defined on 

(D,.Foo), once C, (fl, Foo), m  and e > 0  are fixed. It may be difficult
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to determine the lowest bound in a general case a t the first attempt, 
but we can try a basic example first. Assume C  =  {Red, Blue} and 
assume (f2, J7̂ )  as in the model of tossing a coin infinitely many times 
in Section 3.1, which implies that F is a binary tree. For m  > 2  and 
e > 0, we define R{m, e) to be the lowest bound n with respect to these 
C , (Q, J'oo), m  and e. It is an interesting problem to try  determining 
R (m , e).
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4
On a stochastic extension for 
hyper graphs

4.1 Stochastic extension for hypergraphs

Before the discussion, we first establish some definitions.

Recall that in Section 1.1, we firstly introduce Cl to be f l n and assign it
with the Tychonoff product topology. Then we define J-n to be the cr-algebra 
on Cl of Borel sets generated by the basic open sets with support included 
in {1 ,2 ,..., n}. There is another quick way to construct T n without directly 
referring to the topology of Cl.

The coordinate process X  = { X \ , X 2, ...} on Cl is just the sequence of 
coordinate functions defined, for uj =  (w(l),cj(2 ), ...) and n  =  1 , 2 ,..., by 

X n(u>) = uj(n). Then we find, for each n, T n is exactly the cr-algebra gener­

ated by ( X u X 2y..., X n). Furthermore, Too =  ^(U n^n)-  We can generalize 
this concept with respect to any stopping time 9 : 0  —► {0 , 1, 2, . . . , +00}. 

For a stopping time 9, define X^(co) := Then define Tq :=
a ( X f , X 2 ,...). When 9 is a bounded stopping time, JFq — <j{Xq), where Xq 
is a random variable a; i-> X 6 ^{uo). From another perspective, Tq is the 
(7-algebra generated by the partial histories truncated at 0, i.e.

T q — <7 {B{q) : q G S0}.
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( k )For a set X , denote by the collection of ordered subsets of size k of X , 
so specifically,

=  {(ni, : n/ G N VI <  I < k] rti < nj VI <  i < j  <  fc};

7i k) = {(<Si , (5fc) : Si G T  VI <  I < fc; S{ < 6 j  VI <  i < j  < k}.

We drop the subscript '< ’ when context allows.

Let us recall the classical infinitary Ramsey theorem. Let C  be a finite set 
whose elements are colours. The classical Ramsey theorem says that, given a 

natural number k, for every function that assigns a colour c (m i,..., m*) G C  
to every element (m i,...,m^) in N^k\  there is a sequence of integers n i < 
ri2 <  ••• such that c(ni, ...,71*) =  c(nilt ...nik) for all (Zi,..., Z*) G N ^ .  To rep­
resent this result in a complete graph G = (V, E ), we let k  be the number of 
vertices in each edge, i.e., the size of each edge, so that E  =  V^k\  Theorem 
2 .1  tells us that if we have a C-colouring of the edges of an infinite complete 
graph G =  (V, V^2)), then we can find an infinite set of vertices S  C V  span­
ning a monochromatic complete subgraph (clique) (S', S ^ ) .  As mentioned 
at the start of Chapter 2 , Theorem 2.1 is only the special case k = 2  of the 
classical Ramsey theorem. Recall that when \ Ji\ =  1 V? G N, the Stochastic 
Infinitary Ramsey Theorem (Theorem 1.2) reduces to the classical Ramsey 
theorem (Theorem 2.1), which is the case k  =  2  here. One natural question 
is whether a stochastic extension of Ramsey’s theorem exists for k > 2. That 
is, can we find a stochastic Ramsey theorem corresponding to the classical 

Ramsey theorem for hypergraphs?

To answer this question, we need first to define appropriately a more general 

stochastic colouring / .

Definition 4.1. Given a set C of colours, a stochastic hyper-colouring f k 

of order k for k  G {2,3,...} is a mapping from Z k := {(#,£l, ...,<J*_i) : q G 
n<oo5 Si G T(q)  VI <  Z <  k; (Si, ..., <5*_i) G T^k~ ^ }  to C. (We omit the 
words ‘of order k ’ whenever the order is clear from context, e.g. from the 
superscript in use.) The induced stochastic hyper-colouring f k o f f k is a 
mapping from x  Q to C and defined by

■=fki ^ v(*i,...A) € r<*> Vu, e n. (4.1)
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So, f 2 corresponds directly to the stochastic colouring /  of Definition 1 .1 .

Here note that for the bounded stopping time Si > Si (with 1 < / <  k) Si is 
again consistent with w|<5i, as

Si(ui) > M < y  =  Ji(a/) Vo; G fi.

There are other possible ways to define the notion of a stochastic hyper- 
colouring f k. For instance, we can require f k to be a mapping from Z 'k to 
C  with Z 'k defined as

Z 'k ■= {(fltt.—.fflfe—l.tf) : B{qi) D B(qj)  VI <  i < j  < k; S e T ( q k-i)}-
(4.2)

That is, for any (# i,..., qk-i,S)  € Z 'k, there exists a / in ft and a finite 
sequence ( m ,..., nk-i)  in such that qi =  u)'\ni VI < I < k. The
corresponding induced mapping is then

i t  ■■= f k(u\5i,-M6k-i,6k) V(<5i,...A) € 7<*> € n. (4.3)

An intermediate version combining both notions is also possible: for 1 <  i <  
A: — 1 , one may consider mappings from the collection { ( ? i , £ i + i , ..., Sk)} 
to C  with the ‘consistency’ condition:

B(qm) D B{qn) VI <  m  < n  <  i; <5i+i G T{qt)\ ( ^ + i , ..., 5k) G

However, we prefer Definition 4.1 for the following reasons. By Definition 
4.1, given k  bounded stopping times (<5i, . . . ,^ )  G T^k\  the induced stochas­
tic hyper-colouring is an Jr(j1 -measurable random variable from to C. 
That is, the value of Sk (uj) is determined at stage ||a;|<5i||. If we had 
found an infinite sequence of bounded stopping times 0 \ < 6 2  <  ... defined 
in the probability space (fi, Pqq, P) such that

p tieu- f ik = feni,..,enk V (ni,n2, ...,n fc) G N ^}) >  1 -  e,

then, with probabihty greater than 1 — e, the random colours assigned to 

(0 ,n, ...,0 nk) for all (ni,...,rifc) G by f k would be revealed to be one 
fixed colour in C  at stage #1 (0;).
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In the other formulations of /* , we have to wait for bounded stopping time 
6 i with i > 1 to see the random colour determined. For instance, consider 
f k : Z 'k -» C  in (4.2). Given k  bounded stopping times (<5i,..., 5f-) G T^k\  
its induced stochastic hyper-colouring /*  is an J-sk _ 1 -measurable random 

variable. So, if we had found an infinite sequence of bounded stopping times 
6 \ < 6 2  < ... defined in the probability space (f2, P) such that

p t f l  9, =  /£ . ,  9„k V ( n u n 2 ,. . . ,n k) e  N<*>) >  1 - e ,

then, with probability greater than 1 — e, the random colours assigned to 

(6 m, •••,0 nk) for all (ni,...,rifc) G by f k would be revealed to be one 
fixed colour in C  at stage 9 k - i(w). That means the initial segment of partial 

histories (w\Q\, ...,w |0 fc_2 ) is not enough to determine the colour fjj B 
for any (n\, ...,n/t) € N ^ .

Of course, one can replace this {0j}ieN by {^}ieN with 9\ := 9 i+(k-2) Vi. 
Then, with probability greater than 1 — e, the random colour assigned to 
the sequence {0*}ieN by f k is fixed from stage 9\ (u/) this time. However, 
this trick may run into trouble when we consider the lowest bound on the 
Stochastic Finitary Ramsey Theorem (Theorem 3.13). Suppose that the 
following claim could be proved. For a probability space (fl ,Too,P)  con­
structed from a sequence of sets of states, a set C  of finitely many colours, a 
natural number m >  2 and any e > 0, there exists n =  n(m , e, P) G N such 
that for every stochastic hyper-colouring f k with values in C, there exists 
m  bounded stopping times 9\ < 0 2  < ... < 9m < n  which satisfy

p (feu...,ek =  foni,.,enk VI < n x < n 2 <  ... <  n fc <  m) >  1 -  e.

Then we need to set a standard for 9\ in this sequence: does it need the 
requirement that with probability greater than 1 — e, the random colour can 
be determined from stage 9\(u;), i.e., : 12 —f C  is T qx-measurable?

After clearing this ambiguity, we still need to bear in mind that, under the 
definition f k : Z ,k —± C  in (4.2), when we calculate f k from f k, a bounded 

stopping time 6 i in {0 i}i<t<fc can only provide a partial history truncated 
by 0i in f k. That is, for any (9ni , ...,0nk) C {0*}ieN, in the formulation

fdni,...,9nk =  @nk) Vw G
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7ifc has to be at least k.

Thus, given an increasing sequence {#i}i<=N of bounded stopping times, the 
sequence {u;|0 i}i<fc_i of partial histories generated from {0 i}i<A;_i is not 

enough to determine the random colour assigned to any (6n i 0nk) G 

{0 *}»eN> and any element in {#i}i<i<fc can never present as a bounded stop­
ping times in the formulation of f k for f k. Therefore, it is natural to adopt 
Definition 4.1 for further study on the existence of stochastic Ramsey’s the­
orem on f k with k > 2 .

The natural generalisation of the stochastic Ramsey theorem on f k is as 
follows. Given a natural number k > 1 , a probability space (Cl, P) 
constructed from a sequence {Ji}ieN of sets of states and a stochastic hyper- 
colouring f k with values in a finite set C, for every e >  0 there exists an 

increasing sequence of bounded stopping times 0 \ < 6 2  < O3 <... such that

P ( f l u * , . . A =  f i t , e „ 2,■■■,<>»„ V(ni .n2, . . . , » » ) € N < * > ) > l - « .  (4.4)

Unfortunately, proving this generalisation does not seem to be straightfor­
ward, or maybe the proof needs more technique than those we have used 
so far. We leave it as an open problem. However, we can still obtain some 
results weaker than (4.4). For example, when k = 3, we have the following 
theorem.

Theorem  4.2. Given a probability space (Cl, Too, P) constructed from a 
sequence { J i } i ^  of sets of states and a stochastic hyper-colouring / 3 with 
values in a finite set C , then for every e >  0 there exists an increasing 

sequence of bounded stopping times < 62 < 63 <■■■ such that

P (fL02,03 = f0i,02j,02j+i yi'j  e N with 1 < * < 2i) > 1 -  c-

We shall explain later in Section 4.2 why we can prove the stochastic Ramsey 

theorem for / 2, but not for any f k with k > 2  without the weakening above.

For the proof of Theorem 4.2, we adopt the same tree model F as in Section 
3.3, and confine ourselves to the case \C\ =  2 and Ji finite for all i , since, by
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the approach introduced earlier in Theorem 3.9 and Theorem 1.2, it can be 
extended to the full result. So, we only need to prove the following theorem 
analogous to Theorem 3.1.

Theorem  4.3. Given a se tC  =  {Red, Blue}, a probability space (fI, Too, P) 
constructed from a sequence of sets each containing finitely many states and 
a stochastic hyper-colouring f 3 with values in C, then for every e > 0, there 

exists a natural number N , two sets S i , $2 € T n  with S i U $2 =  ond a 
sequence of bounded stopping times #i < #2 < ••• such that

P (fem,02n,02n+i =  Red> VI < m < 2 n|S i) >  1 -  €, i f  P (S i) > 0 ,

and

P (f0m,02n,02n+l =  Blue> VI < m < 2n|iS2) > 1 - 6 ,  i f  P (S2) > 0.

Now we need to find an analogous well-structured subtree A from the tree 
of histories F under the stochastic hyper-colouring / 3 by an adaption of the 
marking scheme of Definition 3.5.

Definition 4.4. A well-structured subtree A under the stochastic hyper­
colouring f 3 is a covering subtree A  o f ¥  with a partition of its vertex set 
V& =  R(A) U B{A) such that for any covering subforest G of A and any 
finite subset S  C Vq, there exists an infinite sequence of bounded stopping 
times Si < 62 < ... adapted to G with the property

f 3 (q, h l - i ,  h i )  =  Red Vg € S  fl R{ A) V/ > 0

and

/ 3(«,f o - i , fo ) =  Blue V9  € S n  13(A) VI > 0.

Definition 4.5. (Marking scheme) Given a covering subforest G of ¥  and 

a finite set M  of vertices with M  C Vg, for every vertex q in Vg \  M , mark 
q with symbol r relative to M  in G, i f  for any covering subforest G’ of G,
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there exists an infinite sequence of bounded stopping times 61 < 62 < 63 < ... 
adapted to G' such that

f 3( q , S =  f iq .Su-uSu)  =  Red W >  0 Vg e  M.

Mark q with symbol b relative to M  in G if  q cannot be marked with r relative 
to M  in G.

Comment: One way to understand the similarity between Definition 3.4 
and Definition 4.4 is by regarding every successive pair of bounded stopping 

times (^2i—l) $2i) C {<Ji}ieN as a special ‘bounded stopping strip’ 6[, and to 
consider the hyper-colouring f a (q, 6 'f) := f 3 (q, ^2i)- The same idea
applies to the transition from Definition 3.5 to Definition 4.5.

As a consequence of the Definition 4.4, a vertex q is marked with b relative 
to M  in G in either of the following circumstances.

I. There exists a covering subforest G of G such that no infinite sequence 
of bounded stopping times <  62 < S3 < ... adapted to G has the 
property that f 3 (q, 621- 1 , fei) = Red Vi > 0 Vg E M .

II. There exists a covering subforest G' of G such that, for any sequence 
of bounded stopping times 61 < 62 < 63 < ... adapted to G' which 

satisfies f 3 (q ,621- 1 , 621) =  Red Vi > 0 V<? E M , there exists N  E N 

such that f^(q, <̂2i) =  Blue Vi > N .

For any such G' in condition II, we say that q is marked with b relative to 
M  with witness G' in G. (G' is a witness to condition II.) Note that the 
finite set M  can be empty. In such a case, condition II simplifies down to 
the existence of a covering subforest Gr of G such that, for any sequence 
of bounded stopping times 61 < 6 2  < 6 3  < ... adapted to G', there exists 

N  E N such that f 3 (q, 621- 1 , 621) =  Blue Vi > N. As in the case k = 2 
analysed in Section 3.4, (for the proof later of Lemma 3.7,) it always follows 

from condition II above that a vertex q is labelled with b.

Lemma 3.6 is still true under the current assumption with exactly the same 
proof. That is, if a vertex q is marked with b relative to M  with witness G7
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in G, then there exists a covering subforest G(q)(M) of G pruned below q's 
level such that q is marked with b relative to M  with witness G (q)(M) in 
G.

To prove the existence of a well-structured subtree A in F, we follow a similar 

procedure to that in the proof of Lemma 3.7, except for a modification 
reflecting the definition of f 3.

Lem m a 4.6. Given a stochastic hyper-colouring f 3, there exists in the tree 
of histories F a well-structured subtree A under f 3.

Proof. We first extract a subtree A of F by the same labelling process de­
scribed in Step 1 in the proof of Lemma 3.7. Now we prove this subtree A 
is a well-structured subtree of F under f 3.

We keep the index order of Va =  {<?i}iez+ as in the labelling process de­
scribed in the proof of Lemma 3.7, and denote two collections of vertices 

labelled with r  and b by Sr and Sb, respectively. That is, Sr =  UieZ+ Ei 
and Sb = V\  \  Sr. We show that the two partitioning sets Sr and Sb of Va 
can be regarded as R(A) and jB(A), respectively, in Definition 4.4 and hence 
the covering subtree A is a well-structured subtree under f 3.

For any covering subforest G of A and any finite set S  C Va, we define 

d(S) := min{n : Li(A) D S'}.
0<i<n

If no ambiguity, we abbreviate d(S) to d. By the definition of z(k) in the 
labelling process, we see that in fact

[ J  Li{A) =  {qi : 0 <  i < z(d)}.
o <i<d

Hence S  C (Jo<i<z(d) ?*• RecaU that

Ei = {qi : 0  < I < i, qi is labelled with r}.

It follows that Sr fl S  C E z^) ■ On the other hand, if E z^) ^  0> then for 
any covering subforest of G ^ , and so in particular for G (since Vg C Va C 
Vgz(<j)), there exists an infinite increasing sequence {<£*} of bounded stopping 
times adapted to G such that

f 3 (q,$2i - i ,$ 2i) = Red Vq € E z^  V* > 0,
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by the definition of r. Therefore,

f 3 {q, fa i- i ,h i)  =  Red Vg G Sr fl S  Vi >  0.

If Ez(d) =  any infinite increasing sequence of bounded stopping times
adapted to G to be {<5i}i>o*

Suppose that one vertex qm is in Sb fl S. By Lemma 3.6 and the definition of 

Gm(gm)(£'m), for any infinite increasing sequence { t *} of bounded stopping 
times adapted to Gm(<jrm)(.Em) with

f 3 (q,r2i - i ,T 2i) = Red Vi >  0 Vg G Em,

there exists Nm G N such that f 3 (qm^ 2i - i ^ 2i) = Blue Vi >  Nm. Since 
each bounded stopping time in is adapted to G and G is a covering
subforest of Gm(qm)(Em), each bounded stopping time in is also

adapted to Grn(qm)(Em). Because Ez^)  ^  we see

f 3 {q,$2i - i ,t i2i) = Red Vi >  0 Vq G E m.

Therefore, we can take the sequence {^} for the sequence {r*} above. Fur­
thermore, for every vertex qm in Sb fl S , we can likewise take {^} again for 
the sequence { t *} above. Hence there exists a corresponding Nm G N such 
that

f 3 (q m ,h i- i ,h i)  = Blue Vi > Nm.

Because Sb n  <9 is finite, we can define N  to be the maximum of those N m. 
Hence,

=  Blue 'iq 6  Sbn S  Vi >  N.

Define a new infinite sequence of bounded stopping time {<^}igN such that 
8[ — 8 i+2N Vi G N. This is the desired sequence of bounded stopping times 
as per Definition 4.4, for the finite set S  in the covering subforest G. □

We copy the definition of r$i and 6^  from Section 3.4. That is, in any 
covering subforest G of A, for any bounded stopping time 9 adapted to G, 

we have

r*(G) =  U{5 («) : q G Se(G) n R{A)}
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and

bo(G) = U{B(q) : q G S0 (G) D B (A)}.

Lemma 3.8 is still true in the current circumstance with exactly the same 
proof.

We now prove Theorem 4.3 by the same approach as in the proof of the 
Finite-state Two-colour Stochastic Partition Theorem (Theorem 3.1).

P ro o f  o f T h eo rem  4.3: In a covering subforest F of A obtained from 
Lemma 3.8, we define 6 \ to be ao(F). We construct the desired infinite 
increasing sequence of bounded stopping times inductively. Suppose that 

we have obtained {6 \, 6 2 , 0 2fc-i)- Denote (Ji<i<2fc-i $0$ )  by S k. Since 
F is a covering subforest of A and S k is finite, by Definition 4.4, there exists 
an infinite increasing sequence of bounded stopping times {4 }*eN adapted 
to F with the property

f(< l, 4 - i » 4 )  =  Red Vq G S k n  R{ A) Vi > 0

and

/*(«, 4 - 1 , 4 ) =  Blue v9 e  sk n  B (A) Vi > 0 .

Let $2 k be <5, and 02fr+i be 4 -  In this way, we find an infinite increasing 
sequence of bounded stopping times {0n}neN- It follows from Lemma 3.8 
that, for all of its initial subsequences {0 i , ..., 62 1 , @2i+i} (i >  1 ),

p (fem,e2n,02n+i = Red VI <  m <  2n <  2i\R) >  1 -  5e /8 , if P(R) > 0, 

and

Pifdmfonfon+i =  Blue VI < in < 2n < 2*|J3) > 1 -  5c/8, if P (B ) >  0, 

which completes the proof. □

C om m ent 1 : Analogously to Theorem 3.13 and Theorem 3.2, we can prove 

the finite versions of Theorem 4.2 which follows, by compactness arguments. 
In the first of those, the probability measure is fixed.

T heo rem  4.7. For a probability space (D, constructed from, a se­
quence of sets of countably many states, a set C of finitely many colours, an
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odd integer 2 m + l with m G N and any e > 0, there exists n  =  n(m, e, P) e  N 
such that for every stochastic hyper-colouring / 3 with values in C, there ex­

ists 2 m  +  1 bounded stopping times 9\ < 0 % < ... <  02m+i < n which satisfy

p (feu92,d3 =  f l , e 2j,o2j+1 VI < i < 2j \  1 < j  <  m) >  1 -  e.

For the case when only finitely many states are allowed, we have a uniform 
result over the space of probability measures.

T h eo rem  4.8. For a measurable space (S7, constructed from a sequence
of sets each containing finitely many states, a set C  of finitely many colours, 
an integer 2m  +  1 with m  €  N and any e > 0, there exists n = n(m , c) € N 
such that, for every probability measure P  defined in (Q, ^oo) ond every 
stochastic hyper-colouring / 3 with values in C, there exist 2 m  +  1 bounded 

stopping times 6 \ < 6 2  <  ••• < &2m+i < n with

p (fe1,02,03 =  f0i,02ifi2j+i V1 < * < 23\ 1 < j  <  m) >  1 -  c.

C om m en t 2: One might hope to use in the proof a stronger marking scheme 
as follows, but this does not seem to be helpful.

Given a covering subforest G of F and a finite set M  of vertices with M  CV<q, 
for every vertex q in Vq \  M, mark q with symbol r relative to M  in G, if for 
any covering subforest G' of G, there exists an infinite sequence of bounded 

stopping times <5i < 6 2  < £3  <  ... adapted to G; such that

f 3 (q, Sm, fin) = f 3 (q, fim, fin) =  Red Vm < nV q  € M.

Mark q with symbol b relative to M  in G if q cannot be marked with r 
relative to M  in G.

Indeed, this stronger marking scheme looks more appropriate for application 
to the general claim (4.4) in regard to / 3, that is,

p (fei,<M3 =  / I a a .3 V (m ,n2 ,n 3) G N<3>) > 1 -  c.
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However, given a finite set M  C V<& with f 3 (q, Sm, 6n) =  Red Vra < n 'iq  € 
M, it is not easy to give a direct condition for marking a vertex with b. 
Furthermore, a probabilistic difficulty in this general stochastic claim above 
prevents me from progressing to a successful proof, and I have to adopt a 

simpler marking scheme for a weaker result (i.e., Theorem 4.3).

4.2 Further com m ents

Before explaining the difficulty in proving the general stochastic extension 
of Ramsey’s theorem on f k with k  >  2, it is worth summarising first why the 

proof in Section 3.4 is valid for f k with k  =  2 , but why the direct induction 
method fails. (The induction idea is indeed used at the end of the proof 
of Theorem 3.1 in Section 3.4, but the key of the proof, i.e., Lemma 3.7, is 
proved by other methods than an induction.)

Recall that in the proof of the Stochastic Infinitary Ramsey Theorem (The­
orem 1.2), one key point is in dealing with the domain Z  of the stochastic 
colouring / :  it is not simply the collection of two partially ordered partial 
histories or bounded stopping times, but a collection of pairs each consisting 
of a partial history and a bounded stopping time consistent with this partial 
history. The induced random colouring /  is from x fl to C. Given (<r, r)  
in T^2), it is essentially a stochastic colouring determined by the random se­
lection of partial histories truncated at the first bounded stopping time <r. 
That is, f(r,T is an Jv-measurable random variable. The asymmetry inside 
the domain Z  of the stochastic colouring /  inhibits any easy attem pt on 
applying directly the induction method for ‘Ramsey’ problems.

We analyse here the impact of the ‘asymmetry’ on the proof of the Finite- 
state Finite-colour Stochastic Partition Theorem (Theorem 3.9). Suppose 
that we adopt the natural induction on bounded stopping times. That is, 

in a fixed set Q i  with

p ( f 9m,0n =  Ci VI < r a < n <  t \ Q i )  > 1 -  e

where C = { c i,..., c/-} and 1 <  i < k, we are considering the yet to be
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constructed bounded stopping time 0*+i. Assume e < 1 /k ,  6 1  > 0 and that 
P  has a uniform distribution. We then cannot rule out the possible situation 

that in any such Qi no bounded stopping time Qt+i > 6 t satisfies

p (fem,0n =  ci V l < r a < n < £  +  1 |Q i )  > l - e .

We can construct a counterexample by manipulating felts for every bounded 
stopping time greater than 6 t , denoted here by fi. We firstly enumerate 
the elements in (F) as qi,q2 , • • • . Regarding the k colours as presented 
cyclically, for any bounded stopping time 6  >  0 t , we can define f(qi,fi) =  

c mod (l/k) so that f (q t , 6 ) ^  f(qi+1 ,S) for all successive pairs of (qi,qi+i) 
included in ^ ( F ) .  So we cannot adopt the standard induction method on 
bounded stopping times in such ‘Ramsey’ problems.

Our approach in Section 3.4 is to focus on individual partial histories q in 
floo in turn, and check whether there exists an infinite increasing sequence 
of bounded stopping times {£/}ieN consistent with q and with a certain 
labelling property. The result can only be ‘yes’ or ‘no’. Then in Lemma 3.8, 
we consider the probabilistic aspect of the problem, and take e into account 
to find a nice subfiltration.

However, this method looks inadequate for the case of k > 2 on f k. For 
example, assume k =  3 and Red G C. We can of course check for any 
particular partial history q G floo whether there exists an increasing sequence 
of bounded stopping times {<5i}j€N such that

f 3 {q, $m, fin) =  Red VI <  m  < n.

Nevertheless, we have to note that, in a desired infinite increasing sequence 

{0i}ieN as in (4.4) for k — 3, i.e.,

p ( f i 1,02,03 = feni,en2,0n3 v (n i>n 2 ,n 3) G N<3>) >  1 -  e,

every 6 i with i > 2 can appear in two of the argument places in / 3 and in 
/ 3. Given i G N, we need to consider the random colour / j^  &n for any 
m  < i < n  and the random colour f#m e 9  for any m  < n < i. That is, 
Qi (i >  2) can appear as the second or the third bounded stopping time in 
/ 3 and the corresponding formulation of / 3. When reconciling these ‘double
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identities’, we have to deal with the problem of compatibility of ‘candidate’ 
sequences given a set of partial histories at which we have stopped.
To be specific, suppose that given {Oi, ..., 0f}, for a partial history q in Soi , 
there exists an increasing sequence of bounded stopping times such

that / 3(g, Sm , 5n) =  Red VI < m  <  n. We can then pick one Si as $i+\. The 
important point is that 0*+2 should also be chosen from the same sequence 

{<^}i€N to make / 3(g, 0*+i, ^ + 2 ) the desired colour, Red. However, for any 
vertex q' € Sei+1, any increasing sequence of bounded stopping times {<^}zgn 
with / 3(</, S'm, 6'n) =  Red VI < m  < n  might have no common subsequence 

with {<Sz}zgn above, i.e., {^}z€n H {<?}zeN =  0. Furthermore, each g' € Sei+1 

might have different ^ tin c tio n  between sequences {^}zgN
associated with those q € S$i and g7 G S$i+l invalidates our approach in 
Section 3.4.

Thus, any method to fix 61+ 2 must take into account not only partial histories 
truncated at 0i, but also the bounded stopping time 0i+i. However, we have 
already shown that the standard induction method involving bounded stop­
ping times is inappropriate for a proof of Ramsey’s theorem in the stochastic 
context.

We may, of course, try  other approaches. For example, under a partial 
history g, we may check whether there exists a covering subforest G such that 
any infinite increasing sequence of bounded stopping times {^}zgn adapted 
to G satisfies some conditions relative to q. That idea needs a closer look 
at the relationship among sequences of covering subforests, which is not 
straightforward either.

To sum up, for the analogous stochastic extension (4.4) to stochastic hyper­
colourings f k with k > 2, we cannot prove it by either of the two natural 
methods: induction on bounded stopping times, or considering individual 
partial histories then fixing a common solution sequence of bounded stop­
ping times. The difficulty in the former is the asymmetry inside the domain 
of f k, and in the latter is the possible incompatibility of the sequences from 
different individual partial histories. I do not know whether the general 
stochastic extension (4.4) of Ramsey’s theorem is true. If not, any coun­

terexample would be sophisticated, since we have proved it true for the case
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of k  =  2.
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5
Applications in utility theory

We briefly recall some background in utility theory relevant for our applica­
tion of the stochastic Ramsey theorem. (See [11] for further information.) In 
particular, we discuss the significance of monotonic utility functions defined 
on bounded stopping times.

We first construct a probability space by a coordinate process. For a set 
ft, we define an infinite sequence of IID (independent and identically dis­
tributed) random variables {X n : ft —> {1 ,-1} , Vn £ N}. Regard the 
sequence {An}n€N as the coordinate process, and assign the probability 
measure P  so that

p ( X n =  1) =  P ( X n = -1 )  =  1/2 Vn £ N.

We view this model in the sense that, at every stage in an infinitely long 
game, a fair coin is tossed and one player wins 1 pound if Head shows and 

loses 1 pound if Tail shows. Then X n is the player’s net winning at stage n in 
this betting game. We define Yn to be the random variable representing the 

accumulated fortune at stage n, i.e., Yn =  ]T)i<k<nXk- For completeness, 
we let Yq(u>) =  0 Va; £ ft. So for a bounded stopping time 0 ,Yq  is the 
random cumulated fortune at 6 . For a partial history q =  (<?(1),..., q{n)), we 
denote Yn{uj) by Y(q)  if uj\n =  q. By Doob’s Optional-Stopping Theorem
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(cf. 10.10 in [17]),
E\Ye\B{q)] = Y , V { q , $ ) e Z ,  

where as before Z  =  {(q, r)  : q £ r2<00; r  £ T(g)}. In particular

E[Ye] =  0 ye e  T . (5.1)

From the perspective of utility theory, one can evaluate the expected utility 
of Yq. That is, the player is described by a utility function u : 7L —» R and 
his evaluation of Yq is

«[«] :=  E  u(Y(q))P(B(q)).
q€Sg( F)

We assume that u  is globally strictly increasing.

To show the difference between E[Yq] and w[0], we compare two bounded 
stopping times 9\ =  1 and 6 2  =  100. By (5.1), £ ,[1^1] =  E\Yq2] =  0. 
However, u[9] depends on the utility function u. If u is a strictly concave 
function, then u[0i] > u[9-^. The strictly concave utihty function describes 
risk aversion. That is, a player with such u  prefers a fixed monetary outcome 
to a lottery with expectation equal to that outcome. In this case u(—n) + 
u(n) < u (—(n — 1)) +  u{n — 1) Vn > 1, due to the concavity of u. If u is 
a strictly convex function, then u{6 \] < u[0 2], which describes risk seeking. 
If u is a linear function, then u\6 \\ =  u[02 ] and we say that player is risk 
neutral. Note that u can be any increasing function, with no constraint on 
global convexity or concavity.

One may view the expected utihty as a ‘generalisation’ of expectation, as 
u[9\ =  E\Yq\, if u(x) = x  for all x  in Z. For a pair (q, 9) in Z , the player can 
evaluate the expected utihty of Yq conditional on q as

« M ] ~  E  « ( v ( f e ) ) .
heSg(F)

Indeed, given 9 =  100, for q\ — 0 and 52 =  (#(!)> —> tf(99)) where q(k) =  
1 VI < k < 99, the expected utihty u[q\,9] and u[q2 , 9 ] is different. We can 
even generalise further to define a history dependent utility function: the 
player has a countably infinite sequence of utihty functions {uq}qeo,<OQ and
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for each pair (q, 6 ) in Z, his evaluation of Yq conditional on q is 

« M ] : =  J 2  uq(Y(h) )P(B(h) \B( , ) ) .
h<£Se{ F)

We of course assume each uq : Z —» R is an increasing function.

We apply the stochastic Ramsey theorem in the current model. Under the 
standard assumption that the utihty is bounded (cf. e.g. [1], [2], [4] and
[15]), we suppose that uq : Z [0, N)  where N  £ N for each q.

T h eo rem  5.1. For a history dependent utility function u generated from a 
sequence {u9 }g€ ^ < 00 and any e >  0 , there exists an increasing sequence of 
bounded stopping times 6 \ < 6 2  < #3 < ... such that

P (u  £ f t : \u\u)\Qm, 0n] — u[uj\0i, 6j]\ < e VI <  m <  n VI <  i < j )  > 1 — e.

Proof. We give a partition of [0,N )  by {[«e, min{(i +  1 )e,N})  : 0 <  i < 
N/e\ i £  Z+}. For every (<q,9) £ Z  = {{q,r) : q £ £1<00, t  £ T(q)},  we 
define f (q,0)  := Cj+i if u[q, 0] =  uq[q, 9] £ [ie, m in{(i+  1 )e,N}).  Hence the 
function /  : Z  -> {ci,...,C|-jv/e]}  is a stochastic colouring. Apply Theorem 
1.2. □

C om m en t 1: If we define uq(Y(h))  =  Y(h)  for all pairs of partial histories 

q and h where h is an extension of q (i.e., 3u) £  S7,ni,ri2 £  N with n\ < n 2 

such th a t uj\ni = q and u:\n2 — h), then we obtain the following conclusion.

For e > 0, Y  = (Yn : n  >  0) a bounded process adapted to the filtration 
{J-n} m (fi, Joo ,P ), there exists an infinite increasing sequence of bounded 
stopping times {6 n} such that

P{\E[YBj\Fei) -  Yfd < e VI < i < j)  > 1 -  e.

C om m en t 2: The setup of Theorem 5.1 is in essence an example of a 
stochastic colouring with ^-consistency condition introduced in Section 1.1. 
It is unknown whether an application of stochastic colouring without T -  
consistency but with practical meaning exists.
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