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ABSTRACT

The present thesis is an investigation on an open problem in
mathematical logic: the problem of devising an explanation of
the meaning of the intuitionistic first-order logical operators,
which is both mathematically rigorous and faithful to the
interpretation intended by the intuitionistic mathematicians
who invented and have been using them. This problem has
been outstanding since the early thirties, when it was
formulated and addressed for the first time.

The thesis includes a historical, éxpository part, which
focuses on the contributions of Kolmogorov, Heyting, Gentzen
and Kreisel, and a long and detailed discussion of the various
interpretations which have been proposed by these and other
authors. Special attention is paid to £he decidability of the
proof relation and the introduction of Kreisel’s extra-clauses,
to the various notions of ‘canonical proof’ and to the attempt
to reformulate the semantic definition in terms of proofs from
premises.

In this thesis I include a conclusive argument to the effect

that if one wants to withdraw the extra-clauses then one



cannot maintain the concept of ‘proof’ as the basic concept of
the definition; instead, I describe an alternative interpret-
ation based on the concept of a construction ‘performing’ the
operations indicated by a given sentence, and I show that it
is not equivalent to the verificationist interpretation.

I point out a rédundancy in the internal -pseudo-inductive-
structure of Kreisel’s interpr_'etatibn and I propose a way to
resolve it. Finally, I develop the inter-pretation in terms of
proofs from premises and show that a precise formulation of
it must also make use of non-inductive clauses, not for the
definition of the conditional but -surprisingly enough- for the

definitions of disjunction and of the existential quantifier.
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CHAPTER 0
INTRODUCTION

§0.1. The topic of this thesis and its significance

The present thesis is an investigation into an open problem
in mathematical logic: the problem of devising an explanation
of the meaning of the intuitionistic first-order logical opera-
tors, which is both mathematically rigorous and faithful to
the interpretation intended by the intuitionistic mathe-
maticians who invented and have been using them.

This problem has been outstanding since the early thirties,
when it was formulated and addressed for the first time; since
then, the amount of literature dealing with it has never
stopped growing, but no satisfactory solution has as yet been
attained. As we shall see throughout the thesis, the difficul-
ties in solving this problem are largely of a conceptual or
philosophical nature.

The explanations of the intuitionistic logical operators
could be used to define a genuine semantics for the in-

tuitionistic predicate calculus. At present, none of the models
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which are being used for its metamathematical study, in spite
of being formally adequate, can be properly motivated as the
intended interpretation of that calculus.

Moreover, a positive solution to this problem would cons-
titute a very big step towards the clarification of the whole in-
tuitionistic project for the foundations of mathematics, and of
the notion of ‘constructive proof’ in particular. In turn, if it
could be shown that such an explanation 1s not possible this
would be a strong support for the view of some, that behind
intuitionistic mathematics there is not a coherent conception
at all.

Finally, the work of Michael Dummett in recent times has
connected intuitionistic logic with a number of philosophical
issues. In particular, the intuitionistic informal explanations
of the logical operators has been pointed out as the prototype
of a verificationist theory of meaning for a natural language,
which Dummett has been trying to reformulate. Hence the
feasibility of such a theory -one of the few theories of meaning
around- seems to depend on the possibility of making those

explanations more rigorous.
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A final remark to make on the topic of the thesis is the
following. As is only natural, the various attempts which have
been made to define the intended interpretation of the
intuitionistic logical constants make ample use of the notion
of ‘mathematical construction’, which is, within constructive
mathematics, evidently the most basic notion of all.

From the sixties onwards various ‘theories of constructions’
have been attempted to provide an explicit characterization
of this notion -none of them having yet reached a satisfactory
stage. The investigation of those theories lies, however,
beyond the scope of this thesis, and I shall only refer to them
at some points where the definition of the logical operators
would crucially depend on the particular way in which the

notion of ‘construction’ were to be defined.
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§0.2. Summary of contents
0.2.1. Chapter 1. This thesis has three chapters, apart from
the present, introductory one.

In the first chapter I examine the principal attempts which
have been made to resolve the problem of this mainly with an
expository purposne. I start with Brouwer, because although he
never set out to give an expliqit definition of the intuitionistic
logical operators, he was the main perso.n who invented them,
and the first to use them systematically for doing mathe-
matics. Also, in this first section I outline the basic ideas of
the verificationist interpretation, and introduce the inter-
pretation which I shall call ‘operational’, linking both of them
directly to Brouwer’s writings.

Then I devote separate sections to the two first authors
who, in the early thirties, clearly posed the question of the
thesis- and tried to give an answer to it -qumogorov and
Heyting-; and a short section to examine Gentzen’s important
contribution about the same time.

Finally, the fifth and last section of Chapter 1 is dedicated

to the study of Kreisel's approach in the sixties, and in
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particular to the introduction of what has become known as
the ‘extra-clauses’.

As I go along I examine some of the more obvious problems
of all these proposals -in particular, for instance, the objec-
tions raised against the extra-clauses-, although most of the

critical discussion is located in the second chapter.

0.2.2. Chapter 2. This chapter opens with a discussion about
the decidability of the proof relation (i.e. whether we should
consider thaf, In general, ‘c proves A’ is decidable), and its
relation to the interpretation of the logical constants.

Then I devote a section to developing the operationalist
interpretation and to emphasizing the differences between
this and the veriﬁcationis.t interpretation, which have so often
been neglected. There follows another section in which I
re-examine Kreisel’s interpretation; I point out a curious
redundancy or imprecision in the internal -pseudo-inductive-
structure of the definition, and I propose a way of correcting
it.

Afterwards there are two sections on canonical proofs, in

which I examine the various proposals that have been made
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to define such a special notion of proof and to give the
definitions of the logical operators in terms of this notion. I
study the distinct motivations which lie behind these pro-
posals and the difficulties, in each case, of elaborating a
precise definition which satisfies them.

Finally, there is a section on proofs from premises and
another on proofs with free Va_riablés. In these cases the idea
is to define a broader notion thaﬁ that ~of ‘straight’ or ‘cate-
gorical proof’, and to give the interpretation of the logical

operators using it.

0.2.3. Chapter 3. The third and final chapter has two sections
only. In the first one I discuss the current interpretations of
intuitionistic logic and Why none of them, despite being so
successful from the formal point of view, can be truly said to
encapsﬁlate the intended interpretation of thé lpgical operat-
ors.

In the second section of this chapter I touch upon the
efforts that have been made by some philosophers to show
that it is impossible to give a precise explanation of the

intuitionistic logical constants because there are inherent in-
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consistencies in the very conception of these constants as
distinct from the classical ones. This is a topic which would
require a much longer treatment, since intuitionism has been
traditionally criticized for the vagueness of its philosophical
motivation, and the arguments formulated in this respect, and
in particular against the intuitionistic conception of the
logical constants, are very numerous; however, I shall restrict
myself to the consideration of a few of the most recent ones

only, more as a sample than as a comprehensive survey.

0.2.4. The Conclusion. Finally, the last part of the thesis
-before the Bibliography- is the Conclusion, in which I make
a tentative diagnosis on the present state of the debate over
our problem, the intended interpretation of the intuitionistic

first-order logical operators.
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§0.3. Original content of the thesis

In short, the originality of this thesis lies in the following
points:

(a) I argue that if one wants to withdraw Kreisel’s extra-
clauses then one cannot maintain the concept of ‘proof’ as the
basic concept of the semantic definition of the logical cons-
tants (§2.1).

This concerns oné of the two most frequent presentations
of the verificationist interpretation, favoured for example in
textbooks such as Troelstra and van Dalen [1988] (p. 9). In
particular, I point out a number of distinct paradoxes which
arise from this type of version, and which show quite patently
that it is untenable.

On the other hand, it is to be noted that the role that these
explanations play in those textbooks is essgntially heuristic
and not technical, so that there is no fear that an error in the
explanations might lead to any other problem.

(b) In relation to this, I describe and discuss an alternative
interpretation which does not make use of the extra-clauses,
based on the concept of a construction ‘performing’ the

operations indicated by a given sentence (§2.2). I call this
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interpretation ‘operational’, I show that the differences
between it and the verificationist are not at all trivial, and
I illustrate how the operational interpretation is largely
supported by Brouwer’s and Heyting’s ideas -despite the fact
that, for example already in Heyting’s writings, the difference
between the two interpretations is explicitly neglected.
Moreover, this new interpretation would also constitute a
prototype for an anti-realist theory of meaning for a natural
language, which could perhaps be developed in a parallel way
to the Veriﬁéationist theory, constituting a possible alternat-
ive to it.
(¢) I point out a curious redundancy or imprecision in the
internal -pseudo-inductive- structure of Kreisel’s interpreta-
tion -i.e. with the extra-clauses (§2.3). In light of this redun-
dancy the current version of Kreisel’s interpretation appears
to be either incorrect or at least very inelegant; however, the
only way to resolve it seems to require that we have previous-
ly defined an interpretation akin to the operational one, and
this has further consequences for the viability of each

interpretation and the relation between them.
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(d) The interpretation in terms of proofs from premises and,
relatedly, in terms of free variables are subjected to a
thorough discussion most of which is totally unprecedented
-in fact Dummett is virtually the only author who has been
careful to distinguish between these types of interpretations
and the other ones. In particular, I show how the notion of
‘proof from premises’, which prima facie constitutes a solution
for the inductive definition of the coﬁditional, after a con-
sistent development turns out to originate a very similar
problem in the definitions of disjunction and the existential
quantifier -a most surprising result (§2.6).

(e) Finally, the whole structure of the thesis has been
conceived in an original and independent way. In comparison
with other survey articles on this topic such as van Dalen
[1979] or Sundholm [1983], the thesis is not only -obviously-
longef, but it attempts to cover the most recent literature; it
focuses on careful historical distinctions which have been
traditionally ignored -e.g. the difference between Heyting’s
and Kolmogorov’s interpretation (1.3.5, §2.6)-; it contains
clear expositions of topics such as canonical proofs -singling

out four distinct and independent reasons which have been
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given for introducing them (2.4.1, 2.4.4, 2.5.2 and 2.5.5)-; and
finally, it also includes a discussion of some hostile arguments
against the feasibility of the whole project of formulating a

precise semantic explanation (§3.2).
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§0.4. The intuitionistic ‘ideology’ and the study of intuitionism
today

“Here constructivism is to be understood in the wide sense (...).
The ending “ism’ has ideological overtones: ‘constructive mathe-
matics is the (only) right mathematics’; we hasten, however, to
declare that we do not subscribe to this ideology, and that we do
not intend to present our material on such a basis.” (Anne Sjerp
Troelstra and Dirk van Dalen [1988], p. vii).

These words, written at the begihning of one of the major
handbooks on the subject, express the declared attitude of the
majority of mathematicians and philosophers who work today
in the field of constructivism. There are still some strict
intuitionists among the great figures (like Dummett), but they
are few.

I find myself in agreement with this trend, and do not
adhere either to the intuitionistic or to any constructive ideo-
logy. In particular, I do not subscribe to the view that in-
tuitionism (or constructivism) is the only legitimate direction
in the foundations of mathematics -philosophy of mathe-
matics, set theory or mathematical logic. To use a terminology
coined by Kreisel, I subscribe to the positive thesis of in-
tuitionism -namely, that intuitionism is a coherent, legitimate

and interesting way of doing mathematics- without endorsing
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the negative one -i.e., that intuitionism is the only such way,
and that classical non-constructive mathematics must be
rejected.

In any case, intuitionism remains one of the most serious
and promising alternatives in the area of foundations -still a
very uncertain field- being the only one among the three main
traditional schools at the beginning of the century which has
survived mostly in its original form, while not having been
shaken by adverse results. In addition to this, its applications
to independént areas of philosophy (such as verificationist
theories of meaning for natural languages or anti-realist
metaphysics and epistemology), to classical mathematics (e.g.
in topos theory and numerical mathematics), to physics and
to computer science, make intuitionism today a clearly

interesting subject.
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§0.5. The other main schools of constructive mathematics
0.5.1. The logic of constructive mathematics. Although
intuitionistic logic was originally created and developed as
a codification of intuitionistic mathematical reasoning only,
today it is often considered as representative also of the
two other main trends of constructive mathematics -the
Russian school of recursive mathematics and Bishop’s
constructivism. Thus, in generai hancibooks on construc-
tivism such as Bridges and Richman [1987] or Troelstra
and van Dalen [1988] it is at least tacitly assumed that
intuitionistic logic is the logic of constructive mathematics

(cf. p. 11 and p. 35 respectively).

0.5.2. The status of Markov’s principle. In fact intuitionistic
logic i1s probably the logic of Bishop’s constructivism, but
not 1t appears to me- that of Russian recursive mathe-
matics. Indeed, my point is that Markov’s principle -the
main difference between the Russian school and the other
two- is expressible in intuitionistic first-order logic, for
example by the following sentence (for a unary relation

symbol F'):
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Vx(F v Fx)—(3xF (x)—>3xF(x))

(cf. e.g. Dummett [1977], p. 22 or Troelstra and van Dalen
[1988], p. 203).

Hence it seems that it is a logical principle, in which case
a correct axiomatization of Russian constructive logic
should incorporate as axioms all sentences of the language
in question which take that form. The résulting logic would
be intermediate between intuitionistic and classical logic,
and the usual explanations of the intuitionistic logical
constants would obviously not be adequate to it.

In any case, once it has been shown that the principle 1s
expressible in a pure first-order logical vocabulary it could
seem artificial to continue to regard it as a mathematical
and not a logical principle -as has sometimes been defend-
ed, e.g. by McCarthy [1994] (p. 105). In particular, it would
seem incorrect not to take Markov’s principle into account
for a precise explanation of the use of the logical operators
-and in particular, of the quantifiers- in Russian construc-
tivism.

Of course the principle is not expressible in classical

logic, where the decidability of the property corresponding
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to F does not reduce to the assertion Vx(F(x)v—-F(x)); but
that is a completely different matter -surely the logic of

Russian recursive mathematics is not classical logic either.

0.5.3. More on Markouv’s principle. In connection with this
point we should notice the following: constructive mathe-
matics has been repeatedly c_riticiZed on the grounds that
it is not powerful enough for the heeds (;f our most success-
ful physical theories (e.g. Putnam [1975], p. 75). Whether
this is strictly true or not, it does not pose a problem for
constructivism as such, which relates to pure, rather than
applied mathematics.

In particular, an observant intuitionistic mathematician,
for example, could perhaps agree on the use of classical
principles as part of a physical theory, as long as it is
employed to obtain results about the physical reality only.
There is no reason in principle, for instance, why he could
not use the law of excluded middle when applied to real
existing objects even if he cannot determine which of the

two options holds; and in doing this he would be effectively
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treating the law of excluded middle as a physical law, in
spite of being expressible in pure logical terms.

The situation, however, is different from that of the use
of Markov’s principle in Russian recursive mathematics,
since in that case the principle in question is held by
Markov and his followers as valid in every domain, and not
only in a restricted area of phenomena. Hence a distinction
between it and other logical principles that they accept

would not have any practical consequences at all.

0.5.4. Conclusion. It is important to notice then, that in this
thesis we shall be concerned with the intuitionistic logical
operators only -that is, the logical operators as used by in-
tuitionistic mathematicians. We can take them to be
broadly representative of constructive ‘mathematical
reasoning as a whole, but, as we have seen, they do not
have to coincide exactly with those used in any school of

constructivism other than the intuitionistic.

30



§0.6. Notational conventions and preliminary notions
0.6.1. First-order languages. First-order languages are
assumed to have the four connectives (A, v, = and ) and
the two quantifiers (3 and V) that are needed for in-
tuitionistic purposes. For simplicify I shall restrict myself
to languages Without equality (and hence without function
symbols other than consta}nts);' as is well-known, in-
tuitionistic equality is, in generai, a deﬁned non-primitive
relation.

Most of the interpretations that we shall study in this
thesis require that first-order languages be enriched with
a new logical symbol 1, to which they will assign, roughly
speaking, a basic absurdity. Syntactically this symbol is to
behave exactly as a new atomic sentence.

When dealing with a fixed first-order language .# I shall

sometimes write ‘variables’, ‘formulas’, etc, meaning

-respectively- ‘variables of .#”, ‘formulas of ¥, etc.

0.6.2. Constructive sets. Following Troelstra and van
Dalen [1988] I use the term ‘set’ for what was traditionally

called ‘species’. Hence a set will be a definite condition
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determining a certain collection: a condition such that, for
any previously accepted object, we know what to count as
a proof that the object satisfies the condition -cf. Dummett
[1977], p. 38. In other words, a set is given by a decision
procedure that can be applied to any arbitrary pair of
constructions {c¢,d) to determine whether or not c is a proof
that d belongs to it.

Moreover, a set will be non-empty (traditionally, ‘in-
habited’) when we know how to produce a particular object
which satisﬁes it; and a set is a subset of another set when
we can prove that all elements of the first are elements of
the second.

Finally, ‘ce U’ is read as ‘we can prove that the construc-
tion c belongs to the set U’, and ‘c¢ U’ as ‘we can prove that
¢ does not belong to U’. The symbols ‘~ and ‘U are used for
intersection and union of sets respectively, and ‘— for the
complement of a set in another; ‘X’ for the Cartesian
product of two or more sets, and ‘U"’ for the Cartesian

product of the set U with itself n times.
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0.6.3. Constructive interpretations. 1 now sketch the
definition of a constructive interpretation for a first-order
language .#. This definition would have to be completed in
a number of details which I leave here simply outlined. The
subject of the thesis is precisely fhe discussion of those
details. |

I first consider the case where 'the domain of the inter-
pretation is a decidable set, and later I explain how to
adapt the definition to the case where it is not -a possibility
which is also accepted by many intuitionists.

Let Z be a first-order language. Then a constructive
interpretation J for #consists of the'fol—lowing ingredients.

(a) A set 9 called the domain of I, plus a decision proce-

dure whereby we can decide whether or not an arbitrary

construction ¢ is a member of Z.

(b) A construction that can be applied to any constant ¢ of

Zto yield a member J() of 2.
(¢) For each m-ary predicate symbol F of Z, a subset J(F)
of 2". According to the definition of an intuitionistic set

this must be given by a decision procedure such that for
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any m-tuple (b,,...,b,,) of members of & and construction c,

it determines whether or not ¢ is a proof of (b,,...,b,, e J(F').

Now let x,,...,x, be distinct variables of %, and ¢ a

formula whose free variables are among x,,...,x, . Then, for

any n-tuple (a,,...,a,) of members of 2, the semantic

definition will associate to ¢ a statement J(¢(a,...,a,)),
which, intuitively, will be the statement made by the
formula ¢ under the interpretation ¥ when q,,...,a, are

taken as the values of x;,...,x, respectively.

0.6.4. More on constructive interpre-tations. The basic
semantic deﬁnition 1s given then by induction according to
the following schema. Let ¢ be as before, a formula whose
free variables are among x,,...,x,.

If pis an atomic sentence F,,...,t,, for some m-ary predi-
cate symbol F and terms ¢,,...,t,,, then we let J(p(a,,...,a,))
be the atomic statement (b,,...,0,,)eJ(F'), where each b, (for
1<i<m) is either J(,), if ¢; is a constant, or g; (for 15j<n) if
t; is a variable x; (in which case, by definition, it has to be

among X;,...,X,)-
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Then, for the specification of the meaning of J(p(@,,...,a,))
there is little choice, since the only information that we
have about J(F') is the decision procedure to check whether
or not a given construction c is a proof of (b,,...,b,,)eI(F).
Hence in this case the meaning is given by the proof-
conditions: the cohditions under which ¢ would be a proof
of J(p(ay,...,a,)).

Next, the definition should specify the meaning of the
statement -¢@(a,,...,a,) in terms of the meaning of ¢(a,,...,a,),
and the meaning of the statements (¢Ap)@a,...,a,),
(pvw)a,,...,a,), and (p—> ¥)(@,,-...,a,) in terms of the meanings
of p(a,,...,.a,) and y(@,,...,a,). As we shall see in the course
of the thesis, here there is a greater choice in the way that
these meanings are recursively given.

Finally, the definition should specify as Well the meaning
of the statements Vxg and 3x¢ in terms of statements of
the form

(71 (o PN o PERY 0 X o FIRTINON s MY B
where x is the variable x; (for 1<i<n) and a is also a

member of Z; and here again there is a wide range of
options.
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The discussion of the thesis is focused, then, in how to
complete this description with the appropriate explana-
tions. For example, according to one of them, the meaning
of the statement (¢ y)(@,,...,a,) is given by indicating that
a proof of this statement is a proof of ¢(,;,...,a,) plus a
proof of y(a,,...,a,)-

To make the discussion more \lively, however, I shall
often adopt a more informal style, in which we discuss
directly the interpretation of intuitionistic statements
without specifying a formal language and so on. In these
cases both the informal notation and the way to apply it to
the consideration of I will be obvious. For example, a claim
that ‘the meaning of a statement AA Bis given by specifying
that a proof of it consists of a proof of A plus a proof of B’
will be equivalent to the specification mentioned in the
previous paragraph.

I shall not come back to description of J, simply because
it would take too long to go over all the details each time
that I discuss a new approach. This adaptation, however,

will always be straightforward.
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0.6.5. Constructive interpretations with a non-decidable
domain. Most authors accept non-decidable domains as
intuitionistically meaningful. In these cases the definition
of I will be modified as follows (cf. e.g. Dummett [1977], p.
24-25, or Troelstra and van Dalen [1988], p. 9).

First, the domain  is given simply as an intuitionistic
set, that is, by means of a _procédure to decide, for any
arbitrary pair of constructions (c,d),- whether or not ¢

proves de 2. However, we do not require a decision proce-

dure to determine whether or not a given arbitrary cons-

truction belongs to Z; in general, we will not be able to

decide this.

Next, the interpretation of each m-ary predicate symbol
F will be a decision procedure which acts on any m-tuple
(b,,...,b,,) of constructions given another construction c

which proves that all b; (for 1<i<m) belong to 2. Similarly,

if ¢ is a formula whose free variables are among x,,...,x,,
the semantic definition will associate a statement to each
n-tuple of constructions {q,,...,a,) given another construc-

tion ¢ which proves that all g, (for 1<i<n) belong to 2.
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Finally, the clauses corresponding to the quantifiers will
also have to refer to a proof that the critical object @ in

question belongs to 2. For example -using informal terms-

if a proof of IxA(x) is to be defined in the case of a decida-
ble domain as a construction ¢ plus a proof of A(c), then in

the case that 2 is not decidable we should require in

addition to this a further proof that ce 2.

0.6.6. Conventions regarding quotations. 1 use double
quotation marks for all quotations. I do not change the
underlining or italics of the original tekt unless otherwise
stated; however, I have changed the original notation in
most quotations, to make them fit with one another and
with the notation which I use in the thesis, in order to
facilitate the reading.

The pages referred to will be those of the edition which
is mentioned in the ‘Bibliography’ in the first place; that
edition does not always coincide with the original -earliest-
one, but is often the most easily available today.

Finally, when I quote from a paper which has not been

translated into English I use my own translation, but I
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reproduce the original text in footnotes.
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CHAPTER 1
THE SEARCH FOR THE INTENDED
INTERPRETATION: EXPOSITION

§1.1. Brouwer’s use of the logical constants
1.1.1. Introduction. Any search for the intended meaning of
the intuitionistic logical operators must in one way or other
start with Brouwer, the founder of intuitionism, the main
person who invented them and the first who used them
systematically for doing mathematics. Naturally, these
operators have later been used by other intuitionistic mathe-
maticians apart from Brouwer, but apparently with very few
changes. |

As is well-known, Brotiwer did not have a great interest in
mathematical logic, and he never committed himself to giving
a rigorous explanation of the logical operators; the actual use
that he made of them in his proofs of intuitionistic theorems,
plus a number of observations accompanying those proofs,

were enough for him.
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The task of turning this use into an explicit characteriza-
tion starts with Kolmogorov and Heyting. In the present
section I shall briefly discuss a few of Brouwer’s original
writings, mainly as a reference for the rest of the chapter -a
fairly recent and thorough study of Brouwer’s writings and

life is van Stigt [1990].

1.1.2. Verificationist interpretatibns: n;teaning as provability.
As we shall see throughout this chapter, most attempts to
define the intended interpretation of the intuitionistic logical
operators take as the basic key concept the notion of ‘proof’.

The idea is to equate the meaning of a mathematical
statement with its provability conditions. That is: to give the
interpretation of a statement by means of a definition of what
is.to be a proof of it.

This seems more adequate for intuitionistic s'emantics given
that, in contrast with the structural (platonistic) point of
view, intuitionistic mathematics focuses primarily on the
subject (the creative mathematician) and his ability to
perform certain mathematical operations by applying his

previously designed constructions (knowing how). Hence a
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notion such as ‘proof’, which refers to the successful comple-
tion of a human action, appears to be more suitable than that
of ‘truth’.

On the other hand, classical mathematics focuses essential-
ly on the object: eternal pre-existing mathematical structures
(kRnowing that); and for this reason, the notion of ‘truth’, with
its prominent descriptive untensed character, is more ap-
propriate. Of course we can also use the predicate ‘true’ with
its intuitionistic sense -e.g. as ‘having been proved’, as many
intuitionistic’mathematicians do; but that could be misleading
to a classical mathematician if we do not make our intention
explicit, especially in the context of a semantic definition.

The idea that intuitionistic meaning should be equated with
the proof-conditions is implicit in many of Brouwer’s writings,
although he never states it directly. The following quotation
is a relatively clear illustration. It is taken from the Cam-
bridge Lectures, but the same idea is expressed in many
others of his papers, sometimes with almost the same words

(cf. e.g. [1955], pp. 551-552).

“Classical logic presupposed that independently of human
thought there is a truth, part of which is expressible by means of

sentences called ‘true assertions’, mainly assigning certain
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properties to certain objects or stating that objects possessing
certain properties exist or that certain phenomena behave
according to certain laws.

..

“Only after mathematics had been recognized as an autonomous
interior constructional activity (...) the criterion of truth and
falsehood of a mathematical assertion was confined to mathe-
matical activity itself, without appeal to logic or to hypothetical
omniscient beings. An immediate consequence was that for a
mathematical assertion A the two cases of truth and falsehood,
formerly exclusively admitted, were replaced by the following
three:

(1) A has been proved to be true;

(2) A has been proved to be absurd;

(3) A has neither been proved to be true nor to be absurd, nor do
we know a finite algorithm leading to the statement either that A
is true or that A is absurd.” ([1981], pp. 90-92).

In a footnote he adds: “the case that A has neither been

proved to be true nor to be absurd, but that we know a finite
algorithm leading to the statement either that A is true, or

that A is absurd, obviously is reducible to the first and second

cases” (p. 92).

1.1.3. Verificationist interpretations: meaning as problem-

solving. A variant on this view is to consider that every

mathematical statement is the statement of a problem, to be

solved either positively or negatively. This is the idea ex-
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ploited in Kolmogorov’s interpretation, and is also suggested
more or less directly by Brouwer’s writings in some places.

For example in [1928] he urges the formalists to accept

“(...) the identification of the principle of excluded middle with
the principle of the solvability of every mathematical problem.” (p.
491).

This identification means that the principle of excluded
middle holds if and only if each mathematical problem is
solvable. In the direction from right to left the implication is
obvious: if every mathematical problem were solvable then
the principle of excluded middle could not fail to hold.
However, the implication in the other direction, that is, from
excluded middle to the principle of solvability, seems to entail
that the meaning of each statement is the formulation of a
mathematical problem. Otherwise we could not understand
why the fact that either a statement or its negation holds
entails that the respective problem is solvable.

Of course in classical mathematics we can also assign to
each statement a corresponding problem -the problem of
proving that what the statement affirms is true; but that
would only be an oblique interpretation with respect to the

primary meaning of the statement -which, e.g. under the
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platonistic view, would be the statement of a mathematical

‘fact’.

1.1.4. The operational interpretation. Finally, in Brouwer’s
writings we also find support for a more basic explanation of
the meaning of mathematical statements, in terms of element-
ary manipulations with mathematical constructions. I shall
call this interpretation ‘operationé.l’, hefe and in the rest of
the thesis -the term was suggested to me by Professor
Machover; it appeared in Prawitz [1973] (p. 231) in reference
to the verificationist interpretation, but it has not been used
again since then.

The idea of the operational interpretation is that a mathe-
matical statement expresses an expectation that the result of
performing a particular construction will satisfy certain
properﬁes, or better, that it will agree with the constructions
corresponding to those properties, if they are also completely
effected. This idea is very well-known, and indeed essential to
intuitionism and to Brouwer’s thinking. Here are a couple of

quotes, from Brouwer’s PhD Dissertation and from [1923]:
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“Often it is quite simple to construct inside such a structure,
independently of how it originated, new structures, as the
elements of which we take elements of the original structure or
systems of these, arranged in a new way, but bearing in mind their
original arrangement. The so-called ‘properties’ of a system express
the possibility of constructing such new systems having a certain
connection with the given system.

“And it is exactly this imbedding of new systems in a given
system that plays an important part in building up mathematics
(...).” ([1907], p. 52).

“Within the limits of a definite finite main system one can
always test, that is prove or reduce to absurdity the properties of
the system, i.e. test whether a system can be fitted into another
according to prescribed incidence of elements since the fitting-in
as determined by the property can in every case be executed in
only a finite number of ways, which each in turn can be under-
taken and pursued either until it is successfully completed or until
it gets stuck.” ([1923], p. 235; this translation, however, is from
van Stigt [1990], p. 243).

In the case of a numerical equality over natural numbers,
for example, this would mean that the two completed cons-
tructions fit perfectly well into each other; for example

‘122=144’ would mean that the result of effecting both sides of

the equality comes to the same final construction.

In the case of an atomic statement other than an equality,

this would mean that the constructions corresponding to the

objects involved satisfy the construction corresponding to the
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relation in question; for example the meaning of ‘212131 is
prime’ would be that the result of effecting the operation
22131 would satisfy positively the constructive procedure to
test the property of ‘being prime’.

On the other hand, in the case of more complex statements,
the expectation would be that some simpler constructions can
be connected according to the main logical operator, which

itself would be a constructive procedure of some kind.

1.1.5. The vérificationist versus the operational interpreta-
tion. The operational explanation is fairly close to the
provability or verificationist interpretation, and has been
assimilated to it by most authors. The point would be that the
proof of a statement consists precisely in producing the
mathematical construction which the statement demands.

Brouwer himself seems to support this identification when
he writes, for example, “the words of your mathematical
demonstration merely accompany a mathematical construct-
ion that is effected without words” ([1907], p. 73).

However, as I shall stress again and again throughout the

thesis, this identification is correct only in the cases where it
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is obvious that the construction which has been produced has
the required properties -in particular, for instance, with
proofs of atomic statements. In general however, the proof of
the statement in question will have to include not only the
required construction, but also an argument that it is in effect
such a construction; and in some cases this argument may
necessarily be very complicated.

This is not the time, however, .to cafry on this discussion.
It is enough to notice that the two interpretations may not

coincide, and that we should not equate them beforehand.

1.1.6. The meaning of negation. As Brouwer made clear many
times, for him to negate a mathematical statement was to
claim the absurdity or impossibility of what the statement
says. Apparently, Brouwer was not the first person to
conceive negation in this way; it seems that similar defini-
tions had been given before at least by Husserl and Oskar
Becker (cf. Heyting [1931], p. 59).

Indeed, Brouwer often writes ‘is absurd’ and similar
phrases instead of ‘not’ or ‘is false’; for example, he formulates

the law of excluded middle as the principle that every
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property is either correct or impossible ([1923], p. 335). In
[1949] he says: ‘by non-equivalence we understand absurdity
of equivalence, just as by noncontradictority we understand
absurdity of contradictority” (p. 95, footnote 2); and sometimes
he even writes “false i.e. absurd” (e.g. [1955], p. 552).

In classical mathematics to say that a statement is ‘absurd’
means that it is obviously false, something which has to do
more with the psychological perception of the statement than
with the statement itself. ‘Absurdity’ in this sense, is not a
proper technical term of classical mathematics.

In intuitionistic mathematics, on the contrary, ‘absurdity’
1s the most interesting way of expressing negation. The
absurdity of a hypothetical construction means that not only
is it difficult to effect it -because it requires great ingenuity or
hard work- but that it is intrinsically impossible, so that we
shall no longer bother to attempt it.

Sometimes the absurdity is plain to see and does not need
any demonstration (e.g. ‘1=2": it is obvious that the two
constructions do not ‘agree’or fit into each other). Some other

times the absurdity is not obvious but we can find a way of
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reducing the constructions in question to a point where the
impossibility becomes clear.

It is for this reason that some later authors define a
negation A as the conditional statement A—1, where 1L is a
fixed absurdity. In fact L is often called a ‘contradiction’, but
that must not be ihterpreted in the classical sense (e.g. as any
statement of the form BA-B), because then it would be
obviously vacuous.

Instead, we can take 1 as a basic absurdity -such as ‘1=2'-,
whose only role is to make absolutely evident that the
construction which has been reduced to it is impossible: “at
the point where you enounce the contradiction, I simply
perceive that the construction no longer goes, that the re-
quired structure cannot be imbedded in the given basic
structure.” ([1907], p. 73)V.

Latér, Dummett [1977] has suggested thaf given a decida-
ble atomic statement B we could identify 1 with BA—B, where
the meaning of B would be given directly by the decision
procedure attached to it. Then, anyone who understands the
decision procedure will recognize that it is impossible for it to

give two opposing results, and hence that whichever cons-
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truction that has been reduced to such a statement is also
impossible.

Other authors, in a vaguely similar way to Kripke seman-
tics, have defined a proof of 7A directly as ‘a proof that there
cannot be a proof of A’ (Bell and Machover [1977], p. 406, and
Dummett himself in [1976], p. 110). However, it is difficult to
make constructive sense of this idea independently of the
reduction to a basic absurdity. For, in general, the impos-
sibility of a complicated construction will not be plain to see,
and will have to be shown by means of a reduction of this
construction to another, elementary one, whose absurdity is
obvious.

On the other hand, the claim is not simply that as a matter
of fact we shall never be able to perform A -e.g. because A is
too complicated-, but that A is intrinsically impossible.
However, we cannot admit a priori this type of impossibility
because that would imply a certain reification over the
universe of constructions: constructions are not assumed to
exist or not (to be possible or impossible) independently of us

-independently of our ability to prove it so.
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Hence the only way of making sense of this idea is, again,

by means of a reduction of A to a basic impossibility.

1.1.7. Negation and hypothetical constructions. As for
hypothetical constructions, there is a passage in Brouwer’s
PhD Dissertation which has misled some into believing that

he rejected them:

“In one particular case the -chain of syllogisms is of a
somewhat different kind, which seems to come nearer to the usual
logical figures and which actually seems to presuppose the
hypothetical judgement from logic. This occurs when a structure
is defined by some relation in another structure, while it is not
immediately clear how to effect its construction. Here it seems
that the construction is supposed to be effected, and that starting
from this hypothesis a chain of hypothetical judgements is
deduced. But this is no more than apparent; what actually
happens is the following: one starts by setting up a structure
which fulfills part of the required relations, thereupon one tries to
deduce from these relations, by means of tautologies, other
relations, in such a way that these new relationé, combined with
those that have not yet been used, yield a system of conditions,
suitable as a starting-point for the construction of the required
structure. Only by this construction will it be proved that the
original conditions can be fulfilled.” ([1907], p. 72).

However, he is not condemning the appeal to hypothetical
constructions in general, but only the assumption that a

mathematical construction can exist without us having first
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proved that it could be effected and how. Moreover, he
himself often referred to hypothetical constructions in his
proof of negation and conditional statements (e.g. in his proof
of the law of triple negation, [1981], p. 12).

Later Freudenthal [1937] and Griss [1946] criticized the
use of hypothetical constructions especially in the cases where
the supposed construction turns out to be impossible, as
happens in a proof of a negation, if the proof is successful.
This led Griss to the extreme position of trying to develop
intuitionistic mathematics without using negation at all
[1946], [1955].

Heyting [1937], [1961], on the contrary, defended the use of

hypothetical constructions in mathematical reasoning:

“The following simple example shows that the problem A—Bin
certain cases can be solved without a solution for the problem A
being known. For A I take the problem find in the sequence of
decimals of 7 a sequence 0123456789’, for B the problem ‘find in
the sequence of decimals of 7a sequence 012345678’. Clearly Bcan
be reduced to A by a very simple construction.” ([1937], p. 117; the

translation is from Troelstra and van Dalen [1988], p. 31).

As we shall see later in the thesis, the interpretations of
the intuitionistic logical operators fall into two groups: those

which make essential use of the notion of hypothetical
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construction and those which do not. In the former case the
characterization of hypothetical constructions has to be taken
seriously, in the sense that, for example, we must indicate
recursively for each logical type of statement (conjunctions,
disjunctions, etc) what is a proof of that statement which uses
a hypothetical proof of a given premise.

In other words, that we should give a general characteriza-
tion of the notion of ‘proof from pfemisés’. As we shall see at
the time, the task of making this characterization is not
entirely trivial.

Thus, by reducing the negation to an absurdity operator,
and more in general, to the construction which shows that
absurdity, the intuitionistic mathematician manages to assign
a positive meaning to each negation statement, in accordance
with the constructive philosophy of mathematics. An in-
tuitionistic negation is strictly speaking a positive claim -that
which reduces the hypothetical construction to a basic
impossibility such as ‘1=2’-, but it carries with it an implicit
denial -the denial that we shall ever be able to perform the
construction corresponding to the statement negated. More-

over, this will be obvious to anyone who understands the
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absurdity of the basic impossibility in question -e.g. the

absurdity of ‘1=2’.

1.1.8. The meaning of the conditional. Brouwer’s conception
of the conditional in its strongest sense appears in his
attempted proof of the bar theorem (e.g. in [1927], pp. 459-
462; a neat exposition and discussion is Dummett [1977], pp.
94-104). There, Brouwer considers a conditional statement
(bar induction), classifies all possible proofs of the antecedent
into three types, and tries to show that each of these proofs
can be converted into a proof of the consequent.

This suggests that an intuitionistic proof of a conditional
statement A—>B is a method of transforming every proof of A
into a proof of B.

An obvious question, however, is how can we know in
advance which form any arbitrary proof of the antecedent
should take, so that we ensure that our method will trans-
form all of them into proofs of the consequent. This question
turns out to be a deep one.

We must notice that, in particular, as it happens Brouwer’s

attempted proof of the bar theorem is incorrect, and no way
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has been found to correct it while preserving its original form
(see again Dummett [1977], pp. 101-102).

In practice, most intuitionistic proofs of conditional
statements appeal to only one obvious property that every
proof of the antecedent must satisfy: to be a proof of the
antecedent -that ié, to have the antecedent as the final line or
conclusion of the proof. The _method then does not enter to
transform the proofs of A internaily, but; simply extends them
to obtain proofs of B.

Brouwer himself, in other proofs of conditional statements
returns to this simple procedure. For example, in his proof of
the law of triple negation (e.g. [1981], p. 12), he first assumes
-4 (that is, —A— 1) and then shows how we can transform
that construction into a proof of A (that is, into a proof of
A—1), independently of any actual proof of the former.
Moreover, every notable intuitionistic proof- of a conditional
statement has proceeded in a similar way as well (Dummett

[1977], pp. 15 and 104).

1.1.9. Disjunction, conjunction and <>. From his discussion of

the law of excluded middle we can see that in order to accept

56



a disjunction Brouwer requires that one of the disjuncts is
known to hold -or at least that a decision procedure is known
which could be used to determine which one. This is some-
thing on which he insists many times. The following quote

provides an illustration:

“Now consider the principium tertii exclusi: it claims that
every supposition is either true or false; in mathematics this
means that for every supposed imbedding of a system into another,
satisfying certain given conditions, we can either accomplish such
an imbedding by a construction, or we can arrive by a construction
at the arrestment of the process which would lead to the imbed-
ding. It follows that the question of the validity of the principium
tertii exclusi is equivalent to the question whether unsolvable
mathematical problems can exist. There is not a shred of a proof
for the conviction, which has sometimes been put forward that
there exist no unsolvable mathematical problems.

“Insofar as only finite discrete systems are introduced, the
investigation whether an imbedding is possible or not, can always
be carried out and admits a definite result, so in this case the
principium tertii exclusi is reliable as a pﬁnciple of reasoning.”

([1908], pp. 109).

However “in infinite systems the principium tertii exclusi is
as yet not reliable” (p. 110).
In this way Brouwer succeeds in attaching a constructive

meaning to disjunction statements: to assert a disjunction, the
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subject must be able to perform the constructions correspond-
ing to one of the disjuncts.

Conjunction shall not detain us long, neither here nor in
the rest of the thesis. This is indeed, among the five logical
operators, the only one which essehtially does not change its
meaning, except for the fact that it is now embedded in an
intuitionistic language, and the other logical operators to
which it relates are different froﬁ thoée of classical mathe-
matics.

For that matter, the biconditional is also defined as in
classical logic -e.g. ‘A<>B’ is an abbreviation of ‘(A—>B)A(B—A)’.
This is not to say that intuitionistically ‘A«<B’ means the
same as in classical logic, because again both ‘A—B’ and ‘B—A’
have changed their meaning with respeét to classical logic.

Similarly, ‘AA B’ does not mean the same, because A and B
will have also changed their meaning with respect to their

classical counterparts.

1.1.10. The quantifiers. Brouwer’s conception of the exist-
ential quantifier is probably the most characteristic of all the

logical operators. Intuitionistically mathematical objects are
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not assumed to exist by themselves, but only as a result of a
generation or construction process. To prove that a certain
entity satisfying a given condition exists, it is not enough, for
example, to reduce the hypothesis that it did not exist to a
contradiction: we must actually produce one, or at least show
how it could be produced: “(...) in intuitionist mathematics a
mathematical entity is not necessarily predeterminate”
([1955], p. 552). This means that 3 can no longer be read as
‘there is’ in the classical sense -i.e. there exists independently
of us-, but rdther, as ‘we can construct’.

The following quote is an illustration:

“(...) now let us pass to infinite systems and ask for instance if
there exists a natural number n such that in the decimal expan-
sion of x the nth, (n+1)th, ..., (n+8)th, and (n+9)th digits form a
sequence 0123456789. This question (...) can be answered neither
affirmatively nor negatively. But then, from the intuitionist point
of view, because outside human thought there are no mathemati-
cal truths, the assertion that in the decimal expansion of 7 a
sequence 0123456789 either does or does not occur is devoid of

sense.” ([1981], p. 6).

Finally, as for the universal quantifier, Brouwer’s require-
ment for a proof of a universal statement VxA(x) was that a
method had been produced to establish A(c) for each element

¢ in the domain. In particular it would not be ehough, as
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before, to derive a contradiction from the hypothesis that an
object d such that “A(d) exists; that derivation would not be
enough in general to prove A(c) of every individual c. Instead,
he required an effective method -a construction- for doing

exactly this.
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§1.2. Kolmogorov’s interpretation
1.2.1. An interpretation in terms of mathematical problems.
Kolmogorov [1932] made the first attempt to give an explicit

and systematic account of all the intuitionistic logical opera-
tors.

In this paper Kolmogorov outlines an interpretation which
is patently verificationist. He argues that it would be a
mistake to try to give an interpretation of intuitionistic logic
based on the notion of ‘truth’; instead, he proposes the notions

of ‘problem’ and ‘solution to a problem’:

“In addition to theoretical logic, which systematizes a proof
schemata for theoretical truths, one can systematize a proof
schemata for solutions to problems (...).

“(...) In the second section, assuming the basic intuitionistic
principles, intuitionistic logic is subjected to a critical study; it is
thus shown that it must be replaced by the calculus of problems,
since its objects in reality are problems, rather than theoretical

propositions.” (p. 58°).

" My translation. “Neben der theoretischen Logik, welche die Be-
weisschemata der theoretischen Wahrheiten systematisiert, kann man
die Schemata der Lésungen von Aufgaben (...) systematisieren.

“(...) Im zweiten Paragraphen wird, unter Anerkennung der allgemei-
nen intuitionistischen Voraussetzungen, die intuitionistische Logik
kritisch untersucht; es wird dabei gezeigt, dal sie durch die Auf-
gabenrechnung ersetzt werden sollte, denn ihre Objekte sind in

Wirklichkeit keine theoretischen Aussagen, sondern vielmehr Auf-
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As we shall see immediately, Kolmogorov defines what is
to be the solution of a complex problem in terms of solutions
of its logical components, depending on what the main logical
operator is. By doing this he establishes the general form of
the verificationist interpretation: an inductive compositional
definition of the notion of ‘solution to a problem’; later
versions shall use the concept of ‘proof’ rather than that of
‘solutions to problems’, but- this is 6nly a terminological
difference. Also, in so doing, Kolmogorov is giving the first
general definition of the concept of ‘constructive proof’,

-although, again, he does not present it under this title.

1.2.2. Kolmogorov and Heyting. Kolmogorov was anticipated
in several respects by Heyting [1930] and [1931]. In par-
ticular, in those papers Heyting also outlines the essence of
the verificationist interpretation and uses it to explain the
intuitionistic use of negation and disjunction. |

However, Kolmogorov’s work was independent. Indeed, at
the end of the paper he includes a footnote, added at the

proof-reading stage, in which he credits the similarity

gaben”.
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between his interpretation and that of Heyting [1931], which
had appeared recently: “this interpretation of intuitionistic
logic is intimately related to the ideas that Mr Heyting has
advanced in the latest volume of Erkenntnis (...)” (p. 65,
footnote 17°).

Heyting, on the other hand, in [1934] acknowledges the
independence -as well as the similarity- of Kolmogorov’s
interpretation in terms of problems, and adopts it himself to
explain the meaning of the intuitionistic logical constants and
to give semaﬁtic motivation to several logical theorems (pp.

17-23).

1.2.3. The interpretation of the connectives. Kolmogorov’s
interpretation of the connectives is as follows. Let A and B be
mathematical problems, then:

(a) AAB is “the problem of solving both A and B”;

(b) AvB is “the problem of solving at least one of A and B”;

" “Diese Interpretation der intuitionistischen Logik hingt eng -
zusammen mit den Ideen, welche Herr Heyting im letzten Bande der

‘Erkenntnis’ (...)".

63



(c) A—>B s “the problem of solving B supposing that the solu-
tion to A is given”; and finally

(d) —A is “the problem of obtaining a contradiction supposing
that the solution to A is given” (pp. 59-60").

With respect to the conditional, Kolmogorov explains: “or,
what amounts to the same, ‘to carry the solution of B back to
the solution of A’” (p. 597). That is, what he has in mind is
a partial solution or solution-séhemé of B, which would
become a full solution if complemented with a solution of A.
In other words: a solution of B with premise A

This implies the appeal to a hypothetical proof of A. On the
other hand, negation stands exactly in the same situation. In
fact, a negation statement —A appears as a special kind of

conditional statement, A—B, in a case where Bis a contradict-

" “Wenn @ und b zwei Aufgaben sind, bezeichnet anb die Aufgabe
‘beide Aufgaben a und b lésen’, wirhend avbd die Aufgabe bezeichnet
‘mindestens eine der Aufgaben a und b lésen’. Weiter ist aob die
Aufgabe ‘vorausgesetzt, dafl die Losung von a gegeben ist, b 16sen’ (...).

“(...) Dementsprechend bezeichnet —a die Aufgabe ‘vorausgesetzt, dafl

die Lésung von a gegeben ist, einen Widerspruch erhalten’”.

™ %(...) oder, was dasselbe bedeutet, ‘die Lésung von b auf die Losung

von a zurickzufithren’”.
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ion. Kolmogorov does not explain, however, what he under-

stands by ‘contradiction’ (Widerspruch).

1.2.4. The interpretation of the quantifiers. Kolmogorov seems
more concerned with the interpretafion of intuitionistic
propositional logic than with predicate logic -in fact, the
‘calculus of problems’ he gives contains propositional axioms
only (pp. 61-62). However, after explaining the connectives he
extends his interpretation in terms of problems to the
universal quantifier:

“Generally speaking, if x is a variable (of the type desired) and
A(x) is a problem whose meaning depends on the variable x, VxA(x)
is the problem ‘to indicate a general method for the solution of A(x)
for each particular value of x’. This should be understood like this:
to solve the problem VxA(x) means to be in a position to solve the
problem A(c) for each given value c of x, after a series of steps

given in advance (before the choice of c).”' (p. 60%).

* “Im allgemeinen bedeutet, wenn x eine Variable (von beliebiger
Art) ist und a(x) eine Aufgabe bezeichnet, deren Sinn von dem Werte
von x abhingt, (x)a(x) die Aufgabe ‘eine allgemeine Methode fiir die
Lésung von a(x) bei jedem einzelnen Wert von x anzugeben’. Mann soll
dies so verstehen: Die Aufgabe (x)a(x) zu l6sen, bedeutet, imstande sein,
fur jeden gegebenen Einzelwert x, von x die Aufgabe a(x,) nach einer
endlichen Reihe von im voraus (schon vor der Wahl won x,) bekannten

Schritten zu 16sen.”
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This does not need any comment -at least for the time being.
After giving the interpretation of V, Kolmogorov does not
also give the interpretation of the existential quantifier, as we
would expect; but elsewhere in the paper he gives ample
explanations on the meaning of existential claims in in-
tuitionistic mathematics -and in particular, to the central
point concerning them: that the person who makes the claim
must be able to indicate a particﬁlar iﬁstance of it.
In any case it is very easy to apply the preceding definition
to the intuitionistic 3, thus -with A(x) as before:
the solution to 3xA(x) is the indication of a particular object
¢ plus a solution to A(c).
Heyting, for example, in his exposition of Kolmogorov’s
interpretation, includes basically this definition of 3 as a

straightforward extension of the definition ([1934], p. 21).
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§1.3. Heyting’s interpretation
1.3.1. Introduction. Heyting’s interpretation in its standard
form does not appear until [1956]. It is in this book that we
first find his own systematic explanation of all the intuition-
istic logical operators, entirely based on the notions of ‘proof’
and ‘assertability conditions’.

The basics of this definition, however, are already clear in
[1930], [1931] and [1934]. In those works Heyting openly
defends the verificationist point of view, uses it to define
several connéctives, and comments positively on the variant

of Kolmogorov.

1.3.2. The verificationist point of view. Heyting’s defence of
verificationism departs from the constructive standpoint:

“Here is thus an important result of the intuitionistic critique:
the idea of an existence of the mathematical entities outside our
mind should not enter into the demonstrations. I think that even
the realists, while continuing to believe in the transcendent
existence of mathematical entities, should recognize the impor-
tance of knowing in what way mathematics can be built without
using this idea.

“For the intuitionists mathematics constitutes a magnificent
edifice built by human reason. Perhaps they would do better to

avoid entirely the word ‘to exist’; if they continue to use it
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nevertheless, it could not have, for them, any other sense than this
of ‘having been built by reason’.” ([1930], p. 958").

Consequently, mathematical statements have to be inter-

preted in a non-realist way:

“A mathematical proposition expresses a certain expectation.
For example, the proposition, ‘Euler’s constant E is rational’,
expresses the expectation that we could find two integers n and m
such that E=n/m. Perhaps the word ‘intention’, coined by the
phenomenologists, expresses even better what is meant here.”
([1931], p. 58). ' '

“There is a criterion by which we are able to recognize mathe-
matical assertions as such. Every mathematical assertion can be
expressed in the form: ‘I have effected the construction A in my

mind’.” ([1956], pp. 18-19).
These explanations seem to support the operational

interpretation. However, Heyting makes it quite clear that,

* My translation. “Voici donc un résultat important de la critique
intuitionniste: L’idée d'une existence hors de notre esprit des entités
mathématiques ne doit pas entrer dans le démostrations. Je crois que
méme les réalistes, tout en continuant de croire & I'existence transcen-
dante des entités mathématiques, doivent reconnaitre 'importance de
la question de savoir comment les mathématiques s’édifient sans I'usage
de cette idée.

Pour les intuitionnistes les mathématiques constituent un édifice
grandiose construit par la raison humaine. Peut-étre feraient-ils mieux
d’éviter tout & fait le mot «exister»; s’ils continuent néanmoins a
I'employer, il ne saurait avoir pour eux d’autre sens que celui d’ «étre

construit par la raison»”.
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for him, to effect the construction required by a mathematical
statement and to give a proof of it are one and the same
thing:

“The demonstration of a proposition consists in the realization
of the construction that it requires.” ([1934], p. 17).

“(...) a mathematical proposition A always demands a mathe-
matical construction with certain given properties; it can be
asserted as soon as such a construction has been carried out. We
say in this case that the construction proves the proposition A and
call it a proof of A.” ([1956], p. 98).

“(...) every mathematical theorem is the expression of a result
of a successful construction. The proof of the theorem consists in
this construction itself, and the steps of the proof are the same as

the steps of the mathematical construction.” ([1958], p. 107).

As I have said before this identification is probably incorrect,
but I shall not give a detailed argument until later.

The way in which he defines the same connective at
different places confirms this identification too; for example:
“AvB signifies that intention which is fulfilled if and only if

at least one of the intentions A and B is fulfilled”, and “AvB

"I translate this text from the French 1955 expanded edition, which
is the only one I could find in London. However, this and the following
quotes belonged to the original German 1934 edition -the 1955 additions
to the original text are clearly marked in the French version.

“La démonstration d’'une proposition consiste dans la réalisation de

la construction qu'elle exige.”
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can be asserted if and only if at least one of the propositions
A and B can be asserted” ([1931], p. 59 and [1956], p. 97

respectively).

1.3.3. Heyting and Kolmogorov. On the other hand, as we
know Heyting also acknowledges the similarity between the
proof interpretation and Kolmogorov’s. As I said before, in
[1934] he uses consistently Kolinogox;ov’s interpretation to
motivate the intuitionistic rejection of various classical logical
principles and the acceptance of others. Before doing that he

writes:

“Kolmogorov (...) has proposed a similar conception (...). He
interprets this calculus as a calculus of problems. (...) he does not
explicate this concept, which we could interpret as the request to
effect a mathematical construction which satisfies certain condi-

tions.” ([1934], p. 17°).

Indeed, earlier in [1930] he had written:

" “Kolmogoroff (...) a proposé une conception voisine (...). Il interprete
ce calcul comme un calcul de problemes. (...) il n’explicite pas ce concept,
qu'on peut interpréter comme la demande d’effectuer une construction

mathématique qui satisfasse a certaines conditions.”
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“A proposition (...) expresses a problem, or even better a certain

expectation (...)". (p. 958").
Later in [1958] he will insist:

“The older interpretations by Kolmogorov (as a calculus of
problems) and Heyting (as a calculus of intended constructions)

were substantially equivalent.” (p. 107).

1.3.4. The interpretation of the connectives. In any case, in
[1956] Heyting takes the concept of ‘provability’ (or ‘asserta-
bility conditions’) as the basic notion of the whole definition

as so will do most authors afterwards:

“It will be necessary to fix, as firmly as possible, the meaning of
the logical connectives; I do this by giving necessary and sufficient
conditions under which a complex expression can be asserted.”

([1956], p. 97).

It is in these terms then that he gives the interpretation of
the connectives, as follows:

(a) “AAB can be asserted if and only if both A and B can be

asserted”;
(b) “AvB can be asserted if and only if at least one of the

propositions A and B can be asserted”;

* 113 .. . .
Une proposition (...) exprime un probléme, ou mieux encore une

certaine attente (...).”
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(c) “mA can be asserted if and only if we possess a construct-
ion which, from the supposition that a construction A were
carried out, leads to a contradiction”; and

(d) “A—>B can be asserted, if and only if we possess a construc-
tion ¢, which, joined to any construction proving A (supposing
that the latter be effected), would automatically effect a
construction proving B” ([1956], pp. 97-98).

The definitions of A and v do hot deéerve any special com-
ment. In the definition of — it is to be noticed that Heyting
writes “which, joined to...”. That is: he is not cpnsidering -at
least apparently- the possibility that the construction in
question operates internal transformations on the proofs of A.
He rather refers to a simple juxtaposition; and his other
formulations of the same clause are sometimes less specific,
but similar -e.g. “A—B thren represents the intention of a cons-
tructibn which, from each demonstration bf A, leads to a

demonstration of B” ([1934], p. 17").

“a>b représente alors I'intention d’une construction qui, de chaque

démonstration pour a, conduit & une démonstration pour b”.
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1.3.5. The conditional and negation. On the other hand, this
clause (d) refers to a construction which as a matter of fact,
if joined to a construction proving the antecedent (4) would
effect the consequent (B). We could paraphrase it as ‘a
construction ¢ such that, for any construction d, if d proves A
then c(d) proves B’. Hence the reference to hypothetical
constructions is not essential -we shall see along §2.6 that
this makes a non-trivial difference-; and the formulation of
[1934] just mentioned also agrees with clause (d) in 1.3.4.

On the other hand, this definition puts no bound to the
proofs of A referred to -e.g. to their complexity or otherwise.
This means that among the proofs considered there might be
some which have been built up from c itself. In other words:
this clause is impredicative -self-reflexive.

In contrast, the definition of = appeals explicitly to a proof
of a contradiction from premise A, that is: a hypothetical
proof of a contradiction which would use as a premise the
existence, hypothetical as well, of a construction proving A. In
addition, other definitions of negation that Heyting gives in
different places are also of this form -e.g. “the proposition ‘E

is not rational’, (...) signifies the expectation that one can

73



derive a contradiction from the assumption that E'is rational”
([1931], p. 59).

This means that there is a difference between Heyting’s
definitions of — and —; a subtle difference but an important
one, as I have pointed out before and I shall explain in detail
later. The definition of — uses the notion of ‘proof from
premises’ -and hence the notion of hypothetical proof- and in
this sense is similar to Kolmogoroir’s. The definition of —, on
the other hand, merely requires a construction by means of
which it is possible to produce an actual proof of the con-
sequent provided that we possess a proof of the antecedent.

Finally, Heyting spells out his idea of a contradiction
briefly:

“I think that contradiction must be taken as a primitive notion.
It seems very difficult to reduce it to simpler notions, and it is
always easy to recognize a contradiction as such. In practically all

cases it can be brought into the form 1=2." ([1956], p. 98).

1.3.6. The interpretation of the quantifiers. Heyting’s inter-
pretation of the quantifiers is as follows:

(a) “F— VxA(x) means that A(x) is true for every x in & [the

domain]; in other words, we possess a general method of
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construction which, if any element ¢ of & is chosen, yields by

specialization the construction A(c)”; and

(b) “AxA(x) will be true if and only if an element ¢ of 2 for

which A(c) is true has actually been constructed” ([1956], p.
102).

It is remarkable that in the latter clause Heyting does only
require that an instance of A(x) is produced, but not that it is
shown to be such an instance -in general this will not be

evident, and will ask for a separate proof.
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§1.4. Gentzen’s natural deduction rules

1.4.1. Introduction. When Gentzen presented his natural
deduction calculus, and in particular the intuitionistic
version, he wrote that “the introductions [the introduction
rules] represent, as it were, the ‘definitions’ of the symbols
concerned, and the eliminations are no more, in the final
analysis, than the consequences of these definitions” ([1935],
p. 80). Indeed, he had intended' to créate a formal system
which came as close as possible to actual mathematical
reasoning (p. 74); hence the way in which the rules governing
each logical constant were given -and in particular, the intro-
duction rules- would have to be immediately connected with

its intuitive meanings.

1.4.2. Gentzen’s introduction rules. Gentzen'’s rules are well-
known. According to them:

(a) a proof of AAB is given by a proof of A plué a proof of B;
(b) a proof of AvB is given either by a proof of A or by a proof
of B;

(c) a proof of A—B is a proof of B from premise A;
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(d) a proof of —A is a proof of A—>1, where 1 is any false
statement;

(e) a proof of VxA(x) is a proof of A(y) for a critical variable y
which does not occur in VxA(x) or in any non-discharged
premise;

(f) a proof of 3xA(x) is a proof of A(t) for some term ¢ ([1935],

pp. 77-79).

1.4.3. Discussion. Gentzen’s contribution is important even if
his main coricern was not that of giving a semantic explana-
tion, because he makes a clear and explicit use of the notion
of ‘proof from premises’ to define both negation and the
conditional, and introduces a definition of the universal
quantifier somehow connected to it: the definition in terms of
‘proofs with free variables’, which has later been adopted by
a number of authors, and which I shall thoroughly examine

later in the thesis.
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§1.5. Kreisel’s interpretation
1.5.1. Introduction. Kreisel [1962] made the first attempt to
make the previous informal explanations of the logical
constants fully rigorous. Kreisel acknowledges that Heyting’s
interpretation is basically sufficient to convey the meaning of
the logical consfants, but he argues that from the technical
point of view it would be desirable to make the definition
more precise (p. 199). | |

Kreisel completes the definition with the specification of an
atomic case, introduces a uniform notation for all the clauses,
and modifies the definitions of =, - and V in a way which is
going to be slightly controversial.

Kreisel’s interpretation is clearly verificationist:

“The Intuitionistic Position (General Statement):

“The sense of a mathematical assertion denoted by a linguistic
object A is intuitionistically determined (or understood) if we have
laid down what constructions constitute a proof of A.” ([1962], p.
201). |

Indeed, the project is closely connected with the formulation
of an ‘abstract theory of constructions’, in which the two most
basic notions of intuitionistic mathematics -‘construction’ and

‘constructive proof’- would receive a systematic treatment (p.
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198); as I said at the beginning I shall not be concerned here
with the details of this theory or of its later developments,

which are numerous.

1.5.2. Kreisel’s definition. For the interpretation of an atomic

statement P(c,,...,c,) over a universe Zit is enough to indicate
a set -a species- of n-tuples of 2 plus a series of objects
a,,...,a,€Z. As I remarked in 0.6.2, intuitionistically a set has

to be presented by means of a definite condition of which we
know how to recognize a proof that it applies to a given
object. |

Hence for an atomic statement to be intuitionistically
acceptable its proof-conditions have to be laid down in
advance, and by doing that we also fix its constructive
meaning. |

Then Kreisel gives separate clauses for each complex
statement depending on which is its main logical operator. He
uses a very compact notation -taken from the theory of
constructions-, which I shall translate to more informal terms

as usual:
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(a) c is a proof of AAB when it is a pair {c¢,,c,) such that ¢, is
a proof of A and c, is a proof of B;

(b) ¢ is a proof AvB when it is either a proof of A or of B;
(c) c is a proof of A—»>B when it is a pair {c,,c,) such that c,
proves that for any construction d, if d proves A, then c,(d)
proves B;

(d) c is a proof of 7A when it is a pair {(c¢,,c,) such that c,
proves that for any construction »d, if d proves A, then c¢,(d)
proves 1=0;

(e) c is a proof of 3xA(x) when it is a pair {(c,,c,) such that c,
proves A(c,);

(f) c is a proof of VxA(x) when it is a pair {c,,c,) such that c,
proves that for any construction d, c,(d) proves A(d) ([1962],

p. 205).

1.5.3. Discussion. The constructions in the ciefinition can be
objects (functions of zero arguments), or genuine functions,
which operate on other objects and functions. No type
distinction is made explicit between them (p. 202). The
application of one construction to another is understood in

the usual way except that in the cases where it does not make
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sense it is given an artificial value so as to ensure that it is
always defined: in those cases c¢(d) is taken to be c itself.

In the case of the construction c, of clause (c), its role is to
transform any possible construction which is a proof of A into
a proof of B. Henée the clause involves a quantification over
all constructions‘and, in particﬁlar, over all possible proofs of
A, so it is impredicative as happened with Heyting’s clause;
and exactly the same is true heré for élause (d).

In this case, however, internal transformations of the

proofs of A are allowed.

1.5.4. The decidability of the proof relation. In contrast with
Heyting’s interpretation, the constructions corresponding to
~», 7 and V are here pairs of constructions. In the case of a
proof of A— B, for example, ¢, plays the role of transforming all
proofé of A into proofs of B; but in genel;al it will not be
evident whether or not it does this, and so ¢, is to provide an
argument which proves that c, indeed works as required.
The idea of these ‘extra-clauses’ was first suggested by
Kreisel in [1961], footnote 4, p. 107. Later he shéll call the

corresponding construction ¢; in each clause a ‘judgement
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proof’, since its purpose is to judge’ that the other construct-
ion works as expected ([1971], p. 129 and note 11, p. 146). In
turn, we could call the second construction the ‘working
proof’, since it is this that performs the essential task of the
proof in question.

As a result the proof-relation induced By the definition is
a decidable relation: if it is not obvious that ¢, works as
required then ¢; will prove it so. The decidability of the proof-

relation is important for Kreisel:

“(...) we are adopting the basic intuitionistic idealization that we
can recognize a proof when we see one, and so r, [the proof-

predicate for a statement A] is decidable.” ([1962], p. 202).

Later he shall call this assumption a ‘fundamental principle’

([1965], p. 124), and writes:

“This principle is embodied in the usual formal systems where,
for any particular (representation of a proof by a) sequence of
symbols, it can be decided whether it proves (the assertion
expressed by) any given formula. In addition, formal systems
require the decision (i) to be mechanical, and (ii) for arbitrary

formulae (not only universal ones).” (p. 124).
Also Dummett [1977], for example, adheres to this idea:

“The explanation of each constant must be faithful to the
principle that, for any construction that is presented to us, we
shall always be able to recognize effectively whether or notitis a

proof of any given statement.” (p. 12)
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Finally, it is to be noticed that the clause for v has been
later modified by several authors (starting with Kreisel
himself in [1965], p. 129), as to include an indication of which
disjunct is the one being proved; for example, by requiring
that a proof of AvB be a pair (c,,c,) such that either ¢, proves
A and then c2=0,- or ¢, proves B and then c,=1.

This modification, however, is unnecessary if, as it happens
here, the proof relation is ensﬁred fo be decidable with
respect to the other clauses. In particular, if ¢, proves A or ¢,
proves B then we already know how to check which one is the
case, and we do not need an indicator of it. This point is made
by Dummett [1977] (p. 320) -Hellman [1984] also mentions a
lecture by Scott Weinstein in 1977 in which he makes this

observation too.

1.5.5.>The debate on the extra-clauses. Thé addition of the
extra-clauses has the effect of destroying the inductive
structure of the definition. Indeed, if the definition is to be
inductive, then, as I explained at the beginning, the ascription

of meaning to a compound statement would have to be given
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in terms of the ascription of meaning to statements of smaller
complexity.

In this case, the definition of proof of a complex statement
would have to be done in terms of proofs of statements
logically simpler than it; but this requirement is broken by
Kreisel’s extra-clause, since it appeals to a proof of a very
general fact: that for any construction d, c,(d) proves the
corresponding statement. Naturally this does not fall under
the scope of the inductive definition.

During the years following Kreisel’s introduction of the
extra-clauses they were naturally adopted by most authors, as
a plain improvement over the preceding interpretations.
Examples are -apart from Kreisel himself- Troelstra ([1969],
[1977]), Nicolas Goodman ([1970]), van Dalen ([1973], [1979)),
Dummett ([1977], p. 399) and Bell and Machover ([1977], pp.
406-407).

Troelstra [1977] and [1981] introduced the abbreviation
‘BHK’ for ‘Brouwer-Heyting-Kreisel’ to denote the intended

explanations of the logical constants.
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However, others remained reluctant to include the extra-
clauses in the definition. Scott [1970] argues that we should

distinguish between constructions and proofs:

“We have no abstract proofs only constructions and species of
_constructions. When the author finally obtained his formalism the
proofs-as-objects vanished.” (p. 241)

“Assuming for simplicity that no hypothesis of declarations are
required, what must be done in order to establish A—B? One must
produce a cons‘truction together with a proof that this construction
transforms every construction that couid establish A into a
construction for B.

“The construction is an object of the theory [the theory of
constructions] while the proof is an elementary argument about
the theory. Kreisel calls such proofs §udgements’ and asks for an
abstract theory of them. We have not provided this because we did
not see why such a theory was needed.” (pp. 261-262).

Then, to convey the meaning, for instance, of the conditional,
one would need to refer to constructions only. However, in a
note at the end of the paper he declares having been con-
vinced by Kreisel and Gédel in conversation of the need for
decidability and abstract proofs, and almost withdraws the
theory (Postscript, p. 272).

Prawitz [1977] considered that the addition of Kreisel’s

extra-clauses is untenable:

“In the cases when A is an implication or a universal sentence

(...) we must require not only a construction or a description of an
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appropriate procedure but also an understanding of this procedure.
The knowledge required in this case is thus of a considerably more
involved character. One may ask whether this knowledge should
not consist of a description of the procedure together with a proof
that this procedure has the property required, as suggested
originally by Kreisel. But this would lead to an infinite regress and
would defeat the whole project of a theory of meaning as discussed

here.” (p. 27).

Prawitz is wrong -I think- that Kreisel’s extra-clauses lead to
an infinite regress, because the judgement construction, being
a proof, must include everything that is needed to ensure that
the other construction works as required; it cannot be that a
second judgement proof to judge’ c, is needed, because if ¢, is
not enough to show that c, works as fequired then this will
mean that ¢, is not adequate as a judgement proof.
However, he is probably right about the impossibility of

basing a theory of meaning on a non-inductive definition.

1.5.6. More on the debate. Later other papers such as Sund-
holm [1983] and Weinstein [1983] appeared exploring the
costs of adopting thé extra-clauses. For example Weinstein
writes:

“It is evident that the new clauses [Kreisel’s extra-clauses] for

the conditional and universal quantifier taken together with the
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old clauses for the atomic formulas and the remaining connectives
can no longer be viewed as an inductive definition (...).
“This means of securing the decidability of the proof conditions

for formulas of arithmetic is not without cost.” (p. 264).

Sundholm [1983] (p. 161) quotes one of Heyting’s later
publications, [1974], p. 87, and notices that Heyting did not
adopt the extra-clauses in his own explanétions of »and V. To
this we could add that Heyting maintained the original
formulations in the further réviséd editions of [1956], in 1966
and 1971. More particularly, Sundholm says that Heyting
mentioned the extra-clauses in [1968] (p. 318), but only in the
process of a survey of recent work within intuitionism in
which he describes Kreisel’s contributions of [1962] and
[1965]. Finally, Sundholm also refers to the fact that Troels-
tra, in conversation, stressed to him that it would not be fair
to assume that Heyting was against the introduction of the
extra-clauses from the fact that they never appeared in his
work (footnote 13, p. 169). |

Later we shall see more about Sundholm and this debate,
but the thing is that as a result of it, some of the authors who

had happily welcomed the extra-clauses became sceptical
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about them. Van Dalen [1983] (p. 166), [1986] (p. 231), gives

definitions without them, and writes:

“It must be pointed out however that the decidability of the
proof-relations has been criticized and the ‘extra clauses’ are not

universally accepted.” ([1986], p. 232).

In Troelstra and van Dalen [1988], they give an explana-
tion of the logical constants without the extra-clauses (p. 9),
and write: “Kreisel proposed this version [the one with
judgement proofs] in the hope of obtaining interesting new
models for intuitionistic systems, but this hope was not
fulfilled” (p. 32). Ironically, here they again use the abbrevia-
tion ‘BHK’ but this time standing for “Brouwer-Heyting-Kol-
mogoroV’; later, other authors continued to use this abbrevia-
tion with the first sense, e.g. Ruitenburg [1991] (p. 156) or
Hellman [1989] (p. 50) -although it is not clear that the latter
is well informed about Kreisel’s extfa-clauses since in his
discussion of the decidability of the proof relation on pp. 57-59

he ignores them completely.

1.5.7. The naive verificationist interpretation. The inter-
pretation which I shall call here ‘the naive interpretation’ is

what results from Kreisel’s interpretation after we remove
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the extra-clauses. With minor changes, it can be found in van
Dalen [1983] (p. 166), [1986] (p. 231) and Troelstra and van
Dalen [1988] (p. 9), although there might be earlier versions.
It does not coincide, however, with Kolmogorov’s, Heyting’s or
Gentzen’s.

It goes as follows:
(a) a proof of AAB is a proof of A plus a proof of B;
(b) a proof of AvB is either a prbof of .A or a proof of B;
(c) a proof of A—B is a construction which transforms every
proof of A into a proof of B;
(d) a proof of 74 is a construction which transforms every
proof of A into a proof of some absurd-statement 1;
(e) a proof of 3xA(x) is a construction ¢ plus a proof of A(c);
(f) a proof of VxA(x) is a construction which transforms every
construction c in the doxhain into a proof of A(c).

This definition does not coincide with Heyting’s for several
reasons: the definition of — appeals to transformations of the
proofs of A in general, and not simply to juxtaposition of other
constructions to them as Heyting did. Hence the full power of
Brouwer’s conditional is here recaptured. Moreover, the

definition of - is different, since, as we saw, Heyting appeals
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to proofs from premises. Finally, the definition of 3 is also
different, since Heyting only required a construction ¢ which
satisfies the condition -that is, a construction ¢ such that A(c)
holds- but not a proof that c is such a construction.

The difference with Kolmogorov’s and Gentzen’s interpreta-
tion is even more obvious, because the appeal to proofs from
premises here is totally absent -as we shall see in §2.6 this
makes a non-trivial difference.

This interpretation is untenable unless we replace its
central concept -‘proof’- by a different one, and that is why I
have called it ‘naive’; but this is something the discussion of
which I shall postpone for the next chapter. In any case, this
could not constitute a problem for the works in which the
definitions appears, since in those works it does not play a

technical role proper, but stands mainly as a heuristic guide.

1.5.8. Other considerations. Another consequence of the
decidability of the proof relation achieved with the addition
of the extra-clauses is that the meta-connectives that are used
in the definition can be taken to be the classical ones -that is,

the truth-functions-, since in the context of decidable state-
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ments the intuitionistic and classical propositional connect-
ives behave exactly in the same way.

This is very important for Kreisel:

“If the logical operations, in terms of which the usual assertions
are built up, are not primitive but explained, then the basic proofs
must be proofs of special assertions in which the (problematic)

logical operatioris are not involved.” ([1965], p. 123).
The same point is also made by Nicolas Goodman:

“If the definition is not to be circﬁlar, then the 4f ..., then’ in the
definition must be essentially simpler than the intuitionistic
implication being defined. This is achieved by requiring that the
proof predicates (...) be decidable, so that, even from an intuition-
istic point of view, we can make unproblematic use of the truth-

functional connectives.” ([1970], p. 105).

However, this point loses its force if we consider that a
similar reduction is not possible in the case of the quantifiers
-whether we take the proof relation to be decidable or not, the
meta-quantifiers used in the clauses must be the intuitionistic
ones. |

The fact that the semantic definition of the intuitionistic
logical operators has to use these very operators in the
metalanguage need not be more worrisome here than in the
classical case, where exactly the same thing occurs. As

Prawitz writes:
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“(..) in one sense we already know what is to count as a proof
and what it is to grasp the meaning of an expression. That is, in
practice, we are able to tell whether something is a proof and
whether somebody has grasped the meaning of a given expression.
What semantics and logic have to do is to explain this practice by
giving a systematic account of it, and by doing this, our implicit
knowledge may be improved and become explicit to some extent
(although it seems that the explanation will usually still have to

presuppose some implicit knowledge of the same kind).” ([1979],
pp. 26-27).

This systematic account consists precisely in giving the
interpretation of each logical constant by specifying what the
meaning of each compound statement in terms of the meaning
of its constituents is.

Finally, another point which deserves to be mentioned is
that, as Goodman [1970] pointe